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SMART ELECTRONIC MATERIALS

Smart materials respond rapidly to external stimuli to alter their physical properties.
They are used in devices that are driving advances in modern information technol-
ogy and have applications in electronics, optoelectronics, sensors, memories and
other areas.

This book fully explains the physical properties of these materials, including
semiconductors, dielectrics, ferroelectrics, and ferromagnetics. Fundamental con-
cepts are consistently connected to their real-world applications. It covers structural
issues, electronic properties, transport properties, polarization-related properties,
and magnetic properties of a wide range of smart materials.

The book contains carefully chosen worked examples to convey important con-
cepts and has many end-of-chapter problems.

It is written for first year graduate students in electrical engineering, material
sciences, or applied physics programs. It is also an invaluable book for engineers
working in industry or research laboratories. A solution manual and a set of useful
viewgraphs are also available for instructors by visiting http://www.cambridge.org/
0521850274.

JASPRIT SINGH obtained his Ph.D. in Solid State Physics from the University of
Chicago. He is currently a professor in the Applied Physics Program and in the
Department of Electronic and Computer Science at the University of Michigan,
Ann Arbor. He has held visiting positions at the University of California in Santa
Barbara. He has authored over 250 technical articles. He has also authored eight
textbooks in the area of applied physics and technology. His area of expertise is
novel materials for applications in intelligent devices.
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PREFACE

Semiconductor-based devices such, as transistors and diodes enabled technologies that
have ushered in the information age. Computation, communication, storage, and display
have all been impacted by semiconductors. The importance of semiconductors is recog-
nized if we examine the number of undergraduate and graduate courses that cater to the
physics and devices based on these materials. In nearly all electrical engineering depart-
ments there are one to two undergraduate courses on the general topic of “physics of
semiconductor devices.” There are similarly two to three courses in graduate programs
on semiconductor physics and devices. In many materials science departments and in
physics (or applied physics) departments there are one or two courses where the focus
is on semiconductors.

Semiconductors have achieved dominance in information technology because it
is possible to rapidly alter their conductivity and optical properties. However, there are
other materials that can also rightfully claim to be “smart.” New applications and needs
are now making these other materials increasingly important. Devices that are usually
called sensors or actuators are based on ceramics or insulators which have some prop-
erties that traditional semiconductors cannot match. Similarly, organic polymers can
provide low-cost alternatives to traditional semiconductors in areas like image display,
solar energy conversion, etc.

Increasingly we have to view intelligent devices as being made from a wide
variety of materials — semiconductors, piezoelectric materials, pyroelectric materials,
ferroelectrics, ferromagnetics, organic semiconductors, etc. Currently some electrical
engineering departments and some materials science departments offer courses on “sen-
sors and actuators” or“ceramics.” Some physics departments also offer courses on gen-
eral “solid state physics,” which cover some aspects of ceramics. In this book I have
attempted to offer material where “traditional” semiconductors, “traditional” smart ce-
ramics, and newly emerging organic semiconductors are discussed in a coherent manner.
"The book covers structural issues, electronic properties, transport properties, polarization-
related properties, and magnetic properties of a wide range of smart materials. We also
discuss how these properties are exploited for device applications.

This book is written for first year graduate students in an electrical engineering,
material science, or applied physics program.

I am grateful to my editor, Phil Meyler, for his support and encouragement.
The design, figures, and layout of the book was done by Teresa Singh, my wife. She also
provided the support without which this book would not be possible.

JASPRIT SINGH
Ann Arbor, MI
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INTRODUCTION

I1 SMART MATERIALS: AN INTRODUCTION

Humans have used smart materials — materials that respond to input with a well-defined
output — for thousands of years. The footprint on a soft trail in a jungle can tell a well-
trained human (and almost all wild animals) what kind of animal recently passed and
even how much it weighed. In this case the soft mud acts as a smart material - responding
to and storing information about a passing animal. A reader of Sherlock Holmes is
undoubtedly familiar with all kinds of information stored in intelligent materials that
the clever detective was able to exploit. Over the last couple of decades the role of
smart materials in our lives has become so widespread that (at least, in the industrial
countries) most of us would be lost without these materials guiding us.

Let us follow Mr. XYZ (of course, it could also be a Ms. XYZ), a super salesman
for a medical supplies company, as he gets up one morning and goes about his business.
He checks his schedule on his laptop (semiconductor-based devices process the infor-
mation, liquid crystals help display the information, ferromagnetic- and polymer-based
materials store the information, a laser using semiconductors reads the information...).
Mr. XYZ sees that he has to catch a flight in an hour to make a presentation. As he
drives to the airport he sees on his car map that there is an accident on his normal
route. The car computer hooked up to a satellite system gives him an alternate route,
which gets him to the airport on time.

On the way to the terminal he has used a smart parking ticket on his cell phone.
As he goes through airport security he is scanned by a battery of machines, which
have used electromagnetic radiation of several frequencies, chemical sensors, ultrasound
images...

The airplane he takes is, of course, a marvel packed with smart materials -
sensors and computers fly most of the flight. Mr. XYZ deplanes and gets a rental car
with his credit card (another smart device). He makes a very successful presentation
with his smart audiovisual card, which he carries in his wallet. A dozen managers in
plants located all over the world also participate in the presentation.

As Mr. XYZ is heading back he falls and suffers a gash on his hand. It does
not look serious, but he stops by a clinic to have it checked. His health card is scanned,
giving the nurse a full history of his allergies, drugs he cannot take, current medication,
etc. His gash is patched up and he is given a pill, which will speed up the healing.

Mr. XYZ makes it safely to his home to enjoy a nice movie and some playtime
with his family.

Semiconductors, ferroelectrics, ferromagnetics, piezoelectrics, tailor-made poly-
mers — a plethora of smart materials have allowed Mr. XYZ to sail through the day. As
he sleeps soundly his two-year-old has a nightmare and screams out. He spends the rest

xiil
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Xiv Introduction

of the night consoling the toddler. Although he does not have a smart technology that
will substitute for his hugs, perhaps after another 20 years...who knows!

In this book we will focus on the several classes of materials which have led
to modern information age devices. The list of materials being exploited for intelligent
devices is continuously increasing. However, there are certain common physical effects
that will form the underlying foundations for the materials we will examine.

1.2 INPUT-OUTPUT DECISION ABILITY

A key reason why some materials can be used in intelligent devices is the nature of
response that can be generated in some physical property of the device to input. For
example a voltage pulse applied across a copper wire does not produce a response (in
current) that can be used for digital or analog applications. However, a voltage pulse
across transistor made from silicon creates a response that can be exploited for intelligent
devices. Later in the book we will discuss what makes an input — output response usable
for decision making.

In Fig. 1 we show a typical input — output response in an intelligent device.
There are many other forms of the input — output relations that can be exploited for
decision making and we will discuss them later. In the response shown in Fig. 1 we
see that output has a “thresholding” behavior; i.e., it is low for a range of input and
then over a small range of input change it becomes high. This is a response that can be
exploited for “switching” applications or memory applications.

The input that a device may respond to may be an optical or a microwave sig-
nal, a poisonous gas, a pressure pulse (a sound pulse for example), an electrical voltage
pulse, etc. The output response also depends upon a wide range of physical phenomena
that alter the state of the device. The most commonly used physical phenomena for
smart devices are the following: (i) Conductivity changes or current flow in the device.
(ii) Optical properties that may involve light emission, light absorption, light amplifica-
tion, etc. The effects may involve changes in the refractive index, including absorption
coefficient or gain, of the material. (iii) Polarization changes. Many sensor technologies
exploit changes that occur in the polarization of a material when subjected to pressure
or strain or other inputs. The change in polarization produces a voltage change that
can be used to make decisions. (iv) Magnetization changes are exploited in technologies
such as a recording medium. In addition to these basic physical phenomena (charges)
there may be other changes such as temperature changes, volume changes, etc., which
can also be exploited for devices.

The materials that are used for modern information devices are varied and
complex and come from many different categories of solids. In Figs. 2 — 5 we show an
overview of the devices and materials that are driving the modern information age.

I.2.1 Devices based on conductivity changes

Devices that are based on materials where conductivity can be changed rapidly form
the bulk of modern information-processing devices. In Fig. 2 we show an overview of
the various devices, materials, and technologies that exploit changes in conductivity. As
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1.2. Input—output decision ability XV

shown in the figure electronic transport in material can be incoherent or coherent. Most
present devices are based on incoherent transport, where the wave nature of electrons
(i.e., the quantum nature of electrons behaving as propagating waves with well-defined
phase coherence) is not exploited. Conductivity changes arise primarily due to an in-
crease or decrease in the number of current-carrying particles. Devices such as diodes
and field effect transistors that form the basis of modern semiconductor technology rely
on being able to alter conductivity rapidly by an input signal. Materials that have prop-
erties that allow large changes (up to orders of magnitude) in conductivity are usually
semiconductors, such as Si, Ge, GaAs, InP, etc. Recently organic materials have also
shown great promise.

Coherent transport devices

In classical physics, electrons, which are responsible for carrying current in solids, are
particles described by their mass, momentum, and position. In the more accurate quan-
tum description, the electrons are described by waves with a certain wavelength and
phase. In most cases, as electrons move in a solid, they suffer scattering, causing loss
of phase coherence. However, in very small devices as well as in superconductors, the
scattering is essentially absent and phase information is retained. In such cases, coher-
ent, transport occurs and effects such as interference and diffraction can be exploited to
design devices.

As fabrication technologies improve, coherent transport-based devices will be-
come easier to fabricate for room temperature operation. At present such devices can
only operate at low temperatures. As shown in Fig. 2, such devices can be made from
semiconductors, metals, superconductors, etc.

I1.2.2 Devices based on changes in optical response

The electromagnetic spectrum, in general, and visible light, in particular, are an impor-
tant part of the human experience. We use sight and sense (heat/cold) to survive and
thrive in nature. It is not surprising that technologies that involve generation or detec-
tion of light are very important. Optically active (i.e., optical properties can be altered)
materials form the basis of light emitters (for displays, optical communication, opti-
cal readout, publishing, etc.), light detectors (for imaging and coding/decoding), light
switches (for communication, image projection), and many other optical technologies,
such as medical diagnostics, crime scene analysis, etc.

A vast range of materials is used to design optical devices. These include tra-
ditional semiconductor polymers (such as GaAs, InGaAs, InN, and GaN).

Devices based on polar materials

There are a number of materials in which there is net polarization. The polarization
that causes a detectable eleciric field (or a voltage signal) can be exploited for a range
of applications. As shown in Fig. 4, several interesting physical phenomena involve
polarization effects. In ferroelectric materials the polarization can be altered by an
external electric field. The electric field—polarization relation shows a hysteresis curve,
so that the direction of polarization at a zero applied field can be switched. Such an
effect can be used for memory devices and is used widely for “smart cards.” A number
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INTELLIGENT DEVICES: PHYSICAL EFFECTS

=3 Decision
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Quantum
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Figure I.1: An overview of the input—output response of intelligent devices and various physical
effects that can be exploited for device design.
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Figure I.2: Devices and technologies based on the control of conductivity of materials.
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DEVICES BASED ON OPTICAL RESPONSE
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Figure 1.3: Materials and devices that are based on control of optical response.
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I.3. Biological systems: nature’s smart materials Xix

of ferroelectric materials are used in modern technology and rapid advances in synthesis
techniques promise more applications based on the ferroelectric effect.

Another physical effect based on polarization is the piezoelectric effect, where
the polarization depends upon the strain applied to the sample. A potential signal
can also produce strain in a piezoelectric material. Materials like quartz and PZT are
widely used for technologies based on the piezoelectric effect. Technologies that use
the piezoelectric effect include sensors/actuators (including developments in the micro-
electro-mechanical systems or MEMs technology) and ultrasonics.

An interesting and important effect based on polarization is the pyroelectric
effect in which a temperature change causes a polarization change in a material. This
allows us to convert a thermal signal into a voltage signal (or vice versa). The pyroelectric
effect is primarily used for thermal imaging, especially for night vision applications.

Mangetic materials
Magnetic effects arise in materials in which there is a net spin (intrinsic angular momen-
tum associated with electrons) so that there is a magnetization in the system. In some
materials the magnetization can exist in the absence of any external magnetic field.
Such materials are called ferromagnets. In other materials magnetization only arises in
the presence of a magnetic field. Such materials are called paramagnetic or diamagnetic
(depending upon whether the magnetization is parallel or opposite of the field).
Magnetic materials have been an important part of the recording media indus-
try. For memories the hysteresis curve for ferromagnets shown in Fig. 5 is used to create
a two-state system, whereby using an external field the orientation of the magnetization
1s altered.

I.3 BIOLOGICAL SYSTEMS: NATURE’S SMART
MATERIALS

Scientists have looked at nature’s creations for inspiration since the beginning of civiliza-
tion. Scientific laws — the underlying basis of all technology — are the result of observing
nature in action and then developing a consistent description. Biological systems — from
a cell to a complex nervous system — are a source of inspiration for scientists. The flight
of birds has inspired aerospace technology, neural networks derive inspiration from the
brain (although nature is far ahead), and the way living objects see and sense has in-
spired technologies in microwave and optics. The list goes on with sensors and actuators,
micro machines, robots, pharmaceuticals, chemistry ... all benefiting from what nature
has produced.

With advances in biology, particularly with advances in chemical and physical
probes and diagnostic tools, scientists are able to go beyond mere observation of biolog-
ical systems. Advances in genetics have allowed scientists to understand how biological
systems function and how they can be manipulated. Human intervention in the manip-
ulation of biological systems (genetically modified foods, cloning, selective breeding of
species, etc.) is a highly charged area, with ethics, religious beliefs, legal systems, and
local customs all being important factors in making decisions about whether technology
should be allowed to advance.
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DEVICES BASED ON POLARIZATION
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Figure I.4: Materials and devices based on changes in polarization in materials.
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» Fy
®» O ¢  SPINCONTROL

« In addition to metallic magnetic materials, a variety of ceramics can be made
magnetic by including iron. Thin film technologies can then be applied to

create smart devices.
+ Recently, magnetic semiconductors have been used to demonstrate

interesting magnetic effects.

H-field

/ H-field

» Below Curie temperature a
net spontaneous magnetization
can be present (after an
external H-field is used to
orient spins)

S

» Most metals show paramagnetic
effects

« Ferromagnets above Curie
temperature display paramagnetic
effects

« Transformers, motors, antennas
» Microwave technologies

- Storage

» Permanent magnets

» Magneto-optics

« Fe, Ni, Mn
. Fe304, BaFelzolg...

Figure 1.5: Magnetic changes in materials and device technologies based on them.
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xxi11 Introduction

Modern information-processing devices can certainly better biological systems
in many areas of information processing. Even gifted mathematicians cannot keep up
with a simple calculator when it comes to number crunching. Similarly a low-end com-
puter can “memorize” and accurately recall millions of names and phone numbers.
However, pertaining to real-life, “hard” problems, biological systems are well beyond
what technology can accomplish. In the area of problems, such as recognition, conversa-
tion, associative memories, etc., technology and software are not even at the level of an
insect. In fact many imaginative ideas about future technology are based on observing
what living organisms can do.

A critical component of technology is the ability to synthesize a structure re-
peatedly. A dream of processing engineers is to simply assemble the materials together
and let things just “self-assemble” on their own. This does happen in chemical reactions
— provided the right thermodynamic conditions are maintained. Information-processing
devices, however, are still far from this point of self-assembly. Electronic devices, for
example, require a lot of processes, such as masking, etching, regrowth, undercutting,
etc., to form the final device.

A process engineer, even in the most advanced fabrication facility, can only won-
der at nature’s ability to produce enormously complex organs. The ultimate incredibly
complex self-assembly is the multiplication of cells. In this process nature makes exact
copies of DNA. As we will see 1n this text, even in state-of-the-art facilities, devices are
made using essentially “hammer and chisel” approaches. However, advances are being
made in the synthesis of at least some parts of devices through self-assembly.

I.4 ROLE OF THIS BOOK

This book has been prepared for a one-semester course on the physics of smart materials.
The book would be ideal for courses taught at a senior level or beginning graduate
level in departments of applied physics, material science, or electrical engineering. The
approach used 1n this book takes the reader from basic physics towards applications.
Many important devices, such as field effect transistors, bipolar transistors, organic
transistors, light emitters, memory devices, sensors, and actuators are discussed in the
context of the physical phenomena examined.

The user of this book will see that in every chapter and in most sections there
1s a liberal use of pedagogical tools, such as flow charts, tables, figures, and solved
examples. The solved examples would be useful for the student, since they involve
examining realistic numbers. Some topics are such that a simple explanation can be
given for the underlying physics. For example, issues related to semiconductor devices
can be explained on the basis of band theory. However, the physics behind effects such
as ferroelectricity, ferromagnetism, etc. is quite a bit more complex. In such cases we
provide a motivation for the phenomena, but avoid rigorous derivations. There are
also several effects that requre knowledge of advanced quantum mechanics for their
understanding (e.g., the phenomena of spontaneous and stimulated emissions). In such
cases we use the results from quantum mechanics and apply them. Simple arguments are
presented to explain the results, but a rigorous derivation is avoided, given the overall
level of this book.
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Chapter

STRUCTURAL
PROPERTIES

1.1 INTRODUCTION

In this text we will discuss a variety of physical properties, which form the basis for
intelligent devices. These properties are closely linked to the physical structure of the
materials. The arrangements of the atoms/molecules determine important symmetries
in the system that, in turn, influence the electronic and optical properties. For exam-
ple, the presence or absence of inversion symmetry determines properties such as the
piezoelectric effect used for sensors and ultrasonic applications. Ferroelectric materials
depend upon special crystalline properties of ionic crystals. Valence band properties in
semiconductors are determined by the cubic symmetry in the crystals.

In addition to the arrangement of atoms in crystals, it is also important to un-
derstand the nature of surfaces and interfaces. Many devices are based on phenomena
that are unique to surfaces or interfaces. Finally, we have to realize that most mater-
ials are far from perfect crystals. Polycrystalline materials, amorphous materials, and
materials with defects are also used in making smart devices.

In this chapter we will examine the structural properties of a variety of materials
used for smart device applications. We will start with perfect crystals.

1.2 CRYSTALLINE MATERIALS

Almost all high-performance devices are based on crystalline materials. Although, as
we will see later in the chapter, there are some devices that use low-cost amorphous
or polycrystalline semiconductors, their performance is quite poor. Crystals are made
up of identical building blocks, the block being an atom or a group of atoms. While in
“natural” crystals the crystalline symmetry is fixed by nature, new advances in crystal
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2 Structural properties

growth techniques are allowing scientists to produce artificial crystals with modified
crystalline structures. These advances depend upon atomic layers being placed with ex-
act precision and control during growth, leading to “superlattices.” To define the crystal
structure, two important concepts are introduced. The lattice represents a set of points
in space, which form a periodic structure. Each point sees an exact similar environment,.
The lattice is by itself a mathematical abstraction. A building block of atoms called the
basis is then attached to each lattice point, yielding the crystal structure.

The properties of a lattice are defined by three vectors a;, ag, az, chosen so that
any lattice point R’ can be obtained from any other lattice point R by a translation

R' = R+ mjia; + maoay + maas (1.1)

where my, ma, ms are integers. Such a lattice is called a Bravais lattice. The entire
lattice can be generated by choosing all possible combinations of the integers m;, ms,
mg. The translation vectors a;, as, and ag are called primitive vectors if the volume of
the cell formed by them is the smallest possible. There is no unique way to choose the
primitive vectors. One choice is to pick

a; to be the shortest period of the lattice
as to be the shortest period not parallel to a;
agz to be the shortest period not coplanar with a; and as

It is possible to define more than one set of primitive vectors for a given lattice,
and often the choice depends upon convenience. The volume cell enclosed by the prim-
itive vectors 1s called the primitive unit cell. The crystalline structure is now produced
by attaching the basis to each of these lattice points.

lattice + basis = crystal structure (1.2)

Because of the periodicity of a lattice, it is useful to define the symmetry of the
structure. The symmetry is defined via a set of point group operations, which involve
a set of operations applied around a point. The operations involve rotation, reflection,
and inversion. The symmetry plays a very important role in the electronic properties
of the crystals. For example, the inversion symmetry is extremely important and many
physical properties of semiconductors are tied to the absence of this symmetry. As will
be clear later, in the diamond structure (Si, Ge, C, etc.), inversion symmetry is present,
while, in the zinc blende structure (GaAs, AlAs, InAs, etc.), it is absent. Because of
this lack of inversion symmetry, these semiconductors are piezoelectric; i.e., when they
are strained an electric potential is developed across the opposite faces of the crystal. In
crystals with inversion symmetry, where the two faces are identical, this is not possible.

1.2.1 Basic lattice types

The various kinds of lattice structures possible in nature are described by the symmetry
group that describes their properties. Rotation is one of the important symmetry groups.

Lattices can be found which have a rotation symmetry of 2, 22”, 23”, 2‘1’ , 2= The rotation
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1.2. Crystalline materials 3

h

Number Restrictions on

of conventional cell axes

System lattices  and singles
Triclinic 1 ay # ag # as

atB#y
Monoclinic 2 ay # az # as

o=y =90°#f
Orthorhombic 4 a, # as # as
Tetragonal 2 a, = ag # as

o = ﬁ =v= a90°
Cubic 3 a; = ap = ag

o = ﬂ =7= 900
Trigonal 1 ap = as = as

a=pfF=v<120°# 90°
Hexagonal 1 a, = ay # as

a=f3=90°

v =120°

Table 1.1: The 14 Bravais lattices in three-dimensional systems and their properties.

symmetries are denoted by 1, 2, 3, 4, and 6. No other rotation axes exist; e.g., 2—;’- or 27’7

are not allowed because such a structure could not fill up an infinite space.

There are 14 types of lattices in 3D. These lattice classes are defined by the
relationships between the primitive vectors ai, as, and as, and the angles «, 3, and v
between them. The general lattice is triclinic (o # 3 # v,a1 # az # az) and there are
13 special lattices. Table 1.1 provides the basic properties of these three-dimensional
lattices and Fig. 1.1 shows a schematic.

Most materials forming the basis of modern information technologies have an
underlying cubic or hexagonal lattice. There are three kinds of cubic lattices: simple
cubic, body-centered cubic, and face-centered cubic.

Simple cubic: The simple cubic lattice shown in Fig. 1.2 is generated by the primitive
vectors

ax,ay, az (1.3)

where the x, y, z are unit vectors.
Body-centered cubic: The bee lattice shown in Fig. 1.3 can be generated from the

simple cubic structure by placing a lattice point at the center of the cube. If x,¥, and z
are three orthogonal unit vectors, then a set of primitive vectors for the body-centered
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Figure 1.1: Bravis lattices in three-dimensional systems.
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1.2. Crystalline materials 5

Figure 1.2: A simple cubic lattice showing the primitive vectors. The crystal is produced by
repeating the cubic cell through space.

cubic lattice could be

A . a . . . N
al_ax,azzay,ag_—i(x+y+z) (1.4)
A more symmetric set for the bee lattice 1s
S () a.. . . a9
al:§(y+z—x),a2:§(z+x—y),a3=§(x+y—z) (1.5)

Face-centered cubic: Another equally important lattice for semiconductors is the
face-centered cubic (fcc) Bravais lattice. To construct the face-centered cubic Bravais
lattice add to the simple cubic lattice an additional point in the center of each square
face (Fig. 1.4).
A symmetric set of primitive vectors for the face-centered cubic lattice (see Fig.
1.4) is
a,. _a
ay = §(y+z),a2 - 5
The face-centered cubic and body-centered cubic Bravais lattices are of great
1mportance since an enormous variety of solids crystallize in these forms, with an atom
(or ion) at each lattice site. Essentially all semiconductors of interest for electronics and
optoelectronics have the fcc structure.
Simple hexagonal structure: The simple hexagonal lattice is produced by stacking
two-dimensional triangular structures directly over each other, as shown in Fig. 1.5. The
direction of stacking (ag in Fig. 1.5) is called the c-axis and the three primitive vectors

are v
R a. 3a .

ay = a%,a; = X + —¥iag =z (1.7)

The hexagonal closed-packed structure, to be discussed later, is based on two interpen-

etrating simple hexagonal lattices.

(3+%),a3 = %(£+Q) (1.6)

1.2.2 Some important crystal structures

Many of the materials employed to create devices used for electronics, optoelectronics,
and sensoring are given category names, such as metals, insulators, and semiconductors.
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6 Structural properties

Material Lattice constant (a)
Ba 5.02
Cr 2.88
Cs 6.05
Fe 2.87
Nb 3.30
Rb 5.59
Ta 3.31
w 3.16

Some materials which crystallize
in monoatomic bcce structures

Figure 1.3: The body-centered cubic lattice along with a choice of primitive vectors. Also
shown are lattice constants of some materials that crystallize in the monoatomic bcc structure.

Material Lattice constant (a)
Ag 4.09
Al 4.05
Au 4.08
Ca 5.58
Ce 5.16
Cu 3.61
La 5.30
Ni 3.52
Pb 4.95
Pd 3.89
Pt 3.92
Th 5.08

Materials with monoatomic fcc
structures

Figure 1.4: Primitive basis vectors for the face-centered cubic lattice. Also shown are some
materials that crystallize in the monoatomic fcc structure.
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1.2. Crystalline materials 7

>

pors

419 af =a

Figure 1.5: The simple hexagonal Bravais lattice. Two-dimensional triangular nets (shown in
inset) are stacked directly above one another, a distance ¢ apart. Also shown are the three unit
vectors.

Depending upon applications, they are also categorized as ceramics, polar materials,
ferroelectrics, ferromagnetics, etc. These materials have a crystal structure, ranging
from the very simple with one atom per basis to complex ones with several atoms on a
basis. Also in many materials the positions of atoms in the structure are not ideal, due
to “spontaneous” effects arising from charges on the ions.

Monoatomic body-centered cubic

There are many metals which have the bce lattice with one atom per basis. In Fig. 1.3
we show some of these materials.

Monoatomic face-centered cubic

Many metals crystallize in the fcc lattice and have just one atom per basis. In Fig. 1.4
we show some of the important metals that fall into this category.

Sodium chloride structure

The sodium chloride (NaCl) structure is based on the fcc lattice and a basis of one Na
atom and one Cl atom separated by half of the body diagonal of the cube. The basis
atoms are at 0 and a/2(& + § + %). The structure is shown in Fig. 1.6, along with some
materials which crystallize in this structure.

Cesium chloride structure

The cesium chloride structure is shown in Fig. 1.7. The cesium and chloride atoms
are placed on the points of a bcc lattice so that each atom has eight neighbors. The
underlying lattice is simple cubic with two atoms per basis. The atoms are at 0 and
af/2(2 4+ § + %2). In Fig. 1.7 we show some important materials which have the CsCl
structure.

Diamond and zinc blende structures

Most semiconductors of interest for electronics and optoelectronics have an underlying
fcc lattice. However, they have two atoms per basis. The coordinates of the two basis
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8 Structural properties

Material  Lattice Constant
(@A
AgBr 57177
KCl 6.29
LiH 4.08
MgO 420
MnO 4.43
NaCl 5.63
PbS 5.92

Figure 1.6: The sodium chloride crystal structure. The space lattice is fcc, and the basis has

one Nat ion at 0 0 0 and one Cl™ ion at %%% The table shows some materials with NaCl

structure.

Material Lattice constant (a)
A
AINi 2.88
BeCu 2.7
CsCl 4.11
LiHg 3.29

Some materials that have the cesium
chloride structure.

Figure 1.7: The cesium chloride crystal structure. The space lattice is simple cubic, and the
basis has one Cst ion and one Cl~ ion at %%% The table shows some materials with the cesium

chloride structure.
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1.2. Crystalline materials 9

Figure 1.8: The zinc blende crystal structure. The structure consists of the interpenetrating
fcc lattices, one displaced from the other by a distance (§4%) along the body diagonal. The
underlying Bravais lattice is fcc with a two atom basis. The positions of the two atoms is (000)

and (£9%).
atoms are y

Since each atom lies on its own fcc lattice, such a two atom basis structure may be
thought of as two interpenetrating fcc lattices, one displaced from the other by a trans-
lation along a body diagonal direction (§%%).

Figure 1.8 gives details of this important structure. If the two atoms of the basis
are identical, the structure is called diamond. Semiconductors such as Si, Ge, C, etc. fall
into this category. If the two atoms are different, the structure is called the zinc blende
structure. Semiconductors such as GaAs, AlAs, CdS, etc. fall into this category. Semi-
conductors with the diamond structure are often called elemental semiconductors, while
the zinc blende semiconductors are called compound semiconductors. The compound
semiconductors are also denoted by the position of the atoms in the periodic chart, e.g.,
GaAs, AlAs, InP are called ITI-V (three—five) semiconductors, while CdS, HgTe, CdTe,

etc., are called II-VI (two-six) semiconductors.

Hexagonal close-pack structure

The hexagonal close-pack (hcp) structure is an important lattice structure and many
metals have this underlying lattice. Some semiconductors, such as BN, AIN, GaN, SiC,
etc., also have this underlying lattice (with a two-atom basis). The hcp structure is
formed as shown in Fig. 1.9a. Imagine that a close-packed layer of spheres is formed.
Each sphere touches six other spheres, leaving cavities, as shown. A second close-packed
layer of spheres is placed on top of the first one so that the second-layer sphere centers
are in the cavities formed by the first layer. The third layer of close-packed spheres can
now be placed so that centers of the spheres do not fall on the centers of the starting
spheres (left side of Fig. 1.9a) or coincide with the centers of the starting spheres (right
side of Fig. 1.9b). These two sequences, when repeated, produce the fcc and hep lattices.
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10 Structural properties

. Spheres on the starting layer

®  Centers of spheres on the second layer
®  Centers of spheres on the third layer

- fce

(a)

(b) ©

Figure 1.9: (a) A schematic of how the fcc and hcp lattices are formed by close packing of
spheres. (b) The hcp structure is produced by two interpenetrating simple hexagonal lattices
with a displacement, as discussed in the text. Arrangement of lattice points on an hcp lattice.
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1.2. Crystalline materials 11

Threefold axis Sixfold axis
1&~ [111] &~ ¢

Cubic Hexagonal

Figure 1.10: The stacking of tetrahedral layers in cubic and hexagonal ZnS. The large atoms
are S; the small atoms are Zn. The vertical axis of hexagonal ZnS is a six-fold screw axis
involving a translation of one-half ¢ for each 60 degrees of rotation.

Underlying the hep structure is a simple hexagonal lattice {discussed earlier).
The hcp structure consists of two interpenetrating simple hexagonal lattices as shown
in Fig. 1.9b. The two lattices are displaced from each other by a; /3 + a>/3 + a3/2 as
shown. The magnitude of as is denoted by ¢ and in an ideal hcp structure

c 8
-=1/3 (1.9)

Wurtzite structures
A number of important semiconductors crystallize in the hcp structure with two atoms
per lattice site. The coordination of the atoms is the same as in the diamond or zinc
blende structures. The nearest neighbor bonds are tetrahedral and are similar in both
zinc blende and wurtzite structures. The symmetry of rotation is, however, different as
shown in Fig. 1.10.

In Tables 1.2 and 1.3 we show the structural properties of some important
materials that crystallize in the diamond, zinc blende, and wurtzite structures.

Perovskite structure
Materials like CaTiO3, BaTiOg, St'TiO3, etc., have the perovskite structure using BaTiO3
as an example. The structure is cubic with Ba?* ions at the cube corners and O~ ions
at the face centers. The Ti** ion is at the body center.

Perovskites show a ferroelectric effect below a temperature called Curie tem-
perature and have spontaneous polarization due to relative movements of the cations
and anions. As shown in Fig. 1.11 the Ba?t ions and Ti** ions are displaced relative
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Cube corners: Bat++

Cube face centers: O- -
Cube center: Ti4+

Displacement of
positive charges with
respect to negative
charges ——
ferroelectric effect

Figure 1.11: (a) The structure of a typical perovskite crystal illustrated by examining barium
titanante. (b) The ferroelectric effect is produced by a net displacement of the positive ions
with respect to the negative ions.

to the O% ions creating a dipole moment. As will be discussed later in this book the
polarization can be controlled by an external electric field.

For many applications, one uses alloys made from two or more different mater-
ials. The lattice constant of the alloy is given by Vegard’s law, according to which the
alloy lattice constant is the weighted mean of the lattice constants of the individual
components.

alloy = Zaa + (1 —x)ap (1.10)

where 5lloy is the lattice constant of the alloy A, B)_;, and as and ap are the lattice
constants of materials A and B, respectively.

1.2.3 Notation to denote planes and points in a lattice: Miller
indices

A simple scheme is used to describe lattice planes, directions and points. For a plane,
we use the following procedure:

(1) Define the x, y, z axes (primitive vectors).
(2) Take the intercepts of the plane along the axes in units of lattice con-
stants.
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1.2. Crystalline materials 13

Zinc blende and wurtzite

CRYSTAL STATIC LATTICE
MATERIAL STRUCTURE BANDGAP DIELECTRIC CONSTANT DENSITY
(EV)  CONSTANT A (gm-cm™3)
C DI 5.50,1 5.570 3.56683 3.51525
Si DI 1.1242,1 11.9 5.431073  2.329002
SiC ZB 2416,1 9.72 4.3596 3.166
Ge DI 0.664, 1 16.2 5.6579060 5.3234
BN HEX 52,1 ell =506 a=6.6612 2.18
el=685 c=25040
BN ZB 6.4,1 7.1 3.6157 3.4870
BP ZB 24,1 11, 4.5383 2.97
BAs ZB — — 4777 522
AIN w 6.2,D £=9.14 a=3111 3.255
c= 4981
AlIP ZB 2.451 9.8 5.4635 2.401
AlAs ZB 2.153,1 10.06 5.660 3.760
AlSb ZB 1.615,1 12.04 6.1355 4.26
GaN w 344D ell=104 a=3.175 6.095
€1=95 ¢=5.158
GaP ZB 22721 11.11 5.4505 4.138
GaAs ZB 1.4241,D 13.18 5.65325 5.3176
GaSb ZB 0.75.D 15.69 6.09593 5.6137
InN w 1.89,.D a= 35446 6.81
c= 8.7034
InP ZB 1.344,D 12.56 5.8687 4.81
InAs ZB 0.354D 15.15 6.0583 5.667
InSb ZB 0.230,D 16.8 6.47937 57747
ZnO w 344D ell=875 a=3253 5.67526
e1=78 «¢=5213
ZnS ZB 3.68,D 8.9 5.4102 4.079
ZnS w 39107,D £E=96 a=38226 4.084
c= 6.2605
ZnSe ZB 2.8215D 9.1 5.6676 5.266
ZnTe ZB 2.3941,D 8.7 6.1037 5.636
CdO R 0.84,1 219 4.689 8.15
CdS w 2.501,D £=983 a=4.1362 4.82
c=6.714
CdS ZB 2.50,D — 5.818 —_
CdSe w 1.751,D ell=10.16 a = 4.2999 5.81
e1=929 ¢=17.0109
CdSe ZB — — 6.052 —
CdTe ZB 1.475.D 10.2 6.482 5.87
PbS R 0.41,D* 169. 5.936 7.597
PbSe R 0.278,D* 210. 6.117 8.26
PbTe R 0.310,D* 414. 6.462 8.219

Data are given at room temperature values (300 K).
Key: DI: diamond; HEX: hexagonal; R: rocksalt; W: wurtzite; ZB: zinc blende;
*: gap at L point; D: direct; I: indirect €ll: parallel to c-axis; £L: perpendicular to c-axis.

Table 1.2: Structural properties of some important semiconductors.
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14 Structural properties
Material ~ a(A) c(A) c/a
Be 2.29 3.58 1.56
Cd 2.98 5.62 1.89
Mg 321 5.21 1.62
Ti 2.95 4.69 1.59
Zn 2.66 4.95 1.86
Zr 3.23 5.15 1.59

Table 1.3: Materials with hcp closed-packed structure. The “ideal” c/a ratio is 1.6.

(3) Take the reciprocal of the intercepts and reduce them to the smallest
integers.

The notation (hkl) denotes a family of parallel planes.

The notation (hkl) denotes a family of equivalent planes.

To denote directions, we use the smallest set of integers having the same ratio as the
direction cosines of the direction.

In a cubic system, the Miller indices of a plane are the same as the direction
perpendicular to the plane. The notation [ ] is for a set of parallel directions; < > is
for a set of equivalent direction. Fig. 1.12 shows some examples of the use of the Miller
indices to define planes.

EXAMPLE 1.1 The lattice constant of silicon is 5.43 A. Calculate the number of silicon
atoms in a cubic centimeter. Also calculate the number density of Ga atoms in GaAs which
has a lattice constant of 5.65 A.

Silicon has a diamond structure, which is made up of the fcc lattice with two atoms
on each lattice point. The fcc unit cube has a volume a®. The cube has eight lattice sites at the
cube edges. However, each of these points is shared with eight other cubes. In addition, there
are six lattice points on the cube face centers. Each of these points is shared by two adjacent
cubes. Thus the number of lattice points per cube of volume a* are

8

6
Hh==Z - =
N(a)—8+2 4

In silicon, there are two silicon atoms per lattice point. The number density is, therefore

N'—4X2— 4x2
S17 T T 543 x 10-5)®

= 4.997 x 10** atoms/cm®

In GaAs, there is one Ga atom and one As atom per lattice point. The Ga atom density is,
therefore

4 4
N, = = ———
Ga™ 43 = (565 x 10-°)°

There are an equal number of As atoms.

= 2.22 x 10*? atoms/cm®

EXAMPLE 1.2 In semiconductor technology, a Si device on a VLSI chip represents one
of the smallest devices, while a GaAs laser represents one of the larger devices. Consider a
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1.2. Crystalline materials 15

ATOMS ON THE (110) PLANE

Each atom has 4 bonds:

* 2 bonds in the (110) plane

* 1 bond connects each atom to
adjacent (110) planes

==> Cleaving adjacent planes
requires breaking 1 bond per atom

ATOMS ON THE (001) PLANE

2 bonds connect each atom to
adjacent (001) plane

Atoms are either Ga or As in a
GaAs crystal

==> Cleaving adjacent planes
requires breaking 2 bonds per atom

ATOMS ON THE (111) PLANE

/

\

Could be either Ga or As

1 bond connecting an adjacent
plane on one side

3 bonds connecting an adjacent
plane on the other side

/

NN

\

Figure 1.12: Some important planes in the zinc blende or diamond structure along with their
Miller indices. This figure also shows how many bonds connect adjacent planes. This number
determines how easy or difficult it is to cleave the crystal along these planes.
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Si device with dimensions (5 X 2 x 1) gm® and a GaAs semiconductor laser with dimensions
(200 x 10 x 5) pm®. Calculate the number of atoms in each device.
From Example 1.1 the number of Si atoms in the Si transistor are

Ng; = (5% 10?2 atoms/cm®)(10 x 1072 cm®) = 5 x 10" atoms

The number of Ga atoms in the GaAs laser are
Ng, = (2.22 x 10%)(10* x 107'?) = 2.22 x 10'* atoms

An equal number of As atoms are also present in the laser.

EXAMPLE 1.3 Calculate the surface density of Ga atoms on a Ga terminated (001) GaAs
surface.

In the (001) surfaces, the top atoms are either Ga or As leading to the terminology
Ga terminated (or Ga stabilized) and As terminated (or As stabilized), respectively. A square
of area a? has four atoms on the edges of the square and one atom at the center of the square.
The atoms on the square edges are shared by a total of four squares. The total number of
atoms per square is

The surface density is then

2 2 14 -2
Ga™ 7 = Gesx10-s) — 028107 em

EXAMPLE 1.4 Calculate the height of a GaAs monolayer in the (001) direction.

In the case of GaAs, a monolayer is defined as the combination of a Ga and As atomic
layer. The monolayer distance in the (001) direction is simply
a _ 5.65

= - =~ =2825 A

Aml 2 2

1.2.4  Artificial structures: superlattices and quantum wells

It is known that electronic and optical properties can be altered by using heterostruc-
tures; i.e., combinations of more that one semiconductor. Epitaxial techniques allow
monolayer (~3 A) control in the chemical composition of the growing crystal. Nearly
every semiconductor extending from zero bandgap («-Sn,HgCdTe) to large bandgap
materials, such as ZnSe,CdS, etc., has been grown by epitaxial techniques.

Heteroepitaxial techniques allow one to grow heterostructures with atomic con-
trol, we can change the periodicity of the crystal in the growth direction. This leads to
the concept of superlattices where two (or more) semiconductors A and B are grown
alternately with thicknesses da and dp respectively. The periodicity of the lattice in the
growth direction is then dp + dp. A (GaAs), (AlAs), superlattice is illustrated in Fig.
1.13. Tt is a great testimony to the precision of the new growth techniques that values
of da and dp as low as monolayer have been grown.

It is important to point out that the most widely used heterostructures are
not superlattices but quantum wells, in which a single layer of one semiconductor is
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Figure 1.13: Arrangement of atoms in a (GaAs)2(AlAs); superlattice grown along (001) di-
rection.

sandwiched between two layers of a larger bandgap material. Such structures allow
one to exploit special quantum effects that have become very useful in electronic and
optoelectronic devices.

1.2.5 Surfaces: ideal versus real

The crystalline and electronic properties are quite different from the properties of the
bulk material. The bulk crystal structure is decided by the internal chemical energy
of the atoms forming the crystal with a certain number of nearest neighbors, second
nearest neighbors, etc. At the surface, the number of neighbors is suddenly altered.
Thus the spatial geometries which were providing the lowest energy configuration in
the bulk may not provide the lowest energy configuration at the surface. Thus, there is
a readjustment or “reconstruction” of the surface bonds towards an energy-minimizing
configuration.

An example of such a reconstruction is shown for the GaAs surface in Fig.
1.14. The figure (a) shows an ideal (001) surface, where the topmost atoms form a
square lattice. The surface atoms have two nearest neighbor bonds (Ga—As) with the
layer below, four second neighbor bonds (e.g., Ga—Ga or As—As) with the next lower
layer, and four second neighbor bonds within the same layer. In a “real” surface, the
arrangement of atoms is far more complex. We could denote the ideal surface by the
symbol C(1x1), representing the fact that the surface periodicity is one unit by one
unit along the square lattice along the [110] and [110]. The reconstructed surfaces that
occur in nature are generally classified as C(2x8) or C(2x4) etc., representing the
increased periodicity along the [110] and [110] respectively. The C(2x4) case is shown
schematically in Fig. 1.14b, for an arsenic stabilized surface (i.e., the top monolayer is
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4A

(2 x 4 unit cell)
() (b)

Top layer As atoms
O Second layer Ga atoms
O Third layer As atoms

Figure 1.14: The structure (a) of the nnreconstrncted GaAs (001) arsenic-rich surface. The
missing dimer model (b) for the GaAs (001) (2x4) surface. The As dimers are missing to create
a 4 unit periodicity along one direction and a two unit periodicity along the perpendicular
direction.

As). The As atoms on the surface form dimers (along [110] on the surface to strengthen
their bonds. In addition, rows of missing dimers cause a longer range ordering as shown
to increase the periodicity along the [110] direction to cause a C(2x4) unit cell. The
surface periodicity is directly reflected in the x-ray diffraction pattern.

A similar effect occurs for the (110) surface of GaAs. This surface has both Ga
and As atoms (the cations and anions) on the surface. A strong driving force exists
to move the surface atoms and minimize the surface energy. Reconstruction effects
also occur in silicon surfaces, where depending upon surface conditions a variety of
reconstructions are observed. Surface reconstructions are very important since often the
quality of the epitaxial crystal growth depends critically on the surface reconstruction.

EXAMPLE 1.5 Calculate the planar density of atoms on the (111) surface of Ge.

As can be seen from Fig. 1.12, we can form a triangle on the (111) surface. There are
three atoms on the tips of the triangle. These atoms are shared by six other similar triangles.
There are also three atoms along the edges of the triangle, which are shared by two adjacent
triangles. Thus the number of atoms in the triangle are

The area of the triangle is v/3a?/2. The density of Ge atoms on the surface is then 7.29 x
10'* cm™2.
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AlAs (perfect crystal)

v

A

GaAs (perfect crystal)

Figure 1.15: A schematic picture of the interfaces between materials with similar lattice
constants such as GaAs/AlAs. No loss of crystalline lattice and long-range order is suffered in
such interfaces. The interface is characterized by islands of height A and lateral extent A.

1.2.6 Interfaces

Like surfaces, interfaces are an integral part of semiconductor devices. We have already
discussed the concept of heterostructures and superlattices, which involve interfaces
between two semiconductors. These interfaces are usually of high quality with essen-
tially no broken bonds, except for dislocations in strained structures (to be discussed
later). There is, nevertheless, an interface roughness of one or two monolayers which
is produced because of either non-ideal growth conditions or imprecise shutter control
in the switching of the semiconductor species. The general picture of such a rough in-
terface 1s as shown in Fig. 1.15 for epitaxially grown interfaces. The crystallinity and
periodicity in the underlying lattice is maintained, but the chemical species have some
disorder on interfacial planes. Such a disorder is quite important in many electronic and
opto-electronic devices.

One of the most important interfaces in electronics is the Si/SiO; interface.
This interface and its quality is responsible for essentially all of the modern consumer
electronic revolution. This interface represents a situation where two materials with very
different lattice constants and crystal structures are brought together. However, in spite
of these large differences, the interface quality is quite good. In Fig. 1.16 we show a
TEM cross-section of a Si/SiO- interface. It appears that the interface has a region of
a few monolayers of amorphous or disordered Si/SiO» region, creating fluctuations in
the chemical species (and consequently in potential energy) across the interface. This
interface roughness is responsible for reducing the mobility of electrons and holes in
MOS devices. It can also lead to “trap” states, which can seriously deteriorate device
performance if the interface quality is poor.

Finally, we have the interfaces formed between metals and semiconductors.
Structurally, these important interfaces are hardest to characterize. These interfaces are
usually produced in the presence of high temperatures and involve diffusion of metal
elements along with complex chemical reactions. The “interfacial region” usually extends
over several hundred Angstroms and is a complex non-crystalline region.
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O -oxygen
e —silicon

Si-O bond: 1.62 A
0-O bond: 2.65 A

Si0,

Rows
of Si
atoms

Si

a=543A
Si-Si bond: 2.34A

Figure 1.16: The tremendous success of Si technology is due to the Si/SiO2 interface. In spite
of the very different crystal structure of Si and SiO3, the interface is extremely sharp, as shown
in the TEM picture in this figure.

1.3 DEFECTS IN CRYSTALS

In the previous section we have discussed the properties of the perfect crystalline struc-
ture. In real semiconductors, there are invariably some defects that are introduced due
to either thermodynamic considerations or the presence of impurities during the crystal
growth process. In general, defects in crystalline semiconductors can be characterized
as: (1) point defects; (ii) line defects; (iii) planar defects, and (iv) volume defects. These
defects are detrimental to the performance of electronic and optoelectronic devices and
are to be avoided as much as possible. We will give a brief overview of the important
defects.

Point defects

A point defect is a highly localized defect that affects the periodicity of the crystal
only in one or a few unit cells. There are a variety of point defects, as shown in Fig.
1.17. Defects are present in any crystal and their concentration is given roughly by the

thermodynamics relation
N, E
4 = kgexp <——i> (1.11)

where Ny is the vacancy density, Np.. the total site density in the crystal, E4 the
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POINT DEFECTS

« Effect is localized
to a few atomic sites

Vacancy

Substitutional

Self
interstitial

Impurity
interstitial

Figure 1.17: A schematic showing some important point defects in a crystal.

defect formation energy, kq is a dimensionless parameter with values ranging from 1 to
10 in semiconductors, and T, is the crystal growth temperature. The vacancy formation
energy is in the range of an eV for most semiconductors.

An important point defect in compound semiconductors such as GaAs is the
anti-site defect in which one of the atoms, say Ga, sits on the arsenic sublattice instead
of the Ga sublattice. Such defects (denoted by Gaas) can be a source of reduced device
performance.

Other point defects are interstitials in which an atom is sitting in a site that is
in between the lattice points as shown in Fig. 1.17, and impurity atoms which involve a
wrong chemical species in the lattice. In some cases the defect may involve several sites
forming a defect complex.

Line defects or dislocations

In contrast to point defects, line defects (called dislocations) involve a large number of
atomic sites that can be connected by a line. Dislocations are produced if, for example,
an extra half plane of atoms are inserted (or taken out) of the crystal as shown in Fig.
1.18. Such dislocations are called edge dislocations. Dislocations can also be created if
there is a slip in the crystal so that part of the crystal bonds are broken and reconnected
with atoms after the slip.

Dislocations can be a serious problem, especially in the growth of strained
heterostructures (to be discussed later). In optoelectronic devices, dislocations can ruin
the device performance and render the device useless. Thus the control of dislocations
is of great importance.

Planar defects and volume defects

Planar defects and volume defects are not important in single crystalline materials,
but can be of importance in polycrystalline materials. If, for example, silicon is grown
on a glass substrate, it is likely that polycrystalline silicon will be produced. In the
polycrystalline material, small regions of Si (~ a few microns in diameter) are perfectly
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Figure 1.18: A schematic showing the presence of a dislocation. This line defect is produced

by adding an extra half plane of atoms. At the edge of the exira plane, the atoms have a
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crystalline, but are next to microcrystallites with different orientations. The interface
between these microcrystallites are called grain boundaries. Grain boundaries may be
viewed as an array of dislocations.

Volume defects can be produced if the crystal growth process is poor. The
crystal may contain regions that are amorphous or may contain voids. In most epitaxial
techniques used in modern optoelectronics, these defects are not a problem. However,
the developments of new material systems such as diamond (C) or SiC are hampered
by such defects.

EXAMPLE 1.6 Consider an equilibrium growth of a semiconductor at a temperature of
1000 K. The vacancy formation energy is 2.0 eV. Calculate the vacancy density produced if
the site density for the semiconductor is 2.5 x 10?2 cm 2. Assume that kq = 1.

The vacancy density is

Evac
- N _
Nuc = Nrorew (~37)
2.0 eV
= (25x10” cm™? (————)
(2.5 x 107 em™) exp (— GGy

= 237x102% cm~®

This is an extremely low density and will have little effect on the properties of the
semiconductor. The defect density would be in mid 10*®* cm ™ range if the growth temperature
was 1500 K. At such values, the defects can significantly affect device performance.
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1.4 HETEROSTRUCTURES

Nearly all modern devices involve combinations of two or more materials. The “active”
regions of a device are usually grown on a substrate, which i1s a thick material and
provides not only a rigid foundation on which the device material i1s grown but 1s often
also the basis of the crystalline lattice structure. The most important substrates n
semiconductor devices are silicon, GaAs, and InP. These crystals can be grown with
high quality by bulk crystal growth techniques and sliced mto 300-400 gm thick wafers.
Other substrates used in various device technologies include AIN, S1C, Al,O3, etc.

There are two important categories of growth of active device layers on a sub-
strate. In one case (the ideal case) the active device material has the same (or very
similar) lattice structure as the substrate. In this case the crystal can be grown by epi-
taxial techniques such as molecular beam epitaxy (MBE) and metal organic chemical
vapor deposition (MOCVD). These techniques allow growth of layers to one monolayer
precision. In this case it is possible to grow high-quality, defect-free layers. The ac-
tive device region can be made up of multiple layers (quantum wells and superlattices)
with very abrupt interfaces with essentially no defects. Most high-performance devices
are based on this approach. In silicon-based devices, such as MOSFETs and bipolar
devices, epitaxial Si is grown on Si substrates. Similarly GaAs and AlAs/GaAs based
optoelectronic devices are grown on GaAs substrates.

Another manner in which substrates are used is one where the overlayer has
a lattice mismatch with the substrate. In this case the following scenarios occur: (i)
If the lattice mismatch is small (typically less than 3-4%), the initial epilayer grows
“coherently” with a substrate, 1.e., it adjusts its inplane lattice constant to fit the sub-
strate. This produces a strain energy in the overlayer, which is proportional to the film
thickness. Once the film thickness reaches a thickness called the critical thickness, it
1s energetically favorable to create dislocation in the overlayer. (ii) If the lattice mis-
match is large, (> 5%) dislocations are generated as soon as growth progresses on the
substrate.

In lattice mismatched growth a key to the success of the growth technology is
to ensure that if dislocations are generated, they do not propagate through the active
layers. As shown schematically in Fig. 1.19, ideally we would like to have the dislocations
“bend” so as to be confined near the substrate.

Crystal growers develop a lot of personal recipes to improve the quality of the
overlayer, although there are several proven approaches to minimizing the dislocation
density. Nevertheless, it is a challenge to grow epitaxial layers on mismatched substrates.

Heterostructures in active devices come 1n several categories. We will briefly list
several specific examples below.

e In the information age’s most important device-the metal oxide semicon-
ductor field effect transistor, or MOSFET-the heterostructure between Si0» and Si is
critical. Silicon dioxide serves as an insulator between the gate and the channel. The
quality of the interface is crucial to device performance, since electrons (holes) move
near this interface.

o Heterostructure field effect transistors (HFETs) are used for very high fre-
quency applications, where Si based devices cannot operate. These devices involve a
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Dislocation Propagation:
Missing rows of atoms

"Free standing”
region with no
dislocations

Dislocations are
confined

Figure 1.19: Strained epitaxy above critical thickness. On the left hand side is shown a
structure in which the dislocations are confined near the overlayer-substrate interface. This
is a desirable mode of eptiaxy. On the right hand side, the dislocations are penetrating the
overlayer, rendering it useless for most optoelectronic applications.

combination of a large bandgap semiconductor, such as AlAs (or the alloy AlGaAs),
and a narrower gap semiconductor such as GaAs. Unlike SiO5 on Si, AlGaAs and GaAs
have very similar lattice structures and the heterostructure has essentially no interface
defects.

e In quantum well lasers, differences in the bandgap of various semiconduc-
tors is exploited to create two-dimensional electron-hole systems with very low lasing
threshold currents. In strained quantum well structures, thin regions (~ 100 A) with a
lattice constant different from that of the substrate are sandwiched between other semi-
conductors. The built-in strain can be exploited for optoelectronic devices with special
properties.

e Multi-layer structures based on crystalline and non-crystalline materials are
used for optical and waveguides. These structures are used to “bend” and “switch”
optical signals. Since optical wavelengths are about 1 p#m and light does not interact
strongly with defects, the constraints on the precision and quality of such structures are
less severe than those on electronic devices.

1.5 NON-CRYSTALLINE MATERIALS

In the sections discussed above we have focused on crystalline structures. Most high
performance devices are based on crystalline materials with as few defects as possible.
However, for a variety of reasons (some discussed later) non-crystalline material based
devices are also very important. In non-crystalline structures the long ranged structural
order present in a crystal is absent. Non-crystalline materials can be grown on the
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perfect crystalline grains

Figure 1.20: A schematic description of a polycrystalline material. Atoms are arranged pe-
riodically in a grain, but there is no order between the various grains. The grain boundaries
represent regions where defects produced by broken or unfilled bonds are present.

usual substrates used for crystalline materials, but more often they are grown on non-
crystalline substrates, such as glass (SiO3) or even flexible substrates (plastics).

1.5.1 Polycrystalline materials

Polycrystalline materials are widely used in electronic and optoelectronic technologies.
Polycrystalline structures are produced when a material is deposited on a substrate
which does not have a similar crystal structure. For example, if a metal film is deposited
on a semiconductor, the film grows in a polycrystalline form. Also, if silicon is deposited
on a glass substrate, it grows in a polycrystalline form.

Polycrystalline films are described by their average grain size as shown in Fig.
1.20. Within a grain the atoms are arranged as in crystal; i.e., with perfect order.
However, each grain is surrounded by a grain boundary, which is a region with a high
density of defects. The defects arise due to broken or unfulfilled bonds between atoms.
In some cases, chemical impurities may also gather at these grain boundaries. Different
grains in the polycrystal have essentially no order between their constituent atoms.

Depending upon the growth process and the differences between the substrate
and the deposited film, the grain size of a polycrystal can range from 0.1 gm to 10 gm or
more. If the grain size exceeds 10 pm, for some device applications the material can be
considered to be crystalline. The presence of grain boundaries has serious consequences
on the electrical and optical properties of the material. Indeed, certain devices, such as
light emitting diodes (LEDs) or laser diodes (LDs), cannot be made from polycrystalline
materials. However, some electronic devices used as control transistors for displays can
be made from polycrystalline materials. The key advantages of polycrystalline materials
is the low cost of the film deposition and the large area of the film possible. Thus
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Polycrystalline semiconductors * Large area thin film transistors for
control of optical devices

 Phosphors for display screens
« Photosensitive materials for image
storage

Amorphous semiconductors I  Large area thin film transistors for
control of other devices

* Large area solar cells

Glasses (Dielectrics) * Light pipes
* Waveguides

Figure 1.21: Important uses of non-crystalline materials in optoelectronic technology.

polycrystalline technology is an important technology for displays (high-density TV,
portable and personal computers, etc.). In Fig. 1.21 the important uses of non-crystalline
materials are outlined.

It is essential to mention PbZrO3-PbTi103-LasO3 (PLZT), an important poly-
crystalline material that i1s finding extensive use in optoelectronics. This material is a
ceramic oxide with ferroelectric properties. While single crystal electro-optic materials,
such as potassium dihydrogen phosphate (KDP), BaTiO3, and Gd(MQO4)s, are impor-
tant materials, their applications are limited by cost, size, and susceptibility to moisture
(especially for KDP). In contrast, polycrystalline ceramics are not subject to these lim-
itations. The fabrication technology of PLZT is now highly developed and this ceramic
is used for a variety of electro-optic devices.

1.5.2 Amorphous and glassy materials

In amorphous materials (sometimes also called glasses) the order among atoms is even
lower than that in polycrystalline materials. The most important amorphous mater-
ials in optoelectronic technology are glasses based on SiO, (with different dopants)
and amorphous semiconductors, such as amorphous silicon (a-Si). These materials find
important uses, as shown mn Fig. 1.21.

The amorphous materials are characterized by good short-range order, but poor
long-range order. Thus the nearest neighbor and even second neighbor coordination is
quite good in amorphous materials. However, the arrangement of atoms which are third
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nearest neighbors (or further away) is unpredictable. The amorphous material may also
have a high density of broken bonds.

The most important amorphous material in optics is, of course, “glass,” which
is used in all kinds of optical elements, such as lenses, prisms, etc., as well as in optical
fibers. Glass is made from some of the most abundant elements on the earth’s crust,
vis. oxygen (which forms 62% of earth’s crust) and silicon (which forms 21% of the
crust). In silica based glass, silicon and oxygen atoms form a lattice network, which is
not crystalline but has a good nearest neighbor ordering. Glass is used in a wide range
of applications ranging from optical fibers to the oxide in MOSFETs. In Fig. 1.16 we
have shown the structure of Si/SiOg, one of the most important heterostructures in
technology. The SiO2 is amorphous in nature.

The most widely used glass is silica based, as far as optical fibers are concerned,
due to the high purity level that is possible. Glasses based on B203, No03, etc. are used
for other industrial applications.

Of particular importance is amorphous silicon, a-Si, which is perhaps the most
important amorphous semiconductor material due to its importance in solar cell tech-
nology and display technology. In Fig. 1.22, we show a schematic comparison between
crystalline Si and a-Si. We note that as in crystalline silicon, in a-Si, the Si atoms are
four-fold coordinated; i.e., they have four nearest neighbors. However, some of the atoms
have broken or dangling bonds. A high density of dangling bonds can render the mater-
ial useless electronically. Thus in the growth of a-Si, we ensure that a large fraction of
H (or F) is incorporated into the film. The H atoms “tie up” the dangling bonds and
thus improve the properties of a-Si. Hydrogenated amorphous silicon is usually denoted
by a-Si:H.

An important difference between the crystalline and amorphous materials is in
the macroscopic symmetry of the material. The crystals are anisotropic due the precise
arrangement of atoms. The amorphous materials, however, are isotropic.

1.5.3 Liquid crystals

In the liquid form, usually there is no short or long-range order among the atoms or
molecules. Thus, even though there is a weak interaction between neighboring atoms,
(molecules) we do not describe a liquid by any type of order. However, liquid crystals
are one of the most fascinating material systems in nature, having properties of liquids
(such as low viscosity and ability to conform to the shape of a container) as well as of
a solid crystal. Their ability to modulate light when an applied electrical signal is used
has made them invaluable in flat panel display technology.

Due to the ordered arrangement of atoms, crystalline materials have anisotropic
properties (they look different from different directions), while non-crystalline materials
and liquids are isotropic. Liquid crystals have anisotropic properties similar to solid
crystals because of the ordered way in which some of the constituent molecules are ar-
ranged. However, the liquid crystals have low viscosity and can flow. The liquid crystals
are a stable phase of matter called the mesophase existing between the solid and the
liquid.

There are an essentially unlimited number of liquid crystals that can be formed.
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Figure 1.22: A schematic arrangement of the atoms in crystalline and amorphous silicon.
The a-Si is hydrogenated to tie up dangling bonds, which would otherwise make the material
electrically inactive.

The crystal is made up of organic molecules which are rod-like in shape with a length of
~ 20A - 100A. In Fig. 1.23a, we show a typical organic molecule, p-azoxyanisole, that can
lead to a liquid crystal. This rod-like molecule is about 20 A long and about 5 A wide.
A perfectly ordered arrangement of such a molecule can lead to a solid crystal, as shown
in Fig. 1.23b. However, at high temperatures, a (disordered) liquid state is produced.
The orientation of the rod-like molecule defines the “director” of the liquid crystal.
The different arrangements of these rod-like molecules leads to three main categories of
liquid crystals.

The three categories of liquid crystals can be understood by referring to Fig.
1.24. In Fig. 1.24a we show a structure which is referred to as smectic. In this structure
the rod-like molecules are arranged in layers, and within each layer there is orientational
order over a long range. Thus, in a given layer, the rods are all oriented in the same
direction. Also, in the smectic liquid crystals, the molecules of different layers are ordered
as shown in Fig. 1.24a. Thus both orientation order and positional order is present in
the smectic crystals.

The second class of liquid crystal structure is called the nematic structure and
is shown in Fig. 1.24b. In the nematic structure the positional order between layers of
molecules is lost, but the orientation order is maintained.
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Figure 1.23: (a) A typical building block for liquid crystals. (b) A schematic description of a
perfect crystal and a liquid. Liquid crystals form a phase of nature in between these extremes.

A third class of liquid crystals has the structure shown in Fig. 1.24c and is
called cholesteric. In these crystals the rod-like molecules in each layer are oriented at
a different angle within each layer. Orientation order is maintained within each layer.
The cholesteric liquid crystal is related to the nematic crystal, with the difference being
the twist of the molecules as we go from one layer to another.

In addition to the orientational order present in each layer an additional para-
meter defining subclasses of a smectic crystal is the chirality (i.e., relative twist) between
molecules. The optical activity of the crystal depends upon the orientation and the twist
present in the molecular layers.
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» molecules within a layer are
ordered

* long-range orientation order
is present

(a)

* no well defined layer order
* long-range orientation order
is present

()]

+ well defined order within
layers

« long-range "twist" between
molecules on each layer

©

Figure 1.24: A schematic description of the arrangement of molecules in: (a) smectic; (b)
nematic; and (c) cholesteric liquid crystals.
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To fully exploit the potential of liquid crystals, an important feature regarding
the interaction of the liquid with surfaces is exploited. It is found that, if the surface
of a glass plate is rubbed along a certain direction (with, say, a cloth), then when the
liquid crystal comes in contact with the surface, the surface molecules align themselves
along the rubbed section. Now consider that a second rubbed glass plate is placed so
that the spacing between the two plates is ~ 5-20 pym. The orientation of the liquid
crystal surface molecules can be prechosen by simply orienting the rubbed direction of
the two plates. This produces a twist in the liquid crystal molecules as we go from one
plate to another as shown in Fig. 1.25. Such liquid crystal systems are called twisted
nematic and a total rotation of 90° can be produced. If the twist angle is increased
to enhance the effect, the film becomes unstable if normal nematic films are used. For
example, if a twist of 270° is desired, the stable state is one with a —90° twist. However,
if cholesteric liquid crystals are used in which there is already a built-in twist, the 270°
twist is possible. Such structures are called supertwisted.

The unusual orientation dependence of the rod-like molecules of liquid crys-
tals can be modified by an electric field. This in turn modifies their optical properties
resulting in their efficient use as light valves.

1.5.4 Organic materials

Organic materials have formed the basis of many important technologies including plas-
tics, drugs, chemicals, etc. Their uses in information processing applications have, in
the past, largely relied on chemical reactions with the environment. However, over the
past few years rapid progress has been made in the structural quality of many organic
materials so that they can be used with tailorable electronic and optical properties much
like traditional semiconductors. We will see in Chapter 3 that organic semiconductors
can have properties similar to the inorganic semiconductors in some important ways
and can thus be used for light emission and absorption as well as for switching appli-
cations. An added advantage of organic materials is that they can be grown on flexible
substrates (various types of plastics) as well as on glass and silicon.

Organic semiconductors (polymers) are formed from long chains of molecules. If
there is a good fit between the molecules, the materials can crystallize upon drawing or
cooling. Advances in crystallization techniques have led to high-quality polymer crystals,
which display electronic bands similar to those shown by “traditional” semiconductors.
In Fig. 1.26 we show chains of polyacetylene-an important polymer. While it is possible
to get crystalline polymers, usually the material is non-crystalline with a long-range
order of a few microns. The long-range order has a strong influence on charge transport
which is orders of magnitude poorer (in mobility) compared to crystalline inorganic
semiconductors.

1.6 SUMMARY

In this chapter we have discussed the important structural properties of semiconductors
and their heterostructures. The semiconductors we will be dealing with in most optoelec-
tronic devices have a zinc blende or diamond structure. We have discussed the important
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Figure 1.25: A schematic of the twisted nematic liquid crystal produced by using two rubbed
glass plates as a container.
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Figure 1.26: Schematic of chains forming the polymer polyacetylene. Two forms of this poly-
mer are shown.

growth techniques used in producing the semiconductors. We have also identified the
important techniques used to fabricate devices. Tables 1.4 to 1.6 give an overview of the
issues that have emerged from this chapter.

1.7 PROBLEMS

Section 1.2

1.1 (a) Find the angles between the tetrahedral bonds of a diamond lattice.

(b) What are the direction cosines of the (111) oriented nearest neighbor bond along
the x,y,z axes?

1.2 Consider a semiconductor with the zinc blende structure (such as GaAs).

(a) Show that the (100) plane is made up of either cation or anion type atoms.

(b) Draw the positions of the atoms on a (110) plane assuming no surface reconstruc-
tion.

(c) Show that there are two types of (111) surfaces: one where the surface atoms are
bonded to three other atoms in the crystal and another where the surface atoms are
bonded to only one. These two types of surface are called the A and B surfaces, respec-
tively.

1.3 Suppose that identical solid spheres are placed in space so that their centers lie on
the atomic points of a crystal, and the spheres on the neighboring sites touch each other.
Assuming that the spheres have unit density, show that the density of such spheres is
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Structural properties

Crystalline structures

» Perfect periodicity exists in the
arrangement of atoms or molecules —
produced by placing a basis on lattice

* Semiconductors such as Si, Ge, and C
have a diamond structure with an
underlying fcc lattice.

* Semiconductors such as GaAs and InAs
have a zinc blende structure with an
underlying fcc lattice.

Ferroelectric crystals

* Such crystals have a built-in electric
dipole due to the arrangement of
positively and negatively charged atoms
in the structure.

Defects in materials

Table 1.4: Summary table

» Point defects such as vacancies,
interstitials, and antisite defects can be
generated in materials.

» Line defects such as dislocations can be
a serious problem in heterostructures.
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Polycrystalline materials and amorphous
materials are relatively inexpensive and are
becoming very important in technolgy.
Polycrystalline materials have good long-
range order within a grain size. Amorphous
materials have good short-range, but poor
long-range order.

* Perfect short- and long-range order exists
over the grain size, which can be several
microns.

* The structure loses order as we go from one
grain to another.

* Good short-range order exists, but there is no
long-range order.

* The materials also have broken or dangling
bonds and impurities.

caspsggssssss

* Liquid crystals are a phase of matter which
can flow like a liquid, but unlike other liquids,
the molecules have long-range order in their
orientation.

Table 1.5: Summary table

Advances in synthesis techniques have allowed
organic materials to become “smart”; i.e., their
optical and electronic properties can be made
tailorable.
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the following for the various crystal structures:

fcc : V2r/6=0.74
bec : V37/8=0.68
sc : w/6=0.52
diamond : V/37/16 =0.34

1.4 Calculate the number of cells per unit volume in GaAs (a = 5.65 A). Si has a
4% larger lattice constant. What is the unit cell density for Si? What is the number of
atoms per unit volume in each case?

1.5 A Si wafer is nominally oriented along the (001) direction, but is found to be cut
2° off, towards the (110) axis. This off-axis cut produces “steps” on the surface which
are 2 monolayers high. What is the lateral spacing between the steps of the 2° off-axis
wafer?

1.6 Conduct a literature search to find out what the lattice mismatch is between GaAs
and AlAs at 300 K and 800 K. Calculate the mismatch between GaAs and Si at the
same temperatures.

1.7 In high purity Si crystals, defect densities can be reduced to levels of 102 cm
On an average what is the spacing between defects in such crystals? In heavily doped
Si, the dopant density can approach 10'° cm~3. What is the spacing between defects
for such heavily doped semiconductors?

1.8 A GaAs crystal, which is nominally along the (001) direction, is cut 6 off towards
the (110) axis. This produces one monolayer high step. If the step size is to be no more
than 100 A, calculate 6.

1.9 Assume that a Ga—As bond in GaAs has a bond energy of 1.0 eV. Calculate the
energy needed to cleave GaAs in the (001) and (110) planes.

1.10 Show that in the hcp structure the ratio ¢/a, (¢ = a1, az) is given by /8/3 =
1.633. The values of these lattice constants for several semiconductors are given in the
text.

1.11 The lattice constant of BaTiO3 is 3.99 A at room temperature with a relative
displacement (discussed in the text) of O ions of 0.03 A. Draw the position of atoms in
a BaTiO3 cell.

1.12 Do a literature search to find the lattice parameters for LiNbO3, LiTaO3z, SrTiOs3.

-3

Section 1.3

1.13 A serious problem in the growth of a heterostructure made from two semiconduc-
tors is due to the difficulty in finding a temperature at which both semiconductors can
grow with high quality. Consider the growth of HgTe and CdTe, which is usually grown
at ~ 600 K. Assume that the defect formation energy in HgTe is 1.0 eV and in CdTe
is 2.0 eV. Calculate the density of defects in the heterostructure with equal HgTe and
CdTe.

1.14 Calculate the defect density in GaAs grown by LPE at 1000 K. The defect for-
mation energy is 2.0 eV.

1.15 Why are entropy considerations unimportant in dislocation generation?
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Section 1.5

1.16 A silicon polycrystalline film has a grain size of 2.0 um. How many atoms are in
the grain, assuming that the grain is a cube?

1.17 A GaAs film is grown on a glass substrate and heat treated to produce a poly-
crystalline film of grain size 10.0 ym. If a 2 pm X2 pm diode is fabricated on the film,
what is the probability that the device has high performance? Assume that the grain
size is square on the surface.

1.18 When a polycrystalline film is heat treated (annealed), the grain size usually in-
creases. Comment on why this occurs.

1.19 Using symmetry arguments and energy minimization arguments, discuss why in
a nematic crystal, it is not possible to achieve a 270° twist.

1.20 Some liquid crystals are used as temperature detectors. Using simple thermody-
namic arguments, discuss why the long-range order of the liquid crystal is destroyed as
temperature increases.

1.21 A typical thickness of a liquid crystal cell used in laptop computers is 5 um. If
the thickness of the nematic crystal molecule is 5 Aand the average spacing between
the molecules is 10 A, how many molecules are stacked in a typical display cell?

1.8 FURTHER READING

e Crystal structures

— J. M. Buerger, Introduction to Crystal Geometry, McGraw-Hill (1971).

-~ M. Lax, Symmetry Principles in Solid State and Molecular Physics, J. Wiley
(1974). Has a good description of the Brillouin zones of several structures in
Appendix E.

— J. F. Nye, Physical Properties of Crystals, Oxford (1985).
— F. C. Phillips, An Introduction of Crystallography, J. Wiley (1971).

o Defects in semiconductors

— P.K. Bhattacharya and S. Dhar, Deep Levels in III-V Compound Semicon-
ductors Grown by Molecular Beam Epitaxy, Semiconductors and Semimetals,
eds. A.C. Willardson and C. Beer, Academic Press, New York, vol. 26 (1988).

— E.N. Economou, Green’s Functions in Quantum Physics, Springer Verlag,
Berlin (1979).

G.F. Foster and J.C. Slater, Phys. Rev., 96, 1208 (1954).

H.F. Matare, Defect Electronics in Semiconductors, Wiley-Interscience, New
York (1971).

S. Pantelides, Rev. Mod. Phys., 50, 797 (1978).
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e Dislocations and lattice mismatched epitaxy

— S. Amelinckx, Dislocations in Solids, ed. F.R.N. Nabarro, North-Holland,
New York (1988).

— C.A.BBalland J.H. van der Merwe, Dislocations in Solids, ed. F.R.N. Nabarro,
North-Holland, New York, vol. 5 (1983).

— H.F. Matare, Defect Electronics in Semiconductors, Wiley-Interscience, New
York (1971).
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Chapter

QUANTUM
MECHANICS AND
ELECTRONIC LEVELS

2.1 INTRODUCTION

Essentially all smart devices depend upon the electronic properties of materials and how
these properties are influenced by external perturbations which may be electromagnetic,
or mechanical, or magnetic, etc. The simplest approach to understanding such properties
would be to use classical physics. Based on classical physics the general problem could
be solved by using Newton’s equation

%It—) =€ (E + v X B)

where p 1s the electron momentum, v the velocity, and E and B are the electrical and
magnetic fields, respectively. Additional forces, if present, can be added on the right-
hand side of the equation. Similarly, in classical physics, we could use the Maxwell
equation to represent properties of electromagnetic waves in solids.

Although classical physics has been successful in describing many of nature’s
phenomena, it fails completely when it is used to describe electrons in solids. To un-
derstand the underlying physical properties that form the basis of modern intelligent
information devices, we need to use quantum mechanics, which is a more accurate de-
scription of nature than classical physics. According to quantum mechanics, entities
that are particles in the classical description behave as waves under certain conditions.
To the level needed in device physics, the wave equation that is capable of describing
particles is the Schrodinger equation. A second aspect of quantum mechanics says that
classical waves sometimes behave as particles. Thus wave energy becomes “quantized”
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40 Quantum mechanics and electronic levels

or appears in discrete steps. Both of these aspects of quantum mechanics are critical to
an understanding of solids and their physical properties.

In this chapter we will start with a brief historical description on the origin of
quantum mechanics. We will then establish the Schrodinger equation and discuss its
outcome for several important problems.

2.2 NEED FOR QUANTUM DESCRIPTION

2.2.1 Some experiments that ushered in the quantum age

Classical physics has proven to be adequate to describe most physical phenomena. It
is successful in describing planetary motion, trajectories of particles, wave propagation,
etc. At the beginning of the twentieth century, some observations were made which
started shaking the foundations of classical thinking. In this section we will examine
some of the critical experiments that eventually led to quantum mechanics. In this
text we will focus only on non-relativistic quantum mechanics. This means that we will
consider situations where the speed of particles (other than photons) is much slower
than the speed of light.

Waves behaving as particles: blackbody radiation

An extremely important experimental discovery which played a central role in the devel-
opment of quantum mechanics was the problem of the spectral density of a blackbody
radiation. If we take a body with a surface that absorbs any radiation (a blackbody)
we find that it emits radiation at different wavelengths. The intensity (power per unit
area) of the radiation emitted between wavelengths A and A + dX is defined as

dI = R(\)d\ (2.1)

where R(A) is called the radiancy. The spectral dependence of R(A) is found to have a
certain dependence on the wavelength and temperature of the blackbody. In Fig. 2.1 we
show how the experimentally observed R(A) behaves at different temperatures. Several
interesting experimental observations are made in regard to the emitted radiation:

o The total intensity has the behavior
I :/ R(A\)dA o< T*
0

or
I=oT* (2.2)

This 1s known as Stefan’s law. The constant ¢ is called the Stefan—Boltzmann constant.
It 1s found to have a value

c=567x10"% Wm™?K~*

o The radiancy versus wavelength plot shows that there is a maximum at a certain
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wavelength Aja.x as can be seen from Fig. 2.1. The temperature dependence of this

wavelength is given by .

T
The proportionality constant is given by the relation

(2.3)

Amax X

AmaxT = 2.898 x 10~2 meter-Kelvin

This relation is known as Wien’s displacement law.

Using classical physics a formalismn has been developed to understand blackbody
radiation. According to classical physics, radiancy is given by the Rayleigh-Jeans law,

8r ¢
R()) = ekl (2.4)
However, when careful experiments were carried out and the spectral density tabulated,
it was found that the Rayleigh-Jeans law was applicable only in a small frequency
range. In fact, as can be seen from the equation, the classical law predicts an infinite
energy density at very short wavelengths — an obviously unphysical result. It can be
seen from Fig. 2.1 that while the classical law gives a reasonable fit to experiments
for long wavelengths, it completely fails at short wavelengths. The entire spectrum was
only understood when Planck suggested that an electromagnetic wave with frequency

w exchanges energy with matter in a “quantum” given by

E=hv=hw (2.5)

Here h is a universal constant called Planck’s constant. The symbol A stands for h/27.
This assumption seemed to suggest that light waves have a well-defined energy just as
particles do.

The quantity h or k that has been introduced is called Planck’s constant and
has a value

h = 6.6261x107>*J s
h

= 5= 1.05x 10734 J .5 (2.6)

Waves behaving as particles: photoelectric effect
It is well known that electromagnetic waves are described by Maxwell’s equations. Phe-
nomena, such as interference and diffraction are well explained by Maxwell’s equations.
An important outcome of the wave theory is that the energy of a light beam can change
continuously. As the intensity of the wave increases, the energy carried by a light beam
increases. This seems quite intuitive and in most experiments this expectation is indeed
verified. However, in 1887 Heinrich Hertz carried out an experiment which the wave
theory of light was unable to explain. The experiment is known as the photoelectric

effect and was the basis for Einstein’s model for how light behaves.

In the photoelectric experiment light falls upon a material system and electrons
are knocked out due to the interaction of the light with electrons. A typical experimental
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Figure 2.1: Measured spectral energy distribution of a blackbody radiation. The explanation
of such experimental observations forced Planck to introduce a constant h (now called Planck’s
constant).

arrangement used is shown in Fig. 2.2. A potential is applied between the emitter and
the collector. If the impinging light cannot knock an electron out of the metal emitter,
there will be no photocurrent. If electrons are knocked out these electrons can make
it to the collector if their energy is larger than the potential energy eV.y; between the
emitter and the collector.

Let us assume that the electrons in the metal need to overcome an energy e¢
in order to escape from the metal. The quantity e¢ is called the work function of the
metal and arises from the binding of the electrons to the metal ion. If the impinging
light beam gives the emitted electrons an energy FEen, the electrons will emerge from
the metal with an energy Fep —ed. An opposing bias is applied to the emitter—collector
and the value of this bias is adjusted so that the electrons emitted are just unable to
make it to the collector, i.e., the photocurrent becomes zero. This value of the applied
voltage V; is called the stopping voltage. The current will go to zero when

Eem —e¢ = €V (2.7)

Experimentally we can measure V; as a function of the intensity and frequency of light.
Classical wave theory suggests that the following observations should be made
in the photoelectric effect:

o The energy with which the electrons should emerge from the metal should be propor-
tional to the intensity of the light beam. Thus, as the intensity increases, the stopping
voltage should also increase.

o The electron emission should occur at any frequency provided the intensity of the
light beam is sufficiently high.
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o There should be a time interval At between the switching on of the light beam and
the emission of electrons. If A is the area over which the electron is confined (roughly
equal to the area of an atom or 1071° m?), the time it should take the electron to gain

an energy AFE is
AFE

TA
where T is the light intensity. If we use AE ~ 1.0 eV and I ~ 1 W/cm?, we find that
AT ~ 1073 s.

At =

The three expectations from classical physics all seem consistent with our phys-
ical intuition. However, actual experiments show them to be incorrect. Instead, the
following occurs:

o If the frequency of light is below a cutoff value, there is no emission of electrons,
regardless of intensity as shown in Fig. 2.2b.

e The stopping potential is completely independent of the intensity of light. A typical
result is shown in Fig. 2.2c. As can be seen from this figure, the stopping voltage is
unaffected by intensity, although the photocurrent scales with intensity.

e The initial electrons are emitted within a nanosecond or so of the light being turned
on. There is essentially no delay between the impingement of light and electron emission.

The experimental observations were thus completely opposed to what was ex-
pected on the basis of the wave theory for electromagnetic radiation. It was clear that
a radical new interpretation of light was needed. As noted in the previous subsection,
Max Planck had developed his formalism to explain the spectral density of blackbody
radiation. Based on Planck’s ideas, Einstein saw that the photoelectric effect could be
explained if light was regarded as made up of particles with energy

E=hovw=hv (2.8)

Thus light was to be regarded not as waves but discrete bundles or quanta of energy.
These quanta were later called photons.

In Einstein’s theory electrons are emitted by a single photon knocking the
electron out. Thus the kinetic energy of the emitted electron is

E(K.E)=hv —e¢ = eV, (2.9)

There is no dependence of the electron energy on the intensity of light. A beam with
higher intensity has more photons, but each photon has the same energy. The cutoff
frequency for electron emission is given by the relation

hv = e¢ (2.10)

In Fig. 2.3 we show the work function values for several metals. Also shown are
the dependence of stopping voltage on the frequency of light. The slope of this curve is
hje.

Particles behaving as waves: atomic spectra
An area where experiments baffled classical physics was atomic spectra and properties
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Figure 2.2: (a) A schematic of the experimental setup used for studying the photoelectric
effect; (b) photocurrent as a function of the frequency of the impinging light for a fixed applied
bias; and (c) photocurrent versus applied bias for when the optical signal frequency is above
the threshold frequency.
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Figure 2.3: Stopping voltage versus frequency results for sodium. The slope of the curve is
h/e. Also shown are the work functions of several metals.
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Z: Electrons
R: atomic radius

Figure 2.4: Thomson model for an atom. The Z electron with charge —e are point particles
embedded in a uniformly charged positive sphere of radius R.

of atoms. The question of relevance is: What are the electron energies and trajectories
in an atom? One of the earliest models for the atom was proposed by J. J. Thomson,
who was the first to identify the electron and measure the ratio of its charge to mass.
Thomson built the atomic model on the basis of classical physics. He assumed that
the atom was made up of a uniform sphere with positive charge Ze and radius R in
which negatively charged electrons were embedded, as shown in Fig. 2.4. The size of
the positively charged sphere is assumed to be of the order of an Angstrom or so and
the electrons are assumed to be embedded in the uniform charge at various distances.
If r is the distance of an electron from the center, the force on it is (from classical
electrostatics)

_ Zée’r

- 47T€0R3

At equilibrium there would be a balancing force from the other negatively charged
electrons. Away from the equilibrium position there is a linear restoring force on the
electron and it is assumed the electron will oscillate about its mean position just as a
pendulum does.

The frequency of the oscillation is (according to classical physics)

1 | Ze?
V= _2_7—1'. 47T€0R3m0 (212)

where mg 1s the electron mass. The oscillating electron would radiate electromagnetic
radiation of frequency v.

Experiments showed that the frequencies of radiation emitted from atoms were
not in agreement with what the model predicted. Also, scattering experiments, in which
scattering of alpha particles from atoms was studied, showed that most of the atom was
empty. It was found that the positive charge was not distributed over an Angstrom but
over a much smaller region.

(2.11)
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Advances in optical spectroscopic techniques made possible direct measure-
ments of the frequencies of the emitted and absorbed radiation by atoms. When atoms
are excited (say, by electromagnetic radiation), they can absorb the radiation. Once
they absorb radiation, they can emit radiation as well. It was found experimentally
that emitted and absorbed spectra from a species of atoms consisted of several series of
sharp lines; i.e., discrete frequencies. Tt was possible to fit simple relations to the posi-
tions of these lines. For example, Johannes Balmer found that the emission wavelengths
of hydrogen in the visible regime could be fitted to the relation (the Balmer formula)

n2

Ao = 364.5—5—

nm; n=23,4,... (2.13)

In fact, other groups of lines in H-spectra were fitted to other expressions. For
example, we have the following sequences of optical wavelengths:
Paschen Series:

2
An =820.1—n?n_—32 nm; n=4,5,... (2.14)
Lyman Series:
2
An = 91.35n2"_ om0 =23, (2.15)

Other atoms were found to have spectra which satisfied similar relations. In Fig. 2.5 we
show series of lines observed in atomic spectra of hydrogen.

The observation of atomic spectra showed that for some reason electrons inside
an atom can only have certain well-defined energies—not a continuum of energies. With-
out, fully explaining why this should occur, Bohr came up with a model that explained
the results shown in Fig. 2.5. Bohr assumed that the nucleus was essentially a point
particle and the electrons spun around the nucleus, just as planets orbit the sun. How-
ever, unlike the planets, the electrons can only go around in orbits in which the angular
momentum was an integral multiple of h. If r is the radius of an orbit, we must have

movr =nh;n=1,2... (2.16)

By proposing this postulate, Bohr made a daring leap. He was able to fit the emission
and absorption spectra of the hydrogen atom and he was able to explain why the electron
does not radiate continuously, even though it is orbiting the nucleus. The electron cannot
radiate electromagnetic energy unless it jumps from one allowed orbit to another.

Based on the postulate that the electron orbits were quantized Bohr was able
to calculate the allowed energies of electrons in an atom. Equating the centripetal force
and the Coulombic force we get

1 e mgo?

- dmeo 2 1 (2.17)
The kinetic energy is now
K= tmpre L€ 2.18)
2 T 8mey T (2.
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Figure 2.5: Emission and absorption lines in the hydrogen atom spectra. There is a regularity
in the spacings of the spectral lines and the lines get closer as they reach the upper limit of
each series (denoted by the dashed lines).
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48 Quantum mechanics and electronic levels

The potential energy is the Coulombic energy

2
v=- % (2.19)
dmeg T
and the total energy is ,
1 e
=——— 2.20
E 8meg 1 ( )
From Eqs. 2.16 and 2.17, we have
e? e? 1
= = — 2.21
(mov)v dmegr orv 4mwen nh ( )
From this equation and Eq. 2.16, we have, for the allowed orbit radii
ro = 2T€0 (2 (2.22)
n m062 .
Substituting this equation into Eq. 2.20 for the electron energy, we have
4
mge 1
E, = ————; n=1,2,...
R 3om2eZhn?’
13.6

The allowed energy levels are shown in Fig. 2.6. The allowed radii of the orbits are, from
Eq. 2.22

dregh?
= ::0062 n? = agn?® (2.24)
where 5
dmeoh
a0 = —20 = 0529 A (2.25)
moe

Based on his model Bohr was able to provide a model which was consistent with ob-
servations made on the hydrogen atom. For example, the emission lines resulted from
an electron jumping from a higher energy level to a lower energy level, as shown in
Fig. 2.8b. Absorption lines resulted from reverse transitions. The Bohr model, although
pioneering, was not found to be adequate to describe the spectra of other atoms. It also
failed to explain many other experiments.

2.3 SCHRODINGER EQUATION AND PHYSICAL
OBSERVABLES

As noted in the previous section Bohr used the idea of angular momentum “quantiza-
tion” to understand the H-atom spectra. It is well known that when we deal with waves,
the idea of quantization is not so unusual. For example, in musical instruments only
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Figure 2.6: (a) A conceptual picture of the Bohr model along with the energy levels for a
hydrogen atom; and (b) discrete spectral lines are explained by transitions of the electron from

one level to another.
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50 Quantum mechanics and electronic levels

certain wavelengths are allowed, while others are forbidden. This emerges mathemati-
cally from the solution of wave equations subject to appropriate boundary conditions.
Is it possible that classical particles, such as electrons, can be represented by a wave
equation? The question that we now ask is the following: if particles have a wave-like be-
havior, what is the nature of the equation they satisfy? This question was first answered
by Schrodinger.

The Schrodinger equation, given below, is no more intuitive than Newton’s
equations or Maxwell’s equations. It is important to note that the Schrédinger equation
describing the non-relativistic behavior of particles cannot be derived from any funda-
mental principles — just as Newton’s equation cannot be derived. It is an equation that
gives us solutions that can explain experimentally observed physical phenomena.

A clue to the form of the Schrodinger equation comes from the relation between
a particle momentum and its wavelength as given by de Broglie. According to this
relation, for a particle in free space the kinetic energy is (replacing the momentum by
wavelength or wavevector)

2 27,2
. p° _hTk* . 27 _h
Ix_2m_2m’ k_Aor)\_; (2.26)
If we examine the identity
K+U=FE

where U is the potential energy and E is the total energy, we can write a wave equation
for a wave with amplitude 9

(K+U)y = FEy
In case the particle is free (i.e., the potential energy is zero) we have
Ky = Ey

Using a hint from Eq. 2.26 for the form of the kinetic energy, we write the kinetic energy
as an operator (say, for a one-dimensional case)

h? 42

K=-—2t 2
* 2m dz?

(2.27)

We now see that the wave equation takes the form

B d°
_— W =E
2m dx? 4 v
and the general solution to the equation is
1/) :Aeikx _I_Be—ikw
The kinetic energy is
A2k
2m
which is consistent with the relation we get from the de Broglie relation.

K=F=
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2.3. Schrodinger equation and physical observables 51

The Schrodinger equation is written by expressing the kinetic energy as a
second-order operator, so that the identity

(K+U)yp=FEy
becomes
B2
X V24 V()| = By (2.28)
2m

To write the time dependence of the particle wave we use the analogy for the
phase of the particle wave, which goes as

1/)('5) ~ eiwt
We can write the time dependence of the wave as

b(t) ~ exp <_%) (2.29)

so that the knowledge of 3 at any time allows us to predict the value of ¢ at all times
via the equation

o —i
R R

or 8¢
ih—=— = Ey (2.30)

Note that, in this development, the quantity ~ or & has been introduced to define
the proportionality between the energy and the particle wave frequency. In classical
physics, this quantity is assumed to be zero. As noted earlier in this chapter, experiments
carried out in the early twentieth century showed that i was not zero but had a value
of 1.055 x 10734 J s.

It is important to emphasize that the derivation given above does not constitute
a proof for the Schrodinger equation. Only experiments could determine the validity of
such an extension.

In our “derivation” of the Schrédinger equation we see that the observable
properties of the particle such as momentum and energy appear as operators operating
on the particle wavefunction. From Egs. 2.27 and 2.30 we see the operator form of these
observables

., 0
Dr — —Zh%
., 0
py — ——Zha—y
P — —z‘h;—z (2.31)
L 0
E — ihg (2.32)
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52 Quantum mechanics and electronic levels

This observation that physical observables are to be treated as operators is quite generic
in the quantum description. The energy operator is called the Hamiltonian in quantum
mechanics.

EXAMPLE 2.1 Calculate the wavelength associated with a 1 eV (a) photon, (b) electron,
and (c) neutron.
(a) The relation between the wavelength and the energy of a photon is

he (6.6 x 107** 1.5)(3 x 10° m/s)
E (1.6 x 10-19 J)
= 1.24 pm

=1.24%x10"%m

Apn =

(b) The relation between the wavelength and energy for an electron is (k = 27/))

N ho 6.6 x 107 J.s
‘ V2moE  [2(0.91 x 10-30 kg)(1.6 x 1019 J)]'/?
= 1234

(c) For the neutron using the same relation, we have

1/2 1/2
An=Ae(ﬂ) =/\e( ! ) =028 A
m 1824

The wavelengths of different “particles” play an important role when these particles
are used to “see” atomic phenomena in a variety of microscopic techniques.

2.3.1 Wave amplitude

The Schrodinger equation is a second-order differential equation which can be solved
analytically or numerically. When we solve a wave equation describing electromagnetic
waves, we get a solution that gives the amplitude of the fields and the frequency of
vibration. Similarly, when we solve the Schrédinger equation for a given potential energy
term, we get a set of solutions {E,, ¢, }, which give us the allowed energy E, of the
particle along with the wavefunction ¢, . The wavefunction provides a complete quantum
mechanical description of the behavior of a particle of mass m in a potential energy V.
We now develop a mathematical and physical interpretation of the wave amplitude.
This interpretation must be consistent with the experimental observations.

Let us briefly recall the meaning of the wave amplitude ¢(r,¢) in the wave
equations describing sound waves or light waves; i.e., in classical physics. The energy
of the wave at a particular point in space and time is related to |¢(r,t)|%. It is “more
likely” that the wave is found in regions where ¢ is large. Thus the quantity |¢(r,¢)|?
represents some sort of probability function for the wave. A similar interpretation has
to be developed for a wave 9 describing a particle of mass m. The interpretation has
to be statistical in nature. It is thus natural to regard ¢ as the measure of finding the
particle at a particular point and space. We assume, therefore, that the product of 3
and its complex conjugate ¥* is the probability density

P(r,t) = ¥ (r,)%(r,1) = [(r, ) (2:33)

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

2.3. Schrédinger equation and physical observables 53

Thus the probability of finding the particle in a region of volume dz dy dz
around the position 7 is simply

P(r,t) dz dy dz = |y(r,t)|?* dz dy d= (2.34)

Normalization of the wavefunction

If we assume that the particle is confined to a certain volume V', we know that the
probability of finding it somewhere in the region must be unity, so that we must have
the following condition satisfied

/V [(r,1)|* d*r =1 (2.35)

The volume over which the integral is carried out is sometimes arbitrary and
the coefficient of the wavefunction must be chosen to satisfy the normalization integral.
The normalization factor does not change the fact that ¢ is a solution of the Schrodinger
equation due to the homogeneous (linear) form of the equation in . Thus, if ¢ is a
solution, and if A is a constant, then A is also a solution.

Expectation values

In classical physics, when a measurement is made on a particle, the outcome is informa-
tion on the particle energy position, momentum, etc. We need to know how to relate a
physical observation to what we calculate by solving the Schrédinger equation. In view
of the probabilistic nature of quantum mechanics, we can only define the “expecta-
tion value” of an observable in a physical measurement. Using the probability function
P(r,t) = |¢(r,1)|?, we define the ezpectation value for the measurement of the position
of the particle as

(r) = /rP(r,t) d®r = /w*(r,t)rlb(r,t) d3r (2.36)

For the expectation value along different axes we have

In all these equations, 7 is normalized to the volume of the integral.
In asimilar manner, the expectation value for the potential energy of the particle
18

(V) = /¢*(r,t)V(r,t)t/J(r,t) d3r (2.37)

To find the expectation values of momentum and energy, we need to express
them in their operator form. We note that the expectation value of energy is

(E) = <”—> + (V) (2.38)
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54 Quantum mechanics and electronic levels

or, in the form of the differential operators

<ih§—t> = <-%v2> +(V) (2.39)

This equation is consistent with Schrodinger equations with the following expectation
values

(Ey = /¢*ih%—’f d3r (2.40)

(p) = /w*(—ih)vw d°r (2.41)
The different momentum components are

(ps) = / w*(—ih)g—f d®r

(py) = /w(—ih)g—’; 43

(p2) / ¢*(—ih)g_’f d3r

Once we solve a Schrodinger equation, we will get one or more allowed wave-
functions. The expressions given above can then be used to determine the expectation
values of various physical observables in each of these allowed states. Since all quanti-
ties calculated from the wavefunction, which can be related to direct physical meaning,
have a form involving ¥*% product, it is clear that the wavefunction is only determined
within a phase factor of the form e*®, where « is a real number. This indeterminacy in
the wavefunction is ummportant, since 1t has no effect on physical results.

An important and useful aspect of quantum mechanics is the principle of su-
perposition of states, which is directly related to the quantum mechanics wave equation
being linear in the wavefunction 9. If ¥1(q) is a state leading to measurement R; and
¥2(q) 1s a state leading to R1, then every function of the form ajy; + azyz (where ¢
and ¢y are constants) gives a state in which the results of measurements are known from

the knowledge ¥; and v».

2.3.2 Waves, wavepackets, and uncertainty

When we consider a wave, one of the notions we have is that the wave is spread over some
regions in space. Its position is not well defined. In fact waves satisfy an uncertainty
relation

AzAk ~1

where Ax represents the region where the wave energy is localized and Ak represents
the error in specifying the wavevector k of the wave, where

2

k=3

(2.42)
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2.3. Schrodinger equation and physical observables 5b

defines the wavelength A. An example of this is seen when you look at a wave moving
across an ocean beach. The position of the wave extends over a wide space.

A particle in quantum mechanics also displays an uncertainty relation that is
related to its wave nature. The relations are known as Heisenberg uncertainty relation
and are

Ap Az
AEAt

> h/2
> h/2 (2.43)
The first of these relations imply that 1t is not possible to specify the values of both
momentum and position of a particle with complete certainty. The second uncertainty
relation involves a subtler concept. In quantum mechanics a particle has an energy, E,
and also a “lifetime” or how long it stays in the “state with energy F.” The energy-
time uncertainty relation says that, if the energy is defined with a precision of AF,
the lifetime has to be greater than i/(2AE). Thus the greater the lifetime, the more
precisely we can define the particle energy.

Note that, for the momentum position, the uncertainty only exists between p;, r;
le., between (pg,x), (py,y) and (p,,z). There is no uncertainty in the simultaneous
measurement of, say, p, and y.

Equations of motion: Ehrenfest theorem

If particles behave as waves, how do forces influence that particle wave? It can be shown
that if the potential energy is smoothly varying (on the scale of the particle wavelength)
the equation of motion for the particle wave is given by an equation that looks very
much like Newton’s equations or

:T (pe) = <_%> (2.44)

The spatial derivative of the potential energy is the force applied, and thus we obtain a
classical-like equation for the rate of change of the expectation value of the momentum.

The result above showing that the properties of a wavepacket can be determined
from classical equations 1s called the Ehrenfest theorem. This is an extremely useful the-
orem in applied quantum mechanics, especially as used in describing various devices. In
such cases an appropriate Schrodinger equation is solved to describe the allowed energy
and momentum states of a particle. Once the quantum problem is solved, the response of
the particle to slowly varying external forces can be treated as if the particle is obeying
classical equations. This approach i1s widely used when we use quantum mechanics in
describing devices such as semiconductor transistors and lasers.

EXAMPLE 2.2 In an experiment known as the Frank and Hertz experiment, electrons are
raised to an excited state by colliding with a beam of electrons. It is found that, even if the
beam of electrons is monoenergetic, after the collision with the atomic electrons the energy of
the electrons in the beam has a certain spread. Explain this spread. In a particular experiment
the energy spread is found to be 107% eV. What is the lifetime of the excited state?

The electronic levels in an atom have a certain lifetime, which produces an uncertainty
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56 Quantum mechanics and electronic levels

in the energy needed to excite the electrons
h

For the given case

h 1.05 x 1073 J.s

= = =3.28 x107"°
AE - TS x 16 x10-17) _ 08X :

At

EXAMPLE 2.3 Use the uncertainty relation to evaluate the ground state energy of the
hydrogen atom.

Let us assume that the electron is confined to a radius r, in the hydrogen atom. We
will find the value of v, that gives the lowest energy. The uncertainty principle tells us that
the momentum associated with the electron is

h
p~—
To
The electron—proton system energy is
»°
E o = —7 - V
() = L4vir)
72 e?

2mr2  4Ameoro

To find the lowest energy we need to minimize E. This is minimized when

Areh®
me?
47 (8.84 x 1072 F/m) (1.05 x 1073 J.s)”
(9.1 x 10~3! kg) (1.6 x 10— C)?
= 524x107" m
= 0524 A

With this value of 75, the energy becomes

1 me*
T2 (4me)2h?
(9.1 x 107" kg) (1.6 x 107 C)*
T 2(47 x 8.84 x 10—2 F/m)? (1.05 x 10-3¢ J.5)°
—2.16 x 107%% J
= —13.6eV

By =

These results are quite accurate, considering the crude approximations used.
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Figure 2.7: Particle in an attractive potential well. In classical physics a particle can have any
energy larger than the potential energy. The energy can change continuously.

2.4 PARTICLES IN AN ATTRACTIVE POTENTIAL:
BOUND STATES

We will now examine several important quantum problems that have impact on mater-
1als and physical phenomena useful for device applications. We note that in classical
physics the energy of a particle is simply given by the sum of the kinetic and potential
energies

E=2-1V(r) (2.45)

One outcome of this equation is that a particle can have any energy greater than the
potential energy starting from the zero momentum value (see Fig. 2.7). The particle
energy can have continuously changing values. In quantum mechanics the “obvious”
observation made above does not hold. In attractive potentials (such a schematic is
shown in Fig. 2.7) a particle can only have certain select energies consistent with the
Schrédinger equation.

In this section we will discuss three important problems with implications for
electronic and optical properties in devices (i) electron in a hydrogen atom; (ii) particle
in a “square” quantum well; and (iil) particle in a harmonic oscillator potential.

While the details of these problems are different there are several common
outcomes in the solutions to these problems:
o Allowed energy levels are not continuous, but there are a series of discrete allowed
energies separated by “energy gaps.”

e Associated with the allowed energies are wavefunctions (or eigenfunctions) which
describe the spread of the particle wave in space. In some cases there may be more
than one wavefunction associated with the same energy. Such wavefunctions are called
degenerate (doubly degenerate, triply degenerate, etc.).
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electron

Two-body

r electron—proton
problem

RELATIVE MOTION

CENTER OF MASS, MOTION

Motion of the e—p system | Reduced mass motion

Figure 2.8: A schematic of the hydrogen atom problem. The two-body problem can be repre-
sented by the center-of-mass problem and a one-body problem.

2.4.1 Electronic levels in a hydrogen atom

In this book we are not directly interested in atoms and atomic spectra. However, the
insight provided by the solution of the H-atom problem is very useful in understanding
a number of technology-related phenomenon. The hydrogen atom consists of an electron
and a proton interacting with the Coulombic interaction. The problem can be solved
exactly and provides insight into how electrons behave inside atoms. Mathematically
the H-atom problem is similar to the problem of dopant atoms and of excitons and the
solutions, appropriately modified, are extremely useful.

The hydrogen atom problem involves an electron and a proton interacting with
each other via the Coulombic interaction, as shown in Fig. 2.8. The Schrédinger equation
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is

~-n* /9 92 9 R
5 (G a—) " om,
8?2 o2 ? )
___+_'_ +V(xe)ye;ze,xp,yp,zp)
(33312, Gy o2
P (936, Yes Zey Tp, Yp, Zp) = Epav (93(5, Yey, Zey Tp, Yp,s Zp) (2-46)

where the subscripts e and p refer to the electron and the proton. Note that the mass
of the electron is denoted by my. It is well known in classical physics that, if the potential
energy depends only upon the relative coordinates;i.e., V =V (2c — 2p, Yo — Yp, Ze — %p),
the problem can be separated into two one-body problems, as shown schematically in
Fig. 2.8. A similar separation is possible in quantum mechanics. This can be done by
using the relative coordinates and the center-of-mass coordinates defined by

T = XTIy

MX = meze+mpx, (2.47)

etc. Here M = mg + m, is the mass of the electron and the proton. With the new
coordinates, Eq. 2.46 can be rewritten as

_hz 82 82 82 h? 82 82 82
— 5.\ 45939 I woy e vV = F
[2M <8X2 M Y2 + 8Z2) 2u (8132 + dy? + 82’2) + (a:,y, Z)] Y Tot®
(2.48)
where g is the reduced mass of the electron—proton system, i.e.
momp
= 2.49
a mo + my ( )

Since the potential energy depends only upon the relative coordinate, we can make the
separation

¥ =9Y(z,y,2)U(X,Y, Z) (2.50)
and get the two equations
—h?
[sz + V(r)] P(r) = Ey(r) (2.51)
—K?
277 - !
QMV U=EFEU (2.52)
and the total energy is
Ery =E+E' (2.53)

The solution to Eq. 2.52 is straightforward and simply represents the “free”
motion of the atom
_ R*K?

El
2M

(2.54)
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60 Quantum mechanics and electronic levels

We are not interested in the motion of the atom and will assume that the atom is at
rest.
We will now discuss the one-body problem described by Eq. 2.51 with

e?

Vir)=— (2.55)

dmegr

The time-independent wave equation can be written in the spherical coordinate
system as

—h*[1 0 (,0 1 o (. ,0 1 9
—_— == — —_— 0= —_— =Evy (2.

2u [7'2 or <7° 0r> + r2sinf 56 <sm > + r2sin® @ 9¢2 YHV(r)Y ¥ (2:56)
where 1 is the wavefunction and F is the energy of the system. Let us now separate the
radial and angular parts of the solution by the substitution

¥(r,0,¢) = R(r)F(0)G(¢)

When this problem is solved, the eigenfunctions and eigenvalues that result are
described by three quantum numbers (the quantum numbers are 3 because this is a
three-dimensional problem). The eigenfunction is given by

1/)nem(7°, g, d’) = Rnl(r)Flm(g)Gm(d)) (257)

The symbols n, £, m are the three quantum numbers describing the solution. The three
quantum numbers have the following allowed values:

principle number,n : Takes values 1,2,3,...
angular momentum number, ¢ : Takes values 0,1,2,...n—1

magnetic number,m : Takes values — ¢4, —£+1,...¢ (2.58)

The principle quantum number specifies the energy of the allowed electronic
levels. The energy eigenvalues are given by

pe’
E, 2 (meo ) o (2.59)
Note that the energy levels obtained here have the same values as those obtained by ap-
plying Bohr’s quantization rules discussed earlier. The spectrum is shown schematically
in Fig. 2.9. Due to the much larger mass of the nucleus as compared with the mass of
the electron, the reduced mass u is essentially the same as the electron mass mg. The
ground state of the hydrogen atom is given by

100 = emr/a (2.60)

Tad

The parameter ay appearing in the functions is called the Bohr radius and is given by

2
47T€()h
ay = ——

=0.53 A (2.61)

m0€2
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A further splitting
(hyperfine splitting) of
levels with the same
values takes place when
relativistic effects are
accounted for.

£=1 £ =2 £=3

Figure 2.9: A schematic description of the energy levels of electrons in a hydrogen atom.

1 0 0 %3/2 — ‘/_1_5 J—%_Tc
2 0 0| w2 R) =
2 1 0 m aLO e~r/2ap B cos 0 «/%t
2 1 41 -/3_(21—51—0?/2 a_ro e-"2dp 3% sin 0 ﬁefﬂ?

Table 2.1: Some low-lying hydrogen atom wavefunctions.
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62 Quantum mechanics and electronic levels

It roughly represents the spread of the ground state. Table 2.1 gives the functional forms
of some of the low-lying wavefunctions.

Before ending the discussion on the hydrogen atom problem, it is useful to point
out that states with £ = 0,1,2,3,... are called s,p,d, f, ... in atomic physics notation.
Such a notation is used for not only the hydrogen atom case, but also for all atomic
spectra. The form of these functions, as well as the electron probability function, is
shown in Fig. 2.10 for some low-lying states.

2.4.2 Particle in a quantum well

The quantum well problem is an important one technologically for several reasons. Using
semiconductor heterostructures it is possible to fabricate quantum well systems. These
systems are used for high-performance devices, such as lasers and modulators. The
quantum well problem can also be used to understand how defects create trap levels.

A quantum well potential profile is shown in Fig. 2.11. The well (i.e., region
where potential energy is lower) is described by a well size W = 2a as shown and a
barrier height V5. In general the potential could be confining in one dimension with
uniform potential in the other two directions (quantum well), or it could be confining in
two dimensions (quantum wire) or in all three dimensions (quantum dot). We assume
that the potential has a form

V(r)=V(z)+ V(y) + V(2) (2.62)
so that the wavefunction is separable and of the form

¥(r) = ¢(2)P(y)¥(2) (2.63)

We will discuss the problem of the square potential well, which has acquired a
great deal of importance in applied physics due to the use of quantum wells in optoelec-
tronic devices such as semiconductor lasers and modulators.

The simplest form of the quantum well is one where the potential is zero in the
well and infinite outside. The equation to solve then is (the wavefunction is non-zero
only in the well region)

2
_ ;_m% - By (2.64)
which has the general solutions
Y(z) = Bcos %, n odd
= Asin %, n even (2.65)
The energy is ,
E = —71'82—:1323— (2.66)

Note that the well size 1s 2a.
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Figure 2.10: A plot of the probability density function as a function of the angle # for the

s,p,d electrons.
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Figure 2.11: A quantum well of width 2a and infinite barrier height or barrier height V5.

The normalized particle wavefunctions are

P(z) = —V%,— cos %, n odd
= % sin $, n even (2.67)

If the potential barrier is not infinite, we cannot assume that the wavefunction
goes to zero at the boundaries of the well. The equation for the barrier region is
—h*d%y
%IM—Z+VO¢:E¢ for |z| > a (2.68)
where Vp is the potential step.
The general bound-state (E < Vp) solution of the problem can now be taken to
be of the form

AePr z < —a
Y(z) = B cosax + C sinazx, —a<z<La (2.69)
De—8% r2>a
where
2mE
a = 72
2m(Vy - F
g = ) 7;)2 ) (2.70)

We now impose the boundary conditions that at £ = +a, ¥ and d¢/dz are continuous.
This corresponds to saying that the electron probability and the electron current do not
suffer a discontinuity at the boundaries.

Matching the wavefunction and its derivative at the boundaries, we have the
conditions

B cos %—C sin % = Ae~FW/2
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w
aB sin ZQVK—I-CYC cos QT = BAePW/?
B cos —CYQK+C sin % = DePWI?
—aB sin %+a0 cos % = —pBDe W2 (2.71)
From these equations we get two pairs of conditions on the solutions
2B cos oW = (A+ D)e PW/2
2
w
2B sin 9—2— — B(A+ D)e=PWI? (2.72)
and
2C sin % = (D—A)e_ﬁw/z
CYW —ﬂW/Q
2aC cos - = —B(D — A)e (2.73)

These pairs give us two separate conditions for the solutions, obtained by dividing one
equation by the other within each pair. The conditions for the allowed energy levels are
the transcendental equations

aW oW LW
5 tan 7= 5 (2.74)
and W W oW
« «
5 cot 7 = T3 (2.75)

Eq. 2.74 results in states that have even parity (i.e., with A = D), while Eq. 2.75 gives
states with odd parity (with A = —D).

Egs. 2.74 and 2.75 can be solved by numerical techniques. One useful approach
is a graphical technique shown in Fig. 2.12a. We start out by plotting curves in the
BW/2 — aW/2 plane which satisfy Eqgs. 2.74 or 2.75. Note that several a-values satisfy
the equations for a given value of 8. Next, we note that we have the equality (from Eq.

2.70)
2 2
aW sw mVoW?
— Y— ) = ——— = R(d)? 2.
() + (&) =" = raa) (2.70
We therefore draw a circle with radius R(d). For given values of V5 and W, there is one
such circle. The intersection of this circle with the first set of curves gives the desired
solutions. There may be several solutions for a given well thickness. As the well thickness
increases, the number of allowed states also increases, as shown in Fig. 2.12a. To find
the highest allowed state for a given well thickness, we note that (aWW/2)tan («W/2)
and (aW/2) cot («W/2) intersect the aWW/2 axis at values of nw/2. Thus the well width
at which a state N is just allowed is given by
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Figure 2.12: (a) The graphical approach to solving for the allowed modes in a finite quantum
well. The figure shows two different cases of well size and potential energy combinations. (b)
Typical solutions for the particle wavefunctions.
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The maximum mode number for a given well width is then the integer part of (the
lowest state is given by n = 0)

omVy W2\ /2
(—ﬁr{?_) +1 (2.77)

Another way (more accurate) to solve Egs. 2.74 and 2.75 is to write a computer
program based on the following steps: (i) Assume an electron energy starting from the
lowest potential energy in the well. (ii) Calculate the left-hand and right-hand sides of
the equation and see if they are equal (to some small error). (iil) Vary the electron energy
until the equation(s) are satisfied. Typical shapes of the wavefunctions corresponding
to the various energy levels are shown in Fig. 2.12b. Note that, in the case of the finite
barrier potential, the wavefunctions penetrate the barrier region and the energy values
are lower than the values obtained from the infinite barrier model.

2.4.3 Harmonic oscillator problem

As another example of a particle in an attractive potential we will discuss the harmonic
oscillator problem. The mathematics of this problem is similar to that of many important
problems. It also helps set up and understand “second quantization”-a development in
which classical waves are represented by particles or quanta.

The potential energy for the harmonic oscillator is of the form shown in Fig.
2.13 and is given by

1
V(z)= 51@2 (2.78)

The energy operator of the harmonic oscillator is

H=Tyry Ly 2.79
T om o7 1 (Z79)
where K is the force constant describing the attractive force (= —Kw). If ¥ represents

the wavefunction of the time-independent Schrodinger equation, we have for a one-
dimensional case
—-h? d% | Kz%
om d? 2
This equation can be recast so that it becomes a well-known differential equation with
solutions known as Hermite polynomials, H,. We will not discuss the mathematical
details of how this equation is solved.
The general solutions are

= Ey (2.80)

$n(2) = NpHp(az)e 3970 (2.81)
where
4 MK
ot = "
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/

Figure 2.13: The potential energy profile for a harmonic oscillator.

Vix)

The factor N, is chosen so that

o0 2 oo 2
[ v e = L [ @€ =1

The function in the integral is integrable, and it is seen that the normalization factor is

o' 1/2
N, = <—7r1/22"n!) (2.82)
The first few Hermite polynomials are
Ho(§) = 1
Hy(€) = %
Hy(¢) = 4¢%-2 (2.83)

The eigenenergy corresponding to the wavefunction ¥, (z) is given by the rela-
tion

1
E, = (n+2—) fuw, n=0,1,2,... (2.84)

Here the quantity w. is given by the classical frequency of the harmonic oscillator

w = (5)1/2 (2.85)

m

In a classical harmonic oscillator, the energy of the oscillator is continuous and
can be increased by increasing the amplitude of vibration. In the quantum treatment,
the energy increases in steps of iw.. The number n in Eq. 2.84 is called the occupation
number and tells us how many “quanta” of energy are in the oscillator. An important
point is that the lowest energy of the quantum oscillator is not zero but %hwc. This lowest
energy is called the zero point energy or, depending upon the context, in some problems,
the vacuum energy. The Harmonic oscillator solutions are very useful in understanding
lattice vibrations in crystals as well as in the quantum treatment of classical waves.
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¢1 \d
E, E,
@ Hody = E1, Hob, = Ex0,

(b) Coupled problem: What are the energy levels?

Figure 2.14: (a) A schematic of two uncoupled wells separated by a large potential barrier.
(b) A schematic of two coupled potential wells.

2.5 FROM ATOMS TO MOLECULES: COUPLED WELLS

We have seen that in an attractive potential the electron (or a general particle) has
discrete bound levels separated by energy gaps. We also know that, when some atoms
are brought together, they attract each other to form a molecule. In this section we will
examine how electronic levels in a quantum well change when another quantum well is
brought close to it. This is the so-called coupled quantum well problem.

Let us consider two quantum wells separated by a large distance so that there is
no coupling between them. Thus electrons occupying the bound states of each quantum
well have no overlap with electrons in the other well, as shown in Fig. 2.14a. Now let us
assume that the wells are brought closer to each other so that electrons in each well can
sense the presence of the neighboring well, as shown in Fig. 2.14b. We are interested in
finding out what happens to the allowed electronic levels in the coupled quantum wells
problem.

We assume that we know the solutions for the uncoupled wells. When the
quantum wells are spaced far apart and are uncoupled, let us say they each have states
with energies Ey and Ey, respectively, and wavefunctions ¢; and ¢, as shown in Fig.
2.14a. There may be other states in the quantum wells, but we will assume that their
energies lie far from F; and F5. We will see later that states far removed from the
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ones under consideration have a smaller effect on the solutions. We are interested in
the solutions of the problem where the wells are brought closer so that there is some
coupling between the wells. We write the Hamiltonian of the coupled problem as

H=Hy— AU (2.86)

where AU is the correction due to the coupling of the well. The potential energy is
reduced in the region between the wells, compared to the uncoupled system, so that
AU is positive.

In the absence of any coupling, we have

Ho¢1 = Er¢n
Hogs = Eq¢o (2.87)

When the wells are coupled, the functions ¢; and ¢; are no longer the solutions. How-
ever, the new solutions can be expressed in terms of the uncoupled solutions to a good
approximation. Let us write the solution for the coupled problem as

Y = ay¢1 + azps (2.88)

where @; and a, are unknown parameters which we will solve. If the system is uncoupled
we have the two solutions

Pr=¢1; a1=1,a,=0
o =¢d2; a1 =0, az =1

Coming to the coupled problem, the equation to be solved has the form
H(a141 + a2¢2) = E(a1¢1 + az¢) (2.89)

where H represents the full Hamiltonian of the coupled problem. We now multiply this
equation from the left by ¢] and integrate over space to get

a / $1(Ho— AU)$1d%r + as / $1(Ho — AU)pod®r
= Ea1/¢1‘¢1d3r+Ea2/¢*{¢gd3r

Using the following equations

[ i - avypar = B, [siwrdtr— [ siavsir=p,

/¢’;¢1d3r = 1

[ iz

al(El - E) +asHi2=0 (290)

Il
o

we get
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where we have defined

Hys = — / $1AU $od®r

The quantity His is called the matrix element of the Hamiltonian between the two
states ¢1 and ¢3. In case the quantum wells are separated by a large distance the
matrix element is zero. It increases as the coupling increases.
If we repeat the process described above but multiply Eq. 2.89 by ¢3 instead of
1, we get

H21a1+a2(E2—E) =0 (291)
where

Hoy = —/¢§AU¢1d3r
Assuming that the energy operator is real (energy is conserved) we have

Ho = Hyy

The two coupled equations (Egs. 2.90 and 2.91) can be written as a matrix
vector product
F —E, Hys
Hn E—-E

ai
az

=0

To get non-trivial solutions of this equation, the determinant of the matrix must vanish.
This gives us a quadratic equation with the following solutions

E,+ E E, — Ey)?
E = 1; Q:t\/( ! : 2) + HZ, (2.92)

The coefficients a1 and a2 can now be solved for and are

ay _ Hyp

il (2.93)
or E_E

as )

= = 2.94

ay Hyy ( )

The simple equation we have derived has very useful implications for understanding
many interesting and important physical systems.

Coupling of identical quantum wells

Let us examine 1n some detail the case where the two coupled quantum wells are identical
and have the same initial energies and states, as shown in Fig. 2.15. It is important to
keep in mind that when we talk of “quantum wells” we are simply referring to any
problem with bound states. Thus the quantum wells may be atoms and molecules as
well as potential wells created by use of semiconductors. Let us write

E, = Ey=E
His = Hy=—A (2.95)
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(a)

(b)If f B ) E : oy \ils :V]_'i (¢1 + ¢2)

E, +A

Asymmetric state

Well separation, R —>

EIGENENERGIES
e

Symmetric state

(©
Figure 2.15: (a) A schematic of two identical uncoupled wells. (b) Coupled identical wells with

energy levels and eigenfunctions. (c) Dependence of the symmetric and asymmetric eigenener-
gies on well separation or coupling.
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The quantity A represents the coupling coeflicient between the wells.
From the derivation given above, the energy eigenvalues of the coupled system

1S now
Es = Ey—A
Es = Ey+A (2.96)

For the state with energy Eg the coefficients of the state are, from Eq. 2.93,
a; = as (297)

while for the state with energy F4 we have

a; = —as (2.98)
If we normalize the state using
af + a% =1
we get the following solutions:
Symmetric state:
1
Ve = —\/—5[051 + ¢2]; Es=E,-A (299)

Asymmetric state:

‘I’A = ¢2]; EA = Eo + A (2100)

1

\/5[‘751

The states are shown schematically in Fig. 2.15b. We see that, as a result of
the coupling between the wells, the degenerate states Ey are split into two states —one
with energy below the uncoupled state and one with a higher energy. Note that as
the wells are brought closer to each other the coupling strength will increase and the
symmetric state energy will continuously decrease, as shown in Fig. 2.15¢. If the electon
in the coupled system occupy the symmetric state, the system behaves as if the coupling
creates an attactive interaction in the symmetric state.

Hydrogen molecule ion
As an example of the coupled quantum well problem, let us consider two hydrogen nuclei
with a single electron. As shown in Fig. 2.16, when the two nucler are far apart, the
electron can be 1n either one of the nuclei. Let these states, which are the ground states
of the hydrogen atom, be denoted as before by ¢; and ¢2, respectively. The energy of
these states 1s just

Eo = EH =—13.6 eV

As the nuclei are brought closer together, the electron on one atom feels the po-
tential due to the attractive potential of the other nucleus. This gives a matrix element,
which is a function of the inter-nucleus separation, R

H12 = —A(R)
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proton 2
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SEPARATION

Y

Figure 2.16: A schematic of the symmetric and antisymmetric wavefunction constructed from
the ground state u100. In the symmetric state, the electron is closer to the nuclei.

As noted above, the original state will now split into a lower energy symmetric state and
a higher energy asymmetric state. These states are shown schematically in Fig. 2.16.
In Fig. 2.17a we show a plot of the change in the electronic energy as a function
of the inter-nucleus separation. In the symmetric state, where the electronic function
has a high probablility of occupying the space between the two nuclei, the system feels
an attractive interaction, since the energy is reduced as the nuclei come closer. This is
the reason the ion H2+ is stable. For the asymmetric state, where the electron is pushed
away from the center of the two nuclei, there is an effective repulsive interaction, since
the energy is larger than the energy when the nuclei are separated by a large distance.
To obtain the total energy of the H2+ ion as a function of inter-nucleus separation
we need to add the repulsive interaction between the positively charged nuclei. This
amounts to an energy
1 €
" 41 R

This energy is plotted in Fig. 2.17a. The total energy in the ion due to the presence of
the two nuclei is now (in the ground state)

Ut

2
L ¢ (2.101)

+y = -
B(H) = B - A(R)+ -

This total energy is plotted in Fig. 2.17b. We see that the energy minimizes at an
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inter-nucleus separation of Rpni,. Numerical calculations show that
Rmin = 1.0 A (2.102)

The binding energy of the ion is found to be (Eg is the magnitude of the ground state

energy)
Ey=—-02Fg =~-27¢V (2.103)

The example in this subsection shows how chemical bonds are formed by sharing
of electrons between two nuclei. We have seen how the attractive interaction due to the
coupling of the two bound states and the repulsive potential due to the nuclear charge
play a role in setting the equilibrium bond distance.

Coupling between dissimilar quantum wells
Let us examine how the attractive and repulsive interactions due to coupling of wells
are influenced when the two starting potential wells are dissimilar. This would occur
if, for example, we had a hydrogen and a sodium nucleus coming together instead of
two H nuclei, as considered in the previous subsection. Let the starting energies of the
two potentials be E; and F,, and let Es be larger than F;. From the derivation given
above, if the separation between E3 and Fp is much larger than the coupling coefficient
A, we get (see Eq. 2.92) for the symmetric and asymmetric state

A2

bs = Bg g
AZ

Fa = B-pg

(2.104)
If the value of Fy — F; is much larger than the coupling coefficient A, we see that the
effect of the coupling is very small. This is the reason bonding between dissimilar atoms
1s weak.

Hs molecule

Another important and related problem is that of attraction between atoms. Let us
consider the problem of how atoms attract each other to form a chemical bond. This is
obviously an important question in chemistry, material science, and solid state physics.
The problem of H ; ion discussed previously sheds some light on the problem. However,
in that problem we only had to consider one electron and two nuclei. What happens
when there are two electrons?

Let us consider two H atoms initially far apart, as shown in Fig. 2.18a. In
this uncoupled state each atom has an electron cloud around its nucleus, just as we
expect in an isolated atom. The two states ¢; and ¢, are created through an exchange
of the two electrons, as shown in Fig. 2.18a. For clarity we will call the electrons 1
and 2. As the atoms come closer to each other, there is an interaction between the
atoms as each electron senses the attractive potential of the neighboring nucleus and the
repulsive potential of the neighboring electron. The overall coupling is again represented
by A(R). Once again we have a symmetric state and an asymmetric state made from
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repulsive energy of protons

distance between atoms

H energy terms in a 14+ molecule
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Figure 2.17: (a) A schematic of how the energies of the symmetric and asymmetric states vary
with separation of the H-atom nuclei. Also shown is the repulsive energy arising from proton-
proton repulsion; and (b) change in the energy of the H} ion as a function of inter-proton
separation.
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the original ¢; and ¢s. In the terminology of chemical bonds, the symmetric state is
called the bonding state and the asymmetric state is called the antibonding state. In
the symmetric state the overall interaction is attractive and the energy of the system
decreases in comparison with the energy it has when the atoms are well separated. In
the asymmetric state there is a repulsive interaction. At very close spacing the repulsive
potential of the charged particles dominates. The overall energy 1s shown in Fig. 2.18b.
We see that in the symmetric state there 1s an equilibrium spacing between the atoms
where the energy is minimum.

Detailed calculations show that the spacing between the atoms in equilibrium
is 0.74 A. This is the proton—proton spacing in the H» molecule. The binding energy of
the molecule, i.e., the energy difference between the lowest energy state and the energy
of two isolated H atoms is 4.52 eV, as shown in Fig. 2.18. Also shown are the binding
energies (or dissociation energies) of several molecules.

2.6 ELECTRONS IN CRYSTALLINE SOLIDS

Most devices are made from crystalline materials (or crystalline materials with a very
small density of defects). It is, therefore, important to understand the electronic prop-
erties of these materials. We will discuss a simple model to qualitatively examine the
electronic levels 1n a crystalline material. However, before doing so, we will examine
properties of electrons in free space.

The free particle problem where the potential energy term is zero (or spatially
constant) provides very useful concepts that are applicable in a number of important
problems. It will be shown later that when a particle moves in a perfectly periodic
potential (in space) the solutions to the Schrédinger equation have a form very similar
to the solutions in free space. Thus many concepts developed for the free-space particle
can be applied to the description of electrons in crystalline media. In particular, the
concept of density of states developed here is widely used.

Let us consider the Schrodinger equation for a free particle of mass m. The
time-independent equation for the background potential equal to Vj is

—h? [ 82 o? o?
s (a?Jr el W) ¥(r) = (B = Vo)u(r) (2.105)

A general solution of this equation is

P(r) = ;%7ei“°r (2.106)

and the corresponding energy is
A’k?

E
2m

+ Vo (2.107)

1

where the factor 7 in the wavefunction occurs because we wish to have one particle

per volume V or

(/tPr|¢0ﬁ|2:1 (2.108)
v
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S Na 0.80 0.308
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Figure 2.18: (a) A schematic of the two different states of two H atoms separated by a large
distance; and (b) change in the symmetric (bonding) and asymmetric (antibonding) states as
a function of nuclear spacing. Also shown are dissociative energies of several molecules.

We assume that the volume V is a cube of side L.

In classical mechanics the energy momentum relation for the free particle is
E = p*/2m + V;, and p can be a continuous variable. The quantity hk seems to be
replacing p in quantum mechanics. Due to the wave nature of the electron, in a finite
volume, & is not continuous but discrete. To correlate with physical conditions we may
want to describe, two kinds of boundary conditions are imposed on the wavefunction.
In the first one the wavefunction is considered to go to zero at the boundaries of the
volume, as shown in Fig. 2.19a. In this case, the wave solutions are standing waves of
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ENERGY LEVELS
v WAVEFUNCTIONS ¥

(@ (b)

Figure 2.19: A schematic showing: (a) the stationary boundary conditions leading to standing
waves and (b) the periodic boundary conditions leading to exponential solutions with the
electron probability equal in all regions of space.

the form sin(kzx) or cos(ky), etc., and k-values are restricted to positive values

T 27 3w
kp=—,—, — -~ 2.109
TTLLL ( )
Here we will use a different set of conditions. Periodic boundary conditions are shown
in Fig. 2.19b. Even though we focus our attention on a finite volume V, the wave can
be considered to spread in all space as we conceive the entire space was made up of
identical cubes of sides L. Then

Yz, y,2+ L) = ¥(z,y,z2)
(e, y+ L,z) = Pl(z,y,2)

Because of the boundary conditions the allowed values of k£ are (n are integers
~ positive and negative)

27n 2mn 27n,
ch:—Lx; ky = Ly§ k, = I

(2.111)
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Figure 2.20: k-space volume of each electronic state. The separation between the various

allowed components of the k-vector is 2Ll

If L is large, the spacing between the allowed k-values is very small. Also it is important
to note that the results we obtain for properties of the particles in a large volume are
independent of whether we use the stationary or periodic boundary conditions. It is useful
to discuss the volume in k-space that each electronic state occupies. As can be seen from
Fig. 2.20, this volume is (in three dimensions)

3 3
<2%> = 8% (2.112)

If © is a volume of k-space, the number of electronic states in this volume is

(2.113)

X0
a(‘l<

2.6.1 Electrons in a uniform potential

Density of states for a three-dimensional system
We will now use the discussion of the previous subsection to derive the extremely impor-
tant concept of density of states. Although we will use the periodic boundary conditions
to obtain the density of states, the stationary conditions lead to the same result, as long
as the space under consideration is large, compared to the wavelength of the particle.
The concept of density of states 1s extremely powerful, and important physical
properties in materials, such as optical absorption, transport, etc., are intimately de-
pendent upon this concept. Density of states is the number of available electronic states
per unit volume per unit energy around an energy E. If we denote the density of states
by N(E), the number of states in a unit volume in an energy interval dE around an
energy E is N(E)dE. To calculate the density of states, we need to know the dimen-
sionality of the system and the energy versus k relation that the particles obey. We will
choose the particle of interest to be the electron, since in most applied problems we are
dealing with electrons. Of course, the results derived can be applied to other particles
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as well. For the free electron case we have the parabolic relation

_ R%k?

E =
21’71,0

+ Vo

The energies E and E + dE are represented by surfaces of spheres with radii k&
and k + dk, as shown in Fig. 2.21. In a three-dimensional system, the k-space volume
between vector k and k + dk is (see Fig. 2.21a) 4nk2?dk. We have shown in Eq. 2.113
that the k-space volume per electron state is (2]-:5)3 Therefore, the number of electron

states in the region between k and k + dk is

2 2
Ak de _ k*dk

83 2mw? v

Denoting the energy and energy interval corresponding to k and dk as E and
dE, we see that the number of electron states between E' and E + dE per unit volume
18 )

k*dk
E = ——
N(E) dE 572

Using the F versus k relation for the free electron, we have

V2mi*(E — Vo)Y/2dE
h3

k2dk =

and
m3l*(E — Vo) 2dE

Vor?h3

Quantum mechanics tell us that particles such as electrons have an internal property
associated with them known as spin. Electrons are called fermions and can have spin
(which is an internal angular momentum) /2 or —h/2. Accounting for spin, the density
of states obtained is simply multiplied by 2

N(E) dE = (2.114)

_VaImy (B - )\

N(E) n2h3

(2.115)

Density of states in sub-three-dimensional systems

Let us now consider a 2D system, a concept that has become a reality with the use
of quantum wells. The two-dimensional density of states is defined as the number of
available electronic states per unit area per unit energy around an energy E. Similar
arguments as used in the derivation show that the density of states for a parabolic band
(for energies greater than Vp) is (see Fig 2.21b)

mo

NE) = T

(2.116)

The factor of 2, resulting from spin, has been included in this expression.
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@ 3D system k

41k? dk = volume between surfaces of
spheres with radii k and k& + dk

(b)
2D system ky
2rtk dk = area between circles
with radii k and k& + dk
kx
©| 1D system

2 dk = k space between k and k + dk

~k 0 k

Figure 2.21: Geometry used to calculate density of states in three, two, and one dimensions.
By finding the k-space volume in an energy interval between E and F + dE, we can find the
number of allowed states.
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Finally, we can consider a one-dimensional system often called a “quantum
wire.” The one-dimensional density of states is defined as the number of available elec-
tronic states per unit length per unit energy around an energy E. In a 1D system or a
“quantum wire” the density of states is (including spin) (see Fig. 2.21c)

1/2
N(E) = fm Vo (B — V)2 (2.117)

Notice that as the dimensionahty of the system changes, the energy dependence
of the density of states also changes. As shown in Fig. 2.22, for a three-dimensional
system we have (E— V0)1/2 dependence, for a two-dimensional system we have no energy
dependence, and for a one-dimensional system we have (E — V;)~!/? dependence.

We will see later in the next section that when a particle is in a periodic poten-
tial, its wavefunction is quite similar to the free particle wavefunction. Also, the particle
responds to external forces as if it is a free particle except that its energy-momentum
relation is modified by the presence of the periodic potential. In some cases it is possible
to describe the particle energy by the relation

+ By (2.118)

where m* is called the effective mass in the material. The expressions derived for the free
electron density of states can then be carried over to describe the density of states for
a particle in a crystalline material (which has a periodic potential) by simply replacing
mg by m*.

EXAMPLE 2.4 Calculate the density of states of electrons in a 3D system and a 2D system
at an energy of 0.1 eV. Assume that the background potential is zero.

The density of states in a 3D system (including the spin of the electron) is given by
(£ is the energy in Joules)

ﬂ(m0)3/2E1/2
w2h®
V2(0.91 x 1070 kg)(E/?)
72(1.05 x 10—3¢ J . 5)3
= 1.07x10°EY? 7' p~3

N(E)

Expressing E in eV and the density of states in the commonly nsed units of eV~ cm
get

, we

N(E)

1.07 x 10°® x (1.6 x 107?)*/2(1.0 x 107%)E*/2
6.8 x 102'E'/2 ev™! cm™®

At E=10.1 eV we get
N(E) =2.15x10*' eV~ cm™®
For a 2D system the density of states is independent of energy and is

N(E)= Mo _ 421 x 10 eV~! cm ™2
7h?

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

84 Quantum mechanics and electronic levels
3D system
N
® g2
(a)
2D system
ME)
E0
(b)
Yo E—>
1D system
N(E)
E-12
()
Yo E—-—>

Figure 2.22: Variation in the energy dependence of the density of states in: (a) three-
dimensional, (b) two-dimensional, and (c) one-dimensional systems. The energy dependence
of the density of states is determined by the dimensionality of the system.
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2.6.2 Particle in a periodic potential: Bloch theorem

How do electrons behave inside crystalline solids? The application of quantum mechan-
ics to this problem was one of the first great successes of quantum theory. The resultant
band theory eventually resolved the puzzle of electrical transport in metals, semicon-
ductors, and insulators. The core of modern understanding of electronic and optical
properties of solid-state materials is based on the band theory, which describes the
properties of electrons in a periodic potential arising from the periodic arrangement of
atoms in a crystal.

The description of the electron in the periodic material has to be via the
Schrodinger equation

v+ U] ) = Bote) (2.119)

2m0

where U(r) is the background potential seen by the electrons. Due to the crystalline
nature of the material, the potential U(r) has the same periodicity, R, as the lattice

Ux)=U(xr+R) (2.120)
If the background potential is zero, the electronic function in a volume V' is
ikr

e

¥r) = %

and the electron momentum and energy are

P = hk
27,2
E - hk
27710

The wavefunction is spread in the entire sample and has equal probability (¢*v)
at every point in space. Let us examine the periodic crystal. We expect the electron
probability to be same in all unit cells of the crystal because each cell is identical. If
the potential was random, this would not be the case, as shown schematically in Fig.
2.23a. This expectation is, indeed, correct and is put in a mathematical form by Bloch’s
theorem.

Bloch’s theorem states that the eigenfunctions of the Schrédinger equation for
a periodic potential are the product of a plane wave e’** and a function uk(r), which
has the same periodicity as the periodic potential. Thus

Pr(r) = e uk(r) (2.121)

1s the form of the electronic function. The periodic part ux(r) has the same periodicity
as the crystal, 1.e.

uk(r) = ux(r + R) (2.122)
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e e

NON-PERIODIC POTENTIAL

uw|

[P (r)|?
@
U(l_')_
r ————>
(r))?
[y(r)l r

(b) | Iyi2 has the same periodicity as the potential I

Figure 2.23: (a) Potential and electron probability value of a typical electronic wavefunction
in a random material. (b) The effect of a periodic background potential on an electronic wave-
function. In the case of the periodic potential, |¢/|* has the same spatial periodicity as the
potential. This puts a special constraint on ¢(r) according to Bloch’s theorem.
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—_—> X

Figure 2.24: The periodic potential used to study the bandstructure in the Kronig-Penney
model. The potential varies between 0 and Up as shown and has a periodicity of d.

The wavefunction has the property

wk(r + R) (& eik~(l‘+R)uk(r + R) —_ eik'”uk(r)eik'R
e* () (2.123)

The wavefunction 1s illustrated in Fig. 2.23b. Before discussing the solutions of the
periodic potential problem, let us take a look at some of the important properties of
crystalline materials.

2.6.3 Kronig—Penney model for bandstructure

A useful model for understanding how electrons behave inside crystalline materials is
the Kronig-Penney model. Although not a realistic potential for crystals, it allows us
to calculate the energy of the electrons as a function of the parameter k that appears
in Bloch’s theorem.

The Kronig-Penney model represents the background periodic potential seen by
the electrons in the crystal as a simple potential shown in Fig. 2.24. The one-dimensional
potential has the form

Ul) = 0 0<z<a

s
Uy —b<z<0 (2.124)

The potential is repeated periodically as shown in Fig. 2.24 with a periodicity distance
d (= a +b). Since the potential is periodic, the electron wavefunction satisfies Bloch’s
theorem and we may write

Pz + d) = () (2.125)
where the phase ¢ is written as

¢ =kyd
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In the region —b < = < @, the electron function has the form

Aetf? 4 Be=i®  if —b< <0
Ylo) = { Dete® L Fe~ie®  if0<z<a (2.126)
where
,B — Qmo(iz— Uo)
QmoE
a = i (2.127)
Then, in the following period, ¢ < 2 < a + d, from Eq. 2.123
; Aetfle=d) | Be—if(z—d) ifa<z<d
— ot® )
Ylo)=¢ { Deta(s=4) 4 pe=iatz=9)  ifd<z<atd (2.128)

From the continuity conditions for the wavefunction and its derivative at z = 0
and at = a, the following system of equations is obtained

A+B = D+ F
B(A-B) = a(D-F)
ei¢(Aeiﬂb _l_Be—i,@b) s Deiaa_l_Fe—iaa
Be?(AePt — BemiPY) = o(De'*® — Femive) (2.129)

Non-trivial solutions for the variables A, B, D, F' are obtained only if the determinant
of their coefficients vanishes, which gives the condition

2 _ 42
cos¢ = cos aa cosh b — 508 sin aa sinh b6, If0< F < Uy
o2 2
= cos aw cos b — 5o sin ac sin b8, if E > Uy (2.130)
o

where

6=y /W (2.131)

The energy F, which appears in Eq. 2.130 through «, 3, and §, is physically allowed
only if
—1<cos ¢ <+1

Consider the case where E < Uy. We denote the right-hand side of Eq. 2.130
by f(E)

f(E) = cos (a ngE) cosh | b w
h h
—9E —
v Do 2E o ay/EE ) sinn [ 52T = B) ) (g 159
2/E(Uy~E) h h
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This function must lie between —1 and +1 since it is equal to cos ¢ (= cos kyd). We
wish to find the relationship between E and ¢ or E and k,. In general, we have to write
a computer program in which we evaluate f(E) starting from E = 0, and verifies if
F(E) lies between —1 and 1. If it does, we get the value of ¢ for each allowed value of £
The approach is shown graphically in Fig. 2.25a. As we can see, f(E) remains between
the +1 bounds only for certain regions of energies. These “allowed energies” form the
allowed bands and are separated by “bandgaps.” We can obtain the E versus k relation
or the bandstructure of the electron in the periodic structure, as shown in Fig. 2.25b.
In the figure, the energies between E3 and Ey form the first allowed band, the energies
between F4 and E3 form the second bandgap, etc.

We note that the ¢ = kyd term on the left-hand side of Eq. 2.130 appears as a
cosine. As a result, if k, d corresponds to a certain allowed electron energy, then k,d-+2nr
1s also allowed. This simply reflects a periodicity that is present in the problem. It is
customary to show the E-k relation for the smallest k-values. The smallest k-values
lie in a region +x/d for the simple problem discussed here. In more complex periodic
structures the smallest k-values lie in a more complicated k-space. The term Brillouin
zone 1s used to denote the smallest unity cell of k-space. If a k-value is chosen beyond
the Brillouin zone values, the energy values are simply repeated. The concept of allowed
bands of energy separated by bandgaps is central to the understanding of crystalline
materials. Near the bandedges 1t 1s usually possible to define the electron E—k relation
as

R (k — k,)?

EFE= 2.133

2m* ( )

where k, 1s the k-value at the bandedge and m* is the effective mass. The concept of an

effective mass 1s extremely useful, since it represents the response of the electron—crystal
system to the outside world.

Significance of the k-vector

In our discussion of free electrons the quantity ik represents the momentum of the elec-
tron. We have now seen that when electrons are in crystalline systems their properties
are described by a wavevector k. What is the significance of k?

For free electrons moving in space two important laws are used to describe
their properties: (1) Newton’s second law of motion tells us how the electron’s trajectory
evolves in the presence of an external force; (i) the law of conservation of momentum
allows us to determine the electron’s trajectory when there is a collision. As noted in
Section 2.3, the Ehrenfest theorem tells us that these laws are applicable to particles
in quantum mechanics as well. We are obviously interested in finding out what the
analogous laws are when an electron is inside a crystal and not in free space.

An extremely important implication of the Bloch theorem is that in the perfectly
periodic background potential that the crystal presents, the electron propagates without
scattering. The electronic state (~ exp(zk - r)) is an extended wave which occupies
the entire crystal. To complete our understanding, we need to derive an equation of
motion for the electrons which tells us how electrons will respond to external forces.
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fE) Numerical approach to calculate
P E — k, relation

Start with energy E equal to the
lowest potential energy value,

Allowed energy bands

AR
| N

Ef is in forbidden
gap Ei = Ef

| Ef is in an allowed band |

Use cos ¢ = cos k,d = fiE)
Electron Energy ———> to obtain k,-values

(@

Ei=Ef

} 314 allowed band

} Bandgap
} 21 allowed band

Bandgap

} 13¢ allowed band

® ey ———>

Figure 2.25: (a) The graphical solution to obtain the allowed energy levels. The function f(E)
is plotted as a function of E. Only energies for which f(E) lies between +1 and —1 are allowed.
(b) The allowed and forbidden bands are plotted in the E versus k relation using the results
from (a). The inset shows a flow chart of how we can obtain the E~k, relation.
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The equation of motion

d

d_lt) = Fext + Fing (2134)
is not very useful for a meaningful description of the electron because it includes the
internal forces on the electron. We need a description which does not include the eval-

uation of the internal forces.

As in classical wave theory, associated with any wave phenomena is the wave
group velocity that represents the propagation of wave energy. In the case of a particle
wave the group velocity represents the particle velocity. We can define the group velocity

of this wavepacket as
dw

dk
where w is the frequency associated with the electron of energy E;ie., w = E/h:
1dE
h dk

1
= =VkE(k

> ViE(k)

If we have an electric field F' present, the work done on the electron during a time
interval 8t is

(2.135)

Vg =

Vg =

SE = —eF - v, 6t (2.136)
We may also write, in general
dE
bE = —_—
( dk) 6k
= hv,- -6k (2.137)

Comparing the two equations for 6 E, we get

eF
bk = ——68t
h
giving us the relation
dk
hﬁ = —eF (2.138)
In general, we may write
dk
hﬁ = Fext (2139)
Eq. 2.139 looks identical to Newton’s second law of motion
d
d_lt) = Fext

in free space if we associate the quantity Ak with the momentum of the electron in the
crystal. The term hk responds to the external forces as if it is the momentum of the
electron, although, as can be seen by comparing the true Newtons equation of motion, it
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Figure 2.26: A physical description of electrons in a periodic potential. As shown the electrons
can be treated as if they are in free space except that their energy-momentum relation is
modified because of the potential. Near the bandedges the electrons respond to the outside
world as if they have an effective mass m”. The effective mass can have a positive or negative
value.

ts clear that Rk contains the effects of the internal crystal potentials and is therefore not
the true electron momentum. The quantity Ak is called the crystal momentum. Once
the E versus k relation is established, we can, for all practical purposes, forget about
the background potential U(r) and treat the electrons as if they are free and obey the
effective Newtons equation of motion. This physical picture is summarized in Fig. 2.26.
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2.7 SUMMARY

The topics covered in this chapter are summarized in Tables 2.2 to 2.5.

In quantum mechanics the particle probability
is described by a wavefunction. The wave
nature of the particle results in uncertainty in
defining the particle's position and momentum
simultaneously or its energy and lifetime (how
long it will have that energy) simultaneously.

Particle waves and
wavepackets

Uncertainty relations

When a particle is in an attractive potential
only certain energy values (energy levels) are
allowed, while others are forbidden. Electrons
in atoms or in quantum wells have such
“quantized” energy levels.

Table 2.2: Summary table.

2.8 PROBLEMS

2.1 The surface of the sun has a temperature of 6000 K. Calculate the wavelength
at which the sun emits its peak radiancy of the photon corresponding to this peak
wavelength.

2.2 Calculate the peak wavelength emitted by a healthy human. Can we see this
radiation?

2.3 Estimate the power radiated by a typical human body.

2.4 Calculate the cutoff wavelength for the photoelectric effect for an aluminum sample.
2.5 A 1 W light source produces radiation in a uniform spatial distribution. The
wavelength of light is 5500 A. Calculate the number of photons per second striking an
area 20 cm x 10 cm located 1 m from the source.

2.6 A metal surface is found to have a photoelectric cutoff wavelength of 3250 A.
Calculate the stopping potential if the surface is illuminated with light of wavelength
2000 A.

2.7 It is found that when a sample of sodium is illuminated with light of a wavelength
3200 A the stopping potential is 1.6 V. When it is illuminated with light of a wavelength
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Unexplained experiments and
the need for quantum
mechanics

Classical physics fails to explain why “waves”
sometimes behave as “particles” and
“particles” sometimes behave as “waves.”
This apparent duality is understood through
quantum mechanics.

Schrodinger equation is a “wave” equation for
classical particles. It tells us which values of
energy, momentum, position, etc., a particle
can take (and which ones are not allowed). It
also tells us about the particle wave properties.

Physical observables in
quantum mechanics

Table 2.3: Summary table.

The solutions of the Schrodinger equation tell
us what “physical observables™ a particle can
take. The experimentally observed physical
quantities are predicted by calculating the
expectation values of an operator that
corresponds to the physical observable.
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Coupled quantum wells

Molecular levels

When two attractive potential wells are
brought close to each other bonding and
antibonding states are created. These are
responsible for molecular attraction.

Electrons in a uniform
potential

In a uniform potential V,, the electron energies
are the same as for a classical particle with
momentum p = 7k and energy E = j + h2%?
/2my. The properties of the electron states can
be described by density of states.

G

s

Density of states and
dimensionality

Table 2.4: Summary table.

The solutions of the Schrodinger equation tell
us what “physical observables” a particle can
take. The experimentally observed physical
quantities are predicted by calculating the
expectation values of an operator that
corresponds to the physical observable.
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In a periodic structure the particle waves have
a plane wave-like behavior. The solutions are
Bloch states, i.e., particles do not suffer any
collisions. A series of allowed energy bands
are created separately by forbidden gaps.

Particles in a periodic potential

Effective mass, effective ' Near the edges of allowed energy bands the

equation of motion energy-effective momentum relation can be

- described by an effective mass.
The particle wavevector times i describes the
effective momentum in the crystal.

Table 2.5: Summary table.

2800 A, the stopping potential is 2.15 V. Calculate the work function of sodium.

2.8 Use the energy levels calculated in the Bohr model for hydrogen to discuss what
levels are involved in producing the Balmer and Paschen series.

2.9 Discuss how the Lyman series would be produced using the Bohr model for a
hydrogen atom.

2.10 Calculate the speed of an electron in the n = 3 level of the hydrogen atom.

2.11 Calculate the radii and speed of an electron in the n = 1 and n = 3 levels in a
hydrogen-like atom with a nuclear charge Ze. Assume that Z =2 and Z = 3.

2.12 Compare the wavelengths of a 1 eV photon and a 1 eV electron.

2.13 Consider electrons with kinetic energy of 10 eV moving in (1) a medium where
the smallest distance over which the potential energy changes is 1.0 p m; (ii) a medium
where this distance is 1.0 A. Which problem will display “quantum behavior?”

2.14 Consider an electron wavefunction given by the general form

w:Asin%ﬁ;nzl,Q,?;

Calculate the factor A (normalization factor) if the wavefunction is to be normalized
between & = 0 and z = L.
2.15 Consider an electron wavefunction describing an electron state extending from

—-W/2 to W/2
P(z) = M—%cos %;n =1,3,5
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Calculate the energy, momentum and position expectation value of an electron in state
n=1and n=3.

2.16 Estimate the kinetic energy of an electron confined to a size 1 A (twice the Bohr
radius) using the uncertainty principle. How does this compare with the kinetic energy
of an electron in the hydrogen atom?

2.17 In the n = 2 state of hydrogen, find the electron’s velocity, kinetic energy, and
potential energy.

2.18 Consider an electron in the n = 5 state of the hydrogen atom. Calculate the
wavelengths of photons emitted as the electron relaxes to the ground state. Assume
that only those transitions in which n changes by unity can be made.

2.19 Calculate the ionization energy of: (a) the n = 3 level of hydrogen. (b) The
n = 2 level of Het (singly ionized helium). (c) The n = 4 level of Li** (doubly ionized
lithium). You can use the hydrogen atom model for Het and Li*t with appropriate
changes in the nuclear charge.

2.20 The lifetimes of the levels in a hydrogen atom are of the order of 1072 s. Find the
energy uncertainty of the first excited state.

2.21 Consider a one-dimensional quantum well described by

Vo=2eV;W=10 A4

Calculate the energies of an electron (£ and E2) in this well. Also plot the wavefunction
Y1

2.22 Consider a three-dimensional quantum well with a barrier height of 1.0 eV and
We=W, =W, =10 A. Calculate the ground state energy and the first excited state
energy.

2.23 Consider a pendulum of length 10 cm. Regard this as a quantum oscillator and
calculate the energy difference between successive levels. Is it possible to observe these
quantized levels?

2.24 Consider a carbon atom of atomic mass 12 vibrating in a material. Assume that
the oscillator can be described by a force constant of 0.8 Nm™!. The oscillator is in the
n = 10 state. Calculate the energy of the oscillator. If this was a classical oscillator with
the same energy, what would be the amplitude of vibration?

2.25 The ground state of an oscillator 1s 10 meV. How much energy is needed to excite
this oscillator to the first excited state? If this oscillator is in thermal equilibrium at
300 K, calculate the energy of the system.

2.26 It can be shown that for two identical quantum wells with well size W, barrier
height V4, and separation W;, the coupling matrix A defined in the text is

A= @exp (— 2m(V0h— EO)Wb)

2

where Ey is the energy position in the uncoupled well measured from the bottom of the
well.

Calculate the splitting of the Ey levels as a function of W as W), changes from
50 A to 10 A if Vo =1.0eV and W = 10 A.
2.27 Consider two 20 A quantum wells with a separation W; and Vy = 1.0 eV. Using
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the previous problem for the coupling coefficient, design a coupled well system (i.e., find
W3) so that the ground state energy splitting is 10 meV. What is the splitting of the

first excited state?
2.28 Consider an electron in a Kronig—Penney model with @ = b =2 A and Uy = 3.0 eV.

Calculate the positions (i.e., the starting energy and ending energy) of the lowest allowed

band.
2.29 Consider electrons in a Kronig-Penney model with the following parameters

a=b = 34
Uo = 10.0eV
Calculate the effective mass of electrons near the start of the first allowed band. You
can find this by fitting the F—k results to an equation
h2k?

2m*

E=F +

where FE; is the start of the first allowed band.

2.30 Consider the previous problem. Calculate the effective mass in the first allowed
band at (i) the bottom of the band, (ii) at the top of the band, and (iii) at the middle
of the band.

2.31 Consider electrons in a Kronig-Penney potential with the following parameters

a = 54
= 14
Uo = 4eV

Calculate the positions of the bandedges of the first two allowed energy bands. Also
calculate the effective mass of electrons near the start of the second energy band. Redo
the problem if @ and b decrease by 0.2 A.

2.32 Consider the following periodic potential

a=5Ab=2A,Uy=5eV

Calculate the positons of the bandedges Fy, F2, and F3. If there is a change in @ and b
of £0.1 A, how do the positions of Ey, Eo, E5 change? Consider the 4+ and — signs as
two different cases.

2.33 Consider three periodic structures with the following potential profiles:

a = 5A0=2A4;Uy=4¢eV
a 5A4:b=5A4;Uy=4eV
a = 5A;b6=104,Uy=4eV

Il

Calculate the width of the first allowed band for each case and the effective mass of
electrons at the bottom of the first band. Also find the width of the first bandgap
(E3 — E3) and the width of the second allowed band.
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Chapter

ELECTRONIC LEVELS
IN SOLIDS

3.1 INTRODUCTION

In the previous chapter we have seen a number of important outcomes from the appli-
cation of quantum mechanics to electronic states in solids. The key outcomes are: (i)
Depending upon the physical system (i.e., the potential energy profile) certain energy
levels are allowed and other energies are forbidden. This means an electron in the sys-
tem can only occupy the allowed energy levels. (ii) In some systems the allowed energies
form a continuous band extending over a range of energies. (iii) In allowed bands near
the edge of the bands it is possible to describe electrons by an effective mass and an
effective equation of motion that looks similar to Newton’s equation. In this chapter we
will examine several categories of solids and see how the outcomes listed above impact
their electronic properties.

The solution of the Schrédinger equation for a particular system is just the
first step in being able to understand and manipulate the behavior of the system. The
second step in the problem is to obtain information on the distribution of particles in
the allowed states (energy levels). Finally, we use quantum mechanics to understand the
response of the particles to an external disturbance. In the next section we will discuss
how electrons are distributed in allowed states.

3.2 OCCUPATION OF STATES: DISTRIBUTION FUNCTION

Let us say we have solved the Schrodinger equation for electrons or Maxwell’s equation
for photons and we have a certain number of particles. How will the particles distribute
among the allowed states? To answer this question we need to use statistical physics;
in particular, quantum statistical physics. According to quantum mechanics particles
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Allowed E,

energy

(a)

No Yes

Electron with spin down
occupies this state => 2nd

electron with spin up cannot

$ E; occupy this state
(b)

No \
A spin up and a spin down

electron occupies the state
— another electron cannot
(c) | occupy this state

Figure 3.1: Spin up and spin down.

(this term includes classical particles and classical waves which are represented by par-
ticles) have an intrinsic angular momentum called spin. The spin of particles is a unique
property (such as charge, mass, etc.) and can take a value of 0,1/2h, h,3/2h, etc. Par-
ticles which have integral spins (in units of %) are called bosons, while those that have
half-integral spins are called fermions.

According to quantum mechanics if there is an allowed state (energy level) any
number of bosons can occupy that state. However, fermions obey the Pauli exclusion
principle, according to which, at the most, one particle can occupy an allowed state.
What this means for electrons is this. Let us say we solve the Schrodinger equation and
obtain an allowed state E7. One electron with spin up (+74/2) and one electron with
spin down (—7%/2) can be placed in this state. The possibilities are shown in Fig. 3.1.

According to thermodynamics, a system with a large number of particles can
be described by macroscopic properties such as temperature, pressure, volume, etc. Un-
der equilibrium conditions (no exchange of net energy with other systems) the system
is described by a distribution function, which gives us the occupation number for any
energy level. To find this occupation we have to minimize the free energy F of the sys-
tem subject to any constraints from quantum mechanics (such as the Pauli exclusion
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principle). The following distribution functions are obtained:

e For fermions such as electrons in normal situations (the use of superconducting
materials will be discussed later).

/(E) = !

exp [QE—E’_E%] +1

Here f(F) is the occupation function; Fp is the Fermi energy (which, as we will discuss

later, depends upon particle density).
It 1s useful to note that in classical physics the occupation function for electrons

1
FE—F
exp (57)
Note that if £ — Ep > kpT; ie., f(E) < 1, the classical function approaches the

quantum Fermi distribution function.
e Massless bosons (like photons)

(3.1)

1s

f(B) = (3.2)

1
f(B)= ———— (3.3)
exp (kBE_T> -1

e Bosons with mass (this applies to electron pairs that occur in superconductors)

1
f(E) = 7 —
exp (—k—‘u—BT ) -1
where 1 1s an energy determined from the particle density.
e There is one other distribution function that proves to be useful in solid state devices.
As we have noted earlier, when solving the Schrédinger equation we can get more than
one solution with the same energy. This is the degeneracy ¢4 of a state. Consider a case
where a state has a degeneracy g¢; and can, in principle, be occupied by g4 electrons.
However, when one electron is placed in the allowed state, the next one cannot be
placed because of the Coulombic attraction. This happens for some states, such as those
states associated with donors or acceptors, traps, etc. Thus, even though Pauli exclusion
principle would allow two (or more) electrons to reside on the state, the repulsion would
not. In such cases the occupation function can be shown to be

§(B) = :

ga~ &P (%) +1

In Fig. 3.2 we show a schematic of the Fermi function for electrons and its
dependence on temperature. It is important to note the following: (i) At E— EF, f(E) =
0.5 regardless of the temperature. (ii) At zero temperature, the Fermi function becomes
a step function with f(F < Er) = 1.0 and f(E) > Ep = 0.0. (iii) Just because f(F)
is non-zero does not mean an electron will be present at that energy. The Schrodinger
equation solutions must also allow the energy.

(3.4)

(3.5)
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Figure 3.2: Schematic of the Fermi function for electrons and other fermions. In general the
position of Fr is dependent on temperature.
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3.3 METALS, INSULATORS, AND SUPERCONDUCTORS

In Chapter 2 we discussed how the allowed energy states of electrons in a crystalline
material are described by a series of allowed bands separated by forbidden bandgaps.
Two important situations arise when we examine the electron occupation of allowed
bands. In one case we have a situation where an allowed band is completely filled
with electrons, while the next allowed band is separated in energy by a gap £, and is
completely empty at 0 K. In a second case, the highest occupied band is only half full
(or partially full). These cases are shown in Fig. 3.3.

It is important to note that, when an allowed band is completely filled with
electrons, the electrons in the band cannot conduct any current. This important concept
is central to the special properties of metals and insulators. Being fermions the electrons
cannot carry any net current in a filled band since an electron can only move into an
empty state. We can imagine a net cancellation of the motion of electrons moving one
way and those moving the other. Because of this effect, when we have a material in
which a band is completely filled, while the next allowed band is separated in energy
and empty, the material has, in principle, infinite resistivity and is called an insulator
or a semiconductor. The material in which a band is only half full with electrons has a
very low resistivity and is called a metal.

The band that is normally filled with electrons at 0 K in semiconductors is called
the valence band, while the upper unfilled band s called the conduction band. The energy
difference between the vacuum level and the highest occupied electronic state in a metal
is called the metal work function. The energy between the vacuum level and the bottom
of the conduction band is called the electron affinity. This is shown schematically in Fig.
3.3.

The electrical conductivity of a material is proportional to the density of elec-
trons that can participate in current flow. The metals have a very high conductivity
because of the very large number of electrons that can participate in current transport.
It is, however, difficult to alter the conductivity of metals in any simple manner as a
result of this. In contrast, semiconductors have zero conductivity at 0 K and quite low
conductivity at finite temperatures, but it is possible to alter their conductivity by or-
ders of magnitude. This is the key reason why semiconductors can be used for active
devices.

3.3.1 Holes in semiconductors

We have defined semiconductors as materials in which the valence band is full of elec-
trons and the conduction band is empty at 0 K. At finite temperatures some of the
electrons leave the valence band and occupy the conduction band. The valence band is
then left with some unoccupied states. Let us consider the situation as shown in Fig.
3.4, where an electron with momentum k. is missing from the valence band.

When all of the valence band states are occupied, the sum of the momentum

over all is zero; 1.e.
Y ki=0= > ki+k (3.6)
ki #k.
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Vacuum energy
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Electron
Work  affinity
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Figure 3.3: A schematic description of electron occupation of the bands in a metal and semi-
conductor (or insulator). In a metal, the highest occupied band at 0 K is partially filled with
electrons. Also shown is the metal work function. In a semiconductor at 0 K, the highest oc-
cupied band is completely filled with electrons and the next band is completely empty. The
separation between the two bands is the bandgap 4. The electron affinity and work function
are also shown.
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CONDUCTION
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Figure 3.4: llustration of the wavevector of the missing electron k.. The wavevector is —k.,
which is associated with the hole.

This result is just an indication that there are as many positive k states occupied
as there are negative ones. Now, in the situation where the electron at wavevector k. is
missing, the total wavevector is

> ki=-k. (3.7)

k;#k.

The missing state is called a hole and the wavevector of the system —k, is attributed
to it. It is important to note that the electron is missing from the state k. and the
momentum associated with the hole is at —k.. The position of the hole is depicted as
that of the missing electron. But in reality the hole wavevector kj is —k., as shown in
Fig. 3.4 and we have

ky = -k, (3.8)

If an electric field is applied, all the electrons move in the direction opposite to the
electric field. This results in the unoccupied state moving in the field direction. The hole
thus responds as if it has a positive charge. It therefore responds to external electric and
magnetic fields E and B, respectively, according to the equation of motion
&:e[E+vth] (3.9)
dt
where hky and v are the momentum and velocity of the hole.
Thus the equation of motion of holes is that of particles with a positive charge
e. The mass of the hole has a positive value, although the electron mass in its valence
band is negative. When we discuss the conduction band properties of semiconductors
or wmsulators we refer to electrons, but when we discuss the valence band properties, we
refer to holes. This is because in the valence band only the missing electrons or holes
lead to charge transport and current flow.
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Figure 3.5: Schematic of chains forming the polymer polyacetylene. Two forms of this polymer
are shown.

3.3.2 Bands in organic and molecular semiconductors

At present, most of the information-processing devices are based on inorganic semi-
conductor technology. The most commonly used materials are Si and GaAs. However,
there are many other material systems that have semiconducting properties and may
be very useful if their technologies can be improved. Polymers (popularly known as
plastics), which are a very familiar part of everyday life, have the potential of becoming
important materials for electronics and optoelectronics. Most of the current uses of poly-
mers rely on their properties, such as chemical inertness and durability. In electronics,
polymers are primarily used as insulators. However, new kinds of materials and better
understanding is now allowing scientists to develop polymers with properties such as
controlled conductivity and light detection and emission. Given the ability of chemists
to synthesize large-area polymers, if these properties can be harnessed polymers could
become extremely important in future information-processing systems.

Polymers are formed from long chains of molecules. If there is a good fit between
the molecules, the materials can crystallize upon drawing or cooling. In Fig. 3.5, we show
chains of polyacetylene — an important polymer.

At present, the conductivity of polymers is not as easy to control as that of
“traditional” semiconductors (Si, GaAs, etc.). As a result, they are not used for high-
performance logic or memory applications. However, in many areas where cost is a
primary concern and performance is not as critical, organic semiconductor devices are
expected to play an important role.

Organic or molecular semiconductors, while having properties that are similar
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Figure 3.6: Schematic of a comparison of the electronic states in inorganic and organic semi-
conductors.

to inorganic semiconductors, are not entirely described by the band model for electrons.
There are two important differences between inorganic (the traditional) semiconductors
and organic semiconductors: (i) The interaction between the atoms within the molecules
is usually weak, although intra-molecular interaction is quite strong. (ii) The crystalline
quality of the solids is poor, compared to inorganic semiconductors. As a result, the
allowed bands in organic semiconductors are very narrow and are better described as
discrete levels. In Fig. 3.6 we show a schematic of the energy levels in organic semi-
conductors. The levels are produced through the bonding and antibonding states as
discussed in Chapter 2, Section 2.5 for the coupled well problem. The highest occupied
molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) de-
scribes the electronic and optoelectronic properties of organic semiconductors. These
levels can be thought of as the valence and conduction bands of the traditional semi-
conductors. As in traditional semiconductors, mobile carrier density and conductivity
of organic semiconductors can be controlled by a bias. Also optical emission and ab-
sorption can occur. However, due to the strongly localized nature of the electronic levels
in organic semiconductors, there are important quantitative and qualitative differences
between these materials and the conventional semiconductors. These differences will be
probed in later chapters.

3.3.3 Normal and superconducting states

It is found that certain metals lose their resistance when the temperature is lowered
below a critical temperature. Recently, a new class of ceramic materials has been dis-
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Figure 3.7: (a) A schematic showing how electrons distort the lattice occupied by positive
ions to create an attractive potential. A bound pair can be formed in this attractive potential.
(b) Single-electron states are antisymmetric under exchange, but if the electrons pair up the
overall wavefunction is symmetric under exchange.

covered, which displays a very high critical temperature (and are thus known as high-T.
materials). While there are still aspects of high-T, materials which are unexplained,
quantum theory has been remarkably successful in explaining metallic superconductiv-
1ty, which is one of the most fascinating and counter intuitive phenomenon.

The basis of the theory known as the Bardeen—Cooper—Schrieffer (BCS) theory
1s that in “normal” metals electrons behave as fermions, while in the superconducting
state they behave as bosons. Of course, an individual electron is always a fermion, but
they can form “pairs,” known as Cooper pairs, and in this paired state they can act as
if they are bosons. This distinction is of central importance in determining whether or
not there is superconductivity.

Normally, electrons, being charged particles, repel each other and do not form
bound pairs. However, inside a material the electrons interact with the ions on the
crystal lattice and create an interaction between each other. We can physically think
of this mteraction via the simple picture i Fig. 3.7. An electron interacts with the
positively charged background ions, creating a local potential disturbance. Another
electron can then be attracted by this disturbance. The binding energy of the two
electrons is extremely small (~ 1 meV), and at high temperatures the pairs dissociate
and we have the usual unpaired electrons. However, at low temperatures, the electrons
can pair up (forming Cooper pairs) and exist in the bound state.

Details of the BCS theory show that the lowest state of the system is one in
which Cooper pairs are formed. The lowest state is separated from the next excited state
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Figure 3.8: (a) A density of states model to describe a system of bosons. (b) The occupation
of the lowest (discrete) state as a function of temperature.

by a gap, which is of the order of 1 meV (the gap energy depends upon the nature of
the ions), as shown in Fig. 3.8a. In the ground state, since the electron pairs are bosons,
a very large number of pairs can occupy the same state. There, the Pauli exclusion
principle no longer applies. Thus, to carry current, the electron pairs do not have to
move from an occupied state to an unoccupied one. Also, since the excited state (which
forms the normal state) is separated by a gap, as long as the temperature is small the
electrons do not suffer scattering (which is a source of resistance).

At low temperatures, the occupation of the ground state is high, as shown in
Fig. 3.8b. As the temperature increases, the occupation decreases, until, at a critical
temperature, T,, there are no Cooper pairs. Thus superconductivity disappears above
the critical temperature.

3.4 BANDSTRUCTURE OF SOME IMPORTANT
SEMICONDUCTORS

In Chapter 2 we have discussed a simple model (the Kronig~Penney model) for electronic
energies in periodic potentials. We see from that discussion that an energy-effective
momentum or E-k diagram can be drawn for the solutions. In a three-dimensional
periodic potential £ is a three-dimensional vector and the bandstructure (£-k relation)
is considerably more complex. To represent the bandstructure on a figure that is two-
dimensional, we draw the E-k diagram in several (at least 2) panels where k goes
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from zero to its maximum value along the (100) direction or the (111) direction, etc.
The maximum k-point is the one after which, as discussed in Section 2.6.3, the E values
repeat. For the fcc lattice, the maximum k-value along the (100) direction is 27 /a(1, 0, 0).
This point is called the X-point and there are five other equivalent points, due to the
cubic symmetry of the lattice. Similarly, along the (111) direction, the maximum k-point
is /a(1,1,1) and seven other similar points. This point is called the L-point. Thus we
commonly display the E-k diagram with k going from the origin (called the I'-point) to
the X-point and from the origin to the L-point. In this section we will see several such
plots for different semiconductors.

We will notice that in the valence band or conduction band there are a number
of allowed energy—momentum relations. This is due to the nature of multiple atomic
levels in the atoms making up the crystal.

We will now examine special features of some semiconductors. Of particular
interest are the bandedge properties, since they dominate the transport and optical
properties. In this context, it is important to appreciate the range of energies away from
the bandedges which control various physical properties of devices.

3.4.1 Direct and indirect semiconductors: effective mass

The top of the valence band of most semiconductors occurs at k = 0; i.e., at effective
momentum equal to zero. A typical bandstructure of a semiconductor near the top of
the valence band is shown in Fig. 3.9. We notice the presence of three bands near the
valence bandedge. These curves or bands are labeled I, II, and III in the figure and are
called the heavy hole (HH), light hole (LH), and the split off hole bands.

The bottom of the conduction band in some semiconductors occurs at k =
0. Such semiconductors are called direct bandgap materials. Semiconductors, such as
GaAs, InP, InGaAs, etc., are direct bandgap semiconductors. In other semiconductors,
the bottom of the conduction band does not occur at the k = 0 point, but at certain
other points. Such semiconductors are called indirect semiconductors. Examples are Si,
Ge, AlAs, etc.

An important outcome of the alignment of the bandedges in the valence band
and the conduction band is that direct gap materials have a strong interaction with
light. Indirect gap materials have a relatively weak interaction with electrons. This is a
result of the law of momentum conservation.

When the bandedges are at k£ = 0 it is possible to represent the bandstructure
by a simple relation of the form

RZk2

E(k) =F.+ Gy

(3.10)

where E, is the conduction bandedge, and the bandstructure is a simple parabola. The
equation for the E-k relation looks very much like that of an electron in free space
except that the free electron mass, mo, is replaced by a new quantity m*.

Silicon

Silicon forms the backbone of modern electronics industry. The bandstructure of silicon
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Figure 3.9: Schematic of the valence band, direct bandgap, and indirect bandgap conduction
bands. The conduction band of the direct gap semiconductor is shown as the solid line, while
the conduction band of the indirect semiconductor is shown as the dashed line. The curves I, II,
ITT in the valence band are called heavy hole, light hole, and split-off hole states, respectively.
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Figure 3.10: (a) Bandstructure of Si. (b) Constant energy ellipsoids for the Si conduction
band. There are six equivalent valley in Si at the bandedge.

is shown in Fig. 3.10 and, as can be seen, it has an indirect bandgap. This fact greatly
limits the applications of Si in optical devices, particularly for light-emitting devices.
The bottom of the conduction band in Si is at point (~ (27/a)(0.85,0.0); i.e., close
to the X-point. There are six degenerate X-points and, consequently, six conduction
bandedge valleys. The near bandedge bandstructure can be represented by ellipsoids of
energy with simple E' vs. k relations of the form (for examples for the [100] valley)

R2k2 | R® (k2 +k2)
E(k) = —2 4 y_ = 3.11
( 2m7 2m; ( )

where we have two masses, the longitudinal and transverse. The constant energy surfaces
of Si are ellipsoids according to Eq. 3.11. The six surfaces are shown in Fig. 3.10.

The longitudinal electron mass m; is approximately 0.98 mg, while the trans-
verse mass is approximately 0.19 myg.

The next valley in the conduction band is the L-point valley, which is about
1.1 eV above the bandedge. Above this is the I'-point edge. The direct bandgap of Si
is ~ 3.4 eV. This direct gap is quite important for optical transitions since, as we shall
see later, the absorption coefficient for photons above this energy is very strong. It is
important to note that, due to the six-fold degeneracy of the conduction bandedge, the
electron transport in Si is quite poor. This is because of the very large density of states
near the bandedge, leading to a high scattering rate.

The top of the valence band has the typical features seen in all semiconductor
valence bands. One has the HH, LH degeneracy at the zone edge. The split-off (SO)
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Figure 3.11: Bandstructure of GaAs. The bandgap at 0 Kis 1.51 ¢V and at 300 K it is 1.43 V.
The bottom of the conduction band is at & = (0,0, 0), i.e., the I'-point. The upper conduction
band valleys are at the L-point.

band is also very close for Si, since the split-off energy is only 44 meV. This is one of
the smallest split off energies of any semiconductors.

GaAs

The near bandedge bandstructure of GaAs is shown in Fig. 3.11. The bandgap is direct,
which is the chief attraction of GaAs. The direct bandgap ensures excellent optical
properties of GaAs, as well as superior electron transport in the conduction band. The
bandstructure can be represented by the relation (referenced to E.)

h%k?
=5 (3.12)
with m* = 0.067mg. A better relationship is the non-parabolic approximation
R%k?
1 = 3.
E(l+ak) Cym—- (3.13)

with @ = 0.67 eV~1L.

For high electric field transport, it is important to note that the valleys above
I'-point are the L-valleys. There are eight L-points, but, since half of them are connected
by a reciprocal lattice vector, there are four valleys. The separation A Erp between the
I'- and L- minima is 0.29 eV. The L-valley has a much larger effective mass than the
I-valley. For GaAs, m} ~ 0.25mg. This difference in masses is extremely important
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Figure 3.12: (a) Bandstructure of Ge. As for Si, Ge is an indirect semiconductor. The bot-
tom of the conduction band occurs at the L-point. The hole properties of Ge are the best of
any semiconductor, with extremely low hole masses. (b) Bandstructure of AlAs. AlAs is an
important III-V semiconductor because of its excellent lattice constant, matching GaAs. The
material has an indirect bandgap and is usually used in AlGaAs alloy for barrier materials in
GaAs/AlGaAs heterostructures.

for high electric field transport and leads to negative differential resistance. Above the
L-point in energy is the X-valley with AEry ~ 0.58 eV. The mass of the electron
in the X-valley is also quite large (m% ~ 0.6mg). At high electric fields, electrons
populate both the L- and X- valleys in addition to the I'-valley, making these regions
of bandstructure quite important.

The valence band of GaAs has the standard HH, LH, and SO bands. Due to
the large spin—orbit splitting, for most purposes the SO band does not play any role in
electronic or optoelectronic properties.

The bandstructures of Ge and AlAs, two other important semiconductors, are
shown in Fig. 3.12, along with brief comments about their important properties.
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Experimental
bandgap
Eg (eV)
Type of Temperature dependence

Compound bandgap 0K 300K of bandgap E¢(T) (eV)
AlP Indirect 2.52 245 2.52 - 3.18 x10~*T%/(T + 588)
AlAs Indirect  2.239 2.163  2.239 - 6.0 x107*T2 /(T + 408)
AlSb Indirect  1.687 1.58 1.687 — 4.97 x1074T% /(T + 213)
GaP Indirect  2.338 2.261  2.338 - 5.771 x10~*T? /(T + 372)
GaAs Direct 1.519 1.424 1.519 - 5.405 x10~4T2%/(T + 204)
GaSb Direct 0.810 0.726  0.810 — 3.78 x10~*T%/(T + 94)
InP Direct 1.421 1.351  1.421-3.63 x107*T?/(T + 162)
InAs Direct 0.420 0.360 0.420 - 2.50 x10~*72/(T + 75)
InSb Direct 0.236  0.172  0.236 - 2.99 x10=*72/(T + 140)

Table 3.1: Bandgaps of binary III-V compounds (From Casey and Panish, 1978).

InN, GaN, and AIN

The III-V nitride family of GaN, InN, and AIN have become quite important due to
progress in the ability to grow the semiconductor. The nitrides and their combinations,
which have a wurtzite structure, can provide bandgaps ranging from ~1.0 eV to over
6.0 eV. This large range is very useful for short wavelength light emitters (for blue light
emission and for high-resolution reading/writing applications in optoelectronics) and
high power electronics.

It should be noted that it is difficult to obtain the bandgap of InN, since it is
difficult to grow thick defect free layers due to substrate non-availability. Recent results
have shown a bandgap closer to 0.9 eV.

Also important to note is that the bandgap of semiconductors generally de-
creases as temperature increases. The bandgap of GaAs, for example, is 1.51 eV at
T = 0K and 1.43 eV at room temperature. These changes have very important conse-
quences for both electronic and optoelectronic devices. The temperature variation alters
the laser frequency in solid state lasers, and alters the response of modulators and de-
tectors. It also has effects on intrinsic carrier concentration in semiconductors. In Table
3.1 we show the temperature dependence of bandgaps of several semiconductors.

3.5 MOBILE CARRIERS

From our brief discussion of metals and semiconductors in Section 3.3, we see that in
a metal current flows because of the electrons present in the highest (partially) filled
band. This is shown schematically in Fig. 3.13a. The density of such electrons is very
high (~ 10%® cm™3). In a semiconductor, in contrast, no current flows if the valence
band is filled with electrons and the conduction band is empty of electrons. However, if
somehow empty states or holes are created in the valence band by removing electrons,
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METALS

<«—{ Electrons in the
conduction band
can carry current

ENERGY —>

#
%

(@
SEMICONDUCTORS
Evac

Electrons in the conduction

band (density, n) carry current
pe—T
- Mobile carrier density = n + p
2
w
Z
w

Holes in the valence band
d\ (density, p) carry current

Valence bani

(®)

Figure 3.13: (a) In metals the highest occupied band is partially filled and electrons can
carry current. (b) A schematic showing the valence band and conduction band in a typical
semiconductor. In semiconductors only electrons in the conduction band and holes in the
valence band can carry current.

current can flow through the holes. Similarly, if electrons are placed in the conduction
band, these electrons can carry current. This is shown schematically in Fig. 3.13b. If the
density of electrons in the conduction band is n and that of holes in the valence band

is p, the total mobile carrier density is n + p.
In the next section we will calculate the density of mobile carriers in a metal

and in a pure semiconductor.

3.5.1 Electrons in metals

In a metal, we have a series of filled bands and a partially filled band called the conduc-
tion band. The filled bands are inert as far as electrical and optical properties of metals
are concerned. The conduction band of metals can be assumed to be described by the
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118 Electronic levels in solids

parabolic energy-momentum relation

h2k2

E(k) = Bet 5 -

(3.14)

Note that we have used an effective mass equal to the free electrons mass. This is a
reasonable approximation for metals. The large electron density in the band “screens”
out the background potential and the electron effective mass is quite close to the free
space value.

The electron density in the conduction band of a metal is related to the Fermi
level by the relation

0 3/2 1/2
E. TR ex (—k——E_EF ) +1
c P BT

This integral is particularly simple to evaluate as 0 K, since, at this temperature

1

1if E< Ep
E—EF -
exp(—k—BT )+1

= 0 otherwise

Thus (choosing the conduction bandedge as the origin)

Er
n= N(E)dE
0
We then have
3/2 E
n = Qm% / ) El/sz
71'271 0
_ 2‘/imo/2 3/2
T 3pRd T F
or )
_ h 2 12/3

The expression is applicable to metals such as copper, gold, etc. In Table 3.2
we show the conduction band electron densities for several metals. The quantity Ep,
which is the highest occupied energy state at 0 K, is called the Fermi energy. We can
define a corresponding wavevector kp, called the Fermi vector, and a velocity vr, called
the Fermi velocity as

kr = (371'271)1/3

vp = (%) (372n)"/ (3.17)
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ELEMENT VALENCE DEeNSITY CONDUCTION
(gm/cm3)  ELECTRON DENSITY
(1022 cm3)

Al 3 2.7 18:l

Ag 1 10.5 5.86
At b 193 = 3%
Na 1 0.97 2.65
Fe 2 78 170

Zn 2 7.14 13.2

'Mg'iﬁ;;j : 2 . VV 1,74 861

Ca 2 1.54 4.61

e g B R
Cs 1 1.9 0.91

Sn 4 7.3 14.8

Table 3.2: Properties of some metals. In the case of elements that display several values of
chemical valence, one of the values has been chosen arbitrarily.
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120 Electronic levels in solids

It is important to note that even at 0 K, the velocity of the highest occupied state is
v and not zero, as would be the case if we used classical statistics.

At finite temperatures, the Fermi level is approximately given by
71'2 (]CBT)2 ]

Er(T) = EF(0) [1 - —

12 (Er(0))? (318)

where Er(T) and Er(0) are the Fermi levels at temperatures T' and 0 K, respectively.

EXAMPLE 3.1 A particular metal has 10?? electrons per cubic centimeter. Calculate the
Fermi energy and the Fermi velocity (at 0 K).

The Fermi energy is the highest occupied energy state at 0 K and is given by (measured
from the conduction bandedge)

h2 2 \2/3
Ep = 2mo (37\' n)
(105 X 10_34)2[37\'2(1028)]2/3 y . ;
7 2(0.91 x 10—30) =2.75%x 10
= 1.72eV
The Fermi velocity is
vp = i (37r2n)1/3

mo
(1.05 x 10™°* J.s)(3x% x 10%* m—2)'/?

L =17.52 x 10°
0.91 x 10-20 kg o 1 i

= 7.52x10" cm/s

Thus, the highest energy electron has a large energy and is moving with a very large
speed. In a classical system the electron energy would be ~ %kBT, which would be zero at 0
K. The electron velocity will also be zero at 0 K in classical physics.

3.5.2 Mobile carriers in pure semiconductors

In semiconductors, as discussed earlier, there are no mobile carriers at zero temperature.
As temperature is raised, electrons from the valence band are thermally excited into the
conduction band, and in equilibrium there is an electron density n and an equal hole
density p, as shown in Fig. 3.14a. To calculate the electron and hole densities in a pure
semiconductor (i.e., no defects are present) we first recall some important expressions
for the density of states. The density of states has the form

ﬁ(mgos)3/2 (E _ EC)I/Q
w2k

where mJ,  is the density of states mass and E. is the conduction bandedge. A similar

N(B) = (3.19)

expression exists for the valence band except the energy term is replaced by (E, — E')l/2
and the density of states exist below the valence bandedge E,. In Fig. 3.14 we show a
schematic view of the density of states.
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Pure semiconductors
n=p=n;=p;

)

Low temperature
ni=pj~0

DENSITY OF STATES

(b)

@
g
&
5
= High temperature
@
4
w
(]
Ey Er E.
(c) ENERGY

Figure 3.14: (a) A schematic showing that electron and hole densities are equal in a pure
semiconductor. (b) Density of states and Fermi occupation function at low temperatures. (c)
Density of states and Fermi function at high temperatures when n; and p; become large.
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122 Electronic levels in solids

In direct gap semiconductors mj,, is just the effective mass for the conduction
band. In indirect gap materials it is given by

M, = (mimimg)'/®

where m}m%m} are the effective masses along the three principle axes. For Si counting
the six degenerate X-valleys we have

1/3
For the valence band we can write a simple expression for a density of states masses,

which includes the HH and LH bands

2/3
. *3/2 *3/2
Myos = (mhh +my, )

In pure semiconductors, electrons in the conduction come from the valence band and
n = p = n; = p;, where n; and p; are the intrinsic carrier concentrations. In general the
electron density in the conduction band is

n o= /:Ne(E)f(E)dE
| (2m:>3/2/mﬁfﬂ (3.20)

PECANTE E. €Xp (%ﬂ) +1

3
I

In Fig. 3.14b we show how a change of temperature alters the shape of the Fermi function
and alters the electron and hole densities. For small values of n (non-degenerate statistics
where we can ignore the unity in the Fermi function) we get

n= N.exp [(Er — E.) [kpT) (3.21)

where the effective density of states NV, is given by

LT\ 2
NC:2(me 5 )
27wh

A similar derivation for hole density gives
p=Nyexp[(Ey — EF) [kpT) (3.22)

where the effective density of states N, is given by

. 3/2
N, =2 (mthzT)
2mh

We also obtain

ksT \*
=1 (225 ) (mimi)*" exp (~Ey/ksT) (3.23)
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CONDUCTION BAND VALENCE BAND INTRINSIC CARRIER
MATERIAL | EFFECTIVE DENSITY (N) | EFFECTIVE DENSITY (V,) | CONCENTRATION (n; = p;}

Si (300 K) 2.78 x 1019 cm—3 9.84 x 1018 cm—3 1.5x 1010 cm—3
Ge (300 K) 1.04 x 1019 cm3 6.0x 1018 cm3 233 x 1013 cm-3
GaAs (300 K) 4.45 x 1017 cm-3 7.72 x 1018 cm-3 1.84 x 106 cm—3

Table 3.3: Effective densities and intrinsic carrier concentrations of Si, Ge, and GaAs. The
numbers for intrinsic carrier densities are the accepted values even though they are smaller
than the values obtained by using the equations derived in the text.

We note that the product np is independent of the position of the Fermi level and is
dependent only on the temperature and intrinsic properties of the semiconductor. This
observation is called the law of mass action. If n increases, p must decrease, and vice
versa. For the intrinsic case n = n; = p = p;, we have from the square root of the
equation above

kT \*/* 3/4
n =p; =2 ( > ) (mimy)"" exp (—E,/2kpT)
2rh
E.+FE, 3 W
Ep; = _;— + SkpTln (m;, /m) (3.24)

Thus the Fermi level of an intrinsic material lies close to the midgap. Note that in
calculating the density of states masses m} and m}, the number of valleys and the sum
of heavy and light hole states have to be included.

In Table 3.3 we show the effective densities and intrinsic carrier concentrations
in 81, Ge, and GaAs. The values given are those accepted from experiments. These values
are lower than the ones we get by using the equations derived in this section. The reason
for this difference is due to inaccuracies in carrier masses and the approximate nature
of the analytical expressions.

We note that the carrier concentration increases exponentially as the bandgap
decreases. Results for the intrinsic carrier concentrations for Si, Ge, and GaAs are shown
in Fig. 3.15. The strong temperature dependence and bandgap dependence of intrinsic
carrier concentration can be seen from this figure. In electronic devices where current
has to be modulated by some means, the concentration of intrinsic carriers is fixed by
the temperature and therefore is detrimental to device performance. Once the intrinsic
carrier concentration increases to ~ 10'® ¢m~—3, the material becomes unsuitable for
electronic devices, due to the high leakage current arising from the intrinsic carriers.
A growing interest in high-bandgap semiconductors, such as diamond (C), SiC, etc., is
partly due to the potential applications of these materials for high-temperature devices
where, due to their larger gap, the intrinsic carrier concentration remains low up to very
high temperatures.
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T(¢C)

INTRINSIC CARRIER DENSITY #; (cm—3)

T T NI
25 3.0 35 4.0

6 L o
10705 10 15 20
1000/T (K-1)

Figure 3.15: Intrinsic carrier densities of Ge, Si, and GaAs as a function of reciprocal tem-
perature.
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EXAMPLE 3.2 Calculate the effective density of states for the conduction and valence bands
of GaAs and Si at 300 K. Let us start with the GaAs conduction-band case. The effective density

of states is 3/
N. =2 mekpT
T 27h?

Note that at 300 K, kT = 26 meV = 4 x 1072 J.

N, o (0067 x0.91x107% (kg) x 4.16 x 10~% (J) o/ -
° T 2 x 3.1416 x (1.05 x 1032 (Js))?

= 445x10° m™® =445 x 10" ecm™®
In silicon, the density of states mass is to be used in the effective density of states. This is given

by
mbos = 67/7(0.98 x 0.19 x 0.19)}/° my = 1.08 mg

The effective density of states becomes

N _ o[ miksT\*
° T 2rh?

1.06 x 0.91 x 107 (kg) x 4.16 x 10~ (3)\*/° s
- 2 x 3.1416 x (1.05 x 1032 (Js))?

2.78 x 10°° m™* =2.78 x 10*° cm™?

Ii

We can see the large difference in the effective density between Si and GaAs.
In the case of the valence band, we have the heavy hole and light hole bands, both of
which contribute to the effective density. The effective density is

kBT 3/2
Nv=2< 3/z 3/2)( )
Mpp T My 2 k2

For GaAs we use mpn = 0.45mo, mer, = 0.08mo and for Si we use mpp = 0.5mo, mer, = 0.15my,
to get

7.72 x 10"%cm ™

9.84 x 10"*cm ™

N,(GaAs)
N, (51)

EXAMPLE 3.3 Calculate the position of the intrinsic Fermi level in Si at 300 K.
The density of states effective mass of the combined six valleys of silicon is

Mios = (6)2/3 (mZ mf)ll3 = 1.08 myp

The density of states mass for the valence band is 0.55 mo. The intrinsic Fermi level is given
by (referring to the valence bandedge energy as zero)

F 3 mj, F 3 0.55

Epi = 2242 R = 29y 3, <—)

p 5 + 4kBTln (m{;) 5 + 4(0 026)In 108
Ey _

= 52— (0.0132¢V)

The Fermi level is then 13.2 meV below the center of the mid-bandgap.
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EXAMPLE 3.4 Calculate the intrinsic carrier concentration in InAs at 300 K and 600 K.
The bandgap of InAs is 0.35 €V and the electron mass is 0.027mo. The hole density
of states mass is 0.4mo. The intrinsic concentration at 300 K is

ksTN\*? . ., 3/4 (—Eg>
meE b= 2(27rh2> (me mp)™"exp (3T

= 2( (0.026)(1.6 x 107'°) )3/2

2 x 3.1416 x (1.05 x 10—34)2

a0\ 3/4 0.35 )
(0.027 x 0.4 x (0.91 x 107°%)*)*/" exp ( 0,052

= 1.025x 10 m™® =1.025 x 10"*cm™
The concentration at 600 K becomes

7;(600 K) = 2.89 x 10*°cm™®

3.6 DOPING OF SEMICONDUCTORS

The intrinsic carrier density discussed in the previous section is usually undesirable in
semiconductor devices. It leads to noise, leakage current, and limits the high-temperature
operation of electronic and optoelectronic devices. Semiconductor devices operate at
temperatures where the intrinsic carrier density is small (r6 10** em~3). To introduce
electrons (holes) in a semiconductor the material is doped with dopants. The electrons
(holes) created by the dopants are used in device design.

There are two kinds of dopants—donors which can donate an electron to the
conduction band and acceptors which can accept an electron from the valence band
and thus create a hole. To solve the donor (or acceptor) problem, we consider a donor
atom on a crystal lattice site. The donor atom could be a pentavalent atom in Si or
a Si atom on a Ga site in GaAs. Focusing on the pentavalent atom in Si, four of the
valence electrons of the donor atom behave as they would in a Si atom; the remaining
fifth electron now sees a positively charged ion to which it is attracted, as shown in Fig.
3.16. The ion has a charge of unity and the attraction is simply Coulombic suppressed
by the dielectric constant of the material. The problem is now that of the hydrogen
atom case, except that the electron mass is the effective mass at the bandedge. The
attractive potential 1s

(3.25)

where ¢ is the dielectric constant of the semiconductor; i.e., the product of ¢y and the
relative dielectric constant. In this simplification the properties of the dopant atom can
be described by a simple hydrogen-like model, where the electron mass is simply the
effective mass at the bandedge. This approximation is called the effective mass approxi-
mation for impurities.

We have seen that electrons in the crystal can be represented by an effective
mass near the bandedge. We get the effective mass equation for the donor level which
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All 4 outer ¢
electrons go into
the valence band

=

Figure 3.16: A schematic showing the approach we can take to understand donors in semicon-
ductors. The donor problem is treated as the host atom problem, together with a Coulombic
interaction term. The silicon atom has four “free” electrons per atom. All four electrons occupy
the valence band at 0 K. The dopant has five electrons out of which four contribute to the
valence band, while the fifth one can be used for increasing electrons in the conduction band.

has an energy for Ey of

[_h vZ- }Fc(r):(Ed—Ec)Fc(r) (3.26)

2m} 4mer

where m} is the conduction bandedge mass and E4 — F, is the impurity energy with
respect to the conduction bandedge E, levels.

This equation is now essentially the same as that of an electron in the hydrogen
atom problem. The only difference is that the electron mass is m* and the Coulombic
potential is reduced by €p/e.

The energy solutions for this problem are

4, *
e*m; 1

Ei=E ~ ——— —,
¢ 2(4me)2h? n?

n=12, .. (3.27)

A series of energy levels are produced, with the ground state energy level being at

4, *
Ei = E,— — e
2(4me)?h
m* €\ 2
= E.-136 <m> (?) eV (3.28)

Note that in the hydrogen atom problem the electron levels are measured from the
vacuum energy level which is taken as £ = 0. In the donor problem, the energy level is
measured from the bandedge. Fig. 3.17 shows the energy level associated with a donor
impurity.
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The wavefunction of the ground state is as in the hydrogen atom problem

F.(r) = e~"/e (3.29)

rad

where a is the donor Bohr radius and is given by

I GO < ¢/ ) A (3.30)

* o2 *
mie m¥ /mg

For most semiconductors the donor energies are a few meVs below the conduc-
tion bandedge and the Bohr radius is ~100 A.

Another important class of intentional impurities is the acceptors. Just as
donors are defect levels, which are neutral when an electron occupies the defect level and
positively charged when unoccupied, the acceptors are neutral when empty and nega-
tively charged when occupied by an electron. The acceptor levels are produced when
impurities, which have a similar core potential as the atoms in the host lattice, but have
one less electron in the outermost shell, are introduced into the crystal. Thus group III
elements can form acceptors in Si or Ge, while Si could be an acceptor if it replaces As
in GaAs.

As shown in Fig. 3.18 the acceptor impurity potential could now be considered
to be equivalent to a host atom potential, together with the Coulombic potential of a
negatively charged particle. The “hole” (i.e., the absence of an electron in the valence
band) can then bind to the acceptor potential. The effective mass equation can again be
used, since only the top of the valence band contributes to the acceptor level. The valence
band problem is considerably more complex and requires the solution of multiband
effective mass theory. However, the acceptor level can be reasonably predicted by using
the heavy hole mass. Due to the heavier hole masses, the Bohr radius for the acceptor
levels is usually a factor of 2 to 3 smaller than that for donors.

Population of dopant levels
We have discussed above how the presence of a dopant impurity creates a bound level
E4 (or E,) near the conduction (or valence) bandedge. If the extra electron associated
with the donor occupies the donor level, it does not contribute to the mobile carrier
density. The purpose of doping is to create a mobile electron or hole. When the electron
associated with a donor (or a hole associated with an acceptor) is in the conduction (or
valence) band, the dopant is said to be ionized. To calculate the ionization probability,
we refer back to our discussion of the occupation probability of discrete levels.
Consider a semiconductor containing both donors and acceptors. At finite tem-
peratures, the electrons will be redistributed, but their numbers will be conserved and
will satisfy the following equality resulting from charge neutrality

(n—ni)+ng = Ng (3.31)
(P=pi)+pa = Na (3.32)

which gives
n+ng = Nd_Na+p+pa (333)
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Donor level

o] ¢ K e

Arsenic (As) atom donates one
electron to the conduction band to
produce an n-type silicon

Figure 3.17: A schematic of doping of Si with arsenic. A donor level is produced below the
conduction bandedge.

Conduction
band

Acceptor level
—————— E

a

° ////////% Valence

One electron taken from the
valence band to complete the

bonding of the boron atom —> hole

Figure 3.18: Boron has only three valence electrons. It can complete its tetrahedral bonds
only by taking an electron from an Si-Si bond, leaving behind a hole in the silicon valence
band. The positive hole is then available for conduction. The boron atom is called an acceptor
because when ionized it accepts an electron from the valence band.
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130 Electronic levels in solids
where
n = total free electrons in the conduction band
ng = electrons bound to the donors
p = total free holes in the valence band
pe = holes bound to the acceptors

The number density of electrons attached to the donors has been derived in
Section 3.6 and is given by

nd _ 1 (3.34)

Ng E,—E
Yo () o

The factor % essentially arises from the fact that there are two states an electron can
occupy at a donor site corresponding to the two spin-states.
The probability of a hole being trapped to an acceptor level is given by

i 1
%: —— (3.35)
a % exp (—F—lk;T ) +1

The factor of % comes about because of the presence of the two bands, light hole, heavy
hole, and the two spin-states.

To find the fraction of donors or acceptors that are ionized, we have to use a
computer program in which the position of the Fermi level is adjusted so that the charge
neutrality condition given Eq. 3.33 is satisfied. Once EF is known, we can calculate the
electron or hole densities in the conduction and valence bands. For doped systems, it
is useful to use the Joyce—Dixon approximation, which gives the relation between the
Fermi level and the free carrier concentration. This approximation is more accurate than

the Boltzmann approximation. According to the Joyce-Dixon approximation, we have

n 1 n D 1 p
N, V8 N, N, V8 N,
This relation can be used to obtain the Fermi level if n is specified. Or else it can be
used to obtain n if Ep is known by solving for n iteratively. If the term (n/\/8 N.) is
ignored, the result corresponds to the Boltzmann approzimation.

In general, if we have a doped semiconductor and we examine its mobile car-
rier density dependence upon temperature, there are three regimes. Let us consider an
n-type semiconductor. At low temperatures, the electrons coming from the donors are
attached to the donors and occupy the impurity levels £;. Thus there is no contribution
to the mobile carrier density from the dopants. This regime is called the carrier freeze-
out regime. At higher temperatures, the dopants ionize until most of them are ionized.
Then over a temperature regime, the mobile carrier is essentially equal to the dopant
density and independent of temperature. This is the saturation regime and semiconduc-
tor devices are operated in this regime. At very high temperatures, the intrinsic carrier
density overwhelms the dopant density and the material acts as an intrinsic material.
The three regimes are shown in Fig. 3.19.

Ep=E.+ kpT |fn ]:&—@T% (3.36)

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

3.7. Tailoring electronic properties 131
500 TEMPERATURE (K)
;7 10000 300 200 100 75 50
10

ELECTRON DENSITY 1 (cm'3 )
=3

0 4 8 12 16 20
1000/T (K1)

Figure 3.19: Electron density as a function of temperature for a Si sample with donor impurity
concentration of 10*® cm™3.

3.7 TAILORING ELECTRONIC PROPERTIES

Quite often we encounter applications where we need materials with bandgaps or other
electronic properties which are not available in single crystal materials. It is possible to
tailor electronic properties by using alloys and quantum wells.

3.7.1 Electronic properties of alloys

Alloys are made from combinations of two or more materials and can be exploited
to create new bandgaps or lattice constants. In Section 1.2.2 (see Eq. 1.10) we have
discussed how the lattice constant of alloys changes with composition. To the first order
the electronic properties are also given by a similar relation. Consider an alloy A, Bi_,
made from materials A with bandstructure given by F4(k) and B with bandstructure
given by Eg(k). The bandstructure of the alloy is then given by

Ea”(k) = .’L‘EA(]C) + (1 — .’L‘)EB(]C) (337)
Note that the energy averaging is done at the same %k value. If we make an alloy from a
direct and an indirect material, one does not simply average the bandgaps to get the alloy

bandgap. Instead the bandgaps at the same k values are averaged and the bandgap is
then given by the lowest energy difference between the conduction and valence energies.

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

132 Electronic levels in solids

Based on the equation above the effective mass of the alloy is to be averaged as

1 =z +(1—a:)

— = — " (3.38)
Moy Mgy Mmp

It is important to note that alloys have inherent disorder since they have random
arrangements of atoms. This leads to disorder related scattering discussed in the next
chapter.

3.7.2 Electronic properties of quantum wells

Quantum wells offer a very useful approach to bandstructure tailoring. In Chapter 2,
Section 2.4 we have discussed electronic properties in quantum wells. In quantum wells
electrons behave as if they are in a 2-dimensional space and acquire properties that are
especially useful for many electronic and optoelectronic applications.

Using epitaxial crystal growth techniques it is possible to grow atomically
abrupt semiconductor heterostructures. When two semiconductors with different bandgaps
(and chemical compositions) form an interface, an important question that arises is: How
does the conduction band (valence band) on one material line up with the other mater-
1als bands? This information is usually obtained through experiments. There are three
possible scenarios as shown in Fig. 3.20. In type I structures the layer bandgap material
“surrounds” the bandgap of the small gap material. In quantum wells made from such
materials, both electrons and holes are confined in the same physical quantum well. Most
optoelectronic devices (laser diodes, modulators, detectors, etc.,) are based on type I
lineup. In type II lineup the conduction band of material A is below that of the material
B, but the valence band of A is above that of B as shown. In quantum wells made from
such materials the electrons and holes are confined in spatially different quantum wells.
These structures are useful for applications in the long wavelength regime, since their
“effective” bandgap can be very small. Finally, in type III heterostructures, both the
conduction and valence band edges of material A are above the conduction band edge
of material B.

In Fig. 3.21 we show a schematic of a type I quantum well made from a smaller
bandgap material B sandwiched between a large bandgap material A. To understand
the electronic properties of the quantum well we use the effective mass approach and
the discussion of Section 2.4.

The electronic structure in a quantum well has been discussed in Section 2.4.2.
For completeness, we will repeat the equations here noting that the electron mass is
given by the effective mass, rather than free electron mass. The reader should review
Section 2.4.2.

The confinement of electrons and holes by quantum wells alters the electronic
properties of the system. This has important consequences for optical properties and
optoelectronic devices. The Schrodinger equation for the electron states in the quantum
well can be written in a simple approximation as

h?
2m*

Vit V()| ¥ = EV
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BROKEN GrOUP
TYPE I

TYPE I TYPE 1

Figure 3.20: Various possible bandedge lineups in heterostructures.

where m* is the effective mass of the electron. The wavefunction ¥ can be separated
into its z and p (in the z-y plane) dependence and the problem is much simplified

(s, y, Z) = gthe®. eiky'yf(z)

where f(z) satisfies

h? 9?
[_Wﬁ +V(2)| f(2) = E.f(2) (3.39)
Assuming an infinite barrier approximation, the values of f(z) are (W is the well size)
f(2) = cos %—-z-, if n is even
= sin %’/ﬁ if n is odd (3.40)
with energies
T2hin?
The energy of the electron bands are then
Rk}
EF=F — .
n + D (3.42)

The two-dimensional quantum well structure thus creates electron energies that can
be described by subbands (n = 1,2,3--.). The subbands for the conduction band and
valence band are shown schematically in Fig. 3.22.

If the barrier potential V; is not infinite, the wavefunction decays exponentially
into the barrier region, and is a sine or cosine function in the well. By matching the
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Figure 3.21: A schematic of a quantum well formed for the electron and holes in a heterostruc-
ture.
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wavefunction and its derivative at the boundaries one can show that the energy and the
wavefunctions are given by the solution to the transcendental equations (see Section
2.4.2)

aW
atan—2— = g
acot% = -4 (3.43)
where

2m*E
o = .

2m*(V, — F
3 (h2 )

These equations can be solved numerically. The solutions give the energy levels £y, Ey, F3
... and the wavefunctions, f1(z), fo(2), fa(2), - -

Each level Ey, Fs, etc., 1s actually a subband due to the electron energy in
the z—y plane. As shown in Fig. 3.22 we have a series of subbands in the conduction
and valence band. In the valence band we have a subband series originating from heavy
holes and another one originating from light holes. The subband structure has important
consequences for the optical and transport properties of heterostructures. An important
manifestation of this subband structure is the density of states of the electronic bands.
The density of states figures importantly in both electrical and optical properties of
any system. In Section 2.4.2 we have discussed how dimensionality alters the density of
states.

The density of states in a quantum well is

e Conduction band X
m
N(E)=) W&(E - E) (3.44)
i
where 6 is the heavyside step function (unity if £ > Ej; zero otherwise) and F; are the

subband energy levels.
® Valence band

2 *
m
NE)=> > W_i;ze(Eij —E) (3.45)
i =1
where ¢ represents the subbands for the heavy hole (j = 1) and light holes (j = 2). The
density of states is shown in Fig. 3.22 and has a staircase-like shape.

The differences between the density of states in a quantum well and a three-
dimensional semiconductor is one of the important reasons why quantum wells are useful
for optoelectronic devices. The key difference is that the density of states in a quantum
well is large and finite at the effective bandedges (lowest conduction subband and highest
valence subband). As a result the carrier distribution is highest at the bandedges.
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The relationship between the electron or hole density (areal density for 2D
systems) and the Fermi level is different from that in three-dimensional systems because
the density of states function is different. The 2D electron density in a single subband
starting at energy Ef is

m* e dE
n =
_ mksT Ep — ES
= 2 [Zn {1 + exp <—kBT
nwh?
or Er = E{+kgTin [exp (m’ngT> - 1] (3.46)

If more than one subband is occupied we can add their contribution similarly. For the
hole density we have (considering both the HH and LH ground state subbands)

£ — 00 % — 00 ClE
- mhg/ dE +T_£%/ (3.47)
e = R e C=a Ry

where m}, and mj, are the in-plane density of states masses of the HH and LH sub-
bands. We then have

mhthT [E {1 (Et" — Erp) }]
= +
Y% 7|-h n exp kBT

my, ksT [ { (Eth Epp)}]
S L nel+ —r 3.48
+ e n exp 'oT ( )

If EM _ Eth > kpT

The occupation of the light hole subband can be ignored.

Quantum wells are used in a number of high performance devices such as tran-
sistors, lasers, modulators etc. The key reasons for their use are bandgap tailoring,
confinement of electrons or holes and changes in the density of states.

3.8 LOCALIZED STATES IN SOLIDS

The band theory discussed in Chapter 2 and in this chapter is valid only for perfect
crystals. As noted in Chapter 1, devices are now made from polycrystalline and amor-
phous materials as well. Even in good-quality crystals there are defects, which break the
periodicity of the structure. Typical defects in crystalline materials are: (i) defects in the
structure arise from missing atoms (vacancies), atoms at the wrong sites, unintended
impurities, etc. (i1) We may also have dislocations at surfaces of a crystal the arrange-
ment of atoms does not have the same periodicity as in the bulk. (ii1) We could also
have absorbed atoms or molecules at the surface; disordered solids such as amorphous
or polycrystalline materials.
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Figure 3.22: Schematic of density of states in a 3—, 2- and 1-dimensional system with parabolic
energy momentum relations.
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Defects and surface states

In Fig. 3.23 we show a schematic of a perfectly periodic material and one with a defect.
A deep potential region indicates the region of defect. In the case of the periodic system
we have seen the electrons see a bandedge and are described by simple a effective mass
equations near the bandedge. There are no allowed states in the bandgap region. In the
case of a defect the deep level causes new electronic states, which can have energies in
the bandgap.

The key difference between electronic states in the perfect crystal and a non-
perfect crystal is related to the wavefunction. In the periodic state, the electron state is
extended over the entire system, as shown in Fig. 3.23a. This reflects the fact that the
electron can propagate from one region to another. In the case of a defect a bandgap state
may be created with an associated wavefunction that is spatially localized near the defect
region, as shown in Fig. 3.23b. When an electron is occupying such a localized state
its transport (mobility, diffusion) properties are seriously affected. Localized electrons
cannot move across the material as easily.

In Fig. 3.24 we show a comparison of the density of states in a perfectly periodic
and of a defect-containing material. In the case of the perfect material we have a well-
defined bandgap, while in the presence of defects we have bandgap states. Electrons can
be trapped into the bandgap states (hence these states are also called traps).

3.8.1 Disordered materials: extended and localized states

In Chapter 1 we have discussed non-crystalline materials, which have a disordered ar-
rangement of atoms. Amorphous materials, such as amorphous Si, and polycrystalline
materials, such as PZT, and other materials used for sensors fall into this category.
Non-crystalline materials are used in a number of technologies, such as displays and
sensors and their use is increasing. Since the non-crystalline materials lack periodic-
ity, the electronic states are not described by Bloch-like plane wave states. As noted in
Chapter 2, electrons in Bloch states have equal probability in all unit cells. In disordered
systems this is not so, and electrons are localized in regions of potential fluctuations. In
the discussion of levels produced by dopants or defects, we saw that the wavefunction
associated with the point defect is not an extended or Bloch state of the form

"/)ex = her (349)

1
\/Vuk(r)e
but a localized state with a finite extent in space. The defect states have a general form
Yroc(?, 7o), representing the fact that they are localized around a point ¢ in space.
Typical localized states may have an exponentially decaying behavior.

In amorphous semiconductors, electrons see a random background potential, in
contrast to the periodic potential of a crystal. In the random potential, electrons can find
local potential wells, where they can be trapped or localized. At low energies in a random
potential (in an infinite structure), we get a continuum of localized states. As we go up
to higher electronic energies, the electron wavefunction spreads over a larger volume,
until eventually it becomes extended to the entire volume, as shown schematically in
Fig. 3.25. However, the extended state is not the Bloch state of the crystal-it simply
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Figure 3.23: A schematic of the structural and electronic properties of (a) crystals and of (b)
a polycrystalline material.
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Figure 3.24: Schematic of density of states (a) in a perfectly periodic solid and (b) in a
material with defects.
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Figure 3.25: Density of states and the influence of disorder. The shaded region represents
the region where the electronic states are localized in space. The mobility edges F, separate
the region of localized and extended states. The inset shows a schematic of an extended and a
localized state.

spreads over the entire sample. The energy points, which separate the extended and
localized states, are called the mobility edge, the term arising from the observation that
the dc conductivity of the localized states goes to zero (at low temperatures). The effect
of disorder on the nature of electronic states was first studied by Anderson, and it was
shown that as the disorder is increased the extent of the localized states increases, as
shown schematically in Fig. 3.25. Near the bandedges we get localized states forming
“bandtails.” The width of these bandtails is related to the level of disorder in the system.

3.9 SUMMARY

Tables 3.4 to 3.6 summarize our findings of electronic properties in a variety of solids.

3.10 PROBLEMS

Section 3.2

3.1 Plot the Fermi function and the classical (Boltzmann) function as a function of
temperature for (i) 7' = 1 K; (ii) T = 77 K; (iii) T = 300 K; (iv) T = 1000 K; and
(v) T'= 10000 K. Assume that Er = 0 and the energy varies from —1.0 eV to 1.0 eV.
Examine the energy—temperature regime, where the Fermi function and the classical
function are essentially the same.

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

142

CS STUDIED

Electronic levels in solids

Fermi particles and Bose
particles

Nature provides us two classes of particles: ;
(i) particles where the multiparticle wavefunction is
asymmetric under exchange of particles—these are

fermions;

(ii) particles where the multiparticle wavefunction

is symmetric under exchange of particles—these are
bosons.

Pauli exclusion principle

Only one fermion can occupy a given allowed
state. In bosons, there is no such restriction.

Classical and quantum
statistics

In classical physics, identical particles are
distinguishable, leading to Boltzmann statistics. In
quantum mechanics, identical particles are
indistinguishable. If the particles are fermions, we
get, for the particle distribution function, the
Fermi--Dirac statistics. If the particles are bosons,
the resulting statistics are the Bose--Einstein
statistics. Although electrons are fermions, in some
materials, pairs of electrons can act as bosons,
resulting in superconductivity.

Metals, insulators, and
semiconductors

Table 3.4: Summary table.

In materials where the highest occupied band is
half (or partially) filled; conductivity is high. These
are metals.

In materials where the highest occupied band is
completely filled (at low temperatures)
conductivity is very poor and these are insulators
or semiconductors.
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An electron in a perfect crystal behaves as if it has
a new mass called the effective mass. With this
effective mass, the electron obeys the “free
electron”-like equations, such as Newton's
equations.

143

An empty electronic state in the valence band
behaves as if it is a particle with positive charge
and an effective mass given by the valence band
properties.

Direct and indirect
semiconductors

« If the electrons at the top of the valence and
conduction bands have the same momentum, the
semiconductor is a direct semiconductor.

* In direct semiconductors (like GaAs), a photon
can take an electron from the valence bandedge to
the conduction bandedge.

* This is not possible in indirect semiconductors

such as Si, because a photon’s momentum is almost |

zero, and momentum must be conserved for a
strong process.

Conduction electrons in a

The electrons in the highest energy partially filled
bands can carry current.

In pure semiconductors, there is a certain electron
and hole density which is determined by the
temperature, bandgap, and the carrier masses. This
intrinsic density should be small to ensure good
device performance

ot

Mobile carriers in a
semiconductor (insulator)

Table 3.5: Summary table.

In a semiconductor or insulator, only electrons in
the conduction band and holes in the valence band
are mobile.
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Donors and acceptors in * Donors are impurity atoms which can donate an
semiconductors extra electron to the conducton band of a host

crystal.

* Acceptors are impurity atoms which can accept

an electron from the valence band and thus create a

hole.

* Donor and acceptor problems can be understood

on the basis of the H atom solution.

* Perfect short- and long-range order exists over
the grain size which can be several microns.

» The structure loses order as we go from one
grain to another.

Amorphous or glassy | * Good short-range order exists, but there is no
materials long-range order.
5 * The materials also have broken or dangling bonds
and impurities.

Defects such as vacancies, impurity atoms, etc.,
produce levels in the bandgap of the
semiconductor. The electron levels are spatially
localized, unlike the plane wavefunctions
describing the electrons in the conduction and
valence bands.

Amorphous semiconductors have no well-defined
bandgap. However, there is an electrical bandgap
defined by the conduction band mobility edge and
the valence band mobility edge. The mobility edge
separates electron states that are spatially localized
and those that are extended throughout the
material.

Bandstructure of amorphous
semiconductors

Table 3.6: Summary table.
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Section 3.3-3.4

3.2 Plot the conduction band and valence band density of states in Si and GaAs from
the bandedges to 0.5 eV into the bands. Use the units eV~! cm™3. Use the following
data:

Si:mi = m;=098mg
my = m3z=m; =0.19 mg
my, = 0.49 mg
my, = 0.16 mg
GaAs : m; = mj,, =0.067 mg
my, = 0.4 mg
mp, = 0.08mg

3.3 The wavevector of a conduction band electron in GaAs is £ =

(0.1,0.1,0.0) A~!. Calculate the energy of the electron measured from the conduction
bandedge.

3.4 A conduction band electron in silicon is in the (100) valley and has a k-vector of
2m/a (1.0, 0.1, 0.1). Calculate the energy of the electron measured from the conduction
bandedge. Here a is the lattice constant of silicon.

3.5 Calculate the energies of electrons in the GaAs and InAs conduction bands with
k-vectors (0.01, 0.01, 0.01) A~1. Refer the energies to the conduction bandedge values.
3.6 Calculate the lattice constant, bandgap, and electron effective mass of the alloy
In,Gaj_;As as a function of composition from z = 0 to z = 1.

Section 3.5-3.6

3.7 Calculate the effective density of states at the conduction and valence bands of Si
and GaAs at 77 K, 300 K, and 500 K.

3.8 Estimate the intrinsic carrier concentration of diamond at 700 K. You can as-
sume that the carrier masses are similar to those in Si. Compare the results with those
for GaAs and Si. The result illustrates one reason why diamond is useful for high-
temperature electronics.

3.9 Estimate the change in intrinsic carrier concentration per K change in temperature
for InAs, Si, and GaAs at near room temperature.

3.10 Calculate the position of the intrinsic Fermi level, measured from the midgap for
GaAs and InAs.

3.11 Calculate the Fermi energy and Fermi velocity for the following metals: Ag, Au,
Ca, Cs, Cu, Na.

3.12 Calculate the de Broglie wavelength of electrons at the Fermi energy for the fol-
lowing metals: Ag, Cu, Au, Al

3.14 Calculate the change in the Fermi level as temperature changes from 0 to 300 K
for Al and Cu.

Section 3.7
3.14 Using Vegard’s law for the lattice constant of an alloy (i.e., the lattice constant is
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the weighted average) find the bandgaps of alloys made in InAs, InP, GaAs, GaP which
can be lattice matched to InP.

3.15 For long-haul optical communication, the optical transmission losses in a fiber
dictate that the optical beam must have a wavelength of either 1.3 um or 1.55 um.
Which alloy combinations lattice matched to InP have a bandgap corresponding to
these wavelengths?

3.16 Calculate the composition of Hg,Cd;_,Te which can be used for a night vision
detector with bandgap corresponding to a photon energy of 0.1 eV. Bandgap of CdTe
is 1.6 eV and that of HgTe is —0.3 eV at low temperatures around 4 K.

3.17 In the Ings53Gag 47As/InP system, 40% of the bandgap discontinuity is in the
conduction band. Calculate the conduction and valence band discontinuities. Calculate
the effective bandgap of a 100 A quantum well. Use the infinite potential approximation
and the finite potential approximation and compare the results.

3.18 Calculate the first and second subband energy levels for the conduction band in
a GaAs/Aly 3Gag 7As quantum well as a function of well size. Assume that the barrier
height is 0.18 eV.

3.19 Calculate the width of a GaAs/AlGaAs quantum well structure in which the
effective bandgap is 1.6 eV. The effective bandgap is given by

ES! = Ey(GaAs) + ES + E}

where E,; (GaAs) is the bandgap of GaAs (= 1.5 eV) and Ef and E? are the ground
state energies in the conduction and valence band quantum wells. Assume that m} =
0.067 mo, m}, = 0.45 mg. The barrier heights for the conduction and valence band well
18 0.2 eV and 0.13 eV, respectively.

Section 3.8

3.20 Assume that a particular defect in silicon can be represented by a three-dimensional
quantum well of depth 1.5 eV (with reference to the conduction bandedge). Calculate
the position of the ground state of the trap level if the defect dimensions are 5 Ax 5 Ax
5 A. The electron effective mass is 0.26 mp.

3.21 A defect level in silicon produces a level at 0.5 eV below the conduction band.
Estimate the potential depth of the defect if the defect dimension is 5 Ax 5 Ax5 A.
The electron mass is 0.25 mg.

3.11 FURTHER READING
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Chapter
4

CHARGE TRANSPORT
IN MATERIALS

4.1 INTRODUCTION

In this chapter we will examine how electrical current flows occur in materials. Electrical
current can be carried by the transport of electron, holes, and even ions. These charges
respond to applied electric fields and also move if there are concentration gradients.
The transport phenomena is central in a number of important devices. The charges in
a solid can be loosely classified as fixed and mobile. When an external perturbation is
applied (e.g., an electric field) the mobile charges can move from one point in space
to another. In particular they can move from one contact on a device to another. The
fixed charge, however, can only be disturbed slightly from its equilibrium position, but
cannot move over the length of a device. Both fixed charges and mobile charges play an
important role in technology, as shown in Fig. 4.1. Essentially all electronic devices such
as field effect transistors, bipolar transistors, diodes, as well as optoelectronic devices,
such as lasers and detectors depend upon free or mobile charges. Mobile charges are the
electrons in the conduction band and holes in the valence band for semiconductors and
insulators. In some insulators with high defect densities, ions can carry current also, but
the conductivity is very small. As we have discussed in previous chapters, in metals the
mobile charges are the electrons in the conduction band.

Fixed charges in materials also play an important role in devices, even though
they cannot participate in current flow. Small movements in the position of the fixed
charges are responsible for the dielectric response of solids. The fixed charges are also
responsible for polarization effects, which are exploited for devices, such as sensors and
detectors.

On the subject of carrier transport there are two key issues that need to be
discussed: (1) How do mobile carriers respond to electric fields? (ii) How do mobile
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Figure 4.1: An overview of fixed and mobile charges in solids and their impact on physical
phenomena.

carriers respond to changes in mobile carrier densities? The answers to these questions
help us understand how electronic and optoelectronic devices operate.

4.2 AN OVERVIEW OF ELECTRONIC STATES

Before discussing issues in free carrier (or mobile carrier) transport we show an overview
of the nature of electronic states in solids in Fig. 4.2. In Fig. 4.2a we show a schematic
of the density states as a function of energy. In the case of the perfect crystals we see
that in the conduction and valence bands the electronic states are “free,” as discussed
in Chapter 3. There are no allowed energy levels in the bandgap (density of states is
zero in the bandgap, as shown).

In the case of a crystal with defects we still have the free states in the conduction
and the valence bands, but we also have defect-related allowed states in the bandgap
region, as shown in Fig. 4.2b. These states are called trap states and electrons are not
free to move under an electric field if they are occupying these states.

In Fig. 4.2c we show a schematic of the electronic states in a solid that is
disordered; i.e., there is no underlying crystalline lattice. In this case we can divide
the electronic states into “free” and localized categories, as shown. We still have a
conduction band and valence band, but the bandgap region is no longer a true bandgap.
There are allowed states in the bandgap region, but electrons are not mobile if they are
in these states. These bandgap states are called localized states, while the free states
in disordered materials are called extended states. Mobility edges E}, and Ej, denote
energy positions, where transitions occur form localized to extended states.

In Fig. 4.3 we show a schematic of how electrons (holes) move through a sample
when an electric field is applied. In Fig. 4.3a we show the situation in a good-quality
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Figure 4.2: A schematic of the nature of electronic states in solids: (a) for a perfect crystal,
(b) for a crystal with defects, and (c) for a disordered solid. In the disordered system, mobility
edges E,,, E, represent the transition from localized to free states.
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crystalline material (most high-quality semiconductor devices are in this category). The
electron moves under the electric field force, but suffers a number of scattering processes.
The scattering occurs due to various imperfections, such as defects, vibrations of atoms
(due to thermal energy), and other small imperfections. If we examine the distance
versus time trajectory of a typical electron we observe that the electron shows a zigzag
path (shown). On average the electron trajectory is described by

d = vt
v = uk (4.1)

where d is the distance traveled in time t. The velocity v is proportional to the electric
field applied through pu, the mobility.

In disordered solids or materials with a high defect density (Fig. 4.3b) there are
interesting differences when one examines the trajectory of a mobile carrier. In this case
the electron occasionally falls into a trap state or a localized state, where it is immobile,
and the distance versus time trajectory shows that during these periods the distance
does not change with time. Eventually the electron is able to escape from the trap state
and resume its progress.

We will discuss models for transport for both crystalline and disordered mater-
1als.

4.3 TRANSPORT AND SCATTERING

In this section we will discuss how electron (hole) transport occurs in good-quality crys-
talline materials. By good quality we imply that there are negligible trap (or localized)
states. In equilibrium the electron (hole) distribution in energy (or momentum) is given
by the Fermi—Dirac distribution

1
f(E)=f(E) =
EF—-Er
exp( = )+1
212
E = Ei+2&
2m*

where F; is the bandedge.
We can see that in the absence of any applied electric field, the occupation of
a state with momentum +hk is the same as that of a —hk state. Thus there is net
cancellation of momenta and there is no net current flow. The distribution function
in momentum space is shown schematically in Fig. 4.4a. The question we would like
to answer is the following: If an electric field is applied, what happens to the free
electrons (holes)? When a field is applied the electron distribution will shift, as shown
schematically in Fig. 4.4b, and there will be a net momentum of the electrons. If the
crystal i1s rigid and perfect, according to the Bloch theorem the electron states are
described by
Yre(r,t) = ux exp i(k - r — wt) (4.2)
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Figure 4.3: A typical electron trajectory in a sample and the distance versus time profile: (a)
crystalline solid, (b) disordered solid with trap or localized states.
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Figure 4.4: A schematic of the electron momentum distribution function in(a) equilibrinm
and (b) in the presence of an electric field.
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Figure 4.5: Schematic view of an electron as it moves under an electric field in a semiconductor.
The electron suffers a scattering as it moves. In between scattering the electron moves according
to the “free” electron equation of motion.

where w = E/h is the electron wave frequency. There is no scattering of the electron
in the perfect system. Also, if an electric field E is applied, the electron behaves as a
“free” space electron would, obeying the equation of the motion

hdk

—dt—- = Fexg = —cE (43)

The electron would travel along a particular E—k band.

In a real material, there are always imperfections which cause scattering of
electrons so that the equation of motion of electrons is not given by Eq. 4.3. A conceptual
picture of electron transport can be developed where the electron moves in space for
some time, then scatters and then again moves in space and again scatters. The process
is shown schematically in Fig. 4.5. The average behavior of the ensemble of electrons
will then represent the transport properties of the electron.

4.3.1 Scattering of electrons

The key to understanding the non-equilibrium properties of electrons is the understand-
ing of the scattering process of the electrons. The scattering problem in solids is treated
by using the perturbation theory in quantum mechanics. We are interested in solving
the quantum mechanics problem formally represented by

H® = Ed (4.4)

where H is the full hamiltonian (potential energy + kinetic energy operator) of the
problem and the electron states are denoted by ®. This hamiltonian is, in our case, the
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Figure 4.6: The scattering of an electron initially with momentum %k from a scattering
potential V(7). The final momentum is #k’. The scattering process is assumed to be instanta-
neous. The scattering depends upon the coupling of the initial state to the final state by the
scattering potential.

sum of the hamiltonian of the perfect crystal H, and the energy V corresponding to the
imperfection causing scattering. Thus

H=H,4+V (4.5)
We know how to solve the problem
H,y = FEy (4.6)

which just gives us the bandstructure of the semiconductor. In the perturbation theory,
we use the approach that the effect of the perturbation V is to cause scattering of the
electron from one perfect crystalline state to another. This theory works well if the
perturbation is small. The effect of the scattering is shown schematically in Fig. 4.6.
The rate of scattering for an electron initially in state ¢ to a state f in the presence of

a perturbation of the form
V(r,t) = V(r) exp (iwt) (4.7)

is given by the Fermi golden rule

2
Wiy = -h’f | M;; |2 6(E; + hw — Ey) (4.8)
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where the various quantities in the equation represent the following:

. 27”: this is a factor that appears from the details of the calculations.
e | M;; |*: The quantity is called the matrix element of the scattering and is given by

M;; = /¢;V(r)¢id3r (4.9)

The matrix element tells us how the potential couples the initial and the final
state.
e $8(F; 4+ hw — Ef) : This é-function is simply a representative of energy conservation.

The process where
Ef = F; + hw (410)

is called absorption, while the process
E’;:E’i—hw (411)

is called emission. Thus, both absorption or emission of energy can occur if the per-
turbation has a time dependence exp(iwt). If the potential is time independent, the
scattering is elastic (E; = Ey).

In principle, the evaluation of the scattering rates is fairly straightforward since
it simply involves the calculations of some integrals. In practice, the problem is com-
plicated by the fact that the scattering potential V'(r) is not well defined and models
have to be constructed to represent a defect by a proper potential. Thus, while it may
be easy to describe the physical nature of the defect, 1t is quite difficult to represent
the potential perturbation that the electron sees due to this defect. We will now briefly
review some important scattering sources in semiconductors.

Phonon scattering
In Chapter 1, we discussed the crystalline structure in which atoms were at fixed periodic
positions. In reality, the atoms in the crystal are vibrating. These lattice vibrations are
represented by “particles” in quantum mechanics and are called phonons. They satisfy
an equation of motion similar to that of masses coupled to each other by springs. The
properties of the lattice vibrations are represented by the relation between the vibration,
amphitude, u, frequency, w, and the wavevector ¢. The vibration of a particular atom is
given by

ui(q) = upi exp (g r— wt) (4.12)

which has the usual plane wave form that all solutions of periodic structures have.
Recall that in a semiconductor there are two kinds of atoms in a basis. This results in
a w vs. k relation shown in Fig. 4.7. This relation is for GaAs typical of all compound
semiconductors. We notice two kinds of lattice vibrations, denoted by acoustic and
optical. Additionally, there are two transverse and one longitudinal modes of vibration
for each kind of vibration. The acoustic branch can be characterized by vibrations where
the two atoms in the basis of a unit cell (i.e., Ga and As for GaAs) vibrate with the
same sign of the amphtude as shown in Fig. 4.7b. In optical vibrations, the two atoms
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with opposing amplitudes are shown. A brief discussion of lattice vibrations or phonons
is given in Appendix D.

While the dispersion relations represent the allowed lattice vibration modes,
an important question is how many such modes are actually being excited at a given
temperature. In quantum mechanics the modes are called phonons and the number of
phonons with frequency w are given by the Bose-Einstein distribution function

1

" e (22) 1
exp EsT

The lattice vibration problem is mathematically similar to the harmonic oscil-
lator problem. The quantum mechanics of the harmonic oscillator problem tells us that
the energy in the mode frequency w is then

(4.13)

E, = (n, + %)hw (4.14)
Note that even if there are no phonons in a particular mode, there i1s a finite “zero
point” energy 3fiw in the mode.

The vibrations of the atoms produce three kinds of potential disturbances that
result in the scattering of electrons. A schematic of the potential disturbance created by
the vibrating atoms is shown in Fig. 4.8. In a simple physical picture, we can imagine
the lattice vibrations causing spatial and temporal fluctuations in the conduction and
valence band energies. The electrons (holes) then scatter from these disturbances. The
acoustic phonons produce a strain field in the crystal and the electrons see a disturbance
which produces a potential of the form

du
Vap = Da—w (4.15)

where D is called a deformation potential (units are eV) and g—;‘ is the amplitude gradient
of the atomic vibrations.

The optical phonons produce a potential disturbance, which is proportional to
the atomic vibration amplitude, since in the optical vibrations the two atoms in the
basis vibrate opposing each other

Vop = Dou (4.16)

where D, (units are eV /cm) is the optical deformation potential.

In compound semiconductors, where the two atoms are in the basis of the crystal
structure, an extremely important scattering potential arises additionally from optical
phonons. Since the two atoms are different, there is an effective positive and negative
charge e* on each atom. When optical vibrations take place, the effective dipole in
the unit cell vibrates, causing polarization fields from which the electron scatters. This
scattering, called polar optical phonon scattering, has a scattering potential of the form

Voo ~ €™ u (4.17)
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Figure 4.7: (a) Typical dispersion relations of a semiconductor (GaAs in this case). (b) The

displacement of atoms in the optical and acoustic branches of the vibrations is shown. The
motion of the atoms is shown for small k vibrations.
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Figure 4.8: A schematic showing the effect of atomic displacement on bandedge energy levels in
real space. The lattice vibrations cause spatial and time-dependent variations in the bandedges
from which the electrons scatter.

The effective charge is related to the ionicity of the material. By using the Fermi
golden rule we can calculate the scattering rates of electrons due to lattice vibrations.
We will provide these rates and, in the solved examples, calculate some typical values.

The acoustic phonon scattering rate for an electron with energy E} to any other
state 1s given by

9w D2k TN(E,
5 (Ex) (4.18)

S

Wac(Ek) S hpv
where N(E}) is the electron density of states, p is the density of the semiconductor, v,
is the sound velocity and T is the temperature.

In materials like GaAs, the dominant optical phonon scattering is polar optical
phonon scattering, and the scattering rate is given by (assuming the bandstructure is
defined by a non-parabolic band; €., and ¢, are the high frequency and static dielectric
constants of the semiconductor, while ¢, is the free space dielectric constant)

2, %1/2 /
W(k):em Wo <€L_€L>1+20‘E Py (B, E')
4m/2h  \€w € ) y2(E)
n(w,) absorption
{ n(w,)+ 1 emission (4.19)
where
E' = FE + hw, for absorption
= F — hw, for emission
¥(E) = E(l+4+akFE)
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Figure 4.9: A comparison of the scattering rates due to acoustic and optical phonons for GaAs
electrons at room temperature.

Fo(E,E") = C7! <A£n

1E(E) +9/2(B)
e e | )

A = 20 +aE)1+aF) +a{y(E) ++(E))
B = —2ay'*(E}'/*(E)

= x[M4QAQ+aE)1+aE) +a{y(E)++(E)}]
C = 41+ aE)1+ aE")1+ 2aF)(1+ 2aF’)

It is important to examine typical values of scattering rates from these processes. The
values for GaAs are shown in Fig. 4.9. Note that the phonon emission process can start
only after the electron has energy equal o the phonon energy. The emission rates are
about three times as strong as the absorption rates at room temperature (the ratio
between n(w,) + 1 and n(w,)).

Optical phonon scattering is the most important scattering mechanism for high-
field or high-temperature transport of electrons. It is also responsible for relaxation of
hot electrons injected into a semiconductor. The hot carrier relaxation is a key process
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in semiconductor laser performance and will be discussed later.

Ionized impurity scattering

In Section 3.6 we discussed doping in semiconductors. When a dopant ionizes to produce
an extra “free” electron, the electron scatters from the ion. In Appendix E we discuss
scattering from ionized impurities. The scattering potential 1s Coulombic in nature,
except that the potential is suppressed by screening effects. The screening is due to the
presence of the other free electrons, which form a cloud around the ion so the effect of the
potential is short ranged. There are several models for the ionized impurity scattering
potential. A good approximation is given by the screened Coulombic potential

62 e—/\r
= — 4.20
V(ir)=— — (4.20)
where )
2 ne
= 4.21
CkBT ( )

with n the free electron density. The scattering rate then becomes, for an electron with
energy E} and momentum Ak

W(k) = 4rF (%)TWJ

1 62 2]\/(Ek)
F = -ﬁ~<€—> T (4.22)

where Ny is the 10onized impurity density.

Alloy scattering

Alloys are made from combinations of two or more materials. Since atoms on the lattice
are arranged randomly there 1s random potential fluctuation which causes scattering.
In Appendix E we discuss this scattering. The scattreing rate for an alloy A, Bj_, is
found to be

2 3n?
Wit = % <—1%‘V()> U2y N(Ex) [a: (1- 33)2 +(1-=z) xZ]
373 9
= 8—hVO Uall N(Ek) xr (1 et $) (423)

Here Uy 1s the potential difference between A type and B type potentials (see Appendix
E), Vi 1s the volume of the unit cell in the lattice and N(FE) is the density of states
without counting spin degeneracy.

While the phonon and impurity scattering are the dominant scattering processes
for most transport problems, electron—electron scattering, electron-hole scattering, and
alloy potential scattering, etc., can also play an important role.

EXAMPLE 4.1 Calculate the polar optical phonon emission rate for an electron in GaAs
with energy 0.2 eV. Use the following parameters:

wo = 5.4x%10%rad/s
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hw, = 36 meV
L= 132
€o
2= 109
€o
n(w,) = 0.33
a = 06eV7!

The scattering rate is given by (see Eq. 4.19)
(1.6 x 107 C)2(0.067 x 0.9 x 10™%° kg)*/2(5.4 x 10'*rad/s)(1.33)
4T1(1.414)(1.05 x 10~3% J.5)(8.84 x 10-12 F'/m)

1 1 1+2(0.6 eV™1)(0.164 eV) ,
x (10.9 - 13.2) ((0.224 w16 x10-0 7y ) FolE B

2.43 x 10" F,(E, E') s7*

W(k) =

The value of Fo(E, E’) can be found to be 2.87. Thus, the emission rate is

W(k) =17.0 x 102571

4.4 MACROSCOPIC TRANSPORT PROPERTIES

The scattering rates discussed in the previous section are only one of the ingredients
of a transport theory. Note that the scattering rates are dependent upon the energy of
the electron. What energy should be used to obtain transport properties? Clearly, an
averaging must be carried out over the ensemble of the electrons in the semiconductor.
However, this requires knowing the distribution function, which is only known at equi-
librium. Since the scattering processes and the distribution function are inter-related at
non-equilibrium, the problem is very complicated, and various numerical and computer
simulation techniques are developed to solve the problem.

Two important approaches to understanding transport in semiconductors are
the solution of the Boltzmann transport equation, using numerical methods and the
Monte Carlo method using computer simulations. We will summarize the results of such
theories by examining the drift velocity versus electric field relations in semiconductors.

4.4.1 Velocity—electric field relations in semiconductors

When an electron distribution is subjected to an electric field, the electrons tend to move
in the field direction (opposite to the field E) and gain velocity from the field. However,
because of imperfections in the crystal potential, they suffer scattering. A steady state is
established in which the electrons have some net drift velocity in the field direction. The
response of the electrons to the field can be represented by a velocity—field relation. We
will briefly discuss the velocity-field relationships at low electric fields and moderately
high electric fields.
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Low field response: mobility

At low electric fields, the macroscopic transport properties of the material (mobility,
conductivity) can be related to the microscopic properties (scattering rate or relaxation
time) by simple arguments. We will not solve the Boltzmann transport equation, but we
will use simple conceptual arguments to understand this relationship. In this approach
we make the following assumptions:

(1) The electrons in the semiconductor do not interact with each other. This
approximation is called the independent electron approximation.
(i1) Electrons suffer collisions from various scattering sources and the time 7, describes
the mean time between successive collisions.
(1ii) The electrons move according to the free electron equation

hdk
S =E (4.24)

in between collisions. After a collision, the electrons lose all their excess energy (on the
average) so that the electron gas is essentially at thermal equilibrium. This assumption
is really valid only at very low electric fields.

According to these assumptions, immediately after a collision the electron ve-
locity is the same as that given by the thermal equilibrium conditions. This average
velocity is thus zero after collisions. The electron gains a velocity in between collisions;
1.e., only for the time 7.

This average velocity gain is then that of an electron with mass m*, traveling
in a field E, for a time 7,

Vavg = —“”Em—r = va (4.25)

where v4 is the drift velocity. The current density is now

2
J=—nevy= = R (4.26)
m
Comparing this with the Ohm’s law result for conductivity o
J=0¢E (4.27)
we have 5
o= 28 T (4.28)
m

The resistivity of the semiconductor is simply the inverse of the conductivity. From the
definition of mobility p, for electrons

we have ers
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Bandgap Mobility at 300 K

(eV) (cm?/V-s)
Semiconductor 300 K 0K  Elec. Holes
C 547 5.48 1800 1200
GaN 34 35 1400 350
Ge 0.66 0.74 3900 1900
Si 1.12 1.17 1500 450
«a-SiC 3.00 3.30 400 50
GaSb 0.72 0.81 5000 850
GaAs 142 152 8500 400
GaP 2.26 2.34 110 75
InSb 0.17 0.23 80000 1250
InAs 0.36 0.42 33000 460
InP 1.35 142 4600 150
CdTe 1.48 1.61 1050 100
PbTe 0.31 0.19 6000 4000
Ing 53Gag.47As 0.8 0.88 11000 400

Table 4.1: Bandgaps along with electron and hole mobilities in several semiconductors. Prop-
erties of large bandgap materials (C, GaN, SiC) are continuously changing (mobility is improv-
ing), due to progress in crystal growth. Zero temperature bandgap is extrapolated.

If both electrons and holes are present, the conductivity of the material becomes

0 = nep, + peplp (4.31)

where p, and p, are the electron and hole mobilities and n and p are their densities.
Notice that the mobility has an explicit ni. dependence in it. Additionally 7.
also decreases with m*. Thus the mobility has a strong dependence on the carrier mass.
In Table 4.1 we show the mobilities of several important semiconductors at room tem-
perature. The results are shown for pure materials. If the semiconductors are doped, the

mobility decreases. Note that Ge has the best hole mobility among all semiconductors.

In Appendix E we have derived mobility limited by ionized impurity and by
alloy scattering.
The total relaxation time due to ionized impurity scattering is

Loo_ oyt (ZJ)Z 1
((r)) — T128v2r \ € ) mel/2 (kpT)??
* 2
x| 1+(8m2kBT - L , (4.32)
he)2 FLQAQ
1+ %
(sttir)
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The mobility limited from ionized impurity scattering is

_e{(m)

=—x
The mobility limited by ionized dopant has the special feature that it decreases
with temperature (i ~ T3/2). This temperature dependence is quite unique to ionized
impurity scattering. One can understand this behavior physically by saying that at
higher temperatures, the electrons are traveling faster and are less affected by the ionized

impurities.
After doing the proper ensemble averaging the relaxation time for the alloy
scattering is , o/ p
* 1

1 3_7T_VOU3”1‘(1 - x)m (k5T) !

(7)) 8h V2r2h® 0.75

according to which the mobility due to alloy scattering is

(4.33)

fo X T—1/2
The temperature dependence of mobility is in contrast to the situation for the ionized
impurity scattering. The value of U,y 1s usually in the range of 1.0 eV.

EXAMPLE 4.2 Consider a semiconductor with effective mass m* = 0.26 mo. The optical
phonon energy is 50 meV. The carrier scattering relaxation time is 107'2 sec at 300 K. Calculate
the electric field at which the electron can emit optical phonons on the average.

In this problem we have to remember that an electron can emit an optical phonon
only if its energy is equal to (or greater than) the phonon energy. According to the transport
theory, the average energy of the electrons is (vq is the drift velocity)

3 1
E= EkBT + 5m*vﬁl
In our case, this has to be 50 meV at 300 K. Since k5T ~ 26 meV at 300 K, we have

1
5m*v?,} =50 —39 =11 meV

or
2 - 2x(1x 107 x 1.6 x 1071° J)
4 = (0.91 x 10~30 x 0.26 kg)
ve = 1.22x10° m/s

Also we should note that the symbol E is being used for the electric field and energy
etE

m*

vy =
Substituting for vq, we get (for the average electrons) for the electric field

(0.26 x 0.91 x 107°° kg)(1.22 x 10°> m/s)
(4.8 x 10710 esu)(1013 s)
18.04 kV/cm

E =

fl
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166 Charge transport in materials

The results discussed correspond approximately to silicon. Of course, since the distribution
function has a spread, electrons start emitting optical phonons at a field lower than the one
calculated above for the average electron.
EXAMPLE 4.3 The mobility of electrons in pure GaAs at 300 K is 8500 cm?/Vs. Calculate
the relaxation time. If the GaAs sample is doped at Ng = 10’7 cm™2, the mobility decreases
to 5000 cm?/V-s. Calculate the relaxation time due to ionized impurity scattering.

The relaxation time is related to the mobility by

ay _ m*u _ (0.067 x 0.91 x 107°° kg}(8500 x 107* m?/V -5)
Tee = T T 16%10-1° C
= 324x107%s

If the ionized impurities are present, the time is

*
D= 1 9%x107 s
e
The total scattering rate is the sum of individual scattering rates. Since the scattering rate is
inverse of scattering time we find that (this is called Mathieson’s rule) the impurity-related

time rﬁff"”) is given by

1 _ 1, 1
AN s

which gives /
r{mP) — 4.6 % 10713

EXAMPLE 4.4 The mobility of electrons in pure silicon at 300 K is 1500 cm?/Vs. Calculate
the time between scattering events using the conductivity effective mass.
The conductivity mass for indirect semiconductors, snch as Si, is given by

. A 9 1 —~1
m = +
¢ m;  mj

32+ ) m0aem
0.19m,  0.98m, NE ¥

The scattering time is then

;. kme _ (0.26x0.91 x 107%%)(1500 x 10™*)
sC - -

e 1.6 x 10-19
= 22x107 %5

EXAMPLE 4.5 Consider two semiconductor samples, one Si and one GaAs. Both materials
are doped n-type at Ng = 10'7 em ™. Assume 50 % of the donors are ionized at 300 K.
Calculate the conductivity of the samples. Compare this conductivity to the conductivity of
undoped samples.

You may assume the following values:

pa(Si) = 1000 cm®/V-s

pp(Si) = 350 cm®/V-s
Hn(GaAs) = 8000 cm®/V.s
pp(GaAs) 400 cm®/V-s
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In the doped semiconductors, the electron density is (50 % of 10" cm™)

16 -3
Ttdoped = 5 X 107 cm

and hole density can be found from

2

n;
doped —
Pdope M doped
For silicon we have "
2.25 x 10 3 -3
Pdoped = _—“5 < 1016 =4.5 % 10" cm

which is negligible for the conductivity calculation.
The conductivity is

Cdoped = Nefin + pepiy =8 (2 cm)™"

In the case of undoped silicon we get (n =n; = p = 1.5 x 10'® cm™?)

Gundoped = Mi€lin + Piefp = 3.24 X 107¢ ($ cm)_1
For GaAs we get

Taoped = 5 % 10" x 1.6 x 107'% x 8000 = 64 (2 cm)™!

For undoped GaAs we get (n; = 1.84 x 106 cm_?’)

Oundoped = Mi€fin + piefip = 2.47 x 107° (Q cm)™!
You can see the very large difference in the conductivities of the doped and undoped samples.

Also there is a large difference between GaAs and Si.

EXAMPLE 4.6 Consider a semiconductor in equilibrium in which the position of the Fermi
level can be placed anywhere within the bandgap.

What is the maximum and minimum conductivity for Si and GaAs at 300 K? You
can use the data given in the problem above.

The maximum carrier density occurs when the Fermi level coincides with the conduc-
tion bandedge if N. > N, or with the valence bandedge if N, > N.. If N. > N,; the Boltzmann
approximation gives

max = N
while if N, > N. we get
Pmax = N,
This gives us for the maximum density: i) for Si, 2.78 x 10" cm™? ii) for GaAs, 7.72x10'® cm ™2,
Based on these numbers we can calculate the maximum conducitvity:
For Si

Tmax = 2.78 x 10" x 1.6 x 107"° x 1000 = 4.45 x 10° (€2 cm)™!
For GaAs

Omax = 7.72 x 10" x 1.6 x 107" x 400 = 4.9 x 10° (Q cm)™*
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168 Charge transport in materials

To find the minimum conductivity we need to find the minima of the expression

0 = mnepn+pepp
n?
= 76#11 + peup

To find the minimum we take the derivative with respect to p and equate the result to zero.
This gives

p=ni, |22
Hp
This then gives for the minimum conductivity
Omin = nie[ll'n ﬁf_ + bp ”’_"]
Hn bp

For Si this gives upon plugging in numbers

Omin = 2.8 x 107° (Q cm) ™!

and for GaAs

Ormin = 1.05 x 107° (Q cm)™}
Note that these values are lower than the values we get in the the previous problem for the
undoped cases. This example shows the tremendous variation in conductivity that can be

obtained in a semiconductor.

High field transport: velocity—field relations

In most electronic devices a significant portion of the electronic transport occurs under
strong electric fields. This is especially true of field effect transistors. At such high fields
(~ 1— 100 kV/cm) the electrons get “hot” and aquire a high average energy. The extra
energy comes due to the strong electric fields. The drift velocities are also quite high. The
description of electrons at such high electric fields is quite complex and requires either
numerical techniques or computer simulations. We will only summarize the results.

At high electric field as the carriers gain energy from the field they suffer greater
rates of scattering, i.e., 75, decreases. The mobility thus starts to decrease. It is usual to
represent the response of the carriers to the electric field by velocity—field relations. In
Fig. 4.10 we show such relations for several semiconductors. At very high fields the drift
velocity becomes saturated; i.e., becomes independent of the electric field. The drift
velocity for carriers in most materials saturates to a value of ~ 107 ¢cm/s. The fact that
the velocity saturates is very important in understanding current flow in semiconductor
devices.

EXAMPLE 4.7 The mobility of electrons in a semiconductor decreases as the electric field
is increased. This is because the scattering rate increases as electrons become hotter due to the
applied field. Calculate the relaxation time of electrons in silicon at 1 kV/cm and 100 kV/cm
at 300 K.

The velocity of the silicon electrons at 1 XV /cm and 100 kV/cm is approximately 1.4
x 10° cm s and 1.0 x 107 cm/s, respectively, from the v-F curves given in Fig. 4.10. The
mobilities are then

(1 kV/cm) = % = 1400 cm®/V -5
#(100 kV/cm) = 100 cm®/V -s
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Figure 4.10: Velocity-field relations for several semiconductors at 300 K.

The corresponding relaxation times are

(0.26 x 0.91 x 107°° kg)(1400 x 10~* m?/V)

_ —13
Tsc(1 kV /cm) TE 1= G =21x10 S
(0.26 x 0.91 x 107°°)(100 x 10™*) _1e
76c(100 kV /cm) = e o1 =148 x 107" s

Thus the scattering rate has dramatically increased at the higher field.

EXAMPLE 4.8 The average electric field in a particular 2.0 pgm GaAs device is 5 kV/cm.
Calculate the transit time of an electron through the device (a) if the low field mobility value
of 8000 cm? /V s is used; (b) if the saturation velocity value of 107 cm/s is used.

If the low field mobility is used, the average velocity of the electron is

v=pE = (8000 cm®/Vs) x (5% 10° V/ cm) =4 x 107 cm/s
The transit time through the device becomes

oL _20x107em

T T 4x 107 cm/s P
The transit time, if the saturation velocity (which is the correct velocity value) is used, is
L _2x107*
v 107
In our discussion on MESFET and MOSFET devices later in the text, we use a simple analytical

Tir = = 20 ps

model, and use the constant mobility model for electron velocity. As this example shows, this
can cause an error in transit time.
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Conduction band

Initial state has
one electron

Final state has
two electrons +
one hole

Valence band

Figure 4.11: The impact ionization process where a high energy conduction-band electron
scatters from a valence-band electron, producing two conduction-band electrons and a hole.

Very high field transport: breakdown phenomena

When the electric field becomes extremely high (2100 kV ¢cm™?), the semiconductor
suffers a “breakdown” in which the current has a “runaway” behavior. The breakdown
occurs due to carrier multiplication, which arises from the two sources discussed below.
By carrier multiplication we mean that the number of electrons and holes that can
participate in current flow increases. Of course, the total number of electrons is always
conserved.

Avalanche breakdown

In the transport considered in the previous subsections, the electron (hole) remains in
the same band during the transport. At very high electric fields, this does not hold true.
In the impact ionization process shown schematically in Fig. 4.11, an electron, which is
“very hot” (i.e., has a very high energy due to the applied field) scatters with an electron
in the valence band via coulombic interaction, and knocks it into the conduction band.
The initial electron must provide enough energy to bring the valence-band electron up
into the conduction band. Thus the initial electron should have energy slightly larger
than the bandgap (measured from the conduction-band minimum). In the final state
we now have two electrons in the conduction band and one hole in the valence band.
Thus the number of current carrying charges have multiplied, and the process is often
called avalanching. Note that the same could happen to “hot holes” and thus could then
trigger the avalanche.
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Material Bandgap Breakdown electric
(eV) field (V/cm)
GaAs 1.43 4x105
G
InI;
Ing 53Gag47As 0.8 2x105
5 o
SiC 29
8102 j?ff':j;, = |
SizNy 5 -107

Table 4.2: Breakdown electric fields in some materials.

Once avalanching starts, the carrier density in a device changes as

dn(z)
dz

= Qimpn (434)

where n is the carrier density and aimp represents the average rate of ionization per
unit distance.

The coeflicients ajmp for electrons and Bimp for holes depend upon the bandgap
of the material in a very strong manner. This is because, as discussed above, the process
can start only if the initial electron has a kinetic energy equal to a certain threshoid
(roughly equal to the bandgap). This is achieved for lower electric fields in narrow gap
materials.

If the electric field is constant so that oy is constant, the number of times an
initial electron will suffer impact ionization after traveling a distance x is

n(z) = exp (Aimp2) (4.35)
A critical breakdown field E..;; 1s defined where Qimp OF Bimp approaches

10* em™!. When a@imp (Bimp) approaches 10* cm™!, there is about one impact ion-
1zation when a carrier travels a distance of one micron. Values of the critical field are
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Electrons in
conduction band

Available empty
states (holes) in
valence band

(@)

(b)

Figure 4.12: (a) A schematic showing the E-z and E-k diagram for a p-n junction. An
electron in the conduction band can tunnel into an unoccupied state in the valence band or
vice versa. (b) The potential profile seen by the electron during the tunneling process.

given for several semiconductors in Table 4.2. The avalanche process places an important
limitation on the power output of devices. Once the process starts, the current rapidly
mcreases due to carrier multiplication and the control over the device is lost. The push
for high-power devices is one of the reasons for research in large gap semiconductor
devices. It must be noted that in certain devices, such as avalanche photodetectors,
the process 1s exploited for high gain detection. The process is also exploited in special
microwave devices.

Band-to-band tunneling breakdown

In quantum mechanics electrons behave as waves and one of the outcomes of this is
that electrons can tunnel through regions where classically they are forbidden. Thus
they can penetrate regions where the potential energy is larger than their total energy.
This process is described by the tunneling theory. This theory is invoked to understand
another phenomenon responsible for high field breakdown. Consider a semiconductor
under a strong field, as shown in Fig. 4.12a. At strong electric fields, the electrons in
the valence band can tunnel into an unoccupied state in the conduction band. As the
electron tunnels, 1t sees the potential profile shown in Fig. 4.12b.
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4.5. Carrier transport by diffusion 173

The tunneling probability through the triangular barrier is given by

—42m B}

where E is the electric field in the semiconductor.

In narrow bandgap materials this band-to-band tunneling or Zener tunneling
can be very important. It is the basis of the Zener diode, where the current is essentially
zero until the band-to-band tunneling starts and the current increases very sharply. A
tunneling probability of ~ 107% is necessary to start the breakdown process.

EXAMPLE 4.9 Calculate the band-to-band tunneling probability in GaAs and InAs at an
applied electric field of 2 x 10° V/cm.

The exponent for the tunneling probability is (m*(GaAs) = 0.065 mo; m*(InAs)
~ 0.02 mo; Fy(GaAs) = 1.5 eV; Ey(InAs) = 0.4 eV) for GaAs

4 % (2% 0.065 x 0.91 x 107°° kg)'/2(1.5 x 1.6 x 10~1° J)*/2
3 % (1.6 x 10~1° C)(1.05 x 10—3% Js)(2 x 107 V/m)
= -160

The tunneling probability is exp(—160) 2 0. For InAs the exponent turns out to be —12.5 and
the tunneling probability is

T =exp (-12.5) =3.7x 107°

In InAs the band-to-band tunneling will start becoming very important if the field is
~2x 10° V/cm.

4.5 CARRIER TRANSPORT BY DIFFUSION

In the previous sections we have seen how the force eE' applied by an electric field causes
transport in materials. There 1s another important transport mechanism that does not
involve such a direct force. This 1s the diffusion process. Whenever there is a gradient in
the concentration of a species of mobile particles, the particles diffuse from the regions
of high concentration to the regions of low concentration. This diffusion is due to the
random motion of the particles.

In the case of electrons (or holes), as the particles move they suffer random
collisions, as discussed in the previous section. The collision process can be described by
the mean free path £ and the mean collision time 7;.. The mean free path is the average
distance the electron (hole) travels between successive collisions. These collisions are
due to the various scattering processes that were discussed for the drift problem. In
between the collisions the electrons move randomly, with equal probability of moving
in any direction (there is no electric field). We are interested in finding out how the
electrons move (diffuse) when there is a concentration gradient in space.

Consider a concentration profile n(z,t) of electrons at time ¢, as shown in Fig.
4.13. We are going to calculate the electron flux ¢(z,t) across a plane z = z, at any
instant of time. We consider a region of space a mean free path £ to each side of z,,
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CARRIER CONCENTRATION ——»

x4 x, xp+/

X —>

Figure 4.13: The concentration profile of electrons as a function of space. The terms nr, ng,
L, and R are used to derive the diffusion law in the text. The distance £ is the mean free path
for electrons; i.e., the distance they travel between collisions.

from which electrons can come across the # = x, boundary in time 7,,. Electrons from
regions further away will suffer collisions that will randomly change their direction.
Since in the two regions labeled L and R in Fig. 4.13, the electrons move randomly, half
of the electrons in region L will go across £ = z, to the right and half in the region R
will go across z = z, to the left in time 7ic. The flux to the right is then

(np —ng)l
2Tsc

Pnl(z,t) = (4.37)

where ny and ng are the average carrier densities in the two regions. Since the two
regions L and R are separated by the distance £, we can write

d
’I’LL—-’I’LRE—d—n‘e (438)
Thus the net flux is
2 dn(z,t) dn(z,t)
n ,t = - —_— = =)y —— .
on(e.t)=—5— — 1 Dn— (4.39)

where Dy, is called the diffusion coefficient of the electron system and clearly depends
upon the scattering processes that control £ and the 7,.. Since the mean free path is
essentially vip oo, where vy, is the mean thermal speed, the diffusion coefficient depends
upon the temperature as well In a similar manner, the hole diffusion coefficient gives
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the hole flux due to a hole density gradient

¢p(z,t) = —Dp ___dpgiz,t) (4.40)

Because of this electron and hole flux, a current can flow in the structure that, in the
absence of an electric field, is given by (current is just charge multiplied by particle flux)

Jiot(diff) = Jn(diff) + Ip(diff)
dn(z,1) dp(z,1)
dx dx

= eD, —eD, (4.41)
While both electrons and holes move in the direction of lower concentration of electrons
and holes respectively, the currents they carry are opposite, since electrons are negatively

charged, while holes are positively charged.

EXAMPLE 4.10 In an n-type GaAs crystal at 300 K, the electron concentration varies along
the z-direction as
n(z) = 10" exp (—%) cm™? z>0

where L is 1.0 pum. Calculate the diffusion current density at z = 0 if the electron diffusion
coefficient is 220 cm?/s.
The diffusion current density at z = 0 is

dn

D, —
¢ dz

Tn(dif f)

2=0

(1.6 x 107*° C) (220 cm?/s) (

106 cm™?
10—% cm

3.5kA/ cm®

Note that in this problem the diffusion current of electrons changes with the position
in space. Since the total current is constant in the absence of any source or sink of current,
some other current must be present to compensate for the spatial change in electron diffusion

current.

4.5.1 Transport by drift and diffusion: Einstein’s relation

In many electronic devices the charge moves under the combined influence of electric
fields and concentration gradients. The current is then given by

dn(z)
dx

Jn(z)

epnn(z)E(z) +eD,

Jo(z) = eppp(z)E(z)—eD,

d
ﬁ(”’) (4.42)
In our discussion of the diffusion coefficient we indicated that it is controlled
by essentially the same scattering mechanisms that control the mobility. We will now
establish an important relationship between mobility and diffusion coefficients. To do
s0, let us examine the effect of electric fields on the energy bands of the semiconductor.

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

176 Charge transport in materials

We consider a case where a uniform electric field is applied, as shown in Fig. 4.14a. The
potential energy associated with the field is shown in Fig. 4.14b. There is a positive
potential on the left-hand side in relation to the right-hand side. For a uniform electric
field the potential energy is

U(z)=U(0)— eEx (4.43)
The potential energy profile is shown in Fig. 4.14b. We now discuss how the electron
energy band profile is displayed. The electron energy band includes the effect of the
negative charge of the electrons. The applied force is related to the potential energy by

Force = —VU () (4.44)

Thus, since the electron charge —e is negative, the bands bend as shown in Fig. 4.14c

according to the relation
E.(x) = E.(0)+ eFEx (4.45)

Thus, if a posttive potential is applied to the left of the material and a negative to the
right, the energy bands will be lower on the left-hand side, as shown in Fig. {.14c. The
electrons drift downhill in the energy band picture and thus opposite to the field.
At equilibrium, the total electron and hole currents are individually zero and
we have from Eq. 4.42 for the electrons
E(z)= 2o _L_ (@) (4.46)
pn n(z) dz
To obtain the derivative of carrier concentration, we write n(z) in terms of the intrinsic
Fermi level, F'r;, which serves as a reference level, and the Fermi level in the semicon-
ductor, Ep(z). If we assume that the electron distribution is given by the Boltzmann

distribution we have
Ep;, — F
n(e) = n; exp { - (Zri=Lr@) (4.47)
kgT

dn(:c) _ n(:l:) _dEFi + dEF
de ~ kgT dz dx

At equilibrium, the Fermi level cannol vary spatially, otherwise the probability
of finding electrons along a constant energy position will vary along the semiconductor.
This would cause electrons at a given energy in a region where the probability is low
to move to the same energy in a region where the probability is high. Since this is not
allowed by definition of equilibrium conditions, i.e. no current is flowing, the Fermi level
has to be uniform in space at equilibrium, or

This gives

(4.48)

dEp
=0 (4.49)
We then have from Eqs. 4.43 and 4.45 (using E(z) = %%)
D, kgT
=== (4.50)
Hn €
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Figure 4.14: (a) Electric field profile in a semiconductor. (b) Plot of the potential energy
associated with the electric field. (c) Electron energy band profile. The negative charge of the
electron causes the energy band profile to have the opposite sign to the potential energy profile.
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Dp Dp Mp Mp
(cm2/s) (cm2/s) (cm2/V.s) (cm2/V «s)
Ge 100 50 3900 1900
Si 35 12.5 1350 480
GaAs 220 10 8500 400

Table 4.3: Low field mobility and diffusion coeflicients for several semiconductors at room
temperature. The Einstein relation is satisfied quite well.

which 1s the Einstein relation satisfied for electrons. A similar relation exists for the
holes.

Table 4.3 lists the mobilities and diffusion coefficients for a few semiconductors
at room temperature.

EXAMPLE 4.11 Use the velocity—field relations for electrons in silicon to obtain the diffusion
coefficient at an electric field of 1 kV/cm and 10 kV /cm at 300 K.

According to the v-E relations given in Fig. 4.10, the velocity of electrons in silicon is
~ 1.4 x 10° cm/s and ~ 7 x 10° cm/s at 1 kV/cm and 10 kV /cm. Using the Einstein relation,
we have for the diffusion coefficient

_ pkaT o vkT

D e eF

This gives

(1.4 x 10*m/5)(0.026 x 1.6 x 107*° J)
(1.6 x 1012 C)(105 V/m™")

3.64 x 107> m*/s = 36.4 cm®/s

(7 % 10* m/s)(0.026 x 1.6 x 107'° J)
(1.6 x 10—1° C)(10% Vm™")

= 1.82x107° m?/s = 18.2 cm?/s

i

D(1kV/ cm™")

D(10kV/ cm™1)

The diffusion coefficient decreases with the field because of the higher scattering rate at higher
fields.

4.6 IMPORTANT DEVICES BASED ON CONDUCTIVITY
CHANGES

In this section we will provide a brief overview of the important devices that are based
on electron transport in high-quality crystalline materials. High performance semicon-
ductor devices, such as field effect transistors and bipolar transistors, are responsible
for high-speed microprocessors, satellite communication systems, radar systems, and
drivers for high-speed optical communication systems. We will mainly discuss the moti-
vations driving advances in these devices — but not provide details of device design and
operation.
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Electronic devices based on semiconductors fall into two categories—unipolar
and bipolar. In unipolar devices only one type of charge flow occurs (i.e., either electrons
or holes), while in bipolar devices both electrons and holes participate in current flow.
Devices, such as field effect transistors (which include the metal oxide semiconductor
field effect transistor (MOSFET)) and other variations are unipolar devices. Bipolar
junction transistors (BJTs) or heterojunction bipolar transistors (HBTs) involve both
electron and hole current flow.

We will briefly discuss how semiconductor devices function, but before that let
us take a look at some of the driving forces behind semiconductor technology.

Semiconductor digital and analog devices operate by being able to alter rapidly
the current flowing in the device by the application of a small input signal. The current
in a device can be changed by changing the electron or hole density, or the area A
through which current is flowing. The way the transistor operation occurs enables it to
alter n and an effective channel opening area A quite easily, and at high speed.

As will be seen from the brief discussion below the needs for high performance
devices involve (i) superior mobility to improve transit times, (ii) large bandgap to
avoid high voltage breakdown; (iii) semiconductors, which can be combined with large
bandedge discontinuities, etc. As a result, while Si1 and GaAs are the most important
semiconductors many other materials are finding important applications.

4.6.1 Field effect transistor

The field effect transistor (FET) forms the backbone of the digital and analog micro-
electronic systems. From consumer electronic goods, such as stereo systems and mi-
croprocessors on automobiles, to satellite communication systems, the FETs provide a
versatile device. This three-terminal device, consisting of source and drain ohmic con-
tacts through which current flows and a gate that is isolated from the active channel,
can be loosely compared to a water tap. The gate is equivalent to the faucet handle
which shuts off the water supply by constricting the flow in the channel.

The most important FET structure is the Si-based Metal-Oxide-Semiconductor
FET or MOSFET. One of the reasons for the great success of Si technology is that a
high-quality oxide (an insulator) can be grown directly on it. This oxide layer, with a
bandgap of 9.0 eV, effectively isolates the channel where the charge flows from the gate.
A strong bias can then be applied to the gate without drawing any current into the
gate.

In the MOSFET, the charge in the channel (i.e., at the oxide-semiconductor
Jjunction) is not due to any donors, but is produced by “inversion” created by the gate
bias. For example, the n-MOS device is produced in p~ Si, as shown in Fig. 4.15a. In Fig.
4.15 we show how a gate bias can create band bending, so that there is an accumulation
of holes (Fig. 4.15b) at the interface, and a depletion state, where there are very few
mobile changes at the interface (Fig. 4.15¢). This is the OFF state. The gate bias can
also create an inversion state where there is a high density of electrons at the interface
(Fig. 4.15d). This is the ON state. The variation of the gate bias can change the electron
concentration and thus modulate the current flowing through the source and drain.

For semiconductors, such as GaAs, InP, InGaAs, etc., there is no oxide (or
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Figure 4.15: (a) A schematic of an n-MOS device. In figures (b), (c), and (d), the effect of
the gate potential on the electron and hole density at the interfaces is shown. When the excess
electrons are formed under inversion conditions, the device channel is conducting.
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Figure 4.16: (a) A schematic of a JFET or MESFET showing the source, drain, and gate.
The channel width of this device is h. (b) The band profile when the applied gate bias is zero
as is the source-drain bias. (c) The band profile with a negative gate bias so that the channel
is depleted.

other simple compound) which could act as an insulator to isolate the gate from the
channel. This is a big disadvantage for these materials, since the simple and elegant
MOS concept cannot be used. Instead we have to use a Schottky barrier to provide the
gate to channel isolation, and the material has to be doped to provide the active charge
in the channel. The gate potential modulates the charge in the channel by modulating
the depletion width under the gate. This device is known as a Metal-Semiconductor
FET or MESFET, and is shown schematically in Fig. 4.16.

In the MESFET the gate voltage controls the area of the channel opening where
mobile carriers are present. As shown in Fig. 4.16 the gate bias increases or decreases

the depletion region and thus controls the gate current flowing from the source to
the drain. In the MESFET, the free charge moves through and scatters from the fixed
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donor (acceptor) impurities, resulting in mobilities that are lower than those in undoped
materials. Also, the device operation suffers at low temperatures because of the carrier
freeze-out effect discussed in Chapter 3. An ingenious way out of both of these problems
is provided by the MODFET, using simple heterostructure concepts. In this device, as
shown in Fig. 4.17, the dopants are placed in a larger bandgap material, which has
a positive conduction band offset (for the n-MODFET). The electrons spill into the
lower bandgap semiconductor, and the resulting charge separation causes band bending
according to the Poisson equation, resulting in the formation of an electron channel.
The key improvement over the MESFET is the improved mobility and superior low
temperature performance due to reduced ionized impurity scattering and lack of carrier
freeze-out. In fact, the MODFET has taken over all device functions in systems where
very high performance is the key requirement.

What is the driving force for the FET structures? To answer this question we
must examine a few simple concepts that describe device performance. The driving
forces for the FET designer come from one of the following general considerations:
faster switching time for digital applications; lower power dissipation for digital systems
in the switching process; higher frequencies of operation for microwave applications;
higher power output for microwave applications; and higher temperature performance.

We will briefly discuss the important motivation for device research in semicon-
ductor electronics. As can be seen in Table 4.4 there are a number of important driving
forces.

e High frequency/high speed: scaling

The most important approach in the march towards higher speed devices has been the

scaling of device dimensions. The scaling approach has led to the famous Moore’s law,

according to which the complexity of a semiconductor chip doubles every 18 months.
Shrinking of FET gate length essentially reduces the transit time of electrons

from the source to the drain. As an approximation the transit time ¢, is given by

tey ~ » (4.51)
where v is approximately the saturation velocity of the electrons. An obvious way to
reduce the transit time is to reduce the device length. This has been a primary method to
develop high-speed technologies. Device dimensions are scaled down through advances
in technology.

To continue to scale devices, in addition to lithographic-tools-related challenges,
an emerging challenge is becoming the tunneling-related leakage current at very small
dimensions. In the Si MOSFET technology, scaling laws demand that the gate length
L and oxide thickness are related by

L ~ 45dey (4.52)

It is straightforward to see that once SiO; thickness becomes ~ 20 A (i-e., Lg reaches
sub 0.1 #m) tunneling current through the insulator becomes very large, and the device
becomes leaky.
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Figure 4.17: (a) A schematic of a GaAs/AlGaAs MODFET structure. (b) The transfer of
electrons from the barrier region to the GaAs interface, forming a 2D electron gas. Since
electrons are spatially separated from donors they do not suffer much scattering from ionized

impurities.
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MOSFETs Smaller dimensions
Use of SiGe systems
Superior interface
High dielectric constant insulators

MESFETs New, faster material systems
MODFETs Submicron gates
Improved ohmic technology
Large bandgap semiconductors

Table 4.4: Approaches for improving FET performance.

To avoid the gate-tunneling leakage current there is considerable research work
in using high dielectric constant insulators. Several systems including oxides, such as
BzTiOg, SrTiOg, etc., are being examined. A large dielectric constant allows the insu-
lator to be thicker (and hence tunneling is suppressed), while maintaining gate control.
¢ High speed/high frequency: new faster materials
It is possible to increase device speed (i.e., decrease electron transit time) by using
materials with small effective masses. A smaller effective mass not only ensures greater
acceleration in a field, there is also less scattering. The push from Si to GaAs to InGaAs,
etc., is based on this motivation. It has to be remembered, though, that silicon remains
the most reliable and inexpensive technology. “Fast materials” are used only when speed
is critical.

e High power/high temperature devices

Both high-power and high-temperature devices require large bandgap semiconductors.
A large bandgap allows a large breakdown field and the low intrinsic carrier concentra-
tion necessary for operations under large bias and high temperatures. Large bandgap
technologies currently in commercial use include SiC- and GaN-based devices. Diamond
(C) is a large bandgap semiconductor with great potential, although many technology
challenges have to be overcome to make C-based devices feasible.

4.6.2 Bipolar junction devices

Bipolar junction transistors (BJTs) and their superior versions, heterojunction BJTs
(or HBTs), are important electronic devices used for analog and digital applications. As
we have seen in the previous subsection, FETs operate by a gate signal manipulating
the total channel charge. In the case of a bipolar transistor, a “potential barrier” is
placed in the path of electrons (or holes). The raising or lowering of the barrier controls
the current flow.
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Figure 4.18: (a) Band profile of an unbiased n*p-n BJT. (b) Band profile of a BJT biased
for high gain.
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'CONSIDERATIONS

Low base resistance =g» wide base and high doping

narrow base

Low transit time
High base-emitter valence band offset (for n-p-n devices)
Low base-collector conduction band offset (for n-p-n devices)
High quality interfaces to suppress base recombination

Small dimensions

New material systems (SiGe, InGaAs)

Large bandgap systems for high power

Table 4.5: Driving forces for improved bipolar devices.

In Fig. 4.18 we show a typical n—p—n BJT. The current flowing from the emitter
to the collector can be controlled by raising or lowering the barrier created by the base
potential. Thus a small base current can cause a large change in the collector current
providing a large current gain.

The performance of bipolar transistors improves tremendously when the base
is made from a material with a bandgap smaller than that of the emitter material. The
use of a heterojunction device (HBT) greatly reduces the current that flows from the
base into the emitter, and thus improves device efficiency. In Fig. 4.19 we show a typical
HBT based on the AlGaAs/GaAs system. As can be seen from this figure, the use of
the lower gap base increases the barrier for hole injection into the emitter.

Advances in bipolar technology are driven by forces similar to those for FET
technology. In Fig. 4.5 we show some of the motivations.

4.7 TRANSPORT IN NON-CRYSTALLINE MATERIALS

As we have noted in the previous section, most of the modern high-performance elec-
tronic devices are based on high-quality crystalline materials. In these structures there
are very few trap states in the bandgap and transport occurs in the conduction and/or
the valence band.
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As applications diversify away from computing and communication into im-
age display, energy conversion, etc., devices based on non-crystalline materials become
useful. In these devices speed is not of primary concern. Cost issues and flexibility in
substrate choice may be of greater concern. For example, drivers for a display for a
large TV screen may only need to respond in milliseconds, but should be fabricated on
substrates which may be as large as a 1 m?. Similarly, solar cells fabricated on plastic
substrates may not be as efficient as crystalline solar cells, but the lower cost may be
the overriding factor.

As discussed in Section 4.2, non-crystalline materials have a high density of
trap or localized states. Amorphous and polycrystalline silicon are the most important
non-crystalline materials with applications in thin film transistors for display controls
and solar cells. Other non-crystalline materials are ferroelectrics and ceramics, which
have a wide range of applications as memories and sensors. In all of these materials
transport does not occur by “free flight” and scattering, as discussed in the previous
section, but through processes where an electron is trapped in a bandgap state and then
somehow escapes the trap.

4.7.1 Electron and hole transport in disordered systems

A model for transport in non-crystalline materials is shown in Fig. 4.20. Transport
involves combinations of “free flight,” “scattering,” “capture into a localized or trap
state,” and “escape from the localized state.” A number of models have been developed
to address such transport. In general transport is quite complex, since it depends upon
the degree of defects, disorder, and temperature. However general qualitative aspects
can be described.

Three important conduction mechanisms are shown in Fig. 4.21. We will discuss
the transport models for the three processes. In the first mode electrons essentially move
in the extended states, 1.e., at or above the mobility edge. The electrons are excited to
the mobility edge by phonons, and the conduction behavior is described by the thermally
activated behavior

0 = opexp [%] (4.53)
where o is the conductivity at the mobility edge and has been shown to have the form
Ce?

where C' ~ 0.03 and a is the minimum distance over which phase coherence could occur.
This quantity is also called the minimum metallic conductivity. For a = 3 A, the value
is 2x 102 Q7! em™1.

The second process indicated in Fig. 4.21 involves thermal activation from one
localized state to the nearest state in space above the Fermi level. This process has been
used to explain the impurity conduction in doped semiconductors. The electron is always
assumed to move to the nearest empty localized state. To estimate this conductivity,
we assume that the wavefunctions are described by (assumning a center at the origin)

W =e" (4.55)
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Figure 4.19: A schematic of the n-AlGaAsp—GaAs/n-GaAs heterojunction bipolar transistor
under bias. In contrast to a BJT the HBT has a lower base current, due to a higher barrier for
hole injection into the emitter, as shown in the bottom panels.
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Scattering
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scattering
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Figure 4.20: A schematic of how electron transport occurs in non-crystalline solids. Transport
involves free flight, scattering, capture, and escape (from localized states).

'Extended states
E (mobility edge)

T - - - = - - = Localized states
—>» Position in semiconductor

Figure 4.21: Mechanisms for transport in a disordered system. In case 1, the electron is
thermal activated to the states above the mobility edge. In case 2, the electron hops to the
nearest localized state, while, in the case 3, the electron hops to the “optimum” site, as explained
in the text.
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where a~! is the localization length. Note that the nature of the localized state is
fundamentally different from a Bloch state, which has a plane wave form and propagates
in the entire crystal. The current density is proportional to the overlap between the
wavefunctions, the density of states at the Fermi level N(Er), the width of the Fermi
distribution kT, the effective velocity of transport, which is chosen as vy, the attempt
frequency (& phonon frequency) times the average spacing between the states Ro. If
AFE is the average separation between the energies of the two states, and E the applied
field, the current density is

J ~ ekpT N(EF) Ro vpn exp(—2aRp)

—AE+eER)) ___ (—AE—eER
xp kpT P kpT

= 2ekpT N(Er) Ro Vpn exp (—QaRo — £) sinh (@) (4.56)

X

kpT kgT

For small electric fields, the sinh function can be expanded and the conductivity becomes

;s = 7
(5
AE
= 2¢*R2 vpn N(EF) exp |~20Rp — ——= (4.57)
kpT

An estimate of the energy spacing of the levels is simply obtained from the definition
of the density of states, i.e. \

AER Y (Er)R}
where Ry is the average separation between nearest neighbor states. This kind of near-
est neighbor hopping is dominant if nearly all states are strongly localized, e.g. as in
impurity states due to dopants.

In many disordered semiconductors, if the disorder is not too strong, we have
another important transport process indicated by the third process in Fig. 4.21. This
process, known as variable range hopping, was introduced by Mott and is a dominant
transport mode at low temperatures. At low temperatures, the hop would not occur to
the nearest spatial state, but the electron may prefer to go a potentially farther stat,
but one which is closer in energy so that a lower phonon energy is needed.

The density of states per unit energy range near the Fermi level in a sphere of

radius R is A
(?”) R3N(Er)

Thus, for the hopping process involving a distance within R, the average separation of
level energies will be

(4.58)

3
~ 4xR3 N(Er)

As can be seen, the farther the electron hops, the smaller the activation barrier that
it needs to overcome. However, a hop of a distance R will involve an overlap function,

AFE
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which falls as exp(—2aR). Thus, there will be an optimum distance for which the term

—-AFE
exp(—ZaR) exp (W)
B

is a maximum. This can easily be seen to occur when

d 3
. =0
iR [QQR YR N () IcBT]

1/4
Ro= | L
™= [SﬂN(E) ak'BT]

Using this value of R,,, we get for the conductivity behavior

or

B
o= Aexp (_’IT/-‘I> (4.59)

1/4 3 1/4
B=2 B a &
2T ]CBN(EF)

This variable range hopping temperature behavior has been observed in numerous dis-
ordered systems.

The formalisms given above for transport in disordered semiconductors provide
a mere glimpse into the complexities of transport in disordered materials. We have not
discussed high field transport in amorphous materials. It is expected that at high fields,
where electron energies are large, carriers will primarily reside in extended states above
the mobility edge. Here the transport will be similar to transport in crystalline mater-
lals, except the scattering rates would be higher. If we were to express the transport
in disordered materials in terms of a mobility, the mobility values are very small. Un-
like crystalline materials where mobilities are in the range of 10 — 10 ¢cm?/V. s (for
electrons), in disordered systems mobilities are only 0.1 to 1 cm?/V- s. Nevertheless, as
noted earlier, the values are adequate for some applications.

where

4.7.2 Tonic conduction

So far in this chapter we have discussed transport that occurs due to the motion of elec-
trons or holes. In most semiconductor devices this is the dominant (or only) transport
mechanism. There are, however, insulators where the electron (hole) density is negli-
gible due to the large bandgap or due to the very high defect density present. Some
such materials include various oxides (LiNbO3, BaTiOg3, etc.), which have interesting
polarization properties. These materials are used as sensors as well as microwave system
elements and optical switches.

In ionic conduction, ions move under an applied electric field through vacancy
sites. As shown in Fig. 4.22, there is an energy barrier for an ion to move into a vacant
spot. The ion uses a thermal assisted hopping process to overcome the barrier E; and,
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Electric field = 0
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Figure 4.22: A schematic of the configuration energy diagram. (a) In the absence of an electric
field hopping, rates to the left and right are equal, since the barriers are F;. (b) In the presence
of a field hopping to the right is more dominant than hopping to the left, due to the changes
in the barrier.

therefore, the mobility or diffusion coefficient has very strong temperature dependence
(exponential dependence). For ionic conduction to occur, the site into which the ion goes
has to be vacant. In the absence of an applied electric field, the diffusion process, which
involves hopping from one site to the vacant neighboring site, is random, as shown in
Fig. 4.22a. However, when a field is applied, there is a preferential hopping as shown
in Fig. 4.22b. The electric field lowers the barrier from left to right hopping by AE;,
as shown, while the barrier from right to left is increased. The net particle flow is the
difference between the left to right current and the right to left current

J = Jior-Jr-rL
< exp |— (Ei - AEZ) —exp | — (EZ + AEi)
P kpT P k5T
Linearising the exp (AE/kpT) term we get (AE; = Er,/2) as shown in Fig. 4.22b)
E E;
J x = — 4.
o 7 eXp (kBT] (4.60)
The current density can be written as
oy B -E;
J = C'N T €XP (kBT> (4.61)
where C' 1s a constant, n, /N is the fraction of vacancy sites and is given by
Ny ~Eyac
m = e () (4.62)
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where E, .. is the energy needed to create a cation and an anion vacancy. The current
density 1s now

_ C Evac —E;
J = —fE'exp (— 2I€BT> exp (m) (463)
This gives a conductivity
— J — c 1 i FEyac
U_E_TeXp{_kB—T (Ez+ 5 )} (464)

Ionic conductivities are very small compared to electronic conductivities, but, as noted
earlier in insulators with high defect densities, ionic transport can be important.

4.8 IMPORTANT NON-CRYSTALLINE ELECTRONIC
DEVICES

A number of non-crystalline (including crystals with high defect densities) structures
are used for device applications. These devices fall into two categories: (i) Devices where
conductivity changes occur by the application of an electrical signal (e.g., a voltage to
a gate of a transistor), as shown in Fig. 4.23. These devices are similar to the field
effect transistors considered in Section 4.6, except their performance is poor because
the transport properties (e.g., mobility) is poor in non-crystalline solids. (ii) Devices in
which the external perturbation alters the nature of electronic states by changing, say,
the density of localized states in the bandgap as shown in Fig. 2.23b. In this case the
external perturbation may be a gas or water vapor, depending upon applications. In
this category the devices are used as gas sensors and the device conductivity alters due
to the changes in the bandgap states.

Devices that fall in the first category mentioned above are made from materials
like amorphous or polycrystalline silicon. Also there is a growing interest in using or-
ganic semiconductors to make these devices. Organic-semiconductor based devices have
a potential advantage that they could be made on flexible (e.g., plastic) substrates. How-
ever, many technology issues still need to be resolved to make organic semiconductors
a viable alternative to amorphous Si thin film devices.

Gas sensors are usually made from materials traditionally called ceramics. A
very large number of materials can be used for gas sensors. Some materials have a
greater affinity to detect certain gases and can thus be highly selective in detection.

4.8.1 Thin Film Transistor

Thin film transistors (TFTs) are FETs based on amorphous or polycrystalline materials.
They are used in a variety of applications, including the control of display devices, such
as laptop screens and flat TVs. More than a million TFTs are required for a full color
display. Either polysilicon or amorphous silicon (a-Si) is used to fabricate the device,
which is basically an insulated gate field effect transistor. Polycrystalline Si devices
have better performance because of superior mobilities of the electrons. Devices used to
control display pixels need to switch in timescales of milliseconds instead of nanoseconds
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Figure 4.23: ( a) A voltage signal shifts the position of the Fermi level and changes the free
carrier density. Such a configuration can be used as a switch. (b) In a gas sensor, absorption
of a gas molecule alters the density of states and thus alters the device conductivity.
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needed for computers and communication devices. Thus even devices with mobilities of
0.1 cm?/V- s can be useful.

Thin film transistors are essentially similar to MOSFETs, except special designs
need to be used due to the substrate, which may be glass or a polymer. The devices do
offer considerable challenge because of the difficulty in controlling the material quality.
As noted earlier, the material is represented by mobility edges instead of the usual
bandedges in crystalline semiconductors. The position of the mobility edges, as well as
the density of “localized” states where electrons are essentially trapped, depend upon
fabrication processes. At present, the relation between the fabrication process and the
exact values of the bandstructure are only understood qualitatively. Since the threshold
voltage level in a MOSFET depends critically on the defect and localized interface
states, it becomes a challenge to fabricate devices with controllable threshold voltage.

Another important challenge for the TFT is the low mobility of electrons in
the transistor. In crystalline MOSFETS, the room temperature mobility of electrons in
the channel is ~ 600 cm? V=1 57! (in pure silicon it is ~ 1100 cm? V~! s71) but in
a-Si TFTs it is only ~1 cm? V~! s~1. Moreover, the mobility has a strong dependence
upon the carrier density in the channel. Considerable research is currently focussing on
improving the TFT performance.

4.8.2 Gas sensors

In Fig. 4.23b we have shown a schematic of how a change in surface conditions of a
material changes the electronic states. The changes in allowed states can occur, for
example, due to the additional bonding from a molecule that has attached itself to the
surface. The changes in electronic states can alter the conductivity of the material—
an effect that can then be exploited to detect the presence of the molecule. Devices
that can detect certain gas molecules provide an extremely important, often lifesaving
service. They find use in detecting poisonous gases as well as water vapor for humidity
detectors. Ceramic humidity and gas detectors are thin discs of porous material whose
conductivity (or resistance) is altered when molecules of a gas are absorbed on the
surface. The absorbed molecule interacts with the surface to alter the electronic states
as mentioned earlier and this causes a change in the conductivity of the device.

Due to the very complex nature of the transport and gas/solid interactions the
models used for gas sensors are mostly empirical. In Fig. 4.24 we show typical results for
a humidity sensor and a gas sensor. Through empirical studies (including trial and error)
and increasingly through a greater understanding of quantum mechanics of surfaces it
is possible to coat surfaces with thin films that can selectively detect certain molecules.

4.9 SUMMARY

In this chapter we have examined transport of charged carriers in materials. We have
also examined some of the important devices based on charge flow. In Tables 4.6-4.7
we summarize our findings.
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Figure 4.24: Typical responses of (a) humidity and (b) gas sensors.
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~ Topics STUDIED.

In perfect crystals there are no allowed states in the
bandgap and electrons can propagate without
scattering.

In non-crystalline systems there are localized states
where electrons can be trapped.

Electronic states in crystalline
and non-crystalline systems

In the presence of potentials, which act as
perturbations, electrons can scatter from one state
to another. The momentum direction of the
electron can change as a result of this scattering.

Scattering of electrons from
fixed potentials

* Due to imperfections, electrons scatter as they
move through the crystal.

* The mobility of electrons (holes) is proportional
to the scattering time.

B L S R

Carrier mobility is constant and velocity increases
linearly with applied electric field
(for fields < 1 kV/cm).

* Carrier velocity tends to saturate and mobility =
v/E starts to decrease.

* GaAs and other direct-gap semiconductors show
regions where velocity decreases as field increases;
i.e., they have negative resistance regions.

» Electrons and holes have so much energy that
they can cause impact ionization or carrier
multiplication. At a critical field E,.,;, the
coefficients approach 104 cm-1.

Table 4.6: Summary table.
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Carrier transport by diffusion

Carrier transport by diffusion is described by the
diffusion constant that is related to mobility.

Important electronic .
semiconductor devices

Field effect transistors and bipolar junction
transistors are crucial to modern information
technology. Device improvements are driven by
faster materials, large bandgap materials, and
heterostructures.

Transport in non-crystalline
materials

There are three important transport mechanisms in
non-crystalline materials:

(i) hopping to extended states and transport in
extended states;

(ii) hopping from a localized state to the nearest
localized state; and

(iii) variable range hopping.

Ionic conduction

In very large bandgap insulators with high defect
densities, electron (hole) conduction is very poor
and ionic conduction can become dominant. Ionic
conduction has a strong dependence on defect
density and temperature.

Non-crystalline material
based devices

Table 4.7: Summary table.

* Amorphous and polycrystalline semiconductors
have very poor mobilities (~0.1-1 cm2/Ves), but
can be used as FETs for applications where speed
is not an issue.

= Absorpton of molecules on the surface of devices
can cause changes in conductivity, leading to gas
sensor applications.
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4.10 PROBLEMS

Sections 4.3—4.4

4.1 Consider a sample of GaAs with electron effective mass of 0.067m,. If an electric
field of 1 kV/cm is applied, what is the drift velocity produced if

a) T = 107135

b) 15, = 10712 s

¢) Tse = 10711 s7

How does the drift velocity compare wirh the average thermal speed of the electrons at
room temperature?

4.2 Assume that at room temperature the electron mobility in Siis 1300 cm?/

V-s. If an electric field of 100 V/cm is applied, what is the excess energy of the elec-
trons? How does it compare with the thermal energy? If you assume that the mobility
is unchanged, how does the same comparison work out at a field of 5 kV/em? (Excess
energy = %m* ”3 where vg 1s the drift velocity.)

4.3 The electron mobility of Si at 300 K is 1400 cm?/Vs. Calculate the mean free path
and the energy gained in a mean free path at an electric field of 1 kV/cm. Assume that
the mean free path = vy, - 75., where vy, is the thermal velocity of the electron (vsp, ~
2.0 x 107 cm/s).

4.4 The mobility of electrons in the material InAs is ~ 35,000 ¢cm?/V-s at 300K com-
pared to a mobility of 1400 cm?/V:s for silicon. Calculate the scattering times in the
two semiconductors. The electron masses are 0.02 mg and 0.26 mg for InAs and Si,
respectively.

4.5 Calculate the ionized impurity limited mobility (Np = 10'¢ cm~3; 10'7 cm~3) in
GaAs from 77 K to 300 K.

4.6 If the measured room temperature mobility of electrons in GaAs doped n-type at
5x 10’ em~3 is 3500 cm?V~! s~! calculate the relaxation time for phonon scattering.
4.7 Calculate the alloy scattering limited mobility in Ing 53Gag 47As as a function of
temperature from 77 K to 400 K. Assume an alloy scattering potential of 1.0 eV.

4.8 Use the velocity-field relations for Si and GaAs to calculate the transit time of
electrons in a 1.0 pm region for a field of 1 kVem™! and 50 kVem™!.

4.9 The velocity of electrons in silicon remains ~1 x 107 ¢cm s~! between 50 kVcem™!
and 200 kVem~!. Estimate the scattering times at these two electric fields.

4.10 The power output of a device depends upon the maximum voltage that the device
can tolerate before impact-ionization-generated carriers become significant (say 10% ex-
cess carriers). Consider a device of length L, over which a potential V' drops uniformly.
What is the maximum voltage that can be tolerated by an Si and a diamond device for
L =2 pm and L = 0.5 pm? Use the values of the critical fields given in this chapter.
4.11 An electron in a silicon device is injected into a region where the field is 500 kV cm™
The length of this region is 1.0 pm. Calculate the average number of impact ionization
events that occur for the incident electron.

4.12 In Table 4.8 we show the resistivity of several metals. Based on these data cal-
culate the mobilities of electrons in (i) Cu; (ii) Ag; (iil) Au; and (iv) Al. Assume that
electron effective mass is mg and electron density is the density of electrons contributed
by the valence electrons.

1
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Section 4.6

4.13 In a silicon sample at 300 K, the electron concentration drops linearly from 1018
em™3 to 101% ¢m™2 over a length of 2.0 ym. Calculate the current density due to the
electron diffusion current. Use the diffusion constant values given in this chapter.

4.14 In a GaAs sample, it is known that the electron concentration varies linearly. The
diffusion current density at 300 K is found to be 100 A/cm?. Calculate the slope of the
electron concentration.

4.15 The electron concentration in a Si sample 1s given by

n(z) = n(0)exp(—z/L,); >0

with n(0) = 10'® cm™2 and L, = 3.0 pm. Calculate the diffusion current density as a
function of position if D,=35 cmz/s.
4.16 A silicon sample has the following electron density

n(z) = n(0)exp(—z/L,) >0

with n(0) = 10!® ¢cm~2 and L, = 2.0 pm. There is also a uniform electric field of 2
kV/cm in the material. Calculate the drift and diffusion current densities as a function
of position. The diffusion coefficient is 30 cm?/s and the mobility is 1000 cm?/V s.
4.17 In a GaAs sample the electrons are moving under an electric field of 5 kV cm™
and the carrier concentration is uniform at 10'® ¢cm~3. The electron velocity is the
saturated velocity of 107 cm/s. Calculate the drift current density. If a diffusion current
has to have the same magnitude, calculate the concentration gradient needed. Assume
a diffusion coefficient of 100 cm?/s.

4.18 Consider a 50 pm long silicon sample with an area of 1.0 umx20 ym. The sample
is doped n-type at 1017 cm~3. A bias of 1.0 V is applied across the length and a current
of 0.5 mA 1s observed. (Field 1s V/L).

e C(Calculate the Fermi level position of the sample.

e Calculate mobility of the electrons and the average scattering time between collisions.
Assume that the electron effective mass 1s 0.25 my.

4.19 Consider a GaAs sample doped n-type at 101¢ cm~2 on which an experiment is
done. At time ¢ = 0 an external stimulus introduces excess electrons at a point z = 0.
The excess charge 1s detected at # = 10.0 ym In the absence of any applied field after
25 x 107 s.

Use this information to answer the following:

e What 1s the diffusion coefficient of electrons?

o How much time will electrons travel (by drift) 1.0 ym under an applied field of
1.0 kV/em? Assume that the velocity—field relation is linear.

e What is the conductivity of this sample? Assume that the electron effective mass is
0.067 myg.

1
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Element  p(uQ-em)
Na 4.2
Cu 1.56
Ag 1.51
Au 2.04
Fe 8.9
Zn 55
Cd 6.8
Al 2.45
In 8.0
Sn 10.6

Table 4.8: Resistivities of some materials at 273 K in micro ohm centimeters.

4.11 FURTHER READING

e Transport in crystalline materials

~ M. Lundstrom, Fundamentals of Carrier Transport (Modular Series on Solid
State Devices), eds. by G.W, Neudeck and R.F. Pierret, Addison-Wesley,
Reading, MA, vol. X (1990).

J. Singh, Modern Physics for Engineers, Wiley-Interscience, New York (1999).
— K. Seeger, Semiconductor Physics, Springer Verlag, New York (1985).

|

— J. Singh, Electronic and Optoelectronic Properties of Semiconductors, Cam-
bridge University Press (2003).

e Transport in disordered materials

— N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Materials,
Clarenden Press, Oxford (1971).

~ A.J. Moulson and J.M. Herbert, FElectroceramics: Materials, Properties, and
Applications, Chapman & Hall (1992).
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Chapter

LIGHT ABSORPTION
AND EMISSION

5.1 INTRODUCTION

Light is an integral part of the human experience. Not only do we use light to find our
way around this complex world, it also provides us a medium for art and fantasy. And,
of course, it has been exploited for the important technology of communication, storage,
and display. In contrast to other parts of the electromagnetic spectrum, the human eye
directly detects light, giving the spectral range of 0.3 ym to 1.0 um a special status. In
Fig. 5.1 we show the electromagnetic spectrum and the region over which the human
eye responds. Of course, while the human eye response window is important for display
technology, there is great interest in infrared and far infrared (communication, night
visions, etc.) and ultraviolet regions (high-density memory, lithography printing, etc.).
In Fig. 5.2 we show an overview of physical phenomenon governing devices that
can detect and emit light. Three general categories are shown:
(i) In conventional inorganic semiconductor devices, light particles or photons create
electrons and holes through absorption. The electrons and holes create an electrical
signal that can be used to detect the radiation. Conversely, electrons and holes can
recombine to emit photons. In semiconductors it is also possible to use bandgap trap
levels to alter the photon energy. In this case the semiconductor is intentionally doped
with an impurity to create trap levels. In semiconductors, electron-hole pairs can also
form excitons that can participate in optical processes.
(ii) While inorganic semiconductors have been the building blocks of most high-performance
light detectors and emitters, there is considerable progress in the use of organic semicon-
ductors for such devices. The exact physical process by which light absorption and emis-
sion occurs in organic semiconductors is not fully understood. As discussed in Chapter
3 organic semiconductors are described by bonding and antibonding molecular orbitals.
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Figure 5.1: The bandgap and cutoff wavelengths for several semiconductors. The
semiconductor bandgaps range from 0 (for Hge.4Cdo.15Te) to well above 3 €V, providing

versatile detection systems.

( LIGHT DETECTION AND EMISSION !ﬁ

CONVENTIONAL SEMICONDUCTORS

Electron-hole generation or
recombination
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Figure 5.2: Light absorption and emission can occur by various processes, depending upon

the material system used.
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204 Light absorption and emission

In these states the electron—hole Coulombic attraction is very strong and plays an im-
portant role in optical processes.

iii) Finally, there is the simple technique whereby thermal energy produced by radia-
tion is exploited to detect (or create) light. In the well-known light bulb, a filament is
heated to create light, but we will not discuss this aspect. There are materials which
are pyroelectric (a property we will discuss in the next chapter) in which a voltage
develops when temperature changes. This allows us to use the temperature change as a
measure of the optical signal. These devices do not have the high performance (speed,
detectivity) that semiconductor devices have, but they are useful for thermal or night
vision imaging.

In this chapter we will discuss optical properties of semiconductors. Qur focus
will be on inorganic semiconductors, although due to the increasing importance of or-
ganic semiconductors we will discuss them as well. In the next chapter we will discuss
polarization-related effects, some of which can be used for optical detection.

5.2 IMPORTANT MATERIAL SYSTEMS

A large number of semiconductor systems are exploited for optoelectronic devices for
detection and emission. The choice of the material depends upon a number of issues;
some dependent on physics, some on technology, and some on market forces. We will
discuss some of the important factors that play a role in the choice of a material for light
detector or emitter. We will discuss inorganic semiconductors in this section. Organic
semiconductors will be discussed later in this chapter.

Bandstructure
Optical processes are strongest for direct gap semiconductors because of the momen-
tum conservation law. Materials like Si and Ge have weak optical properties. Indirect
gap semiconductors can be used for light detection, but they are not suitable for light
emission.

During the emission process the energy of the photon is very close to the band-
gap energy, E,

hw = E, (5.1)

and the wavelength is
he 1.24

Ar= — = ———
E, E (eV)um

(5.2)
The wavelength A, is also the cutoff wavelength if the material is used as a detector,
l.e., the material is transparent and, therefore, unresponsive to longer wavelengths. The
need for a particular optical wavelength thus determines the bandgap needed and the
materials used.

In Tables 5.1 and 5.2 we show some of the important materials and their
bandgaps. Factors that are crucial in determining the desired wavelength include:
(i) As shown in Fig. 5.3, demands from optical communication, where 1.55 pm and
1.3 pm light has the lowest optical fiber loss and lowest dispersion, respectively.
(ii) Blue light emission is needed for display applications.
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4 InGaAs
(Tunable E ¢ )

AlGaSbh
(Tunable E P )

4 InGaAsP

(Tunable E P )

/

HgCdTe
(Tunable E P )

Si
(Eg=11eV)

Ge
(Eg =0.7eV)

GaAs
(Eg =143 eV)

Table 5.1: Important semiconductor systems for light detection.
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In;_,Ga, As,Py_y; x = 0.47,, for lattice * Lattice matched to InP.

match to InP * Wide range of emission energies can be

E. =135-072y +0.12y2 eV 3 accessed (~0.8 to 1.35 V).
8 Y e » Material technology is quite advanced and
can be exploited for communication
applications.

S R R R S e e

* Lattice matched to GaAs.
* Technology is quite advanced and can be
used for LANS.

* Material becomes indirect at x = 0.45. %
» With N doping the LED can operate even if |
the material is indirect and green light

emission (A = 0.55 um) can be achieved.

* The versatile material can provide red
(GaAs 6Py 4); orange (GaAsg 35P 65:N), and
yellow (GaAsO_15P0‘85:N) as well.

SiC, GaN, ZnS, ZnSe— | * Important materials for blue light emission |
large gap materials which can emit blue | (for displays, memories). .

light and beyond : » Technology is not mature, but rapid progress
S— is being made.

T

Table 5.2: Important material systems for light emission. LEDs can be made from indirect
materials with an appropriate impurity, but the emission efficiency is low.
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(1i1) Ultraviolet light is needed for reducing resolution for optical storage and laser
printer applications.

iv) Long wavelength light (A ~ 5—14 pum) is needed for night vision or thermal imaging.
As can be seen from this brief overview, a wide range of material systems is needed.

Substrate availability

Almost all optoelectronic light sources depend upon epitaxial crystal growth techniques,
where a thin active layer (a few microns) is grown on a substrate (which 1s ~ 200 pm).
The availability of a high-quality substrate is extremely important in epitaxial technol-
ogy. If a substrate that lattice matches with the active device layer is not available,
the device layer may have dislocations and other defects in 1t. These can seriously hurt
the device performance. The important substrates that are available for light emitting
technology are GaAs and InP. A few semiconductors and their alloys can match with
these substrates. The lattice constant of an alloy 1s the weighted mean of the lattice
constants of the individual components; 1.e., the lattice constant of the alloy A, B;_, is

ax) = zas + (1 —z)ap (5.3)

where a4 and ap are the lattice constants of A and B.

Important semiconductor materials exploited in optoelectronics are the alloy
GagAly_,As, which 1s lattice matched very well to GaAs substrates; Ing 53Gag 47As
and Ings9Alg 43As, which are lattice matched with InP; InGaAsP which, 1s a quater-
nary material whose composition can be tailored to match with InP and can emit at
1.55 pm; and GaAsP, which has a wide range of bandgaps available. Recently there has
been a considerable interest in large bandgap materials such GaN (with InN and AIN)
to produce devices that emit blue or green light. The motivation is for superior dis-
play technology and for high-density optical memory applications (a shorter wavelength
allows reading of smaller features). Reliable nitride-based LEDs are now available in
the commercial market, although the substrate technology is still not fully developed.
Silicon carbide or sapphire serve as substrates for the nitride devices.

It 1s important to keep in mind that alloys such as GaAlAs and GaAsP become
indirect at certain compositions, as shown in Fig. 5.4. For efficient light emission, we
need to work in the direct gap region. However, with a suitable impurity, we can obtain
light emission 1 an indirect bandgap material.

5.3 OPTICAL PROCESSES IN SEMICONDUCTORS

In this section we will consider the basic photon absorption and emission processes
in semiconductors. To understand the optical processes we need not only to use the
quantum description of electrons (i.e., band theory), but also the quantum description
for light. In quantum mechanics, classical waves, such as electromagnetic waves, sound
waves, etc., behave as particles, and this particle nature becomes critical under some
conditions. Light waves, which are electromagnetic waves, behave as photons of energy
hw. In simple processes electron—photon interaction changes the electron energy by +hw
(absorption) or —hw (emission), as shown in Fig. 5.5.
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Figure 5.3: Optical attenuation vs. wavelength for an optical fiber. Primary loss mechanisms
are identified as absorption and scattering.
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Figure 5.4: Bandgaps of (a) Al;Ga;_As and (b) GaAs; P, as a function of alloy composi-
tion. Note that the bandgap changes from direct to indirect as shown. (After H.C. Casey and
M. Panish, Heterostructure Lasers, Academic Press, New York 1978.)
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210 Light absorption and emission

The full understanding of electron—photon interaction requires details of quan-
tum mechanics, which are beyond the scope of this book. Here we will provide some
physical motivation for the processes and then discuss the results.

5.3.1 Optical absorption and emission

We will now discuss how electrons in a semiconductor respond to electromagnetic fields
or photons. The interaction of electrons and photons is the basis of all semiconductor
optoelectronic devices. There are two kinds of events that occur when electron-photon
interactions occur: (i) absorption of photons, where the electron gains energy by ab-
sorbing a photon; and (ii) emission, where the electron emits a photon and loses energy.
These processes are schematically shown in Fig. 5.5. The emission process itself is charac-
terized as spontaneous emission and stimulated emission. Spontaneous emission occurs
even if there are no photons present, while stimulated emission occurs because of the
presence of photons. In this section we will give quantitative expressions for the various
processes characterizing electron—photon interactions. These expressions will not be de-
rived in detail, but will be simply introduced to the reader. The operation of the various
optoelectronic devices is governed by the expressions presented in this and the next few
sections.

Light is represented by electromagnetic waves, which travel through a medium
such as a semiconductor. This is described by Maxwell’s equations, which show that the
waves have a form given by the electric field vector dependence

E=E, exp {iw (nc—r —t)} exp (—%—Z—) (5.4)

Here z 1s the propagation direction, w the frequency, n, the refractive index, and «
the absorption coefficient of the medium. If « is zero, the wave propagates without
attenuation with a velocity ;=. However, for non-zero «, the photon flux I (~ E*E)
falls as i

I(z) = I(0) exp {—az} (5.5)

The absorption of light can occur for a variety of reasons, including absorption
by impurities in the material, or absorption where electrons in the conduction band or
holes in the valence band absorb the radiation (i.e., intraband absorption). However,
the most important optoelectronic interaction in semiconductors, as far as devices are
concerned, is the band-to-band transition shown in Fig. 5.6. In the photon absorption
process, a photon interacts with an electron in the valence band, causing the electron to
go into the conduction band. In the reverse process, the electron in the conduction band
recombines with a hole in the valence band to generate a photon. These two processes
are of obvious importance for light-detection and light—emission devices. As has been
noted above, the detailed scattering theory is beyond the scope of this text. However,
the important expressions that control the performance of detectors and lasers will be
examined in this section. The rates for the light emission and absorption processes are
determined by quantum mechanics. The scattering involves the following issues:
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ABSORPTION

Final state
Ef= Ei +hm

Initial state
Electron energy = E;

"Destroy”
a photon
EMISSION
Final state
Initial state Er=E;-ho
"Create”
a photon

Figure 5.5: (a) A schematic of an absorption process, where a photon is absorbed (destroyed)
and the energy and momentnm of the electron is altered. (b) The emission of a photon, where
a photon is created.

(i) Conservation of energy: In the absorption and emission process we have for the
initial and final energies of the electrons E; and E;

Absorption: Ey = E;+hw (5.6)
Emission: E; = F;—hw (5.7)

where hw is the photon energy. Since the minimum energy difference between the con-
duction and valence band states is the bandgap E,, the photon energy must be larger
than the bandgap in order for absorption to occur.

(ii) Conservation of momentum: In addition to energy conservation, we also need to
conserve the momentum Ak for the electrons and the photon system. The photon kpn
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value is given by )
T
kph == T (58)

Since 1 eV photons correspond to a wavelength of 1.24 pm, the k-values of relevance
are ~ 10=% A-1 which is essentially zero compared to the k-values for electrons. Thus
k-conservation ensures that the initial and final electrons should have the same k-value.
Another way to say this is that only “vertical” k transitions are allowed in the band-
structure picture, as shown in Fig. 5.6.

Because of this constraint of k-conservation, in semiconductors where the va-
lence band and conduction bandedges are at the same k = 0 value (the direct semi-
conductors), the optical transitions are quite strong. In indirect materials like Si, Ge,
etc., the optical transitions are very weak. This makes a tremendous difference in the
optical properties of these two kinds of materials. The transitions are very weak near
the bandedges of indirect semiconductors, and such materials cannot be used for high-
performance optoelectronic devices, such as lasers.

Because the k-values for the electron and hole are the same in vertical transi-
tions, we have, as shown in Fig. 5.7

21.2 1
hw = Eg+.}.i_.].c_< 1 + *)
2 my o omj
R k2

where m} is the reduced mass of the electron-hole system. Thus the relevant density of
states function tn the scatlering process is that where the mass used is the reduced mass.
This density of states is called the joint density of states.

Before providing details on absorption and emission processes let us briefly
describe some important relations. The absorption coefficient « described above tells us
how photons are absorbed as a function of distance traveled. We can relate this to the
absorption rate in time Wy via the relation

Wabs = avnpp (5.10)

where v is the speed of light in the material given by ¢/n, with n, being the refractive
index. The parameter npp is the photon number in the photon mode.

In quantum mechanics the electromagnetic radiation is described by photon
number rather than intensity or electric (magnetic) field values. The classical and quan-
tum description can be related however. If P,, denotes the power density (W/cm? of
light we have the relation

Nph
Py = %hwc (5.11)
where npp/V is the photon number density. The photon number can also be related to
the electric field in the radiation since the electric field amplitude Ey and power density
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CONDUCTION
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VALENCE
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Emission

®)

Figure 5.6: Band-to-band absorption in semiconductors. (a) An electron in the valence band
absorbs a photon and moves into the conduction band. (b) In the reverse process, the electron
recombines with a hole to emit a photon. Momentum conservation ensures that only vertical

transitions are allowed.

CONDUCTION BAND E

VALENCE BAND B

k=0

Figure 5.7: A schematic showing the relationship between photon energy and electron and
hole energies in momentum conserving transitions.

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

214 Light absorption and emission

are related. The relation 1s
2hw Nph

€0 1%
Each photon that is absorbed by inter-band absorption creates an electron—hole
pair. The generation rate of electron-hole pairs, G, is

E: = (5.12)

aPgy

Gr = hw

(5.13)

Keeping all these issues in mind, we can calculate the absorption coeflicient
for a semiconductor using Fermi golden rule. For light polarized along direction a, the
absorption coeflicient can be shown to be

7 e’h 1 5
= P Neo(h .
“ mienreg hw (a-p)is |7 New(hew) (5.14)

With N.y, the joint density of states is given by

VEm) (o — E)1V?
2R3

Ney(hw) = (5.15)

The quantity | (a - p)is |? is called the momentum or dipole matrix element
between the conduction and the valence band. The polarization averaged matrix element
turns out to be (2/3)p?,, where it is found that, for most semiconductors

92 2

Pev 2 90 to 24 eV (5.16)
mo

If we plug in some numbers for the absorption coeflicient of unpolarized light, we get
for GaAs (E, = 1.5 eV) (see Example 5.4)

hw — Ey)t/?
a(hw) = 4.7 x 104 % em™! (5.17)

where Aw and F, are in units of electron volts. The prefactor for any other direct
semiconductor can be obtained by scaling the reduced mass and the photon energy (see
Egs. 5.10 and 5.11) according to the reduced density of states.

In PFig. 5.8 we show the absorption coeflicient for several direct and indirect
bandgap semiconductors. In the case of indirect bandgap materials, the absorption co-
efficient is considerably smaller at the bandedges.

i we have an electron in a conduction band state and a hole in the valence
band state with the same k-value, the two can recombine and emit a photon. There
are two important classes of emission processes. In spontaneous emission an electron
recombines with a hole, even though no photons are present in the region, and emits a
photon. The rate for this emission process is given by

e2n,hw

Weom (hw) = | pew |2 (5.18)

2,352
3meomsc h
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5.3. Optical processes in semiconductors 215

If photons with frequency w are already present in the cavity with the semiconductor,
the recombination rate is enhanced by the presence of these photons. If ny, (hw) is the
photon occupation (i.e., the number of photons in a particular mode), the emission
(called stimulated emission) rate is given by

e’n, hw

Wit (hwo) =

m

W |pcv I2 ‘Tlph(hCU) (519)
Thus the rate is increased in proportion to the photon density already present in the
cavity.

In spontaneous emission, the photons that are emitted have no particular phase
relationship with each other and are thus incoherent. Light emission in light-emitting
diodes (LEDs) is due to spontaneous emission. In stimulated emission, however, the
photons that are emitted are in phase with the original photons that are present. The
radiation is thus coherent. Laser diodes depend upon stimulated emission. The acronym
laser stands for light amplification by stimulated emission radiation.

The radiative recombination time of an electron having a momentum Ak to
recombine with a hole (in the absence of photons) having the same momentum is

1
_Wem

7 (5.20)

In the definition of 7, it is assumed that the electron can find a hole with which
to recombine. If the probability of finding the hole is small, the radiative time can be
much longer, as discussed in Section 5.3.2. For materials like GaAs, the value of 7, is
about 1 ns (see Example 5.1). However, for indirect materials, the recombination time
can be as large as 1 ps. The recombination process is not only important for optical
emission devices, but the rate also plays a key role in the speed of many electronic
devices, e.g., bipolar devices, diodes, etc.

The electron-hole recombination during stimulated emission can be quite a bit
smaller than 7,, depending upon the photon intensity present.

EXAMPLE 5.1 A 1.7 €V photon is absorbed by a valence band electron in GaAs. If the
bandgap of GaAs is 1.41 eV, calculate the energy of the electron and heavy hole produced by
the photon absorption.

The electron, heavy-hole, and reduced mass of GaAs are 0.067 mg, 0.45 mo, and
0.058 myg, respectively. The electron and the hole generated by photon absorption have the
same momentum. The energy of the electron is

_ m; _
E° = B+ 2(hw - E)
Ef—E. = 0‘058(1.7 —1.41)=10.25eV

0.067
The hole energy is

: 0.058
E'_E, = -Pr(hw-E,)= ——2(17 1.
m;(w 5) e (17— 1.41)
= —0.04eV
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Figure 5.8: Absorption coefficient of several direct and indirect semiconductors. For the direct
gap material, the absorption coefficient is very strong once the photon energy exceeds the
bandgap. For indirect materials, the absorption coefficient rises much more gradually. Once
the photon energy is more than the direct gap, the absorption coeflicient increases rapidly.
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5.3. Optical processes in semiconductors 217

The electron, by virtue of its lower mass, is created with a much greater energy than the hole.

EXAMPLE 5.2 In silicon, an electron from the top of the valence band is taken to the
bottom of the conduction band by photon absorption. Calculate the change in the electron
momentum. Can this momentum difference be provided by a photon?

The conduction band minima for silicon are at a k-value of 2= (0.85, 0, 0). There are
five other similar bandedges. The top of the valence band has a k-value of 0. The change in
the momentum is thus

2w
5.43 x 10—10

hAk = h%" (0.85) = (1.05 x 107%*) ( ) (0.85)

= 1.03x 10" **kg.m.s~"

A photon which has an energy equal to the silicon bandgap can only provide a momentum of
27

By

The X for silicon bandgap is 1.06 gm and thus the photon momentum is about a factor of
1800 too small to balance the momentum needed for the momentum conservation. The lattice
vibrations produced by thermal vibration are needed for the process.

flkph =h-

EXAMPLE 5.3 The absorption coefficient near the bandedges of GaAs and Si are ~ 10* cm™*
and 10® cm™!, respectively. What is the minimum thickness of a sample in each case which
can absorb 90% of the incident light?

The light absorbed in a sample of length L is

or

Using k:: equal to 0.9, we get

L(GaAs) = —% In (0.1) = 23x107* cm
= 2.3 pm

L(Si) = _Flﬁ In (0.1) 23 um

Thus a Si detector requires a very thick active absorption layer to function.

EXAMPLE 5.4 Calculate the absorption coefficient of GaAs as a function of photon fre-
quency.
The joint density of states for GaAs is (using a reduced mass of 0.058m)

V2(m;) P (E — Bg)'V?
2 h®
1.414 x (0.058 x 0.91 x 107 kg)*/2(E — E,)'/?
9.87 x (1.05 x 10—34)2
1.5 x 10°*(E — hw)'/? 37'm™*

New(E)
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218 Light absorption and emission

The absorption coefficient for unpolarized light is

we’h 292, \ Neo(hw) 2
o(hw) = 2nrc€0Mo ( mo hw "3

The term 22 js ~23.0 eV for GaAs. This gives

3.1416 x (1.6 x 107"° ©)?(1.05 x 10™** I.s)

a(hw) 2 X 3.4 x (3 X 10° m/s)(8.84 x 10~12(F/m)?)
(23.0 X 1.6 X 107*° J) (hw — E,)'/? "
(0.91 x 10— kg) T ¥ 1.5 107 %
hw — 1/2
a(hw) = 1.9x10-3 P E) T
hw

Wl

Here the energy and fiw are in units of Joules. It is usual to express the energy in €V, and the

absorption coefficient in cm™!. This is obtained by multiplying the result by

1 1
[(1.6 X 10-19)172 * 100

_ /2
a(hw) = 4.7 x 104M cm™
hw

For GaAs the bandgap is 1.5 €V at low temperatures and 1.43 eV at room temperatures. From
the value of @, we can see that a few microns of GaAs are adequate to absorb a significant

fraction of light above the bandgap.

EXAMPLE 5.5 Calculate the electron-hole recombination time in GaAs.
The recombination rate is given by

2 2
2
Wom = —0r (25 4,
6reomocih mo

with 27{)%’— being 23 eV for GaAs.

(1.6 x 107" C)? x 3.4 x (23 x 1.6 x 107'° J)hw
6 x 3.1416 x (8.84 x 10=12 F/m) x (0.91 x 1020 kg)
1
" (3% 105 m/s)® x (1.05 x 10-3% J.5)2
= 71x107hw s7?

Wem =

If we require the value of hw in eV instead of J we get

Wem = T7.1x10%7 x (1.6 x 107"*)hw s~
1.14 x 10° hw s7*

For GaAs, hw ~ 1.5 €V so that
Wem = 1.71 x 10° 57}

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

5.3. Optical processes in semiconductors 219

The corresponding recombination time is

1

= 0.58 ns
Wem

To =

Remember that this is the recombination time when an electron can find a hole to recombine
with. This happens when there is a high concentration of electrons and holes; i.e., at high
injections of electrons and holes or when a minority carrier is injected into a heavily doped
majority carrier region, as discussed in the next subsection.

5.3.2 Charge injection, quasi-Fermi levels, and recombination

In the previous subsection we have discussed how light absorption and emission can
occur. In semiconductors we can alter these processes by changing the electron—hole
density. When electrons or holes are injected into a semiconductor a question arises:
What kind of distribution function describes the electron and hole occupation? We
know that in equilibrium the electron and hole occupation is represented by the Fermi
function. A new function is needed to describe the system when the electrons and holes
are not in equilibrium.

Quasi-Fermi levels

As discussed in Section 3.2, under equilibrium conditions the distribution of electrons
and holes is given by the Fermi function, which is defined once one knows the Fermi
level. Also the product of electrons and holes, np, is approximately constant. If excess
electrons and holes are injected into the semiconductor, clearly the same function will
not describe the occupation of states. Under certain assumptions the electron and hole
occupation can be described by the use of quasi-Fermi levels. These assumptions are:

(i) The electrons are in thermal equilibrium in the conduction band and the
holes are in equilibrium in the valence band. This means that the carriers in each band
are neither gaining nor losing energy from the crystal lattice atoms.

(i1) The electron—hole recombination time is much larger than the time for
the electrons and holes to reach equilibrium within the conduction and valence band,
respectively.

In most problems of interest, the time to reach equilibrium in the same band is
approximately a few picoseconds, while the e-h recombination time is anywhere from
a nanosecond to a microsecond. Thus the above assumptions are usually met. In this
case, the quasi-equilibrium electron and holes can be represented by an electron Fermi
function f¢ (with electron Fermi level) and a hole Fermi function f* (with a different
hole Fermi level). We now have

n:/m N.(E)f¢(E)dE
E.
E,
p:/_ Nw(E)f*(EYdE (5.21)
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where

B = T (5.22)

If fY(E) is the electron occupation in the valence band, the hole occupation is

MEY=1—f2(E) = 1-
FH(E) fU(E) exp(E;f;P)H
1
exp (B + 1 )

At equilibrium Ep, = Epp. If excess electrons and holes are injected into the semicon-
ductor, the electron quasi-Fermi level Fp, moves toward the conduction band, while
the hole quasi-Fermi level EFr, moves toward the valence band. The ability to define
quasi-Fermi levels Ep, and Epp provides us with a very useful approach to solve non-
equilibrium problems which are, of course, of greatest interest in devices.

By defining separate Fermi levels for the electrons and holes, we can study the
properties of excess carriers using the same relationship between Fermi level and carrier
density as we developed for the equilibrium problem. Thus, in the approximation where
the Ferm distribution is replaced by an exponential, we have

n = N, exp [(EFI:B;“EC) ]
i (Ev i EFP)
p = N, exp [ TaT (5.24)

In the more accurate Joyce-Dixon approximation we have

(Epn—Eo) = ksT [m oy fzv ]
(Bv — Epp) = kBT [ln N \/_N ] 525

The dependence of the quasi-Fermi levels on the electron and hole densities in GaAs
at 300 K are shown in Fig. 5.9. Note that for the same carrier injection (n = p), the
electron quasi-Fermi level moves a greater amount than the hole quasi-Fermi level. This
is because of the smaller electron effective mass.

EXAMPLE 5.6 Using Boltzmann statistics calculate the position of the electron and hole
quasi-Fermi levels when an e-h density of 10’7 cm™ is injected into pure silicon at 300 K.
At room temperature for Si we have

N. = 2.8x10° cm™®
N, = 1.04x10"° cm™®
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Figure 5.9: Dependence of the quasi-Fermi level positions in GaAs at 300 K on the electron
and hole density.

I n. = p, = 10’7 cm™, we obtain (kpT = 0.026 V)

Ern = ksT fn [1%;—]+E
= E,—0.146 eV

pkiare, 120 [fn Tv’l]
= E,+0.121eV

Since in Si, the bandgap is E. — E, = 1.1V, we have

Epn— Epp = (BE.— E,)—(0.146 4 0.121)
= 1.1-0.267 =0.833 eV

Electron—hole recombination
We have discussed the absorption and emission processes above. What happens if we
have some electrons in the conduction band and some holes in the valence band? What
is the recombination rate?

If an electron is available in a state k and a hole is also available in the state k
(ie., if the Fermi functions for the electrons and holes satisfy f¢(k) = f*(k) = 1), the
radiative recombination rate is found to be approximately (see Example 5.5)

Wem ~ 1.5 x 10%hw(eV) s71 (5.26)
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and the recombination time becomes (hw is expressed in electron volts)

0.67
To = hw(T\/) ns (527)

The recombination time discussed above is the shortest possible spontaneous
emission time since we have assumed that the electron has a unit probability of finding
a hole with the same k-value.

When carriers are injected into the semiconductors, the occupation probabilities
for the appropriate quasi-Fermi levels give the electron and hole states. The emitted
photons leave the device volume so that the photon density never becomes high in the
e—h recombination region. In a laser diode the situation is different, as we shall see
later. The photon emission rate is given by integrating the emission rate W.,,, over all
the electron—hole pairs, after introducing the appropriate Fermi functions.

There are several important limits of the spontaneous rate:

(1) Low injection: In the case where the electron and hole densities » and p are small,
the Fermi functions have a Boltzmann form (exp(—E/kgT)). The recombination rate

is found to be
3/2

1 [ 27xh’m*
Rspon = % (]@T—TTM-) np (528)

The rate of photon emission depends upon the product of the electron and hole densities.
If we define the lifetime of a single electron injected into a lightly doped (p = N, <
10'7ecm~3) p-type region with hole density p, it would be given from Eq. 5.28 by

(5.29)

n T 27,

Rspon = 1 _ 1 Qthm: 3/2
kpTmim; ) P

The time 7, in this regime is very long (hundreds of nanoseconds), as shown in Fig.
5.10, and becomes smaller as p increases.

(11) Injection into heavily doped materials: In the case where electrons are injected into
a heavily doped p-region (or holes are injected into a heavily doped n-region), the
function f*(f¢) can be assumed to be unity. The spontaneous emission rate is

1 «\ 3/2
Rspon ~ — <mr) n (530)

T, \mj

for electron concentration n injected into a heavily doped p-type region and

1 *\ 3/2
Rspon ~ = <mr) D (531)

To \ M}

for hole injection into a heavily doped n-type region.
The minority carrier lifetimes (i.e., n/Rspon) Play a very important role not
only in LEDs, but also in diodes and bipolar devices. In this regime the lifetime of a
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105 Semiconductor GaAs
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Figure 5.10: Radiative lifetimes of electrons or holes in a direct gap semiconductor as a
function of doping or excess charge. The figure gives the lifetimes of a minority charge (a hole)
injected into an n-type material. The figure also gives the lifetime behavior of electron-hole
recombination when excess electrons and holes are injected into a material as a function of
excess carrier concentration.

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

224 Light absorption and emission

single electron (hole) is independent of the holes (electrons) present since there is always
a unity probability that the electron (hole) will find a hole (electron). The lifetime is
now essentially 7,, as shown in Fig. 5.10.

(iii) High injection: Another important regime is that of high injection, where n = p is
so high that we can assume f¢ = f* = 1 in the integral for the spontaneous emission
rate. The spontaneous emission rate is

n
Rspon ~ ; ~ % (532)
and the radiative lifetime (n/Rspon = p/Rspon) 15 To.
(iv) Inversion conditions: A regime that is quite important for laser operation is one
where sufficient electrons and holes are injected into the semiconductor to cause “inver-
sion.” As will be discussed later, this occurs if f¢+f* > 1. If we make the approximation
fé ~ f* = 1/2 for all the electrons and holes at inversion, we get the relation

n

Repon ~ ar (5.33)
or the radiative lifetime at inversion is
To

This value is a reasonable estimate for the spontaneous emission rate in lasers near the
threshold.

The radiative recombination depends upon the radiative lifetime 7. and the
non-radiative lifetime 7,,. To improve the efficiency of photon emission we need a value
of 7 as small as possible and 7,,, as large as possible. To increase 7,,, we must reduce
the material defect density. This includes improving surface and interface qualities.

EXAMPLE 5.7 Calculate the e~h recombination time when an excess electron and hole
density of 10" cm ™ is injected into a GaAs sample at room temperature.
Since 10'° cm™? or 10?2 m ™2 is a very low level of injection, the recombination time

is given by Eq. 5.26 as
11 2mkmr \°
Tr - 27, kBTmZm;; P

1 2rh? 3/2
= Z':(kBTm§+m;‘l) »

Using 7o = 0.6 ns and kT = 0.026 eV, we get for m; = 0.067 mo, my, = 0.45 m,,

1 10! m=° 2 x 3.1416 x (1.05 x 10~ Js)? o2
2% (0.6x10-%s) |(0.026 x 1.6 x 10~19 J) x (0.517 x 9.1 x 10—31 kg)
o= 5.7x107%s=95x%x10°r,

We see from this example that at low injection levels, the carrier lifetime can be very
long. Physically, this occurs because at such a low injection level, the electron has a very small
probability of finding a hole to recombine with.
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5.3.3 Optical absorption, loss, and gain

The intensity associated with an electromagnetic wave traveling through a semiconduc-
tor is described by
Ln = Igh exp (—azx) (5.35)

where « (the absorption coefficient) is usually positive and Igh is the incident light
intensity at z = 0. The optical intensity, which is the photon current multiplied by
the photon energy hw, falls as the wave travels if o is positive. However, if electrons
are pumped in the conduction band and holes in the valence band, the electron—hole
recombination process (photon emission) can be stronger than the reverse process of
electron—hole generation (photon absorption). In general, the gain coefficient is defined
by gain = emission coefficient—absorption coefficient. If f¢(E°) and f*(E") denote
the electron and hole occupation, the emission coefficient depends upon the product
of f¢(E®) and f"(E"), while the absorption coefficient depends upon the product of
(1—f¢(E¢)) and (1—f"(E")). Here the energies E° and E" are related to the photon
energy by the condition of vertical k-transitions. For these transitions we have

m;

B = et H(hw = B,)

E* = E,— 2 (hw-— E,) (5.36)
h

The occupation probabilities f¢ and f* are determined by the quasi-Fermi levels
for electrons and holes, as discussed in Section 5.3.2.

The gain, which is the difference of the emission and absorption coefficient, is
now proportional to

g(hw) ~ f(E®)- fM(E") = {1 fE(E)H1- fH(EM)} = {FS(E°)+ fF(EM)} -1 (5.37)
The optical wave has a general spatial intensity dependence
Ih = I, exp (g(hw)z) (5.38)

and, if g is positive, the intensity grows because additional photons are added by emission
to the intensity. The condition for positive gain requires “inversion” of the semiconductor
system; 1.e., from Eq. 5.37,

f(BE) + fr(E") > 1 (5.39)

The quasi-Fermi levels must penetrate their respective bands for this condition to be
satisfied. It is found that gain is approximately given by (compare with Eq. 5.17)

(Aw _Eg)l/2

~ 4
g(hw) = 4.7 x 10 ”

[Fe(E°) + f(E") — 1] em™! (5.40)

If there are no electrons in the conduction band and no holes in the valence
band the gain becomes the inverse of the absorption coefficient. To evaluate the actual
gain in a material as a function of carrier injection n (= p), we have to find the electron
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226 Light absorption and emission

and hole quasi-Fermi levels and the occupation probabilities f¢(E¢) and f*(E"), where
E¢ and E* are related to hw by Eq. 5.9.

It must be noted that the laser operates under conditions where f¢ and f* are
larger than 0.5. In this high-injection limit, the occupation probabilities are not given
accurately by the Boltzmann statistics. A useful approach is to use the Joyce-Dixon
approximation for the position of the Fermi levels. For a given injection density n (= p),
the position of the quasi-Fermi levels is given by

n 1 n
Ep, = E.+k%k In— + ——
F + kT [HNC + \/ch]
_ g P 1p
Epp, = E,—kpT [lan + \/ng] (5.41)

where N. and N, are the effective density of states at the conduction and valence bands.
Note that these results are for three-dimensional systems. For quantum wells the relation
between the Fermi level and carrier density is different.

With these expressions the gain can be calculated as a function of photon energy
for various levels of injection densities n (= p). At low injections, f¢ and f* are quite
small and the gain is negative. However, as injection is increased, for electrons and holes
near the bandedges, f¢ and f* increase and gain can be positive. However even at high
injections, for Aiw 3> F, the gain is negative. The general form of the gain-energy curves
for different injection levels are shown in Fig. 5.11.

The gain discussed above is called the material gain and comes only from the
active semiconductor region where the recombination is occurring. As we will discuss
later when we describe the laser usually has a very small dimension. In this case, we
need to define the cavity gain, which is given by

Cavity gain = g(hw)l' (5.42)

where I is the fraction of the optical intensity overlapping with the active gain medium.
The value of I' is almost unity for double heterostructure lasers based on bulk (3D)
materials and ~0.01 for quantum-well lasers. The issue of lasers will be discussed in the
next section.

5.4 OPTICAL PROCESSES IN QUANTUM WELLS

In the discussions of optical properties in semiconductors we have seen these are closely
related to the density of states. In the gain term we have

g(hw) o Ny (hw)(fe + f* = 1) (5.43)

In three-dimensional systems the joint density of states is zero at the bandgap energy
and increases monotonically. As a result the carrier distribution in a three-dimensional
system (i.e. the product of density of states and occupation) has a form shown in Fig.
5.12a. The carrier distribution is given by

n(E) = [Y(E)N.E)
p(E) = fM(E)N,(E) (5.44)
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Figure 5.11: Gain vs. photon energy curves for a variety of carrier injections for GaAs at
300 K. The electron and hole injections are the same.

The Fermi function is independent of dimensionality, but density of states can be mod-
ified by altering dimensionality. The gain in the three-dimensional system starts at zero
at bandgap energy and peaks away from the bandgap as shown in Fig. 5.12b. For most
optoelectronic applications we would prefer that the carrier distribution and gain peaks
occur at the bandedge. This requires a modification of the density of states.

In Chapter 3, Section 3.7 we have seen that quantum wells made from semicon-
ductors can alter electronic properties and density of states. Such modifications improve
device performance as seen later and many high performance devices use quantum well
systems. The reader should review Section 3.7.2 on quantum wells.

In Fig. 5.12 we show a schematic of carrier distribution and a gain curve in
three- and two-dimensional systems. It is important to note that in the two-dimensional
system the gain curve peaks at the bandedge and falls off at higher energies. Since the
photon energy in light emitters is controlled by e—h energy, in a quantum well system
the photon spectra is peaked towards the bandege. This has the effect of higher peak
gain at lower injection. This in turn allows lasers to have lower threshold currents, as
discussed later.

As discussed in Section 3.7.2 the two-dimensional quantum well structure cre-
ates electron energies that can be described by subbands (n = 1,2 3-..). The subbands
for conduction band and valence band are shown schematically in Fig. 5.13. The solu-
tion of the quantum well problem gives energy levels for the electron, heavy hole and
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Figure 5.12: (a) A schematic of the energy distribution of carriers in a 3D and 2D system.
(b) A schematic of the gain curve in a 3D and 2D system.
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light hole. Each level Ey, Ey, etc., is actually a subband due to the electron energy in
the z-y plane. As shown in Fig. 5.13 we have a series of subbands in the conduction
and valence band. In the valence band we have a subband series originating from heavy
holes and another one originating from light holes. The subband structure has impor-
tant consequences for optical and transport properties of heterostructures. As noted
above an important manifestation of this subband structure is the density of states of
the electronic bands.
The effective bandgap of the quantum well system is given by

Ey(eff) = Ey(well) + Ef + EM (5.45)

The well size and barrier height can be used to alter the effective bandgap.
The density of states in a quantum well is
o Conduction band .
m
N(E) =) WH(E — E;) (5.46)
i

where 6 is the heavyside step function (unity if £ > Fj;; zero otherwise) and E; are the
subband energy levels.
e Valence band

N(E) = EZ 0(E,, E) (5.47)
i j= l
where ¢ represents the subbands for the heavy hole (j = 1) and light holes (5 = 2). The
density of states is shown in Fig. 5.13 and has a staircase-like shape.

The relationship between the electron or hole density (areal density for 2D
systems) and the Fermi level is different from that in 3-dimensional systems because
the density of states function is different. The 2D electron density in a single subband
starting at energy EY is

o = m; [ dE
1l ﬁz e E - EFn
e exp (Spe) +1
mZkBT EFn - Ef
= <l _
Y [n{ +exp< kg T
or E = FE7+4kpTin |ex nrh’ 1 (5.48)
Fno = 1 B P m*;kBT ’

If more than one subband is occupied one can add their contribution similarly. For the
hole density we have (considering both the HH and LH ground state subbands)
my, [ dE my, [~ dE
P=—5 o + % — (5.49)
T Ellnh exp (#) +1 T th exp (FP_> +1

where mj;; and m}, are the in-plane density of states masses of the HH and LH sub-
bands. We have then

mykpT (E{lh — Erp)
= 2" lenql At S b 24
p Y [ n { + exp k5T
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Figure 5.13: Schematic of density of states in a three—, two— and one-dimensional system
with parabolic energy momentum relations.
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methT [@n {1 +exp M}] (5.50)
wh? kgT ‘
If EM _Eh > kpT

The occupation of the light hole subband can be ignored.

The changes in density of states discussed above directly effect the optical
properties in quantum wells. The main change that i1s needed is to replace the three-
dimensional density of states N,, by an equivalent term for quantum wells. This trans-
formation is

N¢y(2D)
ew(3D) — ———= .
N¢y(3D) W (5.51)
where W is the well size. This gives for the absorption coefficient
€2h 1 2 NZD
(hw) mocn o hw lfI Z fnm Enm — hw) (552)
where the overlap integral f,m is
fom = [ ()l () (5.53)

The integral f,,, is essentially unity if n = m (i.e., the symmetry of the envelope
functions is the same) and is close to zero otherwise. In Fig. 5.14 we show a typical
absorption coefficient in a quantum well. The absorption coefficient, just like the density
of states has a staircase-like form, starting at

hw = Ey(well) + E + EM, (5.54)

5.5 IMPORTANT SEMICONDUCTOR
OPTOELECTRONIC DEVICES

Semiconductor optoelectronic devices based on the concepts discussed in the previous
section have led to many important technologies. These include image display, optical
communication, optical information storage, desktop printing, bar code reading, etc.
Semiconductor devices have also been used to demonstrate logic functions and to im-
plement sophisticated mathematical algorithms. However, “optical computing” is not
yet a commercial technology. Semiconductor energy conversion devices (solar cells) have
also found niche markets, but due to mostly market forces and politics, they are not
a major force in global energy markets. But advances in solar cell fabrication (includ-
ing the potential use of organic solar cells), along with environmental concerns may
gradually make semiconductors a dominant force in addressing the energy needs of the
world.

An area where semiconductor light-emitting diodes (LED) can have a major
impact is in the lighting market. The LED, a device with a far greater lifetime and
efficiency, can in principal, replace the light bulb that currently dominates this industry.
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Figure 5.14: Calculated absorption coefficient in a 100 A GaAs/Alp 3Gao.7As quantum well
structure.

5.5.1 Light detectors and solar cells

We have seen in Section 5.3 that when light impinges on a semiconductor with photon
energy larger than the bandgap, electron-hole pairs are generated. If the electron-holes
can be swept away to create an electrical signal (a current or a voltage) we can have a
detection or energy conversion device. A device structure in which the photogenerated
electrons and holes can be collected is the p—n diode. A metal-semiconductor junction
can also provide a structure for a detector, but it is not as versatile as the p—n diode
structure. Due to the importance of the p—n diode in optoelectronics we have provided
a summary of the underlying theory in Appendix B. The reader may want to review
this Appendix. Typically when the diode is used as a detector it is reverse biased, while
when it is used as a solar cell it is unbiased (the solar energy creates a voltage across the
diode as discussed later). When a diode is used as a light emitter it is forward biased.
As discussed in Appendix B, the p—n diode has a neutral region where the
electric field is negligible, and a depletion region, where there is a strong electric field.
When light impinges upon the diode to create electron-hole pairs, some of the carriers
are collected at the contact, and lead to the photocurrent. Let us consider a long p—n
diode in which excess carriers are generated at a rate Gp. The generation rate for an
optical power density P, is
_ aby
G = ™ (5.55)
Fig. 5.15 shows a p—n diode with a depletion region of width W. The electron-hole pairs
generated in the depletion region are swept out rapidly by the electric field existing in
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the region. Thus the electrons are swept into the n-region, while the holes are swept
into the p-region. The photocurrent arising from the photons absorbed in the depletion
region is thus

IL1:A~6/ GL~da::A~eGLW (5.56)
0

where A is the diode area and we have assumed a uniform generation rate in the diode.
Since the electrons and holes contributing to Ir; move under high electric fields, the
response is very fast, and this component of the current is called the prompt photocur-
rent.

In addition to the carriers generated in the depletion region, e—h pairs are
generated in the neutral n- and p-regions of the diode. On physical grounds, we may
expect that holes generated within a distance L, (the diffusion length) of the depletion
region edge (¢ = 0 of Fig. 5.15) will be able to enter the depletion region, from whence
the electric field will sweep them into the p-side. Similarly, electrons generated within a
distance L,, of the 2’ = 0 side of the depletion region will also be collected and contribute
to the current. Thus the photocurrent should come from all carriers generated in a region
(W + L, + Ly). A quantitative analysis reaches the same conclusion.

The total current due to carriers in the neutral region and the depletion region
is

It =L+ L+ =eGr(Ly+ L, + W)A (h.57)

It must be noted that the e—h pair generation is not uniform with penetration
depth, but decreases with it. Thus G has to be replaced by an average generation rate
for an accurate description. It is also important to note that the photocurrent flows in
the direction of the reverse current of the diode.

The total current in the diode connected to the external load, as shown in Fig.
5.16, is given by the light-generated current and the diode current in the absence of
light. In general, if the voltage across the diode is V, the total current is (note that the
photocurrent flows in the opposite direction to the forward-bias diode current)

I=Ip+1, [1 — exp {6(‘2—]‘;?—[)}] (5.58)

where R; is the diode series resistance, n the ideality factor, and V' the voltage across the
diode. As shown in Fig. 5.16, the photodiode can be used in one of two configurations.
In the photovoltaic mode, used for solar cells, there is no external bias applied. The
photocurrent passes through an external load to generate power. In the photoconductive
mode, used for detectors, the diode is reverse biased and the photocurrent is collected.

Application to a solar cell

An important use of the p—n diode is to convert optical energy to electrical energy as in
a solar cell. The solar cell operates without an external power supply and relies on the
optical power to generate current and voltage. To calculate the important parameters
of a solar cell, consider the case where the diode is used in the open circuit mode so
that the current I is zero. This gives, for Eq. 5.58,

Vee
I=0=1I, — I [exp (;kBT> - 1] (5.59)
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Figure 5.15: A schematic of a p—n diode and the minority carrier concentration in the absence

and presence of light. The minority charge goes to zero at the depletion region edge due to the
high field, which sweeps the charge away.
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Figure 5.16: The equivalent circuit of a photodiode. The device can be represented by a
photocurrent source I, feeding into a diode. The device’s internal characteristics are represented
by a shunt resistor R.r and a capacitor Cp. R, is the series resistance of the diode. In the
photovoltaic mode (used for solar cells and other devices) the diode is connected to a high-
resistance Ry, while in the photoconductive mode (used for detectors) the diode is connected
to a load Rr and a power supply.

where V,. is the voltage across the diode, known as the open- circuit voltage. We get

for this voltage
kgT
oc = 25 In (1 + ‘_‘IL ) (560)
€ Io

At high optical intensities the open-circuit voltage can approach the semiconductor
bandgap. In the case of Si solar cells for solar illumination (without atmospheric ab-
sorption), the value of V. is roughly 0.7 eV.

A second limiting case in the solar cell is the one where the output is short-
circuited; i.e., R = 0 and V' = 0. The short-circuit current is then

I=1I.=1; (5.61)

A plot of the diode current in the solar cell as a function of the diode voltage then
provides the curve shown in Fig. 5.17a. In general, the electrical power delivered to the
load is given by
P=IxV=ILV-1I [exp (i‘i—>—1]V (5.62)
kgT

The maximum power is delivered at voltage and current values of V,,, and I,;,, as shown
in Fig. 5.17a.

The conversion efficiency of a solar cell is defined as the rate of the output
electrical power to the input optical power. When the solar cell is operating under
maximum power conditions, the conversion efliciency is

x 100 (percent) = Lin Vi

mn mn

m

x 100 (percent) (5.63)

Nconv =
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Figure 5.17: (a) The relationship between the current and voltage delivered by a solar cell.
The open-circuit voltage is Voc and the short-circuit current is I;,c. The maximum power is
delivered at the point shown. (b) The spectral irradiance of the solar energy. The spectra are
shown for no absorption in the atmosphere and for the sea-level spectra. Also shown are the
cutoff wavelengths for GaAs and Si.
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Another useful parameter in defining solar cell parameters is the fill factor /', defined
as

IV
- ISC VOC

In most solar cells the fill factor is ~ 0.7.

In the solar cell conversion efficiency, it 1s important to note that photons
that have an energy hw smaller than the semiconductor bandgap will not produce
any electron—hole pairs. Also, photons with energy greater than the bandgap will produce
electrons and holes with the same energy (E, ), regardless of how large (hw — E, ) is. The
excess energy hw — E is simply dissipated as heat. Thus the solar cell efficiency depends
quite critically on how the semiconductor bandgap matches the solar energy spectra. In
Fig. 5.17b we show the solar energy spectra. Also shown are the cutoff wavelengths for
silicon and GaAs. GaAs solar cells are better matched to the solar spectra and provide
greater efficiencies. However, the technology is more expensive than Si technology. Thus
GaAs solar cells are used for space applications, while silicon (or amorphous silicon)
solar cells are used for applications where cost is a key factor.

Fy (5.64)

EXAMPLE 5.8 Consider a long Si p—n junction that is reverse biased with a reverse bias
voltage of 2 V. The diode has the following parameters (all at 300 K):

Diode area, A = 10*pm?®
p-side doping, No = 2x10" cm™2
n-side doping, Ng = 10 em™®
Electron diffusion coefficient D, = 20cm?/s
Hole diffusion coefficient, D, = 12cm®/s
Electron minority carrier lifetime, m = 107%s

Hole minority carrier lifetime, » = 107%s

Electron-hole pair generation rate by light, G 1022 cm ™% 5!

Calculate the photocurrent.
See Appendix B for diode operation. The electron length diffusion length is

Lo = VD = [(20)(107%)]* = 4.5 ym
The hole diffusion length is

Ly = v/Dpry = [(12)(107%)]""* = 3.46 um

To calculate the depletion width, we need to find the built-in voltage

ksT NaNg (2 x 10%)(10%°)
Vi = —— 1 = 0.026 1 - - ) =0,
b —In < — ) n < (1.5 x 1002 0.715 V

2

The depletion width is now
2¢e (Na+ Na 1/2
v {E () o)
. NN, (Voi + VR)

_ 2(11.9)(8.85 x 107} [ (2 x 10*® 4 10%9) 1/2
h { (1.6 x 10—19) < (2 x 1016)(1016) ) (2~715)}

0.73 pm
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We see in this case that L, and L, are larger than W. The prompt photocurrent is thus a
small part of the total photocurrent. The photocurrent is now

Ir

eAGL(W + L.+ Lp)

= (1.6x107" C)(10* x 107% cm®)(10**> cm™® s7)
(0.73 x 10™* cm + 4.5 x 10™* cm + 3.46 x 10™* cm)

= 0.137 mA

The photocurrent is much larger than the reverse satnration current Ip and its direction is the
same as the reverse current.

EXAMPLE 5.9 Consider an Si solar cell at 300 K with the following parameters:

2

Area, A = 10cm
Acceptor doping, Ne = 5x107 cm™
Donor doping, Ng = 10%cm™®
Electron diffusion coefficient, D, = 20 cm? /s
Hole diffusion coefficient, D, = 10cm?/s
Electron recombination time, 7, = 3 Xx 1077 s
Hole recombination time, » = 1077s
Photocurrent, Ir = 25mA

Calculate the open-circuit voltage of the solar cell.
To find the open-circnit voltage, we need to calculate the saturation current Ip, which

is given by
fo= 4 [eDLr;np ' %] — [Lf;a 4 Lf];d]
Also
Lo = VDarn=[(20)(3 x 107)]"* = 24.5 ym
Ly = /Dy = [(10)(107)]""* = 10.0 pm
Thus,

I = (1)(1.6 x107'?)(1.5 x 10'%)?

20 + 10
(24.5 x 10=%)(5 x 1017) " (10 x 10—%)(10T¢)
= 366x107'" A

The open-circunit voltage is now

_ k8T ILy _ 25 x 1077}
%c = Tln (1 + K) = (0026) lIl (1 + W) =053V

5.5.2 Light-emitting diode

The simplicity of the light-emitting diode (LED) makes it a very attractive device
for display and communication applications. The basic LED is a p—n junction that is
forward biased to inject electrons and holes into the p- and n-sides respectively. The
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injected minority charge recombines with the majority charge in the depletion region
or the neutral region. In direct band semiconductors, this recombination leads to light
emission, since radiative recombination dominates in high-quality materials. In indirect
gap materials, the light emission efficiency is quite poor and most of the recombination
paths are non-radiative, which generates heat rather than light.

In general, the electron-hole recombination process can occur by radiative and
non-radiative channels. If 7. and 7,,, are the radiative and non-radiative lifetimes, the
total recombination time is (for, say, an electron)

1 1 1
—— (5.65)

Tn Tr Tnr

The internal quantum efficiency for the radiative processes is then defined as

1
™ _ 1

In high-quality direct gap semiconductors, the internal efficiency is usually close to unity.
In indirect materials the efficiency is of the order of 10~2 to 1032,

Before starting the discussion of light emission, let us remind ourselves of some
important definitions and symbols used in this chapter:

number of photons passing a cross-section/sec.

I : photon current

number of photons passing a unit area/sec.

Jpr ¢ photon current density

P,, : optical power intensity = energy carried by photons per sec/area.

Carrier injection and spontaneous emission

The LED is essentially a forward-biased p—n diode, as shown in Fig. 5.18. Electrons
and holes are injected as minority carriers across the diode junction and they recombine
by either radiative recombination or non-radiative recombination. The diode must be
designed so that the radiative recombination can be made as strong as possible.

The theory of the p—n diode is discussed in detail in Appendix B. In the forward-
bias conditions the electrons are injected from the n-side to the p-side while holes are
injected from the p-side to the n-side. The forward-bias current is dominated by the
minority charge diffusion current. The diffusion current, in general, has three compo-
nents: (i) minority carrier electron diffusion current; (ii) minority carrier hole diffusion
current; and (iil) trap-assisted recombination current in the depletion region of width
W. These current densities have the following forms, respectively

_ eDyn, eV
_ eDypn eV

Jp = I, [exp (kBT) 1] (5.68)
en; W eV
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Figure 5.18: In a forward-biased p—n junction, electrons and holes are injected as shown. In
the figure, the holes injected into the buried n region will generate photons that will not emerge
from the surface of the LED. The electrons injected will generate photons that are near the
surface and have a high probability to emerge.

where 7 is the recombination time in the depletion region and depends upon the trap
density. The LED is designed so that the photons are emitted close to the top layer
and not in the buried layer, as shown in Fig. 5.18. The reason for this choice is that
photons emitted deep in the device have a high probability of being reabsorbed. Thus
we prefer to have only one kind of carrier injection for the diode current. Usually the top
layer of the LED is p-type, and for photons to be emitted in this layer one must require
the diode current to be dominated by the electron current (i.e., J, > J,). The ratio
of the electron current density to the total diode current density is called the injection
efficiency %in;. Thus we have

In

_—nr 5.70
Jn+Jp+JG'R ( )

Yinj =
If the diode is pn*, n, > p, and, as can be seen from Egs. 5.67 and 5.68, J,, be-
comes much larger than J,. If, in addition, the material is high-quality, so that the
recombination current is small, the injection efficiency approaches unity.

Once the minority charge (electrons) is injected into the doped neutral region
(p-type), the electrons and holes will recombine to produce photons. They may also
recombine non-radiatively via defects or via phonons.

The LED 1s a very simple device to produce optical signals. Due to its low cost
it is quite important in display applications. However, it is not optimum for high-speed
applications, such as optical communications. This is due to two reasons. The spectral
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CONDUCTION BAND

V ALENCE BAND

Figure 5.19: In a LED the electrons and holes are distributed over an energy width of ~ kgT.
Since all e~h pairs contribute to the optical output, the LED output is quite broad with a
width roughly equal to kpT. The shape of the output depends upon the carrier occupation
function and the density of states function.

width of the LED is essentially controlled by the carrier distribution, as shown in Fig.
5.19, and is given by

hAw ~ kpT (5.71)
. kpT A2
B
AN~ === (5.72)

At room temperature this leads to AX ~100 A, a width too large for high-speed long-
distance communication. Additionally, LED speeds are controlled by spontaneous emis-
sion time 7,. Thus the upper frequencies of modulation are a few GHz.

EXAMPLE 5.10 In two »*p GaAs LEDs, nt > p so that the electron injection efficiency
is 100% for both diodes. If the non-radiative recombination time is 10™"s, calculate the 300 K
internal radiative efficiency for the diodes when the doping in the p-region for the two diodes
is 10'® cm ™ and 5 x 107 cm 2.

When the p-type doping is 10'® cm ™2, the hole density is low and the e~k recombi-
nation time for the injected electrons is given by

11 [ 2entme \*?
11 (2mmr NV

[ 270 \ kpTmim;j
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This gives
7 =57%107" s

In the case where the p-doping is high, the recombination time is given by the high-density

Timit
1 _ Rspon _ 1 m: 30
™ n T mj
T,
T = 0—35 ~ 2071, ~ 12 ns

For the low-doping case, the internal quantum efficiency for the diode is

1 1
= = =0.15
T IEE T 145
For the more heavily doped p-region diode, we have
1
ner = ]T‘ = 0.83
20x10~9

Thus there is an increase in the internal efficiency as the p doping is increased.

EXAMPLE 5.11 Consider a GaAs p—n diode with the following parameters at 300 K:

Electron diffusion coefficient, D, = 30cm? /V-s
Hole diffusion coefficient, D, = 15cm?®/V s
p-side doping, No = 5x10%% cm™3
n-side doping, Ne = 5x10' em™
Electron minority carrier lifetime, 7, = 107%s

Hole minority carrier lifetime, W = 10775

Calculate the injection efficiency of the LED assuming no recombination due to traps.
The intrinsic carrier concentration in GaAs at 300 K is 1.84 x 10° cm™>. This gives

n} _ (1.84 x10°)°

| 1! -5 -3
np = N = TE X100 6.8 x 107" cm
2 612
_ n; (184 x 10 ) _ —6 -3
pn = N, = B x 107 =6.8x 107" cm

The diffusion lengths are

Ln VDnra = [(30)(107%)]* = 5.47 ym
Ly = /Dprp=[(15)(107")]*"* = 12.25 pm

The injection efficiency is now (assuming no recombination via traps)

eDpnypo
Ln
Yinj = T by = 0-98
B e
EXAMPLE 5.12 Consider the p—n* diode of the previous example. The diode is forward
biased with a forward-bias potential of 1 V. If the radiative recombination efficiency 5o, = 0.5,
calculate the photon flux and optical power generated by the LED. The diode area is 1 mm?.
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The electron current injected into the p-region will be responsible for the photon
generation. This current is

AeDpnpo eV ) }
£8%7nlpo A
In In [eXp (kBT
(1072 cm?)(1.6 x 107*° C)(30 cm?/s)(6.8 x 10™° cm™?) [ex ( 1 ) 3 1}
547 x 10-% cm P \0.026

0.30 mA

il

The photons generated per second are

I

n 0.30 x 1072 A)(0.5
=2 = )(0.5)

1.6 x 10-1% C
= 9.38x 10" !

Each photon has an energy of 1.41 eV (= bandgap of GaAs). The optical power is thus

Power = (9.38x 10" s7')(1.41)(1.6 x 107"° J)
= 021 mW

5.5.3 Laser diode

The laser diode overcomes the problem faced by LEDs of spectral width and low speed
(discussed in the previous subsection). This is done by exploiting the basic physics
of stimulated emission discussed earlier. The laser diode differs from the LED in two
respects: (1) Mirrors are used to create a feedback effect so that photons with a desired
frequency are selectively built-up in the laser cavity. (11) Use of stimulated emission to
generate photons allow not only coherent photons, but also an optical output that can
be modulated at high speeds.

Asin the case of the LED, electrons and holes are injected into an active region
by forward biasing the laser diode. At low injection, these electrons and holes recombine
radiatively via the spontaneous emission process to emit photons. However, the laser
structure 1s so designed that at higher injection emission occurs by stimulated emission.
As we will discuss below, the stimulated emission process provides spectral purity to the
photon output, provides coherent photons, and offers high-speed performance. Thus the
key difference between the LED and the laser diode arises from the difference between
spontaneous and stimulated emission.

Spontaneous and stimulated emission: need for optical cavity

The key to understanding the semiconductor laser diode is the physics behind spon-
taneous and stimulated emission. Let us develop this understanding using Fig. 5.20.
Consider an electron with wave vector k£ and a hole with a wave vector k in the conduc-
tion and valence bands, respectively, of a semiconductor. In the case shown in Fig. 5.20a,
initially there are no photons in the semiconductor. The electron and hole recombine to
emit a photon as shown, and this process is the spontaneous emission. The spontaneous
emission rate was discussed in the context of the LED.
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Figure 5.20: (a) In spontaneous emission, the e~h pair recombines in the absence of any
photons present to emit a photon. (b) In simulated emission, an e—h pair recombines in the
presence of photons of the correct energy hw to emit coherent photons. In coherent emission
the phase of the photons emitted is the same as the phase of the photons causing the emission.
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In Fig. 5.20b, we show the electron-hole pair, along with photons of energy
hw equal to the electron-hole energy difference. In this case, in addition to the sponta-
neous emission rate, we have an additional emission rate, called the stimulated emission
process. The stimulated emission process is proportional to the photon density (of pho-
tons with the correct photon energy to cause the e-h transition). The photons that are
emitted are in phase (i.e., same energy and wave vector) with the incident photons.
Quantum-mechanical calculations show that the rate for the stimulated emission is

Wk (hw) = Wem(hw) - npn (hw) (5.73)

where npp (Aw) is the photon density and Wep, is the spontaneous emission rate we have
already discussed. Thus if npp(hw) ~ 0, there is no stimulated emission process. In
the LED, when photons are emitted by spontaneous emission, they are either lost by
reabsorption or simply leave the structure. Thus 7,5 (hw) remains extremely small and
stimulated emission cannot get started.

Consider now the possibility that, when photons are emitted via spontaneous
emission, an optical cavity is designed so that photons with a well-defined energy are
selectively confined in the semiconductor structure. If this is possible, two important ef-
fects occur: (i) the photon emission for photons with the chosen energy becomes stronger
due to stimulated emission; (ii) the e-h recombination rate increases, as can be seen from
Eq. 5.14. These two effects are highly desirable since they produce an optical spectrum
with very narrow emission lines and the light output can be modulated at high speeds.

The challenge for the design of the laser is, therefore, to incorporate an optical
cavity that ensures that the photons emitted are allowed to build up in the semicon-
ductor device so that stimulated emission can occur.

The laser structure: optical cavity

While both the LED and the laser diode use a forward-biased p—n junction to inject
electrons and holes to generate light, the laser structure is designed to create an “optical
cavity” that can “guide” the photons generated. The optical cavity is essentially a
resonant cavity in which the photons have multiple reflections. Thus, when photons
are emitted, only a small fraction is allowed to leave the cavity. As a result, the photon
density in the cavity starts to build up. A number of important cavities is used for solid-
state lasers. These are the Fabry—Perot cavity, cylindrical cavity, rectangular cavity, etc.
For semiconductor lasers, the most widely used cavity is the Fabry—Perot cavity shown
in Fig. 5.21a. The important ingredient of the cavity is a polished mirror surface that
assures that resonant modes are produced in the cavity, as shown in Fig. 5.21b. These
resonant modes are those for which the wave vectors of the photon satisfy the relation

L =q)/2 (5.74)

where ¢ is an integer, L is the cavity length, and A is the light wavelength in the material
and is related to the free-space wavelength by

Ao
r=22 (5.75)

ny

where n, is the refractive index of the cavity.

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

246 Light absorption and emission

Mirror produced
by cleaving

Roughened
surfaces

Output
Cladding region — light
Active region —>
Cladding region —>
z y
Optically flat and polished
parallel faces x
@
Polished face Polished face
= -
b
. Activeregion .  Confined optical wave
! /
| |
é p-region I n-region
2
=
8
2
o]

Distance perpendicular to the cavity (z)

©)

Figure 5.21: (a) A typical laser structure showing the cavity and the mirrors used to confine
photons. The active region has a smaller bandgap than the cladding layers. (b) The stationary
states of the cavity. The mirrors are responsible for these resonant states. (c) The variation in
the dielectric constant is responsible for the optical confinement. The structure for the optical
cavity shown in this figure is called the Fabry-Perot cavity.
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As can be seen from Fig. 5.21a, the Fabry—Perot cavity has mirrored surfaces
on two sides. The other sides are roughened so that photons emitted through these sides
are not reflected back and are not allowed to build up. Thus only the resonant modes
are allowed to build up and participate in the stimulated emission process.

If a planar heterostructure of the form shown in Fig. 5.21c¢ is used, the opti-
cal wave is confined in the z-direction, as shown. This requires the light-confining or
cladding layers to be made from a large bandgap material. An important parameter
of the laser cavity is the optical confinement factor I', which gives the fraction of the
optical wave in the active region. This confinement factor is almost unity for “bulk”

double heterostructure lasers, where the active region is 21.0 pm, while 1t 1s as small
as 1% for advanced quantum-well lasers.

Laser below and above threshold

When the p—n diode of a laser is forward biased, the injected electrons and holes re-
combine to emit photons. The photons emerging in the laser mode show an interesting
transition at a threshold current. In Fig. 5.22 we show the light output in the laser mode
as a function of injected current density in a laser diode (LD). If we compare this with
the output from an LED we notice an important difference. The light output from a
laser diode displays a rather abrupt change in behavior below the “threshold” condition
and above this condition. The threshold condition is defined as the condition where
the cavity gain overcomes the cavity loss arising from photon absorption in the cavity
@1oss usually in the cladding region, and photon loss through transmission through the

mirrors. The condition is
InR

L
where R is the reflection coefficient of the mirrors. In high-quality lasers aj,ss ~ 10
cm™! and the reflection loss may contribute a similar amount. Another useful definition
in the laser is the condition of transparency when the light suffers no absorption or gain,
ie.

Fg(hw) = loss — (576)

Tg(hw) =0 (5.77)

It is important to identify two distinct regions of operation of the laser. Referring
to Fig. 5.23, when the forward-bias current is small, the number of electrons and holes
injected is small. As a result, the gain in the device is too small to overcome the cavity
loss. The photons that are emitted are either absorbed in the cavity or lost to the outside.
Thus, in this regime there is no buildup of photons in the cavity. However, as the forward
bias increases, more carriers are injected into the device until eventually the threshold
condition is satisfied for some photon energy. As a result, the photon number starts to
build up in the cavity. As the device is forward biased beyond threshold, stimulated
emission starts to occur and dominates the spontaneous emission. The light output in
the photon mode, for which the threshold condition is satisfied, becomes very strong.

Below the threshold, the device essentially operates as an LED, except that
there is a higher cavity loss in the laser diode, since photons cannot escape from the
device due to the mirrors. Figure 5.23a shows this regime of operation.

Once the carrier density of the electrons and holes is high enough so that the
threshold condition given by Eq. 5.77 is met, the photons generated in the laser cavity
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Figure 5.22: The light output as a function of current injection in a semiconductor laser. Above
threshold, the presence of a high photon density causes stimulated emission to dominate.

grow in intensity after emission. Of course, out of all the optical modes that are allowed
in the cavity, one or two will have the highest gain, since the gain curves have a peak at
some energy, as seen from Fig. 5.23b. Since the gain is positive, the photon density in
the laser cavity starts to increase rapidly. As a result, the stimulated emission process
starts to grow. As noted in Section 5.3, the stimulated emission rate is related to the
spontaneous emission rate by

Wt (hw) = Wem(Aw) - nph (Aw) (5.78)

where npp (hw) is the photon density in the mode.

In order to study the laser characteristics around and above threshold, let us es-
tablish a simple relation between the injected current density, radiative lifetime, dimen-
sions of the active region where recombination occurs, and the carrier density (n = p)
in the active region. The rate of arrival of electrons (holes) into the active region is

JA
e

The rate at which the injected e—h pairs recombine is

nAd)as
()

where 7.(J) is the current-density-dependent radiative lifetime. Assuming a radiative
efficiency of unity, we equate the two results given above to get

_JIn(J)

n="7" (5.79)
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Figure 5.23: (a) The laser below threshold. The gain is less than the cavity loss and the light
emission is broad as in an LED. (b) The laser at threshold. A few modes start to dominate
the emission spectrum. (c) The laser above threshold. The gain spectrum does not change but,
due to the stimulated emission, a dominant mode takes over the light emission.
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At threshold we have
_ JthTr(Jth) (5 80)
B edlas )

As discussed in Section 5.3, at threshold 7. (Ji) ~ 47, (~2 ns for a GaAs laser).

As the current density exceeds Ji, the photon density in the dominant mode
builds up, as discussed above, and the value of 7, starts to become smaller. As a result,
even though the injected charge density increases, the carrier density in the active region
saturates close to the threshold density ngy.

The light output is given by (n = n; use Eq. 5.79 for the current density)

Nth

I nthAdlas

Ih = T T (5.81)
Upon comparing this equation with the results for light output from an LED,
it may be seen that the photon current is similar for the same injected current for an
LED and LD (biased above threshold). However, in the case of the laser diode, the
entire photon output emerges only in one or two photon modes, rather than in a broad
spectrum of width kpT. This spectral purity that arises, because of the importance of
stimulated emission, distinguishes the LD from an LED. Also, the light output is highly

collimated and coherent for similar reasons.

EXAMPLE 5.183 According to the Joyce-Dixon approximation, the relation between the
Fermi level and carrier concentration is given by

n 1 =n
Ep — E.=kpT [lnNC + 75 Nc]
where N, is the effective density of states for the band. Calculate the carrier density needed for
the transparency condition in GaAs at 300 K and 77 K. The transparency condition is defined
at the situation where the maximum gain is zero (i.e., the optical beam propagates without
loss or gain).
At room temperature the valence and conduction band effective density of states are

Ne = 7x10"® cm™?

Ne = 47x107 cm™®
The values at 77 K are

No, = 0.91x10® cm™

N. = 0.61x10" cm™®

In the semiconductor laser, an equal number of electrons and holes are injected into the active
region. We will look for the transparency conditions for photons with energy equal to the
bandgap. The approach is very simple: (i) choose a value of n or p; (ii) calculate g from the
Joyce-Dixon approximation; (iii) calculate f+ f"—1 and check if it is positive at the bandedge.
The same approach can be used to find the gain as a function of Aw.

For 300 K we find that the material is transparent when n ~ 1.1x10'® cm™2 at 300 K
and n ~2.5 x10'" cm™® at 77 K. Thus a significant decrease in the injected charge occurs as
temperature is decreased.
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EXAMPLE 5.14 Consider a GaAs laser at 300 K. The optical confinement factor is unity.

Calculate the threshold carrier density assuming that it is 20% larger than the density for

transparency. If the active layer thickness is 2 pm, calculate the threshold current density.
From the previous example we see that at transparency

n=11x10* cm™®

The threshold density is then
nep = 1.32 x 10'® cm™°

The radiative recombination time is approximately four times 7., i.e., ~2.4 ns. The current
density then becomes
Jo o &M -d (1.6 x 107" C)(1.32 x 10*®* cm™*)(2x 107* cm)
N, - 24%x10-° s
1.76 x 10* A/cm’

5.6 ORGANIC SEMICONDUCTORS: OPTICAL
PROCESSES AND DEVICES

Over the last 50 years, insulating polymers or plastics have transformed society, replac-
ing wood, metals, and ceramics, because of their structural strength, lightweight, and
fabrication ease. Until recently, while it was recognized that the electronic properties
of polymers could also be interesting, they were not seriously considered for informa-
tion technology applications. Recently however, as synthesis techniques have improved,
some polymers have shown semiconductor-like properties; i.e., they can be doped, their
conductance can be controlled, and light can be detected and emitted. This is not to
imply that these materials have electronic properties approaching those of inorganic
semiconductors. Mobility for instance is still ~ 10~2 ¢m?/Vs in organic semiconduc-
tors, i.e., nearly a millionth of what may be found in materials like GaAs. However, for
many applications these materials have good enough optoelectronic properties and with
continuous improvement it is expected that they will play an important role in future
technologies.

Rapid progress in doped polymers, especially doped polyacetylene was made in
the 1970s, but the material remained a curiosity due to the difficulties in processing. In
the late 1980s the interest in organic semiconductors surged because Eastman Kodak
and Cambridge University demonstrated electroluminescent devices, and FETs made
from polythiophene were demonstrated. Polymer-based devices are now used for back-
lights of liquid crystal displays, displays of devices, such as cell phones or watches. It is
expected that commercial technologies, such as televisions, solar cells, etc., will benefit
from new advances. '

Polymer LEDs were first demonstrated in 1990 and are very attractive because
of potential large area applications and mechanical flexibility. The diode is usually not
fabricated by doping the polymer itself. Instead an undoped film is placed between an
anode (indium tin oxide) and a cathode (e.g., calcium).

We remind ourselves that in organic semiconductors, the nature of atomic bond-
ing 1s such that instead of energy bands we have very narrow range energy levels. The
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ones that are relevant for us and are equivalent to the valence and conduction bands
are the HOMO and LUMO states. Figure 5.24 shows a schematic of a metal-organic-
semiconductor junction. As shown in Fig. 5.24a, if the metal Fermi energy is close to the
HOMO level, electrons from the HOMO can move into the metal (a hole is injected into
the semiconductor). Thus in this case the metal acts as a p-type contact. If however,
the metal workfunctions are close to the LUMO state, as shown in Fig. 5.24b, an n-type
contact results. In Fig. 5.24¢ we show how current flows in a p—n diode using an organic
semiconductor film.

We see that the n-contact injects an electron, which diffuses into the semicon-
ductor, eventually recombining with a hole in the HOMO level. An electron then leaves
the HOMO state (i.e., a hole is injected).

The junction described above is one approach to creating electrons and holes.
It is possible also to have heterojunctions between different organic semiconductors as
well as junctions between n-type and p-type organic semiconductors.

The process of photon emission by electron—hole recombination in organic semi-
conductors is not fully understood, but it is clear that it is significantly different from
that in inorganic semiconductors. The difference has to do with the importance of the
exciton state which is an e—h system interacting via Coulombic interaction. We will
briefly review the exciton state before examining the optical properties of organic semi-
conductors.

5.6.1 Excitonic state

In a semiconductor (or an insulator) the electronic spectra are such that the valence band
is completely filled with electrons at 0 K and the conduction band is empty. The two
bands are separated by the bandgap. As noted above, for organic materials these are the
HOMO and LUMO bands. This gives a “single-electron energy-momentum” relation of
the form shown in Fig. 5.25a. Now consider an electron being removed from the valence
band (the ground state of the problem is the filled valence band state) and excited to a
higher energy state. If we ignore the interaction of the electron that is removed from the
valence band with the hole in the valence band produced by the absence of the electrons,
the lowest energy needed to excite the system is the bandgap energy E,;. However, the
electron and hole interact with each other, since the hole responds as if it i1s a positively
charged particle, as shown in Fig. 5.25b. The electron-hole system or exciton can be
represented by the hydrogen-like model. The exciton problem can be written as

R _, A% _, e?
2my ¢ 2m} P dre(re — vy

wex = Ewex (582)

Here m? and mj are the electron and hole effective masses and [r, —rp| is the difference
in coordinates defining the Coulombic interaction between the electron and the hole.
The problem is now the standard two-body problem like the electron—proton problem
of the H atom. The relative coordinate problem has the form (m} is the reduced mass

of the electron-hole pair)
R’k2 e?
<2m: "~ dwelr|

)Fuy:EFu) (5.83)
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Figure 5.24: A schematic of a metal-organic—semiconductor junction. The metal workfunction
(the relative position of the metal) Fermi level determines if the contact is p-type (a) or n-type
(b). (¢) In this figure we show how current flows in a junction diode.
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Figure 5.25: (a) The bandstructure in the independent electron picture and (b) the Coulombic
interaction between the electron and hole, which would modify the band picture. For organic
semiconductors the valence band is the HOMO and the conduction band is the LUMO.

This is the usual hydrogen atom problem and F(r) can be obtained from the
mathematics of that problem. The general exciton solution is now (writing Kex = K)

YnK., = €1 R (0)ge(x)do (rh) (5.84)

where ¢, and ¢, represent the electron and hole bandedge states. The excitonic energy

levels are then A
h
E =E,+ ———K? \
nKex n + 2(m: + mz) Xex (5 85)
with Ey, being the eigenvalues of the hydrogen atom-like problem (the energy is refer-
enced to the bandgap energy E,)

mret 1

n

and the second term in Eq. 5.85 represents the kinetic energy of the center of mass of
the electron—hole pair.

The exciton energy is thus slightly lower than the bandgap energy of the semi-
conductor. Excitonic states can be observed in optical absorption spectra and are ex-
ploited for many optoelectronic devices.

In inorganic semiconductors like GaAs, the relative dielectric constant is ~ 10
and the reduced mass is ~ 0.1. The exciton binding energy is then ~ 4 meV; i.e., quite
small compared to the single electron bandgap. The excitonic state has an envelope
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function that has a radius of ~ 100 A. In the case of the organic semiconductors, the
molecular nature of the electronic state causes the electron—hole state to be tightly
localized. The exciton binding energy is quite large as a result (in the range of ~ eV).
The exciton creates photons, which are quite different in energy from the LUMA-HOMO
energy difference.

In Fig. 5.26 we show a schematic of how photons are generated in the organic
LED. The process of light emission involves (i) injection of electrons (holes) from the
contacts, (ii) diffusion of the carrier in the LUMO or HOMO states (this involves hopping
as discussed in the previous chapter’s discussion of transport in disordered systems), (iii)
exciton formation, and (iv) exciton recombination to emit a photon. Experiments have
shown that, while the e—h pair formation and recombination efficiency is essentially
100%, the efficiency of light emission (i.e., photon per e~h pair) is only a few percent
(< 5%). This implies that most of the excitonic recombination occurs through generation
of heat or energy transfer to other non-radiative processes. This is to be contrasted to
the nearly 100% efficiency found in direct gap inorganic LEDs.

A serious problem so far in organic LEDs or OLEDs is the lifetime of the
devices. A problem that limits the lifetime of OLEDs is the loss of efficiency with time.
This appears to be linked to the presence of defects like oxygen, which cause chemical
reactions in the presence of electrons. The chemical reactions lead to new molecules
degrading the polymer. As the fabrication processes improve defect-related lifetime,
problems will become less critical and the use of organic semiconductors for optical
applications will grow. The tremendous flexibility in being able to tailor the optical
response by exploiting chemistry makes this class of semiconductors very versatile for
future applications.

5.7 SUMMARY

In this chapter we have discussed important optical properties of semiconductors and
how these properties are exploited for devices. The topics covered are summarized in
Tables 5.1 to 5.2.

5.8 PROBLEMS

5.1 The bandgap of the Hgy_,Cd,Te alloy is given by the expression
E,(x)=—-0.3+19z (eV)

Calculate the composition of an alloy which gives a cutoff wavelength of (a) 10 ym; (b)
5.0pm.

5.2 Calculate the cutoff wavelength for a GaAs detector. If the cutoff wavelength is to
be decreased to 0.7 pm, how much AlAs must be added to a GaAs? Assume that the
bandgap of Gaj_.Al, is given by

E4(z) =143+ 1.252 (eV)
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Figure 5.26: A schematic of the electronic states in (a) an unexcited organic semiconductor
system where the electrons are in the HOMO state. (b) A system where an e-h pair is created.
(c) The e-h pair forms an exciton with energy lower than the separation of the LUMO and
HOMO levels. A photon emitted by the exciton, therefore has a different energy.
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Important semiconductor
materials

* Choice of semiconductors used for applications
depends upon:

(1) bandgap, (ii) substrate availability, and (iii)
special application needs.

» Direct gap materials are needed for light
emission devices with high efficiency.

Optical absorption

* A light particle (photon) can cause an electron in
the valence band to go into the conduction band.
The photon is absorbed and the process is defined
by an absorption coefficient o (i > Eg).

» The absorption process is strong in direct gap
semiconductors due to momentum conservation.
Thus the optical transitions are vertical in k-space.

Optical emission

An electron with a certain momentum can
recombine with a hole with the same momentum
to emit a photon. The emission rate is the radiative
lifetime T and has a value of ~0.6 ns for GaAs.

Table 5.3: Snmmary table.

For non-equilibrium electron and hole
concentrations, the occupations of the carriers are
given by electron and hole Fermi functions
independent of each other. Note that in
equilibrium the same Fermi function describes
both electrons and holes.
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Electron-hole
recombination of excess

* Electrons and holes can recombine by emission
of photons. The process depends upon the
electron finding a hole and has a strong
dependence on charge density.

* Carriers can also recombine via traps. Such
recombination is non-radiative and depends upon
the trap density.

Solar cell

* A p—n diode operated with no external bias.

* Presence of optical intensity creates an output
voltage and current which can be used to convert
photons to electrical power.

* A reverse biased p—i—n detector.

* The device has high speed, although it has no
gain.

* Carriers generated in the i-region are collected
very efficiently to provide a high-performance
detector.

Light-emitting diode, LED

Table 5.4: Summary table (cont.)

An LED emits light as a forward biased p—n
diode. Electrons and holes recombine to emit
bandgap photons with an energy spread of ~kgT.
Electron—hole recombination time, determined
by spontaneous emission, limits the switching
time for LEDs.
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A forward biased p—n junction in which photons
emitted are confined in an optical cavity. Certain
resonant modes of the cavity are allowed to get
strong feedback. This allows the preferred mode
to have light emission by stimulated emission.

Stimulated versus
spontaneous emission

e—h recombination by the presence of photons
produces a coherent beam of photons in contrast
to spontaneous emission. Stimulated emission is
critical for laser performance.

The role of the optical cavity is to provide

resonant states in which photon density can grow
preferentially. This provides selectivity in the :
stimulated emission. .

The laser below and above
threshold

Below threshold, the emission of photons is by
spontaneous emission—incoherent photons are
emitted over a broad spectral range. Above
threshold, some modes start to dominate the
photon output. The spectrum becomes sharp and
coherent.

Organic semiconductor
based optical processes

Table 5.5: Summary table (cont.)

Excitonic effects play an important role in organic
semiconductors.

Exciton formation and recombination creates
photons with energies smaller than the electronic
bandgap between the LUMO and HOMO states.

T R B R T

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

260 Light absorption and emission

5.3 Calculate the absorption coefficient for GaAs for photons with energy 1.8 V. Cal-
culate the fraction of this light absorbed in a GaAs sample of thickness of 0.5 um.

5.4 An optical power density of 1 W/ecm? is incident on a GaAs sample. The pho-
ton energy is 2.0 eV and there is no reflection from the surface. Calculate the excess
electron—hole carrier densities at the surface and 0.5 ym from the surface. The e—h re-
combination time is 1072 s.

5.5 The performance of a silicon detector is poor for photons of wavelength 1.0 pm, but
are quite good for photons of wavelength shorter than 0.4 gm. Explain this observation
by examining the bandstructure of silicon.

5.6 In long-distance fiber optics communication, it is important that photons with
energy with low absorption in the fiber be used. The lowest absorption for silica fibers
occurs at 1.55 pm. Find a semiconductor alloy using InAs, GaAs, and InP that has a
bandgap corresponding to this wavelength (semiconductor lasers emit at close to band-
gap energy). Also find an alloy with a bandgap corresponding to 1.3 ym, the wavelength
at which fiber dispersion is minimum.

5.7 Calculate and plot the absorption coefficients for Ing 53Gag 47As and InP. Assume
that the momentum matrix element values are the same as those for GaAs.

5.8 Calculate the rate (per second) at which photons with energy 1.6 eV are absorbed
in GaAs (E;, = 1.43 €V).

5.9 Calculate the electron densities at which the quasi-Fermi level for electrons just
enters the conduction band in Si and GaAs at 77 K and 300 K.

5.10 Calculate the hole densities at which the hole quasi-Fermi level enters the valence
band in Si and GaAs at 77 K and 300 K.

5.11 Assume that equal densities of electrons and holes are injected into GaAs. Calcu-
late the electron or hole density at which f¢(E® = E.) + f*(E"* = E,) = 1. Calculate
the densities at 77 K and 300 K.

5.12 In a p-type GaAs doped at N, = 10!3 cm™3, electrons are injected to produce a
constant electron density of 10'® cm~3. Calculate the rate of photon emission, assuming
that all electron—hole recombination results in photon emission. What is the optical
power output if the device volume is 10~7 ¢m?3?

5.13 Electrons and holes are injected into a GaAs device where they recombine to
produce photons. The volume of the active region of the device where recombination
occurs is 107® cm? and the temperature is 300 K. Calculate the output power for the
cases: i) n = p=10!® em™3; and ii) n = p = 10!® ecm~3.

5.14 'The photon number in a GaAs laser diode is found to be 100. Calculate the
electron-hole recombination time for carriers corresponding to the lasing energy.

5.15 Calculate the gain versus energy curves for GaAs at injection densities of:

= p=0

p=5x10% ¢m™3
p=10x10"7" cm™3
p=1.0x10"%cm™3
p=20x10¥cm™3

N

3 3 3 3 3
|

NN N S
ot w
e e S N
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Plot the results for hw going from E, to E, +0.3 eV. Calculate the results for 77 K and
300 K.
5.16 In wavelength division multiplexing (WDM) schemes for high data transmission
on optical networks a number of laser beams emitting at slightly different wavelengths
(A1, Az, - - ) are used to send data through the same fiber.

Design a series of 6 GaAs/Alg3Gag 7As wells (i.e. find the well sizes) which
emit light at a wavelength spacing of 20 A, with one of them emitting at 8260 A.

The bandgap of GaAs is 1.43 eV. The bandgap of Al Al is given by

Ejx)=1434+12zeV; £ <04

AFE, : AE, = 0.65 : 0.35 for this system. What can you say about the fabrication
problems of such lasers?
5.17 For an application in an optical reader, a laser is needed with a wavelength of
A = 0.82 um at 300 K. Design a GaAs/AlGaAs quantum well in which the effective
bandgap corresponds to the desired wavelength. You can adjust the Al composition as
long as the composition is below 0.4 and the well size as long as it is between 50 Aand
150 A.

e What are the parameters (well size, composition of the barrier) for the design?

e Plot the density of states in the quantum well you have designed for the
conduction and valence band.

AE. : AF, = 0.65 : 0.35 for this system. Do not go above = 0.4, since the
alloy becomes indirect.
5.18 GaAs is used as a well region to form a quantum well and an electron density of
1012 cm~? is placed in the conduction band well. Estimate the maximum widths of the
quantum wells that will display two-dimensional effects for electrons at (i) 77 K and at
(i1) 300 K. for 2D effects to occur, 90 % of the electrons have to be in the ground state.
Use the infinite barrier model for your results. Assume that the mass of electrons in
GaAs 15 0.067 myg.
5.19 Consider a GaAs p—nt junction LED with the following parameters at 300 K:

Electron diffusion coefficient, D, = 25cm?/s
Hole diffusion coeflicient, D, = 12cm?/s
n-side doping, Ny = 5x107 ecm™3
p-side doping, N, = 10 cm™3
Electron minority carrier lifetime;, 7, = 10 ns

Hole minority carrier lifetime, 7, = 10ns

Calculate the injection efficiency of the LED assuming no trap-related recombination.
5.20 The diode in Problem 5.19 is to be used to generate an optical power of 1 mW.
The diode area is 1 mm? and the external radiative efficiency is 20%. Calculate the
forward bias voltage required.

5.21 Consider the GaAs LED of Problem 5.19. The LED has to be used in a com-
munication system. The binary data bits 0 and 1 are to be coded so that the optical
pulse output is 1 nW and 50 yW. If the external efficiency factor is 10%, calculate the
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forward bias voltages required to send the 0s and 1s. The LED area is 1 mm?.

5.22 Consider the semiconductor alloy InGaAsP with a bandgap of 0.8 eV. The electron
and hole masses are 0.04 mg and 0.35 myg, respectively. Calculate the injected electron
and hole densities needed at 300 K to cause inversion for the electrons and holes at the
bandedge energies. How does the injected density change if the temperature is 77 K?
Use the Joyce-Dixon approximation.

5.23 Consider a GaAs-based laser at 300 K. Calculate the injection density required
at which the inversion condition is satisfied at (i) the bandedges; (ii) at an energy of Aw
= FE, + kpT. Use the Joyce-Dixon approximation.

5.24 Consider a GaAs-based laser at 300 K. A gain of 30 cm™! is needed to overcome
cavity losses at an energy of hw = E, + 0.026 eV. Calculate the injection density re-
quired. Also, calculate the injection density if the laser is to operate at 400 K.

5.25 Consider the laser of the previous problem. If the time for e-h recombination is
2.0 ns at threshold, calculate the threshold current density at 300 K and 400 K. The
active layer thickness is 2.0 ym and the optical confinement is unity.

5.26 Two GaAs/AlGaAs double heterostructure lasers are fabricated with active re-
gion thicknesses of 2.0 um and 0.5 pym. The optical confinement factors are 1.0 and 0.8,
respectively. The carrier injection density needed to cause lasing is 1.0 x 10 c¢m™3 in
the first laser and 1.1 x10'® cm~2 in the second one. The radiative recombination times
are 1.5 ns. Calculate the threshold current densities for the two lasers.

5.27 Consider a laser in which the carrier masses could be tuned. Assume that the hole
density of states mass is 0.5 mg, while the electron density of states mass changes from
0.02 mg to 0.2 mg. Calculate and plot the transparency density needed at an energy of
E, + kpT, where E; is 1.4 eV. The temperature is 300 K.
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Chapter

DIELECTRIC
RESPONSE:
POLARIZATION
EFFECTS

6.1 INTRODUCTION

In the previous chapter we have examined optical processes in semiconductors and
discussed optical absorption, gain, recombination, etc. In this chapter we will discuss
the origins of dielectric response and how one can modify the response. It is well known
that the dielectric response of a solid is different from that of vacuum. This difference
arises from the presence of charges in the solid so that the “local field” felt inside a solid
is different from the externally applied field. The presence of an external electric field
polarizes the solid by creating relative displacement of charges. The atomic electron
charge cloud can be disturbed, the ionic charge (for solids with cations and anions) can
be shifted, the ions themselves can move physically, the “free” charge in the conduction
band can be disturbed, etc.

In this chapter we will develop several models for polarization and dielectric
response. Particularly interesting are cases where the response can be controlled by
external stimulus and thus be exploited for device applications. The dielectric response
can change as a function of applied field, applied strain, temperature, optical intensity,
etc. As a result we can use the dielectric response change for strain sensors, tunable
capacitors, interference-based optical devices, etc.
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6.2. Polarization in materials: dielectric response 265

6.2 POLARIZATION IN MATERIALS: DIELECTRIC
RESPONSE

We have seen that solids can be characterized as insulators, semiconductors, and metals.
Insulators, where current flow is negligible in the presence of an electric field (due
to the absence of mobile charges) show very interesting dielectric response. When an
external electric field is applied the charges in the solid are disturbed, creating a dipole
moment and polarization (dipole moment per unit volume). The polarization influences
the dielectric response, which, in general, is a function of frequency.

In Fig. 6.1 we show form different origins to polarization in a material. Each
source of polarization has its own time constant associated with its response time. There
are several sources of polarization as shown.

o The external field can polarize the atoms in the solid. The atomic polarization re-
sponse times are very short so that this source plays a role at low and high frequencies

(e.g., optical frequencies—10'% Hz), as shown in Fig. 6.2. The reason atomic polarization
can respond at very high frequencies is that the electron cloud (with very low mass)
adjusts rapidly to applied fields.

e In ionic polarization the cations and anions forming the crystal are displaced phys-
ically as a result of the external field. This polarization has a response time of ~1 ps,
due to the large mass of the ions that have to be displaced. As a result, at frequencies
above ~ 1012 Hz, ionic polarization does not play a role, as shown in Fig. 6.2.

e In dipolar polarization molecules have to rotate to create polarization. This is usually
a slow process, and, as a result, 1s only important at low frequencies.

o Free charge polarization effects are important in metals and doped semiconductors
respond in very short times, due to the small electron mass.

The schematic of the frequency dependence of polarizability shown in Fig. 6.2
will be discussed in more detail later in this chapter and the presence of the resonances
shown will be explained on the basis of simple models.

6.2.1 Dielectric response: some definitions

In this section we will recall some basic definitions used in understanding the dielectric
response of a solid. Consider a solid, subject to an external electric field which has a
value Eg, as shown in Fig. 6.3. This field causes charges in the solid to shift, causing a

polarization given by

where the index n represents the various sites on the solid (could be continuous or
discrete), and ¢ and r represent the charge and its position. In free space the electric
field Eg would be related to charge density p by the Maxwell equation

V -Ey =p/eo

However, in a medium the presence of the external field Ey causes a polarization of the
internal charge. The polarization causes a field Eq as shown in Fig. 6.3, which opposes
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( Polarization source

C Polarized E # 0 )

[ Unpolarized E = 0

Elecgron cloud
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Tonic
Dipolar / / 2> g
Electron “sea”
Free charge (s 1 § 5]
Space charge
Neutral locally

Figure 6.1: A schematic of how various processes lead to net polarization in materials.
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Figure 6.2: Frequency dependence of polarizability of a solid and its various components.
The slow dipolar contribution is present only at low frequencies, while the fast electronic
contribution persists at high frequencies.
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External field: Eg
Polarization: P = Zq,r,
Depolarization field: E;

Polarization: P — Depolarization field, E{

Figure 6.3: {a) A schematic of how an external field polarizes a solid creating a depolarization
field, which tends to reduce the net field in the solid. (b) A uniformly polarized dielectric slab
creates a depolarizing electric field F;. The surface charge density is ¢ = P as shown.

the external field Eq. If we consider a uniformly polarized dielectric slab, as shown in Fig.
6.3b, the depolarization field is given by the field created by sheet charges ¢ = +P and
o = —P as shown. The total macroscopic field inside the solid may now be represented
by the sum of Eq and E; (assume the field is along the z-direction).

P
E:E0+E1:E0—E—-Z (62)
0

The dielectric susceptibility x is defined through the relation between the polarization
and the total field

P = ¢xE (6.3)

In a solid the internal polarization effects are described by the relative dielectric
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constant ¢, and the equation

vV-D = p
D ercoE (6.4)

I

where D is the displacement vector (which accounts for the internal polarization effects),
p is the total charge density, and E is the electric field.

The Maxwell equation in a medium can be described through a relative di-
electric constant. The electric field produced by charges are reduced by a factor of the
relative dielectric constant, €., where

€0E+P_

r = 1 .
€ E +x (6.5)

In case the material does not have isotropic properties the relevant relation is described
by the susceptibility tensor
Py = xuveo By (6.6)

and
€y =1+ X (6.7)

Dielectric response in alternating electric fields
Insulators are often used in capacitors, which form key components of microwave cir-
cuitry. We will examine how dielectric materials respond in the presence of a time
varying field. In Fig. 6.4 we show a simple circuit for a capacitor, subject to an ac field
given by

V = Voe't (6.8)

The current through the capacitor is

I= CCZ—Z = iwCV (6.9)

To see the effects of the dielectric response explicitly we write the capacitance as

er€0A

C’:h

(6.10)

where A and h are the area and width of the capacitor. We also write the dielectric
constant as a complex term having a real part €. and an imaginary part €/

€& = €. — 1€ (6.11)
The current in the capacitor is
I = we.CoV +UJ€:,IC()V (6.12)

where Cj is the capacitance if the dielectric was replaced by a vacuum. The current is
made up of two components - one a “lossless” term, which is 90° out of phase with the
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Figure 6.4: (a) A circuit where an alternating field is applied to a capacitor. (b) A complex
representation of the current-voltage across the capacitor.

applied field, and one that is a “lossy” term and 1s in phase with the field. This is shown
in Fig. 6.4b.
From Fig. 6.4b we can see that the angle 6 is defined by

€//
tand = - (6.13)

r

The average power dissipated in the circuit is given by
.1 (T
P== VIdt 6.14
7/ (6.14)
Taking the real part, we get for the average power dissipated
_ 1
P= iwe’r'C'oVoz (6.15)

Writing the potential amplitude as Vo = Egh where FEj is the electric field amplitude
we get

_ 1 A
P = iweﬁ’GOZ—Eozhz

1
= §w€;'eoE§Vcap (6.16)

where Viap is the volume of the capacitor. The power density dissipated is then

P 1 H 2
= -weel
Veap g trtee
1
= in‘geoe’rtané (6.17)

We can see that if § = 0, i.e. if the imaginary part of the dielectric constant is zero, there
is no dissipation. The imaginary part of ¢ comes from scattering processes that occur
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as the charges in the system respond to the applied field. For microwave frequencies
the scattering processes involve scattering of charges by lattice vibrations or defects.
For optical frequencies we can have charges scattering from the valence band into the
conduction band, resulting in optical absorption as discussed in Chapter 5.

The dielectric function itself has interesting dependence on frequency. The mo-
bile charge in the solid has several resonant frequencies. When the external frequency of
the ac field approaches these frequencies the dielectric constant shows unusual behavior.

Frequency dependence of dielectric response

As discussed earlier atomic and ionic polarization are an important component of the
dielectric response of a solid. A simple model can be used to describe these charges as
bound to their equilibrium positions by a linear restoring force — in other words, by a
simple harmonic oscillator model, as shown in Fig. 6.5. In the absence of any external
force, the equation of motion for the ideal charges may be written as

2
d*x 9

mzt_zq-mwoa: =0 (618)
where m is the mass of the oscillator and wyq is the natural frequency of the oscillation of
the oscillator. In a real system we need to introduce a loss term arising from the various
scattering processes. The scattering processes can be represented by a damping factor
7, which is proportional to the velocity of the charge. If an external field Ey exp(iwt) is
applied, we have the equation

d*z dz A

_/ twt
Moy My g+ mwgE = qFEpe (6.19)

where ¢ is the charge (see Fig. 6.5).
Assuming a general solution of the form z = zpe

qEOeiwt
t) =
") = @ - ¢ )

If we assume that there are N charges per volume, the time-dependent polarization is

P(t) = Ngqx(t) (6.21)

Wt we get

(6.20)

The susceptibility is then

Ng¢? 1

= 6.22
xw) = 2 { o (6:22)
The dielectric constant is now

Ng? 1

mep (wE — w?) + tyw

(@) =1+ (6.23)

At optical frequencies the dielectric response is denoted by €., since the frequencies
are very high. The real and imaginary part of the dielectric response is now

, L - N¢? wi —w?
froo =1 = 2_ 02 .2 2
meo | (wf —w?)” 4+ vw
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Force constant

K= mmg
Charqu g = electronic charge
electronic of shell
shell i m: mass of charged
Nucleus shell

Figure 6.5: A simple classical model to represent the polarization of atoms. A charged elec-
tronic shell (total charge ¢) is bound to a nucleus by a “spring” of force constant K.

N 2
e o= { 1 } (6.24)

meo | (w2 — w?)” + y2w?

Typical frequency responses for the dielectric function are shown in Fig. 6.6.

The expression for the dielectric response derived above is modified in solids,
since the local field is different from the external field. However the general form of the
dielectric response is unchanged.

Relaxation time effects

In the treatment for dielectric response, it has been assumed that the polar charge can
respond to the local field instantly. In many materials this is not the case, especially
at high frequencies. It is useful to define a time constant 7, called the relaxation time,
which represents the time it takes for a polarization disturbance to reach its equilibrium
value. The time dependence of the polarization may be represented by

P 1
= = {P.~P@)} (6.25)

where P, is the steady state value. It is useful to define the static dielectric constant
€, and the high frequency dielectric constant €/..,. The static constant describes the
response of the system under de conditions; i.e., where the system has enough time to
respond. It is possible to show that, if the polarization time dependence is described by
Eq. 6.25, the dielectric response has the following form (for a field E = E exp(iwt))

/ /

| €rs ~ €roo
r + 1+ w2r?
wT
& = (&~ €reo) 1552 (6.26)

When the relaxation time effects are important, the dielectric constant has
strong temperature dependence. This is because the time constant 7 has a strong depen-
dence on temperature. Usually 7 has a temperature dependence given by an activation
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Figure 6.6: Variation in €., and €/, with frequency close to a resonance frequency wg.

energy E4

E
T = T exp (ICB_J?T> (6.27)

6.3 FERROELECTRIC DIELECTRIC RESPONSE

In Chapter 1 we have discussed the structures of several classes of materials. In materials
with cations and anions it is possible to have crystal structures, where the polarization in
the material is non-zero. Ferroelectric materials exhibit polarization even in the absence
of an applied electric field. In Fig. 6.7 we show a typical hysterisis loop for ferroelectric
materials. The ferroelectric effect disappears above a temperature called the Curie tem-
perature. Ferroelectric materials may be classified into two categories: order—disorder,
or displacive. In “order—disorder” case the polarization arises from the ordering of the
ions to create net polarization. In a displacive type, the cations are physically displaced
with respect to the anions to create net polarization. Crystals containing H bonds are
usually order—disorder type and include materials like KHoPO4, RbH2POy4, etc. Ionic
crystals, like BaTiO3, LiNbOj, GeTe, etc., are displacive type ferroelectrics.

As can be seen in the hysterisis curve of a typical ferroelectric, the polarization
properties of the material are described by the spontaneous polarization P, and the
critical field E,. In Table 6.1 we show the values of the spontaneous polarization and
Curie temperature for several ferroelectrics. If we convert the spontaneous polarization
value to ionic displacement, it is seen that displacements as large as 0.1 A are obtained.
Thus in the ferroelectric effect the ions move by a significant fraction of the lattice
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Figure 6.7: A typical schematic of the hysterisis curve seen in ferroelectric materials.

MATERIAL Te (K) Ps PoLar CHARGE
(nCem=2) (cm=2)
KDP type  KH,PO,4 123 5.33 3.3x 1013
KH,AsO, 96 5.0 3.1x 1013
Perovskites BaTiOg 393 26.0 1.62 x 1014
SrTiOg 32(7) 3.0 1.87x 1013
PbTiOg 763 >50.0 3.1 x 1014
KNbO4 712 30.0 1.87 x 1014
LiNbiOg 1470 300.0 1.87 x 1015
LiTaO3 23.3 1.45x 1014

Table 6.1: A list of several ferroelectric materials and their properties (from Introduction to
Solid State Physics, C. Kittel, John Wiley and Sons, New York, 1971). Spontaneous polariza-
tion, Curie temperature, and fields for some ferroelectrics.
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constant.

An analytical expression that describes the hysterisis loop can be written. If
the field is increasing from a large negative value to a large positive value (the forward
cycle) the polarization can be written as

P*(E) = P,tanh (E;6E>
§ = E, [zn (%%%)]—1 (6.28)

where E. is called the coercive field and is the field at which polarization switches
sign. The polarization parameters P, and P, are called the remnant and spontaneous
polarization, respectively. In the negative cycle we have

P~(E) = —P*(E) (6.29)

Detailed theories behind the ferroelectric effect are quite complex, but a simple
model can be developed in terms of the free energy configuration of atoms in the crystal.
In Fig. 6.8 we show a schematic of the free energy versus separation between anions and
cations at different temperatures. The origin represents the case where the anions and
cations are arranged so that the net polarization is zero. We can see that below Curie
temperature there are two equilibrium positions corresponding to opposite polarization
values. The application of an electric field can pull the material from one state to
the other. The spontaneous polarization value drops to zero at 7' > T, in a manner
that depends upon the nature of the free energy diagram. The dielectric response is

approximately given by
X

Tr'-T.
and extremely large values of € can be observed near 7;. A typical result for BaTiOj3 is
shown in Fig. 6.9.

In ferroelectric crystalline solids domains of varying polarization orientation
are formed, as shown schematically in Fig. 6.10. Such domains are to minimize the
electrostatic energy in the crystal. The multidomain state can be transformed into a
single domain by applications of a strong electric field along a polar direction. In addition
to 180° domains shown in Fig. 6.10, 90°, domains are also formed as shown in Fig. 6.10
to minimize the strain energy of the system.

In polycrystalline ferroelectrics, grown materials are usually non-polar due to
the random orientation of domains. However, the material can be rendered polar by
application of a field (the poling field).

€ ~

(6.30)

6.4 TAILORING POLARIZATION: PIEZOELECTRIC
EFFECTS

Polarization in a material can be exploited in a number of ways in device design. Polar-
ization influences the dielectric constant and, therefore, the electromagnetic properties
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Figure 6.8: A schematic of how the energy of a ferroelectric crystal (such as BaTiO3) changes
as a function of the relative displacement of the positive charges.
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Figure 6.9: (a) A schematic of free energy as a function of polarization for various temper-
atures. {(b) Spontaneous polarization in BaTiOs as a function of temperature. {c) Dielectric
constant as a function of temperature in BaTiOs.
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can be influenced. It can be used to create voltage changes in devices to be used as
sensors and detectors. A number of stimuli can alter polarization, including pressure,
temperature, and optical inputs. The piezoelectric effect, exploited for many device
technologies, is one way the polarization in a material can be tailored.

Piezoelectric effect describes the polarization change that occurs when a strain is
present in a material. It also describes the reverse effect where an electric field applied to
the material creates a strain. In Fig. 6.11 we show schematically how stress causes atomic
sublattices in a crystal to shift to create net polarization. Strain-related polarization can
arise in ferroelectric materials (where spontaneous polarization is present without a field)
or in non-ferroelectric materials, as shown in Fig. 6.11a and b. Out of the total of 32
crystal groups, 11 have center of symmetry and do not display the piezoelectric effect.
Of the remaining 21, 20 do display piezoelectric effect.

Device applications exploiting the piezoelectric effect depend upon the gener-
ation of current or voltage due to strain, as shown in Fig. 6.12; or the reverse process
of using electric field to generate strain. The piezoelectric properties of a material are
described through several response parameters. The general relations between displace-
ment field D, stress X, and electric field F, is

D=dX +¢&E (6.31)

where d is the piezoelectric strain constant (units: pC'/N) and €* is the dielectric constant
under constant strain. Conversely, the relation between strain ¢, electric field, and stress
is (note that the symbol ¢ is used here for strain. The reader should be able to distinguish
between strain and dielectric response, which uses the same symbol, from the context
of the equation)

c=sEX +dE (6.32)

where s is the elastic compliance at constant electric field (units: m?/N). As noted

earlier a material may be piezoelectric without being ferroelectric. However, the piezo-
electric coefficient is considerably stronger in ferroelectric materials, due to the presence
of spontaneous polarization.

The strain in a solid is described by a second rank tensor. The stress tensor
18 also, similarly, a second rank tensor. The elastic compliance s is thus a fourth rank
tensor. The dielectric response 1s also a second rank tensor. We can see that overall there
are several tensors and a large number of parameters in the full description of s,d, ¢ in
the equations given above. However, due to the various symmetries present in a general
crystal and in a specific crystal, not all the components of a tensor are independent or
non-zero. In general we expect to have 21 elastic compliance components, six dielectric
response components, and 18 piezoelectric coefficients.

We use the contracted notation, where an index 7 goes from 1 to 6, the variables
1,2, and 3 represent z, yy and zz, respectively, and 4,5, and 6 represent yz, zz, and zy,
respectively. The 18 piezoelectric coeflicients are given by

8€k

diy, = E_ETZ

(6.33)

T
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Stress

|

P +APA

T Stress T

(@ (b)

Figure 6.11: A schematic showing how a ferroelectric material with a net polarization P alters
its polarization due to stress. Non-ferroelectric materials can also display net polarization in
the presence of stress.

CURRENT (VOLTAGE)
OUTPUT

)

STRAIN INPUT

STRAIN OUTPUT

EXPANSION
CONTRACTION

FiELD INPUT
(b)
Figure 6.12: (a) Application of stress alters the current or voltage across a piezoelectric

material. (b) An electric field applied across a piezoelectric material can cause contraction or
expansion.

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

6.4. Tailoring polarization: piezoelectric effects 281
PIEZOELECTRIC 0-QUARTZ  BaTiO3 PZT LiNbO3
CONSTANT
PCN-1
dzq =79 -119

dis 270 335

dia 0.67

Table 6.2: Piezoelectric constants for some materials.

In addition to the equation relating E to the strain, the piezoelectric effect is
also described by the relation between polarization and stress or between polarization

and strain. We can write
P=dX+exE (6.34)

where d’ is the piezoelectric constant (units: m/V), X is the stress and y is the suscep-
tibility. The polarization can also be written in terms of strain as

P =ce+ecoxl (6.35)

where e is the piezoelectric coefficient (units: C/m?). We see that an applied electric field
can produce strain and strain can produce an electric field. These effects are used, for
example, in ultrasonic generations and strain sensors. In Table 6.2 we show piezoelectric
constants for some important materials.

In most applications of piezoelectric effects the strain is applied from an external
source (strain sensor applications) or an electric field is applied to distort a crystal.
However, it is possible to have built-in strain in thin epilayers grown on a substrate.
For layer-by-layer growth, the epitaxial semiconductor layer is biaxially strained in the
plane of the substrate, by an amount |, and uniaxially strained in the perpendicular
direction, by an amount ¢, . For a thick substrate, the in-plane strain of the layer is
determined from the bulk lattice constants of the substrate material, ag, and the layer

material, ar:
o = -1
ar
= ¢ (6.36)

Since the layer is subjected to no stress in the perpendicular direction, the perpendicular
strain, €, , 1s simply proportional to ¢:

e = —I (6.37)

o
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where the constant ¢ is known as Poisson’s ratio.
Noting that there is no stress in the direction of growth it can be simply shown
that for the strained layer grown on a (001) substrate (for an fcc lattice)

C11

s = S (6.38)
2012

ez = €

€yy — €z
—2c19

€y = ————6“
‘1

fg;y =

€y, = 0

€0 =

while in the case of strained layer grown on a (111) substrate

c11 + 2c12 + 4caq

7 2(311 + 4(312 — 4(344
. ( -g_l<2011+4012-4044>}6

T 13 3\ ern +2c12+ 4eas I
byy = oo
€22 = €z

L [=1 1 (200 + dery — deaq

oy = T s ( c11 + 2e12 + 4eqq )} ‘I
€y = €ay
@z = Foy: {(6.39)

In general, the strained epitaxy causes a distortion of the cubic lattice and, depending
upon the growth orientation, the distortions produce a new reduced crystal symmetry. It
is important to note that for (001) growth, the strain tensor is diagonal while for (111),
and several other directions, the strain tensor has nondiagonal terms. The nondiagonal
terms can be exploited to produce built-in electric fields in certain heterostructures as
will be discussed in the next section.

An important heterostructure system involves growth of hcp lattice-based Al-
GaN or InGaN on a GaN substrate along the c-axis. In this case the strain tensor is
given by

as —ar,
Cyy = ———
vy ag

6, = 2., (6.40)
€33

€rx

This strain is exploited to generate piezoelectric effect based interface charge as discussed
in the next section.

As a result of the piezoelectric effect, the built-in strain can produce polarization
and interfacial charge between regions with different strain values and polarization. The
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Polarization P,

< Interface charge
<~density = P, — Pp

Polarization Pp

Figure 6.13: A schematic showing how interface charge density can be produced at
heterointerfaces of two polar materials,

interfacial charge simply results from the difference of the polarization of the two layers,
as shown in Fig. 6.13.

Nitride heterostructures have polarization charges at interfaces because of the
strain-related piezoelectric effect as well as from spontaneous polarization. For growth
along (0001) orientation, the following relation relates piezoelectric polarization to the
strain tensor

P, = e33€,, + €31 (€zz + €yy) (6.41)

The piezoelectric effect is also present in zinc blende structures. However, the piezo-
electric effect only occurs when the strain tensor has off-diagonal components. The
polarization values for zinc blende structures (such as GaAs, InAs, etc.) are given by

P, = €14€y,
Py =  €14€z;
Pz = 614€xy (642)

The strain tensor is diagonal for growth along (001) direction. As a result there is no
piezoelectric effect. However, for other orientations, notably for (111) growth, there is a
strong piezoelectric effect.

Piezoelectric effect can be exploited to create interface charge densities as high
as 10'2 cm~? in materials. In Table 6.3 we provide the values of piezoelectric constants
for some semiconductors. Also shown in Table 6.4 are elastic constants for some mater-
ials.

EXAMPLE 6.1 Consider a piezoelectric ceramic of length 1 cm. A uniform stress of 10 Mpa
is applied along the axis. Calculate the potential developed between the two faces. Use these
parameters: das = 350 pCN™!; €%, = 700 ¢.

The field developed is

dssX (350 x 10712 CN7!)(10” N)
€, 700 x8.85x10-12 F/m

E =
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ZINC BLENDE WURTZITE (c-axis growth)

MATERIAL €14(C/m2)  MATERIAL e31(C/m?2)  e33(C/m?)  Pgp(C/m?)
AlAs -0.23 AIN -0.6 1.46 -0.081
GaAs -0.16 GaN -0.49 0.73 -0.029
GaSb -0.13 InN -0.57 0.97 -0.032
GaP -0.10
InAs -0.05
InP -0.04

Table 6.3: Piezoelectric constants in some important semiconductors. For the nitrides the
spontaneous polarization values are also given. (Data for zinc blende materials are from S.
Adachi, J. Appl. Phys., vol. 58, R1 (1985). For nitrides see E. Bernardini, V. Fiorentini, and
D. Vanderbilt, Phys. Rev. B, vol. 56, R10024 (1997).)

MATERIAL Cri(N/m?2)  C1p(N/m2)  Cyy(N/m?2)
Si 1.66 x 1011 Q.64 x 1011 0.8 x 101!
Ge 129 x 1011 048 x 1011 0.67 x 101!
GaAs 1.2 x 101! 0.54x 1011 059 x 1011
C 10.76 x 1011 1.25x 1011 576 x 1011
MATERIAL C13(N/m?2) C33(N/m2)
GaN 10.9 x 1011 35.5x 1011
AIN 12.0 x 1011 39.5 x 1011

Table 6.4: Elastic constant for some fcc- and hep-based semiconductors. (For Si, Ge, and GaAs
see . J. McSkimin and P. Andreatch, J. Appl. Phys., 35, 2161 (1964) and D. I. Bolef and
M. Meres, J. Appl. Phys., 31, 1010 (1960). For nitrides see J. H. Edgar, Properties of II[-V
Nitrides, INSPEC, London (1994) and R. B. Schwarz, K. Khachaturyan, and E. R. Weber,

Appl. Phys. Lett., 74, 1122 (1997).)
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= 5.65x%10° V/m

The voltage developed is then
V=EL=565x10"V

EXAMPLE 6.2 A thin film of Alg.3 Gao.7N is grown coherently on a GaN substrate. Calculate
the polar charge density and electric field at the interface.
The lattice constant of Alg3Gag.7N is given by Vegard’s law

aan = 0.3a.v + 0.7agany = 3.111 A
The strain tensor components are
€zz = 0.006 = €,
Using the elastic constant values from Table 6.4
€:z=—0.6 x 0.006 = 0.0036
The piezoelectric effect induced polar charge then becomes

P, =0.0097 C/m*

This corresponds to a density of 6.06 x 10?2 cm™? electronic charges.
In addition to the piezoelectric charge the spontaneous polarization charge is

P.p = 0.3(0.089) + 0.7(0.029) — 0.029 = 0.018 C/m?

-2

which corresponds to a density of 1.125 x 10'® cm™? charges. The total charge (fixed) arising

at the interface is the sum of the two charges.

6.5 TAILORING POLARIZATION: PYROELECTRIC
EFFECT

An important physical effect exploited for thermal imaging applications is the pyroelec-
tric effect. This effect refers to the change in the spontaneous polarization of a material
as a function of temperature. Ferroelectric materials (which have a large spontaneous
polarization) exhibit it as well as materials, such as AIN, GaN, and InN, which have a
fixed spontaneous polarization. As shown in Fig. 6.14 a change in temperature alters the
spontaneous polarization (or the surface charge). A current flows over a time interval
At to neutralize the surface charge and can be used to detect the pyroelectric effect.

To develop an expression for the pyroelectric effect let us examine the relation
between displacement, applied electric field, and polarization

D 50E + Ptotal

= el + (Ps + Pinduced) =¢E+ P (643)

li

where ¢ is the dielectric constant. Here we have used Eqs. 6.4 and 6.5 for the derivation.
Assuming a constant electric field, we can write for P, the generalized pyro-
electric coefficient
. oD _ 6P5 O¢

Ps=%r = %7 " For (6.44)
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Current flow

40 [+++++++++++4+4++144 O+AC [+++++++++++++++++
AlAt = AQ

- —(6+A0)
It Attt F4414+47 A Ay

Figure 6.14: A schematic of how a temperature change induced change in spontaneous
polarization can be detected by a current flow over a time interval.

This gives

Oe
Py, =P+ Eﬁ (6.45)

where p is the true pyroelectric coefficient (= dP,/3T) and, in general, is a vector,
but for practical reasons is treated as a scalar. As can be seen from the above equa-
tion, the temperature dependence of measured polarization arises from p and Ede/d7T.
For non-ferroelectric materials € does not vary much with temperature and the overall
pyroelectric effect is very small. In Table 6.5 we provide values for the pyroelectric coef-
ficient for several materials. The pyroelectric effect is quite dependent on temperatures,
especially if measured near the Curie temperature.

One of the most sensitive materials used for applications is LiTaOgs. Single
crystal LiTaOg can be grown and the material is able to be processed into high sensitivity
devices. Lead zirconate (PZ) is another widely used material for devices.

MATERIAL 14 Tc
(uCm2K-h)  (K)

Triglycine sulphate 280 322
(TGS, 308 K)
Deuterated TGS 550 334
LiTaOgy 230 938
single crystal
PZT powder 380 500

Table 6.5: Values for the pyroelectric coefficient and Curie temperature of some materials.
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POLAR MATERIAL-BASED DEVICES

FERROELECTRIC EFFECT PIEZOELECTRIC EFFECT

PYROELECTRIC EFFECT

* Strain sensors Infrared detection or
¢ Accelerometers . thermal imaging

« Gas ingniters

* Sonic energy generators

Memories for “smart cards” |

Figure 6.15: Polar material based devices.

6.6 DEVICE APPLICATIONS OF POLAR MATERIALS

Traditional semiconductors. e.g. Si, GaAs, etc., are ideally suited for devices such as
transistors (switches, amplifiers), light emitters, and detectors. The central reason for the
widespread use of semiconductors in such applications is the ease with which free carrier
concentration (and, hence, conductivity and optical properties) can be altered by an
electrical or electromagnetic perturbation. Traditional semiconductors, however, are not
suitable for many applications where the perturbation to be “sensed” is not electrical.
This 1s because usually properties such as piezoelectric constants, pyroelectric constants,
etc., are very weak in traditional semiconductors. Clearly there are perturbations, such
as stress, temperature change, acceleration, etc., which need to be studied. For such
devices the polar materials discussed n this chapter have become materials of choice.

Polarization change based effects, such as the ferroelectric effect, piezoelectric
effect, and pyroelectric effects, are exploited in a number of important devices. In Fig.
6.15 we show some of the devices based on polar materials. We will briefly discuss the
operation of these devices.

6.6.1 Ferroelectric memory

We have seen that the polarization in a ferroelectric material can be switched in direction
by an applied field. As a result there are two stable electrical states of a thin ferroelectric
film. This feature has been exploited for memory devices.

A key application of ferroelectric material based memories is the smart card.
These cards are traditionally used for banking and retail. Both contact (where the card
is inserted into a slot) and contactless smart cards are needed for applications, such
as public transportation, entertainment, access control, etc. Ferroelectric devices have
proven to be an excellent solution for such applications. The devices consume little
power (can be non-volatile, since they depend on atomic motion from one stable state
to another) and can store information for up to ten years without power. The content
of a card can easily be read by a rf input-output system without any need for physical
contact.
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Figure 6.16: Two approaches for using cantilever bimorphs for strain sensors. (a) A serial
connection with poling done as shown. (b) A parallel connection.

6.6.2 Strain sensor and accelerometer

An important application of piezoelectric materials is a strain sensor, which allows one
to measure the strain or displacement in terms of a voltage signal. For such applications
long thin strips or plates are used, since the forces required to create the strain are then
smaller.

In Fig. 6.16 we show a typical piezoelectric strain sensor geometry. When a
thin plate is bent, half of the plate is compressed, while the other half stretches. As a
result, no net voltage is created across the plate. However, if a bimorph, as shown in
Fig. 6.16 1s used, net voltage can be detected by using an electrode in the middle of the
plate. Depending upon the initial poling on the bimorph we can use a serial or parallel
connection to obtain the voltage signal across the beam.

It can be shown using simple geometric arguments and the mechanical proper-
ties of a cantilever that the voltage developed across a beam of total thickness H and
length L is (82 is the displacement of this edge)

" 2

where haj 1s the voltage per strain for the material. The potential developed for displace-
ments as small as 0.1 #m can be several hundred mV in materials with high piezoelectric
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coefficients.
It is possible to apply a bias voltage to the cantilever to create a displacement.
In this case it can be shown that the displacement is

3(L\°

where V is the applied voltage. For a value of d3; = —79 pCN~! (for BaTiO3) the
displacement is 1.2 ym if L/H = 10 and applied voltage of 100 V.

The piezoelectric effect can be exploited to design accelerometers as well. A
mass is attached to the free end and an acceleration is detected in terms of the voltage
developed as a function of time. Series based as shear strain have also been developed
for accelerometers.

EXAMPLE 6.3 A cantilever of length 10 mm and thickness 1 mm is used for a strain sensor.
A force is applied at the end of the beam causing a deflection of 1.0 pm. Calculate the voltage
produced if h31 = —6.2 % 105 Vm™!.

Using the equation given in this section the voltage is found to be

Vo= % (%)2 (=6.2 x 10° V/m) (107° m)

23V (6.48)

6.6.3 Ultrasound generation

Important applications of piezoelectric materials are a generation of ultrasonic energy
and use as resonators. Under static electric field conditions the piezoelectric strain is
small. However, under ac conditions much larger strains can be created if the ac fre-
quency 18 equal to the mechanical resonant frequency of the bar. In Fig. 6.17a we show
a simple bar of length ¢; along with its fundamental resonant frequency given by

1

2617/ psty

where p is the material density and s¥; is the elastic compliance for the applied field.
The frequency can be tuned by choice of the dimensions. The piezoelectric bar can
be used in conjunction with a microwave cavity to create ultrasound energy, as shown
in Fig. 6.17b. The microwave field energy is transferred to ultrasound energy via the
ptezoelectric field.

fr= (6.49)

6.6.4 Infrared detection using pyroelectric devices

It is well known that objects radiate electromagnetic radiation whose intensity and
spectral distribution is controlled by the object’s temperature. An important need in
technology is the ability to detect temperatures of distant objects. Thermal imaging
finds important uses in environmental areas as well as in night vision applications.
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1
Fundamental frequency: fp = —r—=
quency: fg IV

(@

Waveguide ULTRASOUND GENERATION

Piezoelectric crystal bar

4
Microwave cavity

()
Figure 6.17: A piezoelectric bar, which has a resonant frequency determined by the length,

density p, and elastic compliance s at constant electric field. (b) A schematic of a system to
generate ultrasounds at microwave frequencies.
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There are two approaches to detecting long wavelength photons (photons coming from
room temperature objects have a peak wavelength at ~ 5-10 pm. By using a narrow
bandgap material (E; ~ hw) we can use the photons to create e-h pairs that can be
used to create a photo signal. This approach was discussed in Chapter 5, Section 5.5.1.
In the second approach the temperature change can be used with an effect such as
pyroelectricity to create a detectable signal.

Pyroelectric materials offer low-cost alternatives to semiconductor devices for
infrared detection. Even though they are not as sensitive as semiconductor devices,
they can operate at high temperatures. Thin slices of the material are used as detector
elements as shown in Fig. 6.18. If a power density W;/A is incident on a pixel of area
A the energy absorbed in time At is

AE = gW;At (6.50)

where 7 is the emissivity of the material and represents the fraction of energy absorbed.
If H is the heat capacity of the element, the change in temperature is given by

HAT = nW; At (6.51)

where H = pcAh, and p is the density, ¢ the specific heat, and A the film thickness. The
temperature change results in a voltage signal that can be amplified by an amplifying
circuit, as shown in Fig. 6.18. The pyroelectric sensor works when the temperature is
changing, since at constant temperature the free internal charge distribution is neu-
tralized by free electrons and surface charges. The pyroelectric capacitor has metallic
electrodes and when the radiation impinges a temperature change AT develops. The
charge associated is

AQ = pAAT (6.52)

where p is the pyroelectric coefficient and A is the device area receiving the radiation.
The photocurrent is then

d(AT)
I, = [
pA o (6.53)
The rms signal voltage is
Li(rms) - R (6.54)

T (1+w2R2C?)?

where R is the parallel equivalent resistance and C' the capacitance.

6.7 SUMMARY

We summarize the topics discussed in this chapter in Tables 6.6 and 6.7.

6.8 PROBLEMS

6.1 The spontaneous polarization in the ferroelectric LiNbQOj is found to be 3 Cm~2.
Calculate the dipole moment per unit cell and the relative displacement (from ideal
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Figure 6.18: A schematic of a pyroelectric detector element and a circuit used to amplify the
voltage signal.
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Polarization in solids

There are a number of sources for polarization
in materials. Atomic, ionic, dipolar, and free
charge all contribute. Each source has its own
frequency dependence. At high frequency,
only electronic contributions are important.

* Dielectric response describes how an external
field's effect is modified inside a solid due to
polarization effects.

* Both real and imaginary parts of dielectric
response are important in describing ac power
propagation and dissipation in solids.

Frequency dependence of
dielectric response

Table 6.6: Summary table.

Due to internal resonances in a solid, the
dielectric response shows resonances at certain
frequencies.
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Ferroelectric materials

Some materials have ionic structure that
allows them to have stable structures with net
polarization at zero applied field. The
polarization versus field relation shows
hysterisis in these ferroelectric materials. The
ferroelectric effect disappears above a
temperature (the Curie temperature)
determined by the material properties.

Piezoelectric effect

The polarization in a material can be altered by
a strain. Conversely, an electric field can
induce strain in a solid. The piezoelectric effect
can be exploited for strain sensors and sound
generation.

Table 6.7: Summary table.

Temperature changes can alter the polarization
in materials. This effect can be exploited for
thermal imaging.
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position) of the cations and anions.

6.2 A device is made from a piezoelectric material of area 1 mm x 0.3 mm. The
thickness of the device is 0.1 mim. A potential of 10 V is applied by placing electrodes
on the two forces of the device. Calculate the dimension of the device after the voltage
is applied. Assume that the poling direction is the same as the field direction. The
piezoelectric parameters are dssz = 520 pCN~1;d3; = —200 pCN 1.

6.3 Consider a c-axis grown GaN/Al,Ga;_,N interface where the AlGaN layer is
under strain to fit the GaN substrate. Calculate the fixed charge density arising from
polarization differences at the interface. Consider both piezoelectric and spontaneous
polarization effects. Use weighted mean values for alloy parameters.

6.4 Consider an Ing 2Gag sN/GaN heterostructure. The InGaN film has biaxial strain
and growth is along the c-axis. Calculate the fixed charge density at the interface. Use
weighted mean for InGaN piezoelectric coefficients.

6.5 Consider a uniform stress of 5 MPa along the axis of a cylinder of length 1 mm
and diameter of 0.5 mm. Calculate the potential across the faces of the cylinder. The
parameters for the material are ¢5; = 700 ¢o; d33 = 350 pCN 1.

6.6 Consider a pyroelectric detector with the following parameters

Photocurrent I, =10 mA
Parallel equivalent resistance R=10Q
Parallel equivalent capacitance C =20pF
Operating frequency v = 10 Mhz
Calculate the signal voltage produced.

6.7 In a pyroelectric capacitor a change in temperature of 1 K is produced in a time
of 1 us. Calculate the current that flows through the device.

p = 200 uCm *K~!
A = 50 pm x 50 pm

6.9 FURTHER READING

¢ General
— A.J. Moulson and J.M. Herbert, Electroceramics: Materials, Properties, Ap-
plications, Chapman Hall (1992).
— J.F. Nye, Physical Properties of Crystals, Clarendon Press, Oxford (1985).

— J.C. Burfoot, Polar Dielectrics and Their Applications, Macmillan, London
(1979).

— J.M. Herbert, Ferroelectric Transducers and Sensors, Gordon & Breach, Lon-
don (1982).

— C. Kittel, Introduction to Solid State Physics, J. Wiley, New York (1986).
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Chapter

OPTICAL
MODULATION AND
SWITCHING

7.1 INTRODUCTION

In Chapter 5 we examined how light detection and emission occurs in devices. In addition
to lasers, LEDs, and detectors discussed in Chapter 5, we need devices that can: (i)
modulate light, i.e. alter the strength of the light signal; (ii) switch light from one
path to another for, say, the purpose of sending a beam to a particular route; and (iii)
selectively filter a particular optical wavelength. Such devices are needed for optical
communication networks as well as for display technologies and optical sensors.

In Chapter 6 we have seen how the dielectric response of a material is influenced
by internal charges. The distribution of these charges and the polarization can be altered
by electrical, mechanical, and thermal perturbations. Mechanical stress (strain) leads to
devices that can be used as piezoelectric sensors and transducers. Similarly temperature
changes can be exploited for infrared sensors. In this chapter we will examine how
electrical signals can be used to alter the optical response of a device.

Optical signals are electromagnetic waves, which propagate through free space
and solids in accordance with Maxwell’s equations. As noted in Chapter 5, in light
absorption and emission we need to use quantum mechanics (i.e., treat electromagnetic
waves as particles) to understand the physical properties (absorption coefficient, gain,
etc.). Once these properties are established the propagation is described by the classical
wave equation of Maxwell. The properties of light waves are described by physical
parameters, such as polarization, intensity, wavelength, speed of the wave, etc. Most
optical modulators and switching devices are based on phenomena that allow altering
the polarization or intensity of light.

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

7.2. Light propagation in materials 297

CONTROL OF OPTICAL SIGNALS

POLARIZATION CONTROL INTENSITY CONTROL

Refractive index change Absorpton coefficient change §
* Modulators
* Couplers

« Filters

* Modulators §
* Switches 3
=

Figure 7.1: An overview of how optical signals can be controlled by altering the optical
response of materials.

In Fig. 7.1 we provide an overview of how optical signals can be altered. One
approach involves altering the polarization of light. This can be accomplished if the
refractive index of a material can be altered. In this Chapter we will examine how this
is done and how the results can be used to design optical switches, routers, filters, etc.
Another approach to modulate optical signals is by altering the intensity of an optical
signal by changing the absorption coefficient of a medium. A change in the absorption
coefficient can be used to design optical modulators or a programmable transparency.

In this chapter we will examine how the optical properties of a material are
altered to create devices mentioned in Fig. 7.1. Before starting our discussion on mater-
ials we will first review some basic properties related to light propagation in materials.

7.2 LIGHT PROPAGATION IN MATERIALS

In Chapter 1 we have discussed the structural properties of crystalline materials, We
have seen that unlike the non-crystalline materials, there is a long-range order in the
arrangement of atoms in these materials, which leads to anisotropic physical properties.
Thus, for example, the light propagation along different directions is not described by the
same refractive index. In fact, light polarized along different directions will propagate
with different speeds, in general. These anisotropic properties are of great value in
designing remarkable optical devices — both passive and active. Among passive devices
that use the anisotropy of light propagation in crystals are quarter wave plates to alter
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polarization, polarizers, birefringent plates, etc. The active devices that use anisotropy
of the material are electro-optic devices, liquid crystal devices, acousto-optic devices,
etc. We will review the relevant physics of light propagation in anisotropic media in this
section. We will not provide detailed derivations of some of the results given, but simply
focus on the important physics issues.

In an isotropic medium, the propagation of light waves is described by a di-
rection independent dielectric constant (or refractive index). However, in crystalline
materials, the medium is not isotropic. It is useful to describe the properties of a crys-
tal by choosing principal axes determined by the crystal symmetry. The displacement
D and the electric field E of the light waves, in general, have a relation given by the
dielectric tensor

Dy = enBEi+ 2B+ 613F;
Dy = enBEy+4¢€0By+¢e3ks
Ds = e1E1+e32B2 + €s3Es (7.1)

with €;; = ¢;;. In general, in anisotropic materials, the vector D and E are not parallel
to each other. As a consequence the electrical power given by the Poynting vector S and
wave propagation direction k may not be the same. It is possible to define the principle
axes of any system, where the E and D vectors are parallel to each other. These axes
are found by diagonalizing the dielectric tensor ¢;;.

To describe the propagation of electromagnetic waves in a solid, we define the
energy density in the medium and then examine the constant energy surfaces. The

energy density is given by
1 1
W = §E -D = §Eiei]~Ei (7.2)

Using the principle axes system z,, 2, 3 (which need not be the cartesion coordinates),
we get

2W = 1B} + €2E3 + 3F3
or in terms of the displacement vectors

D? D2 D2
-, 72, 78

2W = (7.3)
€1 €9 €3
We write
:B————l—)l——‘x— D ; T3 = Ds (7.4)
YT VAW T VaWer® 0T VIWe ’
This leads to the equation known as index ellipsoid (or indicatrix)
z? z? z3
St =1 (7.5)

Here n,; represents the refractive index along ¢. In general we have the ellipsoid (7 is
called the impermeability tensor)

ijl’iwj =1 (7.6)
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where 7 = ¢g/¢. As noted above, for the principle axes there are no off-diagonal terms
in the equation above.

We will briefly describe how the index ellipsoid is used to describe the polar-
ization of light propagating in a crystalline material. In Fig. 7.2a, we show the index
ellipsoid of a crystal and a light wave propagating along a direction . In an isotropic
medium, the wave can have an arbitrary polarization in the plane perpendicular to k.
However, in an anisotropic medium the wave has either of two linear polarizations and
the velocity of the light with each polarization is, in general, different.

To calculate the polarization, we use the construction outlined in Fig. 7.2b. A
plane is drawn perpendicular to the k-vector and the intersection of this plane with
the ellipsoid produces an ellipse. The ellipse produced has principal axes a and b, as
shown in Fig. 7.2b. The directions of polarization allowed for the wave are now given
by D, and Dy; i.e., parallel to the principal axes. The velocities of the light with the two
polarizations are inversely proportional to the length of the principal azes. In particular,
if the light is propagating along the axis i = 3, the light is polarized along i = 1 and
i = 2 with velocities ¢/n,; and ¢/n,s, respectively.

In the analysis discussed above, the indices n,1, n,2, nr3 are, in general, different.
Their values and their differences depend upon the details of the material structure. We
can have the following cases:

Isotropic:

Nr1 = Ny = N3 (7.7)
Uniaxial:

N1 = N2 # Ny3 (7.8)
Biaxial:

Ne1 ;/: Nea
Ne2 ;/: Nyr3
ne1 F Ny (7.9)

The case of most interest to us 1s the uniaxial medium, which describes most
electro-optic devices used for light modulation and also describes the liquid crystals.

Focusing on the uniaxial crystals, let us denote the axis-3 by z, the 1 and 2
being x and y. If light is propagating along the z-axis, it could have any polarization
in the x—y plane, and light with all these polarizations will have the same propagation
velocity. The z-axis (also called the c-axis in optics) is then called the optic axis, and
nr3(= n,,) 1s denoted by the n,., the extraordinary refractive index, while n,, and Ny
are denoted by n,,, the ordinary refractive index. If n,, < n,., the crystal is said to be
positive, while, if n,, > n,., the crystal is said to be negative. Values of some important
uniaxial crystals are given in Table 7.1.

In a uniaxial crystal, if light is propagating in a direction other than the optic
axis, a phase delay will develop between the two polarizations of light, due to their
different propagation velocities. This phase delay is exploited for designing devices that
can alter the polarization of light. If an external perturbation can alter the refractive
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2

X1 X22 X32
-+ — + T = constant

2 2
ny Ry N3

Index ellipsoid k
e Wave along k
(a)
Plane is
Polarization perpendicular
directions to k

allowed

Ellipse produced
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intersection of
the plane and the
ellipsoid

(b)

Figure 7.2: (a) An index ellipsoid for a crystal. Shown is a wave along the direction k. (b)
The construction used to obtain the polarization of the wave.
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Material Nro Nre
ZnS o 2.354 2.358
KB - - ey e
CalCitew | N 1.658 1.486
woss - s T mag
BaTiOg 2.416 2.364

Table 7.1: Refractive indices of some uniaxial crystals. The refractive indices are wavelength
dependent and are given for a wavelength of 0.63 um.

index, the device can become active and can be used to modulate a light signal as will
be discussed later.

Finally consider polarization of a wave propagating along a general direction §
making an angle § with the optic axis (the z-axis). The displacement fields are polarized
as shown in Fig. 7.3 and as discussed earlier. For the uniaxial crystal, the wave polarized
along the x-axis (choosing the § direction to be in the y—z plane) is the ordinary wave
with index n,,. The wave polarized along the orthogonal direction along the other semi-
major axis of the ellipse (see Fig. 7.3) is the extraordinary wave with a refractive index
given by

1 cos?f sin?6
ES + 7.10

If the wave is propagating along the z-axis (6 = 0), i.e., the optic axis, the value of
nre(0) is simply n,, as expected. If the wave is propagating along the y-axis, n,.(f) =
Nye.

EXAMPLE 7.1 Consider a quarter-wave plate on which light initially polarized along a
direction 45° to the z-axis impinges. What is the polarization of the emerging light if the plate
is designed to produce a phase difference of 7/2 between light initially polarized along the z-
and y-axes?

The quarter wave plate will create a phase difference of 7/2 between the z- and y-
polarized waves after transmission through the plate. Initially the incident wave has the electric
fields given by

E, = E,cos(wt—kz)
E, = E, cos(wt—kz)
After transmission we have
E, = E,cos(wt—kz+¢o)
E, = FE;cos(wt—kz+¢o+7/2)

The light is thus circularly polarized.
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propagation
direction

X

Figure 7.3: The polarization of an optical beam propagating along a direction s, making an
angle 8 with the optic axis.

7.3 MODULATION OF OPTICAL PROPERTIES

We will now discuss the physical effects that form the basis of intelligent optoelectronic
devices, such as switches, routers, tunable filter, etc. To alter optical response of a
material, we need to alter the refractive index or absorption coefficient (or dielectric
response). As we saw in Chapter 6, a variety of perturbations can alter the dielectric
response, although we are interested in changes in dielectric response ¢ at frequencies
around 10%° Hz, i.e., at optical frequencies. At such high frequencies only the electrons
(rather than ions or molecules) are able to respond and contribute to the changes in
the dielectric response. The perturbation we will consider is electric field. As discussed
in Chapter 6 other perturbations, such as mechanical stress, temperature changes, etc.,
can also be used to modulate an optical signal. However, an electrical signal can be
operated at high speeds (~ up to 50 GHz) and is widely used in optical systems.

When the optical properties of a material are modified, the effect on a light
beam propagating in the material can be classified into two categories, depending upon
the photon energy. As shown in Fig. 7.4, if the photon energy is in a region where the
absorption coefficient is zero (beam with frequency w;), the effect of the modification
of the refractive index is to alter the velocity and polarization of propagation of light.
However, if the photon energy is in a region where the absorption coefficient is altered
(beam with frequency ws), the intensity of light emerging from the sample will be altered.
These two approaches for the modification of the optical properties by a applied electric
field are called the electro-optic and the electro-absorption approaches, respectively.

In the electro-optic effect, an applied electric field is used to alter the phase
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NO APPLIED FIELD FIELD APPLIED
oly: Absorption coefficient o: Absorption coefficient
before modulation after modulation
hwy  hop hwy  hay

g

Bandgap :

Bandgap :
S 7l <

| beam: propagation velocity vy o beam: propagation velocity
w3 beam: absorption coefficient ~0 v is changed
mbeam: high absorption coefficient

Figure 7.4: A schematic of the effect of a change in optical properties of a material on an
optical beam. For energy hw;, the main effect of the change in the optical properties is a change
in propagation velocity. For Aws, the effect is a change in intensity.

velocity of a propagating signal and this effect can be exploited in an interference scheme
to alter the polarization or intensity of the light. We will first discuss this approach.

7.3.1 Electro-optic effect

The electro-optic effect depends upon the modification of the refractive index of a mater-
ial by an applied electric field and is the basis of numerous important devices used for
optical routers for optical communication, color filters, display, image storage, etc. The
effect is based on the modification of the refractive index of a material by an electric
field. At small electric fields (< 10* V/cm) the change in a material’s refractive index
is small and we have a linear relation between the polarization P and applied field E.
However, at higher fields the relationship between P and E is non-linear and the change
in the dielectric constant or refractive index is more discernible and can be exploited
for device design.

In the previous section, we have reviewed some important principles of light
propagation in solids. Changes in refractive index can be exploited to alter the nature
of the optical signal. Consider a situation where an electric field is applied to the crystal.
The applied electric field modifies the polarization and bandstructure of the semicon-
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ductor through a number of interactions. These interactions may involve:

(i) Strain: In a piezoelectric materials the electric field may cause a distortion
in the lattice and, as a result, the dielectric response may change. This may cause a
change in the refractive index.

(1) Distortion of the excitonic features: In Chapter 5 we discussed the optical
properties of the exciton. The presence of an electric field can modify the excitonic spec-
tra, thus altering the electronic spectra and, hence, the optical spectra of the material.

In general, the change in the impermeability tensor may be written as
i (E) = ni;(0) = Anij = rije Bk + sijre Ex Ee (7.11)

where E; is the applied electric field component along the direction ¥, and 7 and
sijre are the components of the electro-optic tensor. In materials like GaAs where the
inversion symmetry is missing, 7;;x 1s non-zero and we have a linear term in the electro-
optic effect. The linear effect is called the Pockel effect. In materials like Si, where we
have inversion symmetry, r;;x = 0 and the lowest-order effect is due to the quadratic
effect (known as the Kerr effect).

In general, r;j; has 27 elements, but, since the tensor is invariant under the
exchange of ¢ and j, there are only 18 independent terms. It is common to use the
contracted notation 7y, where £ = 1,...6 and m = 1, 2, 3. The standard contraction
arises from the identification of 7,5 = 1,1; 2,2; 3,3, 2,3; 3,1;12by £ =1, 2, 3, 4, 5, 6,
respectively. The 18 coefficients are further reduced by the symmetry of the crystals. In
semiconductors such as GaAs, 1t turns out that the only non-zero coefficients are

r41
Ts2 = Tq
ez = P41 (712)

Thus, a single parameter describes the linear electro-optic effect. In Table 7.2, we give
the values of the electro-optic coefficients for some materials.

The second-order electro-optic coefficients s;jx¢ are usually not important for
materials, unless the optical energy hw is very close to the bandgap. In materials such
as GaAs, the second-order coefficients that are non-zero from symmetry considerations
are in the contracted form spg,p=1...6,9=1...6,

$11 = S22 = 833
12 = $S13
S44 = S5 = Se6 (7.13)

The electro-optic effect 1s used to create a modulation in the frequency, intensity, or
polarization of an optical beam.

Pockels effect
To see how the electro-optic effect influences optical properties of materials we consider
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WAVELENGTH ELECTROOPTIC COEFFICIENT

MATERIAL (um) (10-12 m/V) INDEX OF REFRACTION
LiNbO; 0.623 ri3=9.6 ny=1.8830
1’22 = 68 ne = 17367
r33 = 309
1’51 = 326
‘GaAs e 09 iy - =11 - m=360
KDP 0.633 reg3 =11 np=1.5074
rg1= n, = 1.4669
ADP 0633 - rue85. 0 e 1S
: F - : 7’41?; 28 e cony=148
Quartz ~0.632 ry1=0.2 ng =154

n,=1.55
no=2431
n,=2.180

BaTiO; 0632

n= 2175
n, = 2.365

' LaTiO, ~0.632

Table 7.2: Electro-optic coeflicients for some materials.
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the linear effect, known as Pockels effect, in a material such as GaAs (results for a
tetragonal system will also be summarized) when a field E is applied to the crystal. The
index ellipsoid is (see Eq. 7.6)

1 1 1
(—‘7+T’1kEk) 2 + (—2'+T’2kEk) v+ (—2+T'3kEk) z
n2 n; n?

+ 2yzra By + 2zavsp By + 2zyrer By = 1 (7.14)

where E(k = 1,2,3) is the component of the electric field in the z, y, and z directions.
Using the elements of the electro-optic tensor for GaAs, we get

2 2 2

i
.’E_; + .’E_g + -—:23 + 2@ow3ra1 By + 2zxr41 Bs + 22yra1 B3 = 1 (715)
nZ  nl  n

Let us now simplify the problem by assuming that the electric field is along the
(001) direction, as shown in Fig. 7.5

E,=FE, =0, E,=F (7.16)

We now rotate the axes by 45° so that the new principal axes are (see Fig. 7.5b)

o L &
V22
J o= S
V2 V2
7 = oz (7.17)
In terms of this new set of axes, the index of ellipsoid is written as
2 y’z 22
=+ m+t =1 :
2 + nf + 2 (7.18)
where the new indices are
; 1
n, = n,+ §n§r41E
, 1,
n, = n,-— §nor41E
n, = n, (7.19)

where n, is the index in the absence of the field (= n, = n, = n,). As a result of
this change; in the indices along the z' and yI axes, for light along < 011 > (.1:’) and
< 011 > (y ) directions, a phase retardation occurs due to the change in index ellipsoid
as shown in Fig. 7.5¢. The phase retardation for a wave that travels a distance L is
(nz = nO)

A¢(z')
Ag(y')

(nlz - n;) L, = —;nimlEL

o |lE ol

(ne=ny) L1 = SndraBL (7.20)
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Figure 7.5: (a) A waveguide in which a modulating field is applied along the z-axis. (b) A
rotated axis z’, ¥’ used to understand wave propagation. (c) The index ellipsoid in the absence
and presence of the electric field.

As another class of materials let us consider BaTi0O3 which is tetragonal below
400 K. For BaTiOg3, the optic axis is along the z-direction and ny = 2.416 and n, =
2.364. In the presence of an electric field, following the discussion above, we get (again
assuming that the field is along the z-direction or the optic axis)

1 1 1
(_2+T’13E> o + <_2+T’13E> y* + <_2+T’33E> =1 (7.21)
ng ng ny
This leads to . .
A <—2> =ri3F and A (—2> = razk (7.22)
TLO ne
or, since Ang € ng, An, € n,
1
ATLO = —§ngr13E
1
An, = —§n§r33E (7.23)

As a result of the changes in the ordinary and extraordinary refractive index we have
an induced bifringence An

1 3 nj
An=A(ne —no) = ~5Me \ "33 3713 E
ne
1
= —§n3rcE (7.24)
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where n ~ ng ~ n, and

n3
re = T3z— n—37°13
€
~ Trzz— T3 (725)

Kerr effect
In cubic materials with inversion symmetry the linear electro-optic effect is absent and
the second-order effect, i.e. the Kerr effect, becomes important. We will now discuss this

second-order effect.
Using the contracted notation, for quadratic electro-optic coefficients, the index

ellipsoid can be written as

1
(n_2 + s B2+ 81255 + 81253) z?

T

1
+ (ﬁf + 512E2 + 81135 + 81253) ¥
y

1
+ <@+8123§+81255+81153) 2
+2y2(2544 EyE,) + 2z2(2544FE-E,) + 20y(2544 By Er) = 1 (7.26)
In the presence of an electric field, £, in the z direction, we have
1 2\ .2 1 2\, 2
— +si2E7 2" + |5 +s12E7 )y
nz ng

1
+ (n—2 + suEz) =1 (7.27)

F

This index ellipsoid can be rewritten as

122 i} yZ 22

n2 + 2 =1 (7.28)

with 1
Ne =N~ §n3312E2 (7.29)

and 1
Ne =N — §n3311E2 (7.30)

The phase retardation due to the applied field is thus given by

AD = %(ne —ny)L = %ns(slg —s11)EL

The total phase change between waves travelling along =’ and 3 then becomes after
adding the effects of the linear and quadratic electro-optic effects

wL
A¢(z') = —)‘_ng [ra1 B1 + (512 — 511) B?
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Ag(Y) = %ni’ [ra1E1 + (512 — 511) E?) (7.31)

The phase changes produced by the electric field can be exploited for a number of
important switching or modulation devices. From Table 7.2, we see that the electro-
optic coefficients in materials such as LiNbOgz are much larger than those in traditional
semiconductors. As a result LiNbOj is widely used in optical directional couplers and
switches.

EXAMPLE 7.2 A bulk GaAs device is used as an electro-optic modulator. The device
dimension is 1 mm and a phase change of 90° is obtained between light polarized along < 011 >
and < 011 >. The wavelength of the light is 1.5 gm. Calculate the electric field needed.

The phase change produced is

Ap = g/\lnir41EL = 12'—
A
By
4n':;’7'41L
y/ (1.5 x 10=¢ m)
4(3.3)3(1.2 x 10-12 m/V)(10~3 m)
= 8.7x10°V/m

If the field is across a 1.0 um thickness, the voltage needed is 8.7 V.

7.3.2 Electro-absorption modulation

In Fig. 7.4 we show how an optical signal can be modulated using two different ap-
proaches. We have already discussed the electro-optic modulation in which changes in
refractive index can be used to alter light propagation. In this mode the wavelength of
light is such that there is no absorption (at least intentional) of light. As we will see later,
intensity modulation can also be done using the electro-optic effect using interference
techniques.

In the electro-absorption modulation scheme (right-hand side of Fig. 7.4) the
photon energy is near the bandgap of a semiconductor. The application of an electric
field alters the absorption spectrum and thus influences the intensity of the optical
signal.

We have seen in Chapter 5 that if the photon energy exceeds the bandgap of
the material, absorption occurs due to an electron moving from the valence band to the
conduction band. In fact, as discussed in Chapter 5, absorption starts when the photon
energy reaches

hw=FE;—E.; (7.32)

where FE.; is the exciton binding energy; i.e., the Coulombic binding energy of the
electron-hole pair. In Fig. 7.6 we show a typical absorption spectra for a semiconductor.
Notice the excitonic transition. In most bulk semiconductors, the exciton transition is
clearly observable only at low temperatures and in very high purity materials.
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Figure 7.6: A schematic of how absorption coefficient changes with applied field.

When an electric field is applied to a semiconductor, the absorption spectrum
shifts towards lower energy, as shown in Fig. 7.6. The shift 1s due to the shrinking of the
effective bandgap of the material. The change in absorption coefficient at a particular
photon energy can be used for intensity modulation. The modulation achieved in bulk
semiconductors is quite small, and not very useful for devices. However, if quantum
wells are used (see Chapter 3), the change in absorption can be quite large. The effect
1s called quantum confined Stark effect.

Quantum confined stark effect (QCSE) refers to the changes that occur in the
electronic and optical spectra of a quantum well when an electric field is applied. In
Fig. 7.7 we show schematically a quantum well without and with an electric field in the
confinement direction. The field pushes the electron and hole functions to opposite sides
making the ground state intersubband separation smaller. This effect is the dominant
term in changing the exciton resonance energy.

While the exact calculation of the intersubband separation requires numerical
techniques, we can estimate these changes by using perturbation theory. This approach
gives reasonable results for low electric fields. If the field i1s small enough such that

hin?
2m* W2
i.e., the perturbation is small compared to the ground state energy, then it can be shown
that the ground state energy changes by

2y 1 15 m*e2 B2+
AT = o ( h?

We see that the second-order effect increases with m* and has a strong well size de-
pendence. This would suggest that for the best modulation we should use a wide well.

leEW| < (7.33)

= (7.34)
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Figure 7.7: A schematic showing how an electric field alters the quantum well shape and the
electron and hole wavefunctions.

However, in wide wells the exciton absorption decreases and also the HH, LH separation
becomes small. Optimum well sizes are of the order of ~100 A for most quantum well
structures.

The absorption and electro-absorption is strongly dependent on polarization.
Denoting the transverse electric (TE) mode for polarization where E-field is in the
quantum well plane and transverse magnetic (TM) for the case where the E-field is
normal to the quantum well, in Fig. 7.8 we show measured results for electro-absorption
in GaAs/AlGaAs quantum wells.

EXAMPLE 7.3 A 100 A GaAs/Aly3GagsAs MQW structure has the HH exciton energy
peak at 1.51 eV. A transverse bias of 80 kV/cm is applied to the MQW. Calculate the change
in the transmitted beam intensity (there is no substrate absorption) if the total width of the
wells is 1.0 pm. The photon energy is hw = 1.49 eV. Peak absorption is 1.16 x 10* cm™?.
The transmitted light is
I=1, exp (—ad)

At zero bias, we have

- _ 2
a(V=0) = 116x10" exp( (1.49 - 1.51) )

1.44(25 x 1079)2
~ 0

At a bias of 80 kV/cm, the exciton peak shifts by ~20 meV. The absorption coefficient is

—(1.49 — 1.49)? )

(B =80 kV/em) 1.44(2.5 x 10-3)?

Il

1.16 x 10* exp (

= 12x10" cm™

The ratio of the transmitted intensity is

I(E = 80 kV/cm)

I(E = 0) =03
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(i): E=1.6x10%V/cm
| (i): E=1.0x105 V/icm
| (ii): E=13x105V/icm
- (iv): E=1.8x10%V/cm

(v): E=22x105V/c

B

—~Ln (TRANSMISSION)

1.42 1.46 1.5
PHOTON ENERGY (eV)

Figure 7.8: Measured polarization dependent transmittances in GaAs/AlGaAs (100 A) mul-
tiquantum well structures when light is coming in the waveguide geometry. (a) Incident polar-
ization parallel to the plane of the layers. (b) Incident polarization perpendicular to the plane
of the layers. (After D.A.B. Miller et al., JEEE J. Quantumn Electronics, QE-22, 1816, 1986.)

7.4 OPTICAL MODULATION DEVICES

The electro-optic and electro-absorption effects discussed above form the basis of nu-
merous optical devices. These devices are used to switch optical signals, modulate their
mtensity, couple signals from one point to another, display optical images, etc. In ad-
dition to using an electric field to alter optical properties other perturbations such as
strain (arising from pressure, ultrasonic waves, etc.) or magnetic effects can also alter
the dielectric response and be exploited for acousto-optic or magneto-optic devices. In
this section we will briefly discuss some of the important modulation/sensing devices.

A most useful technique to modulate an optical signal is through the use of
polarizers and an active device that can change the polarization of light. The general
approach is illustrated in Fig. 7.9. In this particular geometry (other geometries are
also possible) two polarizers aligned in the cross-polarized configuration are placed on
each side of the device. The device consists of a crystal (or liquid crystal) in which the
two refractive indices n, and n, are different. As discussed in the previous section it is
possible to alter the difference between n,. and n,, by using an external perturbation.
This alteration can be done by applying an electric field and utilizing the electro-optic
effect.

Let us first consider the case of an electro-optic modulator based on crystals
such as lithium niobate. Later we will consider the case of a liquid crystal such as a
twisted nematic. Let us assume that a linearly polarized light enters the device. As
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Input polarizer Output
polarizer

Modulated
optical beam

Linearly Phase delay ¢ between x- and Elliptically
polarized light  y-polarized light polarized light

Figure 7.9: A schematic of how a polarization charge produced by a crystal device can alter
the intensity of an optical beam.

shown in Fig. 7.9, let us assume that a linearly polarized light is incident on the crystal
and the z-axis and the y-axis represent the two polarization axes for the crystal. In
general, the two directions have different refractive indices and, as the wave propagates,
a phase difference develops between the two polarizations. Consider an input signal that
is linearly polarized and given by

E, = % exp (iwt) (7.35)
E, .
E, = — exp (iwt) (7.36)

V2

After transmission through the modulator, the wave emerges with a general polarization
given by

E, = % exp (iwt + i) (7.37)
E, = Eo exp (iwt + i63) (7.38)

V2

with the phase difference given by ¢ = 6, — ;. If ¢ is 7/2, the output beam is circularly
polarized, and, if it is 7, it is linearly polarized with polarization 90° with respect to the
input beam. If the output beam passes through a polarizer at 90° with respect to the
input beam polarizer, as shown in Fig. 7.9, the modulation ratio is given by (assuming
no absorption losses)

Iout

I
Thus, if ¢ can be controlled by an electric field, the intensity can be modulated.

= sin® g (7.39)

Polarization and modulation properties of a twisted nematic

Over the last decade there has been an explosion in flat panel displays for applications
in laptop computers, televisions, etc. A considerable part of this technology arises from
improvement in liquid crystal displays. As we have noted in Chapter 1, the liquid crystal
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is a material which has good long- range order along some direction. Also, since the
material is made up of rod-like or disc- like molecules, it has a very strong anisotropy
between n. and n,. In a nematic liquid crystal, we can introduce a twist in the order
in which molecules are arranged by using two glass plates that have been rubbed in a
particular orientation. As a result, the optic axis of the liquid crystal changes from point
to point, consequently, the direction of the polarizations corresponding to the ordinary
and extraordinary rays changes from point to point (as shown in Fig. 7.10).

An important approximation that is used to describe how light propagates (i.e.,
how the polarization changes) through a twisted nematic crystal is called the adiabatic
approximation. The adiabatic approximation depends upon the fact that the twist in
the crystal is “slowly varying.” This is a good approximation for liquid crystals, since a
twist of 7/2 is produced over several microns (say ~ 10-20 pm). As a result, the light
responds according to the local refractive indices and the local polarization axes. Thus,
if light enters the crystal along the “slow polarization” direction, it remains along this
polarization as it travels down the liquid crystal.

From the adiabatic approximation discussed above, we can see that there are
two sources for the polarization change in a twisted nematic liquid crystal: (i) As a
result of the difference between n. and n,, the phase difference between the two rays,
states changes, thus the polarization changes. This is the effect discussed above and
produces a modulation of light as given by Eq. 7.39. (ii) Additionally, due to the twist
in the crystal, the polarization is rotated. This effect is exploited in most liquid crystal
displays.

According to the adiabatic approximation, if the twist angle is 90° (or 270°)
from the top plate to the lower one, and light polarized as one of the ordinary or
extraordinary waves is sent in, we have the following possibilities: (i) If the output
polarizer is oriented along the input polarizer, the transmitted intensity is zero. (ii) If
the output and output polarizers are cross-polarized, the light passes through. A more
accurate treatment of the problem shows that the transmittance in the first case (i.e.,
the polarizers having the same orientation) is given by the following relation for a 7 /2

twist
sin? (g—-\/l + (¢S/7r)2)
T = 7.40
15 (/77 (740)
where ¢ 1s the phase difference produced due to the difference in the values of n. and
n, and is for a device of thickness d

_ 2z

°=3

(ne — no)d (7.41)
If ¢ is much larger than 7, we see that 7' approaches zero as is the case where the
adiabatic approximation is valid.

We have noted earlier that in a uniaxial crystal there is one orientation (the
c-axis) which defines the optic axis along which light propagates with the same speed
regardless of its polarization. The liquid crystal display devices depend upon the ability
to change the c-axis (also known as the director for liquid crystals) by an external
perturbation such as an applied field. Consider the following situations: (a) The c-axis
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Glass

Polarizer

e

Liquid
crystal

Figure 7.10: A schematic of a twisted nematic crystal. In the adiabatic approximation, if the
twist is “slow,” the polarization of light simply follows the twist as shown.
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is parallel to the input polarizer (the refractive index is n, for light polarized parallel to
the c-axis). In this case the value of ¢ is maximum and the transmittance for the case
where the output polarizer is parallel to the input polarizer is minimum. (b) An applied
external perturbation forces the c-axis to be oriented along the propagation direction,
so that there is no propagation delay for light polarized in different orientations. When
this happens, the liquid crystal becomes transparent since light simply propagates at
its original polarization. This can also be seen by putting ¢ = 0 in Eq. 7.40. Thus, if
the c-axis is altered, the device can change from opaque to transparent, which is what
liquid crystal display devices are supposed to do.

7.4.1 Electro-optic modulators

Electro-optic modulators can produce amplitude, frequency, or phase modulation in an
optical signal by exploiting the electro-optic effect in which the optical properties of a
crystal can be altered by an electric field. A number of crystals exist which have desirable
response behavior. These include potassium dihydrogen phosphate (KDP), ferroelectric
peroskites such as LiNbOs and LiTaOgs, as well as semiconductors, such as GaAs and
CdTe. We have discussed the basis of the electro-optic effect in Section 7.3.

We have discussed above (see Eqs. 7.35 to 7.39) how a phase change of ¢ can
cause modulation of light. If the phase ¢ can be controlled by an electric field, the
intensity can be modulated. For GaAs, the electric field dependent phase is given by
(see Section 7.3.1)

¢ = ?—Lniml‘;— (7.42)
where ) is the wavelength of light, L the device length, n,, the GaAs refractive index, rq;
the electro-optic coefficient for GaAs, V the transverse applied bias, and d the thickness
of the modulator. A similar analysis for materials like KDP shows that the phase change
between the two polarized waves at the output is given by

_ 2mnd reEL

¢ X

(7.43)

where rg3 is the electro-optic coefficient and £ is the electric field (= V/d). If cross-
polarized polarizers are used, the maximum transmittance occurs when the phase change
s .

It may be noted that the electric field can be applied in a transverse or longi-
tudinal way to the modulator.

It is clear from Eqs. 7.42 and 7.43 that a high electro-optic coefficient can allow
us to achieve a modulation using a smaller interaction length for the same applied field.
However, the electro-optic coefficients of most materials are rather small (~ 10712 m/V)
as can be seen from Table 7.2, so that for realistic bias values the length required is
quite long (millimeters or more).

Electro-optic materials and image recording
The electro-optic effect 1s useful not only for optical modulation but also for optical
image recording. Ferrroelectric materials, which have a strong electro-optic effect, find
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Figure 7.11: The use of an electro-optic device to modulate an optical signal. The applied
bias introduces a phase change between light travelling in two polarization directions and the
output light is modulated.

important uses in applications involving image recording, image contrasting etc. The
material most widely used for this application is the polycrystalline ceramic PLZT,
discussed in Chapter 6. Being polycrystalline, this material can be fabricated in large
dimensions at low cost.

We recall from Chapter 6 that ferroelectric materials have a non-zero sponta-
neous polarization. When an external electric field 1s applied to them, the polarization
can be altered. In particular the polarization can be reduced to zero by applying a field
called the coercive field. The coercive field that is needed can be altered if a built-in
field can be created by photo-generated carriers. This 1s the principle behind optical
image recording.

The photoferroelectric (PFE) imaging device consists of a thin (0.1-0.3 mm)
plate of PLZT ceramic with transparent electrodes applied to the major faces. The
image to be stored is made to illuminate the face of the plate using near-ultraviolet
illumination. Simultaneously a voltage is applied to the device. When light shines on the
photo-sensitive PLZT, photo-generated carriers are produced with a local concentration
proportional to the local image intensity. The carriers (electrons and holes) are separated
by the applied field and trapped at defect sites. A local field is superimposed on the
external field, changing the coercive field and therefore the local polarization of the
material. This in turn results in local strain variations on the PLZT plate. The image
is thus faithfully recorded on the plate and can be read through a projection device.

By using proper fabrication techniques, PLZT ceramics can be made with grain
sizes of ~ 2 micrometers. Such plates can store images with resolution of up to 100 lines
per centimeter. The stored images can be erased by shining a uniform beam of near-
ultraviolet light on the PLZT plate and simultaneously applying a voltage pulse to
switch the ferroelectric polarization to 1ts imtial remnant state.

EXAMPLE 7.4 A bulk GaAs device is used as an electro-optic modulator. The device
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dimension is 1 mm and a phase change of 90° is obtained between light polarized along < 011 >
and < 011 >. The wavelength of the light is 1.5 pm. Calculate the electric field needed.
The phase change produced is (§ = 1)

Ap = g)\lnfoulEL = Z—
A
F = —
871?07’41[1
(1.5 x 107% m)

8(3.3)3(1.2 x 102 m/V)(10~3 m)
= 435x10° V/m

EXAMPLE 7.5 The crystal KD*¥P (potassium dideuterium phosphate) is an important
material for optoelectronics. Calculate the voltage needed to produce a phase change of 7 in a
KDP device. This voltage is called the half-wave voltage. The wavelength of light is 1.064 um.
The refractive index is 1.52.

The half-wave voltage is (res = 26.4 X 10712 m/V)

(1.064 x 10~° m)7
2(1.52)%(26.4 x 10~12 m/V)
5.74 kV

V(\2)=EL =

7.4.2 Interferroelectric modulators

In the previous section, we have seen how the phase change produced by the electro-
optic effect can be used to modulate a signal. However, the device configuration shown
in Fig. 7.11 is not the only configuration that is used to design modulators. There are
a number of other configurations that do not require polarizers, but modulate a signal
through interferometric effects.

Fabry-Perot Modulators

The Fabry-Perot modulator (often called the etalon) consists of two partially trans-
mitting mirrors enclosing an electro-optic material as shown in Fig. 7.12. If n, is the
refractive index of the electro-optic material and L is its length, the transmission through
the etalon is maximum when (X is the free space wavelength)

L_m)\

= G (7.44)

The transmission coeflicient for an etalon with mirror reflectivity R is given by

1

- 1R .2 (2mn, L
1+(1—R)2 sm( > )

T (7.45)

As can be seen from this expression and as is illustrated in Fig. 7.12, the selectivity
of the etalon increases as R increases. In Fig. 7.12, the transmission coefficient is also
shown as a function of round trip phase change of a wave, 27n, L/\, as it crosses the
etalon.
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Partially transmitting
mirrors

\4—L—>¢

TRANSMITTANCE
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Electro-optic
material PHASE SHIFT (M%L )

Figure 7.12: A schematic of a FFabry—Perot modulator. In epitaxially grown devices, the par-
tially transmitting structures are distributed Bragg reflectors. The transmission coefficient of
a Fabry—Perot structure as a function of the phase shift is shown at the right of the figure. R
is the mirror reflectivity.

The Fabry—Perot modulator operates on the basis that, if n,. can be altered by
an electric field, the phase change will alter and, as a result, the transmission of the
optical signal will change. The goal of the device design is to be able to switch between
Trmaz and Tin by applying the field.

The frequency difference between two successive maximas in the transmission
of the Fabry—Perot structure is denoted as the free spectral range (FSR) and is given

by
C

2n, L

An important parameter for an etalon is its finesse, which gives the ratio of the FSR
and the full width at half maximum of any transmission peak. It has a value

FSR =

(7.46)

F . 7T(R1R2)1/4

= = (R (7.47)

where R; and R, are the reflection coeflicients of the front and back mirrors of the
etalon. Fabry—Perot modulators have been demonstrated to operate up to 10 GHz, with
contrast ratios up to 10 dB.

Mach—-Zender modulators

The phase modulation produced by electro-optic effect can be used to create intensity
modulation in a Mach-Zender interferometer. In Fig. 7.13, we show a schematic of the
modulator. An optical signal coming form a single-mode waveguide is split by a coupler.
The two split beams travel through two different guides (in general of different length)
and then recombine to produce the output.
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Coupler to Coupler to
split signal —— recombine signal

Input

Figure 7.13: A schematic of the Mach-Zender interferometer used as a modulator. Two 3 dB
couplers are used to split and recombine an incoming signal.

If the optical paths in the two arms of the interferometer is an integral number
of optical wavelengths, the two waves will arrive at the second coupler in phase, and
interface constructively to produce a high intensity. If an electric field is now used to
create a relative phase difference between the two waves, the intensity can be reduced. If
the overall phase difference between beams traveling in the two paths is 7, a minimum
intensity will be produced.

Due to the loss in optical signal suffered as a result of the couplers, the Mach—
Zender modulators do not have very high efficiencies.

Liquid crystal display devices

Liquid crystal-based displays are used widely in laptop computers, cockpit displays, flat
screen TVs, etc. The technology used is based on active matrix display where each pixel
is controlled by a thin film transistor (TFT) switch. This switch allows the signal voltage
to be applied to the liquid crystal cell for the entire cycle time between refreshes.

A schematic of the active matrix liquid crystal display (AMLCD) is shown in
Fig. 7.14. A sample pulse is applied to the gate of a transistor pulling the device into
inversion. A data voltage is applied via the column line to the drain (or the source) of
the TFT. The source (or the drain) is connected to a storage capacitor, which holds the
applied voltage once the gate pulse is removed.

The TFT must have the properties that its resistance is very low when the gate
bias is ON and very high when the gate bias is OFF. This allows the storage capacitor to
charge to the applied potential during the time the signal is on. Also, the capacitances
(the gate source, gate drain, storage, liquid crystal cell, and Cparasite) should be such
as to allow minimum charge leakage during a cycle time. The success of the AMLCD
depends critically upon the TFT discussed in Chapter 5.
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Figure 7.14: A schematic of an active matrix liquid crystal display.
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Figure 7.15: A schematic of an acousto-optic device where a coherent light beam is diffracted
form the index modulation created by an acoustic wave.

A cousto-optic devices

In Chapter 6 we have seen that strain in a material can alter the dielectric response of a
material. Consequently the propagation of an optical beam can be influenced by strain.
An important area where this effect is exploited (in addition to electrical impulse based
devices discussed in Chapter 6) is the acousto-optic technology. In acousto-optic devices
a sound wave propagating in a medium creates local modulation of dielectric constant
or refractive index. An optical beam can then be used to “read” this modulator. In
Fig. 7.15 we show a schematic of a typical acousto-optic device structure. This device
called the Raman—Nath modulator embodies the basic principles which are used for
other acousto-optic devices as well.

In the Raman—Nath device shown in Fig. 7.15 an acoustic wave propagates
through a thin region and creates a modulation in the refractive index with a wavelength
A the same as the sound wavelength. The material now acts like a diffraction grating
and an optical beam passing through the region suffers diffraction as shown. If An is
the amplitude of the refractive index modulation, the phase difference arising from the

modulation 1s

_ An2nxL sin 2nyL (7.48)

Ad o A

Here L is the interaction distance. If the interaction distance is small the device acts as
a diffraction grating, leading to the Raman—Nath modulator. If the interaction distance
1s large the optical beam suffers multiple refractions from the periodic structure and the
device suffers Bragg scattering.
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According to standard optics of gratings the diffraction orders are given by

A
sin 0, = mT m=0,+1,42 - (7.49)
If the interaction distance is small, i.e.
2
L € —— (7.50
o/ )

the intensity of the diffracted orders is given by Bessel function ([p is the intensity
without the acoustic modulation)

I [Jm(A‘I)maX)]2

= . (7.51)

where A®,,,, 1s the maximum value of A® given by Eq. 7.48. The device is used as a
modulator using the m = 0 beam. The modulator index is then

Io == Io(m = 0)

0

=1 = [Jo(A®max)]? (7.52)

The Raman-Nath modulation is not able to get a high ON/OFF ratio because of the
short interaction length. By increasing the interaction length, the device acts as a Bragg
reflector and the optical beam satisfies the Bragg law

A

sinfp = TN (7.53)
In this case the modulator is given by (in the ideal case)
Iy —
o1 _ 282 (7.54)

Iy 2

As we can see the Bragg reflection-based acousto-optic modulators can reach very high
ON/OFF ratios.

In addition to modulation of an optical signal, acousto-optic devices are used
to carry out spectral analysis of if signals. For this application an incoming microwave
signal is used to launch a surface acoustic wave (SAW) into a piezoelectric material.
The diffraction of a laser beam by this SAW is then used to analyze the content of the
incoming signal.

7.5 SUMMARY

Issues discussed in this chapter are summarized in Table 7.3.
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field polarized along well defined directions. The velocity

of the light polarized along the two directions are different. |
Phase difference develops between the light polarized in .
different directions.

Crystals are anisotropic and light propagates with electric g

Polarization of light in
crystals

In uniaxial crystals if light is propagating along the optic
axis, the light can be polarized in any direction normal to
the axis. However, for a general direction, light can be
polarized only along two directions. The two polarization
directions are the axes of the ellipse produced by the
intersection of the normal plane and the indicatrix ellipse.

Light modulation through
polarization control

In general, light traveling in a crystal has different velocities
for different polarizations. If the refractive index for one
polarization can be altered, the output light intensity can be
modulated.

Light modulation through
liquid crystals

The polarization direction of light propagating in liquid §
crystal can be altered by twisting the liquid crystal. By
using polarizers, this effect can be used to modulate light.

High speed electro-optic
modulators

Solid crystals are used for light modulation or switching.
An electric field alters the refractive index of the crystal
anisotropically, resulting in an extra phase difference
between light polarized along different directions. The
phase difference can be exploited (with polarizers) to
modulate the light beam.

Advanced modulation/
switching devices

Table 7.3: Summary table.

Semiconductor quantum well structures are increasingly
being exploited to improve device response. The photon-
electron interaction in these structures can be tuned to
improve the desired performance.
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7.6 PROBLEMS

7.1 The electric fields of an optical beam are represented by the following

E, = ;— cos(wt — kz)
E, = cos(wt—kz+0)

Sketch the polarization ellipses for the values given by 0, /4, #/2, and 37 /4.

7.2 An optical beam is traveling along the z-axis, and its fields are given by E, =
0.1cos(wt — kz); Ey = cos(wt — kz + m/2). Calculate the major and minor axis of the
polarization ellipse.

7.3 Sketch a diagram similar to Fig. 7.3 of the text for various 6 values when the
magnitude of the electric field in the z-direction is twice the magnitude of that in the
y-direction.

7.4 A GaAs electro-optic modulator is needed in an optical communication system. The
maximum voltage available is 10 V. A device of length no more than 1 mm is needed.
Calculate the thickness of the device. How long does it take for an optical signal to pass
the device? Use data in Table 7.1 with n, = 3.6 and A = 1.0 pm.

7.5 A lithium niobate modulator is to be designed for a 1.06 pm system. The device
length is 1 mm and the thickness is 10 pm. Calculate the voltage needed for the modu-
lator.

7.6 Discuss the incompatibility of modern microelectronic devices with bulk electro-
optic modulator. Note that the dimensions of most microelectronic devices are ~ 1 pm.
7.7 Consider a liquid crystal cell using the parallel configuration (Fig. 7.10). The splay
elastic constant is found to be K; = 2 x 10'9 N for a wide range of liquid crystals. If
the maximum voltage available is 2.0 V, calculate the minimum dielectric anisotropy
needed to use the cell in a display application.

7.8 In a twisted orientation liquid crystal cell (Fig. 7.10), what should be the polariza-
tion of the incoming light for optimum performance?

7.9 Calculate approximately the maximum switching time acceptable in a liquid crystal
cell that is to be used in a 500 x 500 display.

7.7 FURTHER READING

e General

— J.F. Nye, Physical Properties of Crystals, Oxford, Clarendon Press (1957).
— C.R. Pollock, Fundamentals of Optoelectronics, Irwin (1995).
— P. Yariv and P. Yeh, Optical Waves in Crystals, Wiley-Interscience (1984).
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Chapter

MAGNETIC EFFECTS
IN SOLIDS

8.1 INTRODUCTION

Magnets are one of the most fascinating materials. Children use them as toys and their
parents use them to fasten images of their cute faces on to refrigerators. However,
magnetic materials also find all kinds of important roles in technology. Magnets based
on the traditional metals (iron, nickel, and manganese) have been used for transform-
ers and motors. These magnets have high conductivities and, as a result, carry large
(unwanted) Eddy currents at high frequencies. With advances in ceramic magnets (con-
taining iron or other magnetic elements) the applications of magnetic materials has
greatly expanded. Ceramic magnets have become important in numerous information
processing technologies, although their most dominant impact has been on information
storage. Also, propagation of electromagnetic waves in magnetic materials allows for
a variety of interesting devices that find use in microwave technology. In recent years,
traditional semiconductors, such as GaAs, have been doped with Mn to create magnetic
semiconductors. There have been suggestions that devices based on electron spin in such
materials can lead to a new field of spintronics with applications in high-performance in-
formation processing. However, spintronics has not yet made any impact on technology,
primarily because of the very low temperatures needed for such devices to operate.

In this chapter we will first examine some basic physics of magnetic materials
and the interaction of electrons with magnetic fields. We will then examine how magnetic
materials can be exploited for device applications.

8.2 MAGNETIC MATERIALS

The magnetic properties of a material are described through the magnetization M (mag-
netic moment per volume). There are several classes of magnetic materials determined
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by how magnetization responds to an applied magnetic field H. The most common and
well-known magnetic materials are iron, nickel, and manganese, but almost every mater-
ial has some response to a magnetic field. The magnetic susceptibility x, of a material

is defined by
M _ /loM

H B

Most materials are diamagnetic and have a small (~ 107¢) negative susceptibility. In
such materials the electron spins are aligned in such a manner so that the net spin is zero.
When a magnetic field is applied the electron orbit is modified to produce magnetization
opposite to the applied field. Insulators and many organic compounds are diamagnetic.

In paramagnetic materials the applications of a magnetic field tends to orient
the magnetic moments in the material, so that there is a net magnetization in the field
direction. The susceptibilities are positive, but small (~ 1073-10~°). Paramagnetic
materials obey Curie’s law; i.e., x o< 1/T.

Ferromagnetic materials have spontaneous magnetization below a certain tem-
perature (Curie temperature). A magnetic field is needed to align the domains of mag-
netic field in a ferromagnetic material, since in the as grown materials the magnetization
of different domains cancels out. As noted in the introduction the use of ceramic mag-
netic materials have allowed suppression of the Eddy current, making these materials
very useful for high frequency operation.

One of the earliest known ferrites is magnetite (lodestone) Fe3Oy4, a naturally
occurring material. The structure can be written as FeOFe, O3, which can be generalized
as MOFe303 where M represents divalent ions, such as Mn?t, Fe?t, Co?*, Ni?t, as
well as Cu?t or Zn?t. M could also represent a combination of ions with average
valence of 2. Such general configurations are termed spinel ferrites after the mineral
MgOAl,O3 (spinel). Another class of ferrites have the structure of hexaferrite, a model
being BaFe1201. Finally we have garnets, a model being YaFesO12 (YIG). Yttrium
iron garnets or YIG is widely used in microwave device applications. The general garnet
can be written as RgFe5s01,, where R can be Y or can be totally or partially replaced
by lanthanum, cerium, gallium, etc.

(8.1)

8.3 ELECTROMAGNETIC FIELD MAGNETIC MATERIALS

In Chapters 5 and 6 we have considered the propagation of electromagnetic waves in non-
magnetic materials. The propagation (intensity, polarization, speed, absorption, or gain)
are described via the complex dielectric response. Similar concepts can be developed for
wave propagation in magnetic materials and the response is described via the complex
permeability, p.

The appropriate equations for the magnetic induction (or magnetic flux den-
sity), B, and magnetic field, H, are

B=pH=pH+M (8.2)
where pig is the free space permeability and M is the magnetization (compare this with

D = ¢E + P). As noted above, the magnetic susceptibility (x) is defined to describe
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Figure 8.1: A typical hysterisis curve for the B-H relation in a magnetic field. The coercive
field is H.. At this field the magnetic induction B is brought back to zero. At H = 0, the
remnant B field is B..

the relation between magnetization and magnetic field
M =xH (8.3)

This gives
#=po(l+x) (8:4)

In most materials the permeability is very close to unity and typically differs from unity
by a few parts per 10°. Materials where u > 1 are called paramangetic and where p < 1
are called diamangetic. For ferromagnetic materials, the value of & can be very large
and, in fact, we have to replace the linear relation by a function

B = F(H) (8.5)

As discussed for the ferroelectric materials in Chapter 6, there is a hysterisis curve that
represents the B—H relationship in ferromagnetic materials. Permeability defined by the
slope of the curve can reach a million in ferromagnetic materials. In Fig. 8.1 we show a
typical hysterisis curve for ferromagnets.

The use of magnetic materials for devices is based on several phenomena:

e Propagation of electromagnetic waves in magnetic material. As in materials with
anisotropic dielectric response, waves with different polarization propagate differ-
ently and this can be exploited to make magneto-optic devices.

o Use of external current/magnetic field to alter the magnetization of a material to
make switches, memories, etc.
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o Use of high permeability materials to make transformers, antennas, etc.

We will briefly review how electromagnetic waves propagate in magnetic mater-
ials. We will also discuss the physics behind magnetic properties and the underlying
reasons for diamagnetic, paramagnetic, and ferromagnetic materials.

An important and useful phenomena that occurs when electromagnetic waves
propagate in a medium with magnetization and a dc magnetic field (as in the iono-
sphere and in magnetic materials) is the difference in propagation vectors for different
polarizations. This effect is exploited for microwave device (phase shifters) applications.
To understand this phenomena we will develop a simple model for the propagation of
em waves in a medium with a dc magnetic field and certain electron density.

We assume that an electromagnetic wave is propagating along the dc magnetic
field By direction (z-direction). The ac magnetic field will be assumed to be small
compared to By. The equation of motion for the electrons in the medium is (electron
charge is —¢)

2
C;Tf —eBy x Ccll—: = —eFe ! (8.6)
The transverse electric field may be written as circularly polarized waves

m

E= (a1 + iaz)E (87)

where a;,as are unit vectors. Assuming a similar time-dependent expression may be
written for the electron displacement, the steady state solution for the electronic coor-

dinate is .

. mw(w F wp) (8.8)
where wp is the frequency of precession of electrons in a B-field
eBo

The oscillating charge creates a dipole moment, which in turn influences the dielectric
response of the medium. The dielectric response (form our discussion in Chapter 7) is

wp
e=1— ——— 8.10
w(w Fwp) (8.10)
where )
Ne
2 _
wy = —eom (8.11)

where N is the carrier density.

The upper sign corresponds to left-handed circular polarization and the lower
sign corresponds to right-handed circular polarization. We see that the dielectric re-
sponse and, hence, the propagation wavevector is different, depending upon the polar-
ization.

For propagation of a wave in a direction other than that given by the dc mag-
netic field, the frequency wpg is given by the component of By in the propagation direc-
tion, making the medium not only binefringent, but also anisotropic.
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20
15

10

Figure 8.2: The dielectric response for waves propagating in a medium with dc magnetic field.
€+ and ¢_ are the responses for right- and left-circular polarized waves. The ratio of wy/wp is
2 for the plots.

In Fig. 8.2 we show a typical plot for €4 and e_ as a function of frequency for a
wp/wp value of 2.0. The k-vector of the traveling depends upon the dielectric constant
and, as we can see, can have very different values for different polarizations.

The simple theory given above can be extended to em wave propagation in
magnetic materials with dc mangetization and dc¢ H-field. We will summarize the results
for isotropic ferrites, which are materials used for microwave applications. The material
is described on internal magnetization My and internal field Hy. We define the following
frequencies

eM,

Wm = g—2 = yMp (8.12)
2m
€H0

wo om Tilo ( )

where ¢ is called the spectroscopic splitting factor or the Lande g factor. It has a value
of 2 for free electrons. The parameter v is called the gyromagnetic ratio. If an em wave
of frequency w propagates in the material, the propagation constants for right-circular
and left-circular polarized waves is given by

By = w\/epo <l+w:)r_nw> (8.14)
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B = w\/cpo (1+w:’rw> (8.15)

If right- and left-circular polarized waves propagate a distance z through the material,
the Faraday notation for the waves is defined as

0= 2 (8 —po): (8.16)

The results above are for the case where the wave propagates in the direction of the dc
magnetic field. The change in phase for the two polariztions is the basis for devices used
in microwave technology. We will discuss these devices in Section 8.8.3.

EXAMPLE 8.1 An isotropic ferrite is used to make a Faraday rotator. Calculate the rotated
angle when an electromagnetic wave passes over 1 mm of the device with propagation direction
parallel to the dc magnetic field. The following parameters define the problem:

Operating frequency f =10 Ghz
Gyromagnetic ratio v =2.2x10° rad/s/A/m
Relative dielectric ¢ =10
D¢ Magnetic field Hy = 1000 A/m
Dc Magnetization M, = 10° A/m

We have
wm = Mo =221 x10° rad/s
wo = ~Ho=0.221x10° rad/s
14+ 2" = 096
Wo — W
W
1 = 1.04
+ wo + w
B+ = 649.3 rad/m
f- = 675.4rad/m

The rotated angle is

0= %(ﬂ.,. — B-)z=-0.131 rad = 7.5 degrees

8.4 PHYSICAL BASIS FOR MAGNETIC PROPERTIES

To understand the magnetic properties of materials we first need to examine how a mag-
netic field influences electromc properties. In classical physics we know that a charged
particle interacts with a magnetic field via a force given by the Lorentz equation. This
interaction leads to a number of phenomena, which are adequately described by classical
physics. The Lenz law is one example, where the current induced by a magnetic field is
accurately described by classical physics.
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The classical description can be extended to the quantum description by the
usual procedure where energy is treated as an operator. In general, the hamiltonian for
an electron in the absence of a magnetic field is

2 2
4 h” oo
= — = e mm— U .
Hy o +U(r) va +U(r) (8.17)
In the presence of a magnetic field we know that a charged particle feels the Lorentz
force (¢v x B). The energy function describing the particle energy can be shown to be
given by (¢ = —e for electrons)

H = o (p—qA)+U@)
_ QLm (?v _ qA) +U®) (8.18)

Here A is the vector potential characterizing the magnetic field. The hamiltonian
adequately describes the spatial motion of an electron in a magnetic field. However, an
important effect is still missing and is related to the spin of the electron.

The spin of the electron (or other charged elementary particles) interacts with
a magnetic field to contribute an important term to the hamiltonian. To motivate this
term, we assign a magnetic moment to the spin part of the electron angular momentum.
From symmetry, this moment is parallel or antiparallel to the spin. We write it as

s = —giupS = vhS (8.19)

where S is the spin of the particle; g is known as the g-factor and characterizes the
particle. The constant pp is known as the Bohr magneton and has a value

eh
HB =5 (8.20)
or, in cgs units
_ eh
BB = Sme

The constant v is called the gyromagnetic or magnetogyric ratio. The magnetic moment
associated with the spin then gives the usual term in the hamiltonian

Hspin =—pu,-B (821)

This term is now added to the hamiltonian to give the full hamiltonian describing a
charged particle in a magnetic field

1
H=(p- AV +U(r)—p, B (8.22)
m
The approach used to solve the Schrédinger equation resulting from this hamil-

tonian depends on the form of the background potential, U(r). The spatial part of the
problem can be solved exactly for the free electron problem (U = 0) or for electrons in
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a periodic potential where the effective mass approach can be used. The effective mass
theory allows us to describe the effect of the background potential by including it via
an equivalent hamiltonian

-2
2m*

h2
- —V2+U(r) = —V? 8.23
T2 U() (8.23)
where m* is the effective mass of the electron in the band of interest. Thus, in the free
electron case, and in the case of electrons in crystals where the effective mass theory is
adequate, we can write (m is the effective mass for crystalline materials)

1 2
— gAY —u,-B .24
H—Qm(p qA)" — ps (8.24)

If we ignore the spin effects, the Schrodinger equation becomes

1 (h o
This problem can be solved exactly, as will be seen in the next section.

For the general background potential, the problem cannot be solved exactly. The
problems of special interest are electrons in atoms and molecules where the electronic
states are bound. The behavior of such electrons in a magnetic field leads to very
important physical phenomena, as indicated in Fig. 8.3. In the previous section we have
mentioned diamagnetic, paramagnetic, and ferromagnetic materials. These effects can
be understood on the basis of quantum mechanics. Additionally, as shown in Fig. 8.3,
electrons in semiconductors (free electrons) show interesting physical properties.

To address the general problem in a constant magnetic field we write (remember

B=V xA)
A:%er (8.26)

Writing the hamiltonian in the absence of the field as Hg, we get, for an electronic
system in a magnetic field

H

0 2 8
eZ(B X r)2

s —#:B (8.27)

€
= H0+2—n—1B~(rxp)+

Since r x p is the orbital angular momentum operator L, we have

2
€ €
H=Hy- —L B S. - 2 2
0= o + 9418 B+8m(B X r) (8.28)

To proceed, we need to know the value of ¢ which defines the relation between the spin
and the magnetic moment. In analogy to the second term in the hamiltonian which
comes from the spatial part of the electron angular momentum, it would appear that
g = 1. However, this is not the case. It can be shown from Dirac’s relativistic formalism
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MAGNETIC EFFECTS

EFFECTS IN
COLLECTION OF ATOMS

 Alteration of the energy
spectra and density of
states =» Landau levels

* Paramagnetism * Ferromagnetism

« Diamagnetism * Antiferromagnetism

¢ Quantum interference
and Aharonov-Bohm
effects

¢ Pauli paramagnetism

Figure 8.3: An overview of magnetic effects in physical systems studied in this chapter.

of the electron that ¢ = 2.0023 (taken as 2.0 for most cases) for the electron spin. This
gives us the final hamiltonian

2
KB € 2
= -— 28) - —(B .
H=Ho-—=(L+ )B+8 (B xr) (8.29)

Before starting to solve specific problems of interest, we remind the reader that
the response of a system to an external magnetic field is represented via the magnetic
susceptibility x. As noted earlier, M is the magnetization of a system (magnetic moment
per unit volume); the magnetic susceptibility per unit volume is defined by
M . [loM

T H B

where f19 is the free space permeability (47 x 10~7 H/m). In cgs units we have

X=§

As noted in Section 8.2, systems where x is positive are known as paramagnetic,
while those where it is negative are known as diamagnetic. In ferromagnetic materials
the magnetization can be finite, even in the absence of a magnetic field. As will be seen,
the second term in the hamiltonian given by Eq. 8.28 leads to paramagnetic effects and
the Zeeman effect. The third term leads to diamagnetic effects.

EXAMPLE 8.2 Calculate the value of the Bohr magneton.
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In SI units the Bohr magneton is

eh
hE = 2me
(1.602 x 10~'° C) (1.055 x 107>* J 5)
- 2(9.1096 x 10-3! kg)
= 9.274x 107> JT™!
In cgs units we have
by = =
2mc

(4.803 x 107 esu) (1.055 x 10~°" erg/s)
2(9.1096 x 10—2% g)(2.9979 x 10'® cm/s)
9.277 x 107! erg/gauss

1

8.5 COHERENT TRANSPORT: QUANTUM
INTERFERENCE

We will start our discussion of magnetic phenomena by examining electrons propa-
gating in a solid without scattering. These electrons are described by plane waves, as
discussed in Chapter 3, and propagate without scattering in high-quality materials at
low temperatures.

Recently there has been increasing interest in devices based upon gquantum
interference of electrons. Much as optical diffraction experiments, these devices use
electron wave interference to create constructive or destructive interference at a certain
point in space. If the interference pattern can be controlled by an external stimulus, one
can design a device that can switch between a conducting and non-conducting state.
Such devices can be made from semiconductor or metallic materials, unlike traditional
devices that can only be made from semiconductors. They can also be made from
superconducting materials. An interesting way to control the interference pattern of
electrons is via a magnetic field. To understand this, let us consider the effect of the
magnetic field on the wavefunction of an electron.

8.5.1 Aharonov Bohm effect

We consider the Schrodinger equation for an electron in the presence of an electro-
magnetic potential described by the vector potential A and scalar potential ¢

QLm (—ihV — eA)’ 4+ Vip = Eop (8.30)

where V = e¢. We assume that A and ¢ are time-independent. In a region where the
magnetic field is zero, it can be shown that the solution of the problem has the form

ie 5@ , ,
P(z) = ¢°(2) exp lﬁ/ Az )-ds ] (8.31)
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Figure 8.4: A magnetic field can influence the motion of electrons even though it exists only in
regions where there is an arbitrarily small probability of finding the electrons. The interference
pattern of the electrons can be shifted by altering the magnetic field.

where () satisfies the Schrodinger equation with the same value of ¢ but with A(z) =
0. The line integral in Eq. 8.31 can be along any path as long as the end point S(z) is
the point 2 and V x A is zero along the integral. Notice that this is essentially equivalent
to making the change

k—k— %A (8.32)

in the usual free electron wavefunction exp(ik - r).

An interesting effect occurs if electrons can travel through a material without
suffering scattering so that the phase relation given above is maintained. Consider the
case shown schematically in Fig. 8.4. Here a beam of coherent electrons is separated into
two parts and made to recombine at an interference region. This is similar to the double-
slit experiment from optics, except now we have a region of magnetic field enclosed by
the electron paths as shown. The wavefunction of the electrons at the point where the
two beams interfere is given by (we assume that phase coherence is maintained)

. S(z) , ,
Y(x) = Y exp [g / A(z')-ds

ath 1

ie [5(%) . .
+ ng exp [%/ A(z)-ds } (8.33)
P

ath 2

The intensity or the electron density is given by

I(z) = {41(z) + Ya(@)} {9h1(2) + Y2(2)}” (8.34)

If we assume that 99 = 9, i.e. the initial electron beam has been divided equally along
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the two paths, the intensity produced after interference is

I(z) o cos [% fAvds}

= cos [ﬁ /MeaB-nda]

= cos e® (8.35)
h
where we have converted the line integral over the path enclosed by the electrons to a
surface integral and used B = V x A. The quantity ® is the magnetic flux enclosed by
the two electron paths. It is interesting to note that, even though the electrons never
pass through the B # 0 region, they are still influenced by the magnetic field. From Eq.
8.35 it is clear that, if the magnetic field is changed, the electron density will undergo
modulation. This phenomenon has been observed in semiconductor structures as well
as metallic structures.
In cgs units, the equation for current interference takes the form

e®
I(z) o cos W

For completeness, it is illustrative to examine the implications of our results
in a superconductor. In superconductors, the electrons find it energetically favorable
to form pairs mediated by the electron-lattice interactions. These pairs, called Cooper
pairs, do not suffer collisions because of the existence of an energy gap between their
energy and the energies of state where they could scatter into. We use 2e instead of ¢
to describe the wavefunction of the Cooper pairs

1 (=) , ,
¥(z) = % exp l% /S A(z)- ds] (8.36)

If we consider a superconducting ring as shown in Fig. 8.5 enclosing a magnetic
field region, the fact that the electron wavefunction should not be multi-valued if we go
around the ring gives us the condition

-27_13 % A . ds=2nnw (8.37)
or 90
eT =2n~w (8.38)
The flux enclosed by the superconducting ring is thus quantized
h
&= ’”e’ (8.39)

This effect was used to confirm that the current in superconductors is carried by a pair
of electrons rather than individual electrons.
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Magnetic flux
lines

Figure 8.5: Flux quantization in superconducting rings.

EXAMPLE 8.3 A key attraction of the Aharonov-Bohm effect is the possibility of its use in
switching devices, where a change in magnetic field can change the state of a device from 0 to
1. The magnetic field (and, hence, switching energy) needed for switching the device would be
very small. Consider a device of area 20 um x 20 pm through which a magnetic field is varied.
Calculate the field variation needed to switch the devices.

The flux “quanta” needed to switch from a constructive to destructive electron inter-

ference is B
AP =2
e
The magnetic field change needed for our device is
wh
A "
i eA

7(1.05 x 107%* J 5)
(1.6 x 10-19 C)(20 x 10— m)2

= 515x107¢T

Considering that the earth’s magnetic field is about eight times larger (40 pT), we can see the
small field changes needed. However, from a practical standpoint, it is difficult to incorporate
magnetic fields into a circuit element. Unlike electric field or voltage, there is no simple source
of magnetic field.

8.5.2 Quantum interference in superconducting materials

The observation in this section that the phase difference around a superconducting ring
(or a loop) encompasses a magnetic flux that is an integral product of 2e¢/# is used for
important devices.

Let us consider a superconducting loop, as shown in Fig. 8.6. In the absence of
any voltage, the phase difference between points 1 and 2, taken through the junction
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. Flux enclosed: ®

Figure 8.6: Quantum interference in a superconducting loop.

with insulator @ is 6, and that through the other junction, is é;. For identical junctions
these are equal (8, = & = 6p). Let us introduce a flux ® through the interior of the

loop. We now have
2e®

6[, — 6(1 = —h'— (840)
We may write this equation as
ed
6(1 = 60 — 7
6 = 6o+ i};?i (8.41)
The total current through the loop is now
Jiotal = Ja+Jb
. ed . ed
= Jo {sm <60 + 7) + sin <60 — 7)}
P
= 2Josin ég cos % (8.42)

The current can be seen to vary with ® and has a maxima when

% =nr (8.43)

where n is an integer.
The control of the current through a superconducting loop (called a Josephson
loop) by a magnetic field is the basis of many important superconducting devices.

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

340 Magnetic effects in solids

It is important to note that the magnetic flux needed to alter the current through a
loop is very small.

Superconducting loops can be used in the fabrication of magnetometers, digital
logic devices, signal processing devices, detectors and for measurement standards. We
will briefly discuss applications in magnetometers and digital logic devices later in this
chapter.

8.6 DIAMAGNETIC AND PARAMAGNETIC EFFECTS

We will now start developing the basic theory behind magnetic response in solids. When
an electronic system is subjected to a magnetic field, in general, a magnetic moment
is induced in the system. The response of the electronic system to the magnetic field
can be described via the magnetic susceptibility x. In this section we will examine the
susceptibility for several different systems. Depending upon the nature of the problem,
the magnetic susceptibility can be negative (such systems are diamagnetic) or positive
(these systems are paramagnetic).

In Section 8.4 we discussed the general hamiltonian of an electronic system in
a magnetic field. If we examine the right-hand side of Eq. 8.29 the third term (second
order in field B) leads to diamagnetic effects in atoms. The effect is calculated by using
perturbation theory. The second term in the hamiltonian leads to paramagnetic effects.
Let us start with a simple calculation for the diamagnetic effect.

8.6.1 Diamagnetic effect

Some materials have diamagnetic properties arising from how electron atomic orbits are
influenced by an applied magnetic field. Let us consider an electron atomic state subject
to a uniform magnetic field in the z-direction. We can write, for the components of the
vector potential

1 1
The perturbation (i.e., the third term of Eq. 8.29) now becomes
2B2
= 2,2 )
o (z° +y°) (8.45)

First-order perturbation theory then gives us the energy shift due to the perturbation
as 2R
8m

E = (z? +y?) (8.46)
For a spherically symmetric system, where (z2) = (y2) = (z%) = (r?) /3, we have

, e?B?
12m

(r?) (8.47)

The expectation value (1"2) can be calculated if the wavefunction for the unperturbed
electronic system is known.
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The magnetic moment is now given by

y 2 /2
uo 8B _ 2 g (8.48)
6B 6m

In general, if Z electrons are present in the atom, the magnetic moment contri-
bution has to be the sum of the contributions from all of these electrons. In a simplistic
model, we can multiply the result above by Z, and (r?) then represents the average
expectation value for all electrons.

From Eq. 8.50, we see that the magnetic susceptibility is diamagnetic in nature.
The susceptibility is for N atoms per unit volume

poM  poNZe?

=) (8.49)

X:

Since in most data reviews the values of x are given in cgs units, we note the value in

cgs units

NZe?

6mc?
Magnetic susceptibility is usually given for a mole of a material, in which case

1t 1s called the molar susceptibility, xm .

X = = () (8.50)

EXAMPLE 8.4 The molar susceptibility of He is (in cgs units) 1.9x107% cm®/mole. Calculate
the expectation value (r?).
Using Eq. 8.49, we have (Z = 2)
(r?) (1.9 x 107¢ cma/mole) 6 (9.1 x 10728 gm) (3 x 10%° cm/s)2
T =
(6.022 x 1023) 2 (4.8 x 10~10 esu)?

= 3.36 x 10717 cm?

1If we were to take the square root of this value, it gives us a typical electron—nucleus distance
of 0.58 A.

8.6.2 Paramagnetic effect

As noted 1in the previous subsection, if electrons form close orbits, as in atomic orbitals,
a magnetic field induces a diamagnetic material. However, in some materials additional
effects lead to the paramagnetic effect. The second term in the full hamiltonian de-
scribing electrons in a magnetic field given by Eq. 8.29 leads to paramagnetic effects in
materials. The perturbation is

H = ”TB(L+QS)-B (8.51)

Electrons in atomic states are described by their orbital angular momentum L and spin
S. The total angular momentum is J(= L + S). According to quantum mechanisms
the orbital angular momentum L can take values (magnitude) £ = 0, h, 2k, 3h, etc.,
with a projection (in units of h), m = —¢,—€+1---,0,---,£ —1,£. The total angular
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momentum can take values (magnitude) j = 0, - - - (¢+s)h with a projection going from
—j,—j+1---0,---j—1,7. In Fig. 8.7 the choices in angular momentum are summarized.
In the absence of a magnetic field an electronic level with a particular value of J has
(27+ 1) degeneracy. This degeneracy is lifted by a magnetic field as discussed below and
as shown in Fig. 8.7b. According to first-order perturbation theory, the effect of this
additional term is evaluated by taking its expectation value in the original unperturbed
states. The connection leads to the Zeeman effect and is given by

AFE = uggmB (8.52)
here G+ 1)+ s(s+ 1) = L+ 1)
JU+1)+s(s+1)—1i+
=1+ — 8.53
The quantum number m has values j,j—1...,—j, and as a result the level that may be

originally 2j + 1 degenerate looses its degeneracy, as seen in Fig. 8.7b. When electrons
are now distributed in these levels, according to equilibrium statistics, there is a net
magnetic moment in the material which is paramagnetic in nature. Let us examine how
this occurs for the case where j = s = 1/2.

In the case where £ = 0, we have

g=2, m= :l:% (8.54)
This leads to splitting, shown in Fig. 8.8a. The unperturbed level that is doubly degen-
erate (corresponding to the two spin states) is split. The lower energy state has its spin
antiparallel to the field, while the magnetic moment is parallel to the field, as shown in
Fig. 8.8b.
From thermodynamics, the relative equilibrium populations of the two levels is,
at equilibrium

N exp (upB/kBT)

N exp(upB/kpT)+exp(—pupB/kpT)

Ny _ exp(—pp B/kpT) (8.55)
N exp (up B/kpT) + exp (—upB/kpT) ’

where N7 and N, are the populations of the lower energy and upper energy states and
N is the total population. The populations are plotted in Fig. 8.8b as a function of
the field. We see that, depending upon the temperature, there is a greater number of
electrons with magnetic moment along the field. The net magnetization is given by
(writing « = pg B/kgT)

M = (N, — Ny)up = NUB% = Nup tanh = (8.56)
If 5
UB
BT «1 .
T < (8.57)
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Figure 8.7: (a) A schematic of the vector addition of the total angular momentum J, which
is the sum of the orbital angular momentum and spin. (b) Splitting of degenerate states in a
magnetic field.

we have

Nu%iB
kpT

This is the Curie law for paramagnetism applied to the case where £ = 0. For a general

case with £ # 0, it can be shown by similar arguments that the magnetization is given
by

M = (8.58)

_ 9juBB

M = NgjupBj(z); = EnT (8.59)
where the function Bj, called the Brillouin function, is given by
27+1 (27 + Dz 1 T
() = = ) — —ctnh | — )
B;(x) 5 ctnh ( 5 5 ctnh 5 (8.60)
For 2 < 1, we have
tho = Ly 22 8.61)
S ST (8
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Figure 8.8: (a) The splitting of electronic levels with L = 0. The magnetic field is along the
z-direction. Note that, for electrons, the magnetic moment is opposite in sign to the spin. In
the lower energy state, the magnetic moment is parallel to the field. (b) Occupation of the
two-level system as a function of the ratio of the field to the thermal energy.
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and the paramagnetic susceptibility is

sl 2,2
= BoM o polNiGi+ Vo’uh _ C (8.62)

B 3kpT T

where the Curie constant C is given by

C

2 2 20 1
_ moNg*ppi(j+1) (8.63)
3kp

8.6.3 Paramagnetism in the conduction electrons in metals

From the discussion on paramagnetism in the previous subsection, it appears that elec-
trons in solids obey the Curie law. This happens when we have discrete energy levels
that are then split by the magnetic field. However, it is found that free electrons dis-
play paramagnetism which has essentially no temperature dependence. A theory for this
behavior was put forth first by Pauli, who explained it on the basis of Fermi-Dirac
statistics.

In Fig. 8.9, we show the density of states and occupation of electron levels in
the absence of a magnetic field. The Fermi level is at Fr, as shown. In the absence
of the field, the spin-up and spin-down electronic states are degenerate and, therefore,
there is no net magnetic moment in the electron gas. When a field is applied, there is
a difference in the total energy of the spin-up and spin-down electrons. Electrons with
magnetic moments parallel to the field have a lower energy and, since the Fermi level is
fixed, there is a greater number of such electrons.

The concentration of electrons with magnetic moments parallel to the field is

1 [Er
Ne = 5[ 4B fE) NE+uaD)
2 —upB

1 [Er 1
> o / dE f(E) N(E) + 545 BN (Er) (8.64)
0
Here f(E) is the Fermi-Dirac distribution function and N(F) is the density of states.
The concentration of electrons with magnetic moment antiparallel to the field
is

Er

N = %]_NBB dE f(E) N(E — ugB)
B
=~ % /0 dE f(E) N(E)—%MBBN(EF) (8.65)

The net magnetization is now

M = pp(Ny-N_)
uLN(EF)B (8.66)
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For the conduction electrons in metals (the band is degenerate; i.e., the occupation
factor is approximately unity up to Fermi energy and approximately zero above), we
have
N(EF) = 3—N = 3N
2Ep  2kpTFp
where N is the density of the conduction electrons and T defines the Fermi temperature.
This gives us the temperature-independent Pauli paramagnetism

(8.67)

_ moM  3uNp}
=B T %kplr

(8.68)

8.7 FERROMAGNETIC EFFECTS

In most solids, in the absence of an applied magnetic field, the net spin of electrons
in any direction cancels, so that the net magnetization of the system is zero. As we
have seen in the previous section, application of an external magnetic field orients the
spin, leading to magnetization. In some materials the arrangement of electrons is such
that it is possible to have a net magnetization in the absence of an external magnetic
field. Materials contaiming Fe, Ni, and Mn have such magnetic properties. With ad-
vances in fabrication techniques, magnetic ceramics and magnetic semiconductors can
be grown in thin film form for applications in power transmission, information storage,
and microwave applications.

8.7.1 Exchange interaction and ferromagnetism

In a solid where there are a large number of atoms with non-zero spins, the spacing of
the atoms can be small enough (~1 A) that interaction between spins on neighboring
sites is significant. The origins of this interaction lie in relativistic quantum mechanics,
but 1t essentially arises because each spin has a magnetic moment associated with it
and these moments interact with each other. For an arrangement of atoms on a lattice
a general form of this interaction can be written as

Hepin=—=J Y _ Sj - Sjtm (8.69)
J.m

where the subscripts j, 7 + m represent the position of the two spins. The constant J is
known as the exchange integral. Usually the interaction is taken only between nearest
neighbor spin so that m = %1 in Eq. 8.69. If the exchange integral is positive, the
solution to the problem defined by this hamiltonian leads to ferromagnetic phenomena
where a system of atoms can have a spontaneous magnetization in the absence of an
external magnetic field as long as the temperature is below a critical temperature (Curie
temperature). If, however, J is negative, the system displays antiferromagnetism where

the atoms have their spins arranged in an antiparallel manner.
Techniques have been developed to solve the problem defined by the hamil-
tonian given. However, the basic physics can be captured by mean field theory. In a
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Figure 8.9: (a) Conduction electrons distribution in a metal in the absence of any field.

(b) Density of states and occupation of electrons with magnetic moment parallel and antipar-
allel to the magnetic field.
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348 Magnetic effects in solids

simplistic mean field model, we postulate that the spin—spin interaction results in an
effective exchange field Bg. This field acts as a real magnetic field, although it is only
a mathematical representation of the spin—spin interaction. The exchange field causes a
magnetization which is paramagnetic in nature. In the mean field approach, we assume
that the exchange field is proportional to the macroscopic magnetization

where ) is a temperature-independent constant.
In addition, if there is an external applied field B,, we have, for the magneti-

zation
poM = Xp(Ba + BE) (8.71)

where yp is the paramagnetic susceptibility of the atoms.
In the previous section, we derived the Curie law for paramagnetic materials,
which gives us

C

XP =T (8.72)
Substituting this, we have, the effective susceptibility
1z /.toM > C
=B, TT-Cx (8.73)
Writing 7, = CA, we have the Curie-Weiss law
C
X=F T (8.74)

This expression provides a reasonable description of susceptibility in ferromagnets. We
see that at T' = T, the susceptibility has a singularity. At T = T, and below, there
is spontaneous magnetization in the system; 1.e., the spin—spin interaction causes pref-
erential alignment of the magnetic moments in the absence of an external field. At
temperatures greater than 7, the thermal fluctuations destroy this alignment. In Fig.
8.10 we show the critical temperature 7, for several ferromagnets. It is important to
note that this discussion is somewhat simplistic. More accurate calculations show that

C

X = H_.—_——Tc-)—,y (8.75)

with v ~ 1.33.

8.7.2 Antiferromagnetic ordering

There are some materials in which the nature of the spins is such that, instead of the
exchange interaction leading to adjacent spins aligning the same way, they align opposite
to each other. This phenomena is called antiferromagnetism and to understand it we
assume a two-atom basis describing the unit cell of such a material. If A and B denote
the two sublattices of the material, as shown in Fig. 8.11a, let us denote by C4 and Cp
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Figure 8.10: (a) A schematic of a collection of paramagnetic magnetic moments with no
interactions between the moments (top figure) and a spin-spin interaction which tends to
align the moments. (b) Susceptibility of a ferromagnetic material as a function of temperature.
Values of T for some materials are given.
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350 Magnetic effects in solids

the Curie constants for the two kinds of atoms. Let us assume that all spin interactions
are zero, except for an antiparallel interaction between A and B sites. In general, we

write

Bs = —augMp
Bg = —apoMa (8.76)

Once again, in the mean field approach, we have

poMaT Ca(Ba — apoMp)
quBT = CB(Ba - aquB) (8.77)

where B, is the applied field. At zero applied fields, these equations have a non-zero
value of M4 and Mpg if

T aCy|_
oGy T |F0 (8.78)
or
T = Tc = a(CACB)UZ (879)

The susceptibility is

_ po(Ma+Mp) (Ca+Cp)T —2aCsCp
- Ba - T2 T2 “Ho

(8.80)

The case where C4 = Cp leads to antiferromagnets. Here, the spins are ordered in
an antiparallel arrangement, as shown in Fig. 8.11b, with zero net moment below the
ordering temperature T,. This ordering temperature is called the Neel temperature.

It may be pointed out for the reader’s reference that in the above discussion,
if Ca # Cp, the resulting arrangement of spins, while antiparallel, does not have a net
zero magnetism. Such materials are called ferromagnetic.

EXAMPLE 8.6 The critical temperature 7. for iron is 1000 K. Calculate the parameter A and
the exchange field Bz. Compare this field to the field ptop5/a® produced by a magnetic moment
pB per site in a material where a is the interatomic spacing. Assume that the magnetization
for iron is 2 x 10°> A/m.

The constant A is given by (using j =1,9=2,N ~ 102 m~2 kpT. = 86.7 meV)

T. _ 3kpTe
C " woNgupi(i+1)
3(8.67x 1077 x 1.6 x 107 J)
(47 x 10=7 H/m) (102° m—?) (4)(2) (9.274 x 10-2* J/T)
480

A

1R

%

The exchange magnetic field is then

B = ApeM
= 120 T
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Figure 8.11: (a) A schematic showing a two-spin unit cell in which neighboring spins have
interactions that tend to force them to be antiparallel. (b) A comparison of the arrangement
of spins in an antiferromagnet and a ferromagnet.
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This is an enormous field. The field due to a Bohr magneton is (a ~ 2 A)

(47 x 1077) (9.274 x 1072*)
B= % 10-10)3 =145T

8.8 APPLICATIONS IN MAGNETIC DEVICES

We will now review some of the important applications of magnetic materials as well
as the use of magnetic fields in information technology. These applications exploit one
or more of the phenomenon discussed in this chapter. We will discuss the following
applications: (1) Magneto-optic devices, which exploit the changes in wave propagation
of differently polarized light in magnetic materials. Such devices are very useful for
microwave technology.(il) Quantum interference devices that can be exploited for very
sensitive magnetic field measurements (e.g., for sensing brain waves) as well as for logic
applications. (iii) Use of magnetic materials to produce extremely low temperatures.
(iv) Use of magnetic materials for recording and memory applications.

8.8.1 Quantum interference devices

In Section 8.5 we have seen how a magnetic field can change the phase difference
between electron waves traveling along two different paths enclosing the field flux. Such
an effect can be exploited to design superconducting devices (electron waves travel
without scattering in superconductors), which can be used for sensing applications.

SQUID magnetometers

The superconducting quantum interference device (SQUID) is an extremely sensitive
device for measuring changes in magnetic flux. Clever coupling of the device with other
circuits also allows it to be used as a very sensitive voltmeter to measure tiny voltages
in, say, Hall effect measurements, or as a gradiometer to measure field gradients.

The SQUID is used in either a dc or ac configuration as shown in Fig. 8.12. In
the dc configuration shown in Fig. 8.12a, the Josephson loop encloses the flux ® to be
detected. The operation depends upon the fact that the maximum dc supercurrent as
well as the I-V relations depend upon the flux ®. This 1s shown schematically in Fig.
8.12a. The dc device uses a constant current source in which case the voltage across the
device oscillates with changes in the flux through the loop.

In the rf SQUID, the device consists of a single Josephson junction, incorporated
into a superconducting loop, and the circuit operates with an rf bias. The SQUID is
coupled to the inductor of an LC circuit, excited at its resonant frequency. The rf voltage
across the circuit versus the rf current i1s shown in Fig. 8.12b and oscillates with the
applied flux.

Due to the extreme sensitivity of SQUID, the device (in various configurations)
finds use in biomagnetism, geophysical exploration, gravitational experiments, Hall ef-
fect, magnetic monopole detection, relativity, and many other fields.
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Figure 8.12: A schematic of the operation of (2) dc and (b) ac SQUIDs.
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Figure 8.13: Use of Josephson devices in logic implementation. (a) A schematic of a circuit
to perform A or B operation and (b) the states of the I-V characteristics of the circnit.

Digital devices

An important application of Josephson tunneling junctions is in the area of microelec-
tronics for computers. Although it 1s not clear whether Josephson devices will ever
compete with semiconductor devices due to manufacturing and cost concerns, in princi-
ple, the superconducting devices offer high-speed and low- power operation. The devices
depend upon the use of magnetic flux (induced by a current flowing in an input) to alter
the critical current that can flow in a superconducting loop.

The general operation of superconducting logic circuits can be appreciated by
examining Fig. 8.13a, which shows an OR gate. Initially, the device is biased in the zero
voltage state with a current level below the critical current. A current pulse in either
of the inputs A or B couples magnetic flux into the loop, so that the critical current is
reduced. The device thus switches into a non-zero voltage state as shown in Fig. 8.13b.

8.8.2 Application example: cooling by demagnetization

We have seen that in the presence of a magnetic field, originally unperturbed electronic
levels split. As a result, there is a higher occupation of electronic states with magnetic
moments parallel to the magnetic field. What happens if the field is switched off without
changing the entropy of the system? As we will see in this subsection, this results in a
cooling of the sample. This technique for cooling materials has resulted in temperatures
as low as sub-millikelvins. This technique, when used in nuclear demagnetization, has
resulted in temperatures of microkelvins.

To understand how cooling by isentropic demagnetization works, let us remind
ourselves of the relationship between entropy and temperature in a system. Entropy is
a measure of the disorder in a system. Thus, in an electronic system, if all the electrons
have the same magnetic moment, the system has low entropy, while, if they are randomly
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arranged the entropy is high. Thus, when the system is in a magnetic field, there is
a greater order in the magnetic moment and the entropy is lower. Note that if the
temperature of a system is lowered, the entropy decreases, since more electrons occupy
the ordered states.

The discussion above tells us that the entropy of a system at temperature T; in
the presence of a field corresponds to the entropy of a system at a lower temperature
Ty in the absence of the field. Figure 8.14a gives a schematic view of the spin entropy
of the system. In this figure, we show three states of the spin system discussed. When
the magnetic field is removed under constant entropy conditions (adiabatically with the
system insulated), the entropy of the spin system increases at the expense of the lattice
entropy, as shown in Fig. 8.14b. The decrease in the lattice entropy corresponds to a
reduction in the lattice temperature.

The arguments given for the electronic system also apply to nuclear param-
agnets. However, nuclear magnetic moments are much smaller than electron magnetic
moments. This results in the possibility of reaching much lower temperatures with
nuclear demagnetization experiments.

8.8.3 Magneto-optic modulators

In Chapter 7 we have seen how directional couples and switches can be made by varying
the dielectric constants of materials. The effect that is exploited for such devices is the
difference in the propagation vectors of light with different polarization. In magnetic
materials the Faraday effect can be exploited to create similar devices. In Section 8.2
we examined how light (or microwaves) with right- and left-circular polarization have
different wave-vectors. This difference can be altered by a magnetic field-the Faraday
effect—and thus be used for device applications.
In general the rotation of the polarization vector of an electromagnetic field is
given by
Y = VBL (8.81)

where V is called the Verdet constant, B is the magnetic flux density, and L is the
length of the device.

In Fig. 8.15 we show a schematic of a magneto-optic modulator. A typical
material used is yttrium-iron-garnet (YIG). A constant magnetic field is applied in
a direction normal to the device. The modulating magnetic field is applied along the
device length. As a result the polarization vector of an incoming wave is altered. By
placing a polarizer and analyzer in the path of the incoming and outgoing waves, a
modulator can be built.

In microwave technology, devices based on ferrites and utilizing Faraday rota-
tion are used as isolators (i.e., blocking a wave from reading certain regions), couplers
(feeding a wave from one waveguide path to another path), and phase shifters. Phase
shifters are devices that are very useful for phased array radars, where multiple antennas
radiate a directed microwave beam. To emit a directed beam each antenna must radi-
ate em waves at a different phase. By altering the phase difference between successive
antennas the direction of the beam can be controlled.
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Figure 8.14: (a) A schematic of three states of spin entropy in a magnetic demagnetization
experiment. {(b) The variation of spin and lattice entropy with and without a magnetic field.
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Figure 8.15: A schematic of a mangeto-optic modulator.

8.8.4 Application example: magnetic recording

Ferromagnetic materials find a wide range of applications as permanent magnets. In
this section, we will briefly review their role as memory devices. Magnetic materials
have found an extremely important application in the area of information storage and
retrieval. From audio and video cassettes to computer disks, these materials provide
low-cost, high-density memory.

A typical audio cassette is shown in Fig. 8.16a and consists of the magnetic
tape on a spool, an erase head, a recording head, and a playback head. To see how the
erase and recording process works, we briefly review the hysteresis curve exhibited by
ferromagnets. Because of the possibility of spontaneous magnetization, the magnetiza-
tion of a ferromagnet depends upon the past hystory of the material. In very strong
magnetic fields, we get a saturated hysteresis, as shown in Fig. 8.16b, while, if the field
is smaller, we get an unsaturated loop. The erase head creates a magnetic field profile
that brings the tape to the demagnetized state.

The recording head converts the electrical signal to be recorded to a correspond-
ing magnetic field which magnetizes the tape at a level that has a one-to-one correlation
with the electrical signal. Finally, when the magnetized tape passes under the playback
head, it generates an electrical signal that is then amplified and converted to sound.

The recording medium for the tape is a plastic base (~20 pm thick) on which a
magnetic coating of gamma ferric oxide (y-Fe203) is applied. In some tapes, chromium
dioxide (CrO3) is used. The ferromagnetic particles (~1 gm in size) are dispersed in a
binder and coated on the plastic tape.
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Figure 8.16: {a) A schematic of the audio cassette tape. (b) The hysteresis loop of a ferro-
electric material.
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8.8.5 Giant magnetic resistance (GMR) devices

Ferromagnetic materials have been used for information storage devices for decades.
As noted above, the two stable states of a ferromagnetic element can be used to store
digital data. Magnetic storage must compete with semiconductor-based storage. There
are some areas where magnetic devices have advantages over semiconductor transistors.
Magnetic devices store information in the absence of power and are radiation hard; i.e.,
are relatively unaffected by high energy particles in space. Additionally, recent advances
in magnetic material technology have allowed fabrication of very dense magnetic mem-
ories with fast access times. An important development in the magnetic storage field is
the observation of giant magnet resistance (GMR).

In Chapter 4 we have discussed transport of electrons in solids. As electrons
move in a material they suffer scattering due to imperfections and lattice vibrations.
In non-magnetic materials the scattering rates and, hence, conductivity or resistivity
are independent of the spin of the electron. However, in magnetic materials, the scat-
tering rates for electrons with spin aligned with the internal magnetization are lower
than those for electrons with spin opposing it. In thick magnetic films, the differences
in the resistivity of spin-up and spin-down electrons is not very large. However, in het-
erostructures containing magnetic layers, the difference can be very large (hence the
term “giant magneto resistance”). GMR is now widely used in magnetic disk storage
technology since sensing heads can be extremely sensitive, allowing for high speed and
high memory density.

In Fig. 8.17 we show a schematic of a multilayered structure used for sens-
ing magnetic field direction in a magnetic storage element. The heterostructure shown
consists of thin (10 A-50 A) layers of ferromagnetic/noble metal layer. Multilayers of
NiFe and NiFeCo are incorporated in these thin structures. As shown in Fig. 8.17 there
are four layers in the structure. The role of the exchange layer is to ensure that the
magnetization in the next layer (pinning layer) is always in the same direction. The
three thin layers — sensing, conduction, and pinning — have electrons that carry the
current. The magnetic state of the sensing layer can be switched by a small magnetic
field. When the state of the sensing layer and the pinning layer is the same, the device
offers very little resistance. However, when the sensing layer state is reversed, the resis-
tance increases. Thus this device (called spin valve) can be used to read the state of the
magnetic memory.

8.9 SUMMARY

The topics discussed in this chapter are summarized in Table 8.1.

8.10 PROBLEMS

Section 1.3
8.1 A Faraday rotation device has the following properties

My =78x10* A/m; w=2x10'rad/s

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

360 Magnetic effects in solids

J« SIDE VIEW

\

Sensing layer : Exchange layer

Conducting layer Pinned layer

Figure 8.17: (a) A schematic of a device used to sense magnetic orientation in disk memories.
A heterostructure containing a magnetic film uses GMR to sense field orientation through
current flow.

& =10; Hy=2x10° A/m

Calculate the Faraday rotation angle when waves travel over a distance of 1 cm.

8.2 An electronic system with orbital angular momentum L = h and spin = 0 is
subjected to a magnetic field. At what magnetic field is the splitting of the various
states 1 meV?

8.3 Consider electrons in hydrogen atoms in the ground state. Show that the molar
susceptibility is —2.36 x 10~° cm®mole™!.

8.4 Calculate the Curie constant for a system of free electrons with zero angular
momentum. The electron density is 1023 cm™3.

8.5 Discuss the role of scattering of electrons in the Aharonov-Bohm effect.

8.6 Consider a digital device based on the Aharonov—Bohm effect. The area enclosed
by the two arms of the device is 5 um x5 pm. Estimate the minimum switching energy
needed to switch the device from ON to OFF if the volume over which the B-field is to
be altered is 10=° cm?.

8.7 Discuss why magnetic flux quantization occurs in a superconducting ring, but not
in a normal metallic ring.

8.8 Discuss how a magnetometer (like SQUID) can be used to monitor activities of
various kinds in biological systems.

8.9 The exchange field Bg for a ferromagnet is estimated to be 10® T. Estimate the
critical temperature T, for this material. Use the following values:

N = 10¥m™3
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Electromagnetic wave
propagation in magnetic
materials

In materials with magnetization and a dc magnetic
field, electromagnetic waves with different
polarizations propagate with different
wavevectors. Thus a phase difference develops
between such waves.

Diamagnetic effects

A negative magnetic susceptibility is produced in
electronic levels in atoms as a result of the
precession of electrons.

Paramagnetic effects

In many materials a positive magnetic
susceptibility occurs due to the spin-splitting of
electronic levels and redistribution of electrons.

— < : iR

Ferromagnetic effects

In materials with net spins, interactions between
neighboring spins can create long range alignment
of spin. In ferromagnetic materials the spins are all
aligned parallel to each other below the Curie
temperature. Above Curie temperature the spins
are disordered.

Applications of magnetic fields
and materials

Table 8.1: Summary table.

* Microwave devices such as phase shifters,
modulators, couplers, etc., exploit wavevector
control in magnetic materials.

* Electron wave quantum interference devices can
be built in superconducting materials for sensitive
magnetometers and switching devices.

* Adiabatic switching of magnetic fields can allow
cooling devices to be designed. Extremely low
temperatures can be reached.

+ Ferromagnetic materials can be used to store and
need information. Very high density storage
systems can be produced.
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g = 2

8.10 Magnetic oxide are used as strips on cards to store information. Discuss the
advantages and disadvantages of using materials with low coercive field (like iron oxide)
and high coercive fields (like Barium iron oxide).

8.11 Estimate the threshold magnetic field that can be detected by a SQUID device
with an area of 1072 m2. Note that the magnetic field associated with the heart is
10~1° T and that with the brain is 10712 T. For reference, the Earth’s magnetic field is
0.5x 107 T.

8.12 A magneto-optic modulator uses certain flint glass with Verdet constant of 3.2x10%
minutes of arc per meter per tesla. The magnetic flux density is 0.5 tesla and the device
length is 2 cm. Calculate the light rotation at a wavelength of 5890 A.

8.11 FURTHER READING

e General
— B. Heinrich and J.A.C. Bland, editors, Ultra-Thin Magnetic Structures 11,
Springer Verlag, Berlin (1994).
— J.D. Jackson, Classical Electrodynamics, J. Wiley (1975).
— C. Kittel, Introduction to Solid State Physics, J. Wiley (1986).

— A.J. Moulson and J.M. Herbert, Electroceramics, Materials, Properties,
Applications, Chapman & Hall (1990).
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APPENDIX
A

IMPORTANT
PROPERTIES OF
SEMICONDUCTORS

The data and plots shown in this Appendix are extracted from a number of sources. A
list of useful sources is given below.

e S. Adachi, J. Appl. Phys. 58, R1 (1985).

e H.C. Casey, Jr. and M.B. Panish, Heterostructure Lasers, Part A, “Fundamental
Principles;” Part B, “Materials and Operating Characteristics,” Academic Press,
New York (1978).

Landolt-Bornstein, Numerical Data and Functional Relationship in Science and
Technology, Vol. 22, Eds. O. Madelung, M. Schulz, and H. Weiss, Springer Verlag,
New York (1987).

e S.M. Sze, Physics of Semiconductor Devices, 3. Wiley, New York (1981). This is
an excellent source of a variety of useful information on semiconductors.
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0.517
0.539
0.563
0.5%0
0.620
0.652
0.689
0.729
0.775
0.826
0.885
0.953
1.033
1.127
1.240
1.377
1.550
177
2.067
2.480
3.100
4133
6.200
12.40

5.5 5.6 57 5.8 59 6.0 6.1 6.2 6.3 6.4 6.5

LATTICE CONSTANT IN ANGSTROMS

Figure A.1: Lattice constants and bandgaps of semiconductors at room temperature.
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GaN 0.19

GaAs 0.067

Ge my=1.64
m; =0.082

InAs 0.027

Si my =0.98
m,=0.19

Material Electron Mass Hole Mass
(mg) (mg)
AlAs 0.1

Myos = 0.60

my, = 0.082
mpp = 0.45

my, = 0.044
mpn = 0.28

Myos = 04

mlh = 016
muyn = 0.49

365

Table A.1: Electron and hole masses for several semiconductors. Some uncertainty remains in

the value of hole masses for many semiconductors,
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Direct Energy Gap
Compound Eg (eV)

1.351 +2.23x

0.360 + 2.012x + 0.698x2

‘AlIn, . Sb  0.172+ 1.621x + 0.43x

0.36 + 1.064x

1.424 + 1.150x + 0.176x2

 0.360 +0.891x + 0.101x2

Table A.2: Compositional dependence of the energy gaps of the binary 1II-V ternary alloys
at 300 K. (After Casey and Panish (1978).)
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Bandgap (eV)  Mobility at 300 K (cm?2/V-s)
Semiconductor 300 K Electrons Holes

1200

Table A.3: Bandgaps, electron, and hole mobilities of some semiconductors.
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APPENDIX
B

P-N DIODE: A
SUMMARY

B.1 INTRODUCTION

In this appendix we will review some important aspects of the diode, which forms
the basis of many of the optoelectronic devices discussed in Chapter 5. Most optical
detectors and light emitters are based on p—n diodes.

B.2 P-N JUNCTION

As noted above the p—n diode is one of the most important optoelectronic devices. It
forms the basis of most detectors and light emitting devices. Light detection occurs when
photons create electrons and holes, while light emission occurs by e—h recombination.

Unbiased P-N junction

The p—n junction is one of the most important junctions in solid-state electronics. The
fabrication techniques used to form p- and n-type regions involve (1} epitaxial proce-
dures, where the dopant species are simply switched at a particular instant in time: (ii)
ion-implantation in which the dopant ions are implanted at high energies into the semi-
conductor (the junction is obviously not as abrupt as in the case of epitaxial techniques);
and (ii1) diffusion of dopants into an oppositely doped semiconductor.

We will assume in our analysis that the p—n junction is abrupt, even though
this is really only true for epitaxially grown junctions. Let us first discuss the properties
of the junction in the absence of any external bias where there is no current flowing in
the diode.

What happens when the p- and n-type materials are made to form a junction
and there is no externally applied field? We know that, in absence of any applied bias,
there is no current in the system and the Fermi level is uniform throughout the structure.

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

B.2. P-N junction 369

This gives the schematic view of the junction shown in Fig. B.1a. Three regions
can be identified:

(i) The p-type region at the far left where the material is neutral and the bands
are flat. The density of acceptors exactly balances the density of holes;

(i1) The n-type region in the far right where again the material is neutral and
the density of immobile donors exactly balances the free electron density;

(iii) The depletion region where the bands are bent and a field exists which
has swept out the mobile carriers leaving behind negatively charged acceptors in the
p-region and positively charged donors in the n-region as shown in Fig. B.1a.

In the depletion region, which extends a distance W, in the p-region and a dis-
tance W, in the n-region, an electric field exists. Any electrons or holes in the depletion
region are swept away by this field. Thus a drift current exists which counterbalances
the diffusion current which arises because of the difference in electron and hole densities
across the junction.

In the absence of any applied bias, there is a built-in potential between the n
and the p side as shown in Fig. B.2. Denoting p, and p, as the hole densities in the
p-type and n-type neutral regions the built-in potential is

Dp
fn £ B.1
5, (B.1)

Vii =

The built-in potential can also be written as

m o (B.2)

Np

Vii =

where n, and n, are the electron densities in the n-type and p-type regions. Remember
that the law of mass action tells us that

NpPn = NpPp = nf (B.3)

We can thus write the following equivalent expressions

Pp _ eVoilkBT — fin (B.4)
Pn Np

We will now give the widths of the depletion regions on the n- and p-side in
the absence of an external bias. The values in presence of a bias are simply given by
replacing the built-in bias by the total bias across the p and n regions.

w0 = {55 [ v ]}1/2 (52
WnlWar) = {%Zb i [Nd(Nivl Na) ]}1/2 (B.9)
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vac

+++ + + + + E

(@)

JUNCTION
FORMATION

T

Eyac
:(— Depletion of —>
E s mobile charge :
|
|
t
|
| Electrons
| E "
Fermi level is flat
E,

A+t

]
|
Holes :
|

| i
|
](—Wp-é:(—— w, E,
p-type €— : —> n-type ®)

Figure B.1: (a) An idealized model of the p—n junction without bias, showing the neutral and
the depletion areas. (b) A schematic showing various current and particle flow components in
the p—n diode at equilibrium. For electrons, the current flow is in the direction opposite to
that of the particle flow. Electrons that enter the depletion region from the p-side and holes
that enter the depletion region from the n-side are swept away and are the source of the drift

components.
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Hole Densit
ppl(_—e_y__)l Pn

| Electron Density !
|

e SR P Y
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Structure
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Potential profile

Band profile

Fermi level

Figure B.2: A schematic showing the p—n diode and the potential and band profiles. The
voltage Vi 1s the built-in potential at equilibrium. The expressions derived in the text can be
extended to the cases where an external potential is added to Vj;.

W (Vi) = Wy(Vii) + Wi (Vi) = (W2(Vai) + W2(Vai) + 2Wa (Vi) Wy (Vi)
2eVii [ No+ Ng\ 12
e N,N4

From these discussions we can draw the following important conclusions about
the diode:

WV = | (B.7)

(1) The electric field in the depletion region peaks at the junction and decreases
linearly towards the depletion region edges.
(it) The potential drop in the depletion region has a quadratic form.

We remind ourselves that this procedure can be extended to find the eleciric
fields, potential and depletion widths for arbitrary values of V, and V,, under certain
approzimations to be discussed next. Thus we can directly use these equations when the
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diode is under external bias V, by simply replacing Vi; by Viy + V. The applied bias can
increase the total potential or decrease it as will be discussed later.
The results of the calculations carried out above are schematically shown in
Fig. D.3. Shown are the charge density and the electric field profiles. Notice that the
electric field is nonuniform in the depletion region, peaking at the junction with a peak
value (the sign of the field simply reflects the fact that in our study the field is pointing
towards the negative z-axis)
P, = _eNde _ _eNa Wy (B.8)

€ €

Notice that the depletion in the p- and n-sides can be quite different. If N, >>
Ny, the depletion width W, is much smaller than W,. Thus a very strong field exists
over a very narrow region in the heavily doped side of the junction. In such abrupt
junction (p*n or ntp) the depletion region exists primarily on the lightly doped side.

B.2.1 P-N junction under bias

Let us now consider the situation where an external potential is applied across the p
and n regions. In the presence of the applied bias, the balance between the drift and
diffusion currents will no longer exist and a net current flow will occur. In general, we
need a numerical treatment to understand the behavior of the p—n diode under bias.
However, under quasi-equilibrium conditions, we can use the previous results for the
biased diode as well.

In Fig. B.4 we show the schematic profiles of the depletion region, potential
profile, and the band profiles in equilibrium, forward bias, and reverse bias. In forward
bias V¢, the p-side is at a positive potential with respect to the n-side. In the reverse bias
case, the p-side is at a negative potential —V,. with respect to the n-side. Remember that
the way we plot the energy bands includes the negative electron charge so the energy
bands have the opposite sign of the potential profile.

In the forward bias case, the potential difference between the n- and p-side is
(Vy is taken as having a positive value)

Vror = Voi — Vi (B.9)

while for the reverse biased case it is (V, is taken as having a positive value)
Vi = Vi + V2 (B.10)

Under the quasi-equilibrium approximations, the equations for the electric field
profile, the potential profile, and the depletion widths, we have calculated in the previous
discussion, are directly applicable, except that V3, is replaced by Vipo:. Thus the depletion
width and the peak electric field at the junction decrease under forward bias, while they
increase under reverse bias, as can be seen from Egs. B.5 and B.6 if V}; is replaced by
VTot .
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|
p-type | n-type
|

Structure

Charge density

Electric field

F

m

Figure B.3: The p—n structure, with the charge and the electric field profile in the depletion
region. Note that in the depletion approximation there is no charge or electric field ountside the
depletion region. The electric field peaks at the junction as shown.
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Equilibrium Forward bias Reverse bias

Vpi+ V,

(b

©)

Figure B.4: A schematic showing: (a) the biasing of a p-n diode in the equilibrium, forward
and reverse bias; (b) the voltage profile, and (c) the energy band profiles. In the forward bias,
the potential across the junction decreases, while in reverse bias it increases. The quasi-Fermi
levels are shown in the depletion region.

Charge injection and current flow

We will now discuss the current flow in presence of an applied bias. The presence of
the bias increases or decreases the electric field in the depletion region. However, under
moderate external bias, the electric field in the depletion region is always higher than
the field for carrier velocity saturation (£ 210 kV ecm™1). Thus the change in electric
field does not alter the drift part of the electron or hole current in the depletion region.
Regardless of the bias, electrons or holes that come into the depletion region are swept
out and contribute to the same current independent of the field. The situation is quite
different for the diffusion current. Remember that the diffusion current depends upon the
gradient of the carrier density. As the potential profile is greatly altered by the applied
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bias, the carrier profile changes accordingly, greatly affecting the diffusion current. In
the presence of the applied bias, the change in current is due to the change in the hole
current injected into the n-side and the electron current injected into the p-side, as
shown in Fig. B.5. The hole current injected into the n-side is given by

AD
L(W,) =e =22 p, (ee"/’“BT - 1) (B.11)
LP

Similarly the total electron current injected into the p-side region is given by

I(-W,) = ”}JD” np (eeV/’“BT - 1) (B.12)

n

We assume initially that in the ideal diode there is no recombination of the electron
and hole injected currents in the depletion region. Thus the total current can be simply
obtained by adding the hole current injected across W, and electron current injected
across —W,. The diode current is then

I(V) = L(Ws)+ I(-Wp)

it

Dy Dy, eV/ksT
eA [L—ppn + L—n-np] (e - 1)

(V) Io (ee"/kBT - 1) (B.13)

This equation, called the diode equation, gives us the current through a p—n
junction under forward (V > 0) and reverse bias (V' < 0). Under reverse bias, the
current simply goes towards the value — I, where

D D
Io=ecA (‘1’;& + —L’&> (B.14)
P n

Under forward bias the current increases exponentially with the applied forward
bias. This strong asymmetry in the diode current is what makes the p—n diode attractive
for many applications.

We see from the discussions of this section that the current flow through the
simple p—n diode has some very interesting properties. We do not have the simple
linear Ohm’s law type behavior, but a strongly nonlinear and rectifying behavior. The
current, as shown in Fig. B.6, saturates to a value Iy given by Eq. B.14 when a reverse
bias is applied. Since this value is quite small, the diode is essentially nonconducting.
However, when a positive bias is applied, the diode current increases exponentially and
the diode becomes strongly conducting. The forward bias voltage at which the diode
current becomes significant (~ mA) is called the cut-in voltage. This voltage is ~ 0.8V
for Si diodes and ~ 1.2 V for GaAs diodes.

Real diode: effects of defects
In the calculations above we have assumed that the semiconductor is perfect; i.e., there
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P Y
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Figure B.5: A schematic of the charge distribution in the n- and p-sides. The minority carrier
injection (electrons from n-side to p-side or holes from p-side to n-side) is controlled by the
applied bias as shown.
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Figure B.6: The highly nonlinear and rectifying I-V current of the p—n diode. The strong
nonlinear response makes the diode a very important device for a number of applications.

are no defects and associated bandgap states which may lead to trapping, recombination,
or generation terms. In Chapter 3, Section 3.7 we have discussed the effects of bandgap
states produced by defects. In our analysis of the diode ideal, we have assumed that the
electrons and holes injected across the depletion region barrier, are not able to recombine
with each other. Only when they enter the neutral regions are they able to recombine
with the majority carriers. This recombination in the neutral region is described via the
diffusion lengths L, and L, that appear in the expression for Io.

In a real diode, a number of sources may lead to bandgap states. The states
may arise if the material quality is not very pure so that there are chemical impurities
present. The doping process itself can cause defects, such as vacancies, interstitials, etc.
Let us assume that the deep level states lead to a recombination time 7.

The recombination current is now simply (current is equal to charge times
volume times rate)

eAWn; eV
I = A =
R e AW R, o7 exp <2k’BT)
e eV

where W is the depletion width. At zero applied bias, a generation current of I balances
out the recombination current.
The generation-recombination current has an exponential dependence on the

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

378 P-N diode: a summary

voltage as well, but the exponent is different. The generation-recombination current is

Ier = In—Ig=1Ir—Ig(V =0)
— o v\ _
= I&n [ea}p (2k3T> l] (B.16)

The total device current now becomes

1 1
I = I [exp (I:BT> — 1] + %R [exp (_QZBT> — 1]

r, [exp (m‘;‘;T> _ 1] (B.17)

The prefactor Iy can be much larger than Iy for real devices. Thus at low
applied voltages the diode current is often dominated by the second term. However, as
the applied bias increases, the injection current starts to dominate. We thus have two
regions in the forward I- V characteristics of the diode, as shown in Fig. B.7.

At low applied bias the plot of k‘;VT and log(I) has a slope of 1/2, which turns
over to 1.0 at higher voltages. The parameter m of Eq. B.17 is called the diode ideality
factor. If the diode 1s of high quality, m is close to unity, otherwise it approaches a value

of 2.

or

b~
1l

Diodes as optoelectronic devices

In Chapter 5 we have discussed how the p—n diode is used for a variety of applications
in optoelectronics. The diode is the basis for detectors, light emitters, and modulators.
When used as a detector the diode is usually reverse biased so that there is very little
current flowing in the absence of an optical signal (the dark current is just the reverse
bias current). As discussed in Section 5.5, when an optical signal with hw > E, impinges,
electron—hole pairs are created. If these photocarriers are in the depletion region where
there is a large electric field, they are swept to create a photocurrent.

Light emitters are designed by using diodes that are forward biased. Electrons
are injected into the p-region and holes into the n-region. These carriers recombine
through radiative and non-radiative paths. The radiative path causes a photon to be
emitted, while the non-radiative path leads to phonon emission (i.e., heat generation).
The photons emitted have an energy equal to (approximately) the bandgap of the mater-
ial.

In semiconductor lasers, usually the region where e—h recombination occurs
(the active region), has a smaller bandgap. In modern devices the active region is made
of quantum wells. Flectrons and holes recombine from these regions and the emission
energy (or wavelength) can be tailored by changing the bandgap of the active region.

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

B.2. P-N junction

Downloaded From : www.EasyEngineering.net

379

High injection
Region : Region | Region  region
! | 2 | 3 * Diode becomes
* Dominated by | [ like an Ohmic
generation- | [ device
recombination | [
| [
| [
log (1) | I
| I
| I
Slope Slope I
| [
| I
| [
! }
V —*
Reverse bias Forward bias

Figure B.7: The I-V characteristics of a real diode. At low biases, the recombination effects
are quite pronounced leading to a curve with slope 1/2. At higher biases the slope becomes
closer to unity. At still higher biases the behavior becomes more ohmic.

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

APPENDIX
C

FERMI GOLDEN RULE

In the chapters on transport and optical properties we have seen that scattering of
electrons from one state to another is critical in the understanding of almost all phys-
ical properties of materials. Optical and transport phenomena are linked to scattering
processes. We have used the Fermi golden rule to evaluate several important scatter-
ing processes in materials. In this appendix we will give a derivation of this important
equation in quantum physics. The general Hamiltonian of interest is of the form

H=Ho+H (C.1)
where Hp is a simple Hamiltonian with known solutions
Houk = Ekuk (CQ)

and Epg, uy are known. For example the solutions to H would be the bandstructure of
electrons in a crystal. In the absence ,Of H (t), if a particle is placed in a state uy, it
remains there forever. The effect of H is to cause time-dependent transitions between
the states uj. The time-dependent Schrodinger equation is

oy

ih— = H (C.3)

The approximation will involve expressing ¥ as an expansion of the eigenfunc-
tions u, exp(—iE,t/h) of the unperturbed time-dependent functions

Y= an(t)upeErtlh (C.4)

The time-dependent problem is solved when the coefficients a,(¢) are known. In the
spirit of the perturbation approach, these coefficients are determined to different orders.
Hopefully, the first- or second-order terms would suffice and higher-order terms would
be negligible.

Substituting for ¢ (given by Eq. C.4) in Eq. C.3, using Eq. C.2, we get
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Z ihdn(t)une”iE"t/ﬁ + Z anEnune_iE"t/ﬁ
n

n

= Z%(Ho + Hl)une_iE"t/ﬁ (C.5)

n

Multiplying by u} and integrating over space, we get (using orthogonality of uys)

ihage ™ Ext/h = N a, e Ent/M (k| H [n) (C.6)

n

Note that we are using the Dirac notation; i.e., ux and u, are written as |k) and [n)

here. Writing
Ey,—-FE,

- (C.7)

Wkn =

The time derivative of aj is
; 1 : ;
ar = = En (k|H |n) an e (C.8)

To find the corrections to various orders in H/, we can write the perturbation
as AH , where A is a parameter that goes from 0 (no perturbation) to 1

’

H — MH
an = a® 4+ xal) + A% + ... (C.9)
Here aszo), asll), ... are the different orders of the expansion coefficients of the wavefunc-

tion. Substituting this expansion in Eq. C.8 and comparing the coefficients of the same
powers of A, we get for the time dependence of the coefficients

a” =0

- (s+1) _1_ ! (8) fwknt
a = Xn:(kuf [n)aletwn (C.10)

k

In principle, these equations can be integrated to any order to obtain the desired
solution. To study the time evolution of the problem, we assume that the perturbation
is absent at time ¢ < 0 and is turned on at ¢ = 0. With this assumption, the system is
in a time-independent state up to t = 0. From Eq. C.10, we see that the zeroth-order
coefficients aSP) are constant time and are simply given by the initial conditions of the
problem, before the perturbation is applied. We assume that initially the system is in a
single, well-defined state |m)

GSS) =1
a” = 0if k#m (C.11)
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Integration of the first-order term in Eq. C.10 gives
1 1 ! 1o . ! ’
V(1) = f/ (k| () |myeisnt’ dt (C.12)
th J_o

We choose the constant of integration to be zero since ag) is zero at time ¢ — —oo when
the perturbation is not present.

We see from Eq. C.12 that, if the perturbation is of finite duration, the ampli-
tude of finding the system in a state |k} different from the initial state |m) is proportional
to the Fourier component of the matrix element of the perturbation between the two

states.

Time-dependent perturbation

A number of important problems in quantum mechanics involve a perturbation which
has time dependence with a harmonic form. Examples include interaction of electrons
with electromagnetic radiation (or photons), electrons in crystals interacting with lat-
tice vibrations (or phonons), etc. For such perturbations, time-dependent perturbation
theory gives some simple results that have been widely applied in understanding and
designing experiments. Consider the case where the perturbation is harmonic, except
that it 1s turned on at { = 0 and turned off at ¢ = ;. Let us assume that the time
dependence is given by

(k|H(t')|m) = 2(k|H (0)|m) sinwt (C.13)

Carrying out the integration until time ¢ > ¢g in Eq. C.12, we get

agcl)(t > to) = —

(k| H'(0)|m) (exp[i(wkm +w)to] =1 expli(wem — w)to] — 1
ih Wgm + W Wem — W

(C.14)
The structure of this equation tells us that the amplitude is appreciable only if the
denominator of one term or the other is close to zero. The first term is important if
Wrm & —w or By ~ E,, — hw. The second term is important if wg,, &~ w or E; =~
E,, + hw. Thus in the first-order, the effect of a harmonic perturbation is to transfer,
or to receive from the system, the quantum of energy hw.

If we focus on a system where |m) is a discrete state, |k) is one of the continuous
states, and Ej > E,,, so that only the second term of Eq. C.14 is important, the first-
order probability of finding the system in the state k after the perturbation is removed
is
E sin® [H(wpm — w)to]

hz(wkm —w)?

The probability function has an oscillating behavior, as shown in Fig. C.1. The
probability is maximum when wg,, = w and the peak is proportional to t2. However,
the uncertainty in frequency Aw = wg,, — w is non-zero if the time tg over which the
perturbation is applied is finite. This uncertainty is in accordance with the Heisenberg
uncertainty principle

1 2 _ '
o0t > to)| = al(k|H'(0)]m) (C.15)

Aw At = Awitg ~ 1 (C.16)

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

Fermi golden rule 383
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Figure C.1: The ordinate is proportional to the probability of finding the system in a state k
after the perturbation has been applied to time 2o.

If the perturbation extends over a long time, the function plotted in Fig. C.2 approaches
the Dirac §-function and the probability is non-zero only for Ey = E,, + hw.

Transition probability

An important class of problems falls in the category where either the perturbing po-
tential or the unperturbed states are described by continuous spectra. For example, as
shown in Fig. C.2a, the perturbation may have a spread of frequencies as in the case
of electromagnetic radiation with a finite frequency spread. Or the states |k) or |m)
may be in a continuum. In either case, this leads to a spread in the allowed values of
(wgm — w). In such cases, it is possible to define a scattering rate per unit time. We
can see from Fig. C.2b that the probability of finding the system in a state |k) has a
shape where the peak is proportional to t2, while the width of the main peak decreases
inversely as ty. Thus the area under the curve is proportional to tg. Thus, if we were
to define the probability of finding the system anywhere in a spread of states covering
the width of the main peak, the total probability will be proportional to to. This would
allow us to define a transition rate; i.e., transition probability per unit time. The total
rate per unit time for scattering into any final state, is given by

Wy = ~ 3 ’ag)(tzto)r

0 final states

If to is large, the sum over the final states includes only the final states where wg,, —hw =
0.

In summing over the final states, we can use the concept of density of states,
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transition in a spread of
states o< #g

-67 —An
o Iy

Fermi golden rule
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Figure C.2: (a) Cases where the states involved in a transition are part of a continuum. Case
I shows the case where the unperturbed state is in a continuum. In case II, the perturbation
has a continuum of frequencies. (b) A schematic of transitions in continuous spectra. The total
transition probability in the continuum is proportional to the area under the curve.
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which gives us the number of states per unit volume per unit energy
_ l (1) 2 kY d C
W = | a (t > to) |” p(k) dEx (C.17)

where p(k) is the density of states near the final state.

From Fig. C.2b we see that the peak of the probability function becomes very
narrow as 1y becomes large. As a result, we can assume that the matrix element
(k|H'(0)|m) does not vary over the width of the peak and can be taken outside the
integral in Eq. C.17. We write

1
$:§(wkm—w)t0

and use the integral (extending the limits of the integral in Eq. C.17 to o)
/ e %sin*zr =7 (C.18)
-0

to get 5
Won = (k) | (KIH Jm) |

or equivalently (we will denote the time-independent amplitude H'(0) by H')

27 ' 2
Wi = ~— Do 1 (kIH [mY [? 6 (hwpm — hw) (C.19)
final states
This is the Fermi golden rule. A similar calculation for the case where wim = —w gives
271' '
Wi = == > | (kIH |m) 8 (hwim + hw) (C.20)

final states

According to the Fermi golden rule the scattering rate depends upon: (i) the matrix
element coupling the initial and final state and (ii) density of electrons in the final
state. It is possible to alter the density of states by changing the dimensionality of the
electronic system as discussed in the text.
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APPENDIX
D

LATTICE VIBRATIONS
AND PHONONS

In Chapter 4 we have discussed transport of electrons in crystalline and disordered
materials. We have discussed how electrons suffer scattering during transport. An im-
portant source of scattering is due to the vibrations of atoms in the solid. In crystalline
materials, these scattering processes hinder transport and reduce mobility. However, in
disordered materials where electrons are in localized states (where they cannot move in
the material), lattice vibrations help increase the mobility (conductivity).

In Chapter 1 we have discussed how atoms are arranged in a crystalline material.
The reason a particular crystal structure is chosen by a material has to do with the
minimum energy of the system. As atoms are brought together to form a crystal, there
is an attractive potential that tends to bring the atoms closer and a repulsive potential
which tends to keep them apart. As a result the overall energy-configuration profile for
the system has a schematic form, shown in Fig. D.1. The total energy of the system is
minimum when the atomic spacing becomes Ry as shown in the figure.

In general we can expand the crystal binding energy around the point Ry as
follows ,

au 1 /d°U 9
U(R)-—U(Ro)+<E>ROAR+§<—JR§>ROAR “+ ... (D.l)

The second term is zero since Rp is the equilibrium interatomic separation. Retaining
terms to the second order in AR (this is called the harmonic approximation),we get

U(R) = U(Ro) + —;—C’(AR)2 (D.2)
where )
‘U
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Repulsive energy
/

Total energy

Equilibrium interatomic spacing

Interatomic spacing, R

" Coulombic
; bond Energy

sharing

Figure D.1: General form of the binding energy versus atomic distance of a crystal. In the case
of most semiconductors, the long-range attraction is due to either electrostatic interactions of
the ions or the bond-sharing energy of the covalent bond.

is the force constant of the material. The restoring force is then
Force = —CAR (D.4)

Due to this restoring force the atoms in the crystal vibrate as a particle attached
to a spring would do. We will now discuss such vibrations for semiconductors. Let us
consider a diatomic lattice (two atoms per basis) as shown in Fig. D.2. The atoms are
at an equilibrium position around which they vibrate. There is a restoring force (let us
assume this force is between the nearest neighbors only). We assume that the atoms
have masses M; and M.

If u; and v, represent the displacements of the two kinds of atoms of the unit
cell s (see Fig. D.2), we get the following equations of motion for the atoms in the unit
cell s

d?u,
1 = Cvs + vs-1 — 2us) (D.5)

d2v,
Mzd? = C(us+1 + ug — 2’03) (D6)

We look for solutions of the traveling wave form, but with different amplitudes
u and v on alternating planes

us = uexp(iska)exp(—iwt)

vs = vexp(iska)exp(—iwt) (D.7)

We note that a is the distance between nearest identical planes and not nearest planes,
i.e. it 1s the minimum distance of periodicity in the crystal as shown in Fig. D.3. Eq.
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Figure D.2: Vibrations in a crystal with two atoms per unit cell with masses M, M, connected
by force constant C' between adjacent planes.

D.7, when substituted in Egs. D.5 and D.6 gives
~w?!Miu = Cv[l +exp(—ika)] — 2Cu (D.8)
—w?Msv = Culexp(—ika) + 1] — 2Cv (D.9)

These are coupled eigenvalue equations which can be solved by the matrix method. The
equations can be written as the matrix vector product

u
v

—w?M; +2C —C'[1 + exp(—ika)] ‘ —0

—C [exp(—tka) + 1] —w?M, +2C

Equating the determinant to zero, we get
|2C— Miw? — C[1 + exp(—ika)] — C[1 + exp(ika)] 2C — M2w2| =0

or
M Mow® — 2C (M + My)w? +2C%(1 — coska) = 0 (D.10)

This gives the solution

s 2C(Mi + M) £ [4C* (M + M3)? — 8C?(1 — coska) My Mo]'/?
w® = (D.11)
2M 1 M,

It is useful to examine the results at two limiting cases. For small &, we get the
two solutions

1 1
220 (o + — D.12
v ARV (D-12)
and /2
T LT 242 .
w A a (D.13)
Near k = n/a we get (beyond this value the solutions repeat)
w2 = 20/M2
w?=2C/M; (D.14)
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QoM

el L L

Figure D.3: Optical and acoustical branches of the dispersion relation for a diatomic linear
lattice

The general dependence of w on k is shown in Fig. D.3. Two branches of lattice
vibrations can be observed in the results. The lower branch, which 1s called the acoustic
branch, has the property as for the monatomic lattice, w goes to zero as k goes to zero.
The upper branch, called the optical branch, has a finite w even at k = 0.

The acoustical branch represents the propagation of sound waves in the crystal.

The sound velocity 1s
dw C
TV TR T (D-15)

It 1s important to examine the eigenfunctions (i.e., u;), for the optical branch
and the acoustic branch of the dispersion relation. For k = 0, for the optical branch, we
have, after substituting

1 1
2 _ —
w _QC(MI +1‘12> (D.16)
in the equation of motion (say, Eq. D.8)

—M,
U=
M

v (D.17)

The two atoms vibrate against each other, but their center of mass is fixed. If
we examine the acoustic branch, we get u = v in the long wavelength limit. In Fig. D.4a
we show the different nature of vibration of the acoustic and optical mode.

Note that for each wavevector, k, there will be a longitudinal mode and two
transverse modes. The frequencies of these modes will, in general, be different, since the
restoring force will be different. When optical vibration takes place in ionic materials like
GaAs, polanzation fields are set up that vibrate as well. These fields are important for
longitudinal vibration, but not for translational vibration. As a result, in longitudinal
vibrations there is an additional restoring force due to the long-range polarization. In
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390 Lattice vibrations and phonons

Fig. D.4b we show the lattice vibration frequency wavevector relation for GaAs. Notice
that the longitudinal optical mode frequency is higher than that of the transverse mode
frequency.

Phonons and scattering of electrons
The vibrations of atoms in a lattice are an important source of scattering of electrons.
According to quantum mechanics the classical waves of lattice vibrations are represented
by particles called phonons. This is similar to calling electromagnetic waves by the
particle description, photons. The lattice vibrations cause local strains in the crystal
which, in turn, translate into local variations in the electronic spectra. In particular the
conduction and valence band energies see small perturbations. These perturbations are
the source of electron scattering.

In the electron—phonon scattering an electron can absorb a phonon of energy
hw and change its energy from E; to E; where

E; = Ei + hw (D.18)
An electron can also emit a phonon of energy Aw and in this case
Ef = E,' — hw (Dlg)

In addition to energy conservation in the scattering process, momentum has to be con-
served as well
kf =k; + dphonon + G (D?O)

where k;, k; and gphonon represent the wave vectors for the initial electron, final electron,
and the phonon. The vector G is called the reciprocal lattice vector and arises from the
periodicity of the system.

An important question in relation to phonon scattering is the phonon number
or occupation of phonon states. This is given by Bose Einstein statistics.

1
exp (Aw/kpT) —1

(n(hw)) = (D.21)
It can be seen that as temperature increases the phonon number increases. Here are
some important outcomes of electron—phonon scattering:

e At low temperatures (T<77 K) and low electric fields (E < 1kV/cm) the dominant
scattering is due to the lower energy acoustic phonons. The higher energy optical
phonons have occupation numbers that are too low to contribute to scatterings.

e At low temperatures and high electric fields (E R 10 kV/cm) electrons have
high energies and can emit phonons. Phonon emission is the dominant source of
scattering.

e At high temperatures (T~ 300 K) optical phonon emission and absorption are
dominant.
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Figure D.4: (a) The difference between as acoustical mode an optical mode is shown. (b)
Phonon dispersion relation in GaAs. The longitudinal (LO, LA) and transverse (TO, TA)
optical and acoustical modes are shown.
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e In indirect bandgap semiconductors (like Si) bandgap energy photons (or higher)
are absorbed through phonon participation. This is due to momentum conserva-
tion issues discussed in Chapter 5. In these materials optical absorption increases

as temperature increases, since more phonons are present.
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APPENDIX
E

DEFECT SCATTERING
AND MOBILITY

In this appendix we will discuss scattering of electrons from defect in materials. The
models used here to represent alloy scattering and ionized impurity scattering can be
extended to cover a variety of other defects as well.

E.1 ALLOY SCATTERING

An interesting scattering problem is the scattering of a particle from a spherically sym-
metric square well potential. An important application of such scattering is in the under-
standing of carrier transport in alloys. Alloys are used in a number of technologies and
are based on a material synthesis process that can randomly mix two or more different
materials. By using a mixture of materials it is possible to obtain new materials that
have properties intermediate between those of the components. Ideal alloys represent a
random arrangement of atoms on a lattice and, therefore, even if the lattice is periodic
the potential seen by electrons is non-periodic. Thus when an electron is in an alloy,
it sees a randomly varying potential. To simplify the problem the random potential is
separated into a periodic potential and one with random fluctuations. We write

H=Ho+H (E.1)

where Hj results from the average potential of the alloy and H' arises from the difference
of the real and average potentials.

Let us consider the problem of a perfectly random alloy where the smallest
physical size over which the crystal potential fluctuates randomly is the unit cell. An
electron moving in the alloy A;B;_, will see a random potential, schematically shown
m Fig. E.1.
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B A

V(r)

Figure E.1: A schematic of the actual atomic potential (solid line) and the average virtual
crystal potential (dashed line) of an A-B alloy. The shaded area shows the difference between
the real potential and the virtual crystal approximation.

The average potential and the average bandstructure of the alloy are described
to the lowest order by the wirtual crystal approzimation. In this approximation, the
averaging of the atomic potentials

{M}an = z{M}s+(1-2){M}p (E.2)

gives an average periodic potential represented by the dashed line in Fig. E.1. An im-
portant approximation is now made. The difference between the real potential and the
assumed virtual crystal potential is represented within each unit cell by a highly local-
ized potential. For example, for A-type atoms, the difference is

Em—Ea = zEs+(1—x)Eg—FE}4
= (1-2)[Fs—Ba)
= (1-2)Ua (E.3)

Similarly, for the B atom, the difference is

Ep—E.y = x[Ep— Ea]
= zUa (E.4)

The scattering potential is chosen to be of the form

U(rx) = Uy for|r|<rg

= 0 forle|>mo (E.5)

where rg 1s the interatomic distance. If we use the Born approximation to calculate the
scattering rate, we have

27 2
W(k) = N Z !Mkk'l 6(Bx — Ey)
kl
and
My = / &I AU (x) dPr

We will now use the fact that the scattering potential only extends over a unit cell, and

over this small distance ,
eilk=k)r v (E.6)
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Thus
4
My = 573 U (E.7T)
and
o (4w !
I - N g3
wk) = 5 <3 oUo) (QW)B/‘S(E" E,)dk
2
= X (¥ i) v (£8)

Let us consider the face-centered cubic (fcc) lattice (the lattice for most semiconductors).
We may write
V3

g = —a

4

where a is the cube edge for the fcc lattice. This gives

4 2 gn?
(77»3) =55 (E.9)

where Vy = a3/4 is the volume of the unit cell. We finally obtain for the scattering rate:

21 [ 3m?

W(k) = — (WVOQ) UZN(Ey) (E.10)

We will now assume that all scattering centers scatter independently, so that
we can simply sum the scattering rates. For A-type atoms, the scattering rate is (using
Uy = (1 — 2)U,y from Eq. E.2)

2 [ 3x2
Wak) = — (TG—

- vo?) (1-2)’U%, N(Ey) (E.11)

For B-type atoms, the rate is (using Uy = U,y from Eq. E.3)

2r (3n?
Wa(k) = 7” (%vo?) 22U%, N(Ex) (E.12)

There are z/Vy A-type atoms and (1 —z)/Vy B-type atoms in the unit volume,
so that the total scattering rate is

2 372
Wioe = % (“1%‘/0) Uzn N(Ex) [93 (1- 1’)2 +(1-2) '772]
37|'3 9
= gh—VO all N(Ek) x (1 el :c) (E13)
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E.2 SCREENED COULOMBIC SCATTERING

As another example of the use of the Fermi golden rule or Born approximation, we will
examine the scattering of an electron from a charged particle. The scattering potential
is Coulombic in nature. This scattering plays a very important role in many important
applications. Problems that require an understanding of this scattering process include:

e Scattering of o particles in matter: When a thin film of metal is bombarded
with o particles (He-nuclei), the properties of the outgoing particles are understood on
the basis of Coulombic scattering.

e Mobility in devices: Semiconductor devices have regions that are doped with
donors or acceptors. These dopants provide excess carriers in the conduction or the
valence band. Without these carriers most devices will not function. When a dopant
provides a free carrier, the remaining ton provides a scattering center for the free car-
riers. This causes scattering which is understood on the basis of electron-ion scatter-
ing. Additionally, at high densities one can have electron-electron scattering as well as
electron—hole scattering, which is also understood for the general problem discussed in
this subsection.

Before starting our study of scattering from a Coulombic interaction, it is im-
portant to note that in most materials there is a finite mobile carrier density. These
carriers can adjust their spatial position in response to a potential and thus screen the
potential. The screening is due to the dielectric response of the material and includes
the effect that the background ions as well as the other free electrons have on the po-
tential. A number of formalisms have been developed to describe the dielectric response
function. We will use a form given by the Thomas-Fermi formalism.

Let us consider an electron scattering from a charged particle in a crystalline
material. We will assume that the electron is described by the effective mass theory. We
also asume that the density of free carriers is ng. In the Thomas-Fermi formalism, the
background free carriers modify their carrier concentration near the impurity so that
when the scattering electron is far from the impurity it sees a potential much weaker
than the Coulombic potential. Very close to the impurity the potential is not affected
much by the screening.

The real-space behavior of the screened potential is given by

q =Ar
r)= e E.14
drot(r) 4mer ( )

where ¢ is the charge of the impurity and ¢ is the dielectric constant. The quantity A,
which represents the effect of the background free carriers is given for a non-degenerate
carrier gas (i.e., a carrier distribution where the Fermi statistics is reasonably approxi-
mated by the Boltzmann statistics) as
5 nge?

o EkBT

(E.15)
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Figure E.2: Comparison of screened and unscreened Coulomb potentials of a unit positive
charge as seen by an electron. The screening length is A~".

When the free carrier density is high so that the carriers are degenerate,

2 3nge?
. QEEF

(E.16)

where Ep is the Fermi energy.

As noted, the effect of screening is to reduce the range of the potential from a
1/r variation to a exp(—Ar)/r variation. This is an extremely important effect and is
shown schematically in Fig. E.2.

We now calculate the matrix element for the screened Coulombic potential

Z€2 e—/\r

d7e r

U(r) (E.17)

where Ze is the charge of the impurity. We choolse the initilal normalized state to be
k) = exp(ik - ¥)//V and the final state to be |k') = exp(ik -r)/v/V, where V is the
volume of the crystal. The matrix element is then

_ Ze?
7 4rev

sy ! —Ar 1 ’ 1
M, /e—z(k “0)rE 1200 5in 0 6’ dg
r

Carrying out the qbl integration which gives a factor of 27, we have

Zez =] 1 , o s
My = 271'/ r dr/ d(cos @ Ye AT e~ilk —kircosé
0 -1
2

dreV
Ze?
27—
dreV k' — k|? + A2
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398 Defect scattering and mobility

Ik =K'l = 2k s5in(6/2)

Figure E.3: As a consequence of the elastic scattering, there is a simple relation between the
magnitude of the scattered wavevector and the scattering angle 6.

We note that |k'| = || since the scattering is elastic. Then, as can be seen from
Fig. E.3,
‘k - k" = 2ksin(6/2) (E.18)

where 0 is the polar scattering angle.

Ze? 1
Ve 4k?sin?(0/2) + A2

My =

The scattering rate is now given by the Born approximation:

/_E Z_62 ; 6(Ek_Ek')
WhE)=3 ( Ve ) (4k2sin%(6/2) + A2)* (E.19)

One can see that in the two extremes of no screening (A — 0) and strong screening
(A — c0), the rate becomes, respectively,

2% [ Ze? 26(Ek—E /)
Wkk)="-("F) — "k E.20
( ) I ( Ve > 16k*sin?(6/2) ( )
and ) ( )
or [ Ze?\ 6 (Ex — E
N2 (22 ) A E Tk
Wik, k') = 5 ( e ) i (E.21)

The angular dependence of the scattering process is very important. One can
intuitively see that scattering that produces a large angle scattering is much more ef-
fective in altering the motion of electrons than small-angle scattering. In fact, since the
scattering is elastic, a forward-angle scattering (scattering angle is zero) has no effect
on the motion of the initial electron. Thus it is important to examine the angular de-
pendence of W (k,k'). This is plotted as a function of the scattering angle 6 in Fig. E 4.
The ionized impurity scattering has a strong forward angle bias, as can be seen.

Relation between 7 and W (k, k')
In general, the relations between 7 to be used for mobility, and W (k,k’) calculated by
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1 ’
1 No screening

1
\
\

Wkk) R

Strong screening

0 —>

Figure E.4: Angular dependence of the scattering by ionized impurities. The scattering has a
strong forward angle preference.

the Fermi golden rule (or Born approximation) is quite complicated. However, if the
scattering is elastic, i.e., no energy is lost in the scattering process, the relation becomes
quite simple. We find that if the angle between k and k’ is 6, we have

&Sk
/W (k, k —cosb)——= (E.22)
(2m)?

The factor (27)3 in the denominator comes from the definition of the density of states
in a k-space volume d3k’. From this expression we see that elastic scattering processes
which do not change the angle of a particle are ineffective in transport. Scattering where
6 = 0 is called forward-angle scattering, while if # = 7 it is called back-scattering.

In the next section we will apply the expression given above to ionized impu-
rity and alloy scattering. For inelastic scattering processes, there is no simple relation
between 7 and W(k,k’) and the problem has to be solved numerically. However, an ap-

proximate value of T can be obtained by taking the inverse of W(k), i.e., of the integral
of W(k, k') over all final states.

Averaging over electron energies

The expression given above for the scattering time 7 will, in general, depend on the
energy of the electron. Since the electrons are distributed with different energies, how
does one find the averaged 7 to be used in transport? Time averaging is given by

_ [TEf(E)E

((Th = TEf(E)dE (E.23)

where f°(E) is the Fermi-Dirac distribution function. For the case where the value
of f°(F) is small, i.e. we can use the Boltzmann distribution function, the averaging
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400 Defect scattering and mobility

essentially means that 7(E) is approximately replaced by 7(kgT); i.e., the average
energy of the electrons is taken as ~ kgT.

Effect of various scattering processes

In general, as electrons move in a semiconductor they will suffer from a number of
distinct scattering mechanisms. These may involve ionized impurities, alloy disorder,
lattice vibrations, etc. These scattering processes can be assumed to be independent
and, to a reasonable approximation, the following approximate rule (called Mathieson’s

rule) can be applied
1 1
= — E.24
> (5.24)

Htot

where p; is the mobility limited by the scattering process i.

In modern semiconductor devices, scattering is an integral part of device op-
eration. However, as device dimensions shrink, it will be possible for electrons to move
without scattering.

E.3 IONIZED IMPURITY LIMITED MOBILITY

Based on the brief discussion of transport theory in the previous subsection, let us
evaluate the relaxation time weighted with the (1 — cos ) factor (this time is known as
the momentum relazation time), which is used to obtain the low field carrier mobility.

% 4 #/(1—cos6)W(k,k’) &2

21y
h € V2 (27)3

(S E '—E ! 1 ’
x/(l-cose) (Bx = By) k% dk sin6 do do
(4k2sin?(6/2) + A2)

1 (ze2\? 1
- ’2’%(7) v
X / (1= cos 0) (4k%sin2(8/2) + A2)* N (Ex) dEx d(cos6) do

_ ! (_Ze_zle(Ek)

R\ e Vo 32k%
x/(l—cos 6) ! 5 d(cos 0) do
2 A )2
sin®(8/2) + (775)
1
= F/(l—cos@) ey d(cos8) do (E.25)

[sin2(6/2) +

N
%»
SN—
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E.3. Ionized impurity limited mobility 401

Finally

1 7 (Ze*\? N(Ex) 2\ ° 1
T E(T) VS [ln(l+<_/\_>>_l+(/\/2k)2]
m*3/2E1/2
N(BY) = = (E.26)

Note that the spin degeneracy is ignored, since the ionized impurity scattering cannot
alter the spin of the electron. In terms of the electron energy, Ey, we have

1 1 <Z62>2 1
T V1621 \ ¢ m1/2g?
8m*Ek>> 1
In (1 —~ E.27
i [n< +< h2Az 1+ (R*A2/8m*Ex) (E-27)

To calculate the mobility limited by ionized impurity scattering, we have to find the
ensemble averaged 7. To a good approximation, the effect of this averaging is essentially
to replace Ex by kT in the expression for 1/7. A careful evaluation of the average
{(T)) gives (see Eq. E.23)

1 1 <Z62>2 1
{r))  — Vi1eVver \ € m*1/2 (kpT)>/?
24m*k 1
x |In <1+<m2—BT>>— (E.28)
h*A? RZA2
1+<24m B )

If there are N; impurities per unit volume, and if we assume that they scatter electrons
independently, the total relaxation time is simply obtained by multiplying the above
results by N,V

1N <Z62>2 1
((r)y 12827 \ ¢ m*1/2 (kpT)>/?
24m*k
x |t (14 (22 EETAY = (E.29)
h°A2 R2)\2
IR v vl

The mobility is then
e{(7))

m*

I‘L:

Mobility limited by ionized impurity scattering has the special g ~ T3/2 behavior that
is represented in Eq. E.29. This temperature dependence (the actual temperature de-
pendence is more complex due to the other T-dependent terms present) is a special
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402 Defect scattering and mobility
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Figure E.5: (a) A typical plot of electron mobility as a function of temperature in a uniformly
doped GaAs with Np = 10'7 ¢cm™®. The mobility drops at low temperature due to ionized
impurity scattering, becoming very strong. In contrast, the curve (b) shows a typical plot of
mobility in a modulation-doped structure where ionized impurity is essentially eliminated.

signature of the ionized impurity scattering. One can understand this behavior physi-
cally by realizing that at higher temperatures the electrons are traveling faster and are
less affected by the ionized impurities.

Ionized impurity scattering plays a very central role in controlling the mobility
of carriers in semiconductor devices. This is especially true at low temperatures where
the other scattering processes (due to lattice vibrations) are weak. To avoid impurity
scattering, the concept of modulation doping has been developed. In this approach, the
device 1s made from two semiconductors—a large bandgap barrier layer and a smaller
bandgap well layer. The barrier layer is doped so that the free carriers spill over into
the well region where they are physically separated from the dopants. This essentially
eliminates 1onized impurity scattering. Fig. E.b compares the mobilities of convention-
ally doped and modulation doped GaAs channels. As can be seen, there i1s a marked
improvement in the mobility, especially at low temperatures. Modulation doping forms
the basis of the highest performance semiconductor devices in terms of speed and noise.

In Fig. E.6 we show how the mobility in Ge, Si and GaAs varies as a function

of doping density. The mobility shown includes the effects of lattice scattering, as well
as 1onized impurity scattering.

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net

E.4. Alloy scattering limited mobility 403
4 —r
10 o,
3 i :""-; 2Ge
10 up T, B
) mEEEE e e e e Rl
3 102 .
%]
Z 104 T
o .
\QE)/ 103 “"‘ﬁiza-.. 7 S1
E =
= Moo :
Z 102 e
O
2 104 = - By
GaAs = 2
103
\ Mo
102 S Sani s e TR0

1014 1015 106 1017 108 1019
IMPURITY CONCENTRATION (cm™3)

Figure E.6: Drift mobility of Ge, Si, and GaAs as 300 K versus impurity concentration. (After
S. M. Sze, Physics of Semiconductor Devices, 2nd ed., John Wiley and Sons, New York, 1981.)

E.4 ALLOY SCATTERING LIMITED MOBILITY

The ensemble averaged relaxation time for the alloy scattering is quite simple (see Eqs.
E.12 and E.23):

1 3m° m*3/2(kgT)V/? 1
T = VoUZz(1 - E.30
G I A S Y, Ry (E.30)
according to which the mobility due to alloy scattering is
fran o T~Y/?2 (E.31)

Thus in 3D systems the mobility decreases with temperature. This temperature depen-
dence should be contrasted to the situation for the ionized impurity scattering.
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Index

Absorption coefficient, 214

Absorption coefficient, in indirect
semiconductors, 216

Accelerometer, 288

Acceptor level, 128

Acoustic phonon, mobility, 159

Acoustic vibrations, 157, 388

Acoustic waves, 388

Acousooptic device, 322

Actuator, piezoelectric, 288

Aharonov-Bohm effect, 335

Alloy, 12, 131

Alloy, GaAs/AlAs, 146, 366

Alloy, HgTe/CdTe, 146

Alloy, InAs/GaAs, 146, 366

Alloy scattering, 161, 393

Aluminum nitride, 116

Amorphous materials, 26

Angular momentum, 45, 341

Anisotropy, 279, 299

Antenna, phased array, 355

Antiferromagnetic, 348

Artificial structures, 16

Atomic spectra, 43

Atomic, theory, 45

Averaging procedures for scattering
time, 164, 399

Ballistic transport, 154
Band, tailing, 138
Band lineups in heterostructures, 133
Band theory of solids, 84, 85
Bandedge states, 136
Bandgap, strain effects, 159
Bandgap, temperature

dependence of, 116
Bandstructure, 85, 110
Bandstructure, effects on devices, 184

Bandstructure, in quantum wells, 133
Bandstructure, of AlAs, 115

of GaAs, 113

of Ge, 115

of nitrides, 116
Bandstructure,

of alloys, 131

of Si, 112

Bandstructure, valence band,
n quantum wells, 135
Bandtail states, 138
Barium titanate, 281
Basis, 2
BCS theory, 109
Binding energy of crystals, 387
Birefringence, 299
Blackbody radiation, 39
Bloch function, 85
Bloch theorem, 84
Body centered cubic (bcc) lattice, 3
Bohr, magneton, 332
radius, 59
theory of atoms, 45
Boltzmann, statistics, 102
Bound state problem, 132
Bragg’s law, 322
Breakdown, electric, 171
Breakdown, in devices, 184

Cantilever, sensor, 288
Capacitance, dielectric response, 270
Carrier, extrinsic, 126
Carriers, intrinsic, 122
Carrier, freezeout, 130
Cavity gain, 247
Circular polarization, 301
Coercive field,
ferroelectric, 274
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Index

magnetic, 328
Compliance, 279
Conduction band, 106
Conduction bandedge states, 106
Conduction, hopping, 190
Conductivity, 163
Conservation of momentum, 211
Cooper pairs, 109, 338
Critical thickness, 23
Crystal, binding, 378
Crystal growth, bulk, 23
epitaxial, 23
Crystal, restoring force, 387
Crystal structure, 5
Curie temperature, 274, 349
Cutoff wavelength, 204
Coupled wells, 67

Defect, interstitial, 21
Defect, substitutional, 21
Defects,

in crystals, 20
Deformation potential theory, 157
Demagnetization for cooling, 354
Density of states, 80

effective, 122

n 2D systems, 81

in one dimension, 81

in semiconductors, 122

in three dimensions, 80
Depolarization, 268
Detection of light, 204, 231
Diamagnetism, 328, 340
Diamond lattice, 9
Dielectric,

in AC fields, 270
Dielectric response, 269, 271
Diffusion, 173
Diffusion, coefficient, 173
Dipole,

electric, 265
Dislocation generation, 23
Disordered semiconductors, 138

extended states, 139

localized states, 139

Disordered system, transport, 188
Direct gap, 111

Distribution function, 102
Domains, 278

Donor, energy levels, 127

Doping, 126,128

Eddy currents, 326

Effective mass, 88

Effective mass, equation, 88
Einstein model, 40

Einstein relation, 176
Ehrenfest theorem, b4
Elastic collisions, 156
Elastic constants, 284
Elastic strain, 279

Electric fields, built-in, from

strained epitaxy, 285
Electromagnetic fields,

In magnetic materials, 329
Electron-hole recombination, 222
Electro-absorption,309
Electro-optic,

coefficients, 305

effect, 303, 316

image storage, 317
Electrons, in a magnetic field,

quantum theory, 332
Elliptical polarization, 300
Epitaxial crystal growth, 23
Epitaxy, coherent, 23, 281
Epitaxy, incoherent, 23
Epitaxy, lattice matched and

dislocations, 23
Equation of motion, for k, 90
Exchange interaction, 346
Exciton, 254, 310
Exciton, absorption spectra, 256
Exciton, binding energy, 254
Extraordinary ray, 299
Extrinsic carriers, 129

Face centered cubic (fcc) lattice, 5
Faraday rotation, 331
Fermi energy, 102,118
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Fermi vector, 118
Fermi velocity, 118
Fermi, Golden Rule, 380
Fermi-Dirac distribution, 102
Ferrite,
microwave devices, 357
Ferroelectric materials,
coercive field, 275
domains, 278
Field effect transistor FET, 179
operation, 179
high performance issues, 184
Field, local, 268
Free carriers, 122
Freezeout, carrier, 130

Gain in a semiconductor, 225

Garnet, 327

Gas sensor, 195

Giant magnetoresistance, 359

Grain boundaries, 25

Group velocity, for lattice vibrations, 389
Gyromagnetic ratio, 330

Harmonic oscillator, 66
Heavy hole states, 112
Heisenberg uncertainty relation, 54
Heterointerface polar charge, 283
Heterostructures, bandlineup, 133
Heterostructures, structural, 23
Hexagonal close packed (hcp)
structure, 9
Hexagonal structure, simple, 5
Holes, 104
Hole, effective mass, 111
Hole, energy, 106
Hole, momentum, 106
HOMO bonds, 108, 252
Hopping conductivity, 188
Humidity sensor, 195
Hydrogen atom, 56
Hydrogen molecule, 72
Hysteresis,
ferroelectric, 273
ferromagnetic, 328

Index

Ideal surfaces, 17
Identical particle, 101
Impact 1onization, 170
Impact 1onization, coefficient, 171
Impact ionization, threshold, 171
Impurity, scattering, 161, 394
Incoherent light, 243
Indirect gap, 111
Inelastic collisions, 156
Information storage, 317, 357
Infrared,
detection, 205
pyroelectric devices, 289
semiconductor devices, 178, 231
Insulators, simple description, 104
Interband transitions, bulk
semiconductors, 212
Interband transitions, quantum wells, 224
Interface, 19
Interface roughness, 19
Interference, quantum, 336
Intrinsic carriers, 122
Tonic conduction, 191
Tonized impurity scattering, 161, 396

Joyce-Dixon approximation, 130
Junctions, 359

k-vector, significance of, 90
Kerr effect, 304
Kronig-Penney model, 85

Laser diode, 244
Laser, optical confinement, 246
Laser, threshold, 251
Lattice, 2
Lattice constant, for selected

semiconductors, 13
Lattice types, 2
Lattice vibrations, 157, 386
Law of mass action, 122
Lead,

PLZT, 281, 286

Light emitting diode, 238
Light hole states, 112
Line defects, 21
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Index

Liquid crystals, 27

Liquid crystal devices, 313, 321
Lithium niobate, 305

Lithium tantalate, 305
Localized states, 136

Loss factor in dielectrics, 270
LUMO bands, 108, 255

Magnetic effects, 327
applications, 552
Magnetic semiconductors, 316
Magnetoresistance, 359
giant, 359
Mass action, law of, 122
Maxwell equations, 38
Memory,
magnetic, 357, 359
semiconductor, 179
Metal-organic chemical vapor deposition
(MOCVD), 23
Metals, electrons 1n, 117
Metals, simple description, 104
Microwave devices, 179, 355
Miller indices, 12
Mobility, 163
Mobility, edge, 140
Mobility, in GaAs, 164
Mobility, in Si, 164
Mobility, in modulation doped
structures, 182, 402
Mobility, in selected semiconductors, 164
Modulation of light, 301, 312
Molecular beam epitaxy (MBE), 23
Molecular semiconductors, 107,
Mott conductivity model, 191

Newton’s equation of motion, 38, 154
Nitrides, spontaneous polarization, 283
bandstructure, 116
piezoelectric effect, 282
Non-parabolic band, 114
Non-radiative processes, 239

OLEDs, 255
Optical axis, 299
Optical confinement, 245
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Optical interband transitions, 213
Optical lattice vibrations, 389
Optical phonon, scattering, 157
Ordinary ray, 299

Paramagnetism, 327, 341
Pauli principle, 101
Permeability, 327
Perovskite structure, 12
Perturbation theory, 154, 381
Phonons, 157, 389
Phonon, acoustic scattering, 157
Phonon, conservation laws for
scattering, 390
Phonon, dispersion, 158, 389
Phonon, optical mode, 157, 389
Phonon, optical scattering, 157
Phonon, statistics, 156
Photoelectric effect, 40
Piezoelectric effect, 279
acoustic power, 289
coefficient, 282, 284
direct effect, 280
sensor, 288
Planck constant, 40
Plasma, frequency, 329
PLZT, 282, 286
p—n diode,
theory of, 368
devices, 233, 240, 245
Pockel’s effect, 306
Polar charge at interfaces, 284
Polar materials, 274
Polarization electric, 268
control of, 273, 275, 285
Polarization of light 299
Poling, 278
Polycrystalline materials, 25
Polymers, 107, 255
Potential, screened Coulomb, 161
Power disstpation, 270
Poynting vector, 298
Pyroelectric,
coeffictents, 285
devices, 288
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Quantum confined Stark effect, 319
Quantum interference, 335, 352
Quantum wells, 62, 132, 310
Quasi-Fermi level, 219

Radiative lifetime, 215, 222
Radiative transitions,
recombination time, 215, 222

Recording tape, 358
Reduced mass, 214
Refractive index, 301, 305
Remnant,

magnetization, 328

polarization, 274
Restoring force, crystal, 387

SAW, 323
Scattering, acoustic phonon, 159
Scattering, alloy, 161, 393
Scattering, ionized impurity, 161, 395
Scattering, phonon, 159
Scattering, polar optical phonon, 159
Scattering, time, 163
Schrodinger equation, 47
Screened Coulomb potential, 161, 397
Screening, length, 161, 397
Second quantization, phonons,
Semiconductor
material properties, 116, 164,
363

Semiconductors, simple description, 104
Sensors,

gas, 195

humidity, 195

strain, 288
Simple cubic lattice, 3
Solar cells, 235
Spinal ferrites, 327
Spintronics, 326
Spontaneous emission rate, 214
Squid Magnetometer, 352
Statistics, electrons, 102
Statistics, phonon, 159, 390
Stefan’s law, 39
Stimulated emission, 215

Index

Strain tensor,

in epitaxy, 282
Strained heterostructures, 281
Superconducting state, 109
Superlattice structure, 18
Surface acoustic wave, 323
Surface reconstruction, 18
Surfaces, ideal and real, 18

tan 6,

dielectric response, 270
Temperature, coefficient,

bandgap change, 116

pyroelectric materials, 286
Tensor, 279

contracted notation, 279
Thermal sensors, 289
Transitions, radiative 210
Transport, in GaAs and Si, 164
Transport, high field, in GaAs, 164
Transport, high field in Si, 164
Transport, overview, 151
Tunneling, in semiconductors, 173
Twisted nematic, 320

Ultrasonic energy, 289
Uncertainty relation, 54

Variable range hopping, 191

Vegard’s law, 207

Verdet constant, 35

Vertical transitions, 212

Vibration, crystal with diatomic
basis, 38

Virtual crystal approximation, 131

Wave amplitude and probability, 51
Wien's law, 40

Work function, 42

Waurtzite structure, 11

Zinc-blende structure, 9
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CRYSTAL STATIC LATTICE
MATERIAL STRUCTURE BANDGAP DIELECTRIC CONSTANT DENSITY
(eV) CONSTANT A) (gm-cm3)

1.1242,1

i

3.44, D 8” =104
& =95

0.354,D

Cds W 2.501,D  £=9.38 a=4.1362 4.82
c=6.714
CdSe w 1.751,D g =10.16 a=4.2999 5.81

& =929 ¢=17.0109

R 0.310, D* 414. 6.462 8.219

Data given are room temperature values (300 K).
KEey: DI: diamond; R: rocksalt; W: wurtzite; ZB: zinc-blende
*: gap at L point; D: direct; I: indirect; g: parallel to c-axis; £ : perpendicular to c-axis
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FREQUENTLY USED QUANTITIES

QUANTITY SYMBOL VALUE
Planck's constant h 6.626 x 10-34 J-s
h = hi2n 1.055 x 10-34 J-s

Electron charge e 1.602 x 10-19C

Mass of an electron 9.109 x 1031 kg

Boltzmann constant 8.617 x 103 eVK-1

CoNDUCTION BAND VALENCE BAND INTRINSIC CARRIER
EFFECTIVE DENSITY EFFECTIVE DENSITY CONCENTRATION
MATERIAL (N.) (N,) (n;=p;)
Si (300 K) 2.78 x 1019 cm3 9.84 x 1018 cm3 1.5 x 1010¢cm-3
Ge (300 K) 1.04 x 101%cm-3 6.0 x 1018 cm™3 2.33x 1013 cm3
GaAs (300 K)| 4.45x 1017 ¢cm™3 7.72 x 1018 cm-3 1.84 x 106 cm-3
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