А.А. МУКОЛЬЯНЦ

ГИДРОГАЗОДИНАМИКА

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН

А.А. МУКОЛЬЯНЦ

ГИДРОГАЗОДИНАМИКА

Рекомендовано Министерством высшего и среднего специального образования Республики Узбекистан в качестве учебника для студентов технических направлений высших учебных заведений.

Издательство Национального общества философов Узбекистана ТАШКЕНТ – 2019 УДК 532(075) ББК 24.12я7 М 90

Мукольянц А.А.

М 90 Гидрогазодинамика: Учебник. Мукольянц А.А. – Т.: Издательство Национального общества философов Узбекистана, 2019, 372 с.

УДК 532(075) ББК 24.12я7

В учебнике рассмотрены законы основных разделов гидрогазодинамики и изложен современный методический материал с приведенными примерами расчетов, направленных на приобретение студентами теоретических знаний и практических навыков по применению основных процессов, протекающих в жидких и газообразных средах для расчета оборудования различного назначения.

Учебник предназначен для студентов, обучающихся по направлениям бакалаврской подготовки: энергетика (теплоэнергетика); альтернативные источники энергии; энергоаудит и энергетический контроль промышленных предприятий, а также может быть полезным при подготовке специалистов по направлениям, связанным с теорией жидкости и газа.

Darslikda gidrogazodinamikaning asosiy boʻlimlari qonunlari hamda suyuq va gazsimon muhitlarda sodir boʻluvchi jarayonlarni turli maqsaddagi jihozlar uchun hisoblashning asosiy jarayonida qoʻllaniladigan nazariy bilimlarni va amaliy koʻnikmaklarni talaba oʻzlashtirishiga qaratilgan misol tariqasida keltirilgan masalalarni yechishning zamonaviy metodik materiallari orqali boyitilgan ma'lumotlar keltirilgan.

Darslik energetika (issiqlik energetikasi); muqobil energiya manbalari; energoaudit va sanoat korxonalarida energetik nazorat bakalavr ta'lim yo'nalishida tahsil olayotgan talabalar uchun mo'ljallangan bo'lib, shu bilan bir qatorda suyuqlik va gaz nazariyasi bilan bog'liq yo'nalish bo'yicha mutaxassislarni tayyorlashda ham foydalanilishi mumkin.

The textbook reviews the laws of the main sections of fluid dynamics and sets out modern methodological materials with examples of calculations aimed at acquiring students of theoretical knowledge and practical skills in the application of basic processes occurring in liquid and gaseous media to calculate equipment for various purposes.

The textbook is intended for students studying in the areas of bachelor's degree: energy (heat power engineering); alternative energy sources; energy audit and energy control of industrial enterprises, and may also be useful in training specialists in areas related to the theory of liquid and gas.

Рецензенты: Набиева И.А. – (ТИТЛП), д.т.н., проф. Юлдашев И.А. – (ТГТУ), д.т.н., доц.

```
ISBN 978-9943-6170-2-5
```

© Издательство Национального общества философов Узбекистана, 2019

© Мукольянц А.А., 2019

© Ташкентский государственный технический университет, 2019

Учебник содержит систематическое изложение курса «Гидрогазодинамика» и подготовлен автором на основе опыта многолетнего преподавания курса в вузе.

Материал учебника базируется на предшествующих курсах математики, физики, теоретической механики и является фундаментом для для изучения прикладных теплотехнических дисциплин.

При изложении материала учтены такие предпосылки, как логическая связь с другими дисциплинами; фундаментальность представления теоретических вопросов; практическая направленность рассматриваемых вопросов; использование математического аппарата в объеме, не превышающем доступности восприятия теоретического материала.

Целью учебника является овладение выпускниками технических вузов основными методами решения задач и получение знаний, необходимых для постановки сложных задач перед специалистами в области механики жидкости и газа и их решения в результате совместной деятельности.

Теоретический материал сопровождается иллюстрациями в виде рисунков, графиков, блок-схем и таблиц в объеме, требующем пояснения качественной или количественной связи параметров технологических процессов или физических явлений.

Учебник может быть использован также при чтении курса «Гидравлика» для подготовки специалистов по направлениям, связанным с теорией жидкости и гидравлическими приводами различного технологического оборудования.

Автор выражает уверенность, что данный учебник «Гидрогазодинамика» будет полезным студентам — будущим специалистам в области теплоэнергетики, альтернативных источников энергии и энергетического контроля промышленных предприятий.

3

введение

Гидрогазодинамикой называется раздел механики, изучающей законы движения и равновесия жидкостей, а также законов взаимодействия жидких сред с находящимися в них телами. Гидрогазодинамику можно представить и как прикладную часть механики жидкости и газа (несжимаемой и сжимаемой), которая, совместно с технической термодинамикой, является научной основой проектирования турбомашин, компрессоров, трубопроводов и другого гидро- и теплоэнергетического оборудования.

Первоначально возникла гидравлика — прикладная наука, в которой изучаются законы движения и равновесия жидкости и даются способы приложения этих законов к решению конкретных технических задач. В Китае и других странах древнего мира уже 7000 лет назад существовали оросительные каналы и устройства для подачи воды. В Риме сохранились остатки древнего водопровода, построенного за 6 веков до нашей эры.

Первым сочинением по гидравлике считается трактат греческого физика Архимеда «О плавающих телах», написанный за 250 лет до нашей эры. Архимедом был открыт закон равновесия тела, погруженного в жидкость.

Вследствие застоя науки в средние века гидравлика почти 17 столетий не пополнялась новыми открытиями. Формирование гидрогазодинамики как науки начинается в середине XV века, когда Леонардо да Винчи (1452—1519 гг.) своими лабораторными опытами положил начало экспериментальному методу в этой отрасли. В 1586 г. голландский ученый Стевин опубликовал книгу «Начала гидростатики», а в 1612 г. итальянский ученый Галилей — трактат «О телах, находящихся в воде, и о тех, которые в ней движутся».

Ученик Галилея Торричелли в 1643 г. вывел формулу истечения жидкости из отверстия. В 1650 г. французский ученый Паскаль открыл закон о передаче жидкостью внешнего давления.

Этот закон является основой для расчета гидравлических прессов и гидроподъемников.

Великий английский ученый, физик и математик И. Ньютон в 1686 г. сформулировал гипотезу о законах внутреннего трения и впервые ввел понятие вязкости в жидкостях. В 1738 г. Даниил Бернулли обосновал теорему о запасе энергии движущейся частицы, которая является основной теоремой современной гидродинамики.

Основателем теоретического направления развития гидрогазодинамики является Леонард Эйлер, который в 1755 г. вывел дифференциальные уравнения равновесия и движения невязкой жидкости. В 1788 г. математик Лагранж утверждал, что, благодаря открытию Эйлера, вся механика жидкости свелась к вопросу анализа, и будь эти уравнения интегрируемыми, можно было бы в любом случае полностью определить движение жидкости под воздействием любых сил.

Гидрогазодинамика, как раздел механики, на основании общего представления о действующих силах математическими методами пыталась перейти от поведения элемента жидкости к описанию поведения всей жидкости. Основным правилом являлось корректное математическое описание в рамках рассматриваемой схемы взаимодействия отдельных элементов жидкости.

По-другому стала поступать гидравлика. Не пытаясь охватить единой теорией все наблюдаемые явления, гидравлика на основе элементарных опытных данных попыталась для каждой конкретной задачи дать расчетную формулу, учитывая особенности задачи применением соответствующих коэффициентов.

Сложившаяся ситуация характеризовалась тем, что инженерыгидравлики наблюдали то, что нельзя было объяснить, а математики-гидрогазодинамики объясняли то, что нельзя было наблюдать.

Сближение этих научных направлений было связано с учетом в гидрогазодинамике реальных свойств жидкости и построением схем взаимодействия элементов жидкости на основе наблюдаемых явлений.

Основные учения о движении вязкой жидкости были заложены в 1821 г. французским ученым Навье и получили свое завершение в 1845 г. в работах Стокса.

С развитием промышленности появилась необходимость в описании движения газа, перемещающегося с высокой скоростью. На этой основе возникло новое научное направление — газовая динамика. Еще в первой половине XIX века в работах Пуассона,

Стокса, Ирншоу были впервые теоретически проанализированы эффекты, возникающие при распределении волн давления в сжимаемой среде, и была отмечена возможность возникновения разрывов в пространственном распределении параметров среды. В 70-х годах XIX века Мах экспериментально подтвердил появление разрывов при движении тел в газе со сверхзвуковой скоростью.

Существенной особенностью современного состояния гидроаэродинамики является тесная связь теории и эксперимента. С помощью математического моделирования путем проведения многовариантных расчетов выбираются оптимальные профили элементов технологических установок или режимы их работы, а затем полученные результаты проверяются на физических моделях на стендовых установках и в аэродинамических трубах.

Актуальность данного курса подтверждается все возрастающей ролью гидроазодинамики как фундаментальной науки в развитии прикладной науки и техники, в производстве, в теплоэнергетике, образовании и в других областях человеческой деятельности.

Приведенный выше краткий исторический обзор показывает, что современная гидрогазодинамика представляет собой органичный сплав науки и практики, опирающийся на теоретическую гидромеханику и поставленные на высоком уровне экспериментальные исследования.

ГЛАВА 1. ОСНОВНЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА ЖИДКОСТЕЙ И ГАЗОВ

1.1. МОДЕЛЬ СПЛОШНОЙ СРЕДЫ

Жидкостью называется сплошная среда, обладающая способностью легко изменять свою форму под действием внешних сил.

Понятие «жидкость» определяется в зависимости от назначения такого определения.

В физике жидкость трактуется как физическое тело, обладающее свойством текучести.

Любая реальная жидкая среда обладает бесчисленным множеством свойств. Совокупность наиболее существенных свойств позволяет сформулировать определение модели жидкой среды, используемое в технической механике жидкости: жидкой средой называется сплошная, легкоподвижная, сжимаемая и вязкая среда.

В учебнике рассматриваются только текучие среды и только идеально текучие жидкости, т. е. удовлетворяющие линейной зависимости между скоростью **VCЛОВИЮ** леформации касательными напряжениями сдвига. И ньютоновскими (вода, глицерин И многие называемые реальные жидкости, расплавленные металлы).

Κ не илеально текучим ньютоновским жидкостям вязкопластичные жилкости (тиксотропные относятся жидкости, глинистые растворы), псевдопластичные (растворы полимеров, коллоидные суспензии), многие краски, битумы, сыпучие тела и т. д. Количественная связь между напряжениями деформации и скоростями сдвига в таких жидкостях может быть различной. Установлением общих законов этой связи занимается специальная наука – реология.

В механике жидкости для упрощения решения некоторых задач используется *модель идеальной жидкости* — модельная

7

жидкая среда, лишенная внутреннего трения, абсолютно несжимаемая и неспособная сопротивляться разрыву.

Легкотекучесть частиц жидкости обусловлена неспособностью ее воспринимать касательные напряжения в состоянии покоя.

По своим механическим свойствам жидкости разделяют на два класса:

1. Малосжимаемые (капельные).

2. Сжимаемые (газообразные).

В механике жидкости и газа законы, справедливые для капельных жидкостей, применимы и к газам, когда сжимаемостью газа можно пренебречь.

Для удобства введены термины «капельная жидкость» (малосжимаемая), «сжимаемая жидкость» (газ) и «жидкость» (охватывающая как капельную жидкость, так и газ).

Таким образом, под жидкостью в механике жидкости и газа подразумевается всякая среда, обладающая текучестью.

При изучении законов равновесия и движения жидкости в прикладной механике жидкостей и газов движение молекул не изучается, и жидкость рассматривается в виде сплошной среды, способной деформироваться под действием внешних сил.

Жидкость – как всякое физическое тело имеет молекулярное строение.

Расстояние между молекулами во много раз превосходит размеры самих молекул и соответствует от 10⁻⁷ до 10⁻⁸ см, а длина свободного пробега молекул газа при атмосферном давлении равна 10⁻⁵ см.

Поэтому жидкости и газы воспринимаются как сплошные среды, имея прерывистую структуру.

Это обстоятельство позволяет ввести гипотезу сплошности (постулат сплошности Даламбера-Энглера), то есть применить модель, обладающую свойством непрерывности. Гипотеза о непрерывности или сплошности среды упрощает исследование, так как позволяет рассматривать механические характеристики жидкой среды (скорость, плотность, давление и т.д.) как функции координат точки в пространстве и во времени.

Моделью сплошной среды пользуются для описания жидких тел (воды, нефти, нефтепродуктов и т.д.), твердых деформируемых тел (металлов, горных пород), а также газообразных веществ (воздуха, природного газа).

1.2. ЖИДКОСТЬ И ГАЗ КАК ОБЪЕКТЫ ИЗУЧЕНИЯ ГИДРОГАЗОДИНАМИКИ

При изучении поведения тел необходимо опираться на их реальные свойства. Как известно, все тела представляют собой совокупность разного сорта молекул и атомов. Радиус атома ядра имеет порядок 10^{-13} см, радиус молекулы водорода 1,36- 10^{-8} см, т.е. радиус ядра атома много меньше (в 100 000 раз) меньше радиуса молекулы. В то же время именно в нем сосредоточена основная масса вещества: масса электрона 9,1- 10^{-28} г, масса протона 1,67- 10^{-24} г.

Объемы, занимаемые телами, много больше объемов, в которых сосредоточено само вещество. Все тела, по существу, состоят из пустоты и в то же время в практически малых объемах пространства, занятого телом, всегда заключено большое число частиц.

Обшее описание движения жилкости. понимаемой как материя с молекулярной структурой, заключалось бы в составлении уравнений движения для всех отдельных молекул. Однако нас интересует движение вовсе не отдельных молекул, а движение жидкости в целом или движение отдельных частей, в которых содержится много молекул, как возникают скорости или ускорения, какою плотностью или температурой обладают жидкость или газ в определенных местах.

Жидкости, как и все вещества, имеют молекулярное строение. Они занимают промежуточное положение между

9

газами и твердыми телами (рис. 1.1). Это определяется величинами межмолекулярных сил и характером движений составляющих их молекул.

Рис. 1.1. Молекулярное строение веществ

В газах расстояния между молекулами больше, а силы межмолекулярного взаимодействия меньше, чем в жидкостях и твердых телах, поэтому газы отличаются от жидкостей и твердых тел большей сжимаемостью. По сравнению с газами жидкости и твердые тела малосжимаемы.

Молекулы жилкости находятся непрерывном В хаотическом тепловом лвижении. отличающемся OT хаотического теплового движения газов и твердых тел. В жидкостях это движение осуществляется в виде колебаний (10^{13}) колебаний в секунду) относительно мгновенных центров и скачкообразных переходов от одного центра к другому. Тепловое движение молекул твердых тел состоит в колебаниях относительно стабильных центров. Тепловое непрерывные движение молекул газа выглядит. как скачкообразные перемены мест.

При этом надо заметить, что изменение температуры и давления приводят к изменениям свойств жидкостей. Установлено, что при повышении температуры и уменьшении давления свойства жидкостей приближаются к свойствам газов, а при понижении температуры и увеличении давления – к свойствам твердых тел. Основным общим свойством жидкостей и газов является их текучесть. Все вещества испытывают деформацию под действием сил. Деформация называется упругой, если она исчезает после устранения силы, и пластической, если она сохраняется после удаления силы. Течением называется такая деформация, которая непрерывно беспредельно увеличивается под действием сколь угодно малых сил.

вешества. K жилкостям относят те которые текут. Жидкости делятся на две категории: на собственно жидкости или капельные жидкости и на газы. Различие между ними состоит в следующем. Во-первых, жидкость при постоянной температуре и давлении имеет определенный объем. Если жидкость поместить в сосуд, то под действием силы тяжести она будет иметь форму нижней части сосуда и сверху будет ограничена свободной поверхностью. Газ заполняет любое замкнутое пространство, в которое он имеет доступ. Вовторых, жидкие тела очень мало сжимаемы, а газообразные поллаются сжатию. Все известные жилкости в легко незначительной степени сжимаемы. При увеличении лавления с 1 ата до 1000 ата объем воды уменьшается приблизительно на 5%. При этом никаким способом невозможно сжать один литр воды, чтобы он поместился в сосуде емкостью пол-литра. В дальнейшем будем считать жилкости несжимаемыми.

Для того, чтобы при неизменной температуре уменьшить объем газа вдвое, необходимо в два раза увеличить давление, например с 1 до 2 ата.

Сжимаемость газа также проявляется при движении его с относительно высокими скоростями: при торможении газа его плотность и температура увеличиваются, при увеличении скорости — снижаются.

Вместе с тем во многих практических задачах газ также можно считать несжимаемым. В этих случаях движения газа и жидкости описываются одними и теми же уравнениями, в которые в виде параметров входят физические характеристики среды.

1.3. ПЛОТНОСТЬ СРЕДЫ

Основной динамической характеристикой среды является плотность распределения массы по объему или просто плотность среды, которая в произвольной точке А определяется соотношением:

$$\rho = \lim_{\Delta V \to 0} \frac{\Delta M}{\Delta W}, \qquad (1.1)$$

где ΔM — масса, заключенная в малом объеме ΔW , включая точку А.

Плотность характеризует массу сплошной среды (в том числе и жидкости), содержащуюся в единице объема (рис. 1.2).

$$[\rho] = \frac{M}{L^3},$$

где *М* – размерность массы;

L – размерность длины.

Единицами измерения плотности являются $\kappa r/m^3$ в системе СИ и $\kappa r c \cdot c^2/m^4$ в технической системе.

Применяют еще относительную плотность жидкости *б*, равную отношению плотности жидкости к °C:

плотности воды при 4°С:

Рис.1.2. Масса сплошной

среды в единице объема

1

$$\delta = \frac{\rho_{\mathcal{H}}}{\rho_{600}} \tag{1.2}$$

Наряду с плотностью в технических расчетах применяется удельный вес (рис. 1.3). Вес жидкости *G*, приходящийся на единицу объема *W*, называется удельным весом: $\gamma = \frac{G}{W} \,. \tag{1.3}$

Размерность удельного веса $[\gamma] = \frac{M}{L^2 T^2}$.

Единица измерения удельного веса в системе СИ Н/м³. Удельный вес — векторная величина. Он не является параметром вещества, его значение зависит от ускорения свободного падения в пункте определения. Удельный вес и плотность жидкости связаны следующим соотношением:

$$\gamma = \frac{G}{W} = \frac{Mg}{W} = \rho g , \qquad (1.4)$$

где ρg — ускорение свободного падения, принимаемое обычно равным 9,81 м/с².

Наряду с удельным весом в расчетах используется относительный удельный вес δ:

$$\delta = \frac{\gamma_{\star}}{\gamma_{\scriptscriptstyle B}}, \qquad (1.5)$$

Рис.1.3. Вес жидкости. приходяшийся на единицу объема жидкости

где γ_{w} – удельный вес жидкости;

 $\gamma_{\rm B}$ – удельный вес воды при $t = 4^{\circ}$ С, равный 9810 H/м³ (1000 кгс/м³).

Так, для пресной воды при температуре 4°С $\delta_B = 1$. Плотность и удельный вес жидкостей зависят от давления и температуры.

Все жидкости, кроме воды, характеризуются уменьшением плотности с ростом температуры. Плотность воды имеет максимум при $t = 4^{\circ}$ С и уменьшается при любых других температурах (рис. 1.4).

В этом проявляется одно из аномальных свойств воды. Температура, при которой плотность воды максимальная, с увеличением давления уменьшается. Так, при давлении 14 МПа вода имеет максимальную плотность при 0,6°С.

Рис. 1.4. Зависимость плотности воды от температуры

При изменении давления плотность жидкостей изменяется незначительно. В большинстве случаев плотность жидкости в расчетах можно принимать постоянной. Однако встречаются случаи, когда изменением плотности пренебрегать нельзя, т.к. это может привести к значительным ошибкам.

Численные значения ρ и γ для воды и некоторых других жидкостей (при различной температуре *t* в градусах °C) приводятся в таблице 1.1.

Плотность газа ρ (кг/м³) в зависимости от давления и температуры можно определить по формуле Клапейрона

$$\rho = \frac{p_{c\ m}}{R_{c}T},$$

где *p_{cm}* – статическое давление в газе, Па (аналогично гидростатическому);

 R_{2} – газовая постоянная, Дж/(кг· К);

T – абсолютная температура газа в градусах Кельвина (К), вычисляемая через температуру t° в градусах Цельсия (°С) по формуле

$$T = t^{\circ} + 273^{\circ}$$
.

Таблица 1.1

	t, °C	ρ, κγ/m ³	γ	
Название жидкости			кH/м ³	кгс/м ³
Вода	0	997,87	9,80537	997,87
	4	1000,0	9,80665	1000,00
	10	999,73	9,80400	999,73
	20	998,23	9,78929	998,23
	30	995,67	9,76419	995,67
	40	992,24	9,73055	992,24
	50	988,07	9,68966	988,07
Морская вода	15	1030	10,1008	1030
Ацетон	15	790	7,74725	790
Бензин	15	680-740	6,668-7,256	680-740
Глицерин	20	1260	12,2364	1260
(безводный)				
Керосин	15	790-820	7,747-8,041	790-820
Масло веретенное	20	889	8,71811	889
Масло машинное	20	898	8,80637	898
Масло минеральное	15	890-960	8,727-9,414	890-960
Масло	20	887	8,69850	887
трансформаторное				
Нефть натуральная	15	700-900	6,864-8,825	700-900
Ртуть	20	13546	132,841	13546
Скипидар	18	870	8,53178	870
Спирт метиловый	15	810	7,94339	810
Спирт этиловый	15	790	7,74725	790
Эфир этиловый	15	740	7,25692	740

Например, плотность воздуха при t° =+20°С, нормальном атмосферном давлении $p_{cm} = p_{amm} = 101325$ Па и соответствующей газовой постоянной R_{2} =287 Дж/(кг·К) составит по формуле Клапейрона

 $\rho = 101325/287(20+273) = 1,2 \text{ Kr/m}^3.$

В практических расчетах воздухообмена в зданиях, в частности при самоудалении нагретого воздуха из помещений по каналам естественной вытяжной вентиляции наружу, плотность воздуха определяется упрошенно при условии постоянства давления (изобарный процесс): $p_{cm} = p_{amm} = 101325$ Па. Это означает, что плотность воздуха считается зависящей только от его температуры *T*.

1.4. СЖИМАЕМОСТЬ КАПЕЛЬНОЙ ЖИДКОСТИ

Сжимаемость жидкости – это свойство жидкостей изменять свой объем при изменении давления.

Сжимаемость характеризуется коэффициентом объемного сжатия (сжимаемости) β_p , представляющим собой относительное изменение объема жидкости W при изменении давления p на единицу.

$$\beta_P = -\frac{1}{W_0} \frac{dW}{dp} \tag{1.6}$$

где W_0 – первоначальный объем жидкости;

dW – изменение этого объема (рис. 1.5) при изменении давления на величину *dp*. Знак «минус» в формуле указывает, что при увеличении давления объем жидкости уменьшается.

Перепишем определение β_p в

Па⁻¹

виде
$$\beta_P = -\frac{1}{W_0} \frac{1}{dp}$$
.

Обе части умножим на знаменатель и перенесем в левую часть

$$\beta_P W_0 dp + dW = 0$$

Учтем, что $dW=W-W_0$ и подставим в предыдущее равенство $\beta p W_0 dp + W - W_0 = 0$.

Выразив отсюда W, можно получить формулу для вычисления нового значения объема при известном увеличении давления

$$W = W_0 - \beta_P W_0 dp = W_0 (1 - \beta_P dP).$$

Рис. 1.5. Изменение объема при изменении давления

 $P_{\theta} + dP_{\bullet}$

Wa-dW

Если учесть, что все изменения объема происходят при неизменной массе за счет изменения плотности, можно получить формулу изменения плотности при изменении давления

$$\frac{M}{\rho} = \frac{M}{\rho_0} (1 - \beta_P dP) \Longrightarrow \frac{1}{\rho} = \frac{(1 - \beta_P dP)}{\rho_0}.$$

Откуда выразив ρ , получим

$$\rho = \frac{\rho_o}{1 - \beta_P \, dP}.$$

Изменение объема dW, происходящее за счет изменения плотности $d\rho$ при постоянной массе, можно записать в виде

$$dW = \frac{M}{d\rho}$$

Подставив это в определение β_P , определим коэффициент сжимаемости жидкости через изменение плотности

$$\beta_{P} = \frac{\frac{M}{d\rho}}{\frac{M}{\rho}} \frac{1}{dP} = \frac{d\rho}{\frac{1}{\rho}} \frac{1}{dP}.$$

Отсутствие знака минус в этом выражении означает, что увеличение давления приводит к увеличению плотности.

Таблица 1.2

t,°C	$eta_p \cdot 10^{10},\; \Pia^{-1}$ при давлении, $\Pia \cdot 10^{-4}$					
	50	100	200	390	780	
0	5.4	5.37	5.31	5.23	5.15	
5	5.29	5.23	5.18	5.08	4.93	
10	5.23	5.18	5.08	4.98	4.81	
15	5.18	5.1	5.03	4.88	4.7	
20	5.15	5.05	4.95	4.81	4.6	

Коэффициент объемного сжатия воды

Значение коэффициента объемного сжатия воды приведены в таблице 1.2.

Величина, обратная коэффициенту сжимаемости, или, подругому, коэффициенту объемного сжатия β_n, обозначается

$$K = \frac{1}{\beta_p} = -\frac{V \cdot dp}{dV}$$
(1.7)

и называется объемным модулем упругости жидкости. Через модуль *К* и конечные разности, формулу

$$\delta = \frac{\rho_{\mathcal{H}}}{\rho_{\mathcal{B}\mathcal{O}\mathcal{O}}}$$

можно переписать в виде зависимости

$$\frac{\Delta V}{V} = \frac{\Delta p}{K},\tag{1.8}$$

которую называют обобщенным законом Гука. Выразив объем через плотность, получим

$$K = -\frac{dp}{[\rho \cdot d(1/\rho)]} = \rho \frac{dp}{d\rho} \quad \text{или} \quad \frac{K}{p} = \frac{\Delta p}{\Delta p} = c^2, \tag{1.9}$$

где *с* — скорость распространения продольных волн в упругой среде, равная скорости звука.

Единицы измерения: [Па], [МПа], [кГс/см²].

Для капельных жидкостей модуль *К* несколько уменьшается с увеличением температуры и возрастает с повышением давления. Для воды он составляет при атмосферном давлении приблизительно 2000 МПа (табл. 1.3). Следовательно, при повышении давления на 0,1 МПа объем воды уменьшается всего лишь на 1/20 000 часть. Такого же порядка модуль упругости и для других капельных жидкостей, например для минеральных масел он равен приблизительно 1200 МПа.

Таблица 1.3

t,°C	<i>K</i> , Па·10 ⁴ при давлении, Па·10 ⁻⁴					
	50	100	200	390	780	
0	185 400	186 400	188 400	191 300	197 300	
5	189 300	191 300	193 300	197 200	203 100	
10	191 300	193 300	197 200	201 100	208 000	
15	193 300	196 200	199 100	205 000	212 900	
20	194 200	198 200	202 100	208 000	217 800	

Модуль упругости воды

1.5. ТЕМПЕРАТУРНОЕ РАСШИРЕНИЕ КАПЕЛЬНЫХ ЖИДКОСТЕЙ

Температурное расширение жидкости состоит в том, что она может изменять свой объем при изменении температуры. Это свойство характеризуется *температурным коэффициентом объемного расширения*, представляющим относительное изменение объема жидкости при изменении температуры на единицу (на 1°С) и при постоянном давлении:

$$\beta_t = \frac{l}{W} \frac{dW}{dt} \quad . \tag{1.10}$$

где dW — изменение этого объема при повышении температуры на величину dt. По аналогии со свойством сжимаемости жидкости можно записать

$$W = W_0(1 + \beta_t dt)$$

или через плотность

$$\rho_t = \rho_0 \frac{1}{1 + \beta_t \left(t - t_0\right)},$$

где *t*₀ — температура жидкости при нормальных условиях. Изменение объема при изменении температуры происходит за счет изменения плотности. Зависимость плотности от температуры широко используется для создания естественной циркуляции в отопительных системах, для удаления продуктов сгорания и т.д.

1.6. ВЯЗКОСТЬ ЖИДКОСТИ

Вязкость — свойство жидкости оказывать сопротивление относительному сдвигу ее слоев. Вязкость проявляется в том, что при относительном перемещении слоев жидкости на поверхностях, их соприкосновении возникают силы сопротивления сдвигу, называемые силами внутреннего трения, или силами вязкости.

Если рассмотреть то, как распределяются скорости различных слоев жидкости по сечению потока, то можно легко заметить, что чем дальше от стенок потока, тем скорость движения частиц больше. У стенок потока скорость движения жидкости равна нулю.

Иллюстрацией этого является (рис. 1.6) так называемая струйная модель потока. На рисунке применены следующие обозначения:

u — скорость слоя жидкости,

dy – расстояние между соседними слоями жидкости.

Медленно движущийся слой жидкости «тормозит» соседний слой жидкости, движущийся быстрее, и наоборот,

Рис. 1.6. Струйная модель потока

слой, движущийся с большей скоростью, увлекает (тянет) за собой слой, движушийся с меньшей скоростью. Силы внутреннего трения появляются вследствие наличия межмолекулярных связей между движущимися слоями. Если в равномерно движущемся потоке жидкости рассмотреть два соседних слоя с ординатами y_1 и y_2 , расположенных на расстоянии dy друг от друга (рис. 1.7), и скорость первого из них обозначить u_1 , а скорость другого u_2 , то разница между ними составит du. Тогда можно записать

$$\lim_{y_1 \to y_2} \frac{u_2 - u_1}{y_2 - y_1} = \frac{du}{dy}.$$

Эта величина называется *градиентом скорости* по сечению потока или поперечным градиентом скорости. Он показывает, как меняются скорости слоев жидкости по сечению потока.

Если между соседними слоями жидкости выделить некоторую площадку *S*, то согласно гипотезе Ньютона

$$T = \mu S \frac{du}{dy},\tag{1.11}$$

где *T* – силы вязкого трения;

S – площадь соприкасающихся слоев;

µ – коэффициент вязкого трения.

Рис. 1.7. Понятие градиента скорости

Величина μ в этом выражении является *динамическим* коэффициентом вязкости, равным

$$\mu = \frac{T}{S} = \pm \frac{1}{\frac{du}{dy}} \quad \text{или} \quad \mu = \pm \tau \frac{1}{\frac{du}{dy}},$$

где τ — касательное напряжение в жидкости (зависит от рода жидкости).

Физический смысл коэффициента вязкого трения число, равное силе трения, развивающейся на единичной поверхности при единичном градиенте скорости.

Знак минус в правой части уравнения указывает на то, что касательное напряжение тормозит слой, движущийся с относительно большой скоростью.

Между слоями жидкости, движущимися со скоростями, отличающимися друг от друга на величину dU, возникает касательное напряжение τ :

НЬЮТОН (1643-1727)

$$\frac{T\mu}{S} = \tau = \pm \mu \frac{du}{dy} \,. \tag{1.12}$$

Английский математик. механик, астроном и физик, создатель классической механики. Олин ИЗ основоположников современной физики. сформулировал Закон основные законы механики. вязкости (внутреннего трения) Ньютона – математическое выражение, связывающее касательное напряжение внутреннего трения (вязкость) и изменение скорости среды в пространстве (скорость деформации) для текучих тел (жидкостей и газов), был предложен И. Ньютоном в 1687 году.

(1043-1727) Жидкости (газы), подчиняющиеся этому закону, называются нормальными или ньютоновскими, а все остальные, для которых закон не выполняется, – аномальными или неньютоновскими жидкостями.

В такой форме уравнение выражает закон внутреннего трения Ньютона, согласно которому напряжение внутреннего

трения, возникающее между слоями жидкости при ее течении, прямо пропорционально градиенту скорости.

Размерность динамического коэффициента вязкости (линамической вязкости) равна:

$$[\mu] = \Pi a c = H c/M^2.$$

В технической системе мер единица вязкости имеет размерность кгс $\frac{c}{M^2}$; в физической дин $\frac{c}{cM^2}$; физическую единицу вязкости называют *пуазом*. Часто пользуются более мелкой единицей сантипуазом (0,01 пуаза). Эти единицы вязкости связаны между собой соотношением:

IПа·с=10Пуаз=1000 сантипуаз=1/9,81 кгс·с/м².

Динамическая вязкость воды при нормальных условиях равна 10⁻³ Па[•]с, вязкость моторных масел на порядок больше, вязкость газов на два порядка меньше.

Величина, обратная динамическому коэффициенту вязкости (1/µ), называется *текучестью* жидкости.

На практике чаще используется кинематический коэффициент вязкости, названный так потому, что в его размерности отсутствует обозначение силы. Этот коэффициент представляет собой отношение динамического коэффициента вязкости жидкости к ее плотности:

$$v = \frac{\mu}{\rho} \quad . \tag{1.13}$$

Размерность $[\nu] = \frac{L^2}{T}$.

Единица измерения
$$\left[\nu\right] = \frac{\left[\mu\right]}{\left[\rho\right]} = \frac{\mathbf{H} \cdot \mathbf{c} \cdot \mathbf{M}^2}{\mathbf{M}^2 \kappa \Gamma} = \frac{\kappa \mathbf{I} \cdot \mathbf{M} \cdot \mathbf{c} \cdot \mathbf{M}^3}{\mathbf{c}^2 \cdot \mathbf{M}^2 \cdot \kappa \mathbf{I}} = \frac{\mathbf{M}^2}{\mathbf{c}}.$$

В размерности кинематической вязкости [v]=м²/с отсутствует размерность силы. До введения Международной системы единиц кинематическая вязкость измерялась в *стоксах* (Ст)

$$\left[\frac{cM^2}{c}\right] = C TOKC (CT)$$

и сантистоксах (Сст); 1 Ст=1·10⁻⁴ м²/с; 1 Сст=1·10⁻⁶ м²/с.

Связь кинематической и динамической вязкости с плотностью и температурой воды находится из выражения:

$$v_{t} = \frac{\mu_{t}}{\rho_{t}} = \frac{\mu_{t} \left[1 + \beta_{t} \left(t - t_{0}\right)\right]}{\rho_{0}}.$$
 (1.14)

Так, для чистой пресной воды зависимость вязкости от температуры определяется по формуле Пуазейля:

$$\nu = \frac{\mu}{\rho} = \frac{0.01775}{1 + 0.0337 t + 0.000221 t^2},$$
 (1.15)

где v — кинематический коэффициент вязкости; μ — динамический коэффициент вязкости; ρ — плотность воды при данной температуре; t — температура воды.

Процесс определения вязкости называется вискозиметрией, а приборы, которыми она определяется, вискозиметрами. Помимо оценки вязкости с помощью динамического и кинематического коэффициентов пользуются условной вязкостью – градусы Энглера (°Э). Вязкостью, выраженной в градусах Энглера, называется отношение времени истечения 200 см³ испытуемой жидкости через капилляр d = 2,8 мм к времени истечения такого же объема воды при t = 20 °C.

$$1^{\circ} \Im = \frac{t}{t_{sodbi}}, \qquad (1.16)$$

где t_{воды} = 51,6 сек.

24

Для перехода от условной вязкости в градусах Энглера к кинематической вязкости в м²/с применяется несколько эмпирических формул, например формула **Убеллоде**:

$$\nu = \left(0.0732^{\circ} \Im - \frac{0.0631}{^{\circ} \Im}\right) \cdot 10^{-4}, \ M^2 / c.$$
 (1.17)

а также теоретическая формула А.Д. Альтшуля:

$$\circ \mathfrak{I} = 24 \left[2.31 g \frac{\sqrt{\nu^2 + 0.0294} - \nu}{\sqrt{\nu^2 + 0.0166 - \nu}} + \frac{1}{\nu} \cdot \left(\sqrt{\nu^2 + 0.0294} - \sqrt{\nu^2 + 0.0166} \right) \right], \quad (1.18)$$

где v – кинематическая вязкость жидкости, см²/с.

Вязкость повышается с увеличением давления Р и уменьшается с увеличением температуры t (рис. 1.8).

Кинематическая вязкость газов зависит как от давления, так и от температуры, возрастая с увеличением температуры и уменьшаясь с увеличением давления.

Именно с вязкостью жидкости связана неоднородность распределения скорости при обтекании жидкостями твердой поверхности, так как молекулы жидкости, непосредственно прилегающие к поверхности твердого тела, прилипают к этой поверхности под действием сил притяжения их к молекулам твердого тела.

Прилипшие молекулы из-за вязкости жидкости взаимодействуют с близтекущими слоями, притормаживая их. Теоретически такое тормозящее действие слоев друг на друга простирается по направлению к нормали к поверхности в бесконечность, т.е. скорость вдоль нормали должна изменяться в таких пределах: y=0, $u_w=0$; $y=\infty$, $u=u_0$ (индексами 0 и w отмечаются параметры невозмущенного потока и на твердой поверхности).

Однако в большинстве технических случаев (маловязкие жидкости и достаточно большие скорости) значительное влияние прилипших молекул и, следовательно, существенное изменение скорости наблюдается лишь в относительно

Рис. 1.8. Зависимость вязкости от лавления и температуры.

пристеночном тонком слое. δ. Этот толшиной тонкий слой. в котором проявляется 0 трение жидкости твердую стенку (вязкое взаимодействие твердой стенкой) жилкости с называют пограничным слоем.

Толшина пограничного слоя обтекаемой влоль возрастает поверхности (подтормаживаются все новые слои жидкости).

Вследствие асимптотичности влияния вязкости. 38 толшину пограничного слоя принимают расстояние OT поверхности, обтекаемой на котором скорость жидкости В пограничном слое равна $u=0.99u_0$.

Кроме обычных (ньютоновских) жидкостей, характеризависимостью (1.11), существуют зующихся аномальные которым относятся жидкости. K коллоидные растворы. смазочные масла, нефтепродукты.

Лля жилкостей таких закон внутреннего трения выражается в виде

$$\tau = \tau_0 \pm \mu \frac{du}{dy}, \qquad (1.19)$$

где касательное напряжение В покояшейся τ_0 жидкости, после преодоления которой, жидкость приходит в движение.

Динамическая вязкость воздуха µ (Па·с) может быть определена по экспериментальной формуле Р.Э. Милликена

$$\mu = 1,745 \cdot 10^{-5} + 5,03 \cdot 10^{-8}t^{\circ},$$

где t° — температура, °C. Например, при t° =+20°C вычисляем динамическую μ =1,85·10-5 Па и кинематическую вязкость воздуха $\nu = \mu/\rho = 1,85\cdot10-5/1,2 = 1,54\cdot10-5 \text{ м}^2/\text{с}.$

Можно отметить, что с увеличением температуры вязкость газа увеличивается, в отличие от жидкостей, которые при нагревании становятся менее вязкими.

1.7. ОПРЕДЕЛЕНИЕ ВЯЗКОСТИ ЖИДКОСТИ

Вязкость жидкости определяется экспериментально с помощью приборов, которые называются вискозиметрами. Примером такого прибора может служить вискозиметр Стокса. Его работа основана на следующем. В прозрачную трубку с жидкостью помешается шарик (рис. 1.9), плотность которого выше плотности жидкости. Шарик медленно опускается в вязкой жидкости с постоянной скоростью V.

На шарик будут действовать: вопервых, сила тяжести

$$F_{msw} = \rho_{u}Wg$$

во-вторых, выталкивающая (архимедова) сила

$$F_{apx} = \rho_{\mathcal{M}} W g,$$

в-третьих, сила Стокса, порождаемая вязким трением на поверхности шарика

$$F_c = 3 \pi dV \mu \, .$$

В приведенных выражениях применены следующие обозначения:

 ρ_{uu} — плотность материала шарика, ρ_{∞} — плотность жидкости, W — объем шарика, V — скорость опускания шарика, g — ускорение свободного падения, μ — динамический коэффициент вязкости, d — диаметр шарика.

Рис. 1.9. Принципиальная схема работы вискозиметра

Так как скорость тела постоянна, по второму закону Ньютона можно записать

$$F_{m,m,m} = F_c + F_{apx}$$

Объем шарика W

$$W=\frac{1}{6}\pi d^3.$$

Подставляя полученные выражения в уравнение сил, действующих на шарик, получим:

$$3 \pi d \mu \frac{1}{V} = \frac{1}{6} \pi g d^3 (\rho_o - \rho_{a'}).$$

Выразив из последней формулы µ, будем иметь выражение для определения динамического коэффициента вязкости:

$$\mu = \frac{1}{18} g d^2 \frac{1}{V} (\rho_{\theta} - \rho_{\alpha}). \qquad (1.20)$$

Если измерить время опускания шарика на определенную, заранее измеренную глубину, то нетрудно определить вязкость любой жидкости.

1.8. РАСТВОРЯЕМОСТЬ ГАЗОВ В ЖИДКОСТЯХ

Растворение газов — способность жидкости поглощать (растворять) газы, находящиеся в соприкосновении с ней. Все жидкости в той или иной степени поглощают и растворяют газы. Это свойство характеризуется коэффициентом растворимости k_n.

Рис. 1.10. Насыщение жидкости газом

Если в закрытом сосуде (рис. 1.10) жидкость находится в контакте с газом при давлении P_{I} , то газ начнет растворяться в жидкости. Через какое-то время произойдет насыщение жидкости газом и давление в сосуде изменится.

Коэффициент растворимости связывает изменение давления в сосуде с объемом растворенного газа и объемом жидкости следующим соотношением

$$\frac{W_{T}}{W_{\mathcal{K}}} = K_{P} \frac{p_{2}}{p_{1}};$$
(1.21)

где W_{Γ} — объем растворенного газа при нормальных условиях,

 $W_{\mathcal{X}}$ — объем жидкости, p_1 и p_2 — начальное и конечное давление газа.

Коэффициент растворимости зависит от типа жидкости, газа и температуры.

Контрольные вопросы

1. Перечислите основные физические свойства жидкостей.

2. Что такое коэффициент объемного сжатия жидкости?

3. Что такое коэффициент температурного расширения?

4. Что называется вязкостью жидкости?

5. Какая связь существует между коэффициентами динамической и кинематической вязкости?

6. Какими приборами измеряется вязкость?

7. Что такое коэффициент растворимости?

8. При каких условиях происходит выделение газа из жидкости?

Примеры решения задач

Задача 1. При гидравлическом испытании трубопровода диаметром d = 200 мм и длиной 250 м давление в трубе было повышено до 3 МПа. Через час давление снизилось до 2 МПа. Сколько воды вытекло через неплотности?

Решение:

1. Определим объем воды в трубопроводе:

$$W = \frac{\pi \cdot d^2 l}{4} = \frac{\pi \cdot 0.2^2 \cdot 250}{4} = 7,85 \text{ M}^3.$$

2. Найдем изменение давления за время испытания:

$$\Delta p = p_1 - p_2 = 3 - 2 = 1$$
 MIIa.

3. Принимая коэффициент объемного сжатия воды

$$\beta_p = 5 \cdot 10^{-7} \, \frac{1}{\kappa \Pi a}$$

находим количество воды, вытекающей через неплотности, по формуле

$$\Delta W = -\beta_p W \Delta p = 5 \cdot 10^{-10} \cdot 7,85 \cdot 1 \cdot 10^6 = 3,925 \cdot 10^{-3} \,\mathrm{m}^3 \approx 3,93 \,\mathrm{n}.$$

Задача 2. Определить кинематическую и динамическую вязкость воды при температуре 50°С (давление $p = 100\,000\,$ Па).

Решение. Для определения кинематической вязкости используем формулу

$$v = \frac{0.01775}{1+0.0337t+0.000221t^2} = \frac{0.01775}{1+0.0337\cdot50+0.000221\cdot50^2} = 0.0054 \text{ CTOKC(C1)}$$

Формула для определения динамической вязкости воды имеет вид

$$\mu = \frac{0,0179}{1+0.0368t+0.000221t^2} = \frac{0.0179}{1+0.0368\cdot50+0.000221\cdot50^2} = 0,0053 \text{ Hya3(II)} = 0,00053 \text{ Ha} \cdot c \left(\frac{\text{KI}}{\text{M}} \cdot c\right)$$

Сделаем проверку, определив кинематическую вязкость по формуле

$$v = \frac{\mu}{\rho}.$$

где $\rho = 988 \text{ кг/м}^3 - \text{плотность воды при температуре 50°C.}$ Отсюда

$$v = \frac{0.00053}{988} = 0.54 \cdot 10^{-6} \text{ m}^2/\text{c}.$$

Задачи для самостоятельного решения

Задача 1. Вычислить плотность жидкости и ее удельный объем, если жидкость находится в емкости массой $m_{emk} = 5,5$ кг. Масса заполненной жидкостью емкости $m_{oбщ} = 18,9$ кг, а ее объем V = 15 л.

Задача 2. Вычислить массу нефти в цистерне, если к $V_I =$ = 7 м³ нефти с плотностью $\rho_I = 820$ кг/м³ добавлено $V_2 =$ = 2,6 м³ нефти с плотностью $\rho_2 = 795$ кг/м³. Определить, как и на сколько изменятся плотность и объем нефти после повышения ее температуры с $t_{\mu} = 15^{\circ}$ С до $t_{\kappa} = 35^{\circ}$ С (коэффициент температурного расширения нефти принять равным $\beta_r = 0,00072$ 1/K).

Задача 3. Определить объем, занимаемый m = 15 тоннами воды с температурой 10° С. Как и на сколько изменится занимаемый водой объем после ее нагрева до 22° С?

ГЛАВА 2. ОСНОВЫ ГИДРОСТАТИКИ

2.1. ОСНОВНЫЕ СВЕДЕНИЯ

Гидростатика является разделом прикладной механики жидкости и газа, в котором изучаются законы равновесия жидкости и газа.

Согласно закону внутреннего трения Ньютона, в неподвижной жидкости касательные напряжения τ равны 0, так как dV = 0.

Растягивающие нормальные напряжения, даже самые незначительные, приводят жидкость в движение, поэтому в неподвижной жидкости они тоже отсутствуют.

Вследствие текучести жидкости в ней не могут действовать сосредоточенные силы, а возможно лишь действие сил, непрерывно распределенных по ее объему (массе) или по поверхности. Поэтому внешние силы, действующие на рассматриваемый объем жидкости, разделяют на массовые (объемные) и поверхностные.

Массовые силы пропорциональны массе жидкого тела или (для однородных жидкостей) его объему.

К ним относятся *сила тяжести* и *силы инерции* переносного движения, действующие на жидкость при относительном ее покое в ускоренно движущихся сосудах или при относительном движении жидкости в руслах.

Поверхностные силы проявляются на граничных поверхностях рассматриваемого жидкого тела.

Вследствие действия этих сил внутри жидкости возникают напряжения сжатия, которые в гидравлике называются *давлением* и обозначаются буквой *P*. В гидростатике силы, действующие на жидкость, принимаются не зависящими от времени. С учетом этого положения можно считать, что напряжения, возникающие в жидкости под действием внешних сил, зависят только от координат точки *X*,*Y*,*Z* в жидкости. Таким образом, основными задачами гидростатики являются определение давления в жидкости как функции координат

 $P=f_P(X,Y,Z)$

а также определение сил, действующих со стороны жидкости на твердые стенки.

Поверхностную силу, действующую нормально к какойлибо площадке, называют силой давления.

Поверхностная сила, действующая по касательной к площадке, является силой *сопротивления*.

Сила сопротивления проявляется только при движении жидкости, а сила давления — как при движении, так и при покое жидкости.

2.2. СИЛЫ, ДЕЙСТВУЮЩИЕ В ЖИДКОСТИ

2.2.1. МАССОВЫЕ СИЛЫ

Массовые силы — это силы, пропорциональные массе жидкости. В случае однородной жидкости эти силы пропорциональны объему. Прежде всего, к ним относится *вес* жидкости (рис. 2.1)

$$G=mg=W\rho g=W\gamma,$$

где *G*- вес жидкости,

W – объем жидкости,

т – масса жидкости,

g – ускорение свободного падения,

 ρ — плотность жидкости,

у – удельный вес жидкости.

Напряжением массовых сил называют отношение вектора массовой силы $\Delta \vec{G}$, действующей на рассматриваемую массу жидкости Δm :

Рис. 2.1. Вес жидкости

$$\vec{g} = \lim_{\Delta m \to 0} \frac{\Delta \vec{G}}{\Delta m}$$
, M/c^2 .

Как известно, масса является мерой инертности тела. Это свойство присуще и жидкостям, поэтому к массовым силам относятся и *силы инерции*:

$$F_{un} = m \frac{dV}{dt} - \rho W \frac{dV}{dt} - ma$$

где $F_{\mu\mu}$ — инерционная сила,

V - скорость жидкости,

t - время движения,

а – ускорение движения.

Силы инерции, действующие в жидкости, так же как и для твердого тела, могут проецироваться на оси (рис. 2.2).

$$F_{un}^{x} = m \frac{dV_{x}}{dt} - ma_{x}, \qquad (2.1)$$

$$F_{un}^y = m \frac{dV_y}{dt} = ma_y.$$
(2.2)

$$F_{uu}^{z} = m \frac{dV_{z}}{dt} = ma_{z}, \qquad (2.3)$$

где $F_{uu}^{x}, F_{uu}^{y}, F_{uu}^{z}$ – проекции сил

Рис. 2.2. Силы инерции

инерции на соответствующие оси.

2.2.2. ПОВЕРХНОСТНЫЕ СИЛЫ

Поверхностные силы — силы, величины которых пропорциональны площади. К ним относят два вида сил: Силы *поверхностного натяжения* и силы *вязкого трения*. Последние проявляются только при движении жидкости и не играют никакой роли, когда жидкость находится в покое.

2.2.3. СИЛЫ ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ

Молекулы жидкости притягиваются друг к другу с определенной силой. Причем внутри жидкости силы,

34

действующие на любую молекулу, уравновешиваются, т.к. со всех сторон от нее находятся одинаковые молекулы, расположенные на одинаковом расстоянии.

Однако молекулы жидкости, находящиеся на границе (с газом, твердым телом или на границе двух несмешивающихся жидкостей) оказываются в неуравновешенном состоянии т.к. со стороны другого вещества действует притяжение других молекул (рис. 2.3), расположенных на других расстояниях.

Возникает преобладание какой-то силы. Под влиянием этого воздействия поверхность жидкости стремится принять форму, соответствующую наименьшей площади. Если силы внутри жидкости больше наружных сил, то поверхность жидкости стремится к сферической форме.

Например. малые массы жидкости в воздухе стремятся шарообразной форме, к капли. Может образуя иметь обратное И явление. место наблюлается которое как R явление капиллярности. трубах малого диаметра

Рис. 2.3. Притяжение молекул жидкости

(капиллярах) наблюдается искривление своболной поверхности, граничащей с газом или с парами этой трубки Если поверхность смачивается, жилкости. же свободная поверхность жидкости в капилляре вогнутая. Если нет смачивания, свободная поверхность выпуклая, как при каплеобразовании. Во всех этих случаях силы поверхностного натяжения обусловливают дополнительные напряжения р_{пое} в жидкости. Величина этих напряжений определяется формулой

$$p_{roe} = \frac{2\sigma}{r}, \qquad (2.4)$$

где σ – коэффициент поверхностного натяжения,
r — радиус сферической поверхности, которую принимает жидкость.

Эти дополнительные напряжения легко наблюдать, если в сосуд с жидкостью погрузить капилляр. В этом опыте возможны два варианта (рис. 2.4).

Рис. 2.4. Явление смачивания и несмачивания жидкости

В первом случае жидкость, за счет поверхностных сил, поднимется по капилляру на некоторую высоту. Тогда говорят о капиллярном поднятии, и наблюдается явление смачивания.

Во втором варианте жидкость опускается в капилляре ниже уровня жидкости в сосуде. Такое явление называют капиллярным опусканием, которое происходит при несмачивании.

В обоих случаях величина Δh пропорциональна дополнительному напряжению, вызванному в жидкости поверхностными силами. Она равна

$$\Delta h=\frac{k}{d};$$

где *d* – диаметр капилляра,

k — коэффициент пропорциональности, который выражается следующей формулой

$$k=\frac{4\sigma}{g\rho}\,,$$

 σ – коэффициент поверхностного натяжения, и зависит от жидкости. Например, при t = 20°C, к спирта составляет 11,5, ртути – 10,15, воды – 30.

Поднятие жидкости в капиллярах почвы и грунтов (вода, нефть и т.п.) является важным фактором в распространении жидкости. Высота капиллярного поднятия в грунтах изменяется от нуля (галечники) почти до 5 м (глины). При этом с увеличением минерализации воды высота капиллярного поднятия увеличивается.

Поверхностное натяжение и капиллярные эффекты определяют закономерности движения жидкости в условиях невесомости.

К поверхностным силам относятся и силы давления, т.к. они действуют на поверхности жидкости.

2.2.4. СИЛЫ ДАВЛЕНИЯ

Давление — напряжение, возникающее в жидкости под действием сжимающих сил. В общем случае поверхностная сила ΔR , действующая на площадке ΔS под некоторым углом к ней, может быть разложена на нормальную ΔF_n и тангенциальную ΔT составляющие (рис. 2.5).

Рис. 2.5. Сжимающие силы в жидкости

Первая, направленная внутрь объема, называется силой давления, вторая — силой трения. Нормальная составляющая вызывает в жидкости нормальные напряжения или *гидромеханическое давление*, которое в покоящейся жидкости называется *гидростатическим*. Если сила ΔF_n равномерно распределена по площадке ΔS , то

$$\Delta P = \frac{\Delta F_n}{\Delta S} ,$$

или переходя, к пределу

$$dP = \frac{dF}{dS}.$$

В любом случае причиной возникновения давления является внешняя сила, приложенная к жидкости. Часто в гидроприводе такой силой является нагрузка *F*, приложенная к исполнительному органу. Эта нагрузка воздействует на жидкость через какую-то жесткую поверхность и, следовательно, распределена равномерно, например площадь поршня гидроцилиндра *S*. В таком случае давление *P* определяется по формуле

$$P = \frac{F}{S}$$
 (2.5)

Если давление *р* отсчитывается от нуля, то оно называется *абсолютным*. Существуют приборы, позволяющие измерять величину абсолютного давления, однако они громоздки и неудобны в пользовании.

Поэтому на практике измеряют не абсолютную величину давления, а разность двух давлений: искомого и атмосферного (барометрического).

Атмосферное давление измеряется барометром того или иного типа. *Атмосферное* давление обозначается p_{amm} . Если определяемая величина давления больше атмосферного, то положительная величина разности давлений называется *избыточным давлением*, которое измеряется различного типа манометрами и потому называется еще и *манометрическим*. Если же измеряемая величина давления меньше атмосферного, то избыточное давление является отрицательной величиной, и его абсолютное значение называют *вакуумметрическим давлением* или *вакуумом*.

Если измеряемое давление больше атмосферного, то

$$p_{abc} = p_{amm} + p_{usb} = B + \Delta p;$$

если измеряемое давление меньше атмосферного, то

$$p_{a\delta c} = p'_{a\delta c} = p_{amm} - p_{aa\kappa} = B - \Delta p \ u \ p_{aa\kappa} = -p_{ua\delta}$$

Соотношение между указанными выше давлениями можно представить в виде схемы (рис. 2.6).

Буквой *В* часто обозначают барометрическое давление, а Δp – разницу между абсолютным и атмосферным давлением.

В системе СИ единица измерения давления называется *паскаль* (Па). 1Па = 1 H/M^2 .

Рис. 2.6. Соотношение между величинами давления

Кроме того, различают давление *гидродинамическое и гидростатическое*. Гидродинамическое давление возникает в движущейся жидкости. Гидростатическое давление — давление в покоящейся жидкости.

Соответствие единиц измерения давления в различных системах представлено в табл. 2.1

39

Tabauya 2.1

Единицы измерения давления

Единицы давления	Па	6ap	krc/m²	krc/cm ²	MM pt.ct.	м вод.ст.	Атмос- фера техн., ат	Атмос- фера физич., атм
Па	_	0,00001	0,102	1,02.10 ⁻⁵	0,0075	1,02.10-4	1,02.10-5	0,987.10 ⁻⁵
6ap	000001	1	10200	1,02	750	10,2	1,02	0,987
krc/m ²	9,81	0,0000981	I	0,0001	0,0735	0,001	0,0001	0,968.10 ⁻⁴
krc/cm ²	98100	0,981	100000	1	735,6	10	1	0,968
MM pt.ct.	133,3	0,00133	13,6	0,00136	1	0,0136	0,00136	0,001316
М ВОД.СТ.	9810	0,0981	1000	0,100	73,556	1	0,1	0,0968
Атмосфера технич., ат	98100	0,981	10000		735,6	10	Ι	896'0
Атмосфера физич.,атм	101325	1,01325	10332	1,0332	760	10,332	1,0332	Ι

2.3. СВОЙСТВА ГИДРОСТАТИЧЕСКОГО ДАВЛЕНИЯ

Первое свойство формулируется следующим образом: в любой точке жидкости гидростатическое давление перпендикулярно площадке, касательной к выделенному объему, и действует внутрь рассматриваемого объема жидкости.

Доказывается первое свойство путем рассуждений методом «от противного». Рассмотрим покоящуюся жидкость. Известно, что жидкость плохо сопротивляется касательным усилиям. Если бы сила, от давления R действовала бы не по нормали к площадке (рис. 2.7), то ее можно было бы представить в виде двух составляющих — нормальной F_n и касательной F_c .

Тогда касательная составляющая смещала бы слои жидкости друг относительно друга. Это означало бы, что жидкость не находилась бы в покое. Это противоречит начальному утверждению.

Из *первого свойства* следует, что напряжение сжатия — единственный вид напряжений в покоящейся жидкости.

Второе свойство состоит в том, что в любой точке внутри жидкости давление по всем направлениям одинаково. Иначе это свойство давления звучит так: на любую площадку внутри объема жидкости, независимо от ее угла наклона, действует одинаковое давление.

Докажем второе свойство. Для этого рассмотрим произвольный объем в неподвижной жидкости (рис. 2.8.) в виде прямоугольного тетраэдра с размерами *dx,dy,dz*. Будем рассматривать этот объем в некоторой произвольной системе координат X,Y,Z.

На рисунке приведены следующие буквенные обозначения:

P_x,*P_y*,*P_z* – гидростатическое давление, действующее на грань, перпендикулярную соответствующей оси, *P_n* –

41

гидростатическое давление, действующее на наклонную грань dS,

F – инерционные силы (или силы веса).

Py Py dx dx Pr F=ma

Рис. 2.7. Схема к доказательству первого свойства гидростатического давления

Рис. 2.8. Схема к доказательству второго свойства гидростатического давления

Тетраэдр *dx, dy, dz* по определению находится в покое, следовательно, сумма сил, действующих на него равна 0, т.е.

$$\sum_{x,y,z} F_{x,y,z} = 0,$$

Подробно рассмотрим эти силы. Прежде всего. на тетраэдр действуют B вылеленный силы давления. проекциях на оси системы координат по направлению каждой из осей действует сила от давления на грань, перпендикулярную этой оси. Этой силе противодействует проекция на соответствующую ось силы давления на наклонную (большую) грань тетраэдра. Получаются три пары сил, соответственно осям:

$$\begin{vmatrix} \frac{1}{2} P_x d_z d_y - P_n dS cos(x, n) \\ \frac{1}{2} P_y d_x d_z - P_n dS cos(y, n) \\ \frac{1}{2} P_y d_x d_z - P_n dS cos(z, n). \end{vmatrix}$$
(2.6)

Вместе с силами давления, в общем случае, на тетраэдр действуют инерционные силы (или в простейшем случае сила веса), которые равны произведению массы на проекцию ускорения на соответствующую ось. Массу определим как произведение плотности жидкости и объема тетраэдра. Объем для прямоугольного тетраэдра равен $\frac{1}{6} dx dy dz$. В этом случае инерционные силы примут вид:

 $\frac{\frac{1}{6} dx dy dz \rho a_x}{\frac{1}{6} dx dy dz \rho a_y} \cdot \frac{1}{6} dx dy dz \rho a_z}$

Сложив обе полученные системы уравнений, и, приравняв их 0 по причине равновесия тетраэдра, получим общую систему уравнений сил, действующих в покоящейся жидкости:^

$$\begin{cases} \frac{1}{2}P_xd_zd_y - P_ndScos(x,n) + \frac{1}{6}dxdydz\rho a_x = 0\\ \frac{1}{2}P_yd_xd_z - P_ndScos(y,n) + \frac{1}{6}dxdydz\rho a_y = 0\\ \frac{1}{2}P_yd_xd_z - P_ndScos(z,n) + \frac{1}{6}dxdydz\rho a_z = 0. \end{cases}$$

Если учесть, что площадь каждой грани тетраэдра, параллельной плоскостям координат, равна площади проекции наклонной грани на соответствующую координатную плоскость, получим следующее равенство:

$$\frac{1}{2}d_z d_y = dScos(x,n) = \frac{1}{2}d_x d_z = dScos(y,n) = \frac{1}{2}d_x d_y = dScos(z,n)$$

Разделив уравнения сил на соответствующие одинаковые площади, получим:

$$\begin{cases} P_{x} - P_{n} + \frac{1}{3} dx \rho a_{x} = 0 \\ P_{y} - P_{n} + \frac{1}{3} dy \rho a_{y} = 0 \\ P_{y} - P_{n} + \frac{1}{3} dz \rho a_{z} = 0 \end{cases}$$

Устремив размеры тетраэдра к 0, т.е. $d_x, d_y, d_x \rightarrow 0$ и $ds \rightarrow 0$ последняя система уравнений примет вид:

$$\begin{cases} P_x - P_n = 0\\ P_y - P_n = 0\\ P_y - P_n = 0 \end{cases}$$

Приравняв все три уравнения, получим следующее равенство:

$$\boldsymbol{P}_{x} = \boldsymbol{P}_{y} = \boldsymbol{P}_{z} = \boldsymbol{P}_{n} \ . \tag{2.7}$$

В результате можно сделать следующий вывод: давление не зависит от направления, от ориентации элементарной площадки или другими словами: *давление – величина скалярная*.

Третье свойство определяет, что гидростатическое давление в точке зависит от ее координат в пространстве.

Это положение не требует специального доказательства, так как ясно, что по мере увеличения погружения точки давление в ней будет возрастать, а по мере уменьшения погружения уменьшаться. Третье свойство гидростатического давления может быть записано в виде P = f(x, y, z).

2.4. ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ РАВНОВЕСИЯ ЖИДКОСТИ (УРАВНЕНИЕ ЭЙЛЕРА)

Выделим в жидкости, находящейся в равновесии, элементарный параллелепипед с ребрами *dx*, *dy*, *dz*, параллельными осям координат *x*, *y*, *z* (рис. 2.9). Выберем в центре параллелепипеда точку *A*. Давление в этой точке будет p = f(x, y, z). Так как это давление является непрерывной функцией координат, то, разлагая функцию p = f(x, y, z) в ряд Тэйлора в окрестности точки A с точностью до бесконечно малых первого порядка, получим следующие соотношения для давлений p_1 и p_2 . В точках I и 2 на гранях

параллелепипеда, перпендикулярных оси х:

$$p_{1} = p - \frac{\partial p}{\partial x} \frac{1}{2} dx;$$

$$p_{2} = p - \frac{\partial p}{\partial x} \frac{1}{2} dx.$$
(2.8)

Давления в точках 1 и 2 можно также записать в виде отношения силы к площади:

$$p_1 = \frac{F_1}{dzdy} = \frac{F_1}{d\omega_x}; \quad p_2 = \frac{F_2}{dzdy} = \frac{F_2}{d\omega_x},$$
 (2.9)

где F_1 и F_2 — силы, действующие в точках 1 и 2. Запишем условие равновесия сил, действующих на элементарный параллелепипед, в проекции на ось *x*:

Рис. 2.9. Схема к выводу уравнения равновесия жидкости

$$F_1 - F_2 + F_m = 0,$$
 (2.10)

где F_m – массовая сила, определяемая по формуле

$$F_m = Xdm = X\rho dV = X\rho dx dy dz, \qquad (2.11)$$

где *dm* — масса элементарного параллелепипеда. Подставляя формулы (2.9), (2.11) в формулу (2.10), получим

$$p_1 dz dy - p_2 dz dy + X_{\rho} dx dy dz = 0.$$

Подставляя формулы для p_1 и p_2 , найдем

$$p - \frac{\partial p}{\partial x} \frac{1}{2} dx - \left(p + \frac{\partial p}{\partial x} \frac{1}{2} dx \right) + X \rho dx = 0$$

Отсюда

$$X - \frac{1}{\rho} \frac{\partial p}{\partial x} = 0.$$

Аналогичные уравнения можно получить, если спроектировать действующие на параллелепипед силы на оси у и *z*. В итоге будем иметь систему трех дифференциальных уравнений вида:

ЛЕОНАРД ЭЙЛЕР (1707-1783)

Швейцарский, немецкий и российский математик, внесший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук. Множество работ Эйлера посвяшены математической физике: механике, гидродинамике, акустике и др.

В 1755 году публикуются «Общие принципы движения жидкостей», в которых положено начало теоретической гидродинамике. Выведены основные уравнения гидродинамики (уравнение Эйлера) для жидкости без вязкости. Разобраны решения системы для

разных частных случаев. Опубликовал целый ряд оригинальных решений гидравлических задач, широко используя созданный к тому времени математический аппарат.

$$X - \frac{1}{\rho} \frac{\partial p}{\partial x} = 0$$

$$X - \frac{1}{\rho} \frac{\partial p}{\partial y} = 0,$$

$$X - \frac{1}{\rho} \frac{\partial p}{\partial z} = 0$$
(2.12)

где *X*, *Y*, *Z* – проекции ускорений массовых сил, приходящихся на единицу массы.

Эти уравнения впервые были выведены Эйлером в 1755 г. и называются уравнениями равновесия жидкости Эйлера. Они показывают, что при равновесии жидкости массовые силы уравновешиваются соответствующими поверхностными силами.

2.5. УРАВНЕНИЕ ПОВЕРХНОСТИ РАВНОГО ДАВЛЕНИЯ

Поверхностью равного давления называют такую выделенную в жидкости поверхность, гидростатическое давление во всех точках которой одно и то же. Для такой поверхности, очевидно, dp = O. Так как p = f(x, y, z), то уравнение поверхности равного давления p = const будет

f(x,y,z) = const = C.

Придавая С различные значения, будем переходить от одной поверхности равного давления к другой. Это уравнение является уравнением семейства поверхностей равного давления. Поверхности равного давления и равного потенциала совпадают. Так как $-\rho du = dp$, то при dp = 0, du = 0 и u = const.

Определение уравнения поверхности равного давления по заданным массовым силам производится по уравнению

$$p(Xdx + Ydy + Zdz) = dp = 0.$$
 (2.20)

Ввиду отсутствия массовых сил по осям *x*, *y* и с учетом того, что массовая сила по оси z Z = -g, уравнение (2.20) примет вид - $\rho g dz = 0$ или dz = 0. Отсюда z = const.

Следовательно, поверхности равного давления, в том числе и свободная поверхность — горизонтальные плоскости.

Таким образом, поверхностью уровня (поверхность равного давления) в однородной покоящейся жидкости будет любая горизонтальная плоскость, в том числе и свободная поверхность, независимо от формы сосуда или водоема. Горизонтальной плоскостью будет также граница раздела двух несмешивающихся жидкостей (рис. 2.10).

Так, давление в точке *A* равно давлению в точке *B*, так как обе точки лежат на одной и той же поверхности уровня (поверхности равного давления).

Рис. 2.10. Поверхности равного давления

2.6. ОСНОВНОЕ УРАВНЕНИЕ ГИДРОСТАТИКИ

Пусть на неподвижную жидкость действует только одна

Рис. 2.11. Схема к выводу основного уравнения гидростатики

массовая сила — сила тяжести. Свободная поверхность жидкости представляет собой плоскость (размеры рассматриваемого объема жидкости не соизмеримы с размерами Земли). На свободную поверхность действует давление p_{α} . Найдем давление в произвольной расположенной точке М. на глубине *h* (рис. 2.11). Выделим около этой точки горизонтальную площадку элементарную dSИ построим на ней вертикальный цилиндрический объем высотой *h*.

Уравнение равновесия для единицы объема жидкости на свободной поверхности $z = z_0$,

$$p_0 = -\rho g z_0 + \text{const.} \tag{2.21}$$

Для единицы объема жидкости на высоте z основное уравнение гидростатики:

$$p = -\rho g z + \text{const} \tag{2.22}$$

или

$$z + \frac{p}{\rho g} = \text{const}$$
(2.23)

Из уравнения (2.21) находим

$$const = p_o + \rho g z_a$$

и подставляем ее в уравнение (2.22):

 $p=p_o+\rho g(z_o-z).$

Если ввести переменную h=z-z₀, которую назовем глубиной погружения, то основной закон гидростатики для несжимаемой жидкости будет выглядеть таким образом:

$$p = p_0 + \rho gh, \qquad (2.24)$$

которое можно прочитать так: давление в любой точке покоящейся жидкости складывается из давления на свободную поверхность жидкости p₀ и веса столба жидкости pgh, или избыточного давления.

По этому уравнению можно вычислить давление в неподвижной жидкости на любой глубине. Мы видим, что давление в жидкости складывается из давления на внешнюю поверхность и давления, создаваемого весом вышележащих слоев жидкости.

Величина p_0 одинакова для всех точек объема жидкости, поэтому, учитывая свойство гидростатического давления, можно сформулировать закон Паскаля: *давление*,

приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости и по всем направлениям одинаково.

Как мы видим, с увеличением глубины погружения давление возрастает по линейному закону и на данной глубине есть величина постоянная. Поверхность, во всех точках которой давление одинаково, называется *поверхностью уровня*. Как мы видим, эта поверхность – плоскость, параллельная свободной поверхности.

Если от произвольного уровня отложить вертикальные координаты точки M (z) и свободной поверхности (z_0) и заменить $h = z_0 - z$, то получим другую форму записи основного уравнения гидростатики:

$$p + \rho gz = p_0 + \rho gz_0 = \text{const}$$
 или $z + \frac{p}{\rho g} = \text{const}$, (2.25)

где z — геометрический напор (высота); $\frac{p}{\rho g}$ — пьезометрический напор (высота).

Сумма геометрического и пьезометрического напоров — это гидростатический напор. Таким образом, гидростатический напор для всего объема неподвижной жидкости есть величина постоянная.

2.7. АНАЛИЗ ОСНОВНОГО УРАВНЕНИЯ ГИДРОСТАТИКИ

Как уже отмечалось, основное уравнение гидростатики служит для определения величины гидростатического давления в любой точке покоящейся жидкости

$$p = p_0 + \rho g h \tag{2.26}$$

Анализируя основное уравнение гидростатики, можно сделать следующие выводы:

1. Гидростатическое давление есть сумма внешнего ρ₀ давления, действующего на свободной поверхности и весового *pgh* давления, создаваемого весом столба жидкости высотой *h*;

2. Внешнее давление ρ_{θ} не зависит от координат рассматриваемых точек, то есть оно передается во все точки покояшейся жидкости без изменения, поэтому жидкость используется как среда для передачи давления.

Поэтому из основного уравнения гидростатики следует закон Паскаля, который гласит: давление, приложенное к граничной поверхности покоящейся жидкости, передается всем точкам этой жидкости по всем направлениям одинаково.

3. Весовое давление *рgh* является функцией координат точки. С увеличением заглубления точки под свободную поверхность, давление возрастает.

4. Внешнее давление ρ_0 может быть больше атмосферного, меньше атмосферного и равно атмосферному. Если численное значение ρ_0 определено с учетом атмосферного, то давление ρ по формуле (2.26) будет абсолютным; если ρ_0 определено без учета атмосферного, то ρ будет избыточным.

Вместе с Г. Галилеем и С. Стевином считается Паскаль основоположником классической гидростатики: он установил ее основной закон (о полной передаче жилкостью производимого на нее давления закон Паскаля). принцип лействия гидравлического пресса, указал на общность основных законов равновесия жидкостей и газов. Опыт, проведенный под руководством Паскаля (1648), подтвердил предположение Э. Торричелли о существовании атмосферного давления. Паскаль высказал также идею о зависимости атмосферного давления от высоты, открыл зависимость давления

БЛЕЗ ПАСКАЛЬ (1623-1662)

от температуры и влажности воздуха и предложил использовать барометр для предсказания погоды. В его честь названа единица давления — паскаль. Следствием основного уравнения гидростатики является тот факт, что на равной глубине в покоящейся жидкости давление одинаково. В результате можно говорить о поверхностях равного давления. Для жидкости, находящейся в абсолютном покое или равномерно движущейся, эти поверхности — горизонтальные плоскости. В других случаях относительного покоя, которые будут рассмотрены ниже, поверхности равного давления могут иметь другую форму или не быть горизонтальными. Существование поверхностей равного давления позволяет измерять давление в любой точке жидкости.

2.8. УСЛОВИЯ РАВНОВЕСИЯ ЖИДКОСТИ В СООБЩАЮЩИХСЯ СОСУДАХ

Рассмотрим два сообщающихся сосуда, наполненных различными, не смачивающимися между собой жидкостями (рис. 2.12).

Сосуды закрыты, давления p_{01} и p_{02} — на поверхности жидкостей в сосудах I и II различны. Линия 0-0 — линия раздела разнородных жидкостей. Горизонтальная плоскость, проходящая через линию 0-0, является плоскостью равного давления. Определим величину гидростатического давления в точках C_1 и C_2 , лежащих на плоскости равного давления.

Рис. 2.12. Сообщающиеся сосуды

Согласно основному уравнению гидростатики:

$$p_{C_1} = p_{O_1} + \rho_1 g h_1, \qquad (2.27)$$

$$p_{C_2} = p_{O_2} + \rho_2 g h_2 , \qquad (2.28)$$

где h_1 и h_2 — возвышение поверхности жидкостей в сосудах I и II над плоскостью 0-0; ρ_1 и ρ_2 — плотности жидкостей. Очевидно, что:

$$p_{C_1} = p_{C_2},$$

$$p_{O_1} + \rho_1 g h_1 = p_{O_2} + \rho_2 g h_2,$$
(2.29)

$$p_{O_1} - p_{O_2} = \rho_2 g h_2 - \rho_1 g h_1$$
, (2.30)

Зависимость (2.30) характеризует условия равновесия жидкостей в сообщающихся сосудах. Она позволяет решать частные задачи.

Случай I. В сосудах налита одинаковая жидкость, но давления p_{o_1} и p_{o_2} различны, тогда при условии, что $\rho_1 = \rho_2 = \rho$ получим:

$$p_{O_1} - p_{O_2} = \rho \cdot g(h_2 - h_1) \tag{2.31}$$

Случай II. Жидкость одинакова, т.е. $\rho_1 = \rho_2 = \rho$ и $p_{o_1} = p_{o_2}$. Тогда:

$$h_1 = h_2$$
, (2.32)

жидкость в сосудах будет на одном уровне.

Случай III. Жидкость одинакова $\rho_1 = \rho_2 = \rho$, но один сосуд открыт $p_{o_1} = p_{a_{1M}}$, а другой закрыт $p_{o_2} > p_{a_{1M}}$. Тогда:

 $p_{C_1} = p_{\text{atm}} + \rho \cdot g \cdot h_1, \qquad (2.33)$

$$p_{C_2} = p_{O_2} + \rho \cdot g \cdot h_2, \qquad (2.34)$$

так как $p_{C_1} = p_{C_2}$, значит

$$p_{\text{aTM}} + \rho \cdot g \cdot h_1 = p_{O_2} + \rho \cdot g \cdot h_2, \qquad (2.35)$$

$$h_1 = h_2 + \frac{p_{O_2} + p_{aTM}}{\rho \cdot g}.$$
 (2.36)

Выражение $\frac{p_{O_2} - p_{aTM}}{\rho \cdot g}$ есть пьезометрическая высота для

точек, лежащих на поверхности жидкости в закрытом сосуде. Случай IV. Жидкости разнородные, несмешивающиеся, а

 $p_{O_1} = p_{O_2}$

Тогда:

$$\rho_1 \cdot g \cdot h_1 = \rho_2 \cdot g \cdot h_2 \tag{2.37}$$

или
$$\frac{h_1}{h_2} = \frac{\rho_2}{\rho_1}$$
 (2.38)

2.9. КРУГЛАЯ ТРУБА ПОД ДЕЙСТВИЕМ ГИДРОСТАТИЧЕСКОГО ДАВЛЕНИЯ

В гидравлических системах технологического назначения жидкость в основном передается по трубам круглого сечения. В водопроводах, канализационных и многих других трубопроводных системах, гидротехнических сооружениях широко используются трубы и различные резервуары круглого сечения. По этой причине задача определения нагрузки на трубу является весьма распространенной. В таких расчетах используется полученная ранее формула горизонтальной составляющей силы, действующей со стороны жидкости на криволинейную поверхность

$$F_{\Gamma} = S_{\mathfrak{g}} \rho \mathfrak{g} h_{\mathfrak{c}} + P_{\mathfrak{g}} S_{\mathfrak{g}} = S_{\mathfrak{g}} \left(\rho \mathfrak{g} h_{\mathfrak{c}} + P_{\mathfrak{g}} \right)$$

Для труб небольшого диаметра, которые применяются в машиностроительном гидроприводе, давлением столба жидкости можно пренебречь ввиду его малости.

Тогда уравнение примет вид $F_T = S_{a} P_{0}$ где P_{0} – внешнее давление.

Рассмотрим трубу (рис. 2.13) длиной l с внутренним диаметром D и толщиной стенок δ , находящуюся под действием гидростатического давления P. Это давление порождает разрывающие силы F_x .

Из-за симметричности трубы такие разрывающие силы будут действовать одинаково во всех направлениях. Для вертикальной плоскости эта сила будет равна:

$$F_x = PDl$$

где произведение *Dl* – есть вертикальная проекция площади стенки трубы.

Разрывающей силе будут противодействовать силы реакции FR, возникающие в стенках трубы.

Площадь стенок трубы S_{δ} в любом осевом сечении составит:

$$S_{\delta} = 2l_{\delta}$$

FR. FR. D

Рис. 2.13. Круглая труба под действием гидростатического давления

Под действием разрывающих сил в

стенках трубы будет возникать суммарная сила реакция F_R , равная по величине разрывающей силе, но направленная в противоположную сторону:

$$F_R = F_x$$
.

Отсюда находится напряжение о в стенках трубы, вызываемое давлением внутри трубы. Оно равняется

$$\sigma = \frac{F_R}{S_{\delta}} = \frac{PDl}{2l\sigma} = \frac{PD}{2\sigma}$$
(2.39)

2.10. ПРОСТЫЕ ГИДРАВЛИЧЕСКИЕ МАШИНЫ. ГИДРАВЛИЧЕСКИЙ ПРЕСС

На законе Паскаля основан принцип действия различных гидравлических устройств, с помощью которых давление передается на расстояние.

К таким устройствам относятся: гидравлические прессы, гидроподъемники, гидродомкраты, гидравлические аккумуляторы, гидравлические тормозные системы, гидромультипликаторы и др.

В качестве примера рассмотрим работу гидравлического пресса.

Гидравлический пресс применяют для получения больших сжимающих усилий, что необходимо, например, деформации металлов обработке лля при давлением (прессование. ковка. штамповка). при испытании различных материалов, уплотнении рыхлых материалов, в технологических процессах по обезвоживанию осадков и т.д.

Принципиальная схема пресса представлена на рис. 2.14.

Рис. 2.14. Гидропресс

К поршню площадью S_I приложена сила F_I , которая передается жидкости, создавая давление p_I :

$$p_1 = \frac{F_1}{S_1}$$

По закону Паскаля давление передается на поршень площадью S₂, создавая полезную силу, под действием которой прессуется материал:

$$p_2 = p_1 = \frac{F_2}{S_2}.$$

Следовательно

$$\frac{F_1}{F_2} = \frac{S_1}{S_2}$$
(2.40)

или

$$\frac{F_1}{F_2} = \frac{d_1^2}{d_2^2}$$
(2.41)

Из формулы (2.41) видно, что отношение усилий на малом и большом поршнях пропорционально квадрату отношения диаметров поршней.

Например, если диаметр большого поршня в десять раз больше диаметра малого поршня, то полезное усилие на большом поршне будет в 100 раз больше, чем на малом.

2.11. МЕТОДЫ И ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ДАВЛЕНИЯ. АБСОЛЮТНОЕ, ИЗБЫТОЧНОЕ И ВАКУУММЕТРИЧЕСКОЕ ДАВЛЕНИЕ

Приборы, применяемые для измерения давления, можно разделить на две основные группы: жидкостные и металлические.

Принцип действия жидкостных приборов основан на уравновешивании измеряемого давления высотой столба жидкости (рис. 2.16).

Простейший прибор жидкостного типа — пьезометр, представляющий собой стеклянную трубку небольшого диаметра (около 8-10 мм), один конец которой открыт и сообщается с атмосферой.

Второй конец присоединяется к сосуду, в котором измеряется давление. Пусть давление р больше атмосферного (барометрического) B (p>B).

Тогда жидкость в трубке пьезометра поднимается на определенную высоту, так что вес столба жидкости будет уравновешивать разницу в давлениях p и B. Давление в точке A у основания пьезометрической трубки определяется по формуле гидростатического давления (2.23):

$$p_a = B + \rho g h$$

 $h = \frac{p_A - B}{\rho g}.$

Отсюда

Рис. 2.15. Пьезометр

Таким образом, высота жидкости в пьезометре характеризует не истинное давление в точке *A*, а избыток этого давления над атмосферным или барометрическим.

Давление в сосуде p_a принято называть **абсолютным давлением.** Разницу $p_a - B$ называют **избыточным давлением**.

Следовательно, абсолютным давлением называют давление в сосуде, отсчитанное от не условного нуля. Абсолютное давление обозначают «ата», что означает «атмосфера абсолютная».

Избыточным давлением называют разницу между абсолютным давлением и атмосферным в том случае, когда абсолютное давление больше атмосферного. Оно обозначается «ати», что означает «атмосфера избыточная».

Очевидно, что

$$p_{usb} = p_{abc} - B$$

или

$$p_{a\delta c} = p_{u_{3\delta}} + B.$$

Так как барометрическое давление близко к 1 кг/см², то обычно считают

$$p_{ama} = p_{amu} + 1.$$

Для точных измерений абсолютного давления нужно знать показание барометра. При измерении пьезометром $h = p/\rho g$, где под p следует понимать избыточное давление. Отсюда $p = \rho g h$.

Измерение давления высотой столба жидкости весьма удобно и часто применяется в технике. Полезно напомнить, что давлению в 1 кгс/см² (техническая атмосфера) соответствует вес столба воды:

 $h = 1 \text{ кг/см}^2 / 0,001 \text{ кгс/см}^3 = 1000 \text{ см} = 10 \text{ м водяного столба}$ (м вод. ст.) или же вес столба ртути высотой h = 1/0,0136 кгс/см³ = 73,5 см = 735 мм ртутного столба (мм рт. ст.).

Может случиться так, что абсолютное давление меньше атмосферного, например, под поршнем в цилиндре (рис. 2.16). В этих случаях говорят не об избыточном давлении, а *о разрежении, вакууме или вакуумметрическом давлении*.

Если абсолютное давление в сосуде меньше атмосферного, то для измерения применяются вакуумметры. Если его измерения вакуума лля применяют приборы. жидкостные то последние обычно выполняют в виде так называемого U-образного манометра (рис. 2.16). B точках С и В давление одинаково и равно барометрическому В.

Тогда по формуле гидростатического давления будем иметь

Рис. 2.16. Всасывание жидкости поршнем

$$p_{g} = p + \rho gh.$$

Рис. 2.17. Вакуумметр

Учитывая, что $p_{\theta} = p_{c} = B$, получим $B = p + \rho g h$.

Отсюда
$$h = \frac{B-p}{\rho g}$$
.

Разность *B* - *р* называют вакуумом, т. е. вакуумом называют разность между атмосферным давлением и абсолютным в том случае, когда абсолютное давление меньше атмосферного. Например, абсолютное давление в сосуде 0,35

атм, тогда вакуумом будет разница 1,0 - 0,35 = 0,65 атм. Вакуумметрической высотой $h_{вак}$ называют высоту, на которую жидкость поднимается вследствие разрежения:

$$h_{\mathrm{Ba}\,\mathrm{K}} = \frac{P_{\mathrm{Ba}\,\mathrm{K}}}{g\rho}.$$

Так как максимальное $p_{вак} = p_{amm}$, то максимальные высоты, на которые могут подниматься жидкости за счет всасывания при атмосферном давлении, равном 1 ат., для

Рис. 2.18. U-образный манометр

ртути - 760 мм, а для воды - 10,33 м.

Для измерения небольших давлений можно использовать U—образный манометр (рис. 2.18).

Если соединительная трубка заполнена жидкостью с плотностью ρ_2 , то

$$p_{\rm M} = g\rho_1 h_1 + g\rho_2 h_2$$

Для измерения разности давлений в двух точках используют дифференциальные манометры, простейший из которых U-образный (рис. 2.19). Если манометр заполнен ртутью, а p₁ соединительные шланги – жидкостью с плотностью р, то

$$p_1 - p_2 = g\left(\rho_{\rm pr} - \rho\right)h_1$$

Жидкостные приборы имеют

очень высокую точность измерения давления, но применимы только в стационарных, лабораторных условиях, для ограниченного диапазона измеряемых давлений.

Эти приборы хрупки и громоздки. Кроме того, ртутные приборы еще и токсичны, а ртуть – жидкость уникальная,

Рис. 2.219. Дифференциальный манометр

другой жидкости с подобной плотностью в природе не существует.

По этим причинам в технике широко используются механические (рис. 2.20.а) и электрические приборы для измерения давлений. Во всех этих приборах есть либо полая пружина, либо мембрана, которая деформируется под действием давления. Деформация упругого элемента механического прибора передается через механические передачи на стрелку, которая показывает величину давления

на шкале. В электрических приборах эта деформация упругого элемента приводит к смещению движка потенциометра, установленного в мостовой схеме.

Стрелочный электроприбор (вольтметр или амперметр) устанавливается в этой схеме и имеет градуировку в единицах давления.

Благодаря своей прочности и возможности измерения очень больших давлений (от 0,25 до 5 000 кГ/см²) и

Рис. 2.20.а. Механический манометр

использования в любых условиях пружинные манометры получили очень широкое распространение. Этот тип манометра был изобретен в 1848 г. французским ученым Э. Бурдоном.

Следует отметить, что манометрами Бурдона измеряется так называемое манометрическое давление (или избыточное), т. е. разность между абсолютным (полным) давлением и атмосферным. Для получения полного давления к давлению манометрическому необходимо прибавить давление атмосферное (барометрическое).

2.12. ГИДРОСТАТИЧЕСКИЙ НАПОР И ЭНЕРГЕТИЧЕСКИЙ ЗАКОН ДЛЯ ЖИДКОСТИ, НАХОДЯЩЕЙСЯ В РАВНОВЕСИИ

При выводе основного уравнения гидростатики было получено дифференциальное уравнение вида

$$dp = -\gamma \, dz,$$
$$z\partial e \ \gamma = \rho g.$$

Прежде чем интегрировать это уравнение, представим его в следующем виде:

$$\frac{dp}{\gamma} + dz = 0$$

или

$$d\left(\frac{p}{\gamma}+z\right)=0.$$

Проинтегрировав, получим

$$\frac{p}{\gamma} + z = C = \text{const.}$$

Величина $\frac{p}{\gamma} = h$ представляет ту высоту, на которую поднялась бы жидкость в пьезометре, если бы верхний конец его находился под нулевым давлением p = 0 (рис. 2.21).

Таким образом, это есть высота, соответствующая абсолютному давлению в жидкости. Она называется *приведенной* (высота h_2).

 $z = z_2$ — геометрическая высота выбранной точки над условной плоскостью сравнения 0 - 0. Отсюда

$$z_2 + \frac{p}{\gamma} = H_S = \text{const.}$$
(2.24)

Рис. 2.21. Гидростатический напор

Уравнение (2.24) показывает, что сумма двух высот Z_2 и $\frac{p}{\gamma}$ для любой точки жидкости остается постоянной. Эта сумма называется абсолютным (полным) гидростатическим напором.

Если конец пьезометра соединить с атмосферой при давлении В, то уравнение (2.24) примет вид

$$z_1 + \frac{p-B}{\gamma} = H_P = \text{const.}$$
(2.25)

Сумма Z_1 и $(p - B)/\gamma$ называется гидростатическим напором, а величина $(p - B)/\gamma = p_{u30}/\gamma$ - *пьезометрическим напором*.

Горизонтальная плоскость, проведенная на высоте Hp, называется плоскостью гидростатического или пьезометрического напора, а H_s - плоскостью абсолютного (полного) напора. Очевидно, что $H_p < H_s$.

Выражениям (2.24) и (2.25) можно придать простой энергетический смысл. Рассмотрим частицу жидкости массой *m*. Ее потенциальная энергия относительно плоскости 0 - 0 будет *mgz*. Кроме того, под действием давления р частица может подняться на высоту $h=p/\gamma$ т. е. обладает потенциальной энергией давления, равной

$$mgh = mg \frac{p}{\gamma}$$

Таким образом, полный запас потенциальной энергии частицы будет

$$E_n = mgz + mg\frac{p}{\gamma}.$$

Разделив последнее соотношение на mg, получим

$$e_n = z + \frac{p}{\gamma},$$

где $e_n = E_n / mg$.

Отсюда следует, что высота z есть удельная потенциальная энергия положения частицы, p/γ — удельная потенциальная энергия давления.

Величина

$$z + \frac{p}{\gamma} = H_{S} = \text{const}$$

является полной удельной потенциальной энергией частицы.

Последнее соотношение называется энергетическим законом для жидкости, находящейся в равновесии.

Для всех точек данного объема покоящейся жидкости удельная потенциальная энергия одинакова. Эти утверждения справедливы как для полного (*H_s*), так и для пьезометрического (*H_p*) напоров.

2.13. ИНТЕГРИРОВАНИЕ УРАВНЕНИЙ ЭЙЛЕРА ДЛЯ СЛУЧАЯ ОТНОСИТЕЛЬНОГО ПОКОЯ ЖИДКОСТИ

Относительным равновесием жидкости называется такое состояние, при котором каждая ее частица сохраняет свое положение относительно твердой стенки движущегося сосуда. При относительном равновесии следует учитывать силы инерции, дополняющие систему массовых сил, действующих в жидкости, находящейся в состоянии абсолютного покоя.

При относительном равновесии надо решить две задачи.

1. Определить форму поверхности уровня.

2. Установить характер распределения давления.

Решение этих задач основано на дифференциальных уравнениях равновесия

 $dp = \rho (Xdx + Ydy + Zdz) \quad \mathbf{M} \quad Xdx + Ydy + Zdz = 0$

При относительном равновесии следует учитывать силы инерции, дополняющие систему массовых сил, действующих в жидкости, находящейся в состоянии абсолютного покоя.

Рассмотрим некоторые частные случаи такого равновесия.

Пусть жидкость находится в емкости, которая движется прямолинейно и равноускоренно по горизонтальной плоскости с ускорением *a* (рис. 2.22).

Масса жидкости при движении находится под действием массовой силы тяжести и силы инерции от горизонтального перемещения.

Соответствующие проекции массовых сил будут равны:

X=-*a*; *Y*=0; *Z*=-*g*.

Уравнение (2.15), учитывая массовые силы, примет вид

$$dp = -\rho ad x - gdz.$$

Переменные в уравнении разделены. Интегрируя его, получим

$$p = -ax - gz + C,$$
 (2.26)

где C — постоянная интегрирования, определяемая из граничных условий, которые в данном случае имеют вид $p = p_0$ при x = 0 и z = 0.

Отсюда

$$p_0 = C.$$
 (2.27)

Подставляя (2.27) в уравнение (2.26), найдем

$$p = p_0 - ax - gz. \tag{2.28}$$

Уравнение (2.28) для свободной поверхности, где $p = p_0$, примет вид

$$-rax - rgz = 0$$
.

Отсюда

$$z = -\frac{a}{g}x \quad . \tag{2.29}$$

Так как a/g является константой, уравнение (2.29) будет уравнением прямой линии. Это означает, что плоскость, проведенная через оси x и z, будет пересекать наружную поверхность жидкости по линии AB.

Рис. 2.22. Относительное равновесие жидкости

Отношение а/д представляет тангенс угла наклона прямой АВ к горизонтальной плоскости $tg\alpha = -a/g$. Отсюла

$$\alpha = \arctan\left(-\frac{a}{g}\right).$$

Запишем уравнение (2.28) для некоторой точки М в виде

$$p - p_0 = -\frac{\rho g a x}{g} - \rho g z_M = \frac{\gamma a x}{g} - \gamma z_M$$

или

$$\frac{p - p_0}{\gamma} = -\frac{ax}{g} - \gamma z_M \tag{2.30}$$

Согласно уравнению (2.29) первый член в правой части уравнения (2.30) будет — $ax/g z_M$, так как точка M' находится на поверхности.

Отсюда, учитывая, что $z_{M'} = h_0$, а $z_M = -b$, получим

$$\frac{p-p_0}{\gamma} = -\frac{ax}{g} - \gamma z_M - z_M = h_0 + b = h$$

или

$$p = p_0 + \gamma h \tag{2.31}$$

Уравнение (2.31) представляет формулу гидростатического давления (2.23).

Таким образом, давление в любой точке жидкости, с емкостью, прямолинейно движущейся вместе И равноускоренно, определяется по формуле гидростатического давления, где *h* глубина погружения точки под поверхностью жидкости. Например, давление в точке D будет

$$p_D = p_0 + gh_1.$$

2.14. СИЛА ДАВЛЕНИЯ ЖИДКОСТИ НА ПЛОСКУЮ СТЕНКУ

Пусть имеется фигура произвольной формы площадью ω в плоскости *01*, наклоненной к горизонту под углом α (рис. 2.23).

Рис. 2.23. Схема для определения силы давления жидкости на плоскую стенку

Для удобства вывода формулы для силы давления жидкости на рассматриваемую фигуру повернем плоскость стенки на 90° вокруг оси *01* и совместим ее с плоскостью чертежа.

Как известно, сила характеризуется тремя параметрами:

– направлением;

— величиной;

- точкой приложения.

Давление в каждой точке стенки направлено по нормали к ней, следовательно, и равнодействующая сила давления будет перпендикулярна плоской стенке.

Выделим на рассматриваемой плоской фигуре, на глубине *h* от свободной поверхности жидкости элементарную площадку $d\omega$. Тогда элементарная сила, действующая на площадку $d\omega$, будет

$$dF = p \cdot d\omega = (p_0 + \gamma h)d\omega = p_0 d\omega + \gamma h d\omega$$

где p_0 – давление на свободную поверхность;

h - глубина расположения площадки $d\omega$.

Интегрируя последнее соотношение, получим суммарную силу давления жидкости на плоскую фигуру:

$$F = \int_{\omega} (p_0 + \gamma h) d\omega.$$

Учитывая, что $h = l \sin \alpha$, получим

$$F = \int_{\omega} (p_0 + \gamma l \sin \alpha) d\omega$$

или

$$F = p_0 \omega + \gamma \alpha \int_{\omega} l d\omega.$$

Последний интеграл равен статическому моменту площадки ω относительно оси *Оу*, т. е.

$$\int_{\omega} ld\,\omega = l_c\,\omega.$$

где l_c — расстояние от оси *Оу* до центра тяжести фигуры. Тогда

$$F = p_0 \omega + g l_c sin \alpha w$$

Так как $l_c \sin \alpha = h_c$,

$$F = (p_0 + \gamma h_c) = p_c \omega ,$$

где h_c , p_c — глубина расположения центра масс площадки и давление в этой точке.

Таким образом, полная сила давления жидкости на плоскую стенку равна произведению площади стенки на гидростатическое давление р, в центре масс этой площади.

2.15. ЦЕНТР ДАВЛЕНИЯ И ОПРЕДЕЛЕНИЕ ЕГО КООРДИНАТ

Точку приложения суммарной силы давления называют центром давления. Определим координаты центра давления l_d и y_d (рис. 2.24).

Рис. 2.24. Центр давления жидкости на плоскую стенку

Как известно из теоретической механики, при равновесии момент равнодействующей *F* относительно некоторой оси равен сумме моментов составляющих сил *dF* относительно той же оси.

Составим уравнение моментов сил F и dF относительно оси Oy.

$$Fl_d = \int_{\omega} dFl.$$

Силы *F* и *dF* определим по формулам

$$F = \gamma h_c \omega = \gamma l_c \sin \alpha \omega;$$

$$dF = \gamma h d\omega = \gamma l \sin \alpha d\omega$$

Тогда

$$\gamma l_c \sin \alpha \omega l_d = \int_{\omega} \gamma l \sin \alpha d\omega l$$

Сокращая выражение на γ и sin α , получим

$$l_c l_d \omega = \int_{\omega} l^2 d\omega,$$

где $\int_{\omega} l^2 d\omega = J_y$ — момент инерции площади фигуры

относительно оси *Оу*. Отсюла

$$l_d = \frac{J_y}{l_c \omega}$$

Заменив $J_y = J_c + l^2 c^{\omega}$ по известной из теоретической механики формуле, где J_c — момент инерции площади фигуры относительно оси, параллельной *Оу* и проходящей через центр тяжести, получим

$$l_d = l_c + \frac{J_c}{l_c \omega}.$$

Из этой формулы следует, что центр давления всегда расположен ниже центра тяжести фигуры на расстоянии $\frac{J_c}{l_c\omega}$. Это расстояние называется эксцентриситетом и

обозначается буквой е.

Координата у_d находится из аналогичных соображений:

$$y_d = \frac{\int y l d\omega}{l_c \omega} = \frac{J_{yl}}{l_c \omega},$$

где J_{yl} — центробежный момент инерции той же площади относительно осей *у* и *l*. Если фигура симметрична относительно оси, параллельной оси *Ol* (см. рис. 2.24), то, очевидно, $y_d = y_y$, где y_c координата центра тяжести фигуры.

2.16. СИЛА ДАВЛЕНИЯ ЖИДКОСТИ НА КРИВОЛИНЕЙНЫЕ СТЕНКИ. ПЛАВАНИЕ ТЕЛ

Чаще рассматривают цилиндрические и сферические поверхности, имеющие вертикальную плоскость симметрии. Определим силу давления на криволинейную поверхность *АВ* (рис. 2.25 а) при следующих условиях. На свободную поверхность жидкости действует давление p_0 , которое больше атмосферного p_a , а на поверхность *AB* с одной стороны действует полное гидростатическое давление $p=p_0+\rho gh$, а с
другой стороны — атмосферное давление. Определить силу избыточного давления на цилиндрическую поверхность.

Проекция силы давления на горизонтальную ось равна интегралу

$$P_{\tilde{A}} = \int_{S} dP_{\tilde{A}} ,$$

где dP_{Γ} — проекция на горизонтальную ось элементарной силы dP, приложенной к выделенной на криволинейной стенке площадке dS и равной:

$$dP = (p_0 + \rho gh)dS.$$

Здесь *h* — глубина погружения центра площадки, измеренная от свободной поверхности жидкости; *p_o* — давление на этой поверхности. Обозначив через *α* угол наклона *dP* к горизонту, можно найти:

$$dP_{\Gamma} = (p_0 + \rho gh) \cos \alpha \, dS$$

Рис. 2.25 а

Рис. 2.26 б.в. Схема для определения силы давления жидкости на цилиндрическую поверхность

Произведение $\cos a dS$ соответствует проекции dS_B элементарной площадки на вертикальную плоскость:

 $\cos \alpha dS = dS_{R}$.

Поэтому

$$dP_{\rm T} = (p_0 + \rho gh) dS_B$$

Интегрируя, получаем:

$$P_{\Gamma} = (p_0 + \rho g h_c) S_B$$

где h_c — измеренная от свободной поверхности жидкости глубина погружения центра тяжести проекции криволинейной стенки на вертикальную плоскость; S_B — площадь этой проекции.

Чтобы вычислить проекцию P_B на вертикальную ось, следует аналогичные операции выполнить с проекцией dP_B элементарной силы давления. В этом случае:

$$dP_B = (p_0 + \rho gh) dS_{\Gamma}$$

где *S_Г* — площадь проекции элементарной площадки на горизонтальную плоскость.

При интегрировании правой части этого уравнения получается два члена, первый из которых равен $p_0 S_D$

второй весу $\rho g V$ жидкости, занимающей объем $V = \int_{S} h dS_{T}$

между криволинейной поверхностью, свободным уровнем жидкости и вертикальными стенками 1, 2, 3:

$$P_{B} = p_{0}S_{\Gamma} + \rho gV$$

Объем V называют *телом давления*.

Полная сила гидростатического давления на криволинейную стенку составит

$$P = \sqrt{P_{\Gamma}^2 + P_B^2}$$

У стенок постоянной кривизны (цилиндрических, сферических) линия действия силы давления *P* проходит через центр или ось кривизны. Точку приложения равнодействующей силы *P* необходимо определять с помощью уравнения моментов.

Приведем другой вариант определения силы давления жидкости на криволинейную стенку.

Возьмем цилиндрическую поверхность *AB* с образующей, перпендикулярной плоскости чертежа (рис. 2.26а), и рассмотрим определение силы давления жидкости на эту поверхность в двух случаях:

а) жидкость расположена сверху (рис. 2.26б) и

б) жидкость расположена снизу (рис. 2.26в).

В случае «б» выделим объем жидкости, ограниченный рассматриваемой поверхностью AB. вертикальными поверхностями, проведенными через границы этого участка, и свободной поверхностью жидкости, т. е. объем АВСО, и рассмотрим условия его равновесия в вертикальном и горизонтальном направлениях. Если жидкость действует на поверхность AB с силой P, то поверхность AB оказывает жидкость такое же усилие Р, но направленное на обратную сторону. На рис. 2.266 показана эта сила реакции, разложенная на две составляющие: горизонтальную P_{Γ} , и вертикальную P_{R} .

Условие равновесия объема *АВСD* жидкости в вертикальном направлении имеет вид:

$$P_B = p_0 S_{\Gamma} + G$$

где p_0 – давление на свободной поверхности жидкости;

 S_{Γ} – площадь горизонтальной проекции поверхности AB;

G – вес выделенного объема жидкости, вес тела давления. Условие равновесия того же объема жидкости в

горизонтальном направлении запишем с учетом того, что силы давления жидкости на поверхности *EC* и *AD* взаимно уравновешиваются и остается лишь сила давления на площадь *BE*, т. е. на вертикальную проекцию поверхности $AB - S_{B}$. Будем иметь:

$$P_{\Gamma} = S_{B}\rho gh_{c} + p_{a}S_{b}$$

Определиввертикальную и горизонтальную составляющие полной силы давления *P*, найдем эту последнюю:

$$P = \sqrt{P_B^2 + P_\Gamma^2}$$

В том случае, когда жидкость расположена снизу (случай «в», см. рис. 2.28в), величина гидростатического давления во всех точках поверхности AB будет иметь те же значения, что и в случае «б», но направление его будет противоположным, и суммарные силы P_B и P_Γ будут определяться теми же формулами, но с обратным знаком. При этом под величиной G следует понимать, так же как и в случае «б», вес жидкости в объеме ABCD, хотя этот объем и не заполнен жидкостью – вертикальная составляющая силы давления жидкости на твердую стенку направлена вверх.

Направление силы давления на стенку определяет угол а

$$\alpha = \operatorname{arctg} \frac{P_B}{P_r}$$

2.17. ЗАКОН АРХИМЕДА

Закон Архимеда формулируется в виде следующего утверждения: на тело, погруженное в жидкость, действует выталкивающая сила, направленная вверх и равная весу вытесненной им жидкости.

Эту силу называют поддерживающей. Она является равнодействующей сил давления, с которыми жидкость, находящаяся в покое, действует на покоящееся в нем тело. Для доказательства закона выделим в теле элементарную вертикальную призму с основаниями $d\omega_{n1}$ и $d\omega_{n2}$ (рис. 2.27).

Вертикальная проекция элементарной силы, действующей на верхнее основание призмы, будет:

$$dF_{Z_1} = p_1 d\omega_{n_1} \cos(n_1, z),$$

где p_l – давление на основание призмы $d\omega_{nl}$; n_l – нормаль к поверхности $d\omega_{nl}$.

Так как $d\omega_{n_1}\cos(n_1, z) = d\omega_z$, где $d\omega_z$ – площадь призмы в сечении, перпендикулярном оси *z*, то:

$$dF_{Z_1}=p_1d\omega_z.$$

Отсюда, учитывая, что по формуле гидростатического давления $p_1 = p_0 + \gamma z$, получим:

$$dF_{Z_1} = (p_0 + z_1)d\omega_z.$$

Аналогично вертикальная проекция элементарной силы, действующей на нижнее основание призмы, находится по формуле:

$$dF_{Z_2} = (p_0 + \gamma z_2) d\omega_z.$$

Суммарная вертикальная элементарная сила, действующая на призму, определится как:

$$dF_{Z_1} = dF_{Z_1} - dF_{Z_2} = \gamma(z_1 - z_2)d\omega_z = = -\gamma(z_2 - z_1)d\omega_z$$

или $dF_z = -\gamma h_T d\omega_z$.

Интегрируя это выражение при γ =const, получим

$$F_{Z} = -\gamma \int_{\omega} h_{I} d\omega_{z}$$

где $\int_{\omega} h_{\tau} d\omega_z = V$ — объем тела, погруженного в жидкость;

h_T – высота погруженной части тела на данной вертикали

Рис. 2.27. Закон Архимеда

Отсюда для выталкивающей силы Fz получим формулу:

$$F_{z} = -\gamma V$$

Выделяя в теле элементарные горизонтальные призмы и производя аналогичные выкладки, получим $F_x = 0$, $F_y = 0$. Тогда

$$F = F_z = -\gamma V = -G$$

где *G* – вес жидкости, вытесненной телом, или

 $F = \rho_{\mathcal{H}} g V_{mena}$

Таким образом, выталкивающая сила, действующая на тело, погруженное в жидкость, равна весу жидкости, вытесненной телом, что и требовалось доказать.

Из закона Архимеда следует, что на тело, погруженное в жидкость, в конечном счете, действуют две силы (рис. 2.28):

1 -сила тяжести — вес тела $G = \gamma_1 V$

2 — поддерживающая (выталкивающая) сила $F_z = \gamma_2 V$

где у₁ – удельный вес тела;

*у*₂ – удельный вес жидкости.

АРХИМЕД (287 до н. э. – 212 до н.э.)

Древнегреческий математик и механик, основоположник теоретической механики и гидростатики. Архимеду принадлежит множество технических изобретений, завоевавших ему необычайную популярность среди современников. Знаменитый закон гидростатики, вошедший в науку с его именем, сформулирован в трактате «О плавающих телах».

Еще в юности, во время пребывания в Александрии, изобрел водоподъемный механизм — водоподъемную машину, вал с винтовой поверхностью, установленный в наклонной трубе, нижний конец которой погружен в воду. При вращении (напр., от ветряного или другого двигателя) винтовая

поверхность вала перемещает воду по трубе на высоте до 4 м), сыгравший большую роль в ирригационных работах на засушливых землях египетского государства.

При этом могут иметь место следующие основные случаи:

- Удельный вес тела и жидкости одинаковы, $\gamma_1 = \gamma_2$.

В этом случае G=-Fz, равнодействующая G-Fz=0, и тело будет находиться в состоянии безразличного равновесия, т.

е. будучи погружено на любую глубину, оно не будет ни всплывать, ни тонуть.

- При $\gamma_1 > \gamma_2$, $G > -F_Z$ равнодействующая направлена вниз, и тело будет тонуть.

- При $\gamma_1 < \gamma_2$, G < -Fz равнодействующая направлена вверх, и тело будет всплывать.

Всплытие тела будет продолжаться до тех пор,

Рис. 2.28. Силы действующие на тело, погруженное в жидкость

пока выталкивающая сила не уменьшится настолько, что сделается равной силе веса, т. е. пока не будет $G = -F_{Z}$. После этого тело будет плавать на поверхности.

Вопросы для самопроверки

1. Дайте определение гидростатического давления.

2. В каких единицах измеряется давление?

3. Сформулируйте основную теорему гидростатики.

4. Что называется полным (абсолютным) давлением?

5. Что называется избыточным давлением и вакуумом?

6. Что называется пьезометрическим и гидростатическим напором?

7. Раскрыть энергетическую сущность основного уравнения гидростатики.

8. Сформулируйте закон Паскаля.

9. Какие гидравлические устройства основаны на законе Паскаля?

10. Как формулируется закон Архимеда?

Примеры решения задач

Задача 1. Определить полное гидростатическое (абсолютное) и избыточное давления на дно наполненного

водой сосуда высотой $h = 10 \, \text{м}$. Сосуд сверху открыт, давление на свободной поверхности атмосферное.

Решение:

Гидростатическое давление в точке равно

$$p = p_0 + \rho_6 gh$$

где

$$p_0 = p_{\mathrm{at}}$$

Примем:

$$\rho_{\rm B} = 1000 {}_{\rm K\Gamma/M^3}; g = 9,80665 {}_{\rm M/c^2}; p_{\rm at} = 101325 {}_{\rm Ha}.$$

Абсолютное давление

 $p = 101325 + 1000.9,8066510 = 19,9391510^4 \Pi a.$

Избыточное давление

 $p_{\mu} = \rho_{\rm B} \cdot g \cdot h = 1000 \cdot 9,80665 \cdot 10 = 9,80665 \cdot 10^4$ $\Pi a.$

В технической системе давление измеряется в кгс/см². 1 кгс/см² =1 ат (техническая атмосфера). При этом 1 кгс/см² = 9,80665·10⁴ Па.

Таким образом, столб воды высотой 10 м создает в своем основании избыточное давление, равное 1 ат.

Задача 2. Определить силу, точку приложения и направление ее действия, если вода действует на затвор диаметром D = 2 м, шириной B = 3 м (рис. 2.29).

Рис. 2.29

Решение:

- 1. Сила, действующая на вертикальную проекцию P_x : $P_x = \rho g h_c \omega = \rho g \frac{D}{2} DB = 1000 \cdot 9.81 \cdot \frac{2}{2} \cdot 2 \cdot 3 = 58.86 \text{ кH}$.
- 2. Вертикальная составляющая силы

$$P_z = \rho g v = \rho g \frac{1}{2} \cdot \frac{\pi D^2}{4} B = 1000 \cdot 9.81 \cdot \frac{1}{2} \cdot \frac{\pi 2^2}{4} \cdot 3 = 4623 \text{ kH}.$$

3. Полная сила гидростатического давления

$$P = \sqrt{P_x^2 + P_z^2} = \sqrt{(58.86)^2 + (46.23)^2} = 74.84 \text{ kH}.$$

 Угол наклона результирующей силы с горизонтальной осью

$$\alpha = \operatorname{arctg} \frac{P_z}{P_x} = \operatorname{arctg} \frac{46,23}{58,86} = 30^{\circ}15'$$

Сила *Р* проходит через центр окружности и приложена в точке *D*.

Задача 3. Определить равнодействующую F сил давления, действующих на плоскую прямоугольную стенку шириной b=2,0 м, наклоненную под углом $\alpha = 45^{\circ}$ к горизонту (рис. 2.30), если глубина жидкости в открытом сосуде H=1,5 м. Найти точку приложения равнодействующей.

Рис. 2.30

Решение: Площадь стенки

$$S = a \cdot b = \frac{H}{\sin \alpha} \cdot b = \frac{1,5}{0,7071} \cdot 2, 0 = 4,243 \text{ m}^2$$

Равнодействующая сил давления на плоскую стенку

$$F = (p_0 + \rho \cdot g \cdot h_{\text{ILT}}) \cdot S, \quad h_{\text{ILT}} = \frac{H}{2}$$

Для открытого сосуда $p_0 = p_{at}$

$$F = P = 1000 \cdot 9,81 \cdot \frac{1.5}{2} \cdot 4,243 = 31218 \text{ H} = 3182 \text{ k}\Gamma \text{ c}$$

Точка приложения равнодействующей сил давления определяется расстоянием $l_{\mu,d}$:

$$l_{\mu\phi} = l_{\mu\tau} + \frac{J_{\mu\tau}}{S \cdot l_{\mu\tau}}, \quad l_{\mu\tau} = \frac{a}{2} = \frac{2.12}{2} = 1.06 \text{ M}$$

Здесь $J_{u.m}$ — момент инерции стенки относительно горизонтальной оси, проходящей через центр тяжести. Для прямоугольника

$$J_{II,T} = b \cdot a^3 / 12 = 2 \cdot 2, 12^3 / 12 = 1,588 \text{ M}^4$$

$$l_{\rm III,0} = 1,06 + \frac{1,588}{4,243\cdot 1,06} = 1,413$$
 M

Задача 4. На боковой поверхности резервуара, заполненного водой, имеется полусферическая крышка диаметром d = 0,8 м (рис. 2.31). Определить горизантальную и вертикальную составляющие сил давления жидкости на крышку при показании ваккумметра $p_e = 10 \text{ к} \Pi a$.

Решение. Находим положение пьезометрической плоскости, вертикальное расстояние от которой до центра тяжести (точка *C*) вертикальной проекции полусферической крышки *h_c* равно вакуумметрической высоте.

В технике избыточное давление и соответствующая ему пьезо-метрическая высота, измеряемая от пьезометрической плоскости, приняты положительными, а вакуумметрическое давление и вакуумметрическая высота — отрицательными.

Тогда

$$h_{c} = h_{B} = \frac{p_{B}}{\rho g} = \frac{-10 \cdot 10^{3}}{10^{5} \cdot 10} = -1$$
 M

Горизонтальная составляющая давления жидкости на полусферическую крышку

$$P_x = \rho g h_C \omega_z \quad u \Lambda u \quad P_x = p_B \omega_z.$$

Так как площадь вертикальной проекции крышки есть круг диаметром d = 0.8 м, то

Рис. 2.31

$$P_x = -10 \cdot 10^3 \frac{3, 14 \cdot 0, 8^2}{4} = -5, 02 \cdot 10^3 \text{ H}$$

Знак «минус» показывает, что на крышку действует сила внешнего давления, которая направлена внутрь жидкости.

Центр давления силы *P_x* (точка D на вертикальной проекции крышки) смещен вверх на

$$\Lambda h = \frac{I_c}{\omega_z h_c} = \frac{\pi d^4 4}{64\pi d^2 h_c} = \frac{d^2}{16h_c} = \frac{0.8^2}{16(-1)} = -0.04 \text{ M}$$

Вертикальная составляющая силы гидростатического давления на верхнюю четверть сферической крышки направлена вниз

$$P_{bc} = \rho g V_{bcnm}.$$

Вертикальная составляющая давления на нижнюю четверть сферической крышки направлена вверх

$$P_{ab} = \rho g V_{abmn}.$$

Следовательно, вертикальная составляющая на всю полусферическую крышку

$$P_z = P_{bc} - P_{ab} = \rho g \frac{1}{2} \frac{\pi d^3}{6} = 10^3 \cdot 10 \frac{3.14 \cdot 0.8^3}{12} = 1.34 \cdot 10^3 \text{ H}$$

и направлена вниз.

Линия действия силы P_z проходит через центр тяжести объема тела давления (объема полусферы), т.е. на расстоянии х от центра кривизны полусферы. Равнодействующая сила *Р* проходит через центр кривизны.

Следовательно, расстояние x от центра кривизны полусферы до линии действия силы P_z можно найти из соотношения

$$\frac{P_z}{P_x} = \frac{\Delta h}{x}.$$

Отсюда
$$x = \Delta h \frac{P_z}{P_x} = -0.04 \frac{-5.02 \cdot 10^3}{1.34 \cdot 10^3} = 0.15$$
 і.

Задачи для самостоятельного решения

Задача 1. Определить избыточное давление в забое скважины глубиной h = 85 м, которая заполнена глинистым раствором плотностью $\rho = 1250$ кг/м³.

Задача 2.

Рис. 2.32

Рис. 2.33

Определить манометрическое и абсолютное давление в точке A сосуда, (рис. 2.32) заполненного водой, если $h_i = 30$ см, показание ртутного манометра $h_2 = 60$ см.

Задача З.

Два открытых сообщающихся резервуара заполнены жидкостью разного удельного веса $\gamma_1 = 8500 \text{ H/m}^3$ и $\gamma_2 = 10000 \text{ H/m}^3$. Разность уровней жидкостей в резервуарах h = 1,9 м. Определить величину h_2 , на которой находится граница раздела жидкостей а-а (рис. 2.33)

Рис. 2.34

Задача 4.

Паровой прямодействующий насос подает жидкость Ж (масло турбинное) на высоту H = 45 м. Каково рабочее давление пара, если диаметр парового цилиндра D = 180 мм, а насосного цилиндра d = 100 мм? Потерями на трения пренебречь (рис. 2.34).

ГЛАВА 3. ГИДРОДИНАМИКА. ОСНОВЫ КИНЕМАТИКИ И ДИНАМИКИ ЖИДКОСТИ

3.1. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ КИНЕМАТИКИ И ДИНАМИКИ ЖИДКОСТИ

Гидродинамика — это раздел гидравлики (механики жидкости), изучающий закономерности движущихся жидкостей (потоков жидкостей).

Кинематика жидкости изучает связь между геометрическими характеристиками движения и времени (скоростью и ускорением).

Динамика жидкости (или гидродинамика) изучает законы движения жидкости как результат действия сил.

Классификация видов движения жидкости основана на ряде признаков.

По характеру протекания процесса:

1. *Неустановившееся движение жидкости* — движение, изменяющееся во времени, т.е. скорость и давление в данной точке изменяются с течением времени. Иллюстрацией неустановившегося движения жидкости может быть истечение из резервуара при его опорожнении.

2. *Установившееся движение жидкости* — это такое, при котором в любой точке пространства скорость и давление не изменяются ни по направлению, ни по величине.

Установившееся движение может быть равномерным и неравномерным.

Равномерным движением называется такое, при котором скорости в сходственных точках двух смежных сечений равны между собой, а траектории частиц — прямолинейны и параллельны оси ох, т.е. поле скоростей не изменяется вниз по течению.

Ускорение частиц жидкости при этом равно нулю. В символической форме это условие можно записать $\frac{\partial}{\partial r}(f) = 0$;

здесь (f) означает тот или иной параметр, например скорость, глубину h, путь l, ускорение a.

Неравномерное движение — это движение, не удовлетворяющее определению равномерного движения, т.е.

$$\frac{\partial}{\partial x}(f) \neq 0$$

Равномерное и неравномерное движение может быть напорным и безнапорным. При напорном жидкость соприкасается с твердой стенкой ($p > p_{amm}$) по всему периметру своего сечения, а при безнапорном — лишь по части периметра, причем при условии, что $\frac{p_{and}}{\rho \sigma} = 0$.

При поступательном движении частиц жидкости наблюдается их вращательное движение. Такое движение называется вихревым.

Поступательное движение в направлении одной координаты называется одномерным движением жидкости.

v=v(x) p=p(x) — установившееся одномерное движение жидкости;

v=v(x,t); p=p(x,t) — неустановившееся одномерное движение жидкости.

Если параметры жидкости при движении изменяются в направлении двух координат, то движение называется двухмерным: v=v(x,y); p=p(x, y) или v=v(x,y,z); p=p(x, y, t).

При изменении параметров жидкости по трем координатам движение называется трехмерным:

$$v=v(x,y,z); p=p(x, y t)$$

или

$$v=v(x,y,z,t)$$
; $p=p(x, y, z, t)$.

Прикладная механика жидкости и газа занимается одномерным движением жидкости при решении практических задач.

3.2. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОТОКА

Основными геометрическими характеристиками являются траектория, линия тока и линия отмеченных точек.

Траектория — линия, по которой движется некоторая частица М.

Линия тока — кривая, проходящая через такие частицы, скорость которых в данный момент времени направлена по касательной к этой линии (рис. 3.1).

Рис. 3.1. Линия тока

Рис. 3.2. Направление течения потока при установившемся режиме

Система линий тока характеризует направление течения потока в данный момент времени (рис. 3.2).

При неустановившемся движении жидкости линии тока изменяют свою форму и расположение, а картина движения изменяется во времени.

При неустановившемся движении линия тока и траектория не совпадают друг с другом (рис. 3.3).

Лве различные линии случаях тока BO всех не пересекаются между собой. Так. полная скорость в скорость точке *A*. и (см. 3.3) направлены рис. по касательной к линии С-С и, следовательно, линия а-а не является линией тока.

Линия отмеченных точек — линия, на которой в данный момент времени лежат частицы жилкости. прошедшие свое В время через одну и ту же начальную точку. Иллюстрацией такой линии может служить линия расположения поплавков, последовательно выпущенных из одной и той же точки.

Рис. 3.3. Направление течения потока при неустановившемся режиме

3.3. ТРУБКА ТОКА И ЭЛЕМЕНТАРНАЯ СТРУЙКА

Трубкой тока называется трубчатая поверхность бесконечно малого поперечного сечения, образованная системой линий тока, проходящих через точки бесконечно малого замкнутого контура (рис. 3.4).

Рис. 3.4. Трубка тока

Жидкость, протекающая внутри этой трубки, называется элементарной струйкой. Элементарная струйка изолирована от окружающей массы жидкости. Очевидно, жидкость не может протекать через боковую поверхность трубки тока, так как на ней $u_n = 0$. Совокупность элементарных струек представляет собой поток конечных размеров. Струйная модель потока жидкости упрощает теоретические исследования движения жидкости.

Основные свойства элементарной струйки:

1. Скорость и площади сечений элементарной струйки могут меняться вдоль струйки, скорости же в пределах одного сечения элементарной струйки вследствие малости площадки одинаковы.

2. Жидкость не может протекать через боковую поверхность элементарной струйки, так как на основании определения линии тока в любой точке поверхности элементарной струйки скорость направлена по касательной к поверхности.

Объем жидкости, проходящей в единицу времени через данное поперечное сечение струйки, называется элементарным *расходом*.

Рис. 3.5. Элементарный расход жидкости

3.5) 3a время dt (рис. 1-1 все частины из сечения переместятся расстояние на ds = udt в сечении 1' - 1'. Здесь и - скорость движения частиц. Объем жилкости между сечениями

$$dW = d\omega ds = ud\omega dt$$

За единицу времени проходит количество жидкости

в объеме, равном:

$$dQ = \frac{dW}{dt} = \frac{ud\omega dt}{dt} = ud\omega.$$
 (3.1)

Единица измерения м³/с. Массовый расход $dG=dQp==pud\omega$, кг/с. Весовой расход $dG_g=dG_g=pud\omega$, Н/с.

3.4. РАСХОД И СРЕДНЯЯ СКОРОСТЬ ПОТОКА

Если расход жидкости *Q* поделить на живое сечение потока, получим среднюю скорость движения жидкости:

90

 $\overline{v} = \frac{Q}{\omega}$

Так как

$$Q = \int_{\omega} \tilde{o} d\omega, \quad \text{TO} \quad \bar{\tilde{o}} = \frac{1}{\omega} \int_{\omega} \tilde{o} d\omega. \tag{3.2}$$

Средняя скорость в сечении потока — это такая, одинаковая для всех точек сечения скорость, при которой происходит тот же расход, какой фактически имеет место при действительных скоростях, различных для разных точек сечения.

Рис. 3.6. Распределение скоростей при ламинарном течении жидкости

Например, в круглой трубе распределение скоростей при ламинарном течении жидкости представлено на рис. 3.6. Здесь v(r) — действительный профиль скорости при ламинарном течении.

Средняя скорость *v* равна половине максимальной скорости:

$$\upsilon = 0,5\upsilon_{\max} \tag{3.3}$$

3.5. УСЛОВИЕ НЕРАЗРЫВНОСТИ, ИЛИ СПЛОШНОСТИ ДВИЖЕНИЯ ЖИДКОСТИ

Для двух сечений 1–1 и 2–2 элементарной струйки в установившемся движении (рис. 3.7) можно записать:

$$dQ_1 = u_1 d\omega_1$$
 и $dQ_2 = u_2 d\omega_2$

Видно, что $dQ_1 > dQ_2$ по условию несжимаемости и $dQ_1 < dQ_2$, по условию сплошности движения.

Следовательно, условие неразрывности имеет вид

$$dQ_1 = dQ_2$$
 или $u l d\omega_1 = u 2 d\omega_2$

Очевидно, что для всего потока имеем

$$\omega_1 \upsilon_1 = \omega_2 \upsilon_2 \tag{3.4}$$

или

$$Q = \omega \upsilon = \text{const}$$

Рис. 3.7. Условие неразрывности среды

Таким образом, при установившемся движении жидкости расход в любом сечении потока остается неизменным.

Примеры.

1. Живое сечение потока при напорном движении показано на рис. 3.8.

2. Живое сечение потока при безнапорном движении дано на рис. 3.9, 3.10.

Отношение площади живого сечения потока к смоченному периметру ложа называют *гидравлическим радиусом R:*

для круглой трубы

$$R = \frac{\pi d^2}{\pi d} = \frac{r}{2}$$

3.6. МЕТОДЫ ИССЛЕДОВАНИЯ ДВИЖЕНИЯ ЖИДКОСТИ

Существует два метода изучения движения жидкости: метод Лагранжа и метод Эйлера.

Метод Лагранжа изучает изменение положения в пространстве отдельных частиц жидкости, т.е. траектории их движения.

Метод Эйлера изучает поле скоростей, т.е. картину движения частиц жидкости в отдельных точках пространства в данный момент времени.

Метод Лагранжа в гидродинамике используется редко, ввиду его сложности. Обычно изучение движения основано на методе Эйлера, суть которого заключается в следующем.

Метод основан на понятии местной скорости или скорости в точке в данный момент времени.

В общем случае местные скорости различны в один и тот же момент времени (рис. 3.11) в разных точках. Они могут изменяться во времени в каждой точке.

Рис. 3.11. Местные скорости

Проекции скорости на оси координат можно записать в виде функций:

$$u_{x} = u_{x}(x, y, z, t);$$

$$u_{y} = u_{y}(x, y, z, t);$$

$$u_{z} = u_{z}(x, y, z, t).$$
(3.5)

Функция (3.5) характеризует поле скоростей движущейся жидкости.

Используя метод Эйлера, можно выразить ускорение а жидкой частицы в соответствии с физическим смыслом:

$$a = \frac{du}{dt}$$

Если учесть, что для движущейся частицы ее координаты являются функциями времени:

$$x = x(t);$$
 $y = y(t);$ $z = z(t)$

то проекции скорости будут сложными функциями времени:

$$u_{x} = u_{x}[x(t); y(t); z(t), t];$$

$$u_{y} = u_{y}[x(t); y(t); z(t), t];$$

$$u_{z} = u_{z}[x(t); y(t); z(t), t].$$

Используя правило дифференцирования сложных функций, для проекций полного ускорения получим:

$$a_{x} = \frac{du_{x}}{dt} = \frac{\partial u_{x}}{\partial t} + \frac{\partial u_{x}}{\partial x}\frac{dx}{dt} + \frac{\partial u_{x}}{\partial y}\frac{dy}{dt} + \frac{\partial u_{x}}{\partial z}\frac{dz}{dt};$$

$$a_{y} = \frac{du_{y}}{dt} = \frac{\partial u_{y}}{\partial t} + \frac{\partial u_{y}}{\partial x}\frac{dx}{dt} + \frac{\partial u_{y}}{\partial y}\frac{dy}{dt} + \frac{\partial u_{z}}{\partial z}\frac{dz}{dt};$$

$$a_{z} = \frac{du_{z}}{dt} = \frac{\partial v_{z}}{\partial t} + \frac{\partial u_{z}}{\partial x}\frac{dx}{dt} + \frac{\partial u_{z}}{\partial y}\frac{dy}{dt} + \frac{\partial u_{z}}{\partial z}\frac{dz}{dt}.$$
(3.6)

Учитывая, что для движущейся жидкости

$$\frac{dx}{dt} = u_x; \quad \frac{dy}{dt} = u_y; \quad \frac{dz}{dt} = u_z,$$

преобразуем функции (3.6) к виду:

$$a_{x} = \frac{\partial u_{x}}{\partial t} + \frac{\partial u_{x}}{\partial x}u_{x} + \frac{\partial u_{y}}{\partial y}u_{y} + \frac{\partial u_{x}}{\partial z}u_{z};$$

$$a_{y} = \frac{\partial u_{y}}{\partial t} + \frac{\partial u_{y}}{\partial x}u_{x} + \frac{\partial u_{y}}{\partial y}u_{y} + \frac{\partial u_{y}}{\partial z}u_{z};$$

$$a_{z} = \frac{\partial u_{z}}{\partial t} + \frac{\partial u_{z}}{\partial x}u_{x} + \frac{\partial u_{z}}{\partial y}u_{y} + \frac{\partial u_{z}}{\partial z}u_{z},$$
(3.7)

где $\frac{du}{dt}$; $\frac{du}{dt}$; $\frac{du}{dt}$ – индивидуальные или субстанциональные производные:

 $\frac{\partial u_x}{\partial t}$; $\frac{\partial u_y}{\partial t}$; $\frac{\partial u_z}{\partial t}$ – локальные производные, выражающие изменение во времени вектора *и* в фиксированной точке пространства;

 $\frac{\partial u_x}{\partial x}u_y + \frac{\partial u_x}{\partial y}u_y + \frac{\partial u_x}{\partial z}u_z =$ конвективная производная вектора u.

Эта величина выражает изменение скорости в пространстве в данный момент времени. При установившемся движении локальные ускорения равны нулю.

3.7. УРАВНЕНИЕ ЭЙЛЕРА

По основному закону механики равнодействующая всех внешних сил, действующих на данное тело, равна массе тела, умноженной на ускорение, с которым движется это тело:

$$R=ma. \tag{3.8}$$

Выделим в потоке жидкости элементарный объем в форме параллелепипеда (рис. 3.12) и запишем основное уравнение (3.8) в проекциях по осям:

$$dR_{x} = dma \cos \alpha = dma_{x};$$

$$dR_{y} = dma \cos \beta = dma_{y};$$

$$dR_{z} = dma \cos \gamma = dma_{z}.$$
(3.9)

Рис. 3.12. Схема к выводу уравнения Эйлера

Для первого уравнения (3.9) найдем массу *dm* = *pdxdydz* ·

Ускорение вдоль оси Ox равно первой производной скорости по времени t, т.е. $a_x = \frac{du_x}{dt}$:

$$\frac{du_x}{dt} = \frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z}$$

Учитывая, что $dR_x = dma_x$, где

$$dma_{x} = \rho dx dy dz a_{x} = \rho dx dy dz \left(\frac{\partial u_{x}}{\partial t} + u_{x} \frac{\partial u_{x}}{\partial x} + u_{y} \frac{\partial u_{x}}{\partial y} + u_{z} \frac{\partial u_{x}}{\partial z} \right),$$

получим

$$dR_{x} = \rho dx dy dz \left(\frac{\partial u_{x}}{\partial t} + u_{x} \frac{\partial u_{x}}{\partial x} + u_{y} \frac{\partial u_{x}}{\partial y} + u_{z} \frac{\partial u_{x}}{\partial z} \right).$$
(3.9a)

На выделенную элементарную массу действуют поверхностные силы давления и объемные силы (или массовые), т.е. в силу dR_x включаются эти силы.

Рассмотрим проекцию силы давления на боковую грань ABCD и A'B'C'D':

$$dP_1 = pdydz; \quad dP_2 = p'dydz,$$

где *р* и *р'* — среднее гидростатическое давление для указанных граней

$$p'=p+\frac{\partial p}{\partial x}\,dx\;.$$

Тогда $dP_2 = p'dydz = \left(p + \frac{\partial p}{\partial x}dx\right)dydz$. Сила dP_2 войдет в основное уравнение со знаком «минус», т.е. в сумму проекций сил давления на боковые грани:

$$dP_1 - dP_2 = p dy dz - \left(P + \frac{\partial p}{\partial x} dx\right) dy dz = -\frac{\partial P}{\partial x} dx dy dz, \qquad (3.10)$$

Проекция объемной силы dFx определяется выражением: $dFx = dF \cos \alpha = \rho X dx dv dz$, (3.11) где *X* – проекция ускорения объемной силы;

ρ – плотность жидкости;

dxdydz = dV - объем параллелепипеда.

Проекция равнодействующей с учетом выражений (3.10) и (3.11) имеет вид:

$$dRx = dP_1 - dP_2 + dFx = -\frac{\partial p}{\partial x} dx dy dz + \rho dx dy dzX. \quad (3.12)$$

Подставляя выражение (3.9а) в уравнение (3.12), получим:

$$-\frac{\partial p}{\partial x}dxdydz + \rho dxdydz = \rho dxdydz \left(\frac{\partial u_x}{\partial t} + u_x\frac{\partial u_x}{\partial x} + u_y\frac{\partial u_x}{\partial y} + u_z\frac{\partial u_x}{\partial z}\right)$$

После сокращения на *pdxdydz*, т.е. отнеся уравнение к единице массы, получим:

$$-\frac{1}{\rho}\frac{\partial p}{\partial x} + X = \frac{\partial u_x}{\partial t} + u_x\frac{\partial u_x}{\partial x} + u_y\frac{\partial u_x}{\partial y} + u_z\frac{\partial u_x}{\partial z}.$$
 (3.13)

Аналогично составив выражения для сил *dRy* и *dRz* и для *dma*, и *dma*, получим три уравнения Эйлера:

$$-\frac{1}{\rho}\frac{\partial p}{\partial x} + X = \frac{du_x}{dt};$$

$$-\frac{1}{\rho}\frac{\partial p}{\partial y} + Y = \frac{du_y}{dt};$$

$$-\frac{1}{\rho}\frac{\partial p}{\partial z} + Z = \frac{du_z}{dt}.$$
(3.14)

Система (3.14) описывает движение как капельной, так и газообразной жидкости. В системе 3-х уравнений пять неизвестных u_x , u_y , u_z , p и ρ , поэтому необходимо иметь еще два уравнения. Такими уравнениями являются уравнения неразрывности и характеристическое уравнение.

3.8. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ ВЯЗКОЙ ЖИДКОСТИ (УРАВНЕНИЯ НАВЬЕ-СТОКСА)

Вязкой называют такую жидкость, которая при своем движении оказывает сопротивление сдвигающим усилиям.

Все жидкости, существующие в природе, являются вязкими, поэтому вязкую жидкость называют еще реальной. Рассмотрим поверхностные силы, действующие в вязкой жидкости.

В вязкой жидкости ввиду наличия сил трения возникают касательные напряжения. Поэтому напряжения, действующие на площадку, могут быть направлены как угодно по отношению к ней, а необязательно по нормали.

В вязкой жидкости различают два рода напряжений (рис. 3.13).

1. Нормальное напряжение p_{nn} — проекция p_n на нормаль *n* в данной точке поверхности.

2. Касательное напряжение *т* − проекция *p_n* на касательную плоскость к поверхности в данной точке. Касательные напряжения имеют место лишь при движении вязкой жидкости.

Рис. 3.13. Схема напряжений в вязкой жидкости

Схема поверхностных сил, действующих в вязкой жидкости, представлена на рис. 3.14. Первый индекс при р указывает на нормаль к площадке, на которую действует напряжение; второй — ось, на которую оно спроектировано. Выделим в движущейся жидкости элементарный

параллелепипед с ребрами, параллельными осям *x, y, z* и рассмотрим поверхностные силы, действующие на его гранях.

Условимся напряжение считать нормальное случае, когда оно направлено положительным в ТОМ по внешней нормали, т.е. в данном случае нормальное напряжение направлено противоположно давлению. Нормальное напряжение – это реакция жидкого элемента на воздействие окружающей его жидкости.

Рис. 3.14. Схема поверхностных сил, действующих в вязкой жидкости

В вязкой жидкости, в противоположность невязкой, напряжение зависит от ориентации площадки в данной точке. Однако, как строго доказывается в теоретической гидромеханике, сумма всех нормальных напряжений $p_{xx} + p_{yy} + p_{zz}$.

В данной точке не зависит от ориентации площадки и, следовательно, эта сумма является скалярной функцией только координат точки и времени, в связи, с чем вводится новое понятие о гидромеханическом давлении:

$$p = -\frac{p_{xx} + p_{yy} + p_{zz}}{3}, \quad p = f(x, y, z, t).$$

Гидромеханическим давлением в вязкой жидкости называют давление, величина которого равна среднему арифметическому из величин любых трех нормальных напряжений в данной точке. Знак «минус» берется потому, что $p_{xx} + pyy + pzz$, направленные по внешней нормали, всегда отрицательны, а *р* должно быть положительным, как это обычно принимают в гидравлике.

Таким образом, понятия гидромеханического давления в вязкой жидкости и гидродинамического давления в невязкой идеальной жидкости существенно различны.

Дадим упрощенный вывод уравнений движения вязкой жидкости применительно лишь к частному случаю несжимаемой жидкости. Рассмотрим вначале одномерное движение жидкости в направлении, параллельном оси ∂x .

Выделим в потоке движущейся жидкости элементарный параллелепипед с ребрами *dx*, *dy*, *dz* (рис. 3.15). Для сил, действующих на элементарный параллелепипед, в данном случае будет

$$F_1 + F_2 + F_m - F_w + F_{mp} = 0, ag{3.15}$$

где F_{mp} – сила трения, определяемая по формуле

$$\left(\tau + \frac{\partial \tau}{\partial z} dz\right) dx dy - \tau dx dy = \frac{\partial \tau}{\partial z} dx dy dz.$$

Рис. 3.15. Одномерное движение жидкости

101

По закону Ньютона для касательного напряжения т имеем

$$\tau = \mu \frac{\partial v_x}{\partial z}.$$

Отсюда сила трения будет равна

$$\frac{\partial \tau}{\partial z} dx dy dz = \mu \frac{\partial^2 v_x}{\partial z^2} dx dy dz.$$

Подставляя эти силы и силу трения в формулу (3.15), получим:

$$X \rho dx dy dz - \frac{\partial \rho}{\partial x} dx dy dz - \rho dx dy dz \frac{dv_x}{dt} + \mu \frac{\partial^2 v_x}{\partial z^2} dx dy dz = 0.$$

Отсюда

$$\frac{dv_x}{dt} = X - \frac{1}{\rho} \frac{\partial \rho}{\partial x} + \nu \frac{\partial^2 v_x}{\partial z^2},$$

где

$$v = \frac{\mu}{\rho}$$

В общем случае движения в трехмерном пространстве, когда v_x изменяется по всем направлениям, а не только в направлении оси *z*, проекция силы трения на ось *x* определится более сложным выражением:

$$\mu\left(\frac{\partial^2 \mathbf{v}_x}{\partial x^2} + \frac{\partial^2 \mathbf{v}_y}{\partial y^2} + \frac{\partial^2 \mathbf{v}_z}{\partial z^2}\right) dx dy dz.$$

Тогда уравнение движения в проекции на ось х будет

$$\frac{d\upsilon_x}{dt} = X - \frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \left(\frac{\partial^2 \upsilon_x}{\partial x^2} + \frac{\partial^2 \upsilon_x}{\partial y^2} + \frac{\partial^2 \upsilon_x}{\partial z^2} \right).$$

Или для всех трех осей *x*, *y*, *z* получим в развернутом виде:

$$\begin{split} & \left[\frac{\partial \mathbf{v}_x}{\partial t} + \mathbf{v}_x \frac{\partial \mathbf{v}_x}{\partial x} + \mathbf{v}_y \frac{\partial \mathbf{v}_x}{\partial y} + \mathbf{v}_z \frac{\partial \mathbf{v}_x}{\partial z} = X - \frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \left(\frac{\partial^2 \mathbf{v}_x}{\partial x^2} + \frac{\partial^2 \mathbf{v}_y}{\partial y^2} + \frac{\partial^2 \mathbf{v}_y}{\partial z^2} \right); \\ & \frac{\partial \mathbf{v}_y}{\partial t} + \mathbf{v}_x \frac{\partial \mathbf{v}_y}{\partial x} + \mathbf{v}_y \frac{\partial \mathbf{v}_y}{\partial y} + \mathbf{v}_z \frac{\partial \mathbf{v}_y}{\partial z} = Y - \frac{1}{\rho} \frac{\partial p}{\partial y} + \nu \left(\frac{\partial^2 \mathbf{v}_y}{\partial x^2} + \frac{\partial^2 \mathbf{v}_y}{\partial y^2} + \frac{\partial^2 \mathbf{v}_y}{\partial z^2} \right); \\ & \frac{\partial \mathbf{v}_z}{\partial t} + \mathbf{v}_x \frac{\partial \mathbf{v}_z}{\partial x} + \mathbf{v}_y \frac{\partial \mathbf{v}_z}{\partial y} + \mathbf{v}_z \frac{\partial \mathbf{v}_z}{\partial z} = Z - \frac{1}{\rho} \frac{\partial p}{\partial z} + \nu \left(\frac{\partial^2 \mathbf{v}_z}{\partial x^2} + \frac{\partial^2 \mathbf{v}_z}{\partial y^2} + \frac{\partial^2 \mathbf{v}_z}{\partial z^2} \right). \end{split}$$

Последние три уравнения называют уравнениями Навье — Стокса для вязкой несжимаемой жидкости.

Уравнения Навье - Стокса являются основными в гидромеханике вязкой жидкости. Но они определяют течение реальной вязкой жидкости вполне лишь тогда, когда подтверждается закон Ньютона о внутреннем трении в жидкости.

Добавим к полученным уравнениям движения уравнение неразрывности для несжимаемой жидкости:

$$\frac{\partial \mathbf{v}_x}{\partial x} + \frac{\partial \mathbf{v}_y}{\partial y} + \frac{\partial \mathbf{v}_z}{\partial z} = 0.$$

Французский инженер и ученый, член французской Академии наук. Известен работами в области строительной механики, сопротивления материалов и теории упругости, а также гидравлики и гидромеханики.

Навье даны общие уравнения равновесия движения **УПР**УГОГО тела, разработан И аналитического расчета висячих метол мостов. вывелены уравнения движения несжимаемой вязкой жидкости (уравнения Навье - Стокса) и др.

Автор ряда учебников по механике, а также курса сопротивления материалов, являвшегося в течение нескольких десятилетий основным руководством для инженеров-строителей и машиностроителей.

ЛУИ МАРИ АНРИ НАВЬЕ (1785—1836)

ДЖОРДЖ ГАБРИЕЛЬ СТОКС (1819—1903)

Английский физик-теоретик и математик ирландского происхождения. Работал Кембрилжском R университете, внес значительный вклад в гидро- и газодинамику (Уравнения Навье - Стокса). оптику математическую физику. Был секретарем. президентом Лондонского я позднее королевского общества.

За достижения в области исследования света в 1852 году Стокс получил медаль Рамфорда от Королевского Общества, а в 1893 медаль Копли. В 1889 году получил дворянский титул баронета. Был членом многих иностранных академий.

В честь него названа единица измерения вязкости в системе СГС.

Полагая, что массовые силы X, Y, Z заданы, получим систему четырех уравнений с четырьмя неизвестными функциями v_x , v_y , v_z , p. Следовательно, получена замкнутая система уравнений.

Принципиально эта система при заданных условиях однозначности дает возможность строгого решения задачи о движении вязкой несжимаемой жидкости. Однако аналитические решения уравнений Навье - Стокса найдены лишь для весьма ограниченного круга частных случаев.

3.9. УРАВНЕНИЕ БЕРНУЛЛИ ДЛЯ ЭЛЕМЕНТАРНОЙ СТРУЙКИ ИДЕАЛЬНОЙ ЖИДКОСТИ

В технической гидромеханике уравнение Бернулли устанавливает зависимость между скоростью и давлением в различных сечениях одной и той же элементарной струйки.

При выводе этого уравнения принимаются следующие допущения.

1. Движение жидкости установившееся.

2. Массовые силы имеют потенциал, т. е.

$$X = -\frac{\partial U}{\partial x}; \quad Y = -\frac{\partial U}{\partial y}; \quad Z = -\frac{\partial U}{\partial z};$$

 Жидкость баротропна, т. е. плотность является функцией лишь одного давления ρ = f(p).
 Запишем уравнения движения Эйлера:

$$\frac{dv_x}{dt} = X - \frac{1}{\rho} \frac{\partial \rho}{\partial x};$$
$$\frac{dv_y}{dt} = Y - \frac{1}{\rho} \frac{\partial \rho}{\partial y};$$
$$\frac{dv_z}{dt} = Z - \frac{1}{\rho} \frac{\partial \rho}{\partial z}.$$

Умножим обе части каждого из уравнений на *dx, dy, dz* соответственно и сложим полученные соотношения:

$$\frac{dv_x}{dt}dx + \frac{dv_y}{dt}dy + \frac{dv_z}{dt}dz =$$
$$= Xdx + Ydy + Zdz - \frac{1}{\rho} \left(\frac{\partial p}{\partial x}dx + \frac{\partial p}{\partial y}dy + \frac{\partial p}{\partial z}dz\right).$$
(3.15)

Считая d_x , d_y , d_z не любыми произвольными приращениями координат, а взятыми по какой-либо линии тока, а также учитывая, что при установившемся движении линии тока и траектории частиц совпадают, получим

$$dx = v_x dt$$
, $dy = v_y dt$, $dz = v_z dt$.

Преобразуем левую часть уравнения (3.15)

$$v_x dv_x + v_y dv_y + v_z dv_z = d\left(\frac{v_x^2}{2}\right) + d\left(\frac{v_y^2}{2}\right) + d\left(\frac{v_z^2}{2}\right) = d\left(\frac{v_x^2 + v_y^2 + v_z^2}{2}\right) = d\left(\frac{v^2}{2}\right).$$

В правой части уравнения получим

$$Xdx + Ydy + Zdz = -\left(\frac{\partial U}{\partial x}dx + \frac{\partial U}{\partial y}dy + \frac{\partial U}{\partial z}dz\right) = -dU.$$

Так как
$$p = f(x, y, z)$$
, то $dp = \frac{\partial p}{\partial x} dx + \frac{\partial p}{\partial y} dy + \frac{\partial p}{\partial z} dz$.

Отсюда уравнение (3.15) примет вид

$$d\left(\frac{v^2}{2}\right) + dU + \frac{1}{\rho}dp = 0$$

или

$$dl / + \frac{dp}{\rho} + d\left(\frac{v^2}{2}\right) = 0.$$

Интегрируя последнее соотношение по линии тока, получим

$$U + P + \frac{v^2}{2} = C,$$
 (3.16)

где $P = \int \frac{dp}{\rho}$ — функция Громеко; *С* — константа

интегрирования.

Соотношение (3.16) называется интегралом Бернулли или уравнением Бернулли в общем виде. Оно показывает, что при установившемся движении баротропной идеальной жидкости в поле потенциальных сил сумма трех членов U, P и $\frac{v^2}{2}$ одинакова во всех точках на данной линии тока. Очевидно, что оно будет верно также и для элементарной струйки тока, выделенной вокруг данной линии тока.

Выдающийся физик и математик, один из создателей кинетической теориигазов, гидродинамики и математической физики.

В частном случае тяжелой несжимаемой не вязкой жидкости будем иметь потенциал массовой силы тяжести в виде

$$U = -gz \tag{3.17}$$

Академик и иностранный почетный член (1733) Петербургской академии наук, член Академий: Болонской (1724), Берлинской (1747), Парижской (1748), Лондонского королевского общества (1750).

Первый выступил с утверждением, что причиной давления газа является тепловое движение молекул. В своей классической «Гидродинамике» он вывел уравнение стационарного течения несжимаемой жидкости, лежащее в основе динамики жидкостей и газов. В этом труде он осветил ряд основополагающих гидравлических

ДАНИИЛ БЕРНУЛЛИ (1700—1782)

вопросов и в частности объяснил физический смысл слагаемых, входящих в современное уравнение установившегося движения (идеальной жидкости), носящее его имя.

С точки зрения молекулярной теории он объяснил закон Бойля-Мариотта.

Для несжимаемой жидкости $\rho = \text{const}$ и функция Громеко приводится к виду

$$P = \int \frac{dp}{\rho} = \frac{p}{\rho}.$$
 (3.18)

Подставляя соотношения (3.17), (3.18) в (3.16), получим

$$gz + \frac{p}{\rho} + \frac{v^2}{2} = C.$$

С учетом $\gamma = \rho g$ найдем

$$z + \frac{p}{\gamma} + \frac{v^2}{2g} = C.$$

Отсюда для двух различных точек линии тока или для двух раз личных сечений элементарной струйки можно написать

$$z_{1} + \frac{p_{1}}{\gamma} + \frac{v_{1}^{2}}{2 g} = z_{2} + \frac{p_{2}}{\gamma} + \frac{v_{2}^{2}}{2 g},$$
Таким образом, для всех частиц, расположенных на одной и той же линии тока, сумма трех величин z, $\frac{p}{\gamma}$ и $\frac{v^2}{2g}$

сохраняет постоянное значение.

3.10. ФИЗИЧЕСКИЙ И ГЕОМЕТРИЧЕСКИЙ СМЫСЛ УРАВНЕНИЯ БЕРНУЛЛИ. НАПОР ЖИДКОСТИ

Уравнению Бернулли можно дать два различных истолкования: физическое и геометрическое.

С физической точки зрения уравнение Бернулли есть выражение закона сохранения энергии для движущейся жидкости.

Рассмотрим величину

$$H=z+\frac{p}{\gamma}+\frac{v^2}{2g}.$$

Эту сумму трех слагаемых называют полным напором жидкости или *гидродинамическим напором*.

С физической точки зрения напор есть механическая энергия жидкости, отнесенная к единице веса жидкости. Для того чтобы это показать, рассмотрим жидкость, движущуюся по трубопроводу (рис. 3.16). Выделим в движущейся жидкости частицу M с массой m, веса P = mg. Потенциальная энергия этой частицы в поле силы тяжести по отношению к плоскости сравнения 0-0 будет mgz, а потенциальная энергия, отнесенная к единице веса, будет

$$\frac{mgz}{mg} = z,$$

т. е. *z* есть удельная потенциальная энергия положения частицы жидкости — энергия, отнесенная к единице веса.

Под действием давления *p* частица жидкости *M* может подняться на высоту $h_p = \frac{p}{\gamma}$ и, следовательно, совершить работу (рис. 3.17)

Рис. 3.16. Движение жидкости по трубопроводу

Рис. 3.17. Подъем частицы жидкости на высоту

$$mgh_p = mg\frac{p}{\gamma},$$

т. е. она обладает потенциальной энергией давления в размере $mg \frac{p}{v}$.

Потенциальная энергия давления, отнесенная к единице веса, будет

$$\frac{mg}{\frac{p}{\gamma}}\frac{p}{mg}=\frac{p}{\gamma},$$

т. е. $\frac{p}{\gamma}$ - удельная потенциальная энергия давления частицы

жидкости — энергия, отнесенная к единице веса жидкости. Кроме того, выделенная частица обладает скоростью и,

следовательно, имеет *кинетическую энергию*, равную $\frac{mv^2}{2}$

Кинетическая энергия, отнесенная к единице веса, будет

$$\frac{mv^2}{2mg}=\frac{v^2}{2g}.$$

Напор жидкости

$$H=z+\frac{P}{\gamma}+\frac{v^2}{2g},$$

следовательно, равен полной энергии частицы жидкости, отнесенной к единице веса.

Таким образом, физическое истолкование уравнения Бернулли для элементарной струйки идеальной жидкости заключается в том, что для любых сечений 1 и 2 полная удельная энергия остается неизменной: $H_1 = H_2$ или

$$z_1 + \frac{p_1}{\gamma} + \frac{v_1^2}{2g} = z_2 + \frac{p_2}{\gamma} + \frac{v_2^2}{2g},$$

Уравнению Бернулли можно дать наглядное геометрическое истолкование. Для этого снова рассмотрим отдельные члены суммы:

$$H=z+\frac{p}{\gamma}+\frac{v^2}{2g},$$

где *z* – геометрическая высота данной частицы жидкости над условной плоскостью сравнения; $\frac{p}{\gamma}$ – пьезометрическая высота – высота, на которую поднимется жидкость в пьезометре; $\frac{v^2}{2g}$ – скоростная высота – высота, на которую

поднимется жидкость, имея начальную скорость v.

Таким образом, с геометрической точки зрения уравнение Бернулли в любом сечении элементарной струйки идеальной жидкости представляет собой сумму трех высот: геометрической, пьезометрической и скоростной, которая остается неизменной. График уравнения Бернулли для элементарной струйки идеальной жидкости представлен на рис. 3.18.

Если сечение струйки увеличивается, скорость падает, а давление возрастает, т. е. энергия, сохраняясь в целом, переходит из одного вида в другой (кинетическая энергия переходит в потенциальную и наоборот).

Рис. 3.18. График уравнения Бернулли для элементарной струйки идеальной жидкости

3.11. УРАВНЕНИЕ БЕРНУЛЛИ ДЛЯ ЭЛЕМЕНТАРНОЙ СТРУЙКИ РЕАЛЬНОЙ ЖИДКОСТИ

В идеальной жидкости в отличие от реальной отсутствуют силы внутреннего трения (отсутствует вязкость). Благодаря вязкости в реальной жидкости происходят потери механической энергии потока на трение внутри жидкости и о стенки канала. При этом происходит рассеивание (диссипация) энергии. Энергия, потерянная на трение, превращается в теплоту и идет на пополнение запаса внутренней энергии жидкости, а часть ее отводится в виде тепла через стенки канала.

Внутренняя энергия жидкости не может быть непосредственно использована для приведения жидкости в движение и поэтому в гидравлике рассматривается как потеря механической энергии (потеря напора).

Для реальной жидкости равенство $H_1 = H_2$ нарушается, и вместо него имеем $H_1 = H_2 + \Delta H$, где $\Delta H = h_{1-2}$ – потеря напора на участке 1-2. Тогда для элементарной струйки реальной жидкости уравнение Бернулли примет вид

$$z_1 + \frac{p_1}{\gamma} + \frac{v_1^2}{2g} = z_2 + \frac{p_2}{\gamma} + \frac{v_2^2}{2g} + h_{1-2}.$$

Таким образом, полный напор вдоль струйки реальной жидкости уменьшается для характеристики относительного изменения полного напора на единицу длины вводится понятие о гидравлическом уклоне:

$$J = -\frac{dH}{dl} = -\frac{d\left(z + \frac{p}{\gamma} + \frac{\upsilon^2}{2g}\right)}{dl}.$$

Например, на прямом участке трубопровода 1-2 (см. рис. 3.18)

$$J_{1,2} = \frac{\left(z_1 + \frac{p_1}{\gamma} + \frac{v_1^2}{2g}\right) - \left(z_2 + \frac{p_2}{\gamma} + \frac{v_2^2}{2g}\right)}{l_{1-2}} = \frac{h_{1-2}}{l_{1-2}},$$

где I_{1-2} — длина участка 1-2.

Таким образом, гидравлическим уклоном называют отношение потери напора к длине, на которой она происходит.

Кроме того, вводится еще понятие о пьезометрическом уклоне:

$$J_p = \frac{d\left(z + \frac{p}{\gamma}\right)}{dl}.$$

Пьезометрический уклон может быть положительным, равным нулю и отрицательным.

3.12. УРАВНЕНИЕ БЕРНУЛЛИ ДЛЯ ПОТОКА РЕАЛЬНОЙ ЖИДКОСТИ

Применение уравнения Бернулли, выведенного для отдельной струйки, для потока жидкости затрудняется неравномерностью распределения скоростей по живому сечению потока, наличием поперечных составляющих продольной скорости и влиянием центробежных сил. В связи с этим необходимо установить характеристику потоков, для которых можно применять уравнение Бернулли, а также предложить способ учета неравномерности скоростей в живых сечениях потока.

Для решения этих вопросов в гидравлике выделяется так называемое плавно изменяющееся движение (рис. 3.19, 3.20), которое характеризуется следующими особенностями.

Рис. 3.19

Рис. 3.20

 Угол расхождения соседних струек, а следовательно, и поперечные составляющие скоростей в живых сечениях потока настолько малы, что ими можно пренебречь и рассматривать течение как происходящее только с продольной скоростью.

2. Кривизна линий тока настолько мала, а радиусы закруглений настолько велики, что центробежными силами в таких потоках можно пренебречь.

3. Кривизна живых сечений при неравномерном распределении скорости настолько невелика, что их можно рассматривать как плоские.

Гидродинамическое давление 4. В живых сечениях распределяется по законам гидростатики, т. е. сумма $z + p/\gamma = \text{const}$ для всех точек данного живого сечения. уровень Следовательно, В пьезометрах при плавно изменяющемся движении во всех точках живого сечения потока будет одним и тем же (рис. 3.21).

Рис. 3.21. Уровни в пьезометрах при плавно изменяющемся движении жидкости

В случае плавно изменяющегося движения уравнение Бернулли для элементарной струйки можно распространить и на поток с поперечным сечением конечных размеров, скорости в различных точках которого различны. Однако в гидравлике обычно расчеты ведутся по средним скоростям, для приведения результатов расчетов по средним скоростям в соответствие с расчетами по действительным скоростям вводятся некоторые поправочные коэффициенты (коэффициент Кориолиса).

Таким образом, плавно изменяющееся движение можно считать практически одномерным, т. е. положить

$$\bigcup x = f(x, y, z),$$

направив ось *х* параллельно потоку. Отсюда $v_y = 0$; $v_z = 0$. Тогда уравнения Навье-Стокса примут вид:

$$\frac{\partial v_{x}}{\partial x} = X - \frac{1}{\rho} \frac{\partial p}{\partial x} + v \left(\frac{\partial^{2} v_{x}}{\partial x^{2}} + \frac{\partial^{2} v_{x}}{\partial y^{2}} + \frac{\partial^{2} v_{x}}{\partial z^{2}} \right); \quad 0 = Y - \frac{1}{\rho} \frac{\partial \rho}{\partial y};$$
$$0 = Y - \frac{1}{\rho} \frac{\partial \rho}{\partial y}; \quad 0 = Z - \frac{1}{\rho} \frac{\partial \rho}{\partial z}.$$

Последние два уравнения переходят в уравнения гидростатики Эйлера, а это означает, что в плоскости *у*0*г* давления распределяются по закону гидростатики.

Распространим уравнение Бернулли для элементарной струйки реальной жидкости в виде

$$z_{1} + \frac{p_{1}}{\gamma} + \frac{v_{1}^{2}}{2g} = z_{2} + \frac{p_{2}}{\gamma} + \frac{v_{2}^{2}}{2g} + h_{1-2}$$

на поток реальной жидкости.

Правая и левая части этого уравнения есть удельная энергия жидкости, т. е. энергия, отнесенная к единице веса. Весовой расход элементарной струйки определяется по формуле

$$dG = \gamma \upsilon_1 d \, \omega_1 = \gamma \upsilon_2 d \, \omega_2,$$

где $d\omega$ — сечение элементарной струйки; $Q = v d\omega$ — объемный расход.

Умножая обе части уравнения (4.15) на dG, получим не удельную, а полную энергию элементарной струйки в сечениях l и 2. И полную потерю этой энергии между сечениями l и 2 в единицу времени, т. е. $dN_1 = dN_2 + dN_n$, где dN_1 – энергия струйки в l-м сечении; dN_2 – энергия струйки во 2-м сечении; dN_n – потеря энергии между l-м и 2-м сечениями.

Или

$$\left(z_1 + \frac{p_1}{\gamma} + \frac{\mathbf{v}_1^2}{2g}\right) \gamma \mathbf{v}_1 d\omega_1 = \left(z_2 + \frac{p_2}{\gamma} + \frac{\mathbf{v}_2^2}{2g}\right) \gamma \mathbf{v}_2 d\omega_2 + h_{1-2} \gamma \mathbf{v}_2 d\omega_2.$$

Для того чтобы получить подобные соотношения мощностей для всего потока

$$N_1 = N_2 + N_n,$$

необходимо произвести интегрирование:

$$\int_{\omega_1} \left(z_1 + \frac{p_1}{\gamma} + \frac{\upsilon_1^2}{2g} \right) \gamma \upsilon_1 d\omega_1 = \int_{\omega_2} \left(z_2 + \frac{p_2}{\gamma} + \frac{\upsilon_2^2}{2g} \right) \gamma \upsilon_2 d\omega_2 + \int_{\omega_2} h_{1-2} \gamma \upsilon_2 d\omega_2.$$
(3.19)

Преобразуем эти интегралы:

$$\int_{\omega_{\mathbf{l}}} \left(z_{1} + \frac{p_{1}}{\gamma} \right) \gamma \upsilon_{1} d \omega_{1} = \left(z_{1} + \frac{p_{1}}{\gamma} \right) \gamma \int_{\omega_{\mathbf{l}}} \upsilon_{1} d \omega_{1} = \left(z_{1} + \frac{p_{1}}{\gamma} \right) \gamma Q.$$

Так как при плавно изменяющемся движении $z + \frac{p}{\gamma} =$

= const, то во всех точках данного сечения $\omega = \text{const}, \gamma = \text{const}.$ Аналогично

$$\int_{\omega_1} \left(z_2 + \frac{p_2}{\gamma} \right) \gamma \upsilon_2 d \, \omega_2 = \left(z_2 + \frac{p_2}{\gamma} \right) \gamma Q.$$

Запишем третий интеграл в левой части соотношения (3.19) в виде

$$\frac{\gamma}{2g}\int_{\omega_1}\upsilon_1^3d\omega_1=\alpha_1\frac{\overline{\upsilon_1^2}}{2g}\gamma Q,$$

т. е. выразим его как произведение некоторого коэффициента α на скоростной напор, подсчитанный по средней скорости потока υ и на весовой расход жидкости $G = \gamma Q$.

Коэффициент α называют коэффициентом кинетической энергии потока, или коэффициентом Кориолиса. Таким образом, α представляет отношение кинетической энергии потока к кинетической энергии, вычисленной в предположении, что скорости всех точек живого сечения потока равны средней скорости потока, т. е.

$$\frac{\rho}{2} \int_{\omega_1} \upsilon_1^3 d\omega_1 = \alpha_1 \frac{\rho}{2} \overline{\upsilon}_1 \overline{\upsilon}_1^{-2} \omega_1; \qquad (3.20)$$

$$\int_{\omega_{1}} \frac{\rho \, v_{1} d \, \omega_{1} \, v_{1}^{2}}{2} = \alpha_{1} \, \frac{\overline{v_{1}} \, \overline{v_{1}}^{2} \omega_{1} \rho}{2}; \qquad \int_{\omega_{1}} \frac{d m_{1} v_{1}^{2}}{2} = \alpha_{1} \, \frac{d m_{1} \overline{v_{1}}^{2}}{2};$$
$$\alpha_{1} = \frac{\int_{\omega_{1}} \frac{v_{1}^{2} d m}{2}}{\frac{m_{1} \, \overline{v_{1}}^{2}}{2}}.$$

Кроме того, из соотношений (3.20) следует

$$\alpha_1 = \frac{\int v^3 d\omega}{\frac{\omega_1}{v \omega}}.$$

Отсюда заключаем, что коэффициент α характеризует неравномерность распределения скоростей по сечению потока.

Для ламинарного режима a = 2, для турбулентного $a \approx 1,05 - 1,1$.

Обычно для упрощения гидравлических расчетов трубопроводов для турбулентных потоков принимают $\alpha = 1$, и уравнение Бернулли для потока будет иметь вид

$$z_1 + \frac{p_1}{\gamma} + \frac{\overline{v_1}}{2g} = z_2 + \frac{p_2}{\gamma} + \frac{\overline{v_2}}{2g} + h_{1-2}.$$

3.13. ГРАФИЧЕСКАЯ ИЛЛЮСТРАЦИЯ УРАВНЕНИЯ БЕРНУЛЛИ ДЛЯ ПОТОКА РЕАЛЬНОЙ ЖИДКОСТИ

Рассмотрим распределение напоров в трубопроводе, имеющем сужение в средней его части (рис. 3.22). Выделим три характерных сечения, в которых расположим пьезометры и трубки Пито (описание трубок см. 3.15).

На рис. 3.22 при течении жидкости в трубопроводе могут быть выделены следующие характерные линии:

I – линия геометрических напоров;

II – пьезометрическая линия;

III – линия полного напора.

 h_{1-2} , h_{1-3} — потеря напора соответственно во 2-м и 3-м сечениях.

Применительно к рис. 3.22 уравнение Бернулли запишется в виде

Рис. 3.22. Распределение напоров в трубопроводе

$$z_{1} + \frac{p_{1}}{\gamma} + \frac{\alpha_{1}v_{1}^{2}}{2g} = z_{2} + \frac{p_{2}}{\gamma} + \frac{\alpha_{2}v_{2}^{2}}{2g} + h_{1/2} = z_{3} + \frac{p_{3}}{\gamma} + \frac{\alpha_{3}v_{3}^{2}}{2g} + h_{1/3}.$$

На рис. 4.22 отмечены все члены уравнения Бернулли. В частности, видно, что пьезометрический напор $p_{2/\gamma}$ в узком сечении уменьшается, а скоростной напор $v^2/2g$ — возрастает. Максимальная потеря напора имеет место в 3-м сечении (h_{l-3}) (потери на трение и в местных сопротивлениях см. гл. 6).

3.14. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ УРАВНЕНИЯ БЕРНУЛЛИ

Уравнение Бернулли широко применяют во многих гидравлических расчетах и для объяснения многих гидравлических явлений. В частности, оно может быть использовано для измерения давления и скорости движущейся жидкости. Для измерения давления используют пьезометр (прямая трубка, рис. 3.23). Для измерения скорости совместно с пьезометром используют трубку Пито — трубку полного напора.

Рис.3.23. Трубка Пито

Она представляет собой трубку, изогнутую под прямым углом и установленную навстречу потоку. Уровень жидкости в пьезометре равен

$$h_{A} = \frac{p}{\gamma}.$$

Разность уровней в пьезометре и в трубке полного напора будет равна скоростному напору

$$h=\frac{\upsilon^2}{2g}.$$

Действительно, напишем уравнение Бернулли для точек *А* и *В*:

$$\frac{p_A}{\gamma} + \frac{v_A^2}{2g} = \frac{p_B}{\gamma} + \frac{v_B^2}{2g}.$$

Так как $p_A = p$, $v_A = v$, $v_B = 0$, то $\frac{p_B}{\gamma} = \frac{p}{\gamma} + \frac{v^2}{2g},$

где $\frac{p_B}{\gamma} = h_B - высота жидкости в трубке полного напора;$

 $\frac{p}{\gamma} = h_A -$ высота жидкости в пьезометре.

Отсюда

$$h=h_B-h_A=\frac{v^2}{2g}.$$

Тогда

$$\upsilon = \sqrt{2 g h}$$
 или $\upsilon = arphi \sqrt{2 g h}$

где $\phi > l$ — коэффициент, определяемый для каждой трубки опытным путем. За счет вязкости жидкости и других отклонений от идеального случая преобразования энергии $h < \frac{v^2}{2g}$, и поэтому, чтобы не получать пониженных значений скоростей, $\phi > l$.

3.15. ТРУБКА ПРАНДТЛЯ

Дальнейшим усовершенствованием трубки Пито является трубка Прандтля. В этом приборе объединяются трубка Пито и пьезометр (рис. 3.24). Роль трубки Пито здесь выполняет трубка 2 (она направлена навстречу потоку), а пьезометра — трубка 1 (отверстия в этой трубке находятся параллельно направлению потока).

Пусть в сечении *I* имеем давление и скорость набегающего потока *p* и *v*. В сечении *II* давление на входе в трубку 2 равно p_{κ} (скорость v_{κ} здесь равна нулю).

Рис. 3.24. Трубка Прандтля

Записывая уравнение Бернулли для сечений I и II и учитывая, что $v_{s} = 0$,

$$z_1 = z_2$$
, получим $\frac{p_k - p}{\gamma} = \frac{v^2}{2g}$

Отсюда

$$\upsilon = \sqrt{\frac{2g}{\gamma}(p_k - p)}.$$
 (3.21)

Для определения *p_к* – *p* воспользуемся формулой гидростатического давления

$$p = p_o + \gamma h$$
.

Применяя эту формулу для точек А и D, получим

$$p_A = p_B + \gamma_{po} h;$$

$$p_D = p_C + \gamma h,$$

где γ_{pT} — удельный вес ртути; γ — удельный вес газа, скорость которого измеряется.

Так как при равновесии давление в точках *А* и *D* одинаково, то

$$p_B + \gamma_{po}h = p_C + \gamma h.$$

Учитывая, что $p_B = p$, $p_C = p_{\kappa}$ получим

 $p_{\kappa} - p = h(\gamma_{po} - \gamma).$

Подставляя последнее соотношение в (4.18), получим

$$\mathbf{v} = \sqrt{2 g h \left(\frac{\gamma_{p\tau} - \gamma}{\gamma}\right)}.$$

Для каждой отдельной трубки вводится некоторый коэффициент Ψ , определяемый опытным путем. Отсюда формула для определения скорости потока принимает вид

$$\mathbf{v} = \psi \sqrt{2 g h \left(\frac{\gamma_{p\tau} - \gamma}{\gamma}\right)}.$$

3.16. ТРУБКА ВЕНТУРИ, СОПЛО, ДИАФРАГМА

В промышленных условиях для измерения расхода жидкостей применяют трубки Вентури, сопла и диафрагмы. Трубка Вентури создает в трубопроводе местное сужение потока и по возникающему перепаду давлений *Др* можно определить расход жидкости (рис. 3.25).

Для сечений *I* и *II* запишем уравнение Бернулли (считая распределение скоростей равномерным):

$$\frac{p_1}{\gamma} + \frac{\mathbf{v}_1^2}{2g} = \frac{p_2}{\gamma} + \frac{\mathbf{v}_2^2}{2g} + h_M,$$

где h_M — потеря напора между сечениями *I* и *II*,

$$h_M = \xi \frac{\mathbf{v}_2^2}{2g};$$

ξ – коэффициент местных потерь. Уравнение неразрывности для несжимаемой жидкости имеет вид

$$\upsilon_1 \omega_1 = \upsilon_2 \omega_2$$

Отсюда:

$$\upsilon_1 = \frac{\omega_2}{\omega_1} \upsilon_2$$

Подставляя

$$h_{M}$$
, ν_1 $u \Delta h = \frac{p_1}{\gamma} - \frac{p_2}{\gamma}$

в уравнение Бернулли и выражая v_2 , получим

$$\upsilon_2 = \sqrt{\frac{2g\Delta h}{1 - \left(\frac{\omega_2}{\omega_1}\right)^2 + \xi}}.$$

Итальянский ученый. С 1773 профессор университета в Модене, затем в Павии. Наиболее известны работы Вентури в области гидравлики ирригации, теории света, оптик. В 1797 опубликовал на французском языке исследование обистечении воды через короткие цилиндрические и расходящиеся насадки (насадки Вентури). В 1887 американским ученым К. Гершелем был предложен водомер, названный именем Вентури Известна трубка Вентури для измерения скорости в воздушном и водяном потоке и для создания вакуума в авиационных гироскопах.

ДЖОВАННИ БАТТИСТА ВЕНТУРИ (1746-1822)

Объемный расход будет определяться по формуле

$$Q = \upsilon_2 \omega_2 = \omega_2 \sqrt{\frac{2g}{1 - \left(\frac{\omega_2}{\omega_1}\right)^2 + \xi}} \sqrt{\Delta h} = C\sqrt{\Delta h}, \qquad (3.22)$$

где *С* – величина, постоянная для данного расходомера (трубки Вентури).

Вопросы для самопроверки

1. Какие формулы используются для описания движения жидкости в способах Лагранжа и Эйлера? Какой способ предпочтителен для гидравлики и почему?

2. Что такое линия тока, трубка тока, элементарная и конечная струйки жидкости?

3. Запишите уравнение Бернулли для потока при установившемся плавно изменяющемся движении вязкой жидкости.

4. Что такое гидравлический уклон для потока? Что такое смоченный периметр, живое сечение и гидравлический радиус?

Примеры решения задач

Задача 1. В трубе диаметром $d_1 = 250$ мм поток имеет среднюю скорость $v_1 = 0,6$ м/с. Затем труба плавно сужается до диаметра $d_2 = 125$ мм. Определить расход и среднюю скорость в трубе меньшего диаметра.

Решение: Решение основывается на уравнении неразрывности. Поскольку

$$\omega_1 = \frac{\pi d_1^2}{4} \quad \text{M} \quad \omega_2 = \frac{\pi d_2^2}{4},$$

находим:

$$v_2 = \frac{v_1 d_1^2}{d_2^2} = \frac{0.6 \cdot 0.25^2}{0.125^2} = 2.4$$
 M/c.

Расход $Q = 0, 6 \cdot (3, 14 \cdot 0, 252/4) = 0,029 \text{ м}^3/c.$

Задача 2. Трубопровод диаметром 250 мм внезапно расширяется до диаметра 400 м (рис. 3.26). Центр тяжести сечения 1-1 расположен на 0,5 м выше центра сечения 2-2. Расход воды, пропускаемый по трубопроводу, равен 106 дм³/с. Коэффициент Кориолиса $\alpha_1 = \alpha_2 = 1$. Определить

разность давлений между сечениями, пренебрегая потерями напора.

Решение:

1. Составим уравнение Бернулли двух сечений 1-1 и 2-2 относительно плоскости сравнении 0-0, проходящей через центр сечения 2-2

Рис. 3.26

$$z_1 + \frac{p_1}{\rho g} + \frac{\alpha_1 v_1^2}{2g} = z_2 + \frac{p_2}{\rho g} + \frac{\alpha_2 v_2^2}{2g}$$

$$0,5 + \frac{v_1^2}{2g} - \frac{v_2^2}{2g} = \frac{p_2 - p_1}{\rho g};$$

2. Вычислим скорости из формулы для расхода

$$Q = \omega \upsilon$$
.

 $v_1 = \frac{Q}{\frac{\pi d_1^2}{4}} = \frac{0.106}{\frac{3.14 \cdot 0.25^2}{4}} = 2.16 \text{ m/c}; \quad \frac{v_1^2}{2g} = \frac{2.16^2}{19.62} = 0.24 \text{ m}.$

$$v_2 = \frac{Q}{\frac{\pi d_2^2}{4}} = \frac{0.106}{\frac{3.14 \cdot 0.4^2}{4}} = 0.84 \text{ M/c}; \quad \frac{v_2^2}{2g} = \frac{0.84^2}{19.62} = 0.04 \text{ m}.$$

3. Таким образом, имеем

$$0,5+0,24-0,04=\frac{p_2-p_1}{\rho g};$$

$$\frac{p_2 - p_1}{\rho g} = 0,7$$
 м или $p_2 - p_1 = 6867 \ H/m^2$.

Задачи для самостоятельного решения

Рис. 3.27

Задача 1.

Определить СКОРОСТЬ движения бензина v и расхол О в сифонном трубопроводе (рис. 3.27). Нижняя точка оси трубопровода расположена ниже **VDOBH**Я жидкости питающем резервуаре в h = 2.5на расстоянии М

Внутренний диаметр трубопровода d = 25 мм, плотность бензина p = 850 кг/м³. Потерями напора пренебречь.

Задача 2.

Рис. 3.28

трубчатом Вола лвижется в расходомере в направлении от сечения 1-1 к сечению 2-2 (рис. 3.28). Манометрическое давление в сечении 1-1 больше лавления в сечении 2-2 на $\Delta p = 25$ кПа. расход Определить 0. если внутренний диаметр трубопровода в сечении 1-1 D = 65 мм, а в сечении 2-2 d = 40 мм, разность отметок

сечений $\Delta Z = 2$ м. Потерями напора пренебречь.

Задача З.

Рис. 3.29

горизонтальной трубе По переменного сечения протекает *О*=1.3 л/с нефть расходом С (рис.3.29). Определить разность показаний пьезометров h. если диаметр трубопровода в широком сечении D=10 см. а в **V3KOM** -Плотность *d*=5 см. нефти $\rho = 850$ кг/м³. Потерями напора пренебречь.

Задача 4.

Насос с подачей Q = 7.2 ${\rm M}^3/{\rm Y}$ забирает воду из колодца (рис. 3.30). Определить наибольший вакуум p_{g} при входе в насос. Внутренний диаметр трубопровода D = 80 мм, высота установки насоса над уровнем жидкости h = 4 м. Потери напора $h_w = 0.5$ м.

Задача 5.

Определить избыточное давление в резервуаре (рис. 3.31), если глубина воды в баке h = 5 м, потери напора $h_w =$ =4,9 м, расход вод Q = 0.02м³/с, диаметр трубопровода d = =100 мм, показание манометра, установленного на трубопроводе, $p_M = 1.08-105$ Па.

Рис. 3.30

Рис. 3.31

ГЛАВА 4. ОСНОВЫ ТЕОРИИ ГИДРОДИНАМИЧЕСКОГО ПОДОБИЯ

Решение дифференциальных уравнений гидродинамики охватывает ограниченный круг задач. В ряде случаев аналитическое решение сопряжено со значительными математическими трудностями. В частности, не всегда можно получить удовлетворительный результат и с помощью численных методов. В таких случаях на помощь приходят экспериментальные методы исследования.

Цель этих исследований состоит в том, чтобы получить данные, необходимые для расчета других процессов, родственных изучаемому.

Эксперименты проводятся на специально создаваемых модельных установках, моделирующих определенным образом исследуемые устройства и протекающие в них физические процессы.

Существует два метода исследования физических явлений — аналитический и экспериментальный. При аналитическом исследовании движения жидкости задача сводится к интегрированию системы дифференциальных уравнений при заданных условиях однозначности. Например, для вязкой несжимаемой жидкости имеем следующую систему дифференциальных уравнений:

$$\frac{d\mathbf{v}}{dt} = \mathbf{F} - \frac{1}{\rho} \operatorname{grad} p + \nu \nabla^2 \mathbf{v}; \qquad (4.1)$$

div
$$v = 0$$
, (4.2)

где (4.1) — система уравнений Навье-Стокса, записанных в векторной форме; (4.2) уравнение неразрывности. Кроме того, должны быть заданы начальные и граничные условия и значения физических постоянных ρ и v.

В принципе, совокупностью системы основных дифференциальных уравнений и условий однозначности

конкретное единичное явление определено вполне. Однако эти уравнения чрезвычайно сложны (являются уравнениями в частных производных) и решения найдены лишь для небольшого числа частных случаев, к тому же при весьма существенных упрощающих предпосылках.

Другим методом исследования является непосредственный эксперимент. При этом измеряются те величины, которые представляют прямой практический интерес, и находятся связи, допускающие непосредственное Однако данные, полученные приложение. ИЗ опыта. тому частному случаю, Κ который относятся только эксперименту. Необходимо подвергался найти пути обобщения данных опыта на другие родственные явления. Это позволило бы на основании немногих экспериментов жидкости сулить 0 параметрах в многочисленных Залача родственных явлениях. нахожления научно обоснованного метода обобщения данных опыта решается теорией подобия, которая является учением о методах обобшения данных опыта.

4.1. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ ТЕОРИИ ПОДОБИЯ

Полученные на модели результаты опытных исследований обобщаются и затем переносятся на натуру. Выполнение этой процедуры требует знаний законов, связывающих между собой величины, полученные при исследованиях на модели, и соответствующие им величины в натуре.

Эти подобия. Они законы называются законами устанавливают определенные соотношения между геометрическими размерами, кинематическими И динамическими характеристиками потоков В модели И натуре.

Основная идея теории подобия заключается в выделении внутри класса явлений более узких групп.

Подобными явлениями называются такие, у которых отношение характеризующих их переменных есть постоянное число. Существуют следующие виды подобия.

1. Для того чтобы модель была механически подобна образцу (объекту, для которого создается модель), прежде всего должно соблюдаться *геометрическое подобие*; для этого отношение длин сродственных отрезков образца и модели должно быть одинаковым, т. е.

$$\frac{I_{M}}{I_{0}} = C_{1},$$

где l_{M} — некоторый линейный размер потока модели; l_{0} — соответствующий размер потока в образце; C_{I} — константа геометрического подобия (линейный масштаб модели).

2. При получении модели, кроме геометрического подобия, необходимо соблюдать еще *динамическое*, которое означает, что все силы, вызывающие рассматриваемые движения в модели, должны быть изменены с аналогичными силами в образце в одно и то же число раз.

Сила F определяется произведением массы m на ускорение a, т. е.

$$F = ma.$$

Так как размерность массы $m = \rho l^3$, а ускорения $a = l/t^2$, то размерность силы будет

$$F = \rho l^3 \frac{l}{t^2} = \rho l^2 \upsilon^2.$$

Отсюда следует, что для динамического подобия необходимо соблюдение соотношения

$$\frac{F_{_{\mathcal{M}}}}{F_{_{0}}} = \frac{\rho_{_{\mathcal{M}}} l_{_{\mathcal{M}}}^2 \upsilon_{_{\mathcal{M}}}^2}{\rho_{_{0}} l_{_{0}}^2 \upsilon_{_{0}}^2} = C_{\rho} C_{_{1}}^2 C_{\upsilon}^2 = C_f, \qquad (4.3)$$

где $C_{\rho} = \frac{\rho_{u}}{\rho_{0}}; C_{\nu} = \frac{\nu_{u}}{\nu_{0}}; C_{f}$ – константа динамического подобия

(масштаб сил).

Условие (4.3) является *математическим выражением общего закона динамического подобия*, которое впервые сформулировано Ньютоном.

В теории подобия доказывается, что при выполнении геометрического и динамического подобий будет соблюдаться и кинематическое подобие. Следовательно, скорости, ускорения и перемещения частиц в модели будут изменяться в одних и тех же отношениях по сравнению с образцами, т. е.

$$\frac{\upsilon_M}{\upsilon_0} = C_\upsilon; \frac{a_M}{a_0} = C_a; \frac{T_M}{T_0} = C_T$$

Подобных явлений бывает не два, а бесконечно большое количество. Эти явления составляют группу подобных явлений, поэтому выражение вида $x_i^M = C_{xi} x_i^0$ есть групповое преобразование явлений, где C_x принимает последовательно постоянные значения при переходе от одного явления к другому, подобному первому.

4.2. ТЕОРЕМЫ ТЕОРИИ ПОДОБИЯ. КРИТЕРИИ ПОДОБИЯ

Очевидно, что подобные явления должны принадлежать лишь к одному классу, т. е. описываться одной и той же системой дифференциальных уравнений. в общем случае дифференциальные уравнения не могут соблюдаться одновременно при переменных x', v' и т. д. и при новых переменных $x'' = C_l x'$, $v'' = C_v v'$ и т. д., т. е. в общем случае дифференциальные уравнения и уравнения группового преобразования несовместны.

Покажем, что для того чтобы переменные одновременно удовлетворяли дифференциальным уравнениям и

уравнениям группового преобразования, множители C_{i} , C_{i} , и т. д. не могут выбираться произвольно, а связаны определенными соотношениями.

Выпишем одно из уравнений Навье-Стокса для первого явления (образца):

$$\frac{\partial \upsilon'_{x}}{\partial t} + \upsilon_{x} \frac{\partial \upsilon'_{x}}{\partial x'} + \upsilon'_{y} \frac{\partial \upsilon'_{x}}{\partial y'} + \upsilon'_{z} \frac{\partial \upsilon'_{x}}{\partial z'} =$$

$$= X' - \frac{1}{\rho'} \frac{\partial p'}{\partial x'} + \nu' \left(\frac{\partial^{2} \upsilon'_{x}}{\partial x'^{2}} + \frac{\partial^{2} \upsilon'_{x}}{\partial y'^{2}} + \frac{\partial^{2} \upsilon'_{x}}{\partial z'^{2}} \right)$$
(4.4)

Для второго явления (модели), подобного первому, положим

$$\nu^{M} = C_{\nu}\nu^{0}; \ t^{M} = C_{t}t^{0}; \ x^{M} = C_{l}x^{0}; \ y^{M} = C_{l}y^{0}; \ z^{M} = C_{l}z^{0};$$

$$F^{M} = C_{f}F^{0}; \ \rho^{M} = C_{\rho}\rho^{0}; \ v^{M} = C_{\nu}v^{0}; \ p^{M} = C_{p}p^{0}.$$
 (4.5)

Уравнение Навье - Стокса для модели будет

$$\frac{\partial \upsilon_x''}{\partial t} + \upsilon_x'' \frac{\partial \upsilon_x''}{\partial x'} + \upsilon_y'' \frac{\partial \upsilon_x''}{\partial y'} + \upsilon_z'' \frac{\partial \upsilon_x''}{\partial z'} =$$

$$= X'' - \frac{1}{\rho'} \frac{\partial p''}{\partial x''} + \nu'' \left(\frac{\partial^2 \upsilon_x''}{\partial x''^2} + \frac{\partial^2 \upsilon_x''}{\partial y''^2} + \frac{\partial^2 \upsilon_x''}{\partial z''^2} \right)$$
(4.6)

Подставляя (4.4) в уравнение (4.6) и учитывая, что константы подобия С постоянны и при дифференцировании выносятся за знак дифференциала, получим

$$\left(\frac{C_{\nu}}{C_{t}}\right)\frac{\partial \upsilon_{x}'}{\partial t'} + \left(\frac{C_{\nu}^{2}}{C_{t}}\right)\left(\upsilon_{x}'\frac{\partial \upsilon_{x}'}{\partial x'} + \upsilon_{y}'\frac{\partial \upsilon_{x}'}{\partial y'} + \upsilon_{z}'\frac{\partial \upsilon_{x}'}{\partial z'}\right) =$$

$$= C_{t}X' - \left(\frac{C_{p}}{C_{\rho}C_{t}}\right)\frac{1}{\rho'}\frac{\partial p'}{\partial x'} + \left(\frac{C_{\nu}C_{\nu}}{C_{t}^{2}}\right)v'\left(\frac{\partial^{2}\upsilon_{x}'}{\partial x'^{2}} + \frac{\partial^{2}\upsilon_{x}'}{\partial y'^{2}} + \frac{\partial^{2}\upsilon_{x}'}{\partial z'^{2}}\right),$$

$$(4.7)$$

Из соотношения (4.7) следует, что для совместности уравнений (4.4) и (4.6), т. е. для того чтобы переменные первого и второго явлений удовлетворяли бы одному и тому же дифференциальному уравнению, должно быть

$$\frac{C_{\nu}}{C_t} = \frac{C_{\nu}^2}{C_t} = C_t = \frac{C_p}{C_{\rho}C_l} = \frac{C_{\nu}C_{\nu}}{C_l^2}.$$

Или, разделив все на $\frac{C_{\nu}}{C_{\ell}}$, получим

$$\frac{C_l}{C_t C_v} = \frac{C_f C_l}{C_v^2} = \frac{C_p}{C_\rho C_v^2} = \frac{C_v}{C_v C_l} = 1.$$

Отсюда

$$\frac{C_{l}C_{\nu}}{C_{l}} = \frac{C_{l}C_{l}}{C_{\nu}^{2}} = \frac{C_{p}}{C_{\rho}C_{\nu}^{2}} = \frac{C_{\nu}C_{l}}{C_{\nu}} = 1.$$

Учитывая, что из (4.5) $C_v = \frac{v^i}{v^0}$ и т. д., получим

$$\frac{\upsilon^M t^M}{l^M} = \frac{\upsilon^0 t^0}{l^0},$$

или

$$\frac{ot}{l} = \text{Ho} = \text{idem},$$

т. е. комплекс величин в соответствующих точках образца и модели должен быть неизменен (условие равенства чисел подобия обозначается значком idem):

 $\frac{F^{u}l^{u}}{\upsilon^{u^{2}}} = \frac{F^{0}l^{0}}{\upsilon^{02}} \quad \text{ИЛИ} \quad \frac{Fl}{\upsilon^{2}} = \text{Fr} = \text{idem};$ $\frac{p^{u}}{\rho^{u}\upsilon^{u^{2}}} = \frac{p^{0}}{\rho^{0}\upsilon^{02}} \quad \text{ИЛИ} \quad \frac{p}{\rho\upsilon^{2}} = \text{Eu} = \text{idem};$ $\frac{\upsilon^{M}l^{M}}{\upsilon^{M}} = \frac{\upsilon^{0}l^{0}}{\upsilon^{0}} \quad \text{ИЛИ} \quad \frac{\upsilon l}{\upsilon} = \text{Re} = \text{idem}.$

Величины Но, Fr, Eu, Re называют критериями подобия. Но — критерий гомохронности; Fr — критерий Фруда; Eu критерий Эйлера; Re — критерий Рейнольдса. Первая теорема подобия (теорема Ньютона) при этом будет: *у подобных явлений для любой пары соответственных точек критерии подобия численно одинаковы*. При переходе от одной пары соответственных точек к другой критерии подобия изменяют значение. Эта теорема дает необходимые условия подобия.

Рассмотрим условия, которые достаточны лля того, чтобы явления в модели и образце были подобны. Понятие подобия распространяется на все соответственные точки подобных систем, в том числе и на границах систем, а также в начальный момент времени. Отдельные явления различаются между собой лишь условиями однозначности, поэтому если условия однозначности сделать подобными, то и сами явления окажутся подобными, если они описываются одними и теми же дифференциальными уравнениями. Но для подобия условий однозначности достаточно соблюсти подобия. равенство критериев составленных лишь из величин, входящих в условия однозначности. Поэтому. подобны те явления, условия однозначности которых, подобны, а критерии подобия, составленные из величин, входящих в *исловия однозначности, равны*. Это утверждение составляет

3-ю теорему подобия (теорему Кирпичева-Гухмана).

Если значения определяющих критериев у двух явлений в соответственных точках равны, то явления подобны. Если они подобны, то по первой теореме подобия они имеют в соответственных точках одинаковые значения всех критериев, независимо от того, к которой из двух категорий они относятся. Отсюда следует, что равенство определяющих критериев имеет следствием равенство всех остальных критериев. Это означает существование функциональной зависимости между определяющими и не определяющими критериями.

Если перейдем от одних значений определяющих критериев к другим, то перейдем от одной группы подобных явлений к другой. Но при этом и все остальные не определяющие критерии получат какие-то новые единственные значения. Таким образом, каждый не определяющий критерий есть однозначная функция определяющих критериев. Например, Eu = f (Re).

Вид этой функции может быть найден из опыта. Если получим из опыта зависимость Eh = f (Re) и построим ее в виде графика, то каждая точка на таком графике будет отвечать целой группе подобных явлений, для которых Re = =idem, а вся кривая в целом — серии групп.

Между тем одна точка на графике может быть получена в результате единичного опыта, а вся кривая — в виде небольшой серии опытов на единственной установке. Например, после того как найдено число $Eu = \frac{\Delta p}{\rho v^2}$, перепад Δp находится по формуле

$$\Delta p = \mathrm{Eu} \cdot \rho \cdot \upsilon^2.$$

Таким образом, можно обобщить результаты единичного эксперимента на целую серию групп и получить решение или интеграл дифференциального уравнения в виде критериального уравнения. Отсюда вторая теорема подобия (теорема Федермана-Букингема) формулируется следующим образом: решение системы дифференциальных уравнений может быть представлено в виде функции между критериями подобия этой системы.

4.3. ФИЗИЧЕСКИЙ СМЫСЛ КРИТЕРИЕВ ПОДОБИЯ

Процесс течения реальной жидкости описывается сложной системой дифференциальных уравнений (система уравнений Навье-Стокса) и условиями однозначности с большим числом переменных величин. Попытки аналитического решения этой системы уравнений представляют серьезные трудности, поэтому большое значение приобретают экспериментальные исследования. С помощью эксперимента для отдельных значений аргумента можно получить численные значения искомых переменных, а затем подобрать уравнения, описывающие результаты опытов. Однако при изучении столь сложного явления, как течение реальной жидкости, не всегда легко проводить и опытное исследование. Кроме того, здесь нужно быть уверенным, что результаты, получаемые с помощью какой-либо установки (модели), можно перенести и на аналогичные процессы (образец). Для решения этих трудностей и предназначена теория подобия.

подобия Ha теории размерные основе физические величины объединяются в безразмерные комплексы. При этом число таких комплексов оказывается существенно величин, ИЗ которых меньше числа они составлены. Полученные безразмерные комплексы рассматриваются как новые переменные.

Кроме того, теория подобия устанавливает условия, при которых результаты экспериментальных исследований можно распространить и на другие явления, подобные исследуемому.

В уравнениях и условиях однозначности различают три вида величин (применительно к системе дифференциальных уравнений Навье-Стокса).

1. Независимые переменные – координаты *x*, *y*, *z* и время *t*.

2. Зависимые переменные (искомые функции), которые однозначно определяются значениями независимых переменных. К их числу относится давление р и составляющие скорости v_x , v_y , v_z по координатным осям.

3. Постоянные величины (константы), которые для определенной задачи являются постоянными величинами, не зависящими от других переменных. Однако при переходе к другим задачам они могут изменяться. Постоянными величинами являются линейные размеры, вязкость, плотность и др.

После перевода математической постановки задачи к безразмерному виду получаем комплекс критериев подобия.

Критериям подобия присвоены имена ученых, которые внесли значительный вклад в развитие гидродинамики.

Первый из этих безразмерных комплексов обозначают

$$\operatorname{Re} = \frac{\upsilon d}{v}$$

и называют критерием Рейнольдса. Он характеризует отношение сил инерции и сил вязкости. При заданных диаметре трубопровода *d* и вязкости жидкости *v* критерий Рейнольдса зависит лишь от скорости течения о и поэтому является, по сути дела, безразмерной скоростью.

Безразмерный комплекс

$$\mathrm{Eu} = \frac{p}{\rho v^2}$$

называется критерием Эйлера. Он характеризует отношение сил давления и сил инерции. для несжимаемой жидкости с постоянными физическими параметрами большой интерес представляет неабсолютное давление *p*, а его изменение. Поэтому критерий Еu обычно записывают в виде

$$\mathrm{Eu}=\frac{\Delta p}{\rho \upsilon^2}=\frac{p-p_0}{\rho \upsilon^2},$$

где p_0 — фиксированное значение давления (например, на входе в канал).

Безразмерный комплекс

$$Gr = \frac{g\beta l^3 \Delta T}{v^2}$$

называют *критерием Грасгофа*. Здесь g — ускорение силы тяжести;

 $\beta = \frac{1}{\rho} \frac{\Delta \rho}{\Delta T}$ – коэффициент объемного расширения (1/K); v –

кинематический коэффициент вязкости; l — определяющий размер; ΔT — изменение температуры в процессе; ρ — плотность.

Критерий Грасгофа характеризует подъемную силу, возникающую в жидкости вследствие разности плотности из-за изменения температуры.

В случае, когда разность плотностей обусловлена не температурным фактором, а составом жидкости (присутствие примесей или других жидкостей, удельный вес которых отличается от удельного веса основной жидкости), критерием подобия будет диффузионное *число Архимеда*:

$$\operatorname{Ar} = \frac{gl^3}{v^2} \frac{\rho_0 - \rho}{\rho}.$$

где ρ_0 и ρ — плотность одной и другой фаз.

В случае, когда в жидкости велики силы поверхностного натяжения, вводится *критерий подобия Вебера*:

We =
$$\frac{\rho v^2 l}{\sigma}$$
,

где σ – коэффициент поверхностного натяжения.

Критерий подобия Вебера — отношение сил инерции к силам поверхностного натяжения.

Критерий подобия Фруда

$$Fr = \frac{gl}{v^2}$$

есть мера отношения потенциальной энергии массовых сил к силам инерции потока.

При исследовании неустановившихся явлений используются критерии подобия Струхаля

$$Sh = \frac{l}{vt}$$

и Фурье

$$Fo = \frac{al}{d^2},$$

где t — время; a — коэффициент температуропроводности, M^2/c .

Критерий подобия Струхаля характеризует составляющие инерционных сил, зависящих от времени.

Критерий подобия Фурье представляет безразмерное время.

При исследовании процессов теплопередачи и диффузии используют критерий подобия Пекле

$$Pe = \frac{\nu l}{a},$$

характеризующий отношение тепла, переносимого конвекцией, к теплу, передаваемому теплопроводностью. Например, при больших числах *Pe* преобладающим будет конвективный теплоперенос и наоборот.

Критерий подобия Прандтля

$$Pe = \frac{v}{a}$$

полностью составлен из физических параметров, а потому и является физическим параметром. Этот критерий имеет смысл подобия полей температур и скоростей.

Вопросы для самопроверки

1. Раскройте сущность физического моделирования.

2. Раскройте сущность математического моделирования.

3. Что называется законами механического подобия?

4. Раскройте сущность геометрического, кинематического и динамического подобия.

5. Что такое коэффициенты подобия?

6. Что такое критерий Ньютона?

Примеры решения задач

Задача 1. В газопроводе низкого давления происходит изменение площади поперечного сечения от S_1 до S_2 ($S_2 < S_1$).

Определить, в каком из этих сечений число Рейнольдса будет большим. Расход, плотность и вязкость газа считать постоянными. *Решение:* Диаметры труб равны

$$d_1 = \sqrt{\frac{4S_1}{\pi}}; \quad d_2 = \sqrt{\frac{4S_2}{\pi}}.$$

Из уравнения расхода определяем скорости движения газа:

$$v_1 = \frac{4Q}{\pi d_1^2}; \quad v_2 = \frac{4Q}{\pi d_2^2}.$$

Числа Рейнольдса

$$\operatorname{Re}_{1} = \frac{\upsilon_{1} d_{1}}{\mu / \rho} = \frac{4Q}{\pi d_{1} \nu}; \quad \operatorname{Re}_{2} = \frac{\upsilon_{2} d_{2}}{\mu / \rho} = \frac{4Q}{\pi d_{2} \nu}$$

так как $d_1 > d_2$, то $Re_1 < Re_2$.

Следовательно, во втором сечении газопровода число Рейнольдса будет больше, чем в первом сечении.

Задача 2. В каком соотношении должны находиться вязкости потока жидкости модели и натурного объекта в случае, когда для обоих потоков числа Рейнольдса и Фруда будут одинаковы, а модель выполнена в масштабе 1:5.

Решение. Из условия равенства чисел Фруда и Рейнольдса соответственно имеем

$$\frac{\upsilon_1}{\upsilon_2} = \sqrt{\frac{l_1}{l_2}}; \frac{\upsilon_1}{\upsilon_2} = \frac{\upsilon_1}{\upsilon_2} \cdot \frac{l_1}{l_2}$$

Здесь индексы 1 и 2 соответственно относятся к модели и натурному объекту.

Подставляя значение υ_1/υ_2 из первого выражения во второе, найдем

$$\frac{v_1}{v_2} = \left(\frac{l_1}{l_2}\right)^{1/3}.$$

Так как по условию задачи $l_{l'}/l_2 = l/5$, то окончательно получаем

$$\frac{\nu_1}{\nu_2} = \left(\frac{1}{5}\right)^{1.5} = 0.09$$

T. e. $v_1 = 0.09v_2$.

Таким образом, вязкость жидкости, используемой в модели, должна быть приблизительно в 10 раз меньше, чем вязкость жидкости, применяемой в натурном объекте.

Задачи для самостоятельного решения

Задача 1. Сопротивление участка водопроводной трубы с арматурой необходимо перед установкой проверить в лаборатории путем испытаний на воздухе. Определить:

1. С какой скоростью v_u следует вести продувку, сохраняя вязкостное подобие, если скорость воды в трубе будет равна v = 2,5 м/с.

2. Какова будет потеря напора h_n при работе трубы на воде с указанной скоростью, если при испытании на воздухе потеря давления оказалась равной $\Delta p_m = 8,35$ кПа. Значения кинематической вязкости (при t = 20°C) для воздуха v = 0,156 Ст и воды $v_{god} = 0,01$ Ст, плотность воздуха $\rho_e = 1,166$ кг/м³.

Задача 2. При испытании на воде модели насадка (рис. 4.1), выходной диаметр которого $d_{_M} = 30$ мм, под статическим напором $H_{_M} = 50$ м получены расход $Q_{_M} = 18$ л/с и средняя скорость в сжатом сечении струи $v_{_M} = 30$ м/с.

Каков должен быть выходной диаметр *d* насадка в натуре и под каким напором *H* он должен работать

Рис. 4.1

на воде, чтобы получить Q = 100 л/с и v = 60 м/с?

Считать, что испытания модели произведены в зоне турбулентной автомодельности, в силу чего коэффициенты истечения для модели и натуры одинаковы.

ГЛАВА 5. ГИДРАВЛИЧЕСКИЕ СОПРОТИВЛЕНИЯ. РЕЖИМЫ ТЕЧЕНИЯ ЖИДКОСТИ

Одна из важнейших задач гидравлики — определение потерь напора в трубопроводах. Знание этих потерь необходимо для расчета трубопроводов. Общую потерю напора на каком-либо участке трубопровода принято в гидравлике разделять на два вида:

- потери напора по длине трубопровода, или линейные;

 потери напора в местных сопротивлениях, или местные.
 Таким образом, потеря напора на участке 1-2 трубопровода определяется по формуле

$$h_{1-2} = h_{\Lambda} + h_{M}$$

и измеряется в метрах столба (м ст.) жидкости.

Линейные потери напора – это потери напора на трение на прямых участках трубопровода. Потери напора по длине для трубопроводов, находящихся под напором, принято определять по формуле Дарси-Вейсбаха

$$h_{\mu} = \lambda \frac{l}{d} \frac{v^2}{2g}$$
 (B M.B.CT.),

где / – длина участка трубопровода, м;

d – внутренний диаметр трубопровода, м;

і — коэффициент гидравлического сопротивления (коэффициент трения) — безразмерная величина.

Местные потери напора возникают В результате деформации потока и потерь энергии на вихреобразование в тех местах, где происходит изменение конфигурации канала. Они наблюдаются в местах поворота, резкого расширения в различного рода или сужения потока, запорных И регулирующих устройствах.

Местные потери напора определяют по формуле

$$h_u = \xi \frac{v^2}{2g},$$

где ζ – коэффициент местных потерь (безразмерная величина).

Таким образом, задача по определению гидравлических потерь при известной скорости течения среды сводится к нахождению коэффициентов λ и ξ (теоретически или экспериментально).

Французский инженер-гидравлик, обосновавший закон Дарси (1856), связывающий скорость фильтрации жидкости в пористой среде с градиентом давления. Результаты его трудов имели большое влияние на усовершенствование науки о движении воды.

Доказал, в противоположность господствовавшему мнению, что диаметр трубы, как и большая или меньшая гладкость ее стенок, имеет чувствительное влияние на скорость протекающей по ней жидкости.

Исследовал законы движения воды (1803-1858) в открытых каналах. Опыты эти дали замечательные выводы относительно влияния русла на коэффициенты сопротивления движению воды. Именем Дарси названа единица измерения проницаемости пористой среды.

Немецкий математик и механик-гидравлик. Открытие им неполного сжатия струи воды при истечении через отверстия и

трубки принадлежит к одним из наиболее важных успехов гидравлики после Бернулли. коэффициенты, выведенные Практические Вейсбахом наблюдениями над истечением воды через щитовые отверстия и протокам по трубам, в значительной степени упрощают все расчеты по этой части гидравлики. Уравнение Дарси-Вейсбаха представляет собой универсальное помощью которого расчетное уравнение, с можно вычислять потери напора в трубах как при ламинарном, так и при турбулентном режиме.

АНРИ ФИЛИБЕР ГАСПАР ДАРСИ (1803-1858)

ЮЛИУС ВЕЙСБАХ (1806-1871)
5.1. ДВА РЕЖИМА ДВИЖЕНИЯ ЖИДКОСТИ

В 1883 г. английский физик Рейнольдс с помощью весьма простого и наглядного эксперимента показал, что существуют два отличных друг от друга режима движения жидкости. Установка Рейнольдса состояла из бака 1, трубы 2, мерного бачка 3, сосуда с окрашенной жидкостью 4 и трубки 5 для ввода краски в трубу 2 (рис. 5.1).

Опыты показали, что при малой скорости движения жидкости вводимая в нее окрашенная жидкость движется в виде отчетливо выраженной струйки, не смешиваясь с потоком неокрашенной воды (рис. 5.2). При возрастании скорости движения жидкости струйка. Начинает колебаться и принимает волнообразное очертание. Наконец, при какомто определенном значении скорости окрашенная струйка полностью размывается жидкостью. Жидкость начинает двигаться, перемешиваясь (рис. 5.3).

Рис. 5.1

Рис. 5.2

Рис. 5.3

Режим движения жидкости без перемешивания слоев был назван *ламинарным* (движение жидкости слоями).

Режим движения жидкости с перемешиванием слоев – *турбулентным* (беспорядочное движение жидкости – «турбулентус» по-латыни – вихревой).

Существование принципиально различных режимов движения — ламинарного и турбулентного — было обнаружено в опытах Хагена, Менделеева и самого Рейнольдса. Среднюю скорость течения жидкости $\overline{v'_{kp}}$, при которой происходит смена режимов движения потока, называют *критической*.

При проведении опыта в обратном порядке, т. е. при уменьшении скорости движения жидкости, происходил переход турбулентного режима в ламинарный, однако при несколько иной критической скорости $\overline{v_{\kappa p}} < \overline{v'_{\kappa p}}$. Поэтому необходимо различать две критические скорости: верхнюю $\overline{v'_{\kappa p}}$ и нижнюю критическую $\overline{v_{\kappa p}}$ причем $\overline{v'_{\kappa p}} > \overline{v_{\kappa p}}$.

Для оценки режима движения жидкости Рейнольдс ввел безразмерный критерий Re, который учитывает влияние скорости v, диаметра (характерного размера) *d(l)* плотности р, а также динамической вязкости х:

$$\operatorname{Re} = \frac{\upsilon d \rho}{\mu}$$
 или $\operatorname{Re} = \frac{\upsilon d}{\nu}$,

где $v = \frac{\mu}{\rho}$ – кинематическая вязкость.

Переход турбулентного режима в ламинарный происходит при критической скорости, которой соответствует число Рейнольдса **Re = 2320**. Переход же ламинарного режима в турбулентный происходит постепенно. Началу установившегося турбулентного режима течения соответствует значение **Re = 13000**.

Критерий Рейнольдса удобен тем, что может применяться для формы живого сечения через гидравлический радиус. Например, для круглого сечения

$$R=\frac{\omega}{\chi}=\frac{\pi D^2}{4\pi D}=\frac{D}{4}.$$

Тогда

$$\operatorname{Re} = \frac{4R\upsilon}{v} \,. \tag{5.1}$$

ОСБОРН РЕЙНОЛЬДС (1842-1912)

Английский физик и инженер. Работы Рейнольдса посвящены механике, гидродинамике, теплоте, электричеству, магнетизму. В 1883 году установил, что ламинарное течение переходит в турбулентное, когда введенная им безразмерная величина (число Рейнольдса) превышает критическое значение.

Число Рейнольдса широко используется при решении задач гидро- и аэродинамики в случае малых и средних дозвуковых скоростей. Рейнольдс определил механический эквивалент теплоты. Сконструировал ряд турбин и центробежных насосов.

Для сечения прямоугольной формы со сторонами b и h

$$R = \frac{bh}{2(b+h)}$$

Тогда

$$\operatorname{Re} = \frac{2bh\nu}{\nu(\nu+h)}$$

Критерий Рейнольдса является как бы мерой отношения кинематической энергии жидкости к работе сил вязкого трения. От критерия Рейнольдса в общем случае зависят все безразмерные коэффициенты, входящие в расчетные зависимости, которые применяются в практике гидравлических расчетов.

При проведении газодинамического расчета в первую очередь нужно выяснить, какой режим движения будет наблюдаться у данного потока газа.

Режимы движения газовых потоков делятся на два типа (так же, как в жидкостях):

 ламинарный, спокойный, параллельноструйный, при малых скоростях; 2) турбулентный, вихреобразный, при больших скоростях. Для выяснения типа режима нужно рассчитать число Рейнольдса Re и сравнить его с критическим Re_{кр} для газа.

Число Рейнольдса для газа Re вычисляется по формуле:

Re =vdy/v,

где d_{2} — эквивалентный диаметр трубопровода, воздуховода или канала ;

 $d_{2} = d$, если трубопровод круглого сечения.

Критическое число Рейнольдса для газа Re_{кв} ≈ 2000.

Если Re « Re_{кр}, то режим ламинарный.

Если Re > Re $_{\kappa p}$, то режим турбулентный.

На практике в подавляющем большинстве случаев наблюдается режим турбулентный: в вентиляционных каналах (воздуховодах), газопроводах, паропроводах, при ветре.

5.2. СПОСОБЫ ОПРЕДЕЛЕНИЯ ПОТЕРЬ НАПОРА ПРИ РАВНОМЕРНОМ ДВИЖЕНИИ ЖИДКОСТИ

Основной формулой при расчете напорных трубопроводов является формула Дарси-Вейсбаха:

$$h_{v} = \lambda \frac{\ell}{d} \cdot \frac{v^2}{2g}$$

а при расчете течений в открытых руслах — формула Шези:

$$v = C\sqrt{Ri}$$

Применение этих формул связано с определением коэффициентов λ и *C*.

При ламинарном движении жидкости коэффициент *λ* для труб определяется по формуле

$$\lambda = \frac{64}{\text{Re}}.$$

Последнее соотношение представляет формулу Пуазейля для определения коэффициента трения λ (коэффициента линейных потерь).

5.3. ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ ДЛЯ КОЭФФИЦИЕНТА ГИДРАВЛИЧЕСКОГО СОПРОТИВЛЕНИЯ. ОПЫТЫ НИКУРАДЗЕ

При исследовании турбулентного движения жидкости в трубах необходимо решать два основных вопроса – определение потерь напора и распределение скоростей по поперечному сечению трубы. Опыты показывают, что обе эти величины существенно изменяются в зависимости от диаметра трубы, вязкости жидкости, скорости движения и шероховатости стенок труб.

Экспериментальные данные для λ (коэффициент Дарси) в широком интервале чисел Re были получены Никурадзе в трубах и Зегжда - в прямоугольных каналах с искусственной (песочной) шероховатостью.

Никурадзе создавал равнозернистую шероховатость, равномерно наклеивая песчинки определенных размеров на стенку трубы. Размеры зерен песка принимались за размер выступа шероховатости Δ . В опытах были измерены потери напора и расход, вычислены средние скорости потоков и коэффициенты λ . Данные опытов Никурадзе изобразил на графике *lg Re – lg (100)* (рис. 5.6).

Средний диаметр фракции песка Δ принимали за меру абсолютной шероховатости (рис. 5.4). Труба называется гидравлически гладкой, если средняя высота выступов шероховатости Δ меньше толщины ламинарной пленки δ_n . В этом случае шероховатость не влияет на движение. Если абсолютная шероховатость Δ больше толщины ламинарной пленки δ_n , то труба называется гидравлически шероховатой. В этом случае шероховатость существенно влияет на движение жидкости (рис. 5.5).

Таким образом, абсолютная шероховатость Δ — это средняя высота выступов шероховатости. Относительная шероховатость определяется величиной

$$\varepsilon = \frac{\Delta}{r_0},$$

где r_0 – радиус трубы.

Рис. 5.4. Абсолютная шероховатость

Рис. 5.5. Соотношение абсолютной шероховатости с толщиной ламинарного слоя

Величина, обратная относительной шероховатости,

называется относительной гладкостью.

Результаты опытов Никурадзе представлены на графиках рис. 5.6.

На графике (см. рис. 5.20) всю область чисел Рейнольдса можно разделить на 5 характерных зон движения.

1. Зона ламинарного режима (Re < 2300 или lg Re < 3,5). Здесь все опытные точки независимо от шероховатости стенок ложатся на прямую линию *I*, описываемую уравнением Пуазейля:

 $\lambda = \frac{64}{\text{Re}}.$

Потери напора здесь пропорциональны скорости. Действительно, подставляя выражение для коэффициента трения

$$\lambda = \frac{64}{\text{Re}} = \frac{64}{\frac{\upsilon \cdot d}{\nu}}$$

в формулу Дарси-Вейсбаха

$$h=\lambda\frac{l}{d}\frac{\upsilon^2}{2g},$$

получим h = kv где v - средняя скорость,

$$k = \frac{64vl}{2gd^2}.$$

Эпюра распределения скоростей в трубах представляет собой параболу, выраженную уравнением

$$u = u_{\text{Mak}} [1 - (r/r_0)^2]$$

где u — местная скорость в точке, расположенной на произвольном расстоянии г от оси трубы; r_0 — радиус трубы; u_{maxc} — максимальная скорость на оси трубы при r=0.

Максимальная скорость на оси трубы определяется по формуле

$$u_{\text{MBKC}} = \frac{gi}{4v} r_0^2 = \frac{\gamma i}{4\mu} r_0^2$$

где *i* — гидравлический уклон, *v* и *µ* — соответственно кинематическая и динамическая вязкости.

Средняя скорость при ламинарном движении в круглой трубе равна половине максимальной скорости

2. Переходная зона. Здесь ламинарный режим переходит в турбулентный (2300≤Re≤3000); коэффициент λ возрастает с увеличением числа Рейнольдса, оставаясь одинаковым для различных шероховатостей.

3. Зона гидравлически гладких труб для турбулентного режима. Для труб с высокими значениями относительной гладкости ($\frac{r_0}{\Delta}$ >500) опытные точки для чисел Рейнольдса 400<Re<80 $\frac{r_0}{\Delta}$ — располагаются вдоль наклонной прямой *II*. Эта прямая известна как прямая Блазиуса для гладких труб. На ней коэффициент трения λ хорошо описывается эмпирической формулой Блазиуса:

Потери напора определяют по формуле

$$h = k v^{1.75}$$
.

Для круглых напорных труб толщина ламинарного слоя определяется по формуле

$$\delta_n = 30 \frac{d}{\text{Re}\sqrt{\lambda}}$$

151

4. Зона шероховатых труб ($\frac{r_0}{\Delta} < 500$), или так называемая доквадратичная зона при турбулентном режиме ($80 \frac{r_0}{\Delta} < Re < < 1000 \frac{r_0}{\Delta}$).

Здесь отклонение экспериментальных точек от прямой *II* зависит от величины шероховатости (относительной гладкости). Это отклонение наступает тем раньше, чем меньше относительная гладкость. При этом коэффициент λ стремится к некоторому пределу (разному для труб с различной шероховатостью), оставаясь затем постоянным при увеличении числа Re.

5. Зона вполне шероховатых труб ($\frac{r_0}{\Delta} = 15$ и $\frac{r_0}{\Delta} = 30$). Гидравлические потери в этой области пропорциональны квадрату скорости (квадратичный закон сопротивления). Для кривых $\frac{r_0}{\Delta} = 15$ и $\frac{r_0}{\Delta} = 30$ ламинарная пленка даже при небольших значениях Re не перекрывает выступов шероховатости, и эти кривые с увеличением числа Re только пересекают линию II для гладких труб. Следовательно, в данном случае коэффициент λ совершенно не подчиняется закону для гладких труб. C увеличением числа Re он постепенно возрастает и при lg Re = 4,5 для первой кривой ($\frac{r_0}{\Delta} = 15$) или lg Re = 5,0 для второй кривой ($\frac{r_0}{\Delta} = 30$) становится практически независимым от Re.

Коэффициент λ для этой зоны может быть определен по формуле Б. Л. Шифринсона:

$$\lambda = 0.11 \left(\frac{\Delta_9}{d}\right)^{0.25},$$

152

где $\Delta_{\mathcal{F}}$ – эквивалентная шероховатость.

В квадратичной области сопротивления коэффициент Дарси λ зависит от относительной гладкости R/Δ:

$$\lambda = \frac{1}{\left(2\lg\frac{2AR}{\Delta}\right)^2}$$

где *R* – гидравлический радиус, *A* – по опытам Никурадзе для равнозернистой шероховатости равна 7,4.

Часто ввиду отсутствия данных по шероховатости *λ* определяется *через коэффициент Шези С*:

$$\lambda = \frac{8g}{C^2}$$

Для приближенных расчетов чугунных водопроводных труб с диаметром *d*<500 мм можно воспользоваться формулой *Дарси*:

$$\lambda = 0.02 \left(1 + \frac{1}{40d} \right) = 0.02 + \frac{0.0005}{d}$$
,

где *d* – диаметр, *м*.

В качестве расчетных формул для коэффициента Шези используются следующие эмпирические формулы:

а) Павловского

$$C = \frac{1}{n} R^{y},$$

где *n* – коэффициент шероховатости (прил.);

R – гидравлический радиус, м (0,1 м<R<3 м);

у – показатель степени, приближенно вычисляемый по формуле

у≈1,5√*п* (при R< 1 м) и *у*≈1,3√*п* (при R>1 м).

б) Агроскина

$$C = 17,72(k + \lg R),$$

где *k* – параметр гладкости; *R* – гидравлический радиус, м.

С некоторой погрешностью при назначении *k* формулу Агроскина можно переписать в виде:

$$C = 1 / n + 17,72 \lg R$$
.

в) Маннинга (используется при расчетах напорных труб)

$$C = \frac{1}{n} R^{1/6}.$$

г) Форгеймера (для открытых земляных русел)

$$C=\frac{1}{n}R^{0,2}.$$

В целях упрощения расчета и избежания вычисления коэффициента λ формулу $h_{233} = \lambda \frac{l}{4R} \frac{v^2}{2g}$ в квадратичной области сопротивления удобно представить в виде

$$h_{\rm aun} = \frac{v^2 l}{C^2 R} \, .$$

Как видно из последней формулы, потери напора прямо пропорциональны скорости во второй степени, поэтому эта область и носит название *квадратичной области сопротивления*.

Полученным результатам можно дать следующее объяснение: до тех пор, пока выступы шероховатости полностью погружены в ламинарный пограничный слой ($\Delta \leq \delta_{\pi}$), для величины гидравлических сопротивлений нет разницы между гладкими и шероховатыми поверхностями стенок. Коэффициент λ здесь зависит только от числа Рейнольдса и определяется как для гладких труб (1-3-я зоны).

В случае, когда выступы шероховатости выходят за пределы пограничного слоя ($\Delta > \delta_{n}$), ламинарное течение нарушается, и выступы шероховатости оказываются в области турбулентного течения жидкости.

С увеличением числа Рейнольдса толщина пограничного слоя уменьшается и в случае, когда величина Δ оказывается сопоставимой с величиной δ_n , коэффициент λ зависит не

только от числа Рейнольдса, но и от шероховатости стенок (4-я зона).

Если число Рейнольдса достаточно велико и Δ значительно больше δ_{γ} , то коэффициент λ зависит только от шероховатости и не зависит от числа Рейнольдса (5-я зона).

Опыты А. П. Зегжда для прямоугольных каналов позволили получить график, близкий графику Никурадзе не только качественно, но и количественно, если результаты сопоставлять при одинаковых гидравлических радиусах.

Опыты, проведенные в промышленных трубопроводах с естественной шероховатостью, показали. что оценка только по высоте выступов шероховатости Δ недостаточна. Большую роль имеет также характер шероховатости: форма выступов, их расположение и прочее. Поэтому было понятие об эквивалентной шероховатости ввелено Δv $= \phi \delta$ ($\phi > 1$), где ϕ – зависит от характера шероховатости. Под эквивалентной шероховатостью Д понимают такую шероховатость, которой зернистую при сопротивление оказывается таким же. как И при действительной шероховатости. Величина эквивалентной шероховатости Д указывается в гидравлических справочниках в зависимости от типа трубопровода.

5.4. ФОРМУЛЫ ДЛЯ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ГИДРАВЛИЧЕСКОГО СОПРОТИВЛЕНИЯ

Графики зависимости коэффициента λ от числа Re и относительной шероховатости, найденные экспериментально и приведенные на рис. 5.20, позволяют определить круг формул, теоретическихиэмпирических (экспериментальных), хорошо согласующихся с экспериментальными данными.

При ламинарном режиме в круглых трубах для определения λ применяют формулу Пуазейля:

$$\lambda = \frac{64}{\text{Re}}.$$

Ее справедливость хорошо подтверждается могочисленными экспериментами, включая графики Никурадзе (см. рис. 5.20). Согласно этой формуле коэффициент λ при ламинарном режиме не зависит от состояния внутренних поверхностей стенок труб, характеризуемого их шероховатостью, а зависит только от числа Рейнольдса.

Для турбулентного режима рассмотрим лишь наиболее универсальные формулы, среди которых формула Кольбрука и Уайта, справедливая для всей зоны турбулентного течения в шероховатых трубах с естественной шероховатостью в доквадратичной области:

$$\frac{1}{\lambda} = -2\lg(\Delta_{\mathfrak{I}}/3,7d+2,51/\operatorname{Re}\sqrt{\lambda}),$$

где Δ_3 — эквивалентная шероховатость; d — диаметр трубопровода.

Впервые эта формула была получена А.Д. Альтшулем как эмпирическая зависимость в 1939 г., и лишь значительно позже (1970 г.) она была теоретически обоснована.

Как частные случаи из этой формулы можно получить формулу Прандтля-Никурадзе для гладких труб при $\frac{\Lambda_2}{2} = 0$;

$$\frac{1}{\sqrt{\lambda}} = -2 \lg(\operatorname{Re}\sqrt{\lambda} / 2,51)$$

и для вполне шероховатых труб при Re = ∞:

$$\lambda = \frac{1}{\left[1.74 + 2 \cdot \lg(1/\varepsilon)\right]^2} \, .$$

Среди наиболее универсальных в доквадратичной области шероховатых труб отмечены также теоретическая формула А.Д. Альтшуля:

$$\frac{1}{\sqrt{2}} = 1.8 \cdot \lg \frac{\text{Re}}{\text{Re}(\Delta_3 / 10d) + 7}$$

и предложенная им же более простая приближенная формула

$$\lambda = 0.11 \left(\frac{\Delta_9}{d} + \frac{68}{\text{Re}}\right)^{0.25}.$$
(5.19)

Эта формула в квадратичной области вполне шероховатых труб (см. кривые $r_0 / \Delta = 15$ и $r_0 / \Delta = 30$ на графике рис. 5.20) при больших значениях чисел Re переходит в формулу Б. Л. Шифринсона:

$$\lambda = 0.11 \left(\frac{\Delta_2}{d}\right)^{0.25}.$$

Указанные выше формулы наиболее правильно учитывают влияние различных факторов на гидравлические сопротивления. Их недостатками являются некоторая громоздкость и отсутствие полных данных об эквивалентной шероховатости.

Для отдельных зон турбулентного режима, например в области, гидравлически гладких труб (3-я зона на графике Никурадзе, см. рис. 5.20), применима формула Блазиуса:

устанавливающая зависимость коэффициента λ только от числа Re. Эта формула как частный случай может быть получена из приближенной формулы (5.19) А.Д. Альтшуля при $\frac{\Lambda_s}{d} = 0$. Формула Блазиуса справедлива лишь при малой шероховатости стенок и при числах Рейнольдса Re < 100 000.

5.5. МЕСТНЫЕ ГИДРАВЛИЧЕСКИЕ СОПРОТИВЛЕНИЯ

При движении реальных жидкостей, кроме потерь на трение по длине потока, возникающих из-за вязкости жидкости, могут возникать и местные потери напора. Причиной последних являются местные сопротивления (краны, задвижки, сужения, расширения, повороты трубопроводов и прочее), которые вызывают изменение скорости движения или направления потока.

Потери, связанные с преодолением местных сопротивлений, пропорциональны кинетической энергии потока:

$$h = \xi \frac{\upsilon^2}{2g} \tag{5.20}$$

где ξ — коэффициент местных сопротивлений зависит не только от вязкости и скорости движения основного потока, но главным образом от геометрической формы и размеров сопротивления: $\frac{v^2}{2g}$ — скоростной напор; v — средняя скорость.

При турбулентном режиме движения жидкости потери hм зависят только от геометрических характеристик сопротивления.

Коэффициентом местных потерь ξ называют отношение потери напора в данном местном сопротивлении к скоростному напору:

$$\xi = \frac{h_M}{v^2 / 2g}.$$

Очень часто диаметр трубопровода до местного сопротивления и после него бывает разным, поэтому и скорости потока при этом разные (рис. 5.7).

Очевидно, что и коэффициенты местных потерь, отнесенные к скоростному напору до и после местного сопротивления, будут различными.

Поэтому при пользовании гидравлическими справочниками необходимо обращать внимание на то, к какому скоростному напору отнесен коэффициент 5. Обычно 5 относят к скоростному напору за местным сопротивлением.

В некоторых случаях удобно определять местные сопротивления через так называемую эквивалентную

длину местного сопротивления. Эквивалентная длина местного сопротивления — это длина прямого трубопровода, на которой происходит такая же потеря

Рис. 5.7. Местное сопротивление

напора h_{M} , как и в данном местном сопротивлении.

Эквивалентную длину 1, можно определить из равенства

$$h_M = \xi \frac{\upsilon^2}{2g} = \lambda \frac{l_3}{d} \frac{\upsilon^2}{2g}.$$

Отсюда

$$\xi = \lambda \frac{l_3}{d}, \ l_3 = \frac{\xi}{\lambda} d.$$

Ввиду большой сложности происходящих в местных сопротивлениях явлений в настоящее время нет надежных методов теоретического определения коэффициента ξ.

Он определяется в основном экспериментально. Имеется попытка теоретически обосновать коэффициент местных потерь на

Рис. 5.8. Внезапное расширение трубопровода

коэффициент местных потерь на случай внезапного расширения трубопровода (рис. 5.8).

Используя аналогию потерь энергии при внезапном расширении с неупругим ударом твердых тел, Борда из теоремы о приращении количества движения и уравнения Бернулли вывел формулу для местных потерь при внезапном расширении потока в виде

$$h_M = \frac{(\nu_1 - \nu_2)^2}{2g},$$

где v_1 , v_2 — скорости потока до и после внезапного расширения, т. е. потеря напора при внезапном расширении

равна скоростному напору потерянной скорости, где $v = v_j - v_2$ - потерянная скорость.

Это утверждение представляет так называемую теорему Борда-Карно. Однако более детальный анализ явлений показывает, что аналогия потерь напора при внезапном расширении с потерями энергии при неупругом ударе твердых тел далеко не полная. Опытом, в частности, подтверждается, что потери напора, даваемые теоремой Борда-Карно, получаются завышенными, поэтому на основании теоретических соображений и эксперимента предложено эту потерю определять по формуле

$$h_{\rm M} = k \frac{(\nu_{\rm i} - \nu_{\rm 2})^2}{2g}, \tag{5.21}$$

где *k* – коэффициент, определяемый опытным путем.

ЖАН-ШАРЛЬ ДЕ БОРДА (1733–1799)

Французский математик, физик, геодезист, инженер, политолог и морской офицер. Автор доказательства теоремы в гидравлике об ударе струи жидкости или газа, носящей его имя. Жана-Шарля де занимал вопрос о сопротивлении Борла лвижушихся тел в жидкости. Его изыскания, «Мемуарах» напечатанные В Парижской академии 1767 и 1770 годов, привели к заключению, что сопротивление жидкостей почти пропорционально квадратам скоростей. При описании вклада де Борда в механику жидкости следует также отметить вклад, который он сделал для изучения водяных

колес и насосов. Кроме исследования сопротивления жидкостей, Борда занимался также исследованиями истечения жидкостей из сосудов через малые отверстия и работал над установлением десятичной системы мер и весов.

Рассмотрим отдельные практически важные типы местных сопротивлений.

1. Внезапное расширение потока (см. рис. 5.22).

Хотя аналогия внезапного расширения потока с не упругим ударом не может служить основой для строгого теоретического обоснования и объяснения физического смысла явления, в первом приближении она достаточна. Благодаря не упругости удара механическая энергия рассеивается и превращается во внутреннюю энергию жидкости, чем и объясняется основная доля потерь при внезапном расширении, которые подсчитываются по формуле (5.21).

Уравнение неразрывности потока для несжимаемой жидкости имеет вид

$$\upsilon_1 \omega_1 = \upsilon_2 \omega_2. \tag{5.22}$$

Отсюда

$$\upsilon_2 = \upsilon_1 \frac{\omega_1}{\omega_2} \tag{5.23}$$

Подставляя уравнение (5.23) в (5.21), получим

$$h_{M} = k \left(1 - \frac{\omega_{\rm l}}{\omega_{\rm 2}} \right)^2 \frac{\upsilon_{\rm l}^2}{2g}.$$
 (5.24)

Сравнивая формулу (5.24) с формулой (5.20), найдем

$$\xi = k \left(1 - \frac{\omega_1}{\omega_2} \right)^2. \tag{5.25}$$

Выразим из уравнения (5.22) о1:

$$v_1 = v_2 \frac{\omega_2}{\omega_1}.$$
 (5.26)

Подставляя формулу (5.26) в формулу (5.21), получим

$$h_{M} = k \left(\frac{\omega_{2}}{\omega_{1}} - 1\right)^{2} \frac{\omega_{2}^{2}}{2g}.$$
(5.27)

Сравнивая формулу (5.27) с формулой (5.20), найдем

$$\xi = k \left(\frac{\omega_2}{\omega_1}\right)^2$$

Таким образом, по формулам (5.24), (5.27) можно определить потери напора в местном сопротивлении в случае известных скоростей v_1 или v_2 . Для приближенных расчетов коэффициент k можно принять равным 1.

2. Выход из трубы в резервуар больших размеров (рис. 5.23).

В данном случае площадь сечения резервуара $\omega_2 \ast \omega_l$ и поэтому

 $\frac{\omega_1}{\omega_2} \cong 0.$ Тогда из формулы (5.25) следует: $\xi_1 = K \approx 1.$

3. Внезапное сужение потока (рис. 5.9).

В данном случае происходит внезапное увеличение скорости. Удара при этом в плоскости перехода сечения не происходит. Но на некотором расстоянии ниже по течению происходит сжатие струи (сечение C-C), а затем переход от сжатого сечения к нормальному, который можно рассматривать как удар, что и служит причиной потерь напора.

Потери напора при внезапном сужении значительно меньше потерь напора при внезапном расширении.

Коэффициент ξ здесь зависит от соотношения ω_2 / ω_1 . Найденные опытным путем значения ξ приведены в табл. 5.1:

Рис. 5.9. Выход из трубы в резервуар больших размеров

Рис. 5.10. Внезапное сужение потока

Таблица	5.	1
---------	----	---

ω ₂ / ω _l	0,01	0,1	0,2	0,4	0,6	0,8	1,0
ξ	0,45	0,39	0,35	0,38	0,2	0,09	0,0

4. Постепенное расширение потока (диффузор) (рис. 5.11).

Рис. 5.11. Постепенное расширение потока

При малых углах ₀≤4-5° течение в диффузоре происходит безотрывно. При углах $\theta > 4-5^\circ$ происходит отрыв потока от стенки. Это объясняется тем, что в диффузоре происходит увеличение давления в направлении движения, вызываемое скорости вследствие расширения **VМЕНЬШЕНИЕМ** канала. Частицы жидкости, движущейся у стенки, сильно затормаживаются силами вязкости, и в определенной точке их кинетическая энергия становится недостаточной для превсевозрастающего давления. Поэтому скорость одоления жидкости в пристенном слое в такой точке обращается в нуль, а за этой точкой появляются обратные течения — отрыв потока.

5.6. ОСНОВНЫЕ РАСЧЕТНЫЕ ФОРМУЛЫ ДЛЯ ОПРЕДЕЛЕНИЯ ЛИНЕЙНЫХ ПОТЕРЬ НАПОРА

Линейные потери напора в напорных трубопроводах круглого сечения определяют по формуле Дарси-Вейсбаха:

$$h=\lambda \ \frac{l}{d} \frac{\upsilon^2}{2g},$$

где *v* – средняя по сечению скорость.

Из этой формулы, называемой первой водопроводной, следует

$$\upsilon^2 = \frac{2g}{\lambda} d\frac{h}{l} \quad \text{или} \quad \upsilon^2 = \frac{2g}{\lambda} \frac{4d}{4} \frac{h}{l}. \tag{5.30}$$

Так как d/4 = R; h/l = J, где R – гидравлический радиус; J – пьезометрический (гидравлический) уклон, то формула (5.30) примет вид

$$\upsilon = C\sqrt{RJ} \tag{5.31}$$

где $C = \sqrt{\frac{8g}{\lambda}} -$ коэффициент Шези.

Формула (5.31) называется формулой Шези. Она используется для определения скорости течения при равномерном движении жидкости в трубах, каналах и естественных руслах. Коэффициент С может быть вычислен, если известно λ , или его определяют по эмпирическим формулам, например по эмпирической формуле Павловского

$$C=\frac{1}{n}R^{y},$$

где n — коэффициент шероховатости (дается в таблицах); y = f(n, R) — переменный показатель степени, равный

$$y = 2.5\sqrt{n} - 0.13 - 0.75\sqrt{R}\left(\sqrt{n} - 0.10\right).$$

Из формулы Шези найдем

$$\upsilon^2 = C^2 R J \quad \text{или} \quad \upsilon^2 = C^2 R \frac{h}{l}.$$

Отсюда

$$h=\frac{\upsilon^2 l}{C^2 R}.$$

По этой формуле находятся линейные потери напора, главным образом при расчете некруглых труб.

Местные потери напора рассчитываются по общей формуле

$$h_M = \xi \frac{\upsilon^2}{2g}.$$

С целью упрощения гидравлических расчетов формулу Шези представляют в несколько ином виде. Учитывая, что

 $Q = \omega \upsilon$, получим $Q = \omega C \sqrt{RJ}$ или $Q = \omega C \sqrt{R} \sqrt{J}$.

Обозначив $K = \omega C \sqrt{R}$, получим $Q = K \sqrt{J}$ или $Q^2 = K^2 J$.

Отсюда

Последняя формула называется второй водопроводной формулой.

Величина К называется модулем расхода или расходной характеристикой. При J = 1 K = Q, т. е. К представляет собой расход жидкости в трубопроводе при гидравлическом уклоне, равном единице. Следовательно, К имеет размерность расхода. С другой стороны, при Q = 1 из второй водопроводной формулы получаем $h = l/K^2$, т. е. l/K^2 представляет собой сопротивление трубопровода при расходе, равном единице, поэтому величину l/K^2 называют удельным сопротивлением трубопровода.

Особенно удобно введение величины К при расчете трубопроводов с турбулентным движением в квадратичной зоне. В этом случае

$$K = \omega C \sqrt{R}.$$

Часто второй водопроводной формуле придают другой вид.

Так как

$$K = \omega C \sqrt{R} = \frac{\pi d^2}{4} C \sqrt{\frac{d}{4}},$$

то

$$K^2 = \frac{\pi^2 C^2}{64} d^5.$$

Обозначив $a = \frac{64}{\pi^2 C^2}$, получим $K^2 = \frac{d^5}{a}$.

Тогда из формулы

$$h = Q^2 \frac{l}{K^2}$$

получим еще один вид второй водопроводной формулы:

$$h = a \frac{Q^2 l}{d^5}.$$

Вопросы для самопроверки

1. Каковы основные особенности ламинарного и турбулентного режима движения жидкости?

2. Какова структура числа Рейнольдса?

3. Какие зоны сопротивления при равномерном турбулентном движении в трубах можно указать?

4. Какой вид имеют формула Дарси-Вейсбаха?

5. Какие параметры жидкости, русла (или трубопровода) потока влияют на потери напора?

Примеры решения задач

Задача 1. Каковы будут потери напора при напорном движении воды в трубе с площадью живого сечения $\omega = 2,83 \cdot 10^{-4} \text{ м}^2 = 2,83 \text{ см}^2$, если расход воды равен $30 \cdot 10^{-6} \text{ м}^3/\text{c}=30 \text{ см}^3/\text{c}$, температура воды $t=10^{\circ}C$. Длина трубы 10 м, поперечное сечение трубы — круглое.

Решение: Вначале определяем, каким будет режим движения. Для этого найдем значение числа Рейнольдса, предварительно вычислив

$$d = \sqrt{\frac{4\omega}{\pi}} = 0.019 \text{ m} - 1.9 \text{ cm}$$
 $u = \frac{Q}{\omega} = 0.106 \text{ m/c} - 10.6 \text{ cm/c}$

Тогда при v=0,0131 см²/с, имеем

$$\operatorname{Re} = \frac{vd}{v} = \frac{10.6 \cdot 1.9}{0.0131} = 1537 < \operatorname{Re}_{\mathrm{kp}} = 2320.$$

Следовательно, режим движения в трубе — ламинарный. Определим значение коэффициента Дарси по формуле

$$\lambda = 64/Re = 0,0416.$$

Тогда

$$h_{\rm LT} = \lambda \frac{l}{d} \frac{v^2}{2g} = 0.0416 \frac{100}{0.019} \frac{0.106^2}{19.62} = 0.125 \text{ M}.$$

Задача 2. По трубопроводу (рис. 5.12) диаметром d = 50 мм и длиной l = 10 м движется жидкость (керосин). Определить напор H, при котором происходит смена ламинарного режима течения на турбулентный (потери напора в местных сопротивлениях не учитывать). Температура жидкости 30° С. Кинематический коэффициент вязкости керосина

 $v=2,5\cdot10^{-6} \text{ m}^2/\text{c}.$

Рис. 5.12

Решение. Считая, что в данном случае смена ламинарного режима течения на турбулентное происходит при числе Рейнольдса, равном $\text{Re} = \upsilon d/v = 2320$, линейные потери напора будут определены по формуле Дарси - Вейсбаха:

$$h_{a}=H=\lambda\frac{l}{d}\frac{v^{2}}{2g},$$

где $h_{,i}$ — коэффициент линейных потерь; g= 9,8 м/с² — ускорение свободного падения; υ — скорость течения жидкости, которая может быть определена из числа Рейнольдса:

$$v = \frac{2320 \cdot v}{d} = \frac{2320 \cdot 2.5 \cdot 10^{-6}}{0.05} = 0.116 \text{ m/c}.$$

Коэффициент линейных потерь находится по формуле Пуазейля:

$$\lambda = \frac{64}{\text{Re}} = \frac{64}{2320} = 0,0276.$$

Искомый напор Н затрачивается лишь на преодоление линейных потерь напора, поэтому он может быть найден по формуле Дарси-Вейсбаха:

$$H = \lambda \frac{l}{d} \frac{\nu^2}{2g} = 0.0276 \cdot \frac{10}{0.05} \cdot \frac{0.116^2}{2 \cdot 9.8} = 0.037 \text{ m.}$$

Задачи для самостоятельного решении

Задача 1. Вода движется в прямоугольном лотке с глубиной наполнения h = 0,5 м (рис. 5.12). Ширина лотка b = 1,0 м. Определить, при каком максимальном расходе Q сохранится ламинарный режим, если температура воды t = 30 °C.

Рис. 5.12

the three the

Рис. 5.13

Задача 2. Найти максимальный диаметр d напорного трубопровода, при котором нефть будет двигаться при турбулентном режиме, если кинематический коэффициент вязкости нефти v = 0,30 см² с, а расход в трубопроводе Q = 8 л/с.

Задача 3. Из напорного бака, в котором поддерживается постоянный уровень H = 3 м, по наклонному трубопроводу переменного сечения (рис. 5.13) движется вода. Диаметры участков трубопровода $d_1=40$ мм, $d_2 = 25$ мм, длины соответственно $l_1 = 50$ м, $l_2 = 75$ м. Начало трубопровода расположено выше его конца на величину z = 1,5 м. Определить расход воды в трубопроводе, если коэффициент гидравлического трения $\lambda = 0,035$ для обоих участков трубопровода. Местными потерями напора пренебречь.

Рис. 5.13

Задача 4. Насос подает воду в водонапорную башню по трубопроводу (рис. 5.14). Расход воды в трубопроводе

Q = 5,3 л/с. Определить показания манометра M, присоединенного к напорному трубопроводу, если вода поднимается на высоту H = 21 м, длина трубопровода от точки присоединения манометра до уровня в напорном баке l = 17 м, диаметр d = 35 мм, коэффициент гидравлического трения $\lambda = 0,032$. Местными потерями напора пренебречь. Рис. 5.14

Рис. 5.14

ГЛАВА 6. ИСТЕЧЕНИЕ ЖИДКОСТИ И ГАЗА ЧЕРЕЗ ОТВЕРСТИЯ И НАСАДКИ. ГИДРАВЛИЧЕСКИЙ УДАР В ТРУБОПРОВОДАХ

6.1. ОБЩАЯ ХАРАКТЕРИСТИКА ИСТЕЧЕНИЯ. ИСТЕЧЕНИЕ ЖИДКОСТИ ЧЕРЕЗ МАЛОЕ ОТВЕРСТИЕ В ТОНКОЙ СТЕНКЕ

Истечение отверстий жилкостей из И насадков практическое имеет большое значение, поскольку они при решении применяются многих технических залач. Например, в различных двигателях внутреннего сгорания при подаче топлива, при опорожнении цистерн и различных конструировании сопел форсунок. емкостей. при И необходима строгая дозировка и расход жидкости, гле – эжекторных установках. гидромониторных И также а разрабатывающих грунты, гидротехнических сооружениях, содержащих затворы или отверстия для сброса воды.

Истечение жидкости может происходить при постоянном и переменном напорах, через малое или большое отверстие, через насадки различной конструкции. Кроме того, истечение может быть свободным в атмосферу или вакуум и под уровень (затопленное истечение).

Задача об истечении жидкостей через отверстия сводится к определению скорости истечения и расхода вытекающей жидкости.

Рассмотрим случай истечения жидкости из малого отверстия в тонкой стенке при постоянном напоре (рис. 6.1). Стенка считается тонкой, если ее толщина $\delta < 0.2d$, где d =диаметр отверстия.

Отверстие считается малым, если $n = \omega/\omega_1 < 0.1$, где ω – площадь сечения отверстия; ω_1 – площадь поперечного сечения сосуда (рис. 6.2).

При истечении жидкости из отверстия в тонкой стенке на некотором расстоянии от стенки образуется сжатие

струи, так что $\omega_c < \omega$, где ω_c – площадь струи в сжатом сечении. Для оценки степени сжатия вводят коэффициент сжатия $\varepsilon = \omega_c / \omega$. Для отверстий с острой кромкой $\varepsilon =$ 0.60 - 0.64. Кроме того, струя, вытекающая из отверстия. сохраняет его форму, а не вследствие действия сил поверхностного натяжения деформируется. Так, например, струя, вытекающая из треугольного отверстия, принимает форму треугольной звезды, а из круглого отверстия – форму эллипса. Явление деформации струи под действием сил поверхностного натяжения носит название инверсии струи. Условия сжатия струи оказывают значительное влияние на пропускную способность отверстия. Различают совершенное и несовершенное сжатие.

Совершенным сжатием называют такое, при котором отверстие достаточно удалено от стенок сосуда или уровня жидкости в сосуде и они не влияют при этом на условия сжатия струи. Опытами установлено, что совершенное сжатие наблюдается лишь в тех случаях, когда расстояние от стенок до отверстия не меньше утроенной длины соответствующего размера отверстия. Например, для круглого отверстия это расстояние должно быть не менее трех диаметров отверстия.

Несовершенным сжатием называют такое, при котором отверстие находится на близком расстоянии от стенок сосуда и от уровня жидкости в сосуде.

Сжатие называют полным, если струя испытывает сжатие со всех сторон; неполным, — если струя не имеет сжатия с одной или нескольких сторон.

Выведем формулу для расхода жидкости, проходящей через отверстие в тонкой стенке при постоянном напоре (см. рис. 6.2). Для этого составим уравнение Бернулли для сечений 1-1 и 2-2, приняв за плоскость сравнения плоскость 0-0 ($z_2 = 0$).

Рис.6.1. Истечение жидкости из малого отверстия в тонкой стенке при Рис. 6.2. Малое отверстие, п = ω/ω1 постоянном напоре

< 0.1.

$$z_1 + \frac{p_1}{\gamma} + \frac{\alpha_1 v_1^2}{2g} = \frac{p_2}{\gamma} + \frac{\alpha_2 v_2^2}{2g} + \xi \frac{v_2^2}{2g}.$$

Учитывая, что $p_1 = p_2 = p_a$ ($p_a -$ атмосферное давление) и обозначая начальный напор через

$$H_0 = z_1 + \frac{\alpha_1 \upsilon_1}{2g} \cong z_1,$$

так как υ₁ ≈ 0, получим

$$H_0 = (\alpha_2 + \frac{z}{5}) \frac{v_2^2}{2g},$$

или

$$\upsilon_2 = \frac{1}{\sqrt{\alpha_2 + \xi}} \sqrt{2gH_0}.$$

Обозначая

$$\varphi = \frac{1}{\sqrt{\alpha_2 + \xi}},$$

где φ – коэффициент скорости, получим

$$v_2 = \varphi \sqrt{2gH_0}.$$

Коэффициент скорости в общем случае учитывает неравномерность распределения скоростей в суженном сечении и гидравлические потери ($\phi < 1$).

При $\alpha_2 = 1$ и отсутствии гидравлических потерь $\xi = 0$ получается значение так называемой теоретической скорости истечения:

$$\upsilon_{\rm o} = \sqrt{2gH_0},$$

где $\varphi = 1$, поэтому $\frac{\nu_2}{\nu_0} = \varphi$.

Таким образом, коэффициент скорости φ есть отношение действительной скорости истечения к теоретической. Расход определяется из соотношения

$$Q = \omega_2 \upsilon_2$$
.

Или с учетом $\omega_2 = \varepsilon \omega$,

 $Q = \varepsilon \varphi \omega \sqrt{2gH_0}.$

Произведение двух коэффициентов $\mu = \varepsilon \varphi$ называют коэффициентом расхода. Он определяется опытным путем. Отсюда формула для расхода примет вид

$$Q = \mu \omega \sqrt{2gH_0}.$$
 (6.1)

Траектория полета струи при истечении жидкости при небольших скоростях и небольших высотах падения, когда можно пренебречь сопротивлением окружающего струю воздуха и принять форму струи параболической, показана на рис. 6.2a.

Без большой погрешности можно считать, что частица жидкости за сжатым сечением n-n движется по инерции: по оси x — равномерно, по оси z — равноускоренно, поэтому закон движения частицы жидкости можно записать в следующем виде:

$$l = \upsilon t;$$

$$l = \varphi \sqrt{2gH}t;$$

$$\Delta z = \frac{gt^2}{2}.$$
(6.2)

Отсюда

$$t=\sqrt{\frac{2\Delta z}{g}}.$$

Рис. 6.2а. Параболическая форма струи

Подставляя выражение t в формулу (6.2), получим

$$l = \varphi \sqrt{2gH} \sqrt{\frac{2\Delta z}{g}} \,.$$

Отсюда

$$\Delta z = \frac{l^2 g}{2\varphi^2 2gH} = \frac{l^2}{4\varphi^2 H}$$
(6.3)

Решая выражение (6.3) относительно коэффициента скорости, находим

$$\varphi = \frac{l}{2\sqrt{\Delta zH}} \tag{6.4}$$

Чтобы определить φ , надо измерить дальность полета струи l, высоту падения Δz и напор *H*.

Расход жидкости равен произведению скорости в сжатом сечении на площадь живого сечения: $Q = \omega_c \upsilon$

Подставляя вместо ω_c и о их значения, имеем:

$$Q = \frac{1}{\sqrt{1 + \xi_{\theta X} - \varepsilon^2 n^2}} \varepsilon \omega \sqrt{\frac{2(p_1 - \overline{p_0})}{\rho}}.$$

Введем обозначение

$$\mu = \frac{\varepsilon}{\sqrt{1 + \xi_{\theta x} - \varepsilon^2 n^2}} = \varphi \varepsilon , \qquad (6.5)$$

где μ — коэффициент расхода. С учетом обозначений в формуле (6.5) получим

$$Q = \mu \omega \sqrt{\frac{2(p_1 - p_0)}{\rho}}$$

Так как для малых отверстий коэффициент сжатия ε =0,64, а коэффициент скорости φ =0,97, то, в соответствии с формулой (6.5),

$$\mu = \varphi \varepsilon = 0,64 \cdot 0,97 = 0,62.$$

Коэффициенты ε, ξ, φ и μ зависят, в первую очередь, от типа отверстия или насадка, а также, как все безразмерные коэффициенты в гидравлике, от основного критерия гидродинамического подобия — числа Re.

Для маловязких жидкостей (воды, бензина, керосина и т. п.), истечение которых обычно происходит при больших числах Re, коэффициенты истечения изменяются в узких пределах. Обычно в расчет берутся следующие осредненные значения: ($\varepsilon = 0.64$; $\varphi = 0.97$; $\mu = 0.62$; $\xi = 0.065$).

6.2. ИСТЕЧЕНИЕ ЖИДКОСТИ ЧЕРЕЗ БОЛЬШОЕ ОТВЕРСТИЕ

При истечении из отверстия больших размеров в боковой стенке сосуда напор *H* неодинаков во всем сечении

отверстия. Для точек нижней части сечения он больше, а в верхней — меньше.

Рис. 6.3. Большое отверстие

Однако давление во всех точках вытекающей струи будет одинаковым (при истечении в атмосферу оно будет равно атмосферному давлению), что не соответствует распределению давления по гидростатическому закону. В связи с этим уравнение Бернулли здесь можно применить не ко всей струе в целом, а лишь к отдельным элементарным струйкам. Чтобы определить среднюю скорость истечения и расход жидкости, площадь поперечного сечения отверстия подразделяется на элементарные площади и для каждой из них находится элементарный расход. Полный расход определяется суммированием элементарных расходов по всему сечению.

Пусть *а* и *b* – высота и ширина бокового отверстия в тонкой стенке некоторой емкости (рис. 6.3).

Разобьем площадь поперечного сечения отверстия на полоски высотой *dz*.

Элементарный расход через такую полоску сечением dzb согласно формуле (6.1) будет

$$dQ = \mu \cdot b \cdot dz \sqrt{2gz}$$
,

где μ – коэффициент расхода для малого отверстия. Принимая μ = const и считая, что скорость на свободной поверхности $v_0 = 0$, получим

$$Q = \mu b \int_{H_1}^{H_2} \sqrt{2gzdz} = \mu b \sqrt{2g} \int_{H_1}^{H_2} z^{1/2} dz = \mu b \sqrt{2g} \frac{2}{3} \Big|_{H_1}^{H_2} z^{3/2} =$$

= $\frac{2}{3} \mu b \sqrt{2g} \left(H_2^{3/2} - H_1^{3/2} \right).$ (6.6)

Обозначая через H_o полный напор над центром тяжести отверстия, найдем H₂ = H_o + a/2 и H₁ = H_o - a/2. Разлагая члены вида $\left(H_0 \pm \frac{a}{2}\right)^{3/2}$ по формуле бинома Ньютона, будем иметь (ограничимся четырьмя членами разложения):

$$\left(H_0 + \frac{a}{2}\right)^{3/2} - H_0^{3/2} + \frac{3}{2}H_0^{1/2}\frac{a}{2} + \frac{3}{8}H_0^{-1/2}\frac{a^2}{4} - \frac{3}{48}H_0^{-3/2}\frac{a^3}{8}; \\ \left(H_0 + \frac{a}{2}\right)^{3/2} - H_0^{3/2} + \frac{3}{2}H_0^{1/2}\frac{a}{2} + \frac{3}{8}H_0^{-1/2}\frac{a^2}{4} - \frac{3}{48}H_0^{-3/2}\frac{a^3}{8};$$

Учитывая эти соотношения, выражение, заключенное в скобки в формуле (6.6), примет вид

$$\left(H_0 + \frac{a}{2}\right)^{3/2} - \left(H_0 - \frac{a}{2}\right)^{3/2} = \frac{3}{2}H_0^{1/2}a\left(1 - \frac{1}{96}\frac{a^2}{H_0^2}\right).$$
 (6.7)

Второй член в скобке обычно мал по сравнению с единицей и им можно пренебречь. Тогда формула (6.6) с учетом (6.7) примет вид

$$Q = \frac{2}{3} \mu ba \frac{3}{2} \sqrt{2gH_0^{1/2}}$$
(6.8)

или

$$Q = \mu a b \sqrt{2gH_0}$$
.

Учитывая, что $ab = \omega$, получим

 $Q = \mu \omega \sqrt{2gH_0}$

где ω — площадь сечения отверстия.

Эта формула имеет тот же вид, что и формула для определения расхода при истечении жидкости из малого отверстия в тонкой стенке.

6.3. ИСТЕЧЕНИЕ ЖИДКОСТИ ЧЕРЕЗ ЗАТОПЛЕННОЕ ОТВЕРСТИЕ

Рассмотрим открытый сосуд, разделенный перегородкой на два отделения с разными уровнями жидкости (рис. 6.4).

В перегородке имеется отверстие, через которое жидкость перетекает из одной части сосуда в другую.

Требуется определить скорость истечения жидкости через отверстие и ее расход.

Составим уравнение Бернулли для сечений 1-1 и с-с (примем для простоты $\alpha_1 = \alpha_2 = 1$):

$$z_{1} + \frac{p_{a}}{\gamma} + \frac{\upsilon_{1}^{2}}{2g} = \frac{p_{c}}{\gamma} + \frac{\upsilon_{c}^{2}}{2g} + \xi \frac{\upsilon_{c}^{2}}{2g}$$

Учитывая, что по формуле гидростатического давления

$$p_{\rm c} = p_{\rm a} \gamma z_2$$

принимая $v_i = 0$ вследствие ее малости, получим

$$z_1 + \frac{p_a}{\gamma} = \frac{p_a}{\gamma} + z_2 + \frac{\upsilon_c^2 p_a}{2g} (1 + \xi).$$

Отсюда
$$v_{\rm c} = \varphi \sqrt{2g(z_1 - z_2)}$$

где $\varphi = \frac{1}{\sqrt{1+\xi}}$. Расход жидкости через отверстие

определяется по формуле

$$Q = \omega_{\rm c} \upsilon_{\rm c} \,, \tag{6.5}$$

где ω_{μ} – площадь струи в узком сечении.

Учитывая, что $\omega_e = \varepsilon \omega$ (6.1), где ω — площадь сечения отверстия, формула (6.5) будет

$$Q = \varepsilon \varphi \omega \sqrt{2g(z_1 - z_2)}$$

Так как $\varepsilon \varphi = \mu$, где μ — коэффициент расхода, то

$$Q = \mu \sigma \sqrt{2g(z_1 - z_2)}.$$

Опыт показывает, что коэффициент расхода µ для затопленных и незатопленных отверстий практически одинаков.

6.4. ИСТЕЧЕНИЕ ЖИДКОСТИ ПРИ ПЕРЕМЕННОМ НАПОРЕ

Задача об истечении жидкости при переменном напоре сводится к определению времени опорожнения или наполнения всего или некоторой части сосуда, в зависимости от начального наполнения, формы и размеров сосуда и отверстия. Подобные задачи встречаются при расчетах наполнения и опорожнения резервуаров, цистерн, водохранилищ, бассейнов, шлю-

зовых камер и др.

Истечение при переменном напоре является, по сути дела, неустановившимся движением Ограничимся жилкости. случаем, когда такое движение приближенно можно считать установившимся, т. е. пренебречь инерции. Рассмотрим силами простейший случай опорожнения

Рис. 6.5. Истечение жидкости при переменном напоре

резервуара, имеющего площадь живого сечения Ω (рис. 6.5).
Пусть начальный напор равен *H*₁ и конечный *H*₂. Расчет опорожнения заключается в определении времени этого процесса. Количество жидкости, вытекающее за время dt равно

$$dV = \mu \omega \sqrt{2gz} dt$$

Или иначе $dV = -\Omega dz$,

где знак минус взят потому, что

dz — отрицательно, а dV принимаем положительным. Тогда

$$-\Omega dz = \mu \omega \sqrt{2gz} dt$$

Отсюда

$$dt = -\frac{2\Omega}{\mu\omega\sqrt{2g}} \frac{dz}{\sqrt{z}}$$

Интегрируя, получим

$$t = -\frac{2\Omega}{\mu\omega\sqrt{2g}} \int_{H_1}^{H_2} z^{-1/2} dz = \frac{\Omega}{\mu\omega\sqrt{2g}} \int_{H_1}^{H_2} z^{-1/2} dz = \frac{2\Omega}{\mu\omega\sqrt{2g}} \left(\sqrt{H_1} - \sqrt{H_2}\right)$$

Время полного опорожнения получим, положив $H_2 = 0$:

$$t = \frac{2\Omega H_1}{\mu\omega\sqrt{2gH_1}} t = \frac{2\Omega H_1}{\mu\omega\sqrt{2gH}} = \frac{2V}{Q} = 2t_1$$

где V — объем резервуара; Q — расход жидкости при начальном напоре H_l , т. е. время опорожнения сосуда при переменном напоре в 2 раза больше того времени, которое требуется для вытекания жидкости при начальном напоре H_l в количестве, равном первичному объему V_l .

6.5. ИСТЕЧЕНИЕ ЖИДКОСТИ ЧЕРЕЗ НАСАДКИ

Насадкой называют короткий патрубок, присоединенный к отверстию в тонкой стенке. Длина патрубка $l = (3 \div 4)d$, где d — диаметр отверстия.

Присоединение насадка к отверстию в тонкой стенке изменяет вытекающий из сосуда расход и оказывает влияние на время опорожнения сосуда, дальность полета струи и т.д.

Насадки делят на три основных типа: цилиндрические (рис. 6.6, 6.7), конические (рис. 6.8; 6.9), коноидальные (рис. 6.10).

Рис. 6.6. Цилиндрический насадок

Рис. 6.8. Конический насадок

Рис. 6.7. Цилиндрический насадок

Рис. 6.9. Конический насадок

Цилиндрические насадки делят на внешние (рис. 6.6) и внутренние (рис. 6.7). Внешним цилиндрическим насадком

трубка называется короткая ллиной. диаметрам без равной нескольким закругления входной кромки. На практике насадок часто получается такой В тех случаях, когда выполняют сверление В толстой стенке и не обрабатывают входную кромку.

Истечение через такой насадок в жидкую среду может происходить двояко.

Рис. 6.10. Коноидальный насадок

Первый режим истечения показан на рисунках 6.11*a* и 6.11*b*, а второй на 6.11*b*. При первом режиме струя после входа в насадок сжимается примерно так же, как и при истечении через насадок в тонкой стенке. Затем вследствие взаимодействия сжатой части струи с окружающей ее завихренной жидкостью, струя постепенно расширяется до размеров отверстия и из насадка выходит полным сечением. Этот режим истечения называют безотрывным. Так как на выходе из насадка диаметр струи равен диаметру отверстия, то $\varepsilon = 1$ и, следовательно, $\mu = \varphi$. Осредненные значения коэффициентов для этого режима истечения маловязких жидкостей (при больших Re) следующие:

$$\mu = \varphi = 0, 8; \qquad \xi = 0, 5.$$

Рис. 6.11. Режим истечения через насадок

Второй режим истечения характеризуется тем, что струя после сжатия уже не расширяется, а сохраняет цилиндрическую форму и перемещается внутри насадка, не касаясь его стенок. Истечение становится точно таким же, как из отверстия в тонкой стенке. Поэтому, при переходе от безотрывного режима истечения к отрывному, происходит увеличение скорости и уменьшение расхода. Если через внешний цилиндрический насадок происходит истечение воды в атмосферу, то

$$H_{\rm kp} = \frac{p_{\rm a}}{0.75 {\rm gp}} = \frac{10.33}{0.75} \approx 14 {\rm \,M}.$$

Если при втором режиме истечения уменьшить напор, то этот режим сохранится вплоть до самых малых H. Это значит, что второй режим истечения возможен при любых напорах, а при $H \le H_{\kappa n}$ возможны оба режима истечения.

Таким образом, внешний цилиндрический насадок имеет существенные недостатки: на первом режиме — большое сопротивление и недостаточно высокий коэффициент расхода, а на втором — очень низкий коэффициент расхода. Кроме того, двойственность режима истечения в газовую среду при $H \leq H_{\kappa p}$, двузначность расхода при данном H и возможность кавитации при истечении под уровень.

Внешний цилиндрический насадок может быть значительно улучшен путем закругления входной кромки или устройства конического входа с углом конусности около 60°. Чем больше радиус закругления, тем ниже коэффициент сопротивления и выше коэффициент расхода. В пределе, при радиусе, равном толщине стенки, такой насадок приближается к коноидальному насадку, или соплу.

Коноидальный насадок (сопло), представленный на рис. 6.12, очерчивается приблизительно по форме естественно сжимающейся струи и благодаря этому обеспечивает безотрывность течения внутри насадка и параллельноструйность в выходном его сечении. Это широко распространенный насадок, так как он имеет коэффициент расхода, близкий к 1 и очень малые потери, а также устойчивый режим течения без кавитации. Для него $\xi = 0.03 \div 0.1$; $\mu = \phi = 0.96 \div 0.99$.

Диффузорный насадок (рис. 6.13) — это комбинация сопла и диффузора. Добавление к соплу диффузора приводит к снижению давления в узком месте насадка, и следовательно, к увеличению скорости и расхода жидкости через него.

При том же диаметре узкого сечения, что и у сопла, и том же напоре диффузорный насадок может дать значительно больший расход (до 2,5 раза), чем сопло.

Однако, использовать такой насадок можно только при малых напорах (1 ÷ 4 м), так как иначе в узком месте насадка возникает *кавитация*.

Следствием кавитации является большое сопротивление и снижение коэффициента расхода (при больших напорах – в 2 раза).

Внутренний цилиндрический насадок — трубка, закрепленная с внутренней стороны стенки (рис. 6.7). Для него характерны также два режима истечения, как и для внешнего, но в связи с тем, что жидкость при входе в насадок меняет направление движения в большей степени (вплоть до 180°), то сжатие струи получается более значительным (ε =0,5), больше получается и коэффициент сопротивления ξ =1, а коэффициент расхода меньше, чем у внешнего насадка: μ =0,71.

При движении жидкости внутри насадки образуется сжатое сечение *c*-*c*, в области которого наблюдается вакуум. Образование вакуума объясняется тем, что скорость в сжатом сечении больше, чем скорость в месте выхода струи из насадки. Как показывает опыт, при применении цилиндрических насадок пропускная способность увеличивается по сравнению с тонким отверстием того же диаметра. Увеличение пропускной способности и является основным назначением этих насадок.

Конические насадки бывают двух типов — расходящиеся (рис. 6.8) и сходящиеся (рис. 6.9).

В конических расходящихся насадках также создается вакуум.

При большом угле конусности возможен отрыв потока от стенок и насадка будет работать как обычное отверстие. Конические расходящиеся насадки имеют самые большие потери энергии. Отличительные особенности расходящихся насадок: значительный вакуум, большая пропускная способность, малые скорости выхода. Их применяют там, где требуется значительный вакуум, например в инжекторах, а также там, где требуется малая скорость, например в дождевальных аппаратах.

Основным назначением конических сходящихся насадок является увеличение скорости выхода потока с целью создания большой кинетической энергии в струе. Конические сходящиеся насадки применяют в качестве сопел гидромониторов и активных гидротурбин, наконечников пожарных брандспойтов и в других устройствах.

Коноидальные насадки представляют собой усовершенствованные конически сходящиеся насадки (рис. 6.10). Они выполнены по форме струи, выходящей из отверстия, и поэтому потери энергии в них минимальные.

Коэффициент расхода коноидальной насадки является наивысшим.

Гидравлический расчет насадок ведется по тем же формулам, что и для отверстия в тонкой стенке:

$$Q=\mu\omega\sqrt{2gH_0},$$

где
$$\mu = \varepsilon \varphi$$
 и $\varphi = \frac{1}{\sqrt{\alpha_2 + \xi_{\text{сум}}}}$. Только

вместо коэффициента местных потерь ξ следует поставить в формулу для φ суммарный коэффициент сопротивления:

$$\xi_{\rm cym} = \xi + \lambda \, \frac{l}{d},$$

Рис. 6.13. Диффузорный насадок

Π

где *I* – длина, *d* – диаметр насадки.

6.6. ИСТЕЧЕНИЕ ГАЗА ИЗ ОБЪЕМА ЧЕРЕЗ ОТВЕРСТИЕ

Найдем формулу для расчета расхода газа при его адиабатическом истечении из сосуда большого размера через отверстие в стенке, рис. 6.14. Используем для этого уравнение Бернулли, записав его для двух сечений: в сосуде 0-0 и в минимальном сечении струи 1-1. По условию задачи площадь сечения резервуара значительно больше площади отверстия. Поэтому можно пренебречь скоростью движения газа в сечении 0-0. То есть принять $u_0 = 0$. Кроме того для газа величина потенциальной энергии «положения» *gz* в большинстве случаев пренебрежимо мала по сравнению с другими членами уравнения.

Рис. 6.14. К определению расхода газа через отверстие

Не будем также пока учитывать потери энергии на преодоление сил вязкого сопротивления ∆ем. Тогда можем записать

$$\frac{k}{k-1}\frac{p_0}{\rho_0} = \frac{k}{k-1}\frac{p_1}{\rho_1} + \frac{u_1}{2}.$$
(6.6)

Отсюда находим выражение для скорости в минимальном сечении струи

$$u_{1} = \sqrt{\frac{2k}{k+1}} \frac{p_{0}}{\rho_{0}} \left(1 - \frac{\rho_{0}}{\rho_{1}} \frac{p_{1}}{p_{0}} \right).$$
(6.7)

В соответствии с уравнением адиабаты $\rho_0 / \rho_1 = (p_1 / p_0)^{-1/k}$. Кроме того, статическое давление в струе p_1 равно давлению в окружающей среде рн, так как в противном случае внешняя граница струи будет перемещаться под действием перепада давлений $p_1 - p_{H}$. То есть имеем равенство $p_1 = p_{H}$. Тогда с учетом этих выражений формулу (6.7) можем записать в виде

$$u_{1} = \sqrt{\frac{2k}{k+1}} \frac{p_{0}}{\rho_{0}} \left[1 - \left(\frac{p_{i}}{p_{0}}\right)^{\frac{k-1}{k}} \right].$$
(6.8)

Расход истекающего газа найдется, как $G = p_I u_I F_c$, где $F_c - площадь$ струи в минимальном сечении. Подставляя в эту формулу выражение для скорости (6.8) и учитывая равенство $\rho_1 = \rho_0 (p_1 / p_0)^{1/k} = \rho_0 (p_H / p_0)^{1/k}$, получим

$$G = F_{\rm c} \sqrt{\frac{2k}{k+1} p_0 \rho_0} \left[\left(\frac{p_{\rm H}}{p_0} \right)^{\frac{2}{k}} - \left(\frac{p_{\rm H}}{p_0} \right)^{\frac{k+1}{k}} \right].$$
(6.9)

Обозначим для удобства дальнейшего изложения p_0/p_H через π . Функция, $G = f(\pi_{\mu})$, описываемая формулой (6.9), не монотонна. Она имеет максимум, который можно найти из условия $dG/d\pi = 0$. Выполняя дифференцирование, получим

$$\frac{\mathrm{d}G}{\mathrm{d}\pi} = \frac{F_{\mathrm{c}}^2}{G} \frac{k}{k+1} \frac{p_0 \rho_0}{\pi} \left(\frac{2}{k} \pi^{\frac{2}{k}} - \frac{k+1}{k} \pi^{\frac{k+1}{k}} \right) = 0.$$
(6.10)

Отсюда находим отношение давлений π^* , соответствующее максимуму функции (6.9)

$$\pi^* = \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}}.$$
 (6.11)

Тогда максимальное значение расхода G получится :

$$G = F_{\rm c} \sqrt{k \left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}} \sqrt{p_0 \rho_0} = p_0 F_{\rm c} \sqrt{k \left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}} \sqrt{\frac{1}{RT_0}} \,. \tag{6.12}$$

На рис. 6.15 показан график функции $\overline{G} = G/G^* = f(\pi)$, построенный с использованием полученных зависимостей при k = 1,4.

Как видим при увеличении разрежения (уменьшении $\overline{\sigma}$) расход возрастает до максимального значения $\overline{G}=1$. При дальнейшем уменьшении π расход должен падать до 0, как показано на рис. 6.15 пунктирной кривой. В действительности этого не происходит. При достижении максимума относительный расход остается постоянным вплоть до разрежения, соответствующего полному вакууму ($\varpi = 0$). Для того, чтобы понять причину этого явления, найдем скорость газа в минимальном сечении струи u*, соответствующую максимальному расходу

Рис. 6.15. Зависимость относительного расхода газа от перепада давлений

$$\upsilon^{*} = \frac{G^{*}}{F_{c}\rho_{1}} = \sqrt{k\left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}\frac{p_{0}\rho_{0}}{\rho_{1}^{2}}} = \sqrt{k\left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}\frac{p_{1}}{\rho_{1}}\left(\frac{\rho_{0}}{\rho_{1}}\right)^{k}\frac{\rho_{0}}{\rho_{1}}} = \sqrt{k\left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}\frac{p_{1}}{\rho_{1}}\left(\frac{p_{u}}{\rho_{0}}\right)^{-\frac{k+1}{k}}} = \sqrt{k\left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}\frac{p_{1}}{\rho_{1}}\left(\frac{p_{u}}{\rho_{0}}\right)^{-\frac{k+1}{k}}} = \sqrt{k\left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}\frac{p_{1}}{\rho_{1}}\left(\frac{2}{k+1}\right)^{-\frac{k+1}{k-1}}} = \sqrt{k\frac{p_{1}}{\rho_{1}}} = a_{1}.$$
(6.13)

Как видим, в этом случае скорость в минимальном сечении струи становится равной местной скорости звука a_i . Физически это означает, что при понижении давления окружающей среды ниже критической величины $p_{\mu}^* = p_0 \pi^*$ возмущения разрежения уже не могут поникнуть внутрь сосуда и повлиять на характер течения, так как скорость распространения малых возмущений всегда равна скорости звука.

6.7. ГИДРАВЛИЧЕСКИЙ УДАР В ТРУБОПРОВОДАХ

Гидравлическим ударом называют резкое изменение давления в трубопроводе вследствие резкого изменения в нем скорости движения. Гидравлический удар может наблюдаться, например, при быстром закрывании запорных устройств, внезапной остановке насоса и т. п. При этом различают положительный удар, когда происходит повышение давления вследствие уменьшения скорости, и отрицательный удар, когда давление падает вследствие увеличения скорости.

Пусть в напорном трубопроводе с рабочим давлением жидкости p_o будет внезапно закрыта задвижка A (рис. 6.16). Тогда в результате остановки жидкости произойдет резкое повышение давления в нем вследствие перехода кинетической энергии остановившихся слоев жидкости в потенциальную энергию — энергию давления.

Остановка жидкости происходит не мгновенно, а в течение весьма малого отрезка времени Δt . В течение этого времени в часть объема $\omega \Delta x$ поступают продолжающие движение предыдущие слои жидкости.

Рис. 6.16. Гидравлический удар в трубопроводах

Рис. 6.17. Увеличение давления Δp

при гидравлическом ударе

Пользуясь теоремой об изменении количества движения, найдем увеличение давления Δp при гидравлическом ударе (рис. 6.17). Изменение количества движения за время Δt будет

 $\rho\omega\Delta x v$,

где $\rho\omega\Delta x$ — масса жидкости; ω — площадь сечения трубы, υ — скорость движения жидкости до закрытия задвижки *A* (см. рис. 6.14).

Это изменение количества движения должно равняться импульсу силы

$$\Delta p \omega \Delta t = \rho \omega \Delta x \upsilon.$$

Отсюда

$$\Delta p = \rho \frac{\Delta x}{\Delta t} \nu;$$

обозначая $c = \frac{\Delta x}{\Delta t}$, где с — скорость, с которой распространяется повышение давления (скоростное распространение ударной волны), получаем формулу для определения повышения давления

$$\Delta p = \rho c \upsilon,$$

которая называется формулой Жуковского.

Величина скорости распространения ударов волны зависит от рода жидкости, материала и размеров трубы и определяется по формуле

$$c = \sqrt{\frac{K}{\rho}} \frac{1}{\sqrt{1 + \frac{K}{E} \frac{d}{\delta}}},$$

где K — модуль упругости жидкости; ρ — плотность жидкости; E — модуль упругости материала трубы; d — диаметр трубы; δ — толщина стенки трубы.

Повышение давления будет распространяться от задвижки к резервуару со скоростью с. После того как остановится последний слой жидкости у резервуара, вся жидкость в трубопроводе окажется сжатой. Но поскольку в этот момент давление в резервуаре будет меньше давления у задвижки, то жидкость придет в движение по направлению к резервуару. этом давление жидкости, начиная от резервуара, При начнет понижаться. Это понижение, распространяющееся со скоростью с в направлении к задвижке, называется обратной волной. Время пробега прямой и обратной ударных составляет длительность фазы гидравлического волн удара. Благодаря инерции массы жидкости, находящейся в трубопроводе, она продолжает двигаться по направлению к резервуару и после того, как движение у задвижки снизится до давления р_о (рабочее давление при открытой задвижке А). Давление у задвижки продолжает снижаться и дальше до некоторого давления р_{тіп} (см. рис. 6.14). Так как р_{тіп} меньше, чем давление в резервуаре, то вновь начнется произойдет лвижение жилкости K задвижке И снова гидравлический удар, но уже меньшей силы ввиду того, что часть энергии жидкости будет потеряна на гидравлических сопротивлениях. Таким образом, при гидравлическом ударе имеют место затухающие колебания давления.

предотвращения гидравлического удара следует Для увеличивать время закрытия и открытия запорных устройств; устанавливать воздушные колпаки, играющие роль буфера, смягчающего повышение давления; устанавливать специальный предохранительный клапан К (см. рис. 6.14), сбрасывает часть жидкости из трубопровода, который уменьшая тем самым уровень давления при гидравлическом ударе.

Предохранительный клапан при давлении *p*₀ находится в закрытом состоянии и открывается лишь при значительном возрастании давления в магистрали.

6.8. КАВИТАЦИЯ

Явление кавитации было предсказано Л. Эйлером еще в XVIII веке и О. Рейнольдсом в 1873 году задолго до его обнаружения в 1893 году при испытании английского эскадренного миноносца «Дэринг».

Кавитацией принято называть явление разрыва сплошности в жидкости с образованием кавитационных микропузырьков, заполненных паром, газом или их смесью, обусловленное понижением давления, или Т. н. «хололное кипение» Причиной их образования жилкости. является паление давления в жидкости до величин, меньших вели чин давления насышения при данной температуре. При дальнейшем может происходить конденсация с повышении давления исчезновением (схлопыванием) пузырьков пара. При этом оборудования, вблизи поверхности которых находятся пузырьки пара, испытывают удар, что может приводить к их эрозии (выбиванию материала поверхности), повышенной вибрации оборудования, а также к его разрушению.

Из интеграла Бернулли следует, что при установившемся движении жидкости распределение давлений в потоке существенно зависит от распределения скоростей. Для несжимаемой идеальной жидкости уравнение Бернулли имеет вид:

$$gz + \frac{p}{\rho} + \frac{v^2}{2} = \text{const.}$$

Из него следует, что при движении несжимаемой идеальной жидкости в некоторых частях потока давление может получаться отрицательным или даже равняться минус бесконечности.

Рис. 6.18. Диаграмма Ван-дер-Ваальса

Диаграмма Ван-дер-Ваальса (рис. 6.18) дает представление поведении жидкости, в которой непрерывно 0 палает давление при постоянной температуре. Если проследить изменение давления на P-V диаграмме от точки A до точки G по изотерме A-B-C-D-E-F, то в точке В оно достигнет той величины, при которой обычно начинается процесс парообразования. Далее проследим переход жидкости в пар при постоянном давлении (P = const), чему соответствует линия B-D-F. После того как вся жидкость перейдет в пар, растяжение приведет к снижению давления в системе. В точке В прежде всего следует ожидать начала возникновения кавитации. В особых условиях (дегазированная жидкость, чистый сосуд, отсутствие вибрации) удается подойти через точку В к точке G, а при достаточно низких температурах (например, комнатная – для воды) изотерма пересечет линию нулевого давления, т. е. в жидкости возникнут напряжения растяжения. При этом каждый элемент жидкости находится в области низкого давления лишь очень короткое время.

Известно, что воду, находящуюся в чистом сосуде под давлением в l атм, можно перегреть свыше 100°С или охладить на несколько градусов ниже 0°С. Перегрев, переохлаждение, а также перенасыщение воды газом –

хорошо известные примеры метастабильных состояний. Для метастабильности характерно следующее свойство: вещество мгновенно выводится из метастабильного состояния при возникновении зародышей (с размерами, большими критической величины для данных условий) другой фазы.

Практический опыт учит тому, что жидкости не могут сопротивляться сколько-нибудь значительным напряжениям растяжения. Однако впервые в 1843 году Ф. Донни установил возможность метастабильного состояния жидкостей, при котором в них действуют растягивающие напряжения.

Максимальные растягивающие напряжения были замерены Л. Бриггсом центробежным методом. В опытах со ртутью ему удалось достичь значений 4,2·10⁷ Па, а с водой – 2,8·10⁷ Па. Согласно кинетической теории жидкостей, чистые жидкости способны выдерживать очень высокие растяжения (отрицательные давления): от 50 до 1000 МПа.

теоретическая Самая простая оценка разрывных напряжений сделана на основании предположения, что микрополостях, размер которых разрыв происходит на по порядку величины равен среднему расстоянию между Предположив, молекулами. что разрыв произойдет тогда, когда разрывные напряжения достигнут величины капиллярных сил на поверхности пузырька, которым условно заменяется микрополость, можно определить величину этих напряжений с помощью формулы Лапласа:

$$z = P_{\rm n} - P_{\rm c} = \frac{2\sigma}{R},$$

где σ – капиллярная постоянная; R – радиус полости, или пузырька.

Каждый кавитационный пузырек, формируясь из ядра, растет до конечных размеров (первая стадия «жизни» пузырька), после чего схлопывается. Две фазы существования пузырька — расширение и схлопывание — образуют

полный термодинамический цикл. Схлопывание пузырька сопровождается люминесцентными и акустическими эффектами, а также резким повышением температуры и давления в малой окрестности вблизи пузырька. Причем схлопывание пузырька около твердых стенок происходит не симметрично, а с образованием т. н. кумулятивной струйки.

Рис. 6.19. Кавитация в трубках Вентури

Кавитационные явления могут возникать в тех местных сопротивлениях, где наблюдается значительное увеличение скорости из-за сужения потока с последующим его расширением, например в трубках Вентури, диффузорах, соплах и т. д. (рис. 6.19).

В узкой части потока (сечение 2-2) происходит падение давления рис. 6.19 и создаются условия для возникновения кавитации. При дальнейшем расширении потока (сечение 3-3) происходит возрастание давления (так как уменьшается скорость) и может происходить схлопывание пузырьков.

Расчет кавитации сводится к определению минимального давления p_2 в узком сечении, равного давлению насыщения, при котором возникает кавитация. Для определения p_2 запишем уравнение Бернулли применительно к сечениям *1-1* и 2-2 (рис. 6.19), поместив плоскость сравнения по центру канала, т. е. $z_1 = z_2 = 0$:

$$\frac{p_1}{\rho g} + \frac{v_1^2}{2g} = \frac{p_2}{\rho g} + \frac{v_2^2}{2g}.$$

Отсюда

$$\frac{p_2}{\rho g} = \frac{p_1}{\rho g} + \frac{\nu_1^2 - \nu_2^2}{2g} \quad u \pi u \quad p_2 = p_1 - \frac{p}{2} \left(\nu_2^2 - \nu_1^2 \right).$$

Кавитационные явления приводят к увеличению коэффициентов местных сопротивлений и, следовательно, местных потерь напора.

В качестве безразмерного критерия, определяющего кавитационные свойства местных сопротивлений, используют так называемое число кавитации о:

$$\sigma = 2(p_1 - p_{\kappa p}) p v_1^2,$$

где p_l , v_l — давление и скорость перед местным сопротивлением; $p_{\kappa p}$ — минимальное давление, при котором возникает кавитация (обычно оно равно давлению насыщения).

Кавитация возникает не только при движении жидкости в трубах и каналах, но и при внешнем обтекании тел, например на лопатках гидромашин, гребных винтов и т. п. При больших скоростях их вращения скорости могут быть настолько большими, среды течения что некоторых областях давление падает до в давления парообразования. Как следствие, возникает кавитация, которая приводит к увеличению сопротивления (потерь энергии), появлению вибрации и кавитационных шумов и, возможно, к разрушению конструкции. В связи с этим при проектировании гидромашин необходимо стремиться к обеспечению такого кавитационного числа σ, при котором кавитационные явления должны быть исключены.

Вопросы для самопроверки

1. Что понимается под тонкой стенкой, малым отверстием, большим отверстием?

2. Какими коэффициентами характеризуется истечение жидкости из отверстий и какова между ними аналитическая связь? 3. Что называется насадком и какие бывают насадки?

4. Приведите формулы для определения величины ударного давления при прямом гидравлическом ударе и скорости ударной волны в трубе с абсолютно жесткими и деформируемыми стенками.

5. Что такое кавитация?

Примеры решения задач

Задача 1. Вода вытекает из малого незатопленного отверстия в вертикальной стенке при постоянном напоре Н. Высота расположения отверстия над полом $\Delta z = 1,0$ м и достигает пола на расстоянии l = 1,2 м. Диаметр отверстия d = 50 мм, $\varphi = 0,97$. Определить расход Q.

Решение:

Определяем Н:

$$H = \frac{l^2}{\varphi^2 4\Delta z} = \frac{1, 2^2}{0.97^2 \cdot 4 \cdot 1, 0} = 0.315 \quad M.$$

Принимая коэффициент расхода $\mu = 0.62$, находим расход:

$$Q = \mu \omega \sqrt{2gH} = 0.62 \cdot \frac{3.14 \cdot 5^2}{4} \cdot \sqrt{2 \cdot 9.81 \cdot 31.5} = 28 \cdot 10^{-4} \ M^3/C.$$

Задача 2. Определить расход воды и скорость ее истечения через круглое незатопленное отверстие диаметром d=0,2 м, если H=4 м, $\mu=0,62$, $\phi=0,97$. Скоростным напором пренебречь.

Решение: Определяем скорость истечения:

$$v = \varphi \sqrt{2gH} = 0.97 \sqrt{2 \cdot 9.81 \cdot 4} = 8.58 \text{ m/c}.$$

Площадь отверстия $\omega = 0,78 \cdot 0,2^2 = 0,0314 \ m^2$.

Определяем расход воды через отверстие:

$$Q = \mu \omega \sqrt{2gH} = 0.62 \sqrt{2 \cdot 9.81} \cdot 0.0314 = 0.172 \ \text{m}^{3/c}.$$

Задача 3. Определить скорость и расход вытекания воды из малого круглого затопленного отверстия в тонкой стенке, диаметр отверстия d=0,25 м, перепад уровней жидкостей до отверстия и за ним z=4 м.

Решение: Скорость вытекания воды равна

$$v = \varphi \sqrt{2g z}$$

где φ — коэффициент скорости, примем φ равное 0,97; тогда $v = 0.97\sqrt{2 \cdot 9.81 \cdot 4} = 8.6$ м/с.

Расход вытекания $Q = \mu \cdot \omega \sqrt{2g \cdot z}$, где ω — площадь поперечного сечения отверстия, коэффициент расхода μ =0,62. Тогда

$$\omega = \pi \cdot d^2/4 = 3,14 \cdot 0,25^2/4 = 0,049 \text{ M}^2,$$

$$Q = 0,62 \cdot 0,049 \sqrt{19,62 \cdot 4} = 0,27 \text{ M}^3/\text{c}.$$

Для проверки правильности принятых значений $\varphi = 0.97$ и $\mu = 0.67$ найдем число Рейнольдса ($t = 20^{\circ}$ C).

Re =
$$\frac{d\sqrt{2g \cdot z}}{v} = \frac{0.25\sqrt{19.62 \cdot 4}}{1.01 \cdot 10^{-6}} = 2192795$$

т.е. число Re больше чем 100 000, и решение было принято правильное.

Задачи для самостоятельного решения Задача 1.

Рис. 6.20

Жидкость вытекает из открытого резервуара в атмосферу через трубу, имеющую плавное сужение до диаметра d_1 , а затем постепенное расширение до d_2 . Истечение происходит под действием напора H = 3 м (рис. 6.20).

Пренебрегая потерями энергии, определить абсолютное давление в узком сечении трубы 1-1, если соотношение диаметров $d_{2}/d_{1} = \sqrt{2}$; атмосферное давление соответствует $h_{a} = 750$ мм рт. ст.; плотность жидкости $\rho = 1000$ кг/м³. Найти напор $H_{\kappa\rho}$, при котором абсолютное давление в сечении 1-1 будет равно нулю.

Задача 2.

Рис. 6.21

При истечении жидкости через отверстие диаметром $d_o = 10$ мм измерены: расстояние x = 5,5 м, высота y = 4 м, напор H = 2 м и расход жидкости Q = 0,305 л/с (рис. 6.21). Подсчитать коэффициенты сжатия ε , скорости φ , расхода μ и сопротивления ξ . Распределение скоростей по сечению струи считать равномерным. Сопротивлением воздуха пренебречь.

Газодинамикой называется раздел механики жидкости и газа, изучающий закономерности покоя и движения газов.

В области теплоэнергетики, строительства аэродинамические расчеты связаны главным образом с воздухом, на который в основном и ориентирован данный учебник.

Многие гидравлические принципы сохраняются и для газов, таккак последние частосчитают условноне сжимаемыми, как и жидкости. Поэтому в гидрогазодинамике много ссылок на закономерности гидравлики.

Состояние однородного газа определяется тремя параметрами — абсолютным давлением P, плотностью ρ и абсолютной температурой T, из которых только два являются независимыми. Уравнение $f(P, \rho, T) = 0$, связывающие эти величины, называется уравнением состояния.

Газ называется совершенным, если давление P, плотность ρ и абсолютная температура T удовлетворяют уравнению Клапейрона и удельную внутреннюю энергию газа U можно представить в виде $U = C_v T$, где C_v – теплоемкость газа при постоянном объеме.

Система находится в термодинамическом равновесии, если параметры, определяющие ее состояние, остаются постоянными.

Обратимым процессом называется процесс изменения состояния системы, который, будучи проведен в обратном направлении, возвращает ее в исходное состояние через те же промежуточные состояния, при этом в окружающей среде никаких изменений не происходит.

Обратимый процесс можно представить как непрерывную последовательность равновесных состояний, т. е. как квазистатический процесс.

Только в том случае, когда реальный процесс может рассматриваться как квазистатический, при выводе формул,

описывающих его, можно пользоваться уравнениями равновесного состояния.

7.1. СКОРОСТЬ РАСПРОСТРАНЕНИЯ УПРУГИХ ВОЗМУЩЕНИЙ В ГАЗЕ

Если при движении газа возникают разности давлений, небольшие по сравнению с абсолютным давлением газа, то изменения объема получаются столь малыми, что такие потоки газа можно считать в первом приближении несжимаемыми.

При движении газа большие разности давлений и связанные с ними значительные изменения объема возникают в основном в следующих случаях:

1) когда пространство, занятое газом, находящимся под действием силы тяжести, имеет большую протяженность в высоту (движение масс воздуха в свободной атмосфере — предмет рассмотрения динамической метеорологии);

2) когда в потоке газа имеют место большие скорости (течение через отверстия и в каналах, движение тел в газе с большой скоростью рассматриваются в рамках газовой динамики);

3) когда движение газа связано с большими ускорениями (случаи быстрых колебаний в газе (такие движения рассматриваются в акустике), при взрывных волнах и быстром открытии или закрытии задвижек в трубопроводах).

Во всех этих случаях чрезвычайно важную роль играет которой массе распространяются скорость. с В газа возмущения давления. Величина этой скорости зависит только от термодинамического состояния газа, является характерной для данного газа и играет важную роль для выяснения особенностей движения газа - скорость малых возмущений (например распространения малых сжатий) по газу равносильна скорости распространения звука. Поэтому подробно остановимся прежде всего на этом процессе.

Рис. 7.1. Труба с поршнями А и В

Представим длинную трубу. В которой находятся два поршня. а пространство между поршнями занимает несжимаемая жидкость (рис. 7.1).

При перемещении поршня А несжимаемая жидкость вызовет немедленно такое же

перемещение поршня В, как если бы между ними было абсолютно твердое тело. Отсюда следует, что изменения давления в несжимаемой жидкости передаются с бесконечно большой скоростью.

Иначе обстоит дело в сжимаемой жидкости. При перемещении поршня А перед ним возникает уплотнение, которое передвигается с конечной скоростью, зависящей от состояния и свойств жидкости.

Обозначим площадь поперечного сечения трубы через S. Пусть за время dt поршень A переместился на величину dl, а вызванное им возмущение распространилось вдоль трубы на величину dx. Рассмотрим газ как упругую среду, для которой справедлив закон Гука (относительная упругая деформация прямо пропорциональна приложенной силе и обратно пропорциональна модулю упругости):

$$\varepsilon = \frac{F}{SE}.$$
 (7.1)

Здесь F — приложенная сила, E — модуль упругости газа. Так как в движение пришла часть газового объема длиной dx, а в результате перемещения поршня эта длина уменьшилась на dl, то относительная деформация составит

$$\varepsilon = \frac{dl}{dx}$$

отсюда имеем

$$\frac{dl}{dx} = \frac{F}{SE}$$
 или $F = SE \frac{dl}{dx}$

Согласно теореме импульсов изменение количества движения тела равно величине приложенного к нему импульсу, т.е. произведению силы на время:

$$Fdt = d(mv)$$

В данном случае масса газа, приведенная в движение, равна $\rho S dx$, а ее скорость $v = \frac{dl}{dt}$. Тогда имеем

$$SE\frac{dl}{dx}dt = pSdx\frac{dl}{dt}$$
 или $E\frac{dl}{dx}dl = p\frac{dx}{dt}dl$

Здесь $\frac{dx}{dt} = c$ – скорость распространения возмущений в газовой среде. Тогда

$$c = \sqrt{\frac{E}{\rho}} \,. \tag{7.2}$$

Модуль упругости E обратно пропорционален коэффициенту сжимаемости β, где

$$\beta = -\frac{1}{V} \frac{dV}{dp}.$$
$$E = -V \frac{dp}{dV}.$$

Тогда

Допустим, в начальный момент времени объем жидкой частицы плотностью ρ был равен *V*, а за время *dt* он изменился и стал равным $V + \frac{dV}{dt}$. Но вместе с объемом

должна измениться плотность и стать равной $\rho + \frac{d\rho}{dt}$. Так как

начальная масса частицы рV должна остаться неизменной, то

$$\rho V = \left(\rho + \frac{d\rho}{dt}\right) \cdot \left(V + \frac{dV}{dt}\right) = \rho V + \rho \frac{dV}{dt} + V \frac{d\rho}{dt} + \frac{d\rho}{dt} \frac{dV}{dt}$$

Пренебрегая малыми второго порядка, получим

$$\frac{d\rho}{\rho} = -\frac{dV}{V} \,.$$

Отсюда

$$E = \rho \, \frac{dp}{d\rho} \, .$$

Скорость распространения возмущений в сжимаемом газе

$$c=\sqrt{\frac{dp}{d\rho}}.$$

Распространение звука есть процесс распространения малых возмущений давления, величина с является скоростью звука в сжимаемой жидкости. Можно записать $E = \rho c^2$,

Откуда коэффициент сжимаемости

$$\beta = \frac{1}{\rho c^2} \,. \tag{7.3}$$

Отсюда следует, что скорость звука также является характеристикой сжимаемости среды. Чем более сжимаема среда, тем ниже скорость звука. В абсолютно несжимаемой жидкости при $\beta = 0$ скорость звука становится бесконечной.

Распространение малых возмушений давления происходит быстротечно, поэтому можно пренебречь теплообменом с окружающей средой и считать его адиабатным, для которого

$$\frac{p}{\rho^k} = \frac{p_0}{\rho_0^k} = \text{const.}$$

Отсюда

$$\frac{dp}{d\rho} = \frac{d}{d\rho} \left(\frac{p_0}{\rho_0^k} \rho^k \right) = k \frac{p_0}{\rho_0^k} \rho^{k-1} = k \frac{p}{\rho} \cdot$$

Тогда

$$c = \sqrt{k\frac{p}{\rho}} = \sqrt{kRT} .$$
 (7.4.)

7.2. ПАРАМЕТРЫ ТОРМОЖЕНИЯ ПОТОКА

Из $h_1 + \frac{v_1^2}{2} = h_2 + \frac{v_2^2}{2}$ следует, что при полной остановке газового потока его энтальпия будет максимальной и равной

$$h_0 = h + \frac{v^2}{2}.$$
 (7.5)

Соответственным образом увеличатся и станут равными давление p_0 , температура T_0 и удельная плотность ρ_0 . Параметры p_0 , T_0 и ρ_0 называются параметрами заторможенного газа. Так как торможение потока происходит практически мгновенно, то теплообмен с внешней средой в этом процессе отсутствует, т.е. торможение газового потока есть адиабатический процесс, при котором давление и удельная плотность газа связаны соотношением

$$\frac{p}{\rho^k} = \text{const.} \tag{7.6}$$

Здесь k — показатель адиабаты. Для двухатомных газов, в частности для кислорода, азота и воздуха, k=1,4. Для трехатомных газов, в частности для перегретого водяного пара, k=1,33. Так как отношение теплоемкости газа при постоянном давлении к теплоемкости газа равны показателю адиабаты

$$\frac{c_p}{c_v} = k , \qquad (7.7)$$

то их можно выразить через показатель адиабаты и газовую постоянную

$$c_p = \frac{k}{k-1}R, \qquad (7.8)$$

$$c_{v} = \frac{1}{k - 1} R \,. \tag{7.9}$$

Из (7.5) следует

$$T_0 = T + \frac{v^2}{2c_p} = T + \frac{k-1}{2} \frac{v^2}{kRT} = T + \frac{k-1}{2} \frac{v^2}{c^2}.$$
 (7.10)

Отношение скорости газа к скорости звука в потоке газа называется числом Маха и обозначается буквой М:

$$M = \frac{v}{c}.$$
 (7.11)

Число Маха является основным критерием подобия для газовых течений. При M<1 поток является дозвуковым, при M>1 — сверхзвуковым.

$$\frac{T_0}{T} = 1 + \frac{k - 1}{2} M^2.$$
(7.12)

Так как при адиабатическом процессе

$$\frac{p}{\rho^k} = \frac{p_0}{\rho_0^k}, \quad \text{TO} \quad \frac{\rho_0}{\rho} = \left(\frac{p_0}{p}\right)^k.$$

Из уравнения состояния

$$\frac{p_0}{p} = \frac{\rho_0 T_0}{\rho T} = \left(\frac{p_0}{p}\right)^k \frac{T_0}{T},$$

откуда

$$\frac{p_0}{p} = \left(\frac{T_0}{T}\right)^{k-1} = \left(1 + \frac{k-1}{2}M^2\right)^{k-1},$$
(7.13)

$$\frac{\rho_0}{\rho} = \left(\frac{p_0}{p}\right)^k = \left(1 + \frac{k-1}{2}M^2\right)^{\frac{1}{k-1}},$$
(7.14)

Так как скорость звука $c = \sqrt{kRT}$, то

$$\frac{c_0}{c} = \sqrt{\frac{T_0}{T}} = \sqrt{1 + \frac{k-1}{2}M^2} .$$
 (7.15)

Энтальпия газа пропорциональна его температуре, поэтому

$$\frac{h_0}{h} = \frac{T_0}{T} = 1 + \frac{k-1}{2}M^2.$$
(7.16)

Выражения (7.7) — (7.12) позволяют определить параметры движущегося газа, если известны параметры торможения и относительная скорость движения (число Maxa M).

Представим бак с отверстием, как показано на рис.7.2, при этом будем считать, что размеры бака настолько велики, что можно полностью пренебречь скоростью газа внутри бака, т.е. принять, что внутри бака

параметры газа соответствуют параметрам торможения p_{θ} , ρ_{θ} , T_{θ} .

Из (7.5) следует

$$c_p T_0 = c_p T + \frac{v^2}{2},$$
$$\frac{k}{k-1} R T_0 = \frac{k}{k-1} R T + \frac{v^2}{2},$$
$$\frac{k}{k-1} \frac{p_0}{\rho_0} = \frac{k}{k-1} \frac{p}{\rho} + \frac{v^2}{2}.$$

Рис. 7.2. Истечение из бака

Отсюда скорость газа на выходе из отверстия

$$\upsilon = \sqrt{\frac{2k}{k-1}} \left(\frac{p_0}{\rho_0} - \frac{p}{\rho}\right) = \sqrt{\frac{2k}{k-1}} \frac{p_0}{\rho_0} \left(1 - \frac{p}{\rho_0} \frac{\rho_0}{\rho}\right).$$

Так как $\frac{\rho_0}{\rho} = \left(\frac{p_0}{p}\right)^k$, то окончательно имеем

$$\upsilon = \sqrt{\frac{2k}{k-1}} \frac{p_0}{\rho_0} \left[1 - \left(\frac{p}{p_0}\right)^{\frac{k-1}{k}} \right].$$
(7.17)

Выражение (7.15) позволяет при заданных параметрах торможения газа в баке и давлении за баком определить скорость газа в отверстии.

Из (7.17) видно, что с уменьшением давления p за баком скорость истечения увеличивается и достигает своего максимума при истечении в вакуум, т.е. при p=0:

$$\upsilon_{\max} = \sqrt{\frac{2k}{k-1}} \frac{p_0}{\rho_0} = \sqrt{\frac{2}{k-1}} kRT_0 = c_0 \sqrt{\frac{2}{k-1}} .$$
(7.18)

7.3. ВОЗМУЩЕНИЯ В ГАЗЕ ПРИ ДВИЖЕНИИ ТЕЛА

В сжимаемой жидкости малые изменения давления от движения в ней тела распространяются со скоростью звука

$$c = \sqrt{\frac{dp}{d\rho}} = \sqrt{k\frac{p}{\rho}} = \sqrt{kRT}$$

Каждая точка поверхности тела, движущегося в жидкости, является источником повышения или понижения давления. Распределение давлений по поверхности и скорость движения тела полностью определяют поле скоростей и давлений в окружающей тело идеальной жидкости.

В несжимаемой жидкости поля скоростей и давлений устанавливаются мгновенно, в то время как в сжимаемой

жидкости эти поля устанавливаются постепенно по мере того, как упругие возмущения, вызванные повышением или понижением давления на поверхности тела, достигают все более удаленных от тела областей жидкости.

Представим, что в сжимаемой ЖИДКОСТИ лвижется прямолинейно равномерно тело малых размеров. И источником малых упругих возмущений. являющееся Если бы возмущения возникали в неподвижной среде, то они распространялись бы равномерно во все стороны по прямым, исходящим из этой точки, как показано на рис.7.3.

За время *t* изменения давления достигали сферической поверхности радиусом $r = c \cdot t$, где c — скорость звука.

Как только источник возмущения начинает двигаться, произойдет нарушение в этой картине. Центры сферических поверхностей, ограничивающих в разные моменты времени возмущенную область, будут смещаться с той же скоростью v, с которой движется источник возмушений. При v < c будет наблюдаться картина, показанная на рис. 7.3. При движении тела с дозвуковой скоростью возмушения, вызванные телом, опережают его.

Поместив в газ на линии движения тела какой-либо приемник давления, увидим, что он отметит изменение давления

до того, как источник будет в точке, где находится приемник.

Если источник возмущения движется со скоростью звука, то он будет все время находиться границе на возмущенной области, как показано на рис. Возмущения, 7.5. вызванные телом, не будут в этом случае распространяться область В перед Возмущенная ним.

Рис. 7.3. Распространение возмущений от движущейся точки со скоростью v < с

Рис. 7.4. Распространение возмущений от неподвижной точки

Рис. 7.5. Распространение возмушений от движущейся точки со скоростью v = c

область отделена от области, куда не проникают возмущения, плоскостью, перпендикулярной направлению движения.

случай, Рассмотрим когла сверхзвуковой тело лвижется co Так скоростью. как скорость перемещения источника возмущений больше скорости распространения возмущений, то сферические поверхности, соответствующие положению тела в различные моменты времени, будут располагаться внутри движущегося вместе с телом конуса.

Вершина конуса находится в центре источника возмущений, а ось конуса совпадает с направлением движения. Этот конус, изображенный на рис. 7.6, называется конусом возмущения. В область вне этого конуса не проникают вызванные этим телом

возмущения, они распространяются только внутри конуса.

Рис. 7.6. Конус возмущений от движущейся точки со скоростью v>c

Следует еще раз отметить, что сам конус перемещается вместе с телом. Наблюдатель, находящийся вне конуса, не

услышит издаваемого источником звука, даже если источник пройдет мимо него. Звук дойдет до наблюдателя только тогда, когда поверхность конуса достигнет наблюдателя.

В том случае, если тело неподвижно, а на него набегает сверхзвуковой поток, то конус возмущений также остается неподвижным. В область вне конуса никогда не проникнут колебания давления, вызванные источником. Эту область можно назвать областью запрещенных сигналов.

Размер возмущенной области можно охарактеризовать углом А между образующей конуса и остью движения. Очевидно, что

$$\sin A = \frac{c}{v} = \frac{1}{M} \,. \tag{7.19}$$

Отсюда видно, что чем больше скорость потока, т.е. число Maxa, тем тоньше возмущенная область.

7.4. КРИТИЧЕСКИЕ ПАРАМЕТРЫ ПОТОКА

Вернемся к истечению потока из бака. При истечении в вакуум согласно (7.18) можно ожидать, что скорость гала достигнет максимальной величины

$$v_{max} = \sqrt{\frac{2}{k-1}kRT_0} = c_0\sqrt{\frac{2}{k-1}}.$$

Однако при использовании сужающегося ИЛИ расширяющегося сопла снижение давления на выходе из бака приводит к увеличению скорости истечения только до того момента, пока скорость истечения не станет равной скорости звука в выходном сечении сопла. При дальнейшем возмущения потока. вызываемые снижении давления увеличенным перепадом давления, будут сноситься во внешнюю среду, не проникая внутрь бака. Такое течение со звуковой скоростью в выходном сечении сопла называется течением, а параметры, соответствующие критическим звуковой скорости истечения, называются критическими.

Так как при скорости газа, равной скорости звука, число Maxa M=1, то критические параметры будут равны

$$\frac{T_0}{T_*} = \frac{k+1}{2} \quad \text{или} \quad \frac{T_*}{T_0} = \frac{2}{k+1}, \tag{7.20}$$

$$\frac{p_0}{p_*} = \left(\frac{k+1}{2}\right)^{\frac{k}{k-1}}$$
или $\frac{p_*}{p_0} = \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}}$, (7.21)

$$\frac{\rho_0}{\rho_*} = \left(\frac{k+1}{2}\right)^{\frac{1}{k-1}} \quad \text{или} \quad \frac{\rho_*}{\rho_0} = \left(\frac{2}{k+1}\right)^{\frac{1}{k-1}}, \quad (7.22)$$

$$\frac{c_0}{c_*} = \sqrt{\frac{k+1}{2}}$$
 или $\frac{c_*}{c_0} = \sqrt{\frac{2}{k+1}}$, (7.23)

$$\frac{h_0}{h_*} = \frac{k+1}{2} \quad \text{или} \quad \frac{h_*}{h_0} = \frac{2}{k+1}. \tag{7.24}$$

Из (7.21) следует, что существует критический перепад давлений, выше которого существует дозвуковое течение, а ниже которого скорость газа на выходе из сопла остается постоянной и равной скорости звука.

Для воздуха при k=1,4

$$\frac{p_*}{p_0} = \left(\frac{2}{k+1}\right)^{k-1} = \left(\frac{2}{1,4+1}\right)^{1,4-1} = \frac{1}{1,2^{3,5}} = 0,528.$$

Для перегретого пара при k=1,33

$$\frac{p_*}{p_0} = \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}} = \left(\frac{2}{1,3+1}\right)^{\frac{1,33}{1,33-1}} = \frac{1}{1,165^4} = 0,543.$$

При торможении газового потока его давление $p_{0,2}$ может быть значительно меньше давления $p_{0,1}$, рассчитанного по идеально адиабатному процессу. Это связано с тем, что в реальном процессе могут быть гидравлические потери, вызванные вихреобразованиями или появлением ударных волн при торможении сверхзвукового потока.

Потери давления учитываются коэффициентом сохранения полного давления

$$\sigma = \frac{p_{0,2}}{p_{0,1}}, \qquad \sigma \le 1.$$
 (7.25)

Чем больше потери, тем меньше значение коэффициента σ и тем ниже давление торможения $p_{0,2} = p \sigma_{0,1}$.

7.5. ЭНТРОПИЯ ПОТОКА

Согласно второму закону термодинамики при реальных необратимых процессах, протекающих в конечной изолированной системе, энтропия возрастает, а в обратимых процессах остается неизменной. Математически прирост энтропии определяется выражением

$$dS = \frac{dQ}{T}.$$
 (7.26)

Здесь dQ — полное количество тепла, подводимое как извне, так и изнутри, например, вследствие работы сил трения; T — абсолютная температура.

По первому закону термодинамики это тепло расходуется на повышение внутренней энергии и работу сил расширения

$$dQ = dU + pdv.$$

Здесь v – удельный объем. Для идеального газа

$$dU = c_v dT$$
, $p = \frac{RT}{v}$, $dQ = c_v dT + RT \frac{dv}{v}$.

Тогда

$$dS = c_v \frac{dT}{T} + R \frac{dv}{v} \,.$$

Из
$$\frac{c_p}{c_v} = k$$
, $c_p - c_v = R$ имеем $R = c_v(k-1)$.

Отсюда

$$dS = c_v \frac{dT}{T} + c_v (k-1) \frac{dv}{v} = c_v \left[\frac{dT}{T} + (k-1) \frac{dv}{v} \right] = c_v \left[d\ln(T) + d\ln(v^{k-1}) \right] = c_v d\left[\ln(Tv^{k-1}) \right]$$

Для идеального газа $T = \frac{pv}{R}$.

Тогда

$$dS = c_v d\left[ln\left(\frac{pv^k}{R}\right) \right] = c_v d\left[ln\left(pv^k\right) - ln(R) \right] = c_v d\left[ln\left(pv^k\right) \right] = c_v d\left[ln\left(\frac{p}{\rho^k}\right) \right].$$

Если процесс движения происходит по идеальной адиабате, то $pv^{k} = \frac{p}{\rho^{k}} = \text{const}$, откуда dS = 0.

Отсюда следует, что в идеальном адиабатическом процессе энтропия газа остается постоянной.

Всякий реальный процесс для изолированной конечной системы протекает в таком направлении, что его энтропия возрастает. В изолированной системе теплообмен с окружающей средой отсутствует и температура торможения не меняется. Однако вследствие потерь на трение давление торможения в газовом потоке уменьшается, $p_{0,2} < p_{0,1}$. Тепло трения всегда имеет положительный знак, поэтому

$$dS = \frac{dQ}{T} > 0.$$

При отсутствии теплообмена и механической работы изменение энтропии при переходе газового потока из состояния 1 в состояние 2 составит

$$S_2 - S_1 = -Rln\left(\frac{p_{0,2}}{p_{0,1}}\right) = -Rln(\sigma).$$
 (7.27)

Здесь *с* – коэффициент сохранения полного давления.

7.6. СОПЛО ЛАВАЛЯ

Рассмотрим одномерное движение сжимаемого газа в трубе переменного сечения. При стационарном движении в любом сечении трубы должно выполняться уравнение неразрывности в виде

$$\rho vs = \text{const}$$
 (7.28)

Продифференцируем это выражение по х и получим

$$\frac{d(\rho vs)}{dx} = vs\frac{d\rho}{dx} + \rho s\frac{dv}{dx} + \rho v\frac{ds}{dx} = 0.$$
(7.29)

Разделим это выражение на рvs:

$$\frac{1}{\rho}\frac{d\rho}{dx} + \frac{1}{\nu}\frac{d\nu}{dx} + \frac{1}{s}\frac{ds}{dx} = 0.$$
(7.30)

Представим первую производную в виде

$$\frac{d\rho}{dx} = \frac{d\rho}{dp}\frac{dp}{dx} = \frac{1}{\frac{dp}{d\rho}}\frac{dp}{dx} = \frac{1}{c^2}\frac{dp}{dx}$$

Тогда получим

$$\frac{1}{\rho c^2} \frac{dp}{dx} + \frac{1}{v} \frac{dv}{dx} + \frac{1}{s} \frac{ds}{dx} = 0.$$
 (7.31)

Уравнение Эйлера для одномерного потока имеет вид

$$\frac{\partial v}{\partial t} + v \frac{dv}{dx} = -\frac{1}{\rho} \frac{dp}{dx}.$$
(7.32)

Для стационарного потока первый член уравнения, т.е. локальная производная по времени равна нулю. С учетом этого будем иметь

$$-\frac{v}{c^2}\frac{dv}{dx} + \frac{1}{v}\frac{dv}{dx} + \frac{1}{s}\frac{ds}{dx} = 0.$$

Умножая это выражение на v и группируя члены, получим
$$\left(\frac{v^2}{c^2} - 1\right)\frac{dv}{dx} = \frac{v}{s}\frac{ds}{dx} \quad u \pi u \quad \left(M^2 - 1\right)\frac{dv}{dx} = \frac{v}{s}\frac{ds}{dx}.$$
 (7.33)

Выражение (7.33) определяет зависимость изменения скорости потока в зависимости от изменения площади проходного сечения канала. При дозвуковой скорости ($M \le 1$) увеличение скорости потока ($\frac{dv}{dx} > 0$) возможно только при

уменьшении сечения канала ($\frac{dx}{dx} < 0$).

Для сверхзвукового потока (M >1) дальнейшее увеличение скорости возможно только в расширяющемся канале ($\frac{ds}{dx} > 0$). Преодоление газовым потоком скорости звука (M=1) возможно в том месте, где сужающийся участок канала с $\frac{ds}{dx} < 0$ переходит

в расширяющийся участок с $\frac{ds}{dx} > 0$. Построенный по таким

принципам канал называется соплом Лаваля.

Уравнение (7.31) можно представить в виде

$$\frac{d\rho}{\rho}+\frac{dv}{v}+\frac{ds}{s}=0\,,$$

откуда

$$\frac{ds}{s} = -\frac{d\rho}{\rho} - \frac{dv}{v}.$$

Уравнение (7.33) запишем в виде

$$\left(M^2-1\right)\frac{dv}{v}=\frac{ds}{s}$$

или

$$\left(M^2-1\right)\frac{dv}{v}=-\frac{d\rho}{\rho}-\frac{dv}{v}, \ M^2\frac{dv}{v}=-\frac{d\rho}{\rho}.$$

Тогда

$$M^2 = -\frac{\frac{d\rho}{\rho}}{\frac{dv}{v}}.$$
(7.34)

Знаменатель этого выражения $\frac{dv}{v}$ представляет собой

относительное изменение скорости потока. Числитель $\frac{d\rho}{\rho}$ есть относительное изменение плотности среды при изменении ее скорости. Таким образом, число Маха характеризует относительное изменение плотности, приходящееся на единицу относительного изменения скорости.

Число Маха, также как и скорость звука, является характеристикой сжимаемости среды. Но скорость звука как характеристика сжимаемости относится к покоящейся среде, тогда как число Маха связано с движущейся средой. Число Маха является характеристикой сжимаемости движущегося газа.

Так как число Маха М всегда больше нуля, то в установившемся течении знак $d\rho$ всегда пропорционален знаку dv, т.е при нарастании скорости вдоль струйки плотность газа всегда уменьшается.

Уравнение (7.34) позволяет объяснить действие сопла Лаваля, показанного на рис. 7.7.

Если поток газа, протекающий через сопло Лаваля, имеет везде скорость меньше скорости звука, то изменение скорости вдоль сопла происходит по кривой *а*. Во входной части сопла скорость нарастает, достигает максимума в сжатом сечении и затем убывает. Если поток газа имеет везде сверхзвуковую скорость, то изменение скорости происходит по кривой б. Во входной части сопла скорость убывает, достигает минимума в сжатом сечении и затем снова нарастает в выходной части. Если же сопло спроектировано так, что в сжатом сечении скорость газа будет равна скорости звука, то эти кривые соприкоснутся в точке, соответствующей сжатому сечению. При этом при разгоне поток по инерции перейдет с кривой *а* на кривую δ при ускорении потока или при начальной сверхзвуковой скорости перейдет с кривой δ на кривую *а*.

Сопло Лаваля применяется в паровых и газовых турбинах, турбореактивных двигателях и других устройствах, гле необходимо получить сверхзвуковой поток. Впервые оно было применено шведским инженером Лавалем в конструкции турбины. паровой Желая быстроходной получить скорость пара, Лаваль наибольшую сначала применял суживающиеся сопла, но не смог добиться скорости выше скорости звука. Тогда Лаваль присоединил к сужающейся части сопла расширяющийся насадок. Оказалось, что при такой конструкции скорость потока продолжает нарастать выше скорости звука.

Рис. 7.7. Распределение скорости газа вдоль сопла Лаваля. А – дозвуковое течение; б – сверхзвуковое течение

7.7. ПРИВЕДЕННАЯ СКОРОСТЬ ГАЗА

Наряду с числом Маха для характеристики потока используется отношение скорости газа к критической скорости, т.е. к скорости звука в критическом сечении сопла Лаваля

$$\lambda = \frac{v}{c_*} \,. \tag{7.35}$$

Во многих случаях расчетные формулы с использованием приведенной скорости упрощаются, т.к. число Маха М представляет отношение скорости газового потока K скорости звука в этом потоке, зависящей как от температуры скорости газа. Приведенная скорость λ торможения И есть отношение скорости газа к критической скорости, зависящей только от температуры торможения и одинаковой для любого участка потока.

Между приведенной скоростью и числом Маха существует однозначная связь:

$$M^{2} = \frac{\frac{2}{k+1}\lambda^{2}}{1 - \frac{k-1}{k+1}\lambda^{2}},$$

$$\lambda^{2} = \frac{\frac{2}{1 + \frac{k-1}{2}M^{2}}}{1 + \frac{k-1}{2}M^{2}}.$$
(7.36)
(7.37)

Для расчета параметров потока используются формулы:

$$\frac{T}{T_0} = 1 - \frac{k - 1}{k + 1} \lambda^2 \,, \tag{7.38}$$

$$\frac{p}{p_0} = \left(1 - \frac{k-1}{k+1}\lambda^2\right)^{k-1}.$$
(7.39)

$$\frac{\rho}{\rho_0} = \left(1 - \frac{k-1}{k+1}\lambda^2\right)^{k-1}.$$
 (7.40)

В отличие от числа Маха, в котором скорость звука в потоке зависит как от параметров торможения, так и от скорости потока, приведенная скорость является функцией только параметров торможения. По этой причине она более удобна для проведения расчетов.

В формулах (7.38) — (7.40) зависимость параметров газового потока от приведенной скорости имеет достаточно сложный вид. Для того, чтобы избежать громоздких вычислений, используются газодинамические функции параметров потока от приведенной скорости, значения которых рассчитаны для некоторых часто встречающихся значений коэффициента адиабаты k и приведены в соответствующих таблицах.

использования Преимущество газодинамических функций также состоит в том, что значительно упрощаются преобразования совместном при решении основных уравнений. Это позволяет получать в общем виде решения лостаточно сложных задач и более четко выявить основные закономерности течения качественные И СВЯЗИ между параметрами газового потока.

Первую простейшую группу газодинамических функций образуют соотношения, связанные уравнением состояния идеального газа:

$$\tau(\lambda) = \frac{T}{T_0} = 1 - \frac{k-1}{k+1}\lambda^2, \qquad (7.41)$$

$$\pi(\lambda) = \frac{p}{p_0} = \left(1 - \frac{k-1}{k+1}\lambda^2\right)^{k-1},$$
(7.42)

$$\varepsilon(\lambda) = \frac{\rho}{\rho_0} = \left(1 - \frac{k-1}{k+1}\lambda^2\right)^{k-1}.$$
 (7.43)

Уравнения состояния для движущегося и заторможенного потоков:

$$p = \rho RT , \quad p_0 = \rho_0 RT_0 .$$

Поделив одно уравнение на другое, получим

$$\pi(\lambda) = \varepsilon(\lambda)\tau(\lambda), \, \varepsilon(\lambda) = \frac{\pi(\lambda)}{\tau(\lambda)}, \, \tau(\lambda) = \frac{\pi(\lambda)}{\varepsilon(\lambda)}.$$

Зависимость функций от приведенной скорости показана на рис. 7.8. Зная параметры торможения и скорость газа, можно определить параметры газа в потоке. Например, если перед соплом поток можно считать заторможенным, и его параметры равны p_0 , ρ_0 и T_0 , то после разгона до скорости w₁ приведенная скорость составит

$$\lambda_1 = \frac{w_1}{c_*} = \frac{w_1}{\sqrt{\frac{2k}{k+1}RT_0}} \,.$$

Параметры газа в потоке будут равны

$$p_1 = p_0 \pi(\lambda_1), \ \rho_1 = \rho_0 \varepsilon(\lambda_1), \ T_1 = T_0 \tau(\lambda_1).$$

Если затем скорость станет равной w2, то получим

$$\lambda_{2} = \frac{w_{2}}{c_{*}} = \frac{w_{2}}{w_{1}} \frac{w_{1}}{c_{*}} = \frac{w_{2}}{w_{1}} \lambda_{1},$$

$$p_{2} = p_{0}\pi(\lambda_{2}), \quad \rho_{2} = \rho_{0}\varepsilon(\lambda_{2}), \quad T_{2} = T_{0}\tau(\lambda_{2}).$$

Если перед соплом параметры и скорость газа равны *p*, *p*, *T*, *w*, то можно найти параметры торможения. Сначала находим давление торможения

$$p_0 = p + \rho \frac{w^2}{2}.$$

Затем определяем параметр

$$\pi(\lambda) = \frac{p}{p_0} \, \cdot \,$$

По нему находим относительную скорость λ и остальные параметры

Рис. 7.8. Графики газодинамических функций

 π (λ), ε (λ , τ (λ) ∂ *ля* k = 1,4

Вторая группа образована из газодинамических функций, связанных с уравнением неразрывности потока газа. Секундный расход газа в любом сечении равен

$$G = \rho_W S, \tag{7.10}$$

где S — площадь сечения канала. Запишем это выражение для параметров заторможенного потока. Согласно (8.43)

$$\rho = \rho_0 \left(1 - \frac{k-1}{k+1} \lambda^2 \right)^{\frac{1}{k-1}} = \frac{p_0}{RT_0} \left(1 - \frac{k-1}{k+1} \lambda^2 \right)^{\frac{1}{k-1}}.$$
 (7.11)

По определению

$$w = \lambda c_* , \qquad (7.12)$$

где скорость звука в критическом сечении

$$c_* = \sqrt{\frac{2k}{k+1}} RT_0 \tag{7.13}$$

Отсюда

$$w = \lambda \sqrt{\frac{2k}{k+1}RT_0} \,. \tag{7.14}$$

Подставляя эти величины в уравнение неразрывности, получим

$$G = \frac{p_0}{RT_0} \left(1 - \frac{k-1}{k+1} \lambda^2 \right)^{\frac{1}{k-1}} \lambda \sqrt{\frac{2k}{k+1} RT_0} S.$$
(7.15)

Умножим обе части уравнения (7.15) на (7.13). Будем иметь

$$G_{c*} = \frac{p_0}{RT_0} \left(1 - \frac{k-1}{k+1} \lambda^2 \right)^{\frac{1}{k-1}} \lambda \sqrt{\frac{2k}{k+1}} RT_0 \sqrt{\frac{2k}{k+1}} RT_0$$

$$= \frac{2k}{k+1} p_0 \left(1 - \frac{k-1}{k+1} \lambda^2 \right)^{\frac{1}{k-1}} \lambda S.$$
(7.16)

Это уравнение связывает массовый расход газа в данном сечении с давлением торможения, скоростью звука в критическом сечении, площадью поперечного сечения канала и некоторой функцией приведенной скорости

$$\lambda \left(1 - \frac{k-1}{k+1}\lambda^2\right)^{k-1} = \lambda \varepsilon(\lambda).$$

Новая газодинамическая функция $q(\lambda)$ определяется как величина, пропорциональная произведению $\lambda \varepsilon(\lambda)_{:}$

$$q(\lambda) = \left(\frac{k+1}{2}\right)^{k-1} \lambda \left(1 - \frac{k-1}{k+1}\lambda^2\right)^{k-1}.$$
 (7.17)

Коэффициент пропорциональности выбран таким, чтобы при $\lambda=1$ иметь q(λ) =1. Вследствие этого газодинамическая функция приобретает физический смысл безразмерной плотности тока:

$$q(\lambda) = \frac{\rho_W}{\rho_{*C*}} = \frac{\rho_W}{(\rho_W)_*}.$$
(7.18)

Здесь (*pw*)_{*} — максимальное значение плотности тока при заданных параметрах торможения, соответствующее течению со скоростью звука.

Действительно,

$$\frac{\rho w}{\rho * c *} = \frac{\rho}{\rho_0} \frac{\rho_0}{\rho * c *} = \frac{\varepsilon(\lambda)}{\varepsilon(1)} \lambda = \frac{1}{\left(1 - \frac{k-1}{k+1}\right)^{k-1}} \lambda \varepsilon(\lambda) =$$
$$= \left(\frac{k+1}{2}\right)^{\frac{1}{k-1}} \lambda \varepsilon(\lambda) = q(\lambda).$$

Подставляя функцию q(λ) в (7.16), получим

$$G_{C*} = \frac{2k}{k+1} \left(\frac{2}{k+1}\right)^{\frac{1}{k-1}} p_0 q(\lambda) S .$$
 (7.19)

Подставляя в (7.19) выражение для критической скорости звука (7.13), имеем

$$G = \frac{2k}{k+1} \sqrt{\frac{k+1}{2k}} \left(\frac{2}{k+1}\right)^{\frac{1}{k-1}} \frac{p_0}{\sqrt{RT_0}} q(\lambda)S = \sqrt{\frac{2k}{k+1}} \left(\frac{2}{k+1}\right)^{\frac{2}{k-1}} \frac{p_0}{\sqrt{RT_0}} q(\lambda)S = \sqrt{k} \left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}} \frac{1}{\sqrt{R}} \frac{p_0q(\lambda)S}{\sqrt{T_0}}.$$

Обозначим

$$m = \sqrt{k \left(\frac{2}{k+1}\right)^{k+1} \frac{1}{\sqrt{R}}}.$$
 (7.20)

Эта величина зависит только от физических свойств газа и не меняется при его движении. Окончательно имеем

$$G = m \frac{p_0}{\sqrt{T_0}} q(\lambda) S.$$
(7.21)

Формула (7.21) позволяет легко рассчитать скорость газового потока в любом сечении сопла Лаваля. При известных параметрах торможения газа p_0 и T_0 для известного размера *S* критического сечения по $\lambda=1$ определяется расход газа *G*, а затем для любых сечений находится функция $q(\lambda)$ и по ней определяется приведенная λ и физическая w скорости газа.

Следует обратить внимание на зависимость функции $q(\lambda)$ от λ , показанной на рис. 7.9. С увеличением приведенной скорости от нуля до единицы величина $q(\lambda)$ также возрастает от нуля до максимального значения $q(\lambda) = 1$. Затем функция снижается до нуля при значении λ_{max} . Отсюда видно, что одному и тому же значению $q(\lambda)$ соответствуют два значения λ : дозвуковое $\lambda < 1$ и сверхзвуковое $\lambda > 1$.

При решении ряда задач требуется связать расход газа не с полным, а со статическим давлением в потоке. Так как $p_0 = \frac{p}{\pi(\lambda)}$, то (7.21) можно представить в виде

$$G = m \frac{p}{\sqrt{T_0}} \frac{q(\lambda)}{\pi(\lambda)} S.$$

Величина

$$y(\lambda) = \frac{q(\lambda)}{\pi(\lambda)} = \left(\frac{k+1}{2}\right)^{1/k-1} \frac{\left(1 - \frac{k-1}{k+1}\lambda^2\right)^{k-1}\lambda}{\left(1 - \frac{k-1}{r+1}\lambda^2\right)^{k-1}} = \left(\frac{k+1}{2}\right)^{1/k-1} \frac{\lambda}{1 - \frac{k-1}{r+1}\lambda^2}, \quad (7.22)$$

является второй газодинамической функцией, связывающей расход газа с его параметрами:

$$G = m \frac{p}{\sqrt{T_0}} y(\lambda) S.$$
(7.23)

График этой функции показан на рис. 7.9.

С увеличением приведенной скорости λ функция $y(\lambda)$ монотонно возрастает и при $\lambda \to \lambda_{max}$ $y(\lambda) \to \infty$.

Рис. 7.9. График функции q(λ) для k=1,4

Третью группу образуют газодинамические функции, которые используются в уравнении количества движения газа. Сумму секундного количества движения и силы давления газа в рассматриваемом поперечном сечении потока называют полным импульсом потока

$$I = Gw + pS = Gw + \frac{GpS}{\rho wS} = G\left(w + \frac{p}{\rho w}\right).$$
(7.24)

Так как

$$w = \lambda c_*; \quad \frac{p}{\rho} = RT = RT_0 \left(1 - \frac{k-1}{k+1} \lambda^2 \right) = \frac{2kRT_0}{k+1} \frac{k+1}{2k} \left(1 - \frac{k-1}{k+1} \lambda^2 \right) = \frac{k+1}{2k} c_*^2 \left(1 - \frac{k-1}{k+1} \lambda^2 \right),$$

получим

$$I = G\left[\lambda c_* + \frac{k+1}{2k\lambda c_*}c_*^2\left(1 - \frac{k-1}{k+1}\lambda^2\right)\right] = G\left(\lambda c_* + \frac{k+1}{2k}\frac{c_*}{\lambda} - \frac{k-1}{2k}\lambda c_*\right) = Gc_*\frac{k+1}{2k}\left(\lambda + \frac{1}{\lambda}\right).$$

Величина $\lambda + \frac{1}{\lambda}$ образует новую газодинамическую функцию

Рис. 7.10. График функции у(λ) для k=1,4

Тогда полный импульс потока равен

$$I = Gw + pS = \frac{k+1}{2k}Gc * z(\lambda).$$
 (7.26)

График функции z(λ) показан на рис. 7.10.

Минимальное значение функции $z(\lambda)=2$ соответствует критической скорости течения, т.е. приведенной скорости $z(\lambda)=1$. Одному и тому же значению $z(\lambda)>2$ могут соответствовать два взаимно обратных значения приведенной скорости λ , одно дозвуковое, другое — сверхзвуковое. В отличие от остальных газодинамических функций $z(\lambda)$ не зависит от величины показателя адиабаты k.

Рис. 7.11. График функции z(λ)

Заменим в (7.26) величину Gc* выражением (7.19)

$$Gc_* = \frac{2k}{k+1} \left(\frac{2}{k+1}\right)^{\frac{1}{k-1}} p_0 q(\lambda) S$$
.

Получим

$$I = Gw + pS = \frac{k+1}{2k} \frac{2k}{k+1} \left(\frac{2}{k+1}\right)^{\frac{1}{k-1}} p_0 Sq(\lambda) z(\lambda) = \left(\frac{2}{k+1}\right)^{\frac{1}{k-1}} p_0 Sq(\lambda) z(\lambda).$$

Введем функцию

$$f(\lambda) = \left(\frac{2}{k+1}\right)^{k-1} q(\lambda) z(\lambda).$$
(7.27)

Тогда будем иметь

$$I = Gw + pS = p_0 Sf(\lambda). \qquad (7.28)$$

Если выражать импульс не через полное, а статическое давление, то получим

$$I = Gw + pS = \frac{k+1}{2k} \frac{2k}{k+1} \left(\frac{2}{k+1}\right)^{\frac{1}{k-1}} pSy(\lambda)z(\lambda) = \left(\frac{2}{k+1}\right)^{\frac{1}{k-1}} pSy(\lambda)z(\lambda).$$

Введем еще одну функцию

$$r(\lambda) = \left(\frac{k+1}{2}\right)^{k-1} \frac{1}{y(\lambda)z(\lambda)}.$$
(7.29)

Получим

$$I = Gw + pS = \frac{pS}{r(\lambda)}.$$
 (7.30)

Функция $r(\lambda)$ определена как величина, обратная произведению $y(\lambda)z(\lambda)$ для того, чтобы было легче пользоваться таблицами. Произведение $y(\lambda)z(\lambda)$ быстро возрастает с увеличением λ , в то время как функция $r(\lambda)$ изменяется от 0 до 1. Графики функций $f(\lambda)$ и $r(\lambda)$ показаны на рис. 7.12.

Рис. 7.12. Графики функций f(λ), r(λ)

7.8. СКАЧКИ УПЛОТНЕНИЯ. АДИАБАТА ГЮГОНИО

 Опыты показывают, что обтекание тел сверхзвуковыми потоками, также как и течение сверхзвукового потока газа в различных соплах и насадках, обладает специфическими возможностями по сравнению с аналогичными течениями дозвуковых потоков газа.

Одна из этих особенностей состоит в том, что в ряде случаев основные параметры, характеризующие движение и состояние газа, а именно: давление, плотность, температура и скорость, не являются непрерывными функциями точек пространства, заполненного текущим газом. При торможении сверхзвукового потока возникают поверхности, на которых параметры газа меняются скачкообразно. Места такого изменения параметров, сопровождающиеся возрастанием давления, плотности, температуры и уменьшением скорости, называются скачками уплотнения.

Поверхности образующихся скачков могут быть как перпендикулярны к направлению скорости набегающего потока, так и неперпендикулярны к ней. В первом случае поток, пройдя скачок уплотнения, не меняет своего направления, и скачок называется прямым, а во втором случае поток газа меняет направление и скачок называется косым.

Существование скачков уплотнения связано C возникновением и развитием ударных волн. Представим себе теплоизолированную цилиндрическую трубу бесконечной длины, вдоль которой может перемещаться поршень. Труба заполнена неподвижным газом с параметрами р_а, T_a, ρ_{a} . Пусть в начальный момент времени $t_a = 0$ поршень начинает равномерно вдвигаться в трубу с постоянной скоростью и, меньшей скорости звука в невозмущенном газе, и сжимать впереди себя газ. Любое возмущение, в данном случае сжатие газа, передается в веществе с конечной скоростью и, поэтому впереди поршня образуется конечная область сжатого вещества.

За время *t* длина этой области станет равной $ut = c_0 t$. За это же время поршень переместится на расстояние *wt*.

Представим, что время *t* изменяется не непрерывно, а дискретно небольшими шагами по Δt . Первое возмущение давления распространяется в газе в обе стороны от поршня со скоростью звука в невозмущенном газе $c_0 = \sqrt{kRT_0}$. Последующее возмущение, передающееся от поршня позднее на величину Δt , будет распространяться по направлению движения поршня в газе, уже сжатом первой волной сжатия, с местной скоростью звука $c_1 = \sqrt{kRT_1}$. где $T_1 > T_0, c_1 > c_0$. Двигающаяся влево от поршня волна разрежения будет перемещаться по газу, уже охлажденному первой волной. Скорость звука в этом пространстве будет ниже начальной.

Распространение возмущений, создаваемых поршнем, можно рассматривать как совокупность непрерывно следующих друг за другом волн, причем каждая последующая волна перемещается по газу, возмущенному предыдущими волнами. Так как сжатие газа сопровождается его нагревом, а расширение — охлаждением, то скорость распространения

волн сжатия будет возрастать. последующая Кажлая волна будет перемещаться сжатия относительно невозмущенного газа несколько быстрее, чем предыдущая. Волны будут догонять друг складруга, дываться и образовывать одну обладающую конечной интенсивностью - волну сжатия. называемую ударной волной.

Каждая последующая волна разрежения будет перемещаться по более охлажденному газу медленнее,

Рис. 7.13. Формирование ударной волны а — положение фронта возмушений; б — положение поршня

чем предыдущая, волны разрежения будут отставать друг от друга. Отсюда следует, что в процессах, где нет подвода и отвода тепла, ударных волн разрежения и скачков разрежения не существует. Волны разрежения возникают при конденсации пара, а также во фронте горения, но там процесс связан с охлаждением или нагревом газа.

После того, как ударная волна сжатия сформировалась, образуется тонкий слой газа. на котором параметры (плотность. температура газа И скорость) меняются скачкообразно. Толщина слоя приблизительно равна длине свободного пробега молекул. В этом слое упорядоченное движение молекул за счет взаимных столкновений переходит в беспорядочное тепловое, что и приводит к разогреву слоя. Обычно толщиной слоя пренебрегают и считают, что изменение параметров происходит скачкообразно при пересечении поверхности фронта волны нулевой толщины.

Так как процесс сжатия газа происходит быстро, то можно пренебречь теплопроводностью газа и не учитывать передачу тепла от сжатого газа к несжатому.

Обозначим площадь сечения трубы через S. За время t от начала движения поршня объем возмущенного газа составит utS, a его масса будет равна $\rho_0 utS$. Но за счет движения поршня эта масса будет сосредоточена в объеме (u-w)tS. Так как объем газа уменьшился, то его плотность должна увеличиться до величины

$$\rho = \frac{\rho_0 v t S}{(u - w) S} = \rho_0 \frac{u}{u - w}.$$
 (7.31)

Сжатый газ движется со скоростью поршня *w*, которая меньше скорости распространения возмущения *v*. Согласно второму закону Ньютона произведение массы на изменение скорости равно импульсу силы, т.е. произведению силы на время ее действия. Обозначая давление в невозмущенном и сжатом газе как p0 и р соответственно, получим

$$\rho_0 ut Sw = (p - p_0) St \quad u_{\mathcal{I}} u \quad p - p_0 = \rho_0 uw . \tag{7.32}$$

Уравнения (7.31) и (7.32) образуют систему. Выразим из (7.1) скорость w и подставим в (7.32). Получим

$$\rho(u - w) = \rho_0 u$$
, $\rho u - \rho w = \rho_0 u$, $w = u \frac{\rho - \rho_0}{\rho}$.

$$p-p_0=\frac{\rho_0}{\rho}(\rho-\rho_0)u^2$$
,

откуда

$$u^2 = \frac{\rho}{\rho_0} \frac{p - p_0}{\rho - \rho_0}, \qquad (7.33)$$

$$w^{2} = u^{2} \frac{(\rho - \rho_{0})^{2}}{\rho^{2}} = \frac{(p - p_{0})(\rho - \rho_{0})}{\rho \rho_{0}} = (p - p_{0}) \left(\frac{1}{\rho_{0}} - \frac{1}{\rho}\right).$$
(7.34)

Если перейти от удельной плотности ρ к удельному объему $v = \frac{1}{\rho}$, то (7.33) и (7.34) можно представить в виде

$$u^{2} = \frac{\rho}{\rho_{0}} \frac{p - p_{0}}{\rho - \rho_{0}} = \frac{v_{0}}{v} \frac{p - p_{0}}{\frac{1}{v} - \frac{1}{v_{0}}} = \frac{v_{0}}{v} \frac{v}{\frac{v}{v} - \frac{v_{0}(p - p_{0})}{v_{0} - v}} = v_{0}^{2} \frac{p - p_{0}}{v_{0} - v}$$
(7.35)

$$w^{2} = (p - p_{0})(v_{0} - v)$$
(7.36)

Рассмотрим баланс энергии. Так как газ не отдает и не получает тепла, то изменение его полной энергии должно равняться произведенной над ним работе. Пусть E_0 – внутренняя энергия невозмущенного газа, Е – внутренняя энергия сжатого газа. Кинетическая энергия единицы массы сжатого газа равна $\frac{w^2}{2}$. Вся масса сжатого газа равна $\rho_0 utS$, полное изменение энергии газа при сжатии равно $\rho_0 utS\left(E + \frac{w^2}{2} - E_0\right)$. Внешняя работа поршня за то же время

t на пути wt равна pwtS. Отсюда получим

$$\rho_0 u \left(E + \frac{w^2}{2} - E_0 \right) = pw.$$
 (7.37)

Так как

$$w = u \frac{\rho - \rho_0}{\rho} = u \frac{\frac{1}{\nu} - \frac{1}{\nu_0}}{\frac{1}{\nu}} = u \frac{\nu_0 - \nu}{\nu_0}, \qquad (7.38)$$

то, заменяя в (7.37) плотность ρ_0 удельным объемом v_0 , величину w² выражением (7.36), получим

$$\frac{1}{v_0}\left(E - E_0 + \frac{(p - p_0)(v_0 - v)}{2}\right) = pu\frac{v_0 - v}{v_0},$$

$$E - E_0 = p(v_0 - v) - \frac{(p - p_0)(v_0 - v)}{2} = \frac{2pv_0 - 2pv - pv_0 + pv + p_0v_0 - p_0v}{2} = \frac{pv_0 - pv + p_0v_0 - p_0v}{2} = \frac{p(v_0 - v) + p_0(v_0 - v)}{2} = \frac{p + p_0}{2}(v_0 - v).$$
(7.39)

Внутренняя энергия связана с энтальпией соотношением h = E + pv. (7.40)

Тогда (7.39) можно представить в виде

$$E - E_0 = \frac{p + p_0}{2} (v_0 - v) = \frac{pv_0 + p_0v_0 - pv - p_0v}{2} = \frac{-2pv + 2p_0v_0}{2} + \frac{pv - p_0v_0 + pv_0 - p_0v}{2} = -pv + p_0v_0 + \frac{p(v + v_0) - p_0(v + v_0)}{2}.$$

откуда

$$(E+pv)-(E_0+p_0v_0)=\frac{v+v_0}{2}(p-p_0) \quad unu \quad h-h_0=\frac{v+v_0}{2}(p-p_0).$$
(7.41)

Энтальпия газа равна

$$h = c_p T = c_p \frac{pv}{R}.$$

Теплоемкость газа

$$c_p = \frac{k}{k-1}R.$$

Отсюда

$$h = \frac{k}{k-1} p v$$

Выражение (7.41) можно представить в виде

$$\frac{k}{k-1}(pv-p_0v_0)=\frac{v+v_0}{2}(p-p_0),$$

$$2kpv - 2kp_0v_0 = (k-1)(pv + pv_0 - p_0v - p_0v_0).$$

$$2kpv - 2kp_0v_0 = kpv + kpv_0 - kp_0v - kp_0v_0 - pv - pv_0 + p_0v + p_0v_0.$$

$$kpv + kp_0v + pv - p_0v = kp_0v_0 + kpv_0 - pv_0 + p_0v_0,$$

$$v(kp + kp_0 + p - p_0) = v_0(kp_0 + kp - p + p_0),$$

$$v[(k+1)p + (k-1)p_0] = v_0[(k-1)p + (k+1)p_0].$$

Отсюда получим

$$v = v_0 \frac{(k-1)p + (k+1)p_0}{(k+1)p + (k-1)p_0}.$$
(7.42)

Можно выразить зависимость изменения параметров газа в ударной волне через плотность и давление

$$\rho = \rho_0 \frac{(k+1)p + (k-1)p_0}{(k-1)p + (k+1)p_0}$$
(7.43)

или

$$\frac{\rho}{\rho_0} = \frac{\frac{k+1}{k-1}\frac{p}{p_0}}{\frac{p}{p_0} + \frac{k+1}{k-1}} = \frac{\frac{k+1}{k-1} + \frac{p_0}{p}}{\frac{1}{1+\frac{k+1}{k-1}\frac{p_0}{p}}}.$$
(7.44)

Часто используют зависимость давления от плотности в виде

$$\frac{p}{p_0} = \frac{(k+1)\rho - (k-1)\rho_0}{(k+1)\rho_0 - (k-1)\rho} = \frac{\frac{k+1}{k-1}\rho}{\frac{k+1}{k-1}-\frac{\rho}{\rho_0}}.$$
(7.45)

Если, пользуясь уравнением состояния, заменить в (7.44) отношение плотностей отношением температур, то получим

$$\frac{T}{T_0} = \frac{(k-1)\binom{p}{p_0}^2 + (k+1)\frac{p}{p_0}}{(k+1)\frac{p}{p_0} + (k-1)},$$
(7.46)

$$\frac{T}{T_0} = \frac{(k+1)\frac{\rho}{\rho_0} - (k-1)}{(k+1)\frac{\rho}{\rho_0} - (k-1)\left(\frac{\rho}{\rho_0}\right)^2}.$$
 (7.47)

Уравнения (7.43) — (7.47) представляют различный вид одной зависимости, связывающей параметры до и после скачка уплотнения. Эти уравнения называются уравнением

Гюгонио. Процесс сжатия в ударной волне происходит быстротечно без теплообмена с окружающей средой, поэтому он является адиабатическим.

При адиабатическом течении газа без скачков уплотнения изменения параметров описываются адиабатой Пуассона

Рис. 7.13. Изменение плотности и давления при сжатии газа 1 – по адиабате Пуассона; 2 – по адиабате Гюгонио

На рис. 7.13 и рис. 7.14 представлены зависимости изменения давления и температуры при изменении плотности газа по адиабате Пуассона и адиабате Гюгонио. Из рисунков видно, что при ударном сжатии по адиабате Гюгонио, которую также называют ударной адиабатой, происходит более интенсивное сжатие газа и более интенсивный нагрев. Это связано с тем, что процесс сжатия в скачке уплотнения не является обратимым. В скачке давления происходит переход механической энергии в тепловую и рост энтропии различием Вторым существенным протекания потока. процессов является то, что при изоэнтропическом сжатии по адиабате Пуассона процесс протекает точно по приведенным кривым, изменение давления и температуры полностью соответствуют точкам на кривых.

Важнейшие научные работы Гюгонио относятся к области газовой динамики, одним из основоположников которой наряду с К. Доплером, Г. Риманом, Э. Махом и У. Дж. Ранкином - он считается.

В частности, заслугой Гюгонио является получение правильных условий на поверхности разрыва (то есть соотношений, связывающих скачки физических величин при переходе через данную поверхность) — весьма важных для газовой динамики соотношений, характеризующих ударные волны.

ПЬЕР-АНРИ ГЮГОНИО (1851–1887)

При сжатии в скачке уплотнения адиабата Гюгонио дает только совокупность всех возможных значений конечных состояний параметров газа при начальных p_0 и ρ_0 . Если разделить процесс сжатия на два этапа: сначала с p_0 до p_1 , а затем с p_1 до p_2 , то получим состояние газа, отличное от того, если бы от давления p_0 перешли одним скачком до p_2 . Этот факт еще раз свидетельствует о том, что изменение параметров в скачке уплотнения зависит от пути протекания процесса и является необратимым.

Третьей существенной особенностью ударной адиабаты является то, что при неограниченном возрастании давления в скачке уплотнения увеличение плотности газа имеет определенный предел.

Из (7.44) следует, что при $\frac{p}{\rho_0} \to \infty$. т.е. при $\frac{p_0}{p} \to 0$ $\left(\frac{\rho}{\rho_0}\right)_{max} = \frac{k+1}{k-1}$. (7.50)

Для воздуха при k =1,4 $\left(\frac{\rho}{\rho_0}\right)_{max} = 6$.

7.9. ПРЯМОЙ СКАЧОК УПЛОТНЕНИЯ

Многочисленные опыты показывают. что переход происходит сверхзвукового течения В дозвуковое Простейшим примером скачкообразно. прерывного уплотнения прямой установившийся является скачок рассмотренный уплотнения. впервые Стодолой И лля идеального газа объясненный Риманом.

Представим себе бесконечную цилиндрическую теплоизолированную трубу, вдоль которой перемешается поршень. Рассмотрим процесс движения ударной волны, когда скачок уплотнения уже сформировался. Допустим, это произошло, как показано на рис. 7.15, в момент времени *t* на расстоянии от поршня *x*. Скорость движения поршня

Рис. 7.15. Движение ударной волны.

w, скорость распространения ударной волны *u*.

Пусть за бесконечно малый промежуток времени *dt* фронт волны переместился из сечения 1 в сечение 0. Это означает, что в области 1-0 должно наблюдаться увеличение плотности газа на величину $\Delta \rho = \rho - \rho_0$. Однако это может произойти только в том случае, если из объема 2-1 в объем 1-0 перетечет некоторое количество газа

$$\Delta G = (\rho - \rho_0) S \, dx \,. \tag{7.51}$$

Таким образом, при распространении сильной волны сжатия газ позади волны должен двигаться в том же направлении, что и волна.

Из уравнения неразрывности следует

$$\Delta G = w \rho S d\tau \tag{7.52}$$

откуда с учетом (7.52)

$$w = \frac{\rho - \rho_0}{\rho} \frac{dx}{d\tau}$$
(7.53)

Но производная пути по времени есть скорость движения волны

$$u = \frac{dx}{d\tau}.$$
 (7.54)

Отсюда имеем

$$u = \frac{\rho - \rho_0}{\rho} w \tag{7.55}$$

Применяя к области 1-0 уравнение количества движения, получим

$$(p-p_0)S\,d\tau=
ho_0S\,(w-0)dx$$
.

Отсюда скорость движения волны сжатия

$$u = \frac{dx}{d\tau} = \frac{p - p_0}{\rho_0 w} \,. \tag{7.56}$$

Подставляя (7.53) в (7.56), имеем

$$u = \frac{p - p_0}{\rho_0 u(\rho - \rho_0)} \rho \quad u \pi u = \sqrt{\frac{p - p_0}{\rho - \rho_0}} \frac{\rho}{\rho_0}.$$
(7.57)

В случае слабой волны при малом изменении давления и плотности, когда $p \approx p_0$. $\rho \approx \rho_0$

$$\frac{p-p_0}{\rho-\rho_0}\approx\frac{dp}{d\rho}, \quad u\approx\sqrt{\frac{dp}{d\rho}}=c.$$

Отсюда видно, что слабая волна перемещается со скоростью звука. Так как при сильной волне сжатия $\frac{\rho}{\rho_0} > 1$, то сильная волна перемещается быстрее скорости звука в невозмущенной среде приблизительно на величину $\sqrt{\frac{\rho}{\rho_0}}$.

Подставляя (7.57) в (7.53), найдем скорость движения газа за ударной волной

$$u = \sqrt{\frac{p - p_0}{\rho - \rho_0}} \frac{\rho}{\rho_0} = \frac{\rho}{\rho - \rho_0} w,$$

$$w = \sqrt{\frac{(p - p_0)(\rho - \rho_0)}{\rho \rho_0}}.$$
 (7.58)

Вследствие истечения газа из области 2-1 в область 1-0 давление в области 2-1 со временем убывает. Это приводит к тому, что ударная волна, возникшая в неподвижном газе из-за единичного движения поршня или взрыва, всегда затухает. Незатухающая ударная волна существует только в том случае, когда источник возмущения не прекращает своего действия. Например, при движении в газе твердого тела со сверхзвуковой скоростью или при обтекании тела сверхзвуковым потоком перед телом образуется ударная волна постоянной интенсивности.

Движение газа в трубе является нестационарным, так как ударная волна, перемещаясь вдоль трубы, изменяет поле скоростей во времени. Рассмотрим, как показано на рис. 7.16, систему координат, двигающуюся вместе с ударной волной.

B этой системе координат фронт ударной волны будет неполвижен. И лвижение стационарным. газа станет будет Невозмущенный газ ударной полходить к фронту волны справа со сверхзвуковой $w_1 = - u$. После скоростью фронта скорость прохождения газа составит $w_2 = w - u$.

Примем, что площадь сечения струи газа S=1. Из уравнения неразрывности следует

$$\rho_1 w_1 = \rho_2 w_2$$

Изменение количества движения равно величине импульса, действующего на тело. Для единицы времени

$$p_1 + (\rho_1 w_1) w_1 = p_2 + (\rho_2 w_2) w_2 \quad \text{ИЛИ}$$
$$p_2 - p_1 = \rho_1 w_1^2 - \rho_2 w_2^2 = \rho_1 w_1 (w_1 - w_2) = \rho_2 w_2 (w_1 - w_2).$$

Это выражение можно представить в виде

$$w_1 - w_2 = \frac{p_2}{\rho_2 w_2} - \frac{p_1}{\rho_1 w_1}.$$
 (7.59)

Энтальпия потока определяется выражением

$$h = c_p T = \frac{k}{k-1} RT = \frac{c^2}{k-1}$$
(7.60)

Здесь *с* – скорость звука при температуре потока Т. Для идеального газа энтальпию можно представить также в виде

$$h = c_p T = \frac{k}{k-1} R \frac{p}{\rho R} = \frac{k}{k-1} \frac{p}{\rho}.$$
 (7.61)

Для заторможенного потока

$$h_0 = \frac{c_0^2}{k-1}.$$

Так как скорость звука в критическом сечении сопла Лаваля

$$c_* = \sqrt{\frac{2}{k+1}}c_0,$$

то

$$h_0 = \frac{k+1}{2(k-1)}c_*^2.$$

Уравнение Бернулли для газового потока имеет вид

$$h_0 = h + \frac{w^2}{2} u \pi u \quad h = h_0 - \frac{w^2}{2}.$$

При пересечении потока газа фронта ударной волны в скачке уплотнения происходят необратимые потери энергии, которая рассеивается в виде тепловой энергии. Однако при этом энтальпия газового потока остается неизменной, поэтому также не меняются и температура торможения T_{ρ} , скорости звука в заторможенном и критическом состоянии c_{ρ} , c^* и температура газа в критическом состоянии T^* .

Запишем уравнение Бернулли для областей до и после скачка уплотнения:

$$h_{\rm l} = h_0 - \frac{w_{\rm l}^2}{2}, \quad \frac{k}{k-1} \frac{p_{\rm l}}{\rho_{\rm l}} = \frac{k+1}{2(k-1)} c_*^2 - \frac{w_{\rm l}^2}{2}.$$
 (7.62)

$$h_2 = h_0 - \frac{w_2^2}{2}, \quad \frac{k}{k-1} \frac{p_2}{\rho_2} = \frac{k+1}{2(k-1)} c_*^2 - \frac{w_2^2}{2}.$$
 (7.63)

Отсюда

$$\frac{p_1}{\rho_1} = \frac{k+1}{2k}c_*^2 - \frac{k-1}{2k}w_1^2, \qquad (7.64)$$

$$\frac{p_2}{\rho_2} = \frac{k+1}{2k}c_*^2 - \frac{k-1}{2k}w_2^2.$$
(7.65)

Далее получим

$$\frac{k+1}{2k}(w_1 - w_2)\left(1 - \frac{c_*^2}{w_1w_2}\right) = 0.$$

Отсюда следует, что $\left(1 - \frac{c_*^2}{w_1w_2}\right) = 0$ ИЛИ
 $w_1w_2 = c_*^2.$ (7.66)

Это выражение, полученное Прандтлем, можно представить в безразмерном виде

$$\lambda_1 \lambda_2 = 1. \tag{7.67}$$

Отсюда видно, что при сверхзвуковой скорости до скачка ($\lambda_1 > 1$) поток после скачка уплотнения становится дозвуковым ($\lambda_2 < 1$).

Можно показать, что изменение полного давления в потоке газа, учитывающее волновое сопротивление, определяется выражением

$$\sigma_{12} = \frac{p_{0,2}}{p_{0,1}} = \lambda_1^2 \left(\frac{1 - \frac{k-1}{k+1} \lambda_1^2}{1 - \frac{k-1}{k+1} \lambda_1^2} \right)^{\frac{1}{k-1}}.$$
(7.68)

График этой зависимости для воздуха показан на рис. 7.17.

Рис. 7.17. Потеря давления в прямом скачке уплотнения

7.10. КОСОЙ СКАЧОК УПЛОТНЕНИЯ

Характерной особенностью прямого скачка уплотнения является то, что, пересекая фронт ударной волны, поток газа не меняет своего направления. При этом фронт волны перпендикулярен направлению скорости газа. Косые скачки уплотнения образуются в том случае, когда фронт волны располагается под некоторым углом к направлению потока. Эта ситуация показана на рис. 7.18.

Пусть поток газа подходит к плоскости скачка со скоростью w_l под углом a<90°. Нормальная составляющая скорости $w_{ln} = w_l sin\alpha$, перпендикулярная фронту волны, скачком снижается до величины w_{2n} . Тангенциальная составляющая скорости $w_{lt} = w_l cos\alpha$, параллельная фронту волны, остается неизменной $w_{2t} = w_{lr}$. Вследствие того, что полная скорость газового потока $w_2 = \sqrt{w_{2n}^2 + w_{2t}^2} < w_1$, поток поворачивается относительно первоначального направления на угол ω .

Рис. 7.18. Схема косого скачка уплотнения

Можно считать, что косой скачок уплотнения сводится к прямому скачку, который сносится вместе с потоком газа вбок во скоростью *w_r*. В отличие от прямого скачка в косом скачке наблюдается скачкообразное изменение не всей скорости, а только нормальной составляющей.

Для расчета косого скачка вводится понятие температуры частичного торможения, понимая под этим температуру, которую имел бы поток при адиабатическом торможении только нормальной составляющей и неизменной касательно составляющей

$$T_{0n} = T_1 + \frac{w_{1n}^2}{2c_p} = T_2 + \frac{w_{2n}^2}{2c_p} = T_0 - \frac{w_t^2}{2c_p}$$
(7.69)

В соответствии с (7.69) вводится также понятие условной критической скорости, соответствующей температуре частичного торможения:

$$a_{\kappa pn}^2 = \frac{2k}{k+1} R T_{0n}.$$
 (7.70)

Формула Прандтля для косого скачка имеет вид

$$w_{1n}w_{2n} = a_{\kappa p \, n}^2 \tag{7.71}$$

Полная критическая скорость связана с условной критической скоростью соотношением

$$a_{\kappa p}^{2} = \frac{2k}{k+1} RT_{0} = a_{\kappa p \, n}^{2} + \frac{k-1}{k+1} w_{t}^{2} \,. \tag{7.72}$$

Выражение (7.71) можно представить также в виде

$$w_{1n}w_{2n} + \frac{k-1}{k+1}w_t^2 = a_{\kappa p}^2 .$$
 (7.73)

Для расчета косых скачков используются приведенные скорости газа в виде

$$\lambda_{1n} = \frac{w_{1n}}{a_{\kappa p n}}; \quad \lambda_{2n} = \frac{w_{2n}}{a_{\kappa p n}}.$$
 (7.74)

Пользуясь этими величинами, можно получить из (7.70) соотношение

$$\lambda_{1n}\lambda_{2n} = 1. \tag{7.75}$$

Изменение статического и полного давлений в косом скачке уплотнения находятся по формулам

$$\frac{p_2}{p_1} = \frac{\lambda_{1n}^2 - \frac{k-1}{k+1}}{1 - \frac{k-1}{k+1}\lambda_{1n}^2},$$
(7.76)

$$\sigma_{12} = \frac{p_{0,2}}{p_{0,1}} = \lambda_{1n}^2 \left(\frac{1 - \frac{k-1}{k+1} \lambda_{1n}^2}{1 - \frac{k-1}{k+1} \lambda_{1n}^2} \right)^{\frac{1}{k-1}}.$$
 (7.77)

Так как всегда $\lambda_{1n} < \lambda_1$, то при одной и той же скорости косой скачок слабее прямого. набегающего потока Интенсивность косого скачка уплотнения изменяется с изменением угла наклона его фронта к направлению набегающего потока. В предельном случае, когда косой скачок переходит в прямой, увеличение давления получается максимальным. В другом предельном случае, когда угол направлению потока определяется наклона скачка К условием

$$\sin \alpha_0 = \frac{1}{M_1} = \frac{c}{w_1},$$
 (7.78)

косой скачок вырождается в бесконечно слабую волну.

7.11. СВЕРХЗВУКОВОЕ ТЕЧЕНИЕ ПРАНДТЛЯ-МАЙЕРА

Рассмотрим простейший случай, когда сверхзвуковой поток движется равномерно и параллельно плоской поверхности с постоянной скоростью. Если поток не встречает никаких препятствий в виде твердых тел или стенок, то со стороны поверхности газ не испытывает никаких возмущений.

Если бы в некоторой точке *A* на поверхности, как показано на рис. 7.19, возникло бы некоторое малое препятствие, то оно вызвало бы слабое возмущение равномерного потока.

Такое возмущение распространилось бы в сверхзвуковом потоке по прямой линии, называемой характеристикой.

Угол наклона линии к направлению движения определяется из условия

$$\sin \alpha_0 = \frac{1}{M_1} = \frac{c}{w_1}$$

Рассмотрим процесс обтекания тупого угла. как показано на рис. 7.20 Пусть некоторой точке В C стенка поворачивает. образуя с первоначальным направлением угол б. Угловая точка С служит препятствием, которое является источником слабых возникновения возмущений. Эти возмущения

Рис. 7.19 Равномерный поток газа над плоской стенкой

Рис. 7.20. Поворот сверхзвукового потока при обтекании тупого угла

распространяются в равномерном потоке газа по прямой линии (по характеристике *СК*), которая отделяет невозмущенный поток от возмущенного. Вдоль участка стенки *СВ* скорость газа принимает снова постоянное значение скорости. Так как площадь сечения для прохода газа увеличивается, то в сверхзвуковом потоке это приводит к увеличению скорости движения газа.

Полный поворот потока закончится на характеристике CL, при этом скорость газа $w_2 > w_1$ будет направлена вдоль

плоскости *CB*. Таким образом, поворот потока к новому направлению происходит внутри угла *KCL* между двумя прямолинейными характеристиками. Обозначим этот угол через φ . Для большей наглядности разобьем участок непрерывного расширения газа внутри угла *KCL* на большое число участков с незначительными, но прерывными изменениями параметров.

Первый малый скачок скорости и давления произойдет на плоскости, проходящей через прямую *СК*. Так как давление на этой характеристике падает, то касательная составляющая скорости остается неизменной, а нормальная составляющая увеличивается. В результате этого полная скорость потока увеличивается, и он поворачивается в сторону тупого угла. В плоскости *СК* происходит слабый скачок разрежения, уменьшается плотность газа и увеличивается его скорость.

Возмущения, распространяющиеся из области более низких давлений, ограничены новой характеристикой *СК*, левее которой никакие возмущения не проходят, поэтому на линии *СК* также параметры газа, т.е. давление, скорость и температура остаются также неизменными.

Второй скачок разрежения на линии СК приводит к дальнейшему увеличению скорости и повороту потока. Подобные скачки будут повторяться до тех пор, пока струйка, прилегающая к стенке СВ, не станет параллельной направлению стенки СВ. Характеристика потока, на закончится изменение параметров газа. будет которой CLпредельных соответствовать линии Положение характеристик определяется углами α_{4C} и α_{CB} :

$$sin\alpha_0 = \frac{1}{M_1} = \frac{c}{w_1},$$
$$sin\alpha_0 = \frac{1}{M_1} = \frac{c}{w_1}.$$

Конечные алиабатические разрежения скачки невозможны, и представленная выше картина образования скачков разрежения обусловлена лишь применением модели дискретного изменения параметров. В действительности же обтекание тупого угла представляет собой процесс непрерывного ускорения и поворота потока. Представленная выше дискретная модель позволяет показать, что в секторе от характеристики СК до характеристики CL на луче, проведенном из точки С параметры потока сохраняются неизменными. Точка С является особой точкой, так как в этой точке сходятся лучи, на каждом из которых значения скорости, давления, плотности и температуры газа постоянны. Эти постоянные значения параметров различны для различных лучей. Дискретная модель переходит в модель непрерывного изменения параметров, если взять бесконечно большое количество скачков и соответствующих им бесконечно большое количество характеристик, на которых поток поворачивается на бесконечно малый угол.

Величина угла поворота характеристики потока ϕ зависит как от величины угла δ , так и от приведенной скорости λ_1 . Начальный угол поворота характеристики, отсчитываемый от перпендикуляра к плоскости *AC*, определяется выражением

$$\varphi_{1} = \sqrt{\frac{k+1}{k-1}} \arcsin \sqrt{\frac{k-1}{2}} \left(\lambda_{1}^{2} - 1\right).$$
(7.79)

График этой зависимости показан на рис. 7.21. Так как приведенная скорость потока не может быть выше максимальной

$$\lambda_{max} = \sqrt{\frac{k+1}{k-1}} ,$$

то и наклон характеристики также ограничен величиной

$$\varphi_{max} = \sqrt{\frac{k+1}{k-1}} \frac{\pi}{2}.$$
 (7.80)

Точный расчет параметров газа после обтекания тупого угла достаточно трудоемок, поэтому часто пользуются приближенными формулами.

Рис. 7.21. Зависимость угла наклона характеристики от приведенной скорости невозмущенного потока

Для воздуха можно использовать зависимость, связывающую скорость невозмущенного потока и угол его поворота б со скоростью газа за поворотом

$$\delta = 7.6 \left(\lambda_2^3 - \lambda_1^3 \right), \tag{7.81}$$

откуда

$$\lambda_2 = \sqrt[3]{\lambda_1^3 + \frac{\delta}{7.6}} \,. \tag{7.82}$$

Следует иметь в виду, что угол δ должен быть представлен в радианах. Угол наклона характеристики *CL* к плоскости *CB* определяется величиной λ_2 . Параметры потока рассчитываются по газодинамическим функциям в зависимости от параметров полного торможения и величины λ_2 .

7.12. ОБТЕКАНИЕ ПЛОСКОЙ СТЕНКИ

Пусть сверхзвуковой поток движется с некоторой скоростью w_1 над плоской неподвижной стенкой. В точке C, как показано на рис. 7.22, стенка обрывается, причем

давление в пространстве за точкой *С* меньше, чем давление в невозмущенном потоке вдоль стенки.

С яв-Злесь также точка BO3MVляется источником Поток. обтекая точшений поворачивается KV С. на некоторый угол δ . Скорость потока увеличится, а давление снизится до p_2 , существующего в пространстве за точкой С. Картина течения при этом аналогична обтеканию тупого

Рис. 7.22. Схема сверхзвукового обтекания

угла. Различие состоит лишь в том, что при обтекании тупого угла величина δ задана конструктивно, а при обтекании пластины задается конечное давление p_2 , которое и определяет величину δ . Для расчета процесса можно по газодинамическим функциям в зависимости от p_2 можно найти значение λ_2 , а затем по (7.82) определить угол поворота потока δ .

7.13. ОБТЕКАНИЕ ВЫПУКЛОЙ КРИВОЛИНЕЙНОЙ СТЕНКИ

Расчет формирования параметров потока при обтекании криволинейной стенки произвольной формы значительно сложнее. Однако и здесь, как при обтекании тупого угла, через каждую точку криволинейной поверхности можно провести луч, на котором будут сохраняться неизменными параметры потока. Расчет осложняется тем, что таких точек бесчисленное множество, и они распределены по всей криволинейной поверхности. Для расчета течений в таких каналах кривая поверхность заменяется ломаной, имеющей достаточно большое, но ограниченное количество тупых углов. Подобная аппроксимация показана на рис. 7.23.

Нахождение линий тока вдоль криволинейной поверхности в аналитическом виде является очень сложной и не всегда решаемой задачей. Как правило, подобные
течения рассчитываются численными методами, используя многократные последовательные приближения.

Рис. 7.23. Криволинейная поверхность а) и ее расчетная схема б)

7.14. ИСТЕЧЕНИЕ ИЗ ПЛОСКОГО СОПЛА С КОСЫМ СРЕЗОМ

Рассмотрим движение сверхзвукового газа из плоского сопла в пространство с меньшим давлением. Если плоскость среза сопла перпендикулярна направлению потока, как показано на рис. 7.24а, то поведение газа вблизи кромок A и B полностью совпадает с обтеканием плоской стенки. Такое сопло является соплом с прямым срезом. Около каждой кромки поток повернется на угол δ , обеспечивающий совпадение давлений в потоке и окружающей среде.

Рис. 7.24. Схемы истечения из сопла с косым срезом

Пучки прямолинейных характеристик, исходящих из точек *А* и *B*, пересекаются в центре струи, после чего их прямолинейность нарушается.

Сопло с косым срезом имеет плоскость среза сопла, которая не перпендикулярна к направлению потока. В таком сопле нарушается симметрия потока, причем отклонение от симметрии зависит от конструктивных особенностей сопла.

При небольшом смещении кромки *B*, как показано на рис. 7.256, область пересечения характеристик смещается к кромке *A*, при этом углы расширения потока δ сохраняются. Прямолинейные характеристики, выходящие из точки *A*, начинают искривляться раньше.

Предельным положением точки *B*, при котором остаются неизменными начальные углы поворота, является такое ее положение, при котором первая характеристика, проведенная из точки *B*, касается точки *A*. Конструкция такого сопла показана на рис. 7.18в. В этом положении нарушается симметричное раскрытие струи.

Если переместить точку В еще дальше назад, как показано на рис. 7.18 г, то характеристики, проведенные из точки *B*, попадут на противоположную стенку сопла. Это приведет к изменению скорости потока в окрестности точки *A*. Расчет течения в этой части сопла и результаты экспериментов показывают, что в этом случае поток расширяется более интенсивно и поворачивается в сторону скоса. При этом скорость истечения газа увеличивается по сравнению с режимом истечения из сопла с прямым срезом. Этот эффект используется при конструировании сопел и рабочих лопаток паровых и газовых турбин.

7.15. ДВИЖЕНИЕ ГАЗА В СОПЛАХ

Соплом называется канал переменного по длине поперечного сечения, предназначенный для разгона жидкостей или газов до заданной скорости и придания потоку заданного направления. Поперечное сечение сопла может быть прямоугольным, круглым, иметь форму кольца с внутренним непроницаемым телом, или произвольную форму, в т. ч. форму эллипса или многоугольника.

Сопла широко используются в технике: В паровых. водяных и газовых турбинах, в ракетных и воздушнореактивных двигателях, в других различных технологических установках. В соплах происходит непрерывное увеличение скорости w жидкости или газа в направлении течения - от начального (обычно малого) значения w₀ во входном сечении до наибольшей скорости wc на выходе сопла. При движении жидкости по соплу внутренняя энергия рабочего тела преобразуется в кинетическую энергию вытекающей струи. сила реакции которой, направленная противоположно истечения, называется В скорости тягой. силу закона сохранения энергии одновременно с ростом скорости в сопле происходит непрерывное падение давления и температуры от их начальных значений р_о, T_о во входном сечении до наименьших значений p_c , T_c в выходном сечении сопла.

Изменение скорости вдоль сопла определяется законом изменения площади *S(x)* по длине сопла. Контур сопла, т.е. вид функции S(x) в одномерном приближении, определить нельзя. Поэтому развита теория двумерных (плоских и осесимметричных) и трехмерных (пространственных) в соплах, основанная течений решении на основных лифференциальных уравнений газовой линамики С соответствующими граничными и начальными условиями.

В теории сопел решаются две задачи: прямая определение течения в сопле, контур которого задан, и обратная — определение контура сопла, обладающего какими-либо заданными свойствами. Например, в паровых и газовых турбинах сопла должны обеспечить создание на входе в рабочие лопатки потока газа с заданной скоростью, а контур сопла ракетных и воздушно-реактивных двигателей определяют так, чтобы получить максимальный импульс потока на выходе сопла, т.е. максимальную тягу при заданных ограничениях массы и габаритов.

Теория сопел рассматривает течение реального рабочего тела и учитывает трение, теплообмен рабочего тела со стенками сопла, наличие в газовом потоке жидких и твердых частиц, неравновесных химических реакций и физических процессов. Все эти процессы, связанные с отличием рабочего тела от идеального газа, приводят к возникновению различного вида потерь в соплах, уменьшающих тягу двигателей или кпд турбин.

7.16. СУЖАЮЩИЕСЯ СОПЛА

Для реализации течения в соплах необходим некоторый перепаддавления, т. е. выполнение условия $p_0 > p_c$. В зависимости от относительной величины перепада, т.е. от отношения $\frac{p_c}{p_0}$ на выходе из сопла скорость газа может быть меньше или больше скорости звука. Для получения сверхзвукового потока необходимо, чтобы выполнялось условие

$$\frac{p_c}{p_0} < \pi(1) = \frac{p_*}{p_0} \tag{7.83}$$

Для воздуха $\pi(1)=0,528$, для перегретого пара $\pi(1)=0,540$. При меньшем перепаде давления, т.е. при $\frac{P_c}{P_0} > \pi(1)$ возможен только дозвуковой поток. Для таких режимов применяются сужающиеся сопла, у которых площадь сечения S(x)уменьшается по длине сопла, т.е. $\frac{dS(x)}{dx} < 0$.

В дальнейшем будем рассматривать только прямые задачи, в которых необходимо рассчитать течение газа в сопле или выбрать его характерные размеры для обеспечения требуемого расхода газа, считая общий вид контура сопла заданным. При отсутствии потерь на трение скорость газа на выходе из сужающегося сопла однозначно определяется параметрами торможения газа перед соплом p_0 , T_0 и давлением газа за соплом рс. Поэтому расчет сводится к определению площади выходного сечения сопла S_c для обеспечения требуемого расхода газа G_c .

Из уравнения неразрывности, которое справедливо для любого сечения сопла,

$$G = \rho w S = \rho \lambda c * S \tag{7.84}$$

следует, что площадь сечения сопла S равна

$$S = \frac{G}{\rho\lambda c_*}.$$
 (7.85)

Давление торможения потока p_0 и давление за соплом p_c связаны с приведенной скоростью потока на выходе из

сопла соотношением
$$\frac{p_c}{p_0} = \left(1 - \frac{k - 1}{k + 1}\lambda^2\right)^{k - 1}, \text{ откуда}$$
$$\lambda = \sqrt{\frac{k + 1}{k - 1} \left[1 - \left(\frac{p_c}{p_0}\right)^{k - 1}\right]}.$$
(7.86)

Для изоэнтропного адиабатического течения плотность газа за соплом будет равна

$$\rho = \rho_0 \left(\frac{p_c}{p_0}\right)^k. \tag{7.87}$$

Скорость звука в критическом сечении -

$$c_* = \sqrt{\frac{2k}{k+1}} RT_0 = \sqrt{\frac{2k}{k+1}} \frac{p_0}{\rho_0} \,. \tag{7.88}$$

1

Расчет сопла производится в следующей последовательности. Сначала находится отношение $\frac{p_c}{p_0}$,

затем проверяется условие (7.83). Если давление за соплом ниже критического, то принимается $p_c = p_*$. Далее по (7.86) находится приведенная скорость газа на выходе из сопла λ_c , по (7.87) рассчитывается плотность газа на выходе из сопла, по (7.88) находится критическая скорость газа и вычисляется площадь выходного сечения сопла.

Газодинамические функции позволяют упростить расчет сопел. Сначала вычисляется значение газодинамической функции давления

$$\pi(\lambda_c) = \frac{p_c}{p_0} \tag{7.89}$$

и проверяется выполнение условия

$$\pi(\lambda_c) \ge \pi(1). \tag{7.90}$$

Если это условие не выполняется, то принимается

$$\pi(\lambda_c) \ge \pi(1), \ \lambda_c = 1.$$

Далее по таблицам газодинамических функций по величине $\pi(\lambda_c)$ находится значение приведенной скорости λ_c и значение функций $\epsilon(\lambda_c)$, $\epsilon(\lambda_c)$ и $q(\lambda_c)$. Затем по (7.88) рассчитывается скорость звука в критическом сечении с_{*}. Так как площадь критического сечения сопла равна

$$S_* = \frac{G}{c_*\rho_*} = \frac{G}{c_*\rho_0\varepsilon(1)},$$
(7.91)

при этом

$$q(\lambda) = \frac{\rho w}{\rho_{*C*}} = \frac{S_*}{S},$$

то площадь выходного сечения сопла находится по формуле

$$S = \frac{G}{c * \rho_0 \varepsilon(1) q(\lambda_c)}.$$
(7.92)

При снижении давления за соплом p_c и сохранении давления p_0 приведенное давление $\pi(\lambda)$ снижается, скорость на выходе из сопла λ_c увеличивается и возрастает расход газа G. Эта тенденция продолжается до тех пор, пока скорость газа на выходе из сопла не достигнет скорости звука. После этого на выходе из сопла устанавливается давление p_* , соответствующее критическому режиму, и дальнейшее снижение давления за соплом перестает оказывать влияние на режим истечения из сопла. Происходит так называемое запирание сопла.

При сверхкритических перепадах давлений дальнейшее расширение потока происходит в струе за соплом. Наблюдается следующая картина, показанная на рис. 7.26.

Рис. 7.26. Расширение потока газа за соплом при небольшом сверхкритическом перепаде давлений

Кромка выходного сечеявляется источником ния возмушения лля ЗВУКОВОГО потока. За выходным сечением струи струя с давлением р* встречает давление среды ра, которое меньше критического. По контуру АА₁ давление меняется от *p*_{*} до *p_a*. Волны

разрежения проходят по линиям AB и AB₁, A₁B₁ и A₁B. Так как эти волны пересекаются, то линии разрежения искривляются.

В конусе ACA₁ поток настолько интенсивно расширяется, что давление в точке C становится меньше давления среды p_a . Линии AB и A₁B₁, разделяющие поверхности газовой струи и неподвижной среды, сначала расширяются, а затем начинают сужаться. В конусе BCB₁ происходит сжатие газового потока до давления p^* . Затем процесс повторяется, давление в струе меняется по некоторому периодическому закону, близкому к синусоидальному.

Вследствие вязкости газа, которая не учитывается в модели идеальной жидкости, к струе подсасывается газ из окружающей среды, струя расширяется, конусы разрежения и сжатия становятся менее интенсивными, колебательный процесс затухает и на некотором расстоянии от сопла в струе газа устанавливается давление p_a . За счет потерь на трение полное давление газового потока снижается.

При увеличении давления перед соплом или снижении давления за соплом структура потока перестраивается. Углы волн AB_1 и A_1B уменьшаются, клинья ACA_1 и BCB_1 растягиваются, расстояние между сечениями AA_1 и BB_1 увеличивается. Такая перестройка продолжается до определенного предела. Начиная с некоторого предельного отношения давлений газа до и после сопла, структура потока существенно меняется, как показано на рис. 7.27.

Из-за интенсивного уменьшения давления газа в пределах конуса разрежения в ядре поток разгоняется до сверхзвуковой скорости, который тормозится в прямом скачке уплотнения CC₁ и криволинейных скачках CB и C₁B₁.

При пересечении прямого скачка СС₁ поток становится

Рис. 7.27. Расширение потока газа за соплом при значительном сверхкритическом перепаде

дозвуковым, а давление возрастает до $p_1 > p_a$. При переходе через скачки CB и C₁B₁ скорости остаются сверхзвуковыми. В результате взаимодействия с внешним сверхзвуковым потоком дозвуковое ядро ускоряется, его сечение уменьшается до минимального значения DD₁, в котором достигается скорость звука.

7.17. РЕЖИМЫ ТЕЧЕНИЯ В СОПЛЕ ЛАВАЛЯ

При сверхкритических перепадах, когда $\frac{P_a}{p_0} < \pi(1)$, возможно получение сверхзвукового потока. Для этой цели используются *сопла Лаваля*, состоящие из сужающейся части, где газовый поток ускоряется до скорости звука, и расширяющейся части, где происходит дальнейшее ускорение уже сверхзвукового потока. Определяющим параметром сопла Лаваля является площадь критического сечения, в котором достигается скорость звука. Эта площадь находится по формуле

$$S_* = \frac{G}{c_* \rho_*} = \frac{G}{c_* \rho_0 \varepsilon(1)}$$

Для критического сечения скорость газа равна скорости звука в этом сечении, рассчитываемой по формуле

$$c_* = c_0 \sqrt{\frac{2}{k+1}} = \sqrt{\frac{2k}{k+1}} RT = \sqrt{\frac{2k}{k+1}} \frac{p_0}{\rho_0}.$$

Для цилиндрического сопла диаметр критического сечения

$$d_{\kappa p} = \sqrt{\frac{S_{\kappa p}}{0.785}}.$$
 (7.93)

Вторым характерным размером сопла Лаваля является площадь его выходного сечения S_{κ} . При расчетном режиме работы в этом сечении давление статическое давление в газовом потоке становится равным конечному давлению p_a . Скорость газа в этом сечении можно найти из уравнения

$$\pi(\lambda) = \frac{p}{p_0} = \left(1 - \frac{k-1}{k+1}\lambda^2\right)^{\frac{k}{k-1}},$$

откуда

$$\lambda_k = \sqrt{\frac{k+1}{k-1}} \left[1 - \left(\frac{p_a}{p_0}\right)^{k-1} \right].$$
(7.94)

Для сокращения вычислений величину λ_{κ} можно найти по таблице газодинамических функций из условия

Скорость газа в выходном сечении сопла

 $v_{\kappa} = c * \lambda_{\kappa} \cdot$

Температура газа и его плотность находятся по формулам

$$T_{\kappa} = T_0 \left(1 - \frac{k-1}{k+1} \lambda_{\kappa}^2 \right), \qquad \rho_{\kappa} = \rho_0 \left(1 - \frac{k-1}{k+1} \lambda_{\kappa}^2 \right)^{\frac{1}{k-1}},$$

или находятся с помощью таблиц газодинамических функций по формулам

$$T_{\kappa} = T_{\theta} \tau(\lambda_{\kappa}), \ \rho_{\kappa} = \rho_{0} \varepsilon(\lambda_{\kappa}).$$

Площадь выходного сечения сопла и диаметр находятся по уравнениям

$$S_{\kappa} = \frac{G}{\rho_{\kappa} v_{\kappa}}, \qquad d_{\kappa} = \sqrt{\frac{S_{\kappa}}{\sqrt{0.785}}}$$

Для заданной конфигурации сопла параметры потока в различных сечениях можно найти с помощью газодинамических функций. Для контрольного сечения плошадью *S*, определяется величина

$$q(\lambda_x) = \frac{S_{\kappa p}}{S_x},$$

а затем по ней находятся величины λ_x , $\pi(\lambda_x)$, $\varepsilon(\lambda_x)$, $\tau(\lambda_x)$ и параметры потока

$$w_x = c^* \lambda_x, \quad p_x = \pi(\lambda_x) p_0,$$

$$\rho_x = \varepsilon(\lambda_x) \rho_0, \quad T_x = \tau(\lambda_x) T_0.$$

Для расчетного режима можно подобрать размеры сопла Лаваля таким образом, чтобы при заданном расходе газа Gдавление газа на выходе из сопла p_{κ} точно соответствовало бы давлению среды p_{a} . Однако оборудование часто работает в режимах, отличающихся от расчетных. В этом случае могут меняться как параметры газа перед соплом, так и параметры среды в выходном сечении сопла. Такие режимы называются нерасчетными.

Для сопла Лаваля сушествуют два нерасчетных режима, при которых давление газа в выходном сечении сопла больше давления среды $(p_k > p_a)$ или меньше давления среды $(p_k > p_a)$. Первый режим называется режимом с недорасширением. В этом случае процесс дальнейшего выравнивания давлений происходит на некотором удалении от сопла по схеме, показанной на рис. 23.3. В результате нескольких прямых и косых скачков уплотнения, в которых происходит рассеяние энергии с потерей полного давления, поток выравнивается, а его скорость становится близкой к скорости на срезе сопла.

В том случае, если площадь выходного сечения сопла для данного режима оказывается слишком большой, то на выходе из сопла давление газового потока оказывается меньше давления окружающей среды. Такой режим называется режимом с перерасширением. Схема движения газа за соплом показана на рис. 7.28.

Рис. 7.28. Расширение потока газа за соплом

Сверхзвуковой поток, встречаясь с неподвижной средой, скачком тормозится. Скачки начинаются с кромок сопла по контуру AA₁. Так как внутри потока за соплом волны сжатия пересекаются, то поверхность внутреннего

скачка является криволинейной. На выходе из сопла в объеме, ограниченном контуром ACC₁A₁A поток сверхзвуковой.

В объемах АСВ и A₁C₁B₁ скорость газа меньше скорости звука. Ударная волна образуется только на поверхности СС₁. За счет того, что при прохождении фронта волны поток сжимается, и его давление становится выше давления среды, по контуру BCC₁B₁ он снова начинает разгоняться до сверхзвуковой скорости. Структура потока повторяется в следующей группе скачков.

При снижении давления среды скачки давления перемещаются вглубь сопла, и из сопла выходит дозвуковой поток. В этом случае выходная часть сопла за фронтом ударной волны работает как простой дозвуковой диффузор. При еще большем противодавлении скачок перемещается к критическому сечению сопла, скачки исчезают, и сопло Лаваля начинает работать в дозвуковом режиме как труба Вентури.

7.18. РАСЧЕТ СИСТЕМ С ЕСТЕСТВЕННОЙ ТЯГОЙ

Работа печных труб и вентиляционных систем зданий, удаляющих дым и несвежий воздух из помещений, основана на естественной тяге Δp_e — разности приведенных полных давлений внутри и снаружи, Па.

Естественная тяга Δp_{ρ} (Па) находится по формуле

$$\varDelta p_e = gh(\rho_{\scriptscriptstyle H} - r_{\scriptscriptstyle \theta}),$$

где h— высота печной (дымовой) трубы или вентиля ционной шахты; ρ_{μ} — плотность наружного (холодного) воздуха; r_{μ} — плотность внутреннего (теплого) воздуха.

Рис. 7.29. Схема топки с дымовой трубой

Рассмотрим пример расчета топки (рис. 7.29). При горении топлива в топке тяга дымовой трубы способствует удалению газов. Тяга возникает из-за разности температур: горячего

воздуха внутри топки t_{θ}° и холодного —снаружи t_{μ}° . Разные температуры соответствуют разным плотностям воздуха гв и рн. Из-за небольших скоростей v в таких системах динамическое давление $p_{d} = p_{v}^{2}/2$ не учитывается. Тогда, подставляя в уравнение Бернулли для газа приведенные полные давления для точек A и B, придем к формуле естественной тяги (см. выше) и определим Δp_{a} .

Следующим шагом расчета является нахождение общих потерь давления Δp_{nom} и сравнение их с величиной тяги Δp_e . Если достигнуто равенство $\Delta p_e = 1, I \Delta p_{nom}$, то расчет закончен, система будет работать нормально — удалять дым.

Если равенство не соблюдается, то нужно конструктивными мероприятиями изменить или тягу, или потери. Например, тягу можно увеличить двумя способами:

- сделать выше трубу;

увеличить разницу температур (что не всегда возможно).
 Потери давления будут меньше, если будет:

- больше проходное сечение трубы;

- короче путь прохождения удаляемых газов;

меньше поворотов и других местных сопротивлений;

- меньше шероховатость стенок каналов.

Системы естественной вентиляции в зданиях по удалению несвежего воздуха из помещений работают и рассчитываются точно по таким же принципам.

Вопросы для самопроверки

1. Какой газ называется совершенным?

2. Как изменяется плотность совершенного газа при увеличении давления, если процесс изотермический?

3. Как зависит внутренняя энергия совершенного газа от температуры?

4. Как записывается уравнение состояния реального газа?

5. Какой режим называется критическим? В каком сечении струйки он может установиться?

6. Что такое прямой и косой скачек уплотнения?

7. Что понимают под параметрами торможения газа?

Пример решения задачи

Задача 1. Воздух течет по трубе, площадь поперечного сечения которой меняется по длине. В некотором сечении площадью F_1 число $M_1 = 0.6$, в другом сечении площадью $F_2M_2 = 0.85$. Определить отношение площадей

 F_2/F_1 при условии, что течение можно рассматривать как одномерное изоэнтропийное.

Какое отношение скоростей u_2/u_1 и температур T_2/T_1 потока в этих сечениях?

Решение:

С помощью функции $q = F_*/F$ для двух различных сечений в трубе получим соотношение ($F_* = const$ в изоэнтропийном потоке)

$$F_2 / F_1 = q_1 / q_2,$$

где q_1 , и q_2 найдены по таблицам газодинамических функций при $M_1 = 0,6$ и $M_2 = 0,85$:

 $F_{2} / F_{1} = 0,8415 / 0,9797 = 0,8589.$

По таблицам газодинамических функций получены значения

 $\lambda_1 = 0,4030; \quad \lambda_2 = 0,7686; \quad \tau_1 = 0,9328; \quad \tau_2 = 0,8737.$

Отношение скоростей

$$u_2 / u_1 = (u_2 / a_*) / (u_1 / a_*) = \lambda_2 / \lambda_1,$$

где $a_* = \text{const.}$

$$u_2 / u_1 = 0,7686 / 0,4030 = 1,907$$

Отношение температур:

$$T_2 / T_1 = (T_2 / T_0) / (T_1 / T_0) = \tau_2 / \tau_1.$$

$$T_2 / T_1 = 0,8737 / 0,9328 = 0,9366.$$

Абсолютное давление — напряжение сжатия, появляется в результате действия на жидкость сжимающих сил. Давление, отсчитываемое от полного вакуума.

Адиабата — линия, изображающая обратимый процесс, происходящий при отсутствии теплообмена с окружающей средой, называется адиабатическим процессом. Если адиабатический процесс необратим, то он не может быть изображен графически, следовательно, адиабата не существует.

Геометрическое подобие — подобие поверхностей, которые ограничивают потоки жидкостей соответственно модели и натуры.

Гидродинамическое подобие — геометрическое, кинематическое и динамическое подобие потоков несжимаемой жидкости.

Закон неразрывности потока жидкости — (основной закон гидродинамики); при установившемся движении жидкости произведение средней скорости движения на площадь живого сечения является величиной постоянной.

Изоэнтропический процесс – процесс, происходящий при постоянной энтропии. Он описывается уравнением адиабаты Пуассона, которое получается из уравнения, если положить $S_2 = S_1$

Энтальпия — теплосодержание, тепловая функция Гиббса — функция состояния вещества, определяемая равенством H = U + PV, где U — внутренняя энергия, рассчитанная на единицу массы вещества, P — давление, V — удельный объем.

Энтропия — термин возник в ходе теоретического поиска наиболее благоприятных условий превращения теплоты в работу в тепловых двигателях. Для обратимого процесса dS = dQ/T. Эту функцию ввел Клаузис (1822–1888).

ПРИЛОЖЕНИЕ

Таблица П1

Средние значения плотности *р* некоторых газов и паров (при 0°С и 760 мм рт. ст.)

Вещество	ρ, kγ/m ³
Азот	1,251
Аммиак	0,771
Бензол (насыщенный при 0°С)	0,012
Волород	0,0899
Воляной пар (насышенный при 0°С)	0,484
Воздух	1,293
Двуокись углерода	1,977
Кислород	1,429
Метан	0,700
Озон	2,139
Окись углерода	1,25

Таблица П2

Кинематическая вязкость *v* масел при различных температурах

Масло		<i>v</i> , 104, м ² /с при °С						
		100	50	10	0	-5	-10	
веретенное АУ для гидравлических систем АМГ-30		0,036 0,047	0,13 0,11	0,90 0,30	1,80 0,44	2,80 0,54	4,40 0,67	
								индустри- альное
И-45	0,081	0,42	5,01	11,90	19,50	59,90		

ЛИТЕРАТУРА

1. Д.Р. Бозоров, Р.М. Каримов, Ж.С. Казбеков, С.К. Хидиров. Гидравлика. – Т.: «Билим», 2003. –384 с.

2. Лойцянский Л.Г. Механика жидкости и газа. Учебник для вузов. - 7-е изд., испр. - М.: Дрофа, 2003. - 840 с., 311 ил., 22 табл.

3. Кулагин В.А., Грищенко Е.П. Гидрогазодинамика. Учебное пособие. Красноярск: ИПК СФУ, 2009. - 278 с.

4. Гальперин Л.Г. Основы гидрогазодинамики. Учебное пособие для ВУЗов. - Екатеринбург: Уральский государственный технический университет, 2007. - 238 с.

5. Турсунова Э.А., Мукольянц А.А. Механика жидкости и газа. Учебное пособие. - Ташкент.: ТАСИ, 2012. -150 с.

6. Клеванский В.М. Гидрогазодинамика. Учебное пособие. - Уфа: УГАТУ, 2010. - 309 с.

7. Мукольянц А.А. Гидравлика. Учебник. - Ташкент. 2016. -360 с.

8. Жуков Н.П., Майникова Н.Ф. Гидрогазодинамика. Часть 2. Основы газовой динамики. Учебное пособие в 2 ч. - Тамбов:, 2015 - 2016. - 80 с.

9. Зезин В.И. Гидрогазодинамика. Учебное пособие. -Челябинск: Издательство ЮУрГУ, 2010. - 100 с.

10. Menon E. Sh. Gas Pipeline Hydraulics CRC Press, Taylor & Francis, 2005, 399 p.

11. Jirka G., Lang C. Einführung in die Gerinnehydraulik Universitatsverlag Karlsruhe, 2009. -136 s.

12. http://www.techgidravlika.ru

13. http://www.wmcentre.net

14. http://www.allgooods.com

15. http://www.twirpx.com/files/hydro

оглавление

ПРЕДИСЛОВИЕ
ВВЕДЕНИЕ
Глава 1. Основные физические свойства жидкостей и газов7
1.1. Модель сплошной среды
1.2. Жидкость и газ как объекты изучения
гидрогазодинамики9
1.3. Плотность среды 12
1.4. Сжимаемость капельной жидкости
1.5. Температурное расширение капельных жидкостей 19
1.6. Вязкость жидкости 20
1.7. Определение вязкости жидкости
1.8. Растворяемость газов в жидкостях
<i>Глава 2</i> . Основы гидростатики
2.1. Основные сведения
2.2. Силы, деиствующие в жидкости
2.3. Своиства гидростатического давления
2.4. Дифференциальное уравнение равновесия жидкости
(уравнение Эйлера)
2.5. Уравнение поверхности равного давления
2.6. Основное уравнение гидростатики
2.7. Анализ основного уравнения гидростатики
2.8. Условия равновесия жидкости в сооощающихся сосудах
2.9. Круглая груба под деиствием гидростатического давления
2.10. Простые гидравлические машины. Гидравлический
2.11. Методи и прибори для измерения дардения. Абсодотное
2.11. методы и приооры для измерения давления. Ассолютное,
2.12 Гилростатицеский цапор и энергетицеский закон
лля жилиости находящейся в развиоресни 62
2.13 Интегрирование уравнений Эйлера для случая
относительного покод жилкости 65
2 14 Сила давления жилкости на плоскую стенку 68
2.15. Пентр давления и определение его координат 70
2.16. Сила давления жилкости на криволинейные стенки
Плавание тел 71
2.17. Закон Архимеда

Глава З. Гидродинамика. основы кинематики и	
динамики жидкости	86
3.1. Основные понятия и определения кинематики и	
динамики жидкости	86
3.2. Геометрические характеристики потока	88
3.3. Трубка тока и элементарная струйка	89
3.4. Расход и средняя скорость потока	90
3.5. Условие неразрывности, или сплошности	
движения жидкости	92
3.6. Методы исследования движения жидкости	93
3.7. Уравнение Эйлера	96
3.8. Дифференциальные уравнения движения вязкой	
жидкости (уравнения Навье-Стокса)	98
3.9. Уравнение Бернулли для элементарной струйки	
идеальной жидкости	104
3.10. Физический и геометрический смысл уравнения	
Бернулли. Напор жидкости	108
3.11. Уравнение Бернулли для элементарной струйки	
реальной жидкости	111
3.12. Уравнение Бернулли для потока реальной жидкости	112
3.13. Графическая иллюстрация уравнения Бернулли для	
потока реальной жидкости	117
3.14. Практическое применение уравнения Бернулли	118
3.15. Трубка Прандтля	120
3.16. Трубка Вентури, сопло, диафрагма	122
	128
1. Основы теории тидродинамического подобия	120
4.1. Основные понятия и определения теории подобия	131
4.2. Теоремы геории подобия, критерии подобия	135
4.5. Физический смысл критериев подобия	155
Глава 5. Гидравлические сопротивления. Режимы	
течения жидкости	142
5.1. Два режима движения жидкости	144
5.2. Способы определения потерь напора при равномерном	
движении жидкости	147
5.3. Экспериментальные данные для коэффициента	
гидравлического сопротивления. опыты Никурадзе	148
5.4. Формулы для определения коэффициента	
гидравлического сопротивления	155

5.5. Местные гидравлические сопротивления	157
5.6. Основные расчетные формулы для определения	
линейных потерь напора	163
Глава 6. Истечение жидкости и газа через отверстия и	
насадки. Гидравлический удар в трубопроводах	170
6.1. Общая характеристика истечения. Истечение жидкости	
через малое отверстие в тонкой стенке	170
6.2. Истечение жидкости через большое отверстие	175
6.3. Истечение жидкости через затопленное отверстие	178
6.4. Истечение жидкости при переменном напоре	179
6.5. Истечение жидкости через насадки	180
6.6. Истечение газа из объема через отверстие	186
6.7. Гидравлический удар в трубопроводах	189
6.8. Кавитация	192
Глара 7 Газорая линамика	200
7.1. Скорость распространения упругих возмушений	200
в газе	201
7.2. Параметры торможения потока	205
7.3. Возмущения в газе при движении тела	208
7.4. Критические параметры потока	211
7.5. Энтропия потока	213
7.6. Сопло Лаваля	215
7.7. Приведенная скорость газа	219
7.8. Скачки уплотнения. адиабата Гюгонио	229
7.9. Прямой скачок уплотнения	238
7.10. Косой скачок уплотнения	244
7.11. Сверхзвуковое течение Прандтля-Майера	246
7.12. Обтекание плоской стенки.	250
7.13. Обтекание выпуклой криволинейной стенки	251
7.14. Истечение из плоского сопла с косым срезом	252
7.15. Движение газа в соплах	253
7.16. Сужающиеся сопла	255
7.17. Режимы течения в сопле Лаваля	259
7.18. Расчет систем с естественной тягой	263
ГЛОССАРИЙ.	266
ПРИЛОЖЕНИЕ	267
ЛИТЕРАТУРА	268

АРСЕН АРТЕМОВИЧ МУКОЛЬЯНЦ

ГИДРОГАЗОДИНАМИКА

Учебник

Редактор В. Джураев Корректор В. Джураев Дизайнер А. Аубакиров

Издательство Национального общества философов Узбекистана 100083, г. Ташкент, ул. Матбуотчилар, 32

Лицензия издательства AI № 216,03.08.2012 Подписано в печать 19.11.2019. Формат 60х84 ¹/₁₆. Печать офсетная. Гарнитура «Uz-Times». Усл. печ. л. 17,0. Уч. изд. л. 17,5. Тираж 300 экз. Заказ № 8

Отпечано в типографии «ZAKOVAT-PRINT» 100083, г. Ташкент, ул. З. Розий, 1 проезд, 24.