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Preface

This book introduces important concepts in the analysis and design of control systems.
Readers will find it to be a clear and understandable textbook for control system courses
at colleges and universities. It is written for senior electrical, mechanical, aerospace, or
chemical engineering students. The reader is expected to have fulfilled the following
prerequisites: introductory courses on differential equations, Laplace transforms, vector-
matrix analysis, circuit analysis, mechanics, and introductory thermodynamics.

The main revisions made in this edition are as follows:

• The use of MATLAB for obtaining responses of control systems to various inputs
has been increased.

• The usefulness of the computational optimization approach with MATLAB has been
demonstrated.

• New example problems have been added throughout the book.
• Materials in the previous edition that are of secondary importance have been deleted

in order to provide space for more important subjects. Signal flow graphs were
dropped from the book. A chapter on Laplace transform was deleted. Instead,
Laplace transform tables, and partial-fraction expansion with MATLAB are pre-
sented in Appendix A and Appendix B, respectively.

• A short summary of vector-matrix analysis is presented in Appendix C; this will help
the reader to find the inverses of n x n matrices that may be involved in the analy-
sis and design of control systems.

This edition of Modern Control Engineering is organized into ten chapters.The outline of
this book is as follows: Chapter 1 presents an introduction to control systems. Chapter 2



deals with mathematical modeling of control systems.A linearization technique for non-
linear mathematical models is presented in this chapter. Chapter 3 derives mathematical
models of mechanical systems and electrical systems. Chapter 4 discusses mathematical
modeling of fluid systems (such as liquid-level systems, pneumatic systems, and hydraulic
systems) and thermal systems.

Chapter 5 treats transient response and steady-state analyses of control systems.
MATLAB is used extensively for obtaining transient response curves. Routh’s stability
criterion is presented for stability analysis of control systems. Hurwitz stability criterion
is also presented.

Chapter 6 discusses the root-locus analysis and design of control systems, including
positive feedback systems and conditionally stable systems Plotting root loci with MAT-
LAB is discussed in detail. Design of lead, lag, and lag-lead compensators with the root-
locus method is included.

Chapter 7 treats the frequency-response analysis and design of control systems.The
Nyquist stability criterion is presented in an easily understandable manner.The Bode di-
agram approach to the design of lead, lag, and lag-lead compensators is discussed.

Chapter 8 deals with basic and modified PID controllers. Computational approaches
for obtaining optimal parameter values for PID controllers are discussed in detail, par-
ticularly with respect to satisfying requirements for step-response characteristics.

Chapter 9 treats basic analyses of control systems in state space. Concepts of con-
trollability and observability are discussed in detail.

Chapter 10 deals with control systems design in state space.The discussions include
pole placement, state observers, and quadratic optimal control. An introductory dis-
cussion of robust control systems is presented at the end of Chapter 10.

The book has been arranged toward facilitating the student’s gradual understanding 
of control theory. Highly mathematical arguments are carefully avoided in the presen-
tation of the materials. Statement proofs are provided whenever they contribute to the
understanding of the subject matter presented.

Special effort has been made to provide example problems at strategic points so that
the reader will have a clear understanding of the subject matter discussed. In addition,
a number of solved problems (A-problems) are provided at the end of each chapter,
except Chapter 1. The reader is encouraged to study all such solved problems carefully;
this will allow the reader to obtain a deeper understanding of the topics discussed. In
addition, many problems (without solutions) are provided at the end of each chapter,
except Chapter 1. The unsolved problems (B-problems) may be used as homework or
quiz problems.

If this book is used as a text for a semester course (with 56 or so lecture hours), a good
portion of the material may be covered by skipping certain subjects. Because of the
abundance of example problems and solved problems (A-problems) that might answer
many possible questions that the reader might have, this book can also serve as a self-
study book for practicing engineers who wish to study basic control theories.

I would like to thank the following reviewers for this edition of the book: Mark Camp-
bell, Cornell University; Henry Sodano, Arizona State University; and Atul G. Kelkar,
Iowa State University. Finally, I wish to offer my deep appreciation to Ms.Alice Dworkin,
Associate Editor, Mr. Scott Disanno, Senior Managing Editor, and all the people in-
volved in this publishing project, for the speedy yet superb production of this book.

Katsuhiko Ogata

x Preface



1

Introduction 
to Control Systems

1–1 INTRODUCTION

Control theories commonly used today are classical control theory (also called con-
ventional control theory), modern control theory, and robust control theory. This book
presents comprehensive treatments of the analysis and design of control systems based
on the classical control theory and modern control theory.A brief introduction of robust
control theory is included in Chapter 10.

Automatic control is essential in any field of engineering and science. Automatic
control is an important and integral part of space-vehicle systems, robotic systems, mod-
ern manufacturing systems, and any industrial operations involving control of temper-
ature, pressure, humidity, flow, etc. It is desirable that most engineers and scientists are
familiar with theory and practice of automatic control.

This book is intended to be a text book on control systems at the senior level at a col-
lege or university. All necessary background materials are included in the book. Math-
ematical background materials related to Laplace transforms and vector-matrix analysis
are presented separately in appendixes.

Brief Review of Historical Developments of Control Theories and Practices.
The first significant work in automatic control was James Watt’s centrifugal gover-
nor for the speed control of a steam engine in the eighteenth century. Other
significant works in the early stages of development of control theory were due to

1



2 Chapter 1 / Introduction to Control Systems

Minorsky, Hazen, and Nyquist, among many others. In 1922, Minorsky worked on
automatic controllers for steering ships and showed how stability could be deter-
mined from the differential equations describing the system. In 1932, Nyquist
developed a relatively simple procedure for determining the stability of closed-loop
systems on the basis of open-loop response to steady-state sinusoidal inputs. In 1934,
Hazen, who introduced the term servomechanisms for position control systems,
discussed the design of relay servomechanisms capable of closely following a chang-
ing input.

During the decade of the 1940s, frequency-response methods (especially the Bode
diagram methods due to Bode) made it possible for engineers to design linear closed-
loop control systems that satisfied performance requirements. Many industrial control
systems in 1940s and 1950s used PID controllers to control pressure, temperature, etc.
In the early 1940s Ziegler and Nichols suggested rules for tuning PID controllers, called
Ziegler–Nichols tuning rules. From the end of the 1940s to the 1950s, the root-locus
method due to Evans was fully developed.

The frequency-response and root-locus methods, which are the core of classical con-
trol theory, lead to systems that are stable and satisfy a set of more or less arbitrary per-
formance requirements. Such systems are, in general, acceptable but not optimal in any
meaningful sense. Since the late 1950s, the emphasis in control design problems has been
shifted from the design of one of many systems that work to the design of one optimal
system in some meaningful sense.

As modern plants with many inputs and outputs become more and more complex,
the description of a modern control system requires a large number of equations. Clas-
sical control theory, which deals only with single-input, single-output systems, becomes
powerless for multiple-input, multiple-output systems. Since about 1960, because the
availability of digital computers made possible time-domain analysis of complex sys-
tems, modern control theory, based on time-domain analysis and synthesis using state
variables, has been developed to cope with the increased complexity of modern plants
and the stringent requirements on accuracy, weight, and cost in military, space, and in-
dustrial applications.

During the years from 1960 to 1980, optimal control of both deterministic and sto-
chastic systems, as well as adaptive and learning control of complex systems, were fully
investigated. From 1980s to 1990s, developments in modern control theory were cen-
tered around robust control and associated topics.

Modern control theory is based on time-domain analysis of differential equation
systems. Modern control theory made the design of control systems simpler because
the theory is based on a model of an actual control system. However, the system’s
stability is sensitive to the error between the actual system and its model. This
means that when the designed controller based on a model is applied to the actual
system, the system may not be stable. To avoid this situation, we design the control
system by first setting up the range of possible errors and then designing the con-
troller in such a way that, if the error of the system stays within the assumed
range, the designed control system will stay stable. The design method based on this
principle is called robust control theory.This theory incorporates both the frequency-
response approach and the time-domain approach. The theory is mathematically very
complex.
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Because this theory requires mathematical background at the graduate level, inclu-
sion of robust control theory in this book is limited to introductory aspects only. The
reader interested in details of robust control theory should take a graduate-level control
course at an established college or university.

Definitions. Before we can discuss control systems, some basic terminologies must
be defined.

Controlled Variable and Control Signal or Manipulated Variable. The controlled
variable is the quantity or condition that is measured and controlled.The control signal
or manipulated variable is the quantity or condition that is varied by the controller so
as to affect the value of the controlled variable. Normally, the controlled variable is the
output of the system. Control means measuring the value of the controlled variable of
the system and applying the control signal to the system to correct or limit deviation of
the measured value from a desired value.

In studying control engineering, we need to define additional terms that are neces-
sary to describe control systems.

Plants. A plant may be a piece of equipment, perhaps just a set of machine parts
functioning together, the purpose of which is to perform a particular operation. In this
book, we shall call any physical object to be controlled (such as a mechanical device, a
heating furnace, a chemical reactor, or a spacecraft) a plant.

Processes. The Merriam–Webster Dictionary defines a process to be a natural, pro-
gressively continuing operation or development marked by a series of gradual changes
that succeed one another in a relatively fixed way and lead toward a particular result or
end; or an artificial or voluntary, progressively continuing operation that consists of a se-
ries of controlled actions or movements systematically directed toward a particular re-
sult or end. In this book we shall call any operation to be controlled a process. Examples
are chemical, economic, and biological processes.

Systems. A system is a combination of components that act together and perform
a certain objective. A system need not be physical. The concept of the system can be
applied to abstract, dynamic phenomena such as those encountered in economics. The
word system should, therefore, be interpreted to imply physical, biological, economic, and
the like, systems.

Disturbances. A disturbance is a signal that tends to adversely affect the value 
of the output of a system. If a disturbance is generated within the system, it is called
internal, while an external disturbance is generated outside the system and is 
an input.

Feedback Control. Feedback control refers to an operation that, in the presence
of disturbances, tends to reduce the difference between the output of a system and some
reference input and does so on the basis of this difference. Here only unpredictable dis-
turbances are so specified, since predictable or known disturbances can always be com-
pensated for within the system.
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1–2 EXAMPLES OF CONTROL SYSTEMS

In this section we shall present a few examples of control systems.

Speed Control System. The basic principle of a Watt’s speed governor for an en-
gine is illustrated in the schematic diagram of Figure 1–1. The amount of fuel admitted
to the engine is adjusted according to the difference between the desired and the actual
engine speeds.

The sequence of actions may be stated as follows: The speed governor is ad-
justed such that, at the desired speed, no pressured oil will flow into either side of
the power cylinder. If the actual speed drops below the desired value due to
disturbance, then the decrease in the centrifugal force of the speed governor causes
the control valve to move downward, supplying more fuel, and the speed of the
engine increases until the desired value is reached. On the other hand, if the speed
of the engine increases above the desired value, then the increase in the centrifu-
gal force of the governor causes the control valve to move upward. This decreases 
the supply of fuel, and the speed of the engine decreases until the desired value is
reached.

In this speed control system, the plant (controlled system) is the engine and the
controlled variable is the speed of the engine. The difference between the desired
speed and the actual speed is the error signal. The control signal (the amount of fuel)
to be applied to the plant (engine) is the actuating signal. The external input to dis-
turb the controlled variable is the disturbance. An unexpected change in the load is
a disturbance.

Temperature Control System. Figure 1–2 shows a schematic diagram of tem-
perature control of an electric furnace.The temperature in the electric furnace is meas-
ured by a thermometer, which is an analog device.The analog temperature is converted

Oil under
pressure

Power
cylinder

Close
Open

Pilot
valve

Control
valve

Fuel

Engine Load

Figure 1–1
Speed control
system.
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Interface
Controller

InterfaceAmplifier

A/D
converter

Programmed
input

Electric
furnace

Relay
Figure 1–2
Temperature control
system.

to a digital temperature by an A/D converter. The digital temperature is fed to a con-
troller through an interface.This digital temperature is compared with the programmed
input temperature, and if there is any discrepancy (error), the controller sends out a sig-
nal to the heater, through an interface, amplifier, and relay, to bring the furnace tem-
perature to a desired value.

Business Systems. A business system may consist of many groups. Each task
assigned to a group will represent a dynamic element of the system. Feedback methods
of reporting the accomplishments of each group must be established in such a system for
proper operation. The cross-coupling between functional groups must be made a mini-
mum in order to reduce undesirable delay times in the system. The smaller this cross-
coupling, the smoother the flow of work signals and materials will be.

A business system is a closed-loop system.A good design will reduce the manageri-
al control required. Note that disturbances in this system are the lack of personnel or ma-
terials, interruption of communication, human errors, and the like.

The establishment of a well-founded estimating system based on statistics is manda-
tory to proper management. It is a well-known fact that the performance of such a system
can be improved by the use of lead time, or anticipation.

To apply control theory to improve the performance of such a system, we must rep-
resent the dynamic characteristic of the component groups of the system by a relative-
ly simple set of equations.

Although it is certainly a difficult problem to derive mathematical representations
of the component groups, the application of optimization techniques to business sys-
tems significantly improves the performance of the business system.

Consider, as an example, an engineering organizational system that is composed of
major groups such as management, research and development, preliminary design, ex-
periments, product design and drafting, fabrication and assembling, and tesing. These
groups are interconnected to make up the whole operation.

Such a system may be analyzed by reducing it to the most elementary set of com-
ponents necessary that can provide the analytical detail required and by representing the
dynamic characteristics of each component by a set of simple equations. (The dynamic
performance of such a system may be determined from the relation between progres-
sive accomplishment and time.)
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Required
product

Management
Research

and
development

Preliminary
design

Experiments
Product
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and

assembling
Testing

Product

Figure 1–3
Block diagram of an engineering organizational system.

A functional block diagram may be drawn by using blocks to represent the func-
tional activities and interconnecting signal lines to represent the information or
product output of the system operation. Figure 1–3 is a possible block diagram for
this system.

Robust Control System. The first step in the design of a control system is to
obtain a mathematical model of the plant or control object. In reality, any model of a
plant we want to control will include an error in the modeling process.That is, the actual
plant differs from the model to be used in the design of the control system.

To ensure the controller designed based on a model will work satisfactorily when
this controller is used with the actual plant, one reasonable approach is to assume
from the start that there is an uncertainty or error between the actual plant and its
mathematical model and include such uncertainty or error in the design process of the
control system. The control system designed based on this approach is called a robust
control system.

Suppose that the actual plant we want to control is (s) and the mathematical model
of the actual plant is G(s), that is,

(s)=actual plant model that has uncertainty ¢(s)

G(s)=nominal plant model to be used for designing the control system 

(s) and G(s) may be related by a multiplicative factor such as

or an additive factor

or in other forms.
Since the exact description of the uncertainty or error ¢(s) is unknown, we use an

estimate of ¢(s) and use this estimate, W(s), in the design of the controller. W(s) is a
scalar transfer function such that

where is the maximum value of for and is called the H
infinity norm of W(s).

0 � v � q�W(jv)���W(s)��q

��¢(s)��q 6 ��W(s)��q = max
0�v�q

 �W(jv)�

G
�

(s) = G(s) + ¢(s)

G
�

(s) = G(s)[1 + ¢(s)]

G
�

G
�

G
�
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Using the small gain theorem, the design procedure here boils down to the deter-
mination of the controller K(s) such that the inequality

is satisfied, where G(s) is the transfer function of the model used in the design process,
K(s) is the transfer function of the controller, and W(s) is the chosen transfer function
to approximate ¢(s). In most practical cases, we must satisfy more than one such
inequality that involves G(s), K(s), and W(s)’s. For example, to guarantee robust sta-
bility and robust performance we may require two inequalities, such as

for robust stability

for robust performance

be satisfied. (These inequalities are derived in Section 10–9.) There are many different
such inequalities that need to be satisfied in many different robust control systems.
(Robust stability means that the controller K(s) guarantees internal stability of all
systems that belong to a group of systems that include the system with the actual plant.
Robust performance means the specified performance is satisfied in all systems that be-
long to the group.) In this book all the plants of control systems we discuss are assumed
to be known precisely, except the plants we discuss in Section 10–9 where an introduc-
tory aspect of robust control theory is presented.

1–3 CLOSED-LOOP CONTROL VERSUS OPEN-LOOP CONTROL

Feedback Control Systems. A system that maintains a prescribed relationship
between the output and the reference input by comparing them and using the difference
as a means of control is called a feedback control system. An example would be a room-
temperature control system. By measuring the actual room temperature and comparing
it with the reference temperature (desired temperature), the thermostat turns the heat-
ing or cooling equipment on or off in such a way as to ensure that the room tempera-
ture remains at a comfortable level regardless of outside conditions.

Feedback control systems are not limited to engineering but can be found in various
nonengineering fields as well. The human body, for instance, is a highly advanced feed-
back control system. Both body temperature and blood pressure are kept constant by
means of physiological feedback. In fact, feedback performs a vital function: It makes
the human body relatively insensitive to external disturbances, thus enabling it to func-
tion properly in a changing environment.

ß Ws(s)

1 + K(s)G(s)
ß

q

6 1

ßWm(s)K(s)G(s)

1 + K(s)G(s)
ß

q

6 1

ß W(s)

1 + K(s)G(s)
ß

q

6 1
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Closed-Loop Control Systems. Feedback control systems are often referred to
as closed-loop control systems. In practice, the terms feedback control and closed-loop
control are used interchangeably. In a closed-loop control system the actuating error
signal, which is the difference between the input signal and the feedback signal (which
may be the output signal itself or a function of the output signal and its derivatives
and/or integrals), is fed to the controller so as to reduce the error and bring the output
of the system to a desired value.The term closed-loop control always implies the use of
feedback control action in order to reduce system error.

Open-Loop Control Systems. Those systems in which the output has no effect
on the control action are called open-loop control systems. In other words, in an open-
loop control system the output is neither measured nor fed back for comparison with the
input. One practical example is a washing machine. Soaking, washing, and rinsing in the
washer operate on a time basis. The machine does not measure the output signal, that
is, the cleanliness of the clothes.

In any open-loop control system the output is not compared with the reference input.
Thus, to each reference input there corresponds a fixed operating condition; as a result,
the accuracy of the system depends on calibration. In the presence of disturbances, an
open-loop control system will not perform the desired task. Open-loop control can be
used, in practice, only if the relationship between the input and output is known and if
there are neither internal nor external disturbances. Clearly, such systems are not feed-
back control systems. Note that any control system that operates on a time basis is open
loop. For instance, traffic control by means of signals operated on a time basis is another
example of open-loop control.

Closed-Loop versus Open-Loop Control Systems. An advantage of the closed-
loop control system is the fact that the use of feedback makes the system response rela-
tively insensitive to external disturbances and internal variations in system parameters.
It is thus possible to use relatively inaccurate and inexpensive components to obtain the
accurate control of a given plant, whereas doing so is impossible in the open-loop case.

From the point of view of stability, the open-loop control system is easier to build be-
cause system stability is not a major problem. On the other hand, stability is a major
problem in the closed-loop control system, which may tend to overcorrect errors and
thereby can cause oscillations of constant or changing amplitude.

It should be emphasized that for systems in which the inputs are known ahead of
time and in which there are no disturbances it is advisable to use open-loop control.
Closed-loop control systems have advantages only when unpredictable disturbances
and/or unpredictable variations in system components are present. Note that the
output power rating partially determines the cost, weight, and size of a control system.
The number of components used in a closed-loop control system is more than that for
a corresponding open-loop control system. Thus, the closed-loop control system is
generally higher in cost and power.To decrease the required power of a system, open-
loop control may be used where applicable. A proper combination of open-loop and
closed-loop controls is usually less expensive and will give satisfactory overall system
performance.

Most analyses and designs of control systems presented in this book are concerned
with closed-loop control systems. Under certain circumstances (such as where no
disturbances exist or the output is hard to measure) open-loop control systems may be



desired. Therefore, it is worthwhile to summarize the advantages and disadvantages of
using open-loop control systems.

The major advantages of open-loop control systems are as follows:

1. Simple construction and ease of maintenance.
2. Less expensive than a corresponding closed-loop system.
3. There is no stability problem.
4. Convenient when output is hard to measure or measuring the output precisely is

economically not feasible. (For example, in the washer system, it would be quite ex-
pensive to provide a device to measure the quality of the washer’s output, clean-
liness of the clothes.)

The major disadvantages of open-loop control systems are as follows:

1. Disturbances and changes in calibration cause errors, and the output may be
different from what is desired.

2. To maintain the required quality in the output, recalibration is necessary from
time to time.

1–4 DESIGN AND COMPENSATION OF CONTROL SYSTEMS

This book discusses basic aspects of the design and compensation of control systems.
Compensation is the modification of the system dynamics to satisfy the given specifi-
cations. The approaches to control system design and compensation used in this book
are the root-locus approach, frequency-response approach, and the state-space ap-
proach. Such control systems design and compensation will be presented in Chapters
6, 7, 9 and 10. The PID-based compensational approach to control systems design is
given in Chapter 8.

In the actual design of a control system, whether to use an electronic, pneumatic, or
hydraulic compensator is a matter that must be decided partially based on the nature of
the controlled plant. For example, if the controlled plant involves flammable fluid, then
we have to choose pneumatic components (both a compensator and an actuator) to
avoid the possibility of sparks. If, however, no fire hazard exists, then electronic com-
pensators are most commonly used. (In fact, we often transform nonelectrical signals into
electrical signals because of the simplicity of transmission, increased accuracy, increased
reliability, ease of compensation, and the like.)

Performance Specifications. Control systems are designed to perform specific
tasks. The requirements imposed on the control system are usually spelled out as per-
formance specifications. The specifications may be given in terms of transient response
requirements (such as the maximum overshoot and settling time in step response) and
of steady-state requirements (such as steady-state error in following ramp input) or may
be given in frequency-response terms. The specifications of a control system must be
given before the design process begins.

For routine design problems, the performance specifications (which relate to accura-
cy, relative stability, and speed of response) may be given in terms of precise numerical
values. In other cases they may be given partially in terms of precise numerical values and
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partially in terms of qualitative statements. In the latter case the specifications may have
to be modified during the course of design, since the given specifications may never be
satisfied (because of conflicting requirements) or may lead to a very expensive system.

Generally, the performance specifications should not be more stringent than neces-
sary to perform the given task. If the accuracy at steady-state operation is of prime im-
portance in a given control system, then we should not require unnecessarily rigid
performance specifications on the transient response, since such specifications will
require expensive components. Remember that the most important part of control
system design is to state the performance specifications precisely so that they will yield
an optimal control system for the given purpose.

System Compensation. Setting the gain is the first step in adjusting the system
for satisfactory performance. In many practical cases, however, the adjustment of the
gain alone may not provide sufficient alteration of the system behavior to meet the given
specifications. As is frequently the case, increasing the gain value will improve the
steady-state behavior but will result in poor stability or even instability. It is then nec-
essary to redesign the system (by modifying the structure or by incorporating addi-
tional devices or components) to alter the overall behavior so that the system will
behave as desired. Such a redesign or addition of a suitable device is called compensa-
tion. A device inserted into the system for the purpose of satisfying the specifications
is called a compensator. The compensator compensates for deficient performance of the
original system.

Design Procedures. In the process of designing a control system, we set up a
mathematical model of the control system and adjust the parameters of a compensator.
The most time-consuming part of the work is the checking of the system performance
by analysis with each adjustment of the parameters.The designer should use MATLAB
or other available computer package to avoid much of the numerical drudgery neces-
sary for this checking.

Once a satisfactory mathematical model has been obtained, the designer must con-
struct a prototype and test the open-loop system. If absolute stability of the closed loop
is assured, the designer closes the loop and tests the performance of the resulting closed-
loop system. Because of the neglected loading effects among the components, nonlin-
earities, distributed parameters, and so on, which were not taken into consideration in
the original design work, the actual performance of the prototype system will probably
differ from the theoretical predictions. Thus the first design may not satisfy all the re-
quirements on performance. The designer must adjust system parameters and make
changes in the prototype until the system meets the specificications. In doing this, he or
she must analyze each trial, and the results of the analysis must be incorporated into
the next trial. The designer must see that the final system meets the performance apec-
ifications and, at the same time, is reliable and economical.

1–5 OUTLINE OF THE BOOK

This text is organized into 10 chapters.The outline of each chapter may be summarized
as follows:

Chapter 1 presents an introduction to this book.
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Chapter 2 deals with mathematical modeling of control systems that are described
by linear differential equations. Specifically, transfer function expressions of differential
equation systems are derived.Also, state-space expressions of differential equation sys-
tems are derived. MATLAB is used to transform mathematical models from transfer
functions to state-space equations and vice versa.This book treats linear systems in de-
tail. If the mathematical model of any system is nonlinear, it needs to be linearized be-
fore applying theories presented in this book. A technique to linearize nonlinear
mathematical models is presented in this chapter.

Chapter 3 derives mathematical models of various mechanical and electrical sys-
tems that appear frequently in control systems.

Chapter 4 discusses various fluid systems and thermal systems, that appear in control
systems. Fluid systems here include liquid-level systems, pneumatic systems, and hydraulic
systems. Thermal systems such as temperature control systems are also discussed here.
Control engineers must be familiar with all of these systems discussed in this chapter.

Chapter 5 presents transient and steady-state response analyses of control systems
defined in terms of transfer functions. MATLAB approach to obtain transient and
steady-state response analyses is presented in detail. MATLAB approach to obtain
three-dimensional plots is also presented. Stability analysis based on Routh’s stability
criterion is included in this chapter and the Hurwitz stability criterion is briefly discussed.

Chapter 6 treats the root-locus method of analysis and design of control systems. It
is a graphical method for determining the locations of all closed-loop poles from the
knowledge of the locations of the open-loop poles and zeros of a closed-loop system
as a parameter (usually the gain) is varied from zero to infinity. This method was de-
veloped by W. R. Evans around 1950. These days MATLAB can produce root-locus
plots easily and quickly.This chapter presents both a manual approach and a MATLAB
approach to generate root-locus plots. Details of the design of control systems using lead
compensators, lag compensators, are lag–lead compensators are presented in this
chapter.

Chapter 7 presents the frequency-response method of analysis and design of control
systems. This is the oldest method of control systems analysis and design and was de-
veloped during 1940–1950 by Nyquist, Bode, Nichols, Hazen, among others. This chap-
ter presents details of the frequency-response approach to control systems design using
lead compensation technique, lag compensation technique, and lag–lead compensation
technique. The frequency-response method was the most frequently used analysis and
design method until the state-space method became popular. However, since H-infini-
ty control for designing robust control systems has become popular, frequency response
is gaining popularity again.

Chapter 8 discusses PID controllers and modified ones such as multidegrees-of-
freedom PID controllers. The PID controller has three parameters; proportional gain,
integral gain, and derivative gain. In industrial control systems more than half of the con-
trollers used have been PID controllers. The performance of PID controllers depends
on the relative magnitudes of those three parameters. Determination of the relative
magnitudes of the three parameters is called tuning of PID controllers.

Ziegler and Nichols proposed so-called “Ziegler–Nichols tuning rules” as early as
1942. Since then numerous tuning rules have been proposed.These days manufacturers
of PID controllers have their own tuning rules. In this chapter we present a computer
optimization approach using MATLAB to determine the three parameters to satisfy
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given transient response characteristics.The approach can be expanded to determine the
three parameters to satisfy any specific given characteristics.

Chapter 9 presents basic analysis of state-space equations. Concepts of controllabil-
ity and observability, most important concepts in modern control theory, due to Kalman
are discussed in full. In this chapter, solutions of state-space equations are derived in
detail.

Chapter 10 discusses state-space designs of control systems. This chapter first deals
with pole placement problems and state observers. In control engineering, it is frequently
desirable to set up a meaningful performance index and try to minimize it (or maximize
it, as the case may be). If the performance index selected has a clear physical meaning,
then this approach is quite useful to determine the optimal control variable. This chap-
ter discusses the quadratic optimal regulator problem where we use a performance index
which is an integral of a quadratic function of the state variables and the control vari-
able.The integral is performed from t=0 to t= .This chapter concludes with a brief
discussion of robust control systems.

q
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Mathematical Modeling 
of Control Systems

2–1 INTRODUCTION

In studying control systems the reader must be able to model dynamic systems in math-
ematical terms and analyze their dynamic characteristics.A mathematical model of a dy-
namic system is defined as a set of equations that represents the dynamics of the system
accurately, or at least fairly well. Note that a mathematical model is not unique to a
given system.A system may be represented in many different ways and, therefore, may
have many mathematical models, depending on one’s perspective.

The dynamics of many systems, whether they are mechanical, electrical, thermal,
economic, biological, and so on, may be described in terms of differential equations.
Such differential equations may be obtained by using physical laws governing a partic-
ular system—for example, Newton’s laws for mechanical systems and Kirchhoff’s laws
for electrical systems. We must always keep in mind that deriving reasonable mathe-
matical models is the most important part of the entire analysis of control systems.

Throughout this book we assume that the principle of causality applies to the systems
considered.This means that the current output of the system (the output at time t=0)
depends on the past input (the input for t<0) but does not depend on the future input
(the input for t>0).

Mathematical Models. Mathematical models may assume many different forms.
Depending on the particular system and the particular circumstances, one mathemati-
cal model may be better suited than other models. For example, in optimal control prob-
lems, it is advantageous to use state-space representations. On the other hand, for the
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transient-response or frequency-response analysis of single-input, single-output, linear,
time-invariant systems, the transfer-function representation may be more convenient
than any other. Once a mathematical model of a system is obtained, various analytical
and computer tools can be used for analysis and synthesis purposes.

Simplicity Versus Accuracy. In obtaining a mathematical model, we must make
a compromise between the simplicity of the model and the accuracy of the results of
the analysis. In deriving a reasonably simplified mathematical model, we frequently find
it necessary to ignore certain inherent physical properties of the system. In particular,
if a linear lumped-parameter mathematical model (that is, one employing ordinary dif-
ferential equations) is desired, it is always necessary to ignore certain nonlinearities and
distributed parameters that may be present in the physical system. If the effects that
these ignored properties have on the response are small, good agreement will be obtained
between the results of the analysis of a mathematical model and the results of the
experimental study of the physical system.

In general, in solving a new problem, it is desirable to build a simplified model so that
we can get a general feeling for the solution.A more complete mathematical model may
then be built and used for a more accurate analysis.

We must be well aware that a linear lumped-parameter model, which may be valid in
low-frequency operations, may not be valid at sufficiently high frequencies, since the neg-
lected property of distributed parameters may become an important factor in the dynamic
behavior of the system. For example, the mass of a spring may be neglected in low-
frequency operations, but it becomes an important property of the system at high fre-
quencies. (For the case where a mathematical model involves considerable errors, robust
control theory may be applied. Robust control theory is presented in Chapter 10.)

Linear Systems. A system is called linear if the principle of superposition
applies. The principle of superposition states that the response produced by the
simultaneous application of two different forcing functions is the sum of the two
individual responses. Hence, for the linear system, the response to several inputs can
be calculated by treating one input at a time and adding the results. It is this principle
that allows one to build up complicated solutions to the linear differential equation
from simple solutions.

In an experimental investigation of a dynamic system, if cause and effect are pro-
portional, thus implying that the principle of superposition holds, then the system can
be considered linear.

Linear Time-Invariant Systems and Linear Time-Varying Systems. A differ-
ential equation is linear if the coefficients are constants or functions only of the in-
dependent variable. Dynamic systems that are composed of linear time-invariant
lumped-parameter components may be described by linear time-invariant differen-
tial equations—that is, constant-coefficient differential equations. Such systems are
called linear time-invariant (or linear constant-coefficient) systems. Systems that
are represented by differential equations whose coefficients are functions of time
are called linear time-varying systems. An example of a time-varying control sys-
tem is a spacecraft control system. (The mass of a spacecraft changes due to fuel
consumption.)
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Outline of the Chapter. Section 2–1 has presented an introduction to the math-
ematical modeling of dynamic systems. Section 2–2 presents the transfer function and
impulse-response function. Section 2–3 introduces automatic control systems and Sec-
tion 2–4 discusses concepts of modeling in state space. Section 2–5 presents state-space
representation of dynamic systems. Section 2–6 discusses transformation of mathemat-
ical models with MATLAB. Finally, Section 2–7 discusses linearization of nonlinear
mathematical models.

2–2 TRANSFER FUNCTION AND IMPULSE-
RESPONSE FUNCTION

In control theory, functions called transfer functions are commonly used to character-
ize the input-output relationships of components or systems that can be described by lin-
ear, time-invariant, differential equations. We begin by defining the transfer function
and follow with a derivation of the transfer function of a differential equation system.
Then we discuss the impulse-response function.

Transfer Function. The transfer function of a linear, time-invariant, differential
equation system is defined as the ratio of the Laplace transform of the output (response
function) to the Laplace transform of the input (driving function) under the assumption
that all initial conditions are zero.

Consider the linear time-invariant system defined by the following differential equation:

where y is the output of the system and x is the input. The transfer function of this sys-
tem is the ratio of the Laplace transformed output to the Laplace transformed input
when all initial conditions are zero, or

By using the concept of transfer function, it is possible to represent system dynam-
ics by algebraic equations in s. If the highest power of s in the denominator of the trans-
fer function is equal to n, the system is called an nth-order system.

Comments on Transfer Function. The applicability of the concept of the trans-
fer function is limited to linear, time-invariant, differential equation systems.The trans-
fer function approach, however, is extensively used in the analysis and design of such
systems. In what follows, we shall list important comments concerning the transfer func-
tion. (Note that a system referred to in the list is one described by a linear, time-invariant,
differential equation.)

=
Y(s)

X(s)
=

b0 sm + b1 sm - 1 + p + bm - 1 s + bm

a0 sn + a1 sn - 1 + p + an - 1 s + an

 Transfer function = G(s) =
l[output]

l[input]
2
zero initial conditions

= b0 x
(m)

+  b1x
(m - 1)

+ p + bm - 1 x# + bm x  (n � m)

a0 y
(n)

+  a1y
(n - 1)
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1. The transfer function of a system is a mathematical model in that it is an opera-
tional method of expressing the differential equation that relates the output vari-
able to the input variable.

2. The transfer function is a property of a system itself, independent of the magnitude
and nature of the input or driving function.

3. The transfer function includes the units necessary to relate the input to the output;
however, it does not provide any information concerning the physical structure of
the system. (The transfer functions of many physically different systems can be
identical.)

4. If the transfer function of a system is known, the output or response can be stud-
ied for various forms of inputs with a view toward understanding the nature of
the system.

5. If the transfer function of a system is unknown, it may be established experimen-
tally by introducing known inputs and studying the output of the system. Once
established, a transfer function gives a full description of the dynamic character-
istics of the system, as distinct from its physical description.

Convolution Integral. For a linear, time-invariant system the transfer function
G(s) is

where X(s) is the Laplace transform of the input to the system and Y(s) is the Laplace
transform of the output of the system, where we assume that all initial conditions in-
volved are zero. It follows that the output Y(s) can be written as the product of G(s) and
X(s), or

(2–1)

Note that multiplication in the complex domain is equivalent to convolution in the time
domain (see Appendix A), so the inverse Laplace transform of Equation (2–1) is given
by the following convolution integral:

where both g(t) and x(t) are 0 for t<0.

Impulse-Response Function. Consider the output (response) of a linear time-
invariant system to a unit-impulse input when the initial conditions are zero. Since the
Laplace transform of the unit-impulse function is unity, the Laplace transform of the
output of the system is

(2–2)Y(s) = G(s)

 = 3
t

0
g(t)x(t - t) dt

 y(t) = 3
t

0
x(t)g(t - t) dt

Y(s) = G(s)X(s)

G(s) =
Y(s)

X(s)
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The inverse Laplace transform of the output given by Equation (2–2) gives the impulse
response of the system. The inverse Laplace transform of G(s), or

is called the impulse-response function. This function g(t) is also called the weighting
function of the system.

The impulse-response function g(t) is thus the response of a linear time-invariant
system to a unit-impulse input when the initial conditions are zero.The Laplace trans-
form of this function gives the transfer function. Therefore, the transfer function and
impulse-response function of a linear, time-invariant system contain the same infor-
mation about the system dynamics. It is hence possible to obtain complete informa-
tion about the dynamic characteristics of the system by exciting it with an impulse
input and measuring the response. (In practice, a pulse input with a very short dura-
tion compared with the significant time constants of the system can be considered an
impulse.)

2–3 AUTOMATIC CONTROL SYSTEMS

A control system may consist of a number of components. To show the functions
performed by each component, in control engineering, we commonly use a diagram
called the block diagram. This section first explains what a block diagram is. Next, it
discusses introductory aspects of automatic control systems, including various control
actions.Then, it presents a method for obtaining block diagrams for physical systems, and,
finally, discusses techniques to simplify such diagrams.

Block Diagrams. A block diagram of a system is a pictorial representation of the
functions performed by each component and of the flow of signals. Such a diagram de-
picts the interrelationships that exist among the various components. Differing from a
purely abstract mathematical representation, a block diagram has the advantage of
indicating more realistically the signal flows of the actual system.

In a block diagram all system variables are linked to each other through functional
blocks.The functional block or simply block is a symbol for the mathematical operation
on the input signal to the block that produces the output. The transfer functions of the
components are usually entered in the corresponding blocks, which are connected by ar-
rows to indicate the direction of the flow of signals. Note that the signal can pass only
in the direction of the arrows.Thus a block diagram of a control system explicitly shows
a unilateral property.

Figure 2–1 shows an element of the block diagram. The arrowhead pointing toward
the block indicates the input, and the arrowhead leading away from the block repre-
sents the output. Such arrows are referred to as signals.

l-1 CG(s) D = g(t)

Transfer
function

G(s)
Figure 2–1
Element of a block
diagram.
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+
–

R(s) E(s)
G(s)

C(s)

Summing
point

Branch
point

Figure 2–3
Block diagram of a
closed-loop system.

Note that the dimension of the output signal from the block is the dimension of the
input signal multiplied by the dimension of the transfer function in the block.

The advantages of the block diagram representation of a system are that it is easy
to form the overall block diagram for the entire system by merely connecting the blocks
of the components according to the signal flow and that it is possible to evaluate the
contribution of each component to the overall performance of the system.

In general, the functional operation of the system can be visualized more readily by
examining the block diagram than by examining the physical system itself. A block di-
agram contains information concerning dynamic behavior, but it does not include any
information on the physical construction of the system. Consequently, many dissimilar
and unrelated systems can be represented by the same block diagram.

It should be noted that in a block diagram the main source of energy is not explicitly
shown and that the block diagram of a given system is not unique.A number of different
block diagrams can be drawn for a system, depending on the point of view of the analysis.

Summing Point. Referring to Figure 2–2, a circle with a cross is the symbol that
indicates a summing operation. The plus or minus sign at each arrowhead indicates
whether that signal is to be added or subtracted. It is important that the quantities being
added or subtracted have the same dimensions and the same units.

Branch Point. A branch point is a point from which the signal from a block goes
concurrently to other blocks or summing points.

Block Diagram of a Closed-Loop System. Figure 2–3 shows an example of a
block diagram of a closed-loop system. The output C(s) is fed back to the summing
point, where it is compared with the reference input R(s). The closed-loop nature of
the system is clearly indicated by the figure. The output of the block, C(s) in this case,
is obtained by multiplying the transfer function G(s) by the input to the block, E(s).Any
linear control system may be represented by a block diagram consisting of blocks, sum-
ming points, and branch points.

When the output is fed back to the summing point for comparison with the input, it
is necessary to convert the form of the output signal to that of the input signal. For
example, in a temperature control system, the output signal is usually the controlled
temperature. The output signal, which has the dimension of temperature, must be con-
verted to a force or position or voltage before it can be compared with the input signal.
This conversion is accomplished by the feedback element whose transfer function is H(s),
as shown in Figure 2–4.The role of the feedback element is to modify the output before
it is compared with the input. (In most cases the feedback element is a sensor that measures

+
–

a a – b

b

Figure 2–2
Summing point.



the output of the plant.The output of the sensor is compared with the system input, and
the actuating error signal is generated.) In the present example, the feedback signal that
is fed back to the summing point for comparison with the input is B(s) = H(s)C(s).

Open-Loop Transfer Function and Feedforward Transfer Function. Refer-
ring to Figure 2–4, the ratio of the feedback signal B(s) to the actuating error signal
E(s) is called the open-loop transfer function. That is,

The ratio of the output C(s) to the actuating error signal E(s) is called the feed-
forward transfer function, so that

If the feedback transfer function H(s) is unity, then the open-loop transfer function and
the feedforward transfer function are the same.

Closed-Loop Transfer Function. For the system shown in Figure 2–4, the output
C(s) and input R(s) are related as follows: since

eliminating E(s) from these equations gives

or

(2–3)

The transfer function relating C(s) to R(s) is called the closed-loop transfer function. It
relates the closed-loop system dynamics to the dynamics of the feedforward elements
and feedback elements.

From Equation (2–3), C(s) is given by

C(s) =
G(s)

1 + G(s)H(s)
R(s)

C(s)

R(s)
=

G(s)

1 + G(s)H(s)

C(s) = G(s) CR(s) - H(s)C(s) D
 = R(s) - H(s)C(s)

 E(s) = R(s) - B(s)

 C(s) = G(s)E(s)

Feedforward transfer function =
C(s)

E(s)
= G(s)

Open-loop transfer function =
B(s)

E(s)
= G(s)H(s)
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R(s)

B(s)

E(s)
G(s)

H(s)

C(s)
+

–

Figure 2–4
Closed-loop system.
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G1(s)

G1(s)

G2(s)

G2(s)
C(s)R(s)

C(s)

C(s)

R(s)

R(s)

+
+

G1(s)

G2(s)

+–

(a)

(b)

(c)

Figure 2–5
(a) Cascaded system;
(b) parallel system;
(c) feedback (closed-
loop) system.

Thus the output of the closed-loop system clearly depends on both the closed-loop trans-
fer function and the nature of the input.

Obtaining Cascaded, Parallel, and Feedback (Closed-Loop) Transfer Functions
with MATLAB. In control-systems analysis, we frequently need to calculate the cas-
caded transfer functions, parallel-connected transfer functions, and feedback-connected
(closed-loop) transfer functions. MATLAB has convenient commands to obtain the cas-
caded, parallel, and feedback (closed-loop) transfer functions.

Suppose that there are two components G1(s) and G2(s) connected differently as
shown in Figure 2–5 (a), (b), and (c), where

To obtain the transfer functions of the cascaded system, parallel system, or feedback
(closed-loop) system, the following commands may be used:

[num, den] = series(num1,den1,num2,den2)
[num, den] = parallel(num1,den1,num2,den2)
[num, den] = feedback(num1,den1,num2,den2)

As an example, consider the case where

MATLAB Program 2–1 gives C(s)/R(s)=num�den for each arrangement of G1(s)
and G2(s). Note that the command

printsys(num,den)

displays the num�den Cthat is, the transfer function C(s)/R(s) D of the system considered.

G1(s) =
10

s2 + 2s + 10
=

num1

den1
,  G2(s) =

5

s + 5
=

num2

den2

G1(s) =
num1

den1
,  G2(s) =

num2

den2
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Automatic Controllers. An automatic controller compares the actual value of
the plant output with the reference input (desired value), determines the deviation, and
produces a control signal that will reduce the deviation to zero or to a small value.
The manner in which the automatic controller produces the control signal is called
the control action. Figure 2–6 is a block diagram of an industrial control system, which

MATLAB Program 2–1

num1 = [10];
den1 = [1  2  10];
num2 = [5];
den2 = [1  5];
[num, den] = series(num1,den1,num2,den2);
printsys(num,den)

num/den =

[num, den] = parallel(num1,den1,num2,den2);
printsys(num,den)

num/den =

[num, den] = feedback(num1,den1,num2,den2);
printsys(num,den)

num/den =

10s + 50
s^3 + 7s^2 + 20s + 100

5s^2 + 20s + 100
s^3 + 7s^2 + 20s + 50

50
s^3 + 7s^2 + 20s + 50

Automatic controller

Error detector

Amplifier Actuator Plant
Output

Sensor

Reference
input

Actuating
error signal

Set
point� �

+
–

Figure 2–6
Block diagram of an
industrial control
system, which
consists of an
automatic controller,
an actuator, a plant,
and a sensor
(measuring element).
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consists of an automatic controller, an actuator, a plant, and a sensor (measuring ele-
ment). The controller detects the actuating error signal, which is usually at a very low
power level, and amplifies it to a sufficiently high level. The output of an automatic
controller is fed to an actuator, such as an electric motor, a hydraulic motor, or a
pneumatic motor or valve. (The actuator is a power device that produces the input to
the plant according to the control signal so that the output signal will approach the
reference input signal.)

The sensor or measuring element is a device that converts the output variable into an-
other suitable variable, such as a displacement, pressure, voltage, etc., that can be used to
compare the output to the reference input signal.This element is in the feedback path of
the closed-loop system.The set point of the controller must be converted to a reference
input with the same units as the feedback signal from the sensor or measuring element.

Classifications of Industrial Controllers. Most industrial controllers may be
classified according to their control actions as:

1. Two-position or on–off controllers
2. Proportional controllers
3. Integral controllers
4. Proportional-plus-integral controllers
5. Proportional-plus-derivative controllers
6. Proportional-plus-integral-plus-derivative controllers

Most industrial controllers use electricity or pressurized fluid such as oil or air as
power sources. Consequently, controllers may also be classified according to the kind of
power employed in the operation, such as pneumatic controllers, hydraulic controllers,
or electronic controllers. What kind of controller to use must be decided based on the
nature of the plant and the operating conditions, including such considerations as safety,
cost, availability, reliability, accuracy, weight, and size.

Two-Position or On–Off Control Action. In a two-position control system, the
actuating element has only two fixed positions, which are, in many cases, simply on and
off.Two-position or on–off control is relatively simple and inexpensive and, for this rea-
son, is very widely used in both industrial and domestic control systems.

Let the output signal from the controller be u(t) and the actuating error signal be e(t).
In two-position control, the signal u(t) remains at either a maximum or minimum value,
depending on whether the actuating error signal is positive or negative, so that

where U1 and U2 are constants. The minimum value U2 is usually either zero or –U1 .
Two-position controllers are generally electrical devices, and an electric solenoid-oper-
ated valve is widely used in such controllers. Pneumatic proportional controllers with very
high gains act as two-position controllers and are sometimes called pneumatic two-
position controllers.

Figures 2–7(a) and (b) show the block diagrams for two-position or on–off controllers.
The range through which the actuating error signal must move before the switching occurs

 = U2 ,  for e(t) 6 0

 u(t) = U1 ,  for e(t) 7 0
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is called the differential gap. A differential gap is indicated in Figure 2–7(b). Such a dif-
ferential gap causes the controller output u(t) to maintain its present value until the ac-
tuating error signal has moved slightly beyond the zero value. In some cases, the differential
gap is a result of unintentional friction and lost motion; however, quite often it is inten-
tionally provided in order to prevent too-frequent operation of the on–off mechanism.

Consider the liquid-level control system shown in Figure 2–8(a), where the electromag-
netic valve shown in Figure 2–8(b) is used for controlling the inflow rate.This valve is either
open or closed.With this two-position control, the water inflow rate is either a positive con-
stant or zero. As shown in Figure 2–9, the output signal continuously moves between the
two limits required to cause the actuating element to move from one fixed position to the
other. Notice that the output curve follows one of two exponential curves, one correspon-
ding to the filling curve and the other to the emptying curve. Such output oscillation be-
tween two limits is a typical response characteristic of a system under two-position control.

(a) (b)

U1

U2

ue U1

U2

ue

Differential gap

+
–

+
–

Figure 2–7
(a) Block diagram of
an on–off controller;
(b) block diagram of
an on–off controller
with differential gap.

115 V

Float

R

C h

(a) (b)

qi

Movable iron core

Magnetic coil

Figure 2–8
(a) Liquid-level
control system;
(b) electromagnetic
valve.

h(t)

t0

Differential
gap

Figure 2–9
Level h(t)-versus-t
curve for the system
shown in Figure 2–8(a).
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From Figure 2–9, we notice that the amplitude of the output oscillation can 
be reduced by decreasing the differential gap. The decrease in the differential 
gap, however, increases the number of on–off switchings per minute and reduces 
the useful life of the component. The magnitude of the differential gap must be 
determined from such considerations as the accuracy required and the life of 
the component.

Proportional Control Action. For a controller with proportional control action,
the relationship between the output of the controller u(t) and the actuating error signal
e(t) is

or, in Laplace-transformed quantities,

where Kp is termed the proportional gain.
Whatever the actual mechanism may be and whatever the form of the operating

power, the proportional controller is essentially an amplifier with an adjustable gain.

Integral Control Action. In a controller with integral control action, the value of
the controller output u(t) is changed at a rate proportional to the actuating error signal
e(t). That is,

or

where Ki is an adjustable constant. The transfer function of the integral controller is

Proportional-Plus-Integral Control Action. The control action of a proportional-
plus-integral controller is defined by

u(t) = Kp e(t) +
Kp

Ti 3
t

0
e(t) dt

U(s)

E(s)
=

Ki

s

u(t) = Ki3
t

0
e(t) dt

du(t)

dt
= Ki e(t)

U(s)

E(s)
= Kp

u(t) = Kp e(t)
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or the transfer function of the controller is

where is called the integral time.

Proportional-Plus-Derivative Control Action. The control action of a proportional-
plus-derivative controller is defined by

and the transfer function is

where is called the derivative time.

Proportional-Plus-Integral-Plus-Derivative Control Action. The combination of
proportional control action, integral control action, and derivative control action is
termed proportional-plus-integral-plus-derivative control action. It has the advantages
of each of the three individual control actions. The equation of a controller with this
combined action is given by

or the transfer function is

where Kp is the proportional gain, is the integral time, and is the derivative time.
The block diagram of a proportional-plus-integral-plus-derivative controller is shown in
Figure 2–10.

TdTi

U(s)

E(s)
= Kp a1 +

1

Ti s
+ Td s b

u(t) = Kp e(t) +
Kp

Ti 3
t

0
e(t) dt + Kp Td

de(t)

dt

Td

U(s)

E(s)
= KpA1 + Td sB

u(t) = Kp e(t) + Kp Td

de(t)

dt

Ti

U(s)

E(s)
= Kp a1 +

1

Ti s
b

+
–

E(s) U(s)Kp(1 + Tis + Ti Tds2)
Tis

Figure 2–10
Block diagram of a
proportional-plus-
integral-plus-
derivative controller.
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R(s)
G1(s) G2(s)

H(s)

Disturbance
D(s)

C(s)
+

–
+

+

Figure 2–11
Closed-loop system
subjected to a
disturbance.

Closed-Loop System Subjected to a Disturbance. Figure 2–11 shows a closed-
loop system subjected to a disturbance. When two inputs (the reference input and dis-
turbance) are present in a linear time-invariant system, each input can be treated
independently of the other; and the outputs corresponding to each input alone can be
added to give the complete output. The way each input is introduced into the system is
shown at the summing point by either a plus or minus sign.

Consider the system shown in Figure 2–11. In examining the effect of the distur-
bance D(s), we may assume that the reference input is zero; we may then calculate the
response CD(s) to the disturbance only. This response can be found from

On the other hand, in considering the response to the reference input R(s), we may
assume that the disturbance is zero.Then the response CR(s) to the reference input R(s)
can be obtained from

The response to the simultaneous application of the reference input and disturbance
can be obtained by adding the two individual responses. In other words, the response
C(s) due to the simultaneous application of the reference input R(s) and disturbance
D(s) is given by

Consider now the case where |G1(s)H(s)| � 1 and |G1(s)G2(s)H(s)| � 1. In this
case, the closed-loop transfer function CD(s)/D(s) becomes almost zero, and the effect
of the disturbance is suppressed. This is an advantage of the closed-loop system.

On the other hand, the closed-loop transfer function CR(s)/R(s) approaches 1/H(s)
as the gain of G1(s)G2(s)H(s) increases.This means that if |G1(s)G2(s)H(s)| � 1, then
the closed-loop transfer function CR(s)/R(s) becomes independent of G1(s) and G2(s)
and inversely proportional to H(s), so that the variations of G1(s) and G2(s) do not
affect the closed-loop transfer function CR(s)/R(s). This is another advantage of the
closed-loop system. It can easily be seen that any closed-loop system with unity feedback,
H(s)=1, tends to equalize the input and output.

 =
G2(s)

1 + G1(s)G2(s)H(s)
 CG1(s)R(s) + D(s) D C(s) = CR(s) + CD(s)

CR(s)

R(s)
=

G1(s)G2(s)

1 + G1(s)G2(s)H(s)

CD(s)

D(s)
=

G2(s)

1 + G1(s)G2(s)H(s)
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Procedures for Drawing a Block Diagram. To draw a block diagram for a sys-
tem, first write the equations that describe the dynamic behavior of each component.
Then take the Laplace transforms of these equations, assuming zero initial conditions,
and represent each Laplace-transformed equation individually in block form. Finally, as-
semble the elements into a complete block diagram.

As an example, consider the RC circuit shown in Figure 2–12(a). The equations for
this circuit are

(2–4)

(2–5)

The Laplace transforms of Equations (2–4) and (2–5), with zero initial condition, become

(2–6)

(2–7)

Equation (2–6) represents a summing operation, and the corresponding diagram is
shown in Figure 2–12(b). Equation (2–7) represents the block as shown in Figure 2–12(c).
Assembling these two elements, we obtain the overall block diagram for the system as
shown in Figure 2–12(d).

Block Diagram Reduction. It is important to note that blocks can be connected
in series only if the output of one block is not affected by the next following block. If
there are any loading effects between the components, it is necessary to combine these
components into a single block.

Any number of cascaded blocks representing nonloading components can be
replaced by a single block, the transfer function of which is simply the product of the
individual transfer functions.

 Eo(s) =
I(s)

Cs

 I(s) =
Ei(s) - Eo(s)

R

eo = 1i dt

C

i =
ei - eo

R

(d)

Ei(s) I(s) Eo(s)1
R

1
Cs

Eo(s)

(b)

Ei(s) I(s)1
R

(c)

I(s) Eo(s)1
Cs

(a)

R

C eoei

i

+
–

+
–

Figure 2–12
(a) RC circuit;
(b) block diagram
representing
Equation (2–6);
(c) block diagram
representing
Equation (2–7);
(d) block diagram of
the RC circuit.
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–
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–Figure 2–13

(a) Multiple-loop
system;
(b)–(e) successive
reductions of the
block diagram shown
in (a).

A complicated block diagram involving many feedback loops can be simplified by
a step-by-step rearrangement. Simplification of the block diagram by rearrangements
considerably reduces the labor needed for subsequent mathematical analysis. It should
be noted, however, that as the block diagram is simplified, the transfer functions in new
blocks become more complex because new poles and new zeros are generated.

EXAMPLE 2–1 Consider the system shown in Figure 2–13(a). Simplify this diagram.
By moving the summing point of the negative feedback loop containing H2 outside the posi-

tive feedback loop containing H1, we obtain Figure 2–13(b). Eliminating the positive feedback loop,
we have Figure 2–13(c).The elimination of the loop containing H2/G1 gives Figure 2–13(d). Finally,
eliminating the feedback loop results in Figure 2–13(e).
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Notice that the numerator of the closed-loop transfer function C(s)/R(s) is the product of the
transfer functions of the feedforward path. The denominator of C(s)/R(s) is equal to

(The positive feedback loop yields a negative term in the denominator.)

2–4 MODELING IN STATE SPACE

In this section we shall present introductory material on state-space analysis of control
systems.

Modern Control Theory. The modern trend in engineering systems is toward
greater complexity, due mainly to the requirements of complex tasks and good accu-
racy. Complex systems may have multiple inputs and multiple outputs and may be time
varying. Because of the necessity of meeting increasingly stringent requirements on
the performance of control systems, the increase in system complexity, and easy access
to large scale computers, modern control theory, which is a new approach to the analy-
sis and design of complex control systems, has been developed since around 1960.This
new approach is based on the concept of state. The concept of state by itself is not
new, since it has been in existence for a long time in the field of classical dynamics and
other fields.

Modern Control Theory Versus Conventional Control Theory. Modern con-
trol theory is contrasted with conventional control theory in that the former is appli-
cable to multiple-input, multiple-output systems, which may be linear or nonlinear,
time invariant or time varying, while the latter is applicable only to linear time-
invariant single-input, single-output systems. Also, modern control theory is essen-
tially time-domain approach and frequency domain approach (in certain cases such as
H-infinity control), while conventional control theory is a complex frequency-domain
approach. Before we proceed further, we must define state, state variables, state vector,
and state space.

State. The state of a dynamic system is the smallest set of variables (called state
variables) such that knowledge of these variables at t=t0, together with knowledge of
the input for t � t0 , completely determines the behavior of the system for any time
t � t0.

Note that the concept of state is by no means limited to physical systems. It is appli-
cable to biological systems, economic systems, social systems, and others.

State Variables. The state variables of a dynamic system are the variables mak-
ing up the smallest set of variables that determine the state of the dynamic system. If at

 = 1 - G1 G2 H1 + G2 G3 H2 + G1 G2 G3 

= 1 + A-G1 G2 H1 + G2 G3 H2 + G1 G2 G3B
1 +a (product of the transfer functions around each loop)
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least n variables x1, x2, p , xn are needed to completely describe the behavior of a dy-
namic system (so that once the input is given for t � t0 and the initial state at t=t0 is
specified, the future state of the system is completely determined), then such n variables
are a set of state variables.

Note that state variables need not be physically measurable or observable quantities.
Variables that do not represent physical quantities and those that are neither measura-
ble nor observable can be chosen as state variables. Such freedom in choosing state vari-
ables is an advantage of the state-space methods. Practically, however, it is convenient
to choose easily measurable quantities for the state variables, if this is possible at all, be-
cause optimal control laws will require the feedback of all state variables with suitable
weighting.

State Vector. If n state variables are needed to completely describe the behavior
of a given system, then these n state variables can be considered the n components of a
vector x. Such a vector is called a state vector. A state vector is thus a vector that deter-
mines uniquely the system state x(t) for any time t � t0 , once the state at t=t0 is given
and the input u(t) for t � t0 is specified.

State Space. The n-dimensional space whose coordinate axes consist of the x1

axis, x2 axis, p , xn axis, where x1, x2, p , xn are state variables, is called a state space.Any
state can be represented by a point in the state space.

State-Space Equations. In state-space analysis we are concerned with three types
of variables that are involved in the modeling of dynamic systems: input variables, out-
put variables, and state variables. As we shall see in Section 2–5, the state-space repre-
sentation for a given system is not unique, except that the number of state variables is
the same for any of the different state-space representations of the same system.

The dynamic system must involve elements that memorize the values of the input for
t � t1 . Since integrators in a continuous-time control system serve as memory devices,
the outputs of such integrators can be considered as the variables that define the inter-
nal state of the dynamic system.Thus the outputs of integrators serve as state variables.
The number of state variables to completely define the dynamics of the system is equal
to the number of integrators involved in the system.

Assume that a multiple-input, multiple-output system involves n integrators.Assume
also that there are r inputs u1(t), u2(t), p , ur(t) and m outputs y1(t), y2(t), p , ym(t).
Define n outputs of the integrators as state variables: x1(t), x2(t), p , xn(t) Then the
system may be described by

(2–8)

 x
#
n(t) = fnAx1 , x2 , p , xn ; u1 , u2 , p , ur ; tB �

 �

 �

 x
#
2(t) = f2Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB x

#
1(t) = f1Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB
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The outputs y1(t), y2(t), p , ym(t) of the system may be given by

(2–9)

If we define

 ym(t) = gmAx1 , x2 , p , xn ; u1 , u2 , p , ur ; tB �

 �

 �

 y2(t) = g2Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB y1(t) = g1Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

u(t) = F
u1(t)

u2(t)

�

�

�

ur(t)

Vg(x, u, t) = F
g1Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB
g2Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

�

�

�

gmAx1 , x2 , p , xn ; u1 , u2 , p , ur ; tB
V , y(t) = F

y1(t)

y2(t)

�

�

�

ym(t)

V ,

f(x, u, t) = F
f1Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB
f2Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

�

�

�

fnAx1 , x2 , p , xn ; u1 , u2 , p , ur ; tB
V , x(t) = F

x1(t)

x2(t)

�

�

�

xn(t)

V ,

then Equations (2–8) and (2–9) become

(2–10)

(2–11)

where Equation (2–10) is the state equation and Equation (2–11) is the output equation.
If vector functions f and/or g involve time t explicitly, then the system is called a time-
varying system.

If Equations (2–10) and (2–11) are linearized about the operating state, then we
have the following linearized state equation and output equation:

(2–12)

(2–13)

where A(t) is called the state matrix, B(t) the input matrix, C(t) the output matrix, and
D(t) the direct transmission matrix. (Details of linearization of nonlinear systems about

 y(t) = C(t)x(t) + D(t)u(t)

 x# (t) = A(t)x(t) + B(t)u(t)

y(t) = g(x, u, t)

 x# (t) = f(x, u, t)
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Figure 2–15
Mechanical system.
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Figure 2–14
Block diagram of the
linear, continuous-
time control system
represented in state
space.

the operating state are discussed in Section 2–7.) A block diagram representation of
Equations (2–12) and (2–13) is shown in Figure 2–14.

If vector functions f and g do not involve time t explicitly then the system is called a
time-invariant system. In this case, Equations (2–12) and (2–13) can be simplified to

(2–14)

(2–15)

Equation (2–14) is the state equation of the linear, time-invariant system and Equation
(2–15) is the output equation for the same system. In this book we shall be concerned
mostly with systems described by Equations (2–14) and (2–15).

In what follows we shall present an example for deriving a state equation and output
equation.

EXAMPLE 2–2 Consider the mechanical system shown in Figure 2–15. We assume that the system is linear. The
external force u(t) is the input to the system, and the displacement y(t) of the mass is the output.
The displacement y(t) is measured from the equilibrium position in the absence of the external
force. This system is a single-input, single-output system.

From the diagram, the system equation is

(2–16)

This system is of second order.This means that the system involves two integrators. Let us define
state variables x1(t) and x2(t) as

Then we obtain

or

(2–17)

(2–18)

The output equation is
(2–19)y = x1

 x
#
2 = -

k

m
x1 -

b

m
x2 +

1

m
u

 x
#
1 = x2

 x
#
2 =

1

m
 A-ky - by

# B +
1

m
 u

 x
#
1 = x2

x2(t) = y
#
(t)

x1(t) = y(t)

my
$ + by

# + ky = u

 y# (t) = Cx(t) + Du(t)

 x# (t) = Ax(t) + Bu(t)



In a vector-matrix form, Equations (2–17) and (2–18) can be written as

(2–20)

The output equation, Equation (2–19), can be written as

(2–21)

Equation (2–20) is a state equation and Equation (2–21) is an output equation for the system.
They are in the standard form:

where

Figure 2–16 is a block diagram for the system. Notice that the outputs of the integrators are state
variables.

Correlation Between Transfer Functions and State-Space Equations. In what
follows we shall show how to derive the transfer function of a single-input, single-output
system from the state-space equations.

Let us consider the system whose transfer function is given by

(2–22)

This system may be represented in state space by the following equations:

(2–23)

(2–24) y = Cx + Du

 x# = Ax + Bu

Y(s)

U(s)
= G(s)

A = C 0

-
k

m

1

-
b

m

S ,  B = C 0
1
m

S ,  C = [1 0] ,  D = 0

 y = Cx + Du

 x# = Ax + Bu

y = [1 0]Bx1

x2
R

Bx
#
1

x
#
2
R = C 0

-
k

m

1

-
b

m

S Bx1

x2
R + C 0

1

m

S u
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Figure 2–16
Block diagram of the
mechanical system
shown in Figure 2–15.



34 Chapter 2 / Mathematical Modeling of Control Systems

where x is the state vector, u is the input, and y is the output.The Laplace transforms of
Equations (2–23) and (2–24) are given by

(2–25)

(2–26)

Since the transfer function was previously defined as the ratio of the Laplace transform
of the output to the Laplace transform of the input when the initial conditions were
zero, we set x(0) in Equation (2–25) to be zero. Then we have

or

By premultiplying to both sides of this last equation, we obtain

(2–27)

By substituting Equation (2–27) into Equation (2–26), we get

(2–28)

Upon comparing Equation (2–28) with Equation (2–22), we see that

(2–29)

This is the transfer-function expression of the system in terms of A, B, C, and D.
Note that the right-hand side of Equation (2–29) involves Hence G(s)

can be written as

where Q(s) is a polynomial in s. Notice that is equal to the characteristic poly-
nomial of G(s). In other words, the eigenvalues of A are identical to the poles of G(s).

EXAMPLE 2–3 Consider again the mechanical system shown in Figure 2–15. State-space equations for the system
are given by Equations (2–20) and (2–21).We shall obtain the transfer function for the system from
the state-space equations.

By substituting A, B, C, and D into Equation (2–29), we obtain

 = [1 0]C s

k

m

-1

s +
b

m

S -1C 0

1

m

S
 = [1 0] c B s

0

0

s
R - C 0

-
k

m

1

-
b

m

S s -1C 0

1

m

S + 0

 G(s) = C(s I - A)-1 B + D

∑s I - A∑

G(s) =
Q(s)

∑s I - A∑

(s I - A)-1.

G(s) = C(s I - A)-1 B + D

Y(s) = CC(s I - A)-1 B + D DU(s)

X(s) = (s I - A)-1 BU(s)

(s I - A)-1

(s I - A)X(s) = BU(s)

s X(s) - AX(s) = BU(s)

 Y(s) = CX(s) + DU(s)

 sX(s) - x(0) = AX(s) + BU(s)
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Note that

(Refer to Appendix C for the inverse of the 2 � 2 matrix.)
Thus, we have

which is the transfer function of the system. The same transfer function can be obtained from
Equation (2–16).

Transfer Matrix. Next, consider a multiple-input, multiple-output system.Assume
that there are r inputs and m outputs Define

The transfer matrix G(s) relates the output Y(s) to the input U(s), or

where G(s) is given by

[The derivation for this equation is the same as that for Equation (2–29).] Since the
input vector u is r dimensional and the output vector y is m dimensional, the transfer ma-
trix G(s) is an m*r matrix.

2–5 STATE-SPACE REPRESENTATION OF SCALAR
DIFFERENTIAL EQUATION SYSTEMS

A dynamic system consisting of a finite number of lumped elements may be described
by ordinary differential equations in which time is the independent variable. By use of
vector-matrix notation, an nth-order differential equation may be expressed by a first-
order vector-matrix differential equation. If n elements of the vector are a set of state
variables, then the vector-matrix differential equation is a state equation. In this section
we shall present methods for obtaining state-space representations of continuous-time
systems.
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State-Space Representation of nth-Order Systems of Linear Differential Equa-
tions in which the Forcing Function Does Not Involve Derivative Terms. Con-
sider the following nth-order system:

(2–30)

Noting that the knowledge of together with the input u(t) for
t � 0, determines completely the future behavior of the system, we may take

as a set of n state variables. (Mathematically, such a choice of state
variables is quite convenient. Practically, however, because higher-order derivative terms
are inaccurate, due to the noise effects inherent in any practical situations, such a choice
of the state variables may not be desirable.)

Let us define

Then Equation (2–30) can be written as

or

(2–31)
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x
#
n = -anx1 - p - a1xn + u

x
#
n - 1 = xn

�

�

�

x
#
2 = x3

x
#
1 = x2

 xn = y
(n - 1)

 �
 �
 �

 x2 = y
#

 x1 = y

y(t), y
#
(t), p , y

(n - 1)
(t)

y(0), y
#
(0), p , y

(n - 1)
(0),

y
(n)

+  a1y
(n - 1)

+ p + an - 1 y# + an y = u
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The output can be given by

or

(2–32)

where

[Note that D in Equation (2–24) is zero.] The first-order differential equation, Equa-
tion (2–31), is the state equation, and the algebraic equation, Equation (2–32), is the
output equation.

Note that the state-space representation for the transfer function system

is given also by Equations (2–31) and (2–32).

State-Space Representation of nth-Order Systems of Linear Differential Equa-
tions in which the Forcing Function Involves Derivative Terms. Consider the dif-
ferential equation system that involves derivatives of the forcing function, such as

(2–33)

The main problem in defining the state variables for this case lies in the derivative
terms of the input u. The state variables must be such that they will eliminate the de-
rivatives of u in the state equation.

One way to obtain a state equation and output equation for this case is to define the
following n variables as a set of n state variables:

(2–34)

xn = y
(n - 1)

-  b0u
(n - 1)

-  b1u
(n - 2)

- p - bn - 2 u# - bn - 1 u = x
#
n - 1 - bn - 1 u

�

�

�

x3 = y
$ - b0 u$ - b1u

# - b2 u = x
#
2 - b2 u

x2 = y
# - b0 u# - b1 u = x

#
1 - b1 u

x1 = y - b0 u

y
(n)

+ a1 y
(n - 1)

+ p + an - 1 y# + an y = b0 u
(n)

+ b1 u
(n - 1)

+ p + bn - 1 u# + bn u

Y(s)

U(s)
=

1
sn + a1 sn - 1 + p + an - 1 s + an

C = [1 0 p 0]

y = Cx

y = [1 0 p 0]F
x1

x2

�

�

�

xn

V
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where are determined from

(2–35)

With this choice of state variables the existence and uniqueness of the solution of the
state equation is guaranteed. (Note that this is not the only choice of a set of state vari-
ables.) With the present choice of state variables, we obtain

(2–36)

where is given by

[To derive Equation (2–36), see Problem A–2–6.] In terms of vector-matrix equations,
Equation (2–36) and the output equation can be written as

 y = [1 0 p 0]F
x1

x2

�

�

�

xn

V + b0 u

+ G
b1

b2

�

�

�

bn - 1

bn

W uG
x1

x2

�

�

�

xn - 1

xn

W G
x
#
1

x
#
2

�

�

�

x
#
n - 1

x
#
n

W = G
0

0

�

�

�

0

-an

1

0

�

�

�

0

-an - 1

0

1

�

�

�

0

-an - 2

p
p
 

 

 
p
p

0

0

�

�

�

1

-a1

W

bn = bn - a1 bn - 1 - p - an - 1 b1 - an - 1b0

bn

x
#
n = -an x1 - an - 1 x2 - p - a1 xn + bn u

x
#
n - 1 = xn + bn - 1 u

�

�

�

x
#
2 = x3 + b2 u

x
#
1 = x2 + b1 u

bn - 1 = bn - 1 - a1 bn - 2 - p - an - 2 b1 - an - 1b0

�

�

�

b3 = b3 - a1 b2 - a2 b1 - a3 b0

b2 = b2 - a1 b1 - a2 b0

b1 = b1 - a1 b0

b0 = b0

b0 , b1 , b2 , p , bn - 1
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or

(2–37)

(2–38)

where

In this state-space representation, matrices A and C are exactly the same as those for
the system of Equation (2–30).The derivatives on the right-hand side of Equation (2–33)
affect only the elements of the B matrix.

Note that the state-space representation for the transfer function

is given also by Equations (2–37) and (2–38).
There are many ways to obtain state-space representations of systems. Methods for

obtaining canonical representations of systems in state space (such as controllable canon-
ical form, observable canonical form, diagonal canonical form, and Jordan canonical
form) are presented in Chapter 9.

MATLAB can also be used to obtain state-space representations of systems from
transfer-function representations, and vice versa.This subject is presented in Section 2–6.

2–6 TRANSFORMATION OF MATHEMATICAL MODELS WITH MATLAB

MATLAB is quite useful to transform the system model from transfer function to state
space, and vice versa. We shall begin our discussion with transformation from transfer
function to state space.

Y(s)

U(s)
=

b0 sn + b1 sn - 1 + p + bn - 1 s + bn

sn + a1 sn - 1 + p + an - 1 s + an

 B = G
b1

b2

�

�

�

bn - 1

bn

W ,    C = [1 0 p 0],  D = b0 = b0

 x = G
x1

x2

�

�

�

xn - 1

xn

W ,   A = G
0

0

�

�

�

0

-an

1

0

�

�

�

0

-an - 1

0

1

�

�

�

0

-an - 2

p
p
 

 

 
p
p

0

0

�

�

�

1

-a1

W

 y = Cx + Du

 x# = Ax + Bu
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Let us write the closed-loop transfer function as

Once we have this transfer-function expression, the MATLAB command

[A,B,C,D] = tf2ss(num,den)

will give a state-space representation. It is important to note that the state-space repre-
sentation for any system is not unique. There are many (infinitely many) state-space
representations for the same system. The MATLAB command gives one possible such
state-space representation.

Transformation from Transfer Function to State Space Representation.
Consider the transfer-function system

(2–39)

There are many (infinitely many) possible state-space representations for this system.
One possible state-space representation is

Another possible state-space representation (among infinitely many alternatives) is

(2–40) Cx
#
1

x
#
2

x
#
3

S = C-14

1

0

-56

0

1

-160

0

0

S Cx1

x2

x3

S + C1

0

0

Su

 y = [1 0 0]Cx1

x2

x3

S + [0]u

 Cx
#
1

x
#
2

x
#
3

S = C 0

0

-160

1

0

-56

0

1

-14

S Cx1

x2

x3

S + C 0

1

-14

Su

 =
s

s3 + 14s2 + 56s + 160

 
Y(s)

U(s)
=

s

(s + 10)As2 + 4s + 16B

Y(s)

U(s)
=

numerator polynomial in s

denominator polynomial in s
=

num
den
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(2–41)

MATLAB transforms the transfer function given by Equation (2–39) into the 
state-space representation given by Equations (2–40) and (2–41). For the example
system considered here, MATLAB Program 2–2 will produce matrices A, B, C,
and D.

 y = [0 1 0]Cx1

x2

x3

S + [0]u

MATLAB Program 2–2

num = [1     0];
den = [1   14   56   160];
[A,B,C,D] = tf2ss(num,den)

A =

-14 -56 -160
1 0 0
0 1 0

B =

1
0
0

C =

0 1 0

D =

0

Transformation from State Space Representation to Transfer Function. To
obtain the transfer function from state-space equations, use the following command:

[num,den] = ss2tf(A,B,C,D,iu)

iu must be specified for systems with more than one input. For example, if the system
has three inputs (u1, u2, u3), then iu must be either 1, 2, or 3, where 1 implies u1, 2
implies u2, and 3 implies u3.

If the system has only one input, then either

[num,den] = ss2tf(A,B,C,D)
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EXAMPLE 2–4 Obtain the transfer function of the system defined by the following state-space equations:

MATLAB Program 2-3 will produce the transfer function for the given system.The transfer func-
tion obtained is given by

Y(s)

U(s)
=

25s + 5
s3 + 5s2 + 25s + 5

 y = [1 0 0]Cx1

x2

x3

S
 Cx

#
1

x
#
2

x
#
3

S = C 0

0

-5

1

0

-25

0

1

-5

S Cx1

x2

x3

S + C 0

25

-120

Su

MATLAB Program 2–3

A = [0   1   0;   0   0   1;   -5   -25   -5];
B = [0; 25; -120];
C = [1   0     0];
D = [0];
[num,den] = ss2tf(A,B,C,D)

num =

0   0.0000   25.0000  5.0000

den

1.0000   5.0000   25.0000  5.0000

% ***** The same result can be obtained by entering the following command: *****

[num,den] = ss2tf(A,B,C,D,1)

num =

0   0.0000   25.0000  5.0000

den =

1.0000   5.0000   25.0000  5.0000

or

[num,den] = ss2tf(A,B,C,D,1)

may be used. For the case where the system has multiple inputs and multiple outputs,
see Problem A–2–12.



Section 2–7 / Linearization of Nonlinear Mathematical Models 43

2–7 LINEARIZATION OF NONLINEAR MATHEMATICAL MODELS

Nonlinear Systems. A system is nonlinear if the principle of superposition does
not apply. Thus, for a nonlinear system the response to two inputs cannot be calculated
by treating one input at a time and adding the results.

Although many physical relationships are often represented by linear equations,
in most cases actual relationships are not quite linear. In fact, a careful study of phys-
ical systems reveals that even so-called “linear systems” are really linear only in lim-
ited operating ranges. In practice, many electromechanical systems, hydraulic systems,
pneumatic systems, and so on, involve nonlinear relationships among the variables.
For example, the output of a component may saturate for large input signals.There may
be a dead space that affects small signals. (The dead space of a component is a small
range of input variations to which the component is insensitive.) Square-law nonlin-
earity may occur in some components. For instance, dampers used in physical systems
may be linear for low-velocity operations but may become nonlinear at high veloci-
ties, and the damping force may become proportional to the square of the operating
velocity.

Linearization of Nonlinear Systems. In control engineering a normal operation
of the system may be around an equilibrium point, and the signals may be considered
small signals around the equilibrium. (It should be pointed out that there are many ex-
ceptions to such a case.) However, if the system operates around an equilibrium point
and if the signals involved are small signals, then it is possible to approximate the non-
linear system by a linear system. Such a linear system is equivalent to the nonlinear sys-
tem considered within a limited operating range. Such a linearized model (linear,
time-invariant model) is very important in control engineering.

The linearization procedure to be presented in the following is based on the ex-
pansion of nonlinear function into a Taylor series about the operating point and the
retention of only the linear term. Because we neglect higher-order terms of the Taylor
series expansion, these neglected terms must be small enough; that is, the variables
deviate only slightly from the operating condition. (Otherwise, the result will be
inaccurate.)

Linear Approximation of Nonlinear Mathematical Models. To obtain a linear
mathematical model for a nonlinear system, we assume that the variables deviate only
slightly from some operating condition. Consider a system whose input is x(t) and out-
put is y(t). The relationship between y(t) and x(t) is given by

(2–42)

If the normal operating condition corresponds to then Equation (2–42) may be
expanded into a Taylor series about this point as follows:

(2–43)= f(x–) +
df

dx
(x - x–) +

1
2!

d2f

dx2 (x - x–)2 + p

y = f(x)

x–, y–,

y = f(x)
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where the derivatives are evaluated at If the variation 
is small, we may neglect the higher-order terms in Then Equation (2–43) may be
written as

(2–44)

where

Equation (2–44) may be rewritten as

(2–45)

which indicates that is proportional to Equation (2–45) gives a linear math-
ematical model for the nonlinear system given by Equation (2–42) near the operating
point

Next, consider a nonlinear system whose output y is a function of two inputs x1 and
x2, so that

(2–46)

To obtain a linear approximation to this nonlinear system, we may expand Equation (2–46)
into a Taylor series about the normal operating point Then Equation (2–46)
becomes

where the partial derivatives are evaluated at Near the normal oper-
ating point, the higher-order terms may be neglected.The linear mathematical model of
this nonlinear system in the neighborhood of the normal operating condition is then
given by

y - y– = K1Ax1 - x–1B + K2Ax2 - x–2B
x2 = x–2 .x1 = x–1 ,

+
02f

0x2
2
Ax2 - x–2B2 d + p

+
1
2!
c 02f

0x2
1
Ax1 - x–1B2 + 2

02f

0x1 0x2
Ax1 - x–1B Ax2 - x–2B

y = fAx–1 , x–2B + c 0f

0x1
Ax1 - x–1B +

0f

0x2
Ax2 - x–2B d

x–1 , x–2 .

y = fAx1 , x2B
y = y–.x = x–,

x - x–.y - y–

y - y– = K(x - x–)

K =
df

dx
2
x = x–

 y– = f(x–)

y = y– + K(x - x–)

x - x–.
x - x–x = x–.d2f�dx2, pdf�dx,
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where

The linearization technique presented here is valid in the vicinity of the operating
condition. If the operating conditions vary widely, however, such linearized equations are
not adequate, and nonlinear equations must be dealt with. It is important to remember
that a particular mathematical model used in analysis and design may accurately rep-
resent the dynamics of an actual system for certain operating conditions, but may not be
accurate for other operating conditions.

EXAMPLE 2–5 Linearize the nonlinear equation

z=xy

in the region 5 � x � 7, 10 � y � 12. Find the error if the linearized equation is used to calcu-
late the value of z when x=5, y=10.

Since the region considered is given by 5 � x � 7, 10 � y � 12, choose Then
Let us obtain a linearized equation for the nonlinear equation near a point

Expanding the nonlinear equation into a Taylor series about point and neglecting
the higher-order terms, we have

where

Hence the linearized equation is

z-66=11(x-6)+6(y-11)

or

z=11x+6y-66

When x=5, y=10, the value of z given by the linearized equation is

z=11x+6y-66=55+60-66=49

The exact value of z is z=xy=50. The error is thus 50-49=1. In terms of percentage, the
error is 2%.

b =
0(xy)

0y
2
x = x– , y = y–

= x– = 6

a =
0(xy)

0x
2
x = x– , y = y–

= y– = 11

z - z– = aAx - x– B + bAy - y– B
y = y–x = x–,

y– = 11.
x– = 6,z– = x–y– = 66.

y– = 11.x– = 6,

K2 =
0f

0x2

2
x1 = x– 1 , x2 = x– 2

K1 =
0f

0x1

2
x1 = x– 1 , x2 = x– 2

y– = fAx–1 , x–2B
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EXAMPLE PROBLEMS AND SOLUTIONS

A–2–1. Simplify the block diagram shown in Figure 2–17.

Solution. First, move the branch point of the path involving H1 outside the loop involving H2 , as
shown in Figure 2–18(a). Then eliminating two loops results in Figure 2–18(b). Combining two
blocks into one gives Figure 2–18(c).

A–2–2. Simplify the block diagram shown in Figure 2–19. Obtain the transfer function relating C(s) and
R(s).

R(s) C(s)
G

H1

H2

+
–

+
+

Figure 2–17
Block diagram of a
system.

R(s) C(s)

R(s) C(s)

C(s)

G

H2

(a)

(b)

(c)

H1

G

G
1 + GH2

R(s)

1 +
H1

G

G + H1

1 + GH2

+
–

+
+

Figure 2–18
Simplified block
diagrams for the
system shown in
Figure 2–17.

G1 G2

R(s) C(s)X(s)
+

+
+

+

Figure 2–19
Block diagram of a
system.
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G1 G2

R(s) C(s)

G2

R(s) C(s)
G1 + 1

R(s) C(s)
G1G2 + G2 + 1

(a)

(b)

(c)

+
+

+
+

+
+

Figure 2–20
Reduction of the
block diagram shown
in Figure 2–19.

Solution. The block diagram of Figure 2–19 can be modified to that shown in Figure 2–20(a).
Eliminating the minor feedforward path, we obtain Figure 2–20(b), which can be simplified to
Figure 2–20(c). The transfer function C(s)/R(s) is thus given by

The same result can also be obtained by proceeding as follows: Since signal X(s) is the sum
of two signals G1R(s) and R(s), we have

The output signal C(s) is the sum of G2X(s) and R(s). Hence

And so we have the same result as before:

A–2–3. Simplify the block diagram shown in Figure 2–21. Then obtain the closed-loop transfer function
C(s)/R(s).

C(s)

R(s)
= G1 G2 + G2 + 1

C(s) = G2 X(s) + R(s) = G2 CG1 R(s) + R(s) D + R(s)

X(s) = G1 R(s) + R(s)

C(s)

R(s)
= G1 G2 + G2 + 1

G1 G2

H3

G3 G4

H2H1

+–
+

+ +–

R(s) C(s)

Figure 2–21
Block diagram of a
system.
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G1

G1

G2

H3

G4

G3 G4

H2H1

+
+

+
+

+
– +–

R(s)

R(s) C(s)

C(s)

H3

G1G4

G1 G2

1 + G1 G2 H1

R(s) C(s)G1 G2 G3 G4

1+ G1 G2 H1 + G3 G4 H2 – G2 G3 H3 + G1 G2 G3 G4 H1 H2

G3 G4

1 + G3 G4 H2

1

(a)

(b)

(c)

Figure 2–22
Successive
reductions of the
block diagram shown
in Figure 2–21.

G1 Gp+
+

+–
+

+

Gf

C(s)

D(s)

R(s) E(s) U(s)

H

Gc

Figure 2–23
Control system with
reference input and
disturbance input.

Solution. First move the branch point between G3 and G4 to the right-hand side of the loop con-
taining G3 , G4 , and H2. Then move the summing point between G1 and G2 to the left-hand side
of the first summing point. See Figure 2–22(a). By simplifying each loop, the block diagram can
be modified as shown in Figure 2–22(b). Further simplification results in Figure 2–22(c), from
which the closed-loop transfer function C(s)/R(s) is obtained as

A–2–4. Obtain transfer functions C(s)/R(s) and C(s)/D(s) of the system shown in Figure 2–23.

Solution. From Figure 2–23 we have

(2–47)

(2–48)

(2–49) E(s) = R(s) - HC(s)

 C(s) = Gp CD(s) + G1 U(s) D U(s) = Gf R(s) + Gc E(s)

C(s)

R(s)
=

G1 G2 G3 G4

1 + G1 G2 H1 + G3 G4 H2 - G2 G3 H3 + G1 G2 G3 G4 H1 H2
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By substituting Equation (2–47) into Equation (2–48), we get

(2–50)

By substituting Equation (2–49) into Equation (2–50), we obtain

Solving this last equation for C(s), we get

Hence

(2–51)

Note that Equation (2–51) gives the response C(s) when both reference input R(s) and distur-
bance input D(s) are present.

To find transfer function C(s)/R(s), we let D(s)=0 in Equation (2–51). Then we obtain

Similarly, to obtain transfer function C(s)/D(s), we let R(s)=0 in Equation (2–51). Then
C(s)/D(s) can be given by

A–2–5. Figure 2–24 shows a system with two inputs and two outputs. Derive C1(s)/R1(s), C1(s)/R2(s),
C2(s)/R1(s), and C2(s)/R2(s). (In deriving outputs for R1(s), assume that R2(s) is zero, and vice
versa.)

C(s)

D(s)
=

Gp

1 + G1 Gp Gc H

C(s)

R(s)
=

G1 GpAGf + GcB
1 + G1 Gp Gc H

C(s) =
Gp D(s) + G1 GpAGf + GcBR(s)

1 + G1 Gp Gc H

C(s) + G1 Gp Gc HC(s) = Gp D(s) + G1 GpAGf + GcBR(s)

C(s) = Gp D(s) + G1 GpEGf R(s) + Gc CR(s) - HC(s) D F
C(s) = Gp D(s) + G1 Gp CGf R(s) + Gc E(s) D

G1
C1

C2

R1

R2

G3

G4

+ −

+
−

G2

Figure 2–24
System with two
inputs and two
outputs.
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Solution. From the figure, we obtain

(2–52)

(2–53)

By substituting Equation (2–53) into Equation (2–52), we obtain

(2–54)

By substituting Equation (2–52) into Equation (2–53), we get

(2–55)

Solving Equation (2–54) for C1, we obtain

(2–56)

Solving Equation (2–55) for C2 gives

(2–57)

Equations (2–56) and (2–57) can be combined in the form of the transfer matrix as follows:

Then the transfer functions C1(s)/R1(s), C1(s)/R2(s), C2(s)/R1(s) and C2(s)/R2(s) can be obtained
as follows:

Note that Equations (2–56) and (2–57) give responses C1 and C2, respectively, when both inputs
R1 and R2 are present.

Notice that when R2(s)=0, the original block diagram can be simplified to those shown in
Figures 2–25(a) and (b). Similarly, when R1(s)=0, the original block diagram can be simplified
to those shown in Figures 2–25(c) and (d). From these simplified block diagrams we can also ob-
tain C1(s)/R1(s), C2(s)/R1(s), C1(s)/R2(s), and C2(s)/R2(s), as shown to the right of each corre-
sponding block diagram.

 
C2(s)

R1(s)
= - 

G1 G2 G4

1 - G1 G2 G3 G4
,   

C2(s)

R2(s)
=

G4

1 - G1 G2 G3 G4

 
C1(s)

R1(s)
=

G1

1 - G1 G2 G3 G4
,   

C1(s)

R2(s)
= - 

G1 G3 G4

1 - G1 G2 G3 G4

BC1

C2
R = D G1

1 - G1 G2 G3 G4

-
G1 G2 G4

1 - G1 G2 G3 G4

-
G1 G3 G4

1 - G1 G2 G3 G4

G4

1 - G1 G2 G3 G4

T BR1

R2
R

C2 =
-G1 G2 G4 R1 + G4 R2

1 - G1 G2 G3 G4

C1 =
G1 R1 - G1 G3 G4 R2

1 - G1 G2 G3 G4

C2 = G4 CR2 - G2 G1AR1 - G3 C2B D
C1 = G1 CR1 - G3 G4AR2 - G2 C1B D

 C2 = G4AR2 - G2 C1B C1 = G1AR1 - G3 C2B
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+–

R1 C1

R1

C1

1 – G1 G2 G3 G4

G1
G1

G3 G4 –G2

+–

R1 C2

G3

G1 –G2 G4

=

+–

R2 C2

R2

C2

1 – G1 G2G3 G4

G4
G4

G2 G1 –G3

=

R1

C2

1 – G1 G2 G3 G4

– G1 G2 G4=

+–

R2 C1

G2

G4 –G3 G1 R2

C1

1 – G1 G2 G3 G4

– G1 G3 G4=

(a)

(b)

(c)

(d)
Figure 2–25
Simplified block
diagrams and
corresponding
closed-loop transfer
functions.

A–2–6. Show that for the differential equation system

(2–58)

state and output equations can be given, respectively, by

(2–59)

and

(2–60)

where state variables are defined by

 x3 = y
$ - b0 u$ - b1 u# - b2 u = x

#
2 - b2 u

 x2 = y
# - b0 u# - b1 u = x

#
1 - b1 u

 x1 = y - b0 u

y = [1 0 0]Cx1

x2

x3

S + b0 u

Cx
#
1

x
#
2

x
#
3

S = C 0
0

-a3

1
0

-a2

0
1

-a1

S Cx1

x2

x3

S + Cb1

b2

b3

Su

y
% + a1 y$ + a2 y# + a3 y = b0 u% + b1 u$ + b2 u# + b3 u
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and

Solution. From the definition of state variables x2 and x3, we have

(2–61)

(2–62)

To derive the equation for we first note from Equation (2–58) that

Since

we have

Hence, we get

(2–63)

Combining Equations (2–61), (2–62), and (2–63) into a vector-matrix equation, we obtain Equa-
tion (2–59). Also, from the definition of state variable x1, we get the output equation given by
Equation (2–60).

A–2–7. Obtain a state-space equation and output equation for the system defined by

Solution. From the given transfer function, the differential equation for the system is

Comparing this equation with the standard equation given by Equation (2–33), rewritten

y
% + a1 y$ + a2 y# + a3 y = b0 u% + b1 u$ + b2u

# + b3 u

y
% + 4y

$ + 5y
# + 2y = 2u

% + u
$ + u

# + 2u

Y(s)

U(s)
=

2s3 + s2 + s + 2

s3 + 4s2 + 5s + 2

x
#
3 = -a3 x1 - a2 x2 - a1 x3 + b3 u

= -a1 x3 - a2 x2 - a3 x1 + b3 u

= -a1 x3 - a2 x2 - a3 x1 + Ab3 - a1 b2 - a2 b1 - a3 b0Bu+ Ab2 - b2 - a1 b1 - a2 b0Bu# + Ab3 - a1 b2 - a2 b1 - a3 b0Bu= -a1 x3 - a2 x2 - a3 x1 + Ab0 - b0Bu% + Ab1 - b1 - a1 b0Bu$+ b0 u% + b1 u$ + b2 u# + b3 u - b0 u% - b1 u$ - b2 u#
-a2Ay# - b0 u# - b1 uB - a2 b0 u# - a2 b1 u - a3Ay - b0 uB - a3 b0 u

= -a1Ay$ - b0 u$ - b1 u# - b2 uB - a1 b0 u$ - a1 b1 u# - a1 b2 u

= A-a1 y$ - a2 y# - a3 yB + b0 u% + b1 u$ + b2 u# + b3 u - b0 u% - b1 u$ - b2 u#
x
#
3 = y

% - b0 u% - b1 u$ - b2 u#

x3 = y
$ - b0 u$ - b1 u# - b2 u

y
% = -a1 y$ - a2 y# - a3 y + b0 u% + b1 u$ + b2 u# + b3 u

x
#
3 ,

 x
#
2 = x3 + b2 u

 x
#
1 = x2 + b1 u

 b3 = b3 - a1 b2 - a2 b1 - a3 b0

 b2 = b2 - a1 b1 - a2 b0

 b1 = b1 - a1 b0

 b0 = b0
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we find

Referring to Equation (2–35), we have

Referring to Equation (2–34), we define

Then referring to Equation (2–36),

Hence, the state-space representation of the system is

This is one possible state-space representation of the system. There are many (infinitely many)
others. If we use MATLAB, it produces the following state-space representation:

See MATLAB Program 2-4. (Note that all state-space representations for the same system are
equivalent.)

Cx1

x2

x3

S + 2u y = [-7 -9 -2]

 Cx
#
1

x
#
2

x
#
3

S = C-4

1

0

-5

0

1

-2

0

0

S Cx1

x2

x3

S + C1

0

0

Su

y = [1  0  0]Cx1

x2

x3

S + 2u

Cx
#
1

x
#
2

x
#
3

S = C 0
0

-2

1
0

-5

0
1

-4
S Cx1

x2

x3

S + C -7
19

-43
Su

 = -2x1 - 5x2 - 4x3 - 43u

 x
#
3 = -a3 x1 - a2 x2 - a1 x3 + b3 u

 x
#
2 = x3 + 19u

 x
#
1 = x2 - 7u

 x3 = x
#
2 - b2 u = x

#
2 - 19u

 x2 = x
#
1 - b1 u = x

#
1 + 7u

 x1 = y - b0 u = y - 2u

 = 2 - 4 * 19 - 5 * (-7) - 2 * 2 = -43

 b3 = b3 - a1 b2 - a2 b1 - a3 b0

 b2 = b2 - a1 b1 - a2 b0 = 1 - 4 * (-7) - 5 * 2 = 19

 b1 = b1 - a1 b0 = 1 - 4 * 2 = -7

 b0 = b0 = 2

 b0 = 2,   b1 = 1,   b2 = 1,  b3 = 2

 a1 = 4,   a2 = 5,   a3 = 2
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A–2–8. Obtain a state-space model of the system shown in Figure 2–26.

Solution. The system involves one integrator and two delayed integrators. The output of each
integrator or delayed integrator can be a state variable. Let us define the output of the plant as
x1, the output of the controller as x2, and the output of the sensor as x3. Then we obtain

Y(s) = X1(s)

X3(s)

X1(s)
=

1
s + 1

X2(s)

U(s) - X3(s)
=

1
s

X1(s)

X2(s)
=

10
s + 5

U(s) Y(s)1
s

Controller Plant

Sensor

10
s + 5

1
s + 1

+
–

Figure 2–26
Control system.

MATLAB Program 2–4

num = [2  1  1  2];
den = [1  4  5  2];
[A,B,C,D] = tf2ss(num,den)

A =

-4 -5 -2
1 0 0
0 1 0

B =

1
0
0

C =

-7 -9 -2

D =

2
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which can be rewritten as

By taking the inverse Laplace transforms of the preceding four equations, we obtain

Thus, a state-space model of the system in the standard form is given by

It is important to note that this is not the only state-space representation of the system. Infinite-
ly many other state-space representations are possible. However, the number of state variables is
the same in any state-space representation of the same system. In the present system, the num-
ber of state variables is three, regardless of what variables are chosen as state variables.

A–2–9. Obtain a state-space model for the system shown in Figure 2–27(a).

Solution. First, notice that (as+b)/s2 involves a derivative term. Such a derivative term may be
avoided if we modify (as+b)/s2 as

Using this modification, the block diagram of Figure 2–27(a) can be modified to that shown in
Figure 2–27(b).

Define the outputs of the integrators as state variables, as shown in Figure 2–27(b).Then from
Figure 2–27(b) we obtain

which may be modified to

 Y(s) = X1(s)

 sX2(s) = -bX1(s) + bU(s)

 sX1(s) = X2(s) + a CU(s) - X1(s) D
Y(s) = X1(s)

X2(s)

U(s) - X1(s)
=

b

s

X1(s)

X2(s) + a CU(s) - X1(s) D =
1
s

as + b

s2 = aa +
b

s
b 1

s

Cx1

x2

x3

S y = [1 0 0]

 Cx
#
1

x
#
2

x
#
3

S = C-5

0

1

10

0

0

0

-1

-1

S Cx1

x2

x3

S + C0

1

0

Su

 y = x1

 x
#
3 = x1 - x3

 x
#
2 = -x3 + u

 x
#
1 = -5x1 + 10x2

 Y(s) = X1(s)

 sX3(s) = X1(s) - X3(s)

 sX2(s) = -X3(s) + U(s)

 sX1(s) = -5X1(s) + 10X2(s)
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Taking the inverse Laplace transforms of the preceding three equations, we obtain

Rewriting the state and output equations in the standard vector-matrix form, we obtain

A–2–10. Obtain a state-space representation of the system shown in Figure 2–28(a).

Solution. In this problem, first expand (s+z)/(s+p) into partial fractions.

Next, convert K/ Cs(s+a) D into the product of K/s and 1/(s+a). Then redraw the block diagram,
as shown in Figure 2–28(b). Defining a set of state variables, as shown in Figure 2–28(b), we ob-
tain the following equations:

 y = x1

 x
#
3 = -(z - p)x1 - px3 + (z - p)u

 x
#
2 = -Kx1 + Kx3 + Ku

 x
#
1 = -ax1 + x2

s + z

s + p
= 1 +

z - p

s + p

 y = [1 0]Bx1

x2
R

 Bx
#
1

x
#
2
R = B-a

-b

1

0
R Bx1

x2
R + B a

b
Ru

 y = x1

 x
#
2 = -bx1 + bu

 x
#
1 = -ax1 + x2 + au

U(s) Y(s)
as + b 1

s2

(a)

(b)

a

U(s) Y(s)
b
s

1
s

X1(s)X2(s)
+

–

+
–

+
+

Figure 2–27
(a) Control system;
(b) modified block
diagram.
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Rewriting gives

Notice that the output of the integrator and the outputs of the first-order delayed integratorsC1/(s+a) and (z-p)/(s+p) D are chosen as state variables. It is important to remember that
the output of the block (s+z)/(s+p) in Figure 2–28(a) cannot be a state variable, because this
block involves a derivative term, s+z.

A–2–11. Obtain the transfer function of the system defined by

Solution. Referring to Equation (2–29), the transfer function G(s) is given by

In this problem, matrices A, B, C, and D are

A = C-1

0

0

1

-1

0

0

1

-2

S ,  B = C0

0

1

S ,  C = [1 0 0],  D = 0

G(s) = C(sI - A)-1B + D

y = [1  0  0]Cx1

x2

x3

S
Cx

#
1

x
#
2

x
#
3

S = C-1
0
0

1
-1

0

0
1

-2
S Cx1

x2

x3

S + C0
0
1
Su

y = [1 0 0]Cx1

x2

x3

S
Cx

#
1

x
#
2

x
#
3

S = C -a

-K

-(z - p)

1
0
0

0
K

-p

S Cx1

x2

x3

S + C 0
K

z - p

Su

u y

u y

(a)

(b)

s + z
s + p

K
s(s + a)

z – p
s + p

K
s

1
s + a

x1x2x3

+
–

+
–

+
+

Figure 2–28
(a) Control system;
(b) block diagram
defining state
variables for the
system.
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Hence

A–2–12. Consider a system with multiple inputs and multiple outputs.When the system has more than one
output, the MATLAB command

[NUM,den] = ss2tf(A,B,C,D,iu)

produces transfer functions for all outputs to each input. (The numerator coefficients are returned
to matrix NUM with as many rows as there are outputs.)

Consider the system defined by

This system involves two inputs and two outputs. Four transfer functions are involved:
and (When considering input u1, we assume that input u2

is zero and vice versa.)

Solution. MATLAB Program 2-5 produces four transfer functions.
This is the MATLAB representation of the following four transfer functions:

Y2(s)

U2(s)
=

s - 25
s2 + 4s + 25

 
Y1(s)

U2(s)
=

s + 5

s2 + 4s + 25
,

Y2(s)

U1(s)
=

-25
s2 + 4s + 25

 
Y1(s)

U1(s)
=

s + 4

s2 + 4s + 25
,

Y2(s)�U2(s).Y1(s)�U2(s),Y2(s)�U1(s),
Y1(s)�U1(s),

By1

y2
R = B1

0

0

1
R Bx1

x2
R + B0

0

0

0
R Bu1

u2
R

Bx
#
1

x
#
2
R = B 0

-25

1

-4
R Bx1

x2
R + B1

0

1

1
R Bu1

u2
R

 =
1

(s + 1)2(s + 2)
=

1

s3 + 4s2 + 5s + 2

 = [1 0 0]F
1

s + 1

0

0

1

(s + 1)2

1

s + 1

0

1

(s + 1)2(s + 2)
1

(s + 1)(s + 2)

1

s + 2

V C 0

0

1

S

 G(s) = [1 0 0]C s + 1

0

0

-1

s + 1

0

0

-1

s + 2

S -1C0

0

1

S
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A–2–13. Linearize the nonlinear equation

in the region defined by 8 � x � 10, 2 � y � 4.

Solution. Define

Then

where we choose 
Since the higher-order terms in the expanded equation are small, neglecting these higher-

order terms, we obtain

where

z– = x–2 + 4x–y– + 6y–2 = 92 + 4 * 9 * 3 + 6 * 9 = 243

K2 =
0f

0y
2
x = x– , y = y–

= 4x– + 12y– = 4 * 9 + 12 * 3 = 72

K1 =
0f

0x
2
x = x– , y = y–

= 2x– + 4y– = 2 * 9 + 4 * 3 = 30

z - z– = K1(x - x–) + K2(y - y–)

x– = 9, y– = 3.

z = f(x, y) = f(x–, y–) + c 0f

0x
(x - x–) +

0f

0y
(y - y–) d

x = x– , y = y–
+ p

f(x, y) = z = x2 + 4xy + 6y2

z = x2 + 4xy + 6y2

MATLAB Program 2–5

A = [0    1;-25    -4];
B = [1    1;0    1];
C = [1    0;0    1];
D = [0    0;0    0];
[NUM,den] = ss2tf(A,B,C,D,1)

NUM =
0 1 4
0 0 –25

den = 

1 4 25

[NUM,den] = ss2tf(A,B,C,D,2)

NUM =

0 1.0000 5.0000
0 1.0000 -25.0000

den =

1 4 25
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Thus

Hence a linear approximation of the given nonlinear equation near the operating point is

z - 30x - 72y + 243 = 0

z - 243 = 30(x - 9) + 72(y - 3)

R(s) C(s)
G1 G2 G3

H1

H2

H3

+
–

+
–

+
–

+
+

Figure 2–31
Block diagram of a system.

B–2–1. Simplify the block diagram shown in Figure 2–29
and obtain the closed-loop transfer function C(s)/R(s).

B–2–2. Simplify the block diagram shown in Figure 2–30
and obtain the closed-loop transfer function C(s)/R(s).

B–2–3. Simplify the block diagram shown in Figure 2–31
and obtain the closed-loop transfer function C(s)/R(s).

PROBLEMS

R(s) C(s)

G1

G2

G3

G4

+
–

+
–

+
+

Figure 2–29
Block diagram of a system.

R(s) C(s)

G1

G2

H1

H2

+
–

+
+

+
–

Figure 2–30
Block diagram of a system.
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C(s)

D(s)

R(s)
Gc(s) Gp(s)+– +

+

Controller PlantFigure 2–32
Closed-loop system.

B–2–4. Consider industrial automatic controllers whose
control actions are proportional, integral, proportional-plus-
integral, proportional-plus-derivative, and proportional-plus-
integral-plus-derivative. The transfer functions of these
controllers can be given, respectively, by

where U(s) is the Laplace transform of u(t), the controller
output, and E(s) the Laplace transform of e(t), the actuat-

 
U(s)

E(s)
= Kp a1 +

1

Ti s
+ Td s b

 
U(s)

E(s)
= KpA1 + Td sB

 
U(s)

E(s)
= Kp a1 +

1

Ti s
b

 
U(s)

E(s)
=

Ki

s

 
U(s)

E(s)
= Kp

ing error signal. Sketch u(t)-versus-t curves for each of the
five types of controllers when the actuating error signal is
(a) e(t)=unit-step function
(b) e(t)=unit-ramp function

In sketching curves, assume that the numerical values of Kp,
Ki , and are given as

proportional gain=4
integral gain=2
integral time=2 sec
derivative time=0.8 sec

B–2–5. Figure 2–32 shows a closed-loop system with a ref-
erence input and disturbance input. Obtain the expression
for the output C(s) when both the reference input and dis-
turbance input are present.

B–2–6. Consider the system shown in Figure 2–33. Derive
the expression for the steady-state error when both the ref-
erence input R(s) and disturbance input D(s) are present.

B–2–7. Obtain the transfer functions C(s)/R(s) and
C(s)/D(s) of the system shown in Figure 2–34.

 Td =
 Ti =
 Ki =
 Kp =

TdTi ,

C(s)R(s) E(s)

D(s)

+– +
+

G2(s)G1(s)

G2

H1

G
3

G1Gc

R(s) C(s)

D(s)

+– +– +
+

H2

Figure 2–33
Control system.

Figure 2–34
Control system.
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B–2–8. Obtain a state-space representation of the system
shown in Figure 2–35.

B–2–9. Consider the system described by

Derive a state-space representation of the system.

B–2–10. Consider the system described by

Obtain the transfer function of the system.

 y = [1 0]Bx1

x2
R

 Bx
#
1

x
#
2
R = B-4

3

-1

-1
R Bx1

x2
R + B1

1
Ru

y
% + 3y

$ + 2y
# = u

u ys + z
s + p

1
s2+

–

Figure 2–35
Control system.

B–2–11. Consider a system defined by the following state-
space equations:

Obtain the transfer function G(s) of the system.

B–2–12. Obtain the transfer matrix of the system defined by

B–2–13. Linearize the nonlinear equation

z=x2+8xy+3y2

in the region defined by 2 � x � 4, 10 � y � 12.

B–2–14. Find a linearized equation for

y=0.2x3

about a point x=2.

 By1

y2
R = B1

0

0

1

0

0
R Cx1

x2

x3

S
 Cx

#
1

x
#
2

x
#
3

S = C 0

0

-2

1

0

-4

0

1

-6

S Cx1

x2

x3

S + C0

0

1

0

1

0

S Bu1

u2
R

 y = [1 2]Bx1

x2
R

 Bx
#
1

x
#
2
R = B-5

3

-1

-1
R Bx1

x2
R + B2

5
Ru
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63

Mathematical Modeling 
of Mechanical Systems
and Electrical Systems

3–1 INTRODUCTION

This chapter presents mathematical modeling of mechanical systems and electrical
systems. In Chapter 2 we obtained mathematical models of a simple electrical circuit
and a simple mechanical system. In this chapter we consider mathematical modeling
of a variety of mechanical systems and electrical systems that may appear in control
systems.

The fundamental law govering mechanical systems is Newton’s second law. In
Section 3–2 we apply this law to various mechanical systems and derive transfer-
function models and state-space models.

The basic laws governing electrical circuits are Kirchhoff’s laws. In Section 3–3 we
obtain transfer-function models and state-space models of various electrical circuits
and operational amplifier systems that may appear in many control systems.

3–2 MATHEMATICAL MODELING 
OF MECHANICAL SYSTEMS

This section first discusses simple spring systems and simple damper systems. Then
we derive transfer-function models and state-space models of various mechanical
systems.
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EXAMPLE 3–1 Let us obtain the equivalent spring constants for the systems shown in Figures 3–1(a) and (b),
respectively.

For the springs in parallel [Figure 3–1(a)] the equivalent spring constant keq is obtained
from

or

For the springs in series [Figure–3–1(b)], the force in each spring is the same. Thus

Elimination of y from these two equations results in

or

The equivalent spring constant keq for this case is then found as

EXAMPLE 3–2 Let us obtain the equivalent viscous-friction coefficient for each of the damper systems shown
in Figures 3–2(a) and (b).An oil-filled damper is often called a dashpot.A dashpot is a device that
provides viscous friction, or damping. It consists of a piston and oil-filled cylinder.Any relative mo-
tion between the piston rod and the cylinder is resisted by the oil because the oil must flow around
the piston (or through orifices provided in the piston) from one side of the piston to the other.The
dashpot essentially absorbs energy.This absorbed energy is dissipated as heat, and the dashpot does
not store any kinetic or potential energy.

beq

keq =
F

x
=

k1 k2

k1 + k2
=

1

1

k1
+

1

k2

k2 x = F +
k2

k1
F =

k1 + k2

k1
F

k2 ax -
F

k1
b = F

k1 y = F,  k2(x - y) = F

keq = k1 + k2

k1 x + k2 x = F = keq x

k1 k2

y x

F

(a) (b)

x

F

k1

k2

Figure 3–1
(a) System consisting
of two springs in
parallel;
(b) system consisting
of two springs in
series.
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(a) The force f due to the dampers is

In terms of the equivalent viscous-friction coefficient beq, force f is given by

Hence

(b) The force f due to the dampers is

(3–1)

where z is the displacement of a point between damper b1 and damper b2. (Note that the
same force is transmitted through the shaft.) From Equation (3–1), we have

or

(3–2)

In terms of the equivalent viscous-friction coefficient beq , force f is given by

By substituting Equation (3–2) into Equation (3–1), we have

Thus,

Hence,

beq =
b1 b2

b1 + b2
=

1
1
b1

+
1
b2

f = beq(y
# - x

#
) =

b1 b2

b1 + b2
(y

# - x
#
)

 =
b1 b2

b1 + b2
 (y

# - x
#
)

 f = b2(y
# - z

#
) = b2 cy# -  

1

b1 + b2
 Ab2y

# + b1x
# B d

f = beqAy# - x
# B

z
# =

1

b1 + b2
Ab2 y# + b1 x# B

Ab1 + b2Bz# = b2 y# + b1 x#

f = b1(z
# - x

#
) = b2 (y

# - z
#
)

beq = b1 + b2

f = beq(y
# - x

#
)

f = b1 (y
# - x

#
) + b2(y

# - x
#
) = Ab1 + b2B(y

# - x
#
)

x y

(a)

b2

x yz

(b)

b1

b1

b2
Figure 3–2
(a) Two dampers
connected in parallel;
(b) two dampers
connected in series.
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EXAMPLE 3–3 Consider the spring-mass-dashpot system mounted on a massless cart as shown in Figure 3–3. Let
us obtain mathematical models of this system by assuming that the cart is standing still for t<0 and
the spring-mass-dashpot system on the cart is also standing still for t<0. In this system, u(t) is the
displacement of the cart and is the input to the system.At t=0, the cart is moved at a constant speed,
or constant. The displacement y(t) of the mass is the output. (The displacement is relative to
the ground.) In this system, m denotes the mass, b denotes the viscous-friction coefficient, and k de-
notes the spring constant.We assume that the friction force of the dashpot is proportional to 
and that the spring is a linear spring; that is, the spring force is proportional to y-u.

For translational systems, Newton’s second law states that

where m is a mass, a is the acceleration of the mass, and is the sum of the forces acting on the
mass in the direction of the acceleration a. Applying Newton’s second law to the present system
and noting that the cart is massless, we obtain

or

This equation represents a mathematical model of the system considered. Taking the Laplace
transform of this last equation, assuming zero initial condition, gives

Taking the ratio of Y(s) to U(s), we find the transfer function of the system to be

Such a transfer-function representation of a mathematical model is used very frequently in
control engineering.

Transfer function = G(s) =
Y(s)

U(s)
=

bs + k

ms2 + bs + k

Ams2 + bs + kBY(s) = (bs + k)U(s)

m
d2y

dt2 + b
dy

dt
+ ky = b

du
dt

+ ku

m
d2y

dt2 = -b a dy

dt
-

du
dt
b - k(y - u)

gF

ma = a F

y
# - u

#

u
# =

m

u y

k

b

Massless cart

Figure 3–3
Spring-mass-
dashpot system
mounted on a cart.
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Next we shall obtain a state-space model of this system. We shall first compare the differen-
tial equation for this system

with the standard form

and identify a1, a2, b0, b1, and b2 as follows:

Referring to Equation (3–35), we have

Then, referring to Equation (2–34), define

From Equation (2–36) we have

and the output equation becomes

or

(3–3)

and

(3–4)

Equations (3–3) and (3–4) give a state-space representation of the system. (Note that this is not
the only state-space representation.There are infinitely many state-space representations for the
system.)
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EXAMPLE 3–4 Obtain the transfer functions and of the mechanical system shown in
Figure 3–4.

The equations of motion for the system shown in Figure 3–4 are

Simplifying, we obtain

Taking the Laplace transforms of these two equations, assuming zero initial conditions, we obtain

(3–5)

(3–6)

Solving Equation (3–6) for and substituting it into Equation (3–5) and simplifying, we get

from which we obtain

(3–7)

From Equations (3–6) and (3–7) we have

(3–8)

Equations (3–7) and (3–8) are the transfer functions and respectively.

EXAMPLE 3–5 An inverted pendulum mounted on a motor-driven cart is shown in Figure 3–5(a).This is a model
of the attitude control of a space booster on takeoff. (The objective of the attitude control prob-
lem is to keep the space booster in a vertical position.) The inverted pendulum is unstable in that
it may fall over any time in any direction unless a suitable control force is applied. Here we consider

X2(s)�U(s),X1(s)�U(s)

X2(s)

U(s)
=

bs + k2Am1 s2 + bs + k1 + k2B Am2 s2 + bs + k2 + k3B - Abs + k2B2

X1(s)

U(s)
=

m2 s2 + bs + k2 + k3Am1 s2 + bs + k1 + k2B Am2 s2 + bs + k2 + k3B - Abs + k2B2
 = Am2 s2 + bs + k2 + k3BU(s)

 C Am1 s2 + bs + k1 + k2B Am2 s2 + bs + k2 + k3B - Abs + k2B2 DX1(s)

X2(s)

 Cm2 s2 + bs + Ak2 + k3B DX2(s) = Abs + k2BX1(s)

 Cm1 s2 + bs + Ak1 + k2B DX1(s) = Abs + k2BX2(s) + U(s)

 m2 x$2 + bx
#
2 + Ak2 + k3Bx2 = bx

#
1 + k2 x1

 m1 x$1 + bx
#
1 + Ak1 + k2Bx1 = bx

#
2 + k2 x2 + u

 m2 x$2 = -k3 x2 - k2Ax2 - x1B - bAx# 2 - x
#
1B m1 x$1 = -k1 x1 - k2Ax1 - x2B - bAx# 1 - x

#
2B + u

X2(s)�U(s)X1(s)�U(s)

m1 m2

k2

x1

k1 k3
b

u x2

Figure 3–4
Mechanical system.



only a two-dimensional problem in which the pendulum moves only in the plane of the page.The
control force u is applied to the cart. Assume that the center of gravity of the pendulum rod is at
its geometric center. Obtain a mathematical model for the system.

Define the angle of the rod from the vertical line as u. Define also the (x, y) coordinates of
the center of gravity of the pendulum rod as AxG, yG B . Then

yG = l cos u

xG = x + l sin u
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(a) Inverted
pendulum system;
(b) free-body
diagram.



70 Chapter 3 / Mathematical Modeling of Mechanical Systems and Electrical Systems

To derive the equations of motion for the system, consider the free-body diagram shown in 
Figure 3–5(b). The rotational motion of the pendulum rod about its center of gravity can be
described by

(3–9)

where I is the moment of inertia of the rod about its center of gravity.
The horizontal motion of center of gravity of pendulum rod is given by

(3–10)

The vertical motion of center of gravity of pendulum rod is

(3–11)

The horizontal motion of cart is described by

(3–12)

Since we must keep the inverted pendulum vertical, we can assume that u(t) and are
small quantities such that sin u � u, cos u=1, and Then, Equations (3–9) through (3–11)
can be linearized. The linearized equations are

(3–13)

(3–14)

(3–15)

From Equations (3–12) and (3–14), we obtain

(3–16)

From Equations (3–13), (3–14), and (3–15), we have

or
(3–17)

Equations (3–16) and (3–17) describe the motion of the inverted-pendulum-on-the-cart system.
They constitute a mathematical model of the system.

EXAMPLE 3–6 Consider the inverted-pendulum system shown in Figure 3–6. Since in this system the mass is con-
centrated at the top of the rod, the center of gravity is the center of the pendulum ball. For this
case, the moment of inertia of the pendulum about its center of gravity is small, and we assume
I=0 in Equation (3–17). Then the mathematical model for this system becomes as follows:

(3–18)

(3–19)

Equations (3–18) and (3–19) can be modified to

(3–20)

(3–21)Mx
$ = u - mgu

Mlu
$

= (M + m)gu - u

 ml2u
$

+ mlx
$ = mglu

 (M + m)x
$ + mlu

$
= u

AI + ml2Bu$ + mlx
$ = mglu

 = mglu - l(mx
$ + mlu

$
)

 Iu
$

= mglu - Hl

(M + m)x
$ + mlu

$
= u

0 = V - mg

m(x
$ + lu

$
) = H

Iu
$

= Vlu - Hl

uu
#
2 = 0.

u
#
(t)

M
d2x

dt2 = u - H

m
d2

dt2 (l cos u) = V - mg

m
d2

dt2 (x + l sin u) = H

Iu
$

= Vl sin u - Hl cos u
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Equation (3–20) was obtained by eliminating from Equations (3–18) and (3–19). Equation
(3–21) was obtained by eliminating from Equations (3–18) and (3–19). From Equation (3–20)
we obtain the plant transfer function to be

The inverted-pendulum plant has one pole on the negative real axis and
another on the positive real axis Hence, the plant is open-loop unstable.

Define state variables x1, x2, x3, and x4 by

Note that angle u indicates the rotation of the pendulum rod about point P, and x is the location
of the cart. If we consider u and x as the outputs of the system, then

(Notice that both u and x are easily measurable quantities.) Then, from the definition of the state
variables and Equations (3–20) and (3–21), we obtain
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In terms of vector-matrix equations, we have

(3–22)

(3–23)

Equations (3–22) and (3–23) give a state-space representation of the inverted-pendulum system.
(Note that state-space representation of the system is not unique. There are infinitely many such
representations for this system.)

By1

y2
R = B1 0 0 0

0 0 1 0
R Dx1

x2

x3

x4

T
Dx

#
1

x
#
2

x
#
3

x
#
4

T = F
0

M + m

Ml
g

0

-
m

M
g

1

0

0

0

0

0

0

0

0

0

1

0

V Dx1

x2

x3

x4

T + F
0

-
1

Ml

0
1

M

Vu

3–3 MATHEMATICAL MODELING OF ELECTRICAL SYSTEMS

Basic laws governing electrical circuits are Kirchhoff’s current law and voltage law.
Kirchhoff’s current law (node law) states that the algebraic sum of all currents entering and
leaving a node is zero. (This law can also be stated as follows: The sum of currents enter-
ing a node is equal to the sum of currents leaving the same node.) Kirchhoff’s voltage law
(loop law) states that at any given instant the algebraic sum of the voltages around any loop
in an electrical circuit is zero. (This law can also be stated as follows:The sum of the volt-
age drops is equal to the sum of the voltage rises around a loop.) A mathematical model
of an electrical circuit can be obtained by applying one or both of Kirchhoff’s laws to it.

This section first deals with simple electrical circuits and then treats mathematical
modeling of operational amplifier systems.

LRC Circuit. Consider the electrical circuit shown in Figure 3–7. The circuit con-
sists of an inductance L (henry), a resistance R (ohm), and a capacitance C (farad).
Applying Kirchhoff’s voltage law to the system, we obtain the following equations:

(3–24)

(3–25) 
1

C
 3 i dt = eo

 L 
di
dt

+ Ri +
1

C
 3 i dt = ei

L

eo

R

Cei

iFigure 3–7
Electrical circuit.
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Equations (3–24) and (3–25) give a mathematical model of the circuit.
A transfer-function model of the circuit can also be obtained as follows: Taking the

Laplace transforms of Equations (3–24) and (3–25), assuming zero initial conditions,
we obtain

If ei is assumed to be the input and eo the output, then the transfer function of this system
is found to be

(3–26)

A state-space model of the system shown in Figure 3–7 may be obtained as follows: First,
note that the differential equation for the system can be obtained from Equation (3–26) as

Then by defining state variables by

and the input and output variables by

we obtain

and

These two equations give a mathematical model of the system in state space.

Transfer Functions of Cascaded Elements. Many feedback systems have com-
ponents that load each other. Consider the system shown in Figure 3–8. Assume that ei

is the input and eo is the output. The capacitances C1 and C2 are not charged initially.
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Electrical system.
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It will be shown that the second stage of the circuit (R2C2 portion) produces a loading
effect on the first stage (R1C1 portion). The equations for this system are

(3–27)

and

(3–28)

(3–29)

Taking the Laplace transforms of Equations (3–27) through (3–29), respectively, using
zero initial conditions, we obtain

(3–30)

(3–31)

(3–32)

Eliminating I1(s) from Equations (3–30) and (3–31) and writing Ei(s) in terms of I2(s),
we find the transfer function between Eo(s) and Ei(s) to be

(3–33)

The term R1C2s in the denominator of the transfer function represents the interaction
of two simple RC circuits. Since the two roots
of the denominator of Equation (3–33) are real.

The present analysis shows that, if two RC circuits are connected in cascade so
that the output from the first circuit is the input to the second, the overall transfer
function is not the product of and The reason for this
is that, when we derive the transfer function for an isolated circuit, we implicitly as-
sume that the output is unloaded. In other words, the load impedance is assumed to
be infinite, which means that no power is being withdrawn at the output.When the sec-
ond circuit is connected to the output of the first, however, a certain amount of power
is withdrawn, and thus the assumption of no loading is violated.Therefore, if the trans-
fer function of this system is obtained under the assumption of no loading, then it is
not valid. The degree of the loading effect determines the amount of modification of
the transfer function.

1�AR2 C2 s + 1B.1�AR1 C1 s + 1B
AR1 C1 + R2 C2 + R1 C2B2 7 4R1 C1 R2 C2 ,
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Complex Impedances. In deriving transfer functions for electrical circuits, we
frequently find it convenient to write the Laplace-transformed equations directly,
without writing the differential equations. Consider the system shown in Figure 3–9(a).
In this system, Z1 and Z2 represent complex impedances. The complex impedance 
Z(s) of a two-terminal circuit is the ratio of E(s), the Laplace transform of the 
voltage across the terminals, to I(s), the Laplace transform of the current through 
the element, under the assumption that the initial conditions are zero, so that
Z(s)=E(s)/I(s). If the two-terminal element is a resistance R, capacitance C, or
inductance L, then the complex impedance is given by R, 1/Cs, or Ls, respectively. If
complex impedances are connected in series, the total impedance is the sum of the
individual complex impedances.

Remember that the impedance approach is valid only if the initial conditions
involved are all zeros. Since the transfer function requires zero initial conditions, the
impedance approach can be applied to obtain the transfer function of the electrical
circuit. This approach greatly simplifies the derivation of transfer functions of elec-
trical circuits.

Consider the circuit shown in Figure 3–9(b).Assume that the voltages ei and eo are
the input and output of the circuit, respectively. Then the transfer function of this
circuit is

For the system shown in Figure 3–7,

Hence the transfer function Eo(s)/Ei(s) can be found as follows:

which is, of course, identical to Equation (3–26).
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=
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Figure 3–9
Electrical circuits.
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EXAMPLE 3–7 Consider again the system shown in Figure 3–8. Obtain the transfer function Eo(s)/Ei(s) by use
of the complex impedance approach. (Capacitors C1 and C2 are not charged initially.)

The circuit shown in Figure 3–8 can be redrawn as that shown in Figure 3–10(a), which can be
further modified to Figure 3–10(b).

In the system shown in Figure 3–10(b) the current I is divided into two currents I1 and I2.
Noting that

we obtain

Noting that

we obtain

Substituting Z1=R1, Z2=1/ AC1s B , Z3=R2, and Z4=1/ AC2s B into this last equation, we get

which is the same as that given by Equation (3–33).
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Transfer Functions of Nonloading Cascaded Elements. The transfer function
of a system consisting of two nonloading cascaded elements can be obtained by elimi-
nating the intermediate input and output. For example, consider the system shown in
Figure 3–11(a). The transfer functions of the elements are

and

If the input impedance of the second element is infinite, the output of the first element is
not affected by connecting it to the second element.Then the transfer function of the whole
system becomes

The transfer function of the whole system is thus the product of the transfer functions
of the individual elements. This is shown in Figure 3–11(b).

As an example, consider the system shown in Figure 3–12.The insertion of an isolating
amplifier between the circuits to obtain nonloading characteristics is frequently used in
combining circuits. Since amplifiers have very high input impedances, an isolation
amplifier inserted between the two circuits justifies the nonloading assumption.

The two simple RC circuits, isolated by an amplifier as shown in Figure 3–12, have
negligible loading effects, and the transfer function of the entire circuit equals the prod-
uct of the individual transfer functions. Thus, in this case,

Electronic Controllers. In what follows we shall discuss electronic controllers using
operational amplifiers.We begin by deriving the transfer functions of simple operational-
amplifier circuits.Then we derive the transfer functions of some of the operational-amplifier
controllers.Finally,we give operational-amplifier controllers and their transfer functions in
the form of a table.
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KAR1 C1 s + 1B AR2 C2 s + 1B
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= a 1
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b (K) a 1
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=
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Figure 3–11
(a) System consisting of two nonloading cascaded elements; (b) an equivalent system.
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Electrical system.
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Operational Amplifiers. Operational amplifiers, often called op amps, are
frequently used to amplify signals in sensor circuits. Op amps are also frequently used
in filters used for compensation purposes. Figure 3–13 shows an op amp. It is a common
practice to choose the ground as 0 volt and measure the input voltages e1 and e2 relative
to the ground. The input e1 to the minus terminal of the amplifier is inverted, and the
input e2 to the plus terminal is not inverted.The total input to the amplifier thus becomes
e2-e1. Hence, for the circuit shown in Figure 3–13, we have

where the inputs e1 and e2 may be dc or ac signals and K is the differential gain (volt-
age gain). The magnitude of K is approximately 105 ~ 106 for dc signals and ac signals
with frequencies less than approximately 10 Hz. (The differential gain K decreases with
the signal frequency and becomes about unity for frequencies of 1 MHz ~ 50 MHz.)
Note that the op amp amplifies the difference in voltages e1 and e2. Such an amplifier is
commonly called a differential amplifier. Since the gain of the op amp is very high, it is
necessary to have a negative feedback from the output to the input to make the ampli-
fier stable. (The feedback is made from the output to the inverted input so that the feed-
back is a negative feedback.)

In the ideal op amp, no current flows into the input terminals, and the output volt-
age is not affected by the load connected to the output terminal. In other words, the
input impedance is infinity and the output impedance is zero. In an actual op amp, a
very small (almost negligible) current flows into an input terminal and the output can-
not be loaded too much. In our analysis here, we make the assumption that the op amps
are ideal.

Inverting Amplifier. Consider the operational-amplifier circuit shown in Figure 3–14.
Let us obtain the output voltage eo.

eo = KAe2 - e1B = -KAe1 - e2B

ei eo

R2i2

R1i1

+

–
e9

Figure 3–14
Inverting amplifier.

e2

e1

eo

+

–

Figure 3–13
Operational
amplifier.
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The equation for this circuit can be obtained as follows: Define

Since only a negligible current flows into the amplifier, the current i1 must be equal to
current i2 . Thus

Since and e¿ must be almost zero, or Hence we have

or

Thus the circuit shown is an inverting amplifier. If R1=R2 , then the op-amp circuit
shown acts as a sign inverter.

Noninverting Amplifier. Figure 3–15(a) shows a noninverting amplifier.A circuit
equivalent to this one is shown in Figure 3–15(b). For the circuit of Figure 3–15(b), we
have

where K is the differential gain of the amplifier. From this last equation, we get

Since if then

This equation gives the output voltage eo. Since eo and ei have the same signs, the op-amp
circuit shown in Figure 3–15(a) is noninverting.
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Figure 3–15
(a) Noninverting
operational
amplifier;
(b) equivalent
circuit.
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EXAMPLE 3–8 Figure 3–16 shows an electrical circuit involving an operational amplifier. Obtain the output eo.
Let us define

Noting that the current flowing into the amplifier is negligible, we have

Hence

Since we have

Taking the Laplace transform of this last equation, assuming the zero initial condition, we have

which can be written as

The op-amp circuit shown in Figure 3–16 is a first-order lag circuit. (Several other circuits involving
op amps are shown in Table 3–1 together with their transfer functions. Table 3–1 is given on
page 85.)

Eo(s)

Ei(s)
= -

R2

R1

1

R2 Cs + 1

Ei(s)

R1
= -

R2 Cs + 1

R2
Eo(s)

ei

R1
= -C

deo

dt
-

eo

R2

e¿ � 0,

ei - e¿
R1

= C
dAe¿ - eoB

dt
+

e¿ - eo

R2

i1 = i2 + i3

i1 =
ei - e¿

R1
,  i2 = C

dAe¿ - eoB
dt

,  i3 =
e¿ - eo

R2

ei eo

R2
R1

C

i1

i3

i2

+

–
e9

Figure 3–16
First-order lag circuit
using operational
amplifier.
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Impedance Approach to Obtaining Transfer Functions. Consider the op-amp
circuit shown in Figure 3–17. Similar to the case of electrical circuits we discussed ear-
lier, the impedance approach can be applied to op-amp circuits to obtain their transfer
functions. For the circuit shown in Figure 3–17, we have

Since we have

(3–34)
Eo(s)

Ei(s)
= -

Z2(s)

Z1(s)

E¿(s) � 0,

Ei(s) - E¿(s)

Z1
=

E¿(s) - Eo(s)

Z2

+

–

Eo(s)

I (s)

I (s)

Ei(s)

E9(s)
Z1(s)

Z2(s)

Figure 3–17
Operational-
amplifier circuit.

EXAMPLE 3–9 Referring to the op-amp circuit shown in Figure 3–16, obtain the transfer function Eo(s)/Ei(s) by
use of the impedance approach.

The complex impedances Z1(s) and Z2(s) for this circuit are

and

The transfer function Eo(s)/Ei(s) is, therefore, obtained as

which is, of course, the same as that obtained in Example 3-8.

Eo(s)

Ei(s)
= -

Z2(s)

Z1(s)
= -

R2

R1

1

R2 Cs + 1

Z2(s) =
1

Cs +
1

R2

=
R2

R2 Cs + 1
Z1(s) = R1
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Lead or Lag Networks Using Operational Amplifiers. Figure 3–18(a) shows an
electronic circuit using an operational amplifier. The transfer function for this circuit
can be obtained as follows: Define the input impedance and feedback impedance as Z1

and Z2, respectively. Then

Hence, referring to Equation (3–34), we have

(3–35)

Notice that the transfer function in Equation (3–35) contains a minus sign.Thus, this circuit
is sign inverting. If such a sign inversion is not convenient in the actual application, a sign
inverter may be connected to either the input or the output of the circuit of Figure 3–18(a).
An example is shown in Figure 3–18(b).The sign inverter has the transfer function of

The sign inverter has the gain of Hence the network shown in Figure 3–18(b)
has the following transfer function:

(3–36)= Kc a
Ts + 1
aTs + 1

= Kc

s +
1
T

s +
1
aT

Eo(s)

Ei(s)
=

R2 R4

R1 R3

R1 C1s + 1
R2 C2s + 1

=
R4 C1

R3 C2

s +
1

R1 C1

s +
1

R2 C2

-R4�R3 .

Eo(s)

E(s)
= -

R4

R3

E(s)

Ei(s)
= -

Z2

Z1
= -

R2

R1

R1 C1s + 1
R2 C2s + 1

= -
C1

C2

s +
1

R1 C1

s +
1

R2 C2

Z1 =
R1

R1 C1 s + 1
 ,  Z2 =

R2

R2 C2 s + 1

+

–

+

–

+

–

(a) (b)

Z1

C1

Z2

C2

R2

i2i1

R1

Ei(s)

E9(s)

E(s)

C1

C2

Ei(s)
Eo(s)E(s)

R1

R2
R3

R4

Lead or lag network Sign inverter

Figure 3–18
(a) Operational-amplifier circuit; (b) operational-amplifier circuit used as a lead or lag compensator.



where

Notice that

This network has a dc gain of 
Note that this network, whose transfer function is given by Equation (3–36), is a lead

network if or a<1. It is a lag network if 

PID Controller Using Operational Amplifiers. Figure 3–19 shows an electronic
proportional-plus-integral-plus-derivative controller (a PID controller) using opera-
tional amplifiers. The transfer function is given by

where

Thus

Noting that

Eo(s)

E(s)
= -

R4

R3

E(s)

Ei(s)
= - aR2 C2 s + 1

C2 s
b aR1 C1 s + 1

R1
b

Z1 =
R1

R1 C1s + 1
,  Z2 =

R2 C2s + 1
C2s

E(s)

Ei(s)
= -

Z2

Z1

E(s)�Ei(s)

R1 C1 6 R2 C2 .R1 C1 7 R2 C2 ,

Kc a = R2 R4�AR1 R3B.
Kc a =

R4 C1

R3 C2

R2 C2

R1 C1
=

R2 R4

R1 R3
,  a =

R2 C2

R1 C1

T = R1 C1 ,  aT = R2 C2 ,  Kc =
R4 C1

R3 C2
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+
+

–
–

Z1

C1

Z2

C2R2

R1

Ei(s)
Eo(s)

E(s)

R3

R4

Figure 3–19
Electronic PID
controller.



84 Chapter 3 / Mathematical Modeling of Mechanical Systems and Electrical Systems

we have

(3–37)

Notice that the second operational-amplifier circuit acts as a sign inverter as well as a
gain adjuster.

When a PID controller is expressed as

Kp is called the proportional gain, is called the integral time, and is called the
derivative time. From Equation (3–37) we obtain the proportional gain Kp, integral time

and derivative time to be

When a PID controller is expressed as

Kp is called the proportional gain, Ki is called the integral gain, and Kd is called the
derivative gain. For this controller

Table 3–1 shows a list of operational-amplifier circuits that may be used as con-
trollers or compensators.

Kd =
R4 R2 C1

R3

Ki =
R4

R3 R1 C2

Kp =
R4AR1 C1 + R2 C2B

R3 R1 C2

Eo(s)

Ei(s)
= Kp +

Ki

s
+ Kd s

 Td =
R1 C1 R2 C2

R1 C1 + R2 C2

 Ti =
1

R1 C1 + R2 C2

 Kp =
R4AR1 C1 + R2 C2B

R3 R1 C2

TdTi ,

TdTi

Eo(s)

Ei(s)
= Kp a1 +

Ti

s
+ Td s b

=
R4AR1 C1 + R2 C2B

R3 R1 C2
c1 +

1AR1 C1 + R2 C2Bs +
R1 C1 R2 C2

R1 C1 + R2 C2
s d

=
R4 R2

R3 R1
aR1 C1 + R2 C2

R2 C2
+

1
R2 C2 s

+ R1 C1 s b
Eo(s)

Ei(s)
=

Eo(s)

E(s)

E(s)

Ei(s)
=

R4 R2

R3 R1

AR1 C1s + 1B AR2 C2s + 1B
R2 C2s
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1

2

3

4

5

6

7

P

I

PD

PI

PID

Lead or lag

Lag–lead

Control
Action

Operational-Amplifier CircuitsG(s) =
Eo(s)
Ei(s)

R4

R3

R2

R1

1
R1C2s

R4

R3

R4

R3

R2

R1
(R1C1s + 1)

R4

R3

R2

R1

R2C2s + 1
R2C2s

R4

R3

R2

R1

(R1C1s + 1) (R2C2s + 1)
R2C2s

R4

R3

R2

R1

R1C1s + 1
R2C2s + 1

R6

R5

R4

R3

[(R1 + R3) C1s + 1] (R2C2s + 1)
(R1C1s + 1) [(R2 + R4) C2s + 1]

eo

eo

ei

ei

+
–

+
–

+
–

+
–

R1

R2

R2

R3

R4

R1 R3

R4C2

eo
ei

+
–

+
–

R3

R4C1

R2
R1

R1

eo
ei

+
–

+
–

R3

R4C2

R2

R1

eo
ei

+
–

+
–

R3

R4C2C1

R2

R1
eo

ei
+
–

+
–

R3

R4

C2
C1

R4

R2

R1

R3
eo

ei
+
–

+
–

R5

R6

C2
C1

Table 3–1 Operational-Amplifier Circuits That May Be Used as Compensators
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EXAMPLE PROBLEMS AND SOLUTIONS

A–3–1. Figure 3–20(a) shows a schematic diagram of an automobile suspension system.As the car moves
along the road, the vertical displacements at the tires act as the motion excitation to the auto-
mobile suspension system.The motion of this system consists of a translational motion of the cen-
ter of mass and a rotational motion about the center of mass. Mathematical modeling of the
complete system is quite complicated.

A very simplified version of the suspension system is shown in Figure 3–20(b).Assuming that
the motion xi at point P is the input to the system and the vertical motion xo of the body is the
output, obtain the transfer function (Consider the motion of the body only in the ver-
tical direction.) Displacement xo is measured from the equilibrium position in the absence of
input xi.

Solution. The equation of motion for the system shown in Figure 3–20(b) is

or

Taking the Laplace transform of this last equation, assuming zero initial conditions, we obtain

Hence the transfer function Xo(s)/Xi(s) is given by

Xo(s)

Xi(s)
=

bs + k

ms2 + bs + k

Ams2 + bs + kBXo(s) = (bs + k)Xi(s)

mx
$

o + bx
#
o + kxo = bxi

# + kxi

mx
$

o + bAx# o - x
#
iB + kAxo - xiB = 0

Xo(s)�Xi(s).

(a)

k

(b)

xi

Center of mass

Auto body

b

P

xo

m

Figure 3–20
(a) Automobile
suspension system;
(b) simplified
suspension system.
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A–3–2. Obtain the transfer function Y(s)/U(s) of the system shown in Figure 3–21. The input u is a
displacement input. (Like the system of Problem A–3–1, this is also a simplified version of an
automobile or motorcycle suspension system.)

Solution. Assume that displacements x and y are measured from respective steady-state
positions in the absence of the input u. Applying the Newton’s second law to this system, we
obtain

Hence, we have

Taking Laplace transforms of these two equations, assuming zero initial conditions, we obtain

Eliminating X(s) from the last two equations, we have

which yields

Y(s)

U(s)
=

k1Abs + k2B
m1 m2 s4 + Am1 + m2Bbs3 + Ck1 m2 + Am1 + m2Bk2 Ds2 + k1 bs + k1 k2

Am1 s2 + bs + k1 + k2B m2 s2 + bs + k2

bs + k2
Y(s) = Abs + k2BY(s) + k1 U(s)

Cm2 s2 + bs + k2 DY(s) = Abs + k2BX(s)

Cm1 s2 + bs + Ak1 + k2B DX(s) = Abs + k2BY(s) + k1 U(s)

m2 y$ + by
# + k2 y = bx

# + k2 x

m1 x$ + bx
# + Ak1 + k2Bx = by

# + k2 y + k1 u

 m2 y$ = -k2(y - x) - b(y
# - x

#
)

 m1 x$ = k2(y - x) + b(y
# - x

#
) + k1(u - x)

y

b

x

u

m2

m1

k2

k1

Figure 3–21
Suspension system.
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A–3–3. Obtain a state-space representation of the system shown in Figure 3–22.

Solution. The system equations are

The output variables for this system are y1 and y2. Define state variables as

Then we obtain the following equations:

Hence, the state equation is

and the output equation is

A–3–4. Obtain the transfer function Xo(s)/Xi(s) of the mechanical system shown in Figure 3–23(a). Also
obtain the transfer function Eo(s)/Ei(s) of the electrical system shown in Figure 3–23(b). Show that
these transfer functions of the two systems are of identical form and thus they are analogous systems.

By1

y2
R = B1

0

0

0

0

1

0

0
R Dx1

x2

x3

x4

T

Dx
#
1

x
#
2

x
#
3

x
#
4

T = F
0

-
k

m1

0
k

m2

1

-
b

m1

0

0

0
k

m1

0

-
k

m2

0

0

1

0

V Dx1

x2

x3

x4

T + E 0
0
0
1

m2

U u

x
#
4 =

1
m2
C-kAy2 - y1B + u D =

k

m2
x1 -

k

m2
x3 +

1
m2

u

x
#
3 = x4

x
#
2 =

1
m1
C-by

#
1 - kAy1 - y2B D = -

k

m1
x1 -

b

m1
x2 +

k

m1
x3

x
#
1 = x2

 x4 = y
#
2

 x3 = y2

 x2 = y
#
1

 x1 = y1

 m2 y$2 + kAy2 - y1B = u

 m1 y$1 + by
#
1 + kAy1 - y2B = 0

m1 m2
k

y1

b

u

y2

Figure 3–22
Mechanical system.
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Solution. In Figure 3–23(a) we assume that displacements xi, xo, and y are measured from their
respective steady-state positions.Then the equations of motion for the mechanical system shown
in Figure 3–23(a) are

By taking the Laplace transforms of these two equations, assuming zero initial conditions, we have

If we eliminate Y(s) from the last two equations, then we obtain

or

Hence the transfer function Xo(s)/Xi(s) can be obtained as

For the electrical system shown in Figure 3–23(b), the transfer function Eo(s)/Ei(s) is found to be

=
AR1 C1 s + 1B AR2 C2 s + 1BAR1 C1 s + 1B AR2 C2 s + 1B + R2 C1 s

Eo(s)

Ei(s)
=

R1 +
1

C1 s
1A1�R2B + C2 s

+ R1 +
1

C1 s

Xo(s)

Xi(s)
=

a b1

k1
s + 1 b a b2

k2
s + 1 b

a b1

k1
s + 1 b a b2

k2
s + 1 b +

b2

k1
s

Ab1 s + k1BXi(s) = ab1 s + k1 + b2 s - b2 s
b2 s

b2 s + k2
bXo(s)

b1 CsXi(s) - sXo(s) D + k1 CXi(s) - Xo(s) D = b2 sXo(s) - b2 s
b2 sXo(s)

b2 s + k2

b2 CsXo(s) - sY(s) D = k2 Y(s)

b1 CsXi(s) - sXo(s) D + k1 CXi(s) - Xo(s) D = b2 CsXo(s) - sY(s) D
b2Ax# o - y

# B = k2 y

b1Ax# i - x
#
oB + k1Axi - xoB = b2Ax# o - y

# B
(a) (b)

xi

xo

yk2

k1

b2

b1

R2

R1

eoei

C2

C1

Figure 3–23
(a) Mechanical
system;
(b) analogous
electrical system.
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A comparison of the transfer functions shows that the systems shown in Figures 3–23(a) and (b)
are analogous.

A–3–5. Obtain the transfer functions Eo(s)/Ei(s) of the bridged T networks shown in Figures 3–24(a)
and (b).

Solution. The bridged T networks shown can both be represented by the network of
Figure 3–25(a), where we used complex impedances.This network may be modified to that shown
in Figure 3–25(b).

In Figure 3–25(b), note that

I1 = I2 + I3,  I2 Z1 = AZ3 + Z4BI3

R R

C1

C C

C2

ei eo

(a)

R1

R2

ei eo

(b)

Figure 3–24
Bridged T networks.

Z1

Z4

Z3

Z2

Z1

Ei(s)

Z4

Z3

Z2

I3

I2I1

I1

I3

I3

I2

I1

I1

ei eo

Eo(s)

(a)

(b)

Figure 3–25
(a) Bridged T
network in terms of
complex impedances;
(b) equivalent
network.
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Hence

Then the voltages Ei(s) and Eo(s) can be obtained as

Hence, the transfer function Eo(s)/Ei(s) of the network shown in Figure 3–25(a) is obtained as

(3–38)

For the bridged T network shown in Figure 3–24(a), substitute

into Equation (3–38). Then we obtain the transfer function Eo(s)/Ei(s) to be

Similarly, for the bridged T network shown in Figure 3–24(b), we substitute

into Equation (3–38). Then the transfer function Eo(s)/Ei(s) can be obtained as follows:

=
R1 CR2 Cs2 + 2R1 Cs + 1

R1 CR2 Cs2 + A2R1 C + R2 CBs + 1

Eo(s)

Ei(s)
=

1
Cs

1
Cs

+ R1 a 1
Cs

+
1

Cs
+ R2 b

R1 a 1
Cs

+
1

Cs
+ R2 b +

1
Cs

1
Cs

+ R2
1

Cs

Z1 =
1

Cs
,  Z2 = R1 ,  Z3 =

1

Cs
,  Z4 = R2

=
RC1 RC2 s2 + 2RC2 s + 1

RC1 RC2 s2 + A2RC2 + RC1Bs + 1

Eo(s)

Ei(s)
=

R2 +
1

C1 s
aR + R +

1
C2 s

b
1

C1 s
aR + R +

1
C2 s

b + R2 + R
1

C2 s

Z1 = R,  Z2 =
1

C1 s
,  Z3 = R,  Z4 =

1

C2 s

Eo(s)

Ei(s)
=

Z3 Z1 + Z2 AZ1 + Z3 + Z4B
Z2AZ1 + Z3 + Z4B + Z1 Z3 + Z1 Z4

 =
Z3 Z1 + Z2AZ1 + Z3 + Z4B

Z1 + Z3 + Z4
 I1

 =
Z3 Z1

Z1 + Z3 + Z4
 I1 + Z2 I1

 Eo(s) = Z3 I3 + Z2 I1

 =
Z2AZ1 + Z3 + Z4B + Z1 AZ3 + Z4B

Z1 + Z3 + Z4
 I1

 = cZ2 +
Z1AZ3 + Z4B

Z1 + Z3 + Z4
dI1

 Ei(s) = Z1 I2 + Z2 I1

I2 =
Z3 + Z4

Z1 + Z3 + Z4
I1 ,  I3 =

Z1

Z1 + Z3 + Z4
I1
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A–3–6. Obtain the transfer function of the op-amp circuit shown in Figure 3–26.

Solution. The voltage at point A is

The Laplace-transformed version of this last equation is

The voltage at point B is

Since and we must have Thus

Hence

A–3–7. Obtain the transfer function Eo(s)/Ei(s) of the op-amp system shown in Figure 3–27 in terms of
complex impedances Z1 , Z2 , Z3 , and Z4 . Using the equation derived, obtain the transfer function
Eo(s)/Ei(s) of the op-amp system shown in Figure 3–26.

Solution. From Figure 3–27, we find

Ei(s) - EA(s)

Z3
=

EA(s) - Eo(s)

Z4

Eo(s)

Ei(s)
= -

R2 Cs - 1

R2 Cs + 1
= -

s -
1

R2 C

s +
1

R2 C

1

2
CEi(s) + Eo(s) D =

1

R2 Cs + 1
Ei(s)

EA(s) = EB(s).K � 1,CEB(s) - EA(s) DK = Eo(s)

EB(s) =

1

Cs

R2 +
1

Cs

Ei(s) =
1

R2 Cs + 1
Ei(s)

EA(s) =
1

2
CEi(s) + Eo(s) D

eA =
1

2
Aei - eoB + eo

Eo(s)�Ei(s)

–

+

C

A

B

R1

R1

R2

ei
eo

Figure 3–26
Operational-
amplifier circuit.
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or

(3–39)

Since

(3–40)

by substituting Equation (3–40) into Equation (3–39), we obtain

from which we get the transfer function Eo(s)/Ei(s) to be

(3–41)

To find the transfer function Eo(s)/Ei(s) of the circuit shown in Figure 3–26, we substitute

into Equation (3–41). The result is

which is, as a matter of course, the same as that obtained in Problem A–3–6.

Eo(s)

Ei(s)
= -

R1 R2 - R1
1

Cs

R1 a 1

Cs
+ R2 b = -

R2 Cs - 1

R2 Cs + 1

Z1 =
1

Cs
 ,  Z2 = R2 ,  Z3 = R1 ,  Z4 = R1

Eo(s)

Ei(s)
= -

Z4 Z2 - Z3 Z1

Z3AZ1 + Z2B

cZ4 Z1 + Z4 Z2 - Z4 Z1 - Z3 Z1

Z4AZ1 + Z2B dEi(s) = -
Z3

Z4
Eo(s)

EA(s) = EB(s) =
Z1

Z1 + Z2
Ei(s)

Ei(s) - a1 +
Z3

Z4
bEA(s) = -

Z3

Z4
Eo(s)

A

B

eoei

Z3

Z1

Z2

Z4

–

+

Figure 3–27
Operational-
amplifier circuit.
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A–3–8. Obtain the transfer function of the operational-amplifier circuit shown in Figure 3–28.

Solution. We will first obtain currents i1, i2, i3, i4, and i5.Then we will use node equations at nodes
A and B.

At node A, we have i1=i2+i3+i4, or

(3–42)

At node B, we get i4=i5, or

(3–43)

By rewriting Equation (3–42), we have

(3–44)

From Equation (3–43), we get

(3–45)

By substituting Equation (3–45) into Equation (3–44), we obtain

Taking the Laplace transform of this last equation, assuming zero initial conditions, we obtain

from which we get the transfer function as follows:

Eo(s)

Ei(s)
= -

1

R1 C1 R2C2 s2 + CR2 C2 + R1 C2 + AR1�R3BR2 C2 Ds + AR1�R3B
Eo(s)�Ei(s)

-C1 C2 R2 s2Eo(s) + a 1

R1
+

1

R2
+

1

R3
b A-R2 C2BsEo(s) -

1

R3
Eo(s) =

Ei(s)

R1

C1 a-R2 C2

d2eo

dt2 b + a 1

R1
+

1

R2
+

1

R3
b A-R2 C2B deo

dt
=

ei

R1
+

eo

R3

eA = -R2 C2

deo

dt

C1

deA

dt
+ a 1
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Figure 3–28
Operational-
amplifier circuit.
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A–3–9. Consider the servo system shown in Figure 3–29(a).The motor shown is a servomotor,a dc motor de-
signed specifically to be used in a control system.The operation of this system is as follows:A pair of
potentiometers acts as an error-measuring device. They convert the input and output positions into
proportional electric signals. The command input signal determines the angular position r of the
wiper arm of the input potentiometer.The angular position r is the reference input to the system, and
the electric potential of the arm is proportional to the angular position of the arm.The output shaft
position determines the angular position c of the wiper arm of the output potentiometer.The differ-
ence between the input angular position r and the output angular position c is the error signal e, or

The potential difference is the error voltage, where er is proportional to r and ec is pro-
portional to c; that is, and where K0 is a proportionality constant.The error volt-
age that appears at the potentiometer terminals is amplified by the amplifier whose gain constant is K1.
The output voltage of this amplifier is applied to the armature circuit of the dc motor.A fixed volt-
age is applied to the field winding. If an error exists, the motor develops a torque to rotate the out-
put load in such a way as to reduce the error to zero. For constant field current, the torque
developed by the motor is

where K2 is the motor torque constant and ia is the armature current.
When the armature is rotating, a voltage proportional to the product of the flux and angular

velocity is induced in the armature. For a constant flux, the induced voltage eb is directly propor-
tional to the angular velocity or

where eb is the back emf, K3 is the back emf constant of the motor, and u is the angular displace-
ment of the motor shaft.

eb = K3
du

dt

du�dt,

T = K2 ia

ec = K0 c ,er = K0 r
er - ec = ev

e = r - c

(a)

Reference input

Input device

Input potentiometer

Output potentiometer
Feedback signal

er ec

r c

c

K1
ia

T

Ra La

Error measuring device Amplifier Motor Gear
train

Load

u

K1evev

(b) (c)

Ev(s)E(s)R(s) C(s)U(s)K1K2

s(Las + Ra) (Jos + bo) + K2K3sK0 n
C(s)R(s) K

s(Js + B)
+

–
+

–

Figure 3–29
(a) Schematic diagram of servo system; (b) block diagram for the system; (c) simplified block diagram.
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Obtain the transfer function between the motor shaft angular displacement u and the error
voltage ev. Obtain also a block diagram for this system and a simplified block diagram when La

is negligible.

Solution. The speed of an armature-controlled dc servomotor is controlled by the armature volt-
age ea. (The armature voltage is the output of the amplifier.) The differential equation
for the armature circuit is

or

(3–46)

The equation for torque equilibrium is

(3–47)

where J0 is the inertia of the combination of the motor, load, and gear train referred to the motor
shaft and b0 is the viscous-friction coefficient of the combination of the motor, load, and gear train
referred to the motor shaft.

By eliminating ia from Equations (3–46) and (3–47), we obtain

(3–48)

We assume that the gear ratio of the gear train is such that the output shaft rotates n times for each
revolution of the motor shaft. Thus,

(3–49)

The relationship among Ev(s), R(s), and C(s) is

(3–50)

The block diagram of this system can be constructed from Equations (3–48), (3–49), and (3–50),
as shown in Figure 3–29(b). The transfer function in the feedforward path of this system is

When La is small, it can be neglected, and the transfer function G(s) in the feedforward path
becomes

(3–51)

The term indicates that the back emf of the motor effectively increases the
viscous friction of the system. The inertia J0 and viscous friction coefficient areb0 + AK2 K3�RaBCb0 + AK2 K3�RaB Ds

 =
K0 K1 K2 n�Ra

J0 s2 + ab0 +
K2 K3

Ra
b s

 G(s) =
K0 K1 K2 n

s CRaAJ0 s + b0B + K2 K3 D

G(s) =
C(s)

Q (s)

Q (s)

Ev(s)

Ev(s)

E(s)
=

K0 K1 K2 n
s C ALa s + RaB AJ0 s + b0B + K2 K3 D

Ev(s) = K0 CR(s) - C(s) D = K0 E(s)

C(s) = nQ (s)

Q (s)

Ev(s)
=

K1 K2

sALa s + RaB AJ0 s + b0B + K2 K3 s

J0
d2u

dt2 + b0
du

dt
= T = K2 ia

La

dia

dt
+ Ra ia + K3

du

dt
= K1 ev

La

dia

dt
+ Ra ia + eb = ea

ea = K1 ev
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referred to the motor shaft. When J0 and are multiplied by 1/n2, the inertia and
viscous-friction coefficient are expressed in terms of the output shaft. Introducing new parameters
defined by

moment of inertia referred to the output shaft

viscous-friction coefficient referred to the output shaft

the transfer function G(s) given by Equation (3–51) can be simplified, yielding

or

where

The block diagram of the system shown in Figure 3–29(b) can thus be simplified as shown in
Figure 3–29(c).

Km =
K

B
,  Tm =

J

B
=

Ra J0

Ra b0 + K2 K3

 G(s) =
Km

sATm s + 1B
 G(s) =

K

Js2 + Bs

 K = K0 K1 K2�nRa

 B = Cb0 + AK2 K3�RaB D�n2 =

 J = J0�n2 =

b0 + AK2 K3�RaB

PROBLEMS

B–3–1. Obtain the equivalent viscous-friction coefficient
beq of the system shown in Figure 3–30.

B–3–2. Obtain mathematical models of the mechanical sys-
tems shown in Figures 3–31(a) and (b).

x

b3

y

b2

b1 m
k

(a)

No friction

x (Output)

u(t)
(Input force)

m

(b)

No friction

x (Output)

u(t)
(Input force)

k1 k2

Figure 3–31
Mechanical systems.

Figure 3–30
Damper system.
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y1

y2

u1

m2

b1

u2

k2

k1

m1

Figure 3–32 Mechanical system.

B–3–3. Obtain a state-space representation of the mechan-
ical system shown in Figure 3–32, where u1 and u2 are the
inputs and y1 and y2 are the outputs.

B–3–4. Consider the spring-loaded pendulum system shown
in Figure 3–33. Assume that the spring force acting on the
pendulum is zero when the pendulum is vertical, or u=0.
Assume also that the friction involved is negligible and the
angle of oscillation u is small. Obtain a mathematical model
of the system.

k k

a

�

mg

u

Figure 3–33 Spring-loaded pendulum system.

B–3–5. Referring to Examples 3–5 and 3–6, consider the
inverted-pendulum system shown in Figure 3–34. Assume
that the mass of the inverted pendulum is m and is evenly
distributed along the length of the rod. (The center of
gravity of the pendulum is located at the center of the rod.)
Assuming that u is small, derive mathematical models for
the system in the forms of differential equations, transfer
functions, and state-space equations.

M

y

x

u

G

O

�

�

x�

y�

x
u

Figure 3–34 Inverted-pendulum system.

B–3–6. Obtain the transfer functions X1(s)/U(s) and
X2(s)/U(s) of the mechanical system shown in Figure 3–35.

m1 m2

k3
k1

x1 x2
u

b1

k2

b2

Figure 3–35 Mechanical system.

B–3–7. Obtain the transfer function Eo(s)/Ei(s) of the elec-
trical circuit shown in Figure 3–36.

R1

eo

R2

CLei

i1 i2

Figure 3–36 Electrical circuit.

B–3–8. Consider the electrical circuit shown in Figure 3–37.
Obtain the transfer function Eo(s)/Ei(s) by use of the block
diagram approach.

R1

C1 eo

R2

C2ei

i1 i2

Figure 3–37 Electrical circuit.
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B–3–9. Derive the transfer function of the electrical circuit
shown in Figure 3–38. Draw a schematic diagram of an
analogous mechanical system.

R1 C1

R2

C2

eoei

Figure 3–38 Electrical circuit.

+

–
C

AR1

R2

ei eo

Figure 3–39 Operational-amplifier circuit.

B–3–10. Obtain the transfer function of the 
op-amp circuit shown in Figure 3–39.

Eo(s)�Ei(s)

+

–

C A

B

R1

R2

R3

ei eo

Figure 3–40 Operational-amplifier circuit.

B–3–11. Obtain the transfer function of the 
op-amp circuit shown in Figure 3–40.

Eo(s)�Ei(s)

B–3–12. Using the impedance approach, obtain the trans-
fer function of the op-amp circuit shown in
Figure 3–41.

Eo(s)�Ei(s)

+

–
C

A

B

R1

R1

R2ei
eo

Figure 3–41 Operational-amplifier circuit.

B–3–13. Consider the system shown in Figure 3–42. An
armature-controlled dc servomotor drives a load consisting
of the moment of inertia JL . The torque developed by the
motor is T. The moment of inertia of the motor rotor is Jm .
The angular displacements of the motor rotor and the load
element are um and u, respectively. The gear ratio is

Obtain the transfer function Q (s)�Ei(s).n = u�um .

L R

T

n

ei Jm

JL

um

u

Figure 3–42 Armature-controlled dc servomotor system.
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Mathematical Modeling 
of Fluid Systems 

and Thermal Systems

4–1 INTRODUCTION

This chapter treats mathematical modeling of fluid systems and thermal systems.As the
most versatile medium for transmitting signals and power, fluids—liquids and gases—
have wide usage in industry. Liquids and gases can be distinguished basically by their rel-
ative incompressibilities and the fact that a liquid may have a free surface, whereas a gas
expands to fill its vessel. In the engineering field the term pneumatic describes fluid
systems that use air or gases and hydraulic applies to those using oil.

We first discuss liquid-level systems that are frequently used in process control. Here
we introduce the concepts of resistance and capacitance to describe the dynamics of such
systems. Then we treat pneumatic systems. Such systems are extensively used in the au-
tomation of production machinery and in the field of automatic controllers. For instance,
pneumatic circuits that convert the energy of compressed air into mechanical energy enjoy
wide usage.Also, various types of pneumatic controllers are widely used in industry. Next,
we present hydraulic servo systems.These are widely used in machine tool systems, aircraft
control systems, etc. We discuss basic aspects of hydraulic servo systems and hydraulic
controllers. Both pneumatic systems and hydraulic systems can be modeled easily by using
the concepts of resistance and capacitance. Finally, we treat simple thermal systems. Such
systems involve heat transfer from one substance to another. Mathematical models of
such systems can be obtained by using thermal resistance and thermal capacitance.

Outline of the Chapter. Section 4–1 has presented introductory material for the
chapter. Section 4–2 discusses liquid-level systems. Section 4–3 treats pneumatic
systems—in particular, the basic principles of pneumatic controllers. Section 4–4 first
discusses hydraulic servo systems and then presents hydraulic controllers. Finally,
Section 4–5 analyzes thermal systems and obtains mathematical models of such systems.
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4–2 LIQUID-LEVEL SYSTEMS

In analyzing systems involving fluid flow, we find it necessary to divide flow regimes
into laminar flow and turbulent flow, according to the magnitude of the Reynolds num-
ber. If the Reynolds number is greater than about 3000 to 4000, then the flow is turbu-
lent. The flow is laminar if the Reynolds number is less than about 2000. In the laminar
case, fluid flow occurs in streamlines with no turbulence. Systems involving laminar flow
may be represented by linear differential equations.

Industrial processes often involve flow of liquids through connecting pipes and tanks.
The flow in such processes is often turbulent and not laminar. Systems involving turbu-
lent flow often have to be represented by nonlinear differential equations. If the region
of operation is limited, however, such nonlinear differential equations can be linearized.
We shall discuss such linearized mathematical models of liquid-level systems in this sec-
tion. Note that the introduction of concepts of resistance and capacitance for such liquid-
level systems enables us to describe their dynamic characteristics in simple forms.

Resistance and Capacitance of Liquid-Level Systems. Consider the flow
through a short pipe connecting two tanks. The resistance R for liquid flow in such a
pipe or restriction is defined as the change in the level difference (the difference of the
liquid levels of the two tanks) necessary to cause a unit change in flow rate; that is,

Since the relationship between the flow rate and level difference differs for the laminar
flow and turbulent flow, we shall consider both cases in the following.

Consider the liquid-level system shown in Figure 4–1(a). In this system the liquid
spouts through the load valve in the side of the tank. If the flow through this restriction
is laminar, the relationship between the steady-state flow rate and steady-state head at
the level of the restriction is given by

Q=KH

R =
change in level difference, m

change in flow rate, m3�sec

Control valve

Q + qo

Q + qi

H + h

Load valve

Capacitance
C

Resistance
R

(b)(a)

Head

H

–H

0

h

P

q

Q Flow rate

tan–1Rt

Slope =        =2H
Q

h
q

Figure 4–1
(a) Liquid-level
system; (b) head-
versus-flow-rate
curve.
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where steady-state liquid flow rate, m3�sec
coefficient, m2�sec
steady-state head, m

For laminar flow, the resistance Rl is obtained as

The laminar-flow resistance is constant and is analogous to the electrical resistance.
If the flow through the restriction is turbulent, the steady-state flow rate is given by

(4–1)

where steady-state liquid flow rate, m3�sec
coefficient, m2.5�sec
steady-state head, m

The resistance Rt for turbulent flow is obtained from

Since from Equation (4–1) we obtain

we have

Thus,

The value of the turbulent-flow resistance Rt depends on the flow rate and the head.The
value of Rt , however, may be considered constant if the changes in head and flow rate
are small.

By use of the turbulent-flow resistance, the relationship between Q and H can be
given by

Such linearization is valid, provided that changes in the head and flow rate from their
respective steady-state values are small.

In many practical cases, the value of the coefficient K in Equation (4–1), which depends
on the flow coefficient and the area of restriction, is not known.Then the resistance may
be determined by plotting the head-versus-flow-rate curve based on experimental data
and measuring the slope of the curve at the operating condition.An example of such a plot
is shown in Figure 4–1(b). In the figure, point P is the steady-state operating point.The tan-
gent line to the curve at point P intersects the ordinate at point Thus, the slope
of this tangent line is Since the resistance Rt at the operating point P is given by

the resistance Rt is the slope of the curve at the operating point.2H
– �Q

–
,

2H
– �Q

–
.

A0, -H
– B.

Q =
2H

Rt

Rt =
2H

Q

dH
dQ

=
21H

K
=

21H1H

Q
=

2H

Q

dQ =
K

21H
 dH

Rt =
dH
dQ

H =
K =
Q =

Q = K1H

Rl =
dH
dQ

=
H

Q

 H =
 K =
 Q =
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Consider the operating condition in the neighborhood of point P. Define a small
deviation of the head from the steady-state value as h and the corresponding small
change of the flow rate as q. Then the slope of the curve at point P can be given by

The linear approximation is based on the fact that the actual curve does not differ much
from its tangent line if the operating condition does not vary too much.

The capacitance C of a tank is defined to be the change in quantity of stored liquid
necessary to cause a unit change in the potential (head). (The potential is the quantity
that indicates the energy level of the system.)

It should be noted that the capacity (m3) and the capacitance (m2) are different. The
capacitance of the tank is equal to its cross-sectional area. If this is constant, the capac-
itance is constant for any head.

Liquid-Level Systems. Consider the system shown in Figure 4–1(a). The vari-
ables are defined as follows:

steady-state flow rate (before any change has occurred), m3�sec
qi= small deviation of inflow rate from its steady-state value, m3�sec
qo= small deviation of outflow rate from its steady-state value, m3�sec

steady-state head (before any change has occurred), m
h= small deviation of head from its steady-state value, m

As stated previously, a system can be considered linear if the flow is laminar. Even if
the flow is turbulent, the system can be linearized if changes in the variables are kept
small. Based on the assumption that the system is either linear or linearized, the differential
equation of this system can be obtained as follows: Since the inflow minus outflow during
the small time interval dt is equal to the additional amount stored in the tank, we see that

From the definition of resistance, the relationship between qo and h is given by

The differential equation for this system for a constant value of R becomes

(4–2)

Note that RC is the time constant of the system.Taking the Laplace transforms of both
sides of Equation (4–2), assuming the zero initial condition, we obtain

where
and Qi(s) = l Cqi DH(s) = l[h]

(RCs + 1)H(s) = RQi(s)

RC
dh
dt

+ h = Rqi

qo =
h

R

C dh = Aqi - qoB dt

H
– =

Q
– =

C =
change in liquid stored, m3

change in head, m

Slope of curve at point P =
h
q

=
2H

–

Q
– = Rt
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Q + q

Tank 1 Tank 2

H1 + h1
R1 H2 + h2 R2

Q + q2

C1 C2
Q + q1

Q :
H1 :
H2 :

Steady-state flow rate
Steady-state liquid level of tank 1
Steady-state liquid level of tank 2

Figure 4–2
Liquid-level system
with interaction.

If qi is considered the input and h the output, the transfer function of the system is

If, however, qo is taken as the output, the input being the same, then the transfer
function is

where we have used the relationship

Liquid-Level Systems with Interaction. Consider the system shown in Figure
4–2. In this system, the two tanks interact.Thus the transfer function of the system is not
the product of two first-order transfer functions.

In the following, we shall assume only small variations of the variables from the
steady-state values. Using the symbols as defined in Figure 4–2, we can obtain the
following equations for this system:

(4–3)

(4–4)

(4–5)

(4–6)

If q is considered the input and q2 the output, the transfer function of the system is

(4–7)
Q2(s)

Q(s)
=

1

R1 C1 R2 C2 s2 + AR1 C1 + R2 C2 + R2 C1Bs + 1

C2
dh2

dt
= q1 - q2

h2

R2
= q2

C1
dh1

dt
= q - q1

h1 - h2

R1
= q1

Qo(s) =
1

R
H(s)

Qo(s)

Qi(s)
=

1

RCs + 1

H(s)

Qi(s)
=

R

RCs + 1
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It is instructive to obtain Equation (4–7), the transfer function of the interacted
system, by block diagram reduction. From Equations (4–3) through (4–6), we obtain the
elements of the block diagram, as shown in Figure 4–3(a). By connecting signals prop-
erly, we can construct a block diagram, as shown in Figure 4–3(b). This block diagram
can be simplified, as shown in Figure 4–3(c). Further simplifications result in 
Figures 4–3(d) and (e). Figure 4–3(e) is equivalent to Equation (4–7).

(c)

(d)

(e)

G3

(b)

(a)

Q(s) H1(s)

H2(s)

Q1(s) Q2(s)

Q(s) Q1(s) Q2(s)

Q(s) Q2(s)

Q(s) Q2(s)

1
R1

1
R1

1
R1

1
R2

1
R2

1
R2

1
C1s

1
C1s

1
C2s

G3
1

C2s

G3
1

C2s

R2C1s

R2C1s

1
R1C1 s + 1

1
R2C2 s + 1

1
R1C1R2C2s2 + (R1C1 + R2C2 + R2C1)s + 1

H1(s) Q1(s)

H2(s)

1
C1s

H2(s) Q2(s)

Q(s) H1(s)

Q1(s)

Q1(s) H2(s)

Q2(s)

+
–

+
–

+
–

+
–

+
–

+
–

+
–

+
–

+
–

+
–

Figure 4–3
(a) Elements of the
block diagram of the
system shown in
Figure 4–2; (b) block
diagram of the
system; (c)–(e)
successive reductions
of the block diagram.
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Notice the similarity and difference between the transfer function given by 
Equation (4–7) and that given by Equation (3–33). The term R2C1s that appears in the
denominator of Equation (4–7) exemplifies the interaction between the two tanks.
Similarly, the term R1C2s in the denominator of Equation (3–33) represents the inter-
action between the two RC circuits shown in Figure 3–8.

4–3 PNEUMATIC SYSTEMS

In industrial applications pneumatic systems and hydraulic systems are frequently
compared.Therefore, before we discuss pneumatic systems in detail, we shall give a brief
comparison of these two kinds of systems.

Comparison Between Pneumatic Systems and Hydraulic Systems. The fluid
generally found in pneumatic systems is air; in hydraulic systems it is oil. And it is pri-
marily the different properties of the fluids involved that characterize the differences
between the two systems. These differences can be listed as follows:

1. Air and gases are compressible,whereas oil is incompressible (except at high pressure).
2. Air lacks lubricating property and always contains water vapor. Oil functions as a

hydraulic fluid as well as a lubricator.
3. The normal operating pressure of pneumatic systems is very much lower than that

of hydraulic systems.
4. Output powers of pneumatic systems are considerably less than those of hydraulic

systems.
5. Accuracy of pneumatic actuators is poor at low velocities, whereas accuracy of

hydraulic actuators may be made satisfactory at all velocities.
6. In pneumatic systems, external leakage is permissible to a certain extent, but in-

ternal leakage must be avoided because the effective pressure difference is rather
small. In hydraulic systems internal leakage is permissible to a certain extent, but
external leakage must be avoided.

7. No return pipes are required in pneumatic systems when air is used, whereas they
are always needed in hydraulic systems.

8. Normal operating temperature for pneumatic systems is 5° to 60°C (41° to 140°F).
The pneumatic system, however, can be operated in the 0° to 200°C (32° to 392°F)
range. Pneumatic systems are insensitive to temperature changes, in contrast to
hydraulic systems, in which fluid friction due to viscosity depends greatly on tem-
perature. Normal operating temperature for hydraulic systems is 20° to 70°C (68°
to 158°F).

9. Pneumatic systems are fire- and explosion-proof, whereas hydraulic systems are
not, unless nonflammable liquid is used.

In what follows we begin with a mathematical modeling of pneumatic systems.Then
we shall present pneumatic proportional controllers.

We shall first give detailed discussions of the principle by which proportional
controllers operate. Then we shall treat methods for obtaining derivative and integral
control actions. Throughout the discussions, we shall place emphasis on the
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Resistance
R

Capacitance
C

(a) (b)

P + pi

P + po

0 q

q dq

DP

Slope = R
d (DP)Figure 4–4

(a) Schematic
diagram of a
pressure system;
(b) pressure-
difference-versus-
flow-rate curve.

fundamental principles, rather than on the details of the operation of the actual
mechanisms.

Pneumatic Systems. The past decades have seen a great development in low-
pressure pneumatic controllers for industrial control systems, and today they are used
extensively in industrial processes. Reasons for their broad appeal include an explosion-
proof character, simplicity, and ease of maintenance.

Resistance and Capacitance of Pressure Systems. Many industrial processes
and pneumatic controllers involve the flow of a gas or air through connected pipelines
and pressure vessels.

Consider the pressure system shown in Figure 4–4(a). The gas flow through the
restriction is a function of the gas pressure difference pi-po . Such a pressure system
may be characterized in terms of a resistance and a capacitance.

The gas flow resistance R may be defined as follows:

or

(4–8)

where is a small change in the gas pressure difference and dq is a small change
in the gas flow rate. Computation of the value of the gas flow resistance R may be quite
time consuming. Experimentally, however, it can be easily determined from a plot of
the pressure difference versus flow rate by calculating the slope of the curve at a given
operating condition, as shown in Figure 4–4(b).

The capacitance of the pressure vessel may be defined by

or

(4–9)C =
dm
dp

= V
dr

dp

C =
change in gas stored, lb

change in gas pressure, lbf�ft2

d(¢P)

R =
d(¢P)

dq

R =
change in gas pressure difference, lbf�ft2

change in gas flow rate, lb�sec
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where capacitance, lb-ft2�lbf

mass of gas in vessel, lb
gas pressure, lbf�ft2

volume of vessel, ft3

density, lb�ft3

The capacitance of the pressure system depends on the type of expansion process
involved. The capacitance can be calculated by use of the ideal gas law. If the gas ex-
pansion process is polytropic and the change of state of the gas is between isothermal
and adiabatic, then

(4–10)

where n=polytropic exponent.
For ideal gases,

or

where absolute pressure, lbf�ft2

volume occupied by 1 mole of a gas, ft3�lb-mole
universal gas constant, ft-lbf�lb-mole °R
absolute temperature, °R
specific volume of gas, ft3�lb
molecular weight of gas per mole, lb�lb-mole

Thus

(4–11)

where Rgas=gas constant, ft-lbf�lb °R.
The polytropic exponent n is unity for isothermal expansion. For adiabatic expansion,

n is equal to the ratio of specific heats cp�cv, where cp is the specific heat at constant pres-
sure and cv is the specific heat at constant volume. In many practical cases, the value of
n is approximately constant, and thus the capacitance may be considered constant.

The value of dr�dp is obtained from Equations (4–10) and (4–11). From
Equation (4–10) we have

or

Substituting Equation (4–11) into this last equation, we get

dr

dp
=

1
nRgas T

dr

dp
=

1
Knrn - 1 =

rn

pnrn - 1 =
r

pn

dp = Knrn - 1 dr

pv =
p
r

=
R
–

M
T = Rgas T

M =
v =
T =
R
– =
v– =
p =

pv =
R
–

M
Tpv– = R

–
T

p a V
m
b n

=
p

rn = constant = K

r =
V =
p =
m =
C =
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The capacitance C is then obtained as

(4–12)

The capacitance of a given vessel is constant if the temperature stays constant. (In many
practical cases, the polytropic exponent n is approximately 1.0 ~ 1.2 for gases in unin-
sulated metal vessels.)

Pressure Systems. Consider the system shown in Figure 4–4(a). If we assume
only small deviations in the variables from their respective steady-state values, then this
system may be considered linear.

Let us define

gas pressure in the vessel at steady state (before changes in pressure have
occurred), lbf�ft2

pi= small change in inflow gas pressure, lbf�ft2

po= small change in gas pressure in the vessel, lbf�ft2

V= volume of the vessel, ft3

m= mass of gas in the vessel, lb
q= gas flow rate, lb�sec
r= density of gas, lb/ft3

For small values of pi and po, the resistance R given by Equation (4–8) becomes constant
and may be written as

The capacitance C is given by Equation (4–9), or

Since the pressure change dpo times the capacitance C is equal to the gas added to the
vessel during dt seconds, we obtain

or

which can be written as

If pi and po are considered the input and output, respectively, then the transfer function
of the system is

where RC has the dimension of time and is the time constant of the system.

Po(s)

Pi(s)
=

1

RCs + 1

RC
dpo

dt
+ po = pi

C
dpo

dt
=

pi - po

R

C dpo = q dt

C =
dm
dp

R =
pi - po

q

P
– =

C =
V

nRgas T
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Figure 4–5
(a) Schematic
diagram of a
pneumatic nozzle–
flapper amplifier;
(b) characteristic
curve relating nozzle
back pressure and
nozzle–flapper
distance.

Pneumatic Nozzle–Flapper Amplifiers. A schematic diagram of a pneumatic
nozzle–flapper amplifier is shown in Figure 4–5(a). The power source for this amplifier
is a supply of air at constant pressure. The nozzle–flapper amplifier converts small
changes in the position of the flapper into large changes in the back pressure in the noz-
zle. Thus a large power output can be controlled by the very little power that is needed
to position the flapper.

In Figure 4–5(a), pressurized air is fed through the orifice, and the air is ejected from
the nozzle toward the flapper. Generally, the supply pressure for such a controller
is 20 psig (1.4 kgf�cm2 gage). The diameter of the orifice is on the order of 0.01 in.
(0.25 mm) and that of the nozzle is on the order of 0.016 in. (0.4 mm).To ensure prop-
er functioning of the amplifier, the nozzle diameter must be larger than the orifice
diameter.

In operating this system, the flapper is positioned against the nozzle opening. The
nozzle back pressure is controlled by the nozzle–flapper distance X. As the flapper
approaches the nozzle, the opposition to the flow of air through the nozzle increases, with
the result that the nozzle back pressure increases. If the nozzle is completely closed
by the flapper, the nozzle back pressure becomes equal to the supply pressure If
the flapper is moved away from the nozzle, so that the nozzle–flapper distance is wide
(on the order of 0.01 in.), then there is practically no restriction to flow, and the nozzle
back pressure takes on a minimum value that depends on the nozzle–flapper device.
(The lowest possible pressure will be the ambient pressure )

Note that, because the air jet puts a force against the flapper, it is necessary to make
the nozzle diameter as small as possible.

A typical curve relating the nozzle back pressure to the nozzle–flapper distance
X is shown in Figure 4–5(b). The steep and almost linear part of the curve is utilized in
the actual operation of the nozzle–flapper amplifier. Because the range of flapper dis-
placements is restricted to a small value, the change in output pressure is also small,
unless the curve is very steep.

The nozzle–flapper amplifier converts displacement into a pressure signal. Since
industrial process control systems require large output power to operate large pneu-
matic actuating valves, the power amplification of the nozzle–flapper amplifier is usually
insufficient. Consequently, a pneumatic relay is often needed as a power amplifier in
connection with the nozzle–flapper amplifier.
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Pneumatic Relays. In practice, in a pneumatic controller, a nozzle–flapper
amplifier acts as the first-stage amplifier and a pneumatic relay as the second-
stage amplifier. The pneumatic relay is capable of handling a large quantity of 
airflow.

A schematic diagram of a pneumatic relay is shown in Figure 4–6(a).As the nozzle
back pressure increases, the diaphragm valve moves downward. The opening to
the atmosphere decreases and the opening to the pneumatic valve increases, thereby
increasing the control pressure When the diaphragm valve closes the opening to
the atmosphere, the control pressure becomes equal to the supply pressure 
When the nozzle back pressure decreases and the diaphragm valve moves upward
and shuts off the air supply, the control pressure drops to the ambient pressure 
The control pressure can thus be made to vary from 0 psig to full supply pressure,
usually 20 psig.

The total movement of the diaphragm valve is very small. In all positions of the
valve, except at the position to shut off the air supply, air continues to bleed into the at-
mosphere, even after the equilibrium condition is attained between the nozzle back
pressure and the control pressure. Thus the relay shown in Figure 4–6(a) is called a
bleed-type relay.

There is another type of relay, the nonbleed type. In this one the air bleed stops
when the equilibrium condition is obtained and, therefore, there is no loss of pres-
surized air at steady-state operation. Note, however, that the nonbleed-type relay
must have an atmospheric relief to release the control pressure from the pneu-
matic actuating valve. A schematic diagram of a nonbleed-type relay is shown in Fig-
ure 4–6(b).

In either type of relay, the air supply is controlled by a valve, which is in turn
controlled by the nozzle back pressure.Thus, the nozzle back pressure is converted into
the control pressure with power amplification.

Since the control pressure changes almost instantaneously with changes in the
nozzle back pressure the time constant of the pneumatic relay is negligible
compared with the other larger time constants of the pneumatic controller and
the plant.

Pb ,
Pc

Pc

Pc

Pa .Pc

Pb

Ps .Pc

Pc .

Pb

Figure 4–6
(a) Schematic diagram of a bleed-type relay; (b) schematic diagram of a nonbleed-type relay.
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Figure 4–7
Reverse-acting relay.

It is noted that some pneumatic relays are reverse acting. For example, the relay
shown in Figure 4–7 is a reverse-acting relay. Here, as the nozzle back pressure 
increases, the ball valve is forced toward the lower seat, thereby decreasing the control
pressure Thus, this relay is a reverse-acting relay.

Pneumatic Proportional Controllers (Force-Distance Type). Two types of pneu-
matic controllers, one called the force-distance type and the other the force-balance type,
are used extensively in industry. Regardless of how differently industrial pneumatic con-
trollers may appear, careful study will show the close similarity in the functions of the
pneumatic circuit. Here we shall consider the force-distance type of pneumatic controllers.

Figure 4–8(a) shows a schematic diagram of such a proportional controller.The nozzle–
flapper amplifier constitutes the first-stage amplifier, and the nozzle back pressure is
controlled by the nozzle–flapper distance.The relay-type amplifier constitutes the second-
stage amplifier.The nozzle back pressure determines the position of the diaphragm valve
for the second-stage amplifier, which is capable of handling a large quantity of airflow.

In most pneumatic controllers, some type of pneumatic feedback is employed. Feed-
back of the pneumatic output reduces the amount of actual movement of the flapper.
Instead of mounting the flapper on a fixed point, as shown in Figure 4–8(b), it is often
pivoted on the feedback bellows, as shown in Figure 4–8(c).The amount of feedback can
be regulated by introducing a variable linkage between the feedback bellows and the
flapper connecting point. The flapper then becomes a floating link. It can be moved by
both the error signal and the feedback signal.

The operation of the controller shown in Figure 4–8(a) is as follows. The input sig-
nal to the two-stage pneumatic amplifier is the actuating error signal. Increasing the
actuating error signal moves the flapper to the left. This move will, in turn, increase the
nozzle back pressure, and the diaphragm valve moves downward. This results in an in-
crease of the control pressure. This increase will cause bellows F to expand and move
the flapper to the right, thus opening the nozzle. Because of this feedback, the nozzle–
flapper displacement is very small, but the change in the control pressure can be large.

It should be noted that proper operation of the controller requires that the feed-
back bellows move the flapper less than that movement caused by the error signal alone.
(If these two movements were equal, no control action would result.)

Equations for this controller can be derived as follows. When the actuating error is
zero, or e=0, an equilibrium state exists with the nozzle–flapper distance equal to theX

–
,

Pc .

Pb
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displacement of bellows equal to the displacement of the diaphragm equal to the
nozzle back pressure equal to and the control pressure equal to When an actuating
error exists, the nozzle–flapper distance, the displacement of the bellows, the displacement
of the diaphragm, the nozzle back pressure, and the control pressure deviate from their re-
spective equilibrium values.Let these deviations be x, y, z, pb, and pc, respectively. (The pos-
itive direction for each displacement variable is indicated by an arrowhead in the diagram.)

P
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c .P
–

b ,
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–

,Y
–
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Figure 4–8
(a) Schematic diagram of a force-distance type of pneumatic proportional controller;
(b) flapper mounted on a fixed point; (c) flapper mounted on a feedback bellows;
(d) displacement x as a result of addition of two small displacements;
(e) block diagram for the controller; (f) simplified block diagram for the controller.
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Assuming that the relationship between the variation in the nozzle back pressure and
the variation in the nozzle–flapper distance is linear, we have

(4–13)

where is a positive constant. For the diaphragm valve,

(4–14)

where K2 is a positive constant. The position of the diaphragm valve determines the
control pressure. If the diaphragm valve is such that the relationship between and z
is linear, then

(4–15)

where K3 is a positive constant. From Equations (4–13), (4–14), and (4–15), we obtain

(4–16)

where K=K1K3/K2 is a positive constant. For the flapper, since there are two small
movements (e and y) in opposite directions, we can consider such movements separately
and add up the results of two movements into one displacement x. See Figure 4–8(d).
Thus, for the flapper movement, we have

(4–17)

The bellows acts like a spring, and the following equation holds true:

(4–18)

where A is the effective area of the bellows and ks is the equivalent spring constant—
that is, the stiffness due to the action of the corrugated side of the bellows.

Assuming that all variations in the variables are within a linear range, we can obtain
a block diagram for this system from Equations (4–16), (4–17), and (4–18) as shown in
Figure 4–8(e). From Figure 4–8(e), it can be clearly seen that the pneumatic controller
shown in Figure 4–8(a) itself is a feedback system.The transfer function between and
e is given by

(4–19)

A simplified block diagram is shown in Figure 4–8(f). Since and e are proportional,
the pneumatic controller shown in Figure 4–8(a) is a pneumatic proportional controller.
As seen from Equation (4–19), the gain of the pneumatic proportional controller can be
widely varied by adjusting the flapper connecting linkage. [The flapper connecting link-
age is not shown in Figure 4–8(a).] In most commercial proportional controllers an ad-
justing knob or other mechanism is provided for varying the gain by adjusting this linkage.

As noted earlier, the actuating error signal moved the flapper in one direction, and
the feedback bellows moved the flapper in the opposite direction, but to a smaller degree.
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The effect of the feedback bellows is thus to reduce the sensitivity of the controller. The
principle of feedback is commonly used to obtain wide proportional-band controllers.

Pneumatic controllers that do not have feedback mechanisms [which means that
one end of the flapper is fixed, as shown in Figure 4–9(a)] have high sensitivity and are
called pneumatic two-position controllers or pneumatic on–off controllers. In such a con-
troller, only a small motion between the nozzle and the flapper is required to give a
complete change from the maximum to the minimum control pressure. The curves re-
lating to X and to X are shown in Figure 4–9(b). Notice that a small change in X
can cause a large change in which causes the diaphragm valve to be completely open
or completely closed.

Pneumatic Proportional Controllers (Force-Balance Type). Figure 4–10 shows
a schematic diagram of a force-balance type pneumatic proportional controller. Force-
balance type controllers are in extensive use in industry. Such controllers are called stack
controllers.The basic principle of operation does not differ from that of the force-distance
type controller. The main advantage of the force-balance type controller is that it elimi-
nates many mechanical linkages and pivot joints, thereby reducing the effects of friction.

In what follows, we shall consider the principle of the force-balance type controller.
In the controller shown in Figure 4–10, the reference input pressure and the output
pressure are fed to large diaphragm chambers. Note that a force-balance type pneu-
matic controller operates only on pressure signals. Therefore, it is necessary to convert
the reference input and system output to corresponding pressure signals.
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Figure 4–10
Schematic diagram
of a force-balance
type pneumatic
proportional
controller.

Figure 4–9
(a) Pneumatic controller without a feedback mechanism; (b) curves versus X and versus X.PcPb
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As in the case of the force-distance type controller, this controller employs a flapper,
nozzle, and orifices. In Figure 4–10, the drilled opening in the bottom chamber is the
nozzle. The diaphragm just above the nozzle acts as a flapper.

The operation of the force-balance type controller shown in Figure 4–10 may be
summarized as follows: 20-psig air from an air supply flows through an orifice, causing
a reduced pressure in the bottom chamber. Air in this chamber escapes to the atmos-
phere through the nozzle. The flow through the nozzle depends on the gap and the
pressure drop across it. An increase in the reference input pressure while the out-
put pressure remains the same, causes the valve stem to move down, decreasing the
gap between the nozzle and the flapper diaphragm.This causes the control pressure 
to increase. Let

(4–20)

If pe=0, there is an equilibrium state with the nozzle–flapper distance equal to and
the control pressure equal to At this equilibrium state, and

(4–21)

where a is a constant.
Let us assume that pe Z 0 and define small variations in the nozzle–flapper distance

and control pressure as x and pc , respectively. Then we obtain the following equation:

(4–22)

From Equations (4–21) and (4–22), we obtain

(4–23)

At this point, we must examine the quantity x. In the design of pneumatic controllers,
the nozzle–flapper distance is made quite small. In view of the fact that x/a is very much
smaller than pc(1-k)A1 or pe AA2-A1 B—that is, for pe Z 0

we may neglect the term x in our analysis. Equation (4–23) can then be rewritten to
reflect this assumption as follows:

and the transfer function between pc and pe becomes

where pe is defined by Equation (4–20). The controller shown in Figure 4–10 is a
proportional controller.The value of gain Kp increases as k approaches unity. Note that
the value of k depends on the diameters of the orifices in the inlet and outlet pipes of
the feedback chamber. (The value of k approaches unity as the resistance to flow in the
orifice of the inlet pipe is made smaller.)
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Pneumatic Actuating Valves. One characteristic of pneumatic controls is that
they almost exclusively employ pneumatic actuating valves.A pneumatic actuating valve
can provide a large power output. (Since a pneumatic actuator requires a large power
input to produce a large power output, it is necessary that a sufficient quantity of pres-
surized air be available.) In practical pneumatic actuating valves, the valve characteris-
tics may not be linear; that is, the flow may not be directly proportional to the valve
stem position, and also there may be other nonlinear effects, such as hysteresis.

Consider the schematic diagram of a pneumatic actuating valve shown in Figure 4–11.
Assume that the area of the diaphragm is A. Assume also that when the actuating error
is zero, the control pressure is equal to and the valve displacement is equal to 

In the following analysis, we shall consider small variations in the variables and lin-
earize the pneumatic actuating valve. Let us define the small variation in the control
pressure and the corresponding valve displacement to be and x, respectively. Since
a small change in the pneumatic pressure force applied to the diaphragm repositions
the load, consisting of the spring, viscous friction, and mass, the force-balance equa-
tion becomes

where m=mass of the valve and valve stem
b=viscous-friction coefficient
k=spring constant

If the force due to the mass and viscous friction are negligibly small, then this last equa-
tion can be simplified to

The transfer function between x and thus becomes
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where X(s)=l[x] and If qi , the change in flow through the pneumatic
actuating valve, is proportional to x, the change in the valve-stem displacement, then

where Qi(s)=l Cqi D and Kq is a constant. The transfer function between qi and
becomes

where Kv is a constant.
The standard control pressure for this kind of a pneumatic actuating valve is between

3 and 15 psig. The valve-stem displacement is limited by the allowable stroke of the
diaphragm and is only a few inches. If a longer stroke is needed, a piston–spring
combination may be employed.

In pneumatic actuating valves, the static-friction force must be limited to a low value
so that excessive hysteresis does not result. Because of the compressibility of air, the
control action may not be positive; that is, an error may exist in the valve-stem position.
The use of a valve positioner results in improvements in the performance of a pneu-
matic actuating valve.

Basic Principle for Obtaining Derivative Control Action. We shall now present
methods for obtaining derivative control action. We shall again place the emphasis on
the principle and not on the details of the actual mechanisms.

The basic principle for generating a desired control action is to insert the inverse of
the desired transfer function in the feedback path. For the system shown in Figure 4–12,
the closed-loop transfer function is

If @G(s)H(s) @ � 1, then C(s)/R(s) can be modified to

Thus, if proportional-plus-derivative control action is desired, we insert an element
having the transfer function 1/(Ts+1) in the feedback path.
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Figure 4–12
Control system.
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Consider the pneumatic controller shown in Figure 4–13(a). Considering small changes
in the variables, we can draw a block diagram of this controller as shown in Figure 4–13(b).
From the block diagram we see that the controller is of proportional type.

We shall now show that the addition of a restriction in the negative feedback path
will modify the proportional controller to a proportional-plus-derivative controller, or
a PD controller.

Consider the pneumatic controller shown in Figure 4–14(a).Assuming again small changes
in the actuating error, nozzle–flapper distance, and control pressure, we can summarize
the operation of this controller as follows: Let us first assume a small step change in e.
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Then the change in the control pressure will be instantaneous.The restriction R will mo-
mentarily prevent the feedback bellows from sensing the pressure change pc.Thus the feed-
back bellows will not respond momentarily, and the pneumatic actuating valve will feel the
full effect of the movement of the flapper.As time goes on, the feedback bellows will expand.
The change in the nozzle–flapper distance x and the change in the control pressure can
be plotted against time t, as shown in Figure 4–14(b).At steady state, the feedback bellows
acts like an ordinary feedback mechanism.The curve versus t clearly shows that this con-
troller is of the proportional-plus-derivative type.

A block diagram corresponding to this pneumatic controller is shown in 
Figure 4–14(c). In the block diagram, K is a constant, A is the area of the bellows, and
ks is the equivalent spring constant of the bellows.The transfer function between and
e can be obtained from the block diagram as follows:

In such a controller the loop gain is made much greater
than unity. Thus the transfer function Pc(s)/E(s) can be simplified to give

where

Thus, delayed negative feedback, or the transfer function 1/(RCs+1) in the feedback
path, modifies the proportional controller to a proportional-plus-derivative controller.

Note that if the feedback valve is fully opened, the control action becomes propor-
tional. If the feedback valve is fully closed, the control action becomes narrow-band
proportional (on–off).

Obtaining Pneumatic Proportional-Plus-Integral Control Action. Consider
the proportional controller shown in Figure 4–13(a). Considering small changes in the
variables, we can show that the addition of delayed positive feedback will modify this
proportional controller to a proportional-plus-integral controller, or a PI controller.

Consider the pneumatic controller shown in Figure 4–15(a).The operation of this con-
troller is as follows:The bellows denoted by I is connected to the control pressure source
without any restriction. The bellows denoted by II is connected to the control pressure
source through a restriction. Let us assume a small step change in the actuating error.This
will cause the back pressure in the nozzle to change instantaneously.Thus a change in the
control pressure also occurs instantaneously. Due to the restriction of the valve in the
path to bellows II, there will be a pressure drop across the valve.As time goes on, air will
flow across the valve in such a way that the change in pressure in bellows II attains the value
pc. Thus bellows II will expand or contract as time elapses in such a way as to move the
flapper an additional amount in the direction of the original displacement e.This will cause
the back pressure in the nozzle to change continuously, as shown in Figure 4–15(b).pc
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(a) Pneumatic
proportional-plus-
integral controller;
(b) step change in e
and the corre-
sponding changes in
x and pc plotted
versus t; (c) block
diagram of the
controller;
(d) simplified block
diagram.

Note that the integral control action in the controller takes the form of slowly
canceling the feedback that the proportional control originally provided.

A block diagram of this controller under the assumption of small variations in the
variables is shown in Figure 4–15(c). A simplification of this block diagram yields 
Figure 4–15(d). The transfer function of this controller is
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Figure 4–16
(a) Pneumatic
proportional-plus-
integral-plus-
derivative controller;
(b) block diagram of
the controller.

where K is a constant, A is the area of the bellows, and ks is the equivalent spring constant
of the combined bellows. If which is usually the
case, the transfer function can be simplified to

where

Obtaining Pneumatic Proportional-Plus-Integral-Plus-Derivative Control
Action. A combination of the pneumatic controllers shown in Figures 4–14(a) and
4–15(a) yields a proportional-plus-integral-plus-derivative controller, or a PID con-
troller. Figure 4–16(a) shows a schematic diagram of such a controller. Figure 4–16(b)
shows a block diagram of this controller under the assumption of small variations in the
variables.
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The transfer function of this controller is

By defining

and noting that under normal operation 
and we obtain

(4–24)

where

Equation (4–24) indicates that the controller shown in Figure 4–16(a) is a proportional-
plus-integral-plus-derivative controller or a PID controller.

4–4 HYDRAULIC SYSTEMS

Except for low-pressure pneumatic controllers, compressed air has seldom been used for
the continuous control of the motion of devices having significant mass under external
load forces. For such a case, hydraulic controllers are generally preferred.

Hydraulic Systems. The widespread use of hydraulic circuitry in machine tool
applications, aircraft control systems, and similar operations occurs because of such fac-
tors as positiveness, accuracy, flexibility, high horsepower-to-weight ratio, fast starting,
stopping, and reversal with smoothness and precision, and simplicity of operations.

The operating pressure in hydraulic systems is somewhere between 145 and 5000 lbf�in.2

(between 1 and 35 MPa). In some special applications, the operating pressure may go up
to 10,000 lbf�in.2 (70 MPa). For the same power requirement, the weight and size of
the hydraulic unit can be made smaller by increasing the supply pressure. With high-
pressure hydraulic systems, very large force can be obtained. Rapid-acting, accurate
positioning of heavy loads is possible with hydraulic systems. A combination of elec-
tronic and hydraulic systems is widely used because it combines the advantages of both
electronic control and hydraulic power.
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Advantages and Disadvantages of Hydraulic Systems. There are certain
advantages and disadvantages in using hydraulic systems rather than other systems.
Some of the advantages are the following:

1. Hydraulic fluid acts as a lubricant, in addition to carrying away heat generated in
the system to a convenient heat exchanger.

2. Comparatively small-sized hydraulic actuators can develop large forces or torques.
3. Hydraulic actuators have a higher speed of response with fast starts, stops, and

speed reversals.
4. Hydraulic actuators can be operated under continuous, intermittent, reversing,

and stalled conditions without damage.
5. Availability of both linear and rotary actuators gives flexibility in design.
6. Because of low leakages in hydraulic actuators, speed drop when loads are applied

is small.

On the other hand, several disadvantages tend to limit their use.

1. Hydraulic power is not readily available compared to electric power.
2. Cost of a hydraulic system may be higher than that of a comparable electrical

system performing a similar function.
3. Fire and explosion hazards exist unless fire-resistant fluids are used.
4. Because it is difficult to maintain a hydraulic system that is free from leaks, the

system tends to be messy.
5. Contaminated oil may cause failure in the proper functioning of a hydraulic

system.
6. As a result of the nonlinear and other complex characteristics involved, the design

of sophisticated hydraulic systems is quite involved.
7. Hydraulic circuits have generally poor damping characteristics. If a hydraulic circuit

is not designed properly, some unstable phenomena may occur or disappear, de-
pending on the operating condition.

Comments. Particular attention is necessary to ensure that the hydraulic system
is stable and satisfactory under all operating conditions. Since the viscosity of hydraulic
fluid can greatly affect damping and friction effects of the hydraulic circuits, stability
tests must be carried out at the highest possible operating temperature.

Note that most hydraulic systems are nonlinear. Sometimes, however, it is possible
to linearize nonlinear systems so as to reduce their complexity and permit solutions that
are sufficiently accurate for most purposes.A useful linearization technique for dealing
with nonlinear systems was presented in Section 2–7.

Hydraulic Servo System. Figure 4–17(a) shows a hydraulic servomotor. It is
essentially a pilot-valve-controlled hydraulic power amplifier and actuator. The pilot
valve is a balanced valve, in the sense that the pressure forces acting on it are all balanced.
A very large power output can be controlled by a pilot valve, which can be positioned
with very little power.

In practice, the ports shown in Figure 4–17(a) are often made wider than the corre-
sponding valves. In such a case, there is always leakage through the valves. Such leak-
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(a) Hydraulic servo
system; (b) enlarged
diagram of the valve
orifice area.

age improves both the sensitivity and the linearity of the hydraulic servomotor. In the
following analysis we shall make the assumption that the ports are made wider than
the valves—that is, the valves are underlapped. [Note that sometimes a dither signal, a
high-frequency signal of very small amplitude (with respect to the maximum
displacement of the valve), is superimposed on the motion of the pilot valve. This also
improves the sensitivity and linearity. In this case also there is leakage through the valve.]

We shall apply the linearization technique presented in Section 2–7 to obtain a lin-
earized mathematical model of the hydraulic servomotor. We assume that the valve is
underlapped and symmetrical and admits hydraulic fluid under high pressure into a
power cylinder that contains a large piston, so that a large hydraulic force is established
to move a load.

In Figure 4–17(b) we have an enlarged diagram of the valve orifice area. Let us
define the valve orifice areas of ports 1, 2, 3, 4 as A1, A2, A3, A4, respectively.Also, define
the flow rates through ports 1, 2, 3, 4 as q1, q2, q3, q4, respectively. Note that, since the
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valve is symmetrical, A1=A3 and A2=A4 . Assuming the displacement x to be small,
we obtain

where k is a constant.
Furthermore, we shall assume that the return pressure po in the return line is small

and thus can be neglected. Then, referring to Figure 4–17(a), flow rates through valve
orifices are

where and and g is the specific weight and is given by
g=rg, where r is mass density and g is the acceleration of gravity. The flow rate q to
the left-hand side of the power piston is

(4–25)

The flow rate from the right-hand side of the power piston to the drain is the same as
this q and is given by

In the present analysis we assume that the fluid is incompressible. Since the valve is
symmetrical, we have q1=q3 and q2=q4. By equating q1 and q3, we obtain

or

If we define the pressure difference across the power piston as or
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then

For the symmetrical valve shown in Figure 4–17(a), the pressure in each side of the
power piston is (1/2)ps when no load is applied, or As the spool valve is dis-
placed, the pressure in one line increases as the pressure in the other line decreases by
the same amount.

In terms of ps and we can rewrite the flow rate q given by Equation (4–25) as

Noting that the supply pressure ps is constant. the flow rate q can be written as a func-
tion of the valve displacement x and pressure difference or

By applying the linearization technique presented in Section 3–10 to this case, the lin-
earized equation about point is

(4–26)

where

Coefficients a and b here are called valve coefficients. Equation (4–26) is a linearized
mathematical model of the spool valve near an operating point 
The values of valve coefficients a and b vary with the operating point. Note that 
is negative and so b is negative.

Since the normal operating point is the point where near the
normal operating point Equation (4–26) becomes

(4–27)
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Figure 4–18
Characteristic curves
of the linearized
hydraulic
servomotor.

Equation (4–27) is a linearized mathematical model of the spool valve near the origin
Note that the region near the origin is most important in this

kind of system, because the system operation usually occurs near this point.
Figure 4–18 shows this linearized relationship among q, x, and The straight lines

shown are the characteristic curves of the linearized hydraulic servomotor. This family
of curves consists of equidistant parallel straight lines, parametrized by x.

In the present analysis we assume that the load reactive forces are small, so that the
leakage flow rate and oil compressibility can be ignored.

Referring to Figure 4–17(a), we see that the rate of flow of oil q times dt is equal to
the power-piston displacement dy times the piston area A times the density of oil r.
Thus, we obtain

Notice that for a given flow rate q the larger the piston area A is, the lower will be the
velocity dy�dt. Hence, if the piston area A is made smaller, the other variables re-
maining constant, the velocity dy�dt will become higher.Also, an increased flow rate q
will cause an increased velocity of the power piston and will make the response time
shorter.

Equation (4–27) can now be written as

The force developed by the power piston is equal to the pressure difference times
the piston area A or

 =
A

K2
 aK1 x - Ar 

dy

dt
b

 Force developed by the power piston = A ¢P

¢P

¢P =
1

K2
aK1 x - Ar

dy

dt
b

Ar dy = q dt

¢P.

(x– = 0, ¢p– = 0, q– = 0.)
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For a given maximum force, if the pressure difference is sufficiently high, the piston
area, or the volume of oil in the cylinder, can be made small. Consequently, to minimize
the weight of the controller, we must make the supply pressure sufficiently high.

Assume that the power piston moves a load consisting of a mass and viscous friction.
Then the force developed by the power piston is applied to the load mass and friction,
and we obtain

or

(4–28)

where m is the mass of the load and b is the viscous-friction coefficient.
Assuming that the pilot-valve displacement x is the input and the power-piston

displacement y is the output, we find that the transfer function for the hydraulic servo-
motor is, from Equation (4–28),

(4–29)

where

and

From Equation (4–29) we see that this transfer function is of the second order. If the ratio 
is negligibly small or the time constant T is negligible, the transfer

function Y(s)/X(s) can be simplified to give

It is noted that a more detailed analysis shows that if oil leakage, compressibility 
(including the effects of dissolved air), expansion of pipelines, and the like are taken
into consideration, the transfer function becomes

where and are time constants. As a matter of fact, these time constants depend on
the volume of oil in the operating circuit. The smaller the volume, the smaller the time
constants.
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Hydraulic
servomotor.

Hydraulic Integral Controller. The hydraulic servomotor shown in Figure 4–19 is
a pilot-valve-controlled hydraulic power amplifier and actuator. Similar to the hydraulic
servo system shown in Figure 4–17, for negligibly small load mass the servomotor shown
in Figure 4–19 acts as an integrator or an integral controller. Such a servomotor consti-
tutes the basis of the hydraulic control circuit.

In the hydraulic servomotor shown in Figure 4–19, the pilot valve (a four-way valve)
has two lands on the spool. If the width of the land is smaller than the port in the valve
sleeve, the valve is said to be underlapped.Overlapped valves have a land width greater than
the port width.A zero-lapped valve has a land width that is identical to the port width. (If
the pilot valve is a zero-lapped valve, analyses of hydraulic servomotors become simpler.)

In the present analysis, we assume that hydraulic fluid is incompressible and that the
inertia force of the power piston and load is negligible compared to the hydraulic force
at the power piston. We also assume that the pilot valve is a zero-lapped valve, and the
oil flow rate is proportional to the pilot valve displacement.

Operation of this hydraulic servomotor is as follows. If input x moves the pilot valve
to the right, port II is uncovered, and so high-pressure oil enters the right-hand side of
the power piston. Since port I is connected to the drain port, the oil in the left-hand side
of the power piston is returned to the drain. The oil flowing into the power cylinder is
at high pressure; the oil flowing out from the power cylinder into the drain is at low
pressure. The resulting difference in pressure on both sides of the power piston will
cause it to move to the left.

Note that the rate of flow of oil q (kg�sec) times dt (sec) is equal to the power-piston
displacement dy (m) times the piston area A (m2) times the density of oil r (kg�m3).
Therefore,

(4–30)

Because of the assumption that the oil flow rate q is proportional to the pilot-valve
displacement x, we have

(4–31)

where K1 is a positive constant. From Equations (4–30) and (4–31) we obtain

Ar 
dy

dt
= K1 x

q = K1 x

Ar dy = q dt
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The Laplace transform of this last equation, assuming a zero initial condition, gives

or

where K=K1/(Ar). Thus the hydraulic servomotor shown in Figure 4–19 acts as an
integral controller.

Hydraulic Proportional Controller. It has been shown that the servomotor in
Figure 4–19 acts as an integral controller. This servomotor can be modified to a pro-
portional controller by means of a feedback link. Consider the hydraulic controller
shown in Figure 4–20(a). The left-hand side of the pilot valve is joined to the left-hand
side of the power piston by a link ABC.This link is a floating link rather than one mov-
ing about a fixed pivot.

The controller here operates in the following way. If input e moves the pilot valve to
the right, port II will be uncovered and high-pressure oil will flow through port II into
the right-hand side of the power piston and force this piston to the left. The power pis-
ton, in moving to the left, will carry the feedback link ABC with it, thereby moving the
pilot valve to the left.This action continues until the pilot piston again covers ports I and
II.A block diagram of the system can be drawn as in Figure 4–20(b).The transfer func-
tion between Y(s) and E(s) is given by

Noting that under the normal operating conditions we have this
last equation can be simplified to
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The transfer function between y and e becomes a constant.Thus, the hydraulic controller
shown in Figure 4–20(a) acts as a proportional controller, the gain of which is Kp.This gain
can be adjusted by effectively changing the lever ratio b/a. (The adjusting mechanism is
not shown in the diagram.)

We have thus seen that the addition of a feedback link will cause the hydraulic
servomotor to act as a proportional controller.

Dashpots. The dashpot (also called a damper) shown in Figure 4–21(a) acts as a
differentiating element. Suppose that we introduce a step displacement to the piston po-
sition y.Then the displacement z becomes equal to y momentarily. Because of the spring
force, however, the oil will flow through the resistance R and the cylinder will come back
to the original position.The curves y versus t and z versus t are shown in Figure 4–21(b).

Let us derive the transfer function between the displacement z and displacement y.
Define the pressures existing on the right and left sides of the piston as and

respectively. Suppose that the inertia force involved is negligible. Then the
force acting on the piston must balance the spring force. Thus

where A=piston area, in.2

k=spring constant, lbf�in.

The flow rate q is given by

where q=flow rate through the restriction, lb�sec
R=resistance to flow at the restriction, lbf-sec�in.2-lb

Since the flow through the restriction during dt seconds must equal the change in the
mass of oil to the left of the piston during the same dt seconds, we obtain

where r=density, lb�in.3. (We assume that the fluid is incompressible or r=constant.)
This last equation can be rewritten as
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Figure 4–21
(a) Dashpot; (b) step change in y and the corresponding change in z plotted versus t; (c) block
diagram of the dashpot.
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or

Taking the Laplace transforms of both sides of this last equation, assuming zero initial
conditions, we obtain

The transfer function of this system thus becomes

Let us define RA2r�k=T. (Note that RA2r�k has the dimension of time.) Then

Clearly, the dashpot is a differentiating element. Figure 4–21(c) shows a block diagram
representation for this system.

Obtaining Hydraulic Proportional-Plus-Integral Control Action. Figure 4–22(a)
shows a schematic diagram of a hydraulic proportional-plus-integral controller.A block
diagram of this controller is shown in Figure 4–22(b). The transfer function Y(s)/E(s)
is given by
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Figure 4–22
(a) Schematic diagram of a hydraulic proportional-plus-integral controller; (b) block diagram of the controller.
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In such a controller, under normal operation with the
result that

where

Thus the controller shown in Figure 4–22(a) is a proportional-plus-integral controller 
(PI controller).

Obtaining Hydraulic Proportional-Plus-Derivative Control Action. Figure 4–23(a)
shows a schematic diagram of a hydraulic proportional-plus-derivative controller. The
cylinders are fixed in space and the pistons can move. For this system, notice that

Hence
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Figure 4–23
(a) Schematic diagram of a hydraulic proportional-plus-derivative controller; (b) block diagram of the controller.
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where

A block diagram for this system is shown in Figure 4–23(b). From the block diagram the
transfer function Y(s)/E(s) can be obtained as

Under normal operation we have Hence

where

Thus the controller shown in Figure 4–23(a) is a proportional-plus-derivative controller
(PD controller).

Obtaining Hydraulic Proportional-Plus-Integral-Plus-Derivative Control Action.
Figure 4–24 shows a schematic diagram of a hydraulic proportional-plus-integral-plus-
derivative controller. It is a combination of the proportional-plus-integral controller
and proportional-plus derivative controller.

If the two dashpots are identical except the piston shafts, the transfer function
Z(s)/Y(s) can be obtained as follows:

(For the derivation of this transfer function, refer to Problem A–4–9.)
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A block diagram for this system is shown in Figure 4–25. The transfer function
Y(s)/E(s) can be obtained as

Under normal circumstances we design the system such that

then

where

Thus, the controller shown in Figure 4–24 is a proportional-plus-integral-plus-derivative
controller (PID controller).

4–5 THERMAL SYSTEMS

Thermal systems are those that involve the transfer of heat from one substance to
another. Thermal systems may be analyzed in terms of resistance and capacitance,
although the thermal capacitance and thermal resistance may not be represented
accurately as lumped parameters, since they are usually distributed throughout the sub-
stance. For precise analysis, distributed-parameter models must be used. Here, however,
to simplify the analysis we shall assume that a thermal system can be represented by a
lumped-parameter model, that substances that are characterized by resistance to heat
flow have negligible heat capacitance, and that substances that are characterized by heat
capacitance have negligible resistance to heat flow.

Kp =
b
a

T1 + 2T2

T1
,  Ki =

b
a

1

T1
,  Kd =

b
a

T2

 = Kp +
Ki

s
+ Kd s

 
Y(s)

E(s)
=

b
a

 
T1 T2 s2 + AT1 + 2T2Bs + 1

T1 s

` a

a + b

K
s

T1 s
T1 T2 s2 + AT1 + 2T2Bs + 1

` � 1

Y(s)

E(s)
=

b

a + b

K
s

1 +
a

a + b

K
s

T1 s
T1 T2 s2 + AT1 + 2T2Bs + 1
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There are three different ways heat can flow from one substance to another: con-
duction, convection, and radiation. Here we consider only conduction and convection.
(Radiation heat transfer is appreciable only if the temperature of the emitter is very
high compared to that of the receiver. Most thermal processes in process control systems
do not involve radiation heat transfer.)

For conduction or convection heat transfer,

where q=heat flow rate, kcal�sec

u=temperature difference, °C
K=coefficient, kcal�sec °C

The coefficient K is given by

where k=thermal conductivity, kcal�m sec °C
A=area normal to heat flow, m2


X=thickness of conductor, m
H=convection coefficient, kcal�m2 sec °C

Thermal Resistance and Thermal Capacitance. The thermal resistance R for
heat transfer between two substances may be defined as follows:

The thermal resistance for conduction or convection heat transfer is given by

Since the thermal conductivity and convection coefficients are almost constant, the
thermal resistance for either conduction or convection is constant.

The thermal capacitance C is defined by

or

where m=mass of substance considered, kg
c=specific heat of substance, kcal�kg °C

C = mc

C =
change in heat stored, kcal

change in temperature, °C

R =
d(¢u)

dq
=

1

K

R =
change in temperature difference, °C

change in heat flow rate, kcal�sec

= HA,   for convection

K =
kA

¢X
,   for conduction

q = K ¢u
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Heater

Cold
liquid Mixer

Hot
liquid

(a) (b)

Hi (s)
R –

1
RCs

Qi (s)

Q(s)
+

+
–

Thermal System. Consider the system shown in Figure 4–26(a). It is assumed
that the tank is insulated to eliminate heat loss to the surrounding air. It is also assumed
that there is no heat storage in the insulation and that the liquid in the tank is perfectly
mixed so that it is at a uniform temperature.Thus, a single temperature is used to describe
the temperature of the liquid in the tank and of the outflowing liquid.

Let us define

steady-state temperature of inflowing liquid, °C

steady-state temperature of outflowing liquid, °C

steady-state liquid flow rate, kg�sec

mass of liquid in tank, kg

specific heat of liquid, kcal�kg °C

thermal resistance, °C sec�kcal

thermal capacitance, kcal�°C

steady-state heat input rate, kcal�sec

Assume that the temperature of the inflowing liquid is kept constant and that the heat
input rate to the system (heat supplied by the heater) is suddenly changed from to

where hi represents a small change in the heat input rate.The heat outflow rate
will then change gradually from to The temperature of the outflowing liq-
uid will also be changed from to For this case, ho, C, and R are obtained,
respectively, as

The heat-balance equation for this system is

C du = Ahi - hoB dt

R =
u

ho
=

1
Gc

C = Mc

ho = Gcu

Q
–

o + u.Q
–

o

H
– + ho .H

–
H
– + hi ,

H
–

 H
– =

 C =

 R =

 c =

 M =

 G =

Q
–

o =

Q
–

i =

Figure 4–26
(a) Thermal system:
(b) block diagram of
the system.
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or

which may be rewritten as

Note that the time constant of the system is equal to RC or M/G seconds. The transfer
function relating u and hi is given by

where and 
In practice, the temperature of the inflowing liquid may fluctuate and may act as a

load disturbance. (If a constant outflow temperature is desired, an automatic controller
may be installed to adjust the heat inflow rate to compensate for the fluctuations in the
temperature of the inflowing liquid.) If the temperature of the inflowing liquid is sud-
denly changed from to while the heat input rate H and the liquid flow rate
G are kept constant, then the heat outflow rate will be changed from to and
the temperature of the outflowing liquid will be changed from to The heat-
balance equation for this case is

or

which may be rewritten

The transfer function relating u and ui is given by

where and 
If the present thermal system is subjected to changes in both the temperature of the

inflowing liquid and the heat input rate, while the liquid flow rate is kept constant, the
change u in the temperature of the outflowing liquid can be given by the following
equation:

A block diagram corresponding to this case is shown in Figure 4–26(b). Notice that the
system involves two inputs.

RC
du
dt

+ u = ui + Rhi

Qi(s) = l Cui(t) D .Q (s) = l Cu(t) D
Q (s)

Q i(s)
=

1
RCs + 1

RC
du
dt

+ u = ui

C
du
dt

= Gcui - ho

C du = AGcui - hoB dt

Q
–

o + u.Q
–

o

H
– + ho ,H

–
Q
–

i + uiQ
–

i

Hi(s) = l Chi(t) D .Q (s) = l Cu(t) D
Q (s)

Hi(s)
=

R

RCs + 1

RC
du
dt

+ u = Rhi

C
du
dt

= hi - ho
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Q

Qi

H

Capacitance C
Figure 4–27
Liquid-level system.

EXAMPLE PROBLEMS AND SOLUTIONS

A–4–1. In the liquid-level system of Figure 4–27 assume that the outflow rate Q m3�sec through the out-
flow valve is related to the head H m by

Assume also that when the inflow rate Qi is 0.015 m3�sec the head stays constant. For t<0 the
system is at steady state AQi=0.015 m3�sec B . At t=0 the inflow valve is closed and so there is
no inflow for t � 0. Find the time necessary to empty the tank to half the original head. The
capacitance C of the tank is 2 m2.

Solution. When the head is stationary, the inflow rate equals the outflow rate. Thus head Ho at
t=0 is obtained from

or

The equation for the system for t>0 is

or

Hence

Assume that, at t=t1, H=1.125 m. Integrating both sides of this last equation, we obtain

It follows that

or

Thus, the head becomes half the original value (2.25 m) in 175.7 sec.

t1 = 175.7

21H 2 1.125

2.25
= 211.125 - 212.25 = -0.005t1

3
1.125

2.25

dH

1H
= 3

t1

0
(-0.005) dt = -0.005t1

dH

1H
= -0.005 dt

dH
dt

= -
Q

C
=

-0.011H

2

-C dH = Q dt

Ho = 2.25 m

0.015 = 0.011Ho

Q = K1H = 0.011H
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A–4–2. Consider the liquid-level system shown in Figure 4–28. In the system, and are steady-state
inflow rates and and are steady-state heads.The quantities qi1, qi2, h1, h2, q1, and qo are con-
sidered small. Obtain a state-space representation for the system when h1 and h2 are the outputs
and qi1 and qi2 are the inputs.

Solution. The equations for the system are

(4–32)

(4–33)

(4–34)

(4–35)

Elimination of q1 from Equation (4–32) using Equation (4–33) results in

(4–36)

Eliminating q1 and qo from Equation (4–34) by using Equations (4–33) and (4–35) gives

(4–37)

Define state variables x1 and x2 by
x1=h1

x2=h2

the input variables u1 and u2 by
u1=qi1

u2=qi2

and the output variables y1 and y2 by
y1=h1=x1

y2=h2=x2

Then Equations (4–36) and (4–37) can be written as

 x
#
2 =

1

R1 C2
 x1 - a 1

R1 C2
+

1

R2 C2
bx2 +

1

C2
 u2

 x
#
1 = -

1

R1 C1
x1 +

1

R1 C1
x2 +

1

C1
u1

dh2

dt
=

1

C2
a h1 - h2

R1
+ qi2 -

h2

R2
b

dh1

dt
=

1

C1
aqi1 -

h1 - h2

R1
b

h2

R2
= qo

C2 dh2 = Aq1 + qi2 - qoB dt

h1 - h2

R1
= q1

C1 dh1 = Aqi1 - q1B dt

H
–

2H
–

1

Q
–

2Q
–

1

C1 C2

R1 R2

Q1 + q1

Q2 + qi2Q1 + qi1

Q1 + Q2 + qo

H1 + h1 H2 + h2

Figure 4–28
Liquid-level system.
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In the form of the standard vector-matrix representation, we have

which is the state equation, and

which is the output equation.

A–4–3. The value of the gas constant for any gas may be determined from accurate experimental obser-
vations of simultaneous values of p, v, and T.

Obtain the gas constant Rair for air. Note that at 32°F and 14.7 psia the specific volume of air
is 12.39 ft3�lb.Then obtain the capacitance of a 20-ft3 pressure vessel that contains air at 160°F.As-
sume that the expansion process is isothermal.

Solution.

Referring to Equation (4–12), the capacitance of a 20-ft3 pressure vessel is

Note that in terms of SI units, Rair is given by

Rair=287 N-m�kg K

A–4–4. In the pneumatic pressure system of Figure 4–29(a), assume that, for t<0, the system is at steady
state and that the pressure of the entire system is Also, assume that the two bellows are identi-
cal. At t=0, the input pressure is changed from to Then the pressures in bellows 1 and
2 will change from to and from to respectively.The capacity (volume) of each
bellows is 5*10–4 m3, and the operating-pressure difference (difference between pi and p1 or
difference between pi and p2) is between –0.5*105 N�m2 and 0.5*105 N�m2.The corresponding
mass flow rates (kg�sec) through the valves are shown in Figure 4–29(b). Assume that the bellows
expand or contract linearly with the air pressures applied to them, that the equivalent spring con-
stant of the bellows system is k=1*105 N�m, and that each bellows has area A=15*10–4 m2.

¢p
P
– + p2 ,P

–
P
– + p1P

–
P
– + pi .P

–
P
–

.

C =
V

nRair T
=

20

1 * 53.3 * 620
= 6.05 * 10-4 lb

lbf�ft2

Rair =
pv

T
=

14.7 * 144 * 12.39
460 + 32

= 53.3 ft-lbf�lb°R

By1

y2
R = B1

0

0

1
R Bx1

x2
R

Bx
#
1

x
#
2
R = D-

1
R1 C1

1
R1 C2

1
R1 C1

- a 1
R1 C2

+
1

R2 C2
b T Bx1

x2
R + D 1

C1

0

0

1
C2

T Bu1

u2
R

Bellows 1 Bellows 2

Valve 1 Valve 2

(a) (b)

x

Area
A

C C

q1 q2

R1 R2

P+ p1 P+ p2

P + pi

Valve 2

Valve 10.5 � 105

–3 � 10–5

1.5 � 10–5

– 0.5 � 105

Dp(N/m2)

q(kg/sec)

Figure 4–29
(a) Pneumatic
pressure system;
(b) pressure-
difference-versus-
mass-flow-rate
curves.
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Defining the displacement of the midpoint of the rod that connects two bellows as x, find the
transfer function Assume that the expansion process is isothermal and that the
temperature of the entire system stays at 30°C. Assume also that the polytropic exponent n is 1.

Solution. Referring to Section 4–3, transfer function can be obtained as

(4–38)

Similarly, transfer function is

(4–39)

The force acting on bellows 1 in the x direction is and the force acting on bellows 2
in the negative x direction is The resultant force balances with kx, the equivalent
spring force of the corrugated sides of the bellows.

or
(4–40)

Referring to Equations (4–38) and (4–39), we see that

By substituting this last equation into Equation (4–40) and rewriting, the transfer function
is obtained as

(4–41)

The numerical values of average resistances R1 and R2 are

The numerical value of capacitance C of each bellows is

where Rair=287 N-m�kg K. (See Problem A–4–3.) Consequently,

R1C=0.167*1010*5.75*10–9=9.60 sec

R2C=0.333*1010*5.75*10–9=19.2 sec

By substituting the numerical values for A, k, R1C, and R2C into Equation (4–41), we obtain

X(s)

Pi(s)
=

1.44 * 10-7s

(9.6s + 1)(19.2s + 1)

C =
V

nRair T
=

5 * 10-4

1 * 287 * (273 + 30)
= 5.75 * 10-9

kg

N�m2

R2 =
d ¢p

dq2
=

0.5 * 105

1.5 * 10-5
= 0.333 * 1010 N�m2

kg�sec

R1 =
d ¢p

dq1
=

0.5 * 105

3 * 10-5
= 0.167 * 1010 N�m2

kg�sec

X(s)

Pi(s)
=

A

k

AR2 C - R1 CBsAR1 Cs + 1B AR2 Cs + 1B
X(s)�Pi(s)

 =
R2 Cs - R1 CsAR1 Cs + 1B AR2 Cs + 1B  Pi(s)

 P1(s) - P2(s) = a 1

R1 Cs + 1
-

1

R2 Cs + 1
bPi(s)

A CP1(s) - P2(s) D = kX(s)

AAp1 - p2B = kx

AAP– + p2B. AAP– + p1B,
P2(s)

Pi(s)
=

1

R2 Cs + 1

P2(s)�Pi(s)

P1(s)

Pi(s)
=

1

R1 Cs + 1

P1(s)�Pi(s)

X(s)�Pi(s).



144 Chapter 4 / Mathematical Modeling of Fluid Systems and Thermal Systems

A–4–5. Draw a block diagram of the pneumatic controller shown in Figure 4–30.Then derive the transfer
function of this controller. Assume that Assume also that the two bellows are identical.

If the resistance Rd is removed (replaced by the line-sized tubing), what control action do we get?
If the resistance Ri is removed (replaced by the line-sized tubing), what control action do we get?

Solution. Let us assume that when e=0 the nozzle–flapper distance is equal to and the con-
trol pressure is equal to In the present analysis, we shall assume small deviations from the
respective reference values as follows:

small error signal

small change in the nozzle–flapper distance

small change in the control pressure

small pressure change in bellows I due to small change in the control pressure

small pressure change in bellows II due to small change in the control pressure

small displacement at the lower end of the flapper

In this controller, is transmitted to bellows I through the resistance Rd. Similarly, is trans-
mitted to bellows II through the series of resistances Rd and Ri.The relationship between and is

where derivative time. Similarly, pII and pI are related by the transfer function

where integral time. The force-balance equation for the two bellows is

where ks is the stiffness of the two connected bellows and A is the cross-sectional area of the
bellows. The relationship among the variables e, x, and y is

The relationship between and x is

pc=Kx (K>0)

pc

x =
b

a + b
e -

a

a + b
y

ApI - pIIBA = ks y

Ti = RiC =

PII(s)

PI(s)
=

1
Ri Cs + 1

=
1

Ti s + 1

Td = RdC =

PI(s)

Pc(s)
=

1

Rd Cs + 1
=

1

Td s + 1

pcpI

pcpc

 y =
 pII =
 pI =
 pc =
 x =
e =

P
–

c .
X
–

Rd � Ri .

e

a

b

C C

X + x
Pc + pI

Pc + pII

Ps

I II

Ri
Rd

Pc + pc

y

Figure 4–30
Schematic diagram
of a pneumatic
controller.
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From the equations just derived, a block diagram of the controller can be drawn, as shown in
Figure 4–31(a). Simplification of this block diagram results in Figure 4–31(b).

The transfer function between Pc(s) and E(s) is

For a practical controller, under normal operation is
very much greater than unity and Therefore, the transfer function can be simplified as
follows:

where

Thus the controller shown in Figure 4–30 is a proportional-plus-integral-plus-derivative one.
If the resistance Rd is removed, or Rd=0, the action becomes that of a proportional-plus-

integral controller.
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aA

 � Kp a1 +
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+ Td s b
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+
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a Ti s
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b a 1

Td s + 1
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1
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1
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(a + b) ks(Ti s + 1) (Td s + 1) 

Figure 4–31
(a) Block diagram of
the pneumatic
controller shown in
Figure 4–30;
(b) simplified block
diagram.
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If the resistance Ri is removed, or Ri=0, the action becomes that of a narrow-band propor-
tional, or two-position, controller. (Note that the actions of two feedback bellows cancel each
other, and there is no feedback.)

A–4–6. Actual spool valves are either overlapped or underlapped because of manufacturing tolerances.
Consider the overlapped and underlapped spool valves shown in Figures 4–32(a) and (b). Sketch
curves relating the uncovered port area A versus displacement x.

Solution. For the overlapped valve, a dead zone exists between and or 
The curve for uncovered port area A versus displacement x is shown in Figure 4–33(a). Such an
overlapped valve is unfit as a control valve.

For the underlapped valve, the curve for port area A versus displacement x is shown in 
Figure 4–33(b). The effective curve for the underlapped region has a higher slope, meaning a
higher sensitivity. Valves used for controls are usually underlapped.

A–4–7. Figure 4–34 shows a hydraulic jet-pipe controller. Hydraulic fluid is ejected from the jet pipe. If
the jet pipe is shifted to the right from the neutral position, the power piston moves to the left,
and vice versa. The jet-pipe valve is not used as much as the flapper valve because of large null
flow, slower response, and rather unpredictable characteristics. Its main advantage lies in its
insensitivity to dirty fluids.

Suppose that the power piston is connected to a light load so that the inertia force of the load
element is negligible compared to the hydraulic force developed by the power piston. What type
of control action does this controller produce?

Solution. Define the displacement of the jet nozzle from the neutral position as x and the
displacement of the power piston as y. If the jet nozzle is moved to the right by a small displace-

- 1
2 x0 6 x 6 1

2 x0 .1
2 x0 ,- 1

2 x0

x0

2
x0

2
x0

2

x0

2

x x

(a) (b)

High
pressure

Low
pressure

High
pressure

Low
pressure

Figure 4–32
(a) Overlapped spool
valve;
(b) underlapped
spool valve.

(a) (b)

Effective
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Area exposed to
high pressure

Area exposed to
low pressure

A

x

x0

2

A

x
x0

2

Figure 4–33
(a) Uncovered-port-
area-A-versus
displacement-x curve
for the overlapped
valve; (b) uncovered-
port-area-A-versus-
displacement-x curve
for the underlapped
valve.
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Oil under
pressure

A

y

x

Figure 4–34
Hydraulic jet-pipe
controller.

ment x, the oil flows to the right side of the power piston, and the oil in the left side of the power
piston is returned to the drain. The oil flowing into the power cylinder is at high pressure; the oil
flowing out from the power cylinder into the drain is at low pressure. The resulting pressure
difference causes the power piston to move to the left.

For a small jet-nozzle displacement x, the flow rate q to the power cylinder is proportional to
x; that is,

For the power cylinder,

where A is the power-piston area and r is the density of oil. Hence

where constant. The transfer function Y(s)/X(s) is thus

The controller produces the integral control action.

Y(s)

X(s)
=

K

s

K = K1�(Ar) =

dy

dt
=

q

Ar
=

K1

Ar
x = Kx

Ar dy = q dt

q = K1 x
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Engine

Oil under
pressure

k

b

z e

y

a1a2

v

Figure 4–35
Speed control
system.

+
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Z(s)

a2
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K
s

a1

a1 + a2

bs
bs + k

Figure 4–36
Block diagram for
the speed control
system shown in
Figure 4–35.

A–4–8. Explain the operation of the speed control system shown in Figure 4–35.

Solution. If the engine speed increases, the sleeve of the fly-ball governor moves upward. This
movement acts as the input to the hydraulic controller.A positive error signal (upward motion of
the sleeve) causes the power piston to move downward, reduces the fuel-valve opening, and
decreases the engine speed. A block diagram for the system is shown in Figure 4–36.

From the block diagram the transfer function Y(s)/E(s) can be obtained as

If the following condition applies,

the transfer function Y(s)/E(s) becomes

The speed controller has proportional-plus-integral control action.

Y(s)

E(s)
�

a2

a1 + a2

a1 + a2

a1

bs + k

bs
=

a2

a1
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bs
b

2 a1
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K

s
2 � 1

Y(s)
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K

s
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bs
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K

s
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A–4–9. Derive the transfer function Z(s)/Y(s) of the hydraulic system shown in Figure 4–37.Assume that
the two dashpots in the system are identical ones except the piston shafts.

Solution. In deriving the equations for the system, we assume that force F is applied at the right
end of the shaft causing displacement y. (All displacements y, w, and z are measured from re-
spective equilibrium positions when no force is applied at the right end of the shaft.) When force
F is applied, pressure becomes higher than pressure Similarly,

For the force balance, we have the following equation:

(4–42)
Since

(4–43)
and

we have

Also, since
q1 dt=A(dw-dz)r

we have

or

Define A2Rr=B. (B is the viscous-friction coefficient.) Then

(4–44)

Also, for the right-hand-side dashpot we have

Since

or
(4–45)

Substituting Equations (4–43) and (4–45) into Equation (4–42), we have

Taking the Laplace transform of this last equation, assuming zero initial condition, we obtain

(4–46)k2 Y(s) = Ak2 + BsBW(s) + k1 Z(s)

k2 y - k2 w = k1 z + Bw
#

AAP2 - Pœ
2B = Bw

#

w
# =

q2

Ar
=

AAP2 - Pœ
2B

A2Rr

q2 = AP2 - Pœ
2B�R, we obtain

q2 dt = Ar dw

w
# - z

# =
k1

B
z

w
# - z

# =
k1 z

A2Rr

q1 = A(w
# - z

#
)r

k1 z = ARq1

q1 =
P1 - Pœ

1

R

k1 z = AAP1 - Pœ
1B
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1 .P1
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P1
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w w yP2 P29P19

Figure 4–37
Hydraulic system.
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Taking the Laplace transform of Equation (4–44), assuming zero initial condition, we obtain

(4–47)

By using Equation (4–47) to eliminate W(s) from Equation (4–46), we obtain

from which we obtain the transfer function Z(s)/Y(s) to be

Multiplying B/ Ak1k2 B to both the numerator and denominator of this last equation, we get

Define Then the transfer function Z(s)/Y(s) becomes as follows:

A–4–10. Considering small deviations from steady-state operation, draw a block diagram of the air heat-
ing system shown in Figure 4–38. Assume that the heat loss to the surroundings and the heat
capacitance of the metal parts of the heater are negligible.

Solution. Let us define
steady-state temperature of inlet air, °C
steady-state temperature of outlet air, °C

G=mass flow rate of air through the heating chamber, kg�sec
M=mass of air contained in the heating chamber, kg

c=specific heat of air, kcal�kg °C
R= thermal resistance, °C sec�kcal
C= thermal capacitance of air contained in the heating chamber=Mc, kcal�°C

steady-state heat input, kcal�sec
Let us assume that the heat input is suddenly changed from to and the inlet air

temperature is suddenly changed from to Then the outlet air temperature will be
changed from to 

The equation describing the system behavior is

C duo = Ch + GcAui - uoB D dt

Q
–

o + uo .Q
–

o

Q
–

i + ui .Q
–

i

H
– + hH

–
H
– =

Q
–

o =
Q
–

i =

Z(s)

Y(s)
=

T1 s
T1 T2 s2 + AT1 + 2T2Bs + 1

B�k1 = T1 , B�k2 = T2 .

Z(s)

Y(s)
=

B

k1
s

B2

k1 k2
s2 + a 2B

k2
+

B

k1
b s + 1

Z(s)

Y(s)
=

k2 s

Bs2 + A2k1 + k2Bs +
k1 k2

B

k2 Y(s) = Ak2 + BsB k1 + Bs

Bs
Z(s) + k1 Z(s)

W(s) =
k1 + Bs

Bs
Z(s)

H + h

Heater
Qi + ui

Qo + uo

Figure 4–38
Air heating system.
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or

Noting that

we obtain

or

Taking the Laplace transforms of both sides of this last equation and substituting the initial
condition that u0(0)=0, we obtain

The block diagram of the system corresponding to this equation is shown in Figure 4–39.

A–4–11. Consider the thin, glass-wall, mercury thermometer system shown in Figure 4–40.Assume that the
thermometer is at a uniform temperature (ambient temperature) and that at t=0 it is
immersed in a bath of temperature where ub is the bath temperature (which may be con-
stant or changing) measured from the ambient temperature Define the instantaneous ther-
mometer temperature by so that u is the change in the thermometer temperature satisfying
the condition that u(0)=0. Obtain a mathematical model for the system.Also obtain an electri-
cal analog of the thermometer system.

Solution. A mathematical model for the system can be derived by considering heat balance as fol-
lows:The heat entering the thermometer during dt sec is q dt, where q is the heat flow rate to the
thermometer. This heat is stored in the thermal capacitance C of the thermometer, thereby rais-
ing its temperature by du. Thus the heat-balance equation is

(4–48)C du = q dt

Q
– + u,

Q
–

.
Q
– + ub ,

Q
–

Qo(s) =
R

RCs + 1
H(s) +

1
RCs + 1

Qi(s)

RC
duo

dt
+ uo = Rh + ui

C
duo

dt
= h +

1

R
Aui - uoB

Gc =
1

R

C
duo

dt
= h + GcAui - uoB

H(s)

1
RCs + 1

R
RCs + 1

Qi(s)

Qo(s)
+

+

Figure 4–39
Block diagram of the
air heating system
shown in
Figure 4–38.

Thermometer

Bath

Q + u

Q + ub

Figure 4–40
Thin, glass-wall,
mercury thermo-
meter system.
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Since thermal resistance R may be written as

heat flow rate q may be given, in terms of thermal resistance R, as

where is the bath temperature and is the thermometer temperature. Hence, we
can rewrite Equation (4–48) as

or

(4–49)

Equation (4–49) is a mathematical model of the thermometer system.
Referring to Equation (4–49), an electrical analog for the thermometer system can be writ-

ten as

An electrical circuit represented by this last equation is shown in Figure 4–41.

RC
deo

dt
+ eo = ei

RC
du
dt

+ u = ub

C
du
dt

=
ub - u

R

Q
– + uQ

– + ub

q =
AQ– + ubB - AQ– + uB

R
=
ub - u

R

R =
d(¢u)

dq
=

¢u
q

R

C eoei

Figure 4–41
Electrical analog of
the thermometer
system shown in
Figure 4–40.

PROBLEMS

B–4–1. Consider the conical water-tank system shown in
Figure 4–42. The flow through the valve is turbulent and is
related to the head H by

where Q is the flow rate measured in m3�sec and H is in
meters.

Suppose that the head is 2 m at t=0. What will be the
head at t=60 sec?

Q = 0.0051H

2m

3m

2m
H

r

Figure 4–42 Conical water-tank system.
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B–4–2. Consider the liquid-level control system shown in
Figure 4–43. The controller is of the proportional type. The
set point of the controller is fixed.

Draw a block diagram of the system, assuming that
changes in the variables are small. Obtain the transfer func-
tion between the level of the second tank and the distur-
bance input qd. Obtain the steady-state error when the
disturbance qd is a unit-step function.

C2

R1

C1 h2

R2

Q + qi

qd

Q + q0

H

Proportional
controller

Figure 4–43
Liquid-level control system.

R

C

A

X + x

P + po

P + pi
k

Figure 4–44
Pneumatic system.

B–4–3. For the pneumatic system shown in Figure 4–44,
assume that steady-state values of the air pressure and the
displacement of the bellows are and respectively.
Assume also that the input pressure is changed from to

where pi is a small change in the input pressure.This
change will cause the displacement of the bellows to change
a small amount x.Assuming that the capacitance of the bel-
lows is C and the resistance of the valve is R, obtain the
transfer function relating x and pi .

P
– + pi,

P
–

X
–

,P
–



154 Chapter 4 / Mathematical Modeling of Fluid Systems and Thermal Systems

B–4–4. Figure 4–45 shows a pneumatic controller.The pneu-
matic relay has the characteristic that pc=Kpb, where
K>0. What kind of control action does this controller
produce? Derive the transfer function Pc(s)�E(s).

B–4–5. Consider the pneumatic controller shown in 
Figure 4–46.Assuming that the pneumatic relay has the char-
acteristics that (where K>0), determine the con-
trol action of this controller. The input to the controller is e
and the output is pc .

pc = Kpb

Actuating error signal

Flapper

Nozzle

e

a

b
X + x

R
I

k

Orifice

Ps

Pb + pb

Pc + pc

Figure 4–46
Pneumatic controller.

k

Orifice

Actuating error signal

Flapper

Nozzle

Ps

e

a

b

Pb + pb

X + x

Y + y

Pc + pc

Figure 4–45
Pneumatic controller.
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Actuating error signal

Flapper

Nozzle

e

a

b

k

X + x

R

I IIOrifice

Ps

Pb + pb

Pc + pc

Figure 4–47
Pneumatic controller.

Actuating error signal

Flapper

Nozzle

e

a

b

k

X + x

R2

I II

R1

Orifice

Ps

Pb + pb

Pc + pc

Figure 4–48
Pneumatic controller.

B–4–6. Figure 4–47 shows a pneumatic controller. The sig-
nal e is the input and the change in the control pressure 
is the output. Obtain the transfer function .
Assume that the pneumatic relay has the characteristics that

where K>0.pc = Kpb ,

Pc(s)�E(s)
pc

B–4–7. Consider the pneumatic controller shown in 
Figure 4–48. What control action does this controller pro-
duce? Assume that the pneumatic relay has the character-
istics that where K>0.pc = Kpb ,
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B–4–8. Figure 4–49 shows a flapper valve. It is placed
between two opposing nozzles. If the flapper is moved slight-
ly to the right, the pressure unbalance occurs in the nozzles
and the power piston moves to the left, and vice versa. Such
a device is frequently used in hydraulic servos as the first-
stage valve in two-stage servovalves. This usage occurs
because considerable force may be needed to stroke larger
spool valves that result from the steady-state flow force. To
reduce or compensate this force, two-stage valve configura-
tion is often employed; a flapper valve or jet pipe is used as
the first-stage valve to provide a necessary force to stroke
the second-stage spool valve.

diagram of the system of Figure 4–50 and then find the trans-
fer function between y and x, where x is the air pressure and
y is the displacement of the power piston.

x

y

Oil under
pressure

Oil under
pressure

y

Flapper

x

Figure 4–49 Flapper valve.

u

f

l
a

b

Oil under
pressure

Figure 4–51
Aircraft elevator
control system.

B–4–9. Figure 4–51 is a schematic diagram of an aircraft
elevator control system. The input to the system is the de-
flection angle u of the control lever, and the output is the el-
evator angle f. Assume that angles u and f are relatively
small. Show that for each angle u of the control lever there
is a corresponding (steady-state) elevator angle f.

Figure 4–50
Schematic diagram of a
hydraulic servomotor.

Figure 4–50 shows a schematic diagram of a hydraulic
servomotor in which the error signal is amplified in two
stages using a jet pipe and a pilot valve. Draw a block
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B–4–10. Consider the liquid-level control system shown in
Figure 4–52. The inlet valve is controlled by a hydraulic
integral controller.Assume that the steady-state inflow rate
is and steady-state outflow rate is also the steady-state
head is steady-state pilot valve displacement is 
and steady-state valve position is We assume that the set
point corresponds to the steady-state head The set
point is fixed. Assume also that the disturbance inflow rate
qd , which is a small quantity, is applied to the water tank at
t=0.This disturbance causes the head to change from to

This change results in a change in the outflow rate
by qo . Through the hydraulic controller, the change in head
causes a change in the inflow rate from to (The
integral controller tends to keep the head constant as much
as possible in the presence of disturbances.) We assume that
all changes are of small quantities.

Q
– + qi .Q

–

H
– + h.

H
–

H
–

.R
–

Y
–

.
X
– = 0,H

–
,

Q
–

,Q
–

We assume that the velocity of the power piston (valve)
is proportional to pilot-valve displacement x, or

where K1 is a positive constant. We also assume that the
change in the inflow rate qi is negatively proportional to the
change in the valve opening y, or

where Kv is a positive constant.
Assuming the following numerical values for the system,

C=2 m2, R=0.5 sec�m2, Kv=1 m2�sec

a=0.25 m, b=0.75 m, K1=4 sec–1

obtain the transfer function H(s)/Qd(s).

qi = -Kv y

dy

dt
= K1 x

C (Capacitance)

R
(Resistance)

a b

h

Y + y qd

Q + qi

H + h

Q + qo

x

Figure 4–52
Liquid-level control system.
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B–4–11. Consider the controller shown in Figure 4–53.The
input is the air pressure pi measured from some steady-state
reference pressure and the output is the displacement y of
the power piston. Obtain the transfer function Y(s)�Pi(s).

P
–

B–4–12. A thermocouple has a time constant of 2 sec. A
thermal well has a time constant of 30 sec. When the ther-
mocouple is inserted into the well, this temperature-
measuring device can be considered a two-capacitance
system.

Determine the time constants of the combined thermo-
couple–thermal-well system.Assume that the weight of the
thermocouple is 8 g and the weight of the thermal well is
40 g.Assume also that the specific heats of the thermocouple
and thermal well are the same.

a a

b b

Air pi (Input)

y (Output)

x

k

Bellows

Figure 4–53
Controller.
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Transient and Steady-State
Response Analyses

5–1 INTRODUCTION

In early chapters it was stated that the first step in analyzing a control system was to de-
rive a mathematical model of the system. Once such a model is obtained, various meth-
ods are available for the analysis of system performance.

In practice, the input signal to a control system is not known ahead of time but is
random in nature, and the instantaneous input cannot be expressed analytically. Only in
some special cases is the input signal known in advance and expressible analytically or
by curves, such as in the case of the automatic control of cutting tools.

In analyzing and designing control systems, we must have a basis of comparison of
performance of various control systems.This basis may be set up by specifying particular
test input signals and by comparing the responses of various systems to these input signals.

Many design criteria are based on the response to such test signals or on the re-
sponse of systems to changes in initial conditions (without any test signals). The use of
test signals can be justified because of a correlation existing between the response char-
acteristics of a system to a typical test input signal and the capability of the system to cope
with actual input signals.

Typical Test Signals. The commonly used test input signals are step functions,
ramp functions, acceleration functions, impulse functions, sinusoidal functions, and white
noise. In this chapter we use test signals such as step, ramp, acceleration and impulse
signals. With these test signals, mathematical and experimental analyses of control sys-
tems can be carried out easily, since the signals are very simple functions of time.

aa



aa

160 Chapter 5 / Transient and Steady-State Response Analyses

Which of these typical input signals to use for analyzing system characteristics may
be determined by the form of the input that the system will be subjected to most
frequently under normal operation. If the inputs to a control system are gradually
changing functions of time, then a ramp function of time may be a good test signal. Sim-
ilarly, if a system is subjected to sudden disturbances, a step function of time may be a
good test signal; and for a system subjected to shock inputs, an impulse function may be
best. Once a control system is designed on the basis of test signals, the performance of
the system in response to actual inputs is generally satisfactory. The use of such test
signals enables one to compare the performance of many systems on the same basis.

Transient Response and Steady-State Response. The time response of a
control system consists of two parts: the transient response and the steady-state response.
By transient response, we mean that which goes from the initial state to the final state.
By steady-state response, we mean the manner in which the system output behaves as
t approaches infinity. Thus the system response c(t) may be written as

where the first term on the right-hand side of the equation is the transient response and
the second term is the steady-state response.

Absolute Stability, Relative Stability, and Steady-State Error. In designing a
control system, we must be able to predict the dynamic behavior of the system from a
knowledge of the components. The most important characteristic of the dynamic
behavior of a control system is absolute stability—that is, whether the system is stable or
unstable.A control system is in equilibrium if, in the absence of any disturbance or input,
the output stays in the same state.A linear time-invariant control system is stable if the
output eventually comes back to its equilibrium state when the system is subjected to
an initial condition. A linear time-invariant control system is critically stable if oscilla-
tions of the output continue forever. It is unstable if the output diverges without bound
from its equilibrium state when the system is subjected to an initial condition.Actually,
the output of a physical system may increase to a certain extent but may be limited by
mechanical “stops,” or the system may break down or become nonlinear after the out-
put exceeds a certain magnitude so that the linear differential equations no longer apply.

Important system behavior (other than absolute stability) to which we must give
careful consideration includes relative stability and steady-state error. Since a physical
control system involves energy storage, the output of the system, when subjected to an
input, cannot follow the input immediately but exhibits a transient response before a
steady state can be reached. The transient response of a practical control system often
exhibits damped oscillations before reaching a steady state. If the output of a system at
steady state does not exactly agree with the input, the system is said to have steady-
state error. This error is indicative of the accuracy of the system. In analyzing a control
system, we must examine transient-response behavior and steady-state behavior.

Outline of the Chapter. This chapter is concerned with system responses to
aperiodic signals (such as step, ramp, acceleration, and impulse functions of time). The
outline of the chapter is as follows: Section 5–1 has presented introductory material for
the chapter. Section 5–2 treats the response of first-order systems to aperiodic inputs.
Section 5–3 deals with the transient response of the second-order systems. Detailed

c(t) = ctr(t) + css(t)
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R(s) E(s) C(s) R(s) C(s)

(a) (b)

1
Ts

1
Ts + 1+

–Figure 5–1
(a) Block diagram of
a first-order system;
(b) simplified block
diagram.

analyses of the step response, ramp response, and impulse response of the second-order
systems are presented. Section 5–4 discusses the transient-response analysis of higher-
order systems. Section 5–5 gives an introduction to the MATLAB approach to the solution
of transient-response problems. Section 5–6 gives an example of a transient-response
problem solved with MATLAB. Section 5–7 presents Routh’s stability criterion. Section
5–8 discusses effects of integral and derivative control actions on system performance.
Finally, Section 5–9 treats steady-state errors in unity-feedback control systems.

5–2 FIRST-ORDER SYSTEMS

Consider the first-order system shown in Figure 5–1(a). Physically, this system may
represent an RC circuit, thermal system, or the like.A simplified block diagram is shown
in Figure 5–1(b). The input-output relationship is given by

(5–1)

In the following, we shall analyze the system responses to such inputs as the unit-step,
unit-ramp, and unit-impulse functions. The initial conditions are assumed to be zero.

Note that all systems having the same transfer function will exhibit the same output
in response to the same input. For any given physical system, the mathematical response
can be given a physical interpretation.

Unit-Step Response of First-Order Systems. Since the Laplace transform of
the unit-step function is 1/s, substituting R(s)=1/s into Equation (5–1), we obtain

Expanding C(s) into partial fractions gives

(5–2)

Taking the inverse Laplace transform of Equation (5–2), we obtain

for t � 0 (5–3)

Equation (5–3) states that initially the output c(t) is zero and finally it becomes unity.
One important characteristic of such an exponential response curve c(t) is that at t=T
the value of c(t) is 0.632, or the response c(t) has reached 63.2% of its total change.This
may be easily seen by substituting t=T in c(t). That is,

c(T) = 1 - e-1 = 0.632

c(t) = 1 - e-t�T,

C(s) =
1
s

-
T

Ts + 1
=

1
s

-
1

s + (1�T)

C(s) =
1

Ts + 1

1
s

C(s)

R(s)
=

1

Ts + 1
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c(t)

1

0

0.632
A

B

T 2T 3T 4T 5T t

Slope =
1
T c(t) = 1 – e– (t /T)

63
.2

%

86
.5

%

95
%

98
.2

%

99
.3

%

Figure 5–2
Exponential
response curve.

Note that the smaller the time constant T, the faster the system response. Another
important characteristic of the exponential response curve is that the slope of the tangent
line at t=0 is 1/T, since

(5–4)

The output would reach the final value at t=T if it maintained its initial speed of
response. From Equation (5–4) we see that the slope of the response curve c(t) decreases
monotonically from 1/T at t=0 to zero at t=q.

The exponential response curve c(t) given by Equation (5–3) is shown in Figure 5–2.
In one time constant, the exponential response curve has gone from 0 to 63.2% of the final
value. In two time constants, the response reaches 86.5% of the final value.At t=3T, 4T,
and 5T, the response reaches 95%, 98.2%, and 99.3%, respectively, of the final value.Thus,
for t � 4T, the response remains within 2% of the final value. As seen from Equation
(5–3), the steady state is reached mathematically only after an infinite time. In practice,
however, a reasonable estimate of the response time is the length of time the response
curve needs to reach and stay within the 2% line of the final value, or four time constants.

Unit-Ramp Response of First-Order Systems. Since the Laplace transform of
the unit-ramp function is 1/s2, we obtain the output of the system of Figure 5–1(a) as

Expanding C(s) into partial fractions gives

(5–5)

Taking the inverse Laplace transform of Equation (5–5), we obtain

for t � 0 (5–6)

The error signal e(t) is then

 = TA1 - e-t�TB e(t) = r(t) - c(t)

c(t) = t - T + Te-t�T,

C(s) =
1

s2 -
T
s

+
T2

Ts + 1

C(s) =
1

Ts + 1

1

s2

dc
dt
2
t = 0

=
1

T
e-t�T 2

t = 0
=

1

T
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r(t)

c(t)

6T

4T

2T

0 2T 4T 6T t

T
T

r(t) = t

c(t)

Steady-state
error

Figure 5–3
Unit-ramp response
of the system shown
in Figure 5–1(a).

c(t)

0 2TT 4T3T t

1
T

c(t) = e– (t /T)1
TFigure 5–4

Unit-impulse
response of the
system shown in
Figure 5–1(a).

As t approaches infinity, e–t/T approaches zero, and thus the error signal e(t) approaches
T or

The unit-ramp input and the system output are shown in Figure 5–3. The error in
following the unit-ramp input is equal to T for sufficiently large t. The smaller the time
constant T, the smaller the steady-state error in following the ramp input.

Unit-Impulse Response of First-Order Systems. For the unit-impulse input,
R(s)=1 and the output of the system of Figure 5–1(a) can be obtained as

(5–7)

The inverse Laplace transform of Equation (5–7) gives

for t � 0 (5–8)

The response curve given by Equation (5–8) is shown in Figure 5–4.

c(t) =
1

T
e-t�T,

C(s) =
1

Ts + 1

e(q) = T
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An Important Property of Linear Time-Invariant Systems. In the analysis
above, it has been shown that for the unit-ramp input the output c(t) is

for t � 0 [See Equation (5–6).]

For the unit-step input, which is the derivative of unit-ramp input, the output c(t) is

for t � 0 [See Equation (5–3).]

Finally, for the unit-impulse input, which is the derivative of unit-step input, the output
c(t) is

for t � 0 [See Equation (5–8).]

Comparing the system responses to these three inputs clearly indicates that the response
to the derivative of an input signal can be obtained by differentiating the response of the
system to the original signal. It can also be seen that the response to the integral of the
original signal can be obtained by integrating the response of the system to the original
signal and by determining the integration constant from the zero-output initial condi-
tion.This is a property of linear time-invariant systems. Linear time-varying systems and
nonlinear systems do not possess this property.

5–3 SECOND-ORDER SYSTEMS

In this section, we shall obtain the response of a typical second-order control system to
a step input, ramp input, and impulse input. Here we consider a servo system as an
example of a second-order system.

Servo System. The servo system shown in Figure 5–5(a) consists of a proportional
controller and load elements (inertia and viscous-friction elements). Suppose that we
wish to control the output position c in accordance with the input position r.

The equation for the load elements is

where T is the torque produced by the proportional controller whose gain is K. By
taking Laplace transforms of both sides of this last equation, assuming the zero initial
conditions, we obtain

So the transfer function between C(s) and T(s) is

By using this transfer function, Figure 5–5(a) can be redrawn as in Figure 5–5(b), which
can be modified to that shown in Figure 5–5(c).The closed-loop transfer function is then
obtained as

Such a system where the closed-loop transfer function possesses two poles is called a
second-order system. (Some second-order systems may involve one or two zeros.)

C(s)

R(s)
=

K

Js2 + Bs + K
=

K�J

s2 + (B�J)s + (K�J)

C(s)

T(s)
=

1

s(Js + B)

Js2C(s) + BsC(s) = T(s)

Jc
$ + Bc

# = T

 c(t) =
1

T
e-t�T,

 c(t) = 1 - e-t�T,

 c(t) = t - T + Te-t�T,
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+
–

r
K

1
s(Js + B)

e cT
J

B

(a)

+
–

R(s)

R(s)

C(s)

C(s)

T(s)

(b)

K

K
s(Js + B)+

–

(c)

Figure 5–5
(a) Servo system;
(b) block diagram;
(c) simplified block
diagram.

Step Response of Second-Order System. The closed-loop transfer function of
the system shown in Figure 5–5(c) is

(5–9)

which can be rewritten as

The closed-loop poles are complex conjugates if B2-4JK<0 and they are real if
B2-4JK � 0. In the transient-response analysis, it is convenient to write

where s is called the attenuation;vn , the undamped natural frequency; and z, the damp-
ing ratio of the system. The damping ratio z is the ratio of the actual damping B to the
critical damping or

z =
B

Bc
=

B

21JK

Bc = 21JK

K

J
= v2

n ,  B

J
= 2zvn = 2s

C(s)

R(s)
=

K

Jc s +
B

2J
+ B a B

2J
b 2

-
K

J
d c s +

B

2J
- B a B

2J
b 2

-
K

J
d

C(s)

R(s)
=

K

Js2 + Bs + K
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R(s) E(s) C(s)vn

s(s + 2zvn)

2
+

–

Figure 5–6
Second-order system.

In terms of z and vn , the system shown in Figure 5–5(c) can be modified to that shown
in Figure 5–6, and the closed-loop transfer function C(s)/R(s) given by Equation (5–9)
can be written

(5–10)

This form is called the standard form of the second-order system.
The dynamic behavior of the second-order system can then be described in terms of

two parameters z and vn . If 0<z<1, the closed-loop poles are complex conjugates
and lie in the left-half s plane. The system is then called underdamped, and the tran-
sient response is oscillatory. If z=0, the transient response does not die out. If z=1,
the system is called critically damped. Overdamped systems correspond to z>1.

We shall now solve for the response of the system shown in Figure 5–6 to a unit-step
input.We shall consider three different cases: the underdamped (0<z<1), critically
damped (z=1), and overdamped (z>1) cases.

(1) Underdamped case (0<z<1): In this case, C(s)/R(s) can be written

where The frequency vd is called the damped natural frequency. For
a unit-step input, C(s) can be written

(5–11)

The inverse Laplace transform of Equation (5–11) can be obtained easily if C(s) is writ-
ten in the following form:

Referring to the Laplace transform table in Appendix A, it can be shown that

 l-1 c vdAs + zvnB2 + v2
d

d = e-zvn t sinvd t

 l-1 c s + zvnAs + zvnB2 + v2
d

d = e-zvn t cosvd t

 =
1
s

-
s + zvnAs + zvnB2 + v2

d

-
zvnAs + zvnB2 + v2

d

 C(s) =
1
s

-
s + 2zvn

s2 + 2zvn s + v2
n

C(s) =
v2

nAs2 + 2zvn s + v2
nBs

vd = vn21 - z2 .

C(s)

R(s)
=

v2
nAs + zvn + jvdB As + zvn - jvdB

C(s)

R(s)
=

v2
n

s2 + 2zvn s + v2
n
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Hence the inverse Laplace transform of Equation (5–11) is obtained as

for t � 0 (5–12)

From Equation (5–12), it can be seen that the frequency of transient oscillation is the
damped natural frequency vd and thus varies with the damping ratio z.The error signal
for this system is the difference between the input and output and is

for t � 0

This error signal exhibits a damped sinusoidal oscillation. At steady state, or at t=q,
no error exists between the input and output.

If the damping ratio z is equal to zero, the response becomes undamped and
oscillations continue indefinitely. The response c(t) for the zero damping case may be
obtained by substituting z=0 in Equation (5–12), yielding

for t � 0 (5–13)

Thus, from Equation (5–13), we see that vn represents the undamped natural frequen-
cy of the system.That is,vn is that frequency at which the system output would oscillate
if the damping were decreased to zero. If the linear system has any amount of damping,
the undamped natural frequency cannot be observed experimentally. The frequency 
that may be observed is the damped natural frequency vd, which is equal to 
This frequency is always lower than the undamped natural frequency. An increase in z
would reduce the damped natural frequency vd . If z is increased beyond unity, the
response becomes overdamped and will not oscillate.

(2) Critically damped case (z=1): If the two poles of C(s)/R(s) are equal, the system
is said to be a critically damped one.

For a unit-step input, R(s)=1/s and C(s) can be written

(5–14)

The inverse Laplace transform of Equation (5–14) may be found as

for t � 0 (5–15)

This result can also be obtained by letting z approach unity in Equation (5–12) and by
using the following limit:

lim
zS 1

sinvd t

21 - z2
= lim
zS 1

sinvn21 - z2 t

21 - z2
= vn t

c(t) = 1 - e-vn tA1 + vn tB,
C(s) =

v2
nAs + vnB2s

vn21 - z2 .

c(t) = 1 - cosvn t,

 = e-zvn t a cosvd t +
z

21 - z2
sinvd t b ,

 e(t) = r(t) - c(t)

 = 1 -
e-zvn t

21 - z2
sin avd t + tan-1 

21 - z2

z
b ,

 = 1 - e-zvn t a cosvd t +
z

21 - z2
sinvd t b l-1 CC(s) D = c(t)
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(3) Overdamped case (z>1): In this case, the two poles of C(s)/R(s) are negative
real and unequal. For a unit-step input, R(s)=1/s and C(s) can be written

(5–16)

The inverse Laplace transform of Equation (5–16) is

for t � 0 (5–17)

where and Thus, the response c(t)
includes two decaying exponential terms.

When z is appreciably greater than unity, one of the two decaying exponentials
decreases much faster than the other, so the faster-decaying exponential term (which
corresponds to a smaller time constant) may be neglected. That is, if –s2 is located very
much closer to the jv axis than –s1 Awhich means @s2 @ � @s1 @ B , then for an approximate
solution we may neglect –s1.This is permissible because the effect of –s1 on the response
is much smaller than that of –s2 , since the term involving s1 in Equation (5–17) decays
much faster than the term involving s2 . Once the faster-decaying exponential term has
disappeared, the response is similar to that of a first-order system, and C(s)/R(s) may
be approximated by

This approximate form is a direct consequence of the fact that the initial values and
final values of both the original C(s)/R(s) and the approximate one agree with each
other.

With the approximate transfer function C(s)/R(s), the unit-step response can be
obtained as

The time response c(t) is then

for t � 0

This gives an approximate unit-step response when one of the poles of C(s)/R(s) can
be neglected.

c(t) = 1 - e-Az-2z2 - 1Bvn t,

C(s) =
zvn - vn2z2 - 1As + zvn - vn2z2 - 1Bs

C(s)

R(s)
=

zvn - vn2z2 - 1

s + zvn - vn2z2 - 1
=

s2

s + s2

s2 = Az - 2z2 - 1Bvn .s1 = Az + 2z2 - 1Bvn

= 1 +
vn

22z2 - 1
a e-s1 t

s1
-

e-s2 t

s2
b ,

-
1

22z2 - 1 Az - 2z2 - 1B e-Az-2z2 - 1Bvnt

c(t) = 1 +
1

22z2 - 1 Az + 2z2 - 1B e-Az+2z2 - 1Bvnt

C(s) =
v2

nAs + zvn + vn2z2 - 1B As + zvn - vn2z2 - 1Bs
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Figure 5–7
Unit-step response
curves of the system
shown in Figure 5–6.

A family of unit-step response curves c(t) with various values of z is shown in Fig-
ure 5–7, where the abscissa is the dimensionless variable vnt. The curves are functions
only of z. These curves are obtained from Equations (5–12), (5–15), and (5–17). The
system described by these equations was initially at rest.

Note that two second-order systems having the same z but different vn will exhibit
the same overshoot and the same oscillatory pattern. Such systems are said to have the
same relative stability.

From Figure 5–7, we see that an underdamped system with z between 0.5 and 0.8 gets
close to the final value more rapidly than a critically damped or overdamped system.
Among the systems responding without oscillation, a critically damped system exhibits
the fastest response.An overdamped system is always sluggish in responding to any inputs.

It is important to note that, for second-order systems whose closed-loop transfer
functions are different from that given by Equation (5–10), the step-response curves
may look quite different from those shown in Figure 5–7.

Definitions of Transient-Response Specifications. Frequently, the perform-
ance characteristics of a control system are specified in terms of the transient response to
a unit-step input, since it is easy to generate and is sufficiently drastic. (If the response to
a step input is known, it is mathematically possible to compute the response to any input.)

The transient response of a system to a unit-step input depends on the initial condi-
tions. For convenience in comparing transient responses of various systems, it is a com-
mon practice to use the standard initial condition that the system is at rest initially with
the output and all time derivatives thereof zero. Then the response characteristics of
many systems can be easily compared.

The transient response of a practical control system often exhibits damped oscilla-
tions before reaching steady state. In specifying the transient-response characteristics of
a control system to a unit-step input, it is common to specify the following:

1. Delay time, td

2. Rise time, tr
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Figure 5–8
Unit-step response
curve showing td, tr ,
tp , Mp , and ts .

3. Peak time, tp

4. Maximum overshoot, Mp

5. Settling time, ts

These specifications are defined in what follows and are shown graphically in Figure 5–8.

1. Delay time, td : The delay time is the time required for the response to reach half
the final value the very first time.

2. Rise time, tr : The rise time is the time required for the response to rise from 10%
to 90%, 5% to 95%, or 0% to 100% of its final value. For underdamped second-
order systems, the 0% to 100% rise time is normally used. For overdamped systems,
the 10% to 90% rise time is commonly used.

3. Peak time, tp :The peak time is the time required for the response to reach the first
peak of the overshoot.

4. Maximum (percent) overshoot, Mp : The maximum overshoot is the maximum
peak value of the response curve measured from unity. If the final steady-state
value of the response differs from unity, then it is common to use the maximum
percent overshoot. It is defined by

The amount of the maximum (percent) overshoot directly indicates the relative
stability of the system.

5. Settling time, ts : The settling time is the time required for the response curve to
reach and stay within a range about the final value of size specified by absolute per-
centage of the final value (usually 2% or 5%). The settling time is related to the
largest time constant of the control system.Which percentage error criterion to use
may be determined from the objectives of the system design in question.

The time-domain specifications just given are quite important, since most control
systems are time-domain systems; that is, they must exhibit acceptable time responses.
(This means that, the control system must be modified until the transient response is
satisfactory.)

Maximum percent overshoot =
cAtpB - c(q)

c(q)
* 100%
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Definition of the
angle b.

Note that not all these specifications necessarily apply to any given case. For exam-
ple, for an overdamped system, the terms peak time and maximum overshoot do not
apply. (For systems that yield steady-state errors for step inputs, this error must be kept
within a specified percentage level. Detailed discussions of steady-state errors are post-
poned until Section 5–8.)

A Few Comments on Transient-Response Specifications. Except for certain
applications where oscillations cannot be tolerated, it is desirable that the transient re-
sponse be sufficiently fast and be sufficiently damped.Thus, for a desirable transient re-
sponse of a second-order system, the damping ratio must be between 0.4 and 0.8. Small
values of z(that is, z<0.4) yield excessive overshoot in the transient response, and a
system with a large value of z(that is, z>0.8) responds sluggishly.

We shall see later that the maximum overshoot and the rise time conflict with each other.
In other words, both the maximum overshoot and the rise time cannot be made smaller
simultaneously. If one of them is made smaller, the other necessarily becomes larger.

Second-Order Systems and Transient-Response Specifications. In the fol-
lowing, we shall obtain the rise time, peak time, maximum overshoot, and settling time
of the second-order system given by Equation (5–10). These values will be obtained in
terms of z and vn . The system is assumed to be underdamped.

Rise time tr: Referring to Equation (5–12), we obtain the rise time tr by letting cAtrB=1.

(5–18)

Since we obtain from Equation (5–18) the following equation:

Since and , we have

Thus, the rise time tr is

(5–19)

where angle b is defined in Figure 5–9. Clearly, for a small value of tr ,vd must be large.

tr =
1
vd

tan-1 a vd

-s b =
p - b
vd

tanvd tr = - 
21 - z2

z
= - 
vd

s

zvn = svn21 - z2 = vd

cosvd tr +
z

21 - z2
sinvd tr = 0

e-zvn tr Z 0,

cAtrB = 1 = 1 - e-zvn tr a cosvd tr +
z

21 - z2
sinvd tr b
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Peak time tp : Referring to Equation (5–12), we may obtain the peak time by differen-
tiating c(t) with respect to time and letting this derivative equal zero. Since

and the cosine terms in this last equation cancel each other, dc�dt, evaluated at t=tp ,
can be simplified to

This last equation yields the following equation:

or

Since the peak time corresponds to the first peak overshoot, Hence

(5–20)

The peak time tp corresponds to one-half cycle of the frequency of damped oscillation.

Maximum overshoot Mp : The maximum overshoot occurs at the peak time or at
t=tp=p�vd .Assuming that the final value of the output is unity, Mp is obtained from
Equation (5–12) as

(5–21)

The maximum percent overshoot is 
If the final value c(q) of the output is not unity, then we need to use the following

equation:

Settling time ts : For an underdamped second-order system, the transient response is
obtained from Equation (5–12) as

for t � 0c(t) = 1 -
e-zvn t

21 - z2
sin avd t + tan-1 

21 - z2

z
b ,

Mp =
cAtpB - c(q)

c(q)

e-As�vdBp * 100%.

 = e-As�vdBp = e-Az�21 -z2Bp
 = -e-zvnAp�vdB a cosp +

z

21 - z2
sinp b Mp = cAtpB - 1

tp =
p

vd

vd tp = p.

vd tp = 0, p, 2p, 3p, p

sinvd tp = 0

dc
dt
2
t = tp

= Asinvd tpB vn

21 - z2
 e-zvn tp = 0

 + e-zvn t avd sinvd t -
zvd

21 - z2
cosvd t b

 
dc
dt

= zvn e-zvn t a cosvd t +
z

21 - z2
sinvd t b
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Figure 5–10
Pair of envelope
curves for the unit-
step response curve
of the system shown
in Figure 5–6.

The curves are the envelope curves of the transient response to
a unit-step input. The response curve c(t) always remains within a pair of the envelope
curves, as shown in Figure 5–10. The time constant of these envelope curves is 1�zvn .

The speed of decay of the transient response depends on the value of the time constant
1�zvn . For a given vn , the settling time ts is a function of the damping ratio z. From
Figure 5–7, we see that for the same vn and for a range of z between 0 and 1 the settling time
ts for a very lightly damped system is larger than that for a properly damped system. For an
overdamped system, the settling time ts becomes large because of the sluggish response.

The settling time corresponding to a ; 2% or ;5% tolerance band may be measured
in terms of the time constant T=1�zvn from the curves of Figure 5–7 for different
values of z.The results are shown in Figure 5–11. For 0<z<0.9, if the 2% criterion is
used, ts is approximately four times the time constant of the system. If the 5% criterion
is used, then ts is approximately three times the time constant. Note that the settling
time reaches a minimum value around z=0.76 (for the 2% criterion) or z=0.68 (for
the 5% criterion) and then increases almost linearly for large values of z.
The discontinuities in the curves of Figure 5–11 arise because an infinitesimal change
in the value of z can cause a finite change in the settling time.

For convenience in comparing the responses of systems, we commonly define the
settling time ts to be

(2% criterion) (5–22)

or

(5% criterion) (5–23)

Note that the settling time is inversely proportional to the product of the damping
ratio and the undamped natural frequency of the system. Since the value of z is usually
determined from the requirement of permissible maximum overshoot, the settling time

ts = 3T =
3
s

=
3

zvn

ts = 4T =
4
s

=
4

zvn

1 ; Ae-zvn t�21 - z2B
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is determined primarily by the undamped natural frequency vn . This means that the
duration of the transient period may be varied, without changing the maximum over-
shoot, by adjusting the undamped natural frequency vn .

From the preceding analysis, it is evident that for rapid response vn must be large.To limit
the maximum overshoot Mp and to make the settling time small, the damping ratio z should
not be too small. The relationship between the maximum percent overshoot Mp and the
damping ratio z is presented in Figure 5–12. Note that if the damping ratio is between 0.4
and 0.7, then the maximum percent overshoot for step response is between 25% and 4%.



aa

Section 5–3 / Second-Order Systems 175

It is important to note that the equations for obtaining the rise time, peak time, max-
imum overshoot, and settling time are valid only for the standard second-order system
defined by Equation (5–10). If the second-order system involves a zero or two zeros,
the shape of the unit-step response curve will be quite different from those shown in
Figure 5–7.

EXAMPLE 5–1 Consider the system shown in Figure 5–6, where z=0.6 and vn=5 rad�sec. Let us obtain the rise
time tr , peak time tp , maximum overshoot Mp , and settling time ts when the system is subjected
to a unit-step input.

From the given values of z and vn , we obtain and s=zvn=3.

Rise time tr : The rise time is

where b is given by

The rise time tr is thus

Peak time tp : The peak time is

Maximum overshoot Mp : The maximum overshoot is

The maximum percent overshoot is thus 9.5%.

Settling time ts : For the 2% criterion, the settling time is

For the 5% criterion,

Servo System with Velocity Feedback. The derivative of the output signal can
be used to improve system performance. In obtaining the derivative of the output
position signal, it is desirable to use a tachometer instead of physically differentiating the
output signal. (Note that the differentiation amplifies noise effects. In fact, if
discontinuous noises are present, differentiation amplifies the discontinuous noises more
than the useful signal. For example, the output of a potentiometer is a discontinuous
voltage signal because, as the potentiometer brush is moving on the windings, voltages
are induced in the switchover turns and thus generate transients. The output of the po-
tentiometer therefore should not be followed by a differentiating element.)

ts =
3
s

=
3

3
= 1 sec

ts =
4
s

=
4

3
= 1.33 sec

Mp = e-As�vdBp = e-(3�4) * 3.14 = 0.095

tp =
p

vd
=

3.14

4
= 0.785 sec

tr =
3.14 - 0.93

4
= 0.55 sec

b = tan-1
vd

s
= tan-1 4

3
= 0.93 rad

tr =
p - b
vd

=
3.14 - b

4

vd = vn21 - z2 = 4
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(a) Block diagram of
a servo system;
(b) simplified block
diagram.

The tachometer, a special dc generator, is frequently used to measure velocity with-
out differentiation process. The output of a tachometer is proportional to the angular
velocity of the motor.

Consider the servo system shown in Figure 5–13(a). In this device, the velocity signal,
together with the positional signal, is fed back to the input to produce the actuating
error signal. In any servo system, such a velocity signal can be easily generated by a
tachometer. The block diagram shown in Figure 5–13(a) can be simplified, as shown in
Figure 5–13(b), giving

(5–24)

Comparing Equation (5–24) with Equation (5–9), notice that the velocity feedback has
the effect of increasing damping. The damping ratio z becomes

(5–25)

The undamped natural frequency is not affected by velocity feedback. Not-
ing that the maximum overshoot for a unit-step input can be controlled by controlling
the value of the damping ratio z, we can reduce the maximum overshoot by adjusting
the velocity-feedback constant Kh so that z is between 0.4 and 0.7.

It is important to remember that velocity feedback has the effect of increasing the
damping ratio without affecting the undamped natural frequency of the system.

EXAMPLE 5–2 For the system shown in Figure 5–13(a), determine the values of gain K and velocity-feedback
constant Kh so that the maximum overshoot in the unit-step response is 0.2 and the peak time is 1 sec.
With these values of K and Kh , obtain the rise time and settling time.Assume that J=1 kg-m2 and
B=1 N-m�rad�sec.

Determination of the values of K and Kh : The maximum overshoot Mp is given by Equation
(5–21) as

Mp = e-Az�21 -z2Bp

vn = 1K�J

z =
B + KKh

21KJ

C(s)

R(s)
=

K

Js2 + AB + KKhBs + K
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This value must be 0.2. Thus,

or

which yields

The peak time tp is specified as 1 sec; therefore, from Equation (5–20),

or

Since z is 0.456,vn is

Since the natural frequency vn is equal to 

Then Kh is, from Equation (5–25),

Rise time tr : From Equation (5–19), the rise time tr is

where

Thus, tr is

Settling time ts : For the 2% criterion,

For the 5% criterion,

ts =
3
s

= 1.86 sec

ts =
4
s

= 2.48 sec

tr = 0.65 sec

b = tan-1
vd

s
= tan-1 1.95 = 1.10

tr =
p - b
vd

Kh =
21KJz - B

K
=

21Kz - 1

K
= 0.178 sec

K = Jv2
n = v2

n = 12.5 N-m

1K�J ,

vn =
vd

21 - z2
= 3.53

vd = 3.14

tp =
p

vd
= 1

z = 0.456

zp

21 - z2
= 1.61

e-Az�21 -z2Bp = 0.2
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Figure 5–14
Unit-impulse
response curves of
the system shown in
Figure 5–6.

Impulse Response of Second-Order Systems. For a unit-impulse input r(t), the
corresponding Laplace transform is unity, or R(s)=1.The unit-impulse response C(s)
of the second-order system shown in Figure 5-6 is

The inverse Laplace transform of this equation yields the time solution for the response
c(t) as follows:

For 0 � z<1,

for t � 0 (5–26)

For z=1,

for t � 0 (5–27)

For z>1,

for t � 0 (5–28)

Note that without taking the inverse Laplace transform of C(s) we can also obtain
the time response c(t) by differentiating the corresponding unit-step response, since
the unit-impulse function is the time derivative of the unit-step function. A family of
unit-impulse response curves given by Equations (5–26) and (5–27) with various val-
ues of z is shown in Figure 5–14. The curves c(t)/vn are plotted against the dimen-
sionless variable vnt, and thus they are functions only of z. For the critically damped
and overdamped cases, the unit-impulse response is always positive or zero; that is,
c(t) � 0. This can be seen from Equations (5–27) and (5–28). For the underdamped
case, the unit-impulse response c(t) oscillates about zero and takes both positive and
negative values.

c(t) =
vn

22z2 - 1
e-Az-2z2 - 1Bvn t -

vn

22z2 - 1
 e-Az+2z2 - 1Bvn t,

c(t) = v2
n te-vn t,

c(t) =
vn

21 - z2
e-zvn t sinvn21 - z2 t,

C(s) =
v2

n

s2 + 2zvn s + v2
n
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Unit-impulse
response curve of the
system shown in
Figure 5–6.

From the foregoing analysis, we may conclude that if the impulse response c(t) does
not change sign, the system is either critically damped or overdamped, in which case
the corresponding step response does not overshoot but increases or decreases monot-
onically and approaches a constant value.

The maximum overshoot for the unit-impulse response of the underdamped system
occurs at

where 0<z<1 (5–29)

[Equation (5–29) can be obtained by equating dc�dt to zero and solving for t.] The max-
imum overshoot is

where 0<z<1 (5–30)

[Equation (5–30) can be obtained by substituting Equation (5–29) into Equation (5–26).]
Since the unit-impulse response function is the time derivative of the unit-step

response function, the maximum overshoot Mp for the unit-step response can be
found from the corresponding unit-impulse response. That is, the area under the unit-
impulse response curve from t=0 to the time of the first zero, as shown in Figure
5–15, is 1+Mp , where Mp is the maximum overshoot (for the unit-step response)
given by Equation (5–21). The peak time tp (for the unit-step response) given by
Equation (5–20) corresponds to the time that the unit-impulse response first crosses
the time axis.

5–4 HIGHER-ORDER SYSTEMS

In this section we shall present a transient-response analysis of higher-order systems in
general terms. It will be seen that the response of a higher-order system is the sum of the
responses of first-order and second-order systems.

c(t)max = vn exp a-
z

21 - z2
tan-1 21 - z2

z
b ,

t =
tan-1 21 - z2

z

vn21 - z2
,
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+
–

R(s) C(s)
G(s)

H(s)Figure 5–16
Control system.

Transient Response of Higher-Order Systems. Consider the system shown in
Figure 5–16. The closed-loop transfer function is

(5–31)

In general, G(s) and H(s) are given as ratios of polynomials in s, or

and

where p(s), q(s), n(s), and d(s) are polynomials in s.The closed-loop transfer function
given by Equation (5–31) may then be written

The transient response of this system to any given input can be obtained by a computer
simulation. (See Section 5–5.) If an analytical expression for the transient response is de-
sired, then it is necessary to factor the denominator polynomial. [MATLAB may be
used for finding the roots of the denominator polynomial. Use the command roots(den).]
Once the numerator and the denominator have been factored, C(s)/R(s) can be writ-
ten in the form

(5–32)

Let us examine the response behavior of this system to a unit-step input. Consider
first the case where the closed-loop poles are all real and distinct. For a unit-step input,
Equation (5–32) can be written

(5–33)

where ai is the residue of the pole at s=–pi . (If the system involves multiple poles,
then C(s) will have multiple-pole terms.) [The partial-fraction expansion of C(s), as
given by Equation (5–33), can be obtained easily with MATLAB. Use the residue
command. (See Appendix B.)]

If all closed-loop poles lie in the left-half s plane, the relative magnitudes of the
residues determine the relative importance of the components in the expanded form of

C(s) =
a
s

+ a
n

i = 1

ai

s + pi

C(s)

R(s)
=

KAs + z1B As + z2B p As + zmBAs + p1B As + p2B p As + pnB

 =
b0 sm + b1 sm - 1 + p + bm - 1 s + bm

a0 sn + a1 sn - 1 + p + an - 1 s + an

  (m � n)

 
C(s)

R(s)
=

p(s)d(s)

q(s)d(s) + p(s)n(s)

H(s) =
n(s)

d(s)
G(s) =

p(s)

q(s)

C(s)

R(s)
=

G(s)

1 + G(s)H(s)
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C(s). If there is a closed-loop zero close to a closed-loop pole, then the residue at this
pole is small and the coefficient of the transient-response term corresponding to this pole
becomes small. A pair of closely located poles and zeros will effectively cancel each
other. If a pole is located very far from the origin, the residue at this pole may be small.
The transients corresponding to such a remote pole are small and last a short time.Terms
in the expanded form of C(s) having very small residues contribute little to the transient
response, and these terms may be neglected. If this is done, the higher-order system may
be approximated by a lower-order one. (Such an approximation often enables us to es-
timate the response characteristics of a higher-order system from those of a simplified
one.)

Next, consider the case where the poles of C(s) consist of real poles and pairs of
complex-conjugate poles.A pair of complex-conjugate poles yields a second-order term
in s. Since the factored form of the higher-order characteristic equation consists of first-
and second-order terms, Equation (5–33) can be rewritten

where we assumed all closed-loop poles are distinct. [If the closed-loop poles involve
multiple poles, C(s) must have multiple-pole terms.] From this last equation, we see that
the response of a higher-order system is composed of a number of terms involving the
simple functions found in the responses of first- and second-order systems. The unit-
step response c(t), the inverse Laplace transform of C(s), is then

for t � 0 (5–34)

Thus the response curve of a stable higher-order system is the sum of a number of
exponential curves and damped sinusoidal curves.

If all closed-loop poles lie in the left-half s plane, then the exponential terms and
the damped exponential terms in Equation (5–34) will approach zero as time t increases.
The steady-state output is then c(q)=a.

Let us assume that the system considered is a stable one.Then the closed-loop poles
that are located far from the jv axis have large negative real parts. The exponential
terms that correspond to these poles decay very rapidly to zero. (Note that the hori-
zontal distance from a closed-loop pole to the jv axis determines the settling time of tran-
sients due to that pole. The smaller the distance is, the longer the settling time.)

Remember that the type of transient response is determined by the closed-loop
poles, while the shape of the transient response is primarily determined by the closed-
loop zeros. As we have seen earlier, the poles of the input R(s) yield the steady-state
response terms in the solution, while the poles of C(s)/R(s) enter into the exponential
transient-response terms and/or damped sinusoidal transient-response terms.The zeros
of C(s)/R(s) do not affect the exponents in the exponential terms, but they do affect the
magnitudes and signs of the residues.

+ a
r

k = 1
ck e-zk vk t sinvk21 - z2

k t,

c(t) = a + a
q

j = 1
aj e-pj t + a

r

k = 1
bk e-zk vk t cosvk21 - z2

k t

C(s) =
a
s

+ a
q

j = 1

aj

s + pj
+ a

r

k = 1

bkAs + zk vkB + ck vk21 - z2
k

s2 + 2zk vk s + v2
k

  (q + 2r = n)
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Dominant Closed-Loop Poles. The relative dominance of closed-loop poles is
determined by the ratio of the real parts of the closed-loop poles, as well as by the rel-
ative magnitudes of the residues evaluated at the closed-loop poles. The magnitudes of
the residues depend on both the closed-loop poles and zeros.

If the ratios of the real parts of the closed-loop poles exceed 5 and there are no zeros
nearby, then the closed-loop poles nearest the jv axis will dominate in the transient-
response behavior because these poles correspond to transient-response terms that
decay slowly. Those closed-loop poles that have dominant effects on the transient-
response behavior are called dominant closed-loop poles. Quite often the dominant
closed-loop poles occur in the form of a complex-conjugate pair. The dominant closed-
loop poles are most important among all closed-loop poles.

Note that the gain of a higher-order system is often adjusted so that there will exist
a pair of dominant complex-conjugate closed-loop poles. The presence of such poles in
a stable system reduces the effects of such nonlinearities as dead zone, backlash, and
coulomb-friction.

Stability Analysis in the Complex Plane. The stability of a linear closed-loop
system can be determined from the location of the closed-loop poles in the s plane. If
any of these poles lie in the right-half s plane, then with increasing time they give rise
to the dominant mode, and the transient response increases monotonically or oscillates
with increasing amplitude. This represents an unstable system. For such a system, as
soon as the power is turned on, the output may increase with time. If no saturation
takes place in the system and no mechanical stop is provided, then the system may
eventually be subjected to damage and fail, since the response of a real physical sys-
tem cannot increase indefinitely.Therefore, closed-loop poles in the right-half s plane
are not permissible in the usual linear control system. If all closed-loop poles lie to the
left of the jv axis, any transient response eventually reaches equilibrium. This repre-
sents a stable system.

Whether a linear system is stable or unstable is a property of the system itself and
does not depend on the input or driving function of the system. The poles of the input,
or driving function, do not affect the property of stability of the system, but they con-
tribute only to steady-state response terms in the solution.Thus, the problem of absolute
stability can be solved readily by choosing no closed-loop poles in the right-half s plane,
including the jv axis. (Mathematically, closed-loop poles on the jv axis will yield oscil-
lations, the amplitude of which is neither decaying nor growing with time. In practical
cases, where noise is present, however, the amplitude of oscillations may increase at a
rate determined by the noise power level. Therefore, a control system should not have
closed-loop poles on the jv axis.)

Note that the mere fact that all closed-loop poles lie in the left-half s plane does not
guarantee satisfactory transient-response characteristics. If dominant complex-conjugate
closed-loop poles lie close to the jv axis, the transient response may exhibit excessive
oscillations or may be very slow.Therefore, to guarantee fast, yet well-damped, transient-
response characteristics, it is necessary that the closed-loop poles of the system lie in a
particular region in the complex plane, such as the region bounded by the shaded area
in Figure 5–17.

Since the relative stability and transient-response performance of a closed-loop con-
trol system are directly related to the closed-loop pole-zero configuration in the s plane,
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0

s

s
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In this region

z 	 0.4

s
4ts �

Figure 5–17
Region in the
complex plane
satisfying the
conditions z>0.4
and ts<4/s.

it is frequently necessary to adjust one or more system parameters in order to obtain suit-
able configurations. The effects of varying system parameters on the closed-loop poles
will be discussed in detail in Chapter 6.

5–5 TRANSIENT-RESPONSE ANALYSIS WITH MATLAB

Introduction. The practical procedure for plotting time response curves of systems
higher than second order is through computer simulation. In this section we present the
computational approach to the transient-response analysis with MATLAB. In particular,
we discuss step response, impulse response, ramp response, and responses to other simple
inputs.

MATLAB Representation of Linear Systems. The transfer function of a system
is represented by two arrays of numbers. Consider the system

(5–35)

This system can be represented as two arrays, each containing the coefficients of the
polynomials in decreasing powers of s as follows:

num = [2  25]
den = [1  4  25]

An alternative representation is

num = [0  2  25]
den = [1  4  25]

C(s)

R(s)
=

2s + 25

s2 + 4s + 25
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In this expression a zero is padded. Note that if zeros are padded, the dimensions of
“num” vector and “den” vector become the same.An advantage of padding zeros is that
the “num” vector and “den” vector can be directly added. For example,

num + den = [0  2  25] + [1  4  25]
= [1  6  50]

If num and den (the numerator and denominator of the closed-loop transfer function)
are known, commands such as

step(num,den),    step(num,den,t)

will generate plots of unit-step responses (t in the step command is the user-specified time.)
For a control system defined in a state-space form, where state matrix A, control

matrix B, output matrix C, and direct transmission matrix D of state-space equations are
known, the command

step(A,B,C,D),    step(A,B,C,D,t)

will generate plots of unit-step responses. When t is not explicitly included in the step
commands, the time vector is automatically determined.

Note that the command step(sys) may be used to obtain the unit-step response of a
system. First, define the system by

sys = tf(num,den)
or

sys = ss(A,B,C,D)

Then, to obtain, for example, the unit-step response, enter

step(sys)

into the computer.
When step commands have left-hand arguments such as

[y,x,t] = step(num,den,t)

[y,x,t] = step(A,B,C,D,iu)

[y,x,t] = step(A,B,C,D,iu,t) (5–36)

no plot is shown on the screen. Hence it is necessary to use a plot command to see the
response curves. The matrices y and x contain the output and state response of the sys-
tem, respectively, evaluated at the computation time points t. (y has as many columns as
outputs and one row for each element in t. x has as many columns as states and one row
for each element in t.)

Note in Equation (5–36) that the scalar iu is an index into the inputs of the system
and specifies which input is to be used for the response, and t is the user-specified time.
If the system involves multiple inputs and multiple outputs, the step command, such as
given by Equation (5–36), produces a series of step-response plots, one for each input
and output combination of

(For details, see Example 5–3.)

y = Cx + Du

x# = Ax + Bu
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EXAMPLE 5–3 Consider the following system:

Obtain the unit-step response curves.
Although it is not necessary to obtain the transfer-matrix expression for the system to obtain

the unit-step response curves with MATLAB, we shall derive such an expression for reference.
For the system defined by

the transfer matrix G(s) is a matrix that relates Y(s) and U(s) as follows:

Taking Laplace transforms of the state-space equations, we obtain

(5–37)

(5–38)

In deriving the transfer matrix, we assume that Then, from Equation (5–37), we get

(5–39)

Substituting Equation (5–39) into Equation (5–38), we obtain

Thus the transfer matrix G(s) is given by

The transfer matrix G(s) for the given system becomes

Hence

Since this system involves two inputs and two outputs, four transfer functions may be defined,
depending on which signals are considered as input and output. Note that, when considering the
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Figure 5–18
Unit-step response
curves.

MATLAB Program 5–1

A = [–1  –1;6.5  0];
B = [1  1;1  0];
C = [1  0;0  1];
D = [0  0;0  0];
step(A,B,C,D)

signal u1 as the input, we assume that signal u2 is zero, and vice versa.The four transfer functions
are

Assume that u1 and u2 are unit-step functions. The four individual step-response curves can then
be plotted by use of the command

step(A,B,C,D)

MATLAB Program 5–1 produces four such step-response curves.The curves are shown in Figure 5–18.
(Note that the time vector t is automatically determined, since the command does not include t.)

Y2(s)

U2(s)
=

6.5

s2 + s + 6.5

Y2(s)

U1(s)
=

s + 7.5

s2 + s + 6.5
,

Y1(s)

U2(s)
=

s

s2 + s + 6.5

Y1(s)

U1(s)
=

s - 1

s2 + s + 6.5
,



aa

Section 5–5 / Transient-Response Analysis with MATLAB 187

MATLAB Program 5–2

% ***** In this program we plot step-response curves of a system
% having two inputs (u1 and u2) and two outputs (y1 and y2) *****

% ***** We shall first plot step-response curves when the input is
% u1. Then we shall plot step-response curves when the input is
% u2 *****

% ***** Enter matrices A, B, C, and D *****

A = [-1  -1;6.5  0];
B = [1  1;1  0];
C = [1  0;0  1];
D = [0  0;0  0];

% ***** To plot step-response curves when the input is u1, enter
% the command 'step(A,B,C,D,1)' *****

step(A,B,C,D,1)
grid
title ('Step-Response Plots: Input = u1 (u2 = 0)')
text(3.4, -0.06,'Y1')
text(3.4, 1.4,'Y2')

% ***** Next, we shall plot step-response curves when the input
% is u2. Enter the command 'step(A,B,C,D,2)' *****

step(A,B,C,D,2)
grid
title ('Step-Response Plots: Input = u2 (u1 = 0)')
text(3,0.14,'Y1')
text(2.8,1.1,'Y2')

To plot two step-response curves for the input u1 in one diagram and two step-response curves
for the input u2 in another diagram, we may use the commands

step(A,B,C,D,1)

and

step(A,B,C,D,2)

respectively. MATLAB Program 5–2 is a program to plot two step-response curves for the
input u1 in one diagram and two step-response curves for the input u2 in another diagram.
Figure 5–19 shows the two diagrams, each consisting of two step-response curves. (This
MATLAB program uses text commands. For such commands, refer to the paragraph following
this example.)
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Step-Response Plots: Input = u2 (u1 = 0)
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Figure 5–19
Unit-step response
curves. (a) u1 is the
input Au2=0 B ; (b) u2

is the input Au1=0 B .
Writing Text on the Graphics Screen. To write text on the graphics screen, enter,

for example, the following statements:

text(3.4, -0.06,'Y1')

and

text(3.4,1.4,'Y2')

The first statement tells the computer to write ‘Y1’ beginning at the coordinates x=3.4,
y=–0.06. Similarly, the second statement tells the computer to write ‘Y2’ beginning at
the coordinates x=3.4, y=1.4. [See MATLAB Program 5–2 and Figure 5–19(a).]
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MATLAB Program 5–3

wn = 5;
damping_ratio = 0.4;
[num0,den] = ord2(wn,damping_ratio);
num = 5^2*num0;
printsys(num,den,'s')
num/den =

25
S^2 + 4s + 25

Another way to write a text or texts in the plot is to use the gtext command. The
syntax is

gtext('text')

When gtext is executed, the computer waits until the cursor is positioned (using a
mouse) at the desired position in the screen. When the left mouse button is pressed,
the text enclosed in simple quotes is written on the plot at the cursor’s position. Any
number of gtext commands can be used in a plot. (See, for example, MATLAB 
Program 5–15.)

MATLAB Description of Standard Second-Order System. As noted earlier, the
second-order system

(5–40)

is called the standard second-order system. Given vn and z, the command

printsys(num,den) or printsys(num,den,s)

prints num/den as a ratio of polynomials in s.
Consider, for example, the case where vn=5 rad�sec and z=0.4. MATLAB Program

5–3 generates the standard second-order system, where vn=5 rad�sec and z=0.4.
Note that in MATLAB Program 5–3,“num 0” is 1.

G(s) =
v2

n

s2 + 2zvn s + v2
n

Obtaining the Unit-Step Response of the Transfer-Function System. Let us
consider the unit-step response of the system given by

G(s) =
25

s2 + 4s + 25
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MATLAB Program 5–4

% ------------- Unit-step response -------------

% ***** Enter the numerator and denominator of the transfer
% function *****

num = [25];
den = [1  4  25];

% ***** Enter the following step-response command *****

step(num,den)

% ***** Enter grid and title of the plot *****

grid
title (' Unit-Step Response of G(s) = 25/(s^2+4s+25)')
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Figure 5–20
Unit-step response
curve.

Notice in Figure 5–20 (and many others) that the x-axis and y-axis labels are auto-
matically determined. If it is desired to label the x axis and y axis differently, we need
to modify the step command. For example, if it is desired to label the x axis as 't Sec'
and the y axis as ‘Output,’ then use step-response commands with left-hand arguments,
such as

c = step(num,den,t)
or, more generally,

[y,x,t] = step(num,den,t)

and use plot(t,y) command. See, for example, MATLAB Program 5–5 and Figure 5–21.

MATLAB Program 5–4 will yield a plot of the unit-step response of this system.A plot
of the unit-step response curve is shown in Figure 5–20.
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MATLAB Program 5–5

% ------------- Unit-step response -------------

num = [25];
den = [1  4  25];
t = 0:0.01:3;
[y,x,t] = step(num,den,t);
plot(t,y)
grid
title('Unit-Step Response of G(s)=25/(sˆ2+4s+25)')
xlabel('t Sec')
ylabel('Output')
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Figure 5–21
Unit-step response
curve.

Obtaining Three-Dimensional Plot of Unit-Step Response Curves with
MATLAB. MATLAB enables us to plot three-dimensional plots easily.The commands
to obtain three-dimensional plots are “mesh” and “surf.” The difference between the
“mesh” plot and “surf” plot is that in the former only the lines are drawn and in the lat-
ter the spaces between the lines are filled in by colors. In this book we use only the
“mesh” command.

EXAMPLE 5–4 Consider the closed-loop system defined by

(The undamped natural frequency vn is normalized to 1.) Plot unit-step response curves c(t) when
z assumes the following values:

z=0, 0.2, 0.4, 0.6. 0.8, 1.0

Also plot a three-dimensional plot.

C(s)

R(s)
=

1

s2 + 2zs + 1



aa

192 Chapter 5 / Transient and Steady-State Response Analyses

MATLAB Program 5–6

% ------- Two-dimensional plot and three-dimensional plot of unit-step
% response curves for the standard second-order system with wn = 1
% and zeta = 0, 0.2, 0.4, 0.6, 0.8, and 1. -------

t = 0:0.2:10;
zeta = [0 0.2 0.4 0.6 0.8 1];

for n = 1:6;
num = [1];
den = [1 2*zeta(n) 1];
[y(1:51,n),x,t] = step(num,den,t);
end

% To plot a two-dimensional diagram, enter the command plot(t,y).

plot(t,y)
grid
title('Plot of Unit-Step Response Curves with \omega_n = 1 and \zeta = 0, 0.2, 0.4, 0.6, 0.8, 1')
xlabel('t (sec)')
ylabel('Response')
text(4.1,1.86,'\zeta = 0')
text(3.5,1.5,'0.2')
text(3 .5,1.24,'0.4')
text(3.5,1.08,'0.6')
text(3.5,0.95,'0.8')
text(3.5,0.86,'1.0')

% To plot a three-dimensional diagram, enter the command mesh(t,zeta,y').

mesh(t,zeta,y')
title('Three-Dimensional Plot of Unit-Step Response Curves')
xlabel('t Sec')
ylabel('\zeta')
zlabel('Response')

An illustrative MATLAB Program for plotting a two-dimensional diagram and a three-
dimensional diagram of unit-step response curves of this second-order system is given in MATLAB
Program 5–6. The resulting plots are shown in Figures 5–22(a) and (b), respectively. Notice that
we used the command mesh(t,zeta,y') to plot the three-dimensional plot.We may use a command
mesh(y') to get the same result. [Note that command mesh(t,zeta,y) or mesh(y) will produce a
three-dimensional plot the same as Figure 5–22(b), except that x axis and y axis are interchanged.
See Problem A–5–15.]

When we want to solve a problem using MATLAB and if the solution process involves many
repetitive computations, various approaches may be conceived to simplify the MATLAB pro-
gram.A frequently used approach to simplify the computation is to use “for loops.” MATLAB Pro-
gram 5–6 uses such a “for loop.” In this book many MATLAB programs using “for loops” are
presented for solving a variety of problems. Readers are advised to study all those problems care-
fully to familiarize themselves with the approach.
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Plot of Unit-Step Response Curves with �n = 1 and  = 0, 0.2, 0.4, 0.6, 0.8, 1
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Three-Dimensional Plot of Unit-Step Response Curves

Figure 5–22
(a) Two-dimensional
plot of unit-step
response curves for
z=0, 0.2, 0.4, 0.6, 0.8,
and 1.0; (b) three-
dimensional plot of
unit-step response
curves.

Obtaining Rise Time, Peak Time, Maximum Overshoot, and Settling Time
with MATLAB. MATLAB can conveniently be used to obtain the rise time, peak time,
maximum overshoot, and settling time. Consider the system defined by

MATLAB Program 5–7 yields the rise time, peak time, maximum overshoot, and settling
time. A unit-step response curve for this system is given in Figure 5–23 to verify the

C(s)

R(s)
=

25

s2 + 6s + 25
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MATLAB Program 5–7

% ------- This is a MATLAB program to find the rise time, peak time,
% maximum overshoot, and settling time of the second-order system
% and higher-order system -------

% ------- In this example, we assume zeta = 0.6 and wn = 5 -------

num = [25];
den = [1  6  25];
t = 0:0.005:5;
[y,x,t] = step(num,den,t);
r = 1; while y(r) < 1.0001; r = r + 1; end;
rise_time = (r - 1)*0.005

rise_time =

0.5550

[ymax,tp] = max(y);
peak_time = (tp - 1)*0.005

peak_time =

0.7850

max_overshoot = ymax-1

max_overshoot =

0.0948

s = 1001; while y(s) > 0.98 & y(s) < 1.02; s = s - 1; end;
settling_time = (s - 1)*0.005

settling_time =

1.1850
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Figure 5–23
Unit-step response
curve.

results obtained with MATLAB Program 5–7. (Note that this program can also be
applied to higher-order systems. See Problem A–5–10.)
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Impulse Response. The unit-impulse response of a control system may be
obtained by using any of the impulse commands such as

impulse(num,den)

impulse(A,B,C,D)

[y,x,t] = impulse(num,den)

[y,x,t] = impulse(num,den,t) (5–41)

[y,x,t] = impulse(A,B,C,D)

[y,x,t] = impulse(A,B,C,D,iu) (5–42)

[y,x,t] = impulse(A,B,C,D,iu,t) (5–43)

The command impulse(num,den) plots the unit-impulse response on the screen. The
command impulse(A,B,C,D) produces a series of unit-impulse-response plots, one for
each input and output combination of the system

Note that in Equations (5–42) and (5–43) the scalar iu is an index into the inputs of the
system and specifies which input to be used for the impulse response.

Note also that if the command used does not include “t” explicitly, the time vector
is automatically determined. If the command includes the user-supplied time vector “t”,
as do the commands given by Equations (5–41) and (5–43)], this vector specifies the
times at which the impulse response is to be computed.

If MATLAB is invoked with the left-hand argument [y,x,t], such as in the case of
[y,x,t] = impulse(A,B,C,D), the command returns the output and state responses of the
system and the time vector t. No plot is drawn on the screen. The matrices y and x con-
tain the output and state responses of the system evaluated at the time points t. (y has
as many columns as outputs and one row for each element in t. x has as many columns
as state variables and one row for each element in t.) To plot the response curve, we
must include a plot command, such as plot(t,y).

y = Cx + Du

x# = Ax + Bu

EXAMPLE 5–5 Obtain the unit-impulse response of the following system:

C(s)

R(s)
= G(s) =

1

s2 + 0.2s + 1
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Unit-Impulse Response of G(s) = 1/(s2+0.2s+1)
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Figure 5–24
Unit-impulse-
response curve.

MATLAB Program 5–8 will produce the unit-impulse response. The resulting plot is shown in
Figure 5–24.

MATLAB Program 5–8

num = [1];
den = [1  0.2  1];
impulse(num,den);
grid
title(‘Unit-Impulse Response of G(s) = 1/(s^2 + 0.2s + 1)‘)

Alternative Approach to Obtain Impulse Response. Note that when the initial
conditions are zero, the unit-impulse response of G(s) is the same as the unit-step
response of sG(s).

Consider the unit-impulse response of the system considered in Example 5–5. Since
R(s)=1 for the unit-impulse input, we have

We can thus convert the unit-impulse response of G(s) to the unit-step response of
sG(s).

If we enter the following num and den into MATLAB,

num = [0  1  0]

den = [1  0.2  1]

 =
s

s2 + 0.2s + 1
 
1
s

 
C(s)

R(s)
= C(s) = G(s) =

1

s2 + 0.2s + 1
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Unit-Step Response of sG(s) = s/(s2+0.2s+1)
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Figure 5–25
Unit-impulse-
response curve
obtained as the unit-
step response of
sG(s)=
s/ As2+0.2s+1 B .

MATLAB Program 5–9

num = [1  0];
den = [1  0.2  1];
step(num,den);
grid
title(‘Unit-Step Response of sG(s) = s/(s^2 + 0.2s + 1)‘)

and use the step-response command; as given in MATLAB Program 5–9, we obtain a
plot of the unit-impulse response of the system as shown in Figure 5–25.

Ramp Response. There is no ramp command in MATLAB. Therefore, we need
to use the step command or the lsim command (presented later) to obtain the ramp re-
sponse. Specifically, to obtain the ramp response of the transfer-function system G(s),
divide G(s) by s and use the step-response command. For example, consider the closed-
loop system

For a unit-ramp input, R(s)=1/s2 . Hence

To obtain the unit-ramp response of this system, enter the following numerator and de-
nominator into the MATLAB program:

num = [2  1];

den = [1  1  1  0];

C(s) =
2s + 1

s2 + s + 1
1
s2 =

2s + 1
(s2 + s + 1)s

1
s

C(s)

R(s)
=

2s + 1
s2 + s + 1
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MATLAB Program 5–10

% --------------- Unit-ramp response ---------------

% ***** The unit-ramp response is obtained as the unit-step
% response of G(s)/s *****

% ***** Enter the numerator and denominator of G(s)/s *****

num = [2  1];
den = [1  1  1  0];

% ***** Specify the computing time points (such as t = 0:0.1:10)
% and then enter step-response command: c = step(num,den,t) *****

t = 0:0.1:10;
c = step(num,den,t);

% ***** In plotting the ramp-response curve, add the reference
% input to the plot. The reference input is t. Add to the
% argument of the plot command with the following: t,t,'-'. Thus
% the plot command becomes as follows: plot(t,c,'o',t,t,'-') *****

plot(t,c,'o',t,t,'-')

% ***** Add grid, title, xlabel, and ylabel *****

grid
title('Unit-Ramp Response Curve for System G(s) = (2s + 1)/(s^2 + s + 1)')
xlabel('t Sec')
ylabel('Input and Output')

and use the step-response command. See MATLAB Program 5–10. The plot obtained
by using this program is shown in Figure 5–26.

Unit-Ramp Response Curve for System G(s) = (2s + 1)/(s2 + s +1)
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Figure 5–26
Unit-ramp response
curve.
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Unit-Ramp Response of a System Defined in State Space. Next, we shall treat
the unit-ramp response of the system in state-space form.Consider the system described by

where u is the unit-ramp function. In what follows, we shall consider a simple example
to explain the method. Consider the case where

When the initial conditions are zeros, the unit-ramp response is the integral of the unit-
step response. Hence the unit-ramp response can be given by

(5–44)

From Equation (5–44), we obtain
(5–45)

Let us define

Then Equation (5–45) becomes
(5–46)

Combining Equation (5–46) with the original state-space equation, we obtain

(5–47)

(5–48)

where u appearing in Equation (5–47) is the unit-step function.These equations can be
written as

where

Note that x3 is the third element of x. A plot of the unit-ramp response curve z(t) can
be obtained by entering MATLAB Program 5–11 into the computer.A plot of the unit-
ramp response curve obtained from this MATLAB program is shown in Figure 5–27.

BB = C0
1
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S = BB
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R ,  CC = [0 0 1],  DD = [0]

AA = C 0
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 z = [0 0 1]Cx1
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MATLAB Program 5–11

% --------------- Unit-ramp response ---------------

% ***** The unit-ramp response is obtained by adding a new
% state variable x3. The dimension of the state equation
% is enlarged by one *****

% ***** Enter matrices A, B, C, and D of the original state
% equation and output equation *****

A = [0  1;-1  -1];
B = [0;  1];
C = [1  0];
D = [0];

% ***** Enter matrices AA, BB, CC, and DD of the new,
% enlarged state equation and output equation *****

AA = [A zeros(2,1);C  0];
BB = [B;0];
CC = [0  0  1];
DD = [0];

% ***** Enter step-response command: [z,x,t] = step(AA,BB,CC,DD) *****

[z,x,t] = step(AA,BB,CC,DD);

% ***** In plotting x3 add the unit-ramp input t in the plot
% by entering the following command: plot(t,x3,'o',t,t,'-') *****

x3 = [0  0  1]*x'; plot(t,x3,'o',t,t,'-')
grid
title('Unit-Ramp Response')
xlabel('t Sec')
ylabel('Input and Output')
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Figure 5–27
Unit-ramp response
curve.
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Obtaining Response to Arbitrary Input. To obtain the response to an arbitrary
input, the command lsim may be used. The commands like

lsim(num,den,r,t)
lsim(A,B,C,D,u,t)
y = lsim(num,den,r,t)
y = lsim(A,B,C,D,u,t)

will generate the response to input time function r or u. See the following two examples.
(Also, see Problems A–5–14 through A–5–16.)

EXAMPLE 5–6 Using the lsim command, obtain the unit-ramp response of the following system:

We may enter MATLAB Program 5–12 into the computer to obtain the unit-ramp response.The
resulting plot is shown in Figure 5–28.

C(s)

R(s)
=

2s + 1
s2 + s + 1

MATLAB Program 5–12

% ------- Ramp Response -------

num = [2  1];
den = [1  1  1];
t = 0:0.1:10;
r = t;
y = lsim(num,den,r,t);
plot(t,r,'-',t,y,'o')
grid
title('Unit-Ramp Response Obtained by Use of Command "lsim"')
xlabel('t Sec')
ylabel('Unit-Ramp Input and System Output')
text(6.3,4.6,'Unit-Ramp Input')
text(4.75,9.0,'Output')

Unit-Ramp Response Obtained by use of Command “Isim”
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Unit-ramp response.
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EXAMPLE 5–7 Consider the system

Using MATLAB, obtain the response curves y(t) when the input u is given by

1. u=unit-step input

2. u=e–t

Assume that the initial state is x(0)=0.
A possible MATLAB program to produce the responses of this system to the unit-step inputCu=1(t) D and the exponential input Cu=e–t D is shown in MATLAB Program 5–13. The result-

ing response curves are shown in Figures 5–29(a) and (b), respectively.

 y = [1 0]Bx1

x2
R

 Bx
#
1

x
#
2
R = B- 1

- 1

0.5

0
R Bx1

x2
R + B0

1
R u

MATLAB Program 5–13

t = 0:0.1:12;
A = [-1  0.5;-1  0];
B = [0;1];
C = [1  0];
D = [0];

% For the unit-step input u = 1(t), use the command "y = step(A,B,C,D,1,t)".

y = step(A,B,C,D,1,t);
plot(t,y)
grid
title('Unit-Step Response')
xlabel('t Sec')
ylabel('Output')

% For the response to exponential input u = exp(-t), use the command
% "z = lsim(A,B,C,D,u,t)".

u = exp(-t);
z = lsim(A,B,C,D,u,t);
plot(t,u,'-',t,z,'o')
grid
title('Response to Exponential Input u = exp(-t)')
xlabel('t Sec')
ylabel('Exponential Input and System Output')
text(2.3,0.49,'Exponential input')
text(6.4,0.28,'Output')
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Unit-Step Response
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Response to Exponential Input u = e−t
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Figure 5–29
(a) Unit-step
response;
(b) response to input
u=e–t.

Response to Initial Condition. In what follows we shall present a few methods
for obtaining the response to an initial condition. Commands that we may use are “step”
or “initial”. We shall first present a method to obtain the response to the initial condi-
tion using a simple example. Then we shall discuss the response to the initial condition
when the system is given in state-space form. Finally, we shall present a command initial
to obtain the response of a system given in a state-space form.
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EXAMPLE 5–8 Consider the mechanical system shown in Figure 5–30, where m=1 kg, b=3 N-sec�m, and
k=2 N�m. Assume that at t=0 the mass m is pulled downward such that x(0)=0.1 m and 

(0)=0.05 m�sec. The displacement x(t) is measured from the equilibrium position before the
mass is pulled down. Obtain the motion of the mass subjected to the initial condition. (Assume
no external forcing function.)

The system equation is

with the initial conditions x(0)=0.1 m and (x is measured from the equilib-
rium position.) The Laplace transform of the system equation gives

or

Solving this last equation for X(s) and substituting the given numerical values, we obtain

This equation can be written as

Hence the motion of the mass m may be obtained as the unit-step response of the following
system:

MATLAB Program 5–14 will give a plot of the motion of the mass.The plot is shown in Figure 5–31.

G(s) =
0.1s2 + 0.35s

s2 + 3s + 2

X(s) =
0.1s2 + 0.35s

s2 + 3s + 2
1
s

 =
0.1s + 0.35

s2 + 3s + 2

 X(s) =
mx(0)s + mx

#
(0) + bx(0)

ms2 + bs + k

Ams2 + bs + kBX(s) = mx(0)s + mx
#
(0) + bx(0)

m Cs2X(s) - sx(0) - x
#
(0) D + b CsX(s) - x(0) D + kX(s) = 0

x
#
(0) = 0.05 m�sec.

mx
$ + bx

# + kx = 0

x
#

MATLAB Program 5–14

% --------------- Response to initial condition ---------------

% ***** System response to initial condition is converted to
% a unit-step response by modifying the numerator polynomial *****

% ***** Enter the numerator and denominator of the transfer
% function G(s) *****

num = [0.1  0.35  0];
den = [1  3  2];

% ***** Enter the following step-response command *****

step(num,den)

% ***** Enter grid and title of the plot *****

grid
title('Response of Spring-Mass-Damper System to Initial Condition')

m

k

b x

Figure 5–30
Mechanical system.
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Response of Spring-Mass-Damper System to Initial Condition
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Figure 5–31
Response of the
mechanical system
considered in
Example 5–8.

Response to Initial Condition (State-Space Approach, Case 1). Consider the
system defined by

(5–49)

Let us obtain the response x(t) when the initial condition x(0) is specified.Assume that there
is no external input function acting on this system.Assume also that x is an n-vector.

First, take Laplace transforms of both sides of Equation (5–49).

This equation can be rewritten as

(5–50)

Taking the inverse Laplace transform of Equation (5–50), we obtain

(5–51)

(Notice that by taking the Laplace transform of a differential equation and then by
taking the inverse Laplace transform of the Laplace-transformed equation we generate
a differential equation that involves the initial condition.)

Now define

(5–52)

Then Equation (5–51) can be written as

(5–53)

By integrating Equation (5–53) with respect to t, we obtain

(5–54)

where

B = x(0),  u = 1(t)

z# = Az + x(0)1(t) = Az + Bu

z$ = Az# + x(0) d(t)

z# = x

x# = Ax + x(0) d(t)

s X(s) = AX(s) + x(0)

s X(s) - x(0) = AX(s)

x# = Ax,  x(0) = x0
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Referring to Equation (5–52), the state x(t) is given by Thus,

(5–55)

The solution of Equations (5–54) and (5–55) gives the response to the initial condition.
Summarizing, the response of Equation (5–49) to the initial condition x(0) is obtained

by solving the following state-space equations:

where

MATLAB commands to obtain the response curves, where we do not specify the time
vector t (that is, we let the time vector be determined automatically by MATLAB), are
given next.

% Specify matrices A and B 

[x,z,t] = step(A,B,A,B);

x1 = [1  0  0 ... 0]*x';

x2 = [0  1  0 ... 0]*x';

�

�

�

xn = [0  0  0 ... 1]*x';

plot(t,x1,t,x2, ... ,t,xn)

If we choose the time vector t (for example, let the computation time duration be
from t = 0 to t = tp with the computing time increment of ), then we use the following
MATLAB  commands:

t = 0: Δt: tp;

% Specify matrices A and B 

[x,z,t] = step(A,B,A,B,1,t);

x1 = [1  0  0 ... 0]*x';

x2 = [0  1  0 ... 0]*x';

�

�

�

xn = [0  0  0 ... 1]*x';

plot(t,x1,t,x2, ... ,t,xn)

(See, for example, Example 5–9.) 

¢t

B = x(0),  u = 1(t)

x = Az + Bu

z# = Az + Bu

x = z# = Az + Bu

z# (t).
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Response to Initial Condition (State-Space Approach, Case 2). Consider the
system defined by

(5–56)

(5–57)

(Assume that x is an n-vector and y is an m-vector.)
Similar to case 1, by defining

we can obtain the following equation:

(5–58)

where

Noting that Equation (5–57) can be written as

(5–59)

By substituting Equation (5–58) into Equation (5–59), we obtain

(5–60)

The solution of Equations (5–58) and (5–60), rewritten here

where gives the response of the system to a given initial condi-
tion. MATLAB commands to obtain the response curves (output curves y1 versus t, y2
versus t, ... , ym versus t) are shown next for two cases:

Case A. When the time vector t is not specified (that is, the time vector t is to be de-
termined automatically by MATLAB):

% Specify matrices A, B, and C 

[y,z,t] = step(A,B,C*A,C*B);

y1 = [1  0  0 ... 0]*y';

y2 = [0  1  0 ... 0]*y';

�

�

�

ym = [0  0  0 ... 1]*y';

plot(t,y1,t,y2, ... ,t,ym)

B = x(0) and u = 1(t),

y = CAz + CBu

z# = Az + Bu

y = C(Az + Bu) = CAz + CBu

y = Cz#

x = z# ,

B = x(0),  u = 1(t)

z# = Az + x(0)1(t) = Az + Bu

z# = x

y = Cx

x# = Ax,  x(0) = x0
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MATLAB Program 5–15

t = 0:0.01:3;
A = [0  1;-10  -5];
B = [2;1];
[x,z,t] = step(A,B,A,B,1,t);
x1 = [1  0]*x';
x2 = [0  1]*x';
plot(t,x1,'x',t,x2,'-')
grid
title('Response to Initial Condition')
xlabel('t Sec')
ylabel('State Variables x1 and x2')
gtext('x1')
gtext('x2')

Case B. When the time vector t is specified:

t = 0: Δt: tp;

% Specify matrices A, B, and C 

[y,z,t] = step(A,B,C*A,C*B,1,t)

y1 = [1  0  0 ... 0]*y';

y2 = [0  1  0 ... 0]*y';

�

�

�

ym = [0  0  0 ... 1]*y';

plot(t,y1,t,y2, ... ,t,ym)

EXAMPLE 5–9 Obtain the response of the system subjected to the given initial condition.

or

Obtaining the response of the system to the given initial condition resolves to solving the unit-step
response of the following system:

where

Hence a possible MATLAB program for obtaining the response may be given as shown in
MATLAB Program 5–15. The resulting response curves are shown in Figure 5–32.

B = x(0),  u = 1(t)

x = Az + Bu

z# = Az + Bu

x# = Ax,  x(0) = x0

Bx
#
1

x
#
2
R = B 0

- 10

1

- 5
R Bx1

x2
R , Bx1(0)

x2(0)
R = B2

1
R
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Response to Initial Condition
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x2Figure 5–32
Response of system
in Example 5–9 to
initial condition.

For an illustrative example of how to use Equations (5–58) and (5–60) to find the re-
sponse to the initial condition, see Problem A–5–16.

Obtaining Response to Initial Condition by Use of Command Initial. If the
system is given in the state-space form, then the following command

initial(A,B,C,D,[initial condition],t)

will produce the response to the initial condition.
Suppose that we have the system defined by

where

x0 = B2

1
R

A = B 0

- 10

1

- 5
R ,  B = B0

0
R ,  C = [0 0],  D = 0

y = Cx + Du

x# = Ax + Bu,  x(0) = x0
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MATLAB Program 5–16

t = 0:0.05:3;
A = [0  1;-10  -5];
B = [0;0];
C = [0  0];
D = [0];
[y,x] = initial(A,B,C,D,[2;1],t);
x1 = [1  0]*x';
x2 = [0  1]*x';
plot(t,x1,'o',t,x1,t,x2,'x',t,x2)
grid
title('Response to Initial Condition')
xlabel('t Sec')
ylabel('State Variables x1 and x2')
gtext('x1')
gtext('x2')

Response to Initial Condition
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Figure 5–33
Response curves to
initial condition.

EXAMPLE 5–10 Consider the following system that is subjected to the initial condition. (No external forcing
function is present.)

Obtain the response y(t) to the given initial condition.

 y(0) = 2,  y
#
(0) = 1,  y

$
(0) = 0.5

 y
% + 8y

$ + 17y
# + 10y = 0

Then the command “initial” can be used as shown in MATLAB Program 5–16 to obtain
the response to the initial condition. The response curves x1(t) and x2(t) are shown in
Figure 5–33. They are the same as those shown in Figure 5–32.
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MATLAB Program 5–17

t = 0:0.05:10;
A = [0  1  0;0  0  1;-10  -17  -8];
B = [0;0;0];
C = [1  0  0];
D = [0];
y = initial(A,B,C,D,[2;1;0.5],t);
plot(t,y)
grid
title('Response to Initial Condition')
xlabel('t (sec)')
ylabel('Output y')

O
ut

pu
ty

t (sec)

Response to Initial Condition

0.5

1

1.5

2

2.5

0
0 1 2 3 4 5 6 7 8 9 10

Figure 5–34
Response y(t) to
initial condition.

By defining the state variables as

we obtain the following state-space representation for the system:

A possible MATLAB program to obtain the response y(t) is given in MATLAB Program 5–17.
The resulting response curve is shown in Figure 5–34.

y = [1 0 0]Cx1

x2

x3

S
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#
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x
#
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#
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5–6 ROUTH’S STABILITY CRITERION

The most important problem in linear control systems concerns stability. That is, under
what conditions will a system become unstable? If it is unstable, how should we stabi-
lize the system? In Section 5–4 it was stated that a control system is stable if and only if
all closed-loop poles lie in the left-half s plane. Most linear closed-loop systems have
closed-loop transfer functions of the form

where the a’s and b’s are constants and m � n. A simple criterion, known as Routh’s
stability criterion, enables us to determine the number of closed-loop poles that lie in
the right-half s plane without having to factor the denominator polynomial. (The
polynomial may include parameters that MATLAB cannot handle.)

Routh’s Stability Criterion. Routh’s stability criterion tells us whether or not
there are unstable roots in a polynomial equation without actually solving for them.
This stability criterion applies to polynomials with only a finite number of terms.When
the criterion is applied to a control system, information about absolute stability can be
obtained directly from the coefficients of the characteristic equation.

The procedure in Routh’s stability criterion is as follows:

1. Write the polynomial in s in the following form:

(5–61)

where the coefficients are real quantities. We assume that an Z 0; that is, any zero
root has been removed.

2. If any of the coefficients are zero or negative in the presence of at least one posi-
tive coefficient, a root or roots exist that are imaginary or that have positive real
parts.Therefore, in such a case, the system is not stable. If we are interested in only
the absolute stability, there is no need to follow the procedure further. Note that
all the coefficients must be positive. This is a necessary condition, as may be seen
from the following argument: A polynomial in s having real coefficients can al-
ways be factored into linear and quadratic factors, such as (s+a) andAs2+bs+c B , where a, b, and c are real. The linear factors yield real roots and
the quadratic factors yield complex-conjugate roots of the polynomial.The factorAs2+bs+c B yields roots having negative real parts only if b and c are both pos-
itive. For all roots to have negative real parts, the constants a, b, c, and so on, in all
factors must be positive.The product of any number of linear and quadratic factors
containing only positive coefficients always yields a polynomial with positive
coefficients. It is important to note that the condition that all the coefficients be
positive is not sufficient to assure stability. The necessary but not sufficient
condition for stability is that the coefficients of Equation (5–61) all be present and
all have a positive sign. (If all a’s are negative, they can be made positive by
multiplying both sides of the equation by –1.)

a0 sn + a1 sn - 1 + p + an - 1 s + an = 0

C(s)

R(s)
=

b0 sm + b1 sm - 1 + p + bm - 1 s + bm

a0 sn + a1 sn - 1 + p + an - 1 s + an

=
B(s)

A(s)
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3. If all coefficients are positive, arrange the coefficients of the polynomial in rows
and columns according to the following pattern:

The process of forming rows continues until we run out of elements. (The total number
of rows is n+1.) The coefficients b1, b2, b3 , and so on, are evaluated as follows:

The evaluation of the b’s is continued until the remaining ones are all zero. The same
pattern of cross-multiplying the coefficients of the two previous rows is followed in
evaluating the c’s, d’s, e’s, and so on. That is,

 �

 �

 �

 c3 =
b1 a7 - a1 b4

b1

 c2 =
b1 a5 - a1 b3

b1

 c1 =
b1 a3 - a1 b2

b1

 �

 �

 �

 b3 =
a1 a6 - a0 a7

a1

 b2 =
a1 a4 - a0 a5

a1

 b1 =
a1 a2 - a0 a3

a1

sn

sn - 1

sn - 2

sn - 3

sn - 4

�

�

�

s2

s1

s0

a0

a1

b1

c1

d1

�

�

�

e1

f1

g1

a2

a3

b2

c2

d2

�

�

�

e2

a4

a5

b3

c3

d3

a6

a7

b4

c4

d4

p
p
p
p
p
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and

This process is continued until the nth row has been completed. The complete array of
coefficients is triangular. Note that in developing the array an entire row may be divid-
ed or multiplied by a positive number in order to simplify the subsequent numerical
calculation without altering the stability conclusion.

Routh’s stability criterion states that the number of roots of Equation (5–61) with
positive real parts is equal to the number of changes in sign of the coefficients of the first
column of the array. It should be noted that the exact values of the terms in the first col-
umn need not be known; instead, only the signs are needed. The necessary and suffi-
cient condition that all roots of Equation (5–61) lie in the left-half s plane is that all the
coefficients of Equation (5–61) be positive and all terms in the first column of the array
have positive signs.

EXAMPLE 5–11 Let us apply Routh’s stability criterion to the following third-order polynomial:

where all the coefficients are positive numbers. The array of coefficients becomes

The condition that all roots have negative real parts is given by

EXAMPLE 5–12 Consider the following polynomial:

Let us follow the procedure just presented and construct the array of coefficients. (The first 
two rows can be obtained directly from the given polynomial. The remaining terms are 

s4 + 2s3 + 3s2 + 4s + 5 = 0

a1 a2 7 a0 a3

s3

s2

s1

 s0 

a0

a1

a1 a2 - a0 a3

a1

a3

a2

a3

a0 s3 + a1 s2 + a2 s + a3 = 0

 �

 �

 �

 d2 =
c1 b3 - b1 c3

c1

 d1 =
c1 b2 - b1 c2

c1
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obtained from these. If any coefficients are missing, they may be replaced by zeros in 
the array.)

In this example, the number of changes in sign of the coefficients in the first column is 2. This
means that there are two roots with positive real parts. Note that the result is unchanged when the
coefficients of any row are multiplied or divided by a positive number in order to simplify the
computation.

Special Cases. If a first-column term in any row is zero, but the remaining terms
are not zero or there is no remaining term, then the zero term is replaced by a very small
positive number � and the rest of the array is evaluated. For example, consider the
following equation:

(5–62)

The array of coefficients is

If the sign of the coefficient above the zero (�) is the same as that below it, it indicates
that there are a pair of imaginary roots. Actually, Equation (5–62) has two roots at
s=; j.

If, however, the sign of the coefficient above the zero (�) is opposite that below it, it
indicates that there is one sign change. For example, for the equation

the array of coefficients is

One sign change:

One sign change:

There are two sign changes of the coefficients in the first column. So there are two roots
in the right-half s plane. This agrees with the correct result indicated by the factored
form of the polynomial equation.

s1

s0

- 3 -
2
�

2

s3

s2

1
0 L �

- 3
2

s3 - 3s + 2 = (s - 1)2(s + 2) = 0

s3

s2

s1

s0

1
2

0 L �

2

1
2

s3 + 2s2 + s + 2 = 0

The second row is divided
by 2.6  

s4

s3

s2

s1

s0    

1
2
1
1

- 3
5

3
4
2
5

5
0
0

s4

s3

s2

s1

s0    

1
2

1
- 6

5

3
4

5

5
0

 6

⁄
⁄⁄

⁄
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If all the coefficients in any derived row are zero, it indicates that there are roots of
equal magnitude lying radially opposite in the s plane—that is, two real roots with equal
magnitudes and opposite signs and/or two conjugate imaginary roots. In such a case, the
evaluation of the rest of the array can be continued by forming an auxiliary polynomi-
al with the coefficients of the last row and by using the coefficients of the derivative of
this polynomial in the next row. Such roots with equal magnitudes and lying radially op-
posite in the s plane can be found by solving the auxiliary polynomial, which is always
even. For a 2n-degree auxiliary polynomial, there are n pairs of equal and opposite roots.
For example, consider the following equation:

The array of coefficients is

The terms in the s3 row are all zero. (Note that such a case occurs only in an odd-
numbered row.) The auxiliary polynomial is then formed from the coefficients of the s4

row. The auxiliary polynomial P(s) is

which indicates that there are two pairs of roots of equal magnitude and opposite sign
(that is, two real roots with the same magnitude but opposite signs or two complex-
conjugate roots on the imaginary axis).These pairs are obtained by solving the auxiliary
polynomial equation P(s)=0. The derivative of P(s) with respect to s is

The terms in the s3 row are replaced by the coefficients of the last equation—that is,
8 and 96. The array of coefficients then becomes

We see that there is one change in sign in the first column of the new array.Thus, the orig-
inal equation has one root with a positive real part. By solving for roots of the auxiliary
polynomial equation,

we obtain

or
 s = ;j5 s = ;1,

 s2 = -25 s2 = 1,

2s4 + 48s2 - 50 = 0

s5

s4

s3

s2

s1

 s0 

1
2
8

24
112.7
- 50

24
48
96

- 50
0

- 25
- 50

d Coefficients of dP (s)�ds

dP (s)

ds
= 8s3 + 96s

P(s) = 2s4 + 48s2 - 50

s5

s4

s3

1
2
0

24
48
0

- 25
- 50 d Auxiliary polynomial P(s)

s5 + 2s4 + 24s3 + 48s2 - 25s - 50 = 0
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These two pairs of roots of P(s) are a part of the roots of the original equation. As a
matter of fact, the original equation can be written in factored form as follows:

Clearly, the original equation has one root with a positive real part.

Relative Stability Analysis. Routh’s stability criterion provides the answer to
the question of absolute stability.This, in many practical cases, is not sufficient.We usu-
ally require information about the relative stability of the system. A useful approach
for examining relative stability is to shift the s-plane axis and apply Routh’s stability
criterion. That is, we substitute

into the characteristic equation of the system, write the polynomial in terms of and
apply Routh’s stability criterion to the new polynomial in The number of changes of
sign in the first column of the array developed for the polynomial in is equal to the num-
ber of roots that are located to the right of the vertical line s=–s.Thus, this test reveals
the number of roots that lie to the right of the vertical line s=–s.

Application of Routh’s Stability Criterion to Control-System Analysis. Routh’s
stability criterion is of limited usefulness in linear control-system analysis, mainly because
it does not suggest how to improve relative stability or how to stabilize an unstable
system. It is possible, however, to determine the effects of changing one or two
parameters of a system by examining the values that cause instability. In the following,
we shall consider the problem of determining the stability range of a parameter value.

Consider the system shown in Figure 5–35. Let us determine the range of K for
stability. The closed-loop transfer function is

The characteristic equation is

The array of coefficients becomes

s4

s3

s2

s1

 s0 

1
3
7
3

2 - 9
7 K

K

3
2
K

K

0

s4 + 3s3 + 3s2 + 2s + K = 0

C(s)

R(s)
=

K

sAs2 + s + 1B(s + 2) + K

ŝ
ŝ.

ŝ;

s = ŝ - s  (s = constant)

(s + 1)(s - 1)(s + j5)(s - j5)(s + 2) = 0

+
–

R(s) C(s)
K

s(s2 + s + 1) (s + 2)

Figure 5–35
Control system.
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For stability, K must be positive, and all coefficients in the first column must be positive.
Therefore,

When the system becomes oscillatory and, mathematically, the oscillation is
sustained at constant amplitude.

Note that the ranges of design parameters that lead to stability may be determined
by use of Routh’s stability criterion.

5–7 EFFECTS OF INTEGRAL AND DERIVATIVE CONTROL
ACTIONS ON SYSTEM PERFORMANCE

In this section, we shall investigate the effects of integral and derivative control actions
on the system performance. Here we shall consider only simple systems, so that the
effects of integral and derivative control actions on system performance can be clearly
seen.

Integral Control Action. In the proportional control of a plant whose transfer
function does not possess an integrator 1�s, there is a steady-state error, or offset, in the
response to a step input. Such an offset can be eliminated if the integral control action
is included in the controller.

In the integral control of a plant, the control signal—the output signal from the
controller—at any instant is the area under the actuating-error-signal curve up to that
instant.The control signal u(t) can have a nonzero value when the actuating error signal
e(t) is zero, as shown in Figure 5–36(a).This is impossible in the case of the proportional
controller, since a nonzero control signal requires a nonzero actuating error signal.
(A nonzero actuating error signal at steady state means that there is an offset.) Figure
5–36(b) shows the curve e(t) versus t and the corresponding curve u(t) versus t when the
controller is of the proportional type.

Note that integral control action, while removing offset or steady-state error, may lead
to oscillatory response of slowly decreasing amplitude or even increasing amplitude,
both of which are usually undesirable.

K = 14
9 ,

14

9
7 K 7 0

e(t)

u(t)

0

0

t

t

e(t)

u(t)

0

0

t

t
(a) (b)

Figure 5–36
(a) Plots of e(t) and
u(t) curves showing
nonzero control
signal when the
actuating error signal
is zero (integral
control); (b) plots of
e(t) and u(t) curves
showing zero control
signal when the
actuating error signal
is zero (proportional
control).
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Proportional Control of Systems. We shall show that the proportional control
of a system without an integrator will result in a steady-state error with a step input.We
shall then show that such an error can be eliminated if integral control action is included
in the controller.

Consider the system shown in Figure 5–37. Let us obtain the steady-state error in the
unit-step response of the system. Define

Since

the error E(s) is given by

For the unit-step input R(s)=1/s, we have

The steady-state error is

Such a system without an integrator in the feedforward path always has a steady-state
error in the step response. Such a steady-state error is called an offset. Figure 5–38 shows
the unit-step response and the offset.

ess = lim
t S q

e(t) = lim
s S 0

sE(s) = lim
s S 0

 
Ts + 1

Ts + 1 + K
=

1

K + 1

E(s) =
Ts + 1

Ts + 1 + K

1
s

E(s) =
1

1 + G(s)
R(s) =

1

1 +
K

Ts + 1

R(s)

E(s)

R(s)
=

R(s) - C(s)

R(s)
= 1 -

C(s)

R(s)
=

1

1 + G(s)

G(s) =
K

Ts + 1

1
Ts + 1

+
–

R(s) E(s) C(s)
K

Proportional
controller

PlantFigure 5–37
Proportional control
system.

c(t)

1

0 t

Offset

Figure 5–38
Unit-step response
and offset.
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Integral Control of Systems. Consider the system shown in Figure 5–39. The
controller is an integral controller. The closed-loop transfer function of the system is

Hence

Since the system is stable, the steady-state error for the unit-step response can be
obtained by applying the final-value theorem, as follows:

Integral control of the system thus eliminates the steady-state error in the response to
the step input. This is an important improvement over the proportional control alone,
which gives offset.

Response to Torque Disturbances (Proportional Control). Let us investigate
the effect of a torque disturbance occurring at the load element. Consider the system
shown in Figure 5–40.The proportional controller delivers torque T to position the load
element, which consists of moment of inertia and viscous friction.Torque disturbance is
denoted by D.

Assuming that the reference input is zero or R(s)=0, the transfer function between
C(s) and D(s) is given by

C(s)

D(s)
=

1

Js2 + bs + Kp

 = 0

 = lim
s S 0

 
s2(Ts + 1)

Ts2 + s + K
 
1
s

 ess = lim
s S 0

sE(s)

E(s)

R(s)
=

R(s) - C(s)

R(s)
=

s(Ts + 1)

s(Ts + 1) + K

C(s)

R(s)
=

K

s(Ts + 1) + K

1
Ts + 1

+
–

R(s) C(s)E(s) K
sFigure 5–39

Integral control
system.

+
–

+
+R

D

CE T
Kp

1
s(Js + b)

Figure 5–40
Control system with
a torque disturbance.
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Hence

The steady-state error due to a step disturbance torque of magnitude is given by

At steady state, the proportional controller provides the torque which is equal in
magnitude but opposite in sign to the disturbance torque The steady-state output due
to the step disturbance torque is

The steady-state error can be reduced by increasing the value of the gain Kp. Increasing
this value, however, will cause the system response to be more oscillatory.

Response to Torque Disturbances (Proportional-Plus-Integral Control). To
eliminate offset due to torque disturbance, the proportional controller may be replaced
by a proportional-plus-integral controller.

If integral control action is added to the controller, then, as long as there is an error
signal, a torque is developed by the controller to reduce this error, provided the control
system is a stable one.

Figure 5–41 shows the proportional-plus-integral control of the load element,
consisting of moment of inertia and viscous friction.

The closed-loop transfer function between C(s) and D(s) is

In the absence of the reference input, or r(t)=0, the error signal is obtained from

E(s) = -
s

Js3 + bs2 + Kp s +
Kp

Ti

D(s)

C(s)

D(s)
=

s

Js3 + bs2 + Kp s +
Kp

Ti

css = -ess =
Td

Kp

Td .
-Td ,

 = - 
Td

Kp

 = lim
s S 0

 
-s

Js2 + bs + Kp

 
Td

s

 ess = lim
s S 0

sE(s)

Td

E(s)

D(s)
= -

C(s)

D(s)
= -

1

Js2 + bs + Kp

+
+ CE

D

R = 0 T
Kp(1 + 1

Tis
) 1

s(Js + b)
+

–

Figure 5–41
Proportional-plus-
integral control of a
load element
consisting of moment
of inertia and viscous
friction.
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If this control system is stable—that is, if the roots of the characteristic equation

have negative real parts—then the steady-state error in the response to a unit-step
disturbance torque can be obtained by applying the final-value theorem as follows:

Thus steady-state error to the step disturbance torque can be eliminated if the controller
is of the proportional-plus-integral type.

Note that the integral control action added to the proportional controller has
converted the originally second-order system to a third-order one. Hence the control
system may become unstable for a large value of Kp, since the roots of the characteristic
equation may have positive real parts. (The second-order system is always stable if the
coefficients in the system differential equation are all positive.)

It is important to point out that if the controller were an integral controller, as in
Figure 5–42, then the system always becomes unstable, because the characteristic
equation

will have roots with positive real parts. Such an unstable system cannot be used in
practice.

Note that in the system of Figure 5–41 the proportional control action tends to
stabilize the system, while the integral control action tends to eliminate or reduce steady-
state error in response to various inputs.

Derivative Control Action. Derivative control action, when added to a
proportional controller, provides a means of obtaining a controller with high
sensitivity. An advantage of using derivative control action is that it responds to the
rate of change of the actuating error and can produce a significant correction before
the magnitude of the actuating error becomes too large. Derivative control thus
anticipates the actuating error, initiates an early corrective action, and tends to
increase the stability of the system.

Js3 + bs2 + K = 0

 = 0

 = lim
s S 0

 
-s2

Js3 + bs2 + Kp s +
Kp

Ti

 
1
s

 ess = lim
s S 0

sE(s)

Js3 + bs2 + Kp s +
Kp

Ti
= 0

+
–

+
+ CE

D

R = 0 TK
s

1
s(Js + b)

Figure 5–42
Integral control of a
load element
consisting of moment
of inertia and viscous
friction.
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+
–

R(s) C(s)

(a)

(b)

Kp
1

Js2

c(t)

1

0 t

Figure 5–43
(a) Proportional
control of a system
with inertia load;
(b) response to a
unit-step input.

Although derivative control does not affect the steady-state error directly, it adds
damping to the system and thus permits the use of a larger value of the gain K, which
will result in an improvement in the steady-state accuracy.

Because derivative control operates on the rate of change of the actuating error and
not the actuating error itself, this mode is never used alone. It is always used in combi-
nation with proportional or proportional-plus-integral control action.

Proportional Control of Systems with Inertia Load. Before we discuss further
the effect of derivative control action on system performance, we shall consider the
proportional control of an inertia load.

Consider the system shown in Figure 5–43(a). The closed-loop transfer function is
obtained as

Since the roots of the characteristic equation

are imaginary, the response to a unit-step input continues to oscillate indefinitely, as
shown in Figure 5–43(b).

Control systems exhibiting such response characteristics are not desirable. We shall
see that the addition of derivative control will stabilize the system.

Proportional-Plus-Derivative Control of a System with Inertia Load. Let us
modify the proportional controller to a proportional-plus-derivative controller whose
transfer function is The torque developed by the controller is proportional
to Derivative control is essentially anticipatory, measures the instantaneous
error velocity, and predicts the large overshoot ahead of time and produces an
appropriate counteraction before too large an overshoot occurs.

KpAe + Td e# B. KpA1 + Td sB.

Js2 + Kp = 0

C(s)

R(s)
=

Kp

Js2 + Kp
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Consider the system shown in Figure 5–44(a). The closed-loop transfer function is
given by

The characteristic equation

now has two roots with negative real parts for positive values of J, Kp , and Thus
derivative control introduces a damping effect. A typical response curve c(t) to a unit-
step input is shown in Figure 5–44(b). Clearly, the response curve shows a marked
improvement over the original response curve shown in Figure 5–46(b).

Proportional-Plus-Derivative Control of Second-Order Systems. A compromise
between acceptable transient-response behavior and acceptable steady-state behavior may
be achieved by use of proportional-plus-derivative control action.

Consider the system shown in Figure 5–45. The closed-loop transfer function is

The steady-state error for a unit-ramp input is

The characteristic equation is

Js2 + AB + KdBs + Kp = 0

ess =
B

Kp

C(s)

R(s)
=

Kp + Kd s

Js2 + AB + KdBs + Kp

Td .

Js2 + Kp Td s + Kp = 0

C(s)

R(s)
=

KpA1 + Td sB
Js2 + Kp Td s + Kp

+
–

R(s) C(s)
Kp + Kds 1

s(Js + B)

Figure 5–44
(a) Proportional-plus-derivative control of a system with inertia load; (b) response to a unit-step input.

R(s) C(s)

(a) (b)

Kp (1 + Tds)
c(t)

1

0 t

1
Js2

+
–

Figure 5–45
Control system.



aa

Section 5–8 / Steady-State Errors in Unity-Feedback Control Systems 225

The effective damping coefficient of this system is thus B+Kd rather than B. Since the
damping ratio z of this system is

it is possible to make both the steady-state error ess for a ramp input and the maximum
overshoot for a step input small by making B small, Kp large, and Kd large enough so that
z is between 0.4 and 0.7.

5–8 STEADY-STATE ERRORS IN UNITY-FEEDBACK
CONTROL SYSTEMS

Errors in a control system can be attributed to many factors. Changes in the reference
input will cause unavoidable errors during transient periods and may also cause steady-
state errors. Imperfections in the system components, such as static friction, backlash, and
amplifier drift, as well as aging or deterioration, will cause errors at steady state. In this
section, however, we shall not discuss errors due to imperfections in the system com-
ponents. Rather, we shall investigate a type of steady-state error that is caused by the
incapability of a system to follow particular types of inputs.

Any physical control system inherently suffers steady-state error in response to
certain types of inputs.A system may have no steady-state error to a step input, but the
same system may exhibit nonzero steady-state error to a ramp input. (The only way we
may be able to eliminate this error is to modify the system structure.) Whether a given
system will exhibit steady-state error for a given type of input depends on the type of
open-loop transfer function of the system, to be discussed in what follows.

Classification of Control Systems. Control systems may be classified according
to their ability to follow step inputs, ramp inputs, parabolic inputs, and so on. This is a
reasonable classification scheme, because actual inputs may frequently be considered
combinations of such inputs. The magnitudes of the steady-state errors due to these
individual inputs are indicative of the goodness of the system.

Consider the unity-feedback control system with the following open-loop transfer
function G(s):

It involves the term sN in the denominator, representing a pole of multiplicity N at the
origin.The present classification scheme is based on the number of integrations indicated
by the open-loop transfer function.A system is called type 0, type 1, type 2, p , if N=0,
N=1, N=2, p , respectively. Note that this classification is different from that of the
order of a system. As the type number is increased, accuracy is improved; however,
increasing the type number aggravates the stability problem. A compromise between
steady-state accuracy and relative stability is always necessary.

We shall see later that, if G(s) is written so that each term in the numerator and
denominator, except the term sN, approaches unity as s approaches zero, then the open-
loop gain K is directly related to the steady-state error.

G(s) =
KATa s + 1B ATb s + 1B p ATm s + 1B
sNAT1 s + 1B AT2 s + 1B p ATp s + 1B

z =
B + Kd

22Kp J
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Steady-State Errors. Consider the system shown in Figure 5–46.The closed-loop
transfer function is

The transfer function between the error signal e(t) and the input signal r(t) is

where the error e(t) is the difference between the input signal and the output signal.
The final-value theorem provides a convenient way to find the steady-state

performance of a stable system. Since E(s) is

the steady-state error is

The static error constants defined in the following are figures of merit of control systems.
The higher the constants, the smaller the steady-state error. In a given system, the out-
put may be the position, velocity, pressure, temperature, or the like. The physical form
of the output, however, is immaterial to the present analysis.Therefore, in what follows,
we shall call the output “position,” the rate of change of the output “velocity,” and so on.
This means that in a temperature control system “position” represents the output tem-
perature,“velocity” represents the rate of change of the output temperature, and so on.

Static Position Error Constant Kp. The steady-state error of the system for a
unit-step input is

The static position error constant Kp is defined by

Thus, the steady-state error in terms of the static position error constant Kp is given by

ess =
1

1 + Kp

Kp = lim
s S 0

G(s) = G(0)

 =
1

1 + G(0)

 ess = lim
s S 0

s

1 + G(s)

1
s

ess = lim
t S q

e(t) = lim
s S 0

sE(s) = lim
s S 0

 
sR(s)

1 + G(s)

E(s) =
1

1 + G(s)
R(s)

E(s)

R(s)
= 1 -

C(s)

R(s)
=

1

1 + G(s)

C(s)

R(s)
=

G(s)

1 + G(s)

+
–

R(s) C(s)E(s)
G(s)

Figure 5–46
Control system.



aa

Section 5–8 / Steady-State Errors in Unity-Feedback Control Systems 227

For a type 0 system,

For a type 1 or higher system,

for N � 1

Hence, for a type 0 system, the static position error constant Kp is finite, while for a type
1 or higher system, Kp is infinite.

For a unit-step input, the steady-state error ess may be summarized as follows:

for type 0 systems

for type 1 or higher systems

From the foregoing analysis, it is seen that the response of a feedback control system
to a step input involves a steady-state error if there is no integration in the feedforward
path. (If small errors for step inputs can be tolerated, then a type 0 system may be
permissible, provided that the gain K is sufficiently large. If the gain K is too large, how-
ever, it is difficult to obtain reasonable relative stability.) If zero steady-state error for
a step input is desired, the type of the system must be one or higher.

Static Velocity Error Constant Kv. The steady-state error of the system with a
unit-ramp input is given by

The static velocity error constant Kv is defined by

Thus, the steady-state error in terms of the static velocity error constant Kv is given by

The term velocity error is used here to express the steady-state error for a ramp
input.The dimension of the velocity error is the same as the system error.That is, velocity
error is not an error in velocity, but it is an error in position due to a ramp input.
For a type 0 system,

Kv = lim
s S 0

sKATa s + 1B ATb s + 1B pAT1 s + 1B AT2 s + 1B p = 0

ess =
1

Kv

Kv = lim
s S 0

sG(s)

 = lim
s S 0

 
1

sG(s)

 ess = lim
s S 0

s

1 + G(s)

1

s2

ess = 0,

ess =
1

1 + K
,

Kp = lim
s S 0

KATa s + 1B ATb s + 1B p
sNAT1 s + 1B AT2 s + 1B p = q,

Kp = lim
s S 0

KATa s + 1B ATb s + 1B pAT1 s + 1B AT2 s + 1B p = K
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For a type 1 system,

For a type 2 or higher system,

for N � 2

The steady-state error ess for the unit-ramp input can be summarized as follows:

for type 0 systems

for type 1 systems

for type 2 or higher systems

The foregoing analysis indicates that a type 0 system is incapable of following a ramp
input in the steady state.The type 1 system with unity feedback can follow the ramp input
with a finite error. In steady-state operation, the output velocity is exactly the same as the
input velocity, but there is a positional error. This error is proportional to the velocity of
the input and is inversely proportional to the gain K. Figure 5–47 shows an example of the
response of a type 1 system with unity feedback to a ramp input. The type 2 or higher
system can follow a ramp input with zero error at steady state.

Static Acceleration Error Constant Ka. The steady-state error of the system
with a unit-parabolic input (acceleration input), which is defined by

for t � 0

for t<0 = 0,

 r(t) =
t2

2
,

ess =
1

Kv
= 0,

ess =
1

Kv
=

1

K
,

ess =
1

Kv
= q,

Kv = lim
s S 0

sKATa s + 1B ATb s + 1B p
sNAT1 s + 1B AT2 s + 1B p = q,

Kv = lim
s S 0

sKATa s + 1B ATb s + 1B p
sAT1 s + 1B AT2 s + 1B p = K

r(t)

c(t)

0 t

r(t)

c(t)
Figure 5–47
Response of a type 1
unity-feedback
system to a ramp
input.
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is given by

The static acceleration error constant Ka is defined by the equation

The steady-state error is then

Note that the acceleration error, the steady-state error due to a parabolic input, is an
error in position.

The values of Ka are obtained as follows:
For a type 0 system,

For a type 1 system,

For a type 2 system,

For a type 3 or higher system,

for N � 3

Thus, the steady-state error for the unit parabolic input is

for type 0 and type 1 systems

for type 2 systems

for type 3 or higher systemsess = 0,

ess =
1

K
,

ess = q,

Ka = lim
s S 0

s2KATa s + 1B ATb s + 1B p
sNAT1 s + 1B AT2 s + 1B p = q,

Ka = lim
s S 0

s2KATa s + 1B ATb s + 1B p
s2AT1 s + 1B AT2 s + 1B p = K

Ka = lim
s S 0

s2KATa s + 1B ATb s + 1B p
sAT1 s + 1B AT2 s + 1B p = 0

Ka = lim
s S 0

s2KATa s + 1B ATb s + 1B pAT1 s + 1B AT2 s + 1B p = 0

ess =
1

Ka

Ka = lim
s S 0

s2G(s)

 =
1

lim
s S 0

s2G(s)

 ess = lim
s S 0

s

1 + G(s)

1

s3
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Note that both type 0 and type 1 systems are incapable of following a parabolic input
in the steady state. The type 2 system with unity feedback can follow a parabolic input
with a finite error signal. Figure 5–48 shows an example of the response of a type 2 sys-
tem with unity feedback to a parabolic input. The type 3 or higher system with unity
feedback follows a parabolic input with zero error at steady state.

Summary. Table 5–1 summarizes the steady-state errors for type 0, type 1, and
type 2 systems when they are subjected to various inputs. The finite values for steady-
state errors appear on the diagonal line.Above the diagonal, the steady-state errors are
infinity; below the diagonal, they are zero.

r(t)

c(t)

0 t

r(t)

c(t)

Figure 5–48
Response of a type 2
unity-feedback
system to a parabolic
input.

Step Input Ramp Input Acceleration Input
r(t)=1 r(t)=t

Type 0 system q q

Type 1 system 0 q

Type 2 system 0 0
1

K

1

K

1

1 + K

r(t) = 1
2 t2

Table 5–1 Steady-State Error in Terms of Gain K

Remember that the terms position error, velocity error, and acceleration error mean
steady-state deviations in the output position. A finite velocity error implies that after
transients have died out, the input and output move at the same velocity but have a
finite position difference.

The error constants Kp , Kv , and Ka describe the ability of a unity-feedback system
to reduce or eliminate steady-state error.Therefore, they are indicative of the steady-state
performance. It is generally desirable to increase the error constants, while maintaining
the transient response within an acceptable range. It is noted that to improve the steady-
state performance we can increase the type of the system by adding an integrator or
integrators to the feedforward path. This, however, introduces an additional stability
problem.The design of a satisfactory system with more than two integrators in series in
the feedforward path is generally not easy.
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EXAMPLE PROBLEMS AND SOLUTIONS

A–5–1. In the system of Figure 5–49, x(t) is the input displacement and u(t) is the output angular
displacement. Assume that the masses involved are negligibly small and that all motions are
restricted to be small; therefore, the system can be considered linear. The initial conditions for x
and u are zeros, or x(0–)=0 and u(0–)=0. Show that this system is a differentiating element.
Then obtain the response u(t) when x(t) is a unit-step input.

Solution. The equation for the system is

or

The Laplace transform of this last equation, using zero initial conditions, gives

And so

Thus the system is a differentiating system.
For the unit-step input X(s)=1�s, the output becomes

The inverse Laplace transform of gives

u(t) =
1

L 
e-(k�b)t

Q(s)

Q(s) =
1
L

1
s + (k�b)

Q(s)

Q(s)

X(s)
=

1
L

s

s + (k�b)

aLs +
k

b
L bQ(s) = sX(s)

Lu
#

+
k

b
Lu = x

#

bAx# - Lu
# B = kLu

No friction

x

b

k

u

L

Figure 5–49
Mechanical system.
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Note that if the value of k�b is large, the response u(t) approaches a pulse signal, as shown in
Figure 5–50.

A–5–2. Gear trains are often used in servo systems to reduce speed, to magnify torque, or to obtain the
most efficient power transfer by matching the driving member to the given load.

Consider the gear-train system shown in Figure 5–51. In this system, a load is driven by a
motor through the gear train. Assuming that the stiffness of the shafts of the gear train is infinite
(there is neither backlash nor elastic deformation) and that the number of teeth on each gear is
proportional to the radius of the gear, obtain the equivalent moment of inertia and equivalent
viscous-friction coefficient referred to the motor shaft and referred to the load shaft.

In Figure 5–51 the numbers of teeth on gears 1, 2, 3, and 4 are N1 , N2 , N3 , and N4 , respectively.
The angular displacements of shafts, 1, 2, and 3 are u1, u2, and u3, respectively.Thus,
and The moment of inertia and viscous-friction coefficient of each gear-train
component are denoted by J1 , b1 ; J2 , b2 ; and J3 , b3 ; respectively. (J3 and b3 include the moment of
inertia and friction of the load.)

u3 �u2 = N3 �N4 .
u2 �u1 = N1 �N2

x(t)

t

t

1

0

0

u(t)

1
L

Figure 5–50
Unit-step input and
the response of the
mechanical system
shown in Figure
5–49.

Shaft 1

Gear 2

Gear 1

Gear 3

Gear 4

Shaft 2

Shaft 3

J1, b1

N1

Input torque
from motor

Tm (t)

u1

N2

N3

N4

u2

u3 Load
torque
TL (t)

J2, b2

J3, b3

Figure 5–51
Gear-train system.
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Solution. For this gear-train system, we can obtain the following equations: For shaft 1,

(5–63)

where is the torque developed by the motor and is the load torque on gear 1 due to the rest
of the gear train. For shaft 2,

(5–64)

where is the torque transmitted to gear 2 and is the load torque on gear 3 due to the rest of
the gear train. Since the work done by gear 1 is equal to that of gear 2,

or

If the gear ratio reduces the speed as well as magnifies the torque. For shaft 3,

(5–65)

where is the load torque and is the torque transmitted to gear 4. and are related by

and u3 and u1 are related by

Eliminating and from Equations (5–63), (5–64), and (5–65) yields

Eliminating u2 and u3 from this last equation and writing the resulting equation in terms of u1 and
its time derivatives, we obtain

(5–66)

Thus, the equivalent moment of inertia and viscous-friction coefficient of the gear train referred
to shaft 1 are given, respectively, by

Similarly, the equivalent moment of inertia and viscous-friction coefficient of the gear train referred
to the load shaft (shaft 3) are given, respectively, by

b3eq = b3 + aN4

N3
b 2

b2 + aN2

N1
b 2 aN4

N3
b 2

b1

J3eq = J3 + aN4

N3
b 2

J2 + aN2

N1
b 2 aN4

N3
b 2

J1

b1eq = b1 + aN1

N2
b 2

b2 + aN1

N2
b 2 aN3

N4
b 2

b3

J1eq = J1 + aN1

N2
b 2

J2 + aN1

N2
b 2 aN3

N4
b 2

J3

+ cb1 + aN1

N2
b 2

b2 + aN1

N2
b 2 aN3

N4
b 2

b3 d u# 1 + aN1

N2
b aN3

N4
bTL = Tm

cJ1 + aN1

N2
b 2

J2 + aN1

N2
b 2 aN3

N4
b 2

J3 d u$1

J1 u
$

1 + b1 u
#
1 +

N1

N2
 AJ2 u

$
2 + b2 u

#
2B +

N1 N3

N2 N4
 AJ3 u

$
3 + b3 u

#
3 + TLB = Tm

T4T1 , T2 , T3 ,

u3 = u2

N3

N4
= u1

N1

N2

N3

N4

T4 = T3

N4

N3

T4T3T4TL

J3 u
$

3 + b3 u
#
3 + TL = T4

N1 �N2 6 1,

T2 = T1

N2

N1
T1 u1 = T2 u2

T3T2

J2 u
$

2 + b2 u
#
2 + T3 = T2

T1Tm

J1 u
$

1 + b1 u
#
1 + T1 = Tm
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The relationship between J1eq and J3eq is thus

and that between b1eq and b3eq is

The effect of J2 and J3 on an equivalent moment of inertia is determined by the gear ratios 
and For speed-reducing gear trains, the ratios, and are usually less than unity.
If and then the effect of J2 and J3 on the equivalent moment of inertia J1eq

is negligible. Similar comments apply to the equivalent viscous-friction coefficient b1eq of the gear
train. In terms of the equivalent moment of inertia J1eq and equivalent viscous-friction coefficient
b1eq, Equation (5–66) can be simplified to give

where

A–5–3. When the system shown in Figure 5–52(a) is subjected to a unit-step input, the system output
responds as shown in Figure 5–52(b). Determine the values of K and T from the response curve.

Solution. The maximum overshoot of 25.4% corresponds to z=0.4. From the response curve
we have

Consequently,

tp =
p

vd
=

p

vn21 - z2
=

p

vn21 - 0.42
= 3

tp = 3

n =
N1

N2

N3

N4

J1eq u
$

1 + b1eq u
#
1 + nTL = Tm

N3 �N4 � 1,N1 �N2 � 1
N3 �N4 N1 �N2N3 �N4 .

N1 �N2

b1eq = aN1

N2
b 2 aN3

N4
b 2

b3eq

J1eq = aN1

N2
b 2 aN3

N4
b 2

J3eq

+
–

R(s) C(s)

(a)

(b)

c(t)

1

0 3 t

0.254

K
s(Ts + 1)

Figure 5–52
(a) Closed-loop
system; (b) unit-step
response curve.
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It follows that

From the block diagram we have

from which

Therefore, the values of T and K are determined as

A–5–4. Determine the values of K and k of the closed-loop system shown in Figure 5–53 so that the maximum
overshoot in unit-step response is 25% and the peak time is 2 sec.Assume that J=1 kg-m2.

Solution. The closed-loop transfer function is

By substituting J=1 kg-m2 into this last equation, we have

Note that in this problem

The maximum overshoot Mp is

which is specified as 25%. Hence

from which
zp

21 - z2
= 1.386

e-zp�21 -z2

= 0.25

Mp = e-zp�21 -z2

vn = 1K ,  2zvn = Kk

C(s)

R(s)
=

K

s2 + Kks + K

C(s)

R(s)
=

K

Js2 + Kks + K

 K = v2
n T = 1.142 * 1.09 = 1.42

 T =
1

2zvn
=

1

2 * 0.4 * 1.14
= 1.09

vn = A
K

T
,  2zvn =

1

T

C(s)

R(s)
=

K

Ts2 + s + K

vn = 1.14

+
–

+
–

R(s) C(s)

k

1
s

K
Js

Figure 5–53
Closed-loop system.
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or

The peak time tp is specified as 2 sec. And so

or

Then the undamped natural frequency vn is

Therefore, we obtain

A–5–5. Figure 5–54(a) shows a mechanical vibratory system.When 2 lb of force (step input) is applied to
the system, the mass oscillates, as shown in Figure 5–54(b). Determine m, b, and k of the system
from this response curve. The displacement x is measured from the equilibrium position.

Solution. The transfer function of this system is

Since

we obtain

It follows that the steady-state value of x is

x(q) = lim
s S 0

sX(s) =
2

k
= 0.1 ft

X(s) =
2

sAms2 + bs + kB
P(s) =

2

s

X(s)

P(s)
=

1

ms2 + bs + k

 k =
2zvn

K
=

2 * 0.404 * 1.72

2.95
= 0.471 sec

 K = v2
n = 1.722 = 2.95 N-m

vn =
vd

21 - z2
=

1.57

21 - 0.4042
= 1.72

vd = 1.57

tp =
p

vd
= 2

z = 0.404

k

b
x

(a) (b)

P(2-lb force)
x(t)

ft

0.1

0 1 2 3 4 5 t

0.0095 ftm

Figure 5–54
(a) Mechanical
vibratory system;
(b) step-response
curve.
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Hence

Note that Mp=9.5% corresponds to z=0.6. The peak time tp is given by

The experimental curve shows that tp=2 sec. Therefore,

Since v2
n=k�m=20�m, we obtain

(Note that 1 slug=1 lbf-sec2�ft.) Then b is determined from

or

A–5–6. Consider the unit-step response of the second-order system

The amplitude of the exponentially damped sinusoid changes as a geometric series. At time
t=tp=p�vd , the amplitude is equal to After one oscillation, or at
t=tp+2p��d=3p�vd, the amplitude is equal to after another cycle of oscillation, the
amplitude is The logarithm of the ratio of successive amplitudes is called the logarithmic
decrement. Determine the logarithmic decrement for this second-order system. Describe a method
for experimental determination of the damping ratio from the rate of decay of the oscillation.

Solution. Let us define the amplitude of the output oscillation at t=ti to be xi , where
ti=tp+(i-1)T(T=period of oscillation). The amplitude ratio per one period of damped
oscillation is

Thus, the logarithmic decrement d is

It is a function only of the damping ratio z. Thus, the damping ratio z can be determined by use
of the logarithmic. decrement.

In the experimental determination of the damping ratio z from the rate of decay of the oscil-
lation, we measure the amplitude x1 at t=tp and amplitude xn at t=tp+(n-1)T. Note that
it is necessary to choose n large enough so that the ratio x1/xn is not near unity. Then

x1

xn
= e(n - 1)2zp�21 -z2

d = ln
x1

x2
=

2zp

21 - z2

x1

x2
=

e-As�vdBp
e-As�vdB3p = e2As�vdBp = e2zp�21 -z2

e-As�vdB5p. e-As�vdB3p;e-As�vdBp.

C(s)

R(s)
=

v2
n

s2 + 2zvn s + v2
n

b = 2zvn m = 2 * 0.6 * 1.96 * 5.2 = 12.2 lbf�ft�sec

2zvn =
b

m

m =
20
v2

n

=
20

1.962 = 5.2 slugs = 167 lb

vn =
3.14

2 * 0.8
= 1.96 rad�sec

tp =
p

vd
=

p

vn21 - z2
=
p

0.8vn

k = 20 lbf�ft
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or

Hence

A–5–7. In the system shown in Figure 5–55, the numerical values of m, b, and k are given as m=1 kg,
b=2 N-sec�m, and k=100 N�m. The mass is displaced 0.05 m and released without initial ve-
locity. Find the frequency observed in the vibration. In addition, find the amplitude four cycles later.
The displacement x is measured from the equilibrium position.

Solution. The equation of motion for the system is

Substituting the numerical values for m, b, and k into this equation gives

where the initial conditions are x(0)=0.05 and From this last equation the undamped
natural frequency vn and the damping ratio z are found to be

The frequency actually observed in the vibration is the damped natural frequency vd .

In the present analysis, is given as zero. Thus, solution x(t) can be written as

It follows that at t=nT, where T=2p�vd ,

Consequently, the amplitude four cycles later becomes

A–5–8. Obtain both analytically and computationally the unit-step response of tbe following higher-order
system:

[Obtain the partial-fraction expansion of C(s) with MATLAB when R(s) is a unit-step function.]

C(s)

R(s)
=

3s3 + 25s2 + 72s + 80

s4 + 8s3 + 40s2 + 96s + 80

 = 0.05e-2.526 = 0.05 * 0.07998 = 0.004 m

 x(4T) = x(0)e-zvn 4T = x(0)e-(0.1)(10)(4)(0.6315)

x(nT) = x(0)e-zvn nT

x(t) = x(0)e-zvn t a cosvd t +
z

21 - z2
sinvd t b

x
#
(0)

vd = vn21 - z2 = 1011 - 0.01 = 9.95 rad�sec

vn = 10,  z = 0.1

x
#
(0) = 0.

x
$ + 2x

# + 100x = 0

mx
$ + bx

# + kx = 0

z =

1
n - 1

a ln
x1

xn
b

B4p2 + c 1
n - 1

a ln
x1

xn
b d 2

ln
x1

xn
= (n - 1) 

2zp

21 - z2

k

m

b

x

Figure 5–55
Spring-mass-damper
system.
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Solution. MATLAB Program 5–18 yields the unit-step response curve shown in Figure 5–56. It
also yields the partial-fraction expansion of C(s) as follows:

 -
0.4375

s + 2
-

0.375

(s + 2)2 +
1

s

 =
-0.5626(s + 2)

(s + 2)2 + 42 +
(0.3438) * 4

(s + 2)2 + 42

 +
-0.4375

s + 2
+

-0.375

(s + 2)2 +
1

s

 =
-0.2813 - j0.1719

s + 2 - j4
+

-0.2813 + j0.1719

s + 2 + j4

 C(s) =
3s3 + 25s2 + 72s + 80

s4 + 8s3 + 40s2 + 96s + 80
 
1

s

MATLAB Program 5–18

% ------- Unit-Step Response of C(s)/R(s) and Partial-Fraction Expansion of C(s) -------

num = [3  25  72  80];
den = [1  8  40  96  80];
step(num,den);
v = [0  3  0  1.2]; axis(v), grid

% To obtain the partial-fraction expansion of C(s), enter commands

%      num1 = [3  25  72  80];
%     den1 = [1  8  40  96  80  0];
%      [r,p,k] = residue(num1,den1)

num1 = [25  72  80];
den1 = [1  8  40  96  80  0];
[r,p,k] = residue(num1,den1)

r =

-0.2813- 0.1719i
-0.2813+ 0.1719i
-0.4375
-0.3750
-1.0000

p =

-2.0000+ 4.0000i
-2.0000- 4.0000i
-2.0000
-2.0000
-0

k =

[]
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Hence, the time response c(t) can be given by

The fact that the response curve is an exponential curve superimposed by damped sinusoidal
curves can be seen from Figure 5–56.

A–5–9. When the closed-loop system involves a numerator dynamics, the unit-step response curve 
may exhibit a large overshoot. Obtain the unit-step response of the following system with 
MATLAB:

Obtain also the unit-ramp response with MATLAB.

Solution. MATLAB Program 5–19 produces the unit-step response as well as the unit-ramp
response of the system.The unit-step response curve and unit-ramp response curve, together with
the unit-ramp input, are shown in Figures 5–57(a) and (b), respectively.

Notice that the unit-step response curve exhibits over 215% of overshoot. The unit-ramp
response curve leads the input curve.These phenomena occurred because of the presence of a large
derivative term in the numerator.

C(s)

R(s)
=

10s + 4

s2 + 4s + 4

 - 0.4375e-2t - 0.375te-2t + 1

 c(t) = -0.5626e-2t cos 4t + 0.3438e-2t sin 4t

A
m

pl
it

ud
e

Time (sec)

Step Response

0.6
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0.2

0.8

1
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0
0 0.5 1 1.5 2 2.5 3

Figure 5–56
Unit-step response
curve.
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Figure 5–57
(a) Unit-step response curve; (b) unit-ramp response curve plotted with unit-ramp input.

MATLAB Program 5–19

num = [10  4];
den = [1  4  4];
t = 0:0.02:10;
y = step(num,den,t);
plot(t,y)
grid
title('Unit-Step Response')
xlabel('t (sec)')
ylabel('Output')

num1 = [10  4];
den1 = [1  4  4  0];
y1 = step(num1,den1,t);
plot(t,t,'--',t,y1)
v = [0  10  0  10]; axis(v); 
grid
title('Unit-Ramp Response')
xlabel('t (sec)')
ylabel('Unit-Ramp Input and Output')
text(6.1,5.0,'Unit-Ramp Input')
text(3.5,7.1,'Output')
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A–5–10. Consider a higher-order system defined by

Using MATLAB, plot the unit-step response curve of this system. Using MATLAB, obtain the rise
time, peak time, maximum overshoot, and settling time.

Solution. MATLAB Program 5–20 plots the unit-step response curve as well as giving the rise
time, peak time, maximum overshoot, and settling time. The unit-step response curve is shown in
Figure 5–58.

C(s)

R(s)
=

6.3223s2 + 18s + 12.811

s4 + 6s3 + 11.3223s2 + 18s + 12.811

242 Chapter 5 / Transient and Steady-State Response Analyses

MATLAB Program 5–20

% ------- This program is to plot the unit-step response curve, as well as to
% find the rise time, peak time, maximum overshoot, and settling time.
% In this program the rise time is calculated as the time required for the
% response to rise from 10% to 90% of its final value. -------

num = [6.3223  18  12.811];
den = [1  6  11.3223  18  12.811];
t = 0:0.02:20;
[y,x,t] = step(num,den,t);
plot(t,y)
grid
title('Unit-Step Response')
xlabel('t (sec)')
ylabel('Output y(t)')

r1 = 1; while y(r1) < 0.1, r1 = r1+1; end;
r2 = 1; while y(r2) < 0.9, r2 = r2+1; end;
rise_time = (r2-r1)*0. 02

rise_time =

0.5800

[ymax,tp] = max(y);
peak_time = (tp-1)*0.02

peak_time =

1.6600

max_overshoot = ymax-1

max_overshoot =

0.6182

s = 1001; while y(s) > 0.98 & y(s) < 1.02; s = s-1; end;
settling_time = (s-1)*0.02

settling_time =

10.0200
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A–5–11. Consider the closed-loop system defined by

Using a “for loop,” write a MATLAB program to obtain unit-step response of this system for the
following four cases:

Solution. Define v2
n=a and 2zvn=b. Then, a and b each have four elements as follows:

a=[1 4 16 36]

b=[0.6 2 5.6 9.6]

Case 4:  z = 0.8,  vn = 6

Case 3:  z = 0.7,  vn = 4

Case 2:  z = 0.5,  vn = 2

Case 1:  z = 0.3,  vn = 1

C(s)

R(s)
=

v2
n

s2 + 2zvn s + v2
n
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ty
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Figure 5–58
Unit-step response
curve.
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Using vectors a and b, MATLAB Program 5–21 will produce the unit-step response curves as
shown in Figure 5–59.

Unit-Step Response Curves for Four Cases

t Sec
0 1 2 3 4 5 6 7 8
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ut

pu
ts

1.4
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0.2
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1

1.2

1

2

34

Figure 5–59
Unit-step response
curves for four cases.

MATLAB Program 5–21

a = [1  4  16  36];
b = [0.6  2  5.6  9.6];
t = 0:0.1:8;
y = zeros(81,4);

for i = 1:4;
num = [a(i)];
den = [1  b(i)  a(i)];
y(:,i) = step(num,den,t);
end

plot(t,y(:,1),'o',t,y(:,2),'x',t,y(:,3),'-',t,y(:,4),'-.')
grid
title('Unit-Step Response Curves for Four Cases')
xlabel('t Sec')
ylabel('Outputs')
gtext('1')
gtext('2')
gtext('3')
gtext('4')
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A–5–12. Using MATLAB, obtain the unit-ramp response of the closed-loop control system whose closed-
loop transfer function is

Also, obtain the response of this system when the input is given by

Solution. MATLAB Program 5–22 produces the unit-ramp response and the response to the
exponential input r=e–0.5t. The resulting response curves are shown in Figures 5–60(a) and (b),
respectively.

r = e-0.5t

C(s)

R(s)
=

s + 10

s3 + 6s2 + 9s + 10

MATLAB Program 5–22

% --------- Unit-Ramp Response ---------

num = [1  10];
den = [1  6  9  10];
t = 0:0.1:10;
r = t;
y = lsim(num,den,r,t);
plot(t,r,'-',t,y,'o')
grid
title('Unit-Ramp Response by Use of Command "lsim"')
xlabel('t Sec')
ylabel('Output')
text(3.2,6.5,'Unit-Ramp Input')
text(6.0,3.1,'Output')

% --------- Response to Input r1 = exp(-0.5t). ---------

num = [0  0  1  10];
den = [1  6  9  10];
t = 0:0.1:12;
r1 = exp(-0.5*t);
y1 = lsim(num,den,r1,t);
plot(t,r1,'-',t,y1,'o')
grid
title('Response to Input r1 = exp(-0.5t)')
xlabel('t Sec')
ylabel('Input and Output')
text(1.4,0.75,'Input r1 = exp(-0.5t)')
text(6.2,0.34,'Output')
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Unit-Ramp Response by Use of Command “lsim”
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Figure 5–60
(a) Unit-ramp
response curve;
(b) response to
exponential input
r1=e–0.5t.

A–5–13. Obtain the response of the closed-loop system defined by

when the input r(t) is given by

r(t)=2+t

[The input r(t) is a step input of magnitude 2 plus unit-ramp input.]

C(s)

R(s)
=

5

s2 + s + 5
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MATLAB Program 5–23

num = [5];
den = [1  1  5];
t = 0:0.05:10;
r = 2+t;
c = lsim(num,den,r,t);
plot(t,r,'-',t,c,'o')
grid
title('Response to Input r(t) = 2 + t')
xlabel('t Sec')
ylabel('Output c(t) and Input r(t) = 2 + t')

Response to Input r(t) = 2 + t
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Figure 5–61
Response to input
r(t)=2+t.

2

s(s + 1)

R(s) C(s)
+

−

Figure 5–62
Control system.

Solution. A possible MATLAB program is shown in MATLAB Program 5–23. The resulting
response curve, together with a plot of the input function, is shown in Figure 5–61.

A–5–14. Obtain the response of the system shown in Figure 5–62 when the input r(t) is given by

[The input r(t) is the unit-acceleration input.]

r(t) =
1

2
t2
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Solution. The closed-loop transfer function is

MATLAB Program 5–24 produces the unit-acceleration response.The resulting response, together
with the unit-acceleration input, is shown in Figure 5–63.

C(s)

R(s)
=

2

s2 + s + 2

MATLAB Program 5–24

num = [2];
den = [1  1  2];
t = 0:0.2:10;
r = 0.5*t.^2;
y = lsim(num,den,r,t);
plot(t,r,'-',t,y,'o',t,y,'-')
grid
title('Unit-Acceleration Response')
xlabel('t Sec')
ylabel('Input and Output')
text(2.1,27.5,'Unit-Acceleration Input')
text(7.2,7.5,'Output')

Unit-Acceleration Response
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Figure 5–63
Response to unit-
acceleration input.

A–5–15. Consider the system defined by

C(s)

R(s)
=

1

s2 + 2zs + 1
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MATLAB Program 5–25

t = 0:0.2:12;
for n = 1:6;
num = [1];
den = [1  2*(n-1)*0.2  1];
[y(1:61,n),x,t] = step(num,den,t);
end

plot(t,y)
grid
title('Unit-Step Response Curves')
xlabel('t Sec')
ylabel('Outputs')
gtext('\zeta = 0'),
gtext('0.2')
gtext('0.4')
gtext('0.6')
gtext('0.8')
gtext('1.0')

% To draw a three-dimensional plot, enter the following command: mesh(y) or mesh(y').
% We shall show two three-dimensional plots, one using “mesh(y)” and the other using
% "mesh(y')". These two plots are the same, except that the x axis and y axis are
% interchanged.

mesh(y)
title('Three-Dimensional Plot of Unit-Step Response Curves using Command "mesh(y)"')
xlabel('n, where n = 1,2,3,4,5,6')
ylabel('Computation Time Points')
zlabel('Outputs')

mesh(y')
title('Three-Dimensional Plot of Unit-Step Response Curves using Command "mesh(y transpose)"')
xlabel('Computation Time Points')
ylabel('n, where n = 1,2,3,4,5,6')
zlabel('Outputs')

where z=0, 0.2, 0.4, 0.6, 0.8, and 1.0. Write a MATLAB program using a “for loop” to
obtain the two-dimensional and three-dimensional plots of the system output. The input is the
unit-step function.

Solution. MATLAB Program 5–25 is a possible program to obtain two-dimensional and three-
dimensional plots. Figure 5–64(a) is the two-dimensional plot of the unit-step response curves for
various values of z. Figure 5–64(b) is the three-dimensional plot obtained by use of the command
“mesh(y)” and Figure 5–64(c) is obtained by use of the command “mesh(y¿)”. (These two
three-dimensional plots are basically the same.The only difference is that x axis and y axis are in-
terchanged.)
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A–5–16. Consider the system subjected to the initial condition as given below.

(There is no input or forcing function in this system.) Obtain the response y(t) versus t to the
given initial condition by use of Equations (5–58) and (5–60).

y = [1  0  0]Cx1

x2

x3

S
Cx

#
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x
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x
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S = C     0     1   0
    0     0    1
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(a) Two-dimensional
plot of unit-step
response curves;
(b) three-dimensional
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response curves
using command
“mesh(y)”;
(c) three-dimensional
plot of unit-step
response curves
using command
“mesh(y¿)”.
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Solution. A possible MATLAB program based on Equations (5–58) and (5–60) is given by MAT-
LAB program 5–26. The response curve obtained here is shown in Figure 5–65. (Notice that this
problem was solved by use of the command “initial” in Example 5–16.The response curve obtained
here is exactly the same as that shown in Figure 5–34.)

MATLAB Program 5–26

t = 0:0.05:10;
A = [0 1 0;0 0 1;-10 -17 -8];
B = [2;1;0.5];
C=[1 0 0];
[y,x,t] = step(A,B,C*A,C*B,1,t);
plot(t,y)
grid;
title('Response to Initial Condition')
xlabel('t (sec)')
ylabel('Output y')

A–5–17. Consider the following characteristic equation:

Determine the range of K for stability.

Solution. The Routh array of coefficients is
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Figure 5–65
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the given initial
condition.
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For stability, we require that

From the first and second conditions, K must be greater than 1. For K>1, notice that the term
1- CK2/(K-1) D is always negative, since

Thus, the three conditions cannot be fulfilled simultaneously.Therefore, there is no value of K that
allows stability of the system.

A–5–18. Consider the characteristic equation given by

(5–67)

The Hurwitz stability criterion, given next, gives conditions for all the roots to have negative real
parts in terms of the coefficients of the polynomial.As stated in the discussions of Routh’s stability
criterion in Section 5–6, for all the roots to have negative real parts, all the coefficients a’s must
be positive.This is a necessary condition but not a sufficient condition. If this condition is not sat-
isfied, it indicates that some of the roots have positive real parts or are imaginary or zero. A suf-
ficient condition for all the roots to have negative real parts is given in the following Hurwitz
stability criterion: If all the coefficients of the polynomial are positive, arrange these coefficients
in the following determinant:

where we substituted zero for as if s>n. For all the roots to have negative real parts, it is neces-
sary and sufficient that successive principal minors of be positive. The successive principal
minors are the following determinants:

where as=0 if s>n. (It is noted that some of the conditions for the lower-order determinants
are included in the conditions for the higher-order determinants.) If all these determinants are
positive, and a0>0 as already assumed, the equilibrium state of the system whose characteristic
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equation is given by Equation (5–67) is asymptotically stable. Note that exact values of determi-
nants are not needed; instead, only signs of these determinants are needed for the stability criterion.

Now consider the following characteristic equation:

Obtain the conditions for stability using the Hurwitz stability criterion.

Solution. The conditions for stability are that all the a’s be positive and that

It is clear that, if all the a’s are positive and if the condition is satisfied, the condition
is also satisfied.Therefore, for all the roots of the given characteristic equation to have neg-

ative real parts, it is necessary and sufficient that all the coefficients a’s are positive and 

A–5–19. Show that the first column of the Routh array of

is given by

where

Solution. The Routh array of coefficients has the form
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The first term in the first column of the Routh array is 1. The next term in the first column is a1 ,
which is equal to The next term is b1 , which is equal to

The next term in the first column is c1 , which is equal to

In a similar manner the remaining terms in the first column of the Routh array can be found.
The Routh array has the property that the last nonzero terms of any columns are the same;

that is, if the array is given by

then

and if the array is given by

then

In any case, the last term of the first column is equal to an , or
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a4

a5

b3

c3

a6

a7

=
¢3

¢2

=
a1 a2 a3 - a2

3 - a2
1 a4 + a1 a5

a1 a2 - a3

b1 a3 - a1 b2

b1
=
c a1 a2 - a3

a1
da3 - a1 c a1 a4 - a5

a1
d

c a1a2 - a3

a1
d

a1 a2 - a3

a1
=

¢2

¢1

¢1 .
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For example, if n=4, then

Thus it has been shown that the first column of the Routh array is given by

A–5–20. Show that the Routh’s stability criterion and Hurwitz stability criterion are equivalent.

Solution. If we write Hurwitz determinants in the triangular form

where the elements below the diagonal line are all zeros and the elements above the diagonal
line any numbers, then the Hurwitz conditions for asymptotic stability become

which are equivalent to the conditions

We shall show that these conditions are equivalent to

where a1, b1, c1 , p , are the elements of the first column in the Routh array.
Consider, for example, the following Hurwitz determinant, which corresponds to i=4:

The determinant is unchanged if we subtract from the ith row k times the jth row. By subtracting
from the second row a0/a1 times the first row, we obtain

¢4 = 4a11

0

0

0

a3

a22

a1

a0

a5

a23

a3

a2

a7

a24

a5

a4

4

¢4 = 4a1

a0

0

0

a3

a2

a1

a0

a5

a4

a3

a2

a7

a6

a5

a4

4
a1 7 0,  b1 7 0,  c1 7 0,  p

a11 7 0,  a22 7 0,  p ,  ann 7 0

¢i = a11 a22
p aii 7 0,  (i = 1, 2, p , n)

¢i = 6
a11 *

a22

�

�

�

0 aii

6 ,  (i = 1, 2, p , n)

1, ¢1 , ¢2

¢1
, ¢3

¢2
, p, ¢n

¢n - 1

¢4 = 4a1

a3

a5

a7

1

a2

a4

a6

0

a1

a3

a5

0

1

a2

a4

4 = 4a1

a3

0

0

1

a2

a4

0

0

a1

a3

0

0

1

a2

a4

4 = ¢3 a4
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where

Similarly, subtracting from the fourth row a0/a1 times the third row yields

where

Next, subtracting from the third row a1/a22 times the second row yields

where

Finally, subtracting from the last row times the third row yields

where

a44 = â44 -
â43

a33
 a34

¢4 = 4a11

0

0

0

a3

a22

0

0

a5

a23

a33

0

a7

a24

a34

a44

4
â43 �a33

a34 = a5 -
a1

a22
a24

a33 = a3 -
a1

a22
a23

¢4 = 4a11

0

0

0

a3

a22

0

0

a5

a23

a33

â43

a7

a24

a34

â44

4
â44 = a4 -

a0

a1
a5

â43 = a2 -
a0

a1
a3

¢4 = 4a11

0

0

0

a3

a22

a1

0

a5

a23

a3

â43

a7

a24

a5

â44

4
a24 = a6 -

a0

a1
a7

a23 = a4 -
a0

a1
a5

a22 = a2 -
a0

a1
a3

a11 = a1
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From this analysis, we see that

The Hurwitz conditions for asymptotic stability

reduce to the conditions

The Routh array for the polynomial

where a0>0 and n=4, is given by

From this Routh array, we see that

(The last equation is obtained using the fact that ) Hence the
Hurwitz conditions for asymptotic stability become

Thus we have demonstrated that Hurwitz conditions for asymptotic stability can be reduced to
Routh’s conditions for asymptotic stability. The same argument can be extended to Hurwitz
determinants of any order, and the equivalence of Routh’s stability criterion and Hurwitz stabil-
ity criterion can be established.

A–5–21. Consider the characteristic equation

Using the Hurwitz stability criterion, determine the range of K for stability.

Solution. Comparing the given characteristic equation

s4 + 2s3 + (4 + K)s2 + 9s + 25 = 0

s4 + 2s3 + (4 + K)s2 + 9s + 25 = 0

a1 7 0,  b1 7 0,  c1 7 0,  d1 7 0

a34 = 0, â44 = a4 , and a4 = b2 = d1 .

a44 = â44 -
â43

a33
 a34 = a4 = d1

a33 = a3 -
a1

a22
a23 =

a3 b1 - a1 b2

b1
= c1

a22 = a2 -
a0

a1
a3 = b1

a11 = a1

a0

a1

b1

c1

d1

a2

a3

b2

a4

a0 s4 + a1 s3 + a2 s2 + a3 s + a4 = 0

a11 7 0,  a22 7 0,  a33 7 0,  a44 7 0,  p

¢1 7 0,  ¢2 7 0,  ¢3 7 0,  ¢4 7 0,  p

¢1 = a11

¢2 = a11 a22

¢3 = a11 a22 a33

¢4 = a11 a22 a33 a44
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with the following standard fourth-order characteristic equation:

we find

The Hurwitz stability criterion states that is given by

For all the roots to have negative real parts, it is necessary and sufficient that succesive principal
minors of be positive. The successive principal minors are

For all principal minors to be positive, we require that be positive.Thus, we require

from which we obtain the region of K for stability to be

A–5–22. Explain why the proportional control of a plant that does not possess an integrating property
(which means that the plant transfer function does not include the factor 1/s) suffers offset in
response to step inputs.

Solution. Consider, for example, the system shown in Figure 5–66.At steady state, if c were equal
to a nonzero constant r, then e=0 and u=Ke=0, resulting in c=0, which contradicts the
assumption that c=r=nonzero constant.

A nonzero offset must exist for proper operation of such a control system. In other words, at
steady state, if e were equal to r/(1+K), then u=Kr/(1+K) and c=Kr/(1+K), which
results in the assumed error signal e=r/(1+K).Thus the offset of r/(1+K) must exist in such
a system.

K 7
109

18

 18K - 109 7 0

 2K - 1 7 0

¢i(i = 1, 2, 3)

¢3 = 3a1

a0

0

a3

a2

a1

0

a4

a3

3 = 321
0

9

4 + K

2

0

25

9

3 = 18K - 109

¢2 = 2a1

a0

a3

a2

2 = 22
1

9

4 + K
2 = 2K - 1

¢1 = @a1 @ = 2

¢4

¢4 = 4a1

a0

0

0

a3

a2

a1

a0

0

a4

a3

a2

0

0

0

a4

4
¢4

a0 = 1, a1 = 2, a2 = 4 + K, a3 = 9, a4 = 25

a0 s4 + a1 s3 + a2s
2 + a3 s + a4 = 0

+
–

r ce u
K

1
Ts + 1

Figure 5–66
Control system.



aa

Example Problems and Solutions 259

A–5–23. The block diagram of Figure 5–67 shows a speed control system in which the output member of
the system is subject to a torque disturbance. In the diagram, and D(s) are the
Laplace transforms of the reference speed, output speed, driving torque, and disturbance torque,
respectively. In the absence of a disturbance torque, the output speed is equal to the reference
speed.

Vr(s), V(s), T(s),

+
–

+
+

D(s)

E(s) T(s) V (s)Vr(s)
K 1

Js

Figure 5–67
Block diagram of a
speed control system.

+
–

K

1
Js

VD(s)D(s)

Figure 5–68
Block diagram of the
speed control system
of Figure 5–67 when
Vr(s) = 0.

Investigate the response of this system to a unit-step disturbance torque. Assume that the
reference input is zero, or 

Solution. Figure 5–68 is a modified block diagram convenient for the present analysis.The closed-
loop transfer function is

where is the Laplace transform of the output speed due to the disturbance torque. For a unit-
step disturbance torque, the steady-state output velocity is

From this analysis, we conclude that, if a step disturbance torque is applied to the output
member of the system, an error speed will result so that the ensuing motor torque will exactly can-
cel the disturbance torque. To develop this motor torque, it is necessary that there be an error in
speed so that nonzero torque will result. (Discussions continue to Problem A–5–24.)

=
1
K

= lim
s S 0

s

Js + K

1
s

vD(q) = lim
s S 0

sVD(s)

VD(s)

VD(s)

D(s)
=

1
Js + K

Vr(s) = 0.
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A–5–24. In the system considered in Problem A–5–23, it is desired to eliminate as much as possible the
speed errors due to torque disturbances.

Is it possible to cancel the effect of a disturbance torque at steady state so that a constant
disturbance torque applied to the output member will cause no speed change at steady state?

Solution. Suppose that we choose a suitable controller whose transfer function is Gc(s), as shown
in Figure 5–69. Then in the absence of the reference input the closed-loop transfer function
between the output velocity and the disturbance torque D(s) is

The steady-state output speed due to a unit-step disturbance torque is

To satisfy the requirement that

we must choose Gc(0)=q. This can be realized if we choose

Integral control action will continue to correct until the error is zero. This controller, however,
presents a stability problem, because the characteristic equation will have two imaginary roots.

One method of stabilizing such a system is to add a proportional mode to the controller or
choose

Gc(s) = Kp +
K

s

Gc(s) =
K

s

vD(q) = 0

=
1

Gc(0)

= lim
s S 0

s

Js + Gc(s)

1
s

vD(q) = lim
s S 0

sVD(s)

=
1

Js + Gc(s)

VD(s)

D(s)
=

1
Js

1 +
1

Js
Gc(s)

VD(s)

+
–

+
+

D(s)

E(s) T (s) V(s)Vr(s)
Gc(s) 1

Js

Figure 5–69
Block diagram of a
speed control system.
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With this controller, the block diagram of Figure 5–69 in the absence of the reference input can
be modified to that of Figure 5–70. The closed-loop transfer function becomes

For a unit-step disturbance torque, the steady-state output speed is

Thus, we see that the proportional-plus-integral controller eliminates speed error at steady state.
The use of integral control action has increased the order of the system by 1. (This tends to

produce an oscillatory response.)
In the present system, a step disturbance torque will cause a transient error in the output

speed, but the error will become zero at steady state. The integrator provides a nonzero output
with zero error. (The nonzero output of the integrator produces a motor torque that exactly
cancels the disturbance torque.)

Note that even if the system may have an integrator in the plant (such as an integrator in the
transfer function of the plant), this does not eliminate the steady-state error due to a step distur-
bance torque.To eliminate this, we must have an integrator before the point where the disturbance
torque enters.

A–5–25. Consider the system shown in Figure 5–71(a). The steady-state error to a unit-ramp input is
ess=2z�vn . Show that the steady-state error for following a ramp input may be eliminated if the
input is introduced to the system through a proportional-plus-derivative filter, as shown in Figure
5–71(b), and the value of k is properly set. Note that the error e(t) is given by r(t)-c(t).

Solution. The closed-loop transfer function of the system shown in Figure 5–71(b) is

Then

R(s) - C(s) = a s2 + 2zvn s - v2
n ks

s2 + 2zvn s + v2
n

bR(s)

C(s)

R(s)
=

(1 + ks)v2
n

s2 + 2zvn s + v2
n

vD(q) = lim
s S 0

sVD(s) = lim
s S 0

s2

Js2 + Kp s + K

1
s

= 0

VD(s)

D(s)
=

s

Js2 + Kp s + K

VD(s)�D(s)

1
Js

Kps + K
s

VD(s)D(s)
+

–
Figure 5–70
Block diagram of the
speed control system
of Figure 5–69 when
Gc(s)=Kp+(K/s)
and Vr(s) = 0.

+
–

+
–

R(s) C(s)

(a) (b)

1 + ks
vn

s(s + 2zvn)

2vn

s(s + 2zvn)

2

Figure 5–71
(a) Control system;
(b) control system
with input filter.
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If the input is a unit ramp, then the steady-state error is

Therefore, if k is chosen as

then the steady-state error for following a ramp input can be made equal to zero. Note that, if there
are any variations in the values of z and/or vn due to environmental changes or aging, then a
nonzero steady-state error for a ramp response may result.

A–5–26. Consider the stable unity-feedback control system with feedforward transfer function G(s).
Suppose that the closed-loop transfer function can be written

Show that

where e(t) = r(t)-c(t) is the error in the unit-step response. Show also that

Solution. Let us define

and

Then

and

For a unit-step input, R(s)=1/s and

E(s) =
Q(s) - P(s)

sQ(s)

E(s) =
Q(s) - P(s)

Q(s)
R(s)

C(s)

R(s)
=

P(s)

Q(s)

AT1 s + 1B AT2 s + 1B p ATn s + 1B = Q(s)

ATa s + 1B ATb s + 1B p ATm s + 1B = P(s)

1
Kv

=
1

lim
s S 0

sG(s)
= AT1 + T2 + p + TnB - ATa + Tb + p + TmB

3
q

0
e(t) dt = AT1 + T2 + p + TnB - ATa + Tb + p + TmB

C(s)

R(s)
=

G(s)

1 + G(s)
=
ATa s + 1B ATb s + 1B p ATm s + 1BAT1 s + 1B AT2 s + 1B p ATn s + 1B   (m � n)

k =
2z

vn

 =
2zvn - v2

n k
v2

n

 = lim
s S 0

s a s2 + 2zvn s - v2
n ks

s2 + 2zvn s + v2
n

b  
1

s2

 e(q) = r(q) - c(q)
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Since the system is stable, converges to a constant value. Noting that

we have

Since

we have

For a unit-step input r(t), since

we have

Note that zeros in the left half-plane (that is, positive ) will improve Kv . Poles close
to the origin cause low velocity-error constants unless there are zeros nearby.

PROBLEMS

Ta , Tb , p , Tm

1

Kv
=

1

lim
s S 0

sG(s)
= AT1 + T2 + p + TnB - ATa + Tb + p + TmB

= lim
s S 0

1

1 + G(s)

1

s
=

1

lim
s S 0

sG(s)
=

1

Kv3
q

0
e(t) dt = lim

s S 0
E(s) = lim

s S 0

1

1 + G(s)
R(s)

3
q

0
e(t) dt = AT1 + T2 + p + TnB - ATa + Tb + p + TmB

lim
s S 0

Q¿(s) = T1 + T2 + p + Tn

lim
s S 0

P¿(s) = Ta + Tb + p + Tm

 = lim
s S 0
CQ¿(s) - P¿(s) D

 = lim
s S 0

 
Q¿(s) - P¿(s)

Q(s) + sQ¿(s)

 3
q

0
e(t) dt = lim

s S 0

Q(s) - P(s)

sQ(s)

3
q

0
e(t) dt = lim

s S 0
s

E(s)

s
= lim

s S 0
E(s)

1q
0 e(t) dt

B–5–1. A thermometer requires 1 min to indicate 98% of
the response to a step input. Assuming the thermometer to
be a first-order system, find the time constant.

If the thermometer is placed in a bath, the temperature
of which is changing linearly at a rate of 10°�min, how much
error does the thermometer show?

B–5–2. Consider the unit-step response of a unity-feedback
control system whose open-loop transfer function is

G(s) =
1

s(s + 1)

Obtain the rise time, peak time, maximum overshoot, and
settling time.

B–5–3. Consider the closed-loop system given by

Determine the values of z and vn so that the system
responds to a step input with approximately 5% overshoot
and with a settling time of 2 sec. (Use the 2% criterion.)

C(s)

R(s)
=

v2
n

s2 + 2zvn s + v2
n
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x

m
kImpulsive

force
d(t)

Figure 5–72
Mechanical system.

x1

T

tt1

xn

tn

Figure 5–73
Decaying oscillation.

+
–

+
–

R(s) C(s)

R(s) C(s)

(a)

(b)

10
s (s + 1)

Kh

10
s + 1

1
s

+
–

Figure 5–74
(a) Control system; (b) control system with tachometer feedback.

B–5–4. Consider the system shown in Figure 5–72.The sys-
tem is initially at rest. Suppose that the cart is set into mo-
tion by an impulsive force whose strength is unity. Can it be
stopped by another such impulsive force?

B–5–5. Obtain the unit-impulse response and the unit-
step response of a unity-feedback system whose open-loop
transfer function is

B–5–6. An oscillatory system is known to have a transfer
function of the following form:

G(s) =
v2

n

s2 + 2zvn s + v2
n

G(s) =
2s + 1

s2

B–5–7. Consider the system shown in Figure 5–74(a). The
damping ratio of this system is 0.158 and the undamped nat-
ural frequency is 3.16 rad�sec. To improve the relative sta-
bility, we employ tachometer feedback. Figure 5–74(b) shows
such a tachometer-feedback system.

Determine the value of Kh so that the damping ratio of
the system is 0.5. Draw unit-step response curves of both the
original and tachometer-feedback systems. Also draw the
error-versus-time curves for the unit-ramp response of both
systems.

Assume that a record of a damped oscillation is available
as shown in Figure 5–73. Determine the damping ratio z of
the system from the graph.
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+
–

+
–

R(s) C(s)
1
s

16
s + 0.8

k

R(s) C(s)
1
s

K
s + 2

k

+
–

+
–

Figure 5–75
Closed-loop system.

Figure 5–76
Block diagram of a system.

B–5–8. Referring to the system shown in Figure 5–75, de-
termine the values of K and k such that the system has a
damping ratio z of 0.7 and an undamped natural frequency
vn of 4 rad�sec.

B–5–9. Consider the system shown in Figure 5–76. Deter-
mine the value of k such that the damping ratio z is 0.5.Then
obtain the rise time tr , peak time tp , maximum overshoot
Mp , and settling time ts in the unit-step response.

B–5–10. Using MATLAB, obtain the unit-step response,
unit-ramp response, and unit-impulse response of the fol-
lowing system:

where R(s) and C(s) are Laplace transforms of the input
r(t) and output c(t), respectively.

C(s)

R(s)
=

10

s2 + 2s + 10

B–5–11. Using MATLAB, obtain the unit-step response,
unit-ramp response, and unit-impulse response of the fol-
lowing system:

where u is the input and y is the output.

B–5–12. Obtain both analytically and computationally 
the rise time, peak time, maximum overshoot, and settling
time in the unit-step response of a closed-loop system 
given by

C(s)

R(s)
=

36

s2 + 2s + 36

 y = [1 0]Bx1

x2
R

 Bx
#
1

x
#
2
R = B-1 -0.5

1 0
R Bx1

x2
R + B0.5

0
Ru
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B–5–13. Figure 5–77 shows three systems. System I is a po-
sitional servo system. System II is a positional servo system
with PD control action. System III is a positional servo sys-
tem with velocity feedback. Compare the unit-step, unit-
impulse, and unit-ramp responses of the three systems.
Which system is best with respect to the speed of response
and maximum overshoot in the step response?

B–5–14. Consider the position control system shown in Fig-
ure 5–78. Write a MATLAB program to obtain a unit-step
response and a unit-ramp response of the system. Plot curves
x1(t) versus t, x2(t) versus t, x3(t) versus t, and e(t) versus tCwhere e(t)=r(t)-x1(t) D for both the unit-step response
and the unit-ramp response.

0.8

5

5

CIII(s)R(s)

System III

1
5s + 1

1
s

CII(s)R(s)

System II

5(1 + 0.8s) 1
s(5s + 1)

C(s)R(s)

System I

1
s(5s + 1)

+
–

+
–

+
–

+
–

Figure 5–77
Positional servo system (System I), positional servo system with PD control
action (System II), and positional servo system with velocity feedback
(System III).

54
x1x2x3r e 1

s
1
s

2
0.1s + 1

+
–

+
–

Figure 5–78
Position control system.
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B–5–15. Using MATLAB, obtain the unit-step response
curve for the unity-feedback control system whose open-
loop transfer function is

Using MATLAB, obtain also the rise time, peak time, max-
imum overshoot, and settling time in the unit-step response
curve.

B–5–16. Consider the closed-loop system defined by

where z=0.2, 0.4, 0.6, 0.8, and 1.0. Using MATLAB, plot a
two-dimensional diagram of unit-impulse response curves.
Also plot a three-dimensional plot of the response curves.

B–5–17. Consider the second-order system defined by

where z=0.2, 0.4, 0.6, 0.8, 1.0. Plot a three-dimensional
diagram of the unit-step response curves.

B–5–18. Obtain the unit-ramp response of the system
defined by

where u is the unit-ramp input. Use the lsim command to
obtain the response.

 y = [1 0]Bx1

x2
R

 Bx
#
1

x
#
2
R = B 0

- 1

1

- 1
R Bx1

x2
R + B0

1
R u

C(s)

R(s)
=

s + 1
s2 + 2zs + 1

C(s)

R(s)
=

2zs + 1

s2 + 2zs + 1

G(s) =
10

s(s + 2)(s + 4)

B–5–19. Consider the differential equation system given by

Using MATLAB, obtain the response y(t), subject to the
given initial condition.

B–5–20. Determine the range of K for stability of a unity-
feedback control system whose open-loop transfer function is

B–5–21. Consider the following characteristic equation:

Using the Routh stability criterion, determine the range of
K for stability.

B–5–22. Consider the closed-loop system shown in Figure 5–79.
Determine the range of K for stability.Assume that K>0.

s4 + 2s3 + (4 + K)s2 + 9s + 25 = 0

G(s) =
K

s(s + 1)(s + 2)

y
$ + 3y

# + 2y = 0,  y(0) = 0.1,  y
#
(0) = 0.05

+
–

R(s) C(s)
K

s – 2
(s + 1)(s2 + 6s + 25)

Figure 5–79 Closed-loop system.

B–5–23. Consider the satellite attitude control system
shown in Figure 5–80(a). The output of this system exhibits
continued oscillations and is not desirable. This system can
be stabilized by use of tachometer feedback, as shown in
Figure 5–80(b). If K/J=4, what value of Kh will yield the
damping ratio to be 0.6?

+
–

+
–

R(s) C(s)

(b)

Kh

K
Js

1
s

+
–

R(s) C(s)

(a)

K
1

Js2

Figure 5–80
(a) Unstable satellite 
attitude control system;
(b) stabilized system.
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Kh

K
C(s)R(s) 20

(s + 1) (s + 4)
1
s

+
–

+
–

Figure 5–81
Servo system with tachometer feedback.

B–5–24. Consider the servo system with tachometer
feedback shown in Figure 5–81. Determine the ranges of
stability for K and Kh . (Note that Kh must be positive.)

B–5–25. Consider the system

where matrix A is given by

(A is called Schwarz matrix.) Show that the first column of
the Routh’s array of the characteristic equation |sI-A|=0
consists of 1, b1, b2, and b1b3.

B–5–26. Consider a unity-feedback control system with the
closed-loop transfer function

Determine the open-loop transfer function G(s).
Show that the steady-state error in the unit-ramp

response is given by

ess =
1

Kv
=

a - K

b

C(s)

R(s)
=

Ks + b

s2 + as + b

A = C 0

- b3

0

1

0

- b2

0

1

- b1

S
x# = Ax

B–5–27. Consider a unity-feedback control system whose
open-loop transfer function is

Discuss the effects that varying the values of K and B has
on the steady-state error in unit-ramp response. Sketch
typical unit-ramp response curves for a small value,
medium value, and large value of K, assuming that B is
constant.

B–5–28. If the feedforward path of a control system
contains at least one integrating element, then the output
continues to change as long as an error is present. The out-
put stops when the error is precisely zero. If an external dis-
turbance enters the system, it is desirable to have an
integrating element between the error-measuring element
and the point where the disturbance enters, so that the ef-
fect of the external disturbance may be made zero at steady
state.

Show that, if the disturbance is a ramp function, then
the steady-state error due to this ramp disturbance may be
eliminated only if two integrators precede the point where
the disturbance enters.

G(s) =
K

s(Js + B)
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Control Systems Analysis
and Design by the 

Root-Locus Method

6–1 INTRODUCTION

The basic characteristic of the transient response of a closed-loop system is closely
related to the location of the closed-loop poles. If the system has a variable loop gain,
then the location of the closed-loop poles depends on the value of the loop gain chosen.
It is important, therefore, that the designer know how the closed-loop poles move in
the s plane as the loop gain is varied.

From the design viewpoint, in some systems simple gain adjustment may move the
closed-loop poles to desired locations.Then the design problem may become the selec-
tion of an appropriate gain value. If the gain adjustment alone does not yield a desired
result, addition of a compensator to the system will become necessary. (This subject is
discussed in detail in Sections 6–6 through 6–9.)

The closed-loop poles are the roots of the characteristic equation. Finding the roots
of the characteristic equation of degree higher than 3 is laborious and will need computer
solution. (MATLAB provides a simple solution to this problem.) However, just finding
the roots of the characteristic equation may be of limited value, because as the gain of
the open-loop transfer function varies, the characteristic equation changes and the
computations must be repeated.

A simple method for finding the roots of the characteristic equation has been
developed by W. R. Evans and used extensively in control engineering. This method,
called the root-locus method, is one in which the roots of the characteristic equation
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H(s)

G(s)
C(s)R(s)

+
–

Figure 6–1
Control system.

are plotted for all values of a system parameter. The roots corresponding to a par-
ticular value of this parameter can then be located on the resulting graph. Note that
the parameter is usually the gain, but any other variable of the open-loop transfer
function may be used. Unless otherwise stated, we shall assume that the gain of the
open-loop transfer function is the parameter to be varied through all values, from zero
to infinity.

By using the root-locus method the designer can predict the effects on the location
of the closed-loop poles of varying the gain value or adding open-loop poles and/or
open-loop zeros.Therefore, it is desired that the designer have a good understanding of
the method for generating the root loci of the closed-loop system, both by hand and by
use of a computer software program like MATLAB.

In designing a linear control system, we find that the root-locus method proves to be
quite useful, since it indicates the manner in which the open-loop poles and zeros should
be modified so that the response meets system performance specifications.This method
is particularly suited to obtaining approximate results very quickly.

Because generating the root loci by use of MATLAB is very simple, one may think
sketching the root loci by hand is a waste of time and effort. However, experience in
sketching the root loci by hand is invaluable for interpreting computer-generated root
loci, as well as for getting a rough idea of the root loci very quickly.

Outline of the Chapter. The outline of the chapter is as follows: Section 6–1 has
presented an introduction to the root-locus method. Section 6–2 details the concepts
underlying the root-locus method and presents the general procedure for sketching root
loci using illustrative examples. Section 6–3 discusses generating root-locus plots with
MATLAB. Section 6–4 treats a special case when the closed-loop system has positive
feedback. Section 6–5 presents general aspects of the root-locus approach to the design
of closed-loop systems. Section 6–6 discusses the control systems design by lead com-
pensation. Section 6–7 treats the lag compensation technique. Section 6–8 deals with
the lag–lead compensation technique. Finally, Section 6–9 discusses the parallel com-
pensation technique.

6–2 ROOT-LOCUS PLOTS

Angle and Magnitude Conditions. Consider the negative feedback system shown
in Figure 6–1. The closed-loop transfer function is

(6–1)
C(s)

R(s)
=

G(s)

1 + G(s)H(s)
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The characteristic equation for this closed-loop system is obtained by setting the
denominator of the right-hand side of Equation (6–1) equal to zero. That is,

or

(6–2)

Here we assume that G(s)H(s) is a ratio of polynomials in s. [It is noted that we
can extend the analysis to the case when G(s)H(s) involves the transport lag e–Ts.]
Since G(s)H(s) is a complex quantity, Equation (6–2) can be split into two equations
by equating the angles and magnitudes of both sides, respectively, to obtain the
following:

Angle condition:

(6–3)

Magnitude condition:

(6–4)

The values of s that fulfill both the angle and magnitude conditions are the roots of
the characteristic equation, or the closed-loop poles. A locus of the points in the
complex plane satisfying the angle condition alone is the root locus. The roots of
the characteristic equation (the closed-loop poles) corresponding to a given value
of the gain can be determined from the magnitude condition. The details of applying
the angle and magnitude conditions to obtain the closed-loop poles are presented
later in this section.

In many cases, G(s)H(s) involves a gain parameter K, and the characteristic equa-
tion may be written as

Then the root loci for the system are the loci of the closed-loop poles as the gain K is
varied from zero to infinity.

Note that to begin sketching the root loci of a system by the root-locus method we
must know the location of the poles and zeros of G(s)H(s). Remember that the angles
of the complex quantities originating from the open-loop poles and open-loop zeros to
the test point s are measured in the counterclockwise direction. For example, if G(s)H(s)
is given by

G(s)H(s) =
KAs + z1BAs + p1B As + p2B As + p3B As + p4B

1 +
KAs + z1B As + z2B p As + zmBAs + p1B As + p2B p As + pnB = 0

∑G(s)H(s)∑ = 1

/G(s)H(s) = ;180°(2k + 1)  (k = 0, 1, 2, p )

G(s)H(s) = -1

1 + G(s)H(s) = 0
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Test point

Test point

–p4

–p3

–p2

–p1

s

s

–z1

f1

f1

jv

u4

u2

u3

u4
u1

u3

u1

u2

�0–p4

–p2

A4

B1

A3

A2

A1

–p1

–p3

–z1

jv

�0

(b)(a)

where –p2 and –p3 are complex-conjugate poles, then the angle of G(s)H(s) is

where f1, u1, u2, u3, and u4 are measured counterclockwise as shown in Figures 6–2(a)
and (b). The magnitude of G(s)H(s) for this system is

where A1 , A2 , A3 , A4 , and B1 are the magnitudes of the complex quantities s+p1,
s+p2, s+p3, s+p4, and s+z1, respectively, as shown in Figure 6–2(a).

Note that, because the open-loop complex-conjugate poles and complex-conjugate
zeros, if any, are always located symmetrically about the real axis, the root loci are always
symmetrical with respect to this axis.Therefore, we only need to construct the upper half
of the root loci and draw the mirror image of the upper half in the lower-half s plane.

Illustrative Examples. In what follows, two illustrative examples for constructing
root-locus plots will be presented. Although computer approaches to the construction
of the root loci are easily available, here we shall use graphical computation, combined
with inspection, to determine the root loci upon which the roots of the characteristic
equation of the closed-loop system must lie. Such a graphical approach will enhance
understanding of how the closed-loop poles move in the complex plane as the open-
loop poles and zeros are moved.Although we employ only simple systems for illustrative
purposes, the procedure for finding the root loci is no more complicated for higher-
order systems.

Because graphical measurements of angles and magnitudes are involved in the analy-
sis, we find it necessary to use the same divisions on the abscissa as on the ordinate axis
when sketching the root locus on graph paper.

∑G(s)H(s)∑ =
KB1

A1 A2 A3 A4

/G(s)H(s) = f1 - u1 - u2 - u3 - u4

Figure 6–2
(a) and (b) Diagrams
showing angle
measurements from
open-loop poles and
open-loop zero to
test point s.
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R(s) C(s)K
s(s + 1) (s + 2)

+
–

Figure 6–3
Control system.

EXAMPLE 6–1 Consider the negative feedback system shown in Figure 6–3. (We assume that the value of gain
K is nonnegative.) For this system,

Let us sketch the root-locus plot and then determine the value of K such that the damping ratio
z of a pair of dominant complex-conjugate closed-loop poles is 0.5.

For the given system, the angle condition becomes

The magnitude condition is

A typical procedure for sketching the root-locus plot is as follows:

1. Determine the root loci on the real axis. The first step in constructing a root-locus plot is to
locate the open-loop poles, s=0, s=–1, and s=–2, in the complex plane. (There are no open-
loop zeros in this system.) The locations of the open-loop poles are indicated by crosses. (The lo-
cations of the open-loop zeros in this book will be indicated by small circles.) Note that the starting
points of the root loci (the points corresponding to K=0) are open-loop poles. The number of
individual root loci for this system is three, which is the same as the number of open-loop poles.

To determine the root loci on the real axis, we select a test point, s. If the test point is on the
positive real axis, then

This shows that the angle condition cannot be satisfied. Hence, there is no root locus on the positive
real axis. Next, select a test point on the negative real axis between 0 and –1. Then

Thus

and the angle condition is satisfied.Therefore, the portion of the negative real axis between 0 and
–1 forms a portion of the root locus. If a test point is selected between –1 and –2, then

and
- /s - /s + 1 - /s + 2 = -360°

/s = /s + 1 = 180°,  /s + 2 = 0°

- /s - /s + 1 - /s + 2 = -180°

/s = 180°,  /s + 1 = /s + 2 = 0°

/s = /s + 1 = /s + 2 = 0°

∑G(s)∑ = 2 K

s(s + 1)(s + 2)
2 = 1

 = ;180°(2k + 1)  (k = 0, 1, 2, p )

 = - /s - /s + 1 - /s + 2

 /G(s) = n K

s(s + 1)(s + 2)

G(s) =
K

s(s + 1)(s + 2)
,  H(s) = 1
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It can be seen that the angle condition is not satisfied. Therefore, the negative real axis from –1
to –2 is not a part of the root locus. Similarly, if a test point is located on the negative real axis from
–2 to –q, the angle condition is satisfied. Thus, root loci exist on the negative real axis between
0 and –1 and between –2 and –q.

2. Determine the asymptotes of the root loci. The asymptotes of the root loci as s approaches
infinity can be determined as follows: If a test point s is selected very far from the origin, then

and the angle condition becomes

or

Since the angle repeats itself as k is varied, the distinct angles for the asymptotes are determined
as 60°, –60°, and 180°. Thus, there are three asymptotes. The one having the angle of 180° is the
negative real axis.

Before we can draw these asymptotes in the complex plane, we must find the point where
they intersect the real axis. Since

if a test point is located very far from the origin, then G(s) may be written as

For large values of s, this last equation may be approximated by

(6–5)

A root-locus diagram of G(s) given by Equation (6–5) consists of three straight lines.This can be
seen as follows: The equation of the root locus is

or

which can be written as

 /s + 1 = ;60°(2k + 1)

 -3/s + 1 = ;180°(2k + 1)

 n K
(s + 1)3 = ;180°(2k + 1)

G(s) �
K

(s + 1)3

G(s) =
K

s3 + 3s2 + p

G(s) =
K

s(s + 1)(s + 2)

Angles of asymptotes =
;180°(2k + 1)

3
  (k = 0, 1, 2, p )

-3/s = ;180°(2k + 1)  (k = 0, 1, 2, p )

lim
s S q

G(s) = lim
s S q

K

s(s + 1)(s + 2)
= lim

s S q

K

s3
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jv

s

v = 0

–1

– j 3

j 3

s + 1 –  
3
v = 0

s + 1 +  
3
v = 0

0

Figure 6–4
Three asymptotes.

By substituting s=s+jv into this last equation, we obtain

or

Taking the tangent of both sides of this last equation,

which can be written as

These three equations represent three straight lines, as shown in Figure 6–4.The three straight lines
shown are the asymptotes. They meet at point s=–1. Thus, the abscissa of the intersection of
the asymptotes and the real axis is obtained by setting the denominator of the right-hand side
of Equation (6–5) equal to zero and solving for s. The asymptotes are almost parts of the root loci
in regions very far from the origin.

3. Determine the breakaway point. To plot root loci accurately, we must find the breakaway
point, where the root-locus branches originating from the poles at 0 and –1 break away (as K is
increased) from the real axis and move into the complex plane.The breakaway point corresponds
to a point in the s plane where multiple roots of the characteristic equation occur.

A simple method for finding the breakaway point is available. We shall present this method
in the following: Let us write the characteristic equation as

(6–6)f(s) = B(s) + KA(s) = 0

 s + 1 -
v

13
= 0,  s + 1 +

v

13
= 0,  v = 0

 
v

s + 1
= 13 ,  -13 ,  0

 tan-1 v

s + 1
= 60°,  -60°,  0°

 /s + jv + 1 = ;60°(2k + 1)
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where A(s) and B(s) do not contain K. Note that f(s)=0 has multiple roots at points where

This can be seen as follows: Suppose that f(s) has multiple roots of order r, where .Then f(s)
may be written as

Now we differentiate this equation with respect to s and evaluate df(s)/ds at s=s1. Then we get

(6–7)

This means that multiple roots of f(s) will satisfy Equation (6–7). From Equation (6–6), we
obtain

(6–8)

where

The particular value of K that will yield multiple roots of the characteristic equation is obtained
from Equation (6–8) as

If we substitute this value of K into Equation (6–6), we get

or
(6–9)

If Equation (6–9) is solved for s, the points where multiple roots occur can be obtained. On the
other hand, from Equation (6–6) we obtain

and

If dK/ds is set equal to zero, we get the same equation as Equation (6–9). Therefore, the break-
away points can be simply determined from the roots of

It should be noted that not all the solutions of Equation (6–9) or of dK/ds=0 correspond to
actual breakaway points. If a point at which dK/ds=0 is on a root locus, it is an actual breakaway
or break-in point. Stated differently, if at a point at which dK/ds=0 the value of K takes a real
positive value, then that point is an actual breakaway or break-in point.

dK
ds

= 0

dK
ds

= -
B¿(s)A(s) - B(s)A¿(s)

A2(s)

K = -
B(s)

A(s)

B(s)A¿(s) - B¿(s)A(s) = 0

f(s) = B(s) -
B¿(s)

A¿(s)
A(s) = 0

K = -
B¿(s)

A¿(s)

A¿(s) =
dA(s)

ds
,  B¿(s) =

dB(s)

ds

df(s)

ds
= B¿(s) + KA¿(s) = 0

df(s)

ds
2
s = s1

= 0

f(s) = As - s1BrAs - s2B p As - snB
r � 2

df(s)

ds
= 0
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For the present example, the characteristic equation G(s)+1=0 is given by

or

By setting dK/ds=0, we obtain

or

Since the breakaway point must lie on a root locus between 0 and –1, it is clear that s=–0.4226
corresponds to the actual breakaway point. Point s=–1.5774 is not on the root locus. Hence, this
point is not an actual breakaway or break-in point. In fact, evaluation of the values of K corre-
sponding to s=–0.4226 and s=–1.5774 yields

4. Determine the points where the root loci cross the imaginary axis. These points can be found
by use of Routh’s stability criterion as follows: Since the characteristic equation for the present
system is

the Routh array becomes

The value of K that makes the s1 term in the first column equal zero is K=6. The crossing points
on the imaginary axis can then be found by solving the auxiliary equation obtained from the s2

row; that is,

which yields

The frequencies at the crossing points on the imaginary axis are thus The gain value
corresponding to the crossing points is K=6.

An alternative approach is to let s=jv in the characteristic equation, equate both the real
part and the imaginary part to zero, and then solve for v and K. For the present system, the char-
acteristic equation, with s=jv, is

or

Equating both the real and imaginary parts of this last equation to zero, respectively, we obtain

K - 3v2 = 0,  2v - v3 = 0

AK - 3v2B + jA2v - v3B = 0

(jv)3 + 3(jv)2 + 2(jv) + K = 0

v = ;12 .

s = ;j12

3s2 + K = 3s2 + 6 = 0

s3

s2

s1

s0

1
3

6 - K

3
K

2
K

s3 + 3s2 + 2s + K = 0

 K = -0.3849,   for s = -1.5774

 K = 0.3849,    for s = -0.4226

s = -0.4226,  s = -1.5774

dK
ds

= - A3s2 + 6s + 2B = 0

K = - As3 + 3s2 + 2sB
K

s(s + 1)(s + 2)
+ 1 = 0
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jv

j1

– j1

–1–2

s + 1
s + 2

u2

u1

u3

0

s

s

Figure 6–5
Construction of root
locus.

jv

j1

– j1

1–2–3 0 s

K = 6

K = 6

K = 1.0383

K = 1.0383

K
`

K
`

j2

– j2

60°

–1

Figure 6–6
Root-locus plot.

from which

Thus, root loci cross the imaginary axis at and the value of K at the crossing points is 6.
Also, a root-locus branch on the real axis touches the imaginary axis at v=0. The value of K is
zero at this point.

5. Choose a test point in the broad neighborhood of the jv axis and the origin, as shown in
Figure 6–5, and apply the angle condition. If a test point is on the root loci, then the sum of the
three angles, u1+u2+u3 , must be 180°. If the test point does not satisfy the angle condition,
select another test point until it satisfies the condition. (The sum of the angles at the test point will
indicate the direction in which the test point should be moved.) Continue this process and locate
a sufficient number of points satisfying the angle condition.

6. Draw the root loci, based on the information obtained in the foregoing steps, as shown in
Figure 6–6.

v = ;12 ,

v = ;12 ,  K = 6  or  v = 0,  K = 0
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7. Determine a pair of dominant complex-conjugate closed-loop poles such that the damping
ratio z is 0.5. Closed-loop poles with z=0.5 lie on lines passing through the origin and making
the angles with the negative real axis. From Figure 6–6, such closed-
loop poles having z=0.5 are obtained as follows:

The value of K that yields such poles is found from the magnitude condition as follows:

Using this value of K, the third pole is found at s=–2.3326.
Note that, from step 4, it can be seen that for K=6 the dominant closed-loop poles lie on the

imaginary axis at With this value of K, the system will exhibit sustained oscillations.
For K>6, the dominant closed-loop poles lie in the right-half s plane, resulting in an unstable
system.

Finally, note that, if necessary, the root loci can be easily graduated in terms of K by use of the
magnitude condition. We simply pick out a point on a root locus, measure the magnitudes of the
three complex quantities s, s+1, and s+2, and multiply these magnitudes; the product is equal
to the gain value K at that point, or

Graduation of the root loci can be done easily by use of MATLAB. (See Section 6–3.)

EXAMPLE 6–2 In this example, we shall sketch the root-locus plot of a system with complex-conjugate open-
loop poles. Consider the negative feedback system shown in Figure 6–7. For this system,

where K � 0. It is seen that G(s) has a pair of complex-conjugate poles at

A typical procedure for sketching the root-locus plot is as follows:

1. Determine the root loci on the real axis. For any test point s on the real axis, the sum of the
angular contributions of the complex-conjugate poles is 360°, as shown in Figure 6–8.Thus the net
effect of the complex-conjugate poles is zero on the real axis.The location of the root locus on the
real axis is determined from the open-loop zero on the negative real axis.A simple test reveals that
a section of the negative real axis, that between –2 and –q, is a part of the root locus. It is noted
that, since this locus lies between two zeros (at s=–2 and s=–q), it is actually a part of two
root loci, each of which starts from one of the two complex-conjugate poles. In other words, two
root loci break in the part of the negative real axis between –2 and –q.

s = -1 + j12 ,  s = -1 - j12

G(s) =
K(s + 2)

s2 + 2s + 3
,  H(s) = 1

∑s∑ � ∑s + 1∑ � ∑s + 2∑ = K

s = ;j12 .

 = 1.0383

 K = ∑s(s + 1)(s + 2)∑s = -0.3337 + j0.5780

s1 = -0.3337 + j0.5780,  s2 = -0.3337 - j0.5780

;cos-1 z = ;cos-1 0.5 = ;60°

R(s) C(s)K(s + 2)
s2 + 2s + 3

+
–

Figure 6–7
Control system.
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jv

0 s

u92

s

–p2

f1

f91

–z1

–p1

u2

u1

Figure 6–9
Determination of the
angle of departure.

Since there are two open-loop poles and one zero, there is one asymptote, which coincides with
the negative real axis.

2. Determine the angle of departure from the complex-conjugate open-loop poles. The pres-
ence of a pair of complex-conjugate open-loop poles requires the determination of the angle of
departure from these poles. Knowledge of this angle is important, since the root locus near a com-
plex pole yields information as to whether the locus originating from the complex pole migrates
toward the real axis or extends toward the asymptote.

Referring to Figure 6–9, if we choose a test point and move it in the very vicinity of the com-
plex open-loop pole at s=–p1, we find that the sum of the angular contributions from the pole
at s=p2 and zero at s=–z1 to the test point can be considered remaining the same. If the test
point is to be on the root locus, then the sum of –u1 , and must be where
k=0, 1, 2, p . Thus, in the example,

or

The angle of departure is then

u1 = 180° - u2 + f1 = 180° - 90° + 55° = 145°

u1 = 180° - uœ
2 + fœ

1 = 180° - u2 + f1

fœ
1 - Au1 + uœ

2B = ;180°(2k + 1)

;180°(2k + 1),-uœ
2fœ

1 ,

jv

–1 0–2 s

j 2

– j 2

Test
point u2

u1

Figure 6–8
Determination of the
root locus on the real
axis.
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jv

j1

– j1

1–2–3–4 0 s

z = 0.7 line

j2

– j2

145°

–1

Figure 6–10
Root-locus plot.

Since the root locus is symmetric about the real axis, the angle of departure from the pole at
s=–p2 is –145°.

3. Determine the break-in point. A break-in point exists where a pair of root-locus branches
coalesces as K is increased. For this problem, the break-in point can be found as follows: Since

we have

which gives

or

Notice that point s=–3.7320 is on the root locus. Hence this point is an actual break-in point.
(Note that at point s=–3.7320 the corresponding gain value is K=5.4641.) Since point
s=–0.2680 is not on the root locus, it cannot be a break-in point. (For point s=–0.2680, the cor-
responding gain value is K=–1.4641.)

4. Sketch a root-locus plot, based on the information obtained in the foregoing steps. To
determine accurate root loci, several points must be found by trial and error between the break-
in point and the complex open-loop poles. (To facilitate sketching the root-locus plot, we should
find the direction in which the test point should be moved by mentally summing up the changes
on the angles of the poles and zeros.) Figure 6–10 shows a complete root-locus plot for the system
considered.

s = -3.7320  or  s = -0.2680

s2 + 4s + 1 = 0

dK
ds

= -
(2s + 2)(s + 2) - As2 + 2s + 3B

(s + 2)2 = 0

K = -
s2 + 2s + 3

s + 2
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The value of the gain K at any point on root locus can be found by applying the magnitude
condition or by use of MATLAB (see Section 6–3). For example, the value of K at which the
complex-conjugate closed-loop poles have the damping ratio z=0.7 can be found by locating the
roots, as shown in Figure 6–10, and computing the value of K as follows:

Or use MATLAB to find the value of K. (See Section 6–4.)
It is noted that in this system the root locus in the complex plane is a part of a circle. Such a

circular root locus will not occur in most systems. Circular root loci may occur in systems that in-
volve two poles and one zero, two poles and two zeros, or one pole and two zeros. Even in such
systems, whether circular root loci occur depends on the locations of poles and zeros involved.

To show the occurrence of a circular root locus in the present system, we need to derive the
equation for the root locus. For the present system, the angle condition is

If s=s+jv is substituted into this last equation, we obtain

which can be written as

or

Taking tangents of both sides of this last equation using the relationship

(6–10)

we obtain

or

which can be simplified to

or

This last equation is equivalent to

or (s + 2)2 + v2 = A13B2v = 0

v C(s + 2)2 + v2 - 3 D = 0

2v(s + 1)

(s + 1)2 - Av2 - 2B =
v

s + 2

v - 12

s + 1
+
v + 12

s + 1

1 - a v - 12

s + 1
b a v + 12

s + 1
b =

v

s + 2
; 0

1 <
v

s + 2
* 0

tan c tan-1 a v - 12

s + 1
b + tan-1 a v + 12

s + 1
b d = tan c tan-1 a v

s + 2
b ; 180°(2k + 1) d

tan (x ; y) =
tan x ; tan y

1 < tan x tan y

tan-1 a v - 12

s + 1
b + tan-1 a v + 12

s + 1
b = tan-1 a v

s + 2
b ; 180°(2k + 1)

tan-1 a v

s + 2
b - tan-1 a v - 12

s + 1
b - tan-1 a v + 12

s + 1
b = ;180°(2k + 1)

/s + 2 + jv - /s + 1 + jv - j12 - /s + 1 + jv + j12 = ;180°(2k + 1)

/s + 2 - /s + 1 - j12 - /s + 1 + j12 = ;180°(2k + 1)

K = 2 As + 1 - j12B As + 1 + j12B
s + 2

2
s = -1.67 + j1.70

= 1.34
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These two equations are the equations for the root loci for the present system. Notice that the first
equation, v=0, is the equation for the real axis. The real axis from s=–2 to s=–q corre-
sponds to a root locus for K � 0. The remaining part of the real axis corresponds to a root locus
when K is negative. (In the present system, K is nonnegative.) (Note that K < 0 corresponds to
the positive-feedback case.) The second equation for the root locus is an equation of a circle with
center at s=–2, v=0 and the radius equal to That part of the circle to the left of the
complex-conjugate poles corresponds to a root locus for K � 0. The remaining part of the circle
corresponds to a root locus when K is negative.

It is important to note that easily interpretable equations for the root locus can be derived for
simple systems only. For complicated systems having many poles and zeros, any attempt to derive
equations for the root loci is discouraged. Such derived equations are very complicated and their
configuration in the complex plane is difficult to visualize.

General Rules for Constructing Root Loci. For a complicated system with many
open-loop poles and zeros, constructing a root-locus plot may seem complicated, but
actually it is not difficult if the rules for constructing the root loci are applied. By locat-
ing particular points and asymptotes and by computing angles of departure from com-
plex poles and angles of arrival at complex zeros, we can construct the general form of
the root loci without difficulty.

We shall now summarize the general rules and procedure for constructing the root
loci of the negative feedback control system shown in Figure 6–11.

First, obtain the characteristic equation

Then rearrange this equation so that the parameter of interest appears as the multiply-
ing factor in the form

(6–11)

In the present discussions, we assume that the parameter of interest is the gain K, where
K>0. (If K<0, which corresponds to the positive-feedback case, the angle condi-
tion must be modified. See Section 6–4.) Note, however, that the method is still appli-
cable to systems with parameters of interest other than gain. (See Section 6–6.)

1. Locate the poles and zeros of G(s)H(s) on the s plane.The root-locus branches start
from open-loop poles and terminate at zeros (finite zeros or zeros at infinity). From the
factored form of the open-loop transfer function, locate the open-loop poles and zeros
in the s plane. CNote that the open-loop zeros are the zeros of G(s)H(s), while the
closed-loop zeros consist of the zeros of G(s) and the poles of H(s). D

1 +
KAs + z1B As + z2B p As + zmBAs + p1B As + p2B p As + pnB = 0

1 + G(s)H(s) = 0

13 .

H(s)

G(s)
C(s)R(s)

+
–

Figure 6–11
Control system.
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Note that the root loci are symmetrical about the real axis of the s plane, because the
complex poles and complex zeros occur only in conjugate pairs.

A root-locus plot will have just as many branches as there are roots of the character-
istic equation. Since the number of open-loop poles generally exceeds that of zeros, the
number of branches equals that of poles. If the number of closed-loop poles is the same
as the number of open-loop poles, then the number of individual root-locus branches
terminating at finite open-loop zeros is equal to the number m of the open-loop zeros.
The remaining n-m branches terminate at infinity (n-m implicit zeros at infinity)
along asymptotes.

If we include poles and zeros at infinity, the number of open-loop poles is equal
to that of open-loop zeros. Hence we can always state that the root loci start at the
poles of G(s)H(s) and end at the zeros of G(s)H(s), as K increases from zero to in-
finity, where the poles and zeros include both those in the finite s plane and those at
infinity.

2. Determine the root loci on the real axis. Root loci on the real axis are determined
by open-loop poles and zeros lying on it. The complex-conjugate poles and complex-
conjugate zeros of the open-loop transfer function have no effect on the location of the
root loci on the real axis because the angle contribution of a pair of complex-conjugate
poles or complex-conjugate zeros is 360° on the real axis. Each portion of the root
locus on the real axis extends over a range from a pole or zero to another pole or zero.
In constructing the root loci on the real axis, choose a test point on it. If the total num-
ber of real poles and real zeros to the right of this test point is odd, then this point lies
on a root locus. If the open-loop poles and open-loop zeros are simple poles and sim-
ple zeros, then the root locus and its complement form alternate segments along the
real axis.

3. Determine the asymptotes of root loci. If the test point s is located far from the ori-
gin, then the angle of each complex quantity may be considered the same. One open-loop
zero and one open-loop pole then cancel the effects of the other. Therefore, the root
loci for very large values of s must be asymptotic to straight lines whose angles (slopes)
are given by

where number of finite poles of G(s)H(s)

number of finite zeros of G(s)H(s)

Here, k=0 corresponds to the asymptotes with the smallest angle with the real axis.Al-
though k assumes an infinite number of values, as k is increased the angle repeats itself,
and the number of distinct asymptotes is n-m.

All the asymptotes intersect at a point on the real axis. The point at which they do
so is obtained as follows: If both the numerator and denominator of the open-loop trans-
fer function are expanded, the result is

G(s)H(s) =
K Csm + Az1 + z2 + p + zmBsm - 1 + p + z1 z2

p zm D
sn + Ap1 + p2 + p + pnBsn - 1 + p + p1 p2

p pn

 m =

 n =

Angles of asymptotes =
;180°(2k + 1)

n - m
  (k = 0, 1, 2, p )
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If a test point is located very far from the origin, then by dividing the denominator by
the numerator, it is possible to write G(s)H(s) as

or

(6–12)

The abscissa of the intersection of the asymptotes and the real axis is then obtained by
setting the denominator of the right-hand side of Equation (6–12) equal to zero and
solving for s, or

(6–13)

[Example 6–1 shows why Equation (6–13) gives the intersection.] Once this intersection
is determined, the asymptotes can be readily drawn in the complex plane.

It is important to note that the asymptotes show the behavior of the root loci for
A root-locus branch may lie on one side of the corresponding asymptote or may

cross the corresponding asymptote from one side to the other side.

4. Find the breakaway and break-in points. Because of the conjugate symmetry of
the root loci, the breakaway points and break-in points either lie on the real axis or
occur in complex-conjugate pairs.

If a root locus lies between two adjacent open-loop poles on the real axis, then there
exists at least one breakaway point between the two poles. Similarly, if the root locus lies
between two adjacent zeros (one zero may be located at –q) on the real axis, then there
always exists at least one break-in point between the two zeros. If the root locus lies be-
tween an open-loop pole and a zero (finite or infinite) on the real axis, then there may
exist no breakaway or break-in points or there may exist both breakaway and break-in
points.

Suppose that the characteristic equation is given by

The breakaway points and break-in points correspond to multiple roots of the charac-
teristic equation. Hence, as discussed in Example 6–1, the breakaway and break-in points
can be determined from the roots of

(6–14)

where the prime indicates differentiation with respect to s. It is important to note that
the breakaway points and break-in points must be the roots of Equation (6–14), but not
all roots of Equation (6–14) are breakaway or break-in points. If a real root of Equation
(6–14) lies on the root-locus portion of the real axis, then it is an actual breakaway or
break-in point. If a real root of Equation (6–14) is not on the root-locus portion of the
real axis, then this root corresponds to neither a breakaway point nor a break-in point.

dK
ds

= -
B¿(s)A(s) - B(s)A¿(s)

A2(s)
= 0

B(s) + KA(s) = 0

∑s∑ � 1.

s = -
Ap1 + p2 + p + pnB - Az1 + z2 + p + zmB

n - m

G(s)H(s) =
Kc s +

Ap1 + p2 + p + pnB - Az1 + z2 + p + zmB
n - m

d n - m

G(s)H(s) =
K

sn - m + C Ap1 + p2 + p + pnB - Az1 + z2 + p + zmB Dsn - m - 1 + p



286 Chapter 6 / Control Systems Analysis and Design by the Root-Locus Method

jv

s

Angle of
departure

u2

u1f

0Figure 6–12
Construction of the
root locus. [Angle of
departure
=180°-
(u1+u2 ) +f.]

If two roots s=s1 and s=–s1 of Equation (6–14) are a complex-conjugate pair and if
it is not certain whether they are on root loci, then it is necessary to check the corre-
sponding K value. If the value of K corresponding to a root s=s1 of is pos-
itive, point s=s1 is an actual breakaway or break-in point. (Since K is assumed to be
nonnegative, if the value of K thus obtained is negative, or a complex quantity, then
point s=s1 is neither a breakaway nor a break-in point.)

5. Determine the angle of departure (angle of arrival) of the root locus from a com-
plex pole (at a complex zero). To sketch the root loci with reasonable accuracy, we must
find the directions of the root loci near the complex poles and zeros. If a test point is cho-
sen and moved in the very vicinity of a complex pole (or complex zero), the sum of the
angular contributions from all other poles and zeros can be considered to remain the
same. Therefore, the angle of departure (or angle of arrival) of the root locus from a
complex pole (or at a complex zero) can be found by subtracting from 180° the sum of
all the angles of vectors from all other poles and zeros to the complex pole (or complex
zero) in question, with appropriate signs included.

Angle of departure from a complex pole=180°
– (sum of the angles of vectors to a complex pole in question from other poles)
± (sum of the angles of vectors to a complex pole in question from zeros)

Angle of arrival at a complex zero=180°
– (sum of the angles of vectors to a complex zero in question from other zeros)
± (sum of the angles of vectors to a complex zero in question from poles)

The angle of departure is shown in Figure 6–12.

6. Find the points where the root loci may cross the imaginary axis. The points where
the root loci intersect the jv axis can be found easily by (a) use of Routh’s stability cri-
terion or (b) letting s=jv in the characteristic equation, equating both the real part and
the imaginary part to zero, and solving for v and K.The values of v thus found give the
frequencies at which root loci cross the imaginary axis. The K value corresponding to
each crossing frequency gives the gain at the crossing point.

7. Taking a series of test points in the broad neighborhood of the origin of the s plane,
sketch the root loci. Determine the root loci in the broad neighborhood of the jv axis
and the origin. The most important part of the root loci is on neither the real axis nor
the asymptotes but is in the broad neighborhood of the jv axis and the origin.The shape

dK�ds = 0
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of the root loci in this important region in the s plane must be obtained with reasonable
accuracy. (If accurate shape of the root loci is needed, MATLAB may be used rather than
hand calculations of the exact shape of the root loci.)

8. Determine closed-loop poles. A particular point on each root-locus branch will be
a closed-loop pole if the value of K at that point satisfies the magnitude condition. Con-
versely, the magnitude condition enables us to determine the value of the gain K at any
specific root location on the locus. (If necessary, the root loci may be graduated in terms
of K. The root loci are continuous with K.)

The value of K corresponding to any point s on a root locus can be obtained using
the magnitude condition, or

This value can be evaluated either graphically or analytically. (MATLAB can be used
for graduating the root loci with K. See Section 6–3.)

If the gain K of the open-loop transfer function is given in the problem, then by ap-
plying the magnitude condition, we can find the correct locations of the closed-loop
poles for a given K on each branch of the root loci by a trial-and-error approach or by
use of MATLAB, which will be presented in Section 6–3.

Comments on the Root-Locus Plots. It is noted that the characteristic equa-
tion of the negative feedback control system whose open-loop transfer function is

is an nth-degree algebraic equation in s. If the order of the numerator of G(s)H(s) is
lower than that of the denominator by two or more (which means that there are two or
more zeros at infinity), then the coefficient a1 is the negative sum of the roots of the
equation and is independent of K. In such a case, if some of the roots move on the locus
toward the left as K is increased, then the other roots must move toward the right as K
is increased. This information is helpful in finding the general shape of the root loci.

It is also noted that a slight change in the pole–zero configuration may cause signif-
icant changes in the root-locus configurations. Figure 6–13 demonstrates the fact that a
slight change in the location of a zero or pole will make the root-locus configuration
look quite different.

G(s)H(s) =
KAsm + b1 sm - 1 + p + bmB

sn + a1 sn - 1 + p + an

  (n � m)

K =
product of lengths between point s to poles

product of lengths between point s to zeros

jv

s

jv

s

Figure 6–13
Root-locus plots.
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C(s)R(s)

(a)

1
s

K
(s + 1) (s + 2)

C(s)R(s)

(c)

1
s + 1

K
s(s + 1) (s + 2)

K
s(s + 2)

s + 1

H(s)

C(s)R(s)

(b)

+
–

+
–

+
–

G(s)

+
–

Figure 6–14
(a) Control system
with velocity
feedback; (b) and 
(c) modified block
diagrams.

Cancellation of Poles of G(s) with Zeros of H(s). It is important to note that
if the denominator of G(s) and the numerator of H(s) involve common factors, then the
corresponding open-loop poles and zeros will cancel each other, reducing the degree of
the characteristic equation by one or more. For example, consider the system shown in
Figure 6–14(a). (This system has velocity feedback.) By modifying the block diagram of
Figure 6–14(a) to that shown in Figure 6–14(b), it is clearly seen that G(s) and H(s)
have a common factor s+1. The closed-loop transfer function C(s)/R(s) is

The characteristic equation is

Because of the cancellation of the terms (s+1) appearing in G(s) and H(s), however,
we have

The reduced characteristic equation is

The root-locus plot of G(s)H(s) does not show all the roots of the characteristic equa-
tion, only the roots of the reduced equation.

To obtain the complete set of closed-loop poles, we must add the canceled pole of
G(s)H(s) to those closed-loop poles obtained from the root-locus plot of G(s)H(s).
The important thing to remember is that the canceled pole of G(s)H(s) is a closed-loop
pole of the system, as seen from Figure 6–14(c).

s(s + 2) + K = 0

 =
s(s + 2) + K

s(s + 2)

 1 + G(s)H(s) = 1 +
K(s + 1)

s(s + 1)(s + 2)

Cs(s + 2) + K D(s + 1) = 0

C(s)

R(s)
=

K

s(s + 1)(s + 2) + K(s + 1)
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Typical Pole–Zero Configurations and Corresponding Root Loci. In summa-
rizing, we show several open-loop pole–zero configurations and their corresponding
root loci in Table 6–1. The pattern of the root loci depends only on the relative separa-
tion of the open-loop poles and zeros. If the number of open-loop poles exceeds the
number of finite zeros by three or more, there is a value of the gain K beyond which root
loci enter the right-half s plane, and thus the system can become unstable.A stable sys-
tem must have all its closed-loop poles in the left-half s plane.

Table 6–1 Open-Loop Pole–Zero Configurations 
and the Corresponding Root Loci

jv

s

jv

s

jv

s

jv

s

jv

s

jv

s

jv

s

jv

s

jv

s

jv

s

jv

s
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Note that once we have some experience with the method, we can easily evaluate the
changes in the root loci due to the changes in the number and location of the open-loop
poles and zeros by visualizing the root-locus plots resulting from various pole–zero
configurations.

Summary. From the preceding discussions, it should be clear that it is possible to
sketch a reasonably accurate root-locus diagram for a given system by following simple
rules. (The reader should study the various root-locus diagrams shown in the solved
problems at the end of the chapter.) At preliminary design stages, we may not need the
precise locations of the closed-loop poles. Often their approximate locations are all that
is needed to make an estimate of system performance. Thus, it is important that the
designer have the capability of quickly sketching the root loci for a given system.

6–3 PLOTTING ROOT LOCI WITH MATLAB

In this section we present the MATLAB approach to the generation of root-locus plots
and finding relevant information from the root-locus plots.

Plotting Root Loci with MATLAB. In plotting root loci with MATLAB we
deal with the system equation given in the form of Equation (6–11), which may be
written as

where num is the numerator polynomial and den is the denominator polynomial.
That is,

Note that both vectors num and den must be written in descending powers of s.
A MATLAB command commonly used for plotting root loci is

rlocus(num,den)

Using this command, the root-locus plot is drawn on the screen.The gain vector K is au-
tomatically determined. (The vector K contains all the gain values for which the closed-
loop poles are to be computed.)

For the systems defined in state space, rlocus(A,B,C,D) plots the root locus of the
system with the gain vector automatically determined.

Note that commands

rlocus(num,den,K)     and     rlocus(A,B,C,D,K)

use the user-supplied gain vector K.

 = sn + Ap1 + p2 + p + pnBsn - 1 + p + p1 p2 p pn

 den = As + p1B As + p2B p As + pnB = sm + Az1 + z2 + p + zmBsm - 1 + p + z1 z2 p zm

 num = As + z1B As + z2B p As + zmB
1 + K

num
den

= 0
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K(s + 3)
s(s + 1)(s2 + 4s + 16)+

–

Figure 6–15
Control system.

If it is desired to plot the root loci with marks 'o' or 'x', it is necessary to use the fol-
lowing command:

r = rlocus(num,den)
plot(r,'o')     or     plot(r,'x')

Plotting root loci using marks o or x is instructive, since each calculated closed-loop pole
is graphically shown; in some portion of the root loci those marks are densely placed and
in another portion of the root loci they are sparsely placed. MATLAB supplies its own set
of gain values used to calculate a root-locus plot. It does so by an internal adaptive step-
size routine.Also, MATLAB uses the automatic axis-scaling feature of the plot command.

EXAMPLE 6–3 Consider the system shown in Figure 6–15. Plot root loci with a square aspect ratio so that a line
with slope 1 is a true 45° line. Choose the region of root-locus plot to be

where x and y are the real-axis coordinate and imaginary-axis coordinate, respectively.
To set the given plot region on the screen to be square, enter the command

v = [-6  6  -6  6]; axis (v); axis('square')

With this command, the region of the plot is as specified and a line with slope 1 is at a true 45°,
not skewed by the irregular shape of the screen.

For this problem, the denominator is given as a product of first- and second-order terms. So
we must multiply these terms to get a polynomial in s. The multiplication of these terms can be
done easily by use of the convolution command, as shown next.

Define
a = s (s + 1): a = [1   1   0]
b = s2 + 4s + 16: b = [1   4   16]

Then we use the following command:

c = conv(a, b)

Note that conv(a, b) gives the product of two polynomials a and b.See the following computer output:

-6 � x � 6,  -6 � y � 6

a = [1  1   0];
b = [1  4  16];
c = conv (a,b)

c =

1  5  20  16  0

The denominator polynomial is thus found to be

den = [1  5  20  16  0]
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Root-Locus Plot of G(s) = K(s + 3)/[s(s + 1)(s2 + 4s + 16)]

Figure 6–16
Root-locus plot.

MATLAB Program 6–1

% --------- Root-locus plot ---------

num = [1   3];
den = [1   5  20  16   0];
rlocus(num,den)
v = [-6  6  -6  6];
axis(v); axis('square')
grid;
title ('Root-Locus Plot of G(s) = K(s + 3)/[s(s + 1)(s^2 + 4s + 16)]')

To find the complex-conjugate open-loop poles (the roots of s2+4s+16=0), we may enter
the roots command as follows:

Note that in MATLAB Program 6–1, instead of

den = [1  5  20  16  0]
we may enter

den = conv ([1  1  0], [1  4  16])
The results are the same.

r = roots(b)

r =

–2.0000 + 3.464li
–2.0000 - 3.464li

Thus, the system has the following open-loop zero and open-loop poles:
Open-loop zero: s=–3

Open-loop poles: s=0, s=–1, s=–2 ; j3.4641

MATLAB Program 6–1 will plot the root-locus diagram for this system. The plot is shown in
Figure 6–16.
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EXAMPLE 6–4 Consider the negative feedback system whose open-loop transfer function G(s)H(s) is

There are no open-loop zeros. Open-loop poles are located at s=–0.3+j3.1480, 
s=–0.3-j3.1480, s=–0.5, and s=0.

Entering MATLAB Program 6–2 into the computer, we obtain the root-locus plot shown in
Figure 6–17.

 =
K

s4 + 1.1s3 + 10.3s2 + 5s

 G(s)H(s) =
K

s(s + 0.5)As2 + 0.6s + 10B

MATLAB Program 6–2

% --------- Root-locus plot ---------

num = [1];
den = [1  1.1  10.3  5  0];
r = rlocus(num,den);
plot(r,'o')
v = [-6  6  -6  6]; axis(v)
grid
title('Root-Locus Plot of G(s) = K/[s(s + 0.5)(s^2 + 0.6s + 10)]')
xlabel('Real Axis')
ylabel('Imag Axis')

Real Axis
–6 –4 642–2 0

Im
ag

 A
xi

s

6

–2

4

–6

2

0

–4

Root-Locus Plot of G(s) = K/[s(s+0.5)(s2+0.6s+10)]

Figure 6–17
Root-locus plot.

Notice that in the regions near x=–0.3, y=2.3 and x=–0.3, y=–2.3 two loci approach
each other. We may wonder if these two branches should touch or not. To explore this situation,
we may plot the root loci using smaller increments of K in the critical region.
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Figure 6–18
Root-locus plot.

MATLAB Program 6–3

% --------- Root-locus plot ---------

num = [1];
den = [1  1.1  10.3  5  0];
K1 = 0:0.2:20;
K2 = 20:0.1:30;
K3 = 30:5:1000;
K = [K1  K2  K3];
r = rlocus(num,den,K);
plot(r, 'o')
v = [-4  4  -4  4]; axis(v)
grid
title('Root-Locus Plot of G(s) = K/[s(s + 0.5)(s^2 + 0.6s + 10)]')
xlabel('Real Axis')
ylabel('Imag Axis')

By a conventional trial-and-error approach or using the command rlocfind to be presented
later in this section, we find the particular region of interest to be 20 � K � 30. By entering
MATLAB Program 6–3, we obtain the root-locus plot shown in Figure 6–18. From this plot, it
is clear that the two branches that approach in the upper half-plane (or in the lower half-plane)
do not touch.

EXAMPLE 6–5 Consider the system shown in Figure 6–19. The system equations are

 u = r - y

 y = Cx + Du

 x# = Ax + Bu
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Figure 6–19
Closed-loop control
system.

In this example problem we shall obtain the root-locus diagram of the system defined in state
space. As an example let us consider the case where matrices A, B, C, and D are

(6–15)

The root-locus plot for this system can be obtained with MATLAB by use of the following
command:

rlocus(A,B,C,D)

This command will produce the same root-locus plot as can be obtained by use of the rlocus
(num,den) command, where num and den are obtained from

[num,den] = ss2tf(A,B,C,D)
as follows:

num = [0  0  1  0]
den = [1  14  56  160]

MATLAB Program 6–4 is a program that will generate the root-locus plot as shown in Figure 6–20.

 C = [1 0 0],    D = [0]

 A = C 0

0

-160

1

0

-56

0

1

-14

S ,   B = C 0

1

-14

S

MATLAB Program 6–4

% --------- Root-locus plot ---------

A = [0  1  0;0  0  1;-160  -56  -14];
B = [0;1;-14];
C = [1  0  0];
D = [0];
K = 0:0.1:400;
rlocus(A,B,C,D,K);
v = [-20  20  -20  20]; axis(v)
grid
title('Root-Locus Plot of System Defined in State Space')
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Figure 6–21
(a) Complex poles;
(b) lines of constant
damping ratio z.

Real Axis
–20 –15 200 15–10 –5 5 10

Im
ag

 A
xi

s

20

–5

–20

–10

15

0

–15

10

5

Root-Locus Plot of System Defined in State Space

Figure 6–20
Root-locus plot of
system defined in
state space, where A,
B, C, and D are as
given by Equation
(6–15).

Constant Z Loci and Constant Vn Loci. Recall that in the complex plane the
damping ratio z of a pair of complex-conjugate poles can be expressed in terms of the
angle f, which is measured from the negative real axis, as shown in Figure 6–21(a) with

In other words, lines of constant damping ratio z are radial lines passing through the
origin as shown in Figure 6–21(b). For example, a damping ratio of 0.5 requires that
the complex-conjugate poles lie on the lines drawn through the origin making angles
of ; 60° with the negative real axis. (If the real part of a pair of complex-conjugate
poles is positive, which means that the system is unstable, the corresponding z is
negative.) The damping ratio determines the angular location of the poles, while the

z = cosf
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distance of the pole from the origin is determined by the undamped natural frequen-
cy vn . The constant vn loci are circles.

To draw constant z lines and constant vn circles on the root-locus diagram with
MATLAB, use the command sgrid.

Plotting Polar Grids in the Root-Locus Diagram. The command

sgrid

overlays lines of constant damping ratio (z=0 ~ 1 with 0.1 increment) and circles of
constant vn on the root-locus plot. See MATLAB Program 6–5 and the resulting diagram
shown in Figure 6–22.

MATLAB Program 6–5

sgrid
v = [-3  3  -3  3]; axis(v); axis('square')
title('Constant \zeta Lines and Constant \omega_n Circles')
xlabel('Real Axis')
ylabel('Imag Axis')

If only particular constant z lines (such as the z=0.5 line and z=0.707 line) and
particular constant vn circles (such as the vn=0.5 circle,vn=1 circle, and vn=2 cir-
cle) are desired, use the following command:

sgrid([0.5,  0.707],  [0.5,  1,  2])

If we wish to overlay lines of constant z and circles of constant vn as given above to a
root-locus plot of a negative feedback system with

num = [0  0  0  1]
den = [1  4  5  0]

3210−3 −2 −1

0

1

3

2

−1

−3

−2

Real Axis

Constant z Lines and Constant vn Circles

Im
ag

 A
xi

s

2

1

2

1

0.160.340.50.64

0.160.340.50.64

0.76

0.86

0.94

0.985

0.76

0.86

0.94

0.985

Figure 6–22
Constant z lines and
constant vn circles.
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Figure 6–23
Constant z lines and
constant vn circles
superimposed on a
root-locus plot.

MATLAB Program 6–6

num = [1];
den = [1  4  5  0];
K = 0:0.01:1000;
r = rlocus(num,den,K);
plot(r,'-'); v = [-3  1  -2  2]; axis(v); axis('square')
sgrid([0.5,0.707], [0.5,1,2])
grid
title('Root-Locus Plot with \zeta = 0.5 and 0.707 Lines and \omega_n = 0.5,1, and 2 Circles')
xlabel('Real Axis'); ylabel('Imag Axis')
gtext('\omega_n = 2')
gtext('\omega_n = 1')
gtext('\omega_n = 0.5')
% Place 'x' mark at each of 3 open-loop poles.
gtext('x')
gtext('x')
gtext('x')

then enter MATLAB Program 6–6 into the computer. The resulting root-locus plot is
shown in Figure 6–23.

If we want to omit either the entire constant z lines or entire constant vn circles, we
may use empty brackets [ ] in the arguments of the sgrid command.For example, if we want
to overlay only the constant damping ratio line corresponding to z=0.5 and no constant
vn circles on the root-locus plot, then we may use the command

sgrid(0.5,  [])
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Conditionally Stable Systems. Consider the negative feedback system shown
in Figure 6–24.We can plot the root loci for this system by applying the general rules and
procedure for constructing root loci, or use MATLAB to get root-locus plots. MAT-
LAB Program 6–7 will plot the root-locus diagram for the system. The plot is shown in
Figure 6–25.

R(s) C(s)K(s2 + 2s +4)

s(s + 4) (s + 6)(s2 + 1.4s + 1)
+

–

Figure 6–24
Control system.

MATLAB Program 6–7

num = [1  2  4];
den = conv(conv([1  4  0],[1  6]), [1  1.4  1]);
rlocus(num, den)
v = [-7  3  -5  5]; axis(v); axis('square')
grid
title('Root-Locus Plot of G(s) = K(s^2 + 2s + 4)/[s(s + 4)(s + 6)(s^2 + 1.4s + 1)]')
text(1.0, 0.55,'K = 12')
text(1.0,3.0,'K = 73')
text(1.0,4.15,'K = 154')
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Root-Locus Plot of G(s) = K(s2 + 2s + 4)/[s(s + 4)(s + 6)(s2 + 1.4s + 1)]

K = 12

K = 73

K = 154

Figure 6–25
Root-locus plot of
conditionally stable
system.

It can be seen from the root-locus plot of Figure 6–25 that this system is stable only
for limited ranges of the value of K—that is, 0<K<12 and 73<K<154. The sys-
tem becomes unstable for 12<K<73 and 154<K. (If K assumes a value corre-
sponding to unstable operation, the system may break down or may become nonlinear
due to a saturation nonlinearity that may exist.) Such a system is called conditionally
stable.
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In practice, conditionally stable systems are not desirable. Conditional stability is
dangerous but does occur in certain systems—in particular, a system that has an unsta-
ble feedforward path. Such an unstable feedforward path may occur if the system has a
minor loop. It is advisable to avoid such conditional stability since, if the gain drops be-
yond the critical value for any reason, the system becomes unstable. Note that the ad-
dition of a proper compensating network will eliminate conditional stability. [An addition
of a zero will cause the root loci to bend to the left. (See Section 6–5.) Hence condi-
tional stability may be eliminated by adding proper compensation.]

Nonminimum-Phase Systems. If all the poles and zeros of a system lie in the left-
half s plane, then the system is called minimum phase. If a system has at least one pole
or zero in the right-half s plane, then the system is called nonminimum phase. The term
nonminimum phase comes from the phase-shift characteristics of such a system when
subjected to sinusoidal inputs.

Consider the system shown in Figure 6–26(a). For this system

This is a nonminimum-phase system, since there is one zero in the right-half s plane.
For this system, the angle condition becomes

or

(6–16)

The root loci can be obtained from Equation (6–16). Figure 6–26(b) shows a root-locus
plot for this system. From the diagram, we see that the system is stable if the gain K is
less than 1/ Ta.

nKATa s - 1B
s(Ts + 1)

= 0°

= ;180°(2k + 1)  (k = 0, 1, 2, p )

= nKATa s - 1B
s(Ts + 1)

+ 180°

/G(s) = n-
KATa s - 1B
s(Ts + 1)

G(s) =
KA1 - Ta sB
s(Ts + 1)

  ATa 7 0B,  H(s) = 1

(a) (b)

R(s) C(s)

jv

K = 0 K = 0 K = `
K `

1
Ta

K =

1
Ta

K =

1
Ta

1
T

–
s

K(1 – Ta s)
s(Ts + 1)

+
–

Figure 6–26
(a) Nonminimum-
phase system;
(b) root-locus plot.
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To obtain a root-locus plot with MATLAB, enter the numerator and denominator
as usual. For example, if T=1 sec and enter the following num and den
in the program:

num = [-0.5  1]
den = [1  1  0]

MATLAB Program 6–8 gives the plot of the root loci shown in Figure 6–27.

Ta = 0.5 sec,

MATLAB Program 6–8

num = [-0.5  1];
den = [1  1  0];
k1 = 0:0.01:30;
k2 = 30:1:100;
K3 = 100:5:500;
K = [k1  k2  k3];
rlocus(num,den,K)
v = [-2  6  -4  4]; axis(v); axis('square')
grid
title('Root-Locus Plot of G(s) = K(1 - 0.5s)/[s(s + 1)]')
% Place 'x' mark at each of 2 open-loop poles.
% Place 'o' mark at open-loop zero.
gtext('x')
gtext('x')
gtext('o')

Root-Locus Plot of G(s) = K(1 − 0.5s)/[s(s + 1)]
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Figure 6–27
Root-locus plot of 

G(s) =
K(1 - 0.5s)

s(s + 1)
.

Orthogonality of Root Loci and Constant-Gain Loci. Consider the negative
feedback system whose open-loop transfer function is G(s)H(s). In the G(s)H(s) plane,
the loci of constant are circles centered at the origin, and the loci corre-
sponding to (k=0, 1, 2, p) lie on the negative real axis/G(s)H(s) = ;180°(2k + 1)

∑G(s)H(s)∑ =
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of the G(s)H(s) plane, as shown in Figure 6–28. [Note that the complex plane employed
here is not the s plane, but the G(s)H(s) plane.]

The root loci and constant-gain loci in the s plane are conformal mappings of the loci
of and of constant in the G(s)H(s) plane.

Since the constant-phase and constant-gain loci in the G(s)H(s) plane are orthog-
onal, the root loci and constant-gain loci in the s plane are orthogonal. Figure 6–29(a)
shows the root loci and constant-gain loci for the following system:

G(s) =
K(s + 2)

s2 + 2s + 3
,  H(s) = 1

∑G(s)H(s)∑ =/G(s)H(s) = ;180°(2k + 1)

Re

Im

0

G(s) H(s) Plane

Re

Im

0

G(s) H(s) Plane

|G(s) H(s)| = constant

G(s) H(s)

= �180° (2k + 1)

Figure 6–28
Plots of constant-
gain and constant-
phase loci in the
G(s)H(s) plane.
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Plots of root loci and constant-gain loci. (a) System with G(s)=K(s+2)/ As2+2s+3 B ,
H(s)=1; (b) system with G(s)=K/ Cs(s+1)(s+2) D , H(s)=1.
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Notice that since the pole–zero configuration is symmetrical about the real axis, the
constant-gain loci are also symmetrical about the real axis.

Figure 6–29(b) shows the root loci and constant-gain loci for the system:

Notice that since the configuration of the poles in the s plane is symmetrical about the
real axis and the line parallel to the imaginary axis passing through point (s=–1,
v=0), the constant-gain loci are symmetrical about the v=0 line (real axis) and the
s=–1 line.

From Figures 6–29(a) and (b), notice that every point in the s plane has the corre-
sponding K value. If we use a command rlocfind (presented next), MATLAB will give
the K value of the specified point as well as the nearest closed-loop poles corresponding
to this K value.

Finding the Gain Value K at an Arbitrary Point on the Root Loci. In MAT-
LAB analysis of closed-loop systems, it is frequently desired to find the gain value K at
an arbitrary point on the root locus. This can be accomplished by using the following
rlocfind command:

[K, r] = rlocfind(num, den)

The rlocfind command, which must follow an rlocus command, overlays movable x-y co-
ordinates on the screen. Using the mouse, we position the origin of the x-y coordinates
over the desired point on the root locus and press the mouse button. Then MATLAB
displays on the screen the coordinates of that point, the gain value at that point, and the
closed-loop poles corresponding to this gain value.

If the selected point is not on the root locus, such as point A in Figure 6–29(a), the
rlocfind command gives the coordinates of this selected point, the gain value of this
point, such as K = 2, and the locations of the closed-loop poles, such as points B and C
corresponding to this K value. [Note that every point on the s plane has a gain value. See,
for example, Figures 6–29 (a) and (b).]

6–4 ROOT-LOCUS PLOTS OF POSITIVE FEEDBACK SYSTEMS

Root Loci for Positive-Feedback Systems.* In a complex control system, there
may be a positive-feedback inner loop as shown in Figure 6–30. Such a loop is usually
stabilized by the outer loop. In what follows, we shall be concerned only with the positive-
feedback inner loop. The closed-loop transfer function of the inner loop is

The characteristic equation is

(6–17)1 - G(s)H(s) = 0

C(s)

R(s)
=

G(s)

1 - G(s)H(s)

G(s) =
K

s(s + 1)(s + 2)
,  H(s) = 1

* Reference W-4
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C(s)
G1(s)

H1(s)

R(s)

H(s)

G(s)+
–

+
+

Figure 6–30
Control system.

This equation can be solved in a manner similar to the development of the root-locus
method for negative-feedback systems presented in Section 6–2. The angle condition,
however, must be altered.

Equation (6–17) can be rewritten as

which is equivalent to the following two equations:

For the positive-feedback case, the total sum of all angles from the open-loop poles and
zeros must be equal to Thus the root locus follows a 0° locus in contrast to
the 180° locus considered previously. The magnitude condition remains unaltered.

To illustrate the root-locus plot for the positive-feedback system, we shall use the fol-
lowing transfer functions G(s) and H(s) as an example.

The gain K is assumed to be positive.
The general rules for constructing root loci for negative-feedback systems given in

Section 6–2 must be modified in the following way:

Rule 2 is Modified as Follows: If the total number of real poles and real zeros to the right
of a test point on the real axis is even, then this test point lies on the root locus.

Rule 3 is Modified as Follows:

where number of finite poles of G(s)H(s)

number of finite zeros of G(s)H(s)

Rule 5 is Modified as Follows: When calculating the angle of departure (or angle of ar-
rival) from a complex open-loop pole (or at a complex zero), subtract from 0° the sum
of all angles of the vectors from all the other poles and zeros to the complex pole (or com-
plex zero) in question, with appropriate signs included.

 m =
 n =

Angles of asymptotes =
;k360°
n - m

  (k = 0, 1, 2, p )

G(s) =
K(s + 2)

(s + 3)As2 + 2s + 2B  ,  H(s) = 1

0° ; k360°.

 ∑G(s)H(s)∑ = 1

 /G(s)H(s) = 0° ; k360°  (k = 0, 1, 2, p )

G(s)H(s) = 1
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Other rules for constructing the root-locus plot remain the same.We shall now apply
the modified rules to construct the root-locus plot.

1. Plot the open-loop poles (s=–1+j, s=–1-j, s=–3) and zero (s=–2) in
the complex plane.As K is increased from 0 to q, the closed-loop poles start at the
open-loop poles and terminate at the open-loop zeros (finite or infinite), just as in
the case of negative-feedback systems.

2. Determine the root loci on the real axis. Root loci exist on the real axis between
–2 and ±q and between –3 and –q.

3. Determine the asymptotes of the root loci. For the present system,

This simply means that asymptotes are on the real axis.
4. Determine the breakaway and break-in points. Since the characteristic equation is

we obtain

By differentiating K with respect to s, we obtain

Note that

Point s=–0.8 is on the root locus. Since this point lies between two zeros (a finite
zero and an infinite zero), it is an actual break-in point. Points 
do not satisfy the angle condition and, therefore, they are neither breakaway nor
break-in points.

5. Find the angle of departure of the root locus from a complex pole. For the com-
plex pole at s=–1+j, the angle of departure u is

or

(The angle of departure from the complex pole at s=–1-j is 72°.)
6. Choose a test point in the broad neighborhood of the jv axis and the origin and

apply the angle condition. Locate a sufficient number of points that satisfy the
angle condition.

Figure 6–31 shows the root loci for the given positive-feedback system.The root loci
are shown with dashed lines and a curve.

Note that if

K 7
(s + 3)As2 + 2s + 2B

s + 2
2
s = 0

= 3

u = -72°

u = 0° - 27° - 90° + 45°

s = -2.35 ; j0.77

 = 2(s + 0.8)(s + 2.35 + j0.77)(s + 2.35 - j0.77)

 2s3 + 11s2 + 20s + 10 = 2(s + 0.8)As2 + 4.7s + 6.24B
dK
ds

=
2s3 + 11s2 + 20s + 10

(s + 2)2

K =
(s + 3)As2 + 2s + 2B

s + 2

(s + 3)As2 + 2s + 2B - K(s + 2) = 0

Angles of asymptote =
;k360°

3 - 1
= ;180°
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Figure 6–31
Root-locus plot for the
positive-feedback
system with
G(s)=K(s+2)/C(s+3) As2+2s+2 B D ,
H(s)=1.

one real root enters the right-half s plane. Hence, for values of K greater than 3, the sys-
tem becomes unstable. (For K>3, the system must be stabilized with an outer loop.)

Note that the closed-loop transfer function for the positive-feedback system is
given by

To compare this root-locus plot with that of the corresponding negative-feedback sys-
tem, we show in Figure 6–32 the root loci for the negative-feedback system whose closed-
loop transfer function is

Table 6–2 shows various root-locus plots of negative-feedback and positive-feedback
systems. The closed-loop transfer functions are given by

for negative-feedback systems

for positive-feedback systems
C

R
=

G

1 - GH
,

C

R
=

G

1 + GH
,

C(s)

R(s)
=

K(s + 2)

(s + 3)As2 + 2s + 2B + K(s + 2)

 =
K(s + 2)

(s + 3)As2 + 2s + 2B - K(s + 2)

 
C(s)

R(s)
=

G(s)

1 - G(s)H(s)

–5 –4 –3 –2 –1 1 2 s

jv
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–j3

–j2

Figure 6–32
Root-locus plot for the
negative-feedback
system with
G(s)=K(s+2)/C(s+3) As2+2s+2 B D ,
H(s)=1.
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where GH is the open-loop transfer function. In Table 6–2, the root loci for negative-
feedback systems are drawn with heavy lines and curves, and those for positive-feedback
systems are drawn with dashed lines and curves.

jv

s

jv

s

jv

s

jv

s

jv

s

jv

s

jv

s

jv

s

jv

s

jv

s

Table 6–2 Root-Locus Plots of Negative-Feedback and Positive-
Feedback Systems

Heavy lines and curves correspond to negative-feedback systems; dashed lines and
curves correspond to positive-feedback systems.
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6–5 ROOT-LOCUS APPROACH TO CONTROL-SYSTEMS DESIGN

Preliminary Design Consideration. In building a control system, we know that
proper modification of the plant dynamics may be a simple way to meet the performance
specifications.This, however, may not be possible in many practical situations because the
plant may be fixed and not modifiable.Then we must adjust parameters other than those
in the fixed plant. In this book, we assume that the plant is given and unalterable.

In practice, the root-locus plot of a system may indicate that the desired performance
cannot be achieved just by the adjustment of gain (or some other adjustable parameter).
In fact, in some cases, the system may not be stable for all values of gain (or other ad-
justable parameter). Then it is necessary to reshape the root loci to meet the perform-
ance specifications.

The design problems, therefore, become those of improving system performance by
insertion of a compensator. Compensation of a control system is reduced to the design
of a filter whose characteristics tend to compensate for the undesirable and unalterable
characteristics of the plant.

Design by Root-Locus Method. The design by the root-locus method is based on re-
shaping the root locus of the system by adding poles and zeros to the system’s open-loop
transfer function and forcing the root loci to pass through desired closed-loop poles in the
s plane.The characteristic of the root-locus design is its being based on the assumption that
the closed-loop system has a pair of dominant closed-loop poles.This means that the effects
of zeros and additional poles do not affect the response characteristics very much.

In designing a control system, if other than a gain adjustment (or other parameter
adjustment) is required, we must modify the original root loci by inserting a suitable com-
pensator. Once the effects on the root locus of the addition of poles and/or zeros are fully
understood, we can readily determine the locations of the pole(s) and zero(s) of the com-
pensator that will reshape the root locus as desired. In essence, in the design by the root-
locus method, the root loci of the system are reshaped through the use of a compensator
so that a pair of dominant closed-loop poles can be placed at the desired location.

Series Compensation and Parallel (or Feedback) Compensation. Figures
6–33(a) and (b) show compensation schemes commonly used for feedback control sys-
tems. Figure 6–33(a) shows the configuration where the compensator Gc(s) is placed in
series with the plant. This scheme is called series compensation.

An alternative to series compensation is to feed back the signal(s) from some ele-
ment(s) and place a compensator in the resulting inner feedback path, as shown in Figure
6–33(b). Such compensation is called parallel compensation or feedback compensation.

In compensating control systems, we see that the problem usually boils down to a
suitable design of a series or parallel compensator. The choice between series compen-
sation and parallel compensation depends on the nature of the signals in the system,
the power levels at various points, available components, the designer’s experience, eco-
nomic considerations, and so on.

In general, series compensation may be simpler than parallel compensation; however,
series compensation frequently requires additional amplifiers to increase the gain and/or
to provide isolation. (To avoid power dissipation, the series compensator is inserted at the
lowest energy point in the feedforward path.) Note that, in general, the number of com-
ponents required in parallel compensation will be less than the number of components
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Figure 6–33
(a) Series
compensation;
(b) parallel or feed-
back compensation.

in series compensation, provided a suitable signal is available, because the energy trans-
fer is from a higher power level to a lower level. (This means that additional amplifiers
may not be necessary.)

In Sections 6–6 through 6–9 we first discuss series compensation techniques and then
present a parallel compensation technique using a design of a velocity-feedback control
system.

Commonly Used Compensators. If a compensator is needed to meet the per-
formance specifications, the designer must realize a physical device that has the pre-
scribed transfer function of the compensator.

Numerous physical devices have been used for such purposes. In fact, many noble and
useful ideas for physically constructing compensators may be found in the literature.

If a sinusoidal input is applied to the input of a network, and the steady-state output
(which is also sinusoidal) has a phase lead, then the network is called a lead network.
(The amount of phase lead angle is a function of the input frequency.) If the steady-state
output has a phase lag, then the network is called a lag network. In a lag–lead network,
both phase lag and phase lead occur in the output but in different frequency regions;
phase lag occurs in the low-frequency region and phase lead occurs in the high-frequency
region.A compensator having a characteristic of a lead network, lag network, or lag–lead
network is called a lead compensator, lag compensator, or lag–lead compensator.

Among the many kinds of compensators, widely employed compensators are the
lead compensators, lag compensators, lag–lead compensators, and velocity-feedback
(tachometer) compensators. In this chapter we shall limit our discussions mostly to these
types. Lead, lag, and lag–lead compensators may be electronic devices (such as circuits
using operational amplifiers) or RC networks (electrical, mechanical, pneumatic,
hydraulic, or combinations thereof) and amplifiers.

Frequently used series compensators in control systems are lead, lag, and lag–lead
compensators. PID controllers which are frequently used in industrial control systems
are discussed in Chapter 8.
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It is noted that in designing control systems by the root-locus or frequency-response
methods the final result is not unique, because the best or optimal solution may not be pre-
cisely defined if the time-domain specifications or frequency-domain specifications are given.

Effects of the Addition of Poles. The addition of a pole to the open-loop transfer
function has the effect of pulling the root locus to the right, tending to lower the system’s
relative stability and to slow down the settling of the response. (Remember that the ad-
dition of integral control adds a pole at the origin, thus making the system less stable.)
Figure 6–34 shows examples of root loci illustrating the effects of the addition of a pole
to a single-pole system and the addition of two poles to a single-pole system.

Effects of the Addition of Zeros. The addition of a zero to the open-loop trans-
fer function has the effect of pulling the root locus to the left, tending to make the system
more stable and to speed up the settling of the response. (Physically, the addition of a
zero in the feedforward transfer function means the addition of derivative control to
the system.The effect of such control is to introduce a degree of anticipation into the sys-
tem and speed up the transient response.) Figure 6–35(a) shows the root loci for a system

(a)

jv

s

(b)

jv

s

(c)

jv

s

Figure 6–34
(a) Root-locus plot
of a single-pole
system;
(b) root-locus plot of
a two-pole system;
(c) root-locus plot of
a three-pole system.
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(b)
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s

(c)
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s

(d)

jv

s

Figure 6–35
(a) Root-locus plot
of a three-pole
system; (b), (c), and
(d) root-locus plots
showing effects of
addition of a zero to
the three-pole
system.
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that is stable for small gain but unstable for large gain. Figures 6–35(b), (c), and (d) show
root-locus plots for the system when a zero is added to the open-loop transfer function.
Notice that when a zero is added to the system of Figure 6–35(a), it becomes stable for
all values of gain.

6–6 LEAD COMPENSATION

In Section 6–5 we presented an introduction to compensation of control systems and dis-
cussed preliminary materials for the root-locus approach to control-systems design and
compensation. In this section we shall present control-systems design by use of the lead
compensation technique. In carrying out a control-system design, we place a compen-
sator in series with the unalterable transfer function G(s) to obtain desirable behavior.
The main problem then involves the judicious choice of the pole(s) and zero(s) of the
compensator Gc(s) to have the dominant closed-loop poles at the desired location in the
s plane so that the performance specifications will be met.

Lead Compensators and Lag Compensators. There are many ways to realize
lead compensators and lag compensators, such as electronic networks using operational
amplifiers, electrical RC networks, and mechanical spring-dashpot systems.

Figure 6–36 shows an electronic circuit using operational amplifiers. The transfer
function for this circuit was obtained in Chapter 3 as follows [see Equation (3–36)]:

(6–18)

where

T = R1 C1 ,  aT = R2 C2 ,  Kc =
R4 C1

R3 C2

 = Kc a 
Ts + 1

aTs + 1
= Kc

s +
1

T

s +
1

aT

 
Eo(s)

Ei(s)
=

R2 R4

R1 R3

R1 C1 s + 1

R2 C2 s + 1
=

R4 C1

R3 C2

s +
1

R1 C1

s +
1

R2 C2

–

+ –

+

C1

C2

R1

R2 R3

R4

Ei(s)
Eo(s)E(s)

Figure 6–36
Electronic circuit
that is a lead network
if and a
lag network if
R1 C1 6 R2 C2 .

R1 C1 7 R2 C2
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Notice that

This network has a dc gain of 
From Equation (6–18), we see that this network is a lead network if 

or It is a lag network if The pole-zero configurations of this net-
work when and are shown in Figure 6–37(a) and (b),
respectively.

Lead Compensation Techniques Based on the Root-Locus Approach. The
root-locus approach to design is very powerful when the specifications are given in
terms of time-domain quantities, such as the damping ratio and undamped natural
frequency of the desired dominant closed-loop poles, maximum overshoot, rise time,
and settling time.

Consider a design problem in which the original system either is unstable for all val-
ues of gain or is stable but has undesirable transient-response characteristics. In such a
case, the reshaping of the root locus is necessary in the broad neighborhood of the jv
axis and the origin in order that the dominant closed-loop poles be at desired locations
in the complex plane.This problem may be solved by inserting an appropriate lead com-
pensator in cascade with the feedforward transfer function.

The procedures for designing a lead compensator for the system shown in Figure
6–38 by the root-locus method may be stated as follows:

1. From the performance specifications, determine the desired location for the dom-
inant closed-loop poles.

R1 C1 6 R2 C2 R1 C1 7 R2 C2 
R1 C1 6 R2 C2 .a 6 1.

R1 C1 7 R2 C2 ,
Kc a = R2 R4�AR1 R3B.

Kc a =
R4 C1

R3 C2
 
R2 C2

R1 C1
=

R2 R4

R1 R3
,  a =

R2 C2

R1 C1

jv

s

(a)

1
R2C2

– 1
R1C1

–

jv

s

(b)

1
R2C2

–1
R1C1

–
0 0

Figure 6–37
Pole-zero
configurations:
(a) lead network;
(b) lag network.

Gc (s) G(s)+
–

Figure 6–38
Control system.
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2. By drawing the root-locus plot of the uncompensated system (original system),
ascertain whether or not the gain adjustment alone can yield the desired closed-
loop poles. If not, calculate the angle deficiency f.This angle must be contributed
by the lead compensator if the new root locus is to pass through the desired loca-
tions for the dominant closed-loop poles.

3. Assume the lead compensator Gc(s) to be

where a and T are determined from the angle deficiency. Kc is determined from
the requirement of the open-loop gain.

4. If static error constants are not specified, determine the location of the pole and
zero of the lead compensator so that the lead compensator will contribute the nec-
essary angle f. If no other requirements are imposed on the system, try to make
the value of a as large as possible. A larger value of a generally results in a larger
value of Kv, which is desirable. Note that

5. Determine the value of Kc of the lead compensator from the magnitude condition.

Once a compensator has been designed, check to see whether all performance spec-
ifications have been met. If the compensated system does not meet the performance
specifications, then repeat the design procedure by adjusting the compensator pole and
zero until all such specifications are met. If a large static error constant is required, cas-
cade a lag network or alter the lead compensator to a lag–lead compensator.

Note that if the selected dominant closed-loop poles are not really dominant, or if
the selected dominant closed-loop poles do not yield the desired result, it will be nec-
essary to modify the location of the pair of such selected dominant closed-loop poles.
(The closed-loop poles other than dominant ones modify the response obtained from the
dominant closed-loop poles alone.The amount of modification depends on the location
of these remaining closed-loop poles.) Also, the closed-loop zeros affect the response if
they are located near the origin.

EXAMPLE 6–6 Consider the position control system shown in Figure 6–39(a). The feedforward transfer
function is

The root-locus plot for this system is shown in Figure 6–39(b). The closed-loop transfer function
for the system is

=
10

(s + 0.5 + j3.1225)(s + 0.5 - j3.1225)

C(s)

R(s)
=

10
s2 + s + 10

G(s) =
10

s(s + 1)

Kv = lim
s S 0

sGc(s)G(s) = Kca lim
s S 0

sGc(s)

Gc(s) = Kc a 
Ts + 1

aTs + 1
= Kc

s +
1

T

s +
1

aT

,  (0 6 a 6 1)
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The closed-loop poles are located at

The damping ratio of the closed-loop poles is .The undamped natural fre-
quency of the closed-loop poles is 3.1623 rad�sec. Because the damping ratio is small,
this system will have a large overshoot in the step response and is not desirable.

It is desired to design a lead compensator Gc(s) as shown in Figure 6–40(a) so that the dom-
inant closed-loop poles have the damping ratio and the undamped natural frequency

The desired location of the dominant closed-loop poles can be determined from

as follows:
s = -1.5 ; j 2.5981

= (s + 1.5 + j 2.5981)(s + 1.5 - j 2.5981)

s2 + 2zvns + vn
2 = s2 + 3s + 9

vn = 3 rad�sec.
z = 0.5

vn = 210 =
z = (1�2)�210 = 0.1581

s = -0.5 ; j3.1225

R(s) C(s)

(a) (b)

10
s(s + 1)

G(s)

Closed-loop
pole

jv

1−3 −2 −1

j3

j2

j1

−j3

−j2

−j1

+
–

s

Figure 6–39
(a) Control system;
(b) root-locus plot.
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60°
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Figure 6–40
(a) Compensated
system; (b) desired
closed-loop pole
location.
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[See Figure 6–40 (b).] In some cases, after the root loci of the original system have been obtained,
the dominant closed-loop poles may be moved to the desired location by simple gain adjustment.
This is, however, not the case for the present system.Therefore, we shall insert a lead compensator
in the feedforward path.

A general procedure for determining the lead compensator is as follows: First, find the sum
of the angles at the desired location of one of the dominant closed-loop poles with the open-loop
poles and zeros of the original system, and determine the necessary angle f to be added so that
the total sum of the angles is equal to The lead compensator must contribute this
angle f. (If the angle f is quite large, then two or more lead networks may be needed rather than
a single one.)

Assume that the lead compensator Gc(s) has the transfer function as follows:

The angle from the pole at the origin to the desired dominant closed-loop pole at s = –1.5+ j2.5981
is 120°. The angle from the pole at s=–1 to the desired closed-loop pole is 100.894°. Hence, the
angle deficiency is

Angle deficiency=180° – 120° – 100.894°=–40.894°

Deficit angle 40.894° must be contributed by a lead compensator.
Note that the solution to such a problem is not unique. There are infinitely many solutions.

We shall present two solutions to the problem in what follows.

Method 1. There are many ways to determine the locations of the zero and pole of the lead
compensator. In what follows we shall introduce a procedure to obtain a largest possible value for
a. (Note that a larger value of awill produce a larger value of Kv. In most cases, the larger the Kv is,
the better the system performance.) First, draw a horizontal line passing through point P, the desired
location for one of the dominant closed-loop poles. This is shown as line PA in Figure 6–41. Draw
also a line connecting point P and the origin. Bisect the angle between the lines PA and PO, as
shown in Figure 6–41. Draw two lines PC and PD that make angles with the bisector PB.The
intersections of PC and PD with the negative real axis give the necessary locations for the pole and
zero of the lead network.The compensator thus designed will make point P a point on the root locus
of the compensated system.The open-loop gain is determined by use of the magnitude condition.

In the present system, the angle of G(s) at the desired closed-loop pole is

n 10
s(s + 1)

2
s = -1.5 + j2.5981

= -220.894°

;f�2

Gc(s) = Kc a 
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aTs + 1
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s +
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T

s +
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,  (0 6 a 6 1)

;180°(2k + 1).
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1
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2 f
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Figure 6–41
Determination of the
pole and zero of a
lead network.
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Thus, if we need to force the root locus to go through the desired closed-loop pole, the lead com-
pensator must contribute f=40.894° at this point. By following the foregoing design procedure,
we can determine the zero and pole of the lead compensator.

Referring to Figure 6–42, if we bisect angle APO and take 40.894°/2 each side, then the loca-
tions of the zero and pole are found as follows:

zero at s=–1.9432

pole at s=–4.6458
Thus, Gc(s) can be given as

(For this compensator the value of a is a = 1.9432/4.6458 = 0.418.)
The value of Kc can be determined by use of the magnitude condition.

or

Hence, the lead compensator Gc(s) just designed is given by

Then, the open-loop transfer function of the designed system becomes

and the closed-loop transfer function becomes

=
12.287s + 23.876

s3 + 5.646s2 + 16.933s + 23.876
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Figure 6–43 shows the root-locus plot for the designed system.
It is worthwhile to check the static velocity error constant Kv for the system just designed.

Note that the third closed-loop pole of the designed system is found by dividing the charac-
teristic equation by the known factors as follows:

The foregoing compensation method enables us to place the dominant closed-loop poles at
the desired points in the complex plane. The third pole at s = �2.65 is fairly close to the added
zero at �1.9432. Therefore, the effect of this pole on the transient response is relatively small.
Since no restriction has been imposed on the nondominant pole and no specification has been
given concerning the value of the static velocity error coefficient, we conclude that the present de-
sign is satisfactory.

Method 2. If we choose the zero of the lead compensator at s = �1 so that it will cancel the
plant pole at s = �1, then the compensator pole must be located at s = �3. (See Figure 6–44.)
Hence the lead compensator becomes

The value of Kc can be determined by use of the magnitude condition.2Kc
s + 1
s + 3

10
s(s + 1)

2
s = -1.5 + j2.5981

= 1
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s + 3

s3 + 5.646s2 + 16.933s + 23.875 = (s + 1.5 + j2.5981)(s + 1.5 - j2.5981)(s + 2.65)

= 5.139

= lim
s S 0

s c1.2287
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Figure 6–43
Root-locus plot 
of the designed
system.
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or

Hence

The open-loop transfer function of the designed system then becomes

The closed-loop transfer function of the compensated system becomes

Note that in the present case the zero of the lead compensator will cancel a pole of the plant, re-
sulting in the second-order system, rather than the third-order system as we designed using Method 1.

The static velocity error constant for the present case is obtained as follows:

Notice that the system designed by Method 1 gives a larger value of the static velocity error con-
stant.This means that the system designed by Method 1 will give smaller steady-state errors in fol-
lowing ramp inputs than the system designed by Method 2.

For different combinations of a zero and pole of the compensator that contributes 40.894°, the
value of Kv will be different. Although a certain change in the value of Kv can be made by alter-
ing the pole-zero location of the lead compensator, if a large increase in the value of Kv is desired,
then we must alter the lead compensator to a lag–lead compensator.

Comparison of step and ramp responses of the compensated and uncompensated systems.
In what follows we shall compare the unit-step and unit-ramp responses of the three systems: the
original uncompensated system, the system designed by Method 1, and the system designed by
Method 2. The MATLAB program used to obtain unit-step response curves is given in
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MATLAB Program 6–9, where num1 and den1 denote the numerator and denominator of the
system designed by Method 1 and num2 and den2 denote that designed by Method 2. Also, num
and den are used for the original uncompensated system.The resulting unit-step response curves
are shown in Figure 6–45.The MATLAB program to obtain the unit-ramp response curves of the

MATLAB Program 6–9

% ***** Unit-Step Response of Compensated and Uncompensated Systems *****

num1 = [12.287  23.876];
den1 = [1  5.646  16.933  23.876];
num2 = [9];
den2 = [1  3  9];
num = [10];
den = [1  1  10];
t = 0:0.05:5;
c1 = step(num1,den1,t);
c2 = step(num2,den2,t);
c = step(num,den,t);
plot(t,c1,'-',t,c2,'.',t,c,'x')
grid
title('Unit-Step Responses of Compensated Systems and Uncompensated System')
xlabel('t Sec')
ylabel('Outputs c1, c2, and c')
text(1.51,1.48,'Compensated System (Method 1)')
text(0.9,0.48,'Compensated System (Method 2)')
text(2.51,0.67,'Uncompensated System')
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curves of designed
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designed systems is given in MATLAB Program 6–10, where we used the step command to ob-
tain unit-ramp responses by using the numerators and denominators for the systems designed by
Method 1 and Method 2 as follows:

num1 = [12.287  23.876]
den1 = [1  5.646  16.933  23.876  0]

num2 = [9]
den2 = [1  3  9  0]

The resulting unit-ramp response curves are shown in Figure 6–46.

MATLAB Program 6–10

% ***** Unit-Ramp Responses of Compensated Systems *****

num1 = [12.287  23.876];
den1 = [1  5.646  16.933  23.876  0];
num2 = [9];
den2 = [1  3  9  0];
t = 0:0.05:5;
c1 = step(num1,den1,t);
c2 = step(num2,den2,t);
plot(t,c1,'-',t,c2,'.',t,t,'-')
grid
title('Unit-Ramp Responses of Compensated Systems')
xlabel('t Sec')
ylabel('Unit-Ramp Input and Outputs c1 and c2')
text(2.55,3.8,'Input')
text(0.55,2.8,'Compensated System (Method 1)')
text(2.35,1.75,'Compensated System (Method 2)')
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In examining these response curves notice that the compensated system designed by Method 1
exhibits a little bit larger overshoot in the step response than the compensated system designed
by Method 2. However, the former has better response characteristics for the ramp input than the
latter. So it is difficult to say which one is better. The decision on which one to choose should be
made by the response requirements (such as smaller overshoots for step type inputs or smaller
steady-state errors in following ramp or changing inputs) expected in the designed system. If both
smaller overshoots in step inputs and smaller steady-state errors in following changing inputs are
required, then we might use a lag–lead compensator. (See Section 6–8 for the lag–lead compen-
sation techniques.)

6–7 LAG COMPENSATION

Electronic Lag Compensator Using Operational Amplifiers. The configuration of
the electronic lag compensator using operational amplifiers is the same as that for the
lead compensator shown in Figure 6–36. If we choose in the circuit shown
in Figure 6–36, it becomes a lag compensator. Referring to Figure 6–36, the transfer
function of the lag compensator is given by

where

Note that we use b instead of a in the above expressions. [In the lead compensator we
used a to indicate the ratio which was less than 1, or 0<a<1.] In this
book we always assume that 0<a<1 and b>1.

Lag Compensation Techniques Based on the Root-Locus Approach. Consider
the problem of finding a suitable compensation network for the case where the system
exhibits satisfactory transient-response characteristics but unsatisfactory steady-state
characteristics. Compensation in this case essentially consists of increasing the open-
loop gain without appreciably changing the transient-response characteristics.This means
that the root locus in the neighborhood of the dominant closed-loop poles should not
be changed appreciably, but the open-loop gain should be increased as much as needed.
This can be accomplished if a lag compensator is put in cascade with the given
feedforward transfer function.

To avoid an appreciable change in the root loci, the angle contribution of the lag
network should be limited to a small amount, say less than  5°. To assure this, we place
the pole and zero of the lag network relatively close together and near the origin of the
s plane.Then the closed-loop poles of the compensated system will be shifted only slight-
ly from their original locations. Hence, the transient-response characteristics will be
changed only slightly.
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Consider a lag compensator where

(6–19)

If we place the zero and pole of the lag compensator very close to each other, then at
where s1 is one of the dominant closed-loop poles, the magnitudes and

are almost equal, or

To make the angle contribution of the lag portion of the compensator small, we require

This implies that if gain of the lag compensator is set equal to 1, the alteration in the
transient-response characteristics will be very small, despite the fact that the overall gain of
the open-loop transfer function is increased by a factor of b, where b>1. If the pole and
zero are placed very close to the origin, then the value of b can be made large. (A large
value of bmay be used, provided physical realization of the lag compensator is possible.)
It is noted that the value of T must be large, but its exact value is not critical. However,
it should not be too large in order to avoid difficulties in realizing the phase-lag com-
pensator by physical components.

An increase in the gain means an increase in the static error constants. If the open-
loop transfer function of the uncompensated system is G(s), then the static velocity
error constant Kv of the uncompensated system is

If the compensator is chosen as given by Equation (6–19), then for the compensated
system with the open-loop transfer function the static velocity error constant

where Kv is the static velocity error constant of the uncompensated system.
Thus if the compensator is given by Equation (6–19), then the static velocity error

constant is increased by a factor of where is approximately unity.K̂cK̂c b,

= K̂c bKv= lim
s S 0

Gc(s)Kv K̂v = lim
s S 0

sGc(s)G(s)

K̂v becomes
Gc(s)G(s)

Kv = lim
s S 0

sG(s)

K̂c

-5° 6 n s1 +
1

T

s1 +
1

bT
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∑GcAs1B∑ = 4 K̂c 

s1 +
1

T

s1 +
1

bT

4 � K̂c

s1 + C1�(bT) D s1 + (1�T)s = s1 ,

Gc(s) = K̂c b
Ts + 1

bTs + 1
= K̂c

s +
1

T

s +
1

bT

Gc(s),
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The main negative effect of the lag compensation is that the compensator zero that
will be generated near the origin creates a closed-loop pole near the origin.This closed-
loop pole and compensator zero will generate a long tail of small amplitude in the step
response, thus increasing the settling time.

Design Procedures for Lag Compensation by the Root-Locus Method. The
procedure for designing lag compensators for the system shown in Figure 6–47 by the
root-locus method may be stated as follows (we assume that the uncompensated system
meets the transient-response specifications by simple gain adjustment; if this is not the
case, refer to Section 6–8):

1. Draw the root-locus plot for the uncompensated system whose open-loop trans-
fer function is G(s). Based on the transient-response specifications, locate the
dominant closed-loop poles on the root locus.

2. Assume the transfer function of the lag compensator to be given by Equation (6–19):

Then the open-loop transfer function of the compensated system becomes

3. Evaluate the particular static error constant specified in the problem.
4. Determine the amount of increase in the static error constant necessary to satis-

fy the specifications.
5. Determine the pole and zero of the lag compensator that produce the necessary

increase in the particular static error constant without appreciably altering the
original root loci. (Note that the ratio of the value of gain required in the spec-
ifications and the gain found in the uncompensated system is the required ratio
between the distance of the zero from the origin and that of the pole from the
origin.)

6. Draw a new root-locus plot for the compensated system. Locate the desired dom-
inant closed-loop poles on the root locus. (If the angle contribution of the lag net-
work is very small—that is, a few degrees—then the original and new root loci are
almost identical. Otherwise, there will be a slight discrepancy between them.Then
locate, on the new root locus, the desired dominant closed-loop poles based on
the transient-response specifications.)

7. Adjust gain of the compensator from the magnitude condition so that the dom-
inant closed-loop poles lie at the desired location. A will be approximately 1. BK̂c

K̂c

Gc(s)G(s).

Gc(s) = K̂c b
Ts + 1

bTs + 1
= K̂c

s +
1

T

s +
1

bT

Gc(s) G(s)+
–

Figure 6–47
Control system.
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EXAMPLE 6–7 Consider the system shown in Figure 6–48(a). The feedforward transfer function is

The root-locus plot for the system is shown in Figure 6–48(b). The closed-loop transfer function
becomes

The dominant closed-loop poles are

The damping ratio of the dominant closed-loop poles is The undamped natural
frequency of the dominant closed-loop poles is 0.673 rad�sec.The static velocity error constant is
0.53 sec–1.

It is desired to increase the static velocity error constant Kv to about 5 sec–1 without appreciably
changing the location of the dominant closed-loop poles.

To meet this specification, let us insert a lag compensator as given by Equation (6–19) in
cascade with the given feedforward transfer function. To increase the static velocity error con-
stant by a factor of about 10, let us choose b=10 and place the zero and pole of the lag com-
pensator at s=–0.05 and s=–0.005, respectively.The transfer function of the lag compensator
becomes

Gc(s) = K̂c
s + 0.05

s + 0.005

z = 0.491.

s = -0.3307 ; j0.5864

 =
1.06

(s + 0.3307 - j0.5864)(s + 0.3307 + j0.5864)(s + 2.3386)

 
C(s)

R(s)
=

1.06

s(s + 1)(s + 2) + 1.06

G(s) =
1.06

s(s + 1)(s + 2)

1.06

s(s + 1) (s + 2)

Closed-loop poles

j1

–j2

–j1

0–1–2–3 1

jv

s

(a) (b)

j2

+
–

Figure 6–48
(a) Control system;
(b) root-locus plot.
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The angle contribution of this lag network near a dominant closed-loop pole is about 4°. Because
this angle contribution is not very small, there is a small change in the new root locus near the
desired dominant closed-loop poles.

The open-loop transfer function of the compensated system then becomes

where

The block diagram of the compensated system is shown in Figure 6–49.The root-locus plot for the
compensated system near the dominant closed-loop poles is shown in Figure 6–50(a), together with
the original root-locus plot. Figure 6–50(b) shows the root-locus plot of the compensated system

K = 1.06K̂c

 =
K(s + 0.05)

s(s + 0.005)(s + 1)(s + 2)

 Gc(s)G(s) = K̂c 
s + 0.05

s + 0.005
 

1.06

s(s + 1)(s + 2)

Kc
s + 0.05
s + 0.005

Kc = 0.966

1.06
s(s + 1) (s + 2)

+
–

^

^
Figure 6–49
Compensated
system.

Figure 6–50
(a) Root-locus plots of the compensated system and uncompensated system; (b) root-locus plot of compensated
system near the origin.
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near the origin.The MATLAB program to generate the root-locus plots shown in Figures 6–50(a)
and (b) is given in MATLAB Program 6–11.

If the damping ratio of the new dominant closed-loop poles is kept the same, then these poles
are obtained from the new root-locus plot as follows:

The open-loop gain K is determined from the magnitude condition as follows:

 = 1.0235

 K = 2 s(s + 0.005)(s + 1)(s + 2)

s + 0.05
2
s = -0.31 + j0.55

s1 = -0.31 + j0.55,  s2 = -0.31 - j0.55

MATLAB Program 6–11

% ***** Root-locus plots of the compensated system and
% uncompensated system *****

% ***** Enter the numerators and denominators of the
% compensated and uncompensated systems *****

numc = [1  0.05];
denc = [1  3.005  2.015  0.01  0];
num = [1.06];
den = [1  3  2  0];

% ***** Enter rlocus command. Plot the root loci of both
% systems *****

rlocus(numc,denc)
hold
Current plot held
rlocus(num,den)
v = [-3  1  -2  2]; axis(v); axis('square')
grid
text(-2.8,0.2,'Compensated system')
text(-2.8,1.2,'Uncompensated system')
text(-2.8,0.58,'Original closed-loop pole')
text(-0.1,0.85,'New closed-')
text(-0.1,0.62,'loop pole')
title('Root-Locus Plots of Compensated and Uncompensated Systems')

hold
Current plot released

% ***** Plot root loci of the compensated system near the origin *****

rlocus(numc,denc)
v = [-0.6  0.6  -0.6  0.6]; axis(v); axis('square')
grid
title('Root-Locus Plot of Compensated System near the Origin')
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Then the lag compensator gain is determined as

Thus the transfer function of the lag compensator designed is

(6–20)

Then the compensated system has the following open-loop transfer function:

The static velocity error constant Kv is

In the compensated system, the static velocity error constant has increased to 5.12 sec–1, or
5.12/0.53=9.66 times the original value. (The steady-state error with ramp inputs has decreased
to about 10% of that of the original system.) We have essentially accomplished the design objective
of increasing the static velocity error constant to 5 sec–1.

Note that, since the pole and zero of the lag compensator are placed close together and are lo-
cated very near the origin, their effect on the shape of the original root loci has been small. Except
for the presence of a small closed root locus near the origin, the root loci of the compensated and the
uncompensated systems are very similar to each other. However, the value of the static velocity error
constant of the compensated system is 9.66 times greater than that of the uncompensated system.

The two other closed-loop poles for the compensated system are found as follows:

The addition of the lag compensator increases the order of the system from 3 to 4, adding one ad-
ditional closed-loop pole close to the zero of the lag compensator. (The added closed-loop pole
at s=–0.0549 is close to the zero at s=–0.05.) Such a pair of a zero and pole creates a long tail
of small amplitude in the transient response, as we will see later in the unit-step response. Since
the pole at s=–2.326 is very far from the jv axis compared with the dominant closed-loop poles,
the effect of this pole on the transient response is also small. Therefore, we may consider the
closed-loop poles at to be the dominant closed-loop poles.

The undamped natural frequency of the dominant closed-loop poles of the compensated sys-
tem is 0.631 rad�sec.This value is about 6% less than the original value, 0.673 rad�sec.This implies
that the transient response of the compensated system is slower than that of the original system.
The response will take a longer time to settle down.The maximum overshoot in the step response
will increase in the compensated system. If such adverse effects can be tolerated, the lag com-
pensation as discussed here presents a satisfactory solution to the given design problem.

Next, we shall compare the unit-ramp responses of the compensated system against the
uncompensated system and verify that the steady-state performance is much better in the
compensated system than the uncompensated system.

To obtain the unit-ramp response with MATLAB, we use the step command for the system
Since for the compensated system is

 =
1.0235s + 0.0512

s5 + 3.005s4 + 2.015s3 + 1.0335s2 + 0.0512s

 
C(s)

sR(s)
=

1.0235(s + 0.05)

s Cs(s + 0.005)(s + 1)(s + 2) + 1.0235(s + 0.05) D
C(s)� CsR(s) DC(s)� CsR(s) D .

s = -0.31 ; j0.55

s3 = -2.326,  s4 = -0.0549

Kv = lim
s S 0

sG1(s) = 5.12 sec-1

 =
5.12(20s + 1)

s(200s + 1)(s + 1)(0.5s + 1)

 G1(s) =
1.0235(s + 0.05)

s(s + 0.005)(s + 1)(s + 2)

Gc(s) = 0.9656
s + 0.05

s + 0.005
= 9.656

20s + 1

200s + 1

K̂c =
K

1.06
=

1.0235

1.06
= 0.9656

K̂c
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we have

numc = [1.0235  0.0512]
denc = [1  3.005  2.015  1.0335  0.0512  0]

Also, for the uncompensated system is

Hence,

num = [1.06]
den = [1  3  2  1.06  0]

MATLAB Program 6–12 produces the plot of the unit-ramp response curves. Figure 6–51 shows
the result. Clearly, the compensated system shows much smaller steady-state error (one-tenth of
the original steady-state error) in following the unit-ramp input.

 =
1.06

s4 + 3s3 + 2s2 + 1.06s

 
C(s)

sR(s)
=

1.06

s Cs(s + 1)(s + 2) + 1.06 D
C(s)� CsR(s) D

MATLAB Program 6–12

% ***** Unit-ramp responses of compensated system and
% uncompensated system *****

% ***** Unit-ramp response will be obtained as the unit-step
% response of C(s)/[sR(s)] *****
% ***** Enter the numerators and denominators of C1(s)/[sR(s)]
% and C2(s)/[sR(s)], where C1(s) and C2(s) are Laplace
% transforms of the outputs of the compensated and un-
% compensated systems, respectively. *****

numc = [1.0235  0.0512];
denc = [1  3.005  2.015  1.0335  0.0512  0];
num = [1.06];
den = [1  3  2  1.06  0];

% ***** Specify the time range (such as t= 0:0.1:50) and enter
% step command and plot command. *****

t = 0:0.1:50;
c1 = step(numc,denc,t);
c2 = step(num,den,t);
plot(t,c1,'-',t,c2,'.',t,t,'--')
grid
text(2.2,27,'Compensated system');
text(26,21.3,'Uncompensated system');
title('Unit-Ramp Responses of Compensated and Uncompensated Systems')
xlabel('t Sec');
ylabel('Outputs c1 and c2')
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Unit-ramp responses
of compensated and
uncompensated
systems. [The
compensator is given
by Equation (6–20).]

MATLAB Program 6–13 gives the unit-step response curves of the compensated and un-
compensated systems. The unit-step response curves are shown in Figure 6–52. Notice that the
lag-compensated system exhibits a larger maximum overshoot and slower response than the
original uncompensated system. Notice that a pair of the pole at s=–0.0549 and zero at

MATLAB Program 6–13

% ***** Unit-step responses of compensated system and
% uncompensated system *****

% ***** Enter the numerators and denominators of the
% compensated and uncompensated systems *****

numc = [1.0235  0.0512];
denc = [1  3.005  2.015  1.0335  0.0512];
num = [1.06];
den = [1  3  2  1.06];

% ***** Specify the time range (such as t = 0:0.1:40) and enter
% step command and plot command. *****

t = 0:0.1:40;
c1 = step(numc,denc,t);
c2 = step(num,den,t);
plot(t,c1,'-',t,c2,'.')
grid
text(13,1.12,'Compensated system')
text(13.6,0.88,'Uncompensated system')
title('Unit-Step Responses of Compensated and Uncompensated Systems')
xlabel('t Sec')
ylabel('Outputs c1 and c2')
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Unit-Step Responses of Compensated and Uncompensated Systems
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Figure 6–52
Unit-step responses
of compensated and
uncompensated
systems. [The
compensator is given
by Equation (6–20).]

s=–0.05 generates a long tail of small amplitude in the transient response. If a larger maximum
overshoot and a slower response are not desired, we need to use a lag–lead compensator as
presented in Section 6–8.

Comments. It is noted that under certain circumstances, however, both lead com-
pensator and lag compensator may satisfy the given specifications (both transient-
response specifications and steady-state specifications.) Then either compensation may
be used.

6–8 LAG–LEAD COMPENSATION

Lead compensation basically speeds up the response and increases the stability of the
system. Lag compensation improves the steady-state accuracy of the system, but reduces
the speed of the response.

If improvements in both transient response and steady-state response are desired,
then both a lead compensator and a lag compensator may be used simultaneously. Rather
than introducing both a lead compensator and a lag compensator as separate units, how-
ever, it is economical to use a single lag–lead compensator.

Lag–lead compensation combines the advantages of lag and lead compensations.
Since the lag–lead compensator possesses two poles and two zeros, such a compensation
increases the order of the system by 2, unless cancellation of pole(s) and zero(s) occurs
in the compensated system.

Electronic Lag–Lead Compensator Using Operational Amplifiers. Figure 6–53
shows an electronic lag–lead compensator using operational amplifiers. The transfer
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function for this compensator may be obtained as follows: The complex impedance Z1

is given by

or

Similarly, complex impedance Z2 is given by

Hence, we have

The sign inverter has the transfer function

Thus the transfer function of the compensator shown in Figure 6–53 is

(6–21)

Let us define

T1 = AR1 + R3BC1 ,  T1

g
= R1 C1 ,  T2 = R2 C2 ,  bT2 = AR2 + R4BC2
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=
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=
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Gc(s) G(s)+
–

Figure 6–54
Control system.

Then Equation (6–21) becomes

(6–22)

where

Note that g is often chosen to be equal to b.

Lag–lead Compensation Techniques Based on the Root-Locus Approach.
Consider the system shown in Figure 6–54.Assume that we use the lag–lead compensator:

(6–23)

where and (Consider Kc to belong to the lead portion of the lag–lead
compensator.)

In designing lag–lead compensators, we consider two cases where and 

Case 1. In this case, the design process is a combination of the design of the
lead compensator and that of the lag compensator.The design procedure for the lag–lead
compensator follows:

1. From the given performance specifications, determine the desired location for the
dominant closed-loop poles.

2. Using the uncompensated open-loop transfer function G(s), determine the angle
deficiency f if the dominant closed-loop poles are to be at the desired location.The
phase-lead portion of the lag–lead compensator must contribute this angle f.

3. Assuming that we later choose sufficiently large so that the magnitude of the lag
portion
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is approximately unity, where is one of the dominant closed-loop poles,
choose the values of and g from the requirement that

The choice of and g is not unique. (Infinitely many sets of and g are possible.)
Then determine the value of Kc from the magnitude condition:

4. If the static velocity error constant Kv is specified, determine the value of b to
satisfy the requirement for Kv . The static velocity error constant Kv is given by

where Kc and g are already determined in step 3. Hence, given the value of Kv , the value
of b can be determined from this last equation. Then, using the value of b thus deter-
mined, choose the value of such that

(The preceding design procedure is illustrated in Example 6–8.)

Case 2. If g=b is required in Equation (6–23), then the preceeding design
procedure for the lag–lead compensator may be modified as follows:

1. From the given performance specifications, determine the desired location for the
dominant closed-loop poles.

g = b.
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2. The lag–lead compensator given by Equation (6–23) is modified to

(6–24)

where b>1. The open-loop transfer function of the compensated system is
Gc(s)G(s). If the static velocity error constant Kv is specified, determine the value
of constant Kc from the following equation:

3. To have the dominant closed-loop poles at the desired location, calculate the angle
contribution f needed from the phase-lead portion of the lag–lead compensator.

4. For the lag–lead compensator, we later choose sufficiently large so that

is approximately unity, where is one of the dominant closed-loop poles. De-
termine the values of and b from the magnitude and angle conditions:

5. Using the value of b just determined, choose so that

The value of the largest time constant of the lag–lead compensator, should not be
too large to be physically realized. (An example of the design of the lag–lead compen-
sator when is given in Example 6–9.)g = b
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EXAMPLE 6–8 Consider the control system shown in Figure 6–55. The feedforward transfer function is

This system has closed-loop poles at

The damping ratio is 0.125, the undamped natural frequency is 2 rad/sec, and the static velocity
error constant is 8 sec–1.

It is desired to make the damping ratio of the dominant closed-loop poles equal to 0.5 and to
increase the undamped natural frequency to 5 rad�sec and the static velocity error constant to
80 sec–1. Design an appropriate compensator to meet all the performance specifications.

Let us assume that we use a lag–lead compensator having the transfer function

where g is not equal to b.Then the compensated system will have the open-loop transfer function

From the performance specifications, the dominant closed-loop poles must be at

Since

the phase-lead portion of the lag–lead compensator must contribute 55° so that the root locus
passes through the desired location of the dominant closed-loop poles.

To design the phase-lead portion of the compensator, we first determine the location of the
zero and pole that will give 55° contribution. There are many possible choices, but we shall here
choose the zero at s=–0.5 so that this zero will cancel the pole at s=–0.5 of the plant. Once
the zero is chosen, the pole can be located such that the angle contribution is 55°. By simple
calculation or graphical analysis, the pole must be located at s=–5.02. Thus, the phase-lead
portion of the lag–lead compensator becomes

Kc

s +
1

T1

s +
g

T1

= Kc
s + 0.5
s + 5.02

n 4

s(s + 0.5)
2
s = -2.50 + j4.33

= -235°

s = -2.50 ; j4.33

Gc(s)G(s) = Kc ± s +
1

T1

s +
g

T1

≤ ± s +
1

T2

s +
1

bT2

≤G(s)

Gc(s) = Kc ± s +
1

T1

s +
g

T1

≤ ± s +
1

T2

s +
1

bT2

≤  (g 7 1, b 7 1)

s = -0.2500 ; j1.9843

G(s) =
4

s(s + 0.5)

4
s(s + 0.5)

+
–

Figure 6–55
Control system.
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Thus

Next we determine the value of Kc from the magnitude condition:

Hence,

The phase-lag portion of the compensator can be designed as follows: First the value of b is
determined to satisfy the requirement on the static velocity error constant:

Hence, b is determined as

Finally, we choose the value  such that the following two conditions are satisfied:

We may choose several values for T2 and check if the magnitude and angle conditions are satis-
fied. After simple calculations we find for T2 = 5 

Since T2 = 5 satisfies the two conditions, we may choose

Now the transfer function of the designed lag–lead compensator is given by

 =
10(2s + 1)(5s + 1)

(0.1992s + 1)(80.19s + 1)

 = 6.26 a s + 0.5

s + 5.02
b a s + 0.2

s + 0.01247
b

 Gc(s) = (6.26) ± s +
1

2

s +
10.04

2

≤ ± s +
1

5

s +
1

16.04 * 5

≤

T2 = 5

1 7 magnitude 7 0.98, -2.10° 6 angle 6 0°

-5° 6 n s +
1
T2

s +
1

16.04T2

4
s = -2.5 + j4.33

6 0°4 s +
1
T2

s +
1

16.04T2

4
s = -2.5 + j4.33

� 1,

T2

b = 16.04

 = lim
s S 0

s(6.26) 
b

10.04
 

4

s(s + 0.5)
= 4.988b = 80

 Kv = lim
s S 0

sGc(s)G(s) = lim
s S 0

sKc 
b

g
 G(s)

Kc = 2 (s + 5.02)s

4
2
s = -2.5 + j4.33

= 6.26

2Kc
s + 0.5
s + 5.02

4
s(s + 0.5)

2
s = -2.5 + j4.33

= 1

T1 = 2,  g =
5.02
0.5

= 10.04
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The compensated system will have the open-loop transfer function

Because of the cancellation of the (s+0.5) terms, the compensated system is a third-order system.
(Mathematically, this cancellation is exact, but practically such cancellation will not be exact be-
cause some approximations are usually involved in deriving the mathematical model of the sys-
tem and, as a result, the time constants are not precise.) The root-locus plot of the compensated
system is shown in Figure 6–56(a).An enlarged view of the root-locus plot near the origin is shown
in Figure 6–56(b). Because the angle contribution of the phase lag portion of the lag–lead
compensator is quite small, there is only a small change in the location of the dominant closed-
loop poles from the desired location, The characteristic equation for the com-
pensated system is

or

Hence the new closed-loop poles are located at

The new damping ratio is z=0.491.Therefore the compensated system meets all the required per-
formance specifications. The third closed-loop pole of the compensated system is located at

Since this closed-loop pole is very close to the zero at the effect of this pole
on the response is small. (Note that, in general, if a pole and a zero lie close to each other on the
negative real axis near the origin, then such a pole-zero combination will yield a long tail of small
amplitude in the transient response.)

s = -0.2,s = -0.2078.

s = -2.4123 ; j4.2756

= (s + 2.4123 + j4.2756)(s + 2.4123 - j4.2756)(s + 0.2078) = 0

s3 + 5.0325s2 + 25.1026s + 5.008

s(s + 5.02)(s + 0.01247) + 25.04(s + 0.2) = 0

s = -2.5 ; j4.33.

Gc(s)G(s) =
25.04(s + 0.2)

s(s + 5.02)(s + 0.01247)
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(a) Root-locus plot of the compensated system; (b) root-locus plot near the origin.
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Transient-response
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compensated system
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system. (a) Unit-step
response curves;
(b) unit-ramp
response curves.

The unit-step response curves and unit-ramp response curves before and after compensation
are shown in Figure 6–57. (Notice a long tail of a small amplitude in the unit-step response of the
compensated system.)

EXAMPLE 6–9 Consider the control system of Example 6–8 again. Suppose that we use a lag–lead compensator
of the form given by Equation (6–24), or

Gc(s) = Kc

a s +
1

T1
b a s +

1

T2
b

a s +
b

T1
b a s +

1

bT2
b   (b 7 1)
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Assuming the specifications are the same as those given in Example 6–8, design a compensator
Gc(s).

The desired locations for the dominant closed-loop poles are at

The open-loop transfer function of the compensated system is

Since the requirement on the static velocity error constant Kv is 80 sec–1, we have

Thus

The time constant and the value of b are determined from

(The angle deficiency of 55° was obtained in Example 6–8.) Referring to Figure 6–58, we can
easily locate points A and B such that

(Use a graphical approach or a trigonometric approach.) The result is

or

The phase-lead portion of the lag–lead network thus becomes

For the phase-lag portion, we choose such that it satisfies the conditions

-5° 6 n s +
1

T2

s +
1

3.503T2
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Determination of the
desired pole-zero
location.

By simple calculations, we find that if we choose , then

and if we choose , then

Since is one of the time constants of the lag–lead compensator, it should not be too large. If
can be acceptable from practical viewpoint, then we may choose . Then

Thus, the lag–lead compensator becomes

The compensated system will have the open-loop transfer function

No cancellation occurs in this case, and the compensated system is of fourth order. Because the
angle contribution of the phase lag portion of the lag–lead network is quite small, the dominant
closed-loop poles are located very near the desired location. In fact, the location of the dominant
closed-loop poles can be found from the characteristic equation as follows: The characteristic
equation of the compensated system is

which can be simplified to 

= (s + 2.4539 + j4.3099)(s + 2.4539 - j4.3099)(s + 0.1003)(s + 3.8604) = 0

s4 + 8.8685s3 + 44.4219s2 + 99.3188s + 9.52

(s + 8.34)(s + 0.0285)s(s + 0.5) + 40(s + 2.38)(s + 0.1) = 0

Gc(s)G(s) =
40(s + 2.38)(s + 0.1)

(s + 8.34)(s + 0.0285)s(s + 0.5)

Gc(s) = (10) a s + 2.38

s + 8.34
b a s + 0.1

s + 0.0285
b

1

bT2
=

1

3.503 * 10
= 0.0285

T2 = 10T2 = 10
T2

1 7 magnitude 7 0.99, -1° 6 angle 6 0°

T2 = 10

1 7 magnitude 7 0.98, -1.5° 6 angle 6 0°

T2 = 5
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The dominant closed-loop poles are located at

The other closed-loop poles are located at

Since the closed-loop pole at is very close to a zero at they almost cancel
each other.Thus, the effect of this closed-loop pole is very small.The remaining closed-loop pole

does not quite cancel the zero at The effect of this zero is to cause a
larger overshoot in the step response than a similar system without such a zero. The unit-step
response curves of the compensated and uncompensated systems are shown in Figure 6–59(a).The
unit-ramp response curves for both systems are depicted in Figure 6–59(b).

s = -2.4.(s = -3.8604)

s = -0.1,s = -0.1003
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The maximum overshoot in the step response of the compensated system is approximately
38%. (This is much larger than the maximum overshoot of 21% in the design presented in Exam-
ple 6–8.) It is possible to decrease the maximum overshoot by a small amount from 38%, but not
to 20% if g=b is required, as in this example. Note that by not requiring g=b, we have an ad-
ditional parameter to play with and thus can reduce the maximum overshoot.

6–9 PARALLEL COMPENSATION

Thus far we have presented series compensation techniques using lead, lag, or lag–lead
compensators. In this section we discuss parallel compensation technique. Because in the
parallel compensation design the controller (or compensator) is in a minor loop, the de-
sign may seem to be more complicated than in the series compensation case. It is, how-
ever, not complicated if we rewrite the characteristic equation to be of the same form
as the characteristic equation for the series compensated system. In this section we pres-
ent a simple design problem involving parallel compensation.

Basic Principle for Designing Parallel Compensated System. Referring to
Figure 6–60(a), the closed-loop transfer function for the system with series compensa-
tion is

The characteristic equation is

Given G and H, the design problem becomes that of determining the compensator Gc

that satisfies the given specification.

1 + Gc GH = 0

C

R
=

Gc G
1 + Gc GH

G1(s) G2(s)

H(s)

Gc(s)

Gc(s) G(s)

H(s)

(a)

(b)

+
–

+
–

+
–

CR

R C

Figure 6–60
(a) Series
compensation;
(b) parallel or
feedback
compensation.
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The closed-loop transfer function for the system with parallel compensation 
[Figure 6–60(b)] is

The characteristic equation is

By dividing this characteristic equation by the sum of the terms that do not involve Gc,
we obtain

(6–25)

If we define

then Equation (6–25) becomes

Since Gf is a fixed transfer function, the design of Gc becomes the same as the case of
series compensation. Hence the same design approach applies to the parallel compen-
sated system.

Velocity Feedback Systems. A velocity feedback system (tachometer feedback
system) is an example of parallel compensated systems.The controller (or compensator)
in such a system is a gain element.The gain of the feedback element in a minor loop must
be determined properly so that the entire system satisfies the given design specifica-
tions.The characteristic of such a velocity feedback system is that the variable parame-
ter does not appear as a multiplying factor in the open-loop transfer function, so that
direct application of the root-locus design technique is not possible. However, by rewrit-
ing the characteristic equation such that the variable parameter appears as a multiply-
ing factor, then the root-locus approach to the design is possible.

An example of control system design using parallel compensation technique is pre-
sented in Example 6–10.

EXAMPLE 6–10 Consider the system shown in Figure 6–61. Draw a root-locus diagram.Then determine the value
of k such that the damping ratio of the dominant closed-loop poles is 0.4.

Here the system involves velocity feedback. The open-loop transfer function is

Open-loop transfer function =
20

s(s + 1)(s + 4) + 20ks

1 + Gc Gf = 0

Gf =
G2

1 + G1 G2 H

1 +
Gc G2

1 + G1 G2 H
= 0

1 + G1 G2 H + G2 Gc = 0

C

R
=

G1 G2

1 + G2 Gc + G1 G2 H

C(s)R(s) 20
(s + 1) (s + 4)

1
s

+
–

+
–

k

Figure 6–61
Control system.
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Notice that the adjustable variable k does not appear as a multiplying factor. The characteristic
equation for the system is

(6–26)
Define

Then Equation (6–26) becomes

(6–27)

Dividing both sides of Equation (6–27) by the sum of the terms that do not contain K, we get

or

(6–28)

Equation (6–28) is of the form of Equation (6–11).
We shall now sketch the root loci of the system given by Equation (6–28). Notice that the

open-loop poles are located at s=j2, s=–j2, s=–5, and the open-loop zero is located at s=0.
The root locus exists on the real axis between 0 and –5. Since

we have

The intersection of the asymptotes with the real axis can be found from

as

The angle of departure (angle u) from the pole at s=j2 is obtained as follows:

Thus, the angle of departure from the pole s=j2 is 158.2°. Figure 6–62 shows a root-locus plot
for the system. Notice that two branches of the root locus originate from the poles at and
terminate on the zeros at infinity. The remaining one branch originates from the pole at s=–5
and terminates on the zero at s=0.

Note that the closed-loop poles with z=0.4 must lie on straight lines passing through the
origin and making the angles with the negative real axis. In the present case, there are two
intersections of the root-locus branch in the upper half s plane and the straight line of angle 66.42°.
Thus, two values of K will give the damping ratio z of the closed-loop poles equal to 0.4.At point P,
the value of K is

Hence

k =
K

20
= 0.4490  at point P

K = 2 (s + j2)(s - j2)(s + 5)

s
2
s = -1.0490 + j2.4065

= 8.9801

;66.42°

s = ;j2

u = 180° - 90° - 21.8° + 90° = 158.2°

s = -2.5

lim
s S q

Ks

s3 + 5s2 + 4s + 20
= lim

s S q

K

s2 + 5s + p = lim
s S q

K

(s + 2.5)2

Angles of asymptote =
;180°(2k + 1)

2
= ; 90°

lim
s S q

Ks

(s + j2)(s - j2)(s + 5)
= lim

s S q

K

s2

1 +
Ks

(s + j2)(s - j2)(s + 5)
= 0

1 +
Ks

s3 + 5s2 + 4s + 20
= 0

s3 + 5s2 + 4s + Ks + 20 = 0

20k = K

s3 + 5s2 + 4s + 20ks + 20 = 0
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At point Q, the value of K is

Hence

Thus, we have two solutions for this problem. For k=0.4490, the three closed-loop poles are
located at

For k=1.4130, the three closed-loop poles are located at

It is important to point out that the zero at the origin is the open-loop zero, but not the
closed-loop zero. This is evident, because the original system shown in Figure 6–61 does not
have a closed-loop zero, since

G(s)

R(s)
=

20

s(s + 1)(s + 4) + 20(1 + ks)

s = -2.1589 + j4.9652,  s = -2.1589 - j4.9652,  s = -0.6823

s = -1.0490 + j2.4065,  s = -1.0490 - j2.4065,  s = -2.9021

k =
K

20
= 1.4130  at point Q

K = 2 (s + j2)(s - j2)(s + 5)

s
2
s = -2.1589 + j4.9652

= 28.260
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Figure 6–62
Root-locus plot for
the system shown in
Figure 6–61.
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The open-loop zero at s=0 was introduced in the process of modifying the characteristic equa-
tion such that the adjustable variable K=20k was to appear as a multiplying factor.

We have obtained two different values of k to satisfy the requirement that the damping ratio
of the dominant closed-loop poles be equal to 0.4. The closed-loop transfer function with
k=0.4490 is given by

The closed-loop transfer function with k=1.4130 is given by

Notice that the system with k=0.4490 has a pair of dominant complex-conjugate closed-loop
poles, while in the system with k=1.4130 the real closed-loop pole at s=–0.6823 is dominant,
and the complex-conjugate closed-loop poles are not dominant. In this case, the response char-
acteristic is primarily determined by the real closed-loop pole.

Let us compare the unit-step responses of both systems. MATLAB Program 6–14 may be
used for plotting the unit-step response curves in one diagram. The resulting unit-step response
curves for k=0.4490 and c2(t) for k=1.4130 D are shown in Figure 6–63.Cc1(t)

 =
20

(s + 2.1589 + j4.9652)(s + 2.1589 - j4.9652)(s + 0.6823)

 
C(s)

R(s)
=

20

s3 + 5s2 + 32.26s + 20

 =
20

(s + 1.0490 + j2.4065)(s + 1.0490 - j2.4065)(s + 2.9021)

 
C(s)

R(s)
=

20

s3 + 5s2 + 12.98s + 20

MATLAB Program 6–14

% ---------- Unit-step response ----------

% ***** Enter numerators and denominators of systems with
% k = 0.4490 and k = 1.4130, respectively. *****

num1 = [20];
den1 = [1  5  12.98  20];
num2 = [20];
den2 = [1  5  32.26  20];
t = 0:0.1:10;
c1 = step(num1,den1,t);
c2 = step(num2,den2,t);
plot(t,c1,t,c2)
text(2.5,1.12,'k = 0.4490')
text(3.7,0.85,'k = 1.4130')
grid
title('Unit-step Responses of Two Systems')
xlabel('t Sec')
ylabel('Outputs c1 and c2')
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From Figure 6–63 we notice that the response of the system with k=0.4490 is oscillatory.
(The effect of the closed-loop pole at s=–2.9021 on the unit-step response is small.) For the
system with k=1.4130, the oscillations due to the closed-loop poles at 
damp out much faster than purely exponential response due to the closed-loop pole at s=–0.6823.

The system with k=0.4490 (which exhibits a faster response with relatively small overshoot)
has a much better response characteristic than the system with k=1.4130 (which exhibits a slow
overdamped response). Therefore, we should choose k=0.4490 for the present system.

EXAMPLE PROBLEMS AND SOLUTIONS

A–6–1. Sketch the root loci for the system shown in Figure 6–64(a). (The gain K is assumed to be posi-
tive.) Observe that for small or large values of K the system is overdamped and for medium val-
ues of K it is underdamped.

Solution. The procedure for plotting the root loci is as follows:

1. Locate the open-loop poles and zeros on the complex plane. Root loci exist on the negative
real axis between 0 and –1 and between –2 and –3.

2. The number of open-loop poles and that of finite zeros are the same. This means that there
are no asymptotes in the complex region of the s plane.

3. Determine the breakaway and break-in points. The characteristic equation for the system is

or

K = -
s(s + 1)

(s + 2)(s + 3)

1 +
K(s + 2)(s + 3)

s(s + 1)
= 0

s = -2.1589 ; j4.9652
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Unit-step response
curves for the system
shown in Figure 6–61
when the damping
ratio z of the
dominant closed-
loop poles is set
equal to 0.4. (Two
possible values of k
give the damping
ratio z equal to 0.4.)
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The breakaway and break-in points are determined from

as follows:

Notice that both points are on root loci. Therefore, they are actual breakaway or break-in
points. At point s=–0.634, the value of K is

Similarly, at s=–2.366,

(Because point s=–0.634 lies between two poles, it is a breakaway point, and because point
s=–2.366 lies between two zeros, it is a break-in point.)

K = -
(–2.366)(–1.366)

(–0.366)(0.634)
= 14

K = -
(-0.634)(0.366)

(1.366)(2.366)
= 0.0718

s = -0.634,  s = -2.366

 = 0

 = - 
4(s + 0.634)(s + 2.366)C(s + 2)(s + 3) D 2

 
dK
ds

= - 
(2s + 1)(s + 2)(s + 3) - s(s + 1)(2s + 5)C(s + 2)(s + 3) D 2

(a) (b)

R(s) C(s)

jv
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K = 0.0718

K = 14
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–j1

–j2

K(s + 2)
s + 3

s(s + 1)
+

–

Figure 6–64
(a) Control system; (b) root-locus plot.
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4. Determine a sufficient number of points that satisfy the angle condition. (It can be found
that the root loci involve a circle with center at –1.5 that passes through the breakaway and
break-in points.) The root-locus plot for this system is shown in Figure 6–64(b).

Note that this system is stable for any positive value of K since all the root loci lie in the left-
half s plane.

Small values of K (0<K<0.0718) correspond to an overdamped system. Medium values
of K (0.0718<K<14) correspond to an underdamped system. Finally, large values of
K (14<K) correspond to an overdamped system. With a large value of K, the steady state can
be reached in much shorter time than with a small value of K.

The value of K should be adjusted so that system performance is optimum according to a
given performance index.

A–6–2. Sketch the root loci for the system shown in Figure 6–65(a).

Solution. A root locus exists on the real axis between points s=–1 and s=–3.6. The asymp-
totes can be determined as follows:

The intersection of the asymptotes and the real axis is found from

s = -
0 + 0 + 3.6 - 1

3 - 1
= -1.3

Angles of asymptotes =
;180°(2k + 1)

3 - 1
= 90°, -90°

(a) (b)

jv

s–4 –3 –2 0 1

j3

j1

–j1

–j3

–1

–j2

j2

K(s + 1)
s2(s + 3.6)

+
–

Figure 6–65
(a) Control system; (b) root-locus plot.
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Since the characteristic equation is

we have

The breakaway and break-in points are found from

or

from which we get

Point s=0 corresponds to the actual breakaway point. But points are neither
breakaway nor break-in points, because the corresponding gain values K become complex
quantities.

To check the points where root-locus branches may cross the imaginary axis, substitute 
into the characteristic equation, yielding.

or

Notice that this equation can be satisfied only if v=0, K=0. Because of the presence of a dou-
ble pole at the origin, the root locus is tangent to the jv axis at v=0. The root-locus branches do
not cross the jv axis. Figure 6–65(b) is a sketch of the root loci for this system.

A–6–3. Sketch the root loci for the system shown in Figure 6–66(a).

Solution. A root locus exists on the real axis between point s=–0.4 and s=–3.6. The angles of
asymptotes can be found as follows:

The intersection of the asymptotes and the real axis is obtained from

Next we shall find the breakaway points. Since the characteristic equation is

we have

K = -
s3 + 3.6s2

s + 0.4

s3 + 3.6s2 + Ks + 0.4K = 0

s = -
0 + 0 + 3.6 - 0.4

3 - 1
= -1.6

Angles of asymptotes =
;180°(2k + 1)

3 - 1
= 90°, -90°

AK - 3.6v2B + jvAK - v2B = 0

(jv)3 + 3.6(jv)2 + Kjv + K = 0

s = jv

s = 1.65 ; j0.9367

s = 0,  s = -1.65 + j0.9367,  s = -1.65 - j0.9367

s3 + 3.3s2 + 3.6s = 0

dK
ds

= -
A3s2 + 7.2sB(s + 1) - As3 + 3.6s2B

(s + 1)2 = 0

K = -
s3 + 3.6s2

s + 1

s3 + 3.6s2 + K(s + 1) = 0
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The breakaway and break-in points are found from

from which we get

or

Thus, the breakaway or break-in points are at s=0 and s=–1.2. Note that s=–1.2 is a double
root.When a double root occurs in at point s=–1.2, at this point.The
value of gain K at point s=–1.2 is

This means that with K=4.32 the characteristic equation has a triple root at point s=–1.2. This
can be easily verified as follows:

s3 + 3.6s2 + 4.32s + 1.728 = (s + 1.2)3 = 0

K = -
s3 + 3.6s2

s + 4
2
s = -1.2

= 4.32

d2K�Ads2B = 0dK�ds = 0

s(s + 1.2)2 = 0

s3 + 2.4s2 + 1.44s = 0

dK
ds

= -
A3s2 + 7.2sB(s + 0.4) - As3 + 3.6s2B

(s + 0.4)2 = 0

(a) (b)

jv

s–4 –3 –2 0 1

j3

j1

–j1

–j3

–j2

j2

K(s + 0.4)
s2(s + 3.6)

–1

–60°

60°

+
–

Figure 6–66
(a) Control system; (b) root-locus plot.
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Hence, three root-locus branches meet at point s=–1.2. The angles of departures at point
s=–1.2 of the root locus branches that approach the asymptotes are that is, 60° and
–60°. (See Problem A–6–4.)

Finally, we shall examine if root-locus branches cross the imaginary axis. By substituting s=jv
into the characteristic equation, we have

or

This equation can be satisfied only if v=0, K=0. At point v=0, the root locus is tangent to
the jv axis because of the presence of a double pole at the origin.There are no points where root-
locus branches cross the imaginary axis.

A sketch of the root loci for this system is shown in Figure 6–66(b).

A–6–4. Referring to Problem A–6–3, obtain the equations for the root-locus branches for the system
shown in Figure 6–66(a). Show that the root-locus branches cross the real axis at the breakaway
point at angles ; 60°.

Solution. The equations for the root-locus branches can be obtained from the angle condition

which can be rewritten as

By substituting we obtain

or

By rearranging, we have

Taking tangents of both sides of this last equation, and noting that

we obtain

which can be simplified to

vs - v(s + 0.4)

(s + 0.4)s + v2 =
v(s + 3.6) + vs
s(s + 3.6) - v2

v

s + 0.4
-
v

s

1 +
v

s + 0.4

v

s

=

v

s
+

v

s + 3.6

1 -
v

s

v

s + 3.6

tan c tan-1 a v

s + 3.6
b ; 180°(2k + 1) d =

v

s + 3.6

tan-1 a v

s + 0.4
b - tan-1 a v

s
b = tan-1 a v

s
b + tan-1 a v

s + 3.6
b ;180°(2k + 1)

tan-1 a v

s + 0.4
b - 2 tan-1 a v

s
b - tan-1 a v

s + 3.6
b = ;180°(2k + 1)

/s + jv + 0.4 - 2/s + jv - /s + jv + 3.6 = ;180°(2k + 1)

s = s + jv,

/s + 0.4 - 2/s - /s + 3.6 = ;180°(2k + 1)

nK(s + 0.4)

s2(s + 3.6)
= ;180°(2k + 1)

A0.4K - 3.6v2B + jvAK - v2B = 0

(jv)3 + 3.6(jv)2 + K(jv) + 0.4K = 0

;180°�3,



Example Problems and Solutions 353

or

which can be further simplified to

For s Z –1.6, we may write this last equation as

which gives the equations for the root locus as follows:

The equation v=0 represents the real axis. The root locus for 0 � K � q is between points
s=–0.4 and s=–3.6. (The real axis other than this line segment and the origin s=0 corre-
sponds to the root locus for –q � K<0.)

The equations

(6–29)

represent the complex branches for 0 � K � q. These two branches lie between s=–1.6 and
s=0. [See Figure 6–66(b).] The slopes of the complex root-locus branches at the breakaway
point (s=–1.2) can be found by evaluating of Equation (6–29) at point s=–1.2.

Since the root-locus branches intersect the real axis with angles 

A–6–5. Consider the system shown in Figure 6–67(a). Sketch the root loci for the system. Observe that
for small or large values of K the system is underdamped and for medium values of K it is
overdamped.

Solution. A root locus exists on the real axis between the origin and –q. The angles of asymp-
totes of the root-locus branches are obtained as

The intersection of the asymptotes and the real axis is located on the real axis at

The breakaway and break-in points are found from Since the characteristic equation is

s3 + 4s2 + 5s + K = 0

dK�ds = 0.

s = -
0 + 2 + 2

3
= -1.3333

Angles of asymptotes =
;180°(2k + 1)

3
= 60°, -60°, -180°

;60°.tan-113 = 60°,

dv
ds
2
s= -1.2

= ;A
-s

s + 1.6
2
s= -1.2

= ;A
1.2

0.4
= ;13

dv�ds

v = ;(s + 1.2)A
-s

s + 1.6

 v = -(s + 1.2)A
-s

s + 1.6

 v = (s + 1.2)A
-s

s + 1.6

 v = 0

v cv - (s + 1.2)A
-s

s + 1.6
d cv + (s + 1.2)A

-s
s + 1.6

d = 0

v Cs(s + 1.2)2 + (s + 1.6)v2 D = 0

vAs3 + 2.4s2 + 1.44s + 1.6v2 + sv2B = 0
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we have

Now we set

which yields

Since these points are on root loci, they are actual breakaway or break-in points. (At point s=–1,
the value of K is 2, and at point s=–1.6667, the value of K is 1.852.)

The angle of departure from a complex pole in the upper-half s plane is obtained from

or

The root-locus branch from the complex pole in the upper-half s plane breaks into the real axis
at s=–1.6667.

Next we determine the points where root-locus branches cross the imaginary axis. By substi-
tuting s=jv into the characteristic equation, we have

or

from which we obtain

v = ; 15 ,  K = 20  or  v = 0,  K = 0

AK - 4v2B + jvA5 - v2B = 0

(jv)3 + 4(jv)2 + 5(jv) + K = 0

u = -63.43°

u = 180° - 153.43° - 90°

s = -1,  s = -1.6667

dK
ds

= - A3s2 + 8s + 5B = 0

K = - As3 + 4s2 + 5sB

(a)

(b)

K
s(s2 + 4s + 5)

jv

s–4 –3 –2 0 1

j3

j2

j1

–j2

–j1

–j3

–1

K = 2K = 1.852

+
–

Figure 6–67
(a) Control system;
(b) root-locus plot.
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Root-locus branches cross the imaginary axis at and The root-locus branch
on the real axis touches the jv axis at v=0. A sketch of the root loci for the system is shown in
Figure 6–67(b).

Note that since this system is of third order, there are three closed-loop poles. The nature of
the system response to a given input depends on the locations of the closed-loop poles.

For 0<K<1.852, there are a set of complex-conjugate closed-loop poles and a real closed-
loop pole. For 1.852 � K � 2, there are three real closed-loop poles. For example, the closed-
loop poles are located at

For 2<K, there are a set of complex-conjugate closed-loop poles and a real closed-loop pole.
Thus, small values of K (0<K<1.852) correspond to an underdamped system. (Since the real
closed-loop pole dominates, only a small ripple may show up in the transient response.) Medium
values of K (1.852 � K � 2) correspond to an overdamped system. Large values of K (2<K)
correspond to an underdamped system.With a large value of K, the system responds much faster
than with a smaller value of K.

A–6–6. Sketch the root loci for the system shown in Figure 6–68(a).

Solution. The open-loop poles are located at s=0, s=–1, s=–2+j3, and s=–2-j3. A root
locus exists on the real axis between points s=0 and s=–1. The angles of the asymptotes are
found as follows:

Angles of asymptotes =
;180°(2k + 1)

4
= 45°, -45°, 135°, -135°

 s = -1,    s = -1,    s = -2,    for K = 2

 s = -1.667,   s = -1.667,   s = -0.667,   for K = 1.852

v = -15 .v = 15

(a) (b)

jv

s–4 –3–6 –5 3–2 20 1

j3

j4

j5

j1

–j1

–j3

–j4

–j5

–1

–j2

j2

K
s(s + 1) (s2 + 4s +13)

+
–

Figure 6–68
(a) Control system; (b) root-locus plot.
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The intersection of the asymptotes and the real axis is found from

The breakaway and break-in points are found from Noting that

we have

from which we get

Point s=–0.467 is on a root locus. Therefore, it is an actual breakaway point. The gain values K
corresponding to points are complex quantities. Since the gain values are
not real positive, these points are neither breakaway nor break-in points.

The angle of departure from the complex pole in the upper-half s plane is

or

Next we shall find the points where root loci may cross the jv axis. Since the characteristic
equation is

by substituting s=jv into it we obtain

or

from which we obtain

The root-locus branches that extend to the right-half s plane cross the imaginary axis at
Also, the root-locus branch on the real axis touches the imaginary axis at 

Figure 6–68(b) shows a sketch of the root loci for the system. Notice that each root-locus branch
that extends to the right-half s plane crosses its own asymptote.

v = 0.v = ;1.6125.

v = ; 1.6125,  K = 37.44  or  v = 0,  K = 0

AK + v4 - 17v2B + jvA13 - 5v2B = 0

(jv)4 + 5(jv)3 + 17(jv)2 + 13(jv) + K = 0

s4 + 5s3 + 17s2 + 13s + K = 0

u = -142.13°

u = 180° - 123.69° - 108.44° - 90°

s = -1.642 ; j2.067

s = -0.467,  s = -1.642 + j2.067,  s = -1.642 - j2.067

dK
ds

= - A4s3 + 15s2 + 34s + 13B = 0

K = -s(s + 1)As2 + 4s + 13B = - As4 + 5s3 + 17s2 + 13sBdK�ds = 0.

s = -
0 + 1 + 2 + 2

4
= -1.25
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A–6–7. Sketch the root loci of the control system shown in Figure 6–69(a). Determine the range of gain
K for stability.

Solution. Open-loop poles are located at s=1, and A root locus
exists on the real axis between points s=1 and s=–q. The asymptotes of the root-locus
branches are found as follows:

The intersection of the asymptotes and the real axis is obtained as

The breakaway and break-in points can be located from Since

we have

which yields

(s+1)2=0

dK
ds

= - A3s2 + 6s + 3B = 0

K = -(s - 1)As2 + 4s + 7B = - As3 + 3s2 + 3s - 7BdK�ds = 0.

s = -
-1 + 2 + 2

3
= -1

Angles of asymptotes =
;180°(2k + 1)

3
= 60°, -60°, 180°

s = -2 - j13 .s = -2 + j13 ,

jv

s

j3

j2

j1

(a) (b)

K

(s – 1) (s2 + 4s + 7)

–j3

–j1

–4 –3 –2 0 1

K = 7
K = 8

K = 16

–1

+
–

–j2

Figure 6–69
(a) Control system; (b) root-locus plot.
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Thus the equation dK�ds=0 has a double root at s=–1. (This means that the characteristic
equation has a triple root at s=–1.) The breakaway point is located at s=–1. Three root-locus
branches meet at this breakaway point.The angles of departure of the branches at the breakaway
point are ;180°�3—that is, 60° and –60°.

We shall next determine the points where root-locus branches may cross the imaginary axis.
Noting that the characteristic equation is

or

we substitute into it and obtain

By rewriting this last equation, we have

This equation is satisfied when

The root-locus branches cross the imaginary axis at (where K=16) and (where
K=7). Since the value of gain K at the origin is 7, the range of gain value K for stability is

Figure 6–69(b) shows a sketch of the root loci for the system. Notice that all branches consist of
parts of straight lines.

The fact that the root-locus branches consist of straight lines can be verified as follows: Since
the angle condition is

we have

By substituting into this last equation,

or

which can be rewritten as

tan-1 a v + 13
s + 2

b + tan-1 a v - 13
s + 2

b = -tan-1 a v

s - 1
b ; 180°(2k + 1)

/s + 2 + jAv + 13B + /s + 2 + jAv - 13B = - /s - 1 + jv ; 180°(2k + 1)

/s - 1 + jv + /s + 2 + jv + j13 + /s + 2 + jv - j13 = ;180°(2k + 1)

s = s + jv

- /s - 1 - /s + 2 + j13 - /s + 2 - j13 = ;180°(2k + 1)

n K
(s - 1)As + 2 + j13B As + 2 - j13B = ;180°(2k + 1)

7 6 K 6 16

v = 0v = ;13

v = ;13 ,  K = 7 + 3v2 = 16  or  v = 0,  K = 7

AK - 7 - 3v2B + jvA3 - v2B = 0

(jv)3 + 3(jv)2 + 3(jv) - 7 + K = 0

s = jv

s3 + 3s2 + 3s - 7 + K = 0

(s - 1)As2 + 4s + 7B + K = 0
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Taking tangents of both sides of this last equation, we obtain

or

which can be simplified to

or

Further simplification of this last equation yields

which defines three lines:

Thus the root-locus branches consist of three lines. Note that the root loci for K>0 consist of
portions of the straight lines as shown in Figure 6–69(b). (Note that each straight line starts from
an open-loop pole and extends to infinity in the direction of 180°, 60°, or –60° measured from the
real axis.) The remaining portion of each straight line corresponds to K<0.

A–6–8. Consider a unity-feedback control system with the following feedforward transfer function:

Using MATLAB, plot the root loci and their asymptotes.

Solution. We shall plot the root loci and asymptotes on one diagram. Since the feedforward trans-
fer function is given by 

the equation for the asymptotes may be obtained as follows: Noting that

the equation for the asymptotes may be given by

Ga(s) =
K

(s + 1)3

lim
s S q

K

s3 + 3s2 + 2s
� lim

s S q

K

s3 + 3s2 + 3s + 1
=

K

(s + 1)3

=
K

s3 + 3s2 + 2s

G(s) =
K

s(s + 1)(s + 2)

G(s) =
K

s(s + 1)(s + 2)

v = 0,  s + 1 +
1

13
 v = 0,  s + 1 -

1

13
 v = 0

v as + 1 +
1
13
v b as + 1 -

1
13
v b = 0

vA3s2 + 6s + 3 - v2B = 0

2v(s + 2)(s - 1) = -vAs2 + 4s + 7 - v2B
2v(s + 2)

s2 + 4s + 4 - v2 + 3
= -

v

s - 1

v + 13

s + 2
+
v - 13

s + 2

1 - a v + 13

s + 2
b a v - 13

s + 2
b = -

v

s - 1
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Hence, for the system we have

num = [1]
den = [1  3  2  0]

and for the asymptotes,

numa = [1]
dena = [1  3  3  1]

In using the following root-locus and plot commands

r = rlocus(num,den)
a = rlocus(numa,dena)
plot([r  a])

the number of rows of r and that of a must be the same. To ensure this, we include the gain con-
stant K in the commands. For example,

K1 = 0:0.1:0.3;
K2 = 0.3:0.005:0.5:
K3 = 0.5:0.5:10;
K4 = 10:5:100;
K = [K1  K2  K3  K4]
r = rlocus(num,den,K)
a = rlocus(numa,dena,K)
y = [r    a]
plot(y, '-')

MATLAB Program 6–15 will generate a plot of root loci and their asymptotes as shown in Figure 6–70.

MATLAB Program 6–15

% ---------- Root-Locus Plots ----------
num = [1];
den = [1  3  2  0];
numa = [1];
dena = [1  3  3  1];
K1 = 0:0.1:0.3;
K2 = 0.3:0.005:0.5;
K3 = 0.5:0.5:10;
K4 = 10:5:100;
K = [K1  K2  K3  K4];
r = rlocus(num,den,K);
a = rlocus(numa,dena,K);
y = [r    a];
plot(y,'-')
v = [-4  4  -4  4]; axis(v)
grid
title('Root-Locus Plot of G(s) = K/[s(s + 1)(s + 2)] and Asymptotes')
xlabel('Real Axis')
ylabel('Imag Axis')
% ***** Manually draw open-loop poles in the hard copy *****



Example Problems and Solutions 361

Drawing two or more plots in one diagram can also be accomplished by using the hold com-
mand. MATLAB Program 6–16 uses the hold command. The resulting root-locus plot is shown
in Figure 6–71.

Root-Locus Plot of G(s) = K/[(s(s+1)(s+2)] and Asymptotes

Im
ag

 A
xi

s

4

–4

0

3

2

1

–1

–2

–3

Real Axis
–4 1–3 –2 –1 0 42 3Figure 6–70

Root-locus plot.

MATLAB Program 6–16

% ------------ Root-Locus Plots ------------
num = [1];
den = [1  3  2  0];
numa = [1];
dena = [1  3  3  1];
K1 = 0:0.1:0.3;
K2 = 0.3:0.005:0.5;
K3 = 0.5:0.5:10;
K4 = 10:5:100;
K = [K1  K2  K3  K4];
r = rlocus(num,den,K);
a = rlocus(numa,dena,K);
plot(r,'o')
hold
Current plot held
plot(a,'-')
v = [-4  4  -4  4]; axis(v)
grid
title('Root-Locus Plot of G(s) = K/[s(s+1)(s+2)] and Asymptotes')
xlabel('Real Axis')
ylabel('Imag Axis')
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A–6–9. Plot the root loci and asymptotes for a unity-feedback system with the following feedforward
transfer function:

Determine the exact points where the root loci cross the jv axis

Solution. The feedforward transfer function G(s) can be written as

Note that as s approaches infinity, can be written as 

where we used the following formula:

The expression

gives the equation for the asymptotes.

lim
s S q

G(s) = lim
s S q

K

(s + 1)4

(s + a)4 = s4 + 4as3 + 6a2s2 + 4a3s + a4

= lim
s S q

K

(s + 1)4

� lim
s S q

K

s4 + 4s3 + 6s2 + 4s + 1

lim
s S q

G(s) = lim
s S q

K

s4 + 4s3 + 11s2 + 14s + 10

lim
s S q

G(s)

G(s) =
K

s4 + 4s3 + 11s2 + 14s + 10

G(s) =
K

(s2 + 2s + 2)(s2 + 2s + 5)

Root-Locus Plot of G(s) = K/[s(s+1)(s+2)] and Aysmptotes
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Root-locus plot.
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The MATLAB program to plot the root loci of G(s) and the asymptotes is given in MATLAB
Program 6–17. Note that the numerator and denominator for G(s) are

num = [1]
den = [1  4  11  14  10]

For the numerator and denominator of the asymptotes we used

numa = [1]
dena = [1  4  6  4  1]

Figure 6–72 shows the plot of the root loci and asymptotes.
Since the characteristic equation for the system is 

(s2 + 2s + 2)(s2 + 2s + 5) + K = 0

lim
s S q

G(s)

MATLAB Program 6–17

% ***** Root-locus plot ***** 

num = [1];
den = [1   4  11  14   10];
numa = [1];
dena = [1   4  6  4   1];
r = rlocus(num,den);
plot(r,'-')
hold
Current plot held
plot(r,'o')
rlocus(numa,dena);
v = [-6  4  -5  5]; axis(v); axis('square')
grid
title('Plot of Root Loci and Asymptotes')
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Plot of Root Loci and Asymptotes

Figure 6–72
Plot of root loci and
asymptotes.
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the points where the root loci cross the imaginary axis can be found by substituting s=jv with
the characteristic equation as follows:

and equating the imaginary part to zero. The result is

Thus the exact points where the root loci cross the jv axis are By equating the real
part to zero, we get the gain value K at the crossing points to be 16.25.

A–6–10. Consider a unity-feedback control system with the feed-forward transfer function G(s) given by

Plot a root-locus diagram with MATLAB.

Solution. The feedforward transfer function G(s) can be written as

A possible MATLAB program to plot a root-locus diagram is shown in MATLAB Program 6–18.
The resulting root-locus plot is shown in Figure 6–73.

G(s) =
K(s + 1)

s4 + 4s3 + 11s2 + 14s + 10

G(s) =
K(s + 1)

(s2 + 2s + 2)(s2 + 2s + 5)

v = ;1.8708.

v = ;1.8708

= (v4 - 11v2 + 10 + K) + j(-4v3 + 14v) = 0

[(jv)2 + 2jv + 2][(jv)2 + 2jv + 5] + K

MATLAB Program 6–18

num = [1  1];
den = [1  4  11  14  10];
K1 = 0:0.1:2;
K2 = 2:0.0.2:2.5;
K3 = 2.5:0.5:10;
K4 = 10:1:50;
K = [K1  K2  K3  K4]
r = rlocus(num,den,K);
plot(r, 'o')
v = [-8  2  -5  5]; axis(v); axis('square')
grid
title('Root-Locus Plot of G(s) = K(s+1)/[(s^2+2s+2)(s^2+2s+5)]')
xlabel('Real Axis')
ylabel('Imag Axis')
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A–6–11. Obtain the transfer function of the mechanical system shown in Figure 6–74. Assume that the
displacement xi is the input and displacement xo is the output of the system.

Solution. From the diagram we obtain the following equations of motion:

Taking the Laplace transforms of these two equations, assuming zero initial conditions, and then
eliminating Y(s), we obtain

This is the transfer function between and By defining

we obtain

This mechanical system is a mechanical lead network.
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= a
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=
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Mechanical system.
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A–6–12. Obtain the transfer function of the mechanical system shown in Figure 6–75.Assume that the dis-
placement xi is the input and displacement xo is the output.

Solution. The equations of motion for this system are

By taking the Laplace transforms of these two equations, assuming zero initial conditions, we
obtain

If we eliminate Y(s) from the last two equations, the transfer function can be
obtained as

Define

If k1, k2, b1, and b2 are chosen such that there exists a ı that satisfies the following equation:

(6–30)

then can be obtained as

[Note that depending on the choice of k1, k2, b1, and b2, there does not exist a ı that satisfies
Equation (6–30).]

If such a ı exists and if for a given s1 (where s = s1 is one of the dominant closed-loop poles
of the control system to which we wish to use this mechanical device) the following conditions are
satisfied:

then the mechanical system shown in Figure 6–75 acts as a lag–lead compensator.

-5° 6 n s1 +
1
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s1 +
1
bT2
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A–6–13. Consider the model for a space-vehicle control system shown in Figure 6–76. Design a lead
compensator Gc(s) such that the damping ratio z and the undamped natural frequency vn of the
dominant closed-loop poles are 0.5 and 2 rad�sec, respectively.

Solution.
First Attempt: Assume the lead compensator Gc(s) to be

From the given specifications, z=0.5 and vn=2 rad�sec, the dominant closed-loop poles must
be located at

We first calculate the angle deficiency at this closed-loop pole.

This angle deficiency must be compensated by the lead compensator. There are many ways to
determine the locations of the pole and zero of the lead network. Let us choose the zero of the
compensator at s=–1. Then, referring to Figure 6–77, we have the following equation:

1.73205

x - 1
= tan (90° - 70.8934°) = 0.34641

 = -70.8934°

 Angle deficiency = -120° - 120° - 10.8934° + 180°

s = -1 ; j13

Gc(s) = Kc ± s +
1

T

s +
1

aT

≤  (0 6 a 6 1)

R(s) C(s)

Lead
compensator

Gc(s)

Space
vehicle

Sensor

1
s2

1
0.1s + 1

+
–

Figure 6–76
Space-vehicle control
system.

jv

s–1 0

19.1066°

70.8934°

j1.73205

x

Figure 6–77
Determination of the
pole of the lead
network.
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or

Hence,

The value of can be determined from the magnitude condition

as follows:

Thus

Since the open-loop transfer function becomes

a root-locus plot of the compensated system can be obtained easily with MATLAB by entering
num and den and using rlocus command. The result is shown in Figure 6–78.

 =
11.2(s + 1)

0.1s4 + 1.6s3 + 6s2

 Gc(s)G(s)H(s) = 11.2 
s + 1

(s + 6)s2(0.1s + 1)
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The closed-loop transfer function for the compensated system becomes

Figure 6–79 shows the unit-step response curve. Even though the damping ratio of the
dominant closed-loop poles is 0.5, the amount of overshoot is very much higher than expected.A
closer look at the root-locus plot reveals that the presence of the zero at s=–1 is increasing the
amount of the maximum overshoot. [In general, if a closed-loop zero or zeros (compensator zero
or zeros) lie to the right of the dominant pair of the complex poles, then the dominant poles are
no longer dominant.] If large maximum overshoot cannot be tolerated, the compensator zero(s)
should be shifted sufficiently to the left.

In the current design, it is desirable to modify the compensator and make the maximum
overshoot smaller. This can be done by modifying the lead compensator, as presented in the
following second attempt.

Second Attempt: To modify the shape of the root loci, we may use two lead networks, each
contributing half the necessary lead angle, which is Let us choose the
location of the zeros at s=–3. (This is an arbitrary choice. Other choices such as s=–2.5 and
s=–4 may be made.)

Once we choose two zeros at s=–3, the necessary location of the poles can be determined
as shown in Figure 6–80, or

which yields

y = 1 +
1.73205

0.09535
= 19.1652

 = tan 5.4466° = 0.09535

 
1.73205

y - 1
= tan (40.89334° - 35.4467°)

70.8934°�2 = 35.4467°.
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(s + 6)s2(0.1s + 1) + 11.2(s + 1)
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Figure 6–79
Unit-step response of
the compensated
system.
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Hence, the lead compensator will have the following transfer function:

The value of can be determined from the magnitude condition as follows:

or

Then the lead compensator just designed is

Then the open-loop transfer function becomes

A root-locus plot for the compensated system is shown in Figure 6–81(a). Notice that there is no
closed-loop zero near the origin.An expanded view of the root-locus plot near the origin is shown
in Figure 6–81(b).

The closed-loop transfer function becomes

The closed-loop poles are found as follows:

 s = -27.9606

 s = -9.1847 ; j7.4814

 s = -1 ; j1.73205

C(s)

R(s)
=

174.3864(s + 3)2(0.1s + 1)

(s + 19.1652)2s2(0.1s + 1) + 174.3864(s + 3)2
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Figures 6–82(a) and (b) show the unit-step response and unit-ramp response of the compensated
system.The unit-step response curve is reasonable and the unit-ramp response looks acceptable.
Notice that in the unit-ramp response the output leads the input by a small amount.This is because
the system has a feedback transfer function 1/(0.1s+1). If the feedback signal versus t is plotted,
together with the unit-ramp input, the former will not lead the input ramp at steady state. See
Figure 6–82(c).
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A–6–14. Consider a system with an unstable plant as shown in Figure 6–83(a). Using the root-locus
approach, design a proportional-plus-derivative controller that is, determine the values of Kp

and such that the damping ratio z of the closed-loop system is 0.7 and the undamped natural
frequency vn is 0.5 rad�sec.

Solution. Note that the open-loop transfer function involves two poles at s=1.085 and s=–1.085
and one zero at which is unknown at this point.

Since the desired closed-loop poles must have vn=0.5 rad�sec and z=0.7, they must be
located at

s = 0.5/180° ; 45.573°

s = -1�Td ,
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(z=0.7 corresponds to a line having an angle of 45.573° with the negative real axis.) Hence, the
desired closed-loop poles are at

The open-loop poles and the desired closed-loop pole in the upper half-plane are located in the
diagram shown in Figure 6–83(b). The angle deficiency at point s=–0.35+j0.357 is

This means that the zero at must contribute 11.939°, which, in turn, determines the
location of the zero as follows:

s = -
1

Td
= -2.039

s = -1�Td

-166.026° - 25.913° + 180° = -11.939°
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(a) PD control of an
unstable plant;
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Hence, we have

(6–31)

The value of is

The value of gain Kp can be determined from the magnitude condition as follows:

or

Hence,

By substituting the numerical values of and into Equation (6–31), we obtain

which gives the transfer function of the desired proportional-plus-derivative controller.

A–6–15. Consider the control system shown in Figure 6–84. Design a lag compensator Gc(s) such that the
static velocity error constant Kv is 50 sec–1 without appreciably changing the location of the orig-
inal closed-loop poles, which are at 

Solution. Assume that the transfer function of the lag compensator is

Gc(s) = K̂c

s +
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T

s +
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bT

  (b 7 1)

s = -2 ; j16 .
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Figure 6–84
Control system.
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Since Kv is specified as 50 sec–1, we have

Thus

Now choose Then

Choose T=10. Then the lag compensator can be given by

The angle contribution of the lag compensator at the closed-loop pole is

which is small.The magnitude of Gc(s) at is 0.981. Hence the change in the location
of the dominant closed-loop poles is very small.

The open-loop transfer function of the system becomes

The closed-loop transfer function is

To compare the transient-response characteristics before and after the compensation, the unit-step
and unit-ramp responses of the compensated and uncompensated systems are shown in Figures
6–85(a) and (b), respectively.The steady-state error in the unit-ramp response is shown in Figure
6–85(c). The designed lag compensator is acceptable.

C(s)

R(s)
=

10s + 1

s3 + 4.005s2 + 10.02s + 1

Gc(s)G(s) =
s + 0.1

s + 0.005

10

s(s + 4)

s = -2 + j6

 = -1.3616°

 /Gc(s) 2
s = -2 + j16

= tan-1 
16

-1.9
- tan-1 

16

-1.995

s = -2 + j16

Gc(s) =
s + 0.1

s + 0.005

b = 20

K̂c = 1.

K̂c b = 20

Kv = lim
s S 0

sGc(s)
10

s(s + 4)
= K̂c b2.5 = 50
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A–6–16. Consider a unity-feedback control system whose feedforward transfer function is given by

Design a compensator such that the dominant closed-loop poles are located at 
and the static velocity error constant Kv is equal to 80 sec–1.

Solution. The static velocity error constant of the uncompensated system is 
Since Kv=80 is required, we need to increase the open-loop gain by 128. (This implies that we
need a lag compensator.) The root-locus plot of the uncompensated system reveals that it is not
possible to bring the dominant closed-loop poles to by just a gain adjustment alone.
See Figure 6–86. (This means that we also need a lead compensator.) Therefore, we shall employ
a lag–lead compensator.

Let us assume the transfer function of the lag–lead compensator to be

where Kc=128. This is because

and we obtain Kc=128. The angle deficiency at the desired closed-loop pole is

The lead portion of the lag–lead compensator must contribute . To choose we may use the
graphical method presented in Section 6–8.
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The lead portion must satisfy the following conditions:

and

The first condition can be simplified as

By using the same approach as used in Section 6–8, the zero and pole can
be determined as follows:

See Figure 6–87. The value of b is thus determined as

For the lag portion of the compensator, we may choose

1

bT2
= 0.01

b = 14.419

1

T1
= 3.70,  b

T1
= 53.35

As = b�T1BAs = 1�T1B
4 s1 +

1

T1

s1 +
b

T1

4
s1 = -2 + j213

=
1

13.3333

ns1 + 1

T1

s1 +
b

T1

5
s1 = -2 + j213

= 60°

4128 ± s1 +
1
T1

s1 +
b

T1

≤GAs1B 4
s1 = -2 + j213

= 1

378 Chapter 6 / Control Systems Analysis and Design by the Root-Locus Method

–53.35

13.3333x

–3.70

60°

x

jv

s

s1

0
Figure 6–87
Graphical
determination of the
zero and pole of
the lead portion
of the compensator.



Example Problems and Solutions 379

Then

Noting that

the angle contribution of the lag portion is –1.697° and the magnitude contribution is 0.9837.This
means that the dominant closed-loop poles lie close to the desired location
Thus the compensator designed,

is acceptable. The feedforward transfer function of the compensated system becomes

A root-locus plot of the compensated system is shown in Figure 6–88(a). An enlarged root-locus
plot near the origin is shown in Figure 6–88(b).
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To verify the improved system performance of the compensated system, see the unit-step
responses and unit-ramp responses of the compensated and uncompensated systems shown in
Figures 6–89 (a) and (b), respectively.

A–6–17. Consider the system shown in Figure 6–90. Design a lag–lead compensator such that the 
static velocity error constant Kv is 50 sec–1 and the damping ratio z of the dominant closed-
loop poles is 0.5. (Choose the zero of the lead portion of the lag–lead compensator to cancel 
the pole at s=–1 of the plant.) Determine all closed-loop poles of the compensated 
system.
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1
s(s + 1) (s + 5)

Gc(s)+
–

Figure 6–90
Control system.

Solution. Let us employ the lag–lead compensator given by

where b>1. Then

The specification that determines the value of Kc , or

We now choose so that will cancel the (s+1) term of the plant. The lead
portion then becomes

For the lag portion of the lag–lead compensator we require

where s=s1 is one of the dominant closed-loop poles. Noting these requirements for the lag por-
tion of the compensator, at s=s1, the open-loop transfer function becomes

GcAs1BGAs1B � Kc a s1 + 1

s1 + b
b 1

s1As1 + 1B As1 + 5B = Kc
1

s1As1 + bB As1 + 5B

4 s1 +
1

T2

s1 +
1

bT2

4 � 1,  -5° 6 n s1 +
1

T2

s1 +
1

bT2

6 0°

s + 1

s + b

s + A1�T1BT1 = 1

Kc = 250

Kv = 50 sec-1

 =
Kc

5

 = lim
s S 0

s 
KcAT1 s + 1B AT2 s + 1BaT1

b
 s + 1 b AbT2 s + 1B  1

s(s + 1)(s + 5)

 Kv = lim
s S 0

sGc(s)G(s)

Gc(s) = Kc ± s +
1
T1

s +
b

T1

≤ ± s +
1
T2

s +
1
bT2

≤ = Kc

AT1 s + 1B AT2 s + 1BaT1

b
s + 1 b AbT2 s + 1B
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Then at , the following magnitude and angle conditions must be satisfied:

(6–32)

(6–33)

where k=0, 1, 2, p . In Equations (6–32) and (6–33), b and s1 are unknowns. Since the damping
ratio z of the dominant closed-loop poles is specified as 0.5, the closed-loop pole s=s1 can be writ-
ten as

where x is as yet undetermined.
Notice that the magnitude condition, Equation (6–32), can be rewritten as

Noting that we have

(6–34)

The angle condition, Equation (6–33), can be rewritten as

or

(6–35)

We need to solve Equations (6–34) and (6–35) for b and x. By several trial-and-error calculations,
it can be found that

Thus

The lag portion of the lag–lead compensator can be determined as follows: Noting that the pole
and zero of the lag portion of the compensator must be located near the origin, we may choose

That is,

1

T2
= 0.16025  or  T2 = 6.25

1

bT2
= 0.01

s1 = -1.9054 + j13 (1.9054) = -1.9054 + j3.3002

b = 16.025,  x = 1.9054

tan-1 a 13x

-x + b
b + tan-1 a 13x

-x + 5
b = 60°

= -120° - tan-1 a 13x

-x + b
b - tan-1 a 13x

- x + 5
b = -180°

nKc

1A-x + j13xB A-x + b + j13xB A-x + 5 + j13xB
x2(b - x)2 + 3x2 2(5 - x)2 + 3x2 = 125

Kc = 250,

2 KcA-x + j13xB A-x + b + j13xB A-x + 5 + j13xB 2 = 1

s1 = -x + j13x

 nKc
1

s1As1 + bB As1 + 5B  = ;180°(2k + 1)

 2Kc
1

s1As1 + bB As1 + 5B 2 = 1

s = s1
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With the choice of we find

(6–36)

and

(6–37)

Since

our choice of is acceptable. Then the lag–lead compensator just designed can be writ-
ten as

Therefore, the compensated system has the following open-loop transfer function:

A root-locus plot of the compensated system is shown in Figure 6–91(a). An enlarged root-locus
plot near the origin is shown in Figure 6–91(b).

The closed loop transfer function becomes

The closed-loop poles are located at

Notice that the dominant closed-loop poles differ from the dominant
closed-loop poles assumed in the computation of b and Small deviations of the dom-
inant closed-loop poles from are due to the
approximations involved in determining the lag portion of the compensator. [See Equations (6–36)
and (6–37).]

s = ;s1 = -1.9054 ; j3.3002s = -1.8308 ; j3.2359
T2 .s = ;s1

s = -1.8308 ; j3.2359

 s = -17.205

 s = -0.1684

 s = -1.8308 ; j3.2359

C(s)

R(s)
=

250(s + 0.16025)

s(s + 0.01)(s + 5)(s + 16.025) + 250(s + 0.16025)

Gc(s)G(s) =
250(s + 0.16025)

s(s + 0.01)(s + 5)(s + 16.025)

Gc(s) = 250 a s + 1

s + 16.025
b a s + 0.16025

s + 0.01
b

T2 = 6.25

-5° 6 -1.937° 6 0°

= tan-1 a 3.3002
-1.74515

b - tan-1 a 3.3002
-1.89054

b = -1.937°

n s1 +
1
T2

s1 +
1
bT2

= n-1.9054 + j3.3002 + 0.16025

-1.9054 + j3.3002 + 0.01

 = 2 -1.74515 + j3.3002

-1.89054 + j3.3002
2 = 0.98 � 1

 4 s1 +
1

T2

s1 +
1

bT2

4 = 2 -1.9054 + j3.3002 + 0.16025

-1.9054 + j3.3002 + 0.01
2

T2 = 6.25,
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Figure 6–91
(a) Root-locus plot
of compensated
system; (b) root-
locus plot near the
origin.

Figures 6–92(a) and (b) show the unit-step response and unit-ramp response of the designed
system, respectively. Note that the closed-loop pole at s=–0.1684 almost cancels the zero at
s=–0.16025. However, this pair of closed-loop pole and zero located near the origin pro-
duces a long tail of small amplitude. Since the closed-loop pole at s=–17.205 is located very
much farther to the left compared to the closed-loop poles at the effect
of this real pole on the system response is very small. Therefore, the closed-loop poles at

are indeed dominant closed-loop poles that determine the response
characteristics of the closed-loop system. In the unit-ramp response, the steady-state error in
following the unit-ramp input eventually becomes 1�Kv = 1

50 = 0.02.

s = -1.8308 ; j3.2359

s = -1.8308 ; j3.2359,
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A–6–18. Figure 6–93(a) is a block diagram of a model for an attitude-rate control system.The closed-loop
transfer function for this system is

The unit-step response of this system is shown in Figure 6–93(b). The response shows high-
frequency oscillations at the beginning of the response due to the poles at 
The response is dominated by the pole at The settling time is approximately 240 sec.s = -0.0167.

s = -0.0417 ; j2.4489.

 =
2(s + 0.05)

(s + 0.0417 + j2.4489)(s + 0.0417 - j2.4489)(s + 0.0167)

 
C(s)

R(s)
=
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Figure 6–92
(a) Unit-step
response of the
compensated system;
(b) unit-ramp
response of the
compensated system.
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Figure 6–93
(a) Attitude-rate
control system;
(b) unit-step
response.

It is desired to speed up the response and also eliminate the oscillatory mode at the beginning
of the response. Design a suitable compensator such that the dominant closed-loop poles are at

Solution. Figure 6–94 shows a block diagram for the compensated system. Note that the open-loop
zero at and the open-loop pole at s=0 generate a closed-loop pole between s=0
and s=–0.05. Such a closed-loop pole becomes a dominant closed-loop pole and makes the re-
sponse quite slow. Hence, it is necessary to replace this zero by a zero that is located far away
from the jv axis—for example, a zero at s = -4.

s = -0.05

s = -2 ; j213 .

Gc(s)
R(s) C(s)

1

Rate gyro

Hydraulic servo Aircraft

1
s

2s + 0.1
s2 + 0.1s + 4

+
–

Figure 6–94
Compensated
attitude-rate control
system.
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We now choose the compensator in the following form:

Then the open-loop transfer function of the compensated system becomes

To determine by the root-locus method, we need to find the angle deficiency at the desired
closed-loop pole The angle deficiency can be found as follows:

Hence, the lead compensator must provide 132.73°. Since the angle deficiency is –132.73°,
we need two lead compensators, each providing 66.365°.Thus will have the following form:

Suppose that we choose two zeros at s=–2. Then the two poles of the lead compensators can be
obtained from

or

(See Figure 6–95.) Hence,

Ĝc(s) = Kc a s + 2

s + 9.9158
b 2

 = 9.9158

 sp = 2 +
3.4641

0.4376169

3.4641

sp - 2
= tan(90° - 66.365°) = 0.4376169

= Kc a s + sz

s + sp
b 2

Ĝc(s)

Ĝc(s)
Ĝc(s)

 = -132.73°

 Angle deficiency = -143.088° - 120° - 109.642° + 60° + 180°

s = -2 + j213 .
Ĝc(s)

 = Ĝc(s) 
s + 4

sAs2 + 0.1s + 4B
 Gc(s)G(s) = Ĝc(s) 

s + 4

2s + 0.1
 
1

s
 

2s + 0.1

s2 + 0.1s + 4

Gc(s) = Ĝc(s)
s + 4

2s + 0.1

2 4−6 −2 0−4−8−10−12

j4

j2

–j4

–j2

66.365°

sp

s = −2 + j2 3

jv

s

Figure 6–95
Pole and zero of

.Ĝc(s)



388 Chapter 6 / Control Systems Analysis and Design by the Root-Locus Method

The entire compensator for the system becomes

The value of can be determined from the magnitude condition. Since the open-loop transfer
function is

the magnitude condition becomes

Hence,

Thus the compensator becomes

The open-loop transfer function is given by

A root-locus plot for the compensated system is shown in Figure 6–96. The closed-loop poles for
the compensated system are indicated in the plot. The closed-loop poles, the roots of the charac-
teristic equation

(s + 9.9158)2sAs2 + 0.1s + 4B + 88.0227(s + 2)2(s + 4) = 0

Gc(s)G(s) =
88.0227(s + 2)2(s + 4)

(s + 9.9158)2sAs2 + 0.1s + 4B
Gc(s) = 88.0227

(s + 2)2(s + 4)

(s + 9.9158)2(2s + 0.1)

Gc(s)

 = 88.0227

 Kc = 2 (s + 9.9158)2sAs2 + 0.1s + 4B
(s + 2)2(s + 4)

2
s = -2 + j213

2Kc

(s + 2)2(s + 4)

(s + 9.9158)2sAs2 + 0.1s + 4B 2 s = -2 + j213
= 1

Gc(s)G(s) = Kc

(s + 2)2(s + 4)

(s + 9.9158)2sAs2 + 0.1s + 4B
Kc

Gc(s) = Ĝc(s)
s + 4

2s + 0.1
= Kc

(s + 2)2

(s + 9.9158)2

s + 4

2s + 0.1

Gc(s)
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Figure 6–96
Root-locus plot of
the compensated
system.
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are as follows:

Now that the compensator has been designed, we shall examine the transient-response charac-
teristics with MATLAB. The closed-loop transfer function is given by

Figures 6–97(a) and (b) show the plots of the unit-step response and unit-ramp response of the
compensated system. These response curves show that the designed system is acceptable.

C(s)

R(s)
=

88.0227(s + 2)2(s + 4)

(s + 9.9158)2sAs2 + 0.1s + 4B + 88.0227(s + 2)2(s + 4)

 s = -0.8868

 s = -7.5224 ; j6.5326

 s = -2.0000 ; j3.4641
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(a) Unit-step
response of the
compensated system;
(b) unit-ramp
response of the
compensated system.
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A–6–19. Consider the system shown in Figure 6–98(a). Determine the value of a such that the damping ratio
z of the dominant closed poles is 0.5.

Solution. The characteristic equation is

The variable a is not a multiplying factor. Hence, we need to modify the characteristic equation.
Since the characteristic equation can be written as

we rewrite this equation such that a appears as a multiplying factor as follows:

Define

Then the characteristic equation becomes

Notice that the characteristic equation is in a suitable form for the construction of the root loci.

1 +
K

sAs2 + 9s + 18B = 0

10a = K

1 +
10a

sAs2 + 9s + 18B = 0

s3 + 9s2 + 18s + 10a = 0

1 +
10(s + a)

s(s + 1)(s + 8)
= 0

(a) (b)

s + a
s + 8

10
s(s + 1)

j4

j3

j2

–j4

–j3

–j2

–j1
0 1–1–3–5–7 –2 2–4–6

jv

s

60°K = 28

K = 28

j1

j6

–j6

j5

–j5

+
–

Figure 6–98
(a) Control system; (b) root-locus plot, where K=10a.
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This system involves three poles and no zero.The three poles are at s=0, s=–3, and s=–6.
A root-locus branch exists on the real axis between points  s=0 and s=–3. Also, another branch
exists between points s=–6 and s=–q.

The asymptotes for the root loci are found as follows:

The intersection of the asymptotes and the real axis is obtained from

The breakaway and break-in points can be determined from where

Now we set

which yields

or

Point s=–1.268 is on a root-locus branch.Hence,point s=–1.268 is an actual breakaway point.But
point s=–4.732 is not on the root locus and therefore is neither a breakaway nor break-in point.

Next we shall find points where root-locus branches cross the imaginary axis. We substitute
s=jv in the characteristic equation, which is

as follows:

or

from which we get

The crossing points are at and the corresponding value of gain K is 162. Also, a root-
locus branch touches the imaginary axis at v=0. Figure 6–98(b) shows a sketch of the root loci
for the system.

Since the damping ratio of the dominant closed-loop poles is specified as 0.5, the desired
closed-loop pole in the upper-half s plane is located at the intersection of the root-locus branch
in the upper-half s plane and a straight line having an angle of 60° with the negative real axis.The
desired dominant closed-loop poles are located at

At these points, the value of gain K is 28. Hence,

a =
K

10
= 2.8

s = -1 + j1.732,  s = -1 - j1.732

v = ;312

v = ;312 ,  K = 9v2 = 162  or  v = 0,  K = 0

AK - 9v2B + jvA18 - v2B = 0

(jv)3 + 9(jv)2 + 18(jv) + K = 0

s3 + 9s2 + 18s + K = 0

s = -1.268,  s = -4.732

s2 + 6s + 6 = 0

dK
ds

= - A3s2 + 18s + 18B = 0

K = - As3 + 9s2 + 18sB dK�ds = 0,

s = -
0 + 3 + 6

3
= -3

Angles of asymptotes =
;180°(2k + 1)

3
= 60°, -60°, 180°
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Since the system involves two or more poles than zeros (in fact, three poles and no zero), the
third pole can be located on the negative real axis from the fact that the sum of the three closed-
loop poles is –9. Hence, the third pole is found to be at

or

A–6–20. Consider the system shown in Figure 6–99(a). Sketch the root loci of the system as the velocity
feedback gain k varies from zero to infinity. Determine the value of k such that the closed-loop
poles have the damping ratio z of 0.7.

Solution. The open-loop transfer function is

Since k is not a multilying factor, we modify the equation such that k appears as a multiplying
factor. Since the characteristic equation is

we rewrite this equation as follows:

(6–38)

Define

Then Equation (6–38) becomes

1 +
Ks

s2 + s + 10
= 0

10k = K

1 +
10ks

s2 + s + 10
= 0

s2 + s + 10ks + 10 = 0

Open-loop transfer function =
10

(s + 1 + 10k)s

s = -7

s = -9 - (-1 + j1.732) - (-1 - j1.732)

R(s) C(s)1
s

k

jv

s

(a) (b)

10
s + 1

j4

j3

j2

−j1

j1

−j3

−j2

−j4

0 1−1−4−6 −2−3−5−7 2

K = 3.427

45.578
+

–
+

–

Figure 6–99
(a) Control system; (b) root-locus plot, where K=10k.
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Notice that the system has a zero at s=0 and two poles at Since this system
involves two poles and one zero, there is a possibility that a circular root locus exists. In fact, this
system has a circular root locus, as will be shown. Since the angle condition is

we have

By substituting into this last equation and rearranging, we obtain

which can be rewritten as

Taking tangents of both sides of this last equation, we obtain

which can be simplified to

or

which yields

Notice that v=0 corresponds to the real axis.The negative real axis (between s=0 and s=–q)
corresponds to K � 0, and the positive real axis corresponds to K<0. The equation

is an equation of a circle with center at s=0, v=0 with the radius equal to A portion of
this circle that lies to the left of the complex poles corresponds to the root locus for K>0. (The
portion of the circle which lies to the right of the complex poles corresponds to the root locus for
K<0.) Figure 6–99(b) shows a sketch of the root loci for K>0.

Since we require z=0.7 for the closed-loop poles, we find the intersection of the circular
root locus and a line having an angle of 45.57° (note that cos 45.57°=0.7) with the negative real
axis. The intersection is at s=–2.214+j2.258. The gain K corresponding to this point is 3.427.
Hence, the desired value of the velocity feedback gain k is

k =
K

10
= 0.3427

110 .

s2 + v2 = 10

v = 0  or  s2 + v2 = 10

vAs2 - 10 + v2B = 0

2v(s + 0.5)

(s + 0.5)2 - Av2 - 3.12252B =
v

s

v + 3.1225

s + 0.5
+
v - 3.1225

s + 0.5

1 - a v + 3.1225

s + 0.5
b a v - 3.1225

s + 0.5
b =

v

s

tan-1 a v + 3.1225

s + 0.5
b + tan-1 a v - 3.1225

s + 0.5
b = tan-1 a v

s
b ; 180°(2k + 1)

/s + 0.5 + j(v + 3.1225) + /s + 0.5 + j(v - 3.1225) = /s + jv ; 180°(2k + 1)

s = s + jv

/s - /s + 0.5 + j3.1225 - /s + 0.5 - j3.1225 = ;180°(2k + 1)

n Ks

s2 + s + 10
= ;180°(2k + 1)

s = -0.5 ; j3.1225.
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B–6–1. Plot the root loci for the closed-loop control sys-
tem with

B–6–2. Plot the root loci for the closed-loop control system
with

B–6–3. Plot the root loci for the system with

B–6–4. Show that the root loci for a control system with

are arcs of the circle centered at the origin with radius equal
to

B–6–5. Plot the root loci for a closed-loop control system
with

B–6–6. Plot the root loci for a closed-loop control system
with

Locate the closed-loop poles on the root loci such that the
dominant closed-loop poles have a damping ratio equal to
0.5. Determine the corresponding value of gain K.

B–6–7. Plot the root loci for the system shown in Figure
6–100. Determine the range of gain K for stability.

G(s) =
K(s + 9)

sAs2 + 4s + 11B ,  H(s) = 1

G(s) =
K(s + 0.2)

s2(s + 3.6)
,  H(s) = 1

110 .

G(s) =
KAs2 + 6s + 10B

s2 + 2s + 10
,  H(s) = 1

G(s) =
K

s(s + 0.5)As2 + 0.6s + 10B ,  H(s) = 1

G(s) =
K

s(s + 1)(s2 + 4s + 5)
,  H(s) = 1

G(s) =
K(s + 1)

s2 ,  H(s) = 1

B–6–8. Consider a unity-feedback control system with the
following feedforward transfer function:

Plot the root loci for the system. If the value of gain K is set
equal to 2, where are the closed-loop poles located?

B–6–9. Consider the system whose open-loop transfer func-
tion is given by

Show that the equation for the asymptotes is given by

Using MATLAB, plot the root loci and asymptotes for
the system.

B–6–10. Consider the unity-feedback system whose feed-
forward transfer function is

The constant-gain locus for the system for a given value of
K is defined by the following equation:

Show that the constant-gain loci for 0 � K � q may be
given by

Sketch the constant-gain loci for K=1, 2, 5, 10, and 20 on
the s plane.

B–6–11. Consider the system shown in Figure 6–101. Plot
the root loci with MATLAB. Locate the closed-loop poles
when the gain K is set equal to 2.

Cs(s + 1) + v2 D 2 + v2 = K2

2 K

s(s + 1)
2 = 1

G(s) =
K

s(s + 1)

Ga(s)Ha(s) =
K

s3 + 4.0068s2 + 5.3515s + 2.3825

G(s)H(s) =
K(s - 0.6667)

s4 + 3.3401s3 + 7.0325s2

G(s) =
K

sAs2 + 4s + 8B

2
s2 (s + 2)

s + 1
s + 5

K
R(s) C(s)

+
–

Figure 6–100
Control system.

1
s + 1

K(s + 1)
s(s2 + 2s + 6)

+
–

Figure 6–101
Control system.
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K(s – 1)
(s + 2) (s + 4)

+
–

G1(s)

(a)

(b)

K(1 – s)
(s + 2) (s + 4)

+
–

G2(s)

B–6–12. Plot root-locus diagrams for the nonminimum-phase
systems shown in Figures 6–102(a) and (b), respectively.

B–6–14. Consider the system shown in Figure 6–104. Plot
the root loci for the system. Determine the value of K such
that the damping ratio z of the dominant closed-loop poles
is 0.5. Then determine all closed-loop poles. Plot the unit-
step response curve with MATLAB.

Figure 6–102 (a) and (b) Nonminimum-phase systems.

B–6–13. Consider the mechanical system shown in Figure
6–103. It consists of a spring and two dashpots. Obtain the
transfer function of the system. The displacement xi is the
input and displacement xo is the output. Is this system a
mechanical lead network or lag network?

b2

b1

k

xi

xo

Figure 6–103
Mechanical system.

K
s(s2 + 4s + 5)

+
–

Figure 6–104 Control system.

B–6–15. Determine the values of K, and of the system
shown in Figure 6–105 so that the dominant closed-loop
poles have the damping ratio z=0.5 and the undamped
natural frequency vn=3 rad�sec.

T2T1 ,

CR T1s + 1
T2s + 1K

10
s(s + 1)

+
–

Figure 6–105 Control system.

B–6–16. Consider the control system shown in Figure 6–106.
Determine the gain K and time constant T of the controller
Gc(s) such that the closed-loop poles are located at
s = -2 ; j2.

1
s(s + 2)K(Ts + 1)+

–

Gc(s) G(s)

Figure 6–106 Control system.

Gc(s) 5
s(0.5s + 1)

+
–

Figure 6–107 Control system.

B–6–17. Consider the system shown in Figure 6–107. De-
sign a lead compensator such that the dominant closed-loop
poles are located at Plot the unit-step re-
sponse curve of the designed system with MATLAB.

s = -2 ; j213 .

B–6–18. Consider the system shown in Figure 6–108. De-
sign a compensator such that the dominant closed-loop poles
are located at s = -1 ; j1.

Gc(s) 1
s2

Lead
compensator

Space
vehicle

+
–

Figure 6–108 Control system.
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B–6–19. Referring to the system shown in Figure 6–109, de-
sign a compensator such that the static velocity error con-
stant is 20 sec–1 without appreciably changing the original
location of a pair of the complex-conjugate
closed-loop poles.

As = -2 ; j213BKv

B–6–20. Consider the angular-positional system shown in
Figure 6–110. The dominant closed-loop poles are located
at The damping ratio z of the dominant
closed-loop poles is 0.6.The static velocity error constant 
is 4.1 sec–1, which means that for a ramp input of 360°�sec
the steady-state error in following the ramp input is

It is desired to decrease ev to one-tenth of the present
value, or to increase the value of the static velocity error con-
stant to 41 sec–1. It is also desired to keep the damping ratio
z of the dominant closed-loop poles at 0.6.A small change in
the undamped natural frequency vn of the dominant closed-
loop poles is permissible.Design a suitable lag compensator to
increase the static velocity error constant as desired.

Kv

ev =
ui

Kv
=

360°�sec

4.1 sec-1
= 87.8°

Kv

s = -3.60 ; j4.80.

B–6–21. Consider the control system shown in Figure 6–111.
Design a compensator such that the dominant closed-loop
poles are located at and the static velocity
error constant is 50 sec–1.Kv

s = -2 ; j213

Gc(s) 16
s(s + 4)

+
–

Figure 6–109
Control system.

Gc(s)
820

s(s + 10) (s + 20)
+

–

Figure 6–110
Angular-positional system.

Gc(s)
10

s(s + 2) (s + 5)
+

–

Figure 6–111
Control system.

B–6–24. Consider the system shown in Figure 6–114, which
involves velocity feedback. Determine the values of the am-
plifier gain K and the velocity feedback gain so that the
following specifications are satisfied:

1. Damping ratio of the closed-loop poles is 0.5
2. Settling time � 2 sec
3. Static velocity error constant 
4. 0<Kh<1

Kv � 50 sec-1

Kh

R(s) C(s)1
s

Kh

K
2s + 1

+
–

+
–

Figure 6–114
Control system.

B–6–23. Consider the control system shown in Figure 6–113.
Design a compensator such that the unit-step response curve
will exhibit maximum overshoot of 25% or less and settling
time of 5 sec or less.

Gc(s)
2s + 1

s(s + 1) (s + 2)
+

–

Figure 6–112
Control system.

Gc(s) 1
s2 (s + 4)

+
–

Figure 6–113
Control system.

B–6–22. Consider the control system shown in Figure 6–112.
Design a compensator such that the unit-step response curve
will exhibit maximum overshoot of 30% or less and settling
time of 3 sec or less.
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B–6–25. Consider the system shown in Figure 6–115. The
system involves velocity feedback. Determine the value of
gain K such that the dominant closed-loop poles have a
damping ratio of 0.5. Using the gain K thus determined, ob-
tain the unit-step response of the system.

R(s) C(s)1
s

0.2

K
(s + 1) (s + 2)

+
–

+
–

Figure 6–115
Control system.

B–6–26. Consider the system shown in Figure 6–116. Plot
the root loci as a varies from 0 to q. Determine the value of
a such that the damping ratio of the dominant closed-loop
poles is 0.5.

s + a
2

s2 (s + 2)
+

–

Figure 6–116
Control system.

B–6–28. Consider the system shown in Figure 6–118. As-
suming that the value of gain K varies from 0 to q, plot the
root loci when and 0.5.

Compare unit-step responses of the system for the
following three cases:

(1) K=10, Kh=0.1

(2) K=10, Kh=0.3

(3) K=10, Kh=0.5

Kh = 0.1, 0.3,

B–6–27. Consider the system shown in Figure 6–117. Plot
the root loci as the value of k varies from 0 to q.What value
of k will give a damping ratio of the dominant closed-loop
poles equal to 0.5? Find the static velocity error constant of
the system with this value of k.

s + 1.4
s + 5

10
s(s + 1)

ks
s + 10

+
–

+
–

Figure 6–117
Control system.

R(s) C(s)1
s

Kh

K
s + 1

+
–

+
–

Figure 6–118
Control system.
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Control Systems Analysis
and Design by the

Frequency-Response Method

7–1 INTRODUCTION

By the term frequency response, we mean the steady-state response of a system to a
sinusoidal input. In frequency-response methods, we vary the frequency of the input
signal over a certain range and study the resulting response.

In this chapter we present frequency-response approaches to the analysis and design
of control systems.The information we get from such analysis is different from what we
get from root-locus analysis. In fact, the frequency response and root-locus approaches
complement each other. One advantage of the frequency-response approach is that we
can use the data obtained from measurements on the physical system without deriving
its mathematical model. In many practical designs of control systems both approaches
are employed. Control engineers must be familiar with both.

Frequency-response methods were developed in 1930s and 1940s by Nyquist, Bode,
Nichols, and many others. The frequency-response methods are most powerful in con-
ventional control theory. They are also indispensable to robust control theory.

The Nyquist stability criterion enables us to investigate both the absolute and relative
stabilities of linear closed-loop systems from a knowledge of their open-loop frequency-
response characteristics. An advantage of the frequency-response approach is that
frequency-response tests are, in general, simple and can be made accurately by use of
readily available sinusoidal signal generators and precise measurement equipment. Often
the transfer functions of complicated components can be determined experimentally by
frequency-response tests. In addition, the frequency-response approach has the advan-
tages that a system may be designed so that the effects of undesirable noise are negligible
and that such analysis and design can be extended to certain nonlinear control systems.
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Although the frequency response of a control system presents a qualitative picture of the
transient response, the correlation between frequency and transient responses is indirect,ex-
cept for the case of second-order systems. In designing a closed-loop system, we adjust the
frequency-response characteristic of the open-loop transfer function by using several de-
sign criteria in order to obtain acceptable transient-response characteristics for the system.

Obtaining Steady-State Outputs to Sinusoidal Inputs. We shall show that the
steady-state output of a transfer function system can be obtained directly from the si-
nusoidal transfer function—that is, the transfer function in which s is replaced by jv,
where v is frequency.

Consider the stable, linear, time-invariant system shown in Figure 7–1.The input and out-
put of the system,whose transfer function is G(s), are denoted by x(t) and y(t), respectively.
If the input x(t) is a sinusoidal signal, the steady-state output will also be a sinusoidal sig-
nal of the same frequency, but with possibly different magnitude and phase angle.

Let us assume that the input signal to the system is given by

[In this book “ ” is always measured in rad/sec. When the frequency is measured in
cycle/sec, we use notation “f ”. That is, .] 

Suppose that the transfer function G(s) of the system can be written as a ratio of two
polynomials in s; that is,

The Laplace-transformed output Y(s) of the system is then

(7–1)

where X(s) is the Laplace transform of the input x(t).
It will be shown that, after waiting until steady-state conditions are reached, the fre-

quency response can be calculated by replacing s in the transfer function by jv. It will
also be shown that the steady-state response can be given by

where M is the amplitude ratio of the output and input sinusoids and f is the phase
shift between the input sinusoid and the output sinusoid. In the frequency-response test,
the input frequency v is varied until the entire frequency range of interest is covered.

The steady-state response of a stable, linear, time-invariant system to a sinusoidal
input does not depend on the initial conditions. (Thus, we can assume the zero initial
condition.) If Y(s) has only distinct poles, then the partial fraction expansion of Equa-
tion (7–1) when x(t) = X yields

(7–2) =
a

s + jv
+

a–

s - jv
+

b1

s + s1
+

b2

s + s2
+ p +

bn

s + sn

 Y(s) = G(s)X(s) = G(s) 
vX

s2 + v2

sin vt

G(jv) = Mejf = M/f

Y(s) = G(s)X(s) =
p(s)

q(s)
X(s)

G(s) =
p(s)

q(s)
=

p(s)As + s1B As + s2B p As + snB
v = 2pf

v

x(t) = X sinvt

G(s)
X(s)

x(t)

Y(s)

y(t)Figure 7–1
Stable, linear, time-
invariant system.
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where a and the bi (where i=1, 2, p , n) are constants and is the complex conjugate
of a. The inverse Laplace transform of Equation (7–2) gives

(7–3)

For a stable system, –s1, –s2 , p , –sn have negative real parts.Therefore, as t approaches
infinity, the terms and approach zero.Thus, all the terms on the right-
hand side of Equation (7–3), except the first two, drop out at steady state.

If Y(s) involves multiple poles sj of multiplicity mj, then y(t) will involve terms such
as For a stable system, the terms approach zero
as t approaches infinity.

Thus, regardless of whether the system is of the distinct-pole type or multiple-pole
type, the steady-state response becomes

(7–4)

where the constant a can be evaluated from Equation (7–2) as follows:

Note that

Since G(jv) is a complex quantity, it can be written in the following form:

where @G(jv) @ represents the magnitude and f represents the angle of G(jv); that is,

The angle f may be negative, positive, or zero. Similarly, we obtain the following
expression for G(–jv):

Then, noting that

Equation (7–4) can be written

(7–5) = Y sin (vt + f)

 = X @G(jv) @ sin (vt + f)

 yss(t) = X @G(jv) @  ej(vt +f) - e-j(vt +f)

2j

a = -
X @G(jv) @e-jf

2j
,  a– =

X @G(jv) @ejf

2j

G(-jv) = @G(-jv) @e-jf = @G(jv) @e-jf

f = /G(jv) = tan-1 c imaginary part of G(jv)

real part of G(jv)
d

G(jv) = @G(jv) @ejf

a– = G(s)
vX

s2 + v2 (s - jv) 2
s = jv

=
XG(jv)

2j

a = G(s)
vX

s2 + v2 (s + jv) 2
s = -jv

= -
XG(-jv)

2j

yss(t) = ae-jvt + a–ejvt

thje-sj tthje-sj t Ahj = 0, 1, 2, p , mj - 1B.
e-sn te-s1 t, e-s2 t, p ,

y(t) = ae-jvt + a–ejvt + b1 e-s1 t + b2 e-s2 t + p + bn e-sn t  (t � 0)

a–
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X
Y

t

Input x(t) = X sin vt

Output y(t) = Y sin (vt + f)

Figure 7–2
Input and output
sinusoidal signals.

yx

G(s)

K
Ts + 1Figure 7–3

First-order system.

where Y=X @G(jv) @ . We see that a stable, linear, time-invariant system subjected to a
sinusoidal input will, at steady state, have a sinusoidal output of the same frequency as
the input. But the amplitude and phase of the output will, in general, be different from
those of the input. In fact, the amplitude of the output is given by the product of that of
the input and @G(jv) @ , while the phase angle differs from that of the input by the amount

An example of input and output sinusoidal signals is shown in Figure 7–2.
On the basis of this, we obtain this important result: For sinusoidal inputs,

Hence, the steady-state response characteristics of a system to a sinusoidal input can be
obtained directly from

The function G(jv) is called the sinusoidal transfer function. It is the ratio of Y(jv)
to X(jv), is a complex quantity, and can be represented by the magnitude and phase
angle with frequency as a parameter.The sinusoidal transfer function of any linear system
is obtained by substituting jv for s in the transfer function of the system.

As already mentioned in Chapter 6,a positive phase angle is called phase lead,and a neg-
ative phase angle is called phase lag.A network that has phase-lead characteristics is called
a lead network, while a network that has phase-lag characteristics is called a lag network.

EXAMPLE 7–1 Consider the system shown in Figure 7–3. The transfer function G(s) is

For the sinusoidal input x(t)=X sinvt, the steady-state output yss(t) can be found as follows:
Substituting jv for s in G(s) yields

G(jv) =
K

jTv + 1

G(s) =
K

Ts + 1

Y(jv)

X(jv)
= G(jv)

/G(jv) = nY(jv)

X(jv)
= phase shift of the output sinusoid with respect

to the input sinusoid

@G(jv) @ = 2 Y(jv)

X(jv)
2 = amplitude ratio of the output sinuisoid to the

input sinusoid

f = /G(jv).
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The amplitude ratio of the output to the input is

while the phase angle f is

Thus, for the input x(t)=X sinvt, the steady-state output yss(t) can be obtained from Equation
(7–5) as follows:

(7–6)

From Equation (7–6), it can be seen that for small v, the amplitude of the steady-state output
yss(t) is almost equal to K times the amplitude of the input.The phase shift of the output is small
for small v. For large v, the amplitude of the output is small and almost inversely proportional to
v. The phase shift approaches –90° as v approaches infinity. This is a phase-lag network.

EXAMPLE 7–2 Consider the network given by

Determine whether this network is a lead network or lag network.
For the sinusoidal input x(t)=X sinvt, the steady-state output yss(t) can be found as follows:

Since

we have

and

Thus the steady-state output is

From this expression, we find that if then Thus, if 
then the network is a lead network. If then the network is a lag network.

Presenting Frequency-Response Characteristics in Graphical Forms. The
sinusoidal transfer function, a complex function of the frequency v, is characterized by
its magnitude and phase angle, with frequency as the parameter. There are three
commonly used representations of sinusoidal transfer functions:

T1 6 T2 ,
T1 7 T2 ,tan-1 T1 v - tan-1 T2 v 7 0.T1 7 T2 ,

yss(t) =
XT221 + T2

1 v2

T121 + T2
2 v2

 sin Avt + tan-1 T1 v - tan-1 T2 vB
f = /G(jv) = tan-1 T1 v - tan-1 T2 v

@G(jv) @ =
T221 + T2

1 v2

T121 + T2
2 v2

G(jv) =
jv +

1

T1

jv +
1

T2

=
T2A1 + T1 jvB
T1A1 + T2 jvB

G(s) =
s +

1

T1

s +
1

T2

yss(t) =
XK

21 + T2v2
 sin Avt - tan-1 TvB

f = /G(jv) = -tan-1 Tv

@G(jv) @ =
K

21 + T2v2



Section 7–2 / Bode Diagrams 403

1. Bode diagram or logarithmic plot
2. Nyquist plot or polar plot
3. Log-magnitude-versus-phase plot (Nichols plots)

We shall discuss these representations in detail in this chapter. We shall include the
MATLAB approach to obtain Bode diagrams, Nyquist plots, and Nichols plots.

Outline of the Chapter. Section 7–1 has presented introductory material on the
frequency response. Section 7–2 presents Bode diagrams of various transfer-function
systems. Section 7–3 treats polar plots of transfer functions. Section 7–4 discusses 
log-magnitude-versus-phase plots. Section 7–5 gives a detailed account of the Nyquist
stability criterion. Section 7–6 discusses the stability analysis based on the Nyquist sta-
bility criterion. Section 7–7 introduces measures of relative stability analysis. Sec-
tion 7–8 presents a method for obtaining the closed-loop frequency response from
the open-loop frequency response by use of the M and N circles. The Nichols chart
is introduced here. Section 7–9 treats experimental determination of transfer func-
tions. Section 7–10 presents introductory aspects of control systems design by the
frequency-response approach. Sections 7–11, 7–12, and 7–13 give detailed accounts
of lead compensation, lag compensation, and lag–lead compensation techniques,
respectively.

7–2 BODE DIAGRAMS

Bode Diagrams or Logarithmic Plots. A Bode diagram consists of two graphs:
One is a plot of the logarithm of the magnitude of a sinusoidal transfer function; the
other is a plot of the phase angle; both are plotted against the frequency on a logarithmic
scale.

The standard representation of the logarithmic magnitude of G(jv) is 20 log @G(jv) @ ,
where the base of the logarithm is 10.The unit used in this representation of the magnitude
is the decibel, usually abbreviated dB. In the logarithmic representation, the curves are
drawn on semilog paper, using the log scale for frequency and the linear scale for either
magnitude (but in decibels) or phase angle (in degrees). (The frequency range of inter-
est determines the number of logarithmic cycles required on the abscissa.)

The main advantage of using the Bode diagram is that multiplication of magni-
tudes can be converted into addition. Furthermore, a simple method for sketching an
approximate log-magnitude curve is available. It is based on asymptotic approxima-
tions. Such approximation by straight-line asymptotes is sufficient if only rough in-
formation on the frequency-response characteristics is needed. Should the exact curve
be desired, corrections can be made easily to these basic asymptotic plots. Expanding
the low-frequency range by use of a logarithmic scale for the frequency is highly
advantageous, since characteristics at low frequencies are most important in practical
systems. Although it is not possible to plot the curves right down to zero frequency
because of the logarithmic frequency (log 0=–q), this does not create a serious
problem.

Note that the experimental determination of a transfer function can be made simple
if frequency-response data are presented in the form of a Bode diagram.
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Number–decibel
conversion line.

Basic Factors of G( jV)H(jV). As stated earlier, the main advantage in using the
logarithmic plot is the relative ease of plotting frequency-response curves. The basic
factors that very frequently occur in an arbitrary transfer function G(jv)H(jv) are

1. Gain K

2. Integral and derivative factors (jv)<1

3. First-order factors (1+jvT)<1

4. Quadratic factors 

Once we become familiar with the logarithmic plots of these basic factors, it is
possible to utilize them in constructing a composite logarithmic plot for any general
form of G(jv)H(jv) by sketching the curves for each factor and adding individual curves
graphically, because adding the logarithms of the gains corresponds to multiplying them
together.

The Gain K. A number greater than unity has a positive value in decibels, while a
number smaller than unity has a negative value.The log-magnitude curve for a constant
gain K is a horizontal straight line at the magnitude of 20 log K decibels.The phase angle
of the gain K is zero. The effect of varying the gain K in the transfer function is that it
raises or lowers the log-magnitude curve of the transfer function by the corresponding
constant amount, but it has no effect on the phase curve.

A number–decibel conversion line is given in Figure 7–4. The decibel value of any
number can be obtained from this line. As a number increases by a factor of 10, the
corresponding decibel value increases by a factor of 20. This may be seen from the
following:

Similarly,

20 log AK * 10nB = 20 log K + 20n

20 log (K * 10) = 20 log K + 20

C1 + 2zAjv�vnB + Ajv�vnB2 D < 1
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Note that, when expressed in decibels, the reciprocal of a number differs from its value
only in sign; that is, for the number K,

Integral and Derivative Factors ( jV)�1. The logarithmic magnitude of 1/jv in
decibels is

The phase angle of 1/jv is constant and equal to –90°.
In Bode diagrams, frequency ratios are expressed in terms of octaves or decades.An

octave is a frequency band from v1 to 2v1 , where v1 is any frequency value.A decade is
a frequency band from v1 to 10v1 , where again v1 is any frequency. (On the logarithmic
scale of semilog paper, any given frequency ratio can be represented by the same hori-
zontal distance. For example, the horizontal distance from v=1 to v=10 is equal to
that from v=3 to v=30.)

If the log magnitude –20 logv dB is plotted against v on a logarithmic scale, it is a
straight line.To draw this straight line,we need to locate one point (0 dB,v=1) on it.Since

the slope of the line is –20 dB�decade (or –6 dB�octave).
Similarly, the log magnitude of jv in decibels is

The phase angle of jv is constant and equal to 90°.The log-magnitude curve is a straight
line with a slope of 20 dB�decade. Figures 7–5(a) and (b) show frequency-response
curves for 1/jv and jv, respectively. We can clearly see that the differences in the
frequency responses of the factors 1/jv and jv lie in the signs of the slopes of the log-
magnitude curves and in the signs of the phase angles. Both log magnitudes become
equal to 0 dB at v=1.

If the transfer function contains the factor (1/jv)n or (jv)n, the log magnitude
becomes, respectively,

or

The slopes of the log-magnitude curves for the factors (1/jv)n and (jv)n are thus
–20n dB�decade and 20n dB�decade, respectively. The phase angle of (1/jv)n is equal
to –90°*n over the entire frequency range, while that of (jv)n is equal to 90°*n over
the entire frequency range. The magnitude curves will pass through the point
(0 dB,v=1).

20 log @(jv)n @ = n * 20 log ∑jv∑ = 20n logv dB

20 log 2 1

(jv)n
2 = -n * 20 log ∑jv∑ = -20n logv dB

20 log ∑jv∑ = 20 logv dB

(-20 log 10v) dB = (-20 logv - 20) dB

20 log 2 1
jv
2 = -20 logv dB

20 log K = -20 log 
1

K
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First-Order Factors (1 � jVT)�1. The log magnitude of the first-order factor
1/(1+jvT) is

For low frequencies, such that v � 1/T, the log magnitude may be approximated by

Thus, the log-magnitude curve at low frequencies is the constant 0-dB line. For high
frequencies, such that v � 1/T,

This is an approximate expression for the high-frequency range. At v=1/T, the log
magnitude equals 0 dB; at v=10/T, the log magnitude is –20 dB. Thus, the value of
–20 log vT dB decreases by 20 dB for every decade of v. For v � 1/T, the log-magnitude
curve is thus a straight line with a slope of –20 dB/decade (or –6 dB/octave).

Our analysis shows that the logarithmic representation of the frequency-response
curve of the factor 1/(1+jvT) can be approximated by two straight-line asymptotes,
one a straight line at 0 dB for the frequency range 0<v<1/T and the other a straight
line with slope –20 dB/decade (or –6 dB�octave) for the frequency range 1/T<v<q.
The exact log-magnitude curve, the asymptotes, and the exact phase-angle curve are
shown in Figure 7–6.

The frequency at which the two asymptotes meet is called the corner frequency or
break frequency. For the factor 1/(1+jvT), the frequency v=1/T is the corner fre-
quency, since at v=1/T the two asymptotes have the same value. (The low-frequency
asymptotic expression at v=1/T is 20 log 1 dB=0 dB, and the high-frequency

-20 log21 + v2 T2 � -20 logvT dB

-20 log21 + v2 T2 � -20 log 1 = 0 dB

20 log 2 1

1 + jvT
2 = -20 log21 + v2 T2 dB

dB

40

20

0

–40

–20

0.1 101 100 v

Slope = –20 dB/decade

Bode diagram of
G(jv) = 1/jv

(a)

f

0°

–180°

–90°

0.1 101 100 v

dB

40

20

0

–40

–20

0.1 101 100 v

Slope = 20 dB/decade

Bode diagram of
G(jv) = jv

(b)

f

180°

0°

90°

0.1 101 100 vFigure 7–5
(a) Bode diagram of
G(jv)=1/jv;
(b) Bode diagram of
G(jv)=jv.
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Figure 7–6
Log-magnitude
curve, together with
the asymptotes, and
phase-angle curve of
1/(1+jvT).

asymptotic expression at v=1/T is also 20 log 1 dB=0 dB.) The corner frequency
divides the frequency-response curve into two regions: a curve for the low-frequency re-
gion and a curve for the high-frequency region.The corner frequency is very important
in sketching logarithmic frequency-response curves.

The exact phase angle f of the factor 1/(1+jvT) is

At zero frequency, the phase angle is 0°. At the corner frequency, the phase angle is

At infinity, the phase angle becomes –90°. Since the phase angle is given by an inverse-
tangent function, the phase angle is skew symmetric about the inflection point at
f=–45°.

The error in the magnitude curve caused by the use of asymptotes can be calculated.
The maximum error occurs at the corner frequency and is approximately equal to –3 dB,
since

The error at the frequency one octave below the corner frequency—that is, at
v=1/(2T)—is

The error at the frequency one octave above the corner frequency—that is, at v=2/T—
is

-20 log222 + 1 + 20 log 2 = -20 log 
15

2
= -0.97 dB

-20 logA
1

4
+ 1 + 20 log 1 = -20 log 

15

2
= -0.97 dB

-20 log11 + 1 + 20 log 1 = -10 log 2 = -3.03 dB

f = -tan-1 T

T
= -tan-1 1 = -45°

f = -tan-1vT
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Log-magnitude error
in the asymptotic
expression of the
frequency-response
curve of
1/(1+jvT).

Thus, the error at one octave below or above the corner frequency is approximately
equal to –1 dB. Similarly, the error at one decade below or above the corner frequency
is approximately –0.04 dB. The error in decibels involved in using the asymptotic ex-
pression for the frequency-response curve of 1/(1+jvT) is shown in Figure 7–7. The
error is symmetric with respect to the corner frequency.

Since the asymptotes are quite easy to draw and are sufficiently close to the exact
curve, the use of such approximations in drawing Bode diagrams is convenient in es-
tablishing the general nature of the frequency-response characteristics quickly with a
minimum amount of calculation and may be used for most preliminary design work. If
accurate frequency-response curves are desired, corrections may easily be made by re-
ferring to the curve given in Figure 7–7. In practice, an accurate frequency-response
curve can be drawn by introducing a correction of 3 dB at the corner frequency and a
correction of 1 dB at points one octave below and above the corner frequency and then
connecting these points by a smooth curve.

Note that varying the time constant T shifts the corner frequency to the left or to the
right, but the shapes of the log-magnitude and the phase-angle curves remain the same.

The transfer function 1/(1+jvT) has the characteristics of a low-pass filter. For
frequencies above v=1/T, the log magnitude falls off rapidly toward –q. This is es-
sentially due to the presence of the time constant. In the low-pass filter, the output
can follow a sinusoidal input faithfully at low frequencies. But as the input frequen-
cy is increased, the output cannot follow the input because a certain amount of time
is required for the system to build up in magnitude. Thus, at high frequencies, the
amplitude of the output approaches zero and the phase angle of the output
approaches –90°. Therefore, if the input function contains many harmonics, then the
low-frequency components are reproduced faithfully at the output, while the high-
frequency components are attenuated in amplitude and shifted in phase. Thus, a first-
order element yields exact, or almost exact, duplication only for constant or slowly
varying phenomena.

An advantage of the Bode diagram is that for reciprocal factors—for example, the
factor 1+jvT—the log-magnitude and the phase-angle curves need only be changed
in sign, since

 20 log ∑1 + jvT∑ = -20 log 2 1
1 + jvT

2
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and

The corner frequency is the same for both cases. The slope of the high-frequency as-
ymptote of 1+jvT is 20 dB�decade, and the phase angle varies from 0° to 90° as the fre-
quency v is increased from zero to infinity. The log-magnitude curve, together with the
asymptotes, and the phase-angle curve for the factor 1+jvT are shown in Figure 7–8.

To draw a phase curve accurately, we have to locate several points on the curve.The
phase angles of (1+jvT)<1 are

For the case where a given transfer function involves terms like (1+jvT)<n, a similar
asymptotic construction may be made.The corner frequency is still at v=1/T, and the
asymptotes are straight lines. The low-frequency asymptote is a horizontal straight line

 <84.3°   at  v =
10

T

 <63.4°   at  v =
2

T

 <5.7°   at  v =
1

10T

 <26.6°   at  v =
1

2T

 <45°   at  v =
1

T

/1 + jvT = tan-1vT = -n 1
1 + jvT
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at 0 dB, while the high-frequency asymptote has the slope of –20n dB�decade or
20n dB�decade. The error involved in the asymptotic expressions is n times that for
(1+jvT)<1. The phase angle is n times that of (1+jvT)<1 at each frequency point.

Quadratic Factors C1 � 2Z A jV/Vn B � A jV/Vn B2 D�1. Control systems often
possess quadratic factors of the form

G(j◊)= (7–7)

If z>1, this quadratic factor can be expressed as a product of two first-order factors
with real poles. If 0<z<1, this quadratic factor is the product of two complex-
conjugate factors.Asymptotic approximations to the frequency-response curves are not
accurate for a factor with low values of z. This is because the magnitude and phase of
the quadratic factor depend on both the corner frequency and the damping ratio z.

The asymptotic frequency-response curve may be obtained as follows: Since

for low frequencies such that v � vn , the log magnitude becomes

The low-frequency asymptote is thus a horizontal line at 0 dB. For high frequencies such
that v � vn , the log magnitude becomes

The equation for the high-frequency asymptote is a straight line having the slope
–40 dB�decade, since

The high-frequency asymptote intersects the low-frequency one at v=vn , since at this
frequency

This frequency,vn , is the corner frequency for the quadratic factor considered.
The two asymptotes just derived are independent of the value of z. Near the

frequency v=vn , a resonant peak occurs, as may be expected from Equation (7–7).
The damping ratio z determines the magnitude of this resonant peak. Errors obvi-
ously exist in the approximation by straight-line asymptotes. The magnitude of the
error depends on the value of z. It is large for small values of z. Figure 7–9 shows the
exact log-magnitude curves, together with the straight-line asymptotes and the exact

-40 log 
vn

vn
= -40 log 1 = 0 dB

-40 log 
10v
vn

= -40 - 40 log 
v

vn

-20 log 
v2

v2
n

= -40 log
v

vn
 dB

-20 log 1 = 0 dB

20 log 3 1

1 + 2z a j 
v

vn
b + a j 

v

vn
b 2 3 = -20 logB a1 -

v2

v2
n

b 2

+ a2z 
v

vn
b 2

1

1 + 2z a j
v

vn
b + a j

v

vn
b 2
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phase-angle curves for the quadratic factor given by Equation (7–7) with several values
of z. If corrections are desired in the asymptotic curves, the necessary amounts of cor-
rection at a sufficient number of frequency points may be obtained from Figure 7–9.

The phase angle of the quadratic factor C1+2z Ajv/vn B+ Ajv/vn B2 D–1 is

(7–8)

The phase angle is a function of both v and z. At v=0, the phase angle equals 0°. At
the corner frequency v=vn , the phase angle is –90° regardless of z, since

At v=q, the phase angle becomes –180°. The phase-angle curve is skew symmetric
about the inflection point—the point where f=–90°.There are no simple ways to sketch
such phase curves. We need to refer to the phase-angle curves shown in Figure 7–9.

f = -tan-1 a 2z

0
b = -tan-1 q = -90°

f = n 1

1 + 2z a j 
v

vn
b + a j 

v

vn
b 2 = -tan-1 ≥ 2z 

v

vn

1 - a v
vn
b 2 ¥
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The frequency-response curves for the factor

can be obtained by merely reversing the sign of the log magnitude and that of the phase
angle of the factor

To obtain the frequency-response curves of a given quadratic transfer function, we must
first determine the value of the corner frequency vn and that of the damping ratio z.
Then, by using the family of curves given in Figure 7–9, the frequency-response curves
can be plotted.

The Resonant Frequency Vr and the Resonant Peak Value Mr . The magnitude of

is

(7–9)

If has a peak value at some frequency, this frequency is called the resonant
frequency. Since the numerator of is constant, a peak value of will occur
when

(7–10)

is a minimum. Since Equation (7–10) can be written

(7–11)

the minimum value of g(v) occurs at Thus the resonant frequency
vr is

(7–12)

As the damping ratio z approaches zero, the resonant frequency approaches vn . For
0<z � 0.707, the resonant frequency vr is less than the damped natural frequency

which is exhibited in the transient response. From Equation (7–12),
it can be seen that for z>0.707, there is no resonant peak. The magnitude de-
creases monotonically with increasing frequency v. (The magnitude is less than 0 dB
for all values of v>0. Recall that, for 0.7<z<1, the step response is oscillatory, but
the oscillations are well damped and are hardly perceptible.)

@G(jv) @vd = vn21 - z2 ,

vr = vn21 - 2z2 ,  for 0 � z � 0.707

v = vn21 - 2z2 .

g(v) = c v2 - v2
nA1 - 2z2B
v2

n

d 2 + 4z2A1 - z2B
g(v) = a1 -

v2

v2
n

b 2

+ a2z
v

vn
b 2

@G(jv) @@G(jv) @@G(jv) @
@G(jv) @ =

1

B a1 -
v2

v2
n

b 2

+ a2z
v

vn
b 2

G(jv) =
1

1 + 2z a j 
v

vn
b + a j 

v
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b 2

1

1 + 2z a j
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b 2
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v
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For 0 � z � 0.707, the magnitude of the resonant peak, Mr=|G(jvr)|, can be found
from Equations (7–12) and (7–9). For 0 � z � 0.707,

(7–13)

For z>0.707,
(7–14)

As z approaches zero, Mr approaches infinity. This means that if the undamped system
is excited at its natural frequency, the magnitude of G(jv) becomes infinity. The rela-
tionship between Mr and z is shown in Figure 7–10.

The phase angle of G(jv) at the frequency where the resonant peak occurs can be
obtained by substituting Equation (7–12) into Equation (7–8). Thus, at the resonant
frequency vr ,

General Procedure for Plotting Bode Diagrams. MATLAB provides an easy way
to plot Bode diagrams. (The MATLAB approach is presented later in this section.)
Here, however, we consider the case where we want to draw Bode diagrams manually
without using MATLAB.

First rewrite the sinusoidal transfer function G(jv)H(jv) as a product of basic factors
discussed above.Then identify the corner frequencies associated with these basic factors.
Finally, draw the asymptotic log-magnitude curves with proper slopes between the corner
frequencies. The exact curve, which lies close to the asymptotic curve, can be obtained
by adding proper corrections.

The phase-angle curve of G(jv)H(jv) can be drawn by adding the phase-angle
curves of individual factors.

The use of Bode diagrams employing asymptotic approximations requires much less
time than other methods that may be used for computing the frequency response of a
transfer function. The ease of plotting the frequency-response curves for a given trans-
fer function and the ease of modification of the frequency-response curve as compensation
is added are the main reasons why Bode diagrams are very frequently used in practice.

/GAjvrB = -tan-1 21 - 2z2

z
= -90° + sin-1 z

21 - z2

Mr = 1

Mr = @G(jv) @max = @GAjvrB @ =
1

2z21 - z2
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EXAMPLE 7–3 Draw the Bode diagram for the following transfer function:

Make corrections so that the log-magnitude curve is accurate.
To avoid any possible mistakes in drawing the log-magnitude curve, it is desirable to put G(jv)

in the following normalized form, where the low-frequency asymptotes for the first-order factors
and the second-order factor are the 0-dB line:

This function is composed of the following factors:

The corner frequencies of the third, fourth, and fifth terms are v=3, v=2, and 
respectively. Note that the last term has the damping ratio of 0.3536.

To plot the Bode diagram, the separate asymptotic curves for each of the factors are shown
in Figure 7–11.The composite curve is then obtained by algebraically adding the individual curves,
also shown in Figure 7–11. Note that when the individual asymptotic curves are added at each fre-
quency, the slope of the composite curve is cumulative. Below the plot has the slope of
–20 dB�decade.At the first corner frequency the slope changes to –60 dB�decade and
continues to the next corner frequency v=2, where the slope becomes –80 dB�decade. At the
last corner frequency v=3, the slope changes to –60 dB�decade.

Once such an approximate log-magnitude curve has been drawn, the actual curve can be
obtained by adding corrections at each corner frequency and at frequencies one octave below
and above the corner frequencies. For first-order factors (1+jvT)<1, the corrections are ;3 dB
at the corner frequency and ;1 dB at the frequencies one octave below and above the corner
frequency. Corrections necessary for the quadratic factor are obtained from Figure 7–9.The exact
log-magnitude curve for G(jv) is shown by a dashed curve in Figure 7–11.

Note that any change in the slope of the magnitude curve is made only at the corner
frequencies of the transfer function G(jv). Therefore, instead of drawing individual magnitude
curves and adding them up, as shown, we may sketch the magnitude curve without sketching
individual curves. We may start drawing the lowest-frequency portion of the straight line (that
is, the straight line with the slope –20 dB�decade for ). As the frequency is increased,
we get the effect of the complex-conjugate poles (quadratic term) at the corner frequency

The complex-conjugate poles cause the slopes of the magnitude curve to change from
–20 to –60 dB�decade. At the next corner frequency, v=2, the effect of the pole is to change
the slope to –80 dB�decade. Finally, at the corner frequency v=3, the effect of the zero is to
change the slope from –80 to –60 dB�decade.

For plotting the complete phase-angle curve, the phase-angle curves for all factors have to be
sketched. The algebraic sum of all phase-angle curves provides the complete phase-angle curve,
as shown in Figure 7–11.

v = 12 .

v 6 12

v = 12 ,
v = 12 ,

v = 12 ,

7.5,  (jv)-1,  1 + j 
v

3
,  a1 + j 

v

2
b -1

,  c1 + j 
v

2
+

(jv)2

2
d -1

G(jv) =
7.5 a jv

3
+ 1 b

(jv) a jv

2
+ 1 b c (jv)2

2
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jv

2
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Minimum-Phase Systems and Nonminimum-Phase Systems. Transfer func-
tions having neither poles nor zeros in the right-half s plane are minimum-phase trans-
fer functions, whereas those having poles and/or zeros in the right-half s plane are
nonminimum-phase transfer functions. Systems with minimum-phase transfer functions
are called minimum-phase systems, whereas those with nonminimum-phase transfer
functions are called nonminimum-phase systems.

For systems with the same magnitude characteristic, the range in phase angle of the
minimum-phase transfer function is minimum among all such systems, while the range in
phase angle of any nonminimum-phase transfer function is greater than this minimum.

It is noted that for a minimum-phase system, the transfer function can be uniquely
determined from the magnitude curve alone. For a nonminimum-phase system, this is
not the case. Multiplying any transfer function by all-pass filters does not alter the
magnitude curve, but the phase curve is changed.

Consider as an example the two systems whose sinusoidal transfer functions are,
respectively,

G1(jv) =
1 + jvT

1 + jvT1
,  G2(jv) =

1 - jvT

1 + jvT1
,  0 6 T 6 T1
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Figure 7–13
Phase-angle
characteristics of the
systems G1(s) and
G2(s) shown in
Figure 7–12.

The pole–zero configurations of these systems are shown in Figure 7–12. The two sinu-
soidal transfer functions have the same magnitude characteristics, but they have differ-
ent phase-angle characteristics, as shown in Figure 7–13. These two systems differ from
each other by the factor

The magnitude of the factor (1-jvT)/(1+jvT) is always unity. But the phase
angle equals –2 tan–1vT and varies from 0° to –180° as v is increased from zero to infinity.

As stated earlier, for a minimum-phase system, the magnitude and phase-angle char-
acteristics are uniquely related. This means that if the magnitude curve of a system is
specified over the entire frequency range from zero to infinity, then the phase-angle
curve is uniquely determined, and vice versa. This, however, does not hold for a non-
minimum-phase system.

Nonminimum-phase situations may arise in two different ways. One is simply when
a system includes a nonminimum-phase element or elements. The other situation may
arise in the case where a minor loop is unstable.

For a minimum-phase system, the phase angle at v=q becomes –90°(q-p),
where p and q are the degrees of the numerator and denominator polynomials of the
transfer function, respectively. For a nonminimum-phase system, the phase angle at
v=q differs from –90°(q-p). In either system, the slope of the log-magnitude curve
at v=q is equal to –20(q-p) dB�decade. It is therefore possible to detect whether
the system is minimum phase by examining both the slope of the high-frequency
asymptote of the log-magnitude curve and the phase angle at v=q. If the slope of the
log-magnitude curve as v approaches infinity is –20(q-p) dB�decade and the phase
angle at v=q is equal to –90°(q-p), then the system is minimum phase.

G(jv) =
1 - jvT

1 + jvT

jv

1
T

– 1
T1

– 1
T1

–
s

G1(s) = 1 + Ts
1 + T1s

jv

1
T

s

G2(s) = 1 – Ts
1 + T1s

00
Figure 7–12
Pole–zero
configurations of a
minimum-phase
system G1(s) and
nonminimum-phase
system G2(s) .
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Nonminimum-phase systems are slow in responding because of their faulty behavior
at the start of a response. In most practical control systems, excessive phase lag should be
carefully avoided. In designing a system, if fast speed of response is of primary importance,
we should not use nonminimum-phase components. (A common example of nonmini-
mum-phase elements that may be present in control systems is transport lag or dead time.)

It is noted that the techniques of frequency-response analysis and design to be
presented in this and the next chapter are valid for both minimum-phase and
nonminimum-phase systems.

Transport Lag. Transport lag, which is also called dead time, is of nonminimum-
phase behavior and has an excessive phase lag with no attenuation at high frequencies.
Such transport lags normally exist in thermal, hydraulic, and pneumatic systems.

Consider the transport lag given by

The magnitude is always equal to unity, since

Therefore, the log magnitude of the transport lag e–jvT is equal to 0 dB. The phase
angle of the transport lag is

The phase angle varies linearly with the frequency v.The phase-angle characteristic
of transport lag is shown in Figure 7–14.

 = -57.3 vT  (degrees)

 /G(jv) = -vT  (radians)

@G(jv) @ = ∑cosvT - j sinvT∑ = 1

G(jv) = e-jvT
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EXAMPLE 7–4 Draw the Bode diagram of the following transfer function:

The log magnitude is

The phase angle of G(jv) is

The log-magnitude and phase-angle curves for this transfer function with L=0.5 and T=1 are
shown in Figure 7–15.

 = -vL - tan-1vT

 /G(jv) = /e-jvL + n 1

1 + jvT

 = 0 + 20 log 2 1

1 + jvT
2

 20 log @G(jv) @ = 20 log @e-jvL @ + 20 log 2 1

1 + jvT
2

G(jv) =
e-jvL

1 + jvT
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Log-magnitude curve
of a type 0 system.

Relationship between System Type and Log-Magnitude Curve. Consider the
unity-feedback control system. The static position, velocity, and acceleration error con-
stants describe the low-frequency behavior of type 0, type 1, and type 2 systems,
respectively. For a given system, only one of the static error constants is finite and
significant. (The larger the value of the finite static error constant, the higher the loop
gain is as v approaches zero.)

The type of the system determines the slope of the log-magnitude curve at low
frequencies. Thus, information concerning the existence and magnitude of the steady-
state error of a control system to a given input can be determined from the observation
of the low-frequency region of the log-magnitude curve.

Determination of Static Position Error Constants. Consider the unity-feedback
control system shown in Figure 7–16. Assume that the open-loop transfer function is
given by

or

Figure 7–17 shows an example of the log-magnitude plot of a type 0 system. In such a
system, the magnitude of G(jv) equals Kp at low frequencies, or

It follows that the low-frequency asymptote is a horizontal line at 20 log Kp dB.

lim
vS 0

G(jv) = K = Kp

G(jv) =
KATa jv + 1B ATb jv + 1B p ATm jv + 1B

(jv)NAT1 jv + 1B AT2 jv + 1B p ATp jv + 1B
G(s) =

KATa s + 1B ATb s + 1B p ATm s + 1B
sNAT1 s + 1B AT2 s + 1B p ATp s + 1B
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Determination of Static Velocity Error Constants. Consider the unity-feedback
control system shown in Figure 7–16. Figure 7–18 shows an example of the log-magnitude
plot of a type 1 system. The intersection of the initial –20-dB�decade segment (or its
extension) with the line v=1 has the magnitude 20 log Kv .This may be seen as follows:
In a type 1 system

Thus,

The intersection of the initial –20-dB�decade segment (or its extension) with the 0-dB
line has a frequency numerically equal to Kv . To see this, define the frequency at this
intersection to be v1 ; then

or

As an example, consider the type 1 system with unity feedback whose open-loop
transfer function is

If we define the corner frequency to be v2 and the frequency at the intersection of the
–40-dB�decade segment (or its extension) with 0-dB line to be v3 , then

v2 =
F

J
,  v2

3 =
K

J

G(s) =
K

s(Js + F)

Kv = v1

2 Kv

jv1

2 = 1

20 log 2Kv

jv
2
v= 1

= 20 log Kv

G(jv) =
Kv

jv
,  for v � 1

dB

0

–20 dB/decade

–40 dB/decade

v in log scale

20 log Kv

v1v2 v3

v = 1
Figure 7–18
Log-magnitude curve
of a type 1 system.
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Since

it follows that

or

On the Bode diagram,

Thus, the v3 point is just midway between the v2 and v1 points. The damping ratio z of
the system is then

Determination of Static Acceleration Error Constants. Consider the unity-
feedback control system shown in Figure 7–16. Figure 7–19 shows an example of the
log-magnitude plot of a type 2 system. The intersection of the initial –40-dB�decade
segment (or its extension) with the v=1 line has the magnitude of 20 log Ka . Since at
low frequencies

it follows that

20 log 2 Ka

(jv)2
2
v= 1

= 20 log Ka

G(jv) =
Ka

(jv)2 ,  for v � 1

z =
F

21KJ
=
v2

2v3

logv1 - logv3 = logv3 - logv2

v1

v3
=
v3

v2

v1 v2 = v2
3

v1 = Kv =
K

F
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The frequency va at the intersection of the initial –40-dB�decade segment (or its
extension) with the 0-dB line gives the square root of Ka numerically. This can be seen
from the following:

which yields

Plotting Bode Diagrams with MATLAB. The command bode computes magni-
tudes and phase angles of the frequency response of continuous-time, linear, time-
invariant systems.

When the command bode (without left-hand arguments) is entered in the
computer, MATLAB produces a Bode plot on the screen. Most commonly used bode
commands are

bode(num,den)
bode(num,den,w)
bode(A,B,C,D)
bode(A,B,C,D,w)
bode(A,B,C,D,iu,w)
bode(sys)

When invoked with left-hand arguments, such as

[mag,phase,w] = bode(num,den,w)

bode returns the frequency response of the system in matrices mag, phase, and w. No
plot is drawn on the screen.The matrices mag and phase contain magnitudes and phase
angles of the frequency response of the system, evaluated at user-specified frequency
points.The phase angle is returned in degrees.The magnitude can be converted to deci-
bels with the statement

magdB = 20*log10(mag)

Other Bode commands with left-hand arguments are

[mag,phase,w] = bode(num,den)
[mag,phase,w] = bode(num,den,w)
[mag,phase,w] = bode(A,B,C,D)
[mag,phase,w] = bode(A,B.C,D,w)
[mag,phase,w] = bode(A,B,C,D,iu,w)
[mag,phase,w] = bode(sys)

To specify the frequency range, use the command logspace(d1,d2) or logspace
(d1,d2,n). logspace(d1,d2) generates a vector of 50 points logarithmically equally spaced
between decades 10d1 and 10d2. (50 points include both endpoints. There are 48 points
between the endpoints.) To generate 50 points between 0.1 rad�sec and 100 rad�sec,
enter the command

w = logspace(-1,2)

va = 1Ka

20 log 2 KaAjvaB2 2 = 20 log 1 = 0
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MATLAB Program 7–1

num = [25];
den = [1  4  25];
bode(num,den)
title('Bode Diagram of G(s) = 25/(s^2 + 4s + 25)')

Frequency (rad/sec)

Bode Diagram of G(s) = 25/(s2 + 4s + 25)
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Figure 7–20
Bode diagram of

G(s) =
25

s2 + 4s + 25
.

logspace(dl,d2,n) generates n points logarithmically equally spaced between decades
10d1 and 10d2. (n points include both endpoints.) For example, to generate 100 points in-
cluding both endpoints between 1 rad�sec and 1000 rad�sec,enter the following command:

w = logspace(0,3,100)

To incorporate the user-specified frequency points when plotting Bode diagrams,
the bode command must include the frequency vector w, such as bode(num,den,w) and
[mag,phase,w] = bode(A,B,C,D,w).

EXAMPLE 7–5 Consider the following transfer function:

Plot a Bode diagram for this transfer function.
When the system is defined in the form

use the command bode(num,den) to draw the Bode diagram. [When the numerator and denom-
inator contain the polynomial coefficients in descending powers of s, bode(num,den) draws the
Bode diagram.] MATLAB Program 7–1 shows a program to plot the Bode diagram for this sys-
tem. The resulting Bode diagram is shown in Figure 7–20.

G(s) =
num(s)

den(s)

G(s) =
25

s2 + 4s + 25
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Frequency (rad/sec)

Bode Diagram of G(s) = 9(s2 + 0.2s + 1)/[s(s2 + 1.2s + 9)]

−100

0

−50

100

50

−20

P
ha

se
 (

de
g)

; M
ag

ni
tu

de
 (

dB
)

−10

40

0

10

20

30

10−2 10−1 100 101

Figure 7–22
Bode diagram of 

G(s) =
9As2 + 0.2s + 1B
sAs2 + 1.2s + 9B .

EXAMPLE 7–6 Consider the system shown in Figure 7–21. The open-loop transfer function is

Plot a bode diagram.
MATLAB Program 7–2 plots a Bode diagram for the system. The resulting plot is shown in

Figure 7–22. The frequency range in this case is automatically determined to be from 0.01 to
10 rad�sec.

G(s) =
9As2 + 0.2s + 1B
sAs2 + 1.2s + 9B

9(s2 + 0.2s + 1)
s(s2 + 1.2s + 9)

+
–

Figure 7–21
Control system.

MATLAB Program 7–2

num = [9  1.8  9];
den = [1  1.2  9  0];
bode(num,den)
title('Bode Diagram of G(s) = 9(s^2 + 0.2s + 1)/[s(s^2 + 1.2s + 9)]')
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Frequency (rad/sec)
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Figure 7–23
Bode diagram of

G(s) =
9As2 + 0.2s + 1B
sAs2 + 1.2s + 9B .

MATLAB Program 7–3

num = [9  1.8  9];
den = [1  1.2  9  0];
w = logspace(-2,3,100);
bode(num,den,w)
title('Bode Diagram of G(s) = 9(s^2 + 0.2s + 1)/[s(s^2 + 1.2s + 9)]')

If it is desired to plot the Bode diagram from 0.01 to 1000 rad�sec, enter the following 
command:

w = logspace(-2,3,100)

This command generates 100 points logarithmically equally spaced between 0.01 and 100 rad�sec.
(Note that such a vector w specifies the frequencies in radians per second at which the frequency
response will be calculated.)

If we use the command

bode(num,den,w)

then the frequency range is as the user specified, but the magnitude range and phase-angle
range will be automatically determined. See MATLAB Program 7–3 and the resulting plot in
Figure 7–23.
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Obtaining Bode Diagrams of Systems Defined in State Space. Consider the
system defined by

where state vector (n-vector)
output vector (m-vector)
control vector (r-vector)
state matrix (n*n matrix)
control matrix (n*r matrix)
output matrix (m*n matrix)
direct transmission matrix (m*r matrix)

A Bode diagram for this system may be obtained by entering the command

bode(A,B,C,D)

or others listed earlier in this section.
The command bode(A,B,C,D) produces a series of Bode plots, one for each input of

the system, with the frequency range automatically determined. (More points are used
when the response is changing rapidly.)

The command bode(A,B,C,D,iu), where iu is the ith input of the system, produces
the Bode diagrams from the input iu to all the outputs Ay1,y2 , p , ym B of the system,
with a frequency range automatically determined. (The scalar iu is an index into the in-
puts of the system and specifies which input is to be used for plotting Bode diagrams).
If the control vector u has three inputs such that

then iu must be set to either 1, 2, or 3.
If the system has only one input u, then either of the following commands may be

used:

bode(A,B,C,D)

or

bode(A,B,C,D,1)

EXAMPLE 7–7 Consider the following system:

This system has one input u and one output y. By using the command

bode(A,B,C,D)

 y = [1 0]Bx1

x2
R

 Bx
#
1

x
#
2
R = B 0

-25

1

-4
R Bx1

x2
R + B 0

25
R  u

u = Cu1

u2

u3

S

 D =
 C =
 B =
 A =
 u =
 y =
 x =

y = Cx + Du

x# = Ax + Bu
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Figure 7–24
Bode diagram of the
system considered in
Example 7–7.

MATLAB Program 7–4

A = [0  1;-25  -4];
B = [0;25];
C = [1  0];
D = [0];
bode(A,B,C,D)
title('Bode Diagram')

and entering MATLAB Program 7–4 into the computer, we obtain the Bode diagram shown
in Figure 7–24.

7–3 POLAR PLOTS

The polar plot of a sinusoidal transfer function G(jv) is a plot of the magnitude of G(jv)
versus the phase angle of G(jv) on polar coordinates as v is varied from zero to infin-
ity.Thus, the polar plot is the locus of vectors as v is varied from zero to
infinity. Note that in polar plots a positive (negative) phase angle is measured counter-
clockwise (clockwise) from the positive real axis.The polar plot is often called the Nyquist
plot.An example of such a plot is shown in Figure 7–25. Each point on the polar plot of
G(jv) represents the terminal point of a vector at a particular value of v. In the polar
plot, it is important to show the frequency graduation of the locus. The projections of
G(jv) on the real and imaginary axes are its real and imaginary components.

@G(jv) @  /G(jv)

If we replace the command bode(A,B,C,D) in MATLAB Program 7–4 with

bode(A,B,C,D,1)

then MATLAB will produce the Bode diagram identical to that shown in Figure 7–24.
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MATLAB may be used to obtain a polar plot G(jv) or to obtain and 
accurately for various values of v in the frequency range of interest.

An advantage in using a polar plot is that it depicts the frequency-response charac-
teristics of a system over the entire frequency range in a single plot. One disadvantage
is that the plot does not clearly indicate the contributions of each individual factor of the
open-loop transfer function.

Integral and Derivative Factors ( jV)�1. The polar plot of G(jv)=1/jv is the
negative imaginary axis, since

The polar plot of G(jv)=jv is the positive imaginary axis.

First-Order Factors (1 � jVT)�1. For the sinusoidal transfer function

the values of G(jv) at v=0 and v=1/T are, respectively,

and

If v approaches infinity, the magnitude of G(jv) approaches zero and the phase angle
approaches –90°. The polar plot of this transfer function is a semicircle as the frequen-
cy v is varied from zero to infinity, as shown in Figure 7–26(a). The center is located at
0.5 on the real axis, and the radius is equal to 0.5.

To prove that the polar plot of the first-order factor is a semi-
circle, define

G(jv) = X + jY

G(jv) = 1�(1 + jvT)

G a j
1

T
b =

1

12
/-45°G(j0) = 1/0°

G(jv) =
1

1 + jvT
=

1

21 + v2 T2
 /-tan-1vT

G(jv) =
1

jv
= -j 

1
v

=
1
v

 /-90°

/G(jv)@G(jv) @

Im

Re

G( jv)

v = 0

v = `

v1

v2

v3

G( jv)

Im [G( jv)]

Re [G( jv)]

Figure 7–25
Polar plot.
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where

Then we obtain

Thus, in the X-Y plane G(jv) is a circle with center at and with radius 
as shown in Figure 7–26(b). The lower semicircle corresponds to 0 � v � q, and the
upper semicircle corresponds to –q � v � 0.

The polar plot of the transfer function 1+jvT is simply the upper half of the straight
line passing through point (1,0) in the complex plane and parallel to the imaginary axis,
as shown in Figure 7–27. The polar plot of 1+jvT has an appearance completely
different from that of 1/(1+jvT).

Quadratic Factors C1 � 2Z A jV/Vn B � A jV/Vn B2 D�1. The low- and high-fre-
quency portions of the polar plot of the following sinusoidal transfer function

are given, respectively, by

and

The polar plot of this sinusoidal transfer function starts at and ends at as
v increases from zero to infinity. Thus, the high-frequency portion of G(jv) is tangent
to the negative real axis.
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(a) Polar plot of
1/(1+jvT); (b) plot
of G(jv) in X-Y
plane.
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Figure 7–27
Polar plot of
1+jvT.
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Im

Re

v = ` v = 0

Resonant
peak

vn vr

0

Figure 7–29
Polar plot showing
the resonant peak
and resonant
frequency vr .

Examples of polar plots of the transfer function just considered are shown in Figure
7–28. The exact shape of a polar plot depends on the value of the damping ratio z, but
the general shape of the plot is the same for both the underdamped case (1>z>0)
and overdamped case (z>1).

For the underdamped case at v=vn , we have G(jvn)=1/(j2z), and the phase
angle at v=vn is –90°. Therefore, it can be seen that the frequency at which the
G(jv) locus intersects the imaginary axis is the undamped natural frequency vn . In
the polar plot, the frequency point whose distance from the origin is maximum cor-
responds to the resonant frequency vr . The peak value of G(jv) is obtained as the
ratio of the magnitude of the vector at the resonant frequency vr to the magnitude
of the vector at v=0. The resonant frequency vr is indicated in the polar plot shown
in Figure 7–29.

For the overdamped case, as z increases well beyond unity, the G(jv) locus
approaches a semicircle. This may be seen from the fact that, for a heavily damped
system, the characteristic roots are real, and one is much smaller than the other. Since,
for sufficiently large z, the effect of the larger root (larger in the absolute value) on the
response becomes very small, the system behaves like a first-order one.

v = 0

Im

Re0

1

v = �

(z: Large)

(z: Small)

vn
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vn
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Figure 7–28
Polar plots of

for z>0.
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b + a j

v
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b 2
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Next, consider the following sinusoidal transfer function:

The low-frequency portion of the curve is

and the high-frequency portion is

Since the imaginary part of G(jv) is positive for v>0 and is monotonically increasing,
and the real part of G(jv) is monotonically decreasing from unity, the general shape of
the polar plot of G(jv) is as shown in Figure 7–30. The phase angle is between 0° and
180°.

EXAMPLE 7–8 Consider the following second-order transfer function:

Sketch a polar plot of this transfer function.
Since the sinusoidal transfer function can be written

the low-frequency portion of the polar plot becomes

and the high-frequency portion becomes

lim
vS q

G(jv) = 0 - j0

lim
vS 0

G(jv) = -T - jq

G(jv) =
1

jv(1 + jvT)
= - 

T
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G(jv) = 1/0°
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b + j a 2zv
vn
b
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The general shape of the polar plot of G(jv) is shown in Figure 7–31. The G(jv) plot is asymp-
totic to the vertical line passing through the point (–T, 0). Since this transfer function involves an
integrator (1/s), the general shape of the polar plot differs substantially from those of second-order
transfer functions that do not have an integrator.

EXAMPLE 7–9 Obtain the polar plot of the following transfer function:

Since G(jv) can be written

the magnitude and phase angle are, respectively,

and

Since the magnitude decreases from unity monotonically and the phase angle also decreases
monotonically and indefinitely, the polar plot of the given transfer function is a spiral, as shown
in Figure 7–32.

/G(jv) = /e-jvL + n 1

1 + jvT
= -vL - tan-1vT

@G(jv) @ = @e-jvL @ � 2 1
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e-jvL
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Re0
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Figure 7–31
Polar plot of
1/ Cjv(1+jvT) D .
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1

Figure 7–32
Polar plot of
e-jvL�(1 + jvT).
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Figure 7–33
Polar plots of type 0,
type 1, and type 2
systems.

General Shapes of Polar Plots. The polar plots of a transfer function of the form

where n>m or the degree of the denominator polynomial is greater than that of the
numerator, will have the following general shapes:

1. For l=0 or type 0 systems: The starting point of the polar plot (which corre-
sponds to v=0) is finite and is on the positive real axis. The tangent to the 
polar plot at v=0 is perpendicular to the real axis. The terminal point, which
corresponds to v=q, is at the origin, and the curve is tangent to one of the
axes.

2. For l=1 or type 1 systems: the jv term in the denominator contributes –90° to
the total phase angle of G(jv) for 0 � v � q.At v=0, the magnitude of G(jv)
is infinity, and the phase angle becomes –90°.At low frequencies, the polar plot is
asymptotic to a line parallel to the negative imaginary axis.At v=q, the magni-
tude becomes zero, and the curve converges to the origin and is tangent to one of
the axes.

3. For l=2 or type 2 systems: The (jv)2 term in the denominator contributes
–180° to the total phase angle of G(jv) for 0 � v � q. At v=0, the magni-
tude of G(jv) is infinity, and the phase angle is equal to –180°. At low
frequencies, the polar plot may be asymptotic to the negative real axis. At
v=q, the magnitude becomes zero, and the curve is tangent to one of the axes.

The general shapes of the low-frequency portions of the polar plots of type 0, type
1, and type 2 systems are shown in Figure 7–33. It can be seen that, if the degree of the

 =
b0(jv)m + b1(jv)m - 1 + p

a0(jv)n + a1(jv)n - 1 + p

 G(jv) =
KA1 + jvTaB A1 + jvTbB p

(jv)lA1 + jvT1B A1 + jvT2B p
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denominator polynomial of G(jv) is greater than that of the numerator, then the G(jv)
loci converge to the origin clockwise.At v=q, the loci are tangent to one or the other
axes, as shown in Figure 7–34.

Note that any complicated shapes in the polar plot curves are caused by the nu-
merator dynamics—that is, by the time constants in the numerator of the transfer func-
tion. Figure 7–35 shows examples of polar plots of transfer functions with numerator
dynamics. In analyzing control systems, the polar plot of G(jv) in the frequency range
of interest must be accurately determined.

Table 7–1 shows sketches of polar plots of several transfer functions.
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G(jv) =
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ao(jv)n + …

Figure 7–34
Polar plots in the high-frequency range.
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Figure 7–35
Polar plots of transfer functions with numerator dynamics.
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Table 7–1 Polar Plots of Simple Transfer Functions

Drawing Nyquist Plots with MATLAB. Nyquist plots, just like Bode diagrams,
are commonly used in the frequency-response representation of linear, time-invariant,
feedback control systems. Nyquist plots are polar plots, while Bode diagrams are
rectangular plots. One plot or the other may be more convenient for a particular opera-
tion, but a given operation can always be carried out in either plot.

The MATLAB command nyquist computes the frequency response for continuous-
time, linear, time-invariant systems.When invoked without left-hand arguments, nyquist
produces a Nyquist plot on the screen.
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The command

nyquist(num,den)

draws the Nyquist plot of the transfer function

where num and den contain the polynomial coefficients in descending powers of s. Other
commonly used nyquist commands are

nyquist(num,den,w)
nyquist(A,B,C,D)
nyquist(A,B,C,D,w)
nyquist(A,B,C,D,iu,w)
nyquist(sys)

The command involving the user-specified frequency vector w, such as

nyquist(num,den,w)

calculates the frequency response at the specified frequency points in radians per
second.

When invoked with left-hand arguments such as

[re,im,w] = nyquist(num,den)
[re,im,w] = nyquist(num,den,w)
[re,im,w] = nyquist(A,B,C,D)
[re,im,w] = nyquist(A,B,C,D,w)
[re,im,w] = nyquist(A,B,C,D,iu,w)
[re,im,w] = nyquist(sys)

MATLAB returns the frequency response of the system in the matrices re, im, and w.
No plot is drawn on the screen. The matrices re and im contain the real and imaginary
parts of the frequency response of the system, evaluated at the frequency points speci-
fied in the vector w. Note that re and im have as many columns as outputs and one row
for each element in w.

EXAMPLE 7–10 Consider the following open-loop transfer function:

Draw a Nyquist plot with MATLAB.
Since the system is given in the form of the transfer function, the command

nyquist(num,den)

may be used to draw a Nyquist plot. MATLAB Program 7–5 produces the Nyquist plot shown
in Figure 7–36. In this plot, the ranges for the real axis and imaginary axis are automatically
determined.

G(s) =
1

s2 + 0.8s + 1

G(s) =
num(s)

den(s)
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MATLAB Program 7–5

num = [1];
den = [1  0.8  1];
nyquist(num,den)
grid
title('Nyquist Plot of G(s) = 1/(s^2 + 0.8s + 1)')

MATLAB Program 7–6

% ---------- Nyquist plot ----------

num = [1];
den = [1  0.8  1];
nyquist(num,den)
v = [-2  2  -2  2]; axis(v)
grid
title('Nyquist Plot of G(s) = 1/(s^2 + 0.8s + 1)')
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Nyquist Plot of G(s) = 1/(s2 + 0.8s + 1)

Figure 7–36
Nyquist plot of

G(s) =
1

s2 + 0.8s + 1
.

If we wish to draw the Nyquist plot using manually determined ranges—for example, from –2
to 2 on the real axis and from –2 to 2 on the imaginary axis—enter the following command into
the computer:

v = [-2  2  -2  2];
axis(v);

or, combining these two lines into one,

axis([-2  2  -2  2]);

See MATLAB Program 7–6 and the resulting Nyquist plot shown in Figure 7–37.
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Caution. In drawing a Nyquist plot, where a MATLAB operation involves “Divide
by zero,” the resulting Nyquist plot may have an erroneous or undesirable appearance.
For example, if the transfer function G(s) is given by

then the MATLAB command
num = [1];
den = [1  1  0];
nyquist(num,den)

produces an undesirable Nyquist plot. An example of an undesirable Nyquist plot is
shown in Figure 7–38. If such an undesirable Nyquist plot appears on the computer,

G(s) =
1

s(s + 1)
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Nyquist plot of

G(s) =
1

s2 + 0.8s + 1
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Nyquist plot of

G(s) =
1

s(s + 1)
.

then it can be corrected if we specify the axis(v). For example, if we enter the axis
command

v = [-2  2  -5  5]; axis(v)

in the computer, then a desirable form of Nyquist plot can be obtained. See Example 7–11.

EXAMPLE 7–11 Draw a Nyquist plot for the following G(s):

MATLAB Program 7–7 will produce a desirable form of Nyquist plot on the computer, even
though a warning message “Divide by zero” may appear on the screen.The resulting Nyquist plot
is shown in Figure 7–39.

G(s) =
1

s(s + 1)

MATLAB Program 7–7

% ---------- Nyquist plot----------

num = [1];
den = [1  1  0];
nyquist(num,den)
v = [-2  2  -5  5]; axis(v)
grid
title('Nyquist Plot of G(s) = 1/[s(s + 1)]')

Notice that the Nyquist plot shown in Figure 7–39 includes the loci for both v>0 and v<0.
If we wish to draw the Nyquist plot for only the positive frequency region (v>0), then we need
to use the command

[re,im,w]=nyquist(num,den,w)
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Drawing Nyquist Plots of a System Defined in State Space. Consider the
system defined by

where state vector (n-vector)
output vector (m-vector)
control vector (r-vector)
state matrix (n*n matrix)
control matrix (n*r matrix)
output matrix (m*n matrix)
direct transmission matrix (m*r matrix) D =

 C =
 B =
 A =
 u =
 y =
 x =

y = Cx + Du
x# = Ax + Bu

MATLAB Program 7–8

% ---------- Nyquist plot----------

num = [1];
den = [1  1  0];
w = 0.1:0.1:100;
[re,im,w] = nyquist(num,den,w);
plot(re,im)
v = [-2  2  -5  5]; axis(v)
grid
title('Nyquist Plot of G(s) = 1/[s(s + 1)]')
xlabel('Real Axis')
ylabel('Imag Axis')
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Figure 7–40
Nyquist plot of

for v 7 0.

G(s) =
1

s(s + 1)

A MATLAB program using this nyquist command is shown in MATLAB Program 7–8. The
resulting Nyquist plot is presented in Figure 7–40.
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MATLAB Program 7–9

A = [0  1;-25  -4];
B = [0;25];
C = [1  0];
D = [0];
nyquist(A,B,C,D)
grid
title('Nyquist Plot')

Nyquist plots for this system may be obtained by the use of the command

nyquist(A,B,C,D)

This command produces a series of Nyquist plots, one for each input and output com-
bination of the system. The frequency range is automatically determined.

The command

nyquist(A,B,C,D,iu)

produces Nyquist plots from the single input iu to all the outputs of the system, with
the frequency range determined automatically. The scalar iu is an index into the inputs
of the system and specifies which input to use for the frequency response.

The command

nyquist(A,B,C,D,iu,w)

uses the user-supplied frequency vector w. The vector w specifies the frequencies in
radians per second at which the frequency response should be calculated.

EXAMPLE 7–12 Consider the system defined by

Draw a Nyquist plot.
This system has a single input u and a single output y. A Nyquist plot may be obtained by

entering the command

nyquist(A,B,C,D)

or

nyquist(A,B,C,D,1)

MATLAB Program 7–9 will provide the Nyquist plot. (Note that we obtain the identical result by
using either of these two commands.) Figure 7–41 shows the Nyquist plot produced by MATLAB
Program 7–9.

 y = [1 0]Bx1

x2
R + [0] u

 Bx
#
1

x
#
2
R = B 0

-25

1

-4
R Bx1

x2
R + B 0

25
R u
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EXAMPLE 7–13 Consider the system defined by

This system involves two inputs and two outputs. There are four sinusoidal output–input re-
lationships: and Draw Nyquist
plots for the system. (When considering input u1 , we assume that input u2 is zero, and vice
versa.)

The four individual Nyquist plots can be obtained by the use of the command

nyquist(A,B,C,D)

MATLAB Program 7–10 produces the four Nyquist plots. They are shown in Figure 7–42.
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Nyquist plot of
system considered in
Example 7–12.

MATLAB Program 7–10

A = [-1  -1;6.5  0];
B = [1  1;1  0];
C = [1  0;0  1];
D = [0  0;0  0];
nyquist(A,B,C,D)
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7–4 LOG-MAGNITUDE-VERSUS-PHASE PLOTS

Another approach to graphically portraying the frequency-response characteristics is
to use the log-magnitude-versus-phase plot, which is a plot of the logarithmic
magnitude in decibels versus the phase angle or phase margin for a frequency range
of interest. [The phase margin is the difference between the actual phase angle f
and –180°; that is, f-(–180°)=180°+f.] The curve is graduated in terms of the
frequency v. Such log-magnitude-versus-phase plots are commonly called Nichols
plots.

In the Bode diagram, the frequency-response characteristics of G(jv) are shown on
semilog paper by two separate curves, the log-magnitude curve and the phase-angle
curve, while in the log-magnitude-versus-phase plot, the two curves in the Bode dia-
gram are combined into one. In the manual approach the log-magnitude-versus-phase
plot can easily be constructed by reading values of the log magnitude and phase angle
from the Bode diagram. Notice that in the log-magnitude-versus-phase plot a change in
the gain constant of G(jv) merely shifts the curve up (for increasing gain) or down (for
decreasing gain), but the shape of the curve remains the same.

Advantages of the log-magnitude-versus-phase plot are that the relative stability of
the closed-loop system can be determined quickly and that compensation can be worked
out easily.

The log-magnitude-versus-phase plot for the sinusoidal transfer function G(jv) and
that for 1/G(jv) are skew symmetrical about the origin, since2 1

G(jv)
2  in dB = - @G(jv) @  in dB

4

2

0

−2

−4

1

0.5

0

−0.5

−1

4

2

0

−2

−4

4

2

0

−2

−4
1 20−1

Real Axis
3

1 20−1 3 0 1−1−2 2

0 1−1−2 2

From: U1 From: U2

From: U1 From: U2

Real Axis

Real Axis Real Axis

T
o:

Y
2

Im
ag

in
ar

y 
A

xi
s

T
o:

Y
1

T
o:

Y
2

T
o:

Y
1

Nyquist Diagrams

Figure 7–42
Nyquist plot of
system considered in
Example 7–13.



444 Chapter 7 / Control Systems Analysis and Design by the Frequency-Response Method

and

Figure 7–43 compares frequency-response curves of

in three different representations. In the log-magnitude-versus-phase plot, the vertical
distance between the points v=0 and v=vr , where vr is the resonant frequency, is the
peak value of G(jv) in decibels.

Since log-magnitude and phase-angle characteristics of basic transfer functions have
been discussed in detail in Sections 7–2 and 7–3, it will be sufficient here to give exam-
ples of some log-magnitude-versus-phase plots. Table 7–2 shows such examples. (How-
ever, more on Nichols charts will be discussed in Section 7–6.)
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Table 7–2 Log-Magnitude-versus-Phase Plots of Simple Transfer Functions

7–5 NYQUIST STABILITY CRITERION

The Nyquist stability criterion determines the stability of a closed-loop system from its
open-loop frequency response and open-loop poles.

This section presents mathematical background for understanding the Nyquist sta-
bility criterion. Consider the closed-loop system shown in Figure 7–44.The closed-loop
transfer function is

C(s)

R(s)
=

G(s)

1 + G(s)H(s)
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For stability, all roots of the characteristic equation

must lie in the left-half s plane. [It is noted that, although poles and zeros of the open-loop
transfer function G(s)H(s) may be in the right-half s plane, the system is stable if all the
poles of the closed-loop transfer function (that is, the roots of the characteristic equation)
are in the left-half s plane.] The Nyquist stability criterion relates the open-loop frequency
response G(jv)H(jv) to the number of zeros and poles of 1+G(s)H(s) that lie in the
right-half s plane.This criterion, derived by H. Nyquist, is useful in control engineering be-
cause the absolute stability of the closed-loop system can be determined graphically from
open-loop frequency-response curves, and there is no need for actually determining the
closed-loop poles. Analytically obtained open-loop frequency-response curves, as well as
those experimentally obtained, can be used for the stability analysis.This is convenient be-
cause, in designing a control system, it often happens that mathematical expressions for
some of the components are not known; only their frequency-response data are available.

The Nyquist stability criterion is based on a theorem from the theory of complex
variables.To understand the criterion, we shall first discuss mappings of contours in the
complex plane.

We shall assume that the open-loop transfer function G(s)H(s) is representable as
a ratio of polynomials in s. For a physically realizable system, the degree of the denom-
inator polynomial of the closed-loop transfer function must be greater than or equal to
that of the numerator polynomial.This means that the limit of G(s)H(s) as s approaches
infinity is zero or a constant for any physically realizable system.

Preliminary Study. The characteristic equation of the system shown in Figure 7–44 is

We shall show that, for a given continuous closed path in the s plane that does not go
through any singular points, there corresponds a closed curve in the F(s) plane. The
number and direction of encirclements of the origin of the F(s) plane by the closed
curve play a particularly important role in what follows, for later we shall correlate the
number and direction of encirclements with the stability of the system.

Consider, for example, the following open-loop transfer function:

The characteristic equation is

(7–15)= 1 +
2

s - 1
=

s + 1
s - 1

= 0

F(s) = 1 + G(s)H(s)

G(s)H(s) =
2

s - 1

F(s) = 1 + G(s)H(s) = 0

1 + G(s)H(s) = 0

R(s) C(s)
G(s)

H(s)

+
–

Figure 7–44
Closed-loop system.
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Conformal mapping of the
s-plane grids into the F(s)
plane, where
F(s)=(s+1)/(s-1).

The function F(s) is analytic# everywhere in the s plane except at its singular points.
For each point of analyticity in the s plane, there corresponds a point in the F(s) plane.
For example, if s=2+j1, then F(s) becomes

Thus, point s=2+j1 in the s plane maps into point 2-j1 in the F(s) plane.
Thus, as stated previously, for a given continuous closed path in the s plane, which does

not go through any singular points, there corresponds a closed curve in the F(s) plane.
For the characteristic equation F(s) given by Equation (7–15), the conformal map-

ping of the lines and the lines [see Figure 7–45(a)] yield cir-
cles in the F(s) plane, as shown in Figure 7–45(b). Suppose that representative point s
traces out a contour in the s plane in the clockwise direction. If the contour in the s
plane encloses the pole of F(s), there is one encirclement of the origin of the F(s) plane
by the locus of F(s) in the counterclockwise direction. [See Figure 7–46(a).] If the con-
tour in the s plane encloses the zero of F(s), there is one encirclement of the origin of
the F(s) plane by the locus of F(s) in the clockwise direction. [See Figure 7–46(b).] If
the contour in the s plane encloses both the zero and the pole or if the contour enclos-
es neither the zero nor the pole, then there is no encirclement of the origin of the F(s)
plane by the locus of F(s). [See Figures 7–46(c) and (d).]

From the foregoing analysis, we can say that the direction of encirclement of the ori-
gin of the F(s) plane by the locus of F(s) depends on whether the contour in the s plane
encloses a pole or a zero. Note that the location of a pole or zero in the s plane, whether
in the right-half or left-half s plane, does not make any difference, but the enclosure of
a pole or zero does. If the contour in the s plane encloses equal numbers of poles and
zeros, then the corresponding closed curve in the F(s) plane does not encircle the ori-
gin of the F(s) plane.The foregoing discussion is a graphical explanation of the mapping
theorem, which is the basis for the Nyquist stability criterion.

s = 0, ;1, ;2v = 0, ;1, ;2

F(2 + j1) =
2 + j1 + 1

2 + j1 - 1
= 2 - j1

#A complex function F(s) is said to be analytic in a region if F(s) and all its derivatives exist in that region.
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Closed contours in the s
plane and their
corresponding closed curves
in the F(s) plane, where
F(s)=(s+1)/(s-1).

Mapping Theorem. Let F(s) be a ratio of two polynomials in s. Let P be the num-
ber of poles and Z be the number of zeros of F(s) that lie inside some closed contour in
the s plane, with multiplicity of poles and zeros accounted for. Let the contour be such
that it does not pass through any poles or zeros of F(s).This closed contour in the s plane
is then mapped into the F(s) plane as a closed curve. The total number N of clockwise
encirclements of the origin of the F(s) plane, as a representative point s traces out the
entire contour in the clockwise direction, is equal to Z-P. (Note that by this mapping
theorem, the numbers of zeros and of poles cannot be found—only their difference.)
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We shall not present a formal proof of this theorem here, but leave the proof to
Problem A–7–6. Note that a positive number N indicates an excess of zeros over poles
of the function F(s) and a negative N indicates an excess of poles over zeros. In control
system applications, the number P can be readily determined for F(s)=1+G(s)H(s)
from the function G(s)H(s). Therefore, if N is determined from the plot of F(s), the
number of zeros in the closed contour in the s plane can be determined readily. Note that
the exact shapes of the s-plane contour and F(s) locus are immaterial so far as encir-
clements of the origin are concerned, since encirclements depend only on the enclosure
of poles and/or zeros of F(s) by the s-plane contour.

Application of the Mapping Theorem to the Stability Analysis of Closed-Loop
Systems. For analyzing the stability of linear control systems, we let the closed con-
tour in the s plane enclose the entire right-half s plane. The contour consists of the en-
tire jv axis from v=–q to ±q and a semicircular path of infinite radius in the
right-half s plane. Such a contour is called the Nyquist path. (The direction of the path
is clockwise.) The Nyquist path encloses the entire right-half s plane and encloses all
the zeros and poles of 1+G(s)H(s) that have positive real parts. [If there are no zeros
of 1+G(s)H(s) in the right-half s plane, then there are no closed-loop poles there,
and the system is stable.] It is necessary that the closed contour, or the Nyquist path, not
pass through any zeros and poles of 1+G(s)H(s). If G(s)H(s) has a pole or poles at
the origin of the s plane, mapping of the point s=0 becomes indeterminate. In such
cases, the origin is avoided by taking a detour around it. (A detailed discussion of this
special case is given later.)

If the mapping theorem is applied to the special case in which F(s) is equal to
1+G(s)H(s), then we can make the following statement: If the closed contour in the
s plane encloses the entire right-half s plane, as shown in Figure 7–47, then the num-
ber of right-half plane zeros of the function F(s)=1+G(s)H(s) is equal to the num-
ber of poles of the function F(s)=1+G(s)H(s) in the right-half s plane plus the
number of clockwise encirclements of the origin of the 1+G(s)H(s) plane by the
corresponding closed curve in this latter plane.

Because of the assumed condition that

the function of 1+G(s)H(s) remains constant as s traverses the semicircle of infinite
radius. Because of this, whether the locus of 1+G(s)H(s) encircles the origin of the
1+G(s)H(s) plane can be determined by considering only a part of the closed contour
in the s plane—that is, the jv axis. Encirclements of the origin, if there are any, occur only

lim
s S q

 C1 + G(s)H(s) D = constant

jv

s0

s Plane

`

Figure 7–47
Closed contour in
the s plane.
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while a representative point moves from –jq to ±jq along the jv axis, provided that no
zeros or poles lie on the jv axis.

Note that the portion of the  1+G(s)H(s) contour from v=–q to v=q is sim-
ply 1+G(jv)H(jv). Since 1+G(jv)H(jv) is the vector sum of the unit vector and
the vector G(jv)H(jv), 1+G(jv)H(jv) is identical to the vector drawn from the
–1+j0 point to the terminal point of the vector G(jv)H(jv), as shown in Figure 7–48.
Encirclement of the origin by the graph of 1+G(jv)H(jv) is equivalent to encir-
clement of the –1+j0 point by just the G(jv)H(jv) locus.Thus, the stability of a closed-
loop system can be investigated by examining encirclements of the –1+j0 point by
the locus of G(jv)H(jv). The number of clockwise encirclements of the –1+j0 point
can be found by drawing a vector from the –1+j0 point to the G(jv)H(jv) locus,
starting from v=–q, going through v=0, and ending at v=±q, and by counting
the number of clockwise rotations of the vector.

Plotting G(jv)H(jv) for the Nyquist path is straightforward. The map of the nega-
tive jv axis is the mirror image about the real axis of the map of the positive jv axis.That
is, the plot of G(jv)H(jv) and the plot of G(–jv)H(–jv) are symmetrical with each
other about the real axis. The semicircle with infinite radius maps into either the origin
of the GH plane or a point on the real axis of the GH plane.

In the preceding discussion, G(s)H(s) has been assumed to be the ratio of two poly-
nomials in s. Thus, the transport lag e–Ts has been excluded from the discussion. Note,
however, that a similar discussion applies to systems with transport lag, although a proof
of this is not given here. The stability of a system with transport lag can be determined
from the open-loop frequency-response curves by examining the number of encir-
clements of the –1+j0 point, just as in the case of a system whose open-loop transfer
function is a ratio of two polynomials in s.

Nyquist Stability Criterion. The foregoing analysis, utilizing the encirclement of
the –1+j0 point by the G(jv)H(jv) locus, is summarized in the following Nyquist
stability criterion:

Nyquist stability criterion [ for a special case when G(s)H(s) has neither poles nor
zeros on the jv axis]: In the system shown in Figure 7–44, if the open-loop transfer func-
tion G(s)H(s) has k poles in the right-half s plane and 

then for stability, the G(jv)H(jv) locus, as v varies from –q to q, must encircle the
–1+j0 point k times in the counterclockwise direction.

lim
s S q

G(s)H(s) = constant,
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Remarks on the Nyquist Stability Criterion

1. This criterion can be expressed as

where number of zeros of 1+G(s)H(s) in the right-half s plane
number of clockwise encirclements of the –1+j0 point
number of poles of G(s)H(s) in the right-half s plane

If P is not zero, for a stable control system, we must have Z=0, or N=–P, which
means that we must have P counterclockwise encirclements of the –1+j0 point.

If G(s)H(s) does not have any poles in the right-half s plane, then Z=N.
Thus, for stability there must be no encirclement of the –1+j0 point by the
G(jv)H(jv) locus. In this case it is not necessary to consider the locus for the en-
tire jv axis, only for the positive-frequency portion. The stability of such a system
can be determined by seeing if the –1+j0 point is enclosed by the Nyquist plot
of G(jv)H(jv). The region enclosed by the Nyquist plot is shown in Figure 7–49.
For stability, the –1+j0 point must lie outside the shaded region.

2. We must be careful when testing the stability of multiple-loop systems since they
may include poles in the right-half s plane. (Note that although an inner loop may
be unstable, the entire closed-loop system can be made stable by proper design.)
Simple inspection of encirclements of the –1+j0 point by the G(jv)H(jv) locus
is not sufficient to detect instability in multiple-loop systems. In such cases, how-
ever, whether any pole of 1+G(s)H(s) is in the right-half s plane can be deter-
mined easily by applying the Routh stability criterion to the denominator of
G(s)H(s).

If transcendental functions, such as transport lag e–Ts, are included in G(s)H(s),
they must be approximated by a series expansion before the Routh stability
criterion can be applied.

3. If the locus of G(jv)H(jv) passes through the –1+j0 point, then zeros of the
characteristic equation, or closed-loop poles, are located on the jv axis.This is not
desirable for practical control systems. For a well-designed closed-loop system,
none of the roots of the characteristic equation should lie on the jv axis.

 P =
 N =
 Z =

Z = N + P
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Contour near the
origin of the s plane
and closed contour in
the s plane avoiding
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the origin.

Special Case when G(s)H(s) Involves Poles and/or Zeros on the jV Axis. In
the previous discussion, we assumed that the open-loop transfer function G(s)H(s) has
neither poles nor zeros at the origin.We now consider the case where G(s)H(s) involves
poles and/or zeros on the jv axis.

Since the Nyquist path must not pass through poles or zeros of G(s)H(s), if the func-
tion G(s)H(s) has poles or zeros at the origin (or on the jv axis at points other than the
origin), the contour in the s plane must be modified. The usual way of modifying the
contour near the origin is to use a semicircle with the infinitesimal radius e, as shown in
Figure 7–50. [Note that this semicircle may lie in the right-half s plane or in the left-half
s plane. Here we take the semicircle in the right-half s plane.] A representative point s
moves along the negative jv axis from –jq to j0–. From s=j0– to s=j0±, the point
moves along the semicircle of radius e (where e � 1) and then moves along the posi-
tive jv axis from j0± to jq. From s=jq, the contour follows a semicircle with infinite
radius, and the representative point moves back to the starting point, s=–jq.The area
that the modified closed contour avoids is very small and approaches zero as the radius
e approaches zero. Therefore, all the poles and zeros, if any, in the right-half s plane are
enclosed by this contour.

Consider, for example, a closed-loop system whose open-loop transfer function is
given by

The points corresponding to s=j0± and s=j0– on the locus of G(s)H(s) in the
G(s)H(s) plane are –jq and jq, respectively. On the semicircular path with radius e
(where e � 1), the complex variable s can be written

where u varies from –90° to ±90°. Then G(s)H(s) becomes

GAeejuBHAeejuB =
K

eeju =
K
e

 e-ju

s = eeju

G(s)H(s) =
K

s(Ts + 1)
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plane, where
G(s)H(s) = K� Cs(Ts + 1) D .

The value K�e approaches infinity as e approaches zero, and –u varies from 90° to –90°
as a representative point s moves along the semicircle in the s plane. Thus, the points
G(j0–)H(j0–)=jq and G(j0±)H(j0±)=–jq are joined by a semicircle of infinite
radius in the right-half GH plane.The infinitesimal semicircular detour around the ori-
gin in the s plane maps into the GH plane as a semicircle of infinite radius. Figure 7–51
shows the s-plane contour and the G(s)H(s) locus in the GH plane. Points A, B, and
C on the s-plane contour map into the respective points A¿, B¿, and C¿ on the G(s)H(s)
locus. As seen from Figure 7–51, points D, E, and F on the semicircle of infinite radius
in the s plane map into the origin of the GH plane. Since there is no pole in the right-
half s plane and the G(s)H(s) locus does not encircle the –1+j0 point, there are no
zeros of the function 1+G(s)H(s) in the right-half s plane. Therefore, the system is
stable.

For an open-loop transfer function G(s)H(s) involving a 1/sn factor (where
n=2, 3, p ), the plot of G(s)H(s) has n clockwise semicircles of infinite radius about
the origin as a representative point s moves along the semicircle of radius e (where
e � 1). For example, consider the following open-loop transfer function:

Then

As u varies from –90° to 90° in the s plane, the angle of G(s)H(s) varies from 180° to
–180°, as shown in Figure 7–52. Since there is no pole in the right-half s plane and the
locus encircles the –1+j0 point twice clockwise for any positive value of K, there are
two zeros of 1+G(s)H(s) in the right-half s plane. Therefore, this system is always
unstable.

lim
s Seeju

G(s)H(s) =
K

e2e2ju =
K

e2 e-2ju

G(s)H(s) =
K

s2(Ts + 1)



454 Chapter 7 / Control Systems Analysis and Design by the Frequency-Response Method

Note that a similar analysis can be made if G(s)H(s) involves poles and/or zeros on
the jv axis. The Nyquist stability criterion can now be generalized as follows:

Nyquist stability criterion [for a general case when G(s)H(s) has poles and/or zeros
on the jv axis]: In the system shown in Figure 7–44, if the open-loop transfer function
G(s)H(s) has k poles in the right-half s plane, then for stability the G(s)H(s) locus,
as a representative point s traces on the modified Nyquist path in the clockwise di-
rection, must encircle the –1+j0 point k times in the counterclockwise direction.

7–6 STABILITY ANALYSIS

In this section, we shall present several illustrative examples of the stability analysis of
control systems using the Nyquist stability criterion.

If the Nyquist path in the s plane encircles Z zeros and P poles of 1+G(s)H(s) and
does not pass through any poles or zeros of 1+G(s)H(s) as a representative point s
moves in the clockwise direction along the Nyquist path, then the corresponding con-
tour in the G(s)H(s) plane encircles the –1+j0 point N=Z-P times in the clock-
wise direction. (Negative values of N imply counterclockwise encirclements.)

In examining the stability of linear control systems using the Nyquist stability crite-
rion, we see that three possibilities can occur:

1. There is no encirclement of the –1+j0 point. This implies that the system is sta-
ble if there are no poles of G(s)H(s) in the right-half s plane; otherwise, the sys-
tem is unstable.

2. There are one or more counterclockwise encirclements of the –1+j0 point. In this
case the system is stable if the number of counterclockwise encirclements is the
same as the number of poles of G(s)H(s) in the right-half s plane; otherwise, the
system is unstable.

3. There are one or more clockwise encirclements of the –1+j0 point. In this case
the system is unstable.

In the following examples, we assume that the values of the gain K and the time con-
stants (such as T, and ) are all positive.T2T1 ,

jv
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Figure 7–52
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Example 7–15.

EXAMPLE 7–14 Consider a closed-loop system whose open-loop transfer function is given by

Examine the stability of the system.
A plot of G(jv)H(jv) is shown in Figure 7–53. Since G(s)H(s) does not have any poles in

the right-half s plane and the –1+j0 point is not encircled by the G(jv)H(jv) locus, this system
is stable for any positive values of K, and T2 .T1 ,

G(s)H(s) =
KAT1 s + 1B AT2 s + 1B

EXAMPLE 7–15 Consider the system with the following open-loop transfer function:

Determine the stability of the system for two cases: (1) the gain K is small and (2) K is large.
The Nyquist plots of the open-loop transfer function with a small value of K and a large value

of K are shown in Figure 7–54.The number of poles of G(s)H(s) in the right-half s plane is zero.

G(s)H(s) =
K

sAT1 s + 1B AT2 s + 1B
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Therefore, for this system to be stable, it is necessary that N=Z=0 or that the G(s)H(s) locus
not encircle the –1+j0 point.

For small values of K, there is no encirclement of the –1+j0 point. Hence, the system is sta-
ble for small values of K. For large values of K, the locus of G(s)H(s) encircles the –1+j0 point
twice in the clockwise direction, indicating two closed-loop poles in the right-half s plane, and the
system is unstable. (For good accuracy, K should be large. From the stability viewpoint, however,
a large value of K causes poor stability or even instability.To compromise between accuracy and
stability, it is necessary to insert a compensation network into the system. Compensating tech-
niques in the frequency domain are discussed in Sections 7–11 through 7–13.)

EXAMPLE 7–16 The stability of a closed-loop system with the following open-loop transfer function

depends on the relative magnitudes of and Draw Nyquist plots and determine the stability
of the system.

Plots of the locus G(s)H(s) for three cases, and are shown 
in Figure 7–55. For the locus of G(s)H(s) does not encircle the –1+j0 point,
and the closed-loop system is stable. For , the G(s)H(s) locus passes through 
the –1+j0 point, which indicates that the closed-loop poles are located on the jv axis. For

the locus of G(s)H(s) encircles the –1+j0 point twice in the clockwise direction.
Thus, the closed-loop system has two closed-loop poles in the right-half s plane, and the system
is unstable.

T1 7 T2 ,

T1 = T2

T1 6 T2 ,
T1 7 T2 ,T1 6 T2 , T1 = T2 ,

T2 .T1

G(s)H(s) =
KAT2 s + 1B
s2AT1 s + 1B

EXAMPLE 7–17 Consider the closed-loop system having the following open-loop transfer function:

Determine the stability of the system.

G(s)H(s) =
K

s(Ts - 1)
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Polar plot of the
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The function G(s)H(s) has one pole (s=1/T) in the right-half s plane.Therefore, P=1.The
Nyquist plot shown in Figure 7–56 indicates that the G(s)H(s) plot encircles the –1+j0 point
once clockwise. Thus, N=1. Since Z=N+P, we find that Z=2. This means that the closed-
loop system has two closed-loop poles in the right-half s plane and is unstable.

EXAMPLE 7–18 Investigate the stability of a closed-loop system with the following open-loop transfer function:

The open-loop transfer function has one pole (s=1) in the right-half s plane, or P=1. The
open-loop system is unstable. The Nyquist plot shown in Figure 7–57 indicates that the –1+j0
point is encircled by the G(s)H(s) locus once in the counterclockwise direction. Therefore,
N=–1. Thus, Z is found from Z=N+P to be zero, which indicates that there is no zero of
1+G(s)H(s) in the right-half s plane, and the closed-loop system is stable. This is one of the
examples for which an unstable open-loop system becomes stable when the loop is closed.

G(s)H(s) =
K(s + 3)

s(s - 1)
  (K 7 1)
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Multiple-loop
system.

Conditionally Stable Systems. Figure 7–58 shows an example of a G(jv)H(jv)
locus for which the closed-loop system can be made unstable by varying the open-loop
gain. If the open-loop gain is increased sufficiently, the G(jv)H(jv) locus encloses the
–1+j0 point twice, and the system becomes unstable. If the open-loop gain is decreased
sufficiently, again the G(jv)H(jv) locus encloses the –1+j0 point twice. For stable
operation of the system considered here, the critical point –1+j0 must not be located
in the regions between OA and BC shown in Figure 7–58. Such a system that is stable
only for limited ranges of values of the open-loop gain for which the –1+j0 point is
completely outside the G(jv)H(jv) locus is a conditionally stable system.

A conditionally stable system is stable for the value of the open-loop gain lying be-
tween critical values, but it is unstable if the open-loop gain is either increased or de-
creased sufficiently. Such a system becomes unstable when large input signals are applied,
since a large signal may cause saturation, which in turn reduces the open-loop gain of
the system. It is advisable to avoid such a situation.

Multiple-Loop System. Consider the system shown in Figure 7–59.This is a mul-
tiple-loop system. The inner loop has the transfer function

G(s) =
G2(s)

1 + G2(s)H2(s)

Im

Re

GH Plane

0

0

ABC

v = `

vFigure 7–58
Polar plot of a
conditionally stable
system.
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Figure 7–60
Control system.

If G(s) is unstable, the effects of instability are to produce a pole or poles in the right-half
s plane.Then the characteristic equation of the inner loop, 1+G2(s)H2(s)=0, has a zero
or zeros in the right-half s plane. If G2(s) and H2(s) have poles here, then the number
Z1 of right-half plane zeros of 1+G2(s)H2(s) can be found from where
N1 is the number of clockwise encirclements of the –1+j0 point by the G2(s)H2(s)
locus. Since the open-loop transfer function of the entire system is given by
G1(s)G(s)H1(s), the stability of this closed-loop system can be found from the Nyquist
plot of G1(s)G(s)H1(s) and knowledge of the right-half plane poles of G1(s)G(s)H1(s).

Notice that if a feedback loop is eliminated by means of block diagram reductions,
there is a possibility that unstable poles are introduced; if the feedforward branch is
eliminated by means of block diagram reductions, there is a possibility that right-half
plane zeros are introduced.Therefore, we must note all right-half plane poles and zeros
as they appear from subsidiary loop reductions. This knowledge is necessary in deter-
mining the stability of multiple-loop systems.

EXAMPLE 7–19 Consider the control system shown in Figure 7–60.The system involves two loops. Determine the
range of gain K for stability of the system by the use of the Nyquist stability criterion. (The gain
K is positive.)

To examine the stability of the control system,we need to sketch the Nyquist locus of G(s),where

However, the poles of G(s) are not known at this point.Therefore, we need to examine the minor
loop if there are right-half s-plane poles. This can be done easily by use of the Routh stability
criterion. Since

the Routh array becomes as follows:

Notice that there are two sign changes in the first column. Hence, there are two poles of G2(s) in
the right-half s plane.

Once we find the number of right-half s plane poles of G2(s), we proceed to sketch the Nyquist
locus of G(s), where

G(s) = G1(s)G2(s) =
K(s + 0.5)

s3 + s2 + 1

s3

s2

s1

s0

1

1

-1

1

0

1

0

G2(s) =
1

s3 + s2 + 1

G(s) = G1(s)G2(s)

Z1 = N1 + P1 ,
P1

R(s) C(s)
K(s + 0.5)

G1(s)

G2(s)

1
s2(s + 1)

+
–

+
–
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Our problem is to determine the range of the gain K for stability. Hence, instead of plotting
Nyquist loci of G(jv) for various values of K, we plot the Nyquist locus of G(jv)/K. Figure 7–61
shows the Nyquist plot or polar plot of G(jv)/K.

Since G(s) has two poles in the right-half s plane, we have Noting that

Z=N+P

for stability, we require Z=0 or N=–2. That is, the Nyquist locus of G(jv) must encircle the
–1+j0 point twice counterclockwise. From Figure 7–61, we see that, if the critical point lies
between 0 and –0.5, then the G(jv)/K locus encircles the critical point twice counterclockwise.
Therefore, we require

–0.5K<–1

The range of the gain K for stability is

2<K

P = 2.
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Nyquist Stability Criterion Applied to Inverse Polar Plots. In the previous
analyses, the Nyquist stability criterion was applied to polar plots of the open-loop trans-
fer function G(s)H(s).

In analyzing multiple-loop systems, the inverse transfer function may sometimes be
used in order to permit graphical analysis; this avoids much of the numerical calculation.
(The Nyquist stability criterion can be applied equally well to inverse polar plots. The
mathematical derivation of the Nyquist stability criterion for inverse polar plots is the
same as that for direct polar plots.)

The inverse polar plot of G(jv)H(jv) is a graph of 1/ CG(jv)H(jv) D as a function of
v. For example, if G(jv)H(jv) is

then

The inverse polar plot for v � 0 is the lower half of the vertical line starting at the point
(1, 0) on the real axis.

The Nyquist stability criterion applied to inverse plots may be stated as follows: For
a closed-loop system to be stable, the encirclement, if any, of the –1+j0 point by the
1/ CG(s)H(s) D locus (as s moves along the Nyquist path) must be counterclockwise, and
the number of such encirclements must be equal to the number of poles of 1/ CG(s)H(s) D
[that is, the zeros of G(s)H(s)] that lie in the right-half s plane. [The number of zeros
of G(s)H(s) in the right-half s plane may be determined by the use of the Routh sta-
bility criterion.] If the open-loop transfer function G(s)H(s) has no zeros in the right-
half s plane, then for a closed-loop system to be stable, the number of encirclements of
the –1+j0 point by the 1/ CG(s)H(s) D locus must be zero.

Note that although the Nyquist stability criterion can be applied to inverse polar
plots, if experimental frequency-response data are incorporated, counting the number
of encirclements of the 1/ CG(s)H(s) D locus may be difficult because the phase shift cor-
responding to the infinite semicircular path in the s plane is difficult to measure. For
example, if the open-loop transfer function G(s)H(s) involves transport lag such that

then the number of encirclements of the –1+j0 point by the 1/ CG(s)H(s) D locus be-
comes infinite, and the Nyquist stability criterion cannot be applied to the inverse polar
plot of such an open-loop transfer function.

In general, if experimental frequency-response data cannot be put into analytical
form, both the G(jv)H(jv) and 1/ CG(jv)H(jv) D loci must be plotted. In addition,
the number of right-half plane zeros of G(s)H(s) must be determined. It is more dif-
ficult to determine the right-half plane zeros of G(s)H(s) (in other words, to deter-
mine whether a given component is minimum phase) than it is to determine the
right-half plane poles of G(s)H(s) (in other words, to determine whether the com-
ponent is stable).

G(s)H(s) =
Ke-jvL

s(Ts + 1)

1

G(jv)H(jv)
=

1

jvT
+ 1

G(jv)H(jv) =
jvT

1 + jvT
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Depending on whether the data are graphical or analytical and whether nonmini-
mum-phase components are included, an appropriate stability test must be used for
multiple-loop systems. If the data are given in analytical form or if mathematical ex-
pressions for all the components are known, the application of the Nyquist stability cri-
terion to inverse polar plots causes no difficulty, and multiple-loop systems may be
analyzed and designed in the inverse GH plane. (See Problem A–7–15.)

7–7 RELATIVE STABILITY ANALYSIS

Relative Stability. In designing a control system, we require that the system be
stable. Furthermore, it is necessary that the system have adequate relative stability.

In this section, we shall show that the Nyquist plot indicates not only whether a sys-
tem is stable, but also the degree of stability of a stable system.The Nyquist plot also gives
information as to how stability may be improved, if this is necessary.

In the following discussion, we shall assume that the systems considered have
unity feedback. Note that it is always possible to reduce a system with feedback ele-
ments to a unity-feedback system, as shown in Figure 7–62. Hence, the extension of
relative stability analysis for the unity-feedback system to nonunity-feedback sys-
tems is possible.

We shall also assume that, unless otherwise stated, the systems are minimum-phase
systems; that is, the open-loop transfer function has neither poles nor zeros in the right-
half s plane.

Relative Stability Analysis by Conformal Mapping. One of the important prob-
lems in analyzing a control system is to find all closed-loop poles or at least those clos-
est to the jv axis (or the dominant pair of closed-loop poles). If the open-loop
frequency-response characteristics of a system are known, it may be possible to esti-
mate the closed-loop poles closest to the jv axis. It is noted that the Nyquist locus G(jv)
need not be an analytically known function of v. The entire Nyquist locus may be ex-
perimentally obtained. The technique to be presented here is essentially graphical and
is based on a conformal mapping of the s plane into the G(s) plane.

R(s) C(s)
G

H

R(s)
GH

C(s)1
H

+
–

+
–

Figure 7–62
Modification of a
system with feedback
elements to a unity-
feedback system.
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Consider the conformal mapping of constant-s lines (lines s=s+jv, where s is
constant and v varies) and constant-v lines (lines s=s+jv, where v is constant and
s varies) in the s plane.The s=0 line (the jv axis) in the s plane maps into the Nyquist
plot in the G(s) plane.The constant-s lines in the s plane map into curves that are sim-
ilar to the Nyquist plot and are in a sense parallel to the Nyquist plot, as shown in Fig-
ure 7–63.The constant-v lines in the s plane map into curves, also shown in Figure 7–63.

Although the shapes of constant-s and constant-v loci in the G(s) plane and the
closeness of approach of the G(jv) locus to the –1+j0 point depend on a particular
G(s), the closeness of approach of the G(jv) locus to the –1+j0 point is an indication
of the relative stability of a stable system. In general, we may expect that the closer the
G(jv) locus is to the –1+j0 point, the larger the maximum overshoot is in the step
transient response and the longer it takes to damp out.

Consider the two systems shown in Figures 7–64(a) and (b). (In Figure 7–64, the :’s
indicate closed-loop poles.) System (a) is obviously more stable than system (b) because
the closed-loop poles of system (a) are located farther left than those of system (b).
Figures 7–65(a) and (b) show the conformal mapping of s-plane grids into the G(s)
plane. The closer the closed-loop poles are located to the jv axis, the closer the G(jv)
locus is to the –1+j0 point.
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Phase and Gain Margins. Figure 7–66 shows the polar plots of G(jv) for three
different values of the open-loop gain K. For a large value of the gain K, the system is
unstable.As the gain is decreased to a certain value, the G(jv) locus passes through the
–1+j0 point. This means that with this gain value the system is on the verge of insta-
bility, and the system will exhibit sustained oscillations. For a small value of the gain K,
the system is stable.

In general, the closer the G(jv) locus comes to encircling the –1+j0 point, the
more oscillatory is the system response.The closeness of the G(jv) locus to the –1+j0
point can be used as a measure of the margin of stability. (This does not apply, however,
to conditionally stable systems.) It is common practice to represent the closeness in
terms of phase margin and gain margin.

Phase margin: The phase margin is that amount of additional phase lag at the gain
crossover frequency required to bring the system to the verge of instability.The gain
crossover frequency is the frequency at which @G(jv) @ , the magnitude of the open-
loop transfer function, is unity. The phase margin g is 180° plus the phase angle f
of the open-loop transfer function at the gain crossover frequency, or

g=180°+f

Im

Re

G Plane

0–1

K : Large

K : Small
K = open-loop gain

Figure 7–66
Polar plots of

KA1 + jvTaB A1 + jvTbB p
(jv)A1 + jvT1B A1 + jvT2B p .
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Conformal mappings
of s-plane grids for
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Figures 7–67(a), (b), and (c) illustrate the phase margin of both a stable system and
an unstable system in Bode diagrams, polar plots, and log-magnitude-versus-phase plots.
In the polar plot, a line may be drawn from the origin to the point at which the unit cir-
cle crosses the G(jv) locus. If this line lies below (above) the negative real axis, then the
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angle g is positive (negative).The angle from the negative real axis to this line is the phase
margin.The phase margin is positive for g>0 and negative for g<0. For a minimum-
phase system to be stable, the phase margin must be positive. In the logarithmic plots,
the critical point in the complex plane corresponds to the 0-dB and –180° lines.

Gain margin: The gain margin is the reciprocal of the magnitude @G(jv) @ at the
frequency at which the phase angle is –180°. Defining the phase crossover fre-
quency v1 to be the frequency at which the phase angle of the open-loop transfer
function equals –180° gives the gain margin Kg :

In terms of decibels,

The gain margin expressed in decibels is positive if Kg is greater than unity and nega-
tive if Kg is smaller than unity.Thus, a positive gain margin (in decibels) means that the
system is stable, and a negative gain margin (in decibels) means that the system is
unstable. The gain margin is shown in Figures 7–67(a), (b), and (c).

For a stable minimum-phase system, the gain margin indicates how much the gain can
be increased before the system becomes unstable. For an unstable system, the gain mar-
gin is indicative of how much the gain must be decreased to make the system stable.

The gain margin of a first- or second-order system is infinite since the polar plots for
such systems do not cross the negative real axis. Thus, theoretically, first- or second-
order systems cannot be unstable. (Note, however, that so-called first- or second-order
systems are only approximations in the sense that small time lags are neglected in de-
riving the system equations and are thus not truly first- or second-order systems. If these
small lags are accounted for, the so-called first- or second-order systems may become
unstable.)

It is noted that for a nonminimum-phase system with unstable open loop the stability
condition will not be satisfied unless the G(jv) plot encircles the –1+j0 point. Hence,
such a stable nonminimum-phase system will have negative phase and gain margins.

It is also important to point out that conditionally stable systems will have two or
more phase crossover frequencies, and some higher-order systems with complicated
numerator dynamics may also have two or more gain crossover frequencies, as shown
in Figure 7–68. For stable systems having two or more gain crossover frequencies, the
phase margin is measured at the highest gain crossover frequency.

A Few Comments on Phase and Gain Margins. The phase and gain margins of
a control system are a measure of the closeness of the polar plot to the –1+j0 point.
Therefore, these margins may be used as design criteria.

It should be noted that either the gain margin alone or the phase margin alone does
not give a sufficient indication of the relative stability. Both should be given in the
determination of relative stability.

For a minimum-phase system, both the phase and gain margins must be positive for
the system to be stable. Negative margins indicate instability.

Proper phase and gain margins ensure us against variations in the system components
and are specified for definite positive values.The two values bound the behavior of the

Kg dB = 20 log Kg = -20 log @GAjv1B @
Kg =

1@GAjv1B @
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Figure 7–69
Control system.

closed-loop system near the resonant frequency. For satisfactory performance, the phase
margin should be between 30° and 60°, and the gain margin should be greater than 6 dB.
With these values, a minimum-phase system has guaranteed stability, even if the open-
loop gain and time constants of the components vary to a certain extent. Although the
phase and gain margins give only rough estimates of the effective damping ratio of the
closed-loop system, they do offer a convenient means for designing control systems or
adjusting the gain constants of systems.

For minimum-phase systems, the magnitude and phase characteristics of the open-
loop transfer function are definitely related.The requirement that the phase margin be
between 30° and 60° means that in a Bode diagram the slope of the log-magnitude curve
at the gain crossover frequency should be more gradual than –40 dB�decade. In most
practical cases, a slope of –20 dB�decade is desirable at the gain crossover frequency for
stability. If it is –40 dB�decade, the system could be either stable or unstable. (Even if
the system is stable, however, the phase margin is small.) If the slope at the gain crossover
frequency is –60 dB�decade or steeper, the system is most likely unstable.

For nonminimum-phase systems, the correct interpretation of stability margins re-
quires careful study.The best way to determine the stability of nonminimum-phase sys-
tems is to use the Nyquist diagram approach rather than Bode diagram approach.

EXAMPLE 7–20 Obtain the phase and gain margins of the system shown in Figure 7–69 for the two cases where
K=10 and K=100.

R(s) C(s)K
s(s + 1) (s + 5)

+
–
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The phase and gain margins can easily be obtained from the Bode diagram.A Bode diagram of
the given open-loop transfer function with K=10 is shown in Figure 7–70(a).The phase and gain
margins for K=10 are

Phase margin=21°, Gain margin=8 dB

Therefore, the system gain may be increased by 8 dB before the instability occurs.
Increasing the gain from K=10 to K=100 shifts the 0-dB axis down by 20 dB, as shown in

Figure 7–70(b). The phase and gain margins are

Phase margin=–30°, Gain margin=–12 dB

Thus, the system is stable for K=10, but unstable for K=100.
Notice that one of the very convenient aspects of the Bode diagram approach is the ease with

which the effects of gain changes can be evaluated. Note that to obtain satisfactory performance, we
must increase the phase margin to 30° ~ 60°. This can be done by decreasing the gain K. Decreas-
ing K is not desirable, however, since a small value of K will yield a large error for the ramp input.
This suggests that reshaping of the open-loop frequency-response curve by adding compensation may
be necessary. Compensation techniques are discussed in detail in Sections 7–11 through 7–13.

Obtaining Gain Margin, Phase Margin, Phase-Crossover Frequency, and Gain-
Crossover Frequency with MATLAB. The gain margin, phase margin, phase-crossover
frequency, and gain-crossover frequency can be obtained easily with MATLAB.The com-
mand to be used is

[Gm,pm,wcp,wcg] = margin(sys)
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Bode diagrams of the system shown in Figure 7–69; (a) with K=10 and (b) with K=100.
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Figure 7–71
Closed-loop system.
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MATLAB Program 7–11

num = [20  20];
den = conv([1  5  0],[1  2  10]);
sys = tf(num,den);
w = logspace(-1,2,100);
bode(sys,w)
[Gm,pm,wcp,wcg] = margin(sys);
GmdB = 20*log10(Gm);
[GmdB  pm  wcp  wcg]

ans =

9.9293  103.6573  4.0131  0.4426

where Gm is the gain margin, pm is the phase margin, wcp is the phase-crossover fre-
quency, and wcg is the gain-crossover frequency. For details of how to use this com-
mand, see Example 7–21.

EXAMPLE 7–21 Draw a Bode diagram of the open-loop transfer function G(s) of the closed-loop system shown
in Figure 7–71. Determine the gain margin, phase margin, phase-crossover frequency, and gain-
crossover frequency with MATLAB.

A MATLAB program to plot a Bode diagram and to obtain the gain margin, phase margin,
phase-crossover frequency, and gain-crossover frequency is shown in MATLAB Program 7–11.
The Bode diagram of G(s) is shown in Figure 7–72.
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Resonant Peak Magnitude Mr and Resonant Frequency Vr . Consider the
standard second-order system shown in Figure 7–73.The closed-loop transfer function
is

(7–16)

where z and vn are the damping ratio and the undamped natural frequency, respectively.
The closed-loop frequency response is

where

As given by Equation (7–12), for 0 � z � 0.707, the maximum value of M occurs at
the frequency vr , where

(7–17)

The frequency vr is the resonant frequency. At the resonant frequency, the value of M
is maximum and is given by Equation (7–13), rewritten

(7–18)

where Mr is defined as the resonant peak magnitude. The resonant peak magnitude is
related to the damping of the system.

The magnitude of the resonant peak gives an indication of the relative stability of the
system. A large resonant peak magnitude indicates the presence of a pair of dominant
closed-loop poles with small damping ratio, which will yield an undesirable transient
response.A smaller resonant peak magnitude, on the other hand, indicates the absence
of a pair of dominant closed-loop poles with small damping ratio, meaning that the
system is well damped.

Remember that vr is real only if z<0.707. Thus, there is no closed-loop resonance
if z>0.707. [The value of Mr is unity only if z>0.707. See Equation (7–14).] Since
the values of Mr and vr can be easily measured in a physical system, they are quite useful
for checking agreement between theoretical and experimental analyses.

Mr =
1

2z21 - z2

vr = vn21 - 2z2

M =
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Figure 7–73
Standard second-
order system.
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It is noted, however, that in practical design problems the phase margin and gain
margin are more frequently specified than the resonant peak magnitude to indicate the
degree of damping in a system.

Correlation between Step Transient Response and Frequency Response in
the Standard Second-Order System. The maximum overshoot in the unit-step re-
sponse of the standard second-order system, as shown in Figure 7–73, can be exactly
correlated with the resonant peak magnitude in the frequency response. Hence, essen-
tially the same information about the system dynamics is contained in the frequency re-
sponse as is in the transient response.

For a unit-step input, the output of the system shown in Figure 7–73 is given by Equa-
tion (5–12), or

where

(7–19)

On the other hand, the maximum overshoot Mp for the unit-step response is given by
Equation (5–21), or

(7–20)

This maximum overshoot occurs in the transient response that has the damped natural
frequency The maximum overshoot becomes excessive for values of
z<0.4.

Since the second-order system shown in Figure 7–73 has the open-loop transfer function

for sinusoidal operation, the magnitude of G(jv) becomes unity when

which can be obtained by equating @G(jv) @ to unity and solving for v.At this frequency,
the phase angle of G(jv) is

Thus, the phase margin g is

(7–21)

Equation (7–21) gives the relationship between the damping ratio z and the phase margin
g. (Notice that the phase margin g is a function only of the damping ratio z.)

 = tan-1 2z

321 + 4z4 - 2z2

 = 90° - tan-1 321 + 4z4 - 2z2

2z

 g = 180° + /G(jv)

/G(jv) = - /jv - /jv + 2zvn = -90° - tan-1 321 + 4z4 - 2z2

2z

v = vn321 + 4z4 - 2z2

G(s) =
v2

n

sAs + 2zvnB
vd = vn21 - z2 .

Mp = e-Az�21 -z2Bp
vd = vn21 - z2

c(t) = 1 - e-zvn t a cosvd t +
z

21 - z2
 sinvd t b ,  for t � 0
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In the following,we shall summarize the correlation between the step transient response
and frequency response of the standard second-order system given by Equation (7–16):

1. The phase margin and the damping ratio are directly related.Figure 7–74 shows a plot
of the phase margin g as a function of the damping ratio z. It is noted that for the stan-
dard second-order system shown in Figure 7–73, the phase margin g and the damping
ratio z are related approximately by a straight line for 0 � z � 0.6, as follows:

Thus a phase margin of 60° corresponds to a damping ratio of 0.6. For higher-order
systems having a dominant pair of closed-loop poles, this relationship may be used
as a rule of thumb in estimating the relative stability in the transient response (that
is, the damping ratio) from the frequency response.

2. Referring to Equations (7–17) and (7–19), we see that the values of vr and vd are
almost the same for small values of z.Thus, for small values of z, the value of vr is
indicative of the speed of the transient response of the system.

3. From Equations (7–18) and (7–20), we note that the smaller the value of z is, the
larger the values of Mr and Mp are.The correlation between Mr and Mp as a func-
tion of z is shown in Figure 7–75. A close relationship between Mr and Mp can be
seen for z>0.4. For very small values of z, Mr becomes very large AMr � 1B, while
the value of Mp does not exceed 1.

Correlation between Step Transient Response and Frequency Response in
General Systems. The design of control systems is very often carried out on the basis
of the frequency response. The main reason for this is the relative simplicity of this ap-
proach compared with others. Since in many applications it is the transient response of
the system to aperiodic inputs rather than the steady-state response to sinusoidal in-
puts that is of primary concern, the question of correlation between transient response
and frequency response arises.
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Figure 7–74
Curve g (phase
margin) versus z for
the system shown in
Figure 7–73.



For the standard second-order system shown in Figure 7–73, mathematical rela-
tionships correlating the step transient response and frequency response can be obtained
easily.The time response of the standard second-order system can be predicted exactly
from a knowledge of the Mr and vr of its closed-loop frequency response.

For nonstandard second-order systems and higher-order systems, the correlation is
more complex, and the transient response may not be predicted easily from the fre-
quency response because additional zeros and/or poles may change the correlation be-
tween the step transient response and the frequency response existing for the standard
second-order system. Mathematical techniques for obtaining the exact correlation are
available, but they are very laborious and of little practical value.

The applicability of the transient-response–frequency-response correlation existing for
the standard second-order system shown in Figure 7–73 to higher-order systems depends on
the presence of a dominant pair of complex-conjugate closed-loop poles in the latter systems.
Clearly, if the frequency response of a higher-order system is dominated by a pair of com-
plex-conjugate closed-loop poles, the transient-response– frequency-response correlation
existing for the standard second-order system can be extended to the higher-order system.

For linear, time-invariant, higher-order systems having a dominant pair of complex-
conjugate closed-loop poles, the following relationships generally exist between the step
transient response and frequency response:

1. The value of Mr is indicative of the relative stability. Satisfactory transient per-
formance is usually obtained if the value of Mr is in the range 1.0<Mr<1.4A0 dB<Mr<3 dB B , which corresponds to an effective damping ratio of
0.4<z<0.7. For values of Mr greater than 1.5, the step transient response may
exhibit several overshoots. (Note that, in general, a large value of Mr corresponds
to a large overshoot in the step transient response. If the system is subjected to
noise signals whose frequencies are near the resonant frequency vr , the noise will
be amplified in the output and will present serious problems.)

2. The magnitude of the resonant frequency vr is indicative of the speed of the tran-
sient response. The larger the value of vr , the faster the time response is. In other
words, the rise time varies inversely with vr . In terms of the open-loop frequency
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response, the damped natural frequency in the transient response is somewhere
between the gain crossover frequency and phase crossover frequency.

3. The resonant peak frequency vr and the damped natural frequency vd for the step
transient response are very close to each other for lightly damped systems.

The three relationships just listed are useful for correlating the step transient re-
sponse with the frequency response of higher-order systems, provided that they can be
approximated by the standard second-order system or a pair of complex-conjugate
closed-loop poles. If a higher-order system satisfies this condition, a set of time-domain
specifications may be translated into frequency-domain specifications. This simplifies
greatly the design work or compensation work of higher-order systems.

In addition to the phase margin, gain margin, resonant peak Mr , and resonant fre-
quency vr , there are other frequency-domain quantities commonly used in performance
specifications. They are the cutoff frequency, bandwidth, and the cutoff rate. These will
be defined in what follows.

Cutoff Frequency and Bandwidth. Referring to Figure 7–76, the frequency vb at
which the magnitude of the closed-loop frequency response is 3 dB below its zero-fre-
quency value is called the cutoff frequency. Thus

For systems in which 

The closed-loop system filters out the signal components whose frequencies are greater
than the cutoff frequency and transmits those signal components with frequencies lower
than the cutoff frequency.

The frequency range 0 � v � vb in which the magnitude of is greater
than –3 dB is called the bandwidth of the system. The bandwidth indicates the frequency
where the gain starts to fall off from its low-frequency value.Thus, the bandwidth indicates
how well the system will track an input sinusoid. Note that for a given vn , the rise time in-
creases with increasing damping ratio z. On the other hand, the bandwidth decreases with
the increase in z. Therefore, the rise time and the bandwidth are inversely proportional to
each other.
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frequency response
curve showing cutoff
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bandwidth.
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The specification of the bandwidth may be determined by the following factors:

1. The ability to reproduce the input signal.A large bandwidth corresponds to a small rise
time,or fast response.Roughly speaking,we can say that the bandwidth is proportional
to the speed of response. (For example, to decrease the rise time in the step response
by a factor of 2, the bandwidth must be increased by approximately a factor of 2.)

2. The necessary filtering characteristics for high-frequency noise.

For the system to follow arbitrary inputs accurately, it must have a large bandwidth.
From the viewpoint of noise, however, the bandwidth should not be too large.Thus, there
are conflicting requirements on the bandwidth, and a compromise is usually necessary for
good design. Note that a system with large bandwidth requires high-performance
components, so the cost of components usually increases with the bandwidth.

Cutoff Rate. The cutoff rate is the slope of the log-magnitude curve near the cutoff fre-
quency.The cutoff rate indicates the ability of a system to distinguish the signal from noise.

It is noted that a closed-loop frequency response curve with a steep cutoff charac-
teristic may have a large resonant peak magnitude, which implies that the system has a
relatively small stability margin.

EXAMPLE 7–22 Consider the following two systems:

Compare the bandwidths of these two systems. Show that the system with the larger bandwidth has a
faster speed of response and can follow the input much better than the one with the smaller bandwidth.

Figure 7–77(a) shows the closed-loop frequency-response curves for the two systems. (Asymptot-
ic curves are shown by dashed lines.) We find that the bandwidth of system I is 0 � v � 1 rad�sec and
that of system II is 0 � v � 0.33 rad�sec. Figures 7–77(b) and (c) show, respectively, the unit-step re-
sponse and unit-ramp response curves for the two systems. Clearly, system I, whose bandwidth is three
times wider than that of system II,has a faster speed of response and can follow the input much better.

System I: C(s)

R(s)
=

1
s + 1

,  System II: C(s)

R(s)
=

1
3s + 1
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MATLAB Approach to Get Resonant Peak, Resonant Frequency, and Band-
width. The resonant peak is the value of the maximum magnitude (in decibels) of the
closed-loop frequency response.The resonant frequency is the frequency that yields the
maximum magnitude. MATLAB commands to be used for obtaining the resonant peak
and resonant frequency are as follows:

[mag,phase,w] = bode(num,den,w); or [mag,phase,w] = bode(sys,w);
[Mp,k] = max(mag);
resonant_peak = 20*log10(Mp);
resonant_frequency = w(k)

The bandwidth can be obtained by entering the following lines in the program:

n = 1;
while 20*log10(mag(n)) > = -3; n = n + 1;
end
bandwidth = w(n)

For a detailed MATLAB program, see Example 7–23.

EXAMPLE 7–23 Consider the system shown in Figure 7–78. Using MATLAB, obtain a Bode diagram for the closed-
loop transfer function. Obtain also the resonant peak, resonant frequency, and bandwidth.

MATLAB Program 7–12 produces a Bode diagram for the closed-loop system as well as the
resonant peak, resonant frequency, and bandwidth. The resulting Bode diagram is shown in

MATLAB Program 7–12

nump = [1];
denp = [0.5  1.5  1  0];
sysp = tf(nump,denp);
sys = feedback(sysp,1);
w = logspace(-1,1);
bode(sys,w)
[mag,phase,w] = bode(sys,w);
[Mp,k] = max(mag);
resonant_peak = 20*log10(Mp)

resonant_peak = 

5.2388

resonant_frequency = w(k)

resonant_frequency =

0.7906

n = 1;
while 20*log(mag(n))> = -3; n = n + 1;
end
bandwidth = w(n)

bandwidth =

1.2649
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Figure 7–79.The resonant peak is obtained as 5.2388 dB.The resonant frequency is 0.7906 rad�sec.
The bandwidth is 1.2649 rad�sec. These values can be verified from Figure 7–78.

7–8 CLOSED-LOOP FREQUENCY RESPONSE OF UNITY-
FEEDBACK SYSTEMS

Closed-Loop Frequency Response. For a stable, unity-feedback closed-loop sys-
tem, the closed-loop frequency response can be obtained easily from that of the open-
loop frequency response. Consider the unity-feedback system shown in Figure 7–80(a).
The closed-loop transfer function is

In the Nyquist or polar plot shown in Figure 7–80(b), the vector represents G Ajv1 B ,
where v1 is the frequency at point A. The length of the vector is @G Ajv1 B @ and the

angle of the vector is The vector the vector from the –1+j0 point

to the Nyquist locus, represents 1+G Ajv1 B . Therefore, the ratio of to repre-
sents the closed-loop frequency response, or
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! =

GAjv1B
1 + GAjv1B =
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Figure 7–78
Closed-loop system.
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The magnitude of the closed-loop transfer function at v=v1 is the ratio of the magni-

tudes of to . The phase angle of the closed-loop transfer function at v=v1 is

the angle formed by the vectors to —that is f-u, shown in Figure 7–80(b). By
measuring the magnitude and phase angle at different frequency points, the closed-loop
frequency-response curve can be obtained.

Let us define the magnitude of the closed-loop frequency response as M and the
phase angle as a, or

In the following, we shall find the constant-magnitude loci and constant-phase-angle
loci. Such loci are convenient in determining the closed-loop frequency response from
the polar plot or Nyquist plot.

Constant-Magnitude Loci (M circles). To obtain the constant-magnitude loci, let
us first note that G(jv) is a complex quantity and can be written as follows:

where X and Y are real quantities. Then M is given by

and M2 is

Hence

(7–22)

If M=1, then from Equation (7–22), we obtain This is the equation of a
straight line parallel to the Y axis and passing through the point A- 1

2 , 0B.X = - 1
2 .

X2A1 - M2B - 2M2X - M2 + A1 - M2BY2 = 0

M2 =
X2 + Y2

(1 + X)2 + Y2

M =
∑X + jY∑

∑1 + X + jY∑

G(jv) = X + jY

C(jv)

R(jv)
= Meja
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!
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(a) (b)

G(s)
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Figure 7–80
(a) Unity-feedback
system;
(b) determination of
closed-loop
frequency response
from open-loop
frequency response.
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A family of constant
M circles.

If Equation (7–22) can be written

If the term M2/ AM2-1 B2 is added to both sides of this last equation, we obtain

(7–23)

Equation (7–23) is the equation of a circle with center at X=–M2/ AM2-1 B , Y=0
and with radius @M/ AM2-1 B @ .

The constant M loci on the G(s) plane are thus a family of circles.The center and ra-
dius of the circle for a given value of M can be easily calculated. For example, for
M=1.3, the center is at (–2.45, 0) and the radius is 1.88. A family of constant M cir-
cles is shown in Figure 7–81. It is seen that as M becomes larger compared with 1, the
M circles become smaller and converge to the –1+j0 point. For M>1, the centers of
the M circles lie to the left of the –1+j0 point. Similarly, as M becomes smaller com-
pared with 1, the M circle becomes smaller and converges to the origin. For 0<M<1,
the centers of the M circles lie to the right of the origin. M=1 corresponds to the locus
of points equidistant from the origin and from the –1+j0 point. As stated earlier, it is
a straight line passing through the point and parallel to the imaginary axis. (The
constant M circles corresponding to M>1 lie to the left of the M=1 line, and those
corresponding to 0<M<1 lie to the right of the M=1 line.) The M circles are sym-
metrical with respect to the straight line corresponding to M=1 and with respect to the
real axis.

A- 1
2 , 0B

aX +
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M2 - 1
b 2
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M2AM2 - 1B2
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Constant-Phase-Angle Loci (N Circles). We shall obtain the phase angle a in
terms of X and Y. Since

the phase angle a is

If we define

then

Since

we obtain

or

The addition of to both sides of this last equation yields

(7–24)

This is an equation of a circle with center at Y=1�(2N) and with radius

For example, if a=30°, then N=tana=0.577, and the center and
the radius of the circle corresponding to a=30° are found to be (–0.5, 0.866) and unity,
respectively. Since Equation (7–24) is satisfied when X=Y=0 and X=–1, Y=0
regardless of the value of N, each circle passes through the origin and the –1+j0 point.
The constant a loci can be drawn easily, once the value of N is given.A family of constant
N circles is shown in Figure 7–82 with a as a parameter.

It should be noted that the constant N locus for a given value of a is actually not the
entire circle, but only an arc. In other words, the a=30° and a=–150° arcs are parts
of the same circle. This is so because the tangent of an angle remains the same if ;180°
(or multiples thereof) is added to the angle.

The use of the M and N circles enables us to find the entire closed-loop frequency
response from the open-loop frequency response G(jv) without calculating the magni-
tude and phase of the closed-loop transfer function at each frequency.The intersections

3 1
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A family of constant
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of the G(jv) locus and the M circles and N circles give the values of M and N at fre-
quency points on the G(jv) locus.

The N circles are multivalued in the sense that the circle for a=a1 and that for
a=a1 ; 180°n (n=1, 2, p) are the same. In using the N circles for the determination
of the phase angle of closed-loop systems, we must interpret the proper value of a. To
avoid any error, start at zero frequency, which corresponds to a=0°, and proceed to
higher frequencies. The phase-angle curve must be continuous.

Graphically, the intersections of the G(jv) locus and M circles give the values of M
at the frequencies denoted on the G(jv) locus. Thus, the constant M circle with the
smallest radius that is tangent to the G(jv) locus gives the value of the resonant peak
magnitude Mr . If it is desired to keep the resonant peak value less than a certain value,
then the system should not enclose the critical point (–1+j0 point) and, at the same
time, there should be no intersections with the particular M circle and the G(jv) locus.

Figure 7–83(a) shows the G(jv) locus superimposed on a family of M circles. Figure
7–83(b) shows the G(jv) locus superimposed on a family of N circles. From these plots,
it is possible to obtain the closed-loop frequency response by inspection. It is seen that
the M=1.1 circle intersects the G(jv) locus at frequency point v=v1 . This means
that at this frequency the magnitude of the closed-loop transfer function is 1.1. In Fig-
ure 7–83(a), the M=2 circle is just tangent to the G(jv) locus. Thus, there is only one
point on the G(jv) locus for which @C(jv)/R(jv) @ is equal to 2. Figure 7–83(c) shows the
closed-loop frequency-response curve for the system.The upper curve is the M-versus-
frequency v curve, and the lower curve is the phase angle a-versus-frequency v curve.

The resonant peak value is the value of M corresponding to the M circle of small-
est radius that is tangent to the G(jv) locus. Thus, in the Nyquist diagram, the resonant



482 Chapter 7 / Control Systems Analysis and Design by the Frequency-Response Method

peak value Mr and the resonant frequency vr can be found from the M-circle tangency
to the G(jv) locus. (In the present example, Mr=2 and vr=v4 .)

Nichols Chart. In dealing with design problems, we find it convenient to construct
the M and N loci in the log-magnitude-versus-phase plane. The chart consisting of the
M and N loci in the log-magnitude-versus-phase diagram is called the Nichols chart.
The G(jv) locus drawn on the Nichols chart gives both the gain characteristics and
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phase characteristics of the closed-loop transfer function at the same time.The Nichols
chart is shown in Figure 7–84, for phase angles between 0° and –240°.

Note that the critical point (–1+j0 point) is mapped to the Nichols chart as the
point (0 dB, –180°). The Nichols chart contains curves of constant closed-loop magni-
tude and phase angle. The designer can graphically determine the phase margin, gain
margin, resonant peak magnitude, resonant frequency, and bandwidth of the closed-
loop system from the plot of the open-loop locus, G(jv).

The Nichols chart is symmetric about the –180° axis. The M and N loci repeat for
every 360°, and there is symmetry at every 180° interval.The M loci are centered about
the critical point (0 dB, –180°).The Nichols chart is useful for determining the frequency
response of the closed loop from that of the open loop. If the open-loop frequency-re-
sponse curve is superimposed on the Nichols chart, the intersections of the open-loop
frequency-response curve G(jv) and the M and N loci give the values of the magni-
tude M and phase angle a of the closed-loop frequency response at each frequency
point. If the G(jv) locus does not intersect the M=Mr locus, but is tangent to it, then
the resonant peak value of M of the closed-loop frequency response is given by Mr .The
resonant frequency is given by the frequency at the point of tangency.

As an example, consider the unity-feedback system with the following open-loop
transfer function:

To find the closed-loop frequency response by use of the Nichols chart, the G(jv) locus
is constructed in the log-magnitude-versus-phase plane by use of MATLAB or from

G(jv) =
K

s(s + 1)(0.5s + 1)
,  K = 1
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the Bode diagram. Figure 7–85(a) shows the G(jv) locus together with the M and N loci.
The closed-loop frequency-response curves may be constructed by reading the magni-
tudes and phase angles at various frequency points on the G(jv) locus from the M and
N loci, as shown in Figure 7–85(b). Since the largest magnitude contour touched by the
G(jv) locus is 5 dB, the resonant peak magnitude Mr is 5 dB. The corresponding reso-
nant peak frequency is 0.8 rad�sec.

Notice that the phase crossover point is the point where the G(jv) locus intersects
the –180° axis (for the present system,v=1.4 rad�sec), and the gain crossover point is
the point where the locus intersects the 0-dB axis (for the present system,
v=0.76 rad�sec). The phase margin is the horizontal distance (measured in degrees)
between the gain crossover point and the critical point (0 dB, –180°). The gain margin
is the distance (in decibels) between the phase crossover point and the critical point.

The bandwidth of the closed-loop system can easily be found from the G(jv) locus
in the Nichols diagram. The frequency at the intersection of the G(jv) locus and the
M=–3 dB locus gives the bandwidth.

If the open-loop gain K is varied, the shape of the G(jv) locus in the log-magnitude-
versus-phase diagram remains the same, but it is shifted up (for increasing K) or down
(for decreasing K) along the vertical axis. Therefore, the G(jv) locus intersects the M
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and N loci differently, resulting in a different closed-loop frequency-response curve. For
a small value of the gain K, the G(jv) locus will not be tangent to any of the M loci, which
means that there is no resonance in the closed-loop frequency response.

EXAMPLE 7–24 Consider the unity-feedback control system whose open-loop transfer function is

Determine the value of the gain K so that Mr=1.4.
The first step in the determination of the gain K is to sketch the polar plot of

Figure 7–86 shows the Mr=1.4 locus and the G(jv)/K locus. Changing the gain has no effect on
the phase angle, but merely moves the curve vertically up for K>1 and down for K<1.

In Figure 7–86, the G(jv)/K locus must be raised by 4 dB in order that it be tangent to the
desired Mr locus and that the entire G(jv)/K locus be outside the Mr=1.4 locus.The amount of
vertical shift of the G(jv)/K locus determines the gain necessary to yield the desired value of
Mr . Thus, by solving

we obtain

K = 1.59

20 log K = 4

G(jv)

K
=

1

jv(1 + jv)

G(jv) =
K

jv(1 + jv)
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7–9 EXPERIMENTAL DETERMINATION 
OF TRANSFER FUNCTIONS

The first step in the analysis and design of a control system is to derive a mathematical
model of the plant under consideration. Obtaining a model analytically may be quite dif-
ficult.We may have to obtain it by means of experimental analysis.The importance of the
frequency-response methods is that the transfer function of the plant, or any other com-
ponent of a system, may be determined by simple frequency-response measurements.

If the amplitude ratio and phase shift have been measured at a sufficient number of
frequencies within the frequency range of interest, they may be plotted on the Bode di-
agram.Then the transfer function can be determined by asymptotic approximations.We
build up asymptotic log-magnitude curves consisting of several segments. With some
trial-and-error juggling of the corner frequencies, it is usually possible to find a very
close fit to the curve. (Note that if the frequency is plotted in cycles per second rather
than radians per second, the corner frequencies must be converted to radians per sec-
ond before computing the time constants.)

Sinusoidal-Signal Generators. In performing a frequency-response test, suitable
sinusoidal-signal generators must be available. The signal may have to be in mechani-
cal, electrical, or pneumatic form. The frequency ranges needed for the test are ap-
proximately 0.001 to 10 Hz for large-time-constant systems and 0.1 to 1000 Hz for
small-time-constant systems. The sinusoidal signal must be reasonably free from har-
monics or distortion.

For very low frequency ranges (below 0.01 Hz), a mechanical signal generator
(together with a suitable pneumatic or electrical transducer if necessary) may be used.
For the frequency range from 0.01 to 1000 Hz, a suitable electrical-signal generator
(together with a suitable transducer if necessary) may be used.

Determination of Minimum-Phase Transfer Functions from Bode Diagrams.
As stated previously, whether a system is minimum phase can be determined from the
frequency-response curves by examining the high-frequency characteristics.

To determine the transfer function, we first draw asymptotes to the experimental-
ly obtained log-magnitude curve. The asymptotes must have slopes of multiples of
;20 dB�decade. If the slope of the experimentally obtained log-magnitude curve
changes from –20 to –40 dB�decade at v=v1 , it is clear that a factor 1/ C1+j Av/v1 B D
exists in the transfer function. If the slope changes by –40 dB�decade at v=v2 , there
must be a quadratic factor of the form

in the transfer function. The undamped natural frequency of this quadratic factor is
equal to the corner frequency v2 . The damping ratio z can be determined from the
experimentally obtained log-magnitude curve by measuring the amount of resonant
peak near the corner frequency v2 and comparing this with the curves shown in
Figure 7–9.

Once the factors of the transfer function G(jv) have been determined, the gain can
be determined from the low-frequency portion of the log-magnitude curve. Since such

1

1 + 2z a j
v

v2
b + a j

v

v2
b 2



terms as 1+jAv/v1B and 1+2zAjv/v2B+Ajv/v2B2 become unity as v approaches zero,
at very low frequencies the sinusoidal transfer function G(jv) can be written

In many practical systems, l equals 0, 1, or 2.

1. For l=0, or type 0 systems,

or

The low-frequency asymptote is a horizontal line at 20 log K dB. The value of K
can thus be found from this horizontal asymptote.

2. For l=1, or type 1 systems,

or

which indicates that the low-frequency asymptote has the slope –20 dB�decade.
The frequency at which the low-frequency asymptote (or its extension) intersects
the 0-dB line is numerically equal to K.

3. For l=2, or type 2 systems,

or

The slope of the low-frequency asymptote is –40 dB�decade. The frequency at
which this asymptote (or its extension) intersects the 0-dB line is numerically equal
to

Examples of log-magnitude curves for type 0, type 1, and type 2 systems are shown
in Figure 7–87, together with the frequency to which the gain K is related.

The experimentally obtained phase-angle curve provides a means of checking the
transfer function obtained from the log-magnitude curve. For a minimum-phase system,
the experimental phase-angle curve should agree reasonably well with the theoretical
phase-angle curve obtained from the transfer function just determined.These two phase-
angle curves should agree exactly in both the very low and very high frequency ranges.
If the experimentally obtained phase angle at very high frequencies (compared with the
corner frequencies) is not equal to –90°(q-p), where p and q are the degrees of the nu-
merator and denominator polynomials of the transfer function, respectively, then the
transfer function must be a nonminimum-phase transfer function.

1K .

20 log @G(jv) @ = 20 log K - 40 logv,  for v � 1

G(jv) =
K

(jv)2 ,  for v � 1

20 log @G(jv) @ = 20 log K - 20 logv,  for v � 1

G(jv) =
K

jv
,  for v � 1

20 log @G(jv) @ = 20 log K,  for v � 1

G(jv) = K,  for v � 1

lim
vS 0

G(jv) =
K

(jv)l
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Nonminimum-Phase Transfer Functions. If, at the high-frequency end, the com-
puted phase lag is 180° less than the experimentally obtained phase lag, then one of the
zeros of the transfer function should have been in the right-half s plane instead of the
left-half s plane.

If the computed phase lag differed from the experimentally obtained phase lag by a
constant rate of change of phase, then transport lag, or dead time, is present. If we assume
the transfer function to be of the form

where G(s) is a ratio of two polynomials in s, then

where we used the fact that constant. Thus, from this last equation, we
can evaluate the magnitude of the transport lag T.

lim
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A Few Remarks on the Experimental Determination of Transfer Functions

1. It is usually easier to make accurate amplitude measurements than accurate phase-
shift measurements. Phase-shift measurements may involve errors that may be
caused by instrumentation or by misinterpretation of the experimental records.

2. The frequency response of measuring equipment used to measure the system out-
put must have a nearly flat magnitude-versus-frequency curve. In addition, the
phase angle must be nearly proportional to the frequency.

3. Physical systems may have several kinds of nonlinearities. Therefore, it is nec-
essary to consider carefully the amplitude of input sinusoidal signals. If the am-
plitude of the input signal is too large, the system will saturate, and the
frequency-response test will yield inaccurate results. On the other hand, a small
signal will cause errors due to dead zone. Hence, a careful choice of the ampli-
tude of the input sinusoidal signal must be made. It is necessary to sample the
waveform of the system output to make sure that the waveform is sinusoidal
and that the system is operating in the linear region during the test period. (The
waveform of the system output is not sinusoidal when the system is operating in
its nonlinear region.)

4. If the system under consideration is operating continuously for days and weeks,
then normal operation need not be stopped for frequency-response tests. The si-
nusoidal test signal may be superimposed on the normal inputs.Then, for linear sys-
tems, the output due to the test signal is superimposed on the normal output. For
the determination of the transfer function while the system is in normal opera-
tion, stochastic signals (white noise signals) also are often used. By use of corre-
lation functions, the transfer function of the system can be determined without
interrupting normal operation.

EXAMPLE 7–25 Determine the transfer function of the system whose experimental frequency-response curves
are as shown in Figure 7–88.

The first step in determining the transfer function is to approximate the log-magnitude curve
by asymptotes with slopes ;20 dB�decade and multiples thereof, as shown in Figure 7–88. We
then estimate the corner frequencies. For the system shown in Figure 7–88, the following form of
the transfer function is estimated:

The value of the damping ratio z is estimated by examining the peak resonance near v=6 rad�sec.
Referring to Figure 7–9, z is determined to be 0.5.The gain K is numerically equal to the frequency
at the intersection of the extension of the low-frequency asymptote that has 20 dB/decade slope and
the 0-dB line.The value of K is thus found to be 10.Therefore, G(jv) is tentatively determined as

or

G(s) =
320(s + 2)

s(s + 1)As2 + 8s + 64B
G(jv) =

10(1 + 0.5jv)

jv(1 + jv) c1 + a j 
v

8
b + a j 

v

8
b 2 d

G(jv) =
K(1 + 0.5jv)

jv(1 + jv) c1 + 2z a j 
v

8
b + a j 

v

8
b 2 d
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This transfer function is tentative because we have not examined the phase-angle curve yet.
Once the corner frequencies are noted on the log-magnitude curve, the corresponding phase-

angle curve for each component factor of the transfer function can easily be drawn. The sum of
these component phase-angle curves is that of the assumed transfer function. The phase-angle
curve for G(jv) is denoted by in Figure 7–88. From Figure 7–88, we clearly notice a dis-
crepancy between the computed phase-angle curve and the experimentally obtained phase-
angle curve. The difference between the two curves at very high frequencies appears to be a
constant rate of change. Thus, the discrepancy in the phase-angle curves must be caused by
transport lag.

Hence, we assume the complete transfer function to be G(s)e–Ts. Since the discrepancy be-
tween the computed and experimental phase angles is –0.2v rad for very high frequencies, we can
determine the value of T as follows:

or

The presence of transport lag can thus be determined, and the complete transfer function deter-
mined from the experimental curves is

G(s)e-Ts =
320(s + 2)e-0.2s

s(s + 1)As2 + 8s + 64B
T = 0.2 sec.

lim
vS q

d

dv
/G(jv)e-jvT = -T = -0.2
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7–10 CONTROL SYSTEMS DESIGN BY FREQUENCY-
RESPONSE APPROACH

In Chapter 6 we presented root-locus analysis and design. The root-locus method
was shown to be very useful to reshape the transient-response characteristics of closed-
loop control systems. The root-locus approach gives us direct information on the tran-
sient response of the closed-loop system.The frequency-response approach, on the other
hand, gives us this information only indirectly. However, as we shall see in the remain-
ing three sections of this chapter, the frequency-response approach is very useful in de-
signing control systems.

For any design problem, the designer will do well to use both approaches to the design
and choose the compensator that most closely produces the desired closed-loop response.

In most control systems design, transient-response performance is usually very im-
portant. In the frequency-response approach, we specify the transient-response per-
formance in an indirect manner.That is, the transient-response performance is specified
in terms of the phase margin, gain margin, resonant peak magnitude (they give a rough
estimate of the system damping); the gain crossover frequency, resonant frequency, band-
width (they give a rough estimate of the speed of transient response); and static error
constants (they give the steady-state accuracy). Although the correlation between the
transient response and frequency response is indirect, the frequency-domain specifica-
tions can be easily met in the Bode diagram approach.

After the open loop has been designed, the closed-loop poles and zeros can be de-
termined. Then, the transient-response characteristics must be checked to see whether
the designed system satisfies the requirements in the time domain. If it does not, then
the compensator must be modified and the analysis repeated until a satisfactory result
is obtained.

Design in the frequency domain is simple and straightforward. The frequency-
response plot indicates clearly the manner in which the system should be modified, al-
though the exact quantitative prediction of the transient-response characteristics cannot
be made. The frequency-response approach can be applied to systems or components
whose dynamic characteristics are given in the form of frequency-response data. Note
that because of difficulty in deriving the equations governing certain components, such
as pneumatic and hydraulic components, the dynamic characteristics of such compo-
nents are usually determined experimentally through frequency-response tests.The ex-
perimentally obtained frequency-response plots can be combined easily with other such
plots when the Bode diagram approach is used. Note also that in dealing with high-
frequency noises we find that the frequency-response approach is more convenient than
other approaches.

There are basically two approaches in the frequency-domain design. One is the polar
plot approach and the other is the Bode diagram approach. When a compensator is
added, the polar plot does not retain the original shape, and, therefore, we need to draw
a new polar plot, which will take time and is thus inconvenient. On the other hand, a Bode
diagram of the compensator can be simply added to the original Bode diagram, and
thus plotting the complete Bode diagram is a simple matter.Also, if the open-loop gain
is varied, the magnitude curve is shifted up or down without changing the slope of the
curve, and the phase curve remains the same. For design purposes, therefore, it is best
to work with the Bode diagram.



A common approach to the design based on the Bode diagram is that we first adjust
the open-loop gain so that the requirement on the steady-state accuracy is met.Then the
magnitude and phase curves of the uncompensated open loop (with the open-loop gain
just adjusted) are plotted. If the specifications on the phase margin and gain margin are
not satisfied, then a suitable compensator that will reshape the open-loop transfer func-
tion is determined. Finally, if there are any other requirements to be met, we try to sat-
isfy them, unless some of them are mutually contradictory.

Information Obtainable from Open-Loop Frequency Response. The low-
frequency region (the region far below the gain crossover frequency) of the locus indi-
cates the steady-state behavior of the closed-loop system.The medium-frequency region
(the region near the gain crossover frequency) of the locus indicates relative stability.
The high-frequency region (the region far above the gain crossover frequency) indi-
cates the complexity of the system.

Requirements on Open-Loop Frequency Response. We might say that, in many
practical cases, compensation is essentially a compromise between steady-state accura-
cy and relative stability.

To have a high value of the velocity error constant and yet satisfactory relative sta-
bility, we find it necessary to reshape the open-loop frequency-response curve.

The gain in the low-frequency region should be large enough, and near the gain
crossover frequency, the slope of the log-magnitude curve in the Bode diagram should
be –20 dB�decade.This slope should extend over a sufficiently wide frequency band to
assure a proper phase margin. For the high-frequency region, the gain should be atten-
uated as rapidly as possible to minimize the effects of noise.

Examples of generally desirable and undesirable open-loop and closed-loop
frequency-response curves are shown in Figure 7–89.

Referring to Figure 7–90, we see that the reshaping of the open-loop frequency-
response curve may be done if the high-frequency portion of the locus follows the G1(jv)
locus, while the low-frequency portion of the locus follows the G2(jv) locus.The reshaped
locus Gc(jv)G(jv) should have reasonable phase and gain margins or should be tangent
to a proper M circle, as shown.
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Basic Characteristics of Lead, Lag, and Lag–Lead Compensation. Lead com-
pensation essentially yields an appreciable improvement in transient response and a
small change in steady-state accuracy. It may accentuate high-frequency noise effects. Lag
compensation, on the other hand, yields an appreciable improvement in steady-state
accuracy at the expense of increasing the transient-response time. Lag compensation
will suppress the effects of high-frequency noise signals. Lag–lead compensation com-
bines the characteristics of both lead compensation and lag compensation.The use of a
lead or lag compensator raises the order of the system by 1 (unless cancellation occurs
between the zero of the compensator and a pole of the uncompensated open-loop trans-
fer function).The use of a lag–lead compensator raises the order of the system by 2 [un-
less cancellation occurs between zero(s) of the lag–lead compensator and pole(s) of the
uncompensated open-loop transfer function], which means that the system becomes
more complex and it is more difficult to control the transient-response behavior.The par-
ticular situation determines the type of compensation to be used.

7–11 LEAD COMPENSATION

We shall first examine the frequency characteristics of the lead compensator. Then we
present a design technique for the lead compensator by use of the Bode diagram.

Characteristics of Lead Compensators. Consider a lead compensator having the
following transfer function:

where a is the attenuation factor of the lead compensator. It has a zero at s=–1/T
and a pole at s=–1/(aT). Since 0<a<1, we see that the zero is always located to
the right of the pole in the complex plane. Note that for a small value of a the pole is lo-
cated far to the left. The minimum value of a is limited by the physical construction of

Kc a 
Ts + 1

aTs + 1
= Kc

s +
1

T

s +
1

aT

  (0 6 a 6 1)
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the lead compensator. The minimum value of a is usually taken to be about 0.05. (This
means that the maximum phase lead that may be produced by a lead compensator is
about 65°.) [See Equation (7–25).]

Figure 7–91 shows the polar plot of

with Kc=1. For a given value of a, the angle between the positive real axis and the tan-
gent line drawn from the origin to the semicircle gives the maximum phase-lead angle,
fm. We shall call the frequency at the tangent point vm. From Figure 7–91 the phase
angle at v=vm is fm, where

(7–25)

Equation (7–25) relates the maximum phase-lead angle and the value of a.
Figure 7–92 shows the Bode diagram of a lead compensator when Kc=1 and a=0.1.

The corner frequencies for the lead compensator are v=1/T and v=1/(aT)=10/T.
By examining Figure 7–92, we see that vm is the geometric mean of the two corner fre-
quencies, or

logvm =
1

2
 a log 

1

T
+ log 

1

aT
b

sinfm =

1 - a
2

1 + a
2

=
1 - a
1 + a

Kc a 
jvT + 1

jvaT + 1
  (0 6 a 6 1)
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Hence,

(7–26)

As seen from Figure 7–92, the lead compensator is basically a high-pass filter. (The
high frequencies are passed, but low frequencies are attenuated.)

Lead Compensation Techniques Based on the Frequency-Response Approach.
The primary function of the lead compensator is to reshape the frequency-response
curve to provide sufficient phase-lead angle to offset the excessive phase lag associated
with the components of the fixed system.

Consider the system shown in Figure 7–93. Assume that the performance specifica-
tions are given in terms of phase margin, gain margin, static velocity error constants,
and so on. The procedure for designing a lead compensator by the frequency-response
approach may be stated as follows:

1. Assume the following lead compensator:

Define

Then

The open-loop transfer function of the compensated system is

where

Determine gain K to satisfy the requirement on the given static error constant.
2. Using the gain K thus determined, draw a Bode diagram of G1(jv), the gain-

adjusted but uncompensated system. Evaluate the phase margin.
3. Determine the necessary phase-lead angle to be added to the system. Add an

additional 5° to 12° to the phase-lead angle required, because the addition of the

G1(s) = KG(s)

Gc(s)G(s) = K
Ts + 1

aTs + 1
G(s) =

Ts + 1

aTs + 1
KG(s) =

Ts + 1

aTs + 1
G1(s)

Gc(s) = K
Ts + 1

aTs + 1

Kc a = K

Gc(s) = Kc a 
Ts + 1

aTs + 1
= Kc

s +
1

T

s +
1

aT

  (0 6 a 6 1)

vm =
1

1aT
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lead compensator shifts the gain crossover frequency to the right and decreases the
phase margin.

4. Determine the attenuation factor a by use of Equation (7–25). Determine the
frequency where the magnitude of the uncompensated system G1(jv) is equal to

Select this frequency as the new gain crossover frequency. This
frequency corresponds to and the maximum phase shift fm occurs
at this frequency.

5. Determine the corner frequencies of the lead compensator as follows:

Zero of lead compensator:

Pole of lead compensator:

6. Using the value of K determined in step 1 and that of a determined in step 4,
calculate constant Kc from

7. Check the gain margin to be sure it is satisfactory. If not, repeat the design process
by modifying the pole–zero location of the compensator until a satisfactory result
is obtained.

EXAMPLE 7–26 Consider the system shown in Figure 7–94. The open-loop transfer function is

It is desired to design a compensator for the system so that the static velocity error constant Kv

is 20 sec–1, the phase margin is at least 50°, and the gain margin is at least 10 dB.
We shall use a lead compensator of the form

The compensated system will have the open-loop transfer function Gc(s)G(s).
Define

where K=Kca.

G1(s) = KG(s) =
4K

s(s + 2)

Gc(s) = Kc a 
Ts + 1

aTs + 1
= Kc

s +
1

T

s +
1

aT

G(s) =
4

s(s + 2)

Kc =
K
a

 v =
1

aT

 v =
1

T

vm = 1�A1aTB,-20 log A1�1aB.
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The first step in the design is to adjust the gain K to meet the steady-state performance spec-
ification or to provide the required static velocity error constant. Since this constant is given as
20 sec–1, we obtain

or

With K=10, the compensated system will satisfy the steady-state requirement.
We shall next plot the Bode diagram of

Figure 7–95 shows the magnitude and phase-angle curves of G1(jv). From this plot, the phase
and gain margins of the system are found to be 17° and ±q dB, respectively. (A phase margin of
17° implies that the system is quite oscillatory.Thus, satisfying the specification on the steady state
yields a poor transient-response performance.) The specification calls for a phase margin of at
least 50°. We thus find the additional phase lead necessary to satisfy the relative stability re-
quirement is 33°.To achieve a phase margin of 50° without decreasing the value of K, the lead com-
pensator must contribute the required phase angle.

Noting that the addition of a lead compensator modifies the magnitude curve in the Bode di-
agram, we realize that the gain crossover frequency will be shifted to the right.We must offset the
increased phase lag of G1(jv) due to this increase in the gain crossover frequency. Considering
the shift of the gain crossover frequency, we may assume that fm, the maximum phase lead re-
quired, is approximately 38°. (This means that 5° has been added to compensate for the shift in
the gain crossover frequency.)

Since

sinfm =
1 - a
1 + a

G1(jv) =
40

jv(jv + 2)
=

20

jv(0.5jv + 1)

K = 10

Kv = lim
s S 0

sGc(s)G(s) = lim
s S 0

s
Ts + 1

aTs + 1
G1(s) = lim

s S 0

s4K

s(s + 2)
= 2K = 20
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fm=38° corresponds to a=0.24. Once the attenuation factor a has been determined on the
basis of the required phase-lead angle, the next step is to determine the corner frequencies v=1/T
and v=1/(aT) of the lead compensator. To do so, we first note that the maximum phase-lead
angle fm occurs at the geometric mean of the two corner frequencies, or [See Equa-
tion (7–26).] The amount of the modification in the magnitude curve at due to the
inclusion of the term (Ts+1)/(aTs+1) is

Note that

and @G1(jv) @=–6.2 dB corresponds to v=9 rad�sec.We shall select this frequency to be the new
gain crossover frequency vc . Noting that this frequency corresponds to or

we obtain

and

The lead compensator thus determined is

where the value of Kc is determined as

Thus, the transfer function of the compensator becomes

Note that

The magnitude curve and phase-angle curve for Gc(jv)/10 are shown in Figure 7–96. The
compensated system has the following open-loop transfer function:
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The solid curves in Figure 7–96 show the magnitude curve and phase-angle curve for the compen-
sated system. Note that the bandwidth is approximately equal to the gain crossover frequency. The
lead compensator causes the gain crossover frequency to increase from 6.3 to 9 rad�sec. The in-
crease in this frequency means an increase in bandwidth.This implies an increase in the speed of
response.The phase and gain margins are seen to be approximately 50° and ±q dB, respectively.
The compensated system shown in Figure 7–97 therefore meets both the steady-state and the
relative-stability requirements.

Note that for type 1 systems, such as the system just considered, the value of the static veloc-
ity error constant Kv is merely the value of the frequency corresponding to the intersection of
the extension of the initial –20-dB�decade slope line and the 0-dB line, as shown in Figure 7–96.
Note also that we have changed the slope of the magnitude curve near the gain crossover frequency
from –40 dB�decade to –20 dB�decade.
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Figure 7–98 shows the polar plots of the gain-adjusted but uncompensated open-loop trans-
fer function G1(jv)=10 G(jv) and the compensated open-loop transfer function Gc(jv)G(jv).
From Figure 7–98, we see that the resonant frequency of the uncompensated system is about
6 rad�sec and that of the compensated system is about 7 rad�sec. (This also indicates that the
bandwidth has been increased.)

From Figure 7–98, we find that the value of the resonant peak Mr for the uncompensated sys-
tem with K=10 is 3.The value of Mr for the compensated system is found to be 1.29.This clear-
ly shows that the compensated system has improved relative stability.

Note that, if the phase angle of G1(jv) decreases rapidly near the gain crossover frequency,
lead compensation becomes ineffective because the shift in the gain crossover frequency to the
right makes it difficult to provide enough phase lead at the new gain crossover frequency. This
means that, to provide the desired phase margin, we must use a very small value for a. The value
of a, however, should not be too small (smaller than 0.05) nor should the maximum phase lead
fm be too large (larger than 65°), because such values will require an additional gain of excessive
value. [If more than 65° is needed, two (or more) lead networks may be used in series with an iso-
lating amplifier.]

Finally, we shall examine the transient-response characteristics of the designed system. We
shall obtain the unit-step response and unit-ramp response curves of the compensated and
uncompensated systems with MATLAB. Note that the closed-loop transfer functions of the
uncompensated and compensated systems are given, respectively, by

and
C(s)

R(s)
=

166.8s + 735.588

s3 + 20.4s2 + 203.6s + 735.588

C(s)

R(s)
=

4

s2 + 2s + 4
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MATLAB programs for obtaining the unit-step response and unit-ramp response curves are given
in MATLAB Program 7–13. Figure 7–99 shows the unit-step response curves of the system before
and after compensation. Also, Figure 7–100 depicts the unit-ramp response curves before and
after compensation. These response curves indicate that the designed system is satisfactory.
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MATLAB Program 7–13

%*****Unit-step responses*****

num = [4];
den = [1  2  4];
numc = [166.8  735.588];
denc = [1  20.4  203.6  735.588];
t = 0:0.02:6;
[c1,x1,t] = step(num,den,t);
[c2,x2,t] = step(numc,denc,t);
plot (t,c1,'.',t,c2,'-')
grid
title('Unit-Step Responses of Compensated and Uncompensated Systems')
xlabel('t Sec')
ylabel('Outputs')
text(0.4,1.31,'Compensated system')
text(1.55,0.88,'Uncompensated system')

%*****Unit-ramp responses*****

num1 = [4];
den1 = [1  2  4  0];
num1c = [166.8  735.588];
den1c = [1  20.4  203.6  735.588  0];
t = 0:0.02:5;
[y1,z1,t] = step(num1,den1,t);
[y2,z2,t] = step(num1c,den1c,t);
plot(t,y1,'.',t,y2,'-',t,t,'--')
grid
title('Unit-Ramp Responses of Compensated and Uncompensated Systems')
xlabel('t Sec')
ylabel('Outputs')
text(0.89,3.7,'Compensated system')
text(2.25,1.1,'Uncompensated system')

It is noted that the closed-loop poles for the compensated system are located as follows:

Because the dominant closed-loop poles are located far from the jv axis, the response damps out
quickly.

s = -6.4918

s = -6.9541 ; j8.0592
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7–12 LAG COMPENSATION

In this section we first discuss the Nyquist plot and Bode diagram of the lag compensator.
Then we present lag compensation techniques based on the frequency-response approach.

Characteristics of Lag Compensators. Consider a lag compensator having the
following transfer function:
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In the complex plane, a lag compensator has a zero at s=–1/T and a pole at
s=–1/(bT). The pole is located to the right of the zero.

Figure 7–101 shows a polar plot of the lag compensator. Figure 7–102 shows a Bode
diagram of the compensator, where Kc=1 and b=10. The corner frequencies of the
lag compensator are at v=1/T and v=1/(bT). As seen from Figure 7–102, where
the values of Kc and b are set equal to 1 and 10, respectively, the magnitude of the lag
compensator becomes 10 (or 20 dB) at low frequencies and unity (or 0 dB) at high fre-
quencies. Thus, the lag compensator is essentially a low-pass filter.

Lag Compensation Techniques Based on the Frequency-Response Approach.
The primary function of a lag compensator is to provide attenuation in the high-
frequency range to give a system sufficient phase margin. The phase-lag characteristic
is of no consequence in lag compensation.

The procedure for designing lag compensators for the system shown in Figure 7–93
by the frequency-response approach may be stated as follows:

1. Assume the following lag compensator:

Gc(s) = Kc b 
Ts + 1

bTs + 1
= Kc

s +
1

T

s +
1

bT

  (b 7 1)

Im

0 Re
v = 0v = `

Kc Kcb

Figure 7–101
Polar plot of a lag
compensator
Kcb(jvT + 1)�(jvbT + 1).
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Bode diagram of a 
lag compensator 
b(jvT+1)/(jvbT+1),
with b=10.



Define

Then

The open-loop transfer function of the compensated system is

where

Determine gain K to satisfy the requirement on the given static velocity error
constant.

2. If the gain-adjusted but uncompensated system G1(jv)=KG(jv) does not sat-
isfy the specifications on the phase and gain margins, then find the frequency point
where the phase angle of the open-loop transfer function is equal to –180° plus the
required phase margin. The required phase margin is the specified phase margin
plus 5° to 12°. (The addition of 5° to 12° compensates for the phase lag of the lag
compensator.) Choose this frequency as the new gain crossover frequency.

3. To prevent detrimental effects of phase lag due to the lag compensator, the pole
and zero of the lag compensator must be located substantially lower than the new
gain crossover frequency. Therefore, choose the corner frequency v=1/T (cor-
responding to the zero of the lag compensator) 1 octave to 1 decade below the
new gain crossover frequency. (If the time constants of the lag compensator do
not become too large, the corner frequency v=1/T may be chosen 1 decade
below the new gain crossover frequency.)

Notice that we choose the compensator pole and zero sufficiently small. Thus
the phase lag occurs at the low-frequency region so that it will not affect the phase
margin.

4. Determine the attenuation necessary to bring the magnitude curve down to 0 dB
at the new gain crossover frequency. Noting that this attenuation is de-
termine the value of b. Then the other corner frequency (corresponding to the
pole of the lag compensator) is determined from v=1/(bT).

5. Using the value of K determined in step 1 and that of b determined in step 4, cal-
culate constant Kc from

Kc =
K

b

-20 logb,

G1(s) = KG(s)

Gc(s)G(s) = K
Ts + 1

bTs + 1
G(s) =

Ts + 1

bTs + 1
KG(s) =

Ts + 1

bTs + 1
G1(s)

Gc(s) = K
Ts + 1

bTs + 1

Kcb = K
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EXAMPLE 7–27 Consider the system shown in Figure 7–103. The open-loop transfer function is given by

It is desired to compensate the system so that the static velocity error constant Kv is 5 sec–1, the
phase margin is at least 40°, and the gain margin is at least 10 dB.

We shall use a lag compensator of the form

Define

Define also

The first step in the design is to adjust the gain K to meet the required static velocity error con-
stant. Thus,

or

With K=5, the compensated system satisfies the steady-state performance requirement.
We shall next plot the Bode diagram of

G1(jv) =
5

jv(jv + 1)(0.5jv + 1)

K = 5

 = lim
s S 0

 
sK

s(s + 1)(0.5s + 1)
= K = 5

 Kv = lim
s S 0

sGc(s)G(s) = lim
s S 0

s 
Ts + 1

bTs + 1
 G1(s) = lim

s S 0
sG1(s)

G1(s) = KG(s) =
K

s(s + 1)(0.5s + 1)

Kc b = K

Gc(s) = Kc b 
Ts + 1

bTs + 1
= Kc

s +
1

T

s +
1

bT

  (b 7 1)

G(s) =
1

s(s + 1)(0.5s + 1)

1

s(s +1) (0.5s + 1)
+

–

Figure 7–103
Control system.



The magnitude curve and phase-angle curve of G1(jv) are shown in Figure 7–104. From this plot,
the phase margin is found to be –20°, which means that the gain-adjusted but uncompensated
system is unstable.

Noting that the addition of a lag compensator modifies the phase curve of the Bode diagram, we
must allow 5° to 12° to the specified phase margin to compensate for the modification of the phase
curve.Since the frequency corresponding to a phase margin of 40° is 0.7 rad�sec, the new gain crossover
frequency (of the compensated system) must be chosen near this value. To avoid overly large time
constants for the lag compensator,we shall choose the corner frequency v=1/T (which corresponds
to the zero of the lag compensator) to be 0.1 rad�sec. Since this corner frequency is not too far below
the new gain crossover frequency, the modification in the phase curve may not be small.Hence,we add
about 12° to the given phase margin as an allowance to account for the lag angle introduced by the lag
compensator.The required phase margin is now 52°.The phase angle of the uncompensated open-loop
transfer function is –128° at about v=0.5 rad�sec. So we choose the new gain crossover frequency
to be 0.5 rad�sec.To bring the magnitude curve down to 0 dB at this new gain crossover frequency, the
lag compensator must give the necessary attenuation, which in this case is –20 dB. Hence,

or

The other corner frequency v=1(bT), which corresponds to the pole of the lag compen-
sator, is then determined as

1

bT
= 0.01 rad�sec

b = 10

20 log 
1

b
= -20

11 dB
0dB

0°

–90°

–180°

–270°
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0.020.004
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G1

GcG

Gc
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Gc

40
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–20

–40
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Figure 7–104
Bode diagrams for
G1 (gain-adjusted but
uncompensated
open-loop transfer
function), Gc

(compensator), and
GcG (compensated
open-loop transfer
function).
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Thus, the transfer function of the lag compensator is

Since the gain K was determined to be 5 and b was determined to be 10, we have

The open-loop transfer function of the compensated system is

The magnitude and phase-angle curves of Gc(jv)G(jv) are also shown in Figure 7–104.
The phase margin of the compensated system is about 40°, which is the required value. The

gain margin is about 11 dB, which is quite acceptable.The static velocity error constant is 5 sec–1,
as required. The compensated system, therefore, satisfies the requirements on both the steady
state and the relative stability.

Note that the new gain crossover frequency is decreased from approximately 1 to 0.5 rad�sec.
This means that the bandwidth of the system is reduced.

To further show the effects of lag compensation, the log-magnitude-versus-phase plots of the gain-
adjusted but uncompensated system G1(jv) and of the compensated system Gc(jv)G(jv) are shown
in Figure 7–105.The plot of G1(jv) clearly shows that the gain-adjusted but uncompensated system is
unstable. The addition of the lag compensator stabilizes the system. The plot of Gc(jv)G(jv) is tan-
gent to the M=3 dB locus. Thus, the resonant peak value is 3 dB, or 1.4, and this peak occurs at
v=0.5 rad�sec.

Compensators designed by different methods or by different designers (even using the same ap-
proach) may look sufficiently different. Any of the well-designed systems, however, will give similar
transient and steady-state performance. The best among many alternatives may be chosen from the
economic consideration that the time constants of the lag compensator should not be too large.

Gc(s)G(s) =
5(10s + 1)

s(100s + 1)(s + 1)(0.5s + 1)

Kc =
K

b
=

5

10
= 0.5

Gc(s) = Kc(10)
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Finally, we shall examine the unit-step response and unit-ramp response of the compensated
system and the original uncompensated system without gain adjustment. The closed-loop trans-
fer functions of the compensated and uncompensated systems are

and

respectively. MATLAB Program 7–14 will produce the unit-step and unit-ramp responses of the
compensated and uncompensated systems.The resulting unit-step response curves and unit-ramp
response curves are shown in Figures 7–106 and 7–107, respectively. From the response curves
we find that the designed system satisfies the given specifications and is satisfactory.

C(s)

R(s)
=

1

0.5s3 + 1.5s2 + s + 1

C(s)

R(s)
=

50s + 5

50s4 + 150.5s3 + 101.5s2 + 51s + 5

MATLAB Program 7–14

%*****Unit-step response*****

num = [1];
den = [0.5  1.5  1  1];
numc = [50  5];
denc = [50  150.5  101.5  51  5];
t = 0:0.1:40;
[c1,x1,t] = step(num,den,t);
[c2,x2,t] = step(numc,denc,t);
plot(t,c1,'.',t,c2,'-')
grid
title('Unit-Step Responses of Compensated and Uncompensated Systems')
xlabel('t Sec')
ylabel('Outputs')
text(12.7,1.27,'Compensated system')
text(12.2,0.7,'Uncompensated system')

%*****Unit-ramp response*****

num1 = [1];
den1 = [0.5  1.5  1  1  0];
num1c = [50  5];
den1c = [50  150.5  101.5  51  5  0];
t = 0:0.1:20;
[y1,z1,t] = step(num1,den1,t);
[y2,z2,t] = step(num1c,den1c,t);
plot(t,y1,'.',t,y2,'-',t,t,'--');
grid
title('Unit-Ramp Responses of Compensated and Uncompensated Systems')
xlabel('t Sec')
ylabel('Outputs')
text(8.3,3,'Compensated system')
text(8.3,5,'Uncompensated system')
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Note that the zero and poles of the designed closed-loop system are as follows:

The dominant closed-loop poles are very close to the jv axis with the result that the response
is slow. Also, a pair of the closed-loop pole at s=–0.1228 and the zero at s=–0.1 produces a
slowly decreasing tail of small amplitude.

 Poles at s = -0.2859 ; j0.5196,  s = -0.1228,  s = -2.3155

 Zero at s = -0.1
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A Few Comments on Lag Compensation.

1. Lag compensators are essentially low-pass filters. Therefore, lag compensation
permits a high gain at low frequencies (which improves the steady-state per-
formance) and reduces gain in the higher critical range of frequencies so as to im-
prove the phase margin. Note that in lag compensation we utilize the attenuation
characteristic of the lag compensator at high frequencies rather than the phase-
lag characteristic. (The phase-lag characteristic is of no use for compensation
purposes.)

2. Suppose that the zero and pole of a lag compensator are located at s=–z and
s=–p, respectively.Then the exact locations of the zero and pole are not critical
provided that they are close to the origin and the ratio z/p is equal to the required
multiplication factor of the static velocity error constant.

It should be noted, however, that the zero and pole of the lag compensator
should not be located unnecessarily close to the origin, because the lag compen-
sator will create an additional closed-loop pole in the same region as the zero and
pole of the lag compensator.

The closed-loop pole located near the origin gives a very slowly decaying tran-
sient response, although its magnitude will become very small because the zero of
the lag compensator will almost cancel the effect of this pole. However, the tran-
sient response (decay) due to this pole is so slow that the settling time will be ad-
versely affected.

It is also noted that in the system compensated by a lag compensator the trans-
fer function between the plant disturbance and the system error may not involve
a zero that is near this pole. Therefore, the transient response to the disturbance
input may last very long.

3. The attenuation due to the lag compensator will shift the gain crossover 
frequency to a lower frequency point where the phase margin is accept-
able. Thus, the lag compensator will reduce the bandwidth of the system 
and will result in slower transient response. [The phase angle curve of
Gc(jv)G(jv) is relatively unchanged near and above the new gain crossover 
frequency.]

4. Since the lag compensator tends to integrate the input signal, it acts approximately
as a proportional-plus-integral controller. Because of this, a lag-compensated sys-
tem tends to become less stable. To avoid this undesirable feature, the time con-
stant T should be made sufficiently larger than the largest time constant of the
system.

5. Conditional stability may occur when a system having saturation or limiting is
compensated by use of a lag compensator.When the saturation or limiting takes
place in the system, it reduces the effective loop gain. Then the system becomes
less stable and unstable operation may even result, as shown in Figure 7–108.
To avoid this, the system must be designed so that the effect of lag compensa-
tion becomes significant only when the amplitude of the input to the saturat-
ing element is small. (This can be done by means of minor feedback-loop
compensation.)
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7–13 LAG–LEAD COMPENSATION

We shall first examine the frequency-response characteristics of the lag–lead compen-
sator. Then we present the lag–lead compensation technique based on the frequency-
response approach.

Characteristic of Lag–Lead Compensator. Consider the lag–lead compensator
given by

(7–27)

where g>1 and b>1. The term

produces the effect of the lead network, and the term

produces the effect of the lag network.

s +
1

T2

s +
1

bT2

= b a T2 s + 1

bT2 s + 1
b  (b 7 1)

s +
1

T1

s +
g

T1

=
1
g
° T1 s + 1

T1

g
s + 1

¢  (g 7 1)

Gc(s) = Kc ± s +
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In designing a lag–lead compensator, we frequently chose g=b. (This is not
necessary. We can, of course, choose g Z b.) In what follows, we shall consider the
case where g=b. The polar plot of the lag–lead compensator with Kc=1 and g=b

becomes as shown in Figure 7–109. It can be seen that, for 0<v<v1 , the
compensator acts as a lag compensator, while for v1<v<q it acts as a lead
compensator. The frequency v1 is the frequency at which the phase angle is zero. It
is given by

(To derive this equation, see Problem A–7–21.)
Figure 7–110 shows the Bode diagram of a lag–lead compensator when Kc=1,

g=b=10, and Notice that the magnitude curve has the value 0 dB at the
low- and high-frequency regions.

T2 = 10T1 .

v1 =
1

1T1 T2

512 Chapter 7 / Control Systems Analysis and Design by the Frequency-Response Method

Im

Re0 1
v = v1 v = 0

v = `Figure 7–109
Polar plot of a
lag–lead
compensator given
by Equation (7–27),
with Kc=1 and
g=b.

10

0

–10

–20

–30

90°

0°

–90°

v in rad/sec

dB

0.01
T1

1
T1

10
T1

0.1
T1

0.001
T1

100
T1

Figure 7–110
Bode diagram of a
lag–lead
compensator given
by Equation (7–27)
with Kc=1,
g=b=10, and
T2 = 10T1 .



Section 7–13 / Lag–Lead Compensation 513

Lag–Lead Compensation Based on the Frequency-Response Approach. The
design of a lag–lead compensator by the frequency-response approach is based on the
combination of the design techniques discussed under lead compensation and lag
compensation.

Let us assume that the lag–lead compensator is of the following form:

(7–28)

where b>1. The phase-lead portion of the lag–lead compensator (the portion involv-
ing ) alters the frequency-response curve by adding phase-lead angle and increasing
the phase margin at the gain crossover frequency.The phase-lag portion (the portion in-
volving ) provides attenuation near and above the gain crossover frequency and there-
by allows an increase of gain at the low-frequency range to improve the steady-state
performance.

We shall illustrate the details of the procedures for designing a lag–lead compen-
sator by an example.

EXAMPLE 7–28 Consider the unity-feedback system whose open-loop transfer function is

It is desired that the static velocity error constant be 10 sec–1, the phase margin be 50°, and the
gain margin be 10 dB or more.

Assume that we use the lag–lead compensator given by Equation (7–28). [Note that the phase-
lead portion increases both the phase margin and the system bandwidth (which implies increas-
ing the speed of response). The phase-lag portion maintains the low-frequency gain.]

The open-loop transfer function of the compensated system is Gc(s)G(s). Since the gain K of
the plant is adjustable, let us assume that Kc=1. Then,

From the requirement on the static velocity error constant, we obtain

Hence,

We shall next draw the Bode diagram of the uncompensated system with K=20, as shown in
Figure 7–111. The phase margin of the gain-adjusted but uncompensated system is found to be
–32°, which indicates that the gain-adjusted but uncompensated system is unstable.

The next step in the design of a lag–lead compensator is to choose a new gain crossover fre-
quency. From the phase-angle curve for G(jv), we notice that at v=1.5 rad�sec.
It is convenient to choose the new gain crossover frequency to be 1.5 rad�sec so that the phase-
lead angle required at v=1.5 rad�sec is about 50°, which is quite possible by use of a single
lag–lead network.

Once we choose the gain crossover frequency to be 1.5 rad�sec, we can determine the corner
frequency of the phase-lag portion of the lag–lead compensator. Let us choose the corner fre-
quency (which corresponds to the zero of the phase-lag portion of the compensator) to
be 1 decade below the new gain crossover frequency, or at v=0.15 rad�sec.

v = 1�T2

/G(jv) = -180°

K = 20

Kv = lim
s S 0

sGc(s)G(s) = lim
s S 0

sGc(s)
K

s(s + 1)(s + 2)
=

K

2
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lim
s S 0

Gc(s) = 1.

G(s) =
K
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T1

Gc(s) = Kc

(T1 s + 1)(T2 s + 1)aT1
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s + 1 b (bT2 s + 1)

= Kc

a s +
1
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b a s +

1
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T1
b a s +

1

bT2
b



Recall that for the lead compensator the maximum phase-lead angle fm is given by Equation
(7–25), where a is 1/b in the present case. By substituting a=1/b in Equation (7–25), we have

Notice that b=10 corresponds to fm=54.9°. Since we need a 50° phase margin, we may choose
b=10. (Note that we will be using several degrees less than the maximum angle, 54.9°.) Thus,

b=10

Then the corner frequency (which corresponds to the pole of the phase-lag portion of
the compensator) becomes v=0.015 rad�sec. The transfer function of the phase-lag portion of
the lag–lead compensator then becomes

The phase-lead portion can be determined as follows: Since the new gain crossover frequen-
cy is v=1.5 rad�sec, from Figure 7–111, G(j1.5) is found to be 13 dB. Hence, if the lag–lead com-
pensator contributes –13 dB at v=1.5 rad�sec, then the new gain crossover frequency is as
desired. From this requirement, it is possible to draw a straight line of slope 20 dB�decade, pass-
ing through the point (1.5 rad�sec, –13 dB). The intersections of this line and the 0-dB line and
–20-dB line determine the corner frequencies. Thus, the corner frequencies for the lead portion

s + 0.15

s + 0.015
= 10 a 6.67s + 1

66.7s + 1
b

v = 1�bT2

sinfm =
1 -

1

b

1 +
1

b

=
b - 1

b + 1
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are v=0.7 rad�sec and v=7 rad�sec. Thus, the transfer function of the lead portion of the
lag–lead compensator becomes

Combining the transfer functions of the lag and lead portions of the compensator, we obtain the
transfer function of the lag–lead compensator. Since we chose Kc=1, we have

The magnitude and phase-angle curves of the lag–lead compensator just designed are shown in
Figure 7–111. The open-loop transfer function of the compensated system is

(7–29)

The magnitude and phase-angle curves of the system of Equation (7–29) are also shown in Fig-
ure 7–111. The phase margin of the compensated system is 50°, the gain margin is 16 dB, and the
static velocity error constant is 10 sec–1. All the requirements are therefore met, and the design
has been completed.

Figure 7–112 shows the polar plots of G(jv) (gain-adjusted but uncompensated open-loop
transfer function) and Gc(jv)G(jv) (compensated open-loop transfer function).The Gc(jv)G(jv)
locus is tangent to the M=1.2 circle at about v=2 rad�sec. Clearly, this indicates that the com-
pensated system has satisfactory relative stability. The bandwidth of the compensated system is
slightly larger than 2 rad�sec.
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In the following we shall examine the transient-response characteristics of the compensated
system. (The gain-adjusted but uncompensated system is unstable.) The closed-loop transfer func-
tion of the compensated system is

The unit-step and unit-ramp response curves obtained with MATLAB are shown in Figures 7–113
and 7–114, respectively.

C(s)

R(s)
=

95.381s2 + 81s + 10

4.7691s5 + 47.7287s4 + 110.3026s3 + 163.724s2 + 82s + 10
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Note that the designed closed-loop control system has the following closed-loop zeros and poles:

The pole at s=–0.1785 and zero at s=–0.1499 are located very close to each other. Such a pair
of pole and zero produces a long tail of small amplitude in the step response, as seen in Figure 7–113.
Also, the pole at s=–0.5425 and zero at s=–0.6993 are located fairly close to each other.This pair
adds amplitude to the long tail.

Summary of Control Systems Design by Frequency-Response Approach.
The last three sections presented detailed procedures for designing lead, lag, and
lag–lead compensators by the use of simple examples. We have shown that the design
of a compensator to satisfy the given specifications (in terms of the phase margin and
gain margin) can be carried out in the Bode diagram in a simple and straightforward
manner. It is noted that not every system can be compensated with a lead, lag, or
lag–lead compensator. In some cases compensators with complex poles and zeros may
be used. For systems that cannot be designed by use of the root-locus or frequency-
response methods, the pole-placement method may be used. (See Chapter 10.) In a
given design problem if both conventional design methods and the pole-placement
method can be used, conventional methods (root-locus or frequency-response methods)
usually result in a lower-order stable compensator. Note that a satisfactory design of a
compensator for a complex system may require a creative application of all available
design methods.

Comparison of Lead, Lag, and Lag–Lead Compensation

1. Lead compensation is commonly used for improving stability margins. Lag com-
pensation is used to improve the steady-state performance. Lead compensation
achieves the desired result through the merits of its phase-lead contribution, where-
as lag compensation accomplishes the result through the merits of its attenuation
property at high frequencies.

2. In some design problems both lead compensation and lag compensation may sat-
isfy the specifications. Lead compensation yields a higher gain crossover frequen-
cy than is possible with lag compensation. The higher gain crossover frequency
means a larger bandwidth.A large bandwidth means reduction in the settling time.
The bandwidth of a system with lead compensation is always greater than that
with lag compensation.Therefore, if a large bandwidth or fast response is desired,
lead compensation should be employed. If, however, noise signals are present, then
a large bandwidth may not be desirable, since it makes the system more suscepti-
ble to noise signals because of an increase in the high-frequency gain. Hence, lag
compensation should be used for such a case.

3. Lead compensation requires an additional increase in gain to offset the attenua-
tion inherent in the lead network.This means that lead compensation will require
a larger gain than that required by lag compensation.A larger gain, in most cases,
implies larger space, greater weight, and higher cost.

 s = -0.1785,  s = -0.5425,  s = -7.4923

 Poles at s = -0.8973 ; j1.4439

 Zeros at s = -0.1499,  s = -0.6993



4. Lead compensation may generate large signals in the system. Such large signals
are not desirable because they will cause saturation in the system.

5. Lag compensation reduces the system gain at higher frequencies without reduc-
ing the system gain at lower frequencies. Since the system bandwidth is reduced,
the system has a slower speed to respond. Because of the reduced high-frequen-
cy gain, the total system gain can be increased, and thereby low-frequency gain
can be increased and the steady-state accuracy can be improved. Also, any high-
frequency noises involved in the system can be attenuated.

6. Lag compensation will introduce a pole-zero combination near the origin that will
generate a long tail with small amplitude in the transient response.

7. If both fast responses and good static accuracy are desired, a lag–lead compensator
may be employed. By use of the lag–lead compensator, the low-frequency gain can
be increased (which means an improvement in steady-state accuracy), while at the
same time the system bandwidth and stability margins can be increased.

8. Although a large number of practical compensation tasks can be accomplished
with lead, lag, or lag–lead compensators, for complicated systems, simple
compensation by use of these compensators may not yield satisfactory results.
Then, different compensators having different pole–zero configurations must be
employed.

Graphical Comparison. Figure 7–115(a) shows a unit-step response curve and
unit-ramp response curve of an uncompensated system. Typical unit-step response and
unit-ramp response curves for the compensated system using a lead, lag, and lag–lead
compensator, respectively, are shown in Figures 7–115(b), (c), and (d). The system with
a lead compensator exhibits the fastest response, while that with a lag compensator ex-
hibits the slowest response, but with marked improvements in the unit-ramp response.
The system with a lag–lead compensator will give a compromise; reasonable improve-
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ments in both the transient response and steady-state response can be expected. The
response curves shown depict the nature of improvements that may be expected from
using different types of compensators.

Feedback Compensation. A tachometer is one of the rate feedback devices.
Another common rate feedback device is the rate gyro. Rate gyros are commonly used
in aircraft autopilot systems.

Velocity feedback using a tachometer is very commonly used in positional servo
systems. It is noted that, if the system is subjected to noise signals, velocity feedback
may generate some difficulty if a particular velocity feedback scheme performs
differentiation of the output signal. (The result is the accentuation of the noise 
effects.)

Cancellation of Undesirable Poles. Since the transfer function of elements in
cascade is the product of their individual transfer functions, it is possible to cancel some
undesirable poles or zeros by placing a compensating element in cascade, with its poles
and zeros being adjusted to cancel the undesirable poles or zeros of the original system.
For example, a large time constant may be canceled by use of the lead network

as follows:

If is much smaller than we can effectively eliminate the large time constant 
Figure 7–116 shows the effect of canceling a large time constant in step transient
response.

If an undesirable pole in the original system lies in the right-half s plane, this com-
pensation scheme should not be used since, although mathematically it is possible to
cancel the undesirable pole with an added zero, exact cancellation is physically impos-
sible because of inaccuracies involved in the location of the poles and zeros. A pole in
the right-half s plane not exactly canceled by the compensator zero will eventually lead
to unstable operation, because the response will involve an exponential term that in-
creases with time.

It is noted that if a left-half plane pole is almost canceled but not exactly can-
celed, as is almost always the case, the uncanceled pole-zero combination will cause
the response to have a small amplitude but long-lasting transient-response compo-
nent. If the cancellation is not exact but is reasonably good, then this component will
be small.

It should be noted that the ideal control system is not the one that has a transfer
function of unity. Physically, such a control system cannot be built since it cannot

T1 .T1 ,T2

a 1

T1 s + 1
b aT1 s + 1

T2 s + 1
b =

1

T2 s + 1

AT1 s + 1B�AT2 s + 1B T1

x

x y z

y z

t t t
1

T1s + 1
T1s + 1
T2s + 1

Figure 7–116
Step-response curves
showing the effect of
canceling a large
time constant.



instantaneously transfer energy from the input to the output. In addition, since
noise is almost always present in one form or another, a system with a unity transfer
function is not desirable. A desired control system, in many practical cases, may
have one set of dominant complex-conjugate closed-loop poles with a reasonable
damping ratio and undamped natural frequency. The determination of the significant
part of the closed-loop pole-zero configuration, such as the location of the domi-
nant closed-loop poles, is based on the specifications that give the required system
performance.

Cancellation of Undesirable Complex-Conjugate Poles. If the transfer func-
tion of a plant contains one or more pairs of complex-conjugate poles, then a lead, lag,
or lag–lead compensator may not give satisfactory results. In such a case, a network that
has two zeros and two poles may prove to be useful. If the zeros are chosen so as to
cancel the undesirable complex-conjugate poles of the plant, then we can essentially
replace the undesirable poles by acceptable poles. That is, if the undesirable complex-
conjugate poles are in the left-half s plane and are in the form

then the insertion of a compensating network having the transfer function

will result in an effective change of the undesirable complex-conjugate poles to ac-
ceptable poles. Note that even though the cancellation may not be exact, the com-
pensated system will exhibit better response characteristics. (As stated earlier, this
approach cannot be used if the undesirable complex-conjugate poles are in the right-
half s plane.)

Familiar networks consisting only of RC components whose transfer functions pos-
sess two zeros and two poles are the bridged-T networks. Examples of bridged-T net-
works and their transfer functions are shown in Figure 7–117. (The derivations of the
transfer functions of the bridged-T networks were given in Problem A–3–5.)

s2 + 2z1 v1 s + v2
1

s2 + 2z2 v2 s + v2
2

1

s2 + 2z1 v1 s + v2
1
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=
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=
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Bridged-T networks.
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Concluding Comments. In the design examples presented in this chapter, we
have been primarily concerned only with the transfer functions of compensators. In ac-
tual design problems, we must choose the hardware. Thus, we must satisfy additional
design constraints such as cost, size, weight, and reliability.

The system designed may meet the specifications under normal operating condi-
tions but may deviate considerably from the specifications when environmental changes
are considerable. Since the changes in the environment affect the gain and time con-
stants of the system, it is necessary to provide automatic or manual means to adjust the
gain to compensate for such environmental changes, for nonlinear effects that were not
taken into account in the design, and also to compensate for manufacturing tolerances
from unit to unit in the production of system components. (The effects of manufactur-
ing tolerances are suppressed in a closed-loop system; therefore, the effects may not be
critical in closed-loop operation but critical in open-loop operation.) In addition to this,
the designer must remember that any system is subject to small variations due mainly
to the normal deterioration of the system.
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Bode diagram for
10(1 + jv)� C(2 + jv)(5 + jv) D .

EXAMPLE PROBLEMS AND SOLUTIONS

A–7–1. Consider a system whose closed-loop transfer function is

Clearly, the closed-loop poles are located at s=–2 and s=–5, and the system is not oscillatory.
Show that the closed-loop frequency response of this system will exhibit a resonant peak, al-

though the damping ratio of the closed-loop poles is greater than unity.

Solution. Figure 7–118 shows the Bode diagram for the system. The resonant peak value is ap-
proximately 3.5 dB. (Note that, in the absence of a zero, the second-order system with z>0.7 will
not exhibit a resonant peak; however, the presence of a closed-loop zero will cause such a peak.)

C(s)

R(s)
=

10(s + 1)

(s + 2)(s + 5)



A–7–2. Consider the system defined by

Obtain the sinusoidal transfer functions and
In deriving and we assume that Simi-

larly, in obtaining and we assume that 

Solution. The transfer matrix expression for the system defined by

is given by

where G(s) is the transfer matrix and is given by

For the system considered here, the transfer matrix becomes

Hence

Assuming that U2(jv)=0, we find and as follows:

Similarly, assuming that U1(jv)=0, we find and as follows:

Notice that is a nonminimum-phase transfer function.Y2(jv)�U2(jv)

Y2(jv)

U2(jv)
=

jv - 25

(jv)2 + 4jv + 25

Y1(jv)

U2(jv)
=

jv + 5

(jv)2 + 4jv + 25

Y2(jv)�U2(jv)Y1(jv)�U2(jv)

Y2(jv)

U1(jv)
=

-25

(jv)2 + 4jv + 25

Y1(jv)

U1(jv)
=

jv + 4

(jv)2 + 4jv + 25

Y2(jv)�U1(jv)Y1(jv)�U1(jv)

BY1(s)
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T BU1(s)
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R
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s2 + 4s + 25
-25
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s + 5

s2 + 4s + 25
s - 25

s2 + 4s + 25

T
 =
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s
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Bode diagrams.

A–7–3. Referring to Problem A–7–2, plot Bode diagrams for the system, using MATLAB.

Solution. MATLAB Program 7–15 produces Bode diagrams for the system. There are four
sets of Bode diagrams: two for input 1 and two for input 2. These Bode diagrams are shown in
Figure 7–119.

MATLAB Program 7–15

A = [0  1;-25  -4];
B = [1  1;0  1];
C = [1  0;0  1];
D = [0  0;0  0];
bode(A,B,C,D)
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K
s(s + 1) (s + 5)

+
–

R(s) C(s)

Figure 7–120
Closed-loop system.

A–7–4. Using MATLAB, plot Bode diagrams for the closed-loop system shown in Figure 7–120 for K=1,
K=10, and K=20. Plot three magnitude curves in one diagram and three phase-angle curves
in another diagram.

Solution. The closed-loop transfer function of the system is given by

Hence the numerator and denominator of C(s)�R(s) are

num = [K]
den = [1  6  5  K]

A possible MATLAB program is shown in MATLAB Program 7–16.The resulting Bode diagrams
are shown in Figures 7–121(a) and (b).

 =
K

s3 + 6s2 + 5s + K

 
C(s)

R(s)
=

K

s(s + 1)(s + 5) + K

MATLAB Program 7–16

w = logspace(-1,2,200);
for i = 1:3;

if i = 1; K = 1;[mag,phase,w] = bode([K],[1  6  5  K],w);
mag1dB = 20*log10(mag); phase1 = phase; end;

if i = 2; K = 10;[mag,phase,w] = bode([K],[1  6  5  K],w);
mag2dB = 20*log10(mag); phase2 = phase; end;

if i = 3; K = 20;[mag,phase,w] = bode([K],[1  6  5  K],w);
mag3dB = 20*log10(mag); phase3 = phase; end;

end
semilogx(w,mag1dB,'-',w,mag2dB,'-',w,mag3dB,'-')
grid
title('Bode Diagrams of G(s) = K/[s(s + 1)(s + 5)], where K = 1, K = 10, and K = 20')
xlabel('Frequency (rad/sec)')
ylabel('Gain (dB)')
text(1.2,-31,'K = 1')
text(1.1,-8,'K = 10')
text(11,-31,'K = 20')
semilogx(w,phase1,'-',w,phase2,'-',w,phase3,'-')
grid
xlabel('Frequency (rad/sec)')
ylabel('Phase (deg)')
text(0.2,-90,'K = 1')
text(0.2,-20,'K =10')
text(1.6,-20,'K = 20')
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A–7–5. Prove that the polar plot of the sinusoidal transfer function

is a semicircle. Find the center and radius of the circle.

G(jv) =
jvT

1 + jvT
,  for 0 � v � q
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Solution. The given sinusoidal transfer function G(jv) can be written as follows:

where

Then

Hence, we see that the plot of G(jv) is a circle centered at (0.5,0) with radius equal to 0.5. The
upper semicircle corresponds to 0 � v � q, and the lower semicircle corresponds to
–q � v � 0.

A–7–6. Prove the following mapping theorem: Let F(s) be a ratio of polynomials in s. Let P be the num-
ber of poles and Z be the number of zeros of F(s) that lie inside a closed contour in the s plane,
with multiplicity accounted for. Let the closed contour be such that it does not pass through any
poles or zeros of F(s).The closed contour in the s plane then maps into the F(s) plane as a closed
curve. The number N of clockwise encirclements of the origin of the F(s) plane, as a representa-
tive point s traces out the entire contour in the s plane in the clockwise direction, is equal to Z-P.

Solution. To prove this theorem, we use Cauchy’s theorem and the residue theorem. Cauchy’s
theorem states that the integral of F(s) around a closed contour in the s plane is zero if F(s) is
analytic# within and on the closed contour, or

Suppose that F(s) is given by

where X(s) is analytic in the closed contour in the s plane and all the poles and zeros are located
in the contour. Then the ratio F¿(s)/F(s) can be written

(7–30)

This may be seen from the following consideration: If is given by

then has a zero of kth order at s=–z1 . Differentiating F(s) with respect to s yields

Hence,

(7–31)

We see that by taking the ratio , the kth-order zero of becomes a simple pole of
.F̂ ¿(s)�F̂ (s)

F̂(s)F̂ ¿(s)�F̂ (s)

F̂ ¿(s)

F̂(s)
=

k

s + z1
+

X¿(s)

X(s)

F̂ ¿(s) = kAs + z1Bk - 1X(s) + As + z1BkX¿(s)

F̂(s)

F̂(s) = As + z1BkX(s)

F̂(s)

F¿(s)

F(s)
= a k1

s + z1
+

k2

s + z2
+ p b - a m1

s + p1
+

m2

s + p2
+ p b +

X¿(s)

X(s)

F(s) =
As + z1Bk1As + z2Bk2 pAs + p1Bm1As + p2Bm2 p X(s)

IF(s) ds = 0

aX -
1

2
b 2

+ Y2 =
Av2 T2 - 1B2

4A1 + v2 T2B2 +
v2 T2A1 + v2 T2B2 =

1

4

X =
v2 T2

1 + v2 T2 ,  Y =
vT

1 + v2 T2

G(jv) = X + jY

#For the definition of an analytic function, see the footnote on page 447.
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If the last term on the right-hand side of Equation (7–31) does not contain any poles or zeros
in the closed contour in the s plane, F¿(s)/F(s) is analytic in this contour except at point s=–z1 .
Then, referring to Equation (7–30) and using the residue theorem, which states that the integral
of F¿(s)/F(s) taken in the clockwise direction around a closed contour in the s plane is equal to
–2pj times the residues at the simple poles of F¿(s)/F(s), or

we have

where total number of zeros of F(s) enclosed in the closed 
contour in the s plane

total number of poles of F(s) enclosed in the closed 
contour in the s plane

[The k multiple zeros (or poles) are considered k zeros (or poles) located at the same point.]
Since F(s) is a complex quantity, F(s) can be written

and

Noting that F¿(s)/F(s) can be written

we obtain

If the closed contour in the s plane is mapped into the closed contour in the F(s) plane, then

The integral is zero since the magnitude is the same at the initial point and the final
point of the contour Thus we obtain

The angular difference between the final and initial values of u is equal to the total change in
the phase angle of F¿(s)/F(s) as a representative point in the s plane moves along the closed
contour. Noting that N is the number of clockwise encirclements of the origin of the F(s) plane
and u2-u1 is zero or a multiple of 2p rad, we obtain

u2 - u1

2p
= -N

u2 - u1

2p
= P - Z

G.
ln ∑F∑DG d ln ∑F∑

I
F¿(s)

F(s)
ds = IG  d ln ∑F∑ + jIG du = j3 du = 2pj(P - Z)

G

F¿(s)

F(s)
=

d ln ∑F∑

ds
+ j

du
ds

F¿(s)

F(s)
=

d ln F(s)

ds

ln F(s) = ln ∑F∑ + ju

F(s) = ∑F∑eju

 P = m1 + m2 + p =

Z = k1 + k2 + p =

I
F¿(s)

F(s)
ds = -2pj C Ak1 + k2 + pB - Am1 + m2 + pB D = -2pj(Z - P)

I
F¿(s)

F(s)
ds = -2pj a a  residues b
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Thus, we have the relationship

This proves the theorem.
Note that by this mapping theorem, the exact numbers of zeros and of poles cannot be found—

only their difference. Note also that, from Figures 7–122(a) and (b), we see that if u does not
change through 2p rad, then the origin of the F(s) plane cannot be encircled.

A–7–7. The Nyquist plot (polar plot) of the open-loop frequency response of a unity-feedback control
system is shown in Figure 7–123(a). Assuming that the Nyquist path in the s plane encloses the
entire right-half s plane, draw a complete Nyquist plot in the G plane.Then answer the following
questions:

(a) If the open-loop transfer function has no poles in the right-half s plane, is the closed-loop
system stable?

(b) If the open-loop transfer function has one pole and no zeros in right-half s plane, is the closed-
loop system stable?

(c) If the open-loop transfer function has one zero and no poles in the right-half s plane, is the
closed-loop system stable?

N = Z - P

Re

Im

u1

u2u2

Origin encircled
u2 – u1 = 2p

Origin not encircled
u2 – u1 = 0

F(s) PlaneF(s) Plane

0
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0
u1

Figure 7–122
Determination of
encirclement of the
origin of F(s) plane.
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Solution. Figure 7–123(b) shows a complete Nyquist plot in the G plane.The answers to the three
questions are as follows:

(a) The closed-loop system is stable, because the critical point (–1+j0) is not encircled by the
Nyquist plot. That is, since P=0 and N=0, we have Z=N+P=0.

(b) The open-loop transfer function has one pole in the right-half s plane. Hence, P=1. (The
open-loop system is unstable.) For the closed-loop system to be stable, the Nyquist plot must
encircle the critical point (–1+j0) once counterclockwise. However, the Nyquist plot does
not encircle the critical point. Hence, N=0.Therefore, Z=N+P=1.The closed-loop sys-
tem is unstable.

(c) Since the open-loop transfer function has one zero, but no poles, in the right-half s plane, we
have Z=N+P=0. Thus, the closed-loop system is stable. (Note that the zeros of the
open-loop transfer function do not affect the stability of the closed-loop system.)

A–7–8. Is a closed-loop system with the following open-loop transfer function and with K=2 stable?

Find the critical value of the gain K for stability.

Solution. The open-loop transfer function is

This open-loop transfer function has no poles in the right-half s plane. Thus, for stability, the
–1+j0 point should not be encircled by the Nyquist plot. Let us find the point where the Nyquist
plot crosses the negative real axis. Let the imaginary part of G(jv)H(jv) be zero, or

from which

Substituting into G(jv)H(jv), we obtain

The critical value of the gain K is obtained by equating –2K/3 to –1, or

Hence,

The system is stable if Hence, the system with K=2 is unstable.0 6 K 6 3
2 .

K =
3

2

-
2

3
K = -1

G a j
1

12
bH a j

1

12
b = -

2K

3

v = 1�12

v = ;  
1

12

1 - 2v2 = 0

 =
K

-3v2 + jvA1 - 2v2B
 G(jv)H(jv) =

K

jv(jv + 1)(2jv + 1)

G(s)H(s) =
K

s(s + 1)(2s + 1)
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Figure 7–125
(a) Polar plot of
K/(jv-1);
(b) polar plots of
K/(jv-1) for
stable and unstable
cases.

A–7–9. Consider the closed-loop system shown in Figure 7–124. Determine the critical value of K for
stability by the use of the Nyquist stability criterion.

Solution. The polar plot of

is a circle with center at –K/2 on the negative real axis and radius K/2, as shown in Figure
7–125(a). As v is increased from –q to q, the G(jv) locus makes a counterclockwise rotation.
In this system, P=1 because there is one pole of G(s) in the right-half s plane. For the closed-
loop system to be stable, Z must be equal to zero.Therefore, N=Z-P must be equal to –1, or
there must be one counterclockwise encirclement of the –1+j0 point for stability. (If there is no
encirclement of the –1+j0 point, the system is unstable.) Thus, for stability, K must be greater
than unity, and K=1 gives the stability limit. Figure 7–125(b) shows both stable and unstable cases
of G(jv) plots.

G(jv) =
K

jv - 1

R(s) C(s)K
s – 1

+
–

Figure 7–124
Closed-loop system.
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Figure 7–126
Polar plots of

and 2.65/(1+jv).
2.65e-0.8jv�(1 + jv)

A–7–10. Consider a unity-feedback system whose open-loop transfer function is

Using the Nyquist plot, determine the critical value of K for stability.

Solution. For this system,

The imaginary part of G(jv) is equal to zero if

Hence,

Solving this equation for the smallest positive value of v, we obtain

Substituting v=2.4482 into G(jv), we obtain

The critical value of K for stability is obtained by letting G(j2.4482) equal –1. Hence,

or

Figure 7–126 shows the Nyquist or polar plots of 2.65e–0.8jv/(1+jv) and 2.65/(1+jv).The first-
order system without transport lag is stable for all values of K, but the one with a transport lag of
0.8 sec becomes unstable for K>2.65.

K = 2.65

0.378K = 1

G(j2.4482) =
K

1 + 2.44822 (cos 1.9586 - 2.4482 sin 1.9586) = -0.378K

v = 2.4482

v = -tan 0.8v

sin 0.8v + v cos 0.8v = 0

 =
K

1 + v2 C(cos 0.8v - v sin 0.8v) - j(sin 0.8v + v cos 0.8v) D
 =

K(cos 0.8v - j sin 0.8v)(1 - jv)

1 + v2

 G(jv) =
Ke-0.8jv

jv + 1

G(s) =
Ke-0.8s

s + 1
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A–7–11. Consider a unity-feedback system with the following open-loop transfer function:

Draw a Nyquist plot with MATLAB and examine the stability of the closed-loop system.

Solution. MATLAB Program 7–17 produces the Nyquist diagram shown in Figure 7–127. From
this figure, we see that the Nyquist plot does not encircle the –1+j0 point. Hence, N=0 in the
Nyquist stability criterion. Since no open-loop poles lie in the right-half s plane, P=0. Therefore,
Z=N+P=0. The closed-loop system is stable.

G(s) =
20As2 + s + 0.5B
s(s + 1)(s + 10)

A–7–12. Consider the same system as discussed in Problem A–7–11. Draw the Nyquist plot for only the
positive-frequency region.

Solution. Drawing a Nyquist plot for only the positive-frequency region can be done by the use
of the following command:

[re,im,w] = nyquist(num,den,w)

The frequency region may be divided into several subregions by using different increments. For
example, the frequency region of interest may be divided into three subregions as follows:

w1 = 0.1:0.1:10;
w2 = 10:2:100;
w3 = 100:10:500;
w = [w1  w2  w3]

MATLAB Program 7–17

num = [20  20  10];
den = [1  11  10  0];
nyquist(num,den)
v = [-2  3  -3  3]; axis(v)
grid

Real Axis
−1 −0.5−1.5−2 31 1.50.5 2 2.50

Im
ag

in
ar

y 
A

xi
s

−3

3

2

1

−2

−1

0

Nyquist Diagram

Figure 7–127
Nyquist plot of

G(s) =
20As2 + s + 0.5B
s(s + 1)(s + 10)

.
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Nyquist Plot of G(s) = 20(s2+s+0.5)/[s(s+1)(s+10)]

Figure 7–128
Nyquist plot for the
positive-frequency
region.

MATLAB Program 7–18

num = [20  20  10];
den = [1  11  10  0];
w1 = 0.1:0.1:10; w2 = 10:2:100; w3 = 100:10:500;
w = [w1  w2  w3];
[re,im,w] = nyquist(num,den,w);
plot(re,im)
v = [-3  3  -5  1]; axis(v);
grid
title('Nyquist Plot of G(s) = 20(s^2 + s + 0.5)/[s(s + 1)(s + 10)]')
xlabel('Real Axis')
ylabel('Imag Axis')

A–7–13. Referring to Problem A–7–12, plot the polar locus of G(s) where

Locate on the polar locus frequency points where v= 0.2, 0.3, 0.5, 1, 2, 6, 10, and 20 rad�sec.
Also, find the magnitudes and phase angles of G(jv) at the specified frequency points.

Solution. In MATLAB Program 7–19 we used the frequency vector w, which consists of
three frequency subvectors: w1, w2, and w3. Instead of such a w, we may simply use the

G(s) =
20As2 + s + 0.5B
s(s + 1)(s + 10)

MATLAB Program 7–18 uses this frequency region. Using this program, we obtain the Nyquist
plot shown in Figure 7–128.
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MATLAB Program 7–19

num = [20  20  10];
den = [1  11  10  0];
ww = logspace(-1,2,100);
nyquist(num,den,ww)
v = [-2  3  -5  0]; axis(v);
grid
hold
Current plot held
w = [0.2  0.3  0.5  1  2  6  10  20];
[re,im,w] = nyquist(num,den,w);
plot(re,im,'o')
text(1.1,-4.8,'w = 0.2')
text(1.1,-3.1,'0.3')
text(1.25,-1.7,'0.5')
text(1.37,-0.4,'1')
text(1.8,-0.3,'2')
text(1.4,-1.1,'6')
text(0.77,-0.8,'10')
text(0.037,-0.8,'20')

% ----- To get the values of magnitude and phase (in degrees) of G(jw)
% at the specified w values, enter the command [mag,phase,w]
% = bode(num,den,w) ------

[mag,phase,w] = bode(num,den,w);

% ----- The following table shows the specified frequency values w and
% the corresponding values of magnitude and phase (in degrees) -----

[w  mag  phase]

ans =

0.2000  4.9176  -78.9571
0.3000  3.2426  -72.2244
0.5000  1.9975  -55.9925
1.0000  1.5733  -24.1455
2.0000  1.7678  -14.4898
6.0000  1.6918  -31.0946

10.0000  1.4072  -45.0285
20.0000  0.8933  -63.4385

frequency vector w = logscale(d1, d2, n). MATLAB Program 7–19 uses the following fre-
quency vector:

w = logscale(-1,2,100)

This MATLAB program plots the polar locus and locates the specified frequency points on the
polar locus, as shown in Figure 7–129.
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MATLAB Program 7–20

num = [-1  -4  -6];
den = [1  5  4];
nyquist(num,den);
grid
title('Nyquist Plot of G(s) = -(s^2 + 4s + 6)/(s^2 + 5s + 4)')

A–7–14. Consider a unity-feedback, positive-feedback system with the following open-loop transfer
function:

Draw a Nyquist plot.

Solution. The Nyquist plot of the positive-feedback system can be obtained by defining num and
den as

num = [-1  -4  -6]
den = [1  5  4]

and using the command nyquist(num,den). MATLAB Program 7–20 produces the Nyquist plot,
as shown in Figure 7–130.

This system is unstable, because the –1+j0 point is encircled once clockwise. Note that this
is a special case where the Nyquist plot passes through –1+j0 point and also encircles this point
once clockwise. This means that the closed-loop system is degenerate; the system behaves as if it
were an unstable first-order system. See the following closed-loop transfer function of the positive-
feedback system:

 =
s2 + 4s + 6

s - 2

 
C(s)

R(s)
=

s2 + 4s + 6

s2 + 5s + 4 - As2 + 4s + 6B

G(s) =
s2 + 4s + 6

s2 + 5s + 4
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Figure 7–129
Polar plot of G(jv)
given in Problem
A–7–13.
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Note that the Nyquist plot for the positive-feedback case is a mirror image about the imaginary
axis of the Nyquist plot for the negative-feedback case.This may be seen from Figure 7–131, which
was obtained by use of MATLAB Program 7–21. (Note that the positive-feedback case is unsta-
ble, but the negative-feedback case is stable.)

MATLAB Program 7–21

num1 = [1  4  6];
den1 = [1  5  4];
num2 = [-1  -4  -6];
den2 = [1  5  4];
nyquist(num1,den1);
hold on
nyquist(num2,den2);
v = [-2  2  -1  1];
axis(v);
grid
title('Nyquist Plots of G(s) and -G(s)')
text(1.0,0.5,'G(s)')
text(0.57,-0.48,'Use this Nyquist')
text(0.57,-0.61,'plot for negative')
text(0.57,-0.73,'feedback system')
text(-1.3,0.5,'-G(s)')
text(-1.7,-0.48,'Use this Nyquist')
text(-1.7,-0.61,'plot for positive')
text(-1.7,-0.73,'feedback system')

Real Axis
–1.4–1.5 –0.9 –0.7–1 –0.8–1.2–1.3 –1.1
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ag

 A
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Figure 7–130
Nyquist plot for
positive-feedback
system.
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A–7–15. Consider the control system shown in Figure 7–60. (Refer to Example 7–19.) Using the inverse
polar plot, determine the range of gain K for stability.

Solution. Since

we have

Hence, the inverse of the feedforward transfer function is

Notice that 1/G(s) has a pole at s=–0.5. It does not have any pole in the right-half s plane.
Therefore, the Nyquist stability equation

reduces to Z=N since P=0. The reduced equation states that the number Z of the zeros of
1+ C1/G(s) D in the right-half s plane is equal to N, the number of clockwise encirclements of
the –1+j0 point. For stability, N must be equal to zero, or there should be no encirclement. Fig-
ure 7–132 shows the Nyquist plot or polar plot of K/G(jv).

Notice that since

 =
0.5 - 0.5v2 - v4 + jvA-1 + 0.5v2B

0.25 + v2

 
K

G(jv)
= c (jv)3 + (jv)2 + 1

jv + 0.5
d a 0.5 - jv

0.5 - jv
b

Z = N + P

1

G(s)
=

s3 + s2 + 1

K(s + 0.5)

G(s) = G1(s)G2(s) =
K(s + 0.5)

s3 + s2 + 1

G2(s) =
1

s3 + s2 + 1
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Figure 7–132
Polar plot of
K/G(jv).

the K/G(jv) locus crosses the negative real axis at and the crossing point at the nega-
tive real axis is –2.

From Figure 7–132, we see that if the critical point lies in the region between –2 and –q, then
the critical point is not encircled. Hence, for stability, we require

Thus, the range of gain K for stability is

2<K

which is the same result as we obtained in Example 7–19.

A–7–16. Figure 7–133 shows a block diagram of a space-vehicle control system. Determine the gain K such
that the phase margin is 50°. What is the gain margin in this case?

Solution. Since

we have

The requirement that the phase margin be 50° means that must be equal to –130°, where
vc is the gain crossover frequency, or

/GAjvcB = -130°

/GAjvcB
/G(jv) = /jv + 2 - 2/jv = tan-1 v

2
- 180°

G(jv) =
K(jv + 2)

(jv)2

-1 6
-2

K

v = 12 ,

Im

Re

K
G

PlaneK
G

Locus

�

�

– �
–2 0 2

v = 0
v =     2

v

v
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Hence, we set

from which we obtain

Since the phase curve never crosses the –180° line, the gain margin is ±q dB. Noting that the
magnitude of G(jv) must be equal to 0 dB at v=2.3835, we have

from which we get

This K value will give the phase margin of 50°.

A–7–17. For the standard second-order system

show that the bandwidth vb is given by

Note that vb/vn is a function only of z. Plot a curve of vb/vn versus z.

Solution. The bandwidth vb is determined from @C Ajvb B/R Ajvb B @=–3 dB. Quite often, instead of
–3 dB, we use –3.01 dB, which is equal to 0.707. Thus,

Then

from which we get

v4
n = 0.5 C Av2

n - v2
bB2 + 4z2v2

n v2
b D

v2
n

3Av2
n - v2

bB2 + A2zvn vbB2 = 0.707

2CAjvbB
RAjvbB 2 = 2 v2

nAjvbB2 + 2zvnAjvbB + v2
n

2 = 0.707

vb = vnA1 - 2z2 + 24z4 - 4z2 + 2B1�2

C(s)

R(s)
=

v2
n

s2 + 2zvn s + v2
n

K =
2.38352

222 + 2.38352
= 1.8259

2K(jv + 2)

(jv)2
2
v= 2.3835

= 1

vc = 2.3835 rad�sec

tan-1
vc

2
= 50°

G(s)

K(s + 2) 1
s2

+
–

Figure 7–133
Space-vehicle control
system.
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Figure 7–134
Curve of vb/vn

versus z, where vb is
the bandwidth.

By dividing both sides of this last equation by v4
n , we obtain

Solving this last equation for Avb/vn B2 yields

Since Avb/vn B2>0, we take the plus sign in this last equation. Then

or

Figure 7–134 shows a curve relating vb/vn versus z.

A–7–18. A Bode diagram of the open-loop transfer function G(s) of a unity-feedback control system is
shown in Figure 7–135. It is known that the open-loop transfer function is minimum phase. From
the diagram, it can be seen that there is a pair of complex-conjugate poles at v=2 rad�sec.
Determine the damping ratio of the quadratic term involving these complex-conjugate poles.
Also, determine the transfer function G(s).

Solution. Referring to Figure 7–9 and examining the Bode diagram of Figure 7–135, we find the
damping ratio z and undamped natural frequency vn of the quadratic term to be

z = 0.1,  vn = 2 rad�sec

vb = vnA1 - 2z2 + 24z4 - 4z2 + 2B1�2

v2
b = v2

nA1 - 2z2 + 24z4 - 4z2 + 2B
a vb

vn
b 2

= -2z2 + 1 ; 24z4 - 4z2 + 2

1 = 0.5 e c1 - a vb

vn
b 2 d 2 + 4z2 a vb

vn
b 2 f
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Bode diagram of the
open-loop transfer
function of a unity-
feedback control
system.

Noting that there is another corner frequency at v=0.5 rad�sec and the slope of the magnitude
curve in the low-frequency region is –40 dB�decade, G(jv) can be tentatively determined as
follows:

Since, from Figure 7–135 we find @G(j0.1) @=40 dB, the gain value K can be determined to be
unity.Also, the calculated phase curve, versus v, agrees with the given phase curve. Hence,
the transfer function G(s) can be determined to be

A–7–19. A closed-loop control system may include an unstable element within the loop.When the Nyquist
stability criterion is to be applied to such a system, the frequency-response curves for the unsta-
ble element must be obtained.

How can we obtain experimentally the frequency-response curves for such an unstable ele-
ment? Suggest a possible approach to the experimental determination of the frequency response
of an unstable linear element.

Solution. One possible approach is to measure the frequency-response characteristics of the un-
stable element by using it as a part of a stable system.

G(s) =
4(2s + 1)

s2As2 + 0.4s + 4B
/G(jv)

G(jv) =
K a jv

0.5
+ 1 b

(jv)2 c a jv

2
b 2

+ 0.1(jv) + 1 d
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Consider the system shown in Figure 7–136. Suppose that the element G1(s) is unstable. The
complete system may be made stable by choosing a suitable linear element G2(s). We apply a si-
nusoidal signal at the input. At steady state, all signals in the loop will be sinusoidal. We measure
the signals e(t), the input to the unstable element, and x(t), the output of the unstable element.
By changing the frequency [and possibly the amplitude for the convenience of measuring e(t)
and x(t)] of the input sinusoid and repeating this process, it is possible to obtain the frequency re-
sponse of the unstable linear element.

A–7–20. Show that the lead network and lag network inserted in cascade in an open loop act as
proportional-plus-derivative control (in the region of small v) and proportional-plus-integral
control (in the region of large v), respectively.

Solution. In the region of small v, the polar plot of the lead network is approximately the same
as that of the proportional-plus-derivative controller. This is shown in Figure 7–137(a).

Similarly, in the region of large v, the polar plot of the lag network approximates the
proportional-plus-integral controller, as shown in Figure 7–137(b).

A–7–21. Consider a lag–lead compensator Gc(s) defined by

Show that at frequency v1, where

the phase angle of Gc(jv) becomes zero. (This compensator acts as a lag compensator for
0<v<v1 and acts as a lead compensator for v1<v<q.) (Refer to Figure 7–109.)

v1 =
1

1T1 T2

Gc(s) = Kc

a s +
1

T1
b a s +

1

T2
b

a s +
b

T1
b a s +

1

bT2
b

G1(s) G2(s)
r e x c

+
–

Figure 7–136
Control system.
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1
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1
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Figure 7–137
(a) Polar plots of a
lead network and a
proportional-plus-
derivative controller;
(b) polar plots of a
lag network and a
proportional-plus-
integral controller.



Example Problems and Solutions 543

Solution. The angle of Gc(jv) is given by

At we have

Since

or

and also

we have

Thus, the angle of Gc Ajv1 B becomes 0° at 

A–7–22. Consider the control system shown in Figure 7–138. Determine the value of gain K such that the
phase margin is 60°. What is the gain margin with this value of gain K?

Solution. The open-loop transfer function is

 =
K(10s + 1)

s3 + 1.5s2 + 0.5s

 G(s) = K 
s + 0.1

s + 0.5
 

10

s(s + 1)

v = v1 = 1�1T1 T2 .

/GcAjv1B = 0°

tan-1 1

b B
T1

T2
+ tan-1bB

T2

T1
= 90°

tan-1B
T1

T2
+ tan-1B

T2

T1
= 90°

tan a tan-1B
T1

T2
+ tan-1B

T2

T1
b =

B
T1

T2
+ B

T2

T1

1 - B
T1

T2B
T2

T1

= q

/GcAjv1B = tan-1B
T1

T2
+ tan-1B

T2

T1
- tan-1 

1

b
 B

T1

T2
- tan-1bB

T2

T1

v = v1 = 1�1T1 T2 ,

 = tan-1vT1 + tan-1vT2 - tan-1vT1�b - tan-1vT2 b

 /Gc(jv) = njv +
1

T1
+ njv +

1

T2
- njv +

b

T1
- njv +

1

bT2

K
s + 0.1
s + 0.5

10
s(s + 1)

+
–

Figure 7–138
Control system.
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MATLAB Program 7–22

num = [10  1];
den = [1  1.5  0.5  0];
bode(num,den)
title('Bode Diagram of G(s) = (10s + 1)/[s(s + 0.5)(s + 1)]')

Let us plot the Bode diagram of G(s) when K=1. MATLAB Program 7–22 may be used for this
purpose. Figure 7–139 shows the Bode diagram produced by this program. From this diagram the
required phase margin of 60° occurs at the frequency v=1.15 rad�sec. The magnitude of G(jv)
at this frequency is found to be 14.5 dB. Then gain K must satisfy the following equation:

or
K = 0.188

20 log K = -14.5 dB

Frequency (rad/sec)

Bode Diagram of G(s) = (10s + 1)/[s(s + 0.5)(s + 1)]
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Figure 7–139
Bode diagram of

G(s) =
10s + 1

s(s + 0.5)(s + 1)
.

Thus, we have determined the value of gain K. Since the angle curve does not cross the –180° line,
the gain margin is ±q dB.

To verify the results, let us draw a Nyquist plot of G for the frequency range

w = 0.5:0.01:1.15

The end point of the locus (v=1.15 rad�sec) will be on a unit circle in the Nyquist plane.To check
the phase margin, it is convenient to draw the Nyquist plot on a polar diagram, using polar grids.

To draw the Nyquist plot on a polar diagram, first define a complex vector z by

z = re + i*im = reiu

where r and u (theta) are given by
r = abs(z)

theta = angle(z)

The abs means the square root of the sum of the real part squared and imaginary part squared;
angle means tan–1 (imaginary part/real part).
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If we use the command
polar(theta,r)

MATLAB will produce a plot in the polar coordinates. Subsequent use of the grid command
draws polar grid lines and grid circles.

MATLAB Program 7–23 produces the Nyquist plot of G(jv), where v is between 0.5 and
1.15 rad�sec.The resulting plot is shown in Figure 7–140. Notice that point G(j1.15) lies on the unit

MATLAB Program 7–23

%*****Nyquist plot in rectangular coordinates*****

num = [1.88  0.188];
den = [1  1.5  0.5  0];
w = 0.5:0.01:1.15;
[re,im,w] = nyquist(num,den,w);

%*****Convert rectangular coordinates into polar coordinates
% by defining z, r, theta as follows*****

z = re + i*im;
r = abs(z);
theta = angle(z);

%*****To draw polar plot, enter command 'polar(theta,r)'*****

polar(theta,r)
text(-1,3,'Check of Phase Margin')
text(0.3,-1.7,'Nyquist plot')
text(-2.2,-0.75,'Phase margin')
text(-2.2,-1.1,'is 60 degrees')
text(1.45,-0.7,'Unit circle')

Nyquist plot

Phase margin
is 60 degrees

Unit circle

270

240

210

180

150

120
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300

330
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0.5

Check of Phase Margin

2.5

1.5

Figure 7–140
Nyquist plot of 
G(jv) showing that 
the phase margin is 60°.



circle, and the phase angle of this point is –120°. Hence, the phase margin is 60°. The fact that
point G(j1.15) is on the unit circle verifies that at v=1.15 rad�sec the magnitude is equal to 1
or 0 dB. (Thus,v=1.15 is the gain crossover frequency.) Thus, K=0.188 gives the desired phase
margin of 60°.

Note that in writing ‘text’ in the polar diagram we enter the text command as follows:

text(x,y,' ')

For example, to write ‘Nyquist plot’ starting at point (0.3, –1.7), enter the command

text(0.3, –1.7,'Nyquist plot')

The text is written horizontally on the screen.

A–7–23. If the open-loop transfer function G(s) involves lightly damped complex-conjugant poles, then
more than one M locus may be tangent to the G(jv) locus.

Consider the unity-feedback system whose open-loop transfer function is

(7–32)

Draw the Bode diagram for this open-loop transfer function. Draw also the log-magnitude-versus-
phase plot, and show that two M loci are tangent to the G(jv) locus. Finally, plot the Bode diagram
for the closed-loop transfer function.

Solution. Figure 7–141 shows the Bode diagram of G(jv). Figure 7–142 shows the log-magni-
tude-versus-phase plot of G(jv). It is seen that the G(jv) locus is tangent to the M=8-dB locus
at v=0.97 rad�sec, and it is tangent to the M=–4-dB locus at v=2.8 rad�sec.

G(s) =
9

s(s + 0.5)As2 + 0.6s + 10B
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Figure 7–143 shows the Bode diagram of the closed-loop transfer function. The magnitude
curve of the closed-loop frequency response shows two resonant peaks. Note that such a case
occurs when the closed-loop transfer function involves the product of two lightly damped second-
order terms and the two corresponding resonant frequencies are sufficiently separated from each
other. As a matter of fact, the closed-loop transfer function of this system can be written

 =
9As2 + 0.487s + 1B As2 + 0.613s + 9B

 
C(s)

R(s)
=

G(s)

1 + G(s)
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Figure 7–142
Log-magnitude-
versus-phase plot of
G(s) given by
Equation (7–32).
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Clearly, the denominator of the closed-loop transfer function is a product of two lightly damped
second-order terms (the damping ratios are 0.243 and 0.102), and the two resonant frequencies are
sufficiently separated.

A–7–24. Consider the system shown in Figure 7–144(a). Design a compensator such that the closed-loop
system will satisfy the requirements that the static velocity error constant=20 sec–1, phase
margin=50°, and gain margin G 10 dB.

Solution. To satisfy the requirements, we shall try a lead compensator Gc(s) of the form

(If the lead compensator does not work, then we need to employ a compensator of different
form.) The compensated system is shown in Figure 7–144(b).

Define

where K=Kca. The first step in the design is to adjust the gain K to meet the steady-state per-
formance specification or to provide the required static velocity error constant. Since the static ve-
locity error constant Kv is given as 20 sec–1, we have

or
K=2

With K=2, the compensated system will satisfy the steady-state requirement.
We shall next plot the Bode diagram of

G1(s) =
20

s(s + 1)

 = 10K = 20

 = lim
s S 0

 
s10K

s(s + 1)

 = lim
s S 0

s 
Ts + 1

aTs + 1
 G1(s)

 Kv = lim
s S 0

sGc(s)G(s)

G1(s) = KG(s) =
10K

s(s + 1)

 = Kc

s +
1

T

s +
1

aT

 Gc(s) = Kc a 
Ts + 1

aTs + 1
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+
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+
–

Figure 7–144
(a) Control system;
(b) compensated
system.
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MATLAB Program 7–24 produces the Bode diagram shown in Figure 7–145. From this plot, the
phase margin is found to be 14°. The gain margin is ±q dB.
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Figure 7–145
Bode diagram of
G1(s).

MATLAB Program 7–24

num = [20];
den = [1  1  0];
w = logspace(-1,2,100);
bode(num,den,w)
title('Bode Diagram of G1(s) = 20/[s(s + 1)]')

Since the specification calls for a phase margin of 50°, the additional phase lead necessary to
satisfy the phase-margin requirement is 36°. A lead compensator can contribute this amount.

Noting that the addition of a lead compensator modifies the magnitude curve in the Bode di-
agram, we realize that the gain crossover frequency will be shifted to the right.We must offset the
increased phase lag of G1(jv) due to this increase in the gain crossover frequency.Taking the shift
of the gain crossover frequency into consideration, we may assume that fm, the maximum phase
lead required, is approximately 41°. (This means that approximately 5° has been added to com-
pensate for the shift in the gain crossover frequency.) Since

fm=41° corresponds to a=0.2077. Note that a=0.21 corresponds to fm=40.76°. Whether
we choose fm=41° or fm=40.76° does not make much difference in the final solution. Hence,
let us choose a=0.21.

sinfm =
1 - a
1 + a



Once the attenuation factor a has been determined on the basis of the required phase-lead
angle, the next step is to determine the corner frequencies v=1/T and v=1/(aT) of the lead
compensator. Notice that the maximum phase-lead angle fm occurs at the geometric mean of the
two corner frequencies, or 

The amount of the modification in the magnitude curve at due to the inclusion
of the term (Ts+1)/(aTs+1) is

Note that

We need to find the frequency point where, when the lead compensator is added, the total mag-
nitude becomes 0 dB.

From Figure 7–145 we see that the frequency point where the magnitude of G1(jv) is
–6.7778 dB occurs between v=1 and 10 rad�sec. Hence, we plot a new Bode diagram of
G1(jv) in the frequency range between v=1 and 10 to locate the exact point where
G1(jv)=–6.7778 dB. MATLAB Program 7–25 produces the Bode diagram in this frequency
range, which is shown in Figure 7–146. From this diagram, we find the frequency point where

occurs at v=6.5686 rad�sec. Let us select this frequency to be the new
gain crossover frequency, or vc=6.5686 rad�sec. Noting that this frequency corresponds to

or

we obtain

and

1
aT

=
vc

1a =
6.5686
10.21

= 14.3339

1
T

= vc1a = 6.568610.21 = 3.0101

vc =
1
1aT

1�A1aTB,@G1(jv) @ = -6.7778 dB

1

1a =
1

10.21
= 6.7778 dB

2 1 + jvT

1 + jvaT
2
v= 1
1aT

= 4 1 + j
1
1a

1 + ja
1
1a
4 =

1
1a

v = 1�A1aTBv = 1�A1aTB.
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MATLAB Program 7–25

num = [20];
den = [1  1  0];
w = logspace(0,1,100);
bode(num,den,w)
title('Bode Diagram of G1(s) = 20/[s(s + 1)]')
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The lead compensator thus determined is

where Kc is determined as

Thus, the transfer function of the compensator becomes

MATLAB Program 7–26 produces the Bode diagram of this lead compensator, which is shown
in Figure 7–147.

Gc(s) = 9.5238
s + 3.0101

s + 14.3339
= 2

0.3322s + 1
0.06976s + 1

Kc =
K
a

=
2

0.21
= 9.5238

Gc(s) = Kc
s + 3.0101
s + 14.3339

= Kc a
0.3322s + 1

0.06976s + 1
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Bode diagram of
G1(s).

MATLAB Program 7–26

numc = [9.5238  28.6676];
denc = [1  14.3339];
w = logspace(-1,3,100);
bode(numc,denc,w)
title('Bode Diagram of Gc(s) = 9.5238(s + 3.0101)/(s + 14.3339')
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Bode diagram of
Gc(s).

The open-loop transfer function of the designed system is

MATLAB Program 7–27 will produce the Bode diagram of Gc(s)G(s), which is shown in 
Figure 7–148.

=
95.238s + 286.6759

s3 + 15.3339s2 + 14.3339s

Gc(s)G(s) = 9.5238
s + 3.0101

s + 14.3339
10

s(s + 1)

MATLAB Program 7–27

num = [95.238  286.6759];
den = [1  15.3339  14.3339  0];
sys = tf(num,den);
w = logspace(–1,3,100);
bode(sys,w);
grid;
title('Bode Diagram of Gc(s)G(s)')
[Gm,pm,wcp,wcg] = margin(sys);
GmdB = 20*log10(Gm);
[Gmdb,pm,wcp,wcg]
ans = 

Inf    49.4164    Inf    6.5686
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From MATLAB Program 7–27 and Figure 7–148 it is clearly seen that the phase margin is ap-
proximately 50° and the gain margin is ± q dB. Since the static velocity error constant Kv is
20 sec–1, all the specifications are met. Before we conclude this problem, we need to check the
transient-response characteristics.

Unit-Step Response: We shall compare the unit-step response of the compensated system with
that of the original uncompensated system.

The closed-loop transfer function of the original uncompensated system is

The closed-loop transfer function of the compensated system is

MATLAB Program 7–28 produces the unit-step responses of the uncompensated and compen-
sated systems. The resulting response curves are shown in Figure 7–149. Clearly, the compensat-
ed system exhibits a satisfactory response. Note that the closed-loop zero and poles are located
as follows:

Zero at s=–3.0101

Poles at s=–5.2880 ; j5.6824, s=–4.7579

Unit-Ramp Response: It is worthwhile to check the unit-ramp response of the compensated
system. Since Kv=20 sec–1, the steady-state error following the unit-ramp input will be

C(s)

R(s)
=

95.238s + 286.6759
s3 + 15.3339s2 + 110.5719s + 286.6759

C(s)

R(s)
=

10

s2 + s + 10
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MATLAB Program 7–29 produces the unit-ramp response curves. [Note that the unit-ramp
response is obtained as the unit-step response of C(s)/sR(s).] The resulting curves are shown in
Figure 7–150.The compensated system has a steady-state error equal to one-half that of the orig-
inal uncompensated system.
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MATLAB Program 7–28

%*****Unit-step responses*****

num1 = [10];
den1 = [1  1  10];
num2 = [95.238  286.6759];
den2 = [1  15.3339  110.5719  286.6759];
t = 0:0.01:6;
[c1,x1,t] = step(num1,den1,t);
[c2,x2,t] = step(num2,den2,t);
plot(t,c1,'.',t,c2,'-')
grid;
title('Unit-Step Responses of Uncompensated System and Compensated System')
xlabel('t Sec');
ylabel('Outputs')
text(1.70,1.45,'Uncompensated System')
text(1.1,0.5,'Compensated System')

1/Kv=0.05. The static velocity error constant of the uncompensated system is 10 sec–1. Hence,
the original uncompensated system will have twice as large a steady-state error in following the
unit-ramp input.
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A–7–25. Consider a unity-feedback system whose open-loop transfer function is

Design a lag–lead compensator Gc(s) such that the static velocity error constant is 10 sec–1, the
phase margin is 50°, and the gain margin is 10 dB or more.

G(s) =
K

s(s + 1)(s + 4)

MATLAB Program 7–29

%*****Unit-ramp responses*****

num1 = [10];
den1 = [1  1  10  0];
num2 = [95.238  286.6759];
den2 = [1  15.3339  110.5719  286.6759  0];
t = 0:0.01:3;
[c1,x1,t] = step(num1,den1,t);
[c2,x2,t] = step(num2,den2,t);
plot(t,c1,'.',t,c2,'-',t,t,'--');
grid;
title('Unit-Ramp Responses of Uncompensated System and Compensated System');
xlabel('t Sec');
ylabel('Outputs')
text(1.2,0.65,'Uncompensated System')
text(0.1,1.3,'Compensated System')
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Solution. We shall design a lag–lead compensator of the form

Then the open-loop transfer function of the compensated system is Gc(s)G(s). Since the gain K
of the plant is adjustable, let us assume that Kc=1. Then From the requirement
on the static velocity error constant, we obtain

Hence,
K=40

We shall first plot a Bode diagram of the uncompensated system with K=40. MATLAB Pro-
gram 7–30 may be used to plot this Bode diagram.The diagram obtained is shown in Figure 7–151.

 =
K

4
= 10

 Kv = lim
s S 0

sGc(s)G(s) = lim
s S 0

sGc(s) 
K

s(s + 1)(s + 4)

lim
s S 0

Gc(s) = 1.

Gc(s) = Kc

a s +
1

T1
b a s +

1

T2
b

a s +
b

T1
b a s +

1

bT2
b
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MATLAB Program 7–30

num = [40];
den = [1  5  4  0];
w = logspace(-1,1,100);
bode(num,den,w)
title('Bode Diagram of G(s) = 40/[s(s + 1)(s + 4)]')
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Bode diagram of
G(s) = 40� Cs(s + 1)(s + 4) D .
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From Figure 7–151, the phase margin of the gain-adjusted but uncompensated system is
found to be –16°, which indicates that this system is unstable. The next step in the design of a
lag–lead compensator is to choose a new gain crossover frequency. From the phase-angle curve
for G(jv), we notice that the phase crossover frequency is v=2 rad�sec. We may choose the
new gain crossover frequency to be 2 rad�sec so that the phase-lead angle required at
v=2 rad�sec is about 50°. A single lag–lead compensator can provide this amount of phase-
lead angle quite easily.

Once we choose the gain crossover frequency to be 2 rad�sec, we can determine the corner
frequencies of the phase-lag portion of the lag–lead compensator. Let us choose the corner
frequency (which corresponds to the zero of the phase-lag portion of the compensator)
to be 1 decade below the new gain crossover frequency, or at v=0.2 rad�sec. For another corner
frequency we need the value of b. The value of b can be determined from the
consideration of the lead portion of the compensator, as shown next.

For the lead compensator, the maximum phase-lead angle fm is given by

Notice that b=10 corresponds to fm=54.9°. Since we need a 50° phase margin, we may
choose b=10. (Note that we will be using several degrees less than the maximum angle, 54.9°.)
Thus,

b=10

Then the corner frequency (which corresponds to the pole of the phase-lag portion
of the compensator) becomes

v=0.02

The transfer function of the phase-lag portion of the lag–lead compensator becomes

The phase-lead portion can be determined as follows: Since the new gain crossover frequency
is v=2 rad�sec, from Figure 7–151, @G(j2) @ is found to be 6 dB. Hence, if the lag–lead compen-
sator contributes –6 dB at v=2 rad�sec, then the new gain crossover frequency is as desired. From
this requirement, it is possible to draw a straight line of slope 20 dB/decade passing through the
point (2 rad�sec, –6 dB). (Such a line has been manually drawn on Figure 7–151.) The intersec-
tions of this line and the 0-dB line and –20-dB line determine the corner frequencies. From this
consideration, the corner frequencies for the lead portion can be determined as v=0.4 rad�sec
and v=4 rad�sec. Thus, the transfer function of the lead portion of the lag–lead compensator
becomes

Combining the transfer functions of the lag and lead portions of the compensator, we can obtain
the transfer function Gc(s) of the lag–lead compensator. Since we chose Kc=1, we have

Gc(s) =
s + 0.4
s + 4

s + 0.2
s + 0.02

=
(2.5s + 1)(5s + 1)

(0.25s + 1)(50s + 1)

s + 0.4

s + 4
=

1

10
a 2.5s + 1

0.25s + 1
b

s + 0.2

s + 0.02
= 10 a 5s + 1

50s + 1
b

v = 1�AbT2B

sinfm =
b - 1

b + 1

v = 1�AbT2B,v = 1�T2



The open-loop transfer function of the compensated system is

Using MATLAB Program 7–32 the magnitude and phase-angle curves of the designed open-loop
transfer function Gc(s)G(s) can be obtained as shown in Figure 7–153. Note that the denominator
polynomial den1 was obtained using the conv command, as follows:

 =
40s2 + 24s + 3.2

s5 + 9.02s4 + 24.18s3 + 16.48s2 + 0.32s

 Gc(s)G(s) =
(s + 0.4)(s + 0.2)

(s + 4)(s + 0.02)
 

40

s(s + 1)(s + 4)
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MATLAB Program 7–31

numc = [1  0.6  0.08];
denc = [1  4.02  0.08];
bode(numc,denc)
title('Bode Diagram of Lag–Lead Compensator')
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Figure 7–152
Bode diagram of the
designed lag–lead
compensator.

a = [1  4.02  0.08];
b = [1  5  4  0];
conv(a,b)

ans = 

1.0000  9.0200  24.1800  16.4800  0.320000  0

The Bode diagram of the lag–lead compensator Gc(s) can be obtained by entering MATLAB
Program 7–31 into the computer. The resulting plot is shown in Figure 7–152.
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Since the phase margin of the compensated system is 50°, the gain margin is 12 dB, and the
static velocity error constant is 10 sec–1, all the requirements are met.

We shall next investigate the transient-response characteristics of the designed system.

Unit-Step Response: Noting that

we have

To determine the denominator polynomial with MATLAB, we may proceed as follows:
Define

 c(s) = 40(s + 0.4)(s + 0.2) = 40s2 + 24s + 3.2

 b(s) = s(s + 1)(s + 4) = s3 + 5s2 + 4s

 a(s) = (s + 4)(s + 0.02) = s2 + 4.02s + 0.08

 =
40(s + 0.4)(s + 0.2)

(s + 4)(s + 0.02)s(s + 1)(s + 4) + 40(s + 0.4)(s + 0.2)

 
C(s)

R(s)
=

Gc(s)G(s)

1 + Gc(s)G(s)

Gc(s)G(s) =
40(s + 0.4)(s + 0.2)

(s + 4)(s + 0.02)s(s + 1)(s + 4)

MATLAB Program 7–32

num1 = [40  24  3.2];
den1 = [1  9.02  24.18  16.48  0.32  0];
bode(num1,den1)
title('Bode Diagram of Gc(s)G(s)')
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Then we have

a = [1  4.02  0.08]
b = [1  5  4  0]
c = [40  24  3.2]

Using the following MATLAB program, we obtain the denominator polynomial.
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a = [1  4.02  0.08];
b = [1  5  4  0];
c = [40  24  3.2];
p = [conv(a,b)] + [0  0  0  c]
p =

1.0000  9.0200  24.1800  56.4800  24.3200  3.2000

MATLAB Program 7–33

%*****Unit-step response****

num = [40  24  3.2];
den = [1  9.02  24.18  56.48  24.32  3.2];
t = 0:0.2:40;
step(num,den,t)
grid
title('Unit-Step Response of Compensated System')
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Figure 7–154
Unit-step response
curve of the
compensated system.

MATLAB Program 7–33 is used to obtain the unit-step response of the compensated system.
The resulting unit-step response curve is shown in Figure 7–154. (Note that the gain-adjusted but
uncompensated system is unstable.)
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Unit-Ramp Response: The unit-ramp response of the compensated system may be obtained by
entering MATLAB Program 7–34 into the computer. Here we converted the unit-ramp response
of GcG/ A1+GcG B into the unit-step response of GcG/ Cs A1+GcG B D . The unit-ramp response
curve obtained using this program is shown in Figure 7–155.

MATLAB Program 7–34

%*****Unit-ramp response*****

num = [40  24  3.2];
den = [1  9.02  24.18  56.48  24.32  3.2  0];
t = 0:0.05:20;
c = step(num,den,t);
plot(t,c,'-',t,t,'.')
grid
title('Unit-Ramp Response of Compensated System')
xlabel('Time (sec)')
ylabel('Unit-Ramp Input and Output c(t)')

U
ni

t-
R

am
p 

In
pu

t a
nd

 O
ut

pu
t c

(t
)

20

8

0

12

18

4

2

16

10

14

6

Time (sec)
0 42 2014 1812 1686 10

Unit-Ramp Response of Compensated System

Figure 7–155
Unit-ramp response
of the compensated
system.

PROBLEMS

B–7–1. Consider the unity-feedback system with the open-
loop transfer function:

G(s) =
10

s + 1

Obtain the steady-state output of the system when it is sub-
jected to each of the following inputs:
(a) r(t)=sin(t+30°)

(b) r(t)=2 cos(2t-45°)

(c) r(t)=sin(t+30°)-2 cos(2t-45°)
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B–7–2. Consider the system whose closed-loop transfer
function is

Obtain the steady-state output of the system when it is sub-
jected to the input r(t)=R sinvt.

B–7–3. Using MATLAB, plot Bode diagrams of G1(s) and
G2(s) given below.

G1(s) is a minimum-phase system and G2(s) is a nonmini-
mum-phase system.

B–7–4. Plot the Bode diagram of

B–7–5. Given

show that

B–7–6. Consider a unity-feedback control system with the
following open-loop transfer function:

This is a nonminimum-phase system. Two of the three
open-loop poles are located in the right-half s plane as
follows:

Plot the Bode diagram of G(s) with MATLAB. Explain why
the phase-angle curve starts from 0° and approaches ±180°.

 s = 0.2328 - j0.7926

 s = 0.2328 + j0.7926

 Open-loop poles at s = -1.4656

G(s) =
s + 0.5

s3 + s2 + 1

@GAjvnB @ =
1

2z

G(s) =
v2

n

s2 + 2zvn s + v2
n

G(s) =
10As2 + 0.4s + 1B
sAs2 + 0.8s + 9B

 G2(s) =
1 - s

1 + 2s

 G1(s) =
1 + s

1 + 2s

C(s)

R(s)
=

KAT2 s + 1B
T1 s + 1

B–7–7. Sketch the polar plots of the open-loop transfer
function

for the following two cases:

(a)

(b)

B–7–8. Draw a Nyquist locus for the unity-feedback control
system with the open-loop transfer function

Using the Nyquist stability criterion, determine the stabili-
ty of the closed-loop system.

B–7–9. A system with the open-loop transfer function

is inherently unstable.This system can be stabilized by adding
derivative control. Sketch the polar plots for the open-loop
transfer function with and without derivative control.

B–7–10. Consider the closed-loop system with the following
open-loop transfer function:

Plot both the direct and inverse polar plots of G(s)H(s)
with K=1 and K=10. Apply the Nyquist stability crite-
rion to the plots, and determine the stability of the system
with these values of K.

B–7–11. Consider the closed-loop system whose open-loop
transfer function is

Find the maximum value of K for which the system is stable.

B–7–12. Draw a Nyquist plot of the following G(s):

B–7–13. Consider a unity-feedback control system with the
following open-loop transfer function:

Draw a Nyquist plot of G(s) and examine the stability of
the system.

G(s) =
1

s3 + 0.2s2 + s + 1

G(s) =
1

sAs2 + 0.8s + 1B

G(s)H(s) =
Ke-2s

s

G(s)H(s) =
10K(s + 0.5)

s2(s + 2)(s + 10)

G(s)H(s) =
K

s2AT1 s + 1B

G(s) =
K(1 - s)

s + 1

T 7 Ta 7 0,  T 7 Tb 7 0

Ta 7 T 7 0,  Tb 7 T 7 0

G(s)H(s) =
KATa s + 1B ATb s + 1B

s2(Ts + 1)
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B–7–14. Consider a unity-feedback control system with the
following open-loop transfer function:

Draw a Nyquist plot of G(s) and examine the stability of
the closed-loop system.

B–7–15. Consider the unity-feedback system with the fol-
lowing G(s):

Suppose that we choose the Nyquist path as shown in Fig-
ure 7–156. Draw the corresponding G(jv) locus in the G(s)
plane. Using the Nyquist stability criterion, determine the
stability of the system.

G(s) =
1

s(s - 1)

G(s) =
s2 + 2s + 1

s3 + 0.2s2 + s + 1

B–7–16. Consider the closed-loop system shown in Figure
7–157. G(s) has no poles in the right-half s plane.

If the Nyquist plot of G(s) is as shown in Figure
7–158(a), is this system stable?

If the Nyquist plot is as shown in Figure 7–158(b), is this
system stable?

jv

s

`

e

Figure 7–156
Nyquist path.

G(s)+
–

Figure 7–157
Closed-loop system.

B–7–17. A Nyquist plot of a unity-feedback system with the
feedforward transfer function G(s) is shown in Figure 7–159.

If G(s) has one pole in the right-half s plane, is the sys-
tem stable?

If G(s) has no pole in the right-half s plane, but has one
zero in the right-half s plane, is the system stable?

Figure 7–158
Nyquist plots.

0–1 Re

Im

G(jv)

Figure 7–159
Nyquist plot.

0 Re

Im

–1

(a)

Re

Im

0–1

(b)



B–7–18. Consider the unity-feedback control system with
the following open-loop transfer function G(s):

Plot Nyquist diagrams of G(s) for K=1, 10, and 100.

B–7–19. Consider a negative-feedback system with the fol-
lowing open-loop transfer function:

Plot the Nyquist diagram of G(s). If the system were a pos-
itive-feedback one with the same open-loop transfer func-
tion G(s), what would the Nyquist diagram look like?

B–7–20. Consider the control system shown in Figure 7–160.
Plot Nyquist diagrams of G(s), where

for k=0.3, 0.5, and 0.7.

 =
10

s3 + 6s2 + (5 + 10k)s

 G(s) =
10

s C(s + 1)(s + 5) + 10k D

G(s) =
2

s(s + 1)(s + 2)

G(s) =
K(s + 2)

s(s + 1)(s + 10)

564 Chapter 7 / Control Systems Analysis and Design by the Frequency-Response Method

k

1
s

10
(s + 1) (s + 5)

+
–

+
–

Figure 7–160
Control system.

B–7–22. Referring to Problem B–7–21, it is desired to plot
only for v>0. Write a MATLAB program
to produce such a plot.

If it is desired to plot for –q<v<q,
what changes must be made in the MATLAB program?

B–7–23. Consider the unity-feedback control system whose
open-loop transfer function is

Determine the value of a so that the phase margin is 45°.

B–7–24. Consider the system shown in Figure 7–161. Draw
a Bode diagram of the open-loop transfer function G(s).
Determine the phase margin and gain margin.

G(s) =
as + 1

s2

Y1(jv)�U1(jv)

Y1(jv)�U1(jv)

G(s)

25
s(s + 1) (s + 10)

+
–

Figure 7–161
Control system.

G(s)

20(s + 1)
s(s2 + 2s + 10) (s + 5)

+
–

Figure 7–162
Control system.

B–7–21. Consider the system defined by

There are four individual Nyquist plots involved in this sys-
tem. Draw two Nyquist plots for the input u1 in one dia-
gram and two Nyquist plots for the input u2 in another
diagram. Write a MATLAB program to obtain these two
diagrams.

 By1

y2
R = B1

0

0

1
R Bx1

x2
R + B0

0

0

0
R Bu1

u2
R

 Bx
#
1

x
#
2
R = B -1

6.5

-1

0
R Bx1

x2
R + B1

1

1

0
R Bu1

u2
R B–7–25. Consider the system shown in Figure 7–162.

Draw a Bode diagram of the open-loop transfer function
G(s). Determine the phase margin and gain margin with
MATLAB.
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B–7–26. Consider a unity-feedback control system with the
open-loop transfer function

Determine the value of the gain K such that the phase
margin is 50°. What is the gain margin with this gain K?

B–7–27. Consider the system shown in Figure 7–163. Draw
a Bode diagram of the open-loop transfer function, and
determine the value of the gain K such that the phase
margin is 50°. What is the gain margin of this system with
this gain K?

G(s) =
K

sAs2 + s + 4B

10
s(s + 1)

K
s + 0.1
s + 0.5

+
–

Figure 7–163
Control system.

B–7–28. Consider a unity-feedback control system whose
open-loop transfer function is

Determine the value of the gain K such that the resonant
peak magnitude in the frequency response is 2 dB, or
Mr=2 dB.

B–7–29. A Bode diagram of the open-loop transfer function
G(s) of a unity-feedback control system is shown in Figure
7–164. It is known that the open-loop transfer function is
minimum phase. From the diagram, it can be seen that there
is a pair of complex-conjugate poles at v=2 rad�sec.
Determine the damping ratio of the quadratic term involv-
ing these complex-conjugate poles. Also, determine the
transfer function G(s).

G(s) =
K

sAs2 + s + 0.5B

40

20

–20

dB

0

–40

–60

–80

0.1 0.2 0.4 0.6 1 42 6 10 20 6040 100

–270°

–180°

–90°

0°

v in rad/sec

Figure 7–164
Bode diagram of the open-loop transfer function of a unity-
feedback control system.
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B–7–30. Draw Bode diagrams of the PI controller given by

and the PD controller given by

B–7–31. Figure 7–165 shows a block diagram of a space-
vehicle attitude-control system. Determine the proportional
gain constant Kp and derivative time such that the band-
width of the closed-loop system is 0.4 to 0.5 rad�sec. (Note
that the closed-loop bandwidth is close to the gain crossover
frequency.) The system must have an adequate phase mar-
gin. Plot both the open-loop and closed-loop frequency re-
sponse curves on Bode diagrams.

Td

Gc(s) = 5(1 + 0.5s)

Gc(s) = 5 a1 +
1

2s
b

Kp(1 + Tds) 1
s2

+
–

Gc(s)
K

s(0.1s + 1)(s + 1) 
+

–

Figure 7–166
Closed-loop system.

B–7–32. Referring to the closed-loop system shown in Fig-
ure 7–166, design a lead compensator Gc(s) such that the
phase margin is 45°, gain margin is not less than 8 dB, and the
static velocity error constant Kv is 4.0 sec–1. Plot unit-step
and unit-ramp response curves of the compensated system
with MATLAB.

B–7–33. Consider the system shown in Figure 7–167. It is
desired to design a compensator such that the static
velocity error constant is 4 sec–1, phase margin is 50°, and
gain margin is 8 dB or more. Plot the unit-step and unit-
ramp response curves of the compensated system with
MATLAB.

Gc(s)

1

Hydraulic servo

1
s

Aircraft

2s + 0.1
s2 + 0.1s + 4

Rate gyro

CR
+

–

Figure 7–167
Control system.

Gc(s)
1

s(s + 1)(s + 5) 
+

–

Figure 7–168
Control system.

B–7–34. Consider the system shown in Figure 7–168. De-
sign a lag–lead compensator such that the static velocity
error constant Kv is 20 sec–1, phase margin is 60°, and gain
margin is not less than 8 dB. Plot the unit-step and unit-
ramp response curves of the compensated system with
MATLAB.

Figure 7–165
Block diagram of space-vehicle attitude-control system.
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PID Controllers and
Modified PID 

Controllers

8–1 INTRODUCTION

In previous chapters, we occasionally discussed the basic PID controllers. For example,
we presented electronic, hydraulic, and pneumatic PID controllers. We also designed
control systems where PID controllers were involved.

It is interesting to note that more than half of the industrial controllers in use today
are PID controllers or modified PID controllers.

Because most PID controllers are adjusted on-site, many different types of tuning
rules have been proposed in the literature. Using these tuning rules, delicate and fine tun-
ing of PID controllers can be made on-site. Also, automatic tuning methods have been
developed and some of the PID controllers may possess on-line automatic tuning
capabilities. Modified forms of PID control, such as I-PD control and multi-degrees-of-
freedom PID control, are currently in use in industry. Many practical methods for bump-
less switching (from manual operation to automatic operation) and gain scheduling are
commercially available.

The usefulness of PID controls lies in their general applicability to most control sys-
tems. In particular, when the mathematical model of the plant is not known and there-
fore analytical design methods cannot be used, PID controls prove to be most useful. In
the field of process control systems, it is well known that the basic and modified PID con-
trol schemes have proved their usefulness in providing satisfactory control, although in
many given situations they may not provide optimal control.

In this chapter we first present the design of a PID controlled system using Ziegler
and Nichols tuning rules.We next discuss a design of PID controller with the conventional
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PlantKp(1 + + Tds)1
Tis

+
–Figure 8–1

PID control 
of a plant.

frequency-response approach, followed by the computational optimization approach to
design PID controllers. Then we introduce modified PID controls such as PI-D control
and I-PD control.Then we introduce multi-degrees-of-freedom control systems, which can
satisfy conflicting requirements that single-degree-of-freedom control systems cannot.
(For the definition of multi-degrees-of-freedom control systems, see Section 8–6.)

In practical cases, there may be one requirement on the response to disturbance
input and another requirement on the response to reference input. Often these two re-
quirements conflict with each other and cannot be satisfied in the single-degree-of-
freedom case. By increasing the degrees of freedom, we are able to satisfy both. In this
chapter we present two-degrees-of-freedom control systems in detail.

The computational optimization approach presented in this chapter to design con-
trol systems (such as to search optimal sets of parameter values to satisfy given transient
response specifications) can be used to design both single-degree-of-freedom control sys-
tems and multi-degrees-of-freedom control systems, provided a fairly precice mathe-
matical model of the plant is known.

Outline of the Chapter. Section 8–1 has presented introductory material for the
chapter. Section 8–2 deals with a design of a PID controller with Ziegler–Nichols Rules.
Section 8–3 treats a design of a PID controller with the frequency-response approach.
Section 8–4 presents a computational optimization approach to obtain optimal param-
eter values of PID controllers. Section 8–5 discusses multi-degrees-of-freedom control
systems including modified PID control systems.

8–2 ZIEGLER–NICHOLS RULES FOR TUNING 
PID CONTROLLERS

PID Control of Plants. Figure 8–1 shows a PID control of a plant. If a mathe-
matical model of the plant can be derived, then it is possible to apply various design
techniques for determining parameters of the controller that will meet the transient and
steady-state specifications of the closed-loop system. However, if the plant is so com-
plicated that its mathematical model cannot be easily obtained, then an analytical or
computational approach to the design of a PID controller is not possible.Then we must
resort to experimental approaches to the tuning of PID controllers.

The process of selecting the controller parameters to meet given performance spec-
ifications is known as controller tuning. Ziegler and Nichols suggested rules for tuning
PID controllers (meaning to set values and ) based on experimental step
responses or based on the value of that results in marginal stability when only pro-
portional control action is used. Ziegler–Nichols rules, which are briefly presented in
the following, are useful when mathematical models of plants are not known. (These
rules can, of course, be applied to the design of systems with known mathematical

Kp

TdTi ,Kp ,
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Plant
u(t) c(t)

1Figure 8–2
Unit-step response 
of a plant.

Tangent line at
inflection point

K

0

c(t)

t

L T

Figure 8–3
S-shaped response
curve.

models.) Such rules suggest a set of values of and that will give a stable oper-
ation of the system. However, the resulting system may exhibit a large maximum over-
shoot in the step response, which is unacceptable. In such a case we need series of fine
tunings until an acceptable result is obtained. In fact, the Ziegler–Nichols tuning rules
give an educated guess for the parameter values and provide a starting point for fine tun-
ing, rather than giving the final settings for and in a single shot.

Ziegler–Nichols Rules for Tuning PID Controllers. Ziegler and Nichols pro-
posed rules for determining values of the proportional gain integral time and de-
rivative time based on the transient response characteristics of a given plant. Such
determination of the parameters of PID controllers or tuning of PID controllers can be
made by engineers on-site by experiments on the plant. (Numerous tuning rules for PID
controllers have been proposed since the Ziegler–Nichols proposal. They are available
in the literature and from the manufacturers of such controllers.)

There are two methods called Ziegler–Nichols tuning rules: the first method and the
second method. We shall give a brief presentation of these two methods.

First Method. In the first method, we obtain experimentally the response of the
plant to a unit-step input, as shown in Figure 8–2. If the plant involves neither integra-
tor(s) nor dominant complex-conjugate poles, then such a unit-step response curve may
look S-shaped, as shown in Figure 8–3. This method applies if the response to a step
input exhibits an S-shaped curve. Such step-response curves may be generated experi-
mentally or from a dynamic simulation of the plant.

The S-shaped curve may be characterized by two constants, delay time L and time
constant T. The delay time and time constant are determined by drawing a tangent line
at the inflection point of the S-shaped curve and determining the intersections of the
tangent line with the time axis and line c(t)=K, as shown in Figure 8–3. The transfer

Td

Ti ,Kp ,

TdKp , Ti ,

TdKp , Ti ,
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Kp Plant
r(t) c(t)u(t)

+
–

Figure 8–4
Closed-loop system
with a proportional
controller.

function C(s)/U(s) may then be approximated by a first-order system with a transport
lag as follows:

Ziegler and Nichols suggested to set the values of and according to the formula
shown in Table 8–1.

Notice that the PID controller tuned by the first method of Ziegler–Nichols rules
gives

Thus, the PID controller has a pole at the origin and double zeros at s=–1/L.

Second Method. In the second method, we first set and Using the
proportional control action only (see Figure 8–4), increase Kp from 0 to a critical value
Kcr at which the output first exhibits sustained oscillations. (If the output does not ex-
hibit sustained oscillations for whatever value Kp may take, then this method does not
apply.) Thus, the critical gain Kcr and the corresponding period are experimentallyPcr

Td = 0.Ti = q

 = 0.6T 

a s +
1

L
b 2

s

 = 1.2 
T

L
 a1 +

1

2Ls
+ 0.5Ls b

 Gc(s) = Kp a1 +
1

Ti s
+ Td s b

TdTi ,Kp ,

C(s)

U(s)
=

Ke-Ls

Ts + 1

Type of
Controller

P q 0

PI 0

PID 2L 0.5L1.2
T

L

L

0.3
0.9

T

L

T

L

TdTiKp

Table 8–1 Ziegler–Nichols Tuning Rule Based on Step Response
of Plant (First Method)
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Pcr

0 t

c(t)

Figure 8–5
Sustained oscillation
with period 
( is measured in
sec.)
Pcr 

Pcr .

Type of
Controller

P 0.5Kcr q 0

PI 0.45Kcr 0

PID 0.6Kcr 0.125Pcr0.5Pcr

1

1.2
Pcr

TdTiKp

Table 8–2 Ziegler–Nichols Tuning Rule Based on Critical Gain
Kcr and Critical Period (Second Method)Pcr

determined (see Figure 8–5). Ziegler and Nichols suggested that we set the values of
the parameters and according to the formula shown in Table 8–2.TdKp , Ti ,

Notice that the PID controller tuned by the second method of Ziegler–Nichols rules
gives

Thus, the PID controller has a pole at the origin and double zeros at 
Note that if the system has a known mathematical model (such as the transfer func-

tion), then we can use the root-locus method to find the critical gain Kcr and the fre-
quency of the sustained oscillations vcr , where These values can be found
from the crossing points of the root-locus branches with the jv axis. (Obviously, if the
root-locus branches do not cross the jv axis, this method does not apply.)

2p�vcr = Pcr .

s = -4�Pcr .

 = 0.075Kcr Pcr 

a s +
4

Pcr
b 2

s

 = 0.6Kcr a1 +
1

0.5Pcr s
+ 0.125Pcr s b

 Gc(s) = Kp a1 +
1

Ti s
+ Td s b
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Gc(s)

PID
controller

1
s(s + 1)(s + 5) 

C(s)R(s)
+

–

Figure 8–6
PID-controlled
system.

Comments. Ziegler–Nichols tuning rules (and other tuning rules presented in the
literature) have been widely used to tune PID controllers in process control systems
where the plant dynamics are not precisely known. Over many years, such tuning rules
proved to be very useful. Ziegler–Nichols tuning rules can, of course, be applied to plants
whose dynamics are known. (If the plant dynamics are known, many analytical and
graphical approaches to the design of PID controllers are available, in addition to
Ziegler–Nichols tuning rules.)

EXAMPLE 8–1 Consider the control system shown in Figure 8–6 in which a PID controller is used to control the
system. The PID controller has the transfer function

Although many analytical methods are available for the design of a PID controller for the pres-
ent system, let us apply a Ziegler–Nichols tuning rule for the determination of the values of pa-
rameters and Then obtain a unit-step response curve and check to see if the designed
system exhibits approximately 25% maximum overshoot. If the maximum overshoot is excessive
(40% or more), make a fine tuning and reduce the amount of the maximum overshoot to ap-
proximately 25% or less.

Since the plant has an integrator, we use the second method of Ziegler–Nichols tuning rules.
By setting and we obtain the closed-loop transfer function as follows:

The value of Kp that makes the system marginally stable so that sustained oscillation occurs can
be obtained by use of Routh’s stability criterion. Since the characteristic equation for the
closed-loop system is

s3+6s2+5s+Kp=0

the Routh array becomes as follows:

s3

s2

s1

s0

1
6

30 - Kp

6

Kp

5
Kp

C(s)

R(s)
=

Kp

s(s + 1)(s + 5) + Kp

Td = 0,Ti = q

Td .Ti ,Kp ,

Gc(s) = Kp a1 +
1

Ti s
+ Td s b
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PID controller

1
s(s + 1)(s + 5) 

6.3223 (s + 1.4235)2

s

C(s)R(s)
+

–

Figure 8–7
Block diagram of the
system with PID
controller designed
by use of the
Ziegler–Nichols
tuning rule (second
method).

Examining the coefficients of the first column of the Routh table, we find that sustained oscilla-
tion will occur if Thus, the critical gain Kcr is

Kcr=30

With gain Kp set equal to the characteristic equation becomes

s3+6s2+5s+30=0

To find the frequency of the sustained oscillation, we substitute s=jv into this characteristic
equation as follows:

(jv)3+6(jv)2+5(jv)+30=0

or

6 A5-v2 B+jv A5-v2 B=0

from which we find the frequency of the sustained oscillation to be or Hence, the
period of sustained oscillation is

Referring to Table 8–2, we determine and as follows:

The transfer function of the PID controller is thus

The PID controller has a pole at the origin and double zero at s=–1.4235. A block diagram of
the control system with the designed PID controller is shown in Figure 8–7.

 =
6.3223(s + 1.4235)2

s

 = 18 a1 +
1

1.405s
+ 0.35124s b

 Gc(s) = Kp a1 +
1

Ti s
+ Td s b

 Td = 0.125Pcr = 0.35124

 Ti = 0.5Pcr = 1.405

 Kp = 0.6Kcr = 18

TdTi ,Kp ,

Pcr =
2p
v

=
2p

15
= 2.8099

v = 15 .v2 = 5

Kcr (= 30),

Kp = 30.
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Next, let us examine the unit-step response of the system. The closed-loop transfer function
C(s)/R(s) is given by

The unit-step response of this system can be obtained easily with MATLAB. See MATLAB
Program 8–1. The resulting unit-step response curve is shown in Figure 8–8. The maximum
overshoot in the unit-step response is approximately 62%.The amount of maximum overshoot is
excessive. It can be reduced by fine tuning the controller parameters. Such fine tuning can be
made on the computer. We find that by keeping and by moving the double zero of the
PID controller to s=–0.65—that is, using the PID controller

(8–1)

the maximum overshoot in the unit-step response can be reduced to approximately 18% (see
Figure 8–9). If the proportional gain Kp is increased to 39.42, without changing the location of
the double zero (s=–0.65), that is, using the PID controller

(8–2)Gc(s) = 39.42 a1 +
1

3.077s
+ 0.7692s b = 30.322

(s + 0.65)2

s

Gc(s) = 18 a1 +
1

3.077s
+ 0.7692s b = 13.846

(s + 0.65)2

s

Kp = 18

C(s)

R(s)
=

6.3223s2 + 18s + 12.811

s4 + 6s3 + 11.3223s2 + 18s + 12.811

MATLAB Program 8–1

% ---------- Unit-step response ----------

num = [6.3223  18  12.811];
den = [1  6  11.3223  18  12.811];
step(num,den)
grid
title('Unit-Step Response')
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Figure 8–8
Unit-step response
curve of PID-
controlled system
designed by use of
the Ziegler–Nichols
tuning rule (second
method).
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the system shown in
Figure 8–6 with PID
controller having
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Unit-step response of
the system shown in
Figure 8–6 with PID
controller having
parameters

and
Td = 0.7692.
Ti = 3.077,
Kp = 39.42,

then the speed of response is increased, but the maximum overshoot is also increased to approxi-
mately 28%, as shown in Figure 8–10. Since the maximum overshoot in this case is fairly close to 25%
and the response is faster than the system with given by Equation (8–1), we may consider 
as given by Equation (8–2) as acceptable. Then the tuned values of and become

It is interesting to observe that these values respectively are approximately twice the values sug-
gested by the second method of the Ziegler–Nichols tuning rule.The important thing to note here
is that the Ziegler–Nichols tuning rule has provided a starting point for fine tuning.

It is instructive to note that, for the case where the double zero is located at s=–1.4235, in-
creasing the value of Kp increases the speed of response, but as far as the percentage maximum
overshoot is concerned, varying gain Kp has very little effect.The reason for this may be seen from

Kp = 39.42,  Ti = 3.077,  Td = 0.7692

TdTi ,Kp ,
Gc(s)Gc(s)



576 Chapter 8 / PID Controllers and Modified PID Controllers

the root-locus analysis. Figure 8–11 shows the root-locus diagram for the system designed by use of
the second method of Ziegler–Nichols tuning rules. Since the dominant branches of root loci are
along the lines for a considerable range of K, varying the value of K (from 6 to 30) will not
change the damping ratio of the dominant closed-loop poles very much. However, varying the lo-
cation of the double zero has a significant effect on the maximum overshoot, because the damping
ratio of the dominant closed-loop poles can be changed significantly.This can also be seen from the
root-locus analysis. Figure 8–12 shows the root-locus diagram for the system where the PID controller
has the double zero at s=–0.65. Notice the change of the root-locus configuration.This change in
the configuration makes it possible to change the damping ratio of the dominant closed-loop poles.

In Figure 8–12, notice that, in the case where the system has gain K=30.322, the closed-loop
poles at s=–2.35_j4.82 act as dominant poles.Two additional closed-loop poles are very near the
double zero at s=–0.65, with the result that these closed-loop poles and the double zero almost can-
cel each other.The dominant pair of closed-loop poles indeed determines the nature of the response.
On the other hand, when the system has K=13.846, the closed-loop poles at s=–2.35_j2.62 are
not quite dominant because the two other closed-loop poles near the double zero at s=–0.65 have
considerable effect on the response.The maximum overshoot in the step response in this case (18%)
is much larger than the case where the system is of second order and having only dominant closed-loop
poles. (In the latter case the maximum overshoot in the step response would be approximately 6%.)

It is possible to make a third, a fourth, and still further trials to obtain a better response. But
this will take a lot of computations and time. If more trials are desired, it is desirable to use the
computational approach presented in Section 10–3. Problem A–8–12 solves this problem with
the computational approach with MATLAB. It finds sets of parameter values that will yield the
maximum overshoot of 10% or less and the settling time of 3 sec or less.A solution to the present
problem obtained in Problem A–8–12 is that for the PID controller defined by

Gc(s) = K
(s + a)2

s

z = 0.3

1
s(s + 1)(s + 5) 

jv

j3

j2

j1

–j3

–j2

–j1

–3 –2 –1–4–5 10 s

K = 6.32

K = 6.32

K = 6.32K = 6.32

z = 0.3

z = 0.3

K
(s + 1.4235)2

s
+

–

Figure 8–11
Root-locus diagram
of system when PID
controller has double
zero at s=–1.4235.
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1
s(s + 1)(s +5)

K
(s + 0.65)2

s

jv
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Figure 8–12
Root-locus diagram 
of system when PID 
controller has double 
zero at s=–0.65.
K=13.846
corresponds to 
given by Equation (8–1)
and K=30.322
corresponds to 
given by Equation (8–2).

Gc(s)

Gc(s)

the values of K and a are
K=29, a=0.25

with the maximum overshoot equal to 9.52% and settling time equal to 1.78 sec.Another possible
solution obtained there is that

K=27, a=0.2

with the 5.5% maximum overshoot and 2.89 sec of settling time. See Problem A–8–12 for details.

8–3 DESIGN OF PID CONTROLLERS WITH FREQUENCY-RESPONSE
APPROACH

In this section we present a design of a PID controller based on the frequency-response
approach.

Consider the system shown in Figure 8–13. Using a frequency-response approach, de-
sign a PID controller such that the static velocity error constant is 4 sec−1, phase margin
is 50° or more, and gain margin is 10 dB or more. Obtain the unit-step and unit-ramp
response curves of the PID controlled system with MATLAB.

Let us choose the PID controller to be

Gc(s) =
K(as + 1)(bs + 1)

s



Since the static velocity error constant Kv is specified as 4 sec–1, we have

Thus

Next, we plot a Bode diagram of

MATLAB Program 8–2 produces a Bode diagram of G(s).The resulting Bode diagram
is shown in Figure 8–14.

G(s) =
4

sAs2 + 1B
Gc(s) =

4(as + 1)(bs + 1)

s

= K = 4

Kv = lim
s S 0

sGc(s)
1

s2 + 1
= lim

s S 0
s

K(as + 1)(bs + 1)

s
1

s2 + 1
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Figure 8–13
Control system.

Gc(s) 1
s2 + 1

+
–

MATLAB Program 8–2

num = [4];
den = [1  0.00000000001  1  0];
w = logspace(-1,1,200);
bode(num,den,w)
title('Bode Diagram of 4/[s(s^2+1)]')
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Figure 8–14
Bode diagram of
4/ Cs As2+1 B D .
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MATLAB Program 8–3

num = [20  4];
den = [1 0.00000000001  1  0];
w = logspace(-2,1,101);
bode(num,den,w)
title('Bode Diagram of G(s) = 4(5s+1)/[s(s^2+1)]')

Frequency (rad/sec)

Bode Diagram of G(s) = 4(5s + 1)/[s(s2 + 1)]
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Figure 8–15
Bode diagram of
G(s)=4(5s+1)/Cs As2+1 B D .

We need the phase margin of at least 50° and gain margin of 10 dB or more.
From the Bode diagram of Figure 8–14, we notice that the gain crossover frequency 
is approximately v=1.8 rad�sec. Let us assume the gain crossover frequency 
of the compensated system to be somewhere between v=1 and v=10 rad�sec.
Noting that

we choose a=5. Then, (as+1) will contribute up to 90° phase lead in the high-
frequency region. MATLAB Program 8–3 produces the Bode diagram of

The resulting Bode diagram is shown in Figure 8–15.

4(5s + 1)

sAs2 + 1B

Gc(s) =
4(as + 1)(bs + 1)

s



Based on the Bode diagram of Figure 8–15, we choose the value of b. The term
(bs+1) needs to give the phase margin of at least 50°. By simple MATLAB trials, we
find b=0.25 to give the phase margin of at least 50° and gain margin of ±q dB.There-
fore, by choosing b=0.25, we have

and the open-loop transfer function of the designed system becomes

MATLAB Program 8–4 produces the Bode diagram of the open-loop transfer function.
The resulting Bode diagram is shown in Figure 8–16. From it we see that the static ve-
locity error constant is 4 sec–1, the phase margin is 55°, and the gain margin is ±q dB.

=
5s2 + 21s + 4

s3 + s

 Open-loop transfer function =
4(5s + 1)(0.25s + 1)

s
1

s2 + 1

Gc(s) =
4(5s + 1)(0.25s + 1)

s
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MATLAB Program 8–4

num = [5  21  4];
den = [1  0  1  0];
w = logspace(-2,2,100);
bode(num,den,w)
title('Bode Diagram of 4(5s+1)(0.25s+1)/[s(s^2+1)]')

Frequency (rad/sec)

Bode Diagram of 4(5s + 1)(0.25s + 1)/[s(s2 + 1)]
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Figure 8–16
Bode diagram of
4(5s+1)(0.25s+1)/Cs As2+1 B D .
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Therefore, the designed system satisfies all the requirements.Thus, the designed system
is acceptable. (Note that there exist infinitely many systems that satisfy all the require-
ments. The present system is just one of them.)

Next, we shall obtain the unit-step response and the unit-ramp response of the de-
signed system. The closed-loop transfer function is

Note that the closed-loop zeros are located at

The closed-loop poles are located at

Notice that the complex-conjugate closed-loop poles have the damping ratio of 0.5237.
MATLAB Program 8–5 produces the unit-step response and the unit-ramp response.

s = -0.1897

s = -2.4052 - j3.9119

s = -2.4052 + j3.9119

s = -4,  s = -0.2

C(s)

R(s)
=

5s2 + 21s + 4
s3 + 5s2 + 22s + 4

MATLAB Program 8–5

%***** Unit-step response *****

num = [5  21  4];
den = [1  5  22  4];
t = 0:0.01:14;
c = step(num,den,t);
plot(t,c)
grid
title('Unit-Step Response of Compensated System')
xlabel('t (sec)')
ylabel('Output c(t)')

%***** Unit-ramp response *****

num1 = [5  21  4];
den1 = [1  5  22  4  0];
t = 0:0.02:20;
c = step(num1,den1,t);
plot(t,c,'-',t,t,'--')
title('Unit-Ramp Response of Compensated System')
xlabel('t (sec)')
ylabel('Unit-Ramp Input and Output c(t)')
text(10.8,8,'Compensated System')
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Unit-step response
curve.
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Figure 8–18
Unit-ramp input and
the output curve.

The resulting unit-step response curve is shown in Figure 8–17 and the unit-
ramp response curve in Figure 8–18. Notice that the closed-loop pole at s = �0.1897
and the zero at s = �0.2 produce a long tail of small amplitude in the unit-step 
response.

For an additional example of design of a PID controller based on the frequency-
response approach, see Problem A–8–7.
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8–4 DESIGN OF PID CONTROLLERS WITH COMPUTATIONAL
OPTIMIZATION APPROACH

In this section we shall explore how to obtain an optimal set (or optimal sets) of
parameter values of PID controllers to satisfy the transient response specifications by
use of MATLAB.We shall present two examples to illustrate the approach in this section.

EXAMPLE 8–2 Consider the PID-controlled system shown in Figure 8–19. The PID controller is given by

It is desired to find a combination of K and a such that the closed-loop system will have 10% (or
less) maximum overshoot in the unit-step response. (We will not include any other condition in
this problem. But other conditions can easily be included, such as that the settling time be less than
a specified value. See, for example, Example 8–3.)

There may be more than one set of parameters that satisfy the specifications. In this example,
we shall obtain all sets of parameters that satisfy the given specifications.

To solve this problem with MATLAB, we first specify the region to search for appropriate K
and a.We then write a MATLAB program that, in the unit-step response, will find a combination
of K and a which will satisfy the criterion that the maximum overshoot is 10% or less.

Note that the gain K should not be too large, so as to avoid the possibility that the system re-
quire an unnecessarily large power unit.

Assume that the region to search for K and a is

2 � K � 3 and 0.5 � a � 1.5

If a solution does not exist in this region, then we need to expand it. In some problems, however,
there is no solution, no matter what the search region might be.

In the computational approach, we need to determine the step size for each of K and a. In the
actual design process, we need to choose step sizes small enough. However, in this example, to avoid
an overly large number of computations, we choose the step sizes to be reasonable—say, 0.2 for
both K and a.

To solve this problem it is possible to write many different MATLAB programs.We present here
one such program, MATLAB Program 8–6. In this program, notice that we use two “for” loops.We
start the program with the outer loop to vary the “K” values. Then we vary the “a” values in the
inner loop. We proceed by writing the MATLAB program such that the nested loops in the pro-
gram begin with the lowest values of “K” and “a” and step toward the highest. Note that, depend-
ing on the system and the ranges of search for “K” and “a” and the step sizes chosen, it may take
from several seconds to a few minutes for MATLAB to compute the desired sets of the values.

In this program the statement

solution(k,:) = [K(i)  a(j)  m]

will produce a table of K, a, m values. (In the present system there are 15 sets of K and a that will
exhibit m<1.10—that is, the maximum overshoot is less than 10%.)

Gc(s) = K
(s + a)2

s

R(s)
K

C(s)

PID
controller

1.2
0.36s3 + 1.86s2 + 2.5s + 1

(s + a)2

s
+

–

Figure 8–19
PID-controlled
system.
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To sort out the solution sets in the order of the magnitude of the maximum overshoot  (starting
from the smallest value of m and ending at the largest value of m in the table), we use the command

sortsolution = sortrows(solution,3)

MATLAB Program 8–6

%'K' and 'a' values to test

K = [2.0  2.2  2.4  2.6  2.8  3.0];
a = [0.5  0.7  0.9  1.1  1.3  1.5];

% Evaluate closed-loop unit-step response at each 'K' and 'a' combination
% that will yield the maximum overshoot less than 10%

t = 0:0.01:5;
g = tf([1.2],[0.36  1.86  2.5  1]);
k = 0;
for i = 1:6;

for j = 1:6;
gc = tf(K(i)*[1  2*a(j)  a(j)^2], [1  0]);  % controller

G = gc*g/(1 + gc*g);  % closed-loop transfer function
y = step(G,t);
m = max(y);
if m < 1.10
k = k+1;
solution(k,:) = [K(i)  a(j)  m];
end

end
end

solution  % Print solution table

solution =

2.0000  0.5000  0.9002
2.0000  0.7000  0.9807
2.0000  0.9000  1.0614
2.2000  0.5000  0.9114
2.2000  0.7000  0.9837
2.2000  0.9000  1.0772
2.4000  0.5000  0.9207
2.4000  0.7000  0.9859
2.4000  0.9000  1.0923
2.6000  0.5000  0.9283
2.6000  0.7000  0.9877
2.8000  0.5000  0.9348
2.8000  0.7000  1.0024
3.0000  0.5000  0.9402
3.0000  0.7000  1.0177

sortsolution = sortrows(solution,3)  % Print solution table sorted by
% column 3

(continues on next page)
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sortsolution =

2.0000  0.5000  0.9002
2.2000  0.5000  0.9114
2.4000  0.5000  0.9207
2.6000  0.5000  0.9283
2.8000  0.5000  0.9348
3.0000  0.5000  0.9402
2.0000  0.7000  0.9807
2.2000  0.7000  0.9837
2.4000  0.7000  0.9859
2.6000  0.7000  0.9877
2.8000  0.7000  1.0024
3.0000  0.7000  1.0177
2.0000  0.9000  1.0614
2.2000  0.9000  1.0772
2.4000  0.9000  1.0923

% Plot the response with the largest overshoot that is less than 10%

K = sortsolution(k,1)

K =

2.4000

a = sortsolution(k,2)

a =

0.9000

gc = tf(K*[1  2*a  a^2], [1  0]);
G = gc*g/(1 + gc*g);
step(G,t)
grid  % See Figure 8–20

% If you wish to plot the response with the smallest overshoot that is
% greater than 0%, then enter the following values of 'K' and 'a'

K = sortsolution(11,1)

K =

2.8000

a = sortsolution(11,2)

a =

0.7000

gc = tf(K*[1  2*a  a^2], [1  0]);
G = gc*g/(1 + gc*g);
step(G,t)
grid  % See Figure 8–21
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Figure 8–20
Unit-step response of
the system with
K=2.4 and a=0.9.
(The maximum
overshoot is 9.23%.)

To plot the unit-step response curve of the last set of the K and a values in the sorted table,
we enter the commands

K = sortsolution (k,1)
a = sortsolution (k,2)

and use the step command. (The resulting unit-step response curve is shown in Figure 8–20.) To
plot the unit-step response curve with the smallest overshoot that is greater than 0% found in the
sorted table, enter the commands

K = sortsolution (11,1)
a = sortsolution (11,2)

and use the step command. (The resulting unit-step response curve is shown in Figure 8–21.)
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Unit-step response of
the system with
K=2.8 and a=0.7.
(The maximum
overshoot is 0.24%.)
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To plot the unit-step response curve of the system with any set shown in the sorted table, we spec-
ify the K and a values by entering an appropriate sortsolution command.

Note that for a specification that the maximum overshoot be between 10% and 5%, there
would be three sets of solutions:

K=2.0000, a=0.9000, m=1.0614

K=2.2000, a=0.9000, m=1.0772

K=2.4000, a=0.9000, m=1.0923

Unit-step response curves for these three cases are shown in Figure 8–22. Notice that the sys-
tem with a larger gain K has a smaller rise time and larger maximum overshoot.Which one of these
three systems is best depends on the system’s objective.

EXAMPLE 8–3 Consider the system shown in Figure 8–23. We want to find all combinations of K and a values
such that the closed-loop system has a maximum overshoot of less than 15%, but more than 10%,
in the unit-step response. In addition, the settling time should be less than 3 sec. In this problem,
assume that the search region is

3 � K � 5 and 0.1 � a � 3

Determine the best choice of the parameters K and a.
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Figure 8–22
Unit-step response
curves of system with
K=2, a=0.9;
K=2.2, a=0.9;
and K=2.4,
a=0.9.

R(s) C(s)

PID
controller

4
s3 + 6s2 + 8s + 4

+
–

Plant

(s + a)2

s
K

Figure 8–23
PID-controlled
system with a
simplified PID
controller.
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In this problem, we choose the step sizes to be reasonable, — say 0.2 for K and 0.1 for a. MATLAB
Program 8–7 gives the solution to this problem. From the sortsolution table, it looks like the first row
is a good choice.Figure 8–24 shows the unit step response curve for K = 3.2 and a = 0.9.Since this choice
requires a smaller K value than most other choices,we may decide that the first row is the best choice.

MATLAB Program 8–7

t = 0:0.01:8;
k = 0;
for K = 3:0.2:5;

for a = 0.1:0.1:3; 
num = [4*K  8*K*a  4*K*a^2];
den = [1  6  8+4*K  4+8*K*a  4*K*a^2];

y = step(num,den,t);
s = 801;while y(s)>0.98 & y(s)<1.02; s = s – 1;end;

ts = (s–1)*0.01; % ts = settling time;
m = max(y);
if m<1.15 & m>1.10; if ts<3.00;

k = k+1;
solution(k,:) = [K  a  m  ts];

end
end

end
end
solution

solution =
3.0000 1.0000 1.1469 2.7700
3.2000 0.9000 1.1065 2.8300
3.4000 0.9000 1.1181 2.7000
3.6000 0.9000 1.1291 2.5800
3.8000 0.9000 1.1396 2.4700
4.0000 0.9000 1.1497 2.3800
4.2000 0.8000 1.1107 2.8300
4.4000 0.8000 1.1208 2.5900
4.6000 0.8000 1.1304 2.4300
4.8000 0.8000 1.1396 2.3100
5.0000 0.8000 1.1485 2.2100

sortsolution = sortrows(solution,3)

sortsolution =

3.2000 0.9000 1.1065 2.8300
4.2000 0.8000 1.1107 2.8300
3.4000 0.9000 1.1181 2.7000
4.4000 0.8000 1.1208 2.5900
3.6000 0.9000 1.1291 2.5800
4.6000 0.8000 1.1304 2.4300
4.8000 0.8000 1.1396 2.3100
3.8000 0.9000 1.1396 2.4700

(continues on next page)
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3.0000 1.0000 1.1469 2.7700
5.0000 0.8000 1.1485 2.2100
4.0000 0.9000 1.1497 2.3800

% Plot the response curve with the smallest overshoot shown in
sortsolution table.

K = sortsolution(1,1), a = sortsolution(1,2)

K =

3.2000

a =

0.9000

num = [4*K 8*K*a 4*K*a^2];
den = [1 6 8+4*K 4+8*K*a 4*K*a^2];
num

num = 

12.8000 23.0400 10.3680

den

den = 

1.0000 6.0000 20.8000 27.0400 10.3680

y = step(num,den,t);
plot(t,y) % See Figure 8–24.
grid
title('Unit-Step Response')
xlabel('t sec')
ylabel('Output y(t)')
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Figure 8–24
Unit-step response
curve of the system
with K=3.2 and 
a=0.9.
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8–5 MODIFICATIONS OF PID CONTROL SCHEMES

Consider the basic PID control system shown in Figure 8–25(a), where the system is sub-
jected to disturbances and noises. Figure 8–25(b) is a modified block diagram of the same
system. In the basic PID control system such as the one shown in Figure 8–25(b), if the ref-
erence input is a step function, then, because of the presence of the derivative term in the
control action, the manipulated variable u(t) will involve an impulse function (delta func-
tion). In an actual PID controller, instead of the pure derivative term , we employ

where the value of g is somewhere around 0.1.Therefore, when the reference input is a
step function, the manipulated variable u(t) will not involve an impulse function, but will
involve a sharp pulse function. Such a phenomenon is called set-point kick.

PI-D Control. To avoid the set-point kick phenomenon, we may wish to operate
the derivative action only in the feedback path so that differentiation occurs only on
the feedback signal and not on the reference signal.The control scheme arranged in this
way is called the PI-D control. Figure 8–26 shows a PI-D-controlled system.

From Figure 8–26, it can be seen that the manipulated signal U(s) is given by

U(s) = Kp a1 +
1

Ti s
bR(s) - Kp a1 +

1

Ti s
+ Td s bB(s)

Td s
1 + gTd s

Td s

PID
controller

Plant
Gp(s)

1
Tis

1

Tds

Output
Y(s)

Noise
N(s)

Reference
input R(s)

(a)

(b)

Disturbance
D(s)

Gp(s)
Y(s)

N(s)

R(s) E(s)

B(s)

Observed signal B(s)

U(s)

D(s)

Kp

+
–

+
+

+
+

+
+

+
+

+
+

++
–

Figure 8–25
(a) PID-controlled
system;
(b) equivalent block
diagram.
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Notice that in the absence of the disturbances and noises, the closed-loop transfer
function of the basic PID control system [shown in Figure 8–25(b)] and the PI-D control
system (shown in Figure 8–26) are given, respectively, by

and

It is important to point out that in the absence of the reference input and noises, the
closed-loop transfer function between the disturbance D(s) and the output Y(s) in
either case is the same and is given by

I-PD Control. Consider the case where the reference input is a step function. Both
PID control and PI-D control involve a step function in the manipulated signal. Such a
step change in the manipulated signal may not be desirable in many occasions. There-
fore, it may be advantageous to move the proportional action and derivative action to
the feedback path so that these actions affect the feedback signal only. Figure 8–27 shows
such a control scheme. It is called the I-PD control. The manipulated signal is given by

Notice that the reference input R(s) appears only in the integral control part. Thus, in
I-PD control, it is imperative to have the integral control action for proper operation of
the control system.

U(s) = Kp
1

Ti s
R(s) - Kp a1 +

1

Ti s
+ Td s bB(s)

Y(s)

D(s)
=

Gp(s)

1 + Kp Gp(s) a1 +
1

Ti s
+ Td s b

Y(s)

R(s)
= a1 +

1

Ti s
b Kp Gp(s)

1 + a1 +
1

Ti s
+ Td s bKp Gp(s)

Y(s)

R(s)
= a1 +

1

Ti s
+ Td s b Kp Gp(s)

1 + a1 +
1

Ti s
+ Td s bKp Gp(s)

1
Tis

1

Gp(s)
Y(s)

N(s)

R(s) E(s)

B(s)

U(s)

D(s)

Kp

Tds

B(s)

+
–

+
–
+

+
+

+
+

Figure 8–26
PI-D-controlled
system.
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1
Tis

Gp(s)
Y(s)

N(s)

R(s)

B(s)

B(s)

U(s)

D(s)

Kp

Tds1

+
–

+
–

+
+

+
+

Figure 8–27
I-PD-controlled
system.

The closed-loop transfer function Y(s)/R(s) in the absence of the disturbance input
and noise input is given by

It is noted that in the absence of the reference input and noise signals, the closed-loop
transfer function between the disturbance input and the output is given by

This expression is the same as that for PID control or PI-D control.

Two-Degrees-of-Freedom PID Control. We have shown that PI-D control is ob-
tained by moving the derivative control action to the feedback path, and I-PD control
is obtained by moving the proportional control and derivative control actions to the
feedback path. Instead of moving the entire derivative control action or proportional
control action to the feedback path, it is possible to move only portions of these control
actions to the feedback path, retaining the remaining portions in the feedforward path.
In the literature, PI-PD control has been proposed. The characteristics of this control
scheme lie between PID control and I-PD control. Similarly, PID-PD control can be
considered. In these control schemes, we have a controller in the feedforward path and
another controller in the feedback path. Such control schemes lead us to a more gener-
al two-degrees-of-freedom control scheme.We shall discuss details of such a two-degrees-
of-freedom control scheme in subsequent sections of this chapter.

8–6 TWO-DEGREES-OF-FREEDOM CONTROL

Consider the system shown in Figure 8–28, where the system is subjected to the
disturbance input D(s) and noise input N(s), in addition to the reference input R(s).

is the transfer function of the controller and is the transfer function of the
plant. We assume that is fixed and unalterable.Gp(s)

Gp(s)Gc(s)

Y(s)

D(s)
=

Gp(s)

1 + Kp Gp(s) a1 +
1

Ti s
+ Td s b

Y(s)

R(s)
= a 1

Ti s
b Kp Gp(s)

1 + Kp Gp(s) a1 +
1

Ti s
+ Td s b
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For this system, three closed-loop transfer functions Y(s)/R(s)=Gyr ,
Y(s)/D(s)=Gyd, and Y(s)/N(s)=Gyn may be derived. They are

[In deriving Y(s)/R(s), we assumed D(s)=0 and N(s)=0. Similar comments apply
to the derivations of Y(s)/D(s) and Y(s)/N(s).] The degrees of freedom of the control
system refers to how many of these closed-loop transfer functions are independent. In
the present case, we have

Among the three closed-loop transfer functions Gyr , Gyn, and Gyd, if one of them is
given, the remaining two are fixed. This means that the system shown in Figure 8–28 is
a one-degree-of-freedom control system.

Next consider the system shown in Figure 8–29, where is the transfer function
of the plant. For this system, closed-loop transfer functions Gyr, Gyn, and Gyd are given,
respectively, by

 Gyn =
Y(s)

N(s)
= - 

AGc1 + Gc2BGp

1 + AGc1 + Gc2BGp

 Gyd =
Y(s)

D(s)
=

Gp

1 + AGc1 + Gc2BGp

 Gyr =
Y(s)

R(s)
=

Gc1 Gp

1 + AGc1 + Gc2BGp

Gp(s)

 Gyn =
Gyd - Gp

Gp

 Gyr =
Gp - Gyd

Gp

 Gyn =
Y(s)

N(s)
= - 

Gc Gp

1 + Gc Gp

 Gyd =
Y(s)

D(s)
=

Gp

1 + Gc Gp

 Gyr =
Y(s)

R(s)
=

Gc Gp

1 + Gc Gp

Gp(s)
Y(s)

N(s)

R(s)

B(s)

U(s)

D(s)

Gc(s)+
–

+
+

+
+

Figure 8–28
One-degree-of-
freedom control
system.
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Hence, we have

In this case, if Gyd is given, then Gyn is fixed, but Gyr is not fixed, because Gc1 is
independent of Gyd. Thus, two closed-loop transfer functions among three closed-loop
transfer functions Gyr, Gyd, and Gyn are independent. Hence, this system is a two-degrees-
of-freedom control system.

Similarly, the system shown in Figure 8–30 is also a two-degrees-of-freedom control
system, because for this system

 Gyn =
Y(s)

N(s)
= - 

Gc1 Gp

1 + Gc1 Gp

 Gyd =
Y(s)

D(s)
=

Gp

1 + Gc1 Gp

 Gyr =
Y(s)

R(s)
=

Gc1 Gp

1 + Gc1 Gp
+

Gc2 Gp

1 + Gc1 Gp

 Gyn =
Gyd - Gp

Gp

 Gyr = Gc1 Gyd

Gp(s)Gc1(s)
Y(s)

N(s)

R(s)

B(s)

U(s)

D(s)

Gc2(s)

B(s) +
+

+
+

+
–

+
–

Figure 8–29
Two-degrees-of-
freedom control
system.

Gp(s)Gc1(s)

Gc2(s)

Y(s)

N(s)

U(s)

D(s)

R(s)

B(s)

+
–

+
+

+
+

+
+

Figure 8–30
Two-degrees-of-
freedom control
system.
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Hence,

Clearly, if Gyd is given, then Gyn is fixed, but Gyr is not fixed, because Gc2 is independ-
ent of Gyd.

It will be seen in Section 8–7 that, in such a two-degrees-of-freedom control system,
both the closed-loop characteristics and the feedback characteristics can be adjusted
independently to improve the system response performance.

8–7 ZERO-PLACEMENT APPROACH TO IMPROVE 
RESPONSE CHARACTERISTICS

We shall show here that by use of the zero-placement approach presented later in this
section, we can achieve the following:

The responses to the ramp reference input and acceleration reference input exhibit
no steady-state errors.

In high-performance control systems it is always desired that the system output follow
the changing input with minimum error. For step, ramp, and acceleration inputs, it is
desired that the system output exhibit no steady-state error.

In what follows, we shall demonstrate how to design control systems that will exhibit
no steady-state errors in following ramp and acceleration inputs and at the same time
force the response to the step disturbance input to approach zero quickly.

Consider the two-degrees-of-freedom control system shown in Figure 8–31. Assume
that the plant transfer function is a minimum-phase transfer function and is
given by

Gp(s) = K
A(s)

B(s)

Gp(s)

 Gyn =
Gyd - Gp

Gp

 Gyr = Gc2 Gyd +
Gp - Gyd

Gp

Gp(s)Gc1(s)
Y(s)R(s)

D(s)

Gc2(s)

+
+

+
–

+
–

Figure 8–31
Two-degrees-of-
freedom control
system.
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where

A(s)= As+z1 B As+z2 B p As+zm B
B(s)=sN As+pN±1 B As+pN±2 B p As+pn B

where N may be 0, 1, 2 and n � m. Assume also that Gc1 is a PID controller followed
by a filter 1/A(s), or

and Gc2 is a PID, PI, PD, I, D, or P controller followed by a filter 1/A(s). That is

where some of a2 , b2 , and g2 may be zero. Then it is possible to write as

(8–3)

where a, b, and g are constants. Then

Because of the presence of s in the numerator, the response y(t) to a step disturbance
input approaches zero as t approaches infinity, as shown below. Since

if the disturbance input is a step function of magnitude d, or

and assuming the system is stable, then

 = 0

 = lim
s S 0

 
sKA(0)d

sB(0) + bK

 y(q) = lim
s S 0

s c sKA(s)

sB(s) + Aas + b + gs2BK d  ds
D(s) =

d
s

Y(s) =
sKA(s)

sB(s) + Aas + b + gs2BK D(s)

 =
sKA(s)

sB(s) + Aas + b + gs2BK
 
Y(s)

D(s)
=

Gp

1 + AGc1 + Gc2BGp

=
K 

A(s)

B(s)

1 +
as + b + gs2

s
 

K

B(s)

Gc1 + Gc2 =
as + b + gs2

s
1

A(s)

Gc1 + Gc2

Gc2(s) =
a2 s + b2 + g2 s2

s
1

A(s)

Gc1(s) =
a1 s + b1 + g1 s2

s
1

A(s)



The response y(t) to a step disturbance input will have the general form shown in
Figure 8–32.

Note that Y(s)/R(s) and Y(s)/D(s) are given by

Notice that the denominators of Y(s)/R(s) and Y(s)/D(s) are the same. Before we
choose the poles of Y(s)/R(s), we need to place the zeros of Y(s)/R(s).

Zero Placement. Consider the system

If we choose p(s) as

p(s)=a2s2+a1s+a0=a2 As+s1 B As+s2 B
that is, choose the zeros s=–s1 and s=–s2 such that, together with a2, the numerator
polynomial p(s) is equal to the sum of the last three terms of the denominator
polynomial—then the system will exhibit no steady-state errors in response to the step
input, ramp input, and acceleration input.

Requirement Placed on System Response Characteristics. Suppose that it is
desired that the maximum overshoot in the response to the unit-step reference input be
between arbitrarily selected upper and lower limits—for example,

2%<maximum overshoot<10%

where we choose the lower limit to be slightly above zero to avoid having overdamped
systems. The smaller the upper limit, the harder it is to determine the coefficient a’s. In
some cases, no combination of the a’s may exist to satisfy the specification, so we must
allow a higher upper limit for the maximum overshoot. We use MATLAB to search at
least one set of the a’s to satisfy the specification. As a practical computational matter,
instead of searching for the a’s, we try to obtain acceptable closed-loop poles by search-
ing a reasonable region in the left-half s plane for each closed-loop pole. Once we
determine all closed-loop poles, then all coefficients an, an–1, p , a1, a0 will be determined.

Y(s)

R(s)
=

p(s)

sn + 1 + an sn + an - 1 sn - 1 + p + a2 s2 + a1 s + a0

Y(s)

R(s)
=

Gc1 Gp

1 + AGc1 + Gc2BGp

,  Y(s)

D(s)
=

Gp

1 + AGc1 + Gc2BGp

Section 8–7 / Zero-Placement Approach to Improve Response Characteristics 597

0 t

y

Figure 8–32
Typical response
curve to a step
disturbance input.
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Determination of Gc2. Now that the coefficients of the transfer function Y(s)/R(s)
are all known and Y(s)/R(s) is given by

(8–4)

we have

Since Gc1 is a PID controller and is given by

Y(s)/R(s) can be written as

Therefore, we choose

so that

(8–5)

The response of this system to the unit-step reference input can be made to exhibit the
maximum overshoot between the chosen upper and lower limits, such as

2%<maximum overshoot<10%

The response of the system to the ramp reference input or acceleration reference input
can be made to exhibit no steady-state error. The characteristic of the system of Equa-
tion (8–4) is that it generally exhibits a short settling time. If we wish to further shorten
the settling time, then we need to allow a larger maximum overshoot—for example,

2%<maximum overshoot<20%

The controller Gc2 can now be determined from Equations (8–3) and (8–5). Since

Gc1 + Gc2 =
as + b + gs2

s
1

A(s)

Gc1 =
a1 s + a0 + a2 s2

Ks

1

A(s)

Kg1 = a2 ,  Ka1 = a1 ,  Kb1 = a0

Y(s)

R(s)
=

KAa1 s + b1 + g1 s2B
sn + 1 + an sn + an - 1 sn - 1 + p + a2 s2 + a1 s + a0

Gc1 =
a1 s + b1 + g1 s2

s
1

A(s)

 =
Gc1 sKA(s)

sn + 1 + an sn + an - 1 sn - 1 + p + a2 s2 + a1 s + a0

 =
Gc1 sKA(s)

sB(s) + Aas + b + gs2BK
 
Y(s)

R(s)
= Gc1

Y(s)

D(s)

Y(s)

R(s)
=

a2 s2 + a1 s + a0

sn + 1 + an sn + an - 1 sn - 1 + p + a2 s2 + a1 s + a0
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we have

(8–6)

The two controllers Gc1 and Gc2 can be determined from Equations (8–5) and (8–6).

EXAMPLE 8–4 Consider the two-degrees-of-freedom control system shown in Figure 8–33. The plant transfer
function is given by

Design controllers and such that the maximum overshoot in the response to the
unit-step reference input be less than 19%, but more than 2%, and the settling time be less than
1 sec. It is desired that the steady-state errors in following the ramp reference input and acceler-
ation reference input be zero.The response to the unit-step disturbance input should have a small
amplitude and settle to zero quickly.

To design suitable controllers and first note that

To simplify the notation, let us define

Gc=Gc1+Gc2

Then

 =
10

s(s + 1) + 10Gc

 
Y(s)

D(s)
=

Gp

1 + Gp Gc
=

10

s(s + 1)

1 +
10

s(s + 1)
 Gc

Y(s)

D(s)
=

Gp

1 + GpAGc1 + Gc2B
Gc2(s),Gc1(s)

Gc2(s)Gc1(s)

Gp(s) =
10

s(s + 1)

Gp(s)

 =
AKa - a1Bs + AKb - a0B + AKg - a2Bs2

Ks
 

1

A(s)

 Gc2 = c as + b + gs2

s
-

a1 s + a0 + a2 s2

Ks
d  1

A(s)

Gp(s)Gc1(s)
Y(s)R(s) U(s)

D(s)

Gc2(s)

+
+

+
–

+
–

Figure 8–33
Two-degrees-
of-freedom control
system.
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Second, note that

Notice that the characteristic equation for Y(s)/D(s) and the one for Y(s)/R(s) are identical.
We may be tempted to choose a zero of at s=–1 to cancel a pole at s=–1 of the

plant However, the canceled pole s=–1 becomes a closed-loop pole of the entire system,
as seen below. If we define as a PID controller such that

(8–7)

then

The closed-loop pole at s=–1 is a slow-response pole, and if this closed-loop pole is included in
the system, the settling time will not be less than 1 sec. Therefore, we should not choose as
given by Equation (8–7).

The design of controllers and consists of two steps.

Design Step 1: We design to satisfy the requirements on the response to the step-
disturbance input D(s). In this design stage, we assume that the reference input is zero.

Suppose that we assume that is a PID controller of the form

Then the closed-loop transfer function Y(s)/D(s) becomes

Note that the presence of “s” in the numerator of Y(s)/D(s) assures that the steady-state response
to the step disturbance input is zero.

Let us assume that the desired dominant closed-loop poles are complex conjugates and are
given by

s=–a_jb

 =
10s

s2(s + 1) + 10K(s + a)(s + b)

 =
10

s(s + 1) +
10K(s + a)(s + b)

s

 
Y(s)

D(s)
=

10

s(s + 1) + 10Gc

Gc(s) =
K(s + a)(s + b)

s

Gc(s)

Gc(s)

Gc2(s)Gc1(s)

Gc(s)

 =
10s

(s + 1) Cs2 + 10K(s + b) D
 
Y(s)

D(s)
=

10

s(s + 1) +
10K(s + 1)(s + b)

s

Gc(s) =
K(s + 1)(s + b)

s

Gc(s)
Gp(s).

Gc(s)

Y(s)

R(s)
=

Gp Gc1

1 + Gp Gc
=

10Gc1

s(s + 1) + 10Gc
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and the remaining closed-loop pole is real and is located at

s=–c

Note that in this problem there are three requirements. The first requirement is that the
response to the step disturbance input damp out quickly.The second requirement is that the max-
imum overshoot in the response to the unit-step reference input be between 19% and 2% and the
settling time be less than 1 sec. The third requirement is that the steady-state errors in the re-
sponses to both the ramp and acceleration reference inputs be zero.

A set (or sets) of reasonable values of a, b, and c must be searched using a computational
approach. To satisfy the first requirement, we choose the search region for a, b, and c to be

2 � a � 6, 2 � b � 6, 6 � c � 12

This region is shown in Figure 8–34. If the dominant closed-loop poles s=–a_jb are located
anywhere in the shaded region, the response to a step disturbance input will damp out quickly. (The
first requirement will be met.)

Notice that the denominator of Y(s)/D(s) can be written as

 = s3 + (2a + c)s2 + Aa2 + b2 + 2acBs + Aa2 + b2Bc = (s + a + jb)(s + a - jb)(s + c)

 = s3 + (1 + 10K)s2 + 10K(a + b)s + 10Kab

s2(s + 1) + 10K(s + a)(s + b)

0

j6

j4

j2

–j6

–j4

–j2

–6 –4 –2–8–10–12 2 s

Region for
a and b

Region for c

jv

Figure 8–34
Search regions for
a, b, and c.
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Since the denominators of Y(s)/D(s) and Y(s)/R(s) are the same, the denominator of Y(s)/D(s)
determines also the response characteristics for the reference input. To satisfy the third require-
ment, we refer to the zero-placement method and choose the closed-loop transfer function
Y(s)/R(s) to be of the following form:

in which case the third requirement is automatically satisfied.
Our problem then becomes a search of a set or sets of desired closed-loop poles in terms

of a, b, and c in the specified region, such that the system will satisfy the requirement on the re-
sponse to the unit-step reference input that the maximum overshoot be between 19% and 2% and
the settling time be less than 1 sec. (If an acceptable set cannot be found in the search region, we
need to widen the region.)

In the computational search, we need to assume a reasonable step size. In this problem, we
assume it to be 0.2.

MATLAB Program 8–8 produces a table of sets of acceptable values of a, b, and c. Using this
program, we find that the requirement on the response to the unit-step reference input is met by
any of the 23 sets shown in the table in MATLAB Program 8–8. Note that the last row in the
table corresponds to the last search point. This point does not satisfy the requirement and thus it
should simply be ignored. (In the program written, the last search point produces the last row in
the table whether or not it satisfies the requirement.)

Y(s)

R(s)
=

(2a + c)s2 + Aa2 + b2 + 2acBs + Aa2 + b2Bc
s3 + (2a + c)s2 + Aa2 + b2 + 2acBs + Aa2 + b2Bc

MATLAB Program 8–8

t = 0:0.01:4;
k = 0;
for i = 1:21;

a(i) = 6.2-i*0.2;
for j = 1:21;

b(j) = 6.2-j*0.2;
for h = 1:31;

c(h) = 12.2-h*0.2;
num = [0  2*a(i)+c(h)  a(i)^2+b(j)^2+2*a(i)*c(h)  (a(i)^2+b(j)^2)*c(h)];
den = [1  2*a(i)+c(h)  a(i)^2+b(j)^2+2*a(i)*c(h)  (a(i)^2+b(j)^2)*c(h)];

y = step(num,den,t);
m = max(y);
s = 401; while y(s) > 0.98 & y(s) < 1.02;
s = s-1; end;
ts = (s-1)*0.01;

if m < 1.19 & m > 1.02 & ts < 1.0;
k = k+1;
table(k,:) = [a(i)  b(j)  c(h)  m  ts];
end

end
end

end

(continues on next page)
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As noted above, 23 sets of variables a, b, and c satisfy the requirement. Unit-step response
curves of the system with any of the 23 sets are about the same.The unit-step response curve with

a=4.2, b=2, c=12

is shown in Figure 8–35(a). The maximum overshoot is 18.96% and the settling time is 0.85 sec.
Using these values of a, b, and c, the desired closed-loop poles are located at

s=–4.2_j2, s=–12

Using these closed-loop poles, the denominator of Y(s)/D(s) becomes

or

= s3 + 20.4s2 + 122.44s + 259.68s3 + (1 + 10K)s2 + 10K(a + b)s + 10Kab

= (s + 4.2 + j2)(s + 4.2 - j2)(s + 12)s2(s + 1) + 10K(s + a)(s + b)

table(k,:) = [a(i)  b(j)  c(h)  m  ts]

table =

4.2000  2.0000  12.0000  1.1896  0.8500
4.0000  2.0000  12.0000  1.1881  0.8700
4.0000  2.0000  11.8000  1.1890  0.8900
4.0000  2.0000  11.6000  1.1899  0.9000
3.8000  2.2000  12.0000  1.1883  0.9300
3.8000  2.2000  11.8000  1.1894  0.9400
3.8000  2.0000  12.0000  1.1861  0.8900
3.8000  2.0000  11.8000  1.1872  0.9100
3.8000  2.0000  11.6000  1.1882  0.9300
3.8000  2.0000  11.4000  1.1892  0.9400
3.6000  2.4000  12.0000  1.1893  0.9900
3.6000  2.2000  12.0000  1.1867  0.9600
3.6000  2.2000  11.8000  1.1876  0.9800
3.6000  2.2000  11.6000  1.1886  0.9900
3.6000  2.0000  12.0000  1.1842  0.9200
3.6000  2.0000  11.8000  1.1852  0.9400
3.6000  2.0000  11.6000  1.1861  0.9500
3.6000  2.0000  11.4000  1.1872  0.9700
3.6000  2.0000  11.2000  1.1883  0.9800
3.4000  2.0000  12.0000  1.1820  0.9400
3.4000  2.0000  11.8000  1.1831  0.9600
3.4000  2.0000  11.6000  1.1842  0.9800
3.2000  2.0000  12.0000  1.1797  0.9600
2.0000  2.0000    6.0000  1.2163  1.8900
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By equating the coefficients of equal powers of s on both sides of this last equation, we obtain

1+10K=20.4

10K(a+b)=122.44

10Kab=259.68
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Figure 8–35
(a) Response to unit-
step reference input
(a=4.2, b=2, c=12);
(b) response to unit-step
disturbance input
(a=4.2, b=2, c=12). (b)
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Hence

Then can be written as

The closed-loop transfer function Y(s)/D(s) becomes

Using this expression, the response y(t) to a unit-step disturbance input can be obtained as shown
in Figure 8–35(b).

Figure 8–36(a) shows the response of the system to the unit-step reference input when a, b,
and c are chosen as

a=3.2, b=2, c=12

Figure 8–36(b) shows the response of this system when it is subjected to a unit-step disturbance
input. Comparing Figures 8–35(a) and Figure 8–36(a), we find that they are about the same. How-
ever, comparing Figures 8–35(b) and 8–36(b), we find the former to be a little bit better than the
latter. Comparing the responses of systems with each set in the table, we conclude the first set of
values (a=4.2, b=2, c=12) to be one of the best. Therefore, as the solution to this problem,
we choose

a=4.2, b=2, c=12

Design Step 2: Next, we determine Gc1 . Since Y(s)/R(s) can be given by

 =
10sGc1

s3 + 20.4s2 + 122.44s + 259.68

 =

10

s(s + 1)
 Gc1

1 +
10

s(s + 1)
 
1.94s2 + 12.244s + 25.968

s

 
Y(s)

R(s)
=

Gp Gc1

1 + Gp Gc

 =
10s

s3 + 20.4s2 + 122.44s + 259.68

 =
10

s(s + 1) + 10 
1.94s2 + 12.244s + 25.968

s

 
Y(s)

D(s)
=

10

s(s + 1) + 10Gc

 =
1.94s2 + 12.244s + 25.968

s

 =
K Cs2 + (a + b)s + ab D

s

 Gc(s) = K 
(s + a)(s + b)

s

Gc(s)

K = 1.94,  a + b =
122.44

19.4
,  ab =

259.68

19.4
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our problem becomes that of designing to satisfy the requirements on the responses to the
step, ramp, and acceleration inputs.

Since the numerator involves “s”, must include an integrator to cancel this “s”.
[Although we want “s” in the numerator of the closed-loop transfer function Y(s)/D(s) to obtain
zero steady-state error to the step disturbance input, we do not want to have “s” in the numera-
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Figure 8–36
(a) Response to unit-step
reference input
(a=3.2, b=2, c=12);
(b) response to unit-step
disturbance input
(a=3.2, b=2, c=12). (b)
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tor of the closed-loop transfer function Y(s)/R(s).] To eliminate the offset in the response to the
step reference input and eliminate the steady-state errors in following the ramp reference input
and acceleration reference input, the numerator of Y(s)/R(s) must be equal to the last three
terms of the denominator, as mentioned earlier. That is,

or

Thus, is a PID controller. Since is given as

we obtain

Thus, is a derivative controller. A block diagram of the designed system is shown in 
Figure 8–37.

The closed-loop transfer function Y(s)/R(s) now becomes

Y(s)

R(s)
=

20.4s2 + 122.44s + 259.68

s3 + 20.4s2 + 122.44s + 259.68

Gc2(s)

 = -0.1s

 = a1.94s + 12.244 +
25.968

s
b - a2.04s + 12.244 +

25.968

s
b

 Gc2(s) = Gc(s) - Gc1(s)

Gc(s) = Gc1(s) + Gc2(s) =
1.94s2 + 12.244s + 25.968

s

Gc(s)Gc1(s)

 Gc1(s) = 2.04s + 12.244 +
25.968

s

 10sGc1(s) = 20.4s2 + 122.44s + 259.68

Y(s)R(s)

D(s)

Gc2(s)

Gc1(s)

0.1s

+
–

+
+

+
+ 10

s(s + 1)
25.968

s
2.04s + 12.244 +

Figure 8–37
Block diagram of the
designed system.
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The response to the unit-ramp reference input and that to the unit-acceleration reference input
are shown in Figures 8–38(a) and (b), respectively. The steady-state errors in following the ramp
input and acceleration input are zero. Thus, all the requirements of the problem are satisfied.
Hence, the designed controllers and are acceptable.

EXAMPLE 8–5 Consider the control system shown in Figure 8–39. This is a two-degrees-of-freedom system. In the
design problem considered here, we assume that the noise input N(s) is zero. Assume that the
plant transfer function is given by

Gp(s) =
5

(s + 1)(s + 5)

Gp(s)

Gc2(s)Gc1(s)
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(a) Response to unit-
ramp reference
input; (b) response to
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Assume also that the controller is of PID type. That is,

The controller is of P or PD type. [If involves integral control action, then this will
introduce a ramp component in the input signal, which is not desirable. Therefore, should
not include the integral control action.] Thus, we assume that

where may be zero.
Let us design controllers and such that the responses to the step-disturbance

input and the step-reference input are of “desirable characteristics” in the sense that

1. The response to the step-disturbance input will have a small peak and eventually approach
zero. (That is, there will be no steady-state error.)

2. The response to the step reference input will exhibit less than 25% overshoot with a settling
time less than 2 sec.The steady-state errors to the ramp reference input and acceleration ref-
erence input should be zero.

The design of this two-degrees-of-freedom control system may be carried out by following the
steps 1 and 2 below.

1. Determine so that the response to the step-disturbance input is of desirable characteristics.
2. Design so that the responses to the reference inputs are of desirable characteristics

without changing the response to the step disturbance considered in step 1.

Design of First, note that we assumed the noise input N(s) to be zero.To obtain the re-
sponse to the step-disturbance input, we assume that the reference input is zero. Then the block
diagram which relates Y(s) and D(s) can be drawn as shown in Figure 8–40. The transfer func-
tion Y(s)/D(s) is given by

Y(s)

D(s)
=

Gp

1 + Gc1 Gp

Gc1(s):

Gc2(s)

Gc1(s)

Gc2(s)Gc1(s)
T̂d

Gc2(s) = K̂pA1 + T̂d sB
Gc2(s)

Gc2(s)Gc2(s)

Gc1(s) = Kp a1 +
1

Ti s
+ Td s b

Gc1(s)

Gp(s)Gc1(s)

Gc2(s)

Y(s)

N(s)

U(s)

D(s)

R(s)

B(s)

+
–

+
+

+
+

+
+

Figure 8–39
Two-degrees-of-
freedom control
system.

D(s) Y(s)
+

–
Gp(s)

Gc1(s)Figure 8–40
Control system.
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where

This controller involves one pole at the origin and two zeros. If we assume that the two zeros are
located at the same place (a double zero), then can be written as

Then the characteristic equation for the system becomes

or
s(s+1)(s+5)+5K(s+a)2=0

which can be rewritten as

s3+(6+5K)s2+(5+10Ka)s+5Ka2=0 (8–8)

If we place the double zero between s=–3 and s=–6, then the root-locus plot of 
may look like the one shown in Figure 8–41. The speed of response should be fast, but not faster
than necessary, because faster response generally implies larger or more expensive components.
Therefore, we may choose the dominant closed-loop poles at

s=–3_j2

(Note that this choice is not unique. There are infinitely many possible closed-loop poles that we
may choose from.)

Since the system is of third order, there are three closed-loop poles. The third one is located
on the negative real axis to the left of point s=–5.

Let us substitute s=–3+j2 into Equation (8–8).

(–3+j2)3+(6+5K)(–3+j2)2+(5+10Ka)(–3+j2)+5Ka2=0

Gc1(s)Gp(s)

1 + Gc1(s)Gp(s) = 1 +
K(s + a)2

s

5

(s + 1)(s + 5)
= 0

Gc1(s) = K
(s + a)2

s

Gc1(s)

Gc1(s) = Kp a1 +
1

Ti s
+ Td s b

Root-Locus Plots of (s + a)2/(s3 + 6s2 + 5s)
with a = 3, a = 4, a = 4.5, and a = 6
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Root-locus plots of
5K(s+a)2/ Cs(s+1)
(s+5) D when a=3,
a=4, a=4.5, and
a=6.
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which can be simplified to

24+25K-30Ka+5Ka2+j(–16-60K+20Ka)=0

By equating the real part and imaginary part to zero, respectively, we obtain

24+25K-30Ka+5Ka2=0 (8–9)

–16-60K+20Ka=0 (8–10)

From Equation (8–10), we have

(8–11)

Substituting Equation (8–11) into Equation (8–9), we get

a2=13

or a=3.6056 or –3.6056. Notice that the values of K become

K=1.3210 for a=3.6056

K=–0.1211 for a=–3.6056

Since is in the feedforward path, the gain K should be positive. Hence, we choose

K=1.3210, a=3.6056

Then can be given by

To determine and we proceed as follows:

(8–12)

Thus,

To check the response to a unit-step disturbance input, we obtain the closed-loop transfer
function Y(s)/D(s).

 =
5s

s3 + 12.605s2 + 52.63s + 85.8673

 =
5s

s(s + 1)(s + 5) + 5K(s + a)2

 
Y(s)

D(s)
=

Gp

1 + Gc1 Gp

Kp = 9.5260,  Ti = 0.5547,  Td = 0.1387

 = 9.5260 a1 +
1

0.5547s
+ 0.1387s b

 Gc1(s) =
1.3210As2 + 7.2112s + 13B

s

Td ,Kp , Ti ,

 =
1.3210s2 + 9.5260s + 17.1735

s

 = 1.3210 
(s + 3.6056)2

s

 Gc1(s) = K 
(s + a)2

s

Gc1(s)

Gc1(s)

K =
4

5a - 15
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The response to the unit-step disturbance input is shown in Figure 8–42. The response curve seems
good and acceptable. Note that the closed-loop poles are located at s=–3_j2 and s=–6.6051.
The complex-conjugate closed-loop poles act as dominant closed-loop poles.

Design of We now design to obtain the desired responses to the reference inputs.
The closed-loop transfer function Y(s)/R(s) can be given by

Zero placement. We place two zeros together with the dc gain constant such that the numera-
tor is the same as the sum of the last three terms of the denominator. That is,

By equating the coefficients of s2 terms and s terms on both sides of this last equation,

from which we get

Therefore,
(8–13)Gc2(s) = 1 + 1.2s

K̂p = 1,  T̂d = 1.2

 47.63 + 5K̂p = 52.63

 6.6051 + 5K̂p T̂d = 12.6051

= 12.6051s2 + 52.63s + 85.8673A6.6051 + 5K̂p T̂dBs2 + A47.63 + 5K̂pBs + 85.8673

 =
A6.6051 + 5K̂p T̂dBs2 + A47.63 + 5K̂pBs + 85.8673

s3 + 12.6051s2 + 52.63s + 85.8673

 =
c 1.321s2 + 9.526s + 17.1735

s
+ K̂pA1 + T̂d sB d  5

(s + 1)(s + 5)

1 +
1.321s2 + 9.526s + 17.1735

s
 

5

(s + 1)(s + 5)
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Response to unit-
step disturbance
input.
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With this controller the closed-loop transfer function Y(s)/R(s) becomes

The response to the unit-step reference input becomes as shown in Figure 8–43(a).

Y(s)

R(s)
=

12.6051s2 + 52.63s + 85.8673

s3 + 12.6051s2 + 52.63s + 85.8673
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Figure 8–43
(a) Response to unit-
step reference input;
(b) response to unit-
ramp reference
input; (c) response to
unit-acceleration
reference input. (b)
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Figure 8–43
(continued) (c)
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The response exhibits the maximum overshoot of 21% and the settling time is approximately
1.6 sec. Figures 8–43(b) and (c) show the ramp response and acceleration response. The steady-
state errors in both responses are zero.The response to the step disturbance was satisfactory.Thus,
the designed controllers and given by Equations (8–12) and (8–13), respectively, are
satisfactory.

If the response characteristics to the unit-step reference input are not satisfactory, we need to
change the location of the dominant closed-loop poles and repeat the design process. The domi-
nant closed-loop poles should lie in a certain region in the left-half s plane (such as 2 � a � 6,
2 � b � 6, 6 � c � 12). If the computational search is desired, write a computer program (sim-
ilar to MATLAB Program 8–8) and execute the search process. Then a desired set or sets of val-
ues of a, b, and c may be found such that the system response to the unit-step reference input
satisfies all requirements on maximum overshoot and settling time.

EXAMPLE PROBLEMS AND SOLUTIONS

A–8–1. Describe briefly the dynamic characteristics of the PI controller, PD controller, and PID
controller.

Solution. The PI controller is characterized by the transfer function

The PI controller is a lag compensator. It possesses a zero at and a pole at s=0. Thus,
the characteristic of the PI controller is infinite gain at zero frequency. This improves the
steady-state characteristics. However, inclusion of the PI control action in the system increases the

s = -1�Ti

Gc(s) = Kp a1 +
1

Ti s
b

Gc2(s)Gc1(s)
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K
E(s) U(s)

1
K0

T1s
1 + T1s

1
1 + T2s

+
–

Figure 8–44
PID controller.

type number of the compensated system by 1, and this causes the compensated system to be less
stable or even makes the system unstable.Therefore, the values of must be chosen care-
fully to ensure a proper transient response. By properly designing the PI controller, it is possible
to make the transient response to a step input exhibit relatively small or no overshoot.The speed
of response, however, becomes much slower. This is because the PI controller, being a low-pass
filter, attenuates the high-frequency components of the signal.

The PD controller is a simplified version of the lead compensator. The PD controller has the
transfer function where

The value of Kp is usually determined to satisfy the steady-state requirement. The corner
frequency is chosen such that the phase lead occurs in the neighborhood of the gain
crossover frequency. Although the phase margin can be increased, the magnitude of the com-
pensator continues to increase for the frequency region (Thus, the PD controller is a
high-pass filter.) Such a continued increase of the magnitude is undesirable, since it amplifies
high-frequency noises that may be present in the system. Lead compensation can provide a
sufficient phase lead, while the increase of the magnitude for the high-frequency region is
very much smaller than that for PD control. Therefore, lead compensation is preferred over
PD control.

Because the transfer function of the PD controller involves one zero, but no pole, it is not
possible to electrically realize it by passive RLC elements only. Realization of the PD controller
using op amps, resistors, and capacitors is possible, but because the PD controller is a high-pass
filter, as mentioned earlier, the differentiation process involved may cause serious noise problems
in some cases.There is, however, no problem if the PD controller is realized by use of the hydraulic
or pneumatic elements.

The PD control, as in the case of the lead compensator, improves the transient-response
characteristics, improves system stability, and increases the system bandwidth, which implies fast
rise time.

The PID controller is a combination of the PI and PD controllers. It is a lag–lead compensator.
Note that the PI control action and PD control action occur in different frequency regions. The
PI control action occurs at the low-frequency region and PD control action occurs at the high-
frequency region. The PID control may be used when the system requires improvements in both
transient and steady-state performances.

A–8–2. Show that the transfer function U(s)/E(s) of the PID controller shown in Figure 8–44 is

Assume that the gain K is very large compared with unity, or K � 1.

U(s)

E(s)
= K0

T1 + T2

T1
c1 +

1AT1 + T2Bs +
T1 T2 s

T1 + T2
d

1�Td 6 v.

1�Td

Gc(s) = KpA1 + Td sBGc(s),

Kp and Ti
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Figure 8–45
Modified PID
controller.

Solution

A–8–3. Consider the electronic circuit involving two operational amplifiers shown in Figure 8–45. This is
a modified PID controller in that the transfer function involves an integrator and a first-order
lag term. Obtain the transfer function of this PID controller.

Solution. Since

and

we have

Also,
Eo(s)

E(s)
= -

R5

R4

E(s)

Ei(s)
= -

Z2

Z1
= -

AR2 C2s + 1B AR1 C1 s + 1B
C2 sAR1 + R3 + R1 R3 C1 sB

Z2 = R2 +
1

C2 s

Z1 =
1

1

R1
+ C1 s

+ R3 =
R1 + R3 + R1 R3 C1 s

1 + R1 C1 s

= K0

T1 + T2

T1
c1 +

1AT1 + T2Bs +
T1 T2 s

T1 + T2
d

= K0 a1 +
1

T1 s
+ T2 s +

T2

T1
b

= K0 a1 +
1

T1 s
b A1 + T2 sB

=
K0A1 + T1 sB A1 + T2 sB

T1 s

�
K

K a 1
K0

T1 s
1 + T1 s

1
1 + T2 s

b

U(s)

E(s)
=

K

1 + K a 1
K0

T1 s
1 + T1 s

1
1 + T2 s

b
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R(s) C(s)1
g

1
Tds

+
–

Figure 8–46
Approximate
differentiator.

PID controller Plant G(s)

C(s)R(s)

D(s)

K(as + 1) (bs + 1)
s

1
s2 + 3.6s + 9

+
–

+
+

Figure 8–47
PID-controlled
system.

Consequently,

Notice that R1C1 and R2C2 determine the locations of the zeros of the controller, while R1, R3, and
C1 affect the location of the pole on the negative real axis. R5/R4 adjusts the gain of the controller.

A–8–4. In practice, it is impossible to realize the true differentiator. Hence, we always have to approxi-
mate the true differentiator by something like

One way to realize such an approximate differentiator is to utilize an integrator in the feedback path.
Show that the closed-loop transfer function of the system shown in Figure 8–46 is given by the pre-
ceding expression. (In the commercially available differentiator, the value of gmay be set as 0.1.)

Solution. The closed-loop transfer function of the system shown in Figure 8–46 is

Note that such a differentiator with first-order delay reduces the bandwidth of the closed-loop
control system and reduces the detrimental effect of noise signals.

A–8–5. Consider the system shown in Figure 8–47. This is a PID control of a second-order plant G(s). As-
sume that disturbances D(s) enter the system as shown in the diagram. It is assumed that the ref-
erence input R(s) is normally held constant, and the response characteristics to disturbances are
a very important consideration in this system.

C(s)

R(s)
=

1
g

1 +
1

gTd s

=
Td s

1 + gTd s

Td s
1 + gTd s

Td s

=
R5 R2

R4 R3

a s +
1

R1 C1
b a s +

1

R2 C2
b

s a s +
R1 + R3

R1 R3 C1
b

 
Eo(s)

Ei(s)
=

Eo(s)

E(s)
 
E(s)

Ei(s)
=

R5

R4AR1 + R3BC2

 
AR1 C1 s + 1B AR2 C2 s + 1B

s a R1 R3

R1 + R3
 C1 s + 1 b



618 Chapter 8 / PID Controllers and Modified PID Controllers

Design a control system such that the response to any step disturbance will be damped out
quickly (in 2 to 3 sec in terms of the 2% settling time). Choose the configuration of the closed-loop
poles such that there is a pair of dominant closed-loop poles. Then obtain the response to the
unit-step disturbance input. Also, obtain the response to the unit-step reference input.

Solution. The PID controller has the transfer function

For the disturbance input in the absence of the reference input, the closed-loop transfer function
becomes

(8–14)

The specification requires that the response to the unit-step disturbance be such that the settling
time be 2 to 3 sec and the system have a reasonable damping. We may interpret the specification
as and vn=4 rad�sec for the dominant closed-loop poles.We may choose the third pole
at s=–10 so that the effect of this real pole on the response is small. Then the desired charac-
teristic equation can be written as

(s+10) As2+2*0.5*4s+42 B=(s+10) As2+4s+16 B=s3+14s2+56s+160

The characteristic equation for the system given by Equation (8–14) is

s3+(3.6+Kab)s2+(9+Ka+Kb)s+K=0

Hence, we require

3.6+Kab=14

9+Ka+Kb=56

K=160

which yields

ab=0.065, a+b=0.29375

The PID controller now becomes

With this PID controller, the response to the disturbance is given by

 =
s

(s + 10)As2 + 4s + 16B  D(s)

 Cd(s) =
s

s3 + 14s2 + 56s + 160
 D(s)

 =
10.4As2 + 4.5192s + 15.385B

s

 =
160A0.065s2 + 0.29375s + 1B

s

 Gc(s) =
K Cabs2 + (a + b)s + 1 D

s

z = 0.5

 =
s

s3 + (3.6 + Kab)s2 + (9 + Ka + Kb)s + K

 
Cd(s)

D(s)
=

s

sAs2 + 3.6s + 9B + K(as + 1)(bs + 1)

Gc(s) =
K(as + 1)(bs + 1)

s
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Clearly, for a unit-step disturbance input, the steady-state output is zero, since

The response to a unit-step disturbance input can be obtained easily with MATLAB. MATLAB
Program 8–9 produces a response curve as shown in Figure 8–48(a). From the response curve, we
see that the settling time is approximately 2.7 sec.The response damps out quickly.Therefore, the
system designed here is acceptable.

lim
t S q

cd(t) = lim
s S 0

sCd(s) = lim
s S 0

s2

(s + 10)As2 + 4s + 16B 1

s
= 0

MATLAB Program 8–9

% ***** Response to unit-step disturbance input *****

numd = [1  0];
dend = [1  14  56  160];
t = 0:0.01:5;
[c1,x1,t] = step(numd,dend,t);
plot(t,c1)
grid
title('Response to Unit-Step Disturbance Input')
xlabel('t Sec')
ylabel('Output to Disturbance Input')

% ***** Response to unit-step reference input *****

numr = [10.4  47  160];
denr = [1  14  56  160];
[c2,x2,t] = step(numr,denr,t);
plot(t,c2)
grid
title('Response to Unit-Step Reference Input')
xlabel('t Sec')
ylabel('Output to Reference Input')

For the reference input r(t), the closed-loop transfer function is

The response to a unit-step reference input can also be obtained by use of MATLAB Program 8–9.
The resulting response curve is shown in Figure 8–48(b).The response curve shows that the max-
imum overshoot is 7.3% and the settling time is 1.2 sec.The system has quite acceptable response
characteristics.

 =
10.4s2 + 47s + 160

s3 + 14s2 + 56s + 160

 
Cr(s)

R(s)
=

10.4As2 + 4.5192s + 15.385B
s3 + 14s2 + 56s + 160
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A–8–6. Consider the system shown in Figure 8–49. It is desired to design a PID controller such that
the dominant closed-loop poles are located at For the PID controller,
choose a=1 and then determine the values of K and b. Sketch the root-locus diagram for the
designed system.

Solution. Since

Gc(s)G(s) = K
(s + 1)(s + b)

s

1

s2 + 1

s = -1 ; j13 .
Gc(s)
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Figure 8–48
(a) Response to
unit-step disturbance
input; (b) response to
unit-step reference
input.
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Figure 8–50
Root-locus plot of
the compensated
system.
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PID controller Plant
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K

1
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Figure 8–49
PID-controlled
system.

the sum of the angles at one of the desired closed-loop poles, from the zero at
s=–1 and poles at s=0, s=j, and s=–j is

90°-143.794°-120°-110.104°=–283.898°

Hence the zero at s=–b must contribute 103.898°. This requires that the zero be located at

b=0.5714

The gain constant K can be determined from the magnitude condition.

or
K=2.3333

Then the compensator can be written as follows:

The open-loop transfer function becomes

From this equation a root-locus plot for the compensated system can be drawn. Figure 8–50 is a
root-locus plot.

Gc(s)G(s) =
2.3333(s + 1)(s + 0.5714)

s

1

s2 + 1

Gc(s) = 2.3333
(s + 1)(s + 0.5714)

s

2K (s + 1)(s + 0.5714)

s

1

s2 + 1
2
s = -1 + j13

= 1

s = -1 + j13 ,



622 Chapter 8 / PID Controllers and Modified PID Controllers

The closed-loop transfer function is given by

The closed-loop poles are located at and s=–0.3333. A unit-step response curve
is shown in Figure 8–51. The closed-loop pole at s=–0.3333 and a zero at s=–0.5714 produce
a long tail of small amplitude.

A–8–7. Consider the system shown in Figure 8–52. Design a compensator such that the static velocity
error constant is 4 sec−1, phase margin is 50°, and gain margin is 10 dB or more. Plot unit-step and
unit-ramp response curves of the compensated system with MATLAB.Also, draw a Nyquist plot
of the compensated system with MATLAB. Using the Nyquist stability criterion, verify that the
designed system is stable.

Solution. Since the plant does not have an integrator, it is necessary to have an integrator in the
compensator. Let us choose the compensator to be

where is to be determined later. Since the static velocity error constant is specified as 
4 sec−1, we have

Kv = lim
s S 0

sGc(s)
s + 0.1
s2 + 1

= lim
s S 0

s
K

s
Ĝc(s)

s + 0.1
s2 + 1

= 0.1K = 4

Ĝc(s)

Gc(s) =
K

s
Ĝc(s),      lim

s S 0
Ĝc(s) = 1

s = -1 ; j13

C(s)

R(s)
=

2.3333(s + 1)(s + 0.5714)

s3 + s + 2.3333(s + 1)(s + 0.5714)
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Figure 8–51
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Control system.
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Thus, K = 40. Hence

Next, we plot a Bode diagram of

MATLAB Program 8–10 produces a Bode diagram of G(s) as shown in Figure 8–53.

G(s) =
40(s + 0.1)

s(s2 + 1)

Gc(s) =
40
s

Ĝc(s)

We need the phase margin of 50° and gain margin of 10 dB or more. Let us choose to be

Then Gc(s) will contribute up to 90° phase lead in the high-frequency region. By simple MATLAB
trials, we find that a = 0.1526 gives the phase margin of 50° and gain margin of dB.+q

Ĝc(s) = as + 1 (a 7 0)

Ĝc(s)

MATLAB Program 8–10

% ***** Bode Diagram ***** 

num = [40  4];
den = [1  0.000000001  1  0];
bode(num,den)
title('Bode Diagram of G(s) = 40(s+0.1)/[s(s^2+1)]')

Figure 8–53
Bode diagram of 
G(s)=
40(s+0.1)/[s(s2+1)]. Frequency (rad/sec)

Bode Diagram of G(s) = 40(s + 0.1)/[s(s2 + 1)]
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MATLAB Program 8–11

% ***** Bode Diagram *****

num = conv([40  4],[0.1526  1]);
den = [1  0.000000001  1  0];
sys = tf(num,den);
w = logspace(-2,2,100);
bode(sys,w)
[Gm,pm,wcp,wcg] = margin(sys);
GmdB = 20*log10(Gm);
[GmdB,pm,wcp,wcg]

ans = 

Inf 50.0026 NaN 8.0114

title('Bode Diagram of G(s) = 40(s+0.1)(0.1526s+1)/[s(s^2+1)]')

Figure 8–54
Bode diagram of
G(s)=40(s+0.1)
(0.1526s+1)/
[s(s2+1)]. Frequency (rad/sec)

Bode Diagram of G(s) = 40(s + 0.1)(0.1526s + 1)/[s(s2 + 1)]
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The designed compensator has the following transfer function:

Gc(s) =
40
s

Ĝc(s) =
40(0.1526s + 1)

s

See MATLAB Program 8–11 and the resulting Bode diagram shown in Figure 8–54. From this
Bode diagram we see that the static velocity error constant is 4 sec−1, phase margin is 50° and gain
margin is dB. Therefore, the designed system satisfies all the requirements.+q
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The open-loop transfer function of the designed system is

Open-loop transfer function

We shall next check the unit-step response and the unit-ramp response of the designed system.
The closed-loop transfer function is

The closed-loop poles are located at

s=�3.0032+j5.6573

s=�3.0032-j5.6573

s=�0.0975

MATLAB Program 8–12 will produce the unit-step response curve of the designed system.The re-
sulting unit-step response curve is shown in Figure 8–55. Notice that the closed-loop pole at 
s = −0.0975 and the plant zero at s = −0.1 produce a long tail of small amplitude.

C(s)

R(s)
=

6.104s2 + 40.6104s + 4
s3 + 6.104s2 + 41.6104s + 4

=
6.104s2 + 40.6104s + 4

s(s2 + 1)

=
40(0.1526s + 1)

s

s + 0.1
s2 + 1

MATLAB Program 8–12

% ***** Unit-Step Response *****

num = [6.104  40.6104  4];
den = [1  6.104  41.6104  4];
t = 0:0.01:10;
step(num,den,t)
grid

Figure 8–55
Unit-step response of
C(s)/R(s)=(6.104s2+
40.6104s+4)/(s3+
6.104s2+41.6104s+4). Time (sec)
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MATLAB Program 8–13 produces the unit-ramp response curve of the designed system. The
resulting response curve is shown in Figure 8–56.
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MATLAB Program 8–13

% ***** Unit-Ramp Response *****

num = [0  0  6.104  40.6104  4];
den = [1  6.104  41.6104  4  0];
t = 0:0.01:20;
c = step(num,den,t);
plot(t,c,'-.',t,t,'-')
title('Unit-Ramp Response')
xlabel('t(sec)')
ylabel('Input Ramp Function and Output')
text(3,11.5,'Input Ramp Function')
text(13.8,11.2,'Output')

Figure 8–56
Unit-ramp response 
of C(s)/R(s)=
(6.104s2+40.6104s+
4)/(s3+6.104s2+
41.6104s+4).
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Nyquist Plot. Earlier we found that the three closed-loop poles of the designed system are
all in the left-half s plane. Hence the designed system is stable. The purpose of plotting Nyquist
diagram here is not to test the stability of the system, but to enhance our understanding of Nyquist
stability analysis. For a complicated system, Nyquist plot will look complicated enough that it is
not easy to count the number of encirclements of the −1+j0 point.



Example Problems and Solutions 627

Because the designed system involves three open-loop poles on the jw axis, the Nyquist dia-
gram will look quite complicated as we will see in what follows:

Define the open-loop transfer function of the designed system as G(s). Then

Let us choose a modified Nyquist path in the s plane as shown in Figure 8–57(a). The modified
path encloses three open-loop poles (s=0, s=j1, s=�j1). Now define s1=s+ . Then,
the Nyquist path in the s1 plane becomes as shown in Figure 8–57(b). In the s1 plane, the open-
loop transfer function has three poles in the right-half s1 plane.

Let us choose Since we have

Open-loop transfer function in the s1 plane

A MATLAB program to obtain the Nyquist plot is shown in MATLAB Program 8–14. The re-
sulting Nyquist plot is shown in Figure 8–58.

=
6.104s1

2 + 40.48832s1 + 3.5945064

s1
3 - 0.03s1

2 + 1.0003s1 - 0.010001

=
6.104(s1

2 - 0.02s1 + 0.0001) + 40.6104(s1 - 0.01) + 4

(s1 - 0.01)(s1
2 - 0.02s1 + 1.0001)

G(s) = G(s1 - 0.01)

s = s1 - s0 ,s0 = 0.01.

s0

G(s) = Gc(s)
s + 0.1
s2 + 1

=
6.104s2 + 40.6104s + 4

s(s2 + 1)

Figure 8–57
(a) Modified
Nyquist path in 
the s plane;
(b) Nyquist path in
the s1 plane.

s plane s1 planejv

(a) (b)

0 s

s0

jv

0 s

MATLAB Program 8–14

% ***** Nyquist Plot *****

num = [6.104  40.48832  3.5945064];
den = [1  -0.03  1.0003  -0.010001];
nyquist(num,den)
v = [-1500  1500  -2500  2500]; axis(v)
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Figure 8–58
Nyquist plot.
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Using the Nyquist plot obtained here, it is not easy to determine the encirclements of the −1+j0
point by the Nyquist locus. Therefore, we need to redraw this Nyquist plot qualitatively to show
the details near the −1+j0 point. Such a redrawn Nyquist diagram is shown in Figure 8–59.

From this diagram we find that the −1+j0 point is encircled counterclockwise three times.
Hence, N � −3. Since the open-loop transfer function has three poles in the right-half s1 plane,
we have P � 3.Then, we have Z � N+P � 0.This means that there are no closed-loop poles in
the right-half s1 plane. The system is therefore stable.

A–8–8. Show that the I-PD-controlled system shown in Figure 8–60(a) is equivalent to the PID-controlled
system with input filter shown in Figure 8–60(b).
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Solution. The closed-loop transfer function C(s)/R(s) of the I-PD-controlled system is

The closed-loop transfer function C(s)/R(s) of the PID-controlled system with input filter
shown in Figure 8–60(b) is

The closed-loop transfer functions of both systems are the same.Thus, the two systems are equivalent.

A–8–9. The basic idea of the I-PD control is to avoid large control signals (which will cause a saturation
phenomenon) within the system. By bringing the proportional and derivative control actions to
the feedback path, it is possible to choose larger values for than those possible by the
PID control scheme.

Compare, qualitatively, the responses of the PID-controlled system and I-PD-controlled system
to the disturbance input and to the reference input.

Solution. Consider first the response of the I-PD-controlled system to the disturbance input.
Since, in the I-PD control of a plant, it is possible to select larger values for than those
of the PID-controlled case, the I-PD-controlled system will attenuate the effect of disturbance
faster than the PID-controlled case.

Next, consider the response of the I-PD-controlled system to a reference input. Since the
I-PD-controlled system is equivalent to the PID-controlled system with input filter (refer to Prob-
lem A–8–8), the PID-controlled system will have faster responses than the corresponding I-PD-con-
trolled system, provided a saturation phenomenon does not occur in the PID-controlled system.

Kp and Td

Kp and Td

 =

Kp

Ti s
 Gp(s)

1 + Kp a1 +
1

Ti s
+ Td s bGp(s)

 
C(s)

R(s)
=

1

1 + Ti s + Ti Td s2 

Kp a1 +
1

Ti s
+ Td s bGp(s)

1 + Kp a1 +
1

Ti s
+ Td s bGp(s)

C(s)

R(s)
=

Kp

Ti s
Gp(s)

1 + Kp a1 +
1

Ti s
+ Td s bGp(s)

(b)

Gp(s)
C(s)R(s)

Kp(1 + + Tds)1
Tis

1
1 + Tis + TiTds2

+
–

(a)

Kp

Tis
Gp(s)

C(s)R(s)

Kp(1 + Tds)

+
–

+
–

Figure 8–60
(a) I-PD-controlled
system;
(b) PID-controlled
system with input
filter.
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A–8–10. In some cases it is desirable to provide an input filter as shown in Figure 8–61(a). Notice that the
input filter is outside the loop. Therefore, it does not affect the stability of the closed-
loop portion of the system.An advantage of having the input filter is that the zeros of the closed-loop
transfer function can be modified (canceled or replaced by other zeros) so that the closed-
loop response is acceptable.

Show that the configuration in Figure 8–61(a) can be modified to that shown in Figure 8–61(b),
where The compensation structure shown in Figure 8–61(b) is some-
times called command compensation.

Solution. For the system of Figure 8–61(a), we have

(8–15)

For the system of Figure 8–61(b), we have

Thus

or

(8–16)

By substituting into Equation (8–16), we obtain

 = Gf(s) 
Gc(s)Gp(s)

1 + Gc(s)Gp(s)

 
C(s)

R(s)
=
CGf(s)Gc(s) - Gc(s) + Gc(s) DGp(s)

1 + Gc(s)Gp(s)

CGf(s) - 1 DGc(s)Gd(s) =

C(s)

R(s)
=
CGd(s) + Gc(s) DGp(s)

1 + Gc(s)Gp(s)

C(s) = Gp(s)EGd(s)R(s) + Gc(s) CR(s) - C(s) D F
 C(s) = Gp(s)U(s)

 E(s) = R(s) - C(s)

 U(s) = Gd(s)R(s) + Gc(s)E(s)

C(s)

R(s)
= Gf(s)

Gc(s)Gp(s)

1 + Gc(s)Gp(s)

CGf(s) - 1 DGc(s).Gd(s) =

Gf(s)

(a)

(b)

Gc(s)
C(s)R(s)

Gp(s)Gf (s)

Gc(s)
C(s)R(s) E(s)

Gd(s)

Gp(s)
U(s)

+
–

+
–

+
+Figure 8–61

(a) Block diagram of
control system with
input filter;
(b) modified block
diagram.



which is the same as Equation (8–15). Hence, we have shown that the systems shown in Figures
8–61(a) and (b) are equivalent.

It is noted that the system shown in Figure 8–61(b) has a feedforward controller In
such a case, does not affect the stability of the closed-loop portion of the system.

A–8–11. A closed-loop system has the characteristic that the closed-loop transfer function is nearly equal
to the inverse of the feedback transfer function whenever the open-loop gain is much greater
than unity.

The open-loop characteristic may be modified by adding an internal feedback loop with a
characteristic equal to the inverse of the desired open-loop characteristic. Suppose that a
unity-feedback system has the open-loop transfer function

Determine the transfer function H(s) of the element in the internal feedback loop so that the inner
loop becomes ineffective at both low and high frequencies.

Solution. Figure 8–62(a) shows the original system. Figure 8–62(b) shows the addition of the in-
ternal feedback loop around G(s). Since

if the gain around the inner loop is large compared with unity, then is
approximately equal to unity, and the transfer function C(s)/E(s) is approximately equal to 1/H(s).

On the other hand, if the gain is much less than unity, the inner loop becomes
ineffective and C(s)/E(s) becomes approximately equal to G(s).

To make the inner loop ineffective at both the low- and high-frequency ranges, we require that

Since, in this problem,

G(jv) =
KA1 + jvT1B A1 + jvT2B

|G(jv)H(jv)| � 1, for v � 1 and v � 1

@G(s)H(s) @ G(s)H(s)� C1 + G(s)H(s) D
C(s)

E(s)
=

G(s)

1 + G(s)H(s)
=

1

H(s)

G(s)H(s)

1 + G(s)H(s)

G(s) =
KAT1 s + 1B AT2 s + 1B

Gd(s)
Gd(s).
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(a)

(b)

G(s)
CR

G(s)

H(s)

CER
GH(s)1

H(s)

CER
=

+
–

+
–

+
–

+
–

+
–Figure 8–62

(a) Control system;
(b) addition of the
internal feedback
loop to modify the
closed-loop
characteristic.
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the requirement can be satisfied if H(s) is chosen to be

H(s)=ks

because

Thus, with H(s)=ks (velocity feedback), the inner loop becomes ineffective at both the low-
and high-frequency regions. It becomes effective only in the intermediate-frequency region.

A–8–12. Consider the control system shown in Figure 8–63. This is the same system as that considered in
Example 8–1. In that example we designed a PID controller , starting with the second method
of the Ziegler–Nichols tuning rule. Here we design a PID controller using the computational
approach with MATLAB. We shall determine the values of K and a of the PID controller

such that the unit-step response will exhibit the maximum overshoot between 10% and 2%
(1.02 � maximum output � 1.10) and the settling time will be less than 3 sec.The search region is

2 � K � 50, 0.05 � a � 2

Let us choose the step size for K to be 1 and that for a to be 0.05.
Write a MATLAB program to find the first set of variables K and a that will satisfy the given

specifications. Also, write a MATLAB program to find all possible sets of variables K and a that
will satisfy the given specifications. Plot the unit-step response curves of the designed system with
the chosen sets of variables K and a.

Solution. The transfer function of the plant is

The closed-loop transfer function C(s)/R(s) is given by

A possible MATLAB program that will produce the first set of variables K and a that
will satisfy the given specifications is given in MATLAB Program 8–15. In this program we 

C(s)

R(s)
=

Ks2 + 2Kas + Ka2

s4 + 6s3 + (5 + K)s2 + 2Kas + Ka2

Gp(s) =
1

s3 + 6s2 + 5s

Gc(s) = K
(s + a)2

s

Gc(s)

 lim
vS q

G(jv)H(jv) = lim
vS q

 
KkjvA1 + jvT1B A1 + jvT2B = 0

 lim
vS 0

G(jv)H(jv) = lim
vS 0

 
KkjvA1 + jvT1B A1 + jvT2B = 0

R(s) C(s)

PID
controller

1

s(s + 1) (s + 5)
+

–
Gc(s)

Figure 8–63
Control system.
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MATLAB Program 8–15

t = 0:0.01:5;
for K = 50:-1:2;

for a = 2:-0.05:0.05;
num = [K  2*K*a  K*a^2];
den = [1  6  5+K  2*K*a  K*a^2];

y = step(num,den,t);
m = max(y);
s = 501; while y(s) > 0.98 & y(s) < 1.02;
s = s-1; end;
ts = (s-1)*0.01;

if m < 1.10 & m > 1.02 & ts < 3.0
break;
end
end

if m < 1.10 & m > 1.02 & ts < 3.0
break
end
end

plot(t,y)
grid
title('Unit-Step Response')
xlabel('t sec')
ylabel('Output')
solution = [K;a;m;ts]

solution =

32.0000
0.2000
1.0969
2.6400

use two ‘for’ loops. The specification for the settling time is interpreted by the following four
lines:

.

Note that for t=0 : 0.01 :5, we have 501 computing time points. s=501 corresponds to the last
computing time point.

The solution obtained by this program is 

K=32, a=0.2

with the maximum overshoot equal to 9.69% and the settling time equal to 2.64 sec.The resulting
unit-step response curve is shown in Figure 8–64.

ts 6 3.0

ts = (s - 1) * 0.01

s = s - 1; end;

s = 501; while y(s) 7 0.98 and y(s) 6 1.02;
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Figure 8–64
Unit-step response
curve.

MATLAB Program 8–16

t = 0:0.01:5;
k = 0;
for i = 1:49;

K(i) = 51-i*1;
for j = 1:40;
a(j) = 2.05-j*0.05;
num = [K(i)  2*K(i)*a(j)  K(i)*a(j)*a(j)];
den = [1  6  5+K(i)  2*K(i)*a(j)  K(i)*a(j)*a(j)];

y = step(num,den,t);
m = max(y);
s = 501; while y(s) > 0.98 & y(s) < 1.02;
s = s-1; end;
ts = (s-1)*0.01;

if m < 1.10 & m > 1.02 & ts < 3.0
k = k+1;
table(k,:) = [K(i)  a(j)  m  ts];
end

end
end

table(k,:) = [K(i)  a(j)  m  ts]

table =

(continues on next page)

Next, we shall consider the case where we want to find all sets of variables that will satisfy the
given specifications. A possible MATLAB program for this purpose is given in MATLAB Pro-
gram 8–16. Note that in the table shown in the program, the last row of the table (k, :) or the first
row of the sorttable should be ignored. (These are the last K and a values for searching purposes.)



Example Problems and Solutions 635

32.0000  0.2000  1.0969  2.6400
31.0000  0.2000  1.0890  2.6900
30.0000  0.2000  1.0809  2.7300
29.0000  0.2500  1.0952  1.7800
29.0000  0.2000  1.0726  2.7800
28.0000  0.2000  1.0639  2.8300
27.0000  0.2000  1.0550  2.8900
2.0000  0.0500  0.3781  5.0000

sorttable = sortrows(table,3)

sorttable =

2.0000  0.0500  0.3781  5.0000
27.0000  0.2000  1.0550  2.8900
28.0000  0.2000  1.0639  2.8300
29.0000  0.2000  1.0726  2.7800
30.0000  0.2000  1.0809  2.7300
31.0000  0.2000  1.0890  2.6900
29.0000  0.2500  1.0952  1.7800
32.0000  0.2000  1.0969  2.6400

K = sorttable(7,1)

K =

29

a = sorttable(7,2)

a=

0.2500

num = [K  2*K*a  K*a^2];
den = [1  6  5+K  2*K*a  K*a^2];
y = step(num,den,t);
plot(t,y)
grid
hold
Current plot held
K = sorttable(2,1)

K=

27

a = sorttable(2,2)

a=

0.2000

(continues on next page)
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From the sorttable, it seems that

K=29, a=0.25 (max overshoot=9.52%, settling time=1.78 sec)
and

K=27, a=0.2 (max overshoot=5.5%, settling time=2.89 sec)

are two of the best choices.The unit-step response curves for these two cases are shown in Figure 8–65.
From these curves,we might conclude that the best choice depends on the system objective. If a small
maximum overshoot is desired, K=27, a=0.2 will be the best choice. If the shorter settling time is
more important than a small maximum overshoot, then K=29, a=0.25 will be the best choice.

A–8–13. Consider the two-degrees-of-freedom control system shown in Figure 8–66. The plant is
given by

Assuming that the noise input N(s) is zero, design controllers and such that the
designed system satisfies the following:

1. The response to the step disturbance input has a small amplitude and settles to zero quickly
(on the order of 1 sec to 2 sec).

Gc2(s)Gc1(s)

Gp(s) =
100

s(s + 1)

Gp(s)

num = [K  2*K*a  K*a^2];
den = [1  6  5+K  2*K*a  K*a^2];
y = step(num,den,t);
plot(t,y)
title('Unit-Step Response Curves')
xlabel('t (sec)')
ylabel('Output')
text(1.22,1.22,'K = 29, a = 0.25')
text(1.22,0.72,'K = 27, a = 0.2')
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Figure 8–65
Unit-step response
curves.



Example Problems and Solutions 637

Gp(s)Gc1(s)

Gc2(s)

Y(s)

N(s)

U(s)

D(s)

R(s)

B(s)

+
–

+
+

+
+

+
+

Figure 8–66
Two-degrees-of-
freedom control
system.

2. The response to the unit-step reference input has a maximum overshoot of 25% or less, and
the settling time is 1 sec or less.

3. The steady-state errors in following ramp reference input and acceleration reference input
are zero.

Solution. The closed-loop transfer functions for the disturbance input and reference input are
given, respectively, by

Let us assume that is a PID controller and has the following form:

The characteristic equation for the system is

Notice that the open-loop poles are located at s=0 (a double pole) and s=–1. The zeros are
located at s=–a (a double zero).

In what follows, we shall use the root-locus approach to determine the values of a and K. Let
us choose the dominant closed-loop poles at s=–5_j5. Then, the angle deficiency at the desired
closed-loop pole at s=–5+j5 is

–135°-135°-128.66°+180°=–218.66°

The double zero at s=–a must contribute 218.66°. (Each zero must contribute 109.33°.) By a
simple calculation, we find

a=–3.2460

The controller is then determined as

The constant K must be determined by use of the magnitude condition. This condition is@Gc1(s)Gp(s) @ s = -5 + j5 = 1

Gc1(s) =
K(s + 3.2460)2

s

Gc1(s)

1 + Gc1(s)Gp(s) = 1 +
K(s + a)2

s

100

s(s + 1)

Gc1(s) =
K(s + a)2

s

Gc1(s)

 
Y(s)

R(s)
=
CGc1(s) + Gc2(s) DGp(s)

1 + Gc1(s)Gp(s)

 
Y(s)

D(s)
=

Gp(s)

1 + Gc1(s)Gp(s)
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Since

we obtain

The controller thus becomes

(8–17)

Then, the closed-loop transfer function Y(s)/D(s) is obtained as follows:

The response curve when D(s) is a unit-step disturbance is shown in Figure 8–67.

=
100s

s3 + 12.403s2 + 74.028s + 120.148

=

100
s(s + 1)

1 +
0.11403(s + 3.2460)2

s

100
s(s + 1)

Y(s)

D(s)
=

Gp(s)

1 + Gc1(s)Gp(s)

= 0.74028 +
1.20148

s
+ 0.11403s

=
0.11403s2 + 0.74028s + 1.20148

s

Gc1(s) =
0.11403(s + 3.2460)2

s

Gc1(s)

 = 0.11403

 K = 2 s2(s + 1)

100(s + 3.2460)2
2
s = -5 + j5

Gc1(s)Gp(s) =
K(s + 3.2460)2

s

100

s(s + 1)

y d
(t

)

t (sec)

Response to Unit-Step Disturbance Input
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0
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Figure 8–67
Response to unit-
step disturbance
input.
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(a)

t (sec)

Response to Unit-Step Reference Input
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Figure 8–68
(a) Response to unit-
step reference input;
(b) response to unit-
ramp reference
input; (c) response to
unit-acceleration
reference input.

Next, we consider the responses to reference inputs. The closed-loop transfer function
Y(s)/R(s) is

Let us define

Then

To satisfy the requirements on the responses to the ramp reference input and acceleration
reference input, we use the zero-placement approach. That is, we choose the numerator of
Y(s)/R(s) to be the sum of the last three terms of the denominator, or

from which we get

(8–18)

Hence, the closed-loop transfer function Y(s)/R(s) becomes as

The response curves to the unit-step reference input, unit-ramp reference input, and unit-
acceleration reference input are shown in Figures 8–68(a), (b), and (c), respectively.The maximum

Y(s)

R(s)
=

12.403s2 + 74.028s + 120.148
s3 + 12.403s2 + 74.028s + 120.148

= 0.74028 +
1.20148

s
+ 0.12403s

Gc(s) =
0.12403s2 + 0.74028s + 1.20148

s

100sGc(s) = 12.403s2 + 74.028s + 120.148

=
100sGc(s)

s3 + 12.403s2 + 74.028s + 120.148

Y(s)

R(s)
=

Gc(s)Gp(s)

1 + Gc1(s)Gp(s)

Gc1(s) + Gc2(s) = Gc(s)

Y(s)

R(s)
=
CGc1(s) + Gc2(s) DGp(s)

1 + Gc1(s)Gp(s)



overshoot in the unit-step response is approximately 25% and the settling time is approximately
1.2 sec. The steady-state errors in the ramp response and acceleration response are zero. There-
fore, the designed controller given by Equation (8–18) is satisfactory.

Finally, we determine Noting that

Gc2(s) = Gc(s) - Gc1(s)

Gc2(s).
Gc(s)
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Figure 8–68
(continued)



and from Equation (8–17)

we obtain

(8–19)

Equations (8–17) and (8–19) give the transfer functions of the controllers re-
spectively. The block diagram of the designed system is shown in Figure 8–69.

Note that if the maximum overshoot were much higher than 25% and/or the settling time
were much larger than 1.2 sec, then we might assume a search region (such as 3 � a � 6,
3 � b � 6, and 6 � c � 12) and use the computational method presented in Example 8–4 to
find a set or sets of variables that would give the desired response to the unit-step reference input.

PROBLEMS

Gc1(s) and Gc2(s),

 = 0.01s

 - a0.7403 +
1.20148

s
+ 0.11403s b

 Gc2(s) = a0.7403 +
1.20148

s
+ 0.12403s b

Gc1(s) = 0.7403 +
1.20148

s
+ 0.11403s

Problems 641

100
s(s + 1)

0.01s

Y(s)

D(s)

R(s)
+

–
+

+
+

+1.20148
s

0.7403 + + 0.11403s

Figure 8–69
Block diagram of the
designed system.

B–8–1. Consider the electronic PID controller shown in
Figure 8–70. Determine the values of R1 , R2 , R3 , R4 , C1 ,
and C2 of the controller such that the transfer function

isGc(s) = Eo(s)�Ei(s)  = 30.3215 
(s + 0.65)2

s

 Gc(s) = 39.42 a1 +
1

3.077s
+ 0.7692s b

+

–

+

–

Ei(s) E(s)
Eo(s)

C1 C2

R1

R2

R3

R4

Figure 8–70
Electronic PID controller.
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B–8–2. Consider the system shown in Figure 8–71.
Assume that disturbances D(s) enter the system as shown
in the diagram. Determine parameters K, a, and b such
that the response to the unit-step disturbance input and
the response to the unit-step reference input satisfy the
following specifications: The response to the step distur-
bance input should attenuate rapidly with no steady-state
error, and the response to the step reference input exhibits
a maximum overshoot of 20% or less and a settling time
of 2 sec.

B–8–3. Show that the PID-controlled system shown in
Figure 8–72(a) is equivalent to the I-PD-controlled system
with feedforward control shown in Figure 8–72(b).

B–8–4. Consider the systems shown in Figures 8–73(a) 
and (b). The system shown in Figure 8–73(a) is the system
designed in Example 8–1. The response to the unit-step
reference input in the absence of the disturbance input is
shown in Figure 8–10. The system shown in Figure 8–73(b)
is the I-PD-controlled system using the same Kp,
as the system shown in Figure 8–73(a).

Ti , and Td

C(s)R(s)

D(s)

K(as + 1) (bs + 1)
s

2(s + 2)
(s + 1) (s + 10)

+
–

+
+

Figure 8–71
Control system.

(a)

(b)

Kp

Tis
Gp(s)

C(s)R(s)

Kp(1 + Tds)

Kp(1 + Tds)

Gp(s)
C(s)R(s)

Kp(1 + + Tds)1
Tis

+
–

+
–

+
–

+

Figure 8–72
(a) PID-controlled system; (b) I-PD-controlled system with
feedforward control.
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Obtain the response of the I-PD-controlled system to
the unit-step reference input with MATLAB. Compare the
unit-step response curves of the two systems.

B–8–5. Referring to Problem B–8–4, obtain the response
of the PID-controlled system shown in Figure 8–73(a) to the
unit-step disturbance input.

Show that for the disturbance input, the responses of
the PID-controlled system shown in Figure 8–73(a) and of
the I-PD-controlled system shown in Figure 8–73(b) are

exactly the same. [When considering D(s) to be the input, as-
sume that the reference input R(s) is zero, and vice versa.]
Also, compare the closed-loop transfer function C(s)/R(s)
of both systems.

B–8–6. Consider the system shown in Figure 8–74.This sys-
tem is subjected to three input signals: the reference input,
disturbance input, and noise input. Show that the charac-
teristic equation of this system is the same regardless of
which input signal is chosen as input.

(a)

(b)

C(s)R(s)

D(s)

PID contoller

39.42 (1 + 1
3.077s

+ 0.7692s)
1

s(s + 1) (s + 5)

D(s)

C(s)R(s)

1 + 0.7692s

39.42
1

s(s + 1) (s + 5)
1

3.077s

+
–

+
+

+
–

+
–

+
+

Figure 8–73
(a) PID-controlled system; (b) I-PD-controlled system.

G2(s)

H(s)

C(s)

Noise
N(s)

R(s)

Disturbance
D(s)

G1(s) +
+
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Figure 8–74
Control system.
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B–8–7. Consider the system shown in Figure 8–75. Obtain
the closed-loop transfer function C(s)/R(s) for the refer-
ence input and the closed-loop transfer function C(s)/D(s)
for the disturbance input. When considering R(s) as the
input, assume that D(s) is zero, and vice versa.

B–8–8. Consider the system shown in Figure 8–76(a),
where K is an adjustable gain and G(s) and H(s) are fixed

components. The closed-loop transfer function for the
disturbance is

To minimize the effect of disturbances, the adjustable gain
K should be chosen as large as possible.

Is this true for the system in Figure 8–76(b), too?

C(s)

D(s)
=

1

1 + KG(s)H(s)

G1(s) G2(s)
R(s) C(s)

D(s)

G3(s)

H1(s)

H2(s)

+
–

+
–

+
+

Figure 8–75
Control system.

G(s)
R(s) C(s)

D(s)

D(s)

K
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G(s)
R(s) C(s)

K

H(s)

(a)

(b)

+
+

+
–

+
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+
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Figure 8–76
(a) Control system with disturbance entering in the
feedforward path; (b) control system with disturbance
entering in the feedback path.
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Problems 645

B–8–9. Show that the control systems shown in Fig-
ures 8–77(a), (b), and (c) are two-degrees-of-freedom
systems. In the diagrams, Gc1 and Gc2 are controllers and Gp

is the plant.

B–8–10. Show that the control system shown in Figure 8–78
is a three-degrees-of freedom system. The transfer func-
tions Gc1, Gc2, and Gc3 are controllers.The plant consists of
transfer functions G1 and G2.

(c)

D(s)

Y(s)

N(s)

GpGc1

Gc2

R(s)

+
+

+
–

+
+

(b)

D(s)

Y(s)

N(s)

GpGc1 Gc2

R(s)
+

–
+

+

+
+

D(s)

R(s) Y(s)
GpGc1

Gc2

(a)

+
–

+
+

+
+ N(s)

Figure 8–77
(a), (b), (c) Two
degrees-of-freedom
systems.

Figure 8–78
Three-degrees-of-
freedom system.
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B–8–11. Consider the control system shown in Figure 8–79.
Assume that the PID controller is given by

It is desired that the unit-step response of the system exhibit
the maximum overshoot of less than 10%, but more than 2%
(to avoid an almost overdamped system), and the settling
time be less than 2 sec.

Using the computational approach presented in Section
8–4, write a MATLAB program to determine the values
of K and a that will satisfy the given specifications. Choose
the search region to be

1 � K � 4, 0.4 � a � 4

Choose the step size for K and a to be 0.05. Write the
program such that the nested loops start with the highest
values of K and a and step toward the lowest.

Using the first-found solution, plot the unit-step
response curve.

B–8–12. Consider the same control system as treated in
Problem B–8–11 (Figure 8–79). The PID controller is given
by

It is desired to determine the values of K and a such that
the unit-step response of the system exhibits the maximum

Gc(s) = K
(s + a)2

s

Gc(s) = K
(s + a)2

s

overshoot of less than 8%, but more than 3%, and the settling
time is less than 2 sec. Choose the search region to be

2 � K � 4, 0.5 � a � 3

Choose the step size for K and a to be 0.05.
First, write a MATLAB program such that the nested

loops in the program start with the highest values of K and
a and step toward the lowest and the computation stops
when a successful set of K and a is found for the first time.

Next, write a MATLAB program that will find all pos-
sible sets of K and a that will satisfy the given specifications.

Among multiple sets of K and a that satisfy the given
specifications, determine the best choice.Then, plot the unit-
step response curves of the system with the best choice
of K and a.

B–8–13. Consider the two-degrees-of-freedom control
system shown in Figure 8–80. The plant is given by

Design controllers and such that the
response to the unit-step disturbance input should have
small amplitude and settle to zero quickly (in approximately
2 sec).The response to the unit-step reference input should
be such that the maximum overshoot is 25% (or less) and
the settling time is 2 sec. Also, the steady-state errors in the
response to the ramp and acceleration reference inputs
should be zero.

Gc2(s)Gc1(s)

Gp(s) =
3(s + 5)

s(s + 1)As2 + 4s + 13B
Gp(s)

R(s) C(s)

PID
controller

1.2

(0.3s + 1) (s + 1) (1.2s + 1)
+

–
Gc(s)

Figure 8–79
Control system.

Gp(s)Gc1(s)

Gc2(s)

Y(s)U(s)

D(s)

R(s)

B(s)

+
–

+
+

+
+

Figure 8–80
Two-degrees-of-freedom control system.



Problems 647

B–8–14. Consider the system shown in Figure 8–81. The
plant is given by

Determine the controllers and such that, for
the step disturbance input, the response shows a small am-
plitude and approaches zero quickly (in a matter of 1 to
2 sec). For the response to the unit-step reference input, it is
desired that the maximum overshoot be 20% or less and the
settling time 1 sec or less. For the ramp reference input and
acceleration reference input, the steady-state errors should
be zero.

Gc2(s)Gc1(s)

Gp(s) =
2(s + 1)

s(s + 3)(s + 5)

Gp(s)
B–8–15. Consider the two-degrees-of-freedom control
system shown in Figure 8–82. Design controllers and

such that the response to the step disturbance input
shows a small amplitude and settles to zero quickly (in 1 to
2 sec) and the response to the step reference input ex-
hibits 25% or less maximum overshoot and the settling time
is less than 1 sec.The steady-state error in following the ramp
reference input or acceleration reference input should be
zero.

Gc2(s)
Gc1(s)

Gp(s)Gc1(s)
Y(s)R(s) U(s)

D(s)

Gc2(s)

+
+

+
–

+
–

Figure 8–81
Two-degrees-of-freedom control system.

1
s2C1(s)

Y(s)R(s)

D(s)

C2(s)

+
+

+
–

+
–

Figure 8–82
Two-degrees-of-freedom control system.
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648

Control Systems Analysis
in State Space

9–1 INTRODUCTION*

A modern complex system may have many inputs and many outputs, and these may be
interrelated in a complicated manner.To analyze such a system, it is essential to reduce
the complexity of the mathematical expressions, as well as to resort to computers for most
of the tedious computations necessary in the analysis.The state-space approach to system
analysis is best suited from this viewpoint.

While conventional control theory is based on the input–output relationship, or trans-
fer function, modern control theory is based on the description of system equations in
terms of n first-order differential equations, which may be combined into a first-order
vector-matrix differential equation.The use of vector-matrix notation greatly simplifies
the mathematical representation of systems of equations.The increase in the number of
state variables, the number of inputs, or the number of outputs does not increase the
complexity of the equations. In fact, the analysis of complicated multiple-input, multiple-
output systems can be carried out by procedures that are only slightly more compli-
cated than those required for the analysis of systems of first-order scalar differential
equations.

This chapter and the next deal with the state-space analysis and design of control sys-
tems. Basic materials of state-space analysis, including the state-space representation of

*It is noted that in this book an asterisk used as a superscript of a matrix, such as A*, implies that it is a con-
jugate transpose of matrix A.The conjugate transpose is the conjugate of the transpose of a matrix. For a real
matrix (a matrix whose elements are all real), the conjugate transpose A* is the same as the transpose AT.
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systems, controllability, and observability are presented in this chapter. Useful design
methods based on state-feedback control are given in Chapter 10.

Outline of the Chapter. Section 9–1 has presented an introduction to state-space
analysis of control systems. Section 9–2 deals with the state-space representation of
transfer-function systems. Here we present various canonical forms of state-space equa-
tions. Section 9–3 discusses the transformation of system models (such as from transfer-
function to state-space models, and vice versa) with MATLAB. Section 9–4 presents
the solution of time-invariant state equations. Section 9–5 gives some useful results in
vector-matrix analysis that are necessary in studying the state-space analysis of control
systems. Section 9–6 discusses the controllability of control systems and Section 9–7
treats the observability of control systems.

9–2 STATE-SPACE REPRESENTATIONS OF 
TRANSFER-FUNCTION SYSTEMS

Many techniques are available for obtaining state-space representations of
transfer-function systems. In Chapter 2 we presented a few such methods. This section
presents state-space representations in the controllable, observable, diagonal, or Jordan
canonical forms. (Methods for obtaining such state-space representations from transfer
functions are discussed in detail in Problems A–9–1 through A–9–4.)

State-Space Representations in Canonical Forms. Consider a system defined
by

(9–1)

where u is the input and y is the output. This equation can also be written as

(9–2)

In what follows we shall present state-space representations of the system defined by
Equation (9–1) or (9–2) in controllable canonical form, observable canonical form, and
diagonal (or Jordan) canonical form.

Controllable Canonical Form. The following state-space representation is called
a controllable canonical form:

(9–3) G
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+ p + an - 1 y# + an y = b0 u
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+ b1 u
(n - 1)

+ p + bn - 1 u# + bn u
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(9–4)

The controllable canonical form is important in discussing the pole-placement approach
to control systems design.

Observable Canonical Form. The following state-space representation is called
an observable canonical form:

(9–5)

(9–6)

Note that the n*n state matrix of the state equation given by Equation (9–5) is the
transpose of that of the state equation defined by Equation (9–3).

Diagonal Canonical Form. Consider the transfer-function system defined by Equa-
tion  (9–2). Here we consider the case where the denominator polynomial involves only
distinct roots. For the distinct-roots case, Equation (9–2) can be written as

(9–7)

The diagonal canonical form of the state-space representation of this system is given by

 = b0 +
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(9–8)

(9–9)

Jordan Canonical Form. Next we shall consider the case where the denominator
polynomial of Equation (9–2) involves multiple roots. For this case, the preceding
diagonal canonical form must be modified into the Jordan canonical form. Suppose, for
example, that the pi ’s are different from one another, except that the first three pi ’s are
equal, or p1=p2=p3. Then the factored form of Y(s)/U(s) becomes

The partial-fraction expansion of this last equation becomes

A state-space representation of this system in the Jordan canonical form is given by

(9–10)

(9–11)y = Cc1 c2 p cn D F
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EXAMPLE 9–1 Consider the system given by

Obtain state-space representations in the controllable canonical form, observable canonical form,
and diagonal canonical form.

Controllable Canonical Form:

Observable Canonical Form:

Diagonal Canonical Form:

Eigenvalues of an n � n Matrix A. The eigenvalues of an n*n matrix A are the
roots of the characteristic equation

|lI-A|=0

The eigenvalues are also called the characteristic roots.
Consider, for example, the following matrix A:

The characteristic equation is

|lI-A|=

=l3+6l2+11l+6

=(l+1)(l+2)(l+3)=0

The eigenvalues of A are the roots of the characteristic equation, or –1, –2, and –3.

Diagonalization of n � n Matrix. Note that if an n*n matrix A with distinct
eigenvalues is given by

3l0
6

-1

l

11

0

-1

l + 6

3
A = C 0

0

-6

1

0

-11

0

1

-6

S

 y(t) = [2 -1]Bx1(t)

x2(t)
R
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#
1(t)

x
#
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0

0

-2
R Bx1(t)

x2(t)
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R u(t)

 y(t) = [0 1]Bx1(t)
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 Bx
#
1(t)

x
#
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R u(t)
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 Bx
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x
#
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R Bx1(t)
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R + B0

1
R u(t)

Y(s)

U(s)
=

s + 3

s2 + 3s + 2
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(9–12)

the transformation x=Pz, where

P=

l1, l2, p , ln=n distinct eigenvalues of A

will transform P–1AP into the diagonal matrix, or

If the matrix A defined by Equation (9–12) involves multiple eigenvalues, then
diagonalization is impossible. For example, if the 3*3 matrix A, where

has the eigenvalues l1, l1, l3, then the transformation x=Sz, where

will yield

This is in the Jordan canonical form.
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EXAMPLE 9–2 Consider the following state-space representation of a system.

(9–13)

(9–14)

Equations (9–13) and (9–14) can be put in a standard form as

(9–15)

(9–16)

where

The eigenvalues of matrix A are

l1=–1, l2=–2, l3=–3

Thus, three eigenvalues are distinct. If we define a set of new state variables z1, z2, and z3 by the
transformation

or

x=Pz (9–17)

where

(9–18)

then, by substituting Equation (9–17) into Equation (9–15), we obtain

By premultiplying both sides of this last equation by P–1, we get

(9–19)

or
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Simplifying gives

(9–20)

Equation (9–20) is also a state equation that describes the same system as defined by Equation
(9–13).

The output equation, Equation (9–16), is modified to

y=CPz

or

(9–21)

Notice that the transformation matrix P, defined by Equation (9–18), modifies the coefficient
matrix of z into the diagonal matrix.As is clearly seen from Equation (9–20), the three scalar state
equations are uncoupled. Notice also that the diagonal elements of the matrix P–1AP in Equation
(9–19) are identical with the three eigenvalues of A. It is very important to note that the eigen-
values of A and those of P–1AP are identical.We shall prove this for a general case in what follows.

Invariance of Eigenvalues. To prove the invariance of the eigenvalues under a
linear transformation, we must show that the characteristic polynomials ∑lI-A∑ and@lI-P–1AP @ are identical.

Since the determinant of a product is the product of the determinants, we obtain

Noting that the product of the determinants @P–1 @ and ∑P∑ is the determinant of the prod-
uct @P–1P @ , we obtain

Thus, we have proved that the eigenvalues of A are invariant under a linear
transformation.

Nonuniqueness of a Set of State Variables. It has been stated that a set of state vari-
ables is not unique for a given system.Suppose that x1, x2, p , xn are a set of state variables.
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Then we may take as another set of state variables any set of functions

provided that, for every set of values there corresponds a unique set of
values x1, x2, p , xn, and vice versa. Thus, if x is a state vector, then where 

is also a state vector, provided the matrix P is nonsingular. Different state vectors convey
the same information about the system behavior.

9–3 TRANSFORMATION OF SYSTEM MODELS WITH MATLAB

In this section we shall consider the transformation of the system model from transfer
function to state space, and vice versa. We shall begin our discussion with the
transformation from transfer function to state space.

Let us write the closed-loop transfer function as

Once we have this transfer-function expression, the MATLAB command

[A, B, C, D] = tf2ss(num,den)

will give a state-space representation. It is important to note that the state-space repre-
sentation for any system is not unique. There are many (indeed, infinitely many) state-
space representations for the same system.The MATLAB command gives one possible
such state-space representation.

State-Space Formulation of Transfer-Function Systems. Consider the
transfer-function system

(9–22)

There are many (again, infinitely many) possible state-space representations for this
system. One possible state-space representation is
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U(s)
=

10s + 10

s3 + 6s2 + 5s + 10

Y(s)
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=

numerator polynomial in s

denominator polynomial in s
=

num
den

x̂ = Px

x̂ ,
x̂1 , x̂2 , p , x̂n ,

 x̂n = XnAx1 , x2 , p , xnB �
 �
 �

 x̂2 = X2Ax1 , x2 , p , xnB x̂1 = X1Ax1 , x2 , p , xnB
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Another possible state-space representation (among infinitely many alternatives) is

(9–23)

(9–24)

MATLAB transforms the transfer function given by Equation (9–22) into the state-space
representation given by Equations (9–23) and (9–24). For the example system considered
here, MATLAB Program 9–1 will produce matrices A, B, C, and D.

 y = [0 10 10]Cx1

x2

x3

S + [0] u

 Cx
#
1

x
#
2

x
#
3

S = C-6

1

0

-5

0

1

-10

0

0

S Cx1

x2

x3

S + C1

0

0

S u

MATLAB Program 9–1

num = [10  10];
den = [1  6  5  10];
[A,B,C,D] = tf2ss(num,den)

A =

-6 -5 -10
1 -0 - 0
0 -1 - 0

B =

1
0
0

C =

0 10 10

D =

0

Transformation from State Space to Transfer Function. To obtain the transfer
function from state-space equations, use the following command:

[num,den] = ss2tf(A,B,C,D,iu)
iu must be specified for systems with more than one input. For example, if the system
has three inputs (u1, u2, u3), then iu must be either 1, 2, or 3, where 1 implies u1, 2
implies u2, and 3 implies u3.

If the system has only one input, then either

[num,den] = ss2tf(A,B,C,D)
or

[num,den] = ss2tf(A,B,C,D,1)

may be used. (See Example 9–3 and MATLAB Program 9–2.)
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For the case where the system has multiple inputs and multiple outputs, see
Example 9–4.

EXAMPLE 9–3 Obtain the transfer function of the system defined by the following state-space equations:

MATLAB Program 9–2 will produce the transfer function for the given system. The transfer
function obtained is given by

Y(s)

U(s)
=

25.04s + 5.008

s3 + 5.0325s2 + 25.1026s + 5.008

 y = [1 0 0]Cx1

x2

x3

S
 Cx

#
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x
#
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x
#
3

S = C 0

0

-5.008

1

0

-25.1026

0

1

-5.03247

S Cx1

x2

x3

S + C 0

25.04

-121.005

S u

MATLAB Program 9–2

A = [0  1  0;0  0  1;-5.008  -25.1026  -5.03247];
B = [0;25.04; -121.005];
C = [1  0  0];
D = [0];
[num,den] = ss2tf(A,B,C,D)

num =

0 -0.0000 25.0400 5.0080

den =

1.0000 5.0325 25.1026 5.0080

% ***** The same result can be obtained by entering the following command *****

[num,den] = ss2tf(A,B,C,D,1)

num =

0 -0.0000 25.0400 5.0080

den =

1.0000 5.0325 25.1026 5.0080
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EXAMPLE 9–4 Consider a system with multiple inputs and multiple outputs.When the system has more than one
output, the command

[NUM,den] = ss2tf(A,B,C,D,iu)

produces transfer functions for all outputs to each input. (The numerator coefficients are returned
to matrix NUM with as many rows as there are outputs.)

Consider the system defined by

This system involves two inputs and two outputs. Four transfer functions are involved:
and (When considering input u1, we assume that input u2

is zero and vice versa.) See the output of MATLAB Program 9–3.
Y2(s)�U2(s).Y1(s)�U2(s),Y2(s)�U1(s),

Y1(s)�U1(s),

 By1

y2
R = B1

0

0

1
R Bx1

x2
R + B0

0

0

0
R Bu1

u2
R

 Bx
#
1

x
#
2
R = B 0

-25

1

-4
R Bx1

x2
R + B1

0

1

1
R Bu1

u2
R

MATLAB Program 9–3

A = [0  1;-25  -4];
B = [1  1;0  1];
C = [1  0;0  1];
D = [0  0;0  0];
[NUM,den] = ss2tf(A,B,C,D,1)

NUM =

0 1 4
0 0 -25

den =

1  4  25

[NUM,den] = ss2tf(A,B,C,D,2)

NUM =

0   1.0000 5.0000
0   1.0000 -25.0000

den =

1 4 25

This is the MATLAB representation of the following four transfer functions:

 
Y1(s)

U2(s)
=

s + 5

s2 + 4s + 25
,   Y2(s)

U2(s)
=

s - 25

s2 + 4s + 25

 
Y1(s)

U1(s)
=

s + 4

s2 + 4s + 25
,   Y2(s)

U1(s)
=

-25

s2 + 4s + 25
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9–4 SOLVING THE TIME-INVARIANT STATE EQUATION

In this section, we shall obtain the general solution of the linear time-invariant state equa-
tion.We shall first consider the homogeneous case and then the nonhomogeneous case.

Solution of Homogeneous State Equations. Before we solve vector-matrix
differential equations, let us review the solution of the scalar differential equation

(9–25)

In solving this equation, we may assume a solution x(t) of the form

x(t)=b0+b1t+b2t2+p+bktk+p (9–26)

By substituting this assumed solution into Equation (9–25), we obtain

(9–27)

If the assumed solution is to be the true solution, Equation (9–27) must hold for any t.
Hence, equating the coefficients of the equal powers of t, we obtain

The value of b0 is determined by substituting t=0 into Equation (9–26), or

x(0)=b0

Hence, the solution x(t) can be written as

We shall now solve the vector-matrix differential equation

(9–28)

where

By analogy with the scalar case, we assume that the solution is in the form of a vector
power series in t, or

x(t)=b0+b1t+b2t2+p+bktk+p (9–29)

 A = n * n constant matrix
 x = n-vector

x# = Ax

 = eatx(0)

 x(t) = a1 + at +
1

2!
 a2t2 + p +

1

k!
 aktk + p bx(0)

 bk =
1

k!
 akb0

 �
 �
 �

 b3 =
1

3
 ab2 =

1

3 * 2
 a3b0

 b2 =
1

2
 ab1 =

1

2
 a2b0

 b1 = ab0

= aAb0 + b1 t + b2 t2 + p + bk tk + pBb1 + 2b2 t + 3b3 t2 + p + kbk tk - 1 + p

x
# = ax
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By substituting this assumed solution into Equation (9–28), we obtain

(9–30)

If the assumed solution is to be the true solution, Equation (9–30) must hold for all t. Thus,
by equating the coefficients of like powers of t on both sides of Equation (9–30), we obtain

By substituting t=0 into Equation (9–29), we obtain

x(0)=b0

Thus, the solution x(t) can be written as

The expression in the parentheses on the right-hand side of this last equation is an n*n
matrix. Because of its similarity to the infinite power series for a scalar exponential, we
call it the matrix exponential and write

In terms of the matrix exponential, the solution of Equation (9–28) can be written as

(9–31)

Since the matrix exponential is very important in the state-space analysis of linear
systems, we shall next examine its properties.

Matrix Exponential. It can be proved that the matrix exponential of an n*n
matrix A,

converges absolutely for all finite t. (Hence, computer calculations for evaluating the
elements of eAt by using the series expansion can be easily carried out.)

eAt = a
q

k = 0

Aktk

k!

x(t) = eAt x(0)

I + At +
1

2!
 A2t2 + p +

1

k!
 Aktk + p = eAt

x(t) = a I + At +
1

2!
 A2t2 + p +

1

k!
 Aktk + p b  x(0)

 bk =
1

k!
Ak b0

 �
 �
 �

 b3 =
1

3
Ab2 =

1

3 * 2
A3 b0

 b2 =
1

2
Ab1 =

1

2
A2 b0

 b1 = Ab0

= AAb0 + b1 t + b2 t2 + p + bk tk + p Bb1 + 2 b2 t + 3 b3 t2 + p + k bk tk - 1 + p
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Because of the convergence of the infinite series the series can be
differentiated term by term to give

The matrix exponential has the property that

This can be proved as follows:

In particular, if s=–t, then

Thus, the inverse of is Since the inverse of always exists, is nonsingular.
It is very important to remember that

To prove this, note that

 +
A2 Bt3

2!
+

AB2t3

2!
+

B3t3

3!
+ p

 = I + (A + B)t +
A2t2

2!
+ ABt2 +

B2t2

2!
+

A3t3

3!

 eAteBt = a I + At +
A2t2

2!
+

A3t3

3!
+ p b a I + Bt +

B2t2

2!
+

B3t3

3!
+ p b

 e(A + B)t = I + (A + B)t +
(A + B)2

2!
 t2 +

(A + B)3

3!
 t3 + p

e(A + B)t Z eAteBt,  if AB Z BA

e(A + B)t = eAteBt,  if AB = BA

eAteAte-  At.eAt

eAte-  At = e-  AteAt = eA(t - t) = I

 = eA(t + s)

 = a
q

k = 0
Ak

(t + s)k

k!

 = a
q

k = 0
Ak a aq

i = 0

tisk - i

i! (k - i)!
b

 eAteAs = a aq
k = 0

 
Aktk

k!
b a aq

k = 0
 
Aksk

k!
b

eA(t + s) = eAteAs

 = c I + At +
A2t2

2!
+ p +

Ak - 1tk - 1

(k - 1)!
+ p d  A = eAt A

 = A c I + At +
A2t2

2!
+ p +

Ak - 1tk - 1

(k - 1)!
+ p d = AeAt

 
d

dt
 eAt = A + A2t +

A3t2

2!
+ p +

Aktk - 1

(k - 1)!
+ p

gq
k = 0 A

ktk�k!,
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Hence,

The difference between and vanishes if A and B commute.

Laplace Transform Approach to the Solution of Homogeneous State
Equations. Let us first consider the scalar case:

(9–32)

Taking the Laplace transform of Equation (9–32), we obtain

sX(s)-x(0)=aX(s) (9–33)

where Solving Equation (9–33) for X(s) gives

The inverse Laplace transform of this last equation gives the solution

x(t)=eatx(0)

The foregoing approach to the solution of the homogeneous scalar differential
equation can be extended to the homogeneous state equation:

(9–34)

Taking the Laplace transform of both sides of Equation (9–34), we obtain

sX(s)-x(0)=AX(s)

where Hence,

(sI-A)X(s)=x(0)

Premultiplying both sides of this last equation by (sI-A)–1, we obtain

X(s)=(sI-A)–1x(0)

The inverse Laplace transform of gives the solution Thus,

x(t)=l–1 C(sI-A)–1 D x(0) (9–35)

Note that

Hence, the inverse Laplace transform of (sI-A)–1 gives

(9–36)l-1 C(s I - A)-1 D = I + At +
A2t2

2!
+

A3t3

3!
+ p = eAt

(s I - A)-1 =
I
s

+
A
s2 +

A2

s3 + p

x(t).X(s)

X(s) = l[x].

x# (t) = Ax(t)

X(s) =
x(0)

s - a
= (s - a)-1x(0)

X(s) = l[x].

x
# = ax

eAteBte(A + B)t

+
BA2 + ABA + B2 A + BAB - 2 A2 B - 2 AB2

3!
t3 + p

e(A + B)t - eAteBt =
BA - AB

2!
 t2
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(The inverse Laplace transform of a matrix is the matrix consisting of the inverse Laplace
transforms of all elements.) From Equations (9–35) and (9–36), the solution of Equation
(9–34) is obtained as

The importance of Equation (9–36) lies in the fact that it provides a convenient
means for finding the closed solution for the matrix exponential.

State-Transition Matrix. We can write the solution of the homogeneous state
equation

(9–37)

as

(9–38)

where is an n*n matrix and is the unique solution of

To verify this, note that

and

We thus confirm that Equation (9–38) is the solution of Equation (9–37).
From Equations (9–31), (9–35), and (9–38), we obtain

Note that

From Equation (9–38), we see that the solution of Equation (9–37) is simply a
transformation of the initial condition. Hence, the unique matrix is called the state-
transition matrix.The state-transition matrix contains all the information about the free
motions of the system defined by Equation (9–37).

If the eigenvalues l1, l2, p , ln of the matrix A are distinct, than will contain
the n exponentials

In particular, if the matrix A is diagonal, then

�(t) = eAt = F
el1 t

0

el2 t

�

�

�

0

eln t

V  (A: diagonal)

el1 t, el2 t, p ,eln t

�(t)

�(t)

�-1(t) = e-  At = �(-t)

�(t) = eAt = l-1 C(s I - A)-1 D
x# (t) = �

#
(t) x(0) = A�(t) x(0) = Ax(t)

x(0) = �(0) x(0) = x(0)

�
#

(t) = A�(t),  �(0) = I

�(t)

x(t) = �(t) x(0)

x# = Ax

x(t) = eAt x(0)
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If there is a multiplicity in the eigenvalues—for example, if the eigenvalues of A are

l1, l1, l1, l4, l5, p , ln,

then will contain, in addition to the exponentials terms like
and

Properties of State-Transition Matrices. We shall now summarize the important
properties of the state-transition matrix For the time-invariant system

for which

we have the following:

1.

2. or

3.

4.

5.

EXAMPLE 9–5 Obtain the state-transition matrix of the following system:

Obtain also the inverse of the state-transition matrix,
For this system,

The state-transition matrix is given by

Since

the inverse of (sI-A) is given by

 = D s + 3

(s + 1)(s + 2)

-2

(s + 1)(s + 2)

1

(s + 1)(s + 2)

s

(s + 1)(s + 2)

T
 (s I - A)-1 =

1

(s + 1)(s + 2)
B s + 3

-2

1

s
R

s I - A = B s

0

0

s
R - B 0

-2

1

-3
R = B s

2

-1

s + 3
R

�(t) = eAt = l-1 C(s I - A)-1 D�(t)

A = B 0

-2

1

-3
R

�-1(t).

Bx
#
1

x
#
2
R = B 0

-2

1

-3
R Bx1

x2
R�(t)

�At2 - t1B  �At1 - t0B = �At2 - t0B = �At1 - t0B  �At2 - t1BC�(t) Dn = �(nt)

�At1 + t2B = eAAt1 + t2B = eAt1eAt2 = �At1B  �At2B = �At2B  �At1B�-1(t) = �(-t)�(t) = eAt = Ae-  AtB-1 = C�(-t) D-1

�(0) = eA0 = I

�(t) = eAt

x# = Ax

�(t).

t2el1 t.tel1 t
el1 t, el4 t, el5 t, p ,eln t,�(t)
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Hence,

Noting that we obtain the inverse of the state-transition matrix as follows:

Solution of Nonhomogeneous State Equations. We shall begin by considering
the scalar case

(9–39)

Let us rewrite Equation (9–39) as

Multiplying both sides of this equation by e–at, we obtain

Integrating this equation between 0 and t gives

or

The first term on the right-hand side is the response to the initial condition and the
second term is the response to the input u(t).

Let us now consider the nonhomogeneous state equation described by

(9–40)

where

By writing Equation (9–40) as

and premultiplying both sides of this equation by e–At, we obtain

e-  At Cx# (t) - Ax(t) D =
d

dt
 Ce-  At x(t) D = e-  At Bu(t)

x# (t) - Ax(t) = Bu(t)

 B = n * r constant matrix
 A = n * n constant matrix
 u = r-vector
 x = n-vector

x# = Ax + Bu

x(t) = eatx(0) + eat

3
t

0
e-atbu(t) dt

e-atx(t) - x(0) = 3
t

0
e-atbu(t) dt

e-at Cx# (t) - ax(t) D =
d

dt
 Ce-atx(t) D = e-atbu(t)

x
# - ax = bu

x
# = ax + bu

�-1(t) = e-  At = B 2et - e2t

-2et + 2e2t

et - e2t

-et + 2e2tR
�-1(t) = �(-t),

 = B 2e-t - e-2t

-2e-t + 2e-2t

e-t - e-2t

-e-t + 2e-2tR
 �(t) = eAt = l-1 C(s I - A)-1 D
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Integrating the preceding equation between 0 and t gives

or

(9–41)

Equation (9–41) can also be written as

(9–42)

where Equation (9–41) or (9–42) is the solution of Equation (9–40). The
solution x(t) is clearly the sum of a term consisting of the transition of the initial state
and a term arising from the input vector.

Laplace Transform Approach to the Solution of Nonhomogeneous State
Equations. The solution of the nonhomogeneous state equation

can also be obtained by the Laplace transform approach.The Laplace transform of this
last equation yields

sX(s)-x(0)=AX(s)+BU(s)

or

(sI-A)X(s)=x(0)+BU(s)

Premultiplying both sides of this last equation by (sI-A)–1, we obtain

X(s)=(sI-A)–1x(0)+(sI-A)–1BU(s)

Using the relationship given by Equation (9–36) gives

X(s)=l CeAt D x(0)+l CeAt DBU(s)

The inverse Laplace transform of this last equation can be obtained by use of the
convolution integral as follows:

Solution in Terms of Thus far we have assumed the initial time to be zero.
If, however, the initial time is given by t0 instead of 0, then the solution to Equation
(9–40) must be modified to

(9–43)x(t) = eAAt - t0B xAt0B + 3
t

t0

eA(t -t) Bu(t) dt

xAt0B.
x(t) = eAt x(0) + 3

t

0
eA(t -t) Bu(t) dt

x# = Ax + Bu

�(t) = eAt.

x(t) = �(t) x(0) + 3
t

0
�(t - t) Bu(t) dt

x(t) = eAt x(0) + 3
t

0
eA(t -t) Bu(t) dt

e-  At x(t) - x(0) = 3
t

0
e-  At Bu(t) dt
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EXAMPLE 9–6 Obtain the time response of the following system:

where u(t) is the unit-step function occurring at t=0, or

u(t)=1(t)

For this system,

The state-transition matrix was obtained in Example 9–5 as

The response to the unit-step input is then obtained as

or

If the initial state is zero, or x(0)=0, then x(t) can be simplified to

9–5 SOME USEFUL RESULTS IN VECTOR-MATRIX ANALYSIS

In this section we present some useful results in vector-matrix analysis that we use in
Section 9–6. Specifically, we present the Cayley–Hamilton theorem, the minimal poly-
nomial, Sylvester’s interpolation method for calculating and the linear independence
of vectors.

Cayley–Hamilton Theorem. The Cayley–Hamilton theorem is very useful in
proving theorems involving matrix equations or solving problems involving matrix
equations.

Consider an n*n matrix A and its characteristic equation:

|lI-A|=ln+a1l
n–1+p+an–1l+an=0

The Cayley–Hamilton theorem states that the matrix A satisfies its own characteristic
equation, or that

An+a1 An–1+p+an–1 A+an I=0 (9–44)

To prove this theorem, note that is a polynomial in l of degree n-1.
That is,

adj(l I - A) = B1 ln - 1 + B2 ln - 2 + p + Bn - 1 l + Bn

adj(l I - A)

eAt,

Bx1(t)

x2(t)
R = C 1

2
- e-t +

1

2
e-2t

e-t - e-2t

S
Bx1(t)

x2(t)
R = B 2e-t - e-2t

-2e-t + 2e-2t

e-t - e-2t

-e-t + 2e-2tR Bx1(0)

x2(0)
R + B 1

2 - e-t + 1
2 e-2t

e-t - e-2t R
x(t) = eAt x(0) + 3

t

0
B 2e-(t -t) - e-2(t -t)

-2e-(t -t) + 2e-2(t -t)
e-(t -t) - e-2(t -t)

-e-(t -t) + 2e-2(t -t)R B0

1
R [1] dt

�(t) = eAt = B 2e-t - e-2t

-2e-t + 2e-2t

e-t - e-2t

-e-t + 2e-2tR�(t) = eAt

A = B 0

-2

1

-3
R ,  B = B0

1
R

Bx
#
1

x
#
2
R = B 0

-2

1

-3
R Bx1

x2
R + B0

1
R u
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where Since

(lI-A) adj(lI-A)= Cadj(lI-A) D(lI-A)=|lI-A|I

we obtain

From this equation, we see that A and (i=1, 2, p , n) commute. Hence, the product
of (lI-A) and becomes zero if either of these is zero. If A is substitut-
ed for l in this last equation, then clearly lI-A becomes zero. Hence, we obtain

An+a1 An–1+p+an–1 A+an I=0

This proves the Cayley–Hamilton theorem, or Equation (9–44).

Minimal Polynomial. Referring to the Cayley–Hamilton theorem, every n*n
matrix A satisfies its own characteristic equation. The characteristic equation is not,
however, necessarily the scalar equation of least degree that A satisfies.The least-degree
polynomial having A as a root is called the minimal polynomial. That is, the minimal
polynomial of an n*n matrix A is defined as the polynomial of least degree,

f(l)=lm+a1l
m–1+p+am–1l+am, m � n

such that or

f(A)=Am+a1 Am–1+p+am–1 A+am I=0

The minimal polynomial plays an important role in the computation of polynomials in
an n*n matrix.

Let us suppose that a polynomial in l, is the greatest common divisor of all the
elements of We can show that if the coefficient of the highest-degree term
in l of is chosen as 1, then the minimal polynomial is given by

(9–45)

[See Problem A–9–8 for the derivation of Equation (9–45).]
It is noted that the minimal polynomial of an n*n matrix A can be determined

by the following procedure:

1. Form and write the elements of as factored polynomials
in l.

2. Determine as the greatest common divisor of all the elements of 
Choose the coefficient of the highest-degree term in l of to be 1. If there is no
common divisor,

3. The minimal polynomial is then given as divided by 

Matrix Exponential In solving control engineering problems, it often becomes
necessary to compute If matrix A is given with all elements in numerical values,
MATLAB provides a simple way to compute , where T is a constant.eAT

eAt.
eAt.

d(l).∑l I - A∑f(l)
d(l) = 1.

d(l)
adj(l I - A).d(l)

adj(l I - A)adj(l I - A)

f(l)

f(l) =
∑l I - A∑

d(l)

f(l)d(l)
adj(l I - A).

d(l),

f(A) = 0,

f(l)

adj(l I - A)
Bi

 = AB1 ln - 1 + B2 ln - 2 + p + Bn - 1 l + BnB(l I - A)

 = (l I - A)AB1 ln - 1 + B2 ln - 2 + p + Bn - 1 l + BnB ∑l I - A∑ I = Iln + a1  Iln - 1 + p + an - 1  Il + an  I

B1 = I.
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Aside from computational methods, several analytical methods are available for the
computation of We shall present three methods here.

Computation of eAt: Method 1. If matrix A can be transformed into a diagonal
form, then can be given by

(9–46)

where P is a diagonalizing matrix for A. [For the derivation of Equation (9–46), see
Problem A–9–11.]

If matrix A can be transformed into a Jordan canonical form, then can be given by

where S is a transformation matrix that transforms matrix A into a Jordan canonical
form J.

As an example, consider the following matrix A:

The characteristic equation is

|lI-A|=l3-3l2+3l-1=(l-1)3=0

Thus, matrix A has a multiple eigenvalue of order 3 at It can be shown that matrix
A has a multiple eigenvector of order 3. The transformation matrix that will transform
matrix A into a Jordan canonical form can be given by

The inverse of matrix S is

Then it can be seen that

 = C 1

0

0

1

1

0

0

1

1

S = J

 S-1 AS = C 1

-1

1

0

1

-2

0

0

1

S C0

0

1

1

0

-3

0

1

3

S C 1

1

1

0

1

2

0

0

1

S
S-1 = C 1

-1

1

0

1

-2

0

0

1

S
S = C1

1

1

0

1

2

0

0

1

S
l = 1.

A = C0

0

1

1

0

-3

0

1

3

S
eAt = SeJt S-1

eAt

eAt = PeDt P-1 = P F
el1 t

0

el2 t

�

�

�

0

eln t

V P-1

eAt

eAt.
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Noting that

we find

Computation of eAt: Method 2. The second method of computing uses the
Laplace transform approach. Referring to Equation (9–36), can be given as follows:

Thus, to obtain first invert the matrix This results in a matrix whose
elements are rational functions of s. Then take the inverse Laplace transform of each
element of the matrix.

EXAMPLE 9–7 Consider the following matrix A:

Compute by use of the two analytical methods presented previously.

Method 1. The eigenvalues of A are 0 and –2 A necessary transformation
matrix P may be obtained as

Then, from Equation (9–46), is obtained as follows:

Method 2. Since

we obtain

(s I - A)-1 = D 1

s

0

1

s(s + 2)

1

s + 2

T
s I - A = B s

0

0

s
R - B0

0

1

-2
R = B s

0

-1

s + 2
R

eAt = B1

0

1

-2
R B e0

0

0

e-2tR B1

0

1
2

- 1
2

R = B1

0

1
2 A1 - e-2tB

e-2t ReAt

P = B1

0

1

-2
R

Al1 = 0, l2 = -2B.eAt

A = B0

0

1

-2
R

(s I - A).eAt,

eAt = l-1 C(s I - A)-1 D eAt
eAt

 = C et - tet + 1
2 t2et

1
2 t2et

tet + 1
2 t2et

tet - t2et

et - tet - t2et

-3tet - t2et

1
2 t2et

tet + 1
2 t2et

et + 2tet + 1
2 t2et

S
 = C1

1

1

0

1

2

0

0

1

S C et

0

0

tet

et

0

1
2 t2et

tet

et

S C 1

-1

1

0

1

-2

0

0

1

S
 eAt = SeJt S-1

eJt = C et

0

0

tet

et

0

1
2 t2et

tet

et

S
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Hence,

Computation of eAt: Method 3. The third method is based on Sylvester’s interpo-
lation method. (For Sylvester’s interpolation formula, see Problem A–9–12.) We shall first
consider the case where the roots of the minimal polynomial of A are distinct.
Then we shall deal with the case of multiple roots.

Case 1: Minimal Polynomial of A Involves Only Distinct Roots. We shall assume
that the degree of the minimal polynomial of A is m. By using Sylvester’s interpolation
formula, it can be shown that can be obtained by solving the following determinant
equation:

(9–47)

By solving Equation (9–47) for can be obtained in terms of the Ak (k=0, 1,
2, p , m-1) and the (i=1, 2, 3, p , m). [Equation (9–47) may be expanded, for ex-
ample, about the last column.]

Notice that solving Equation (9–47) for is the same as writing

(9–48)

and determining the (k=0, 1, 2, p , m-1) by solving the following set of m
equations for the 

If A is an n*n matrix and has distinct eigenvalues, then the number of to be
determined is m=n. If A involves multiple eigenvalues, but its minimal polynomial has
only simple roots, however, then the number m of to be determined is less than n.

Case 2: Minimal Polynomial of A Involves Multiple Roots. As an example, consider
the case where the minimal polynomial of A involves three equal roots 
and has other roots that are all distinct. By applying Sylvester’s
interpolation formula, it can be shown that can be obtained from the following
determinant equation:

eAt
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=0 (9–49)

Equation (9–49) can be solved for by expanding it about the last column.
It is noted that, just as in case 1, solving Equation (9–49) for is the same as writing

(9–50)

and determining the ak(t)’s (k=0, 1, 2, p , m-1) from

The extension to other cases where, for example, there are two or more sets of multiple
roots will be apparent. Note that if the minimal polynomial of A is not found, it is possible
to substitute the characteristic polynomial for the minimal polynomial. The number of
computations may, of course, be increased.

EXAMPLE 9–8 Consider the matrix

Compute using Sylvester’s interpolation formula.
From Equation (9–47), we get

311
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Substituting 0 for l1 and –2 for l2 in this last equation, we obtain

Expanding the determinant, we obtain

or

An alternative approach is to use Equation (9–48). We first determine a0(t) and a1(t) from

Since l1=0 and l2=–2, the last two equations become

Solving for a0(t) and a1(t) gives

Then can be written as

Linear Independence of Vectors. The vectors x1 , x2 , p , xn are said to be linearly
independent if

where c1, c2, p , cn are constants, implies that

Conversely, the vectors x1, x2, p , xn are said to be linearly dependent if and only if xi can
be expressed as a linear combination of xj (j=1, 2, p , n; j Z i), or

xi = a
n

j = 1
j Z i

cj  xj

c1 = c2 = p = cn = 0

c1  x1 + c2  x2 + p + cn  xn = 0

eAt = a0(t) I + a1(t) A = I +
1

2
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1
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for some set of constants cj. This means that if xi can be expressed as a linear combination
of the other vectors in the set, it is linearly dependent on them or it is not an independent
member of the set.

EXAMPLE 9–9 The vectors

are linearly dependent since

The vectors

are linearly independent since

implies that

Note that if an n*n matrix is nonsingular (that is, the matrix is of rank n or the determinant
is nonzero) then n column (or row) vectors are linearly independent. If the n*n matrix is singular
(that is, the rank of the matrix is less than n or the determinant is zero), then n column (or row)
vectors are linearly dependent. To demonstrate this, notice that

9–6 CONTROLLABILITY

Controllability and Observability. A system is said to be controllable at time t0

if it is possible by means of an unconstrained control vector to transfer the system from
any initial state x(t0) to any other state in a finite interval of time.

A system is said to be observable at time t0 if, with the system in state x(t0), it is possible
to determine this state from the observation of the output over a finite time interval.

The concepts of controllability and observability were introduced by Kalman. They
play an important role in the design of control systems in state space. In fact, the
conditions of controllability and observability may govern the existence of a complete
solution to the control system design problem. The solution to this problem may not
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exist if the system considered is not controllable. Although most physical systems are
controllable and observable, corresponding mathematical models may not possess the
property of controllability and observability.Then it is necessary to know the conditions
under which a system is controllable and observable. This section deals with controlla-
bility and the next section discusses observability.

In what follows, we shall first derive the condition for complete state controllability.
Then we derive alternative forms of the condition for complete state controllability
followed by discussions of complete output controllability. Finally, we present the concept
of stabilizability.

Complete State Controllability of Continuous-Time Systems. Consider the
continuous-time system.

(9–51)

where

The system described by Equation (9–51) is said to be state controllable at t=t0 if it is
possible to construct an unconstrained control signal that will transfer an initial state to
any final state in a finite time interval If every state is controllable, then the
system is said to be completely state controllable.

We shall now derive the condition for complete state controllability.Without loss of
generality, we can assume that the final state is the origin of the state space and that the
initial time is zero, or t0=0.

The solution of Equation (9–51) is

Applying the definition of complete state controllability just given, we have

or

(9–52)

Referring to Equation (9–48) or (9–50), can be written

(9–53)

Substituting Equation (9–53) into Equation (9–52) gives

(9–54)x(0) = -a
n - 1

k = 0
Ak B3

t1

0
ak(t)u(t) dt

e-At = a
n - 1

k = 0
ak(t) Ak

e-At

x(0) = -3
t1

0
e-At Bu(t) dt

xAt1B = 0 = eAt1 x(0) +3
t1

0
eA(t1 -t) Bu(t) dt

x(t) = eAt x(0) +3
t

0
eA(t -t) Bu(t) dt

t0 � t � t1 .

 B = n * 1 matrix
 A = n * n matrix
 u = control signal (scalar)

 x = state vector (n-vector)

x# = Ax + Bu
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Let us put

Then Equation (9–54) becomes

(9–55)

If the system is completely state controllable, then, given any initial state x(0), Equation
(9–55) must be satisfied. This requires that the rank of the n*n matrix

be n.
From this analysis, we can state the condition for complete state controllability as fol-

lows: The system given by Equation (9–51) is completely state controllable if and only
if the vectors are linearly independent, or the n*n matrix

is of rank n.
The result just obtained can be extended to the case where the control vector u is

r-dimensional. If the system is described by

where u is an r-vector, then it can be proved that the condition for complete state
controllability is that the n*nr matrix

be of rank n, or contain n linearly independent column vectors. The matrix

is commonly called the controllability matrix.

EXAMPLE 9–10 Consider the system given by

Since

the system is not completely state controllable.
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EXAMPLE 9–11 Consider the system given by

For this case,

The system is therefore completely state controllable.

Alternative Form of the Condition for Complete State Controllability. Consider
the system defined by

(9–56)

where

If the eigenvectors of A are distinct, then it is possible to find a transformation matrix
P such that

Note that if the eigenvalues of A are distinct, then the eigenvectors of A are distinct; how-
ever, the converse is not true. For example, an n*n real symmetric matrix having
multiple eigenvalues has n distinct eigenvectors. Note also that each column of the P
matrix is an eigenvector of A associated with 

Let us define

(9–57)

Substituting Equation (9–57) into Equation (9–56), we obtain

(9–58)

By defining

P-1 B = F = AfijB
z# = P-1 APz + P-1 Bu

x = Pz

li (i = 1, 2, p , n).

P-1 AP = D = F
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�
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V

 B = n * r matrix

 A = n * n matrix

 u = control vector (r-vector)

 x = state vector (n-vector)
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we can rewrite Equation (9–58) as

If the elements of any one row of the n*r matrix F are all zero, then the corresponding
state variable cannot be controlled by any of the ui. Hence, the condition of complete
state controllability is that if the eigenvectors of A are distinct, then the system is com-
pletely state controllable if and only if no row of has all zero elements. It is im-
portant to note that, to apply this condition for complete state controllability, we must
put the matrix in Equation (9–58) in diagonal form.

If the A matrix in Equation (9–56) does not possess distinct eigenvectors, then
diagonalization is impossible. In such a case, we may transform A into a Jordan canonical
form. If, for example, A has eigenvalues and has n-3 distinct
eigenvectors, then the Jordan canonical form of A is

The square submatrices on the main diagonal are called Jordan blocks.
Suppose that we can find a transformation matrix S such that

If we define a new state vector z by

(9–59)

then substitution of Equation (9–59) into Equation (9–56) yields

(9–60)

The condition for complete state controllability of the system of Equation (9–56) may
then be stated as follows: The system is completely state controllable if and only if (1)
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no two Jordan blocks in J of Equation (9–60) are associated with the same eigenvalues,
(2) the elements of any row of that correspond to the last row of each Jordan block
are not all zero, and (3) the elements of each row of that correspond to distinct
eigenvalues are not all zero.

EXAMPLE 9–12 The following systems are completely state controllable:

The following systems are not completely state controllable:

Condition for Complete State Controllability in the s Plane. The condition for
complete state controllability can be stated in terms of transfer functions or transfer
matrices.

It can be proved that a necessary and sufficient condition for complete state con-
trollability is that no cancellation occur in the transfer function or transfer matrix. If
cancellation occurs, the system cannot be controlled in the direction of the canceled
mode.

EXAMPLE 9–13 Consider the following transfer function:

Clearly, cancellation of the factor (s+2.5) occurs in the numerator and denominator of this
transfer function. (Thus one degree of freedom is lost.) Because of this cancellation, this system
is not completely state controllable.
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The same conclusion can be obtained by writing this transfer function in the form of a state
equation. A state-space representation is

Since

the rank of the matrix is 1. Therefore, we arrive at the same conclusion: The system is
not completely state controllable.

Output Controllability. In the practical design of a control system, we may want
to control the output rather than the state of the system. Complete state controllability
is neither necessary nor sufficient for controlling the output of the system. For this
reason, it is desirable to define separately complete output controllability.

Consider the system described by

(9–61)

(9–62)

where

The system described by Equations (9–61) and (9–62) is said to be completely output
controllable if it is possible to construct an unconstrained control vector u(t) that will
transfer any given initial output y At0 B to any final output y At1 B in a finite time interval
t0 � t � t1.

It can be proved that the condition for complete output controllability is as follows:
The system described by Equations (9–61) and (9–62) is completely output controllable
if and only if the m*(n+1)r matrix

is of rank m. (For a proof, see Problem A–9–16.) Note that the presence of the Du term
in Equation (9–62) always helps to establish output controllability.

Uncontrollable System. An uncontrollable system has a subsystem that is
physically disconnected from the input.

CCB � CAB � CA2 B � p � CAn - 1 B � D D

 D = m * r matrix

 C = m * n matrix

 B = n * r matrix

 A = n * n matrix

 y = output vector (m-vector)

u = control vector (r-vector)

 x = state vector (n-vector)

 y = Cx + Du

 x# = Ax + Bu
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Stabilizability. For a partially controllable system, if the uncontrollable modes are
stable and the unstable modes are controllable, the system is said to be stabilizable. For
example, the system defined by

is not state controllable.The stable mode that corresponds to the eigenvalue of –1 is not
controllable.The unstable mode that corresponds to the eigenvalue of 1 is controllable.
Such a system can be made stable by the use of a suitable feedback. Thus this system is
stabilizable.

9–7 OBSERVABILITY

In this section we discuss the observability of linear systems. Consider the unforced
system described by the following equations:

(9–63)

(9–64)

where

The system is said to be completely observable if every state x At0 B can be determined
from the observation of y(t) over a finite time interval, The system is, there-
fore, completely observable if every transition of the state eventually affects every ele-
ment of the output vector.The concept of observability is useful in solving the problem
of reconstructing unmeasurable state variables from measurable variables in the mini-
mum possible length of time. In this section we treat only linear, time-invariant systems.
Therefore, without loss of generality, we can assume that t0=0.

The concept of observability is very important because, in practice, the difficulty
encountered with state feedback control is that some of the state variables are not
accessible for direct measurement, with the result that it becomes necessary to estimate
the unmeasurable state variables in order to construct the control signals. It will be
shown in Section 10–5 that such estimates of state variables are possible if and only if
the system is completely observable.

In discussing observability conditions, we consider the unforced system as given by
Equations (9–63) and (9–64).The reason for this is as follows: If the system is described
by

then

x(t) = eAt x(0) +3
t

0
eA(t -t) Bu(t) dt
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and y(t) is

Since the matrices A, B, C, and D are known and u(t) is also known, the last two terms
on the right-hand side of this last equation are known quantities. Therefore, they may
be subtracted from the observed value of y(t). Hence, for investigating a necessary and
sufficient condition for complete observability, it suffices to consider the system described
by Equations (9–63) and (9–64).

Complete Observability of Continuous-Time Systems. Consider the system
described by Equations (9–63) and (9–64). The output vector y(t) is

Referring to Equation (9–48) or (9–50), we have

where n is the degree of the characteristic polynomial. [Note that Equations (9–48) and
(9–50) with m replaced by n can be derived using the characteristic polynomial.]

Hence, we obtain

or

(9–65)

If the system is completely observable, then, given the output y(t) over a time interval
x(0) is uniquely determined from Equation (9–65). It can be shown that this

requires the rank of the nm*n matrix

to be n. (See Problem A–9–19 for the derivation of this condition.)
From this analysis, we can state the condition for complete observability as follows:

The system described by Equations (9–63) and (9–64) is completely observable if and
only if the n*nm matrix

is of rank n or has n linearly independent column vectors. This matrix is called the
observability matrix.

CC*� A*C*� p � (A*)n - 1 C* D

F
C
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V
0 � t � t1 ,

y(t) = a0(t) Cx(0) + a1(t) CAx(0) + p + an - 1(t) CAn - 1 x(0)

y(t) = a
n - 1

k = 0
ak(t) CAk x(0)

eAt = a
n - 1

k = 0
ak(t) Ak

y(t) = CeAt x(0)

y(t) = CeAt x(0) + C3
t

0
eA(t -t) Bu(t) dt + Du
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EXAMPLE 9–14 Consider the system described by

Is this system controllable and observable?
Since the rank of the matrix

is 2, the system is completely state controllable.
For output controllability, let us find the rank of the matrix Since

the rank of this matrix is 1. Hence, the system is completely output controllable.
To test the observability condition, examine the rank of Since

the rank of is 2. Hence, the system is completely observable.

Conditions for Complete Observability in the s Plane. The conditions for com-
plete observability can also be stated in terms of transfer functions or transfer matrices.
The necessary and sufficient conditions for complete observability is that no cancella-
tion occur in the transfer function or transfer matrix. If cancellation occurs, the canceled
mode cannot be observed in the output.

EXAMPLE 9–15 Show that the following system is not completely observable:

where

Note that the control function u does not affect the complete observability of the system. To
examine complete observability, we may simply set u=0. For this system, we have

CC* � A*C* � (A*)2 C* D = C4

5

1

-6

-7

-1

6

5

-1

S

x = Cx1

x2

x3

S ,  A = C 0

0

-6

1

0

-11

0

1

-6

S ,  B = C0

0

1

S ,  C = [4 5 1]

 y = Cx

 x# = Ax + Bu

CC*� A*C* D
CC* � A*C* D = B1

0

1

1
R[C*� A*C*] .

CCB � CAB D = [0 1]

CCB � CAB D .
CB � AB D = B0

1

1

-1
R

 y = [1 0]Bx1

x2
R

 Bx
#
1

x
#
2
R = B 1

-2

1

-1
R Bx1

x2
R + B0

1
R u



Section 9–7 / Observability 685

Note that

Hence, the rank of the matrix is less than 3.Therefore, the system is not
completely observable.

In fact, in this system, cancellation occurs in the transfer function of the system. The transfer
function between X1(s) and U(s) is

and the transfer function between Y(s) and X1(s) is

Therefore, the transfer function between the output Y(s) and the input U(s) is

Clearly, the two factors (s+1) cancel each other.This means that there are nonzero initial states
x(0), which cannot be determined from the measurement of y(t).

Comments. The transfer function has no cancellation if and only if the system is com-
pletely state controllable and completely observable.This means that the canceled transfer
function does not carry along all the information characterizing the dynamic system.

Alternative Form of the Condition for Complete Observability. Consider the
system described by Equations (9–63) and (9–64), rewritten

(9–66)

(9–67)

Suppose that the transformation matrix P transforms A into a diagonal matrix, or

where D is a diagonal matrix. Let us define

Then Equations (9–66) and (9–67) can be written

Hence,

y(t) = CPeDt z(0)

 y = CPz

 z# = P-1 APz = Dz

x = Pz

P-1 AP = D

 y = Cx

 x# = Ax

Y(s)

U(s)
=

(s + 1)(s + 4)

(s + 1)(s + 2)(s + 3)

Y(s)

X1(s)
= (s + 1)(s + 4)

X1(s)

U(s)
=

1

(s + 1)(s + 2)(s + 3)

CC*� A*C*� (A*)2 C* D
3 45
1

-6
-7
-1

6
5

-1
3 = 0



or

The system is completely observable if none of the columns of the m*n matrix CP
consists of all zero elements. This is because, if the ith column of CP consists of all zero
elements, then the state variable zi(0) will not appear in the output equation and there-
fore cannot be determined from observation of y(t). Thus, x(0), which is related to z(0)
by the nonsingular matrix P, cannot be determined. (Remember that this test applies only
if the matrix is in diagonal form.)

If the matrix A cannot be transformed into a diagonal matrix, then by use of a suitable
transformation matrix S, we can transform A into a Jordan canonical form, or

where J is in the Jordan canonical form.
Let us define

Then Equations (9–66) and (9–67) can be written

Hence,

The system is completely observable if (1) no two Jordan blocks in J are associated with
the same eigenvalues, (2) no columns of CS that correspond to the first row of each
Jordan block consist of zero elements, and (3) no columns of CS that correspond to
distinct eigenvalues consist of zero elements.

To clarify condition (2), in Example 9–16 we have encircled by dashed lines the
columns of CS that correspond to the first row of each Jordan block.

EXAMPLE 9–16 The following systems are completely observable.

 Ex
#
1

x
#
2

x
#
3

x
#
4

x
#
5

U = E2

0

0

0

1

2

0

0

1

2

-3

0

0

1

-3

U Ex1

x2

x3

x4

x5

U ,  cy1

y2
d = B1

0

1

1

1

1

0

1

0

0
R Ex1

x2

x3

x4

x5

U
 Cx

#
1

x
#
2

x
#
3

S = C2

0

0

1

2

0

0

1

2

S Cx1

x2

x3

S ,  cy1

y2
d = B3

4

0

0

0

0
R Cx1

x2

x3

S
 Bx

#
1

x
#
2
R = B-1

0

0

-2
R Bx1

x2
R ,  y = [1 3]Bx1

x2
R

y(t) = CSeJt z(0)

 y = CSz
 z# = S-1 ASz = Jz

x = Sz

S-1 AS = J

P-1 AP

y(t) = CPF
el1 t

0

el2 t

�

�

�

0

eln t

V z(0) = CPF
el1 tz1(0)

el2 tz2(0)

�

�

�

eln tzn(0)

V
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The following systems are not completely observable.

Principle of Duality. We shall now discuss the relationship between controllability
and observability. We shall introduce the principle of duality, due to Kalman, to clarify
apparent analogies between controllability and observability.

Consider the system S1 described by

where

and the dual system S2 defined by

where

The principle of duality states that the system S1 is completely state controllable
(observable) if and only if system S2 is completely observable (state controllable).

To verify this principle, let us write down the necessary and sufficient conditions for
complete state controllability and complete observability for systems S1 and S2.

 C* = conjugate transpose of C

 B* = conjugate transpose of B

 A* = conjugate transpose of A

 n = output vector (r-vector)

 v = control vector (m-vector)

 z = state vector (n-vector)

n = B*z

z# = A*z + C*v

 C = m * n matrix

 B = n * r matrix

 A = n * n matrix

 y = output vector (m-vector)

 u = control vector (r-vector)

 x = state vector (n-vector)

 y = Cx

 x# = Ax + Bu

 Ex
#
1

x
#
2

x
#
3

x
#
4

x
#
5

U = E2

0

0

0

1

2

0

0

1

2

-3

0

0

1

-3

U Ex1

x2

x3

x4

x5

U ,  cy1

y2
d = B1

0

1

1

1

1

0

0

0

0
R Ex1

x2

x3

x4

x5

U
 Cx

#
1

x
#
2

x
#
3

S = C2

0

0

1

2

0

0

1

2

S Cx1

x2

x3

S ,  cy1

y2
d = B0

0

1

2

3

4
R Cx1

x2

x3

S
 Bx

#
1

x
#
2
R = B-1

0

0

-2
R Bx1

x2
R ,  y = [0 1]Bx1

x2
R
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For system S1 :

1. A necessary and sufficient condition for complete state controllability is that the
rank of the n*nr matrix

be n.
2. A necessary and sufficient condition for complete observability is that the rank of

the n*nm matrix

be n.

For system S2 :

1. A necessary and sufficient condition for complete state controllability is that the
rank of the n*nm matrix

be n.
2. A necessary and sufficient condition for complete observability is that the rank of

the n*nr matrix

be n.

By comparing these conditions, the truth of this principle is apparent. By use of this
principle, the observability of a given system can be checked by testing the state con-
trollability of its dual.

Detectability. For a partially observable system, if the unobservable modes are
stable and the observable modes are unstable, the system is said to be detectable. Note
that the concept of detectability is dual to the concept of stabilizability.

EXAMPLE PROBLEMS AND SOLUTIONS

A–9–1. Consider the transfer function system defined by Equation (9–2), rewritten

(9–68)

Derive the following controllable canonical form of the state-space representation for this
transfer-function system:

(9–69)G
x
#
1

x
#
2

�

�

�

x
#
n - 1

x
#
n

W = G
0
0
�

�

�

0
-an

1
0
�

�

�

0
-an - 1

0
1
�

�

�

0
-an - 2

p
p

p
p

0
0
�

�

�

1
-a1

W G
x1

x2

�

�

�

xn - 1

xn

W + G
0
0
�

�

�

0
1

W u

Y(s)

U(s)
=

b0 sn + b1 sn - 1 + p + bn - 1 s + bn

sn + a1 sn - 1 + p + an - 1 s + an

CB � AB � p � An - 1 B D
CC* � A*C* � p � (A*)n - 1 C* D

CC* � A*C* � p � (A*)n - 1 C* D
CB � AB � p � An - 1 B D
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(9–70)

Solution. Equation (9–68) can be written as

which can be modified to

(9–71)

where

Let us rewrite this last equation in the following form:

From this last equation, the following two equations may be obtained:

(9–72)

(9–73)

Now define state variables as follows:

Then, clearly,

 sXn - 1(s) = Xn(s)

 �
 �
 �

 sX2(s) = X3(s)

 sX1(s) = X2(s)

 Xn(s) = sn - 1Q(s)

 Xn - 1(s) = sn - 2Q(s)

 �
 �
 �

 X2(s) = sQ(s)

 X1(s) = Q(s)

 + Abn - an b0BQ(s)

 Ŷ(s) = Ab1 - a1 b0Bsn - 1Q(s) + p + Abn - 1 - an - 1 b0BsQ(s)

 snQ(s) = -a1 sn - 1Q(s) - p - an - 1 sQ(s) - an Q(s) + U(s)

 =
U(s)

sn + a1 sn - 1 + p + an - 1 s + an

= Q(s)

Ŷ(s)Ab1 - a1 b0Bsn - 1 + p + Abn - 1 - an - 1 b0Bs + Abn - an b0B
Ŷ(s) =

Ab1 - a1 b0Bsn - 1 + p + Abn - 1 - an - 1 b0Bs + Abn - an b0B
sn + a1 sn - 1 + p + an - 1 s + an

U(s)

Y(s) = b0 U(s) + Ŷ(s)

Y(s)

U(s)
= b0 +

Ab1 - a1 b0Bsn - 1 + p + Abn - 1 - an - 1 b0Bs + Abn - an b0B
sn + a1 sn - 1 + p + an - 1 s + an

 y = Cbn - an b0 � bn - 1 - an - 1 b0 � p � b1 - a1 b0 D F
x1

x2

�

�

�

xn

V + b0 u
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which may be rewritten as

(9–74)

Noting that we can rewrite Equation (9–72) as

or

(9–75)

Also, from Equations (9–71) and (9–73), we obtain

The inverse Laplace transform of this output equation becomes

(9–76)

Combining Equations (9–74) and (9–75) into one vector–matrix differential equation, we obtain
Equation (9–69). Equation (9–76) can be rewritten as given by Equation (9–70). Equations (9–69)
and (9–70) are said to be in the controllable canonical form. Figure 9–1 shows the block diagram
representation of the system defined by Equations (9–69) and (9–70).

y = Abn - an b0Bx1 + Abn - 1 - an - 1 b0Bx2 + p + Ab1 - a1 b0Bxn + b0 u

 + Abn - an b0BX1(s)

 = b0 U(s) + Ab1 - a1 b0BXn(s) + p + Abn - 1 - an - 1 b0BX2(s)

 + Abn - an b0BQ(s)

 Y(s) = b0 U(s) + Ab1 - a1 b0Bsn - 1Q(s) + p + Abn - 1 - an - 1 b0BsQ(s)

x
#
n = -an x1 - an - 1 x2 - p - a1 xn + u

sXn(s) = -a1 Xn(s) - p - an - 1 X2(s) - an X1(s) + U(s)

snQ(s) = sXn(s),

 x
#
n - 1 = xn

 �
 �
 �

 x
#
2 = x3

 x
#
1 = x2

b0

y

u

a1 a2 an–1 an

xn–1xn x1x2

b1 – a1b0 b2 – a2b0 bn–1 – an–1b0 bn – anb0

� � �

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
–

Figure 9–1
Block diagram
representation of the
system defined by
Equations (9–69)
and (9–70)
(controllable
canonical form).
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A–9–2. Consider the following transfer-function system:

(9–77)

Derive the following observable canonical form of the state-space representation for this transfer-
function system:

(9–78)

(9–79)

Solution. Equation (9–77) can be modified into the following form:

By dividing the entire equation by sn and rearranging, we obtain

(9–80)

Now define state variables as follows:

(9–81)

 X1 (s) =
1

s
 Cbn U(s) - an Y(s) D

 X2 (s) =
1

s
 Cbn - 1 U(s) - an - 1 Y(s) + X1 (s) D �

 �
 �

 Xn - 1 (s) =
1

s
 Cb2 U(s) - a2 Y(s) + Xn - 2 (s) D

 Xn (s) =
1

s
 Cb1 U(s) - a1 Y(s) + Xn - 1 (s) D

+
1

sn - 1
Cbn - 1 U(s) - an - 1 Y(s) D +

1

sn Cbn U(s) - an Y(s) D
Y(s) = b0 U(s) +

1

s
Cb1 U(s) - a1 Y(s) D + p

+ s Can - 1 Y(s) - bn - 1 U(s) D + an Y(s) - bn U(s) = 0

sn CY(s) - b0 U(s) D + sn - 1 Ca1 Y(s) - b1 U(s) D + p

y = [0 0 p 0 1]G
x1

x2

�

�

�

xn - 1

xn

W + b0 u

F
x
#
1

x
#
2

�

�

�

x
#
n

V = F
0
1
�

�

�

0

0
0
�

�

�

0

p
p

p

0
0
�

�

�

1

-an

-an - 1

�

�

�

-a1

V F
x1

x2

�

�

�

xn

V + F
bn - an b0

bn - 1 - an - 1 b0

�

�

�

b1 - a1 b0

V u

 
Y(s)

U(s)
=

b0 sn + b1 sn - 1 + p + bn - 1 s + bn

sn + a1 sn - 1 + p + an - 1 s + an
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Then Equation (9–80) can be written as

(9–82)

By substituting Equation (9–82) into Equation (9–81) and multiplying both sides of the equations
by s, we obtain

Taking the inverse Laplace transforms of the preceding n equations and writing them in the
reverse order, we get

Also, the inverse Laplace transform of Equation (9–82) gives

Rewriting the state and output equations in the standard vector-matrix forms gives Equations
(9–78) and (9–79). Figure 9–2 shows a block diagram representation of the system defined by
Equations (9–78) and (9–79).

y = xn + b0u

x
#
n = xn - 1 - a1 xn + Ab1 - a1 b0Bux

#
n - 1 = xn - 2 - a2 xn + Ab2 - a2 b0Bu�

�

�

x
#
2 = x1 - an - 1 xn + Abn - 1 - an - 1 b0Bux

#
1 = -an xn + Abn - an b0Bu

 sX1(s) = -an Xn(s) + Abn - an b0BU(s)

 sX2(s) = X1(s) - an - 1 Xn(s) + Abn - 1 - an - 1 b0BU(s)

 �

 �

 �

 sXn - 1(s) = Xn - 2(s) - a2 Xn(s) + Ab2 - a2 b0BU(s)

 sXn(s) = Xn - 1(s) - a1 Xn(s) + Ab1 - a1 b0BU(s)

Y(s) = b0 U(s) + Xn(s)

y

u

an–1 a1an

xn–1x1
x2 xn

b0bn – anb0 bn–1 – an–1b0 b1 – a1b0

� � �
+
–

+
+
–

+
+
–

+
+Figure 9–2

Block diagram
representation of the
system defined by
Equations (9–78)
and (9–79)
(observable
canonical form).



Example Problems and Solutions 693

A–9–3. Consider the transfer-function system defined by

(9–83)

where Derive the state-space representation of this system in the following diagonal
canonical form:

(9–84)

(9–85)

Solution. Equation (9–83) may be written as

(9–86)

Define the state variables as follows:

which may be rewritten as

 sXn(s) = -pn Xn(s) + U(s)

 �
 �
 �

 sX2(s) = -p2 X2(s) + U(s)

 sX1(s) = -p1 X1(s) + U(s)

 Xn(s) =
1

s + pn
 U(s)

 �

 �

 �

 X2(s) =
1

s + p2
 U(s)

 X1(s) =
1

s + p1
 U(s)

Y(s) = b0 U(s) +
c1

s + p1
U(s) +

c2

s + p2
U(s) + p +

cn

s + pn
U(s)

y = Cc1 c2 p cn D F
x1

x2

�

�

�

xn

V + b0 u

F
x
#
1

x
#
2

�

�

�

x
#
n

V = F
-p1

0

-p2

�

�

�

0

-pn

V F
x1

x2

�

�

�

xn

V + F
1
1
�

�

�

1

V u

pi Z pj .

 = b0 +
c1

s + p1
+

c2

s + p2
+ p +

cn

s + pn

 
Y(s)

U(s)
=

b0 sn + b1 sn - 1 + p + bn - 1 s + bnAs + p1B As + p2B p As + pnB
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The inverse Laplace transforms of these equations give

(9–87)

These n equations make up a state equation.
In terms of the state variables X1(s), X2(s), p , Xn(s), Equation (9–86) can be written as

The inverse Laplace transform of this last equation is

(9–88)

which is the output equation.
Equation (9–87) can be put in the vector-matrix equation as given by Equation (9–84). Equa-

tion (9–88) can be put in the form of Equation (9–85).
Figure 9–3 shows a block diagram representation of the system defined by Equations (9–84)

and (9–85).
It is noted that if we choose the state variables as

 X̂n(s) =
cn

s + pn
 U(s)

 �
 �
 �

 X̂2(s) =
c2

s + p2
 U(s)

 X̂1(s) =
c1

s + p1
 U(s)

y = c1 x1 + c2 x2 + p + cn xn + b0 u

Y(s) = b0 U(s) + c1 X1(s) + c2 X2(s) + p + cn Xn(s)

 x
#
n = -pn xn + u

 �
 �
 �

 x
#
2 = -p2 x2 + u

 x
#
1 = -p1 x1 + u

u y

xn

x2

x1

c2
1

s + p2

c1

b0

cn

1
s + p1

… …

1
s + pn

+
+
+

+
+

Figure 9–3
Block diagram
representation of the
system defined by
Equations (9–84)
and (9–85) (diagonal
canonical form).
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then we get a slightly different state-space representation. This choice of state variables gives

from which we obtain

(9–89)

Referring to Equation (9–86), the output equation becomes

from which we get

(9–90)

Equations (9–89) and (9–90) give the following state-space representation for the system:

A–9–4. Consider the system defined by

(9–91)

where the system involves a triple pole at s=–p1 . (We assume that, except for the first three
pi ’s being equal, the pi ’s are different from one another.) Obtain the Jordan canonical form of the
state-space representation for this system.

Y(s)

U(s)
=

b0 sn + b1 sn - 1 + p + bn - 1 s + bnAs + p1B3As + p4B As + p5B p As + pnB

y = [1 1 p 1]F
x̂1

x̂2

�

�

�

x̂n

V + b0 u

F
x̂
#

1

x̂
#

2

�

�

�

x̂
#

n

V = F
-p1

0

-p2

�

�

�

0

-pn

V F
x̂1

x̂2

�

�

�

x̂n

V + F
c1

c2

�

�

�

cn

Vu

y = x̂1 + x̂2 + p + x̂n + b0 u

Y(s) = b0 U(s) + X̂1(s) + X̂2(s) + p + X̂n(s)

x̂
#

n = -pn x̂n + cn u

�
�
�

x̂
#

2 = -p2 x̂2 + c2 u

x̂
#

1 = -p1 x̂1 + c1 u

 sX̂n(s) = -pn X̂n(s) + cn U(s)

 �
 �
 �

 sX̂2(s) = -p2 X̂2(s) + c2 U(s)

 sX̂1(s) = -p1 X̂1(s) + c1 U(s)
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Solution. The partial-fraction expansion of Equation (9–91) becomes

which may be written as

(9–92)

Define

Notice that the following relationships exist among X1(s), X2(s), and X3(s):

Then, from the preceding definition of the state variables and the preceding relationships, we
obtain

 sXn(s) = -pn Xn(s) + U(s)

 �

 �

 �

 sX4(s) = -p4 X4(s) + U(s)

 sX3(s) = -p1 X3(s) + U(s)

 sX2(s) = -p1 X2(s) + X3(s)

 sX1(s) = -p1 X1(s) + X2(s)

X2(s)

X3(s)
=

1

s + p1

X1(s)

X2(s)
=

1

s + p1

 Xn(s) =
1

s + pn
 U(s)

 �

 �

 �

 X4(s) =
1

s + p4
 U(s)

 X3(s) =
1

s + p1
 U(s)

 X2(s) =
1As + p1B2 U(s)

 X1(s) =
1As + p1B3 U(s)

+
c3

s + p1
U(s) +

c4

s + p4
U(s) + p +

cn

s + pn
U(s)

Y(s) = b0 U(s) +
c1As + p1B3 U(s) +

c2As + p1B2 U(s)

Y(s)

U(s)
= b0 +

c1As + p1B3 +
c2As + p1B2 +

c3

s + p1
+

c4

s + p4
+ p +

cn

s + pn
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The inverse Laplace transforms of the preceding n equations give

The output equation, Equation (9–92), can be rewritten as

The inverse Laplace transform of this output equation is

Thus, the state-space representation of the system for the case when the denominator polynomial
involves a triple root –p1 can be given as follows:

(9–93)

(9–94)

The state-space representation in the form given by Equations (9–93) and (9–94) is said to be in
the Jordan canonical form. Figure 9–4 shows a block diagram representation of the system given
by Equations (9–93) and (9–94).

A–9–5. Consider the transfer-function system

Obtain a state-space representation of this system with MATLAB.

Y(s)

U(s)
=

25.04s + 5.008

s3 + 5.03247s2 + 25.1026s + 5.008

 y = Cc1 c2 p cn D F
x1

x2

�

�

�

xn

V + b0 u

H
x
#
1

x
#
2

x
#
3

x
#
4

�

�

�

x
#
n

X = H
-p1

0
0

0
�

�

�

0

1
-p1

0
p

p

0
1

-p1

0
�

�

�

0

0
�

0

-p4

0

p

p

�

�

�

0
�

0

-pn

X H
x1

x2

x3

x4

�

�

�

xn

X + H
0
0
1
1
�

�

�

1

X u

y = c1 x1 + c2 x2 + c3 x3 + c4 x4 + p + cn xn + b0 u

Y(s) = b0 U(s) + c1 X1(s) + c2 X2(s) + c3 X3(s) + c4 X4(s) + p + cn Xn(s)

 x
#
n = -pn xn + u

 �

 �

 �

 x
#
4 = -p4 x4 + u

 x
#
3 = -p1 x3 + u

 x
#
2 = -p1 x2 + x3

 x
#
1 = -p1 x1 + x2
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yu
c1

1
s + p1

1
s + p1

1
s + p1

c4
1

s + p4

c2

c3

x3

x4

xn

x2 x1

b0

cn

… …

1
s + pn

+
+

+
+

+
+
+

+
+Figure 9–4

Block diagram
representation of the
system defined by
Equations (9–93)
and (9–94) (Jordan
canonical form).

Solution. MATLAB command

[A,B,C,D] = tf2ss(num,den)

will produce a state-space representation for the system. See MATLAB Program 9–4.

MATLAB Program 9–4

num = [25.04  5.008];
den = [1  5.03247  25.1026  5.008];
[A,B,C,D] = tf2ss(num,den)

A =

-5.0325 -25.1026 -5.0080
1.0000 0 0

0 1.0000 0

B =

1
0
0

C =

0 25.0400 5.0080
D  =

0
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This is the MATLAB representation of the following state-space equations:

A–9–6. Consider the system defined by

where

Obtain the response of the system to each of the following inputs:

(a) The r components of u are impulse functions of various magnitudes.

(b) The r components of u are step functions of various magnitudes.

(c) The r components of u are ramp functions of various magnitudes.

Solution.

(a) Impulse response: Referring to Equation (9–43), the solution to the given state equation is

Substituting t0=0– into this solution, we obtain

Let us write the impulse input u(t) as

where w is a vector whose components are the magnitudes of r impulse functions applied at
t=0. The solution of the state equation when the impulse input d(t)w is given at t=0 is

(9–95)

(b) Step response: Let us write the step input u(t) as

u(t) = k

 = eAt x(0-) + eAt Bw

 x(t) = eAt x(0-) + 3
t

0-
eA(t -t) Bd(t) w dt

u(t) = d(t) w

x(t) = eAt x(0 -) + 3
t

0-
eA(t -t) Bu(t) dt

x(t) = eAAt - t0B xAt0B + 3
t

t0

eA(t -t) Bu(t) dt

 B = n * r constant matrix

 A = n * n constant matrix

 u = control vector (r-vector)

 x = state vector (n-vector)

x# = Ax + Bu

 y = [0 25.04 5.008]Cx1

x2

x3

S + [0]u

 Cx
#
1

x
#
2

x
#
3

S = C-5.0325

1

0

-25.1026

0

1

-5.008

0

0

S Cx1

x2

x3

S + C1

0

0

S u
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where k is a vector whose components are the magnitudes of r step functions applied at
t=0. The solution to the step input at t=0 is given by

If A is nonsingular, then this last equation can be simplified to give

(9–96)

(c) Ramp response: Let us write the ramp input u(t) as

where v is a vector whose components are magnitudes of ramp functions applied at t=0.The
solution to the ramp input tv given at t=0 is

If A is nonsingular, then this last equation can be simplified to give

(9–97)

A–9–7. Obtain the response y(t) of the following system:

where u(t) is the unit-step input occurring at t=0, or

u(t)=1(t)

Solution. For this system

The state transition matrix can be obtained as follows:

�(t) = eAt = l-1 C(s I - A)-1 D�(t) = eAt

A = B-1

1

-0.5

0
R ,  B = B0.5

0
R

 y = [1 0]Cx1

x2

S
 Bx

#
1

x
#
1
R = B-1

1

-0.5

0
R Bx1

x2
R + B0.5

0
R u,  Bx1(0)

x2(0)
R = B0

0
R

= eAt x(0) + CA-2AeAt - IB - A-1t D  Bv

x(t) = eAt x(0) + AA-2B AeAt - I - AtB  Bv

= eAt x(0) + eAt a I
2

t2 -
2 A
3!

t3 +
3 A2

4!
t4 -

4 A3

5!
t5 + p b  Bv

= eAt x(0) + eAt

3
t

0
e-Att dt Bv

x(t) = eAt x(0) + 3
t

0
eA(t -t) Bt v dt

u(t) = t v

 = eAt x(0) + A-1AeAt - IB  Bk

 x(t) = eAt x(0) + eAt C- AA-1B Ae-At - IB D  Bk

 = eAt x(0) + eAt a It -
At2

2!
+

A2t3

3!
- p b  Bk

 = eAt x(0) + eAt c 3 t

0
a I - At +

A2t2

2!
- p b dt d  Bk

 x(t) = eAt x(0) + 3
t

0
eA(t -t) Bk dt
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Since

we have

Since x(0)=0 and k=1, referring to Equation (9–96), we have

Hence, the output y(t) can be given by

A–9–8. The Cayley–Hamilton theorem states that every n*n matrix A satisfies its own characteristic
equation. The characteristic equation is not, however, necessarily the scalar equation of least
degree that A satisfies. The least-degree polynomial having A as a root is called the minimal
polynomial. That is, the minimal polynomial of an n*n matrix A is defined as the polynomial
f(l) of least degree,

such that or

The minimal polynomial plays an important role in the computation of polynomials in an n*n
matrix.

Let us suppose that d(l), a polynomial in l, is the greatest common divisor of all the elements
of adj(lI-A). Show that, if the coefficient of the highest-degree term in l of d(l) is chosen as
1, then the minimal polynomial f(l) is given by

Solution. By assumption, the greatest common divisor of the matrix adj(lI-A) is d(l).Therefore,

adj(lI-A)=d(l)B(l)

f(l) = 2 l I - A
d(l)

2

f(A) = Am + a1  Am - 1 + p + am - 1  A + am  I = 0

f(A) = 0,

f(l) = lm + a1 lm - 1 + p + am - 1 l + am ,  m � n

y(t) = [1 0]Bx1

x2
R = x1 = e-0.5t sin 0.5t

= B e-0.5t sin 0.5t

-e-0.5t(cos 0.5t + sin 0.5t) + 1
R

= B 0
-2

1
-2
R B0.5e-0.5t(cos 0.5t - sin 0.5t) - 0.5

e-0.5t sin 0.5t
R= A-1AeAt - IB  B

x(t) = eAt x(0) + A-1AeAt - IB  Bk

 = B e-0.5t(cos 0.5t - sin 0.5t)

2e-0.5t sin 0.5t

-e-0.5t sin 0.5t

e-0.5t(cos 0.5t + sin 0.5t)
R �(t) = eAt = l-1 C(s I - A)-1 D

= D s + 0.5 - 0.5
(s + 0.5)2 + 0.52

1
(s + 0.5)2 + 0.52

-0.5
(s + 0.5)2 + 0.52

s + 0.5 + 0.5
(s + 0.5)2 + 0.52

T
(s I - A)-1 = B s + 1

-1
0.5
s
R -1

=
1

s2 + s + 0.5
B s

1
-0.5

s + 1
R
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where the greatest common divisor of the n2 elements (which are functions of l) of B(l) is unity.
Since

(lI-A) adj(lI-A)=|lI-A|I

we obtain

(9–98)

from which we find that is divisible by d(l). Let us put

(9–99)

Because the coefficient of the highest-degree term in l of d(l) has been chosen to be 1, the
coefficient of the highest-degree term in l of c(l) is also 1. From Equations (9–98) and (9–99),
we have

Hence,

Note that c(l) can be written as

where a(l) is of lower degree than f(l). Since c(A)=0 and f(A)=0, we must have a(A)=0.
Also, since f(l) is the minimal polynomial, a(l) must be identically zero, or

Note that because f(A)=0, we can write

Hence,

Noting that , we obtain

Since the greatest common divisor of the n2 elements of B(l) is unity, we have

Therefore,

Then, from this last equation and Equation (9–99), we obtain

f(l) =
∑l I - A∑

d(l)

c(l) = f(l)

g(l) = 1

B(l) = g(l) C(l)

(l I - A) B(l) = c(l) I

c(l) I = g(l)f(l) I = g(l)(l I - A) C(l)

f(l) I = (l I - A) C(l)

c(l) = g(l)f(l)

c(l) = g(l)f(l) + a(l)

c(A) = 0

(l I - A) B(l) = c(l) I

∑l I - A∑ = d(l)c(l)

∑l I - A∑

d(l)(l I - A) B(l) = ∑l I - A∑ I
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A–9–9. If an n*n matrix A has n distinct eigenvalues, then the minimal polynomial of A is identical to
the characteristic polynomial. Also, if the multiple eigenvalues of A are linked in a Jordan chain,
the minimal polynomial and the characteristic polynomial are identical. If, however, the multiple
eigenvalues of A are not linked in a Jordan chain, the minimal polynomial is of lower degree than
the characteristic polynomial.

Using the following matrices A and B as examples, verify the foregoing statements about the
minimal polynomial when multiple eigenvalues are involved:

Solution. First, consider the matrix A. The characteristic polynomial is given by

Thus, the eigenvalues of A are 2, 2, and 1. It can be shown that the Jordan canonical form of A is

and the multiple eigenvalues are linked in the Jordan chain as shown.
To determine the minimal polynomial, let us first obtain adj(lI-A). It is given by

Notice that there is no common divisor of all the elements of Hence, d(l)=1.
Thus, the minimal polynomial f(l) is identical to the characteristic polynomial, or

A simple calculation proves that

= C0
0
0

0
0
0

0
0
0
S = 0

= C8
0
0

72
  8
21

28
  0
  1
S - 5C4

0
0

16
  4
  9

12
  0
  1
S + 8C2

0
0

1
2
3

4
0
1
S - 4C1

0
0

0
1
0

0
0
1
S

A3 - 5 A2 + 8 A - 4 I

 = l3 - 5l2 + 8l - 4

 f(l) = ∑l I - A∑ = (l - 2)2(l - 1)

adj(l I - A).

adj(l I - A) = C (l - 2)(l - 1)

0
0

(l + 11)

(l - 2)(l - 1)

3(l - 2)

4(l - 2)

0
(l - 2)2

S

C2

0

0

1

2

0

0

0

1

S

∑l I - A∑ = 3l - 2

0

0

-1

l - 2

-3

-4

0

l - 1

3 = (l - 2)2(l - 1)

A = C2
0
0

1
2
3

4
0
1
S ,  B = C2

0
0

0
2
3

0
0
1
S
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but

Thus, we have shown that the minimal polynomial and the characteristic polynomial of this matrix
A are the same.

Next, consider the matrix B. The characteristic polynomial is given by

A simple computation reveals that matrix B has three eigenvectors, and the Jordan canonical
form of B is given by

Thus, the multiple eigenvalues are not linked.To obtain the minimal polynomial, we first compute
:

from which it is evident that

Hence,

As a check, let us compute :

For the given matrix B, the degree of the minimal polynomial is lower by 1 than that of the char-
acteristic polynomial.As shown here, if the multiple eigenvalues of an n*n matrix are not linked
in a Jordan chain, the minimal polynomial is of lower degree than the characteristic polynomial.

f(B) = B2 - 3 B + 2 I = C4
0
0

0
4
9

0
0
1
S - 3C2

0
0

0
2
3

0
0
1
S + 2C1

0
0

0
1
0

0
0
1
S = C0

0
0

0
0
0

0
0
0
S = 0

f(B)

f(l) =
∑l I - B∑

d(l)
=

(l - 2)2(l - 1)

l - 2
= l2 - 3l + 2

d(l) = l - 2

adj(l I - B) = C (l - 2)(l - 1)

0
0

0
(l - 2)(l - 1)

3(l - 2)

0
0

(l - 2)2

S
adj(l I - B)

C2

0

0

0

2

0

0

0

1

S

∑l I - B∑ = 3l - 2

0

0

0

l - 2

-3

0

0

l - 1

3 = (l - 2)2(l - 1)

= C0
0
0

13
 0
 0

0
0
0
S Z 0

= C4
0
0

16
  4
  9

12
  0
  1
S - 3C2

0
0

1
2
3

4
0
1
S + 2C1

0
0

0
1
0

0
0
1
S

A2 - 3 A + 2 I
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A–9–10. Show that by use of the minimal polynomial, the inverse of a nonsingular matrix A can be ex-
pressed as a polynomial in A with scalar coefficients as follows:

(9–100)

where a1, a2 , p , am are coefficients of the minimal polynomial

Then obtain the inverse of the following matrix A:

Solution. For a nonsingular matrix A, its minimal polynomial f(A) can be written as

where am Z 0. Hence,

Premultiplying by A–1, we obtain

which is Equation (9–100).
For the given matrix A, adj(lI-A) can be given as

Clearly, there is no common divisor d(l) of all elements of adj(lI-A). Hence, d(l)=1.
Consequently, the minimal polynomial f(l) is given by

Thus, the minimal polynomial f(l) is the same as the characteristic polynomial.
Since the characteristic polynomial is

we obtain

f(l) = l3 + 3l2 - 7l - 17

∑l I - A∑ = l3 + 3l2 - 7l - 17

f(l) =
∑l I - A∑

d(l)
= ∑l I - A∑

adj(�I - A) = Cl2 + 4l + 3
3l + 7
l + 1

2l + 6
l2 + 2l - 3

2

-4
-2l + 2
l2 - 7

S

A-1 = -
1

am
AAm - 1 + a1  Am - 2 + p + am - 2  A + am - 1  IB

I = - 
1

am
 AAm + a1  Am - 1 + p + am - 2  A2 + am - 1  AB

f(A) = Am + a1  Am - 1 + p + am - 1  A + am  I = 0

A = C1

3

1

2

-1

0

0

-2

-3

S
f(l) = lm + a1 lm - 1 + p + am - 1 l + am

A-1 = -
1

am
AAm - 1 + a1  Am - 2 + p + am - 2  A + am - 1  IB
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By identifying the coefficients ai of the minimal polynomial (which is the same as the characteristic
polynomial in this case), we have

The inverse of A can then be obtained from Equation (9–100) as follows:

A–9–11. Show that if matrix A can be diagonalized, then

where P is a diagonalizing transformation matrix that transforms A into a diagonal matrix, or
P–1AP=D, where D is a diagonal matrix.

Show also that if matrix A can be transformed into a Jordan canonical form, then

where S is a transformation matrix that transforms A into a Jordan canonical form J, or S–1AS=J.

Solution. Consider the state equation

If a square matrix can be diagonalized, then a diagonalizing matrix (transformation matrix) exists
and it can be obtained by a standard method. Let P be a diagonalizing matrix for A. Let us define

Then

where D is a diagonal matrix. The solution of this last equation is

Hence,

x(t) = Px̂(t) = PeDt P-1 x(0)

x̂(t) = eDt x̂(0)

x̂
#

= P-1 APx̂ = Dx̂

x = Px̂

x# = Ax

eAt = SeJt S-1

eAt = PeDt P-1

 = C 3
17
7
17
1
17

6
17

- 3
17
2

17

- 4
17
2
17

- 7
17

S
 =

1

17
C3

7

1

6

-3

2

-4

2

-7

S
 =

1

17
c C 7

-2

-2

0

7

2

-4

8

9

S + 3C1

3

1

2

-1

0

0

-2

-3

S - 7C1

0

0

0

1

0

0

0

1

S s
 A-1 = -

1

a3
AA2 + a1  A + a2  IB =

1

17
AA2 + 3 A - 7 IB

a1 = 3,  a2 = -7,  a3 = -17
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Noting that x(t) can also be given by the equation

we obtain or

(9–101)

Next, we shall consider the case where matrix A may be transformed into a Jordan canonical
form. Consider again the state equation

First obtain a transformation matrix S that will transform matrix A into a Jordan canonical form
so that

where J is a matrix in a Jordan canonical form. Now define

Then

The solution of this last equation is

Hence,

Since the solution x(t) can also be given by the equation

we obtain

Note that eJt is a triangular matrix [which means that the elements below (or above, as the case
may be) the principal diagonal line are zeros] whose elements are elt, telt, , and so forth. For
example, if matrix J has the following Jordan canonical form:

then

eJt = C el1 t

0

0

tel1 t

el1 t

0

1
2 t2el1 t

tel1 t

el1 t
S

J = Cl1

0

0

1

l1

0

0

1

l1

S
1
2 t2elt

eAt = SeJt S-1

x(t) = eAt x(0)

x(t) = Sx̂(t) = SeJt S-1 x(0)

x̂(t) = eJt x̂(0)

x̂
#

= S-1 AS x̂ = Jx̂

x = Sx̂

S-1 AS = J

x# = Ax

eAt = PeDt P-1 = PF
el1 t

0

el2 t

�

�

�

0

eln t

VP-1

eAt = PeDt P-1,

x(t) = eAt x(0)
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Similarly, if

then

A–9–12. Consider the following polynomial in l of degree m-1, where we assume l1 , l2 , p , lm to be
distinct:

where k=1, 2, p , m. Notice that

Then the polynomial f(l) of degree m-1,

takes on the values f Alk B at the points lk . This last equation is commonly called Lagrange’s
interpolation formula. The polynomial f(l) of degree m-1 is determined from m independent
data f Al1 B , f Al2 B , p , f Alm B . That is, the polynomial f(l) passes through m points
f Al1 B , f Al2 B , p , f Alm B . Since f(l) is a polynomial of degree m-1, it is uniquely determined.
Any other representations of the polynomial of degree m-1 can be reduced to the Lagrange
polynomial f(l).

 = a
m

k = 1
fAlkB Al - l1B p Al - lk - 1B Al - lk + 1B p Al - lmBAlk - l1B p Alk - lk - 1B Alk - lk + 1B p Alk - lmB

 f(l) = a
m

k = 1
fAlkBpk(l)

pkAliB = b1,

0,

if i = k

if i Z k

pk(l) =
Al - l1B p Al - lk - 1B Al - lk + 1B p Al - lmBAlk - l1B p Alk - lk - 1B Alk - lk + 1B p Alk - lmB

eJt = G
el1 t

0

0

0

tel1 t

el1 t

0

1
2 t2el1 t

tel1 t

el1 t

el4 t

0

tel4 t

el4 t

el6 t

0

0

0

el7 t

W

J = G
l1

0

0

0

1

l1

0

0

1

l1

l4

0

1

l4

l6

0

l7

W
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Assuming that the eigenvalues of an n*n matrix A are distinct, substitute A for l in the
polynomial pk(l). Then we get

Notice that pk(A) is a polynomial in A of degree m-1. Notice also that

Now define

(9–102)

Equation (9–102) is known as Sylvester’s interpolation formula. Equation (9–102) is equivalent
to the following equation:

(9–103)

Equations (9–102) and (9–103) are frequently used for evaluating functions f(A) of matrix A—
for example, (lI-A)–1, eAt, and so forth. Note that Equation (9–103) can also be written as

(9–104)

Show that Equations (9–102) and (9–103) are equivalent. To simplify the arguments, assume
that m=4.

7
1
1
�

�

�

1
I

l1

l2

�

�

�

lm

A

l2
1

l2
2

�

�

�

l2
m

A2

p
p

p
p
p

lm - 1
1

lm - 1
2

�

�

�

lm - 1
m

Am - 1

fAl1B
fAl2B

�

�

�

fAlmB
f(A)

7 = 0

8
1

l1

l2
1

�

�

�

lm - 1
1

fAl1B

1

l2

l2
2

�

�

�

lm - 1
2

fAl2B

p
p
p

p
p

1

lm

l2
m

�

�

�

lm - 1
m

fAlmB

I
A
A2

�

�

�

Am - 1

f(A)

8 = 0

 = a
m

k = 1
fAlkB AA - l1  IB p AA - lk - 1  IB AA - lk + 1  IB p AA - lm  IBAlk - l1B p Alk - lk - 1B Alk - lk + 1B p Alk - lmB

 f(A) = a
m

k = 1
fAlkBpk(A)

pkAli  IB = b I,
0,

if i = k

if i Z k

pk(A) =
AA - l1  IB p AA - lk - 1  IB AA - lk + 1  IB p AA - lm  IBAlk - l1B p Alk - lk - 1B Alk - lk + 1B p Alk - lmB



710 Chapter 9 / Control Systems Analysis in State Space

Solution. Equation (9–103), where m=4, can be expanded as follows:

Since

and

we obtain

 = 0

 + fAl1B C AA - l4  IB AA - l3  IB AA - l2  IB Al4 - l3B Al4 - l2B Al3 - l2B D - fAl2B C AA - l4  IB AA - l3  IB AA - l1  IB Al4 - l3B Al4 - l1B Al3 - l1B D + fAl3B C AA - l4  IB AA - l2  IB AA - l1  IB Al4 - l2B Al4 - l1B Al2 - l1B D - fAl4B C AA - l3  IB AA - l2  IB AA - l1  IB Al3 - l2B Al3 - l1B Al2 - l1B D ¢ = f(A) C Al4 - l3B Al4 - l2B Al4 - l1B Al3 - l2B Al3 - l1B Al2 - l1B D
4 1li

l2
i

l3
i

1

lj

l2
j

l3
j

1

lk

l2
k

l3
k

I
A
A2

A3

4 = AA - lk  IB AA - lj  IB AA - li  IB Alk - ljB Alk - liB Alj - liB

4 1l1

l2
1

l3
1

1

l2

l2
2

l3
2

1

l3

l2
3

l3
3

1

l4

l2
4

l3
4

4 = Al4 - l3B Al4 - l2B Al4 - l1B Al3 - l2B Al3 - l1B Al2 - l1B

 + fAl1B 4 1l2

l2
2

l3
2

1

l3

l2
3

l3
3

1

l4

l2
4

l3
4

I
A
A2

A3

4
 + fAl3B 4 1l1

l2
1

l3
1

1

l2

l2
2

l3
2

1

l4

l2
4

l3
4

I
A
A2

A3

4 - fAl2B 4 1l1

l2
1

l3
1

1

l3

l2
3

l3
3

1

l4

l2
4

l3
4

I
A
A2

A3

4
 = f(A) 4 1l1

l2
1

l3
1

1

l2

l2
2

l3
2

1

l3

l2
3

l3
3

1

l4

l2
4

l3
4

4 - fAl4B 4 1l1

l2
1

l3
1

1

l2

l2
2

l3
2

1

l3

l2
3

l3
3

I
A
A2

A3

4
 ¢ = 5 1

l1

l2
1

l3
1

fAl1B
1

l2

l2
2

l3
2

fAl2B
1

l3

l2
3

l3
3

fAl3B
1

l4

l2
4

l3
4

fAl4B
I
A
A2

A3

f(A)

5
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Solving this last equation for f(A), we obtain

where m=4.Thus, we have shown the equivalence of Equations (9–102) and (9–103).Although
we assumed m=4, the entire argument can be extended to an arbitrary positive integer m. (For
the case when the matrix A involves multiple eigenvalues, refer to Problem A–9–13.)

A–9–13. Consider Sylvester’s interpolation formula in the form given by Equation (9–104):

This formula for the determination of f(A) applies to the case where the minimal polynomial of
A involves only distinct roots.

Suppose that the minimal polynomial of A involves multiple roots. Then the rows in the
determinant that correspond to the multiple roots become identical, and therefore modification
of the determinant in Equation (9–104) becomes necessary.

Modify the form of Sylvester’s interpolation formula given by Equation (9–104) when the
minimal polynomial of A involves multiple roots. In deriving a modified determinant equation,
assume that there are three equal roots in the minimal polynomial of A and that
there are other roots that are distinct.

Solution. Since the minimal polynomial of A involves three equal roots, the minimal polynomial
f(l) can be written as

An arbitrary function f(A) of an n*n matrix A can be written as

where the minimal polynomial f(A) is of degree m and a(A) is a polynomial in A of degree
m-1 or less. Hence we have

where a(l) is a polynomial in l of degree m-1 or less, which can thus be written as

(9–105)a(l) = a0 + a1 l + a2 l2 + p + am - 1 lm - 1

f(l) = g(l)f(l) + a(l)

f(A) = g(A)f(A) + a(A)

= Al - l1B3Al - l4B Al - l5B p Al - lmBf(l) = lm + a1 lm - 1 + p + am - 1 l + am

Al4, l5, p , lmB Al1 = l2 = l3B

7
1

1

�

�

�

1

I

l1

l2

�

�

�

lm

A

l2
1

l2
2

�

�

�

l2
m

A2

p
p

p
p
p

lm - 1
1

lm - 1
2

�

�

�

lm - 1
m

Am - 1

fAl1B
fAl2B

�

�

�

fAlmB
f(A)

7 = 0

 = a
m

k = 1
fAlkB AA - l1  IB p AA - lk - 1  IB AA - lk + 1  IB p AA - lm  IBAlk - l1B p Alk - lk - 1B Alk - lk + 1B p Alk - lmB

  + fAl3B AA - l1  IB AA - l2  IB AA - l4  IBAl3 - l1B Al3 - l2B Al3 - l4B + fAl4B AA - l1  IB AA - l2  IB AA - l3  IBAl4 - l1B Al4 - l2B Al4 - l3B
 f(A) = fAl1B AA - l2  IB AA - l3  IB AA - l4  IBAl1 - l2B Al1 - l3B Al1 - l4B + fAl2B AA - l1  IB AA - l3  IB AA - l4  IBAl2 - l1B Al2 - l3B Al2 - l4B
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In the present case we have

(9–106)

By substituting l1 ,l4 , p ,lm for l in Equation (9–106), we obtain the following m-2 equations:

(9–107)

By differentiating Equation (9–106) with respect to l, we obtain

(9–108)

where

Substitution of l1 for l in Equation (9–108) gives

Referring to Equation (9–105), this last equation becomes

(9–109)

Similarly, differentiating Equation (9–106) twice with respect to l and substituting l1 for l, we
obtain

This last equation can be written as

(9–110)

Rewriting Equations (9–110), (9–109), and (9–107), we get

(9–111)

a0 + a1 lm + a2 l2
m + p + am - 1 lm - 1

m = fAlmB�

�

�

a0 + a1 l4 + a2 l2
4 + p + am - 1 lm - 1

4 = fAl4Ba0 + a1 l1 + a2 l2
1 + p + am - 1 lm - 1

1 = fAl1Ba1 + 2a2 l1 + p + (m - 1)am - 1 lm - 2
1 = f¿Al1B

a2 + 3a3 l1 + p +
(m - 1)(m - 2)

2
am - 1 lm - 3

1 =
f–Al1B

2

f–Al1B = 2a2 + 6a3 l1 + p + (m - 1)(m - 2)am - 1 lm - 3
1

d2

d2l
f(l) 2

l=l1

= f–Al1B =
d2

dl2 a(l) 2
l=l1

f¿Al1B = a1 + 2a2 l1 + p + (m - 1)am - 1 lm - 2
1

d

dl
f(l) 2

l=l1

= f¿Al1B =
d

dl
a(l) 2

l=l1

Al - l1B2h(l) =
d

dl
 Cg(l)Al - l1B3Al - l4B p Al - lmB D

d

dl
f(l) = Al - l1B2h(l) +

d

dl
a(l)

fAlmB = aAlmB�

�

�

fAl4B = aAl4BfAl1B = aAl1B
 = g(l) C Al - l1B3Al - l4B p Al - lmB D + a(l)

 f(l) = g(l)f(l) + a(l)
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These m simultaneous equations determine the ak values (where k=0, 1, 2, p , m-1). Noting
that f(A)=0 because it is a minimal polynomial, we have f(A) as follows:

Hence, referring to Equation (9–105), we have

(9–112)

where the ak values are given in terms of f Al1 B , f¿ Al1 B , f– Al1 B , f Al4 B , f Al5 B , p , f Alm B . In terms of
the determinant equation, f(A) can be obtained by solving the following equation:

(9–113)

Equation (9–113) shows the desired modification in the form of the determinant. This equation
gives the form of Sylvester’s interpolation formula when the minimal polynomial of A involves
three equal roots. (The necessary modification of the form of the determinant for other cases will
be apparent.)

A–9–14. Using Sylvester’s interpolation formula, compute eAt, where

Solution. Referring to Problem A–9–9, the characteristic polynomial and the minimal polynomial
are the same for this A. The minimal polynomial (characteristic polynomial) is given by

Note that l1=l2=2 and l3=1. Referring to Equation (9–112) and noting that f(A) in this
problem is eAt, we have

where a0(t), a1(t), and a2(t) are determined from the equations

 a0(t) + a1(t)l3 + a2(t)l2
3 = el3 t

 a0(t) + a1(t)l1 + a2(t)l2
1 = el1 t

 a1(t) + 2a2(t)l1 = tel1 t

eAt = a0(t) I + a1(t) A + a2(t) A2

f(l) = (l - 2)2(l - 1)

A = C2

0

0

1

2

3

4

0

1

S

f–Al1B
2

f¿Al1B
fAl1B
fAl4B

�

�

�

fAlmB
f(A)

 = 0

0

0
1
1
�

�

�

1
I

0

1
l1

l4

�

�

�

lm

A

1

2l1

l2
1

l2
4

�

�

�

l2
m

A2

3l1

3l2
1

l3
1

l3
4

�

�

�

l3
m

A3

p

p
p
p

p
p

(m - 1)(m - 2)

2
lm - 3

1

(m - 1)lm - 2
1

lm - 1
1

lm - 1
4

�

�

�

lm - 1
m

Am - 1

f(A) = a(A) = a0  I + a1  A + a2  A2 + p + am - 1  Am - 1

f(A) = g(A)f(A) + a(A) = a(A)
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Substituting l1=2, and l3=1 into these three equations gives

Solving for a0(t), a1(t), and a2(t), we obtain

Hence,

A–9–15. Show that the system described by

(9–114)

(9–115)

where

is completely output controllable if and only if the composite m*nr matrix P, where

is of rank m. (Notice that complete state controllability is neither necessary nor sufficient for
complete output controllability.)

Solution. Suppose that the system is output controllable and the output y(t) starting from any y(0),
the initial output, can be transferred to the origin of the output space in a finite time interval
0 � t � T. That is,

(9–116)y(T) = Cx(T) = 0

P = CCB � CAB � CA2 B � p � CAn - 1 B D
 C = m * n matrix

 B = n * r matrix

 A = n * n matrix

 y = output vector (m-vector) (m � n)

 u = control vector (r-vector)

 x = state vector (n-vector)

y = Cx

x# = Ax + Bu

 = C e2 t

0

0

12et - 12e2 t + 13te2 t

e2 t

-3et + 3e2 t

-4et + 4e2 t

0

et

S
 + Aet - e2 t + te2 tB C4

0

0

16

4

9

12

0

1

S
 eAt = A4et - 3e2 t + 2te2 tB C1

0

0

0

1

0

0

0

1

S + A-4et + 4e2 t - 3te2 tB C2

0

0

1

2

3

4

0

1

S
 a2(t) = et - e2 t + te2 t

a1(t) = -4et + 4e2 t - 3te2 t

 a0(t) = 4et - 3e2t + 2te2 t

 a0(t) + a1(t) + a2(t) = et

 a0(t) + 2a1(t) + 4a2(t) = e2 t

 a1(t) + 4a2(t) = te2 t
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Since the solution of Equation (9–114) is

at t=T, we have

(9–117)

Substituting Equation (9–117) into Equation (9–116), we obtain

(9–118)

On the other hand, y(0)=Cx(0). Notice that the complete output controllability means that the
vector Cx(0) spans the m-dimensional output space. Since eAT is nonsingular, if Cx(0) spans the
m-dimensional output space, so does CeATx(0), and vice versa. From Equation (9–118) we obtain

Note that can be expressed as the sum of AiBj ; that is,

where

and ai(t) satisfies

(p: degree of the minimal polynomial of A)

and Bj is the jth column of B. Therefore, we can write CeATx(0) as

From this last equation, we see that is a linear combination of CAiBj (i=0, 1, 2, p ,
p-1; j=1, 2, p , r). Note that if the rank of Q, where

is m, then so is the rank of P, and vice versa. [This is obvious if p=n. If p<n, then the CAhBj

(where p � h � n-1) are linearly dependent on CBj , CABj , p , CAp-1Bj . Hence, the rank of

Q = CCB � CAB � CA2 B � p � CAp - 1 B D  (p � n)

CeAT x(0)

CeAT x(0) = -a
p - 1

i = 0
a

r

j = 1
gi j  CAi Bj

eAt = a
p - 1

i = 0
ai(t) Ai

gi j = 3
T

0
ai(t)uj(T - t) dt = scalar

3
T

0
eAt Bu(T - t) dt = a

p - 1

i = 0
a

r

j = 1
gi j  Ai Bj

1T
0 eAt Bu(T - t) dt

 = -  C3
T

0
eAt Bu(T - t) dt

 CeAT x(0) = -  CeAT

3
T

0
e-At Bu(t) dt

 = CeAT cx(0) + 3
T

0
e-  At Bu(t) dt d = 0

 y(T) = Cx(T)

x(T) = eAT cx(0) + 3
T

0
e-  At Bu(t) dt d

x(t) = eAt cx(0) + 3
t

0
e-  At Bu(t) dt d



716 Chapter 9 / Control Systems Analysis in State Space

P is equal to that of Q.] If the rank of P is m, then CeATx(0) spans the m-dimensional output
space.This means that if the rank of P is m, then Cx(0) also spans the m-dimensional output space
and the system is completely output controllable.

Conversely, suppose that the system is completely output controllable, but the rank of P is k,
where k<m. Then the set of all initial outputs that can be transferred to the origin is of
k-dimensional space. Hence, the dimension of this set is less than m. This contradicts the as-
sumption that the system is completely output controllable. This completes the proof.

Note that it can be immediately proved that, in the system of Equations (9–114) and (9–115),
complete state controllability on 0 � t � T implies complete output controllability on 0 � t � T
if and only if m rows of C are linearly independent.

A–9–16. Discuss the state controllability of the following system:

(9–119)

Solution. For this system,

Since

we see that vectors B and AB are not linearly independent and the rank of the matrix [B�AB]
is 1. Therefore, the system is not completely state controllable. In fact, elimination of x2 from
Equation (9–119), or the following two simultaneous equations,

yields

or, in the form of a transfer function,

Notice that cancellation of the factor (s+2.5) occurs in the numerator and denominator of the
transfer function. Because of this cancellation, this system is not completely state controllable.
This is an unstable system. Remember that stability and controllability are quite different things.
There are many systems that are unstable, but are completely state controllable.

A–9–17. A state-space representation of a system in the controllable canonical form is given by

(9–120)

(9–121)y = [0.8 1]Bx1

x2
R

Bx
#
1

x
#
2
R = B 0

-0.4
1

-1.3
R Bx1

x2
R + B0

1
R u

X1(s)

U(s)
=

s + 2.5

(s + 2.5)(s - 1)

x
$

1 + 1.5x
#
1 - 2.5x1 = u

# + 2.5u

x
#
2 = -2x1 + 1.5x2 + 4u

x
#
1 = -3x1 + x2 + u

AB = B-3

-2

1

1.5
R B1

4
R = B1

4
R

A = B-3

-2

1

1.5
R ,  B = B1

4
R

Bx
#
1

x
#
2
R = B-3

-2

1

1.5
R Bx1

x2
R + B1

4
R u
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The same system may be represented by the following state-space equation, which is in the
observable canonical form:

(9–122)

(9–123)

Show that the state-space representation given by Equations (9–120) and (9–121) gives a sys-
tem that is state controllable, but not observable. Show, on the other hand, that the state-space rep-
resentation defined by Equations (9–122) and (9–123) gives a system that is not completely state
controllable, but is observable. Explain what causes the apparent difference in the controllability
and observability of the same system.

Solution. Consider the system defined by Equations (9–120) and (9–121). The rank of the
controllability matrix

is 2. Hence, the system is completely state controllable. The rank of the observability matrix

is 1. Hence the system is not observable.
Next consider the system defined by Equations (9–122) and (9–123). The rank of the

controllability matrix

is 1. Hence, the system is not completely state controllable. The rank of the observability matrix

is 2. Hence, the system is observable.
The apparent difference in the controllability and observability of the same system is caused

by the fact that the original system has a pole-zero cancellation in the transfer function. Referring
to Equation (2–29), for D=0 we have

If we use Equations (9–120) and (9–121), then

[Note that the same transfer function can be obtained by using Equations (9–122) and (9–123).]
Clearly, cancellation occurs in this transfer function.

 =
s + 0.8

(s + 0.8)(s + 0.5)

 =
1

s2 + 1.3s + 0.4
[0.8 1]B s + 1.3

-0.4

1

s
R B0

1
R

 G(s) = [0.8 1]B s

0.4

-1

s + 1.3
R -1B0

1
R

G(s) = C(s I - A)-1 B

[C* � A* C*] = B0

1

1

-1.3
R

[B � AB] = B0.8

1

-0.4

-0.5
R

[C* � A* C*] = B0.8

1

-0.4

-0.5
R

[B � AB] = B0

1

1

-1.3
R

y = [0 1]Bx1

x2
R

Bx
#
1

x
#
2
R = B0

1
-0.4
-1.3
R Bx1

x2
R + B0.8

1
R u
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If a pole-zero cancellation occurs in the transfer function, then the controllability and observability
vary, depending on how the state variables are chosen. Remember that, to be completely state con-
trollable and observable, the transfer function must not have any pole-zero cancellations.

A–9–18. Prove that the system defined by

where

is completely observable if and only if the composite mn*n matrix P, where

is of rank n.

Solution. We shall first obtain the necessary condition. Suppose that

Then there exists x(0) such that

or

Hence, we obtain, for a certain x(0),

Notice that from Equation (9–48) or (9–50), we have

where m(m � n) is the degree of the minimal polynomial for A. Hence, for a certain x(0), we have

CeAt x(0) = C Ca0(t) I + a1(t) A + a2(t) A2 + p + am - 1(t) Am - 1 D  x(0) = 0

eAt = a0(t) I + a1(t) A + a2(t) A2 + p + am - 1(t) Am - 1

CAi x(0) = 0,  for i = 0, 1, 2, p , n - 1

Px(0) = F
C

CA
�

�

�

CAn - 1

V x(0) = F
Cx(0)

CAx(0)

�

�

�

CAn - 1 x(0)

V = 0

Px(0) = 0

rank P 6 n

P = F
C

CA
�

�

�

CAn - 1

V

 C = m * n matrix
 A = n * n matrix
 y = output vector (m-vector)  (m � n)

 x = state vector (n-vector)

y = Cx

x# = Ax
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Consequently, for a certain x(0),

which implies that, for a certain x(0), x(0) cannot be determined from y(t). Therefore, the rank
of matrix P must be equal to n.

Next we shall obtain the sufficient condition. Suppose that rank P=n. Since

by premultiplying both sides of this last equation by eA*tC*, we get

If we integrate this last equation from 0 to t, we obtain

(9–124)

Notice that the left-hand side of this equation is a known quantity. Define

(9–125)

Then, from Equations (9–124) and (9–125), we have

(9–126)

where

It can be established that W(t) is a nonsingular matrix as follows: If @W(t) @ were equal to 0, then

which means that

which implies that rank P<n. Therefore, @W(t) @ Z 0, or W(t) is nonsingular. Then, from Equa-
tion (9–126), we obtain

(9–127)

and x(0) can be determined from Equation (9–127).
Hence, we have proved that x(0) can be determined from y(t) if and only if rank P=n. Note

that x(0) and y(t) are related by

y(t) = CeAt x(0) = a0(t) Cx(0) + a1(t) CAx(0) + p + an - 1(t) CAn - 1 x(0)

x(0) = CW(t) D-1 Q(t)

CeAt x = 0,  for 0 � t � t1

x* WAt1B  x = 3
t1

0
7CeAt x 7 2 dt = 0

W(t) = 3
t

0
eA*t C*CeAt dt

Q(t) = W(t) x(0)

Q(t) = 3
t

0
eA*t C* y(t) dt = known quantity

3
t

0
eA*t C* y(t) dt = 3

t

0
eA*t C* CeAt x(0) dt

eA*t C* y(t) = eA*t C* CeAt x(0)

y(t) = CeAt x(0)

y(t) = Cx(t) = CeAt x(0) = 0
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PROBLEMS

B–9–1. Consider the following transfer-function system:

Obtain the state-space representation of this system in (a)
controllable canonical form and (b) observable canonical
form.

B–9–2. Consider the following system:

Obtain a state-space representation of this system in a di-
agonal canonical form.

B–9–3. Consider the system defined by

where

Transform the system equations into the controllable canon-
ical form.

B–9–4. Consider the system defined by

where

Obtain the transfer function Y(s)/U(s).

B–9–5. Consider the following matrix A:

Obtain the eigenvalues l1 , l2 , l3 , and l4 of the matrix A.
Then obtain a transformation matrix P such that

P-1 AP = diagAl1 , l2 , l3 , l4B

A = D0

0

0

1

1

0

0

0

0

1

0

0

0

0

1

0

T

A = C-1
1
0

0
-2

0

1
0

-3
S ,  B = C0

0
1
S ,  C = [1 1 0]

y = Cx

x# = Ax + Bu

A = B 1
-4

2
-3
R ,  B = B1

2
R ,  C = [1 1]

y = Cx

x# = Ax + Bu

y
% + 6y

$ + 11y
# + 6y = 6u

Y(s)

U(s)
=

s + 6

s2 + 5s + 6

B–9–6. Consider the following matrix A:

Compute eAt by three methods.

B–9–7. Given the system equation

find the solution in terms of the initial conditions x1(0),
x2(0), and x3(0).

B–9–8. Find x1(t) and x2(t) of the system described by

where the initial conditions are

B–9–9. Consider the following state equation and output
equation:

Show that the state equation can be transformed into the
following form by use of a proper transformation matrix:

Then obtain the output y in terms of z1, z2 , and z3 .

B–9–10. Obtain a state-space representation of the follow-
ing system with MATLAB:

Y(s)

U(s)
=

10.4s2 + 47s + 160

s3 + 14s2 + 56s + 160

C z
#
1

z
#
2

z
#
3

S = C0

1

0

0

0

1

-6

-11

-6

S C z1

z2

z3

S + C1

0

0

S u

 y = [1 0 0]Cx1

x2

x3

S
 Cx

#
1

x
#
2

x
#
3

S = C -6

-11

-6

1

0

0

0

1

0

S Cx1

x2

x3

S + C2

6

2

S u

Bx1(0)

x2(0)
R = B 1

-1
R

Bx
#
1

x
#
2
R = B 0

-3

1

-2
R Bx1

x2
R

Cx
#
1

x
#
2

x
#
3

S = C2

0

0

1

2

0

0

1

2

S Cx1

x2

x3

S

A = B 0

-2

1

-3
R
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B–9–11. Obtain a transfer-function representation of the
following system with MATLAB:

B–9–12. Obtain a transfer-function representation of the
following system with MATLAB:

B–9–13. Consider the system defined by

Is the system completely state controllable and completely
observable?

B–9–14. Consider the system given by

Is the system completely state controllable and completely
observable? Is the system completely output controllable?

 By1

y2
R = B 1

0

0

1

0

0
R Cx1

x2

x3

S
 Cx

#
1

x
#
2

x
#
3

S = C 2

0

0

0

2

3

0

0

1

S Cx1

x2

x3

S + C0

1

0

1

0

1

S Bu1

u2
R

 y = [1 1 0]Cx1

x2

x3

S
Cx

#
1

x
#
2

x
#
3

S = C-1
0
1

-2
-1

0

-2
1

-1
S Cx1

x2

x3

S + C2
0
1
S u

 y = [1 0 0]Cx1

x2

x3

S
 Cx

#
1

x
#
2

x
#
3

S = C 2

0

0

1

2

1

0

0

3

S Cx1

x2

x3

S + C0

1

0

1

0

1

S Bu1

u2
R

 y = [0 0 1]Cx1

x2

x3

S
 Cx

#
1

x
#
2

x
#
3

S = C 0

-1

1

1

-1

0

0

0

0

S Cx1

x2

x3

S + C0

1

0

S u

B–9–15. Is the following system completely state control-
lable and completely observable?

B–9–16. Consider the system defined by

Except for an obvious choice of c1=c2=c3=0, find an
example of a set of c1 , c2 , c3 that will make the system
unobservable.

B–9–17. Consider the system

The output is given by

(a) Show that the system is not completely observable.

(b) Show that the system is completely observable if the
output is given by
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722

Control Systems Design
in State Space

10–1 INTRODUCTION

This chapter discusses state-space design methods based on the pole-placement method,
observers, the quadratic optimal regulator systems, and introductory aspects of robust
control systems.The pole-placement method is somewhat similar to the root-locus method
in that we place closed-loop poles at desired locations.The basic difference is that in the
root-locus design we place only the dominant closed-loop poles at the desired locations,
while in the pole-placement design we place all closed-loop poles at desired locations.

We begin by presenting the basic materials on pole placement in regulator systems.
We then discuss the design of state observers, followed by the design of regulator sys-
tems and control systems using the pole-placement-with-state-observer approach.Then,
we discuss the quadratic optimal regulator systems. Finally, we present an introduction
to robust control systems.

Outline of the Chapter. Section 10–1 has presented introductory material. Section
10–2 discusses the pole-placement approach to the design of control systems. We begin
with the derivation of the necessary and sufficient conditions for arbitrary pole placement.
Then we derive equations for the state feedback gain matrix K for pole placement. Section
10–3 presents the solution of the pole-placement problem with MATLAB. Section 10–4
discusses the design of servo systems using the pole-placement approach. Section 10–5
presents state observers.We discuss both full-order and minimum-order state observers.
Also, transfer functions of observer controllers are derived. Section 10–6 presents the
design of regulator systems with observers. Section 10–7 treats the design of control
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systems with observers. Section 10–8 discusses quadratic optimal regulator systems. Note
that the state feedback gain matrix K can be obtained by both the pole-placement method
and the quadratic optimal control method. Finally, Section 10–9 presents robust control
systems. The discussions here are limited to introductory subjects only.

10–2 POLE PLACEMENT

In this section we shall present a design method commonly called the pole-placement or
pole-assignment technique. We assume that all state variables are measurable and are
available for feedback. It will be shown that if the system considered is completely state
controllable, then poles of the closed-loop system may be placed at any desired locations
by means of state feedback through an appropriate state feedback gain matrix.

The present design technique begins with a determination of the desired closed-loop
poles based on the transient-response and/or frequency-response requirements, such as
speed, damping ratio, or bandwidth, as well as steady-state requirements.

Let us assume that we decide that the desired closed-loop poles are to be at s=m1 ,
s=m2 , p , s=mn. By choosing an appropriate gain matrix for state feedback, it is pos-
sible to force the system to have closed-loop poles at the desired locations, provided
that the original system is completely state controllable.

In this chapter we limit our discussions to single-input, single-output systems. That
is, we assume the control signal u(t) and output signal y(t) to be scalars. In the deriva-
tion in this section we assume that the reference input r(t) is zero. [In Section 10–7 we
discuss the case where the reference input r(t) is nonzero.]

In what follows we shall prove that a necessary and sufficient condition that the
closed-loop poles can be placed at any arbitrary locations in the s plane is that the sys-
tem be completely state controllable. Then we shall discuss methods for determining
the required state feedback gain matrix.

It is noted that when the control signal is a vector quantity, the mathematical aspects
of the pole-placement scheme become complicated. We shall not discuss such a case in
this book. (When the control signal is a vector quantity, the state feedback gain matrix
is not unique. It is possible to choose freely more than n parameters; that is, in addition
to being able to place n closed-loop poles properly, we have the freedom to satisfy some
or all of the other requirements, if any, of the closed-loop system.)

Design by Pole Placement. In the conventional approach to the design of a single-
input, single-output control system, we design a controller (compensator) such that the
dominant closed-loop poles have a desired damping ratio z and a desired undamped
natural frequency vn. In this approach, the order of the system may be raised by 1 or 2
unless pole–zero cancellation takes place. Note that in this approach we assume the ef-
fects on the responses of nondominant closed-loop poles to be negligible.

Different from specifying only dominant closed-loop poles (the conventional design
approach), the present pole-placement approach specifies all closed-loop poles. (There is
a cost associated with placing all closed-loop poles, however, because placing all closed-
loop poles requires successful measurements of all state variables or else requires the in-
clusion of a state observer in the system.) There is also a requirement on the part of the
system for the closed-loop poles to be placed at arbitrarily chosen locations.The requirement
is that the system be completely state controllable.We shall prove this fact in this section.
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Consider a control system

(10–1)

where

We shall choose the control signal to be

(10–2)

This means that the control signal u is determined by an instantaneous state. Such a
scheme is called state feedback. The 1*n matrix K is called the state feedback gain
matrix. We assume that all state variables are available for feedback. In the following
analysis we assume that u is unconstrained.A block diagram for this system is shown in
Figure 10–1.

This closed-loop system has no input. Its objective is to maintain the zero output.
Because of the disturbances that may be present, the output will deviate from zero.The
nonzero output will be returned to the zero reference input because of the state feed-
back scheme of the system. Such a system where the reference input is always zero is
called a regulator system. (Note that if the reference input to the system is always a
nonzero constant, the system is also called a regulator system.)

Substituting Equation (10–2) into Equation (10–1) gives

The solution of this equation is given by

(10–3)

where x(0) is the initial state caused by external disturbances.The stability and transient-
response characteristics are determined by the eigenvalues of matrix A-BK. If matrix

x(t) = e(A - BK)tx(0)

x# (t) = (A - BK) x(t)

u = -Kx

 D = constant (scalar)
 C = 1 * n constant matrix
 B = n * 1 constant matrix
 A = n * n constant matrix
 u = control signal (scalar)
y = output signal (scalar)
 x = state vector (n-vector)

y = Cx + Du

x# = Ax + Bu

u

A

B C

–K

�
+

+
+

+

D

xx
.

Figure 10–1
Closed-loop control
system with
u=–Kx.
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K is chosen properly, the matrix A-BK can be made an asymptotically stable matrix,
and for all x(0) Z 0, it is possible to make x(t) approach 0 as t approaches infinity. The
eigenvalues of matrix A-BK are called the regulator poles. If these regulator poles are
placed in the left-half s plane, then x(t) approaches 0 as t approaches infinity.The prob-
lem of placing the regulator poles (closed-loop poles) at the desired location is called a
pole-placement problem.

In what follows, we shall prove that arbitrary pole placement for a given system is
possible if and only if the system is completely state controllable.

Necessary and Sufficient Condition for Arbitrary Pole Placement We shall now
prove that a necessary and sufficient condition for arbitrary pole placement is that the
system be completely state controllable.We shall first derive the necessary condition.We
begin by proving that if the system is not completely state controllable, then there are
eigenvalues of matrix A-BK that cannot be controlled by state feedback.

Suppose that the system of Equation (10–1) is not completely state controllable.
Then the rank of the controllability matrix is less than n, or

This means that there are q linearly independent column vectors in the controllability
matrix. Let us define such q linearly independent column vectors as f1 , f2 , p , fq. Also,
let us choose n-q additional n-vectors vq+1, vq+2, p , vn such that

is of rank n. Then it can be shown that

(See Problem A–10–1 for the derivation of these equations.) Now define

Then we have

where Iq is a q-dimensional identity matrix and In-q is an (n-q)-dimensional identity
matrix.

= @s Iq - A11 + B11  k1 @ � @s In - q - A22 @ = 0

= 2 s Iq - A11 + B11  k1

0
-A12 + B11  k2

s In - q - A22

2= 2 s I - cA11

0
 A12

A22
d + cB11

0
d Ck1 � k2 D 2= @s I - Â + B̂K̂ @= @s I - P-1 AP + P-1 BKP @∑s I - A + BK∑ = @P-1(s I - A + BK)P @

K̂ = KP = Ck1 � k2 D
Â = P-1 AP = cA11

0
 A12

A22
d ,  B̂ = P-1B = cB11

0
d

P = C f1 � f2 � p � fq � vq + 1 � vq + 2 � p � vn D
rank CB � AB � p � An - 1 B D = q 6 n
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Notice that the eigenvalues of A22 do not depend on K. Thus, if the system is not
completely state controllable, then there are eigenvalues of matrix A that cannot be
arbitrarily placed.Therefore, to place the eigenvalues of matrix A-BK arbitrarily, the
system must be completely state controllable (necessary condition).

Next we shall prove a sufficient condition: that is, if the system is completely state
controllable, then all eigenvalues of matrix A can be arbitrarily placed.

In proving a sufficient condition, it is convenient to transform the state equation
given by Equation (10–1) into the controllable canonical form.

Define a transformation matrix T by

(10–4)

where M is the controllability matrix

(10–5)

and

(10–6)

where the ai’s are coefficients of the characteristic polynomial

Define a new state vector by

If the rank of the controllability matrix M is n (meaning that the system is completely
state controllable), then the inverse of matrix T exists, and Equation (10–1) can be
modified to

(10–7)

where

(10–8) T-1 AT = G
0

0
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�
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�
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�
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�
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p
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= T-1 ATx̂ + T-1 Bu

x = Tx̂
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�
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�
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0
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M = CB � AB � p � An - 1 B D
T = MW
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(10–9)

[See Problems A–10–2 and A–10–3 for the derivation of Equations (10–8) and (10–9).]
Equation (10–7) is in the controllable canonical form.Thus, given a state equation, Equa-
tion (10–1), it can be transformed into the controllable canonical form if the system is
completely state controllable and if we transform the state vector x into state vector 
by use of the transformation matrix T given by Equation (10–4).

Let us choose a set of the desired eigenvalues as m1 , m2 , p , mn. Then the desired
characteristic equation becomes

(10–10)

Let us write

(10–11)

When is used to control the system given by Equation (10–7), the system
equation becomes

The characteristic equation is

This characteristic equation is the same as the characteristic equation for the system,
defined by Equation (10–1), when is used as the control signal. This can be
seen as follows: Since

the characteristic equation for this system is

∑s I - A + BK∑ = @T-1(s I - A + BK) T @ = @s I - T-1 AT + T-1 BKT @ = 0

x# = Ax + Bu = (A - BK) x

u = -Kx

@s I - T-1 AT + T-1 BKT @ = 0

x̂
#

= T-1 ATx̂ - T-1 BKTx̂

u = -KTx̂

KT = Cdn dn - 1
p d1 D

As - m1B As - m2B p As - mnB = sn + a1 sn - 1 + p + an - 1 s + an = 0

x̂

T-1 B = G
0
0
�

�

�

0
1

W
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Now let us simplify the characteristic equation of the system in the controllable canonical
form. Referring to Equations (10–8), (10–9), and (10–11), we have

(10–12)

This is the characteristic equation for the system with state feedback.Therefore, it must
be equal to Equation (10–10), the desired characteristic equation. By equating the
coefficients of like powers of s, we get

Solving the preceding equations for the di’s and substituting them into Equation (10–11),
we obtain

(10–13)

Thus, if the system is completely state controllable, all eigenvalues can be arbitrarily
placed by choosing matrix K according to Equation (10–13) (sufficient condition).

We have thus proved that a necessary and sufficient condition for arbitrary pole
placement is that the system be completely state controllable.

It is noted that if the system is not completely state controllable, but is stabilizable,
then it is possible to make the entire system stable by placing the closed-loop poles at
desired locations for q controllable modes.The remaining n-q uncontrollable modes
are stable. So the entire system can be made stable.
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Determination of Matrix K Using Transformation Matrix T. Suppose that the
system is defined by

and the control signal is given by

The feedback gain matrix K that forces the eigenvalues of A-BK to be m1 ,m2 , p ,mn

(desired values) can be determined by the following steps (if mi is a complex eigenvalue,
then its conjugate must also be an eigenvalue of A-BK):

Step 1: Check the controllability condition for the system. If the system is completely
state controllable, then use the following steps:

Step 2: From the characteristic polynomial for matrix A, that is,

determine the values of a1, a2, p , an.

Step 3: Determine the transformation matrix T that transforms the system state equa-
tion into the controllable canonical form. (If the given system equation is already in the
controllable canonical form, then T=I.) It is not necessary to write the state equation
in the controllable canonical form. All we need here is to find the matrix T. The
transformation matrix T is given by Equation (10–4), or

where M is given by Equation (10–5) and W is given by Equation (10–6).

Step 4: Using the desired eigenvalues (desired closed-loop poles), write the desired
characteristic polynomial:

and determine the values of a1 , a2 , p , an.

Step 5: The required state feedback gain matrix K can be determined from Equation
(10–13), rewritten thus:

Determination of Matrix K Using Direct Substitution Method. If the system
is of low order (n � 3), direct substitution of matrix K into the desired characteristic
polynomial may be simpler. For example, if n=3, then write the state feedback gain
matrix K as

Substitute this K matrix into the desired characteristic polynomial and
equate it to As-m1 B As-m2 B As-m3 B , or

∑s I - A + BK∑ = As - m1B As - m2B As - m3B
∑s I - A + BK∑

K = Ck1 k2 k3 D

K = Can - an � an - 1 - an - 1 � p � a2 - a2 � a1 - a1 D  T-1

As - m1B As - m2B p As - mnB = sn + a1 sn - 1 + p + an - 1 s + an

T = MW

∑s I - A∑ = sn + a1 sn - 1 + p + an - 1 s + an

u = -Kx

x# = Ax + Bu
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Since both sides of this characteristic equation are polynomials in s, by equating the
coefficients of the like powers of s on both sides, it is possible to determine the values
of k1, k2, and k3. This approach is convenient if n=2 or 3. (For n=4, 5, 6, p , this
approach may become very tedious.)

Note that if the system is not completely controllable, matrix K cannot be determined.
(No solution exists.)

Determination of Matrix K Using Ackermann’s Formula. There is a well-known
formula, known as Ackermann’s formula, for the determination of the state feedback
gain matrix K. We shall present this formula in what follows.

Consider the system

where we use the state feedback control u=–Kx. We assume that the system is
completely state controllable. We also assume that the desired closed-loop poles are at
s=m1 , s=m2 , p , s=mn.

Use of the state feedback control

modifies the system equation to

(10–14)

Let us define

The desired characteristic equation is

Since the Cayley–Hamilton theorem states that satisfies its own characteristic
equation, we have

(10–15)

We shall utilize Equation (10–15) to derive Ackermann’s formula. To simplify the
derivation, we consider the case where n=3. (For any other positive integer n, the
following derivation can be easily extended.)

Consider the following identities:

 A
� 3 = (A - BK)3 = A3 - A2 BK - ABKA

� - BKA
� 2

 A
� 2 = (A - BK)2 = A2 - ABK - BKA

�
 A
� = A - BK

 I = I

fAA� B = A
� n + a1  A� n - 1 + p + an - 1  A� + an  I = 0

A
�

 = sn + a1 sn - 1 + p + an - 1 s + an = 0

 ∑s I - A + BK∑ = @s I - A
� @ = As - m1B As - m2B p As - mnB

A
� = A - BK

x# = (A - BK) x

u = -Kx

x# = Ax + Bu
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Multiplying the preceding equations in order by a3 , a2 , a1 , and a0 (where a0=1),
respectively, and adding the results, we obtain

(10–16)

Referring to Equation (10–15), we have

Also, we have

Substituting the last two equations into Equation (10–16), we have

Since we obtain

(10–17)

Since the system is completely state controllable, the inverse of the controllability matrix

exists. Premultiplying both sides of Equation (10–17) by the inverse of the controllability
matrix, we obtain

Premultiplying both sides of this last equation by [0 0 1], we obtain

which can be rewritten as

This last equation gives the required state feedback gain matrix K.
For an arbitrary positive integer n, we have

(10–18)K = [0 0 p 0 1] CB � AB � p � An - 1 B D-1
f(A)

K = [0 0 1] CB � AB � A2 B D-1
f(A)

[0 0 1] CB � AB � A2 B D-1
f(A) = [0 0 1]Ca2  K + a1  KA

� + KA
� 2

a1  K + KA
�

K
S = K
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f(A) = Ca2  K + a1  KA

� + KA
� 2

a1  K + KA
�

K
S

CB � AB � A2 B D
= CB � AB � A2 B D Ca2  K + a1  KA

� + KA
� 2

a1  K + KA
�

K
S

f(A) = BAa2  K + a1  KA
� + KA

� 2B + ABAa1  K + KA
� B + A2 BK

fAA� B = 0,

fAA� B = f(A) - a2  BK - a1  BKA
� - BKA

� 2 - a1  ABK - ABKA
� - A2 BK

a3  I + a2  A + a1  A2 + A3 = f(A) Z 0

a3  I + a2  A� + a1  A� 2 + A
� 3 = fAA� B = 0

 - ABKA
� - BKA

� 2

 = a3  I + a2  A + a1  A2 + A3 - a2  BK - a1  ABK - a1  BKA
� - A2 BK
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Figure 10–2
Regulator system.

Equation (10–18) is known as Ackermann’s formula for the determination of the state
feedback gain matrix K.

Regulator Systems and Control Systems. Systems that include controllers can
be divided into two categories: regulator systems (where the reference input is constant,
including zero) and control systems (where the reference input is time varying). In what
follows we shall consider regulator systems. Control systems will be treated in Section
10–7.

Choosing the Locations of Desired Closed-Loop Poles. The first step in the
pole-placement design approach is to choose the locations of the desired closed-loop
poles. The most frequently used approach is to choose such poles based on experience
in the root-locus design, placing a dominant pair of closed-loop poles and choosing other
poles so that they are far to the left of the dominant closed-loop poles.

Note that if we place the dominant closed-loop poles far from the jv axis, so that the
system response becomes very fast, the signals in the system become very large, with
the result that the system may become nonlinear. This should be avoided.

Another approach is based on the quadratic optimal control approach.This approach
will determine the desired closed-loop poles such that it balances between the acceptable
response and the amount of control energy required. (See Section 10–8.) Note that
requiring a high-speed response implies requiring large amounts of control energy.Also,
in general, increasing the speed of response requires a larger, heavier actuator, which will
cost more.

EXAMPLE 10–1 Consider the regulator system shown in Figure 10–2. The plant is given by

where

The system uses the state feedback control u=–Kx. Let us choose the desired closed-loop poles
at

(We make such a choice because we know from experience that such a set of closed-loop poles
will result in a reasonable or acceptable transient response.) Determine the state feedback gain
matrix K.

s = -2 + j4,  s = -2 - j4,  s = -10

A = C 0

0

-1

1

0

-5

0

1

-6

S ,  B = C0

0

1

S
x# = Ax + Bu
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First, we need to check the controllability matrix of the system. Since the controllability matrix
M is given by

we find that |M|=–1, and therefore, rank M=3. Thus, the system is completely state control-
lable and arbitrary pole placement is possible.

Next, we shall solve this problem.We shall demonstrate each of the three methods presented
in this chapter.

Method 1: The first method is to use Equation (10–13).The characteristic equation for the system is

Hence,

The desired characteristic equation is

Hence,

Referring to Equation (10–13), we have

where T=I for this problem because the given state equation is in the controllable canonical form.
Then we have

Method 2: By defining the desired state feedback gain matrix K as

and equating with the desired characteristic equation, we obtain

= s3 + 14s2 + 60s + 200
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0
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S Ck1 k2 k3 D 3
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K = Ck1 k2 k3 D
 = [199 55 8]

 K = [200 - 1 � 60 - 5 � 14 - 6]

K = Ca3 - a3 � a2 - a2 � a1 - a1 D  T-1

a1 = 14,  a2 = 60,  a3 = 200

 = s3 + a1 s2 + a2 s + a3 = 0

 (s + 2 - j4)(s + 2 + j4)(s + 10) = s3 + 14s2 + 60s + 200

a1 = 6,  a2 = 5,  a3 = 1

= s3 + a1 s2 + a2 s + a3 = 0

= s3 + 6s2 + 5s + 1
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0
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Thus,

from which we obtain

or

Method 3: The third method is to use Ackermann’s formula. Referring to Equation (10–18), we
have

Since

and

we obtain

As a matter of course, the feedback gain matrix K obtained by the three methods are the same.
With this state feedback, the closed-loop poles are placed at s=–2 ; j4 and s=–10, as desired.

It is noted that if the order n of the system were 4 or higher, methods 1 and 3 are recom-
mended, since all matrix computations can be carried out by a computer. If method 2 is used,
hand computations become necessary because a computer may not handle the characteristic
equation with unknown parameters k1, k2, p , kn.
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-1

1

0

-5

0

1

-6

S + 200C1

0

0

0

1

0

0

0

1

S
 = C 0

0

-1

1

0

-5

0

1

-6

S 3

+ 14C 0

0

-1

1

0

-5

0

1

-6

S 2

 f(A) = A3 + 14 A2 + 60 A + 200 I

K = [0 0 1] CB � AB � A2 B D-1
f(A)

K = [199 55 8]

k1 = 199,  k2 = 55,  k3 = 8

6 + k3 = 14,  5 + k2 = 60,  1 + k1 = 200
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Comments. It is important to note that matrix K is not unique for a given system,
but depends on the desired closed-loop pole locations (which determine the speed and
damping of the response) selected. Note that the selection of the desired closed-loop
poles or the desired characteristic equation is a compromise between the rapidity of the
response of the error vector and the sensitivity to disturbances and measurement nois-
es. That is, if we increase the speed of error response, then the adverse effects of distur-
bances and measurement noises generally increase. If the system is of second order,
then the system dynamics (response characteristics) can be precisely correlated to the
location of the desired closed-loop poles and the zero(s) of the plant. For higher-order
systems, the location of the closed-loop poles and the system dynamics (response char-
acteristics) are not easily correlated. Hence, in determining the state feedback gain ma-
trix K for a given system, it is desirable to examine by computer simulations the response
characteristics of the system for several different matrices K (based on several different
desired characteristic equations) and to choose the one that gives the best overall system
performance.

10–3 SOLVING POLE-PLACEMENT PROBLEMS WITH MATLAB

Pole-placement problems can be solved easily with MATLAB. MATLAB has two
commands—acker and place—for the computation of feedback-gain matrix K. The
command acker is based on Ackermann’s formula.This command applies to single-input
systems only.The desired closed-loop poles can include multiple poles (poles located at
the same place).

If the system involves multiple inputs, for a specified set of closed-loop poles the
state-feedback gain matrix K is not unique and we have an additional freedom (or free-
doms) to choose K. There are many approaches to constructively utilize this additional
freedom (or freedoms) to determine K. One common use is to maximize the stability
margin.The pole placement based on this approach is called the robust pole placement.
The MATLAB command for the robust pole placement is place.

Although the command place can be used for both single-input and multiple-input
systems, this command requires that the multiplicity of poles in the desired closed-loop
poles be no greater than the rank of B. That is, if matrix B is an n*1 matrix, the
command place requires that there be no multiple poles in the set of desired closed-
loop poles.

For single-input systems, the commands acker and place yield the same K. (But for
multiple-input systems, one must use the command place instead of acker.)

It is noted that when the single-input system is barely controllable, some computa-
tional problem may occur if the command acker is used. In such a case the use of the
place command is preferred, provided that no multiple poles are involved in the de-
sired set of closed-loop poles.

To use the command acker or place, we first enter the following matrices in the
program:

A matrix, B matrix, J matrix

where J matrix is the matrix consisting of the desired closed-loop poles such that

J = Cm1 m2 p  mn D
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Then we enter

K = acker(A,B,J)

or

K = place(A,B,J)

It is noted that the command eig (A-B*K) may be used to verify that K thus obtained
gives the desired eigenvalues.

EXAMPLE 10–2 Consider the same system as treated in Example 10–1. The system equation is

where

By using state feedback control it is desired to have the closed-loop poles at s=mi

(i=1, 2, 3), where

Determine the state feedback-gain matrix K with MATLAB.
MATLAB programs that generate matrix K are shown in MATLAB Programs 10–1 and 10–2.

MATLAB Program 10–1 uses command acker and MATLAB Program 10–2 uses command place.

m1 = -2 + j4,  m2 = -2 - j4,  m3 = -10

u = -Kx,

A = C 0

0

-1

1

0

-5

0

1

-6

S ,  B = C0

0

1

S
x# = Ax + Bu

MATLAB Program 10–1

A = [0  1  0;0  0  1;-1  -5  -6];
B = [0;0;1];
J = [-2+j*4  -2-j*4  -10];
K = acker(A,B,J)

K =

199    55    8

MATLAB Program 10–2

A = [0  1  0;0  0  1;-1  -5  -6];
B = [0;0;1];
J = [-2+j*4  -2-j*4  -10];
K = place(A,B,J)
place: ndigits = 15

K =

199.0000    55.0000    8.0000
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EXAMPLE 10–3 Consider the same system as discussed in Example 10–1. It is desired that this regulator system
have closed-loop poles at

The necessary state feedback gain matrix K was obtained in Example 10–1 as follows:

Using MATLAB, obtain the response of the system to the following initial condition:

Response to Initial Condition: To obtain the response to the given initial condition x(0), we
substitute u=–Kx into the plant equation to get

To plot the response curves (x1 versus t, x2 versus t, and x3 versus t), we may use the command
initial. We first define the state-space equations for the system as follows:

where we included u (a three-dimensional input vector). This u vector is considered 0 in the
computation of the response to the initial condition. Then we define

sys = ss(A - BK, eye(3), eye(3), eye(3))

and use the initial command as follows:

x = initial(sys, [1;0;0],t)

where t is the time duration we want to use, such as

t = 0:0.01:4;

Then obtain x1, x2, and x3 as follows:

x1 = [1  0  0]*x';

x2 = [0  1  0]*x';

x3 = [0  0  1]*x';

and use the plot command. This program is shown in MATLAB Program 10–3. The resulting
response curves are shown in Figure 10–3.

y = Ix + Iu

x# = (A - BK) x + Iu

x# = (A - BK) x,  x(0) = C1

0

0

S

x(0) = C1

0

0

S
K = [199 55 8]

s = -2 + j4,  s = -2 - j4,  s = -10
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Response to Initial Condition

st
at

e 
va

ri
ab

le
 x

1

−0.5
0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

st
at

e 
va

ri
ab

le
 x

2

−3

−1

−2

0

1

st
at

e 
va

ri
ab

le
 x

3

−10

0

−5

5

10

t (sec)

Figure 10–3
Response to initial
condition.

MATLAB Program 10–3

% Response to initial condition:

A = [0  1  0;0  0  1;-1  -5  -6];
B = [0;0;1];
K = [199  55  8];
sys = ss(A-B*K, eye(3), eye(3), eye(3));
t = 0:0.01:4;
x = initial(sys,[1;0;0],t);
x1 = [1  0  0]*x';
x2 = [0  1  0]*x';
x3 = [0  0  1]*x';

subplot(3,1,1); plot(t,x1), grid
title('Response to Initial Condition')
ylabel('state variable x1')

subplot(3,1,2); plot(t,x2),grid
ylabel('state variable x2')

subplot(3,1,3); plot(t,x3),grid
xlabel('t (sec)')
ylabel('state variable x3')



Section 10–4 / Design of Servo Systems 739

x = Ax + Bu
.

y = Cx

x2

x3

xn

k2

k1

k3

kn

r

…

u

x
y = x1

+
–

+
–

Figure 10–4
Type 1 servo system
when the plant has
an integrator.

10–4 DESIGN OF SERVO SYSTEMS

In this section we shall discuss the pole-placement approach to the design of type 1
servo systems. Here we shall limit our systems each to have a scalar control signal u and
a scalar output y.

In what follows we shall first discuss a problem of designing a type 1 servo system
when the plant involves an integrator.Then we shall discuss the design of a type 1 servo
system when the plant has no integrator.

Design of Type 1 Servo System when the Plant Has An Integrator. Assume
that the plant is defined by

(10–19)

(10–20)

where

As stated earlier, we assume that both the control signal u and the output signal y are
scalars. By a proper choice of a set of state variables, it is possible to choose the output
to be equal to one of the state variables. ASee the method presented in Chapter 2 for
obtaining a state-space representation of the transfer function system in which the output
y becomes equal to x1. B

Figure 10–4 shows a general configuration of the type 1 servo system when the plant
has an integrator. Here we assumed that y=x1. In the present analysis we assume that

 C = 1 * n constant matrix

 B = n * 1 constant matrix

 A = n * n constant matrix

 y = output signal (scalar)

 u = control signal (scalar)

 x = state vector for the plant (n-vector)

 y = Cx

 x# = Ax + Bu
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the reference input r is a step function. In this system we use the following state-feedback
control scheme:

(10–21)

where

Assume that the reference input (step function) is applied at t=0. Then, for t>0, the
system dynamics can be described by Equations (10–19) and (10–21), or

(10–22)

We shall design the type 1 servo system such that the closed-loop poles are located at
desired positions. The designed system will be an asymptotically stable system, y(q)
will approach the constant value r, and u(q) will approach zero. (r is a step input.)

Notice that at steady state we have

(10–23)

Noting that r(t) is a step input, we have r(q)=r(t)=r(constant) for t>0. By
subtracting Equation (10–23) from Equation (10–22), we obtain

(10–24)

Define

Then Equation (10–24) becomes

(10–25)

Equation (10–25) describes the error dynamics.
The design of the type 1 servo system here is converted to the design of an asymp-

totically stable regulator system such that e(t) approaches zero, given any initial condi-
tion e(0). If the system defined by Equation (10–19) is completely state controllable,
then, by specifying the desired eigenvalues m1 ,m2 , p ,mn for the matrix A-BK, matrix
K can be determined by the pole-placement technique presented in Section 10–2.

The steady-state values of x(t) and u(t) can be found as follows: At steady state
(t=q), we have, from Equation (10–22),

x# (q) = 0 = (A - BK) x(q) + Bk1 r

e# = (A - BK) e

x(t) - x(q) = e(t)

x# (t) - x# (q) = (A - BK) Cx(t) - x(q) D
x# (q) = (A - BK) x(q) + Bk1 r(q)

x# = Ax + Bu = (A - BK) x + Bk1 r

K = Ck1 k2
p kn D

= -Kx + k1 r

u = - C0 k2 k3
p kn D F

x1

x2

�

�

�

xn

V + k1Ar - x1B
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Since the desired eigenvalues of A-BK are all in the left-half s plane, the inverse of
matrix A-BK exists. Consequently, x(q) can be determined as

Also, u(q) can be obtained as

(See Example 10–4 to verify this last equation.)

EXAMPLE 10–4 Design a type 1 servo system when the plant transfer function has an integrator.Assume that the
plant transfer function is given by

The desired closed-loop poles are and s=–10. Assume that the system
configuration is the same as that shown in Figure 10–4 and the reference input r is a step function.
Obtain the unit-step response of the designed system.

Define state variables x1, x2, and x3 as follows:

Then the state-space representation of the system becomes

(10–26)

(10–27)
where

Referring to Figure 10–4 and noting that n=3, the control signal u is given by

(10–28)
where

The state-feedback gain matrix K can be obtained easily with MATLAB. See MATLAB 
Program 10–4.

K = Ck1 k2 k3 D
u = - Ak2 x2 + k3 x3B + k1Ar - x1B = -Kx + k1 r

A = C0

0

0

1

0

-2

0

1

-3

S ,  B = C0

0

1

S ,  C = [1 0 0]

 y = Cx

 x# = Ax + Bu

 x3 = x
#
2

 x2 = x
#
1

 x1 = y

s = -2 ; j213

Y(s)

U(s)
=

1

s(s + 1)(s + 2)

u(q) = -Kx(q) + k1 r = 0

x(q) = -(A - BK)-1 Bk1 r

MATLAB Program 10–4

A = [0  1  0;0  0  1;0  -2  -3];
B = [0;0;1];
J = [-2+j*2*sqrt(3)  -2-j*2*sqrt(3)  -10];
K = acker(A,B,J)

K =

160.0000    54.0000    11.0000
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The state feedback gain matrix K is thus

K = [160  54  11]

Unit-Step Response of the Designed System: The unit-step response of the designed system can
be obtained as follows:

Since

from Equation (10–22) the state equation for the designed system is

(10–29)

and the output equation is

(10–30)

Solving Equations (10–29) and (10–30) for y(t) when r is a unit-step function gives the unit-step
response curve y(t) versus t. MATLAB Program 10–5 yields the unit-step response. The result-
ing unit-step response curve is shown in Figure 10–5.

y = [1 0 0]Cx1

x2

x3

S

Cx
#
1

x
#
2

x
#
3

S = C 0
0

-160

1
0

-56

0
1

-14
S Cx1

x2

x3

S + C   0
  0
160
S r

A - BK = C0

0

0

1

0

-2

0

1

-3

S - C0

0

1

S [160 54 11] = C 0

0

-160

1

0

-56

0

1

-14

S

MATLAB Program 10–5

% ---------- Unit-step response ----------

% ***** Enter the state matrix, control matrix, output matrix,
% and direct transmission matrix of the designed system *****

AA = [0  1  0;0  0  1;-160  -56  -14];
BB = [0;0;160];
CC = [1  0  0];
DD = [0];

% ***** Enter step command and plot command *****

t = 0:0.01:5;
y = step(AA,BB,CC,DD,1,t);
plot(t,y)
grid
title('Unit-Step Response')
xlabel('t Sec')
ylabel('Output y')
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Unit-Step Response
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Figure 10–5
Unit-step response
curve y(t) versus t
for the system
designed in 
Example 10–4.

Note that since

we have

At steady state the control signal u becomes zero.

Design of Type 1 Servo System when the Plant Has No Integrator. If the plant
has no integrator (type 0 plant), the basic principle of the design of a type 1 servo sys-
tem is to insert an integrator in the feedforward path between the error comparator
and the plant, as shown in Figure 10–6. (The block diagram of Figure 10–6 is a basic
form of the type 1 servo system where the plant has no integrator.) From the diagram,
we obtain

(10–31)

(10–32)

(10–33)

(10–34)

where  x = state vector of the plant (n-vector)

 j
#

= r - y = r - Cx

 u = -Kx + kI j

 y = Cx

 x# = Ax + Bu

 = -[160 54 11]C r

0

0

S + 160r = 0

 u(q) = -[160 54 11]Cx1(q)

x2(q)

x3(q)

S + 160r

u(q) = -Kx(q) + k1 r(q) = -Kx(q) + k1 r
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We assume that the plant given by Equation (10–31) is completely state controllable.The
transfer function of the plant can be given by

To avoid the possibility of the inserted integrator being canceled by the zero at the origin
of the plant, we assume that Gp(s) has no zero at the origin.

Assume that the reference input (step function) is applied at t=0. Then, for t>0,
the system dynamics can be described by an equation that is a combination of Equations
(10–31) and (10–34):

(10–35)

We shall design an asymptotically stable system such that x(q),j(q), and u(q) approach
constant values, respectively. Then, at steady state, and we get y(q)=r.

Notice that at steady state we have

(10–36)

Noting that r(t) is a step input, we have r(q)=r(t)=r (constant) for t>0. By
subtracting Equation (10–36) from Equation (10–35), we obtain

(10–37)Bx# (t) - x# (q)

j
#
(t) - j

#
(q)
R = B A

-C
0
0
R Bx(t) - x(q)

j(t) - j(q)
R + BB

0
R Cu(t) - u(q) D

Bx# (q)

j
#
(q)
R = B A

-C
0
0
R Bx(q)

j(q)
R + BB

0
Ru(q) + B0

1
R r(q)

j
#
(t) = 0,

Bx# (t)

j
#
(t)
R = B A

-C
0
0
R Bx(t)

j(t)
R + BB

0
Ru(t) + B0

1
R r(t)

Gp(s) = C(s I - A)-1 B

C = 1 * n constant matrix

 B = n * 1 constant matrix

 A = n * n constant matrix

 r = reference input signal (step function, scalar)

 j = output of the integrator (state variable of the system, scalar)

 y = output signal (scalar)

 u = control signal (scalar)

y

K

A

BkI C��
xr j

.
j u

+
–

+
–

+
+

Figure 10–6
Type 1 servo system.
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Define

Then Equation (10–37) can be written as

(10–38)

where

(10–39)

Define a new (n+1)th-order error vector e(t) by

-vector

Then Equation (10–38) becomes

(10–40)

where

and Equation (10–39) becomes

(10–41)

where

The state error equation can be obtained by substituting Equation (10–41) into
Equation (10–40):

(10–42)

If the desired eigenvalues of matrix (that is, the desired closed-loop poles) are
specified as m1 , m2 , p , mn+1, then the state-feedback gain matrix K and the integral
gain constant kI can be determined by the pole-placement technique presented in Section
10–2, provided that the system defined by Equation (10–40) is completely state
controllable. Note that if the matrix

has rank n+1, then the system defined by Equation (10–40) is completely state
controllable. (See Problem A–10–12.)

B A
-C

B
0
R

Â - B̂K̂

e# = AÂ - B̂K̂Be
K̂ = CK � -kI D

ue = -K̂e

Â = B A
-C

0
0
R ,  B̂ = BB

0
R

e# = Âe + B̂ue

e(t) = Bxe(t)

je(t)
R = (n + 1)

ue(t) = -Kxe(t) + kI je(t)

Bx# e(t)

j
#
e(t)
R = B A

-C
0
0
R Bxe(t)

je(t)
R + BB

0
Rue(t)

 u(t) - u(q) = ue(t)

 j(t) - j(q) = je(t)

 x(t) - x(q) = xe(t)
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Figure 10–8
Inverted-pendulum
control system.

As is usually the case, not all state variables can be directly measurable. If this is the
case, we need to use a state observer. Figure 10–7 shows a block diagram of a type 1
servo system with a state observer. [In the figure, each block with an integral symbol
represents an integrator (1/s).] Detailed discussions of state observers are given in
Section 10–5.

EXAMPLE 10–5 Consider the inverted-pendulum control system shown in Figure 10–8. In this example, we are
concerned only with the motion of the pendulum and motion of the cart in the plane of the page.

It is desired to keep the inverted pendulum upright as much as possible and yet control the
position of the cart—for instance, move the cart in a step fashion. To control the position of
the cart, we need to build a type 1 servo system. The inverted-pendulum system mounted on a
cart does not have an integrator.Therefore, we feed the position signal y (which indicates the po-
sition of the cart) back to the input and insert an integrator in the feedforward path, as shown

y

K

A

BkI C��
xr j

.
j u

Observer

+
–

+
–

+
+

Figure 10–7
Type 1 servo system with state observer.
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.

y = Cx
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kI�
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k3

k4
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x
yj j

.

+
–
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–

Figure 10–9
Inverted-pendulum
control system. (Type
1 servo system when
the plant has no
integrator.)

in Figure 10–9.We assume that the pendulum angle u and the angular velocity are small, so that
and We also assume that the numerical values for M, m, and l are

given as

Earlier in Example 3–6 we derived the equations for the inverted-pendulum system shown in
Figure 3–6, which is the same as that in Figure 10–8. Referring to Figure 3–6, we started with the
force-balance and torque-balance equations and ended up with Equations (3–20) and (3–21) to
model the inverted-pendulum system. Referring to Equations (3–20) and (3–21), the equations for
the inverted-pendulum control system shown in Figure 10–8 are

(10–43)

(10–44)

When the given numerical values are substituted, Equations (10–43) and (10–44) become

(10–45)

(10–46)

Let us define the state variables x1, x2, x3, and x4 as

Then, referring to Equations (10–45) and (10–46) and Figure 10–9 and considering the cart position
x as the output of the system, we obtain the equations for the system as follows:

(10–47)

(10–48)

(10–49)

(10–50) j
#

= r - y = r - Cx

 u = -Kx + kI j

 y = Cx

 x# = Ax + Bu

 x4 = x
#

 x3 = x

 x2 = u
#

 x1 = u

x
$ = 0.5u - 0.4905u

u
$

= 20.601u - u

 Mx
$ = u - mgu

 Mlu
$

= (M + m)gu - u

M = 2 kg,  m = 0.1 kg,  l = 0.5 m

uu
#
2 � 0.cos u � 1,sin u � u,

u
#
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where

For the type 1 servo system, we have the state error equation as given by Equation (10–40):

(10–51)

where

and the control signal is given by Equation (10–41):

where

To obtain a reasonable speed and damping in the response of the designed system (for
example, the settling time of approximately 4 ~ 5 sec and the maximum overshoot of 15% ~ 16%
in the step response of the cart), let us choose the desired closed-loop poles at s=mi

(i=1, 2, 3, 4, 5), where

We shall determine the necessary state-feedback gain matrix by the use of MATLAB.
Before we proceed further, we must examine the rank of matrix P, where

Matrix P is given by

(10–52)

The rank of this matrix can be found to be 5. Therefore, the system defined by Equation (10–51)
is completely state controllable, and arbitrary pole placement is possible. MATLAB Program
10–6 produces the state feedback gain matrix K̂.

P = B A
-C

B
0
R = E 0

20.601
0

-0.4905
0

1
0
0
0
0

0
0
0
0

-1

0
0
1
0
0

0
-1

0
0.5

0

U

P = B A
-C

B
0
R

m1 = -1 + j13 ,  m2 = -1 - j13 ,  m3 = -5,  m4 = -5,  m5 = -5

K̂ = CK � -kI D = Ck1 k2 k3 k4 � -kI D
ue = -K̂e

Â = B A
-C

0
0
R = E 0

20.601
0

-0.4905
0

1
0
0
0
0

0
0
0
0

-1

0
0
1
0
0

0
0
0
0
0

U ,  B̂ = BB
0
R = E 0

-1
0

0.5
0

U
e# = Âe + B̂ue

A = D 0

20.601

0

-0.4905

1

0

0

0

0

0

0

0

0

0

1

0

T ,  B = D 0

-1

0

0.5

T ,  C = [0 0 1 0]
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MATLAB Program 10–6

A = [0  1  0  0; 20.601  0  0  0;  0  0  0  1; -0.4905  0  0  0];
B = [0;-1;0;0.5];
C = [0  0  1  0];
Ahat = [A zeros(4,1); -C  0];
Bhat = [B;0];
J = [-1+j*sqrt(3)  -1-j*sqrt(3)  -5  -5  -5];
Khat = acker(Ahat,Bhat,J)

Khat =

-157.6336  -35.3733  -56.0652  -36.7466  50.9684

Thus, we get

and

Unit Step-Response Characteristics of the Designed System. Once we determine the feed-
back gain matrix K and the integral gain constant kI, the step response in the cart position can be
obtained by solving the following equation, which is obtained by substituting Equation (10–49)
into Equation (10–35):

(10–53)

The output y(t) of the system is x3(t), or

(10–54)

Define the state matrix, control matrix, output matrix, and direct transmission matrix of the
system given by Equations (10–53) and (10–54) as AA, BB, CC, and DD, respectively. MATLAB
Program 10–7 may be used to obtain the step-response curves of the designed system. Notice
that, to obtain the unit-step response, we entered the command

[y,x,t] = step(AA,BB,CC,DD,1,t)

Figure 10–10 shows curves x1 versus t, x2 versus t, x3 (= output y) versus t, x4 versus t, and x5

(= j) versus t. Notice that y(t) C= x3(t) D has approximately 15% overshoot and the settling time
is approximately 4.5 sec. j(t) C= x5(t) D approaches 1.1.This result can be derived as follows: Since

or
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MATLAB Program 10–7

%**** The following program is to obtain step response
% of the inverted-pendulum system just designed *****

A = [0  1  0  0;20.601  0  0  0;0  0  0  1;-0.4905  0  0  0];
B = [0;-1;0;0.5];
C = [0  0  1  0]
D = [0];
K = [-157.6336  -35.3733  -56.0652  -36.7466];
KI = -50.9684;
AA = [A - B*K  B*KI;-C  0];
BB = [0;0;0;0;1];
CC = [C  0];
DD = [0];

%***** To obtain response curves x1 versus t, x2 versus t,
% x3 versus t, x4 versus t, and x5 versus t, separately, enter
% the following command *****

t = 0:0.02:6;
[y,x,t] = step(AA,BB,CC,DD,1,t);

x1 = [1  0  0  0  0]*x';
x2 = [0  1  0  0  0]*x';
x3 = [0  0  1  0  0]*x';
x4 = [0  0  0  1  0]*x';
x5 = [0  0  0  0  1]*x';

subplot(3,2,1); plot(t,x1); grid
title('x1 versus t')
xlabel('t Sec'); ylabel('x1')

subplot(3,2,2); plot(t,x2); grid
title('x2 versus t')
xlabel('t Sec'); ylabel('x2')

subplot(3,2,3); plot(t,x3); grid
title('x3 versus t')
xlabel('t Sec'); ylabel('x3')

subplot(3,2,4); plot(t,x4); grid
title('x4 versus t')
xlabel('t Sec'); ylabel('x4')

subplot(3,2,5); plot(t,x5); grid
title('x5 versus t')
xlabel('t Sec'); ylabel('x5')
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we get

Since u(q)=0, we have, from Equation (10–33),

and so

Hence, for r=1, we have

It is noted that, as in any design problem, if the speed and damping are not quite satisfactory,
then we must modify the desired characteristic equation and determine a new matrix Computer
simulations must be repeated until a satisfactory result is obtained.

10–5 STATE OBSERVERS

In the pole-placement approach to the design of control systems, we assumed that all
state variables are available for feedback. In practice, however, not all state variables are
available for feedback. Then we need to estimate unavailable state variables.

K̂.

j(q) = 1.1
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1

kI
 CKx(q) D =
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 k3 x3(q) =

-56.0652

-50.9684
 r = 1.1r
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Figure 10–10
Curves x1 versus t, x2

versus t, x3

(=output y) versus
t, x4 versus t, and
x5 (=j) versus t.
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Estimation of unmeasurable state variables is commonly called observation.A device (or
a computer program) that estimates or observes the state variables is called a state
observer, or simply an observer. If the state observer observes all state variables of the
system, regardless of whether some state variables are available for direct measurement,
it is called a full-order state observer.There are times when this will not be necessary, when
we will need observation of only the unmeasurable state variables, but not of those that
are directly measurable as well. For example, since the output variables are observable
and they are linearly related to the state variables, we need not observe all state variables,
but observe only n-m state variables, where n is the dimension of the state vector and
m is the dimension of the output vector.

An observer that estimates fewer than n state variables, where n is the dimension of
the state vector, is called a reduced-order state observer or, simply, a reduced-order
observer. If the order of the reduced-order state observer is the minimum possible, the
observer is called a minimum-order state observer or minimum-order observer. In this
section, we shall discuss both the full-order state observer and the minimum-order state
observer.

State Observer. A state observer estimates the state variables based on the
measurements of the output and control variables. Here the concept of observability
discussed in Section 9–7 plays an important role. As we shall see later, state observers
can be designed if and only if the observability condition is satisfied.

In the following discussions of state observers, we shall use the notation to
designate the observed state vector. In many practical cases, the observed state vector

is used in the state feedback to generate the desired control vector.
Consider the plant defined by

(10–55)

(10–56)

The observer is a subsystem to reconstruct the state vector of the plant. The mathe-
matical model of the observer is basically the same as that of the plant, except that we
include an additional term that includes the estimation error to compensate for
inaccuracies in matrices A and B and the lack of the initial error. The estimation error
or observation error is the difference between the measured output and the estimated
output.The initial error is the difference between the initial state and the initial estimated
state. Thus, we define the mathematical model of the observer to be

(10–57)

where is the estimated state and is the estimated output.The inputs to the observer
are the output y and the control input u. Matrix Ke, which is called the observer gain
matrix, is a weighting matrix to the correction term involving the difference between 
the measured output y and the estimated output This term continuously corrects
the model output and improves the performance of the observer. Figure 10–11 shows the
block diagram of the system and the full-order state observer.

C x� .

C x�x�

 = AA - Ke  CB x� + Bu + Ke y

 x� = A x� + Bu + Ke(y - C x� )

 y = Cx

 x# = Ax + Bu

x�

x�
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u
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Full-order state observer
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+
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+
+

+–

Figure 10–11
Block diagram of
system and full-order
state observer, when
input u and output y
are scalars.

Full-Order State Observer. The order of the state observer that will be discussed
here is the same as that of the plant. Assume that the plant is defined by Equations
(10–55) and (10–56) and the observer model is defined by Equation (10–57).

To obtain the observer error equation, let us subtract Equation (10–57) from
Equation (10–55):

(10–58)

Define the difference between x and as the error vector e, or

Then Equation (10–58) becomes

(10–59)

From Equation (10–59), we see that the dynamic behavior of the error vector is deter-
mined by the eigenvalues of matrix A-Ke C. If matrix A-Ke C is a stable matrix,
the error vector will converge to zero for any initial error vector e(0). That is, will
converge to x(t) regardless of the values of x(0) and If the eigenvalues of matrix
A-Ke C are chosen in such a way that the dynamic behavior of the error vector is
asymptotically stable and is adequately fast, then any error vector will tend to zero (the
origin) with an adequate speed.

If the plant is completely observable, then it can be proved that it is possible to
choose matrix Ke such that A-Ke C has arbitrarily desired eigenvalues. That is, the
observer gain matrix Ke can be determined to yield the desired matrix A-Ke C. We
shall discuss this matter in what follows.

x� (0).
x� (t)

e# = AA - Ke  CBe
e = x - x�

x�

= AA - Ke  CB(x - x� )

x# - x� = Ax - A x� - Ke(Cx - C x� )
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Dual Problem. The problem of designing a full-order observer becomes that of de-
termining the observer gain matrix Ke such that the error dynamics defined by Equation
(10–59) are asymptotically stable with sufficient speed of response. (The asymptotic
stability and the speed of response of the error dynamics are determined by the
eigenvalues of matrix A-Ke C.) Hence, the design of the full-order observer becomes
that of determining an appropriate Ke such that A-Ke C has desired eigenvalues.Thus,
the problem here becomes the same as the pole-placement problem we discussed in
Section 10–2. In fact, the two problems are mathematically the same. This property is
called duality.

Consider the system defined by

In designing the full-order state observer, we may solve the dual problem, that is, solve
the pole-placement problem for the dual system

assuming the control signal v to be

If the dual system is completely state controllable, then the state feedback gain matrix
K can be determined such that matrix A*-C*K will yield a set of the desired
eigenvalues.

If m1 , m2 , p , mn are the desired eigenvalues of the state observer matrix, then by
taking the same mi’s as the desired eigenvalues of the state-feedback gain matrix of the
dual system, we obtain

Noting that the eigenvalues of A*-C*K and those of A-K*C are the same, we have

Comparing the characteristic polynomial and the characteristic poly-
nomial for the observer system [refer to Equation (10–57)], we find
that Ke and K* are related by

Thus, using the matrix K determined by the pole-placement approach in the dual system,
the observer gain matrix Ke for the original system can be determined by using the
relationship Ke=K*. (See Problem A–10–10 for the details.)

Necessary and Sufficient Condition for State Observation. As discussed, a
necessary and sufficient condition for the determination of the observer gain matrix Ke

for the desired eigenvalues of A-Ke C is that the dual of the original system

z# = A* z + C*v

Ke = K*

@s I - AA - Ke  CB @ @s I - (A - K* C) @@s I - (A* - C* K) @ = @s I - (A - K* C) @
@s I - (A* - C* K) @ = As - m1B As - m2B p As - mnB

v = -Kz

n = B* z

z# = A* z + C*v

 y = Cx

 x# = Ax + Bu
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be completely state controllable. The complete state controllability condition for this
dual system is that the rank of

be n. This is the condition for complete observability of the original system defined by
Equations (10–55) and (10–56).This means that a necessary and sufficient condition for
the observation of the state of the system defined by Equations (10–55) and (10–56) is
that the system be completely observable.

Once we select the desired eigenvalues (or desired characteristic equation), the full-
order state observer can be designed, provided the plant is completely observable. The
desired eigenvalues of the characteristic equation should be chosen so that the state
observer responds at least two to five times faster than the closed-loop system
considered. As stated earlier, the equation for the full-order state observer is

(10–60)

It is noted that thus far we have assumed the matrices A, B, and C in the observer
to be exactly the same as those of the physical plant. If there are discrepancies in A, B,
and C in the observer and in the physical plant, the dynamics of the observer error are
no longer governed by Equation (10–59). This means that the error may not approach
zero as expected.Therefore, we need to choose Ke so that the observer is stable and the
error remains acceptably small in the presence of small modeling errors.

Transformation Approach to Obtain State Observer Gain Matrix Ke . By
following the same approach as we used in deriving the equation for the state feedback
gain matrix K, we can obtain the following equation:

(10–61)

where Ke is an n*1 matrix,

and

[Refer to Problem A–10–10 for the derivation of Equation (10–61).]
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Direct-Substitution Approach to Obtain State Observer Gain Matrix Ke .
Similar to the case of pole placement, if the system is of low order, then direct substitution
of matrix Ke into the desired characteristic polynomial may be simpler. For example, if
x is a 3-vector, then write the observer gain matrix Ke as

Substitute this Ke matrix into the desired characteristic polynomial:

By equating the coefficients of the like powers of s on both sides of this last equation,
we can determine the values of ke1, ke2, and ke3. This approach is convenient if n=1,
2, or 3, where n is the dimension of the state vector x. (Although this approach can be
used when n=4, 5, 6, p , the computations involved may become very tedious.)

Another approach to the determination of the state observer gain matrix Ke is to
use Ackermann’s formula. This approach is presented in the following.

Ackermann’s Formula. Consider the system defined by

(10–62)

(10–63)

In Section 10–2 we derived Ackermann’s formula for pole placement for the system
defined by Equation (10–62).The result was given by Equation (10–18), rewritten thus:

For the dual of the system defined by Equations (10–62) and (10–63),

the preceding Ackermann’s formula for pole placement is modified to

(10–64)

As stated earlier, the state observer gain matrix Ke is given by K*, where K is given by
Equation (10–64). Thus,
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where f(s) is the desired characteristic polynomial for the state observer, or

where m1,m2, p ,mn are the desired eigenvalues. Equation (10–65) is called Ackermann’s
formula for the determination of the observer gain matrix Ke .

Comments on Selecting the Best Ke . Referring to Figure 10–11, notice that the
feedback signal through the observer gain matrix Ke serves as a correction signal to
the plant model to account for the unknowns in the plant. If significant unknowns are
involved, the feedback signal through the matrix Ke should be relatively large. Howev-
er, if the output signal is contaminated significantly by disturbances and measurement
noises, then the output y is not reliable and the feedback signal through the matrix Ke

should be relatively small. In determining the matrix Ke , we should carefully examine
the effects of disturbances and noises involved in the output y.

Remember that the observer gain matrix Ke depends on the desired characteristic
equation

The choice of a set of is, in many instances, not unique. As a general rule,
however, the observer poles must be two to five times faster than the controller poles
to make sure the observation error (estimation error) converges to zero quickly. This
means that the observer estimation error decays two to five times faster than does the
state vector x. Such faster decay of the observer error compared with the desired
dynamics makes the controller poles dominate the system response.

It is important to note that if sensor noise is considerable, we may choose the observer
poles to be slower than two times the controller poles, so that the bandwidth of the sys-
tem will become lower and smooth the noise. In this case the system response will be
strongly influenced by the observer poles. If the observer poles are located to the right
of the controller poles in the left-half s plane, the system response will be dominated by
the observer poles rather than by the control poles.

In the design of the state observer, it is desirable to determine several observer gain
matrices Ke based on several different desired characteristic equations. For each of the
several different matrices Ke , simulation tests must be run to evaluate the resulting
system performance. Then we select the best Ke from the viewpoint of overall system
performance. In many practical cases, the selection of the best matrix Ke boils down to
a compromise between speedy response and sensitivity to disturbances and noises.

EXAMPLE 10–6 Consider the system

where

We use the observed state feedback such that

u = -K x�

A = B0

1

20.6

0
R ,  B = B0

1
R ,  C = [0 1]

 y = Cx

 x# = Ax + Bu

m1 , m2 , p , mn

As - m1B As - m2B p As - mnB = 0

f(s) = As - m1B As - m2B p As - mnB
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Design a full-order state observer, assuming that the system configuration is identical to that
shown in Figure 10–11. Assume that the desired eigenvalues of the observer matrix are

The design of the state observer reduces to the determination of an appropriate observer gain
matrix Ke .

Let us examine the observability matrix. The rank of

is 2. Hence, the system is completely observable and the determination of the desired observer gain
matrix is possible. We shall solve this problem by three methods.

Method 1: We shall determine the observer gain matrix by use of Equation (10–61). The given
system is already in the observable canonical form. Hence, the transformation matrix
Q=(WN*)–1 is I. Since the characteristic equation of the given system is

we have

The desired characteristic equation is

Hence,

Then the observer gain matrix Ke can be obtained from Equation (10–61) as follows:

Method 2: Referring to Equation (10–59):

the characteristic equation for the observer becomes

Define

Then the characteristic equation becomes
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Since the desired characteristic equation is

by comparing Equation (10–66) with this last equation, we obtain

or

Method 3: We shall use Ackermann’s formula given by Equation (10–65):

where

Thus,

and

As a matter of course, we get the same Ke regardless of the method employed.
The equation for the full-order state observer is given by Equation (10–57),

or

Finally, it is noted that, similar to the case of pole placement, if the system order n is 4 or
higher, methods 1 and 3 are preferred, because all matrix computations can be carried out by a
computer, while method 2 always requires hand computation of the characteristic equation
involving unknown parameters ke1, ke2, p , ken.

Effects of the Addition of the Observer on a Closed-Loop System. In the
pole-placement design process, we assumed that the actual state x(t) was available for
feedback. In practice, however, the actual state x(t) may not be measurable, so we will
need to design an observer and use the observed state for feedback as shown in Fig-
ure 10–12. The design process, therefore, becomes a two-stage process, the first stage
being the determination of the feedback gain matrix K to yield the desired characteristic
equation and the second stage being the determination of the observer gain matrix Ke

to yield the desired observer characteristic equation.
Let us now investigate the effects of the use of the observed state rather than

the actual state x(t), on the characteristic equation of a closed-loop control system.
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Consider the completely state controllable and completely observable system defined
by the equations

For the state-feedback control based on the observed state 

With this control, the state equation becomes

(10–67)

The difference between the actual state x(t) and the observed state has been
defined as the error e(t):

Substitution of the error vector e(t) into Equation (10–67) gives

(10–68)

Note that the observer error equation was given by Equation (10–59), repeated here:

(10–69)

Combining Equations (10–68) and (10–69), we obtain
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Observed-state
feedback control
system.
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Equation (10–70) describes the dynamics of the observed-state feedback control system.
The characteristic equation for the system is

or

Notice that the closed-loop poles of the observed-state feedback control system consist
of the poles due to the pole-placement design alone and the poles due to the observer
design alone. This means that the pole-placement design and the observer design are
independent of each other. They can be designed separately and combined to form the
observed-state feedback control system. Note that, if the order of the plant is n, then the
observer is also of nth order (if the full-order state observer is used), and the resulting
characteristic equation for the entire closed-loop system becomes of order 2n.

Transfer Function of the Observer-Based Controller. Consider the plant defined by

Assume that the plant is completely observable. Assume that we use observed-state
feedback control Then, the equations for the observer are given by

(10–71)

(10–72)

where Equation (10–71) is obtained by substituting into Equation (10–57).
By taking the Laplace transform of Equation (10–71), assuming a zero initial

condition, and solving for we obtain

By substituting this into the Laplace transform of Equation (10–72), we obtain

(10–73)

Then the transfer function U(s)/Y(s) can be obtained as

Figure 10–13 shows the block diagram representation for the system. Notice that the
transfer function

acts as a controller for the system. Hence, we call the transfer function

(10–74)
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the observer-based controller transfer function or, simply, the observer-controller transfer
function.

Note that the observer-controller matrix

may or may not be stable, although A-BK and A-Ke C are chosen to be stable. In
fact, in some cases the matrix A-Ke C-BK may be poorly stable or even unstable.

EXAMPLE 10–7 Consider the design of a regulator system for the following plant:

(10–75)

(10–76)

where

Suppose that we use the pole-placement approach to the design of the system and that the
desired closed-loop poles for this system are at s=mi (i=1, 2), where m1=–1.8+j2.4 and
m2=–1.8-j2.4. The state-feedback gain matrix K for this case can be obtained as follows:

Using this state-feedback gain matrix K, the control signal u is given by

Suppose that we use the observed-state feedback control instead of the actual-state feedback
control, or

where we choose the observer poles to be at

s=–8, s=–8

Obtain the observer gain matrix Ke and draw a block diagram for the observed-state feedback
control system. Then obtain the transfer function for the observer controller, and
draw another block diagram with the observer controller as a series controller in the feedforward
path. Finally, obtain the response of the system to the following initial condition:

x(0) = B1

0
R ,  e(0) = x(0) - x� (0) = B0.5

0
R

U(s)�[-Y(s)]

u = -K x� = -[29.6 3.6]B x�1

x�2
R

u = -Kx = -[29.6 3.6]Bx1

x2
R

K = [29.6 3.6]

A = B 0

20.6

1

0
R ,  B = B0

1
R ,  C = [1 0]

 y = Cx

 x# = Ax + Bu

A - Ke  C - BK

R(s) = 0 Y(s)U(s)
Plant

–Y(s)
K(sI – A + KeC + BK)–1Ke+

–
Figure 10–13
Block diagram
representation of
system with a
controller-observer.
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For the system defined by Equation (10–75), the characteristic polynomial is

Thus,

The desired characteristic polynomial for the observer is

Hence,

For the determination of the observer gain matrix, we use Equation (10–61), or

where

Hence,

(10–77)

Equation (10–77) gives the observer gain matrix Ke . The observer equation is given by Equation
(10–60):

(10–78)

Since

Equation (10–78) becomes

or

The block diagram of the system with observed-state feedback is shown in Figure 10–14(a).

 = B -16

-93.6

1

-3.6
R B x�1

x�2
R + B 16

84.6
Ry

 B x�1

x�2
R = b B 0

20.6

1

0
R - B 16

84.6
R [1 0] - B0

1
R [29.6 3.6] r B x�1

x�2
R + B 16

84.6
Ry

x� = AA - Ke  C - BKB x� + Ke y

u = -K x�

x� = AA - Ke  CB x� + Bu + Ke y

 = B0

1

1

0
R B84.6

16
R = B 16

84.6
R

 Ke = b B0

1

1

0
R B1

0

0

1
R r -1B64 + 20.6

16 - 0
R

 W = Ba1

1

1

0
R = B0

1

1

0
R

 N = [C* � A*C*] = B1

0

0

1
R

Ke = (WN*)-1Ba2 - a2

a1 - a1
R

a1 = 16,  a2 = 64

 = s2 + a1 s + a2

 As - m1B As - m2B = (s + 8)(s + 8) = s2 + 16s + 64

a1 = 0,  a2 = -20.6

∑s I - A∑ = 2 s

-20.6

-1

s
2 = s2 - 20.6 = s2 + a1 s + a2
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Referring to Equation (10–74), the transfer function of the observer-controller is

As a matter of course, the same transfer function can be obtained with MATLAB. For example,
MATLAB Program 10–8 produces the transfer function of the observer controller. Figure 10–14(b)
shows a block diagram of the system.

=
778.2s + 3690.7

s2 + 19.6s + 151.2

= [29.6 3.6]B s + 16
93.6

-1
s + 3.6

R -1B 16
84.6
R

U(s)

-Y(s)
= KAs I - A + Ke  C + BKB-1 Ke

+
+

–
+

R(s) = 0 Y(s)U(s)–Y(s) 1
s2 – 20.6

+
–

(b)

u

�

�

y

x

x

~

C

A

C

–K

B

B

0
1

0
1

1  0

1  0

0
20.6

1
0

0
20.6

1
0

16
84.6

–29.6   –3.6

+
+

+
+

(a)

778.2s + 3690.7
s2 + 19.6s + 151.2Figure 10–14

(a) Block diagram of
system with
observed-state
feedback; (b) block
diagram of transfer-
function system.
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MATLAB Program 10–8

% Obtaining transfer function of observer controller --- full-order observer

A = [0  1;20.6  0];
B = [0;1];
C = [1  0];
K = [29.6  3.6];
Ke = [16;84.6];
AA = A-Ke*C-B*K;
BB = Ke;
CC = K;
DD = 0;
[num,den] = ss2tf(AA,BB,CC,DD)

num =

1.0e+003*

0   0.7782   3.6907

den =

1.0000  19.6000  151.2000

The dynamics of the observed-state feedback control system just designed can be described
by the following equations: For the plant,

For the observer,

The system, as a whole, is of fourth order. The characteristic equation for the system is

The characteristic equation can also be obtained from the block diagram for the system shown in
Figure 10–14(b). Since the closed-loop transfer function is

Y(s)

R(s)
=

778.2s + 3690.7As2 + 19.6s + 151.2B As2 - 20.6B + 778.2s + 3690.7

= s4 + 19.6s3 + 130.6s2 + 374.4s + 576 = 0

@s I - A + BK @ @s I - A + Ke  C @ = As2 + 3.6s + 9B As2 + 16s + 64B
 u = -[29.6 3.6]B x�1

x�2
R

 B x�1

x�2
R = B -16

-93.6

1

-3.6
R B x�1

x�2
R + B 16

84.6
Ry

 y = [1 0]Bx1

x2
R

 Bx
#
1

x
#
2
R = B 0

20.6

1

0
R Bx1

x2
R + B0

1
Ru
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MATLAB Program 10–9

A = [0  1; 20.6  0];
B = [0;1];
C = [1  0];
K = [29.6  3.6];
Ke = [16; 84.6];
sys = ss([A-B*K  B*K; zeros(2,2)  A-Ke*C],eye(4),eye(4),eye(4));
t = 0:0.01:4;
z = initial(sys,[1;0;0.5;0],t);
x1 = [1  0  0  0]*z';
x2 = [0  1  0  0]*z';
e1 = [0  0  1  0]*z';
e2 = [0  0  0  1]*z';

subplot(2,2,1); plot(t,x1 ),grid
title('Response to Initial Condition')
ylabel('state variable x1')

subplot(2,2,2); plot(t,x2),grid
title('Response to Initial Condition')
ylabel('state variable x2')

subplot(2,2,3); plot(t,e1),grid
xlabel('t (sec)'), ylabel('error state variable e1')

subplot(2,2,4); plot(t,e2),grid
xlabel('t (sec)'), ylabel('error state variable e2')

the characteristic equation is

As a matter of course, the characteristic equation is the same for the system in state-space
representation and in transfer-function representation.

Finally, we shall obtain the response of the system to the following initial condition:

Referring to Equation (10–70), the response to the initial condition can be determined from

A MATLAB Program to obtain the response is shown in MATLAB Program 10–9.The resulting
response curves are shown in Figure 10–15.

Bx#

e#
R = BA - BK

0
BK

A - Ke C
R Bx

e
R ,  Bx(0)

e(0)
R = D 1

0

0.5

0

T
x(0) = B1

0
R ,  e(0) = B0.5

0
R

= s4 + 19.6s3 + 130.6s2 + 374.4s + 576 = 0

As2 + 19.6s + 151.2B As2 - 20.6B + 778.2s + 3690.7
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u yx

y

�

Plant

C

A

B

–K
x~ Minimum-order

observer
Transformation

+
+

Figure 10–16
Observed-state
feedback control
system with a
minimum-order
observer.

Minimum-Order Observer. The observers discussed thus far are designed to
reconstruct all the state variables. In practice, some of the state variables may be accu-
rately measured. Such accurately measurable state variables need not be estimated.

Suppose that the state vector x is an n-vector and the output vector y is an m-vector
that can be measured. Since m output variables are linear combinations of the state
variables, m state variables need not be estimated. We need to estimate only n-m
state variables. Then the reduced-order observer becomes an (n-m)th-order observ-
er. Such an (n-m)th-order observer is the minimum-order observer. Figure 10–16
shows the block diagram of a system with a minimum-order observer.
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It is important to note, however, that if the measurement of output variables involves
significant noises and is relatively inaccurate, then the use of the full-order observer
may result in a better system performance.

To present the basic idea of the minimum-order observer, without undue mathe-
matical complications, we shall present the case where the output is a scalar (that is,
m=1) and derive the state equation for the minimum-order observer. Consider the
system

(10–79)

(10–80)

where the state vector x can be partitioned into two parts xa (a scalar) and xb Can
(n-1)-vector D . Here the state variable xa is equal to the output y and thus can be
directly measured, and xb is the unmeasurable portion of the state vector. Then the
partitioned state and output equations become

(10–81)

(10–82)

where

From Equation (10–81), the equation for the measured portion of the state becomes

or

(10–83)

The terms on the left-hand side of Equation (10–83) can be measured. Equation (10–83)
acts as the output equation. In designing the minimum-order observer, we consider the
left-hand side of Equation (10–83) to be known quantities.Thus, Equation (10–83) relates
the measurable quantities and unmeasurable quantities of the state.

From Equation (10–81), the equation for the unmeasured portion of the state
becomes

(10–84)

Noting that terms Abaxa and Bbu are known quantities, Equation (10–84) describes the
dynamics of the unmeasured portion of the state.

x# b = Aba xa + Abb  xb + Bb u

x
#
a - Aaa xa - Ba u = Aab  xb

x
#
a = Aaa xa + Aab  xb + Ba u

 Bb = (n - 1) * 1 matrix

 Ba = scalar

 Abb = (n - 1) * (n - 1) matrix

 Aba = (n - 1) * 1 matrix

 Aab = 1 * (n - 1) matrix

 Aaa = scalar

 y = [1 � 0] cxa

xb
d

 cx# a

x# b
d = cAaa

Aba
 Aab

Abb
d cxa

xb
d + cBa

Bb
du

 y = Cx

 x# = Ax + Bu
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Full-Order State Observer Minimum-Order State Observer

A Abb

Bu

y

C Aab

Ke    (n*1 matrix) Ke    [(n-1)*1 matrix]

x
#
a - Aaa xa - Ba u

Aba xa + Bb u

x� bx�

Table 10–1 List of Necessary Substitutions for Writing
the Observer Equation for the Minimum-Order
State Observer

In what follows we shall present a method for designing a minimum-order observer.
The design procedure can be simplified if we utilize the design technique developed for
the full-order state observer.

Let us compare the state equation for the full-order observer with that for the
minimum-order observer. The state equation for the full-order observer is

and the “state equation” for the minimum-order observer is

The output equation for the full-order observer is

and the “output equation” for the minimum-order observer is

The design of the minimum-order observer can be carried out as follows: First, note that
the observer equation for the full-order observer was given by Equation (10–57), which
we repeat here:

(10–85)

Then, making the substitutions of Table 10–1 into Equation (10–85), we obtain

(10–86)

where the state observer gain matrix Ke is an (n-1)*1 matrix. In Equation (10–86),
notice that in order to estimate , we need the derivative of xa. This presents a difficulty,
because differentiation amplifies noise. If xa (= y) is noisy, the use of is unacceptable.x

#
a

x� b

x� b = AAbb - Ke  AabB x� b + Aba xa + Bb u + KeAx# a - Aaa xa - Ba uB
x� = AA - Ke  CB x� + Bu + Ke y

x
#
a - Aaa xa - Ba u = Aab  xb

y = Cx

x# b = Abb  xb + Aba xa + Bb u

x# = Ax + Bu
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To avoid this difficulty, we eliminate in the following way. First rewrite Equation
(10–86) as

(10–87)

Define

and
(10–88)

Then Equation (10–87) becomes

(10–89)

Define

Then Equation (10–89) becomes

(10–90)

Equation (10–90) and Equation (10–88) together define the minimum-order observer.
Since

where 0 is a row vector consisting of (n-1) zeros, if we define

then we can write in terms of and y as follows:

(10–91)

This equation gives the transformation from 
Figure 10–17 shows the block diagram of the observed-state feedback control system

with the minimum-order observer, based on Equations (10–79), (10–80), (10–90), (10–91)
and

Next we shall derive the observer error equation. Using Equation (10–83), Equation
(10–86) can be modified to

(10–92)x� b = AAbb - Ke  AabB x� b + Aba xa + Bb u + Ke  Aab  xb

u = -K x� .

H� to x� .

x� = ĈH� + D̂y

H�x�

Ĉ = c 0
In - 1
d ,  D̂ = c 1

Ke
d

x� = c xa

x� b
d = c y

x� b
d = c 0

In - 1
d C x� b - Ke y D + c 1

Ke
dy

y = C1 � 0 D cxa

xb
d
H� = ÂH� + B̂y + F̂u

 F̂ = Bb - Ke  Ba

 B̂ = ÂKe + Aba - Ke Aaa

 Â = Abb - Ke  Aab

 + Aba - Ke Aaa Dy + ABb - Ke BaBu H� = AAbb - Ke  AabBH� + C AAbb - Ke  AabBKe

x� b - Ke y = x� b - Ke xa = H�

xb - Ke y = xb - Ke xa = H

 + ABb - Ke BaBu + C AAbb - Ke  AabBKe + Aba - Ke Aaa Dy = AAbb - Ke  AabB A x� b - Ke yB x� b - Ke x# a = AAbb - Ke  AabB x� b + AAba - Ke AaaBy + ABb - Ke BaBu
x
#
a
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By subtracting Equation (10–92) from Equation (10–84), we obtain

(10–93)

Define

Then Equation (10–93) becomes

(10–94)

This is the error equation for the minimum-order observer. Note that e is an (n-1)-
vector.

The error dynamics can be chosen as desired by following the technique developed
for the full-order observer, provided that the rank of matrix

is n-1. (This is the complete observability condition applicable to the minimum-order
observer.)

F
Aab

Aab  Abb

�

�

�

Aab  An - 2
bb

V

e# = AAbb - Ke  AabBe
e = xb - x� b = H - H�

x# b - x� b = AAbb - Ke  AabB Axb - x� bB

Figure 10–17
System with
observed-state
feedback, where the
observer is the
minimum-order
observer.



772 Chapter 10 / Control Systems Design in State Space

The characteristic equation for the minimum-order observer is obtained from
Equation (10–94) as follows:

(10–95)

where are desired eigenvalues for the minimum-order observer. The
observer gain matrix Ke can be determined by first choosing the desired eigenvalues for
the minimum-order observer [that is, by placing the roots of the characteristic equation,
Equation (10–95), at the desired locations] and then using the procedure developed for
the full-order observer with appropriate modifications. For example, if the formula for
determining matrix Ke given by Equation (10–61) is to be used, it should be modified to

(10–96)

where Ke is an matrix and

Note that are coefficients in the characteristic equation for the state
equation

Also, if Ackermann’s formula given by Equation (10–65) is to be used, then it should be
modified to

(10–97)Ke = fAAbbB G
Aab

Aab  Abb

�

�

�

Aab  An - 3
bb

Aab  An - 2
bb

W
-1

G
0

0

�

�

�

0

1

W

@s I - Abb @ = sn - 1 + â1 sn - 2 + p + ân - 2 s + ân - 1 = 0

â1 , â2 , p , ân - 2

Ŵ = G
ân - 2

ân - 3

�

�

�

â1

1

ân - 3

ân - 4

�

�

�

1
0

p
p

p
p

â1

1
�

�

�

0
0

1
0
�

�

�

0
0

W = (n - 1) * (n - 1) matrix

N̂ = CAab* � Abb* Aab* � p � AAbb*Bn - 2 Aab* D = (n - 1) * (n - 1) matrix

(n - 1) * 1

Ke = Q̂F
ân - 1 - ân - 1

ân - 2 - ân - 2

�

�

�

â1 - â1

V = AŴN̂*B-1F
ân - 1 - ân - 1

ân - 2 - ân - 2

�

�

�

â1 - â1

V

m1 , m2 , p , mn - 1

 = sn - 1 + â1 sn - 2 + p + ân - 2 s + ân - 1 = 0

 @s I - Abb + Ke  Aab @ = As - m1B As - m2B p As - mn - 1B
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where

Observed-State Feedback Control System with Minimum-Order Observer.
For the case of the observed-state feedback control system with full-order state observer,
we have shown that the closed-loop poles of the observed-state feedback control system
consist of the poles due to the pole-placement design alone, plus the poles due to the
observer design alone. Hence, the pole-placement design and the full-order observer
design are independent of each other.

For the observed-state feedback control system with minimum-order observer, the
same conclusion applies. The system characteristic equation can be derived as

(10–98)

(See Problem A–10–11 for the details.) The closed-loop poles of the observed-state feed-
back control system with a minimum-order observer comprise the closed-loop poles
due to pole placement Cthe eigenvalues of matrix (A-BK) D and the closed-loop poles
due to the minimum-order observer Cthe eigenvalues of matrix (Abb-Ke Aab) D .There-
fore, the pole-placement design and the design of the minimum-order observer are
independent of each other.

Determining Observer Gain Matrix Ke with MATLAB. Because of the duality
of pole-placement and observer design, the same algorithm can be applied to both the
pole-placement problem and the observer-design problem. Thus, the commands acker
and place can be used to determine the observer gain matrix Ke .

The closed-loop poles of the observer are the eigenvalues of matrix A-Ke C. The
closed-loop poles of the pole-placement are the eigenvalues of matrix A-BK.

Referring to the duality problem between the pole-placement problem and observer-
design problem, we can determine Ke by considering the pole-placement problem for the
dual system. That is, we determine Ke by placing the eigenvalues of A*-C*Ke at the
desired place. Since Ke=K*, for the full-order observer we use the command

Ke = acker(A',C',L)'

where L is the vector of the desired eigenvalues for the observer. Similarly, for the full-
order observer, we may use

Ke = place(A',C',L)'

provided L does not include multiple poles. [In the above commands, prime (') indicates
the transpose.] For the minimum-order (or reduced-order) observers, use the following
commands:

Ke = acker(Abb',Aab',L)'

or

Ke = place(Abb',Aab',L)'

@s I - A + BK @ @s I - Abb + Ke  Aab @ = 0

fAAbbB = An - 1
bb + â1  An - 2

bb + p + ân - 2  Abb + ân - 1  I
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EXAMPLE 10–8 Consider the system

where

Let us assume that we want to place the closed-loop poles at

Then the necessary state-feedback gain matrix K can be obtained as follows:

K=[90 29 4]

(See MATLAB Program 10–10 for a MATLAB computation of this matrix K.)
Next, let us assume that the output y can be measured accurately so that state variable x1

(which is equal to y) need not be estimated. Let us design a minimum-order observer. (The
minimum-order observer is of second order.) Assume that we choose the desired observer poles
to be at

s=–10, s=–10

Referring to Equation (10–95), the characteristic equation for the minimum-order observer is

In what follows, we shall use Ackermann’s formula given by Equation (10–97).

(10–99)

where

Since

we have

Abb = B 0

-11

1

-6
R ,  Ba = 0,  Bb = B0

1
R

Aaa = 0,  Aab = [1 0],  Aba = B 0

-6
R

x� = c xa

x�b
d = D x1

x�2

x�3

T  ,  A = D 0

0
-6

1

0
-11

0

1
-6

T ,  B = D0

0
1

T
fAAbbB = A2

bb + â1  Abb + â2  I = A2
bb + 20Abb + 100I

Ke = fAAbbB C Aab

Aab  Abb

S - 1B0
1
R

 = s2 + 20s + 100 = 0

 = (s + 10)(s + 10)

 @s I - Abb + Ke  Aab @ = As - m1B As - m2B

s1 = -2 + j213 ,  s2 = -2 - j213 ,  s3 = -6

A = C 0

0

-6

1

0

-11

0

1

-6

S ,  B = C0

0

1

S ,  C = [1 0 0]

 y = Cx

 x# = Ax + Bu
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MATLAB Program 10–10

A = [0  1  0;0  0  1;-6  -11  -6];
B = [0;0;1];
J = [-2+j*2*sqrt(3)  -2-j*2*sqrt(3)  -6];
K = acker(A,B,J)

K =

90.0000    29.0000    4.0000

Abb = [0  1;-11  -6];
Aab = [1  0];
L = [-10  -10];
Ke = acker(Abb',Aab',L)'

Ke =

14
5

Equation (10–99) now becomes

(A MATLAB computation of this Ke is given in MATLAB Program 10–10.)

 = B 89

-154

14

5
R B0

1
R = B14

5
R

 Ke = b B 0

-11

1

-6
R 2

+ 20B 0

-11

1

-6
R + 100B1

0

0

1
R r B1

0

0

1
R -1B0

1
R

Referring to Equations (10–88) and (10–89), the equation for the minimum-order observer can
be given by

(10–100)

where

Noting that

the equation for the minimum-order observer, Equation (10–100), becomes

or B h�2

h�3
R = B-14

-16
1

-6
R B h�2

h�3
R + B-191

-260
Ry + B0

1
Ru

+ B 0
-6
R - B14

5
R0 ry + b B0

1
R - B14

5
R0 ru

B h�2

h�3
R = B-14

-16
1

-6
R B h�2

h�3
R + b B-14

-16
1

-6
R B14

5
R

Abb - Ke  Aab = B 0

-11

1

-6
R - B14

5
R [1 0] = B-14

-16

1

-6
R

H� = x� b - Ke y = x� b - Ke x1

H� = AAbb - Ke  AabBH� + C AAbb - Ke  AabBKe + Aba - Ke Aaa Dy + ABb - Ke BaBu
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where

or

If the observed-state feedback is used, then the control signal u becomes

where K is the state feedback gain matrix. Figure 10–18 is a block diagram showing the configu-
ration of the system with observed-state feedback, where the observer is the minimum-order
observer.

u = -K x� = -KC x1

x�2

x�3

S
B x�2

x�3
R = B h�2

h�3
R + Ke x1

B h�2

h�3
R = B x�2

x�3
R - Ke y

u yx

x

�

�

Plant
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Minimum-order observer

Transformation

0
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0
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0
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Figure 10–18
System with observed state feedback, where the observer is the minimum-order observer designed in
Example 10–8.
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Transfer Function of Minimum-Order Observer-Based Controller. In the
minimum-order observer equation given by Equation (10–89):

define, similar to the case of the derivation of Equation (10–90),

Then, the following three equations define the minimum-order oberver:

(10–101)

(10–102)

(10–103)

Since Equation (10–103) can be rewritten as

(10–104)

by substituting Equation (10–104) into Equation (10–101), we obtain

(10–105)
Define

Then Equations (10–105) and (10–104) can be written as

(10–106)

(10–107)

Equations (10–106) and (10–107) define the minimum-order observer-based controller.
By considering u as the output and –y as the input, U(s) can be written as

Since the input to the observer controller is –Y(s), rather than Y(s), the transfer function
of the observer controller is

(10–108)

This transfer function can be easily obtained by using the following MATLAB statement:

[num,den] = ss2tf(Atilde, Btilde, -Ctilde, -Dtilde) (10–109)

U(s)

-Y(s)
=

num
den

= - CC� As I - A
� B-1B

� + D
� D

 = - CC� As I - A
� B-1B

� + D
� D[-Y(s)]

 U(s) = CC� As I - A
� B-1B

� + D
� DY(s)

 u = C
�
H� + D

�
y

 H� = A
�
H� + B

�
y

D
� = - AKa + Kb  KeBC
� = -Kb

B
� = B̂ - F̂AKa + Kb  KeBA
� = Â - F̂Kb

 = AÂ - F̂KbBH� + CB̂ - F̂AKa + Kb  KeB Dy H� = ÂH� + B̂y + F̂ C-KbH
� - AKa + Kb  KeBy D

 = -KbH
� - AKa + Kb  KeBy u = -K x� = - CKa Kb D B y

x� b
R = -Ka y - Kb  x� b

 u = -K x�
 H� = x� b - Ke y
 H� = ÂH� + B̂y + F̂u

 F̂ = Bb - Ke Ba

 B̂ = ÂKe + Aba - Ke Aaa

 Â = Abb - Ke Aab

H� = AAbb - Ke AabBH� + C AAbb - Ke  AabBKe + Aba - Ke  Aaa Dy + ABb - Ke BaBu
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10–6 DESIGN OF REGULATOR SYSTEMS WITH OBSERVERS

In this section we shall consider a problem of designing regulator systems by using the
pole-placement-with-observer approach.

Consider the regulator system shown in Figure 10–19. (The reference input is zero.)
The plant transfer function is

Using the pole-placement approach, design a controller such that when the system is
subjected to the following initial condition:

where x is the state vector for the plant and e is the observer error vector, the maximum
undershoot of y(t) is 25 to 35% and the settling time is about 4 sec.Assume that we use
the minimum-order observer. (We assume that only the output y is measurable.)

We shall use the following design procedure:

1. Derive a state-space model of the plant.
2. Choose the desired closed-loop poles for pole placement. Choose the desired

observer poles.
3. Determine the state feedback gain matrix K and the observer gain matrix Ke .
4. Using the gain matrices K and Ke obtained in step 3, derive the transfer function of

the observer controller. If it is a stable controller, check the response to the given ini-
tial condition. If the response is not acceptable, adjust the closed-loop pole location
and/or observer pole location until an acceptable response is obtained.

Design step 1: We shall derive the state-space representation of the plant. Since the
plant transfer function is

the corresponding differential equation is

Referring to Section 2–5, let us define the state variables x1, x2, and x3 as follows:

 x3 = x
#
2 - b2 u

 x2 = x
#
1 - b1 u

 x1 = y - b0 u

y
% + 10y

$ + 24y
# = 10u

# + 20u

Y(s)

U(s)
=

10(s + 2)

s(s + 4)(s + 6)

x(0) = C1

0

0

S ,  e(0) = B1

0
R

G(s) =
10(s + 2)

s(s + 4)(s + 6)

r = 0 yu
Plant

–y
Controller+

–

Figure 10–19
Regulator system.
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Also, is defined by

where and

[See Equation (2–35) for the calculation of b’s.] Then the state-space equation and out-
put equation can be obtained as

Design step 2: As the first trial, let us choose the desired closed-loop poles at

s=–1+j2, s=–1-j2, s=–5

and choose the desired observer poles at

s=–10, s=–10

Design step 3: We shall use MATLAB to compute the state feedback gain matrix K
and the observer gain matrix Ke. MATLAB Program 10–11 produces matrices K and Ke.

 y = [1 0 0]Cx1

x2

x3

S + [0]u

 Cx
#
1

x
#
2

x
#
3

S = C0

0

0

1

0

-24

0

1

-10

S Cx1

x2

x3

S + C 0

10

-80

Su

b3 = -80.b2 = 10,b1 = 0,b0 = 0,

= -24x2 - 10x3 + b3 u

x
#
3 = -a3x1 - a2x2 - a1x3 + b3u

x
#
3

MATLAB Program 10–11

% Obtaining the state feedback gain matrix K

A = [0  1  0;0  0  1;0  -24  -10];
B = [0;10;-80];
C = [1  0  0];
J = [-1+j*2  -1-j*2  -5];
K = acker(A,B,J)

K =

1.2500    1.2500    0.19375

% Obtaining the observer gain matrix Ke

Aaa = 0; Aab = [1  0]; Aba = [0;0]; Abb = [0  1;-24  -10];Ba = 0; Bb = [10;-80];
L = [-10  -10];
Ke = acker(Abb',Aab',L)'

Ke =

10
-24
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MATLAB Program 10–12

% Determination of transfer function of observer controller

A = [0  1  0;0  0  1;0  -24  -10];
B = [0;10;-80];
Aaa = 0; Aab = [1  0]; Aba = [0;0]; Abb = [0  1;-24  -10];
Ba = 0; Bb = [10;-80];
Ka = 1.25; Kb = [1.25    0.19375];
Ke = [10;-24];
Ahat = Abb - Ke*Aab;
Bhat = Ahat*Ke + Aba - Ke*Aaa;
Fhat = Bb - Ke*Ba;
Atilde = Ahat - Fhat*Kb;
Btilde = Bhat - Fhat*(Ka + Kb*Ke);
Ctilde = -Kb;
Dtilde = -(Ka + Kb*Ke);
[num,den] = ss2tf(Atilde, Btilde, -Ctilde, -Dtilde)

num =
9.1000  73.5000  125.0000

den =

1.0000  17.0000  -30.0000

In the program, matrices J and L represent the desired closed-loop poles for pole place-
ment and the desired poles for the observer, respectively. The matrices K and Ke are
obtained as

Design step 4: We shall determine the transfer function of the observer controller.
Referring to Equation (10–108), the transfer function of the observer controller can be
given by

We shall use MATLAB to calculate the transfer function of the observer controller.
MATLAB Program 10–12 produces this transfer function. The result is

Define the system with this observer controller as System 1. Figure 10–20 shows the
block diagram of System 1.

 =
9.1(s + 5.6425)(s + 2.4344)

(s + 18.6119)(s - 1.6119)

 Gc(s) =
9.1s2 + 73.5s + 125

s2 + 17s - 30

Gc(s) =
U(s)

-Y(s)
=

num
den

= - CC� As I - A
� B-1B

� + D
� D

 Ke = B 10

-24
R K = [1.25 1.25 0.19375]
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MATLAB Program 10–13

% Obtaining the characteristic equation

[num1,den1] = ss2tf(A-B*K,eye(3),eye(3),eye(3),1);
[num2,den2] = ss2tf(Abb-Ke*Aab,eye(2),eye(2),eye(2),1);
charact_eq = conv(den1,den2)

charact_eq =

1.0e+003*

0.0010   0.0270   0.2550   1.0250   2.0000   2.5000

r = 0 yu
+

–
9.1s2 + 73.5s + 125

s2 + 17s – 30
10(s + 2)

s(s + 4) (s + 6)

Observer controller Plant

The observer controller has a pole in the right-half s plane (s=1.6119). The exis-
tence of an open-loop right-half s plane pole in the observer controller means that the
system is open-loop unstable, although the closed-loop system is stable. The latter can
be seen from the characteristic equation for the system:

(See MATLAB Program 10–13 for the calculation of the characteristic equation.)
A disadvantage of using an unstable controller is that the system becomes unstable

if the dc gain of the system becomes small. Such a control system is neither desirable nor
acceptable. Hence, to get a satisfactory system, we need to modify the closed-loop pole
location and/or observer pole location.

 = (s + 1 + j2)(s + 1 - j2)(s + 5)(s + 10)(s + 10) = 0

 = s5 + 27s4 + 255s3 + 1025s2 + 2000s + 2500

∑s I - A + BK∑ � @s I - Abb + Ke  Aab @

Figure 10–20
Block diagram of
System 1.

Second trial: Let us keep the desired closed-loop poles for pole placement as before,
but modify the observer pole locations as follows:

s=–4.5, s=–4.5

Thus,

L=[–4.5 –4.5]

Using MATLAB, we find the new Ke to be

Ke = B -1

6.25
R
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MATLAB Program 10–14

% Determination of transfer function of observer controller.

A = [0  1  0;0  0  1;0  -24  -10];
B = [0;10;-80];
Aaa = 0; Aab = [1  0]; Aba = [0;0]; Abb = [0  1;-24  -10];
Ba = 0; Bb = [10;-80];
Ka = 1.25; Kb = [1.25  0.19375];
Ke = [-1;6.25];
Ahat = Abb - Ke*Aab;
Bhat = Ahat*Ke + Aba - Ke*Aaa;
Fhat = Bb - Ke*Ba;
Atilde = Ahat - Fhat*Kb;
Btilde = Bhat - Fhat*(Ka + Kb*Ke);
Ctilde = -Kb;
Dtilde = -(Ka + Kb*Ke);
[num,den] = ss2tf(Atilde,Btilde,-Ctilde,-Dtilde)

num =

1.2109  11.2125  25.3125

den =

1.0000  6.0000  2.1406

Next, we shall obtain the transfer function of the observer controller. MATLAB
Program 10–14 produces this transfer function as follows:

 =
1.2109(s + 5.3582)(s + 3.9012)

(s + 5.619)(s + 0.381)

 Gc(s) =
1.2109s2 + 11.2125s + 25.3125

s2 + 6s + 2.1406

Notice that this is a stable controller. Define the system with this observer controller as
System 2. We shall proceed to obtain the response of System 2 to the given initial
condition:

By substituting into the state-space equation for the plant, we obtain

(10–110)= Ax - BK bx - B0
e
R r = Ax - BKx + B CKa Kb D B0

e
R

x# = Ax - BK x� = Ax - BKB xa

x� b
R = Ax - BKB xa

xb - e
Ru = -K x�

x(0) = C1

0

0

S ,  e(0) = B1

0
R
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The error equation for the minimum-order observer is
(10–111)

By combining Equations (10–110) and (10–111), we get

with the initial condition

MATLAB Program 10–15 produces the response to the given initial condition. The
response curves are shown in Figure 10–21.They seem to be acceptable.

Bx(0)

e(0)
R = E1

0
0
1
0

U
Bx#

e#
R = BA - BK

0
BKb

Abb - Ke Aab
R Bx

e
R

e# = AAbb - Ke  AabBe

MATLAB Program 10–15

% Response to initial condition.

A = [0  1  0;0  0  1;0  -24  -10];
B = [0;10;-80];
K = [1.25  1.25  0.19375];
Kb = [1.25  0.19375];
Ke = [-1;6.25];
Aab = [1  0]; Abb = [0  1;-24  -10];
AA = [A-B*K  B*Kb; zeros(2,3)  Abb-Ke*Aab];
sys = ss(AA,eye(5),eye(5),eye(5));
t = 0:0.01:8;
x = initial(sys,[1;0;0;1;0],t);
x1 = [1  0  0  0  0]*x';
x2 = [0  1  0  0  0]*x';
x3 = [0  0  1  0  0]*x';
e1 = [0  0  0  1  0]*x';
e2 = [0  0  0  0  1]*x';

subplot(3,2,1); plot(t,x1); grid
xlabel ('t (sec)'); ylabel('x1')

subplot(3,2,2); plot(t,x2); grid
xlabel ('t (sec)'); ylabel('x2')

subplot(3,2,3); plot(t,x3); grid
xlabel ('t (sec)'); ylabel('x3')

subplot(3,2,4); plot(t,e1); grid
xlabel('t (sec)'); ylabel('e1')

subplot(3,2,5); plot(t,e2); grid
xlabel('t (sec)'); ylabel('e2')
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Next, we shall check the frequency-response characteristics.The Bode diagram of the
open-loop system just designed is shown in Figure 10–22.The phase margin is about 40°
and the gain margin is ±q dB.The Bode diagram of the closed-loop system is shown in
Figure 10–23. The bandwidth of the system is approximately 3.8 rad/sec.

x 1
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t (sec)

0 2 4 6 8
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Figure 10–21
Response to the
given initial
condition; x1(0)=1,
x2(0)=0, x3(0)=0,
e1(0)=1, e2(0)=0.
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Figure 10–22
Bode diagram for the
open-loop transfer
function of System 2.
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Finally, we shall compare the root-locus plots of the first system with L=[–10 –10]
and the second system with L=[–4.5 –4.5]. The plot for the first system given in
Figure 10–24(a) shows that the system is unstable for small dc gain and becomes stable
for large dc gain. The plot for the second system given in Figure 10–24(b), on the other
hand, shows that the system is stable for any positive dc gain.
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Bode Diagram of System 2 — Closed Loop
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Figure 10–23
Bode diagram for the
closed-loop transfer
function of System 2.

Root-Locus Plot of (91s3 + 917s2 + 2720s + 2500)/
(s5 + 27s4 + 164s3 + 108s2 − 720s)
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Root-Locus Plot of (12.109s3 + 136.343s2 + 477.375s + 506.25)/
(s5 + 16s4 + 86.1406s3 + 165.406s2 + 51.3744s)
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Figure 10–24
(a) Root-locus plot of the system with observer poles at s=–10 and s=–10; (b) root-locus plot of the
system with observer poles at s=–4.5 and s=–4.5.
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Comments
1. In designing regulator systems, note that if the dominant controller poles are placed

far to the left of the jv axis, the elements of the state feedback gain matrix K will
become large. Large gain values will make the actuator output become large, so
that saturation may take place. Then the designed system will not behave as
designed.

2. Also, by placing the observer poles far to the left of the jv axis, the observer
controller becomes unstable, although the closed-loop system is stable.An unstable
observer controller is not acceptable.

3. If the observer controller becomes unstable, move the observer poles to the right
in the left-half s plane until the observer controller becomes stable.Also, the desired
closed-loop pole locations may need to be modified.

4. Note that if the observer poles are placed far to the left of the jv axis, the band-
width of the observer will increase and will cause noise problems. If there is a
serious noise problem, the observer poles should not be placed too far to the left
of the jv axis.The general requirement is that the bandwidth should be sufficiently
low so that the sensor noise will not become a problem.

5. The bandwidth of the system with the minimum-order observer is higher than that
of the system with the full-order observer, provided that the multiple observer
poles are placed at the same place for both observers. If the sensor noise is a seri-
ous problem, use of a full-order observer is recomnended.

10–7 DESIGN OF CONTROL SYSTEMS WITH OBSERVERS

In Section 10–6 we discussed the design of regulator systems with observers. (The systems
did not have reference or command inputs.) In this section we consider the design of
control systems with observers when the systems have reference inputs or command
inputs. The output of the control system must follow the input that is time varying. In
following the command input, the system must exhibit satisfactory performance (a
reasonable rise time, overshoot, settling time, and so on).

In this section we consider control systems that are designed by use of the pole-
placement-with-observer approach. Specifically, we consider control systems using
observer controllers. In Section 10–6 we discussed regulator systems, whose block
diagram is shown in Figure 10–25. This system has no reference input, or r=0. When
the system has a reference input, several different block diagram configurations are
conceivable, each having an observer controller.Two of these configurations are shown
in Figures 10–26 (a) and (b); we shall consider them in this section.

r = 0 yu
Plant

–y Observer
controller

+
–

Figure 10–25
Regulator system.
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r y
Plant

r + u

Observer
controller

+
–

–u

r yu
Plant

r – y Observer
controller

+
–

(a)

(b)

r yuObserver
controller

+
–

1
s(s2 + 1)

Plant

Figure 10–27
Control system with
observer controller
in the feedforward
path.

Configuration 1: Consider the system shown in Figure 10–27. In this system the refer-
ence input is simply added at the summing point. We would like to design the observer
controller such that in the unit-step response the maximum overshoot is less than 30%
and the settling time is about 5 sec.

In what follows we first design a regulator system.Then, using the observer controller
designed, we simply add the reference input r at the summing point.

Before we design the observer controller, we need to obtain a state-space represen-
tation of the plant. Since

we obtain

By choosing the state variables as

we get

 y = Cx

 x# = Ax + Bu

 x3 = y
$

 x2 = y
#

 x1 = y

y
% + y

# = u

Y(s)

U(s)
=

1

sAs2 + 1B

Figure 10–26
(a) Control system
with observer
controller in the
feedforward path;
(b) Control system
with observer
controller in the
feedback path.
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where

Next, we choose the desired closed-loop poles for pole placement at

s=–1+j, s=–1-j, s=–8

and the desired observer poles at

s=–4, s=–4

The state feedback gain matrix K and the observer gain matrix Ke can be obtained as
follows:

See MATLAB Program 10–16.

 Ke = B 8

15
R K = [16 17 10]

A = C0

0

0

1

0

-1

0

1

0

S ,  B = C0

0

1

S ,  C = [1 0 0]

MATLAB Program 10–16

A = [0  1  0;0  0  1;0  -1  0];
B = [0;0;1];
J = [-1+j  -1-j  -8];
K = acker(A,B,J)

K =

16  17  10

Aab = [1  0];
Abb = [0  1;-1  0];
L = [-4  -4];
Ke = acker(Abb',Aab',L)'

Ke =
8
15

The transfer function of the observer controller is obtained by use of MATLAB
Program 10–17. The result is

 =
302(s + 0.5017 + j0.772)(s + 0.5017 - j0.772)

(s + 9 + j5.6569)(s + 9 - j5.6569)

 Gc(s) =
302s2 + 303s + 256

s2 + 18s + 113
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Figure 10–28 shows the block diagram of the regulator system just designed. Figure
10–29 shows the block diagram of a possible configuration of the control system based
on the regulator system shown in Figure 10–28. The unit-step response curve for this
control system is shown in Figure 10–30.The maximum overshoot is about 28% and the
settling time is about 4.5 sec.Thus, the designed system satisfies the design requirements.

MATLAB Program 10–17

% Determination of transfer function of observer controller

A = [0  1  0;0  0  1;0  -1  0];
B = [0;0;1];
Aaa = 0; Aab = [1  0]; Aba = [0;0]; Abb = [0  1;-1  0];
Ba = 0; Bb = [0;1];
Ka = 16; Kb=[17  10];
Ke = [8;15];
Ahat = Abb - Ke*Aab;
Bhat = Ahat*Ke + Aba - Ke*Aaa;
Fhat = Bb - Ke*Ba;
Atilde = Ahat - Fhat*Kb;
Btilde = Bhat - Fhat*(Ka + Kb*Ke);
Ctilde = -Kb;
Dtilde = -(Ka + Kb*Ke);
[num,den] = ss2tf(Atilde,Btilde,-Ctilde,-Dtilde)

num =

302.0000  303.0000  256.0000
den =

1  18  113

y–y u

–
302s2 + 303s + 256

s2 + 18s + 113

Observer controller

1
s(s2 + 1)

Plant

yr – yr u

–
+ 302s2 + 303s + 256

s2 + 18s + 113
1

s(s2 + 1)

Observer controller Plant
Figure 10–29
Control system with
observer controller
in the feedforward
path.

Figure 10–28
Regulator system
with observer
controller.
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Figure 10–30
Unit-step response of
the control system
shown in Figure
10–29.

Configuration 2: A different configuration of the control system is shown in Figure
10–31. The observer controller is placed in the feedback path. The input r is introduced
into the closed-loop system through the box with gain N. From this block diagram, the
closed-loop transfer function is obtained as

We determine the value of constant N such that for a unit-step input r, the output y is
unity as t approaches infinity. Thus we choose

The unit-step response of the system is shown in Figure 10–32. Notice that the maxi-
mum overshoot is very small, approximately 4%. The settling time is about 5 sec.

N =
256

113
= 2.2655

Y(s)

R(s)
=

NAs2 + 18s + 113B
sAs2 + 1B As2 + 18s + 113B + 302s2 + 303s + 256

yNr + u

–u

r

–
+

302s2 + 303s + 256
s2 + 18s + 113

1
s(s2 + 1)

N

Figure 10–31
Control system with
observer controller
in the feedback path.
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Figure 10–32
The unit-step
response of the
system shown in
Figure 10–31. (The
closed-loop poles for
pole placement are
at s=–1 ; j,
s=–8. The observer
poles are at s=–4,
s=–4.)

Comments. We considered two possible configurations for the closed-loop control
systems using observer controllers. As stated earlier, other configurations are possible.

The first configuration,which places the observer controller in the feedforward path,gen-
erally gives a fairly large overshoot.The second configuration,which places the observer con-
troller in the feedback path,gives a smaller overshoot.This response curve is quite similar to
that of the system designed by the pole-placement approach without using the observer con-
troller. See the unit-step response curve of the system, shown in Figure 10–33, designed by
the pole-placement approach without observer.Here the desired closed-loop poles used are

s = -1 + j,  s = -1 - j,  s = -8

O
ut

pu
ty

t (sec)

Unit-Step Response of System without Observer

0.6

0.8

1

1.2

1.4

0.4

0.2

0
0 1 2 3 4 5 6 7 8 9 10

Figure 10–33
The unit-step
response of the
control system
designed by the pole
placement approach
without observer.
(The closed-loop
poles are at
s=–1 ; j, s=–8.)
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Figure 10–34
Bode diagrams of
closed-loop system 1
(shown in Figure
10–29) and closed-
loop system 2 (shown
in Figure 10–31).

Note that, in these two systems, the rise time and settling time are determined primari-
ly by the desired closed-loop poles for pole placement. (See Figures 10–32 and 10–33.)

The Bode diagrams of closed-loop system 1 (shown in Figure 10–29) and closed-
loop system 2 (shown in Figure 10–31) are shown in Figure 10–34. From this figure, we
find that the bandwidth of system 1 is 5 rad�sec and that of system 2 is 1.3 rad�sec.

Summary of State-Space Design Method

1. The state-space design method based on the pole-placement-combined-with-
observer approach is very powerful. It is a time-domain method.The desired closed-
loop poles can be arbitrarily placed, provided the plant is completely state
controllable.

2. If not all state variables can be measured, an observer must be incorporated to
estimate the unmeasurable state variables.

3. In designing a system using the pole-placement approach, several different sets of
desired closed-loop poles need be considered, the response characteristics
compared, and the best one chosen.

4. The bandwidth of the observer controller is generally large, because we choose
observer poles far to the left in the s plane. A large bandwidth passes high-
frequency noises and causes the noise problem.

5. Adding an observer to the system generally reduces the stability margin. In some
cases, an observer controller may have zero(s) in the right-half s plane, which
means that the controller may be stable but of nonminimum phase. In other cases,
the controller may have pole(s) in the right-half s plane—that is, the controller is
unstable. Then the designed system may become conditionally stable.

6. When the system is designed by the pole-placement-with-observer approach, it is
advisable to check the stability margins (phase margin and gain margin), using a
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frequency-response method. If the system designed has poor stability margins, it
is possible that the designed system may become unstable if the mathematical
model involves uncertainties.

7. Note that for nth-order systems, classical design methods (root-locus and
frequency-response methods) yield low-order compensators (first or second order).
Since the observer-based controllers are nth-order Cor (N-m)th-order if the
minimum-order observer is used D for an nth-order system, the designed system
will become 2nth order Cor (2n-m)th order D . Since lower-order compensators are
cheaper than higher-order ones, the designer should first apply classical methods
and, if no suitable compensators can be determined, then try the pole-placement-
with-observer design approach presented in this chapter.

10–8 QUADRATIC OPTIMAL REGULATOR SYSTEMS

An advantage of the quadratic optimal control method over the pole-placement method
is that the former provides a systematic way of computing the state feedback control gain
matrix.

Quadratic Optimal Regulator Problems. We shall now consider the optimal
regulator problem that, given the system equation 

(10–112)

determines the matrix K of the optimal control vector

(10–113)

so as to minimize the performance index

(10–114)

where Q is a positive-definite (or positive-semidefinite) Hermitian or real symmetric
matrix and R is a positive-definite Hermitian or real symmetric matrix. Note that the
second term on the right-hand side of Equation (10–114) accounts for the expenditure
of the energy of the control signals. The matrices Q and R determine the relative
importance of the error and the expenditure of this energy. In this problem, we assume
that the control vector u(t) is unconstrained.

As will be seen later, the linear control law given by Equation (10–113) is the optimal
control law. Therefore, if the unknown elements of the matrix K are determined so as
to minimize the performance index, then u(t)=–Kx(t) is optimal for any initial state
x(0). The block diagram showing the optimal configuration is shown in Figure 10–35.

J = 3
q

0
(x*Qx + u* Ru) dt

u(t) = -Kx(t)

x# = Ax + Bu

x = Ax + Bu
. xu

–K

Figure 10–35
Optimal regulator
system.
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Now let us solve the optimization problem. Substituting Equation (10–113) into
Equation (10–112), we obtain

In the following derivations, we assume that the matrix A-BK is stable, or that the
eigenvalues of A-BK have negative real parts.

Substituting Equation (10–113) into Equation (10–114) yields

Let us set

where P is a positive-definite Hermitian or real symmetric matrix. Then we obtain

Comparing both sides of this last equation and noting that this equation must hold true
for any x, we require that

(10–115)

It can be proved that if A-BK is a stable matrix, there exists a positive-definite ma-
trix P that satisfies Equation (10–115). (See Problem A–10–15.)

Hence our procedure is to determine the elements of P from Equation (10–115) and
see if it is positive definite. (Note that more than one matrix P may satisfy this equation.
If the system is stable, there always exists one positive-definite matrix P to satisfy this
equation.This means that, if we solve this equation and find one positive-definite matrix
P, the system is stable. Other P matrices that satisfy this equation are not positive definite
and must be discarded.)

The performance index J can be evaluated as

Since all eigenvalues of A-BK are assumed to have negative real parts, we have
Therefore, we obtain

(10–116)

Thus, the performance index J can be obtained in terms of the initial condition x(0)
and P.

To obtain the solution to the quadratic optimal control problem, we proceed as
follows: Since R has been assumed to be a positive-definite Hermitian or real symmetric
matrix, we can write

R = T* T

J = x*(0) Px(0)

x(q) S 0.

J = 3
q

0
x*(Q + K* RK)x dt = -x* Px 2q

0
= -x*(q) Px(q) + x*(0) Px(0)

(A - BK)* P + P(A - BK) = -(Q + K* RK)

x*(Q + K* RK) x = -x# * Px - x* Px# = -x*C(A - BK)*  P + P(A - BK) D  x

x*(Q + K*RK) x = -
d

dt
(x*Px)

= 3
q

0
x*(Q + K*RK) x dt

J = 3
q

0
(x*Qx + x*K*RKx) dt

x# = Ax - BKx = (A - BK) x
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where T is a nonsingular matrix. Then Equation (10–115) can be written as

which can be rewritten as

The minimization of J with respect to K requires the minimization of

with respect to K. (See Problem A–10–16.) Since this last expression is nonnegative, the
minimum occurs when it is zero, or when

Hence,
(10–117)

Equation (10–117) gives the optimal matrix K.Thus, the optimal control law to the quad-
ratic optimal control problem when the performance index is given by Equation (10–114)
is linear and is given by

The matrix P in Equation (10–117) must satisfy Equation (10–115) or the following
reduced equation:

(10–118)

Equation (10–118) is called the reduced-matrix Riccati equation. The design steps may
be stated as follows:

1. Solve Equation (10–118), the reduced-matrix Riccati equation, for the matrix P.
[If a positive-definite matrix P exists (certain systems may not have a positive-
definite matrix P), the system is stable, or matrix A-BK is stable.]

2. Substitute this matrix P into Equation (10–117). The resulting matrix K is the
optimal matrix.

A design example based on this approach is given in Example 10–9. Note that if the
matrix A-BK is stable, the present method always gives the correct result.

Finally, note that if the performance index is given in terms of the output vector
rather than the state vector, that is,

then the index can be modified by using the output equation

to

(10–119)

and the design steps presented in this section can be applied to obtain the optimal
matrix K.

J = 3
q

0
(x* C* QCx + u* Ru) dt

y = Cx

J = 3
q

0
(y* Qy + u* Ru) dt

A* P + PA - PBR-1 B* P + Q = 0

u(t) = -Kx(t) = -R-1 B* Px(t)

K = T-1(T*)-1 B* P = R-1 B* P

TK = (T*)-1 B* P

x* CTK - (T*)-1 B* P D* CTK - (T*)-1 B* P D  x

A*P + PA + CTK - (T*)- 1B *P D* CTK - (T*)- 1B *P D - PBR- 1B*P + Q = 0

(A* - K* B*) P + P(A - BK) + Q + K* T* TK = 0
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EXAMPLE 10–9 Consider the system shown in Figure 10–36. Assuming the control signal to be

determine the optimal feedback gain matrix K such that the following performance index is
minimized:

where

(m � 0)

From Figure 10–36, we find that the state equation for the plant is

where

We shall demonstrate the use of the reduced-matrix Riccati equation in the design of the
optimal control system. Let us solve Equation (10–118), rewritten as

Noting that matrix A is real and matrix Q is real symmetric, we see that matrix P is a real sym-
metric matrix. Hence, this last equation can be written as

This equation can be simplified toB 0
p11

0
p12
R + B0

0
p11

p12
R - B p2

12

p12 p22

p12 p22

p2
22
R + B1

0
0
m
R = B0

0
0
0
R

 - Bp11

p12

p12

p22
R B 0

1
R [1][0 1]Bp11

p12

p12

p22
R + B1

0

0

m
R = B0

0

0

0
R

 B0

1

0

0
R Bp11

p12

p12

p22
R + Bp11

p12

p12

p22
R B 0

0

1

0
R

A* P + PA - PBR-1 B* P + Q = 0

A = B0

0

1

0
R ,  B = B0

1
R

x# = Ax + Bu

Q = B1

0

0

m
R

J = 3
q

0
AxT Qx + u2B dt

u(t) = -Kx(t)

u x1

Plant

x2

–K

� �

Figure 10–36
Control system.
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from which we obtain the following three equations:

Solving these three simultaneous equations for p11, p12, and p22, requiring P to be positive definite,
we obtain

Referring to Equation (10–117), the optimal feedback gain matrix K is obtained as

Thus, the optimal control signal is

(10–120)

Note that the control law given by Equation (10–120) yields an optimal result for any initial state
under the given performance index. Figure 10–37 is the block diagram for this system.

Since the characteristic equation is

if m=1, the two closed-loop poles are located at

These correspond to the desired closed-loop poles when m=1.

Solving Quadratic Optimal Regulator Problems with MATLAB. In MATLAB,
the command

lqr(A,B,Q,R)

s = -0.866 + j 0.5,  s = -0.866 - j 0.5

∑s I - A + BK∑ = s2 + 1m + 2 s + 1 = 0

u = -Kx = -x1 - 1m + 2 x2

 = C1 1m + 2 D = Cp12 p22 D
 = [1][0 1]Bp11

p12

p12

p22
R K = R-1 B* P

P = Bp11

p12

p12

p22
R = B1m + 2

1

1

1m + 2
R

 m + 2p12 - p2
22 = 0

 p11 - p12 p22 = 0

 1 - p2
12 = 0

–
–

u x1

Plant

x2
� �

m + 2	
Figure 10–37
Optimal control of
the plant shown in
Figure 10–36.
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solves the continuous-time, linear, quadratic regulator problem and the associated Riccati
equation. This command calculates the optimal feedback gain matrix K such that the
feedback control law

minimizes the performance index

subject to the constraint equation

Another command

[K,P,E] = lqr(A,B,Q,R)

returns the gain matrix K, eigenvalue vector E, and matrix P, the unique positive-definite
solution to the associated matrix Riccati equation:

If matrix A-BK is a stable matrix, such a positive-definite solution P always exists.The
eigenvalue vector E gives the closed-loop poles of A-BK.

It is important to note that for certain systems matrix A-BK cannot be made a sta-
ble matrix, whatever K is chosen. In such a case, there does not exist a positive-definite
matrix P for the matrix Riccati equation. For such a case, the commands

K = lqr(A,B,Q,R)

[K,P,E] = lqr(A,B,Q,R)

do not give the solution. See MATLAB Program 10–18.

EXAMPLE 10–10 Consider the system defined by

Show that the system cannot be stabilized by the state-feedback control scheme

whatever matrix K is chosen. (Notice that this system is not state controllable.)
Define

Then

 = B-1 - k1

0

1 - k2

2
R

 A - BK = B-1

0

1

2
R - B1

0
R Ck1 k2 D

K = Ck1 k2 D
u = -Kx

Bx
#
1

x
#
2
R = B-1

0
1
2
R Bx1

x2
R + B1

0
Ru

PA + A* P - PBR-1 B* P + Q = 0

x# = Ax + Bu

J = 3
q

0
(x* Qx + u* Ru) dt

u = -Kx
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Hence, the characteristic equation becomes

The closed-loop poles are located at

Since the pole at s=2 is in the right-half s plane, the system is unstable whatever K matrix is
chosen. Hence, quadratic optimal control techniques cannot be applied to this system.

Let us assume that matrices Q and R in the quadratic performance index are given by

and that we write MATLAB Program 10–18. The resulting MATLAB solution is

K = [NaN  NaN]

(NaN means ‘not a number.’) Whenever the solution to a quadratic optimal control problem does
not exist, MATLAB tells us that matrix K consists of NaN.

Q = B1

0

0

1
R ,  R = [1]

s = -1 - k1 ,  s = 2

= As + 1 + k1B(s - 2) = 0

∑s I - A + BK∑ = 2 s + 1 + k1

0
-1 + k2

s - 2
2

MATLAB Program 10–18

% ---------- Design of quadratic optimal regulator system ----------

A = [-1 1;0  2];
B = [1;0];
Q = [1  0;0  1];
R = [1];

K = lqr(A,B,Q,R)

Warning: Matrix is singular to working precision.

K =

NaN  NaN

% ***** If we enter the command [K,P,E] = lqr(A,B,Q,R), then *****

[K,P,E] = lqr(A,B,Q,R)

Warning: Matrix is singular to working precision.

K =

NaN  NaN

P =

-Inf  -Inf
-Inf  -Inf

E =

-2.0000
-1.4142
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EXAMPLE 10–11 Consider the system described by

where

The performance index J is given by

where

Assume that the following control u is used.

Determine the optimal feedback gain matrix K.
The optimal feedback gain matrix K can be obtained by solving the following Riccati equation

for a positive-definite matrix P:

The result is

Substituting this P matrix into the following equation gives the optimal K matrix:

Thus, the optimal control signal is given by

MATLAB 10–19 also yields the solution to this problem.

u = -Kx = -x1 - x2

= [1][0 1]B2
1

1
1
R = [1 1]

 K = R-1 B¿ P

P = B2

1

1

1
R

A¿ P + PA - PBR-1 B¿ P + Q = 0

u = -Kx

Q = B1

0

0

1
R ,  R = [1]

J = 3
q

0
(x¿ Qx + u¿ Ru) dt

A = B0

0

1

-1
R ,  B = B0

1
R

x# = Ax + Bu

MATLAB Program 10–19

% ---------- Design of quadratic optimal regulator system ----------

A = [0  1;0  -1];
B = [0;1];
Q = [1  0; 0  1];
R = [1];

K = lqr(A,B,Q,R)

K =

1.0000 1.0000
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EXAMPLE 10–12 Consider the system given by

where

The performance index J is given by

where

Obtain the positive-definite solution matrix P of the Riccati equation, the optimal feedback gain
matrix K, and the eigenvalues of matrix A-BK.

MATLAB Program 10–20 will solve this problem.

Q = C1
0
0

0
1
0

0
0
1
S ,  R = [1]

J = 3
q

0
(x¿ Qx + u¿ Ru) dt

A = C 0
0

-35

1
0

-27

0
1

-9
S ,  B = C0

0
1
S

x# = Ax + Bu

MATLAB Program 10–20

% ---------- Design of quadratic optimal regulator system ----------

A = [0  1  0;0  0  1;-35  -27  -9];
B = [0;0;1];
Q = [1  0  0;0  1  0;0  0  1];
R = [1];
[K,P,E] = lqr(A,B,Q,R)

K =

0.0143 0.1107 0.0676

P =

4.2625 2.4957 0.0143
2.4957 2.8150 0.1107
0.0143 0.1107 0.0676

E = 

-5.0958
-1.9859 + 1.7110i
-1.9859 - 1.7110i
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Next, let us obtain the response x of the regulator system to the initial condition x(0), where

With state feedback u=–Kx, the state equation for the system becomes

Then the system, or sys, can be given by

sys = ss(A-B*K, eye(3), eye(3), eye(3))

MATLAB Program 10–21 produces the response to the given initial condition. The response
curves are shown in Figure 10–38.

x# = Ax + Bu = (A - BK) x

x(0) = C1

0

0

S

EXAMPLE 10–13 Consider the system shown in Figure 10–39. The plant is defined by the following state-space
equations:

where

The control signal u is given by

u = k1Ar - x1B - Ak2 x2 + k3 x3B = k1 r - Ak1 x1 + k2 x2 + k3 x3B
A = C0

0
0

1
0

-2

0
1

-3
S , B = C0

0
1
S ,  C = [1 0 0],  D = [0]

 y = Cx + Du

 x# = Ax + Bu

MATLAB Program 10–21

% Response to initial condition.

A = [0  1  0;0  0  1;-35  -27  -9];
B = [0;0;1];
K = [0.0143  0.1107  0.0676];
sys = ss(A-B*K, eye(3),eye(3),eye(3));
t = 0:0.01:8;
x = initial(sys,[1;0;0],t);
x1 = [1  0  0]*x';
x2 = [0  1  0]*x';
X3 = [0  0  1]*x';

subplot(2,2,1); plot(t,x1); grid
xlabel('t (sec)'); ylabel('x1')

subplot(2,2,2); plot(t,x2); grid
xlabel('t (sec)'); ylabel('x2)

subplot(2,2,3); plot(t,x3); grid
xlabel('t (sec)'); ylabel('x3')
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Figure 10–38
Response curves to
initial condition.

In determining an optimal control law, we assume that the input is zero, or r=0.
Let us determine the state-feedback gain matrix K, where

such that the following performance index is minimized:

where

Q = Cq11

0
0

0
q22

0

0
0

q33

S ,  R = 1,  x = Cx1

x2

x3

S = C y

y
#

y
$
S

J = 3
q

0
(x¿ Qx + u¿ Ru) dt

K = Ck1 k2 k3 D

+
–

+
–

x = Ax + Bu
.

k2

k3

y = Cxk1

r u
x

x2

x3

y = x1

Figure 10–39
Control system.
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To get a fast response, q11 must be sufficiently large compared with q22, q33, and R. In this problem,
we choose

To solve this problem with MATLAB, we use the command

K = lqr(A,B,Q,R)

MATLAB Program 10–22 yields the solution to this problem.

q11 = 100,  q22 = q33 = 1,  R = 0.01

MATLAB Program 10–22

% ---------- Design of quadratic optimal control system ----------

A = [0  1  0;0  0  1;0  -2  -3];
B = [0;0;1];
Q = [100  0  0;0  1  0;0  0  1];
R = [0.01];

K = Iqr(A,B,Q,R)

K =

100.0000    53.1200    11.6711

Next we shall investigate the step-response characteristics of the designed system using the
matrix K thus determined. The state equation for the designed system is

and the output equation is

To obtain the unit-step response, use the following command:

[y,x,t] = step(AA,BB,CC,DD)

where

AA=A-BK, BB=Bk1, CC=C, DD=D

MATLAB Program 10–23 produces the unit-step response of the designed system. Figure 10–40
shows the response curves x1, x2, and x3 versus t on one diagram.

y = Cx = [1 0 0]Cx1

x2

x3

S
 = (A - BK) x + Bk1 r

 = Ax + BA-Kx + k1 rB x# = Ax + Bu
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MATLAB Program 10–23

% ---------- Unit-step response of designed system ----------

A = [0  1  0;0  0  1;0  -2  -3];
B = [0;0;1]
C = [1  0  0];
D = [0];
K = [100.0000  53.1200  11.6711];
k1 = K(1); k2 = K(2); k3 = K(3);

% ***** Define the state matrix, control matrix, output matrix,
% and direct transmission matrix of the designed systems as AA,
% BB, CC, and DD *****

AA = A - B*K;
BB = B*k1;
CC = C;
DD = D;
t = 0:0.01:8;
[y,x,t] = step (AA,BB,CC,DD,1,t);

plot(t,x)
grid
title('Response Curves x1, x2, x3, versus t')
xlabel('t Sec')
ylabel('x1,x2,x3')
text(2.6,1.35,'x1')
text(1.2,1.5,'x2')
text(0.6,3.5,'x3')

Response Curves x1, x2, x3 versus t

x1
,x

2,
x3

5

–2

1

4

2

0

–1

3

t Sec
0 52 31 4 86 7

x3

x2 x1

Figure 10–40
Response curves x1

versus t, x2 versus t,
and x3 versus t.
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Concluding Comments on Optimal Regulator Systems

1. Given any initial state x(t0), the optimal regulator problem is to find an allowable
control vector u(t) that transfers the state to the desired region of the state space
and for which the performance index is minimized. For the existence of an optimal
control vector u(t), the system must be completely state controllable.

2. The system that minimizes (or maximizes, as the case may be) the selected
performance index is, by definition, optimal. Although the controller may have
nothing to do with “optimality” in many practical applications, the important point
is that the design based on the quadratic performance index yields a stable control
system.

3. The characteristic of an optimal control law based on a quadratic performance
index is that it is a linear function of the state variables, which implies that we need
to feed back all state variables.This requires that all such variables be available for
feedback. If not all state variables are available for feedback, then we need to
employ a state observer to estimate unmeasurable state variables and use the es-
timated values to generate optimal control signals.

Note that the closed-loop poles of the system designed by the use of the
quadratic optimal regulator approach can be found from

Since these closed-loop poles correspond to the desired closed-loop poles in the
pole-placement approach, the transfer functions of the observer controllers can
be obtained from either Equation (10–74) if the observer is of full-order type or
Equation (10–108) if the observer is of minimum-order type.

4. When the optimal control system is designed in the time domain, it is desirable to
investigate the frequency-response characteristics to compensate for noise effects.
The system frequency-response characteristics must be such that the system at-
tenuates highly in the frequency range where noise and resonance of components
are expected. (To compensate for noise effects, we must in some cases either modify
the optimal configuration and accept suboptimal performance or modify the
performance index.)

5. If the upper limit of integration in the performance index J given by Equation
(10–114) is finite, then it can be shown that the optimal control vector is still a
linear function of the state variables, but with time-varying coefficients. (Therefore,
the determination of the optimal control vector involves that of optimal time-
varying matrices.)

10–9 ROBUST CONTROL SYSTEMS

Suppose that given a control object (i.e., a system with a flexible arm) we wish to de-
sign a control system. The first step in the design of a control system is to obtain a
mathematical model of the control object based on the physical law. Quite often the
model may be nonlinear and possibly with distributed parameters. Such a model may
be difficult to analyze. It is desirable to approximate it by a linear constant-coefficient
system that will approximate the actual object fairly well. Note that even though the

∑s I - A + BK∑ = 0



model to be used for design purposes may be a simplified one, it is necessary that such
a model must include any intrinsic character of the actual object.Assuming that we can
get a model that approximates the actual system quite well, we must get a simplified
model for the purpose of designing the control system that will require a compensator
of lowest order possible. Thus, a model of a control object (whatever it may be) will
probably include an error in the modeling process. Note that in the frequency-response
approach to control systems design, we use phase and gain margins to take care of
the modeling errors. However, in the state-space approach, which is based on the dif-
ferential equations of the plant dynamics, no such “margins” are involved in the
design process.

Since the actual plant differs from the model used in the design, a question arises
whether the controller designed using a model will work satisfactorily with the actu-
al plant. To ensure that it will do so, robust control theory has been developed since
around 1980.

Robust control theory uses the assumption that the models we use in designing con-
trol systems have modeling errors.We shall present an introduction to this theory in this
section. Basically, the theory assumes that there is an uncertainty or error between the
actual plant and its mathematical model and includes such uncertainty or error in the
design process of the control system.

Systems designed based on the robust control theory will possess the following
properties:

(1) Robust stability. The control system designed is stable in the presence of
perturbation.

(2) Robust performance. The control system exhibits predetermined response
characteristics in the presence of perturbation.

This theory requires considerations based on frequency-response analysis and time-
domain analysis. Because of the mathematical complications associated with robust con-
trol theory, detailed discussion of robust control theory is beyond the scope of the senior
engineering student. In this section, only introductory discussion of robust control the-
ory is presented.

Uncertain Elements in Plant Dynamics. The term uncertainty refers to the dif-
ferences or errors between the model of the plant and the actual plant.

Uncertain elements that may appear in practical systems may be classified as struc-
tured uncertainty and unstructured uncertainty. An example of structured uncertainty is
any parametric variation in the plant dynamics, such as variations in poles and zeros
of the plant transfer function. Examples of unstructured uncertainty include frequency-
dependent uncertainty, such as high-frequency modes that we normally neglect in mod-
eling plant dynamics. For example, in the modeling of a flexible-arm system, the model
may include a finite number of modes of oscillation.The modes of oscillation that are not
included in the modeling behave as uncertainty of the system. Another example of un-
certainty occurs in the linearization of a nonlinear plant. If the actual plant is nonlinear
and its model is linear, then the difference acts as unstructured uncertainty.

In this section we consider the case where the uncertainty is unstructured. In addi-
tion we assume that the plant involves only one uncertainty. (Some plants may involve
multiple uncertain elements.)
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In the robust control theory, we define unstructured uncertainty as . Since the
exact description of is unknown, we use an estimate of (as to the magnitude
and phase characteristics) and use this estimate in the design of the controller that sta-
bilizes the control system. Stability of a system with unstructured uncertainty can then
be examined by use of the small gain theorem to be given following the definition of the

norm.

Norm. The norm of a stable single-input–single-output system is the largest
possible amplification factor of the steady-state response to sinusoidal excitation.

For a scalar (s), gives the maximum value of . It is called the norm.
See Figure 10–41.

In robust control theory we measure the magnitude of the transfer function by the
norm. Assume that the transfer function is proper and stable. [Note that a

transfer function is called proper if is limited and definite. If = 0, it
is called strictly proper.] The norm of is defined by

means the maximum singular value of . ( means .) Note that
the singular value of a transfer function is defined by

where is the ith largest eigenvalue of and it is always a non-negative real
value. By making smaller, we make the effect of input w on the output z smaller.
It is frequently the case that instead of using the maximum singular value , we use
the inequality

and limit the magnitude of (s) by .To make the magnitude of small, we choose
a small and require that .7£ 7q 6 gg

7£ 7qg£

7£ 7q 6 g

7£ 7q7£ 7q £*£li(£*£)

si(£) = 2li(£*£)

£
smaxs[£(jv)]s [£(jv)]

7£ 7q = s [£(jv)]

£(s)Hq

£(q)£(q)£(s)
£(s)Hq

Hq�£(jv)�7£ 7q£

HqH�

Hq

¢(s)¢(s)
¢(s)
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Small-Gain Theorem. Consider the closed-loop system shown in Figure 10–42. In
the figure and M(s) are stable and proper transfer functions.

The small-gain theorem states that if

then this closed-loop system is stable. That is, if the norm of M(s) is smaller
than 1, this closed-loop system is stable. This theorem is an extension of the Nyquist
stability criterion.

It is important to note that the small-gain theorem gives a sufficient condition for sta-
bility. That is, a system may be stable even if it does not satisfy this theorem. However,
if a system satisfies the small-gain theorem, it is always stable.

System with Unstructured Uncertainty. In some cases an unstructured uncer-
tainty error may be considered multiplicative such that

where is the true plant dynamics and G is the model plant dynamics. In other cases
an unstructured uncertainty error may be considered additive such that

In either case we assume that the norm of or is bounded such that

where and are positive constants.

EXAMPLE 10–14 Consider a control system with unstructured multiplicative uncertainty.We shall consider robust
stability and robust performance of the system. (A system with unstructured additive uncertain-
ty will be discussed in Problem A–10–18.)

Robust Stability. Let us define

true plant dynamics

G=model of plant dynamics

unstructured multiplicative uncertainty

We assume that is stable and its upper bound is known.We also assume that and G are
related by

= G(I + ¢m)G
�

G
�¢m

¢m =

G
� =

gagm

7¢m 7 6 gm ,   7¢a 7 6 ga

¢a¢m

G
� = G + ¢a

G
�

G
� = G(1 + ¢m)

¢(s)Hq

7¢(s)M(s) 7q 6 1

¢(s)
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Consider the system shown in Figure 10–43(a). Let us examine the transfer function between
point A and point B. Notice that Figure 10–43(a) can be redrawn as shown in Figure 10-43(b).The
transfer function between point A and point B can be given by

Define

(10–121)

Using Equation (10–121) we can redraw Figure 10–43(b) as Figure 10–43(c).Applying the small-
gain theorem to the system consisting of and T as shown in Figure 10–43(c), we obtain the
condition for stability to be

(10–122)

In general, it is impossible to precisely model Therefore, let us use a scalar transfer function
such that

where is the largest singular value of .
Consider, instead of Inequality (10–122), the following inequality:

(10–123)

If Inequality (10–123) holds true, Inequality (10–122) will always be satisfied. By making 
the norm of to be less than 1, we obtain the controller K that will make the system
stable.

Suppose that we cut the line at point A in Figure 10–43(a). Then we obtain Figure 10–43(d).
Replacing by , we obtain Figure 10–43(e). Redrawing Figure 10–43(e), we obtain Figure
10–43(f). Figure 10–43(f) is called a generalized plant diagram.

Referring to Equation (10–121), T is given by

(10–124)

Then Inequality (10–123) can be rewritten as

(10–125)

Clearly, for a stable plant model G(s), K(s)=0 will satisfy Inequality (10–125). However,
K(s)=0 is not the desirable transfer function for the controller. To find an acceptable trans-
fer function for K(s), we may add another condition—for example, that the resulting system will
have robust performance such that the system output follows the input with minimum error, or
another reasonable condition. In what follows we shall obtain the condition for robust
performance.

ß WmK(s)G(s)

1 + K(s)G(s)
ß

q

6 1

T =
KG

1 + KG

WmI¢m

WmTHq

7WmT 7q 6 1

¢m(jv)s{¢m(jv)}

s{¢m(jv)} 6 �Wm(jv)�

Wm(jv)
¢m .

7¢mT 7q 6 1

¢m

(1 + KG)-1 KG = T

KG

1 + KG
= (1 + KG)-1 KG
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Robust Performance. Consider the system shown in Figure 10–44. Suppose that we want
the output y(t) to follow the input r(t) as closely as possible, or we wish to have

Since the transfer function Y(s)/R(s) is

we have

Define

where S is commonly called the sensitivity function and T defined by Equation (10–124) is called
the complementary sensitivity function. In this robust performance problem we want to make
the norm of S smaller than the desired transfer function or which can be
written as 

(10–126)

Combining Inequalities (10–123) and (10–126), we get

where T+S=1, or

(10–127)

Our problem then becomes to find K(s) that will satisfy Inequality (10–127). Note that depend-
ing on the chosen Wm(s) and Ws(s) there may be many K(s) that satisfy Inequality (10–127), or
may be no K(s) that satisfies Inequality (10–127). Such a robust control problem using Inequality
(10–127) is called a mixed-sensitivity problem.

Figure 10–45(a) is a generalized plant diagram, where two conditions (robust stability and ro-
bust performance) are specified.A simplified version of this diagram is shown in Figure 10–45(b).

∑Wm(s) 
K(s)G(s)

1 + K(s)G(s)

Ws(s)
1

1 + K(s)G(s)

∑
q

6 1

gWmT

WsS
g

q
6 1

7Ws S 7q 6 1

7S 7q 6 Ws
-1Ws  

-1Hq

1

1 + KG
= S

E(s)

R(s)
=

R(s) - Y(s)

R(s)
= 1 -

Y(s)

R(s)
=

1
1 + KG

Y(s)

R(s)
 =  

KG

1 +  KG

lim
t S q

[r(t) - y(t)] =  lim
t S q

e(t) S 0
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Finding Transfer Function z(s)/w(s) from a Generalized Plant Diagram. Consider
the generalized plant diagram shown in Figure 10–46.

In this diagram w(s) is the exogenous disturbance and u(s) is the manipulated vari-
able. z(s) is the controlled variable and y(s) is the observed variable.

Consider this control system consisting of the generalized plant P(s) and the con-
troller K(s).The equation that relates the outputs z(s) and y(s) and the inputs w(s) and
u(s) of the generalized plant P(s) is

The equation that relates u(s) and y(s) is given by

u(s)=K(s)y(s)

Define the transfer function that relates the controlled variable z(s) to the exogenous
disturbance w(s) as (s). Then

z(s) = £(s)w(s)

£

B z(s)

y(s)
R = BP11

P21

P12

P22
R Bw(s)

u(s)
R



Note that can be determined as follows: Since

z(s)=P11w(s)+P12u(s)

y(s)=P21w(s)+P22u(s)

u(s)=K(s)y(s)

we obtain

y(s)=P21w(s)+P22K(s)y(s)

Hence

or

Therefore,

Hence,

(10–128)

EXAMPLE 10–15 Let us determine the P matrix in the generalized plant diagram of the control system considered
in Example 10–14. We derived Inequality (10–125) for the control system to be robust stable.
Rewriting Inequality (10–125), we have

(10–129)g WmKG

1 + KG
g

q
6 1

£(s) = P11 + P12K(s)[I - P22K(s)]-1P21

= {P11 + P12K(s)[I - P22K(s)]- 1P21}w(s)

z(s) = P11w(s) + P12K(s)[I - P22K(s)]-1P21w(s)

y(s) = [I - P22K(s)]-1P21w(s)

[I - P22K(s)]y(s) = P21w(s)

£(s)
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If we define

(10–130)

then Inequality (10–129) can be written as

Referring to Equation (10–128), rewritten as

notice that if we choose the generalized plant P matrix as 

(10–131)

Then we obtain

which is exactly the same as in Equation (10–130).
We derived in Example 10–14 that if we wished to have the output y follow the input r as

close as possible, we needed to make the norm of (s), where

(10–132)

less than 1. [See Inequality (10–126).]
Note that the controlled variable z is related to the exogenous disturbance w by

and referring to Equation (10–128)

Notice that if we choose the P matrix as

(10–133)

then we obtain

which is the same as in Equation (10–132).£2

 = Ws c 1

1 + KG
d

 = Ws c1 -
KG

1 + KG
d

 = Ws - WsKG(I + KG)-1

 £ = P11 + P12K(I - P22K)-1P21

P = cWs -WsG

I -G
d

£(s) = P11 + P12K(I - P22K)-1P21

z = £(s)w

£2 =
Ws

I + KG

£2Hq

£1

 = WmKG(I + KG)-1

£ = P11 + P12K(I - P22K)-1P21

P = c 0 WmG

I -G
d

£ = P11 + P12K(I - P22K)-1P21

7£1 7q 6 1

£1 =
WmKG

1 + KG
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If both the robust stability and robust performance conditions are required, the control sys-
tem must satisfy the condition given by Inequality (10–127), rewritten as

(10–134)

For the P matrix, we combine Equations (10–133) and (10–131) and get

(10–135)

If we construct P(s) as given by Equation (10–135), then the problem of designing a control
system to satisfy both robust stability and robust performance conditions can be formulated by
using the generalized plant represented by Equation (10–135). As mentioned earlier, such a
problem is called a mixed-sensitivity problem. By using the generalized plant given by Equation
(10–135) we are able to determine the controller K(s) that satisfies Inequality (10–134). The
generalized plant diagram for the system considered in Example 10–14 becomes as shown in
Figure 10–47.

H Infinity Control Problem. To design a controller K of a control system to sat-
isfy various stability and performance specifications, we utilize the concept of the gen-
eralized plant.

As mentioned earlier a generalized plant is a linear model consisting of a model of
the plant and weighting functions corresponding to the specifications for the required
performance. Referring to the generalized plant shown in Figure 10–48, the H infinity
control problem is a problem to design a controller K that will make the norm of
the transfer function from the exogenous disturbance w to the controlled variable z less
than a specified value.

Hq

P = CWs

0
I

-WsG

WmG

-G

S

∑Wm 
KG

1 + KG

Ws  
1

1 + KG

∑ 6 1
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The reason to use generalized plants, rather than individual block diagrams of con-
trol systems, is that a number of control systems with uncertain elements have been
designed using generalized plants and, consequently, established design approaches
using such plants are available.

Note that any weighting function, such as W(s), is an important parameter to in-
fluence the resulting controller K(s). In fact, the goodness of the resulting designed
system depends on the choice of the weighting function or functions used in the de-
sign process.

Note that the controller that is the solution to the H infinity control problem is com-
monly called the H infinity controller.

Solving Robust Control Problems. There are three established approaches to
solve robust control problems. They are

1. Solve robust control problems by deriving the Riccati equations and solving them.
2. Solve robust control problems by using the linear matrix inequality approach.
3. Solve robust control problems that involve structural uncertainties by using the 

analysis and synthesis approach.

Solving robust control problems by use of any of the above methods requires a broad
mathematical background.

In this section we have presented only an introduction to the robust control theory.
Solving any robust control problem requires mathematical background beyond the
scope of the senior engineering student. Therefore, an interested reader may take a
graduate-level control course at an established college or university and study this sub-
ject in detail.

EXAMPLE PROBLEMS AND SOLUTIONS

A–10–1. Consider the system defined by

Suppose that this system is not completely state controllable.Then the rank of the controllability
matrix is less than n, or

(10–136)rank CB � AB � p � An - 1 B D = q 6 n

x# = Ax + Bu

m

m
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This means that there are q linearly independent column vectors in the controllability matrix. Let
us define such q linearly independent column vectors as f1 , f2 , p , fq. Also, let us choose n-q
additional n-vectors vq+1, vq+2, p , vn such that

is of rank n. By using matrix P as the transformation matrix, define

Show that can be given by

where A11 is a q*q matrix, A12 is a q*(n-q) matrix, A22 is an (n-q)*(n-q) matrix, and
0 is an (n-q)*q matrix. Show also that matrix can be given by

where B11 is a q*1 matrix and 0 is an (n-q)*1 matrix.

Solution. Notice that

or

(10–137)

Also,

(10–138)

Since we have q linearly independent column vectors f1, f2, p , fq, we can use the Cayley–Hamilton
theorem to express vectors Af1 , Af2 , p , Afq in terms of these q vectors. That is,

Afq = a1q  f1 + a2q  f2 + p + aqq  fq

�

�

�

Af2 = a12  f1 + a22  f2 + p + aq2  fq

Af1 = a11  f1 + a21  f2 + p + aq1  fq

B = PB̂

= C f1 � f2 � p � fq � vq + 1 � p � vn D  Â

CAf1 � Af2 � p � Afq � Avq + 1 � p � Avn D
AP = PÂ

B̂ = cB11

0
d

B̂

Â = cA11

0
 A12

A22
d

Â

P-1 AP = Â,  P-1 B = B̂

P = Cf1 � f2 � p � fq � vq + 1 � vq + 2 � p � vn D
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Hence, Equation (10–137) may be written as follows:

Define

Then Equation (10–137) can be written as

= Cf1 � f2 � p � fq � vq + 1 � p � vn D cA11

0
 A12

A22
d

CAf1 � Af2 � p � Afq � Avq + 1 � p � Avn D

 Eaq + 1q + 1

�

�

�

anq + 1

p

p

aq + 1n

�

�

�

ann

U = A22

 E 0

�

�

�

0

p

p

0

�

�

�

0

U = A21 = (n - q) * q zero matrix

 F
a1q + 1

a2q + 1

�

�

�

aqq + 1

p
p

p

a1n

a2n

�

�

�

aqn

V = A12

 F
a11

a21

�

�

�

aq1

p
p

p

a1q

a2q

�

�

�

aqq

V = A11

= Cf1 � f2 � p � fq � vq + 1 � p � vn D 

a11

a21

�

�

�

aq1

0

�

�

�

0

p
p

p

p

p

a1q

a2q

�

�

�

aqq

0

�

�

�

0

a1q + 1

a2q + 1

�

�

�

aqq + 1

aq + 1q + 1

�

�

�

anq + 1

p
p

p

p

p

a1n

a2n

�

�

�

aqn

aq + 1n

�

�

�

ann

CAf1 � Af2 � p � Afq � Avq + 1 � p � Avn D



Thus,

Hence,

Next, referring to Equation (10–138), we have

(10–139)

Referring to Equation (10–136), notice that vector B can be written in terms of q linearly
independent column vectors f1 , f2 , p , fq. Thus, we have

Consequently, Equation (10–139) may be written as follows:

Thus,

where

A–10–2. Consider a completely state controllable system

Define the controllability matrix as M:

M = CB � AB � p � An - 1 B D
x# = Ax + Bu

B11 = F
b11

b21

�

�

�

bq1

V

B̂ = cB11

0
d

b11  f1 + b21  f2 + p + bq1  fq = C f1 � f2 � p � fq � vq + 1 � p � vn D

b11

b21

�

�

�

bq1

0

�

�

�

0

B = b11  f1 + b21  f2 + p + bq1  fq

B = Cf1 � f2 � p � fq � vq + 1 � p � vn D  B̂

P-1 AP = Â = cA11

0
 A12

A22
d

AP = P cA11

0
 A12

A22
d
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Show that

where a1, a2, p , an are the coefficients of the characteristic polynomial

Solution. Let us consider the case where n=3. We shall show that

(10–140)

The left-hand side of Equation (10–140) is

The right-hand side of Equation (10–140) is

(10–141)

The Cayley–Hamilton theorem states that matrix A satisfies its own characteristic equation or, in
the case of n=3,

(10–142)

Using Equation (10–142), the third column of the right-hand side of Equation (10–141) becomes

Thus, Equation (10–141) becomes

Hence, the left-hand side and the right-hand side of Equation (10–140) are the same. We have
thus shown that Equation (10–140) is true. Consequently,

The preceding derivation can be easily extended to the general case of any positive integer n.

A–10–3. Consider a completely state controllable system

Define

M = CB � AB � p � An - 1 B D
x# = Ax + Bu

M-1 AM = C0

1

0

0

0

1

-a3

-a2

-a1

S

CB � AB � A2 B D C0

1

0

0

0

1

-a3

-a2

-a1

S = CAB � A2 B � A3 B D
-a3  B - a2  AB - a1  A2 B = A-a3  I - a2  A - a1  A2BB = A3 B

A3 + a1  A2 + a2  A + a3  I = 0

CB � AB � A2 B D C0

1

0

0

0

1

-a3

-a2

-a1

S = CAB � A2 B � -a3  B - a2  AB - a1  A2 B D
AM = A CB � AB � A2 B D = CAB � A2 B � A3 B D

AM = MC0

1

0

0

0

1

-a3

-a2

-a1

S
∑s I - A∑ = sn + a1 sn - 1 + p + an - 1 s + an

M-1 AM = G
0

1

0

�

�

�

0

0

0

1

�

�

�

0

p
p
p

p

0

0

0

�

�

�

1

-an

-an - 1

-an - 2

�

�

�

-a1

W
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and

where the ai’s are coefficients of the characteristic polynomial

Define also

Show that

Solution. Let us consider the case where n=3. We shall show that

(10–143)

Referring to Problem A–10–2, we have

Hence, Equation (10–143) can be rewritten as

Therefore, we need to show that

(10–144)

The left-hand side of Equation (10–144) is

C0

1

0

0

0

1

-a3

-a2

-a1

S Ca2

a1

1

a1

1

0

1

0

0

S = C-a3

0

0

0

a1

1

0

1

0

S
C0

1

0

0

0

1

-a3

-a2

-a1

S  W = WC 0

0

-a3

1

0

-a2

0

1

-a1

S
W-1C0

1

0

0

0

1

-a3

-a2

-a1

S  W = C 0

0

-a3

1

0

-a2

0

1

-a1

S
M-1 AM = C0

1

0

0

0

1

-a3

-a2

-a1

S
T-1 AT = (MW)-1 A(MW) = W-1(M-1 AM) W = C 0

0

-a3

1

0

-a2

0

1

-a1

S

T-1 AT = G
0

0

�

�

�

0

-an

1

0

�

�

�

0

-an - 1

0

1

�

�

�

0

-an - 2

p
p

p
p

0

0

�

�

�

1

-a1

W ,  T-1 B = G
0

0

�

�

�

0

1

W
T = MW

∑s I - A∑ = sn + a1 sn - 1 + p + an - 1 s + an

W = G
an - 1

an - 2

�

�

�

a1

1

an - 2

an - 3

�

�

�

1

0

p
p

p
p

a1

1

�

�

�

0

0

1

0

�

�

�

0

0

W
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The right-hand side of Equation (10–144) is

Clearly, Equation (10–144) holds true. Thus, we have shown that

Next, we shall show that

(10–145)

Note that Equation (10–145) can be written as

Noting that

we have

The derivation shown here can be easily extended to the general case of any positive integer n.

A–10–4. Consider the state equation

where

The rank of the controllability matrix M,

is 2.Thus, the system is completely state controllable.Transform the given state equation into the
controllable canonical form.

Solution. Since

 = s2 + 2s + 1 = s2 + a1 s + a2

 ∑s I - A∑ = 2 s - 1

4

-1

s + 3
2 = (s - 1)(s + 3) + 4

M = CB � AB D = B0

2

2

-6
R

A = B 1

-4

1

-3
R ,  B = B0

2
R

x# = Ax + Bu

T-1 B = C0
0
1
S

TC0

0

1

S = CB � AB � A2 B D Ca2

a1

1

a1

1

0

1

0

0

S C0

0

1

S = CB � AB � A2 B D C1

0

0

S = B

B = TC0

0

1

S = MWC0

0

1

S
T-1 B = C0

0

1

S
T-1 AT = C 0

0

-a3

1

0

-a2

0

1

-a1

S
Ca2

a1

1

a1

1

0

1

0

0

S C 0

0

-a3

1

0

-a2

0

1

-a1

S = C-a3

0

0

0

a1

1

0

1

0

S
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we have

Define

where

Then

and

Define

Then the state equation becomes

Since

and

we have

which is in the controllable canonical form.

A–10–5. Consider a system defined by

where

A = B 0
-2

1
-3
R ,  B = B0

2
R ,  C = [1 0]

 y = Cx

 x# = Ax + Bu

B x̂
#

1

x̂
#

2
R = B 0

-1
1

-2
R B x̂1

x̂2
R + B0

1
Ru

T-1 B = B0.5
0.5

0
0.5
R B0

2
R = B0

1
R

T-1AT = B0.5

0.5

0

0.5
R B 1

-4

1

-3
R B 2

-2

0

2
R = B 0

-1

1

-2
R

x̂
#

= T-1 ATx̂ + T-1Bu

x = Tx̂

T-1 = B0.5

0.5

0

0.5
R

T = B0

2

2

-6
R B2

1

1

0
R = B 2

-2

0

2
R

M = B0

2

2

-6
R ,  W = B2

1

1

0
R

T = MW

a1 = 2,  a2 = 1
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The characteristic equation of the system is

The eigenvalues of matrix A are –1 and –2.
It is desired to have eigenvalues at –3 and –5 by using a state-feedback control u=–Kx.

Determine the necessary feedback gain matrix K and the control signal u.

Solution. The given system is completely state controllable, since the rank of

is 2. Hence, arbitrary pole placement is possible.
Since the characteristic equation of the original system is

we have

The desired characteristic equation is

Hence,

It is important to point out that the original state equation is not in the controllable canonical
form, because matrix B is not

Hence, the transformation matrix T must be determined.

Hence,

Referring to Equation (10–13), the necessary feedback gain matrix is given by

Thus, the control signal u becomes

u = -Kx = -[6.5 2.5]Bx1

x2
R

 = C15 - 2 � 8 - 3 D B0.5

0

0

0.5
R = [6.5 2.5]

 K = Ca2 - a2 � a1 - a1 D  T-1

T-1 = B0.5

0

0

0.5
R

T = MW = CB � AB D Ba1

1

1

0
R = B0

2

2

-6
R B3

1

1

0
R = B2

0

0

2
R

B 0

1
R

a1 = 8,  a2 = 15

(s + 3)(s + 5) = s2 + 8s + 15 = s2 + a1 s + a2 = 0

a1 = 3,  a2 = 2

s2 + 3s + 2 = s2 + a1 s + a2 = 0

M = CB � AB D = B0
2

2
-6
R

∑s I - A∑ = 2 s
2

-1

s + 3
2 = s2 + 3s + 2 = (s + 1)(s + 2) = 0
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A–10–6. A regulator system has a plant

Define state variables as

By use of the state-feedback control u=–Kx, it is desired to place the closed-loop poles at

Obtain the necessary state-feedback gain matrix K with MATLAB.

Solution. The state-space equations for the system become

Hence,

(Note that, for the pole placement, matrices C and D do not affect the state-feedback gain
matrix K.)

Two MATLAB programs for obtaining state-feedback gain matrix K are given in MATLAB
Programs 10–24 and 10–25.

 C = [1 0 0],    D = [0]

 A = C 0

0

-6

1

0

-11

0

1

-6

S ,   B = C 0

0

10

S

 y = [1 0 0]Cx1

x2

x3

S + 0u

 Cx
#
1

x
#
2

x
#
3

S = C 0

0

-6

1

0

-11

0

1

-6

S Cx1

x2

x3

S + C 0

0

10

S u

s = -2 + j213 ,  s = -2 - j213 ,  s = -10

 x3 = x
#
2

 x2 = x
#
1

 x1 = y

Y(s)

U(s)
=

10

(s + 1)(s + 2)(s + 3)

MATLAB Program 10–24

A = [0  1  0;0  0  1;-6  -11  -6];
B = [0;0;10];
J = [-2+j*2*sqrt(3)  -2-j*2*sqrt(3)  -10];
K = acker(A,B,J)

K =

15.4000    4.5000    0.8000
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A–10–7. Consider a completely observable system

Define the observability matrix as N:

Show that

(10–146)

where a1, a2, p , an are the coefficients of the characteristic polynomial

Solution. Let us consider the case where n=3. Then Equation (10–146) can be written as

(10–147)

Equation (10–147) may be rewritten as

(10–148)

We shall show that Equation (10–148) holds true. The left-hand side of Equation (10–148) is

(10–149)N*A = C C
CA
CA2

S  A = C CA
CA2

CA3

S
N* A = C 0

0

-a3

1

0

-a2

0

1

-a1

S  N*

N*A(N*)-1 = C 0

0

-a3

1

0

-a2

0

1

-a1

S
∑s I - A∑ = sn + a1 sn - 1 + p + an - 1 s + an

N* A(N*)-1 = G
0

0

�

�

�

0

-an

1

0

�

�

�

0

an - 1

0

1

�

�

�

0

-an - 2

p
p

p
p

0

0

�

�

�

1

-a1

W

N = CC*� A*C* � p � (A*)n - 1 C* D
 y = Cx

 x# = Ax

MATLAB Program 10–25

A = [0  1  0;0  0  1;  -6  -11  -6];
B = [0;0;10];
J = [-2+j*2*sqrt(3)  -2-J*2*Sqrt(3)  -10];
K = place(A,B,J)
place: ndigits= 15

K =

15.4000    4.5000    0.8000
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The right-hand side of Equation (10–148) is

(10–150)

The Cayley–Hamilton theorem states that matrix A satisfies its own characteristic equation, or

Hence,

Thus, the right-hand side of Equation (10–150) becomes the same as the right-hand side of
Equation (10–149). Consequently,

which is Equation (10–148). This last equation can be modified to

The derivation presented here can be extended to the general case of any positive integer n.

A–10–8. Consider a completely observable system defined by

(10–151)

(10–152)

Define

and

where the a’s are coefficients of the characteristic polynomial

Define also

Q = (WN*)-1

∑s I - A∑ = sn + a1 sn - 1 + p + an - 1 s + an

W = G
an - 1

an - 2

�

�

�

a1

1

an - 2

an - 3

�

�

�

1

0

p
p

p
p

a1

1

�

�

�

0

0

1

0

�

�

�

0

0

W

N = CC* � A* C* � p � (A*)n - 1 C* D
 y = Cx + Du

 x# = Ax + Bu

N*A(N*)-1 = C 0

0

-a3

1

0

-a2

0

1

-a1

S
N*A = C 0

0

-a3

1

0

-a2

0

1

-a1

S  N*

-a1  CA2 - a2  CA - a3  C = CA3

A3 + a1  A2 + a2  A + a3  I = 0

 = C CA
CA2

-a3  C - a2  CA - a1  CA2

S
 C 0

0

-a3

1

0

-a2

0

1

-a1

S  N* = C 0

0

-a3

1

0

-a2

0

1

-a1

S C C
CA
CA2

S
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Show that

where the bk’s (k=0, 1, 2, p , n) are those coefficients appearing in the numerator of the transfer
function when C(sI-A)–1B+D is written as follows:

where D=b0.

Solution. Let us consider the case where n=3. We shall show that

(10–153)

Note that, by referring to Problem A–10–7, we have

Hence, we need to show that

or

(10–154)WC 0

0

-a3

1

0

-a2

0

1

-a1

S  = C0

1

0

0

0

1

-a3

-a2

-a1

SW

WC 0

0

-a3

1

0

-a2

0

1

-a1

S  W-1 = C0

1

0

0

0

1

-a3

-a2

-a1

S
(WN*) A(WN*)-1 = W CN* A(N*)-1 D  W-1 = WC 0

0

-a3

1

0

-a2

0

1

-a1

S  W-1

Q-1 AQ = (WN*) A(WN*)-1 = C0

1

0

0

0

1

-a3

-a2

-a1

S

C(s I - A)-1 B + D =
b0 sn + b1 sn - 1 + p + bn - 1 s + bn

sn + a1 sn - 1 + p + an - 1 s + an

Q-1 B = F
bn - an b0

bn - 1 - an - 1 b0

�

�

�

b1 - a1 b0

V
CQ = [0 0 p   0 1]

Q-1 AQ = G
0
1
0
�

�

�

0

0
0
1
�

�

�

0

p
p
p

p

0
0
0
�

�

�

1

-an

-an - 1

-an - 2

�

�

�

-a1

W
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The left-hand side of Equation (10–154) is

The right-hand side of Equation (10–154) is

Thus, we see that Equation (10–154) holds true. Hence, we have proved Equation (10–153).
Next we shall show that

or

Notice that

Hence, we have shown that

Next define

Then Equation (10–151) becomes

(10–155)

and Equation (10–152) becomes

(10–156)

Referring to Equation (10–153), Equation (10–155) becomes

C x̂
#

1

x̂
#

2

x̂
#

3

S = C0

1

0

0

0

1

-a3

-a2

-a1

S C x̂1

x̂2

x̂3

S + Cg3

g2

g1

S u

y = CQx̂ + Du

x̂
#

= Q-1 AQx̂ + Q-1 Bu

x = Qx̂

[0 0 1] = C(WN* )-1 = CQ

 = [1 0 0]C C
CA
CA2

S = C

[0 0 1](WN* ) = [0 0 1]Ca2

a1

1

a1

1
0

1
0
0
S C C

CA
CA2

S
C(WN*)-1 = [0 0 1]

CQ = [0 0 1]

= C-a3

0
0

0
a1

1

0
1
0
S

C0
1
0

0
0
1

-a3

-a2

-a1

S  W = C0
1
0

0
0
1

-a3

-a2

-a1

S Ca2

a1

1

a1

1
0

1
0
0
S

 = C-a3

0

0

0

a1

1

0

1

0

S
 W C 0

0

-a3

1

0

-a2

0

1

-a1

S = Ca2

a1

1

a1

1

0

1

0

0

S C 0

0

-a3

1

0

-a2

0

1

-a1

S
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where

The transfer function G(s) for the system defined by Equations (10–155) and (10–156) is

Noting that

we have

Note that D=b0. Since

we have

Hence,

Thus, we have shown that

Note that what we have derived here can be easily extended to the case when n is any positive
integer.

A–10–9. Consider a system defined by

 y = Cx

x# = Ax + Bu

Q-1 B = Cg3

g2

g1

S = Cb3 - a3 b0

b2 - a2 b0

b1 - a1 b0

S
g1 = b1 - a1 b0 , g2 = b2 - a2 b0 , g3 = b3 - a3 b0

=
b0 s3 + b1 s2 + b2 s + b3

s3 + a1 s2 + a2 s + a3

=
b0 s3 + Ag1 + a1 b0Bs2 + Ag2 + a2 b0Bs + g3 + a3 b0

s3 + a1 s2 + a2 s + a3

=
g1 s2 + g2 s + g3

s3 + a1 s2 + a2 s + a3

+ b0

G(s) =
1

s3 + a1 s2 + a2 s + a3

C1 s s2 D Cg3

g2

g1

S + D

C s

-1
0

0
s

-1

a3

a2

s + a1

S -1

=
1

s3 + a1 s2 + a2 s + a3

C s2 + a1 s + a2

s + a1

1

-a3

s2 + a1 s
s

-a3 s
-a2 s - a3

s2

S
G(s) = [0 0 1]C s

-1
0

0
s

-1

a3

a2

s + a1

S -1Cg3

g2

g1

S + D

CQ = [0 0 1]

G(s) = CQAs I - Q-1 AQB-1 Q-1 B + D

Cg3

g2

g1

S = Q-1 B
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where

The rank of the observability matrix N,

is 2. Hence, the system is completely observable. Transform the system equations into the ob-
servable canonical form.

Solution. Since

we have

Define

where

Then

and

Define

Then the state equation becomes

or

(10–157)

The output equation becomes

y = CQx̂

= B0
1

-1
-2
R B x̂1

x̂2
R + B0

2
R u

B x̂
#

1

x̂
#

2
R = B-1

1
0
1
R B 1

-4
1

-3
R B-1

1
0
1
R B x̂1

x̂2
R + B-1

1
0
1
R B0

2
R u

x̂
#

= Q-1 AQx̂ + Q-1 Bu

x = Qx̂

Q-1 = B-1

1

0

1
R

Q = b B2
1

1
0
R B 1

-3
1

-2
R r -1

= B-1
1

0
1
R -1

= B-1
1

0
1
R

N = B 1

1

-3

-2
R ,  W = Ba1

1

1

0
R = B2

1

1

0
R

Q = (WN*)-1

a1 = 2,  a2 = 1

∑s I - A∑ = s2 + 2s + 1 = s2 + a1 s + a2

N = CC* � A* C* D = B1

1

-3

-2
R

A = B 1
-4

1
-3
R ,  B = B0

2
R ,  C = [1 1]
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or

(10–158)

Equations (10–157) and (10–158) are in the observable canonical form.

A–10–10. For the system defined by

consider the problem of designing a state observer such that the desired eigenvalues for the
observer gain matrix are m1 ,m2 , p ,mn .

Show that the observer gain matrix given by Equation (10–61), rewritten as

(10–159)

can be obtained from Equation (10–13) by considering the dual problem. That is, the matrix Ke

can be determined by considering the pole-placement problem for the dual system, obtaining the
state-feedback gain matrix K, and taking its conjugate transpose, or Ke=K*.

Solution. The dual of the given system is

(10–160)

Using the state-feedback control

Equation (10–160) becomes

Equation (10–13), which is rewritten here, is

(10–161)

where

For the original system, the observability matrix is

Hence, matrix T can also be written as

Since we have

and

(T*)-1 = (WN*)-1

T* = W* N* = WN*

W = W*,
T = NW

CC* � A* C* � p � (A*)n - 1 C* D = N

T = MW = CC* � A* C* � p � (A*)n - 1 C* D  W

K = Can - an � an - 1 - an - 1 � p � a2 - a2 � a1 - a1 D  T-1

z# = (A* - C* K) z

v = -Kz

n = B* z

z# = A* z + C* v

Ke = (WN*)-1F
an - an

an - 1 - an - 1

�

�

�

a1 - a1

V

 y = Cx

 x# = Ax + Bu

y = [1 1]B-1

1

0

1
R B x̂1

x̂2
R = [0 1]B x̂1

x̂2
R
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Taking the conjugate transpose of both sides of Equation (10–146), we have

Since Ke=K*, this last equation is the same as Equation (10–159). Thus, we obtained Equation
(10–159) by considering the dual problem.

A–10–11. Consider an observed-state feedback control system with a minimum-order observer described
by the following equations:

(10–162)

(10–163)
where

Axa is the state variable that can be directly measured, and corresponds to the observed state
variables. B

Show that the closed-loop poles of the system comprise the closed-loop poles due to pole
placement Cthe eigenvalues of matrix (A-BK)] and the closed-loop poles due to the minimum-
order observer [the eigenvalues of matrix 

Solution. The error equation for the minimum-order observer may be derived as given by
Equation (10–94), rewritten thus:

(10–164)
where

From Equations (10–162) and (10–163), we obtain

(10–165)

Combining Equations (10–164) and (10–165) and writing

we obtain

(10–166)

Equation (10–166) describes the dynamics of the observed-state feedback control system with a
minimum-order observer. The characteristic equation for this system is

or @s I - A + BK @ @s I - Abb + Ke  Aab @ = 0

2 s I - A + BK
0

-BKb

s I - Abb + Ke  Aab

2 = 0

Bx#

e#
R = BA - BK

0
BKb

Abb - Ke  Aab
R Bx

e
R

K = CKa � Kb D
 = Ax - BK ex - c0

e
d f = (A - BK) x + BK c0

e
d

 x# = Ax - BK x� = Ax - BK c xa

x� b
d = Ax - BK c xa

xb - e
d

e = xb - x� b

e# = AAbb - Ke  AabB  e

AAbb - Ke  AabB D
x� b

x = cxa

xb
d ,  x� = c xa

x�b
d

 u = -Kx�
 y = Cx

 x# = Ax + Bu

K* = AT-1B*F
an - an

an - 1 - an - 1

�

�

�

a1 - a1

V = (T*)-1F
an - an

an - 1 - an - 1

�

�

�

a1 - a1

V = (WN*)-1F
an - an

an - 1 - an - 1

�

�

�

a1 - a1

V
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The closed-loop poles of the observed-state feedback control system with a minimum-order
observer consist of the closed-loop poles due to pole placement and the closed-loop poles due to
the minimum-order observer. (Therefore, the pole-placement design and the design of the
minimum-order observer are independent of each other.)

A–10–12. Consider a completely state controllable system defined by

(10–167)

where

Suppose that the rank of the following matrix

is n+1. Show that the system defined by

(10–168)
where

is completely state controllable.

Solution. Define

Because the system given by Equation (10–167) is completely state controllable, the rank of matrix
M is n. Then the rank of

is n+1. Consider the following equation:

(10–169)

Since matrix

is of rank n+1, the left-hand side of Equation (10–169) is of rank n+1. Therefore, the right-hand
side of Equation (10–169) is also of rank n+1. Since

= CÂ  B̂ � Â2 B̂ � p � Ân B̂ � B̂ D= B AB
-CB

�

�

A2 B
-CAB

� p �

� p �

An B
-CAn - 1 B

�

�

B
0
R

B AM
-CM

B
0
R = B A CB � AB � p � An - 1 B D

-C CB � AB � p � An - 1 B D B
0
R

B A
-C

B
0
R

B A
-C

B
0
R BM

0
0
1
R = B AM

-CM
B
0
R

BM
0

0
1
R

M = CB � AB � p � An - 1 B D
Â = B A

-C
0
0
R ,  B̂ = BB

0
R  ,  ue = u(t) - u(q)

e# = Âe + B̂ue

B A
-C

B
0
R(n + 1) * (n + 1)

C = 1 * n constant matrix

B = n * 1 constant matrix

A = n * n constant matrix

y = output signal (scalar)

u = control signal (scalar)

x = state vector (n-vector)

 y = Cx

 x# = Ax + Bu
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we find that the rank of

is n+1. Thus, the system defined by Equation (10–168) is completely state controllable.

A–10–13. Consider the system shown in Figure 10–49. Using the pole-placement-with-observer approach,
design a regulator system such that the system will maintain the zero position Ay1=0 and y2=0 B
in the presence of disturbances. Choose the desired closed-loop poles for the pole-placement part
to be

and the desired poles for the minimum-order observer to be

First, determine the state feedback gain matrix K and observer gain matrix Ke . Then, obtain
the response of the system to an arbitrary initial condition—for example,

where e1 and e2 are defined by

Assume that m1=1 kg, m2=2 kg, k=36 N�m, and b=0.6 N-s�m.

Solution. The equations for the system are

By substituting the given numerical values for m1, m2, k, and b and simplifying, we obtain

Let us choose the state variables as follows:

 x4 = y
#
2

 x3 = y
#
1

 x2 = y2

 x1 = y1

 y
$

2 = 18y1 - 18y2 + 0.3y
#
1 - 0.3y

#
2

 y
$

1 = -36y1 + 36y2 - 0.6y
#
1 + 0.6y

#
2 + u

 m2 y$2 = kAy1 - y2B + bAy# 1 - y
#
2B m1 y$1 = kAy2 - y1B + bAy# 2 - y

#
1B + u

 e2 = y2 - y�2

 e1 = y1 - y�1

e1(0) = 0.1,   e2(0) = 0.05

y1(0) = 0.1,  y2(0) = 0,  y
#
1(0) = 0,  y

#
2(0) = 0

s = -15,  s = -16

s = -2 + j213 ,  s = -2 - j213 ,  s = -10,  s = -10

CB̂ � Â  B̂ � Â2 B̂ � p � Ân B̂ D

m1 m2

y1 y2

u
k

b

Regulator

Figure 10–49
Mechanical system.
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Then, the state-space equations become

Define

The state feedback gain matrix K and observer gain matrix Ke can be obtained easily by use of
MATLAB as follows:

(See MATLAB Program 10–26.)

 Ke = B14.4

0.3

0.6

15.7
RK = [130.4444 -41.5556 23.1000 15.4185]

A = E 0
0

-36
18

0
0

36
-18

1
0

-0.6
0.3

0
1

0.6
-0.3

U = CAaa

Aba

Aab

Abb

S ,  B = E 0
0
�

1
0

U = CBa

�

Bb

S

By1

y2
R = B1

0
0
1

0
0

0
0
R Dx1

x2

x3

x4

T
Dx

#
1

x
#
2

x
#
3

x
#
4

T = D 0
0

-36
18

0
0

36
-18

1
0

-0.6
0.3

0
1
0.6

-0.3

T Dx1

x2

x3

x4

T + D0
0
1
0

T u

MATLAB Program 10–26

A = [0  0  1  0;0  0  0  1;-36  36  -0.6  0.6;18  -18  0.3  -0.3];
B = [0;0;1;0];
J = [-2+j*2*sqrt(3)  -2-j*2*sqrt(3)  -10  -10];
K = acker(A,B,J)

K =

130.4444    -41.5556    23.1000    15.4185

Aab = [1  0;0  1];
Abb = [-0.6  0.6;0.3  -0.3];
L = [-15  -16];
Ke = place(Abb',Aab',L)'
place: ndigits= 15

Ke =

14.4000    0.6000
0.3000    15.7000

Response to Initial Condition: Next, we obtain the response of the designed system to the given
initial condition. Since

x� = B xa

x� b
R = B y

x� b
Ru = -K x�

x# = Ax + Bu



we have
(10–170)

Note that

where

Then, Equation (10–170) can be written as

(10–171)

Since, from Equation (10–94), we have

(10–172)

by combining Equations (10–171) and (10–172) into one equation, we have

The state matrix here is a 6*6 matrix. The response of the system to the given initial condition
can be obtained easily with MATLAB. (See MATLAB Program 10–27.) The resulting response
curves are shown in Figure 10–50. The response curves seem to be acceptable.

cx#
e#
d = cA - BK

0
 BKF       

Abb - Ke  Aab
d cx

e
d

e# = AAbb - Ke  AabB  e

x# = (A - BK) x + BKFe

F = c0
I
d

x - x� = c xa

xb
d - c xa

x� b
d = c 0

xb - x� b
d = c0

e
d = c0

I
de = Fe

x# = Ax - BK x� = (A - BK) x + BKAx - x� B
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x 1
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t (sec)
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t (sec)
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−0.05

0

0.1

0.05

0.15

e 1

0

0.05

0.1

0 1 2 3 4
t (sec)

e 2

0

0.02

0.04

0.06

x 2

−0.02

0.02

0

0.04

0.06

x 3

−0.6

−0.2

−0.4

0

0.2

x 4

−0.2

0.1

0

−0.1

0.2

Response to initial condition Response to initial condition

Figure 10–50
Response curves to
initial condition.
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MATLAB Program 10–27

% Response to initial condition

A = [0  0  1  0;0  0  0  1;-36  36  -0.6  0.6;18  -18  0.3  -0.3];
B = [0;0;1;0];
K = [130.4444  -41.5556  23.1000  15.4185];
Ke = [14.4  0.6;0.3  15.7];
F = [0  0;0  0;1  0;0  1];
Aab = [1  0;0  1];
Abb = [-0.6  0.6;0.3  -0.3];
AA = [A-B*K  B*K*F; zeros(2,4)  Abb-Ke*Aab];
sys = ss(AA,eye(6),eye(6),eye(6));
t = 0:0.01:4;
y = initial(sys,[0.1;0;0;0;0.1;0.05],t);
x1 = [1  0  0  0  0  0]*y';
x2 = [0  1  0  0  0  0]*y';
x3 = [0  0  1  0  0  0]*y';
x4 = [0  0  0  1  0  0]*y';
e1 = [0  0  0  0  1  0]*y';
e2 = [0  0  0  0  0  1]*y';

subplot(3,2,1); plot(t,x1); grid; title('Response to initial condition'),
xlabel('t (sec)'); ylabel('x1')
subplot(3,2,2); plot(t,x2); grid; title('Response to initial condition'),
xlabel('t (sec)'); ylabel('x2')
subplot(3,2,3); plot(t,x3); grid; xlabel('t (sec)'); ylabel('x3')
subplot(3,2,4); plot(t,x4); grid; xlabel('t (sec)'); ylabel('x4')
subplot(3,2,5); plot(t,e1); grid; xlabel('t (sec)');ylabel('e1')
subplot(3,2,6); plot(t,e2); grid; xlabel('t (sec)'); ylabel('e2')

r = 0 yu–y Observer
controller

+
–

4
s(s + 2)

PlantFigure 10–51
Regulator system.

A–10–14. Consider the system shown in Figure 10–51.Design both the full-order and minimum-order observers
for the plant.Assume that the desired closed-loop poles for the pole-placement part are located at

Assume also that the desired observer poles are located at
(a) s=–8, s=–8 for the full-order observer
(b) s=–8 for the minimum-order observer

Compare the responses to the initial conditions specified below:
(a) for the full-order observer:

x1(0) = 1,  x2(0) = 0,  e1(0) = 1,  e2(0) = 0

s = -2 + j213 ,  s = -2 - j2 13



840 Chapter 10 / Control Systems Design in State Space

(b) for the minimum-order observer:

Also, compare the bandwidths of both systems.

Solution. We first determine the state-space representation of the system. By defining state
variables x1 and x2 as

we obtain

For the pole-placement part, we determine the state feedback gain matrix K. Using MATLAB,
we find K to be

K=[4 0.5]
(See MATLAB Program 10–28.)

Next, we determine the observer gain matrix Ke for the full-order observer. Using MATLAB,
we find Ke to be

(See MATLAB Program 10–28.)

Ke = B14

36
R

 y = [1 0]Bx1

x2
R Bx

#
1

x
#
2
R = B0

0

1

-2
R Bx1

x2
R + B0

4
R u

 x2 = y
#

 x1 = y

x1(0) = 1,  x2(0) = 0,  e1(0) = 1

MATLAB Program 10–28

% Obtaining matrices K and Ke.

A = [0  1;0  -2];
B = [0;4];
C = [1  0];
J = [-2+j*2*sqrt(3)  -2-j*2*sqrt(3)];
L = [-8  -8];
K = acker(A,B,J)

K =

4.0000  0.5000

Ke = acker(A',C',L)'

Ke =

14
36

Now we find the response of this system to the given initial condition. Referring to Equation
(10–70), we have

This equation defines the dynamics of the designed system using the full-order observer. MATLAB
Program 10–29 produces the response to the given initial condition.The resulting response curves
are shown in Figure 10–52.

Bx#

e#
R = BA - BK

0
BK

A - Ke  C
R Bx

e
R
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MATLAB Program 10–29

% Response to initial condition ---- full-order observer

A = [0  1;0  -2];
B = [0;4];
C = [1  0];
K = [4  0.5];
Ke = [14;36];
AA = [A-B*K  B*K; zeros(2,2)  A-Ke*C];
sys = ss(AA, eye(4), eye(4), eye(4));
t = 0:0.01:8;
x = initial(sys, [1;0;1;0],t);
x1 = [1  0  0  0]*x';
x2 = [0  1  0  0]*x';
e1 = [0  0  1  0]*x';
e2 = [0  0  0  1]*x';

subplot(2,2,1); plot(t,x1); grid
xlabel('t (sec)'); ylabel('x1')

subplot(2,2,2); plot(t,x2); grid
xlabel('t (sec)'); ylabel('x2')

subplot(2,2,3); plot(t,e1); grid
xlabel('t (sec)'); ylabel('e1')

subplot(2,2,4); plot(t,e2); grid
xlabel('t (sec)'); ylabel('e2')

x 1 x 2

e 1 e 2

0.4

0.6

0.8

1

0.2

0

−0.2

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8
−0.4

0.6

0.8

1

1.2

0.4

0.2

0

−0.2

0

1

−1

−2

−0.5

0

−1

−1.5

−3

−2

t (sec)

t (sec)
0 2 4 6 8

t (sec)

t (sec)

Figure 10–52
Response curves to
initial condition.
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MATLAB Program 10–31

% Obtaining Ke ---- minimum-order observer

Aab = [1];
Abb = [-2];
LL = [-8];
Ke = acker(Abb',Aab',LL)'

Ke =

6

MATLAB Program 10–30

% Determination of transfer function of observer controller ---- full-order observer

A = [0  1;0  -2];
B = [0;4];
C = [1  0];
K = [4  0.5];
Ke = [14;36];
[num,den] = ss2tf(A-Ke*C-B*K, Ke,K,0)

num =

0   74.0000   256.0000

den =

1   18   108

To obtain the transfer function of the observer controller, we use MATLAB. MATLAB
Program 10–30 produces this transfer function. The result is

num
den

=
74s + 256

s2 + 18s + 108
=

74(s + 3.4595)

(s + 9 + j5.1962)(s + 9 - j5.1962)

Next, we obtain the observer gain matrix Ke for the minimum-order observer. MATLAB
Program 10–31 produces Ke . The result is

Ke = 6

The response of the system with minimum-order observer to the initial condition can be ob-
tained as follows: By substituting into the plant equation given by Equation (10–79)u = -K x�
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MATLAB Program 10–32

% Response to intial condition ---- minimum-order observer

A = [0  1;0  -2];
B = [0;4];
K = [4  0.5];
Kb = 0.5;
Ke = 6;
Aab = 1; Abb = -2;
AA = [A-B*K  B*Kb; zeros(1,2)  Abb-Ke*Aab];
sys = ss(AA,eye(3),eye(3),eye(3));
t = 0:0.01:8;
x = initial(sys,[1;0;1],t);
x1 = [1  0  0]*x';
x2 = [0  1  0]*x';
e = [0  0  1]*x';

subplot(2,2,1); plot(t,x1); grid
xlabel('t (sec)'); ylabel('x1')

subplot(2,2,2); plot(t,x2); grid
xlabel('t (sec)'); ylabel('x2')

subplot(2,2,3); plot(t,e); grid
xlabel('t (sec)'); ylabel('e')

we find

or

The error equation is

Hence the system dynamics are defined by

Based on this last equation, MATLAB Program 10–32 produces the response to the given initial
condition. The resulting response curves are shown in Figure 10–53.

Bx#

e
# R = BA - BK

0
BKb

Abb - Ke Aab
R B x

e
R

e
# = AAbb - Ke AabB  e

x# = (A - BK) x + BKb e

= (A - BK) x + B CKa Kb D B0
e
R

x# = Ax - BK x� = Ax - BKx + BK(x - x� )
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Figure 10–53
Response curves to
initial condition.

The transfer function of the observer controller, when the system uses the minimum-order
observer, can be obtained by use of MATLAB Program 10–33. The result is

num
den

=
7s + 32
s + 10

=
7(s + 4.5714)

s + 10

MATLAB Program 10–33

% Determination of transfer function of observer controller ---- minimum-order observer

A = [0  1;0  -2];
B = [0;4];
Aaa = 0; Aab = 1; Aba = 0; Abb = -2;
Ba = 0; Bb = 4;
Ka = 4; Kb = 0.5;
Ke = 6;
Ahat = Abb - Ke*Aab;
Bhat = Ahat*Ke + Aba - Ke*Aaa;
Fhat = Bb - Ke*Ba;
Atilde = Ahat - Fhat*Kb;
Btilde = Bhat - Fhat*(Ka + Kb*Ke);
Ctilde = -Kb;
Dtilde = -(Ka + Kb*Ke);
[num,den] = ss2tf(Atilde, Btilde, -Ctilde, -Dtilde)

num =

7  32

den =

1  10
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The observer controller is clearly a lead compensator.
The Bode diagrams of System 1 (closed-loop system with full-order observer) and of Sys-

tem 2 (closed-loop system with minimum-order observer) are shown in Figure 10–54. Clearly, the
bandwidth of System 2 is wider than that of System 1. System 1 has a better high-frequency noise-
rejection characteristic than System 2.

A–10–15. Consider the system

where x is a state vector (n-vector) and A is an n*n constant matrix. We assume that A is non-
singular. Prove that if the equilibrium state x=0 of the system is asymptotically stable (that is, if
A is a stable matrix), then there exists a positive-definite Hermitian matrix P such that

where Q is a positive-definite Hermitian matrix.

Solution. The matrix differential equation.

has the solution

Integrating both sides of this matrix differential equation from t=0 to t=q, we obtain

X(q) - X(0) = A* a 3q

0
X dt b + a 3q

0
X dt b  A

X = eA* t QeAt

X
#

= A* X + XA,  X(0) = Q

A* P + PA = -Q

x# = Ax

Frequency (rad/sec)

Bode Diagrams of Systems
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0

−100

−50

P
ha

se
 (

de
g)

; M
ag

ni
tu

de
 (

dB
)

50

0
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System 1
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Figure 10–54
Bode diagrams of System 1
(system with full-order
observer) and System 2
(system with minimum-
order observer).
System 1=
(296s+1024)�
(s4+20s3+144s2

+512s+1024);
System 2= (28s+128)�
(s3+12s2+48s+128).



846 Chapter 10 / Control Systems Design in State Space

Noting that A is a stable matrix and, therefore, we obtain

Let us put

Note that the elements of are finite sums of terms like where the li are
the eigenvalues of A and mi is the multiplicity of li . Since the li possess negative real parts,

exists. Note that

Thus P is Hermitian (or symmetric if P is a real matrix). We have thus shown that for a stable A
and for a positive-definite Hermitian matrix Q, there exists a Hermitian matrix P such that

We now need to prove that P is positive definite. Consider the following Her-
mitian form:

Hence, P is positive definite. This completes the proof.

A–10–16. Consider the control system described by

(10–173)

where

Assuming the linear control law

(10–174)

determine the constants k1 and k2 so that the following performance index is minimized:

J = 3
q

0
xT x dt

u = -Kx = -k1 x1 - k2 x2

A = B0

0

1

0
R ,  B = B0

1
R

x# = Ax + Bu

= 0,   for x = 0

= 3
q

0
AeAt xB* QAeAt xB dt 7 0,   for x Z 0

x* Px = x* 3
q

0
eA* t QeAt dt x

A* P + PA = -Q.

P* = 3
q

0
eA* t QeAt dt = P

3
q

0
eA* t QeAt dt

teli t p , tmi - 1 eli t,eli t,eAt

P = 3
q

0
X dt = 3

q

0
eA* t QeAt dt

-X(0) = -Q = A* a 3q

0
X dt b + a 3q

0
X dt b  A

X(q) = 0,
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Consider only the case where the initial condition is

Choose the undamped natural frequency to be 2 rad�sec.

Solution. Substituting Equation (10–174) into Equation (10–173), we obtain

or

(10–175)

Thus,

Elimination of x2 from Equation (10–175) yields

Since the undamped natural frequency is specified as 2 rad�sec, we obtain

Therefore,

is a stable matrix if k2>0. Our problem now is to determine the value of k2 so that the
performance index

is minimized, where the matrix P is determined from Equation (10–115), rewritten

Since in this system Q=I and R=0, this last equation can be simplified to

(10–176)

Since the system involves only real vectors and real matrices, P becomes a real symmetric matrix.
Then Equation (10–176) can be written as

B0

1

-4

-k2
R Bp11

p12

p12

p22
R + Bp11

p12

p12

p22
R B 0

-4

1

-k2
R = B-1

0

0

-1
R

(A - BK)* P + P(A - BK) = -I

(A - BK)* P + P(A - BK) = -(Q + K* RK)

J = 3
q

0
xT x dt = xT(0) P(0) x(0)

A - BK

A - BK = B 0

-4

1

-k2
R

k1 = 4

x
$

1 + k2 x# 1 + k1 x1 = 0

A - BK = B 0

-k1

1

-k2
R

 = B 0

-k1

1

-k2
R Bx1

x2
R

 Bx
#
1

x
#
2
R = B0

0

1

0
R Bx1

x2
R + B0

1
R C-k1 x1 - k2 x2 D

x# = Ax - BKx

x(0) = B c

0
R
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Solving for the matrix P, we obtain

The performance index is then

(10–177)

To minimize J, we differentiate J with respect to k2 and set equal to zero as follows:

Hence,

With this value of k2, we have Thus, the minimum value of J is obtained by substi-
tuting into Equation (10–177), or

The designed system has the control law

The designed system is optimal in that it results in a minimum value for the performance index J
under the assumed initial condition.

A–10–17. Consider the same inverted-pendulum system as discussed in Example 10–5.The system is shown
in Figure 10–8, where M=2 kg, m=0.1 kg, and l=0.5 m. The block diagram for the system is
shown in Figure 10–9. The system equations are given by

j
#

= r - y = r - Cx

u = -Kx + kI j

y = Cx

x# = Ax + Bu

u = -4x1 - 120x2

Jmin =
15

2
 c2

k2 = 120
02J�0k2

2 7 0.

k2 = 120

0J

0k2
= a -5

2k2
2

+
1

8
b  c2 = 0

0J�0k2

= a 5
2k2

+
k2

8
b  c2

= [c 0]Bp11

p12

p12

p22
R B c

0
R = p11 c2

J = xT(0) Px(0)

P = Bp11

p12

p12

p22
R = D 5

2k2
+

k2

8
1
8

1
8
5

8k2

T
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where

Referring to Equation (10–51), the error equation for the system is given by

where

and the control signal is given by Equation (10–41):

where

Using MATLAB, determine the state feedback gain matrix such that the following
performance index J is minimized:

J = 3
q

0
(e* Qe + u* Ru) dt

K̂

x = Dx1

x2

x3

x4

T = D uu#
x

x
#
T

e = Bxe

je
R = Bx(t) - x(q)

j(t) - j(q)
R

K̂ = CK � -kI D = Ck1 k2 k3 k4 � -kI D
ue = -K̂e

Â = B A
-C

0
0
R = E 0

20.601
0

-0.4905
0

1
0
0
0
0

0
0
0
0

-1

0
0
1
0
0

0
0
0
0
0

U ,  B̂ = BB
0
R = E 0

-1
0

0.5
0

U

e# = Âe + B̂ue

A = D 0
20.601

0
-0.4905

1
0
0
0

0
0
0
0

0
0
1
0

T  ,  B = D 0
-1

0
0.5

T ,  C = [0 0 1 0]
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where

Obtain the unit-step response of the system designed.

Solution. A MATLAB program to determine is given in MATLAB Program 10–34.The result is

k1 = -188.0799,  k2 = -37.0738,  k3 = -26.6767,  k4 = -30.5824,  kI = -10.0000

K̂

Q = E100

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

U ,  R = 0.01

MATLAB Program 10–34

% Design of quadratic optimal control system

A = [0  1  0  0;20.601  0  0  0;0  0  0  1;-0.4905  0  0  0];
B = [0;-1;0;0.5];
C = [0  0  1  0];
D = [0];
Ahat = [A zeros(4,1);-C  0];
Bhat = [B;0];
Q = [100  0  0  0  0;0  1  0  0  0;0  0  1  0  0;0  0  0  1  0;0  0  0  0  1];
R = [0.01];
Khat = lqr(Ahat,Bhat,Q,R)

Khat =

-188.0799  -37.0738  -26.6767  -30.5824  10.0000

Unit-Step Response. Once we have determined the feedback gain matrix K and the integral gain
constant kI, we can determine the unit-step response of the designed system.The system equation
is

(10–178)

[Refer to Equation (10–35).] Since

Equation (10–178) can be written as follows:

(10–179)

The output equation is

y = [C    0]Bx
j
R + [0] r

Bx#

j
# R = BA - BK

-C
BkI

0
R Bx
j
R + B0

1
R r

u = -Kx + kI j

Bx#

j
# R = B A

-C
0
0
R Bx
j
R + BB

0
Ru + B0

1
R r



MATLAB Program 10–35 gives the unit-step response of the system given by Equation (10–179).
The resulting response curves are presented in Figure 10–55. It shows response curves 
versus t, versus t, versus t, versus t, and versus t, where
the input r(t) to the cart is a unit-step function All initial conditions are set equal
to zero. Figure 10–56 is an enlarged version of the cart position  versus t. The cart
moves backward a very small amount for the first 0.6 sec or so. (Notice that the cart velocity is
negative for the first 0.4 sec.) This is due to the fact that the inverted-pendulum-on-the-cart system
is a nonminimum-phase system.

y C= x3(t) DCr(t) = 1 m D . j C= x5(t) Dy
# C= x4(t) Dy C= x3(t) Du

# C= x2(t) D u C= x1(t) D
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MATLAB Program 10–35

% Unit-step response

A = [0  1  0  0;20.601  0  0  0;0  0  0  1;-0.4905  0  0  0];
B = [0;-1;0;0.5];
C = [0  0  1  0];
D = [0];
K = [-188.0799  -37.0738  -26.6767  -30.5824];
kI = -10.0000;
AA = [A-B*K  B*kI; -C  0];
BB = [0;0;0;0;1];
CC= [C  0];
DD = D;
t = 0:0.01:10;
[y,x,t] = step(AA,BB,CC,DD,1,t);
x1 = [1  0  0  0  0]*x';
x2 = [0  1  0  0  0]*x';
x3 = [0  0  1  0  0]*x';
x4 = [0  0  0  1  0]*x';
x5 = [0  0  0  0  1]*x';

subplot(3,2,1); plot(t,x1); grid;
xlabel('t (sec)'); ylabel('x1')

subplot(3,2,2); plot(t,x2); grid;
xlabel('t (sec)'); ylabel('x2')

subplot(3,2,3); plot(t,x3); grid;
xlabel('t (sec)'); ylabel('x3')

subplot(3,2,4); plot(t,x4); grid;
xlabel('t (sec)'); ylabel('x4')

subplot(3,2,5); plot(t,x5); grid;
xlabel('t (sec)'); ylabel('x5')

Comparing the step-response characteristics of this system with those of Example 10–5, we
notice that the response of the present system is less oscillatory and exhibits less maximum
overshoot in the position response Ax3 versus t B . The system designed by use of the quadratic
optimal regulator approach generally gives such characteristics—less oscillatory and well damped.
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Figure 10–55
Response curves to a
unit-step input.
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A–10–18. Consider the stability of a system with unstructured additive uncertainty as shown in Figure
10–57(a). Define

true plant dynamics
G=model of plant dynamics

unstructured additive uncertainty¢a =

G
� =
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Figure 10–57
(a) Block diagram of a system with unstructured additive uncertainty;
(b)–(d) successive modifications of the block diagram of (a);
(e) block diagram showing a generalized plant with unstructured additive uncertainty;
(f) generalized plant diagram.
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Assume that is stable and its upper bound is known.Assume also that and G are related by 

=G+ a

Obtain the condition that the controller K must satisfy for robust stability. Also, obtain a gener-
alized plant diagram for this system.

Solution. Let us obtain the transfer function between point A and point B in Figure 10–57(a).
Redrawing Figure 10–57(a), we obtain Figure 10–57(b).Then the transfer function between points
A and B can be obtained as

Define

Then Figure 10–57(b) can be redrawn as Figure 10–57(c). By using the small-gain theorem, the con-
dition for the robust stability of the closed-loop system can be obtained as 

(10–180)

Since it is impossible to model precisely, we need to find a scalar transfer function 
such that

for all v

and use this instead of a. Then, the condition for the robust stability of the closed-loop
system can be given by

(10–181)

If Inequality (10–181) holds true, then it is evident that Inequality (10–180) also holds true. So this
is the condition to guarantee the robust stability of the designed system. In Figure 10–57(e), a

in Figure 10–57(d) was replaced by .
To summarize, if we make the norm of the transfer function from w to z to be less than

1, the controller K that satisfies Inequality (10–181) can be determined.
Figure 10–57(e) can be redrawn as that shown in Figure 10–57(f), which is the generalized

plant diagram for the system considered.
Note that for this problem the matrix that relates the controlled variable z and the exoge-

nous disturbance w is given by

Noting that u(s)=K(s)y(s) and referring to Equation (10–128), is given by the elements
of the P matrix as follows:

To make this equal to we may choose P11=0, P12=Wa , P21=I, and
P22=�G. Then, the P matrix for this problem can be obtained as

P = B 0

I

Wa

-G
R

WaK(I + GK)-1,£(s)

£(s) = P11 + P12K(I - P22K)- 1P21

£(s)

z = £(s)w = (WaTa)w = [WaK(I + GK)-1]w

£

Hq

WaI
¢

7WaTa 7q 6 1

¢Wa(jv)

s{¢a(jv)} 6 �Wa(jv)�

Wa(jv)¢a

7¢aTa 7q 6 1

K(1 + GK)- 1 = Ta

K

1 + GK
 = K(1 + GK)-1

¢G
�

G
�¢a
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x = Ax + Bu
.

y = Cx
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k1

k3
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y = x1
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–

Figure 10–58
Type 1 servo system.

PROBLEMS

B–10–1. Consider the system defined by

where

Transform the system equations into (a) controllable canon-
ical form and (b) observable canonical form.

B–10–2. Consider the system defined by

where

Transform the system equations into the observable canon-
ical form.

B–10–3. Consider the system defined by

where

By using the state-feedback control it is desired to
have the closed-loop poles at Deter-
mine the state-feedback gain matrix K.

B–10–4. Solve Problem B–10–3 with MATLAB.

s = -10.s = -2 ; j4,
u = -Kx,

A = C 0

0

-1

1

0

-5

0

1

-6

S ,  B = C0

1

1

S
 x# = Ax + Bu

A = C-1

1

0

0

-2

0

1

0

-3

S , B = C0

1

1

S , C = [1 1 1]

 y = Cx

 x# = Ax + Bu

C = [1 1 0]A = C-1

1

0

0

-2

0

1

0

-3

S ,  B = C0

0

1

S ,

 y = Cx

 x# = Ax + Bu

B–10–5. Consider the system defined by

Show that this system cannot be stabilized by the state-
feedback control whatever matrix K is chosen.

B–10–6. A regulator system has a plant

Define state variables as

By use of the state-feedback control it is desired
to place the closed-loop poles at

Determine the necessary state-feedback gain matrix K.

B–10–7. Solve Problem B–10–6 with MATLAB.

B–10–8. Consider the type 1 servo system shown in Figure
10–58. Matrices A, B, and C in Figure 10–58 are given by

Determine the feedback gain constants k1, k2, and k3 such
that the closed-loop poles are located at

Obtain the unit-step response and plot the output 
y(t)-versus-t curve.

s = -2 + j4,  s = -2 - j4,  s = -10

A = C0

0

0

1

0

-5

0

1

-6

S ,  B = C0

0

1

S ,  C = [1 0 0]

s = -2 + j213 ,  s = -2 - j213 ,  s = -10

u = -Kx,

 x3 = x
#
2

 x2 = x
#
1

 x1 = y

Y(s)

U(s)
=

10

(s + 1)(s + 2)(s + 3)

u = -Kx,

Bx
#
1

x
#
2
R = B0

0

1

2
R Bx1

x2
R + B1

0
R u
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B–10–9. Consider the inverted-pendulum system shown in
Figure 10–59. Assume that

M=2 kg, m=0.5 kg, l=1 m

Define state variables as

and output variables as

Derive the state-space equations for this system.
It is desired to have closed-loop poles at

Determine the state-feedback gain matrix K.
Using the state-feedback gain matrix K thus determined,

examine the performance of the system by computer simu-
lation.Write a MATLAB program to obtain the response of
the system to an arbitrary initial condition. Obtain the
response curves x1(t) versus t, x2(t) versus t, x3(t) versus t,
and x4(t) versus t for the following set of initial condition:

x1(0) = 0, x2(0) = 0, x3(0) = 0, x4(0) = 1 m�s

s = -4 + j4,  s = -4 - j4,  s = -20,  s = -20

y1 = u = x1 ,  y2 = x = x3

x1 = u,  x2 = u
#
,  x3 = x,  x4 = x

#

where

Design a full-order state observer. The desired observer
poles are s=–5 and s=–5.

B–10–11. Consider the system defined by

where

Design a full-order state observer, assuming that the desired
poles for the observer are located at

s=–10, s=–10, s=–15

B–10–12. Consider the system defined by

Given the set of desired poles for the observer to be

design a full-order observer.

B–10–13. Consider the double integrator system defined by

If we choose the state variables as

then the state-space representation for the system becomes
as follows:

 y = [1 0]Bx1

x2
R

 Bx
#
1

x
#
2
R = B0

0

1

0
R Bx1

x2
R + B0

1
R u

 x2 = y
#

 x1 = y

y
$ = u

s = -5 + j513 ,  s = -5 - j513 ,  s = -10

y = [1 0 0]Cx1

x2

x3

S
+ C 0

0
1.244
S u

Cx
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2

x
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3
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Figure 10–59
Inverted-pendulum system.

B–10–10. Consider the system defined by

 y = Cx

 x# = Ax
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Y(s)R(s) U(s)Observer
controller

+
–

s2 + 2s + 50
s(s + 4) (s + 6)

Figure 10–60
Control system with observer controller in the
feedforward path.

It is desired to design a regulator for this system. Using the
pole-placement-with-observer approach, design an observer
controller.

Choose the desired closed-loop poles for the pole-
placement part to be

s=–0.7071+j0.7071, s=–0.7071-j0.7071

and assuming that we use a minimum-order observer, choose
the desired observer pole at

s=–5

B–10–14. Consider the system

where

Design a regulator system by the pole-placement-with-
observer approach. Assume that the desired closed-loop
poles for pole placement are located at

s=–1+j, s=–1-j, s=–5

The desired observer poles are located at

s=–6, s=–6, s=–6

Also, obtain the transfer function of the observer controller.

B–10–15. Using the pole-placement-with-observer approach,
design observer controllers (one with a full-order observer and
the other with a minimum-order observer) for the system
shown in Figure 10–60. The desired closed-loop poles for the
pole-placement part are

s=–1+j2, s=–1-j2, s=–5

A = C 0
0

-6

1
0

-11

0
1

-6
S ,   B = C0

0
1
S ,   C = [1 0 0]

 y = Cx

 x# = Ax + Bu

The desired observer poles are

s=–10, s=–10, s=–10 for the full-order observer

s=–10, s=–10 for the minimum-order observer.

Compare the unit-step responses of the designed systems.
Compare also the bandwidths of both systems.

B–10–16. Using the pole-placement-with-observer approach,
design the control systems shown in Figures 10–61(a) and (b).
Assume that the desired closed-loop poles for the pole place-
ment are located at

s=–2+j2, s=–2-j2

and the desired observer poles are located at

s=–8, s=–8

Obtain the transfer function of the observer controller.
Compare the unit-step responses of both systems. [In System
(b), determine the constant N so that the steady-state out-
put y(q) is unity when the input is a unit-step input.]

Y(s)R(s) Observer
controller

+
–

1
s(s + 1)

1
s(s + 1)

Y(s)

Observer
controller

+
–

(b)

R(s)
N

(a)

Plant

Figure 10–61
Control systems with observer controller: (a) observer
controller in the feedforward path; (b) observer controller
in the feedback path.

B–10–17. Consider the system defined by

where

a = adjustable parameter 7 0

A = C 0
0

-1

1
0

-2

0
1

-a

S
x# = Ax
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Determine the value of the parameter a so as to minimize
the following performance index:

Assume that the initial state x(0) is given by

B–10–18. Consider the system shown in Figure 10–62.
Determine the value of the gain K so that the damping ratio
z of the closed-loop system is equal to 0.5. Then determine
also the undamped natural frequency vn of the closed-loop
system. Assuming that e(0)=1 and evaluate

3
q

0
e2(t) dt

e
#
(0) = 0,

x(0) = C c1

0

0

S
J = 3

q

0
xT x dt

B–10–21. Consider the inverted-pendulum system shown
in Figure 10–59. It is desired to design a regulator system
that will maintain the inverted pendulum in a vertical po-
sition in the presence of disturbances in terms of angle u
and/or angular velocity The regulator system is required
to return the cart to its reference position at the end of
each control process. (There is no reference input to the
cart.)

The state-space equation for the system is given by

where

We shall use the state-feedback control scheme

Using MATLAB, determine the state-feedback gain matrix
such that the following performance

index J is minimized:

where

Then obtain the system response to the following initial
condition:

Plot response curves u versus t, versus t, x versus t, and
versus t.

x
#

u
#

Dx1(0)
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x4(0)
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0
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x

x
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Figure 10–62
Control system.

B–10–19. Determine the optimal control signal u for the
system defined by

where

such that the following performance index is minimized:

B–10–20. Consider the system

It is desired to find the optimal control signal u such that
the performance index

is minimized. Determine the optimal signal u(t).

J = 3
q

0
AxT Qx + u2B dt,  Q = B1

0

0

m
R

Bx
#
1

x
#
2
R = B0

0

1

0
R Bx1

x2
R + B0

1
R u

J = 3
q

0
AxT x + u2B dt

A = B0

0

1

-1
R ,  B = B0

1
R

x# = Ax + Bu
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Appendix

Appendix A first presents the complex variable and complex function.Then it presents
tables of Laplace transform pairs and properties of Laplace transforms. Finally, it presents
frequently used Laplace transform theorems and Laplace transforms of pulse function
and impulse function.

Complex Variable. A complex number has a real part and an imaginary part, both
of which are constant. If the real part and/or imaginary part are variables, a complex
quantity is called a complex variable. In the Laplace transformation we use the notation
s as a complex variable; that is,

where s is the real part and v is the imaginary part.

Complex Function. A complex function G(s), a function of s, has a real part and
an imaginary part or

where Gx and Gy are real quantities. The magnitude of G(s) is and the
angle u of G(s) is The angle is measured counterclockwise from the pos-
itive real axis. The complex conjugate of G(s) is

Complex functions commonly encountered in linear control systems analysis are
single-valued functions of s and are uniquely determined for a given value of s.

G
–

(s) = Gx - jGy .
tan-1 AGy�GxB. 2Gx

2 + Gy
2 ,

G(s) = Gx + jGy

s = s + jv

Laplace Transform Tables



A complex function G(s) is said to be analytic in a region if G(s) and all its deriva-
tives exist in that region. The derivative of an analytic function G(s) is given by

Since can approach zero along an infinite number of different
paths. It can be shown, but is stated without a proof here, that if the derivatives taken
along two particular paths, that is, and are equal, then the deriva-
tive is unique for any other path and so the derivative exists.

For a particular path (which means that the path is parallel to the real
axis),

For another particular path (which means that the path is parallel to the
imaginary axis),

If these two values of the derivative are equal,

or if the following two conditions

are satisfied, then the derivative dG (s)/ ds is uniquely determined.These two conditions
are known as the Cauchy–Riemann conditions. If these conditions are satisfied, the func-
tion G(s) is analytic.

As an example, consider the following G(s):

Then

G(s + jv) =
1

s + jv + 1
= Gx + jGy

G(s) =
1

s + 1

0Gx

0s
=

0Gy

0v
  and  0Gy

0s
= -

0Gx

0v

0Gx

0s
+ j

0Gy

0s
=

0Gy

0v
- j

0Gx

0v

d

ds
G(s) = lim

j¢vS 0
 a ¢Gx

j¢v
+ j

¢Gy

j¢v
b = -j

0Gx

0v
+

¢Gy

0v

¢s = j¢v

d

ds
G(s) = lim

¢sS 0
 a ¢Gx

¢s
+ j

¢Gy

¢s
b =

0Gx

0s
+ j

0Gy

0s

¢s = ¢s
¢s = ¢s + j¢v

¢s = j¢v,¢s = ¢s

¢s = ¢s + j¢v, ¢s

d

ds
G(s) = lim

¢s S 0

G(s + ¢s) - G(s)

¢s
= lim

¢s S 0

¢G

¢s
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where

It can be seen that, except at s=–1 (that is, s=–1, v=0), G(s) satisfies the
Cauchy–Riemann conditions:

Hence G(s)=1/(s+1) is analytic in the entire s plane except at s=–1. The deriva-
tive dG (s)/ ds, except at s=1, is found to be

Note that the derivative of an analytic function can be obtained simply by differentiat-
ing G(s) with respect to s. In this example,

Points in the s plane at which the function G(s) is analytic are called ordinary
points, while points in the s plane at which the function G(s) is not analytic are called
singular points. Singular points at which the function G(s) or its derivatives approach
infinity are called poles. Singular points at which the function G(s) equals zero are
called zeros.

If G(s) approaches infinity as s approaches –p and if the function

for n=1, 2, 3, p

has a finite, nonzero value at s=–p, then s=–p is called a pole of order n. If n=1,
the pole is called a simple pole. If n=2, 3, p , the pole is called a second-order pole, a
third-order pole, and so on.

To illustrate, consider the complex function

G(s) =
K(s + 2)(s + 10)

s(s + 1)(s + 5)(s + 15)2

G(s)(s + p)n,

d

ds
a 1

s + 1
b = -

1

(s + 1)2

= -
1

(s + jv + 1)2 = -
1

(s + 1)2

d

ds
G(s) =

0Gx

0s
+ j

0Gy

0s
=

0Gy

0v
- j

0Gx

dv

0Gy

0s
= -

0Gx

0v
=

2v(s + 1)C(s + 1)2 + v2 D 2
0Gx

0s
=

0Gy

0v
=
v2 - (s + 1)2C(s + 1)2 + v2 D 2

Gx =
s + 1

(s + 1)2 + v2  and  Gy =
-v

(s + 1)2 + v2
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G(s) has zeros at s=–2, s=–10, simple poles at s=0, s=–1, s=–5, and a double
pole (multiple pole of order 2) at s=–15. Note that G(s) becomes zero at s=q. Since
for large values of s

G(s) possesses a triple zero (multiple zero of order 3) at s=q. If points at infinity are
included, G(s) has the same number of poles as zeros.To summarize, G(s) has five zeros
(s=–2, s=–10, s=q, s=q, s=q) and five poles (s=0, s=–1, s=–5,
s=–15, s=–15).

Laplace Transformation. Let us define

f(t)=a function of time t such that f(t)=0 for t<0

s=a complex variable

l=an operational symbol indicating that the quantity that it prefixes is to
be transformed by the Laplace integral 

F(s)=Laplace transform of f(t)

Then the Laplace transform of f(t) is given by

The reverse process of finding the time function f(t) from the Laplace transform F(s)
is called the inverse Laplace transformation.The notation for the inverse Laplace trans-
formation is l–1, and the inverse Laplace transform can be found from F(s) by the fol-
lowing inversion integral:

where c, the abscissa of convergence, is a real constant and is chosen larger than the real
parts of all singular points of F(s).Thus, the path of integration is parallel to the jv axis
and is displaced by the amount c from it.This path of integration is to the right of all sin-
gular points.

Evaluating the inversion integral appears complicated. In practice, we seldom use this
integral for finding f(t). We frequently use the partial-fraction expansion method given
in Appendix B.

In what follows we give Table A–1, which presents Laplace transform pairs of com-
monly encountered functions, and Table A–2, which presents properties of Laplace
transforms.

l-1 CF(s) D = f(t) =
1

2pj 3
c + jq

c - jq
F(s)est ds,  for t 7 0

l Cf(t) D = F(s) = 3
q

0
e-st dt Cf(t) D = 3

q

0
f(t)e-st dt

1q
0 e-st dt

G(s) �
K

s3
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f(t) F(s)

1 Unit impulse d(t) 1

2 Unit step 1(t)

3 t

4

5 tn (n=1, 2, 3, p)

6 e–at

7 te–at

8

9 tne–at (n=1, 2, 3, p)

10 sinvt

11 cosvt

12 sinhvt

13 coshvt

14

15

16

17
1

s(s + a)(s + b)

1

ab
c1 +

1

a - b
Abe-at - ae-btB d

s

(s + a)(s + b)

1

b - a
Abe-bt - ae-atB

1

(s + a)(s + b)

1

b - a
Ae-at - e-btB

1

s(s + a)

1

a
A1 - e-atB

s

s2 - v2

v

s2 - v2

s

s2 + v2

v

s2 + v2

n!

(s + a)n + 1

1

(s + a)n

1

(n - 1)!
tn - 1e-at  (n = 1, 2, 3, p )

1

(s + a)2

1

s + a

n!

sn + 1

1

sn

tn - 1

(n - 1)!
  (n = 1, 2, 3, p )

1

s2

1

s

Table A–1 Laplace Transform Pairs

(continues on next page)
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18

19

20 e–at sinvt

21 e–at cosvt

22

23

24

25 1-cosvt

26 vt-sinvt

27 sinvt-vt cosvt

28

29 t cosvt

30

31
s2As2 + v2B21

2v
(sinvt + vt cosvt)

sAs2 + v2
1B As2 + v2

2B1

v2
2 - v2

1

Acosv1 t - cosv2 tB  Av2
1 Z v2

2B
s2 - v2As2 + v2B2

sAs2 + v2B21

2v
t sinvt

2v3As2 + v2B2
v3

s2As2 + v2B
v2

sAs2 + v2B
(0 6 z 6 1, 0 6 f 6 p�2)

v2
n

sAs2 + 2zvn s + v2
nBf = tan-1 21 - z2

z

1 -
1

21 - z2
e-zvn t sin Avn21 - z2 t + fB

(0 6 z 6 1, 0 6 f 6 p�2)

s

s2 + 2zvn s + v2
nf = tan-1 21 - z2

z

-
1

21 - z2
e-zvn t sin Avn21 - z2 t - fB

v2
n

s2 + 2zvn s + v2
n

vn

21 - z2
e-zvn t sinvn21 - z2 t (0 6 z 6 1)

s + a

(s + a)2 + v2

v

(s + a)2 + v2

1

s2(s + a)

1

a2 Aat - 1 + e-atB
1

s(s + a)2

1

a2 A1 - e-at - ate-atBTable A–1 (continued)
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1

2

3

4

5

where

6

7

8

9

10

11

12

13

14

15

16

17

18 l Cf(t)g(t) D =
1

2pj 3
c + jq

c - jq
F(p)G(s - p) dp

l c 3 t

0
f1(t - t)f2(t) dt d = F1(s)F2(s)

l cf a 1

a
b d = aF(as)

l c 1
t

f(t) d = 3
q

s
F(s) ds  if lim

t S 0

1
t

f(t) exists

l C tnf(t) D = (-1)n dn

dsn F(s)  (n = 1, 2, 3, p )

l C t2f(t) D =
d2

ds2 F(s)

l C tf(t) D = -
dF(s)

ds

l Cf(t - a)1(t - a) D = e-asF(s)  a � 0

l Ce-atf(t) D = F(s + a)

3
q

0
f(t) dt = lim

s S 0
F(s)  if 3

q

0
f(t) dt exists

l c 3 t

0
f(t) dt d =

F(s)

s

l; c 3p3f(t)(dt)n d =
F(s)

sn + a
n

k = 1

1

sn - k + 1
c 3p3f(t)(dt)k d

t = 0 ;

l; c 3f(t) dt d =
F(s)

s
+

1

s
c 3f(t) dt d

t = 0 ;

f(t)
(k - 1)

=
dk - 1

dtk - 1
f(t)

l; c dn

dtn f(t) d = snF(s) - a
n

k = 1
sn - kf(0 ;)

(k - 1)

l; c d2

dt2 f(t) d = s2F(s) - sf(0 ;) - f
#
(0 ;)

l; c d

dt
f(t) d = sF(s) - f(0 ;)

l Cf1(t) ; f2(t) D = F1(s) ; F2(s)

l CAf(t) D = AF(s)

Table A–2 Properties of Laplace Transforms



Finally, we present two frequently used theorems, together with Laplace transforms
of the pulse function and impulse function.
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Initial value theorem

Final value theorem

Pulse function

Impulse function

=
As

s
= A

= lim
t0 S 0

d

dt0
[A(1 - e- st0)]

d

dt0
(t0s)

   = 0,     for t 6 0, t0 6 t

l Cg(t) D = lim
t0 S 0
c A

t0s
(1 - e- st0) dg(t) = lim

t0 S 0

A

t0
,  for 0 6 t 6 t0

l Cf(t) D =
A

t0s
-

A

t0s
e- st0f(t) =

A

t0
1(t) -

A

t0
1(t - t0)

f(q) = lim
t S q

f(t) = lim
s S 0

sF(s)

f(0+) = lim
t S 0 +

f(t) = lim
s S q

sF(s)
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Appendix

Before we present MATLAB approach to the partial-fraction expansions of transfer
functions, we discuss the manual approach to the partial-fraction expansions of transfer
functions.

Partial-Fraction Expansion when F(s) Involves Distinct Poles Only. Consider
F(s) written in the factored form

for m<n

where p1, p2,p ,pn and z1, z2,p ,zm are either real or complex quantities,but for each com-
plex pi or zj there will occur the complex conjugate of pi or zj, respectively. If F(s) involves
distinct poles only, then it can be expanded into a sum of simple partial fractions as follows:

(B–1)

where ak (k=1, 2, p , n) are constants.The coefficient ak is called the residue at the pole
at s=–pk . The value of ak can be found by multiplying both sides of Equation (B–1)
by As+pk B and letting s=–pk , which gives

 = ak

+ p +
ak

s + pk
As + pkB + p +

an

s + pn
As + pkBR

s = -pk

c As + pkB B(s)

A(s)
d

s = -pk

= c a1

s + p1
 As + pkB +

a2

s + p2
As + pkB

F(s) =
B(s)

A(s)
=

a1

s + p1
+

a2

s + p2
+ p +

an

s + pn

F(s) =
B(s)

A(s)
=

KAs + z1B As + z2B p As + zmBAs + p1B As + p2B p As + pnB ,

Partial-Fraction Expansion



We see that all the expanded terms drop out with the exception of ak . Thus the residue
ak is found from

Note that, since f(t) is a real function of time, if p1 and p2 are complex conjugates, then
the residues a1 and a2 are also complex conjugates. Only one of the conjugates, a1 or a2 ,
needs to be evaluated, because the other is known automatically.

Since

f(t) is obtained as

for t � 0

EXAMPLE B–1 Find the inverse Laplace transform of

The partial-fraction expansion of F(s) is

where a1 and a2 are found as

Thus

for t � 0

EXAMPLE B–2 Obtain the inverse Laplace transform of

Here, since the degree of the numerator polynomial is higher than that of the denominator poly-
nomial, we must divide the numerator by the denominator.

G(s) = s + 2 +
s + 3

(s + 1)(s + 2)

G(s) =
s3 + 5s2 + 9s + 7

(s + 1)(s + 2)

= 2e-t - e-2t,

= l-1 c 2
s + 1

d + l-1 c -1
s + 2

df(t) = l-1 CF(s) D
a2 = c (s + 2)

s + 3

(s + 1)(s + 2)
d

s = -2
= c s + 3

s + 1
d

s = -2
= -1

a1 = c (s + 1)
s + 3

(s + 1)(s + 2)
d

s = -1
= c s + 3

s + 2
d

s = -1
= 2

F(s) =
s + 3

(s + 1)(s + 2)
=

a1

s + 1
+

a2

s + 2

F(s) =
s + 3

(s + 1)(s + 2)

f(t) = l-1 CF(s) D = a1 e-p1 t + a2 e-p2 t + p + an e-pn t,

l-1 c ak

s + pk
d = ak e-pk t

ak = c As + pkB B(s)

A(s)
d

s = -pk

868 Appendix B / Partial-Fraction Expansion



Note that the Laplace transform of the unit-impulse function d(t) is 1 and that the Laplace
transform of dd(t)/ dt is s. The third term on the right-hand side of this last equation is F(s) in
Example B–1. So the inverse Laplace transform of G(s) is given as

for t � 0–

EXAMPLE B–3 Find the inverse Laplace transform of

Notice that the denominator polynomial can be factored as

If the function F(s) involves a pair of complex-conjugate poles, it is convenient not to expand
F(s) into the usual partial fractions but to expand it into the sum of a damped sine and a damped
cosine function.

Noting that s2+2s+5=(s+1)2+22 and referring to the Laplace transforms of e–at sinvt
and e–at cosvt, rewritten thus,

the given F(s) can be written as a sum of a damped sine and a damped cosine function:

It follows that

for t � 0

Partial-Fraction Expansion when F(s) Involves Multiple Poles. Instead of dis-
cussing the general case, we shall use an example to show how to obtain the partial-
fraction expansion of F(s).

Consider the following F(s):

The partial-fraction expansion of this F(s) involves three terms,

F(s) =
B(s)

A(s)
=

b1

s + 1
+

b2

(s + 1)2 +
b3

(s + 1)3

F(s) =
s2 + 2s + 3

(s + 1)3

 = 5e-t sin 2t + 2e-t cos 2t,

 = 5l-1 c 2

(s + 1)2 + 22 d + 2l-1 c s + 1

(s + 1)2 + 22 d
 f(t) = l-1 CF(s) D

 = 5 
2

(s + 1)2 + 22 + 2 
s + 1

(s + 1)2 + 22

 F(s) =
2s + 12

s2 + 2s + 5
=

10 + 2(s + 1)

(s + 1)2 + 22

l Ce-at cosvt D =
s + a

(s + a)2 + v2

l Ce-at sinvt D =
v

(s + a)2 + v2

s2 + 2s + 5 = (s + 1 + j2)(s + 1 - j2)

F(s) =
2s + 12

s2 + 2s + 5

g(t) =
d

dt
d(t) + 2d(t) + 2e-t - e-2t,
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where b3, b2 , and b1 are determined as follows. By multiplying both sides of this last
equation by (s+1)3, we have

(B–2)

Then letting s=–1, Equation (B–2) gives

Also, differentiation of both sides of Equation (B–2) with respect to s yields

(B–3)

If we let s=–1 in Equation (B–3), then

By differentiating both sides of Equation (B–3) with respect to s, the result is

From the preceding analysis it can be seen that the values of b3, b2 , and b1 are found
systematically as follows:

 =
1

2
 (2) = 1

 =
1

2!
c d2

ds2 As2 + 2s + 3B d
s = -1

 b1 =
1

2!
e d2

ds2 c (s + 1)3
B(s)

A(s)
d f

s = -1

 = 0

 = (2s + 2)s = -1

 = c d

ds
 As2 + 2s + 3B d

s = -1

 b2 = e d

ds
c (s + 1)3 

B(s)

A(s)
d f

s = -1

 = 2

 = As2 + 2s + 3Bs = -1

 b3 = c (s + 1)3 
B(s)

A(s)
d

s = -1

d2

ds2 c (s + 1)3
B(s)

A(s)
d = 2b1

d

ds
c (s + 1)3

B(s)

A(s)
d

s = -1
= b2

d

ds
c (s + 1)3

B(s)

A(s)
d = b2 + 2b1(s + 1)

c (s + 1)3
B(s)

A(s)
d

s = -1
= b3

(s + 1)3
B(s)

A(s)
= b1(s + 1)2 + b2(s + 1) + b3

870 Appendix B / Partial-Fraction Expansion



We thus obtain

for t � 0

Comments. For complicated functions with denominators involving higher-order
polynomials, partial-fraction expansion may be quite time consuming. In such a case,
use of MATLAB is recommended.

Partial-Fraction Expansion with MATLAB. MATLAB has a command to
obtain the partial-fraction expansion of B(s)/A(s). Consider the following function
B(s)/A(s):

where some of ai and bj may be zero. In MATLAB row vectors num and den specify the
coefficients of the numerator and denominator of the transfer function. That is,

num = [b0 b1 ...  bn]
den = [1   a1 ...  an]

The command

[r,p,k] = residue(num,den)

finds the residues (r), poles (p), and direct terms (k) of a partial-fraction expansion of
the ratio of two polynomials B(s) and A(s).

The partial-fraction expansion of B(s)/A(s) is given by

(B–4)

Comparing Equations (B–1) and (B–4), we note that p(1)=–p1, p(2)=–p2 , p ,
p(n)=–pn ; r(1)=a1, r(2)=a2 , p , r(n)=an . [k(s) is a direct term.]

EXAMPLE B–4 Consider the following transfer function,

B(s)

A(s)
=

2s3 + 5s2 + 3s + 6

s3 + 6s2 + 11s + 6

B(s)

A(s)
=

r(1)

s - p(1)
+

r(2)

s - p(2)
+ p +

r(n)

s - p(n)
+ k(s)

B(s)

A(s)
=

num
den

=
b0 sn + b1 sn - 1 + p + bn

sn + a1 sn - 1 + p + an

 = A1 + t2Be-t,

 = e-t + 0 + t2e-t

 = l-1 c 1

s + 1
d + l-1 c 0

(s + 1)2 d + l-1 c 2

(s + 1)3 d
 f(t) = l-1 CF(s) D
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For this function,

num= [2  5  3  6]
den = [1  6  11  6]

The command

[r,p,k] = residue(num,den)

gives the following result:

872 Appendix B / Partial-Fraction Expansion

[r,p,k] = residue(num,den)

r =

-6.0000
-4.0000
3.0000

p =

-3.0000
-2.0000
-1.0000

k =

2

(Note that the residues are returned in column vector r, the pole locations in column vector p, and
the direct term in row vector k.) This is the MATLAB representation of the following partial-
fraction expansion of B(s)/A(s):

Note that if p(j)=p(j+1)=p=p(j+m-1) Cthat is, pj=pj+1=p=pj+m-1 D , the
pole p(j) is a pole of multiplicity m. In such a case, the expansion includes terms of the form

For details, see Example B–5.

r(j)

s - p(j)
+

r(j + 1)Cs - p(j) D 2 + p +
r(j + m - 1)Cs - p(j) Dm

 =
-6

s + 3
+

-4

s + 2
+

3

s + 1
+ 2

 
B(s)

A(s)
=

2s3 + 5s2 + 3s + 6

s3 + 6s2 + 11s + 6



EXAMPLE B–5 Expand the following B(s)/A(s) into partial fractions with MATLAB.

For this function, we have

num = [1  2  3]
den = [1  3  3  1]

The command

[r,p,k] = residue(num,den)

gives the result shown next:

B(s)

A(s)
=

s2 + 2s + 3

(s + 1)3 =
s2 + 2s + 3

s3 + 3s2 + 3s + 1
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It is the MATLAB representation of the following partial-fraction expansion of B(s)/A(s):

Note that the direct term k is zero.

B(s)

A(s)
=

1

s + 1
+

0

(s + 1)2 +
2

(s + 1)3

num = [1  2  3];
den = [1  3  3  1];
[r,p,k] = residue(num,den)

r =

1.0000
0.0000
2.0000

p =

-1.0000
-1.0000
-1.0000

k =

[]
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Appendix

In this appendix we first review the determinant of a matrix, then we define the adjoint
matrix, the inverse of a matrix, and the derivative and integral of a matrix.

Determinant of a Matrix. For each square matrix, there exists a determinant.The
determinant of a square matrix A is usually written as or det A. The determinant has
the following properties:

1. If any two consecutive rows or columns are interchanged, the determinant changes
its sign.

2. If any row or any column consists only of zeros, then the value of the dererminant
is zero.

3. If the elements of any row (or any column) are exactly k times those of another
row (or another column), then the value of the determinant is zero.

4. If, to any row (or any column), any constant times another row (or column) is
added, the value of the determinant remains unchanged.

5. If a determinant is multiplied by a constant, then only one row (or one column) is
multiplied by that constant. Note, however, that the determinant of k times an
n*n matrix A is kn times the determinant of A, or 

@kA @ = kn @A @

@A @

Vector-Matrix Algebra



This is because

6. The determinant of the product of two square matrices A and B is the product of
determinants, or 

If B=n*m matrix and C=m*n matrix, then 

det(In+BC)=det(Im+CB)

If and D=m*m matrix, then

where S=D-CA�1 B.
If , then

where T=A-BD�1 C.
If or then

Rank of Matrix. A matrix A is said to have rank m if there exists an m*m sub-
matrix M of A such that the determinant of M is nonzero and the determinant of every
r*r submatrix (where ) of A is zero.

As an example, consider the following matrix:

A = D1 2   3 4
0 1 -1 0
1 0   1 2
1 1   0 2

T
r � m + 1

det cA B
0 D

d = det A�det D

det cA 0
C D

d = det A�det D

C = 0,B = 0

det cA B
C D

d = det D�det T

D Z 0

det cA B
C D

d = det A�det S

A Z 0

@AB @ = @A @ @B @

kA = Dka11 ka12 p ka1m

ka21 ka22 p ka2m

o o o
kan1 kan2 p kanm

T
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Note that =0. One of a number of largest submatrices whose determinant is not
equal to zero is

Hence, the rank of the matrix A is 3.

Minor Mij. If the ith row and jth column are deleted from an n*n matrix A,
the resulting matrix is an (n-1)*(n-1) matrix. The determinant of this 
(n-1) � (n-1) matrix is called the minor Mij of the matrix A.

Cofactor Aij. The cofactor Aij of the element aij of the n*n matrix A is defined
by the equation 

Aij=(�1)i�jMij

That is, the cofactor Aij of the element aij is (�1)i�j times the determinant of the matrix
formed by deleting the ith row and the jth column from A. Note that the cofactor Aij of
the element aij is the coefficient of the term aij in the expansion of the determinant ,
since it can be shown that 

If are replaced by then

because the determinant of A in this case possesses two identical rows. Hence, we obtain

Similarly,

Adjoint Matrix. The matrix B whose element in the ith row and jth column equals
Aji is called the adjoint of A and is denoted by adj A, or

B=(bij)=(Aji)=adj A

That is, the adjoint of A is the transpose of the matrix whose elements are the cofactors
of A, or

adj A = DA11 A21 p An1

A12 A22 p An2

o o o
A1n A2n p Anm

T

a
n

k = 1
akiAkj = dij @A @

a
n

k = 1
ajkAik = dji @A @

aj1Ai1 + aj2Ai2 + p + ajnAin = 0     i Z j

aj1, aj2, p , ajn,ai1, ai2, p , ain

ai1Ai1 + ai2Ai2 + p + ainAin = @A @
@A @

C1 2   3
0 1 -1
1 0    1

S
@A @

876 Appendix C / Vector-Matrix Algebra



Note that the element of the jth row and ith column of the product A(adj A) is

Hence, A(adj A) is a diagonal matrix with diagonal elements equal to , or 

A(adj A)= I

Similarly, the element in the jth row and ith column of the product (adj A)A is

Hence, we have the relationship 

A(adj A)=(adj A)A= I (C–1)

Thus

where Aij is the cofactor of aij of the matrix A. Thus, the terms in the ith column of A�1

are l/ times the cofactors of the ith row of the original matrix A. For example, if

then the adjoint of A and the determinant are respectively found to be@A @
A = C1   2   0

3 -1 -2
1   0 -3

S
@A @

G
A11@A @ A21@A @ p

An1@A @
A12@A @ A22@A @ p

An2@A @
o o o

A1n@A @ A2n@A @ p
Ann@A @
WA-1 =

adj A@A @ =

@A @
a

n

k = 1
bjkaki = a

n

k = 1
Akjaki = dij @A @
@A @ @A @a

n

k = 1
ajkbki = a

n

k = 1
ajkAik = dji @A @
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G Wadj A=

= C3   6 -4
7 -3    2
1    2 -7

S
`3 -1
1   0

`    - `1 2
1 0
`     `1   2

3 -1
`

- `3 -2
1 -3

`    `1   0
1 -3

`   - `1   0
3 -2

`
`-1 -2
  0 -3

`   - `2   0
0 -3

`    `   2   0
-1 -2

`



and

=17

Hence, the inverse of A is

In what follows, we give formulas for finding inverse matrices for the 2*2 matrix
and the 3*3 matrix. For the 2*2 matrix

the inverse matrix is given by

For the 3*3 matrix

the inverse matrix is given by

A = C a b c

d e f

g h i

S     where @A @ Z 0

A-1 =
1

ad - bc
c d -b

-c a
d

A = ca b

c d
d        where ad - bc Z 0

A- 1 =
adj A@A @ = C 3

17
6
17 - 4

17
7

17 - 3
17

2
17

1
17

2
17 - 7

17

S
@A @
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G W
`d e

g h
`  - ` a b

g h
`    ` a b

d e
`

- `d f

g i
`    ` a c

g i
`   - ` a c

d f
`A- 1 =

1@A @
` e f

h i
`   - ` b c

h i
`    `b c

e f
`

Note that

There are several more useful formulas available. Assume that A=n*n matrix,
B=n*m matrix, C=m*n matrix, and D=m*m matrix. Then

[A + BC]- 1 = A- 1 - A- 1 B[Im + CA- 1 B]- 1 CA- 1

(A- 1)* = (A*)- 1

(A- 1)¿ = (A¿)- 1

(A- 1)- 1 = A



If and then

If then

If then

Finally, we present the MATLAB approach to obtain the inverse of a square matrix.
If all elements of the matrix are given as numerical values, this approach is best.

MATLAB Approach to Obtain the Inverse of a Square Matrix. The inverse of
a square matrix A can be obtained with the command

inv(A)

For example, if matrix A is given by

then the inverse of matrix A is obtained as follows:

A = C1 1 2
3 4 0
1 2 5

S

cA B
C D

d - 1

= c T- 1 -T- 1 BD- 1

-D- 1 CT- 1 D- 1 + D- 1 CT- 1 BD- 1 d
@D @ Z 0, T = A - BD - 1 C, and @T @ Z 0,

cA B
C D

d - 1

= cA- 1 + A- 1 BS- 1 CA- 1 -A- 1 BS- 1

-S- 1 CA- 1 S- 1 d
@A @ Z 0, S = D - CA- 1 B, @S @ Z 0,

cA 0
C D

d - 1

= c A- 1 0
-D- 1 CA- 1 D- 1 d

cA B
0 D

d - 1

= cA- 1 -A- 1 BD- 1

0 D- 1 d
@D @ Z 0,@A @ Z 0
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A = [1  1  2;3  4  0;1  2  5];
inv(A)

ans =

2.2222 �0.1111 �0.8889
�1.6667 0.3333 0.6667

0.2222 �0.1111 0.1111



That is

MATLAB Is Case Sensitive. It is important to note that MATLAB is case sen-
sitive.That is, MATLAB distinguishes between upper- and lowercase letters.Thus, x and
X are not the same variable. All function names must be in lowercase, such as inv(A),
eig(A), and poly(A).

Differentiation and Integration of Matrices. The derivative of an n*m matrix
A(t) is defined to be the n*m matrix, each element of which is the derivative of the
corresponding element of the original matrix, provided that all the elements aij(t) have
derivatives with respect to t. That is,

Similarly, the integral of an n*m matrix A(t) is defined to be

Differentiation of the Product of Two Matrices. If the matrices A(t) and B(t)
can be differentiated with respect to t, then

Here again the multiplication of A(t) and dB(t)/dt [or dA(t)/dt and B(t)] is, in gener-
al, not commutative.

d

dt
[A(t)B(t)] =

dA(t)

dt
B(t) + A(t)

dB(t)

dt

G 3
a11(t) dt 3a12(t) dt p 3a1m(t) dt

3a21(t) dt 3a22(t) dt p 3a2m(t) dt

o o o

3an1(t) dt 3a2n(t) dt p 3anm(t) dt

W3A(t) dt = a 3aij(t) dt b =

G
d

dt
a11(t)

d

dt
a12(t) p

d

dt
a1m(t)

d

dt
a21(t)

d

dt
a22(t) p

d

dt
a2m(t)

o o o
d

dt
an1(t)

d

dt
an2(t) p

d

dt
anm(t)

Wd

dt
 A(t) = a d

dt
 aij(t) b =

A- 1 = C    2.2222 -0.1111 -0.8889
-1.6667    0.3333    0.6667
  0.2222 -0.1111    0.1111

S
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Differentiation of A21(t). If a matrix A(t) and its inverse A�1(t) are differen-
tiable with respect to t, then the derivative of A�1(t) is given by 

The derivative may be obtained by differentiating A(t)A�1(t) with respect to t. Since

and

we obtain

or

dA- 1(t)

dt
= -A- 1(t)

dA(t)

dt
A- 1(t)

A(t)
dA- 1(t)

dt
= -

dA(t)

dt
A- 1(t)

d

dt
[A(t)A- 1(t)] =

d

dt
I = 0

d

dt
[A(t)A- 1(t)] =

dA(t)

dt
A- 1(t) + A(t)

dA- 1(t)

dt

dA- 1(t)

dt
= -A- 1(t)

dA(t)

dt
A- 1(t)
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Index

A
Absolute stability, 160
Ackermann’s formula:

for observer gain matrix, 756–57
for pole placement, 730–31

Actuating error, 8
Actuator, 21–22
Adjoint matrix, 876
Air heating system, 150
Aircraft elevator control system, 156
Analytic function, 860
Angle:

of arrival, 286
of departure, 280, 286

Angle condition, 271
Asymptotes:

Bode diagram, 406–07
root loci, 274–75, 284–85

Attenuation, 165
Attitude-rate control system, 386
Automatic controller, 21
Automobile suspension system, 86
Auxiliary polynomial, 216

B
Back emf, 95

constant, 95

Bandwidth, 474, 539
Basic control actions:

integral, 24
on-off, 22
proportional, 24
proportional-plus-derivative, 25
proportional-plus-integral, 24
proportional-plus-integral-plus-

derivative, 35
two-position, 22–23

Bleed-type relay, 111
Block, 17
Block diagram, 17–18

reduction, 27–28, 48
Bode diagram, 403

error in asymptotic expression of, 403
of first-order factors, 406–07, 409
general procedure for plotting, 413
plotting with MATLAB, 422–25
of quadratic factors, 410–12
of system defined in state space,

426–27
Branch point, 18
Break frequency, 406
Breakaway point, 275–76, 285–86, 351
Break-in point, 276, 281, 285–86, 351
Bridged-T networks, 90, 520
Business system, 5
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C
Canonical forms:

controllable, 649
diagonal, 650
Jordan, 651, 653
observable, 650

Capacitance:
of pressure system, 107–09
of thermal system, 137
of water tank, 103

Cancellation of poles and zeros, 288
Cascaded system, 20
Cascaded transfer function, 20
Cauchy–Riemann conditions, 860–61
Cauchy’s theorem, 526
Cayley–Hamilton theorem, 668, 701
Characteristic equation, 652
Characteristic polynomial, 34
Characteristic roots, 652
Circular root locus, 282
Classical control theory, 2
Classification of control systems, 225
Closed-loop control system, 8
Closed-loop system, 20
Closed-loop frequency response, 477
Closed-loop frequency response curves:

desirable shapes of, 492
undesirable shapes of, 492

Closed-loop transfer function, 19–20
Cofactor, 876
Command compensation, 630
Compensation:

feedback, 308
parallel, 308
series, 308

Compensator:
lag, 323, 503–04
lag–lead, 332–34, 511–13
lead, 312–13, 495–96

Complete observability, 683–84
conditions for, 684–85
in the s plane, 684

Complete output controllablility, 714
Complete state controllability, 676–81

in the s plane, 680–81
Complex-conjugate poles:

cancellation of undesirable, 520
Complex function, 859
Complex impedence, 75
Complex variable, 859
Computational optimization approach to

design PID controller, 583–89
Conditional stability, 299–300, 510–11
Conditionally stable system, 299–300,

458, 510–11
Conduction heat transfer, 137

Conformal mapping, 447, 462–64
Conical water tank system, 152
Constant-gain loci, 302–03
Constant-magnitude loci (M circles),

478–79
Constant phase-angle loci (N circles),

480–81
Constant vn loci, 296
Constant z lines, 298
Constant z loci, 296
Control actions, 21
Control signal, 3
Controllability, 675–81

matrix, 677
output, 681

Controllable canonical form, 649, 688
Controlled variable, 3
Controller, 22
Convection heat transfer, 137
Conventional control theory, 29
Convolution, integral, 16
Corner frequency, 406
Critically damped system, 167
Cutoff frequency, 474
Cutoff rate, 475

D
Damped natural frequency, 167
Damper, 64, 132
Damping ratio, 165

lines of constant, 296
Dashpot, 64, 132–33
Dead space, 43
Decade, 405
Decibel, 403
Delay time, 169–70
Derivative control action, 118–20, 222
Derivative gain, 84
Derivative time, 25, 61
Detectability, 688
Determinant, 874
Diagonal canonical form, 694
Diagonalization of n*n matrix, 652
Differential amplifier, 78
Differential gap, 23, 24
Differentiating system, 231
Differentiation:

of inverse matrix, 881
of matrix, 880
of product of two matrices, 880

Differentiator:
approximate, 617

Direct transmission matrix, 31
Disturbance, 3, 26
Dominant closed-loop poles, 182
Duality, 754



E
eAt:

computation of, 670–71
Eigenvalue, 652

invariance of, 655
Electromagnetic valve, 23
Electronic controller, 77, 83
Engineering organizational system, 5–6
Equivalent moment of inertia, 234
Equivalent spring constant, 64
Equivalent viscous-friction coefficient,

65, 234
Evans, W. R., 2, 11, 269
Exponential response curve, 162

F
Feedback compensation, 308–09, 342, 519
Feedback control, 3
Feedback control system, 7
Feedback system, 20
Feedforward transfer function, 19
Final value theorem, 866
First-order lag circuit, 80
First-order system, 161–64

unit-impulse response of, 163
unit-ramp response of, 162–63
unit-step response of, 161–62

Flapper, 110
valve, 156

Fluid systems:
mathematical modeling of, 100

Free-body diagram, 69–70
Frequency response, 398

correlation between step response
and, 471–74

lag compensation based on, 502–11
lag–lead compensation based on,

511–17
lead compensation based on, 493–502

Full-order state observer, 752–53
Functional block, 17

G
Gain crossover frequency, 467–69
Gain margin, 464–67
Gas constant, 108

for air, 142
universal, 108

Gear train, 232
system, 232–34

Generalized plant, 813, 815–17
diagram, 810–16, 853–54

H
H infinity control problem, 816
H infinity norm, 6, 808
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Hazen, 2, 11
High-pass filter, 495
Higher-order systems, 179

transient response of, 180–81
Hurwitz determinants, 252–58
Hurwitz stability criterion, 252–53, 255–58

equivalence of Routh’s stability 
criterion and, 255–57

Hydraulic controller:
integral, 130
jet-pipe, 147
proportional, 131
proportional-plus-derivative, 134–35
proportional-plus-integral, 133–34
proportional-plus-integral-plus-

derivative, 135–36
Hydraulic servo system, 124–25
Hydraulic servomotor, 128, 130, 156
Hydraulic system, 106, 123–39, 149

advantages and disadvantages of, 124
compared with pneumatic system, 106

I
Ideal gas law, 108
Impedance:

approach to obtain transfer function,
75–76

Impulse function, 866
Impulse response, 163, 178–79, 195–97

function, 16–17
Industrial controllers, 22
Initial condition:

response to, 203–11
Initial value theorem, 866
Input filter, 261, 630
Input matrix, 31
Integral control, 220
Integral control action, 24–25, 218
Integral controller, 22
Integral gain, 61
Integral time, 25, 61
Integration of matrix, 880
Inverse Laplace transform:

partial-fraction expansion method for
obtaining, 867–73

Inverse Laplace transformation, 862
Inverse of a matrix:

MATLAB approach to obtain, 879
Inverse polar plot, 461–62, 537–38
Inverted-pendulum system, 68–72, 98
Inverted-pendulum control system,

746–51
Inverting amplifier, 78
I-PD control, 591–92
I-PD-controlled system, 592, 628–29, 643

with feedforward control, 642
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J
Jet-pipe controller, 146–47
Jordan blocks, 679
Jordan canonical form, 651, 695, 706–07

K
Kalman, R. E., 12, 675
Kirchhoff’s current law, 72
Kirchhoff’s loop law, 72
Kirchhoff’s node law, 72
Kirchhoff’s voltage law, 72

L
Lag compensation, 321
Lag compensator, 311, 321, 502

Bode diagram of, 503
design by frequency-response method,

502–11
design by root-locus method, 321, 323
polar plot of, 503

Lag network, 82, 542
Lag–lead compensation, 330, 335, 338,

377, 511–18
Lag–lead compensator:

Bode diagram of, 558
design by frequency-response method,

513–17
design by root-locus method, 331–32,

380–82
electronic, 330–32
polar plot of, 512

Lag–lead network:
electronic, 330–32
mechanical, 366

Lagrange polynomial, 708
Lagrange’s interpolation formula, 708
Laminar-flow resistance, 102
Laplace transform, 862

properties of, 865
table of, 863–64

Lead compensator, 311, 493
Bode diagram of, 494
design by frequency-response method,

493–502
design by root-locus method, 311–18
polar plot of, 494

Lead, lag, and lag–lead compensators:
comparison of, 517–18

Lead network, 542
electronic, 82
mechanical, 365

Lead time, 5
Linear approximation:

of nonlinear mathematical models, 43
Linear system, 14

constant coefficient, 14

Linear time-invariant system, 14, 164
Linear time-varying system, 14
Linearization:

of nonlinear systems, 43
Liquid-level control system, 157
Liquid-level systems, 101, 103–04, 140–41
Log-magnitude curves of quadratic

transfer function, 411
Logarithmic decrement, 237
Logarithmic plot, 403
Log-magnitude versus phase plot, 403,

443–44
LRC circuit, 72–73

M
M circles, 478–79

a family of constant, 479
Magnitude condition, 271
Manipulated variable, 3
Mapping theorem, 448–49
Mathematical model, 13

MATLAB commands:
MATLAB:
obtaining maximum overshoot with,

194
obtaining peak time with, 194
obtaining response to initial condition

with, 266
partial-fraction expansion with,

871–73
plotting Bode diagram with, 422–23
plotting root loci with, 290–91
writing text in diagrams with, 188–89
[A,B,C,D] = tf2ss(num,den), 40, 656,

698
bode(A,B,C,D), 422, 426
bode(A,B,C,D,iu), 426–27
bode(A,B,C,D,iu,w), 422
bode(A,B,C,D,w), 422
bode(num,den), 422
bode(num,den,w), 422, 425, 551
bode(sys), 422
bode(sys,w), 552
c = step(num,den,t), 190
for loop, 243, 249, 584
[Gm,pm,wcp,wcg,] = margin(sys),

468–69
gtext ('text'), 189
impulse(A,B,C,D), 195
impulse(num, den), 195
initial(A,B,C,D,[initial condition],t), 209
inv(A), 879
K = acker(A,B,J), 736
K = lqr(A,B,Q,R), 798
K = place(A,B,J), 736



MATLAB commands (Cont.)
Ke = acker(A',C',L)', 773
Ke = acker(Abb,Aab,L)', 773
Ke = place(A',C',L)', 773
Ke = place(Abb',Aab',L)', 773
[K,P,E] = lqr(A,B,Q,R), 798
[K,r] = rlocfind(num,den), 303
logspace(d1,d2), 422
logspace(d1,d2,n), 422–23
lqr(A,B,Q,R), 797
lsim(A,B,C,D,u,t), 201
lsim(num,den,r,t), 201
magdB = 20*log10(mag), 422
[mag,phase,w] = bode(A,B,C,D), 422
[mag,phase,w] = bode(A,B,C,D,iu,w),

422
[mag,phase,w] = bode(A,B,C,D,w),

422
[mag,phase,w] = bode(num,den), 422
[mag,phase,w] = bode(num,den,w),

422, 476
[mag,phase,w] = bode(sys), 422
[mag,phase,w] = bode(sys,w), 476
mesh, 192
mesh(y), 192, 249
mesh(y'), 192, 249
[Mp,k] = max(mag), 476
NaN, 799
[num,den] = feedback(num1,den1,

num2,den2), 20–21
[num,den] = parallel(num1,den1,

num2,den2), 20–21
[num,den] = series(num1,den1,

num2,den2), 20–21
[num,den] = ss2tf(A,B,C,D), 41, 657
[num,den] = ss2tf(A,B,C,D,iu), 41–42,

58, 657
[NUM,den] = ss2tf(A,B,C,D,iu), 59,

659
nyquist(A,B,C,D), 436, 441–42
nyquist(A,B,C,D,iu), 441
nyquist(A,B,C,D,iu,w), 436, 441
nyquist(A,B,C,D,w), 436
nyquist(num,den), 436
nyquist(num, den,w), 436
nyquist(sys), 436
polar(theta,r), 545
printsys(num,den), 20–21, 189
printsys(num,den,'s'), 189
r = abs(z), 544
[r,p,k] = residue(num,den), 239, 871–72
[re,im,w] = nyquist(A,B,C,D), 436
[re,im,w] = nyquist(A,B,C,D,iu,w), 436
[re,im,w] = nyquist(A,B,C,D,w), 436
[re,im,w] = nyquist(num,den), 436
[re,im,w] = nyquist(num,den,w), 436
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[re,im,w] = nyquist(sys), 436
residue, 867
resonant_frequency = w(k), 476
resonant_peak = 20*log10(Mp), 476
rlocfind, 303
rlocus(A,B,C,D), 295
rlocus(A,B,C,D,K), 290, 295
rlocus(num,den), 290–91
rlocus(num,den,K), 290
sgrid, 297
sortsolution, 584
step(A,B,C,D), 184, 186
step(A,B,C,D,iu), 184
step(num,den), 184
step(num,den,t), 184
step(sys), 184
sys = ss(A,B,C,D), 184
sys = tf(num,den), 184
text, 188
theta = angle(z), 544
w = logspace(d2,d3,100), 425
y = lsim(A,B,C,D,u,t), 201
y = lsim(num,den,r,t), 201
[y, x, t] = impulse(A,B,C,D), 195
[y, x, t] = impulse(A,B,C,D,iu), 195
[y, x, t] = impulse(A,B,C,D,iu,t), 195
[y, x, t] = impulse(num,den), 195
[y, x, t] = impulse(num,den,t), 195
[y, x, t] = step(A,B,C,D,iu), 184
[y, x, t] = step(A,B,C,D,iu,t), 184
[y, x, t] = step(num,den,t), 184, 190
z = re+j*im, 544
End of MATLAB commands

Matrix exponential, 661, 669–674
closed solution for, 663

Matrix Riccati equation, 798, 800
Maximum overshoot:

in unit-impulse response, 179
in unit-step response, 170, 172
versus z curve, 174

Maximum percent overshoot, 170
Maximum phase lead angle, 494, 498
Measuring element, 21
Mechanical lag–lead system, 366
Mechanical lead system, 365
Mechanical vibratory system, 236
Mercury thermometer system, 151
Minimal polynomial, 669, 704–06
Minimum-order observer, 767–77

based controller, 777
Minimum-order state observer, 752
Minimum-phase system, 415–16
Minimum-phase transfer function, 415
Minor, 876
Modern control theory, 7, 29

versus conventional control theory, 29



Index 891

Motor torque constant, 95
Motorcycle suspension system, 87
Multiple-loop system, 458–59

N
N circles, 480–81

a family of constant, 481
Newton’s second law, 66
Nichols, 2, 11, 398
Nichols chart, 482–85
Nichols plots, 403
Nonbleed-type relay, 111
Nonhomogeneous state equation:

solution of, 666–67
Noninverting amplifier, 79
Nonlinear mathematical models:

linear approximation of, 43–45
Nonlinear system, 43
Nonminimum-phase systems, 300–01,

415, 417
Nonminimum-phase transfer function,

415, 488
Nonuniqueness:

of a set of state variables, 655
Nozzle-flapper amplifier, 110
Number-decibel conversion line, 404
Nyquist, H., 2, 11, 398
Nyquist path, 545
Nyquist plot, 403, 439–40, 443

of positive-feedback system, 535–37
of system defined in state space, 440–43

Nyquist stability analysis, 454–62
Nyquist stability criterion, 445–54

applied to inverse polar plots, 461–62

O
Observability, 675, 682–88

complete, 683–85
matrix, 653

Observable canonical form, 650, 692
Observation, 752
Observed-state feedback control system,

761
Observer, 753

design of control system with, 786–93
full-order, 753
mathematical model of, 752
minimum-order, 767–73

Observer-based controller:
transfer function of, 761

Observer controller:
in the feedback path of control system,

787, 790–93
in the feedforward path of control

system, 787–90
Observer-controller matrix, 762

Observer-controller transfer function,
761–62

Observer error equation, 753
Observer gain matrix, 755

MATLAB determination of, 773
Octave, 405
Offset, 258
On-off control action, 22–23
On-off controller, 22
One-degree-of-freedom control system,

593
op amps, 78
Open-loop control system, 8

advantages of, 9
disadvantages of, 9

Open-loop frequency response curves:
reshaping of, 493

Open-loop transfer function, 19
Operational amplifier, 78
Operational amplifier circuits, 93–94

for lead or lag compensator:
table of, 85

Optimal regulator problem, 806
Ordinary point, 861
Orthogonality:

of root loci and constant gain loci,
301–02

Output controllability, 681
Output equation, 31
Output matrix, 31
Overdamped system, 168–69
Overlapped spool valve, 146
Overlapped valve, 130

P
Parallel compensation, 308–09, 342–43
Partial-fraction expansion, 867–73

with MATLAB, 871–73
PD control, 373
PD controller, 614–15
Peak time, 170, 172, 193
Performance index, 793
Performance specifications, 9
Phase crossover frequency, 467–69
Phase margin, 464–67

versus z curve, 472
PI controller, 2, 614–15
PI-D control, 590–92
PID control system, 572–77, 583, 587,

617–21, 628–29, 642–43
basic, 590
with input filter, 629
two-degrees-of-freedom, 592–95

PID controller, 567, 577, 614–16, 620, 632
modified, 616
using operational amplifiers, 83–84



Pilot valve, 124, 130
PI-PD control, 592
PID-PD control, 592
Plant, 3
Pneumatic actuating valve, 117–18
Pneumatic controllers, 144–45, 154–55
Pneumatic nozzle-flapper amplifier, 110
Pneumatic on-off controller, 115
Pneumatic pressure system, 142
Pneumatic proportional controller, 112–16

force-balance type, 115–16
force-distance type, 112–15

Pneumatic proportional-plus-derivative
controller, 119–20

Pneumatic proportional-plus-integral
control action, 120–22

Pneumatic proportional-plus-integral-
plus-derivative control action,
122–23

Pneumatic relay, 111
bleed type, 111
nonbleed type, 111
reverse acting, 112

Pneumatic systems, 106–23, 153
compared with hydraulic system, 106

Pneumatic two-position controller, 115
Polar grids, 297
Polar plot, 403, 427–28, 430, 432
Pole: 861

of order n, 861
simple, 861

Pole assignment technique, 723
Pole-placement:

necessary and sufficient conditions for
arbitrary, 725

Pole placement problem, 723–35
solving with MATLAB, 735–36

Positive-feedback system:
Nyquist plot for, 536–37
root loci for, 303–07

Positional servo system, 95–97
Pressure system, 107, 109
Principle of duality, 687
Principle of superposition, 43
Process, 3
Proportional control, 219
Proportional control action, 24
Proportional controller, 22
Proportional gain, 25, 61
Proportional-plus-derivative control:

of second-order system, 224
of system with inertia load, 223

Proportional-plus-derivative control
action, 25

Proportional-plus-derivative controller,
22, 542
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Proportional-plus-integral control action,
24

Proportional-plus-integral controller, 22,
121, 542

Proportional-plus-integral-plus-
derivative control action, 25

Proportional-plus-integral-plus-
derivative controller, 22

Pulse function, 866

Q
Quadratic factor, 410

log-magnitude curves of, 411
phase-angle curves of, 411

Quadratic optimal control problem:
MATLAB solution of, 804

Quadratic optimal regulator system,
793–95

MATLAB design of, 797

R
Ramp response, 197
Rank of matrix, 875
Reduced-matrix Riccati equation, 795–97
Reduced-order observer, 752
Reduced-order state observer, 752
Reference input, 21
Regulator system with observer

controller, 778–86, 789
Relative stability, 160, 217, 462
Residue, 867
Residue theorem, 527
Resistance:

gas-flow, 107
laminar-flow, 101–02
of pressure system, 107, 109
of thermal system, 137
turbulent-flow, 102

Resonant frequency, 430, 470
Resonant peak, 413, 430, 470

versus z curve, 413
Resonant peak magnitude, 413, 470
Response:

to arbitrary input, 201
to initial condition, 203–11
to torque disturbance, 221

Reverse-acting relay, 112
Riccati equation, 795
Rise time, 169–171

obtaining with MATLAB, 193–94
Robust control:

system, 16, 806–17
theory, 2, 7

Robust performance, 7, 807, 812
Robust pole placement, 735
Robust stability, 7, 807, 809
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Root loci:
general rules for constructing, 283–87
for positive-feedback system, 303–07

Root locus, 271
method, 269–70

Routh’s stability criterion, 212–18

S
Schwarz matrix, 268
Second-order system, 164

impulse response of, 178–79
standard form of, 166
step response of, 165–75
transient-response specification of, 171
unit-step response curves of, 169

Sensor, 21
Series compensation, 308–09, 342
Servo system, 95, 164–65

design of, 739–51
with tachometer feedback, 268
with velocity feedback, 175–77

Servomechanism, 2
Set point, 21
Set-point kick, 590
Settling time, 170, 172–73

obtaining with MATLAB, 194
versus z curve, 174

Sign inverter, 79
Simple pole, 861
Singular points, 861
Sinusoidal signal generator, 486
Sinusoidal transfer function, 401
Small gain theorem, 809
Space vehicle control system, 367, 538–39
Speed control system, 4, 148
Spool valve:

linealized mathematical model of, 127
Spring-loaded pendulum system, 98
Spring-mass-dashpot system, 66
Square-law nonlinearity, 43
S-shaped curve, 569
Stability analysis, 454–62

in the complex plane, 182
Stabilizability, 688
Stack controller, 115
Standard second-order system, 189
State, 29
State controllability:

complete, 676, 678, 680
State equation, 31

solution of homogeneous, 660
solution of nonhomogeneous, 666–67
Laplace transform solution of, 663

State-feedback gain matrix, 724
MATLAB approach to determine,

735–36

State matrix, 31
State observation:

necessary and sufficient conditions for,
754–55

State observer, 751–77
design with MATLAB, 773
type 1 servo system with, 746

State observer gain matrix: 755
Ackermann’s formula to obtain, 756–57
direct substitution approach to obtain,

756
transformation approach to obtain, 755

State space, 30
State-space equation, 30

correlation between transfer function
and, 649, 656

solution of, 660
State-space representation:

in canonical forms, 649
of nth order system, 36–39

State-transition matrix, 664
properties of, 665

State variable, 29
State vector, 30
Static acceleration error constant,

228, 421
determination of, 421–22

Static position error constant,
226, 419

Static velocity error constant,
227, 420

Steady-state error, 160, 226
for unit parabolic input, 229
for unit ramp input, 228
in terms of gain K, 230

Steady-state response, 160
Step response, 699–700

of second-order system, 165–69
Summing point, 18
Suspension system:

automobile, 86–87
motorcycle, 87

Sylvester’s interpolation formula, 673,
709–713

System, 3
Sytem types, 419

type 0, 225, 230, 419, 433, 487–88
type 1, 225, 230, 420, 433, 487–88
type 2, 225, 230, 421, 433, 487–88

System response to initial condition:
MATLAB approach to obtain, 203–11

T
Tachometer, 176

feedback, 343
Taylor series expansion, 43–45



Temperature control systems, 4–5
Test signals, 159
Text:

writing on the graphic screen, 188
Thermal capacitance, 137
Thermal resistance, 137
Thermal systems, 100,136–39
Thermometer system, 151–52
Three-degrees-of-freedom system, 645
Three-dimensional plot, 192

of unit-step response curves with
MATLAB, 191–93

Traffic control system, 8
Transfer function, 15

of cascaded elements, 73–74
of cascaded systems, 20
closed-loop, 20
of closed-loop system, 20
experimental determination of, 489–90
expression in terms of A, B, C, and D, 34
of feedback system, 19
feedforward, 19
of minimum-order observer-based

controller, 777
of nonloading cascaded elements,

77
observer-controller, 762, 780–82
open-loop, 19
of parallel systems, 20
sinusoidal, 401

Transfer matrix, 35
Transformation:

from state space to transfer function,
41–42, 657

from transfer function to state space,
40–41, 656

Transient response, 160
analysis with MATLAB, 183–211
of higher-order system, 180
specifications, 169, 171

Transport lag, 417
phase angle characteristics of, 417

Turbulent-flow resistance, 102
Two-degrees-of-freedom control system,

593–95, 599–614, 636–41, 646–47
Two-position control action, 22–23
Two-position controller, 22
Type 0 system, 225, 230, 488

log-magnitude curve for, 419, 488
polar plot of, 433

Type 1 servo system:
design of, 743–51
pole-placement design of, 739–46

Type 1 system, 420
log-magnitude curve for, 420, 488
polar plot of, 433
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Type 2 system, 421
log-magnitude curve for, 421, 488
polar plot of, 433

U
Uncontrollable system, 681
Undamped natural frequency, 165
Underdamped system, 166–67
Underlapped spool valve, 146
Unit acceleration input, 247
Unit-impulse response:

of first-order system, 163
of second-order system, 178

Unit-impulse response curves:
a family of, 178
obtained by use of MATLAB, 196–97

Unit-ramp response:
of first-order system, 162–63
of second-order system, 197–200
of system defined in state space,

199–200
Unit-step response:

of first-order system, 161
of second-order system, 163, 167, 169

Universal gas constant, 108
Unstructured uncertainty:

additive, 852–53
multiplicative, 809
system with, 809

V
Valve:

overlapped, 130
underlapped, 130
zero-lapped, 130

Valve coefficient, 127
Vectors:

linear dependence of, 674
linear independence of, 674

Velocity error, 227
Velocity feedback, 176, 343, 519

W
Watt’s speed governor, 4
Weighting function, 17

Z
Zero, 861

of order m, 862
Zero-lapped valve, 130
Zero placement, 595, 597, 612

approach to improve response charac-
teristics, 595–97

Ziegler–Nichols tuning rules, 11, 568–77
first method, 569–70
second method, 570–71
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