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1 Introduction

The objective of this paper is to propose a method to identify neutral labor-augmenting tech-
nology shocks in the data. Classic results, starting with Uzawa (1961), establish that these
shocks drive the long-run economic behavior along the balanced growth path. They are also
the key driving force inducing fluctuations in real business cycle (RBC) models pioneered by
Kydland and Prescott (1982), Long and Plosser (1983), and play a quantitatively important
role in New Keynesian models, e.g., Smets and Wouters (2007).! Moreover, the relationships
between various economic variables and neutral technology shocks identified in the data are
routinely used to assess model performance and to distinguish between competing models.
For example, the empirical finding that aggregate hours worked fall in response to a tech-
nology shock called into question the usefulness of the RBC model for interpreting aggregate
fluctuations.

However, the methods used in the literature to identify the technology shocks are not
designed to measure neutral technology shocks. Consider, for example, the classic Solow
residual accounting procedure. Suppose output is produced with effective labor input L{ =
G(Ly, ..., L,,t) aggregating various labor inputs and, for simplicity, a single capital input ac-

cording to the following constant returns to scale production function:
Y =F(K,ZG(Ly, ..., Ly, t)), (1)

where Z represents the labor-augmenting neutral technology shock we are interested in iden-
tifying. Note that the labor aggregator is allowed to depend on time to capture non-neutral
changes in technology, e.g., changes in relative productivity or substitutability of various la-
bor inputs. Such changes are thought key for understanding various issues in macro and labor
economics. For example, the vast literature on skill biased technical change rationalizes the
simultaneous increase in supply and in the relative wages of college educated workers since
the 1970s through the change in the relative productivity of these workers in aggregate pro-
duction (e.g., Katz and Murphy (1992), Acemoglu (2002)).? Thus, as emphasized by Solow

'Tn most models the production function is such that the labor augmenting or Harrod-neutral technology
shocks are isomorphic to the Hicks-neutral shocks that do not affect the marginal rate of substitution between

any factors of production.
2The alternative interpretation of the evidence in Krusell, Ohanian, Rios-Rull, and Violante (2000) also

relies on non-neutral change in the parameters governing relative productivity of the investment good sector.



(1957), one must allow for the possibility that the neutral technology parameter is only one
of many technological parameters that can change over time. Differentiating the production

function with respect to time and dividing by Y we obtain the Solow residual:
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where, assuming that factors are paid their marginal products, w; represents income share of
factor i. Clearly, as emphasized in the original Solow (1957) article, the residual equals neutral
plus non-neutral technology changes. Hence its other name - the total factor productivity. As
variables, such as total hours worked, may react either positively or negatively to a non-
neutral shock, their response to an innovation in the Solow residual is difficult to interpret.
Unfortunately, the growth accounting methodology is not designed to identify the contribution
of only the neutral shock, to which models have a robust prediction regarding the response
of endogenous variables. It also provides no possibility to ascertain the relative importance of
neutral and biased technological innovations in driving aggregate economic dynamics.

An alternative approach to identifying neutral technology shocks is based on the assump-
tion put forward by Gali (1999) that only technology shocks have a long-run effect on labor
productivity (output per hour). He implemented this idea in a business cycle context using
structural vector autoregressions (SVAR) identified with long-run restrictions following Blan-
chard and Quah (1989). Unfortunately, this approach is also not designed to identify neutral
technology shocks. Denote by L the total sum of hours worked. Then, using (1), output per

hour can be written as

Yy Li Ky
— | = Z — Fl——1 i
log (Lt> log( t)—l—log<Lt) —|—log( <ZtL§’ )) (3)

Note that % is stationary in most models (consistent with the stationary interest rate in
the data). However, the long-run changes in productivity can be induced either by persistent
technology shocks or by persistent changes in the effective labor input per hour worked. In
particular, L¢/L could change in the long run either due to the persistent changes in worker
composition (e.g., changes in female labor force participation and their distribution across
occupations), changes in the effective units of labor supplied by various labor inputs (e.g.,

expecting longer careers, women invest more in human capital through on-the-job training)

or changes in the production function parameters that govern the relative productivity or



substitutability of various labor inputs (e.g., an increase in the relative productivity of females
due to an increase in the demand for tasks in which they have a comparative advantage or due
to directed changes in technology induced by an increase in their labor force participation).
Any of these changes affecting labor productivity in the long run will be interpreted as a
technology shock by this methodology. The existing literature provides no guidance on how
the neutral technological changes can be isolated.?

These observations lead us to propose a method for estimating neutral technology shocks.
To do so, we assume a constant returns to scale aggregate production function and exploit
the rich implications of Uzawa’s characterization of neutral technology on a balanced growth
path. We do not assume the economy to be on the balanced growth path but instead use
a weak conditional form of this assumption. We only require that the impulse responses to
a permanent neutral technology shocks have the standard balanced growth properties in the
long run. This is sufficient to identify the neutral technology shock because we are able to prove
that no other shock (to non-neutral technology, preferences, etc.) satisfies these restrictions.

To implement this identification strategy we use a state-space model for a set of variables
for which we know the long run effect of neutral technology. These macroeconomic variables
can be represented as a sum of a neutral technology shock, which is treated as one of the
unobserved components driving the system, and an unobserved state. For example, the log
of the wage of workers of a particular type is written as the sum of the neutral technology
shock and an unobserved component that is partially idiosyncratic to that worker type (in a

competitive framework representing the derivative of the production function with respect to

3The econometric issues underlying this approach have been intensely discussed in the literature (e.g., Faust
and Leeper (1997), Chari, Kehoe, and McGrattan (2008), Christiano, Eichenbaum, and Vigfusson (2006),
Fernandez-Villaverde, Rubio-Ramirez, Sargent, and Watson (2007)). Instead, we question the long-run restric-
tion itself. Indeed, any shock that affects the composition of factors of production or their relative productivity
in the long run will have a long-run effect on labor productivity and will be erroneously interpreted as a neutral
technology shock by this methodology. Several related critiques of this approach appeared in the literature.
Shea (1998) suggests that if low-productivity firms are destroyed in recessions, there might be a long run
effect on productivity. Uhlig (2004) argues that permanently changing social attitudes to workplace, whereby
workers substitute leisure activities at home with leisure activities at work, will result in mis-measurement of
effective work hours and affect measured productivity in the long run. Francis and Ramey (2005, 2009) note
that changes in capital taxes or low frequency movements in age composition of population also may have a
long-run effect on labor productivity. Fisher (2006) imposes additional restrictions to separate neutral from

investment-specific shocks.



that labor input).

We do not require orthogonality among the state variables, an assumption commonly used
to identify these types of models although inconsistent with typical economic models. Instead
we prove that the conditional balanced growth restrictions are sufficient to identify neutral
technology shocks in the resulting system of equations collecting various macroeconomic time-
series using filtering/smoothing techniques. Since we do not treat the technology shock as a
residual, our method does not require to specify an explicit function that aggregates heteroge-
neous labor and capital inputs.* Instead, all this information is summarized in the unobserved
states which we identify without the need to specify the structure behind the dynamics of
these states. Moreover, our method does not require the parameters of this function to be
invariant over time. The identification methodology relies on a testable assumption on the
time series process for the neutral technology, e.g., AR(1) and other unobserved states, e.g.,
VAR(1). This process is only required to provide a good statistical approximation and does
not have to be consistent with a structural model since we do not need to assign a structural
interpretations to the other shocks affecting the economy.

To assess the small sample properties of the proposed method, we conduct a Monte Carlo
study using samples drawn from estimated benchmark business cycle models. We consider the
RBC and the New-Keynesian models with worker heterogeneity. We find that the proposed
method is successful in identifying neutral technology shocks in the data generated by the
models and does not confound neutral technology with other disturbances such as non-neutral
technology, preference shifts or wage markup shocks.

The paper is organized as follows. In Section 2 we develop the method to recover neutral
technology shocks and establish the sufficient conditions for identification. In Section 3 we
illustrate the implementation and evaluate the performance of the proposed method in an
estimated RBC model. In Section 4 we assess the performance of the proposed method in
small samples drawn from an estimated medium scale DSGE model with multiple sources of
real and nominal rigidities and numerous exogenous shocks. Finally, in Section 5 we apply our

method in the data and estimate a quarterly technology series for the US. We also describe and

4This is in contrast to attempts to identify neutral technology shocks by fully specifying the production
function and all the associated inputs as in e.g., Nadiri and Prucha (2001) and Dupuy (2006). The data

requirements underlying this approach seem prohibitive.



analyze the sequence of identified shocks and document its co-movement with other economic

aggregates. Section 6 concludes.

2 Identifying Neutral Technology Shocks

In this section we propose a method to estimate Harrod-neutral technology shocks. Section 2.1
provides a characterization of these type of shocks. We prove that Harrod-neutral technical
change is the only type of shock that can induce balanced growth on a set of macroeconomic
variables. We next show how we can use this property to identify neutral technology shocks
from the data using benchmark time series models. Section 2.2 present the time series model
we use while Section 2.3 formally proves that the long run restrictions implied by balanced
growth are sufficient to identify Harrod-neutral technology shocks. Section 2.4 discusses several

issues related to the practical implementation of our approach.

2.1 Identification: Theory

In this section we build on this classic result and show how to use the insights from Uzawa’s
theorem (see Acemoglu (2009) for an excellent treatment) on technological progress in the
long-run to identify Harrod-neutral technology shocks. Suppose that aggregate output Y; is

produced as follows
Y, = F(Kl,ta e 7KJ,t7 ZtLl,t; cee ZtLM,t§ 9t>> (4)

where K, represent capital input of type j, L,,; represents labor inputs of type m, Z; is
Harrod-neutral technology progress and 6, is a vector collecting other non-neutral technological
changes. We assume that F is constant return to scale in capital and labor inputs. Our
methodology does not require any further restriction on the aggregate production function.
We make the following conditional balanced growth assumption, anticipating that the im-
plementation of the identification methodology in the data will use a state-space model and

thus identify the shock through its impulse response.

Assumption 1 (conditional balanced growth assumption). A time T exists such that

the impulse response of a variable X; to a Harrod-neutral innovation € (to Zy) of x percent



at time 0,
IR (x) = Eo[X; | log(eg ) = x] — Eo[X/]

equals
IR} (x) = (7% — 1) Ey[X}]

for allt > T, where gxx is the percent increase in X. If gx = g for output, for all capital
inputs, and for all types of investment and of consumption, then labor inputs X = L,, do not

respond in the long-run to a neutral shock, gx = gr,, = 0.

This assumption guarantees convergence of the impulse response for all variables. In ad-
dition, it assumes a linearity property of the long-run response to a neutral technology shock
(i.e. a shock of size 2z has exactly twice the effect of a shock of size x). History dependence of
the impulse response function is not ruled out in the short run, nor it is for all other economic
shocks. fMoreover, this assumption tells us that if Harrod-neutral shocks induce a common
trend in output, capital inputs, investments and consumption, then they do not influence
labor inputs in the long run.

We now demonstrate that Harrod-neutral technology shocks are the only one that can
induce a certain pattern of long run responses for a set of macroeconomic variables. This
property will be then used to identify this technical change from aggregate data. Before stating

the main theorem, though, we prove a useful result

Lemma 1. Suppose the conditional balanced growth assumption holds for wvariables
X, Xi4, ..o, Xy where Xy = Zthl Xt The long-run response for variable X is gx and
for the components X;, > 0 equal to gx, . Then

9x = 9x; = " gx, = 0Xpg-

The proof is in Appendix I.1. Lemma 1 tells us that, for a shock to have a well defined long

run effect on a variable X, it must have the same long run effect on its components.

Theorem 1. Suppose the conditional balanced growth assumption holds. Then a permanent
Harrod-neutral technological shock is the only shock with the following (balanced-growth) prop-
erties for some time T. An innovation which increases the level of the shock by x percent at

time O implies for all t > T
- An increase in aggregate output Y by x percent, IR} (z) = (e* — 1) Ey[V}]
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- An increase in investment I; by x percent, IR/ (z) = (e — 1)Eo[I;4]

- An increase in capital K; by x percent, IRN (z) = (e* — 1)Ey[ K4

- An increase in aggregate consumption C' by x percent, IR (x) = (e — 1) Ey[C}]
- No effect on labor inputs L,,, IRF™(z) = 0

- No effect on the marginal product of capital F,, IRij (x)=0

- An increase in the marginal product of labor Fr, by x percent, ]RfL’" () = (e —
1)Ey[FL,, 4]

The proof in Appendix 1.2 follows the steps in the proof of Uzawa’s theorem in Acemoglu
(2009).

The conditions in the theorem rule out non-neutral technical change. For example, they
rule out investment-specific shocks (Greenwood, Hercowitz, and Krusell, 1997), which are
often modeled as a non-neutral shock to the technology for producing capital equipment. This
shock has long run effects on the capital equipment to capital structures ratio and the capital
output ratio, which is inconsistent with the above properties.

The theorem is not limited, however, to distinguishing between different types of technical
change. Instead, it characterizes Harrod-neutral technology shocks and thus tells them part
from any other economic shock, e.g. preference shocks, government expenditure shocks or
wage mark-up shocks. The logic is as follows. If output and capital increase by the same
percentage rate then constant returns to scale imply that effective labor input has to increase
by the same percentage rate. Because labor inputs is assumed not to change in the long run,
the productivity of labor has to increase by the same percentage term, i.e. it has to be a

Harrod-neutral technological change.

2.2 Implementation: The State Space Model

In this section we show how we can implement the conditional balance growth restrictions of
the previous section using a benchmark time series model. To this aim, we assume that we
observe a vector time series Dy, collecting growth rates of a set of macroeconomic variables.

Without loss of generality, we write Dy as the sum of two components

D; = AZ1, + Sq, (5)



where AZ; is the growth rate of the neutral technology series (in logs and 1, is the n-
dimensional vector of ones), and gt is a vector of states. Both AZ; and gt are unobserved.
Clearly, any macroeconomic time-series can be written this way. Two examples for Dy with a
clear economic interpretation, are output growth Alog(Y;) and the growth rate of competitive

wages for a worker of type m, Alog(W,,):°

K K
Alog(}/t) - AZt+A10g F i?"wi?thw"aLMt;et ) (6)
Zy Zy ’ ’
OF
’ OL ¢

Thus, for output the unobserved state S; is equal to
Alog [F (KZ—ltt, e %, Liy, ..., Ly Qtﬂ and for wages the unobserved state is equal
to Alog <82it>

Since we treat the second component as an unobserved state variable, we do not have to
make any assumptions on the shape of the production function. Instead our approach consists
in restricting the time-series behavior of Sy = [AZ;, St] and in exploiting the factor structure
of the system in (5). In particular, we propose to estimate the technology series {AZ;}7_, in

a three steps procedure:

i) Assume a time series model for the behavior of [AZt,gt], indexed by the vector of

parameters A.
ii) Estimate the parameters’ vector A.

iii) Conditional on the estimation of A and given a time series for Dy, we estimate the

realization of AZ; using smoothing techniques.

For concreteness, suppose that AZ; is an univariate AR(1) process with persistence parameter
given by ¢.. and innovation variance given by r2  (which we normalize to one), while the
unobserved states follow a VAR(1). None of the results discussed in this section depend on
this parametrization, and richer dynamics can be allowed for by introducing additional lags

and moving average terms. Under these assumptions we can express the dynamics of Dy in

SWages are competitive here for illustrative purposes only. Our method does not assume that wages are

competitive.



state space form:

(n+1)x1
nx1 nx(n+1)
AZ,
o] - )4
St
Dt B \‘/—/
St
(n+1)x1 (n+1)x(n+1) (n+1)x1 (n+1)x(n+1) nx1
—— le -\ Y % ~N < ——
AZt szz O/ AZt—l T2z O/ €2t
) — 3 + ) (8)
St s, Pss St-1 Rs, Rass &
——— N ~~ \ s\ e —
St P St_1 R et
ii.d.

€ ~ N(0n+17 In+1)

AZ, is assumed to be an exogenous process in the above system. In particular, S;_1 does
not affect current technology once we condition on Z; i, this explaining the zeros in the
transition matrix ®. Moreover, the zero restrictions on the R matrix tell us that the first
element of the ey vector has to be interpreted as an innovation to technology. Notice that we
allow for contemporaneous correlation among the innovations to AZ; and St since we do not
restrict Rg, to be zero. This is particularly relevant in our application since technology shocks
are likely to affect St.ﬁ Because of this correlation, the state space model is not identified
without further restrictions. Fortunately, as we show in the next section, we can use Theorem
1 to impose a set of restrictions that are sufficient to identify the parameters of the model.
In terms of notation, we will refer to D,; as the j* element of the measurement vector Dy

while to S5 as the 4t element of the state vector Sy = [AZ;, gt]’. We denote by e; the vector

[ez,ta ét],-

2.3 Identification of the State Space Model

We include in the vector of observable variables, D;, the growth rates of output, investment

and hours as well as of the wages of two groups of workers, (s)killed and (u)skilled:

D; = (Alog (Y;),Alog (), Alog (L) , Alog (Ws,) , Alog (W) (9)

6Both of the examples discussed earlier share this characteristic. A shock to technology affects labor inputs,

this generating correlation between AZ; and St.
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From the discussion in Section 2.1 we know that these variables are sufficient to distinguish
Harrod-neutral technology shocks from other economic disturbances. Clearly, one could in-
corporate in D; more variables with known balanced growth restrictions: this would sharpen
identification at the cost of increasing the complexity of the model.

We now formally define identifiability of the state space model

Definition 1. Let A and A be two parameterizations of the system in (8). These are obser-
vationally equivalent if Tp(r,A) = Tp(r,A) for all 7 € N, where Tp(7,A) is the 7" order

autocovariance of Dy under A.

Definition 2. The state space model in (8) is identifiable from the autocovariances of Dy
at A = (®,R) if for any admissible parametrization A= (<i>, f{) we have that A and A are
observationally equivalent if and only if ® = ® and RR = RR/

In what follows, we show how the restrictions brought by the conditional balanced growth
assumption are sufficient to guaranteee the identification of A. Prior to that, we make an

additional technical assumption
Assumption 2. i) The matriz R is invertible.

ii) (—=1,1,...,1) is not an eigenvector with eigenvalue ¢, of the matriz &.

In Appendix 1.3 we prove that this assumption implies that the state space representation
in (8) is minimal, i.e. the dimension of the state vector Sy can not be reduced. This assumption
allows us to cast our problem within the literature of identification of minimal state space

systems (Hannan and Diestler, 1988).
Lemma 2. Let Assumption 2 hold. Then, the state space model in (8) is minimal.

Given minimality of the state space in (8), lack of identification is known to be represented
by linear transformations of the state vector through invertible matrices T and U with UU’ =
I (see Proposition 1-S in Komunjer and Ng (2011)). In fact, consider defining the state vector
gt = T~!S; and the innovation vector as & = U~le;. Then, one can rewrite the system in

(8) as:

S
Il

wel)
e(!))

R . X (10)
St - @St_]_ + Rét

11



A~

where the new matrices (B, P, R) are related to the original one as follows:

B = BT
& = T'aT (11)
R = T 'RU

Clearly, the observationally equivalent parametrization must satisfy the restrictions made

on (B, ®,R), narrowing the set of admissible (T, U) matrices. In what follows we provide a

characterization of this set for the system in (8).

First of all, notice that since the matrix B is known, one needs to have B = B. This

implies that the matrix T has the form:

1—|—/€1 —KR2 —Rn 1— & H—s %
-k 1+kK Kn, £l 1 — =2 —fn

T—| ™ : I S IGE)
—Kq K9 1+ &, o =2 R

for some scalars k1,..., K, and for kK = 14 (>}, ;). What this means is that if kK, = ko =

K3 = ...k, = 0 all the parameters of the system in (8) are identified and T = I: we are then

able to identify correctly the parameters ® and X = RR/, only the ordering of €; would not

be identified.

In general, we can easily verify that the state vector associated with the T—! matrix

becomes:

A=) Ze+ 20,
2t San = 2

ki
LS

ki
L S1t

)
o+
I

(13)

n
T2+ Sna = Do PO |

This parametrization needs to satisfy the restrictions on the transition equation in (8),
namely that the first element of S¢ follows an AR(1) with innovations given by the first
element of &;. This cannot be ruled out given the assumptions made so far, i.e. without
further restrictions, the system in (8) is not identified. This is where we use Theorem 1 which

states that the balanced growth properties identify the neutral technology process.

12



The balanced growth restrictions for output, investment, hours, skilled and unskilled wages

can be written as’

‘I’)_lRlz(n+1),1- (14)

=
I
vy
—~
[
|

Thus, one can express the long run effect of neutral technology on the variables in D as a
function of the parameters in the matrices ® and R and restrict it to be equal to 0 or 1. For
example the first row of the restriction in (14) states that the the long-run response of output
to a unit increase in €, equals 1. Similarly rows 2,4 and 5 restrict the long-run response of
investment, high skilled and low skilled wages to be of the same magnitude as well (again
scaled by #) Row 3 requires the long-run response of hours to be 0.

As Theorem 1 shows, these long-run restrictions uniquely identify the neutral shock, that
is U(1,0,...,0) = (1,0,...,0)". This implies that the first column of U equals (1,0,...,0)’
and using that UU’ = I then implies that the first row equals (1,0,...,0).
Theorem 2. [Identification] Consider the state space model (8) with D including the logs
of output, investment, hours worked, skilled and unskilled wages as in (9) and with balanced

growth restrictions (14). Then the parameters ® and RR' are identified. In particular k3 =

kg = -+ = K, = 0. Furthermore the neutral technology shock is identified, i.e.
10 ... 0
U=1]0 - . 15
o (15)
0

The proof is in Appendix [.4.

2.4 Discussion

In this section we discuss how we estimate the model, how to obtain impulse-responses and

the choice of the time-series model that we use to implement our identification procedure. We

TAZ; follows an AR(1) with persistence parameter p,. A one standard deviation error to the innovation
(which we normalized to one) of the growth rate accumulates to a long-run change of 1_1pz
As the balanced growth restrictions apply to changes in the level of z, the term % multiplies the long-run

17
effect on V.

in the level of z.

13



also discuss how additional restrictions on the state space can be imposed.

2.4.1 Estimation

Because of the linear-gaussian structure of the state space model, we can evaluate the like-
lihood function using the Kalman filter. The model parameters are then estimated by maxi-
mum likelihood. Conditional on the estimated parameters, we can apply the Kalman smoother
and obtain retrospective estimates of Harrod-neutral technical change, {p(AZ;|DT)}L ;. See

Durbin and Koopman (2001) for an extensive discussion of these methodologies.

2.4.2 TImpulse Response Functions

Impulse Response Functions (IRFs) to a neutral technology shock for variables included in
the data vector D; can be easily computed using the estimated parameters and the state
space model in (8). We may be also interested in computing IRFs for variables x; that do not
enter the measurement equation. In this case we proceed by using the estimated technology

innovations of {e,;}._,. We project {e,;}/_, and its lags onto x;,
x; = a+ B(L)e,+ + &,

where (L) are polynomials in the lag operator and they represent the IRFs. OLS delivers
consistent estimates of these parameters to the extent that e,; is exogenous. This assumption
is natural if we think of x; as being generated by an underlying equilibrium model and we are

willing to assume orthogonality of its structural shocks.

2.4.3 Choice of Time-Series Model

Our procedure requires to specify a parametric time series model for key macroeconomic
variables. Because of its generality, we focus here on a linear state space model, but in prin-
ciple our analysis could be carried using other linear or nonlinear time series models. As in
the SVAR literature, we need to make several specitication choices regarding the number of
macroeconomic time series to include in the model and the law of motion of the state variables.

The dimension of the state space S¢ may be limited by the curse of dimensionality. First,
the number of parameters increases in the lag length of the VAR for S¢. This problem, com-

mon to the SVAR literature, can be partly circumvented with the use of shrinkage methods

14



that are becoming popular in applied time series econometrics (Del Negro and Schorfheide,
2010). However, because of the exogeneity restrictions on Z;, we can adopt a more flexible
specification for its law of motion without imposing much burden on the estimation. For exam-
ple, suppose we assume a more general ARMA (p,q) for neutral technology. Then, the number
of unknown parameters associated with the technology process equals (n + 1)p + ¢ with n
being the dimension of S;¢. Second, given a DGP for the vector S, the number of parameters
to be estimated steeply increases in the number of variables in the measurement equation.
For the example described in Section 3, the number of parameters to be estimated equals
24 2n(n+ 1) + s(2 4+ n), where n is the dimension of the vector Dy and s is the dimension
of S¢. This limits the number of variables, and associated balanced growth restrictions, that
can be allowed for.

The Monte Carlo exercise in the next section is supposed to shed lights on these issues. We
will see that a parsimonious specification of the state space model considered in this section

performs well when data are simulated from reasonably calibrated business cycle models.

2.4.4 Using Additional Theoretical Restrictions

The method proposed in this paper can easily accommodate additional restrictions implied by
economic theory. While these restrictions are not strictly necessary, they may help sharpening
identification of neutral technology shocks especially when dealing with short samples. A
popular identification scheme in the SVAR literature are sign restrictions as in Uhlig (2005).
These can be easily incorporated in our set up: for example, we could set Raw;. > 0 to
restrict the neutral technology shock to have a positive impact effect on wages. Other types of
information regarding the properties of neutral technology shocks can be easily implemented
by appropriate restriction on the state space form. Aside from these identification schemes,
the state space model considered here can incorporate external information without imposing
excessive burden to the estimation. For example, suppose that we have a robust method to
identify other types of structural structural shocks, say a government spending shock {e,;}/{_;
which we know a priori to be orthogonal to neutral technology shocks. Then, we could proceed
in two steps: i) Add {e,}I_, to the list of observables in the measurement equation; ii) add an
additional state variables in S; that selects one of the non-technology reduced form innovations;

iii) restrict the matrix R so that e,, and e,; are orthogonal. Importantly, this does not
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result in additional parameters to be estimated, but it helps the identification of the neutral
shock. See also Stock and Watson (2012) for a discussion of the role of external information

(“instruments”) for the identification of structural shocks in dynamic factor models.

3 An Example: A Simple RBC Model

We now illustrate the proposed procedure by means of an example. We study the basic RBC
model with two types of labor, a useful benchmark due to its transparency and widespread use.
We use this example to illustrate how our method for measuring neutral technology shocks can
be applied in practice. Using data simulated from the calibrated model we study the relation
between identified technology shocks and the true structural disturbances. In particular, we
consider the small sample performance of our method and contrast it with the performance
of an SVAR with long run restrictions on labor productivity and with Solow residuals. The
transparency of the model allows us to isolate the reasons for the poor performance of the

latter two methods in recovering neutral technology shocks.

3.1 The Real Business Cycle Model with Heterogeneous Labor

We consider a frictionless RBC model with worker heterogeneity. Agents of type j = {u, s}
(unskilled of measure u and skilled of measure 1 — ) value consumption, ¢;, and dislike labor,

hs, according to a type-dependent utility function

-1
1+1/j

h
Uj(ct, he) = log(c;) — e™b; N :_ =
J

(16)

Ay is a shock to the disutility of labor parameterizing the labor wedge, commonly found to
play an important role in business cycle accounting. We allow the elasticity of labor supply,
vj, to differ across the two demographic groups. Because of this, aggregate productivity in
our model will vary over the cycle due to endogenous changes in the skill compositions of the

labor input. Firms in the economy have access to the production function
Y = K(e% L)', (17)
where Lf, the effective labor input, is an aggregator of low and high-skilled labor
Lt = L3 L™
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Note that observed labor input (total hours) equals L; = Lg; + L, ., where unskilled labor
input equals L, ; = uh,; and skilled labor input Ls; = (1 — u)hs;. The relative productivity
of skilled workers, ¢;, changes over time. This is one source of non-neutral technical change

in the model. The accumulation equation for investment is expressed as
Ky = (1= 0)K, + L, (18)

where ¢; represents the current state of the technology for producing new capital goods, a
second source of non-neural technical change. Capital depreciates in every period at rate 9.

The resource constraint equals
Y, = Lig + Cy + g Y5, (19)

where g; is the fraction of final good devoted to government spending.

The laws of motion for economic shocks are standard:®

AZy = v+ p.AZi g+ 06,4, (20)
Ay = paAi1 + 0aCay, (21)
log(¢r) = (1—pp)d" + pglog(di—1) + TsEpy, (22)
log(g:) = (1= pg)g" + pglog(gi-1) + o4c., (23)
log(q:) = pglog(q—1)+ 04cps- (24)

Firms hire labor and rent capital from households at competitive factor prices, produce the
final good and sell it to households in a competitive market. Households use labor and capital
income to finance their consumption and saving choices. The equilibrium law of motion for
the model’s endogenous variables is defined by a set of conditions that describes the optimal
behavior of agents, and the evolution of shocks. Since these equations are standard in the
literature, we avoid repeating them here.

To ensure stationarity, certain model’s endogenous variables need to be normalized. We

have estimated the model with an unrestricted persistence of the preference shock process and

8The only novel process here is the one for the skill-biased technical change. Although the specification
we use permits ¢; > 1, this event has almost zero measure in all our simulations. We could use a logistic
function to preclude that. However, since we study a linearized version of the model, nothing would prevent

the linearized shock to be larger than 1.
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found that, to match the high persistence in hours worked, it is estimated to be unit root.’

Y
Given this, we restrict p, = 1, and scale hours worked by a type j household by e '** At,

(6" s +(1-9") A,

while the other model’s variables by e“te

3.2 Identifying Neutral Technology Shocks: Setup

The choice of the variables added to the state vector is guided by the balanced growth restric-
tions. We therefore consider the growth rate of output, Alog(Y;), the growth rate of wages
of skilled workers, Alog(ws:), and unskilled workers, Alog(w,), the growth rate of labor
productivity, Alog(Y;/L;) and investment, Alog(l;). As described earlier, we interpret each
of these times series as the sum of two unobserved components: the growth rate in neutral
technological component (common to all variables) and a residual component (specific to each
variable). Thus, defining D; = [Alog(Y;), Alog(ws.), Alog(w,t), Alog(Y;/ L), Alog(1;)]" the
vector of observables, and by S; the vector collecting these unobserved components, we can

write the measurement equation as

Dt:[1 I}St. (25)

Notice that, under this formulation, AZ; is the first entry of the state vector. Next we
must chose the model for the time series behavior of the state vector S;. In the Monte Carlo

analysis, we will restrict to the simple VAR(1) model used in Section 2.2:

Pz 0, T2z 0/ ez,t
St e St_l “I’ ~ . (26)
P53 Rs, Rasg €

P R

We restrict AZ; to be exogenous with respect to the other unobserved states: this is
achieved with the “zeros” restrictions on the matrix ® and R. However, note that we are not

ruling out correlation among the idiosyncratic states.

9As in Gali (2005) and Chang, Doh, and Schrfheide (2007), among others.
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3.2.1 Balanced Growth Restrictions

The balanced growth restrictions discussed in the earlier section can be easily implemented
in this time series model. For example, consider a one standard innovation increase in neutral

technology. Under balanced growth restrictions, we know that the effect of this shock on the

Oz

1—p-

level of output is equal to in the long run. In the time series model described earlier, the

long run effect of the first element of S; (which we label neutral technological growth) on the
level of output equals to:!°

lim TR (., = 1) =[1,0,0,0,0,0/B(I — ®) 'Ray:(nsi1.

m— 00

Hence, the balanced growth restriction for output consist in equating the above expression

Oz

to T

. Similar balanced growth restriction can be derived for the other variables. More
specifically, we restrict output per hour and investment to have the same long run effect of
output: this implies, among other things, that hours worked and the investment-output ratio
are not affected in the long run by a neutral technology shock. Similarly, we restrict neutral
technology shocks to have the same long run effect on the two wages (e.g., relative wages are
not affected by a neutral technology shock in the long run).

From a technical point of view, these are restrictions on the ® and R matrices that, as

discussed in the earlier section, are sufficient to identify the neutral technology shock.

3.3 Estimation and Results

The calibration is standard and described in Appendix III. We simulate 100 realizations from
the calibrated model, with each sample being composed of 250 quarters. For each realization,
we estimate the state space model discussed in Section 3.2, and we study the properties of
the retrieved neutral technology innovations. In addition, we compute technology innovations
using the Solow residual accounting and using SVAR with long-run restrictions as in Gali
(1999).

We assess the accuracy of each procedure using the R? of the following linear regressions:

glrie = o+ Peldentified 1, je{za,¢,94q}, (27)

10T his expression derives from the fact that the long run effect of a shock on variable = equals the cumulative

effect on its growth rates.
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where {5;‘ffntiﬁed} are the technology shocks identified according to the procedure and {e}}

is structural innovation j in the model economy. These statistics have a clear interpretation.
Indeed, a method that perfectly identifies the technology innovations would yield an R? = 1
with €/ as the dependent variable and an R?* = 0 for the other structural innovations.!!

These R? are calculated for each of the Monte Carlo replications.

Table 1: True vs. Identified Technology Shocks: RBC Model

€zt ECat  Ept  Egt  Egqt
BHM 094 0.00 0.01 0.00 0.00
Gali 0.73 0.10 0.09 0.00 0.03
Solow 0.62 0.00 0.26 0.00 0.00

Notes: Each column contains R? from the regression of the structural innovation €5t J € {z,a,0,9,q} on technology shock e ¢,
identified using the procedure in each row. Results are based on a Monte Carlo studies with 30 replications. BHM refers to the
method proposed in this paper as specified in Section 3.2. Gali refers to the technology shock identified following the procedure

in Gali (1999). The Solow residual is calculated applying Jorgenson correction for labor composition effects.

The results reported in Table 1 imply that the method proposed in this paper performs very
well. The identified neutral technology shocks are closely related to the true neutral technology
shocks used when simulating the model (median R? = 0.94), and are not systematically related
to other structural shocks in the model. In contrast, the technology shocks identified using
the other two methods are less closely related to the true neutral technology shocks and
systematically pick up other structural disturbances. We now use this simple model to better

understand the reasons for their shortcomings.

3.3.1 Using SVAR with long-run restrictions to identify technology shocks

The second row of Table 1 indicates that retrieving technology innovations using an SVAR

with long run restrictions yields a median R? of only 0.73.!2 The reason is that an SVAR with

1 Note that these are theoretical benchmarks. Even if we observed the actual process for neutral technology,
the R? of the £%}® equation would be below 1 because of sampling errors in the estimation of (p., ), which
are needed to measure the innovations Eiffntiﬁed.

128pecifically, we follow Gali (1999) and estimate a VAR(4) on the growth rate of labor productivity and
hours worked, and identify technology innovations as the unique shock having a long run effect on labor

productivity.
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long run restrictions on labor productivity interprets any low frequency variation in labor

productivity as a neutral technology shock. Indeed, labor productivity can be decomposed as

Y, K Ley
1 — | =7 1 1 — .
o8 (L) ehalos <GZtLe7t> e ( Ly )

The idea underlying the use of an SVAR with long-run restrictions to identify z is that the

second term « log <er<11 f) is stationary and thus is not affected by any shock in the long-run.
If labor is homogeneous, the third term log (%) is zero so that only neutral technology
t

affects output per hour in the long-run.

If labor inputs are heterogeneous, the third term is not zero and will be moved by shocks
other than Z;. There are two key sources inducing such movements in the simple model studied
in this section. Preference shocks induce changes in the share of hours worked by skilled and
unskilled workers due to different labor supply elasticities of the two groups. This moves labor
productivity at low frequencies and leads the SVAR procedure to erroneously interpret the
innovations in preference shocks as technology shocks. This explains the R? of 0.1 in the
regression of the preference shock on the technology shock identified using this method. In the
next Section we will study a richer model with more shocks and will observe that any shock
that induces persistent changes in labor composition will be interpreted as a technology shock
in this context.

Even for a counterfactually constant share of hours worked by skilled and unskilled in-
dividuals, persistent changes in the relative productivity of skilled workers induced by the
skill-biased shock ¢; will also induce low-frequency movements in the effective labor input
per hour worked. This explains the R? of 0.09 in the regression of the skill-bias shock on the
technology shock identified using this method. Thus, any such non-neutral shocks will also be
identified as technology shocks by this methodology.

Finally, as is well known from the work of Fisher (2006), without additional restrictions

this method confounds neutral and non-neutral investment-specific shocks.

3.3.2 The Solow Residual

The Solow residual explains on average only 62% of the variation in actual neutral technology

because it is a composite of neutral and non-neutral technological change. This is clear form
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Equation (2) in the Introduction, which specializes to
(L= a)g + 01— apog (2] = 7 - age — oll - @)% — (1= 9)(1 - a)

in this model. Thus, the Solow residual picks up the non-neutral skill premium shock ¢ and
explains on average 26% of its variation. The difference between how much of the skill premium
shock is picked up by the Solow residual and how much is picked up by the SVAR with long
run restrictions depends on the persistence of the skill premium shock. As the persistence of
this shock is estimated to be less than one in this model, its contribution to the Solow residual
- which is independent of this persistence - is larger.

Note that in contrast to the SVAR procedure, the Solow residual we compute does not
pick up the effects of labor composition induced by the preference shocks. The reason is that
when calculating the Solow residual we applied Jorgenson’s correction for labor composition
effects pioneered by Jorgenson and Griliches (1967). The key idea underlying this correction
is to disaggregate the labor force into categories based on education, age, gender, etc. Then,
in computing total effective labor input, each hour is weighted by the observed average wage
of the group it belongs to, assumed to coincide with the marginal product of that labor input.
Then, adding an additional worker with, say, a college degree would account for more of
an increase in output than would adding a worker with a high school diploma. While this
procedure corrects for pure changes in composition, in Appendix II we show that it does not
correct for the biased changes in technology affecting the relative productivity of labor inputs.
Of course, it was never intended to do so as the growth accounting literature was not interested

in measuring neutral technological innovations.!3

4 Monte Carlo Analysis using a New Keynesian Model

In this section we assess the performance of our method in a Monte Carlo study using a

calibrated benchmark New Keynesian business cycle model. We use a medium-scale model

13We computing the Solow residual we assumed that the parameter « is known and all inputs are observed.
More realistically though, suppose that the aggregator L{ features richer heterogeneity, for example three
groups l,m, h, L§ = Lijt’thrf"{ L;;mi_qﬁw but the researcher can distinguish only two groups. This misclas-
sification worsens the ability of the Solow residual to identify technology shocks substantially whereas our
methodology is immune to such misclassifications. The result in Table 1 assume a correct classification and

thus the Solow residual performs better than it will likely do in real data where misclassification is present.
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with price and wage rigidities, capital accumulation, investment adjustment costs, variable
capital utilization, and habit formation. The model is based on Christiano, Eichenbaum, and
Evans (2005) and Smets and Wouters (2007). We enrich this setting with labor heterogeneity.
As in the RBC model analyzed in the previous section, workers can be of two types: low
and high skilled. They are distinguished by their marginal productivity, defined through the
production function in equation (17), and by their Frisch elasticity of labor supply v; # 4.
Appendix IV contains the full description of the model. In addition to the economic shocks
that were present in the RBC model, this model incorporates monetary policy shocks, price
markup shocks, wage markup shocks and shocks to the discount factor of households. There
are nine economic disturbances in total.

After calibrating the model to match the behavior of post-1984 U.S. business cycles, we
apply our procedure on simulated data and compare our estimates with the true neutral
technology series. The economic significance of deviations between the actual and estimated
technology series is assessed by comparing our estimated impulse response functions to their
theoretical counterparts. We repeat this exercise for technology series estimated using the
SVAR with long run restrictions and the Solow residual accounting procedure. Finally, we
perform various robustness checks by varying the parameter estimates of our benchmark

calibration.

4.1 Calibration

Most of the model’s parameters associated to preferences and technology are fixed to con-
ventional values used in the literature. In particular, we use the estimates (posterior mean)
reported by Schorfheide, Sill, and Kryshko (2010), who consider a version of the model studied
here without wage markup shocks and labor heterogeneity. The parameters associated to labor
heterogeneity come from our analysis of the RBC model, while those governing the economy’s
structural shocks are calibrated through moment matching. In particular, denote the param-
eters governing the structural shocks by 6, and let mt be a vector of sample moments for
selected time series of length T computed using US data. We denote by mr(6) their model

counterpart when the vector of structural parameter is 6. 6 is chosen to minimize a weighted
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distance between model and data moments:

min  [mr — 1h(0) Wrlmez —m(0)),

where W is a diagonal matrix whose nonzero elements are the inverse of the variance of
the corresponding moment. The empirical moments included in the vector mt are standard
measures of cyclical variation and comovement for post 1984 quarterly US data. The time series
used are the growth rate in GDP, private non-durable consumption, private nonresidential
investment, total hours worked in the business sector, total hours of low and high skilled
individuals in the business sector, nominal wages for these two demographic groups, labor
productivity, and an inflation series constructed using the GDP deflator and the Federal Funds
Rate. For each of these time series, we compute the sample standard deviation, the first order
autocorrelation and the cross-correlation with GDP growth. We collect these sample moments
in the vector my. The associated model’s moments are calculated via a Monte Carlo procedure.
In particular, for each 6, we solve for the policy functions using first order perturbation. We
next simulate a realization of length T for the model’s counterparts of the above time series
and calculate the vector (). We repeat this procedure M = 300 times, each time changing
the seed used in the simulation. We then take the (component wise) median of m(f) across
the Monte Carlo replications.

Table A-3 summarizes the procedure used for the calibration of our model and reports
numerical values for the structural parameters. Table A-4 reports the fit of our model in
terms of the calibration targets. We can verify that the calibrated model is consistent along
many dimensions with the behavior of aggregate time series at business cycle’s frequencies,

although certain features of the data are missed.

4.2 Identifying Technology Shocks in Model-Generated Data

Suppose that data on output, capital and hours worked etc. have been generated from the
New Keynesian model described above and assume that a researcher identifies technology
using the methodology proposed in this paper (i.e., estimates the state space model discussed
in Section 3.2), as the Solow residual or using a SVAR with long run restrictions on labor pro-

ductivity. Is the researcher correctly backing-out the actual realization of technology shocks in
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the economy? To answer this question, we perform a simple exercise. Given the parametriza-
tion of our model in Table A-3, we simulate M = 300 realizations of length T = 250 for
the model’s variables, and calculate the series of “technology” innovations identified using the
three methods.*

In order to assess the accuracy of each procedure, as in Section 3.3, we consider the R? of

the following linear regressions:

true identified
+ e

git = + gz,t

8 je{z7a‘7¢7g7Q7ﬁ7r7p7w}7

where {el"ified} are the identified technology shocks and {e

true
Jit

} is structural innovation j in
the model economy. The results are presented in Table 2.

As in our analysis of the simple RBC model, we find that the shocks identified using the
SVAR with long run restrictions or as the Solow residuals have little structural interpretation,
whereas the proposed method is recovering neutral technology shocks very well. Indeed, the
median R? of our method equals 0.93. For comparison, retrieving technology innovations
using SVAR with long run restrictions yields a median R? of 0.52, while the Solow residual
explains on average 23% of the variation in actual neutral technology. As discussed in Section
3.3, these two methods are not well suited to identify neutral technology shocks in models
with heterogeneous inputs. Indeed, the SVAR with long run restrictions on labor productivity
interprets any low frequency variation in labor productivity as a neutral technology shock,
while the Solow residual is a composite of neutral and non-neutral skill-biased technical change.
This generates biased estimates of the neutral technology shock, as is clear from Table 2. The
SVAR procedure systematically picks up changes in the composition of the labor force induced
by preference and other shocks, which drive labor productivity at low frequencies in the model.
The Solow residual, instead, explains on average 42% of the variation in the skill premium
shock. The procedure proposed in this paper is not subject to these problems and provides a
correct identification of the neutral technology shock.

Notice also that the correlation between the Solow residual and the Long-Run shock to

productivity is quite high (0.58) and of similar magnitude to the empirical one reported by

4When calculating the Solow residual we use the true parameter a rather than estimating it. Moreover,
we assume that the level of capital utilization is observed by the researcher. Therefore, the only source of
discrepancy between neutral technology shocks and the solow residual is coming from the time variation in

the non nutral technological parameter.
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Table 2: True vs. Identified Technology Shocks: NK Model

Method e.: e€atr €4t Egt Eqt EBt Ert  Ept  Ewt
BHM 0.93 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00
Gali 0.52 0.08 0.14 0.00 0.03 0.02 0.00 0.00 0.04
Solow  0.23 0.00 0.42 0.00 0.00 0.00 0.00 0.00 0.00

Notes: Each column contains R? from the regression of the structural innovation €jt, J € {z,a,¢,9,q,8,7,p,w} on technology
shock € ¢, identified using the procedure in each row. Results are based on a Monte Carlo studies with 300 replications. BHM
refers to the method proposed in this paper as specified in Section 3.2. Gali refers to the technology shock identified following the

procedure in Gali (1999). The Solow residual is calculated applying Jorgenson correction for labor composition effects.

Gali (2004). Table 3 suggests, therefore, that a high correlation between these two series is

not necessarily a sign of the robustness for either one of the two procedures.

4.3 Impulse Response Functions

In the previous section we assessed the quality of our method as well as of the other two
methods (Gali and Solow) by considering the correlation between the true technology series
and the identified ones. While indicative of the various biases induced by the three methods,
these correlations do not provide information on the economic importance of these biases.
In this Section we complement this evidence by computing impulse responses to identified
technology shocks. For all three identified technology series we compute the impulse response
of key model variables - output, consumption, investment, hours, relative wages of skilled and
unskilled and inflation - and compare it to the impulse response for the true technology series.
Figure 1 shows the results. The response of each of these variables is reported in a separate
row of the figure. The three columns report results for, respectively, our method, SVAR with
long run restriction on labor productivity and the Solow residual. In each panel, the dashed
line reports the true impulse response while the solid line the estimated one, with the shaded

area marking the 90% confidence interval for the estimated impulse response.'’

15The estimated impulse response and their confidence interval are constructed as via a Monte Carlo simu-
lation. Specifically, for n = 1: N, we i) apply the three procedures on time series simulated from the model; ii)
collect the series of estimated technology innovations for the three procedures; iii) compute impulse response
as described in Section 2.4.2. The figure reports the pointwise median and 90% confidence interval across these

Monte Carlo simulations.
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Figure 1: Impulse Responses to Identified Technology Shocks
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As already suggested by the high correlation between our identified technology series and
the true technology series, we find in the first column of the figure that the true and estimated
impulse response are very similar as well. With the exception of investment, we can verify
that our estimated impulse response functions track very closely their model counterpart.
Moreover, the true impulse response always fall in the 90% confidence interval of our estimator.
This is clearly not the case for the SVAR approach: the estimates of the the response of the
model’s variables to a neutral technology shock are, in fact, very imprecise. From our previous
discussion we know that SVARs with long run restrictions on labor productivity misinterpret
low frequency variation in labor supply with a neutral technology shock. Specifically, a decline
in labor supply moves measured output per worker up, and it is interpreted by this procedure
as a technology improvements. Not surprisingly, the response of hours to this innovation is
biased downward relative to its response to the true technology shock. Because of that, the
response of output, consumption and investment is also biased downward: in our numerical
simulations, a researcher using SVARs with long run restrictions would conclude that neutral
technology shocks are unimportant for business cycle fluctuations, as these variables hardly
move conditional on an increase in the identified neutral shock. The response to the Solow
residual for real variables are more in line with the true impulse response functions. This
reflects the fact that, under our parametrization, skill premium shocks are fairly unimportant
for business cycle dynamics. The pattern, though, is that the a positive skill bias shock raises
the Solow residual. This shock, in the model, lowers worked hours, increase output and its
components and lowers inflation as it decreases firms’ marginal costs. These biases can be
observed by comparing the true and estimated impulse response functions in the third column
of the figure.

Beside the average behavior, the figure also documents that our method significantly im-
proves in the precision of estimates for the impulse response. Confidence interval are, in fact,
significantly tighter relative to the other two approaches. This is the result that the technology

series we identify is, on average, less noisy with respect to the other methods.
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4.4 Sensitivity

We now assess whether these results are sensitive to the particular parameterization we used.
To do so we vary the value of each potentially relevant estimated parameter to the upper or
lower boundary of its 95% confidence interval. For each resulting parameterization we report

the R? of the following linear regressions:
true identified
gz,t = o+ ﬂez,t + M,

where {eldmified} are the identified technology shocks and {el'}°} is structural neutral tech-

nology innovation. The results are presented in Table 3.

Table 3: Sensitivity to Parameters in New Keynesian Model

BHM Gali Solow

Parameter down up down up down up

0. € {0.15,0.35} 0.95 0.87 0.46 0.54 0.23 0.23

h € {0.58,0.72} 0.92 0.92 0.53 0.50 0.23 0.23
Yo € {0.14,0.41} 0.93 0.93 0.55 0.50 0.23 0.23
k€ {0.84,3.91} 0.93 0.93 0.52  0.50 0.23 0.23
pw € {0.02,0.04} 0.93 0.90 0.52 0.46 0.23 0.23
pq € {0.31,0.46} 0.93 0.93 0.52 0.52 0.23 0.23

ps € {0.04,0.12} 093 093 052 046 023 024
ow € {0.27,0.62} 093 093 050 053 023 023
100 x 0, € {0.09,0.21} 093 092 051 051 023 0.23

Notes: Each column contains the R? from the regression of the structural neutral technology innovation €z,t on the technology
shock ¢ ¢, identified using the procedure in the respective column. The column “down” refers to lowering the respective parameter
to the lower bound of its condifence band and the column “up” refers to the increase to the upper bound. Results are based on a
Monte Carlo study with 300 replications. BHM refers to the method proposed in this paper as specified in Section 3.2. Gali refers
to the technology shock identified following the procedure in Gali (1999). The Solow residual is calculated applying Jorgenson

correction for labor composition effects.

Table 3 shows results for those parameters where we obtained a different R? from either
increasing it to the lower or upper bound of its confidence interval. In addition we report
results for “technology” parameters such as x (capital adjustment), v, (capital utilization),
the persistence of the price of new investment p, and of the skill shock, p, that may be

thought of easily confoundable with neutral technology. We find that this is not the case. This
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conclusion remains also if we for example increase the persistence of the price of investment ¢ to
pq = 0.99. Similarly changing the parameters governing the stickiness of prices and wages, o,
0p, Pw and 6, does not alter our conclusions. Although the R? slightly moves, we checked that
this change is inconsequential for the impulse responses to the neutral technology identified

using our proposed method.

5 Technology Shocks in U.S. Data

In the next draft we will apply our method to identify neutral technology shocks in U.S. data.
In particular, we will describe and analyze the sequence of identified shocks and document its
co-movement with other economic aggregates. Finally, we will hopefully be able to provide

conclusive answers to some of the classic questions in macroeconomics.

6 Conclusion

Standard methods for identifying technology shocks in the data do not identify neutral technol-
ogy in models with heterogeneous inputs. In particular, the presence of worker heterogeneity
invalidates the key identification assumption in Gali (1999) because not only technology, but
virtually all persistent shocks have a long run effect on productivity in such models. The
identification of neutral technology shocks using the Solow residual accounting procedure is
also biased if the effects of factor heterogeneity and non-neutral technical changes are not
explicitly accounted for.

Yet, most models have clear predictions for the dynamic responses of variables to neutral
technology shocks only. Thus, to evaluate such models it is desirable to be able to separate
neutral technology shocks from the multitude of other shocks in the data and to compare the
conditional response of variables to these neutral shocks in the data to the responses implied
by the models. As existing measures of technology in the data confound neutral technology
with non-neutral technology shocks or even with non-technology shocks, such a comparison
would not be informative on the empirical performance of a model.

In this paper we therefore propose a method to identify neutral technology in the data.

We use Uzawa’s classic characterization on balanced growth, to show that imposing balanced

30



growth properties on long-run impulse responses uniquely identifies neutral technology shocks.
We implement this identification in the data using an identified state-space model and estab-
lish in Monte Carlo simulations that neutral technology is very well recovered in business
cycle models including the New Keynesian one. In particular small samples do not lead our
methodology to confound neutral technology neither with non-neutral technology shocks nor

with non-technology shocks, such as wage markup shocks or preference shifts.
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APPENDICES

I Proofs and Derivations

I.1 Proof of Lemma 1

Consider a variable X; = Ef\il Xit, with long-run response gx for variable X and gx, for the

components X; # 0. By the definition of the impulse response

Mm

IRX(z) = (e9%® — 1) Ey[X,] = ZIRX (e9X1™ — 1) Eo[ X4
h=1

h=1
and therefore after canceling terms
H
eXTEX)] =) e B[ X,]
h=1
Taking the I'th derivative w.r.t. = yields
H
g e X[ X, = Z I, €75 Eo [ X
h=1
and dividing by ¢,
H l
TEX] =) (gi) e ol Xi]
e \9x
This implies that gx, < gx since otherwise the RHS converges to oo for [ — oo. Then, since
H
exp(gxr)Eo(Xy) = Y exp(gx, ) Eo(Xne),
h=1
I9x = 9x, = " 9x, = " = Gxpy-

1.2 Proof of Theorem 1

The argument has two parts. The first part is to show that a neutral technological shock has
the properties stated in the theorem and the second part is to show that any other shock with
these properties is a neutral shock. In order to prove the first part, note that the resource

constraint implies

IR{ (z) = IR (z) + IR{ (x),
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where [ is total investment and C' is total consumption of output Y. Equivalently
eI Y] = eI Ey 1] + €T Ey[Cyl.
Dividing by e9** yields
BEolYy] = 99T By[1,] + eW9e—9v)e B[Cy].
Taking derivatives w.r.t. x:
0= (g1 — gv)e " Eo[L] + (90 — gv)ee ™ Bo[Cy).

Since this holds for all z, it must be the case that gy = g; = g¢. Capital accumulation implies
that
K K 1
IR (x) = TR, (2)(1 = 6;) + TR, (x)

and equivalently
€ngxE0 [Kj,t+l] = €ngxE0 [Kjﬂg] -+ €ngxE0[[j7t].
This yields
"I Eo (K] — (1= 05) Eo[Kju]} = ™" Eq1j4] = €”3" Ey[ 1],
and thus gx; = g5, By Lemma 1, it must be the case that g;, = g7, and thus gx;, = g7 Vj. This
implies gy = gc = g1, = gk, = g- By Assumption 1, this also means that g, = 0 Vj. Since
the production function features constant return to scale, we hve g = 1. Constant returns to

scale also implies that the marginal products of capital is not influenced by the shock in the

long run

FKj (GIKl’t, e 7€xKJ,t7 €thL1’t7 ceay EZZtLNﬂg; Ht) (Al)

= FKj(Kl,t, oy Ky ZiLlag, ooy ZiLiv g 0:),
and that the marginal product of labor increases by = percent,

FLn (exKLt, ce ,exK{Lt, ethLLt, e ,ethLN,t; Qt) (A2)

= exFLn(Kl,ta ooy Ky, Zilag, . Zilng; 9t)~
For the impulse responses we thus get
IR, 7 (x) =0
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Fr.

IR, " () = (¢" — 1)Eo(Fy,).

This proves the first part of the characterization theorem.

The second part of the proof shows that any other shock with these properties is the neutral
technology shock, which establishes that no other shock has these properties. To this aim,
consider an innovation to a non-neutral permanent shock 6; of x percent at time 0 and consider
how this changes a variable X;. The impulse response compares variables in two scenarios:
one where the shock happens and one where it does not. Denote variables X; with a™ (i.e. X,
is conditional on the shock) in the first scenario and without a~ X; in the second scenario.

The impulse response of a variable X; therefore equals
Eo(Xy) — Eo(Xy),

and for ¢t > T

Y; = exp(2)Vi, Ky = exp(x) Ky, Ly = Lj;, 0;(t) = exp(2)0i(t)

Using this notation we get on the one hand

Y, = F(Kiy ..., Ky, ZiLug, ... Zilng (01(8), ..., 6i(t),..) (A3)
= Flexp(x)Kiy,...,exp(x)K s, Zelay, ..., ZtLng; (61(t), ..., exp(x)6i(t),...))
and on the other hand that
Y, = F(Kuy, ..., K4, ZiLay, ..., ZoLno; (01(t), ..., 6:(0),...)). (A4)

Constant returns to scale and Y; = exp(x)Y; imply that

Y, = exp(x)Y, (A5)

= Flexp(x)Kit,...,exp(x)K ¢, exp(x)ZiLay, ... exp(x) 2Ly (01(t), ..., 60i(t),...))

Equating the last two expressions for Y; gives for all # and ¢ > T that
Flexp(x)Kyy,...,exp(x)K s, ZiLlayg, ..., Zilnyg; (01(8), ... exp(x)6i(t),...))  (A6)

= Flexp(x)Kiy,...,exp(x)K ¢, exp(x)ZiLyy, ..., exp(x) 2Ly (01(t), ..., 60i(t),...)).

Thus the first line - the effect of a x percent shock to 6#; - is equivalent to the latter line
which is the effect of a 2 percent shock to neutral technology (Z, = exp(z)Z;). Since this
identity holds for all x, 6; is a neutral technology shock.
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Note that the proof at no point uses that the shock 6 directly enters the production
function, i.e. it applies also to non-technology shocks, e.g. preference shocks, government

expenditure shocks or wage mark-up shocks.

1.3 Proof of Lemma 2

In order to check that our state space is minimal, one needs to verify the observability and

controllability conditions are satisfied in our state space model. The observability matrix is

given by:
Btk—1)x(ntk)
on _ | BParmxmn
(n(n+k—1))x(n+k) —
| B (ks (ntk) |
The observability condition is satisfied if O?n(n k1) x (k) 18 of full rank. First notice that

B is of rank n + k£ — 1. Now, suppose that the observability condition is violated. That would

imply the existence of a n + k dimensional vector & # 0 such that:'

B¢ =0 = B&¢

Given our knowledge of the B matrix, that would imply that the vector £ is equal to

gz(X7_X7"'7_X707"'7O>tr
———

n—1 elements

for some y # 0. The last k elements, corresponding to the £ vector are equal to zero since

these variables are observable. As a result we have

n n n tr
¢§:X <¢1,1_Z¢l,la"'¢j,l_Z¢j7la"'7¢n,l_Z¢n,l707"'a0> )
=2 =2 =2

which equals using that the off-diagonal elements in the first row (¢; ; = 0) are zero,

16The nullspace of B is one-dimensional, that means it is generated by a non-zero vector x. The nullspace
of B® is one-dimensional as well. If the observation matrix has rank n + k& — 1 then the nullspace of these of

two matrices are identical and generated by the same vector x.
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n n tr
(I)f = X <¢1,17 ey ¢j,1 — Z¢j,l> ey qzﬁml — Z¢n’l70’ e ,0) (A?)
=2 =2

Multiplying this vector with B maps it to zero, so that we get the set of equations:

P11 = Qj1— Z%,z V2 <j<n, (A8)
1—2

contradicting Assumption 2 ii). Thus, by contradiction we must have that £ is not in the
nullspace of B®. Thus, the observability matrix is of full rank and the system is observable.

The controllability matrix is given by:

CZ—&-lX(n)Q = [ R(n—l—l)xn@R(n—l—l)Xn e QnR(n—H)Xn ] :

That the controllability matrix in our state space system is of full rank follows from Assump-
tion 2 i).

As a result, our state space realization is observable and controllable, hence minimal.

1.4 Proof of Theorem 2

Suppose the state space is described by the matrices (B, b, f{) which are related to the original

one as follows:

B = BT
& = T'&T (A9)
R = T 'RU

We show now that T is the identity matrix and that U is as described in the theorem.
Let x; = (0,..., 1 ,...,0) be the unit vector with the i'th entry equal to 1 and other

i
entries equal to zero. Consider the long-run effect of y1, that is the long-run effect of a neutral

technology shock, which equals

BT '(I-®) 'RUy, = B(I-®) 'RUy;
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since BT~1 = B. Let
n+1

Ux, = Z Uil Xis
i=1

where wu;; is the (i,1) entry of U. Then the long-run effect of x; equals
n+1

Z i1 Vs,
i=1
where v; is the true long-run effect (i.e. for the state space described by the true matrices
(B,®,R) of x;:
v; = B(I- ®) 'Ry;.
We impose the balanced growth restriction which states that the long-run effect of x; equals

v1, so that
n+1

U1 = E U410y,
i=1

The RHS is the long-run response to the shock Uy; which equals the long-run response of
neutral technology (x;) on the LHS (v;). Theorem 1 implies that only neutral technology
has this property so that Ux; = xi, i.e. first column of U is the vector (1,0,...,0)". Since
UU’ = I this implies that the first row of U equals (1,0,...,0). Finally we use that the first
row of

T 'RU
is (1,0,...,0). Using the properties of U, we also know that the first row of

T 'R
is (1,0,...,0). Since R is invertible, we have that ky = k3 = ... = k, = 0. Furthermore

since r,, = 1 we also have xk; = 0, so that R = RU, what completes the proof since RR =

RUU'R’ = RR/.

II Standard Approaches to Controlling for Input Het-

erogeneity

II.1 Jorgenson’s Correction

The fact that inputs heterogeneity complicates the measurement of technology is a well known

problem in the growth accounting literature. Here we discuss the most widely accepted pro-
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cedure that was developed by Jorgenson (1966). An alternative but closely related procedure
due to Hansen (1993) is discussed in Appendix I1.2. Central to these approaches is the approx-
imation of the growth rate of Ly in terms of a weighted sum of the hours worked by different
groups of individuals:

J

Alog(L§) = Y _ajAlog(Lj,). (A10)

j=1
The procedures differ in the way the weights {a;,} are computed. Jorgenson uses the
following Tornqvist aggregator:
wi,tLi,t
> Wil

As shown in Diewert (1976), this would be the right correction to make in the case that

Vit + Vi1
@i = L= I where Vit =

5 (A1)

L¢ is a deterministic homogeneous translog function of the J groups considered, log(L¢) =
f(log(Ly)), where Ly is the vector of hours worked by the J groups.!” Using the properties of

quadratic function (e.g., translog as defined in footnote 17), one obtains:

Alog(L;) = f(log(L¢)) — f(log(Lg-1)) (A13)
— S [V (08(Le)) + Vf(l05(Le1))] (lo5(Le) ~ log(Ler)).

where the matrix V f(log(L¢)) collects the partial derivatives of f(.). Under the additional

assumption that prices equal marginal products at all points in time, the Jacobian V f(log(Ly))

w; ¢ L ¢
> wie L

the weights are Tornquivst indexes of labor shares of different groups. All other functional

is equal to . Thus, equation A10 is exact for a homogeneous translog aggregator when
forms, e.g., CES aggregator, will generate a bias.

A fundamental problem of this strategy arises when hours in efficiency units is not a
deterministic aggregator of hours worked. An implicit assumption in this procedure is that
the parameters of the aggregator have to be constant, making it for example difficult to ex-

plain movements in the skill premium. Thus even if the aggregator satisfies the functional form

17 Defined by

K

K
Inf(z) = agp + Z aplnz,, + 3 mz: vallnmmlnxl, (A12)

k=1 =11l=1

—_

where Zszl ar =1, Y = Ym and Z{; Yy =0for j=1,2,..., K.

42



requirements at every point of time but parameters are changing over time, technology is mea-
sured with a bias. In order to make this point explicit, suppose that log(L¢) = f(log(Ly), ©4),
where Oy is a vector of time varying observable or unobservable factors and parameters. In
this environment, one immediately verifies that equation A14 is an incorrect expansion for L

as it neglects changes in ©y.

I1.2 Hansens’ Correction

Hansen (1993) measures the efficiency units of labor as
Z aiLi,ta (A].4)

where «; is the constant weight of group i. The weights «; are the average hourly earnings

HE;

o; =

where HF; is average hourly earnings for group ¢+ and HE is average hourly earnings.

We first compute a log-linear approximation of log(> , a;L; ;) with respect to log(L;,):
;L
log(z aiLi,t) ~ Z —_ IOg(LLt), (A].6)

where L; is the average labor supply of group i. In addition to this approximation, a second
difference between Hansen and Jorgensen is that they use different coefficients. Jorgensens

uses vj, an average of two adjacent periods whereas Hansen uses

oiL (A17)
Zj O‘J’L_j’

a time average for the full sample. This means the second bias in the measurement due to

differences in computing averages of wages equals

;L
j7t e —
Zj oL

After these approximations, Hansen measurement is equal to Jorgenson and thus is unbiased

(A18)

if and only if the aggregator is a homogeneous translog function (with constant coefficients).
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I11.3 Estimation of Solow Residual in Practice

The current the state-of-the-art measurement of Solow residual in the data is based on IV-
regression methods described in Basu, Fernald, and Kimball (2006). As their methodology
differs from the Solow residual construction we used in the main text, a few details should
be mentioned. First, it is well-known that if there might be increasing returns to scale, time-
varying factor utilization, or if factors are not paid their marginal products, tfp measured
as Solow residual will be biased. To overcome this limitation, Basu, Fernald, and Kimball
(2006), following the insight in Hall (1988, 1990), treat Equation (2) as a regression. As input
choices are likely endogenous to innovations in the technology estimated as the residual, the
regression is estimated using instrumented variables. The instruments are required to affect the
input choice but to be uncorrelated with innovation in technology. The authors use oil prices,
growth in real government defense spending, and “monetary shocks” from a non-structural
VAR. Their estimates are based on the data described in Jorgenson, Gollop, and Fraumeni

(1987) that controls for changes in labor composition using the Jorgenson’s correction.

III Calibration of the Simple RBC Model

The vector of structural parameters of our model is given by:

0 = [ﬁ7 57 «, h:a h;ku u, ¢*7?7 27 P¢7 O¢y X1y Pzy02,0qa, Pq; Ogq, pgu O-g/]

.

-~

01 0o

Model period is one quarter. We use quarterly post-84 data on the US economy in order to
calibrate the vector #. The parameters in ¢, are pinned down using long run average for selected
time series. In particular, the parameters 3, o and ¢ are chosen so that, in a deterministic
steady state of the model, the real interest rate, the depreciation rate of capital and a labor
income share are respectively 1%, 2.5% and 66%, values that are common in the business
cycle literature. The growth rate of neutral technology shocks, 7, is chosen so to match an
average growth rate of GDP per capita equal to 2%. The parameters h’, h%, u and ¢* are
chosen so that the model matches a fraction of 0.29 hours worked by low-skilled individual,
0.36 by high-skilled individuals, a fraction of low-skilled individuals over total population of

0.64 and a skill premium equal to 1.7. These numbers are calculated using CPS quarterly
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data (1979-2006) on wages and hours worked by education level.'® Finally, we fix the average
Frisch elasticity 7 to 1.

The remaining parameters in 05 are calibrated via a Simulated Method of Moments (SMM)
algorithm. In particular, let mt be a vector of sample moments for selected time series of length
T computed using US data. We denote by mr(6) their model counterpart when the vector
of structural parameter is 6. # is chosen to minimize a weighted distance between model and
data moments:

Héin [mr — m(6)] Wr[mr — m(6)],

where Wr is a diagonal matrix whose nonzero elements are the inverse of the variance of
the corresponding moment. The empirical moments included in the vector mt are standard
measures of cyclical variation and comovement for post 1984 quarterly US data. The time series
used are the growth rate in GDP, private non-durable consumption, private nonresidential
investment, total hours worked in the business sector, total hours of low and high skilled
individuals in the business sector, nominal wages for these two demographic groups, labor
productivity. For each of these time series, we compute the sample standard deviation, the
first order autocorrelation and the cross-correlation with GDP growth. We collect these sample
moments in the vector mr. The associated model’s moments are calculated via a Monte
Carlo procedure. In particular, for each 6, we solve for the policy functions using first order
perturbation. We next simulate a realization of length T for the model’s counterparts of the
above time series and calculate the vector mr(6). We repeat this procedure M = 300 times,
each time changing the seed used in the simulation. We then take the (component wise) median
of m(#) across the Monte Carlo replications.

Table A-1 summarizes the procedure used for the calibration of our model and reports
numerical values for the structural parameters. Table A-2 reports the fit our model in terms
of the calibration targets. We can verify that the calibrated model is consistent along many

dimensions with the behavior of aggregate time series.

18We define high-skilled individuals as those possessing college education and low-skilled individuals as those

with no college education. See Appendix V.
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Table A-1: Calibrated Parameter Values: RBC Model

Parameter Value Source
o 0.33 Labor Income Share
) 0.025 Depreciation of Capital Stock
I} 0.99 Real Interest Rate
7y 1.004 Average GDP growth per capita
h: 0.36 Weekly Hours per Individual (College)
I 0.29  Weekly Hours per Individual (no College)
u 0.64 % of Individuals without College
o 0.39 Skill Premium
v 1.00 Fixed
T 0.85 Calibrated
Lo 0.74 Calibrated
Pa 1.00 Calibrated
Jon 0.26 Calibrated
Pq 0.97 Calibrated
Pq 0.99 Calibrated

o, X 100 1.14 Calibrated

os x 100 1.32 Calibrated

o, x 100 0.74 Calibrated

g x 100 0.18 Calibrated

o4 x 100 0.12 Calibrated

Table A-2: RBC Model Calibration Targets: Data and Model

Moment Data Model Moment Data Model Moment Data Model
St Dev(AY;) | 0.88 0.63 || Acorr(AY;) | 0.15 047 | Corr (AY,,AC,) | 0.17  0.55
St Dev(AC}) 0.47  0.56 | Acorr(AC}) 0.14 042 | Corr (AY;, AL) 0.13  0.33
St Dev(AlL) 215 3.25 | Acorr(AL) 0.30 0.36 | Corr (AY;, Al) 0.04 044
St Dev(AH,) | 0.77  0.75 | Acorr(AH,) | 002 053 | Corr AY;,A%) 0.18  0.11
St Dev (A%) 056 053 | Acorr (AX) |-0.11 -020 | Corr (AY;, AW,,) | 0.30  0.06
St Dev(AW,,) | 0.98  1.53 || Acorr(AW,,) | -0.07  0.12 || Corr (AY;, AW,,) | 0.05  0.06
St Dev(AW, ;) | 0.78 113 || Acorr(AW,,) | -0.01  0.06 | Sgigmioded 120 115




IV A New-Keynesian Model with Heterogeneous Labor

In this section we describe the New-Keynesian model which we use in the main text. The
model is identical to Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters
(2007), except that we have two different type of labor (u)nskilled and (s)killed labor. There
is a mass one of workers (on the unit interval), unskilled workers on the interval [0, u] and
skilled workers on [1 — u, 1]. We also have a richer specification of uncertainty. The sources of
uncertainty in the model are shocks to TFP, investment, the disutility of labor, discount factor,
the wage markup, the price markup, the skill premium, government spending and monetary

policy.

IV.1 Final-Good Firms

The final consumption good Y is a composite made of intermediate goods Y; and is sold in a

perfectly competitive market at price P, and equals

! 1 i A
vie | [l (A9
0

where A;; is an exogenous shock whose law of motion will be specified later, and Yj; is

intermediate good i. The inflation rate m, = P,/P,_;. Bonds pay a return e’ R, where €’ is a

risk-premium shock on the nominal return R.

IV.2 Intermediate-Goods Firms

A monopolist produces intermediate good j € [0, 1] using the following technology:

KeleZe[e )l — Z,F if > F
}/jt _ ]t[ ]t] t = ’ (AZO)
0 otherwise

where 0 < a < 1,

e 1—
LS, = LY,L,37

s,Jtu, gt

and L = shs, is total hours worked by skilled individuals, and L; = L + L, is total hours
worked. Here, L%, and kj; denote the time ¢ labor and capital services used to produce the 5th

intermediate good. The fixed cost of production are denoted F' > 0. Intermediate firms rent
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capital and labor in perfectly competitive factor markets. Profits are distributed to households
at the end of each time period. Let RF and W, denote the nominal rental rate on capital ¢

services and the wage rate, respectively. A firm’s real marginal cost is s; = §.5,(Y")/dY, where
_ : k U s
Si(Y) = Sin, K +wyL, + w; L (A21)

Y given by (A20) (A22)

where rF = RF/P;, wi = W? /P, and w = W"/P,. Given our functional forms, we have

e (é) [(wl—a)y ((1 T —a>>1_¢

Price setting by firms is as in Calvo (1983) with a constant probability, 1 — 6, of being able

11—«

(rf)™ [(wi)? () =] P (A23)

to reoptimize its nominal price.

IV.3 Households

There is a continuum of households, indexed by j € [0,1]. As in Christiano, Eichenbaum,
and Evans (2005) and Smets and Wouters (2007) all households - skilled and unskilled - are
homogeneous with respect to consumption and asset holdings but are heterogeneous with
respect to the wage rate they earn and the hours they work. The utility function of the j*
household of type T' € {u, s}

eAt+l

El, Z gt {U(Ctﬂ — hep-1) — thT} - (A24)
1=0

1+ vr ot

Here, E’f_l is the expectation operator, conditional on aggregate and household j's idiosyn-
cratic information up to, and including, time ¢ — 1; ¢; denotes time ¢ consumption; h;; denotes

time ¢t hours worked. The household’s stock of physical capital, k;, evolves according to

— — I
kt—i—l = (1 — 5)kt + et |:]_ -5 ([—t):| ]t (A25)
t—1

The physical rate of depreciation is denoted ¢, [; denotes time ¢ investment, and S is the
adjustment cost function, with the following properties: S(e?) = 0, S'(e7) = 0 and S”(e") = &,
where 7 is mean growth rate of Z;.

Capital services, k;, are related to the physical stock of capital by k, = w.k,. Here, u,
denotes the utilization rate of capital, which at cost a(u,)k; (in consumption goods) is set by

the household. We assume that u, = 1 in steady state, that a(1) = 0 and we define 7, = a”(1).
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IV.4 The Wage Decision

Households are monopoly suppliers of a differentiated labor service, h,, j; for unskilled and
hs it for skilled workers. They sell this service to a representative, competitive firm for
skilled /unskilled workers that transforms it into an aggregate labor input, Ls; and L, re-

spectively, using the following technologies:

1 1 1+)\w¢t
Ly, = { / h}fﬁw’t dj] : (A26)
0

for T' € {s,u}. In each period, a household faces a constant probability, 1 — 6,,, of being able

to reoptimize its nominal wage.

IV.5 Monetary Policy

We assume that monetary policy is described by an interest rate rue given by

R R, \"® e Yo\ 1-pr
mo () &) (5) ] e (a2)
t t

where R* is the steady state nominal gross interest rate, 7* is steady state inflation rate, and

Y," is the natural level of output, i.e. the output level in the flexible price and wage economy.

IV.6 The aggregate resource constraint

The aggregate resource constraint is
e+ g+ u +alu) <Yy, (A28)

where ¢, is government expenditure.

IV.7 Stochastic Structure

In addition to monetary policy there are eight additional sources of uncertainty. The law of

motion for these shocks are given by:

2 — 21 =Y F po2—1 — Z—2) + 2y (A29)

6: = Ert (A?)O)
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A = paAi1 +€ay

Ot = PpPr—1 + Epr

Gt = PgGi—1 T Egt

Gt = PgQt—1 T Eqt

by = ppbi—1 + vy

>\wt - pw)\wt—l + Ewt

Aft = PwAfi—1 +Efy

The innovations follow a standard normal random vector.

20

(A31)

(A32)

(A33)

(A34)

(A35)

(A36)

(A37)



Table A-3: Calibrated Parameter Values: New Keynesian Model

Parameter Value Source Parameter Value Source
! 0.20 SSK T 0.85 SMM
h 0.66 SSK P 0.08 SMM
K 2.5 SSK Pa 0.99 SMM
Yu 0.30 SSK Pz 0.05 SMM
0, 0.66 SSK Py 0.90 SMM
O 0.25 SSK Pq 0.38  SMM
A 0.15 SSK Pu 0.10 SMM
Aw 0.15 SSK Pp 0.10 SMM
Pr 0.86 SSK Pb 0.50 SMM
(- 3.05 SSK o, x 100 1.71  SMM
Yy 0.06 SSK osx 100  1.01  SMM
* 2.94 SSK o, x 100  0.60 SMM
g 0.28 SSK o, x 100  0.01 SMM
) 0.025 Depreciation of Capital Stock o, x 100 082 SMM
7y 1.004 Average GDP growth per capita Ow 0.41 SMM
h: 0.36 Weekly Hours per Individual (College) o, x 100  0.15 SMM
I 0.29  Weekly Hours per Individual (no College) o, x 100 0.36 ~ SMM
u 0.64 % of Individuals without College o, x 100  0.02 SMM
I 0.39 Skill Premium
v 1.00 Fixed

o1



Table A-4: New Keynesian Model Estimation Targets: Data and Model

Moment Data Model Moment Data Model Moment Data Model
St Dev(AY) 0.75  0.63 || Acorr(AY;) 0.48 047 | Corr (AY;, ACy) 0.82  0.55
St Dev(AC,) | 0.64 0.56 | Acorr(AC;) | 042 042 | Corr(AY;,AL) | 0.70  0.36
St Dev(AlL) 238 3.25 | Acorr(AlL) 0.39  0.36 | Corr (AY;, Amy) -0.14  -0.05
St Dev(m;) 1.58  1.03 || Acorr(m) 0.40  0.57 | Corr (AY;, AHy) 0.73  0.54
St Dev(AH,) | 1.03 075 | Acorr(AH,) | 027 053 | Corr (AY;, A%) 0.02 0.03
St Dev (A%) | 070 053 | Acorr (AZ) |-0.11 018 | Corr (AY;, AW,,) | 0.30 0.6
St Dev(AW,,) | 0.83  1.53 | Acorr(AW,,) | -0.07  0.07 | Corr (AY;,AW,,) | 0.05  0.06
St Dev(AW,,) | 1.25  1.13 | Acorr(AW,,) | -0.01 -0.23 | Corr (AY;, R;) -0.18 0.18

St Dev (R;) 1.24 253 || Acorr (Ry) 0.96  0.98

V Data Construction

GDP growth: Log difference of gross domestic product in per capita term (chained dollars).
Data are quarterly, 1979:Q1-2012:Q4. The source is Bureau of Economic Analysis, National
Income and Product Accounts Tables, Table 7.1.

Consumption growth: Log difference of personal consumption expenditures in per capita
term (chained dollars). Data are quarterly, 1979:Q1-2012:Q4. The source is Bureau of Eco-

nomic Analysis, National Income and Product Accounts Tables, Table 7.1.

Investment growth: Log difference of nonresidential gross private domestic investment
(chained dollars). Data are quarterly, 1979:Q1-2012:Q4. The source is Bureau of Economic

Analysis, National Income and Product Accounts Tables, Table 1.1.6.

Inflation: Log difference of GDP deflator. Data are quarterly, 1979:Q1-2012:Q4. The series is
downloaded from the FRED database of the Federal Reserve Bank of St. Louis (GDPDEF).

Federal Funds Rate: Quarterly averages of monthly effective Federal Funds Rate. Data are
quarterly, 1979:Q1-2012:Q4. The series is downloaded from the FRED database of the Federal
Reserve Bank of St. Louis (FEDFUNDS).
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