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Introduction

Till now man has been up against Nature;
from now on he will be up against his own nature.

Dennis Gabor Inventing the future

It is a good thing for an uneducated man to read books of quotations.
W.S. Churchill Roving commission in my early life (1930)

Engineering used to be a down-to-earth profession. The Roman engineers, who
provided civilized Europe with bridges and roads, did a job comprehensible to
all. And this is still true in most branches of engineering today. Bridge-building
has become a sophisticated science, the mathematics of optimum structures
is formidable; nevertheless, the basic relationships are not far removed from
common sense. A heavier load is more likely to cause a bridge to collapse, and
the use of steel instead of wood will improve the load-carrying capacity.

Solid-state electronic devices are in a different category. In order to
understand their behaviour, you need to delve into quantum mechanics. Is
quantum mechanics far removed from common sense? Yes, for the time being,
it is. We live in a classical world. The phenomena we meet every day are classical
phenomena. The fine details represented by quantum mechanics are averaged
out; we have no first-hand experience of the laws of quantum mechanics; we
can only infer the existence of certain relationships from the final outcome. Will
it be always this way? Not necessarily. There are quantum phenomena known to
exist on a macroscopic scale as, for example, superconductivity, and it is quite
likely that certain biological processes will be found to represent macroscopic
quantum phenomena. So, a ten-year-old might be able to give a summary of
the laws of quantum mechanics—half a century hence. For the time being there
is no easy way to quantum mechanics; no short cuts and no broad highways.
We just have to struggle through. I believe it will be worth the effort. It will
be your first opportunity to glance behind the scenes, to pierce the surface and
find the grandiose logic of a hidden world.

Should engineers be interested at all in hidden mysteries? Isn’t that the duty
and privilege of the physicists? I do not think so. If you want to invent new
electronic devices, you must be able to understand the operation of the existing
ones. And perhaps you need to more than merely understand the physical
mechanism. You need to grow familiar with the world of atoms and electrons,
to feel at home among them, to appreciate their habits and characters.

We shall not be able to go very deeply into the subject. Time is short, and few
of you will have the mathematical apparatus for the frontal assault. So we shall
approach the subject in carefully planned steps. First, we shall try to deduce
as much information as possible on the basis of the classical picture. Then, we
shall talk about a number of phenomena that are clearly in contrast with classical
ideas and introduce quantum mechanics, starting with Schrödinger’s equation.
You will become acquainted with the properties of individual atoms and what
happens when they conglomerate and take the form of a solid. You will hear
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xvi Introduction

about conductors, insulators, semiconductors, p–n junctions, transistors, lasers,
superconductors, and a number of related solid-state devices. Sometimes the
statement will be purely qualitative but in most cases we shall try to give the
essential quantitative relationships.

These lectures will not make you an expert in quantum mechanics nor will
they enable you to design a computer the size of a matchbox. They will give
you no more than a general idea.

If you elect to specialize in solid-state devices you will, no doubt, delve more
deeply into the intricacies of the theory and into the details of the technology. If
you should work in a related subject then, presumably, you will keep alive your
interest, and you may occasionally find it useful to be able to think in quantum-
mechanical terms. If your branch of engineering has nothing to do with quantum
mechanics, would you be able to claim in ten years’ time that you profited from
this course? I hope the answer to this question is yes. I believe that once you
have been exposed (however superficially) to quantum-mechanical reasoning,
it will leave permanent marks on you. It will influence your ideas on the nature
of physical laws, on the ultimate accuracy of measurements, and, in general,
will sharpen your critical faculties.
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Preface to the eighth edition

Once more we have taken the opportunity to bring our book up to date. The
major change is due to the recent upsurge of interest in artificial materials
(metamaterials in the modern jargon), which persuaded us to turn a small
appendix into a full-blown chapter. In order to supply the theoretical foundations
for this new chapter we have expanded our coverage of plasma phenomena in
Chapter 1, and included a section in Chapter 10 on anomalous dispersion with
the aim to introduce backward waves. Another expansion of Chapter 10 is due to
the increasing interest in THz devices. We have included a treatment of optical
phonons which have resonances in that frequency range.

Given the five years since the last edition, it is not surprising that we had
to make some changes in every chapter, occasionally because we thought that
the existing explanation could be improved upon, but mostly because of new
developments. The chapter that received the greatest amount of new additions
is that on semiconductor devices. We have included plasma etching, expanded
the treatment of microelectromechanical systems, and pointed out the means
by which those further miraculous reductions in minimum feature size have
taken place. The progress in spintronics has been noted by trebling the size of
the relevant section. The main addition to the laser chapter is on quantum dot
devices; we have also added a brief section on laser cooling. The main change
in the chapter on optoelectronics is our reassessment of too optimistic previous
predictions on LEDs. Some modest advances in superconductors have also been
noted. We have added new entries to existing tables and introduced three new
tables: on infrared resonances of alkali halides, on piezoelectric constants, and
on the critical temperatures of high-Tc superconductors.

Additions of which we could have thought earlier are explicit references to
Nobel Prizes whenever we write about the relevant topics. We ourselves were
surprised that the number of Nobel laureates included came to a figure as high
as 50. Perhaps it is not a coincidence that the research that has had the greatest
influence upon the way we live has also attracted the best scientific minds. A
list of these Nobel laureates is given in Appendix II.

We wish to thank, first, all those students and lecturers whose comments
helped us to prepare this edition. We are grateful to Richard Syms, who gave
us all the information needed to include mass spectrometers in Section 9.26
and who kindly read the final draft. We also wish to acknowledge the help we
received from JohnAllen, Kristel Fobelets, and Paul Stavrinou, all of them from
Imperial College, London, in the field of semiconductor devices and lasers.
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The electron as a particle 1
And I laugh to see them whirl and flee,
Like a swarm of golden bees.

Shelley The Cloud

1.1 Introduction

In the popular mind the electron lives as something very small that has
something to do with electricity. Studying electromagnetism does not change
the picture appreciably. You learn that the electron can be regarded as a negative
point charge and it duly obeys the laws of mechanics and electromagnetism. It
is a particle that can be accelerated or decelerated but cannot be taken to bits.

Is this picture likely to benefit an engineer? Yes, if it helps him to produce a
device. Is it a correct picture? Well, an engineer is not concerned with the truth;
that is left to philosophers and theologians: the prime concern of an engineer
is the utility of the final product. If this physical picture makes possible the
birth of the vacuum tube, we must deem it useful; but if it fails to account for
the properties of the transistor then we must regard its appeal as less alluring.
There is no doubt, however, that we can go quite far by regarding the electron
as a particle even in a solid—the subject of our study.

What does a solid look like? It consists of atoms. This idea originated a few
thousand years ago in Greece, and has had some ups and downs in history, but
today its truth is universally accepted. Now if matter consists of atoms, they
must be somehow piled upon each other. The science that is concerned with the
spatial arrangement of atoms is called crystallography. It is a science greatly
revered by crystallographers; engineers are respectful, but lack enthusiasm.
This is because the need to visualize structures in three dimensions adds to the
hard enough task of thinking about what the electron will do next. For this
chapter, let us assume that all materials crystallize in the simple cubic structure
of Fig. 1.1, with the lattice ions fixed (it is a solid) and some electrons are
free to wander between them. This will shortly enable us to explain Ohm’s
law, the Hall effect and several other important events. But if you are sceptical
about over simplification, look forward to Fig. 5.3 to see how the elemental
semiconductors crystallize in the diamond structure, or get a greater shock with
Fig. 5.4 which shows a form of carbon that was discovered in meteorites but
has only recently been fabricated in laboratories.

Fig. 1.1
Atoms crystallizing in a cubical
lattice.

Let us specify our model a little more closely. If we postulate the existence
of a certain number of electrons capable of conducting electricity, we must
also say that a corresponding amount of positive charge exists in the solid. It
must look electrically neutral to the outside world. Second, in analogy with
our picture of gases, we may assume that the electrons bounce around in the
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2 The electron as a particle

interatomic spaces, colliding occasionally with lattice atoms. We may even go
further with this analogy and claim that in equilibrium the electrons follow the
same statistical distribution as gas molecules (that is, the Maxwell–Boltzmann
distribution) which depends strongly on the temperature of the system. The
average kinetic energy of each degree of freedom is then 1

2kBT where T is
absolute temperature and kB is Boltzmann’s constant. So we may say that the
mean thermal velocity of electrons is given by the formula∗∗ We shall see later that this is not so for

metals but it is nearly true for conduction
electrons in semiconductors. 1

2mv
2
th = 3

2kT (1.1)

because particles moving in three dimensions have three degrees of freedom.
vth is the thermal velocity, and m is
the mass of the electron.

We shall now calculate some observable quantities on the basis of this
simplest model and see how the results compare with experiment. The success
of this simple model is somewhat surprising, but we shall see as we proceed
that viewing a solid, or at least a metal, as a fixed lattice of positive ions held
together by a jelly-like mass of electrons approximates well to the modern view
of the electronic structure of solids. Some books discuss mechanical properties
in terms of dislocations that can move and spread; the solid is then pictured as a
fixed distribution of negative charge in which the lattice ions can move. These
views are almost identical; only the external stimuli are different.

1.2 The effect of an electric field—conductivity
and Ohm’s law

Suppose a potential difference U is applied between the two ends of a solid
length L. Then an electric field

E = U

L
(1.2)

is present at every point in the solid, causing an acceleration

a = e

m
E . (1.3)

Thus, the electrons, in addition to their random velocities, will acquire a velocity
in the direction of the electric field. We may assume that this directed velocity
is completely lost after each collision, because an electron is much lighter than
a lattice atom. Thus, only the part of this velocity that is picked up in between
collisions counts. If we write τ for the average time between two collisions, the
final velocity of the electron will be aτ and the average velocity

vaverage = 1
2aτ . (1.4)

This is simple enough but not quite correct. We should not use the average time
between collisions to calculate the average velocity but the actual times and
then the average. The correct derivation is fairly lengthy, but all it gives is a
factor of 2.† Numerical factors like 2 or 3 or π are generally not worth worrying

† See, for example, W. Shockley,
Electrons and holes in semiconductors,
D. van Nostrand, New York, 1950, pp.
191–5. about in simple models, but just to agree with the formulae generally quoted in

the literature, we shall incorporate that factor 2, and use

vaverage = aτ . (1.5)

The average time between collisions, τ , has many other names; for example,
mean free time, relaxation time, and collision time. Similarly, the average
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The effect of an electric field—conductivity and Ohm’s law 3

velocity is often referred to as the mean velocity or drift velocity. We shall call
them ‘collision time’ and ‘drift velocity’, denoting the latter by vD.

The relationship between drift velocity and electric field may be obtained
from eqns (1.3) and (1.5), yielding

vD =
( e
m
τ
)

E , (1.6)

where the proportionality constant in parentheses is called the ‘mobility’. This
is the only name it has, and it is quite a logical one.

The higher the mobility, the more
mobile the electrons.

Assuming now that all electrons drift with their drift velocity, the total
number of electrons crossing a plane of unit area per second may be obtained
by multiplying the drift velocity by the density of electrons, Ne. Multiplying
further by the charge on the electron we obtain the electric current density

J = NeevD. (1.7)

Notice that it is only the drift velocity, created by the electric field, that
comes into the expression. The random velocities do not contribute to the
electric current because they average out to zero.∗ ∗ They give rise, however, to electrical

noise in a conductor. Its value is
usually much smaller than the signals
we are concerned with so we shall not
worry about it, although some of the
most interesting engineering problems
arise just when signal and noise are
comparable.

We can derive similarly the relationship between current density and electric
field from eqns (1.6) and (1.7) in the form

J = Nee
2τ

m
E . (1.8)

This is a linear relationship which you may recognize as Ohm’s law

J = σE , (1.9)

where σ is the electrical conductivity. When first learning about electricity you
looked upon σ as a bulk constant; now you can see what it comprises of. We
can write it in the form In metals, incidentally, the

mobilities are quite low, about two
orders of magnitude below those
of semiconductors; so their high
conductivity is due to the high
density of electrons.

σ =
( e
m
τ
)
(Nee)

= μe(Nee). (1.10)

That is, we may regard conductivity as the product of two factors, charge density
(Nee) and mobility (μe). Thus, we may have high conductivities because there
are lots of electrons around or because they can acquire high drift velocities,
by having high mobilities.

Ohm’s law further implies that σ is a constant, which means that τ must
be independent of electric field.† From our model so far it is more reasonable

† It seems reasonable at this stage to
assume that the charge and mass of the
electron and the number of electrons
present will be independent of the electric
field.
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4 The electron as a particle

to assume that l, the distance between collisions (usually called the mean free
path) in the regularly spaced lattice, rather than τ , is independent of electric
field. But l must be related to τ by the relationship,

l = τ(vth + vD). (1.11)

Since vD varies with electric field, τ must also vary with the field unless

vth � vD. (1.12)

As Ohm’s law is accurately true for most metals, this inequality should hold.In a typical metal μe = 5 ×
10−3 m2 V−1 s−1, which gives a
drift velocity vD of 5 × 10−3 m s−1

for an electric field of 1 V m−1.

The thermal velocity at room temperature according to eqn (1.1) (which actually
gives too low a value for metals) is

vth =
(

3kT

m

)1/2 ∼= 105 m s−1. (1.13)

Thus, there will be a constant relationship between current and electric field
accurate to about 1 part in 108.∗

∗ This is less true for semiconductors as
they violate Ohm’s law at high electric
fields.

This important consideration can be emphasized in another way. Let us draw
the graph (Fig. 1.2) of the distribution of particles in velocity space, that is with
rectilinear axes representing velocities in three dimensions, vx , vy , vz. With
no electric field present, the distribution is spherically symmetric about the
origin. The surface of a sphere of radius vth represents all electrons moving in
all possible directions with that r.m.s. speed. When a field is applied along the
x-axis (say), the distribution is minutely perturbed (the electrons acquire some
additional velocity in the direction of the x-axis) so that its centre shifts from
(0, 0, 0) to about (vth/108, 0, 0).

Taking copper, a field of 1 V m−1 causes a current density of 108 A m−2.
It is quite remarkable that a current density of this magnitude can be achieved
with an almost negligible perturbation of the electron velocity distribution.

x

y

th

v

v

xv

v

Fig. 1.2
Distributions of electrons in velocity
space.

1.3 The hydrodynamic model of electron flow

By considering the flow of a charged fluid, a sophisticated model may be
developed. We shall use it only in its crudest form, which does not give much
of a physical picture but leads quickly to the desired result.

The equation of motion for an electron is

m
dv

dt
= eE . (1.14)

If we now assume that the electron moves in a viscous medium, then the
forces trying to change the momentum will be resisted. We may account for
this by adding a ‘momentum-destroying’ term, proportional to v. Taking the
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The Hall effect 5

proportionality constant as ζ eqn (1.14) modifies to

ζ may be regarded here as a
measure of the viscosity of the
medium.

m

(
dv

dt
+ ζv

)
= eE . (1.15)

In the limit, when viscosity dominates, the term dv/dt becomes negligible,
resulting in the equation

mvζ = eE , (1.16)

which gives for the velocity of the electron

v = e

m

1

ζ
E . (1.17)

It may be clearly seen that by taking ζ = 1/τ eqn (1.17) agrees with eqn (1.6);
hence we may regard the two models as equivalent and, in any given case, use
whichever is more convenient.

1.4 The Hall effect

Let us now investigate the current flow in a rectangular piece of material, as
shown in Fig. 1.3. We apply a voltage so that the right-hand side is positive.
Current, by convention, flows from the positive side to the negative side, that
is in the direction of the negative z-axis. But electrons, remember, flow in a
direction opposite to conventional current, that is from left to right. Having
sorted this out let us now apply a magnetic field in the positive y-direction. The
force on an electron due to this magnetic field is

e(v × B). (1.18)

To get the resultant vector, we rotate vector v into vector B. This is a clockwise
rotation, giving a vector in the negative x-direction. But the charge of the
electron, e, is negative; so the force will point in the positive x-direction; the
electrons are deflected upwards. They cannot move farther than the top end of
the slab, and they will accumulate there. But if the material was electrically Equilibrium is established when

the force due to the transverse
electric field just cancels the force
due to the magnetic field.

neutral before, and some electrons have moved upwards, then some positive
ions at the bottom will be deprived of their compensating negative charge.
Hence an electric field will develop between the positive bottom layer and the

V
ol

tm
et

er Electrons

+

+ + + + + + + + + + +

y B

x

J

B

z

•
I

Fig. 1.3
Schematic representation of the measurement of the Hall effect.
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6 The electron as a particle

negative top layer. Thus, after a while, the upward motion of the electrons will
be prevented by this internal electric field. This happens when

EH = vB. (1.19)

Expressed in terms of current density,

RH is called the Hall coefficient. EH = RHJB, RH = 1

Nee
. (1.20)

In this experiment EH, J , andB are measurable; thusRH, and with it the density
of electrons, may be determined.

What can we say about the direction of EH? Well, we have taken meticulous
care to find the correct direction. Once the polarity of the applied voltage and
the direction of the magnetic field are chosen, the electric field is well and truly
defined. So if we put into our measuring apparatus one conductor after the
other, the measured transverse voltage should always have the same polarity.
Yes . . . the logic seems unassailable. Unfortunately, the experimental facts do
not conform. For some conductors and semiconductors the measured transverse
voltage is in the other direction.

How could we account for the different sign? One possible way of explaining
the phenomenon is to say that in certain conductors (and semiconductors)
electricity is carried by positively charged particles. Where do they come from?
We shall discuss this problem in more detail some time later; for the moment
just accept that mobile positive particles may exist in a solid. They bear the
unpretentious name ‘holes’.

To incorporate holes in our model is not at all difficult. There are now two
species of charge carriers bouncing around, which you may imagine as a mixture
of two gases. Take good care that the net charge density is zero, and the new
model is ready. It is actually quite a good model. Whenever you come across a
new phenomenon, try this model first. It might work.

Returning to the Hall effect, you may now appreciate that the experimental
determination of RH is of considerable importance. If only one type of carrier
is present, the measurement will give us immediately the sign and the density
of the carrier. If both carriers are simultaneously present it still gives useful
information but the physics is a little more complicated (see Examples 1.7
and 1.8).

In our previous example we took a typical metal where conduction takes
place by electrons only, and we got a drift velocity of 5 × 10−3 m s−1. For a
magnetic field of 1 T the transverse electric field isThe corresponding electric field in

a semiconductor is considerably
higher because of the higher
mobilities.

EH = Bv = 5 × 10−3 V m−1. (1.21)

1.5 Electromagnetic waves in solids

So far as the propagation of electromagnetic waves is concerned, our model
works very well indeed. All we need to assume is that our holes and electrons
obey the equations of motion, and when they move, they give rise to fields in
accordance with Maxwell’s theory of electrodynamics.
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Electromagnetic waves in solids 7

It is perfectly simple to take holes into account, but the equations, with holes
included, would be considerably longer, so we shall confine our attention to
electrons.

We could start immediately with the equation of motion for electrons, but
let us first review what you already know about wave propagation in a medium
characterized by the constants permeability, μ, dielectric constant, ε, and
conductivity, σ (it will not be a waste of time).

First of all we shall need Maxwell’s equations:

1

μ
∇ × B = J + ε

∂E

∂t
, (1.22)

∇ × E = −∂B

∂t
. (1.23)

Second, we shall express the current density in terms of the electric field as

J = σE . (1.24)

It would now be a little more elegant to perform all the calculations in vector
form, but then you would need to know a few vector identities, and tensors (quite
simple ones, actually) would also appear. If we use coordinates instead, it will
make the treatment a little lengthier, but not too clumsy if we consider only the
one-dimensional case, when

∂

∂x
= 0,

∂

∂y
= 0. (1.25)

Assuming that the electric field has only a component in the x-direction (see
the coordinate system in Fig. 1.3), then

∇ × E =

∣∣∣∣∣∣∣∣
ex ey ez

0 0
∂

∂z

Ex 0 0

∣∣∣∣∣∣∣∣
= ∂Ex

∂z
ey , (1.26)

where ex , ey , ez are the unit vectors. It may be seen from this equation that
the magnetic field can have only a y-component. Thus, eqn (1.23) takes the
simple form

∂Ex
∂z

= −∂By

∂t
. (1.27)

We need further

∇ × B =

∣∣∣∣∣∣∣∣
ex ey ez

0 0
∂

∂z

0 By 0

∣∣∣∣∣∣∣∣
= ∂By

∂z
ex , (1.28)

which, combined with eqn (1.24), brings eqn (1.22) to the scalar form

−∂By

∂z
= μσEx + με

∂Ex
∂t

. (1.29)
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8 The electron as a particle

Thus, we have two fairly simple differential equations to solve. We shall attempt
the solution in the form∗

∗ We have here come face to face with a
dispute that has raged between physicists
and engineers for ages. For some odd
reason the physicists (aided and abetted
by mathematicians) use the symbol i
for

√−1 and the exponent −i(ωt − kz)

to describe a wave travelling in the z-
direction. The engineers’ notation is j for√−1 and j(ωt − kz) for the exponent.
In this course we have, rather reluctantly,
accepted the physicists’ notations so as
not to confuse you further when reading
books on quantum mechanics.

ω represents frequency, and k is the
wavenumber.

Ex = Ex0 exp {−i(ωt − kz)} (1.30)

and
By = By0 exp {−i(ωt − kz)} . (1.31)

Then,
∂

∂z
≡ ik,

∂

∂t
≡ −iω, (1.32)

which reduces our differential equations to the algebraic equations

ikEx = iωBy (1.33)

and
−ikBy = (μσ − iωμε)Ex . (1.34)

This is a homogeneous equation system. By the rules of algebra, there is a
solution, apart from the trivial Ex = By = 0, only if the determinant of the
coefficients vanishes, that is∣∣∣∣ −ik iω

μσ − iωμε ik

∣∣∣∣ = 0. (1.35)

Expanding the determinant we get

k2 − iω(μσ − iωμε) = 0. (1.36)
Different people call this equation
by different names. Characteristic,
determinantal, and dispersion
equation are among the names
more frequently used. We shall
call it the dispersion equation
because that name describes best
what is happening physically.

Essentially, the equation gives a relationship between the frequency, ω, and
the wavenumber, k, which is related to phase velocity by vP = ω/k. Thus,
unless ω and k are linearly related, the various frequencies propagate with
different velocities and at the boundary of two media are refracted at different
angles. Hence the name dispersion.

A medium for which σ = 0 and μ and ε are independent of frequency is
nondispersive. The relationship between k and ω is simply

cm � c is the velocity of
the electromagnetic wave in the
medium.

k = ω
√
με = ω

cm
. (1.37)

Solving eqn (1.36) formally, we get

k = (ω2με + iωμσ)1/2. (1.38)

Thus, whenever σ �= 0, the wavenumber is complex. What is meant by a
complex wavenumber? We can find this out easily by looking at the exponent
of eqn (1.30). The spatially varying part is

exp(ikz) = exp
{
i(kreal + ikimag)z

}
= exp(ikrealz) exp(−kimagz). (1.39)

Hence, if the imaginary part of k is positive, the amplitude of the
electromagnetic wave declines exponentially.†

† The negative sign is also permissible
though it does not give rise to an expon-
entially increasing wave as would follow
from eqn (1.39). It would be very nice
to make an amplifier by putting a piece
of lossy material in the way of the
electromagnetic wave. Unfortunately, it
violates the principle of conservation of
energy. Without some source of energy
at its disposal no wave can grow. So the
wave which seems to be exponentially
growing is in effect a decaying wave
which travels in the direction of the
negative z-axis.
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Electromagnetic waves in solids 9

If the conductivity is large enough, the second term is the dominant one in
eqn (1.38) and we may write

k ∼= (iωμσ)1/2 = ±(i + 1)√
2

(ωμσ)1/2. (1.40)

So if we wish to know how rapidly an electromagnetic wave decays in a
good conductor, we may find out from this expression. Since

kimag =
(ωμσ

2

)1/2
(1.41)

the amplitude of the electric field varies as

|Ex | = Ex0 exp

{
−
(ωμσ

2

)1/2
z

}
. (1.42)

The distance δ at which the amplitude decays to 1/e of its value at the surface
is called the skin depth and may be obtained from the equation

1 =
(ωμσ

2

)1/2
δ, (1.43)

yielding

δ =
(

2

ωμσ

)1/2

. (1.44)

You have seen this formula before. You need it often to work out the
resistance of wires at high frequencies. I derived it solely to emphasize the
major steps that are common to all these calculations.

We can now go further, and instead of taking the constant σ , we shall look
a little more critically at the mechanism of conduction. We express the current
density in terms of velocity by the equation The symbol v still means the

average velocity of electrons, but
now it may be a function of space
and time, whereas the notation
vD is generally restricted to d.c.
phenomena.

J = Neev. (1.45)

This is really the same thing as eqn (1.7). The velocity of the electron is related
to the electric and magnetic fields by the equation of motion

m

(
dv

dt
+ v

τ

)
= e(E + v × B). (1.46) 1/τ is introduced again as a

‘viscous’ or ‘damping’ term

We are looking for linearized solutions leading to waves. In that
approximation the quadratic term v × B can be clearly neglected and the total
derivative can be replaced by the partial derivative to yield

m

(
∂v

∂t
+ v

τ

)
= eE . (1.47)

Assuming again that the electric field is in the x-direction, eqn (1.47) tells
us that the electron velocity must be in the same direction. Using the rules set
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10 The electron as a particle

out in eqn (1.32) we get the following algebraic equation

mvx

(
−iω + 1

τ

)
= eEx . (1.48)

The current density is then also in the x-direction:

Jx = Neevx

= Nee
2τ

m

1

1 − iωτ
Ex

= σ

1 − iωτ
Ex , (1.49)

where σ is defined as before. You may notice now that the only difference from
our previous (J − E) relationship is a factor (1 − iωτ) in the denominator.
Accordingly, the whole derivation leading to the expression of k in eqn (1.38)
remains valid if σ is replaced by σ/(1 − iωτ). We get

k =
(
ω2με + iωμ

σ

1 − iωτ

)1/2

= ω(με)1/2
(

1 + iσ

ωε(1 − iωτ

)1/2

. (1.50)

If ωτ � 1, we are back where we started from, but what happens when
ωτ � 1? Could that happen at all? Yes, it can happen if the signal frequency is
high enough or the collision time is long enough. Then, unity is negligible in
comparison with iωτ in eqn (1.50), leading to

k = ω(με)1/2
(

1 − σ

ω2ετ

)1/2
. (1.51)

Introducing the new notation

ω2
p ≡ Nee

2

mε
= (Nee

2/m)τ

ετ
= σ

ετ
(1.52)

we getEquation (1.53) suggests a
generalization of the concept
of the dielectric constant. We
may introduce an effective
relative dielectric constant by the
relationship

εeff = 1 − ω2
p

ω2
.

If may now be seen that, depending
on frequency, εeff may be positive
or negative.

k = ω(με)1/2

(
1 − ω2

p

ω2

)1/2

. (1.53)

Hence, as long as ω > ωp, the wavenumber is real. If it is real, it has (by the
rules of the game) no imaginary component; so the wave is not attenuated. This
is quite unexpected. By introducing a slight modification into our model, we
may come to radically different conclusions. Assuming previously J = σE , we
worked out that if any electrons are present at all, the wave is bound to decay.
Now we are saying that for sufficiently large ωτ an electromagnetic wave may
travel across our conductor without attenuation. Is this possible? It seems to
contradict the empirical fact that radio waves cannot penetrate metals. True;
but that is because radio waves have not got high enough frequencies; let us
try light waves. Can they penetrate a metal? No, they can not. It is another
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Electromagnetic waves in solids 11

empirical fact that metals are not transparent. So we should try even higher
frequencies. How high? Well, there is no need to go on guessing, we can work
out the threshold frequency from eqn (1.52). Taking the electron density in a
typical metal as 6 × 1028 per m3, we then get

fp = 1

π

(
Nee

2

mε0

)1/2

= 1

2π

{
6 × 1028(1.6 × 10−19)2

9.11 × 10−31 × 8.85 × 10−12

}1/2

= 2.2 × 1015 Hz. (1.54)

where ε0 is the free-space permittivity.
At this frequency range you are probably more familiar with the wavelengths

of electromagnetic waves. Converting the above calculated frequency into
wavelength, we get

λ = c

fp
= 3 × 108

2.2 × 1015
= 136 nm. (1.55)

where c is the velocity of light.
Thus, the threshold wavelength is well below the edge of the visible region

(400 nm). It is gratifying to note that our theory is an agreement with our
everyday experience; metals are not transparent.

There is one more thing we need to check. Is the conditionωτ � 1 satisfied?
For a typical metal at room temperature, the value of τ is usually above 10−14 s,
making ωτ of the order of hundreds at the threshold frequency.

By making transmission experiments through a thin sheet of metal, the
critical wavelength can be determined. The measured and calculated values
are compared in Table 1.1. The agreement is not too bad, considering how
simple our model is.

Before going further I would like to say a little about the relationship of
transmission, reflection, and absorption to each other. The concepts are simple
and one can always invoke the principle of conservation of energy if in trouble.

Let us take the case when ω τ � 1; k is given by eqn (1.53), and our con-
ductor fills half the space, as shown in Fig. 1.4. What happens when an
electromagnetic wave is incident from the left?

Table 1.1 Threshold wavelengths for alkali metals

Metal Observed
wavelength
(nm)

Calculated
wavelength
(nm)

Cs 440 360
Rb 360 320
K 315 290
Na 210 210
Li 205 150
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12 The electron as a particle

Fig. 1.4
Incident electromagnetic wave partly
reflected and partly transmitted. ωτ ω ωp1,

Medium 1

Vacuum

Incident wave

Reflected wave

Medium 2

Conductor

Transmitted wave

<< >

Fig. 1.5
Incident electromagnetic wave
reflected by the conductor.

Medium 1

Vacuum

Incident wave

Reflected wave

Medium 2

Conductor

No transmitted wave

ωτ ω ωp
1,<< >

Fig. 1.6
Incident electromagnetic wave
transmitted to medium 3. The
amplitude of the wave decays in
medium 2 but without any energy
absorption taking place.

Medium 1

Vacuum

Incident wave

Medium 2

Conductor

Forward

Medium 3

Vacuum

Transmitted
wave

Reflected wave

travelling wave

Backward

travelling wave

ω ωpωτ 1

<< >

1. ω > ωp. The electromagnetic wave propagates in the conductor. There
is also some reflection, depending on the amount of mismatch. Energy
conservation says

energy in the incident wave = energy in the transmitted wave

+ energy in the reflected wave.

Is there any absorption? No, because ωτ � 1.
2. ω < ωp. In this case k is purely imaginary; the electromagnetic wave

decays exponentially. Is there any absorption? No. Can the electromagnetic
wave decay then? Yes, it can. Is this not in contradiction with something or
other? The correct answer may be obtained by writing out the energy balance.
Since the wave decays and the conductor is infinitely long, no energy goes out
at the right-hand side. So everything must go back. The electromagnetic wave
is reflected, as shown in Fig. 1.5. The energy balance is energy in the incident
wave = energy in the reflected wave.
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Waves in the presence of an applied magnetic field: cyclotron resonance 13

3. Let us take now the case shown in Fig. 1.6 when our conductor is of
finite dimension in the z-direction. What happens now if ω < ωp? The wave
now has a chance to get out at the other side, so there is a flow of energy,
forwards and backwards, in the conductor. The wider the slab, the smaller is
the amplitude of the wave that appears at the other side because the amplitude
decays exponentially in the conductor. There is decay, but no absorption. The
amplitudes of the reflected and transmitted waves rearrange themselves in such
a way as to conserve energy. If there is a smaller amplitude

transmitted, there will be a larger
amplitude reflected.

If we choose a frequency such that ωτ � 1, then, of course, dissipative
processes do occur and some of the energy of the electromagnetic wave is
converted into heat. The energy balance in the most general case is

energy in the wave = energy in the transmitted wave

+ energy in the reflected wave

+ energy absorbed.

A good example of the phenomena enumerated above is the reflection of
radio waves from the ionosphere. The ionosphere is a layer which, as the name
suggests, contains ions. There are free electrons and positively charged atoms,
so our model should work. In a metal, atoms, and electrons are closely packed;
in the ionosphere, the density is much smaller, so that the critical frequency
ωp is also smaller. Its value is a few hundred megahertz. Thus, radio waves
below this frequency are reflected by the ionosphere (this is why short radio
waves can be used for long-distance communication) and those above this
frequency are transmitted into space (and so can be used for space or satellite
communication). The width of the ionosphere also comes into consideration,
but at the wavelengths used (it is the width in wavelengths that counts) it can
well be regarded as infinitely wide.

1.6 Waves in the presence of an applied magnetic field:
cyclotron resonance

In the presence of a constant magnetic field, the characteristics of electromagn-
etic waves will be modified, but the solution can be obtained by exactly the
same technique as before. The electromagnetic eqns (1.22) and (1.23) are still
valid for the a.c. quantities; the equation of motion should, however, contain
the constant magnetic field, which we shall take in the positive z-direction. The
applied magnetic field, B0, may be large, hence v×B0 is not negligible; it is a
first-order quantity. Thus, the linearized equation of motion for this case is In order to satisfy this vector

equation, we need both the vx and
vy components. That means that
the current density, and through
that the electric and magnetic
fields, will also have both x and
y components.

m

(
∂v

∂t
+ v

τ

)
= e(E + v × B0). (1.56)

Writing down all the equations is a little lengthy, but the solution is not
more difficult in principle. It may again be attempted in the exponential form,
and ∂/∂z and ∂/∂t may again be replaced by ik and −iω, respectively. All
the differential equations are then converted into algebraic equations, and by
making the determinant of the coefficients zero we get the dispersion equation. I
shall not go through the detailed derivation here because it would take up a great
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14 The electron as a particle

deal of time, and the resulting dispersion equation is hardly more complicated
than eqn (1.50). All that happens is that ω in the ωτ term is replaced by ω ±
ωc. Thus, the dispersion equation for transverse electromagnetic waves in the
presence of a longitudinal d.c. magnetic field is

k = ω(με)1/2
(

1 + iσ

ωε {1 − i(ω ± ωc)τ }
)1/2

, (1.57)

where

ωc = e

m
B0. (1.58)

The plus and minus signs give circularly polarized electromagnetic waves
rotating in opposite directions. To see more clearly what happens, let us split
the expression under the square root into its real and imaginary parts. We get

k = ω
√
(με)

(
1 − ω2

pτ
2(1 − ωc/ω)

1 + (ω − ωc)2τ 2
+ i

ω2
pτ

ω

1

1 + (ω − ωc)2τ 2

)1/2

.

(1.59)
This looks a bit complicated. In order to get a simple analytical expression, let
us confine our attention to semiconductors where ωp is not too large and the
applied magnetic field may be large enough to satisfy the conditions,

ωc � ωp and ωcτ � 1. (1.60)

We intend to investigate now what happens when ωc is close to ω. The
second and third terms in eqn (1.59) are then small in comparison with unity;
so the square root may be expanded to give

k = ω
√
με

(
1 + i

2

ω2
pτ

ω

1

1 + (ω − ωc)2τ 2

)
. (1.61)

The attenuation of the electromagnetic wave is given by the imaginary part
of k. It may be seen that it has a maximum when ωc = ω. Since ωc is called
the cyclotron∗ frequency this resonant absorption of electromagnetic waves is∗ After an accelerating device, the

cyclotron, which works by accelerating
particles in increasing radii in a fixed
magnetic field.

known as cyclotron resonance. The sharpness of the resonance depends strongly
on the value of ωcτ , as shown in Fig. 1.7, where Im k, normalized to its value at
ω/ωc = 1, is plotted against ω/ωc. It may be seen that the resonance is hardly
noticeable at ωcτ = 1.The role of ωcτ is really analogous

to that of Q in a resonant circuit.
For good resonance we need a high
value of ωcτ .

The curves have been plotted using the approximate eqn (1.61); nevertheless
the conclusions are roughly valid for any value ofωp. If you want more accurate
resonance curves, use eqn (1.59).

Why is there such a thing as cyclotron resonance? The calculation from the
dispersion equation provides the figures, but if we want the reasons, we should
look at the following physical picture.

Suppose that at a certain point in space the a.c. electric field is at right angles
to the constant magnetic field, B0. The electron that happens to be at that point
will experience a force at right angles to B0 and will move along the arc of a
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Waves in the presence of an applied magnetic field: cyclotron resonance 15
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Fig. 1.7
Cyclotron resonance curves computed
from eqn (1.61). There is maximum
absorption when the frequency of the
electromagnetic wave agrees with the
cyclotron frequency.

circle. We can write a force equation. When the direction of motion is along the
direction of E the magnetic and centrifugal forces are both at right angles to it,
thus r is the instantaneous radius of

curvature of the electron’s path.
B0ev = mv2

r
. (1.62)

Consequently, the electron will move with an angular velocity

ωc = v

r
= e

m
B0. (1.63)

The orbits will not be circles, for superimposed on this motion is an acceleration
varying with time in the direction of the electric field. Now if the frequency of
the electric field, ω, and the cyclotron frequency, ωc, are equal, the amplitude
of the oscillation builds up. An electron that is accelerated north in one half-
cycle will be ready to go south when the electric field reverses, and thus its
speed will increase again. Under resonance conditions, the electron will take Notice that any increase in speed

must come from the electric field;
the acceleration produced by a
magnetic field changes direction,
not speed, since the force is always
at right angles to the direction of
motion.

up energy from the electric field; and that is what causes the attenuation of
the wave. Why is the ωcτ > 1 condition necessary? Well, τ is the collision
time; τ = 1/ωc means that the electron collides with a lattice atom after going
round one radian. Clearly, if the electron is exposed to the electric field for a
considerably shorter time than a cycle, not much absorption can take place. The
limit might be ωcτ = 1.

Now we may again ask the question: what is cyclotron resonance good for?
There have been suggestions for making amplifiers and oscillators with the
aid of cyclotron resonance, where by clever means the sign of attenuation is
reversed, turning it into gain. As far as I know none of these devices reached the
ultimate glory of commercial exploitation. If cyclotron resonance is no good for
devices, is it good for something else? Yes, it is an excellent measurement tool.

It is used as follows: we take a sample, put it in a waveguide and launch
an electromagnetic wave of frequency, ω. Then we apply a magnetic field and
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16 The electron as a particle

measure the amplitude of the output electromagnetic wave while the strength
of magnetic field is varied. When the output is a minimum, the condition of
cyclotron resonance is satisfied. We knowω so we knowωc; we know the value
of the magnetic field, B0 so we can work out the mass of the electron from the
formula

m = eB0

ω
. (1.64)

But, you would say, what is the point in working out the mass of the electron?
That’s a fundamental constant, isn’t it? Well, it is, but not in the present context.
When we put our electron in a crystal lattice, its mass will appear to be different.
The actual∗ value can be measured directly with the aid of cyclotron resonance.∗ The actual value is called, quite

reasonably, the effective mass. So once more, under the pressure of experimental results we have to modify
our model. The bouncing billiard balls have variable mass. Luckily, the charge
of the electron does remain a fundamental constant. We must be grateful for
small favours.The charge of the electron is a

fundamental constant in a solid; the
mass of an electron is not. 1.7 Plasma waves

Electromagnetic waves are not the only type of waves that can propagate in
a solid. There are sound waves and plasma waves as well. We know about
sound waves; but what are plasma waves? In their simplest form they are
density waves of charged particles in an electrically neutral medium. So they
exist in a solid that has some mobile carriers. The main difference between
this case and the previously considered electromagnetic case is that now we
permit the accumulation of space charge. At a certain point in space, the local
density of electrons may exceed the local density of positive carriers. Then an
electric field arises, owing to the repulsive forces between these ‘unneutralized’
electrons. The electric field tries to restore the equilibrium of positive and
negative charges. It drives the electrons away from the regions where they
accumulated. The result is, of course, that the electrons overshoot the mark,
and some time later, there will be a deficiency of electrons in the same region.
An opposite electric field is then created which tries to draw back the electrons,
etc. This is the usual case of harmonic oscillation. Thus, as far as an individual
electron is concerned, it performs simple harmonic motion.

If we consider a one-dimensional model again, where everything is the
same in the transverse plane, then the resulting electric field has a longitudinal
component only. A glance at eqn (1.26), where ∇×E is worked out, will
convince you that if the electric field has a z-component, only then ∇×E = 0,
that isB = 0. There is no magnetic field present; the interplay is solely between
the charges and the electric field. For this reason these density waves are often
referred to as electrostatic waves.

If B = 0, then eqn (1.22) takes the simple form

J + ε
∂E

∂t
= 0. (1.65)

We need the equation of motion, which for longitudinal motion will have exactly
the same form as for transverse motion, namely

m
∂v

∂t
= eE , (1.66)
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Plasma waves 17

where we have neglected the damping term mv/τ .∗
∗ Ignoring losses will considerably
restrict the applicability of the formulae
derived, but our aim here is to show no
more than the simplest possible case.

Current density and velocity are related again by

Ne0 is the equilibrium density of
electrons.

J = Ne0ev. (1.67)

We have changed over to scalar quantities.
Substituting E from eqn (1.66) and J from eqn (1.67) into (1.65), we obtain

Ne0ev + εm

e

∂2v

∂t2
= 0. (1.68)

(a)

k

v

vp

vp

(c)

Light line
(b)

2√

Fig. 1.8
Dispersion curves of plasma waves.
(a) Plasma density wave, (b) bulk
plasma wave or bulk plasmon
polariton, (c) surface plasma wave or
surface plasmon polariton. The
equation of the light line is ω = kc.

Following again our favourite method of replacing ∂/∂t by −iω, eqn (1.69)
reduces to

v
{
Ne0e + εm

e
(−ω2)

}
= 0. (1.69)

Since v must be finite, this means

Ne0e − εm

e
ω2 = 0, (1.70)

or, rearranging,

ω2 = Ne0e
2

mε
. (1.71)

This is our dispersion equation. It is a rather odd one because k does not appear
in it. A relationship between k and ω gives the allowed values of k for a given
ω. If k does not appear in the dispersion equation, all values of k are allowed.
On the other hand, there is only a single value of ω allowed. Looking at it more
carefully, we may recognize that it is nothing else but ωp, the frequency we met
previously as the critical frequency of transparency for electromagnetic waves.
Historically, it was first discovered in plasma oscillations (in gas discharges
by Langmuir); so it is more usual to call it the ‘plasma frequency’, and that is
where the subscript p comes from.

AirMetal

Amplitude

Fig. 1.9
A surface wave may exist at a
metal–air boundary. The amplitude of
the wave is highest at the surface,
from where it declines exponentially
in both directions.

The dispersion curve given by eqn (1.71) is just a straight horizontal line,
as shown in Fig. 1.8. The dispersion curve of the electromagnetic wave
corresponding to eqn (1.53) may also be seen in the same figure. As explained
before, in the latter case there is no propagation unless the frequency is above the
plasma frequency. For high enough frequencies the dispersion curve tends to the
light line, i.e. its velocity tends to the velocity of light. The wave is of course not
a pure electromagnetic wave, which would always propagate with the velocity
of light. It is a combination of a plasma wave and an electromagnetic wave. One
might call it a hybrid wave. In fact the modern term is much more pompous.
It is called a bulk plasma wave or, even worse, a bulk plasmon polariton. The
word ‘polariton’ is attached to it to signify that it is a hybrid wave. But why
a bulk plasmon polariton? Because there is another variety as well, called a
surface plasma wave or surface plasmon polariton. Such a wave, needless to
say, is called a surface wave because it sticks to a surface. What kind of surface?
The best example of such a wave, and the one relevant here, is a wave at the
interface of a metal and a dielectric, say air. If the wave sticks to the surface,
its amplitude must decline in both directions, both in the metal and in air, as
shown schematically in Fig. 1.9. One could say that it is the electric field that
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18 The electron as a particle

Fig. 1.10
Electric field lines for a surface
plasma wave in the vicinity of a
metal–air boundary.

Metal E

H.

Dielectric

acts as the glue, sticking to charges in the metal as illustrated in Fig. 1.10. We
shall not derive the dispersion equation here. It is a fairly long derivation. We
just give here the equation itself, which is quite simple:

k = ω(ε0μ0)
1/2

[
εeff

1 + εeff

]1/2

, (1.72)

where μ0 = 4π × 10−7 H m−1 is the free-space permeability and

(ε0μ0)
−1/2 = c. (1.73)

For propagation, k must be real. This occurs when

εeff < −1. (1.74)

Conveniently, as discussed in the previous section, the effective dielectric
constant of a metal is negative below the plasma frequency. The limit is when
εeff = −1. Below this frequency (see eqn (1.53)), εeff declines further so
that eqn (1.72) always yields a real value and, consequently, a surface wave
can always exist. Substituting eqn (1.53) into (1.72), we find the dispersion
equation. The corresponding dispersion curve is shown in Fig. 1.8. The wave
is what one calls a slow wave since it is to the right of the light line, having a
phase velocity always below that of light.

This is for one boundary. If there are two boundaries, each one of them will
have a surface wave. For a thick metal slab, the two surface waves do not know
about each other. However, for a thin∗ slab the two surface waves interact.∗ ‘Thin’ really means thin. At a

wavelength of 360 nm the slab must be
thinner than 50 nm.

Curve (c) in Fig. 1.8 splits into two branches, as may be seen in Fig. 1.11.
It may be shown that for the upper mode, less power is carried in the metal
than in the air. Since electron motion in the metal is responsible for losses,
the mode which propagates more in the air is less lossy. This mode is called
a long-range surface plasmon. How long is ‘long-range’? Not very long. At
optical frequencies, ‘long range’ may mean 20 mm at best. On the other hand,
with modern techniques, one can have a large number of various devices within
20 mm.
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(b)

(a)

k0

v

vp

vp

(c)

Light line

2√

Fig. 1.11
Dispersion curves: (a) for a single
metal–air boundary [same as curve (c)
in Fig. 1.8]; (b), (c) for a thin metal
slab in air.

1.8 Heat

When the aim is to unravel the electrical properties of materials, should we take
a detour and discuss heat? In general, no, we should not do that but when the
two subjects overlap a little digression is permissible. I want to talk here first
about the relationship between the electrical conductivity and heat conductivity,
and then point out some discrepancies suggesting that something is seriously
wrong with our model.

We have already discussed electrical conductivity. Heat conductivity is the
same kind of thing but involves heat. An easy but rather unpleasant way of
learning about it is to touch a piece of metal in freezing weather. The heat from
your finger is immediately conducted away and you may get frostbite. Now
back to that relationship. Denoting heat conductivity by K , it was claimed
around the middle of the nineteenth century that for metals

K

σ
= CWFT (1.75)

whereCWF, the so-called Wiedemann–Franz constant, was empirically derived.
It was taken as

CWF = 2.31 × 10−8 W S−1K−2. (1.76)

How well is the Wiedemann–Franz law satisfied? Very well, as Table 1.2
shows. Can it be derived from our model in which our electrons bounce about
in the solid? Yes, that is what Drude did in about 1900. Let us follow what
he did.

At equilibrium, the average energy of an electron (eqn 1.1) isE = 〈3/2〉kBT .
The specific heat CV is defined as the change in the average energy per unit
volume with temperature

CV = Ne
dE

dT
= Ne

(
3

2

)
kB. (1.77)

Let us now consider heat flow, assuming that all the heat is carried by the
electrons. We shall take a one-dimensional model in which the electrons move
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20 The electron as a particle

Table 1.2 Electrical and thermal conductivities measured at
293 K

Metal σ

(107 �−1 m−1)

K

(W m−1 K−1)

CWF

(10−8 W�K−2)

Silver 6.15 423 2.45
Copper 5.82 387 2.37
Aluminium 3.55 210 2.02
Sodium 2.10 135 2.18
Cadmium 1.30 102 2.64
Iron 1.00 67 2.31

only in the x direction. If there is a heat flow the average energy may change
slightly from point to point. Taking an interval from x −  to x +  (remember 
is the mean free path) the average at the two boundaries will be E − (dE/dx)
and E + (dE/dx) respectively. Referring now to a result from the kinetic
theory of gases that the number of particles flowing in a given direction per
unit surface per unit time is 1

6Nevth, the net flow across the plane at x is

net energy flow = (1/3)Nevth

(
dE

dx

)
. (1.78)

According to the simple theory of heat, the flow of heat energy is proportional
to the gradient of temperature where the proportionality constant is the heat
conductivity, K , yielding

net heat energy flow = K

(
dT

dx

)
. (1.79)

Equating now eqn (1.78) with (1.79) we obtain

K = 1

2
NevthkB. (1.80)

We may now relate the heat conductivity to the electrical conductivity as follows

K

σ
=

1
2NeVthkB

Ne(e2τ)/m
= 3

2

(
kB

e

)2

T (1.81)

where the relation  = vthτ (neglect vD in eqn (1.11)) has been used. The
functional relationship is exactly the same: the ratio of the two conductivities is
indeed proportional to T as was stipulated by the empirical formula. But what
is the value of the constant? Inserting the values of e and kB into eqn (7.81), we
obtain for the Wiedemann–Franz constant a value of 1.22 × 10−8 W S−1 K−2,
about a factor 2 smaller than the experimental value. This was regarded at
the time as extremely good and as a justification of the electron as a particle
model. Well, the factor of 2 was bothersome and the separate variation of
the two conductivities with temperature did not fit very well either. All that
was perhaps acceptable, but a closer look at the specific heat of metals versus
insulators revealed that something was seriously wrong.

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net
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Up to now we have talked only about the electronic contribution to the
specific heat and quoted it as being 3

2NekB, but classically the lattice will also
contribute a term∗ 3NkB where N is the density of atoms. Thus, we should ∗ Valid at room temperature but fails at

low temperatures.expect an alkali metal (in which Ne = N ) to have a 50% greater specific
heat than an insulator having the same number of lattice atoms because of the
electronic contribution. These expectations are, however, wrong. It turns out

Metals behave as if the free
electrons make practically no
contribution to the specific heat.

that metals and insulators have about the same specific heat. Our model fails
again to explain the experimentally observed value. What shall we do? Modify
our model. But how? Up to now the modifications have been fairly obvious.
The ‘wrong sign’of the Hall voltage could be explained by introducing positive
carriers, and when cyclotron resonance measurements showed that the mass of
an electron in a solid was different from the ‘free’electron mass, we simply said:
‘all right, the electron’s mass is not a constant. How should we modify our model
now?’ There seems to be no simple way of doing so. An entirely new start is
needed.

There is no quick fix for this real dilemma. We have to go quite deeply into
wave theory and quantum mechanics. Finally, all is revealed in Chapter 6.3
when we find that electrons do make a quantifiable contribution to specific
heat, which turns out to be very small.

Exercises

1.1. A 10 mm cube of germanium passes a current of 6.4 mA
when 10 m V is applied between two of its parallel faces.
Assuming that the charge carriers are electrons that have a
mobility of 0.39 m2V−1 s−1, calculate the density of carriers.
What is their collision time if the electron’s effective mass in
germanium is 0.12m0 where m0 is the free electron mass?

1.2. An electromagnetic wave of free space wavelength
0.5 mm propagates through a piece of indium antimonide
that is placed in an axial magnetic field. There is resonant
absorption of the electromagnetic wave at a magnetic field,
B = 0.323 wb m−2.

(i) What is the effective mass of the particle in question?
(ii) Assume that the collision time is 15 times longer (true

for electrons around liquid nitrogen temperatures) than
in germanium in the previous example. Calculate the
mobility.

(iii) Is the resonance sharp? What is your criterion?

1.3. If both electrons and holes are present the conductivities,
add. This is because under the effect of an applied electric
field the holes and electrons flow in opposite directions, and a
negative charge moving in the (say) +z-direction is equivalent
to a positive charge moving in the −z-direction.

Assume that in a certain semiconductor the ratio of electronic
mobility, μe, to hole mobility, μh, is equal to 10, the density
of holes is Nh = 1020m−3, and the density of electrons is

Ne = 1019m−3. The measured conductivity is
0.455 ohm−1m−1. Calculate the mobilities.

1.4. Measurements on sodium have provided the following
data: resistivity 4.7 × 10−8 ohm m, Hall coefficient −2.5 ×
10−10 m3 C−1, critical wavelength of transparency 210 nm,
and density 971 kg m−3.

Calculate (i) the density of electrons, (ii) the mobility,
(iii) the effective mass, (iv) the collision time, (v) the number
of electrons per atom available for conduction.

Electric conduction in sodium is caused by electrons. The
number of atoms in a kg mole is 6.02 × 1026 and the atomic
weight of sodium is 23.

1.5. For an electromagnetic wave propagating in sodium plot
the real and imaginary part of the wave number k as a function
of frequency (use a logarithmic scale) from 106 to 1016 Hz.

Determine the penetration depth for 106, 1015, and 2 ×
1015 Hz.

Use the conductivity and the collision time as obtained from
example 1.4.

1.6. A cuboid of Ge has contacts over all of its 2 mm × 1 mm
ends and point contacts approximately half way along its 5 mm
length, at the centre of the 5 mm×1 mm faces. Amagnetic field
can be applied parallel to this face. A current of 5 mA is passed
between the end contacts when a voltage of 310 mV is applied.
This generates a voltage across the point contacts of 3.2 mV
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22 The electron as a particle

with no magnetic field and 8.0 mV when a field of 0.16 T is
applied.

(i) Suggest why an apparent Hall voltage is observed with
no magnetic field.

(ii) Using the corrected Hall voltage find the carrier density
in the Ge sample.

(iii) Estimate the conductivity of the Ge.
(iv) What is the mobility of the carriers?
(v) Is it a p or n type semiconductor?

1.7. The Hall effect (see Fig. 1.3) is measured in a semi-
conductor sample in which both electrons and holes are present.
Under the effect of the magnetic field both carriers are deflected
in the same transverse direction. Obviously, no electric field
can stop simultaneously both the electrons and the holes, hence
whatever the Hall voltage there will always be carrier motion
in the transverse direction. Does this mean that there will be an
indefinite accumulation of electrons and holes on the surface
of one of the boundaries? If not, why not?

1.8. Derive an expression for the Hall coefficient RH [still
defined by eqn (1.20)] when both electrons and holes are
present.

The experimentally determined Hall coefficient is found to
be negative. Can you conclude that electrons are the dominant
charge carriers?

(Hint: Write down the equation of motion (neglect inertia)
for both holes and electrons in vectorial form. Resolve the
equations in the longitudinal (z-axis in Fig. 1.3) and in the
transverse (x-axis in Fig. 1.3) directions. Neglect the product of

transverse velocity with the magnetic field. Find the transverse
velocities for electrons and holes. Find the transverse current,
and finally find the transverse field from the condition that the
transverse current is zero.)

1.9. An electromagnetic wave is incident from Medium 1 upon
Medium 2 as shown in Figs 1.4 and 1.5. Derive expressions for
the reflected and transmitted power. Show that the transmitted
electromagnetic power is finite when ω > ωp and zero when
ω < ωp.

[Hint: Solve Maxwell’s equations separately in both media.
Determine the constants by matching the electric and magnetic
fields at the boundary. The power in the wave (per unit surface)
is given by the Poynting vector.]

1.10. An electromagnetic wave is incident upon a medium
of width d, as shown in Fig. 1.6. Derive expressions for
the reflected and transmitted power. Calculate the transmitted
power for the cases d = 0.25 μm and d = 2.5 μm when
ω = 6.28 × 1015 rad s−1,ωp = 9 × 1015 rad s−1 (take ε = ε0

and μ = μ0).

1.11. In a medium containing free charges the total current
density may be written as Jtotal = J − iωεE , where J is the
particle current density, E electric field, ε dielectric constant,
and ω frequency of excitation. For convenience, the above
expression is often written in the form Jtotal = −iω ¯̄εeqvE ,
defining thereby an equivalent dielectric tensor ¯̄εeqv. Determine
¯̄εeqv for a fully ionized electron-ion plasma to which a constant
magnetic field B0 is applied in the z-direction.
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The electron as a wave 2
The old order changeth, yielding place to new.

Tennyson The Idylls of the King

Vezess uj utakra, Lucifer.
Madách Az Ember Tragédiája

2.1 Introduction

We have considered the electron as a particle and managed to explain
successfully a number of interesting phenomena. Can we explain the rest of the
electronics by gentle modifications of this model? Unfortunately (for students
if not lecturers), the answer is no. The experimental results on specific heat have
already warned us that something is wrong with our particles, but the situation
is, in fact, a lot worse. We find that the electron has wavelike properties too.
The chief immigrant in this particular woodpile, the experiment that could
not possibly be explained by a particle model, was the electron diffraction
experiment of Davisson and Germer in 1927. The electrons behaved as
waves.

We shall return to the experiment a little later; let us see first what the basic
difference is between particle and wave behaviour. The difference can best
be illustrated by the following ‘thought’ experiment. Suppose we were to fire
bullets at a bullet-proof screen with two slits in it (Fig. 2.1). We will suppose that
the gun barrel is old and worn, so that the bullets bespatter the screen around the
slits uniformly after a fairly large number of shots. If at first, slit B is closed by
a bullet-proof cover, the bullets going through A make a probability pattern on
the target screen, shown graphically in Fig. 2.1 as a plot of probability against
distance from the gun nozzle–slit A axis. Calling this pattern P1, we expect

Screen
with holes

Target
screen

Gun

P1

P2

P12 = P1 + P2

A

B

Fig. 2.1
An experiment with bullets.
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24 The electron as a wave

Fig. 2.2
An experiment with waves.

Screen
with holes

Wave
detector

•

P1

P2

P12 = P1 + P2

Source
of

waves

A

B

(and get) a similar but displaced pattern P2 if slit B is opened and slit A is
closed. Now if both slits are open, the combined pattern, P12, is simply

P12 = P1 + P2. (2.1)

We will now think of a less dangerous and more familiar experiment, with
waves in a ripple tank (Fig. 2.2). The gun is replaced by a vibrator or ripple-
generator, the slits are the same, and in the target plane there is a device to
measure the ripple intensity, that is a quantity proportional to the square of the
height of the waves produced. Then, with one slit open we find

P1 = |h1|2, (2.2)

or with the other open

P2 = |h2|2, (2.3)

where we have taken h1 and h2 as complex vectors and the constant of
proportionality is unity. The probability functions are similar to those obtained
with one slit and bullets. So far, waves and bullets show remarkable similarity.
But with both slits open we find

P12 �= P1 + P2. (2.4)

Instead, as we might intuitively suppose, the instantaneous values of the wave
heights from each slit add; and as the wavelength of each set of ripples is the
same, they add up in the familiar way

δ is the phase difference between
the two interfering waves.

P12 = |h1 + h2|2 = |h1|2 + |h2|2 + 2|h1||h2| cos δ. (2.5)

Thus, the crucial difference between waves and particles is that waves interfere,
but particles do not.

The big question in the 1920s was: are electrons like bullets or do they follow
a theoretical prediction by L. de Broglie (in 1924)? According to de Broglie,
the electrons should have wavelike properties with a wavelength inversely
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Fig. 2.3
Schematic representation of Davisson
and Germer’s experiment with low
energy electrons. The electrons are
effectively reflected by the surface
layer of the crystal. The detector
shows maximum intensity when the
individual reflections add in phase.

proportional to particle momentum, namely h is Planck’s constant∗ (not the
height of the waves in the ripple
tank) with a rather small numerical
value, namely 6.6 × 10−34 J s, and
m and v are the mass and speed of
the electron.

λ = h

mv
. (2.6)

To test de Broglie’s hypothesis, Davisson (Nobel Prize, 1937) and Germer
fired a narrow beam of electrons at the surface of a single crystal of nickel
(Fig. 2.3). The wavelike nature of the electron was conclusively demonstrated.
The reflected beam displayed an interference pattern.

The arrangement is analogous to a reflection grating in optics; the grating
is replaced by the regular array of atoms and the light waves are replaced by
electron waves. Maximum response is obtained when the reflections add in
phase, that is when the condition n is an integral number, d is the

lattice spacing, and λ is the wave-
length to be determined as
a function of electron-gun
accelerating voltage.

nλ = d sin θ (2.7)

is satisfied.
From eqn (2.7) the difference in angle between two successive maxima is

of the order of λ/d. Thus, if the wavelength of the radiation is too small, the
maxima lie too close to each other to be resolved. Hence, for good resolution,
the wavelength should be about equal to the lattice spacing, which is typically

∗Planck (Nobel Prize, 1918) introduced
this quantity in 1901 in a theory to
account for discrepancies encountered in
the classical picture of radiation from
hot bodies. He considered a radiator as
an assembly of oscillators whose energy
could not change continuously, but must
always increase or decrease by a quantum
of energy, hf. This was the beginning
of the twentieth century for science and
science has not been the same since. The
confidence and assurance of nineteenth-
century physicists disappeared, probably
forever. The most we can hope nowadays
is that our latest models and theories go
one step further in describing Nature.

a fraction of a nanometre. The electron velocity corresponding to a wavelength
of 0.1 nm is

v = h

mλ
= 6.6 × 10−34

9.1 × 10−31 × 10−10
J s kg−1 m−1 = 7.25 × 106 ms−1. (2.8)

The accelerating voltage may be obtained from the condition of energy
conservation

1
2mv

2 = eV ,

whence

V = mv2

2e
= 9.1 × 10−31(7.25 × 106)2

2 × 1.6 × 10−19
kg m2 s−2 C−1 = 150 V. (2.9)

The voltages used by Davisson and Germer were of this order.
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26 The electron as a wave

So electrons are waves. Are protons waves? Yes, they are; it can be
shown experimentally. Are neutrons waves? Yes, they are; it can be shown
experimentally. Are bullets waves? Well, they should be, but there are some
experimental difficulties in proving it. Take a bullet which has a mass of 10−3 kg
and travels at a velocity 103 m s−1. Then the bullet’s wavelength is 6.6 × 10−34

m. Thus, our reflecting agents or slits should be about 10−34 m apart to observe
the diffraction of bullets, and that would not be easily realizable. Our bullets are
obviously too fast. Perhaps with slower bullets we will get a diffraction pattern
with slits a reasonable distance apart. Taking 10 mm for the distance between
the slits and requiring the same wavelength for the bullets, their velocity comes
to 10−28 m s−1; that is, the bullet would travel 1 m in about 1021 years. Best
modern estimates give the age of the universe as 1010 years so this way of doing
the experiment runs again into practical difficulties.

The conclusion from this rather eccentric aside is of some importance. It
seems to suggest that everything, absolutely everything, that we used to regard
as particles may behave like waves if the right conditions are ensured. The
essential difference between electrons and particles encountered in some other
branches of engineering is merely one of size. Admittedly, the factors involved
are rather large. The bullet in our chosen example has a mass 1027 times the
electron mass, so it is not entirely unreasonable that they behave differently.

2.2 The electron microscope

Particles are waves, waves are particles. This outcome of a few simple
experiments mystifies the layman, delights the physicist, and provides the
philosopher with material for a couple of treatises. What about the engineer? The
engineer is supposed to ask the consequential (though grammatically slightly
incorrect) question; what is this good for?

Well, one well-known practical effect of the wave nature of light is that the
resolving power of a microscope is fundamentally limited by the wavelength
of the light. If we want greater resolution, we need a shorter wavelength. Let
me use X-rays then. Yes, but they can not be easily focused. Use electrons then;
they have short enough wavelengths. An electron accelerated to a voltage of
150 V has a wavelength of 0.1 nm. This is already four thousand times shorter
than the wavelength of violet light, and using higher voltages we can get even
shorter wavelengths. Good, but can electrons be focused? Yes, they can. Very
conveniently, just about the same time that Davisson and Germer proved the
wave properties of electrons, Busch discovered that electric and magnetic fields
of the right configuration can bring a diverging electron beam to a focus. So all
we need is a fluorescent screen to make the incident electrons visible, and the
electron microscope is ready.

You know, of course, about the electron microscope, that it has a resolving
power so great that it is possible to see large molecules with it, and using
the latest techniques even individual atoms can be made visible. Our aim is
mainly to emphasize the mental processes that lead from scientific discoveries
to practical applications. But besides, there is one more interesting aspect
of the electron microscope. It provides perhaps the best example for what is
known as the ‘duality of the electron’. To explain the operation of the electron
microscope, both the ‘wave’and the ‘particle’aspects of the electron are needed.
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Some properties of waves 27

The focusing is possible because the electron is a charged particle, and the great
resolution is possible because it is a wave of extremely short wavelength.

In conclusion, it must be admitted that the resolving power of the electron
microscope is not as large as would follow from the available wavelengths of
the electrons. The limitation in practice is caused by lens aberrations.

2.3 Some properties of waves

You are by now familiar with all sorts of waves, and you know that a wave of
frequency, ω, and wave number, k, may be described by the formula

u = a exp iϕ; ϕ = −(ωt − kz), (2.10)

where the positive z-axis is chosen as the direction of propagation.
The phase velocity may be defined as

vp = ∂z

∂t

∣∣∣∣
ϕ=constant

= ω

k
= f λ. (2.11)

This is the velocity with which any part of the wave moves along. For a single
frequency wave this is fairly obvious. One can easily imagine how the crest
moves. But what happens when several waves are superimposed? The resultant
wave is given by

u =
∑
n

an exp{−i(ωnt − knz)}, (2.12)

where to each value of kn belongs an an and anωn. Going over to the continuum
case, when the number of components within an interval �k tends to infinity,
we get

u =
∫ ∞

−∞
a(k) exp{−i(ωt − kz)} dk, (2.13)

where a(k) and ω are functions of k.
a(k)

1
Δk

kk0

Fig. 2.4
The amplitude of the waves as a
function of wave number, described
by eqn (2.15).

We shall return to the general case later; let us take for the time being,
t = 0, then

u(z) =
∫ ∞

−∞
a(k) exp(ikz) dk (2.14)

and investigate the relationship between a(k) and u(z). We shall be interested
in the case when the wave number and frequency of the waves do not spread out
too far, that is a(k) is zero everywhere with the exception of a narrow interval
�k. The simplest possible case is shown in Fig. 2.4 where

a(k) = 1 for k0 − �k

2
< k < k0 + �k

2
(2.15)

and
a(k) = 0

outside this interval. The integral (2.14) reduces then to

u(z) =
∫ k0+�k/2

k0−�k/2
exp (ikz) dk, (2.16)

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


28 The electron as a wave

Fig. 2.5
The spatial variation of the amplitude
of the wave packet of Fig. 2.4.

z

 u(z)

Δz

which can be easily integrated to give

u(z) = �k exp (ik0z)
sin 1

2 (�kz)

1
2 (�kz)

. (2.17)

We have here a wave whose envelope is given by the function

sin 1
2 (�kz)

1
2 (�kz)

, (2.18)

plotted in Fig. 2.5. It may be seen that the function is rapidly decreasing outside a
certain interval �z. We may say that the wave is essentially contained in this
‘packet’, and in future we shall refer to it as a wave packet. We chose the
width of the packet, rather arbitrarily, to be determined by the points where the
amplitude drops to 0.63 of its maximum value, that is where

�kz

2
= ±π

2
. (2.19)

Hence, the relationship between the spread in wave number �k, and the spread
in space �z, is as follows

�k�z = 2π . (2.20)

An obvious consequence of this relationship is that by making �k large,
�z must be small, and vice versa.

For having a narrow wave packet
in space, we need a larger spread
in wave number. Let us return now to the time-varying case, still maintaining that a(k) is

essentially zero beyond the interval �k. Equation (2.13) then takes the form

u =
∫ k0+�k/2

k0−�k/2
a(k) exp{−i(ωt − kz)}dk. (2.21)
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Applications to electrons 29

Let us now rewrite the above formula in the following form

ω0 is the frequency at k = k0.u(z, t) = A(z, t) exp{−i(ω0t − k0z)}, (2.22)

where

A(z, t) =
∫ k0+�k/2

k0−�k/2
a(k) exp[−i{(ω − ω0)t − (k − k0)z}]dk. (2.23)

We may now define two velocities. One is ω0/k0, which corresponds to
the previously defined phase velocity, and is the velocity with which the central
components propagate. The other velocity may be defined by looking at the
expression for A. Since A represents the envelope of the wave, we may say
that the envelope has the same shape whenever

(ω − ω0)t − (k − k0)z = constant. (2.24)

Hence, we may define a velocity,

vg = ∂z

∂t
= ω − ω0

k − k0
, (2.25)

which, for sufficiently small δk, reduces to

vg is called the group velocity
because it gives the velocity of the
wave packet.

vg =
(
∂ω

∂k

)
k=k0

. (2.26)

2.4 Applications to electrons

We have discussed some properties of waves. It has been an exercise in
mathematics. Now we take a deep plunge and will try to apply these properties
to the particular case of the electrons. The first step is to identify the wave
packet with an electron in your mental picture. This is not unreasonable. We
are saying, in fact, that where the ripples are, there must be the electron. If the
ripples are uniformly distributed in space, as is the case for a single frequency
wave, the electron can be anywhere. If the ripples are concentrated in space
in the form of a wave packet, the presence of an electron is indicated. Having
identified the wave packet with an electron, we may identify the velocity of the
wave packet with the electron velocity.

What can we say about the energy of the electron? We know that a photon
of frequency ω has an energy

E = hf = h̄ω, (2.27)

where f is the frequency of the electromagnetic wave and h̄ = h/2π .
Analogously, it may be suggested that the energy of an electron in a wave
packet centred at the frequency ω is given by the same formula. Hence, we
may write down the energy of the electron, taking the potential energy as zero,
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30 The electron as a wave

in the form

h̄ω = 1
2mv

2
g. (2.28)

We can differentiate this partially with respect to k to get

h̄
∂ω

∂k
= mvg

∂vg

∂k
(2.29)

which, with the aid of eqn (2.26), reduces to

h̄ = m
∂vg

∂k
. (2.30)

Integrating, and taking the integration constant as zero, we get

h̄k = mvg, (2.31)

which can be expressed in terms of wavelength as

λ = h

mvg
, (2.32)

and this is nothing else but de Broglie’s relationship. Thus, if we assume theLouis de Broglie, Nobel Prize,
1929. validity of the wave picture, identify the group velocity of a wave packet with

the velocity of an electron, and assume that the centre frequency of the wave
packet is related to the energy of the electron by Planck’s constant, de Broglie’s
relationship automatically drops out.

This proves, of course, nothing. There are too many assumptions, too
many identifications, representations, and interpretations; but, undeniably, the
different pieces of the jigsaw puzzle do show some tendency to fit together. We
have now established some connection between the wave and particle aspects,
which seemed to be entirely distinct not long ago.

What can we say about the electron’s position? Well, we identified the
position of the electron with the position of the wave packet. So, wherever the
wave packet is, there is the electron. But remember, the wave packet is not
infinitely narrow; it has a width �z, and there will thus be some uncertainty
about the position of the electron.

Let us look again at eqn (2.20). Taking note of the relationship expressed in
eqn (2.31) between wave number and momentum, eqn (2.20) may be written as

If we know the position of the
electron with great precision, that
is if �z is very small, then the
uncertainty in the velocity of the
electron must be large.

�p�z = h. (2.33)

This is known as Heisenberg’s (Nobel Prize, 1932) uncertainty relationship.
It means that the uncertainty in the position of the electron is related to the
uncertainty in the momentum of the electron. Let us put in a few figures to see
the orders of magnitude involved. If we know the position of the electron with
an accuracy of 10−9 m then the uncertainty in momentum is

�p = 6.6 × 10−25 kg m s−1, (2.34)
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corresponding to

�v ∼= 7 × 105 m s−1, (2.35)

that is, the uncertainty in velocity is quite appreciable.
Taking macroscopic dimensions, say 10−3 m for the uncertainty in position,

and a bullet with a mass 10−3 kg, the uncertainty in velocity decreases to

�v = 6.6 × 10−28 m s−1, (2.36)

which is something we can easily put up with in practice. Thus, whenever
we come to very small distances and very light particles, the uncertainty in
velocity becomes appreciable, but with macroscopic objects and macroscopic
distances the uncertainty in velocity is negligible. You can see that everything
here depends on the value ofh, which happens to be rather small in our universe.
If it were larger by a factor of, say 1040, the police would have considerable
difficulty in enforcing the speed limit.

The uncertainty relationship has some fundamental importance. It did
away (probably for ever) with the notion that distance and velocity can
be simultaneously measured with arbitrary accuracy. It is applicable not
only to position and velocity, but to a number of other related pairs of
physical quantities.∗ It may also help to explain qualitatively some complicated ∗ You might find it interesting to learn

that electric and magnetic intensities are
also subject to this law. They cannot
be simultaneously measured to arbitrary
accuracy.

phenomena. We may, for example, ask the question why there is such a thing
as a hydrogen atom consisting of a negatively charged electron and a positively
charged proton. Why doesn’t the electron eventually fall into the proton? Armed
with our knowledge of the uncertainty relationship, we can now say that this
event is energetically unfavourable. If the electron is too near to the proton
then the uncertainty in its velocity is high; so it may have quite a high velocity,
which means high kinetic energy. Thus the electron’s search for low potential
energy (by moving near to the proton) is frustrated by the uncertainty principle,
which assigns a large kinetic energy to it. The electron must compromise and
stay at a certain distance from the proton (see example 4.4).

2.5 Two analogies

The uncertainty relationship is characteristic of quantum physics. We would
search in vain for anything similar in classical physics. The derivation is,
however, based on certain mathematical formulae that also appear in some
other problems. Thus, even if the phenomena are entirely different, the common
mathematical formulation permits us to draw analogies.

Analogies may or may not be helpful. It depends to a certain extent on the
person’s imagination or lack of imagination and, of course, on familiarity or
lack of familiarity with the analogue.

We believe in the use of analogies. We think they can help, both in
memorizing a certain train of thought, and in arriving at new conclusions
and new combinations. Even such a high-powered mathematician as
Archimedes resorted to mechanical analogies when he wanted to convince
himself of the truth of certain mathematical theorems. So this is quite a
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32 The electron as a wave

Fig. 2.6
A rectangular pulse and its frequency
spectrum.

Amplitude
(b)

ωl/τ

Amplitude
(a)

tτ

respectable method, and as we happen to know two closely related analogies,
we shall describe them.

Notice first of all that u(z) and a(k) are related to each other by a Fourier
integral in eqn (2.14). In deriving eqn (2.20), we made the sweeping assumption
that a(k) was constant within a certain interval, but this is not necessary. We
would get the same sort of final formula, with slightly different numerical
constants, for any reasonable a(k). The uncertainty relationship, as derived
from the wave concept, is a consequence of the Fourier transform connection
between a(k) and u(z). Thus, whenever two functions are related in the same
way, they can readily serve as analogues.

Do such functions appear in engineering practice? They do. The time
variation of a signal and its frequency spectrum are connected by Fourier
transform. A pulse of the length τ has a spectrum (Fig. 2.6) exactly like the
envelope we encountered before. The width of the frequency spectrum, referred
to as bandwidth in common language, is related to the length of the pulse.
All communication engineers know that the shorter the pulse the larger is the
bandwidth to be transmitted. For television, for example, we need to transmit
lots of pulses (the light intensity for some several hundred thousand spots
twenty-five times per second), so the pulses must be short and the bandwidth
large. This is why television works at much higher frequencies than radio
broadcasting.

In the mathematical formulation, k and z of eqn (2.20) are to be replaced
by the frequency ω and time t . Hence, the relationship for communication
engineering takes the form,

�ω�t = 2π . (2.37)

The analogy is close indeed.
In the second analogue the size of an aerial and the sharpness of the radiation

pattern are related. It is the same story. In order to obtain a sharp beam one needs
a big aerial. So if you have ever wondered why radio astronomers use such giant
aerials, here is the answer. They need narrow beams to be able to distinguish
between the various radio stars, and they must pay for them by erecting (or
excavating) big antennas.∗

∗ Incidentally there is another reason why
radio telescopes must be bigger than,
say, radar aerials. They do a lot of work
at a wavelength of 210 mm, which is
seven times longer than the wavelength
used by most radars. Hence for the same
resolution an aerial seven times bigger is
needed.

The mathematical relationship comes out as follows:
�θ is the beamwidth, �z is
the linear dimension of the
aerial and λ is the wavelength
of the electromagnetic radiation
(transmitted or received). �θ �z = λ. (2.38)
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Exercises

2.1. Find the de Broglie wavelength of the following particles:

(i) an electron in a semiconductor having average thermal
velocity at T = 300 K and an effective mass of m∗

e =
am0,

(ii) a helium atom having thermal energy at T = 300 K,
(iii) an α-particle (He4 nucleus) of kinetic energy 10 MeV.

2.2. A finite wave train moves with constant velocity v. Its
profile as a function of space and time is given as

f (a) = exp iu
0

if
|u| < u0

|u| > u0

where u = �t − kx and k = �/v.
At t = 0 the wave packet extends from x = −u0v �

−1 to
x = u0v �

−1, that is, it has a length of �l = 2u0v �
−1.

Find the spectral composition of the wave train at x = 0 and
find from that the spectral width �ω (range within which the
amplitude drops to 63% of its maximum value).

Prove the uncertainty relationship

�p�l = h.

2.3. A typical operating voltage of an electron microscope is
50 kV.

(i) What is the smallest distance that it could possibly
resolve?

(ii) What energy of neutrons could achieve the same
resolution?

(iii) What are the main factors determining the actual
resolution of an electron microscope?

2.4. Electrons accelerated by a potential of 70 V are incident
perpendicularly on the surface of a single crystal metal. The

crystal planes are parallel to the metal surface and have a
(cubic) lattice spacing of 0.352 nm. Sketch how the intensity
of the scattered electron beam would vary with angle.

2.5. A beam of electrons of 10 keV energy passes
perpendicularly through a very thin (of the order of a
few nanometres) foil of our previous single crystal metal.
Determine the diffraction pattern obtained on a photographic
plate placed 0.1 m behind the specimen. How will the
diffraction pattern be modified for a polycrystalline specimen?
(Hint: Treat the lattice as a two-dimensional array.)

2.6. Consider again an electron beam incident upon a thin
metal foil but look upon the electrons as particles having a
certain kinetic energy. In experiments with aluminium foils (J.
Geiger and K.Wittmaack, Zeitschrift für Physik, 195, 44, 1966)
it was found that a certain fraction of the electrons passing
through the metal had a loss of energy of 14.97 eV. We could
explain this loss as being the creation of a particle of that much
energy. But what particle? It cannot be a photon (a transverse
electromagnetic wave in the wave picture) because an electron
in motion sets up no transverse waves. It must be a particle
that responds to a longitudinal electric field. So it might be a
plasma wave of frequency ωp which we could call a ‘plasmon’
in the particle picture. The energy of this particle would be
h̄ωp.

Calculate the value of h̄ωp for aluminium assuming three
free electrons per atom. Compare it with the characteristic
energy loss found.

The density of aluminium is 2700 kg m−3 and its atomic
weight is 27.
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3 The electron

That’s how it is, says Pooh.
A.A. Milne Now we are six

3.1 Introduction

We have seen that some experimental results can be explained if we regard the
electron as a particle, whereas the explanation of some other experiments is
possible only if we look upon our electron as a wave. Now which is it? Is it a
particle or is it a wave? It is neither, it is an electron.

An electron is an electron; this seems a somewhat tautological definition.
What does it mean? I want to say by this that we don’t have to regard the electron
as something else, something we are already familiar with. It helps, of course,
to know that the electron sometimes behaves as a particle because we have
some intuitive idea of what particles are supposed to do. It is helpful to know
that the electron may behave as a wave because we know a lot about waves.
But we do not have to look at the electron as something else. It is sufficient to
say that an electron is an electron as long as we have some means of predicting
its properties.

How can we predict what an electron will do? Well, how can we predict any
physical phenomenon? We need some mathematical relationship between the
variables. Prediction and mathematics are intimately connected in science—or
are they? Can we make predictions without any mathematics at all? We can.
Seeing, for example, dark heavy clouds gathering in the sky we may say that
‘it is going to rain’ and on a large number of occasions we will be right. But this
is not really a very profound and accurate prediction. We are unable to specify
how dark the clouds should be for a certain amount of rain, and we would find
it hard to guess the temporal variation of the positions of the clouds. So, as you
know very well, meteorology is not yet an exact science.

In physics fairly good predictions are needed because otherwise it is difficult
to get further money for research. In engineering the importance of predictions
can hardly be overestimated. If the designer of a bridge or of a telephone
exchange makes some wrong predictions, this mistake may bring upon him the
full legal apparatus of the state or the frequent curses of the subscribers. Thus,
for engineers, prediction is not a trifling matter.

Now what about the electron? Can we predict its properties? Yes, we
can because we have an equation which describes the behaviour of the
electron in mathematical terms. It is called Schrödinger’s (Nobel Prize, 1933)
equation. Now I suppose you would like to know where Schrödinger’s equation
came from? It came from nowhere; or more correctly it came straight from

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


Introduction 35

Schrödinger’s head, not unlike Pallas Athene who is reputed to have sprung
out of Zeus’ head (and in full armour too!). Schrödinger’s equation is a product
of Schrödinger’s imagination; it cannot be derived from any set of physical
assumptions. Schrödinger’s equation is, of course, not unique in this respect.
You have met similar cases before.

In the sixth form you learned Newton’s equation. At the time you had just
gained your first glances into the hidden mysteries of physics. You would
not have dared to question your schoolmaster about the origin of Newton’s
equation. You were probably more reverent at the time, more willing to accept
the word of authorities, and besides, Newton’s equation looks so simple that
one’s credulity is not seriously tested. Force equals mass times acceleration;
anyone is prepared to believe that much. And it seems to work in practice.

At the university you are naturally more inquisitive than in your schooldays;
so you may have been a bit more reluctant to accept Maxwell’s equations when
you first met them. It must have been very disturbing to be asked to accept the
equation,

∇ × E = −∂B

∂t
, (3.1)

as the truth and nothing but the truth. But then you were shown that this equation
is really identical with the familiar induction law,

V = −∂φ

∂t
, (3.2)

and the latter merely expresses the result of a simple experiment. Similarly

∇ ×H = J (3.3)

is only a rewriting of Ampère’s law. So all is well again or rather all would
be well if there was not another term on the right-hand side, the displacement
current ∂D/∂t . Now what is this term? Not many lecturers admit that it came
into existence as a pure artifice. Maxwell felt there should be one more term
there, and that was it. True, Maxwell himself made an attempt to justify
the introduction of displacement current by referring to the a.c. current in a
capacitor, but very probably that was just a concession to the audience he had
to communicate with. He must have been more concerned with refuting the
theory of instantaneous action at a distance, and with deriving a velocity with
which disturbances can travel.

The extra term had no experimental basis, whatsoever. It was a brilliant
hypothesis which enabled Maxwell to predict the existence of electromagnetic
waves. When some years later Hertz managed to find these waves, the
hypothesis became a law. It was a momentous time in history, though most
history books keep silent about the event.∗

∗ According to most historians’
definition, an event is important if it
affects a large number of people to a
considerable extent for a long time. If
historians were faithful to this definition
they should write a lot about Maxwell
and Hertz because by predicting and
proving the existence of electromagnetic
waves, Maxwell and Hertz had more
influence on the life of ordinary people
nowadays than any nineteenth-century
general, statesman, or philosopher.

I am telling you all this just to show that an equation which comes from
nowhere in particular may represent physical reality. Of course, Schrödinger
had good reasons for setting up his equation. He had immediate success in
several directions. Whilst Maxwell’s displacement current term explained no
experimental observation, Schrödinger’s equation could immediately account
for the atomic spectrum of hydrogen, for the energy levels of the Planck
oscillator, for the non-radiation of electronic currents in atoms, and for the
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36 The electron

shift of energy levels in strong transverse fields. He produced four papers in
quick succession and noted at the end with quiet optimism:

‘I hope and believe that the above attempt will turn out to be useful for
explaining the magnetic properties of atoms and molecules, and also the electric
current in the solid state.’

Schrödinger was right.∗ His equation turned out to be useful indeed. He was∗ In the above discussion the role of
Schrödinger in setting up modern
quantum physics was very much
exaggerated. There were a number
of others who made comparable
contributions, but since this is not a
course in the history of science, and the
Schrödinger formulation is adequate for
our purpose, we shall not discuss these
contributions.

not exactly right, though. In order to explain all the properties of the solid state
(including magnetism) two further requisites are needed: Pauli’s principle and
‘spin’. Fortunately, both of them can be stated in simple terms, so if we make
ourselves familiar with Schrödinger’s equation, the rest is relatively easy.

3.2 Schrödinger’s equation

After such a lengthy introduction, let us have now the celebrated equation itself.
In the usual notation,

m is the mass of the electron, and
V is the potential in which the
electron moves.

− h̄2

2m
∇2� + V� = ih̄

∂�

∂t
. (3.4)

We have a partial differential equation in �. But what is �? It is called the
wave function, and

|�(x, y, z; t)|2 dx dy dz (3.5)

gives the probability that the electron can be found at time, t , in the volumeThis interpretation was proposed
by Max Born, Nobel Prize, 1954. element, dx dy dz, in the immediate vicinity of the point, x, y, z. To show the

significance of this function better |�|2 is plotted in Fig. 3.1 for a hypothetical
case where |�|2 is independent of time and varies only in one dimension. If
we make many measurements on this system, we shall find that the electron is
always between z0 and z4 (the probability of being outside this region is zero),
that it is most likely to be found in the interval dz around z3, and it is three
times as probable to find the electron at z2 than at z1. Since the electron must be
somewhere, the probability of finding it between z0 and z4 must be unity, that is,∫ z4

z0

|�(z)|2 dz = 1. (3.6)

The above example does not claim to represent any physical situation. It is
shown only to illustrate the meaning of |�|2.

Fig. 3.1
Introducing the concept of the wave
function. |ψ(z)|2dz proportional to
the probability that the electron may
be found in the interval dz at the
point z. z0

0.5

0.4

0.3

0.2

0.1

0.0

|Ψ
(z

)|2

z1 z2 z3 z4 z

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


Solutions of Schrödinger’s equation 37

The physical content of eqn (3.4) will be clearer when we shall treat more
practical problems, but there is one thing we can say immediately. Schrödinger’s
equation does not tell us the position of the electron, only the probability that
it will be found in the vicinity of a certain point.

The description of the electron’s behaviour is statistical, but there is nothing
particularly new in this. After all, you have met statistical descriptions before,
in gas dynamics for example, and there was considerably less fuss about it.

The main difference is that in classical mechanics, we use statistical methods
in order to simplify the calculations. We are too lazy to write up 1027 differential
equations to describe the motion of all the gas molecules in a vessel, so we rely
instead on a few macroscopic quantities like pressure, temperature, average
velocity, etc. We use statistical methods because we elect to do so. It is merely
a question of convenience. This is not so in quantum mechanics. The statistical
description of the electron is inherent in quantum theory. That is the best we can
do. We cannot say much about an electron at a given time. We can only say what
happens on the average when we make many observations on one system, or we
can predict the statistical outcome of simultaneous measurements on identical
systems. It may be sufficient to make one single measurement (specific heat
or electrical conductivity) when the phenomenon is caused by the collective
interaction of a large number of electrons.

We cannot even say how an electron moves as a function of time. We cannot
say this because the position and the momentum of an electron cannot be
simultaneously determined. The limiting accuracy is given by the uncertainty
relationship, eqn (2.33).

3.3 Solutions of Schrödinger’s equation

Let us separate the variables and attempt a solution in the following form

�(r, t) = ψ(r)w(t). (3.7)

Substituting eqn (3.7) into eqn (3.4), and dividing by ψw we get Now r represents all the spatial
variables.

− h̄2

2m

∇2ψ

ψ
+ V = ih̄

1

w

∂w

∂t
. (3.8)

Since the left-hand side is a function of r and the right-hand side is a function
of t , they can be equal only if they are both separately equal to a constant which
we shall call E, that is we obtain two differential equations as follows:

ih̄
∂w

∂t
= Ew (3.9)

and

− h̄2

2m
∇2ψ + Vψ = Eψ . (3.10)

The solution of eqn (3.9) is simple enough. We can immediately integrate
and get

w = exp

(
−i

E

h̄
t

)
, (3.11)
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38 The electron

and this is nothing else but our good old wave solution, at least as a function of
time, if we equate

E = h̄ω. (3.12)

This is actually something we have suggested before [eqn (2.27)] by recourse
to Planck’s formula. So we may call E the energy of the electron. However,
before making such an important decision let us investigate eqn (3.10) which
also contains E. We could rewrite eqn (3.10) in the form:

(
− h̄2

2m
∇2 + V

)
ψ = Eψ . (3.13)

The second term in the bracket is potential energy, so we are at least in good
company. The first term contains ∇2, the differential operator you will have
met many times in electrodynamics. Writing it symbolically in the form:

− h̄2

2m
∇2 = 1

2m
(−ih̄∇)2, (3.14)

we can immediately see that by introducing the new notation,

p = −ih̄∇, (3.15)

and calling it the ‘momentum operator’ we may arrive at an old familiar
relationship:

p2

2m
= kinetic energy. (3.16)

Thus, on the left-hand side of eqn (3.13) we have the sum of kinetic and potential
energies in operator form and on the right-hand side we have a constantE having
the dimensions of energy. Hence, we may, with good conscience, interpret E
as the total energy of the electron.

You might be a little bewildered by these definitions and interpretations, but
you must be patient. You cannot expect to unravel the mysteries of quantum
mechanics at the first attempt. The fundamental difficulty is that first steps in
quantum mechanics are not guided by intuition. You cannot have any intuitive
feelings because the laws of quantum mechanics are not directly experienced
in everyday life. The most satisfactory way, at least for the few who are
mathematically inclined, is to plunge into the full mathematical treatment and
leave the physical interpretation to a later stage. Unfortunately, this method is
lengthy and far too abstract for an engineer. So the best we can do is to digest
alternately a little physics and a little mathematics and hope that the two will
meet.

3.4 The electron as a wave

Let us look at the simplest case when V = 0 and the electron can move only
in one dimension. Then eqn (3.13), which is often called the time independent
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The electron meeting a potential barrier 39

Schrödinger equation, reduces to

h̄2

2m

∂2ψ

∂z2
+ Eψ = 0. (3.17)

The solution of this differential equation is a wave in space. Hence the general
solution of Schrödinger’s equation for the present problem is

� = exp

(
−i

E

h̄
t

)
{A exp(ikz) + B exp(−ikz)}. (3.18)

In this example we have chosen the potential energy of the electron as zero, A andB are constants representing
the amplitudes of the forward and
backward travelling waves, and k

is related to E by

E = h̄2k2

2m
. (3.19)

thus eqn (3.19) must represent the kinetic energy. Hence, we may conclude
that h̄k must be equal to the momentum of the electron. We have come to this
conclusion before, heuristically, on the basis of the wave picture, but now we
have the full authority of Schrödinger’s equation behind us.

You may notice too that p = h̄k is an alternative expression of de Broglie’s
relationship, thus we have obtained from Schrödinger’s equation both the wave
behaviour and the correct wavelength.

What can we say about the position of the electron? Take B = 0 for
simplicity, then we have a forward travelling wave with a definite value for
k. The probability of finding the electron at any particular point is given by
|ψ(z)|2 which according to eqn (3.18) is unity, independently of z. This means
physically that there is an equal probability of the electron being at any point
on the z-axis. The electron can be anywhere; that is, the uncertainty of the
electron’s position is infinite. This is only to be expected. If the value of k is
given then the momentum is known, so the uncertainty in the momentum of
the electron is zero; hence the uncertainty in position must be infinitely great.

3.5 The electron as a particle

Equation (3.17) is a linear differential equation, hence the sum of the solutions
is still a solution. We are therefore permitted to add up as many waves as we
like; that is, a wave packet (as constructed in Chapter 2) is also a solution of
Schrödinger’s equation.

We can now be a little more rigorous than before. A wave packet represents
an electron because |�(z)|2 is appreciably different from zero only within the
packet. With the choice a(k) = 1 in the interval�k, it follows from eqns (2.16)
and (2.17) that the probability of finding the electron is given by∗

∗ The constant K may be determined by
the normalization condition∫ ∞

−∞
|ψ(z)|2 dz = 1.

|ψ(z)|2 = K

{
sin 1

2 (�kz)

1
2 (�kz)

}2

. (3.20)

3.6 The electron meeting a potential barrier

Consider again a problem where the motion of the electron is constrained in
one dimension, and the potential energy is assumed to take the form shown in
Fig. 3.2.

1

Electron

z0

V1 = 0

V

V2

2

Fig. 3.2
An electron incident upon a potential
barrier.

You are familiar with the classical problem, where the electron starts
somewhere on the negative z-axis (say at −z0) in the positive direction
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40 The electron

with a definite velocity. The solution may be obtained purely from energetic
considerations. If the kinetic energy of the electron E is smaller than V2, the
electron is turned back by the potential barrier at z = 0. If E > V2, the electron
slows down but carries on regardless.

How should we formulate the equivalent quantum mechanical problem? We
should represent our electron by a wave packet centred in space on −z0 and
should describe its momentum with an uncertainty �p. We should use the
wave function obtained as initial condition at t = 0 and should solve the time
dependent Schrödinger equation. This would be a very illuminating exercise,
alas much too difficult mathematically.

We have to be satisfied by solving a related problem. We shall give our
electron a definite energy, that is a definite momentum, and we shall put up with
the concomitant uncertainty in position. We shall not be able to say anything
about the electron’s progress towards the potential barrier, but we shall have
a statistical solution which will give the probability of finding the electron on
either side of this potential barrier.

Specifying the momentum and not caring about the position of the electron
is not so unphysical as you might think. The conditions stated may be
approximated in practice by shooting a sufficiently sparse∗ electron beam∗ So that the interaction between the

electrons can be neglected. towards the potential barrier with a well defined velocity. We are not
concerned then with the positions of individual electrons, only with their spatial
distribution on the average, which we call the macroscopic charge density.
Hence we may identify e|ψ |2 with the charge density.

This is not true in general. What is always true is that |ψ |2 gives the
probability of an electron being found at z. Be careful, |ψ(z)|2 does not giveThe charge of the electron is not

smoothed out. When the electron is
found, the whole electron is there.

the fraction of the electron’s charge residing at z. If, however, a large number
of electrons behave identically, then |ψ |2 may be justifiably regarded to be
proportional to the charge density.

Let us proceed now to the mathematical solution. In region 1 where V1 = 0
the solution is already available in eqns (3.18) and (3.19),

�1 = exp

(
−i

E

h̄
t

)
{A exp(ik1z) + B exp(−ik1z)}, (3.21)

and

k2
1 = 2mE

h̄2 . (3.22)

In region 2 the equation to be solved is as follows (the time-dependent part
of the solution remains the same because E is specified)

h̄2

2m

∂2ψ

∂z2
+ (E − V2)ψ = 0, (3.23)

with the general solution

�2 = exp

(
−i

E

h̄
t

)
{C exp(ik2z) + D exp(−ik2z)}, (3.24)

where

k2
2 = 2m

h̄2 (E − V2). (3.25)
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The electron meeting a potential barrier 41

Now we shall ask the question, depending on the relative magnitudes of E
and V2, what is the probability that the electron can be found in regions 1 and
2, respectively.

It is actually easier to speak about this problem in wave language because
then the form of the solution is automatically suggested. Whenever a wave is
incident on some sort of discontinuity, there is a reflected wave, and there is a
transmitted wave. Since no wave is incident from region 2, we can immediately
decide that D must be zero.

In order to determine the remaining constants, we have to match the two
solutions at z = 0, requiring that bothψ and ∂ψ/∂z should be continuous. From
eqns (3.21) and (3.24), the above conditions lead to the algebraic equations,

A + B = C (3.26)

and

ik1(A − B) = ik2C, (3.27)

whence
B

A
= k1 − k2

k1 + k2
,

C

A
= 2k1

k1 + k2
. (3.28)

Let us distinguish now two cases: (i) E > V2. In this case k2
2 > 0, k2 is

real, which means an oscillatory solution in region 2. The values of k2 and k1

are, however, different. Thus, B/A is finite, that is, there is a finite amount of
reflection. In contrast to the classical solution, there is some probability that
the electron is turned back by the potential discontinuity. (ii) E < V2. In this
case k2

2 < 0, k2 is imaginary; that is, the solution declines exponentially in
region 2.∗ Since |C/A| > 0, there is a finite, though declining, probability ∗ The exponentially increasing solution

cannot be present for physical reasons.of finding the electron at z > 0. Classically, an electron has no chance of
getting inside region 2. Under the laws of quantum mechanics the electron may
penetrate the potential barrier.

A third case of interest is when the potential profile is as shown in Fig. 3.3,
and E < V2. Then k2 is imaginary and k3 is real. Hence one may expect that
|ψ |2 declines in region 2 and is constant in region 3. The interesting thing is
that |ψ |2 in region 3 is not zero. Thus, there is a finite probability that the
electron crosses the potential barrier and appears at the other side with energy
unchanged. Since there is an exponential decline in region 2, it is necessary that
that region should be narrow to obtain any appreciable probability in region 3. If
we are thinking in terms of the incident electron beam, we may say that a certain
fraction of the electrons will get across the potential barrier. This tendency for

Electron

V1 = 0

V

V3 = 0V2

0 d z

1 2 3

Fig. 3.3
An electron incident upon a narrow
potential barrier.
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42 The electron

electrons to escape across the potential barrier is called the tunnel effect, or
simply tunnelling.

As you will see later, it is an important effect which we shall often invoke
to explain phenomena as different as the bonding of the hydrogen molecule or
the operation of the tunnel diode.∗∗ A more mundane example of tunnelling

occurs every time we switch on an
electric light. The contacts are always
covered with an oxide film, that in bulk
would be an insulator. But it is rubbed
down to a few molecules thickness by the
mechanical action of the switch, and the
tunnelling is so efficient that we do not
notice it.

3.7 Two analogies

Without the help of Schrödinger’s equation, we could not have guessed how
electrons behaved when meeting a potential barrier. But having found the
solutions in the form of propagating and exponentially decaying waves, a
physical picture, I hope, is emerging. There is always a physical picture if you
are willing to think in terms of waves. Then it is quite natural that discontinuities
cause reflections and only a part of the wave is transmitted.

The concepts are not appreciably more difficult than those needed to describe
the motion of classical electrons, but you need time to make yourself familiar
with them. ‘Familiarity breeds contempt’ may very well apply to arts subjects,
but in most branches of science the saying should be reformulated as ‘familiarity
breeds understanding’ or, more poignantly, as ‘lack of familiarity breeds
bewilderment’.

Assuming that you have already developed some familiarity with waves,
it may help to stress the analogy further. If we went a little more deeply into
the mathematical relationships, we would find that the problem of an electron
meeting a potential barrier is entirely analogous to an electromagnetic wave
meeting a new medium. Recalling the situations depicted in Figs 1.4 to 1.6, the
analogies are as follows.

1. There are two semi-infinite media (Fig. 1.4); electromagnetic waves
propagate in both of them. Because of the discontinuity, a certain part of the
wave is reflected. This is analogous to the electron meeting a potential barrier
(Fig. 3.2) with an energy E > V2. Some electrons are reflected because of the
presence of a discontinuity in potential energy.

2. There are two semi-infinite media (Fig. 1.5); electromagnetic waves may
propagate in the first one but not in the second one. The field intensities are,
however, finite in medium 2 because the electromagnetic wave penetrates to
a certain extent. This is analogous to the electron meeting a potential barrier
(Fig. 3.2) with an energyE < V2. In spite of not having sufficient energy, some
electrons may penetrate into region 2.

3. There are two semi-infinite media separated from each other by a third
medium (Fig. 1.6); electromagnetic waves may propagate in media 1 and 3 but
not in the middle one. The wave incident from medium 1 declines in medium
2 but a finite amount arrives and can propagate in medium 3. This is analogous
to the electron meeting a potential barrier shown in Fig. 3.3, with an energy
E < V2. In spite of not having sufficient energy some electrons may cross
region 2 and may appear and continue their journey in region 3.

Instead of taking plane waves propagating in infinite media, one might make
the analogy physically more realizable though mathematically less perfect, by
employing hollow metal waveguides. Discontinuities can then be represented
by joining two waveguides of different cross-sections, and the exponentially
decaying wave may be obtained by using a cut-off waveguide (of dimension
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The electron in a potential well 43

smaller than half free-space wavelength). Then all the above phenomena can
be easily demonstrated in the laboratory.

3.8 The electron in a potential well

In our previous examples, the electron was free to roam in the one-dimensional
space. Now we shall make an attempt to trap it by presenting it with a region of
low potential energy which is commonly called a potential well. The potential L is the width of the well.
profile assumed is shown in Fig. 3.4. If E > V1, the solutions are very similar
to those discussed before, but when E < V1, a new situation arises.

We have by now sufficient experience in solving Schrödinger’s equation
for a constant potential, so we shall write down the solutions without further
discussions.

In region 3 there is only an exponentially decaying solution

ψ3 = C exp(−γ z), (3.29)

where

γ 2 = 2m

h̄2 (V1 − E). (3.30)

In region 2 the potential is zero. The solution is either symmetric or
antisymmetric.∗ Accordingly, ∗ This is something we have not proved.

It is true (the proof can be obtained fairly
easily from Schrödinger’s equation) in
general that if the potential function is
symmetric the solution must be either
symmetric or antisymmetric.

ψ2s = A cos kz (3.31)

or

ψ2a = A sin kz (3.32)

where

k2 = 2m

h̄2 E. (3.33)

In region 1 the solution must decay again, this time towards negative infinity.
If we wish to satisfy the symmetry requirement as well, the wave function must
look like

ψ1 = ±C exp γ z. (3.34)

Let us investigate the symmetric solution first. We have then eqns (3.29) and
(3.31), and eqn (3.34) with the positive sign. The conditions to be satisfied are
the continuity of ψ and ∂ψ/∂z at L/2 and −L/2, but owing to the symmetry it

1 2 3

0 L
2

L
2

–

V1

V2 = 0

V

z

V3 = V1

Fig. 3.4
An electron in a potential well.
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44 The electron

is sufficient to do the matching at (say) L/2. From the continuity of the wave
function

A cos k
L

2
− C exp

(
−γ

L

2

)
= 0. (3.35)

From the continuity of the derivative of the wave function

Ak sin k
L

2
− Cγ exp

(
−γ

L

2

)
= 0. (3.36)

We have now two linear homogeneous equations in A and C which are
soluble only if the determinant vanishes, that is∣∣∣∣∣∣∣∣∣

cos k
L

2
− exp

(
−γ

L

2

)

k sin k
L

2
−γ exp

(
−γ

L

2

)
∣∣∣∣∣∣∣∣∣

= 0, (3.37)

leading to

k tan

(
k
L

2

)
= γ . (3.38)

Thus, k and γ are related by eqn (3.38). Substituting their values from eqns
(3.30) and (3.33) respectively, we get

E1/2 tan

(
2m

h̄2 E
L2

4

)1/2

= (V1 − E)1/2, (3.39)

which is a transcendental equation to be solved for E. Nowadays one feeds this
sort of equation into a computer and has the results printed in a few seconds. But
let us be old-fashioned and solve the equation graphically by plotting the left-
hand side and the right-hand side separately. Putting in the numerical values,
we know

m = 9.1 × 10−31 kg, h̄ = 1.05 × 10−34 J s,

and we shall take

L

2
= 5 × 10−10 m, V1 = 1.6 × 10−18 J.

As may be seen in Fig. 3.5, the curves intersect each other in three points; so
there are three solutions and that is the lot.If E > V1 the electron can have

any energy it likes, but if E < V1

there are only three possible energy
levels.

To be correct, there are three energy levels for the symmetric solution and a
few more for the antisymmetric solution.

We have at last arrived at the solution of the first quantum-mechanical
problem which deserves literally the name quantum mechanical. Energy is no
longer continuous, it cannot take arbitrary values. Only certain discrete energy
levels are permitted. In the usual jargon of quantum mechanics, it is said: energy
is quantized.

We may generalize further from the above example. The discrete energy
levels obtained are not a coincidence. It is true in general that whenever we try
to confine the electron, the solution consists of a discrete set of wave functions
and energy levels.
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Fig. 3.5
A plot of the two sides of eqn (3.39)
against E for L/2 = 5 × 10−10 m and
V1 = 1.6 × 10−18 J.

3.9 The potential well with a rigid wall

We call the potential wall rigid when the electron cannot escape from the well,
not even quantum-mechanically. This happens when V1 = ∞. We shall briefly
investigate this case because we shall need the solution later. Equations (3.31)
and (3.32) are still valid in the zero potential region, but now (since the electron
cannot penetrate the potential barrier) the continuity condition is

ψ

(
±L

2

)
= 0. (3.40)

The solutions are given again by eqns (3.31) and (3.32) for the symmetric and
antisymmetric cases, respectively. The boundary conditions given by eqn (3.40)
will be satisfied when

kL

2
= (2r + 1)

π

2
and

kL

2
= sπ , (3.41)

for the symmetric and antisymmetric wave functions, respectively, where r and
s are integers. This is equivalent to saying that kL is an integral multiple of π .
Hence, the expression for the energy is

E = h̄2k2

2m
= h2n2

8mL2
, n = 1, 2, 3, . . . (3.42)

3.10 The uncertainty relationship

The uncertainty relationship may be looked upon in a number of ways. We have
introduced it on the basis of the wave picture where electrons were identified
with wave packets.
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46 The electron

Can we now make a more precise statement about the uncertainty
relationship? We could, if we introduced a few more concepts. If you are
interested in the details, you can consult any textbook on quantum mechanics.
Here, I shall merely outline one of the possible ways of deriving the uncertainty
relationship.

First, the average value of a physically measurable quantity, called an
observable, is defined in quantum mechanics as

〈A〉 =
∫
V
ψ∗Aψ d(volume)∫
V

|ψ |2 d(volume)
, (3.43)

where the integration is over the volume of interest, wherever ψ is defined.
A is in general an operator; it is −ih̄� for the momentum and simply r, the
radius vector, for the position. Assuming that Schrödinger’s equation is solved
for a particular case, we know the wave function ψ , and hence, with the aid of
eqn (3.43), we can work out the average and r.m.s. values of both the electron’s
position and of its momentum. Identifying �z and �p with

{〈(z − 〈z〉)2〉}1/2 and {〈( p − 〈p〉)2〉}1/2

respectively, we get
�z�p � h. (3.44)

There is actually another often-used form of the uncertainty relationship

�E�t � h, (3.45)

which may be derived from relativistic quantum theory (where time is on
equal footing with the spatial coordinates) and interpreted in the following way.
Assume that an electron sits in a higher energy state of a system, for example
in a potential well. It may fall to the lowest energy state by emitting a photon
of energy h̄ω. So if we know the energy of the lowest state, we could work
out the energy of that particular higher state by measuring the frequency of the
emitted photon. But if the electron spends only a time �t in the higher state,The emitted radiation is not

monochromatic; it covers a finite
range of frequencies.

then the energy of the state can be determined with an accuracy not greater than
�E = h/�t . This is borne out by the measurements.

3.11 Philosophical implications

The advent of quantum mechanics brought problems to the physicist which
previously belonged to the sacred domain of philosophy. The engineer can still
afford to ignore the philosophical implications but by a narrow margin only.
In another decade or two philosophical considerations might be relevant in the
discussion of devices, so I will try to give you a foretaste of the things which
might come.

To illustrate the sort of questions philosophers are asking, take the following
one: We see a tree in the quad, so the tree must be there. We have the evidence of
our senses (the eye in this particular case) that the tree exists. But what happens
when we don’t look at the tree, when no one looks at the tree at all; does the
tree still exist? It is a good question.
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Had philosophers been content asking this and similar questions, the history
of philosophy would be an easier subject to study. Unfortunately, driven by
usual human passions (curiosity, vivid imagination, vanity, ambition, the desire
to be cleverer than the next man, craving for fame, etc.), philosophers did try
to answer the questions. To the modern scientist, most of their answers and
debates don’t seem to be terribly edifying. I just want to mention Berkeley who
maintained that matter would cease to exist if unobserved, but luckily there is
God who perceives everything, so matter may exist after all. This view was
attacked by Ronald Knox in the following limerick:

There was a young man who said, ‘God
Must think it exceedingly odd

If he finds that this tree
Continues to be

When there’s no one about in the Quad.’

Berkeley replied in kind:

Dear Sir:
Your astonishment’s odd:

I am always about in the Quad.
And that’s why the tree
Will continue to be,

Since observed by
Yours faithfully,

God.

You do, I hope, realize that only a minority of philosophical arguments were
ever conducted in the form of limericks, and the above examples are not typical.
I mention them partly for entertainment and partly to emphasize the problem
of the tree in the quad a little more.

In the light of quantum mechanics we should look at the problem from a
slightly different angle: The question is not so much what happens while the
tree is unobserved, but rather what happens while the tree is unobservable.
The tree can leave the quad because for a brief enough time it can have a high
enough energy at its disposal, and no experimenter has any means of knowing
about it. We are prevented by the uncertainty relationship (�E�t ∼= h) from
ever learning whether the tree did leave the quad or not.

You may say that this is against common sense. It is, but the essential point
is whether or not it violates the Laws of Nature, as we know them today.
Apparently it does not. You may maintain that for that critical �t interval the
tree stays where it always has stood. Yes, it is a possible view. You may also
maintain that the tree went over for a friendly visit to the quad of another college
and came back. Yes, that’s another possible view.

Is there any advantage in imagining that the tree did make that brief
excursion? I cannot see any, so I would opt for regarding the tree as being
in the quad at all times.

But the problem remains, and becomes of more practical interest when
considering particles of small size. A free electron travelling with a velocity
106 m s−1 has an energy of 2.84 eV. Assume that it wants to ‘borrow’ the
same amount of energy again. It may borrow that much energy for an interval
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48 The electron

�t = h/2.84 eV ∼= 1.5 × 10−15 s. Now, you may ask, what can an electron do
in a time interval as short as 1.5 × 10−15 s? Quite a lot; it can get comfortably
from one atom to the next. And remember all this on borrowed energy. So if
there was a barrier of (say) five electron volts, our electron could easily move
over it, and having scaled the barrier it could return the borrowed energy, and
no one would be able to find out how the electron made the journey. Thus, from
a purely philosophical argument we could make up an alternative picture of
tunnelling. We may say that tunnelling across potential barriers comes about
because the electron can borrow energy for a limited time. Is this a correct
description of what happens? I do not know, but it is a possible description.
Is it useful? I suppose it is always useful to have various ways of describing
the same event; that always improves understanding. But the crucial test is
whether this way of thinking will help in arriving at new conclusions which
can be experimentally tested. For an engineer the criterion is even clearer; if
an engineer can think up a new device, using these sorts of arguments (e.g.
violating energy conservation for a limited time) and the device works (or even
better it can be sold for ready money) then the method is vindicated. The end
justifies the means, as Machiavelli said.

Theoretical physicists, I believe, do use these methods. In a purely particle
description of Nature, for example, the Coulomb force between two electrons
is attributed to the following cause. One of the electrons borrows some energy
to create a photon that goes dutifully to the other electron, where it is absorbed,
returning thereby the energy borrowed. The farther the two electrons are from
each other, the lesser the energy that can be borrowed, and therefore lower
frequency photons are emitted and absorbed. Carrying on these arguments (if
you are interested in more details ask a theoretical physicist) they do manage
to get correctly the forces between electrons. So there are already some people
who find it useful to play around with these concepts.

This is about as much as I want to say about the philosophical role of the
electron. There are, incidentally, a number of other points where philosophy
and quantum mechanics meet (e.g. the assertion of quantum mechanics that no
event can be predicted with certainty, merely with a certain probability), but
I think we may have already gone beyond what is absolutely necessary for the
education of an engineer.

Exercises

3.1. An electron, confined by a rigid one-dimensional potential
well (Fig. 3.4 with V1 = ∞) may be anywhere within the
interval 2a. So the uncertainty in its position is �x = 2a.
There must be a corresponding uncertainty in the momentum
of the electron and hence it must have a certain kinetic energy.
Calculate this energy from the uncertainty relationship and
compare it with the value obtained from eqn (3.42) for the
ground state.

3.2. The wavefunction for a rigid potential well is given by
eqns (3.31) and (3.32) and the permissible values of k by

eqn (3.42). Calculate the average values of

z, (z − 〈z〉)2, p, ( p − 〈p〉)2.

[Hint: Use eqn (3.43). The momentum operator in this
one-dimensional case is −ih̄∂/∂z.]

3.3. The classical equivalent of the potential well is a particle
bouncing between two perfectly elastic walls with uniform
velocity.

(i) Calculate the classical average values of the quantities
enumerated in the previous example.
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(ii) Show that, for high-enough energies, the quantum
mechanical solution tends to the classical solution.

3.4. In electromagnetic theory the conservation of charge is
represented by the continuity equation

∇ · J = −e
∂N

∂t

where J = current density and N = density of electrons.
Assume that �(x, t) is a solution of Schrödinger’s equation

in a one-dimensional problem. Show that, by defining the
current density as

J (x) = − ih̄e

2m

[
�∗ ∂�

∂x
− �

∂�∗

∂x

]
,

the continuity equation is satisfied.

3.5. The time-independent Schrödinger equation for the one-
dimensional potential shown in Fig. 3.2 is solved in Section 3.6.
Using the definition of current density given in the example
above, derive expressions for the reflected and transmitted
currents. Show that the transmitted current is finite when
E > V2 and zero when E < V2. Comment on the analogy
with example 1.9.

3.6. Solve the time-independent Schrödinger equation for the
one-dimensional potential shown in Fig. 3.2;

V (z) = 0, z < 0,

V (z) = V2, 0 < z < d ,

V (z) = 0, z > d .

Assume that an electron beam is incident from the z < 0
region with an energy E. Derive expressions for the reflected
and transmitted current. Calculate the transmitted current when
V2 = 2.5 eV, E = 0.5 eV, d = 2 Å and d = 20 Å.

V
V3 = 3 eV

V2 = –2 e V

x

Fig. 3.6
A one-dimensional potential variation.

3.7. Exercise 3.6 may be solved approximately by assuming
that the wave function in region 2 is of the form

ψ2 = Ce−k2i x

(where k2i = Imk2) and then coming to the conclusion (note
that the potential in region 3 is the same as that in region 1 and

therefore k3 = k1) that

J3

J1
= e−2k2i d .

How accurate is this approximation?
If the wavefunction in region 2 is real, as it is assumed in

this exercise, then the quantum mechanical current, as defined
in exercise 3.4, yields zero.

How is it possible that the equation given above still gives
good approximation for the ratio of the currents whereas the
direct use of the proper formula leads to no current at all?

3.8. An electron beam is incident from the x < 0 region upon
the one-dimensional potential shown in Fig. 3.6 with an energy
E = 1 eV.

Without detailed calculations what can you say about the
reflection coefficient at x = 0?

3.9. Solve the time-independent Schrödinger equation for a
two-dimensional rigid potential well having dimensions Lx

and Ly in the x and y directions respectively.
Determine the energy of the 5 lowest lying states when

Ly = (3/2)Lx .

3.10. The antisymmetric solution of the time-independent
Schrödinger equation for the potential well of Fig. 3.4 is given
by eqns (3.32) and (3.34).

Estimate the energy (a rough estimate will do) of the lowest
antisymmetric state for L = 10−9 m and V1 = 1.6 × 10−18 J.

3.11. Solve the time-independent Schrödinger equation for the
one-dimensional potential well shown in Fig. 3.7, restricting
the analysis to even functions of x only. The solution may
be expressed in determinant form. Without expanding the
determinant explain what its roots represent.

2a

2b

E

V (x)

V0

x

(electron
 energy)

∞ ∞

Fig. 3.7
A one-dimensional potential well.

3.12. Show that the differential equation for the electric
field of a plane electromagnetic wave, assuming exp(−iωt)
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50 The electron

time dependence has the same form as the time-independent
Schrödinger equation for constant potential. Show further that
the expression for the Poynting vector of the electromagnetic
wave is of the same functional form as that for the quantum
mechanical current.

3.13. The potential energy of a classical harmonic oscillator
is given as

V (x) = 1
2mω

2
0x

2.

We get the ‘quantum’ harmonic oscillator by putting the above
potential function into Schrödinger’s equation.

The solutions for the four lowest states are as follows:

ψ(ζ ) = Hn(ζ ) exp(− 1
2 ζ

2),

where

ζ = αx, α2 = mω0

h̄
,

H0 = 1, H1 = 2ζ , H2 = 4ζ 2 − 2, and

H3 = 8ζ 3 − 12ζ .

Find the corresponding energies. Compare them with the
energies Planck postulated for photons.
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The hydrogen atom and the
periodic table 4

I see the atoms, free and fine,
That bubble like a sparkling wine;
I hear the songs electrons sing,
Jumping from ring to outer ring;

Lister The Physicist

4.1 The hydrogen atom

Up to now we have been concerned with rather artificial problems. We said:
let us assume that the potential energy of our electron varies as a function of
distance this way or that way without specifying the actual physical mechanism
responsible for it. It was not a waste of time. It gave an opportunity of becoming
acquainted with Schrödinger’s equation, and of developing the first traces of a
physical picture based, perhaps paradoxically, on the mathematical solution.

It would, however, be nice to try our newly acquired technique on a more
physical situation where the potential is caused by the presence of some other
physical ‘object’. The simplest ‘object’ would be a proton, which, as we know,
becomes a hydrogen atom if joined by an electron.

We are going to ask the following questions: (i) What is the probability that
the electron is found at a distance r from the proton? (ii) What are the allowed
energy levels?

The answers are again provided by Schrödinger’s equation. All we have to
do is to put in the potential energy due to the presence of a proton and solve the
equation.

The wave function is a function of time, and one might want to solve
problems, where the conditions are given at t = 0, and one is interested in
the temporal variation of the system. These problems are complicated and of
little general interest. What we should like to know is how a hydrogen atom
behaves on the average, and for that purpose the solution given in eqn (3.7)
combined with (3.11) is adequate. We may then forget about the temporal
variation, because

|w(t)|2 = 1, (4.1)

and solve eqn (3.13), the time-independent Schrödinger equation.
The proton, we know, is much heavier than the electron; so let us regard it

as infinitely heavy (that is immobile) and place it at the origin of our coordinate
system.

The potential energy of the electron at a distance, r , from the proton is known
from electrostatics:

V (r) = − e2

4πε0r
. (4.2)
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52 The hydrogen atom and the periodic table

Thus, the differential equation to be solved is

h̄2

2m
∇2ψ +

(
e2

4πε0r
+ E

)
ψ = 0. (4.3)

It would be hard to imagine a physical configuration much simpler than that
of a proton and an electron, and yet it is difficult to solve the corresponding
differential equation. It is difficult because the 1/r term does not lend itself
readily to analytical solutions. Thanks to the arduous efforts of nineteenth-
century mathematicians, the general solution is known, but it would probably
mean very little to you. Unless you have a certain familiarity with the properties
of associated Legendre functions, it will not make you much happier if you learn
that associated Legendre functions happen to be involved. So I will not quote
the general solution because that would be meaningless, nor shall I derive it
because that would be boring. But just to give an idea of the mathematical
operations needed, I shall show the derivation for the simplest possible case,
when the solution is spherically symmetric, and even then only for the lowest
energy.

z

x

y

r

θ

φ

Fig. 4.1
Coordinate system used to transform
eqn (4.3) to spherical coordinates.

The potential energy of the electron depends only on the distance, r; it
therefore seems advantageous to solve eqn (4.3) in the spherical coordinates
r , θ , φ (Fig. 4.1). If we restrict our attention to the spherically symmetrical
case, when ψ depends neither on φ nor on θ but only on r , then we can
transform eqn (4.3) without too much trouble. We shall need the following
partial derivatives

∂ψ

∂x
= ∂r

∂x

∂ψ

∂r
(4.4)

and
∂2ψ

∂x2
= ∂

∂x

(
∂ψ

∂r

∂r

∂x

)
. (4.5)

When we differentiate eqn (4.5), we have to remember that ∂ψ/∂r is a function
of r and ∂r/∂x is still a function of x; therefore,

∂

∂x

(
∂ψ

∂r

∂r

∂x

)
= ∂r

∂x

∂

∂r

(
∂ψ

∂r

)
∂r

∂x
+ ∂ψ

∂r

∂2r

∂x2

= ∂2ψ

∂r2

(
∂r

∂x

)2

+ ∂ψ

∂r

∂2r

∂x2
. (4.6)

Obtaining the derivatives in respect with y and z in an analogous manner,
we finally get

∇2ψ =∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2

=∂2ψ

∂r2

{(
∂r

∂x

)2

+
(
∂r

∂y

)2

+
(
∂r

∂z

)2
}

+ ∂ψ

∂r

(
∂2r

∂x2
+ ∂2r

∂y2
+ ∂2r

∂z2

)
. (4.7)

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


The hydrogen atom 53

We now have to work out the partial derivatives of r . Since

r = (x2 + y2 + z2)1/2, (4.8)

we get
∂r

∂x
= x

(x2 + y2 + z2)1/2
(4.9)

and
∂2r

∂x2
= 1

(x2 + y2 + z2)1/2
− x2

(x2 + y2 + z2)3/2
, (4.10)

and similar results for the derivatives by y and z. Substituting all of them in
eqn (4.7), we get

∇2ψ =∂2ψ

∂r2

(
x2

x2 + y2 + z2
+ y2

x2 + y2 + z2
+ z2

x2 + y2 + z2

)

+ ∂ψ

∂r

{
3

(x2 + y2 + z2)1/2
− x2

(x2 + y2 + z2)3/2
(4.11)

− y2

(x2 + y2 + z2)3/2
− z2

(x2 + y2 + z2)3/2

}
= ∂2ψ

∂r2
+ 2

r

∂ψ

∂r
.

Thus, for the spherically symmetrical case of the hydrogen atom the
Schrödinger equation takes the form,

h̄2

2m

(
∂2ψ

∂r2
+ 2

r

∂ψ

∂r

)
+
(
E + e2

4πε0r

)
ψ = 0. (4.12)

It may be seen by inspection that a solution of this differential equation is

ψ = e−c0r . (4.13)

The constant, c0, can be determined by substituting eqn (4.13) in eqn (4.12)

h̄2

2m

{
c2

0e−c0r + 2

r
(−c0e−c0r )

}
+
(
E + e2

4πε0r

)
e−c0r = 0. (4.14)

The above equation must be valid for every value of r , that is the coefficient
of exp(−c0r) and that of (1/r) exp(−c0r) must vanish. This condition is
satisfied if

E = − h̄2c2
0

2m
(4.15)

and
h̄2c0

m
= e2

4πε0
. (4.16)

From eqn (4.16)

c0 = e2m

4πh̄2ε0
, (4.17)
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54 The hydrogen atom and the periodic table

which substituted in eqn (4.15) givesThe negative sign of the energy
means only that the energy of this
state is below our chosen zero
point. [By writing the Coulomb
potential in the form of eqn (4.2)
we tacitly took the potential energy
as zero when the electron is at
infinity.]

E = − me4

8ε2
0h

2
. (4.18)

Thus, the wave function assumed in eqn (4.13) is a solution of the differential
equation (4.12), provided that c0 takes the value prescribed by eqn (4.17). Once
we have obtained the value of c0, the energy is determined as well. It can take
only one single value satisfying eqn (4.18).

Let us work out now the energy obtained above numerically. Putting in the
constants, we get

E = − (9.1 × 10−31)(1.6 × 10−19)4

8(8.85 × 10−12)2(6.63 × 10−34)2

kg C4

F2 m−2 J2 s2

= −2.18 × 10−18 J. (4.19)

Expressed in joules, this number is rather small. Since in most of the subsequent
investigations this is the order of energy we shall be concerned with, and since
there is a strong human temptation to use numbers only between 0.01 and 100,
we abandon with regret the SI unit of energy and use instead the electron volt,
which is the energy of an electron when accelerated to 1 volt. Since

1 eV = 1.6 × 10−19 J, (4.20)

the above energy in the new unit comes to the more reasonable-lookingFrom experimental studies of the
spectrum of hydrogen it was
known well before the discovery
of quantum mechanics that the
lowest energy level of hydrogen
must be −13.6 eV, and it was
a great success of Schrödinger’s
theory that the same figure could
be deduced from a respectable-
looking differential equation.

numerical value
E = −13.6 eV. (4.21)

What can we say about the electron’s position? As we have discussed many
times before, the probability that an electron can be found in an elementary
volume (at the point r , θ ,φ) is proportional to |ψ |2—in the present case it is
proportional to exp(−2c0r). The highest probability is at the origin, and it
decreases exponentially to zero as r tends to infinity. We could, however, ask a
slightly different question: what is the probability that the electron can be found
in the spherical shell between r and r + dr? Then, the probability distribution
is proportional to

r2|ψ |2 = r2e−2c0r , (4.22)

which has now a maximum, as can be seen in Fig. 4.2. The numerical value of
the maximum can be determined by differentiating eqn (4.22)

d

dr
(r2e−2c0r ) = 0 = e−2c0r (2r − 2c0r

2), (4.23)

whence

r = 1

c0
= 4πh̄2ε0

e2m
= 0.0528 nm. (4.24)

This radius was again known in pre-quantum-mechanical times and was called
the radius of the first Bohr orbit, where electrons can orbit without radiating.Niels Bohr, Nobel Prize, 1922.
Thus, in quantum theory, the Bohr orbit appears as the most probable position
of the electron.
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0.80.0 1.6 2.4

|ψ|2r2

rc0

Fig. 4.2
Plot of eqn (4.22) showing the
probability that an electron
(occupying the lowest energy state)
may be found in the spherical shell
between r and r + dr .

0 2 4 6 8 10 12 14 16 18 20 rc0

n = 1

n = 2

n = 3

|ψ|2r 2

Fig. 4.3
Plots of ψ2

nr
2 for the three lowest

energy (n= 1, 2, 3) spherically
symmetrical solutions. The curves are
normalized so that the total
probabilities (the area under curves)
are equal.

We have squeezed out about as much information from our one meagre
solution as is possible; we should look now at the other solutions which I shall
give without any proof. Sticking for the moment to the spherically symmetrical
case, the wavefunction is

ψn(r) = e−cnrLn(r), (4.25)

whereLn is a polynomial, and the corresponding energies are (in electron volts)

En = −13.6
1

n2
, n = 1, 2, 3. . . . (4.26)

The solution we obtained before was for n = 1. It gives the lowest energy,
and it is therefore usually referred to as the ground state.

If we have a large number of hydrogen atoms, most of them are in their
ground state but some of them will be in excited states, which are given by
n > 1. The probability distributions for the higher excited states have maxima
farther from the origin as shown in Fig. 4.3 for n = 1, 2, 3. This is fair enough;
for n > 1 the energy of the electron is nearer to zero, which is the energy of
a free electron; so it is less strongly bound to the proton. If it is less strongly

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


56 The hydrogen atom and the periodic table

bound, it can wander farther away; so the radius corresponding to maximum
probability increases.

4.2 Quantum numbers

So much about spherically symmetrical solutions. The general solution
includes, of course, our previously obtained solutions, denoted by R(r) from
here on but shows variations in θ and φ as well. It can be written as

ψn,l,ml
(r , θ ,φ) = Rnl(r)Y

ml

l (θ ,φ). (4.27)

We have met n before; l and ml

represent two more discrete sets
of constants which ensure that the
solutions have physical meaning.
These discrete sets of constants
always appear in the solutions
of partial differential equations;
you may remember them from the
problems of the vibrating string or
of the vibrating membrane. They
are generally called eigenvalues;
in quantum mechanics they are
referred to as quantum numbers.

It may be shown (alas, not by simple means) from the original differential
equation (eqn (4.12)) that the quantum numbers must satisfy the following
relationships

n = 1, 2, 3 . . .

l = 0, 1, 2, . . . n − 1

ml = 0, ±1, ±2 . . . ± l.

(4.28)

For n = 1 there is only one possibility: l = 0 and ml = 0, and the
corresponding wave function is the one we guessed in eqn (4.13). For the
spherically symmetrical case the wave functions have already been plotted for
n=1, 2, 3; now let us see a wave function which is dependent on direction.
Choosing n= 2, l = 1, ml = 0, the corresponding wave function is

ψ210 = R21(r)Y
0
1 (θ ,φ)

= re−c0r/2 cos θ . (4.29)

This equation tells us how the probability of finding the electron varies as a
function of r and θ . Thus, the equal-probability surfaces may be determined.
The spherical symmetry has gone, but there is still cylindrical symmetry (no
dependence on φ). It is therefore sufficient to plot the curves in, say, the
xz-plane. This is done in Fig. 4.4, where the unit of distance is taken as one Bohr
radius, and the maximum probability (at x = 0 and z = ±2/c0) is normalized
to unity. It can be clearly seen that the θ = 0 and θ = π directions are preferred
(which of course follows from eqn (4.29) directly); there is a higher probability
of finding the electron in those directions.

5

3

–4 –2 0 2 4

c0 z

c0 x

|ψ| 2 = 0.9, 0.5, 0.2

1

–1

–3

–5

Fig. 4.4
Plots of constant |ψ210|2 in the
xz-plane.

With n = 2 and l = 1 there are two more states, but they give nothing new.
The preferential directions in those cases are in the direction of the ±x and
±y-axes, respectively.

For higher values of n and l the equal-probability curves look more and
more complicated. Since at this level of treatment they will not add much to
our picture of the hydrogen atom, we can safely omit them.

I have to add a few words about notations. However convenient the
parameters n and l might appear, they are never (or at least very rarely) used in
that form. The usual notation is a number, equal to the value of n, followed by
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a letter, which is related to l by the following rule

l = 0 1 2 3 4 5 6 7
s p d f g h i k

Thus, if you wish to refer to the states with n = 3 and l = 1, you call them
the 3p states or the 3p configuration. The reason for this rather illogical notation
is of course historical. In the old days when only spectroscopic information was
available about these energy levels they were called s for sharp, p for principal, d
for diffuse, and f for fundamental. When more energy levels were found, it was
decided to introduce some semblance of order and denote them by subsequent
letters of the alphabet. That is how the next levels came to bear the letters g, h,
i, k, etc.

4.3 Electron spin and Pauli’s exclusion principle

The quantum numbers n, l, and ml have been obtained from the solution of
Schrödinger’s equation. Unfortunately, as I mentioned before, they do not
represent the whole truth; there is one more quantum number to be taken into
account. It is called the spin quantum number, denoted by s, and it takes the
values ± 1

2 .
Historically, spin had to be introduced to account for certain spectroscopic

measurements, where two closely spaced energy levels were observed when
only one was expected. These were explained in 1925 by Uhlenbeck and
Goudsmit by assuming that the electron can spin about its own axis. This
classical description is very much out of fashion nowadays, but the name spin
stuck and has been universally used ever since. Today the spin is looked upon
just as another quantum number obtainable from a more complicated theory
which includes relativistic effects as well.

So we have now four quantum numbers: n, l, ml , and s. Any permissible
combination of these quantum numbers [eqn (4.28) shows what is permissible]
gives a state; the wavefunction is determined, the electron’s energy is deter-
mined, everything is determined. But what happens when we have more than
one electron? How many of them can occupy the same state? One, said Pauli. Wolfgang Pauli, Nobel Prize,

1945.There can be no more than one electron in any given state. This is Pauli’s
exclusion principle. We shall use it as a separate assumption, though it can be
derived from a relativistic quantum theory.

Although both the spin and the exclusion principle are products of rather
involved theories, both of them can be explained in simple terms. So even if
you do not learn where they come from, you can easily remember them.

4.4 The periodic table

We have so far tackled the simplest configuration when there are only two
particles: one electron and one proton. How should we attempt the solution for
a more complicated case; for helium, for example, which has two protons and
two electrons? (Helium has two neutrons as well, but since they are neutral
they have no effect on the electrons; thus when discussing the energy levels of
electrons neutrons can be disregarded.)
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58 The hydrogen atom and the periodic table

The answer is still contained in Schrödinger’s equation, but the form of
the equation is more complicated. The differential operator ∇ operated on the
coordinate of the electron. If we have two electrons, we need two differential
operators. Thus,

∇2ψ

is replaced by
∇2

1ψ + ∇2
2ψ ,

where the indices 1 and 2 refer to electrons 1 and 2, respectively. We may take
the protons∗ as if they are infinitely heavy again and put them at the origin of the∗ It is a separate story how positively

charged protons and neutrons can
peacefully coexist in the nucleus, and
the answer is still only partly known.

coordinate system. Thus, the potential energy of electron 1 at a distance r1 from
the protons is −2e2/4πε0r1, and similarly for electron 2. There is, however,
one more term in the expression for potential energy: the potential energy due
to the two electrons. If the distance between them is r12, then this potential
energy is e2/4πε0r12. It is of positive sign because the two electrons repel each
other. We can now write down Schrödinger’s equation for two protons and two
electrons:Note that the wave functionψ now

depends on six variables, namely
on the three spatial coordinates of
each electron.

− h̄2

2m
(∇2

1ψ + ∇2
2ψ) + 1

4πε0

(
−2e2

r1
− 2e2

r2
+ e2

r12

)
ψ = Eψ . (4.30)

Can this differential equation be solved? The answer, unfortunately, is no.
No analytical solutions have been found. So we are up against mathematical
difficulties even with helium. Imagine then the trouble we should have with
tin. A tin atom has 50 protons and 50 electrons; the corresponding differential
equation has 150 independent variables and 1275 terms in the expression for
potential energy. This is annoying. We have the correct equation, but we
cannot solve it because our mathematical apparatus is inadequate. What shall
we do? Well, if we can’t get exact solutions, we can try to find approximate
solutions. This is fortunately possible. Several techniques have been developed
for solving the problem of individual atoms by successive approximations. The
mathematical techniques are not particularly interesting, and so I shall mention
only the simplest physical model that leads to the simplest mathematical
solution.

In this model we assume that there are Z positively charged protons in the
nucleus, and the Z electrons floating around the nucleus are unaware of each
other. If the electrons are independent of each other, then the solution for each
of them is the same as for the hydrogen atom provided that the charge at the
centre is taken as Ze. This means putting Ze2 instead of e2 into eqn (4.2) and
Z2e4 instead of e4 into eqn (4.18). Thus, we can rewrite all the formulae used
for the hydrogen atom, and in particular the formula for energy, which now
stands as

En = −13.6
Z2

n2
. (4.31)

That is, the energy of the electrons decreases with increasingZ. In other words,
the energy is below zero by a large amount; that is, more energy is needed to
liberate an electron. This is fairly easy to understand; a large positive charge in
the nucleus will bind the electron more strongly.

The model of entirely independent electrons is rather crude, but it can go a
long way towards a qualitative explanation of the chemical properties of the
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elements. We shall see how Mendeleev’s periodic table can be built up with the
aid of the quantum-mechanical solution of the hydrogen atom.

There are two important points to
realize:
1. We have our set of quantum

numbers n, l,ml , and s, each
one specifying a state with a
definite energy. The energy
depends on n only, but several
states exist for every value of n.

2. Pauli’s exclusion principle must
be obeyed. Each state can be
occupied by one electron only.

We shall start by taking the lowest energy level, count the number of states,
fill them up one by one with electrons, and then proceed to the next energy
level; and so on.

According to eqn (4.31) the lowest energy level is obtained with n = 1.
Then l = 0, ml = 0, and there are two possible states of spin s = ± 1

2 .
Thus, the lowest energy level may be occupied by two electrons. Putting in
one electron we get hydrogen, putting in two electrons we get helium, putting
in three electrons . . . No, we cannot do that; if we want an element with three
electrons, then the third electron must go into a higher energy level.

With helium the n = 1 ‘shell’ is closed, and this fact determines the chemical
properties of helium. If the helium atom happens to meet other electrons (in
events officially termed collisions), it can offer only high energy states. Since
all electrons look for low energy states, they generally decline the invitation.
They manifest no desire to become attached to a helium atom.

If the probability of attracting an electron is small, can the helium atom
give away one of its electrons? This is not very likely. It can offer to its own
electrons comfortable low-energy states. The electrons are quite satisfied and
stay. Thus, the helium atom neither takes up nor gives away electrons. Helium
is chemically inert.

We now have to start the next energy shell with n = 2. The first element
there is lithium, containing two electrons with n = 1, l = 0 and one electron
with n = 2, l = 0. Adopting the usual notations, we may say that lithium has
two 1s electrons and one 2s electron. Since the 2s electron has higher energy,
it can easily be tempted away. Lithium is chemically active.

The next element is beryllium with two 1s and two 2s electrons; then comes
boron with two 1s, two 2s, and one 2p electrons, which, incidentally, can be
denoted in an even more condensed manner as 1s2, 2s2, 2p1. Employing this new
notation, the six electrons of carbon appear as 1s2, 2s2, 2p2, the seven electrons
of nitrogen as 1s2, 2s2, 2p3, the eight electrons of oxygen as 1s2, 2s2, 2p4, and
the nine electrons of fluorine as 1s2, 2s2, 2p5.

Let us pause here for a moment. Recall that a 2p state means n = 2 and l = 1,
which according to eqn (4.28) can have three states (ml = 0 and ml = ±1)
or, taking account of spin as well, six states altogether. In the case of fluorine
five of them are occupied, leaving one empty low-energy state to be offered
to outside electrons. The offer is often taken up, and so fluorine is chemically
active.

Lithium and fluorine are at the opposite ends, the former having one extra
electron, the latter needing one more electron to complete the shell. So it seems
quite reasonable that when they are together, the extra electron of lithium will
occupy the empty state of the fluorine atom, making up the compound LiF.
A chemical bond is born, a chemist would say.

We shall discuss bonds later in more detail. Let us return meanwhile to the
rather protracted list of the elements. After fluorine comes neon. The n = 2
shell is completed: no propensity to take up or give away electrons. Neon is
chemically inert like helium.

The n = 3 shell starts with sodium, which has just one 3s electron and should
therefore behave chemically like lithium. A second electron fills the 3s shell in
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60 The hydrogen atom and the periodic table

magnesium. Then come aluminium, silicon, phosphorus, sulphur, and chlorine
with one, two, three, four and five 3p electrons, respectively. Chlorine is again
short of one electron to fill the 3p shell, and so behaves like fluorine. The 3p
shell is completed in argon, which is again inert.

So far everything has gone regularly, and by the rules of the game the next
electron should go into the 3d shell. It does not. Why? Well, why should it? The
electrons in potassium are under no obligation to follow the energy hierarchy
of the hydrogen atom like sheep. They arrange themselves in such a way as to
have the lowest energy. If there were no interaction between the electrons, the
energy levels of the element would differ only by the factor Z2, conforming
otherwise to that of the hydrogen atom. If the interaction between the electrons
mattered a lot, we should completely abandon the classification based on the
energy levels of the hydrogen atom. As it happens, the electron interactions
are responsible for small quantitative† changes that cause qualitative change† In the hydrogen-type solutions the

energy depends only on n, whereas
taking account of electron interactions
the energy increases with increasing
values of l. It just happens that in
potassium the energy of the 3d level (n =
3, l = 2) is higher than that of the 4s level
(n = 4, l = 0).

in potassium—and in the next few elements, called the transition elements.
First the 4s shell is filled, and only after that are the 3d states occupied. The
balance between the two shells remains, however, delicate. After vanadium
(with three 3d and two 4s electrons) one electron is withdrawn from the 4s
shell; hence chromium has five 3d electrons but only one 4s electron. The same
thing happens later with copper, but apart from that everything goes smoothly
up to krypton, where the 4p shell is finally completed.

The regularity is somewhat marred after krypton. There are numerous devia-
tions from the hydrogen-like structure but nothing very dramatic. It might be
worthwhile mentioning the rare earth elements in which the 4f shell is being
filled while eleven electrons occupy levels in the outer shells. Since chemical
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Fig. 4.5
The periodic table of the elements.
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properties are mainly determined by the outer shells, all these elements are
hardly distinguishable chemically.

A list of all these elements with their electron configurations is given in
Table 4.1. The periodic table (in one of its more modern forms) is given in
Fig. 4.5. You may now look at the periodic table with more knowing eyes. If you
were asked, for example, why the alkali elements lithium, sodium, potassium,
rubidium, caesium, and francium have a valency of one, you could answer in
the following way.

The properties of electrons are determined by Schrödinger’s equation. The
solution of this equation for one electron and one proton tells us that the electron
may be in one of a set of discrete states, each having a definite energy level.
When there are many electrons and many protons, the order in which these
states follow each other remains roughly unchanged. We may then derive the
various elements by filling up the available states one by one with electrons.
We cannot put more than one electron in a state because the exclusion principle
forbids this.

The energy of the states varies in steps. Within a ‘shell’ there is a slow
variation in energy but a larger energy difference between shells. Whenever a new shell is initiated,

there is one electron with consi-
derably higher energy than the rest.
Since all electrons strive for lower
energy, this electron can easily be
lost to another element.

All the alkali elements start new shells. Therefore each of them may lose an
electron; each of them may contribute one unit to a new chemical configuration;
and each of them has a valency of one.

We may pause here for a moment. You have had the first taste of the power
of Schrödinger’s equation. You can see now that the solution of all the basic
problems that have haunted the chemists for centuries is provided by a modest-
looking differential equation. The chaos prevailing before has been cleared, and
a sturdy monument has been erected in its stead. If you look at it carefully, you
will find that it possesses all the requisites of artistic creation. It is like a Greek
temple. You can see in the background the stern regularity of the columns, but
the statues placed between them are all different.

Exercises

4.1. Calculate the wavelength of electromagnetic waves
needed to excite a hydrogen atom from the 1s into the 2s state.

4.2. Electromagnetic radiation of wavelength 20 nm is
incident on atomic hydrogen. Assuming that an electron in
its ground state is ionized, what is the maximum velocity at
which it may be emitted?

4.3. An excited argon ion in a gas discharge radiates a spectral
line of wavelength 450 nm. The transition from the excited to
the ground state that produces this radiation takes an average
time of 10−8 s. What is the inherent width of the spectral line?

4.4. Determine the most probable orbiting radius of the
electron in a hydrogen atom from the following very crude
considerations. The electron tries to move as near as possible
to the nucleus in order to lower its potential energy. But if

the electron is somewhere within the region 0 to rm (i.e. we
know its position with an uncertainty, rm), the uncertainty in
its momentum must be �p ∼= h̄/rm. So the kinetic energy of
the electron is roughly h̄2/2mr2

m.
Determine rm from the condition of minimum energy.

Compare the radius obtained with that of the first Bohr orbit.

4.5. Determine the average radius of an electron in the ground
state of the hydrogen atom.

4.6. The spherically symmetric solution for the 2s electron
(n = 2) of the hydrogen atom may be written in the form

ψ(r) = A(1 + c1r) exp(−rc0/2) (4.32)

where c0 is the reciprocal of the Bohr radius [see eqn (4.24)].
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Table 4.1 The electronic configurations of the elements

Atomic Element Number of electrons Atomic Element Number of electrons Atomic Element Number of electrons
number symbol number symbol number symbol

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 5p 5d 5f 5g 6s 6p 6d 6f 7s 7p

1 H 1 37 Rb 2 6 – – 1 – – – – – 73 Ta 6 3 – – 2 – – – – –
2 He 2 38 Sr 2 6 – – 2 – – – – – 74 W 6 4 2
3 Li 2 1 39 Y 2 6 1 – 2 75 Re 6 5 2
4 Be 2 2 40 Zr 2 6 2 – 2 76 Os 6 6 2
5 B 2 2 1 41 Nb 2 6 4 – 1 77 Ir 6 9 0
6 C 2 2 2 42 Mo 2 6 5 – 1 78 Pt 6 9 1
7 N 2 2 3 43 Tc 2 6 6 – 1 79 Au 6 10 1
8 O 2 2 4 44 Ru 2 6 7 – 1 80 Hg 6 10 2
9 F 2 2 5 45 Rh 2 6 8 – 1 81 Tl 6 10 2 1

10 Ne 2 2 6 46 Pd 2 6 10 – – 82 Pb 6 10 2 2
11 Na 2 2 6 1 47 Ag 2 6 10 – 1 83 Bi 6 10 2 3
12 Mg 2 2 6 2 48 Cd 2 6 10 – 2 84 Po 6 10 2 4
13 Al 2 2 6 2 1 49 In 2 6 10 – 2 1 85 At 6 10 2 5
14 Si 2 2 6 2 2 50 Sn 2 6 10 – 2 2 86 Rn 6 10 2 6
15 P 2 2 6 2 3 51 Sb 2 6 10 – 2 3 87 Fr 6 10 2 6 1
16 S 2 2 6 2 4 52 Te 2 6 10 – 2 4 88 Ra 6 10 2 6 2
17 Cl 2 2 6 2 5 53 I 2 6 10 – 2 5 89 Ac 6 10 2 6 1 2
18 A 2 2 6 2 6 54 Xe 2 6 10 – 2 6 90 Th 6 10 2 6 2 2
19 K 2 2 6 2 6 – 1 55 Cs 2 6 10 – 2 6 1 91 Pa 6 10 2 6 3 2
20 Ca 2 2 6 2 6 – 2 56 Ba 2 6 10 – 2 6 2 92 U 6 10 2 6 4 2
21 Sc 2 2 6 2 6 1 2 57 La 2 6 10 – 2 6 1 2 93 Np 6 10 5 2 6 – 2
22 Ti 2 2 6 2 6 2 2 58 Ce 2 6 10 2 2 6 – 2 94 Pu 6 10 5 2 6 1 2
23 V 2 2 6 2 6 3 2 59 Pr 2 6 10 3 2 6 – 2 95 Am 6 10 6 2 6 1 2
24 Cr 2 2 6 2 6 5 1 60 Nd 2 6 10 4 2 6 – 2 96 Cm 6 10 7 2 6 1 2
25 Mn 2 2 6 2 6 5 2 61 Pm 2 6 10 5 2 6 – 2 97 Bk 6 10 8 2 6 1 2
26 Fe 2 2 6 2 6 6 2 62 Sm 2 6 10 6 2 6 – 2 98 Cf 6 10 9 2 6 1 2
27 Co 2 2 6 2 6 7 2 63 Eu 2 6 10 7 2 6 – 2 99 – 6 10 10 2 2 1 2
28 Ni 2 2 6 2 6 8 2 64 Gd 2 6 10 7 2 6 1 2 100 – 6 10 11 2 2 1 2
29 Cu 2 2 6 2 6 10 1 65 Tb 2 6 10 8 2 6 1 2
30 Zn 2 2 6 2 6 10 2 66 Dy 2 6 10 9 2 6 1 2
31 Ga 2 2 6 2 6 10 2 1 67 Ho 2 6 10 10 2 6 1 2
32 Ge 2 2 6 2 6 10 2 2 68 Er 2 6 10 11 2 6 1 2
33 As 2 2 6 2 6 10 2 3 69 Tm 2 6 10 12 2 6 1 2
34 Se 2 2 6 2 6 10 2 4 70 Yb 2 6 10 13 2 6 1 2
35 Br 2 2 6 2 6 10 2 5 71 Lu 2 6 10 14 2 6 1 2
36 Kr 2 2 6 2 6 10 2 6 – – 72 Hf 2 6 10 14 2 6 2 – – 2
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(i) The function given by the above equation may be referred
to as the ψ200 wave function. Why?

(ii) Determine c1 from the condition that eqn (4.32) satisfies
Schrödinger’s equation.

(iii) Find the corresponding energy.
(iv) Determine A from the condition that the total probability

of finding the electron somewhere must be unity.
(v) Find the most probable orbit of the electron for the wave

function of eqn (4.32) and compare your result with that
given by the curve in Fig. 4.3 for n = 2.

4.7. Show that ψ210 as given by eqn (4.29) satisfies
Schrödinger’s equation. Find the corresponding energy.

Compare this energy with that obtained for the wave function
in the previous example. Can you draw any conclusions from
these results concerning the whole n = 2 shell?

4.8. Solve Schrödinger’s equation for the ground state of
helium neglecting the potential term between the two electrons.
What is the energy of the ground state calculated this way? The
measured value is −24.6 eV. What do you think the difference
is caused by? Give an explanation in physical terms.

4.9. Write down the time-independent Schrödinger equation
for lithium.
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5 Bonds

Striking the electric chain wherewith we are darkly bound
Byron Childe Harold’s Pilgrimage

Those whom God has joined together,
Let no man put asunder.

Marriage service

5.1 Introduction

As we have seen, an electron and a proton may strike up a companionship, the
result being a hydrogen atom. We have found that the energy of the electron is
a negative number, that is, the electron in the vicinity of the proton has a lower
energy than it would have if it were an infinite distance away, which corresponds
to zero energy. The minimum comes about as some sort of compromise between
the kinetic and potential energy, but the important thing is that a minimum exists.
The electron comes closer to find lower energy.

Can we say the same thing about two hydrogen atoms? Would they too come
close to each other in order to reduce the total energy? Yes, they come close;
they combine and make up a hydrogen molecule. This combination between
atoms is called a chemical bond, and the discipline that is concerned with these
combinations is chemistry.

You may justifiably ask why we talk of chemistry in a course on electrical
properties of materials. Well, in a sense, chemistry is just a branch of the
electrical properties of materials. The only way to explain chemical bonds is
to use electrical and some specific quantum-mechanical properties. And not
only is chemistry relegated to this position: metallurgy, is too. When a large
number of atoms conglomerate and make up a solid, the reason is again to be
sought in the behaviour of electrons. Thus, all the mechanical properties of
solids, including their very solidity, spring from the nature of their electrical
components.

This is true in principle but not quite true in practice. We know the
fundamental laws, and so we could work out everything (the outcome of
all chemical reactions, the strength of all materials) if only the mathematical
problems could be overcome. Bigger computers and improved techniques of
numerical analysis might one day make such calculations feasible, but for
the moment it is not practicable to go back to first principles. So we are not
going to solve the problems of chemistry and metallurgy here. Nevertheless,
we need to understand the nature of the chemical bond to proceed further. The
bond between hydrogen atoms leads to the bond between the atoms of heavier
elements. We shall encounter among others germanium and silicon, their band
structure, how they can be doped and how they can serve as the basis upon
which most of our electronic devices are built. Is it worth starting with the
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General mechanical properties of bonds 65

fundamentals? It is far from obvious. Unless you find these glimpses behind
the scenes fascinating in themselves you might come to the conclusion that the
labour to be expended is just too much. But try not to think in too narrow terms.
Learning something about the foundations may help you later when confronting
wider problems.

5.2 General mechanical properties of bonds

Before classifying and discussing particular bond types, we can make a few
common-sense deductions about what sort of forces must be involved in a
bond. First, there must be an attractive force. An obvious candidate for this role
is the Coulomb attraction between unlike charges, which we have all met many
times, giving a force proportional to r−2, where r is the separation.

We know that sodium easily mislays its outer-ring (often called valence)
electron, becoming Na+, and that chlorine is an avid collector of a spare
electron. So, just as we mentioned earlier with lithium and fluorine, the excess
electron of sodium will fill up the energy shell of chlorine, creating a positively
charged sodium ion with a negatively charged chlorine ion. These two ions
will attract each other; that is obvious. What is less obvious, however, is that
NaCl crystallizes into a very definite structure with the Na and Cl ions 0.28 nm
apart. What stops them getting closer? Surely the Coulomb forces are great
at 0.28 nm. Yes, they are great, but they are not the only forces acting. When
the ions are very close to each other and start becoming distorted, new forces
arise that tend to re-establish the original undistorted separate state of the ions.
These repulsive forces are of short range. They come into play only when the
interatomic distance becomes comparable with the atomic radius. Thus, we have
two opposing forces that balance each other at the equilibrium separation, r0.

It is possible to put this argument into graphical and mathematical form. If
we plot the total energy of two atoms against their separation, the graph must
look something like Fig. 5.1. The ‘common-sense’ points about this diagram
are as follows:

1. The energy tends to zero at large distances—in other words, we define zero
energy as the energy in the absence of interaction.

2. At large distances the energy is negative and increases with increasing
distance. This means that from infinity down to the point r0 the atoms attract
each other.

3. At very small distances the energy is rising rapidly, that is, the atoms repel
each other up to the point r0.

4. The curve has a minimum value at r0 corresponding to an equilibrium
position. Here the attractive and repulsive forces just balance each other.

E(r)

Ec

r0

r

Fig. 5.1
The essential general appearance of
the energy versus separation curve if
two atoms are to bond together. The
equilibrium separation is r0 and the
bond energy is Ec.

In the above discussion we have regarded r as the distance between two
atoms, and r0 as the equilibrium distance. The same argument applies, however,
if we think of a solid that crystallizes in a cubic structure. We may then interpret
r as the interatomic distance in the solid.

Let us now see what happens when we compress the crystal, that is, when
we change the interatomic distance by brute force. According to our model,
illustrated in Fig. 5.1, the energy will increase, but when the external influence
is removed, the crystal will return to its equilibrium position. In some other
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66 Bonds

branches of engineering this phenomenon is known as elasticity. So if we
manage to obtain the E(r) curve, we can calculate all the elastic properties
of the solid. Let us work out as an example the bulk elastic constant. We shall
take a cubical piece of material of side a (Fig. 5.2) and calculate the energy
changes under isotropic compression.

T

T

T

a

Fig. 5.2
A cube of material, side a, is
isotropically compressed.

If we regard E(r) as the energy per atom, the total energy of the material is
Naa

3E(r0) in equilibrium, whereNa is the number of atoms per unit volume. If
the cube is uniformly compressed, the interatomic distance will decrease by�r ,
and the total energy will increase to Naa

3E(r0 −�r). Expanding E(r0 −�r)

into a Taylor series and noting that (∂E/∂r)r=r0 = 0, we get

E(r0 − �r) = E(r0) + 1

2

(
∂2E

∂r2

)
r=r0

(�r)2 + · · · (5.1)

Hence, the net increase in energy is equal to

1

2
Naa

3
(
∂2E

∂r2

)
r=r0

(�r)2. (5.2)

This increase in energy is due to the work done by moving the six faces of the
cube. The total change in linear dimensions is (a/r0)�r; thus we may say
that each face has moved by a distance (a/2r0)�r . Hence, while the stress is
increasing from 0 to T , the total work done on the piece of material is

6 × 1

2
T a2 a�r

2r0
. (5.3)

From the equality of eqns (5.2) and (5.3) we get

3

2
T
a3

r0
�r = 1

2

a3

r3
0

(
∂2E

∂r2

)
r=r0

(�r)2, (5.4)

whence

T = 1

3r0

(
∂2E

∂r2

)
r=r0

�r

r0
. (5.5)

Defining the bulk elastic modulus by the relationship of stress to the volume
change caused, that is

T = c
�a3

a3
∼= c

3�a

a
= c

3�r

r0
, (5.6)

we can obtain c with the aid of eqn (5.5) in the form

c = 1

9r0

(
∂2E

∂r2

)
r=r0

. (5.7)

So we have managed to obtain both Hooke’s law and an expression for the
bulk elastic modulus by considering the interaction of atoms. If terms higher
than second order are not negligible, we have a material that does not obey
Hooke’s law.

It is worth noting that most
materials do obey this Hooke’s law
for small deformations, but not for
large ones. This is in line with the
assumptions we have made in the
derivation.
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For the purpose of making some rough calculations, the characteristic
curve of Fig. 5.1 may be approximated by the following simple mathematical
expression,

E(r) = A

rn
− B

rm
, (5.8)

where the first term on the right-hand side represents repulsion and the second
term attraction. By differentiating eqn (5.8) we can get Ec the minimum of the
E(r) curve at the equilibrium distance r = r0, in the form

Ec = B

rm0

(m
n

− 1
)

. (5.9)

For a stable bond, Ec < 0, which can be satisfied only if The repulsive force has a higher
index than the attractive one.

m < n. (5.10)

5.3 Bond types

There is no sharp distinction between the different types of bonds. For most
bonds, however, we may say that one or the other mechanism dominates. Thus,
a classification is possible; the four main types are: (i) ionic, (ii) metallic,
(iii) covalent, and (iv) van der Waals.

5.3.1 Ionic bonds

A typical representative of an ionic crystal is NaCl, which we have already
discussed in some detail. The crystal structure is regular and looks exactly like
the one shown in Fig. 1.1. We have negatively charged Cl ions and positively
charged Na ions. We may now ask the question, what is the cohesive energy of
this crystal? Cohesive energy is what we have denoted by Ec in Fig. 5.1, that is
the energy needed to take the crystal apart. How could we calculate this? If the
binding is due mainly to electrostatic forces, then all we need to do is to sum
the electrostatic energy due to pairs of ions.

Let us start with an arbitrary Na ion. It will have six Cl ions at a distance, a,
giving the energy,

− e2

4πε0

6

a
. (5.11)

There are then 12 Na ions at a distance a
√

2 contributing to the energy by the
amount

e2

4πε0

12

a
√

2
. (5.12)

Next come eight chlorine atoms at a distance a
√

3, and so on. Adding up the
contributions from all other ions, we have an infinite sum (well, practically
infinite) of the form

− e2

4πε0

(
6

a
− 12

a
√

2
+ 8

a
√

3
· · ·

)
. (5.13)

We have to add together sums such as eqn (5.13) for every Na and Cl ion to get
the cohesive energy. It would actually be twice the cohesive energy, because
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we counted each pair twice, or we may say that it is the cohesive energy per
NaCl unit.

The infinite summations look a bit awkward, but fortunately there are
mathematicians who are fond of problems of this sort; they have somehow
managed to sum up all these series, not only for the cubical structure of NaCl,
but for the more complicated structures of some other ionic crystals as well.
Their labour brought forth the formula

Electrostatic energy = −M
e2

4πε0a
. (5.14)

Taking a = 0.28 nm and putting the constants into eqn (5.14) we get for the

M is called the Madelung constant.
For a simple cubic structure its
value is 1.748.

cohesive energy,

E = 8.94 eV, (5.15)

which is about ten per cent above the experimentally observed value. There

are other types of energies involved as well (as, e.g. the energy due to the slight
deformation of the atoms) but, as the numerical results show, they must be of
lesser significance. We have thus confirmed our starting point that NaCl may
be regarded as an ionic bond.

5.3.2 Metallic bonds

Having studied the construction of atoms, we are now in a somewhat better
position to talk about metals. Conceptually, the simplest metal is a monovalent
alkali metal, where each atom contributes one valence electron to the common
pool of electrons. So we are, in fact, back to our very first model, when we
regarded a conductor as made up of lattice ions and charged billiard balls
bouncing around.

We may now ask the question: how is a piece of metal kept together? ‘By
electrostatic forces’, is the simplest, though not quite accurate, answer. Thus, the
metallic bond is similar to the ionic bond in the sense that the main role is played
by electrostatic forces, but there is a difference as far as the positions of the
charges are concerned. In metals the carriers of the negative charge are highly
mobile; thus we may expect a bond of somewhat different properties. Since
electrons whizz around and visit every little part of the metal, the electrostatic
forces are ubiquitous and come from all directions. So we may regard the
electrons as a glue that holds the lattice together. It is quite natural, then, that a
small deformation does not cause fracture. Whether we compress or try to pull
apart a piece of metal the cohesive forces are still there and acting vigorously.
This is why metals are so outstandingly ductile and malleable.

5.3.3 The covalent bond

So far we have discussed two bonds, which depend on the fact that unlike
charges attract—a familiar, old but nevertheless true, idea. But why should
atoms like carbon or silicon hang together? It is possible to purify silicon, so
that its resistivity is several ohm metres—there can be no question of a lot of free
electrons swarming around, nor is there an ionic bond. Carbon in its diamond
form is the hardest material known. Not only must it form strong bonds, but
they must also be exceptionally precise and directional to achieve this hardness.
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The properties of the covalent bond, also called the valence or homopolar
bond on occasions, is the most important single topic in chemistry, yet its
mechanism was completely inexplicable before the rise of quantum mechanics.

The exact mathematical description is immensely difficult, even for people
with degrees, so in an undergraduate course we must be modest. The most
we can hope for is to get a good physical picture of the bond mechanism,
and perhaps an inkling of how a theoretical physicist would start solving the
problem.

The simplest example of the covalent bond is the hydrogen molecule, where
two protons are kept together by two electrons. The bond comes about because
both electrons orbit around both atoms. Another way of describing the bond is
to appeal to the atoms’ desire to have filled shells. A hydrogen atom needs two
electrons (of opposite spin) to fill the 1s shell, and lacking any better source of
electrons, it will consider snatching that extra electron from a fellow hydrogen
atom. Naturally the other hydrogen atom will resist, and at the end they come to
a compromise and share both their electrons. It is as if two men, each anxious
to secure two wives for himself, were to agree to share wives.∗ ∗ The analogy also works, as a feminist

friend has pointed out, if two women,
each anxious to secure two husbands for
herself, were to agree to share husbands.

Another example is chlorine, which has five 3p electrons and is eagerly
awaiting one more electron to fill the shell. The problem is again solved by
sharing an electron pair with another chlorine atom. Thus, each chlorine atom
for some time has the illusion that it has managed to fill its outer shell.

Good examples of covalent bonds in solids are carbon, silicon, and
germanium. Their electron configurations may be obtained from Table 4.1.
They are as follows:

C: 1s2, 2s2, 2p2

Si: 1s2, 2s2, 2p6, 3s2, 3p2

Ge: 1s2, 2s2, 2p6, 3s2, 3p6, 3d10, 4s2, 4p2.

It can be easily seen that the common feature is two s and two p electrons
in the outer ring. The s shells (2s, 3s, 4s, respectively) are filled; so one may
expect all three substances to be divalent, since they have two extra electrons
in the p shells. Alas, all of them are tetravalent. The reason is that because
of interaction (which occurs when several atoms are brought close together),
the spherical symmetry of the outer s electrons is broken up, and they are
persuaded to join the p electrons in forming the bonds. Hence, for the purpose
of bonding, the atoms of carbon, silicon, and germanium may be visualized with
four dangling electrons at the outside. When the atoms are brought close to each
other, these electrons establish the bonds by pairing up. The four electrons are
arranged symmetrically in space, and the bonds must therefore be tetrahedral,
as shown in Fig. 5.3.

In covalent bonds all the available electrons pair up and orbit around a pair
of atoms; none of them can wander away to conduct electricity. This is why
carbon in the form of diamond is an insulator.† The covalent bonds are weaker † Incidentally, carbon can have another

type of bond as well. In its graphite form,
consisting of layers on top of each other,
it is a fairly good conductor.

in silicon and germanium, and some of the electrons might be ‘shaken off’ by
the thermal vibrations of the crystal. This makes them able to conduct electricity
to a certain extent. They are not conductors; we call them semiconductors.
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Fig. 5.3
The diamond structure. Notice that
each atom is symmetrically
surrounded in an imaginary cube by
its four nearest neighbours. These
are covalently bonded, indicated by
tubular connections in the figure.

a

Table 5.1 Mohs hardness scale (modified)

Hardness
number

Material

1 Talc Mg3Si4O10(OH)2

2 Gypsum CaSO4 · 2H2O
3 Calcite CaCO3

4 Fluorite CaF2

5 Apatite Ca5(PO4)3(OH, F, Cl)
6 Orthoclase KAlSi3O8

7 Vitreous Silica SiO2

8 Quartz, Stellite SiO2

9 Topaz Al2SiO3(OH, F)2
10 Garnet ZnAl2O4

11 Fused Zirconia ZrO2

12 Fused Alumina Al2O3

13 Silicon Carbide SiC
14 Boron Carbide BC
15 Diamond C

We have already remarked on the hardness of diamond, which is a measure of
its resistance to deformation, whether it will crush, scratch, stretch, or dent. It is
difficult to quantify precisely—the engineers’ rule of thumb is called the Mohs
scale, measured by the dent caused by a standard probe. On this scale diamond
was initially given the top rating of 10, but to include more hard materials, the
scale was uprated to 15, as is shown in Table 5.1. The softest material, rated 1, is
the familiarly soft talcum powder. Common abrasive materials include silicon
carbide, a group IV compound with a similar diamond type covalent bond,
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but less symmetry; and tungsten carbide, whose bonds are partly ionic. The
diamond structure also gives a high value of bulk elastic modulus [eqn (5.7)].

Diamond has two other superlatives. It has a much greater thermal
conductivity than metals at room temperature, conducting energy by lattice
vibrations rather than free electrons. It is thus a good heat sink for electronic
devices where heat can be removed without prejudicing the electrical behaviour.
As well as using ‘industrial’ rather than gem grade diamonds for this purpose, it
is possible to grow suitable plane layers of diamond by molecular beam epitaxy
and related techniques described in a little more detail in Section 8.11.

The second superlative that takes us out of Science and into high finance is
the ‘sparkle’of diamond in jewellery. But see Table 10.1; it is the high refractive
index which makes sparklers.

The sale of diamonds of jewel quality is controlled by the Central Selling
Organisation (CSO) of de Beers who in 1948 hired a New York advertising
agency to create a slogan to stimulate their industry. The young lady assigned
to this task thought long and hard, weeks passed with no idea. She thought
she would work on this forever, so said “diamonds are forever”. It was a great
success.

Carbon dating is an important impact of science on ancient history and
archaeology, removing some of the luxury of literary speculation from its
practitioners. Atmospheric CO2, which is the source of carbon in living
organisms, contains 1 atoms of C14 in 7.8 × 1011 atoms of stable C12. C14,
decays with a half life of 5700 years emitting an electron. These extreme
numbers result in appreciable radioactivity, giving 15 disintegrations per gram
per minute. When the organism dies the intake of atmospheric CO2 stops and
the C14 within it decays exponentially. Thus, a count of radioactivity in dead
bones or wood etc. will give a dating for the time of death.

In the two decades after 1950, scientific archaeology matured rapidly
with the advent of the nuclear physics-based methods of carbon and
thermoluminescent dating. Samples of diamonds from ancient jewels and
numerous samples mined in the past two centuries were dated. They were
all found to have been formed within an order of magnitude of 109 years ago.
On a human scale, 109 years is pretty close to ‘forever’. So the slogan is more
accurate than the average advertisement.

Diamonds are not always forever. Their one vice is that at 700◦C in air they
burn to carbon dioxide. This rules out diamond for large-scale cutting of steels
and other hard metals. It has stimulated research for hard compounds with better
temperature stability and hardness perhaps even greater than 15 on the Mohs
scale. Compounds of C with N, B, and Si have shown promise, the possible
winner is C3N4; but not yet.

5.3.4 The van der Waals bond

If the outer shell is not filled, atoms will exert themselves to gain some
Johannes Diderik Van der Waals,
Nobel Prize, 1910.

extra electrons, and they become bonded in the process. But what happens
when the shell is already filled, and there are no electrostatic forces either,
as for example in argon? How will argon solidify? For an explanation some
quantum-mechanical arguments are needed again.
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We have described the atoms as consisting of a positive nucleus and the
electrons around the nucleus, with the electrons having certain probabilities of
being in certain places. Since the electrons are sometimes here and sometimes
there, there is no reason why the centres of positive and negative charge should
always be coincident. Thus, we could regard atoms as fluctuating dipoles. If
atom A has a dipole moment, then it will induce an opposite dipole moment
on atom B. On average there will be an attractive force, since the tendency
described leads always to attraction, never to repulsion.

This attraction is called a van der Waals bond. Such bonds are responsibleThe forces in van der Waals bonds
are fairly weak (and may be shown
to vary with the inverse seventh
power of distance); consequently
these materials have low melting
and boiling points.

for the formation of organic crystals.
Searching for an anthropomorphic analogy once more (it’s good because it

aids the memory) we could look at a dipole as a permanent bond between a
man and a woman established by mutual attraction. Now would two such dipoles
attract each other? To facilitate the discussion let us introduce the notation m1

and m2, and w1 and w2 for the two men and two women in dipoles 1 and 2
respectively. For an attractive force to develop between two dipoles all we need
is that the attraction between m1 and w2, and m2 and w1 should be stronger
than the repulsions between m1 and m2 and w1 and w2. In a modern society
this is indeed the likely thing to happen. The attraction can be there without the
need to break the bond.

5.3.5 Mixed bonds

In most practical cases the bonds are of course not any of these pure types. An
example of a mixed bond is that in carbon steel in which the presence of both
metallic and ionic bonds leads to a material with considerably more strength
than that of iron on its own.

Mixed bonds of particular significance to the semiconductor industry are
some III–V and II–VI compounds (where the Roman numbers refer to the
respective columns in the periodic table of Fig. 4.5) as for example GaAs or
ZnSe. They have a combination of ionic and covalent bonds. We shall discuss
their properties in more detail in Section 8.6.

5.3.6 Carbon again

It may be worth noting that the diamond structure is not the only one in which
carbon can crystallize. Another form is graphite, which consists of arrays of
hexagons stuck together in flat sheets. Interestingly, and rather unexpectedly,
lots of further crystalline forms of carbon have been discovered in the last two
decades. Their significance in engineering is not obvious as yet, but they are
certainly fun to look at. We shall show here only the one discovered earliest,
which gave the name of fullerenes to the family after Buckminster Fuller, a US
architect who originated the geodesic dome of similar shape. It comes about
by removing an atom from some of the hexagons. The sheet may then fold up
into a configuration of 60 atoms containing 12 pentagons and 20 hexagons as
shown in Fig. 5.4. It resembles a football, which would be a better name for it.
Alas, the architects got there first.Fig. 5.4

A view of C60 containing pentagonal
and hexagonal structure.

Another interesting configuration is the tube which has a thin wall that
usually consists of a single layer and may be a hundred atoms long. The family,
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called nanotubes, may lead to a new type of transistor as discussed briefly later
in Section 9.25 concerned with nanoelectronics.

A more serious but less picturesque aspect of carbon bonding is the existence
of double and triple bonds, which play a crucial role in organic and polymer
chemistry. The single covalent bond, which can be expressed in terms of
molecular orbitals, occurs when two dangling bonds pair up so that their electron
orbitals merge to form a cylindrical two electron cloud shared between the two
atoms. Since this looks similar to a pair of s orbitals (quantum number l = 0,
Section 4.2) it is called a σ bond. When two carbon atoms are so paired, they
can each have three spare bonds. These can be combined with other elements
(e.g. H), or a pair perpendicular to the plane of the σ bond can form a weaker
bond by sharing electrons with a similar structure of two p orbitals (l = 1, see
Fig. 4.4) called a π bond.

Going even further, a gas such as acetylene (C2H2) has the carbons joined
to each other and to hydrogen by σ bonds, leaving two pairs of 2p electrons
perpendicular to the plane of the carbon σ bond, which form two π bonds.
These three bond types hugely contribute to the complexity and versatility of
organic chemistry.

5.4 Feynman’s coupled mode approach

We are now going to discuss a more mathematical theory of the covalent
bond, or rather of its simplest case, the bonding of the hydrogen molecule.
We shall do this with the aid of Feynman’s (Nobel Prize, 1965) coupled modes.
This approach proved amazingly powerful in Feynman’s hands, enabling him
to explain, besides the hydrogen molecule, such diverse phenomena as the
nuclear potential between a proton and a neutron, and the change of the K◦
particle into its own antiparticle. There is in fact hardly a problem in quantum
mechanics that Feynman could not treat by the technique of coupled modes.
Of necessity, we shall be much less ambitious and discuss only a few relatively
simple phenomena.

I should really start by defining the term ‘coupled mode’. But to define
is to restrict, to put a phenomenon or a method into a neat little box in
contradistinction to other neat little boxes. I am a little reluctant to do so in
the present instance because I am sure I would then exclude many actual or
potential applications. Not being certain of the limitations of the approach,
I would rather give you a vague description, just a general idea of the concepts
involved.

The coupled mode approach is concerned with the properties of coupled
oscillating systems like mechanical oscillators (e.g. pendulums), electric
circuits, acoustic systems, molecular vibrations, and a number of other things
you might not immediately recognize as oscillating systems. The approach
was quite probably familiar to the better physicists of the last century but
has become fashionable only recently. Its essence is to divide the system up
into its components, investigate the properties of the individual components in
isolation, and then reach conclusions about the whole system by assuming that
the components are weakly coupled to each other. Mathematicians would call
it a perturbation solution because the system is perturbed by introducing the
coupling between the elements.

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


74 Bonds

First of all we should derive the equations. These, not unexpectedly, turn out
to be coupled linear differential equations. Let us start again with Schrödinger’s
equation [eqn (3.4)], but put it in the operator form, that is

The operator in parentheses is
usually called the Hamiltonian
operator and denoted by H .

(
− h̄2

2m
∇2 + V

)
� = ih̄

∂�

∂t
. (5.16)

We may also write Schrödinger’s equation in the simple and elegant form

H� = ih̄
∂�

∂t
. (5.17)

We have attempted [eqn (3.7)] the solution of this partial differential equation
before by separating the variables,

� = w(t)ψ(r). (5.18)

Let us try to do the same thing again but in the more general form,

� =
∑
j

wj (t)ψj (r), (5.19)

where a number of solutions (not necessarily finite) are superimposed.
Up to now we have given all our attention to the spatial variation of the

wave function. We have said that if an electron is in a certain state, it turns up
in various places with certain probabilities. Now we are going to change the
emphasis. We shall not enquire into the spatial variation of the probability at
all. We shall be satisfied with asking the much more limited question: what is
the probability that the electron (or more generally a set of particles) is in state
j at time t? We do not care what happens to the electron in state j as long as it
is in state j . We are interested only in the temporal variation, that is, we shall
confine our attention to the function w(t).

We shall get rid of the spatial variation in the following way. Let us substitute
eqn (5.19) into eqn (5.17)

∑
j

wjHψj = ih̄
∑
j

ψj

dwj

dt
, (5.20)

then multiply both sides by ψk and integrate over the volume. We then obtain

∑
j

wj

∫
ψkHψj dv = ih̄

∑
j

dwj

dt

∫
ψjψk dv, (5.21)

where dv is the volume element.
Now ψj and ψk are two solutions of the time-independent Schrödinger

equation, and they have the remarkable property (I have to ask you to believe
this) of being orthogonal to each other. You may have met simple examples of
orthogonality of functions before, if at no other place than in the derivation of
the coefficients of a Fourier series. The condition can be simply stated in the
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following form ∫
ψkψj dv =

{
Ckj if k = j ,

0 if k �= j .
(5.22)

Multiplying the wave function with judiciously chosen constants, Ckj can
be made unity, and then the wave functions are called orthonormal. Assuming
that this is the case and introducing the notation,

Hkj =
∫

ψkHψj dv, (5.23)

we get the following differential equations:∗ ∗ The derivation would be analogous if,
instead of one electron, a set of particles
was involved. Schrödinger’s equation
would then be written in terms of a set
of spatial variables and there would be
multiple integrals instead of the single
integral here. The integrations would be
more difficult to perform, but the final
form would still be that of eqn (5.24).

ih̄
dwk

dt
=
∑
j

Hkj wj (5.24)

for each value of k.
This is the equation we sought. It is independent of the spatial variables and

depends only on time. It is therefore eminently suitable for telling us how the
probability of being in a certain state varies with time.

You may quite justifiably worry at this point about how you can find the
wavefunction, how you can make them orthonormal, and how you can evaluate
integrals looking as complex as eqn (5.23). The beauty of Feynman’s approach
is that neither the wave function nor Hkj need be calculated. It will suffice to
guess Hkj on purely physical grounds.

We have not so far said anything about the summation. How many wave
functions (i.e. states) are we going to have? We may have an infinite number,
as for the electron in a rigid potential well, or it may be finite. If, for example,
only the spin of the electron matters, then we have two states and no more.
The summation should run through j = 1 and j = 2. Two is of course
the minimum number. In order to have coupling, one needs at least two
components, and it turns out that two components are enough to reach some
quite general conclusions about the properties of coupled systems. So the
differential equations we are going to investigate look as follows:

ih̄
dw1

dt
= H11w1 + H12w2, (5.25)

ih̄
dw2

dt
= H21w1 + H22w2. (5.26)

If H12 = H21 = 0 the two states are not coupled. Then the differential
equation for state (1) is

ih̄
dw1

dt
= H11w1, (5.27)

which has a solution

w1 = K1 exp

(
−i

H11

h̄
t

)
. (5.28)

The probability of being in state (1) is thus

|w1(t)|2 = |K1|2. (5.29)
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This is not a very exciting solution, but it is at least consistent. If there is no
coupling between the states, then the probability of being in state (1) does not
vary with time—once in state (1), always in state (1). The same is true, of
course, for state (2). In the absence of coupling nothing changes.

Before solving the coupled differential equations, let us briefly discuss
the physical concepts of uncoupled states and the meaning of coupling. What do
we mean exactly by coupling? We can explain this with our chosen example,
the hydrogen molecule, or better still the even simpler case, the hydrogen
molecular ion.

⊗

⊗

⊗

⊗

Electron
Protons

(1)

(2)

Fig. 5.5
The two basic states of the hydrogen
molecular ion. The shaded area
represents the electron in its ground
state. It is attached either to proton 1
or to proton 2.

The hydrogen molecular ion consists of a hydrogen atom to which a proton
is attached. We may then imagine our uncoupled states as shown in Fig. 5.5.
We choose for state (1) the state when the electron is in the vicinity of proton 1
and occupying the lowest energy (ground) level, and proton 2 is just alone with
no electron of its own. State (2) represents the alternative arrangement when
the electron is attached to proton 2 and proton 1 is bare.

When we say that we consider only these two states, we are not denying the
existence of other possible states. The electron could be in any of its excited
states around the proton, and the whole configuration of three particles may
vibrate, rotate, or move in some direction. We are going to ignore all these
complications. We say that as far as our problem is concerned, only the two
states mentioned above are of any significance.

What do we mean when we say that these two states are uncoupled? We
mean that if the electron is at proton 1 in the beginning, it will always stay
there. Similarly, if the electron is at proton 2 in the beginning, it will always
stay at proton 2. Is this complete separation likely? Yes, if the protons are far
from each other, this is the only thing that can happen. What can we expect
when the protons are brought closer to each other? Classically, the electron that
is in the vicinity of proton 1 should still remain with proton 1 because this is
energetically more favourable. The electron cannot leave proton 1 because it
faces an adverse potential barrier. According to the laws of quantum mechanics,
this is no obstacle, however. The electron may tunnel through the potential
barrier and arrive at proton 2 with energy unchanged. Thus, as the two protons
approach each other, there is an increasing probability that the electron jumps
over from proton 1 to proton 2 and vice versa. And this is what we mean by
coupling. The two states are not entirely separate.When the electron jumps from

one proton to the other proton, it
introduces coupling between the
two states.

What do we mean by weak coupling? It means that even in the presence of
coupling, it is still meaningful to talk about one or the other state. The states
influence each other but may preserve their separate entities.

Let us return now to the solution of equations (5.25) and (5.26). As we are
going to investigate symmetric cases only, we may introduce the simplifications

H11 = H22 = E0, H12 = H21 = −A, (5.30)

leading to

ih̄
dw1

dt
= E0w1 − Aw2, (5.31)

ih̄
dw2

dt
= −Aw1 + E0w2. (5.32)
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Following the usual recipe, the solution may be attempted in the form

w1 = K1 exp

(
−i

E

h̄
t

)
, w2 = K2 exp

(
−i

E

h̄
t

)
. (5.33)

Substituting eqn (5.33) into equations (5.31) and (5.32) we get

K1E = E0K1 − AK2 (5.34)

and
K2E = −AK1 + E0K2, (5.35)

which have a solution only if∣∣∣∣E0 − E −A

−A E0 − E

∣∣∣∣ = 0. (5.36)

Expanding the determinant we get

(E0 − E)2 = A2, (5.37)

whence
E = E0 ± A. (5.38)

If there is no coupling between the two states, then E = E0; that is, both
states have the same energy. If there is coupling, the energy level is split.
There are two new energy levels E0 +A and E0 −A. This is a very important
phenomenon that you will meet again and again. Whenever there is coupling,
the energy splits.

The energies E0 ±A may be defined as the energies of so-called stationary
states obtainable from linear combinations of the original states. For our purpose
it will suffice to know that we can have states with energiesE0 +A andE0 −A.

How will these energies vary with d , the distance between the protons?
What is A anyway? A has come into our equations as a coupling term. The
larger A, the larger the coupling, and the larger the split in energy. Hence A

must be related to the tunnelling probability that the electron may get through
the potential barrier between the protons. Since tunnelling probabilities vary
exponentially with distance—we have talked about this before when solving
Schrödinger’s equation for a tunnelling problem—A must vary roughly in the
way shown in Fig. 5.6.

E
ne

rg
y 

E

Eo

A

d

Fig. 5.6
The variation of E0 and A with the
interproton separation, d. E0 is the
energy when the states shown in
Fig. 5.5 are uncoupled. A is the
coupling term.

E
ne

rg
y

d

E0 + A

E0 - A

Fig. 5.7
Summing the quantities in Fig. 5.6
to get E0 + A and E0 − A. The latter
function displays all the
characteristics of a bonding curve.

Now what is E0? It is the energy of the states shown in Fig. 5.5. It consists
of the potential and kinetic energies of the electron and of the potential energies
of the protons (assumed immobile again). When the two protons are far away,
their potential energies are practically zero, and the electron’s energy, since
it is bound to a proton, is a negative quantity. Thus, E0 is negative for large
interproton distances but rises rapidly when the separation of the two protons
is less than the average distance of the fluctuating electron from the protons. A
plot of E0 against d is also shown in Fig. 5.6.

We may now obtain the energy of our states by forming the combinations
E0 ± A. Plotting these in Fig. 5.7, we see that E0 − A has a minimum, that is,
at that particular value of d a stable configuration exists. We may also argue in
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78 Bonds

terms of forces. Decreasing energy means an attractive force. Thus, when the
protons are far away, and we consider the state with the energy E0 −A, there is
an attractive force between the protons. This will be eventually balanced by the
Coulomb repulsion between the protons, and an equilibrium will be reached.

Thus, in order to explain semi-quantitatively the hydrogen molecular ion,
we have had to introduce a number of new or fairly new quantum-mechanical
ideas.

5.5 Nuclear forces

Feynman in his Lectures on Physics goes on from here and discusses a large
number of phenomena in terms of coupled modes. Most of the phenomena
are beyond what an engineering undergraduate needs to know; so with regret
we omit them. (If you are interested you can always read Feynman’s book.)
But I cannot resist the temptation to follow Feynman in saying a few words
about nuclear forces. With the treatment of the hydrogen molecular ion behind
us, we can really acquire some understanding of how forces between protons
and neutrons arise.

It is essentially the same idea that we encountered before. A hydrogen atom
and a proton are held together owing to the good services of an electron. The
electron jumps from the hydrogen atom to the proton converting the latter into
a hydrogen atom. Thus, when a reaction

H, p → p, H (5.39)

takes place, a bond is formed.
Yukawa∗ proposed in the middle of the 1930s that the forces between

∗ If you permit us a digression in
a digression, I should like to point
out that Yukawa, a Japanese, was
the first non-European ever to make
a significant contribution to theoretical
physics. Many civilizations have struck
independently upon the same ideas,
as for example the virgin births of
gods or the commandments of social
conduct, invented independently useful
instruments like the arrow or the wheel,
and developed independently similar
judicial procedures and constitutions,
but, interestingly, no civilization other
than the European one bothered about
theoretical physics.

nucleons may have the same origin. Let us take the combination of a proton
and a neutron. We may say again that a reaction

p, n → n, p (5.40)

takes place, and a bond is formed. ‘Something’ goes over from the proton to
the neutron which causes the change, and this ‘something’ is called a positively
charged π-meson. Thus, just as an electron holds together two protons in a
hydrogen molecular ion, in the same way a positively charged π-meson holds
together a proton and a neutron in the nucleus.

+(1)

(2)

a

+

b

+

b

+

a

Fig. 5.8
The two basic states of the hydrogen
molecule. Each electron can be
attached to either proton leading to a
coupling between the states.

5.6 The hydrogen molecule

The hydrogen molecule differs from the hydrogen molecular ion by having one
more electron. So we may choose our states as shown in Fig. 5.8. State (1) is
when electron a is with proton 1 and electron b with proton 2, and state (2) is
obtained when the electrons change places.

How do we know which electron is which? Are they not indistinguishable?
Yes, they are, but we may distinguish them by assigning opposite spins to them.

We may now explain the bond of the hydrogen molecule in a manner
analogous to that of the hydrogen molecular ion, but instead of a single electron
jumping to and fro, we now have two electrons changing places. Thus, we may
argue again that owing to symmetry, the energies of the two states are identical.
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The coupling between the states—due to the exchange of electrons—splits
the energy levels, one becoming somewhat higher, the other somewhat lower.
Having the chance to lower the energy results in an attractive force which is
eventually balanced by the repulsive force between the protons. And that is the
reason why the hydrogen molecule exists.

It is interesting to compare this picture with the purely intuitive one described
earlier, based on the atoms’ ‘desire’ to fill the energy shells. In the present
explanation we are saying that the bond is due to the exchange of electrons;
previously we said the bond was due to sharing of the electrons. Which is it;
is it sharing or swapping? It is neither. Both explanations are no more than
physical pictures to help the imagination.

We could equally well have said that the hydrogen molecule exists because
it comes out mathematically from our basic premises, that is the spin and
Pauli’s principle added to Schrödinger’s equation. The problem is a purely
mathematical one, which can be solved by numerical methods. There is no
need, whatsoever, for a physical picture. This argument would hold its ground
if numerical solutions were always available. But they are not available.
Computers are not powerful enough, not as yet and will not be for a long
time to come. So we need mathematical approximations based on a simplified
physical picture and then we must strive to build up a new, more sophisticated
physical picture from the mathematical solution obtained, and then attempt for
a better mathematical approximation based on the new physical picture, and so
on, and so on. It seems a tortuous way of doing things, but that is how it is.

It is a lot easier in classical physics. Our physical picture is readily acquired
in conjunction with our other faculties. We do not need to be taught that two
bricks cannot occupy the same place: we know they cannot.

In studying phenomena concerned with extremely small things beyond the
powers of direct observation, the situation is different. The picture of an atom
with filled and unfilled energy shells is not a picture acquired through personal
experience. It has come about by solving a differential equation. But once the
solution is obtained, a physical picture starts emerging. We may visualize little
boxes, or concentric spheres, or rows of seats in the House of Commons filling
up slowly with MPs. The essential thing is that we do form some kind of picture
of the energy shells. And once the shell picture is accepted, it helps us find an
explanation for the next problem, the bond between the atoms.

So you should not be unduly surprised that many alternative explanations
are possible. They reflect attempts to develop intuition in a discipline where
intuition does not come in a natural way.

Whenever confronted with new problems, one selects from this store of
physical pictures the ones likely to be applicable. If one of the physical pictures
does turn out to be applicable, it is a triumph both for the picture and for the
person who applied it. If all attempts fail, then either a new physical picture or
a brighter person is needed to tackle the problem.

5.7 An analogy

One of the most important conclusions of the foregoing discussion was that
‘whenever there is coupling, the energy levels split’. This is a very important
relationship in quantum mechanics, but it could also be regarded as a simple
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80 Bonds

Fig. 5.9
The coupled circuit analogy. Two
resonant circuits tuned to ω0 when far
apart (no coupling between them),
have their resonant frequency split to
ω0 ± a (cf. E0 ± A) when coupled.

M

Response

Frequencyω0–a ω0+aω0

mathematical consequence of the mathematical formulation. If we have coupled
differential equations, something will always get split somewhere. The example
we are all familiar with is that of coupled electric resonant circuits shown
in Fig. 5.9. If the two circuits are far away from each other, that is they
are uncoupled, both of them have resonant frequencies ω0. When the circuits
are coupled, there are two resonant frequencies ω0 ± a, that is, we may say the
resonant frequencies are split.

Exercises

5.1. Discuss qualitatively the various mechanisms of bonding.
Give examples of materials for each type of bond and also
materials that do not have a clear single bond type.

5.2. Show that the force between two aligned permanent
dipoles, a distance r apart, is attractive and varies as r−4.

r≺————–�+ − + −
ḋ↔ ḋ↔

5.3. The interaction energy between two atoms may be
phenomenologically described by eqn (5.8). Show that the
molecule will break up when the atoms are pulled apart to
a distance

rb =
(
n + 1

m + 1

)1/(n−m)

r0,

where r0 is the equilibrium distance between the atoms.
Discuss the criterion of breaking used to get the above result.

5.4. For the KCl crystal the variation of energy may also
be described by eqn (5.8), but now r means the interatomic

distance in the cubic crystal, and the energy is for an ion pair.
Take m = 1, n = 9,B = 1.75e2/4πε0. The bulk modulus of
elasticity is 1.88 × 1010 N m−2. Calculate the separation of the
K+ − Cl− ions in the ionic solid.

5.5. Show with the aid of eqns (5.7)–(5.9) that the bulk
modulus may be obtained in the form

c = −mn

9r3
0

Ec.

5.6. Calculate the energy of a negative ion in a linear chain
of equally spaced ions, which carry alternative positive and
negative charges.

5.7. For a symmetrical coupled system, the decrease in energy
(in respect to the uncoupled case) isA, as shown by eqn (5.38).
Show that, for an unsymmetrical system (H11 �= H22) with the
same coupling (H12H21 = A2), the decrease in energy is less
than A.
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The free electron
theory of metals 6

Struggling to be free, art more engaged
Hamlet

Much have I travelled in the realms of gold,
And many goodly states and kingdoms seen.
Keats On First Looking in Chapman’s Homer

6.1 Free electrons

The electrical and magnetic properties of solids are mainly determined by the
properties of electrons in them. Protons can usually be relegated to subordinate
roles, like ensuring charge neutrality. Neutrons may sometimes need to be
considered, as for example in some superconducting materials, in which the
critical temperature depends on the total mass of the nucleus, but on the whole,
the energy levels of electrons hold the key to the properties of solids.

The mathematical problem is not unlike the one we met in the case of
individual atoms. How can we determine the energy levels of electrons in a
solid? Take a wave function depending on the coordinates of 1025 electrons;
write down the Coulomb potential between each pair of electrons, between
electrons and protons; and solve Schrödinger’s equation. This is an approach
which, as you have probably guessed, we are not going to try. But what can
we do instead? We can take a much simpler model, which is mathematically
soluble, and hope that the solution will make sense.

Let us start our search for a simple model by taking a piece of metal and noting
the empirical fact (true at room temperature) that there are no electrons beyond
the boundaries of the metal. So there is some mechanism keeping the electrons
inside. What is it? It might be an infinite potential barrier at the boundaries.
And what about inside? How will the potential energy of an electron vary in
the presence of that enormous number of nuclei and other electrons? Let us say
it will be uniform. You may regard this a sweeping assumption (and, of course,
you are absolutely right), but it works. It was introduced by Sommerfeld in
1928, and has been known as the ‘free electron’ model of a metal. The electrons inside the metal

(more correctly, the valence
electrons, which occupy the outer
ring) are entirely free to roam
around, but they are not allowed
to leave the metal.

You may recognize that the model is nothing else but the potential well we
met before. There we obtained the solution for the one-dimensional case in the
following form:

E = h̄2k2

2m
= h2

8m

n2

L2
. (6.1)
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82 The free electron theory of metals

If we imagine a cube of side L containing the electrons, then we get for the
energy in the same manner

E = h̄2

2m
(k2

x + k2
y + k2

z ) = h2

8mL2
(n2

x + n2
y + n2

z). (6.2)

nx , ny , nz are integers.

6.2 The density of states and
the Fermi–Dirac distribution

The allowed energy, according to eqn (6.2), is an integral multiple of h2/8mL2.
For a volume of 10−6m3 this unit of energy is

Eunit = (6.62 × 10−34)2

8 × 9.1 × 10−31 × 10−4
= 0.6 × 10−33 J = 3.74 × 10−15 eV.

(6.3)
This is the energy difference between the first and second levels, but since

the squares of the integers are involved, the difference between neighbouring
energy levels increases at higher energies. Let us anticipate the result obtained
in the next section and take for the maximum energy E = 3 eV, which is a
typical figure. Taking n2

x = n2
y = n2

z , this maximum energy corresponds to a

value of nx ∼= 1.64×107. Now an energy level just below the maximum energy
can be obtained by taking the integers nx − 1, nx , nx . We get for the energy
difference

�E ∼= 1.22 × 10−7 eV, (6.4)

We can therefore say that, in a macroscopically small energy interval dE, thereEven at the highest energy, the
difference between neighbouring
energy levels is as small as
10−7 eV.

are still many discrete energy levels. So we can introduce the concept of density
of states, which will simplify our calculations considerably.

The next question we ask is how many states are there between the energy
levels E and E + dE. It is convenient to introduce for this purpose the new
variable n with the relationship

n2 = n2
x + n2

y + n2
z . (6.5)

Thus n represents a vector to a point nx , ny , nz in three-dimensional space.
In this space every point with integer coordinates specifies a state; that is, a unit
cube contains exactly one state. Hence, the number of states in any volume is
just equal to the numerical value of the volume. Thus, in a sphere of radius n,
the number of states is

4n3π

3
. (6.6)

Since n and E are related, this is equivalent to saying that the number of
states having energies less than E is

4n3π

3
= 4π

3
K3/2E3/2 with K = 8mL2

h2
(6.7)

Similarly, the number of states having energies less than E + dE is

4π

3
K3/2(E + dE)3/2. (6.8)
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The density of states and the Fermi–Dirac distribution 83

So the number of states having energies between E and E + dE is equal to

Z(E)dE = 4π

3
K3/2{(E + dE)3/2 − E3/2}

∼= 2πK3/2E1/2dE. (6.9)

This is not the end yet. We have to note that only positive values ofnx , ny , nz
are permissible; therefore we have to divide by a factor 8. Allowing further for
the two values of spin, we have to multiply by a factor 2. We get finally

Z(E)dE = CE1/2dE with C = 4πL3(2m)3/2

h3
. (6.10)

Equation (6.10) gives us the number of states, but we would also like to know
the number of occupied states, that is, the number of states that contain electrons.
For that we need to know the probability of occupation, F(E). This function
can be obtained by a not-too-laborious exercise in statistical mechanics. One
starts with the Pauli principle (that no state can be occupied by more than one
electron) and works out the most probable distribution on the condition that
the total energy and the total number of particles are given. The result is the
so-called Fermi–Dirac distribution∗ Enrico Fermi (Nobel Prize, 1938)

and Paul Dirac (Nobel Prize, 1933)
both made fundamental contri-
butions to quantum mechanics.
∗ If we use the assumption that a state
may contain any number of particles,
the so-called Bose–Einstein distribution
is obtained. It turns out that all particles
belong to one or the other of these
distributions and are correspondingly
called fermions or bosons. For this book,
it is of great importance that electrons
are fermions and they obey the Fermi–
Dirac distribution. The properties of
bosons (e.g. quantized electromagnetic
waves and lattice waves) are of somewhat
less significance. We occasionally need
to refer to them as photons and
phonons but their statistics is usually
irrelevant for our purpose. The Bose–
Einstein distribution, and the so-called
boson condensation does come into the
argument in Section 12.14, where we talk
briefly about atom lasers and in Chapter
14 concerned with superconductivity, but
we shall not need any mathematical
formulation of the distribution function.

F(E) = 1

{exp(E − EF)/KT } + 1
, (6.11)

where EF is a parameter called the Fermi level. It has the easily memorized
property that at

E = EF, F(E) = 1
2 , (6.12)

that is, at the Fermi level the probability of occupation is 1
2 .

As may be seen in Fig. 6.1, F(E) looks very different from the classical
distribution exp(−E/kT ). Let us analyse its properties in the following cases:

1. At T = 0.

F(E) = 1
F(E) = 0

for
E < EF

E > EF.
(6.13)

Thus, at absolute zero temperature, all the available states are occupied
up to EF, and all the states above EF are empty. But remember, Z(E) dE
is the number of states between E and E + dE. Thus, the total number of
states is ∫ EF

0
Z(E) dE, (6.14)

which must equal the total number of electronsNL3, whereN is the number
of electrons per unit volume. Thus, substituting eqn (6.10) into eqn (6.14),
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Fermi–Dirac

1.0

0.5 6000 K

600 K

T= 0 K

F(E) =
1 + exp

1

kT( )

(a)

1.0

6000 K

600 K

T= 0 K

Maxwell–Boltzmann

exp (–E/KT)

2.5 eV EEEF = 2.5 eV (b)

E–EF

Fig. 6.1
(a) The Fermi–Dirac distribution function for a Fermi energy of 2.5 eV and for temperatures of 0 K, 600 K, and 6000 K.
(b) The classical Maxwell–Boltzmann distribution function of energies for the same temperatures.

the following equation must be satisfied:

(4πL3(2m)3/2/h3)

∫ EF

0
E1/2dE = NL3. (6.15)

Integrating and solving for EF, we get

EF = h2

2m

(
3N

8π

)2/3

. (6.16)

EF, calculated from the number of free electrons, is shown in Table 6.1.
Thus, even at absolute zero temperature, the electrons’ energies cover a
wide range. This is strongly in contrast with classical statistics, where at
T = 0, all electrons have zero energy.

Table 6.1 Fermi levels
of metals calculated from
eqn (6.16)

Li 4.72 eV
Na 3.12 eV
K 2.14 eV
Rb 1.82 eV
Cs 1.53 eV
Cu 7.04 eV
Ag 5.51 eV
Al 11.70 eV

2. For electron energies above the Fermi level, so that

E − EF � kT , (6.17)

the term unity in eqn (6.11) may be neglected, leading to

F(E) ∼= exp

{
− (E − EF)

kT

}
, (6.18)

which you may recognize as the classical Maxwell–Boltzmann distribution.
That is, for sufficiently large energies the Fermi–Dirac distribution is
reduced to the Maxwell–Boltzmann distribution, generally referred to as
the ‘Boltzmann tail’.

3. For electron energies below the Fermi level, so that

EF − E � kT , (6.19)

eqn (6.11) may be approximated by

F(E) ∼= 1 − exp
(E − EF)

kT
. (6.20)The probability of a state being

occupied is very close to unity.
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It is sometimes useful to talk about the probability of a state not being
occupied and use the function 1 − F(E). We may say then, for the present
case, that the probability of non-occupation varies exponentially.

4. In the range E ≈ EF the distribution function changes rather abruptly from
nearly unity to nearly zero. The rate of change depends on kT . For absolute
zero temperature the change is infinitely fast, for higher temperatures (as
can be seen in Fig. 6.1) it is more gradual. We may take this central region
(quite arbitrarily) as between F(E) = 0.9 and F(E) = 0.1. The width of
the region comes out then [by solving eqn (6.11)] to about 4.4 kT .

Summarizing, we may distinguish three regions for finite temperatures: from
E = 0 to E = EF − 2.2 kT , where the probability of occupation is close to
unity, and the probability of non-occupation varies exponentially; from E =
EF − 2.2 kT to E = EF + 2.2 kT , where the distribution function changes over
from nearly unity to nearly zero; and from E = EF + 2.2 kT to E = ∞, where
the probability of occupation varies exponentially.

6.3 The specific heat of electrons

Classical theory, as we have mentioned before (Section 1.8), failed to predict
the specific heat of electrons. Now we can see the reason. The real culprit is not
the wave nature of the electron nor Schrödinger’s equation but Pauli’s principle.
Since only one electron can occupy a state, electrons of lower energy are not in a
position to accept the small amount of energy offered to them occasionally. The
states above them are occupied, so they stay where they are. Only the electrons
in the vicinity of the Fermi level have any reasonable chance of getting into
states of higher energy; so they are the only ones capable of contributing to the
specific heat.

The specific heat at constant volume per electron is defined as

cv = d〈E〉
dT

, (6.21)

where 〈E〉 is the average energy of electrons.
A classical electron would have an average energy 3/2 kT , which tends to

zero as T → 0. Quantum-mechanically, if an electron satisfies the Fermi–Dirac
statistics, then the average energy of the electrons is finite and can quite easily
be determined (see example 6.6). For the purpose of estimating the specific
heat, we may make up a simple argument and claim that only the electrons in
the region E = EF − 2.2 kT to E = EF need to be considered as being able
to respond to heat, and they can be regarded as if they were classical electrons
possessing an energy (3/2) kT . Hence the average energy of these electrons is

〈E〉 = 3

2
kT

2.2 kT

EF
, (6.22)

which gives for the specific heat

cv = 6.6
k2

EF
T . (6.23)

A proper derivation of the specific heat would run into mathematical
difficulties, but it is very simple in principle. The average energy of an electron
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following a distribution F(E) is given by

〈E〉 = 1

N

∫ ∞

0
F(E)Z(E)E dE, (6.24)

which should be evaluated as a function of temperature∗ and differentiated. The∗ See, for example. F. Seitz. Modern
theory of solids. McGraw-Hill, New
York, 1940, p. 146.

result is

cv = π2

2

k2

EF
T , (6.25)

which agrees reasonably well with eqn (6.23) obtained by heuristic arguments.
This electronic specific heat is vastly lower than the classical value (3/2)k for
any temperature at which a material can remain solid.

Metal Vacuum

Energy

Distance

φ
EF

Fig. 6.2
Model for thermionic emission
calculation. The potential barrier that
keeps the electrons in the metal is
above the Fermi energy level by an
energy φ.

6.4 The work function

If the metal is heated, or light waves are incident upon it, then electrons may
leave the metal. A more detailed experimental study would reveal that there is
a certain threshold energy the electrons should possess in order to be able to
escape. We call this energy (for historical reasons) the work function and denote
it by φ. Thus, our model is as shown in Fig. 6.2. At absolute zero temperature
all the states are filled up to EF, and there is an external potential barrier φ.

It must be admitted that our new model is somewhat at variance with the
old one. Not long ago, we calculated the energy levels of the electrons on
the assumption that the external potential barrier is infinitely large, and now
I go back on my word and say that the potential barrier is finite after all.
Is this permissible? Strictly speaking, no. To be consistent, we should solve
Schrödinger’s equation subject to the boundary conditions for a finite potential
well. But since the potential well is deep enough, and the number of electrons
escaping is relatively small, there is no need to recalculate the energy levels.
So I am cheating, but not excessively.

6.5 Thermionic emission

In this section we shall be concerned with the emission of electrons at high
temperatures (hence the adjective thermionic).As we agreed before, the electron
needs at least EF + φ energy in order to escape from the metal, and all this,
of course, should be available in the form of kinetic energy. Luckily, in the
free-electron model, all energy is kinetic energy, since the potential energy is
zero and the electrons do not interact; so the relationship between energy and
momentum is simply

E = 1

2m
(p2

x + p2
y + p2

z ). (6.26)

A further condition is that the electron, besides having the right amount of
energy, must go in the right direction. Taking x as the coordinate perpendicular
to the surface of the metal, the electron momentum must satisfy the inequality

p2
x

2m
>

p2
x0

2m
= EF + φ. (6.27)

However, this is still not enough. An electron may not be able to scale the
barrier even if it has the right energy in the right direction. According to the
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Thermionic emission 87

rules of quantum mechanics, it may still suffer reflection. Thus, the probability
of escape is 1 − r(px), where r(px) is the reflection coefficient. If the number
of electrons having a momentum between px and px + dpx is N(px)dpx , then
the number of electrons arriving at the surface per second per unit area is

px

m
N(px) dpx , (6.28)

and the number of those escaping is

{1 − r(px)}px
m
N(px) dpx . (6.29)

Adding the contributions from all electrons that have momenta in excess of
px0 , we can write for the emission current density

J = e

m

∫ ∞

px0

{1 − r(px)}pxN(px)dpx . (6.30)

We may obtain the number of electrons in an infinitesimal momentum range
in the same way as for the infinitesimal energy range. First, it consists of two
factors, the density of states and the probability of occupation. The density of
states, Z(px), can be easily obtained by noting from eqns (6.2) and (6.26) that

px = h

2
nx , py = h

2
ny , pz = h

2
nz. (6.31)

The number of states in a cube of side one is exactly one. Therefore, the
number of states in a volume of sides dnx , dny , dnz is equal to dnx dny dnz,
which with the aid of eqn (6.31) can be expressed as(

2

h

)3

dpx dpy dpz. (6.32)

Dividing again by 8 (because only positive integers matter) and multiplying
by two (because of spin) we get

Z(px ,py ,pz) = 2

h3
. (6.33)

Hence, the number of electrons in the momentum range px , px +
dpx ; py , py + dpy ; pz, pz + dpz is

N(px ,py ,pz) dpx dpy dpz

= 2

h3

dpx dpy dpz
exp[{(1/(2m))(p2

x + p2
y + p2

z ) − EF}/kT ] + 1
. (6.34)

To get the number of electrons in the momentum range px , px + dpx , the
above equation needs to be integrated for all values of py and pz

N(px) dpx

= 2

h3
dpx

∫ ∞

−∞

∫ ∞

−∞
dpy dpz

exp[{(1/(2m))(p2
x + p2

y + p2
z ) − EF}/kT ] + 1

.

(6.35)

This integral looks rather complicated, but since we are interested only in
those electrons exceeding the threshold φ(� kT ), we may neglect the unity
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88 The free electron theory of metals

term in the denominator. We are left then with some Gaussian functions, whose
integrals between ±∞ can be found in the better integral tables (you can derive
them for yourself if you are fond of doing integrals). This leads us to

N(px)dpx = 4πmkT

h3
eEF/kT e−p2

x/2mkT dpx . (6.36)

Substituting eqn (6.36) into (6.30) and assuming that r(px) = r is
independent of px , which is not true but gives a good enough approximation,
the integration can be easily performed, leading to

J = A0(1 − r)T 2e−φ/kT , (6.37)

where

A0 = 4πemk2

h3
= 1.2 × 106 A m−2 K−2. (6.38)

This is known as the Richardson (Nobel Prize, 1928) equation.
The most important factor in eqn (6.37) is exp(−φ/kT ), which is strongly

dependent both on temperature and on the actual value of the work function.
Take, for example, tungsten (the work functions for a number of metals are
given in Table 6.2), for which φ ∼= 4.5 eV and take T = 2500K . Then, a
10% change in the work function or temperature changes the emission by a
factor of 8.

Table 6.2 Work functions
of metals

Metal Work function (eV)

Li 2.48
Na 2.3
K 2.2
Cs 1.9

Cu 4.45
Ag 4.46
Au 4.9

Mg 3.6
Ca 3.2
Ba 2.5

Al 4.2

Cr 4.6
Mo 4.2
Ta 4.2
W 4.5

Co 4.4
Ni 4.9
Pt 5.3

The main merit of eqn (6.37) is to show the exponential dependence on
temperature, which is well borne out by experimental results. The actual
numerical values are usually below those predicted by the equation, but this is
not very surprising in view of the many simplifications we had to introduce.
In a real crystal, φ is a function of temperature, of the surface conditions, and
of the directions of the crystallographic axes, which our simple model did not
take into account.

There is one more thing I would like to discuss, which is really so trivial
that most textbooks do not even bother to mention it. Our analysis was one
for a piece of metal in isolation. The electron current obtained in eqn (6.37)
is the current that would start to flow if the sample were suddenly heated to a
temperature T . But this current would not flow for long because, as electrons
leave the metal, it becomes positively charged, making it more difficult for
further electrons to leave. Thus, our formulae are valid only if we have some
means of replenishing the electrons lost by emission. That is, we need an electric
circuit like the one in Fig. 6.3(a). As soon as an electron is emitted from our
piece of metal, another electron will enter from the circuit. The current flowing
can be measured by an ammeter.

A disadvantage of this scheme is that the electrons travelling to the electrode
will be scattered by air; we should really evacuate the place between the emitter
and the receiving electrode, making up the usual cathode–anode configuration
of a vacuum tube. This is denoted in Fig. 6.3(b) by the envelope shown. The
electrons are now free to reach the anode but also free to accumulate in the
vicinity of the cathode. This is bad again because by their negative charge they
will compel many of their fellow electrons to interrupt their planned journey
to the anode and return instead to the emitter. So again we do not measure the
‘natural’ current.
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(a)

(b)

(c)

Ammeter

Electron
collector

Metal

Vacuum
envelope

A

A

A

+ Battery

Fig. 6.3
Stages in measuring thermionic
emission. (a) A current flows but it is
impeded by air molecules. (b) A
current flows in a vacuum until it
builds up a charge cloud that repels
further electrons. The steady-state
ammeter reading is much less than the
total emission current. (c) By
employing a battery all the emission
current is measured.

In order to prevent the accumulation of electrons in front of the cathode,
a d.c. voltage may be applied to the anode [Fig. 6.3(c)]; this will sweep out
most of the unwanted electrons from the cathode–anode region. This is the
arrangement used for measuring thermionic current.

The requirements to be fulfilled by cathode materials vary considerably
according to the particular application. The cathodes must have a large
emission current for high-power applications, low temperature for low-noise
amplification, and long life when the tubes are used at not easily accessible
places. All these various requirements have been admirably met by industry,
though the feat should not be attributed to the powers of science. To make a
good cathode is still an art, and a black art at that.

6.6 The Schottky effect

We are now going to refine our model for thermionic emission further by
including (a) image force and (b) electric field.

It is a simple and rather picturesque consequence of the laws of electrostatics
that the forces on an electron in front of an infinitely conducting sheet are
correctly given by replacing the sheet by the ‘mirror’ charge (a positively
charged particle the same distance behind the sheet as shown in Fig. 6.4). The
force between these two charges is

F = e2

4πε0

1

(2x)2
, (6.39)

and the potential energy is the integral of this force from the point x to infinity:

V (x) =
∫ ∞

x

F (y)dy = − e2

16πε0x
. (6.40)
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90 The free electron theory of metals

Fig. 6.4
The ‘image charge’ theorem. The
effect of a plane conductor on the
static field due to a charged particle is
equivalent to a second, oppositely
charged, particle in the mirror image
position.

Conducting
plane

Remove plane
add +charge

x x xx

Fig. 6.5
The Schottky effect. (a) Potential at
metal–vacuum interface. A denotes
the bottom of the potential well.
(b) Potential changed by image charge
field. (c) Potential due to applied
anode voltage in vacuum region.
(d) Total potential field showing
reduction in height of the potential
barrier compared with (a).

Energy

(a) (b)

(c) (d)

Metal–vacuum
interface

Image
field

Summarization

B

x0

x

AA

In the above calculation, we took the potential energy as zero at x = ∞ to
agree with the usual conventions of electrostatics, but remember that our zero
a short while ago was that of a valence electron at rest. Hence, to be consistent,
we must redraw the energy diagram inside and outside the metal as shown
in Fig. 6.5(a). If we include now the effect of the mirror charges∗, then the

∗ Note that the curve between A and
B does not satisfy eqn (6.40). This is
because the concept of a homogeneous
sheet is no longer applicable when
x is comparable with the interatomic
distance. The energy is, however, given
for x = 0 (an electron resting on the
surface must have the same energy as an
electron at rest inside the metal); so we
simply assume that eqn (6.40) is valid for
x > x0 and connect the points A and B

by a smooth line.

potential barrier modifies to that shown in Fig. 6.5(b).
In the absence of an electric field this change in the shape of the potential

barrier has practically no effect at all. But if we do have electric fields, the small
correction due to mirror charges becomes significant.

For simplicity, let us investigate the case when the electric field is
constant. Then,

V (x) = −eEx, (6.41)

as shown in Fig. 6.5(c). If both an electric field is present and the mirror charges
are taken into account, then the potentials should be added, leading to the
potential barrier shown in Fig. 6.5(d). Clearly, there is a maximum that can be
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The Schottky effect 91

calculated from the condition

d

dx

(
− e2

16πε0x
− eEx

)
= 0, (6.42)

leading to

The energy needed to escape from
the metal is reduced by −Vmax.

Vmax = −e

(
eE

4πε0

)1/2

. (6.43)

The effective work function is thus reduced from φ to

φeff = φ − e

(
eE

4πε0

)1/2

. (6.44)

Substituting this into eqn (6.37) we get the new formula for thermionic
emission

J = A0(1 − r)T 2 exp

[
−{φ − e

√
(eE/4πε0)}
kT

]
. (6.45)

The reduction in the effective value of the work function is known as the
Schottky effect, and plotting log J against E1/2, we get the so-called Schottky
line. A comparison with experimental results in Fig. 6.6 shows that above a
certain value of the electric field the relationship is quite accurate. Do not be
too much impressed, though; in graphs of this sort the constants are generally
fiddled to get the theoretical and experimental curves on top of each other. But
it certainly follows from Fig. 6.6 that the functional relationship between J and
E1/2 is correct.

lo
g

J

T=1437 K

T=1566 K

Theoretical curve

Experimental points

1
2

Fig. 6.6
Experimental verification of the
Schottky formula [eqn (6.45)].
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92 The free electron theory of metals

6.7 Field emission

As we have seen in the previous section, the presence of an electric field
increases the emission current because more electrons can escape over the
reduced barrier. If we increase the electric field further, towards 109 V m−1,
then a new escape route opens up. Instead of going over the potential barrier,
the electrons tunnel across it. It may be seen in Fig. 6.7 that for high-enough
electric fields the barrier is thin, and thus electrons may sneak through. This is
called field emission, and it is practically independent of temperature.

EF

φeff

V= –e x

Fig. 6.7
With very high applied electric fields
the potential barrier is thin, thus,
instead of moving over the barrier,
electrons at the Fermi level may
tunnel across the barrier.

To derive a theoretical formula for this case, we should consider all
the electrons that move towards the surface and calculate their tunnelling
probability. It follows from the shape of the potential barrier that electrons
with higher energy can more easily slip through, but (at ordinary temperatures)
there are few of them; so the main contribution to the tunnelling current comes
from electrons situated around the Fermi level. For them the width of the barrier
is calculable from the equation (see Fig. 6.7)

−φ = −eExF, (6.46)

and the height of the potential barrier they face is φeff . Hence, very
approximately, we may represent the situation by the potential profile of
Fig. 6.8. It may be shown (see Exercise 3.7) that the tunnelling current varies
approximately exponentially with barrier width,

J ∼ exp

(
− (2φeff )

1/2

h̄
xF

)
, (6.47)

which, with the aid of eqn (6.46) reduces to

J ∼ exp

(
− (2m)1/2

h̄e

φ
1/2
eff φ

E

)
. (6.48)

The exponential factor in eqn (6.48) represents quite a good approximation
to the exact formula, which is unfortunately too long to quote. It may be noted
that the role of temperature in equations (6.37) and (6.45) is taken over here by
the electric field.

φ

xF

eff

Equivalent
barrier for
tunnelling

Fig. 6.8
Equivalent barrier, for simplifying the
calculation of tunnelling current in
Fig. 6.7.

The theory has been fairly well confirmed by experiments. The major diff-
iculty in the comparison is to take account of surface irregularities. The presence
of any protuberances considerably alters the situation because the electric field
is higher at those places. This is a disadvantage as far as the interpretation of
the measurements is concerned, but the existence of the effect made possible
the invention of an ingenious device called the field-emission microscope.

6.8 The field-emission microscope

The essential part of a field-emission microscope is a very sharp tip (≈ 100 nm
in diameter), which is placed in an evacuated chamber (Fig. 6.9). A potential of
a few thousand volts is applied between the tip (made usually of tungsten) and
the anode, which creates at the tip an electric field high enough to draw
out electrons. The emitted electrons follow the lines of force and produce
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Fine point

Vacuum
envelope

Fluorescent screen

+

–

0 –104V
Power
supply

Fig. 6.9
Sketch showing the principle of
field-emission microscope.

a magnified picture (magnification = r2/r1, where r2 = radius of the screen
and r1 = radius of the tip) on the fluorescent screen. Since the magnification
may be as large as 106, we could expect to see the periodic variation in the
electron emission caused by the atomic structure. The failure to observe this is
explained by two reasons: quantum-mechanical diffraction, and deviation from
the ‘theoretical’course owing to a random transverse component in the electron
velocity when leaving the metal.

The limitations we have just mentioned can be overcome by introducing
helium into the chamber and reversing the polarity of the applied potential.
The helium atoms that happen to be in the immediate vicinity of the tungsten
tip become ionized owing to the large electric field, thus acquiring a positive
charge, and move to the screen. Both the quantum-mechanical diffraction
(remember, the de Broglie wavelength is inversely proportional to mass) and
the random thermal velocities are now smaller, so that the resolution is higher
and individual atoms can indeed be distinguished as shown in Fig. 6.10. This
device, called the field-ion microscope, was the first in the history of science to
make individual atoms visible. Thus, just about two and a half millennia after
introducing the concept of atoms, it proved possible to see them.

6.9 The photoelectric effect

Emission of electrons owing to the incidence of electromagnetic waves is
called the photoelectric effect. The word photo (light in Greek) came into the Albert Einstein received the Nobel

Prize in 1921 for ‘his discovery
of the law of the photoelectric
effect’. It is interesting to note that
although the main tenets of the
Special Theory of Relativity were
already proven experimentally by
that time, the Nobel citation made
no mention of relativity.

description because the effect was first found in the visible range. Interestingly,
it is one of the earliest phenomena that cast serious doubts on the validity of
classical physics and was instrumental in the birth of quantum physics.

The basic experimental set-up may be seen in Fig. 6.11. When an
electromagnetic wave is incident, an electric current starts to flow between
the electrodes. The magnitude of the current is proportional to the input
electromagnetic power, but there is no current unless the frequency is high
enough to make

h̄ω > φ. (6.49)
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94 The free electron theory of metals

Fig. 6.10
Field-ion micrograph of a tungsten tip. The atoms on the surface can be clearly distinguished (Courtesy of E. W. Muller).

This is probably the best place to introduce photons which are the particle
equivalents of electromagnetic waves. Each photon carries an energy of

E = h̄ω. (6.50)

Electrons will be emitted when this energy is larger than the work function. In
an electromagnetic wave of power P and frequency ω the number of photons
incident per unit time is Nphot = P/h̄ω.

A detailed calculation of the current is not easy because a photon is
under no obligation to give its energy to an electron. One must calculate
transition probabilities, which are different at the surface and in the bulk of
the material. The problem is rather complex; we shall not go more deeply into
the theory. It might be some consolation for you that the first engineers who
used and designed photocells (the commercially available device based on the
photoelectric effect) knew much less about its functioning than you do.

A

+

Light input

Fig. 6.11
An experiment showing the
photoelectric effect. If the frequency
of the light is above a certain
threshold value, the incident photons
knock out electrons from the cathode.
These cause a current in the external
circuit by moving to the anode.
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6.10 Quartz–halogen lamps

Filaments of tungsten have been used not only as sources of electrons but also
as radiating elements in light bulbs. The basic design has changed little during
the last hundred years until quite recently when the quartz–halogen lamps were
developed. The advantage of the quartz envelope (aided by the judicious use
of molybdenum in the sealing process) is that the possible running temperature
is higher than with ordinary glass envelopes, and so we can get much better
luminous efficiency (light output is proportional to T 4). However, this alone is
not much good because the tungsten filament has long been a prime example
of the universal law of cussedness (things will go wrong if they can) called
Sod’s or Murphy’s law, depending on which side of the Atlantic (and how far
from Ireland) you live. What happens is that the filament has a region of cracks
or thinning that has higher resistance and thus gets hotter than the rest. Thus,
the local rate of evaporation is increased, it gets still thinner, and by a rapidly
accelerating process of positive feedback, burnout occurs. Incidentally, the fact
that a light seems much brighter for a few seconds before it burns out, even
although the electrical power consumed is less, is a qualitative confirmation of
the T 4 law. This effect can be overcome by adding some halogen gas, such as
chlorine, to the lamp during processing. The tungsten vapour is now converted
into chloride, which is sufficiently volatile to leave the hot silica envelope
transparent. When chloride molecules strike the much hotter filament, they
decompose, depositing tungsten and liberating chlorine to take part in further
reactions. The rate of depositing goes up with temperature, so that a ‘hot spot’
is thickened, and hence cooled. This negative feedback process stabilizes the
lamp. So next time you are dazzled by a quartz–halogen headlight, remember
that it is an example of the very rare anti-Sod’s law.

6.11 The junction between two metals

If two metals of different work functions are brought into contact (Fig. 6.12),
the situation is clearly unstable. Electrons will cross from left to right to occupy
the lower energy states available. However, as electrons cross over there will
be an excess of positive charge on the left-hand side and an excess of negative
charge on the right-hand side. Consequently, an electric field is set up with
a polarity that hinders the flow of electrons from left to right and encourages
the flow of electrons from right to left. A dynamic equilibrium is established
when equal numbers of electrons cross in both directions. At what potential
difference will this occur? An exact solution of this problem belongs to the

φ
φ

EF1

EF2

2

1

Fig. 6.12
The Fermi levels and work functions
of two metals to be brought into
contact.
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96 The free electron theory of metals

domain of statistical thermodynamics. The solution is fairly lengthy, but the
answer, as is so often the case in thermodynamics, could hardly be simpler.

The potential difference between the two metals, called the contact potential,
is equal to the difference between the two work functions; or, in more general
terms, the potential difference may be obtained by equating the Fermi levels of
the two media in contact. This is a general law valid for any number of materials
in equilibrium at any temperature.

The resulting energy diagram is shown in Fig. 6.13. The potential difference
appearing between the two metals is a real one. If we could put an extra
electron in the contact region, it would feel a force towards the left. The
potential difference is real but, alas, it cannot perform the function of a
battery. Why? Because in real life you never get something for nothing and,
anyway, extracting power from an equilibrium state is against the second law
of thermodynamics.

EF

φ

φ

φ

φ

1

2

2

1
_

Fig. 6.13
When the two metals are brought into
contact there is potential difference
φ2 − φ1, between them.

Exercises

6.1. Evaluate the Fermi function for an energy kT above the
Fermi energy. Find the temperature at which there is a 1%
probability that a state, with an energy 0.5 eV above the Fermi
energy, will be occupied by an electron.

6.2. Indicate the main steps in the derivation of the Fermi
level and calculate its value for sodium from the data given
in example 1.4.

6.3. Ultraviolet light of 0.2 μm wavelength is incident upon
a metal. Which of the metals listed in Table 6.2 will emit
electrons in response to the input light?

6.4. Determine the density of occupied states at an energy kT
above the Fermi level. Find the energy below the Fermi level
which will yield the same density of occupied states.

6.5. Use free electron theory to determine the Fermi level in
a two-dimensional metal. Take N as the number of electrons
per unit area.

6.6. Show that the average kinetic energy of free electrons,
following Fermi–Dirac statistics, is (3/5)EF at T = 0 K.

6.7. A tungsten filament is 0.125 mm diameter and has an
effective emitting length of 15 mm. Its temperature is measured
with an optical pyrometer at three points, at which also the
voltage, current, and saturated emission current to a 5 mm
diameter anode are measured as given in the table below.

(i) Check that the data obey the Richardson law, and estimate
the work function and value of A0 in eqn (6.37).

(ii) Find a mean value for the temperature coefficient of
resistance.

(iii) Find how the heater power varies with temperature, and
estimate the Stefan–Boltzmann coefficient.

(iv) If the anode voltage is increased to 2.3 kV by how much
will the emission current rise?

Filament temperature (K) 2000 2300 2600
Filament current (A) 1.60 1.96 2.30
Filament voltage (V) 3.37 5.12 7.40
Emission current (mA) 0.131 5.20 91.2

6.8. Light from a He–Ne laser (wavelength 632.8 nm) falls on
a photo-emissive cell with a quantum efficiency of 10−4 (the
number of electrons emitted per incident photon). If the laser
power is 2 mW, and all liberated electrons reach the anode, how
large is the current? Could you estimate the work function of the
cathode material by varying the anode voltage of the photocell?

6.9. Work out the Fermi level for conduction electrons in
copper. Estimate its specific heat at room temperature; what
fraction of it is contributed by the electrons? Check whether
your simple calculation agrees with data on specific heat given
in a reference book.

Assume one conduction electron per atom. The atomic
weight of copper is 63.5 and its density 9.4 × 103 kg m−3.

6.10. Figure 6.14(a) shows the energy diagram for
a metal–insulator–metal sandwich at thermodynamic
equilibrium. Take the insulator as representing a high potential
barrier. The temperature is sufficiently low for all states above
the Fermi level to be regarded as unoccupied. When a voltage
U is applied [Fig. 6.14(b)] electrons may tunnel through the
insulator from left to right. Assume that the tunnelling current
in each energy range dE is proportional to the number of filled
states from which tunnelling is possible and to the number of
empty states on the other side into which electrons can tunnel.

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


Exercises 97

E0

Zl(E) Zr(E)
E=0

EF2

Energy(a)

E0+EF1

E0+eU

Zl(E) Zr(E)
E=0

EF2

Energy(b)

E0+EF1
+eU

eU

Fig. 6.14
Energy against density of states for a metal–insulator–metal tunnel junction.

In the coordinate system of Fig. 6.14(a) the density of states
as a function of energy may be written as

Z1(E) = C1(E − E0)
1/2 for E > E0

and
Zr(E) = CrE

1/2 for E > 0,

where C1, Cr , and E0 are constants.
Show (i) that the tunnelling current takes the form

I ∼

∫ EF2 +eU

EF2

(E − eU − E0)
1/2E1/2 dE

and (ii) that Ohm’s law is satisfied for small voltages.

6.11. Assume that the energy levels in a certain system are
integral multiples of a basic unit (zero energy being permitted),
and each energy level is doubly degenerate, which means that
two different states can have the same energies. Assume further
that there are only five fermions (particles which obey the rule
that only one of them can occupy a state) in the system with a
total energy of 12 units.

Find 10 allowed distributions of the particles into the energy
levels mentioned.
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7 The band theory of solids

Band of all evils, cradle of causeless care.
Sir Philip Sidney

7.1 Introduction

Most properties of metals can be well explained with the aid of the free
electron model, but when we come to insulators and semiconductors the
theory fails. This is not very surprising because the term ‘free electron’, by
definition, means an electron free to roam around and conduct electricity;
and we know that the main job of an insulator is to insulate; that is, not to
conduct electricity. It is not particularly difficult to find a model explaining the
absence of electrical conductivity. We only need to imagine that the valence
electrons cling desperately to their respective lattice ions and are unwilling
to move away. So we are all right at the two extremes; free electrons mean
high conductivity, tightly bound electrons mean no conductivity. Now what
about semiconductors? They are neither good conductors nor insulators; so
neither model is applicable. What can we do? Well, we have touched upon
this problem before. Silicon and germanium are semiconductors in spite of the
covalent bonds between the atoms. The bonding process uses up all the available
electrons, so at absolute zero temperature there are no electrons available for
conduction. At finite temperatures however, some of the electrons may escape.
The lattice atoms vibrate randomly, having occasionally much more than the
average thermal energy. Thus, at certain instants at certain atoms there is enough
energy to break the covalent bond and liberate an electron. This is a possible
description of the electrical properties of semiconductors and, physically, it
seems quite plausible. It involves no more than developing our physical picture
of the covalent bond a little further by taking account of thermal vibrations as
well. All we need to do is to put these arguments into some quantitative form,
and we shall have a theory of semiconductors. It can be done, but somehow the
ensuing theory never caught the engineers’ imagination.

The higher the temperature the
more likely it is that some electrons
escape.

The theory that did gain wide popularity is the one based on the concept of
energy bands. This theory is more difficult to comprehend initially, but once
digested and understood it can provide a solid foundation for the engineers’
flights of fancy.

The job of engineers is to invent. Physicists discover the laws of nature, and
engineers exploit the phenomena for some useful (sometimes not so useful) end.
But in order to exploit them, the engineer needs to combine the phenomena, to
regroup them, to modify them, to interfere with them; that is, to create some-
thing new from existing components. Invention has never been an easy task, but
at least in the good old days the basic mechanism was simple to understand. It
was not very difficult to be wise after the event. It was, for example, an early
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The Kronig–Penney model 99

triumphofengineering to turn theenergyof steamintoasteamenginebut, having
accomplished the feat, most people could comprehend that the expanding steam
moved a piston, which was connected to a wheel, etc. It needed perhaps a little
more abstract thought to appreciate Watt’s invention of the separate condenser,
but even then any intelligent man willing to devote half an hour of his time to
the problem of heat exchange could realize the advantages. Alas, these times
have gone. No longer can a layman hope to understand the working principles
of complex mechanisms, and this is particularly true in electronics. And most
unfortunately, it is true not only for the layman. Even electronic engineers find it
hard nowadays to follow the phenomena in an electronic device. Engineers may
nowadays be expected to reach for the keyboard of a computer at the slightest
provocation, but the fundamental equations are still far too complicated for a
directnumericalattack.Weneedmodels.Themodelsneednotbesimpleones, but
they should be comprehensive and valid under a wide range of conditions. They
have to serve as a basis for intuition. Such a model and the concurrent physical
picture are provided by the band theory of solids. It may be said without undue
exaggeration that the spectacular advance in solid-state electronic devices in the
second half of the 20th century owes its existence to the power and simplicity of
the band theory of solids.

Well, after this rather lengthy introduction, let us see what this theory is
about. There are several elementary derivations, each one giving a slightly
different physical picture. Since our aim is a thorough understanding of the
basic ideas involved it is probably the best to show you the three approaches
I know.

7.2 The Kronig–Penney model

This model is historically the first (1930) and is concerned with the solution
of Schrödinger’s equation, assuming a certain potential distribution inside the
solid. According to the free electron model, the potential inside the solid is
uniform; the Kronig–Penney model, goes one step further by taking into account
the variation of potential due to the presence of immobile lattice ions.

If we consider a one-dimensional case for simplicity, the potential energy of
an electron is shown in Fig. 7.1. The highest potential is halfway between
the ions, and the potential tends to minus infinity as the position of the
ions is approached. This potential distribution is still very complicated for
a straightforward mathematical solution. We shall, therefore, replace it by a
simpler one, which still displays the essential features of the function, namely
(i) it has the same period as the lattice; (ii) the potential is lower in the vicinity
of the lattice ion and higher between the ions. The potential distribution chosen
is shown in Fig. 7.2.

The ions are located at x=0, a,
2a, . . . etc. The potential wells
are separated from each other by
potential barriers of height V0, and
width w.

The solution of the time-independent Schrödinger equation

h̄2

2m

d2ψ

dx2
+ {E − V (x)}ψ = 0 (7.1)

for the above chosen potential distribution is not too difficult. We can solve
it for the V (x) = V0/2 and V (x) = −V0/2 regions separately, match the
solutions at the boundaries, and take good care that the solution is periodic. It
is all fairly simple in principle; one needs to prove a new theorem followed by
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100 The band theory of solids

Fig. 7.1
The variation of the electrons potential
energy in a one-dimensional crystal.

a
x

V

Fig. 7.2
An approximation to the potential
energy of Fig. 7.1, suitable for
analytical calculations.

wV

V0
2

V0

2

0
x

a

a derivation, which takes the best part of an hour, and then one gets the final
result. We cannot go through the lot, so I shall just say that the wavefunctions
are assumed to be of the form

uk(x) is a periodic function.
uk(x)e

ikx . (7.2)

A solution exists if k is related to the energy E by the following equation∗∗ There is actually one more
mathematical simplification introduced
in arriving at eqn (7.3), namely w and V0
are assumed to tend to zero and infinity
respectively, with their product V0w

kept constant.

cos ka = P
sin αa

αa
+ cosαa, (7.3)

where
P = ma

h̄2 V0w, (7.4)
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The Kronig–Penney model 101

+1

–1
–3π –2π –π 0 2ππ 3π

αa

αa
sin αaP + cos αa

Fig. 7.3
The right-hand side of eqn (7.3) for
P = 3π/2 as a function of αa.

and

α = 1

h̄

√
(2mE). (7.5)

Remember, for a free electron we had the relationship

E = h̄2k2

2m
. (7.6)

The relationship is now different, implying that the electron is no longer free.
In order to find the E − k curve, we plot the right-hand side of eqn (7.3) in

Fig. 7.3 as a function of αa. Since the left-hand side of eqn (7.3) must always
be between +1 and −1, a solution exists only at those values of E for which
the right-hand side is between the same limits; that is, there is a solution for
the shaded region and no solution outside the shaded region. Since α is related
to E, this means that the electron may possess energies within certain bands
but not outside them. This is our basic conclusion, but we can draw some other
interesting conclusions from eqn (7.3).

There are allowed and forbidden
bands of energy.

1. If V0w is large, that is, if P is large, the function described by the right-
hand side of eqn (7.3) crosses the +1, −1 region at a steeper angle, as shown in
Fig. 7.4. Thus, the allowed bands are narrower and the forbidden bands wider.
In the limit P → ∞ the allowed band reduces to one single energy level; that
is, we are back to the case of the discrete energy spectrum existing in isolated
atoms.

For P → ∞ it follows from eqn (7.3) that

sin αa = 0; (7.7)

that is, the permissible values of energy are

En = π2h̄2

2ma2
n2, (7.8)

which may be recognized as the energy levels for a potential well of width a.
Accordingly, all electrons are independent of each other, and each one is
confined to one atom by an infinite potential barrier.
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102 The band theory of solids

Fig. 7.4
The right-hand side of eqn (7.3) for
P = 6π as a function of αa.

+1

–1
π 3π

αa

αa
sin αaP + cos αa

2. In the limit P → 0, we get

cosαa = cos ka; (7.9)

that is,

E = h̄2k2

2m
, (7.10)

as for the free electron. Thus, by varying P from zero to infinity, we cover
the whole range from the completely free electron to the completely bound
electron.

3. At the boundary of an allowed band cos ka = ±1; that is,

k = nπ

a
, n = 1, 2, 3 . . . (7.11)

Looking at a typical energy versus k plot (Fig. 7.5), we can see that the
discontinuities in energy occur at the values of k specified above. We shall
say more about this curve, mainly about the discontinuities in energy, but let
us see first what the other models can tell us.

7.3 The Ziman model

This derivation relies somewhat less on mathematics and more on physical
intuition. We may start again with the assertion that the presence of lattice
ions will make the free electron model untenable—at least under certain
circumstances.

Let us concentrate now on the wave aspect of the electron and look upon a
free electron as a propagating plane wave. Its wavefunction is then

ψk = eikx . (7.12)

We know that waves (whether X-rays or electron waves) can easily move
across a crystal lattice; so plane waves (i.e. free electrons) may after all represent
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The Ziman model 103

3π

E

2ππ
a a a

k

Fig. 7.5
The energy as a function of k. The
discontinuities occur at
k = nπ/a, n = 1, 2, 3 . . .

θ

a

Fig. 7.6
Geometry of reflection from atomic
planes.

the truth. Waves may move across a crystal lattice, but not always. There is
strong disturbance when the individual reflections add in phase; that is, when

nλ = 2a sin θ , n = 1, 2, 3 . . . , (7.13)

as follows from the sketch in Fig. 7.6. This is a well-known relationship (called
Bragg reflection) for X-rays and, of course, it is equally applicable to electron

William Henry Bragg and William
Lawrence Bragg, father and son,
received the Nobel Prize in 1915.
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104 The band theory of solids

waves. So we may argue that the propagation of electrons is strongly disturbed
whenever eqn (7.13) is satisfied. In one dimension the condition reduces to

nλ = 2a. (7.14)

Using the relationship between wavelength and wave number, the above
equation may be rewritten as

k = nπ

a
. (7.15)

Thus, we may conclude that our free electron model is not valid when
eqn (7.15) applies. The wave is reflected, so the wave function should also
contain a term representing a wave in the opposite direction

ψ−k = e−ikx . (7.16)

Since waves of that particular wavelength are reflected to and fro, we may
expect the forward- and backward-travelling waves to be present in the same
proportion; that is, we shall assume wave functions in the form

ψ± = 1√
2
(eikx ± e−ikx) = √

2

(
cos kx
i sin kx

)
, (7.17)

where the constant is chosen for correct normalization.
Let us now calculate the potential energies of the electrons in both cases.

Be careful; we are not here considering potential energy in general but the
potential energy of the electrons that happen to have the wave functions ψ±.
These electrons have definite probabilities of turning up at various places, so
their potential energy∗ may be obtained by averaging the actual potential V (x)∗ You may also look upon eqn (7.18) as an

application of the general formula given
by eqn (3.43).

weighted by the probability function |ψ±|2. Hence,

V± = 1

L

∫
|ψ±|2V (x) dx

= 1

L

∫ (
2 cos2 kx

2 sin2 kx

)
V (x) dx. (7.18)

L is the length of the one-
dimensional ‘crystal’ and V (x)

is the same function that we
met before in the Kronig–Penney
model but now, for simplicity, we
take 2w = a.

Since k = nπ/a, the function V (x) contains an integral number of periods of
|ψ±|2; it is therefore sufficient to average over one period. Hence,

V± = 1

a

∫ a

0

(
2 cos2 kx

2 sin2 kx

)
V (x) dx

= 1

a

∫ a

0

(
1 + cos 2kx
1 − cos 2kx

)
V (x) dx

= ± 1

a

∫ a

0
cos 2kx V (x) dx, (7.19)

since V (x) integrates to zero. Therefore,

V± = ±Vn. (7.20)
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The Ziman model 105

The integration in eqn (7.19) can be easily performed, but we are not really
interested in the actual numerical values. The important thing is that Vn �= 0
and has opposite signs for the wave functions ψ±.

Let us go through the argument again. If the electron waves have certain
wave numbers [satisfying eqn (7.15)], they are reflected by the lattice. For each
value of k two distinct wave functions ψ+ and ψ− can be constructed, and the
corresponding potential energies turn out to be +Vn and −Vn.

The kinetic energies are the same for both wave functions, namely

E = h̄2k2

2m
. (7.21)

Thus, the total energies are

E± = h̄2k2

2m
± Vn. (7.22)

This is shown in Fig. 7.7 for k = π/a. The energy of the electron may be

h̄2k2

2m
− V1 or

h̄2k2

2m
+ V1, (7.23)

but cannot be any value in between. There is an energy gap.

E

E+

E–

k
π/a

Fig. 7.7
The two possible values of the
electron’s total energy at k = π/a.

What will happen when k �= nπ/a? The same argument can be developed
further, and a general form may be obtained for the energy.∗ ∗ J.M. Ziman, Electrons in metals, a short

guide to the Fermi surface, Taylor and
Francis, 1962.

It is, however, not unreasonable to assume that apart from the discontinuities
already mentioned, theE−k curve will proceed smoothly; so we could construct
it in the following manner. Draw the free electron parabola (dotted lines in
Fig. 7.8) add and subtract Vn at the points k = nπ/a, and connect the end
points with a smooth curve, keeping close to the parabola. Not unexpectedly,
Fig. 7.8 looks like Fig. 7.5, obtained from the Kronig–Penney model.

E

k

2V3

2V2

2V1

3π2ππ
a aa

Fig. 7.8
Construction of the E–k curve from
the free electron parabola.
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106 The band theory of solids

7.4 The Feynman model

This is the one I like best, because it combines mathematical simplicity with
an eloquent physical picture. It is essentially a generalization of the model we
used before to understand the covalent bond—another use of the coupled mode
approach.

Remember, the energy levels of two interacting atoms are split; one is slightly
higher, the other slightly below the original (uncoupled) energy. What happens
when n atoms are brought close together? It is not unreasonable to expect that
there will be an n-fold split in energy. So if the n atoms are far away from each
other, each one has its original energy levels denoted byE1 andE2 in Fig. 7.9(a),
but when there is interaction they split into n separate energy levels. Now
looking at this cluster of energy levels displayed in Fig. 7.9(b), we are perfectly
entitled to refer to allowed energy bands and to forbidden gaps between them.

To make the relationship a little more quantitative, let us consider the one-
dimensional array of atoms shown in Fig. 7.10. We shall now put a single
electron on atom j into an energy level E1 and define by this the state ( j ). Just
as we discussed before in connection with the hydrogen molecular ion, there
is a finite probability that the electron will jump from atom j to atom j + 1,
that is from state ( j ) into state ( j + 1). There is of course no reason why the
electron should jump only in one direction; it has a chance of jumping the other
way too. So the transition from state ( j ) into state ( j − 1) must have equal
probability. It is quite obvious that a direct jump to an atom farther away is also
possible but much less likely; we shall therefore disregard that possibility.

Fig. 7.9
There is an n-fold split in energy
when n atoms are brought close to
each other, resulting in a band of
allowed energies, when n is large.

E2

E1

(a) (b)
n
n –1

n/2+2
n/2+1
n/2
n/2–1

1
0

n
n

n/2+2
n/2+1
n/2
n/2–1

2
1

–1

Allowed

Allowed

Forbidden

Fig. 7.10
A one-dimensional array of atoms.

j–2 j–1 j j+1 j+2

a
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The Feynman model 107

We have now a large number of states so we should turn to eqn (5.24), which
looks formidable with j running through all the atoms of the one-dimensional
crystal. Luckily only nearest neighbours are coupled (or so we claim), so the
differential equation for atom j takes the rather simple form

ih̄
dwj

dt
= E1wj − Awj−1 − Awj+1, (7.24)

where, as we mentioned before, E1 is the energy level of the electron in the
absence of coupling, and the coupling coefficient is taken again as −A. We could
write down analogous differential equations for each atom, but fortunately there
is no need for it. We can obtain the general solution for the whole array of atoms
from eqn (7.24).

Let us assume the solution in the form

wj = Kje−iEt/h̄, (7.25) E is the energy to be found.

Substituting eqn (7.25) into eqn (7.24) we get

EKj = E1Kj − A(Kj−1 + Kj+1). (7.26)

Note now that atom j is located at xj , and its neighbours at xj ± a,
respectively. We may therefore look upon the amplitudes Kj , Kj+1, and Kj−1

as functions of the x-coordinate. Rewriting eqn (7.26) in this new form we get

EK(xj ) = E1K(xj ) − A{K(xj + a) + K(xj − a)}. (7.27)

This is called a difference equation and may be solved by the same method
as a differential equation. We can assume the trial solution

K(xj ) = eikxj , (7.28)

which, substituted into eqn (7.27) gives

Eeikxj = E1eikxj − A{eik(xj+a) + eik(xj−a)}. (7.29)

Dividing by exp(ikxj ) the eqn (7.29) reduces to the final form

E = E1 − 2A cos ka, (7.30)

which is plotted in Fig. 7.11. Thus, once more, we get the result that energies
within a band, between E1 − 2A and E1 + 2A, are allowed and outside that
range are forbidden.

It is a great merit of the Feynman model that we have obtained a very simple
mathematical relationship for the E − k curve within a given energy band. But
what about other energy bands that have automatically come out from the other
models? We could obtain the next energy band from the Feynman model by
planting our electron into the next higher energy level of the isolated atom,
E2, and following the same procedure as before. We could then obtain for the
next band The coupling coefficient between

nearest neighbours is now taken
as −B.E = E2 − 2B cos ka, (7.31)
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108 The band theory of solids

Fig. 7.11
Energy as a function of k obtained
from the Feynman model.

E

E1

E1+2A

E1–2A

–π/a π/a0 k

Another great advantage of the Feynman model is that it is by no means
restricted to electrons. It could apply to any other particles. But, you may ask,
what other particles can there be? Well, we have talked about positively charged
particles called holes. They may be represented as deficiency of electrons, and
so they too can jump from atom to atom. But there are even more interesting
possibilities. Consider, for example, an atom that somehow gets into an excited
state, meaning that one of its electrons is in a state of higher energy, and can
with a certain probability transfer its energy to the next atom down the line.
The concepts are all familiar, and so we may describe this process in terms of
a particle moving across the lattice.

Yet another advantage of this model is its easy applicability to three-
dimensional problems. Whereas the three-dimensional solution of the Kronig–
Penney model would send shudders down the spines of trained numerical
analysts, the solution of the same problem, using the Feynman approach, is
well within the power of engineering undergraduates, as you will presently see.

In a three-dimensional lattice, assuming a rectangular structure, the distances
between lattice points are a, b, and c in the directions of the coordinates axes
x, y, and z, respectively. Denoting the probability that an electron is attached to
the atom at the point x, y, z by |w(x, y, z, t)|2, we may write down a differential
equation analogous to eqn (7.24):

ih̄
∂w(x, y, z, t)

∂t
= E1w(x, y, z, t)

− Axw(x + a, y, z, t) − Axw(x − a, y, z, t)

− Ayw(x, y + b, z, t) − Ayw(x, y − b, z, t)

− Azw(x, y, z + c, t) − Azw(x, y, z − c, t), (7.32)

Ax , Ay , Az are the coupling
coefficients between nearest
neighbours in the x, y, z directions
respectively.

The solution of the above differential equation can be easily guessed by
analogy with the one-dimensional solution in the form

w(x, y, z, t) = exp(−iEt/h̄) exp{i(kxx + kyy + kzz)}, (7.33)

which, substituted in eqn (7.32), gives in a few easy steps

E = E1 − 2Ax cos kxa − 2Ay cos kyb − 2Az cos kzc. (7.34)
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The effective mass 109

Thus, in the three-dimensional case, the energy band extends from the minimum
energy

Emin = E1 − 2(Ax + Ay + Az) (7.35)

to the maximum energy

Emax = E1 + 2(Ax + Ay + Az). (7.36)

7.5 The effective mass

It has been known for a long time that an electron has a well-defined mass,
and when accelerated by an electric field it obeys Newtonian mechanics. What
happens when the electron to be accelerated happens to be inside a crystal?
How will it react to an electric field? We have already given away the secret
when talking about cyclotron resonance.

The mass of an electron in a crystal
appears, in general, different from
the free electron mass, and is
usually referred to as the effective
mass.

We shall obtain the answer by using a semi-classical picture, which, as the
name implies, is 50% classical and 50% quantum-mechanical. The quantum-
mechanical part describes the velocity of the electron in a one-dimensional
lattice by its group velocity,

vg = 1

h̄

∂E

∂k
, (7.37)

which depends on the actual E–k curve. The classical part expresses dE as the
work done by a classical particle travelling a distance, vgdt , under the influence
of a force eE yielding

dE = eEvgdt

= eE
1

h̄

∂E

∂k
dt . (7.38)

We may obtain the acceleration by differentiating eqn (7.37) as follows

dvg

dt
= 1

h̄

d

dt

∂E

∂k
= 1

h̄

∂2E

∂k2

dk

dt
. (7.39)

Expressing now dk/dt from eqn (7.38) and substituting it into eqn (7.39)
we get

dvg

dt
= 1

h̄2

∂2E

∂k2
eE . (7.40)

Comparing this formula with that for a free, classical particle

m
dv

dt
= eE , (7.41)

we may define

m∗ = h̄2
(
∂2E

∂k2

)−1

(7.42)

as the effective mass of an electron. Thus, the answer to the original question
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110 The band theory of solids

is that an electron in a crystal lattice does react to an electric field, but its mass
is given by eqn (7.42) in contrast to the mass of a free electron. Let us just
check whether we run into any contradiction with our E–k curve for a free
electron. Then

E = h̄2k2

2m
,

and thus

∂2E

∂k2
= h̄2

m
,

which substituted into eqn (7.42) gives

m∗ = m.

So everything is all right.
For an electron in a one-dimensional lattice we may take E in the form of

eqn (7.30), giving

m∗ = h̄2

2Aa2
sec ka. (7.43)

The graphs of energy, group velocity, and effective mass are plotted for this
case in Fig. 7.12 as a function of k between −π/a and π/a. Oddly enough,
m∗ may go to infinity and may take on negative values as well.

If an electron, initially at rest at k = 0, is accelerated by an electric field, it
will move to higher values of k and will become heavier and heavier, reaching
infinity at k = π/2a. For even higher values of k the effective mass becomes
negative, heralding the advent of a new particle, the hole, which we have
casually met from time to time and shall often meet in the rest of this course.

E

(a)

(b)

υg

m*

(c)

k0–π/a π/a

Fig. 7.12
Energy, group velocity, and effective
mass as a function of k.

The definition of effective mass as given in eqn (7.42) is for a one-
dimensional crystal, but it can be easily generalized for three dimensions. If the
energy is given in terms of kx , ky , and kz, as for example in eqn (7.34), then
the effective mass in the x-direction is

m∗
x = h̄2

(
∂2E

∂k2
x

)−1

= h̄2

2Axa2
sec kxa. (7.44)

In the y-direction it is

m∗
y = h̄2

(
∂2E

∂k2
y

)−1

= h̄2

2Ayb2
sec kyb. (7.45)
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The effective number of free electrons 111

A similar formula applies in the z-direction. So, oddly enough, the effective
mass may be quite different in different directions. Physically, this means that
the same electric field applied in different directions will cause varying amounts
of acceleration. This is bad enough, but something even worse may happen. If you are fond of mathematics you

may think of the effective mass (or
rather of its reciprocal) as a tensor
quantity, but if you dislike tensors
just regard the electron in a crystal
as an extremely whimsical particle
which, in response to an electric
field in the (say) z-direction, may
move in a different direction.

There can be a term like

m∗
xy = h̄2

(
∂2E

∂kx∂ky

)−1

. (7.46)

With our simple model m∗
xy turns out to be infinitely large, but it is worth

noting that in general an electric field applied in the x-direction may accelerate
an electron in the y-direction. As far as I know there are no electronic devices
making use of this effect; if you want to invent something quickly, bear this
possibility in mind.

7.6 The effective number of free electrons

Let us now leave the fanciful world of three dimensions and return to the
mathematically simpler one-dimensional case. In a manner rather similar to the
derivation of effective mass we can derive a formula for the number of electrons
available for conduction. According to eqn (7.40).

dvg

dt
= 1

h̄2

∂2E

∂k2
eE . (7.47)

We have here the formula for the acceleration of an electron. But we
have not only one electron, we have lots of electrons. Every available
state may be filled by an electron; so the total effect of accelerating all
the electrons may be obtained by a summation over all the occupied states.
We wish to sum dvg/dt for all electrons. Multiplying by the electron
charge, ∑ d

dt
(evg)

is nothing else but the rate of change of electric current that flows initially when
an electric field is applied.∗Thus,

∗ Do not mistake this for the rate
of change of electric current under
stationary conditions. For the steady state
to apply one must take collisions into
account as well.

dI

dt
=
∑ d

dt
(evg)

= 1

h̄2 e
2E

∑ ∂2E

∂k2
, (7.48)

or, going over to integration,

dI

dt
= 1

h̄2 e
2E

1

π

∫
d2E

dk2
dk, (7.49)

where the density of states in the range dk is dk/π .†

† We have already done it twice before,
but since the density of states is a rather
difficult concept (making something
continuous having previously stressed
that it must be discrete), and since this is
a slightly different situation, we shall do
the derivation again. Remember, we are
in one dimension, and we are interested
in the number of states in momentum
space in an interval dpx . According to
eqn (6.31)

px = h

2
nx ,

where nx is an integer. So for unit
length there is exactly one state and for a
length dpx the number of states, dnx , is
(2/h) dpx , which is equal to (1/π)dkx .
We have to divide by 2 because only
positive values of n are permitted and
have to multiply by 2 because of the two
possible values of spin. Thus, the number
of states in a dkx interval remains

1

π
dkx .
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112 The band theory of solids

Fig. 7.13
One-dimensional energy band filled
up to ka at T = 0 K.

–π/a π/a–ka ka

E

Ea

States
empty

States
occupied

If there were N non-interacting free electrons, we should obtain

dI

dt
= e2E

m
N . (7.50)

For free electrons eqn (7.50) applies; for electrons in a crystal eqn (7.49)
is true. Hence, if we wish to create a mental picture in which the electrons in
the crystal are replaced by ‘effective’ electrons, we may define the number of
effective electrons by equating eqn (7.49) with eqn (7.50). Hence

Neff = 1

π

m

h̄2

∫
d2E

dk2
dk. (7.51)

This, as you may have already guessed, applies only at absolute zero because
we did not include the probability of occupation. In this case all the states are
occupied up to an energy E = Ea, and all the states above Ea are empty.

IfEa happens to be somewhere inside an energy band (as shown in Fig. 7.13)
then the integration goes from k = −ka to k = ka. Performing the integration:

Neff = 1

π

m

h̄2

{(
dE

dk

)
k=ka

−
(

dE

dk

)
k=−ka

}

= 2

π

m

h̄2

(
dE

dk

)
k=ka

. (7.52)

This is a very important result. It says that the effective number of electrons
capable of contributing to electrical conduction depends on the slope of the
E–k curve at the highest occupied energy level.

If the energy band is filled there is
no electrical conduction.

At the highest energy in the band dE/dk vanishes. We thus come to the
conclusion that the number of effective electrons for a full band is zero.

7.7 The number of possible states per band

In order to find the number of states, we must introduce boundary conditions.
The simplest one (though physically the least defensible) is the so-called
‘periodic boundary condition’.∗ It is based on the argument that a macroscopic

∗ It would be more logical to demand that
the wavefunction should disappear at the
boundary, but that would involve us only
in more mathematics without changing
any of the conclusions. So I must ask you
to accept the rather artificial boundary
condition expressed by eqn (7.53). crystal is so large in comparison with atomic dimensions that the detailed nature
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1 2 3
4

5

Na
Na–1

x

L

Fig. 7.14
Illustration of periodic boundary
condition for a one-dimensional
crystal.

of the boundary conditions does not matter, and we should choose them for
mathematical convenience.

In the case of the periodic boundary condition, we may simply imagine the
one-dimensional crystal biting its own tail. This is shown in Fig. 7.14, where
the last atom is brought into contact with the first atom. For this particular
configuration, it must be valid that

ψ(x + L) = ψ(x) (7.53)

Then, with the aid of eqn (7.2), it follows that

eik(x+L)uk(x + L) = eikxuk(x). (7.54)

Since uk is a periodic function repeating itself from atom to atom,

uk(x + L) = uk(x) (7.55)

and, therefore, to satisfy eqn (7.54), we must have

kL = 2πr . (7.56) r is a positive or negative integer.

It follows from the Kronig–Penney and from the Ziman models that in an
energy band (that is in a region without discontinuity in energy) k varies from
nπ/a to (n + 1)π/a.∗ Hence ∗ The Feynman model gives only one

energy band at a time, but it shows clearly
that the energy is a periodic function
of ka, that is the same energy may be
described by many values of k. Hence
it would have been equally justified (as
some people prefer) to choose the interval
from k = 0 to k = π/a.

kmax ≡ (n + 1)
π

a
= 2πrmax

L
(7.57)

and

kmin ≡ n(π/a) = 2πrmin

L
. (7.58)

Rearranging, we have

rmax − rmin = L

2a

= Na
L

2
, (7.59)
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114 The band theory of solids

where Na is the number of atoms per unit length. Since r may have negative
values as well, the total number of permissible values of k is

2(rmax − rmin) = NaL. (7.60)

Now to each value of k belongs a wavefunction; so the total number of
wavefunctions is NaL, and thus, including spin, the total number of available
states is 2NaL.

7.8 Metals and insulators

At absolute zero some materials conduct well, some others are insulators. Why?
The answer can be obtained from the formulae we have derived.

If each atom in our one-dimensional crystal contains one electron, then the
total number of electrons is NaL, and the band is half-filled. Since dE/dk is
large in the middle of the band, this means that there is a high effective number
of electrons; that is, high conductivity.

If each atom contains two electrons, the total number of electrons is 2NaL;
that is, each available state is filled. There is no conductivity: the solid is an
insulator.

If each atom contains three electrons, the total number of electrons is 3NaL;
that is, the first band is filled and the second band is half-filled. The value of
dE/dk is large in the middle of the second band; therefore a solid containing
atoms with three electrons each (it happens to be lithium) is a good conductor.

It is not difficult to see the general trend. Atoms with even numbers of
electrons make up the insulators, whereas atoms with odd numbers of electrons
turn out to be metals. This is true in general, but it is not true in every case.
All we need to know is the number of electrons, even or odd, and the electric
behaviour of the solid is determined. Diamond, with six electrons, must be
an insulator and aluminium, with thirteen electrons, must be a metal. Simple,
isn’t it?

It is a genuine triumph of the one-dimensional model that the electric
properties of a large number of elements may be promptly predicted.
Unfortunately, it does not work always. Beryllium with four electrons and
magnesium with twelve electrons should be insulators. They are not. They
are metals; though metals of an unusual type in which electric conduction,
evidenced by Hall-effect measurements, takes place both by holes and electrons.
What is the mechanism responsible? For that we need a more rigorous definition
of holes.

7.9 Holes

We first met holes as positively charged particles that enjoy a carefree existence
quite separately from electrons. The truth is that they are not separate entities
but merely by-products of the electrons’motion in a periodic potential. There is
no such thing as a free hole that can be fired from a hole gun. Holes are artifices
but quite lively ones. The justification for their existence is as follows.
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Using our definition of effective mass [eqn (7.42)] we may rewrite eqn (7.48)
in the following manner:

dI

dt
= e2E

∑
i

1

m∗
i

, (7.61)

where the summation is over the occupied states.
If there is only one electron in the band, then

dIe

dt
= e2E

m∗ . (7.62)

If the band is full, then according to eqn (7.52) the effective number of
electrons is zero; that is,

dI

dt
= e2E

∑
i

1

m∗
i

= 0. (7.63)

Assume now that somewhere towards the top of the band an electron, denoted
by j , is missing. Then, the summation in eqn (7.61) must omit the state j , which
we may write as

dIh

dt
= e2E

∑
i

i �=j

1

m∗
i

. (7.64)

But from eqn (7.63)

e2E

⎛
⎜⎝ 1

m∗
j

+
∑
i

i �=j

1

m∗
i

⎞
⎟⎠ = 0. (7.65)

Equation (7.64) therefore reduces to

dIh

dt
= −e2E

1

m∗
j

. (7.66)

In the upper part of the band, however, the effective mass is negative;
therefore

Hence, an electron missing from
the top of the band leads to exactly
the same formula as an electron
present at the bottom of the band.

dIh

dt
= e2E

|m∗
j | . (7.67)

Now there is no reason why we should not always refer to this phenomenon
as a current due to a missing electron that has a negative mass. But it is a
lot shorter, and a lot more convenient, to say that the current is caused by a
positive particle, called a hole. We can also explain the reason why the signs of
eqn (7.62) and of eqn (7.67) are the same. In response to an electric field, holes
move in an opposite direction carrying an opposite charge; their contribution
to electric current is therefore the same as that of electrons.
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116 The band theory of solids

7.10 Divalent metals

We may now return to the case of beryllium and magnesium and to their
colleagues, generally referred to as divalent metals. One-dimensional theory is
unable to explain their electric properties; let us try two dimensions.

The E − kx , ky surface may be obtained from eqn (7.34) as follows:

E = E1 − 2Ax cos kxa − 2Ay cos kyb. (7.68)

The divalent metals, having two
valency electrons, are found in
groups IIA and IIB of the periodic
table (Fig. 4.5)

Let us plot now the constant energy curves in the kx −ky plane for the simple
case when

E1 = 1, Ax = Ay = 1
4 , a = b. (7.69)

It may be seen in Fig. 7.15 that the minimum energy E = 0 is at the origin
and for higher values of kx and ky the energy increases. Note well that the
boundaries kx = ±π/a and ky = ±π/a represent a discontinuity in energy.
(This is something we have proved only for the one-dimensional case, but the
generalization to two dimensions is fairly obvious.) There is an energy gap
there. If the wave vector changes from point B just inside the rectangle, to
point C, just outside the rectangle, the corresponding energy may jump from
one unit to (say) 1.5 units.The usual notation is to call the

rectangle the ‘first Brillouin zone’,
and as we step out of it (say at
point C) we reach the ‘Second
Brillouin zone’. The shape of
the higher Brillouin zones can be
determined with not too much
effort but it is beyond the scope of
the present book.

Let us now follow what happens at T = 0 as we fill up the available states
with electrons. There is nothing particularly interesting until all the states up to
E = 1 are filled, as shown in Fig. 7.16(a). The next electron coming has an itch
to leave the rectangle; it looks out, sees that the energy outside is 1.5 units, and
therefore stays inside. This will go on until all the states are filled up to an energy
E = 1.5, as showninFig.7.16(b). The remainingstates insideour rectanglehave
energies in excess of 1.5, and so the next electron in its search for lowest energy
will go outside. It will go into a higher band because there are lower energy states
in that higher band (in spite of the energy gap) than inside the rectangle.

Fig. 7.15
Constant energy contours for a
two-dimensional crystal in the kx − ky
plane on the basis of the Feynman
model.
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Finite temperatures 117

The detailed continuation of the story depends on the variation of energy
with k in the higher band, but one thing is certain: the higher band will not be
empty.

For an atom with two electrons, the number of available states is equal to
the number of electrons. If the energy gap is large (say, two units instead of
half a unit), then all the states in the rectangle would be filled, and the material
would be an insulator. If the energy gap is small (half a unit in our example),
then some states will remain unfilled in the rectangle, and some states will be
filled in the higher band. This means that both bands will contribute to electrical
conduction. There will be holes coming from the rectangle and electrons from
the higher band. This is how it happens that in some metals holes are the
dominant charge-carriers.

π/a

0

ky

–π/a
0 kxπ

a
– π

a

ky

0π
a

– π
a

kx

(a)

(b)

Fig. 7.16
(a) All energy levels filled up to
E = 1. (b) All energy levels filled up
to E = 1.5.

7.11 Finite temperatures

All we said so far applies to zero temperature. What happens at finite
temperatures? And what is particularly important, what happens at about room
temperature, at which most electronic devices are supposed to work?

For finite temperatures it is no longer valid to assume that all states up to the
Fermi energy are filled and all states above that are empty. The demarcation
line between filled and unfilled states will become less sharp.

Let us see first what happens to a metal. Its highest energy band is about
half-filled at absolute zero; at higher temperatures some of the electrons will
acquire somewhat higher energies in the band, but that is all. There will be very
little change in the effective number of electrons. A metal will stay a metal at
higher temperatures.

At finite temperatures a metal is a
metal, but an insulator is no longer
an insulator.

What will happen to an insulator? If there are many electrons per atom,
then there are a number of completely filled bands that are of no interest.
Let us concentrate our attention to the two highest bands, called valence and
conduction bands, and take the zero of energy at the top of the valence band.
Since at absolute zero the valence band is completely filled, the Fermi level
must be somewhere above the top of the valence band. Assuming that it is about
half-way between the bands (I shall prove this later), the situation is depicted
in Fig. 7.17(a) for zero temperature and in Fig. 7.17(b) for finite temperature.
Remember, when the Fermi function is less than 1, it means that the probability
of occupation is less than 1; thus, some states in the valence band must remain
empty. Similarly, when the Fermi function is larger than 0, it means that the
probability of occupation is finite; that is, some electrons will occupy states in
the conduction band.

We have come to the conclusion that at finite temperatures, an insulator is
no longer an insulator. There is conduction by electrons in the conduction band,
and conduction by holes in the valence band. The actual amount of conduction
depends on the energy gap. This can be appreciated if you remember that well
away from the Fermi level the Fermi function varies exponentially; its value at
the bottom of the conduction band and at the top of the valence band therefore
depends critically on the width of the energy gap.

As you can see, there is no
profound difference in principle;
insulators and semiconductors
are distinguished only by the
magnitudes of their respective
energy gaps.

For all practical purposes diamond with an energy gap of 5.4 eV is an
insulator, but silicon and germanium with energy gaps of 1.11 and 0.67 eV show
noticeable conduction at room temperature. They are called semi-conductors.
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118 The band theory of solids

Fig. 7.17
(a) The two highest bands at T = 0 K.
(b) The two highest bands at
T � 0 K. There are electrons at the
bottom of the conduction band, and
holes at the top of the valence band.
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7.12 Concluding remarks

The band theory of solids is not an easy subject. The concepts are a little
bewildering at first and their practical utility is not immediately obvious.

You could quite well pass examinations without knowing much about band
theory, and you could easily become the head of a big electrical company
without having any notion of bands at all. But if you ever want to create
something new in solid-state electronic devices, which will be more and more
numerous in your professional life, a thorough understanding of band theory is
imperative. So my advice would be to go over it again and again until familiarity
breeds comprehension.

I would like to add a few more words about the one-dimensional models we
use so often. The reason for using one-dimensional models is mathematical
simplicity, and you must appreciate that the results obtained are only
qualitatively true. The real world is three-dimensional, thus our models
must also be three-dimensional if we want to have good agreement between
theory and experiment. Having said that I must admit that this is not quite
true. When we look at some of the recently invented devices, we find that
some are two-dimensional, some are one-dimensional and some have zero
dimension.∗

∗ I know it is rather hard to swallow
that there can be such things as zero-
dimensional devices but all will be
clear when we discuss them (they are
known as low-dimensional devices) in
Section 12.7.2 among semiconductor
lasers.
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Exercises

7.1. Classify metals, semiconductors, and insulators on the
basis of their band structure. Find out what you can about
materials on the border lines of these classifications.

7.2. X-ray measurements show that electrons in the
conduction band of lithium have energies up to 4.2 eV. Take
this as the highest filled energy level in the band. If you
further identified this energy level with the Fermi level, what
average effective mass will give you the same result from
free electron theory? Assume one free electron per atom.
The atomic weight of lithium is 6.94, and its density is
530 kg m3.

7.3. Show, using the Feynman model, that the effective mass
at the bottom of the band is inversely proportional to the width
of the band.

7.4. Show from eqns (7.3) and (7.5) that the group velocity of
the electron is zero at k = nπ/a.

7.5. In general, the reciprocal of the effective mass is a tensor
whose components are given by the mixed derivatives. How
would the classical equation of motion

m
dv

dt
= F

be modified?

7.6. The reciprocal mass tensor for Bi close to the bottom of
the conduction band is of the form⎛

⎝axx 0 0
0 ayy ayz
0 ayz azz

⎞
⎠

(i) Find the components of the effective mass tensor.

(ii) Find the function E(kx , ky , kz).

(iii) Show that the constant energy surfaces are ellipsoids.

7.7. Using the potential energy distribution of Fig. 7.2,
determine, with the aid of the Ziman model, the width of the
first forbidden band. Take w = a/2.

7.8. Assume, as in the Kronig–Penney model of Section 7.2,
that w and V0 in Fig. 7.2 tend to zero and infinity, respectively,
but their product V0w is kept constant. Determine with the aid
of the Ziman model the widths of the nth allowed band and the
nth forbidden band. Can you conclude that the higher the band
the wider it is?

7.9. The lowest energy bands in a solid are very narrow
because there is hardly any overlap of the wave functions.
In general, the higher up the band is, the wider it becomes.
Assuming that the collision time is about the same for the
valence and conduction bands, which would you expect to
have higher mobility, an electron or a hole?
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8 Semiconductors

Whatsoever things are true . . .
whatsoever things are pure . . .
think on these things.

Philippians iv 8

8.1 Introduction

With the aid of band theory we have succeeded in classifying solids into metals,
insulators, and semiconductors. We are now going to consider semiconductors
(technologically the newest class) in more detail. Metals and insulators have
been used for at least as long as we have been civilized, but semiconductors have
found application only in the last century, and their more widespread application
dates from the 1950s. During this period the electronics industry has been (to
use a hackneyed word justifiably) revolutionized, first by the transistor, then
by microelectronic circuitry. Each of these in succession, by making circuitry
much cheaper and more compact, has led to the wider use of electronic aids,
such as computers, in a way that is revolutionary in the social sense too.

Perhaps the key reason for this sudden change has been the preparation
of the extremely pure semiconductors, and hence the possibility of controlling
impurity; this was a development of the 1940s and 1950s. By crystal pulling,
zone-refining, and epitaxial methods it is possible to prepare silicon and
germanium with an impurity of only 1 part in 1010. Compare this with
long-established engineering materials, such as steel, brass, or copper where
impurities of a few parts per million are still virtually unattainable (and for
most purposes, it must be admitted, not required). Probably the only other
material that has ever been prepared with purity comparable to that of silicon
and germanium is uranium, but people seem a little shy of quoting figures.

I shall now try to show why the important electrical properties of
semiconductors occur and how they are influenced and controlled by small
impurity concentrations. Next, we shall consider what really came first, the
preparation of pure material. We shall be ready then to discuss junction devices
and integrated circuit technology.

8.2 Intrinsic semiconductors

The aim in semiconductor technology is to purify the material as much as
possible and then to introduce impurities in a controlled manner. We shall call
the pure semiconductor ‘intrinsic’ because its behaviour is determined by its
intrinsic properties alone, and we shall call the semiconductor ‘extrinsic’ after
external interference has changed its inherent properties. In devices it is mostly
extrinsic semiconductors that are used, but it is better to approach our subject
gradually and discuss intrinsic semiconductors first.
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Intrinsic semiconductors 121

To be specific, let us think about silicon, although most of our remarks
will be qualitatively true of germanium and other semiconductors. Silicon has
the diamond crystalline structure; the four covalent bonds are symmetrically
arranged. All the four valence electrons of each atom participate in the covalent
bonds, as we discussed before. But now, having learned band theory, we may
express the same fact in a different way. We may say that all the electrons are
in the valence band at 0 K. There is an energy gap of 1.1 eV above this before
the conduction band starts. Thus, to get an electron in a state in which it can
take up kinetic energy from an electric field and can contribute to an electric
current, we first have to give it a package of at least 1.1 eV of energy. This can
come from thermal excitation, or by photon excitation quite independently of
temperature.

Let us try to work out now the number of electrons likely to be free to
take part in conduction at a temperature T . How can we do this? We have
already solved this problem for the one-dimensional case: eqn (7.51) gives us
the effective number of electrons in a partly filled band; so all we need to do
is to include the Fermi function to take account of finite temperature and to
generalize the whole thing to three dimensions. It can be done, but it is a bit too
complicated. We shall do something else, which is less justifiable on strictly
theoretical grounds, but is physically much more attractive. It is really cheating
because we use only those concepts of band theory that suit us, and instead of
solving the problem honestly, we shall appeal to approximations and analogies.
It is a compromise solution that will lead us to easily manageable formulae.

First of all we shall say that the only electrons and holes that matter are
those near the bottom of the conduction band and the top of the valence band,
respectively. Thus, we may assume that

kxa, kyb, kzc � 1, (8.1)

and we may expand the cosine term in eqn (7.34) to get the energy in the form,

E = E1 − 2Ax

(
1 − 1

2k
2
xa

2)− 2Ay

(
1 − 1

2k
2
yb

2
)

− 2Az

(
1 − 1

2k
2
z c

2) . (8.2)

Using our definition of effective mass, we can easily show from the above
equation that

m∗
x = h̄2

2Aza2
, m∗

y = h̄2

2Ayb2
, m∗

z = h̄2

2Azc2
. (8.3)

Substituting the values of Axa
2, Ayb

2, and Azc
2 from eqn (8.3) back into

eqn (8.2) and condensing the constant terms into a single symbol, E0, we may
now express the energy as

E = E0 + h̄2

2

(
k2
x

m∗
x

+ k2
y

m∗
y

+ k2
z

m∗
z

)
. (8.4)

Taking further E0 = 0, and assuming that everything is symmetric, that is

m∗
x = m∗

y = m∗
z = m∗, (8.5)

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


122 Semiconductors

we get

E = h̄2

2m∗
(
k2
x + k2

y + k2
z

)
. (8.6)

This formula is identical to
eqn (6.2) obtained from the free
electron model—well, nearly
identical. The mass in the denominator is not the real mass of an electron but the

effective mass. But that is the only difference between eqn (8.6) and the free
electron model. Thus, we are going to claim that electrons in the conduction
band have a different mass but apart from that behave in the same way as free
electrons. Hence the formula derived for the density of states [eqn (6.10)] is
also valid, and we can use the same method to determine the Fermi level. So
we shall have the total number of electrons by integrating. . . . Wait, we forgot
about holes. How do we include them? Well, if holes are the same sort of
things as electrons apart from having a positive charge, then everything we said
about electrons in the conduction band should be true for holes in the valence
band. The only difference is that the density of states must increase downwards
for holes.

Choosing now the zero of energy at the top of the valence band, we may
write the density of states in the form

Z(E) = Ce(E − Eg)
1/2, Ce = 4π(2m∗

e)
3/2/h3 (8.7)

for electrons, and

Z(E) = Ch(−E)1/2, Ch = 4π(2m∗
h)

3/2/h3 (8.8)

for holes, both of them per unit volume. This is shown in Fig. 8.1, where E

is plotted against Z(E). You realize of course that the density of states has
meaning only in the allowed energy band and must be identically zero in the
gap between the two bands.

E

Eg

0
Z(E)

Range of
forbidden
energies

Fig. 8.1
Density of states plotted as a function
of energy for the bottom of the
conduction (electrons) and top of the
valence (holes) bands. See eqns (8.7)
and (8.8).

Let us return now to the total number of electrons. To obtain that we must
take the density of states, multiply by the probability of occupation (getting
thereby the total number of occupied states) and integrate from the bottom to
the top of the conduction band. So, formally, we have to solve the following
integral

Ne =
∫ top of conduction band

bottom of conduction band
(density of states)(Fermi function) dE (8.9)

There are several difficulties with this integral:

1. Our solution for the density of states is valid only at the bottom of the band,
2. The Fermi function

F(E) =
{

1 + exp

(
E − EF

kT

)}−1

(8.10)

is not particularly suitable for analytical integration.
3. We would need one more parameter in order to include the width of the

conduction band.

We are saved from all these difficulties by the fact that the Fermi level lies
in the forbidden band, and in practically all cases of interest its distance from
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E

Z(E)(a) F(E)(b) (c) F(E) Z(E)

E E

Fig. 8.2
(a) The density of states as a function of energy for the bottom of the conduction band. (b) The Fermi function for the
same range of energies. (c) A plot of F(E)Z(E) showing that the filled electron states are clustered together close to the
bottom of the conduction band.

the band edge is large in comparison with kT (0.025 eV at room temperature).
Hence,

E − EF � kT (8.11)

and the Fermi function may be approximated by

F(E) = exp

{−(E − EF)

kT

}
, (8.12)

as shown already in eqn (6.18).
If the Fermi function declines exponentially, then the F(E)Z(E) product

will be appreciable only near the bottom of the conduction band as shown in
Fig. 8.2. Thus, we do not need to know the density of states for higher energies
(nor the width of the band) because the fast decline of F(E) will make the
integrand practically zero above a certain energy. But if the integrand is zero
anyway, why not extend the upper limit up to infinity? We may then come to
an integral that is known to mathematicians.

Substituting now eqns (8.7) and (8.12) into eqn (8.9), we get

Ne = Ce

∫ ∞

Eg

(E − Eg)
1/2 exp

{−(E − EF)

kT

}
dE. (8.13)

Introducing now the new variable

x = (E − Eg)

kT
, (8.14)

the integral takes the form

Ne = Ce(kT )
3/2 exp

{−(Eg − EF)

kT

}∫ ∞

0
x1/2e−x dx. (8.15)
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According to mathematical tables of high reputation∗∗ Even better, you could work it out for
yourself; it’s not too difficult. ∫ ∞

0
x1/2e−x dx = 1

2

√
π , (8.16)

leading to the final result

Ne = Nc exp

{−(Eg − EF)

kT

}
, (8.17)

where

Nc = 2

(
2πm∗

ekT

h2

)3/2

. (8.18)

Thus, we have obtained the number of electrons in the conduction band as a
function of some fundamental constants, of temperature, of the effective mass
of the electron at the bottom of the band, and of the amount of energy by which
the bottom of the band is above the Fermi level.

We can deal with holes in an entirely analogous manner. The probability of a
hole being present (that is of an electron being absent) is given by the function

1 − F(E), (8.19)

which also declines exponentially along the negative E-axis. So we can choose
the lower limit of integration as −∞, leading to the result for the number of
holes in the valence band:

Nh = Nv exp(−EF/kT ), (8.20)

where
Nv = 2(2πm∗

hkT /h
2)3/2. (8.21)

For an intrinsic semiconductor each electron excited into the conduction
band leaves a hole behind in the valence band. Therefore, the number of
electrons should be equal to the number of holes (this would actually follow
from the condition of charge neutrality too); that is

Ne = Nh. (8.22)

Substituting now eqns (8.17) and (8.20) into eqn (8.22), we get

Nc exp{−(Eg − EF)/kT } = Nv exp(−EF/kT ), (8.23)

from which the Fermi level can be determined. With a little algebra we get

EF = Eg

2
+ 3

4
kT loge

m∗
h

m∗
e

. (8.24)Since kT is small, and the effective
masses of electrons and holes are
not very much different, we can
say that the Fermi level is roughly
halfway between the valence and
conduction bands.

We may now ask the question how carrier concentration varies with
temperature. Strictly speaking, the energy gap is also a function of temperature
for the reason that it depends on the lattice constant, which does vary with
temperature. That is, however, a small effect in the normally used temperature
range, so we are nearly always entitled to disregard it. Substituting eqn (8.24)
into eqns (8.17) and (8.20), we find that both Ne and Nh are proportional to
exp(−Eg/2kT ), an important relationship.

We know now everything we need about intrinsic semiconductors. Let us
now look at the effect of impurities.
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8.3 Extrinsic semiconductors

We shall continue to consider silicon as our specific example, but now with
a controlled addition of a group V impurity (this refers to column five in the
periodic table of elements) as, for example, antimony (Sb), arsenic (As), or
phosphorus (P). Each group V atom will replace a silicon atom and use up four If the impurity is less than, say, 1 in

106 silicon atoms, the lattice will be
hardly different from that of a pure
silicon crystal.

of its valence electrons for covalent bonding [Fig. 8.3(a)]. There will, however,
be a spare electron. It will no longer be so tightly bound to its nucleus as in
a free group V atom, since the outer shell is now occupied (we might look at
it this way) by eight electrons, the number of electrons in an inert gas; so the
dangling spare electron cannot be very tightly bound. However, the impurity
nucleus still has a net positive charge to distinguish it from its neighbouring
silicon atoms. Hence, we must suppose that the electron still has some affinity
for its parent atom. Let us rephrase this somewhat anthropomorphic picture in
terms of band theory. We have said the energy gap represents the minimum
energy required to ionize a silicon atom by taking one of its valence electrons.
The electron belonging to the impurity atom clearly needs far less energy than
this to become available for conduction. Let us call this energy Eimp. If an
electron loosely bound to the impurity atom receives an energy Eimp it will be
available for conduction, or in other words will be promoted into the conduction
band. If an energy Eimp is needed for the promotion then the energy level of an
impurity atom must be below the conduction band by that much, i.e. it will be
at ED = Eg – Eimp. This energy level is called the donor∗ level. See Table 8.1 ∗ The impurity atom donates an electron.

4 4 4

4 5 4

4 4 4

Extra
electron

(a) (b)

0

ED

Eg

Fig. 8.3
(a) The extra electron ‘belonging’ to
the group V impurity is much more
weakly bound to its parent atom than
the electrons taking part in the
covalent bond. (b) This is equivalent
to a donor level close to the
conduction band in the band
representation.

Table 8.1 Energy levels of donor (group V) and acceptor
(group III) impurities in Ge and Si. The energies given are
the ionization energies, that is, the distance of the impurity
level from the band edge (in electron volts)

Impurity Ge Si

Donors Antimony (Sb) 0.0096 0.039
Phosphorus (P) 0.0120 0.045
Arsenic (As) 0.0127 0.049

Acceptors Indium (In) 0.0112 0.160
Gallium (Ga) 0.0108 0.065
Boron (B) 0.0104 0.045
Aluminium (Al) 0.0102 0.057

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


126 Semiconductors

for measured values of Eimp.
Interestingly, a very rough model serves to give a quantitative estimate of the

donor levels. Remember, the energy of an electron in a hydrogen atom [given
by eqn (4.18)] is

E = −me4/8ε2
0h

2. (8.25)

We may now argue that the excess electron of the impurity atom is held by
the excess charge of the impurity nucleus; that is, the situation is like that in
the hydrogen atom, with two minor differences.

1. The dielectric constant of free space should be replaced by the dielectric
constant of the material.

2. The free electron mass should be replaced by the effective mass of the
electron at the bottom of the conduction band.

Thus, this model leads to the following estimate

Eg − ED = m∗e4/8ε2h2. (8.26)

Taking silicon as an example, for which m∗ = 0.58m (see Table 8.4) and
εr = 12 (see Table 10.1), this energy level is smaller by a factor of 248 than
the value of −13.6 eV given by eqn (4.21) for the hydrogen atom. That comes
to 0.0548 eV, not very far from the experimental figures in Table 8.1. Note,
however, that the parameters in eqn (8.26) depend only on the properties of
the host material, so this model cannot possibly say anything on how Eg −ED

varies with the type of dopant.
If instead of a groupVimpurity we had some group III atoms, as, for example,

indium (In), aluminium (Al), or boron (B), there would be an electron missing
from one of the covalent bonds (see Fig. 8.4). If one electron is missing, there
must be a hole present.

Before going further, let me say a few words about holes. You might have
been slightly confused by our rather inconsistent references to them. To clear
this point—there are three equivalent representations of holes, and you can
always (or nearly always) look at them in the manner most convenient under
the circumstances.

You may think of a hole as a full-blooded positive particle moving around
in the crystal, or as an electron missing from the top of the valence band, or
as the actual physical absence of an electron from a place where it would be
desirable to have one.

Fig. 8.4
(a) In the case of a group III impurity
one bonding electron is missing—
there is a ‘hole’ which any valence
electron with a little surplus energy
can fall into. (b) This shows in the
band representation as an acceptor
level just above the valence
band edge.

4 3 4

4 0

EA

Eg4

(a) (b)
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In the present case, the third interpretation is the most convenient one—to
start with. A group III atom has three valence electrons. So when it replaces a
silicon atom at a certain atomic site, it will try to contribute to bonding as much
as it can. However, it possesses only three electrons for four bonds.Any electron
wandering around would thus be welcomed to help out. More aggressive
impurity nuclei might even consider stealing an electron from the next site.

The essential point is that a low energy state is available for electrons—not
as low an energy as at the host atom but low enough to come into consideration
when an electron has acquired some extra energy and feels an urge to jump
somewhere. Therefore (changing now to band theory parlance), the energy
levels due to group III impurities must be just above the valence band. Since
these atoms accept electrons so willingly, they are called acceptors and the
corresponding energy levels are referred to as acceptor levels.

A real material will usually have both electron donors and acceptors present
(not necessarily group V and group III elements; these were chosen for
simplicity of discussion and because they are most often used in practice).
However, usually one type of impurity exceeds the other, and we can talk of
impurity semiconductors as n- (negative carrier) or p- (positive carrier) types
according to whether the dominant charge carriers are electrons or holes. If we
had some silicon with 1020 atoms per cubic metre of trivalent indium, it would
be a p-type semiconductor. If we were somehow to mix in 1021 atoms per cubic
metre of pentavalent phosphorus, the spare phosphorus electrons would not
only get to the conduction band but would also populate the acceptor levels,
thus obliterating the p characteristics of the silicon and turning it into an n-type
semiconductor.

Let us calculate now the number of electrons and holes for an extrinsic semi-
conductor. We have in fact already derived formulae for them, as witnessed by
eqns (8.17) and (8.20); but they were for intrinsic semiconductors. Did we make
any specific use of the fact that we were considering intrinsic semiconductors?
Perhaps not. We said that only electrons at the bottom of the band matter, and
we also said that the bottom of the band is many times kT away from the Fermi
level in energy but this could all be equally valid for extrinsic semiconductors.
It turns out that these approximations are valid, apart from certain exceptional
cases (we shall meet one exception when we consider devices).

But how can we determine the Fermi level? It is certainly more difficult
for an extrinsic semiconductor. We have to consider now all the donors and
acceptors. The condition is that the crystal must be electrically neutral, that
is, the net charge density must be zero. Let us take a count of what sort of
charges we may meet in an extrinsic semiconductor. There are our old friends,
electrons and holes; then there are the impurity atoms that donated an electron
to the conduction band, and are left with a positive charge; and finally there are
the acceptor atoms that accepted an electron from the valence band and thus
have a negative charge. Hence the formula for overall charge neutrality is

N−
A is the number of ionized

acceptor atoms, which accepted an
electron from the valence band,
and N+

D is the number of ionized
donor atoms, which donated an
electron to the conduction band.

Ne + N−
A � Nh + N+

D , (8.27)

We have written eqn (8.27) with the � sign used by chemists to show that it is
a dynamic equilibrium, rather than a once and for all equation.

How can we find the number of ionized impurities, N−
A and N+

D , from the
actual number of impurity atoms NA and ND? Looking at Fig. 8.3(b) you may
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128 Semiconductors

recollect that the ND donor electrons live at the level ED (at 0 K) all ready and
willing to become conduction electrons if somehow they can acquire (Eg −ED)

joules of energy. N+
D is hence a measure of how many of them have gone.

Therefore,If we multiply ND by the
probability of an electron not
being at ED we should get N+

D .
N+

D = ND{1 − F(ED)}. (8.28)

For acceptor atoms the argument is very similar. The probability of an
electron occupying a state at the energy level EA is F(EA). Therefore the
number of ionized acceptor levels is

N−
A = NAF(EA). (8.29)

We are now ready to calculate the position of the Fermi level in any
semiconductor whose basic properties are known, that is, if we know NA

and ND, the energy gap, Eg, and the effective masses of electrons and holes.
Substituting for Ne, Nh, N−

A , N+
D from eqns (8.17), (8.20), (8.28), and (8.29)

into eqn (8.27) we get an equation that can be solved for EF. It is a rather
cumbersome equation but can always be solved with the aid of a computer.
Fortunately, we seldom need to use all the terms, since, as mentioned above,
the dominant impurity usually swamps the others. For example, in an n-type
semiconductor, usually Ne � Nh and N+

D � N−
A and eqn (8.27) reduces to

Ne
∼= N+

D . (8.30)

This, of course, implies that all conduction electrons come from the donor
levels rather than from host lattice bonds. Substituting eqns (8.17) and (8.28)
into eqn (8.30) we get∗∗ Equation (8.31) is not, however, valid

at the limit of no impurity, because holes
cannot then be neglected; nor is it valid
when ND is very large, because some
of the approximations [e.g. eqn (8.11)]
are then incorrect, and in any case many
impurity atoms getting close enough
to each other will create their own
impurity band.

Nc exp

(
−Eg − EF

kT

)
∼= ND

(
1 + exp

EF − ED

kT

)−1

. (8.31)

For a particular semiconductor eqn (8.31) is easily solvable, and we may plot
EF as a function of ND or of temperature. Let us first derive a formula for the
simple case when (EF − ED)/kT is a large negative number. Equation (8.31)
then reduces to

(constant) exp
EF

kT
∼= ND. (8.32)

So we have already learned that the position of the Fermi level moves upwards,

EF increases with the logarithm
of ND.

and varies rather slowly with impurity concentration.
Let us consider now a slightly more complicated situation where the above

approximation does not apply. Take silicon at room temperature and arsenic as
the dopant with the data

Eg = 1.15 eV, Eg − ED = 0.049 eV, ND = 1022 m−3. (8.33)

We may get easily the solution by introducing the notation

x = exp
EF

kT
, (8.34)

reducing thereby eqn (8.31) to the form

Ax = ND

1 + Bx
, (8.35)
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which leads to a quadratic equation in x, giving finally for the Fermi level,
EF = 0.97 eV. Thus, in the practical case of an extrinsic semiconductor the
Fermi level is considerably above the middle of the energy gap.

Let us consider now the variation of Fermi level with temperature. This is
somewhat complicated by the fact that Eg and ED are dependent on lattice
dimensions, and hence both change with temperature, but we shall ignore this
effect for the moment.

At very low temperatures (a few degrees absolute), the chance of excitation
across the gap is fantastically remote compared with the probability of
ionization from a donor level (which is only remote). Try calculating this for a
1 eV value ofEg and a 0.05 eV value ofEg −ED. You should find that with 1028

lattice atoms per cubic metre, of which only 1021 are donors, practically all the
conduction electrons are from the latter. Thus, at low temperature the material
will act like an intrinsic semiconductor whose energy gap is only Eg − ED.
So we can argue that the Fermi level must be about halfway within this ‘gap’,
that is

EF
∼= 1

2 (Eg + ED). (8.36)

Is this analogy so close that we can generalize the relationship obtained
before for the temperature variation of intrinsic carriers? Can we claim that it
will now be exp[−(Eg −ED)/2kT ] instead of exp(−Eg/2kT )? Yes, this is true
under certain conditions. It can be derived from eqn (8.31) (see example 8.14).

At the other extreme, at very high temperatures, practically all the electrons
from the impurity atoms will be ionized, but because of the larger reservoir of
valency electrons, the number of carriers in the conduction band will be much
greater thanND. In other words, the material (now a fairly good conductor) will
behave like an intrinsic semiconductor with the Fermi level at about Eg/2. For
larger impurity concentration the intrinsic behaviour naturally comes at a higher
temperature. Thus, a sketch of EF against temperature will resemble Fig. 8.5
for an n-type semiconductor. The relationship for a p-type semiconductor is
entirely analogous and is shown in Fig. 8.6.

EF

Eg

ED

Eg

2

0
0 T

EFi

1 2 3

Fig. 8.5
The variation of the Fermi level as a
function of temperature for an n-type
semiconductor. The curves 1, 2, and 3
correspond to increasing impurity
concentrations. EFi is the intrinsic
Fermi level (plotted from eqn (8.24))
for mh > me to which all curves tend
at higher temperatures.

EF

Eg

EA

Eg

2

0 0 T

EFi

1 2 3

Fig. 8.6
The variation of the Fermi level as a
function of temperature for a p-type
semiconductor. The curves 1, 2, and 3
correspond to increasing impurity
concentrations. EFi is the intrinsic
Fermi level to which all curves tend at
higher temperatures.

There is just one further point to note about the variation of energy gap with
temperature. We have seen in the Ziman model of the band structure that the
interband gap is caused by the interaction energy when the electrons’de Broglie
half-wavelength is equal to the lattice spacing. It is reasonable to suppose that
this energy would be greater at low temperatures for the following reason. At
higher temperatures the thermal motion of the lattice atoms is more vigorous;
the lattice spacing is thus less well defined and the interaction is weaker. This,
qualitatively, is the case; for example, in germanium the energy gap decreases
from about 0.75 eV at 4 K to 0.67 eV at 300 K.

8.4 Scattering

Having learned how to make n-type and p-type semiconductors and how to
determine the densities of electrons and holes, we now know quite a lot about
semiconductors. But we should not forget that so far we have made no statement
about the electrical conductivity, more correctly nothing beyond that at the
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beginning of the course [eqn (1.10)], where we produced the formula

σ = e2

m
τNe. (8.37)

An obvious modification is to put the effective mass in place of the actual
mass of the electron. But there is still τ , the mean free time between collisions.
What will τ depend on and how?

We have now asked one of the most difficult questions in the theory of solids.
As far as I know no one has managed to derive an expression for τ starting from
first principles (i.e., without the help of experimental results).

Let us first see what happens at absolute zero temperature. Then all the
atoms are at rest;∗ so the problem seems to be: how long can an electron travel∗ For the purpose of the above discussion

we can assume that the atoms are at
rest, but that can never happen in an
actual crystal. If the atoms were at
rest then we would know both their
positions and velocities at the same
time, which contradicts the uncertainty
principle. Therefore, even at absolute
zero temperature, the atoms must be in
some motion.

in a straight line without colliding with a stationary atom? Well, why would it
collide with an atom at all? The electron hasn’t really any desire to bump into
an atom. As we know from the Feynman model, the electron does something
quite different. It sits in an energy level of a certain atom, then tunnels through
the adverse potential barrier and takes a seat at the next atom, and again at the
next atom—so it just walks across the crystal without any collision whatsoever.
The mean free path is the length of the crystal—so it is not the presence of the
atoms that causes the collisions. What then? The imperfections? If the crystal
were perfect, we should have nice periodic solutions [as in eqn (7.33)] for
the wavefunction, and there would be equal probability for an electron being
at any atom. It could thus start at any atom and could wriggle through the
crystal to appear at any other atom. But the crystal is not perfect. The ideal
periodic structure of the atoms is upset, partly by the thermal motion of the
atoms, and partly by the presence of impurities, to mention only the two most
important effects. So, strictly speaking, the concept of collisions, as visualized
for gas molecules, makes little sense for electrons. Strictly speaking, there is no
justification at all for clinging to the classical picture. Nevertheless, as so often
before, we shall be able to advance some rough classical arguments, which lead
us into the right ballpark.

First notice [eqns (1.11) and (1.13)] that the mean free path may be written
with good approximation as proportional to

l ∼ τT 1/2. (8.38)

Arguing now that the mean free path is inversely proportional to the scattering
probability, and the scattering probability may be taken to be proportional to
the energy of the lattice wave (i.e. to T ), we obtain for the collision time

τthermal ∼ lT −1/2 ∼ T −3/2. (8.39)

The argument for ionized impurities is a little more involved. We could say
that no scattering will occur unless the electron is so close to the ion that the
electrostatic energy [given by eqn (4.2) if e2 is replaced by Ze2] is comparable
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with the thermal energy
Ze2

4πεrs
= 3

2
kT (8.40)

leading to a radius,

rs = Ze2

6πεkT
. (8.41)

Next, we argue that the scattering power of the ion may be represented at the
radius by a scattering cross-section

Ss = r2
s π = 1

π

(
Ze2

6εkT

)2

. (8.42)

Finally, assuming that the mean free path is inversely proportional to the
scattering cross-section, we obtain the relationship

τionized impurity = lT −1/2 ∼ S−1
s T −1/2 ∼ T 3/2. (8.43)

When both types of scattering are present the resultant collision time may
be obtained from the equation

1

τ
= 1

τthermal
+ 1

τionized impurity
. (8.44) If a high value of τ is required, then

one should use a very pure material
and work at low temperatures.A high value of τ means high mobility and hence high average velocity for

the electrons.
We do not know yet whether high electron velocities in crystals will have

many useful applications,∗ but since fast electrons in vacuum give rise to ∗ Two present applications are the
Gunn effect and very high frequency
transistors, both to be discussed in
Chapter 9.

interesting phenomena, it might be worth while making an effort to obtain
high carrier velocities in semiconductors.

How would mobility vary as a function of impurity density? It is bound
to decline. Instead of a mathematical model that is quite complicated, we are
going to give here actual measured curves for electron and hole mobilities at
T = 300 K for Ge and Si (see Fig. 8.7). Note that electron mobilities are

higher than hole mobilities due
to the fact that in both materials
the effective mass of electrons is
smaller than that of holes.

When both electrons and holes are present the conductivities add

σ = e2τeNe

m∗
e

+ e2τhNh

m∗
h

. (8.45)

8.5 A relationship between electron and
hole densities

Let us now return to eqns (8.17) and (8.20). These were derived originally
for intrinsic semiconductors, but they are valid for extrinsic semiconductors as
well. Multiplying them together, we get

NeNh = 4

(
2πkT

h2

)3

(m∗
em

∗
h)

3/2 exp

(
−Eg

kT

)
. (8.46)

It is interesting to note that the Fermi level has dropped out, and only the
‘constants’of the semiconductor are contained in this equation. Thus, for a given
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Fig. 8.7
Electron and hole mobilities in Ge
and Si as a function of impurity
concentration.
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semiconductor (i.e. for known values of m∗
e ,m∗

h, and Eg) and temperature we
can define the product NeNh exactly, whatever the Fermi energy and hence
whatever the impurity density. In particular, for an intrinsic material, where
Ne = Nh = Ni, we get

NeNh = N2
i . (8.47)

Let us think over the implications. We start with an intrinsic semiconductor;
so we have equal numbers of electrons and holes. Now add some donor atoms.
The number of electrons must then increase, but according to eqn (8.47) theIf the number of electrons incre-

ases, the number of holes must
decrease.

product must remain constant. At first this seems rather odd. One would think
that the number of electrons excited thermally from the valence band into the
conduction band (and thus the number of holes left behind) would depend on
temperature only, and be unaffected by the presence of donor atoms. This is
not so. By increasing the concentration of donors, the total number of electrons
in the conduction band is increased, but the number of electrons excited across
the gap is decreased (not only in their relative proportion but in their absolute
number too). Why?

We can obtain a qualitative answer to this question by considering the
‘dynamic equilibrium’ mentioned briefly before. It means that electron–hole
pairs are constantly created and annihilated and there is equilibrium when the
rate of creation equals the rate of annihilation (the latter event is more usually
referred to as ‘recombination’).

The rate of recombination must
be proportional to the densities of
holes and electrons.

Now it is not unreasonable to assume that electrons and holes can find each
other more easily if there are more of them present. For an intrinsic material
we may write

rintrinsic = aN2
i , gintrinsic = aN2

i , (8.48)

where a is a proportionality constant, and r and g are the rates of recombination
and creation, respectively.
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III–V and II–VI compounds 133

Now we may argue that by adding a small amount of impurity, neither the rate
of creation nor the proportionality constant should change. So for an extrinsic
semiconductor

gextrinsic = aN2
i (8.49)

is still valid.
The rate of recombination should, however, depend on the actual densities

of electrons and holes, that is

rextrinsic = aNeNh. (8.50)

From the equality of eqns (8.49) and (8.50) we get the required relationship

N2
i = NeNh. (8.51)

So we may say that as the density of electrons is increased above the intrinsic
value, the density of holes must decrease below the intrinsic value in order that
the rate of recombination of electron–hole pairs may remain at a constant value
equal to the rate of thermal creation of pairs.

Those of you who have studied chemistry may recognize this relationship as
a particular case of the law of mass action. This can be illustrated by a chemical
reaction between A and B, giving rise to a compound AB, viz.

A + B � AB. (8.52)

If we represent the molecular concentration of each component by writing its
symbol in square brackets, the quantity

[A][B][AB]−1 (8.53)

is a constant at a given temperature. Now our ‘reaction’ is

electron + hole � bound electron. (8.54)

As the number of bound electrons (cf. [AB]) is constant, this means that

[electron][hole] = NeNh (8.55)

will also be constant.

8.6 III–V and II–VI compounds

In our examples up to now we have referred to germanium and silicon as typical
semiconductors, and indeed they are typical, their technology was certainly the
earliest mastered. They are both tetravalent, so they can be found in column IVB
of our periodic table shown in Fig. 4.5. There are, of course, many other semi-
conductors. In this section we shall be concerned with two further types which
are compounds of elements from columns IIIB, VB, IIB, and VIB, respectively.

Let us talk first about the III–V compounds. Why are they semiconductors?
We can say the same thing about them as about germanium and silicon.
They are insulators at low temperatures because all the electrons participate
in the bonding process: none of them is available for conduction. At
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Fig. 8.8
Electron and hole mobilities in GaAs
as a function of impurity
concentration.
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higher temperatures, however, the electronic bond can be broken by thermal
excitations, that is electrons can be excited into the conduction band. The
only difference relative to Ge and Si is that III–V compounds have an ionic
contribution to the bonding as well. This is not particularly surprising. We
mentioned in Chapter 5 that the ionic bond of NaCl comes about because the
one outer electron of sodium is happy to join the seven outer electrons of
chlorine to make up a completed ring—so it is easy to see that, with Ga having
three outer electrons and As having five outer electrons, they will also strike up
a companionship in order to complete the ring.Note, however, that a III–V ionic

bond is weaker than a I–VII
ionic bond.

Which are the most important III–V materials? The oldest one, and technol-
ogically the best developed, is GaAs, to which serious attention has been paid
since the middle of the 1950s and which has been the preferred material for
a host of devices. Why? One might expect that arsenic was the last thing
anyone in any laboratory would have wanted to work on. However, some of
the rivals, for example AlSb, fell by the wayside because of a tendency to
decompose quickly, and, most importantly, GaAs was the material that offered
high mobility relative to Ge and Si. For measured curves of electron and hole
mobilities against impurity concentration, see Fig. 8.8.

What can we say about the energy gap of GaAs? It is, 1.42 eV, a lot higher
than that of Ge, the element between them in the periodic table. The energy
gap is higher which means that it is more difficult to break a bond in GaAs
than in Ge. Why? Because of the presence of ionic bonding. We can also say
something definite about the energy gaps of some other compounds relative to
that of GaAs. If we combine with Ga the element in the periodic table above
As, we obtain GaP with an energy gap of 2.24 eV. If we choose for the other
element in the compound Sb, which is below As in the periodic table, then we
obtain GaSb with an energy gap of 0.67 eV. The same is true if we combine
various elements from column III with As. The energy gap of AlAs is 2.2 eV,
whereas the energy gap declines to 0.36 eV for InAs. The general rule is easy to
remember: the lower you go in the periodic table in your choice of the elements
the smaller is the gap. What is the reason? The farther down the columns of the
periodic table (Fig. 4.2.) the higher are both the nuclear charge (Ze) and the
number of filled electronic inner shells. Hence, the valency electrons are farther
from the nucleus and so more loosely bound. Thus, the bonding force between
atoms is weaker (lower melting point) and the energy to promote electrons
into the conduction band is less (lower energy gap). This is shown in Table 8.2
where also we have omitted the heaviest group III–V elements thallium (atomic
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Table 8.2 Size of atoms in tetrahedral bonds

Element Atomic
number

Atomic
weight (AMU)

Atomic radius
in tetrahedral
covalent bonds Å

IIB
Zn 30 68.38 1.31
Cd 48 112.4 1.48
Hg 80 200.59 1.48

IIIB
B 5 10.81 0.88
Al 13 26.98 1.26
Ga 31 69.72 1.26
In 49 114.82 1.44

IVB
C 6 12.01 0.77
Si 14 28.09 1.17
Ge 32 72.59 1.22
Sn 50 118.69 1.40

VB
N 7 14.007 0.70
P 15 30.97 1.10
As 33 74.92 1.18
Sb 51 121.7 1.36

VIB
O 8 16.0 0.66
S 16 32.06 1.04
Se 34 78.96 1.14
Te 52 127.60 1.32

number 81) and bismuth (83) as their compounds have very narrow gap and so
are almost metallic.

How can we make a III–V material, say GaAs n-type or p-type? The answer
is easy in principle. If there is excess Ga it will be p-type, if there is excess As
it will be n-type. Or we can try as a dopant a column IV material, for example
silicon. It acts as a donor if it replaces a Ga atom, and as an acceptor if it
replaces an As atom. In practice, of course, it is not so easy to produce any of
these materials to a given specification.

Most of the semiconductors we consider in this section crystallize like GaAs
in the zinc blende structure. This is very like our diamond picture (Fig. 5.3)
with the C atoms replaced alternately with a III and V or II and VI. So all bonds
are between unlike atoms. We can also visualize this structure as each sub-set
of atoms arranged in a face centred cubic (FCC) structure. The two sub-sets are
displaced from each other in three dimensions by a half lattice spacing, that is
one fourth of the FCC sub-lattice cubic separation. This results (back to Fig. 5.3)
in a tetragonal arrangement, each atom being bonded symmetrically to four
unlike atoms. In Table 8.2 we list the basic size of atoms, including the atomic
radius that they have in tetragonal bonding. One can calculate the bond length
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of atomic separation in, say, GaP by adding the Ga and P radii. Then by fairly
simple geometry we can obtain the lattice parameter by multiplying by 2.31.

All the compounds mentioned so far have been binary compounds, that is
they consist of two elements. In principle there are no difficulties in growing
ternary crystals consisting of three elements. Al for example is quite happy to
occupy a Ga site, so there are no difficulties in producing a GaAlAs crystal.
What will be the effect of adding Al to GaAs? According to the argument given
above, the energy gap should increase. The more Al is added the larger will
be the energy gap. Is that good for something? Yes. The sources for optical
communications depend crucially on our ability to tailor the energy gap. Let
me give you an example. The preferred material for blue-green semiconductor
lasers is GaN, but its energy gap puts it into the ultraviolet region. This can
be adjusted by replacing some of the gallium with indium, the heavier element
reducing the gap. We shall say a lot more about this in Section 12.7.

There are a few obvious things we can say about II–VI materials. They
have more ionic bonding than III–V materials and less ionic bonding than
I–VII materials. For more accurate figures of the contribution of ionic forces to
bonding see Table 8.3. What about the energy gaps? Just as GaAs has a higher

Table 8.3 Semiconductor properties I. Energy gap and structure

Semiconductor Energy gap
eV

Melting point
K

Ionic % of
bond

Lattice spacing Å

Group IV
C 5.4 382 0 3.56
Si 1.11 1680 0 5.43
Ge 0.67 1210 0 5.66
SiC 2.9 18 3.08, 5.05

Group III–V
Al N 6.02 3070 3.11, 4.98
Al P 3.34 1770 5.45
Al As 2.2 1870 5.66
Al Sb 1.6 1330 6.15
Ga N 3.34 2770 3.19, 5.18
Ga P 2.24 1730 5.45
Ga As 1.42 1520 31 5.65
Ga Sb 0.67 980 26 6.10
In N 2.0 2475 3.54, 5.70
In P 1.27 1330 42 5.80
In As 0.36 1215 36 6.06
In Sb 0.17 798 32 6.48

Group II–VI
Zn O 3.20 2248 62 4.63
Zn S 3.54 1925 62 5.41
Zn Se 2.58 1790 63 5.67
Zn Te 2.26 1658 61 6.10
Cd O 2.5 2020 79
Cd S 2.42 1750 69 5.58
Cd Se 1.74 1512 70 6.05
Cd Te 1.44 1368 67 6.48
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energy gap than Ge, we would also expect ZnSe (look it up in the periodic table:
Zn is to the left of Ga, and Se is to the right of As) to have a higher energy gap
than GaAs. It is actually 2.58 eV. The same rule, as for III–V materials, applies
again for going up and down in the periodic table. ZnS (S is above Se) has an
energy gap of 3.54 eV, whereas that of ZnTe (Te is below Se) is 2.26 eV.

Zinc blende is of course the name of the ore from which ZnS is obtained. It is a
little unfortunate that ZnS is one of the II–VI compounds which also crystallizes
in another form called wurtzite. Here the crystals have similar bond lengths,
the formal difference is that alternate (111) plane layers are rotated 180◦ about
the 111 axis. This gives a hexagonal atomic arrangement. It is reminiscent
of the deviations of diamond to hexagonal planes in graphite and C60. It is
not too serious a problem having two versions of ZnS, as well as ZnO, ZnSe
and CdS. The bond length and density are the same, and electrical properties
practically identical. The bonding is only slightly different because of different
distances of third nearest atoms. This is characterized by the Madelung constant
(Section 5.3.1) which is 1.638 for zinc blende and 1.641 for wurtzite. So we
do not have to record different bandgaps and melting points for the two crystal
types. Most of the III–V compounds crystallize in the zinc blende structure but
the nitrides have the wurtzite form. A clue to why this happens is that the third
nearest atoms are unlike hence attractive. The nitrogen atom with its small size
and high electro-negativity is prone to take a more ionic form of crystal.

The main problems with II–VI materials used to arise from the fact that
some compounds could be made p-type, some others n-type, but no compound
could be made both types. The change for the better came with the advent of
molecular beam epitaxy (see Section 8.11.5) which makes it possible to produce
junctions from II–VI materials.

8.7 Non-equilibrium processes

In our investigations so far, the semiconductor was always considered to be in
thermal equilibrium. Let us look briefly at a few cases where the equilibrium
is disturbed.

The simplest way of disturbing the equilibrium is to shine electromagnetic
waves (in practice these are mostly in the visible range) upon the semiconductor.
As a result photoemission may occur, as in metals, but more interestingly, the
number of carriers available for conduction may significantly increase. This
case is called photoconduction.

The three possible processes of producing carriers for conduction are shown
in Fig. 8.9; (i) creating an electron–hole pair, that is exciting an electron from
the valence band into the conduction band; (ii) exciting an electron from an
impurity level into the conduction band; (iii) exciting an electron from the top
of the valence band into an impurity level, and thus leaving a hole behind.

Conduction band

(i) (ii)

(iii)

Valence band

Fig. 8.9
Three models of obtaining free
carriers by illumination: (i) band-to-
band transitions yielding an
electron–hole pair, (ii) ionization of
donor atoms, (iii) ionization of
acceptor atoms.

The extra carriers are available for conduction as long as the semiconductor
is illuminated. What happens when the light is switched off? The number of
carriers must fall gradually to the equilibrium value. The time in which the
extra density is reduced by a factor e is called the lifetime of the carrier and is
generally denoted by τ (and is thus quite often confused with the collision time).
It is an important parameter in the design of many semiconductor devices.
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Assume now that only part of the semiconductor is illuminated; we shall
then have a region of high concentration in connection with regions of lower
concentration. This is clearly an unstable situation, and by analogy with gases,
we may expect the carriers to move away from places of high concentration
towards places of lower concentration. The analogy is incidentally correct; this
motion of the carriers has been observed, and can be described mathematically
by the usual diffusion equation

J = eD∇N . (8.56)
D is the diffusion coefficient.
This equation is quite plausible
physically; it means that if there
is a density gradient, a current
must flow.

Equation (8.56) is equally valid for holes and electrons, though in a practical
case, the signs should be chosen with care.

8.8 Real semiconductors

All our relationships obtained so far have been based on some idealized model.
Perhaps the greatest distortion of reality came from our assumption of a simple
cubical lattice for the calculation of the band structure. As we know, silicon and
germanium crystallize in the diamond structure, and that makes a significant
difference.

Plotting the E vs kx curve (Fig. 8.10) for the conduction band of silicon,
for example, it becomes fairly obvious that it bears no close resemblance to
our simple E = E0 − 2Ax cos kxa curve, which had its minimum at kx = 0.
Even worse, the E(ky) curve would be very different from the one plotted. The
surfaces of constant energy in k-space are not spheres.

The situation is not much better in the valence band, where the constant
energy surfaces are nearly spheres but—I regret to say—there are three different
types of holes present. This is shown in Fig. 8.10, where the letters h, l, and
s stand for heavy, light, and split-off bands respectively. What does it mean to
have three different types of holes? Well, just think of them as holes painted

Fig. 8.10
E−k curve for silicon in a particular
direction. Note that the minimum of
the conduction band is not at k = 0
and there are three different types of
holes. The situation is similar in
germanium, which is also an
indirect-gap (minimum of conduction
band not opposite to maximum of
valence band) semiconductor.

E

Eg

0
kx

h
l

s
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E

Eg

0

m*=0.35 m0

0.36 eV

m*=0.067 m0

1.4 eV

m*=0.67 m0

(holes)

k
Fig. 8.11
Energy band diagram for gallium
arsenide showing subsidiary valley in
conduction band.

red, blue, and green. They coexist peacefully, though occasionally, owing to
collisions, a hole may change its complexion.

Does this mean that all we have said so far is wrong? Definitely not. Does
it mean that considerable modifications are needed? No, for most purposes not
even that. We can get away with our simple model because, in general, only
average values are needed. It is nice to know that there are three different types
of holes in the valence band of silicon but for device operation only the average
effective mass and some sort of average collision time are needed.

The picture is not as black as it seems. In spite of the anisotropy in the E(k)
curves the grand total is isotropic. I mean that by performing all the relevant
averaging processes in silicon (still for a single-crystal material), the final
result is an isotropic effective mass and isotropic collision time. Measuring
the conductivity in different directions will thus always give the same result.∗ ∗ This is not true for graphite, for

example, which has very different
conductivities in different directions,
but fortunately single crystal graphite
is not widely used in semiconductor
devices. Polycrystalline graphite has, of
course, been used ever since the birth of
the electrical and electronics industries
(for brushes and microphones) but the
operational principles of these devices
are so embarrassingly simple that we
cannot possibly discuss them among
the more sophisticated semiconductor
devices.

Another important deviation from the idealized band structure occurs in
a number of III–V compounds, where a subsidiary valley appears in the
conduction band (shown for GaAs in Fig. 8.11). For most purposes (making a
gallium arsenide transistor, for example) the existence of this additional valley
can be ignored but it acquires special significance at high electric fields. It
constitutes the basis for the operation of a new type of device, which we shall
discuss later among semiconductor devices. You must realize, however, that
this is the exception rather than the rule. The details of the band structure
generally do not matter. For the description and design of the large majority of
semiconductor devices our model is quite adequate.
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8.9 Amorphous semiconductors

In this chapter we have considered very pure and regular crystal forms of Ge,
Si, and other semiconductors, and have used simple models based on this
symmetry to derive basic properties like energy gap and conductivity. What
happens if the material is not a single crystal—suppose one evaporates a film
of Si on to a suitable substrate? The film consists of randomly oriented clusters
of crystallites (small crystals). The structure within the crystallites leads to an
energy gap. Remember, in all our three models of band structure (Chapter 7)
band edges form when the electrons’ de Broglie wave interferes with the lattice
spacing. A small array of lattice points gives a less sharp interference pattern,
so the band edges are not so well defined. We still get optical absorption and
photo-conduction, but with a less sharp spectral variation than shown later
in Fig. 8.18(b). Another effect of small crystallites is that the covalent bonds
break off where the orientation changes, so that there are ‘dangling bonds’,
where the unpaired electrons can act as traps for both itinerant electrons and
holes. Mobility is greatly reduced; and also doping is much less effective, as
the carriers from the dopant are trapped. This effect ties the Fermi level near
the middle of the energy gap, as it is in intrinsic materials and insulators.

If the amorphous layer is formed in a gas discharge containing hydrogen, the
‘dangling bond’ is dramatically reduced. The H atoms neutralize the unpaired
electrons, and the atomic nucleus has a minimal effect on lattice behaviour. In
these circumstances amorphous Si can be doped into both p- and n-type.

Why should we use amorphous semiconductors when we can have them in
superior single crystal form? The reason is purely economical. When we need
them in large areas, as in solar cells (Section 13.2) or in xerographic applications
(Section 10.17), we use the amorphous variety.

8.10 Measurement of semiconductor properties

The main properties to be measured are (i) mobility, (ii) Hall coefficient,
(iii) effective mass, (iv) energy gaps (including the distance of any impurity
layer from the band edge), and (v) carrier lifetime.

8.10.1 Mobility

This quantity was defined as the carrier drift velocity for unit field:

The most direct way of measuring
mobility is to measure the drift
velocity caused by a known d.c.
electric field.

μ = vD/E . (8.57)

A C
n

Semiconductor

Switch+

μ = σ/Ne

Fig. 8.12
Current flow in an n-type
semiconductor.

Since the electric field is constant in a conductor (and in a semiconductor too),
it can be deduced from measurements of voltage and distance. How can we
measure the drift velocity? Well, in the same way we always measure velocity;
by measuring the time needed to get from point A to C. But can we follow
the passage of carriers? Not normally. When, in the circuit of Fig. 8.12, we
close the switch the electrons acquire an ordered motion everywhere. Those
that happen to be at point C when the switch is closed will arrive at point A
some time later, but we have no means of learning when. From the moment
the switch is closed, the flow of electrons is uniform at both points, C and A.
What we need is a circuit in which carriers can be launched at one point and
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A C
n

+

+ S +

R V

Oscilloscope

B1

(a)

(b)

V

t1 t2

Switch
closes

Time

Fig. 8.13
(a) The Haynes–Shockley experiment.
(b) The voltage across R as a function
of time. The switch S is closed at
t = t1. The holes drift from A to C in
a time t2 − t1.

detected at another point. Acircuit that can do this was first described by Haynes
and Shockley and is shown in Fig. 8.13(a). When S is open, there is a certain
current flowing across the resistor R. At t1 the switch is closed and according
to the well-known laws of Kirchhoff there is a sudden increase of current [and
voltage, as shown in Fig. 8.13(b)] through R. But that is not all. The contact
between the metal wire and the n-type semiconductor is a rather special one. It
has the curious property of being able to inject holes. We shall say more about
injection later, but for the time being please accept that holes appear at point
A, when S is closed. Under the influence of the battery B1 the holes injected
at A will move towards C. When they arrive at C (say at time t2), there is a
new component of current that must flow across R. The rise in current (and
in voltage) will be gradual because some holes have a velocity higher than the
average, but after a while a steady state develops. Now we know the distance
between points A and C, and we know fairly accurately the time needed by the
holes to get from A to C; the drift velocity can thus be determined. The electric
field can easily be obtained, so we have managed to measure, the mobility
(Table 8.4).

A more modern version of the Haynes–Shockley experiment is to use a
narrow light beam for exciting the extra carriers. The physics is then a lot more
complicated. As many as three separate phenomena take place simultaneously:
drift in the applied field, diffusion due to the nonuniform distribution of
the created carriers, and recombination as the excess carriers relax back to
equilibrium. It is then a little more difficult to work out the mobility, but the
basic principles are the same.
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Table 8.4 Semiconductor properties II. Current
carriers

Semiconductor m∗
e/m m∗

h/m Mobility (cm2 V−1 s−1)

μe μh

Group IV
C 0.2 0.25 1800 1400
Si 0.58 1.06 1450 500
Ge 0.35 0.56 3800 1820
SiC 300 50

Group III–V
Al N 0.33
Al P 80
Al As 1200 420
Al Sb 0.09 0.4 200 550
Ga N 0.22 1350 13
Ga P 0.35 0.5 300 150
Ga As 0.068 0.5 8800 400
Ga Sb 0.050 0.23 4000 400
In N 0.11
In P 0.067 2.0 4600 150
In As 0.022 1.2 33 000 460
In Sb 0.014 0.4 78 000 750

Group II–VI
Zn O 0.38 1.5 180
Zn S 180 5
Zn Se 540 28
Zn Te 340 100
Cd O 0.10 120
Cd S 0.165 0.8 400 50
Cd Se 0.13 1.0 450
Cd Te 0.14 0.35 1200 50

A less direct way of determining the mobility is to measure the conductivity
and use the relationship

μ = σ/Ne. (8.58)

A method often used in practice is the so-called ‘four-point probe’ arrangement
shown in Fig. 8.14. The current is passed from contact 1 to 4, and the voltage
drop is measured with a voltmeter of very high impedance between points 2
and 3. Since the current flow between the probes is not laminar, some further
calculations must be performed. For equally spaced probes, d apart, on a
semiconductor of much greater thickness than d , the relationship obtained is

σ = I/2πV d . (8.59)Mobility can be calculated from
this equation if we know the carrier
concentration.

It is important to realize that in some applications mobility is a function of
field. Since practically everything obeys Ohm’s law at low enough fields we
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Current
leads

Voltmeter
leads

Probe holder

Semiconductor sample1 2 3 4

Table

Fig. 8.14
The four-point probe. The probes are
sharply pointed and held rigidly in a
holder which can be pressed with a
known force on to the semiconductor.
A typical spacing is 1 mm between
probes.

may define the low field mobility as a constant. For high fields the differential
mobility

μdiff = dvD

dE
(8.60)

is usually the important quantity in device applications.

8.10.2 Hall coefficient

For this measurement four contacts have to be made so as to measure the voltage
at right angles to the current flow. The basic measurement was described in
Chapter 1. However, geometrical factors also come into this. If the distance
between voltage probes is greater than that between the current probes the

The Hall coefficient [eqn (1.20)]
is a measure of the charge density,
and hence it can be used to relate
conductivity to mobility.

Hall voltage is reduced. Again, this reduction factor is calculable by detailed
consideration of the patterns of current flow.

8.10.3 Effective mass

The standard method of measuring effective mass uses the phenomenon of
cyclotron resonance absorption discussed in Chapter 1. It is essentially an
interaction of an electromagnetic wave with charge carriers, which leads to an
absorption of the wave when the magnetic field causes the electron to vibrate
at the same frequency as that of the applied electric field. For the resonant
absorption to be noticeable the electron must travel an appreciable part of the
period without collisions; thus a high-frequency electric field, a high-intensity
magnetic field, and low temperatures are used.

In the apparatus for a microwave measurement, shown diagrammatically
in Fig. 8.15, the sample is enclosed in a waveguide in a Dewar flask filled
with liquid helium, which is placed between the poles of a large electromagnet.

These measurements are comm-
only made in the microwave
region (1010 Hz) at liquid helium
temperature (about 4 K) or in the
infrared (about 1013 Hz) at liquid
nitrogen temperature (77 K).

The microwave signal is fed in through a circulator.∗ Thus the signal entering ∗ The circulator has the follow-
ing magical properties: a signal fed into
arm (1) goes out entirely by arm (2)
and a signal fed into arm (2) leaves the
circulator by arm (3).

arm (2) is reflected by the reflecting plate at the end of the waveguide having
passed through the semiconductor in each direction and ends up in the receiver
connected to arm (3). Employing a wave of fixed frequency and a variable
magnetic field; the effective mass is given [eqn (1.69)] by

m∗ = eB/ωc, (8.61)

There will generally be several absorption peaks, corresponding to the various

B is the magnetic field corres-
ponding to an absorption of signal.

holes and electrons present. The experimentally obtained absorption curve for
germanium is shown in Fig. 8.16 for a certain orientation between the magnetic
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Fig. 8.15
Schematic representation of the
cyclotron resonance experiment.
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Fig. 8.16
Result of a cyclotron resonance
experiment for germanium.
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field and the crystal axes. As may be seen, there are two types of holes, light
and heavy. A third resonance peak for the holes in the split-off band is missing
because there are hardly any holes so much below the band edge. The two
resonance peaks for electrons indicate that something sinister is going on in the
conduction band as well. As a matter of fact, these measurements, repeated in
various directions, are just the tools for unravelling what the real E−k curve
looks like. In addition, from the amplitude and width of the peaks, information
about the density and collision times of the various carriers can be obtained
(see example 8.19).

8.10.4 Energy gap

A simple way to measure the energy gap between the valence and conduction
bands is to see how the conductivity varies with temperature. For any
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logeσ
Intrinsic
region

Extrinsic
region

l/T

Fig. 8.17
Typical log conductivity–reciprocal
temperature curve for an extrinsic
semiconductor.

semiconductor the conductivity is given by

σ = (Neμe + Nhμh)e, (8.62)

which is the same as eqn (8.45). For an intrinsic material, we have from
eqn (8.46)

Ne = Nh = Ni = constant × T 3/2 exp

(−Eg

2kT

)
. (8.63)

Combining eqn (8.62) with eqn (8.63) we get We shall ignore the T 3/2 variation,
which will almost always be
negligible compared with the
exponential temperature variation.
Hence a plot of loge σ versus 1/T
will have a slope of −Eg/2k,
which gives us Eg. Also in
eqn (8.64) we have ignored the
variation of Eg with temperature.

σ = constant × e(μe + μh)T
3/2 exp

(
− Eg

2kT

)

= σ0 exp

(
− Eg

2kT

)
. (8.64)

Let us now consider what happens with an impurity semiconductor. We have
discussed the variation of the Fermi level with temperature and concluded that
at high temperatures semiconductors are intrinsic in behaviour, and at low
temperatures they are pseudo-intrinsic with an energy gap equal to the gap
between the impurity level and the band edge. Thus, we would expect two
definite straight-line regions with greatly different slopes on the plot of loge σ

against 1/T , as illustrated in Fig. 8.17. In the region between these slopes the
temperature is high enough to ionize the donors fully but not high enough to
ionize an appreciable number of electrons from the host lattice. Hence, in this
middle temperature range the carrier density will not be greatly influenced by
temperature, and the variations in mobility and the T 3/2 factor that we neglected
will determine the shape of the curve.

An even simpler method of measuring the energy gap is to study optical
transmission. The light is shone through a thin slice of semiconductor
[Fig. 8.18(a)] and the amount of transmission is plotted as a function of
wavelength. If the wavelength is sufficiently small (i.e. the frequency is
sufficiently large), the incident photons have enough energy to promote
electrons from the valence into the conduction band. Most of the photons
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Fig. 8.18
(a) General arrangement of an optical
transmission measurement and the
result for (b) GaAs and (c) Si.
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Fig. 8.19
Photon absorption by (a) a direct and
(b) an indirect-gap semiconductor.
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are then absorbed, and the transmission is close to zero. As the wavelength
increases, there will be a particular value (λ = c/f = hc/Eg) when band-to-
band transitions are no longer possible. The absorption then suddenly declines,
and correspondingly, transmission sharply increases as shown in Fig. 8.18(b)
for a thin GaAs sample. The point where the sudden rise starts may be estimated
from the figure as about 880 nm, which corresponds to an energy gap of 1.41 eV,
which is just about right. Fig. 8.18(b) is typical for the so-called direct-gap
semiconductors which have an E − k energy band structure [illustrated in
Fig. 8.11 and again in Fig. 8.19(a)] where the maximum of the valence band is
at the same k value as the minimum of the conduction band.There are quite a number of direct-

gap semiconductors. In fact, most
of the III–V and II–VI compounds
belong to that family.

Silicon and germanium are indirect-gap semiconductors as shown in
Fig. 8.10 and also in Fig. 8.19(b). The measured transmission as a function
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of wavelength for a thin Si sample is plotted in Fig. 8.18(c). The transmission
may be seen to vary much more gradually with the wavelength.

How does an electron make a transition when excited by a photon? We have
not yet studied this problem in any detail. All I have said so far is that if an
electron receives the appropriate amount of energy, it can be excited to a state
of higher energy. This is not true in general because, as in macroscopic collision
processes, not only energy but momentum, as well, should be conserved.

There is no way out now. If we wish to explain the excitation of electrons
by light in an indirect-gap semiconductor, as shown in Fig. 8.19(b), we have
to introduce phonons and have to consider the momentum of our quantized
particles.

Phonons are the quantum-mechanical equivalents of lattice vibrations. For
a wave of frequency ω the energy of the phonon is h̄ω, analogous to the energy
of a photon. What can we say about momentum? In Chapter 3 we talked about
the momentum operator, and subsequently we showed that the energy of a free
electron is equal to E = h̄2k2/2m, where k comes from the solution of the
wave equation. It is the equivalent of the wavenumber of classical waves.

The momentum of a free electron is h̄k. When an electron is in a lattice,
its energy and momentum are no longer related to each other by the simple
quadratic expression. The relationship is then given by the E−k curve, but
the momentum is still h̄k. The momenta of photons and phonons are given
again by h̄k, but now k = ω/v, where v is the velocity of the wave. For an
electromagnetic wave it is v = c = 3 × 108 m s−1. The velocity of a lattice
wave, which may also be called an acoustic wave or, more commonly, a sound
wave, is smaller by four or five orders of magnitude. Hence, for the same
frequency the momentum of a phonon is much higher than that of a photon.

Let us next do a simple calculation for the momentum of an optical wave.
With a wavelength of λ = 1 μm, the corresponding frequency is 3 × 1014 Hz,
the energy is 1.24 eV, and kphoton = 6.28 × 106 m−1. In our simple models of It may be seen that the energy of the

photon is comparable with the gap
energies of semiconductors, but its
k value is relatively small.

Chapter 7 the zone boundary came to π/a. With a = 0.3 nm, this means that
the range of the electronic value of k extends from k = 0 to k = 1010 m−1. On
this scale kphoton is at the origin to a very good approximation. Hence, when
we talk about electron excitation in a direct-gap semiconductor, we can regard
the transition as practically vertical. The picture of a two-particle interaction is
permissible: a photon gives all its energy to an electron.

In order to excite an electron in an indirect-gap semiconductor, the photon
still has enough energy, but its momentum is insufficient. It needs the good
services of a third type of particle, which can provide the missing momentum.
These particles are phonons, which are always present owing to the finite
temperature of the solid. They can provide high enough momentum to satisfy
momentum conservation. Nevertheless, this is a three-particle interaction
between an electron, a photon, and a phonon, which is much less likely than a
two-particle interaction. Hence, as the wavelength decreases, the transmission
will not suddenly increase as in Fig. 8.18(b). It will instead gently rise and
reach saturation when the frequency is large enough [fv in Fig. 8.19(b)] to
affect direct transitions between the valence and conduction bands. Whether
or not a material is a direct-gap material is of increasing importance in the
development of optical semiconductor devices—semiconductor lasers are all
direct-gap materials.

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


148 Semiconductors

Fig. 8.20
(a) Photoconduction experiment in a
semiconductor. (b) When the light is
switched off the current decays to its
dark current value.
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8.10.5 Carrier lifetime

We are usually interested in minority carrier lifetime. The reason is simply that,
owing to injection or optical generation, the minority carrier density may be
considerably above the thermal equilibrium value, whereas the change in the
density of majority carriers is generally insignificant. Consider, for example,
silicon with 1022 fully ionized impurities per cubic metre. Then, asNi for silicon
is about 1016 m−3 at room temperature [eqn (8.63)], Nh will be about 1010 m−3.
Now suppose that in addition 1015 electron–hole pairs per cubic metre are
created by input light. The hole density in the silicon will then increase by a
huge factor, 105, but the change in electron density will be an imperceptible
10−5%. Thus, to ‘see’ the change of hole current is relatively simple; the only
trick is to make a junction that lets through the holes but restricts the electron
flow to a low value. (This again is something we shall discuss later.) Thus, the
current flowing in the circuit of Fig. 8.20(a) consists mainly of holes created
by the input light. If the light is switched off at t = t1, the current (and so
the voltage) across the resistance R declines exponentially as exp(−t/τp). By
measuring the decay of the current [Fig. 8.20(b)] τp can be determined. How
does the exponential decay come about? The differential equation can be easily
derived (see example 8.17) on the basis of the physical picture developed in
Section 8.5. The rate of change of carriers may always be written as the rate of
creation minus the rate of recombination.

τp is the lifetime of the holes.

8.11 Preparation of pure and controlled-impurity
single-crystal semiconductors

8.11.1 Crystal growth from the melt

This is the simplest way of preparing a single crystal. The material is purified
by chemical means, perhaps to an impurity concentration of a few parts per
million, then melted in a crucible of the shape shown in Fig. 8.21. The crucible
is slowly cooled down. As the pointed end tends to cool slightly faster than the
bulk of the material, the crystal ‘seeds’ at the bottom, then grows through the
melt. If conditions are well controlled, a single crystal growth is obtained. It
is found that the impurity concentration is no longer constant throughout the
crystal, but there is a definite concentration gradient, usually with the purest
material at the bottom.

Molten
semiconductor

Furnace walls

Fig. 8.21
A form of crucible for melt-grown
single crystals. To understand the reason for this we have to consider the metallurgical phase

diagram for the semiconductor and the impurity. You have probably come
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Fig. 8.22
Illustration of change of composition
on freezing.

across the phase diagram for copper and zinc, stretching from 100% copper,
0% zinc to 0% copper, 100% zinc, with brasses in the middle, and curves
representing liquidus and solidus lines, with temperature as the ordinate. We
do not need to consider such a range of composition, since we are considering
only a minute amount of impurity in silicon. We need only look at the region
close to pure Si, where there will be no complications of eutectics, but only
the liquidus and solidus lines, shown diagrammatically in Fig. 8.22. The
temperature separations of these lines will be only a few degrees.

Suppose there is initially an impurity contentCa (Fig. 8.22). As the melt cools
down it stays liquid until it reaches the temperature Ta . At this temperature there
can exist liquid of composition Ca and solid of composition Cb. Solid of the
latter composition is the first to crystallize out. As this is purer material and
becomes lost to the rest of the melt once it solidifies, the remainder has a higher
impurity concentration, say Cc. Thus, no more solidification occurs until the
temperature Tc is reached, when more solid impurity concentration Cd comes The impurity concentration of the

solid, still starting at Cb smoothly
increases up the crystal.

out. And so it goes on. Of course, if the cooling is slow, this is a continuous
process.

It is usual to describe this process in terms of the distribution coefficient
k, defined as the concentration of impurity in the solid phase divided by the
concentration in the liquid phase, both measured close to the phase boundary.
For the case of Fig. 8.22 If it is assumed that k does not

change during solidification, it
is a simple matter to find the
impurity concentration gradient of
the crystal.

k = Cb/Ca . (8.65)

In the early days of microelectronics the crystal rods had a diameter of 1–2 cm,
as shown in Fig. 8.21. Typical Si chips were 6 mm square. This size persisted
for several years but gradually increased so that by the 21st century the rods
were several centimetres in diameter. Now, in 2009, the diameter of a Si slice
has gone up to about 30 cm so that the melt furnace and crucible are formidable
and expensive capital items in the production process.

8.11.2 Zone refining

The different concentrations of impurity in the solid and liquid phase can be
exploited in a slightly different way. We start with a fairly uniform crystal, melt
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Fig. 8.23
Zone refining. The molten zone
moving through the crystal sweeps the
impurities to the far end.
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a slice of it, and arrange for the molten zone to travel along the crystal length.
This can be done by putting it in a refractory boat and dragging it slowly through
a furnace, as shown in Fig. 8.23. At any point, the solid separating out at the
back of the zone will be k times as impure as the melted material which, as
k < 1, is an improvement. By a fairly simple piece of algebra it can be shown
that the impurity concentration in the solid, Cs(x), after the zone has passed
down the crystal (of length l ) once is

Cs(x) = C0{1 − (1 − k) exp(−kx/z)}, (8.66)

where C0 is the initial concentration and z is the length of the molten zone.

Since k is typically 0.1, it is
possible to drive most of the
impurity to a small volume at the
far end with relatively few passes. Clearly, at the end of the crystal that is melted first, the value of impurity

concentration will be
Cs(0) = knC0 (8.67)

if this process is repeated n times.
This very simple idea is the basis of the great success of semiconductor

engineering. As we have said before impurities can be reduced to few parts in
1010, and then they are usually limited by impurities picked up from reactions
with the boat.

Rotating
chuck

Heating coil

Floating zone

Silica envelope
containing inert
atmosphere

Crystal

Fig. 8.24
Floating zone refining.

8.11.3 Floating zone purification

This latter problem showed up rather strongly when the semiconductor industry
went over from germanium (melting point 937 ◦C) to silicon (melting point
1958 ◦C). The solution was the floating zone method, which dispensed with the
boat altogether. In this method the crystal is held vertically in a rotating chuck
(Fig. 8.24). It is surrounded at a reasonable distance by a cool silica envelope,
so that it can be kept in an inert atmosphere, then outside this is a single-turn coil
of water-cooled copper tubing. A large high-frequency current (several MHz) is
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Silicon substrates

HCl

Heating coil

Gas flow

SiCl4+H2
Fig. 8.25
Vapour phase epitaxy. The Si forms
on the single crystal substrates at a
temperature of about 1200◦C in the
furnace.

passed through the coil, and the silicon crystal is heated to melting point by the
eddy currents induced in it. The coil is slowly moved up the crystal so that the
molten zone passes along its length. This technique can be used only for fairly
small crystals because the weight has to be supported by the surface tension of
the molten zone.

8.11.4 Epitaxial growth

The process of growing and refining single crystals made possible the advent
of the transistor in the 1950s. The next stage has been the planar technique,
starting in about 1960, that have led to the development of integrated circuits
to be discussed in the next chapter. I shall just describe here the epitaxial
growth method of material preparation, which is eminently compatible with
the manufacture of integrated circuits.

‘Epitaxial’ is derived from a Greek word meaning ‘arranged upon’.∗ There

∗ My friends who speak ancient Greek
tell me that epitactic should be the correct
adjective. Unfortunately, epitaxial has
gained such a wide acceptance among
technologists having no Greek-speaking
friends that we have no alternative but to
follow suit.are several ways in which such growth can be carried out. To deposit silicon

epitaxially from the vapour phase, the arrangement of Fig. 8.25 can be used.
Wafers of single-crystal silicon are contained in a tube furnace at (typically)
1250 ◦C. Silicon tetrachloride vapour in a stream of hydrogen is passed through
the furnace and the chemical reaction

SiCl4 + 2H2 � Si + 4HCl (8.68)

takes place. The Si is deposited on the silicon wafers as a single crystal
layer following the crystal arrangement of the substrate. Sometimes the silane
reaction

SiH4 � Si + 2H2 (8.69)

is preferred, since it gives no corrosive products.
The epitaxial layer can be made very pure by controlling the purity of the

chemicals; or more usefully it can be deliberately doped to make it n- or p-type
by bubbling the hydrogen through a weak solution of (for example) phosphorus
trichloride or boron trichloride, respectively, before it enters the epitaxy furnace.
In this way epitaxial layers of about 2–20 μm thick can be grown to a known
dimension and a resistivity that is controllable to within 5% from batch to
batch.

Liquid Phase Epitaxy (LPE) has also been used, mainly with compound
semiconductors. The substrate crystal is held above the melt on a quartz
plate and dipped into the molten semiconductor (Fig. 8.26). By accurately
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Fig. 8.26
Liquid phase epitaxy. The
semiconductor slice is held on the
plate by a quartz spring clip and
lowered into the molten
semiconductor alley. By correct
cooling procedures the pure
semiconductor is encouraged to
precipitate onto the surface of the
slice.
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Quartz holder.
Semiconductor seed
slice is held on to quartz
plate by a quartz spring

SiO2 tube containing
inert gas flow

Crucible
containing
semiconductor
melt

controlling the cooling rate a single-crystal layer can be grown epitaxially on
the crystal.

In recent years liquid phase epitaxy has been the workhorse in growing
semiconductors for lasers (semiconductor lasers will be discussed in
Section 12.7). It is simple and quite fast, and it coped heroically with the
problem of putting upon each other semiconductors of differing bandgaps when
there was no alternative, but it cannot really produce the sharply defined layers
needed for the latest devices. Some new techniques were bound to come.
They are represented by Molecular Beam Epitaxy (MBE), Metal–Organic
Chemical Vapour Deposition (MOCVD), Metal-Organic Vapour Phase Epitaxy
(MOVPE), and Hydride Vapour Phase Epitaxy (HVPE).

8.11.5 Molecular beam epitaxy

This is probably the best and most versatile method. Each material (various
semiconductors which make up the desired compound plus the dopants) sits in
a little box of its own in which it is heated by an oven to a temperature usually
above its melting point, all in ultra-high vacuum. The atoms evaporated from
the surface of the heated material are ready to move to the substrate, provided
they can get out of the box, that is the shutter is open. The duration for which
each shutter is open and the temperature of the oven will then determine the flux
of each element toward the substrate, and thus the composition of the growth
material. The growth can be monitored by electron scattering from the surface.

Altogether this is a very precise method capable of excellent composition
control, once all the sources have been experimentally calibrated. It was used
to explore ternary and quaternary compounds such as GaAlAs but gave way to
cheaper liquid or vapour phase epitaxy once these techniques were established.
A further use has been for compounds such as many of the II–VIs, for example
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ZnS, ZnSe and CdS where it proved difficult to get both n and p types,
usually p was the stumbling block. Whilst the p type impurities could be
established in the crystal lattice, the process of chemical equilibrium on the
heated substrate, essential for a good crystalline quality caused the hole centres
to be neutralized by electrons. MBE can avoid thermodynamic equilibrium and
maintain the p centres active, provided temperature and the ambient atmosphere
are controlled.

Growing InGaN has been proved successful too after overcoming the
difficulty of a nitrogen source. Initially NH3 was used, but the decomposition
is only moderately efficient at temperatures below 800◦C, so copious streams
of NH3 are needed in what is ideally a high vacuum system. Nitrogen plasma
sources have evolved based on either an RF discharge at 13.56 MHz or an
electron cyclotron resonance breakdown at 2.45 GHz. This allows higher
quality growth at about 1 μm h−1. MOCVD is preferred for commercial
production, but MBE has produced higher quality with GaN, for example an
electron mobility of 1200 cm2 V−1 s−1 has been reported for an epilayer grown
by MBE on a MOCVD template. The usually quoted mobility for ‘typical’
GaN is about half this. The combined use of two techniques to produce better
material properties is perhaps the way ahead for InGaN.

8.11.6 Metal–organic chemical vapour deposition

This process is more suited to be adopted by manufacturers. As the name
implies, it is a chemical process. The required elements are introduced into
the growth tube as compounds bound to organic substances, and they are then
chemically released to be deposited upon the substrate. One of the advantages
of the technique is that the otherwise poisonous gases are relatively harmless in
organic compounds. Another advantage is that the reaction can take place over
substrates that have a large area and, in addition, the process is quite fast. Its
disadvantage is that it is done at about atmospheric pressure which is in general
detrimental to accurate deposition and, among others, it prevents the use of an
electron beam to monitor thickness.

What was largely an effort to pacify safety officers and stop the use of large
quantities of arsine and phosphine, came into its own with the advent of nitrides.
The nitrogen source dimethylhydrazine was used, but it was found that using
a similar r.f. discharge source to that used in MBE was preferable. In 1992,
several laboratories started work on dilute N additions to semiconductors such
as GaAs, InAs and GaP.

Initially the fact that N added to GaAs reduced the bandgap, although GaN
has a much wider gap surprised researchers, but soon the large bowing of
the conduction band became well known. A large number of long wavelength
devices have been made including lasers in the 1.3 μm range (GaInNAs) and
solar cells. In 2002 a 10 Gbit s−1 MOVPE grown Vertical Cavity Surface
Emitting Lasers (see Section 12.7.3) went onto the market. This work has been
done in parallel with MBE and MOCVD usually in the same labs, the former
is for research and quality, the latter is preferred for production, especially
multilayered structures.

The great success of this technique in the past decade has been in the
difficult area of producing reasonable quality InGaN for LEDs. There are no
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nitride substrate crystals, so growth has usually been on sapphire (Al2O3). The
reactants are trimethyl gallium and trimethyl indium and ammonia (NH3) as
a source of nitrogen. The two flow MOCVD method used at Nichia Chemical
Industries first heats the sapphire substrate to 1050◦C in a stream of H2. Then the
temperature is lowered to 510◦C to grow a buffer layer of GaN approximately
30 nm thick. Then the main growth of GaN film of approximately 2 μm at a
temperature of 1020◦C takes about 30 min. At a reduced temperature of about
800◦C the InGaN active layer is grown 0.3 μm in about 60 min. The active layer
has a pn detailed structure. InGaN is naturally n-type but the conductivity can be
controlled by silicon impurity via a stream of silane (SiH4) in the reactant gas.
Then there is a very thin layer of InGaN with the In content controlled so that
band edge recombination gives the required LED colour. Finally the p layer,
which took a while to design. It uses Mg impurity, deposited via a metal-organic
compound called bis-cyclopentadienyl magnesium, and has to be followed by
an anneal in nitrogen to activate the impurity. The resulting semiconductor slice
is riddled with threading dislocations originating at the lattice mismatch with
sapphire, typically about 1010 cm−2. However, once it is metal contacted and
cleaved or cut into diodes usually just under 1 mm2 in area, the LEDs work
well with quantum efficiency of 10–50%.

8.11.7 Hydride vapour phase epitaxy (HVPE) for
nitride devices

The HVPE technique has attracted great interest because it can produce thick
layers at high growth rates and comparatively low cost. The basic reactants are
obtained from the following chemical reactions, where the bracketed (g), (l)
and (s) refer to gas, liquid and solid phases, respectively.

2Ga(l) + 2HCl(g) = 2Ga Cl(g) + H2(g)

and for the higher chloride

GaCl(l) + 2HCl(g) = GaCl3(g) + H2(g).

Further, there are two reaction pathways for GaN deposition.

GaCl(g) + NH3(g) = GaN(s) + HCl(g) + H2(g)

3GaCl(g) + 2NH3(g) = 2GaN(s) + GaCl(g) + 3H2(g).

The snag in this process is that the decomposition of ammonia is only about
3–4% even at a substrate temperature 950◦C, and the excess H2 and HCl are
no help for the reaction and encourage GaN deposition in other parts of the
apparatus. There is also the familiar problem of no GaN substrate, so sapphire
(Al2O3) is usual, but ZnO, SiC and Si have been used frequently. As well
as threading dislocations from the lattice mismatch, there are also stacking
dislocations caused by uneven growth. The main results reported so far have
been with layers 10–100 μm thick grown in a few hours, which have produced
successful LEDs and lasers. Some layers have been grown up to 300 μm. A
major interest is getting free standing GaN films by removing the substrate. One
way of doing this is by focussing a laser through the layer on to the sapphire
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substrate, and by heating it at several points inducing it to crack off. Other
substrates such as Si can be etched away with HCl. SiC can be removed by ion
etching in SF6. A very direct method for any substrate is mechanical abrasion
with diamond impregnated cloths or a slurry.

There is a lot of work going on to improve GaN quality and one possible
success route is by chemical or heat treating free standing slices for further
epitaxy by one of these methods.

Exercises

8.1. Indicate the main steps (and justify the approximations)
used in deriving the position of the Fermi level in intrinsic
semiconductors. How near is it to the middle of the gap in
GaAs at room temperature? The energy gap is 1.4 eV and the
effective masses of electrons and holes are 0.067m0 and 0.65m0

respectively.

8.2. Show that the most probable electron energy in the
conduction band of a semiconductor is 1

2kT above the bottom
of the band (assume that the Fermi level is several kT below
the conduction band). Find the average electron energy.

8.3. In a one-dimensional model of an intrinsic semiconductor
the energy measured from the bottom of the valence band is

E = h̄2k2
1

3m0
+ h̄2(k − k1)

2

m0
.

This is an approximate formula accurate only in the vicinity
of the minimum of the conduction band, which occurs when
k = k1 = π/a, where a the lattice spacing is 0.314 nm. The
Fermi energy is at 2.17 eV.

Calculate (i) the energy gap between the valence and
conduction bands, and (ii) the effective mass of electrons at
the bottom of the conduction band.

Assume that the Fermi level is halfway between the valence
and conduction bands.

8.4. The variation of the resistivity of intrinsic germanium with
temperature is given by the following table:

T (K) 385 455 556 714
ρ(�m) 0.028 0.0061 0.0013 0.000274

It may be assumed, as a rough approximation, that the
hole and electron mobilities both vary as T −3/2, and that the
forbidden energy gap, Eg, is independent of temperature.

(i) Determine the value of Eg.
(ii) At about what wavelength would you expect the onset of

optical absorption?

8.5. What is the qualitative difference between the absorption
spectra of a direct gap and that of an indirect gap
semiconductor?

8.6. Considering that NeNh = N2
i in a given semiconductor,

find the ratio Nh/Ne which yields minimum conductivity.
Assume that collision times for electrons and holes are equal
and that m∗

e/m
∗
h = 0.5.

8.7. In a certain semiconductor the intrinsic carrier density
is Ni. When it is doped with a donor impurity N0, both the
electron and hole densities change. Plot the relative electron
and hole densities Ne/Ni and Nh/Ni as a function of N0/Ni in
the range 0 � N0/Ni � 10. Assume that all donor atoms are
ionized.

8.8. Consider a sample of intrinsic silicon.

(i) Calculate the room temperature resistivity.
(ii) Calculate the resistivity at 350◦C.

(iii) If the resistance of this sample of silicon is R find the
temperature coefficient of resistance at room temperature
defined as (1/R)(dR/dT ). How can this be used to
measure temperature?

Take Eg = 1.1 eV, m∗
e = 0.26m0; m∗

h = 0.39m0,

μe = 0.15 m2 V−1 s−1, μh = 0.05 m2 V−1 s−1

8.9. A sample of gallium arsenide was doped with excess
arsenic to a level calculated to produce a resistivity of 0.05�m.
Owing to the presence of an unknown acceptor impurity
the actual resistivity was 0.06�m, the sample remaining
n-type. What were the concentrations of donors and acceptors
present?

Take μe = 0.85 m2 V−1 s−1 and assume that all impurity
atoms are ionized.

8.10. Silicon is to be doped with aluminium to produce p-type
silicon with resistivity 10�m. By assuming that all aluminium
atoms are ionized and taking the mobility of a hole in silicon
to be 0.05 m2 V−1 s−1 find the density of aluminium.

8.11. Estimate what proportion of the aluminium is actually
ionized in exercise 8.10 at room temperature. The acceptor
level for aluminium is 0.057 eV above the valence band.
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156 Semiconductors

8.12. A sample of silicon is doped with indium for which
the electron acceptor level is 0.16 eV above the top of the
valence band.

(i) What impurity density would cause the Fermi level to
coincide with the impurity level at 300 K?

(ii) What fraction of the acceptor levels is then filled?
(iii) What are the majority and minority carrier

concentrations?

Use data from Exercise 8.8.

8.13. A certain semiconductor is doped with acceptor type
impurities of density NA which have an impurity level at
EA = Eg/5. At the temperature of interest Eg = 20kT and
EF = 5kT . The effective masses of electrons and holes are
m∗

e = 0.12m0 and m∗
h = m0. For NA = 1023 m−3 find

(i) the ionized acceptor density,
(ii) the ratio of electron density to hole density,

(iii) the hole density,
(iv) the electron density,
(v) the temperature,

(vi) the gap energy.

8.14. Show that in the low-temperature region the electron
density in an n-type material varies as

Ne = N1/2
c N

1/2
D exp[−(Eg − ED)/2kT ]

[Hint: Assume that Ne = N+
D and that the donors are only

lightly ionized in that temperature range, i.e. EF > ED.]

8.15. The Bohr radius for a hydrogen atom is given by
eqn (4.24). On the basis of the model presented in Section 8.3
determine for silicon the radius of an impurity electron’s orbit.

8.16. The conductivity of an n-type semiconductor is σ at an
absolute temperature T1. It turns out that at this temperature the
contributions of impurity scattering and lattice scattering are
equal. Assuming that in the range T1 to 2T1 the electron density
increases quadratically with absolute temperature, determine
the ratio σ(2T1)/σ (T1).

8.17. The rate of recombination (equal to the rate of
generation) of carriers in an extrinsic semiconductor is given by

eqn (8.50). If the minority carrier concentration in an n-type
semiconductor is above the equilibrium value by an amount
(δNh)0 at t = 0, show that this extra density will reduce to
zero according to the relationship,

δNh = (δNh)0 exp(−t/τp),

where

τp = 1

αNe
.

[Hint: The rate of recombination is proportional to the actual
density of carriers, while the rate of generation remains
constant.]

8.18. Derive the continuity equation for minority carriers in
an n-type semiconductor.
[Hint: Take account of recombination of excess holes by
introducing the lifetime, τp.]

8.19. Figure 8.16 shows the result of a cyclotron resonance
experiment with Ge. Microwaves of frequency 24 000 MHz
were transmitted through a slice of Ge and the absorption was
measured as a function of a steady magnetic field applied along
a particular crystalline axis of the single-crystal specimen. The
ordinate is a linear scale of power absorbed in the specimen.
The total power absorbed is always a very small fraction of the
incident power.

(i) How many distinct types of charge carriers do there appear
to be in Ge from this data?

(ii) How many types of charge carriers are really there? How
would you define whether they are ‘real’ charge carriers
or not?

(iii) What are the effective masses for this particular crystal
direction? Can this effective mass be directly interpreted
for electrons? For holes?

(iv) If the figure were not labelled would you be able to tell
which peaks referred to electrons?

(v) Estimate the collision times of the holes (Hint: Use
eqn (1.61)).

(vi) Estimate the relative number density of the holes.
(vii) In Section 8.8 we talked about three different types of

holes. Why are there only two resonance peaks for holes?
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Principles of semiconductor
devices 9

Les mystères partout coulent comme les sèves,
Baudelaire Les Sept Vieillards

This thing with knobs and a pretty light.
A. Wesker Chips with everything

9.1 Introduction

You have bravely endured lengthy discussions on rather abstract and
occasionally nebulous concepts in the hope that something more relevant to
the practice of engineering will emerge. Well, here we are; at last we are going
to discuss various semiconductor devices. It is impossible to include all of them,
for there are so many nowadays. But if you follow carefully (and if everything
we have discussed so far is at your fingertips) you will stand a good chance
of understanding the operation of all existing devices and—I would add—you
should be in a very good position to understand the operation of semiconductor
devices to come in the near future. This is because human ingenuity has rather
narrow limits. Hardly anyone ever produces a new idea. It is always some
combination of old ideas that leads to reward. Revolutions are few and far
between. It is steady progress that counts.

9.2 The p–n junction in equilibrium

Not unexpectedly, when we want to produce a device, we have to put things
together. This is how we get the simplest semiconductor device the p–n junction,
which consists of a p- and an n-type material in contact [Fig. 9.1(a)]. Let us
imagine now that we literally put the two pieces together.∗ What happens when ∗ This is not how junctions are made.

they come into contact? Remember, in the n-type material there are lots of
electrons, and holes abound in the p-type material. At the moment of contact
the electrons will rush over into the p-type material and the holes into the n-type
material. The reason is, of course, diffusion: both carriers make an attempt to
occupy uniformly the space available. Some electrons, moving towards the left,
collide head-on with the onrushing holes and recombine, but others will be able
to penetrate farther into the p-type material. How far? Not very far; or, to put
it another way, not many get very far because their efforts are frustrated by the
appearance of an electric field. The electrons leave positively charged donor
atoms behind, and similarly there are negatively charged acceptor atoms left in
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158 Principles of semiconductor devices

Fig. 9.1
The p–n junction. (a) A p- and an
n-type material in contact, (b) the
energy diagrams before contact,
(c) the energy diagrams after
contact, (d) electron and hole
densities.

(a)

(b)

(c)

(d)

p n

Conduction band
donor levels
Fermi level

Valence band
Fermi level
Acceptor
levels

Nh

Nh

Ne

Ne

Log N

Junction
region

the p-type material when the holes move out. This charge imbalance will give
rise to an electric field, which will increase until equilibrium is reached.

Having reached equilibrium, we can now apply a theorem mentioned before
when discussing metal–metal junctions. We said that whenever two or more
materials are in thermal equilibrium, their respective Fermi levels must agree.

The Fermi levels before contact are shown in Fig. 9.1(b) and after contact in
Fig. 9.1(c). Here we assume that some (as yet unspecified) distance away from
the junction, nothing has changed; that is, the energy diagram is unaffected,
apart from a vertical shift needed to make the two Fermi levels coincide. This
is not to diminish the significance of the vertical shift. It means that electrons
sitting at the bottom of the conduction band on the left-hand side have higher
energies than their fellow electrons sitting at the bottom of the conduction band
at the right-hand side. By how much? By exactly the difference between the
energies of the original Fermi levels.

You may complain that by equating the Fermi levels, we have applied here a
very profound and general theorem of statistical thermodynamics, and we have
lost in the process the physical picture. This is unfortunately true, but nothing
stops us returning to the physics. We agreed before that an electric field would

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


The p–n junction in equilibrium 159

arise in the vicinity of the metallurgical junction. Thus, the lower energy of the
electrons on the right-hand side is simply due to the fact that they need to do
some work against the electric field before they can reach the conduction band
on the left-hand side.

What can we say about the transition region? One would expect the electron
and hole densities to change gradually from high to low densities as shown in
Fig. 9.1(d). But what sort of relationship will determine the density at a given
point? And furthermore, what will be the profile of the conduction band in the
transition region? They can all be obtained from Poisson’s equation

d2U

dx2
= 1

ε
(net charge density), (9.1)

where U is the electric potential used in the usual sense.∗ Since the density ∗ We are in a slight difficulty here because
up to now potential meant the potential
energy of the electron, denoted byV . The
relationship between the two quantities
is eU = V , which means that if you
confuse the two things you’ll be wrong
by a factor of 1019.

of mobile carriers depends on the actual variation of potential in the transition
region, this is not an easy differential equation to solve. Fortunately, a simple
approximation may be employed, which leads quickly to the desired result.

As may be seen in Fig. 9.1(d), the density of mobile carriers rapidly decreases
in the transition region. We are, therefore, nearly right if we maintain that
the transition region is completely depleted of mobile carriers. Hence we
may assume the net charge densities are approximately of the form shown
in Fig. 9.2(a). Charge conservation is expressed by the condition

NAxp = NDxn. (9.2)

Poisson’s equation for the region −xp to 0 reduces now to the form

The transition region is often called
the ‘depletion’ region.

−xp and xn are the widths of the
depletion regions in the p- and
n-type materials, respectively.

d2U

dx2
= eNA

ε
. (9.3)

Integrating once, we get

E = −dU

dx
= −eNA

ε
(x + C), (9.4)

C is an integration constant.
According to our model, the depletion region ends at −xp. There is no charge

imbalance to the left of −xp, hence the electric field must be equal to zero at
x = −xp. With this boundary condition eqn (9.4) modifies to

E = eNA

ε
(x + xp). (9.5)

Similar calculation for the n-type region yields

E = eND

ε
(x − xn). (9.6)

The electric field varies linearly in both regions, as may be seen in Fig. 9.2(b).
It takes its maximum value at x = 0 where there is an abrupt change in its
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160 Principles of semiconductor devices

Fig. 9.2
(a) Net charge densities (b) electric
field, (c) potential in the transition
region of a p–n junction.
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eNAxp

2ε

2

–xp xn

U

x

slope. The variation of voltage may then be obtained from

U = −
∫ x

−xp

Edx, (9.7)

leading to the quadratic function plotted in Fig. 9.2(c). The total potential
difference is

U0 = U(xn) − U(−xp) = e(NAx
2
p + NDx

2
n)

2ε
. (9.8)

This is called the ‘built-in’voltage between the p and n regions. A typical figure
for it is 0.3 V.
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The total width of the depletion region may now be worked out with the aid
of equations (9.2) and (9.8), yielding the formula

w = xp + xn =
{

2εU0

e(NA + ND)

}1/2
{(

NA

ND

)1/2

+
(
ND

NA

)1/2
}

. (9.9)

If, say, NA � ND, eqn (9.9) reduces to

w =
(

2εU0

eND

)1/2

, (9.10)

which shows clearly that if the p-region is more highly doped, practically all
of the potential drop is in the n-region. Taking for the donor density ND =
1021 m−3 and the typical figure of 0.3 V for the contact potential, the width of
the transition region comes to about 0.18 μm. Remember this is the value for
an abrupt junction. In practice, the change from acceptor impurities to donor
impurities is gradual, and the transition region is therefore much wider. Atypical
figure is about 1 μm. Thus in a practical case we cannot very much rely on the
formulae derived above, but if we have an idea how the acceptor and donor
concentrations vary, similar equations can be derived.

From our simple model (assuming a depletion region) we obtained a
quadratic dependence of the potential energy in the transition region. More
complicated models give somewhat different dependence, but they all agree
that the variation is monotonic. Our energy diagram is thus as shown in
Fig. 9.3. The energy difference between the

bands on the p- and n-side is eU0.We can describe now the equilibrium situation in yet another way. The
electrons sitting at the bottom of the conduction band at the p-side will roll
down the slope because they lower their energy this way. So there will be a
flow of electrons from left to right, proportional to the density of electrons in
the p-type material:

Ie(left to right) ∼ Nep. (9.11)

The electrons in the n-type material, being the majority carriers, are very
numerous. So, although most of them will be sitting at the bottom of the
conduction band, there will still be a considerable number with sufficient
energies to cross to the p-side. Assuming Boltzmann statistics, this number
is given by

Nen exp

(−eU0

kT

)
. (9.12)

Substituting Nen from eqn (8.17) we get

Nc exp

{−(Eg + eU0 − EF)

kT

}
. (9.13)

eU0

Eg

–xp xn

0

Fig. 9.3
The energy diagram for the
transition region of a p–n junction.
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162 Principles of semiconductor devices

Hence the electron current from right to left is given by

Ie(right to left) ∼ Nc exp

{−(Eg + eU0 − EF)

kT

}
. (9.14)

In equilibrium the current flowing from left to right should equal the current
flowing right to left; that is,

Nep = Nc exp

{−(Eg + eU0 − EF)

kT

}
. (9.15)

Equation (9.15) gives nothing new. If we express the electron density in
the p-type material with the aid of the Fermi level, then we could show from
eqn (9.15) that eU0 should be equal to the difference between the original Fermi
levels, which we already knew. But although eqn (9.15) does not give any new
information, we shall see in a moment that by describing the equilibrium in
terms of currents flowing in opposite directions, the rectifying properties of the
p–n junction can be easily understood.

We could go through the same argument for holes without much difficulty,
provided we can imagine particles rolling uphill, because for holes that is the
way to lower their energy. The equations would look much the same, and I shall
not bother to derive them.

9.3 Rectification

Let us now apply a voltage as shown in Fig. 9.4. Since there are much fewer
carriers in the transition region, we may assume that all the applied voltage
will drop across the transition region. Then, depending only on the polarity, the
potential barrier between the p and n regions will decrease or increase. If the
p-side is made positive the potential barrier is reduced, and we talk of forward
bias. The opposite case is known as reverse bias; the p-side is then negative,
and the potential barrier is increased.

It is fairly obvious qualitatively that the number of electrons flowing from
left to right is not affected in either case. The same number of electrons will still
roll down the hill as in equilibrium. But the flow of electrons from right to left
is seriously affected. For reverse bias it will be reduced and for forward bias
it will significantly increase. So we can see qualitatively that the total current
flowing for a voltage U1 will differ from the current flowing at a voltage −U1.
This is what is meant by rectification.

It is not difficult to derive the mathematical relationships; we have practically
everything ready. The current from left to right is the same; let us denote it by
I0. The current from right to left may be obtained by putting e(U0 −U1) in place
of eU0 in eqn (9.14). [This is because we now want the number of electrons
having energies in excess of e(U0 − U1), etc.] At U1 = 0, this current is equal
to I0 and increases exponentially with U1; that is

Ie(right to left) = I0 exp(eU1/kT ). (9.16)
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p n

V1 + –

(a)

eU0eU1

p n

V1

+–

(b)

eU0

eU1

Fig. 9.4
The energy diagram of a p–n
junction for (a) forward bias and
(b) reverse bias.

Hence the total current Above about 1 volt bias, the final
‘−1’in the rectifier equation can be
neglected.Ie = Ie(right to left) − Ie(left to right) = I0[exp(eU1/kT ) − 1], (9.17)

which is known as the rectifier equation;∗ it is plotted in Fig. 9.5. For negative ∗ Adding the hole current would increase
I0 but the form of the equation would
not change because the same exponential
factor applies to the hole density in the
p-type material.

values of U1, Ie tends to I0, and there is the exponential increase of current
with forward voltage. It is worth noting that in spite of the simple reasoning
this equation is qualitatively true for real diodes.

So, if we plot a graph of log Ie versus applied forward bias voltage, we
get a pretty good straight line for most rectifiers. However there are two
snags:

1. the slope of the line is e/mkT not e/kT , where m is a number usually lying
between 1 and 2;

2. the current intercept, when the graph is extrapolated back to zero voltage,
gives log I0. But this value of I0 is several orders of magnitude less than the
value of I0 obtained by measuring the reverse current (Fig. 9.5). Explaining
this away is beyond the scope of this course; it is necessary to take into
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Fig. 9.5
The current as a function of applied
voltage for a p–n junction.

I

I0 U1

account recombination and generation of carriers in the depletion region.
A good account is given in the book by J.P. McKelvey cited in the further
reading list.

9.4 Injection

In thermal equilibrium the number of electrons moving towards the left is equal
to the number of electrons moving towards the right. However, when a forward
bias is applied, the number of electrons poised to move left is increased by
a factor, exp eU1/kT . This is quite large; for an applied voltage of 0.1 V the
exponential factor is about 55 at room temperature. Thus the number of electrons
appearing at the boundary of the p-region is 55 times higher than the equilibrium
concentration of electrons there.

What happens to these electrons? When they move into the p-region
they become minority carriers, rather like immigrants travelling to a new
country suddenly become foreigners. But, instead of mere political friction,
the electrons’ ultimate fate is annihilation. They are slain by heroic holes, who
themselves perish in the battle.∗ Naturally, to annihilate all the immigrants, time∗ I do not think that the pacifist

interpretation of the recombination of
electrons and holes (they get married, and
live happily ever after) can bear closer
scrutiny. When an electron and a hole
recombine, they disappear from the stage
and that’s that. I would however, be
willing to accept the above interpretation
for excitons which are electron–hole
pairs bound together by Coulomb forces
but even then one cannot claim that
they lived happily ever after because
the lifetime of excitons is less than
a picosecond, even shorter than the
expected duration of modern marriages.

and space are needed; so some of them get quite far inside foreign territory as
shown in Fig. 9.6, where the density of electrons is plotted as a function of
distance in a p–n junction under forward bias. The electron density declines,
but not very rapidly. Atypical distance is about 1 mm, which is about a thousand
times larger than the width of the transition region.

Let us go back now to the plight of the holes. They are there in the p-type
material to neutralize the negative charge of the acceptor atoms. But how will
space charge neutrality be ensured when electrons are injected? It can be done
in only one way; whenever the electron density is increased, the hole density
must increase as well. And this means that new holes must move in from the
contacts. Thus, as electrons move in from the right, holes must move in from
the left to ensure charge neutrality. Hence the current of electrons and holes
will be made up of six constituents, as shown in Fig. 9.7:

(i) The electron current flowing in the n-type material and providing the
electrons to be injected into the p-type material. It is constant in the
n-region.

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


Injection 165

p n

x
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Fig. 9.6
The electron distribution in a
forward biased p–n junction.

p n

Total current

(iii)

(v) (ii)

(iv)

(vi)

(i) Fig. 9.7
The current distribution in a
forward biased p–n junction.

(ii) A declining current of injected electrons in the p-region. The current
declines because the number of electrons becomes less and less as they
recombine with the holes.

(iii) The current of holes in the p-region to provide the holes to be injected into
the n-region. We have not discussed this because the injection of holes is
entirely analogous to the injection of electrons.

(iv) A declining current of injected holes in the n-region. The current declines
because of recombination with electrons.

(v) A declining current of holes in the p-region to compensate for the holes
lost by recombination.

(vi) A declining current of electrons in the n-region to compensate for the
electrons lost by recombination.

Adding up the currents, you can see that the total current is constant, as it
should be.

Let me emphasize again that the current in a p–n junction is quite different
from the currents you have encountered before. When you apply a voltage to
a piece of metal, all that happens is that the electrons, which are already there,
acquire some ordered motion. When a forward bias is applied to a p–n junction
minority carriers get injected into both regions. These minority carriers were
not there originally in such a high density; they came as a consequence of the
applied voltage.

The distinction between ordinary conduction and minority carrier injection
is important. It is the latter which makes transistor action possible.
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166 Principles of semiconductor devices

9.5 Junction capacity

I would like to say a few more words about the reverse biased junction. Its most
interesting property (besides the high resistance) is that the presence of two
layers of space charge in the depletion region makes it look like a capacitor.

We may calculate its capacitance in the following way. We first derive the
relationship between the width of the depletion layer in the n-region and the
voltage in the junction, which may be obtained from equations (9.2) and (9.8).
We get

U0 is the ‘built-in’ voltage.

xn =
{

2εU0NA

eND(ND + NA)

}1/2

. (9.18)

For reverse bias the only difference is that the barrier becomes larger, that
is U0 should be replaced by U0 + U1, yielding

U1 is the applied voltage in the
reverse direction.

xn =
{

2ε(U0 + U1)NA

eND(ND + NA)

}1/2

. (9.19)

The total charge of the donor atoms is

Q = eNDxn =
{

2εe(U0 + U1)
NAND

NA + ND

}1/2

. (9.20)

Now a small increase in voltage will add charges at the boundary—as it
happens in a real capacitance. We may, therefore, define the capacitance of the
junction (per unit area) as

C = ∂Q

∂U1
=
{

εe

2(U0 + U1)

NAND

NA + ND

}1/2

. (9.21)

R1

R (U1) C (U1)

Fig. 9.8
The equivalent circuit of a p–n
junction.
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Fig. 9.9
Capacitance of a commercially
available junction diode as a
function of applied voltage.

We can now assign an equivalent circuit to the junction and attribute a
physical function to the three elements (Fig. 9.8). R1 is simply the ohmic
resistance of the ‘normal’ that is not depleted, semiconductor. R(U1) is the
junction resistance. It is very small in the forward direction (0.1 − 10�
typically) and large in the reverse direction (106 − 108� typically). C(U1)

is the capacitance that varies with applied voltage, given by eqn (9.21). Clearly,
this equation loses validity for strong forward bias because the depletion layer
is then flooded by carriers. This is actually borne out by our equivalent circuit,
which shows that the capacity is shorted-out when R(U1) becomes small. With
a reversed biased diode, C(U1) is easily measured, and can be fitted to an
equation like (9.21) very well. The characteristic of a commercial diode is
plotted in Fig. 9.9. Here C is proportional to (U1 + 0.8)−1/2, whence the
constant 0.8 V may be identified with the ‘built-in’ voltage.

9.6 The transistor

Here we are. We have arrived at last at the transistor, the most famous electronic
device of the century. It was discovered at Bell Telephone Laboratories by
Bardeen, Brattain, and Shockley in 1948. Since then it conquered the world

All three of them received the
Nobel Prize for their invention in
1956. It is interesting to note that
this was one of the few cases
when the Prize was given for the
invention of a device rather than for
a discovery in physics.

many times over. It made possible both the pocket radio and the giant computers,
to mention only two applications. The number of transistors manufactured is
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still growing fast from year to year. The figure for 1967, when we first prepared
these lectures, was a few times 109; that is about one transistor for every man,
woman, and child living on Earth. I do not think anyone knows the number of
transistors produced nowadays. We are rapidly approaching the stage when a
single chip may contain as many transistors as the number of inhabitants of the
Earth.

There is a slight difficulty here because it is no longer clear what we mean
by a transistor. Originally, there was the point-contact transistor, which was
not very reliable, followed then by the junction transistor. Our treatment in this
section applies to the junction transistor, which after a while became known as
the transistor, but sometime later, in view of the appearance of other varieties,
it had to be rechristened. It is now known as the bipolar transistor.

I am afraid the discussion of the transistor will turn out to be an anticlimax.
It will seem to be too simple. If you find it too simple, remember that we have
trodden a long tortuous path to get there. It might be worthwhile to recapitulate
the main hurdles we have scaled:

1. Postulation of Schrödinger’s equation.
2. The solution of Schrödinger’s equation for a rigid, three-dimensional

potential well.
3. Postulation of Pauli’s principle and the introduction of spin.
4. Formulation of free electron theory, where electrons fill up the energy

levels in a potential well up to the Fermi energy.
5. Derivation of the band structure by a combination of physical insight and

Schrödinger’s equation.
6. Introduction of the concept of holes.
7. Demonstration of the fact that electrons at the bottom of the conduction

band (and holes at the top of the valence band) may be regarded as free,
provided that an effective mass is assigned to them.

8. Determination of the Fermi level and carrier densities in extrinsic
semiconductors.

9. The description of a p–n junction in terms of opposing currents.
10. Explanation of minority-carrier injection.

So if you want to go through a logical chain of reasoning and want to explain
the operation of the transistor from first principles, those above are the main
steps in the argument.

Now let us see the transistor itself. It consists of two junctions with one
semiconductor region common to both. This is called the base, and the other
two regions are the emitter and the collector as shown in Fig. 9.10 for a p–n–p
transistor. There are also n–p–n transistors; the ensuing explanation could be
made to apply to them by judicious changing of words.

Consider first the emitter–base p–n junction. It is forward biased (positive on
p-side for those who like mnemonics). This means that large numbers of carriers
flow, holes into the base, electrons into the emitter, Now the holes arriving
into the base region will immediately start the process of recombination with
electrons. But, as explained before, time and space are needed to annihilate
the injected minority-carriers. Hence, for a narrow base region (� 1 mm), the
hole current leaving the base region will be almost identical to the hole current
entering from the emitter. Now what happens to the holes when they arrive to
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168 Principles of semiconductor devices

Fig. 9.10
The p–n–p transistor as an
amplifier.
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the collector region? They see a negative voltage (the base–collector junction
is reverse biased) and carry on happily towards the load. Thus, practically the
same current that left the emitter finds its way to the load.∗

∗ The above argument is not quite correct
because the emitter current is not carried
solely by holes. There is also an electron
flow from the base into the emitter.
However, transistors are designed in such
a way that the conductivity of the base is
well below the conductivity of the emitter
(a typical figure may be a factor of a
hundred); thus the minority-carrier flow
from the base to the emitter is usually
negligible.

So far there is nothing spectacular; the current gain of the device is somewhat
below unity. Why is this an amplifier? It is an amplifier because the voltage gets
amplified by a large factor. This is because the input circuit is a low-impedance
circuit; a low voltage is thus sufficient to cause a certain current. This current
reappears in the high impedance output circuit and is made to flow across a
large load resistance, resulting in a high output voltage. Hence the transistor in
the common base circuit is a voltage amplifier.

We should, however, know a little more about this amplifier. Can we express
its properties in terms of the usual circuit parameters: impedances, current
sources, and voltage sources? How should we attempt the solution of such a
problem? Everything is determined in principle. If the bias voltages are fixed
and an a.c. voltage is applied to the input of the transistor in Fig. 9.10, then
the output current is calculable. Is this enough? Not quite. We have to express
the frequency dependence in the form of rational fractions (this is because
impedances are either proportional or inversely proportional to frequency) and
then an equivalent circuit can be defined. It is a formidable job; it can be done
and it has been done, but, of course, the calculation is far too lengthy to include
here. Although we cannot solve the complete problem, it is quite easy to suggest
an approximate equivalent circuit on the basis of our present knowledge.

Looking in at the terminals A and B of Fig. 9.10, what is the impedance we
see? It comprises three components: the resistance of the emitter, the resistance
of the junction, and the resistance of the base. The emitter is highly doped in a
practical case, and we may therefore neglect its resistance, but the base region
is narrow and of lower conductivity and so we must consider its resistance.
Hence we are left with re (called misleadingly the emitter resistance) and rb

(base resistance), forming the input circuit shown in Fig. 9.11(a).
re is in fact the resistance of the
junction.

What is the resistance of the output circuit? We must be careful here.
The question is how will the a.c. collector current vary as a function of the
a.c. collector voltage? According to our model, the collector current is quite
independent of the collector voltage. It is equal to αie, where ie is the emitter
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CollectorCollector
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Emitter

(a)

(c) (d)

Collector
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αie
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re

rc

αie
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Fig. 9.11
The construction of an equivalent
circuit of a transistor. (a) The
emitter–base junction. (b) In first
approximation the collector current
depends only on the emitter current.
(c) In a more accurate representation
there is a collector resistance rc as
well as the collector circuit. (d) The
complete low-frequency equivalent
circuit.

current, and α is a factor very close to unity. Hence, our first equivalent output
circuit must simply consist of the current generator shown in Fig. 9.11(b). In
practice the impedance turns out to be less than infinite (a few hundred thousand
ohms is a typical figure); so we should modify the equivalent circuit as shown
in Fig. 9.11(c).

Having got the input and output circuits, we can join them together to get
the equivalent circuit of the common base transistor∗ [Fig. 9.11(d)]. ∗ This exceedingly simple construction

cannot be done in general but is
permissible in the present case when
rc � rb.

We have not included any reactances. Can we say anything about them? Yes,
we can. We have already worked out the junction capacity of a reverse biased
junction. That capacity should certainly appear in the output circuit in parallel
with rc. There are also some other reactances as a consequence of the detailed
mechanism of current flow across the transistor. We can get the numerical
values of these reactances if we have the complete solution. But luckily the
most important of these reactances, the so-called diffusion reactance, can be
explained qualitatively without recourse to any mathematics.

Let us look again at the p–n junction of the p–n–p transistor. When a step
voltage is applied in the forward direction, the number of holes able to cross into
the n-region suddenly increases. Thus, in the first moment, when the injected
holes appear just inside the n-region, there is an infinite gradient of hole density,
leading to an infinitely large diffusion current. As the holes diffuse into the
n-region, the gradient decreases, and finally the current settles down to its new
stationary value as shown in Fig. 9.12. But this is exactly the behaviour one
would expect from a capacitance in parallel with a resistance. Thus, when we
wish to represent the variation of emitter current as a function of emitter voltage,
we are entitled to put a capacitance there. This is not a real honest-to-god,
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170 Principles of semiconductor devices

Fig. 9.12
The emitter current as a function of
time when the emitter voltage is
suddenly increased. It looks like the
current response of a parallel
RC circuit.
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Fig. 9.13
A good approximation to the
high-frequency equivalent circuit
of a transistor.
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capacitance; it just looks as if it were a capacitance, but that is all that matters.
When drawing the equivalent circuit, we are interested in appearance only!

Including now both capacitances, we get the equivalent circuit of Fig. 9.13.
We are nearly there. There is one more important effect to consider: the
frequency-dependence of α. It is clear that the collector current is in phase
with the emitter current when the transit time of the carriers across the base
region is negligible, but α becomes complex (and its absolute value decreases)
when this transit time is comparable with the period of the a.c. signal. We cannot
go into the derivation here, but α may be given by the simple formula∗∗ Not to depart from the usual notations,

we are using j here as honest engineers
do, but had we done the analysis with our
chosen exp(−iωt) time dependence, we
would have come up with −i instead of j.

α = α0

1 + j(ω/ωα)
, (9.22)

where ωα is called the alpha cut-off frequency. The corresponding equivalent
circuit is obtained by replacing α in Fig. 9.13 by that given in eqn (9.22). And
that is the end as far as we are concerned. Our final equivalent circuit represents
fairly well the frequency-dependence of a commercially available transistor.

We have seen that the operation of the transistor can be easily understood
by considering the current flow through it. The frequency dependence is
more complicated, but still we have been able to point out how the various
reactances arise.

It has been convenient to describe the common base transistor configuration,
but of course the most commonly used arrangement is the common emitter,
shown in Fig. 9.14(a). Again, most of the current ie from the forward-biased
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Fig. 9.14
The common emitter transistor.
(a) General circuit arrangement,
showing current and voltage
nomenclature. (b) Circuit diagram.
(c) Equivalent circuit of the transistor.

emitter–base junction gets to the collector, so we can write† † The full expression for ie should contain
a term dependent on the emitter-to-
collector voltage. This is usually small.
Look it up in a circuitry book if you are
interested in the finer details.

ic = αie, (9.23)

as before, and

ic = ie − ib = αib

1 − α
= hfeib, (9.24)

where we have introduced a current gain parameter, hfe, which is usually much
greater than unity. This fixes the right-hand side of the equivalent circuit of
Fig. 9.14(c) as a current generator hfe times greater than the input current. The
input side is a resistance, hie, which again includes the series resistance of the
base and emitter contact regions.

Note that the major part of
transistor amplifier design is based
on the simple equivalent circuit of
Fig. 9.14(c). At high frequencies,
of course, the capacitances
discussed have to be added.I have so far talked about the applications of transistors as amplifiers, that is,

analogue devices. Historically, these applications came first because at the time
of the invention of the transistor there was already a mass market in existence
eager to snap up transistor amplifiers—particularly for portable devices. The
real impact of the transistor came, however, not in the entertainment business
but in computers. Admittedly, computers did exist before the advent of the
transistor, but they were bulky, clumsy, and slow. The computers you know
and respect, from giant ones down to pocket calculators, depend on the good
services of transistors. One could easily write a thousand pages about the circuits
used in various computers—the trouble is that by the time the thousandth page
is jotted down, the first one is out of date. The rate of technical change in this
field is simply breathtaking, much higher than ever before in any branch of
technology. Fortunately, the principles are not difficult. For building a logic
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172 Principles of semiconductor devices

circuit all we need is a device with two stable states, and that can be easily
provided by a transistor, for example in a form (Fig. 9.15) quite similar to its
use as an amplifier. When the base current, IB = 0 (we use capital letters to
describe the d.c. current), no collector current flows, Ic = 0, and consequently
UCE = UE. If a base current is impressed upon the circuit, then a collector
current flows, and UCE is close to zero. Hence, we have a ‘high’ and a ‘low’
output voltage which may be identified with a logical ‘1’ or ‘0’ (or the other
way round). I shall not go into any more details, but I would just like to mention
some of the acronyms in present-day use for which transistors are responsible.
They include TTL (transistor–transistor logic), ECL (emitter coupled logic) and
I2L (integrated injection logic).

IB
UCE

UE

Ic

R

Fig. 9.15
A transistor as a logic element.

9.7 Metal–semiconductor junctions

Junctions between metals and semiconductors had been used in radio
engineering for many years before the distinction between p- and n-type
semiconductors was appreciated. Your great-great-grandfathers probably
played about with ‘cat’s whiskers’ in their early ‘crystal sets’, as radios were
then called, stressing the importance of the piece of coal or whatever was used
as the semiconductor detector.

The behaviour of metal–semiconductor junctions is more varied to describe
than that of p–n junctions. We find that there is different behaviour on the one
hand, with p- and n-type semiconductors, and on the other, when the metal
work function is greater or less than that of the semiconductor.

We shall first consider the case of an n-type semiconductor in contact
with a metal, whose work function is greater than that of the semiconductor.
The semiconductor work function (φS in Fig. 9.16) is defined as the energy

Fig. 9.16
Energy diagrams for a junction
between a metal and an n-type
semiconductor (φM > φS), (a) before
contact, (b) after contact the Fermi
levels agree (EFM = EFS).
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difference between an electron at the Fermi energy and the vacuum level. The
fact that there are usually no electrons at the Fermi energy need not bother
us—we do not have to explain definitions. Another measure often used is the
electron affinity, φB.

The band structure of the two substances is shown in Fig. 9.16(a). When
they are joined together, we may apply again our general theorem and make
the Fermi levels equal. Thus, we may start the construction of Fig. 9.16(b)
by drawing a horizontal line for the Fermi energy, and a vertical one for the
junction. We leave the metal side unchanged because we shall assume that
‘band-bending’ cannot occur in a metal.∗ We are really saying here that all the ∗ In a metal the charge inequality is

confined to the surface.potential drop will take place in the semiconductor, which, in view of the much
smaller number of carriers there, is a reasonable assumption.† Away from the † We met a very similar case before when

discussing p–n junctions. If one of the
materials is highly doped, all the potential
drop takes place in the other material.

junction we draw the valence band edge, the conduction band edge, and the
vacuum level in the same position (relative to the Fermi level) as for the bulk
material, in Fig. 9.16(a). These are shown as solid lines. Now with an infinitely
small gap the vacuum levels are equal; thus, we may join them with a dotted line
in Fig. 9.16(b); the conduction and valence band edge must also be continued
parallel to the vacuum level.

What can we say about the charges? We may argue in the same fashion
as for a metal–metal junction. In the first instance, when the metal and the
semiconductor are brought together, the electrons from the conduction band
cross over into the metal in search of lower energy. Hence a certain region in
the vicinity of the junction will be practically depleted of mobile carriers. So we
may talk again about a depletion region and about the accompanying potential
variation, which is incidentally, the same thing as the ‘band-bending’ obtained
from the band picture.

So the two pictures are complementary to a certain extent. In the first one
the ‘band-bending’ is a consequence of the matching of the Fermi levels and
vacuum levels, and the charge imbalance follows from there. In the second
picture electrons leave the semiconductor, causing a charge imbalance and
hence a variation in the potential energy. Whichever way we look at it, the
outcome is a potential barrier between the metal and the semiconductor. Note
that the barrier is higher from the metal side.

In dynamic equilibrium the number of electrons crossing over the barrier
from the metal to the semiconductor is equal to the number crossing over the
barrier from the semiconductor side. We may say that the current I0 flows in
both directions.

Let us apply now a voltage; according to the polarity, the electrons’potential
energy on the semiconductor side will go up or down. For a forward bias
it goes up, which means that we have to draw the band edges higher up.
But the vacuum level at the junction stays where it was. So the effect of
the higher band edges is smaller curvature in the vicinity of the junction
and a reduced potential barrier, as shown in Fig. 9.17. Now all electrons
having energies above φM − φS − eU1 may cross into the metal. By analogy
with the case of the p–n junction it follows that the number of carriers
(capable of crossing from the semiconductor into the metal) has increased
by a factor exp eU1/kT , and hence the current has increased by the same
factor. Since the current from the metal to the semiconductor has not changed,
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Fig. 9.17
The junction of Fig. 9.16 under
forward bias. The potential barrier
for electrons on the semiconductor
side is reduced by eU1.

φM
φM - φS - eU1

the total current is

I = I0[exp(eU1/kT ) − 1]; (9.25)

that is, a junction of this type is a rectifier.
There is one point I want to make concerning the potential barrier in this

junction. One of the electrodes is a metal, and there are charged carriers
in the vicinity of the metal surface. Does this remind you of any physical
configuration we have studied before? Where have we met a potential barrier
and charged carriers giving rise to image charges? In the study of electron
emission in Chapter 6 we came to the conclusion that the image charges lead to
a lowering of the potential barrier, and you may remember that it was called the
Schottky effect. According to the formula we derived there, the reduction was
proportional to (E/ε0)

1/2. Well, the same thing applies here with the difference
that ε0 should be replaced by εrε0, where εr is the relative dielectric constant
of the semiconductor. For silicon, for example, εr = 12, the effect is therefore
smaller. So the Schottky effect is not very large, but it happened to give its name
to these particular junctions. They are usually referred to as Schottky diodes or
Schottky barrier diodes.

Let us now investigate the case when the work function of the metal is
smaller than that of the n-type semiconductor. The situation before and after
contact is illustrated in Fig. 9.18. Now, to achieve equilibrium, electrons had to
move from the metal to the semiconductor, establishing there an accumulation
region. There is no potential barrier now from whichever side we look at the
junction. As a consequence the current flow does not appreciably depend on
the polarity of the voltage. This junction is not a rectifier.

9.8 The role of surface states; real
metal–semiconductor junctions

The theory of metal–semiconductor junctions as presented above is a nice,
logical, consistent theory that follows from the physical picture we have
developed so far. It has, however, one major disadvantage; it is not in agreement
with experimental results, which seem to suggest that all metal–semiconductor
junctions are rectifiers independently of the relative magnitudes of the work
functions. This does not necessarily mean that the theory is wrong. The
discrepancy may be caused by the physical realization of the junction. Instead
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Fig. 9.18
Energy diagrams for a junction
between a metal and an n-type
semiconductor (φM < φS), (a) before
contact, (b) after contact the Fermi
levels agree (EFM = EFS).

of two clean surfaces lining up, there might in practice be some oxide layers,
and the crystal structure might be imperfect. This may be one of the reasons
why ‘real’ junctions behave differently from ‘theoretical’ junctions. The other
reason could be that the theory, as it stands, is inadequate, and to get better
agreement with experiments, we must take into account some hitherto neglected
circumstance.

Have we taken into account anywhere that our solids are of finite
dimensions? Yes, we have; we determine the number of allowed states from the
boundary conditions. True, but that is not the only place where the finiteness of
the sample comes in. Remember, in all our models leading to the band picture
we have taken the crystal as perfectly periodic, and we have taken the potential
as perfectly periodic. This is surely violated at the surface. The last step in the
potential curve should be different from the others, that is, the potential profile
in the solid should rather be chosen in the form displayed in Fig. 9.19. It was
shown some years ago that the assumption of such a surface barrier would lead
to the appearance of some additional discrete energy levels in the forbidden
gap, which are generally referred to as surface states.

Surface

Vacuum

V

Fig. 9.19
The potential energy distribution near
the surface of a crystal.

If we assume a semiconductor is n-type, some of these surface states may
be occupied by electrons that would otherwise be free to roam around. Some
of the donor atoms will therefore have uncompensated positive charges leading
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176 Principles of semiconductor devices

to ‘band-bending’ as shown in Fig. 9.20. Thus, the potential barrier is already
there before we even think of making a metal contact.

What happens when we do make contact between the semiconductor and
the metal? Let us choose the case when the metal has the lower work function,
when according to our previous theory the junction is not rectifying. Then, as
we have agreed before (and it is still valid) electrons must flow from the metal
to the semiconductor until equilibrium is established. But if there is a sufficient
number of empty surface states still available, then the electrons will occupy
those without much effecting the height of the potential barrier. So the potential
barrier stays, and the junction is rectifying.

It would be difficult in a practical case to ascertain the share of these
‘theoretical’surface states, called alsoTamm states in determining the behaviourIgor Yevgenevich Tamm received

the Nobel Prize in 1958. of the junction because surface imperfections are also there, and those can trap
electrons equally well. It seems, however, quite certain that it is the surface
effects that make all real metal–semiconductor junctions behave in a similar
manner.

Finally, I would like to mention ohmic contacts, that is, contacts that do not
care which way the voltage is applied. To make such a contact is not easy; it is
more an art than a science. It is an important art though, since all semiconductor
devices have to be connected to the outside world.

The two most often used recipes are: (i) to make the contact with alloys
containing metals (e.g. In, Au, Sn) that diffuse into the surface forming a gradual
junction; or (ii) to make a heavily doped semiconductor region (usually called
n+ or p+) with about 1024 carriers per cubic metre in between the metal and
semiconductor to be connected.

Conduction band

Occupied
surface

states

Valence
band

Fig. 9.20
In a real semiconductor electrons
may occupy surface states. The
donor atoms left behind have a
positive charge which leads to the
‘bending’ of the band.

9.9 Metal–insulator–semiconductor junctions

Let us now make life a little more complicated by adding one more component
and look at metal–insulator–semiconductor junctions. What happens as we join
the three materials together? Nothing. If the insulator is thick enough to prevent
tunnelling (the situation that occurs in all practical devices of interest), the metal
and the semiconductor are just unaware of each other’s existence.

What does the energy diagram look like? For simplicity we shall assume that
the Fermi levels of all three materials coincide before we join them together. The
energy diagram then takes the form shown in Fig. 9.21, where the semiconductor
is taken as n-type.

Are there any surface states at the semiconductor–insulator interface?
In practice there are, but their influence is less important than for metal–
semiconductor junctions, so we shall disregard them for the time being.

Vacuum level

Fermi
level Conduction

band

Valence
band

Metal Insulator Semiconductor

Fig. 9.21
Energy diagram for a
metal–insulator–n-type
semiconductor junction at thermal
equilibrium.

Let us now apply a positive voltage to the metal as shown in Fig. 9.22(a). Will
a current flow? No, there can be no current through the insulator. The electrons
will nevertheless respond to the arising electric field by moving towards the
insulator. That is as far as they can go, so they will accumulate in front of the
insulator. Their distribution will be something like that shown in Fig. 9.22(b),
where Nen is the equilibrium concentration in the bulk semiconductor, and x is
the distance away from the insulator. The shape of the curve may be obtained
from the same considerations as in a p–n junction. The diffusion current (due
to the gradient of the electron distribution) flowing to the right must be equal
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Fig. 9.22
A metal–insulator–n-type semiconductor junction under forward bias. (a) Schematic representation. (b) Variation of
electron density in the semiconductor as a function of distance. (c) Energy diagram.
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Fig. 9.23
A metal–insulator–n-type
semiconductor junction under
reverse bias. (a) Schematic
representation. (b) Variation of
electron density in the semiconductor
as a function of distance. (c) Energy
diagram at moderate voltage. (d)
Energy diagram at a voltage high
enough for producing holes.

to the conduction current (due to the applied field) flowing to the left. The
corresponding energy diagram is shown in Fig. 9.22(c), where the Fermi level
in the semiconductor is taken as the reference level. Looking at the energy
diagram, we may now argue backwards and say that eqn (8.17) must still be
roughly valid so the electron density is approximately an exponential function
of the distance of the Fermi level from the bottom of the conduction band.
Hence the electron density is increasing towards the insulator.

Next, let us apply a negative voltage to the metal [Fig. 9.23(a)]. The
electrons will be repelled, creating a depletion region, as in a reverse biased
p–n junction. In fact, we could determine the width of the depletion region (see
Example 9.4) by a method entirely analogous to that developed in Section 9.2.
Alternatively, we can argue that the electron distribution will be of the shape
shown in Fig. 9.23(b), and we may talk again about the balance of diffusion and
conduction currents. Finally the band bending picture is shown in Fig. 9.23(c),
from which we can also conclude that the electron density is decreasing towards
the insulator. What will happen as we apply higher and higher reverse bias?
The obvious answer is that the depletion region will widen. What else could
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178 Principles of semiconductor devices

one expect? It is difficult to believe at first hearing, but the fact (fortunate as
it happens) is that holes will appear. Can we explain this phenomenon by any
of our models? If we consider only ionized donor atoms and mobile electrons,
as in the model developed in Section 9.2, we have not got the slightest chance
of creating holes. On the other hand if we adopt the notion that the density of a
carrier at any point is determined by the distance in energy from the Fermi level
to the edge of the particular band, then holes have acquired the right to appear.
All we need to do is to apply a sufficiently large reverse bias [Fig. 9.23(d)] which
will bring the Fermi level right down, close to the top of the valence band. Thus,
according to this model, holes may become the majority carriers near to the
surface of an n-type semiconductor. Odd, is it not? The problem still remains,
though, that the holes must come from somewhere. The only process known
to produce holes in an n-type semiconductor is thermal generation of electron–
hole pairs. But are not the rates of generation and recombination equal? Would
not the holes generated thermally immediately disappear by recombination?
This is true indeed under thermal equilibrium conditions, but our junction is
not necessarily in thermal equilibrium.

Let us look again at the whole process, considering time relationships as well.
At t = 0 we apply a negative voltage to the junction. Most of the electrons clear
out by t1, leaving a depletion region of the order of 1 μm behind. What happens
now to thermally generated electron–hole pairs? The electrons move away from
the insulator, and the holes move towards the insulator. Not much recombination
will occur because both the electron and hole densities are small, and they are
separated in space. What will happen to the holes? They will congregate in
the vicinity of the insulator, where they can find a nice comfortable potential
minimum.

The conditions of equilibrium are rather complicated. At the end, say by t2,
the hole diffusion current away from the insulator must be equal to the hole
conduction current towards the insulator, and the rates of generation and
recombination must balance each other. It is then quite reasonable to conclude
that if the applied negative voltage is large enough, that is the potential minimum
at the insulator surface is deep enough, then a sufficient number of holes can
congregate, and the part of the n-type semiconductor adjacent to the insulator
will behave as if it were p-type. This is called inversion.The phenomenon of inversion is

not restricted of course to n-type
semiconductors. Similar inversion
occurs in a metal–insulator–p-type
semiconductor junction.

Our conclusion so far is that under equilibrium conditions inversion may
occur. Whether equilibrium is reached or not depends on the time constants t1
and t2. How long is t1? As far as we know no one has measured it, but it can not
take long for electrons to clear out of a 1 μm part of the material. If we take a
snail moving with a velocity of 1 m h−1 it will need about 3 ms to cover 1 μm.
Thus electrons, which may be reasonably expected to move faster than snails,
would need very little time indeed to rearrange themselves and create a depletion
region. On the other hand, in sufficiently pure materials the thermal generation
time constant might be as long as a few seconds. Thus, if all the operations we
perform in a metal–insulator–semiconductor junction are short in comparison
with the generation time of electron–hole pairs, then the minority carriers will
not have the time to appear, a mode of operation called the deep depletion mode.

Inversion and deep depletion are some further representations of the
multifarious phenomena of semiconductor physics. They are certainly
interesting, but are they useful? Can a device through which no current
flows be of any use at all in electronics? The secret is that current can flow
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along the insulator surface. The emerging devices are very important indeed.
Under acronyms like MOSFETs and CCDs they are the flagbearers of the
microelectronics revolution. I shall talk about them a little later.

9.10 The tunnel diode

So far, we have considered impurity semiconductors with very low impurity
contents, typically less than one part per million. We have characterized the
impurity type and density by working out where the Fermi level is, and have
foundthat inallcases it iswellwithin theenergygap. Thishasmeant, amongother
things, that thesumsaremuchsimpler, forweareable toapproximate to theFermi
function. However, when the impurity level becomes very high (typically about
1024m−3 or about 0.01%) the Fermi level moves right up into the conduction
band (or down into the valence band for a p-type impurity). The semiconductor
is then said to be ‘degenerate’. What are degenerate semiconductors good for?
One can make diode lasers out of them, as will be discussed later in Section 12.7.
But well before the appearance of diode lasers, Esaki∗ realized that they were ∗ Leo Esaki received a Nobel Prize in

1973. This is another example where the
invention of a new device earned for the
inventor the Nobel Prize in Physics.

suitable for producing a revolutionary new device, to be shown in this section.
For a while, they were called Esaki diodes. They are now known as tunnel diodes
because their operation is based on tunnelling.

Let us now produce a junction out of two degenerate semiconductors, one
p-type and one n-type. The energy diagram at thermal equilibrium is given in
Fig. 9.24(a), where, for simplicity, we take the difference between the Fermi
level and the band edge as the same on both sides. It is interesting to see that
the ‘built-in’ potential is larger than the energy gap (eU0 > Eg); thus the

(a)

(d)

Eg eUo

Ef

(b) (c)

eU

(e) (f)

Fig. 9.24
Energy diagrams of the tunnel diode
under various applied voltages.
(a) Zero bias. (b) Reverse bias. (c)
Small forward bias. (d) Forward bias
corresponding to maximum current.
(e) Forward bias resulting in a
decrease in current. (f) Forward bias
at which the tunnelling current is
reduced to zero.
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Fig. 9.25
The current in a tunnel diode is the
sum of the tunnelling current and of
the usual rectifying current.

(a)

(b)

(c)

Rectifying current

Tunnelling current

Total current

U

U

U

I

I

I

A

number of electrons crossing over the potential barrier at thermal equilibrium
must be small. Hence, I0 in the rectifier equation is small, and the rectifying
characteristic is rather elongated, as shown in Fig. 9.25(a).

Looking carefully at the diagram you may realize that another mechanism
of electron flow may also be effective. Remember, tunnel diodes are highly
doped, and high doping means a narrow transition region. Thus, electrons as
well as moving over the potential barrier may also tunnel through the potential
barrier, and if one puts in the figures, it turns out that the tunnelling current is
the larger of the two. Hence, we may imagine thermal equilibrium as the state
in which the tunnelling currents are equal and in opposite directions.

What happens now if we apply a reverse bias? As may be seen in Fig. 9.24(b),
the number of electrons tunnelling from left to right is increased because the
electrons on the p-side face a large number of empty states on the n-side. We
could work out this current by considering a rectangular potential barrier (the
one we so skilfully solved when first confronted with Schrödinger’s equation)
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and taking account of the occupancy of states on both sides. It is one of those
fairly lengthy and tedious calculations that are usually left as an exercise for the
student. The actual value is of little consequence because this diode is not used
under reverse bias conditions. For a forward bias [Fig.9.24(c)] the situation
is essentially the same as before, but now the electrons tunnel from right to
left. If the applied voltage is increased, the number of states available on the
p-side increases, and so the current increases too. Maximum current flows when
electrons on the n-side have access to all the empty states on the p-side, that is,
when the Fermi level on the n-side coincides with the valence band edge on the
p-side [Fig. 9.24(d)].

If the bias is increased further [Fig. 9.24(e)], there will be an increasing
number of electrons finding themselves opposite the forbidden gap. They cannot
tunnel because they have no energy levels to tunnel into. Hence, the tunnelling
current must decrease, reaching zero when the top of the valence band on
the p-side coincides with the bottom of the conduction band on the n-side
[Fig. 9.24(f)]. Therefore, the plot of current against voltage must look like that
shown in Fig. 9.25(b). But this is not the total current; it is the current due to
tunnelling alone. We can get the total current by simply taking the algebraic sum
of the currents plotted in Fig. 9.25(a) and (b), which is a permissible procedure,
since the two mechanisms are fairly independent of each other. Performing the
addition, we get the I −U characteristics [Fig. 9.25(c)] that we would be able
to measure on a real tunnel diode.∗ ∗ In fact, there is some deviation from

this characteristic owing to the inevitable
presence of some energy levels in the
forbidden gap. There is thus some
additional tunnelling, which becomes
noticeable in the vicinity of the current
minimum. But even including this effect
the ratio of current maximum to current
minimum may be as high as 15 in a
practical case.

You know now everything about the tunnel diode with the exception of the
reason why it can perform some useful function. The answer follows from the
I − U characteristics. There is a region where the slope is negative that is
usually referred to as a negative resistance. In case you have not heard this
curious phrase before we shall briefly explain it.

Consider an ordinary tuned circuit as shown in Fig. 9.26. If we start
it oscillating in some way, and then leave it, the oscillations will decay
exponentially, their amplitude falling with time according to

exp

(
− R

2L
t

)
. (9.26)

L C R

Fig. 9.26
A tuned circuit.

Physically, the resistanceR absorbs the oscillating energy and gets a little hotter.
If we now put a negative resistance in series with R, odd things happen. In the
particular case when the negative resistance (−R1) is equal in magnitude to R,
the total resistance becomes

R − R1 = 0, (9.27)

and the exponential becomes unity. This means that an oscillation, once started
in the circuit, will continue with no decay, the negative resistance replenishing
all the energy dissipated as heat in the real resistance.

If we could get energy like this out of a simple circuit isolated from the
rest of the world except for the R, L, and C we have drawn, it would
contravene the second law of thermodynamics and make perpetual motion
fairly straightforward. As this does not happen, we can conclude that a ‘negative
resistance’ has to be an active circuit device that is connected to a power supply
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182 Principles of semiconductor devices

other than the oscillating signal with which it interacts. This is very true of the
tunnel diode, since to act as a negative resistance, it has to be biased with a
battery to the point A in Fig. 9.25(c). The power to overcome the circuit losses
comes from this battery.

If the magnitude of the negative resistance in Fig. 9.25(c) is greater than
the loss resistance R, the initiatory signal will not only persist; it will grow. Its
magnitude will, of course, be limited by the fact that the tunnel diode can be a
negative resistance for only a finite voltage swing (about 0.2 V). Thus, given a
negative resistance circuit engineers can make oscillators and amplifiers. The
particular advantage of tunnel diodes is that, as the junctions are thin, the carrier
transit times are shorter than in a transistor, and high-frequency operation (up
to about 1011 Hz) is possible. Their limitation is that with their inherently low
voltage operation, they are very low-power devices.

9.11 The backward diode

This is essentially the same thing as the tunnel diode, only the doping is a little
lighter. It is called a backward diode because everything is the other way round.
It has low impedance in the reverse direction and high impedance in the forward
direction, as shown in Fig. 9.27.

The secret of the device is that the doping is just that much lighter (than that
of the tunnel diode) as to line up the band edges (the top of the valence band
on the p-side to coincide with the bottom of the conduction band on the n-side)
at zero bias. Hence, for a forward bias there is no tunnelling, just the ‘normal’
flow, which is very small. In the reverse direction, however, a large tunnelling
current may flow.

The backward diode is a very efficient rectifier (of the order of one to a
thousand) for low voltages. For higher voltages, of course, the ‘forward’current
may become significant.

I

U

Fig. 9.27
The current voltage characteristics of
a backward diode.

I

U

Fig. 9.28
The current voltage characteristics of
a p–n junction showing the sudden
increase in current at a specific value
of reverse voltage.

9.12 The Zener diode and the avalanche diode

You should not dwell too heavily on the memory of the backward diode; it is
rather exceptional. I am pleased to say that from now on forward means forward
and reverse means reverse.

We shall now consider what happens at higher voltages. In the forward
direction the current goes on increasing, and eventually the diode will be
destroyed when more energy is put in than can be conducted away. This is a
fascinating topic for those engineers whose job is to make high-power rectifiers,
but it is of limited scientific interest for the rest of us.

There is considerably more interest in the reverse direction. It is an experi-
mental fact that breakdown occurs very sharply at a certain reverse voltage as
shown in Fig. 9.28. Since the ‘knee’ of this breakdown curve is much sharper
than the current rise in the forward direction, and since the knee voltage can be
controlled by the impurity levels, this effect has applications whenever a sudden
increase in current is required at a certain voltage. The diode can therefore be
used as a voltage stabilizer or a switch. In the latter application it has the
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The Zener diode and the avalanche diode 183

further advantage that the breakdown is not only sharp but occurs very fast
as well.

9.12.1 Zener breakdown

The breakdown may occur by two distinct mechanisms: (1) Zener breakdown,
(2) avalanche breakdown.

The mechanism suggested by Zener (1934) may be explained as follows.∗At

∗ There were, of course, no p–n
junctions at the time. The mechanism
was suggested for bulk breakdown to
which, incidentally, it does not apply. The
explanation turned out to be applicable to
breakdown in p–n junctions.

low reverse bias there is only the flow of minority electrons from the p-side to
the n-side. As the reverse bias is increased, at a certain voltage the bands begin
to overlap, and tunnelling current may appear. The tunnelling current does
appear if the doping is large enough and the junction is narrow enough. But
Zener diodes (in contrast to tunnel diodes and backward diodes) are designed
in such a way that practically no tunnelling occurs when the bands just overlap;
the potential barrier is too wide [Fig. 9.29(a)]. However, as the reverse bias is
increased, the width of the barrier decreases [Fig. 9.29(b)] leading—above a
certain voltage—to a very rapid rise in current.

Conduction
band

Valence
band

(a)

n

Conduction
band

Valence
band

(b)

n

p

p

Fig. 9.29
A heavily doped p–n junction (a) in
thermal equilibrium. (b) at reverse
bias. The width of the potential barrier
decreases as the bias is increased.

Avalanche
breakdown

Zener
breakdown

n

A

p

Fig. 9.30
The mechanism of Zener and
avalanche breakdown.

9.12.2 Avalanche breakdown

Avalanche diodes differ from Zener diodes by having somewhat smaller
impurity density. The depletion layer is then wider, and the Zener breakdown
would occur at a considerably higher voltage. However, before the tunnelling
current has a chance to become appreciable another mechanism takes over,
which—very aptly—is designated by the word avalanche.

You know that electrons in a solid are accelerated by the applied electric field.
They give up the kinetic energy acquired when they collide with lattice atoms.
At a sufficiently high electric field an electron may take up enough energy to
ionize a lattice atom, that is to create an electron–hole pair. The newly created
electrons and holes may in turn liberate further electron–hole pairs, initiating
an avalanche.

Note that the two mechanisms are quite different, as may be clearly seen
in Fig. 9.30. In both cases the electron moves from the valence band of the
p-type material into the conduction band of the n-type material, but for Zener
breakdown it moves horizontally, whereas for avalanche breakdown it must
move vertically. But although the mechanisms are different, nevertheless, in a
practical case it is difficult to distinguish between them. The diode breaks down,
and that is the only experimental result we have. One may attempt to draw the
distinction on the basis of the temperature-dependence of the two breakdown
mechanisms but, in general, it is not worth the effort. For a practical application
all that matters is the rapid increase in current, whatever its cause.

Avalanche diodes may also be used for generating microwaves. The
principles of operation (as for most microwave oscillators) are fairly
complicated. The essential thing is that both during the avalanche process and
the subsequent drift of the created carriers, the current and the electric field
are not in phase with each other. By judicious choice of the geometry one may
get 180◦ phase difference between voltage and current, at least for a certain
frequency range. But this is nothing more than a frequency-dependent negative
resistance. Putting the diode in a cavity, the oscillator is ready.
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184 Principles of semiconductor devices

9.13 Varactor diodes

As I have mentioned above, and have shown mathematically in eqn (9.21),
the capacitance of a reverse-biased p–n junction is voltage-dependent. In other
words the capacitance is variable, and that is what the name ‘varactor’ seems
to stand for.

Varactor diodes are p–n junctions designed for variable-capacitance opera-
tion. Is a variable capacitance good for anything? Yes, it is the basis of the
so-called ‘parametric amplifier’. How does a parametric amplifier work? This
is really a circuit problem, but I had better explain its operation briefly.

Imagine just an ordinary resonant circuit oscillating at a certain frequency.
The charge on the capacitor then varies sinusoidally as shown in Fig. 9.31(a).

Suppose the plates of the capacitor are pulled apart when Q reaches its max-
imum and are pushed back to the initial separation whenQ is zero. This is shown
in Fig. 9.31(b), where d is the distance between the plates. When Q is finite
and the plates are pulled apart, one is doing work against coulombic attraction.
Thus, energy is pumped into the resonant circuit at the times t1, t3, t5, etc.
When Q is zero, no energy need be expended to push the plates back. The
energy of the resonant circuit is therefore monotonically increasing.

To see more clearly what happens, let us try to plot the voltage against time.
From t0 to t1 it varies sinusoidally. At t1 the separation between the plates
is suddenly increased, that is, the capacitance decreased. The charge on the
plates could not change instantaneously; so the reduced capacitance must lead
to increased voltage (Q = CU must stay constant). The voltage across the

Fig. 9.31
Illustration of the basic principles of
parametric amplification.
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capacitor therefore jumps abruptly at t1, t3, t5, etc., and it is unaffected at
t2, t4, t6, etc., as shown in Fig. 9.31(c).

We may argue in a similar manner that the charge must also increase. When
the plate is pushed back at t2, the voltage is not affected, but the capacitance
goes back to its original value. Hence, when the capacitor is charged again, Q
will come to a higher peak value, as shown in Fig. 9.31(d).

Note that the important thing is to vary the capacitance in the resonant
circuit at twice the resonant frequency. Amplification is achieved then at the
expense of the energy available to vary the capacitance. It may be shown (both
theoretically and experimentally) that the variation of the capacitance need not
be abrupt. Any reasonable variation of the capacitance at twice the rate of the
signal frequency would do.∗ ∗ The magic factor 2 in frequency is not

necessary either. One may apply a ‘pump’
at a frequency ω3, amplify the ‘signal’
at ω1, while the so-called ‘idler’ has a
frequency of ω2 = ω3 − ω1. We shall
come across a similar relationship in the
optical parametric oscillator discussed in
Section 12.9. Note also that to make
the device practical, resonant circuits are
needed at all three frequencies.

It is interesting to note that the possibility of parametric amplification had
been known for over fifty years, but it has become practical only after the advent
of the p–n junction.

Now with what sort of properties would we like to endow our p–n junction to
make it suitable for this particular application? Well, it will be the integral part
of some sort of tuned circuit, where losses are generally unwelcome. Hence, we
shall use heavy doping to reduce the resistance. We should not dope too much,
however, because that would lead to narrow depletion regions and low Zener
breakdown. Since the varactor diode must operate under reverse bias (to get the
capacitance) its useful range is between U = 0 and U = UB; a low-breakdown
voltage is obviously undesirable. There must be a compromise

between reducing the resistivity
and ensuring a high breakdown
voltage.

In practice the p-side of the junction is usually doped very heavily, so that it
does not contribute at all to the total series resistance. All the depletion layer is
then in the n-type material, whose length is limited to the possible minimum. It
is equal to the length of the depletion region just below breakdown (when the
depletion region is the longest).

That is roughly how parametric amplifiers work. But is it worth making a
complicated amplifier which needs a high-frequency pump oscillator when a
‘simple’ transistor will amplify just as well? The limitation of a transistor is that
it will be a source of noise as well as gain. All amplifiers introduce additional
noise† due to the random part of their electronic motion, so the emitter and † Noise due to electric currents was

mentioned briefly in a previous footnote
(p. 3). A fuller discussion is beyond our
present scope, but if you wish for further
reading in this interesting topic see F.N.H.
Robinson, Noise and fluctuations in
electronic devices and circuits, O.U.P.,
1974.

collector currents in a transistor are fairly copious noise sources. As there is
almost no standing current in a varactor, it introduces very little noise; so
parametric amplifiers are worth their complications in very sensitive receivers,
for example for satellite communication links, radio astronomy, and radar.

9.14 Field-effect transistors

Having become acquainted with a number of two-terminal devices, let us now
look at another representative of a three-terminal device, the so-called field-
effect transistor (FET). It is not quite clear why it is regarded as a relative of the
bipolar transistor, which we have discussed in quite some detail in Section 9.6.
The only common factors are that they are both solid state devices and both make
use of electrons and holes. They work, though, on entirely different principles.
The basic idea of the FET originated in the 1920s, although any practical
realization had to wait until the 1950s. It consists of a piece of semiconductor—
let us suppose n-type—to which two ohmic contacts, called the source and the
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186 Principles of semiconductor devices

drain, are made (Fig. 9.32). As may be seen, the drain is positive: thus electrons
flow from source to drain. There is also a gate electrode consisting of a heavily
doped p-type region (denoted by p+). Let us assume for the time being that
USG, the voltage between source and gate, is zero. What will be the potential
at some point in the n-type material? Since there is an ordinary ohmic potential
drop due to the flow of current, the potential grows from zero at the earthed
source terminal to UDS at the drain. Hence, the p+n junction is always reverse
biased with the reverse bias increasing towards the drain. As a consequence, the
depletion region has an asymmetrical shape as shown in Fig. 9.32. The drain
current must flow in the channel between the depletion regions.

If we make the gate negative, then the reverse bias, and with it the depletion
region, increases, forcing the current to flow through a narrower region, that is
through a higher resistance. Consequently, the current decreases. Making the
gate more and more negative with respect to the source, there will obviously
be a voltage at which the depletion regions join and the drain current decreases
to practically zero as shown in Fig. 9.33(a). This ID versus UGS characteristic
is strongly reminiscent of that of anode current against grid voltage in a good
triode, the product of a bygone age when the subject of electronics was nice
and simple.

Fig. 9.32
Schematic representation of a field
effect transistor (FET). The current
between source and drain is
controlled by the voltage on the gate
electrodes.
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The physical picture yielding the ID versus UDS characteristics is a little
more complicated. As UDS increases at constant gate voltage, there are two
effects occurring simultaneously: (i) the drain current increases becauseUDS has
increased, a simple consequence of Ohm’s law; (ii) the drain current decreases
because increased drain voltage means increased reverse bias and thus a smaller
channel for the current to flow. Now will the current increase or decrease?
You might be able to convince yourself that when the channel is wide, and
the increase in UDS means only a relatively small decrease in the width of the
channel, the second effect is small, and the current increases. However, as
the channel becomes narrower the second effect gradually gains importance,
and the increase of ID with UDS slows down, as shown in Fig. 9.33(b). At the
so-called pinch-off voltage, the two effects cancel each other, and they keep
their balance for voltages beyond that. The current stays constant; it has reached
saturation. The actual value of the saturation current would naturally depend
on the gate voltage. At lower gate voltages the saturation current is smaller.

The physical mechanism of current flow in an FET is entirely different
from that in a vacuum tube, but the characteristics are similar, and so is the
equivalent circuit. A small change in gate voltage, ugs, results in a large change
in drain current. Denoting the proportionality factor by gm, called the mutual
conductance, a drain current equal to gmugs appears. Furthermore, one needs
to take into account that the drain current varies with drain voltage as well.
Denoting the proportionality constant by rd (called the drain resistance), we
may now construct the equivalent circuit of Fig. 9.34, where id, ugs, and uds

are the small a.c. components of drain current, gate voltage, and drain voltage,
respectively.

A modern and more practical variant of this device is the metal–oxide–
semiconductor transistor or MOST, also known as metal–oxide–semiconductor
field-effect transistor or MOSFET. It is essentially a metal–insulator–
semiconductor junction provided with a source and a drain as shown in
Fig. 9.35(a). To be consistent with our discussion in Section 9.9, we shall
assume that the substrate is an n-type semiconductor, and the source and drain
are made of p+ material. At zero gate bias, no drain current flows because one
of the junctions is bound to be reverse biased. What happens as we make the

Gate

Drain

Source

g mugs

id

rd uds
Fig. 9.34
Equivalent circuit of a field-effect
transistor.

(a) (b)

Metal gate electrode

Drain SourceSource Drain

n - Si substrate n - Si substrate

 p channelp + p + p + p +

SiO
2 Fig. 9.35

Schematic representation of a
MOSFET. (a) Zero gate bias.
(b) Forward bias inducing a
p-channel.
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Fig. 9.36
The characteristics of a MOSFET. 0 UDS

ID

decreasingUGS

0UGS

ID

Fig. 9.37
Symbols for FETs.

Junction Enhancement Depletion

n-Channel

p-Channel

gate negative? Remembering the physical phenomena described in Section 9.9,
we may claim that at sufficiently large negative gate voltage inversion will
occur, that is the material in the vicinity of the insulator will turn into a p-type
semiconductor. Holes may then flow unimpeded from source to drain. The rest
of the story is the same as for an ordinary FET and the characteristics are fairly
similar, as shown in Fig. 9.36, though in the present case there is no proper
current saturation, only a knee in the ID versus UDS characteristics.

The devices in which conduction occurs by inversion are said to operate
in the enhancement mode. There is also a depletion mode device in which
one starts with a p-channel [Fig. 9.35(b)] and depletes the holes by applying a
positive bias to the gate. This is more similar to the traditional FETs.

Naturally, both the enhancement and depletion devices described have their
counterparts with n+ drains and sources and p-type substrate. In principle there
is no difference between them. In practice there is some difference, because the
surface potential at the Si − SiO2 interface tends to be positive, thus it is easier
to achieve inversion in an n-type material.

Having so many different types of FETs has tested the ingenuity of those
whose job is to think up symbols for new devices. The solutions they came up
with are shown in Fig. 9.37.

Applications for performing logic functions are obvious. Depending on the
gate voltage the FET of Fig. 9.35 is either ON (UDS low) or OFF (UDS high).
There are naturally many varieties on the basic theme; I want to mention only
one of them known as CMOS (complementary MOS) which rose to fame owing
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Uin Uout

 +U0
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D

M1

M2

Fig. 9.38
A CMOS inverter.

to its low power consumption. The simplest CMOS circuit is the inverter shown
in Fig. 9.38. The upper device M1 is a p-channel MOS, whereas the lower
device M2 is of the n-channel variety. The drains and gates are connected, and
the source is connected to the substrate in each device. Let us see what happens
when the input voltage Uin is approximately zero. For M2, a positive UGS is
required to turn it ON. In the absence of a positive UGS, M2 is OFF. What
about M1? It needs a negative UGS to turn it ON. But that is exactly what it
has. The source is at a high potential U0 (say 5 V) and the gate is at about zero
potential hence M1 is ON, the potential drop across the device is small, and
Uout is approximately equal to U0. Thus when Uin is low, Uout is high. This is
what an inverter is supposed to do. You may easily convince yourself that when
Uin is equal to U0, M1 is OFF and M2 is ON leading to an output voltage of
about zero.

Why is this inverter better than other inverters? On account of the low
currents flowing. But surely when a device is ON, there will be a lot of current
flowing. Is it not the best analogy a floodgate? When the gates are closed
there is only a trickle, but when they are open, there is a torrent of water. This
analogy does indeed apply to many electronic devices (e.g. to the transistor of
Fig. 9.15 or to the FET of Fig. 9.35) but not to the CMOS inverter. The current
through M1 cannot be large when it is ON because there is nowhere the current
can flow. In fact, the current must be equal to that flowing in M2 when it is
OFF, and that is equal to the current through a reverse biased p–n junction,
say 50 nA. And of course the situation is similar when M1 is OFF and M2 is
ON. With U0 equal to 5 V, the power dissipation is a quarter of a microwatt.
There is of course a small gate current, as well, but it will still leave power
dissipation well below a microwatt∗, many orders of magnitude smaller than ∗ It must be admitted that there is

some more appreciable power dissipation
during switching due to capacitors being
charged up, and there is also a brief
interval when both devices are ON.

that of competitive semiconductor devices. Thus CMOS circuits are natural
candidates for all battery powered devices. Among other things, their advent
made possible the birth of the digital watch. Now almost all watches and clocks
work by digital electronics. We no longer have to wind them up. This is sad for
old-fashioned people, who think that clocks should work by clockwork.
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190 Principles of semiconductor devices

Fig. 9.39
(a) Energy diagrams of a p-type and
an n-type material next to each other;
energy gaps are the same. (b) Energy
diagram when the two materials in (a)
are joined together. (c) Energy
diagrams of a p-type and an n-type
material next to each other; energy
gaps are different. (d) Energy diagram
when the two materials in (c) are
joined together.

(a) (b)

(c) (d)
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9.15 Heterostructures

All the devices mentioned so far have been made using the same material. Some
properties of the material were tampered with, for example doping made one
part of the material n-type and another part p-type, but the energy gap always
remained the same. We may call such structures homostructures in contrast to
heterostructures, which consist of materials of different energy gaps. Is it in
any way desirable to change the energy gap? The simple answer is, yes, it gives
us a new degree of freedom.

In order to appreciate the difference between these two types of junctions, let
us first redo the construction that leads to the built-in voltage in homojunctions
and then repeat the exercise for heterojunctions.

The energy diagrams of a p-type and an n-type semiconductor are shown
in Fig. 9.39(a) next to each other. Their Fermi levels are at EFp and EFn,
respectively. Next [Fig. 9.39(b)], we join them and equate the Fermi levels.
The built-in voltage is the same whether we look at it from the valence band or
from the conduction band. Assume now that the p-type material has a higher
gap than the n-type material (Egp > Egn) but its Fermi level relative to the top
of the valence band is unchanged. The n-type material has the same properties
as before, as shown in Fig. 9.39(c). Joining them and equating their Fermi levels
leads to Fig. 9.39(d). It may now be seen that the built-in voltage is higher in the
conduction band than in the valence band. For the holes, there is no difference
between the homojunction and the heterojunction; the amount of hole injection
is the same in both cases. But the energy gap of the p-type material being wider
in Fig. 9.39(c) means that the electrons see a higher barrier against them and,
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(b)(a)

EF

Fig. 9.40
The energy diagram of
semiconductor crystals. (a) Variable
doping, constant energy gap.
(b) Undoped, variable energy gap.

consequently, electron injection is much smaller in the heterojunction than in
the homojunction. Is this good? If we imagine that this is the emitter–base
junction of a p–n–p transistor then this is certainly something desirable. The
hole current from emitter to base is the current upon which the operation of
the transistor is based. We need that. The electron current from base to emitter
does, however, no good. We are better off without it. The conclusion is that by
using a heterojunction we can produce a transistor with properties superior to
that of a homojunction. The transistor thus obtained has even got a name. It is
known as HBT or Heterostructure Bipolar Transistor.

The essential thing is that when we turn to heterojunctions, the fates
of electrons and holes are no longer tied together. Perhaps an even better
illustration of their independence is provided by Fig. 9.40. Figure 9.40(a) shows
the energy diagram of a homogeneous bulk semiconductor doped so that the
acceptor concentration increases from left to right. Clearly, the electrons will
slide down the slope, and the holes have no other option but to slide up the
slope. The flow of electrons and holes is in the opposite direction.

Take now a piece of undoped semiconductor crystal, grown so that the energy
gap gradually shrinks from left to right [Fig. 9.40(b)]. The slopes of the potential
energy diagram are now such that electrons and holes move in the same
direction. So, there is no doubt, heterojunctions offer more freedom in designing
devices.

Are the advantages of heterojunctions limited to bipolar devices? One might
say, yes, remembering that the separate control of electrons and holes is of no
benefit to FETs. In fact, FETs also draw advantages from the availability of
heterostructures but in a quite different form. What is it that we are aiming at?
We want to have high mobility. But surely that depends on the choice of the
material, on the temperature, and on the impurities. Once they are chosen, we
have no longer any freedom. Surprisingly, it turns out that we still have some
freedom. We can have our cake and eat it. More precisely, we can produce our
carriers from impurities without the disadvantage of impurity scattering and
the corresponding reduction in mobility. The FET which can incorporate these
features is called appropriately the High Electron Mobility Transistor or HEMT
(some people call it MODFET an acronym for Modulation-Doped Field Effect
Transistor or TEGFET standing for Two-dimensional Electron Gas Field Effect
Transistor).

What kind of properties should materials A and B, the two semiconductors
to be joined in holy matrimony, possess? One should provide the electrons,
so it should be doped, and the other one should provide an impurity-free
environment, so it should not be doped. The problem is then to persuade the
electrons that, once created in the doped material, they should move over into
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192 Principles of semiconductor devices

Fig. 9.41
Energy diagram for a hetero-junction.
(a) Energy levels before joining the
semiconductors. (b) The Fermi levels
agree. (c) Energy levels after joining
the semiconductors. (d) Details of the
conduction band edge in the vicinity
of the metallurgical junction.
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the undoped material. This can be achieved by a junction between a doped high-
bandgap material (A) and an undoped lower-bandgap material (B). The energy
diagrams of the two materials before they are joined are shown in Fig. 9.41(a).
The Fermi energy of material A is quite close to the conduction band. The Fermi
energy of material B may be seen to be somewhat above the middle of the gap
on account of the electron effective mass being smaller than the hole effective
mass [see eqn (8.24)].Note that there are now band

offsets, both at the conduction and
valence bands, denoted by �Ec

and �Ev, respectively.

Next, we need to match the Fermi energies. That can be easily done as
shown in Fig. 9.41(b), where we have now dispensed with the vacuum levels.
However, the step that follows now is far from being trivial. It is not simply a
question of joining together the two band edges. We have to do the construction
separately, left and right of the metallurgical junction. First, let us figure out
how the bands bend on the left-hand side. At the moment the two materials are
joined, the conduction band of material A is at a higher energy than that of B.
We may therefore expect electrons to move initially from A to B. Hence, there
is a depletion region in material A and, consequently, the band edges curve
upwards reaching the metallurgical junction at points cA and vA as shown in
Fig. 9.41(c). At this point the bandgap will suddenly change. So we need to
move down from cA an amount of �Ec, and move up from vA by an amount of
�Ev to reach the points cB and vB, respectively. Now we can do the construction
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on the right-hand side. We join cB to the conduction band edge and vB to the
valence band edge of material B.

The energy diagram of Fig. 9.41(c) looks quite different from anything we
have seen so far. Not surprisingly, this junction has quite striking properties as
may be seen in Fig. 9.41(d), where the central part of the diagram is magnified.
The remarkable thing is that cB, the deepest point in the potential well, is
below the Fermi energy. Thus according to the rules of the game, the electron
density there is much higher than in any other parts of the two materials. The
second striking property is that the well is very narrow. How narrow? For the
materials usually used, the width of the well comes out of the calculations (they
are pretty complicated, one needs to solve simultaneously Poisson’s equation
in combination with Schrödinger’s equation) as about 8 nm, comparable with
atomic dimensions. So the electron is confined in one dimension. We have, in
fact, a two-dimensional electron gas, which has discrete energy levels.∗ In the

∗ The discrete character of the energy
levels does not much affect the argument
here. They are, however, of great
importance for the Resonant Tunnelling
Diode to be discussed in Section 9.27 and
for the latest versions of semiconductor
lasers which will come up in Section 12.7.

present example we are showing just one such level.
Let us return now to our original aim. We wanted to produce a Field Effect

Transistor which works faster than those using homojunctions on account of
the higher mobility. So what kind of materials are we going to use? For the
undoped material we shall choose one which has a high mobility. GaAs with a
bandgap of 1.43 eV and a mobility of 0.85 m2 V−1 s−1 at room temperature (up
to about 7.5 m2 V−1 s−1 at 77 K) is clearly suitable for the purpose. The doped
material should have a considerably higher bandgap and must be suitable for
growing on GaAs. All these requirements are satisfied by AlxGa1−x As.‡ With

‡ Remember our discussion in
Section 8.6: Al is higher than both
Ga and As in the periodic table, hence
adding Al to GaAs leads to a material of
higher energy gap.

x = 0.3, the bandgap is 1.85 eV, �Ec is 0.28 eV, and �Ev is 0.15 eV. The
dopant is silicon.

A schematic drawing of the device may be seen in Fig. 9.42. There are very
few electrons in the AlGaAs, therefore the current from source to drain flows
along the channel, where the electrons congregate in the undoped GaAs. Thus,
at zero gate voltage we can have a flow of electrons. But can we control the
current by changing the gate voltage? Yes, we can, by applying a reverse bias,
which will lift the whole energy diagram. Not uniformly of course, there will be
greater lift where there are fewer carriers, but the essential thing is that with a
reasonable voltage (say, 0.5 V), the bottom of the potential well could be lifted
above the Fermi energy, which would reduce the current very close to zero. So
this device could work as a fast switch or as an amplifier in analogue circuits.
Due to the high speed of the electrons, these amplifiers may work up to the mm
wavelength region.

source gate drain

doped Al GaAs

undoped GaAs

channel

Fig. 9.42
A schematic drawing of a HEMT.

So much about n-channel devices. Can we have p-channel devices as well?
We can. There is no difficulty in doping AlGaAs so as to produce a p-type
material. But there is a snag. AlGaAs, like most semiconductors, has both
heavy and light holes in the valence band. Since the speed of the device will be
determined by the sluggishness of the heavy holes, there seems to be no point
in producing p-channel HEMTs. This is indeed true for most purposes, but let
us remember that complementary logic needs both n-type and p-type devices.
So what can be done?

By applying a pressure, we can shift the band edge in the energy diagram. In
particular, we can effectively suppress the heavy holes in favour of light holes.
In fact, there is no need actually to apply a pressure, as it may appear due to the
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194 Principles of semiconductor devices

inherent properties of the junction. This is what actually happens when InGaAs
is grown on GaAs. Since the two materials have different lattice constants, a
strain will appear in the InGaAs layer, which will suppress the hole states at the
top of the valence band. By good luck the bandgap of InGaAs happens to be
smaller than that of GaAs. Hence a fast p-channel HEMT may be constructed
by doping an epitaxially grown GaAs layer with acceptors and then growing
a layer of undoped InGaAs on top. The p-channel will be made up of lighter
holes just inside the InGaAs layer.

What can we say about the future? As the new methods of production (MBE
and MOCVD) will be more widely used, heterojunctions will hardly cost more
than homojunctions. The point is that for economic reasons one wishes to avoid
multiple growth (remove the wafer, do some intermediate processing and then
resume the growth) but it does not matter how complicated an individual run
is. So heterojunctions are here to stay.

9.16 Charge-coupled devices

Charge-coupled devices, abbreviated as CCDs, look very similar to MOSFETs,
and in today’s world looking similar is half the battle. Since companies are rather
reluctant to invest into new types of manufacturing processes, a new device that
can be made by a known process and is compatible with existing devices is an
attractive proposition.

A charge-coupled device is essentially a metal–insulator–semiconductor
junction working in the deep depletion mode. As mentioned in Section 9.9,
the carriers are not in thermal equilibrium. There is a potential well for holes
as was shown in Fig. 9.23(d), but owing to the long generation–recombination
time in a pure material, it is not occupied by holes. The secret of the device is,
first that the holes are introduced externally and, second, that the charge can be
transferred along the insulator surface by applying judiciously chosen voltages
to a set of strategically placed electrodes.

Let us look first at three electrodes only, as shown in Fig. 9.43(a). There is
again an n-type semiconductor upon which an oxide layer is grown, and the
metal electrodes are on the top, insulated from each other. We can look at each
electrode as part of a metal–insulator–semiconductor junction which can be
independently biased. In Fig. 9.43(b) there are some holes under electrode 1.
They had to get there somehow, for example they could have got there by
injection from a forward biased p–n junction. The essential thing is that they
got there, and the question is how that positive charge can be transferred from
one electrode to the next one.

U1 U2 U3

t = t1

t = t2

t = t3

t = t4

t = t5

Distance

Surface
potential

1 2 3
SiO2

n- type Si

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 9.43
A section of a CCD illustrating the
basic principles of a charge transfer.

At t = t1 (see Fig. 9.44) the three electrodes are biased to voltages −A, 0, 0
respectively. The corresponding surface potential distribution is shown in
Fig. 9.43(b). The holes sit in the potential well. At t = t2 we apply a voltage
−A to electrode 2, leading to the surface potential distribution of Fig. 9.43(c).
The holes are still sitting under electrode 1 but suddenly the potential well has
become twice as large. Since the holes wish to fill uniformly the space available,
some of them will diffuse to electrode 2. At the same time, just to give the holes
a gentle nudge, U1 is slowly returning to zero, so that by t3 the potential well
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t1 t2 t3 t4 t5 t6

U1

U2

U3

-A

-A

-A

Fig. 9.44
The voltages applied to the three
electrodes of Fig. 9.43 as a
function of time.

U1

U2

U3 Fig. 9.45
The array of electrodes in a CCD.

is entirely under electrode 2. Thus the transfer of charge from electrode 1 to
electrode 2 has been completed [Fig. 9.43(d)].

Let me reiterate the aim. It is to transfer various sizes of charge packet
along the insulator. Thus, when we have managed to transfer the charge from
electrode 1 to electrode 2, the space under electrode 1 is again available for
receiving a new charge packet. How could we create favourable conditions
for a new charge packet to reside under electrode 1? We should lower U1.
But if we lower U1 to −A, what will prevent the charge under electrode 2
from rolling back? Nothing. Thus, we cannot as yet introduce a new charge
packet. First we should move our original packet of holes further away from
electrode 1. Therefore, our next move, at t = t4, is to apply −A to U3 and
increase U2 to zero between t4 and t5. The surface potential distributions at
t4 and t5 are shown in Figs 9.43(e) and (f ) respectively. The period ends at
t6. We can now safely lower U1 and receive a new packet of charge under
electrode 1.

In practice, of course, there is an array of electrodes with each third one
joined together as shown in Fig. 9.45. When U1 is lowered at t6, our original
charge packet will start moving to the next electrode, simultaneously with the
new charge packet entering the first electrode. With 3000 electrodes in a line,
we can have 1000 charge packets stored in the device.

How many elements can be in series? It depends on the amount of charge lost
at each transfer. And that is actually the limiting factor in speed as well. If we try
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196 Principles of semiconductor devices

to transfer the charge too quickly, some of it will get stuck and the information
will be gradually corrupted. The troublemakers are the surface states again.
They trap and release charge carriers randomly, thereby interfering with the
stored information. Thus, the best thing is to keep the charge away from the
surface. This can be done by inserting an additional p-channel into the junction
in much the same way as in Fig. 9.35(b). The potential minimum is then in the
p-channel, which under reverse bias conditions is entirely depleted of its ‘own’
carriers and is ready to accept charge packets from the outside. These are called
buried-channel devices.

What about other limitations? Well, there is a maximum amount of
charge storable above which the potential minimum disappears. There is a
minimum frequency, with which the charge can be transferred, below which
the information is corrupted by the thermally generated carriers. There is also
a minimum size for each cell determined by tunnelling effects (if the cells are
too close to each other) and dielectric breakdown (if the insulator is too thin).

What can CCDs be used for? The most important application is for optical
imaging for which we do of course need a two-dimensional array. If a picture is
focused upon the surface of the device (which in this case has transparent
electrodes) the incident light creates electron–hole pairs proportional to its
intensity. The process now has two steps: the ‘integrate’ period, during which
U1 is set to a negative voltage and the holes (in practical devices electron packets
are used and everything is the other way round but the principles are the same)
are collected in the potential minima, and the ‘readout’ period, during which
the information, is read out. Light may still be incident upon the device during
readout, but if the readout period is much shorter than the integration period,
the resulting distortions of the video signal are negligible.

How many elements can we have? Arrays of about 3000 by 4000 pixels are
now commercially available. Does it mean the end of the film industry? Will
all conventional cameras disappear? They might hold out for a few more years
but not much longer. It is interesting to note that in spite of their undoubted
success story the CCDs lead is being eroded, at least at the lower end of the
market, by arrays of two-dimensional CMOS devices. These newcomers to the
scene have two great advantages: (i) they are much cheaper to produce and
(ii) they consume much less power. They have, though, the handicap of lower
light sensitivity and higher noise and that disqualifies them from attacking the
top of the market for the time being.

It may be worth mentioning here
that CCDs can also be used as
detectors for high energy particles,
which might simultaneously knock
out thousands of electron-hole
pairs.

np pn

(1) (2) (3)

Injecting
contact

+ –

Ic

Fig. 9.46
The silicon controlled rectifier (SCR).

9.17 Silicon controlled rectifier

This has four semiconductor layers, as shown in Fig. 9.46. Apart from the ohmic
contacts at the end, there are three junctions. Suppose that junctions (1) and (3)
are forward biased by the external supply, so that (2) must be reverse biased. As
the supply voltage increases, the current will be limited by junction (2) to a low
value, until it gets to the reverse avalanche breakdown point. Then its resistance
falls very rapidly, and the current through the whole device ‘switches’ to follow
a curve approximating to the forward bias junction characteristic, starting at
this breakdown point, Us (Fig. 9.47). So far we have described a self-switching
arrangement: at a certain applied voltage the device resistance might fall from
several megohms to a few ohms. The switch is made even more useful by the
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Common curve after
breakdown of junction (2)
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UUg (Ic > 0) Ug (0)

Fig. 9.47
The current voltage characteristics
of a SCR. The switching voltage Us

may be controlled by the injected
current Ic.

additional contact shown in Fig. 9.46, which injects holes into the n-region
between junctions (1) and (2) by means of an external positive control bias.
By injecting extra minority carriers into the junction (2) region the current Ic

controls the value of Vs at which the device switches to the on position.
This device is used as a switch and in variable power supplies: broadly

speaking it is the solid-state version of the gas-filled triode or thyratron. By
analogy the name thyristor is also used to describe it.

9.18 The Gunn effect

In this and the next two sections I am going to discuss devices that for a
change, do not depend on a p–n junction but rather on the bulk properties
of semiconductors.

We have shown how desirable it is to have negative resistance and how it
can be achieved with a tunnel junction. But an inherent snag with any p–n
junction is that it must behave as if there were a capacitor in parallel with the
device—we worked out its value in Section 9.5. So at high frequencies this
capacitor lowers the impedance and causes a falling-off of efficiency. Can we
get round this problem by having a negative resistance characteristic, like that
of a tunnel diode, in a bulk semiconductor? This is a long-established El Dorado
of semiconductor device engineers. Nearly all semiconductors should behave
like this.

Look again at an E–k curve that we drew earlier [Fig. 7.12(a)]. If this
represents the conduction band, the electrons will be clustered about the lowest
energy state: E = 0, k = 0. Now apply a field in the x-direction which
accelerates the electrons, so their momentum (which, as we have mentioned
before, is proportional to k) will increase as well. This means that our electrons
are climbing up the E−k curve. At a certain point the effective mass changes
sign as shown in Fig. 7.12(c). Now the effective mass is just a concept we
introduce to say how electrons are accelerated by a field; so this change of
sign means that the electrons go the other way. Current opposing voltage is a
negative resistance situation. It seems that there should be a good chance of
any semiconductor behaving like this, but in fact so far this effect has not been
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198 Principles of semiconductor devices

discovered. The reason must be that the electrons move for only a short time
without collisions. So to get within this time into the negative mass region,
very high fields are necessary, which cause some other trouble, for example
breakdown or thermal disintegration.

As a matter of fact, we do not really need to send our electron into the negative
mass region to have a negative differential resistance. If the effective mass of
the electron increases fast enough as a function of the electric field, then the
reduced mobility (and conductivity) may lead to a reduction of current—and
that is a negative differential resistance, so there seems no reason why our device
could not work in the region where m∗ tends rapidly towards infinity. It is a
possibility, but experiments have so far stubbornly refused to display the effect.

I

O

Light electrons

Transition

Heavy
electrons

B

UUA

A

Fig. 9.48
Linear current voltage characteristics
for GaAs assuming that only light
electrons (OA) or only heavy
electrons (OB) are present! The
actual characteristics follow the OA

line for low voltages and the OB line
for high voltages. The transition is
shown with dotted lines.

An improvement on the latter idea was put forward by Watkins, Ridley, and
Hilsum, who suggested that electrons excited into a subsidiary valley of GaAs
(see Fig. 8.10) might do the trick. The curvature at the bottom of this valley is
smaller; so the electrons acquire the higher effective mass that is our professed
aim. In addition there is a higher density of states (it is proportional to m∗3/2);
and furthermore, it looks quite plausible that, once an electron is excited into
this valley, it would stay there for a reasonable time.

The predicted negative differential resistance was indeed found
experimentally a few years later by J.B. Gunn, who gave his name to the
device. At low fields most of the conduction-band electrons are in the lower
valley. When an electric field is applied, the current starts to increase linearly
along the line OA in Fig. 9.48. If all electrons had the higher effective mass
of the upper valley, then the corresponding Ohm’s law curve would be OB.
As the field increases, some electrons (as we mentioned before) gain enough
energy (0.36 eV) to get into the higher valley, and eventually most of them end
up there. So the actual I–U curve will change from something like OA at low
fields to something like OB at high fields. This transition from one to the other
can (and in GaAs does) give a negative differential resistance.

Having got the negative resistance, all we should have to do is to plug it into
a resonant circuit (usually a cavity resonator at high frequencies) and it will
oscillate. Unfortunately it is not as simple as that. A bulk negative resistance in
a semiconductor is unstable, and is unstable in the sense that a slight perturbation
of the existing conditions will grow.

Let us apply a voltage UA in the negative-resistance region (Fig. 9.48).
The expected electric field EA = UA/d (d is the length of the sample),
and the expected potential variation, U = EAx, are shown in Fig. 9.49 by
curves (i). It turns out that the expectations are wrong because a negative
resistance in a bulk material nearly always leads to an instability. In the present
case it may be shown that the instability appears in the form of the heavy
electrons accumulating in a high field domain, which travels from the cathode
to the anode. The potential and field distributions at a particular moment in
time, when the high field domain is in transit, are shown in Fig. 9.49 by
curve (ii).

So why is this device an oscillator? Because it provides a periodically varying
current. How? When the voltage UA is switched on at t0, the current is IA, as
shown in Fig. 9.50. Between t0 and t1 the high field domain is formed at the
cathode. This is equivalent to the insertion of a high resistance material, hence
the current must suddenly decline. It remains constant while the high-field
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Fig. 9.49
The high field domain fully formed.

I

IA

t0t1 t2t3 t

Fig. 9.50
The current as a function of time in
GaAs when high field domains
move across the material.

domain moves along the material. At t = t2 (where t2 − t1 = d/vdomain, and the
velocity of the domain is roughly the same as the drift velocity of the carriers)
the domain reaches the anode. The high-resistance region disappears, and the
current climbs back to IA. By the time, t3, the domain is newly formed at the
cathode, and everything repeats itself. We have obtained a periodic current
waveform rich in harmonics with a fundamental frequency,

f = 1/(t3 − t1) ∼= vdomain/d . (9.28)

Thus, the Gunn diode has an oscillation frequency governed by the domain
transit time. The velocity of the domain is more or less determined by the
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200 Principles of semiconductor devices

voltage producing the effect; so in practice the frequency is selected by the
length of the device.

A typical Gunn diode is made by growing an epitaxial layer of n-type
GaAs, with an electron concentration of 1021–1022 m−3 on to an n+-substrate
(concentration about 1024 m−3). The current flow in the device (Fig. 9.51) is
through the thickness of the epitaxial layer. For good quality GaAs the domain
velocity is about 105 m s−1; a 10 μm layer will therefore make an oscillator in
the 1010 Hz frequency band (the so called X-band of radar).

Note that the transit time mode is
not the only mode of operation for
this GaAs oscillator. By preventing
the formation of domains the bulk
negative resistance can be directly
utilized.

Gold wire

n-type
active
layer

Heat
sink

n+

Fig. 9.51
Sketch of a typical Gunn diode.

9.19 Strain gauges

We have noticed before (in the case of thermal expansion) that a change in
lattice dimension causes a change in the energy gap as well as in the value
of k at the band edge. These changes will also occur if the expansion or
contraction is caused by applied stresses. The changes are slight and with
intrinsic semiconductors would cause only a small change in resistance. If,
however, we have a p-type semiconductor with impurities only partially ionized,
a very small change in the energy bands can cause a large percentage change
in the energy difference between the impurity levels and the band edge.
Thus, the change in resistance of the material with stress (or strain) is large
(Fig. 9.52).

Semiconductor strain gauges are pieces of semiconductor with two ohmic
contacts that are of a suitable shape to glue on to the component under test. In
general, the resistance R can be written

K is a geometrical constant, L is
the length, A the cross-sectional
area, and ρ the resistivity of the
semiconductor.

R = K(ρL/A). (9.29)

Thus,
dR

R
= dL

L
− dA

A
+ dρ

ρ
, (9.30)

which can be rearranged asp is Poisson’s ratio.

Fractional resistance change

Strain
= dR/R

dL/L
= 1 + 2p + dρ/ρ

dL/L
. (9.31)

The last term on the right-hand side is called the gauge factor,

G = dρ/ρ

dL/L
. (9.32)

For p-type silicon this factor can be between 100 and 200. Of course, for a metal
G ∼ 0 and, since the other two terms on the right-hand side of eqn (9.31) are of
order of unity, the gauge factor gives a measure of the increased sensitivity of
strain gauges since semiconductor strain gauges became generally available.

Fig. 9.52
The shift of the energy diagram with
strain; this makes semiconductors
suitable materials for strain gauges.

Impurity level Shift due to lattice strain

Shift due to lattice strainValence band
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9.20 Measurement of magnetic field by the Hall effect

We can rewrite the Hall-effect equation (1.20) in terms of the mobility and of
El , the applied longitudinal electric field, as

EH = BElμ. (9.33)

Hence, B may be obtained by measuring the transverse electric field,
the sensitivity of the measurement being proportional to mobility. One
semiconductor is quite outstanding in this respect, n-type indium antimonide. It
has an electron mobility of about 8 m2 V−1 s−1, an order of magnitude greater
than GaAs and about fifty times greater than Si. In general, this is a simpler
and more sensitive method of measuring a magnetic field than a magnetic coil
fluxmeter, and the method is particularly useful for examining the variation of
magnetic field over short distances, because the semiconductor probe can be
made exceedingly small. The disadvantages are that the measurement is not
absolute, and that it is sensitive to changes in temperature.

9.21 Gas sensors

A quite sophisticated effect is that traces of particular oxidizing, reducing or
other reactive gases will modify device performance, for example by changing
the conductivity of a semiconductor, such as doped tin oxide. This is a very
versatile ‘Varistor’, which can be doped to sense various gases. For example,
in its n-type form it has a lattice deficient in O. Oxygen is chemisorbed and
removes conduction band electrons by trapping them on the surface. A reducing
gas has the opposite effect. This can be used as a simple sensor which enables a
gas company service engineer to read off the fraction of CO in flue gases with
a simple instrument in a few seconds—a task that used to require a team of
analytical chemists.

Forms of the varistor can be targetted on the gases associated with explosives
or drugs. Hence, these ‘electronic noses’ are replacing the ‘sniffer dogs’ often
featured in news items. It is a pity that dogs as well as people are being made
redundant by semiconductors, but at least there is now less chance that a cat
crossing the road will cause a dog misbehave and misdiagnose.

9.22 Microelectronic circuits

We shall conclude the discussion of semiconductor devices by saying a few
words about the latest techniques for producing them. Since the techniques
are suitable for producing very small electronic circuits, they are called
microelectronic circuits; and because these circuits can be interconnected, they
are often referred to as integrated circuits. The material most often used is Invented by Jack Kilby in 1959,

working at Texas Instruments. He
received the Nobel Prize in 2000.

silicon; the small piece of material upon which one unit of the manufactured
device is presented is known as a chip. Once the exclusive preserve of a few
engineers, today even sociologists and politicians know about the silicon chip.
They learned to love it or hate it; indifference is no longer possible.

The crucial property of silicon that made this technology possible is its ability
to acquire a tenacious ‘masking’ layer of silicon dioxide. SiO2 is familiar in an
impure state as sand on the beach; it has a ceramic form used for furnace tubes
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202 Principles of semiconductor devices

and a crystalline form (quartz) that has good acoustic and optical properties.
It is very hard, chemically resistant, an insulator, and has a high melting point
(≈1700◦C). An oxide layer can be grown by heating the silicon to 1200◦C in
an oxygen atmosphere. The growth rate is very slow, about 1 μm per hour, and
the thickness is thus easily controlled.

What else needs to be done besides growing an oxide layer? Quite a lot, there
are a number of other operations to be performed. Instead of discussing them
separately, we shall give here a brief description of the production of a single
n–p–n transistor, and shall introduce the various techniques as we go along.

We shall start with a p-type substrate which has an n-type epitaxial layer of
about 4–8 μm on the top as shown in Fig. 9.53(a). Next, we grow an oxide layer,
then cover it by a thin film of a material called a photoresist, place a mask on
top, and illuminate it by ultraviolet light [Fig. 9.53(b)]. The mask has opaque
and transparent areas, so it can define the region of the photoresist upon which
the ultraviolet will fall. It is usually a photographic mask drawn originally at a
size that may be 1000 times larger than the one required finally, and reduced
using a rather sophisticated ‘enlarger’ backwards.

Photoresists are organic compounds whose solubility is affected by
exposure to ultraviolet light. We are using here a positive photoresist in which
the exposed areas can be washed away by a suitable developer.∗ After this∗ For a negative photoresist, as may

be expected, the unexposed areas are
soluble.

operation, we are left with two windows in the photoresist, as shown in
Fig. 9.53(c). The one chemical that readily attacks SiO2 is hydrofluoric acid
(HF), but it does not dissolve the photoresist. Hence, the windows in the resist
can be turned into windows in the SiO2 by etching with HF [Fig. 9.53(d)] and
the remaining photoresist may then be removed [Fig. 9.53(e)].

The purpose of all these operations, starting with oxidation, was to get access
to the epitaxial layer at selected places. The next operation that makes use of
these windows is diffusion. The silicon is sealed into a clean furnace tube,
containing a volatile form of the required doping material. It is then heated for
a prescribed time, and the impurity diffuses into the surface. This is a solid-state
diffusion process, and the important thing is that it is completely inhibited in the
oxide covered regions. For the p-type doping we want here we could use boron
bromide (BBr3) heated to about 1100◦C. The emerging p+ region is shown in
Fig. 9.53(f).Note that there is lateral diffusion

as well, so the p+ region extends
somewhat under the oxide layer.
The aim of this diffusion is to
isolate the present transistor from
others made on the same chip.

The oxide layer has now done its duty, so it may be removed, and we
are ready to perform the next operation, which is to provide a window for
base diffusion. The steps are again oxidation, photoresist coating, masking,
illumination by ultraviolet light, removal of the exposed photoresist, and
removal of the oxide layer underneath. Then comes the p-type diffusion with
which the stage shown in Fig. 9.53(g) is reached.

A further repetition of the technique leads to a window for a diffusion of
phosphorus, which forms the n+ emitter region [Fig. 9.53(h)]. The n+–p–n
transistor is now ready, though it still needs to be connected to other elements on
the same chip; so we need some electrodes. This may be done by forming three
more windows and evaporating a metal, usually aluminium, for the emitter,
base, and collector contacts. The finished transistor is shown in Fig. 9.53(i).

In practice, the above structure is rarely used because of two major dis-
advantages, first the parasitic p–n–p transistor (formed by the base, collector,
and substrate regions) may draw away current to the substrate, and second there
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Stages in the production of
microelectronic circuits.
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204 Principles of semiconductor devices

Fig. 9.54
(a) Buried layer diffusion prior to
epitaxial growth. (b) The completed
transistor differing from that of
Fig. 9.53 by having an additional
n+ region.
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is a long path of high resistance from the emitter to the collector. The remedy
is to diffuse an n+ buried layer into the p-type substrate prior to the epitaxial
growth of the n-layer. Thus, the starting point is as shown in Fig. 9.54(a) instead
of that in Fig. 9.53(a).

There is also an additional n+ diffusion, following the emitter diffusion,
leading to the final product shown in Fig. 9.54(b). Note that there is a more
modern technique of doping called ion implantation. As the name implies, this
involves the implantation (in fact, shooting them in with high energy) of ions
to wherever the impurities are needed.

Now we know how to make one transistor. The beauty of the technique is that
it can make simultaneously millions or billions of transistors. The information
where the circuits reside is contained in the corresponding photographic mask.
So how many transistors of the type shown in Fig. 9.54(b) can be produced
on a chip that is, say, of the size of 1 cm2? Let us do a very, very simple
calculation which will give us a very rough answer. To make the calculation
even simpler let us consider the less elaborate structure of an inversion type
MOSFET shown in Fig. 9.55. The crucial quantity that will determine the
density of the components is a, the so-called minimum feature size. This would
correspond to the minimum distance in Fig. 9.55, which is about half the length
of the p+ region or the distance between the metal electrodes. The length of
the MOSFET is then about 9a. Taking the width of the device as 4a and the
distance between two devices as a, the area required for one MOSFET is 50a2.
Five years ago, this minimum feature size was 120 nm. It has been reduced
in subsequent stages to 95 nm, to 65 nm, and then down to the present value
(writing in January 2009) of 45 nm. Accepting the above estimate for the size
of a transistor, that means that the number of elements on a chip of 1 cm2 has
increased from about 140 million to 1 billion, quite a large number.

We have to note here that not only is the science difficult, but also that
increasing resolution by a factor n, and consequently the component density
by n2, involves formidable problems in costs and man-years, which also go
up by n2. The costs begin to look like the national debt, and the personnel
involved lead to management problems of large teams, to reduce (say) 500
man-years to a development period that keeps you ahead of the opposition. This
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Fig. 9.55
A simple MOST with contacts.

has led to international collaboration involving all the major players. One of the
results coming out is a massive document called the International Technology
Roadmap for Semiconductors. It sets industry standards and predicts the main
trends in the semiconductor industry. The minimum feature size is supposed to
decline to about 20 nm. Is that feasible? Probably it is. Is that the last hooray
of the planar process? Probably it is.

The same technique cannot go on for ever. So what are the limitations? First,
the number of electrons: as dimensions decline, a stage will be reached when
the fluctuations will cause unacceptable degradation in performance. Another
obvious factor is the increase in capacitance; and remember that capacitors need
time to be charged and discharged. Tunnelling across the gate oxide or from
source to drain is also a serious limitation. What else? Heat. As the density of
components increases, heat dissipation will become a major, maybe insoluble,
problem. All the arguments suggest that the planar process will not survive for
long, but, as we know from experience, it refuses to die quietly. One of the
techniques that has postponed its demise is plasma etching, which we shall
discuss in Section 9.23. A number of other approaches that have improved
resolution will be presented in Section 9.24.

We shall finish this section with Moore’s famous law that has been quoted
in many different forms. Its essence is that the number of components on a
chip increases exponentially as a function of time. Figures quoted have been
doubling every year, doubling every 18 months, or doubling every two years,
depending on the mood of the time, optimistic or pessimistic. Let’s make a
simple calculation. Assuming that the process started in 1960 with a single
transistor, and that now in 2009 the number of transistors on a chip has increased
to 1 billion, we find that the rate of increase in those 49 years is equal to
p49 = 109, which comes to a factor of 1.526 per year or a doubling of the
number in every 20 months. Remarkable. Never in the course of human history
has such a steady increase been sustained for such a long time.

9.23 Plasma etching

Plasma etching has become a very important technique, deserving a more
detailed description. What can plasma etching do that other etchings can’t?
Let’s look at the steps in Fig. 9.53. The etching away of silica or silicon
layers, described there, is an isotropic process – acid reacts sideways as well
as downwards, so the sidewalls of channels are eaten away, making a, the
minimum feature size, larger. This is worsened if hot hydrofluoric acid is used
to speed things up or to dissolve silicon nitride layers (which have been used
to improve MOST performance). It can damage the edge of the photoresist.
There are skilled handling operations involved in the liquid (wet) chemistry,
so that operator skills were found to affect device yields. Improvements were
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needed as a got below 1 μm. Plasma processing was introduced, a dry process,
more automated. We first mentioned plasma physics∗ in Section 1.7 and it∗ Gas discharge physics has been a

favourite topic for scientists for well over
a century. Irving Langmuir, who was
a pioneer of diagnosing gas discharges,
especially with probes, coined the word
‘plasma’ about 83 years ago at the
time of writing (2009). The subject got
an immense boost about 60 years ago
when the possibility of controlled fusion
of hydrogen isotopes was proposed to
solve our energy problems with no nasty
side products. The science was well
established. E = mc2 was believed by
everyone, and all the stars used fusion,
including our Sun, which had enabled life
on earth to be established. It could also
be man made, as we had the H-bomb,
which at some times had threatened to
finish life on earth. So it seemed only
a development job to get a controllable
fusion energy source. Enormous sums
of money and highly skilled man-hours
have been spent in failing to do this (so
far). A by-product is a lot of skilled
plasma physicists who have done good
science, but, unfortunately, almost every
discovery has revealed new instabilities
which make it more difficult to contain
the hot plasma in its reaction vessel. It
looks as if the right size for a fusion
reactor is the size of the Sun—much too
large to fit into the Los Alamos desert or
even the Australian Outback. Thus there
is a lot of plasma knowledge which can
be separated from fusion plasma physics
and instead used to study plasma etching
and cleaning of surfaces.

has cropped up several times since then. Usually a gas discharge plasma is
about 0.1% ionized and so consists mainly of neutral gas atoms or molecules,
outnumbering the ions and electrons. To achieve anisotropic etching we must
use a field to direct etching ions to the surface, and not to the sidewalls. In the
jargon, this is RIE, or reactive ion etching. This field can be realized with a
d.c. voltage between the input and the earthed electrodes (Fig. 9.56). Or this
can be done more cleverly by controlling the gas constituents of the plasma
so that the sheath which forms on the surfaces of the electrodes has a built-in
field which influences the ions striking the semiconductor slice. The sheath
contains positive and negative ions as well as electrons and in practical cases
can have a potential difference of several kilovolts. The neutral atoms will slow
down the movement of the ions, so to increase their mean free path we need
a low gas pressure, but we also need a high ion density for fast processing.
The obvious way to satisfy these criteria is to increase the ionization fraction of
the gas. One way of doing this is by capacitatively coupling a radio frequency
field of quite high power into the plasma vessel. This has usually been at a
frequency of 13.56 MHz.† The ion density can be increased further by applying

† A frequency allocated by governments
for industrial use. We mentioned this
frequency, together with 2.45 GHz,
in describing molecular beam epitaxy
(Section 8.11.5).

a static magnetic field to achieve electron cyclotron resonance (Section 1.6) so
that the electrons absorb more energy from the r.f. field. An outline diagram
of an apparatus for this is shown in Fig. 9.56. A well-read textbook, Plasma
etching,‡ gives the pressure range of gases used as 0.13 to 133 Pa. The reason for

‡ M. Sugawara, Plasma etching, funda-
mentals and applications, Series on
Semiconductor Science and Technology
(Oxford University Press, 1998).

this rather arbitrary choice becomes apparent when we restate it in the previous
preferred units of millimetres of mercury, or torr. It then becomes 10−3 Torr
to 1 Torr, showing that most plasma engineers were brought up using ‘old
money’.

A survey of published results on plasma etching shows that r.f.- excited
plasmas, usually of argon and various reactive gases, operate at total gas
pressures of 9–90 Pa and generate plasma ion densities of between 2.1 1012 and
2 × 1016 m−3. With an applied magnetic flux for electron cyclotron resonance
(about 4.8 × 10−4 T for the standard frequency), the operating pressure range is
down to 0.01–3 Pa but the ion density is up to 7 × 1016– 9 × 1017 m−3. This trend
to lower pressure and higher density has been carried on using magnetron-type
discharges and helicon waves. All of this is described in the book by Sugawara
mentioned above.

The basic procedure with the equipment of Fig. 9.56 is to use the diffusion
pump to evacuate the chamber to about 10−6 Torr, baking the whole to outgas
air, water vapour, and residual chemicals, and then to throttle down the pumping
line and open needle valves to admit gases so that the required gas pressure is
attained in equilibrium; there is provision to remove volatile products when the
r.f. power and the etching process are started.

Another method of getting high ionization is to use microwaves fed
through a waveguide into the plasma vessel. Frequencies similar to that used
for microwave cooking have been used, 2.45 GHz. This corresponds to a
wavelength of 12.2 cm so the reaction vessel can be made a resonant cavity,
with a high-field region in the vicinity of the Si slice. Again electron cyclotron
resonance can be utilized; this requires a magnetic flux density of about
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Fig. 9.56
Diagrammatic drawing of plasma
etching apparatus. The pressure
monitors and controllers to keep the
etchant gases at the required levels are
not shown.

8.7 × 10−2 T, which greatly increases the cost and bulk of the equipment,
and so is not very popular.

Now we must consider plasma chemistry. The ion must be chemically
reactive with the SiO2 surface. By analogy with the wet processes which use HF,
a fluorine ion is needed. Carbon tetrafluoride (CF4), a gas which is chemically
a close relation of the well-known degreasing fluid carbon tetrachloride, has
been used, as well as other fluorides of carbon. It is usually mixed with one
of the inert gases argon or xenon to enhance gas breakdown. A further use of
dry processing is to get rid of the photoresist coating. This can be burnt off
in an ashing process using a gas mixture including oxygen. The slice can then
be taken out of the plasma reactor, recoated, and masked again for the next
process, until the final contact layer is made.

9.24 Recent techniques for overcoming limitations

The minimum feature size depends on resolution, and the resolution achievable
at a particular wavelength λ has been known for well over a century to be equal
to λ/(2n sin θ ), where n is the index of refraction and θ is the cone angle of the
beam.

• Immersion lithography. This technique uses a higher-index material than air.
The simplest one that can be used is water, which can improve resolution by
about 35%. The disadvantage is the impact of water on the photoresist. This
technique has been used to reduce a to 65 nm and then to 45 nm, and it is
likely to be used for reaching the next target of 32 nm.

• Double patterning. This increases the number of fabrication steps. In double
exposure, a photoresist layer is exposed twice with alternating phase-shift
masks. The principle can be appreciated by considering a masking pattern
consisting of an opaque array of bars interspersed with transparent regions.
The shadow of a bar will be made fuzzy by diffraction. Now, if alternate
‘windows’are ‘glazed’with a half-wavelength phase shifter, the light through
adjacent windows is out of phase, so the light diffracting around the bar will
interfere destructively, reducing the fuzziness and making the bar’s shadow
sharp, as if it were a larger object, away from the diffraction limit.

• High-k gate dielectrics. This is the jargon used. For some reason
semiconductor technologists denote the relative dielectric constant by k,
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instead of the εr that is used by practically everybody else. The problem is
with the insulator between the metal electrode and the channel in a MOSFET.
As a result of scaling down all the dimensions, this insulating layer went down
to 1.2 nm, containing just five atoms. That led to some leakage current by
tunnelling when the transistor was off. Leakage current means more heat and
shorter battery life. Thus something had to be done when the next scaling
down, to 45 nm, was considered. A thicker insulator was needed but without
an increase of the voltage drop across it. The solution was to replace silica
(εr = 4.1) by an insulator which had a higher dielectric constant.∗ The two∗ It follows from the continuity of D,

the electric flux density, that the electric
field is lower in a material with a higher
dielectric constant.

insulators considered by the various companies are hafnium dioxide, with a
dielectric constant around 20, and zirconium dioxide, with a slightly higher
dielectric constant of 25. It turned out that for technological reasons it was
also necessary to return to a metal gate electrode.† The metal used was

† In fact, metal electrodes were replaced
by polysilicon ones in the late 1960s
but the acronym MOSFET, referring
to ‘metal–oxide–semiconductor’, sur-
vived. Concerning the principles, it
made no difference so there was no
reason to mention this in Section 9.22.
Lately, however, polysilicon has been
abandoned and metals have regained
their rightful place.

molybdenum, a high-melting-point material.
• Extreme ultraviolet (known also as soft X-ray) lithography. The shorter the

wavelength, the higher is the resolution. On that basis, all we need is to find
some sources at the right wavelength. If we want a minimum feature size of
13 nm (some optimists believe that that is possible) then we need sources at
about the same wavelength. As it happens, there are methods to create such
radiation. The favourite scheme is to have a powerful pulsed laser, direct it
on a piece of metal that has lots of electrons (tin, molybdenum, and silver
have been favourite candidates), and turn the metal into a plasma, which will
convert the incident radiation with reasonable efficiency (a figure of a few per
cent has been quoted) into the desired extreme UV wavelength. This is not
easy to do, but if one succeeds, that is only the beginning of the problems.
At this wavelength there are no lenses and mirrors of the kind that exist
at longer wavelengths. Mirrors have been produced from multilayers (see
Section 10.5) but they are very lossy. In fact all materials are lossy at these
wavelengths. So no proper projecting optics exist, nor are there appropriate
masks or photoresists. Efforts are of course being made in this direction and
one day they may succeed, but it is difficult to see when.

9.25 Building in the third dimension

All the microelectronic circuits we have been talking about were built in two
dimensions; that’s why the technique is often called the planar technique. It is
invariably a plane surface that is manipulated for producing a host of devices.
It is like Flatland,‡ a world of two dimensions. Can we get out of Flatland and‡ Flatland: A romance of many

dimensions is a short novel by Edwin
Abbot, published in London in 1884. It is
about life that is lived in two dimensions
and how the inhabitants can deduce
evidence about the existence of a third
dimension.

start building circuits in the third dimension? A start has already been made.
It is believed that the present arrangement of the source, drain, and gate (in
spite of the high-dielectric-constant gate oxide) will not survive when the next
reduction in size is considered. The basic idea is shown in Fig. 9.57. The
channel connecting the source and drain is a thin, fin-like wall jutting out of
the silicon substrate. The gate is wrapped around the channel. The device is
called a multigate FinFET. There are indeed solutions with more than one gate,
but one could also claim that the wrapped-around gate is equivalent to three
gates.
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Channel

Drain

Gate

Source

FinFET

Fig. 9.57
Schematic representation of a FinFET
(i.e. a field-effect transistor in which
the gate is wrapped around a fin-like
channel).

Having broken the taboo of flatness, one could of course go much further
and build genuine three-dimensional circuits. Some optimists believe that they
will come some time in the future. How would we attempt to build them?

Having completed our circuits in two dimensions we would carefully put an
insulating oxide layer on the top and start afresh. Alas, we no longer have our
nice, epitaxial layer of silicon: the crystalline regularity has been lost. There
is no problem depositing silicon on the top of the insulator but it will be an
amorphous layer and everyone knows that amorphous materials are not good
for building high quality transistors. This has certainly been the state of the art
until recently. What has changed is the ability to produce a ‘good’ amorphous
layer by depositing the silicon at the right temperature to be followed by the
right heat treatment. Good in this context means that the single crystal grains, of
which all amorphous materials are made, can now be quite large, large enough
to accommodate a fair number of transistors. One more problem that had to be
solved was the presence of irregularities, hills and valleys, after each deposition
process. A technique to eliminate them, called chemical-mechanical polishing,
has also been perfected. So the road to three-dimension-land is open.

What are the advantages? The main advantage, clearly, is higher packing
density: to gain a factor of 10 is not to be sniffed at.The devices being closer
to each other also means that the signals have shorter paths to travel, and
that increases speed. Unfortunately, there are still a number of disadvantages
which will exclude them for the moment from flooding the market. The greatest
disadvantage is of course a straight consequence of the polycrystalline nature
of the layers. Devices that lie on the grain boundaries will not work. Therefore
error detection and correction techniques must be an integral part of the system.
Speed may also suffer. The advantage of shorter paths is offset by the slower
switching speed of amorphous devices. And then comes the problem of heat.
It is difficult enough to avoid overheating in a two-dimensional structure. It
is much more difficult to do so in three-dimension. The answer is to reduce
voltages or simply cool the system. Will it be economic to do so? For some
applications, for example, for using them as simple memory cells, the answer
may already be yes.

9.26 Microelectro-mechanical systems (MEMS)

Up to now, everything has been immobile. Well, nearly. Electrons had a licence
to roam about and the lattice was allowed to vibrate. The difference is that,
from now on, part of a structure can mechanically move to perform some

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


210 Principles of semiconductor devices

useful function. This is a big subject to which we are unable to do justice in the
few pages available, but we shall try to convey the essence of the idea by going
in some detail through one example (a movable mirror) and discussing the role
of a quadrupole filter in the context of a mass spectrometer.

9.26.1 A movable mirror

In the present section we shall talk about the construction of the mirror
(many of the steps in the process are similar to those discussed in relation to
microelectronic circuits). The optical aspects will be discussed in Chapter 13.

I shall start with a silicon wafer with a SiO2 insulator on the top. We could
deposit polysilicon on the insulator, as outlined in the previous section, but if we
need a thicker layer and higher quality then another technique, called Bonded
Silicon-on-Insulator, is used. It involves the bonding of another silicon wafer
to the oxidised silicon substrate. The initial bonding is carried out under ultra-
clean conditions, and the assembly is then heated in a furnace to strengthen the
bond by inter-diffusion. The bonded layer may then be ground and polished, to
leave a high-quality single crystal Si layer which can be of virtually any desired
thickness.

To fabricate the mirror, the bonded layer is first metal-coated, typically with
Cr to improve adhesion and then Au to improve reflectivity. This is shown in
Fig. 9.58(a). We have five layers on top of each other: silicon, silicon oxide,
silicon, chromium and gold. The next problem is to shape both the mirror and its
elastic torsion suspension in the bonded layer. As you may guess, the bonded
layer is coated with photoresist which is then patterned with the mechanical
shape of the mirror, elastic suspension and surround. After that come two
different kinds of etching, the first one to transfer the pattern to the metal and
the second one to transfer it to the silicon layer. We arrive then to the situation
shown in Fig. 9.58(b) (cross section) and 9.58(c) (top view). The next step is
to remove the photoresist after which the whole thing is turned upside down,
the substrate side is coated with photoresist and patterned to define a clearance
cavity (we need the cavity for the mirror to be able to move). Two further
etchings are needed now, one to remove the silicon and the next one to remove
the silicon oxide. At this point the mirror is free to rotate on its suspension
[Fig. 9.58(d) and (e)].

The released structure is then turned upside down once more and attached to a
second wafer, which carries a pair of patterned metal electrodes on an insulating
oxide layer [Fig. 9.58(f)]. The mirror is now complete [Fig. 9.58(g) and (h)],
and may be rotated by applying a voltage between the upper electrode and one
lower electrode. The mirror will rotate until the attractive electrostatic force
between the electrodes is balanced by the restoring force provided by the elastic
suspension. The elastic qualities of silicon are surprisingly good, and there are
few problems with fatigue and brittle fracture if the assembly is packaged and
carefully handled.

You will realize that the aim was to show the basic principles by giving an
example of practical significance. There are better solutions but the present one
will also work well for a limited angular range. Turn angles of a few degrees
may be achieved with drive voltages of 100–200 V. Two-axis mirrors may be
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Fig. 9.58
Fabrication sequence for a single-axis
electrostatically driven MEMS torsion
mirror. After Aksyuk et al. Proc.
SPIE, 4178, 320, 2000.

constructed using similar principles, by mounting the mirror in a gymbal with
two orthogonal elastic suspensions and two orthogonal sets of drive electrodes.

9.26.2 A mass spectrometer on a chip

Our next example is a mass spectrometer. As the name implies, it measures
the range of mass in a particular assembly of molecules. The problem is to
find out how many molecules are between two limits, say between 150 and
160 atomic units. In principle, we could weigh each molecule on a sensitive
balance and, having measured their weight/mass, we could choose the right
ones and put them in a box marked ‘150–160’. In practice, this is not a feasible
way to proceed. Instead of boxes, we should have detectors and the selection
should be done by some sort of filter. How can we do that? The means at
our disposal are electric and magnetic fields. Unfortunately, they cannot affect
neutral molecules.

The solution is to attach, at least to a certain fraction of the molecules, a
charge. How? We ionize them. There are actually many ways to do that. We
shall mention only one of them: electron impact ionization.∗ Either the electrons ∗ This is a good method when the analyte

(the substance to be analysed) is a gas.are produced by thermionic emission (Section 6.5) or they are field-induced
(Section 6.7), and then they are accelerated to acquire the right amount of
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212 Principles of semiconductor devices

energy. As it happens, the right energy can be found by a very simple argument.
The average bond length of the molecules of interest is about 0.15 nm. If
we want electrons to break those bonds then it makes good sense to choose
an accelerating voltage which leads to a de Broglie wavelength of the same
length. Luckily, we have already looked at this calculation when working out the
accelerating voltage for the experiments of Davisson and Germer (Section 2.1).
We got a de Broglie wavelength of 0.1 nm using a voltage of 150 V. Hence,
to obtain 0.15 nm we need about half of that voltage (remember, the de
Broglie wavelength is inversely proportional to the square root of the applied
voltage), and indeed the voltage usually employed is 70 V. The accelerated
electrons are then injected into an ionization region, where they encounter the
analyte.

Next we need to filter the ionized molecules according to their mass. The
most obvious way of doing that is to introduce the ions into a homogeneous
magnetic field, where they will be deflected (remember eqn (1.46)) by a force
perpendicular both to the applied magnetic field and to the electron velocity.
This type of filtering works very well indeed. Mass spectrometers based on it
were developed originally by the fathers of mass spectroscopy, Thomson,Aston,
and Bainbridge, some hundred years ago. Nowadays it is less fashionable. TheFrancis William Aston, Nobel

Prize in Chemistry, 1922. way which is in the ascendancy is quadrupole filtering. It needs four parallel
electrodes, which can produce the right electric field distribution. Between the
electrodes there is a channel, into which the ions are injected. What do we want
to achieve? That most of the ions fall by the wayside (bump into electrodes) but
those with the right mass sail through unharmed. It turns out that static electric
fields on their own cannot be used for this purpose. On the other hand, if they
are aided and abetted by a time-varying voltage in the lower MHz range and,
in addition, the electrodes are shaped so as to produce a hyperbolic potential
distribution,∗ then the aim can be achieved. For a specific ratio of the d.c.∗ Ideally, electrodes of hyperbolic shape

are needed but it is not easy to produce
them. It turns out, however, that the
required potential distribution can be well
approximated by electrodes of cylindrical
shape.

and a.c. voltages, ions with a particular mass have bounded trajectories and
transit without discharging. Tuning of the filter is done by varying the d.c. and
r.f. voltages but keeping their ratio constant. It is an ingenious solution. The
inventor, Wolfgang Paul, got a Nobel Prize for it in 1989.

Having got the right ions through the channel, we need to detect them.
That is relatively easy. Ions may be detected on a separate electrode, where
they discharge to become molecules, leaving the charge to be converted into a
voltage by a low-noise amplifier.

So we have got everything we need: an ion source, a mass filter, and a
detector. But, you may say, what happens if there are two different kinds of
molecules with identical mass? Can we distinguish them? Yes, we can, but not
on the basis we have described so far. We have not told the full truth. When the
molecules are ionized they may fragment into daughter ions. Instead of just one
type of ion, each molecule generates a distribution of ions, a kind of signature
that can be recognized.

Finally, let’s see how a quadrupole can be constructed. A relatively simple
way is to etch down crystal planes of silicon in a particular direction. The
(111) planes lie at 54◦ to the surface of (100) oriented wafers, and are resistant
to chemical etches. Hence etching through rectangular mask openings creates
V-shaped grooves, which can locate two electrodes. Next the silicon is thermally
oxidized to provide a surface oxide layer. This is necessary because the
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Fig. 9.59
Schematic representation of a
quadrupole filter in a mass
spectrometer.

electrodes must be insulated. The whole assembly of the quadrupole filter
(Fig. 9.59) can then be constructed from two dies, each carrying two electrodes
and separated by cylindrical spacers in similar grooves.

And now we have come to the most interesting question: how large is a
mass spectrometer? Those designed by the founding fathers needed a good-
sized room to accommodate them. How large is this miniaturized version? The
major item is the filter, which has dimensions of about 6 × 3 × 30 mm3,
considerably below the size of a room.

9.27 Nanoelectronics

We are getting more familiar with devices and techniques in the nanometre
region. At the time of writing (January 2009), transistors with a minimum
feature size of 45 nm are already available commercially. There is, however,
still an aura of mystery surrounding the subject. This is partly due to some
exaggerated claims made in the past decade by science fiction writers aided
and abetted by some scientists. It is the dream of nanobots, little robots that
will do everything conceivable: producing food from basic elements and, when
needed, scrambling up in your veins in order to repair a clot. A further reason
might be the awe we all feel when coming to atomic dimensions. Can we really
interfere so much with nature? Will nature fight back? The third reason is that,
apart from brute force (as manifested in the continual reduction in the size of
traditional devices), nobody is sure in what direction to push ahead; or, rather,
every participant in the game, which is amply financed, is pushing ahead in a
different direction.

By the nature of the problem there are two basic approaches: top-down
and bottom-up. In the former case one proceeds like a sculptor chiselling
away unwanted material and adding bits here and there. This is the approach
of microelectronics, the familiar approach. The bottom-up approach is the
new one. It can be done. It is not impossible, just pretty difficult. Let me
give you some indication of how it has been done. The technique is that of
Micro-Electro-Mechanical Systems, discussed earlier, but on a much smaller
scale so that we can replace the ‘Micro’by ‘Nano’arriving at the field of NEMS.
The bottom-up approach is based on a small cantilever∗ that can actually capture

∗ The small cantilever may also serve
as the basis of a new type of memory
promising gigabytes of information
on a few square centimetres. Several
companies, including IBM, made
progress in that direction. The
information is written by a sharp tip
perched at the end of the cantilever
dipping into a polymer and creating a
pit. The presence of a pit may then be
regarded as a one and the absence of a
pit as a zero. Reading is also done by
a tip relying on a change of electrical
resistance when it enters the pit.
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an atom off the surface of some material and deposit it at another place. The
principles followed are that of the atomic force microscope.

There is no doubt that successful experiments have been done and a lot
has been learned but that is still a far cry from buidling useful devices in a
reliable manner. Do we know the laws governing the nanometre scale? Yes, of
course, they are the laws of quantum mechanics. We know the basic equations,
but computers are just not powerful enough to get even near to solving them
for practical situations. So far in this course we have been able to manage
by injecting no more than a small amount of quantum mechanics. We needed
some basic tenets in order to explain the mechanism of conduction, the role
of the periodic structure of atoms, the concept of tunnelling, etc. But having
accepted the notion of conduction and valence bands, the presence of two kinds
of carriers, energy gaps, impurity levels and so on, we could really use the
familiar classical picture. It did not really stretch our magination to the limits
to ‘see’ holes diffusing across the base region. We could legitimately boast to
have tamed quantum mechanics when dimensions are above about 50 nm. For
structures smaller than that the taming has just began. One hopes that it will
successfully continue.

G1 G2 G3

source split gate drain
n-type GaAlAs
undoped GaAs

semi-insulating
GaAs

(a)

(b)

Fig. 9.60
(a) Schematic representation of a
Lateral Resonant Tunnelling
Transistor; (b) Energy diagram
influenced by the voltages on the
split electrodes.

I shall now discuss in a little more detail one of the devices that need some
structure on the nanoscale. It bears some resemblance to the High-Electron-
Mobility-Transistor discussed in Section 9.15. The only essential difference,
as shown in Fig. 9.60(a), is that the gate electrode is now split. There are now
three finger-gates placed close to each other, where each finger-gate can be
biased independently. Let us have reverse bias on the outer gates, so there is
a depletion layer below them. This means that the charge sheet sticking to the
AlGaAs/GaAs boundary will have discontinuities. If there are no charges, there
is no current. So how will this device work? Let me quickly add that the inner
gate is forward-biased, so that the potential distribution between source and
drain will have the approximate shape shown in Fig. 9.60(b). Well, we have a
lower potential in the middle, but will that help? It will if the dimensions are
sufficiently small—then electrons may tunnel through the barriers. Does this
mean that the current will flow as in a tunnel diode? In one sense yes, because
tunnelling is necessary for the existence of electron flow. It is different, though,
in another sense. In the tunnel diode the energy levels of the electrons were nigh
infinitely close to each other. The current depended on the density of states.
With gate fingers around 20–50 nm the electrons are confined to such a small
range that the individual energy levels can be distinguished.

One mode of operation is where the potentials at the outer gates and between
the source and the drain are fixed and the inner gate potential is varied, that is
the depth of the potential well is controlled. The energy levels are determined
by the confinement, so their positions are fixed relative to the bottom of the
well. Hence, when the depth of the well is changed, the energy levels move up
and down. There will be current flowing whenever a given energy level inside
the well matches that of the electrons outside the barrier. The name given to
this phenomenon is resonant tunnelling, and the device shown schematically
in Fig. 9.60(a) is known as a Lateral Resonant Tunnelling Transistor. Lateral,
because the electrons move in the lateral (horizontal) direction, and resonant
because current flows only at certain resonant values of the inner gate voltage.
One can see that here is a device which can be switched by very small changes
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(of the order of millivolts) in voltage. In practice, at least for the present, the
energy levels are not so well resolved, mainly due to electron scattering in the
well which will spread the electron energies. Cooling the device will help, but
we are still very far away from measuring delta functions in current. What we
do see are little current maxima at the right voltages. But these are early days.

There are a number of other devices too which have been shown to work in
the laboratory. Let me mention four of them.

Nanotube transistors. In order to make nanotube transistors we first
need nanotubes. What are they? They are thin-walled cylinders of about
1.5 nm diameter and 25 nm long bearing strong resemblance to the fullerenes
discussed in Section 5.3.6. The wall is usually made up of one single atomic
layer of carbon atoms. The process of preparing them is relatively easy. An arc
needs to be struck between graphite electrodes at the right pressure. They are
made up of graphite sheets and have their desirable properties (strong covalent
bonds) without the disadvantages (weak bonds between the layers). They are
very strong mechanically, they have both metallic and semiconductor varieties.
The problem is to get rid of the metallic variety. One of the methods to do this is
to burn them out, another one is to use chemical compounds to attract metallic
and semiconductor tubes to different areas of the surface.

What do they look like? They may be tubes hollow all the way or they might
be nicely, hemispherically terminated. Their shape also depends on the way the
graphite sheet is rolled up. If one of the axes of the hexagonal set coincides
with the axis of the nanotube, they take the form shown in Fig. 9.61(a), if it is
at an angle we obtain Fig. 9.61(b). They certainly give pretty patterns.

A property that is important for applications is that due to van der Waals
forces they stick to the surfaces they are deposited on but they do not stick too
firmly, so they can be shifted about, turned around, can be bent and can be cut.
When we want to make FETs out of them the substrate can serve as the gate
electrode, the tube provides the semiconducting path that is affected by the gate
voltage, and the ends of the tube serve as the source and the drain with metal
electrodes deposited upon them.

The second device or, rather, set of devices we want to talk about is based on
graphene. This is a two-dimensional sheet of graphite or can be regarded as a
carbon nanotube unfolded. It has a number of remarkable properties, which
are being explored at a number of research laboratories around the world.
It has odd properties, for example displaying the quantum Hall effect (to be

Fig. 9.61
Graphite sheets rolled up into
nanotubes at different angles.
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discussed in Section 11.8.6) at room temperature. It is a semiconductor but
there is no gap between the valence and conduction bands. The density-of-state
functions are two inverted cones meeting at the line separating the two bands.
The particles, electrons or holes, resemble in some respects photons. They move
with a constant velocity which is independent of their kinetic energy. Even at
room temperature they scatter little, so that within a range, comparable with
distances in a transistor, they can be regarded as ballistic particles. Can one
make ballistic transistors out of graphene? Perhaps. One problem is to have a
regime in which no current flows. If there is no energy gap, the current cannot
be stopped. This problem has been overcome by introducing constrictions in
the material, which turn out to be equivalent to gaps. It is too early to say what
kind of devices might emerge. They certainly belong to nanoelectronics since
the device sizes might be between 10 and 50 nm.

Es EF

eVa = Es

Insulators

(a)

(b)

Metal

Fig. 9.62
Energy diagram for a Single Electron
Transistor (a) in thermal equilibrium,
(b) when a voltage Va is applied.

The third device is the Single Electron Transistor which, strictly speaking,
does not belong to this chapter since the materials involved are metals and
insulators not semiconductors. On the other hand they can only work when the
dimensions are in the nanometre region so it is not unreasonable to discuss them
here. The effect upon which these devices are built comes from a combination
of electrostatics and tunnelling. The basic configuration is a Metal–Insulator–
Metal–Insulator–Metal (MIMIM) junction. The metal in the middle is called a
Coulomb island. The aim is to show that a single electron can make a difference.
This may occur when the electrostatic energy due to a single electron,

( 1
2

)
e2/C,

exceeds the thermal energy
( 1

2

)
kBT where C is the capacitance. When the

dimensions are sufficiently small∗ this capacitance is also small allowing a high

∗ One must be a little careful here. One
cannot just say that small dimensions
lead to small capacitance. In fact, a
small intermetallic distance, needed for
tunnelling to take place, leads to a high
capacitance. It needs to be emphasised
then that the metallic areas facing each
other must be very small. Taking the
insulator as air, the inter-metallic distance
as 1.5 nm and the cross-sections facing
each other as circles of 10 nm radius
we end up with a capacitance of 1.8 ×
10−18 F and an electrostatic energy of
7 × 10−21 J. Note that this is about 3.5
times higher than the thermal energy at
room temperature.

enough electrostatic energy. When a voltage is applied and an electron tunnels
across to the Coulomb island, the resulting change in energy is sufficiently
large to forbid any further flow until the voltage is raised to such a value as to
overcome this barrier. The argument can be made a little more precise by using
an energy diagram. At thermal equilibrium [Fig. 9.62(a)], due to the presence
of a significant electrostatic energy (denoted here by Es), there are no states
available to tunnel into in the vicinity of the Fermi level. The potential barrierEs

is partly below and partly above the Fermi level. Clearly, no current can flow in
response to a small voltage. This is called a Coulomb blockade. However when
the applied voltage is sufficiently large to overcome the barrier [Fig. 9.62(b)]
there is an opportunity for a single electron, to tunnel across. But only for a
single electron because as soon as it tunnels across from right to left a new
barrier is erected which can only be overcome by increasing again the voltage
above the next threshold. Hence, the current voltage characteristics consist of
a series of steps known as a Coulomb staircase.

Having discussed the basic phenomena it is now easy to imagine how they
can be utilized in a three-terminal device. We need an additional gate electrode
to control the flow of electrons as shown schematically in Fig. 9.63(a), or two
gates and two islands if we want more sophisticated control [Fig. 9.63(b)]. The
latter arrangment, a little similar to that used for CCDs (Section 9.16), permits
the transfer of a single electron from source to drain by choosing a suitable
sequence of gate voltages. In a practical case one should of course choose
a planar configuration. The Coulomb island(s) and the two metal electrodes
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would be evaporated upon one side of an insulator and the gate electrode(s)
upon the other side.

Vg

gate

M I M MI

Vg2 Vg1

M I M MI I M

(a)

(b)

Fig. 9.63
Single electron transfer controlled by
(a) a gate electrode in the MIMIM,
and (b) by two gate electrodes in the
MIMIMIM configuration.

If one thinks about it one must acknowledge that this is an amazing feat of
science: the control of current down to a single electron. Will these devices
ever reach the market place or will they remain a scientfic curiosity? I think
they will—in the fullness of time. The idea is so revolutionary, so challenging
that sooner or later the necessary effort will be invested into it. What can one
hope for? The advent of an entirely new family of logic circuits.

The fourth new type of device I wish to mention here but only very briefly is
the Molecular Transistor. It is made of Rotoxane—a molecule that can switch
from a conducting to a not-so-well-conducting state by the application of a
small voltage.

Most of the ideas behind devices on the nanometric scale have been around
for quite some time and experimental results showing the feasibility of the
ideas have also been available. A more detailed investigation of the relevant
phenomena is however quite recent for the simple reason that it took time to
develop the technology. The main motivation has been to put more devices
on a mm2 but many of the experiments conducted have also led to some new
physics, as for example to the discovery that in a sufficiently narrow bridge
both electrical and thermal conductivity are quantized.

Nanostructures have been made by a variety of methods. It is obviously
beyond the scope of the present course to enumerate them. The one that is worth
mentioning is the obvious one, electron beam machining, that can produce the
required accuracy due to the very short wavelength of accelerated electrons (see
examples in Chapter 2). It can write features on an atomic scale, although that
method is not free of some technical difficulties either, for example spurious
effects due to the electrons bouncing about in the photoresist. The biggest
problem however is cost. In microelectronics one can simultaneously produce
the pattern for a million elements. If we use electron beams, the pattern must
be written serially, and that takes time and effort.

9.28 Social implications

Do great men change the world? They surely do. History is full of them. But,
to use an engineering term, they are randomly distributed in space and time so
their effect on the whole cancels out. They can, admittedly, cause significant
local perturbations, but the associated time constants are invariably small.

Technology is in a different class. Whatever is learnt is rarely forgotten.
The interactions are cumulative. So it is not unreasonable to assume that when
they exceed a critical value society is no longer able to escape their effect. We
may roughly say (only a first order approximation, mind you) that present-day
society is determined by the invention and by subsequent improvements in the
performance of the steam engine. With the same degree of approximation, we
may predict that our future society will be determined by the invention and by
subsequent improvements in the performance of semiconductor technology.

So the scientists and engineers have done their duty. They created wealth.
They created a world in which everyone, every inhabitant of the Earth, could
have enough to eat, could have clean drinking water, and could have a roof
above their head. That has not happened. Many parts of the world are plagued
by starvation and disease. Corruption is widespread. Unnecessary wars abound.
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218 Principles of semiconductor devices

In the developed world, there is the twin problem of unemployment in
general and over-employment in administration. People love to create work
for each other, as so ably explained by Parkinson.∗∗ C. Northcote Parkinson, Parkinson’s

law (John Murray, 1958). Any chance that the future will bring something better? We should perhaps
finish this section by quoting again Gabor’s aphorism, the motto to the
Introduction, page xiv: ‘Till now man has been up against Nature; from now
on he will be up against his own nature’.

Exercises

9.1. Show that the ‘built-in’ voltage in a p–n junction is
given by

U0 = kT

e
loge

Nen

Nep
= kT

e
loge

Nhp

Nhn

where Nen, Nhn and Nep, and Nhp are the carrier densities
beyond the transition region in the n and p-type materials
respectively.
[Hint: Use eqns (8.17) and (8.20) and the condition that the
Fermi levels must agree.]

9.2. If both an electric field and concentration gradients are
present the resulting current is the sum of the conduction and
diffusion currents. In the one-dimensional case it is given in
the form

Je = eμe NeE + eDe
dNe

dx
,

Jh = eμh NhE + eDh
dNh

dx
,

When the p–n junction is in thermal equilibrium there is no
current flowing, i.e. Je = Jh = 0. From this condition show
that the ‘built-in’ voltage is

U0 = De

μe

loge
Nen

Nep
.

Compare this with the result obtained in example 9.1, and
prove the ‘Einstein relationship’

De

μe
= Dh

μh
= kT

e
.

Prove that NeNh = N2
i everywhere in the two

semiconductors, including the junction region.

9.3. Owing to a density gradient of the donor impurities there
is a built-in voltage of 0.125 V at room temperature between
the ends of a bar of germanium. The local resistivity at the high
impurity density end is 10�m. Find the local resistivity at the
other end of the bar. Assume that all donor atoms are ionized.

[Hint: Use the same argument for the conduction and diffusion
currents cancelling each other as in the previous example.]

9.4. In a metal–insulator–n-type semiconductor junction the
dielectric constants are εi and εs for the insulator and the
semiconductor respectively. Taking the width of the insulator
(sufficient to prevent tunnelling) to be equal todi, determine the
width of the depletion region as a function of reverse voltage.

Doping density

Distance x

ND

0

NA
d0

d

NA = ND

Fig. 9.64
The variation of doping density in a p–n junction.

9.5. The doping density across a p–n junction is of the form
shown in Fig. 9.64. Both the donor and acceptor densities
increase linearly in the range |x| < d0/2 and are constant
for |x| > d0/2. Determine d, the width of the depletion region
when the ‘built-in’ voltage is such that (i) d < d0, (ii) d > d0.

9.6. Use the expression given in Exercise 9.1 to evaluate
the ‘built-in’ voltage for junctions in germanium and silicon.
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At room temperature the following data may be assumed

μh μe σp σn Ni

(m2 V−1 s−1) (m2 V−1 s−1) (�−1 m−1) (�−1 m−1) (m−3)

Ge 0.17 0.36 104 100 2.4 × 1019

Si 0.04 0.18 104 100 1.5 × 1016

where σp and σn are the conductivities of the p- and n-type
materials respectively.

9.7. If a forward bias of 0.1 V is applied to the germanium
p–n junction given in example 9.6, what will be the density
of holes injected into the n-side and the density of electrons
injected into the p-side?

9.8. (i) In a certain n-type semiconductor a fraction α of
the donor atoms is ionized. Derive an expression for
EF − ED, where EF and ED are the Fermi level and
donor level respectively.

(ii) In a certain p-type semiconductor a fraction β of
the acceptor atoms is ionized. Derive an expression
for EF − EA where EA is the acceptor level.

(iii) Assume that both of the above materials were
prepared by doping the same semiconductor, and
that ED = 1.1 eV and EA = 0.1 eV, where energies
are measured from the top of the valence band. By
various measurements at a certain temperature T we
find that α = 0.5 and β = 0.05. When a p–n junction
is made, the built-in voltage measured at the same
temperature is found to be 1.05 eV. Determine T .

9.9. Calculate the reverse breakdown voltage in an abrupt Ge
p–n junction for NA = 1023 m−3, ND = 1022 m−3, εr = 16,
and breakdown field Ebr = 2 × 107 V m−1.

9.10. Determine the density distribution of holes injected into
an n-type material. Assume that ∂/∂t = 0 (d.c. solution), and
neglect the conduction current in comparison with the diffusion
current.
[Hint: solve the continuity equation subject to the boundary
conditions, Nh(x = 0) = injected hole density, Nh(x →
∞) = equilibrium hole density in the n-type material.

9.11. Determine from the solution of example 9.10 the distance
at which the injected hole density is reduced by a factor e.
Calculate this distance numerically for germanium where
Dh = 0.0044 m2 s−1 and the lifetime of holes is 200 μ.

9.12. Determine the spatial variation of the hole current
injected into the n-type material.
[Hint: Neglect again the conduction current in comparison with
the diffusion current.]

9.13. Express the constant I0 in the rectifier equation

I = I0[exp(eU1/kT ) − 1]
in terms of the parameters of the p- and n-type materials
constituting the junction.

9.14. Owing to the dependence of atomic spacing on pressure
the bandgap Eg of silicon decreases under pressure at the rate
of 2 × 10−3 eV per atmosphere from its atmospheric value of
1.1 eV.

(i) Show that in an intrinsic semiconductor the conductivity
may be expressed with good approximation as

σ = σ0 exp(−Eg/2kT )

and find an expression for σ0.
(ii) Calculate the percentage change in conductivity of intrinsic

silicon at room temperature for a pressure change of
10 atmospheres.

(iii) Show that I0, the saturation current of a diode (found in
example 9.13), is to a good approximation proportional to
exp(−Eg/kT ).

(iv) Compare the pressure sensitivity of σ with that of I0.

9.15. Take two identical samples of a semiconductor which are
oppositely doped so as the number of electrons in the n-type
material (N ) is equal to the number of holes in the p-type
material. Denoting the lengths of the samples by L and the
cross-sections by A, the number of electrons and holes are:

p-type
number of holes LAN

number of electrons LAN2
i /N

n-type
number of holes LAN2

i /N

number of electrons LAN .

Thus the total number of carriers in the two samples is

2LAN

(
1 + N2

i

N2

)
.

Assume now that we join together (disregard the practical
difficulties of doing so) the two samples. Some holes will cross
into the n-type material and some electrons into the p-type
material until finally an equilibrium is established.

Show that the total number of mobile carriers is reduced
when the two samples are joined together (that is some
electrons and holes must have been lost by recombination).

9.16. A pn junction LED made of GaAsP emits red light
(approximate wavelength 670 nm). When forward biased it
takes 0.015 mA at 1.3 V rising to 17 mA at 1.6 V. When reverse
biased its capacity is 83.1 pF at 1 V and 41.7 pF at 10 V.
Avalanche breakdown occurs at 20 V.

(i) Deduce I0 and the effective device temperature from the
rectifier equation.

(ii) Assuming that the junction is very heavily doped on the
n side, find the carrier density on the p side.

(iii) Deduce the junction area and the built in voltage.

Data for GaAsP: Permittivity = 12ε0; breakdown field =
8 × 107 V m−1.
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10 Dielectric materials

Le flux les apporta, le reflux les emporte.
Corneille Le Cid

10.1 Introduction

In discussing properties of metals and semiconductors we have seen that, with
a little quantum mechanics and a modicum of common sense, a reasonable
account of experiments involving the transport (the word meaning motion in
the official jargon) of electrons emerges. As a dielectric is an insulator, by
definition, no transport occurs. We shall see that we can discuss the effects
of dielectric polarization adequately in terms of electromagnetic theory. Thus,
all we need from band theory is an idea of what sort of energy gap defines an
insulator.

Suppose we consider a material for which the energy gap is 100 times the
thermal energy at 300 K, that is 2.5 eV. Remembering that the Fermi level is
about halfway across the gap in an intrinsic material, it is easily calculated that
the Fermi function is about 10−22 at the band edges. With reasonable density
of states, this leads to less than 106 mobile electrons per cubic metre, which is
usually regarded as a value for a good insulator. Thus, because we happen to
live at room temperature, we can draw the boundary between semiconductors
and insulators at an energy gap of about 2.5 eV.

Another possible way of distinguishing between semiconductors and
insulators is on the basis of optical properties. Since our eyes can detect
electromagnetic radiation between the wavelengths of 400 nm and 700 nm, we
attribute some special significance to this band, so we may define an insulator
as a material in which electron–hole pairs are not created by visible light. Since
a photon of 400 nm wavelength has an energy of about 3 eV, we may say that
an insulator has an energy gap in excess of that value.

10.2 Macroscopic approach

This is really the subject of electromagnetic theory, which most of you already
know, so I shall briefly summarize the results.In the SI system ε is the product of

ε0 ( permittivity of free space) and
εr (relative dielectric constant).

A dielectric is characterized by its dielectric constant ε, which relates the
electric flux density to the electric field by the relationship,

D = εE . (10.1)

The basic experimental evidence (as discovered by Faraday some time ago)
comes from the condenser experiment in which the capacitance increases by
a factor, εr , when a dielectric is inserted between the condenser plates. The
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Microscopic approach 221

reason is the appearance of charges on the surface of the dielectric (Fig. 10.1)
necessitating the arrival of fresh charges from the battery to keep the voltage
constant.

V

Dielectric

Capacitor plates

Fig. 10.1
Inserting a dielectric between the
plates of a capacitor increases the
surface charge.

In vacuum the surface charge density on the condenser plates is

Q = ε0
V

d
, (10.2)

where d is the distance between the plates. In the presence of the dielectric the
surface charge density increases to

Q′ = ε0εr
V

d
. (10.3)

Remember now from electromagnetic theory that the dielectric displacement,
D, is equal to the surface charge on a metal plate. Denoting the increase in
surface charge density by P , and defining the ‘dielectric susceptibility’ by

χ = εr − 1, (10.4)

we may get from eqns (10.2) and (10.3) the relationships

P = D − ε0E and P = ε0χE . (10.5)

10.3 Microscopic approach

We shall now try to explain the effect in terms of atomic behaviour, seeing how
individual atoms react to an electric field, or even before that recalling what an
atom looks like. It has a positively charged nucleus surrounded by an electron
cloud. In the absence of an electric field the statistical centres of positive and
negative charges coincide. (This is actually true for a class of molecules as
well.) When an electric field is applied, there is a shift in the charge centres,
particularly of the electrons. If this separation is δ, and the total charge is q, the
molecule has an induced dipole moment,

μ = qδ. (10.6)

Let us now switch back to the macroscopic description and calculate the
amount of charge appearing on the surface of the dielectric. If the centre of
electron charge moves by an amount δ, then the total volume occupied by these
electrons isAδ, whereA is the area. Denoting the number of molecules per unit
volume by Nm and taking account of the fact that each molecule has a charge
q, the total charge appearing in the volume Aδ is AδNmq, or simply Nmqδ

per unit area—this is what we mean by surface charge density.
It is interesting to notice that this polarized surface charge density (denoted

previously by P , known also as induced polarization or simply polarization)
is exactly equal to the amount of dipole moment per unit volume, which from
eqn (10.6) is also Nmqδ, so we have obtained our first relationship between the
microscopic and macroscopic quantities

P = Nmμ. (10.7)
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222 Dielectric materials

For low electric fields, we may assume that the dipole moment is proportional
to the local electric field, E ′:

α is a constant called the
polarizability.

μ = αE ′. (10.8)

Notice that the presence of dipoles increases the local field (Fig. 10.2), which
will thus always be larger than the applied electric field.

_

+

Fig. 10.2
Presence of an electric dipole
increases the local electric field.

10.4 Types of polarization

Electronic All materials consist of ions surrounded by electron clouds. As
electrons are very light, they have a rapid response to field changes; they may
even follow the field at optical frequencies.
Molecular Bonds between atoms are stretched by applied electric fields

when the lattice ions are charged. This is easily visualized with an alkali halide
crystal (Fig. 10.3), where small deformations of the ionic bond will occur when
a field is applied, increasing the dipole moment of the lattice.

–

Cl

+

Na

Fig. 10.3
The inter-atomic bond in NaCl is
caused by Coulomb attraction. An
external electric field will change the
separation, thus changing the dipole
moment.

Orientational This occurs in liquids or gases when whole molecules,
having a permanent or induced dipole moment, move into line with the applied
field. You might wonder why in a weak static field all the molecules do not
eventually align just as a weather vane languidly follows the direction of a
gentle breeze. If they did, that would be the lowest energy state for the system,
but we know from Boltzmann statistics that in thermal equilibrium the number
of molecules with an energy E is proportional to exp(−E/kT ); so at any finite
temperature other orientations will also be present.

Physically, we may consider the dipole moments as trying to line up but,
jostled by their thermal motion, not all of them succeed. Since the energy of a
dipole in an electric field, E is (Fig. 10.4)

E = −μE cos θ , (10.9)

the number of dipoles in a solid angle, d�, is

A exp

(
μE cos θ

kT

)
2π sin θdθ . (10.10)A is a constant.

Fig. 10.4
Energy of a dipole in an electric field.

–μ

π θ

θ

–

+

E
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The complex dielectric constant and the refractive index 223

Hence, the average dipole moment is given as

〈μ〉 = net moment of the assembly

total number of dipoles

=
∫ π

0 A exp
(
μE cos θ

kT

)
(μ cos θ)2π sin θdθ∫ π

0 A exp
(
μE cos θ

kT

)
2π sin θdθ

. (10.11)

Equation (10.11) turns out to be integrable, yielding

〈μ〉
μ

= L(a) = coth a − 1

a
. (10.12) a = (μE/kT ), and L(a) is called

the Langevin function.

If a is small, which is true under quite wide conditions, eqn (10.12) may be
approximated by

〈μ〉 = μ2E

3kT
. (10.13)

That is, the polarizability is inversely proportional to the absolute temperature.

10.5 The complex dielectric constant and
the refractive index

In engineering practice the dielectric constant is often divided up into real and
imaginary parts. This can be derived from Maxwell’s equations by rewriting
the current term in the following manner:

J − iωεE = σE − iωεE

= −iω
(
ε + i

σ

ω

)
E , (10.14)

where the term in the bracket is called the complex dielectric constant. The
usual notation is∗

∗ The complex dielectric constant used
by electrical engineers is invariably in
the form ε = ε0(ε′ − jε′′). We found a
different sign because we had adopted the
physicists’ time variation, exp(−iωt).

ε = ε′ε0,
σ

ω
= ε′′ε0, and tan δ = ε′′

ε′ . (10.15)

The loss tangent is defined as
tan δ ≡ ε′′/ε′.

(a) (b)

n1 n2 n1 n2 n1 n2

Fig. 10.5
Quarter wavelength layers used to
make dielectric mirrors.

The refractive index is defined as the ratio of the velocity of light in a vacuum
to that in the material,

n = c

ν

= √
εrμr = √

ε′ (10.16)

since μr = 1 in all known natural materials that transmit light.† † This is actually not true for a new set of
artificial materials called metamaterials,
which can have effective permeabilities
well above unity even in the infrared-
optical region (see Chapter 15).

Conventionally, we talk of ‘dielectric constant’ (or permittivity) for the
lower frequencies in the electromagnetic spectrum and of refractive index for
light. Equation (10.16) shows that they are the same thing—a measure of the
polarizability of a material in an alternating electric field.

A fairly recent and important application of dielectrics to optics has been that
of multiply-reflecting thin films. Consider the layered structure represented in
Fig. 10.5 with alternate layers of transparent material having refractive indices
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224 Dielectric materials

n1 and n2 respectively. At each interface there will be some light reflected and
some transmitted. The reflection coefficient, from electromagnetic theory, at an
interface like (a) in Fig. 10.5 is

ra = n2 − n1

n2 + n1
. (10.17)

By symmetry, the reflection coefficient at (b) will be the reverse of this

rb = n1 − n2

n1 + n2
= −ra. (10.18)

The two reflections have a phase
difference of π radians.

Now suppose that all the layers are a quarter wavelength thick—their actual
thickness will be n1(λ/4) and n2(λ/4) respectively. Then the wave reflected
back from (b) will be π radians out of phase with the wave reflected back from
(a) because of its extra path length, and another π radians because of the
phase difference in eqn (10.18). So the two reflected waves are 2π radians
different; that is, they add up in phase. A large number of these layers, often
as many as 17, makes an excellent mirror. In fact, provided good dielectrics
(ones with low losses, that is), are used, an overall reflection coefficient of
99.5% is possible, whereas the best metallic mirror is about 97–98% reflecting.
This great reduction in losses with dielectric mirrors has made their use with
low-gain gas lasers almost universal. I shall return to this topic when discussing
lasers.

Another application of this principle occurs when the layer thickness is
one half wavelength. Successive reflections then cancel, and we have a
reflectionless or ‘bloomed’ coating, much used for the lenses of microscopes
and binoculars. A simpler form of ‘blooming’ uses only one intermediate layer
on the glass surface (Fig. 10.6) chosen so that

Blooming
layer, refractive
index

Glass
refractive
index n2

λ/4

Air

Fig. 10.6
Simple coating for a ‘bloomed’ lens.

n1 = √
n2. (10.19)

The layer of the material of refractive index n1 is this time one quarter
wavelength, as can be seen by applying eqn (10.17).

10.6 Frequency response

Most materials are polarizable in several different ways. As each type has a
different frequency of response, the dielectric constant will vary with frequency
in a complicated manner; for example at the highest frequencies (light waves)
only the electronic polarization will ‘keep up’ with the applied field. Thus, we
may measure the electronic contribution to the dielectric constant by measuring
the refractive index at optical frequencies. An important dielectric, water has
a dielectric constant of about 80 at radio frequencies, but its refractive index
is 1.3, not (80)1/2. Hence we may conclude that the electronic contribution is
about 1.7, and the rest is probably due to the orientational polarizability of the
H2O molecule.

The general behaviour is shown in Fig. 10.7. At every frequency where ε′
varies rapidly, there tends to be a peak of the ε′′ curve. In some cases this is
analogous to the maximum losses that occur at resonance in a tuned circuit:
the molecules have a natural resonant frequency because of their binding in the
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εS

ε′

Radio Microwave Visible
f

ε″

f

Fig. 10.7
Typical variation of ε′ and ε′′ with
frequency.

crystal, and they will transfer maximum energy from an electromagnetic wave
at this frequency. Another case is the ‘viscous lag’ occurring between the field
and the polarized charge which is described by the Debye equations, which we
shall presently consider. A consequence of all this is that materials that transmit
light often absorb strongly in the ultraviolet and infrared regions, for example
most forms of glass. Radio reception indoors is comparatively easy because
(dry) bricks transmit wireless waves but absorb light; we can listen in privacy.
The Earth’s atmosphere is a most interesting dielectric. Of the fairly complete
spectrum radiated by the Sun, not many spectral bands reach the Earth. Below
108 Hz the ionosphere absorbs or reflects; between 1010 and 1014 Hz there
is molecular resonance absorption in H2O, CO2, O2, and N2; above 1015 Hz
there is a very high scattering rate by molecules and dust particles. The visible
light region (about 1014–1015 Hz) has, of course, been of greatest importance
to the evolution of life on Earth. One wonders what we would all be like if
there had been just a little more dust around, and we had had to rely on the
108–1010 Hz atmosphere window for our vision.

10.7 Anomalous dispersion

As shown in Fig. 10.7, there are wide frequency ranges within which ε′ remains
constant, but in the vicinity of certain resonances the change is very fast:
the dielectric constant declines as a function of frequency. This was already
known in the nineteenth century. They called it anomalous dispersion. What
is anomalous about it? Well, let’s look at the group velocity. It was defined in
eqn (2.26) for electron waves but of course the definition applies to all kind of
waves. It is

vg = dω

dk
, (10.20)
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226 Dielectric materials

which is also the velocity with which energy and information travel. Let us
relate it to the variation of the refractive index

dn

dω
= d(c/v)

dω
= c

d

dω

(
k

ω

)
=
( c
ω

)(−k

ω
+ dk

dω

)
, (10.21)

whence

dω

dk
= c

n + ω(dn/dω)
. (10.22)

What is anomalous is that the group velocity may be negative provided the
refractive index varies fast enough with frequency. The phase velocity ω/k is
positive, so we have a situation where the phase and group velocities are in
opposite directions. The waves in this situation are called backward waves.
Phase travels in one direction and energy in the other direction. Is that a very
anomalous situation? Not really. One example of a backward wave will appear
later in the present chapter when we discuss the optical branch of acoustic
waves. Admittedly there are not many types around, but it is mostly a question
of getting used to them. Familiarity breeds comprehension.

10.8 Polar and non-polar materials

This is a distinction that is often made for semiconductors as well as dielectrics.
A non-polar material is one with no permanent dipoles. For example, Si, Ge,
and C (diamond) are non-polar. The somewhat analogous III–V compounds,
such as GaAs, InSb, and GaP, share their valency electrons, so that the ions
forming the lattice tend to be positive (group V) or negative (group III). Hence,
the lattice is a mass of permanent dipoles, whose moment changes when a field
is applied. As well as these ionic bonded materials, there are two other broad
classes of polar materials. There are compounds, such as the hydrocarbons
(C6H6 and paraffins) that have permanent dipole arrangements but still have a
net dipole moment of zero (one can see this very easily for the benzene ring).
Then there are molecules such as water and many transformer oils that have
permanent dipole moments, and the total dipole moment is determined by their
orientational polarizability.

A characteristic of non-polar materials is that, as all the polarization is
electronic, the refractive index at optical wavelengths is approximately equal
to the square root of the relative dielectric constant at low frequencies. This
behaviour is illustrated in Table 10.1.

From Table 10.1 (more comprehensive optics data would show the same
trend) you can see that most transparent dielectrics, polar or not, have a
refractive index of around 1.4–1.6; only extreme materials like liquid hydrogen,
diamond, and rutile (in our list) show appreciable deviation. Let us look for an
explanation of this remarkable coalescence of a physical property; starting with
our favourite (simplest) model of a solid, the cubic lattice of Fig. 1.1, with a
lattice spacing a. Suppose the atoms are closely packed, each having a radius r ,
so that

a = 2r . (10.23)

For an optical property we need to consider only electronic polarizability as
ionic, and molecular responses are too slow. Let us suppose that each atomic
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Table 10.1 Dielectric constant and refractive index of some non-
polar, weakly polor, polar, and semiconducting materials

Material Refractive (Refractive Dielectric constant
index index)2 measured at 103 Hz

Non-polar
C (diamond) 2.38 5.66 5.68
H2 (liquid) 1.11 1.232 1.23
Weakly polar
polythene 1.51 2.28 2.30
ptfe (poly-tetra
fluoro-ethylene)

1.37 1.89 2.10

CCl4 (carbon-
tetrachloride)

1.46 2.13 2.24

Paraffin 1.48 2.19 2.20
Polar
NaCl (rocksalt) 1.52 2.25 5.90
TiO2 (rutile) 2.61 6.8 94.0
SiO2 (quartz) 1.46 2.13 3.80
Al2O3 (ceramic) 1.66 2.77 6.5
Al2O3 (ruby) 1.77 3.13 4.31
Sodium carbonate 1.53 2.36 8.4
Ethanol 1.36 1.85 24.30
Methanol 1.33 1.76 32.63
Acetone 1.357 1.84 20.7
Soda glass 1.52 2.30 7.60
Water 1.33 1.77 80.4
Semiconductors
Si 3.42 11.70 11.9
GaAs 3.3 10.89 13.2
GaP 3.2 15.68 17.7
InSb 3.96 15.68 17.7

volume, (4/3)πr3 is uniformly occupied by the total electronic charge, Ze.
When an electric field, E , is applied, the centre of charge of the electronic
cloud shifts a distance d to C− from the nucleus at C (Fig. 10.8). To find
the restoring force attracting the electrons back towards the nucleus, we can
construct a Gaussian surface of radius d about C−, so that C is just excluded.
The negative charge inside the Gaussian sphere is, according to the uniform
charge approximation, equal to Ze(d/r)3. So the attractive force, F , towards
the nucleus is

F = (Ze)2d

4πε0r3
. (10.24)

Envelope of electron
cloud about centre C

Envelope perturbed
by field, centre C–

C–

C
d

Gaussian sphere
of radius d

Fig. 10.8
Displacement of electron cloud about
an atom centred on C by a distance d,
by an applied electric field.

This must be balanced by the field force causing the charge displacement,

F = ZeE . (10.25)
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228 Dielectric materials

So by eqns (10.24) and (10.25)The LHS is the quantity defined
as the dipole moment, μ, in
eqn (10.6). Zed = 4πr3ε0E . (10.26)

By eqn (10.8) we see that the polarizability is

α = 4πr3ε0. (10.27)

We can now return to eqn (10.7), P = Nmμ, to find the induced polarization.
The density of atoms per unit volume is

Nm = 1

a3
= 1

(2r)3
, (10.28)

leading to

P = 1

(2r)3
4πr3ε0E = π

2
ε0E . (10.29)

From eqns (10.4) and (10.5) it follows then that

χ = P

ε0E
= π

2
, (10.30)

whence
εr = 1 + χ ∼= 2.57, (10.31)

and
n = √

εr
∼= 1.6. (10.32)

Thus, our very approximate estimate is at the high end of our small sample
in Table 10.1. We could refine this model to give a different fit by remarking
that less close packing would give Nm<1/(2r)3, and we could also take into
account quantum orbits. This would change things slightly at the expense of
considerable calculations. But the main point of this aside is that a simple
approach can sometimes give a reasonable answer and at the same time enhance
insight into the phenomenon.

10.9 The Debye equation

We have seen that frequency variation of relative permittivity is a complicated
affair. There is one powerful generalization due to Debye of how materials with
orientational polarizability behave in the region where the dielectric polarization
is ‘relaxing’, that is the period of the a.c. wave is comparable to the alignment
time of the molecule. When the applied frequency is much greater than the
reciprocal of the alignment time, we shall call the relative dielectric constant ε∞
(representing atomic and electronic polarization). For much lower frequencies it
becomes εs, the static relative dielectric constant. We need to find an expression
of the form

ε(ω) = ε∞ + f (ω), (10.33)

for which ω → 0 reduces to

f (0) = εs − ε∞. (10.34)

Now suppose that a steady field is applied to align the molecules and then
switched off. The polarization and hence the internal field will diminish.
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Following Debye, we shall assume that the field decays exponentially with
a time constant, τ , the characteristic relaxation time of the dipole moment of
the molecule,

P(t) = P0 exp(−t/τ ). (10.35)

You know that time variation and frequency spectrum are related by the
Fourier transform. In this particular case it happens to be true that the
relationship is

f (ω) = K

∫ ∞

0
P(t)eiωtdt

= KP0

−iω + 1/τ
, (10.36)

K is a constant ensuring that f (ω)
has the right dimension.

using the condition (10.34) for the limit when ω = 0, we obtain

KP0τ = εs − ε∞. (10.37)

Hence, eqn (10.33) becomes

ε(ω) = ε∞ + εs − ε∞
−iωτ + 1

, (10.38)

which, after the separation of the real and imaginary parts, reduces to

ε′ = ε∞ + εs − ε∞
1 + ω2τ 2

(10.39)

ε′′ = ωτ

1 + ω2τ 2
(εs − ε∞). (10.40)

These equations agree well with experimental results. Their general shape
is shown in Fig. 10.9. Notice particularly that ε′′ has a peak at ωτ = 1, where
the slope of the ε′ curve is a maximum.

ε″

ε′

εs

ε∞

ω = 1/τ

Fig. 10.9
Frequency variation predicted by the
Debye equations.

10.10 The effective field

We have remarked that the effective or local field inside a material is increased
above its value in free space by the presence of dipoles. Generally, it is difficult
to calculate this increase, but for a non-polar solid, assumptions can be made
that give reasonable agreement with experiment and give some indication of
how the problem could be tackled for more complicated materials. Consider
the material to which an external field is applied. We claim now that the local
electric field at a certain point is the same as that inside a spherical hole. In
this approximate picture the effect of all the ‘other’ dipoles is represented by
the charges on the surface of the sphere. Since in this case the surface is not
perpendicular to the direction of the polarization vector, the surface charge is
given by the scalar product (Fig. 10.10)

P · dA = P dA cos θ , (10.41)
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Fig. 10.10
Calculation of effective internal field.

– Charge

Polarized charge

θ

r

dA

+

Dielectric

Void

giving a radial electric field,

dEr = P dA cos θ

4πε0r2
, (10.42)

in the middle of the sphere. Clearly, when we sum these components the net
horizontal field in our drawing will be zero, and we have to consider only the
vertical field. We get this field, previously called E ′, by integrating the vertical
component and adding to it the applied field, that is

E ′ =
�

surface

dEr cos θ + E , (10.43)

whence

E ′ − E =
� P cos2 θ dA

4πε0r2

=
∫ π

0

P cos2 θ

4πε0r2
r22π sin θ dθ

= P

3ε0
. (10.44)

Substituting for P from eqn (10.5) and solving for E ′ we get

E ′ = 1
3 (ε

′ + 2)E . (10.45)

This result is clearly acceptable for ε′ = 1; and it is also consistent with our
assumption that E ′ is proportional to E .

We can now derive an expression for the polarizability α as well, by
combining our expression for the local field with eqns (10.7) and (10.8), yieldingThis is known as the Clausius–

Mossotti equation. It expresses
the microscopically defined
quantity α in terms of measurable
macroscopic quantities.

α = ε′ − 1

ε′ + 2
· 3ε0

Nm
. (10.46)
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a

nn–1

Xn–1 Xn+1Xn

n+1

Fig. 10.11
Displacement of elements in a
one-dimensional lattice.

10.11 Acoustic waves

Atoms can vibrate. They can change their positions relative to each other. When
these motions are regular we can talk about acoustic waves. This is a purely
classical phenomenon but there are lots of people who are fond of using terms
which smell of quantum mechanics. Instead of acoustic waves, they talk of
acoustic phonons. Our own view is to give quantum mechanics the respect it
deserves, but when a phenomenon is classical we prefer to use the classical
terminology.

The simplest way to describe the propagation of acoustic waves is by nearest-
neighbour interaction. Let us look at Fig. 10.11, which shows three atoms, n−1,
n, and n + 1. When quiescent they are at a distance a from each other. Under
wave motion each one of them is displaced from its equilibrium position by
the amounts xn−1, xn, and xn+1. The force on the nth atom depends on the
displacement of atom n relative to that of atoms n− 1 and n+ 1. If xn+1 − xn
is larger than xn – xn−1 then the force is in the positive direction. Taking force
proportional to displacement, we may write for the net force on atom n

Fn = β(xn+1 − xn) − β(xn − xn−1), (10.47)

where β is a force constant. The equation of motion may then be written as

m

(
d2xn

dt2

)
= β(xn+1 + xn−1 − 2xn), (10.48)

where m is the mass of the atom. Assuming a wave solution in the form

xn = x0 exp[−i(ωt − kna)], (10.49)

eqn (10.48) reduces to

ω2m = 4βsin2
(

ka

2

)
. (10.50)

Hence the dispersion equation is

ω =
(

4β

m

)1/2

sin

(
ka

2

)
. (10.51)

The frequency range of acoustic waves is clearly from 0 to (4β/m)1/2.
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For ka � 1, going over to the continuous case, the above equation reduces to

ω = ka

(
β

m

)1/2

, (10.52)

whence a(β/m)1/2 may be recognized as the velocity of acoustic waves, more
commonly known as the sound velocity.

Let us next take an ionic solid in which the atomic distances are the same
but there are two atoms in a unit cell, with masses m1 and m2. There are then
two equations of motion, one for each type of atom, as follows:

m1

(
d2x2n

dt2

)
= β(x2n+1 + x2n−1 − 2x2n), (10.53)

m2

(
d2x2n+1

dt2

)
= β(x2n+2 + x2n − 2x2n+1). (10.54)

These equations can be solved with a moderate amount of sweat and toil
but it is really not worth the effort to do it here. The calculations are quite
straightforward. They will be left as an exercise for the keener student. The
solution is obtained in the form

ω2 = β

{
b1 + b2 ±

[
(b1 + b2)

2 − 4b1b2 sin2
(

ka

2

)]1/2
}

, (10.55)

where b1 = 1/m1 and b2 = 1/m2.
As may be seen from the above equation, there are two solutions. Well, that

much is expected: there are two kind of elements and there are two equations
of motion. The curves corresponding to these equations, however, might be a
little unexpected. They are shown in Fig. 10.12. The lower branch is, of course,
that of the acoustic waves. It is hardly different from that for the single-element
case. There is, however, an upper branch, known as the optical branch. The

Fig. 10.12
Dispersion curves showing both the
acoustical and optical branches of a
diatomic lattice.

Optical branch2b
1/2( (1

m1

Acoustical branch

k�/ 2a

(2b/m2)1/2

(2b/m1)1/2
m1 > m2

v

1
+ m2
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Table 10.2 Frequencies of maximum
reflection (fr) and minimum transmission
(ft) for a number of alkali halides

Crystal fr (THz) ft (THz)

NaF 7.39 8.38
TlF 4.44 6.17
NaCl 4.90 5.76
KCl 4.24 4.73
RbCl 3.54 4.06
TlCl 2.56 3.26
KBr 3.40 3.68
KI 2.94 3.19

values of ω at the points k = 0 and π /2a can be obtained from eqn (10.55),
and may be seen in Fig. 10.12. The upper branch represents a backward wave.
Phase and group velocities are in opposite directions. The highest point in the
dispersion curve is at k = 0. The corresponding wavelength is typically tens of
micrometres in the middle of the THz region.

An interesting effect discovered in the 1920s (known as the Reststrahl effect,
or sometimes as residual radiation) is that these lattice vibrations may interact
with electromagnetic waves. The effect is manifested in large absorption at
one wavelength and in large reflection at a slightly different wavelength.∗ The ∗ Note that in the presence of absorption

the frequency of maximum reflection, fr ,
need not coincide with that of minimum
transmission, ft .

corresponding values are given in Table 10.2 for a few materials. The fact that
significant reflection occurs only within a narrow band has been used to provide
monochromatic sources.

Another remarkable property of the optical branch is that it can provide,
within a certain frequency range, a negative effective dielectric constant. This
is quite a rare phenomenon. We have come across it only once before, in
Chapter 1, when discussing the critical frequency of transparency of metals, as
part of the theory of plasmas.

In order to discuss the interaction with electromagnetic waves we shall use
a model which is less general in one sense, in that it is valid only in the vicinity
of k = 0, but is more general in another sense. We shall assume that the
restoring force is electrical. To simplify the mathematics we shall not consider
two separate atoms but shall write the equation of motion for a single atom
which has a charge e and a reduced mass given by

1

m∗ = 1

m1
+ 1

m2
. (10.56)

The equation of motion may then be written as

d2xT

dt2
+ ω2

TxT = −
( e

m∗
)

E , (10.57)

where xT is the displacement relative to the centre of gravity of the two atoms,
and ω2

T is a restoring force.
Next we shall assume that the ion density can have a component varying at

the optical frequency, and take it in the form N1 + nI, where NI is constant and
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234 Dielectric materials

nI � NI. The continuity equation∗ is then∗ Its physical meaning is that the current
flowing out of an element dx can be
different from the current flowing in,
provided the charge density within that
interval has increased or decreased.

e

(
dnI

dt

)
+ dJI

dx
= 0, (10.58)

where JI is the time-varying ionic current density, equal to

JI = eNIνT with νT = dxT

dt
. (10.59)

One further equation needed is Poisson’s equation, which relates the electric
field to the net charge density:

ε∞
dE

dx
= −enI. (10.60)

With our usual wave assumption exp[−i(ωt − kx)] we find, after a certain
amount of algebra,

JI = sE, (10.61)

where

s = iωε∞ω2
I

ω2
T − ω2

and ω2
I = e2NI

m∗ε∞
. (10.62)

The effective permittivity due to lattice wave interaction with electromagnetic
waves may be worked out from the relationship

JI − iωε∞E = (s − iωε∞)E = −iωεeffE, (10.63)

whence

εeff = ε∞ − s

iω
= ε∞(ω2 − ω2

T − ω2
I )

ω2 − ω2
T

. (10.64)

The usual notation is

ω2
L = ω2

T + ω2
I , (10.65)

and in the usual terminology ωL is the longitudinal optical phonon frequency
and ωT is the transverse optical phonon frequency; these are related to each
other by

ω2
L =

(
ε∞
εs

)
ω2

T. (10.66)

The final form for the effective dielectric constant is then

εeff = ε∞(ω2 − ω2
L)

ω2 − ω2
T

. (10.67)

It may now be seen that the effective dielectric constant is negative in the range

ωT < ω < ωL. (10.68)

Optical phonons† have been of only moderate interest in the past. This

† This is a classical phenomenon which
should be described as the optical branch
of acoustic waves. Alas, the quantum
mechanical term has now been widely
accepted. might change in view of the advent of the new subject of metamaterials. In
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fact, in Section 15.9 (see Chapter 15) we shall be greatly interested in negative
material parameters such as negative permittivity and negative permeability. In
that section we shall discuss a device in which a negative dielectric constant
due to the mechanism discussed above is used in a novel type of microscope.

10.12 Dielectric breakdown
There are three main mechanisms
that are usually blamed for
dielectric breakdown: (1) intrinsic,
(2) thermal, and (3) discharge
breakdown.

Electric breakdown is a subject to which it is difficult to apply our usual
scientific rigour. A well-designed insulator (in the laboratory) breaks down
in service if the wind changes direction or if a fog descends. An oil-filled high-
voltage condenser will have bad performance, irrespective of the oil used, if
there is 0.01% of water present. The presence of grease, dirt, and moisture
is the dominant factor in most insulator design. The flowing shapes of high-
voltage transmission line insulators are not entirely due to the fact that the
ceramic insulator firms previously made chamberpots; the shapes also reduce
the probability of surface tracking. The onset of dielectric breakdown is an
important economic as well as technical limit in capacitor design. Generally,
one wishes to make capacitors with a maximum amount of stored energy. Since
the energy stored per unit volume is 1

2εE
2, the capacitor designers value high

breakdown strength even more highly than high dielectric constant.
In general, breakdown is manifested by a sudden increase in current when

the voltage exceeds a critical value Ub, as shown in Fig. 10.13. Below Ub there
is a small current due to the few free electrons that must be in the conduction
band at finite temperature. When breakdown occurs it does so very quickly,
typically in 10−8 s in a solid.

Ub U

I

Fig. 10.13
Current voltage characteristics for
an insulator. The current increases
very rapidly at the breakdown
voltage, Ub.

10.12.1 Intrinsic breakdown

When the few electrons present are sufficiently accelerated (and lattice
collisions are unable to absorb the energy) by the electric field, they can
ionize lattice atoms. The minimum requirement for this is that they give to
the bound (valence) electron enough energy to excite it across the energy gap
of the material. This is, in fact, the same effect that we mentioned before in
connection with avalanche diodes.

10.12.2 Thermal breakdown

This occurs when the operating or test conditions heat the lattice. For example,
an a.c. test on a material in the region of its relaxation frequency, where ε′′
is large would cause heating by the lossy dipole interaction rather than by
accelerating free electrons. The heated lattice ions could then be more easily
ionized by free electrons, and hence the breakdown field could be less than the
intrinsic breakdown field measured with d.c. voltages. The typical polymer,
polyethylene, has a breakdown field of 3 to 5 × 108 V m−1 for very low
frequencies, but this falls to about 5 × 106 V m−1 around 106 Hz, where a
molecular relaxation frequency occurs. Ceramics such as steatite and alumina
exhibit similar effects.

If it were not for dielectric heating effects, breakdown fields would be lower
at high frequencies simply because the free electrons have only half a period
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236 Dielectric materials

to be accelerated in one direction. I mentioned that a typical breakdown time
was 10−8 s; so we might suppose that at frequencies above 108 Hz breakdown
would be somewhat inhibited. This is true, but a fast electron striking a lattice
ion still has a greater speed after collision than a slow one, and some of these
fast electrons will be further accelerated by the field. Thus, quite spectacular
breakdown may sometimes occur at microwave frequencies (1010 Hz) when
high power densities are passed through the ceramic windows of klystrons or
magnetrons. Recent work with high-power lasers has shown that dielectric
breakdown still occurs at optical frequencies. In fact the maximum power
available from a solid-state laser is about 1012 W from a series of cascaded
neodymium glass amplifier lasers. The reason why further amplification is not
possible is that the optical field strength disrupts the glass laser material.

10.12.3 Discharge breakdown

In materials such as mica or porous ceramics, where there is occluded gas, the
gas often ionizes before the solid breaks down. The gas ions can cause surface
damage, which accelerates breakdown. This shows up as intermittent sparking
and then breakdown as the test field is increased.

Applied
force

(b)

(a)

– ++

+– –

– ++

– ++

+– –

– ++

Fig. 10.14
Schematic representation of a
symmetric crystal; (a) in the absence
of applied force, (b) in the presence of
applied force.

10.13 Piezoelectricity

It is easy to describe the piezoelectric∗ effect in a few words: a mechanical∗ Derived from the Greek word meaning
‘to press’. strain will produce dielectric polarization and, conversely, an applied electric

field will cause mechanical strain. Which crystals will exhibit this effect?
Experts say that out of the 21 classes of crystals that lack a centre of symmetry,
20 are piezoelectric. Obviously, we cannot go into the details of all these
crystals structures here, but one can produce a simple argument showing that
lack of a centre of symmetry is a necessary condition. Take for example the
symmetric cubic structures shown in Fig. 10.14(a). If mechanical force is
applied [Fig. 10.14(b)] then the dimensions change, but no net electric dipole
moment is created. If we take, however, a crystal which clearly lacks a centre of
symmetry (Fig. 10.15) and apply a mechanical force, then the centres of positive
and negative charge no longer coincide, and a dipole moment is produced. For
small deformations and small electric fields, the relationships are linear and
may be described by the two equations,

T = cS − eE (10.69)

and

D = εE + eS. (10.70)

where T = stress, S = strain, c = elastic constant, and e = piezoelectric
constant. Note that in general the piezoelectric constant is a tensor relating
the various mechanical and electrical components to each other. In practical
applications, however, one usually relies on a single element in the tensor,
which, for a number of piezoelectric materials, is given in Table 10.3.

With e = 0, the above equations reduce to Hooke’s law and to the D = εE
relationship, respectively. It may be seen that when E = 0, the electric flux
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Fig. 10.15
Schematic representation of a crystal
that lacks a centre of symmetry; (a) in
the absence of applied force, (b) in the
presence of applied force.

Table 10.3 Piezoelectric ceramics

Material Density Relative Loss, tan δ Curie Piezoelectric
(g cm−3) permittivity (%) temperature Tc (◦C) constant (pC N−1)

Quartz, SiO2 2.65 4.6 2.25
Barium titanate,

BaTiO3

5.7 1700 0.5 115 190

Lead zirconate
titanate, PZT

7.5 1750 6 265 292

PZT igniter 7.6 800 16 285 384
Potassium sodium

niobate,
KNa(NbO3)2

4.5 400 25 400 100

Lithium niobate 4.64 78 210 80

density, D, may be finite in spite of zero electric field. Similarly, an electric
field sets up a strain without a mechanical stress being applied.

In general, all the constants in eqns (10.69) and (10.70) are tensors. In the
worst case there are 45 independent coefficients comprising 21 elastic constants,
6 dielectric constants, and 18 piezoelectric constants. In practical cases the
situation is not so complicated because we would apply an electric field in
some particular direction and would make use of the mechanical displacement
in some other specified direction, so that you can safely think in terms of those
three scalar constants in the above equations.

It follows from the properties of piezoelectrics that they are ideally suited
to play the role of electromechanical transducers. Common examples are the
microphone, where longitudinal sound vibrations in the air are the mechanical
driving force, and the gramophone pick-up, which converts into electrical
signals the mechanical wobbles in the groove of a record—for these applications
Rochelle salt has been used. More recently, ceramics of the barium titanate type,
particularly lead titanate, are finding application. They have greater chemical
stability than Rochelle salt but suffer from larger temperature variations.

Avery important application of piezoelectricity is the quartz (SiO2) stabilized
oscillator, used to keep radio stations on the right wavelength, with an accuracy
of about one part in 108 or even 109. The principle of operation is very simple.
A cuboid of quartz (or any other material for that matter) will have a series of
mechanical resonant frequencies of vibration whenever its mechanical length,
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L, is an odd number of half wavelengths. Thus, the lowest mode will be when
L = λ/2. The mechanical disturbance will travel in the crystal with the velocity
of sound, which we shall call νs. Hence, the frequency of mechanical oscillation
will be f = νs/λ = νs/2L. If the ends of the crystal are metallized, it forms a
capacitor that can be put in a resonant electrical circuit, having the same resonant
frequency, f . The resonant frequency of a transistor oscillator circuit depends
a little on things outside the inductor and capacitor of the resonant circuit.
Usually these are small effects that can be ignored, but if you want an oscillator
that is stable in frequency to one part in 108, things like gain variation in the
amplifier caused by supply voltage changes or ageing of components become
important; on this scale they are virtually uncontrollable. This is where the
mechanical oscillation comes in. We have seen it is a function only of the crystal
dimension. Provided the electrical frequency is nearly the same, the electrical
circuit will set up mechanical as well as electrical oscillations, linked by the
piezoelectric behaviour of quartz. The mechanical oscillations will dominate
the frequency that the whole system takes up, simply because the amplifier
part of the oscillator circuit works over a finite band of frequencies that is
greater than the frequency band over which the mechanical oscillations can be
driven. A circuit engineer would say that the ′Q′ of the mechanical circuit is
greater than that of the electrical circuit. The only problem in stabilizing the
frequency of the quartz crystal-controlled oscillator is to keep its mechanical
dimension, L, constant. This of course, changes with temperature, so we just
have to put the crystal in a thermostatically controlled box. This also allows
for slight adjustment to the controlled frequency by changing the thermostat
setting by a few degrees.

Quartz-controlled master oscil-
lators, followed by stages of power
amplification, are used in all radio
and television transmitters, from
the most sophisticated, down to the
humblest ‘ham’.

The reverse effect is used in earphones and in a variety of transducers
used to launch vibrations in liquids. These include the ‘echo-sounder’ used
in underwater detection and ultrasonic washing and cleaning plants.

I should like to discuss in a little more detail another application in
which a piezoelectric material, cadmium sulphide (CdS) is used. The basic
set-up is shown in Fig. 10.16. An input electric signal is transformed by
an electromechanical transducer into acoustic vibrations that are propagated
through the crystal and are converted back into electric signals by the second

Fig. 10.16
General arrangement of an acoustic
amplifier. The applied electric field
causes the electrons (photoelectrically
generated by the light) to interact with
the acoustic wave in the crystal.

Input

Transducer

CdS

Light

Output signal

Applied drift
field voltage V0
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transducer. Assuming for simplicity that the transducers are perfect (convert
all the electric energy into acoustic energy) and the acoustic wave suffers no
losses, the gain of the device is unity (0 db if measured in decibels). If the crystal
is illuminated, that is mobile charge carriers are created, the measured gain is
found to decrease to B (Fig. 10.17). If further a variable d.c. voltage is applied
across the CdS crystal, the gain varies as shown.

Gain
(db)

0

B

V0

vs

Fig. 10.17
The gain of an acoustic amplifier as a
function of the applied voltage. At the
voltage where the electron drift
velocity is equal to the sound velocity
(νs) the gain changes from negative to
positive.

These experimental results may be explained in the following way. The
input light creates charge carriers that interact with the acoustic waves via the
piezoelectric effect. If the carriers move slower than the acoustic wave, there
is a transfer of power from the acoustic wave to the charge carriers. If, on the
other hand, the charge carriers move faster than the acoustic wave, the power
transfer takes place from the carriers to the acoustic wave, or in other words
the acoustic wave is amplified.

Hence, there is the possibility of building an electric amplifier relying
on the good services of the acoustic waves. Since we can make electric
amplifiers without using acoustic waves, there is not much point using this
acoustic amplifier unless it has some other advantages. The main advantage
is compactness. The wavelength of acoustic waves is smaller by five orders
of magnitude than that of electromagnetic waves, and this makes the acoustic
amplifier much shorter than the equivalent electromagnetic travelling wave
amplifier (the travelling wave tube). It is unlikely that this advantage will
prove very important in practical applications, but one can certainly regard the
invention of the acoustic amplifier as a significant step for the following two
reasons: (i) it is useful when acoustic waves need to be amplified, and (ii) it has
created a feeling (or rather expectation) that whatever electromagnetic waves
can do, acoustic waves can do too. So it stimulates the engineer’s brains in
search of new devices, and a host of new devices may one day appear.

Other waves we are familiar with are those formed on the surface of disturbed
liquids, when for example we throw a pebble into a lake. It was shown a long
time ago by Lord Rayleigh that analogous waves rippled across the surface
of solids, travelling with a velocity near to the velocity of sound in the bulk
material. Devices based on these waves are known as SAW (surface acoustic
wave) devices.

Why do we want to use surface waves? There are two reasons: (1) they are
there on the surface so we can easily interfere with them, and (2) the interfering
structures may be produced by the same techniques as those used for integrated
circuits. Why do we want to interfere with the waves? Because these devices
are used for signal processing which, broadly speaking, requires that the signal
which arrives during a certain time interval at the input should be available
some time later in some other form at the output.

Let us first discuss the simplest of these devices which will produce the
same waveform at the output with a certain delay. The need for such a device is
obvious. We want to compare a signal with another one, which is going to arrive
a bit later. Aschematic drawing of the device is shown in Fig. 10.18. The electric
signal is transformed by the input transducers into an acoustic one, which travels
slowly to the output transducer, where it is duly reconverted into an electric
signal again. The input and output transducers are so called interdigital lines.
The principles of this transducer’s operations may be explained with the aid
of Fig. 10.19.
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240 Dielectric materials

Fig. 10.18
Schematic representation of a surface
wave device with two interdigital
transducers.

Input Load
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L

Piezoelectric substrate

The electric signal appearing simultaneously between fingers 1 and 2, and
2 and 3 excites acoustic waves. These waves will add up in a certain phase
depending on the distance d between the fingers. If d is half a wavelength
(wavelength and frequency are now related by the acoustic velocity) and
considering that the electric signals are in opposite phase (one is plus–minus,
the other one is minus–plus) then the effect from each finger pair adds up, and
we have maximum transmission. At twice the frequency, where d is a whole
wavelength, the contribution from neighbouring finger pairs will be opposite,
and the transducer will produce no net acoustic wave. This shows that the delay
line cannot be a very broad-band device, but it shows in addition that by having a
frequency-dependent output, we might be able to build a filter. The parameters
at our disposal are the length of overlap between fingers (l on Fig. 10.19)
and the relative position of the fingers, the former controlling the strength of
coupling and the latter the relative phase. It turns out that excellent filters can
be produced which are sturdy, cheap, and better than anything else available
in the MHz region. In the stone-age days of radio, when we were younger,
such a band-pass filter was accomplished by a series of transformers tuned
by capacitors. These would appear ridiculously bulky compared to today’s
microelectronic am plifiers, so a SAW band-pass filter on a small chip of
piezoelectric ceramic with photoengraved transducers is compatible in bulk and
in technology with integrated circuits, and much cheaper than the old hardware.
One of the applications is in television sets.

+ – +

l1 2 3

d

Fig. 10.19
A section of the interdigital transducer.

What else can one do with SAW devices? One of the applications is quite
a fundamental one related to signal processing. The problem to be solved is
posed as follows. If a signal with a known waveform and a lot of noise arrives
at the input of a receiver, how can one improve the chances of detecting the
signal? The answer is that a device exists which will so transform the signal
as to make it optimally distinguishable from noise. The device is called, rather
inappropriately, a matched filter. It turns out that SAW devices are particularly
suitable for their realization. They are vital parts of certain radar systems.

We cannot resist to mention one more application that will soon appear
on the market: a device that monitors the pressure of car tyres while on the
road. The heart of the device is a SAW resonator inserted into the tyre. The
useful information is contained in its resonant frequency which is pressure
dependent. The resonator is interrogated by a pulse from the transmitter attached

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net
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to the wheel arch. It re-radiates at its resonant frequency providing the pressure
information that is then displayed on the instrument panel.

I shall finish this section by mentioning electrostriction, a close relative
of piezoelectricity. It is also concerned with mechanical deformation caused
by an applied electric field, but it is not a linear phenomenon. The
mechanical deformation is proportional to the square of the electric field,
and the relationship applies to all crystals whether symmetric or not. It
has no inverse effect. The mechanical strain does not produce an electric
field via electrostriction. Biased electrostriction is, however, very similar to
piezoelectricity. If we apply a large d.c. electric field E0, and a small a.c.
electric field, E1, then the relationship is

γ is a proportionality factor.
S = γ (E0 + E1)

2 ∼= γE2
0 + 2γE0E1, (10.71)

and we find that the a.c. strain is linearly proportional to the amplitude of the
a.c. field.

We would like to conclude this section, following our sophisticated account
of signal processing, with a more down-to-earth application of piezoelectrics
that most of us use in our homes. This is the gas igniter. The piezoelectric most
often used is called PZT, a composite ceramic of lead titanate and zirconate.
Usually two ceramic cylinders are used to double the charge build-up and hence
the voltage across the spark gap. The operating force must be applied quickly
as the charge readily leaks away. The great virtue of PZT is a high piezoelectric
constant, about 200 times greater than quartz, but it is a lossy dielectric, tan δ

is about 10−2. You press a spring, which is released to impact the ceramic so
that a gas flow in air is spark-ignited and your fire or cooker heats up.

10.14 Interaction of optical phonons with
drifting electrons

In the previous section we discussed the acoustic amplifier, in which acoustic
waves could be amplified by interacting with drifting electrons. The remarkable
thing is that there can be transfer of power from the electrons to the acoustic
wave in spite of the presence of collisions. The question naturally arises of
whether we could transfer power from electrons to the optical branch of the
acoustic waves, i.e. produce an amplifier for optical phonons. If we could do
that then it would also be possible to build oscillators. Would it be an advantage
to have such oscillators? The answer is very much so. Remember the range of
the optical phonon resonances. They are all in the THz region—and that is a
region of the electromagnetic spectrum that has hardly been explored. A cheap
THz source would lead to numerous applications in security, a consideration
not irrelevant today.

In order to have transfer of power from electrons to optical phonons, first
of all, we need electrons. In CdS, used in the acoustic amplifier, they were
obtained by optical excitation. That is certainly a possibility but there is no
need for it. There are a number of II–VI (e.g. InSb) and III–V (e.g. GaAs)
materials which display optical phonon resonances in the THz region (around
5.4 THz for the former and 9 THz for the latter) and happen to be semiconductors
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242 Dielectric materials

with the further advantage of high mobility. Will such oscillators come? There
is a chance.

10.15 Ferroelectrics

There is one more class of dielectrics I should like to mention, which, as well
as being piezoelectric, have permanent dipole moments and a polarization that
is not necessarily zero when there is no electric field. In fact, they get their
name by analogy with ferromagnetics, which have a B−H loop, hysteresis,
and remanent magnetism. Ferroelectrics have a P−E loop, hysteresis, and
remanent polarized charge as shown in Fig. 10.20. They are very interesting
scientifically but so far have not found much application. The high relative
dielectric constants of the titanates (BaTiO3 is one of them; it is the example
usually given of a ferroelectric material) are used in capacitor-making, where
the essential ferroelectric effects of voltage and temperature changes of capacity
are usually an embarrassment. At one time it seemed as if the voltage change
of dielectric constant would find application in voltage-tunable capacitors, but
varactor diodes won the race. Another potential application (as an externally
tunable phase-shifter) has not materialized either because of the high hysteresis
losses at high frequencies. Both these situations could be changed by improved
materials.

P

Fig. 10.20
Ferroelectric hysteresis loop.

There is one ferroelectric device (well, the essential element in it is
ferroelectric), which may hit the big time selling in billions and billions in the
future. It is the Ferroelectric Random Access Memory known as FRAM. The
operational principles are quite simple. There is a FET with source, drain and
gate electrodes and a capacitor in the drive line containing a lead-zirconium
titanate (PZT) ferroelectric (Fig. 10.21). With the aid of the drive line the
capacitor is biased in one or the other direction causing the domains point up
or down storing thereby a logical 0 or 1. Reading is done by applying a short
voltage pulse to the capacitor. If the applied field is in the same direction as the
domain orientation, then a small current pulse will appear in the bit line. If the
applied field is in the opposite direction, the current pulse is much larger, hence
the state of the memory can be ascertained. The main merit of this memory cell

Fig. 10.21
Schematic drawing of a ferrolectric
non-volatile random access memory
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is that when the pulse is removed, the domains retain their orientation. This is
a non-volatile memory greatly in demand. Another contender for the market’s
attention, providing also non-volatile memory is the Magnetic Random Access
Memory that will be briefly discussed in Section 11.9.2.

10.16 Optical fibres

I have tried to show that dielectric properties have importance in optics as well
as at the more conventional electrical engineering frequencies. That there are
no sacred boundaries in the electromagnetic spectrum is shown very clearly by
a fairly recent development in communications engineering. This involves the
transmission (guiding) of electromagnetic waves. The principle of operation
is very simple. The optical power remains inside the fibre because the rays
suffer total internal reflection at the boundaries. This could be done at any
frequency, but dielectric waveguides have distinct advantages only in the
region around μm wavelengths. The particular configuration used is a fibre
of rather small diameter (say 5−50 μm) made of glass or silica. Whether this
transmission line is practical or not will clearly depend on the attenuation.
Have we got the formula for the attenuation of a dielectric waveguide? No, we
have not performed that specific calculation, but we do have a formula for the
propagation coefficient of a plane wave in a lossy medium, and that gives a
sufficiently good approximation.

Recall eqn (1.38)
k = (ω2με + iωμσ)1/2, (10.72)

and assuming this time that
ωε � σ , (10.73)

we get the attenuation coefficient

kimag = 1

2

ω
√
ε′

c

σ

ωε
= 1

2

ω
√
ε′

c
tan δ. (10.74)

The usual measure is the attenuation in decibels for a length of one kilometre,
which may be expressed from eqn. (10.74) as follows:

A = 20 log10 exp(1000 kimag) = 8680 kimag

= 4340
ω

√
ε′

c
tan δ db km−1. (10.75)

For optical communications to
become feasible, A should not
exceed 20 db km−1 first pointed
out by Kao and Hockham in 1966.

Taking an operational frequency of f = 3 × 1014 Hz, a typical dielectric
constant ε′ = 2.25, and the best material available at the time with tan δ ≈ 10−7,
we get

A ≈ 4 × 103 db km−1, (10.76)

a far cry from 20. No doubt materials can be improved, but an improvement
in tan δ of more than two orders of magnitude looked at the time somewhat
beyond the realm of practical possibilities. Nevertheless, the work began, and
Fig. 10.22 shows the improvement achieved. The critical 20 db was reached at
the end of 1969, and by 1983 the figure was down to 0.2 db km−1, an amazing
improvement on a difficult enough initial target.

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


244 Dielectric materials

Fig. 10.22
Improvement in optical fibre
attenuation.
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The most usual material used for these successful fibres has been purified
silica (SiO2) with various dopants to produce the refractive index profile across
the diameter to contain the light ray in a small tube along the axis, with total
internal reflection from the lower refractive index cladding. To get very low
attenuations, the wavelength of the light has to be carefully chosen. Even with
highly purified silica, there are some hydroxyl (OH) impurity radicals, which
are stimulated into vibrations and hence absorb bands of frequencies. There are
‘windows’ in this absorption spectrum, one of which between 1.5 and 1.7 μm
wavelength was used to obtain the 0.2 db km−1 result. A new impetus to the
in any case fast-growing optical fibre communications has been given by
the invention of a fibre amplifier that makes orthodox repeaters superfluous.
The principles of operation will be explained in Section 12.10 after some
acquaintance with lasers.

The lowest attenuation available in 2003 was 0.15 db/km−1 at a wavelength
of 1568 nm, not much less than that achieved in 1983. The latest fibres,
free of OH absorption, can cover the wavelength range from about 1275–
1625 nm. Since the attenuation is now around 1% per km, there is not much
scope for improvement. The amount of information one can get through these
fibres, using Wavelength Division Multiplex, is enormous, much above present
demand. Demultiplexing is usually done by Bragg reflection filters (An example
of such a filter has already been given in Section 10.5. Two further realizations
in integrated optics form will be discussed in Section 13.7).

Up to now about 6 × 108 km of fibre has been laid. The rate of increase has
halved in 2002 but that is believed to be due to the recession rather than to the
coming saturation of the market, and the economic slump continues.

In conclusion, it is worth mentioning that the reduction of attenuation
by four orders of magnitude in less than two decades is about the same
feat as was achieved by strenuous efforts between the first attempts of the
Phoenicians (around 2000 BC) and the dawn of the fibre age. If you ever
encounter a problem that appears to be too daunting, remember the story
of the optical fibres. It is an excellent illustration of the American maxim
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(born in the optimism of the post-war years) that the impossible takes a little
longer.

10.17 The Xerox process

This great development of the past three decades enables the production of high
quality reproductions of documents quickly and easily. This has in turn made
decision making more democratic, bureaucrats more powerful, and caused vast
forests of trees to disappear to provide the extra paper consumed. Scientifically,
the principles are simple. The heart of the Xerox machine is a plate made of a
thin layer of amorphous semiconductor on a metal plate. The semiconductor is
a compound of As, Se, and Te. It is almost an insulator, so that it behaves like a
dielectric, but it is also photo-conductive; that is, it becomes more conducting
in the light (remember Section 8.6). The dielectric plate is highly charged
electrostatically by brushing it with wire electrodes charged to about 30 kV.
The document to be copied is imaged onto the plate. The regions that are
white cause the semiconductor to become conducting, and the surface charge
leaks away to the earthed metal backing plate. However, where the dark print is
imaged, charge persists. The whole plate is dusted with a fine powder consisting
of grains of carbon, silica, and a thermosetting polymer. Surplus powder is
shaken off, and it adheres only to the highly charged dark regions. A sheet of
paper is then pressed onto the plate by rollers. It picks up the dust particles
and is then treated by passing under an infra-red lamp. This fuses polymeric
particles, which subsequently set, encasing the black C and SiO2 dust to form
a permanent image of the printed document. To clear the plate, it is illuminated
all over so that it all discharges, the ink is shaken off, and it is ready to copy
something else.

A very simple process scientifically, it works so well because of the careful
and very clever technological design of the machine.

10.18 Liquid crystals

I suppose we have heard so much about liquid crystal displays (LCD) in the
last couple of decades that we tend to ignore the implied contradiction. Is it
a liquid, or is it a crystal? Well, it can be both, and the fact has been known
for nearly a hundred years. This particular set of viscous liquids happens to
have anisotropic properties due to ordering of long rod-like molecules. If you
would like to visualize the short range order of long rods have a look at the
photograph shown in Fig. 10.23 taken in Canada by Dr Raynes, an expert on
liquid crystals. Mind you, the analogy is not exact. In contrast to logs liquid
crystals have in addition strong electric dipole moments and easily polarizable
chemical groups, so there is a voltage dependent anisotropy.

There are three types of liquid crystal structures, nematic, cholesteric, and
smectic. The one most often used for display purposes belongs to the nematic
type and is known as the twisted nematic display for reasons which will become
obvious in a moment.

The liquid crystal is held between two glass plates. If the glass plate is
suitably treated, then the molecules next to the surface will align in any
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Fig. 10.23
Logs drifting in a Canadian river.

Fig. 10.24
A schematic representation of the
operational principles of a twisted
nematic display device.
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desired direction. We can thus achieve that the molecules on the two opposite
surfaces will lie at right angles to each other, and those in between change
gradually from one orientation to the other [Fig. 10.24(a)]. It is not too difficult
to imagine now that light incident with a polarization perpendicular to the
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direction of the molecules will be able to follow the twist and will emerge with
a polarization twisted by 90◦. Thus, in the configuration of Fig. 10.24(a), with
the two polarizers in place, light will be easily transmitted. When a voltage is
applied, the molecules line up in parallel with the electric field [Fig. 10.24(b)],
the incident light no longer twists its polarization, and consequently no light
transmission takes place.

You may legitimately ask at this stage, why is this a display device? The
answer is that this is only a valve, but it can be turned into a display device by
placing a mirror behind it. With the voltage off the display is bright because it
reflects ambient light. With the voltage on there is no light reflection.

Other types of liquid crystal displays also exist. A colour response can be
obtained by the so called guest–host effect, which relies on an anisotropic dye
aligning with the liquid crystal molecules.

From a technical point of view, the biggest advantage of liquid crystal
displays is that the voltages they need are compatible with those used for
semiconductor devices. From the customer’s point of view, they have the major
advantage of providing a flat display. In the last five years they have been
very successful in supplanting cathode ray tubes. Their main competitors are
plasma displays∗ at present, and organic light-emitting diodes (to be discussed

∗ The way this book is organized, plasma
effects are often discussed but there is no
single chapter, not even a single section,
devoted entirely to their properties.
Hence this point is probably the best
for briefly describing the operation of
plasma displays. The essential elements
are as follows. There are two sets of
electrodes perpendicular to each other,
to which voltages can be applied by the
control circuits. Between each pair of
crossed electrodes there is a cell filled
with gas (xenon and neon), in which the
gas is ionized by the applied voltage.
The ionized gas gives rise to ultraviolet
photons, which, on impact, cause red,
green, and blue phosphors (just as in a
colour cathode ray tube) to emit visible
light at the right amplitude, in the right
proportion of colours.

in Appendix I) in the future.

Exercises

10.1. Sketch qualitatively how you would expect the
permittivity and loss tangent to vary with frequency in those
parts of the spectrum that illustrate the essential properties, lim-
itations, and applications of the following materials; window
glass, water, transformer oil, polythene, and alumina.

10.2. What is the atomic polarizability of argon? Its
susceptibility at 273 K and 1 atm is 4.35 × 10−4.

10.3. A long narrow rod has an atomic density 5 × 1028 m−3.
Each atom has a polarizability of 10−40 farad m2. Find the
internal electric field when an axial field of 1 V/m is applied.

10.4. The energy of an electric dipole in an electric field is
given by eqn (10.9). Derive this expression by finding the work
done by the electric field when lining up the dipole.

10.5. The tables† show measured values of dielectric loss for
thoria (ThO2) containing a small quantity of calcium. For this
material the static and high frequency permittivities have been
found from other measurements to be

εs = 19.2ε0, ε∞ = 16.2ε0.

f = 695 Hz f = 6950 Hz

T (K) tan δ T (K) tan δ

555 0.023 631 0.026
543 0.042 621 0.036
532 0.070 612 0.043
524 0.086 604 0.055
516 0.092 590 0.073
509 0.086 581 0.086
503 0.081 568 0.086
494 0.063 543 0.055
485 0.042 518 0.025
475 0.029 498 0.010

† Data taken from PhD thesis of J. Wachtman, University
of Maryland, 1962, quoted in Physics of solids, Wert and
Thomson (McGraw–Hill), 1964.

Assume that orientational polarization is responsible for the
variation of tan δ. Use the Debye equations to show that by
expressing the characteristic relaxation time as

τ = τ0 exp(H/kT )

(where τ0 andH are constants) both of the experimental curves
can be approximated. Find τ0 and H .
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If a steady electric field is applied to thoria at 500 K, then
suddenly removed, indicate how the electric flux density will
change with time.

10.6. A more general time-varying relationship between the
electric displacement D and the electric field E may be
assumed to have the form

D + a
dD

dt
= bE + c

dE

dt

where a, b, c are constants. Determine the values of these
constants in terms of εs, the static dielectric constant, ε∞, the
high frequency dielectric constant and τ , the relaxation time
for dipoles under constant electric field conditions.

10.7. Figure 10.25 shows two types of breakdown that can
occur in the reverse characteristic of a p–n junction diode.
The ‘hard’ characteristic is the desired avalanche breakdown
discussed in Chapter 9. The ‘soft’ characteristic is a fault that
sometimes develops with disastrous effect on the rectification
efficiency. It has been suggested that this is due to precipitates
of metals such as copper or iron in the silicon, leading
to local breakdown in high field regions. [Goetzberger and
Shockley (1960). ‘Metal precipitates in p–n junctions’, J.
Appl. Phys., 31, 1821.] Discuss briefly and qualitatively this
phenomenon in terms of the simple theories of breakdown
given in this chapter.
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10.8. A capacitor is to be made from a dielectric having a
breakdown field strength Eb and a relative permittivity εr . The
electrodes are metal plates fixed to the sides of a slab (thickness
0.5 mm) of the dielectric. Owing to a slight distortion of one of
the plates, one-third of its area is separated from the dielectric by
an air-filled gap of thickness 1 μm. The remaining two-thirds of
theplateand thewholeof thesecondplateare in intimatecontact
with the dielectric. The breakdown field Eb is 2.0 MV m−1 for
the dielectric and 3.0 MV m−1 for air, εr is 1000. Discuss the
effect of the gap (compared with a gap-free capacitor), on (a)
the capacitance and (b) the breakdown voltage.

10.9. Derive an expression for the gain of the piezoelectric
ultrasonic amplifier (Hutson, McFee, and White (1961), Phys.
Rev. Lett., 7, 237).
[Hint: In the one-dimensional case we can work in terms of
scalar quantities. Our variables are: ε, D, T , S, J , Ne.
The equations available are: eqns (10.58) and (10.59)
for the relationship between the mechanical and electrical
quantities, the equation for the electron current including both
a conduction and a diffusion term (given in exercise 9.2),
the continuity equation for electrons, and one of Maxwell’s
equations relating D to Ne. Altogether there are five equations
and six variables. The missing equation is the one relating strain
to stress for an acoustic wave.

It is of the form

∂2T

∂z2
= ρm

∂2S

∂t2
,

where ρm is the density of the piezoelectric material.
The gain may be derived in a manner analogous to that

adopted in Chapter 1 for the derivation of the dispersion
relations for electromagnetic and plasma waves. The steps are
as follows:

(i) Assume that the a.c. quantities are small in comparison
with the d.c. quantities (e.g. the a.c. electric field is much
smaller than the applied d.c. electric field) and neglect the
products of a.c. quantities.

(ii) Assume that the a.c. quantities vary as exp[−i(ωt − kz)]
and reduce the linear differential equation system to a set
of linear equations.

(iii) Derive the dispersion equation from the condition that
the linear equation system must have a non-trivial
solution.

(iv) Substitute k = ω/νs + δ [where νs = (c/ρm)
1/2 is the

velocity of sound in the medium] into the dispersion
equation and neglect the higher powers of δ.

(v) Calculate the imaginary part of δ which will determine
(by its sign) the growing or attenuating character of the
wave. Show that there is gain for ν0>νs, where ν0 is the
average velocity of the electrons.]

10.10. Find the frequency dependence of the complex
permittivity due to electronic polarizability only.
[Hint: Write down the equation of motion for an electron,
taking into account viscous friction (proportional to velocity)
and restoring force (proportional to displacement). Solve the
equations for a driving force of eE exp(−iωt). Remember that
polarization is proportional to displacement and finally find the
real and imaginary parts of the dielectric constant as a function
of frequency.]

10.11. Using the data for KCl given in Exercise 5.4 estimate
a frequency at which the dielectric constant of KCl will relax
to a lower value.
[Hint: Around the equilibrium value the force is proportional
to displacement (to a first approximation), whence a
characteristic frequency can be derived.]
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Quod superest, agere incipiam quo foedere fiat
naturae, lapis hic ut ferrum ducere possit,
quem Magneta vocant partio de nomine Grai,
Magnetum quia fit patriis in finibus ortus
hunc homines lapidem mirantur; . . .
. . . . . . . . . . . .

Hoc genus in rebus firmandumst multa prius quam
ipsius rei rationem reddere possis,
et nimium longis ambagibus est adeundum;

Lucretius De Rerum Natura

To pass on, I will begin to discuss by what law of nature it comes about that
iron can be attracted by that stone which the Greeks call magnet from the name
of its home, because it is found within the national boundaries of the Magnetes.
This stone astonishes men . . .
In matters of this sort many principles have to be established before you can
give a reason for the thing itself, and you must approach by exceedingly long
and roundabout ways;

11.1 Introduction

There are some curious paradoxes in the story of magnetism that make the
topic of considerable interest. On the one hand, the lodestone was one of the
earliest known applications of science to industry—the compass for shipping;
and ferromagnetism is of even more crucial importance to industrial society
today than it was to early navigators. On the other hand, the origin of magnetism
eluded explanation for a long time, and the theory is still not able to account
for all the experimental observations.

It is supposed that the Chinese used the compass around 2500 BC. This may
not be true, but it is quite certain that the power of lodestone to attract iron was
known to Thales of Miletos in the sixth century BC. The date is put back another
two hundred years by William Gilbert (the man of science in the court of Queen
Elizabeth the First), who wrote in 1600 that ‘by good luck the smelters of iron or
diggers of metal discovered magnetite as early as 800 BC.’There is little doubt
about the technological importance of ferromagnetism today. In the United
Kingdom as much as 7 × 1011 W of electricity are generated at times; electrical
power in this quantity would be hopelessly impractical without large quantities
of expertly controlled ferromagnetic materials. Evidence for the statement that
the theory is not fully understood may be obtained from any honest man who
has done some work on the theory of magnetism.
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250 Magnetic materials

11.2 Macroscopic approach

By analogy with our treatment of dielectrics, I shall summarize here briefly the
main concepts of magnetism used in electromagnetic theory. As you know, the
presence of a magnetic material will enhance the magnetic flux density. Thus
the relationship

B = μ0H, (11.1)

valid in a vacuum, is modified toM is the magnetic dipole moment
per unit volume, or shortly,
magnetization. B = μ0(H +M) (11.2)

in a magnetic material. The magnetization is related to the magnetic field by
the relationship

χm is the magnetic susceptibility. M = χmH. (11.3)

Substituting eqn (11.3) into eqn (11.2) we get

B = μ0(1 + χm) H = μ0μrH. (11.4)μr is called the relative
permeability.

11.3 Microscopic theory (phenomenological)

Our aim here is to express the macroscopic quantity, M , in terms of the
properties of the material at atomic level. Is there any mechanism at atomic
level that could cause magnetism? Reverting for the moment to the classical
picture, we can say yes. If we imagine the atoms as systems of electrons orbiting
round protons, they can certainly give rise to magnetism. We know this from
electromagnetic theory, which maintains that an electric current, I , going round
in a plane will produce a magnetic moment∗∗ It is an unfortunate fact that the usual

notation is μ both for the permeability
and for the magnetic moment. I hope
that, by using the subscripts 0 and r
for permeability and m for magnetic
moment, the two things will not be
confused.

μm = IS, (11.5)

where S is the area of the current loop. If the current is caused by a single
electron rotating with an angular frequency ω0, then the current is eω0/2π , and
the magnetic moment becomes

μm = eω0

2
r2, (11.6)

where r is the radius of the circle. Introducing now the angular momentum

� = mr2ω0 (11.7)

we may rewrite eqn (11.6) in the formRemember that the charge of the
electron is negative; the magnetic
moment is thus in a direction
opposite to the angular momentum.

μm = e

2m
�. (11.8)

We now ask what happens when an applied magnetic field is present.
Consider a magnetic dipole that happens to be at an angle θ to the direction of
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the magnetic field (Fig. 11.1). The magnetic field produces a torque μm × B
on the magnetic dipole. Since the torque is perpendicular both to μm and B,
the change in the angular momentum will also be perpendicular, causing the
magnetic dipole to precess around the magnetic field. From kinetics we can
easily show that the frequency of precession is

ωL = eB

2m
, (11.9)

which is usually called the Larmor frequency. If the magnetic dipole precesses,
some electric charge must go round. So we could use eqn (11.6) to calculate
the magnetic moment due to the precessing charge. Replace ω0 by ωL; we get

(μm)ind = Br2e2

4m
, (11.10)

where r is now the radius of the precessing orbit. The sign of this induced
magnetic moment can be deduced by remembering Lenz’s law. It must oppose
the magnetic field responsible for its existence.

θ

μm

B

Fig. 11.1
A magnetic dipole precessing around
a static magnetic field.

We are now in a position to obtain M from the preceding microscopic
considerations. If there are Na atoms per unit volume and each atom contains
Z electrons, the total induced magnetic dipole moment is

M = NaZ(μm)ind. (11.11)

Hence, the magnetic susceptibility is

χm = M

H
= −NaZe

2r2μ0

4m
. (11.12)

Rarely exceeding 10−5, χm given by the above equation is a small number,
but the remarkable thing is that it is negative. This is in marked contrast
with the analogous case of electric dipoles, which invariably give a positive
contribution.∗ The reason for this is that the electric dipoles line up, whereas ∗ The electric susceptibility can also be

negative, but that is caused by free
charges and not by electric dipoles.

the magnetic dipoles precess in a field. Magnetic dipoles can line up as well.
The angle of precession will stay constant in the absence of losses but not
otherwise. In the presence of some loss mechanism the angle of precession
gradually becomes smaller and smaller as the magnetic dipoles lose energy; in
other words, the magnetic dipoles do line up. They will not align completely
because they occasionally receive some energy from thermal vibrations that
frustrates their attempt to line up. This is exactly the same argument we used for
dielectrics, and we can therefore use the same mathematical solution. Replacing
the electric energy in eqn (10.13) by the magnetic energy, we get the average
magnetic moment in the form

〈μm〉 = μmL(a), a = μmμ0

kT
H . (11.13)

Denoting by Nm the number of magnetic dipoles per unit volume, we get for
the total magnetic moment

M = Nm〈μm〉. (11.14)
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At normal temperatures and reasonable magnetic fields, a � 1 and
eqn (11.14) may be expanded to give

M = Nmμ
2
mμ0H

3kT
, (11.15)

leading to

χm = Nmμ
2
mμ0

3kT
. (11.16)

Here χm is definitely positive and
varies inversely with temperature.

1.0

0.5

0.0
0 2 4 6 a

L(a)

Fig. 11.2
The Langevin function, L(a).

At the other extreme of very low temperatures all the magnetic dipoles line
up; this can be seen mathematically from the fact that the functionL(a) (plotted
in Fig. 11.2) tends to unity for large values of a. The total magnetic moment
is then

Ms = Nmμm, (11.17)

which is called the saturation magnetization because this is the maximum
contribution the material can provide.

We have now briefly discussed two distinct cases: (i) when the induced
magnetic moment opposes the magnetic field, called diamagnetism; and
(ii) when the aligned magnetic moments strengthen the magnetic field, called
paramagnetism. Both phenomena give rise to small magnetic effects that are of
little use when the aim is the production of high magnetic fluxes. What about
our most important magnetic material, iron? Can we explain its properties with
the aid of our model? Not in its present state. We have to modify our model by
introducing the concept of the internal field. This is really the same sort of thing
that we did with dielectrics. We said then that the local electric field differs from
the applied electric field because of the presence of the electric dipoles in the
material. We may argue now that in a magnetic material the local magnetic field
is the sum of the applied magnetic field and the internal magnetic field, and we
may assume (as Pierre Weiss did in 1907) that this internal field is proportional
to the magnetization, that is

Hint = λM . (11.18)

λ is called the Weiss constant. Using this newly introduced concept of the internal field, we may replace
H in eqn (11.13) by H + λM to obtain for the magnetization:

M

Nmμm
= L

{μmμ0

kT
(H + λM)

}
. (11.19)

Thus for any given value of H we need to solve eqn (11.19) to get the
corresponding magnetization. It is interesting to note that eqn (11.19) still has
solutions when H = 0. To prove this, let us introduce the notations,

b = μmμ0λM/kT , θ = Nmμ
2
mμ0λ/3k, (11.20)

and
M

Nmμm
= T μmμ0λM/kT

3Nmμ2
mμ0λ/3 k

= T b

3θ
. (11.21)
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We can now rewrite eqn (11.19), for the case H = 0, in the form

T

3θ
b = L(b). (11.22)

Plotting both sides of the above equation (Fig. 11.3) it becomes apparent that
there is a solution when T < θ but no solution when T > θ .

What does it mean if there is a solution? It means that M may be finite for
H = 0; that is, the material can be magnetized in the absence of an external
magnetic field. This is a remarkable conclusion. We have managed to explain,
with a relatively simple model, the properties of permanent magnets.

Note that there is a solution only below a certain temperature. Thus,if
our theory is correct, permanent magnets should lose their magnetism above
this temperature. Is this borne out by experiment? Yes, it is a well-known
experimental fact (discovered by Gilbert) that permanent magnets cease to
function above a certain temperature. What happens when T > θ? There is no
magnetization for H = 0, but we do get some magnetization for finite H .

0 2 4 6 b

μmmN
M

θT θTθT =

Fig. 11.3
Graphical solution of eqn (11.22).
There is no solution, that is the curves
do not intersect each other, for T > θ .

The mathematical solution may be obtained from eqn (11.19), noting that
the argument of the Langevin function is small, and we may use again the
approximation L(a) ∼= a/3, leading to

M

Nmμm
= μmμ0

3kT
(H + λM), (11.23)

which may be solved for M to give

M = Nmμ
2
mμ0/3k

T − Nmμ2
mμ0λ/3k

H = C

T − θ
H , (11.24)

where

C = Nmμ
2
mμ0

3k
(11.25)

is called the Curie constant and θ is the Curie temperature. The M−H

relationship is linear, and the susceptibility is given by

χm = C

T − θ
. (11.26)

Thus, we may conclude that our ferromagnetic material (the name given to
materials like iron that exhibit magnetization in the absence of applied magnetic
fields) becomes paramagnetic above the Curie temperature.

We have now explained all the major experimental results on magnetic
materials. We can get numerical values if we want to. By measuring the
temperature where the ferromagnetic properties disappear, we get θ (it is 1043 K
for iron) and by plotting χm above the Curie temperature as a function of
1/(T − θ) we get C (it is about unity for iron). With the aid of eqns (11.20) and
(11.25) we can now express the unknowns μm and λ as follows:

λ = θ

C
and μm =

(
3 kC

Nmμ0

)1/2

. (11.27)
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Taking Nm = 8 × 1028m−3 and the above-mentioned experimental results,
we get for iron:

λ ∼= 1000 and μm
∼= 2 × 10−23 Am2. (11.28)

The value for the magnetic dipole moment of an atom seems reasonable. It
would be produced by an electron going round a circle of 0.1 nm radius about
1015 times per second. One can imagine that, but it is much harder to swallow
a numerical value of 1000 for λ. It means that the internal field is 1000 times
as large as the magnetization. When all the magnetic dipoles line up, M comes
to about 106A m−1, leading to a value for the internal flux density Bint =
μ0λM = 103 T, which is about an order of magnitude higher than the highest
flux density ever produced. Where does such an enormous field come from? It
is a mysterious problem, and we shall leave it at that for the time being.

11.4 Domains and the hysteresis curve

We have managed to explain the spontaneous magnetization of iron, but as
a matter of fact, freshly smelted iron does not act as a magnet. How is this
possible? If, below the Curie temperature, all the magnetic moments line
up spontaneously, how can the outcome be a material exhibiting no external
magnetic field? Weiss, with remarkable foresight, postulated the existence of a
domain structure. The magnetic moments do line up within a domain, but the
magnetizations of the various domains are randomly oriented relative to each
other, leading to zero net magnetism.

The three most important questions we need to answer are as follows:

1. Why does a domain structure exist at all?
2. How thick are the domain walls?
3. How will the domain structure disappear as the magnetic field increases?

It is relatively easy to answer the first question. The domain structure comes
about because it is energetically unfavourable for all the magnetic moments
to line up in one direction. If it were so then, as shown in Fig. 11.4(a), there
would be large magnetic fields and, consequently, a large amount of energy
outside the material. This magnetic energy would be reduced if the material
would break up into domains as shown in Fig. 11.4(b)–(e). But why would
this process ever stop? Should not the material break up into as many domains
as it possibly could, down to a single atom? The reason why this would not
happen is because domains must have boundaries and, as everyone knows, it
is an expensive business to maintain borders of any kind. Customs officials
must be paid, not mentioning the cost of guard towers and barbed wires, with
which some borders are amply decorated. Thus some compromise is necessary.
The more domains there are, the smaller will be the magnetic energy outside,
but the more energy will be needed to maintain the boundary walls. When
putting up one more wall needs as much energy as the achieved reduction of
energy outside, an equilibrium is reached, and the energy of the system is
minimized.

We have now managed to provide a reasonable answer to question (1). It is
much more difficult to describe the detailed properties of domains, and their
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(a) (b) (c)

(d) (e)

Fig. 11.4
The formation of domains (from
C. Kittel, Introduction to solid state
physics, John Wiley, New York).
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Fig. 11.5
Magnetization curve of single
crystal iron in three different
crystallographical directions.

dependence on applied magnetic fields. We must approach the problem, as
Lucretius said, ‘by exceedingly long and roundabout ways’.

However much I dislike talking about crystal structure, there is no escape
now because magnetic properties do depend on crystallographic directions. I
am not suggesting that magnets are ever made of single-crystal materials, but
in order to interpret some of the properties of ordinary polycrystalline magnets,
we have to know the magnetic properties of the single crystals.

In Fig. 11.5 the magnetization curve (B against H ) of iron is plotted for
three different directions in the crystal. It may be seen that magnetization is
relatively easy in the AB direction and harder in the AC and AG directions, or
in other words, it is easier to magnetize iron along a cube edge than along a face
or a body diagonal. This does not mean, of course, that all magnetic materials
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256 Magnetic materials

follow the same pattern. In nickel, another cubic crystal, the directions of
easy and difficult magnetization are the other way round. What matters is that
in most materials magnetization depends on crystallographic directions. The
phenomenon is referred to as anisotropy, and the internal forces which bring
about this property are called anisotropy forces.

Let us now see what happens at the boundary of two domains, and choose
for simplicity two adjacent domains with opposite magnetizations as shown in
Fig. 11.6. Note that the magnitude of the magnetic moments is unchanged during
the transition, but they rotate from an ‘up’ position into a ‘down’ position. Why
is the transition gradual? The forces responsible for lining up the magnetic
moments (let us call them for the time being ‘lining up’ forces) try to keep
them parallel. If we wanted a sudden change in the direction of the magnetic
moments, we should have to do a lot of work against the ‘lining up’ forces, and
consequently there would be a lot of ‘lining up’ energy present. The anisotropy
forces would act the opposite way. If ‘up’ is an easy direction (the large majority
of domains may be expected to line up in an easy direction), then ‘down’ must
also be an easy direction. Thus, most of the directions in between must be looked
upon unfavourably by the anisotropy forces. If we want to rotate the magnetic
moments, a lot of work needs to be done against the anisotropy forces, resulting
in large anisotropy energy. According to the foregoing argument, the thickness
of the boundary walls will be determined by the relative magnitudes of the
‘lining up’ and the anisotropy forces in the particular ferromagnetic material.
If anisotropy is small, the transition will be slow and the boundary wall thick,
say 10 μm. Conversely, large anisotropy forces lead to boundary walls which
may be as thin as 0.3 μm.

We are now ready to explain the magnetization curves of Fig. 11.5. When
the piece of single-crystal iron is unmagnetized, we may assume that there are
lots of domains, and the magnetization in each domain is in one of the six easy
directions. Applying now a magnetic field in the AB direction, we find that,
as the magnetic field is increased, the domains which lay originally in the AB
direction will increase at the expense of the other domains, until the whole
material contains only one single domain. Since the domain walls move easily,
the magnetic field required to reach saturation is small.

What happens if we apply to the same single-crystal iron a magnetic field
in the AG direction? First, the domain walls will move just as in the previous

Fig. 11.6
Rotation of magnetic moments at a
domain wall.

Width of wall
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case until only three easy directions are left, namely AB, AD, and AE, that is
those with components in the AG direction. This may be achieved with very
little magnetic field, but from then on (K in Fig. 11.5) the going gets hard.
In order to increase the magnetization further, the magnetic moments need
to change direction, which can only happen if the internal anisotropy forces
are successfully overcome. This requires more effort, hence the slope of the
magnetization curve changes, and saturation will only be achieved at greater
magnetic fields.

Is this explanation still correct for polycrystalline materials? Well, a
polycrystalline material contains lots of single crystal grains, and the above
argument applies to each of the single crystals; thus the magnetization curve of
a polycrystalline material should look quite similar to that of a single-crystal
material in a difficult direction. As you know from secondary school, this is
not the case. Figure 11.5 does not tell the whole story. The magnetization curve
of a typical ferromagnetic material exhibits hysteresis, as shown in Fig. 11.7.
Starting with a completely demagnetized material, we move up the curve along
2, 3, 4, 5 as the magnetic field is increased. Reducing then the magnetic field,
we get back to point 6, which is identical with point 4, but further decrease
takes place along a different curve. At 7 there is no applied magnetic field, but
B is finite. Its value, B = Br , is the so called remanent flux density. Reducing
further, the magnetic field B takes the values along 8, 9, 10. Returning from
10, we find that 11 is identical with 9 and then proceed further along 12 and 13
to reach finally 4.

The loop 4, 7, 8, 9, 12, 13, 4 is referred to as the hysteresis loop. It clearly
indicates that the magnetization of iron is an irreversible phenomenon. Note that the value of H at 13

is called the coercivity, denoted
by Hc. It represents the magnetic
field needed for the flux density to
vanish.

The paths 4, 5 and 9, 10 suggest that rotation from easy into difficult
directions is reversible, thus the causes of irreversibility should be sought in
domain movement. Because of the presence of all sorts of defects in a real
material, the domain walls move in little jerks, causing the magnetization to
increase in a discontinuous manner (region 2, 3 magnified in Fig. 11.7). The
walls get stuck once in a while and then suddenly surge forward, setting up in
the process some eddy currents and sound waves, which consume energy. If
energy is consumed, the process cannot be reversible, and that is the reason for
the existence of the hysteresis loop.

B
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5

H

Hc

3
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1 13

12
9

10 11

Br

7

Fig. 11.7
The magnetization curve of a typical
ferromagnetic material.
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Is it possible to describe more accurately the movement of domains? One can
go indeed a little further by taking into account the effect of magnetostriction,
which, as you may guess, is the magnetic counterpart of electrostriction.
Strictly speaking, one should distinguish between magnetostriction and
piezomagnetism, the magnetic counterpart of piezoelectricity. But biased
magnetostriction (see discussion on biased electrostriction in Section 10.11)
is phenomenologically equivalent to piezomagnetism, and piezomagnetism
has not been much investigated anyway; thus most authors just talk about
magnetostriction. Disregarding the problem of nomenclature, the relevant fact
is that when a magnetic field is applied, the dimensions of the material change,∗∗ It is, incidentally the cause of the

humming noise of transformers. and conversely, strain in the material leads to changes in magnetization and may
also affect the directions of easy magnetization. Now if the material exhibits a
large anisotropy and stresses are present as well, then there will be local easy
directions resisting the movement of domain walls everywhere. The stresses
may be caused by the usual defects in crystals and particularly by impurities.
In addition, a cluster of non-magnetic impurity atoms might be surrounded by
domains (see Fig. 11.8). This is a stable configuration which cannot be easily
changed.
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Fig. 11.8
Non-magnetic impurity surrounded
by a domain.

How can we classify magnetic materials? There is a simple division into
soft and hard magnetic materials. Why soft and hard? Well, the hard materials
are those which are hard to magnetize and demagnetize. So materials which
are easy to magnetize and demagnetize should be called easy materials. In fact,
they are called soft materials, and there is nothing we can do about that. We have
to remember, though, that these are only very tenuously related to mechanical
properties, which may also be hard and soft.

11.5 Soft magnetic materials

Their main role is to enhance the magnetic effect produced by a current
carrying coil. So, obviously, they should have large saturation magnetization
and large permeability. If the material is subjected to alternating voltages, then
an important consideration is to reduce losses caused by the induced eddy
currents, which can be done by increasing resistivity. What else is needed in
order to reduce losses? A narrow hysteresis loop is needed as shown below.

The energy dissipated in a coil for a period T may be expressed with the aid
of the current and voltage as

Ed =
∫ T

0
V (t)i(t) dt . (11.29)

Now, using Faraday’s law (that the voltage is proportional to the derivative
of the flux density) and Ampère’s law (that the magnetic field is proportional
to current) eqn (11.29) may be rewritten as

Ed = C

∫
H dB, (11.30)

where C is a constant. Thus, clearly, the energy loss per cycle is proportional
to the area of the hysteresis loop.

The most important parameter determining the desirable properties of soft
magnetic materials is the frequency at which they are used. For d.c. applications
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the best material is the one with the largest saturation magnetization. As the
frequency increases, it is still important to have large saturation magnetization,
but low coercitivity is also a requirement. At high frequencies, considering that
eddy current losses are proportional to the square of the frequency, the most
important property is high resistivity.

Do losses matter? In practical terms this is probably the most important
materials science problem that we have touched upon. Something like many
millions of megawatts of electricity is being generated around the world, all by
generators with hysteresis losses of order 0.5–1.0%. Then a large fraction of
this electricity goes into motors and transformers with more iron losses. If all
inventors were paid a 1% royalty on what they saved the community, then a
good way to become rich would be to make a minute improvement to magnetic
materials. Is there any good scientific way to set about this? Not really. We know
that anisotropy, magnetostriction, and local stresses are bad, but we cannot start
from first principles and suggest alloys which will have the required properties.
The considerable advances that have been made in magnetic materials have
largely been achieved by extensive and expensive trial and error. To Gilbert’s
seventeenth-century crack about ‘good luck’ we must add diligence for the
modern smelters of iron. The currently used phrase is actually ‘enlightened
empiricism’.
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Fig. 11.9
Hysteresis loops of (a) Supermalloy
and (b) Alnico 5 and 9. Note the factor
105 between the horizontal scales of
(a) and (b).

Iron containing silicon is used in most electrical machinery. An alloy with
about 2% silicon, a pinch of sulfur, and critical cold rolling and annealing
processes is used for much rotating machinery. Silicon increases the resistivity,
which is a good thing because it reduces eddy-current losses. Iron with a higher
silicon content is even better and can be used in transformer laminations,
but it is mechanically brittle and therefore no good for rotating machinery.
Where small quantities of very low-loss material are required and expense
is not important, as for radio-frequency transformers, Permalloy [78.5% Ni,
21.5% Fe] is often used. A further improvement is achieved in the material
called ‘Supermalloy’ which contains a little molybdenum and manganese as
well. It is very easily magnetizable in small fields [Fig. 11.9(a)] and has no
magnetostriction.

We may now mention a fairly new and rather obvious trick. If anisotropy
is bad, and anisotropy is due to crystal structure, then we should get rid of
the crystal structure. What we obviously need is an amorphous material. How
can we produce an amorphous material? We can produce it by cooling the
melt rapidly, so that the liquid state disorder is frozen in. The key word is
‘rapidly’. In fact, the whole process is called Rapid Solidification Technology,
abbreviated as RST. The cooling should proceed at a speed of about a million
degrees per second, so the technological problems have not been trivial. In the
first successful commercial solution a stream of molten metal is squirted on a
cooled rotating drum, followed usually by a stress relief anneal at about 300◦C.
The resulting magnetic material has the form of long thin ribbons typically
about 50 μm thick and a few millimetres wide. New production methods, for
example the planar flow casting method, in which a stable rectangular melt
‘puddle’ feeds the material into the drum, have led to further improvements.
It is now possible to obtain a uniform ribbon with a thickness of 20–30 μm
and up to 20 cm wide. The main advantage of amorphous materials is that
they can be produced easily and relatively cheaply, with magnetic properties
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nearly as good as those of commercial alloys, which require careful melting
and elaborate sequences of rolling and annealing. The presently available
amorphous materials have not quite reached the quality of supermalloy, but
they are quite close. The cobalt-based commercially available 2714A material
has a saturation magnetization of 0.5 T with a maximum permeability of a
million. Another one, known as 2605S-3A made of iron and chromium has a
saturation magnetization of 1.4 T and a maximum permeability over a quarter
of a million.

The latest line of soft magnetic materials are the nanocrystalline alloys with
grain sizes of the order of 10 nm. They have been around for about 10 years.
Typical representatives are Fe–B–Si–Cu–Nb alloys, which may reach relative
permeabilities over 100 000. The excellent soft magnetic properties may be
explained by the reduction in effective crystal anisotropy expected when grain
sizes are reduced below the bulk-domain wall thickness.

The situation is somewhat different in power applications, such as
transformers. There the traditional materials are cheaper, but amorphous
materials may still represent the better choice on account of lower losses; their
higher cost may be offset in the long term by lower power consumption (or
even possible future legislation in some countries requiring higher efficiency
in electrical equipment).

At higher frequencies, as mentioned before, high resistivities are required
for which a family of ferrites with chemical formula MO · Fe2O3 (where M is a
metal, typically Ni, Al, Zn, or Mg) is used. If the metal M is iron, the material
is iron ferrite, Fe3O4, the earliest-known magnetic material.

Ferrites are usually manufactured in four stages. In the first stage the material
is produced in the form of a powder with the required chemical composition.
In the second stage the powder is compressed, and the third stage is sintering to
bind the particles together. The fourth stage is machining (grinding, since the
material is brittle) to bring the material to its final shape.

For the properties of a number of soft magnetic materials see Table 11.1.

11.6 Hard magnetic materials (permanent magnets)

What kind of materials are good for permanent magnets? Well, if we want large
flux density produced, we need a large value of Br . What else? We need a large
Hc. Why? A rough answer is that the high value of Br needs to be protected. If
for some reason we are not at the H = 0 point, we do not want to lose much
flux, therefore the B − H curve should be as wide as possible.

A more rigorous argument in favour of large Hc can be produced by taking
account of the so-called demagnetization effect, but in order to explain that, I
shall have to make a little digression and go back to electromagnetic theory.
First of all, note that in a ring magnet [Fig. 11.10(a)] B = Br = constant
everywhere in the material to a very good approximation. Of course, such a
permanent magnet is of not much interest because we cannot make any use of
the magnetic flux. It may be made available, though, by cutting a narrow gap
in the ring, as shown in Fig. 11.10(b). What will be the values of B and H in
the gap? One may argue from geometry that the magnetic lines will not spread
out (this is why we chose a narrow gap, so as to make the calculations simpler)
and the flux density in the gap will be the same as in the magnetic material.
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Table 11.1 Major families of soft magnetic materials with typical properties

Category Bs

(T)
ρ

(μ� − m)

μmax Typical core
loss, W kg−1

measured
at f (Hz)

Applications, notes

A. Steels
lamination (low C) 2.1–2.2 0.4 2.0 (60) Inexpensive fractional hp

motors
non-oriented (2% Si) 2.0–2.1 0.35 2.7 (60) High efficiency motors
convent. grain oriented

(CGO M-4)
2.0 0.48 5 000 0.9 (60) 50/60 Hz distribution

transformers
high grain oriented

(HGO)
2.0 0.45 1.2 (60) 50/60 Hz DTs: high design

Bmax

B. Fe–(Ni, Co) alloys
40–50 Ni 1.6 0.48 150 000 110 (50 k)
77–80 Ni (square permalloy) 1.1 0.55 150 000 40 (50 k) High μ, used as thin ribbon
79 Ni–4 Mo (4–79 Mo
permalloy, supermalloy)

0.8 0.58 106 33 (50 k) Highest μ/lowest core loss of
any metallic material

49 Co–2 V (permendur,
supermendur)

2.3 0.35 50 000 2.2 (60) Highest Bs of commercial
soft magnetic material

C. Ferrites
MnZn 0.5 2 × 106 6 000 35 (50 k) Power supply inductors,

transformers
NiZn 0.35 1010 4 000 MHz applications

δ

(a) (b)

O O

Flux lines

Fig. 11.10
(a) Magnetic field lines inside a
permanent magnet. (b) The same
magnet with a narrow gap.

But, and this is the question of interest, will the flux density be the same in the
presence of the gap as in its absence? Without the gap, B = Br (Fig. 11.11). If
the value of flux density is denoted by B = Br1 in the presence of the gap, the
magnetic field in the gap will be Hg = Br1/μ0.

If you can remember Ampère’s law, which states that the line integral of
the magnetic field in absence of a current must vanish for a closed path, it
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follows that
Hgδ + Hml = 0 (11.31)

From the above equations we getHm is the magnetic field in the
material, and δ and l are the lengths
of the paths in the gap and in the
material, respectively.

Br1 = −μ0l

δ
Hm. (11.32)

But remember that the relationship between Br1 and Hm is given also by the
hysteresis curve. Hence, the value of Br1 may be obtained by intersecting the
hysteresis curve by the straight line of eqn (11.32) as shown in Fig. 11.11.
The aforegoing construction depends on the particular geometry of the
permanent magnet we assume, but similar ‘demagnetization’ will occur for
other geometries as well. Hence, we may conclude in general that in order to
have a large, useful flux density, the B − H curve must be wide. We may
therefore adopt, as a figure of merit, the product BrHc or, as it is more usual,
the product (BH)max in the second quadrant.

B(H)

Br1

Br

H

B=–
μ0l

H
δ

Fig. 11.11
Construction for finding Br1.

How can one achieve a large value of Hc? It is relatively easy to give an
answer in principle. All the things which caused the quality of soft materials
to deteriorate are good for permanent magnets. In particular, when a domain
gets stuck on an impurity, that is bad for a soft magnetic material but good
for the hard variety. An obvious way to include impurities is to add some
carbon. High-carbon steels were indeed the permanent magnet materials in the
nineteenth century until displaced by tungsten steels towards the end of the
century.

The simplest permanent magnet one could conceive in principle would be
a single crystal of a material that has a large anisotropy and has only one axis
of easy magnetization. The anisotropy may be characterized by an effective
field Ha, which attempts to keep the magnetization along the axis. If a single
crystal material is magnetized along this axis, and a magnetic field is applied
in the opposite direction, nothing should happen in principle until the field Ha

is reached, and then, suddenly, the magnetization of the whole crystal should
reverse. Going one step further in this direction, one could claim that any
collection of anisotropic particles that are too small to contain a domain wall
(having a diameter of the order of 20 nm) will have large coercivity. This idea,
due to Stoner and Wohlfarth, was the inspiration behind many attempts to make
better permanent magnets. In particular, the so-called Elongated Single Domain
(ESD) magnets owe their existence to the above concept. It is also likely that
elongated particles play a significant role in the properties of the Alnico series
of alloys, which contain aluminium, nickel, and cobalt besides iron. They
first appeared in the early 1930s but have been steadily improving ever since. A
major early advance was the discovery that cooling in a magnetic field produced
anisotropic magnets with improved properties in the field-annealed direction.
The hysteresis curves of their best-known representatives (Alnico 5 and 9) are
shown in Fig. 11.9(b).

Ferrites are also used for hard magnetic materials in the form MO · (Fe2O3)6

(M = Ba, Sr, or Pb). They were introduced in the 1950s. They have been
steadily growing in tonnage ever since, overtaking the Alnico alloys in the
late 1960s and rising in the late 1980s to 97.4% of world production (note
that in value they represent only about 60%). Their high coercivity derives
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from the high anisotropy of the hexagonal phase of the materials. They have
many advantages: they are cheap, easily manufactured, chemically stable, and
have low densities. Their disadvantages are the relatively low remanence and
declining performance for even moderate rises in temperature.

One might be forgiven for believing that the late entry of rare-earth
magnets into the market place was due to their rarity. In fact, rare-earth
elements are not particularly rare, but they occur in mixtures with each other
which cannot easily be separated owing to their similar chemical properties.
However, once the problem of separation was satisfactorily solved (early
1970s) these magnets could be produced at an economic price. Their first
champion was the samarium–cobalt alloy SmCo5, produced by powdering and
sintering. The next major advance owed its existence to political upheavals
in Africa. Uncertainties in the supply of cobalt, not to mention a five-
fold price increase, lent some urgency to the development of a cobalt-free
permanent magnet. Experiments involving boron led to new (occasionally
serendipitous) discoveries, culminating in the development of the Nd2Fe14B,
which became known as ‘neo’ magnets, referring not so much to their
novelty (although new they were) but to their neodymium content. They
hold the current record of (BH)max = 400 kJ m−3 obtained under laboratory
conditions. The commercially available value is about 300 kJ m−3, as may
be seen in Table 11.2. They have, though, the major disadvantage of a
fairly low Curie temperature. Note that these new materials have radically
different looking hysteresis curves as shown in Fig. 11.12 for the second
quadrant only.

1.4

0
0400800

T

Sm(Co,Fe,Cu,Zr)

Nd–Fe–B

Sm Co5

kA m–1

Fig. 11.12
Hysteresis curves of some rare-earth
magnets in the second quadrant.

Let us see now two rather revealing indications of progress. As shown in
Fig. 11.13, the introduction of new magnetic materials led to quite significant
shrinking of the magnetic circuit of a moving-coil meter. Our second example
is the historical development of the maximum value of (BH)max shown in
Fig. 11.14. The points labelled 1–3 are steels, 4–8 are alnicos, and 9–12
are rare-earth magnets. The increase may be seen to be roughly exponential,
a factor of 200 in a century—not as spectacular as the improvement in the
attenuation of optical fibres, but one certainly gains the impression of steady
advance.

For the properties of a number of hard magnetic materials, see
Table 11.2.

Table 11.2 Hard magnetic materials

Material Hc

(A m−1)

Br

(T)
(BH)max

J m−3

Carbon steel 0.9%C, 1% Mn 4.0 × 103 0.9 8 × 102

Alnico 5
8% Al, 24% Co, 3% Cu, 14% Ni 4.6 × 104 1.25 2 × 104

‘Ferroxdur’ (BaO)(Fe2O3)6 1.6 × 105 0.35 1.2 × 104

ESD Fe–Co 8.2 × 104 0.9 4 × 104

Alnico 9 1.3 × 105 1.05 105

SmCo5 7 × 105 0.8 2 × 105

Nd2Fe14B 8.8 × 105 1.2 3 × 105
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Fig. 11.13
The evolution of the magnetic circuit
of moving-coil meters reflects the
progress in magnet materials
development. Coil size and magnetic
field are equal in all five sketches.

Tungsten steel

Cobalt steel

IronIron

Iron Iron Iron

Alnico 2
Alnico 5

SmCo

Fig. 11.14
The achieved optimal value of
(BH)max against time.
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11.7 Microscopic theory (quantum-mechanical)

Classical theory gives a reasonable physical picture of what is happening in a
magnetic material and does give some guidance to people searching for new
materials.∗ The question arises whether we should discuss quantum theory as∗ The theory we have discussed so far

is not really consistent because classical
theory cannot even justify the existence
of atoms and so cannot provide any good
reasons for the presence of circulating
electronic currents in a material.

well. I would like to advise against excessive optimism. Do not expect too much;
the situation is not as cheerful as for semiconductors, where the injection of a
tiny dose of quantum theory sufficed to explain all the major phenomena. The
same is not true for magnetism. The quantum theory of magnetism is much more
complicated and much less useful to an engineer. The most important activity,
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the search for better magnetic materials, is empirical anyway, and there are not
many magnetic devices clamouring for quantum theory to solve the riddle of
their operation.

5h/2

3h/2

h/2

–h/2

–3h/2

–5h/2

Fig. 11.15
The possible directions of the angular
momentum vector for a d-electron.

I do think, however, that a brief look into the quantum theory of magnetism
will yield some dividends. It is worth learning, for example, how quantum
numbers come into the picture. We have, after all, come across them when
studying the hydrogen atom, so it is not unreasonable to expect them to be
able to say something about magnetic properties. It is also worth knowing that
there is a very simple experiment showing the quantized nature of magnetic
moments, and there are a few devices which need quantum theory for their
description. So let me describe the basic concepts.

First, we should ask how much of the previously outlined theory remains
valid in the quantum-mechanical formulation. Not a word of it! There is no
reason whatsoever why a classical argument (as, for example, the precession
of magnetic dipoles around the magnetic field) should hold water. When the
resulting formulae turn out to be identical (as, for example, for the paramagnetic
susceptibility at normal temperatures), it is just a lucky coincidence.

So we have to start from scratch.
Let us first talk about the single electron of the hydrogen atom. As we

mentioned before, the electron’s properties are determined by the four quantum
numbers n, l, ml , and s, which have to obey certain relationships between
themselves; as for example, that l must be an integer and may take values
between 0 and n − 1. Any set of these four quantum numbers will uniquely
determine the properties of the electron. As far as the specific magnetic
properties of the electron are concerned, the following rules are relevant:

1. The total angular momentum is given by

� = h̄{ j( j + 1)}1/2, (11.33)

where j = l + 1
2 , that is a combination of the quantum numbers l and s.

2. The possible components of the angular momentum along any specified
direction∗ are determined by the combination of ml (which may take on any

∗ This is sheer nonsense classically
because, according to classical
mechanics, once the angular momentum
is known about three axes perpendicular
to each other, it is known about any
other axes (and it will not therefore
take necessarily integral multiples of a
certain unit). In quantum mechanics we
may know the angular momentum about
several axes but not simultaneously.
Once the angular momentum is measured
about one axis, the measurement will
alter the angular momentum about some
other axis in an unpredictable way. If
it were otherwise, we would get into
trouble with the uncertainty relationship.
Were we to know the angular momentum
in all directions, it would give us the
plane of the electron’s orbit. Hence, we
would know the electron’s velocity in
the direction of the angular momentum
vector (it would be zero), and also
the position (it would be in the plane
perpendicular to the angular momentum
in line with the proton). But this is
forbidden by the uncertainty principle,
which says that it is impossible to
know both the velocity and the position
coordinate in the same direction as the
velocity.

integral value between −l and +l) and s, yielding

j , j − 1, . . . , −j + 1, −j .

Taking as an example a d-electron, for which l = 2, the total angular
momentum is

� = h̄

(
5

2
· 7

2

)1/2

= h̄

2

√
35, (11.34)

and its possible components along (say) the z-axis are

5

2
h̄,

3

2
h̄,
h̄

2
, − h̄

2
, −3

2
h̄, −5

2
h̄

as shown in Fig. 11.15.
3. The quantum-mechanical relationship between magnetic moment and

angular momentum is nearly the same as the classical one, represented by
eqn (11.8)

μm = g
e

2m
�. (11.35)
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The only difference is the factor g (admirably called the g-factor). For
pure orbital motion its value is 1; for pure spin motion its value is 2; otherwise
it is between 1 and 2.

4. Energy levels split in the presence of a magnetic field. The splitting is
proportional to the magnetic field. This is known as the Zeeman effect.∗ In∗ Discovered well before the advent

of quantum mechanics. Pieter Zeeman
received the Nobel Prize for it in 1902.

quantum mechanical terms this means that the energy of a magnetic dipole
in a magnetic field H (taken in the z direction) may be written as

Emag = −(μm)zμ0 H = −ge�zμ0
H

2m
. (11.36)

We may rewrite eqn (11.36) in the form

The term −eh̄/2m is called a Bohr
magneton and denoted by μmB.

Emag = gμmB�zμ0
H

h̄
, (11.37)

where �z/h̄, as we have seen before, may take the values j , j − 1, etc.
down to −j .

We know now everything about the magnetic properties of an electron in
the various states of the hydrogen atom. In general, of course, the hydrogen
atom is in its ground state, for which l = 0 and ml = 0, so that only the spin of
the electron counts. The new quantum number j comes to 1

2 , and the possible
values of the angular momentum in any given direction are h̄/2 and −h̄/2.
Furthermore, g = 2, and the magnetic moment is

The magnetic moment of hydrogen
happens to be one Bohr magneton. μm = μmB. (11.38)

We can get the magnetic properties of more complicated atoms by combining
the quantum numbers of the individual electrons. There exist a set of rules
(known as Hund’s rules) that tell us how to combine the spin and orbital quantum
numbers in order to get the resultant quantum number J . The role of J for an
atom is exactly the same as that of j for an electron. Thus, for example, the
total angular momentum is given by

� = h̄ {J (J + 1)}1/2, (11.39)

and the possible components of the angular momentum vector along any axis by

h̄J , h̄ (J − 1), . . . , h̄ (−J + 1), −h̄J .

The general rules are fairly complicated and can be found in text books
on magnetism. I should just like to note two specific features of the magnetic
properties of atoms:

1. Atoms with filled shells have no magnetic moments (this is because the
various electronic contributions cancel each other);

2. The spins arrange themselves so as to give the maximum possible value
consistent with the Pauli principle.

It follows from (1) that helium and neon have no magnetic moments; and
stretching the imagination a little one may also conclude that hydrogen, lithium,
and silver, for example, possess identical magnetic properties (because all of
them have one outer electron).
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1s 2s 2p

B

C

N

(a)

1s 2s 2p 3s 3p 3d 4s

Cr

Mn

Fe

Co

Ni

(b)

Fig. 11.16
The electron configurations of (a) boron, carbon, and nitrogen and (b) chromium, manganese, iron, cobalt, and nickel.

The consequences of (2) are even more important. It follows from there that
states with identical spins are occupied first. Thus, boron with a configuration
1s22s22p1 has one electron with spin ‘up’ in the outer shell [see Fig. 11.16(a)];
carbon has two electrons with spin up, and nitrogen has three. Similarly all five
electrons of chromium and manganese in the 3d shell have spins up, and the
states with opposite spins start to fill up only later, when there is no alternative.
This is shown in Fig. 11.16(b), where the electronic configurations are given
for chromium, manganese, iron, cobalt, and nickel.

We shall return to the spins of the 3d electrons a little later; first let me
summarize the main points of the argument. The most important thing to
realize is that electrons in an atom do not act individually. We have no right to
assume (as we did in the classical treatment) that all the tiny electronic currents
are randomly oriented. They are not. They must obey Pauli’s principle, and
so within an atom they all occupy different states that do bear some strict
relationships to each other. The resultant angular momentum of the atom may
be obtained by combining the properties of the individual electrons, leading to
the quantum number J , which may also be zero. Thus an atom that contains
many ‘magnetic’ electrons may end up without any magnetic moment at all.

You may ask at this stage what is the evidence for these rather strange tenets
of quantum theory? Are the magnetic moments of the atoms really quantized?
Yes, they are. The experimental proof actually existed well before the theory
was properly formulated.
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11.7.1 The Stern–Gerlach experiment

The proof for the existence of discrete magnetic moments was first obtained by
Stern and Gerlach in an experiment shown schematically in Fig. 11.17. AtomsOtto Stern received the Nobel Prize

in 1943. of a chosen substance (it was silver in the first experiment) are evaporated in
the oven. They move then with the average thermal velocity, and those crossing
the diaphragms S1 and S2 may be expected to reach the target plane in a straight
line—provided they are non-magnetic. If, however, they do possess a magnetic
moment, they will experience a force expressed by

F = (μm)zμ0
∂H

∂z
. (11.40)

Thus, the deflection of the atoms in the vertical plane depends on the magnitude
of this force. ∂H/∂z is determined by the design of the magnet [a strong
variation in the z-component of the magnetic field may be achieved by making
the upper pole piece wedge-shaped as shown in Fig. 11.17(b)] and is a constant
in the experiment. Hence, the actual amount of deflection is a measure of (μm)z.

Were the magnetic moments entirely randomly oriented, the trace of the
atoms on the target plane would be a uniform smear along a vertical line. But
that is not what happens in practice. The atoms in the target plane appear in
distinct spots as shown in Fig. 11.17(c).

For silver J = 1
2 , and the beam is duly split into two, corresponding to the

angular momenta�z = h̄/2 and −h̄/2. If the experiment is repeated with other
substances, the result is always the same. One gets a discrete number of beams,
corresponding to the discrete number of angular momenta the atom may have.

11.7.2 Paramagnetism

We are now in a position to work out, with the aid of quantum theory, the
paramagnetic susceptibility of a substance containing atoms with quantum
numbers, J �= 0. When we apply a magnetic field, all the atoms will have
some magnetic moments in the direction of the magnetic field. The relative
number of atoms, possessing the same angular momentum, is determined again
by Boltzmann statistics. The mathematical procedure for obtaining the average
magnetic moment is analogous to the one we used for electric dipoles but must
now be applied to a discrete distribution.

Target
plane

Target
plane

Atoms
deposited

(c)(b)

Magnet

N

S

(a)

S2S1

Oven

Fig. 11.17
Schematic representation of the Stern–Gerlach experiment.
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The possible magnetic moments are

MJgμmB, where MJ = J , J − 1, . . . , −J + 1, −J .

Hence, their energies are

Emag = −MJgμmBμ0H , (11.41)

and the average magnetic moment may be obtained in the form

〈μm〉 =
∑J

−J MJgμmB exp(MJgμmBμ0H/kT )∑J
−J exp(MJgμmBμ0H/kT )

. (11.42)

The macroscopic magnetic moment may now be calculated by multiplying
〈μm〉 by the number of atoms per unit volume.

Equation (11.42) turns out to be a very accurate formula∗ for describing ∗ We need not be too much impressed by
these close agreements between theory
and experiments. The theoretical curve
was not calculated from first principles,
in the sense that the value ofJ was arrived
at by semi-empirical considerations. The
problem is far too difficult to solve
exactly. The usual approach is to set
up a simple model and modify it (e.g.
by taking account of the effect of
neighbouring atoms) until theory and
experiment agree. It is advisable to stop
rather abruptly at that point because
further refinement of the model might
increase the discrepancy.

the average magnetic moment as shown in Fig. 11.18, where it is compared
with the experimental results of Henry on potassium chromium alum. The
vertical scale is in Bohr magnetons per ion. Note that experimental results for
paramagnetic properties are often given for ions embedded in some salt. The
reason is that in these compounds the ions responsible for magnetism (Cr3+ in
the case of potassium chromium alum) are sufficiently far from each other for
their interaction to be disregarded.

If the exponent is small enough, the exponential function may be expanded
to give

〈μm〉 = −gμmB

∑J
−J MJ (1 − MJgμmBμ0H/kT )∑J

−J (1 − MJgμmBμ0H/kT )

= g2μ2
mBμ0H

(2J + 1)kT

J∑
−J

M2
J , (11.43)

because
J∑

−J

MJ = 0. (11.44)
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Fig. 11.18
The magnetic moment as a function of
H/T for potassium chromium alum
(after Henry).
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The summation in eqn (11.43) is one of the simpler ones to perform, yielding

1
3J (J + 1)(2J + 1),

which gives finally

〈μm〉 = g2μ2
mBJ (J + 1)μ0H/3kT . (11.45)

We may now express the above equation in terms of the total angular
momentum

� = h̄{J (J + 1)}1/2 (11.46)

and total magnetic momentum

μm = ge�/2m (11.47)

to get
〈μm〉 = μ2

mμ0H/3 kT , (11.48)

in agreement with the classical result.∗∗ This perhaps shows the power of human
imagination. If one has a fair idea how the
final conclusion should look, one can get
a reasonable answer in spite of following
a false track.

11.7.3 Paramagnetic solids

As we have seen, the magnetic properties of electrons combine to produce the
magnetic properties of atoms. These properties can be measured in a Stern–
Gerlach apparatus, where each atom may be regarded as a separate entity.
This is because the atoms in the vapour are far enough from each other not to
interact. However, when the atoms aggregate in a solid, the individual magnetic
properties of atoms combine to produce a resultant magnetic moment. The
electrons that are responsible for chemical bonding are usually responsible for
the magnetic properties as well. When, for example, sodium atoms and chlorine
atoms combine to make up the ionic solid, NaCl, then the valence electron of
the sodium atom moves over to the chlorine atom and fills up the shell. Hence,
both the sodium and the chlorine ions have filled shells, and consequently, solid
NaCl is non-magnetic. A similar phenomenon occurs in the covalent bond,
where electrons of opposite spin strike up a durable companionship, and as a
result, the magnetic moments cancel again.

How then can solids have magnetic properties at all? Well, there is first
the metallic bond, which does not destroy the magnetic properties of its
constituents. It is true that the immobile lattice ions have closed shells and hence
no magnetic properties, but the pool of electrons do contribute to magnetism,
owing to their spin. Some spins will be ‘up’ (in the direction of the magnetic
field); others will be ‘down’. Since there will be more up than down, the
susceptibility of all metals has a paramagnetic component, of the order of 10−5.
This is about the same magnitude as that of the diamagnetic component; hence
some metals are diamagnetic.

Another possibility is offered by salts of which potassium chromium alum
is a typical example. There again, as mentioned above, the atoms responsible
for the magnetic properties, being far away from each other, do not interact.
In these compounds, however, the atoms lose their valence electrons; they
are needed for the chemical bond. Hence, the compound will have magnetic
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properties only if some of the ions remain magnetic. This may happen in the so
called ‘transition elements’, which have unfilled inner shells. The most notable
of them is the 3d shell, but Table 4.1 shows that the 4d, 4f, 5d, and 5f shells
have similar properties.

Taking chromium again as an example, it has a valency of two or three;
hence, in a chemical bond it must lose its 4s electron [see Fig. 11.16(b)] and
one or two of its 3d electrons. The important thing is that there are a number
of 3d electrons left that have identical spins, being thus responsible for the
paramagnetic properties of the salt.

11.7.4 Antiferromagnetism

Let us now study the magnetic properties of solid chromium. From what we
have said so far it would follow that chromium is a paramagnetic solid with a
susceptibility somewhat larger than that of other metals because free electrons
contribute to it, and the lattice ions are magnetic as well. These expectations
are not entirely false, and this is what happens above a certain temperature, the
Néel temperature (475 K for chromium). Below this temperature, however, a Louis Néel received the Nobel

Prize in 1970.rather odd phenomenon occurs. The spins of the neighbouring atoms suddenly
acquire an ordered structure; they become antiparallel as shown in Fig. 11.19.
This is an effect of the ‘exchange interaction’, which is essentially just another
name for Pauli’s principle. According to Pauli’s principle, two electrons cannot
be in the same state unless their spins are opposite. Hence, two electrons close
to each other have a tendency to acquire opposite spins. Thus, the electron-pairs
participating in covalent bonds have opposite spins, and so have the electrons
in neighbouring chromium atoms. Besides chromium, there are a number of
compounds like MnO, MnS, FeO, etc. and another element, manganese (Néel
temperature 100 K) that have the same antiferromagnetic properties.

(c)

(a)

(b)

Fig. 11.19
The angular momentum vector for (a)
antiferromagnetic, (b) ferromagnetic
and (c) ferrimagnetic materials.

Antiferromagnetics display an ordered structure of spins; so in a sense, they
are highly magnetic. Alas, all the magnetic moments cancel each other (in
practice nearly cancel each other) and there are therefore no external magnetic
effects.

11.7.5 Ferromagnetism

Leaving chromium and manganese, we come to iron, cobalt, and nickel, which
are ferromagnetic. In a ferromagnetic material the spins of neighbouring atoms
are parallel to each other [Fig. 11.19(b)]. Nobody quite knows why. There
seems to be general agreement that the exchange interaction is responsible for
the lining-up of the spins (as suggested first by Heisenberg in 1928) but there
is no convincing solution yet. The simplest explanation (probably as good as
any other) is as follows.

Electrons tend to line up with their spins antiparallel. Hence, a conduction
electron passing near a 3d electron of a certain iron atom will acquire a tendency
to line up antiparallel. When this conduction electron arrives at the next iron
ion, it will try to make the 3d electron of that atom antiparallel to itself; that is,
parallel to the 3d electron of the previous iron atom. Hence, all the spins tend
to line up.

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


272 Magnetic materials

In Weiss’s classical picture the magnetic moments are lined up by a long-
range internal field. In the quantum picture they are lined up owing to nearest-
neighbour interaction. ‘One is reminded,’ writes Keffer∗ ‘of the situation when,∗ F. Keffer, Magnetic properties

of materials, Scientific American,
September 1967.

as the quiet of evening descends, suddenly all the dogs in a town get to barking
together, although each dog responds only to the neighbouring dogs.’

11.7.6 Ferrimagnetism

This type of magnetism occurs in compounds only, where the exchange
interaction causes the electrons of each set of atoms to line up parallel, but
the two sets are antiparallel to each other. If the magnetic moments are
unequal, then we get the situation shown in Fig. 11.19(c), where the resultant
magnetic moment may be quite large. For most practical purposes ferrimagnetic
materials behave like ferromagnetics but have a somewhat lower saturation
magnetization.

11.7.7 Garnets

This is the name for a class of compounds crystallizing in a certain crystal
structure. As far as magnetic properties are concerned, their most interesting
representative is yttrium-iron garnet (Y3Fe5O12), which happens to be
ferromagnetic for a rather curious reason. The spin of the yttrium atoms is
opposite to the spin of the iron atoms, so the magnetic moments would line up
alternately—if the orbital magnetic moments were small. But for yttrium the
orbital magnetic moment is large, larger actually than the spin, and is in the
opposite direction. Hence, the total magnetic moment of the yttrium atom is in
the same direction as that of iron, making the compound ferromagnetic.

11.7.8 Helimagnetism

You may wonder why the magnetic moments of neighbouring atoms in an
ordered structure are either parallel or antiparallel. One would expect quantum
mechanics to produce a larger variety. In actual fact, there are some materials
in which the spins in a given atomic layer are all in the same direction, but
the spins of adjacent layers lie at an angle (e.g. 129◦ in MnO2 below a certain
temperature), producing a kind of helix. For the moment this is a scientific
curiosity with no practical application.

Emag

MJ =1

MJ =0

MJ =–1

ΔE

ΔE

H

Fig. 11.20
The energy of an atom as a function of
magnetic field for J = 1.

11.8 Magnetic resonance

11.8.1 Paramagnetic resonance

The possible energies of an atom in a magnetic field are given by eqn (11.41).
There are 2 J + 1 energy levels, with separations of �E = gμmBμ0H , as
shown in Fig. 11.20 for J = 1.

We now put a sample containing magnetic atoms (e.g. a paramagnetic salt)
into a waveguide and measure the transmission of the electromagnetic waves
as a function of frequency. When f = �E/h, the incident photon has just the
right energy to excite the atom from a lower energy level into a higher energy
level. Thus, some of the photons transfer their energies to the atomic system; this
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means loss of photons, or in other words, absorption of electromagnetic energy.
Hence, there is a dip in the transmission spectrum as shown in Fig. 11.21. Since
the absorption occurs rather sharply in the vicinity of the frequency �E/h, it
is referred to as resonant absorption, and the whole phenomenon is known as
paramagnetic resonance.
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fΔE
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Fig. 11.21
Transmission of electromagnetic
waves as a function of frequency
through a paramagnetic material.
There is resonant absorption where
hf = �E.

In practice the energy diagram is not quite like the one shown in Fig. 11.20
(because of the presence of local electric fields) and a practical measuring
apparatus is much more complicated than our simple waveguide (in which the
absorption would hardly be noticeable) but the principle is the same.

11.8.2 Electron spin resonance

This is really a special case of paramagnetic resonance, when only the spin
of the electron matters. It is mainly used by organic chemists as a tool to
analyse chemical reactions. When chemical bonds break up, electrons may be
left unpaired, that is the ‘fragments’ may possess a net spin (in which case they
are called free radicals). The resonant absorption of electromagnetic waves
indicates the presence of free radicals, and the magnitude of the response can
serve as a measure of their concentration.

11.8.3 Ferromagnetic, antiferromagnetic, and
ferrimagnetic resonance

When a crystal with ordered magnetic moments is illuminated by an
electromagnetic wave, the mechanism of resonant absorption is quite
complicated, owing to the interaction of the magnetic moments. The resonant
frequencies cannot be predicted from first principles (though semiclassical
theories exist) but they have been measured under various conditions for all
three types of materials.

11.8.4 Nuclear magnetic resonance

If electrons, by virtue of their spins, can cause resonant absorption of electro-
magnetic waves, one would expect protons to behave in a similar manner. The
main difference between the two particles is in mass and in the sign of the
electric charge; so the analogous formula,

f = 1

2π
g

e

2mp
μ0H (11.49)

should apply.

mp is the mass of the proton.

The linear dependence on magnetic field is indeed found experimentally, but
the value of g is not 2 but 5.58, indicating that the proton is a more complex
particle than the electron.

Neutrons also possess a spin, so they can also be excited from spin ‘down’
into spin ‘up’ states. Although they are electrically neutral, the resonant
frequency can be expressed in the same way, and the measured g-factor is 3.86.

The resonance is sharp in liquids but broader, by a few orders of magnitude,
in solids. The reason for this is that the nuclear moments are affected by the
local fields, which may vary in a solid from place to place but average to zero
in a liquid.
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Since both the shape of the resonant curve and the exact value of the
resonant frequency depend on the environment in which a nucleus finds itself,
nuclear magnetic resonance can be used as a tool to investigate the properties
of crystals∗. An important application in a different direction is the precision∗ See also Section 11.9.5

measurement of magnetic fields. The proton resonance of water is generally
used for this purpose. The accuracy that can be achieved is about 1 part in 106.

11.8.5 Cyclotron resonance

We have already discussed the phenomenon of cyclotron resonance from a
classical point of view, and we shall now consider it quantum mechanically.
For resonant absorption one needs at least two energy levels or, even better,
many energy levels equally spaced from each other. What are the energy levels
of an electron in a solid? Remember that in our earlier model we neglected
the interaction between electrons and simply assumed that the solid may be
regarded as an infinte potential well. The possible energy levels were then
given by eqn (6.2),

E = h̄2

2m
(k2

x + k2
y + k2

z ) = h̄2

8m(2a)2
(n2

x + n2
y + n2

z),

where nx , ny , nz are integers.
When a magnetic field is applied in the z-direction, then the above equation

modifies to∗∗ The effect of the magnetic field may
be taken into account by replacing p2

by (p − eA)2 in the Hamiltonian of
Schrödinger’s equation (where A is the
vector potential).

E =
(
λ + 1

2

)
h̄ωc + h̄2

2m
k2
z , (11.50)

where λ is an integer and ωc is the cyclotron frequency. For constant kz, the
difference between the energy levels (called Landau levels) is h̄ωc. Hence, we
may look upon cyclotron resonance as a process in which electrons are excited
by the incident electromagnetic wave from one energy level to the next.

11.8.6 The quantum Hall effect

Strictly speaking this does not belong to magnetic resonance (although Landau
levels are involved) and may be a little out of place in an engineering textbook.
The argument for including it is that there might be some relationship to high
temperature superconductivity (see Section 14.9) which is of great practical
significance, and it is also true that the effect would have never been discovered
had not engineers invented field effect transistors, whose operation depended
on a two-dimensional electron gas (see Section 9.15).

You may remember the discussion of the ordinary Hall effect in Chapter 1.
The experimental set-up for the quantum Hall effect is exactly the same. The
only difference is that the dimension of the current channel perpendicular to
the applied magnetic field is now comparable with the electron wavelength.
The requirements for observing the effect are high magnetic fields (B ∼= 10T)
and low temperatures, say a few K. The measured value is the so-called Hall
resistance, which relates the measured transverse voltage (Hall voltage) to the
longitudinal current. Since the Hall voltage is known to be proportional to the
applied magnetic field [eqn (1.20)] we would expect the Hall resistance versus
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longitudinal current curve to vary linearly with B. The striking result is that the
Hall resistance turns out to be independent of the magnetic flux density within
certain intervals as shown in Fig. 11.22. It looks as if the Hall resistance was
quantized.
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Fig. 11.22
The Hall resistance against magnetic
flux density shows distinct plateaux.

How can we explain these results? Surely, if something is quantized,
we need quantum theory to explain it. Unfortunately, quantum theories are
complicated, so one tries to avoid them. That is what we did in Section 8.4,
where relationships for the mobilities of semiconductors were derived. In order
to explain the present results there is, however, no reprieve. We have to approach
the concept of resistance from an entirely different viewpoint, from that of
quantum mechanics.

Classically, a piece of resistive material always leads to power absorption. In
quantum mechanics we have to ask the question whether an electron is capable
of absorbing the energy available. It can only do so if there are empty states
at a higher energy into which the electrons can scatter, so we need to find out
whether there are any empty states available.

Let us assume that the temperature is low enough and the magnetic field is
high enough, so that only the two lowest Landau levels are occupied. The lowest
energy level is completely filled, the second energy level is partially filled,
and the third level is empty. If the magnetic field is reduced, then the energy
difference between the second and first Landau levels is reduced, consequently
some electrons must move up from the first level to the second level. That
means that there are now fewer states at the second level, which an electron
can scatter into, hence the probability of transition is smaller, and the resistance
(we are talking about longitudinal resistance not Hall resistance) decreases. If
the magnetic field is further reduced, then at a certain stage the second Landau
level will be completely filled. The only way an electron in the ground state can
now absorb energy is by scattering into the third Landau level, but that is too
far away. Hence, the probability of scattering into that level is extremely low,
which means that the resistance is extremely low. In practice, this resistance
would be low indeed, lower than that of copper.

Let us now slightly complicate our model and assume that there are some
impurity states just below the third Landau level, as shown in Fig. 11.23. The
argument for the longitudinal resistance is unaffected: the impurity states are
still very far away from the second Landau level. But let us return to the Hall
resistance. How will it vary as the magnetic field is reduced? The electrons
moving into the impurity levels will no longer be available for deflection by
the magnetic field, hence the Hall resistance must remain constant until all the
impurity levels are filled. In the Hall resistance versus magnetic field curve
this appears as a plateau, whenever a Landau level is filled. The discrete values

E
ne

rg
y

3rd Landau level
impurity level

2nd Landau level

Fig. 11.23
Discrete energy levels in high
magnetic fields.
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of the Hall resistance at these plateau turn out to be dependent only on the
fundamental constants h and e and on the number of Landau levels filled.

11.9 Some applications

Until the 1950s the only significant application of magnetic materials was for
electrical machines and transformers. Modern technology brought some new
applications; the most notable among them is the use of magnetism for storing
information. In fact, in 1985 for the first time, the sales of magnetic information
productsintheUSexceededthoseforallothertechnologies.Thestoragedensities
achieved are no less remarkable. A hard disk may store information at a density
of 5 billion bits per cm2. So why are they so much outshone by semiconductors?
May be because ferrite cores, one-time champions in RandomAccess Memories,
suffered a resounding defeat at the hands of their semiconductor counterparts,
and people are apt to forget the losers. Magnetic storage is certainly not on its
way out, and I am not thinking of video tape recorders nor of the new digital
audio tape. They still hold the market for mass storing of information in digital
computers when access time is of secondary importance.

The principle of operation of magnetic memories is very simple. At ‘writing’
a magnetic field is applied to some area of a tape or disk, and at ‘reading’ this
magnetic field is sensed. The actual technical solutions do need, however,
some ingenuity. It is far from trivial to design a recording system in which the
magnetic head may move just a mere 0.25 μm above the surface of a disk, with
a relative velocity of 160 km h−1.

I shall obviously not be able to talk about all the various magnetic memories.
I shall mention only two, magnetic bubbles and the newly arrived magnetic
tunnel junctions.

11.9.1 Magnetic bubbles

This device, first demonstrated by Brobeck in 1967, works on the principle that
small regions of magnetic materials can have differing magnetic alignments
within a uniform physical shape. The technique is to grow very thin films
epitaxially of either orthoferrites or garnets on a suitable substrate.∗ The film∗ The usual material is garnet with the

general formula R3Fe5O12, where R

represents yttrium or a combination
of rare-earth ions. Sometimes gallium
or aluminium is substituted for some
of the iron, to lower the saturation
magnetization. In these ways the
magnetic properties are bespoke by
the chemists, and a typical successful
composition is Eu1Er2Ga0,7Fe4,3O12.
Chemistry was never like this when I
was at school.

is only a few micrometres thick. All the domains can be aligned in a weak
magnetic field normal to the film. Then by applying a stronger localized field
in the opposite direction, it is possible to produce a cylindrical domain (called
a ‘magnetic bubble’) with its magnetic axis inverted [see Fig. 11.24(a), which
shows several].

An important question is, ‘Does the bubble stay there when the strong field
that created it is removed?’ It turns out that, with suitable materials, the domain-
wall coercivity is great enough to produce a stable bubble, and that the most
stable bubble size results when the radius is about equal to the garnet film
thickness, that is a few micrometres. The next thing is to move the bubble
about in a controlled manner.

One way of achieving controlled motion is by printing a pattern of small
permalloy bars on the surface. The usual manufacturing technique for this is
photoengraving, using a photo-resist material similar to the process described
for integrated circuits in Section 9.22.
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Fig. 11.24
Magnetic bubble domains. (a)
Applied field for stable bubbles.
(b)–(d) Illustrate how a bubble can be
moved.

The actual devices look fairly complicated. Our intention is just to show the
basic principles of how the bubbles can be persuaded to move from one place
to another, so let us consider just two typical permalloy bars on the surface
and assume the presence of a bubble with its north pole upwards, as shown in
Fig. 11.24(b).

In the absence of a magnetic field the permalloy bars are unmagnetized and
have no effect upon the bubble. However, if a magnetic field (as shown in
Fig. 11.24(c)) is applied, then bar 1 becomes magnetized, and the north pole of
the bubble will move to the south pole of bar 1. How can we move the bubble
to bar 2? We only need to change the direction of the magnetic field, as shown
in Fig. 11.24(d). Then bar 2 becomes magnetized, and the bubble moves to the
south pole of bar 2.

Bubble

s

Fig. 11.25
A bubble moving along a contiguous
structure.

Note that the highest density of elements is determined by the smallest feature
in the structure, that is the separation s between two bars. An increase in density
has been recently made possible by the use of a contiguous structure (Fig. 11.25)
produced by depositing thin layers of gold on a garnet substrate. The gold layer
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serves as a mask for the next process of ion implantation, establishing thereby
an implanted–unimplanted boundary. It turns out that under certain conditions
(the garnet substrate must have suitable properties) this boundary may guide
a bubble. Thus, by varying the applied magnetic field, the bubble is driven
along the pattern and not under the pattern. For the same minimum feature size
(s in Fig. 11.25) the bubble may be smaller. It is believed that this technique
may lead to a tenfold increase in density over that achievable by the various
permalloy structures.

Bubbles can be detected by making them pass under a strip of indium
antimonide which has a high magnetoresistance, that is its electrical resistance
is changed by a magnetic field. This property is closely connected with the
large Hall effect in InSb, already mentioned in Section 9.20.

So you see that bubbles, by their presence or absence, may be used for
storing binary information, and that the information can be read out. What
is the advantage of using magnetic bubbles? Mainly density. With presently
available photoengraving techniques, the contiguous structure may lead to a
density of 10 million bits cm−2. This is of course not a random access memory,
the information must be read out serially; the achievable speed may be a few
hundred kbit s−1. It could be used at an advantage when large blocks of data
need to be transferred to the main memory of a computer for processing.

11.9.2 Magnetoresistance and spintronics

We have already referred to magnetoresistance in the previous section. In the
present one we shall undertake a more detailed study but using only qualitative
arguments. The subject has become very popular in the last decade or so but it is
not new. It has been around for a century and a half. The effect was first observed
by Lord Kelvin (William Thomson at the time) in 1857, when he found a few
per cent change in electrical resistance depending on the direction of the applied
magnetic field, whether it was in the same direction as or transverse to the flow
of current. This effect has become known as ‘anisotropic magnetoresistance’.

Aqualitative description (and we believe the situation is the same when more
rigorous models are applied) must rely both on quantum mechanics and on the
classical transport of electrons. The modern variety of magnetoresistance is
known to depend crucially on electron spin, and hence its origin is undoubtedly
quantum mechanical. We may start our enquiry by asking the question of how
the band structure of magnetic materials is related to resistance. As we know (see
Table 4.1 and Fig. 11.16), the magnetic elements from chromium to nickel have
partially filled 3d bands, whereas in copper the 3d band is filled. If we apply
a voltage to specimens of these materials we find that the magnetic materials
have a high resistivity in contrast to copper, which is close to having the lowest
resistivity of all materials. The number of electrons available in the conduction
band is not much different, so what is the reason? It must be low mobility
or, in other words, a low relaxation time. In copper, when an electron bumps
into the lattice or scatters for any other reason, it has nowhere to go, well
nowhere relative to an electron in, say, nickel. The scattered electron then has a
temporary resting place in the partially filled 3d band. Its mobility is reduced.
Interestingly, this effect also applies inside a ferromagnetic material. Since the
filling of the 3d band is spin-dependent, one of the spin species has a higher
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chance of getting scattered from a 4s state into an empty 3d state. Owing to its
reduced mobility, this spin will contribute less to the total current.

Spin dependence is the essence of the so-called giant magnetoresistance,
the adjective ‘giant’ meaning that the resistivity changes a lot. How much?
Interestingly, a factor of two already counts as giant. In fact, giant
magnetoresistance is responsible for the birth of a new discipline called spin
electronics or, briefly, spintronics, concerned with the manipulation of spin. We
know that spin has two states, up and down, and of course we can refer to them
as such. Very often, however, it is more convenient to accept the terminology
of majority and minority carriers so well known from semiconductor theory,
and talk about majority and minority electrons. Whether the electrons’ spin is
up or down, they may still belong to the majority or to the minority. In general,
minority electrons in a given ferromagnetic material suffer more scattering, and
hence they contribute less to the total current, as if they had to flow through a
higher electrical resistance.11 11 The idea came from Neville Mott

(Nobel Prize, 1977) in the 1930s. The
two types of spins are responsible for
two different kinds of currents. The
spins which scatter less encounter less
resistance, and those which scatter more
are represented with a higher resistance.

Let us now consider a simple arrangement of two materials, one
ferromagnetic and the other one a non-ferromagnetic metal, and apply a voltage
between them. In the ferromagnetic material, let us assume that the spins with
the orientation ‘up’ are in the majority. In the non-magnetic metal, the spins
are in equilibrium. Let us now apply a voltage between the two materials [see
Fig. 11.26(a)]. The situation is analogous to an n–i junction, i.e. a junction
between an n-type and an intrinsic semiconductor. When a voltage is applied,
the electrons are injected into the intrinsic material. There will be an excess of
electrons over holes there. Similarly, ‘spin up’ will be injected into the non-
ferromagnetic metal. The spin distribution will then be of the form shown in
Fig. 11.26(b). Here, δM is the excess magnetization due to the injected ‘spin
up’ electrons. This extra magnetization will of course decline in space. How far
it will penetrate the N material depends on the diffusion length of the spins.

Next let us make the twosome into a threesome and construct an F1–N–
F2 junction (Fig. 11.27). If the N region is sufficiently thin (thinner than
the spin diffusion length) then the spin-up current can penetrate the second
ferromagnetic material. How will it be received? If F2 is polarized in the same

F

(a)

(b)

M

X

�M

N

Fig. 11.26
(a) Voltage applied to an F–N junction
(a junction between a ferromagnetic
and a non-ferromagnetic material),
(b) the resulting spatial distribution of
magnetization.
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Fig. 11.27
Voltage applied to an F–N–F junction.
The spin orientations of the two
ferromagnetic materials are (a) in the
same direction, (b) in opposite
directions.

F1

(a)

(b)

F2N

F1 F2N

direction [Fig. 11.27(a)] then the spin-up electrons can happily continue their
journey in F2. If F1 is polarized in the opposite direction [Fig. 11.27(b)] then the
majority electrons suddenly find themselves to be the minority electrons and
the current will be much less. Clearly, this effect is important for applications.
The current is large or small depending on the polarization of F2. And the
effect can be further enhanced by having a large number of alternate layers of
ferromagnets and normal metals (the dimensions are in the nanometre range,
so they had to wait for the birth of nanotechnology). We conclude that here
is a structure that exhibits large magnetoresistance. And if we want to make a
deeper impression, we may call it giant magnetoresistance.12 One can argue that12 Maybe this is the best place to mention

colossal magnetoresistance, which can
cause changes in current by factors of
several thousand. It has, though, an
entirely different mechanism, related to a
magnetically induced metal-to-insulator
phase transition. It seems less significant
at the moment because it has not been
harnessed for practical applications.

it deserves its name because it made a giant impact on the storage of information.
The effect was discovered in 1988 by Fert and Grünberg, working separately
(receiving in 2007 the Nobel Prize in Physics for their work), and a mere nine
years later it reached the ultimate success of commercial exploitation. It was
used in magnetic memories for read heads, meanwhile earning billions of dollars
for IBM. Its reign turned out to be ephemeral. It has been recently supplanted
by another magnetoresistive effect, called tunnelling magnetoresistance.

As the name implies, tunnelling magnetoresistance is based on tunnelling.
The structure for this can be obtained by replacing the normal metal by a
sufficiently thin (a few atomic layers) insulator, and the current is then due to
tunnelling. It is true again that the resistance is low when the spin polarizations
are identical in the ferromagnets and high when they are in opposite directions.
Applications are not only in read heads but also in random access memories,
where devices based on this effect may have densities comparable with those
of semiconductor memories. In fact, magnetic tunnel junctions may very well
replace semiconductor memories in applications where the non-volatile nature
of the storage (once the magnetic information is written, it does not need to be
continually renewed) is the main requirement.

There are also chances for making an analogue of a field-effect transistor by
combining ferromagnets and semiconductors. The source and the drain would
be ferromagnets having the same polarization. The electrons with the majority
spin would be injected into a semiconductor. The width of the semiconductor
must obviously be small, smaller than the diffusion length of the majority spins.
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For zero gate voltage, the majority electrons would be accepted by the drain,
leading to a high current. A voltage applied to the gate could then destroy
the spin uniformity and a smaller current would appear. Another variant of this
three-terminal device would need to satisfy more stringent requirements. In this
variant, in the absence of the gate voltage, the electrons arrive with the right
spin, and when the gate voltage is switched on they arrive with the opposite,
unfavourable, spin.

Another device which is probably quite close to applications is the racetrack
memory. It is potentially cheap and can provide a very high storage density. The
basic idea may be understood from Fig. 11.28(a), where a magnetic nanowire
(diameter about 100 nm) is shown lying on a substrate. The information is
coded serially by having a large number of ferromagnetic domains separated by
domain walls. The polarization inside a domain indicates whether it represents
a logical 0 or 1. The information can be read serially by moving the domains
under suitable heads (magnetic tunnel junctions) in the middle of the wire. The
information train must be smaller than half of the length of the wire so that
the domains can pass in both direction under the head. The problem is how to
persuade the information train to move bodily along the wire. Uniform magnetic
fields cannot be used because neighbouring domains would move in opposite
directions. The solution is to use a current with majority spins. When such a
current is passed through a domain wall it transfers spin angular momentum to
the wall, which appears as a torque capable of moving the domains along. And

A

(a)

(b)

Fig. 11.28
Ferromagnetic domains separated by
domain walls storing digital
information in the form of spin
polarization. Reading and writing are
by heads in the middle of the device.
(a) Wire lies horizontally on a
substrate. (b) Wire standing in the
vertical direction, looking like a
racetrack. From Stuart S. Parkin et al.
Magnetic domain-wall racetrack
memory. Reprinted with permission
from AAAS.
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this effect turns out to be independent of the orientation of the domain wall,
whether it is initially ‘up’ or ‘down’. Why is this called a racetrack memory?
It got its name from a modification of the basic idea by leaving the means
of writing and reading the information on the substrate but making the wire
vertical as shown in Fig. 11.28(b). This could increase the storage density
further by a large factor by relying on the third dimension. It is also obvious
from Fig. 11.28(b) why ‘racetrack memory’ is the appropriate name.

There is one more aspect, and a very important aspect, of the art of spin
manipulation which we have not mentioned so far. In all the phenomena
described above, the electrons moved from one material into another one,
having one or the other type of spin. Thus in all cases there was a current
attributable to the charge of the electron. However, that is not necessarily so. In
principle it is possible to have a current due to spins only, provided spin–orbit
interaction∗ is negligible. In the presence of spin–orbit interaction, charge and∗ The coupling between an element’s spin

and orbital magnetism. spin are coupled. Their behaviour is governed by equations in which gradients
of spin density affect the charge distribution and vice versa.

Why is it good that spin currents can exist independently or in combination
with charge currents? It is because charge currents cause power dissipation,
which becomes more and more of a problem as dimensions decrease. Thus any
means which can offer alternatives to charge currents are welcome, and spins
provide an alternative which might do the job in the not too distant future.

11.9.3 Isolators

My next example is a device which lets an electromagnetic wave pass in one
direction but heavily attenuates it in the reverse direction. It is called an isolator.
The version I am going to discuss works at microwave frequencies and uses a
ferrite rod, which is placed into a waveguide and biased by the magnetic field
of a permanent magnet (Fig. 11.29). The input circularly polarized wave may
propagate unattenuated, but the reflected circularly polarized wave (which is
now rotating in the opposite direction) is absorbed. Thus, the operation of the
device is based on the different attenuations of circularly polarized waves that
rotate in opposite directions.

Fig. 11.29
Schematic representation of
an isolator.

Permanent magnet
or solenoid

Ferrite rod Circular
waveguide

Reflected
circularly
polarized
wave

Incident
circularly
polarized
wave
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The usual explanation is given in classical terms. We have seen that a
magnetic dipole will precess in a constant magnetic field. Now if in addition to
the constant magnetic field in the z-direction there appears a magnetic vector
in the x-direction (Fig. 11.30), then there is a further torque acting upon the
magnetic dipole. The effect of this torque is insignificant, except when the
extra magnetic field rotates with the speed of precession—and, of course, in
the right direction. But this is exactly what happens for one of the circularly
polarized waves when its frequency is equal to the frequency of precession. The
interaction is then strong, and energy is taken out of the electromagnetic wave
in order to increase the angle of precession. Hence, for one given frequency
(the resonance frequency) and one sense of rotation (that of the reflected wave)
the electromagnetic wave is absorbed.

y

x

z

BBx

μ

Fig. 11.30
The magnetic dipole moment
precesses around the constant
magnetic field, B. An additional
magnetic field, Bx, gives an extra
torque, trying to increase the angle of
precession.

The quantum explanation is based on the resonance phenomena discussed
in the last section. The electromagnetic wave is absorbed because its energy is
used to sponsor transitions between the respective energy levels. Unfortunately,
quantum mechanics provides no intuitive description of the effect of circularly
polarized waves. You either believe that the result comes out of the mathematical
description of the problem or, alternatively, you stick to the classical picture.
This is what many quantum physicists do, but to ease their conscience, they put
the offending noun between inverted commas. They do not claim that anything
is really precessing, nonetheless, they talk of ‘precession’.

11.9.4 Sensors

Magnets can be used to sense position, force, torque, speed, rotation,
acceleration, and of course current and magnetic field. Since the advent of
the light and powerful neo-magnets, their use has been rapidly expanding, as
for example in anti-lock brakes and in activating airbags.

11.9.5 Medical imaging

The traditional medical imaging technique, X-rays, are used less and less, owing
to their harmful biological effects. The imaging technique that is becoming more
widespread is based on Nuclear Magnetic Resonance. It is usually referred to as
magnetic resonance imaging or MRI (the word ‘nuclear’has been omitted so as
not to be associated with anything dangerous and warlike). It is used primarily
to measure the concentration of protons in tissues. There is also important
information in the decay time of the absorption, as tested by short rf (radio
frequency) pulses. Apparently, cancer tumours have a longer decay, by a factor
of two, than normal tissues.

Image clarity improves with increasing magnetic field. Hence, the usual
choice is to generate the magnetic field by currents in superconductors (see
Chapter 14). The disadvantage of that is the necessity of cooling and the
concomitant high running costs. A cheaper, although not quite that satisfactory,
solution is to use permanent magnets. The structures have to be pretty big
because the magnetic field is required within a large volume. A flux density
of 0.2 T may be achieved by a mere 2.6 tons of neo-magnet. If this seems
excessive, it is worth noting that the alternative ferrite magnets would weigh
21 tons.
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11.9.6 Electric motors

This is one of the oldest applications of magnetism, the conversion of electrical
into mechanical power. Have there been any major advances? Well, our
illustration of what happened to the magnetic circuit of moving-coil meters
(Fig. 11.13) applies just as well to electric motors. They have come down in
size, so much so that in a modern motor car there is room for as many as two
dozen permanent magnet motors, which drive practically everything that moves
(apart from the car, of course).

Some thirty years ago all the electric motors that we moved about the
laboratory or our homes were ‘fractional horse power’. In fact, a 1

2 h.p. motor
was rather large and heavy. Anything greater than 1 h.p. was classed as
‘industrial’ and had a built-in fan or water-cooling. Now our domestic motors
are smaller, cooler, and quieter; and where power is needed, such as in portable
drills, lawn-mowers, and shredders ratings of up to 1.6 kW (i.e. more than 2
h.p.) are quite common and reasonably portable. What has happened besides
the discovery of better magnetic alloys? This is something we should have
mentioned in the last chapter in the section about insulators. The makers of
motors woke up to the fact that new polymeric insulations were available that
were more effective than the brown paper soaked in transformer oil which they
had been using for the previous century. I am telling you this story because it
illustrates that some improvements in technology, which the public is hardly
aware of, can have a significant impact upon how we live.

Exercises

11.1. Check whether eqn (11.12) is dimensionally correct.
Take reasonable values forNa, Z and r and calculate the order
of magnitude of the diamagnetic susceptibility in solids.

11.2. The magnetic moment of an electron in the ground state
of the hydrogen atom is 1 Bohr magneton. Calculate the
induced magnetic moment in a field of 1 T. Compare the two.

11.3. A magnetic flux density, B is applied at an angle θ to the
normal of the plane of a rectangular current loop (Fig. 11.31).

(i) Determine the energy of the loop by finding the work done
by the magnetic field when lining up (bringing to a stable
equilibrium) the loop.

(ii) By defining the energy of a magnetic dipole as

E = μm · B

and by identifying the loop with a magnetic dipole
determine the magnetic moment vector of the loop.

(iii) Confirm that in the stable equilibrium position the
magnetic field of the loop augments the applied field.

B

I

I

θ

Fig. 11.31

11.4. How have domains in ferromagnetic materials been
observed?

11.5. Check the calculation leading to the values of the Weiss
constant, magnetic moment and saturation magnetization for
iron given in eqn (11.28).

11.6. Show that the data for the magnetic susceptibility of
nickel given below is consistent with the Curie law [eqn
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(11.26)] and evaluate the Curie constant and temperature.
Hence find the effective number of Bohr magnetons per atom.
Atomic weight 58.7, density 8850 kg m−3.
T (◦C) 500 600 700 800 900
χm105 38.4 19.5 15 10.6 9.73

11.7. An alloy of copper and cobalt consists of spherical
precipitates, averaging 10 nm diameter, of pure cobalt in a
matrix of pure copper. The precipitates form 2 per cent by
volume of the alloy. Cobalt is ferromagnetic, with saturation
magnetization of 1.4 MA m−1. Each cobalt precipitate is a
single domain, and acts as a strong dipole, which responds to
any external field as a paramagnetic dipole. The effect is called
‘superparamagnetism’. Calculate the susceptibility of the alloy
at 300 K.
[Hint: The total magnetic moment of each precipitate is
equal to the product of magnetic moment density (saturation
magnetization) with the volume of the precipitate.]

11.8. A system of electron spins is placed in a magnetic field
B = 2 T at a temperature T . The number of spins parallel to the
magnetic field is twice as large as the number of antiparallel
spins. Determine T .

11.9. In a magnetic flux density of 0.1 T at about what
frequencies would you expect to observe (i) electron spin
resonance, (ii) proton spin resonance?

11.10. The energy levels of a free electron gas in the presence
of an applied magnetic field are shown in Fig. 11.32 for absolute
zero temperature. The relative numbers of electrons with spins
‘up’ and ‘down’ will adjust so that the energies are equal at
the Fermi level. Show that the paramagnetic susceptibility is
given by the approximate expression

χm = μ2
mμ0Z(EF)

where μm is the magnetic moment of a free electron. μ0 the
free space permeability, and Z(EF) the density of states at the
Fermi level. Assume that μmμ0H � EF.

E
ne

rg
y

Spin
‘up’

Spin
‘down’

Density of states

EF , Fermi level

2μm μ0H

Fig. 11.32
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What goes up must come down.
It’s all done with mirrors.

19th century aphorisms

12.1 Equilibrium

We have several times arrived at useful results by using the concept of
equilibrium. It is a pretty basic tenet of science and like a similar idea,
conservation of energy, it is always coming in handy. When we say that the
electrons in a solid have a Fermi–Dirac distribution of energies, we are really
saying two things: first, that the system is in equilibrium; second, that it has
a particular temperature. Temperature is a statistical concept and is bound up
with the idea of equilibrium. On the one hand, we cannot meaningfully speak
of the temperature of a single particle; on the other, if we have a system of
particles that is perturbed from equilibrium, say by accelerating some of them,
then for a transient period the temperature cannot be specified, since there is no
value of T that will make the Fermi function describe the actual distribution.
Of course, for electrons in a solid, or atoms in the gaseous state, the effect of
collisions rapidly flattens out the perturbation, the whole system returns to its
equilibrium state, and the idea of temperature becomes valid again, although
its actual value may have changed.

We have on one or two occasions considered perturbed equilibrium. We
saw, for example, in Chapter 1 that large currents may flow in a conductor
with a very slight change in the energy distribution. Thus, we could describe
low field conduction in metals and semiconductors without departing from the
equilibrium picture.

Lasers are different. They have massively perturbed population distributions
that are nevertheless in some kind of equilibrium. But when we come to consider
what temperature corresponds to that equilibrium, it turns out to be negative.
Now you know that 0 K is a temperature that can never quite be obtained by
the most elaborate refrigerator; so how can we get a negative temperature? It
is not inconsistent really because, as we shall show, a negative temperature
is hotter than the greatest positive temperature. But before going further into
Erewhon∗let us return to earth and start from the beginning.

∗ Erewhon (approximately ‘nowhere’
backwards) was a country in the book of
the same name by Samuel Butler, where
all habits and beliefs were the opposite of
ours and were justified with impeccable
logic and reasonableness.

12.2 Two-state systems

Let us consider a material in which atoms have only two narrow allowed
energy levels, as illustrated in Fig. 12.1. Provided that the whole system
containing the material is in thermal equilibrium, the two allowed levels will be
populated corresponding to a dynamic energy equilibrium between the atoms.
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E

E3

E1

N1N3 logeN(E)

Fig. 12.1
Number of atoms in a natural
two-state system as a function of
energy. The dotted line shows the
Boltzmann function, decaying
exponentially with increasing energy.

The population of the energy levels is, therefore, accurately described by the
temperature, T , of the system and its appropriate statistics, which we shall take
as Boltzmann statistics.

The two levels we are considering are labelled E1 and E3 in Fig. 12.1. Later
on we shall see what happens in a three-level system, with the third level called
E2; but for the moment do not be put off by this notation; we are still talking
of only two levels. The numbers of electrons N1, N3 in the levels E1, E3 are
related by the Boltzmann function, so that they will be of the general form

N = N0 exp(−E/kT ), (12.1)

Therefore, N0 is a constant.

N3 = N1 exp

(
−E3 − E1

kT

)
. (12.2)

As I said above, the atoms are in dynamic equilibrium, which means that the
number of atoms descending from E3 to E1 is the same as the number leaping
from E1 to E3. An atom at E3 can lose the energy E3 − E1 either by radiative
or by non-radiative processes. I shall consider only the former case here. When
a radiative transition between E3 and E1 occurs during the thermal equilibrium
process, it is called spontaneous emission for the ‘down’ process and photon
absorption for the ‘up’ process. In each case, the photon energy is given by

We shall follow here the custom
adopted in laser theory of using the
frequency, ν, instead of the angular
frequency, ω.

hν31 = E3 − E1. (12.3)

What do we mean by talking about photons being present? It is a very basic law
of physics that every body having a finite temperature will radiate thermal or
‘black body’radiation. This radiation comes from the sort of internal transitions
that I have just mentioned. As we saw in Chapter 2, the whole business of
quantum theory historically started at this point. In order to derive a radiation
law that agreed with experiments, Planck found it necessary to say that atomic
radiation was quantized. This famous radiation equation is ρ(ν) is the radiation density

emanating from a body at
temperature, T , in a band of the
frequency spectrum of width, dν,
and at a frequency, ν.

ρ(ν)dν = 8πn3hν3

c3

dν

exp(hν/kT ) − 1
. (12.4)

The derivation can be found in many textbooks.
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So far we have talked about photons generated within the material. Now
if photons of energy hν31 are shone on to the system from outside, a process
called stimulated emission occurs. Either the photon gets together with an atom
in a lower (E1) state and pushes it up to E3; or, less obviously, it stimulates the
emission by an E3-state atom of a photon (hν31). In the latter case one photon
enters the system, and two photons leave it. It was one of Einstein’s many
remarkable contributions to physics to recognize, as early as 1917, that both
these events must be occurring in a thermodynamical equilibrium; he then went
on to prove that the probabilities of a photon stimulating an ‘up’ or a ‘down’
transition were exactly equal. The proof is simple and elegant.

Consider our system, remembering that we have two states in equilibrium.
The rate of stimulated transitions (R1→3) from the lower to the upper state will
be proportional to both the number of atoms in the lower state and the number
of photons that can cause the transition. So we can write

The constant of proportionalityB13

is the probability of absorbing a
photon, often referred to as the
Einstein B-coefficient.

R1→3 = N1B13ρ(ν31)dν, (12.5)

For the reverse transition, from E3 to E1 we have a similar expression for
stimulated emission, except that we will write the Einstein B-coefficient as
B31. There is also spontaneous emission. The rate for this to occur will
be proportional only to the number of atoms in the upper state, since the
spontaneous effect is not dependent on external stimuli. The constant of
proportionality or the probability of each atom in the upper state spontaneously
emitting is called the Einstein A-coefficient, denoted by A31. Hence,

R3→1 = N3{A31 + B31ρ(ν31)}dν. (12.6)

In equilibrium the rates are equal:

R1→3 = R3→1, (12.7)

that is
N1B13ρ(ν31)dν = N3{A31 + B31ρ(ν31)}dν. (12.8)

After a little algebra, using eqn (12.2) to relate N3 to N1, we get

ρ(ν31)dν = A31dv

B13 exp(hν31/kT ) − B31
. (12.9)

Comparing this with eqn (12.4), which is a universal truth as far as we can tell,
we find that our (or rather Einstein’s) B-coefficients must be equal

B13 = B31, (12.10)

that is stimulated emission and absorption are equally likely. Also,

A31 = B31
8πn3hν3

31

c3
, (12.11)

that is the coefficient of spontaneous emission is related to the coefficient of
stimulated emission.

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


Two-state systems 289

What is the physical significance of A31? It is a measure of the spontaneous
depopulation of state 3. Assuming, as usual, an exponential decay, the rate of
change of population is

−dN3

dt
= A31N3, (12.12)

which leads to a decay time constant, called spontaneous lifetime, by defining

tspont = 1

A31
. (12.13)

We should, by now, have quite a good picture of what happens when light
of frequency v31 shines on the two-state system. In the presence of an input
light spontaneous decay is usually negligible, and although the probabilities
of upward and downward transitions are exactly equal, there will be more
transitions from E1 to E3 because there are many more atoms in the lower
state. In other words, the result is a net absorption of photons. This we often see
in nature. For example, many crystalline copper salts have two energy bands,
separated by photon energy corresponding to yellow light. Thus, when viewed
in white light, the yellow part is absorbed, and the crystal transmits and reflects
the complementary colour, blue. Ruby (chromium ions in crystalline alumina)
has an absorption band in the green by this mechanism, and hence looks red in
white light.

When light is absorbed, the population of the upper level is increased. Norm-
ally this perturbation from the equilibrium condition is small. But if we have
an increasingly intense ‘pump’ light source, the number in level 3 will go on
increasing, by the same amount as those in level 1 decrease. Fairly obviously,
there is a limit, when the levels are equally populated, and the pump is infinitely
strong. This is illustrated in Fig. 12.2. For the case of intense pumping, the non-
equilibrium level populations (denoted by an asterisk) become almost equal:

N∗
1 � N∗

3 � N1 + N3

2
. (12.14)

E

E3

E2

E1

N3 N2 N1 logeN(E)

Excited population

Slope defining
temperature

Population
removed

Fig. 12.2
The three-level system. The strong
‘pump’ signal has equalized levels E1

and E3, so that E3 now has a greater
population than E2. The dotted line
shows how population is changing
with energy, as in Fig. 12.1, but now it
has a positive slope.

Now let us consider a three-level system, with the third level E2 between
E1 and E3, also shown in Fig. 12.2. The pumping will have no effect on its
population, which is the equilibrium value N2. So with the three-level system
strongly pumped, the number of electrons in the three states are N∗

1 , N2, and
N∗

3 . Suppose that some photons come along with energy

hν32 = E3 − E2. (12.15)

They will clearly interact with the system, causing stimulated emission by
transitions from E3 to E2 and absorption by transitions from E2 to E3. But
now we have an unnatural occurrence: there are more electrons in the upper
state (E3) than in the lower (E2). So instead of there being a net absorption of
photons of energy, hv32, there will be a net emission. The three-level system will
amplify a photon of frequency, v32, which is called the signal frequency. The
whole thing is called a laser, which stands for light amplification by stimulated
emission of radiation.

When there are more atoms in an upper than a lower level, as in the case ofE3

and E2 in Fig. 12.2, it is justifiable jargon to speak of an ‘inverted population’.
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The other point we should clear up, before describing some real system with
inverted populations, is the one concerned with temperature. From eqn (12.1)
the locus of the line representing the populations of the various energy levels

dE

dN
= −kT

N
(12.16)

(shown as a dotted curve in Fig. 12.1) has a negative slope proportional to T/N.
Now look at Fig. 12.2. First consider the populations N∗

3 and N∗
1 . They are in a

steady state in the sense that as long as the pump continues steadily, they do not
change with time. But for these two levels with a finite energy difference there
is virtually no difference in population. Therefore, if we regard eqn (12.16)
as a way of defining temperature, for a well-pumped two-level system the
temperature is infinite. If we now consider the energy-level populations at E3

and E2 in Fig. 12.2, we see that

N∗
3 > N2 (12.17)

and the dE/dN locus has a positive slope, which by eqn (12.16) corresponds
to a negative temperature.

Again, this is a fairly reasonable shorthand description of there being more
atoms in an upper state than in a lower one. Now if you imagine a natural-
state system pumped increasingly until it attains an infinite temperature and
then eventually an inverted population, you will see there is some sense in the
statement that a negative temperature is hotter than a positive one.

12.3 Lineshape function

So far we have assumed that energy levels are infinitely narrow. In practice
they are not, and they cannot be as we have already discussed it in Section 3.10.
All states have a finite lifetime, and one can use the uncertainty relationship in
the form

We may now identify �t with
tspont.

�E�t = h̄. (12.18)

SinceE = hν, we shall find for the uncertainty in frequency (which we identify
with the frequency range between half power points, called also the linewidth)

�ν = 1

2πtspont
. (12.19)

Unfortunately, the uncertainty relationship will not yield the shape of the
line function. To find that we need to use other kind of physical arguments. But
before trying to do that, let us define the lineshape, g(ν). We define it so that
g(ν)dν is the probability that spontaneous emission from an upper to a lower
level will yield a photon between ν and ν + dν. The total probability must then
be unity, which imposes the normalization condition∫ ∞

−∞
g(ν)dν = 1. (12.20)

Let us stick for the moment to spontaneous decay (or natural decay) and
derive the linewidth by a circuit analogy to which we have already appealed in
Section 5.11.
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A lossless resonant circuit has a well defined resonant frequency. However,
in the presence of losses the resonance broadens. In what form will the voltage
decay in a lossy resonant circuit? If the losses are relatively small, then circuit
theory provides the equation

U(t) = U0 exp(−t/τ ) cos 2πν0t . (12.21)

What is the corresponding frequency spectrum? If the oscillations decay,
then they can no longer be built up from a single frequency. The range of
necessary frequencies, that is the spectrum, is given by the Fourier transform

f (ν) =
∫ ∞

0
U(t) exp(i2πνt)dt . (12.22)

Restricting ourselves to the region in the vicinity of ν0 and after proper
normalization, we obtain

g(ν) is known as a Lorentzian
lineshape.

g(ν) = (1/2)πτ

2π [(ν − ν0)2 + (1/2(πτ))2] , (12.23)

If we work out now the frequency range between the half-power points, we
obtain

�ν = 1

2πτ
, (12.24)

which is the same as eqn (12.19) provided we identify the decay constant of
the circuit with the spontaneous lifetime of the quantum mechanical state. So
again, a simple argument based on the uncertainty relationship agrees with that
based on a quite different set of assumptions.

In a practical case spontaneous emission is not the only reason why a state
has finite lifetime. Interaction with acoustic waves could be another reason
(electron–phonon collision in quantum mechanical parlance) or collisions with
other atoms. The latter becomes important when lots of atoms are present in a
gas, leading to so-called pressure broadening.

All those mentioned so far belong to the category of homogeneous
broadening, where homogeneous means that conditions are the same
everywhere in the material. When conditions differ (say strain varies in a solid)
then we talk of inhomogeneous broadening.

The best example of inhomogeneous broadening is the so-called Doppler
broadening, owing to the fact that an atom moving with velocity, v, will emit
at a frequency,

ν = ν0

(
1 + v

c

)
. (12.25)

In thermal equilibrium the atomic gas has a Maxwellian velocity distribution,
hence the corresponding broadening may be calculated. The result (see example
12.8) for the normalized lineshape is

g(ν) = C1 exp[−C2(ν − ν0)
2], (12.26)

where
M is the atomic mass.

C1 = c

v0

(
M

2πkT

)1/2

and C2 = M

2 kT

(
c

v0

)2

. (12.27)

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


292 Lasers

12.4 Absorption and amplification

Let us look now at energy levels 2 and 3 and consider the induced transition
rate between them. It is

W32 = B32ρ(ν) = c3ρ(ν)

8πn3hν3tspont
, (12.28)

where eqns (12.11) and (12.13) have been used. The transition rate will of
course depend on the lineshape function, so we need to multiply eqn (12.28) by
g(ν). We shall also introduce the power density (measured in W m−2) instead
of the radiation density (measured in J m−3) with the relation

I = c

n
ρ, (12.29)

leading to the form

W32 = c2Ig(ν)

8πn2hν3tspont
. (12.30)

Now the number of induced transition per second isN3W32 per unit volume,
and the corresponding energy density per second is N3W32hν. For upward
transitions, we obtain similarly N2W32hν, and hence the power lost in a dz
thickness of the material is (N3 −N2)W32hν dz. Denoting the change in power
density across the dz element by dI , we obtain the differential equation,

dI

dz
= γ (ν)I , γ (ν) = (N3 − N2)

c2g(ν)

8πn2ν2tspont
, (12.31)

which has the solution,

I (Z) = I (0) exp γ (ν)z. (12.32)

Under thermal equilibrium conditionsN3 < N2, and consequently, the input
light suffers absorption. However, when N3 > N2, that is there is a population
inversion, the input light is amplified.

12.5 Resonators and conditions of oscillation

As we have said before, the energy levels are not infinitely narrow, hence
emission occurs in a finite frequency band. For single-frequency emission (by
single-frequency, we mean here a single narrow frequency range) all the excited
states should decay in unison. But how would an atom in one corner of the
material know when its mate in the other corner decides to take the plunge?
They need some kind of coordinating agent or—in the parlance of the electronic
engineer—a feedback mechanism. What could give the required feedback? The
photons themselves. They stimulate the emission of further photons as discussed
in the previous section and also ensure that the emissions occur at the right
time. If we want to form a somewhat better physical picture of this feedback
mechanism, it is advisable to return to the language of classical physics and talk
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of waves and relative phases. Thus, instead of a photon being emitted, we may
say that an electromagnetic wave propagates in a way in which any two points
bear strict phase relationships relative to each other. This phase information will
be retained if we put perfect reflectors in the path of the waves on both sides,
constructing thereby a resonator. The electromagnetic wave will then bounce
to and fro between the two reflectors establishing standing waves, which also
implies that the region between the two reflectors must be an integer multiple of
half wavelengths. Thus, in a practical case, we have a relatively wide frequency
band in which population inversion is achieved, and the actual frequencies of
oscillation within this band are determined by the possible resonant frequencies
of the resonator.

A resonator consisting of two parallel plate mirrors is known as a Fabry–
Perot resonator after two professors of the Ecole Polytechnique, who followed
each other (mind you, in the wrong order, Perot preceded Fabry).

What will determine the condition of oscillation∗ in a resonator? Obviously, ∗ In fact, lasers are nearly always used
as oscillators rather than amplifiers.
So the phenomenon should be referred
to as light oscillation by stimulated
emission of radiation but, somehow, the
corresponding acronym never caught on.

the loop gain must be unity. If we denote the attenuation coefficient by α

(discussed previously in Chapter 1, Section 5 and Chapter 10, Section 13—
talking about lossy waves) the intensity in a resonator of length, l, changes by
a factor, exp[(γ − α)2l]. Denoting further the two mirror’s reflectivity by R1

and R2, respectively, we find that the condition for unity loop gain is

R1R2 exp[(γ − α)2l] = 1. (12.33)

We know what determines γ . How can we find α? It represents all the losses
in the system except mirror losses, which may be summarized as ohmic losses
in the material, diffraction losses in the cavity, and losses due to spontaneous
emission.† † This is one of the reasons why it is

more difficult to obtain laser action in
the ultraviolet and soft X-ray region.
According to eqn (12.11) the coefficient
of spontaneous emission increases by the
third power of frequency.

Just one more word on diffraction losses. If the resonator consists of two
parallel mirrors, then it is quite obvious that some of the electromagnetic power
will leak out. In any open resonator there is bound to be some diffraction loss.
Then why don’t we use a closed resonator, something akin to a microwave
cavity? The answer is that we would indeed eliminate diffraction losses, but on
the whole we would lose out because ohmic losses would significantly increase.

12.6 Some practical laser systems

How can we build a practical laser? We need a material with suitable energy
levels, a pump, and a resonator. Is it easy to find a combination of these three
factors which will result in laser oscillation? It is like many other things; it seems
prohibitively difficult before you’ve done it and exceedingly easy afterwards.
By now thousands of ‘lasing’ materials have been reported, and there must be
millions in which laser oscillations are possible.

There are all kinds of lasers in existence; they can be organic or inorganic,
crystalline or non-crystalline, insulator or semiconductor, gas or liquid, they
can be of fixed frequency or tunable, high power or low power, CW or pulsed.
They may be pumped by another laser, by fluorescent lamps, by electric arcs, by
electron irradiation, by injected electrons, or by entirely non-electrical means,
as in a chemical laser. You can see that a mere enumeration of the various
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realizations could easily take up all our time. I shall be able to do no more than
describe a few of the better known lasers.

12.6.1 Solid state lasers

The first laser constructed in 1960 was a ruby laser. The energy-level diagram
for the transitions in ruby (Cr ions in an Al2O3 lattice) is given in Fig. 12.3. I
remarked above that ruby owed its characteristic red colour, to absorption bands
of the complementary colour, green. This absorption is used in the pumping
process. A typical arrangement is sketched in Fig. 12.4, which shows how the
light from a xenon discharge flash tube ‘pumps’ the ruby to an excited state.
Now the emission process is somewhat different here from that which I sketched
previously for three-level systems. The atoms go from level 3 into level 2 by
giving up their energy to the lattice in the form of heat. They spend a long
enough time∗ in level 2 to permit the population there to become greater than∗ Energy levels in which atoms can

pause for a fairly long time (a few
milliseconds in the present case) are
called ‘metastable’.

that of level 1. So laser action may now take place between levels 2 and 1,
giving out red light.

Non-radiative
transitions

Ground state

Laser
transition

Pump
levels 3

2

1

Fig. 12.3
Energy levels of the Cr3+ ion in ruby.
The pump levels are broad bands in
the green and blue, which efficiently
absorb the flash tube light. Level 2 is
really a doublet (two lines very close
to each other) so that the laser light
consists of the two red lines of
wavelengths 694.3 and 692.9 nm.

The ruby itself is an artificially grown single crystal that is usually a cylinder,
with its ends polished optically flat. The ends have dielectric (or metal) mirrors
evaporated on to them. Thus, as envisaged in the previous section, the resonator
comprises two reflectors. Some power is certainly lost by diffraction, but these
losses are small provided the dimensions of the mirror are much larger than the
wavelength. It needs to be noted that one of the mirrors must be imperfect in
order to get the power out.

Another notable representative of solid-state crystalline lasers is Nd3+: YAG,
that is neodymium ions in an yttrium–aluminium–garnet. It is a four-level laser
radiating at a wavelength of 1.06 μm pumped by a tungsten or mercury lamp.

Laser operation at the same frequency may be achieved by putting the
neodymium ions into a glass host material. Glasses have several advantages
in comparison with crystals: they are isotropic, they can be doped at
high concentrations with excellent uniformity, they can be fabricated by a
variety of processes (drilling, drawing, fusion, cladding), they can have
indices of refraction in a fairly wide range, and last but not least, they are
considerably cheaper than crystalline materials. Their disadvantage is low
thermal conductivity, which makes glass lasers unsuitable for high average
power applications.

Fig. 12.4
General arrangement of a ruby laser.
The ruby and the flash tube are
mounted along the foci of the elliptic
cylinder reflector for maximum
transference of pump light.

Mirrored ends Ruby rod

Parallel laser
beam

Flash tube

Elliptic cylinder reflecting container
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12.6.2 The gaseous discharge laser

When a current is passed through a gas, as happens in a fluorescent lamp
or a neon sign, most of the charged particles making up the current come
from gas atoms that have been ionized by collision. But as well as completely
dispossessing atoms of their electrons, the collisional process causes some
bound electrons to gain extra energy and go into a higher state, that is, a
state described by higher quantum numbers. You will remember that we had a
formula for the simplest gas, hydrogen, in Chapter 4:

En = −13.6

n2
. (12.34)

This shows that there is an infinite number of excited states above the ground
state at –13.6 eV, getting closer together as the ionization level (0 eV) is
approached.

In the helium–neon laser the active ‘lasing’ gas is neon, but there is about
7–10 times as much helium as neon present. Consequently, there are quite a lot
of helium atoms excited to states about 20 eV above the ground state (Fig. 12.5).
Now helium atoms in these particular states can get rid of their energy in one
favourable way—by collision with other atoms that also have levels at the same
energies. Since neon happens to have suitably placed energy levels, it can take
over the extra energy making the population of the upper levels (3a′, 3b′)more
numerous than that of the lower level (2′), and thus laser action may occur. It
is, of course, necessary to adjust gas pressures, discharge tube dimensions, and
current quite critically to get the inverted population; in particular it is obtained
only in a fairly narrow range of gas pressures around 1 Torr.

The reflectors are external to the tube, as shown in Fig. 12.6. Note that
the windows are optical flats, oriented at the Brewster angle, θB, in order to
minimize reflections for the desired polarization. The advantage of spherical
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Fig. 12.5
The energy levels of interest for a
helium–neon laser. Helium atoms get
excited to levels 3a and 3b due to the
impact of accelerated electrons. Neon
atoms, which happen to have the same
energy levels (3a′, 3b′) collide with
helium atoms and take over the extra
energy. Laser action may now occur at
two distinct wavelengths,
corresponding to radiative transitions
from levels 3a′ and 3b′ to a lower
level 2′.
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Fig. 12.6
Schematic representation of a gas
laser.

Discharge power
supply

Glass gas envelope

Brewster windows

�B

External
mirrors

Output beam

Eoptical

mirrors is that their adjustment is not critical, and they also improve efficiency.
Dielectric mirrors are also used, not only because they give better reflections
than metal mirrors but because they can also select the required wavelength
from the two possible transitions shown in Fig. 12.5.

A close, though more powerful, relative of the He–Ne laser is the argon
ion laser, operating in a pure Ar discharge. The pumping into the upper level
is achieved by multiple collisions between electrons and argon ions. It can
deliver CW power up to about 40 W at 488 and 514 nm wavelengths. It is in the
company of the He–Ne laser, the one most often seen on laboratory benches.

The CO2 laser is capable of delivering even higher power (tens of kW) at
the wavelength of 10.6 μm. It is still a discharge laser, but the energy levels
of interest are different from those discussed up to now. They are due to the
internal vibrations of the CO2 molecule. All such molecular lasers oscillate in
the infrared; some of them (e.g. the HCN laser working at 537 μm) approach
the microwave range.

12.6.3 Dye lasers

This is an interesting class of lasers, employing fluorescent organic dyes as the
active material. Their distinguishing feature is the broad emission spectrum,
which permits the tuning of the laser oscillations.

The energy levels of interest are shown in Fig. 12.7(a). The heavy lines
represent vibrational states, and the lighter lines represent the rotational fine
structure, which provides a near continuum of states. The pump (flashlamp or
another laser) will excite states in the S1 band (A → b transition) which will
decay non-radiatively to B and will then make a radiative transition (B →
a) to an energy level in the S0 band. Depending on the endpoint, a, a wide
range of frequencies may be emitted. Finally, the cycle is closed by the non-
radiative a → A transition. Unfortunately, at any given frequency of operation,
there are some other competing non-radiative processes indicated by the dotted
lines. A photon may be absorbed by exciting some state in the higher S2 band,
or there might be a non-radiative decay to the ground state via some other
energy levels. There is net gain (meaning the gain of the wave during a single
transit between the reflectors) if the absorptive processes are weaker than the
fluorescent processes.
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Fig. 12.7
(a) The relevant energy levels of a dye
molecule. The wavy arrows from b to
B and from a to A represent
non-radiative transitions. The broken
lines leading to the right also
represent non-radiative transitions in
which some other states are involved.
(b) The tuning range of rhodamine 6G
as a function of wavelength.
(c) Schematic representation of a
tuneable dye laser.

The tuning range of a specific dye laser (rhodamine 6G) is shown in
Fig. 12.7(b) by the shaded area, where the fluorescent and absorption curves are
also plotted as a function of wavelength. Laser action becomes possible when
the absorption curve intersects the fluorescence curve. At the long wavelength
extreme, the gain of the laser (meaning the gain of the wave during a single
transit between the reflectors) becomes too small for oscillation, as a result of
the decrease in fluorescence efficiency.

Note that this range is not the end
of the dye laser’s tuneability. By
choosing the appropriate dyes any
frequency within the visible range
may be obtained.

How can we tune the laser? An ingenious solution is shown in Fig. 12.7(c),
where one of the mirrors is a rotatable diffraction grating. The oscillation
frequency of the laser will be determined by the angular position of the grating,
which will reflect a different frequency at each position. The tuneable range is
a respectable 7%.

12.6.4 Gas-dynamic lasers

The essential difference between these lasers and all the others discussed so
far is that no electric input is needed. One starts with a hot gas (e.g. CO2)
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in the so called stagnation region. Then most of the energy is associated with
the random translation and rotation of the gas molecules and only about one-
tenth of the energy is associated with vibration. Next, the gas is expanded
through a supersonic nozzle, causing the translational and rotational energies
to change into the directed kinetic energy of the flow. The vibrational energy
would disappear entirely if it remained in equilibrium with the decreasing gas
temperature. But the vibrational relaxation times are long in comparison with
the expansion time, hence the population of the vibrational levels remains
practically unchanged. At the same time, the lower level population diminishes
rapidly with the expansion, leading to significant population inversion after a
few centimetres downstream. For CO2 gas the emission wavelength is again
10.6 μm, using other gases the typical range is from 8 to 14 μm, although
oscillations may be achieved at much shorter wavelengths, as well.

The advantage of gas-dynamic lasers is the potential for high average powers
because waste energy can be removed quickly by high-speed flow.

12.6.5 Excimer lasers

Excimers are molecules which happen to be bound in an excited state and not in
the ground state, so their operation differs somewhat from the general scheme.
Their main representatives are the rare gas halides like KrF or XeCl. They need
powerful pumps in the form of discharges, optical excitation or high-current,
high-voltage electron beams. Their advantages are high efficiency and high
pulse energy in a part of the spectrum (in the ultraviolet down to wavelengths
of about 100 nm) which was inaccessible before. Most of them are inherently
broadband and offer the further advantage of tuneability.

12.6.6 Chemical lasers

As the name suggests, the population inversion comes about as a result of
chemical reactions. The classification is not quite clear. Some of the excimer
lasers relying on chemical reactive collisional processes could also be included
into this category. The clearest examples are those when two commercially
available bottled gases are let together, and monochromatic light emission is
brought about by the chemical reaction.∗

∗ The advent of chemical lasers raises an
intriguing problem I have often asked
myself. What path would technology
have followed if electricity had never
been discovered? The question may be
posed because electricity and technology
developed separately, the former being a
purely scientific pastime until the fourth
decade of the last century. Had scientists
been less interested in electricity or
had they been just a bit lazier, it is
quite conceivable that the social need
for fast communications (following the
invention of the locomotive) would have
been satisfied by systems based on
modulated light. In the search for better
light sources, the chemical laser could
then have been invented by the joint
efforts of chemists and communication
engineers a century ago.

12.7 Semiconductor lasers

12.7.1 Fundamentals

We shall dwell on semiconductor lasers a little longer because they are in a quite
special category. For us they are important for the reason that we have already
invested much effort in understanding semiconductors, so that any return on
that investment is welcome. There are, though, some more compelling reasons
as well.

1. They are of interest because the technology and properties of
semiconductors are better known than those of practically any other family
of materials.

2. Laser action is due to injection of charged carriers, so semiconductor lasers
are eminently suitable for electronic control.
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3. They have high efficiency.
4. They operate at low voltage.
5. They are small.
6. They are robust.
7. They have long life.
8. The technique of their production is suitable for mass manufacture, so they

are potentially inexpensive.
9. They can be produced in arrays.

10. They may be made to work in the wavelength range in which optical fibres
have favourable loss (near to minimum) and dispersion properties.

I am sure if I tried hard, I could come up with a few more advantages
but, I think, ten are enough to show that semiconductor lasers merit special
attention.

How does a semiconductor laser work? The basic idea is very simple. It is
radiative recombination in a direct gap semiconductor which leads eventually to
laser action. Why a direct gap? Because we want the probability of a transition
from the bottom of the conduction band to the top of the valence band to be
high. What else do we need? We need a piece of material in which there are lots
of electrons in the conduction band eager to descend, and in which there are
lots of empty states at the top of the valence band eager to receive the electrons.
A homogeneous piece of semiconductor is obviously not suitable because we
cannot achieve both conditions simultaneously, only one at a time. But that gives
an idea. We can have lots of electrons in a degenerate (discussed in Section 9.10
when talking of tunnel diodes) n-type semiconductor and, similarly, we can have
lots of holes in a degenerate p-type semiconductor. So let us put them together,
that is produce a p–n junction, and then in the middle of it both conditions
may be expected to be satisfied, provided the forward bias, U1, is close to the
energy gap.

The energy band structure and the distribution of electrons and holes for this
case are shown in Fig. 12.8(a) and (b) for thermal equilibrium and for forward
bias, respectively. The overlap region in the middle of the junction, where both
electrons and holes are present with high density, is called the active region,
and that is where radiative recombination takes place. In order to keep up the
process, whenever an electron–hole pair disappears by emitting a photon, it
must be replaced by injecting new carriers.

p n

EF

Photon
emission

eU1≈Eg

(a) (b)

Fig. 12.8
A degenerate p–n junction at (a)
thermal equilibrium, (b) forward bias.
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If we examine the simple model shown in Fig. 12.9, the total number of
electrons in the active region isNe lwd, whereNe, as usual, denotes the density
of electrons. The rate of change of the number of electrons, due to spontaneous
recombination, is Ne lwd/trec, and this loss should be replenished by injection
of electrons, that is the number required is (Ii/e)η, where Ii is the injected
current and η, the quantum efficiency, is the fraction of injected electrons
which recombine radiatively, leading to the formula

Nelwd

trec
= Iiη

e
. (12.35)

I

d

w
l

Active
region

Fig. 12.9
Schematic representation of a laser
diode.

Recognizing now that the recombination time in the above equation
corresponds to tspont discussed before, we may now use eqn (12.31) to find the
amplification of the optical wave. For simplicity, we may take the population
of the lower level as zero, and obtain

γ (ν) = c2g(ν)η

8πn2ν2elwd
Ii. (12.36)

For laser oscillations we need the loop gain to be unity. When both mirrors
have the same reflectivity, the condition of oscillation is

R exp(γ − α)l = 1, (12.37)

whence the threshold current density is

Ii

lw
= 8πn2ν2ed

c2ηg(ν)

(
α − 1

l
1nR

)
. (12.38)

As we have said before α represents the losses in the material. But are there
any losses at all? The optical wave propagating in the active region will surely
grow and not decay. True, but there is no reason why the optical wave should
be confined to the active region. A well calculated plunge (one we shall not
take here) into the mysteries of electromagnetic theory would show that a not
inconsiderable portion of the electric field propagates outside the active region,
where there is no population inversion. The losses there are mainly caused by
the so called free-carrier absorption, which comes about by electrons and holes
excited to higher energies within their own bands.

What is the value of R? In the simplest laser diode the mirror consists of the
cleaved end of the semiconductor crystal, that is one relies on the difference in
refractive index between semiconductor and air. A typical∗ refractive index is∗ We are concerned here with power. R is

obtained by squaring the amplitude
reflection coefficient given by
eqn (10.17).

3.35, which yields for the reflection coefficient, R = 0.292. For a practical case
(see example 12.10) the threshold current comes to a value of about 820 A cm−2.
This is quite a large value. Can we reduce it by some clever trick? Yes, we can,
and the trick is to use a heterojunction instead of a homojunction. A schematic
drawing of the device is shown in Fig. 12.10.

What is the role of the various layers? The insulating SiO2 layers are there
in order to steer the current toward the middle of the device and thus increase
the current density. The heavily doped GaAs layers next to the metal electrodes
are there to provide ohmic contacts. The p-type and n-type AlGaAs layers serve
to provide the p–n junction, and then we come to the star of the show, the thin
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Fig. 12.10
Schematic drawing of a double
heterojunction diode laser.

layer (≈100 nm) of GaAs in between. Very remarkably, we can kill two birds
with that one layer. It will serve both to confine the wave and to confine the
carriers.

It is very easy to see why the wave is confined. GaAs has a higher index
of refraction than AlGaAs, hence the mechanism of confinement is simply that
of total internal reflection, as mentioned in Section 10.13 when talking about
optical fibres.

Why are the carriers confined? Well, we have been through this before,
haven’t we? We discussed this type of heterojunction in Section 9.15 and
came clearly to the conclusion that the electrons are confined to a very narrow
potential well. So why do I ask this question again? The reason is that the
confinement of carriers is due now to a different mechanism. The crucial thing
is still the lower energy gap of GaAs relative to AlGaAs, but we no longer rely
on the triangular potential well for confinement.

Note, however, that our aim is
now to confine the carriers to the
narrow GaAs region and not to
the extremely narrow triangular
wells. These blips in the energy
diagram are now embarrassments
rather than assets. In fact, by
gradually increasing the proportion
of A1 in the junction, the blips can
be removed (we no longer show
them in Fig. 12.11(b)).

To see in detail what happens in the p-type AlGaAs–undoped GaAs–n-
type AlGaAs heterojunction, I shall first show the energy diagram at thermal
equilibrium [Fig. 12.11(a)]. This is drawn by exactly the same technique which
led to Fig. 9.41(c). The triangular well we have seen in Section 9.15 is there at
the right-hand junction. A new kind of triangular well, in which the holes are
confined, may be seen at the left-hand junction.

What happens when we apply a forward bias? The barriers decline
[Fig. 12.11(b)], but in contrast to those in homojunction, the remaining barriers
(for electrons towards the left and for holes towards the right) are still high
enough to prevent carriers spilling over into the oppositely doped region and
disappearing by the wrong kind of non-radiative recombination. The electrons
injected from the left have little other choice but to take the plunge into the
empty states in the valence band and emit a photon, meanwhile.

The threshold current density of our heterojunction will be much smaller
because the fraction of electrons which recombine radiatively will be much
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Fig. 12.11
An AlGaAs–GaAs heterojunction
(a) at thermal equilibrium, (b) at a
forward bias of eU1.
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Fig. 12.12
Schematic representation of a double
heterojunction GaAlAs laser with
external Bragg reflector mirrors.
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higher. The threshold current will also be small on account of the small
thickness, d, of the active region [see eqn (12.38)] which is 100 nm in our
example.

Can we further decrease the threshold current? Yes, both common sense and
eqn (12.38) tell us that we need higher reflectivity mirrors. One way of doing
it is to use an external Bragg reflector, as shown in Fig. 12.12. Each slight
corrugation will cause a small reflection which all add up in phase at the right
wavelength.∗ By these means threshold currents as small as 0.5 mA have been∗ The corrugations (or slight bumps) can

actually be inside the laser, in which
case we talk about a Distributed Bragg
Reflector laser or DBR.

achieved.
It is very nice, indeed, to reduce the threshold current because that will

reduce the power consumption of devices (e.g. compact disk players) using
semiconductor lasers. But those lasers have to deliver a certain amount of
power. There is no way of getting out a fair amount of power without putting
in a fair amount of power, so it is also of crucial importance how the output
power increases as the current exceeds its threshold value.

Let us now come back to the role of d , the thickness of the active region. As
we reduce it, the threshold current decreases simply because fewer electrons
need to be supplied to make up for spontaneous emission. Fewer electrons being
available will also reduce the achievable power output. For this reason d cannot
be usefully reduced to a value smaller than about 100 nm. Actually, if our aim
is to reduce the thickness further without losing output power, we could simply
increase the number of wells, say by a factor of 10, and make each of them a
thickness of d/10.
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12.7.2 Wells, wires, and dots

On the whole, is it an advantage to have multiple quantum wells? One might
be permitted to see only disadvantages. Surely, the more quantum wells, the
more complicated must be the production process.

In order to see the advantages, we need to investigate what happens as we
further reduce the thickness of the active region. The main effect is that the
discrete nature of the energy levels will be more manifest. Let us remember
(eqn 6.1) the energy levels in a potential well:

E = h2n2

8mL2
. (12.39)

If the lateral dimension of the well is 10 nm, then the lowest energy level
comes to 0.056 eV (where we have taken the effective mass of the electron at
m∗ m−1 = 0.067). In terms of the energies we talk about this is not negligible.
It comprises about 4% of the energy gap of GaAs. If this is the lowest energy
available above the bottom of the conduction band, and similarly, there is a
highest discrete level for holes in the valence band, then the wavelength of
emitted radiation is determined by the energy difference between these levels.
Thus, one advantage should now be clear. Our laser can be tuned by choosing
the thickness of the active layer in a Multiple Quantum Well (MQW) device.
The tuning range might be as much as 20%.

Are there any other advantages? To answer this question, we need to make
a digression and look again at the density of states function which we worked
out in Chapter 6. Let us start with the energy levels of a three-dimensional well,
as given by eqn (6.2) but permitting well dimensions to be different:

E = h2

8m

(
n2
x

L2
x

+ n2
y

L2
y

+ n2
z

L2
z

)
. (12.40)

In MQW lasers the dimensions Ly and Lz are much larger than Lx = d , the
thickness of the active region. We may just as well take Ly = Lz = l, with
which eqn (12.40) modifies to

E = E0

[
n2
x +

(
d

l

)2 (
n2
y + n2

z

)]
, (12.41)

where

E0 = h2

8md2
. (12.42)

It is clear from eqn (12.41) that nx has a much higher influence on the
allowed energies then ny and nz. There will be big steps at nx = 1, 2, 3, etc.
Our primary interest is in the density of states because that will tell us that how
many electrons within an energy range dE can make the plunge downwards.

Next, let us determine the density of states in the region between nx = 1 and
nx = 2. This is then determined by ny and nz. Within a radius of n(� 1) the
number of possible states are πn2, since there is a state for each integer value
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of ny and nz. Solving for n2 = n2
y + n2

z from eqn (12.41) we obtain

n2π = π

(
l

d

)2 (
E

E0
− 1

)
. (12.43)

Thus, eqn (12.43) gives the number of states∗ having energies less than E.

∗ This is exactly analogous to the
calculation of the three-dimensional
density of states we performed in
Section 6.2. Similarly, the number of states having energies less than E + dE is

π

(
l

d

)2 (
E + dE

E0
− 1

)
. (12.44)

Consequently, the states having energies between E and E + dE (and that
defines the density of states function Z(E)) may be found as

Z(E)dE = π

(
l

d

)2 dE

E0
. (12.45)

E0 4E0 9E0 E

Two-dimensional
density of states

Fig. 12.13
The two-dimensional density of states
as a stepwise function of energy.

Remember that only positive integers count, so we need to divide by 4. On
the other hand, there is spin as well, which is taken into account by multiplying
by 2. Thus, the density of states in eqn (12.45) needs to be divided by 2. That
is actually a minor detail. The important thing is that the density of states is
independent of energy in the range nx = 1 to nx = 2. Taking l = 300 μm and
d = 10 nm, we get (l/d)2 = 9 × 108. Thus, when n2 = n2

y + n2
z = 27 × 108,

then E reaches the value of 4E0. We may, however, alternatively obtain an
energy 4E0 with ny and nz being very small and nx = 2. It is clear that above
4E0, the same energy level may be reached in two different ways: with ny and
nz relatively small and nx = 2 or with ny and nz large and nx = 1. Thus, the
number of available states suddenly double at E = 4E0. Between E = 4E0

and E = 9E0, the density of states remains constant again, and there is a new
contribution at E = 9E0, which leads to trebling of the initial density of states.

The fruit of our calculations, Z(E) as a function of energy for a two-
dimensional potential well, is shown in Fig. 12.13. The density of states
increases stepwise at the discrete points En = n2

xE0, where it reaches the
value

Z(En) = nx

2E0

(
l

d

)2

. (12.46)

Eliminating nx , we may obtain the envelope function (dotted lines) as

Z(En) = 1

2
E1/2

n (E0)
−3/2

(
l

d

)2

, (12.47)

which gives the same functional relationship as that found earlier (eqn 6.10)
for the three-dimensional density of states function.

The truth is that it is the two-dimensional density of states function which
is responsible for the superior performance of quantum wells but to provide a
quantitative proof is beyond the scope of the present book. We shall, instead,
provide a qualitative argument:

In lasers without two-dimensional confinement, the low energy states near
to the bottom of the band play no role. When the probability of occupation is
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taken into account, maximum inversion (which defines the centre frequency of
the laser) occurs at an energy higher than the gap energy. These low lying states
are wasted, hence their elimination in MQW lasers is beneficial. Consequently,
when the injected current is increased above its threshold, better use is made
of the available electrons. There is, therefore, a much higher increase of output
power with current. This also implies a faster reaction to the increase or decrease
of current, hence MQW lasers may be electronically modulated up to higher
frequencies.

O.K., you might argue, MQW lasers are superior in performance, but surely
they are much more expensive. Oddly enough they are not. When they are
produced by one of the new techniques (MBE or MOCVD) they hardly cost
more than ordinary semiconductor lasers. With GaAs comprising the active
region, it is possible to produce lasers in the wavelength region 650–850 nm
by varying the thickness of the quantum wells, although they are commercially
available only at a few of these wavelengths. If it is possible to confine carriers
in one dimension then, surely, it is possible to confine them in two dimensions.
The resulting structures are called quantum wires. We can determine the density
of states for that configuration by following the arguments used for quantum
wells. Assuming a wire of square cross section with side d which is of the order
of 100 nm, we can take in Eqn (12.40)

Lx = Ly = d and Lz =  where d �  (12.48)

Now the variation in nx and ny lead to sudden discrete changes in energy
whereas the variation in nz can be regarded as smooth continuous change so
we can still talk about the density of states. The calculation is left to the reader.
The result for the nx = ny = 1 case is

Z(E) = 1

2



d

[
E0(E − 2E0)

]−1/2
(12.49)

There is a singularity at E = 2E0 which means a discrete state. And there are
of course singularities for all integral values of nx and ny.

Is there any interest in producing devices using quantum wires? There are a
few laboratories interested but, on the whole, it has not been a success. It is a
kind of half-way house. If we want to do more carrier confinement, why not go
the whole hog and confine them in all three dimensions? This leads us to the
quantum dot in which all dimensions∗ are small. All the energy states, both for ∗ That raises the question that how

many dimensions quantum dots have.
If quantum wells are two-dimensional
and quantum wires one-dimensional
then quantum dots, which confine the
electrons in one fewer dimension, cannot
be anything but zero-dimensional. It is
an odd terminology but one can get used
to it.

electrons and holes, are now discrete. What are the advantages of quantum dot
lasers? Higher spectral purity, lower threshold current and ability to work at
high temperatures, all because the energy levels are discrete and there is a much
more efficient use of the available electrons. It is also easy to design a quantum
dot laser to work at a given wavelength. The energy levels depend only on the
size of the dot. The problems are mainly technological, how to make them of
the same size, how to control their spatial distribution and how to incorporate
them in the active layer.

First, how to make them? We know how to produce quantum wells. The
obvious way of making quantum dots is then to etch away the other two
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dimensions. This was indeed tried, and the dots produced worked in a fashion
but not very well. The reason was the high density of surface states created
during etching. The technique used nowadays is strained-layer epitaxy. It is
called self-organized because the quantum dots organize themselves. How?
Let us talk about growing InAs on GaAs. The mismatch between their lattices
is about 7%, causing strain. After the growth of a few monolayers the strain
becomes unbearable,∗ and the layers break up and create 3D islands. Once the∗ In more sophisticated language, one

should say that after a critical thickness,
the increasing strain between the layers
makes it energetically favourable for the
strain to be relieved by formation of 3D
islands.

growth of the islands starts, it quickly reaches saturation. Typical quantum dot
densities may vary between 108 and 1011 cm−2. The shapes are quasi-pyramidal
with a base of 10–20 nm and a height of 3–10 nm. In order to incorporate these
dots into a device they need to be ‘capped’, i.e. filled up by a material, which
would be GaAs in the present case. During the capping process, as may be
expected, the heights of the InAs islands collapse down to maybe 2 nm after a
GaAs cap of 2 nm.

An obvious way of increasing the number of quantum dots is to have more
layers. With the materials mentioned above, another layer of InGaAs needs to
be deposited, and then one can repeat the same procedure. An atomic force
microscopy image of a bilayer structure† (in this case the second layer of† The number of quantum dots in Fig.

12.14 can be counted to be 31. Since this
is for an area of 0.25 μm2, the density
comes to 1.24 × 1010 cm−2.

quantum dots is just above the first layer) is shown in Fig. 12.14.
When will quantum dot lasers appear commercially? Reliable mass

production techniques are still far away, but that is not all. There are actually
still unresolved problems concerning their operation. The emission process is
not as simple as it first appears, because the relevant energy levels are nearly
degenerate, i.e. very close to each other. When an electron descends from the
conduction band and recombines with a hole it does emit a photon, but that
photon may be immediately reabsorbed by promoting another electron into the
conduction band. This is known as Auger recombination. A possible remedy is
to coat the quantum dot with another material which can localize electrons and
holes on opposing sides of the interface.

Fig. 12.14
A highly uniform dot ensemble
produced by self-organization. 0.5 �m × 0.5 �m
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Fig. 12.15
Relationship between energy gap and
lattice spacing for some mixed III–V
semiconductors.

12.7.3 Bandgap engineering

Commercial applications of quantum dot lasers may not be far away but
tailoring the properties of semiconductor lasers does not need to wait for that.
Semiconductor lasers from infrared to ultraviolet can now be readily produced.
The technique is based on each compound having a certain lattice spacing and
a certain energy gap. This is shown for a number of compounds of varying
compositions in Fig. 12.15. It may for example be seen that the line connecting
GaAs with AlAs is nearly horizontal, that is by adding judicious amount of Al
to GaAs, we can realize compounds which have a fairly large range of energy
gaps with roughly the same lattice constant.

The general problem may be stated as follows. Once the wavelength is
chosen (say 1.55 μm, desirable for fibre communications) 3 compounds with
approximately the same lattice spacing∗ must be found: compound 1 to serve

∗ Strain introduced by having somewhat
different lattice constants can actually be
beneficial as pointed out in Section 9.25
on heterostructures.

as the highly doped substrate, compound 2 to provide the active region, and
compound 3 to provide the material with the higher energy gap and lower
refractive index.

Table 12.1 Compounds for
laser diodes

Wavelength range
(nm)

Laser diodes
based on

342–375 GaN
375–700 InGaN
600–900 A1GaAs
630–750 GaInP
870–1040 InGaAs

1040–1600 InGaAsP
1100–1670 GaInNAs

Bandgap engineering has become a sophisticated science. A guide to
materials and laser wavelength ranges is given in Table 12.1 and ‘road map’ of
how to construct ternary compounds for particular bandgaps and lattice spacing
is given in Fig. 12.15, where we give most of the III–V compounds having a
cubic lattice (zinc blende types). The hexagonal lattice of the nitrides does
not fit this pattern, neither do they fit comfortably on any substrate. However,
considerable alloying is possible within the InN, GaN and AlN materials to get
practically any energy gap between 1.9 and 6.2 eV, even below 1.9 eV because
of band bowing. For the cubic structures, alloys even stretch to quaternary
compounds, which gives a possibility of a range of energy gaps for a fixed
lattice, or vice versa.
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The nitrides have added another facet to bandgap engineering. Generally
among the III–Vs we find that large lattice spacing corresponds to small energy
gap—see the extremes of InSb and GaP in Fig. 12.15; nitrogen is the smallest
atom we consider in the semiconductor components of Table 8.2, even smaller
than carbon and boron which have lower atomic numbers and weights. So
adding N as isoelectronic replacement for As or P will decrease the mean lattice
spacing, but the highly electronegative and piezoelectric nature of N means that
the bandgap is reduced by the large bowing factor.∗ There is an interesting group

∗ When Ga and In are mixed in the
proportion of 1 − x and x, one would
expect the resulting energy gap to be
Eg(Ga1−x InxN) = (1 − x)Eg(GaN) +
xEg(InN) but the actual energy gap
turns out to be smaller. An empirical
formula gives the reduction in the form
bx(1 − x) where b is called the bowing
factor. In any case it is difficult to
predict the exact energy gap owing to
the fact that nitrides do not form large
single crystals or uniform alloy. There
are compositional variations and strains
as well as piezoelectric effects throughout
the MOCVD layers.

called the ‘Gina’alloys (Ga In N As). Gallium arsenide has the most advanced
technology of all the III–Vs so it is much in demand as a substrate, good quality
slices are available to grow on other compounds by MBE or MOCVD. However
they have to be lattice matched. From Fig. 12.15 it can be seen that GaAlAs
will lattice match all the way to AlAs, that is the bandgap can go to 2.2 eV
well into the visible. Now by adding N and In to GaAs it is possible to keep
the mean lattice spacing constant (N goes down, In up), providing the added
concentrations of In and N are in the ratio of 3:1. Both these materials reduce the
energy gap. So a Gina alloy to lattice match GaAs is Ga1−3x In3x Nx As1−x . An
example is 3x = 0.53 which gives a bandgap of 0.74 eV. These infrared alloys
have been used to make lasers to match the desirable optical fibre wavelength
of 1.3 μm and for solar cells. At the other end of the spectrum, the shortest
wavelength of 342 nm (corresponding to a gap of 3.6 eV) was achieved with a
GaN compound which contained no indium.

Fig. 12.16
An array of lasers.

What should we do if we wish to have a high power semiconductor laser?
Instead of one laser, we can produce an array of lasers (Fig. 12.16) grown on
the same substrate and lightly coupled to each other. There may be as many as
40 diodes in an array capable of producing several watts of output power. The
difficulty is to persuade all the lasers to radiate in phase.

Next, I wish to mention a relatively new development in which the diode
lasers emit light in the same direction as the current flows. They are called
Vertical Cavity Surface Emitting Lasers. Their structure is shown in Fig. 12.17.

Fig. 12.17
Schematic representation of a Vertical
Cavity Surface Emitting Laser.

Top contact
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The active layer still consists of multiple quantum wells. The main difference
is that the Bragg reflectors are at the top and bottom. They can be produced by
the same techniques as the wells, and they can be made highly reflective. In
the realization of Fig. 12.17, the reflector at the top has a reflection coefficient
very near to unity, whereas the reflection coefficient of the bottom reflector
is somewhat smaller, allowing the radiation to come through the transparent
substrate. The area of the laser can now be made very small leading to even
smaller threshold currents (� 0.1 mA). A further advantage is the ease with
which arrays can be made. A two-dimensional array is shown in Fig. 12.18,
where each microlaser may work at the same wavelength (to produce a high
output) or may be tuned to different wavelengths.

12.7.4 Quantum cascade lasers

Before concluding the story of semiconductor lasers, it may be worth
mentioning a relative, the Quantum Cascade laser, that does not quite belong to
the family. The family trait, as repeated many times, is the descent of the electron
from the conduction band to the valence band and the subsequent emission
of a photon, of one single photon. The Quantum Cascade laser, conceived
in the early 1970s, is an exception. All the things that matter happen in the
conduction band.

λ0,2

λ0,1
λ0,0

λ1,0
λ2,0

Fig. 12.18
An array of VCSEL lasers.

The basic principle of operation of the Quantum Cascade laser is shown
in Fig. 12.19. There are two semiconductor materials, A and B, which are
alternately deposited upon each other (say, one hundred of them) by Molecular
Beam Epitaxy (Fig. 12.19). Ais the active material which has a conduction band
edge much below that of semiconductor B. Lasing action takes place between
energy levels 1 and 2. The wavelength of the emitted light depends on �E, the
difference between the two energy levels. There is also a voltage applied across
the whole sandwich. For simplicity let us assume that there is a voltage drop,
VB across each piece of semiconductor B but none across semiconductor A and
choose this voltage to be eVB.

Let’s start with an electron, on the left-hand end of Fig. 12.19, just entering
from semiconductor B into semiconductorAat the energy level 2. It sees energy
level 1 to be empty. Hence it descends from level 2 to level 1 by emitting a
photon of frequency f = �E/h. But semiconductor B is designed to be thin
enough so that electrons can tunnel through it if they find a convenient energy

ΔE

Level 1

Level 2

B
A

B
A

B

B
A

Fig. 12.19
Energy diagram for a Quantum
Cascade laser.
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level on the other side to tunnel into. The drop across semiconductor B being
equal toVB ensures that the electron can tunnel from level 1 of semiconductor A
on the left-hand side of B to level 2 of the next semiconductor A on the right-
hand side of B, and then the whole thing starts again. The electron descends,
emits a photon, tunnels across, descends, emits a photon, and so on until it finds
the last semiconductorA. If there are 50 layers of semiconductorA, then a single
electron will produce 50 photons. From the point of view of the electron, this is
like a cascaded ornamental waterfall. By the end the electron will have lost all
its energy. From the point of view of the photon, this is an exercise in gathering
strength.

The energy difference between levels 1 and 2 depends on the thickness of
semiconductor A. Hence, the laser wavelength can be changed by choosing the
appropriate material thickness. The wavelength range Quantum Cascade lasers
can cover is large, from about 3 to 17 μm.

The principles upon which Quantum Cascade lasers work were enunciated
in the 1970s but they have only very recently entered the market place. Why?
You can appreciate the reasons: it is the extreme accuracy required. Each
layer must have a certain number of atoms, not an atom more not an atom
less.

As you can see, semiconductor lasers of all kinds have made and are making
great leaps forward. They are poised to acquire the same dominance in lasers
as other semiconductor devices enjoy in generating and amplifying lower
frequency signals and in the field of switching.

12.8 Laser modes and control techniques

Having discussed the principles of operation of a large number of lasers, let
us see now in a little more detail how the electric field varies inside a laser
resonator and describe a few methods of controlling the mode purity and the
duration of laser oscillations.

12.8.1 Transverse modes

What will be the amplitude distribution of the electromagnetic wave in the
laser resonator? Will it be more or less uniform, or will it vary violently
over the cross-section? These questions were answered in a classical paper
by Kogelnik and Li in 1966, showing both theoretically and experimentally
the possible modes in a laser resonator. The experiments were performed in a
He–Ne laser, producing the mode patterns of Fig. 12.20. For most applications
we would like a nice, clean beam as shown in the upper left-hand corner.
How can we eliminate the others? By introducing losses for the higher order
modes. This may be done, for example, by reducing the size of the reflector.
Since the higher order modes have higher diffraction losses (they radiate out
more), this will distinguish them in favour of the fundamental mode. However,
this will influence laser operation in the fundamental mode as well; thus
a more effective method is to place an iris diaphragm into the resonator,
which lets through the fundamental mode but ‘intercepts’ the higher order
modes.
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Fig. 12.20
Experimentally measured transverse
mode patterns in a He–Ne laser having
a resonator of rectangular symmetry
(H. Kogelnik and T. Li, Proc. IEEE
54, pp. 1312–1329, Oct. 1966).

12.8.2 Axial modes

As mentioned in Section 12.5 and shown in Fig. 12.21, laser oscillations are
possible at a number of axial modes, each having an integral number of half
wavelengths in the resonator. The frequency difference between the nearest
modes is cm/2L (see Exercise 12.7) where L is the length of the resonator, and
cm is the velocity of light in the medium. How can we have a single frequency
output? One way is to reduce the length of the resonator so that only one
mode exists within the inversion range of the laser. Another technique is to use
the good offices of another resonator. This is shown in Fig. 12.22, where a so-
called Fabry–Perot etalon, a piece of dielectric slab with two partially reflecting
mirror, is inserted into the laser resonator. It turns out that the resonances of this
composite structure follow those of the etalon, that is the frequency spacing
is cm/2d , where d is the etalon thickness. Since d � L, single frequency
operation becomes possible.

Are we not losing too much power by eliminating that many axial modes?
No, we lose very little power because the modes are not independent of each
other. The best explanation is a kind of optical Darwinism or the survival of
the fittest. Imagine a pack of young animals (modes) competing for a certain
amount of food (inverted population). If the growth of some of the animals is
prevented, the others grow fatter. This is called mode competition.

Resonator loss

Laser
gain

Laser
output

f

f

cm /2L

Fig. 12.21
The inversion curve of a laser and the
possible axial modes as a function of
frequency.
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Fig. 12.22
Schematic representation of a laser
oscillator in which single mode
operation is achieved with the aid of
an etalon.

L

Laser gain medium

M1 M2

Tilted etalon

12.8.3 Q switching

This is a method for concentrating a large amount of power into a short time
period. It is based on the fact that for the build-up of oscillations a feedback
mechanism is needed, usually provided by mirrors. If pumping goes on, but we
spoil the reflectivity of one of the mirrors (i.e. spoil the Q of the resonator) by
some means, then there will be a lot of population inversion without any output.
If the reflectivity is restored (i.e. the Q is switched) for a short period to its
normal value, the laser oscillations can suddenly build up, resulting in a giant
pulse output. The pulse duration might be as short as a few nanoseconds, the
power as much as 1010 W, and the repetition frequency may be up to 100 kHz.
The easiest, though not the most practical, way of spoiling the Q is by rotating
the mirror. The Q is then high only for the short period the mirrors are nearly
parallel.

12.8.4 Cavity dumping

This is another, very similar method for obtaining short pulses also based on
manipulating theQ of the resonator (called also ‘cavity’; that’s where the name
comes from). We let the pump work and make the reflectivity 100% for a certain
period, so the oscillations can build up but cannot get out. If we now lower the
reflectivity to zero, all the accumulated energy will be dumped in a time equal
to twice the transit time across the resonator. The method may be used up to
about a repetition rate of 30 MHz.

12.8.5 Mode locking

We have implied earlier that it is undesirable to have a number of axial modes
in a laser. This is not always so. The large number of modes may come useful if
we wish to produce very short pulses of the order of picoseconds. The trick is to
bring the various axial modes into definite relationships with each other. How
will that help in producing short pulses? It is possible to get a rough idea by
doing a little mathematics. Let us assume that there areN +1 modes oscillating
at frequencies ω0 + lω, where l = (−N/2, . . . , 0, . . . ,N/2), that they all have
the same phase and amplitude, and they all travel in the positive z-direction
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(the set travelling in the opposite direction will make a similar contribution).
The electric field may then be written in the form

E(z, t) = E0

N/2∑
l=−N/2

exp[−i(ω0 + lω)(t − z/cm)]

= E0 exp[−iω0(t − z/cm)]F(t − z/cm), (12.50)

where E0 is a constant, and

F(x) = sin( 1
2Nωx)

sin( 1
2ωx)

. (12.51)

Equation (12.50) represents a travelling wave, whose frequency is ω0, and its
shape (envelope) is given by the function, F . If N � 1, F is of the form of a
sharp pulse of width 4π/Nω, and it is repeated with a frequency of ω. Taking
N = 100, a resonator length of 10 cm, and a refractive index of 2, we get a
pulsewidth of 27 ps and a repetition frequency of 750 MHz. The situation is, of
course, a lot more complicated in a practical laser, but the above figures give
good guidance. The shortest pulses to date have been obtained in dye lasers
with pulsewidths well below 1 ps.

How can we lock the modes? The most popular method is to put a saturable
absorber in the resonator which attenuates at low fields but not at high fields. These are usually two-section

devices, one section to provide
optical gain, and the other one to
act as a saturable absorber.

Why would a saturable absorber lock the modes? A rough answer may be
produced by the following argument: when the modes are randomly phased
relative to each other, the sum of the amplitudes at any given moment is small,
hence they will be adversely affected by the saturable absorber. However, if
they all add up in phase, their amplitude becomes large, and they will not be
affected by the saturable absorber. Thus, the only mode of operation that has
a chance of building up is the one where the modes are locked, consequently,
that will be the only one to survive in the long run (where long means a few
nanoseconds). This is another example of optical Darwinism.

12.9 Parametric oscillators

In principle, this is the same thing as already explained in connection with
varactor diodes in Section 9.13. The main differences are that in the present case
(i) the non-linear capacitance is replaced by a non-linear optical medium, (ii) the
dimensions are now large in comparison with the wavelength; hence wave
propagation effects need to be taken into account, and (iii) instead of amplifiers,
we are concerned here with oscillators (although optical parametric amplifiers
also exist). What is the advantage of parametric oscillators? Why should we
worry about three separate frequencies, when we can easily build oscillators at
single frequencies? The reason is that we can have tuneable outputs.

A schematic diagram of the optical parametric oscillator is shown in
Fig. 12.23. The parametric pump (not to be confused with the pump needed
to make the laser work) is a laser oscillating at ω3. There is also a resonator
which may resonate at ω1 and ω2. If the waves at these frequencies satisfy
both the ω3 = ω1 + ω2 and the k3 = k1 + k2 (k = propagation coefficient
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Fig. 12.23
Schematic representation of a tuneable parametric oscillator. R1, R2, and R3 are the reflectivities of the mirrors at frequencies
ω1, ω2, ω3 respectively.

as in our classical studies of Chapter 1) conditions, then there is a parametric
interaction between the waves. The power at ω1 and ω2 builds up from the
general noise background at the expense of pump power. Thus, we have
output at all three frequencies. But why is this set-up tuneable? Because of
the particular properties of the chosen non-linear medium. It is a crystal in
which the dielectric constant is dependent on the direction of propagation. By
rotating the crystal, the matching condition for the propagation constants is
satisfied at another set of frequencies, ω′

1 and ω′
2, still obeying ω3 = ω′

1 + ω′
2.

The crystal used most often is barium borate (BBO), produced abundantly
in the People’s Republic of China. It may be used in a pulsed parametric
oscillator, pumped by either the third harmonic (355 nm) or by the fourth
harmonic (266 nm) of the 1.066 μm radiation from a Nd3+:YAG laser. The
tuning range for either pump wavelengths is remarkably large as shown in
Fig. 12.24. Remember, for a dye laser with a given dye, we might have a
tuning range in the vicinity of 10%, but now we have a device which can tune
wavelength by a factor of 7 between the highest and the lowest wavelengths.
The price we pay for it is the necessity to use an additional resonator with a
piece (in practice usually two pieces) of crystal in it.

12.10 Optical fibre amplifiers

It is quite obvious that amplifiers can be built on the same principles as
oscillators, but usually there is less need for them. A field, however, in
which amplifiers have crucial importance is long-distance communications.
One might be able to span the oceans of the world by optical fibres without
the need to regenerate the signal in repeaters, if the signals propagating in the
fibres could be amplified.

The idea of using fibre amplifiers is just about as old as the oldest laser. There
were experiments in the early 1960s with fibres doped with Nd. Population
inversion could be achieved by pumping it with a flash-lamp, which then served
to amplify a signal. This idea was resurrected in the middle 1980s, using another
rare-earth element, erbium, as the dopant. Today, erbium doped fibre amplifiers
(acronym EDFA) pumped by diode lasers are standard components in an optical
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Fig. 12.24
Theoretical (solid lines) and
experimental (© and �) tuning curves
using BBO as the nonlinear medium.

fibre communication system. Without them the World Wide Web could have
hardly come into existence.

12.11 Masers

The acronym stands for ‘microwave amplification by stimulated emission
of radiation’. It is like ‘laser’ but the word ‘light’ has been replaced by
‘microwave’. In fact, the microwave application was there first, well before
lasers. Masers represented the first two-state systems in which quantum
mechanical principles were used to achieve amplification. They were invented
independently by Townsend in the United States and Basov and Prokhorov in
the Soviet Union. All three received a Nobel Prize in 1964. For a while masers
were used as low-noise amplifiers (e.g. in the first satellite communications
across the Atlantic), but nowadays they are only of historical interest. It is
worthwhile, though, to mention here one of their realizations as an example of
magnetic tuning.

When discussing paramagnetism in Section 11.7, we came across the
splitting of energy levels in an applied magnetic field. The possible energies
are given by eqn (11.41):

E = −MJgμmBB, MJ = J , J − 1, . . . , −J . (12.52)

The material used is ruby, which happens to be good both for lasers and
masers. For trebly ionized chromium, the outer 3d-shell has three electrons
of identical spin. Hence its total spin contribution is 3/2. The contribution
from orbital angular momentum is taken as zero,∗ thus j = 3/2, leading

∗ There is some theoretical justification
for doing so, but the real reason is that
unless orbital momentum is disregarded,
there is no resemblance at all between
theory and experiment.
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Fig. 12.25
The splitting of energy levels of Cr3+
ions in ruby as a function of magnetic
flux density. (a) Plot of eqn (12.52)
for the case when the orbital
momentum is quenched and the
angular momentum is due to spin
only. (b) Experimental curves in the
direction of the symmetry axis of the
ruby crystal, θ = 0.
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Taking further g = 2 (corresponding to pure spin), we find the energy levels
shown in Fig. 12.25(a). The energy levels found experimentally are illustrated
in Fig. 12.25(b). The dependence on magnetic field may be seen to be well
predicted by the simple theory, but not the split at zero magnetic field. As
far as the maser is concerned, what matters is that its frequency of operation
may be changed by varying the magnetic field. In other words, we have a
tuneable maser. The magnetic fields required are reasonable and can be realized
in practice.
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12.12 Noise

Why can masers be used as low noise amplifiers? Mainly, because their
operation is not dependent on the motion of charge carriers, whose density
and velocity are subject to fluctuations. So, we managed to get rid of one
source of noise, but we have now another kind of noise, namely that due to
spontaneous emission.

The amount of noise generated in an amplifier may be characterized by a
parameter called ‘noise temperature’; a low ‘noise temperature’ means a small
amount of noise. For a maser it can be shown that under ideal conditions∗ ∗ Ideal conditions mean high gain, no

ohmic losses, and no reflections from a
noisy load.

this noise temperature is numerically equal to the negative temperature of the
emission mechanism. Hence, the aim is to have a low negative temperature,
that is, large population inversion.

How can we achieve large population inversion? With reference to our
three-level maser scheme, we have to do two things: (i) pump hard so that
the population of levels 3 and 1 become roughly equal; (ii) keep the device at
a low temperature†, so that the relative number of atoms is higher in level 1. † Low temperatures help incidentally in

reducing the ohmic losses as well.Be careful, we are talking now of three different ‘temperatures’. The maser
has to work at a low (ordinary) temperature to get a low negative (inversion)
temperature, which happens to be equal to the noise temperature of the amplifier.
Now what is the minimum noise temperature one can achieve? Can we approach
the zero negative temperature and thus the zero noise temperature? We can
certainly approach the zero negative temperature by cooling the amplifier
towards 0 K. As the actual temperature approaches absolute zero, the ratio

number of atoms in level 1

number of atoms in level 2

tends to infinity. Hence, after pumping, the negative temperature tends to zero.
But spontaneous emission does not disappear, since it is proportional to the
number of atoms in level 3. Thus, the noise temperature cannot reach zero.

It turns out that, as the inversion temperature tends to zero, the noise
temperature tends to the finite value of hν/k, where ν is the frequency of
operation. When ν = 5×109 Hz, the limiting noise temperature comes to about
0.25 K. Experimental results on masers cooled to liquid helium temperatures
are not far from this value. Noise temperatures around 2 K have actually been
measured.

All I have said so far about noise applies to lasers as well, though the
numerical values will be radically different. For the argon laser mentioned
before, ν = 6.6 × 1014 Hz, giving Tnoise ∼ 30 000 K as the theoretically
available minimum.

12.13 Applications

Finally I should like to say a few words about applications. What are lasers
good for? Surprisingly, an answer to this question was not expected when the
first lasers were put on the bench. It is true to say that never has so much effort
been expended on a device with so little regard to its ultimate usefulness. Lasers
were developed for their own sake.

I suppose that in the trade most people’s reaction was that sooner or later
something useful was bound to come out of it. Radio waves have provided some
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service (even allowing for the fact that radio brought upon us the plague of pop
music); microwaves have been useful (how else could you see the Olympic
finals in some far away country from your armchair in Tunbridge Wells); so
coherent light should be useful for something.

The military who remembered that radar was useful also hoped that laser
would be good for something, and they gave their blessing (and their money
too!).

Another powerful contributing factor was the human urge to achieve new
records. I could never understand why a man should be happier if he managed
to run faster by one-tenth of a second than anyone else in the world. But that
is how it is. If once a number is attached to some performance, there will be
no shortage of men trying to reduce or increase that number (whatever the case
may be). And so it is with coherent radiation. Man feels his duty to explore
the electromagnetic spectrum and produce coherent waves of higher and higher
frequencies.

There may have been some other motives too, but there was no unbridled
optimism concerning immediate applications. What can we say some 40 years
later? Well, the military were apparently right. They got a guidance system out
of it which can direct a bomb dropped by an aeroplane into the middle of a plate
of lentils, and there are, very likely, lots of other applications in the pipeline.
The ray-gun, that favourite dream of boys, science fiction writers, and generals
may not be very far from realization. What about civilian applications? There
are many of them in the medical field; there is optical radar, but of course the
most important applications to date have been the compact disc and optical
communications. There are many scientific applications too. We shall start
with them.

12.13.1 Nonlinear optics

The whole subject, the study of non-linear phenomena at optical frequencies,
was practically born with the laser.

12.13.2 Spectroscopy

An old subject has been given a new lease of life by the invention of tunable
lasers. Spectroscopists have now both power and spectral purity previously
unattainable.

12.13.3 Photochemistry

Carefully selected high-energy states may be excited in certain substances, and
their chemical properties may be studied.

12.13.4 Study of rapid events

With the aid of picosecond and sub-picosecond light pulses, a large number of
rapidly occurring phenomena may be studied in physics, chemistry, and biology.
The usual technique is to generate a phenomenon by a strong pulse and probe
it by another time-delayed pulse. A field in which these techniques have been
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successfully utilized is the creation and decay of excitons in a semiconductor
crystal.

12.13.5 Plasma diagnostics

Many interesting properties of plasmas may be deduced by their scatter of laser
light.

12.13.6 Plasma heating

A plasma may be heated to high temperatures by absorbing energy from
powerful lasers.

12.13.7 Acoustics

Properties of high-frequency (in the GHz range) acoustic waves in solids may
be studied by interacting them with laser light.

12.13.8 Genetics

Chromosomes may be destroyed selectively by illuminating single cells with
focused laser beams.

12.13.9 Metrology

The velocity of light may be determined from the relationship, c = νλ, by
measuring the frequency and wavelength of certain laser oscillations. The laser
is stabilized by locking it to a molecular absorption line, and its frequency
is measured by comparing it with an accurately known frequency, which is
multiplied up from the microwave into the optical range. The wavelength is
measured independently by interferometric methods. The accuracy with which
we know the velocity of light was improved this way by a factor of hundred.

12.13.10 Manipulation of atoms by light

There are many ways of doing so, all very interesting but leading too far away
from our central direction. It is, however, definitely worthwhile to look at least
at one of those interactions responsible for cooling.

From what we have done so far, it is easy to deduce that lasers can heat
materials. But cool them? How is that possible? In fact, if we take Doppler
cooling as an example the principles are quite simple.∗ Let us imagine a 1D gas ∗ Not so simple in the general case.

The 1997 Nobel Prize was awarded to
Steven Chu, Claude Cohen-Tannoudji,
and William D. Phillips for development
of methods to cool and trap atoms with
laser light.

in which atoms move with random velocities, and assume the existence of two
counterpropagating laser waves of the same intensity and same frequency. The
frequency is chosen so that it is a little below an atomic resonant frequency.
Both beams exert a force upon the atoms due to their radiation pressure. If
the atom is stationary, these two forces cancel each other. When the atom
moves, the apparent frequencies of the two waves are Doppler shifted. The
counterpropagating wave gets closer to resonance, and the copropagating wave
gets farther away. The one that is closer to resonance exerts a higher force upon
the atom, and hence the net effect is to slow down the atom. Atoms being slowed
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down means that the temperature has declined. In real life the cooling must,
of course, be done in three dimensions, necessitating three counterpropagating
laser waves, but the principle is the same. The set of atoms cooled down is
called optical molasses.∗ For sodium atoms and using a particular resonance,∗ Molasses (used as a singular noun) is a

sticky sugary substance associated with
cold temperatures. The saying is ‘slow as
molasses in January’.

the lowest temperature achievable was 240 μK, with theory and experiments
in good agreement.

12.13.11 Optical radar

One of the obvious device applications is in producing a radar. If it can be done
with microwaves, why not with lasers? The wavelength is much smaller, so
we may end up with higher accuracy in a smaller package. This is indeed the
case; some of the optical radars may weigh less than 20 kg and can recognize a
moving car as a car and not a blotch on a screen. They can also determine the
position of objects (e.g. clouds, layers of air turbulence, agents of pollution)
which do not give sufficient reflection at microwave frequencies. The two lasers
used most often are YAG lasers at 1.06 μm and CO2 lasers at 10.6 μm, the latter
has the merit of being able to penetrate fog, haze, and smoke. Optical radars
are best known under the name of Lidar (light detection and ranging) but also
as Ladar (laser detection and ranging) and Oadar (optical aids to detection and
ranging).

12.13.12 Optical discs

Once the laser was invented, applications for data storage came immediately to
mind. The first idea was to use holographic principles (see Section 12.13.18),
but soon afterwards a much simpler solution was found. It uses a disc coated
with a transparent organic dye in which pits are scorched by a small diode laser.
Reading is again by a laser beam (wavelength 780 nm), based on the fact that
light is reflected differently by the pits. These discs became known as CDs, or
Compact Discs. Their storage capacity reached the figure of 700 MB, suitable
for playing music for up to 80 minutes. The CD has probably been one of the
most successful consumer products. Sales figures went up to billions.

The next development in the field was the DVD, known also as the Digital
Versatile Disc, which uses a wavelength of 640 nm. That immediately increased
the capacity by a factor of (780/640)2 = 1.5. Further increases were achieved
by using more sophisticated modulation and error-correcting techniques. As a
result, DVDs were capable of storing full-length films. Another technique to
increase capacity was to use multiple recording layers. The capacity at the time
of writing (late 2008) may reach up to 20 GB.

Progress did not, of course, stop with the DVD. Motivation for even higher
capacity came from the emergence of high-definition television (HD TV),
which uses 1024 lines. Up to 2008 there were two contending formats but the
competition ended with the victory of Blu-ray, championed originally by Sony
over Toshiba’s HD-DVD. The wavelength used is 405 nm, a colour variously
described as blue or violet. Available capacities are 25 GB for a single layer
and 50 GB for a double layer. In the laboratory, as many as 10 layers have
been produced. It is difficult to predict the ultimate capacities obtainable with
such discs. Although the DVD is an excellent device for storing information, it
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might not be able to dominate the movie-renting market because downloading
via the Web might turn out to be cheaper.

A final word about the method of storage. We have mentioned scorching
pits, but there is a more modern technique that relies on a phase change. The
principle is again very simple. The discs contain a layer of crystalline material
which can be switched by heat between two states, crystalline and amorphous,
having different reflectivities.

12.13.13 Medical applications

Medical applications are growing fast, particularly in the United States,
where the medical profession is much less conservative than in Europe. The
essential property of lasers that comes useful is that the radiated energy can be
concentrated on a small spot and that different tissues have different absorptions.
A uniquely useful application is, for example, the reattachment of the human
retina by providing the right amount of heat at the right place. Surgeons may
use higher laser energy to vaporize tissue (a useful way to get rid of malignant
tumours) or lower laser energy to coagulate tissue, that is stop bleeding. It is
actually possible to make bloodless cuts without causing pain. The number of
various medical applications is high (I understand in ophthalmology alone, as
many as forty different problems are treated by lasers) but not very widespread
as yet. I want to finish the list by mentioning one more, rather bizarre,
application practised by some gynaecologists; to open up the Fallopian tube.

12.13.14 Machining

A laser beam can of course be focused not only upon human tissue but upon
inanimate matter as well, making possible laser machining and welding. The
same technique may also be useful for writing patterns on high-resolution
photographic plates (possibly to be further reduced) used in integrated circuit
technology.

12.13.15 Sensors

An interesting application, which has recently been introduced to service, is
for navigation, which necessitates the measurement of rotation. Lasers can
detect rotational movement as low as a thousandth degree per hour. The
basic principles may be understood from Fig. 12.26. This is a so-called
ring laser, in which resonance is achieved by a ray biting its own tail. The
condition of resonance is now that the total length around the ring should be
an integral multiple of the wavelength. When the system is at rest (or moving
with uniform velocity) the clockwise and anticlockwise paths are equal, and
consequently the resonant wavelengths are equal too. However, angular rotation
of the whole system makes one path shorter than the other one, leading to
different frequencies of oscillation. The two beams are then incident upon a
photodetector, which produces a current at the difference frequency. The rate
of rotation may be deduced by measuring this difference frequency.

A simpler variant, aiming to do the same thing, uses a cylinder upon
which hundreds of metres of optical fibres are wound. If the cylinder rotates,
then the light path going clockwise is different from the light path going
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Fig. 12.26
Schematic representation of a laser
rotation sensor.

Beam combining optics

Photo-
detector meter

Waves travelling
clockwise and
counterclockwise

M M

Gas
laser

M(Mirror)

Δ f

counterclockwise. The rotation rate may then be determined by measuring the
path difference.

Talking of fibres, I must mention that rotation rate is just one of the numerous
physical quantities which can be measured with the aid of light propagating
in fibres. Sensors have already been built for measuring angular position,
temperature, pressure, strain, acceleration, magnetic field, etc. The availability
of fibres and semiconductor lasers has made it fashionable to convert all kind of
input variables into light signals. The reason is low attenuation, flexibility (in
both senses of the word), high information capacity, compactness, light weight
and, last but not least, the potentially low price of the device.

12.13.16 Communications

I have already mentioned Communications several times. There is no doubt
that lasers, combined with the advent of optical fibres, are responsible for
the enormous increase in volume, and for the drastic decline in the cost
of Transatlantic and Transcontinental calls. In the second edition of this
book, published in 1979 the following prediction was made about optical
communications: ‘It is bound to come, and bound to be followed by cheap
intercontinental communications. In 10 years time you will probably be able
to call Uncle Billy in New York for ten pence.’ Well, ten years was not quite
the right prediction but if we talk about the present time, 2008, any point in
the United States can be reached for two pence a minute. The future? There
is some overcapacity at present but, we strongly believe, that barring a major
catastrophe, all kinds of communications will increase. The sky is the limit.

While on Communications I must mention a new development that may very
well come. The problem to solve is known as that of the Last Mile concerned
with transmitting information from the fibre terminal to each home. Since
installing fibres into every house is rather expensive the present solution is to
change to coaxial cable at the fibre terminal. The new solution envisaged is
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to put at the terminal the information on infrared lasers and radiate it directly,
without any cables, into one’s sitting room.

12.13.17 Nuclear applications

Let us turn now to some potential applications which may acquire high
importance in the future. Take laser fusion for example. The chances of success
seem fairly small, but the possible rewards are so high that we just cannot afford
to ignore the subject. The principles are simple. As I have already mentioned,
a plasma may be heated by absorbing energy supplied by a number of high-
power pulsed lasers. The fusion fuel (deuterium and tritium) is injected into the
reactor in the form of a solid pellet, evaporated, ionized, and heated instantly
by a laser pulse, and the energy of the liberated neutrons is converted into heat
by (in one of the preferred solutions) a lithium blanket, which also provides the
much needed tritium.

Next in importance is another nuclear application, namely isotope
separation. With the change from fossil to fissile energy sources, we shall
need more and more enriched uranium. The cost of uranium enrichment in the
USA for the next 20 years has been estimated at over 100 000 million dollars.
Thus, the motivation for cheaper methods of separation is strong.

The laser-driven process, estimated to be cheaper by a factor of 20, is based
on the fact that there is an optical isotope shift in atomic and molecular spectra.
Hence, the atoms or molecules containing the desired isotope can be selectively
excited by laser radiation. The separation of excited atoms may, for example,
be achieved by a second excitation in which they become ionized and can be
collected by an electric field.

A disadvantage of the process is that, once perfected, it will enable do-it-
yourself enthusiasts (with possibly a sprinkling of terrorists among them) to
make their own atomic bombs.

12.13.18 Holography

As the last application, I would like to mention holography, a method of image
reconstruction invented by Dennis Gabor in 1948 (Nobel Prize, 1973). It is
difficult to estimate at this stage how important it will eventually turn out to
be. It may remain for ever a scientific curiosity with some limited applications
in the testing of materials. On the other hand it might really take off and might
have as much influence on life in the 21st century, as the nineteenth century
invention of photography has upon our lives. The technique is by no means
limited to the optical region; it could in principle be used at any frequency in the
electromagnetic spectrum, and indeed, holography can be produced by all kinds
of waves including acoustic and electron waves. Nevertheless, holography and
laser became strongly related to each other, mainly because holographic image
reconstruction can most easily be done with lasers at optical frequencies.

The basic set-up is shown schematically in Fig. 12.27. The laser beam is
split into two, and the object is illuminated by one of the beams. The so-called
‘hologram’ is obtained by letting the light scattered from the object interfere
with the other beam. The pattern that appears depends both on the phase and on
the amplitude of the scattered light, storing this information on a photographic
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Fig. 12.27
Schematic representation of taking a
hologram.
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plate, we have our ‘picture’, which bears no resemblance to the object at all.
However, when the hologram is illuminated by a laser (Fig. 12.28) the original
object will dutifully spring into life. The reconstructed wave forms appear to
diverge from an image of the object. Moving the eye from A to B means
viewing the object from a different angle, and it looks different indeed just as
in reality. So the picture we obtain is as good as the object itself, if not better.
For examining small biological specimens, for example, the picture may be
better than the original because the original will not sit motionless under the
microscope. A hologram can be investigated at leisure without losing any of
the details, and one can actually focus the microscope to various depths in the
three-dimensional picture.

A variation on the same theme offering some advantages is volume
holography, to which we shall return in more detail in Section 13.5. It uses
a certain volume in a photosensitive medium, in which a three-dimensional
interference pattern is recorded in the form of refractive index variation. One
of the advantages of volume holograms is that the holographic reproduction
is strongly wavelength dependent—it is the Bragg effect again, contributions
must be added in the correct phase. Hence, the image may be viewed in white
light, with the hologram selecting the wavelength it can respond to from the
broad spectrum available. The Bragg effect is of course strongly dependent on
incident angle as well. The wavelength and angular dependence together make
it possible to record multiple holograms in the same material.

What about holographic movies? Could one arrange conferences at
which only the holographic images of the participants talk and walk in the
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Fig. 12.28
Schematic representation of viewing a
hologram.

conference room? Not impossible. Under some restricted conditions, successful
experiments have been conducted while some participants were strutting and
fretting on the stage.

The entertainment provided by holography has so far been confined to
the laboratory with the exception of a few exhibitions and a few art shops.
To produce a holographic image is expensive, and the rich have decided to
spend their money on other objects of luxury. So are there any commercial
applications? Probably, only two. There are, as everyone knows, holograms
on credit cards (to make forgery more difficult), and there are, as some people
know, holograms in every supermarket scanner that reads bar-codes.

A scanner works in the following way. A series of holograms are recorded
on a disc. As the disc rotates and is illuminated by a laser (the original reference
beam) each small part of the disc gives rise to an object beam moving in a
different direction. The total effect is a continuously moving light beam that
scans the bar-code.

Finally, I wish to mention a potential application that has been talked about
for at least a quarter of a century. It is holographic storage. It is based on
the recording of multiple holograms. Each object beam may carry digital
information in the form of a two-dimensional array of black and white spots
and there can be a very large number of object beams. When illuminated by the
original reference beams, the object beams are reconstructed and the white or
black spots are read by an array of detectors. The advantage of this method of
storage is the massively parallel operation (hence high speed) and the density of
storage achievable. The potential device has already been advertised as having
the speed of a tiger and the memory of an elephant. In theory, the storage
capacity is very high. It has been shown by theoreticians that each wavelength
cube of the material can store one bit of information. Taking a wavelength
of 0.5 μm and a disc of 30 mm diameter and 3 mm thickness the theoretical
figure would come to about 20 terabit, i.e. 20 × 1012 bits. In laboratories, well
over 1 terabit has already been achieved, about 10 times as much as available
from magnetic memories. Will holographic memories ever be a commercial
success? I am a little sceptical for two reasons: the technical problems for mass

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


326 Lasers

production are still numerous and by the time they will be solved conventional
memories might not be too far behind in capacity and would be a lot cheaper.

12.14 The atom laser

It would be quite legitimate to ask why we need another section on atom
lasers, when so much has already been said about the various energy states of
atoms and how leaping from one energy state to another one may lead to laser
action.

The atom laser is only called a laser. It is not a proper laser in the sense
that it has nothing to do with Light Amplification by Stimulated Emission of
Radiation. A less often used alternative name, matter wave laser, however,
gives away the secret. It is concerned with coherent matter waves in much
the same way as ordinary lasers are concerned with coherent electromagnetic
waves.

What do we need to produce an ordinary laser? We need to confine the
photons by a resonator and ensure that they all have the same energy. In a
matter wave laser the atoms need to be confined to a finite space, and all of
them must be in the same state. If many atoms are to be collected in the same
state, they must be bosons, as we briefly mentioned in Chapter 6.

How can we confine the atoms? If they have a magnetic moment, they can
be trapped by magnetic fields. The simplest example of a trap is a magnetic
field produced by two parallel coils carrying opposite current, which yield zero
magnetic field in the centre. An atom moving away from the centre will be
turned back.

How can we have a sufficient number of atoms in the ground state? By
cooling the assembly of atoms, we can make more of them remain in the
ground state. The lower the temperature, the larger the number of particles in
the ground state. When the density is sufficiently large and the temperature is
sufficiently low, we have a so-called Bose–Einstein condensation, which means
that most of the atoms are in their ground state.

How do we know if we achieved a Bose–Einstein condensation? In the same
manner as we know whether we have coherent electromagnetic radiation, we
derive the two beams from a laser and make them interfere with each other.
Coherence is indicated by the appearance of an interference pattern. Can we do
the same thing with an atom laser? We can.

In a particular experiment, sodium atoms were trapped in a double well:
there were two separate condensates, each one containing about five million
atoms. The trap was then suddenly removed, and the atom clouds were let to
fall for 40 ms. They were then illuminated by a probe beam from an ordinary
laser. The absorption of the light as a function of space showed an interference
pattern in which the fringes were about 15 μm apart.

The subject, you have to realize, is still in its infancy. Will it be useful when
it reaches adulthood? Nobody can tell. Remember that nobody knew what to
do with ordinary lasers when they first appeared on the scene.
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Exercises

12.1. Calculate (a) the ratio of the Einstein coefficients A/B
and (b) the ratio of spontaneous transitions to stimulated
transitions for

(i) λ = 693 nm, T = 300 K
(ii) λ = 1.5 cm, T = 4 K

Take the index of refraction to be equal to 1.
At what frequency will the rate of spontaneous transitions

be equal with the rate of stimulated transitions at room
temperature?

12.2. What causes the laser beam on a screen to appear as if it
consisted of a large number of bright points, and why do these
points appear to change their brightness as the eye is moved?

12.3. An atomic hydrogen flame is at an average temperature
of 3500 K. Assuming that all the gas within the flame is
in thermal equilibrium, determine the relative number of
electrons excited into the state n = 2.

If the flame contains 1021 atoms with a mean lifetime of
10−8 s, what is the total radiated power from transitions to the
ground state? Is the radiation in the visible range?

12.4. The gain constant γ is found to be equal to 0.04 cm−1 for
a ruby crystal lasing at λ = 693 nm. How large is the inverted
population if the linewidth is 2 × 1011 Hz, tspont = 3 × 10−2 s
and n = 1.77.

12.5. In a laser material of 3 cm length the absorption
coefficient is 0.14 cm−1. Applying a certain amount of pump
power the achieved gain coefficient is 0.148 cm−1. One of the
mirrors at the end of the laser rod has 100% efficiency.

Determine the minimum reflectivity of the second mirror for
laser action to be possible.

12.6. A typical argon ion laser has an output of 5 W and an
input current of 50A at 500 V. What is the efficiency of the
laser?

12.7. Assuming that the inversion curve of a laser is wide
enough to permit several axial modes, determine the frequency
difference between nearest modes.

12.8. The Doppler broadened lineshape function is given by
eqn (12.26).

(i) Show that the half-power bandwidth is given by the
expression

�ν = 2ν0

(
2 kT 1n2

Mc2

)1/2

(ii) Work out the half-power bandwidth for an argon laser
emitting at 514.5 nm at a temperature of 5000 K.

(iii) How many longitudinal modes are possible at this line if
the length of the cavity is 1.5 m?

12.9. Can the inverted population be saturated in a
semiconductor laser? Can one make a Si or Ge p–n junction
‘laser’?

12.10. Determine the threshold current density of a GaAs
junction laser which has a cleaved edge. Assume the following
values: linewidth = 1013 Hz, attenuation coefficient, α =
103m−1, l = 0.2 mm, d = 2 μm, n = 3.35, η = 1.

12.11. A microwave cavity of resonant frequency ω is filled
with a material having a two-level system of electron spins, of
energy difference h̄ω. The microwave magnetic field strength
H can be considered uniform throughout the cavity volume V .
Show that the rate of energy loss to the cavity walls is

ωμ0H
2V

Q
,

where Q is the quality factor of the cavity.
If the probability for induced transitions between levels per

unit time is αH 2 and spontaneous emission is negligible, show
that the condition for maser oscillation is

�N >
μ0

αh̄Q
,

where �N is the excess of upper level population density over
lower. [Hint: Q = ω× energy stored/energy lost per second.]
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13 Optoelectronics

Mehr Licht
Attributed dying words of Johann Wolfgang von Goethe

I saw Eternity the other night,
Like a great ring of pure and endless light

Henry Vaughan The World

13.1 Introduction

What are optoelectronic devices? I do not think it is easy to answer this question;
as far as I know, there is no accepted definition. There was certainly a time when
people talked about photoelectronic devices. I believe they were devices which
had something to do both with photons and electrons, in particular with the
interaction of light with electrons. Then there was (and still is) electro-optics,
concerned with the effect of electric fields upon the propagation of light. So,
maybe we should define optoelectronics as a broader discipline which covers
both photo-electronics and electro-optics. But what about the interaction of light
and acoustic waves, or nonlinear optics, are they part of optoelectronics? We
seem to be driven towards the definition that any modern way of manipulating
light (interpreted generously, so as to include infrared and ultraviolet) will
qualify as optoelectronics.

Some cynics have an alternative definition. They maintain that this new
subject emerged when the relevant grant-giving authorities (on both sides of
the Atlantic) came to the conclusion that they had very little money to spare for
research in the traditional subjects of photoelectronics, electro-optics, acousto-
optics, etc. So those compelled by necessity to spend a considerable part of
their time writing grant applications invented a revolutionary new subject with
a brilliant future . . .

Having decided that optoelectronics is a very broad subject, the next thing I
have to do is to say that I can treat only a small fraction of it. The choice is bound
to be subjective. I shall, of course, include important devices like junction type
photodetectors, and I shall certainly talk about new topics like integrated optics
or nonlinear optics. Where I might deviate a little from the general consensus
is in choosing illustrations like phase conjugation in photorefractive materials
or electroabsorption in quantum well structures, which I find fascinating. I do
hope though that I shall be able to give a ‘feel’ of what is happening in this
important field.

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


Light detectors 329

13.2 Light detectors

Let me start with the conceptually simplest method of light detection,
photoconduction. As described before, photons incident upon a piece of
semiconductor may generate extra carriers (the density of generated carriers
is usually proportional to the input light). For a given applied voltage, this
increase in mobile carrier density leads to an increase of current, which can be
easily measured. This is how the CdS cells that are used extensively in exposure
meters and in automatic shuttering devices in cameras work. The advantage of
using such photoconductors is that they are cheap because they are easy to
construct and can be made from polycrystalline material. On the other hand,
they are relatively slow and require an external voltage source.

Next, we shall consider a p–n junction. We choose reverse bias because for
sensitive detection we require a large fractional change—it is very noticeable
if one microamp current doubles, but it is quite difficult to see a one microamp
change in one milliamp. If photons of the right wavelength shine on the p-side,
they create electrons that are minority carriers, and these will be driven across
the reverse bias junction. This is the basis of a sensitive photodetector that is
made by producing a shallow layer of p-type material on an n-type substrate,
so that the junction is very close to the illuminated surface (Fig. 13.1).

Light input

+–

p

1   mμ

n

Fig. 13.1
The p–n junction as a light detector.

The photodetection properties of p–n junctions may be improved by turning
them into p–i–n junctions, that is by adding an extra intrinsic layer, as shown
in Fig. 13.2. Since the number of carriers in the intrinsic layer is small, we
need only a small reverse bias (a few volts) to extend the depletion region all
the way through the i region. A large depletion region gives a large volume
in which carriers can be usefully generated in a background of small carrier
concentration. In practice the reverse bias is maintained at a value considerably
higher than the minimum, so that the intrinsic region remains depleted of
carriers, even under high illumination. A typical p–i–n diode would withstand
100 V reverse bias and would have a current of about 2 nA at a voltage of −20 V
at a temperature of 25◦C.

Light input

+–

p

ni

Fig. 13.2
A p–i–n junction used as a light
detector.

The response time of p–i–n detectors is related to the transit time of the
carriers across the intrinsic region. In a high field this is small, therefore p–i–n
detectors are fast; fast enough, in fact, to be used in optical communications
systems.

A further possibility is to use a metal–semiconductor junction [as shown in
Fig. 9.16(b)] for the detection of carriers. There is then again a depletion region
in which the carriers can be generated and which are driven through an external
resistance by an applied voltage. Its main advantage is that it can work in the
blue and near-ultraviolet region, since the metallic layer (usually gold) can be
made thin enough to be transparent.

We can now ask the following question: can we improve the efficiency of
the detection method by amplifying the photocurrent? The answer is yes. I shall
mention two variants, the avalanche photodiode and the phototransistor.

In the avalanche photodiode the reverse bias is so high that the generated
carriers traversing the depletion region have sufficient energy to create further
carriers by impact ionization; the additional carriers create ever more carriers by
the same mechanism, leading to an avalanche, as discussed in Section 9.12.2.
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330 Optoelectronics

In a phototransistor the base is not connected. Instead, it is exposed to the
input light, which creates the carriers providing the base current. The base
current is then amplified in the usual manner.

Perhaps I should add that amplification is a good thing but not the only
thing to consider. Under certain conditions noise performance may be a more
important criterion when choosing a particular detector.

All the photodetectors mentioned so far needed an applied voltage. It should
be noted, however, that it is not necessary in this case. Light may be detected
in a p–n junction simply by short-circuiting it via a microammeter of very
low resistance, which serves as the load. The electrons and holes generated
by light in the junction will move under the effect of the built-in voltage and
drive a current through the ammeter. The measured current turns out to be
proportional to the input light intensity. This arrangement is usually referred to
as the photovoltaic operation of the junction.

A photo-voltaic cell energized by the sun becomes a solar battery. When we
used to worry about the ‘energy crisis’ it was hoped that acres of solar cells
would replace nasty, dirty power stations. This has not quite come off, mainly
for economic reasons. A simple calculation shows that, even with a generous
estimate for the lifetime of a solar cell, the total energy it will generate is less than
that required to purify and fabricate the single crystal slice from which it is made.
So single crystals are definitely out, except for applications when money is no
object—as in space vehicles. Amorphous materials, however, which we briefly
discussed in Section 8.9, can be used, as the economics are more favourable.
The amorphous semiconductor with the most advanced technology is silicon.
It is possible to process it in a wide variety of ways, so that its texture absorbs
light well, and the actual absorption edge can be shifted to give a better match
to the sun’s output than is obtained by the much more clearly defined single
crystal. Amorphous silicon is usually deposited in a vacuum or reduced gas
pressure as a thin film. This makes it possible to optimize the film thickness—
thick enough to absorb light, but not so massive that the much shorter carrier
lifetimes and diffusion lengths lead to loss of carriers before they participate in
useful current. A typical solar cell would consist of successive n- and p-layers
sputtered on a metallized substrate and superposed by a transparent metal top
electrode. There are many varieties and, in fact, the variables are so numerous
that solar cells have made many PhD theses but have not yet solved the energy
problem. However, one commercial realization, now commonplace, is the solar
battery driven calculator.

First junction
GaInP

absorbs light
E > 1.85 eV

second junction
GaAs

absorbs light
1.85eV > E > 1.4eV

third junction
GaInAs

absorbs light
1.4eV > E > 1eV

fourth junction
Ge

absorbs light
1eV > E > 0.67eV

tunnel junction

tunnel junction

tunnel junction

GaAs or Ge
substrate

Fig. 13.3
Schematic drawing of proposed 4
junction solar cell, parts of which
have been made and tested.

Other materials that have seemed promising include CdTe and CuInSe2

as components in multistage solar converters which absorb some of the light
photovoltaically and reflect or transmit other wavelengths to different energy
gap devices.

One advantage of working as a photovoltaic engineer is that you have
two levels of costing and seeking efficiency. On the one hand, there is the
space vehicle market where photovoltaics are looked upon as essential but
relatively cheap accessories to a vehicle whose cost is astronomical, so a bit
more efficiency is worth paying for. On the other hand there is the power station
replacement market where you need acres of photo cells and your competitor
is coal which comes out of the ground with low cost.

Figure 13.3 is a schematic drawing of a four level solar cell. It uses a thin top
layer of GaInP with an energy gap of 1.85 eV, then successive layers of materials
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to utilize the longer wavelengths in sunlight, including a GINAalloy mentioned
in Section 12.7. The expected conversion efficiency is 41% compared with
about 30% for a single junction device. The four stage device is made by
MOCVD so is more expensve than coal, but it can be used with mirrors or
lenses to concentrate light up to 500 suns, where its expected efficiency is over
50%. Possibly some hope for the terrestrial market as the technology advances.

So far we have talked about light detectors but since the principles are more
or less the same, this is also the place to treat infrared∗detectors. The primary ∗ Purists might object saying that the

command ‘let there be light’ was
restricted to the visible region, but we
think that is a too narrow interpretation.

form of detection in that region too is the change in the conductivity of the
material induced by incident radiation. The materials are again semiconductors.
The devices rely on band-to-band transition up to 10 μm, requiring small
energy gap semiconductors. Semiconductors of even smaller energy gap can
be found, so in principle, band-to-band transition could be used for even longer
wavelengths, but in practice this range from 10–100 μm is covered by impurity
semiconductors in which the increased conductivity is obtained by exciting an
electron from a donor level into the conduction band (or from the valence band
into an acceptor level).

Infrared radiation between† 100 μm and 1 mm is usually detected with the † Some care needs to be exercised with
terminology. This region used to be
called the submillimetre region. The
latest fashion is to talk about frequency
rather than wavelength. 300 GHz would
correspond to 1 mm wavelength, 1 THz
to 0.3 mm and 100 THz to 3 μm.

aid of the so called ‘free carrier absorption’. This is concerned with the excitation
of electrons from lower to higher energy levels in the conduction band. The
number of electrons available for conduction does not change, but the mobility
does, owing to the perturbed energy distribution of the electrons. the change
(not necessarily increase) in conductivity may then be related to the strength of
the incident infrared radiation. Since electrons may be excited to higher energy
levels by lattice vibrations as well (thus masking the effect of the input infrared
radiation) the crystal is usually cooled.

Relative newcomers to the family are the QWIPs (Quantum Well Infrared
Photodetectors) and the QDIPs (Quantum Dot Infrared Photodetectors) which
work by exciting electrons from discrete energy levels into the high energy
continuum.

13.3 Light emitting diodes (LEDs)

Semiconductor lasers have been discussed in quite detail in Section 12.7. We
came to the conclusion that it is a good thing to have a good semiconductor
laser: it has many applications. Are bad lasers good for anything? Yes, certainly,
as long as they can emit light. How do we make a bad laser? By depriving a
good laser of its cavity. The injected carriers may still recombine and emit
light but in the absence of the cavity there is no agent to take care of the phase
relationships and consequently the emitted light will not be coherent and will
not emerge as a narrow beam. But that is exactly what we want if the aim is to
use the semiconductor diode for lighting: we want a diffuse light coming out at
all directions. This light source does indeed exists. It is called a light emitting
diode, abbreviated as an LED.

In fact, LEDs were invented in 1960, a few years before semiconductor
lasers. The first specimen emitted red light. They were made initially of GaAsP
alloys (GaAs has an infrared energy gap, which is increased by adding the lighter
element P). Too much P induces an indirect gap, so the other alloy GaAlAs has
been used to get well into the visible. These energy gaps are shown in Fig. 12.15
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which also shows that the lattice parameters of GaAs and AlAs are very similar,
so AlAs layers can be grown on GaAs substrate. LEDs in the blue and green
were intially made from ZnS and ZnSe, using MBE, or even ion implantation,
to get both n and p types.

But the whole scenario of applications and usefulness of LEDs has changed
in the past decade by the advent of InGaN devices. The nitrides were regarded
by most people making LEDs in 1990 as ‘scientifically interesting’ which
to commercially minded scientists, meant ‘black hole for time and money’.
However, the basic idea was attractive; if alloys of InN, GaN and AlN were
available, LEDs could be made from direct gap semiconductors from the red
(1.89 eV) into the UV (6.2 eV). The main problem had been that there was
no way of getting a suitable substrate that could be used for epitaxial growth.
The nitrides, typically GaN, have the wurtzite structure, with strong ionicity
due to the small, electronegative N atoms.∗ So, the ionic as well as coval-

∗ Electronegative atoms
When a covalent bond is formed between
two different elements such as the III–Vs
or II–VIs, the electron distribution is
not symmetrical between the elements
because it is energetically favourable for
the electron pair to be found closer to one
atom. The atom which draws the bonding
electrons more closely to it is called more
electronegative. This is a polar bond, in
other words the covalent bond is partly
ionic, as we have shown for some cases
in Table 8.3. The following table has been
compiled by Linus Pauling (Table 13.1).

Table 13.1 Electronegativities of
elements

Be B C N O
1.5 2.0 2.5 3.0 3.5

Mg Al Si P S
1.2 1.5 1.8 2.1 2.5

Ca Ga Ge As Se
1.0 1.6 1.8 2.0 2.4

Sr In Sn Sb Te
1.0 1.7 1.8 1.9 2.1

The above table appears to have
been produced by intuition and genius,
a powerful combination. Somewhat
similar results can be obtained by
equating the electronegativity to the
average of the ionisation energy and
electron affinity of the element, namely,

E = 1
2 (I + Eaff )

This is common sense, since high Eaff
means the atom wants to collect spare
electrons, and high I means it will hold
on to them. From the table, it can be seen
that the nitrides of Ga, In and Al have
a marked imbalance of electrons, giving
a large ionic or polar component to the
covalent bond.

ent nature of the bond gives a very high melting point. Attempts to grow
single crystals by the method outlined in Section 8.11, and even more modern
and sophisticated versions of this apparatus failed to produce anything better
than fractured crystals a few millimetres across. The first breakthrough came
when it proved possible to grow a good mirror finish GaN layer on a sapphire
substrate. This used a MOCVD process. First a ‘nucleating’ layer was put
down at a relatively low substrate temperature 700–800 K, then asecond faster
deposition at 1100–1300 K, this coalesced the first layer and surprisingly good
LEDs were made. Surprising, because the large lattice mismatch (about 16%)
caused threading defects to reach through to the active layer even though
different buffer layers and thicker active layers were tried. The dislocation
density could not be reduced below 108–1010 cm−2. But the LEDs shone
brilliantly, particularly in the blue and green where the II–VI opposition devices
immediately became obsolete. LED law, based on GaAsP and GaP(ZnO), the
earlier red diodes which some of us still have in our pocket calculators, was
that dislocation density greater than 104 cm−2 killed light emission. InGaN
was outside this law. The In is important because pure GaN does not luminesce
very well. Around 1 part in 100 of In makes all the difference, and of course
you need more In than that to get through the visible spectrum. A second
problem that had to be solved before these diodes could be made was that
initially it was difficult to make p-type material. This is a snag that cropped
up many years ago when CdS seemed a good optical device material. It
was never completely solved although some p-type CdS was made by MBE.
The crucial thing was to avoid thermodynamic equilibrium that caused p-type
centres to be swamped. The same sort of problem with GaN was occasioned
largely by the fact that heat treatment (faster growth) of a p-type impurity
led to compensating reactions (electrons cluster round holes). It was solved
by using Mg impurity in the MOCVD process and annealing in N2 which
stopped the compensation. Thus, by 1992†good quality InGaN films were

† A crucial factor in the success of
the InGaN story was that the Nichia
Chemical Industries outfit in Japan had
alone and presciently worked on making
and processing GaN during most of the
1980s. Their principal scientist Shuji
Nakamura and his colleagues published
the crucial paper in 1992, and many
further results since.

available to make the first successful blue DH LEDs. A further refinement
was to add a single quantum well (SQW) to the structure and soon after,
a multiple quantum well (MQW). A typical LED is sketched in Fig. 13.4.
Quite complicated compared to the simple pn junction of earlier days. In
particular, there is a special thin InGaN emitting layer, where the recombination
of electrons and holes from the pn layers occurs. This controls the operating
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n-electrode

p-electrode

p-GaN

n-GaN

GaN buffer layer

Sapphire substrate

p-Al0.3Ga0.7N

n-Al0.3Ga0.7N

In0.2Ga0.8N

n-In0.02Ga0.98N

Fig. 13.4
Typical layer structure of a QW based
nitride LED.

wavelength∗. Forming and consolidating the buffer layer is almost an art form. ∗ Not only composition defines the
wavelength. The nitrides are very non-
centro symmetric and have a large piezo-
electric constant (Section 10.11), so
the strains and dislocations cause a big
internal field, this gives wavelength shift
by the Stark effect, particularly in the
quantum well structure (Section 13.10.3
and 4).

A black art many say. However, an elaborate process called epitaxial lateral
overgrowth (ELOG) involving chemical vapour deposition (CVD) of a layer
of SiO2, subsequently penetrated by windows a few micrometres wide by
conventional masking and etching. This structure is overlaid by further InGaN
MOCVD grading and growth layers. The distortion causes lots of extra strain,
but in some regions of the resulting overlayer the dislocation density is below
106 cm−2. Unfortunately, there is very little change in device performance
across such a layer, except that for pure GaN, which is not very luminescent,
there is a marked improvement at low defect density. So the practical answer is
to keep some In and no ELOG. This is borne out by Fig. 13.5 which shows how
the quantum efficiency varies with In content, from work done a few years ago.
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Fig. 13.5
Relative output power of uv InGaN
SQW LEDs as a function of emission
peak wavelength. The dots show
increasing In mole fractions from
practically 0% on the left to 4% on the
right.

Recently the quantum efficiency of InGaN LEDs reached 30% at violet-blue
wavelengths at 20 mAcurrent, a power of 21 mW emitted in the blue, and 7 mW
in the green, corresponding to about 60–30 lumens W−1. High brightness red
LEDs are up to 50% efficient. This has led the way to commercial usage of
LEDs. There are large colour displays,†signal and traffic lights, automotive

† A display that can be described as
large without any exaggeration was used
to illuminate the stage at the opening
ceremony of the Beijing Olympics in
2008. It employed 44 000 LEDs in a
display having dimensions of 36 m × 147
m.

uses including stop and rear lights, also for cycles.
The estimated life of InGaN LEDs at present, from accelerated and projected

life testing is about 10 years continuous use. For an average room light duty
cycle this gives 60 years! The long life, low maintenance, is also the main
selling point for traffic lights. It makes some local authorities, even in the U.K.,
look further forward than the next financial year, normally their absolute limit
to thinking ahead.

So how can we assess the state of InGaN LED technology in early 2009?
The nitrides are still difficult to grow as reasonable epitaxial layers, and the
very successful LEDs have been made on small crystals, typically 5 nm thick
active layer. There is no good theory of why they work. So we are in a situation
of technological success leading to a rapidly expanding semiconductor lighting
industry without a proper scientific backing. This has happened before, maybe
steam engines were somewhat like this before thermodynamics caught up.
But following the precise science/technology advance of solid state circuit
electronics, it is a bit of a shock. We must hope that all will become clearer
when better material is available. Meanwhile, we can conjecture that the
necessary small quantity of In in GaN leads to localised deep levels that

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


334 Optoelectronics

produce relatively stable excitons; and as their constituents move in the strong
fields the recombination is rapid. It has been estimated that the diffusion
length of minority carriers (before recombination) is 50–60 nm. Thus radiative
recombination would occur before a non radiative encounter at a threading
dislocation, even with dislocation densities of 1010 cm−2.

As we have said several times, the variable quality, internal strains and
piezo electric fields mask the correlation between bandgap and emitted light.
An interesting summary based on experimental results of numerous InGaN
LEDs has been made by P. K. O’Donnell∗ who gives the following equation in∗ In the book edited by B. Gil listed in

further reading Appendix V. terms of x, the molecular fraction of In in InGaN (i.e. InxGa1−xN) for the peak
of the emitted light Ep (in eV).

Ep = 3.41 − 4.3x

There is a spread of about 10% in these coefficients, and it applies only for x
between 0–0.5.

In summary, we can say that considerable progress continues in many
features† of LEDs, including substrates of slightly larger GaN “mirror finish”† For example, recent work [H. Hirayama

et al., Appl. Phys. Express 1, 051101
(2008)] with deep ultraviolet diodes has
shown that if threading dislocations in
the buffer layer are reduced, efficiency
is improved. The deep UV region around
230–380 nm (over 5 eV) is potentially
important as a sterilizing antibiotic agent
for surgical instruments, food-processing
machinery, and water supplies, which
usually cannot be flooded with sterilizing
liquids. It is getting close to soft X-rays
and could be useful for imaging the large
molecules that are important for life. The
diodes used were made of an AlxGa1−xN
alloy as the energy gap is beyond GaN
(see Table 8.3), with an x value of
about 0.87. They were grown on sapphire
substrates by low-pressure MOCVD,
with a buffer layer. This is a very difficult
device region; initially, Hirayama et al.
obtained a diode output of 5 μW with
a quantum efficiency of 0.001%, but
by reducing the quantum well thickness
to only 1.3 nm and introducing an AlN
buffer layer to reduce dislocations from
about 3.2 × 109 cm−2 to 1.8×109 cm−2,
they obtained an output of 150 μW with
a quantum efficiency of 0.2%. So the
device is still of low efficiency but better,
a striking advance.

slices (still grown on sapphire). Skilled provision of buffer layers reduces
spreading dislocations. Selection of inclined planes for growth has improved
performance and yield in some devices. But the main goal of room lighting is
still some way off. Blue LEDs coated with composite phosphors have produced
white light, fairly well matched to sunlight, at 15 lumens W−1, giving about
20 lumens per diode. The snag is that they are still expensive and around 100
are needed to match a 100 W tungsten filament bulb. However, we routinely
use LED torches and lanterns, battery powered. So if we were prepared to bulk
buy white diodes and rewire our lighting system to 5 V d.c., we could have
energy-efficient room lights now. But if this were seriously proposed we think
the voters would rebel at the capital cost, even although they can no longer
get their 100 W bulbs from Woolworths. So room lighting is still a challenge.
Maybe InGaN LEDs will have to compete with OLEDs (Organic LEDs) for
efficient replacement of our old fashioned lighting, see Appendix I.

Finally, a word about the environment. Electricity is mainly produced by
fossil fuel which causes the undesirable CO2 emission. Over one fifth of
the electricity consumption in developed countries is due to lighting and the
proportion is even higher in developing countries. If the use of LED lamps will
halve that consumption that, would save, it has been calculated, 300 Megatons
of CO2 emission in the US alone. Will that happen? As I said I feel quite certain
that white light LEDs will come in due course but I do not quite believe in
the saving. If we have to pay less for our lighting, we may use more of it, but
hopefully not twice as much.

13.4 Electro-optic, photorefractive, and nonlinear
materials

Before talking more about applications, I shall first review some properties of
materials which make them suitable components for devices.

In electro-optic materials, the application of an electric field will affect the
index of refraction that an optical wave ‘sees’. Note that waves with different
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electric polarizations are differently affected. The exact relationships are given
by tensors, a subject I am reluctant to enter, but if you are interested you
can attempt Exercise 13.6. Let me just say that the dielectric tensor (which
relates the three components of the electric field to the three components of the
dielectric displacement) has nine terms, and each of these terms may depend
on the three components of the electric field. Thus, altogether, the electro-optic
tensor has twenty-seven components (only eighteen if the symmetry of the
dielectric tensor is taken into account). There is no need to worry. In practice,
usually, only one of the numerous components is needed, and the effect may
be presented in the form

r is the electro-optic coefficient.
�

(
1

εr

)
= rE . (13.1)

Since εr = n2, the change in refractive index may be written as

�n = − 1
2n

3rE . (13.2)
Note that r may be positive
or negative depending on crystal
orientation.

Taking LiNbO3 as an example, n = 2.29, and for a certain orientation of the
crystal we have r = 3.08 × 10−11 m V−1. With reasonable voltages, one may
obtain an electric field of about 106 V m−1, causing a change in the refractive
index of �n = 1.86 × 10−4. It does not seem a lot, but it is more than enough
for a number of applications. The indices of refraction and the electro-optic
coefficients for some often used materials are given in Table 13.2.

The essential thing to remember is that in electro-optic crystals the refractive
index, and consequently the propagation of the wave, may be changed by
applying an electric field.

The properties of electro-optic materials are dependent, of course, on
direction, but since the aim is no more than to give a general idea of the
ranges involved, only the largest components are listed for each material. The
wavelengths at which these values were measured are also indicated.

Photorefractive materials represent a rather special class of crystals which are
both electro-optic and photoconductive. Some representatives of these materials
are LiNbO3, Bi12SiO20, BaTiO3. I shall return to them in the next section.

Non-linear materials are usually characterized by relating the dielectric
polarization, P , to the electric field. The linear relationship given by eqn (10.5)

Table 13.2 Properties of electro-optic materials

Substance Wavelength
(μm)

Electro-optic
coefficient
(10−12 m V−1)

Index of
refraction

Static
dielectric
constant

Bi12SiO20 0.514 2.3 2.22 56
BaTiO3 0.514 820 2.49 4300
CdTe 1.0 4.5 2.84 9.4
GaAs 1.15 1.43 3.43 12.3
KNbO3 0.633 380 2.33 50
LiNbO3 0.633 32.6 2.29 78
ZnO 0.633 2.6 2.01 8.15
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may be generalized and written in the form:
χ(1) is the linear susceptibility
(what we called before simply
susceptibility and denoted by
χ ), and χ(2) and χ(3) are known
as the quadratic and cubic
susceptibilities.

P = ε0[χ(1)E + χ(2)E2 + χ(3)E3]. (13.3)

In some materials the nonlinearity may be more conveniently expressed with
the aid of the index of refraction as

n = n0 + n2I . (13.4)I is the intensity, n0 is the
index of refraction under linear
conditions, and n2 is the measure
of nonlinearity. Intensity dependent absorption is also possible. In fact one of the very

interesting devices to be presented in Section 13.11 operates on that basis.

13.5 Volume holography and phase conjugation

I have already mentioned (Section 12.13) some of the interesting optical
phenomena holography can produce. I shall now briefly talk about one
particular branch of holography, known as volume holography, and discuss
what happens in the simplest possible case, when both the reference beam
and the object beam are plane waves (Fig. 13.6). The distinguishing feature of
volume holography is that the recording process takes place in the volume of
the photosensitive material.

object wave

reference wave

Interference pattern

photosensitive medium

y

x

θ

θ

Fig. 13.6
Two plane waves incident upon a
photosensitive medium.

Let us now do a little mathematics. The amplitudes of the two waves may
be written in the form:

Aref = A10 exp[ik(x cos θ + y sin θ)] (13.5)

Aobj = A20 exp[ik(x cos θ − y sin θ)], (13.6)

leading to the interference pattern (note that the intensity, I , is proportional to
the square of the amplitude):

I = |Aref + Aobj|2 = A2
10 + A2

20 + 2A10A20 cos(2ky sin θ). (13.7)

It may now be seen from the above equation that the intensity varies periodically
in the y-direction with a period,

� = 2π

2k sin θ
= λ

2n sin θ
, (13.8)

which is nothing else but the Bragg relation once more. The symbol, �, is
usually referred to as the grating spacing.

After recording comes the processing (a black art for all known
photosensitive materials) with a result that the interference pattern is turned into
a modulation of the dielectric constant, that is the end product is a dielectric
constant varying as

εr = εr0 + εr1 cos(2ky sin θ). (13.9)εr1 is the amplitude of the
modulation (εr1 � εr0). We
may call εr a dielectric grating
or, considering that the dielectric
constant affects the phase, a
volume phase hologram.

What happens when we illuminate the hologram with the reference
wave? According to the rules of holography, the object wave springs into
existence. Interestingly, we could reach the same conclusion, considering Bragg
diffraction. If a wave is incident upon a material with a periodic structure
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at an angle and wavelength that satisfies eqn (13.8), then a diffracted beam
of appreciable amplitude will emerge. In fact, under certain circumstances it
is possible to transfer all the power of the incident reference wave into the
diffracted object wave.

What happens when the object wave is not a plane wave but carries some
pictorial information in the form of some complicated amplitude and phase
distribution? Since any wave can be represented by a set of plane waves, and
since the modulation of the dielectric constant is small, one can apply the
principle of superposition, leading to the result that each constituent plane
wave, and thus the whole picture, will be properly reconstituted.

Thephotosensitivemediamostoftenusedaresilverhalideemulsion(basically
the same as that used for photography but with smaller grain size) and
dichromated gelatin. In the former case, the refractive index modulation is due
to the density variation of silver halide in the gelatin matrix. In the latter case,
the mechanism has still not been reliably identified. It is quite likely that the
refractive index modulation is caused again by density variations mediated by
chromium, butexplanationsclaimingthepresenceofvoidscannotbediscounted.
Unfortunately, it is rather difficult to know what goes on inside a material when
chemical processing takes place. We can, however, trust physics. It involves
much less witchcraft. So I shall make an attempt to give an explanation of the
origin of dielectric constant modulation in photorefractive materials.

y

photorefractive crystal

V

Fig. 13.7
Two plane waves incident upon a
photorefractive crystal across which a
voltage is applied.

As I mentioned previously, a photorefractive material is both
photoconductive and electro-optic. Let us assume again that two plane waves
are incident upon such a material, but now a voltage is applied as well as shown
in Fig. 13.7. The light intensity distribution [given by eqn (13.7)] is plotted
in Fig. 13.8(a). How will the material react? The energy gap is usually large,
so there will be no band-to-band transitions but, nevertheless, charge carriers
(say electrons) will be excited from donor atoms, the number of excited carriers
being proportional to the incident light intensity. Thus, initially, the distribution
of electrons (Ne) and ionized donor atoms (N+

D ) is as shown in Fig. 13.8(b)
and (c). Note, however, that the electrons are mobile, so under the forces
of diffusion (due to a gradient in carrier density) and electric field (due to the
applied voltage) they will move in the crystal. Some of them will recombine with
the donor atoms while some fresh electrons will be elevated into the conduction
band by the light still incident. At the end an equilibrium will be established
when, at every point in space, the rate of generation will be equal to the rate
of recombination. A sketch of the resulting electron and donor densities shown
in Fig. 13.8(d). Since the spatial distributions of electrons and ionized donors
no longer coincide, there is now a net space charge, as shown in Fig. 13.8(e).
Now remember Poisson’s equation. A net space charge will necessarily lead
to the appearance of an electric field [Fig. 13.8(f)]. So we have got an electric
field which is constant in time and periodic in space. Next, we invoke the
electro-optic property of the crystal which causes the dielectric constant to vary
in proportion with the electric field. We take r , the electro-optic coefficient, as
positive, so the dielectric constant is in anti-phase with the electric field. We
have come to the end of the process. The input interference pattern has now
been turned into the dielectric constant variation shown in Fig. 13.8(g).

We may now argue again that the process works for more complicated waves
as well, so we have got the means to record holograms in photorefractive
materials. Noting that the process by which the dielectric grating is produced

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


338 Optoelectronics

Fig. 13.8
The variation of a number of physical
quantities in a photorefractive crystal
in the y-direction: (a) intensity,
(b) electron density, (c) ionized donor
density, (d) electron and ionized
donor density in the stationary case,
(e) the net charge density, (f) the
resulting electric field, (g) the
resulting dielectric constant.
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may occur quickly (it is in a range extending from nanoseconds to seconds) we
have here a real-time holographic material.

In fact, the major application of photorefractive materials is not for real-time
holography but for wave interaction. The phenomenon by which the incident
light brings forth a dielectric constant modulation and the way this modulation
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(a)

(b)

(c)

beam 3
beam 4

beam 1

beam 4

beam 1

beam 3

beam 2

beam 2
Fig. 13.9
Schematic representation of phase
conjugation. (a) Incident beams 1, 2
and 4 produce the phase conjugate
beam 3. (b) Beams 1 and 4 produce
a grating. (c) Beam 2 is diffracted into
beam 3 by the grating recorded.

reacts back (by diffracting the waves) upon the light beams, leads to all sorts
of interesting effects. I shall mention only the most notable one among them,
phase conjugation.

The physical configuration is shown in Fig. 13.9. There are three beams
incident upon the material, and a fourth beam is generated. For this reason the
phenomenon is often referred to as four wave mixing. Beams 1 and 2 are known
as the pump beams and beam 4 as the probe beam (usually much weaker than
the pump beams). As a result of the interaction, beam 3, the so-called phase
conjugate beam, is generated.

The physical mechanism is fairly easy to explain. Beams 1 and 4 create a
dielectric grating, as shown in Fig. 13.9(b). Beam 2, incident upon the grating,
is then diffracted to produce beam 3, as shown in Fig. 13.9(c).

What is so interesting about beam 3? Well, it is in a direction opposite to
beam 4, but there is a lot more to it. If beam 4 consists of a range of plane
waves, each separate plane wave is reversed to create, in the official jargon, a
phase conjugate beam. The whole device is called a phase conjugate mirror.

In what respect is a phase conjugate mirror different from an ordinary mirror?
We shall give two examples. In Fig. 13.10(a) a piece of dielectric is in the way
of an incident plane wave. The wavefront of the plane wave moving to the right
is illustrated by continuous lines: 1 is that of the incident wave, and 2 is the
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Fig. 13.10
Plane waves passing through a
dielectric and reflected by
(a) a conventional mirror, (b) a phase
conjugate mirror.

(a)

(b)

Conventional
mirror1 4

2 3

dielectric

1 4 2 3

dielectric
Phase
conjugate
mirror

wavefront after passing partially through the dielectric. After reflection by an
ordinary mirror, the retarded part of the wavefront is still retarded as given by 3
(dotted lines). After passing through the dielectric once more, there is a further
retardation of the wavefront, as indicated by 4.

In Fig. 13.10(b) wavefronts 1 and 2 are the same as previously. The phase
conjugate mirror, however, ‘reverses’ the input wave. The wavefront that was
retarded will now be promoted to the front as shown by 3. After passing through
the dielectric for the second time, the wavefront 4 will again be smooth. The
conclusion is that the phase conjugate mirror corrected the wavefront distortion
introduced by the dielectric. And this would actually be true for other kinds of
disturbances as well. The phase conjugate mirror reflects the incident wave
with an opposite phase and direction.

My second example is a beam diverging towards the mirror. After
reflection the conventional mirror will make the beam diverge further
[Fig. 13.11(a)] whereas the phase conjugate mirror will produce a convergent
wave [Fig. 13.11(b)]. A fascinating phenomenon you must agree but, I am
afraid, still at the laboratory stage.

13.6 Acousto-optic interaction

We have seen that periodic variation of the dielectric constant within a volume
of material may help to produce a diffracted beam by the mechanism of Bragg
interaction. The periodic variation may be achieved by using photosensitive
and photorefractive materials, but there is one more obvious possibility which
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Conventional
mirror

Phase
conjugate
mirror

(a) (b)

Fig. 13.11
A divergent beam reflected by
(a) a conventional mirror, (b) a phase
conjugate mirror.

we shall now discuss. An acoustic wave propagating in a material will cause a
strain, and the strain may cause a change in the dielectric constant (refractive
index). The relationship between the change in the dielectric constant and the
strain is given by the so-called strain–optic tensor. In the simplest case, when
only one coefficient needs to be considered, this may be written in the form:

�

(
1

εr

)
= pS, (13.10)

wherep is the photoelastic coefficient, and S is the strain. Thus, we can produce
a volume hologram simply by launching an acoustic wave. But is a volume
hologram much good if it moves? Well, it is all relative. For us anything moving
with the speed of sound appears to be fast, but for an electromagnetic wave
which propagates by nearly five orders of magnitude faster than a sound wave,
the hologram appears to be practically stationary. There is, however, an effect
characteristic to moving gratings that I must mention, and that is the Doppler
shift. The frequency of the electromagnetic wave is shifted by the frequency of
the acoustic wave, an effect that comes occasionally useful in signal processing.

Let us now work out the frequency of an acoustic wave needed to deflect an
optical wave of 633 nm wavelength (the most popular line of a He–Ne laser)
by, say, 2◦. The Bragg angle is then 1◦. Taking further LiNbO3 as the material
in which the waves interact, we find for the grating spacing,

� = λ

2n sin θ
= 633 × 10−9

2 × 2.29 × sin 1◦ = 7.92 μm, (13.11a)

Noting that the velocity of a longitudinal wave in LiNbO3 is 6.57 × 103 m s−1

� is the required wavelength of the
acoustic wave.

[see Table 13.3] we find for the frequency of the acoustic wave
f = 8.30 × 108 Hz. This is regarded as quite high

frequency, which cannot be excited
without exercising due care, but
nevertheless such an acoustic wave
can be produced in bulk LiNbO3

and can be duly used for deflecting
an optical beam. The device is
known as a Bragg cell.

Adevice which can deflect an optical beam can, of course, be used for modu-
lation as well. When the acoustic wave is on, the power in the transmitted beam
decreases, and a diffracted beam appears. Thus, by varying the amplitude of the
acoustic wave, both output beams are modulated. It may be an advantage to use
the diffracted beam as the modulated beam because the power in it is completely
cut off when the acoustic wave is absent, whereas it is less straightforward to
extinguish the transmitted beam.

Could we use an acoustic wave for scanning the optical beam within a
certain angular region? It can be done in more than one way. I shall just show
the arrangement which makes the best sense in principle.
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Table 13.3 Properties of some materials used for acousto-optic
interaction

Substance Wavelength
(μm)

Density
(103 kg m−3)

Index of
refraction

Sound velocity
(103 m s−1)

Water 0.633 1 1.33 1.5
Fused quartz 0.633 2.2 1.46 5.95
GaAs 1.15 5.34 3.43 5.15
LiNbO3 0.633 4.7 2.29 6.57
LiTaO3 0.633 7.45 2.18 6.19
PbMoO4 0.633 6.95 2.4 3.75
ZnS 0.633 4.10 2.35 5.51

Let us say we have an optical beam incident at an angle θ to the horizontal
direction. If we want to deflect it by 2θ , then we need an acoustic wave
propagating in the vertical direction [see Fig. 13.12(a)] and having a wavelength
of λac = λop/2n sin θ . How could we deflect the beam by a further �θ?
In order to have the Bragg interaction, we need to change the acoustic
wavelength to

λac + �λac = λop

2n sin(θ + �θ)
(13.11b)

and, in addition, tilt the acoustic wave (it can be done by using an appropriate
launching array) by �θ/2, as shown in Fig. 13.12(b).

Our final example is a spectrum analyser. It is essentially the same device as
the beam scanner but used the other way round. The unknown input frequency
to be determined is fed into the device in the form of an acoustic wave via an
acoustic transducer. It will deflect the input optical beam by an amount which
depends on the frequency of the acoustic wave. The deflected optical beam is
then detected by an array of photodetectors (Fig. 13.13). The position of the
photodetector upon which the beam is incident will then determine the unknown
frequency.

13.7 Integrated optics

This is not unlike integrated circuits, a subject we have discussed in detail
when talking about semiconductor devices. The basic idea was to ‘integrate’,
that is to put everything on a single chip and by doing so achieve compactness,
ruggedness, economy of scale, etc. The same idea of integration (advanced
towards the end of the 1960s) can also be applied to optical circuits with all
the corresponding advantages. In principle one could have lasers, waveguides,
optical processing circuits, all on the same chip. In practice, the results have
been rather limited due to technological difficulties and, probably, inadequacy
of the scale of effort. The economic imperative which was the driving force
behind the integrated circuit revolution has simply not been there for their
optical counterparts. It looks as though optical communications can come about
on a wide scale, without the benefit of integrated optics, so unless there is some
new and urgent impetus provided by the need to develop optical computers
or some other forms of optical processing, further progress is likely to remain
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acoustic beam

diffracted
beam

transmitted
beam

Optical input
beam

(a)

θ
θ

acoustic beam

diffracted
beam

transmitted
beam

Optical input
beam

(b)

θ
θΔ+θ

θΔ /2 Fig. 13.12
Bragg reflection of a light beam by an
acoustic wave. (a) Deflection angle of
2θ at an acoustic wavelength of λc,
(b) deflection angle of 2θ + �θ at an
acoustic wavelength of λc + �λc.

acoustic beam

diffracted
beam

Optical input
beam

transmitted
beam

photodetector
array

Fig. 13.13
A spectrometer relying on
acousto-optic interaction.
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Fig. 13.14
A phase shifter relying on the change
of dielectric constant caused by the
applied voltage.

electrodes

Ti indiffused waveguide

LiNbO3 substrate

d

L

V0

slow. Nevertheless, it is a very promising technique, so I must give at least an
introduction to its basic precepts.

13.7.1 Waveguides

The principle is very simple. If a material exhibiting a certain index of refraction
is surrounded by a material of lower index of refraction, then a wave may be
guided in the former material by successive total internal reflections. Optical
fibres (mentioned before) represent one such possibility for guiding waves, but
that is not suitable for integrated optics. We can however rely on the fact that
the refractive index of GaAs is higher than that of AlGaAs and, consequently,
a GaAs layer grown on the top of AlGaAs will serve as a waveguide. As
may be seen in Table 13.2, GaAs is an electro-optic crystal, it is also suitable
for producing junction lasers, microwave oscillators, and transistors. Thus,
altogether, GaAs seems to be the ideal material for integrated optics. Well, it is
indeed the ideal material, but the problems of integration have not as yet been
solved. It is still very much at the laboratory stage.

Nearer to commercial application are the LiNbO3 devices, which I shall
describe in more detail. In these devices the waveguides are produced by
indiffusing Ti into a LiNbO3 substrate through appropriately patterned masks
(the same kind of photolithography we met in Section 9.22 when discussing
integrated circuits). Where Ti is indiffused the refractive index increases
sufficiently to form a waveguide.

13.7.2 Phase shifter

Considering that LiNbO3 is electro-optic, we may construct a simple device,
using two electrodes on the surface of the crystal on either side of the
waveguide, and apply a voltage to it as shown in Fig. 13.14. With a voltage
V0, we may create an electric field roughly equal to V0/d, where d is the
distance between the electrodes. Hence, the total phase difference that can be
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Coupler

Electric field
line
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(c)
Buffer
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(b) Waveguides
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1 2

1� 2�

Electrodes

Fig. 13.15
(a) Schematic representation of a
directional coupler. (b) Integrated
Optics realization of the directional
coupler. (c) Cross-section of the
device showing also an electric
field line.

created is

L is the length of the electrodes.

�φ = 2πL�n

λ
. (13.12)

Avoltage of 5 V with a distance of 5 μm between the electrodes gives an electric
field of 106 V m−1 for which we found previously (Section 13.4) �n = 1.86 ×
10−4. A little algebra will then tell us that in order to produce a phase difference
of π at a wavelength of about 1.5 μm (good for optical communications) we
need electrode lengths of about 4 mm. So we have now a phase shifter, or if we
keep on varying the voltage between 0 and 5 V, we have a phase modulator.

13.7.3 Directional coupler

One of the elementary requirements of signal processing is the facility to
direct the signals into different locations. In its simplest form it means [see
Fig. 13.15(a)] that a signal coming in at port 1 should be divided between output
ports 1′ and 2′ in any desired proportion, including the possibility that all the
input power should appear at one single output port. And, similarly, power
coming in at input 2 should be divided between the same output ports. The
realization in integrated optics form is shown in Fig. 13.15(b). For a length ofL,
the two waveguides are so close to each other that there is leakage of power from
one to the other one. In addition, it is possible to change the relative velocity of
wave propagation in the two waveguides by applying a voltage between the two
electrodes. As shown in Fig. 13.15(c), the vertical component of the electric
field is in the opposite direction for the two waveguides. Hence, according to
eqn (13.1) the indices of refraction will vary in the opposite direction.

Let us now formulate this problem mathematically. A wave propagating
in the positive z-direction with a wavenumber k1 is of the form (recall
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Chapter 1)
A10 is the amplitude of the wave at
z = 0.

A1 = A10 exp ik1z. (13.13)

This may be described by the differential equation,

dA1

dz
= ik1A1. (13.14)

Another wave propagating in the same direction with a wavenumber, k2, would
then analogously be described by the differential equation,

dA2

dz
= ik2A2. (13.15)

Let us identify now waves 1 and 2 with those propagating in waveguides 1
and 2. Next, we shall have to take into account coupling between the
waveguides. In order to do so, we may advance the following argument. If
there is coupling between the two waveguides, then the rate of change of the
amplitude of the wave in waveguide 1 will also depend on the amplitude of the
wave in waveguide 2, and the higher the coupling, the larger is the effect of
wave 2. In mathematical form,

dA1

dz
= ik1A1 + iκA2. (13.16)

And, similarly, the rate of change of the amplitude of wave 2 is

dA2

dz
= iκA1 + ik2A2. (13.17)

Note that we have met this type of coupled differential equation before when

The coupling coefficient has been
taken as iκ .

discussing quantum mechanical problems in Chapters 5 and 7. The solution is
not particularly difficult; I shall leave it as an exercise (13.7) for the reader.
I shall give here only the solution for the case when k1 = k2 = k and when all
the input power appears at port 1 with an amplitude A. We obtain then for the
two outputs:

A1 = A10 exp(ikz) cos κz (13.18)

and
A2 = iA10 exp(ikz) sin κz. (13.19)

It may be clearly seen that the amount of power transfer depends on the length
of the coupler section. When z = L = π/2κ , all the power from waveguide
1 can be transferred to waveguide 2. With L = π/κ , the power launched in
waveguide 1 will first cross over into waveguide 2, but it will then duly return.
At the output, all the power is in waveguide 1.

This exchange of power may take place when k1 = k2, that is when the
velocities are identical. If we apply a voltage, the velocity of propagation
increases in one waveguide and decreases in the other one. In the absence
of synchronism the amount of power transferable may be shown to decrease.
When the velocities in the two waveguides are radically different, then they
simply ignore each other; there is no power transfer from one to the other
irrespective of the amount of coupling.
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Fig. 13.17
A beam deflector in Integrated Optics
form.

What can we use such a coupler for? Well, it is obviously a switch. In the
absence of a voltage, all the power can be transferred from waveguide 1 to
waveguide 2. Destroying then the synchronism by applying a voltage, we can
switch the power to waveguide 1 or vice versa.

13.7.4 Filters

One type of filter which reflects the signal in a certain wavelength band and
transmits the rest may be realized by relying once more on Bragg reflection.
Cumulative reflection may be obtained by placing reflecting elements at the
right period into the waveguide. This is shown in Fig. 13.16, where the reflecting
elements are grooves at a distance of λg/2 from each other, with λg being the
wavelength in the waveguide.

Obviously, a large number of other devices exist which I cannot possibly
include in this course, but let me just briefly mention one more, namely the
integrated optics realization of the acousto-optic beam deflector. In this case,
the steerable acoustic column is provided by interdigital surface acoustic wave
transducers (see Section 10.13) and the optical beam is confined to the vicinity
of the surface by a so-called planar waveguide. The optical beam will then sense
the periodic perturbation caused by the surface acoustic wave and will be duly
diffracted, as shown in Fig. 13.17.

13.8 Spatial light modulators

We have several times mentioned light modulators which modulate the intensity
of the incident light beam. Note that in those devices there is only one light

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


348 Optoelectronics

Fig. 13.18
An incoherent to coherent light
converter.
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beam, and it is affected everywhere in the same way by the modulation. Spatial
light modulators do the same thing, but different parts of the beam are differently
affected. A simple definition would be that a spatial light modulator is a device
which gives a desired light distribution over a certain area. Thus, in principle,
all programmable display devices may be regarded as spatial light modulators,
including possibly a display at a railway station which announces the departure
of trains. Other examples are a cathode-ray tube in a television set or a liquid
crystal display in a calculator.

I shall discuss here the operation of only one of the modern spatial light
modulators, which may also be called an incoherent-to-coherent light converter.
Such a device is needed because coherent light is usually more suitable for
further processing than incoherent light.

A schematic diagram of such a converter is shown in Fig. 13.18. In
the absence of input incoherent light from the left (the writing beam) the
photoconductor does not conduct, and consequently there is a high voltage
drop across the photoconductor and a low voltage across the liquid crystal (in
practice the liquid crystal layer is much thinner than the photoconductor). The
role of the liquid crystal is to transmit or to absorb the coherent light (reading
light) coming from the right, depending on whether there is a voltage across it
or not. Thus, the intensity modulation of the writing beam is converted into the
intensity modulation of the reading beam. The optical isolator is usually in the
form of a wide band dielectric mirror, which separates the writing and reading
beams from each other.
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We have already mentioned the quest for a liquid crystal display in
Section 10.15. The ideal device that still needs to be produced is a spatial
light modulator which is voltage addressable with a resolution of the order of a
wavelength and a speed (say nanoseconds) comparable with that of fast digital
computers.

13.9 Nonlinear Fabry–Perot cavities

A number of interesting effects occur when either the absorption coefficient or
the dielectric constant depend on the intensity of light. In this section we shall
discuss one particular manifestation of this non-linear effect when a dielectric,
whose index of refraction obeys eqn (13.4), forms a Fabry–Perot cavity.

It is fairly easy to show that the relationship between It , and Ii , the output
and input intensity of the cavity, is

It

Ii
=
[

1 + 4R

(1 − R)2
sin2 kl

]−1

, (13.20)

where l is the length of the cavity, k is the wave number, and R is the power
reflection coefficient. Equation (13.20) makes good sense. When kl = mπ

or l = mλ/2, the transmission is maximum (all power is transmitted) whereas
minimum transmission occurs when kl = 2(m+1)(π/2), or l = (2m+1)(λ/4).

For R = 0.36 and 0.7, eqn (13.20) is plotted in Fig. 13.19 for one period as
a function of kl. Obviously, the greater is R the sharper is the resonance. Large
values of R at a given frequency can be easily achieved by multiple element
dielectric mirrors. But, even in the simplest case when we rely upon reflection
at a dielectric–air interface, we can get quite high values. For InSb, for example,
which has been used in bistability experiments, εr = 15.9, and R = 0.36.

If the dielectric is linear, then an increase in input intensity would lead
to a proportional increase in output intensity. Consider now the case when the
index of refraction obeys the equation n = n0+n2I (assuming that the intensity
inside the cavity is the same as that leaving) and take a point on the It /Ii curve,
where the function is increasing (A in Fig. 13.19). What happens now if Ii is

R = 0.7

R = 0.36

1

0.5

0
kl(2m+1)π

2

It
Ii

mπ (m+1)π

A
B

Fig. 13.19
A plot of eqn (13.20) for R = 0.36
and 0.7.
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Fig. 13.20
Non-linear, It versus Ii characteristics
used as an OR gate.
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increased? Then first, we may argue, It will increase as in the linear regime.
But an increase in It will lead to an increase in n and k, and consequently, we
need to move up to a point higher on the curve, say B. But this means that,
for a given value of Ii , we have an even higher value of It , which increases n
even further, and in turn makes us move higher up on the curve, etc. Due to
this positive feedback, a small increase in Ii may lead to a large increase in It .
So the It versus Ii curve may turn out to be highly non-linear.

What could we use this high non-linearity for? An input–output characteristic
shown in Fig. 13.20(a) can be used as an OR gate. The bias input light is OA.
The corresponding light output, equivalent to digital zero, is AB. If a pulse is
incident upon either output of the OR gate [the (0, 1) or the (1, 0) variety as
shown in Fig. 13.20(b)] then the output is another pulse which may be regarded
as a logical 1. For an input of (1, 1), that is when pulses are incident on both
inputs of the gate, there is little difference in the intensity of the output beam
as shown in Fig. 13.20(c). This can still be regarded as a logical 1.

The same input–output characteristic may also be used as a logical AND
gate by biasing it at C [Fig. 13.21(a)]. The output level for logical zero is now
determined as being less than AB, which is satisfied for inputs (0, 0), (0, 1) and
(1, 0). For an input of (1, 1) the output is a logical 1 [Fig. 13.21(b)].

Other types of non-linear characteristics are, of course, also possible. Under
certain conditions we may for example obtain bistability, that is two possible
outputs for a given input power. To see when such multiple solutions are
possible, let us plot again in Fig. 13.22—It /Ii for R = 0.7 but this time against
(k − k0)l, where k = 2πn/λ. The zero value of k − k0 has been conveniently
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Fig. 13.21
A non-linear It versus Ii
characteristics used as an AND gate.
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Ii

Fig. 13.22
A graphical construction finding the
intersection of the curve given by eqn
(13.20) with the straight lines given
by eqn (13.21).

chosen for our purpose. We are interested in the intersections of this curve
with the set of straight lines shown, which were obtained by the following
considerations. From eqn (13.4)

It = n − n0

n2
= λ

2πn2
(k − k0), (13.21)

whence
It

Ii
= λ

2πn2lIi
(k − k0)l. (13.22)

According to the above equation, It /Ii is a linear function of (k−k0)l. There
are lots of constants on the right-hand-side of eqn (13.22) which are irrelevant,
but note the presence of Ii . Each straight line in Fig. 13.22 corresponds to a
different value of Ii . For each value of Ii the permissible values of It are given
by the intersections of the straight line with the curve. For OJ , a low value of
Ii (i.e. high value of the slope), there is only one solution. As Ii increases there
are two solutions for OK , three solutions for OL, two solutions for OM and,
again, only one solution for ON . Using this graphical method, the It versus Ii
curve can be constructed. In the present case it looks roughly like that shown
in Fig. 13.23(a). Physically what happens is that as Ii reaches the value of Iil ,
the value of It will jump from It1 to It2 (see Fig. 13.23(b)) and then will follow
the upper curve. In the reverse direction, when Ii decreases, It will suddenly
jump from It3 to the lower curve at It4 and will then follow the lower curve.
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Fig. 13.23
(a) The It versus Ii relationship as
determined by the construction in
Fig. 13.22. (b) The It versus Ii
characteristics as it would be
measured.
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What is bistability good for? Quite obviously, just as in the case of the
similarly looking ferrite hysteresis loop, we can make memory elements out of
them. By adding for example a switching beam to a holding beam the device
can switch from a low output state to a high output state.

Summarizing, our non-linear cavity has yielded components both for logical
arithmetic and storage. The hope is that one day they will be parts of all-optical
computers. Their main advantage in the applications discussed in the present
section is speed. The physical mechanism causing the non-linearity is fast.
Switching speeds of the order of 1 ps have been measured.

13.10 Optical switching

MEMS were mentioned in Section 9.24. They represent a new way of doing
things. Parts of the structures produced that way can actually move, so it
is possible, for example, to produce movable mirrors which can redirect a
beam of light. But that is exactly the thing we need for optical switching.
We need it badly. The present practice is rather cumbersome. It may be
likened to the plight of the traveller who wants to travel from Oxford to
Cambridge in the comfort of a railway carriage. He can certainly take a
train from Oxford to Paddington Station, London but there he is forced to
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disembark. He must then travel by tube to Liverpool Street Station from
where he is allowed the luxury of boarding another train. The journey
by tube is a nuisance. Signals travelling in optical fibres face the same
problems. They can rarely reach their destination without change of a rather
brutal nature. Within picoseconds of their arrival they are unceremoniously
converted into electronic form, interrogated as for their final destination,
reconverted into optical form and finally bundled into the appropriate optical
output fibre. Obviously, this conversion–reconversion business is a nuisance.
Actually, it is more than a nuisance. Electrons generate heat and as the
density of elements increases the point might have already been reached
when there is no easy way to keep the temperature rise to an acceptable
limit. It is as if the carriages in the tube that take you from Paddington to
Liverpool Street Station would be not only uncomfortable but unbearably hot
as well.

So let us see how such an interchange will be done in the future. The movable
mirror whose construction was briefly discussed in Section 9.26 can of course be
constructed in two-dimensional arrays. Afine example of a 6×6 array, in which
the angular position of each element can be controlled, is shown in Fig. 13.24(a).
Two such arrays may then be used in an optical cross-connect switch, as shown
in Figure 13.24(b). The inputs and outputs are two square bundles of optical
fibres equipped with collimators to produce small diameter free-space beams.
Each input beam is arranged to strike one of the MEMS mirrors in the first
array. This mirror may turn to point at any mirror in the second array, which
may then turn to route the beam to its corresponding output fibre. Switches of
this type may be extremely large, with up to 1000 inputs and 1000 outputs.

Mirror element Local electronics

Sensing and control lines

(a)

(b) Mirror j

Mirror array 2

Mirror array 1

Input fibre array

Fibre i

Fibre j

Lens array
Mirror i

Lens array Output fibre array
Fig. 13.24
(a) A 6 × 6 mirror array of dual axis
MEMS torsion mirror. (b) Optical
cross-connect constructed from two
mirror arrays. After R.R.A. Syms,
J. Lightwave Technol. 20, 1084, 2002.
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What about speed? Is mechanical movement not bound to be slow? Yes, it
is, but it does not matter. It is a massively parallel operation. We can switch
simultaneously hundreds of beams. It is optics. The beams can cross each other
without any cross-talk. And, besides, a single mirror can switch an enormous
amount of information from fibre A to fibre B, may be a 100 Gigabits or may
be even more in the future. Who would worry then about a switching time that
might be a few milliseconds?

13.11 Electro-absorption in quantum well structures

This is a fairly new phenomenon with potential for device applications. We shall
include it not only because it might become a winner (it is rather hazardous to
predict which device will prove to be commercially competitive) but because it
is such a good illustration of a number of physical principles discussed in this
course. We shall touch upon such topics as the confinement of electrons and
holes to a certain region by the erection of potential barriers, the modification of
semiconductor absorption characteristics when excitons (bound electron–hole
pairs) are taken into account, what happens to excitons in a potential well, how
an electric field influences the energy levels and, in particular, how it affects
confined excitons (known as the Quantum Confined Stark Effect) and, finally,
how these varied phenomena can be exploited in devices.

I have already talked a lot about quantum wells. One of the examples we
looked at was made of GaAs and AlGaAs. For our present purpose, it is
important that the wells are wide enough for tunnelling to be negligible but
narrow enough so that the electrons and holes know that they are not in an
infinitely thick material.

The energy levels in such two-dimensional wells were discussed in
Section 12.7. We know that the available energies may be represented by a
set of sub-bands. The momentum is quantized in the direction perpendicular to
the walls but not in the other two.

Let us consider now optical absorption in such a quantum well material. It
is still true that when a photon excites an electron–hole pair, both energy and
momentum must be conserved. Therefore, the transitions will occur between a
sub-band in the valence band and a sub-band in the conduction band, having
the same value of n. As the photon frequency increases, it is still possible, for
a while, to find transitions between the same two sub-bands, and as long as
the sub-bands are the same, the absorption remains constant. The theoretical
plot of the absorption coefficient as a function of hf −Eg (photon energy–gap
energy) is a series of steps shown in Fig. 13.25 for a 30 nm wide quantum well.

ab
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tio

n

0 100 200
hf - Eg(meV)

Fig. 13.25
Absorption as a function of excess
photon energy for bulk material
(continuous lines) and 30 nm thick
quantum well material (dotted lines)

13.11.1 Excitons

We have mentioned excitons before in Section 9.4, rather facetiously, when
contrasting them with electron–hole pairs, which disappear by recombination.
Let me say again what excitons are. They are electron–hole pairs bound together
by Coulomb forces. Their existence can usually be ignored, but they must be
taken into account when looking at optical absorption on a fine scale.

Up to now we have argued that, in order to absorb a photon and to create an
electron–hole pair, the minimum amount of energy is the gap energy. However,
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if we take excitons into account, then we may realize that photons incident with
an energy somewhat less than the gap energy may also be absorbed because
creating a bound electron–hole pair (i.e. an exciton) needs less energy than
creating a free electron–hole pair. The difference between the two is the binding
energy. How can we determine this binding energy? We may simply argue that
the binding energy between an electron and a hole is the same type as that
between an electron and a proton, and we may then use the hydrogen atom
formulae into which we need to substitute the actual values of dielectric constant
and effective mass. In bulk GaAs the binding energy may be calculated to be This is the same calculation as

we did in Section 8.3 for silicon
for finding the ionization energy
needed to promote an electron from
a donor level into the conduction
band. The physics for the energy
levels of excitons is fairly similar.

4.2 meV, and the orbit of the exciton in its lowest state (called the 1s state in
analogy with the hydrogen atom) is about 30 nm.

Does this mean that we see a sharply defined energy level below the gap?
No, because we have to take into account that the lifetime of an exciton is
not more than a few hundred femtoseconds and, therefore, the line will be
considerably broadened. The outcome of all this is that, in bulk materials at
room temperature, the excitonic resonance can hardly be noticed.

13.11.2 Excitons in quantum wells

Let us now consider the effect of excitons upon the absorption spectrum in
a quantum well material. If the width of the well is larger than the exciton
orbit then, obviously, the excitons will hardly be affected. But if the width of
the well is less than the diameter of the lowest orbit, then the exciton has no
other option but to get squashed in the direction perpendicular to the layers.
What will happen in the other directions? A good indication can be obtained by
solving the problem of the two-dimensional hydrogen atom. It turns out that the
diameter will reduce by a factor of 4. So we may come to the conclusion that the
size of the exciton will be reduced in all three dimensions, and consequently
its binding energy will be increased. Calculations yield a binding energy of
10 meV, indicating that the exciton absorption effect is much stronger. We may
expect to see exciton peaks associated with each absorption step.

Experiments show that our expectations are correct. For a GaAs quantum
well of 10 nm width, the measured absorption spectrum is shown in Fig. 13.26.
Both the peaks and the steps may be clearly distinguished. Do not worry about
the double peak. It is simply due to the fact that there are both heavy and light
holes present, which have not so far been mentioned because they do not affect
the basic argument.

13.11.3 Electro-absorption

This means optical absorption in the presence of an electric field. Will the
excitons know that an electric field is present? They certainly will. An electric
field will try to move the two particles in opposite directions. Since there is a
tendency anyway for the two particles to part company, they can more easily do
so in the presence of an electric field. Consequently, the exciton is more likely
to be ionized (this is called field-ionization), its lifetime will be shorter, and the
absorption line will be broader. All this is true for the bulk material. But will the
argument change in any way for a quantum well material? If the electric field is
applied in the direction of the layers, then the same argument will still roughly
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Fig. 13.26
Measured absorption spectrum of a
GaAs quantum well of 10 nm
thickness.

0

10

15

20

Photon energy (eV)
1.46 1.54 1.62 1.7

A
bs

or
pt

io
n 

(1
05 /

m
-1

)

Fig. 13.27
Measured absorption spectrum of a
quantum well for electric field applied
perpendicularly to the layers, (i)
1.6 × 104 V m−1, (ii) 105 V m−1,
(iii) 1.4 × 105 V m−1, (iv) 1.8×
105 V m−1, (v) 2.2 × 105 V m−1. Photon energy (eV)

1.42 1.46 A 1.5
0

2

4

lo
g 

tr
an

sm
is

si
on

(i)

(iv)

(v)

(ii)

(iii)

hold: the chances of being able to ionize the exciton with the aid of the electric
field must be high. However, when the electric field is applied perpendicular
to the layers, then the good intentions of the electric field in trying to separate
the particles are frustrated by the presence of the walls. Provided the well is
narrow enough, the exciton is not field-ionized. Thus, the exciton resonance
is still there albeit with reduced amplitude due to the increased separation of
the electron–hole pair. There is also a shift in the position of the resonance due
to the electrostatic energy (this is nothing else but the energy of a dipole in an
electric field, something we have discussed before).

The expectations based on the above qualitative argument are borne out by
the experimental observations, as shown in Fig. 13.27, where the absorption
spectrum measured for a GaAs–AlGaAs quantum well structure is plotted
against photon energy. This phenomenon is known as the Quantum Confined
Stark Effect. The excitons are obviously quantum confined, and the Stark
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effect is the description used for the shift and splitting of energy levels in
an electric field. It earned the 1919 Nobel Prize

for Stark. He was the only
Nobel prizewinner who became a
strong supporter of Nazism. His
job (he did it very well) was
to ‘purify’ German universities
of ‘contaminated blood’. The
‘impure’ refugees from German
and Austrian universities played a
large part in defeating Nazism.

Talking of electro-absorption, I should also mention the Franz–Keldysh
effect, which is usually observed at electric fields considerably higher than
that needed to see the effect upon exciton resonance. It bears some similarity
to the Schottky effect (see Section 6.6), in which electrons excited thermally
to high enough energy levels could tunnel across a barrier made thin by the
presence of a high electric field. For the Franz–Keldysh effect, the energy is
provided by an input photon with an energy less than the bandgap energy, and
then tunnelling can do the rest to provide an electron–hole pair.

13.11.4 Applications

If I had to classify the Quantum Confined Stark Effect in literary terms, I
would not quite know where to place it. Perhaps melodrama would be the right
category, considering the touching affection between electrons and holes. If we
consider, however, how they stave off brutal intervention by the electric field,
with their backs against the potential wall, and how quickly all these things
happen, then melodrama might give way to a thriller. And that is certainly the
category to which our ultimate question belongs: ‘can these effects be used for
something?’

Well, if the attenuation of the device depends on the electric field, then the
amount of light across it may be modulated by changing the applied voltage.
We need relatively high fields which, we know, may be achieved by placing
the multiple quantum well structure inside a junction as shown in Fig. 13.28.
It is a reverse bias p–i–n junction, in which the p+ and n+ materials are made
of AlGaAs, and the quantum well provides the intrinsic part of the junction.

GaAs
Substrate

Quantum well
structure

Contact
metal

Light
in

Light
out

Contact
metal

Al Ga As Al Ga As

Fig. 13.28
A quantum well structure inside a
reverse biased p–i–n junction used as
a light modulator.
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Fig. 13.29
The device of Fig. 13.24 in a circuit in
which it can exhibit bistability.
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It is grown on a GaAs substrate, which needs to be etched away, since it is not
transparent at the wavelength where the mechanism is suitable for modulation.

What else can we do with this device? It can be used for light detection in
the same manner as an ordinary p–i–n junction. The added advantage of the
multiple quantum well structure is that the resulting photocurrent is strongly
dependent on the applied voltage and on the wavelength. It can therefore be
used, admittedly in a very narrow range, for measuring wavelength.

The most interesting application is, however, for a bistable device shown
schematically in Fig. 13.29. The wavelength of the incident light is chosen, so
that decreasing reverse-bias voltage gives increasing optical absorption (line
A in Fig. 13.27). In the absence of optical input, no current flows, and hence
all the applied voltage appears across the quantum wells. As light is incident,
a photocurrent flows, hence the voltage across the quantum wells decreases,
which leads to higher absorption, which in turn leads to lower voltage, etc.
There is obviously positive feedback, which under certain circumstances may
be shown to lead to switching to a high absorption state with low voltage across
the junction.

The problem can of course be solved rigorously by considering the
relationship between the four variables, namely the input optical power, Pin,
the output optical power, Pout, the voltage across the quantum wells, V , and
the current flowing in the circuit, I . First, we need

Pout = Pout(Pin,V , λ), (13.23)

which can be derived from experimental results like that shown in Fig. 13.27.
Second, we need the current–voltage characteristics of the circuit of Fig. 13.25,
which may be written simply as

V = V0 − IR. (13.24)

And third, we need to determine the current which flows in response to the light
power incident upon the junction.

I = I (V ,Pin, λ). (13.25)

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


Exercises 359

From eqns (13.23–25) we may then derive the Pout versus Pin curve which, in
many cases, will exhibit bistability similar to that shown in Fig. 13.23.

Let us now summarize the advantages of multiple quantum well structures
for the applications discussed. The main advantage is compatibility, that is
the voltages are compatible with the electronics, and the wavelengths are
compatible with laser diodes. In addition, the materials are compatible with
those used both in electronics and for laser diodes, so the devices are potential
candidates for components in integrated opto-electronic systems.

I have only mentioned GaAs–AlGaAs structures, but there are, of course,
others as well. The rules are clearly the same, which apply to the production
of heterojunction lasers. The lattice constants must be close, and the bandgaps
must be in the right range. Interestingly, some of the combinations offer quite
new physics, for example in an InAs–GaSb quantum well, the electrons are
confined in one layer and the holes in the other one.

As you may have gathered, I find this topic quite fascinating, so perhaps I
spent a little more time on it than its present status would warrant. I hope you
will forgive me.

Exercises

13.1. Light of frequency ν and intensity I0 is incident upon
a photoconductor (Fig. 13.30) which has an attenuation
coefficient α. Assuming that only electrons are generated show
that the excess current due to the input light is

�I = e
b

c

ηI0

hν
τeμe V

1 − e−αd

α
,

where τe is the electron lifetime and η is the quantum efficiency
(average number of electrons generated per incident photon).

Light

d

V

c
b

Fig. 13.30

13.2. The photoconductive gain is defined as

G = Number of photocarriers crossing the electrodes per unit time

Number of photocarriers generated per unit time
.

Find an expression for it for the photoconductor discussed
in Exercise 13.1.

13.3. In a p–i–n diode the so-called intrinsic region is usually
a lightly doped n-type region. Determine the electric field
and potential distribution for a reverse bias of Ur when the
impurity densities of the three regions are NA, ND1 and ND2

(see Fig. 13.31).
When this device is used as a photodetector with light

incident from the left, the p+ region must be made extremely
thin. Why?
(Hint: Assume that the depletion region is all in the lightly
doped n region. Neglect the built-in voltage.)

NA ND1 ND2

d 1 d 2 d3

p + n n +

ND2 ND1

Fig. 13.31

13.4. A volume hologram is recorded in a photosensi-
tive material with a refractive index of 1.52 at a wavelength of
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514.5 nm by two beams incident from air at angles ±5◦ in the
geometry of Fig. 13.3.

(i) What is the grating spacing in the material?
(ii) What should be the incident angle if the hologram is to be

replayed at 633 nm?
(iii) If the hologram is to be replayed at the second Bragg

angle what will that angle be at the two above mentioned
wavelengths?

13.5. A volume hologram is recorded by two beams incident
perpendicularly upon a photosensitive medium from opposite
sides (the so called reflection geometry).

(i) What will be the grating spacing at wavelengths 514.5 nm
and 633 nm? Take n = 1.52.

(ii) Which configuration do you think will be more sensitive to
replay wavelength, the transmission type or the reflection
type?

13.6. Some crystals have the property that they are
isotropic in the absence of an electric field but become
aniostropic when an electric field is applied. The
dielectric constant tensor in such a material in the
XYZ coordinate system (Fig. 13.32) is as follows

ε = ε0

⎡
⎣εXX 0 0

0 εYY 0
0 0 εZZ

⎤
⎦

where
εr = εXX = εYY = εZZ .

The electro-optic coefficient may now be assumed to have
a component which relates, in the same coordinate system, the
change in the εXY component of the dielectric tensor to the Z

Electric field
polarized vertically incident

beam

Z ,z

x

X
y

Y

Fig. 13.32

component of the electric field as

−�εXY = ε2
r rXYZEZ .

(i) Find the dielectric tensor in the presence of an electric
field applied in the Z-direction.

(ii) Transform this dielectric tensor into the xyz coordinate
system. Note that x, y is 45◦ clockwise from XY .

(iii) Will the input wave, shown in Fig. 13.28, be affected by
the applied electric field?

(Note: This is the actual tensor of a Bi12SiO20 crystal cut
in a certain way, apart from optical activity which we have
disregarded here.)

13.7. The differential equations for the amplitudes of waves
in two coupled waveguides are given in eqns (13.16) and
(13.17).

(i) Find the solution with boundary conditionsA1 = A10 and
A2 = 0 at z = 0.

(ii) Show that the solution reduces to those of eqns (13.18)
and (13.19) when k1 = k2 = k.

(iii) If the length of the interaction region is 1 cm what
should be the value of the coupling constant in order to
achieve complete power transfer from waveguide 1 into
waveguide 2?

(iv) By how much should v2 the phase velocity in waveguide
2 be different from that in waveguide 1 in order to reduce
the power coupled into waveguide 2 by a factor 2? Take
L = 1 cm, K = π/2 cm−1, λ = 633 nm and, initially,
v1 = v2 = v = 108 m s−1.

13.8. An electromagnetic wave with an electric field Ei is
incident perpendicularly on the Fabry–Perot resonator shown
in Fig. 13.33. The amplitude reflectivities and transmittivities
of the mirrors are r1, t1 and r2, t2 respectively, the wave number
is k and the gain coefficient of the medium filling the resonator
is γ . Derive an expression (by summing an infinite geometrical
series) for the transmitted electric field, Et .

Fabry–Perot resonator

i t

Fig. 13.33
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Superconductivity 14
I go on for ever.

Tennyson The Brook

14.1 Introduction

Superconductivity was a scientific curiosity for a long time, but by now there
are some actual applications like producing high magnetic fields for magnetic
resonance imaging, and there are lots of potential applications. The big prize
would of course be superconductive lines for power transmission which would
eliminate losses. But quite apart from applications, I feel that some acquaintance
with superconductivity should be part of modern engineering education.
Superconductivity is, after all, such an extraordinary phenomenon, so much
in contrast with everything we are used to. It is literarily out of this world. Our
world is classical, but superconductivity is a quantum phenomenon—a quantum
phenomenon on macroscopic scale. The wavefunctions, for example, that lead
an artificial existence in quantum mechanics proper appear in superconductivity
as measurable quantities.

The discovery of superconductivity was not very dramatic. When
Kamerlingh Onnes (Nobel Prize, 1913) succeeded in liquefying helium in 1908,
he looked round for something worth measuring at that temperature range. His
choice fell upon the resistivity of metals. He tried platinum first and found that its
resistivity continued to decline at lower temperatures, tending to some small but
finite value as the temperature approached the absolute zero. He could have tried
a large number of other metals with similar prosaic results. But he was in luck.
His second metal, mercury, showed quite unorthodox behaviour. Its resistivity
(as shown in Fig. 14.1) suddenly decreased to such a small value that he was
unable to measure it—and no one has succeeded in measuring it ever since.
The usual technique is to induce a current in a ring made of superconducting
material and measure the magnetic field due to this current. In a normal metal
the current would decay in about 10−12 s. In a superconductor the current can go
round for a considerably longer time—measured not in picoseconds but in years.
One of the longest experiments was made somewhere in the United States; the
current was going round and round for three whole years without any detectable
decay. Unfortunately, the experiment came to an abrupt end when a research
student forgot to fill up the Dewar flask with liquid nitrogen—so the story goes
anyway.

20100

0.02

0.01

0.00
T

Hg

Pt
R/R0

Fig. 14.1
The resistance of samples of platinum
and mercury as a function of
temperature (R0 is the resistance
at 0◦C).

Thus, for all practical purposes we are faced with a real lossless phenomenon.
It is so much out of the ordinary that no one quite knew how to approach
the problem. Several phenomenological theories were born, but its real cause
remained unknown for half a century. Up to 1957 it defied all attempts; so
much so, that it gave birth to a new theorem, namely that ‘all theories of
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Fig. 14.2
A one-dimensional representation of the energy–momentum curve for seven electrons in a conductor. (a) All electrons in their
lowest energy states, the net momentum is zero. (b) There is a net momentum to the right as a consequence of an applied
electric field.

supercondutivity are refutable’. In 1957, Bardeen, Schrieffer, and CooperThey received jointly the Nobel
Prize in 1956. produced a theory (called the BCS theory) that managed to explain all the

major properties of superconductivity for all the superconductors known
at the time. Unfortunately, the arrival of a host of new superconducting
materials has cast fresh doubts on our ability ever to produce a complete
theory. For the time being BCS is the best theory we have. The essence of
the theory is that superconductivity is caused by electron–lattice (or, using
more sophisticated language, by electron–phonon) interaction and that the
superconducting electrons consist of ordinary electrons paired up.

There is not much point in going into the details of this theory; it is far
too complicated, but a rough idea can be provided by the following qualitative
explanation due to Little.

Figure 14.2(a) shows the energy–momentum curve of an ordinary conductor
with seven electrons sitting discreetly in their discrete energy levels. In the
absence of an electric field the current from electrons moving to the right is
exactly balanced by that from electrons moving to the left. Thus, the net current
is zero.

When an electric field is applied, all the electrons acquire some extra
momentum, and this is equivalent to shifting the whole distribution in the
direction of the electric field, as shown in Fig. 14.2(b). Now what happens
when the electric field is removed? Owing to collisions with the vibrating
lattice, with impurity atoms, or with any other irregularity, the faster electrons
will be scattered into lower energy states until the original distribution is
re-established. For our simple model, it means that the electron is scattered
from the energy level, a, into energy level, b.

In the case of a superconductor, it becomes energetically more favourable
for the electrons to seek some companionship. Those of opposite momenta (the
spins incidentally must also be opposite, pair up to form a new particle called
a superconducting electron or, after its discoverer, a Cooper pair.∗ This link

∗ In actual fact, the first man to suggest
the pairing of electrons was R.A. Ogg.
According to Gamow’s limerick:

In Ogg’s theory it was his intent
That the current keep flowing,
once sent;
So to save himself trouble,
He put them in double,
And instead of stopping, it went.

Ogg preceded Cooper by about a
decade, but his ideas were put forward in
the language of an experimental chemist,
which is unforgivable. No one believed
him, and his suggestion faded into
oblivion. This may seem rather unfair
to you, but that is how contemporary
science works. In every discipline there
is a select band of men whose ideas are
taken up and propagated, so if you want
to invent something great, try to associate
yourself with the right kind of people.

Do not try to make any contributions
to theoretical physics unless you are a
trained theoretical physicist, and do not
meddle in theology unless you are a
bishop.

between two electrons is shown in Fig. 14.3(a) by an imaginary mechanical
spring.

We may ask now a few questions about our newly born composite particle.
First of all, what is its velocity? The two constituents of the particle move

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


The effect of a magnetic field 363

0 Momentum

E
ne

rg
y

(a)

0 Momentum

E
ne

rg
y

(b)

a

b

Fig. 14.3
The energy–momentum curve for seven electrons in a superconductor. Those of opposite momenta pair up—that is represented
here by a mechanical spring. (a) All pairs in their lowest energy states, the net momentum is zero. (b) There is a net momentum
to the right as a consequence of an applied electric field.

with v and −v, respectively; thus the velocity of the centre of mass is zero.
Remembering the de Broglie relationship (λ = h/p) this means that the
wavelength associated with the new particle is infinitely long. And this is valid
for all superconducting electrons.

It does not quite follow from the above simple argument (but it comes
out from the theory) that all superconducting electrons behave in the same
way. This is, for our electrons, a complete break with the past. Up to now,
owing to the rigour of the Pauli principle, all electrons had to be different. In
superconductivity they acquire the right to be the same—so we have a large
number of identical particles all with infinite wavelength; that is, we have a
quantum phenomenon on a macroscopic scale.

An applied electric field will displace all the particles again, as shown
in Fig. 14.3(b), but when the electric field disappears, there is no change.
Scattering from energy level a to energy level b is no longer possible because
then the electrons both at b and c would become pairless, which is energetically
unfavourable. One may imagine a large number of simultaneous scatterings that
would just re-establish the symmetrical distribution of Fig. 14.3(a), but that is
extremely unlikely. So the asymmetrical distribution will remain; there will be
more electrons going to the right than to the left, and this current will persist
forever—or, at least, for three years.

14.2 The effect of a magnetic field

14.2.1 The critical magnetic field

One of the applications of superconductivity coming immediately to mind is
the production of a powerful electromagnet. How nice it would be to have
high magnetic fields without any power dissipation. The hopes of the first
experimenters were soon dashed. They found out that above a certain magnetic
field the superconductor became normal. Thus, in order to have zero resistance,
not only the temperature but also the magnetic field must be kept below a certain
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Table 14.1 The critical temperature and critical magnetic field of a
number of superconducting elements

Element Tc(K) H0 × 10−4 A m−1 Element Tc(K) H0 × 10−4A m−1

Al 1.19 0.8 Pb 7.18 6.5
Ga 1.09 0.4 Sn 3.72 2.5
Hg α 4.15 3.3 Ta 4.48 6.7
Hg β 3.95 2.7 Th 1.37 1.3
In 3.41 2.3 V 5.30 10.5
Nb 9.46 15.6 Zn 0.92 0.4

threshold value. Experiments with various superconductors have shown that the
dependence of the critical magnetic field on temperature is well described by
the formula,

Hc = H0

{
1 −

(
T

Tc

)2
}

. (14.1)

This relationship is plotted in Fig. 14.4. It can be seen that the material is
normal above the curve and superconducting below the curve. H0 is defined as
the magnetic field that destroys superconductivity at absolute zero temperature.
The values of H0 and Tc for a number of superconducting elements are given
in Table 14.1. Alloys could have both much higher critical temperatures and
much higher critical magnetic fields. They will come later.

H

H0

Normal state

Superconducting
state

C D

0 B Tc TA

Fig. 14.4
The critical magnetic field as a
function of temperature.

14.2.2 The Meissner effect

We have seen that below a certain temperature and magnetic field a number
of materials lose their electrical resistivity completely. How would we expect
these materials to behave if taken from point A to C in Fig. 14.4 by the paths
ABC and ADC respectively? At point A there is no applied magnetic field and
the temperature is higher than the critical one [Fig. 14.5(a)]. From A to B the
temperature is reduced below the critical temperature; so the material loses its
resistivity, but nothing else happens. Going from B to C means switching on
the magnetic field. The changing flux creates an electric field that sets up a
current opposing the applied magnetic field. This is just Lenz’s law, and in the
past we have referred to such currents as eddy currents. The essential difference
now is the absence of resistivity. The eddy currents do not decay; they produce
a magnetic field that completely cancels the applied magnetic field inside the
material. Thus, we may regard our superconductor as a perfect diamagnet.

(a)

A B C

H = 0 H = 0 0 < H < Hc

T < TcT < TcT > Tc

(b)

A D C

H = 0 0 < H < Hc

T < TcT > TcT > Tc
0 < H < Hc

Fig. 14.5
The magnetic states of a
superconductor while tracing the (a)
ABC and (b) ADC paths in Fig. 14.4.

Starting again at A with no magnetic field [Fig. 14.5(b)] and proceeding
to D puts the material into a magnetic field at a constant temperature.
Assuming that our material is non-magnetic (superconductors are in fact slightly
paramagnetic above their critical temperature, as follows from their metallic
nature), the magnetic field will penetrate. Going from D to C means reducing the
temperature at constant magnetic field. The material becomes superconducting
at some point, but there is no reason why this should imply any change in the
magnetic field distribution. At C the magnetic field should penetrate just as well
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as at D. Thus, the distribution of the magnetic field at C depends on the path we
have chosen. If we go via B, the magnetic field is expelled; if we go via D, the
magnetic field is the same inside as outside. The conclusion is that for a perfect
conductor (meaning a material with no resistance) the final state depends on the
path chosen. This is quite an acceptable conclusion; there are many physical
phenomena exhibiting this property. What is interesting is that superconductors
do not behave in this expected manner. A superconductor cooled in a constant
magnetic field will set up its own current and expel the magnetic field when
the critical temperature is reached.

The discovery of this effect by Meissner in 1933 showed superconductivity in
a new light. It became clear that superconductivity is a new kind of phenomenon
that does not obey the rules of classical electrodynamics.

14.3 Microscopic theory

The microscopic theory is well beyond the scope of an engineering
undergraduate course and, indeed, beyond the grasp of practically anyone. It is
part of quantum field theory and has something to do with Green’s functions
and has more than its fair share of various operators. We shall not say much
about this theory, but we should just like to indicate what is involved.

The fundamental tenet of the theory is that superconductivity is caused by
a second-order interaction between electrons and the vibrating lattice. This is
rather strange. After all, we do know that thermal vibrations are responsible
for the presence of resistance and not for its absence. This is true in general;
the higher the temperature the larger the electrical resistance. Below a certain
temperature, however, and for a select group of materials, the lattice interaction
plays a different role. It is a sort of intermediary between two appropriately
placed electrons. It results in an apparent attractive force between the two
electrons, an attractive force larger than the repulsive force, owing to the
Coulomb interaction. Hence, the electron changes its character. It stops obeying
Fermi–Dirac statistics, and any number of electrons (or more correctly any
number of electron pairs) can be in the same state. Besides the atom laser
(Section 12.14) this is another example of a Bose–Einstein condensation.

(a)

(b)

Lattice distortion

Spins flipSpin-wave
attraction

Electron

Fig. 14.6
Interactions leading to Bose–Einstein
condensation (a) between the lattice
and electrons, (b) between spin waves
and electrons.

Do we have any direct experimental evidence that superconductivity is
caused by electron–lattice interaction? Yes, the so-called isotope effect. The
critical temperature of a superconductor depends on the total mass of the
nucleus. If we add a neutron (that is, use an isotope of the material) the critical
temperature decreases.

A simple explanation of the interaction between two electrons and the lattice
is shown in Fig. 14.6(a). The first electron moving to the right causes the
positive lattice ions to move inwards, which then attract the second electron.
Hence, there is an indirect attraction between the two electrons.

Are there any other kind of interactions resulting in superconductivity?
Nobody knows for certain, but it may be worthwhile to describe briefly one
of the mechanisms proposed for explaining the behaviour of the recently
discovered oxide superconductors. It is electron attraction mediated by spin
waves. As may be seen in Fig. 14.6(b), an electron with a certain spin disrupts
the spin of an ion, which causes the spin of its neighbouring ion to flip, which
then attracts a second electron of opposite spin. It has been suggested recently
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that induced magnetic fluctuations may also be responsible for the pairing
mechanism.

14.4 Thermodynamical treatment

Let us look again at Fig. 14.4. Above the curve our substance behaves in
the normally accepted way. It has the same sort of properties it had at room
temperature. Its magnetic properties are the same, and its electric properties are
the same; true, the electrical resistivity is smaller than at room temperature, but
there is nothing unexpected in that. However, as soon as we cross the curve, the
properties of the substance become qualitatively different. Above the curve the
substance is non-magnetic, below the curve it becomes diamagnetic; above
the curve it has a finite electrical resistance, below the curve the electric
resistance is zero.

If you think about it a little you will see that the situation is very similar to
that you have studied under the name of ‘phase change’ or ‘phase transition’ in
thermodynamics. Recall, for example, the diagram showing the vaporization
of water (Fig. 14.7). The properties of the substance differ appreciably above
and below the curve, and we do not need elaborate laboratory equipment to
tell the difference. Our senses are quite capable of distinguishing steam from
water. It is quite natural to call them by different names and refer to the state
above the curve as the liquid phase, and to the state below the curve as the
vapour phase. Analogously, we may talk about normal and superconducting
phases when interpreting Fig. 14.4.

Thus, the road is open to investigate the properties of superconductors by
the well-established techniques of thermodynamics. Well, is the road open?
We must be careful; thermodynamics can be applied only if the change
is reversible. Is the normal to superconducting phase change reversible?
Fortunately, it is. Had we a perfect conductor instead of a superconductor the
phase change would not be reversible, and we should not be justified in using
thermodynamics. Thanks to the Meissner effect, thermodynamics is applicable.

Fig. 14.7
The pressure against temperature
diagram for water.

Liquid
phase

Vapour
phase

Solid
phase

Temperature
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Let us now review the thermodynamical equations describing the phase
transitions. There is the first law of thermodynamics:

dE = dQ − dW

= T dS − P dV . (14.2)

Then there is the Gibbs function (to which we shall also refer as the Gibbs free
energy) defined by E is the internal energy, W the

work, S the entropy, P the
pressure, V the volume, and Q the
heat.

G = E + PV − T S. (14.3)

An infinitesimal change in the Gibbs function gives

dG = dE + P dV + V dP − T dS − S dT , (14.4)

which, using eqn (14.2) reduces to

dG = V dP − S dT . (14.5)

Thus, for an isothermal, isobaric process

dG = 0,

that is the Gibbs function does not change while the phase transition takes place.
In the case of the normal-to-superconducting phase-transition the variations

of pressure and volume are small and play negligible roles, and so we can just
as well forget them but, of course, we shall have to include the work due to
magnetization.

In order to derive a relationship between work and magnetization let us
investigate the simple physical arrangement shown in Fig. 14.8. You know

U is the voltage and I the current,
and the negative sign comes
from the accepted convention of
thermodynamics that the work
done on a system is negative.

from studying electricity that work done on a system in a time dt is

dW = −UI dt , (14.6)

Fig. 14.8
The magnetization of magnetic
material in a toroid (for working out
the magnetic energy).

Further, using Faraday’s law, we have

U = NA
dB

dt
. (14.7)

From Ampère’s law
HL = NI . (14.8)

We then get

A is the cross-section of the toroid,
N the number of turns, and L the
mean circumference of the toroid.

dW = −NA
dB

dt
I dt = −NIA dB = −HLA dB = −VH dB. (14.9)

According to eqn (11.3)
B = μ0(H + M).

Therefore,

dW = −VHμ0(dH + dM)

= −μ0VH dH − μ0VH dM . (14.10)

The first term on the right-hand side of eqn (14.10) gives the increase of
energy in the vacuum, and the second term is due to the presence of the magnetic
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material. Thus, the work done on the material is

dW = −μ0 VH dM . (14.11)

Hence, for a paramagnetic material the work is negative, but for a diamagnetic
material (where M is opposing H ) the work is positive, which means that the
system needs to do some work in order to reduce the magnetic field inside the
material.

Now to describe the phase transition in a superconductor, we have to define
a ‘magnetic Gibbs function’. Remembering that P dV gives positive work (an
expanding gas does work) and H dM gives negative work, we have to replace
PV in eqn (14.3) by −μ0VHM . Our new Gibbs function takes the form,

G = E − μ0 VHM − T S, (14.12)

and

dG = dE − μ0VH dM − μ0VM dH − T dS − S dT . (14.13)

Taking account of the first law for magnetic materials (again replacing
pressure and volume by the appropriate magnetic quantities)

dE = T dS + μ0VH dM . (14.14)

Equation (14.13) reduces to

dG = −S dT + μ0VM dH . (14.15)

This is exactly what we wanted. It follows immediately from the above equation
that for a constant temperature and constant magnetic field process

G remains constant while the
superconducting phase transition
takes place.

dG = 0. (14.16)

For a perfect diamagnet
M = −H , (14.17)

which substituted into eqn (14.15) gives

dG = −S dT + μ0VH dH . (14.18)

Integrating at constant temperature, we get
Gs(0) is the Gibbs free energy
at zero magnetic field, and
the subscript s refers to the
superconducting phase.

Gs(H) = Gs(0) + 1
2μ0H

2V . (14.19)

Since superconductors are practically non-magnetic above their critical
temperatures, we can write for the normal phase

Gn(H) = Gn(0) = Gn. (14.20)

In view of eqn (14.16) the Gibbs free energy of the two phases must be equal
at the critical magnetic field, Hc, that is

Gs(Hc) = Gn(Hc). (14.21)

Substituting eqns (14.19) and (14.20) into eqn (14.21) we get

Gn = Gs(0) + 1
2μ0H

2
c V . (14.22)

Comparison of eqns (14.19) and (14.22) clearly shows that at a given
temperature (below the critical one) the conditions are more favourable for the
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superconducting phase than for the normal phase, provided that the magnetic
field is below the critical field. There are three cases:

(i) If H < Hc then Gn > Gs(H). (14.23)

(ii) If H > Hc then Gn < Gs(H). (14.24)

(iii) If H = Hc then Gn = Gs(Hc). (14.25)

Now our substance will prefer the phase for which the Gibbs free energy is
smaller; that is in case (i) it will be in the superconducting phase, in case (ii) in
the normal phase, and in case (iii) just in the process of transition.

If the transition takes place at temperature, T + dT , and magnetic field,
Hc + dHc, then it must still be valid that

Gs + dGs = Gn + dGn, (14.26)

whence
dGs = dGn. (14.27)

This, using eqn (14.15), leads to

−Ss dT − μ0VMs dHc = −Sn dT − μ0VMn dHc. (14.28)

But, as suggested before,

Ms = −Hc and Mn = 0, (14.29)

and this reduces eqn (14.28) to

Sn − Ss = −μ0VHc
dHc

dT
. (14.30)

The latent heat of transition may be written in the form,

L = T (Sn − Ss), (14.31)

and with the aid of eqn (14.30) this may be expressed as

L = −μ0T VHc
dHc

dT
. (14.32)

After much labour we have, at last, arrived at a useful relationship. We now
have a theory that connects the independently measurable quantities L,V ,Hc,
and T . After measuring them, determining dHc/dT from the Hc − T plot, and
substituting their values into eqn (14.32), the equation should be satisfied; and
it is satisfied to a good approximation thus giving us experimental proof that
we are on the right track.

It is interesting to note that L vanishes at two extremes of temperature,
namely, at T = 0 and at T = Tc where the critical magnetic field is zero.
A transition which takes place with no latent heat is called a second-order phase
transition. In this transition entropy remains constant, and the specific heat is
discontinuous.
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Fig. 14.9
Temperature dependence of the
specific heat of tin near the critical
temperature (after Keesom and Kok,
1932).
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Neglecting the difference between the specific heats at constant volume and
constant pressure, we can write, in general for the specific heat,

c = T
dS

dT
. (14.33)

Substituting from eqn (14.30)

cn − cs = T

(
dSn

dT
− dSs

dT

)

= −V T μ0

{
−Hc

d2Hc

dT 2
+
(

dHc

dT

)2
}

. (14.34)

At T = Tc where Hc = 0,

cn − cs = −
{
V T μ0

(
dHc

dT

)2
}
T=Tc

. (14.35)

This is negative because the experimentally established Hc − T curves have
finite slopes at T = Tc. It follows that in the absence of a magnetic field the
specific heat has a discontinuity. This is borne out by experiments as well, as
shown in Fig. 14.9, where the specific heat of tin is plotted against temperature.
The discontinuity occurs at the critical temperature Tc = 3.72 K.

14.5 Surface energy

The preceding thermodynamical analysis was based on perfect diamagnetism,
that is, we assumed that our superconductor completely expelled the magnetic
field. In practice this is not so, and it can not be so. The currents that are set
up to exclude the magnetic field must occupy a finite volume, however small
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that might be. Thus, the magnetic field can also penetrate the superconductor
to a small extent. But now we encounter a difficulty. If the magnetic field can
penetrate to a finite distance, the Gibbs free energy of that particular layer will
decrease, because it no longer has to perform work to exclude the magnetic
field. The magnetic field is admitted, and we get a lower Gibbs free energy.
Carrying this argument to its logical conclusion, it follows that the optimum
arrangement for minimum Gibbs free energy (of the whole solid at a given
temperature) should look like that shown in Fig. 14.10, where normal and
superconducting layers alternate. The width of the superconducting layers, s,
is small enough to permit the penetration of magnetic field, and the width
of the normal region is even smaller, n � s. In this way the Gibbs free
energy of the superconducting domains is lower because the magnetic field
can penetrate, while the contribution of the normal domains to the total Gibbs
free energy remains negligible because the volume of the normal domains is
small in comparison with the volume of the superconducting domains.

Thus, a consistent application of our theory leads to a superconductor
in which normal and superconducting layers alternate. Is this conclusion
correct? Do we find these alternating domains experimentally? For some super-
conducting materials we do; for some other superconducting materials we do
not. Incidentally, when the first doubts arose about the validity of the simple
thermodynamical treatment, all the experimental evidence available at the time
suggested that no break-up could occur. We shall restrict the argument to this
historically authentic case for the moment. Theory suggests that supercon-
ductors should break up into normal and superconducting domains; experiments
show that they do not break up. Consequently, the theory is wrong. The theory
cannot be completely wrong, however, for it predicted the correct relationship
for specific heat. So instead of dismissing the theory altogether, we modify
it by introducing the concept of surface energy. This would suggest that the
material does not break up because maintaining boundaries between the normal
and superconducting domains is a costly business. It costs energy.∗Hence, the

∗ This is really the same argument that
we used for domains in ferromagnetic
materials. On the one hand, the more
domains we have the smaller is the
external magnetic energy. On the other
hand, the more domains we have, the
larger is the energy needed to maintain
the domain walls. So, the second
consideration will limit the number of
domains.

simple explanation for the absence of domains is that the reduction in energy
resulting from the configuration shown in Fig. 14.10 is smaller than the energy
needed to maintain the surfaces.

S    N S    N S    N S    N S    N S    N S    N

s n

Fig. 14.10
Alternating superconducting and
normal layers.
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The introduction of surface energy is certainly a way out of the dilemma,
but it is of limited value unless we can give some quantitative relationships
for the maintenance of a wall. The answer was given at about the same time
by Pippard and (independently) by Landau and Ginzburg. We shall discuss the
latter theory because it is a little easier to follow.

14.6 The Landau–Ginzburg theory

With remarkable intuition Landau and Ginzburg suggested (in 1950) a formula-
tion that was later (1958) confirmed by the microscopic theory. We shall giveLandau received the Nobel Prize in

1962, and Ginzburg in 2003. here the essence of their arguments, though in a somewhat modified form to fit
into the previous discussion.

1. In the absence of a magnetic field, below the critical temperature, the
Gibbs free energy∗ is Gs(0).

∗ From now on, for simplicity, all our
quantities will be given per unit volume. 2. If a magnetic field Ha is applied and is expelled from the interior of the

superconductor, the energy is increased by 1
2μ0H

2
a per unit volume. This may

be rewritten with the aid of flux density as 1
2 (1/μ0)B

2
a . If we now abandon the

idea of a perfect diamagnet, the magnetic field can penetrate the superconductor,
and the flux density at a certain point isB instead of zero. Hence the flux density
expelled is notBa but onlyBa −B, and the corresponding increase in the Gibbs
free energy is

1

2

1

μ0
(Ba − B)2. (14.36)

3. All superconducting electrons are apparently doing the same thing. We,
therefore, describe them by the same wave function, ψ , where

|ψ(x, y, z)|2 = Ns, (14.37)

the density of superconducting electrons. In the absence of an applied magnetic
field the density of superconducting electrons is everywhere the same.

4. In the presence of a magnetic field the density of superconducting
electrons may vary in space, that is ∇ψ �= 0. But, you may remember,
−ih̄∇ψ gives the momentum of the particle. Hence, the kinetic energy of
our superconducting electrons,

KE = 1

2m
| − ih̄∇ψ |2, (14.38)

will add to the total energy. It follows then that the appearance of alternating
layers of normal and superconducting domains is energetically unfavourable
because it leads to a rapid variation of ψ , giving a large kinetic energy
contribution to the total energy.

Equation (14.38) is not quite correct. It follows from classical
electrodynamics†that in the presence of a magnetic field the momentum is

† For a discussion, see The Feynman
lectures on Physics, vol. 3, pp. 21–5.

given by p− eA, whereA is the magnetic vector potential. Hence, the correct
formula for the kinetic energy is

2e is the charge on a superconduct-
ing electron. KE = 1

2m
| − ih̄∇ψ − 2eAψ |2. (14.39)
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We may now write the Gibbs free energy in the form

Gs(B) = Gs(0) + 1

2μ0
(Ba − B)2 + 1

2m
| − ih̄∇ψ − 2eAψ |2. (14.40)

5. The value of the Gibbs function at zero magnetic field should depend
on the density of superconducting electrons, among other things. The simplest
choice is a polynomial of the form,

Gs(0) = Gn(0) + a1|ψ |2 + a2|ψ |4, (14.41)

where the coefficients may be determined from empirical considerations. At a
given temperature the density of superconducting electrons will be such as to
minimize Gs(0), that is

∂Gs(0)

∂|ψ |2 = 0, (14.42)

leading to

|ψ |2 ≡ |ψ0|2 = − a1

2a2
. (14.43)

Substituting this value of |ψ |2 back into eqn (14.41) we get

Gs(0) = Gn − a2
1

4a2
. (14.44)

Let us go back now to eqn (14.22) (rewritten for unit volume)

Gs(0) = Gn − 1
2μ0H

2
c . (14.45)

Comparing the last two equations, we get
It is assumed that a2 > 0 and
a1 < 0.Hc = −a1/(2a2μ0)

1/2. (14.46)

According to experiment, Hc varies linearly with temperature in the
neighbourhood of the critical temperature. Thus, for this temperature range
we may make eqn (14.46) agree with the experimental results by choosing

c1 and c2 are independent of
temperature.a1 = c1(T − Tc) and a2 = c2. (14.47)

If you now believe that eqn (14.41) was a reasonable choice for the Gs(0),
we may substitute it into eqn (14.40) to get our final form for Gibbs free energy

Gs(B) = Gn(0) + a1|ψ |2 + a2|ψ |4

+ 1

2μ0
(∇ × A − Ba)

2 + 1

2m
|ih̄∇ψ − 2eAψ |2, (14.48)

where the relationship
B = ∇ × A (14.49)

has been used.
The arguments used above are rather difficult. They come from various

sources (thermodynamics, quantum mechanics, electrodynamics, and actual
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measured results on superconductors) and must be carefully combined to give
an expression for the Gibbs free energy.

6. The Gibbs free energy for the entire superconductor may be obtained by
integrating eqn (14.48) over the volume∫

V

Gs(B) dV .

The integrand contains two undetermined functionsψ(x, y, z) andA(x, y, z)
which, according to Ginzburg and Landau, may be obtained from the condition
that the integral should be a minimum.

The problem belongs to the realm of variational calculus. Be careful; it is
not the minimum of a function we wish to find. We want to know how A and ψ
vary as functions of the coordinates x, y, and z in order to minimize the above
definite integral.

We shall not solve the general problem here but shall restrict the solution
to the case of a half-infinite superconductor that fills the space to the right of
the x = 0 plane. We shall also assume that the applied magnetic field is in
the z-direction and is independent of the y- and z-coordinates, reducing the
problem to a one-dimensional one, where x is the only independent variable.

In view of the above assumptions,
Ay is the only component ofA, and
will be simply denoted by A. Bz = dAy

dx
. (14.50)

Since ∇ψ is a vector in the x-direction, it is perpendicular toA, so that

A · ∇ψ = 0. (14.51)

Under these simplifications the integrand takes the form∗∗ Takingψ real reduces the mathematical
labour and, fortunately, does not restrict
the generality of the solution.

Gs(B) = Gn + a1ψ
2 + a2ψ

4 + 1

μ0

(
Ba − dA

dx

)2

+ 1

2m

{
h̄2
(
∂ψ

∂x

)2

+ 4e2A2ψ2

}
. (14.52)

The solution of the variational problem is now considerably easier. As shown
in Appendix IV, ψ(x) and A(x) will minimize the integral if they satisfy the
following differential equations:

∂Gs(B)

∂ψ
− d

dx

∂Gs(B)

∂(∂ψ/∂x)
= 0 (14.53)

and
∂Gs(B)

∂A
− d

dx

∂Gs(B)

∂(∂A/∂x)
= 0. (14.54)

Substituting eqn (14.52) into eqn (14.53) and performing the differentiations,
we get

2a1ψ + 4a2ψ
3 + 1

2m
8e2A2ψ − d

dx

1

2m
h̄22

∂ψ

∂x
= 0, (14.55)
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which after rearrangement yields

d2ψ

dx2
= m

h̄2 2a1

(
1 + 2e2

a1m
A2
)
ψ + 4m

h̄2 a2ψ
3. (14.56)

Similarly, substituting eqn (14.52) into eqn (14.54) we get

d2A

dx2
= 4e2ψ2μ0

m
A, (14.57)

which must be solved subject to the boundary conditions

B = Ba = μ0Ha, dψ/dx = 0 at x = 0 (14.58)

B = 0, ψ2 = ψ2
0 , dψ/dx = 0 at x = ∞. (14.59)

The boundary conditions for the flux density simply mean that at the
boundary with the vacuum the flux density is the same as the applied flux
density, and it declines to zero far away inside the superconductor. The condition
for dψ/dx comes from the more stringent general requirement that the normal
component of the momentum should vanish at the boundary. But since in the
one-dimensional case A is parallel to the surface, A · ix is identically zero,
and the boundary condition reduces to the simpler dψ/dx = 0. Since A is
determined except for a constant factor, we can prescribe its value at any point.
We shall choose A(∞) = 0.

Introducing the new parameters

λ2 = m

4e2ψ2
0μ0

(14.60)

and

k = λ2 23/2eHcμ0

h̄
, (14.61)

and making use of eqns (14.43) and (14.46), we can rewrite eqns (14.56) and
(14.57) in the forms

d2ψ

dx2
= k2

λ2

{
−
(

1 − A2

2H 2
c λ

2μ2
0

)
ψ + ψ3

ψ3
0

}
(14.62)

and
d2A

dx2
− 1

λ2

ψ2

ψ2
0

A = 0. (14.63)

In the absence of a magnetic field, A ≡ 0; eqn (14.62) gives ψ = ψ0, as it
should. In the presence of a magnetic field the simplest approximation we can
make is to take κ = 0, which still gives ψ = ψ0. From eqn (14.63)

A = A(0)e−x/λ, (14.64)

leading to

B = − 1

λ
A(0)e−x/λ = Ba e−x/λ. (14.65)

Thus, we can see that the magnetic flux density inside the super-
conductor decays exponentially, and λ appears as the penetration depth.
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Better approximations can be obtained by substituting

ψ = ψ0 + ϕ (14.66)

into eqns (14.62) and (14.63) and solving them under the assumption that ϕ is
small in comparison with ψ0. Then ψ also varies with distance, and B has a
somewhat different decay; but these are only minor modifications and need not
concern us.

The main merit of the Landau–Ginzburg theory is that by including the
kinetic energy of the superconducting electrons in the expression for the Gibbs
free energy, it can show that the condition of minimum Gibbs free energy leads
to the expulsion of the magnetic field. The expulsion is not complete, as we
assumed before in the simple thermodynamic treatment; the magnetic field can
penetrate to a distance, λ, which is typically of the order of 10 nm.

Thus, after all, there can be no such thing as the break-up of the
superconductor into alternating normal and superconducting regions—or can
there? We have solved eqn (14.62) only for the case when κ is very small. There
are perhaps some other regions of interest. It turns out that another solution
exists for the case when

ψ � ψ0 and B = Ba. (14.67)

So we claim now that there is a solution when the magnetic field can penetrate
the whole superconducting material, and this happens when the density of
superconducting electrons is small. Then (choosing for this case the vector
potential zero at x = 0)

A(x) = Bax, (14.68)

and neglecting the last term in eqn (14.62) we get

d2ψ

dx2
= −κ2

λ2

(
1 − B2

a x
2

2H 2
c λ

2μ2
0

)
ψ . (14.69)

Now this happens to be a differential equation that has been thoroughly
investigated by mathematicians. They maintain that a solution exists only when

n is an integer; otherwise ψ

diverges as x → ∞.

Ba = μ0Hcκ
√

2/(2n + 1). (14.70)

The maximum value of Ba occurs at n = 0, giving

Ba = μ0Hcκ
√

2. (14.71)

When κ > 1/
√

2 the magnetic field inside the superconductor may exceed
the critical field. You may say this is impossible. Have we not defined the
critical field as the field that destroys superconductivity? We have, but that was
done on the basis of diamagnetic properties. We defined the critical field only
for the case when the magnetic field is expelled. Abrikosov (Nobel Prize, 2003)
argued, still within the Landau–Ginzburg theory, that in certain materials for
which κ > 1/

√
2, superconductivity may exist up to a magnetic field, Hc2. The

new critical magnetic field is related to the old one by the relationship,

Hc2 = κ
√

2Hc. (14.72)
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Up to Hc1 the superconductor is diamagnetic, as shown in Fig. 14.11,
where −M is plotted against the applied magnetic field. Above Hc1 the
magnetic field begins to penetrate (beyond the ‘diamagnetic’penetration depth)
and there is complete penetration at Hc2, where the material becomes normal.
Materials displaying such a magnetization curve are referred to as type II
superconductors, while those expelling the magnetic field until they become
normal (dotted lines in Fig. 14.11) are called type I superconductors.

–M

HcHc1 Hc2 H

Fig. 14.11
Magnetization curves for type I and
type II superconductors. The area
under both magnetization curves is
the same.

A two-dimensional analysis of a type II superconductor shows that the
intensity of the magnetic field varies in a periodic manner with well-defined
maxima as shown in Fig. 14.12(a). Since the current and the magnetic field are

(a)

(b)

Fig. 14.12
(a) The lines of current flow for a
two-dimensional type II
superconductor. The magnetic field is
maximum at the centres of the smaller
vortices and minimum at the centres
of the larger ones. (After Abrikosov
1957.) (b) Triangular vortex structure
measured on the surface of a
lead–indium rod at 1.1 K (after
Essmann and Träuble 1967).
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uniquely related by Maxwell’s equations, the current is also determined. It is
quite clear physically that the role of the current is either ‘not to let in’ or ‘not
to let out’ the magnetic field.

The density of superconducting electrons is zero at the maxima of the
magnetic field. Thus, in a somewhat simplified manner, we may say that there is
a normal region surrounded by a supercurrent vortex. There are lots of vortices;
their distance from each other is about 1 μm. The vortex structure determined
experimentally by Essmann and Träuble is shown in Fig. 14.12(b). It has a
triangular structure, somewhat different from that calculated by Abrikosov.

The preceding treatment of the theories of superconductivity is not a well-
balanced one, neither historically nor as far as their importance is concerned.
A comprehensive review would be far too lengthy, so we have just tried to
follow one line of thought.

14.7 The energy gap

As you know from electromagnetic theory, such optical properties as reflectivity
and refractive index are related to the bulk parameters, resistivity, and dielectric
constant. Thus, zero resistivity implies quite radical optical properties, which
are not found experimentally. Nothing untoward happens below the critical
temperature. Hence, we are forced to the conclusion that, somewhere between
zero and light frequencies, the conductivity is restored to its normal value. What
is the mechanism? Having learned band theory, we could describe a mechanism
that might be responsible; this is the existence of an energy gap. When the
frequency is large enough, there is an absorption process, owing to electrons
being excited across the gap. Pairing of electrons is no longer advantageous; all
traces of superconductivity disappear. This explanation happens to be correct
and is in agreement with the predictions of the BCS theory.

The width of the gap can be deduced from measurements on specific heat,
electromagnetic absorption, or tunnelling. Typical values are somewhat below
one milli-electronvolt. The gap does not appear abruptly; it is zero at the critical
temperature and rises to the value of 3.5 kTc at absolute zero temperature. The
temperature variation is very well predicted by the BCS theory, as shown in
Fig. 14.13 for these superconductors.

Fig. 14.13
The temperature variation of the
energy gap (related to the energy gap
at T = 0) as a function of T /Tc.
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Fig. 14.14
(a) Energy diagram for two identical
superconductors separated by a thin
insulator. (b) The density of states as a
function of energy.

2Δ

Fig. 14.15
The energy diagram of Fig. 14.14(a)
when a voltage, 2�/e is applied.

When we put a thin insulator between two identical superconductors, the
energy diagram [Fig. 14.14(a)] looks very similar to those we encountered when
studying semiconductors. The essential difference is that in the present case the
density of states is high just above and below the gap, as shown in Fig. 14.14(b).
An applied voltage produces practically no current until the voltage difference
is as large as the gap itself; the situation is shown in Fig. 14.15. If we increase the
voltage further, electrons from the left-hand side may tunnel into empty states
on the right-hand side, and the current rises abruptly as shown in Fig. 14.16.

0 V

I

2Δ
e

Fig. 14.16
The current as a function of voltage
for a junction between two identical
superconductors separated by a thin
insulator.

An even more interesting case arises when the two superconductors have
different gaps. Since the Fermi level is in the middle of the gap (as for
intrinsic semiconductors) the energy diagram at thermal equilibrium is as shown
in Fig. 14.17(a). There are some electrons above the gap (and holes below
the gap) in superconductor A but hardly any (because of the larger gap) in
superconductor B. When a voltage is applied, a current will flow and will
increase with voltage (Fig. 14.18) because more and more of the thermally
excited electrons in superconductor A can tunnel across the insulator into
the available states of superconductor B. When the applied voltage reaches
(�2 − �1)/e [Fig. 14.17(b)], it has become energetically possible for all
thermally excited electrons to tunnel across. If the voltage is increased further,
the current decreases because the number of electrons capable of tunnelling is
unchanged, but they now face a lower density of states. When the voltage
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2Δ12Δ1 2Δ12Δ2

2Δ2

2Δ2

(a) (b) (c)

Fig. 14.17
Energy diagrams for two different superconductors separated by a thin insulator. (a) U = 0, (b) U = (�2 − �1)/e,
(c) U = (�1 + �2)/e.

Fig. 14.18
The current as a function of voltage
for a junction between two different
superconductors separated by a thin
insulator. There is a negative
resistance region of
(�2 − �1)/e < U < (�1 + �2)/e.

I

V

(Δ2 - Δ1) /e 2Δ1 /e

becomes greater than (�2 + �1)/e the current increases rapidly because
electrons below the gap can begin to flow.

Thus, a tunnel junction comprised of two superconductors of different
energy gaps may exhibit negative resistance, similarly to the semiconductor
tunnel diode. Unfortunately, the superconducting tunnel junction is not as usefulThe superconducting tunnel diode

was invented by Ivar Giaever.
The fact that it has negative
resistance makes it similar to the
diode invented by Leo Esaki (see
Section 9.10). As it happened, they
received the Nobel Prize in 1973.

because it works only at low temperatures.
The tunnelling we have just described follows the same principles we

encountered when discussing semiconductors. There is, however, a tunnelling
phenomenon characteristic of superconductors, and of superconductors alone;
it is the so-called superconducting or Josephson tunnelling (discovered

Brian Josephson was the third
recipient of the Nobel Prize in
1973.

theoretically by Josephson, a Cambridge graduate student at the time)
which takes place when the insulator is very thin (less than 1.5–2 nm).
It displays a number of interesting phenomena, of which we shall briefly
describe four.

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


The energy gap 381

1. For low enough currents there can be a current across the insulator without
any accompanying voltage; the insulator turns into a superconductor. The
reason is that Cooper pairs (not single electrons) tunnel across.

2. For larger currents there can be finite voltages across the insulator. The
Cooper pairs descending from the higher potential to the lower one may radiate
their energy according to the relationship,

UAB is the d.c. voltage between
the two superconductors, and ω

is the angular frequency of the
electromagnetic radiation.

h̄ω = (2e)UAB . (14.73)

Thus, we have a very simple form of a d.c. tuneable oscillator that could work up
to infrared frequencies. Equation (14.73) gives an extremely simple relationship
between the voltage applied to a Josephson junction and the frequency of the
resulting oscillation. All we need is a d.c. source and we have produced an
oscillator. Unfortunately, the power that can be extracted is very, very small.
Obviously, what we need is not a single Josephson junction but an array of
Josephson junctions. That may indeed be the solution, but then one has the
problem of how to construct the array and, when we get it, how to synchronize
the oscillations from the many elements. However, as it happens, we don’t need
to worry about the way we construct the array. Nature has very kindly provided
not only the elements but the whole array. Intrinsic Josephson junctions form
naturally between the superconducting CuO2 layers in cuprates such as BSCCO
(to be discussed in Section 14.9), with bismuth oxide and strontium oxide layers
acting as the Josephson-type tunnel barriers. A device of 0.1 mm thickness
contains about 70 000 such junctions. Put them in a cavity and hope for the
best. Experiments so far have yielded power in the tens of nanowatts region.
If a few microwatts were available in the THz range, where oscillators hardly
exist, that might very well turn out to be a practical proposition.

3. A direct transition may be caused between the Josephson characteristics
and the ‘normal’tunnelling characteristics by the application of a small magnetic
field (Fig. 14.19).

4. When two Josephson junctions are connected in parallel [Fig. (14.20)]
the maximum supercurrent that can flow across them is a periodic function of
the magnetic flux,

IJ is a constant depending on
the junction parameters, � is the
enclosed magnetic flux, and �0 is
the so-called flux quantum equal to
h/2e = 2 × 10−15 Wb.

Imax = 2IJ

∣∣∣∣cos
π�

�0

∣∣∣∣ . (14.74)
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2Δ
e

Fig. 14.19
The current as a function of voltage
for a junction which may display both
‘normal’ and Josephson tunnelling.
I0 is the current flowing without any
accompanying voltage. The
application of a small magnetic field
causes a transition between the
Josephson and ‘normal’ tunnelling
characteristics. Once this extra
magnetic field is removed, the voltage
returns to zero.
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Fig. 14.20
Two Josephson junctions in parallel
connected by a superconducting path.

B
I

Superconducting path

14.8 Some applications

14.8.1 High-field magnets

For the moment the most important practical application of superconductivity
is in producing a high magnetic field. There is no doubt that for this purpose
a superconducting solenoid is superior to conventional magnets. A magnetic
flux density of 20 T can be produced by a solenoid not larger than about
12 cm × 20 cm. A conventional magnet capable of producing one-third of that
flux density would look like a monster in comparison and would need a few
megawatts of electric power and at least a few hundred gallons of cooling water
per minute.

What sort of materials do we need for obtaining high magnetic fields? Obv-
iously, type II superconductors—they remain superconducting up to quite high
magnetic fields. However, high magnetic fields are allowed only at certain
points in the superconductor that are surrounded by current vortices. When a
d.c. current flows (so as to produce the high magnetic field in the solenoid)
the vortices experience a J × B force that removes the vortices from the mat-
erial. To exclude the high magnetic field costs energy, and the superconductor
consequently becomes normal, which is highly undesirable. The problem is to
keep the high magnetic fields inside. This is really a problem similar to the one
we encountered in producing ‘hard’ magnetic materials, where the aim was to
prevent the motion of domain walls. The remedy is similar; we must have lots
of structural defects; that is we must make our superconductor as ‘dirty’ and
as ‘non-ideal’ as possible. The resulting materials are, by analogy, called hard
superconductors. Some of their properties are shown in Table 14.2.

There is, however, a further difficulty with vortices. Even if they do not
move out of the material, any motion represents ohmic loss, causing heating,
and making the material become normal at certain places. To avoid this, a good
thermal conductor and poor electrical conductor, copper—yes, copper—is used
for insulation, so that the heat generated can be quickly led away.

It must be noted that it is not particularly easy to produce any of these
compounds, and different techniques may easily lead to somewhat different
values of Tc and Hc. The two superconductors used in practical devices are the
ductile Nb–Ti alloy and the brittle intermetallic compound Nb3Sn, the latter
one being used at the highest magnetic fields.
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Table 14.2 The critical temperature and critical magnetic field
(at T = 4.2 K) of the more important hard superconductors

Material Tc (K) Hc × 10−7 (A m−1)

Nb–Ti 9 0.9
Pb0.9Mo5.1S6 14.4 4.8
V3Ga 14.8 1.9
NbN 15.7 0.8
V3Si 16.9 1.8
Nb3Sn 18.0 2.1
Nb3Ga 20.2 2.6
Nb3(Al0.7Ge0.3) 20.7 3.3
Nb3Ge 22.5 2.9

14.8.2 Switches and memory elements

The use of superconductors as switches follows from their property of becoming
normal in the presence of a magnetic field. We can make a superconducting
wire resistive by using the magnetic field produced by a current flowing in
another superconducting wire. Memory elements based on such switches have
indeed been built, but they were never a commercial success.

Superconducting memory elements based on the properties of Josephson
junctions have a much better chance. As we have mentioned before, and may
be seen in Fig. 14.19, the junction has two stable states, one with zero voltage
and the other one with a finite voltage. It may be switched from one state into the
other one by increasing or decreasing the magnetic field threading the junction.
The advantage of this Josephson junction memory is that there is no normal
to superconducting phase transition necessary, only the type of tunnelling is
changed, which is a much faster process. Switching times as short as 10 ps
have been measured.

Will it ever be worthwhile to go to the trouble and expense of cooling memory
stores to liquid helium temperatures? So far computer manufacturers have
been rather reluctant (understandably, it is a high risk business) to introduce
superconducting memories. It is difficult to predict, but the latest members of
the family, Rapid Single Flux Quantum (RSFQ) devices, might have a chance
to be introduced in practice some time in the future when high speed will be the
principal requirement. The basic architecture is a ring containing a Josephson
junction. Alarge number of such rings coupled magnetically make up the device
that can serve both as a memory element (it stores a single flux quantum) and a
logic device. The latter property is due to the fact that voltage pulses can travel
from element to element extremely rapidly along such line. The highest speed
observed so far at which these devices can operate is 770 GHz. Apart from
speed a further advantage is the quantized nature of the storage mechanism
providing protection both against noise and cross talk.

14.8.3 Magnetometers

A further important application of Josephson junctions is in a magnetometer
called SQUID (Superconducting Quantum Interference Device). Its operation

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


384 Superconductivity

is based on the previously mentioned property that the maximum supercurrent
through the two junctions in parallel is dependent on the magnetic flux enclosed
by the loop. It follows from eqn (14.74) that there is a complete period in Imax,
while � varies from 0 to �0. Thus, if we can tell to an accuracy of 1% the
magnitude of the supercurrent, and we take a loop area of 1 cm2, the smallest
magnetic field that can be measured is 10−12 T. Commercially available devices
(working on roughly the same principle) can offer comparable sensitivities.

Although the Josephson junction does many things superlatively well, like
other topics in superconductivity, its applications (so far) are few. However, it
is worth mentioning two sensitive magnetometer applications which would be
quite impossible with classical devices.

Amajor preoccupation of the military is to keep watch on nuclear submarines.
The difficulty is that water is such a good absorber of microwaves, light, and
sound, which are traditionally used to locate targets. However, underwater
caches of superconducting magnetometers can detect small perturbations of
the Earth’s magnetic field as a submarine arrives in the locality. They have to
be connected to a surface buoy containing a transmitter which informs boffins
in bunkers what is going past.

Amore definite and much safer application is one which Oxford’s Laboratory
of Archaeology works on and publishes freely. The silicaceous and clay-like
materials in pottery are mildly paramagnetic. When they are fired in kilns,
the high temperature destroys the magnetism, and as they cool the permanent
dipoles re-set themselves in the local magnetic field of the Earth. When an
archaeologist uncovers an old kiln, he can measure this magnetism in the bricks
and thus find the direction of the Earth’s field when the kiln was last fired.
The variation of the Earth’s field and angle of dip has been determined for
several thousand years at some places. Thus, it is possible to date kilns by
accurate measurements. As large ceramic articles have to be kilned standing
on their bases, accurate measurements of the dip angle can also date cups and
statues, if their place of origin is known. With very sensitive magnetometers,
this measurement can be done on a small, unobtrusive piece of ceramic removed
from the base of the statue. It is a method considerably used by major museums.

14.8.4 Metrology

We mentioned earlier that one can determine one of our fundamental constants
(velocity of light) with the aid of lasers. It turns out that Josephson junctions may
be used for determining another fundamental constant. The relevant formula is
eqn (14.73). By measuring the voltage across the junction and the frequency
of radiation, h may be determined. As a result, the accepted value of Planck’s
constant changed recently from 6.62559 to 6.626196 × 10−34 J s.

14.8.5 Suspension systems and motors

Frictionless suspension systems may be realized by the interaction between a
magnetic flux produced externally and the currents flowing in a superconductor.
If the superconductor is pressed downwards, it tries to exclude the magnetic
field, hence the magnetic flux it rests on is compressed, and the repelling force
is amplified. Noting further that it is possible to impart high speed rotation to a
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suspended superconducting body, and that all the conductors in the motor are
free of resistance, it is quite obvious that the ideal of a hundred-percent-efficient
motor can be closely approximated.

14.8.6 Radiation detectors

The operation of these devices is based on the heat provided by the incident
radiation. The superconductor is kept just above its critical temperature, where
the resistance is a rapidly varying function of temperature. The change in
resistance is then calibrated as a function of the incident radiation.

14.8.7 Heat valves

The thermal conductivity of some superconductors may increase by as much
as two orders of magnitude, when made normal by a magnetic field.

This phenomenon may be used in heat valves in laboratory refrigerations
systems designed to obtain temperatures below 0.3 K.

14.9 High-T c superconductors

There were always hopes that superconductors will, one day, break out of their
low temperature habitat and will have a significant impact upon the design
and operation of a wide range of devices. It was felt intuitively that Nature
can not possibly be so mean as to tuck away such a tremendously important
phenomenon into a dark corner of physics. Well, the break-out towards higher
temperatures did take place in the month of January, 1986. Müller and Bednorz
(Nobel Prize, 1987) of the IBM Zurich Laboratories found a ceramic, barium–
lanthanum–copper oxide, with a critical temperature of 35 K. ‘How did you
come to the idea’, I asked Professor Müller, ‘that oxide superconductors will
have high critical temperatures?’ ‘Simple,’ he said and produced the diagram
shown in Fig. 14.21, ‘the line of maximum critical temperature against time for
traditional superconductors (dotted line) intersected the extrapolated line for
oxide superconductors (continuous line) in 1986. We were bound to succeed.’
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Fig. 14.21
The maximum critical temperature
against time for traditional and oxide
superconductors.
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Progress was not particularly fast, mainly because 35 K sounded too good
to be true. Many experts regarded the claim with some scepticism. It took just
about a year until the next step. In February 1987, nearly simultaneously, Chu
in Houston and Zha Zhong-xian in Beijing produced a new superconducting
ceramic, yttrium–barium–copper oxide (YBCO) with critical temperatures
between 90 and 100 K, well above 77 K, the boiling point of nitrogen. Those
reports really did open the floodgates. Scientists streamed into the field, and
scientific reports streamed out. So where are we now, concerning maximum
critical temperature? The record, reigning for a number of years was 125 K,
achieved by an oxide with the chemical formula Tl2Ba2Ca2Cu3O10, known
as TBCCO. The latest figure is about 10 K higher. The compound is mercury
barium calcium copper oxide (HBCCO). By now there are quite a number of
high-Tc superconductors. For a selection, see Table 14.3.

What is the basic structure of these superconductors? The first one
discovered, La2−xBaxCuO4, contains single CuO2 planes separated by layers
which provide a charge reservoir, and the same is true for the two materials
mentioned so far, YBCO and TBCCO.

How do they work? Copper-oxide is an insulator, so that is not much good
for the purpose. It needs dopants for creating carriers which will then flow
along the CuO2 planes. The carriers may, for example, be provided by Ba for
holes and by Ce for electrons. Note also that many of the properties of these
compounds are highly anisotropic, which may be measured on single crystal
specimen. The electrical resistivity perpendicular to the CuO2 layers may be
105 times as large as along the in-plane layers. The temperature-dependence of
resistivity is also different: in the perpendicular plane resistivity increases with
temperature as in a metal, but in-plane resistivity decreases with temperature
as in a semiconductor. There are also different phases of these materials which
depend on the doping level.

A generic phase diagram of cuprate superconductors is shown in Fig. 14.22.
As many as five different phases may be seen, starting with an antiferromagnetic
insulator. In a certain range of doping (roughly between 0.1 and 0.2 holes
per copper oxide) and below a certain temperature they are superconductors,

Table 14.3 Approximate critical temperatures (K) of a
selection of high-Tc superconductors

YBa2Cu3O7 93
Y2Ba4Cu7O15 95
Bi2CaSr2Cu2O8 92
Bi2Ca2Sr2Cu3O10 110
Tl2CaBa2Cu2O8 119
Tl2Ca2Ba2Cu3O10 128
TlCa2Ba2Cu3O8 110
EuBaSrCu3O7 88
GdBaSrCu3O7 86
HgBa2CuO4 94
HgBa2Ca2Cu3O8 133
HgBa2Ca3Cu4O10 126
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Fig. 14.22
Generic phase diagram of the cuprate
superconductors. The doping level is
measured relative to the insulating
parent compound.

above that temperature they are metals having rather odd properties. In fact,
theoreticians believe that it would be easy to work out the physics of the
transition to superconductivity once the properties of the metallic phase are
understood. And that is not the case as yet.

There has been no proper theory developed either for cuprates or for the other
main type of oxide superconductors based on BaBiO3 compounds.∗ However, ∗ We should perhaps add here a new class

of superconductors, whose discovery
has made it even more difficult to
devise a theory. They are based on
the fullerene C60 mentioned in Chapter
5. Some of their representatives are
K3C60, Rb3C60, and Rb2.7Tl2.3C60, with
critical temperatures of 19 K, 33 K, and
42 K, respectively.

a consensus exists concerning some aspects of the theory. There is no doubt
that pairing is involved, and the effective charge is 2e. It is also known that
the pairs are made up of electrons with opposite momenta, just as was shown
in Fig. 14.3(a). Interaction of the electrons with the lattice might play a role,
but it is certainly not the full story. Another possible mechanism is pairing
by spin waves, as already referred to earlier in this chapter. An important
experiment is to measure the magnetic flux in superconducting rings containing
Josephson junctions. With conventional superconductors, the enclosed flux is
always an integer multiple of the flux quantum. With cuprate superconductors,
the enclosed flux turns out to be an odd multiple of the half flux quantum. This
is no proof for spin-wave pairing, but if pairing is by spin waves, then this is
one of the conditions that must be satisfied.

In which other directions could one look for a theory? One might possibly
rely on the analogy between the quantum Hall effect and superconductivity
in cuprates. Two-dimensional effects and sudden loss of resistance are
characteristic to both. An attempt on such lines has been made at explaining
the quantum Hall effect by a theory which treats electrons as some kind of
composite bosons.

Most theoreticians believe that an energy gap always exists, and for cuprate
superconductors the relationship between gap energy and critical temperature
is 2�(0) ≈ 6 kTc in contrast to 3.5 kTc, which we have come across for low
temperature superconductors. No one entertains great hopes that a theory which
would be able to predict the critical temperatures of various compounds will
be forthcoming in the near future. The theoretical interest will be sustained,
however, very likely for decades. Pairing mechanisms have become popular.
Neutron stars are supposed to have pairing condensations, and it is also believed
that quark condensations began just one second after the Big Bang, although
experimental evidence is lacking for the moment.
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How are these superconductors produced? Being ceramics, they were first
produced by mixing, grinding, and baking of powdered reagents. Single crystal
samples, as described above, greatly helped in advancing the understanding of
their properties, but they are not suitable for mass applications. For devices one
needs them as thin films. For high-field magnets they have to be in the form
of wires. Thin films are mostly made by sputtering and pulsed laser deposi-
tion (a pulsed excimer laser evaporates the material which is already available
in a stoichiometric mixture of its constituents) and they are polycrystalline.
But if superconductive properties are anisotropic, how will they survive in
a polycrystalline material? The answer is that any departure from the single
crystal form is deleterious but not necessarily disastrous. Josephson tunnelling
comes to our aid in the sense that superconducting electrons may tunnel
across disoriented grain boundaries, provided the angle of disorientation is
small.

What about applications? What has become of the dazzling prospects of
levitated trains, electromagnetically propelled ships, and magnetic energy
storage devices? Not in the near future, is the answer. Some applications,
however, are bound to come quite soon, since there are obvious economic
benefits to working at 77 K (using liquid nitrogen) in contrast to 4.2 K (using
liquid helium). Liquid nitrogen costs only as much as a cheap beer, whereas
liquid helium is in the class of a reasonably good brandy, so maintaining
the samples at the right temperature will be much cheaper. The application
that is closest is probably in electronic devices, and the property used is the
lack of electrical resistance. So total heat dissipated is reduced, which is good
and particularly good in preventing thermally activated damage like corrosion
and electromigration of atoms. In heavy current engineering, the most likely
candidates for applications are underground cables. The present cables are
made of copper and are cooled by oil. The future ones replacing them will
most likely be made of high-Tc materials cooled by liquid nitrogen. Highly
rated transformers and coils for rotors in motors and generators are also close
contenders.

At microwave frequencies, superconductors can no longer offer zero
resistivities. However, their lower resistance is still a major advantage
in microwave resonators. There were already some applications using
conventional superconductors, but chances have very much improved with the
advent of highTc superconductors. We would just like to mention one successful
device, the disk resonator shown in Fig. 14.23(a). The resonance occurs in the
same manner as in the Fabry–Perot resonator discussed in Section 12.5. The
main difference is that, in the present case, it is possible to excite a mode which
leads to very low losses, since the current disappears at the edges. The calculated
current distribution is shown in Fig. 14.23(b). At a frequency of 4.7 GHz and
a temperature of 60 K, the measured Q (quality) factor was close to 20 000 in
contrast to 600, the Q factor achievable by copper. The superconductor was one
of the TBCCO family deposited in thin film form by DC sputtering.

Will high Tc superconductors make a big difference in the performance
of high-field magnets? They probably will in due course, but there are lots
of problems at present. It is difficult to reach high critical current densities
because of the granular nature of these materials already mentioned. If we have
to rely on Josephson tunnelling across grain boundaries, that means that the
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(a) A microwave disc resonator (b) current distribution on the surface of the disc.
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current cannot exceed the critical current which makes the tunnelling normal
(cf. Section 14.7).

The greatest success so far has been achieved with BSCCO, which may
have the composition of Bi2Sr2CaCu2O8 (known as Bi-2212, Tc ≈ 85 K)
or Bi2Sr2Ca2Cu3O10 (known as Bi-2223, Tc ≈ 110 K). It does not have
particularly good properties at 77 K, as may be seen in Fig. 14.24. The critical
current declines very rapidly with magnetic field (dotted lines). However, at
4.2 K (i.e. well below its critical temperature) BSCCO has properties superior to
traditional superconductors. It still has a critical current density of 105 A cm−2

over 20 T. These results were obtained with tapes with a high degree of
crystallographic alignment. Wires with this performance are not available as
yet, but a practical device capable of producing 20 to 25 tesla is clearly feasible.

A further useful property of BSCCO is that their critical currents are fairly
independent of temperature in the 4–20 K range; hence instead of being dipped
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into liquid helium, they could be kept in the right temperature range by
refrigerators.

So what can we say about the applications of high-Tc superconductors?
The initial euphoria has evaporated, but it still seems very likely that many
useful devices will appear in the fullness of time. We have to repeat what we
said in Section 9.1. Revolutions are few and far between, or, perhaps more
appropriately: all revolutions, sooner or later, reach their thermidors.

14.10 New superconductors

The phenomenon of superconductivity never ceases to surprise us. There are
lots of recently discovered superconductors which are most reluctant to fit into
the general framework: The situation reminds me of Pope’s well known epitaph
intended for Newton

Nature, and Nature’s laws lay hid in the night
God said, Let Newton be! and all was light

and of Squire’s addition to it a couple of centuries later

It did not last: the Devil howling “Ho!
Let Einstein be! restored the status quo.

Well, this is what happened to superconductivity. After the formulation of
the BCS theory in 1957 all was light for a long time. But then, in 1986 our
confidence in understanding the physics was shattered by the arrival of high
Tc oxide superconductors. So, we could say at the time, there are conventional
superconductors and oxide superconductors and one day we shall understand
how those in the latter family work. But nowadays nothing can be taken for
granted. The old type of intermetallic compounds reappear with much higher
critical temperature, organic materials join the club and it turns out that an
applied magnetic field is not necessarily a bad thing. We do not really know
any more what the limits are, what is achievable and what is not. The status
quo of ignorance has been restored.

Let us start with magnesium boride, a simple intermetallic compound with a
crystalline structure shown in Fig. 14.25. The boron atoms arrange themselves
in two-dimensional hexagonal sheets, like graphite, within a cubic structure of
magnesium. What is extraordinary about it is its critical temperature well above
that of other intermetallic compounds. It does obey though BCS theory in one
respect: it has an isotope effect. The critical temperature is 40.2 K for atomic
weight 10 and 39.2 K for atomic weight 11. It differs, however, from other
metallic superconductors by not having a high charge carrier density. There is
an energy gap but it is of a different kind. Two superimposed energy gaps have
to be assumed to explain its properties.

Another recently discovered superconductor is PuCoGa5 which has a high
critical temperature of 18 K and in which induced magnetic fluctuations of the
electrons are supposed to be responsible for the superconducting transition.
Clearly, this is not an oxide superconductor but could the superconducting
mechanism be close to that of oxides? Will there be similar compounds found
with higher critical temperatures? The answers are not known at the moment.
A further interesting feature of the PuCoGa5 superconductor is its extremely

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


New superconductors 391

B

Mg Fig. 14.25
Crystal structure of MgB2

high upper critical field estimated at 35 T. The tentative explanation is the
radioactivity of plutonium 239 which is responsible for pinning the flux lines
by creating line defects.

Let us now come to the effect of a magnetic field. We have been happy to
accept so far that the critical temperature is reduced by applying a magnetic field
and a high enough magnetic field will completely destroy superconductivity.
This is not surprising at all. Cooper pairs are made up by electrons of opposite
momenta and opposite spins. Therefore a magnetic field, whether applied
or internal due to the ferromagnetic line up of dipoles, may be expected
to be harmful because it effects differently the spin up and the spin down
state. So the clear conclusion is that superconductivity might coexist with
antiferromagnetism but never with ferromagnetism! Well, the discovery of
superconductivity in UGe2 proved it otherwise. If the material is kept all the
time above the Curie temperature so that its magnetic state is paramagnetic then,
however low is the temperature, no superconducting state exists. On the other
hand, below the Curie temperature, in the ferromagnetic state, there is a range of
pressures for which superconductivity is present below a critical temperature.
This is so much against the grain that a new theory is needed. The tentative
answer is that some other type of Cooper pairs must exist in which electrons
of opposite momenta but identical spins pair up, and then an applied magnetic
field might actually be helpful. The likely reason why these materials (there is a
number of them) have only recently been discovered is their anisotropic nature.
If anisotropic, then the state will crucially depend on the electron momenta in
various directions which can be seriously altered by impurity scattering. Hence,
superconductivity exists only when the material is made pure enough-and up
to now the technology was just not available.

Next we wish to mention organic superconductors. All kinds of organic
materials are in fashion nowadays, including superconductors. What is certainly
known about them is that the molecules are long, that they are close to each
other, so that electrons and holes can hop from one to the next one; and that they

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


392 Superconductivity

are stacked in two dimensions. They have some unusual properties; the most
outrageous among them is that the superconducting state can be brought on by
applying a magnetic field. We know (see Fig. 11.29) that on the application of
a magnetic field the electronic bands split into a spin-up and spin-down band
which have somewhat different momenta. When two electrons of different spin
pair up, the resulting momentum will be non-zero. Could that cause the various
anomalies observed? It remains to be shown.

The latest superconducting family is that of pnictides. These are layered
iron arsenide materials. They bear a certain resemblance to cuprate1313 The resemblance is probably the main

reason why they have been so diligently
investigated in the last couple of years.
Since the microscopic mechanism of the
cuprate superconductors is still unknown,
clues from the behaviour of a similar
superconductor might offer the key to
understanding both.

superconductors. Just as with cuprates, the parent compound LaOFeAs was not
superconducting, but upon replacing some of the oxygen by fluorine, it became
superconducting. Its phase diagram is similar to that shown in Fig. 14.22. At low
doping density it is an insulating antiferromagnet, but as the density increases
further it turns into a superconductor. The story is also similar. The quest
started with the somewhat different LaOFeP, which became superconducting at
Tc = 5 K. Replacing phosphorous by arsenic raised the critical temperature to
Tc = 26 K, which then rose to 43 K when lanthanum was replaced by samarium,
and to 55 K for the same compound under pressure. However, the electrical
properties of cuprates and pnictides are different at room temperature. The latter
compounds conduct electricity; the former ones do not.

Our final conclusion? Anything is possible. Experimenters and theoreticians
will both be busy in the next few decades.

Exercises

14.1. It follows from eqn (1.15) that in the absence of an
electric field the current density declines as

J = J0 exp(−t/τ )

where τ is the relaxation time related to the conductivity by
eqn (1.10).

In an experiment the current flowing in a superconducting
ring shows no decay after a year. If the accuracy of the
measurement is 0.01%, calculate a lower limit for the
relaxation time and conductivity (assume 1028 electrons m−3).
How many times larger is this conductivity than that of copper?

14.2. What is the maximum supercurrent that can be passed
through a 2 mm diameter lead wire at 5 K (use data from
Table 14.1).

14.3. In the first phenomenological equations of
superconductivity, proposed by F. and H. London in 1935,
the current density was assumed to be proportional to the
vector potential and divA = 0 was chosen. Show that these
assumptions lead to a differential equation inA of the form of
eqn (14.63).

14.4. The parameter λ defined in eqn (14.60) may be regarded
as the penetration depth for κ ∼= 0. A typical value for the
measured penetration depth is 60 nm. To what value of ψ2

0
does it correspond?

14.5. The energy diagram for a tunnel junction between
two identical superconductors is shown in Figs 14.13
and 14.14. The superconducting density of states [sketched
in Fig. 14.13(b)] is given as

C
E√

E2 − �2

where C is a constant and E is the energy measured from
the Fermi level (middle of the gap). Show that at T = 0 the
tunnelling current is zero when U < 2�/e, and the tunnelling
current is proportional to∫ eU−�

�

eU − E

[(eU − E)2 − �]1/2

E

[E2 − �2]1/2
dE

for U > 2�/e.

14.6. A lead-insulator-tin superconducting tunnel junction has
a current–voltage characteristic at 1 K similar to that shown in
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Fig. 14.17 with the current maximum at U = 0.52 mV and the
point of sudden upsurge at U = 1.65 mV.

(i) Find the energy gaps in lead and tin at zero temperature.
(ii) At what temperature will the current maximum disappear?

14.7. If a microwave cavity made of tin is cooled to 1 K can
you expect the losses to be substantially less than at 4 K?

At what frequency would you expect superconductive
effects completely to disappear in tin held at 1 K?

14.8. What is the frequency of the electromagnetic waves
radiated by a Josephson junction having a voltage of 650 μV
across its terminals?
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15 Artificial materials or
metamaterials

15.1 Introduction

All the materials discussed so far were produced by nature. Well, not by nature
alone. We certainly helped nature here and there. We combined the elements
in a manner which led to a variety of new properties. We managed to persuade
some crystals to grow under circumstances where they were most reluctant to
do so. We produced structures with the thickness of a single atom, but we were
always restricted by the ways atoms were willing to arrange themselves. An
artificial material, on the other hand, may come about by taking an entirely
innocuous dielectric and immersing into it some small elements, and lo and
behold, its electrical behaviour radically changes. Alternatively, an artificial
material may just have a periodic structure made of dielectrics or metals.

The idea of producing artificial materials is not new. The first person who
managed to do so is probably Gabriel Lippmann, who in 1894 producedLippmann received the Nobel Prize

in 1908. an artificial material by projecting an image upon a not too thin film of
photographic emulsion. In contrast to the traditional methods of photography,
registering contrast, he developed the film in the form of a dielectric-constant
variation caused by standing waves due to reflection from the rear boundary
of the film. Since different colours have different wavelengths and since the
standing waves due to those colours could be superimposed, Lippmann was
able to produce remarkably good colour photographs. The mechanism is clearly
Bragg reflection (although it was not called so at the time) due to the periodic
dielectric-constant variation.

Amere four years later, in 1898, Jagadis Chunder Bose proposed twisted jute
(see Fig. 15.1) as an artificial material. He showed that such a material could
rotate the polarization of an electromagnetic wave. We would call it nowadays
an artificial chiral material. After such a promising start, the next half century,
as far as we know anyway, was a rather bleak one. Nothing happened until the
radomes of radars needed somewhat higher dielectric constants than those easily
available in natural materials. The solution was to create artificial materials by
inserting metallic pieces (rods, discs, or spheres) into a very light dielectric. It
was done quietly, without causing much excitement.

As it happens, one of us∗ also had some ideas concerning artificial materials.∗ D. Walsh, ‘Artificial semiconduc-
tors’, Nature 243, 33–35 (1973). The material here is a multilayered structure of alternate thin films of metal and

Fig. 15.1
Twisted jute used for rotating the
polarization of an electromagnetic
wave. From J.C. Bose, Proc. Roy.
Soc. 63, 146 (1898).

a b c d
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dielectric. The resulting potential diagram is then similar to the Kronig–Penney
model (discussed in Section 7.2) of a crystalline solid. There is a periodic
structure and the electrons can tunnel across the insulator from one metal film
to the next. The band structure of the resulting artificial semiconductor can
be tailored by the choice of the metal and dielectric and by the thicknesses of
the constituents. We do not know any realization in this form, but of course
quantum well materials, discussed in Chapters 12 and 13, belong to a similar
category.

This chapter will be somewhat different from previous ones not only because
the materials considered will be man-made but also because the emphasis will be
on recent developments. Whereas the rest of this course relies on a good century
of accumulated knowledge, most of the phenomena described in the present
chapter were investigated in the last decade. As a consequence, it matters more
who had the original ideas, and, entering into this spirit, we shall give many
more references than in previous chapters. We shall also be able to take over a
considerable part of the analysis and illustrations from a book just published.∗ ∗ L. Solymar and E. Shamonina, Waves in

metamaterials (Oxford University Press,
2009).

We shall be mostly concerned with the branch of artificial materials which are
known nowadays as metamaterials. The novel aspect will be the concentration
on the material parameters of permittivity and permeability, and particularly
on the possibility of making those parameters negative. We shall be also
concerned with applications, the most glamorous of them being the ‘perfect’
lens. But before embarking on the discussion of those more esoteric properties
of materials, we shall in Section 15.2 look at a basic division in the treatment
of materials, one type of treatment being based on the Bragg effect, and the
other one on some kind of averaging. Thus the next section will essentially be
a continuation of this introduction to the topic.

15.2 Natural and artificial materials

The division into two branches, related to the relative values of the wavelength
and of the size of the unit cell, is shown schematically in Fig. 15.2 both for
natural and for artificial materials. In the left-hand column we have natural
materials; in the right-hand column are artificial materials. Let us look at Fig.
15.2(a). The elements are atoms or possibly molecules. The size of the unit cell,
d, could be the atomic dimension, which is of the order of tenths of a nanometre.
The corresponding wavelength is in the region of X-rays for electromagnetic
waves. Slowly moving electrons may also have similar wavelengths. Incident
waves of either kind, as we know, produce diffraction based on the Bragg
effect. If the wavelength is much larger than the unit cell [Fig. 15.2(b)] then
the electromagnetic properties of the crystal can be obtained by some kind
of averaging. An example is the Clausius–Mossotti equation, discussed in
Section 10.9. This provides a method that leads to the derivation of macroscopic
quantities, such as permittivity and permeability.

Now let’s think of artificial materials in which atoms and molecules are
replaced by macroscopic, man-made, elements. Let’s not worry for the moment
how the elements remain in their allotted space. That may not be always obvious,
but we can safely assume that we have complete freedom in choosing both
the elements and the distance between them. Now all dimensions are much
larger than in natural materials but the division into the above two categories
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Fig. 15.2
Electromagnetic properties of natural
and artificial materials.
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is still valid. When the separation between the elements is comparable with
the wavelength [Fig. 15.2(c)], we have again the Bragg effect. These materials
are known as photonic bandgap materials and will be briefly discussed in the
next section. They are quite similar to some of the man-made devices we have
already met, such as volume holograms and distributed Bragg reflection lasers.
When the separation between the elements is much smaller than the wavelength
[Fig. 15.2(d)], we again need some averaging technique to find the properties of
the material, and we refer to these materials as metamaterials.∗ Can we have a∗ Note that photonic bandgap materials

are often regarded as a subset of
metamaterials, but there is no need
to worry about that. That is purely a
question of definition.

better definition of metamaterials? Not easily. The subject is still in its infancy.
There is broad agreement on what it is about, but not about the details. It would
need a fairly long description accompanied by a number of examples to be more
precise. We shall give here two definitions in current use.

1. Metamaterials are engineered composites that exhibit superior properties
not found in nature and not observed in the constituent materials.

2. A metamaterial is an artificial material in which the electromagnetic
properties, as represented by the permittivity and permeability, can be
controlled. It is made up of a periodic array of metallic resonant elements.
Both the size of the element and the unit cell are small relative to the
wavelength.

Definition 1 is too general, whereas definition 2 is not general enough.
We shall make no attempt here to give a comprehensive definition. Perhaps
definition 2 could be made a little more general by adding that control, among
other things, means that it is possible to achieve simultaneously negative
permittivity and negative permeability at the same frequency, which will then
lead to a negative refractive index and to negative refraction.

15.3 Photonic bandgap materials

As we know, electrons in a semiconductor have allowed and forbidden energies.
We have seen and discussed that umpteen times. Why do electrons behave that
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Fig. 15.3
An example of a photonic bandgap
material made from a set of dielectric
rods.

way? We have discussed that too. It is essentially due to the wave-like nature
of the electron. When they see a periodic potential in a periodic medium, they
respond. But why only electrons? Could not photons do the same thing if
they find themselves in a periodic medium? Yes, of course, we discussed that
too in relation to the Bragg effect. So the idea is obvious. Put photons into a
periodic medium and they will have allowed and forbidden energies which, in
this context, means that the propagation of the electromagnetic waves in that
medium is allowed or forbidden. The modern term for it is photonic bandgaps.
A simple structure which can produce a (not very good) bandgap is shown in
Fig. 15.3. It consists of a set of dielectric rods.

The discipline started in the 1990s. Why so late? If physicists of long
time ago managed to figure out the mysteries of X-ray diffraction, why did
they not think about building materials exhibiting photonic band gaps? They
must have thought about the possibility, but how to do the experiments? The
evidence for electronic band structures could be provided by relatively simple
measurements on semiconductors. The X-ray measurements on various crystal
structures did show that there was perfect reflection of the incident wave at
some incident angles, but not for all angles. One could easily conclude that
nature does not like∗ photonic band gaps. It was relatively easy to build them

∗ There are actually a few examples of
nature producing a Bragg structure in the
visible region. One of them is the wing
of the butterfly. All that feast of colours
is due to Bragg reflection of the incident
white light.by optical means in volume holography but those methods gave reflections

only in one direction. For a photonic band gap, perfect reflection must occur
within a range of wavelengths from whichever direction the electromagnetic
wave comes. So there was no clear guidance on how such a material could be
built and at the same time there was some legitimate doubt whether photonic
band gap materials exist at all. If in doubt try numerical simulations. After
all it is only Maxwell’s equations which need to be solved. That was indeed
the way forward. Serious investigations could only start when technology was
advanced enough to produce the samples at optical wavelengths and computers
were powerful enough to solve the problem numerically.† And that leads us

† When the change in the relative
dielectric constant is small, as in volume
holography, an analytical approach might
be successful. It turned out however
that even to get close to the perfect-
reflection-from-all-directions condition,
the contrast in dielectric constant had to
be large, by a factor of 2 or 3. There was
no chance of an analytical solution.

to the early 1990s. The pioneers were Eli Yablonovitch and Sajeev John. The
favoured technological solution was to drill holes in a dielectric rather than
to put together a structure of rods. Holes of submicrometre dimensions had
to be drilled. Half a million holes later there was still no success. But success
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398 Artificial materials or metamaterials

eventually came in the form of the diamond structure that was shown in Fig. 5.3.
The holes had to be drilled so as to follow the directions of the chemical bonds.

What are the applications of photonic bandgap materials? They can be used
whenever there is a need for electromagnetic waves propagating in any direction
to be reflected. They are singularly suitable for constructing resonant cavities.
Replace a few elements of a photonic bandgap material by one capable of
lasing, pump the laser at a wavelength for which the bandgap material is
transparent and the whole laser device is ready. This is actually the way to
produce very small lasers where very small means that its dimensions are
submicrometre. Another application is for guiding light. If we have a cylindrical
photonic bandgap material and we clear the area around the axis, then an optical
wave can propagate there without being able to spread outwards in the radial
direction. This is because a wave propagating in any but the axial direction will
be reflected. These waveguides are known as holey fibres. Their advantage in
applications is that one can put anything (well, nearly anything) in the central
hollow core. For example, they may be filled by nonlinear gases, leading
to stimulated Raman scattering or frequency multiplication. Or, thinking of
something more esoteric, they may be suitable for guiding atoms and small
particles along. In that application, the optical dipole forces of a co-guided
laser beam prevent adhesion to the glass surfaces and provide the acceleration
needed to overcome viscosity.

15.4 Equivalent plasma frequency of a wire medium

The properties of wire media were investigated as early as the 1950s but they
still could be our first example of metamaterials. A wire medium is the man-
made equivalent of certain materials available in nature, materials which exhibit
plasma phenomena. Remember, those materials were discussed in Chapter 1.
We derived there an effective dielectric constant in the form

εeff = ε0

(
1 − ω2

ω2
p

)
, (15.1)

where ωp is the critical frequency at which metals become transparent. Later
we rechristened it as the plasma frequency. Interestingly enough, wire media
have similar properties. No transmission up to a certain frequency (let’s call it
also ωp) and high transmission above that frequency. Such a structure is shown
schematically in Fig. 15.4(a), and experimental results on transmission are
shown in Fig. 15.4(b), where the parameter is the number of layers. It may be
seen that above a certain frequency, which is 9.5 GHz in the present case, there
is good transmission but reduced transmission below that frequency. As may be
expected, transmission declines as the number of layers increases. Saturation
is reached at around 15 layers. When the number of layers is increased to 20,
the transmission hardly changes.

Can we obtain this frequency from simple considerations? Yes, we can use
a very simple circuit model which gives a good approximation. It is based
on the relationship between current and electric field. Let us first find the
current in a thin piece of wire of length  and radius rw. An incident electric
field E parallel to the wire will yield a current, according to Ohm’s law,
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Fig. 15.4
(a) Schematic representation of a wire
medium. (b) Transmission with an
increasing number of layers: 5 layers
(dot–dashed line), 10 layers (dashed
line), 15 layers (dotted line), 20 layers
(continuous line). P. Gay-Balmaz et
al., Appl. Phys. Lett. 81, 2896 (2002).
Copyright 2002 American Institute of
Physics.

equal to∗ ∗ We are again in a position where we
have to introduce notations at variance
with those used by the great majority of
people concerned with electrical circuits,
and particularly with definitions of
inductance and capacitance. Reluctantly,
we take the reactance of an inductor here
in the form –iωL instead of the usual jωL.

I = E

(−iωLw)
, (15.2)

where Lw is the impedance of the wire. For simplicity we look at the lossless
case only, disregarding the resistance of the wire. This is actually a good
approximation.

Next we shall find the average current density in the unit cell, which will be
taken as having an area of 2. This is

Jav = E

(−iωLw)
. (15.3)

Having found the relationship between the electric field and the current density,
we can find the effective relative dielectric constant as† † This expression follows from the

arguments in Section 10.5, where the
total current is written as the sum of the
conduction and displacement currents,

Jtotal = J − iωε0E . (15.5)

If J is proportional to E , say J = isE [as
in eqn (15.2)], then the above equation
can be rewritten as

Jtotal = (is − iωε0)E = −iω
(
ε0 − s

ω

)
E ,

(15.6)

from which eqn (15.4) follows.

εr = 1 − 1

ω2ε0Lw
. (15.4)

Defining now an effective plasma frequency as

ω2
p = (ε0Lw)

−1, (15.7)

we may rewrite eqn (15.4) as

εr = 1 − ω2
p

ω2
(15.8)

The expression for the inductance of a wire may be obtained from tables as

Lw =
(
μ0

2π

)[
ln

(
2

rw

)
− 3

4

]
. (15.9)

As an example, let us take  = 6 mm and rw = 0.03 mm. The resultant plasma
frequency may be calculated from eqns (15.7) and (15.9) to be 8.73 GHz, not
far from the measured value of 9.5 GHz.
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400 Artificial materials or metamaterials

15.5 Resonant elements for metamaterials

The wire elements in the previous section are not resonant. They are useful
because they can provide a negative dielectric constant at frequencies below the
equivalent plasma frequency, which can be adjusted by choosing the period and
the diameter of the wire. However, most metamaterial elements are resonant,
and then the problem arises of how to make them small. It is not trivial to
satisfy the requirement for the elements to be resonant and at the same time
to be small relative to the wavelength. When we think of an electromagnetic
resonator, the one first to come to mind is probably the Fabry–Pérot resonator
used in lasers. This consists of two parallel mirrors a distance D apart, as
has been discussed several times (see e.g. Fig. 12.4). Resonance occurs when
D is equal to an integral (very large) number of wavelengths. It is then easy
to imagine a wave trapped between the two mirrors just bouncing back and
forth between them. But that resonator is very big. If we want a resonator
small relative to the wavelength that can be easily realized by lumped circuit
elements, all we need is an inductance L and a capacitance C. With a lumped
inductance and a lumped capacitance, the size of the resonant circuit can be very
small relative to the wavelength. The problem is to find one which, in addition
to being small, can be accessed by external electric and magnetic fields. The
simplest element is probably the capacitively loaded loop, shown schematically
in Fig. 15.5(a) and in one of its realizations in Fig. 15.5(b). The loop provides
the inductance, and the value of the capacitance to be inserted can be simply
determined from the desired resonant frequency. Another often used resonator
is shown in Fig. 15.5(c). This is a member of the family of split-ring resonators
invented∗ in 1981 which has become very popular in the last decade. It consists∗ W.H. Hardy and L.A. Whitehead, Rev.

Sci. Instrum. 52, 213 (1981). of two concentric split rings with gaps on opposite sides.

Fig. 15.5
(a) Metallic loop made resonant by
inserting a capacitor. (b) An
experimental example: three turns of
wire wound on a dielectric rod. (c)
Schematic representation of a
split-ring resonator consisting of two
concentric slotted rings.
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Fig. 15.6
A variety of small resonators used in
metamaterials studies.

At first sight, the physics is quite complicated. The inner and outer rings
both have self-inductances and a mutual inductance between them. There is
capacitance between the rings and there are gap capacitances at the splits. If
one wants to take into account all these factors then it is difficult indeed to
determine its properties. It turns out, however, that a simplified physical picture
can lead to an excellent approximation.∗ First, ignore the gap capacitances on ∗ R. Marques, F. Mesa, J. Martel, and

F. Medina, IEEE Trans. Antenna Prop.
51, 2572 (2003).

the basis that they are small and they are unlikely to have a major influence on
the flow of currents. Secondly, ignore the mutual inductance. In the third place,
take the self-inductance equal to the average self-inductance of the two rings.
In the fourth place, consider the two inter-ring capacitances between the splits
as being connected in series. Let us put these assumptions into mathematical
form. Take the average radius of the split-ring resonator to be equal to r0, the
average inductance of the two rings equal to L, and the inter-ring capacitance
per unit length equal to Cpu. Then the capacitance of a half-ring is equal to

Chalf -ring = πr0Cpu (15.8)

and the total capacitance is equal to

C =
(

1

2

)
Chalf -ring =

(
1

2

)
πr0Cpu, (15.9)

whence the resonant frequency is

ω0 =
(
πr0LCpu

2

)−1/2

. (15.10)

Needless to say, the capacitively loaded loop and the split-ring resonator
are not the only ones used in practical applications. A wide variety exists. A
representative sample is shown in Fig. 15.6. They look quite different, but they
all obey the same basic rule: loops, mostly broken, to provide the inductance,
and metallic surfaces close to each other to provide the capacitance.

15.6 Polarizability of a current-carrying resonant loop

We shall now find the magnetic polarizability in the simple case of a small
metallic loop in which a current flows. In an actual case this could be a split-
ring resonator but for the purpose of the present section we shall regard it as an
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Fig. 15.7
Resonant loop in a magnetic field.

z
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element with a resonant frequency ω0 and a loop area S. We shall look for the
relationship between the z component H of a spatially constant magnetic field
and the induced magnetic moment when the loop is in the xy plane (Fig. 15.7).
The magnetic flux threading the loop is equal to μ0SH, and then, in view of
Faraday’s law, the voltage excited in the loop is −iωμ0SH. Circuit theory will
provide the loop impedance as

Z = −iωL + i

ωC
+ R, (15.11)

whereL,C, andR are the inductance, capacitance, and resistance, respectively.
The current in the loop is then

I = −iωμ0SH

Z
, (15.12)

whence the induced magnetic moment is∗∗ Note that this definition differs from
that in eqn (11.5) by including the free-
space permeability μ0. It is adopted here
because in the theory of metamaterials it
mostly appears in this form.

μm = μ0SI = iωμ2
0S

2H

Z
. (15.13)

Magnetic polarizability being defined as

μm = αmH , (15.14)

we find

αm = −iωμ2
0S

2

Z
. (15.15)

It should be emphasized here that this is not an isotropic case. The polarizability
derived applies only to the z component of the magnetic field. In more
pretentious language, it can be regarded as an element in a tensor.

15.7 Effective permeability

Having obtained the polarizability of a loop, we can determine the effective
permeability of a medium consisting of a three-dimensional lattice of loops. It
is quite straightforward. We need to find the magnetization M , and from that
the permeability. The calculation is indeed quite straightforward if we do not
bother to determine the local field and just assume that the local field is equal to
the applied field. We do this first and come to some conclusions but will follow
that with another derivation which does include the local field.
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Let us assume a cubic lattice of loops with the applied magnetic field in the
z direction and the loops in the xy plane. Then the magnetization due to the
effect of the incident field upon the elements is

Mm = Nμm = NαmH , (15.16)

where N is the number of elements per unit volume. The relative permeability
in the z direction may then be found as

μr = B

μ0H
= μ0H + Mm

μ0H
= 1 + Mm

μ0H
. (15.17)

With the aid of eqn (15.15) we find

μr = 1 − μ0NS2

L(1 − ω2

ω2
0

+ i
Q
)
, (15.18)

where Q is the quality factor, defined as

Q = ω0L

R
. (15.19)

For the lossless case, with a little algebra, eqn (15.18) reduces to

μr = (1 − F)(ω2 − ω2
F)

(ω2 − ω2
0)

, (15.20)

where

F = μ0NS2

L
and ωF = ω0

(1 − F)1/2
. (15.21)

It may be easily seen from eqn (15.20) that μr = 1 at ω = 0, it is positive up
to ω = ω0, it is positive again beyond ωF, but, and this is quite remarkable,
the permeability is negative between the pole at ω0 and the zero at ωF. This
variation is plotted in Fig. 15.8. In the presence of losses, the pole disappears of
course and the range of negative permeability narrows and may even disappear,
as shown in Fig. 15.9 for Q = 100, 1000, and 10 000.

The equations we have obtained so far for the relative permeability display
all the essential features in spite of being a very crude model. The assumption

μr

1

ωωFω0 Fig. 15.8
Frequency dependence of the effective
permeability of a resonant loop.

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


404 Artificial materials or metamaterials

8

4

0

–4

8

4

0

–4

8

4

0

–4
0.8 1 1.2

Re(μr)

Im(μr)

(a) (b) (c)

ω/ω0

0.8 1 1.2
ω/ω0

0.8 1 1.2
ω/ω0

R
e(

μ r
),

 I
m

(μ
r)

Re(μr)

Im(μr)

Re(μr)

Im(μr)

Fig. 15.9
Frequency dependence of the real and imaginary parts of the permeability for (a) Q = 100, (b) Q = 1000, (c) Q =
10 000. Dotted line shows the lossless case.

least justified is that the applied field is equal to the local field. It is easy to see
physically that there will be a magnetic field in addition to the applied field,
due to all the other elements. Next we shall modify our model to include this
effect.

The total flux threading a particular loop (say loop n) is obtained by adding
the flux provided by all the other elements to that due to the applied field.
Assuming that the currents are identical in all the elements, the flux threading
element n due to a current in element n′ is

Φn = I
∑

Mnn′ , (15.22)

where Mnn′ is the mutual inductance between elements n and n′. The total flux
is

Φ = μ0SH + I
∑

Mnn′ (15.23)

and the corresponding current may be written as

I =
(

iω

Z

)
(μ0SH + I

∑
Mnn′). (15.24)

Following the same technique as before, we can find the modified form of the
relative magnetic permeability as

μr = 1 − F

1 − ω2

ω2
0

+ ( 1
L
)
∑

Mnn′ + i
Q

. (15.25)

As may be seen from the above equation, the introduction of the local field did
not make any drastic difference to the equation. It can actually be proven that
for a cubic lattice it will average out to zero, although for some other lattice
configurations it will lead to some shift in the position of the negative region.

You might ask at this stage why we bother to show two models here
for determining the effective permeability when we have already derived an
expression for the effective permittivity in Section 10.10, and surely the analogy
between permittivity and permeability allows us to rely on the same expression.
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Effect of negative material constants 405

This is indeed so. All we need to do is to substitute magnetic polarization for
electric polarization yielding

μr = ω2(1 − 2F/3) − ω2
0

ω2(1 + F/3) − ω2
0

. (15.26)

The positions of the pole and the zero may be seen to have shifted but again
there is no major change. All three models lead to the same conclusion. So why
did we need three different models? Well, let’s admit that the Clausius–Mossotti
model is a little obscure. Why can we add the effects of all the other elements
by assuming dipoles over a spherical surface? The merit of the first two models
discussed here is that the physics is clear.

15.8 Effect of negative material constants

We talked about negative permittivity in Chapter 1, at the beginning of this
course. In the lossless case, if the frequency is below the plasma frequency
an incident electromagnetic wave cannot propagate in a lossless conducting
medium (we may as well call it a plasma). This was shown schematically
in Fig. 1.5. Earlier in this chapter we claimed, and showed the theory and
the experiment, that a wire medium acts as an artificial plasma. There is
transmission when the effective permittivity is positive, and no transmission
(or rather very little transmission) when the effective permittivity is negative.
The situation is a little more complicated for the effective permeability of a
medium made up by split-ring resonators. It is negative in a certain frequency
band. Hence we should have transmission–no transmission–transmission again
as a function of frequency. Experimental results by Smith et al. show exactly
this, as may be seen in Fig. 15.10. There is a stop band between the frequencies
of 4.7 GHz and 5.2 GHz. So far, there is nothing surprising.

We may, however, raise a new question: what happens when both material
constants are negative? The possibility that this may happen was anticipated
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Fig. 15.10
Transmission through a set of
split-ring resonators exhibiting a stop
band in the region where the
permeability is negative. From D.R.
Smith et al., Phys. Rev. Lett. 84, 4184
(2000).
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406 Artificial materials or metamaterials

by Veselago in a paper written in Russian in 1967 and published in English∗ in∗ V.G. Veselago, Sov. Phys. Usp. 10, 509
(1967). 1968. It lay dormant for many years, until Smith et al. discovered it.

We know that the refractive index may be written as

n = (εrμr)
1/2. (15.27)

This is given in eqn (10.16) with the note that for optical materialsμr is usually
equal to unity. The case of interest is now when both εr and μr are negative.
According to the above equation, the refractive index is positive and nothing
has changed. Is that true? Let us quote Veselago:

The situation can be interpreted in various ways. First we may admit that the
properties of a substance are actually not affected by a simultaneous change of
the signs of ε and μ. Second, it might be that for ε and μ to be simultaneously
negative contradicts some fundamental law of nature, and therefore no substance
with ε < 0 and μ < 0 can exist. Finally, it could be admitted that substances with
negative ε and μ have some properties different from those of substances with
positive ε and μ.

Veselago then goes on to show the consequences of negative material
constants straight from Maxwell’s equations. Assuming a plane wave
propagating in a medium with material constants ε and μ in the form
exp[−i(ωt − k.r)], Maxwell’s equations may be written as

k×H = −iωεE and k× E = iωμH. (15.28)

It may be seen from the above equations that it makes a difference whether
the material constants are both positive or both negative. In the former case
the vectors E, H, and k constitute a right-handed set, whereas for negative
ε and μ we have a left-handed set. The wave vector k tells us the direction
of the phase velocity, and the Poynting vector tells us the direction of the
group velocity. If the two are in opposite directions, we have a backward-wave
material with all that implies. Thus negative refraction at a boundary between
two materials, one having positive material constants and the other negative
ones, follows immediately. But there is an alternative explanation. When one
takes the square root of a positive real quantity, the result may be positive or
negative. It is sensible to take it positive when the material constants are both
positive and to take it negative when both material constants are negative. But
that will have an influence on Snell’s law,

n1 sin θ1 = n2 sin θ2 (15.29)

Let us now take medium 1 as free space, n1 = 1 and assume that the refractive
index of medium 2 is equal to n2 = 0.17, 0.2, 0.3, 1, −1, −0.3, −0.2, −0.17.
The arrows show in each case the direction of the refracted ray. The angle of
refraction is 90◦ when n2 = sin θ1. (If n2 is even smaller, then total internal
reflection occurs in medium 1.) As n2 increases from this value below unity up
to infinity, the refracted angle declines from 90◦ to 0◦. Note that the angle of
refraction is the same for n2 = −∞ as for n2 = ∞. Now, as n increases from
minus infinity to –sin θ1, the angle of refraction declines from 0◦ to −90◦. If
n2 is between –sin θ1 and 0 then there is again total internal reflection. Clearly,
negative n2 implies negative refraction.

n2 = 0.2

n2 = 0.3

n2 = –1

n2 = –0.3

n2 = –0.2

n2 = –0.17

n2 = 0.17

u1=10°

n2 = 1

Fig. 15.11
Angle of refraction at a boundary
when the refractive index varies
between –∞ and +∞.
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The ‘perfect’ lens 407

A striking example of what we can do with a negative-index material is
Veselago’s flat lens, shown in Fig. 15.12. The source is at z = 0 and the lens
extends from z = d/2 to z = 3d/2. The image plane is at z = 2d . Forn = −1 the
angle of refraction is equal to the negative of the angle of incidence, and hence
all rays emanating from a line source will be refocused inside the material and
brought to another focus outside the material. If both the relative permittivity
and the relative permeability are equal to −1 then there is the additional benefit
that there is no reflection, because the impedance∗ of the medium is equal to

∗ Remember that the impedance of a
medium is equal to Z = Z0 (μr /εr)

1/2,
where Z0 is the impedance of free space.
If both μr and εr are equal to −1 at
some frequency then the impedance of
that artificial medium at that particular
frequency is equal to that of free space.

that of free space.

u1

u1 u1

u1

0 d/2 2d

z

3d/2

Fig. 15.12
Ray diagram showing negative
refraction and focusing for a flat lens
having a refractive index of n = −1.

Negative index and negative refraction are certainly interesting properties
of artificial materials that have both constants negative. But that’s not all.
There is one more interesting property: no wave transmission when one of
them is negative, but transmission is restored if both of them are negative.
The experiment was done by Smith et al. One of their results has already
been shown in Fig. 15.10, where the wave transmission was across a medium
consisting of split-ring resonators. In the frequency region where μ was
negative, transmission was low. However, the same experiment was also done
with both material constants negative (obtained by means of a lattice consisting
of unit cells as shown in the inset of Fig. 15.13) and, interestingly enough,
transmission increased,† as shown by the dashed curve in Fig. 15.13.

† The transmission increased but was still
considerably below that outside the stop
band. The reason was probably high
resonant absorption.

One might think that it would be far from trivial to produce a negative-
index metamaterial. In fact, it is quite easy. Superposition may not apply in
principle (no such theorems are known), but it seems to apply in practice. By
interlacing two lattices, one yielding negative permeability and the other one
yielding negative permittivity, we can indeed have a negative-index material.

15.9 The ‘perfect’ lens

Can one have a resolution beyond the classical limit? [This limit is called the
Abbe or Rayleigh criterion, depending on nationality (admittedly in an outdated
sense), i.e. whether one is German or English.] Both of these nineteenth-century
physicists suggested that the best resolution one can achieve is about half a
wavelength. In the last 80 years, a number of ideas have come around, aiming
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Fig. 15.13
The continuous line is the same as in
Fig. 15.10: transmission when the
permeability is negative. Results are
also shown (dashed line) for the case
when the permittivity is negative as
well. The inset shows the unit cell,
consisting of a split-ring resonator and
a metallic rod, capable of producing a
negative refractive index.
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408 Artificial materials or metamaterials

at improved resolution. Some of them, such as scanning near-field microscopy,
bore fruition. Actually, they are all interesting devices but, alas, beyond the
scope of this course. We shall mention only one of them, which is based
on negative material constants. It came about when Pendry realized27 that27 J.B. Pendry, Phys. Rev. Lett. 85, 3966

(2000). Veselago’s flat lens can do more than bring the radiation from a point source
on one side to a focal point on the other side. He showed that such a lens
with εr = −1 and μr = −1 can reproduce the complete Fourier spectrum of
an object. By the complete spectrum, we mean both the propagating and the
evanescent components. A lens capable of doing that could be justifiably called
a perfect lens.

How will such a lens operate? For a travelling wave, this is fairly obvious.
The optical paths inside and outside the lens are identical, but the one inside
has a refractive index of −1 and the one outside has a refractive index of +1.
Hence the total optical path is always zero. This is not really unexpected. The
negative-index medium compensates for the phase acquired in the positive-
index medium. But how does this lens work for evanescent components?
Evanescent components, as the name implies, evanesce: their amplitude
declines exponentially in free space. If the source is at z = 0 and the input
surface of the flat lens is at z = d/2 then at that plane a wave of the
form

E = E0 exp(ikxx) exp(−k′′
z z) (15.30)

(where kx is a space harmonic of the object expanded into a Fourier series at
z = 0, and k′′

z is the imaginary component of the wave vector in the z direction)
will have an amplitude of exp(−k′′

z d/2). If the lens has a width of d and the
image plane is a distance d/2 behind the lens then the wave moving from the
rear surface to the image plane will also have a decay of exp(−k′′

z d/2). We can
have a perfect lens if the thickness of the lens is d and the wave inside the
negative-index material grows at the same rate. Then, of course,

exp

(−k′′
z d

2

)
exp(k′′

z d) exp

(−k′′
z d

2

)
= 1, (15.31)

and the original amplitude of the evanescent wave is restored. Remarkably,
each component of the space harmonic spectrum is perfectly reproduced. In
other words, the transfer function (relating the amplitude and phase of a space
harmonic at the output to the input values) is constant, and its value is unity.

How can this happen? What is the physical mechanism behind it? For that,
we have to go back to surface plasmons, which we discussed in Chapter 1.
A surface plasmon is a wave that sticks to a metal surface. If, instead of a
single surface, we have a metallic slab with two surfaces then the waves stick
to both surfaces. Under certain conditions (when εr = μr = −1), it is only the
outer surface that is excited and the waves need to grow in order for this to be
possible.

So can we have a perfect lens? Not really. A limit will be set, if by
nothing else, then by the period of the negative-index material. If we can make
metamaterial elements of a size of 100 nm and if the distance between them
is also 100 nm then there will be a chance of making a lens with a resolution
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The ‘perfect’ lens 409

approaching 200 nm. And there will be other imperfections caused by losses,
tolerances, and possibly long transients.

Should we conclude that the perfect lens is a humbug? That it is a theoretical
construction based on invalid approximations? That there is no way of realizing
it? Absolutely not. We might say that the chances of producing an artificial
material for the purpose of subwavelength imaging in the optical range are
rather limited, but that is only part of the story. It turns out that high resolution
can still be obtained under circumstances when only the permittivity is equal∗to

∗ That negative permittivity is sufficient
for obtaining a high resolution follows
from the so-called electrostatic (ES)
approximation. This simplifies the
problem because there is no need then
to solve the wave equation and one
can rely on Laplace’s equation instead.
The ES approximation predicts perfect
imaging of a material in which only
the permittivity is negative; however,
the approximation has only a limited
validity. For that reason, in the treatment
that follows we shall give both the ‘full’
solution and the ES solution when they
differ from each other.

−1 and the permeability can be +1. And that can happen in a metal. Indeed, some
modest success has been achieved with silver as the lens material. Its plasma
frequency is very high; the permittivity is equal to −1 at a wavelength of about
360 nm so that a high resolution is indeed possible. But, you could argue, why
is this mentioned in a chapter on artificial materials? Silver is a natural material,
isn’t it? Well, yes, but for all practical purposes silver has been proclaimed an
honorary artificial material by the community of metamaterialists.

Let us now see a few simple examples. The lens is made of a slab of silver,
where only εr is equal to – 1. The imaginary part of the relative dielectric
constant is taken as ε′′

r = 0.4. The object consists of a pair of step functions of
15 nm width at a distance of 50 nm from each other. The imaging, for a 10 nm–
20 nm–10 nm lens configuration, is shown in Fig. 15.14(a). In the absence of
the lens, the power detected in the image plane is shown by a dot–dash line.
The two bars are no longer resolved. However, the resolution is very good in
the presence of the lens, whether we have the full solution or we resort to the
electrostatic approximation.

As mentioned before, we are concerned with the properties of the near field.
Hence making the lens thicker may be expected to reduce resolution. This is
indeed what happens, as may be seen in Fig. 15.14(b). The presence of the lens
is now insufficient for resolving the two bars. It may also be seen that there
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Fig. 15.14
A rectangular object (grey bars), and imaging under various conditions (in the absence of the lens, dot–dash line) and
approximations (full solution, continuous line; ES solution, dashed line). Insulator–lens–insulator thicknesses are
(a) 10–20–10 nm, (b) 20–40–20 nm.
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410 Artificial materials or metamaterials

is now a considerable difference between the full solution and the electrostatic
approximation.

We have taken the imaginary part of the dielectric constant as 0.4. Losses
may be expected to reduce resolution. So would we be better off with
a loss corresponding to εr = 10−4? Interestingly, the answer is no. The
plasma resonances mentioned above are much sharper for lower losses. The
corresponding transfer function [Fig. 15.15(a)] shows these resonances (NB
there are no resonances in the electrostatic approximation). Their effect is that
the spatial harmonic at which the resonance occurs will be very much enhanced
in the image, as shown in Fig. 15.15(b). The electrostatic approximation is now
no good at all, and the full solution shows a periodic function. The conclusion is
that having losses has advantages because they blunt the plasmon resonances.

As we mentioned before, there have been experiments with silver lenses
which led to improved resolution, and we shall refer to a silver lens again a few
paragraphs below. But there is another material worth talking about, silicon
carbide (SiC), which also has a negative-permittivity region in the vicinity of
its Reststrahl frequency, as discussed in Section 10.11. A schematic drawing of
an experimental configuration is shown in Fig. 15.16(a). The lens was 440 nm
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Fig. 15.15
(a) Transfer function against spatial frequency. The ES solution is flat within a wide frequency range; the full solution
has resonance peaks. (b) Image of the pair of step functions.
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Fig. 15.16
(a) Schematic representation of imaging by a SiC lens. (b) Object consisting of a set of holes. (c), (d) Amplitude and
phase distributions of the image detected by a scanning near-field optical microscope. From T. Taubner et al. Science
313, 1595 (2006). Reprinted with permission from AAAS.
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Fig. 15.17
Schematic representation of a
multilayer lens.

thick, coated on both sides by 220 nm thick SiO2 insulators. The object plane
was covered by a gold film patterned with holes of different diameters, 1200 nm,
880 nm, and 540 nm, as may be seen in Fig. 15.16(b). Note that this lens is
working in the reflection regime: illumination and detection are both on the
same side. The wavelength of the input wave was 10.85 μm. The image was
detected by a scanning near-field microscope which recorded both the amplitude
and the phase of the signal, displayed in Fig. 15.16(c) and (d), respectively. It
may be seen that even the smallest holes, corresponding to λ/20, could still
be resolved. The wavelength is in the range in which the dielectric constant is
negative. Identical experiments conducted at λ = 9.25 μm yielded no image
at all, proving that a scanning near-field microscope alone cannot have that
resolution at a distance of 880 nm away from the object.

Now back to principles. The ‘perfect’ lens has been shown capable of
drastically improving resolution. Is there any way to improve its properties
further? One of the disadvantages is that the lens must be thin and therefore the
image plane must be uncomfortably close to the object. The way to overcome
this difficulty is to use a periodic medium.∗ Then the evanescent waves can ∗ E. Shamonina et al., Electron. Lett. 37,

1243 (2001).repeat their performance of decaying, growing, decaying, growing, and the
output can be a distance away, as shown in Fig. 15.17. If only εr = −1
and the permeability remains at μr = 1 then the multilayer lens still exhibits
considerable advantages, as shown in Fig. 15.18. The object in all three cases
is a Gaussian of 14 nm half-width, and the wavelength of operation is 365 nm.
The total width of the structure is 80 nm. In the three cases investigated there
are first four 10 nm layers, secondly two 20 nm layers, and finally a single
40 nm layer. The imaginary part of the dielectric constant is taken as ε′′

r = 0.1.
The upper figures show the streamlines of the Poynting vector, and the lower
figures the relative values of the object and image distributions. It may be clearly
seen that for the same total width, the multilayer lens produces a much better
image.

The lenses we have considered so far reproduce the image at a certain
distance away. However, classical lenses, lenses we have cherished since high-
school days, do more than that. They magnify the image. Is there a chance to
have a magnifying ‘perfect’ lens? Yes, we shall show here [Fig. 15.19(a)] a
recent realization at a wavelength of 356 nm due to Liu et al. The lens consists
of alternate cylindrical layers of Ag and Al2O3 deposited on a half-cylindrical
cavity. There are 16 layers of both materials, with thicknesses of 35 nm each.
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A lens of 80 nm overall thickness. Upper figure: Poynting vector streamlines. Lower figure: object and image. The
object in all three cases is a Gaussian. The lens consists of (a) four sections of 20 nm thickness each, (b) two
sections of 40 nm each, and (c) a single section of 80 nm.

Fig. 15.19
(a) Schematic representation of the
operation of a multilayer lens
consisting of alternating Ag and
Al2O3 layers. The image spreading
outwards is magnified by the
cylindrical lens and then further
magnified by a conventional
microscope. (b) Object and magnified
image. From Z. Liu et al., Science
315, 1686 (2007). Reprinted with
permission from AAAS.
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Detectors for magnetic resonance imaging 413

Finally, a 50 nm thick chromium layer is deposited upon the last layer of the
lens. The object is the letters ‘ON’inscribed in the chromium layer. The smallest
feature is 40 nm (i.e. about λ/9) and the lines are 150 nm apart. In the magnified
image, that spacing becomes 350 nm. The spacing of 350 nm is close to the
wavelength of the incident wave, and hence the output image can be further
magnified by a conventional microscope. The object and the output image are
shown in Fig. 15.19(b). The main limitation is that the object has to be very
close to the first layer of the lens.

15.10 Detectors for magnetic resonance imaging

In magnetic resonance imaging, the precession of magnetic dipoles creates a
rotating magnetic field. The role of the detector is to detect this image, adding
the minimum amount of noise in the process. An idea for a new detector using
metamaterial elements is as follows: make a ring resonator out of capacitively
loaded loops in which waves can propagate with the same phase velocity as the
rotating magnetic field to be detected. A schematic representation is shown
in Fig. 15.20(a). Having used the advantage of travelling-wave detection,
one can further improve detection by parametric amplification (for a brief
description see Section 9.13), which can provide a low noise figure. The
requirement for parametric amplification is a signal wave, a pump wave in
synchronism (travelling at the same phase velocity), and an idler wave. In

E H

(a)

(b)

(c)

Pump

GND

VB

Signal

ω

Fig. 15.20
(a) A magnetoinductive wave ring
resonator excited by a rotating
magnetic field. (b) Realization by
rectangular loops made resonant by
inserting capacitors: upper ring for the
pump wave, lower ring for the signal
wave. (c) A prototype detector
consisting of 16 elements. From
R.R.A. Syms et al., Metamaterials 2,
122 (2008).
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414 Artificial materials or metamaterials

the actual realization with rectangular loops (Fig. 15.20(b)), there is both an
upper ring and a lower ring, serving the pump wave and the signal wave,
respectively. The idler wave is obtained by circuit means. A photograph
of the complete device shows separate loops for excitation and detection
(Fig. 15.20(c)).
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Epilogue

Eigentlich weiss man nur, wenn man wenig weiss,
mit dem Wissen wächst der Zweifel.

Johann Wolfgang von Goethe

The Republic of Science shows us an association of independent initiatives,
combined towards an indeterminate achievement . . . its continued existence
depends on its constant self-renewal through the originality of its followers.

Michael Polanyi article in Minerva 1962

I hope these lectures have given you some idea how the electrical properties of
materials come about and how they can be modified and exploited for useful
ends. You must be better equipped now to understand the complexities of the
physical world and appreciate the advances of the last few decades. You are,
I hope, also better equipped to question premisses, to examine hypotheses,
and to pass judgment on things old and new. If you have some feeling of
incompleteness, if you find your knowledge inadequate, your understanding
hazy, don’t be distressed; your lecturers share the same feelings.

The world has changed a lot since the first edition of this book. The quiet
optimism reigning thirty-nine years ago is no longer the order of the day.
Nowadays people tend to be either wildly optimistic, envisaging all the wealth
our automatic factories will produce, or downright pessimistic, forecasting the
end of civilization, as we run out of energy and raw materials. The optimists
take it for granted that the engineers will design the automatic factories for
them, and even the pessimists have some lingering hopes that the engineers will
somehow come to the rescue. It is difficult indeed to see any alternative group of
people who could effect the desired changes. I greatly admire physicists. Their
discoveries lie at the basis of all our engineering feats, but I don’t think they
can do much in the present situation. We don’t need to pry any more into the
secrets of Nature, we need to make them work for us. The current research of
geneticists, microbiologists and biologists may well produce a new species of
supermen, but it is unlikely that we can wait for them. We cannot put much trust
into politicians either. They will always (they have to) promise a better future,
but the power to carry out their promises is sadly missing. There is no escape.
The responsibility is upon your shoulders. Some of you will, no doubt, opt for
management, but I hope many of you will employ your ingenuity in trying to
find solutions to the burning engineering problems of the day. You are more
likely to succeed if you aim high. And it is more fun too.

I would like to end by quoting a passage written about the joys of inventive
engineering by the late Professor Kompfner, the inventor of two important
microwave tubes, and designer responsible for the electronics of the first
communications satellites, with whom we were privileged to work for a few
years in this laboratory.
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416 Epilogue

‘The feeling one experiences when he obtains a new and important insight,
when a crucial experiment works, when an idea begins to grow and bear fruit,
these mental states are indescribably beautiful and exciting. No material reward
can produce effects even distantly approaching them. Yet another benefit is that
an inventor can never be bored. There is no time when I cannot think of a variety
of problems, all waiting to be speculated about, perhaps tackled, perhaps solved.
All one has to do is to ask questions, why? how? and not be content with the
easy, the superficial answer.’

Added in 2009 for the 8th edition. We are writing this at a time when there
is a lot of talk about a recession and about its causes. To an engineer with
some familiarity with control theory, it must be clear that one of the principal
reasons is the speed of information transfer in the financial sphere, leading often
to exponentially increasing or decreasing solutions on too small a time scale.
What would an engineer do? Put some damping in the system. Red tape might
help.
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Appendix I: Organic
semiconductors

A1.1 Introduction

The range of materials suitable for producing various electronic devices has
been steadily increasing. It is no great surprise that organic materials have also
put in a claim to be represented. They were never completely disregarded, but
having reached prominence in the last decade, they can no longer be ignored.
It may indeed be argued that attempts to produce organic light sources are
bound to succeed. After all, it has been known a long time that fireflies glow
fairly brightly by a process called bio-luminescence. Enzymes in the fly cause
reactions that excite organic molecules. When they revert to their ground state,
light is emitted, with a very high quantum efficiency, but of course, not much
power.

As far as this book is concerned the main problem is that organic chemists
and engineers use different technologies and talk a different language. Electrical
conduction (or semiconduction) in an organic material is explained by chemists
in terms quite different from that of an engineer. They prefer to look at the
individual rather than at the crowd. They regard the properties of the individual
molecules as paramount and will maintain that the properties of the solid follow
from there. It would have been therefore difficult to treat the properties of
organics alongside inorganic materials. The best solution seems to be to devote
a separate section to them in which the technology and applications follow
immediately after the principles.

CH

H H

H

H

H

(a)

C

H

H

C

H

H

(b)

Fig. A1.1
(a) Methane and (b) ethane. Saturated
hydrocarbons with all σ bonds.

A1.2 Fundamentals

Some properties of organic materials have though been touched upon in
Section 5.3.6. We have come acrossσ bonds andπ bonds and we have even gone
that far as to give the chemical formula of acetylene. Since it was not more than
a very gentle introduction, it seems best to start here at the beginning, review
some properties of carbon bonding and say a few words about hydrogen atoms
which are well known for their predilection to join carbon atoms.

Carbon has six electrons—1s22s22p2. The two inner electrons do not
participate in the bonding but the four outer ones do. In simple compounds
like methane, CH4 or ethane, C2H6 (Fig. A1.1), will the 2s electrons behave
differently from the 2p electrons? The experimental evidence is that they
do not have separate properties. Some kind of compromise is apparently
taking place. One of the 2s electrons is ‘promoted’ to a 2p state by taking
up some energy, then the three 2p orbitals and the remaining 2s orbital create
four tetrahedrally disposed equal orbits called sp3 hybrids. The extra energy
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418 Appendix I: Organic semiconductors

Fig. A1.2
(a) Ethylene, an unsaturated
hydrocarbon, (b) A more picturesque
presentation of the scheme: σ bonds
at 120◦ in a plane from each C which
have their remaining electron orbital
perpendicular forming a π bond,
(c) Polyethylene, a saturated polymer.
All single bonds.
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required for this hybridisation is compensated by the energy gained by making
tetrahedral bonds to ligands [e.g. 4H in methane, Fig.A1.1(a)]. Each hybridized
orbital contains a single unpaired electron, which can pair with a hydrogen
1s electron to form a bond. This is the σ bond. Everything is stable, all
the electrons of the carbon atom have been used up. No electron has been
left over.

It is also possible for one s and two p orbitals to form three sp2 orbitals (sp2

hybridisation) which are planar trigonal orbitals (120◦ separation in a plane).
In ethylene, C2H4 [Fig. A1.2(a)] each C forms three σ bonds with sp2 hybrids
to the other C and 2H. Now, each carbon atom has one more electron left over.
Having no role to play in the horizontal plane, each one orbits in the vertical
plane. They are, however, not independent of each other. They form a looser
bond known as a π bond [Fig. A1.2(b)]. This is what happens in ethylene. The
double line between the two carbon atoms signifies a double bond: one is a σ
bond, the other one is a π bond.

H C C H

C C C CC

(a)

(b)

H H H H H

Fig. A1.3
(a) Acetylene, a linear molecule with
triple bond, (b) polyacetylene,
a conjugated chain polymer.

Now let us reduce the H/C ratio to one. The lowest member of this tribe
is C2H2, acetylene, well known as the welding gas which burns at a high
temperature. Shown in Fig. A1.3(a), it is a linear molecule which has two sp
hybrids on each C forming σ bonds each linking to the other C and one H. There
are two electrons left over on each carbon atom. What will they do? They will
again form two π bonds. Thus, in acetylene the bond between the two carbon
atoms is a triple bond, one σ bond and two π bonds.
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Molecule Formula n
absorption region
wavelength nm

Benzene

Naphthalene

Anthracene

Pentacene

1

2

3

5

255

315

380

580

Fig. A1.4
The benzene series, showing optical
absorption progressing from the uv
to the visible.

Let us next look at benzene, a planar six atom ring molecule, with a chemical
formula, C6H6. (Note that we are now following the notation of Organic
chemists and omit the H atoms, see Fig. A1.4.) Each carbon atom makes σ
bonds to two adjacent carbons and to one hydrogen. Its fourth electron orbits at
right angles to the plane and forms a π bond with one of the adjacent carbons.
These six electrons in π bonds form an electron cloud on both sides of the plane
ring, which contribute to the stability of the benzene molecule. The standard
formula of this family is C4n+2H2n+4 . With n = 2, 3 and 5 (shown also in
Fig. A1.4) they are known as naphtalene, anthracene and pentacene. All these
molecules are flat and there are 4n + 2π bonds per molecule, one for each
carbon atom, which influence the electronic properties. The σ network is quite
stable but the electrons in the π bonds are less tightly bound.

We should now briefly return to the single π bond of ethylene. The two
electrons are coupled, hence the energy levels split. The lower one is called a
bonding state the higher one an antibonding state. Under normal conditions,
the lower one is occupied, the higher one is empty. When there are more double
bonds in a molecule, the individual energy levels split further. The 3, 5 and
7 double bonds in benzene, naphtalene and anthracene will cause three-fold,
five-fold and seven-fold splits. As the number of double bonds increases, one
can talk about a band of energies, that is a band structure.

There is no need to use rings if a long structure is required. One can do the
same thing with linear molecules, for example, ethylene. It can mate up with
other C2H4 molecules (which can be called monomers) to form a long chain
polymer with the carbon chain potentially many thousands long. To do this, a
chemical process involves breaking the π bond between the two carbon atoms
and inserting a CH2 trio, as shown in Fig. A1.2(c). This is reasonably called
polymerisation and the resulting polymer in this case is called polyethylene,
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420 Appendix I: Organic semiconductors

more usually polythene. It is a well known inert plastic, chemically very stable.
The π bonds have gone, polythene has no interesting electronic properties.

A similar process can be done by chemical processing acetylene to break
the triple bond and putting in a CH pair as shown in Fig. A1.3(b). The ‘new’
carbon is σ bonded to the two carbons and the ‘new’ hydrogen, but has a spare
orbital to complete a π bond with only one of two adjacent carbons. Hence,
we get a polymer (known as polyacetylene) in which single and double bonds
alternate. Polymers with such structures are known as conjugated polymers.
Having many π bonds, there is now, as mentioned above, a band structure
consisting of the ‘bonding’ lower band and the ‘antibonding’ higher band.

Once we know that there is a bandgap, that is more or less under our control,
the possibility of constructing a light emitting device immediately arises. There
must be some mechanism of exciting the electrons into a higher state and
then they can give up their energy by emitting a photon. Organic chemists
describe the process as a transition between lowest unoccupied molecular orbital
(LUMO) and highest occupied molecular orbital (HOMO).

So how can we make an organic light emitting device (OLED)? We need to
construct a p–n junction, apply an electric field across it and when the electrons
and holes combine they will emit light. Let us assume for the moment that
there are p and n-type materials (doping will be described a little later), what
kind of electrodes would we need? Indium–tin oxide (ITO) is often used as
the anode partly because it is transparent (suitable for bringing out the light)
and partly because it has a high work function. It serves to inject holes into
the HOMO levels. The cathode is made of magnesium or calcium, low work
function materials, suitable to inject electrons into the LUMO levels.

What happens when the electrons and holes meet at the junction? It is not just
a straight descent from the upper band into the lower band. There are exciton
intermediaries of two kinds. When the electron–hole pair has opposite spins
it is a singlet if they have parallel spins it is known as a triplet. On average
one singlet and three triplets are formed for every four electron–hole pairs.
Singlets decay fast (order of ns) and emit a photon, triplets decay slowly (order
of ms) and generate heat. Thus normally an OLED cannot have higher than 25%
efficiency. There are though hopes that, by including heavy metal elements into
the compound, the triplets can also be persuaded to help the radiative process.

A1.3 Technology and applications

Having described the basic principles let us now come to hard realities. The
conjugated chain semiconducting polymer that we have described is a hard,
inflexible, insoluble plastic. However, organic chemistry can change this. For
inorganic semiconductors (e.g. Si), we know that doping with impurities of
up to 1 part per million can produce enormous ranges of both p and n-type of
conductivities. Conjugate polymers like polyacetylene can also be ‘doped’ by
replacing some of the chain of H shown in Fig. A1.3(b) by n or p-type groups
or more obviously by elements, for example Na, Ca as electron sources or
sulphur for holes. Also the whole nature of the polymer can be changed—even
making it soluble. This type of doping involves relatively massive impurities—
from a solid fraction of a per cent, up to 40 per cent. Bucket chemistry, in a
very controlled environment. The impurities are usually added to the molten
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Appendix I: Organic semiconductors 421

material, sometimes during the polymerization process. The facility of making a
semiconductor like polyacetylene or polyanaline soluble is an important step in
device (transistor or photodiode) manufacture. A thin film is needed (otherwise
the voltages to be applied would have to be impracticable) and this can be made
easily by spinning a drop of the solution on a suitable substrate. After drying,
films of less than 1 μm thick are easily and reproducibly obtained. Another
trick is that the solution can be mixed with a photochemical which becomes
an insulator on exposure to UV light. This has been exploited by a group at
Philips Research Labs. who used a photochemical mixed with polyaniline which
was exposed to UV through a mask to define conducting channels separated
by insulating barriers. This is a final stage in making a transistor or integrated
circuit which the Philips group has done, using double layers of semiconducting
polymers with three-dimensional interconnections. So far the electron mobility
in polymers is about 10−7 m2V−1s−1, a million times less than Si. A lot of work
is being done to increase that figure.

Research on polymer electro-luminescence was first reported by the National
Physical Lab in 1983, when feeble blue light from poly(N -vinyl carbazole),
(PVK) was obtained. Interest was not great until Professor R. Friend’s group
at Cambridge started publishing results on poly p-phenylene vinylene (PPV),
which eventually by 1998 achieved an efficiency of 20 lm W−1. This device
consists of: (i) a PPV layer doped to conduct electrons; (ii) a relatively undoped
PPV layer that luminesces; and (iii) a PPV layer doped to conduct holes. Further
advance has been made by J. Kido of Yamagata Unviersity who with a single
polymer film doped with several laser dyes (see Section 12.6.3) managed to
obtain an external quantum efficiency of 1% and a luminance of 4000 cd m−2.

The other strand of development, away from polymers, began when it was
realised that the quite small and stable organics like Alq [Fig. A1.5(a)] could
be easily evaporated in vacuum to form a thin film of about 0.2 μm. The high
fields required for luminescence could now be obtained with a few volts. A
simple diode, originally in the Kodak Labs and refined elsewhere is shown
in Fig. A1.5(b). Alq is an electron conductor whilst the other active layer, a
diamine with a formula mercifully abbreviated to NBP (it contains naphyl and
phenyl), conducts with holes. The diode is fabricated by coating a glass substrate
with a thin layer of ITO. The hole conducting layer NPB is next evaporated
onto this electrode in a vacuum (about 10−6 Torr) followed by a layer of Alq,
having a combined thickness of about 0.2 μm. Finally, the cathode, an alloy
of about 10:1 Mg–Ag is evaporated from separate tantalum boats. With about
6 V applied to the diode, a current of typically 7 mA/mm2 flows and gives a
luminance∗of green light of 4300 cd m−2.

∗ OLEDs are characterized by the
quantum efficiency—fraction of carriers
that produce a photon, and the luminous
efficiency which gives the flux emitted
per unit of power input (lm W−1) and
sometimes the brightness in cd m−2.

Al

O

O N

O

N

N

active
layers about

0.2 μm

–

+

Alq

NPB

ITO

Mg-Ag

Guest host
layer

Glass
substrate

Fig. A1.5
(a) Aluminium quinolate (Alq).
(b) Schematic of thin film small
molecule OLED.
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422 Appendix I: Organic semiconductors

Recent advances in OLEDs was stimulated by the ‘guest–host’doped emitter
system. This consists of adding a third (very thin about 50 nm) layer between
the two active layers of a flourescent dye∗.This central layer becomes the main

∗ The fluorescent dye seems to
work rather like the laser dyes in
Section 12.6.3, with the difference
that the ‘pumping’ is done by the
recombination photons. Probably a real
organic chemist would tell you that
things are quite different.

recombination region. Whilst the two active layers are optimised to conduct
electrons and holes, the third region is optimised for luminous efficiency. It has
been found possible to enhance the green emission natural to an Alq system,
and also by careful choice of other dyes to shift the photo emission into the
red. So coloured display panels can be made, by evaporating the layers through
masks to form pixels. Luminous efficiency is mainly limited by non radiative
decay of excited states the use of phosphorescent dye has put the efficiency up
to 70 lm W−1.

There have been numerous attempts in the recent past to produce white-
light OLEDs by, for example, combining blue (a fairly new achievement),
green, and red emitting layers. They work but they are still far away from
commercial applications. On the positive side it should be noted that OLEDs
have achieved operational stability up to 10 000 hours. This is adequate for a
number of passive display applications.

Organic solid state lasers were first demonstrated four decades ago. There
has been progress since but no great hopes of immediate applications.

Finally, FETs. They can also be produced from organic materials. To begin
with, it was only the active material (the channel between source and drain)
that was made of a polymer, but later it turned out to be possible to use heavily
doped polymers also for the electrodes. Unfortunately, all these transistors are
bound to be slow on account of the low mobility of organic materials, but that
may not matter. The main application envisaged for these transistors is as small
plastic memory chips attached to various consumer products (mounted possibly
on anti-theft stickers) and used for storing all kinds of information, a lot more
than contained in the present bar codes. A further major advantage would be
that these memory chips could be remotely interrogated by a radio frequency
identification system.

An application that should not go unmentioned is the ‘electronic nose’. One
such ‘nose’ has already been described in Section 9.21, where we lamented the
unfortunate fact that it would make sniffer dogs redundant. Another device that
can be used to recognize gaseous compounds is a mass spectrometer (discussed
in Section 9.26.2), in which the constituents can be separated according to their
masses. That is certainly a good and efficient way of doing so but it would be too
expensive to use for the purpose of smelling the milk in the refrigerator. What
we need is a ‘nose’ that works more like a human nose, which has millions
of odour sensors and can distinguish between thousands of different odours.
The human nose then communicates with the human brain, which can identify
the odour by comparing the received signal with those already stored. Thus
our ideal artificial nose should have a sampling system, a sensor array, and
a signal processor that includes a pattern recognition facility. That device has
become a practical possibility ever since the advent of organic polymers capable
of interacting with various gas molecules, and advances in pattern recognition
systems. Detection is done by monitoring the changes in the polymer’s electrical
characteristics caused by the interaction. It is probably too optimistic to expect
to see a device that can smell ‘everything’, but reasonably priced electronic
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noses for specific purposes (e.g. in the wine and food industry) should not be
far away.

On the whole, the main asset of organics is their flexibility. It is unlikely
that they can compete on speed and efficiency, but they can on price and in
applications where flexibility is an important requirement. There will surely be
demand for light sources which are large, cool, and cheap and can be fixed to
curved surfaces. Consumers would surely be delighted to have a (say) 1 m by
2 m television screen which can hang on a wall in the sitting room and, when
needed in another room, can be rolled up and swiftly moved. Many people
would also be interested in light-emitting wallpapers and television programs
on T-shirts. They will come—in time.
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Answers to exercises

Chapter 1

1.1. 2.66 × 10−13 s.
1.2. m∗ = 0.015m0,μ = 46.7 m2 V−1 s−1,ωcτ = 15 � 1.

The resonance may be regarded as sharp.
1.3. μe = 0.14 m2 V−1 s−1,μh = 0.014 m2 V−1 s−1.
1.4. (i)Ne =2.5 × 1028m−3, (ii)μe =5.32 × 10−3m2V−1s−1,

(iii) m∗ = 0.99m0, (iv) τ = 2.98 × 10−14 s, (v) 0.98.
1.5. 1.09 × 10−4 m, 4.67 × 10−8 m, 2.45 × 10−5 m.
1.6. (i) There may be a misalignment of contacts,

(ii) 1.04 × 1021 m−3, (iii) σ = 40.3 S m−1, (iv) μ =
0.24 m2 V−1 s−1.

1.7. The carriers will recombine.
1.8. R = −(1/e)(Neμ

2
e − Nhμ

2
h)/(Neμe + Nhμh), not

necessarily.

1.9. Reflection =
∣∣∣∣∣1 − (1 − ω2

p/ω
2)1/2

1 + (1 − ω2
p/ω

2)1/2

∣∣∣∣∣
2

.

For ω < ωp transmission = 0
For ω > ωp transmission = 4(1−ω2

p/ω
2)1/2/[1+ (1−

ω2
p/ω

2)1/2]2.

1.10. Transmission

=
[

cosh2(k2id) + 1

4

(
k2i

k1
− k1

k2i

)2

sinh2(k2id)

]−1

,

8.62 × 10−5, 8.67 × 10−47.

1.11. ¯̄εeqv = ε

⎡
⎣a11 a12 0
a12 a22 0
0 0 a33

⎤
⎦

a11 = 1 − ω2
pe

ω2
c − ω2

− ω2
pi

ω2
c − ω2

, a12 = i
ωc(ω

2
pe − ω2

pi)

ω(ω2
c − ω2)

a21 = −a12, a22 = a11, a33 = 1 + ω2
pe

ω2
+ ω2

pi

ω2
.

Chapter 2

2.1. (i) 6.22 × 10−9/a1/2 m, (ii) 7.27 × 10−11 m, (iii) 4.53 ×
10−15m.

2.3. Resolution ≈ λ = 5.48 × 10−12 m, 27.2 eV, lens
aberrations, voltage stability.

2.4. Maxima at θ = 0, sin−1 0.42, sin−1 0.83.
2.6. h̄ωp = 15.8 eV.

Chapter 3

3.2. 0,
a2

3

[
1 − (−1)n

6

n2π2

]
, 0,

h̄2n2π2

4a2
= h̄2k2

n = 2mEn.

3.3. 0, a2/3, 0,p2 = 2mE.

3.5. For E < V2 transmitted current is zero. For E > V2

J2/Jinc = (k2r /k1)|2k1/(k1 + k2r )|2. The equations are
formally the same as in exercise 1.6.

3.6. J3/J1 = [cosh2(k2id) + 1
4 (k2i/k1 −

k1/k2i )
2 sinh2(k2id)]−1,

0.136, 6.58 × 10−13.
3.7. With the approximation J3/J1 = exp(−2k2id) the

values are 0.055 and 2.57 × 10−13.
3.8. All the power is reflected.
3.9. E = (h̄2π2/2m)(n2/L2

x + m2/L2
y); 13E0/9, 25E0/9,

40E0/9, 5E0, 52E0/9 where E0 = h̄2π2/2mL2
x .

3.10. E ≈ 1.9 × 10−19 J.

3.11.

∣∣∣∣∣∣
0 cos k2a sin k2a

cos k1b − cos k2b − sin k2b

k1 sin k1b −k2 sin k2b k2 cos k2b

∣∣∣∣∣∣ = 0.

3.12. Pd = (−i/4ωμ)(E∗
x (∂Ex/∂z) − Ex(∂Ex/∂z)

∗).
3.13. En = (n + 1

2 )h̄ω0; zero point energy at n = 0.

Chapter 4

4.1. 1.22 × 10−7 m.
4.2. 4.13 × 106 m s−1.
4.3. �λ = 6.75 × 10−5 nm.
4.5. 〈r〉 = 3/2c0.
4.6. (i) quantum numbers are n = 2, l = 0,ml = 0,

(ii) c1 = −c0/2, (iii) E = −me4/32ε2
0h

2, (iv) A =
(c3

0/8π)1/2, (v) r = (3 + √
5)/c0.

4.7. The energy is the same for all the wavefunctions with
n = 2.

4.8. −54.4 eV; mutual repulsion of the electrons.

4.9. − h̄2

2m
(∇2

1 + ∇2
2 + ∇2

3 )ψ + 1

4πε0

×
[

− 3e2

r1
− 3e2

r2
− 3e2

r3
+ e2

r12
+ e2

r13
+ e2

r23

]
ψ

= Eψ .

Chapter 5

5.2. F = −3q2d2/2πε0r
4.

5.3. The atoms can be pulled apart when the applied force is
larger than the maximum interatomic force.

5.4. 3.12 × 10−10 m.
5.6. (−q2/2πε0) log 2.

Chapter 6

6.1. 0.270, 1262 K.
6.2. 3.16 eV.
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6.3. All of them.
6.4. 0.928EF.
6.5. Nh2/4πm.
6.7. (i) A0 = 1.2 × 106 A m2 K−2, (ii) 7.1 × 10−4 K−1,

(iii) by about 90%.
6.8. 1.02 × 10−7 A.
6.9. 7.27 eV; 394 J kg−1 K−1, 0.5%.
6.10. I ∼ (EF2 − E0)

1/2E
1/2
F eV.

6.11. 0, 0, 1, 1, 10 is a possibility.

Chapter 7

7.2. 1.11m0.
7.3. m∗ = h̄2/2Aa2 cos ka.
7.6. E = (axxk

2
x + ayyk

2
y + azzk

2
z + ayzkykz)/h̄

2.
7.7. 2V0/π .
7.8. The width of the allowed band is h2(2n − 1)/

8ma2 − 2V0w/a.
7.9. The electron.

Chapter 8

8.1. 0.043 eV.
8.2. 〈E〉 = 3 kT /2.
8.3. (i) 0.74 eV, (ii) m0/2.
8.4. 0.66 eV; 1.88 × 10−6 m.
8.6. Nh/Ne = 2.
8.8. (i) ρ = 20.3 k�m (ii) 0.45 k�m (iii) α = −7.94 ×

10−2 K−1.
8.9. NA = 2.45 × 1019 m−3,ND = 1.47 × 1020 m−3.
8.10. NA = 1.25 × 1019 m−3.
8.11. 2.0 × 10−5.
8.12. (i) NA = 2.52 × 1022 m−3, (ii) 1/2, (iii) NA = 2.52 ×

1022 m−3.
8.13. (i) 7.31 × 1022 m−3, (ii) 1.89 × 10−6 m−3, (iii) 7.31 ×

1022 m−3, (iv) 1.38 × 1017 m−3, (v) 171.3 K,
(vi) 0.295 eV.

8.16. 2.51.

8.18.
∂Nh

∂t
= Nhn − Nh

τp
− 1

e
∇; Jh.

8.19. (i) 4, (iii) m∗/m0 = 0.16, 0.21, 0.34, 0.51, (iv) No,
(v) 4.6 × 10−11 s and 5.8 × 10−11 s, (vi) Nh1/Nh2 =
0.41, (vii) The deep level is so sparsely populated that
the resonance is not observed.

Chapter 9

9.3. 1.4 k�m.
9.4. xn = (εs/εi)di + [(εs/εi)

2d2
i + 2εsε0U0/eND]1/2.

9.5. (i) d = [6U0εd0/eND]1/3 (ii) d = [4U0ε/eND +
d2

0/3]1/2.

9.6. 0.35 V for Ge, 0.77 V for Si.
9.7. 1.81 × 1019 m−3, 8.55 × 1016 m−3.
9.8. (i) kT log[(1 − α)/α], (ii) kT log[β/(1 − β)],

(iii) T = 197 K.
9.9. U0 = 19.5 V.
9.10. Nh−Nhn = Nhn[exp(eU1/kT )−1] exp[−x/(Dhτp)

1/2].
9.11. 0.94 mm.
9.12. Jh = e(Dh/τp)

1/2Nhn[exp(eU1/kT ) − 1] exp[−x/

(Dhτp)
1/2].

9.13. I0 = e[(De/τh)
1/2Nep + (Dn/τp)

1/2Nhn]A.
9.14. (i) σ0 = 2e(μe + μh)(m

∗
em

∗
h)

3/4(2πkT /h2)3/2,
(ii) 49.2%, (iv) I0 increases by 123%.

9.16. (i) I0 = 8.7 × 10−19 mA, T = 495 K, (ii) NA =
1.1 × 1023 m−3, (iii) U0 = 2.0 V,A = 1.49 ×
10−7 m2.

Chapter 10

10.2. 1.43 × 10−40 F m2.
10.3. 1.23 V m−1.
10.5. τ0 = 3.77 × 10−14 s,H = 1.01 eV.
10.6. a = τ , b = εs, c = τε∞.
10.8. The capacitance is reduced by 22%. The breakdown

voltage is reduced from 1000 V to 4.5 V.
10.9. Imδ = eω2(μE0 + υs)/2Ne0μυ

2
s c.

10.10. ε′
r = 1 +ω2

p(ω
2
1 −ω2)/[(ω2

1 −ω2)2 + (ωγ /m)2], ε′′ =
ω2

p(ωγ /m)/[(ω2
1 −ω2)2 +(ωγ /m)2]ω2

1 = k/m−ω2
p/3.

10.11. 2.68 × 1012 Hz.

Chapter 11

11.1. χm ≈ 10−5.
11.2. (μm)ind = 1.96 × 10−29 A m2.
11.3. (i) E = BIab cos θ (ii) μ̄m = area of the loop × I n̂

where n̂ is a unit vector normal to the plane of the loop.
11.6. θ = 633 K,C = 4.98 × 10−2, 0.46.
11.7. χm = 2.08.
11.8. T = 3.88 K.
11.9. (i) 2.8 × 109 Hz, (ii) 4.3 × 106 Hz.

Chapter 12

12.1. (a) (i) 5.0×10−4, (ii) 4.9×10−27; (b) (i) = 1.16×1030,
(ii) 0.27; ν = 4.23 × 1012 Hz at T = 293 K.

12.3. N/N0 = 2.08 × 10−15, 339 μW, λ = 122 nm, not in
the visible range.

12.4. N3 − N2 = 3.93 × 1021 m−3.
12.5. 0.953.
12.6. 2 × 10−4.
12.7. υ/2l.
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12.8. (ii) �ν = 4.66 × 109 Hz, (iii) 46.
12.10. J = 8.2 × 106 A m−2.

Chapter 13

13.2. σ = τeμeV /c
2.

13.3. E(0) = eND1d2/2ε − V /d2.
13.4. (i) 1.94 μm; (ii) 6.16◦; (iii) 10.03, 12.40.
13.5. (i) 169.2 nm, 208.2 nm; (ii) the reflection type.
13.6. (ii) εxx = εr + ε2

r rXYZEz, εxy = 0, εxz = 0, εyx = 0,
εyy = εr − ε2

r rXYZEz, εyz = 0, εzx = 0, εzy = 0, εzz = εr .
13.7. (i) A1 = A10 exp[i(k1 + k2)z/2][cosφz + i((k1 −

k2)/2φ) sin φz]

A2 = (iκA10/φ) exp(i(k1 + k2)z/2] sin φz
φ = [(k1 − k2)

2/4 + κ2]1/2.
(iii) κ = π/2 cm−1, (iv) ±842.2 m s−1.

13.8. t1t2 exp(γ /2 + ik)L[1 − r1r2 exp(γ /2 + ik)L]−1Ei.

Chapter 14

14.1. 3.15 × 1011 s, 1.5 × 1024.
14.2. 0.053A.
14.4. 1.97 × 1027 m−3.
14.6. (i) 1.13 meV, 2.17 meV; (ii) 3.72 K
14.7. 5.24 × 1011 Hz.
14.8. 3.14 × 1011 Hz.
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Abrikosov A.A. 377–8 415 

acceptor levels 125–7 331 

acceptors 125–8 135 137

   157–8 161 164

   191 194 

acetylene 73 418–20 

acoustics 231–2 319 

acoustic wave amplifier 226–7 235 

acousto-optic interaction 340–2 

AlGaAs 152 193 301–2

   344 354 357

   359 

alkali metals 11 19 68 

allowed energy bands 101–3 106 122 

Alnico  259 263 

amorphous magnetic materials 259–60 

 semiconductors 180–1 245 331 

Ampère’s law 35 258 367 

analogy 31–2 42 59

   73 79–80 107

   129 137 172

   188 195 229

   232 379 382

   387 

anti-ferro magnetic resonance 273 

anti-ferro magnetism 271 
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anti-Sod’s law 95 

archaeology 71 384 

argon laser 296 327 

arsenic  125 133 

artificial materials 394–414 

Aston, F.W. 213 424 

atom laser 327–8 

Auger recombination 306 

avalanche 

 breakdown 183 196 235 

 diode 182–3 

 photodiode 329–30 

average 

 value of operators 46 

 velocity 2–3 9 36

   131 

axial modes 311–12 

B 

backward diode 182 

band bowing 153 307 

bandgap engineering 307–8 

band-pass filter 236 

band theory 98–119 125 127

   221 378 

Bardeen, J. 166 362 424 

barium borate (BBO) 416 

 lanthanum copper oxide 367 

 titanate 237 242 

base  166–71 189 202

   207 

Basov, N.G. 315 424 
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BCS theory 362–378 389–90 

Bednorz, J. G. 385 424 

benzene 218 379 419 

beryllium 59 114 116 

bias 

 forward 162–7 170 173

   177 179 181

   187 190 194

   196 208 

 reverse 162–3 166–9 177–80

   183–7 193–6 208

   329 357–8 

Big Bang 387 

bio-luminescence 395 

bistability 349 352 358 

black art 89 323 

bloomed lens 324 

Blu-ray 320 

Bohr, N. 54 424 

 magneton 266 269 

 radius 54 61 

Boltzmann 

 distribution 2 84 

 statistics 161 216 257

   287 

Bonds  54 64–80 

 covalent 68–70 73 98

   121 126 135

   140 209 
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Bonds (Cont.) 

 ionic 67–8 72 136

   216 219 

 metallic 68 72 270 

 Van der Waals 71–2 215 

Born, M. 36 424 

bosons  83 327 365

   387 

bowing factor 307 

Bragg, W. H. and W. L. 103 424 

Bragg cell 341 

Bragg reflections 103 231 287

   292 307 336

   342 347 394–5

   404 

Brattain, W. H. 166 424 

breakdown 152 182–5 195

   240 

 avalanche 183 186 235 

 dielectric 235 

 thermal 235 

 Zener 183–5 

Brewster angle 295 

Brobeck 276 

BSCCO 388 

built-in voltage 160 166 196

   329–30 

bulk elastic modulus 66 71 

buried layer 209 
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C 

Cadmium sulphide 138 139 144

   154 238 329

   332 

carbon  1 59 62

   68 71–3 245

   418 

 bonds 69 78 418–9 

 dating 71 

 dioxide 71 

 dioxide laser 296 

carrier lifetime 137 140 147–8 

cavity dumping 312 

charge-coupled devices (CCD) 167 199–201 

chemical bond 59 61 64–5 

chemical laser 401 

chromium 62 63 88

   258 270 272 

Chu, S  319 425 

Clausius–Mossotti equation 230 395 

CMOS  195–6 

cobalt  60 62 88 

coercivity 257 

Cohen-Tannoudji, C. 319 425 

collector 167–70 185 

collisions 2–4 59 130

   138 143 

collision time 3 10 15

   130–1 137 139

   144 
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communications 14 32 136

   191 242 314

   317 342 404 

compact disc 320 

conduction band 117 132 144

   158 167 

conductivity, electrical 3–5 10 19

   37 98 129

   217 

conjugated polymer 420 

contact 

 ohmic 116 191 202

   300 

 potential 96 161 

continuity equation 49 156 219

   242 

Cooper, L. N. 362 424 

 pair 362 381 390 

copper  4 19 60

   120 148 232

   275 382 

 oxide 386 

Coulomb 

 blockade 209 

 force 48 65 164

   354 

 island 216 

 staircase 216 

coupled modes 73–8 

covalent bond 68–71 98 121

   126 135 215

   276 
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critical magnetic field 363–4 368 376

   383 

critical temperature 364 370 372

   378 382 385–7 

crystal growth 148–9 

crystallography 1 88 244

   391 

cubic lattice 1 33 226 

cuprate superconductors 386–7 

curie 

 constant 253 270 

 temperature 253–4 

current gain parameter 171 

cyclotron 

 frequency 14–15 275 

 resonance 13–16 19 109

   143 152 156

   274 

D 

Davisson, C. J. 25 424 

Davisson and Germer 23 25–6 

de Broglie, L. V. 24–5 30 32

   39 140 353

   424 

 wavelength 25 32 93

   129 363 

Debye  229 

 equations 228–9 241 

depletion mode 184 199 

degenerate semiconductors 185 295 
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density 

 gradient 138 218 337 

 of states 82–5 97 111

   122–3 203 303–5

   379 390 

depletion 

 region 159 161 164

   166 173 177–8

   185–6 191 212

   329 359 

 modes 194 

Dewar flask 143 361 

diamonds 68–72 114 117

   121 135 137–8

   225–6 398 

dielectric 

 constant 7 22 126

   174 218 220

   223–4 228 235

   247–8 336–8 341

   346 349 355

   360 378 400–1 

 materials 220–47 

 mirror 223–4 296 348–9 

diffusion 138 141 159

   209–10 250 330

   334 337 

 coefficient 138 

 current 169 176–7 218–9 

 equation 138 

 reactance 169 
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diode 

 avalanche 182–3 

 backward 182 

 Gunn 203–6 

 photo 329–31 

 tunnel 185–8 198 215

   380 

 varactor 190–1 241 312 

 Zener 188–9 

Dirac, P.A.M. 34 424 

direct-gap 145 147 155

   295 332 

directional coupler  345–7 

dislocations 2 153–4 332–4 

dispersion equation 8 14–15 18

   247 

divalent metals 116–17 

domain wall 256 371 

donor level 125–6 128–9 158

   219 331 

donors  125 127–9 132

   135 137 145

   155 161 166

   218 221 313

   337–8 

Doppler broadening 291 327 

double heterojunction laser 304–8 

drain  185–7 198 211

   214–6 241 282

   400 

drift velocity 3–4 6 140

   141 205 
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Drude  19 

 model 2 19 

DVD  320 

dye laser 296–8 312–3 

E 

eddy currents 150 258–9 364 

EDFA (erbium doped fibre amplifiers) 314 

effective mass 16 20 32

   109–11 115 119

   121–2 124 126

   128 130 138

   142–4 155–6 167

   197 203 300

   355 

 negative 110 115 

 table 142 

 tensor 111 119 122 

effective number of electrons 112 114–15 117

   121 

eigen values 56 

Einstein, A. 83 218 288

   326 365 389

   424 

 coefficients 288 391–2 

 relationship 218 

electrical conductivity 2–4 7 9

   19–20 37 98

   129 217 

electrical motors 281 384 388 

electrical noise 3 191 240

   314–5 330 
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electro-absorption 354–9 

electro-luminescence 421 

electron 1 

 affinity 173 332 

 microscope 26–7 33 

 spin-resonance 273 285 

 volt 48 54–5 405 

electro-negative atoms 332 

electro-optic material 334–5 

electrostriction 228–9 240–1 261 

 emitter 88 167–72 191

   196 209 

energy band 98 106–7 109

   112–13 117 119 

 allowed 101 106–7 122 

 forbidden 101 106–7 119

   122 

energy gap 105 116–18 121

   124–5 128–9 134

   136 137 140

   144–7 154 179

   189–91 200 220

   294–6 307–3 330–33 

 superconducting 378–80 390 

energy, surface 370–2 

engineer 1 26 34

   98 239 417 

enhancement mode 188 

entropy 367 369 

epitaxial growth 150–1 199 205

   208–10 279 

erbium  314 
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Esaki, L. 380 424 

etalon see Fabry–Perot 

etching 154 209 212

   333 

Euler’s equation 428 

exchange interaction 271–2 

excimer laser 210 298 387 

exciton 164 320 354–7

   398 

exclusion principle 57 59 61 

extrinsic semiconductor 121 125–9 131

   145 156 167 

F 

Fabry–Perot etalon 293 310 349

   350 

Fermi, E. 83 424 

 function 85 96 117

   121–3 125 126

   185 220 286 

 level 84–6 92 95–6

   117 119 122

   124 127–9 131–2

   145 154–5 158

   162 167 172

   175 187 198

   216 218 285

   379 

Fermi-Dirac distribution 82–5 365 

ferrimagnetic resonance 273 

ferrimagnetism 272 
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ferrites  260–2 276 279–81

   352 

ferroelectrics 242 

ferroelectric random access memory 242 

ferromagnetic resonance 273 

ferromagnetism 249 271–2 391 

Fert, A. 280 425 

FET see field-effect transistor 

Feynman, R. 73–8 372 424 

 model 106–9 113 116

   119 130 

field-effect transistor 185–6 191–5 197

   241 279 400 

field emission 92 

 microscope 92–3 

filters  229 243 347 

Flatland 208 

flat lens 407 

floating zone purification 150 

forbidden energy band 101 106–7 119

   122 

Fourier transform 32 291 

four wave mixing 339 

FRAM see ferroelectric random 

 access memory 

Franz–Keldysh effect 357 

free carrier absorption 300 331 

free electron theory 81–96 

fullerenes 72 215 386 
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G 

Gabor, D. xiv 323 424 

gallium 125 136 153

   276 

 arsenide 136 139 142

   155 226 301

   306 354 

 nitride 136 142 152

   153–4 306 334–6 

 phosphide 136 142 331–2 

garnets 70 272 276–8

   294 

gas 

 dynamic laser 297–8 

 lasers 224 322 

 sensors 207 

gate  191–5 199 211

   214–7 241 279

   350–1 

gauge factor 206 

germanium 21 64 69

   98 121 125

   132 135 136

   138 143 150

   218–20 327 

 covalent bond 69 98 

 crystal structure 138 

 cyclotron resonance 144 156 

 energy gap 117 120 129 

 impurities in 120 129 

 indirect gap 138 146 
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germanium (Cont.) 

 melting point 136 

 mobility 131–2 153 

 resistivity 155 

g-factor 265 273 

Giaever, I. 379 380 424 

giant magneto-resistance 378–9 

Gibbs 

 free energy 367–8 369 371–3

   374 408 

 function 367–8 373 

Gilbert  249 253 259 

GINA alloys 306–7 331 

Ginzburg, V.L. 372 376 425 

Goethe, J.W. von 329 393 

graphite 69 72 137

   139 215–6 390 

ground state 48 55 61

   63 

group velocity 29–30 109 119 

Grünberg, P. 380 425 

Gunn  131 

 effect 131 203–5 

H 

Hall 

 coefficient 7 21 140

   143 

 effect 5–6 20–1 114

   143 206–7 274–6

   278 387 

Hamiltonian 74 
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hard magnetic materials 258 260–4 382 

hardness 70–1 

hard superconductors 382 

Haynes–Shockley experiment 140–1 

heat valve 385 

heavy holes 138 142–4 193

   355 

Heisenberg, W. 30 36 271

   424 

helimagnetism 272 

helium  57–8 68 93

   143–4 265 295

   319 361 383

   387 389 

 atoms 33 59 93

   295 

helium-neon laser 295–6 341 

High Electron Mobility Transistor 

  (HEMT) 197 199 216 

Hertz  35 405 

heterostructures 196–9 306 

high temperature superconductors 385–91 

Hilsum 203 

Hockham 242 

Holes  6–7 22 114–17

   122 126–8 131–3

   138–9 142 164

   178 193 219

   355 
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Holes (Cont.) 

 heavy 138 143 193

   355 

 light 138 143 193

   355 

holography 323–5 336 401 

homopolar bond 69 

Hooke’s law 66 231 

Hund’s rule 266 

hybridization 396 

hydride vapour phase epitaxy (HVPE) 156 

hydrofluoric acid 202 209 

hydrogen 

 atom 31 51–63 69

   78 126 155

   265–6 281 352

   355 395 

 cyanide laser 296 

 molecular ion 76 78 106 

 molecule 42 64 69

   73 76 78–9 

hydrodynamic model 4–5 

hysteresis 241 254–5 257–8

   262 352 

I 

impurities 120 124–7 130

   147 150 152

   155 161 197

   205 218 258

   262 395 

indirect gap 138 146–7 331 
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indium  125–7 136 153

   155 377–8 395 

 antimonide 21 206 278 

 gallium nitride (InGaN) 153 306 333–4 

infrared detectors 331 

inhomogeneous broadening 291 

injection 141 147 164–6

   178 196 200

   298 300 

insulators 114 117 217

   235 

integrated circuits 150 207 239

   343 

integrated optics 343–7 

interdigital transducer 239–40 

interference 25 120 140

   325–7 336–7 

intrinsic breakdown 235 

intrinsic semiconductor 120–5 127 129

   131 155 206

   219 

inversion 184 193 304

   310 317 327 

inverted population 289 295 310

   327 

ionic bond 67–8 72 134

   136 222 225 

ion implantation 209 278 332 

ionization energy 125 

ionized acceptors 128 155 

ionized donors 127 178 337–8 

ionosphere 13 225 
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iron  19 72 197

   247–8 252 259

   264 267 271–2

   276 285 

 ferrite 260 

isolators 279 348 

isotopes 

 effect 365 390 

 separation 323 

J 

joking asides 1 19 34

   35 42 47

   69 71 78

   89 95 110

   118 120 159

   164 249 270

   272 276 286

   311 318 322

   353 357 361

   385 387 391

   398 406 420 

Josephson, B. 380 424 

 junction 381 383–4 387

   392 

 tunnelling 380–1 387–8 

junctions 

 capacity 166 169 

 laser 298–301 

 metal-insulator-semiconductor 176–8 199–200 

 metal-semiconductor 171–5 177 329 
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junctions (Cont.) 

 p-n  157–67 169 172–3

   176–8 195–6 200

   203 218–9 247

   299–300 327 329–30 

 tunnel, superconducting 380 

K 

Kamerlingh Onnes, H. 361 424 

Kao  243 

Kilby, J.St.C 201 425 

Kogelnik 311 

Kompfner, R. 415 

Kronig–Penney model 105–8 114 119

   395 

L 

Landau–Ginzburg theory 372–8 

Landau, L.D. 372 424 

Langevin function 223 252–3 

Larmor frequency 251 

laser  96 224 232

   286–327 

 applications 317–325 

 atom 326 

 cavity surface emitter 308–9 

 chemical 298 

 double heterojunction 301–2 

 dye 296–7 

 excimer 298 

 fusion 323 

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


Index Terms Links 

 

This page has been reformatted by Knovel to provide easier navigation. 

laser (Cont.) 

 gas-dynamic 297–8 

 gaseous discharge 295–6 

 glass 294 

 modes 310–12 

 quantum cascade 309–10 

 quantum dot 305 

 ruby 294 

 semiconductor 298–300 

 solid state 294–6 

lateral resonant tunnelling transistor 214 

lattice 

 ion  1–2 68 98

   102 222 231

   365 

 spacing 3 33 129

   135 226 307 

 vibrations 71 147 362 

lead  60 62 347

   377 385 

LED see light emitting diodes 

Lenz’s law 251 364 

Li   311 

lifetime 137 140 147

   156 164 219

   279 359 

lighting 95 331–4 

light 

 detectors 329–31 

 holes 138 142–4 194

   355 

 modulators 347–9 357 
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light emitting diodes (LED) 153 219 331–4 

limericks 47 345 362 

Lippmann, G. 394 424 

liquid crystal 245–7 348 

liquid phase epitaxy (LPE) 151–2 

liquidus 149–50 

lithium 58–60 64 114

   119 267 323

 niobate (LiNbO3) 335 341 344

   347 

Little  362 

lodestone 249 

logic function 171–2 188 217

   383 

London, F. 391 

London, H. 391 

Lorentzian lineshape 291 

loss tangent 223 242 246 

lossy material 8–9 224–5 229

   237 241 243

   247 

Lucretius 249 

M 

Madelung constant 68 137 

magnesium boride 390 

magnetic amorphous material 259–60 

magnetic anisotropy 256 258–9 262–3 

magnetic bubbles 276–8 

magnetic domains 254–7 281 371

   382 

magnetic materials 249–81 
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magnetic resonance 272–4 

magnetic resonance imaging (MRI) 283 413 

magnetoresistance 278 

magnetostriction 258 

majority carriers 147 161 178 

maser  315–7 327 

mask  202–3 278 344 

mass 

 action, law of 133 

 effective 17 21 33

   109–11 115 119

   121–2 124 126

   128 130–31 139–40

   142–4 154–6 167

   197 203 

matched filter 240 

Maxwell 7–8 35 

Maxwell–Boltzmann distribution 3 84 291 

Maxwell’s equations 6–7 21 35

   223 247 397

   413 

MBE see molecular beam epitaxy 

medical imaging 283–4 413 

Meissner effect 364–5 

memories 

 ferroelectric 242–3 

 holographic 325–6 

 magnetic 276–8 

 semiconductor 209 

 superconducting 283 

MEMS see microelectro-mechanical 

  systems 
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meson  78 

metal-insulator-semiconductor 

 junctions 176–8 194–5 

metallic bond 68–70 72 270 

Metal Organic Chemical Vapour 

 Deposition (MOCVD) 153–4 305 332–3 

Metal-Oxide-Silicon Field Effect 

  Transistor (MOSFET) 187–8 

Metal-Oxide-Silicon Transistor (MOST) 187–8 

metal-semiconductor junctions 158 172–3 174–5

   329 

metamaterials 394–414 

 definition of 396 

metrology 319 384 

microelectro-mechanical systems 

  (MEMS) 209–10 353 

microelectronics 201–8 

microwaves 143–7 156 183

   225 282 319

   327 392 403 

minority carrier 146 155–6 164–7

   178 

mobility 4 21 119

   131–2 134 140–43 

 measurement of 21 140–43 

(MOCVD) see Metal Organic 

 Chemical Vapour Deposition 

molecular beam epitaxy (MBE) 152–3 

molten zone 149 150 

momentum operator 38 48 147 

Moore’s law 205 

Mott, N. 279 424 
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Müller, K.A. 385 424 

multiple quantum well (MQW) 

 structure 303–6 309 

N 

Nakamura, Shuji 352 

nano crystalline alloys 260 

nanoelectronics 213–7 

nanotubes 72–3 215–6 

Néel, L. 271 424 

Néel temperature 271 

negative effective mass 110 115 

negative material constants 405–7 

negative resistance 181–3 202–5 380 

negative temperature 286–8 290 

neodymium 231 263 294 

neon  59 295 

Newton 373 

Newton’s equations 35 109 

neutron 58 73 78

   81 387 

niobium alloys 382 389 

Nobel prize winners 424 

noise temperature 317 413 

nonlinear optical materials 315 320 

n-type semiconductors 127–9 141 155–6

   172 175 178

   187 

nuclear forces 78 

nuclear magnetic resonance 273 283 
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O 

O’Donnell, K.P. 334 

Ogg, R.A. 362 

ohmic contact 176 197 300 

Ohm’s law 1–4 97 142

   186 

operators 

 average value 46 

 Hamiltonian 74 

 momentum 38 48 147 

optical Darwinism 311 313 

optical disc 320 

optical fibre amplifier 314–5 

optical fibres 243–5 299 314

   322–3 353 

optical plasma 234 241 

optical radar 320 

optical switching 352–4 

optoelectronics 328–60 

orbitals 395 398 

organic light emitting device (OLED) 420–2 

organic semiconductors 385–7 417–23 

 superconductors 391–2 

orthonormal wave function 75 

oxide superconductors 385–7 389–90 

P 

paramagnetic resonance 272–3 

paramagnetism 252 268–70 315 

parametric amplifier 184–5 313 

parametric oscillator 185 313–4 
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Paul, W. 312 424 

Pauli, W. 36 57 424 

Pauli’s principle 57–9 79 85

   167 267 363 

Pendry, J.B. 408 

penetration depth 375 

perfect lens 395 407 

periodic table 51 57–61 

permalloy 259 261 

permanent magnets 253 260–9 

permeability 7 250 258

   260 282 

phase 

 conjugate mirror 339 

 conjugation 336–7 

 diagram 148 386–7 

 shifter 210 242 344–5 

 transition 366–9 383 

 velocity 9 27 29

   360 

Phillips, W. 319 425 

philosophical implications of quantum 

 mechanics 46–8 

phonon 83 147 234

   241 362 

phosphorus 60 125 127

   151 209 

photoconduction 137 140 148

   329 

photodetector 322 328–30 342

   358 

photodiode 329 
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photoelectric effect 93–5 

photoengraving 202 276 

photon  29 33 46

   48 50 83

   94 96 121

   145–7 219 287–9

   292–3 296 299

   328–9 354–6 427 

photonic band gaps 396–8 

photorefractive materials 328 335 337–8

   391 

photoresist 201–3 206 217 

phototransistor 329–30 

piezoelectric constant 236–7 333 

piezoelectricity 236–41 348 

piezomagnetism 264 

pinch-off voltage 193 

pin junction 329 358–9 

planar technique 150 207–12 

Planck, M.K.E.L. 25 35 38

   50 424 

Planck’s constant 25 30 384

   405 

plasma 

 etching 205–7 

 frequency 17 398 

 heating 319 

 physics 17 205 

 waves 17–18 33 247 

platinum 60 62 88

   361 406 

plutonium 60 62 390 
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p-n junction 157–67 169 172–3

   182–5 190 218

   249 298 302

   327 328–9 

 capacity 166 169 

Poisson’s equation 18 159 192

   337 

polarizability 222–3 227 245

   247 334 

polarization 222–3 227 229–30

   280 

polymer 418–20 

population inversion 289 90 292 298

   315–7 

potassium 11 60–62 88 

 chloride 80 247 

 chromium alum 269 

potential 

 barrier 39–42 45 48

   76–7 86 90

   92 99 101

   130 173–4 179–80

   183 216 354 

 well 43–6 48–9 75

   81 86 101

   192–4 215 301

   303–4 354 

Poynting vector 22 50 

Prokhorov, A.M. 315 424 
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proton  26 31 51–2

   55 57–8 61

   73 76–9 250

   272 282 355

   405 

 spin resonance 273–4 

p-type semiconductor 127 129 187

   199 219 299 

pump  185 289–90 293

   295 313 315

   327 

Q 

Q switching 312–3 

quantum 

 cascade laser 309 

 confined Stark effect 357–8 

 dots 305–6 

 of energy 25 

 Hall effect 274–6 387 

 numbers 56–7 73 253–6

   280 

 well structures 305 328 333

   354 355 

 wires 305 

quark  387 

quartz  70 95 151–2

   202 237–8 341 

quartz-halogen lamps 95 406 
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R 

radar  32 184 200

   240 318 320 

radio waves 11 14 318 

Rapid Single Flux Quantum devices constant 25 30 

  (RSFQ) 383 

Rapid Solidification Technology (RST) 259 

rare earth magnets 263 

recombination 132–3 141 148

   153 156 164

   167 219 302

   333 

rectification 162–4 247 

rectifier equation 163 179 219 

refractive index 71 223–4 226

   243 327 335

   419 

relative permeability 250 

relaxation time 4 228 246

   298 391 

remanent flux 257 

resonance 

 cyclotron 14–17 20 143–4

   156 274 

 electron spin 273 

 ferrimagnetic 272 

 ferromagnetic 273 

 nuclear magnetic 273–4 370 

resonant loop 378–9 

Richardson, D.W. 88 424 

Ridlet  198 
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ripple tank 24 

ring laser 322 

Rochelle salt 237 

RSFQ see Rapid Single Flux Quantum 

 devices 

RST see Rapid Solidification 

 Technology 

ruby  227 286 294

   314–6 

S 

saturable absorber 313 

scattering 129–31 156 191

   225 281 284

   363 

Schottky 

 barrier diodes 174 

 effect 89–91 174 357 

Schrieffer, J. R. 362 424 

Schrödinger, E. 34–5 54 424 

Schrödinger’s equation 34–9 42–3 46

   79 81 85

   96 99 167

   196 274 

 time independent 49–51 63 74

   99 

Scientific American 272 

Seitz  86 

semiconductors 1–4 7 15

   69 98 120–156

   196–201 227 334–6

   417–423 
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semiconductors (Cont.) 

 degenerate 179 299 

 devices 157–217 276 278

   282 284 298–309

   315 

 extrinsic 121 125–9 131

   145 156 

 Fermi level 127 129 

 intrinsic 120–25 127 129

   131–2 155 

 lasers 118 136 298–303

   331 

 measurements 140–48 

 mobility 140–43 

 table of properties 125 135 136

   142 219 227

   233 307 335

   342 

Shockley, W. 2 140–41 166

   248 424 

silicon  60 68–70 98

   120–21 125–8 138–9

   146–8 150–51 176

   201–205 207–8 217 

 covalent bond 69 98 125

   135 

 controlled rectifier 196 

 crystal structure 121 138 

 dielectric constant 126 174 227 

 effective mass 139 153 

 E-k curve 138 

 energy gap 117 139 
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silicon (Cont.) 

 epitaxial deposition 150–52 201–4 

 holes in 148 

 impurities in 120 125 127

   147–8 153 

 indirect gap 146 

 in iron 259–61 

 melting point 136 150 

 metallurgical phase diagram 148–50 

 microelectronic circuits 201–5 

 mobility 131 134 142

   155 421 

 MOST 187–8 204–5 

 strain gauge 200 

 tables of properties 125 132 136

   142 219 

silicon dioxide 70 152 188

   194 201–6 221

   238 301 

silver  19 60 88

   266 409–10 

silver halide 337 

silver lens 410–11 

single crystals 25 33 139–40

   148–54 

Single Electron Transistor 216 

skin depth 10 

sniffer dog 201 

sodium 19 21 59

   61 65 96

   134 226 276 
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sodium chloride 65 67–8 134

   236 

Sod’s law 95 

soft magnetic materials 258–62 

Sommerfeld 81 

solar cell 140 153 329–31 

solidus  148–9 

spatial light modulator 329–30 349–51 

specific heat 19–21 23 37

   85–6 96 369–70

   378 

spin  57 69 75

   79 83 87

   111 114 167

   266–7 272–3 278–82

   316 365 387

   391 

spintronics 278–82 

split-off band 138 143 

spontaneous emission 271–8 293–4 305 

SQUID see Superconducting 

 Quantum Interference Device 

Stark, J. 357 424 

Stark effect 333 356–7 

steam engine 99 217 334 

Stern, O. 268 424 

Stern–Gerlach experiment 268–70 

stimulated emission 288–9 294 315 

strain  236 

strain gauges 200–1 

stress  236 
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superconductors 283 361–393 

 applications 382–5 

 energy gap 378–81 

 hard 382–3 

 high Tc 385–392 

 Josephson tunnelling 379–81 

 magnetometer 383–4 

 memory elements 383 

 oxide 385–6 389–91 

 surface energy 370–2 

 switches 383 

 type I 377–8 

 type II 377–8 382 

 vortex 377–8 

Superconducting Quantum 

 Interference Device (SQUID) 383–4 

Supermalloy 259–61 

surface acoustic wave (SAW) device 239–41 

surface energy 371 

surface states 174–6 195 

susceptibility 

 dielectric 221 

 magnetic 250–1 265 280 

Syms, R.R.A. iii 353 413 

T 

Tamm, I.Y. 176 424 

Tamm states 176 

(TBCCO) 386 389 

TEGFET see Two-dimensional Electron 

  Gas Field Effect Transistor 

ternary compounds 152 309 
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tetrahedral bonds 69–71 135 

thermionic emission 86–9 91 

thermal breakdown 42–3 235–6 

thermal velocity 3 5 268 

thoria  246–7 

thought experiment 23 

threshold wavelength 11 

thyristor 197 

tin   58 207 364

   389 392 

Townes, C.H. 166 315 424 

transistor 166–71 

transition 

 elements 60 271 

 region see depletion region 

transverse modes 294–5 309–10 

tritium  323 

tungsten 71 88 92–6

   406 

tunnel diode 42 179–83 203

   215 309 380 

tunnelling 42 48 77

   92 96–7 179–83

   214–5 379 392 

 Josephson 380–1 

 between superconductors 379 

Two-dimensional Electron Gas Field 

 Effect Transistor (TEGFET) 191 

Type I superconductors 377–8 

Type II superconductors 377–8 382 
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U 

ultra violet 96 136 202–4

   298 328 

uncertainty relationship 30–1 37 290 

V 

valence band 117–8 121–2 124

   126–7 137–9 146

   155 158 167

   172–3 175–9 190

   299 354 

vanadium 60 

van der Waals, J.D. 71 424 

 bond 71–2 215 266 

 forces 71–2 215 

varactor diode 184–5 241 312 

variational calculus 428–9 

Veselago’s flat lens 406–8 

Vertical Cavity Surface Emitting Laser 

  (VCSEL) 308 

viscous force 5 10 

volume holography 325 336–9 

W 

Watkins 198 

wave function 36 40 43–6

   49 51 54

   56 58 63

   74 75 81

   104–5 119 

waveguide discontinuity 42 346 
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wave number 21 27–8 30

   104–5 360 

 complex 8 

wave packet 28–30 33 39–40

   45 

Weiss  252 2642 272

   284 

Weiss constant 252 284 

Wiedermann–Franz constant 19–20 

wire medium 398–9 

work function 86 88 91

   94–6 172 174 

world wide web 315 

wurtzite 137 332 

X 

xerox process 140 245 

X-rays  26 103 119

   283 394 

Y 

YAG see yttrium aluminium garnet 

YBCO see yttrium barium copper oxide 

yttrium 272 276 294 

yttrium aluminium garnet (YAG) 294 

 laser 294 314 

yttrium barium copper oxide (YBCO) 386–7 

yttrium iron garnet (YIG) 272 

Yukawa 78 
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Z 

Zeeman, P. 266 424 

Zener breakdown 183 

Zener diode 182–3 

Ziman model 102–5 113 119

   129 

zinc  60 62 135–6

   148 260 364 

 selenide 136 142 

 sulphide 136 142 

 telluride 136 142 

zincblende 135 137 306 

zone refining 120 149 
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