
MINISTRY OF HIGHER AND SECONDARY SPECIAL EDUCATION OF THE

REPUBLIC OF UZBEKISTAN

TASHKENT STATE TECHNICAL UNIVERSITY

Registered

№ __________________

«_____» __________2022

«APPROVED»

Vice Rector for Academic Affairs

_____________ O.O. Zaripov

«_____» _____________ 2022

Department ____Information technologies___

Educational and methodological complex

on subject

"Information technologies in technical systems"

Field of knowledge: 700 000 – Engineering, manufacturing and

construction industries.

1 000 000 – Services.

Field of education: 710 000 – Engineering.

720 000 – Industrial and technological sphere.

Direction of education: For all directions in the field of education.

Tashkent – 2022

2

The educational and methodological complex is compiled on the basis of the discipline

program approved by order from №__________ «_____» __________ 2022г.

Authors: - Sagatov M.V.. – professor of the Tashkent State Technical

University, Doctor of Technical Sciences, Head of the Department of

Information Technologies;

Tashmatova Sh.S. - Senior Lecturer at the Department of Information

Technologies, Tashkent State Technical University.

Kurbanova K.E. - Senior Lecturer at the Department of Information

Technologies, Tashkent State Technical University.

Khamdamova S.M. - Senior Lecturer at the Department of Information

Technologies, Tashkent State Technical University.

The educational and methodological complex was discussed at a meeting of the

Department of Information Technology of the Faculty of Electronics and Automation and

submitted for consideration by the educational and methodological council of the faculty

(protocol No. ____ dated "____" ____________ _2022_).

 Head of the department _____________ Sagatov M.V.

 Secretary _____________ Akbarova Sh.A.

The educational and methodological complex was reviewed and approved at a meeting

of the scientific and methodological council of the university (minutes No. ___ dated "____"

________ 2022).

Secretary of the Scientific and Methodological Council ____________ N. Mambetov.

3

Page content

1. The content of the lectures (modules may be included in accordance with the

working program of the course)………………………………………………...

4

2. Practical lessons, main text, tasks, variants, examples,

instructions…………………………...

128

3. Laboratory work, main text, tasks, variants, equipment, links to foreign

literature…………..………………………………………………...…………...

194

4. Instructions and recommendations for topics for performing independent

work……………………………………………………………………………..

259

5. Glossary………………………………………………………………………… 262

6. Applications

Syllabus …………………………………………………………………………… 276

Working curriculum………………………………………………………………... 284

Tests………………………………………………………………………………… 295

7. Used literature………………………………………………………………….. 311

4

MINISTRY OF HIGHER AND SECONDARY SPECIAL EDUCATION OF THE

REPUBLIC OF UZBEKISTAN

TASHKENT STATE TECHNICAL UNIVERSITY NAMED AFTER ISLAM

KARIMOV

Lecture notes

on subject

"Information technologies in technical systems"

Tashkent –2022

5

The main theoretical part (lectures)

1-module.

Introduction to the subject "Information technologies in technical systems".

Topic 1. Introduction to the subject "Information technologies in technical systems". The

subject of the course, its goals and objectives. Main functions and tasks of ICT in technical

systems. Principles for the implementation of ICT in technical areas, modernization of

digital infrastructure in order to develop the digital economy.

2-module.

Theoretical foundations of computer-aided design systems in technical systems

Topic 2. Theoretical foundations of computer-aided design systems. Modern

computer-aided design systems and their use in technical systems (CAD/CAE/CAM-

systems). CAD in the field of mechanics. Classification of CAD by intended purpose, used

in computer-aided design.

Topic 3 Modeling. Computer modelling. Modeling. The main types of modeling, their

scope. Computer modelling. Classification of models. The principle of computer simulation.

Topic 4 Mathematical modeling. Math modeling. The use of mathematical packages

for the study and analysis of mathematical models, mathematical packages (3D Max, Solid

Works, Matlab and MathCAD).

Topic 5. Graphic modeling. Processing of numerical and graphic information in

engineering problems. Implementation of static and dynamic mathematical models in

Matlab and MathCAD systems.

Topic 6. Fundamentals of simulation modeling. Classification of simulation software.

Varieties of simulation modeling. Simulation modeling using the Simulink package

Topic 7. Programming in MATLAB. Modules and their functions. M-script files and

functions. Function file structure. MATLAB control structures.

3-module.

Issues of information security in computer networks

Topic 8 Information security systems. Mathematical foundations of cryptology.

Cryptographic methods of information protection. Issues of information security in

computer networks.

Topic 9. Cyberspace and the basics of cyber security. Computer technology objects

used in cybersecurity

4-module.

Modern programming technologies.

Topic 10. Modern programming technologies. Programming languages. Systems of

object-oriented programming. Programming languages and systems, features of their use

and classification. Basic modules of programming languages.

6

Topic11. Object programming systems. Basic constructions of languages and features

of programming in the system. Classes, methods and properties. Properties and their

application to objects. Constructors and destructors. The object and its components.

Components of programs.

Topic12. Logic programming technology. The logical structure of the program.

Conditional, unconditional, and select statements

Topic13. Components used in visual programming. Loop operators. Their different

forms (parametric, conditional check before and after). Complex algorithms.

Topic14 Functions and modules. Standard and user-defined functions in programming

languages. Local, static, dynamic variables.

Topic 15. Application in graphical and multimedia programming systems.

Capabilities of the graphic module and their use. Object animation, animation options

7

Lecture 1

Introduction to the subject "Information technologies in technical systems". The

subject of the course, its goals and objectives. Main functions and tasks of ICT in

technical systems. Principles for the implementation of ICT in technical areas,

modernization of digital infrastructure in order to develop the digital economy.

Plan:

1. Main tasks and directions of ICT development in modern society.

2. The main directions of the state policy of the Republic of Uzbekistan in the field of

ICT development.

3. The concept of computer systems. Stages of development and types of computer

systems.

4. Development of a perfect computer system.

5. Technical, software and linguistic support of computer systems and their technologies

Key terms: communication, information, technology, hardware configuration, interface,

telecommunications, infrastructure, online, automation technology system, design source,

technology integration, application software, graphical interface, multiprogramming,

translator.

The main tasks and directions of development of ICT in modern society.

The beginning of the 21st century is characterized by informatization, globalization and

technologization of all spheres of society, which determine further global trends in the

development of science, education, production and management. The development of the

economy of any country, the expansion of the activities of companies in various industries,

the need to improve systems for storing, processing, transmitting and protecting data, the

desire to increase labor productivity are factors that determine the state's needs for

informatization of various spheres of social reality and the introduction of information and

communication technologies.

It is generally recognized that there is no alternative to informatization based on computer

technologies and means of communication in solving issues of the further development of

technical civilization. In the information society, where information is an important and

expensive resource, the level of a country's development is already assessed by the level of

its informatization. It can be stated that today information is perceived as a product with a

significant driving force potential, and information technology as a means of activating and

effectively using the information resources of society, which are the most important factor

in its development. Therefore, the task of qualitative improvement and intensive

development of information and communication technologies, their transition from routine

to innovation becomes strategically important, both at the national and global levels.

8

In modern conditions, the ability of each society and its institutions to collect, process,

analyze, systematize and accumulate information using modern information and

communication technologies is becoming a key prerequisite for social and technological

progress. Along with this, as a result of the active use of information technologies and

telecommunications, the concept of "information and communication technologies" (ICT)

is used.

Information technology in technical systems is a science that studies the theory and

methods of information processing in digital computers, the design of computer hardware

and software, and the use of computer tools.

Information and communication technologies should be understood as an integral

technical system, which is a combination of information technologies, telecommunications

and Internet companies, and allows for a system-organized sequence of operations for the

creation, processing, storage, distribution, display and use of an information product.

ICT means are understood as software, software, hardware and technical means and

devices that operate on the basis of microprocessor computer technology, as well as modern

means and systems for broadcasting information, information exchange, providing

operations for the collection, accumulation, processing, storage, production, transmission,

the use of information, the ability to access information resources of computer networks,

including global ones. To clarify the content and essence of information and communication

technologies, consider their structure. Scientists identify several classifications of segments

of the information and communication technology industry, but there is no single approach.

Analyzing the definition of information and communication technologies, we consider it

appropriate to consider its three main segments:

1. Information technology industry;

2. Telecommunications industry;

3. Internet companies.

Information technology industry. According to the definition adopted by UNESCO,

information technology is a complex of interrelated scientific, technological, engineering

disciplines that study methods for the effective organization of the work of people involved

in the processing and storage of information, methods of interaction between people and

computers and production equipment, their practical applications, as well as social,

economic and cultural aspects of this problem. The information technology industry has the

most pronounced structure and is a combination of intellectual and intermediary electronic

services. It includes the field of hardware, the field of software, the field of IT services, the

implementation of equipment and software. Let's consider each of the areas in more detail.

The sphere of hardware (hardware-solid products) is a set of technical means that ensure

the functioning of an information system. It includes personal computers, servers,

peripherals, components and storage systems.

The sphere of software is a set of software tools that, in combination with hardware,

make it possible to automate the execution of a set of tasks and ensure the functioning of

9

electronic information resources and information systems. The scope of the software

consists of:

- system software - the software basis of hardware, which acts as an intermediary between

other programs and hardware, thereby organizing the process of processing information in

a computer. This tool ensures the operation of other programs, providing them with service

functions, manages the hardware resources of the computing system. The main component

of system software is the operating system;

- tool software – software development tools. This product is intended for use in the

process of designing, developing and maintaining programs. It includes database

management systems, programming languages, etc. With the help of this toolkit, application

software is created that end users work with.

- application software - a set of tools that are designed to solve user problems and are

designed for direct interaction with him. The result of the application of application software

is the automation of workplaces.

The scope of IT services is a set of information products made available to the user.

Consider the main segments of this area:

1. Project-oriented services - the implementation of activities mainly in the project form,

which provides for profit only through the creation of unique products (specialized software,

information systems, etc.). These services include:

– consulting (project-oriented activity that is related to information support of business

processes and allows you to provide an independent expert assessment of the effectiveness

of using information technologies),

– system integration (activities related to the installation and adjustment of operating

systems, databases, communications, data storage devices, Internet connections, etc.),

– custom software development;

2. Outsourcing-oriented services - the process of transferring internal services and internal

services of the customer company to the contractor, including through the use of its software

products, hardware and infrastructure elements. The main element of these services is IT-

outsourcing;

3. Services focused on support and training - a set of active learning methods aimed at

developing knowledge, skills and abilities in the field of IT-technologies. These services

include IT-support and IT-education and training.

Hardware and software sales area is a global wholesale and retail trade network aimed

at distributing software and hardware. The main goal of this network is to create the

necessary conditions for information and communication technologies to become an integral

attribute of every person's life.

The information technology industry is a combination of computer technology,

communication tools, software for solving the problems of effective organization of the

information process, which contribute to minimizing the material and labor resources of all

spheres of modern society.

10

The telecommunications industry is a set of telecommunications operators with

interconnected technological infrastructures included in the overall production process. This

industry includes telecommunications services and telecommunications equipment.

The sphere of telecommunications services is a set of products of the activities of the

operator or provider of telecommunications aimed at meeting the needs of consumers in the

field of telecommunications. It contains:

- wired communication services - the process of transmitting and receiving information

using wire lines with metal or fiber optic cores;

- wireless communication services - activities aimed at providing telecommunications

using radio technologies, during which the end equipment of at least one of the consumers

can move freely while maintaining a unique identification number within the termination

points of the telecommunications network that are connected to one switching center;

- data transfer services - transfer of information in the form of data using

telecommunication networks;

- telematic services - services for accessing and processing data regarding the control and

measurement of parameters of executive or other systems, mechanisms, instruments and

equipment.

The field of telecommunications equipment is a set of industries that allow the

transmission of audio / video or other information, as well as establish communication

between various types of devices. This tool implements telecommunications hardware. The

field of telecommunications equipment includes hubs, switches, routers, adapters, cables,

connectors, and more.

The telecommunications industry is a link between the industrial sector, the service sector

and consumers. By stimulating human communication through communication, modern

means of telecommunications become a necessary condition for the social cohesion and

cultural development of countries.

3. Internet companies. Internet companies (dotcoms) are firms that carry out their

activities via the Internet, that is, by providing a service or selling products through the

network. They provide various services via the Internet (search, information, research,

advertising, sales, and others). The functioning of these companies is directly related to

information technology, but their activities have a different specificity, and therefore they

occupy a separate link in the structure of information and communication technologies.

2. The main directions of the state policy of the Republic of Uzbekistan in the field

of ICT development.

The introduction of modern information and communication technologies is a necessary

condition for the development of any state. Uzbekistan, following the path of democratic

reforms and the development of a market economy, is no exception.

The development of modern information and communication technologies (ICT) has a

purposeful tendency to intensify and diversify, covering all new sectors of the economy,

including the areas of government. The events of the last decade have provided a huge

11

amount of evidence of the real significance of ICT for the way of life of peoples and

countries. Several key studies, including the UNDP Human Development Report (2001) and

the Digital Opportunity Initiative (2001), identified two divergent trends:

- countries fall into an isolated and disadvantageous position if they do not respond to the

tasks put forward for a new type of "knowledge society";

- countries are in a much better position if they adopt policies that promote the use and

exploitation of ICT for development.

The speed of Uzbekistan's integration into the emerging world economy depends on its

ability to both shed the legacy of state socialism and quickly modernize its political

institutions and governance mechanisms. In this regard, information and communication

technologies (ICT), as the main driving force behind institutional reform, provide great

opportunities for the country's economic development.

As noted in the Uzbekistan eReadiness Assessment report, the key policy lessons from

the assessment are summarized as follows:

- development goals can best be achieved with a holistic approach. The development of

ICT as a multidimensional concept requires a programmatic approach to the whole range of

interrelated components.

Coordination of the efforts of the international and donor community, efficient use of

financial resources, development of new partnerships, which guarantees the achievement of

a greater effect.

The proposed solutions should be in line with national strategies and priorities and

supported by the government of the country.

The government understands that ICTs alone are not a panacea for Uzbekistan to

overcome many development challenges. However, as noted in recent government decisions

and legislation, creating a favorable legal and regulatory environment that promotes the

development of information infrastructures and supports education and training, the

application of knowledge and information can have a significant positive impact in

supporting the overall development of the country. In this regard, the application of ICT for

development, as the main driver of the development process in all sectors, is becoming an

important priority for the country, which was recognized in the protocol of cooperation

between UNDP and the Government of the Republic of Uzbekistan for the period 2000-

2004.

The development of information and communication technologies (ICT), which is the

most important factor in raising prosperity and economic growth, is becoming one of the

main priorities of the state policy of Uzbekistan. The general vision of the development of

ICT and the Internet in Uzbekistan is reflected in the speech of the President of the Republic

of Uzbekistan at the session of the Parliament of the country in May 2001. In a sweeping

statement, the President called on the government to develop a common ICT development

strategy in support of the country's social, cultural and economic future. The President's

initiative signaled major strategic changes. The government is now clearly aware of the

12

importance of ICT to achieve its development goals. Therefore, in recent years, the

leadership of the republic has been taking vigorous measures to develop and widely

introduce ICT in various areas of social and state building. A special place in this series is

occupied by the Decree of the Head of State “On the further development of computerization

and the introduction of information and communication technologies” dated May 30, 2002,

aimed at improving the institutions for supporting ICT.

Thus, according to the decree, the Coordinating Council for the Development of

Computerization and Information and Communication Technologies was created, the Uzbek

Agency for Post and Telecommunications was transformed into the Uzbek Agency for

Communications and Informatization (UzACI) with the role of the executive body of the

said Coordinating Council. In addition, the Center for the Development and Implementation

of Computer and Information Technologies “UzInfoCom” was created under UzACI, and

the Tashkent Electrotechnical Institute of Communications was transformed into the

Tashkent University of Information Technologies.

The development and approval by the Cabinet of Ministers of the Republic of Uzbekistan

of the Program for the Development of Computerization and Information and

Communication Technologies for 2002-2010 (Resolution of the Cabinet of Ministers dated

June 6, 2002 No. 200) confirm that the state has begun to play a significant and decisive role

in creating and stimulating the development of an enabling environment for the development

of ICT in Uzbekistan. At the same time, effective measures have been launched to introduce

ICT in the government itself. The decision on "electronic government", i.e. the transition of

government agencies to the online system, and the provision of unified electronic means of

communication between the public sector and the citizens of the country, will be the most

convincing example that the Republic of Uzbekistan is serious in its intentions to enter the

modern information age.

It should be noted that for the first time the assessment of the e-readiness position of

Uzbekistan was carried out by UNDP experts back in 2001 and, in fact, reflected the state

of ICT development in the country before the start of large-scale measures. The results of

these studies showed that the republic is among the countries with a fairly low level of ICT

development: “Uzbekistan begins to rapidly lag behind in the development of ICT, not only

in comparison with developed countries, but also in comparison with many developing

countries that were with it about a few years ago. at the same level of ICT development”. In

this regard, there was an urgent need for current studies, the purpose of which was to identify

the dynamics and trends in indicators/indicators of e-readiness, i.e. monitoring the country's

ICT development over the past period of intensive transformations.

Experts note that the general positive factor was the spread of high-speed Internet access,

the development of mobile communications, the implementation of relevant government

programs and the adoption of new legal acts in the field of ICT. The gradual deregulation

of the telecommunications market also contributed to the development of the information

society. Of particular importance was the development and implementation of government

13

programs for the development of ICT and the strengthening of the information

infrastructure.

The role of ICT in social, economic sectors and in management.

At a meeting of the Cabinet of Ministers of the Republic of Uzbekistan, dedicated to the

results of the socio-economic development of the Republic in 2013 and the main priorities

of the economic program for 2014, the State Committee for Communications,

Informatization and Telecommunication Technologies was tasked with the timely

implementation of measures and the implementation of projects identified in the

Comprehensive Program development of the National Information and Communication

System. The basis for the development of information and communication technologies is

the telecommunications infrastructure. Due to the measures taken in this direction, the

following results have already been achieved to date.

Development of telecommunications infrastructure

The current stage of development of telecommunications technologies, networks and

communications infrastructure of the country is carried out by expanding fixed and mobile

broadband access networks, expanding data and voice traffic switching centers,

modernizing and expanding backbone telecommunications networks, as well as creating

infrastructure for the development of multimedia services. To date, the total speed of using

international information networks has increased by 42.3% compared to the beginning of

2014 and amounted to 15.5 Gbps. The implementation of these projects also contributes to

the development of wireless communications. Today, mobile operators are rolling out

fourth-generation 4G LTE networks, which will allow users to quickly and efficiently work

with a large amount of information on the Internet, download and view streaming video,

upload high-quality photos, and use online applications for educational and business

purposes. In order to urgently respond to user requests for information and communication

services in all regions of the country, 13 call centers were created as part of the project to

introduce the Unified Call Center of JSC Uzbektelecom, as well as for the needs of

government agencies and business entities. These measures serve to improve the quality of

telephone and Internet services provided to a higher level. Local telephone networks are

being gradually modernized based on next-generation technologies. During the current year,

26 units of modern switching equipment were put into operation throughout the Republic,

which significantly increases the capacity of telephone numbers.

A computer is a special device for processing data. A computer system is a combination

of all the components needed to process and store data using a computer. Every computer

system is made up of several pieces of hardware and software.

Data, especially facts or figures, collected for study and consideration and use, in order

to help decision making or information processing in electronic form, which can be stored

and used on a computer and stored on a hard disk. Data, usually transmitted electronically,

can be changed into pulses of light.

14

Hardware is the hardware, or physical devices, associated with a computer. For example,

keyboards, mice, speakers, anыцd printers are all hardware. Devices are manufactured in

various ways for mainframes, small laptops, and even smaller ones built into products such

as cars and thermostats. However, the kinds of operations performed by computers of

different sizes are very similar. When you think of a computer, you often think of its physical

components first, but for information to be useful to a computer, it needs more than a device;

the computer must be provided with instructions. Just like, for example, your stereo

equipment does nothing until you provide music, which it subsequently plays. Computer

hardware needs instructions that determine how and when data items are entered, how they

are processed, and the form in which they are output and stored.

Software describes computer instructions that tell the hardware what to do. Software is

programs, which are sets of instructions written by programmers. You can buy programs

written by others that are stored on disk, or you can download them from the Internet. For

example, word processing and accounting software businesses and casual computer users

use programs that are designed for music and games. Also, you can write your own

programs. Writing software instructions is programming.

Application software includes all programs that can be applied to task programs—word

processing, spreadsheets, payroll and inventory programs, and even games.

System software includes programs that are used to manage a computer, including

operating systems such as Windows, Linux, or UNIX.

Together, hardware and software perform three basic operations in most programs:

Data input - data enters the computer system and is placed in the computer's memory,

which is the temporary, internal memory of the connected computer. Hardware devices that

perform input operations include the keyboard and mouse. Data elements include all text,

numbers, etc. that are entered into and processed by a computer. In business, many of the

data items are used as facts and figures about individuals, products, customers, and

personnel. However, the data may also include items such as images, sounds, and user

mouse movements.

Processing - elements of data processing may include arranging to sort them, checking

them for accuracy, or performing calculations on them. Processing converts input data that

has been stored in memory into information suitable for output. The hardware component

that performs these types of tasks is the CPU.

Output - after the data items have been processed, the resulting information is typically

sent to a printer, monitor, or other output device so that people can view, interpret, and use

the results. Programmers often use the term data for input elements and the term information

for data that has been processed and output. Sometimes the output destination can be storage

devices such as disks or flash drives. Humans cannot read data directly from these data

storage devices, but information storage devices are required for later retrieval. The data

sent to the storage device as output is sometimes used later as input to another program.

Classification of computers.

15

Traditionally, the following types can be cited in the classification of computers:

Supercomputers: the fastest and most expensive computers. These huge computers are

used to solve very complex scientific and technical problems. Supercomputers get their

computing power through the use of parallel data processing; they use many processors at

the same time on the same task. A typical supercomputer can make up to ten trillion

individual calculations every second.

Examples: Supercomputers: Jaguar, K Computer, Colombia

Server computers: are a sub-supercomputing step because they are not focused on trying

to solve one very difficult problem, but trying to solve many similar small ones. An example

of a server would be computers, which is stored in the Wikipedia encyclopedia. These

computers must go and find the page you are looking for and send it to you. This in itself is

not a big task, but it becomes a job for the server when the computers have to go and find a

lot of pages for a lot of people and direct them to the right place. Some servers, like the ones

Google uses something like Google docs, have apps on them, not just files like Wikipedia.

The server is a central computer that contains sets of data and programs. Also called a

network server, this system allows all connected users to store and share electronic data and

applications. Two important types of servers are file servers and application servers.

Workstations: high-end, expensive computers that are made for more complex procedures

and designed for one user at a time. Some of the complex procedures consist of natural

sciences, mathematics, and engineering calculations and can be used for computer-aided

design and manufacturing.

Personal computers. PC is an abbreviation for personal computer, it is also known as a

microcomputer. Its physical characteristics and low cost are both attractive and beneficial

to its users. The capabilities of the personal computer have changed significantly with the

advent of electronic computers. By the early 1970s, people in academic or research

institutions had the ability for one person to use a computer system interactively for extended

durations, although these systems would still be too expensive to be owned by one person.

The introduction of the microprocessor, a single chip with all the circuits that previously

occupied large cabinets, led to the proliferation of personal computers after about 1975.

hobbyists and technicians.

By the late 1970s, mass-market, pre-assembled computers allowed a wider range of

people to use computers that were more focused on software applications and less on

hardware processor development. Throughout the 1970s and 1980s, home computers were

designed for home use, offering some personal productivity, programming, and gaming,

while several larger, more expensive systems (though still low cost compared to minis) -

computers and high-powered computers) were aimed at office and small business use,

Today, the personal computer is a comprehensive device that can be used as a productivity

tool, media server, and gaming machine. The modular design of the personal computer

allows components to be easily replaced when broken or upgraded.

16

Minicomputers (microcontrollers) that allow the user to store data and execute simple

commands and tasks. These single circuit devices have minimal memory and program

length, but are generally designed for low level tasks.

Types of computer systems.

Fig. 1. Computer system architecture.

The computer system has a modular structure. For each device (memory, external

devices) in the system there is a special control device (in other words, a special processor),

called the device controller. All modules (central processor, memory and memory

controller, external devices and their controllers) are interconnected by a system bus,

through which they exchange signals. As we already know, the operation of each controller

is controlled by a driver - a specialized low-level program that is part of the OS.

Consider the typical structure of a modern desktop or laptop computer system, indicating

the most common types of devices and their characteristics.

The central processing unit is a device that executes commands (instructions) of a

computer system. In modern computers, as a rule, it is multi-core, i.e. has in its composition

from 2 to 32 cores (copies) of the processor, running in parallel on a shared memory, or

hybrid, consisting of a central and graphic processors. The performance of each core is 3 -

3.2 GHz. Note that in this case, performance is understood as the clock frequency of the

processor (core) - the time it takes to execute one of the simplest machine instructions.

However, there are other important factors that determine the overall performance of the

system - the clock speed of the memory and the system bus. In fact, the overall system

performance can be measured by the slowest of these parts of the system (usually the system

bus). These characteristics must be taken into account when choosing and buying a

computer.

Random access (main) memory, or simply memory, is a device that stores processed data.

Memory capacity - 1 - 16 gigabytes or more; using less memory is not recommended, as it

can lead to a significant slowdown of the system. Memory clock frequency - 667 MHz - 1.5

GHz.

17

The system bus is a device to which all computer modules are connected and through

which they exchange signals, for example, about interrupts. The bus clock frequency is 1 -

1.5 GHz (this is actually a certain total system performance). Typically, a PCI (Peripheral

Component Interconnect) bus is used. A processor, memory, disks, a printer, a modem, and

other external devices can be connected to it.

Ports are devices with connectors for connecting external devices to the computer. Each

port has its own controller (and, accordingly, its own driver).

The most commonly used port is USB (Universal Serial Bus), with a characteristic flat

connector, about 1 cm in size, with the image of a trident. Most types of devices can be

connected to USB ports, and for this it is not necessary to first turn off the computer and the

connected device, which is very convenient. There are several USB standards with different

speeds. The USB 2.0 standard is now the most common, providing a port speed of 240 - 260

megabits per second. For comparison, the previous standard - USB 1.0 - provided only 10 -

12 megabits per second (feel the difference, as they say). You can recognize the type of USB

port on your computer if you display information about devices; on Windows: My Computer

/ (right click) Properties / Hardware / Device Manager / USB Devices. In this case, the USB

2.0 port controller will be labeled as enhanced. If this is not the case, you need to upgrade

the USB ports or the computer itself, otherwise you will have to wait 20 times longer when

transferring to a flash drive (!). There are also "adapters" USB 1.0 -> USB 2.0. The latest

USB 3.0 standard, which has just begun, will provide at least 1 gigabit per second of speed.

You can connect a keyboard, mouse, printers, scanners, external hard drives, flash drives

and even TV tuners to the USB port - devices for receiving a television signal from an

antenna and displaying a television image on a computer. It is recommended that each

device is always connected to the same USB port, otherwise some devices (for example, the

same TV tuner) may experience problems.

Functioning of the computer system

The advantage of the described modular hardware approach is that the CPU, memory,

and external devices can operate in parallel. Each device is controlled by a dedicated

controller. If it is necessary to perform input-output, the central processor generates an

interrupt, as a result of which the operating system is called, which in turn, as a response to

the interrupt, launches the device driver, respectively, activating its controller. Each device

controller has a local buffer, a specialized memory for exchanging information between the

computer and the device. In order for the controller to start output to the device, the central

processor (more precisely, the device driver running on it) must first transfer information

from the specified area to the device buffer. Further, the device controller already performs

the output of information from the buffer to the device itself (for example, writes it to a

specified area of the hard disk). At the end of the exchange of information, the controller

generates an interrupt signal (interrupt) on the system bus, thereby informing the processor

about the end of the operation. In order to avoid repeated transfers of large amounts of

information, modern computers use DMA (Direct Memory Access) - controllers -

18

controllers with direct access to RAM. Such controllers do not use their specialized memory

when exchanging with the device, but directly the area of RAM, in which the clipboard is

located.

Synchronous input-output(I/O) is input-output that causes the program to enter a wait

state until the input-output operation is fully completed. At the hardware level, an input-

output instruction puts the processor in the idle state until the next interrupt. In this mode,

no more than one input-output request is executed at a time; there is no simultaneous input-

output. Synchronous output is performed by all programmers with the usual println(x)

statements. When using them in programs, we do not think that we are using a rather

inefficient version of synchronous input-output. However, until now, the thinking of most

programmers is sequential, in the sense that they think of their program as purely

sequentially executed, and do not think at all about the possibility of any parallelization.

When debugging a program, or if the output size is small, this is usually fine.

Asynchronous input-output is input-output that is performed in parallel with the execution

of the main program. After. as asynchronous input-output begins, control returns to the user

program, without waiting for the input-output to complete (the latter can be done with a

special explicit operation). Thus, the operation of an asynchronous exchange, as it were, is

divided into two: start input-output and finish input-output. The latter is performed so that

at this point the program still waits for the completion of the exchange, when its result is

necessary for further calculations. This approach to the implementation of the exchange is

more difficult for programmers to understand and can lead to errors.

Fig.2. Synchronous and asynchronous input-output architecture.

At the system level, the following occurs during the exchange. A system call is made - a

request to the OS by calling a system subroutine, in this case - to allow the user to wait for

I/O to complete. The operating system maintains a device state table, in which each device

has an element containing the device type, address, and state. The OS indexes the device

table to determine the state of the device and modify the table entry to include interrupt

information.

The architecture of synchronous (a) and asynchronous (b) I/O is illustrated in Figure 2.

The diagram shows that the hallmark of a synchronous exchange is the transition of the

processor to a waiting state before the end of the I / O operation.

19

Direct Memory Access (DMA) is a more efficient method of operating I/O device

controllers, used to operate high-speed devices that can transfer information at a speed close

to the speed of memory

The DMA controller transfers a block of data from the buffer memory directly to the main

memory, without the participation of the processor. The advantage of such a widely used

approach is not only to avoid unnecessary data transfers from one memory area to another,

but also that an interrupt in this case is generated for each block of data transferred (stored

in the buffer), but not for each transferred bytes, as with a more traditional method of

exchange.

A package of applied programs and their classification.

We give the following classification of applied software:

Text editors. The main functions of this class of application programs are to enter and

edit text data. Additional features include automating input and editing processes.

Word processors. The main difference between word processors and text editors is that

they allow not only to enter and edit text, but also to format it, that is, to format it.

Graphic editor. This is an extensive class of programs designed to create and (or) process

graphic images. In this class, the following categories are distinguished: raster editors,

vector editors, and software tools for creating and processing three-dimensional graphics

(3D editors).

Database management systems. Databases are huge amounts of data organized in

tabular structures. The main functions of the database management system are:

- creating an empty (blank) database structure;

- providing means of filling it or importing data from tables in another database;

- providing the ability to access data, as well as providing a search and filtering

environment.

e-Spreadsheets. Spreadsheets provide comprehensive tools for storing various types of

data and processing them. To some extent, they are similar to database management

systems, but the main focus of shifts is not on storing data arrays and providing access to

them, but on data transformation, moreover, in accordance with their internal content.

Computer-aided design systems (CAD-systems). Are intended for automation of

design and engineering works. They are used in mechanical engineering, instrument

making, architecture. In addition to drawing and graphic work, these systems make it

possible to carry out simple calculations (for example, calculations of the strength of parts)

and the selection of finished structural elements from extensive databases.

Desktop publishing systems. The purpose of this class of programs is to automate the

process of imposition of printing publications. This class of software occupies an

intermediate position between word processors and computer-aided design systems.

Expert systems. Designed to analyze the data contained in the knowledge and issue

recommendations at the request of the user. Such systems are in cases where the initial data

are well formalized, but extensive special knowledge is required to make a decision. Typical

20

areas of use of expert systems are jurisprudence, medicine, pharmacology, chemistry. Based

on the totality of signs of the disease, medical expert systems help to establish a diagnosis

and prescribe medications, dosages and a treatment course program. Based on the

combination of signs of an event, legal experts can give a legal assessment and suggest a

course of action for both the accusing party and the defending party.

HTML editors (Web editors). This is a special class of editors that combines the

properties of text and graphic editors. They are designed to create and edit so-called Web

documents {Web pages Inte Web documents are electronic documents, the preparation of

which should take into account a number of features related to the reception and /

transmission of information on the Internet.

Browsers (browsers, Web viewers). This category includes software tools designed to

view electronic documents made in HTML format (documents of this format are used as

Web documents). Modern browsers render more than just text and graphics. They can play

music, human speech, listen to radio broadcasts on the Internet, watch video conferences,

work with e-mail services, with a teleconferencing system (news groups), and much more.

Integrated business systems. They are software tools for automating the workplace of

the head. The main functions of such systems include the functions of creating, editing and

formatting the simplest documents, centralizing the functions of e-mail, facsimile and

telephone communications, dispatching and monitoring the enterprise's workflow,

coordinating the activities of departments, optimizing administrative and economic

activities and supplying on-demand operational and reference information.

Test questions:

1. What do you understand by the term "computer system".

2. What areas of memory are used in input-output operations?

3. Types of computer systems.

4. How the computer system is organized.

5. What is the difference between batch system, interactive system and real time system?

6. What do you understand by information technology?

7. What do you understand by information and communication technologies?

8. ICT in modern society?

9. Industries of ICT application?

Lecture 2

Modern computer-aided design systems and their use in technical systems

(CAD/CAE/CAM-systems). CAD in the field of mechanics. Classification of CAD by

intended purpose used in computer-aided design.

Plan:

1. Design automation systems and their functions.

21

2. The main stages of the design automation process.

3. Design automation systems. Their types and models.

4. CAD/CAM/CAE systems

Key terms: computer-aided design systems (CAD), design, technological processes,

modeling, subsystems, engineering calculation system, design subsystem, service subsystem,

technical support, mathematical support, information support, linguistic support,

methodological support.

Automatic design systems (CAD). Design automation occupies a special place among

information technologies.

Design is the process of compiling a description necessary to create an object that does

not yet exist or an algorithm for its functioning under given conditions, based on the primary

description of this object and (or) the algorithm for its functioning.

Design objects can be:

• products for industrial and technical purposes (means of production - technological

equipment and tooling);

• technological processes, as a result of the implementation of which projects of objects

are embodied in a material form;

• buildings, engineering structures; vehicles, means of communication, computer

technology; organizational and management systems, etc.

The purpose of the design process is, first of all, to develop technical documentation for

the manufacture of the design object based on the initial information obtained in the design

process. Design includes the development of terms of reference (TOR), reflecting the needs,

and the implementation of the TOR in the form of project documentation.

Design is essentially a feedback control process. The technical task generates inputs that

are compared with the design results, and if they do not match, the design cycle is repeated

again until the deviation from the specified technical requirements is within acceptable

limits.

Design automation is understood as the systematic use of computers in the design process

with a scientifically substantiated distribution of functions between the designer and the

computer and a scientifically substantiated choice of methods for machine problem solving.

A scientifically substantiated distribution of functions between a person and a computer

implies that a person must solve problems of a creative nature, and a computer must solve

problems whose solution can be algorithmized.

Computer-aided design is a design in which individual transformations of object

descriptions and (or) the algorithm of its functioning or process algorithm, as well as

presentation of descriptions in various languages, are carried out by the interaction of a

person and a computer.Computer-aided design is usually carried out in the mode of human-

machine dialogue based on the use of special languages for human-machine communication.

22

Automatic design is a design in which all transformations of object descriptions and (or) the

algorithm of its functioning or process algorithm, as well as the presentation of descriptions

in various languages, are carried out without human intervention.

With automatic design, the start of the corresponding equipment and the input into the

computer of the primary description of the object is carried out by a person.

Problems of automatic design:

1. Reduction of labor intensity and terms of design preparation of production.

2. Improving the quality of design documentation.

3. Reduction of labor intensity and terms of technological preparation of production.

4. Improving the quality of the developed technological processes.

5. Reducing the number of engineering and technical workers involved in design and

construction.

A significant difference between computer-aided design and non-automated design is the

ability to replace expensive and time-consuming physical modeling with mathematical

modeling. Solving the problems of design automation with the help of a computer is based

on a systematic approach, i.e. on the creation and implementation of CAD systems -

automatic design systems for technical objects that solve the whole range of tasks from task

analysis to the development of a full scope of design and technological documentation. This

is achieved by combining modern technical means and software, the parameters and

characteristics of which are selected with maximum consideration for the specifics of the

tasks of the design process.

A computer-aided design system (CAD) is a set of design automation tools interconnected

with the necessary departments of a design organization or a team of specialists (system

user) that performs computer-aided design.

Automatic design system - a set of design automation tools interconnected with the

necessary departments of the design organization or a team of specialists (system user) that

performs automatic design.

An integrated automatic design system is an automatic design system that has alternative

software and an automatic design operating system that allows you to select a set of

computer programs in relation to a given design object or class of design objects.

2. Types of CAD subsystems: design and maintenance

The constituent structural parts of CAD are subsystems that have all the properties of

systems and are created as independent systems. Each subsystem is a part of the CAD

system selected according to some characteristics, which ensures the execution of some

functionally completed sequences of design tasks with the receipt of appropriate design

solutions and design documents.

Design decision - an intermediate or final description of the design object, necessary and

sufficient for consideration and determination of the further direction or completion of the

design.

23

Design document - a document made according to a given form, in which any design

solution obtained during the design is presented.

According to the purpose of the CAD subsystem, they are divided into two types:

design and maintenance.

1. Designing subsystems - object-oriented subsystems that implement a certain stage of

design or a group of related design tasks. Depending on the relationship to the design object,

they are divided into object and invariant.

Object (object-oriented) - performing design procedures and operations directly related

to a specific type of design objects. (For example: a subsystem for designing technological

systems; a subsystem for modeling a designed structure, etc.)

Invariant (object-independent) - performing unified design procedures and operations

that make sense for many types of design objects. (For example: a subsystem for calculating

machine parts; a subsystem for calculating cutting conditions; a subsystem for calculating

technical and economic indicators, etc.)

Examples of design subsystems:

 • Functional-logical design subsystem

At the output of this system, we get a functional circuit, followed by a logical circuit, at

the output, a fundamentally electrical circuit.

 • Design engineering subsystem

At the output, we obtain the design of the device and design documentation, including the

arrangement of elements on the surface of the module and the topology of printed

connections between the elements.

 • Subsystem of technological preparation of production

At the output, we get a route map of the production process and programs for controlling

machine tools with numerical control (for controlling technological equipment).

Machine layout subsystem;

Assembly unit design subsystem;

Parts design subsystem;

Control circuit design subsystem, etc.

2. Service subsystems - object-independent subsystems that implement functions

common to subsystems or CAD as a whole, ensure the functioning of design subsystems,

design, transfer and output of data, software maintenance, etc. Their combination is called

the system environment (or shell).

Examples of service subsystems:

• subsystem of graphic display of design objects;

• training subsystems for the development by users of technologies implemented in CAD;

• documentation subsystem;

• subsystem of strength calculations;

• information retrieval subsystem

• subsystems of project data management (PDM)

24

• graphics input-output subsystems.

The composition of both design and maintenance systems of modern CAD may include:

expert systems. These are systems based on a knowledge base, presented either in the form

of a product system or in the form of frames (FRAME). The expert system allows to

formalize the knowledge of an expert in a particular subject area in order to make rational

design decisions.

Decision making systems. These are systems that allow the selection of effective design

solutions in the conditions of certainty and uncertainty of the initial information based on

formal methods and procedures. Neural network technologies can also be used to evaluate

design solutions.

Decision support systems. The design process is implemented in subsystems in the form

of a certain sequence of design procedures and operations.

The design procedure is a formalized set of actions, the implementation of which ends

with a design decision. Design procedures are, for example, forecasting, optimization,

verification of the reality of implementation, control, correction, modeling, procedures for

developing a kinematic or layout diagram of a machine tool, technology for processing

products, etc. The design procedure consists of elementary design operations, has a firmly

established order of their implementation and is aimed at achieving a local goal in the design

process.

A design operation is an action or a formalized set of actions that are part of a design

procedure (or an elementary action), the algorithm of which remains unchanged for a

number of design procedures. Design operations are, for example, calculation, drawing, data

tables, data input and output, calculation of allowances, solution of an equation, etc.

Unified design procedure (the term “Unified procedure” is allowed) is a design

procedure, the algorithm of which remains unchanged for different design objects or

different design stages of the same object.

Diagram of the computer-aided design process.

The most important issue in the creation of CAD after the formalization of the design

process is the question of displaying the design activities of an engineer in software.

In general, the design process in CAD can be simplified by the diagram shown in Fig. 1.

This scheme displays the elementary cell of the design process, from the chain that the real

automated process consists of. All design systems created with the help of modern computer

technology are automated. The most important role in these systems is played by a human

engineer who develops a project of new technical means. A person in CAD solves all non-

formalized design tasks and work planning tasks. Modern CAD is a tool of a highly qualified

design engineer, therefore, close interaction between a person and a computer in the design

process is one of the most important principles for the construction and operation of CAD.

The main block in the diagram of the computer-aided design process (Fig. 1) is the block

of design decisions. Depending on the completeness of the formalization of our knowledge

in a particular subject area, the design decision can be made automatically or interactively.

25

Based on the input data and constraints (independent design parameters), the block changes

the variable parameters (decision factors) until acceptable design solutions (dependent

variables) are obtained.

Fig. 1. Computer-aided design process system

The design results should be presented in a human-readable form and contain information

on the basis of which the engineer could make a judgment about the design results.

Consideration of even a simplified diagram of the design process makes it possible to clarify

the division of functions between the engineer and the computer in CAD. Obtaining options

for design solutions and their presentation in a form convenient for human perception can

be entrusted to a computer to the extent that this will allow the mathematical support of

design procedures. With the automatic receipt of options for design solutions, the most

important functions remain for the engineer - input of initial data for design, final assessment

and approval of design solutions. In the interactive design mode, the engineer directly

participates in the course of solving problems, influencing the choice of decision factors and

refining independent variables. Obtaining output documentation in accordance with existing

requirements is a routine operation and should be performed automatically.

Design procedures in the automatic design system.

The software model of the automatic design procedure can be represented by the

diagram shown in Fig. 2.

26

Fig. 2. Software design procedure model in CAD

The purpose of the input data generation module is to create a list of these data for design

and its control when entering into the system. The structure and format of the list of input

data depend on the content of the design procedure (calculation module). It is necessary to

provide for the existence of several versions of the list of input data, which are stored with

given names on sections of the magnetic disk. The structure of the data list is determined by

the CAD developer, and it is formed either in the dialog mode by the user, or is generated

automatically by the previous design procedures. The software module for correcting input

data provides for editing (deleting, inserting, etc.) the list, the need for which arises due to

user errors when entering data detected during control, as well as, if necessary, their

clarification as a result of analysis and evaluation of design solutions.

To ensure careful control in CAD, software tools for visualizing lists of data should be

provided. In general, it is necessary to be able to obtain several types of data list printouts:

binary, decimal, symbolic, tabular, and by records. To meet various user requirements, the

printout can be displayed on the display screen or on the ADCP. All these operations are

performed by the input data printing module. The software modules for the formation,

adjustment and printing of the restrictions on the design process function similarly to those

described. The structure and format of constraints depend on the design module, but they

are significantly less subject to change than the structure and format of the source data.

However, it is necessary to provide for the existence of several versions of these lists (for

example, general requirements for technical means on the part of various customers). The

creation and control of the list of variable parameters is carried out by the software modules

for their assignment and printing. The calculation module of the software for the design

process is designed to automatically perform all those operations of the design procedure

that have been fully formalized by the computer. The received variants of design solutions

are processed by the software module for preparing data for evaluating solutions and

transferred to the visualization module.

27

Analyzing the results of the design process, the engineer must be able to view the output

data on the analog-to-digital converter, display and plotter, for example, in the form of

tables, diagrams and drawings. It is possible to have several versions of design decisions

that are stored on a magnetic disk and can be presented in the required form using the

software module for documenting design decisions. Communication between the various

software modules of the design procedure and the interaction of this design procedure with

others occurs through a shared memory. This allows for an interactive, automated design

process with many different versions of both input data and design decisions. To fulfill the

requirement of the principle of rational connection of CAD with the environment in software

design, one should strive to ensure that the list of input data is the result of previous design

procedures or modules. This is achieved by developing CAD information support.

Information support of automatic design systems.

The basis of CAD is a combination of various types of automatic design software

necessary to solve design problems.

1.Hardware provision (HP) - a set of related and interacting technical means that ensure

the operation of CAD, including various hardware (computers, peripherals, network

equipment, communication lines, measuring tools).

2.Mathematical software (MS), which combines mathematical methods, models and

algorithms used to solve computer-aided design problems. MS by purpose and methods of

implementation are divided into two parts:

• mathematical methods

• formalized description of computer-aided design technology

3. Software provision (SP), represented by computer programs necessary for the

implementation of the design process. CAD software is divided into system-wide and

applied:

• General system software is designed to manage hardware components and ensure the

functioning of application programs. An example of a common system software component

is an operating system.

• application software implements software for direct execution of design procedures,

includes software packages of application programs designed to serve certain design stages

or groups of similar tasks within different stages (pipeline design module, circuit modeling

package, CAD geometric solver).

4. Information support (IS) - a set of information necessary for designing, consists of a

description of standard design procedures, standard design solutions, components and their

models, rules and design standards. The main part of IO CAD is databases and database

management systems.

5.Linguistic support (LS) - a set of languages used in CAD to provide information about

the designed objects, process and design tools, as well as to carry out a designer-computer

dialogue and data exchange between CAD hardware, includes terms, definitions, rules for

formalizing the natural language, compression and expansion methods. In LO, a class of

28

various types of design and modeling languages (VHDL, VERILOG, UML, GPSS) is

distinguished.

6. Methodological support (MetS) - a description of the technology of CAD functioning,

methods for choosing and applying technological methods by users to obtain specific results,

including the theory of processes occurring in the designed objects, methods of analysis,

synthesis of systems and their components, various design methods, sometimes MS and LS

are also referred to MetS.

7. Organizational support (OS) - a set of documents that determine the composition of

the design organization, communication between departments, the organizational structure

of the object and the automation system, activities in the conditions of the system

functioning, the form of presentation of design results. The OO includes staffing tables, job

descriptions, operating rules, orders, regulations, etc.

A set of data that can potentially be used in the operation of CAD or serve as a memorized

result of its work form an information database (DB) of the system. Typical data groups for

computer-aided design information support are classifiers and correspondence tables for

them, scientific, technical and design (operational) information.

Information support of CAD can be represented as a diagram (Fig. 3), which shows what

place the database occupies, and what is the interaction of the information system with

design modules. This interaction is carried out through a specially organized interface that

protects the design software modules from the influence of the specifics of the software

implementation of the information system, thereby maintaining the independence of design

operations from the type of information representation in the database. The functions of this

interface also include the harmonization and interfacing of the information system and

project modules in terms of record formats (information aspect), data designations (content

aspect), and software tools, programming languages, etc. (program aspect).

The main requirements for information support of CAD are as follows:

Availability of the necessary information to support both automated and manual design

processes. The ability to store and search for information representing the result of manual

and automated design processes.

Sufficient amount of information storage. The structure of the system should allow the

possibility of increasing the memory capacity along with the growth of the amount of

information to be stored. At the same time, it is necessary to ensure the compactness of the

stored information and the minimum wear of information carriers.

Sufficient performance of the information support system.

The ability to quickly make changes and correct information, bring these changes to the

consumer, as well as obtain a hard copy of the document.

Organization of information flows in the automatic design system.

The information used in the design can be divided into static and dynamic (Fig. 3).

29

Fig.3 Scheme of information flows in CAD

Static information is characterized by relatively rare changes. This information should

include the data of the TOR (terms of reference) for the design and reference data, which

have a large volume. The formation, loading and correction of reference data is carried out

exclusively by the database administrator, i.e. the system programmer forming the database.

The database administrator maintains direct contact with the normalization and

standardization service of the design organization. The volume of TOR data for the

projected object is much less than the amount of reference data, but the circle of persons

entitled to make changes to the TOR should be even more limited than the circle of persons

entitled to correct reference data. Intermediate data is constantly changing during the

operation of the CAD system. Only the executing designer and his manager have the right

to make changes to the variants of design solutions.

Dynamic information becomes static in the case when the CAD is programmed to

constantly replenish its database, due to newly occurring design cases (creating precedents).

The information used in the design, according to the type of its presentation, can be

divided into documentary, iconographic and factographic. Documentary information is

meta-information. It is a search image of a document in the database. If necessary, a set of

documents that satisfy the search image can be issued. In CAD, information of this type is

widely used to find information about analogues of the design object, about patents and

copyright certificates, design and calculation methods, test results, etc.

30

The information contained in the images of documents (drawings, photographs, etc.) in

an identical form of presentation is called iconographic. For its storage, special media are

used (microfiches, roll microfilms, magnetic tapes of video recordings, etc.). In modern

CAD, this type of information is used to store large amounts of graphic information, the

search for which can be carried out using the accompanying documentary information.

General classification of CAD/CAM/CAE systems.

Over the almost 30-year period of existence of CAD / CAM / CAE systems, their

generally accepted international classification has developed:

- drawing-oriented systems, which appeared first in the 70s. (and successfully used in

some cases so far);

- systems that allow you to create a three-dimensional electronic model of an object,

which makes it possible to solve the problems of its modeling up to the moment of

manufacture;

– systems that support the concept of a complete electronic description of the object (EPD,

Electronic Product Definition). EPD is a technology that enables the development and

maintenance of an electronic information model throughout the entire life cycle of a product,

including marketing, conceptual and detailed design, process preparation, production,

operation, repair, and disposal. As a result of the development of the EPD concept, there

were grounds for turning standalone CAD, CAM and CAE systems into integrated

CAD/CAM/CAE systems. CAD (CAD System - Computer Aided Design System) is a

system that implements design, in which all design solutions or part of them are obtained as

a result of calculation and compilation of mathematical models on a computer. The main

function is the implementation of computer-aided design at all and individual stages of

designing objects and their components.

The purpose of using CAD is to increase the efficiency of the work of engineers, which

includes:

• Reducing the complexity of design;

• Reduction of design time and clarification of the planning stage;

• Reducing the cost of design and manufacture;

• Improving the quality and technical and economic level of design results;

• Reducing the cost of modeling and testing;

• Reducing the number of marriages.

At the moment, there are three main subgroups of CAD:

- engineering CAD (MCAD - Mechanical Computer Aided Design). The term "CAD for

mechanical engineering" in our country usually refers to packages that perform the functions

of CAD / CAM / CAE / PDM, i.e. computer-aided design, pre-production and design, and

engineering data management.

- Architectural and construction CAD (CAD / AEC - Architectural, Engineering, and

Construction).

- PCB CAD (ECAD - Electronic CAD/EDA - Electronic Design Automation).

31

CAD - computer aided design General term for all aspects of computer aided design.

Usually covers the creation of geometric models of the product. As well as the generation

of drawing products and their accompaniments.

CAM - Computer Aided Manufacturing - A general term for an automated production

preparation system, a general term for a PS for preparing information for CNC machines.

Traditionally, the input data for such systems were geometric models of parts obtained from

CAD systems.

CAE - Computer Aided Engineering - Automatic project analysis system. A general term

for information support of the conditions for automated design analysis, aimed at error

detection (strength calculations) or optimization of production capabilities.

PDM - Product Data Management - Production Information Management System. A tool

that helps administrators, engineers, designers manage both data and product development

processes in modern manufacturing plants or a group of related enterprises.

Test questions:

1. What is CAD?

2. What are the design stages?

3. Types and models of CAD?

4. What automation tools for scientific projects do you know?

Lecture 3

Modeling. The main types of modeling, their scope. Computer modelling.

Classification of models. The principle of computer simulation. Expert systems

Plan:

1 Modeling. Main types of modeling

2. Computer simulation.

3 Expert systems

Key terms: modeling, model, computer simulation, modeling process, expert systems

Model - analogue, prototype, template, sample used instead of the original to solve

problems (get answers to questions). The model is built on the basis of a limited set of data

(properties, behaviors) known to us about the original. The construction of models and the

use of models (solving problems on them) is carried out in order to:

• obtaining previously unknown data, predicting new properties and future behaviors,

• benefiting from the implementation of solutions,

• systematization (generalization) of known data.

Modeling is a method, the process of replacing the original with its analogue (model)

with the subsequent study of the properties and behavior of the original on the model.

The modeling process consists of:

32

• formalizations (designing and setting up a model, systems of models and models of

systems),

• modeling itself (setting various problems and solving them on the model),

• interpretation of modeling results, integration with existing real systems.

The model instead of the original object is used in cases where the experiment is

dangerous, expensive, takes place on an inconvenient scale of space and time (long-term,

too short-term, extended ...), impossible, unique, invisible, etc. Let's consider this with an

example:

• "experiment is dangerous" - when operating in an aggressive environment, it is better to

use its layout instead of a person; an example is the lunar rover;

• "expensive" - before using the idea in the real economy of the country, it is better to test

it on a mathematical or simulation model of the economy, having calculated all the "pros"

and "cons" on it and getting an idea of the possible consequences;

• "long-term" - to study corrosion - a process that takes decades - more profitable and

faster on the model;

• "short-term" - it is better to study the details of the process of processing metals by

explosion on a model, since such a process is transient in time;

• “extended in space” — mathematical models are convenient for studying cosmogonic

processes, since real flights to the stars are (yet) impossible;

• "microscopic" - to study the interaction of atoms, it is convenient to use their model;

• "impossible" - often a person deals with a situation where the object does not exist, it is

still being designed. When designing, it is important not only to imagine the future object,

but also to test its virtual counterpart before design defects appear in the original.

Modeling is closely related to design. Usually, the system is first designed, then it is

tested, then the design is corrected again and tested again, and so on until the design meets

the requirements for it. The design-modeling process is cyclical. At the same time, the cycle

looks like a spiral - with each repetition, the project gets better, as the model becomes more

detailed, and the level of description is more accurate. The model allows you to decompose

the system into elements, connections, mechanisms, requires explaining the operation of the

system, determining the causes of phenomena, the nature of the interaction of the

components.

The modeling process is the process of transition from the real area to the virtual (model)

one by means of formalization, then the model is studied (modeling itself) and, finally, the

results are interpreted as a reverse transition from the virtual area to the real one. In the

simplest case, modeling technology involves 3 stages: formalization, actual modeling,

interpretation (Fig. 1.1).

33

Fig. 1.1. Modeling process (basic version)

Model classification

Classification is the division of objects into groups that have one or more common

features. Depending on the classification feature, the same models can be assigned to

different classes.

Classification according to the area of use of the model is shown in Fig. 1.2.

Fig. 1.2. Classification of models by area of use

Training models - visual aids, simulators, training programs.

Game models are economic, military, business games. They rehearse the object's

behavior in different situations.

Research models are created to study processes or phenomena, for example, stands for

testing electronic equipment.

Experimental models are reduced or enlarged copies of objects. They are used to study

an object and predict its future characteristics (for example, an experimental model of a

designed car).

Simulation models imitate reality, while, as a rule, the experiment is repeated many times

2.Computer simulation.

Computer simulation is one of the effective methods for studying complex systems.

Computer models are easier and more convenient to study due to their ability to conduct

computational experiments in cases where real experiments are difficult due to financial or

physical obstacles or can give unpredictable results. The logicality and formality of

computer models makes it possible to identify the main factors that determine the properties

of the original object under study (or a whole class of objects), in particular, to investigate

the response of the simulated physical system to changes in its parameters and initial

conditions.

34

The construction of a computer model is based on abstraction from the specific nature of

phenomena or the original object under study and consists of two stages - first, the creation

of a qualitative and then a quantitative model. Computer modeling, on the other hand,

consists in conducting a series of computational experiments on a computer, the purpose of

which is to analyze, interpret and compare the simulation results with the real behavior of

the object under study and, if necessary, further refine the model, etc.

The main stages of computer modeling include:

• statement of the problem, determination of the modeling object;

• development of a conceptual model, identification of the main elements of the system

and elementary acts of interaction;

• formalization, that is, the transition to a mathematical model; creating an algorithm and

writing a program;

• planning and conducting computer experiments;

• analysis and interpretation of results.

One of the effective ways to study phenomena is a scientific experiment, that is, the

reproduction of the phenomenon under study under controlled conditions that can be

controlled. The object under study is often replaced by a computer model due to greater

convenience and economy. Due to the spread of powerful computers and information

technologies, computer modeling can now be called the most effective method for studying

physical, technical and other systems. Computer models make it possible to identify the

main conditions that determine the properties of the studied phenomena and objects, to study

the feedback of the system on changing conditions.

A computer model is a separate program or a software package that allows, using

calculations and graphical display of results, to reproduce real objects and processes when

exposed to various factors. Such models are also called simulation models.

Computer modeling is a method for solving the problem of analysis or synthesis of a

complex system based on the study of its computer model. The meaning of such modeling

is to obtain quantitative and qualitative results from the created model, which makes it

possible to study previously unknown properties of the system. A computer model should

display the maximum number of relationships and characteristics of a real object, existing

restrictions. The model should be built universal in order to use it to describe similar objects;

easy to manage reasonable spending on research.

The computer model is also an excellent visual and educational tool for students. When

using a computer model as a learning mechanism, there are possibilities:

• consider complex phenomena and processes at an accessible level;

• focus on the main properties of the system due to the flexible form of its presentation

and the presence of multimedia effects;

• observe the process in dynamics, taking into account all its changes;

• present the work of the system in a visual form: graphs, charts, diagrams;

35

take actions that are impossible in reality due to space-time constraints or concerns for

the safety of the model and the environment.

Types of computer models.

To begin with, let's define what computer simulation can be.

Physical modeling is a simulation in which an entire installation is created for conducting

experiments or a separate simulator, for example, for training in aircraft control. Such a

model receives external signals, performs the necessary mathematical operations and issues

the appropriate signals to control the model.

Numerical modeling - solving a system of equations by mathematical methods,

conducting a computational experiment based on the input parameters of the system and

external influences on it. An example is the modeling of any natural and artificial processes.

The essence of simulation modeling is to create a program that will simulate the

behavior of a complex system. Such an imitation is based on a formal description of the

logic of the system's existence, which takes into account the interactions of all its

components. Examples are studies of biological, physical and other systems, as well as the

creation of games and educational programs.

Information modeling is the creation of an information model, that is, data combined

together, classified according to certain characteristics, which determine the essence of the

object under study. The information model is tables, graphs, animations, charts, maps.

Modeling of knowledge, which includes the creation of artificial intelligence systems.

The basis of such models is knowledge of any area, consisting of data and rules. Examples

are expert systems, logic games, programs for robots, creating virtual reality effects, and so

on.

Based on all of the above, computer models can be divided into:

• descriptive models describing the object under study and the factors influencing changes

in its behavior.

• optimization models help determine the most appropriate way to interact with a complex

system and manage it.

• predictive models predict the state of an object at specific moments in the future.

• training models used for visual training of students, their testing.

• game models create non-existent situations that imitate reality, play logic games.

Computer modeling initially meant only simulation modeling, however, it is not difficult

to see that the use of a computer for other purposes can greatly help to solve the tasks. For

example, the construction of modern mathematical models based on input experimental data

is impossible or difficult to achieve without the use of a computer. The first problems solved

using computer modeling were related to physics and were mainly complex nonlinear

problems of physics using iterative schemes and, in fact, were mathematical modeling. Good

results in modeling in the field of physics have extended the use of this research method to

other areas. The complexity of the problems solved by modeling depended only on the

power of the computers used, and thus was limited by imperfect powers.

36

A kind of computer simulation is a computational experiment, which involves further

numerical study of the model after its creation, which makes it possible to study the object

in its various modifications and under various conditions.

With the use of computers to perform arithmetic and logical operations, the productivity

of human intellectual labor has increased significantly. The first tasks for which computers

were created were related to nuclear energy and space exploration. Now the computer takes

part in various tasks and research, this technology of theoretical experiments is called a

computational experiment. The basis of a computational experiment is mathematical

modeling, the theoretical basis is applied mathematics, and the technical basis is powerful

electronic computers.

Computer simulation and computational experiment are becoming a new method of

scientific knowledge for the study of complex models of systems. The cycle of a

computational experiment is usually divided into several stages for a better understanding

of the essence of this method.

Cycle of computational experiment.

• Building a mathematical model. At the same time, the formulation of assumptions takes

place, in which the results will be real for this model. The mathematical model, as a rule, is

a differential or integral equation.

• Choice of numerical calculation methods. These methods are a set of sequences of

mathematical formulas, according to which calculations should be carried out. A necessary

condition is that computational methods must be efficient in order to obtain an exact solution

with minimal time and resources.

• Creation of a program that implements a computational algorithm.

• Carrying out calculations and processing the received information.

• Analysis of calculation results, comparison with natural experiment (if possible). The

results of this stage can be of two types: there is a need to revise the model and refine it, or

the obtained calculations are checked for adequacy and the experiment is considered

completed. Most often, there is a need to correct the created model, change the numerical

methods and the program.

Thus, the algorithm is improved, the mathematical model is refined.

37

Expert system.

An expert system is the most well-known and widespread type of intelligent systems.

Although this term is used very widely, there is no precise definition yet. One can only

indicate a number of features that are unique to expert systems.

The first feature of expert systems is that they are intended for users whose field of activity

is far from artificial intelligence, programming, mathematics, and logic. For such users, the

expert system acts as a kind of system that helps them in their daily work. Communicating

with expert systems, working with them should be as simple as simple, for example,

controlling a TV, washing machine or car. The expert system is a typical human-machine

system, so it should include a block called "intelligent interface". Its task is to provide a

dialogue with the user in his usual language. The composition of the intelligent interface

may include visualization tools, with the help of which the necessary images are formed on

the display screen, used in the process of user communication with the system (drawings,

diagrams, drawings, etc.).

Communication with the user takes place in the "question-answer" mode, and questions

can be asked by both the user and the system. Expert systems are used primarily as advisory

systems in those situations where the specialist doubts the choice of the right solution. The

expert knowledge stored in the system's memory is deeper and more complete than the user's

corresponding knowledge. When working online, when a person has very little time to think

and choose decisions (for example, in the event of an emergency in the power system or in

a flying plane), the wrong decision is made not because the person could not find a better

one, but because of his mental features. Stress leads to the fact that even obvious solutions

are not so easy to find. In these cases, prompt systems can be used. According to the current

situation, such a system begins to give advice at a pace sufficient for a person to react to

them.

Operational management systems may also have less knowledge (stored in a database)

than a specialist working in tandem with the system. But on the other hand, the speed and

accuracy of the reaction of the system is much higher than that of a person.

There is another class of systems that do not have their own name and therefore are often

called expert. Unlike classical expert systems, they are designed not for a user who is a

beginner or an average specialist in a certain field of activity, but for the experts themselves.

For such specialists, it is not a consulting or advising system that is needed, but a system

that can help them in their scientific work. Systems of this kind are called research

automation systems. An example would be systems that, based on the private knowledge of

an expert, can detect hidden connections and patterns in empirical material.

Experts gather knowledge about the effect of compound structure on biological activity.

This knowledge is put into the knowledge base, and the system tries to generalize them in

the form of a pattern based on new material. Found dependencies are given to a specialist

who tries to understand and interpret them. He enters his new ideas into the system, and the

joint work continues.

38

When creating expert systems, the most time-consuming step is filling the knowledge

base with the information necessary for the functioning of the future system. This work is

performed by a special specialist - a knowledge engineer.

An expert system is a computer system that uses expert knowledge and inference

procedures to solve problems that require expertise and provide an explanation for the

results.

ES has the ability to accumulate knowledge, issue recommendations and explain the

results obtained, the ability to modify the rules, prompt the conditions missed by the expert,

manage the goal or data. ES are distinguished by the following characteristics:

• intellectuality;

• ease of communication with a computer;

• the possibility of building modules;

• integration of heterogeneous data;

• the ability to resolve multi-criteria tasks, taking into account the preferences of decision

makers (DM);

• work in real time;

• documentation;

• confidentiality;

• unified form of knowledge;

• independence of the inference mechanism;

• ability to explain results.

Currently, the following main areas of application of ES can be distinguished:

• diagnostics,

• planning,

• simulation modeling,

• pre-project survey of enterprises,

• office activities,

• as well as some others.

The task of this direction includes the research and development of programs (devices)

that use knowledge and inference procedures to solve problems that are difficult for human

experts. ES can be classified as general-purpose AI systems - systems that not only execute

given procedures, but also generate and apply procedures for solving new specific tasks

based on search meta-procedures.

The huge interest in ES on the part of users is caused by at least three reasons.

• Firstly, the systems are focused on solving a wide range of problems in non-formalized

areas, on applications that until recently were considered inaccessible to computer

technology.

• Secondly, with the help of ES, specialists who do not know programming can

independently develop applications of interest to them, which can dramatically expand the

scope of computer technology.

39

• Thirdly, when solving practical problems, ES achieve results that are not inferior, and

sometimes even exceed the capabilities of human experts who are not equipped with ES.

Currently, ES are used in various fields of human activity. The most widespread in the

production of RES ES received in the design of integrated circuits, in troubleshooting and

programming automation.

The following characteristics of ES are distinguished: purpose, problem area, depth of

analysis of the problem area, type of methods and knowledge used, system class, stage of

existence, tools.

The purpose is determined by the following set of parameters: the purpose of creating an

expert system is for training specialists, for solving problems, for automating routine work,

for replicating expert knowledge, etc.; the main user is a non-specialist in the field of

expertise, a specialist, a student.

The problem area can be defined by a set of parameters of the subject area and tasks

solved in it. Each of the parameters can be considered from the point of view of both the

end user and the developer of the expert system.

From the user's point of view, the subject area can be characterized by its description in

terms of the user, including the name of the area, the list and relationships of subdomains,

etc., and the tasks solved by existing expert systems - by their type. Typically, the following

types of tasks are distinguished:

• interpretation of symbols or signals - drawing up a semantic description according to

the input data;

• diagnostics - definition of faults;

• prediction - determination of the consequences of observed situations;

• design - development of an object with specified properties subject to the established

restrictions;

• planning - determination of the sequence of actions leading to the desired state of the

object;

• tracking - observation of the changing state of the object and comparison of its indicators

with the established or desired ones;

• control - the impact on the object to achieve the desired behavior.

Test questions:

1. What is meant by an expert system?

2. Name the features of expert systems.

3. Give the structure of the expert system.

4. What qualities should an ES have?

40

Lecture 4

Math modeling. The use of mathematical packages for the study and analysis of

mathematical models, mathematical packages (3D Max, Solid Works, Matlab and

MathCAD).

Plan:

1 Mathematical modeling

2 Math packages

3. Modular structure of mathematical modeling systems

Keywords: Model and simulation, mathematical packages, analysis, mathematical

models, modular structure.

Mathematical modeling is one of the most important objects of the product design

process, which makes it possible to widely use the methods and means of mathematics in

the analysis of the behavior of the designed object. The mathematical model allows

developers to simulate the behavior of the designed object in various conditions of its

operation without making a physical prototype. This leads to a significant reduction in the

development and implementation time of a particular production process, as well as savings

in the costs required for prototyping.

Model and simulation are universal concepts, attributes of one of the most powerful

methods of cognition in any professional field, cognition of systems, processes, phenomena.

Model and simulation bring together specialists from different fields working to solve

different problems.

Mathematical modeling is symbolic modeling, in which the description of an object is

carried out in the language of mathematics, and the model is studied using certain

mathematical methods. The quality of mathematical modeling is determined by the

completeness of the mathematical description of the considered physical object, the

accuracy of the computational procedures used in the implementation of the MM and the

reliability of the initial data on the physical object itself. Therefore, special attention in

modeling should be paid to the adequacy of the model in relation to a specific problem. The

adequacy of the developed model is assessed by comparing the simulation results with the

parameters of the real system and determining the limits of its applicability

 Currently, it is one of the most effective and most frequently used methods of scientific

knowledge. The advantages of mathematical modeling compared to other types of modeling

are:

- cost-effectiveness, saving the resources of a real system;

- the possibility of modeling hypothetical, i.e. objects and systems not implemented in

nature;

41

- the possibility of implementing regimes that are dangerous or difficult to reproduce in

reality;

- the ability to change the time scale;

- versatility of hardware and software, the availability of application software packages

for a wide range of work;

- the ability to predict and identify common patterns;

- the possibility of a relatively simple multivariate analysis.

Considering that the system is a set of interrelated elements (objects) in a certain sense

isolated from the environment and interacting with it as a whole, it is possible to formulate

the definition of the mathematical model of the system.

A mathematical model of a system is a set of mathematical models of elements that are

interconnected and interact with each other and adequately reflect the properties of the

system.

Stages of building mathematical models:

• Statement of the problem

• Formalization

• Setting goals and objectives for modeling

• Choice of numerical apparatus and carrying out calculations / solving equations

• Debugging and correction of the model

• Assessment of accuracy and interpretation of results

• Integration (integration of solutions into old systems)

The rapid development of computer technology has led to the emergence of computer-

aided design systems that allow you to raise design work to a qualitatively new level. They

increase the pace and quality of design, allow you to more effectively solve many complex

engineering problems that were previously considered only simplistic. In the field of

engineering design, there are three main sections:

• CAD - Computer Aided Design - design and creation of drawings;

• CAM - Computer Aided Manufacturing - means of technological preparation for the

production of products;

• CAE - Computer Aided Engineering - automation tools for engineering calculations,

analysis and simulation of physical processes, perform dynamic modeling, verification and

optimization of products.

Math packages are an integral part of the world of CAE systems. This part cannot be

considered secondary, because. Some tasks are generally impossible to solve without the

help of a computer. Moreover, today even theorists (the so-called pure, not applied

mathematicians) resort to the systems of symbolic mathematics, for example, to test their

hypotheses. Professional mathematical packages are programs (software packages) that

have the means to perform various numerical and analytical (symbolic) mathematical

calculations, from simple arithmetic calculations to solving partial differential equations,

solving optimization problems, testing statistical hypotheses, tools for constructing

42

mathematical models and others. tools necessary for carrying out various technical

calculations. All of them have advanced graphical tools, a convenient help system, as well

as reporting tools. Modern mathematical packages can be used both as a regular calculator,

and as a means to simplify expressions when solving any problems, and as a graphics or

even sound generator. Means of interacting with the Internet have also become standard,

and the generation of HTML pages is now performed right in the process of computing.

Mathematical packages can be divided into two groups:

• programs of symbolic mathematics

• programs for numerical problem solving.

Numerical problem solving programs are designed to solve mathematical problems using

numerical methods. These packages include: Statistica, SPSS, SAS, Stadia, Statgraphics,

Matlab, and others. Some packages, such as MathCAD, Maple, Maxima, and Mathematica,

include both the capabilities of symbolic mathematics packages and packages using

numerical methods.

At present, almost all modern CAE programs have built-in functions for symbolic

calculations. However, Maple, MathCad, Mathematica and MatLab are considered the most

famous and adapted for mathematical symbolic calculations.

Mathematical package. This package was developed by Wolfram Research, Inc. and is

regarded as the world leader among computer systems of symbolic mathematics for PC,

providing not only the ability to perform complex numerical calculations with the output of

their results in a graphical form, but also to carry out especially laborious analytical

transformations and calculations.

Versions of the package for Windows have a modern user interface and allow you to

prepare documents in the form of Notebooks. They combine source data, descriptions of

algorithms for solving problems, programs and solution results in a wide variety of forms

(mathematical formulas, numbers, vectors, matrices, tables and graphs). At the same time,

the package provides a dynamic connection between the cells of documents in the style of

spreadsheets, even when solving symbolic problems, which fundamentally and favorably

distinguished it from other similar packages. Mathematica was conceived as a package that

automates the work of scientists and mathematicians-analysts as much as possible. It is a

powerful and flexible mathematical toolkit that can provide invaluable assistance to most

scientists, university and university professors, students, engineers, and even

schoolchildren.

From the very beginning, much attention was paid to graphics, including dynamic ones,

and even multimedia capabilities - dynamic animation playback and sound synthesis. The

set of graphics functions and options that change their action is very wide. Graphics is the

strength of the various versions of Mathematica and gives them the lead among computer

mathematics packages. As a result, Mathematica quickly became the market leader in

symbolic math packages.

43

Mathematica is, on the one hand, a typical programming system based on one of the most

powerful high-level problem-oriented functional programming languages, designed to solve

various problems (including mathematical ones), and on the other hand, an interactive

system for solving most mathematical problems in an interactive mode without traditional

programming.

Mathematica as a programming system has all the capabilities to develop and create

almost any control structures, organize I / O, work with system functions and maintain any

peripheral devices, and with the help of extension packages (Add-ons), it becomes possible

to adapt to the needs of any user. Mathematica has a machine-independent core of

mathematical operations that allows the package to be ported to various computer platforms.

Extension packages are prepared in Mathematica's own programming language and are the

main means for developing the package's capabilities and adapting them to solving specific

classes of user problems. The package has a built-in electronic help system containing e-

books with real examples.

The disadvantages of the Mathematica package include a very unusual programming

language, which, however, is facilitated by a detailed help system.

Maple package. Maple package - one of the first packages of symbolic mathematics is

still one of the leaders among the universal systems of symbolic calculations. The symbolic

analyzer of the Maple package is the most powerful part of this software, so it was borrowed

and included in a number of other CAE packages, such as MathCad and MatLab, as well as

in Scientific WorkPlace and Math Office for Word packages for preparing scientific

publications. The Maple package provides the user with a convenient intellectual

environment for mathematical research at any level and is especially popular in the scientific

community.

Maple provides a convenient environment for computer experiments, during which

various approaches to the problem are tried, particular solutions, and if programming is

needed, those requiring special speed fragments. The package allows you to create

integrated environments with the participation of other systems and high-level universal

programming languages. To formalize the results, you can use the tools of the Maple

package to visualize data and prepare illustrations for publication.

In addition, the package can prepare an article, report, book. Work in the package is

interactive: the user enters commands and immediately sees the result of their execution on

the screen. At the same time, the Maple package is not at all like a traditional programming

environment, where a strict formalization of all variables and actions with them is required.

Here, the choice of appropriate types of variables is automatically ensured and the

correctness of the operations is checked, so that in the general case, the description of

variables and strict formalization of the notation are not required.

The Maple package consists of a core (procedures written in C), a library written in the

Maple language, and a rich front-end. The kernel performs most of the basic operations, and

the library contains many commands - procedures that are executed in interpretation mode.

44

The Maple interface is based on the concept of a worksheet or document containing I/O

lines and text, as well as graphics. The package is operated in interpreter mode. In the input

line, the user specifies a command, presses the Enter key, and receives the result - an output

line (or lines) or a message about an erroneously entered command. An invitation to enter a

new command is immediately issued, etc.

The computational capabilities of the package allow you to use Maple at the most

elementary level of its capabilities - as a very powerful calculator for calculating given

formulas, but its main advantage is the ability to perform arithmetic operations in symbolic

form. So, when working with fractions and roots, the program does not convert them to

decimal form during calculations, but makes the necessary reductions and conversions to a

column, which allows you to avoid rounding errors. To work with decimal equivalents,

Maple has a special command that approximates the value of an expression in floating point

format.

Maple supports hundreds of special functions and numbers found in many areas of

mathematics, science and technology.

Maple also has many powerful tools for evaluating expressions with one or more

variables. The package can be used to solve problems of differential and integral calculus,

calculation of limits, series expansions, summation of series, multiplication, integral

transformations, studies of continuous or piecewise continuous functions, solving ordinary

differential equations (ODE), as well as partial differential equations (PDE), including

problems with initial conditions (IVP) and problems with boundary conditions (BVP). One

of the most used in Maple is the linear algebra package, which contains a powerful set of

commands for working with vectors and matrices.

The Maple package supports both 2D and 3D graphics. In this way, you can graphically

represent explicit, implicit, and parametric functions, as well as multivariate functions and

simple datasets, and look for patterns visually.

Maple graphics tools allow you to build two-dimensional graphs of several functions at

once, create graphs of conformal transformations of functions with complex numbers, and

plot functions in logarithmic, double logarithmic, parametric, phase, polar and contour

forms. You can graphically represent inequalities, implicit c functions, solutions to

differential equations, and root locus.

Maple can generate surfaces and curves in 3D, including surfaces defined by explicit and

parametric functions, as well as solutions to differential equations. At the same time, it can

be presented not only in a static form, but also in the form of two- or three-dimensional

animation. The Maple package uses a procedural language that is designed for rapid

development of math routines and custom applications. The syntax of this language is

similar to the syntax of high-level universal languages: C, Fortran, Basic and Pascal.Maple

can generate code compatible with programming languages such as Fortran or C, and with

the LaTeX typing language, which is very popular in the scientific world and is used for

publications.

45

For example, using the Maple package, you can develop a specific mathematical model,

and then use it to generate C code, corresponding to this model.

The disadvantages of the Maple package include only its some "thoughtfulness", and not

always justified, as well as the very high cost of this program. Modular structure of

mathematical modeling systems. No matter how different the simulators may seem, their

modular structure is practically unchanged:

• The graphical interface is human-oriented and is responsible for presenting the

mathematical model in a form understandable to a wide range of specialists. These can be

block diagrams, physical circuit diagrams, hybrid state maps, etc.

• The database management system is responsible for storing the objects of the model

compiled by the user and the required transformations of the structure of its storage.

• Mathematical core takes on the main computational load and in a cycle (according to a

given program, guided by the readiness of arguments, and in rare disputable cases - the

appearance of which can always be avoided by the priority of mathematical operations)

ensures the execution of flows of mathematical functions.

• Servers for visualization and online influences provide an interface between the

functioning mathematical core and the user. Results visualization servers – oscilloscope,

indicating and indicating devices – depending on situational requirements, can operate either

in synchronous or asynchronous modes.

• Servers of online influences on the model are strictly synchronized with the

mathematical core.

Test questions:

1. What is model and simulation?

2. What is a mathematical model and mathematical modeling?

3. What are the goals of modeling.

4. What are the types of modeling?

Lecture 5

 Graphic modeling. Processing of numerical and graphic information in

engineering problems. Implementation of static and dynamic mathematical models in

Matlab and MathCAD systems.

Plan:

1 Basic concepts of graphic modeling. Scope of application

2. Stages of development of multimedia products

3. 2D design and 3D modeling

 Keywords: multimedia, computer graphics, modeling, visualization, image recognition,

geometric model, volume modeling, rendering.

46

The scope of computer graphics has become wider due to the advent of personal

computers. Computer graphics has become a familiar and necessary tool for specialists in

many industries. At present, it is difficult to imagine an area of scientific research where

various mathematical models and computer graphics would not be used. Graphic modeling

combines the possibility of simultaneously obtaining an image of an object, a process in

various information representations: graphics, text, sound, video, and the implementation of

motion dynamics, transformation of objects in the form of animation. Examples of graphical

information models are diagrams, maps, drawings, graphs, diagrams and much more.

Graphic modeling combines the possibility of simultaneously obtaining an image of an

object, a process in various information representations: graphics, text, sound, video, and

the implementation of motion dynamics, transformation of objects in the form of animation.

With regard to technical systems, graphic modeling is the process of replacing the object

of study with some of its model and conducting research on the model in order to obtain the

necessary information about the object or system visually. Despite the successes achieved

in the theory and practice of modeling, currently require further study of the problem of

increasing the efficiency of mathematical modeling of systems by expanding the

possibilities of graphical representation of information. This determines the relevance of the

development and improvement of methods of graphic visualization - the development of

controlled graphical models (UGM), displaying the structure and properties of objects,

visualizing the transformation of models, allowing сarry out complex studies of the

modeling object in one software system.

The construction of controlled graphical models is possible in many computer

mathematics systems (MatLab, MathCAD, Maple, Mathematical In the work, the

possibilities of the proposed methods and techniques are shown in the MathCAD system,

which has wide mathematical and graphical capabilities, a simple interface that allows you

to develop high-quality documents containing calculation expressions, graphics and text.

Multimedia is a modern computer information technology that allows you to combine

text, sound, video, graphics and animation in a computer system. This concept defines

information technology based on a software and hardware complex, which has a core in the

form of a computer with the means of connecting audio and video equipment to it.

Multimedia technology makes it possible to ensure, when solving problems of automation

of intellectual activity, the combination of computer capabilities with traditional means for

our perception of sound and video information for the synthesis of three elements (sound,

text and graphics, live video).

The tasks to be solved cover all areas of intellectual activity: science and technology,

education, culture, business, and are also used in the service environment when creating

electronic guides with immersion in the real environment, multitechs. The emergence of

multimedia systems, of course, produces revolutionary changes in such areas as education,

computer training, in many areas of professional activity, science, art, computer games, etc.,

including computer-aided design systems. A sharp breakthrough in this direction, which has

47

occurred over the past few years, is provided primarily by the development of technical and

systemic means. This is progress in the development of personal computers: a sharply

increased amount of memory, speed, graphics capabilities, characteristics of external

memory, achievements in the field of video technology, laser discs, as well as their mass

introduction. An important role was also played by the development of methods for fast and

efficient compression (scan) of data.

Multimedia technologies are one of the most promising and popular areas of information

technology. Historically, computers were originally designed to process only numerical

information, however, most multimedia data are difficult to represent and difficult to process

in numerical form (require huge amounts of memory and processor power for processing).

As a result, the professional creation and processing of multimedia information remains an

expensive and not accessible procedure to this day. Further development of multimedia is

hampered by the difficulties with the necessary expansion of the means of influence: the

mechanism of taste and smell, technology of tactile effects, etc.

Several types of key terminals are used as input devices within CAD, of which

alphanumeric terminals are the most widespread and are available in almost all interactive

graphic systems. The alphanumeric terminal can be either a conventional screen terminal or

a paper-based document terminal. For graphical purposes, the screen terminal has the

advantage of being fast, easy to edit, and saves a lot of paper. However, it sometimes

happens that permanent recording of information is desirable, and this is most easily

provided by a documenting terminal. Many CAD systems use a graphical screen to display

alphanumeric information, but it is still more convenient to have a separate screen terminal

for this, so as not to disturb the image on the graphical screen and not to make inscriptions

on top of this image. The alphanumeric terminal is used to enter commands, functions and

a variety of additional information, the control of which is provided by displaying the CRT

or printing. Similarly, system messages are displayed to the user. In the process of

interactive communication, the computer can display menu lists, program listings, error

messages, and so on. The set of commands used to construct graphic images constitutes the

so-called graphic language, which can be classified as a higher-level problem-oriented

language. The most common graphic language commands can be displayed on the screen to

make it easier for the designer to remember them.

Multimedia technologies are one of the most promising and popular areas of information

technology. Historically, computers were originally designed to process only numerical

information, however, most multimedia data are difficult to represent and difficult to process

in numerical form (require huge amounts of memory and processor power for processing).

As a result, the professional creation and processing of multimedia information remains an

expensive and not accessible procedure to this day. Further development of multimedia is

hampered by the difficulties with the necessary expansion of the means of influence: the

mechanism of taste and smell, technology of tactile effects, etc.

48

Several types of key terminals are used as input devices within CAD, of which

alphanumeric terminals are the most widespread and are available in almost all interactive

graphic systems. The alphanumeric terminal can be either a conventional screen terminal or

a paper-based document terminal. For graphical purposes, the screen terminal has the

advantage of being fast, easy to edit, and saves a lot of paper. However, it sometimes

happens that permanent recording of information is desirable, and this is most easily

provided by a documenting terminal.

Many CAD systems use a graphical screen to display alphanumeric information, but it is

still more convenient to have a separate screen terminal for this, so as not to disturb the

image on the graphical screen and not to make inscriptions on top of this image. The

alphanumeric terminal is used to enter commands, functions and a variety of additional

information, the control of which is provided by displaying the CRT or printing. Similarly,

system messages are displayed to the user. In the process of interactive communication, the

computer can display menu lists, program listings, error messages, and so on. The set of

commands used to construct graphic images constitutes the so-called graphic language,

which can be classified as a higher-level problem-oriented language. The most common

graphic language commands can be displayed on the screen to make it easier for the designer

to remember them.

There are three ways to represent graphic images: raster, vector and fractal.

A raster image represents a set of dots located on a grid canvas. Each dot can take on

different colors, at a minimum black and white. Scope - processing of photographs,

drawings, scanned images, etc. The advantage of this type of images is the ability to transfer

a large amount of information (photos). The disadvantage is the large amount of memory

required to store the image. To solve this problem, a method of compressing images using

special data storage formats (jpg, gif, etc.) is used. Raster graphics programs include: Adobe

Photoshop, Corel PhotoPaint, Ms Paint (text editor).

A vector image represents a set of actions for creating a drawing using various lines,

shapes, color fill commands, and other commands. The scope is the creation of diagrams,

drawings, advertising posters, etc. The advantage of this type is the small amount of memory

occupied by the pattern. The disadvantage is the artificiality of the image, consisting of a set

of primitives. Main programs: Corel Draw, Visio, AutoCad, Arhicad.

Fractal graphics, like vector and 3D graphics, are computational. Its main difference is

that the image is built according to an equation or a system of equations. Therefore, nothing

but the formula needs to be stored in the computer's memory to perform all calculations.

The mathematical basis of fractal graphics is fractal geometry. Here, the method of

constructing images is based on the principle of inheritance from the so-called "parents" of

the geometric properties of objects-successors. The advantages of fractal graphics are in

several factors: - Small size with a large-scale drawing. - There is no end to scaling, the

complexity of the picture can be increased indefinitely. - There is no other tool that will

allow you to create complex shapes.

49

The principles of work in these programs are similar to those in word processors and

spreadsheets. When creating a new drawing document, you need to use a set of tools (brush,

pencil, eraser, shapes and lines, sprayers, etc.) to create a drawing, as if it were done in an

album. In this case, you can often apply various commands for transforming, filtering, and

applying various effects using the commands in the main menu. Specific commands can be

learned using the help system in the program you need to work with. Computer graphics

(CG) is a field of computer science whose interests include all aspects of the formation of

images using computers.

The most important function of a computer is information processing. Of particular note

is the processing of information associated with images. It is divided into three main areas:

• visualization,

• treatment

• image recognition.

Visualization is the creation of an image based on the description (model) of some object.

There are a large number of visualization methods and algorithms that differ depending on

what and how should be displayed: a graph of a function, a diagram, a diagram, a map or an

imitation of three-dimensional reality - images of scenes in computer entertainment, feature

films, simulators, in systems architectural design. Important and interconnected factors here

are: the rate of change of frames, the saturation of the scene with objects, the quality of the

image, and the consideration of the features of the graphic device.

Image processing is the transformation of images. Examples of image processing are

contrast enhancement, sharpening, color correction, smoothing, noise reduction, etc. The

processing material can be satellite images, scanned images, radar, infrared images, etc. The

task of image processing can be either an improvement depending on a certain criterion

(restoration, restoration), or a special transformation that radically changes the image. In the

latter case, image processing can be an intermediate step for further image recognition. For

example, before recognition, it is often necessary to select contours, create a binary image,

and separate the original image by colors. Image processing methods can differ significantly

depending on how it was obtained: synthesized by the system, obtained as a result of

digitizing a black and white or color photograph.

Image recognition - obtaining a description of the depicted objects. Recognition methods

and algorithms were developed primarily to provide vision for robots and for special-

purpose systems. But recently, computer-based image recognition systems are increasingly

appearing in everyday practice, for example, office text recognition systems or vectorization

programs.

Areas of application of computer graphics:

- CAD (computer-aided design systems);

- business graphics (graphical presentation of data);

- visualization of processes and phenomena in scientific research (computer graphic

modeling);

50

- medicine (computed tomography, ultrasound, etc.);

- geodesy and cartography (GIS);

- polygraphy (diagrams, posters, illustrations);

- sphere of mass information (graphics on the Internet, photo);

- cinematography (special effects, computer animation);

- everyday life (computer games, graphic editors, photo albums).

Computer graphics became so widespread with the advent of interactive graphics

systems.

Interactive computer graphics (ICG) - the ability of a computer system to create

graphics and conduct a dialogue with a person. In the ICG system, the user perceives on the

display an image representing some complex object, and can make changes to the

description (model) of the object. Such changes can be the input and editing of individual

elements, setting numerical values for any parameters, various operations for entering

information based on human perception of images. At present, almost any program can be

considered an interactive computer graphics system.

Geometric modeling is a section of mathematical modeling that allows you to solve

problems in two-dimensional, three-dimensional and, in general, in multidimensional space.

The geometric model includes systems of equations and algorithms for their

implementation. The mathematical basis for constructing the model is the equations that

describe the shape and movement of objects. The whole variety of geometric objects is a

combination of various primitives - the simplest figures, which in turn consist of graphic

elements (points, lines and surfaces). Geometric modeling of objects is widely used in

computer graphics systems.

Fundamentals of 3D Modeling.

Three-dimensional graphics (3D Graphics, three dimensions of an image) is a section of

computer graphics, a set of techniques and tools (both software and hardware) designed to

depict three-dimensional objects.

A three-dimensional image on a plane differs from a two-dimensional one in that it

involves the construction of a geometric projection of a three-dimensional model of a scene

onto a plane (for example, a computer screen) using specialized programs (however, with

the creation and implementation of 3D displays and 3D printers, three-dimensional graphics

do not necessarily include projection onto a plane). In this case, the model can either

correspond to objects from the real world (cars, buildings, hurricane, asteroid), or be

completely abstract (projection of a four-dimensional fractal). Three-dimensional graphics

is actively used to create images on the plane of a screen or a sheet of printed matter in

science and industry, for example, in design work automation systems (CAD; to create solid

elements: buildings, machine parts, mechanisms), architectural visualization (this includes

the so-called "virtual archeology"), in modern medical imaging systems.

The widest application is in many modern computer games. Also as an element of

cinematography, television, printed matter.

51

3D graphics usually deals with a virtual, imaginary three-dimensional space that is

displayed on a flat, two-dimensional surface of a display or sheet of paper. Currently, there

are several ways to display three-dimensional information in a three-dimensional form,

although most of them represent three-dimensional characteristics rather conditionally,

since they work with a stereo image. From this area, stereo glasses, virtual helmets, 3D

displays capable of demonstrating a three-dimensional image can be noted. To obtain a

three-dimensional image on a plane, the following steps are required:

• modeling - creation of a three-dimensional mathematical model, scene and objects in

it;

• texturing - assigning raster or procedural textures to the surfaces of models (it also

implies setting material properties - transparency, reflections, roughness, etc.);

• lighting - installation and configuration of light sources;

• animation (in some cases) - giving movement to objects;

• dynamic simulation (in some cases) - automatic calculation of the interaction of

particles, solid / soft bodies, etc. with the simulated forces of gravity, wind, buoyancy,

etc., as well as with each other;

• rendering (visualization) - building a projection in accordance with the selected

physical model;

• output of the resulting image to the output device - display or printer.

Modeling

Scene modeling (virtual modeling space) includes several categories of objects:

• geometry (built using various techniques (eg, creating a polygonal mesh) model, such

as a building);

• materials (information about the visual properties of the model, such as the color of

the walls and the reflective / refractive power of windows);

• light sources (direction, power, lighting spectrum settings);

• virtual cameras (selection of point and angle of projection construction);

• forces and influences (settings for dynamic distortion of objects, used mainly for

animation);

• Additional effects (objects simulating atmospheric phenomena: light in fog, clouds,

flames, etc.)

The task of 3D modeling is to describe these objects and place them in the scene using

geometric transformations in accordance with the requirements for the future image.

Purpose of materials: For a real-sensor camera, the materials of real-world objects differ

in how they reflect, transmit, and scatter light; virtual materials are set to match the

properties of real materials - transparency, reflections, light scattering, roughness, relief, etc.

The most popular purely modeling packages are:

• Pixologic Zbrush;

• Autodesk Mudbox;

• Robert McNeel & Assoc. Rhinoceros 3D;

52

• Google SketchUp.

To create a three-dimensional model of a person or creature can be used as a prototype

(in most cases).

Texturing.

Texturing involves projecting bitmap or procedural textures onto the surface of a 3D

object according to a UV coordinate map, where each vertex of the object is mapped to a

specific coordinate in 2D texture space.

As a rule, multifunctional UV-coordinate editors are part of universal 3D graphics

packages. There are also standalone and plug-in editors from independent developers, such

as Unfold3D magic, Deep UV, Unwrella, and others.

Lighting. It consists in creating, directing and configuring virtual light sources. At the

same time, in the virtual world, light sources can have a negative intensity, taking light from

the zone of their "negative illumination". Typically, 3D graphics packages provide the

following types of lights:

• Omni light (Point light) – omnidirectional;

• Spot light - conical (spotlight), source of diverging rays;

• Directional light - source of parallel beams;

• Area light (Plane light) - a light portal that emits light from the plane;

• Photometric — light sources modeled according to the glow brightness

parameters in physically measurable units, with a given glow temperature.

There are also other types of light sources that differ in their functional purpose in

different 3D graphics and visualization programs. some packages provide the ability to

create sources of volumetric glow (Sphere light) or volumetric lighting (Volume light),

within a strictly specified volume. Some provide the ability to use geometric objects of

arbitrary shape.

Animation. One of the main vocations of three-dimensional graphics is to give

movement (animation) to a three-dimensional model, or to simulate movement among three-

dimensional objects. Universal packages of three-dimensional graphics have very rich

possibilities for creating animation. There are also highly specialized programs created

purely for animation and with a very limited set of modeling tools:

• Autodesk Motionbuilder;

• PMG Messiah Studio.

Rendering. At this stage, the mathematical (vector) spatial model turns into a flat (raster)

picture. If you want to create a movie, then a sequence of such pictures - frames is rendered.

As a data structure, an image on the screen is represented by a matrix of dots, where each

dot is defined by at least three numbers: the intensity of red, blue, and green.

Thus, rendering converts a 3D vector data structure into a flat matrix of pixels. This step

often requires very complex calculations, especially if you want to create the illusion of

reality. The simplest kind of rendering is to draw the outlines of the models on the computer

screen using projection, as shown above. Usually this is not enough and you need to create

53

an illusion of the materials from which the objects are made, as well as calculate the

distortion of these objects due to transparent media (for example, liquid in a glass).

There are several rendering technologies, often combined together.

For example:

• Z-buffer (used in OpenGL and DirectX 10);

• Scanline (scanline) - calculation of the color of each point of the picture by constructing

a ray from the point of view of the observer through an imaginary hole in the screen at the

place of this pixel "into the scene" before crossing with the first surface. The color of the

pixel will be the same as the color of this surface (sometimes taking into account lighting,

etc.);

• Ray tracing (ray tracing, English ray tracing) - the same as scanline, but the color of

the pixel is specified by constructing additional rays (reflected, refracted, etc.) from the point

of intersection of the gaze ray. Despite the name, only reverse ray tracing is used (that is,

just from the observer to the light source), direct ray tracing is extremely inefficient and

consumes too many resources to obtain a high-quality image;

• Global illumination (English global illumination, radiosity) - calculation of the

interaction of surfaces and media in the visible spectrum of radiation using integral

equations.

The line between ray tracing algorithms is now almost erased. So, in 3D Studio Max,

the standard renderer is called the Default scanline renderer, but it considers not only the

contribution of diffuse, reflected, and intrinsic (self-illumination colors) light, but also

smoothed shadows. For this reason, more often Raycasting refers to reverse ray tracing,

while Raytracing refers to forward ray tracing.

Test questions.

1. Define 3D graphics.

2. What steps are required to get a 3D image?

3. Describe the contents of the steps for obtaining a 3D image.

4. List the main software for 3-D modeling.

5. Tell us about the history of the development of 3D modeling.

6. Tell us about the main modeling systems.

Lecture 6

Fundamentals of simulation modeling. Classification of simulation software.

Computational experiment. Varieties of simulation modeling. Simulation modeling

using the Simulink package.

The problems that we face in various areas of our lives are constantly becoming more

complex. This determines the need to improve existing and develop new methods and

54

procedures for their solution. Simulation modeling is an effective tool for solving complex

problems. Simulation models can be used for:

- studies of the boundaries and structures of systems in order to solve specific problems;

- determination and analysis of critical elements, components and points in the systems

and processes under study;

- synthesis and evaluation of proposed solutions;

- forecasting and planning the future development of the systems under study.

A simulation model will be called a logical-mathematical description of the system, which

can be studied in the course of experiments on a PC and, therefore, can be considered a

laboratory version of the system. After the development of the simulation model is

completed, machine experiments are carried out with it, which allow us to draw conclusions

about the behavior of the system:

- without its construction, if it is a designed system;

- without interfering with its functioning, if it is an operating system, experimentation

with which is either too expensive or unsafe;

- without destroying it, the purpose of the experiment is to determine the limits of impact

on the system.

Simulation modeling (simulation) - a method that allows you to build models that

describe processes as they would take place in reality. Such a model can be "played" in

time for both one test and a given set of them. In this case, the results will be determined

by the random nature of the processes. Based on these data, fairly stable statistics can be

obtained. Simulation modeling can be considered as a kind of experimental testing. Unlike

the prototype system ("in hardware"), it:

• less expensive;

• has the ability to conduct experiments by changing the key parameters;

• dynamic (can describe behavior over time).

The process of sequential development of a simulation model begins with the creation

of a simple model, which then gradually becomes more complex in accordance with the

requirements of the problem being solved.

In the process of simulation modeling, the following main stages can be distinguished:

1. Formulation of the problem; description of the problem under study and definition of

the objectives of the study.

2. Development of the model: a logical and mathematical description of the system being

modeled in accordance with the formulation of the problem.

3. Data preparation: identification, specification and data collection.

4. Translation of the model: translation of the model into a language acceptable for the

PC used.

5.Verification: establishing the correctness of machine programs.

6. Validation: assessment of the required accuracy and compliance of the simulation

model with the real system.

55

7. Strategic and tactical planning: determining the conditions for conducting a machine

experiment with a simulation model.

8. Experimentation: running a simulation model on a PC to obtain the required

information.

9. Analysis of the results: studying the results of a simulation experiment to prepare

conclusions and recommendations for solving the problem.

10. Implementation and Documentation: Implementation of the recommendations

derived from the simulation and documentation of the model and its use.

Stages of simulation modeling.

Simulation modeling as a special information technology consists of the following main

stages.

1. Structural analysis of processes. The structure of a complex real process is

formalized by decomposing it into subprocesses that perform certain functions and have

mutual functional links according to the legend developed by the working expert group.

The identified sub-processes, in turn, can be divided into other functional sub-processes.

The structure of the general simulated process can be represented as a graph having a

hierarchical multilayer structure, as a result, a formalized image of the simulation model

appears in graphical form. Structural analysis is especially effective in modeling economic

processes, where (unlike technical ones) many of the constituent sub-processes do not have

a physical basis and proceed virtually, since they operate with information, money, and the

logic (laws) of their processing.

2. Formalized description of the model. The graphic representation of the simulation

model, the functions performed by each sub-process, the conditions for the interaction of

all sub-processes and the behavior of the simulated process (temporal, spatial and financial

dynamics) should be described in a special language for subsequent translation.

3. Building a model. Usually this is translation and editing of links (model assembly),

verification (calibration) of parameters. Translation is carried out in different modes: in

interpretation mode, or in compilation mode. Each mode has its own characteristics. The

interpretation mode is easier to implement. A special universal interpreter program, based

on a formalized description of the model, launches all simulating subroutines.

This mode does not result in a separate simulator that could be transferred or sold to the

customer (you would have to sell both the model and the simulation system, which is not

always possible).

Building a model in the Simulink system.

 The Simulink package is designed for modeling and simulation at the system level,

which allows you to conduct a comprehensive study of the system being developed in a

single design environment. Modeling and simulations allow you to test the behavior of the

system in critical conditions or emergency scenarios.

Simulink is a simulation and model-based design environment for dynamic and

embedded systems integrated with MATLAB. Simulink is a dataflow graphical

56

programming language tool for simulating, simulating and analyzing multi-domain

dynamic systems. Basically it is a graphical flowchart tool with a customizable set of block

libraries. This allows you to include MATLAB algorithms in models as well as export

simulation results to MATLAB for further analysis.

Simulink supports:

• system design

• modeling

• automatic code generation

• testing and validation of embedded systems

There are several other add-on products provided by MathWorks and third-party

hardware and software products that are available for use with Simulink.

The following list gives a brief description of some of them - Stateflow allows you to

develop state machines and flowcharts. Simulink Coder allows you to generate C source

code for automatic implementation of real-time systems. xPC Target, together with x86-

based real-time systems, provide an environment for simulating and testing Simulink and

Stateflow models in real time on a physical system. The built-in encoder supports certain

built-in targets.

HDL Coder allows you to automatically generate synthesized VHDL and Verilog.

SimEvents provides a library of graphical building blocks for simulating queuing systems.

Stateflow allows you to develop state machines and flowcharts. Simulink Coder allows

you to generate C source code for automatic implementation of real-time systems.

Simulink is able to systematically test and validate models through modeling style

checking, requirements tracking, and model coverage analysis.

Simulink Design Verifier allows you to identify design errors and generate test scripts

to validate your model. The Simulink simulation system is a component of The

MathWorks' MatLab integrated engineering environment. Simulink combines the visibility

of analog machines with the precision of digital computers. Simulink provides the user

with access to all the features of the MatLab package, including a large library of numerical

methods.

When modeling using Simulink, the principle of visual programming is implemented,

according to which the user creates a device model on the screen from the library of

building blocks and performs calculations. Simulink provides an interactive simulation

environment where the behavior of the model and the results of its operation are displayed

as you run, and it is possible to change the parameters of the model even while it is running.

Simulink allows you to create your own blocks and block libraries with access from

MatLab, Fortran or C programs, link blocks with previously developed Fortran and C

programs that contain already tested models.

Stages of building a model in the Simulink system.

57

Before building the model, you must first load the Matlab system and run the Simulink

subsystem. In both cases, the Simulink Library Browser window will open (Simulink

library browser), shown in Fig. 1.

Fig. 1. Tree of standard libraries of the Simulink system.

At the top of this window, the two leftmost buttons serve respectively to create a new

and open an existing model.

After pressing the left button, a window for building a new model will appear on the

screen (Fig. 2., a). The process of building a Simulink model involves building the model

and setting the required parameters. The layout consists in selecting the necessary blocks

from the Simulink libraries, placing them in the window that opens (Fig. 2., b) and

interconnecting them (Fig. 2., d). Further, for each block, the corresponding parameters are

set (Fig. 2., c), which meet the requirements of the simulated system. In order to build a

Simulink model, you need to know what types of blocks are provided to the user.

58

Fig 2. Working windows of the Simulink subsystem when creating a model.

Test questions:

1. What is the model?

2. What is simulation modeling?

3. Where are simulation models used?

4. List the stages of building a simulation?

Lecture 7

Programming in MATLAB. Modules and their functions. Methods for building

graphical models in MATLAB

Plan:

1. Basic programming tools

2. Control structures.

3. Graphing

4. Graphs of functions of two variables (3D graphics)

Key terms: programming, programming tools, script file, program modules, compilers,

procedural programming, functional programming, logic programming, structured

programming, visual-oriented programming.

Using the command mode (command line mode, command window) is not the main one

when using the capabilities of the MATLAB environment. However, when solving a

number of serious problems, it becomes necessary to preserve the used sequences of

calculations, as well as their further modification, i.e. there is a need for programming

59

problem solving. It is practically impossible to foresee in one, even the largest and most

powerful, mathematical system the possibility of solving all the problems that may interest

the user.

Programming in the MATLAB system is an effective means of expanding and adapting

it to solve specific problems. It is implemented using the system programming language.

Programs in the MATLAB programming language are saved as text m-files. In this case,

both entire programs can be saved in the form of script files, as well as individual program

modules - functions. In addition, it is important that the program can change the structure

of calculation algorithms depending on the input data and data generated during the

calculations. From the perspective of a programmer, the system programming language is

a typical high-level domain-specific programming language. More precisely, it is a super-

high-level language containing complex operators and functions that would require a lot

of effort and time to implement in ordinary languages (for example, BASIC, Pascal or C).

Such functions include matrix functions, fast Fourier transform (FFT) functions, etc., and

operators — operators for constructing various graphs, generating matrices of a certain

type, etc.

Basic programming tools. Programs in the MATLAB system are m-files of a text

format containing the recording of programs in the form of program codes. The

programming language of the MATLAB system has the following facilities:

• data of various types;

• constants and variables;

• operators, including operators of mathematical expressions;

• built-in commands and functions;

• user functions;

• governing structures;

• system operators and functions;

• language extension tools.

Program codes in the MATLAB system are written in a high-level language that is

understandable enough for users of moderate programming skill. The MATLAB

programming language is a typical interpreter. This means that each program instruction is

recognized and immediately executed, which makes it easier to provide an interactive

mode of communication with the system. There is no compilation step for all instructions,

i.e. the complete program. Interpretation means that MATLAB does not create executable

end programs. They exist only as m-files. The MATLAB environment is required to run

the programs. However, for programs in the MATLAB language, compilers have been

created that translate MATLAB programs into the codes of the C and C++ programming

languages. This solves the problem of creating executable programs originally developed

in the MATLAB environment.

Basic data types. The data types array and numeric are virtual ("apparent"), since no

variables can be assigned to them. They serve to define and complete certain types of data.

60

Thus, the following basic data types are defined in MATLAB, which in the general case

are multidimensional arrays:

single - numeric arrays with single precision numbers;

double — numeric arrays with double precision numbers;

char - string arrays with character elements;

sparse - inherits the properties of double, sparse matrices with double precision number

elements;

cell - arrays of cells; cells, in turn, can also be arrays;

struct - arrays of structures with fields that can also contain arrays;

function_handle - function handles:

• int32, uint32 — arrays of 32-bit signed and unsigned numbers;

• intl6, uint!6 — arrays of 16-bit signed and unsigned integers;

• int8. uint8 - arrays of 8-bit signed and unsigned integers.

Types of programming. The MATLAB programming system is positioned as a high-

level language for scientific and technical calculations. The programming language of the

MATLAB system has incorporated all the tools necessary to implement various types of

programming:

• procedural;

• operator;

• functional;

• logical;

• structural (modular);

• object-oriented;

• visually oriented.

For the MATLAB system language, the distinction between commands (executed by

keyboard input) and program statements (executed from a program) is a convention. Both

commands and program statements can be executed both from the program and in the direct

calculation mode. Hereinafter, commands are mainly understood as means that control

peripheral equipment, and operators are means that perform operations with operands

(data). The function converts one data to another. Many functions are characterized by

returning values in response to accessing them with a list of input parameters - arguments.

M-files of scripts and functions. Both on the command line and in the texts of m-files,

functions are written only in small letters. For functions that return a series of values or

arrays (for example, X, Y, Z…), the entry is as follows:

[X,Y,Z, ...]=f_name (Parameter_list)

 There are two types of m-files:

• script files

• function files.

In the process of their creation, they undergo syntactic control using the m-file

editor/debugger built into the MATLAB system.

61

M-script files. A script file, also called a Script file, is simply a record of a series of

commands with no input or output parameters. The following properties of script files are

important:

• they do not have input and output arguments;

• work with data from the workspace;

• are not compiled during execution;

They represent a sequence of operations fixed in the form of a file, completely similar

to the one used in the session.

Example script file

%Plot with color red

%Plots a sine wave with a red line

 %with a scaled grid in the interval [xmin.xmax]

 x=xmin:0.1:xmax;

plot(x, sin(x),'r')

grid on

The first three lines here are the comment, the rest are the body of the file.

Structure of the function-file The M-file-function is a typical object of the programming

language of the MATLAB system. At the same time, it is a full-fledged module from the

point of view of structured programming, since it contains input and output parameters and

uses the apparatus of local variables. The structure of such a module with one output

parameter is as follows:

 function var=f_name(Parameter_list)

 %Main comment

 %Additional comment

 File body with any expressions

 var=expression

Function file structure. If there are more output parameters, then they are indicated in

square brackets after the word function. The structure of the module looks like this:

function [varl,var2....]=f_name(Parameter_list)

%Main comment

%Additional comment

File body with any expressions vag1=expression vag2=expression

Function File Examples

function y=Norm(x,m,D);

sko=sqrt(D);

y=exp((-(x-m).^2)/(2*D)) /(sko*sqrt(2*pi));

Using file function in M-file

figure(1); x=1:70;

m1=25;

D1=20;

62

m2=40;

D2=30;

y1=Norm(x,m1,D1);

y2=Norm(x,m2,D2);

 y3=y1+y2;

plot(x,y1,x,y2,x,y3);

grid on;

Control structures. In addition to programs with a linear structure, the instructions of

which are executed strictly in order, there are many programs whose structure is non-linear.

At the same time, program branches can be executed depending on certain conditions,

sometimes with a finite number of repetitions - cycles, sometimes in the form of cycles

that are completed when a given condition is met. Almost any serious program has a non-

linear structure. To create such programs, special control structures are needed. They are

available in any programming language, and in particular in MATLAB.

if-else-end

if condition

 Expression_1

 Relation_Operator_Expression_2

 Instructions_1

 else Statements_2

 end

The following operators are used as Relation Operators:

==, , <=, >= or ~=.

All of these operators are pairs of characters with no spaces between them.

if-elseif-else-end  if

Condition  Statements 1  elseif Condition  Statements _2  else  Statements_3 

end.

Loop statements are used to program repeatedly performed actions with different data.

- Syntax of the loop statement with a fixed number of repetitions (FOR):

for <counter> = <ini. value> : <increment. counter> : <end. value>

<MatLab statements>

end

The counter increment determines how much the counter value will change after the

execution of the loop body. If the increment of the counter is equal to one, then it can be

omitted.

For example. Compose a vector of six elements of a geometric progression. The elements

of a geometric progression are calculated by the formula Pn = P1*qn–1. Let P1 = 3, q = 2,

n = 6.

>>P(1) = 3; q = 2; % preparation for the cycle

>> for i = 1:6

63

P(i+1) = P(i)*q^i;

end;

>>P

P=

3 6 24 192 3072 98304 6291456

- Syntax of loop operator with precondition (WHILE):

while <loop condition>

<MatLab statements>

end

Statements are repeated as long as the loop condition is met.

Find the maximum value of the matrix of random numbers v:

>> v = rand(3)

v =

0.9501 0.4860 0.4565

0.2311 0.8913 0.0185

0.6068 0.7621 0.8214

>> f = v;

>> while length(f)~ = 1

f = max(f)

end

f =

0.9501 0.8913 0.8214

f =

0.9501

if statement

The if statement can be used in its simple form to execute a block of commands when

some condition is met, or in the if-elseif-else construct to write a branching algorithm:

Syntax if <condition>

 <MatLab statements>

 end

For branching:

 if <condition>

 <MatLab statements>

 elseif <condition>

 <MatLab statements>

elseif <condition>

<MatLab statements>

else <MatLab statements> end

64

Depending on the fulfillment of one or another condition, the corresponding branch of

the program works, if all the conditions are incorrect, then the commands placed after the

else are executed.

Complex conditions are specified using logical operators. Logical operators and examples

of their use are shown in Table 1.

Table 1

Logic operators

Example. Organize a loop to introduce a row vector of three integers. In this case, if the

entered value of the current element of the vector is negative, it is squared; if it is positive,

it is cubed.

>>t = 'yes'; % preparation for the cycle

>>while t~ = 'no' % while t is not equal to the character constant 'no' the loop body is

executed

B = input('input vector(1*3) ')

if length(B)~ = 3

er = 'There were not three elements entered into the vector'

else

for i = 1:3

if B(i)<0

B(i) = B(i)^2

else B(i) = B(i)^3

end; % for the condition if B(i)<0

end; % for the for loop

end; % for condition if length(B)~ = 3

t = input('Continue looping through vector input? (yes/ no) ');

end; % end of loop body

switch statement

The switch statement allows you to make a choice from an arbitrary number of available

options.

Syntax

switch <key>

case <key_value–1>

<MatLab statements>

case <key_value-2>

<MatLab statements>

…

65

otherwise

<MatLab statements>

end

The transition to a certain branch of the switch statement is performed when the <key>

variable takes on the value specified after the case (key values must be integers). If there is

no suitable value for the variable, then the branch of the program corresponding to otherwise

is executed.

Example. Enter from the keyboard a vector of three odd integers in the range from 5 to

9. Depending on the value of the input element, a matrix of 33 dimensions should be

generated with element values equal to the value of the input element. If the value of an

element in the vector does not belong to the specified range, an error message is issued.

>> P = input('Enter a vector of three odd elements from 5 to 9');

Enter a vector of three odd elements from 5 to 9 [5 7 9]

>> for i = 1:3

switch P(i)

 case 5

 repmat(5,3,3)

 case 7

 7*ones(3)

 case 9

 9*ones(3)

 otherwise

 'element value is not in range'

 end end

GRAPHING

There are several charting modes:

• Displaying the next graph overwrites the current one - the default mode. To save the

current and display the next chart, a new current window is created using the figure function.

• The mode of overlaying graphs on each other without overwriting is set by the hold

function.

• Display of charts in different subareas of one window. The subplot function is used to

split the output window into subareas.

Graphs of functions of one variable (2D graphics)

The plot function is used to plot graphs in the Cartesian coordinate system.

Syntax:

plot(X1,Y1,S1,X2,Y2,S2, X3,Y3,S3,..Yi,Xi,Si,…)

 – draws graphs of functions Yi(Xi) on the same coordinate axes, where Xi and Yi are

the vectors of the function arguments and its values, respectively, and Si is the string

constant for setting the style of the envelope function.

The elements of the string constant Si can be the characters presented in Table 2.

66

Table 2

Graph style options

Color Marker Line style

y – yellow . – point Solid

m – magenta o - circle : - dotted

c-cyan x-x-mark -.- dashdot

r-red ^-triangle(up) -- dashed

g-green <-triangle(left)

b-blue >-triangle(right)

w-white p-pentagram

k-black h-hexagram

 *-star

 v-triangle(down)

 +-plus

 s-square

 d-diamond

To build graphs with widely varying x and y values, logarithmic scales are often used

instead of linear ones.

The following are functions that plot graphs on a logarithmic scale.

Syntax:

loglog(X1,Y1,S1,X2,Y2,S2,…,Xi,Yi,Si,…)

– the syntax of the function is similar to that previously considered for the plot(…)

function. The logarithmic scale is used for the X and Y coordinate axes. The line style string

constant Si is the same as the Si function plot.

To plot graphs on a semi-logarithmic scale, the following functions are used:

Syntax:

semilogx(X1,Y1,S1,X2,Y2,S2,…)

- plots the function on a logarithmic scale (base 10) along the X axis and linear on the Y

axis.

semilogy(X1,Y1,S1,X2,Y2,S2,…)

- plots the function on a logarithmic scale along the Y axis and linear along the X axis.

 The stem function is used to plot discrete readings.

A graph of discrete samples of the Y(x) function, when each sample is represented by a

vertical line topped with a marker, and the height of the marker corresponds to the Y(x)

coordinate, is built using the stem function:

Syntax :

stem(X,Y,S)

67

 – plots the function Y(X) (discrete samples), S is a string constant that defines the style

of discrete samples, the elements of this constant are similar to the elements included in the

string constant of the plot function.

Graphs of functions of two variables (3D graphics)

Surfaces in three-dimensional space are usually described by a function of two variables

z(x,y). The specificity of building three-dimensional graphs requires not just setting a series

of x and y values, that is, x and y vectors, but two-dimensional arrays for X and Y - matrices.

The meshgrid function is used to create such arrays.

Syntax :

[X,Y] = meshgrid(x,y)

– convert the area specified by the x and y vectors into X and Y arrays, which are used

to calculate the function of two variables and build three-dimensional graphs.

The function [X,Y] = meshgrid(x) is the same as [X,Y] = meshgrid(x,x). Instead of

variables x,y, you can set their values.

For example:

 [X,Y] = meshgrid(–pi:0.1:pi),

>> x = -pi:0.1:pi; y = [3 7 0 5 7 0 1 5];

>> [X,Y] = meshgrid(x,y);

or

>> [X,Y] = meshgrid(–pi:0.1:pi, [3 7 0 5 7 0 1 5]);

Building 3D Graphs

The plot3(…) function is analogous to the plot(…) function, but with respect to a

function of two variables. z(x,y). It is presented in the following forms:

Syntax:

plot3(X,Y,Z,S)

– builds points with X,Y,Z coordinates and connects them with line segments, sets the

construction style using the string constant S

There are three groups of commands for plotting graphs with functional coloring of grid

nodes.

Syntax:

mesh(X,Y,Z,C)

- displays a mesh surface Z(X,Y) with node colors specified by array C.

mesh(X,Y,Z)

- similar to the previous command with C = Z, while using functional coloring, in which

the color is naturally set by the height of the surface.

Commands:

• colormap(…) allows you to set the coloring of the cells (the list of palettes, along with

other information, is displayed by the help graph3d command)

• shading with three modes:

68

- faceted - display cell edges, used by default,

- flat - edges are not displayed

- interp - edges are not displayed and colors between adjacent sections are smoothed

 sets the coloring method,

• colorbar is used to display the color scale.

To build a combined drawing, use the command

• surfc(…) – similar to surf(…), but in addition to the surface plot, displays its image

as lines of equal level.

Construction of contour plots.

The contour and contourf functions are used to construct contours.

Syntax :

contour(X,Y,Z,N)

- X,Y - arrays that define the nodes of the coordinate grid, on which the surface Z is

built.

N is the number of contour lines.

For each level line, you can specify the value that the function under investigation takes

on it using the clabel function.

Syntax :

clabel(Cmatr,h)

– Cmatr – a matrix with information about the level lines, h – a pointer to the chart on

which the markup should be applied.

Test questions:

1. How can you create a structure?

2. Which operator performs the input of information from the keyboard?

3. What is the loop statement with a fixed number of repetitions?

4. What is the reason for the end of the loop statement with a precondition?

5. What is the if, switch statement?

6. List logical operators and give examples of their use.

7. What commands are required to write information to a file?

8 Which 2D plotting functions output the envelope of a plot?

9. Which 2D plotting function displays discrete readings?

10. What are the input and output arguments for the meshgrid command?

11. What functions are used to build 3-dimensional graphs?

Lecture 8

Information security systems. Mathematical foundations of cryptology. Issues of

information security in computer networks.

Plan:

69

1. Basic concepts and definitions of information security

2. Types of information threats

3. Cryptographic data protection

Key terms: cryptography, cryptanalysis, encryption key, plain text, costs, alphabet,

natural number, decryption, information, decryption, message recipient, key, encryption,

symmetric encryption, asymmetric encryption, data block, electronic signature, data

encryption

Basic concepts and definitions of information security.

In connection with the development of information technologies and the computerization

of the economy, one of the most important issues in the company's activities is ensuring

information security.

Information security is the preservation and protection of information, as well as its most

important elements, including systems and equipment designed to use, store and transmit

this information. In other words, it is a set of technologies, standards and management

practices that are necessary to protect information security. Information is one of the most

valuable and important assets of any business and must be properly protected.

The main components of information security is a set of elements that includes

openness, confidentiality and integrity of information resources and supporting

infrastructures.

The goal of information security is to protect information data and the supporting

infrastructure from accidental or intentional tampering that could result in data loss or

unauthorized modification. Information security helps ensure business continuity.

Information security tools are divided into:

• Organizational. This is a set of organizational and technical (providing computer rooms,

setting up a cable system, etc.) ...

• Software.

• Technical (hardware).

• Mixed hardware and software.

The main goal of information security systems is to guarantee the protection of data from

external and internal threats.

For the successful implementation of information security systems in an enterprise, it is

necessary to adhere to three main principles:

• Privacy. This means putting in place controls to ensure that enterprise data, assets and

information are sufficiently secure at various stages of business operations to prevent

unwanted or unauthorized disclosure. Confidentiality must be maintained while storing

information, as well as in transit through ordinary organizations, regardless of its format.

70

• Integrity. Integrity deals with the controls that are concerned with ensuring that

corporate information is internally and externally consistent. Integrity also ensures that

information is not corrupted.

•Availability. Availability ensures reliable and efficient access to information by

authorized persons. The network environment must behave in a predictable manner in order

to access information and data when needed. System failure recovery is an important factor

when it comes to information availability, and such recovery must also be provided in a way

that does not adversely affect operation.

The main requirement of information security is the full protection of confidential

information, ensuring its integrity in the complete absence of the risk of harming the work

of the enterprise.

How to ensure data security? To ensure information security of data stored and

transmitted by technical means, the following are used:

1. Authentication;

2. Regulation of access to objects;

3. File encryption system;

4. Keys;

5. Secure connections;

6. IPsec.

You need to understand that only a systematic and integrated approach to protection can

ensure information security. The information security system must take into account all

current and probable threats and vulnerabilities. This requires continuous real-time

monitoring. Control should be carried out 24/7 and cover the entire life cycle of information

- from the moment it enters the organization, and until its destruction or loss of relevance.

Types of information threats.

Information threats can be caused by:

• natural factors (fire, flood, etc.);

• human factors.

The latter, in turn, are divided into:

• threats of an accidental, unintentional nature. These are threats associated with errors in

the process of preparing, processing and transmitting information;

• Threats caused by intentional, intentional actions of people. These are threats related to

unauthorized access to AIS resources.

Deliberate threats aim to harm AIS users and, in turn, are divided into active and passive.

• Passive threats, as a rule, are aimed at unauthorized use of information resources without

affecting their functioning (eavesdropping).

• Active threats are aimed at disrupting the normal functioning of the system through a

targeted impact on hardware, software and information resources. The sources of active

threats can be the direct actions of intruders, software viruses, etc.

71

Deliberate threats are also divided into internal, arising within the managed organization,

and external.

1. Internal threats are understood as threats to information security, the insider

(performer) of which is an internal subject (insider) in relation to the resources of the

organization.

2. External threats are understood as information security threats initiated (performed) by

an entity external to the organization's resources (remote hacker, intruder).

Internal Threats:

• Information leaks;

• Unauthorized access;

• External threats;

• Malicious programs (viruses, Trojans, worms, etc.);

• Hacker attacks;

• DDos attacks;

• Targeted attacks;

• Spam;

• Phishing;

• Industrial threats (stuxnet, flame, duqu);

• Spyware (spyware, adware);

• botnets (botnets or zombie networks).

1. Hacker attacks.

 The term "hacker" used to be used to refer to highly skilled programmers. Now this is

the name of those who use vulnerabilities in software to infiltrate a computer system. It's the

electronic equivalent of breaking into a room. Hackers are constantly breaking into both

individual computers and large networks.

Once they gain access to the system, they steal sensitive data or install malware. They

also use hacked computers to send spam. Modern applications are extremely complex; they

are compiled from thousands of lines of code. But they are created by people, and people

tend to err. Therefore, it is not surprising that bugs creep into programs, making them

vulnerable to attack. These loopholes allow hackers to get into the system, and virus writers

use errors in application code to ensure that malware automatically runs on the computer.

Hackers are electronic hackers who get into your computer system using special

loopholes - software vulnerabilities. You can protect yourself from them with the help of a

special application - a firewall. Often it is part of antivirus programs. A firewall, or firewall,

recognizes hacking attempts and makes your computer invisible to hackers.

2. Phishing attacks.

Phishing is a special (modern) type of computer fraud.

Phishing attacks are organized as follows: cybercriminals create a fake site that looks

exactly like a bank site or a site that makes financial transactions via the Internet. The

scammers then try to trick the user into visiting the fake site and entering their sensitive data,

72

such as a username, password, or PIN, on it. Using them, attackers steal money from the

accounts of users who fell for the bait.

Typically, users are lured to a fake site using a bulk email that looks like it was sent by a

bank or other real financial institution, but contains a link to the fake site. By clicking on

the link, you are taken to a fake site where you are prompted to enter your credentials.

Often, phishing emails use the same logos and design as the emails from the real bank, as

well as links that look like the bank's real address on the Internet. In addition, the message

may contain your name, as if it were really addressed to you personally. The scammers'

emails usually provide a plausible reason requiring you to enter your details on the "bank"

website.

Much attention is currently paid to information security issues, and this is not accidental.

Telecommunication systems, which have been actively developing in recent years, are the

arteries of modern global information systems. The information circulating in such systems

is of significant value and therefore vulnerable to various types of abuse. Therefore, it is in

recent decades that the problem of information security has become so urgent.

3. Cryptographic data protection

People have been dealing with the problem of protecting information during its

transmission between subscribers throughout their history. Currently, qualified specialists

in complex information protection are engaged in solving this problem. Among the various

means of information security, cryptographic methods occupy a special place. On the one

hand, this is due to the fact that cryptographic methods of protecting messages have been

known to people and have been successfully used by them for more than one millennium.

On the other hand, new achievements in cryptography make it possible to solve not only

the classical problem of protecting data from unauthorized access, but also many other tasks

that are inaccessible to other types of information protection tools. This is the task of

authenticating users of information systems, and the problem of generating a digital

signature for electronic documents, and the possibility of using the so-called electronic

money.

Mankind has invented many ways to somehow hide the meaning of the transmitted

messages from the enemy. In practice, several groups of methods for protecting secret

messages have been developed.

The first way is the physical protection of the material carrier of information from the

enemy. Paper, computer media (DVD, flash card, magnetic disk, computer hard disk, etc.)

can act as a data carrier. To implement this method, you need a reliable communication

channel that is inaccessible to interception. At various times, carrier pigeons, special

couriers, radio broadcasts on a secret frequency were used for this. Methods of physical

protection of information are also used in modern automated data processing systems. So,

for example, complex information security systems are impossible without fencing and

physical isolation systems, as well as without security systems.

73

The second way to protect information, known since ancient times, is steganographic

information protection. This method of protection is based on an attempt to hide from the

enemy the very fact of the presence of information of interest to him. With the

steganographic method of protection from the enemy, a physical data carrier is hidden or

secret messages are masked among open, unclassified information. Such methods include,

for example, "hiding" a microphotograph with secret information in an unclassified place:

under a stamp on a postal envelope, under the cover of a book, etc. Steganography also

includes such well-known techniques as "hiding" a secret message in book spines, in

buttons, in heels, in tooth fillings, etc. Some of the methods have been developed since

ancient times. So, for example, the Greeks found an unusual solution: they shaved the slave's

head and scratched their message on it. When the hair on the slave's head grew back, he was

sent to deliver a message. The recipient would shave the slave's head and read the text.

Unfortunately, it took several weeks to send a message and receive a response in this way.

In later times, chemical (sympathetic) inks were most widely used in this direction. Text

written in this ink between the lines of an unclassified message is invisible. It appeared only

as a result of applying a certain manifestation technology.

In the context of the widespread use of information technology, new steganographic

techniques are emerging. For example, a method is known in which a secret message is

hidden in a graphic image file. Using this method, the least significant bit in the description

of each image pixel is replaced with a message bit. By dividing the entire original message

into bits and placing these bits throughout the graphic file, we send the image with the

masked message to the recipient. The graphic image does not change too much, especially

if a mode with a large number of colors was used, for example, with a color depth of 24 bits

per pixel. This is due to the fact that the human eye cannot distinguish such a large number

of colors. As a result, a picture of only 32 by 32 pixels can contain a secret message 1024

bits or 128 bytes long.

The third way to protect information - the most reliable and common today -

cryptographic. This method of information protection involves the transformation of

information to hide its meaning from the enemy. Cryptography in Greek means "secret

writing". Currently, cryptography is engaged in the search and study of mathematical

methods for transforming information.

Along with cryptography, cryptanalysis is developing and improving - the science of

overcoming the cryptographic protection of information. Cryptanalysts are exploring the

possibilities of decrypting information without knowing the keys. A successful

cryptanalysis yields the encryption key, or the plaintext, or both. Sometimes cryptography

and cryptanalysis are combined into one science - cryptology (kryptos - secret, logos -

science), dealing with issues of reversible transformation of information in order to protect

against unauthorized access, assessing the reliability of encryption systems and analyzing

the strength of ciphers.

74

Currently, cryptography has firmly entered our lives. We list only some areas of

application of cryptography in a modern informatized society:

1. Encryption of data during transmission over open communication channels (for

example, when making a purchase on the Internet, transaction details such as address,

phone number, credit card number are usually encrypted for security purposes);

2. Maintenance of bank plastic cards;

3. Storage and processing of user passwords on the network;

4. Delivery of accounting and other reports through remote communication channels;

5. Banking services for enterprises through a local or global network;

6. Safe storage of data from unauthorized access on the computer's hard drive (the

Windows operating system even has a special term - Encrypting File System (EFS)).

Until the beginning of the twentieth century, cryptographic methods were used only to

encrypt data in order to protect against unauthorized access. In the twentieth century, in

connection with the development of technology for transmitting information over long

distances, interest in cryptography increased significantly. Thanks to the creation of new

cryptographic methods, the range of cryptographic tasks has also expanded. Currently, it is

believed that cryptography is designed to solve the following problems:

1. Actual data encryption to protect against unauthorized access;

2. Message authentication: the recipient of a message can verify its origin;

3. Verification of the integrity of the transmitted data: the recipient can check whether

the message was changed or spoofed during the transfer;

4. Ensuring the impossibility of refusal, that is, the impossibility for both the recipient

and the sender to refuse the fact of transfer.

The main definitions used in the study of cryptographic methods of information

protection

5. Cipher - a set of predetermined ways to transform the original secret message in order

to protect it.

6. The original messages are usually referred to as plain texts. In foreign literature, the

term plaintext is used for plain text.

7. A symbol is any character, including a letter, number or punctuation mark.

An alphabet is a finite set of symbols used to encode information. For example, the

Russian alphabet contains 33 letters from A to Z. However, these thirty-three characters are

usually not enough to record messages, so they are supplemented with a space character, a

dot, a comma, and other characters. The alphabet of Arabic numerals is the symbols 0, 1, 2,

3, 4, 5, 6, 7, 8, 9. This alphabet contains 10 characters and can be used to write any natural

number. Any message can also be written using the binary alphabet, that is, using only zeros

and ones.

A message received after conversion using any cipher is called an encrypted message

(closed text, cryptogram).

75

The conversion of plaintext into a cryptogram is called encryption. The reverse action is

called decryption. In the English literature, the terms "encryption/decryption" correspond

to the terms "enciphering/deciphering".

The key is the information needed to encrypt and decrypt messages. From the point of

view of the Russian language, the terms "decryption" and "decryption" are synonymous.

However, in works on cryptography of recent decades, these words are often distinguished.

We will assume that the terms "decryption" and "decryption" are not synonymous. Let us

assume that the legal recipient of the message (the one who knows the key) is decrypting,

and the person to whom the message is not intended, trying to understand its meaning, is

decrypting.

An encryption system, or cipher system, is any system that can be used to reversibly

change the text of a message to make it incomprehensible to all but those to whom it is

intended.

Cryptographic resistance is a characteristic of a cipher that determines its resistance to

decryption without knowing the key (i.e., the ability to resist cryptanalysis).

Thus, taking into account all the definitions made, it is possible to give a more precise

definition of the science of "cryptography". Cryptography is the study of the construction

and use of encryption systems, including their strength, weaknesses, and vulnerability to

various attack methods.

All methods for converting information in order to protect against unauthorized access

are divided into two large groups: private key encryption methods and public key encryption

methods. Private key encryption (secret key encryption or symmetric encryption) has been

used by humans for quite a long time. To encrypt and decrypt data, these methods use the

same key, which both parties try to keep secret from the adversary.

Public key encryption (asymmetric encryption) began to be used for cryptographic

closing of information only in the second half of the twentieth century. This group includes

encryption methods in which two different keys are used to encrypt and decrypt data. In this

case, one of the keys (public key) can be transmitted over an open (unprotected)

communication channel.

An electronic (digital) signature is a block of data usually attached to a message, obtained

using cryptographic transformation. An electronic signature allows, when another user

receives a text, to verify the authorship and authenticity of the message.

Cryptographic information security system is an information security system that uses

cryptographic methods to encrypt data.

Requirements for cryptographic information protection systems

For the currently developed cryptographic information security systems, the following

generally accepted requirements are formulated:

• an encrypted message must be readable only if the key is present;

• knowledge of the encryption algorithm should not affect the reliability of protection;

• any key from the set of possible ones must provide reliable protection of information;

76

• the encryption algorithm must allow both software and hardware implementation.

Not for all encryption algorithms, the listed requirements are fully met. In particular, the

requirement that there are no weak keys (keys that allow an attacker to more easily open an

encrypted message) is not satisfied for some "old" block ciphers. However, all newly

developed encryption systems meet the listed requirements.

Test questions:

1. Name the problems that cryptographic methods can be used to solve.

2. What is the difference between cryptography and steganography?

3. What tasks does modern cryptography solve?

4. Formulate the requirements for cryptographic information protection systems.

Lecture 9

Cyberspace and the basics of cybersecurity. Computer technology objects used in

cybersecurity.

Plan:

1. The concept of "cybersecurity".

2. Types of cybersecurity threats.

3. Goals of cybersecurity.

Key terms: cybersecurity, information security, infosphere, cyberspace.

The definition of cybersecurity includes a wide variety of methods, technologies and

processes that are aimed at protecting the integrity of networks, programs and information

from digital attacks. The key goal of cyberattacks is gaining unauthorized access to

confidential data, their copying, modification or elimination.

They can also serve to extort banknotes from users or disrupt work processes in an

organization. Cybersecurity is sometimes referred to as computer security or IT (information

technology) security.

Cybersecurity is the protection of Internet-connected systems such as hardware, software,

and information from cyber threats. This practice is used by individuals and organizations

to eliminate unauthorized access to information processing centers and other computerized

systems.

The purpose of introducing cybersecurity is to ensure reliable protection of computers,

servers, networks, mobile devices and data that are located on the presented devices from

intruders. Cyberattacks can be designed to access, destroy, or extort confidential information

of an organization or user, making cybersecurity quite meaningful. Medical, government,

corporate and financial enterprises are capable of storing vital information, for example,

about a person.

77

Cybersecurity (sometimes referred to as computer security) is a set of techniques and

practices for protecting computers, servers, mobile devices, electronic systems, networks,

and data from malicious attacks.

Cybersecurity is the protection of Internet-connected systems (hardware, software, and

data) from cyber threats.

The terms "cybersecurity" and "information security" are often used interchangeably.

However, in reality, these terms are very different and are not interchangeable.

Cybersecurity refers to protection against attacks in cyberspace, while information security

refers to the protection of data from any form of threat, whether analog or digital.

Cybersecurity practices can be applied in a variety of areas - from industrial enterprises

to mobile devices of ordinary users:

Critical infrastructure security - measures to protect computer systems, networks of

critical information infrastructure (CII). CII objects include electrical networks, transport

networks, automated control systems and information and communication systems, and

many other systems, the protection of which is vital for the security of the country and the

well-being of citizens.

Network Security - Protecting the underlying network infrastructure from unauthorized

access and misuse, as well as information theft. The technology includes building a secure

infrastructure for devices, applications, and users.

Application Security - security measures applied at the application level to prevent theft,

compromise of application data or code. The methods cover security issues that arise in the

development, design, deployment, and operation of applications.

Cloud security is an interconnected set of policies, controls, and tools to protect cloud

computing systems from cyber threats. Cloud security measures are aimed at ensuring the

security of data, online infrastructure, as well as applications and platforms. Cloud security

shares a number of concepts with traditional cybersecurity, but the field also has its own

best practices and unique technologies.

User training. A security awareness program is an important step in building a strong

company defense. Employee digital hygiene practices help improve endpoint security. For

example, users who are informed about current threats will not open attachments from

suspicious emails, stop using untrusted USB devices, and stop attaching login and password

stickers to their monitors.

Business continuity disaster recovery (planning) is a set of strategies, policies and

procedures that determine how an organization should respond to potential threats or

unforeseen natural disasters in order to properly adapt to them and minimize negative

consequences.

Operational security is a security and risk management process that prevents sensitive

information from falling into the wrong hands. The principles of operational security were

originally used by the military to prevent sensitive information from reaching the enemy.

78

Operational security practices are now widely used to protect businesses from potential data

breaches.

Types of cybersecurity threats.

Cybersecurity technologies and best practices protect critical systems and sensitive

information from a rapidly growing volume of sophisticated cyberattacks.

The main types of threats that modern cybersecurity is struggling with include:

6. Malicious software (malware)

Any program or file that can cause damage to a computer, network, or server. Malware

includes computer viruses, worms, Trojan horses, ransomware, and spyware. Malware

steals, encrypts, and deletes sensitive data, alters or hijacks basic computing functions, and

monitors computer or application activity.

7. Social engineering

An attack method based on human interaction. Malefactors ingratiate themselves with

users and force them to violate security procedures and give out confidential information.

8. Phishing

A form of social engineering. Fraudsters send emails or text messages to users that look

like messages from trusted sources. In mass phishing attacks, attackers lure bank card

information or credentials from users.

9. Target attack

A sustained and targeted cyberattack in which an attacker gains access to a network and

remains undetected for an extended period of time. Targeted attacks are usually aimed at

stealing data from large enterprises or government organizations.

10. Internal threats

Security breaches or losses caused by insiders—employees, contractors, or customers—

with malicious intent or negligence.

11. DoS attack, or denial of service attack

An attack in which attackers try to make it impossible to provide a service. In a DoS

attack, one system sends malicious requests; A DDoS attack comes from multiple systems.

As a result of the attack, it is possible to block access to almost everything: servers, devices,

services, networks, applications, and even certain transactions within applications.

12. Stalker software

Software designed for covert surveillance of users. Stalker applications are often

distributed under the guise of legitimate software. Such programs allow attackers to view

photos and files on the victim’s device, peep through the smartphone’s camera in real time,

find out location information, read correspondence in instant messengers and record

conversations.

13. Cryptojacking

A relatively new type of cybercrime, in which malware hides in a system and steals a

device's computing resources so that attackers can use them to mine cryptocurrency. The

79

process of cryptojacking is completely hidden from the eyes of users. Most victims become

suspicious when they notice an increase in electricity bills.

14. Attacks on the supply chain

Supply chain attacks exploit the trust relationship between an organization and its

counterparties. Hackers compromise one organization and then move up the supply chain to

gain access to the systems of another. If one company has a strong cybersecurity system,

but there is an unreliable trusted provider, then attackers will try to hack this provider in

order to then penetrate the network of the target organization.

15. Attacks using machine learning and artificial intelligence

In such attacks, the attacker tries to trick the machine algorithm into giving wrong

answers. Typically, cybercriminals use the “data poisoning” method, offering neural

networks for training a deliberately incorrect sample.

The goal of cybersecurity is to protect data (both in transit and/or exchange and in

storage). Countermeasures may also be applied to ensure data security. The main goal of

cybersecurity is to prevent the theft or compromise of information. An important role in

achieving this goal is played by the triad of a secure IT infrastructure - confidentiality,

integrity and availability.

Confidentiality in this context refers to a set of rules that restrict access to information.

Integrity ensures that information is accurate and reliable. Availability, in turn, is

responsible for the reliability of access to information by authorized persons. Considering

the principles of the triad together helps companies develop security policies that provide

strong protection.

Lecture 10

Modern programming technologies. Program languages.

Plan.

1. Programming languages, their characteristics.

2. A modern approach to programming. OOP.

3. Purpose and possibilities of C++.

4. Features of the C++Builder6 version

Key terms: object-oriented approach, functional approach, object, property, class,

method, domain, inheritance, event handling, class hierarchy, software, imperative

language, visual, data abstraction, encapsulation, polymorphism, sections, computational

science.

Programming languages are usually divided into five generations. The first generation

includes languages created in the early 50s, when the first computers were just born. It was

the first assembly language created on the principle of "one instruction - one line".

80

The heyday of the second generation of programming languages came in the late 50s -

early 60s. Then a symbolic assembler was developed, in which the concept of a variable

appeared. It became the first full-fledged programming language. Thanks to its appearance,

the speed of development and reliability of programs have noticeably increased.

The emergence of the third generation of programming languages is usually attributed to

the 60s. At this time, high-level universal languages were born, with their help it is possible

to solve problems from any area. Such qualities of languages as relative simplicity,

independence of a particular type of computer, and the ability to use powerful syntactic

constructions, made it possible to dramatically increase the productivity of programmers.

The structure of these languages, understandable to most users, attracted a significant

number of specialists from non-computer fields to writing small programs (usually of an

engineering or economic nature). The vast majority of languages of this generation are

successfully used today.

The beginning of the 70s was the period of fourth generation languages. These languages

are designed to implement large projects, increase their reliability and speed of creation.

They are usually focused on specialized areas of application, where good results can be

achieved using not universal, but domain-specific languages, operating with specific

concepts of a narrow subject area. As a rule, operators are built into these languages, which

allow one line to describe such functionality, which would require thousands of lines of

source code in the languages of younger generations.

Brief description of high-level programming languages.

Fortran. It is the first compiled language created by Jim Backus in the 1950s.

Programmers who developed programs exclusively in assembler expressed serious doubts

about the possibility of a high-level language, so the main criterion in the development of

Fortran compilers was the efficiency of the executable code. Although Fortran was the first

to implement a number of important programming concepts, the convenience of creating

programs was sacrificed for the possibility of obtaining efficient machine code.

However, a huge number of libraries have been created for this language, ranging from

statistical complexes to satellite control packages, so Fortran continues to be effectively used

in many organizations. Currently, work is underway on the next Fortran standard, which

appeared in 2000. There is a standard version of Fortran HPF (High Performance Fortran)

for parallel supercomputers with multiple processors.

Cobol is a compiled language for economic and business applications developed in the

early 1960s. It has a lot of "verbosity" - its operators sometimes look like ordinary English

phrases. Cobol has implemented very powerful tools for working with large amounts of data

stored on various external media. A lot of applications have been created in this language,

which are actively exploited today. Suffice it to say that Cobol programmers in the US are

among the highest paid employees.

Algol. Compiled language created in 1960. It was intended to replace Fortran, but due to

its more complex structure, it was not widely used. In 1968, the Algol-68 version was

81

created, which, in terms of its capabilities, is still ahead of many programming languages,

but due to the lack of sufficiently efficient computers, it was not possible to create good

compilers for it in a timely manner.

Pascal. The Pascal language, created in the late 70s by Niklaus Wirth, the founder of

many ideas of modern programming, in many ways resembles Algol, but it tightens a

number of requirements for the structure of the program and has features that allow it to be

successfully used when creating large projects.

Basic. There are both compilers and interpreters for this language, and it ranks first in

popularity in the world. It was created in the 60s as an educational language and is very easy

to learn.

 C. This language was created in the Bell Labs and was not originally considered as a

mass language. It was planned to replace assembler in order to be able to create equally

efficient and compact programs, and at the same time not depend on a particular type of

processor. C is in many ways similar to Pascal and has additional facilities for direct memory

manipulation (pointers). Many applied and system programs and a number of well-known

operating systems (UNIX) were written in this language in the 70s.

C++. This language is an object-oriented extension of the C language created by Bjarne

Stroustrup in 1980. A lot of new powerful features, which made it possible to dramatically

increase the productivity of programmers, were superimposed on a certain low-level

inherited from the C language, as a result of which the creation of complex and reliable

programs required a high level of professional training from developers.

Java. The language was created by Sun in the early 90s based on C++. It is designed to

simplify the development of applications based on C++ by eliminating all low-level features

from it. But the main feature of the language is compilation not into machine code, but into

platform-independent bytecode (each command occupies one byte). This bytecode can be

executed using an interpreter, the Java Virtual Machine, versions of which have been created

for any platform. Due to the presence of many Java machines, Java programs can be ported

not only at the source code level, but also at the binary bytecode level, which is why Java

today ranks second in popularity in the world after BASIC.

Particular attention in the development of this language is paid to two areas: support for

all kinds of mobile devices and microcomputers embedded in household appliances (Jini

technology) and the creation of platform-independent software modules that can run on

servers in global and local networks with various operating systems (Java Beans

technology). So far, the main drawback of this language is its low performance, since the

Java language is interpreted.

Database programming languages. This group of languages differs from algorithmic

languages primarily in the tasks they solve. A database is a file (or a group of files) that is

an ordered set of records that have a uniform structure and are organized according to a

single template (usually in a tabular form). A database can consist of several tables. It is

convenient to store various information from directories, file cabinets, accounting journals,

82

etc. in databases. The first databases appeared a very long time ago, as soon as there was a

need to process large amounts of information and select groups of records according to

certain criteria. To do this, the Structured Query Language (SQL) was created. It is based

on powerful mathematical theory and allows you to perform efficient database processing

by manipulating not individual records, but groups of records. DBMS (Database

Management Systems) have been developed to manage large databases and process them

efficiently.

In almost every DBMS, in addition to supporting the SQL language, there is also a unique

language that is focused on the features of this DBMS and is not portable to other systems.

With the advent of personal computers, so-called desktop DBMS were created. The ancestor

of modern database programming languages for PCs is considered to be the dBase II DBMS,

the language of which was interpreted. Then compilers were created for it, FoxPro and

Clipper DBMS appeared, supporting dialects of this language. Today, similar but

incompatible versions of the dBase family of languages are implemented in Microsoft's

Visual FoxPro and Inprise's Visual dBase.

Programming languages for the Internet.

With the active development of the global network, many implementations of popular

programming languages have been created, adapted specifically for the Internet. All of them

differ in characteristic features: languages are interpreted, interpreters for them are

distributed free of charge, and the programs themselves are in source texts. Such languages

are called scripting languages. Let's briefly describe some of them.

HTML. A well-known language for paperwork. It is very simple and contains commands

for forming text, adding pictures, setting fonts and colors, organizing links and tables. All

Web pages are written in HTML or use its extensions.

Perl. In the 80s, Larry Wall developed the Perl language. It was conceived as a tool for

efficient processing of large text files, generation of text reports and task management. Perl

is much more powerful than languages like C. It includes many commonly used functions

for working with strings, arrays, all kinds of data conversion tools, process management,

system information, etc.

Tel/Tk. In the late 80s, John Austyraut came up with the popular Tel scripting language

and the Tk library. In Tel, he tried to realize the vision of an ideal scripting language. Tel is

focused on automating routine processes and consists of powerful commands designed to

work with abstract untyped objects. It is independent of the type of system and at the same

time allows you to create programs with a graphical interface.

VRML. In 1994, the VRML language was created to organize virtual three-dimensional

interfaces on the Internet. It allows you to describe in text form various three-dimensional

scenes, lighting and shadows, textures (coverings of objects), create your own worlds, travel

around them, “fly around” from all sides, rotate in any direction, scale, adjust lighting, etc.

Modeling languages. When creating programs and forming database structures, formal

ways of representing them are often used - formal notations, with which you can visually

83

represent (depict with the mouse) database tables, fields, program objects and the

relationship between them in a system that has a specialized editor and generator source

texts of programs based on the created model. Such systems are called CASE systems. They

actively use IDEF notations, and recently the graphical modeling language UML is gaining

more and more popularity.

Other programming languages.

PL/1. In the mid-60s, IBM decided to take the best of Fortran, Cobol, and Algol. As a

result, in 1964, a compiled programming language was born, which was called

Programming Language One. Many unique solutions were implemented in this language,

the usefulness of which can only be appreciated 33 years later, in the era of large software

systems. In terms of its capabilities, PL/1 is much more powerful than many other languages

(C, Pascal). For example, PL/1 has a unique ability to specify the accuracy of calculations -

even C++ and Java do not have it. This language continues to be supported by IBM today.

LISP. The interpreted programming language, created in 1960 by John McCarthy, is

focused on the data structure in the form of a list and allows you to organize the efficient

processing of large amounts of textual information.

Prolog. Created in the early 70s by Alan Colmeroe. The program in this language, which

is based on the mathematical model of the theory of predicate calculus, is built on a sequence

of facts and rules, and then a statement is formulated that Prolog will try to prove using the

introduced rules. A person only describes the structure of the problem, and the internal

"engine" of Prolog itself looks for a solution using search and matching methods.

Ada. Named for Lady Augusta Ada Byron, daughter of the English poet Byron and his

distant relative Anabella Milbank. In 1980, hundreds of experts from the US Department of

Defense selected this particular language from 17 options, developed by a small group led

by Jean Ishbia. At that time, it met all the requirements of the Pentagon, and today tens of

billions of dollars have been invested in its development. The structure of the language itself

is similar to Pascal. It has means of strictly restricting access to various levels of

specifications, the power of control structures has been brought to the limit.

Modern approach to programming.

The birth of fifth-generation languages occurred in the mid-1990s. They also include a

system for automatically creating application programs using visual development tools,

without programming knowledge. The main idea that is embedded in these languages is the

ability to automatically generate the resulting text in universal programming languages

(which then needs to be compiled). Instructions are entered into the computer in the most

visual form using methods that are most convenient for a person who is not familiar with

programming. Such languages are called the language or system of OOP (object-oriented

programming), including a visual environment for creating a program interface.

A new generation of programming languages implement programs and are controlled by

graphical operating systems of the Windows and Linux family and are distinguished by a

modern approach to the description of algorithms, namely, they represent tools for

84

accelerated program development. First of all, this is an object-oriented approach to creating

application projects on the one hand, and the efficiency of describing system programs on

the other. This is dictated by both the capabilities of hardware and the development of

modern programming technologies. Modern OOP languages include Delphi, Visual C++,

C++Builder, C# systems. These programming systems provide not only the possibility of

implementing task algorithms, but also a set of tools for creating interfaces for ongoing

projects and forming libraries of application objects.

The creator of C ++ (C with classes) - Bjarne Stroustrup, an employee of the famous AT

& T Bell Labs, where the UNIX operating system and the C language were developed, came

up with one of the most complex programming languages (in the early 1980s). For a

beginner, C++ can be a tough nut to crack, since both its syntax and the principles of building

programs differ from the languages usual for students and everyone who starts

programming. But the language itself is more than worth the effort spent on its study.

Structural object-oriented programming in the C++Builder system uses an object-oriented

language (C++), which combines, on the one hand, the expressive power and ease of

programming characteristic of 4GL languages (4th generation languages), and on the other

hand, the efficiency of the 3GL language . Programmers can immediately start producing

working applications without having to learn Windows event programming. C++ fully

supports advanced programming concepts (encapsulation, inheritance, polymorphism, and

event management). The C++ programming language, like other OOP languages, assumes

a trinity of data, methods, and events that describe each program object. A program object

is a specially designed fragment that contains these components.

Data is the objects of the program. (values that are processed) Methods are procedures

that define actions on objects. Properties characterize the features of the objects of a

particular program. Objects increase the performance and quality of programs and have the

properties of functionality and indivisibility. Therefore, objects can be transferred from one

program to another. Programming in the OOP language involves the creation of objects of

a certain type (i.e. classes) with a set of methods and properties, and their use not only in

the application being developed, but also in other applications.

C++Builder6 supports OLE(object linking and embedding), DDE, and VBX.

This is a very important feature of the language for developers in the Windows

environment, because in Windows applications already developed, the programmer can

integrate what was developed using C ++.

Purpose and possibilities of C++ BUILDER.

The C++ BUILDER programming language is a further development of the C, C++

languages. The C(SI) language was developed by Bell Labs employee Dennis Ritchie in

1972 while working with Ken Thompson on the Unix operating system. The author's goal

was to create a convenient and useful language. A new software product with phenomenal

characteristics has become a powerful tool for practicing programmers. Further

development of the language using new approaches to programming led to the emergence

85

of new versions of the language, such as Turbo C, C ++, Visual C ++, C # (C Sharp).

Developed by Borland Corporation Microsoft C++Builder6 today is widely used as an OOP

tool.

C++Builder6 is a combination of several key technologies:

• High performance compiler to native code

• Object-oriented component model

• Visual (and, therefore, high-speed) building applications from software prototypes.

• Scalable tools for building databases.

C++Builder6 is a programming system for building programs with accelerated

development tools. This acceleration is achieved due to two characteristic features: the

visual design of forms and the extensive use of the library of visual components.

Programming in C++Builder6 includes:

• Integrated environment.(ICE)

• Application design.

• Creation of projects.

• Compiling applications.

• Debugging and deployment of applications.

• Application of component libraries.

• Use of the object module.

• Using the basis of objects.

Visual form design saves the programmer from many aspects of developing the program

interface, since C++Builder6 automatically prepares the necessary program blanks and the

corresponding resource file. The programmer uses a special window called the form window

as a prototype of the future program window and fills it with components that implement

the necessary interface properties (all sorts of lists, buttons, scrollbars, etc.). After placing

the next component on the form, C++Builder6 automatically inserts a link to the component

into the module associated with the form and corrects the special form description file with

the CFM extension, which is converted into a Windows resource file after compilation.

 The Visual Components Library provides the programmer with a huge variety of

program blanks created by the C++Builder6 developers, which are immediately or after a

simple setup ready to work within the program. Components are characterized by an

important property: they include the program code and all the data necessary for its

operation. The power and flexibility of the C++Builder6 language makes it a modern object-

oriented language suitable for creating programs of any complexity. Numerous components

provide a solution to a wide variety of tasks.

Features of the C++Builder6 version.

Unlike other programming languages, C++Builder6, like other previous versions, is

typed, which makes it possible to detect errors during compilation. The ability to use

Assembler as a machine-oriented language attracts system programmers. The feature of the

language includes many technologies that simplify the creation of programs for databases

86

and the Internet. This technology allows you to re-encode any program and send it over the

network, so that it can run not only Windows, but also Linux, Solaris, OSMac. C++Builder6

has a CASE tool, an automated programming tool. Innovations have been introduced in the

technology of creating applications on the Internet.

Conclusions: The C++Builder6 language is a high-level language with extensive use of

object-oriented programming tools and object typing.

C++Builder6 is a modern, popular and efficient high-level programming language.

C++Builder6 is a powerful and flexible language for solving a wide range of problems, both

technical and any other area, including graphics.

The C++Builder6 language uses the module insertion capabilities of the Accembler

language.

 With an object-oriented approach, a program is a description of objects, their properties

(or attributes), collections (or classes), relationships between them, ways of their interaction

and operations on objects (or methods).

The undoubted advantage of this approach is the conceptual proximity to the subject area

of arbitrary structure and purpose. The mechanism of inheritance of attributes and methods

allows you to build derivative concepts based on basic ones and thus create a model of an

arbitrarily complex subject area with specified properties.

Another theoretically interesting and practically important property of the object-oriented

approach is the support for the mechanism for processing events that change the attributes

of objects and model their interaction in the subject area.

Moving along the class hierarchy from general concepts of the subject area to more

specific ones (or from more complex to simpler ones) and vice versa, the programmer gets

the opportunity to change the degree of abstractness or concreteness of the view of the real

world he is modeling.

The use of previously developed (perhaps by other teams of programmers) libraries of

objects and methods can significantly save labor costs in the production of software,

especially typical software.

Objects, classes and methods can be polymorphic, which makes the implemented

software more flexible and versatile.

The complexity of an adequate (consistent and complete) formalization of the object

theory gives rise to difficulties in testing and verifying the created software. Perhaps this

circumstance is one of the most significant shortcomings of the object-oriented approach to

programming.

The most famous example of an object-oriented programming language is the C++

language, which developed from the imperative C language. Its direct descendant and

logical continuation is the C# language, which is studied in this course. Other examples of

object-oriented programming languages: Visual Basic, Java, Eiffel, Oberon.

The transition from a structured procedural approach to object-oriented programming,

like the transition from low-level programming languages to high-level languages, requires

87

significant learning costs. Naturally, the price for this is an increase in the productivity of

programmers in the design and implementation of software. Another advantage of OOP over

the imperative approach is a higher percentage of code reuse that has already been

developed.

At the same time, unlike previous approaches to programming, the object-oriented

approach requires a deep understanding of the basic principles, or, in other words, the

concepts on which it is based. The fundamental concepts of OOP usually include data

abstraction, inheritance, encapsulation, and polymorphism.

Often, in practical and training courses on programming, students do not have a clear

mathematical foundation for the formation of a sufficiently complete and clear

understanding of the basics of OOP. The advantage of the proposed course is that the

sections of computer science already studied in the first part of the course (for example,

lambda calculus and combinatorial logic) allow you to form a deep and accurate

understanding of the fundamental concepts of object-oriented programming. In particular,

the concept of abstraction - the basic operation of the lambda calculus - is already well

known to us. Microsoft Corporation has proposed an innovative component-oriented

approach to programming, which is the development of the object-oriented direction.

According to this approach, the integration of objects (possibly of a heterogeneous nature)

is based on interfaces that represent these objects (or program fragments) as independent

components. This approach greatly facilitates the writing and interaction of software

"molecules"-components in a heterogeneous design and implementation environment. It

standardizes the storage and reuse of software project components in a distributed

networked computing environment, where different computers and users exchange

information, for example, interacting within a research or business project.

A significant advantage should be considered the possibility of practical implementation

of the principle "every entity is an object" in a heterogeneous software environment. Much

of this has been made possible by the improved, generic Common Type System, or CTS,

which will be discussed in more detail in a later lecture.

Strict hierarchical organization of spaces for types, classes and names of program entities

allows to standardize and unify the implementation.

A new approach to integrating application components in the Internet computing

environment (or so-called web services) makes it possible to accelerate the creation of

applications for a wide range of users. The .NET Framework generic interface provides

integrated design and implementation of application components developed according to

different programming approaches.

Speaking of .NET as a technological platform, one cannot fail to note the fact that it

provides simultaneous support for the design and implementation of software using various

programming languages. At the same time, dozens of programming languages are

supported, ranging from the very first (in particular, COBOL and FORTRAN) to modern

ones (for example, C # and Visual Basic). Early programming languages are still actively

88

used today, in particular, to ensure compatibility with previously created business-critical

applications (say, COBOL was very widely used to create applications that support financial

activities).

The use of web services technology is not just a fad on the Internet, but a real (and perhaps

the most acceptable) opportunity to ensure scalability and interoperability of applications.

Scalability is understood as the possibility of a smooth increase in the response time of a

software system to a request with an increase in the number of simultaneously working

users; in the case of web services, scalability is realized by distributing computing resources

between the server that runs the application (or stores data) and the user's computer.

Interoperability refers to the possibility of integrated processing of heterogeneous data

coming from heterogeneous application programs. It is thanks to interoperability that it is

possible to unify the interaction of users through an application with the operating system

based on a specialized application programming interface, or API (Application

Programming Interface).

It should also be noted that the new .NET technology is not only in demand by the world

community, but also officially recognized, which is reflected in the relevant ECMA

(European Computer Manufacturers Association) standards.

Now let's look at the .NET tool capabilities as a means of designing and implementing

software, that is, in fact, programming in the broadest sense of the word.

First of all, it is necessary to note the support of the multilingual application development

environment CLR (Common Language Runtime).

This capability comes from the Common Language Infrastructure, or CLI, which supports

the development of software components in a variety of programming languages.

At the same time, the undoubted advantage for programmers is that they can develop (or

modify) software in the most suitable programming language. Here, one should take into

account the nature of the task (say, recursion or symbolic processing is more naturally

implemented in a functional programming language, and the formalization of the structure

of the subject area in an object-oriented language). In addition, it is necessary to take into

account the experience of programmers in the development team and the programming

language in which the system was originally created.

We note two more important facts. Firstly, the main developer services provided by the

.NET environment (debugging, code analysis, etc.) are independent of a particular

programming language, and therefore, programmers do not need to re-learn the features of

the development environment if they want to switch from one language to another.

Secondly, despite the fact that not all programming languages are supported by .NET yet, it

is possible to independently develop a translator for any programming language, and this

does not cause difficulties even for programmers with little or no professional training in

the field of compiler development. The COM Component Object Model is the primary

Microsoft standard for component-based software design and implementation. Today it is

the most developed and, perhaps, the most successful model in practical terms, which

89

provides the ability to initialize and use components both within a single process, and

between processes, or between computers, regardless of the implementation language. The

COM model is supported in the .NET ideology for a number of programming languages

(C#, SML, Visual Basic, C++, etc.), it is the basis for ActiveX, OLE, and many other

Microsoft technologies.

Unlike COM, the Java Beans model, Sun Microsystems' base standard for components,

turns out to be implementation language dependent. First of all, we list the fundamental

concepts that characterize each of the approaches. Then we compare these approaches with

each other in order to find analogies between them.

In the object-oriented approach, the concepts of class and interface, in particular, should

be considered key. Note that in the component-oriented approach, these concepts are also

system-forming.

In this case, a class is understood as a basic entity, defined as a set of elements.

An interface is a set of semantically related abstract elements. For a component-oriented

approach, the concept of an interface is of paramount importance, since it is solely through

this mechanism that a client in a COM architecture can directly interact with a COM class.

Note that interfaces increase code security, since interaction with an object does not occur

directly, but through a pointer (reference). The concepts of a property (as an attribute of an

object) and a method (as an operation on an object), as well as an event mechanism

(correlations over objects of the subject area), are characteristic of both approaches.

Fundamentally new is the presence in the COM model of assemblies - self-sufficient units

of information for installing and deploying software products.

In general, the component approach is more convenient from a practical point of view,

although the mechanisms implemented in it are fundamentally comparable with the

capabilities of OOP.

Despite the innovations listed above in the field of theory, technology and practical

implementation, due to the scale of the ideology and the novelty of the problem under study,

the .NET approach is not without certain shortcomings, most of which, apparently, are of a

temporary nature. We list, in our opinion, the most significant of them. Firstly, the

developers note rather high requirements for hardware (in particular, the amount of RAM

must be at least 256 megabytes, the free hard disk space for working with Microsoft Visual

Studio .NET is at least 10 gigabytes).

In addition, non-commercial versions of Microsoft software products, which often

provide significant new features, are not robust enough; Some of the new software features

are not fully documented.

Support for a number of theoretically interesting and practically useful programming

languages is limited. Because a number of compilers for programming languages are

provided by third-party developer companies or non-profit institutions, the results of their

activities are subject to control and customization with restrictions.

90

The set of software tools that implement the .NET approach (including compilers for

programming languages) has not been fully ratified according to international standards.

Undoubtedly, .NET is an outstanding achievement of the modern programming industry.

Suffice it to say that Microsoft considers .NET to be its strategic ideology and technological

platform for the next decade.

The undoubted qualitative superiority over the existing means of computer-aided design

and rapid implementation of applied software is achieved due to the following main factors:

• interoperability and cross-language interaction;

• multi-level, flexible and reliable security policy;

• integration with web services technology;

• simplification of the procedure for deploying and using the created software.

Despite some incompleteness of the solution for wide commercial use due to the

conceptual novelty and grandeur of the project, the .NET approach certainly has a significant

impact on the commercial programming industry as a whole and contributes to a radical

improvement of the industry. C++Builder supports the basic principles of object-oriented

programming - encapsulation, polymorphism and multiple inheritance, as well as new

specifications and keywords in the C++Builder language standard provides high

performance when compiling and building 32-bit applications for modern Windows 95

operating systems and Windows NT, including OLE client-server interaction.

The system even displays the time spent on the main stages of building programs. The

resulting programs are well optimized in terms of execution speed and memory

consumption. While low-level debugging is fully integrated into the C++Builder

environment, debugging also took some getting used to. Form designer. The Object

Inspector and other tools remain available while the program is running, so you can make

changes while debugging.

C++Builder comes in three flavors: Standard. Professional (for professional developers

focused on network architecture) and Client/Server Suite (for developing systems in the

client/server architecture). The last two options complement the standard visual component

source code, a multi-scale data dictionary, new SQL query language features for databases,

the Internet Systems Support Package, a program monitoring service, and a number of other

tools.

Experiments with test programs within the framework of the standard version formed the

basis of the material presented here. While testing the system, I moved several applications

previously written in Borland C++ version 4.5 to C++ Builder.

Thanks to the visual components, the "code shell" of processing Windows messages and

resource files has disappeared from programs, and only meaningful code remains. The

application user interface has acquired a complete professional look.

While C++Builder appears to be a very reliable system, the corporation has yet to refute

the common claim that every well-oiled program (including commercial ones) has at least

one bug. Apparently, it is precisely this desire that explains the excessive, in my opinion,

91

haste with advertising the "improved and extended" version of Borland C ++ version 5.02.

C++ Builder supports connection with various databases of 3 types:

dBASE and Paradox: Sybase, Oracle, InterBase and Informix; Excel, Access, FoxPro and

Btrieve. The BDE (Borland Database Engine) makes maintaining database links

surprisingly simple and transparent. The Database Explorer allows you to display

relationships and database objects graphically. Using database components, I built an

electronic notebook from a dBASE table in half an hour of work on a computer. Inheritance

of ready-made forms and their "adjustment" to specific requirements significantly reduce

the time spent on solving such problems.

The C++ Builder Help Desk has helped me in this and many other similar situations.

There is a complete description of each control component, including lists of properties and

methods, as well as numerous examples. The presentation of the material has been greatly

improved and systematized thanks to the information I gleaned from the help desk.

Lecture 11

Object programming systems. Basic constructions of languages and features of

programming in the system. Classes, methods and properties

Plan:

1. C++ Builder 6 Integrated Environment

2. Basic C++ constructs

3. Keywords C++

4. Simple, complex types and their scope

5. Basics of programming in visual mode.

6. Classes, methods and properties

Keywords: classes, encapsulation, polymorphism, multiple inheritance, events.

C++Builder is a complete C++ programming environment for developing Windows

applications. The system's integrated environment provides faster visual design and

productivity of reusable components. Using the graphical tools of the integrated

environment, you can quickly master the techniques of object-oriented programming -

encapsulation, polymorphism, multiple inheritance, and the syntax and code structure of the

programs developed by the environment are very attractive. Together with Delphi (the most

popular related system), C++Builder is able to compete with any software products. The

unique relationship between Delphi and C++Builder allows you to easily move from one

development system to another when creating an application. C++Builder includes the C++

language, compiler, Integrated Development Environment (IDE), debugger, and various

tools. C++Builder contains a set of common controls, access to the Windows API, the Visual

Component Library (VCL), components and tools for working with databases.

92

C++Builder adds to the process of programming in C++ the ability to quickly visually

develop the application interface. In addition to the OWL (Object Windows Library) and

MFC (Microsoft Foundation Classes) libraries, it uses the VCL library and allows you to

include dialogs with the user in the form, leaving the developer to implement only the

functional part that embodies the algorithm for solving the problem.

C++Builder shares a class library with Delphi, some of which remain written in Object

Pascal. Thanks to this, as well as the inclusion of C++ and Object Pascal compilers in

C++Builder, applications can use components and code written in Object Pascal, as well as

Delphi forms and modules.

C++Builder components. Creating an application's user interface consists of adding

objects, called components, to the form window. C++Builder allows the developer to create

their own components and customize the Component Palette.

Components are divided into visible (visual) and invisible (non-visual). Visual

components appear at both runtime and design time. Non-visual components appear at

design time as icons on the form. They are not visible at runtime, but have functionality. To

add a component to a form, you can select the required component in the Components

Palette with the mouse and left-click in the desired place of the designed form. The

component will appear on the form, and then it can be moved and changed.

Each C++ Builder component has three characteristics: properties, events, and methods.

The Object Inspector automatically shows the properties and events that can be used with

the component. Properties are attributes of a component that define its appearance and

behavior.

The Object Inspector displays published component properties in the properties page and

is used to set published properties at design time. To change the properties of a component

at runtime, you need to add the appropriate code. In addition to published properties,

components can have public properties that are only available at runtime.

Fig.1. Object Inspector window

Developments. The Events page of the Object Inspector shows a list of events recognized

by the component and fired when the component's state changes. Each component instance

has its own set of functions - event handlers. By creating an event handler, you are

instructing the program to execute the specified function if the event occurs. To add an event

handler, select the component, then open the Events page of the Object Inspector and

double-click next to the event. This will cause C++Builder to generate an empty function

93

text with the cursor where the code should be entered. Next, you need to enter the code that

should be executed when this event occurs.

Development environment (IDE). C++ Builder is an application whose main window

contains a menu (top), toolbar (left), and Component Palette (right). In addition, when you

launch C++ Builder, the Object Inspector window and ObjectTreeView window (left) and

the new application form (right) appear. Below the application form window is the Code

Editor window.

Fig.2. IDE main window

Building applications in C++Builder. The first step in developing a C++ Builder

application is to create a project. To create a new project, select the menu item File|New|

application.

C++ Builder creates a Project.bpr file, as well as a Project.cpp project head file that

contains the WinMain() function. The WinMain() function in Windows applications is used

instead of the main() function. When a new form is added, C++Builder updates the project

file and creates the following additional files:

• form file with .dfm extension containing information about the form;

• module file with .cpp extension containing C++ code;

• header file with .h extension, containing a description of the form class.

To compile the current project, select the Compile menu item. To compile the project and

create an executable file, select Run from the Run menu. As a result of execution, the

following form will be obtained:

Fig.3. Application execution result

Project file structure. For each C++Builder application, a Project.bpr project xml file and

a resource file are created. Another file is the project's head file containing the WinMain()

function, which is generated when the File|New Application menu item is selected. Initially,

this file is named Project1.cpp by default. If forms and modules are added during application

94

development, C++Builder updates the file. To view the file, select the menu item

Project|View Source.

The project head file has a certain set of key elements:

• The #include <vcl.h> preprocessor directive is intended to include a header file that

refers to the VCL class definitions.

• The #pragma hdrstop directive is intended to limit the list of header files available for

precompilation.

• The USEFORM directive shows the modules and forms used

• in project.

• The compiler's USERES directive attaches resource files to the executable. When you

create a project, a .res resource file is automatically created to store cursors, icons,

and other resources.

• Application->Initialize(). This statement initializes the application.

• Application->CreateForm(). This statement creates an application form. Each form in

the application has its own statement

• CreateForm.

• Application->Run(). This statement starts the application.

• The try...catch block is used to terminate the application gracefully if an error occurs.

A typical project head file looks like this:

//Project1.cpp --

#include <vcl.h> #pragma hdrstop USERES("Project1.res");

USEFORM("Unit1.cpp", Form1); //---

WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int)

{

try

{

Application->Initialize(); Application->CreateForm(__classid(TForm1), &Form1);

Application->Run();

}

catch (Exception &exception)

{ Application->ShowException(&exception); } return 0;

}

The structure of the Project1.bpr file. The Project1.bpr file represents an XML project

(C++Builder XML Project) that contains a description of the application to be created. This

is a text file containing instructions on which files should be compiled and linked into the

project, as well as the paths to the directories to be used.

Module structure. The module contains the implementation of the functional part of the

object in the C++ language and by default is the Unit1.cpp file. Each such file is compiled

95

into an object file with an .obj extension. When a new form is added to a project, a new

module is generated.

The name of the module source file and the shape file (*.dfm) must be the same. When

creating an event handler in the text of the module, an event handler function template is

generated, into which the code is entered that is executed when the handled event occurs.

Below is the module text generated for the original form:

//Unit1.cpp --

#include <vcl.h> #pragma hdrstop #include "Unit1.h"

#pragma package(smart_init) #pragma resource "*.dfm"

TForm1 *Form1;// a pointer to an object

//---

__fastcall TForm1::TForm1(TComponent* Owner) : TForm(Owner) { } //

Header file structure. The header file (a file with the .h extension, Unit1.h by default) is

generated when a new module is created and contains a description of the form class. Such

descriptions are generated automatically and change when new components are added to the

form or new event handlers are generated. The header file contains the interface, and the

module itself contains the implementation of the methods.

When components are removed from a form, their descriptions are removed from the

header file. Renaming components changes their descriptions in the header file, as well as

the names and descriptions of event handlers. However, this does not change references to

these components and event handlers used in other functions. Because of this, it is

recommended that you rename components and event handlers as soon as they are created,

before they are referenced.

A module may contain classes and functions that are not described in the header file, but

their visibility in this case is limited by this module.

Below is the header file for the original form:

//Unit1.h--- ------------------------------

#ifndef Unit1H #define Unit1H

//-- ----------------------------

#include <Classes.hpp> #include <Controls.hpp> #include <StdCtrls.hpp> #include

<Forms.hpp>

class TForm1 : public TForm

{

__published:

// IDE-managed Components

private: // User declarations

public:

96

// User declarations

__fastcall TForm1(TComponent* Owner);

}; //-- ----------------------------

extern PACKAGE TForm1 *Form1; #endif

//-- ----------------------------

Shape file. The form is one of the most important elements of a C++ Builder application.

The form editing process occurs when components are added to the form, their properties

are changed, and event handlers are created. When a new shape is added to a project, three

separate files are created:

1) the module file (*.cpp) contains the code of the methods associated with the form;

2) the header file (*.h) contains the description of the form class;

3) the form file (*.dfm) contains information about the published (available in the

Object Inspector) properties of the components contained in the form.

When a component is added to a form, the header file and the form file are modified.

When you edit the properties of a component in the Object Inspector, those changes are

saved in the shape file. Although C++ Builder saves the *.dfm file in binary format, its

contents can be viewed using a code editor. To do this, right-click over the form and select

View as Text from the context menu of the form.

The most important feature of C++Builder is the automatic generation of program code.

When you add a component to the form, the declaration of the object of the class of this

component appears in the text of the Unit1.h file. For example, transferring a TButton button

component to an empty form will generate a declaration of the Button1 object, and defining

an OnClick event will generate a declaration of the ButtonlClick method, which is the

handler for this event.

Classes, Components, and Objects.

C++Builder uses the concept of components - special classes that contain, in addition to

the usual data members of the class and methods, also properties and events. Properties and

events allow you to manipulate the appearance and functional behavior of components both

at the design stage of the application and during its execution.

Bean properties are an extension of the concept of data members and use the __property

keyword for declaration. With the help of events (events), the component informs the user

that it has been affected in some way. Event handlers are methods that implement the

program's reaction to the occurrence of events. Typical events are pressing a button or a key

on the keyboard. Components have a number of features:

•All components are direct or indirect descendants of the TComponent class. In this case,

the inheritance hierarchy is as follows: Tob- ject->Tpersistent-> Tcomponent->Tcontrol-

>… .

• Components are used directly, they cannot serve as base classes for building new

subclasses.

97

•Components are placed only in dynamic memory using the new operator.

• Components can be added to the Component Palette and manipulated with the Form

Editor.

Class Development

C++Builder allows you to declare a base class that encapsulates property, data, method,

and event names. Each declaration within a class defines an access privilege to class names

depending on which section the name appears in. Each section begins with one of the

keywords: private, protected and public, which determine the accessibility of the elements

of the corresponding section. Class declarations and method definitions are usually stored

in separate files (with extensions .h and .cpp, respectively). The following example shows

that if methods are defined outside the class, then their names should be qualified with the

class name. C++Builder allows you to declare a derived class that inherits the properties,

data, methods, and events of all its predecessors in the class hierarchy, and can also declare

new characteristics and overload some of the inherited functions. You can declare a derived

class like this:

class derivedClass : [<access specifier>] parentClass { private:

<private member data> <private methods> protected:

<protected data members>

<protected methods> public:

<public properties> <public data members> <public constructors> <public destructor>

<public methods>

__published:

<published properties> <published data members> <declarations of friend functions> };

Note the introduction of a new section with the __published keyword, an addition that

C++Builder introduces to the ANSI C++ standard for declaring published members of

coclasses. This section differs from the public section only in that the compiler generates

RTTI (Runtime Information) information about the object's properties, data members, and

methods, and C++Builder arranges for this information to be passed to the Object Inspector.

When a class is derived from a base class, all base class names in the derived class

automatically become private by default (unless an access specifier is specified when

inheriting). But this can be changed by specifying the following access specifiers

When inheriting the base class:

• protected. Inherited (i.e. protected and public) base class names become protected in

instances of the derived class.

• public. The public names of the base class and its predecessors will be public in

instances of the derived class, and any protected ones will remain protected.

C++Builder uses the concept of components - special classes that contain, in addition to

the usual data members of the class and methods, also properties and events. Properties and

98

events allow you to manipulate the appearance and functional behavior of components both

at the design stage of the application and during its execution.

Bean properties are an extension of the concept of data members and use the __property

keyword for declaration. With the help of events (events), the component informs the user

that it has been affected in some way. Event handlers are methods that implement the

program's reaction to the occurrence of events. Typical events are pressing a button or a key

on the keyboard. Components have a number of features:

• All components are direct or indirect descendants of the TComponent class. In this

case, the inheritance hierarchy is as follows: Tob- ject->Tpersistent-> Tcomponent-

>Tcontrol->… .

• Components are used directly, they cannot serve as base classes for building new

subclasses.

• Components are placed only in dynamic memory using the new operator.

• Components can be added to the Component Palette and manipulated with the Form

Editor.

Class Development

C++Builder allows you to declare a base class that encapsulates property, data, method,

and event names. Each declaration within a class defines an access privilege to class names

depending on which section the name appears in. Each section begins with one of the

keywords: private, protected and public, which determine the accessibility of the elements

of the corresponding section.

Consider an example of a class declaration. Note the declaration of the Count property in

the protected section, and the SetCount method, which implements writing to the given

Fcount, in the private section.

C++Builder allows you to declare a derived class that inherits the properties, data,

methods, and events of all its predecessors in the class hierarchy, and can also declare new

characteristics and overload some of the inherited functions. You can declare a derived class

like this:

class derivedClass : [<access specifier>] parentClass { private:

<private member data> <private methods> protected:

<protected data members>

<protected methods> public:

<public properties> <public data members> <public constructors> <public destructor>

<public methods>

__published:

<published properties> <published data members> <declarations of friend functions> };

Note the introduction of a new section with the __published keyword, an addition that

C++Builder introduces to the ANSI C++ standard for declaring published members of co-

99

classes. This section differs from the public section only in that the compiler generates RTTI

(Runtime Information) information about the object's properties, data members, and

methods, and C++Builder arranges for this information to be passed to the Object Inspector.

When a class is derived from a base class, all base class names in the derived class

automatically become private by default (unless an access specifier is specified when

inheriting). But this can be changed by specifying the following access specifiers when

inheriting the base class:

• protected. Inherited (i.e. protected and public) base class names become protected in

instances of the derived class.

• public. The public names of the base class and its predecessors will be public in

instances of the derived class, and any protected ones will remain protected.

Let's consider the application of the technique of extending and limiting characteristics

using the example of creating button varieties when inheriting the base TButtonControl

component from the Visual Components Library. The base class TButtonControl is capable

of displaying the button as two nested rectangles using the parent Draw method: an outer

frame and an inner filled area. To create a simple button without a border, you need to derive

a SimpleButton class using TButtonControl as the parent and override the Draw method:

class SimpleButton: public TButtonControl { public:

SimpleButton(int x, int y) ;

void Draw() ; ~SimpleButton() { } };

SimpleButton::SimpleButton(int x, int y) : TButtonControl(x, y) { }

void SimpleButton::Draw() {outline->Draw();}

The only purpose of the object constructor for SimpleButton is to call the base class

constructor with two parameters. It is the override of the SimpleButton::Draw() method that

prevents the button's outline from being drawn (as happens in the parent class). To change

the code of a method, you need to study it using the source code of the base TButtonControl

component.

Let's create a button with an explanatory name. To do this, you need to build a derived

TextButton class from the base TButtonControl and overload the Draw method with an

extension of its functionality:

class Text {//Helper class public:

Text(int x, int y, char* string) { } void Draw() { }

};

class TextButton: public TButtonControl { Text* title;

public:

TextButton(int x, int y, char* title); void Draw();

~TextButton() { } };

TextButton::TextButton(int x, int y, char* caption): TButtonControl(x, y) {

100

title = new Text(x, y, caption);}

void TextButton::Draw () { TButtonControl::Draw() ; title->Draw() ;}

Control questions:

1. What files does a C++Builder application consist of, and how are these files organized?

2. What codes are automatically generated in the application's head file when this

application is created?

3. What is the purpose of the Object Inspector windows?

4. What does a Form View (.dfm) file contain?

5. What is an event and how to create an event handler for a component?

Lecture 12

Logic programming technology. The logical structure of the program. Conditional,

unconditional, and select statements

Plan:

1.Logical structure of the program

2.Conditional, unconditional statements

3.Cyclic computing processes

Key terms: arithmetic operations, logical operations, operations with strings, relational

operations, conditional operators, selection operators.

Logical structure of the program

Operations are divided into arithmetic operations, logical operations, string operations,

set operations, relational operations, and the @ operation (address obtaining operation).

Relational and logical operations result in False or True logical constants. With their help,

you can set various conditions for variants of complex branching algorithms.

Relation operations

The types of operands and the results of relational operations are given in Table 1.

Table 1

Operation Action Operand Types Result Type

== Equal
Compatible simple, pointer,

string multiple boolean
logical

!= Not equal
Compatible simple, pointer,

multiple, boolean
logical

< Less Than
Compatible simple, pointer,

multiple, string boolean
logical

101

> Greater than
Compatible simple, pointer,

plural
logical

<=
Less than or

equal to

Compatible simple, pointer,

union
logical

>=
Greater than

or equal to

Compatible prime, pointer,

union
logical

Logical operations

The basic logical operations are the operations of logical addition OR (||), logical

multiplication AND(&&), logical negation NOT(!). With the help of logical operations, you

can compose complex logical expressions. The operands in such an expression are boolean

variables, numeric variables, and functions linked by relational operations. The priority of

performing operations in a complex logical expression is determined by the following order:

1. Arithmetic operations. (* / % + -)

2. Relationship operations (in order)

3. Logical operations.(! && ||)

The result of evaluating a logical expression will be the value of the logical constants true

or false. It is these values that the conditional jump operators of the C++Builder 6 language

react to when implementing programs of a branching structure.

Here are the truth tables for these operations, assuming that NOT is a unary operation,

and all the others are operations of several operands.

Truth table for logical addition.

A B A || B

True True True

False True True

True False True

False False False

Truth table for logical multiplication.

A B A || B

True True True

False True False

True False F alse

False False False

Truth table for logical negation.

A ! A

true True

false True

Truth table for the logical negation operation or

102

A B A xor B

True True False

False True True

True False True

False False False

The types of logical operations are shown in Table 2.

Table 2

Operation Action Types of

operands

Type of

results

!

&&

||

^

Inversion

And (bit)

Or

Excepting Or

logical

logical

logical

logical

logical

logical

Conditional Jump Operators

Conditional statements allow you to select one of the compound statements to execute (or

select none).

The expression must produce a result that has a standard Boolean type. If the expression

evaluates to a true value (True), then the statement following the then keyword is executed.

(short form of the statement)

 If B then E

where B is a logical expression and E is any C++Builder 6 language operator.

If the expression evaluates to False and the else keyword is present, then the statement

following the else keyword is executed. Such an operator is called a complete conditional

operator.

103

If B then E; else E2 ; (full form).

A feature of the conditional operator is that it can have a nested structure. Moreover, the

number of investments is unlimited.

An example program using a conditional statement.

//---

#include <vcl.h>

#pragma hdrstop

#include "Z.h"

//---

#pragma package(smart_init)

#pragma resource "*.dfm"

TForm1 *Form1;

//---

__fastcall TForm1::TForm1(TComponent* Owner)

 : TForm(Owner)

{

}

//---

void __fastcall TForm1::Button1Click(TObject *Sender)

{

float x;

x=StrToFloat(Edit1->Text);

if(StrToFloat(Edit1->Text)>0)

{RadioGroup1->ItemIndex=0;

x=x*x*x; Label1->Caption="Otvet="+FloatToStr(x);}

if (StrToFloat(Edit1->Text)<0)

{RadioGroup1->ItemIndex=1;

x=x*x; Label1->Caption="Otvet="+FloatToStr(x);}

if(StrToFloat(Edit1->Text)==0)

{RadioGroup1->ItemIndex=2;

Label1->Caption="Otvet="+FloatToStr(x);}

104

}

//---

Variant operator (switch)

A switch statement consists of an expression (switch or selector) and a list of statements,

each preceded by one or more constants (called choice constants). The switch (selector)

must have an ordinal type (byte or word size). Thus, string type and long integer type are

invalid switch types. All selection constants must be unique and have an ordinal type that is

compatible with the radio button type.

The switch variant statement results in the execution of a statement preceded by a

selection constant equal to the switch value or the selection range in which the selector value

lies. If no such selection constant or such selection range exists and the default branch is

present, then the statement following that keyword is executed.

Here are some examples of the variant operator:

S-character expression:

 switch (s)

 {

 case ‘+’: X = X+Y;

 break;

 case ‘-‘: X= X-Y;

 break;

 case ‘*’: X = X*Y;

 break;

 default s;

 }

The variant (selection) operator is used in those cases when, depending on the values of

a variable or expression, called a selector, certain operators must be executed. Operators can

be simple or compound. If there are only two options, then the conditional jump operator IF

is used. But if there are many options, for example, ten? In such cases, you can use a nested

IF structure, but the visibility and clarity of the program is lost. It is optimal to use the variant

operator. The choice list is a set of label values and operators.

switch (n)

{

case n1: S1; break;

case n2: S2; break;

case n3: S3; break;

default s;

}

105

where switch, case - service words; n is a variable or expression called a selector;

n1 ,n2.. - labels

S1, S2, S3 are variant operators.

The break statement breaks the execution of the switch and transfers control to the

statement following the closing curly brace.

The switch statement transfers control to that statement S, one of the labels of which

matched the value N. If the value of the selector N did not match any of the labels, then the

statement following the reserved word default is executed.

Example 1. Write a program that prints the schedule for the number entered.

//---

#include <vcl.h>

#include <iostream.h>

#include <conio.h>

#pragma hdrstop

//---

#pragma argsused

int main()

{

 Int n;

 cin>>n;

 switch (n% 7)

 {

 case 1: cout<<” Physics,PI”;

 break;

 case 2: cout<<”'descryptv.,English”;

 break;

 case 3: cout<<” 'informatics,Uzbek ”;

 break;

 case 4: cout<<”introd to spec,lab physics ”;

 break;

case 5: cout<<” practice informatics,descryptv”;

 break;

case 6: cout<<” math, jurisprudence ”;

 break;

case 7: cout<<” week end ”;

 break;

 default n;

 }

106

getch();

 return 0;

}

//---

Example 2. in visual mode:

Calculate x2 if x>0, x2 if x<0, output x if x=0.

Used components RadioGroup, Lable, Edit, Button

RadioGroup1: TRAdioGroup

The Edit number depends on how much data the user needs to enter manually. Button1 -

The button is used to calculate Y.

The RadioGroup component has a RadioGroup1.ItemIndex property, the value of which

depends on the strings of variants of the specified conditions. This component shows how

the way Y is calculated changes depending on the variable X entered by the user.

Program code:

/---

 #include "Unit1.h"

 #include <vcl.h>

#pragma hdrstop

//---

#pragma package(smart_init)

#pragma resource "*.dfm"

//---

 __fastcall TForm1::TForm1(TComponent* Owner)

 : TForm(Owner)

{

}

//---

void __fastcall TForm1::Button1Click(TObject *Sender)

{

 {

float x;

x=StrToFloat(Edit1->Text);

if(x>0)

RadioGroup1->ItemIndex=0;

else

if (StrToFloat(Edit1->Text)<0)

107

RadioGroup1->ItemIndex=1; else

RadioGroup1->ItemIndex=2;

Label1->Caption="Answer="+FloatToStr(x);

int n=RadioGroup1->ItemIndex ;

switch (n)

{

case 0: x=x*x*x; Label1->Caption="Answer="+FloatToStr(x);

 break;

case 1: x=x*x; Label1->Caption="x="+FloatToStr(x);

 break;

case 2: Label1->Caption="Answer="+FloatToStr(x);

 break;

}

}

 }

Result:

Test questions:

1. What is logic programming?

2. What operators are used in logical operations?

3. In what situations are variant operators used?

Lecture 13

Components used in visual programming. Loop operators. Their different forms

(parametric, conditional check before and after). Complex algorithms

108

When solving many problems, it becomes necessary to repeat a certain set of program

statements. For these purposes, the C++Builder 6 language provides for the use of special

loop operators.

Cyclic computing processes are divided into cycles with a known, unknown number of

repetitions and the so-called nested cycles (cycles within a cycle). C++Builder 6 uses three

types of cycle operators.

The loop statement specifies the repeated execution of certain statements. If the number

of repetitions is known in advance, then the appropriate construct is the for statement.

Otherwise, the while or do while statements should be used.

You can use the standard Break and Continue procedures to control the repetition of

statements. Break terminates the loop statement, and Continue continues with the next

iteration of that statement.

C++Builder 6 Loop Statements

Cycle statements are used to execute the statements (the so-called loop body statements)

that are part of them several times (in a particular case, once or not at all). In C++Builder 6,

as mentioned above, there are three kinds of loop statements: while, do while and for.

2.1. Loop statement with while precondition.

Syntax:

 while Logical

statement

operator

while A T;

Where A - boolean expression; T - instruction.

The value of the expression A is evaluated before each execution of the statement T,

which is why the While loop is also called a precondition loop.

If the value of A is TRUE(true), then the statement T is executed and control is transferred

to evaluate the value of the expression A; if the value of the expression A is FALSE (false),

then the statement T is not executed and the loop exits.

Notes: (1) if the initial value of the expression A is FALSE, then the statement T will

never be executed; (2) you can use a compound statement in the while loop statement; (3)

to avoid endless repetition (looping), it is necessary to change at least one variable included

in the condition in the body of the loop operator. Moreover, these changes must be such that

the boolean expression evaluates to FALSE sooner or later. If the Boolean expression is

initially true and never becomes false under any circumstances, then the loop statement will

never terminate.

Finally, the while loop is used, as a rule, in cases where the number of repetitions of the

loop is not known in advance. In this regard, one should remember a simple but very

important rule - the "innermost" cyclic construction should be formulated with special care

in order to minimize the computational costs and increase the efficiency of the program as

much as possible.

 while i > 0

 {

109

 if (i% 2==0) z :=z *x;

 i := i /2;

 x= x*x); }

2.2. Loop statement with postcondition do while

The do while loop (a loop with a postcondition) is usually used in cases where the number

of repetitions of the loop body statements is not known in advance.

The syntax for the Repeat loop operator is:

do

Operators
while condi

tion
 ;

do t while a;

where t is an operator (possibly composite);

a is a Boolean expression.

The operator "works" as follows: the operators t are executed, the value of the expression

a is calculated; if its value is FALSE, then the t statements are executed again, if the value

of the expression a is TRUE, then the loop ends. If the value of the expression a is TRUE

from the very beginning, then the t statements are executed only once. If the expression a

never evaluates to TRUE, then the group of statements t is executed an infinite number of

times, then a "loop" occurs.

Note that the lower bound of the cyclic part statements is clearly marked with the word

until, so there is no need to enclose the cyclic part statements in operator brackets {}. For

example:

a)

 do

{

 k := i % j;

 i = j;

 j = k;

 }

 while(j= =0);

b)

 do

 {

 cin>>”Enter value (0..9):”;

 cin>>i;

 }

 while (i >= 0) && (i <= 9);

110

2.3. Loop statement with for parameter

The for loop operator is used to organize a loop with a parameter and is used in cases

where it is known in advance how many times the cyclic part of the program should be

repeated. Operator syntax:

For by increasing values of parameter i:

for (i= n1; i<n2 ; i++) t ;

n1 is the initial value of the cycle parameter, and n2 is the final value; 3) t is an operator

(possibly composite).

The algorithm for executing the loop statement is as follows:

The loop variable is initialized.

The value of the condition is determined. if true, then the loop body is executed, otherwise

the statement will not be executed.

An expression is executed to change the loop parameter. (it is incremented by 1).

The variables i, n1, n2 must be of the same type, but not of type float, and the value of n2

must be greater than the value of n1. The variable i takes consecutive values of this type

from n1 to n2. In the special case when both n1,n2 are integers and i is a variable of type

int, then the step is always equal to one.

For example, if for (i=1 ;i< 20; i++) a=a+1, then for i=1,2,3,...,20 the statement a:=a+1

will be executed.

If n1 and n2 are of a character type and have values, for example, 'A' and 'Z' respectively,

then the variable i takes on consecutive values in alphabetical order: 'A','B','C',...,' Z'.

Note that it is possible to organize a cycle by decreasing values of the parameter i. The

reserved word downto is used for this.

The syntax of the For operator by decreasing values of the i parameter is:

For (i:=n2; n2== N1; i ־־) T; where: 1) i - variable (parameter) of the cycle; 2) n2 is the

initial value of the cycle parameter, and N1 is the final value; 3) T is an operator (possibly

composite).

In this case, the parameter i takes successive decreasing values of this type from n2 to n1

(the step is -1. For example, if

For (i=20; i==1; i ־־) a=a+1, then for i=20,19,18,...,1 the operator A:=A+1 will be

executed.

Let's give an example of a loop operator with a parameter.

а) for (i := 2; i< 63 ;i++)

 if ((i %2) != 0) nch = nch+1;

111

b) for(i= 1 ;i< 10;i++)

 for (j = 1; j< 10;j++)

 {

 X = 0;

 for (k= 1; k< 10;k++)

 x = x + k*j+i;

 cout>>x;

}

In the loop statements, the break and continue instructions can be used, which are used to

terminate the loop, and in the first case, the loop block is exited, and in the second, the

current iteration of the loop is completed.

Here are some examples of using loop statements:

Example 1

Calculate sum

a) Using a while loop

 #include <vcl.h>

#include <iostream.h>

#include <conio.h>

#include <math.h>

#pragma hdrstop

//---

#pragma argsused

int main(int argc, char* argv[])

{

float s;

int n;

n=50; i=1;

while (i<n){

s=s+1/i; i=i+1;

}

cout<<s;

getch();

 return 0;

}

b) Using a for loop

{

float s;

112

int i,n;

n=50; s=0;

for (i=1; i<n; i++)

s=s+1/i;

cout<<s;

getch();

 return 0;

}

c) Using the do while loop statement

 {

float s;

int i,n;

n=50; i=1;

do

{

s=s+1/i; i=i+1;

}

while (i<n);

cout<<s;

getch();

 return 0;

}

Example 2

 Finding the smallest positive number Eps such that 1+Eps>

//--

 #include <vcl.h>

#include <iostream.h>

#include <conio.h>

#include <math.h>

#pragma hdrstop

//---

#pragma argsused

int main(int argc, char* argv[])

{

 const c1 = 1.0;

 const c2 = 2.0;

 float eps,eps1;

 eps=c1;eps1:=c2;

113

 while (eps1>1.0)

 { eps:=eps/2;eps1:=eps+1 }

 eps=eps*2;

 cout<<eps;

getch();

 return 0;

}

Example 3

 Find all prime numbers on a given interval m,n (use a loop with a parameter)

(program code in console mode)

//--

 #include <vcl.h>

#include <iostream.h>

#include <conio.h>

#include <math.h>

#pragma hdrstop

//---

#pragma argsused

int main(int argc, char* argv[])

{

 int m,n; // segment boundaries

 int i,j; // Cycle Options

 int kl ;

 cout<<” Enter Segment Boundary...” ;

 cin>>m,n;

 For(j=2 ;to int(Sqrt(i)) do

{

If (i % j)=0 then kl:=kl+1;

 If kl=0 then cout<<i,” “)

}

 Cout<<”Result: ”,d) ;

 }

Example 3

Implement the task of calculating a function in the interval x a,b with a step h. (in visual

mode)

 This program uses Memo ,Lable, Edit, Button components

The Edit number depends on how much data the user needs to enter manually.

Button1 - represents a button and is used to evaluate the function.

114

Memo1 is used to display all F values in the range [A,B] since component represents

multiline text.

Program code:

/---

 #include "Unit1.h"

 #include <vcl.h>

#pragma hdrstop

//---

#pragma package(smart_init)

#pragma resource "*.dfm"

//---

 __fastcall TForm1::TForm1(TComponent* Owner)

 : TForm(Owner)

{

}

//---

void __fastcall TForm1::Button1Click(TObject *Sender)

{

 {

float a,b,h,f,x;

 a=strtofloat(Edit2->Text);

 b=strtofloat(Edit3->Text);

 h=strtofloat(Edit1->Text);

 do

{

 x=a;

 f=x*x +sin(x) +exp(x);

 Memo1->Text= Memo1->Text + “ “+floattostr(f) +” ”;

 a=a+h;

}

 while(a>b);

 }

Conclusions:

1. Three types of loop operators are used to describe cyclic algorithms in C++Builder 6.

2. Loop operators with postcondition and precondition are used for loops with an

unknown number of repetitions. Moreover, the loop operator with a postcondition is

executed at least once, while the loop with a precondition may not be executed even once.

115

3. In loops with a known number of repetitions, it is convenient to use the loop operator

with a parameter, but taking into account the type of the loop variable.

4. All loop operators can be used for cyclic nested structure algorithms (loop within a

loop when there are several loop variables).

5. Memo and ListBox components are used to display a set of results of the cyclic

program.

Lecture 14

Functions and modules. Standard and user-defined functions in programming

languages. Local, static, dynamic variables.

Plan:

1. Structured types of C++ Builder 6.

1. Arrays and their declaration in the program. Multidimensional arrays.

2. Processing array elements in the program.

Dynamic arrays

1. In C++Builder 6, new types can be introduced. These include an enumerated type. An

enumerated type in C++Builder 6 is a collection of constants listed with their values in

parentheses, separated by commas.

The new type input rule is defined:

enum<type name>=(constant 1, constant 2, constant3,… constant n).

Enumerated type constants are strictly ordered and the type of these values can be a scalar

standard type, except for type float. (The real type has an infinite number of values, even in

the range 0.1.)

Enumerated type examples:

enum week=(sun,mon,tue,wed,thi,fri,sat);

enum color=(red,blue,white,yellow,black);

enum subject=(math,phis,biol,eng);

enum season=(spring,summer,autmn,winter);

Declared types can be used to declare the following variables:

enum weekday;

enum color cvet;

enum subject lessson;

enum season yeartime season;

In this case, you can write the following assignment operators:

day=wed; cvet=red; lesson=eng; yeartime=winter;

cvet=mon; day=math; operators are incorrect, because do not match the description.

Values of an enumerated type cannot be entered and output by input and output statements.

116

To input and output these values, you must unambiguously map them to the

corresponding possible values of the standard types (for example, string constants)

Input example:

Enumerated type examples:

enum week=(sun,mon,tue,wed,thi,fri,sat);

enum color=(red,blue,white,yellow,black);

enum subject=(math,phis,biol,eng);

enum season=(spring,summer,autmn,winter);

Declared types can be used to declare the following variables:

enum weekday;

enum color cvet;

enum subject lessson;

enum season yeartime season;

In this case, you can write the following assignment operators:

day=wed; cvet=red; lesson=eng;yeartime=winter;

 switch(day)

{

case mon: writeln(‘Monday’);break;

case tue: writeln(‘Tuesday’); break

case wed: writeln(‘Wednesday’); break

case thu: writeln(‘Thursday’); break

case fri: writeln(‘Friday’); break

case sat: writeln(‘Saturday’); break

case sun: writeln(‘Sunday); }

It should be noted that the ordered values of an enumerated type have their ordinal number

from 0 to 255. Therefore, the number of constants in an enumerated type is limited.

2. It is known that when implementing a wide class of tasks in programming languages,

such a construction as arrays is used. For example, the coefficients of systems of linear

equations. Moreover, the result is also an array of system roots.

For this, special structured array types are used. An array is a collection of ordered

variables of the same type, provided with the same name. An array component is an indexed

variable whose index indicates its number among the elements of the given array. For an

array X, the elements are x1, x2,..x10. There are one-dimensional, two-dimensional, three-

dimensional, etc. n-dimensional arrays.

For example:

A(10) ,D(4,4) - where A,D are the names of arrays, their dimensions are indicated in

brackets

117

This is the mathematical notation for an array. The dimension of an array indicates the

number of components or otherwise the number of elements of the given array.

 Array A has 10 elements: A1, A2, A3 ... A10;

 In array D-16 elements:

D11 D12 D13 D14

D21,. . . D24

. . . .

D41. . . D44

The number of elements in a multidimensional array is determined by the product of the

boundaries of the indices, and the dimension is determined by the number of indices.

C++Builder 6 uses a special type to declare an array. The type of an array component in

C++Builder 6 can be any simple or structured language type, including the regular type. An

index type is any bounded or enumerated type. Specific index values can be given by a

corresponding bounded type expression, called an index expression. Thus, an element of an

array (component) in a program is an indexed variable consisting of the array name and an

index expression, which is specified in square brackets.

Array declaration examples:

 float P [10] ;

 int t[4][4] ;

The description of an array in a program differs from a simple description of a variable

by the presence of square brackets after the array name, which indicate the number of array

elements (its dimension):

int a[10]; // array of ten integers

float b[3]; // array of three real numbers.

The numbering of array elements always starts from zero. So for the previously declared

array of ten integers, the first index will be 0 and the last 9.

Like variables, arrays can be initialized at the time of declaration with a list of constant

values enclosed in curly braces.

int a[3] = {1, 2, 3};

The dimension of an array, together with the type of its elements, determines the amount

of memory required to store the array. This volume is already allocated at the compilation

stage, so only positive constants or constant expressions can be used to specify the array

dimension. If the dimension is not specified, the compiler tries to allocate memory based on

the number of initialized values. Conversely, if the dimension does not match the number

of initialized values, the remaining elements of the array are filled with zeros.

Array elements are accessed by specifying the element index in square brackets after the

array name.

Example. A program that finds the sum of a given array:

118

#include <iostream.h>

int main(){

int i, sum;

int a [5] {7, 6, 3, 2, 6 };

for (i = 0, sum = 0; i < 5; i + +) sum += a[i];

cout « "Sum of elements: " « sum;

return 0;

}

You can set the dimension of an array using a named constant:

const int n = 5;

int a[n] = (1, 2, 3, 4, 5};

The const specifier indicates that the value declared with it cannot be changed in the

program. With each element of the array, you can perform the same operations as with a

simple variable of the same type: modify, use in expressions, assign to another variable, etc.

Multidimensional arrays.

Arrays of arrays are called multidimensional arrays. They can be represented as an array,

each element of which is an array. For example, a two-dimensional array can be represented

as a simple m-by-n-element table. In a program, a two-dimensional array is declared by

specifying both of its dimensions:

int matrix[3][5];

int array2d[5][5];

A two-dimensional array, generally speaking, is an abstraction, that is, the logical

arrangement of elements in it is determined by the programmer, and not by the C compiler.

You can talk about a two-dimensional array m by n, like a table with m rows and n columns.

In memory, such an array is located line by line, so when moving to the next element, the

rightmost index grows fastest:

 int a[2] [3] ;

а[0] [0]

а[0] [1]

а[0] [2]

а[1] [0]

а[1] [1]

а[1] [2]

In this example, a 2x3 array is given, and all its elements are listed in a row. As you can

see, first the rightmost index (column) runs through all 3 values, then the first index (row)

increases by one, and so on. When initializing a multidimensional array, it is represented by

either as an array "of arrays, with each array enclosed in its own curly braces (in this case,

119

you can not specify the dimension), or a general list of elements is given in the ""'th order

in which they are located in memory, i.e. line by line. Of course, in this case, you will have

to specify the dimension, otherwise the compiler will not be able to determine how many

elements are in one line and how many lines are in total.

3. Input and output of array elements is performed both directly in the program and using

input and output operators or an assignment operator using a cycle operator with a FOR

parameter, as well as other cycle operators of the C ++ Builder 6 language. The following

program fragment can be used to input and output of elements of a one-dimensional array.:

 int i;

for (i = 0; i < n; i++) cin << b[i];

 { input of array elements }

 int i;

for (i = 0; i < n; i++) cin << b[i];

Matrix operations are provided in C++Builder 6 for processing arrays: for example, a=b

if the matrices are of the same type and size. But you can't perform comparison operations

in an if a=b conditional statement. This is done element by element in the program. Consider

examples. The following program finds the row with the smallest sum of elements in a two-

dimensional array:

#include <iostream.h>

int main(){

const int nstr = 3, nstb = 4;

int m[nstr][nstb] =

{ {1, 3, 3, 6}, {1, 1, 2, 2}, {3, 3, 2, 0} };

int i, j;

int sum = 0, min = 0, num;

for (i = 0; i < nstr; i++) {

sum = 0;

for (j = 0; j < nstb; j++)

sum += m[i][j];

if (sum < min) min - sum;

}

cout " "Least sum in line" " num " ": " " sum " "\n";

return 0;

}

Sorting arrays. Sorting an array is giving a sequence of array elements a certain order,

such as arranging them in ascending or descending order. There are many different sorting

methods. Below is the algorithm for sorting an array by selection method. The algorithm is

120

that the smallest element is selected and swapped with the first element of the array, then

the elements are considered, starting with the second, and the smallest of them is swapped

with the second element, and so on n-1 times.

#include <iostream.h>

int main ()

 {

const int n = 20;

int b[n];

int i;

for (i = 0; i < n; i++) cin >> b[i];

for (i = 0; i < n-1; i++)

{

int imin = i;

for (int j = i + 1; j < n; j + +)

if (b[j] < b[imin]) imin = j;

int a = b[i] ;

b [i] ;= b [imin] ;

b[imin] = a;

}

for (i = 0; i < n; i++) cout < < b[i] << ‘ ‘;

return 0;

}

As a task, you can comment on this program. The only thing that may seem difficult is

the exchange of two variables. It is carried out using a temporary variable a, which stores

the previous value of the variable to be changed.

Another way to sort is bubble sort. Its principle is based on the fact that “lighter” elements

“float to the beginning of the array, and “heavier” ones sink;

#include <iostream.h>

int main()

{

const int arraysize = 10;

int a [arraysize] {2,6,4,8,10,12,89,68, 45, 37};

inttemp;

cout ""Elements in source order \n";

for (int i = 0; i < arraysize; i++)

cout << a[i] << " ";

for (int pass = 1; pass<arraysize; pass++)

121

for (i = 0; i < arraysize - 1; i++)

if (a[i] > a[i-t-I]) {

temp = a[i];

a[i] = a[i+l];

a[i+1] = temp;

}

cout << "\n" " "Elements ascending" << "\n";

for (i = 0; i < arraysize; i++)

 cout << a[i] << " ";

cout << "\n";

return 0;

}

Example 3. Given a square matrix. Calculate the sum of all elements of the array. (Visual

mode). The program uses the Lable, Button, StringGrid components (the Cells property

determines the index of the component). Button1(button) is used to populate an array

(Stringrid). Button2 - to calculate the sum of all array elements according to the program

code.

Program code:

#include <vcl.h>

#pragma hdrstop

#include "Unit1.h"

//-- ----------------------------

#pragma package(smart_init)

#pragma resource "*.dfm"

TForm1 *Form1;

//-- ----------------------------

__fastcall TForm1::TForm1(TComponent* Owner)

 : TForm(Owner)

{

}

//-- ----------------------------

void __fastcall TForm1::Button1Click(TObject *Sender)

{

intsum;

int i,j, a[3][3];

randomize();

for(i=0;i<3;i++)

for(j=0;j<3;j++)

122

{ a[i][j]=random(10);

StringGrid1->Cells[i][j]=IntToStr(a[i][j]);

sum=sum+a[i][j];}

}

//-- ----------------------------

void __fastcall TForm1::Button2Click(TObject *Sender)

{

intsum;

 Label1->Caption="Sum of all elements=" +IntToStr(sum);

}

//-- ----------------------------

Conclusions:

Enumerated types in C++Builder 6 have their own specification and use.

In C++Builder 6, array construction is a structured type.

To describe multidimensional arrays, you can use your own specification and declaration

syntax.

The type of array indexes can be any ordinal type. The C++Builder 6 language has the

ability to process dynamic arrays, taking into account the peculiarities of their description

and initialization. The input and output of the components of a variable of a regular type,

and their processing in the program is carried out only with the help of loop statements. In

the C++ language, the structure type is defined to describe such a data type. Unlike an array,

all elements of which are of the same type, a structure can contain elements of different

types. In C++, a struct is a kind of class and has all of its properties, but in many cases it is

sufficient to use structs as they are defined in C:

struct [typename]

{type_1 element_1;

 type_2 element_2;

 type_n element_n;}

 [descriptor-list];

The elements of a structure are called fields of the structure and can be of any type, except

for the type of the same structure, but can be pointers to it.

If there is no type name, a list of variable descriptors, pointers, or arrays must be provided.

In this case, the structure declaration serves as the definition of the list elements:

struct

{

charfio[30];

123

int date, code;

float salary;

}stuff[100], *ps; /* defining an array of structures and a pointer to the structure */

When processing variables of type structure, the C++Builder 6 compiler provides the

ability to directly access any field. To do this, you must specify the variable name and the

selected field, separating them with a dot.

For example:

for the student variable, you can apply the following statements:

stud.fio=”Khamidova Zamira”; stud.date=1984; stud.pol:=”F”;

For the input-output of values in the program, the input and output operators of the C ++

Builder 6 language are used. (if standard types) otherwise the values are input by assignment

operators.

When processing fields of variables of type structure, all possible operations and standard

functions provided by the syntax of the language for the type of the selected field are used

and there were no conflicts with type descriptions.

Example: Each computer is characterized by its name and technical characteristics:

operating speed in thousand op/sec, RAM size, machine word length, number of pixels in

graphics mode. Sort computers by memory size (in ascending order).

We write the program code in visual mode in the following form:

Visual mode:

/--

#include <vcl.h>

#pragma hdrstop

#include "Unitctruktura.h"

//---

#pragma package(smart_init)

#pragma resource "*.dfm"

TForm1 *Form1;

//---

__fastcall TForm1::TForm1(TComponent* Owner)

 : TForm(Owner)

{

}

//---

 typedef struct {

char name[10];

float speed;

124

int razr, pix, ram; } comp;

comp evm[10]; comp k; int i,j,n=3;

void __fastcall TForm1::Button1Click(TObject *Sender)

{

 for(i=0;i<n;i++)

 { evm[i].name=Edit1->Text;

 evm[i].speed=StrToFloat(Edit2->Text);

 evm[i].razr=StrToInt(Edit3->Text);

 evm[i].pix=StrToInt(Edit4->Text);

 evm[i].ram=StrToInt(Edit5->Text);

 }

 Edit1->Text=" ";

 Edit2->Text=" ";

 Edit3->Text=" ";

 Edit4->Text=" ";

 Edit5->Text=" ";

}

//---

void __fastcall TForm1::Button2Click(TObject *Sender)

{

 for (i=1;i<=n-1;i++) {

for (j=1;j<=n-1;j++) {

if (evm[j].ram>evm[j+1].ram)

{ k=evm[j]; evm[j]=evm[j+1]; evm[j+1]=k; } }}

for (i=1;i<=n;i++)

Memo1->Lines->Add(IntToStr(i)+". "+evm[i].name+" / "+

 IntToStr(evm[i].ram)+" /"+FloatToStr(evm[i].speed)+

 " /"+IntToStr(evm[i].razr)+" /"+IntToStr(evm[i].pix));

}

//---

Multiple data type.

1. The concept of a set in C++Builder 6 has the same meaning as in mathematics. It is a

set of all possible unordered elements. For example, a lot of integers, a lot of shapes, a lot

of details, a lot of functions. This type in the C++ language can be called a union.(union).

125

Sets in C++Builder 6 are a set of different elements of the base type (int, char, enum).

2. The type declaration is carried out like all structured types in a C++Builder 6 program.

This type in the C++Builder 6 language allows, based on some base type, to introduce

sets of types consisting of elements of this base type. A set is made up of individual

elements, and each element of a set is an expression of a base type.

<Base set type>::=<restricted integer>!<restricted char>!<char>! <boolean>!

<enumerable>!<restricted enumerable>

Set<type,minval,maxval>

Real types cannot be used. they are unlimited.

For example, if set descriptions are given as follows:

enum color(red,black,blue,white,yellow);

set <red, black, blue, white>s

set<int,1,20>s1,s2; { base type bounded integer }

set <char, “A”,”R”>p; {base type restricted character}

then set type variables can take the following values:

 s1=(2,4,7,9,13,19); s2=(1,5,10,15,20);

 p=(”D”,”F”,”G”,”K”);

 s=(red, blue, white);

Each element of the set in the computer is assigned a binary number. The maximum value

of the number is limited and is 256. If the element of the set is an integer, then it is

represented in the computer by its value in the binary number system. If it is a character or

a letter, then its value is determined by its ordinal number in the ASCI I code. In an

enumerated type, their ordinal numbers are written as values of the elements of the set.

Test questions:

1. How and in what files can you create your own class, dynamic object and call class

methods?

2.What are component properties? Give examples of several form properties.

3.What are component events? Give examples.

4.How can I change the values of component properties?

Lecture 15

Application in systems of graphic and multimedia programming. Capabilities of

the graphic module and their use. Object animation, animation options

Plan:

1.GDI drawing tools

2.Canvas. Using canvas.

3.Graphic files

4.Maintenance of palettes

126

Key terms: Canvas, graphics, colors.

The Windows system provides GDI (Graphics Device Interface) drawing tools for

drawing graphics on a graphics context, regardless of the type of output device. When

directly calling GDI functions, they need to pass a device context handle (HDC) that

specifies the drawing tools. The graphics context represents the graphics device model.

After you've finished working with images, you need to restore the device context to its

original state and release it. C++Builder takes care of the GDI work of looking up image

descriptors and memory resources. Applications can directly access Windows GDI

functions. Consider an example:

void __fastcall TForm1::Button1Click(TObject *Sender) { HDC hdc =Canvas->Handle;

LineTo(hdc,100,100);

MessageBox(Form1->Handle,"Windows API call","",MB_OK);

}

C++Builder provides a simple interface through the Canvas property of graphical

components. This property initializes and releases the device context. The Canvas property

is a class that encapsulates properties and methods for working with graphics. In the

C++Builder environment, there are three ways to work with graphics:

• Canva provides a bitmap of a surface for drawing on a form, graphical component, or

other bitmap. In addition to the form, objects of the TImage and TPaintBox classes are used

for drawing. Canvas is a property of these classes. Consider an example of drawing on a

form:

void __fastcall TForm1::FormPaint(TObject *Sender) { Canvas->Pen->Color = clBlue;

// select color for outline

Canvas->Brush->Color = clYellow; // select fill color

Canvas->Ellipse(10, 20, 50, 50); // draw an ellipse

}

The FormPaint method here is called by the form's OnPaint event when the form is being

drawn. Note that when drawing directly on the form, there are a number of problems

associated with its redrawing. The following example discusses various ways to set the

shape color and line color for drawing on a TImage component.

void __fastcall TForm1::Button1Click(TObject *Sender)

{

65

if (ColorDialog1->Execute())

127

{ Form1->Color = ColorDialog1->Color;

}

}

void __fastcall TForm1::Button2Click(TObject *Sender) { Image1->Canvas->Pen-

>Width=2;

randomize();

Image1->Canvas->Pen->Color =(Graphics::TColor)random(256) ; Image1->Canvas-

>LineTo(100,200);

}

When you click on the first button, the color of the form is selected, when you click on

the second button, lines are drawn in a randomly selected color.

• Graphics (TGraphic) is an abstract base class for working with graphics. C++Builder

defines graphic classes TBitmap, TClipBoard, TImage, TIcon, and TMetafile derived from

the base class Tgraphic. Objects of these classes use canvas drawing methods and have their

own methods. Widely used class methods TGraphic LoadFromClipboardFormat(),

LoadFromFile(), LoadFromStream(), SaveToClipboardFormat(), SaveToFile(),

SaveToStream().

• Figure (TPicture) is a container for graphic objects and can contain any graphic

objects. The properties of this class are: Bitmap, Graphic, Icon, Metafile, PictureAdapter.

A container TPicture class can contain a bitmap, icon, metafile, or some other graphic

type, and the application will refer to all container objects through the TPicture class object.

If you need to specify access to a particular graphic object, set it in the Graphic property of

this drawing. Methods of the classes of this class are: LoadFromClipboardFormat(),

LoadFromFile(), LoadFromStream(), SaveToClipboardFormat(), SaveToFile(),

SaveToStream().

128

MINISTRY OF HIGHER AND SECONDARY SPECIAL EDUCATION OF THE

REPUBLIC OF UZBEKISTAN

TASHKENT STATE TECHNICAL UNIVERSITY

PRACTICAL LESSONS

on subject

“Information technologies in technical systems”

Tashkent 2022

129

Practical lesson - №1

Learning and applying the interface of CAD applications. A technique for creating

mathematical models of engineering problems using applications (Mathematica,

Maple, Matlab, MathCAD). Requirements for hardware and software when using

CAD systems.

Purpose: To study modern platforms of computer systems and methods of using

hardware and software. To get acquainted with the concept of architecture, with the

hardware of a personal computer, the principles of von Neumann, the logical nodes of a

computer.

Theoretical part

The process of developing software systems is closely related to the field of project

management, because any software product is a unique result. The main characteristics of

the implementation of a software project directly depend on the organization of this process

- the deadlines, the planned budget, the quality of the product being produced. to live without

such a device as a computer. It should be considered as a combination of two components:

• hardware part (hardware);

• software part (software, soft).

Computer architecture Computer architecture is its device and the principles of

interaction of its main elements - logical nodes, among which the bases are processors,

internal memory (basic and operational), external memory and devices for input-output of

information (peripheral) (Fig. 1).

Fig. 1. Conditional model of the structure of the computer architecture

130

Von Neumann's principles

The principles underlying the architecture of computers were formed in 1945 by John von

Neum nom, who developed the ideas of Charles Babybage, presenting the computer work

as a work with a set of devices: processing, control, memory, input-output.

1. The principle of the same kind of memory. You can perform the same actions on

commands as you can on data.

2. The principle of memory addressability. The main memory is structurally composed

of pro-numbered cells; process at a random moment of time access to any cell. From here it

follows that it is possible to give names to memory areas, so that the values stored in them

can be it would be possible to subsequently handle or change them in the process of

executing the program using their own names.

3. The principle of subsequent program management. It assumes that the program consists

of a set of commands that are executed by the process rum automatically one after another

in a certain sequence.

4. The principle of rigidity of architecture. Immutability in the process of work topology,

architecture, command list.

Harvard architecture

Computers built on the principles of von Neumann have a classic architecture, but besides

it, there are other types of architecture. For example, Harvard. Its distinguishing features

are:

• instruction storage and data storage are different physical devices;

• the instruction channel and the data channel are also physically separate.

Among computers that are not classical, not the background of the Neumann architecture,

you can name it like this my neurocomputers. In them, the work of the cells of the human

brain, neurons, as well as some from parts of the nervous system capable of exchanging

signals.

Functions of some computer components

Each logical node of the computer performs its functions.

Functions of the processor (Fig. 2):

- data processing (performing arithmetic and logical operations on them);

- management of all other devices of the computer.

 View from the side of the radiator mounting View from the side of the contacts

Fig. 2. Computer CPU

131

The program consists of separate commands. The command includes the code of the

operation, the address of the operands (values that participate in the operation) and result

address. The execution of the command is divided into the following stages:

• selection of teams;

• formation of the address of the next command;

• de-co-di-ro-va-tion of the team;

• calculation of addresses of operators;

• selection of operas;

• execution of operations;

• the formation of the sign of the result;

• recording the result.

Not all of the stages are present when executing any command (depending on the type of

command), however, the stages are high parsing, decoding, forming the address of the next

command and executing the operation always take place . In certain situations, two more

stages are possible:

• indirect addressing;

• reaction to pre-rying.

 Operational memory (Fig. 3) is arranged in the following way:

• receiving information from other devices;

• memorization of information;

• transferring information on request to other computer devices.

Fig. 3. RAM (Random Access Device) computer

Trunk-modular principle

The architecture of modern computers is based on the main-modular principle (Fig. 4).

The modular principle allows you to complete the necessary configuration and carry out the

necessary modernization. It is based on the bus principle of information exchange between

modules. The system bus or computer backbone includes several buses of various purposes.

The highway includes three multi-bit tires:

• data bus;

• address bus;

• control bus.

132

Fig. 4. Pathway-modular principle of building a PC

The data bus is used to transfer various data between computer devices; the address bus

is used for addressing the fetched data, that is, for determining their me one hundred

positions in memory or in input / output devices; the control bus includes control signals

that serve for temporal agreement operation of various computer devices, to determine the

direction of data transmission, to determine the formats of the transmitted data, etc.

This principle is valid for various computers, which can be conditionally divided into

three groups:

• stationery;

• compact (notebooks, netbooks, etc.);

• pockets (smartphones, etc.).

In the system unit of a stationary computer or in the case of a compact computer, there

are basic logical nodes are a motherboard with a processor, a power supply unit, on an

external memory, etc. d.

The start screen is easily recognizable by the text Start in the upper left corner.

Programs that are downloaded from the Windows Store and gets opened from the Start

menu are called applications and programs that are downloaded from any other and get

opened from the desktop menu as programs.

Icons on the Taskbars left side

Fig.5.

All open applications and applications on the taskbar are shown on the left side of the taskbar.

133

Start screen where you have quick access to preferred applications, favorite websites,

frequently used folders, current work files.

Example. Navigation between user interfaces in Windows 8.1 can be done using key

combinations instead of, or, the mouse:

- On the Start screen, you can go to the desktop by clicking on the desktop tile

- From the beginning of the screen, you can go to the desktop by pressing the Windows

keys on your keyboard.

- From the beginning of the screen, you can go to the desktop by holding the Windows

key, press the D-key once, and release the Windows key again.

- From the beginning of the screen you can go to the desktop by placing the mouse cursor

in the lower left corner of the screen until the purple window right-click on the window

once.

Click on Desktop.

- From the beginning of the screen you can go to the desktop by placing the mouse pointer

in the upper left corner of the screen until a thumbnail image is shown. Click on the image

once.

Task 1. Creating a file archive

1. Select any bmp file from the files in the Личная\Графика folder on your disk.

2. Right-click to open the context menu.

3. Select a command (fig. 6).

Fig. 6. Context menu of the file object

4. Set the following archiving parameters in the Параметры window (Fig. 7):

Fig.7. Window for setting archive parameters

• archive name – leave the default name (same as the source file);

• archive type - RAR.

134

5. Set the parameters for placing the archive file - the Archives folder. To do this, use

the browse button to open the folder tree access window and select the Archives folder in

the Personal folder. The path to this folder (address) will be displayed in the Archive name

line.

6. Click OK.

7. Check if the file appears in the Archives folder.

Task 2. Opening an archive file

1. Open the archive file created in the previous task by double-clicking.

2. In the archiver window (Fig. 8) find the information:

• file size before archiving – Size column in the workspace of the archiver window;

• file size after compression – Compressed column;

• date and time of change;

• file type.

Estimate the difference in volume before compression and after compression.

Fig.8. View file options

Task 3. Creating an archive from several files

1. Select a group of files containing Word documents (Personal\Documents folder) and

perform archiving according to the algorithm specified in Task 1.

2. Estimate the volume of files before and after archiving.

Task 4. Creating a self-extracting archive

1. Select the same file for archiving as in the first task.

2. Create a self-extracting archive of this file (Fig. 8) according to the task algorithm 1.

When performing steps 4 and 5, specify the name of the archive - SFX, place it in the

Archives folder, check the SFX checkbox in the parameters window.

3. Find the file in the Archives folder and familiarize yourself with its properties

(Properties context menu command). Determine the file format (extension). Compare the

size of the file with the size of the RAR archive of the same file.

Task 5. Extracting files from the archive

1. Create an Extract folder on your desktop.

2. Select any of the archives available in the Personal\Archives folder from the folder.

3. Open it by double-clicking in the archiver window (Fig. 9).

135

Fig.9. Unpacking the archive

4. Extract it to your desktop into the Extract folder. To do this, click the Extract

button (Fig. 9) to open the window for setting the parameters for extracting from archive,

in which specify the required folder in the folder tree (Fig. 10).

5. Click OK.

6. Open the Extract folder. Check out the Extract result.

7. Delete the folder from the Desktop.

Fig.10. Setting archive extraction options

1. Set your own search criteria for the following files:

• All files on the d: drive created within the last 2 months, with the extension Doc. Select

those of the found files that are less than 100 kb in size and save them in the Documents

folder of your Personal Folder.

• Find all files in the My Documents folder that are of type XLS.

• Find all files that have Word in their names that are executable files (search scope drive

C:). Present the result to the teacher.

• Look for files with .exe extension on drive C: as well as those with .gif extension created

in the last 3 days. Copy the latest files to your Graphics folder.

Control questions

1. What are the main computer devices that make up a computer system?

2. List modern platforms of computer systems.

3. What are the main types and functions of processors do you know?

4. List the main types of computer system memory.

5. What file system is used in the current version of Windows?

6. What are the advantages of NTFS compared to the FAT32 file system?

7. What is the difference between SSD drives and traditional hard drives?

8. What file systems does Windows support for CD-ROMs and DVDs?

9. Specify some network types of APIs in the Windows operating system.

136

Practical lesson - №2

Working with vectors and matrices in MathCAD. Solution of systems of equations.

Purpose of work: Learn to perform various operations with vectors and matrices; solve

systems of linear algebraic equations; learn to build tables of function values of one and two

arguments.

Theoretical part

To work with matrices and vectors in Mathcad, use the Matrix panel (Fig. 1).

Fig.1 - Matrix toolbar

You can open the Matrix panel by clicking on the image of the matrix on the Math toolbar

(Fig. 2):

Fig 2 - Math toolbar

In order to type a matrix of the required dimension, you need to click on the image of the

matrix on the Matrix panel, and a dialog box will open (Fig. 3):

Fig.3 - Dialog box Insert Matrix

In the dialog box, specify the number of matrix rows (Rows) and the number of columns

(Colums) of the matrix, then click OK. Next, in the field that opens, type the required

numbers.

137

Basic operations on matrices and vectors

Let the matrix

Inverse matrix , transpose matrix , determinant are calculated using the

appropriate tools on the Matrix panel.

|M| = -312

Matrix rank

rank(M) = 4

The matrix size can be calculated as follows:

Number of rows: rows(M) = 4

Number of columns: cols(M) = 4

Matrix Merging

Let be

Then the merging of matrices from left to right is performed as follows:

Merging matrices from top to bottom:

138

Selection of individual elements, rows, columns of a matrix

When performing operations, keep in mind that rows and columns are numbered starting

from zero.

To select a submatrix, the submatrix(A, ir, jr, ic, jc) function is used, which returns the

part of the matrix A located between rows ir, jr and columns ic, jc inclusive.

Operations on vectors

The vector modulus is calculated using the |x| tool located on the Calculator panel (not to

be confused with the similar designation on the Matrix panel, intended for calculating the

matrix determinant).

Example.

|r| = 3.74165739

Vector dimension:

length(r) = 3

Dot and vector product

Creating a Table of Values for a Single Variable Function

In order to build a table of function values in Mathcad, you must do the following:

• set a function;

• set the boundaries of the interval [a, b] on which the function values will be

calculated;

139

• set the number of points for splitting the interval [a, b];

• calculate the vector of function argument values at split points;

• calculate the function value vector corresponding to the argument value

vector.

Example.

Function assignment: .

Setting the range limits: a:= -10; b:= 10.

Set the number of split points, including boundary points (>=2):n:= 20.

Computing the vector of argument values:

Calculation of the vector of function values:

The matrix of values of a function of two variables is constructed in a similar way.

Example.

Function assignment: f(x,y) :=sin(x,y)

140

Setting the boundaries of the rectangle along the x-axis:

xa:= -2 π; xb:= 2 π.

Setting the boundaries of the rectangle along the y-axis:

ya:= -π; yb:=π.

Setting the number of split points along the x-axis, including boundary points (>=2): xn:=

40.

Specifying the number of split points along the y-axis, including boundary points (>=2):

yn:= 20.

Calculation of index values i,j: i:= 0 ..xn– 1; j:= 0 ..yn– 1.

Calculation of x(i) and y(j) values:

;

.

Function value matrix: Mi,j := f(xii,yij)

Solving systems of linear algebraic equations

Let us present several methods for solving systems of linear algebraic equations (SLAE)

in Mathcad. Inverse matrix method (for square systems with a nonsingular matrix).

Let SLAE be given

Then the solution vector is found by the formula:

Least square method.

Let the system of equations be given: , where m>n, i.e. the number of

equations is greater than the number of unknowns.

We multiply both parts of the matrix equation by the transposed matrix of the system.

From here

Symbolic solution method using the Given - Find block (the solution of the system will

be found if it exists).

141

Example.

Given

2 𝑥 + 3 𝑦 + 5 𝑧 + 4 = 0

4 𝑥 + 5 𝑦 + 7 𝑧 − 5 = 0

3𝑥 + 8 𝑦 − 4 𝑧 − 1 = 0

Note: The equal signs < = > between the left and right parts of the equations must be set

using the Boolean panel (Fig. 4).

Figure 4 - Boolean toolbar

Any "other" equal signs taken from other panels or typed from the keyboard will result in

an error.

The task

Calculate the determinants of matrices, find the matrix inverse to the given one, find the

ranks of the matrices, extract the given rows and columns from the matrices.

Solve the SLAE by the inverse matrix method and using the Given - Find block; solve

SLAE by the least squares method.

Task variants

Exercise 1.

• calculate determinants;

• find the matrix inverse to the given one, transpose the matrix;

• find the ranks of matrices; select the second row and third column from the matrices.

Variant № Task 1 а Task 1 b Task 1 c

1

2

142

3

4

5

6

7

8

9

143

10

11

12

13

14

15

16

144

17

18

19

20

21

22

23

145

24

25

26

27

28

29

146

30

Task 2. Solve the SLAE by the inverse matrix method and using the Given–Find

block;

Variant № Task 2 а Task 2 b

1

2

3

4

5

6

7

8

9

147

10

11

12

13

14

15

16

17

18

19

20

21

148

22

23

24

25

26

27

28

29

30

Work performance technology

In this work, it is necessary to perform actions with vectors and matrices using the Matrix

panel, solve the SLAE using the methods of the inverse matrix, least squares, using the

Given - Find block.

Test questions:

1.How to calculate the modulus of a vector in Mathcad?

2.How to solve a system of equations using a symbolic processor?

3.How to highlight a row of a given matrix in Mathcad?

4.How to build a matrix of values of a function of two variables?

149

Practical lesson No3

Fundamentals of work in the MatLab system. System capabilities. Program

interface. Creation of MatLab-document and their application in technical systems.

The purpose of the lesson: to study the user interface of the MATLAB system and the

basics of working with the system in the direct calculation mode.

Theoretical part

MATLAB includes a command interpreter, a graphical shell, a debugger editor, command

libraries, a compiler, the symbolic core of the Maple package for analytical calculations,

MATLAB mathematical libraries in C / C ++, a report generator and wide toolboxes.

The MATLAB interface is quite consistent with modern canons (see Figure 1). It is multi-

windowed and has a number of means of direct access to various system components. Pay

attention to the following toolbar buttons:

• New M-file - displays an empty m-file editor window;

• Open file - opens a window for loading Matlab files;

• Simulink - Opens the Simulink Library Browser window.

• Help - opens a help window.

These functions are duplicated in a very simple MATLAB system menu.

Windows with Launch Pad/Workspace tabs for access to system components and tabs

for the current directory Current Directory and session history History appeared in the left

part of the system window. They provide operational control over the state of the system.

Displayed MATLAB interface windows can be enabled or disabled from the View menu

item.

All work is organized through the command window (Command Window), which

appears when you start the program. In the course of work, the data is located in memory

(Workspace) in the form of matrices.

150

Figure 1 - MATLAB program interface

Variables in MATLAB do not need to be pre-declared by specifying their type. All data

is stored as arrays: numeric variables (internal type numeriс), text strings (char), cells (cell),

and structures (struct). A two-dimensional array is a matrix, a one-dimensional array is a

vector, and a scalar is a 1x1 matrix. A variable name must begin with a letter, followed by

letters, numbers, and underscores. Names of any length are allowed, but MATLAB

identifies them by the first 31 characters and distinguishes between uppercase and lowercase

letters. MATLAB has a number of constants (Table 1)

Table 1.

Reserved constant names.

Name Description

ans The result of the last operation

i, j Imaginary unit

pi Number 

eps Machine Precision

realmax Maximum real number

151

realmin Minimum real number

inf Infinity

NaN Non-numeric variable

end The largest value of the array dimension index

Note that the name NaN (Not-a-Number) is reserved for the result of operations 0/0,

0*inf, inf-inf, and so on.

Calculations are performed in the command window in dialog mode. The user enters

commands or launches files with texts in the MATLAB language. The interpreter processes

the entered value and returns the results: numeric and string data, warnings and error

messages. The input line is marked with >>.

Variable names must start with a letter. The = sign corresponds to the assignment

operator. Pressing the Enter key causes the system to evaluate the expression and display

the result. If the operator record does not end with the symbol ";", then the result is displayed

in the command window, otherwise it is not displayed. If the statement does not contain an

assignment sign "=", then the value of the result is assigned to the ans system variable. All

values of variables calculated during the current session of work are stored in a specially

reserved area of computer memory called the workspace of the MATLAB system

(Workspace). To view the value of any variable from the current workspace of the system,

just type its name and press the Enter key.

Fig.2. - Demonstration of the execution of the assignment command

152

After the end of the session with the MATLAB system, all previously calculated variables

are lost. To save the contents of the workspace of the MATLAB system to a file on the

computer disk, you need to execute the menu command File \Save Workspace As By

default, the file name extension is mat, so such files are usually called MAT-files.

The MATLAB system works with both real and complex numbers. Before using complex

number operations, you must define the variable 𝑖 = 𝑠𝑞𝑟𝑡(– 1) 𝑜𝑟 𝑗 = 𝑠𝑞𝑟𝑡(– 1). The

following operation signs are used in arithmetic expressions:

+, - – addition, subtraction,

*- multiplication,

/ - division from left to right;

\ - division from right to left;

^ - exponentiation.

The MATLAB system allows you to calculate various mathematical functions. The

following elementary algebraic functions take one or two real (x, y) or one complex (z)

number as an argument (Table 2).

Table 2

Elementary algebraic functions

Function Description

abs(z), abs(x), Compute the modulus of a complex number z or the absolute value

of a real number x.

angle(z) Calculation of the argument z.

sqrt(z), sqrt(x) Calculating the square root of numbers z and x

real(z) Calculation of the real part of the complex number z.

imag(z) Calculation of the imaginary part of the complex number z.

round(x) Rounding up to an integer.

fix(x) Rounding to the nearest integer towards zero.

rem(x, y) Calculation of the remainder after dividing x by y.

exp(z) Calculate e to the power of x.

log(z) Calculation of the natural logarithm of a number x.

log10(z) Calculation of the decimal logarithm of the number x.

The MATLAB system provides the ability to calculate the following trigonometric and

inverse trigonometric functions of the x variable (Table 3).

153

Table 3

Trigonometric functions

Function Descryption

sin(x) Sine Calculation

cos(x) Cosine calculation

tan(x) Tangent calculation

asin(x) Arcsine calculation

acos(x) Arc cosine calculation

atan(x) Arc tangent calculation

atan2(y, x) Calculation of the arc tangent from the coordinates of a point

WORKING WITH GRAPHICS IN MATLAB

3.1 Basic theoretical information

One of the advantages of the MATLAB system is the abundance of graphics tools,

ranging from commands for constructing simple graphs of functions of one variable in the

Cartesian coordinate system to combined and presentation graphs with animation elements,

as well as graphical user interface (GUI) design tools. Particular attention in the system is

paid to three-dimensional graphics with functional coloring of the displayed figures and

imitation of various lighting effects.

To display the functions of one variable y(x), graphs are used in the Cartesian

(rectangular) coordinate system. In this case, two axes are usually built - horizontal X and

vertical Y, and coordinates x and y are given, which determine the nodal points of the

function y(x). Since MATLAB is a matrix system, the set of points y(x) is given by X and

Y vectors of the same size.

The plot (X, Y) command is used to plot function graphs in the Cartesian coordinate

system, the coordinates of points (x, y) are taken from vectors of the same size Y and X. If

X or Y is a matrix, then a family of graphs is built according to the data contained in the

columns matrices.

The plot(X, Y, S) command is similar to the plot(X, Y) command, but the plot line type

can be specified using the string constant S.

The values of the constant S can be the following characters, which are presented in Table

4.

154

Table 4

 Setting the line type

 Line type marker

Marker Line type

- Continuous

-- Dashed

: Punctured (dotted)

-. Dash-dot

Graph Color Marker

Marker Graph color

C Blue

M Violet

Y Yellow

R Red

G Green

B Blue

W White

K Black

Point type

Marker Point type

. Dot

+ Plus

* Asterisk

О Circle (the Latin letter o is indicated)

Х Cross (indicates the Latin letter x)

Thus, using the string constant S, you can change the color of the line, represent node

points with different marks (point, circle, cross, triangle with different vertex orientations,

etc.) and change the line type of the graph.

The plot(X1, Y1, S1, X2, Y2, S2, X3, Y3, S3,...) command builds a series of lines on

one chart, represented by data of the form (X, Y, S), where X and Y are vectors or matrices,

and S are rows. Using this construction, it is possible to construct, for example, a graph of a

function with a line whose color differs from the color of the nodal points. If there is no

indication of the color of lines and points, it is selected automatically from the color table

(white is excluded). If there are more than six lines, then the choice of colors is repeated.

Sometimes you want to compare the behavior of two functions whose values are very

different from each other. The graph of a function with small values practically merges with

the abscissa axis, and its appearance cannot be determined. In this situation, the plot(y)

function helps, which displays graphs in a window with two vertical axes that have a suitable

scale.

155

Three-dimensional surfaces are usually described by a function of two variables z(x, y).

The specificity of building three-dimensional graphs requires not just setting a series of x

and y values, that is, x and y vectors. It requires the definition for X and Y of two-

dimensional arrays - matrices.

The meshgrid function is used to create such arrays. It is primarily used in conjunction

with 3D surface plotting functions. The meshgrid function is written in the following forms:

– [X,Y,Z] = meshgrid(x, y, z) — returns three-dimensional arrays used to calculate

functions of three variables and build three-dimensional graphs;

– [X,Y] = meshgrid(x, y) — converts the area specified by the x and y vectors into X and

Y arrays, which can be used to calculate a function of two variables and build three-

dimensional graphs. The rows of the output array X are copies of the vector x, and the

columns of Y are copies of the vector y.

The plot3(...) command is similar to the plot(...) command, but refers to a function of two

variables z(x, y). It builds an axonometric image of three-dimensional surfaces and is

represented by the following forms:

– plot3(x, y, z) – builds an array of points represented by x, y and z vectors, connecting

them with line segments. This command is of limited use;

– plot3(X, Y, Z, S)—provides plotting with line and point style specification;

– plot3(x1, y1, z1, s1, x2, y2, z2, s2,...) – draws graphs of several functions z1(x1,y1),

z2(x2,y2), etc. on one figure with specification of lines and markers of each of them.

The most representative and visual are mesh graphs of surfaces with a given or functional

coloring. The name of their commands contains the word mesh. There are three groups of

such commands:

– mesh(X, Y, Z, C) — displays a mesh surface Z(X,Y) in the graphics window with the

colors of the surface nodes specified by the C array;

– mesh(X, Y, Z) — analogue of the previous command for C=Z.

In this case, functional coloring is used, in which the color is given by the height of the

surface. The mesh function returns a handle to an object of class surface. The following is

an example of using the mesh command:

>> [X, Y]=meshgrid([-3:0.15:3]);

>> Z=X.^2+Y.^2;

>> mesh(X, Y, Z)

Figure 3 - Surface plot created by the mesh(X,Y,Z) command

156

After the graph has already been built, MATLAB allows you to format or design it in the

desired form. Thus, to set a title inscription above a chart, use the following command title(

'string') — setting a title inscription on 2D and 3D charts, specified by the string constant

'string'.

The following commands are used to set labels near x, y and z axes: xlabel('String'),

ylabel('String'), zlabel('String').

Figure 4 - Installing labels using the command:

xlabel('String'), ylabel('String'), zlabel('String')

Often there is a need to add text to a specific place in the graph, for example, to designate

one or another curve of the graph. The text command is used for this:

– text(X,Y, 'string') — adds the text specified by the string constant 'string' to the two-

dimensional chart, so that the beginning of the text is located at the point with coordinates

(X, Y). If X and Y are given as one-dimensional arrays, then the label is placed in all

positions [x(i), y(i)];

– text(X,Y, Z, 'string') — adds the text specified by the string constant 'string' to the 3D

plot, so that the beginning of the text is located at the position specified by the X, Y and Z

coordinates.

The gtext command provides a very convenient way to enter text:

– gtext('string') — sets the text displayed on the chart in the form of a string constant

'string' and displays a marker moved by the mouse in the form of a cross on the chart. Having

set the marker in the right place, it is enough to click any mouse button to display the text.

An explanation in the form of line segments with reference labels placed inside the graph

or near it is called a legend. To create a legend, various variants of the legend command are

used:

legend(stringl, string2,…, strings) — adds a legend to the current chart in the form of

strings specified in the list of parameters;

 >> legend('chart')

157

Figure 5 - Graph with explanations

legend (Pos) - places the legend at the exact location specified by the Pos parameter:

Pos=0 - the best place selected automatically;

Pos=l — upper right corner;

Pos=2 - upper left corner;

Pos=3 — lower left corner;

Pos=4 — lower right corner;

Pos=-l — to the right of the chart.

When adding a legend, it should be noted that the order and number of arguments of the

legend command must correspond to the order in which graphs are displayed and their

number.

Typically, graphs are displayed in auto-scaling mode. The following axis class commands

change this situation:

– axis([XMIN XMAX YMIN YMAX]) — setting the ranges of coordinates along the x

and y axes for the current two-dimensional chart;

– axis([XMIN XMAX YMIN YMAX ZMIN ZMAX]) – setting the coordinate ranges

along the x, y and z axes of the current 3D chart;

– axis auto — setting the default axis parameters;

In mathematical, physical and other literature, when plotting graphs, in addition to

marking the axes, a scale grid is often used. The grid commands allow you to set the gridding

or cancel this construction:

– grid on — adds a grid to the current chart;

– grid off — turns off the grid.

In many cases, it is desirable to build many superimposed graphs in the same window. To

do this, use the command to continue graphical constructions hold. It is used in the following

forms:

– hold on—provides continuation of displaying charts in the current window, which

allows you to add subsequent charts to existing ones;

– hold off — cancels the graphic plot continuation mode;

158

It happens that in one window it is necessary to place several coordinate axes with

different graphs without overlapping them. For this, the subplot commands used before

plotting are used:

– subplot(m, n, p)—divides the graphics window into m×n subwindows, where m is the

number of subwindows horizontally, n—the number of subwindows vertically, and р—the

number of the subwindow into which the current chart will be displayed (subwindows are

counted line by line).

Let's illustrate the work of the subplot function (see Fig. 6):

>>subplot(3, 2, 1); plot (x,y);

>> subplot(3, 2, 4); plot (x,y);

>> subplot(3, 2, 5); plot (x,y);

Figure 6 - Function operation

3 rows and two columns of fields for displaying graphs were formed. Each specific field

is accessed with its number. Numbering is from left to right and from bottom to top.

Order of execution

1. Compilation and debugging of a program for displaying graphs of functions f1, f2, f3

based on the task from table 5 . The output of graphs must be carried out in one window,

the graphs must be signed, scaled.

Table 5

Task variants

Variant № 1f 2f 3f 4f

1 2 3 4 5

1)sin(x)cos(x 2x rr /)cos(

2 xe
2x x rr /)(cos2

3)cos()sin(xx + 2)cos(xx +)lg(2 xx + rr /)cos(2

4 xex +)sin(
2)sin(xx + xx +)sin(2/)cos(rr

159

5)sin(* xx)cos(* xx 2x ()2
/)cos(rr

6 xxe 2)sin(xx + xx +)sin(rr /)(sin 2

7)cos(*)sin(xx 2*)cos(xx)lg(2 xx rr /)sin(2

8 xex)sin(
2*)sin(xx xx *)sin(2/)sin(rr

9)(sin 2 x)(cos2 x x ()2/)sin(rr

10 xex *)sin(
2*)sin(xx xx *)sin(rrr /)cos(+

11)(cos)(sin 22 xx +
2)cos(xx +)lg(2 xx + rrr /)(cos2+

12 xex +)sin(
22)(sin xx + xx +)(sin 2

 rrr /)cos(2+

13)sin(* xx 2)sin(xx + xx +)sin(2/)cos(rrr +

14)cos()sin(xx + 2*)cos(xx)lg(2 xx ()2/)cos(rrr +

15)(sin 2 x
2)sin(xx + xx *)sin(rr /)(sin 2

Practical lesson - №4

Using the programming mode in the MatLab system to solve problems in mechanics.

The purpose of the work: Learning programming in the MATLAB system.

In MATLAB, two types of files are of particular importance - with the extensions .mat

and .m. The former are binary files that can store the values of variables, the latter are text

files containing external programs, definitions of commands and system functions. It is to

them that most of the commands and functions belong, including those set by the user to

solve their specific tasks.

A multi-window editor-debugger with an empty m-file editing window can be called with

the Edit command from the command line or with the File > New > M-fiLe menu command

(Figure 1).

160

Figure 1 - Multi-window editor-debugger

 After that, you can create your own file in the editor window, as well as use the tools for

debugging and launching it. To run a file, it must be written to disk using the Save as

command in the editor's File menu. The m-file editor-debugger performs syntactic checking

of the program code as you enter text. It uses the following color highlighting:

• programming language keywords — blue color;

• operators, constants and variables — black color;

• comments after the % sign - green color;

• symbolic variables (in apostrophes) — brown color;

• syntax errors - red.

Thanks to color highlighting, the likelihood of syntax errors is drastically reduced.

M-files created by the debugger editor are divided into two classes: script files that do not

have input parameters and function files that have input parameters. A script file, also called

a script file, is simply a record of a series of commands with no input or output parameters.

It has the following structure:

%Main Comment

%Additional comment

File body with any expressions

161

The following properties of script files are important:

a. they do not have input and output arguments;

b. work with data from the workspace;

c. are not compiled during execution;

d. are a sequence of operations recorded in a file, completely similar to the one

used in the session.

Consider the following script file (Figure 2):

Figure 2 - Creating a script file in MATLAB

The first three lines here are the comment, the rest are the body of the file. Pay attention

to the possibility of setting a comment in Russian. The % sign in comments must start at the

first position of the line. It should be noted that such a file cannot be launched without

preliminary preparation, which boils down to setting the values of the xmin and xmax

variables used in the file body. This is a consequence of the first property of script files -

they work with data from the workspace. Script file names cannot be used as function

parameters because script files do not return values. We can say that a script file is the

simplest program in the MATLAB programming language.

The M-file-function is a typical object of the programming language of the MATLAB

system. At the same time, it is a full-fledged module from the point of view of structured

programming, since it contains input and output parameters and uses the apparatus of local

variables. The structure of such a module with one output parameter is as follows:

function var = f_name(List_parameters)

%Main Comment

%Additional comment

File body with any expressions

162

var=expression

The M-file function has the following properties:

1) it starts with a function declaration, after which the name of the variable var is

indicated - the output parameter, the name of the function itself f_name and the list

of its input parameters;

2) the function returns its value and can be used in mathematical expressions;

3) all variables present in the body of the function file are local, i.e., they act only within

the body of the function;

4) a function file is an independent program module that communicates with other

modules through its input and output parameters;

5) the rules for outputting comments are the same as for script files;

6) when a function file is found, it is compiled and then executed, and the generated

machine codes are stored in the workspace of the MATLAB system.

The last construction var = expression is introduced if you want the function to return the

result of a calculation. The above form of the function file is typical for a function with one

output parameter. If there are more output parameters, then they are indicated in square

brackets after the word function. The structure of the module looks like this:

function [varl,var2....] = f_name(ParameterList)

%Main Comment

%Additional comment

File body with any expressions

var1=expression

var2=expression

If a function is used as having a single output parameter, but has multiple output

parameters, then the first one will be used to return the value. This often leads to errors in

mathematical calculations. Therefore, as noted, this function is used as a separate element

of programs of the form [varl, var2] = f_name (List_of_parameters). After its application,

the output variables varl, var2 become defined and can be used in subsequent mathematical

expressions and other program segments.

To organize dialog input and output, the following operators are used, presented in Table

1.

Table 1

Dialog I/O Operators

Operator Syntax Appointment

INPUT x = input(‘<invitation >’) To enter data from the keyboard

DISP disp (<variable or text in

apostrophes >)

To display

163

Let us give a simple example of a dialog program that serves to repeatedly calculate the

circumference of a circle by a user-entered value of the radius r (Fig.3).

Figure 3 - An example of a dialogue program

Conditional statements are used to organize branches.

Conditional constructs:

1)

if <condition>

<operators>

end

Operators (expression body) are executed only if the condition is true, if the condition is

false, then the expression body is not executed.

2)

if <condition>

 <statements 1>

 else

<statements 2>

 end

If the program flow must change depending on several conditions, then the full if-elseif-

else construct should be used. Each of the elseif branches in this case must contain a

164

condition for executing the block of statements placed after it. It is important to understand

that the conditions are checked in a row, the first condition that is met leads to the operation

of the corresponding block, exiting the if-elseif-else construct and moving to the operator

following the end. The last else branch should not have any condition. The statements

between else and end work if all conditions are not met. For example, it is required to write

a function file for calculating a piecewise given function:









−

−−−

−−

=

−−

.2,2

;21,2

;1,1

)(2

1

xx

xxx

xe

xf

x

Figure 4 - Listing of the program for calculating the value of the function

The MATLAB system can use the following comparison operators, shown in Table 2.

Table 2

Comparison Operators

Symbol Appointment Name of function

< Less lt

>= More or equal ge

> More gt

<= Less than or equal to le

== Equals eq

~= Not equal ne

The operations (==, ~=) compare the real and imaginary parts of complex numbers, and

the operations (>, <, >=, <=) compare only the real parts.

Logical operations can be written as functions (Table 3).

165

Table 3

Boolean Operations

Symbol Appointment Name of function

& Logical "and" and

| Logical "or" or

~ Negation not

The result of logical operations are the numbers 0 (false) and 1 (true).

There are two kinds of loop statements in MATLAB - conditional and arithmetic. To

repeat statements an unfixed number of times, use the loop statement with a precondition:

while <condition>

<operators>

end

The statements are executed if the variable <condition> has non-zero elements.

The arithmetic loop operator has the following form:

for <name> = <IV>: <Step>: <FV>

<operators>

end,

where <name> is the name of the cycle control variable,

<IV> – initial value of the control variable,

<FV> – the final value of the control variable,

<Step> – increment of the values of the variable <name> in the course of its change from

the value <IV> to the value <FV>. If the <Step> parameter is not specified, its default value

is one.

When working with a for loop, it is permissible to use the break loop operator. When this

statement is executed, the loop is terminated, and control is transferred to the next statement

after the end of the loop.

The progress of the program can be determined by the value of some variable (switch).

Such an alternative method of program branching is based on the use of the switch

statement. The switch statement contains blocks beginning with the word case, after each

case, the value of the switch at which this block is executed is written separated by a space.

The last block begins with the word otherwise, and its statements work when none of the

case blocks has been executed. If at least one of the case blocks is executed, then the switch

statement exits and goes to the statement following the end.

Let's assume that you want to find the number of ones and minus ones in a given array

and, in addition, find the sum of all elements that are different from one and minus one. The

program listing contains a function file that, given an array, returns the number minus ones

166

in the first output argument, the number of ones in the second, and the sum in the third

(Fig.5).

Figure 5 - Listing of the program

The pause statement is used to stop the program. It is used in the following forms:

a) pause - stops calculations until any key is pressed;

b) pause(N) - stops calculations for N seconds;

c) pause on - turns on the pause processing mode;

d) pause off - turns off the pause processing mode.

Order of execution

1. From the script file, use the dialog input function to enter all the necessary data from

the keyboard. Perform the calculation using conditional operators and display the results in

the command window (Table 4).

Table 4

Task variants

Variant № Task

1 2

1 Find the sum of the positive of the four given variables.

2 Find the maximum value of the four given variables and output it.

3 Four variables are set. Replace the smallest of them with the sum

of the rest.

4 Four variables are set. Count the number of negative ones and the

number of zero ones.

5 Find the product of the negatives of four given variables.

167

6 Two figures are given: the square is given by the length of the

side, and the circle is given by the length of the radius. Determine

which of them has a large area and how much.

7 Four variables are set. Replace all negative ones with absolute

values and increase by 2 times.

8 Given four variables, count the number of zeros, positive and

negative.

9 Four variables are given. Find among them the variables closest

in value to .

10 Four variables are set. Replace all positive ones with negative

values multiplied by 5.

11 Find the minimum and maximum values of the four given

variables.

12 Four values are given. Determine which of them are integers.

13 Four variables are set. Calculate the number and product of values

in the interval [1 5].

14 Four variables are set. Replace all positive ones with negative

values multiplied by 5.

15 Four variables are set. Count the number of negative ones and the

number of zero ones.

2. Write a function file using branch and loop operators, based on the task options

presented in Table 5.

Table 5

Task variants

№ Input array Formed array Task

1 2 3 4

1 33A








= jia

jia
bB

ji

ij

ij ,

 ,
, 233

Form an array A1 from the minimum

elements of the rows of the matrix A

and an array B1 from the minimum

elements of the rows of the matrix B.

Among the elements of A1 and B1

find the maximum

2 3A 31),sin(, 2

3 == iibB i Form an array C - the sum of the

elements of arrays A and B. Find the

maximum value of arrays A, B, C.

3 33A

.31,31

)sin(*)sin(,33

 ==

=

ji

jibB ij

Determine the minimum elements in

the matrices A and B (mA and mB).

Calculate С = А ∗ В ∗ 𝑚А ∗ 𝑚В.

168

4 33A

.31

)),cos(2log(,3

=

+=

i

iibB i
Form an array A1 from the average

values of the elements of the rows of

matrix A.

5 33A

.31

)cos()sin(,3

=

+=

i

iibB i
Determine the maximum elements in

matrix A and array B (mA and mB).

Calculate С = А ∗ В ∗ 𝑚А ∗ 𝑚В.

6 33A

.31

)),cos(2log(,3

=

+=

i

iibB i
Form an array A1 from the average

values of the elements of the rows of

matrix A.

7 33A

.31

)),cos()sin(ln(,3

=

+=

i

iibB i
Sort array A1 in ascending order and

B in descending order. Perform

element-wise multiplication of A1

and B.

8 33A

.31,31

)cos(*)sin(*

,3

 ==

+=

ji

ijiib

B

i

Calculate the product of the elements

of matrix A (pA) and the sum of the

elements of matrix B (cB). Calculate

the matrix С = рА ∗ сВ ∗ А ∗ В′.

9 3A

.31

),sin()log(*, 2

3

=

+=

i

iiibB i
Sort array A in ascending order and

replace the last row of matrix B with

it.

10 33A

31

)log(*)sin(*,3

=

=

i

ijibB i
Sort arrays A and B in ascending

order. Perform element-wise division

of ordered arrays. Determine the

product of the elements of the

resulting array.

11 33A

.31,31

)cos(*)sin(*

,3

 ==

+=

ji

ijiib

B

i

Calculate the product of the elements

of matrix A (pA) and the sum of the

elements of matrix B (cB). Calculate

the matrix С = рА ∗ сВ ∗ А ∗ В′.

12 33A

.31

)3cos()2sin(

,3

=

+=

i

iib

B

i

Determine the minimum elements in

the matrices A and B (mA and mB).

Calculate С = А ∗ В ∗ 𝑚А ∗ 𝑚В.

13 33A

.31

))cos(*)sin(ln(

,3

=

+=

i

iiib

B

i

Form an array A1 from the maximum

elements of the rows of the matrix A.

Perform element-wise multiplication

A1*B. Sort array A1 in ascending

order.

169

14 33A

.31

)),cos()sin(ln(,3

=

+=

i

iibB i
Sort array A1 in ascending order and

B in descending order. Perform

element-wise multiplication of A1

and B.

15 3A

.31),cos(

,

2

3

== iib

B

i

Form an array C - the product of

elements of arrays A and B. Find the

maximum and minimum values of

arrays A, B, C.

Content of the report

1. The purpose of the lesson.

2. Listing of programs and results of program execution.

Control questions

1. How is dialog input and output carried out?

2. What are conditional statements used for?

3. What is the difference between script files and function files?

Practical lesson - №5

Cryptographic methods of information protection.

The purpose of the lesson: to study the methods of cryptographic protection, to get

acquainted with cryptographic algorithms.

Theoretical part

An information message ready for transmission, initially open and unprotected, is

encrypted and thereby converted into a ciphergram, i.e. into closed text or a graphic image

of a document. In this form, the message is transmitted over a communication channel, even

if it is not secure. The authorized user, after receiving the message, decrypts it (i.e., reveals

it) by inverse transformation of the cryptogram, as a result of which the original, open form

of the message is obtained, accessible to the perception of authorized users. Modern

cryptography knows two types of cryptographic algorithms: classical algorithms based on

the use of private, secret keys, and new public key algorithms that use one public and one

private key (these algorithms are also called asymmetric). In addition, it is possible to

encrypt information in a simpler way - using a pseudo-random number generator. The use

of a pseudo-random number generator consists in generating a cipher gamma using a

pseudo-random number generator with a certain key and applying the resulting gamma to

the open data in a reversible way.

170

The reliability of encryption using a pseudo-random number generator depends both on

the characteristics of the generator and, to a greater extent, on the gamma generation

algorithm.

This method of cryptographic protection is implemented quite easily and provides a fairly

high encryption speed, however, it is not sufficiently resistant to decryption and therefore is

not applicable to such serious information systems as, for example, banking systems.

Classical cryptography is characterized by the use of one secret unit - the key, which

allows the sender to encrypt the message, and the recipient to decrypt it. In the case of

encrypting data stored on magnetic or other storage media, the key allows you to encrypt

information when writing to the media and decrypt when reading from it. When encrypting

the source text using this method, each letter is replaced by another letter of the same

alphabet by shifting it in the used alphabet by a number of positions equal to K. When the

end of the alphabet is reached, a cyclic transition to its beginning is performed.

Caesar's cipher

The general formula for a Caesar cipher is:

С = 𝑃 + 𝐾 (mod M),

 where P is the number of the plaintext character, C is the corresponding number of the

ciphertext character, K is the encryption key (shift factor), M is the size of the alphabet (for

the Russian language M = 32)

For a given substitution cipher, a fixed substitution table can be specified containing the

corresponding pairs of plaintext and ciphertext letters.

Example:

The table of substitutions for characters of the English text with the key K=3 is presented

in table.1. This table corresponds to the formula:

С = 𝑃 + 𝐾 (mod M), (2)

Table 1.

Substitutions of the Caesar cipher for the key K=3

171

According to formula (2), the plaintext "LUGGAGE" will be converted into the ciphertext

"OXJJDJH".

The decryption of a private text encrypted by the Caesar method according to (5.1) is

carried out according to the formula:

𝑃 = 𝐶 − 𝐾 (mod M) (3)

Simple monoalphabetic substitution

The simple monoalphabetic substitution cipher is a generalization of the Caesar cipher

and performs encryption according to the following scheme:

𝐶 = 𝑎 ∗ 𝑃 + 𝐾 (mod M) (4)

where 0 ≤ 𝑎, 𝐾 < 𝑀 is the encryption key, P is the place of the character in the alphabet

GCD(a,M)=1 .

A transformation according to scheme (1) is a one-to-one mapping only if a and M are

coprime. In this case, to decrypt the private text, the inverse transformation is performed

according to the formula:

(5)

Example 4.2.

Let M=26, a=3, K=6, GCD (3,26) = 1. Then we obtain the following substitution table

for the cipher of a simple monoalphabetic substitution.

Simple permutation method

When encrypting by the simple permutation method, the plain text is divided into blocks

of the same length, equal to the length of the key. The key of length n is a sequence of non-

repeating numbers from 1 to n. The plaintext characters within each of the blocks are

rearranged to match the key characters within the block from right to left. The key element

Ki at a given position in the block indicates that the plaintext character numbered Ki from

the corresponding block will be placed in that position.

Example:

Let's encrypt the plaintext "COMING DAY" by the permutation method with the key

K=3142.

C O M I N G D A Y

C M O I N D G A Y

Hamilton's algorithm

A very high encryption strength can be achieved by complicating permutations along

Hamiltonian-type routes. At the same time, the vertices of some hypercube are used to write

the characters of the ciphertext, and the characters of the ciphertext are read along

Hamiltonian routes, and eight different routes are used. The size of the permutation key in

this case is equal to eight by the number of cube vertices. For example, two of Hamilton's

172

routes are shown in Fig. 2. The first route corresponds to the permutation 4-0-2-3-1-5-7-6,

the second 4-6-2-0-1-5-7-3 (characters in the block are numbered from zero).

Fig.2. Example of Hamilton routes

Control questions:

1 Describe the direction of "cryptography". What is a cryptographic key?

2. Classify traditional encryption algorithms. Briefly describe these classes.

3. Describe Caesar encryption methods, simple monoalphabetic substitution, simple

permutation, Hamilton permutations.

Practical lesson - №6

Mathematical modeling of the problem. Algorithmization of tasks. Using Borland

C++ Builder 6 constructs to solve engineering problems. Working in C++ builder6

integrated environment. Programming technical tasks in the C++ builder

environment.

The purpose of the lesson: To study the basic properties, structures of various algorithms

and the principles of their description when preparing problems for solving on a computer.

Theoretical part

 An algorithm is a set of certain rules, precise actions and instructions, the implementation

of which in a given sequence leads to the solution of the task. Ways to describe the

algorithm:

1) verbal description;

2) graphic description;

173

3) description of the algorithm in the programming language.

With the verbal method, the algorithm is given in an arbitrary presentation in natural

language. The disadvantage of this method is that the algorithm is not strictly formalizable,

verbose, and ambiguous. However, this way of presenting the algorithm does not require

special knowledge and can be used by end users. It is in this language, as a rule, that the

informal statement of the problem is reported at the formalization stage, and it can also be

used to present the result of the first stage.

The language of graphic symbols involves the correlation of each type of action with a

geometric figure, represented as a block symbol. Actions (blocks) are connected by flow

lines. A collection of such related blocks is called a block diagram.

The algorithm has the following properties (they follow from the definition):

1) certainty (determinacy) - each command (or prescription) is understandable to the

performer (human or computer) and eliminates the ambiguity of execution;

2) effectiveness - the implementation of the computational process provided by the

algorithm must, after a certain number of steps, lead to a result or a message about the

impossibility of obtaining it;

3) mass character - if the algorithm is designed to solve a specific problem, it must be

applicable to solve problems of this type for all valid values of the initial data;

4) discreteness - the step-by-step nature of the process of obtaining the result, consisting

in the sequential execution of a finite number of actions specified by the algorithm

Algorithm types: linear algorithm, branching algorithm, cyclic algorithm.

 Linear algorithm - a sequence of actions is carried out sequentially in strict order. It is

described by the language of graphic symbols as follows:

Arithmetic block:

A branching algorithm is a problem in which the choice of a solution to the problem is

carried out depending on the given conditions. It is described by the language of graphic

symbols as follows:

Logic block

174

Cyclic algorithm - a sequence of steps is repeated many times with a change in some

parameter. Described by the graphic symbol language in the following way

Exercise 1. Find h, which reaches the body thrown up. It is known from the course of

physics that a body thrown vertically upwards with a speed V0 reaches a height calculated

by the formula:

H=V T-gT /2

Therefore, the algorithm will be simple and linear, consisting of arithmetic blocks

executed in strict sequence one after another.

Recording the algorithm in the form of a block diagram (Fig.1):

Fig.1. Block diagram of the algorithm of exercise 1.

Exercise 2. Determine if it is possible to build a triangle whose vertices are points on the

plane with coordinates x1 y1, x2, y2, x3 y3

The algorithm for solving this problem can be represented as follows (Fig. 2), where R1,

R2, R3 are the distances between points, K-condition (logical expression for constructing a

triangle),

k=(r1+r2)>r3 & (r2+r3)>r1 & (r1+r3)>r2

Recording the algorithm in the form of a block diagram (Fig. 2):

start

V, t, g

H=Vt-g t2/2

Display H

finish

175

Fig.2. Block diagram of the algorithm of exercise 2.

Exercise 3. Calculate y=(y*x)^n if the degree of n is given.

Recording the algorithm in the form of a block diagram (Fig. 3):

Fig.4. Block diagram of the algorithm of exercise 4.

176

 Exercise 5. Determine the arithmetic mean of two numbers if a is positive and the

quotient (a/b) otherwise.

Recording the algorithm in the form of a block diagram (Fig. 5):

Fig.5 Block diagram of the algorithm of exercise 5.

Exercise 6. Write an algorithm for finding the sum of integers in the range from 1 to 10.

Recording the algorithm in the form of a block diagram (Fig. 6):

Fig.6 Block diagram of the algorithm of exercise 6.

177

Task variants

Task 1. Create an algorithm for solving the problem using block diagrams using the

construction of a linear algorithm.

1. Calculate the surface area and volume of a truncated cone using the following formulas:

S = π (R + r) l + πR2 + πr2 ;

V = (1/3) π (R2 + r2 + Rr) h .

2. Calculate the coordinates of the center of gravity of three material points with masses m1,

m2, m3 and coordinates (x1,y1), (x2,y2), (x3,y3) using the formulas:

xc = (m1x1 + m2x2 + m3x3) / (m1 + m2 + m3) ;

yc = (m1y1 + m2y2 + m3y3) / (m1 + m2 + m3) .

3. Calculate the area of a triangle with sides a, b, c using Heron's formula:

𝑆 = √(𝑝 (𝑝 – 𝑎)(𝑝 – 𝑏)(𝑝 – 𝑐)),

where p is the semiperimeter calculated by the formula (a+b+c)/2

Task 2. Create an algorithm for solving the problem using flowcharts, using the construction

of an algorithm with branching.

1. Write a program to solve the quadratic equation ax2 + bx + c = 0.

2. Determine the maximum even number of the two entered.

3. Determine whether it is possible to build a triangle from segments with lengths x, y and

z.

Task 3. Create an algorithm for solving the problem using block diagrams using the design

of a cyclic algorithm.

1. Find the sum of numbers that are multiples of three, in the range from 0 to 50.

2. Find the sum of the first ten numbers that are multiples of five.

3. Find the product of even numbers in the range from 2 to 30.

Questions for self-control.

1. What is an algorithm and what structures of algorithms do you know?

2. What forms of representation of the algorithm do you know?

3. Name the main blocks, representations of the algorithm in graphical form.

4. What is a linear algorithm?

5. What is a branching algorithm?

6. What types of cyclic algorithms do you know?

178

Practical lesson - №7

Visual programming. Components used in visual programming. Loop statements in

mechanical programming

The purpose of the lesson: To master the skills of programming branching structures of

algorithms.

Theoretical part

 Loop operators are used to organize repetitive calculations. Any loop consists of a loop

body, that is, those statements that are executed several times, initial settings, a block for

modifying the loop parameter and checking the exit condition from the loop, which can be

placed either before the loop body (then they talk about a loop with a precondition) or after

the body loop (loop with postcondition). One pass of the loop is called an iteration. Variables

that are forced to change in a loop and are used when checking the exit condition from it are

called loop parameters. Integer loop parameters that change by an integer at each iteration

are called loop counters. It is impossible to transfer control from the outside to the inside of

the loop. Exit from the loop is possible both when the exit condition is met, and by the break,

return or unconditional jump statements.

A loop with a precondition (while) looks like this:

 while (expression) statement;

or while (expression) { compound statement };

The expression defines the condition for repeating the loop body represented by a simple

or compound statement. If the expression is not 0 (true), the loop statement is executed, after

which the expression is evaluated again. If the expression is 0 on the first test, the loop will

never execute. The type of the expression must be arithmetic or castable.

A loop with a postcondition (do while) looks like this:

 do statement while expression;

or do {compound statement} while expression;

First, the simple or compound statement that makes up the body of the loop is executed,

and then the expression is evaluated. If it is not equal to 0 (true), the body of the loop is

executed again, and so on, until the expression is equal to zero or any control transfer

statement is executed in the body of the loop. The type of the expression must be arithmetic

or castable.

A loop with a (for) parameter has the following format:

for (initialization; expression; modifications) statement;

Initialization is used to declare and assign initial values to the values used in the loop. In

this part, you can write several statements, separated by a comma. The expression defines

179

the loop execution condition: if it is not equal to 0 (true), the loop is executed. Modifications

are performed after each iteration of the loop and usually serve to change the parameters of

the loop. In the part of modifications, you can write several operators separated by commas.

A simple or compound statement is the body of the loop. Any part of the for statement

can be omitted (but the semicolons must be left in place!). In any part, you can use the

"comma" operation (sequential calculation), for example:

 for (int i = 1, s = 0; i<=100; i++) s += i; // sum of numbers from 1 to 100

Exercise 1. Calculate у= 1
50

1

3 +
=i

i , where 𝑖 is a natural number.

//---

#include <math.h>

#include <vcl.h>

#include<iostream.h>

#include<conio.h>

#pragma hdrstop

//---

#pragma argsused

int main(int argc, char* argv[])

{

 float y;

 y=0;

 for (int i=1;i<=50;i++) //

// a variable of integer type i is declared and an initial value is assigned i=1; the expression

i<=50 defines the condition for executing the loop; i++ means that with each iteration of the

loop, the value of the variable is incremented by one.

 y=y+pow(i,3)+1;

 cout<<"y="<<y<<endl;

 getch(); return 0;

 }

Exercise 2. Calculate S=1+
1

X

+
2

2x
+……

n

x n

//---

 #include <math.h>

#include<iostream.h>

#include<conio.h>

#include <vcl.h>

#pragma hdrstop

//---

#pragma argsused

int main(int argc, char* argv[])

{

180

 float s,x; int i,n;

 cout<<"n="; cin>>n;

 cout<<"x="; cin>>x;

 s=1;

 while (i<=n) {s=s+pow(x,i)/i; i+=i;}

 cout<<"s= "<<s<<endl;

 getch(); return 0;

}

//---

Exercise 3: Login Program.

#include<iostream.h>

#include<conio.h>

#include <vcl.h>

#pragma hdrstop

//---

#pragma argsused

int main(int argc, char* argv[])

string password;

cout << " Vvedite parol: ";

cin >> password;

while (password != " xyzzy")

{

cout << " Wrong password, try again: " ;

cin >> password;

}

Exercise 4: Write a program to display numbers between 0 and 9 using a FOR loop.

#include<iostream.h>

#include<conio.h>

#include <vcl.h>

#pragma hdrstop

//---

#pragma argsused

int main(int argc, char* argv[])

 {for (int i = 0; i < 10; i++)

{

cout << i << '\n';

}

Exercise 5. Write a program to display the squares of numbers in the range from 0 to 9

using the FOR loop operator.

181

#include<iostream.h>

#include<conio.h>

#include <vcl.h>

#pragma hdrstop

//---

#pragma argsused

int main(int argc, char* argv[])

{ // Cikl dlitsa while i < 10, //

for (int i = 0; i < 10; i++)

 {

 cout<< i << " in square " << i * i << endl;

 }

 getch(); return 0;

}

Exercise 6: Write a password authentication program using the do while loop statement

#include<iostream.h>

#include<conio.h>

#include <vcl.h>

#pragma hdrstop

//---

#pragma argsused

int main(int argc, char* argv[])

{

string password;

do

 { cout << "Please enter your password: "; cin >> password;

} while (password != “miracle");

cout << "Welcome, you got the password right";

}

Exercise 7. Write and debug a program to display all the values of the function S(x) for

the argument x, which varies in the range from a to b with a step h and a given n.

An example of creating a console application

 The text of the program of the proposed task may look like:

#include <vcl.h>

#include <stdio.h>

#include <conio.h>

#pragma hdrstop

#pragma argsused

int main(int argc, char* argv[])

{

 double a, b, x, h, r, s;

182

 int n, zn = -1, k;

 puts("Input a,b,h,n");

 scanf("%lf%lf%lf%d", &a, &b, &h, &n);

 for(x = a; x<=b; x+=h) {

int n, zn = -1, k;

 a = StrToFloat(Edit1->Text);

 b = StrToFloat(Edit2->Text);

 n = StrToInt(Edit3->Text);

 h = StrToFloat(Edit4->Text);

 for(x = a; x<=b; x+=h) {

 r = s = 1;

 for(k = 1; k<=n; k++) {

 r = zn*r*x/k;

 s+=r;

 }

 Memo1->Lines->Add("when x= "+FloatToStrF(x,ffFixed,8,2)

 +" sum= "+FloatToStrF(s,ffFixed,8,5));

 }

}

//---

void __fastcall TForm1::Button2Click(TObject *Sender)

{

 Memo1->Clear();

}

The task

1. Write a program for calculating s= (1+
21

1
)(1+

22

1
)+…(1+

2

1

n
)

2. Write a program to calculate Y=sinx+sin 2 x+sin 3 x+…sin n x

3. Write a program to calculate F=n!;

4. Write a program to calculate

5. Write a program to calculate the sum of the serial numbers of lowercase letters from

'A' to 'Z'.

6. Print out all odd natural numbers from 1 to 100.

7. Find a natural number from the interval from a to b, which has the maximum number

of divisors

8. Write a program for finding the digital root. The digital root of a given number is

obtained by adding all the digits of this number, then all the digits of the found sum and

repeating this process until the result is a single digit.

183

Questions for self-control

1. What loop statements are used in C++ programs?

2. When is a loop statement with a parameter used?

3. What types are used for the loop parameter in the For..

4. Peculiarities of cycles with precondition and postcondition.

5. What is a loop within a loop?

Practice lesson - №8

Using classes and methods to work with graphical objects in programming.

The purpose of the work: to master the technique of creating graphic images using the

Borland C ++ Builder6 tools and to study some of the possibilities of plotting functions

using the Chart and Image components; learn how to work with graphic objects; write and

debug a program using graphic information display functions.

Tasks:

1. Study the theoretical part.

2. Write a program for constructing a graphic image.

3. Implement the program in visual mode.

4. Prepare a progress report.

As in any programming system, Borland C++ Builder6 has the ability to work with

graphics. To work with graphics, there are two special classes TGraphic and TPicture. The

TGraphic class provides the creation of 3 types of files: icons, metafiles and bitmaps. There

are special classes TFont styles and pen sizes, TPen pen, pen styles, TBrush brush styles.

Theoretical part

The surface on which the program can display graphics corresponds to the Canvas

property. In turn, the Canvas property is an object of type TCanvas. Methods of this type

provide the output of graphic primitives (points, lines, circles, rectangles, etc.), and

properties allow you to set the characteristics of the displayed graphic primitives: color,

thickness and style of lines; color and type of filling areas; font characteristics when

displaying text information.

The rendering methods of drawing primitives consider the Canvas property as some kind

of abstract canvas on which they can draw (canvas is translated as "surface", "canvas for

drawing"). The canvas is made up of individual dots - pixels. The position of a pixel is

characterized by its horizontal (X) and vertical (Y) coordinates. The top left pixel has

coordinates (0, 0). Coordinates increase from top to bottom and from left to right. The

coordinate values of the lower right point of the canvas depend on the size of the canvas

184

Fig.1. Canvas position for graphics.

The Color property specifies the color of a line drawn with a pencil.

Exercise 1. Using the Paint Box visual component, build a multi-colored square (Fig. 2).

Program code in visual mode:

#include <vcl.h>

#pragma hdrstop

#include "Unit1.h"

//---

#pragma package(smart_init)

#pragma resource "*.dfm"

TForm1 *Form1;

//---

__fastcall TForm1::TForm1(TComponent* Owner) : TForm(Owner)

{

}

//---

 int i,x,y;

void __fastcall TForm1::Button1Click(TObject *Sender)

{

randomize;

for (i=1;i<=300;i++)

{ x=random(250);

y=random(250);

185

PaintBox1->Canvas->Pixels[x][y]=RGB(255,0,0); }

}

//---

Fig.2 Received image

Exercise 2: Fill the Canvas with Random Colored Lines of Different Thickness

Program code in visual mode:

#include <vcl.h>

#pragma hdrstop

#include "Unit1.h"

//---

#pragma package(smart_init)

#pragma resource "*.dfm"

TForm1 *Form1;

//---

__fastcall TForm1::TForm1(TComponent* Owner)

 : TForm(Owner)

{

}

//---

 int i,x,y;

void __fastcall TForm1::Button1Click(TObject *Sender)

186

{

PaintBox1->Canvas->Pen->Color=RGB(random(255),random(255),random(255));

PaintBox1->Canvas->Pen->Width=random(3)+1;

x=random(150);

y=random(150);

PaintBox1->Canvas->MoveTo(x,y);

x=random(150);

y=random(150);

PaintBox1->Canvas->LineTo(x,y);

}

Fig.3 Received image

Exercise 3. Fill the canvas with ellipses randomly (Fig. 4).

#include <vcl.h>

#pragma hdrstop

#include "Unit1.h"

//---

#pragma package(smart_init)

#pragma resource "*.dfm"

TForm1 *Form1;

//---

__fastcall TForm1::TForm1(TComponent* Owner)

 : TForm(Owner)

{

}

//---

 int i,x,y;

void __fastcall TForm1::Button1Click(TObject *Sender)

{int i,x,y,x2,y2;

187

for (i=1;i<=300;i++)

{

PaintBox1->Canvas->Pen->Color=RGB(random(255),random(255),

random(255));

PaintBox1->Canvas->Pen->Width=random(3)+1;

PaintBox1->Canvas->Brush->Color=RGB(random(255),random(255),

random(255));

x=random(150);

y=random(150);

x2=random(150);

y2=random(150); PaintBox1->Canvas->Ellipse(x,y,x2,y2);

}

}

//------------------------------

Fig.4 Received image.

Table 1

The value of the Color property determines the color of the line

 Constant Color Constant Color

 clBlack Black clSilver Silver

 clMaroon Chestnut clRed Red

 clGreen Green clLime Salad

 clOlive Olive clBlue Blue

 clNavy Navy blue clFuchsia hot pink

 clPurple Pink clAqua Turquoise

 clTeal green-blue clWhite White

 clGray Grey

188

Table 2

The values of the Brush, style property determine the type of painting

 Constant Area fill type

 bsSolid Solid fill

 bsClear The area is not painted over

 bsHorizontal Horizontal hatching

 bsVertical Vertical hatching

 bsFDiagonal Forward diagonal hatching

 bsBDiagonal Diagonal hatching with lines sloping back

 bsCross Horizontal-vertical hatching, checkered

 bsDiagCross Diagonal hatching, checkered

Plotting with the Chart Component

Usually the results of calculations are presented in the form of graphs and diagrams. The

Builder system has a powerful package of standard programs for displaying and editing

graphical information, which is implemented using the Chart component located on the

Additional - component panel.

The construction of a graph (diagram) is carried out according to the calculated values of

the coordinates of the points x and y = f(x), which are transferred using the AddXY method

to a special two-dimensional array Series[k] of the Chart component (k = 0,1,2,... – number

chart used).

The Chart component builds and lays out axes, draws a coordinate grid, signs the names

of the axes and the chart itself, and displays the transferred points in the form of graphs or

charts.

Having installed the Chart1 component on the form, to change its parameters, double-

click to call the EditingChat1 editing window. To create Series1, click the Add button on

the Series page.

In the TeeChart Gallery window that appears after this, select the icon labeled Line (the

graph is displayed as lines). If there is no need to present the chart in 3D, the 3D check box

189

is disabled. To change the title, press the Title button. The title of the chart is entered on the

Titles page.

Data along the X-axis is automatically sorted, so if you need to draw, for example, a

circle, sorting is disabled by the Order function: Chart1->Series[0]->XValues->Order =

loNone.

Explore other features of the EditingChat editor by clicking on the various menu buttons.

Using the canvas class

For drawing, a class of type TСanvas is used, which is not an independent component,

but a property of many components, such as Image, PaintBox, and is a canvas (GDI context

in Windows) with a set of tools for drawing. Each point on the canvas has its own

coordinates. The origin of the coordinate axes is located in the upper left corner of the

canvas. Data on the x-axis increases from left to right, and on the y-axis from top to bottom.

The Image component is on the Additional page, and the PaintBox is on the System.

The main properties of the Canvas class:

Pen - pen (defines line parameters),

Brush - brush (defines the background and filling of closed shapes),

Font - font (defines font parameters).

Some methods of the Canvas class:

Ellipse (x1, y1, x2, y2) - draws an ellipse in the enclosing rectangle (x1, y1), (x2, y2) and

fills the interior of the ellipse with the current brush;

MoveTo (x, y) - moves the pencil to position (x, y);

LineTo (x, y) - draws a line from the current pen position to the point (x, y);

Rectangle (x1, y1, x2, y2) - draws and fills a rectangle (x1, y1), (x2, y2). To draw without

filling, use FrameRect or Polyline;

Polygon(const TPoint* Points, const int Points_Size) - draws a polygon using the points

specified in the Points array of size Points_Size. The end point is connected to the start point

and the polygon is filled with the current brush. For drawing without filling, the Polyline

method is used.

TextOut(x, y, const AnsiString Text) - outputs the string Text so that the upper left corner

of the rectangle enclosing the text is located at the point (x, y).

Example of creating a windowed application

Task.1. Write a program for displaying a graph of the selected function using the Chart and

Image components.

Form customization

The program dialog panel with the results obtained is shown in fig. 5.

190

Fig.5.

The text of the program that implements the task may have the following form:

//---

 double a,b,h,y_min,y_max;

 int n;

 typedef double (*Tfun)(double);

 Tfun f;

 double fun0(double);

 double fun1(double);

 double fun2(double);

//--

void __fastcall TForm1::FormCreate(TObject *Sender)

{

 Edit1->Text="-3,1416"; // a

 Edit2->Text="3,1416"; // b

 Edit3->Text="50"; // n

 RadioGroup1->ItemIndex = 0; }

//----------------- Give initial value ------------------------

void __fastcall TForm1::Button1Click(TObject *Sender)

{

double x, r;

a=StrToFloat(Edit1->Text);

b=StrToFloat(Edit2->Text);

n=StrToInt(Edit3->Text);

h = (b-a)/n;

switch(RadioGroup1->ItemIndex) {

 case 0: f = fun0; break;

 case 1: f = fun1; break;

 case 2: f = fun2; break; }

y_min = y_max = f(a);

for (x = a+h; x<=b; x+=h)

{ r = f(x);

 if(y_min>r) y_min = r;

191

 if(y_max<r) y_max = r;

} }

//------------------------ Plot in Chart ----------------------------

void __fastcall TForm1::Button2Click(TObject *Sender)

{

Chart1->Series[0]->Clear(); // Clear graphic

for(double x=a; x<=b; x+=h)

 Chart1->Series[0]->AddXY(x,f(x));

}

//--------------------- Copy to clipboard --

void __fastcall TForm1::Button3Click(TObject *Sender)

{

 Chart1->CopyToClipboardMetafile(True);

}

//--------------------- Plot in Image ---------------------------

void __fastcall TForm1::Button4Click(TObject *Sender)

{

int xmax, ymax, xt, yt, y0, x0;

double hx,hy,x;

 Image1->Canvas->Pen->Color=clBlack; // Setup the color

// Finding the coordinates of the lower right corner of the canvas Image

 xmax = Image1->Width; ymax = Image1->Height;

// Painting the canvas Image with the current white brush

 Image1->Canvas->Rectangle(0,0,xmax,ymax);

//Finding the middle of the canvas

 y0=ymax/2; x0=xmax/2;

// Drawing coordinate lines

 Image1->Canvas->MoveTo(0,y0);

 Image1->Canvas->LineTo(xmax,y0);

 Image1->Canvas->MoveTo(x0,0);

 Image1->Canvas->LineTo(x0,ymax);

 Image1->Canvas->Pen->Color=clRed; // Setting pen color

 Image1->Canvas->Pen->Width=2; // Setting the pen width

/

/ Finding steps in x and y with scaling

hx=(b-a)/xmax; hy=(y_max-y_min)/ymax;

Image1->Canvas->MoveTo(ceil(x0+a/hx),ceil(y0-f(a)/hy));

for(x=a; x<=b; x+=h)

 Image1->Canvas->LineTo(ceil(x0+x/hx),ceil(y0-f(x)/hy));

}

//--

 double fun0(double r) {

 return sin(r);

 }

 double fun1(double r) {

192

 return r*r;

 }

 double fun2(double r) {

 return r*r*r;

 }

Task 2: Draw the national flag of the Republic of Uzbekistan.

Let's install one component Button1 on the form and rename it to "Draw" and the second

button Button2 and rename it to "Exit".

We write the program code for these buttons in the following:

form:#include <vcl.h>

#pragma hdrstop

#include "Unit1.h"

//---

#pragma package (smart_init)

#pragma resource "*.dfm"

TForm1 *Form1;

//---

__fastcall TForm1::TForm1(TComponent* Owner)

 : TForm(Owner)

{

}

//---

void __fastcall TForm1::Button1Click(TObject *Sender)

{

Canvas->Pen->Color = clBlue;

Canvas->Brush->Color = clBlue;

Canvas->Rectangle(70,50,600,150);

// drawing moon

Canvas->Pen->Color = clBlue;

Canvas->Brush->Color = clWhite;

Canvas->Ellipse(80,55,170,145);

Canvas->Pen->Color = clBlue;

Canvas->Brush->Color = clBlue;

Canvas->Ellipse(105,55,195,145);

 //yulduz chizish

Canvas->Font->Name = "Monotype Corsiva";

Canvas->Font->Color = clWhite;

Canvas->Font->Size = 28;

Canvas->TextOut(180,60," ***");

Canvas->TextOut(180,85,"****");

Canvas->TextOut(180,110,"*****");

 Canvas->Pen->Color = clRed;

Canvas->Brush->Color = clRed;

Canvas->Rectangle(70,150,600,160);

Canvas->Pen->Color = clWhite;

193

Canvas->Brush->Color = clWhite;

Canvas->Rectangle(70,160,600,260);

Canvas->Pen->Color = clRed;

Canvas->Brush->Color = clRed;

Canvas->Rectangle(70,260,600,270);

Canvas->Pen->Color = clGreen;

Canvas->Brush->Color = clGreen;

Canvas->Rectangle(70,270,600,370);

}

//---

void __fastcall TForm1::Button2Click(TObject *Sender)

{

Form1->Close(); }

As a result, we get the following image:

Fig.6 The resulting image when executing the program

Control questions:

1. What methods exist in C++ to animate objects?

2. What tools are used to draw in the Canvas class?

3. What is the Picture class used for?

4. How is the insertion of text for display on the canvas class Canvas?

5. What classes are used to work with images in Borland C++?

6. What components are used to draw on the canvas (Canvas class)

7. What drawing methods of the Canvas class were used in the program?

8. How is the color of an object selected and set in the Canvas?

194

MINISTRY OF HIGHER AND SECONDARY SPECIAL EDUCATION OF THE

REPUBLIC OF UZBEKISTAN

TASHKENT STATE TECHNICAL UNIVERSITY

NAMED AFTER ISLAM KARIMOV

LABORATORY WORKS

On subject

“Information technologies in technical systems”

Tashkent 2022

195

Laboratory work №1

Basics of work in the MathCAD system. System capabilities. Program

interface. Creation of MathCad-document and their application in technical

systems. Usage of simple functions.

The purpose of the lesson: Familiarization with the windows of MathCad. Create a

Mathcad document. Using simple functions. Solving systems of equations in MathCad.

Using complex variables, explore functions to solve differential equations.

Theoretical part

Creating a Mathcad Document

After starting Mathcad, the main window appears, which has the same structure as most

Windows applications. At the top is the menu bar, then the toolbars (standard and formatting

by default) and the worksheet. At the very bottom of the window is the status bar.

Using the View / Tools menu, you can call up any panel available in the drop-down

submenu on the document workspace. On fig. 1. all kinds of Mathcad panels are shown.

Fig. 1. Working paper Mathcad and its toolbars.

Main elements of the Mathcad user interface:

- Mathcad's main menu (menu bar);

- toolbars Standard, Formatting, Resources and Controls;

- mathematical palette Math and additional mathematical toolbars available through it;

- working area (work sheet), imitating a blank sheet of paper;

- status bar;

- pop-up or context menus (pop-up menus or context menus), called by the right mouse

button (RMB);

- dialog boxes or dialogs (dialogs), caused by the left mouse button (LMB);

- Resources window with built-in examples and additional information.

Most commands can be executed both using the menu (main or context), and using

toolbars or the keyboard.

196

Toolbars. Toolbars are used for quick (one-click LMB) execution of the most commonly

used commands. Groups of buttons on toolbars are delimited in meaning by vertical lines -

separators.

 When you move the mouse pointer over any of the buttons, a tooltip appears next to the

button - a short text explaining the purpose of the button (in English). Along with the tooltip,

a detailed explanation of the command can be found in the status bar. Figure 1 shows the

Mathcad 13 window with the following toolbars:

- Standard - serves to perform most operations, such as file operations, editing, inserting

objects and accessing help systems;

- Formatting - for formatting (changing the font type and size, alignment, etc.) text and

formulas;

- Resources - for quick access to Mathcad resources (examples, textbooks, e-books, etc.);

- Controls - for inserting standard user interface controls (validation checkboxes, input

fields, etc.) into documents;

- Math - designed to insert mathematical symbols and operators into documents. With its

help, you can call the panel on the screen:

- Calculator(Arithmetic) - is used to insert basic mathematical operations; got its name

because of the similarity of the set of buttons with the buttons of a typical calculator;

- Graph (Graphics) - for inserting chart templates;

- Matrix (Matrices) - for inserting matrix templates and matrix operators;

- Evaluation(Expressions) - for inserting calculations control operators;

- Calculus (calculations) - for inserting operators of integration, differentiation,

summation;

- Boolean - for inserting logical (boolean) operators;

- Programming - for developing programs and user functions Mathcad;

- Greek (Greek alphabet) - to insert Greek characters;

- Symbolic (Symbols) - for inserting operators and performing symbolic transformations;

- Debug (Debugging) - for debugging programs;

- Modifiers – for modification of analytical transformations;

- Custom Characters (Some characters) - to insert rarely used characters.

Mathcad workspace (worksheet)

In Mathcad's workspace, only three types of zones can be set: mathematical, text and

graphic. The following two well-known concepts are also associated with it: the mouse

pointer and the cursor.

The mouse pointer is an arrow moved by the mouse manipulator. With its help, you can

specify the location of zones, press various buttons located in the main menu, in pop-up

dialog boxes, select and execute various commands, make various applications active, etc.

The cursor is a tool for editing the MathCAD workspace. It has various forms:

- cross-shaped cursor (finder). It is displayed in red and is used to place zones in the free

space of the workspace. To install it, you need to move the mouse pointer to an empty spot

197

in the workspace and click LMB. The reticle indicates where the next printed character will

be placed, or where the area from the clipboard or object template will be pasted. You can

move the reticle around the screen by pressing the cursor movement keys, as well as the

PgUp and PgDn keys (by 80% of the screen);

- editing lines. They consist of two lines: an underline (horizontal) and an insert (vertical).

They form a blue right angle and are used only in the math zone to edit its contents. Using

editing lines to highlight parts of an expression, you can modify, delete, add, etc.;

- input marker. It is a thin vertical red line. It is only used in the text zone.

Creating a math zone

To create a mathematical zone, it is enough to set the sight in the free space of the

workspace, and then start typing a certain sequence of characters. Part of the characters are

letters and numbers for entering variable names, numbers and functions, the other part is

used to create operations. After each operation is entered, MathCAD prints a small black

box called an input marker to record the operands of the operation. MathCAD also takes

into account their priority when performing operations.

In addition to the ordinary assignment operator, Mathcad has another global assignment

operator (≡), which is located on the Calculations panel (hot key ~). If you insert it to set the

value of a variable in any part of the document (for example, at the very bottom), then this

variable will automatically be defined in any part of the document (including at the top). If

the variable has not been assigned any value, it is perceived analytically, just as a name.

When performing symbolic conversions, the symbolic equals sign (→) is used instead of

the normal assignment sign. It can be entered into a working document from any of the

Evaluation (Expressions) or Symbolic (Symbols) panels.

Entering functions into a MathCad document

When performing complex and cumbersome calculations, you can use the entire arsenal

of functions that developers put into the Mathcad system. You can enter the names of such

functions from the keyboard, but it is better to use the Insert Function dialog box (Place the

function), Fig.2.

 Fig. 2. Inserting a built-in function using a dialog box

198

To enter a built-in function in an expression, you need to determine the place in the

expression where the function should be inserted, press the f (x) button on the standard

toolbar. In the Function Category list (Category) of the appeared dialog box Insert Function

(Place a function), you need to select the category to which the function belongs, and in the

list Function Name - the name of the built-in function and click the OK button. When the

function format appears in the document, the required arguments must be entered in its

markers.

Similar to assigning numeric values to variables, you can define user functions from one

or more arguments,

 For example

Data types used in Mathcad

Let's list the main types of variables that are used in Mathcad.

Real numbers

Any expression that starts with a digit is interpreted by Mathcad as a number. You can

organize the input of numbers in decimal, binary, octal or hexadecimal number systems.

When writing numbers, suffixes b, o, h are used, for example, fig. 3.

Entering numbers in different number systems

Fig.3.

Complex numbers

Most of the operations in the Mathcad environment are by default performed on complex

numbers. A complex number is the sum of a real number and an imaginary number, obtained

by multiplying any real number by an imaginary unit i. By definition, i2 = -1. To enter an

imaginary number, for example 3i, press the <3>, <i> keys. If you simply enter the character

"i", then Mathcad interprets it as the variable i. Also, the imaginary unit has the form 1i only

when the corresponding formula is highlighted. Otherwise, the imaginary unit is displayed

simply as i (Fig. 4.).

 Entering an imaginary unit

Fig.4.

199

 A complex number can be entered as an ordinary sum, real and imaginary parts, or as

any expression containing an imaginary number. Examples of input and output of complex

numbers are illustrated in fig.5.

Input/output of complex numbers

Fig.5.

You can display the imaginary unit in the results of calculations not as i, but as j. To

change the representation, you can select the desired one in the Imaginary Value list

(Imaginary value) of the Result Format dialog box (Result Format), accessible by the

command Format / Result / Screen settings.

There are built-in functions for working with complex numbers, fig. 6.

 Using built-in functions

Fig.6.

Built-in Constants

Some names in Mathcad are reserved for system variables called built-in constants. Built-

in constants are divided into two types: mathematical (math constants), which store the

values of some commonly used special mathematical symbols, and system variables, which

determine the operation of most numerical algorithms implemented in Mathcad. If desired,

you can change the value of any of the listed constants or use them as variables in

calculations. If you assign a new value to a constant, the old value becomes unavailable.

Mathematical constants are interpreted differently in numerical and symbolic

calculations. The computing processor simply perceives them as some numbers, and the

symbolic processor recognizes each of them, based on the mathematical context, and is able

to issue mathematical constants as a result. Let's list the mathematical constants:

- ∞ - infinity symbol (entered with Ctrl+Shift+z);

- e - the base of the natural logarithm (keyboard);

- π - "pi" number (entered with Ctrl+Shift+p);

- i, j - imaginary unit (entered with keys 1ior 1j);

- % - percent symbol, % is equivalent to 0.01.

Solving a system of equations in Mathcad

Let's first consider SLAE in Mathcad. To solve them, the given ...find() block or the

special lsolve() function can be used. The use of the given …find() block predetermines the

need to set the initial values of the required variables. Further, after the given keyword, the

SLAE is described and the solution is found using find(). It should be pointed out that in

200

the case when the SLAE in Mathcad has an infinite set of solutions, the given ...find() block

gives a specific result, which should undoubtedly be attributed to disadvantages. If there is

no solution, the message “Matrix is singular. Cannot compute its inverse - The matrix

is singular. It is impossible to calculate this inversion.” Using the lsolve() function avoids

this shortcoming. The lsolve(M,b) function has two arguments. M is the matrix of

coefficients for unknowns, b is the vector of free terms. The listing shows an example of

SLAE solution. (Fig. 7.)

An example of a SLAE solution:

Fig.7.

An ordinary differential equation of the first order, by definition, contains, in addition to

the desired function y(t), only its first derivative y'(t). In the vast majority of cases, the

differential equation can be written in the standard form (Cauchy form), resolved with

respect to the highest derivative: y'(t)=f(y(t),t)

Only with this form the Mathcad computing processor can work. A mathematically

correct statement of the corresponding Cauchy problem for a first-order ODE should, in

addition to the equation itself, contain one initial condition - the value of the function y(t0)

at some point t0. It is required to explicitly define the function y(t) on the interval from t0

to tx. By the nature of the formulation of the Cauchy problem, they are also called problems

with initial conditions (initial value problem), in contrast to boundary value problems. For

the numerical integration of one ODE, the user of Mathcad has a choice - either to use the

computational block Given - Odesolve(), or built-in functions. The first way is preferable

for reasons of visual representation of the problem and results, and the second gives the user

201

more leverage to influence the parameters of the numerical method. Let's consider both

solutions one by one. Computing block Given - Odesolve()

The computational unit for solving one ODE, which implements the Runge-Kutta

numerical method, consists of three parts:

- Given - keyword;

- ODE and the initial condition, written using Boolean operators, and the initial condition

must be in the form y(t0) = b;

- Odesolve(t, t1) - built-in function for solving ODE with respect to variable t on the

interval (t0,t1).

It is acceptable, and even often preferable, to specify the function Odesolve (t, t1, step)

with three parameters, where step is an optional internal parameter of the numerical method

that determines the number of steps in which the Runge-Kutta method will solve the

differential equation. The larger the step, the better the result will be, but the more time will

be spent on its solution. Thus, by selecting this parameter, one can noticeably (several times)

speed up the calculations without a significant deterioration in their accuracy.

An example of solving the Cauchy problem for the first order ODE y'=y-y2 by means of

the computational block Given – Odesolve() is shown in fig. 8. Insert logical operators

using the Boolean toolbar. When typing a logical equals sign from the keyboard, use the

Ctrl = key combination. The symbol of the derivative can be entered both by means of the

Calculus panel (Calculations), as is done in fig. 8 and as a dash (‘) by typing it using the

keyboard shortcut Ctrl + F7.

Fig.8.

Higher order ordinary differential equation

An ordinary differential equation with an unknown function y(t), which includes

derivatives of this function up to y(n)(t), is called an nth order ODE. If there is such

202

an equation, then for the correct formulation of the Cauchy problem, in addition to the

equation itself, it is required to set n initial conditions for the function y(t) itself and

its derivatives from the first to (n -1) order inclusive. In Mathcad, you can solve higher-

order ODEs both with the help of the Given-Odesolve() computational block, and

with an alternative method using functions of the rkfixed() type.

Inside the Given-Odesolve() compute block:

- ODE must be linear with respect to the highest derivative;

- initial conditions must have the form y(t0)=b or y(n)(t0)=b;

Otherwise, the solution of higher order ODEs is no different from the solution of

first order equations.

 On fig. 9 shows the solution of a second-order differential equation for a damped

harmonic oscillator, which describes, for example, the oscillations of a pendulum. For

the pendulum model, the function y(t) describes changes in the angle of its deviation

from the vertical, y'(t) is the angular velocity of the pendulum, y "(t) is the acceleration,

and the initial conditions, respectively, the initial deviation of the pendulum y (0) =

0.1 (in radians) and initial velocity y'(0)=0.

Fig. 9. Solution of a second-order differential equation

Solution with the creation of a decision block and the given directive. The given

directive and the Find operator are typed from the keyboard

203

Fig10. Symbolic solution of a system of linear equations using the given directive

Solving a system with letter coefficients

Fig.11. Symbolic solution of a system of linear equations given in literal form

Symbolic solution of non-linear algebraic equations

1. Solving a fourth-degree equation with numerical coefficients using the solve

operator

Fig.12.

204

2. Solving a quadratic equation with letter coefficients

Fig.13.

 Task 2. Solve the following system on your own

Fig.14.

Task 3. Solve the following equations yourself

1)

 2)

 3)

.

Task No. 1 Calculate variables A and B for given values of X, Y on MathCad.

Table 1

№ Arithmethic expressions Given

1
1.А=

42
1

1
2

3

y
Ln

х

yх

++

−−
 В=х (arctgA)+e-(x-1)

X=3 Y=-1,4

2
A=

))3cos((1

3
2

1

−−+

+ −

xyx

e y
 B=1+ yA − + 3 xy − +

2

)(2ay −

X=2 Y=3,1

3
A=(1+y)

4

4

22

2

++

+

− xe

x

y
 B=(1+tg2A/2)

5 2 4+x
X=-2,3 Y=2,7

4
A=y+x2+

1

3

+

+
y

x

e

xe
 B=

)(sin

)2cos(1
24 yxx ++

−+ 
+ 5 x

X=-1,3 Y=2,5

5
A=cos3(x+y)+ 3 yex + B=ln(A2+1)+

32310 xx

yx

−+

+

−

X=4,6 Y=-6,2

205

6
A=

xyx

yx

cos

)2(sin1
2

2

++

−+
+tg2x B=cos(1+

210+

−
xe

yAx
- 3 A)

X=2,3 Y=3,4

7
 A=ln(y- 3) yxex yx −++ +

 B=(x+tg
A

x

A

7
10*5)(

2 6 −
+−

X=3,6 Y=5,5

8
A=

xeyx

x

+−

−

2

2

)(

)(sin 
 B=

A
tg


ln(2*103-cos(x-8y))
X=3,3 Y=1,8

9
A=e-(x+1)

)18cos(1.1

2sin9,1
2 −−

+

y

x
 B=xln

x

y
ctg

x

A 18

1

2

2

−
+

+

X=0,84 Y=-4,2

10
A=

3.1)(sin2

10*6.1
2

7

+++−

−++ −+

xyyx

yxe yx

 B=arctg
)3.1cos(++

+
+

yx

A

A

yx

X=-0,4 Y=3,25

11
A=(x+1)

)cos(22 xy

A

yx

x
+

+
 B= xe

yxyx

Ayx
+

++−

+−+

222)(cos

6.7

X=4,32 Y=-1,6

12 A=tg x2 +(sin 2y+ln(x2+2y))3 B=Ax+ xyсos 27 2 +− X=3 Y=1,24

13
A=cos2(x2+2y)+

xeyx

yx
22

2

2

)2ln(

++

+
 B= x

eA

yx
y
sin

22

+

+
+ 4 xy

X=0,32 Y=0,17

14
A=

32.4)sin(

/ 3

++

+++
+

yx

yyxyx

y

x
 B=eAx tgAx

y

yxx
+

+
+

)(
ln1

X=3,1 Y=2,27

15
A=

yx

yex y

+

+++)1(cos23

 B=tg2(x3+A+ey)+
310*3.74

)lg(
−+x

Ay

X=3,53 Y=2,4

16

A=ctg
4cos

3

10*64.0

sin)ln(

+

++
xe

xxyxy
 B=lg 2

3

)1(

sin2

xye

xxyA
x ++

++

X=-1,9 Y=6,75

17 A=(lgx+y2+cos 3 2y); B= 2

2
lg

lg

)7.2(
yx

xyx

yA
++

−+

+

X=10,1 Y=9,5

18
A=

yyyx

y

exe

exx

)6.18(

)(sin 2

++

++−
+

; B=A2arctg yex ++8 +ln(x-y)
X=1,7 Y=2,4

19
A=ctg 3)

)cos(8

sin
(−

++

++
+

+

yxy

yxy

e

yx
y

; B=
xe

yAyx
y +

++ 2

X=-1,12 Y=2,17

20
A=cos2(x-2)3+y2+1+ex-2; B=ln

)1(

)1(
2

22

Aytg

eyA x

++

++ −

X=-4,3 Y=7,11

21
A=)(sin7,4

)1(sin

)2,4(002,3 22

2

2

yx
y

x
+++

+

+
 B= 5

2
7,4

)1(7,4

1
+−

−++

+−
x

ytgx

yxA

X=0,07 Y=0,41

22
A=)lg(1cos

(

)(
2

2

yx
eyx

tgxyx
x

+++
+−

+−
 B=

xe

Ayxtg
yxA

*)(
)(

2

3 2 −
+−

X=6,03 Y=3,42

206

23
A= cos3(

)1(

10*3,1)lg(
)6,7

2

5

x

y

e

x
x

y

e

x

++

+
++ B=

3

2)1(
ln Ay

e

xx
x

+
+

X=2,17 Y=0,35

24 A=(cos2x+y2+
y

x

+1
)3 B= tgAeyx x++ 22cos X=1,43 Y=18,6

25
A=ln(x2+4,3)+7,8xy+sin2(

3,42 +x

xy
) B=

610*6,4

3,42,13

−

+++

Axy

exy x

X=1,5 Y=2,53

26

A=ctg

3)
)cos(8

sin
(−

++

++
+

+

yxy

yxy

e

yx
y

; B=
xe

yAyx
y +

++ 2

X=-1,12 Y=2,17

27
A=)lg(1cos

(

)(
2

2

yx
eyx

tgxyx
x

+++
+−

+−
 B=xln

x

y
ctg

x

A 18

1

2

2

−
+

+

X=-3,5 Y=2,47

28
A=

yyyx

y

exe

exx

)6.18(

)(sin 2

++

++−
+

; B=A2arctg yex ++8 +ln(x-y)
X=1,7 Y=2,4

29
A=

yx

yex y

+

+++)1(cos23

 B=xln
x

y
ctg

x

A 18

1

2

2

−
+

+

X=-4,3 Y=7,11

30 A=tg x2 +(sin 2y+ln(x2+2y))3 B=Ax+ xyсos 27 2 +− X=3 Y=1,24

Task No2 Solving a system of linear equations (Given, Find)

1.

2 5,

2 5 7,

5 2 4.

+ − =


− + = −
 − + = −

x y z

x y z

x y z

 2.

2 3 5 1,

3 4 3 2,

3 7 5.

+ − =


+ − =
 − + =

x y z

x y z

x y z

 3.

7 3 5,

2 4,

3 3.

− + =


+ − = −
 + − = −

x y z

x y z

x y z

4.

5 6 3,

4 3 2,

2 5 3.

+ + = −


+ − =
 + − =

x y z

x y z

x y z

 5.

5 3 3,

3 2 1,

5 1.

− + = −


− + =
 + + =

x y z

x y z

x y z

 6.

8 2 7 3,

3 5 3,

5 2 4 7.

+ − =


− + =
 − + =

x y z

x y z

x y z

7.

3 4 5,

2 3 1,

5 3.

− + =


− + =
 + − =

x y z

x y z

x y z

 8.

7 2 5,

2 3 7,

5 7.

− + =


+ − = −
 − + =

x y z

x y z

x y z

 9.

4 3,

3 7 1,

2 3 4.

− − = −


+ + = −
 + − = −

x y z

x y z

x y z

207

10.

3,

3 2 2,

5 2 7 0.

+ + =


− + =
 + − =

x y z

x y z

x y z

 11.

5 1,

3 2 7,

2 7 0.

− + =


+ − = −
 + + =

x y z

x y z

x y z

 12.

3 4 7 1,

7 2 0,

2 3 3.

− + = −


+ + =
 − + =

x y z

x y z

x y z

13.

5 3 9,

3 7 6 0,

2 1.

− + =


− + =
 + + =

x y z

x y z

x y z

 14.

2 5 1,

5 3 5,

7 4 3 5.

+ + = −


+ − =
 − − = −

x y z

x y z

x y z

 15.

7 3,

2 5 0,

3 2 5 1.

− + = −


+ − =
 + − =

x y z

x y z

x y z

16.

2 3,

2 3 7 1,

5 3 4 7.

− − =


+ − =
 + − =

x y z

x y z

x y z

 17.

2 3 4,

5 1,

3 3 1.

+ − =


+ − =
 + − = −

x y z

x y z

x y z

 18.

2 3,

3 2 4,

5 3 7.

+ + =


− + = −
 + − =

x y z

x y z

x y z

19.

2 3 1,

3 4 1,

3 2 5 8.

+ − =


+ − = −
 − + =

x y z

x y z

x y z

 20.

3 4 7 1,

7 2 0,

2 3 3.

− + = −


+ + =
 − + =

x y z

x y z

x y z

 21

2 5 1,

5 3 5,

7 4 3 5.

+ + = −


+ − =
 − − = −

x y z

x y z

x y z

22.

2 5,

2 5 7,

5 2 4.

+ − =


− + = −
 − + = −

x y z

x y z

x y z

 23.

2 3 5 1,

3 4 3 2,

3 7 5.

+ − =


+ − =
 − + =

x y z

x y z

x y z

 24.

7 3 5,

2 4,

3 3.

− + =


+ − = −
 + − = −

x y z

x y z

x y z

25.

3 4 5,

2 3 1,

5 3.

− + =


− + =
 + − =

x y z

x y z

x y z

 26.

7 2 5,

2 3 7,

5 7.

− + =


+ − = −
 − + =

x y z

x y z

x y z

 27.

4 3,

3 7 1,

2 3 4.

− − = −


+ + = −
 + − = −

x y z

x y z

x y z

28.

2 3,

2 3 7 1,

5 3 4 7.

− − =


+ − =
 + − =

x y z

x y z

x y z

 29.

2 5 1,

5 3 5,

7 4 3 5.

+ + = −


+ − =
 − − = −

x y z

x y z

x y z

30.

5 2 9,

3 3,

7 3.

− + =


− + =
 + − = −

x y z

x y z

x y z

Control questions:

1. What processes is the MathCAD system intended for?

2. How are simple calculations carried out in the MathCAD system?

3. What processes is the MathCAD system intended for?

4. How are simple calculations carried out in the MathCAD system?

5. What tool is used to plot function graphs?

208

6. List the capabilities of the MathCAD system?

7. What does the word solve mean?

8. What does the word Find mean?

Laboratory work №2

Programming in the MathCAD system.

The purpose of the work: to study the formats of programming operators and the

technology for developing programs in the MathCAD environment. Developing custom

programs in the MathCAD environment

 Theroretical part

MathCAD allows you to write programs that contain constructs similar to those of

programming languages. It has conditional transfers of control, loop statements,

distinguishes between scopes of variables, uses subroutines and recursions. Like any

expression, a program returns a value if it is followed by an equals sign.

The main difference between a program and an expression is how the calculations are

specified. When using an expression, the algorithm for obtaining a response must be

described by a single operator. As many statements as needed can be used in a program.

If you click on the mathematical palette buttonMath (Mathematics) or select

Toolbars\Programming from the menu View (Display), you can display the toolbar

Programming, the operators of which are presented in table 1. Programming operators are

used only in programs MathCAD.

Operators of the Programming panel and their "hot keys".

Table 1

Panel

Programming:
Operators: Hot keys:

Add line]

← local assignment {

If }

otherwise [Ctrl][Shift]]

for– cycle operator [Ctrl][Shift] '

while – cycle operator [Ctrl]]

break – [Ctrl][Shift] [

continue [Ctrl] [

return [Ctrl][Shift] \

on error– error catch operator [Ctrl] '

209

Creating programs with a linear structure

Like the functions of the C++ programming language, any MathCAD program usually

has a name, arguments written in parentheses, and an assignment operator (:=). To the right

of the definition sign in the marker marked with a black rectangle (γ), the AddLine button

writes the program template in the form of a vertical bar and a vector of two lines. You can

add a new line to the program by highlighting the previous line and pressing the AddLine

button again. For local assignment, the program uses the left arrow.

Example 1. Figure 1 shows the calculation scheme of epi- and hypocycloid mechanisms.

R and r denote the radii of the central wheel and satellite, respectively, the size of the rod is

AB = l (letter). Then the projections of the point B of the rod on the x and y axes of the

Cartesian coordinate system (as a vector X) will look like:

X0 = (1+ki)cos() - cos(((1+ki)/i)+k)– projection onto the x-axis,

X1 = (1+ki)sin() - ksin(((1+ki)/i)+k) – projection onto the y-axis,

where the projections of point B are expressed in fractions of the radius R of the central

wheel: i=r/R; = l/R; Х0=x/R; Х1=y/R.

 Fig.1. Calculation scheme of epi- and hypocycloid mechanisms

Let the name of the program be S, the formal arguments passed to the program are given

in parentheses. The Addline button created three lines of the program, which contain:

Fig.2.

The program S is called by the functions F(φ) for epicycloid and G(φ) for hypocycloid

mechanisms. The trajectory of point B is shown in fig. 3. A circle of radius equal to one (i.e.

R) is also shown there.

210

Fig. 3. Point B trajectories

Thus, the AddLine statement creates the first, or new, empty line in the program. You can

use the AddLine statement to create a compound statement line in the body of a loop, in a

conditional statement, and so on. Remember that the Add Line statement creates a marker

after (or before) the highlighted expression.

Local assignment (←) assigns the local variable on the left to the value on the right of the

arrow. The local variable i has a context (scope of existence) only within the limits of the

given program.

Creating Branching Programs

To change the natural order of execution of statements, the if and otherwise control

statements called by the buttons on the programming palette are used. Using control

statements, you can build branching structures (Fig. 4):

Fig. 4. Block diagram of a branching structure

In earlier versions of Mathcad, the condition was checked using the built-in if function,

entered from the keyboard and having the following format: if (condition, expression_Yes,

expression_No), Fig.5:

Fig. 5.

211

When developing programs, the keywords if and otherwise are entered only from the

programming panel, and not from the keyboard. Format of if and otherwise statements:

 Fig.6. Formats of if and otherwise operators

The condition is written to the marker to the right of the if keyword, and the Yes branch

is written to the left (this marker can be multiplied with the Addline key). The otherwise

branch is written to the No branch (Fig.6). It can also be propagated with the Addline button.

Figure 7 shows a fragment of a program in which a branching structure is implemented:

Fig.7.

The function returns 0 if |x| greater than 2 or √(4-x2) otherwise. The number of statements

included in each block is indicated by vertical lines. If there is more than one if in the

program before the otherwise statement, then the otherwise statement is executed only if all

previous if statements are false :

Fig.8.

When calling the function, we have: f1(5) = 9 and f1(2) = 1. There are no "else if" or

"case" type operators in Mathcad that allow you to create multi-nested if, but you can

combine if ... otherwise.

Example 2. Let's perform the formation of the law of motion of the pusher of the cam

mechanism using the Koef_pol () function, which implements the calculation of kinematic

coefficients. It is known that during the synthesis of cam mechanisms with an elastic pusher,

such laws of its motion are usually selected, in which there are no hard impacts. In this case,

it is advisable to use a polynomial of the seventh degree with coefficients written as a vector

212

b. Let's create a linear program Koef_pol() for calculating displacement coefficients (k),

speed (k) and acceleration (k), in which:

• displacement coefficient (k) is modeled by the variable K0;

• speed coefficient (k) is modeled by variable K1;

• acceleration factor (k) is modeled by variable K2;

Thus, each element of the returned vector K models a corresponding kinematic

coefficient. The input parameters of the polynomial are the coefficient vector b, the constant

shift parameter of the degree of the polynomial a, the number of polynomial components n,

and the polynomial variable k.

When calculating the coefficients of displacements, velocities and accelerations, the

operators of sums and derivatives were used. By changing the heading parameters, it is

possible to form various laws of pusher motion. Here is a polynomial that implements the

law of motion of the pusher of the cam mechanism without hard and soft shocks:

In Fig.9. the calculation program and graphs of the kinematic coefficients obtained for a

given polynomial are given.

Fig. 9. Kinematic coefficients

Loops with a fixed number of repetitions

One of the ways to create cycles with a fixed number of repetitions is to create a ranked

variable x that changes in the interval x0 ≤ x ≤ xn with a step ∆x. For this purpose:

213

- the name of the variable is written chi assignment operator (:=);

- the value x0 is written in the marker and a comma (,) is put;

- the second value of the ranked variable (x+∆х) is written in the new marker. Mathcad

subtracts the first value from the second value and automatically generates the step ∆x;

- a semicolon (;) is written, which Mathcad converts to a colon (..);

- the value xn is written in the new marker. The ranged variable has been created. For

example, let the discrete argument α change in the range –π ≤ α ≤ π with a step ∆α= π/36.

Then you can write:

Fig.10.

If the step is equal to one (∆х=1), then the second value can be omitted.

Thus, the use of ranked variables is a powerful tool in Mathcad, which is much more

convenient to organize loops (including nested ones), since they are the basis for the main

principles of calculations in Mathcad, in particular, the preparation of graphs.

When programming in Mathcad, loops with a fixed number of repetitions are

implemented by the for operator, the template of which is shown in Fig.11:

Fig.11. Template format of For

It has three markers - two of them on the for line to write the name of the loop counter

and the discrete argument, respectively. The third marker contains the loop body. By

selecting it and pressing the AddLine button, the number of cycle body lines can be

increased (in this case, the cycle body is marked with a vertical line).

Task 1. Write a program for finding the values of the Y function for any values of

the initial parameters in Mathcad

Table 2

№ Function

1 m2n+1-c , if n+1>0

 (m+n)2+cm2 ,if n+10

2
29

1

a+
 ,if a<5

 b*sina , if a  5

3 7x2-3abx-5ab, if a>0

214

 15a-7b, if a0

4
 xa

c

ba
++

+ 22

, if x0

ba

ax

−

+sin
, if x<0

5

 (nm2+d)2 if d < m

 n2+m2 , if d  m

6
 5

2

+
xe

ax
 , if a < 9

 (a+1)2+cx3 , if a  9

7

ac

a

+3

3

 , if a>0

a

bac

−

+

1

2
, if a0

8

x

x

+1
 , if 1x>0

ax

x

−

−)1ln(
 , if x>1

9 (1/3)*ln3x , if x>0

 (x+3,5)ex , if x0

10 Ln(x+)92 +x , if x  2

x9

3ln
 , if x<2

11
xa

a

+2
, if a>3

 2a3+sin2x , if а 3

12 ka2 , if k3

 e-k(1+tg a*k) , if k<3

13

32

1

xx

x

−

+
, if x < 0,3

 cos22x – ex, если x  0,3

14 x2-4+ xa + , if x > 4a

 1/2*(5x2-3x), if x  4a

15

 1/2*(3x2-ax), if x<10

 x3-5aex, if x10

16 22 1715 ba + , if a>b

 22 1517 ba + , if ab

17 -ln 232 xx − , if x<5z

215

 ln 232 xx − , if x5z

18 Sin(1+km), if km<2

 Ln(5+k/m), if km2

19 21 72 kk − , if k1*k2<1

 3 21 72 kk + , if k1*k21

20

mr

mr

−

+ 234
, if r  m+1

 mr − , if r < m+1

21 22 43 zx + , if xz 2

3 22 43 zx − , если xz 2

22
tx

tx

52

2

+

−
, if x*t < 0

 xt , if x*t  0

23 Cos2(x-2t), if 5,2x

 Ln (x-2t), if 5,2x

24 Sin x+e-ax, if x  3

 tg x+ax2, if x > 3

25 arctg (x2+3t), if x2+3t > 1

 arccos (x2+3t), if x2+3t  1

Task 2. Write a program to find the values of the functions f1(x) and f2(x) in the

interval [0.1] on Mathcad with a change step ∆x=0.1.

Table 3

№ Function f1(x) Function f2(x)

1 Sin (x+4.5) 20  (1+x2)

2 1+cos(x-2) 12 +x

3 ex+Sin(x) 1+2x

4 Sin(x)+1 (1+2x)ex

5 2-cos(x +1) 1-x2

6 x2 +x2+1 ex(1+cos
2

x
)

7 1+2x+1 4*e1-x-1

8 1+1,8х+1 Cos2(х-1)

9 х2+x+1)1ln(1 ++ xх

10 Cos(2x+1) x*ex+1

11 2-cos3(x6+1) 32 +x

216

12 43 2 +x ln(x2+x+1)

13 x(x2+1) e -x+1*(1+x)

14 1+ln(2x-1) sin2(x+1)*ex

15 ex(1+x) (x-1)2

16 (1+x)*e-x x2+sin(x)

17 1+3x+1 (1-x)*tg2(x)

18 lg(1+x) 1+cos2(x)

19 13 +x *e-x 1+2sinx

20 12 −x Ln(cos(x)+1)

21 1+0,03x2 Cosx+sinx

22 x-sin(2x-1) Ln(1+2x)

23 0,02*e2x+1 Cos(2x-1)

24 2x +0,09x tg(3x-1)

25 10-6*ln(x+1) x2+2x-3

26 Cosx+sinx 1+ln(2x-1)

27 4*e1-x-1 2-cos(x +1)

28 e -x+1*(1+x) 2-cos3(x3+1)

29 ln(x2+x+1) Sin(x)+1

30)1ln(1 ++ xх ln 232 xx −

Control questions:

1. How to enter a function program in Mathcad?

2. What are the formal parameters of the program - functions?

3. How is the call to the program - functions in Mathcad?

4. What is a conditional operator in Mathcad and how to use it?

5. What is an arithmetic progression loop in Mathcad and how to use it?

Laboratory work No3

Representation of data by matrices. Working with vectors and matrices in

MatLab.

The purpose of the lesson: to study the implementation of the basic operations with

vectors and matrices by means of the MATLAB system.

Theoretical part

By default, all numeric variables in MATLAB are considered matrices, so a scalar is a

first-order matrix and vectors are single-column or single-row matrices. A matrix can be

entered by specifying its elements or by reading data from a file, or by calling a standard or

user-written function.

217

Matrix data is placed in memory sequentially by columns. Matrix elements within a row

are separated by spaces or commas. The direct definition of the matrix can be done in several

ways. For example, a column vector, that is, a matrix whose second dimension is equal to

one, can be assigned to variable A by entering one line:

>> A=[7+4i; 4; 3.2] % Column vector input

A =

 7.0000 + 4.0000i

 4.0000

 3.2000

or by entering multiple rows

>> A = [% Entering a vector by rows

7+4i

4

3.2];

Vectors can be formed as ranges using colons separating start value, step value, and limit

value. If there is no step value, then its default value is one.

As a result, n:m:k will form a vector, the last element of which is no more than k for a

positive step m, and no less than for a negative one: [n, n+m,n+m+m,…]

For example

>> a=1:2:5

a =

 1 3 5

Specifying a range is also used when organizing a cycle. Table 1 presents a set of

functions for creating special-type matrices.

Table 1

Matrix description functions

Function Description

eye(m,n) Identity matrix of m×n dimensions

zeros(m,n) Zero matrix of dimension m×n

ones(m,n) Matrix consisting of one unit of dimension m×n

rand(m,n) Returns a matrix of random numbers uniformly distributed in the

range from 0 to 1, dimension m×n

randn(m, n) Returns an m×n matrix consisting of random numbers having a

Gaussian distribution

tril(A),

triu(A)

Selection of the lower triangular and upper triangular parts of the

matrix A

inv(A) Finding the inverse matrix A

218

det(A) Finding the determinant (determinant) of the square matrix A

The matrix element is accessed according to the rule - in parentheses after the name of

the matrix, indices are given, which must be positive integers indicating the row number

and, separated by a comma, the column number. For example, A(2,1) means the element

from the second row of the first column of matrix A.

 For further examples, let's introduce a 2x2 matrix:

>> A=[1 2+5*i; 4.6 3]

A =

 1.0000 2.0000 + 5.0000i

 4.6000 3.0000

To change a matrix element, you need to assign a new value to it

>> A(2,2)=10 % The second element of the second row

A =

 1.0000 2.0000 + 5.0000i

 4.6000 10.0000

The size of a matrix can be specified with the size command, and the result of the size

command can be used to organize a new matrix.

For example, a zero matrix of the same order as matrix A will be formed by the command

>> A2=zeros(size(A))

A2 =

 0 0

 0 0

Using a colon, it is easy to select a part of the matrix. For example, a vector of the first

two elements of the second column of matrix A is given by:

>> A(1:2, 2)

ans =

 2.0000 + 5.0000i

 10.0000

A colon by itself means the entire row or column. To remove a vector element, it is

enough to assign an empty array to it - a pair of square brackets []. To cross out one or more

rows (columns) of a matrix, you need to specify the range of rows (columns) to be deleted

for one dimension and put a colon for another dimension. You can also use the length

command to find the length of a vector.

The set of arithmetic operations in MATLAB for working with matrices consists of

standard operations of addition - subtraction, multiplication - division, exponentiation

219

operations and are supplemented with special matrix operations (Table 6). If the operation

is applied to matrices whose sizes are inconsistent, an error message will be displayed.

For element-by-element execution of operations of multiplication, division and

exponentiation, combined signs (dot and sign of the operation) are used. For example, if a

matrix is followed by a (^) sign, then it is raised to a power, and the combination (.^) means

that each element of the matrix is raised to a power. When multiplying (addition, subtraction,

division) of a matrix by a number, the corresponding operation is always performed element

by element.

Table 2

Operation signs

Symbol Purpose

+,- The plus and minus symbols indicate the sign of a number or the

operation of addition and subtraction of matrices, and the matrices

must be of the same dimension

* The multiplication sign denotes matrix multiplication, for element-

wise matrix multiplication, the combined sign (.*) is used

' An apostrophe denotes a transposition operation (together with

complex conjugation), transposition without conjugation

calculation is denoted by a combined sign (.')

/ Left division

\ right division

^ The exponentiation operator, for element-wise exponentiation, the

combined sign (.^) is used

We illustrate the difference between ordinary and element-wise multiplication using the

following example.

Let's introduce a 2x2 matrix H and a matrix D of units of the same dimension:

>> H=[0 1; 2 3], D=ones(size(H))

H =

 0 1

 2 3

D =

 1 1

 1 1

Let's multiply the matrices using the usual multiplication:

>> H*D

ans =

 1 1

220

 5 5

Now we apply the element-by-element operation:

>> H.*D

ans =

 0 1

 2 3

Matrix Functions

The MATLAB system has a number of functions designed to process data given in matrix

or vector form (Table 3).

 Table 3

Function Descryption

size(A) Returns an array consisting of the number of rows and

the number of columns of a matrix.

sum(A) Returns the sum of all elements by column

mean(A) Returns the average value of a matrix column

std(A) Returns the standard deviation of a matrix column

min(A), max(A) Returns the minimum and maximum respectively, by

column of the matrix

sort(A) Sorts a matrix column in ascending order

prod(A) Calculates the product of all column elements

Task 1:

 Exercise 1. Ouptut:

– arbitrary row vector (v), dimension 2;

– arbitrary column vector (w), dimension 2;

– an arbitrary matrix (m), dimensions 2×2.

Exercise 2 Create:

– a matrix with zero elements (m0), dimensions 2×2;

– a matrix with unit elements (m1), dimensions 2×2;

– matrix with elements having random values (mr), dimension 2×2;

– a matrix with unit diagonal elements (me), of dimension 2×2.

Exercise 3. Calculation of the matrix M using the formula presented in table 8

Exercise 4: Exploring Data Processing Functions:

– determination of the number of rows and columns of the matrix M;

– determination of the maximum element of the matrix M;

– determination of the minimum element of the matrix M;

- summation of the elements of the matrix M;

- multiplication of the elements of the matrix M.

221

Task variants

Table 4

№ of

variant
Task

№ of

variant
Task

1 M=v*w+m+mr*me 11 M=m*w+mr*v’

2 M=m+mr*me 12 M=m*mr+w*v

3 M=(v/m)*(mr+me) 13 M=m+mr–100

4 M=w*v+mr*me 14 M=v’+w+mr*w

5 M=m*mr+me 15 M=m+m1’*me’

6 M=m.*mr+100 16 M=(v/m)*(mr+me)

7 M=v*w+mr–m 17 M=v*mr+v*m1

8 M=m+mr*me–10 18 M=m’+mr/100

9 M=m*w+mr*v' 19 M=10*v+w’*mr*m

10 M=m’+mr*me 20 M=m’+mr*me

Task 2

Exercise 5. Actions on Matrix

• Transpose matrix A;

• Calculate the inverse of matrix B;

• Operations on matrices A*B; A+B; A-B A/B;

• Merge matrices vertically and horizontally

Task variants

1.

2.

3.

4.

222

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

223

17.

18.

19.

20.

Control questions

1. How is the input of a row vector carried out?

2. How is the input of a column vector carried out?

3. How is the matrix entered?

4. What are the zeros, ones, rand, eye commands for?

5. How is the number of rows and columns of a matrix determined?

6. What operations are used to determine the minimum and maximum matrix elements?

Laboratory work No 4

Development and analysis of simulation models of technical objects. Simulation

modeling using the Simulink package

The purpose of the lesson: To get acquainted with the capabilities of the Simulink

mathematical modeling package.

Theoretical part

The Simulink program is an attachment to the MATLAB package. When modeling using

Simulink, the principle of visual programming is implemented, according to which, the user

creates a device model on the screen from the library of building blocks and performs

calculations. When working with Simulink, the user has the ability to upgrade library blocks,

create their own, and create new block libraries. To run the program, you must first run the

MATLAB package. The main window of the MATLAB package is shown in Figure 1.

 Fig.1. – The main window of the MATLAB program

224

After opening the main window of the MATLAB program, you need to start the Simulink

program. This can be done in one of three ways:

1. Click the (Simulink) button on the toolbar of the MATLAB command window.

2. On the command line of the main MATLAB window, type Simulink and press the

Enter key on the keyboard.

3. Run the Open command in the File menu and open the model file (mdl - file).

The latter option is convenient to use to run an already finished and debugged model,

when you only need to carry out calculations and do not need to add new blocks to the

model.

Using the first and second methods leads to the opening of the Simulink library section

browser window (Fig. 2).

Fig.2. – Simulink Library Section Browser Window

The block library browser window contains the following elements:

1) Title, with the name of the window - Simulink Library Browser.

2) Menu, with commands File, Edit, View, Help.

3) Toolbar, with shortcuts to the most frequently used commands.

4) Comment window for displaying an explanatory message about the selected block.

5) List of sections of the library, implemented as a tree.

6) Library section content window (list of nested library sections or blocks)

7) Status bar containing a hint on the action to be performed.

225

Figure 2 highlights the main Simulink library (on the left side of the window) and shows

its sections (on the right side of the window).

The Simulink library contains the following main sections:

1. Continuous - linear blocks.

2. Discrete - discrete blocks.

3. User-Defined Functions - functions and tables.

4. Math Operations - blocks of mathematical operations.

5. Discontinuities - non-linear blocks.

6. Signals Attribute, Signals Routing - signals and systems.

7. Sinks - recording devices.

8. Sources - sources of signals and influences.

9. Ports & Subsystems - ports and blocks of subsystems.

The list of sections of the Simulink library is presented as a tree, and the rules for working

with it are common for lists of this type:

− The icon of a collapsed tree node contains a "+" symbol, and the icon of an

expanded tree node contains a "-" symbol.

− In order to expand or collapse a tree node, just click on its icon with the left mouse

button.

When you select the appropriate section of the library, its contents are displayed in the

right part of the window (Fig. 3).

Fig.3.Contents of the Continuous section

226

To create a model in the Simulink environment, you must perform a series of steps in

sequence:

1. Create a new model file using the File/New/Model command. The newly created

model window is shown in Figure4.

Fig.4. – Empty model window

2. Arrange blocks in the model window. To do this, open the appropriate section of the

library (For example, Sources - Sources). Further, pointing the cursor at the required block

and pressing the left mouse button - “drag” the block into the created window. The mouse

button must be kept pressed. Figure 5 shows a model window containing blocks.

Fig. 5 - Model window containing blocks

To change the parameters of the block, double-click the left mouse button, pointing the

cursor at the image of the block. A window for editing the parameters of this block will

open. When specifying numeric parameters, keep in mind that the decimal separator must

be a dot, not a comma. After making changes, close the window with the OK button.

After installing all the blocks from the required libraries on the diagram, you need to

connect the elements of the circuit. To connect the blocks, you need to point the cursor at

the “output” of the block, and then, press and, without releasing the left mouse button, draw

a line to the input of another block. Then release the key. In case of a correct connection,

the image of the arrow at the input of the block changes color. To create a branching point

227

in a connecting line, you need to move the cursor to the proposed node and, by pressing the

right mouse button, drag the line. The diagram of the model, in which the connections

between the blocks are made, is shown in Figure 6

.

Fig.6. –The diagram of the model

The model window contains the following elements (see Figure 6):

1. Title, with the name of the window. The newly created window is given the name

Untitled with the corresponding number.

2. Menu with commands File, Edit, View, etc.

3. Toolbar.

4. Window for creating a model scheme.

5. Status bar containing information about the current state of the model.

The window menu contains commands for editing the model, setting it up and managing

the calculation process, working with files, etc.:

a) File - Work with model files.

b) Edit - Change the model and search for blocks.

c) View - Controls the display of interface elements.

d) Simulation - Specify settings for simulation and control the calculation process.

e) Format (Formatting) - Change the appearance of the blocks and the model as a whole.

f) Tools - The use of special tools for working with the model (debugger, linear analysis,

etc.)

g) Help - Display help windows.

To increase the visibility of the model, it is convenient to use text labels. To create an

inscription, you need to specify the location of the inscription with the mouse and double-

click the left mouse button. After that, a rectangular frame with an input cursor will appear.

In a similar way, you can change the captions for model blocks. It should be borne in mind

228

that the version of the program under consideration (Simulink 4) is not adapted to the use of

Cyrillic fonts, and their use can have a variety of consequences: displaying labels in an

unreadable form, cropping labels, error messages, and also the inability to open the model

after saving it. . Therefore, the use of inscriptions in Russian for the current version of

Simulink is highly undesirable.

Before performing calculations, you must first set the calculation parameters. The

calculation parameters are set in the control panel of the Simulation/Parameters menu. The

view of the control panel is shown in Figure 7

Fig.7. – Control panel

The calculation parameters settings window has 4 tabs:

− Solver (Calculation) - Sets the parameters for calculating the model.

− Workspace I / O (Data input / output to the workspace) - Setting the parameters

for exchanging data with the MATLAB workspace.

− Diagnostics - Select diagnostic mode options.

− Advanced - Set advanced options.

To visualize the modeling process, virtual registrars (blocks of recipients of information

Sinks) are used.

Each recorder has its own settings window, which appears when its icon is activated in

the components window or in the model window (Fig. 8).

A virtual oscilloscope (Scope) allows you to present the simulation results in the form of

time diagrams of certain processes in a form that resembles the oscillograms of a modern

high-precision oscilloscope with a digitized scale grid made by rays of different colors.

Here, special attention should be paid to the zoom buttons, which allow (along with the

context menu commands) to change the size of the waveform. The Autoscale button is very

convenient - usually it allows you to set a scale at which the waveform image has the

maximum possible vertical size and reflects the entire simulation time interval (Figure 9).

229

Fig.8. – Contents of the Sinks section

Fig.9. – Window of the virtual oscilloscope

The virtual graph plotter (XY Graph) has inputs along the X and Y axes, which allows

you to plot functions in the polar coordinate system, Lissajous figures, phase portraits, etc.

(Figure 10).

230

Fig. 10 – Lissajous Figure Chart

To perform arithmetic operations, use the Math Operations tab (Figure 11). The simplest

mathematical blocks include blocks of arithmetic operations: calculating the absolute value

of the number Abs, the scalar product Dot Product, the usual product Product, and the sum

Sum.

Please note that in the add/subtract block settings window, you can set the type of block

representation (round or square) and the number of inputs with operations performed on

them. The number of entries and operations are specified by the List of sign template. For

example, the pattern |++ means that the block has two summing inputs, and |+–+ means that

it has three inputs, with the middle one being subtractive, and the extreme ones summing

(Figure 12).

Block Product (Multiplication) is intended for multiplication and division of a number

of input signals. In this case, the operations are specified in the same way as it was described

for the summation / subtraction block using the multiplication signs * or division / in the

template.

The Sign block is used to control the sign. It returns -1 for a negative input argument, 0

for a zero input argument, and 1 for a positive input argument.

231

Fig 11 – Contents of the Math Operations section

Fig 12 – Addition/Subtraction block setting window

232

The Gain and Slider Gain scaling blocks are used to scale the data (multiplying them by

a given coefficient - a constant). In the Gain block, the constant is entered in the parameters

window (default 1), and in the Slider Gain block, it can be selected using the slider. The

Matrix Gain block is used to scale matrix data.

The Math Function block is used to define mathematical functions of one variable u

according to the rules adopted for the programming language of the MATLAB base system.

In particular, this means that built-in system functions can occur in the body of a function.

The parameter window of this block contains a description of the rules for defining the

function and the Parameters section, in which the expression for the function and the length

of the output vector are specified. If it must match the length of the input signal vector, then

the value -1 is entered (Figure 13).

Fig 13 – Window of the parametrs of block Math Function

An additional Simulink block library is located in the Simulink Extras section.

Task 1:

1. Familiarize yourself with the structure of the hierarchical Simulink library.

2. Type the model of the system given by the teacher.

3. Perform system simulation.

4. Compare the results obtained by changing the simulation parameters.

Task 2

 1. Airport for 9 aircraft. Average values of time intervals between arriving and departing

aircraft are set. The number of planes waiting to land is limited. The model stops if it is

233

impossible to receive the next aircraft. Variable variables: time intervals between arriving

and departing aircraft, number of aircraft waiting to land. Observable variables: average

landing time, average number of aircraft on the runway.

2. Gas station selling three types of gasoline. For each species, the probability of its use

is given. The model stops when one of the types of gasoline is used up. Variable variables:

stocks of each type of gasoline, probabilities of using each type. Observable variables: gross

margin, unrealized balances.

3. Line for assembling computers, consisting of five components. For each component, a

receipt period is specified, which is a random number. The model stops when the simulation

time elapses. The number of components is considered unlimited. Variable variables: the

period of receipt of each of the components, the time of assembly of the computer. Observed

variables: the number of computers assembled per unit of time.

Control questions

1. What libraries does the Simulink package consist of?

2. How to build a model in Simulink package?

3 How to change simulation parameters?

4. What are the ways to visualize the modeling process?

Laboratory work No5

Data backup and recovery policy.

Malware detection and protection tools.

The purpose of the work: Mastering practical skills in the formation of an antivirus

security policy and gaining skills in the operation of computer virus protection and antivirus

programs

Theoretical part.

Anti-malware policies control settings for actions and notifications when malware is

detected. The important settings for anti-malware policies are listed below.

1. Action. Specifies what to do if the message contains malware. The following options

are available:

• Delete the message (this is the default).

• Replace all attachments with a text file that contains this default text: "Malware was

found in one or more of the attachments in this e-mail message. All attachments have

been removed."

• Replace all attachments with a text file that contains custom text.

2. Notifications. If the antivirus software policy is configured to delete messages, you

can choose whether to send a notification message to the sender. The sending of notifications

can depend on whether the sender is internal or external. By default, a notification message

has the following properties:

234

• From: Postmaster <defaultdomain> postmaster@.com

• Subject: indistinguishable message

• Message text. This message was generated automatically by mail delivery software.

Your email message was not delivered to the recipients because malware was

detected."

You can customize message properties for internal and external notifications. You can

also specify additional recipients (administrators) who will receive notifications of

undelivered messages from internal or external senders.

3. Recipient filters. For a custom malaria program policy, you can specify conditions

and recipient exceptions that determine who the policy applies to. You can use the following

properties for conditions and exceptions:

• by recipient;

• by serviced domain;

• by group membership.

Removal - Removing a virus from an infected computer system may require reinstalling

the OS from scratch, deleting files, or removing the virus from an infected file.

The possibility of a virus infection is proportional to the frequency with which new files

or applications appear on the computer. Changes to the configuration for browsing the

Internet, reading e-mail, and downloading files from external sources all increase the risk of

virus infection.

The greater the value of the computer or the data that is in it, the more you need to take

care of security measures against viruses. You also need to consider the costs of removing

viruses from your computers, as well as from the computers of your customers, which you

can infect. Costs are not always limited to finances, the reputation of the organization and

other things are also important.

It is also important to remember that viruses usually appear on the system due to user

actions (for example, installing an application, reading a file via FTP, reading an email).

The prevention policy may therefore pay special attention to restrictions on the download

of potentially infected programs and files. It may also specify that, in a high-risk

environment, virus scanning should be especially thorough for new files.

1) Low risk. The Software Import Control Policy for a Low Risk Environment should

primarily describe measures to communicate to users their obligation to regularly check for

viruses.

Prevention: Users should be aware of the potential for viruses and RPS from the Internet

and how to use antivirus tools.

Detection: Commercial anti-virus tools can be used to check for viruses weekly. Keeping

logs of the antivirus tools is not necessary.

Removal: Any machine that is suspected of being infected with a virus should be

immediately disconnected from the network. The machine should not be connected to the

mailto:postmaster@.com

235

network until the system administrators have verified that the virus has been removed.

Where possible, commercial anti-virus programs should be used to remove the virus. If such

programs cannot remove the virus, all programs on the computer must be removed,

including boot entries if necessary. All these programs must be reinstalled from trusted

sources and rescanned for viruses. (In Russia, registered users can contact the manufacturer

of the program by e-mail and receive a program update with virus removal tools).

2) Medium risk. The software import control policy for the Medium Risk Environment

should require more frequent virus checks, and the use of anti-virus software to scan servers

and e-mail.

Prevention: Programs should only be downloaded and installed by a network

administrator (who checks them for viruses or tests them).

File servers should have anti-virus software installed to limit the spread of viruses on the

network. All programs and data files on file servers should be checked for viruses daily.

Workstations should have memory-resident anti-virus programs configured so that all files

are scanned for viruses when they are downloaded to the computer. All incoming e-mails

must be checked for viruses. It is forbidden to run programs and open files using applications

vulnerable to macro viruses before they are scanned for viruses.

The computer security training program should contain the following information about

the risk of infection with viruses:

Antivirus programs can only detect viruses that have already been detected by someone

before. New, more sophisticated viruses are constantly being developed. Antivirus programs

should be updated regularly (monthly or quarterly) in order to be able to detect the latest

viruses. It is important to report any unusual behavior on your computer or applications to

your system administrator. It is important to immediately disconnect a computer that is

infected or suspected of being infected from the network to reduce the risk of the virus

spreading.

Detection: Commercial anti-virus programs should be used for daily virus checks.

Antivirus programs should be updated every month. All programs or data imported into a

computer (from floppy disks, e-mail, etc.) must be checked for viruses before they are used.

Antivirus logs should be kept and reviewed by system administrators. Employees should

inform the system administrator about detected viruses, changes in configuration, or strange

behavior of the computer or applications.

Upon receipt of information about a virus infection, the system administrator must inform

all users who have access to programs and data files that may have been infected with a

virus that the virus may have infected their systems. Users should be advised on how to

determine if their system is infected and how to remove the virus from the system. Users

should report virus scan and virus removal results to system administrators.

Removal: Any machine that is suspected of being infected with a virus should be

immediately disconnected from the network. The machine should not be connected to the

network until the system administrators have verified that the virus has been removed.

236

Where possible, commercial anti-virus programs should be used to remove the virus. If such

programs cannot remove the virus, all programs on the computer must be removed,

including boot entries if necessary. All these programs must be reinstalled from trusted

sources and rescanned for viruses.

3) High risk. High-risk systems contain data and applications that are critical to the

organization. Virus infections can cause significant loss of time, data, and damage to an

organization's reputation. The infection can affect a large number of computers. All possible

measures should be taken to prevent infection with viruses.

Prevention: A security administrator must allow applications to be used before installing

them on a computer. It is forbidden to install unauthorized programs on computers

Removal: Any machine that is suspected of being infected with a virus should be

immediately disconnected from the network. The machine should not be connected to the

network until the system administrators have verified that the virus has been removed.

Where possible, commercial anti-virus programs should be used to remove the virus. If such

programs cannot remove the virus, all programs on the computer must be removed,

including boot entries if necessary. All these programs must be reinstalled from trusted

sources and rescanned for viruses.

Practical part

In the practical part of this work, using the example of the “Anti-Virus Program Policy”

of the Department of Informatization, we will study how to draw up an Anti-Virus Program

Policy.

The anti-virus software policy consists of the following sections:

1. Terms and definitions

2. Basic provisions

3. General requirements

4. Responsibility.

1. Terms and definitions

The terms, definitions and abbreviations used in this document are used in accordance

with the document OIB-TO/3.13/001 "Terms and Definitions".

2. Basic provisions

2.1. This document "Anti-Virus Protection Policy" (hereinafter referred to as the

"Policy") - establishes a system of measures aimed at protecting the confidential information

of the CSPD TO systems, on which the impact of computer viruses and malicious software

(Trojans, bomb connections, etc.) depends, as well as establishes uniform requirements for

the organization of an anti-virus protection system for information systems and all types of

workstations, requirements for prescribing the use of software and procedures for their

operation.

2.2. Implementation of applicable policies applied in the prescribed manner by

information security administrators of the IOGV or by a group (or division) involved in

performing data functions.

237

2.3. At the end of the year to carry out the protection system in real conditions. An

unscheduled review may also be required when changing the list of tasks to be solved,

considering hardware and software.

2.4. This Policy:

• define uniform requirements for the classification of anti-virus protection in all

information sources and single out APMs that are part of or associated with the CSPD TO;

• limits the necessary and sufficient anti-virus protection measures for the observed and

prosecuted work of users of the CSPD TO;

• the number of participants in the IS processes is calculated when organizing anti-virus

protection of objects of the CSDC TO;

• establishes the responsibilities of users of KSPD TO and administrators of security

disclosure of IOGV within the organization of anti-virus protection;

• connection to all information systems and separate APMs connected to KSPD TO;

• obligatory for conclusion by all participants, executors under agreements with

participants of IBam/contracts and other persons and organizations that constantly use or

observe periodic connection to network or information resources of KSPD TO.

3. General requirements.

3.1. It is prohibited to use software, program codes or algorithms in the process of normal

(normal) operation of information systems, leading to the destruction, destruction of

information resources.

3.2. Anti-malware methods should include three components:

• Prevention - actions to prevent malware infection;

• Detection - methodology for detecting the presence of malicious software;

• Removal - physical removal of malware codes from infected files or an infected system.

3.3. Only licensed anti-virus tools approved for use in the authorities of the Russian

Federation are allowed for use in information systems that are part of the KSPD TO.

3.4. All servers, workstations and other technological services and systems must be

provided with anti-virus protection if the operating system used on them has a virus

vulnerability.

3.5. The versions of used anti-virus tools and anti-virus databases are updated on a regular

basis.

3.6. Server system administrators and resource administrators must maintain the highest

possible level of security for the software and hardware entrusted to them at all times. For

this you need:

• track information coming from developers of system and software about detected

errors and vulnerabilities;

• timely install updates and corrections officially recommended by the developers of

system and application software;

• disable all unused services and applications of the operating system (or application

software);

238

• keep the installed anti-virus protection tools up to date.

• keep logs of system events and regularly analyze them;

• follow the recommendations of the information security administrator of the

IOGV.

• Downloading software and working files to computers, servers and other storage

media is carried out with their preliminary check by anti-virus tools.

3.7. Downloading software and working files to computers, servers and other storage

media is carried out with their preliminary check by anti-virus tools.

3.8. Users are prohibited from installing and using specialized software on their own

without prior approval from the information security administrator of the IOGV.

3.9. The installation of permitted anti-virus protection tools on users' computers is carried

out by information security administrators of the IOGV, who have the appropriate authority.

3.10. KSPD TO users are prohibited from disabling anti-virus protection tools installed

on computers or making changes to their configuration that reduce the established level of

protection.

The task:

Study the procedure for developing an anti-virus program policy and formulate a policy

in the sequence indicated in the practical part using the example of an organization

Control questions:

1. How is the security policy of anti-virus programs formed?

2. What sections does the antivirus software policy include?

3. Can I specify the order if I create multiple custom antivirus policies?

4. What settings need to be made in conditions where the risks are "low", "medium" and

"high"?

5. What are the components of anti-malware methods?

Laboratory work No 6

Components used in visual programming.

Loop statements in programming

The purpose of the work: to study the loop operators, to learn how to use the simplest

components of the loop organization). Write and debug a program with For, While, Do while

statements.

Tasks:

1. Study the theoretical part.

 2. Download the Borland C++ Builder6 system.

 3. Implement the program of your choice, get results.

 4. Compile a report on the work done.

Theoretical part

Loop statements. A loop statement is an instruction to the program to repeat a certain

sequence of statements a specified number of times or until a certain condition is met. There

are three types of loops in C++.

239

• with precondition (while),

• with postcondition (do while),

• with the (for) parameter.

Any cycle consists of the body of the cycle, that is, those statements that are executed

several times, initial settings, modification of the cycle parameters and checking the

condition for continuing the execution of the cycle.

One pass of the loop is called an iteration. The condition is checked at each iteration either

before the loop body (loop with precondition) or after the loop body (loop with

postcondition). The difference between these two methods is that a loop with a precondition

may not be executed even once if the condition from the very beginning turns out to be false,

and a loop with a postcondition is guaranteed to be executed at least once.

The loop terminates if the continuation condition is not met. If necessary, it is possible to

force the end of the entire loop with the break statement or the current iteration with the

continue statement.

Loop while (with precondition). The general format of an operator:

 while (expression) <operator>;

while (expression) {compound operator};

where expression - a logical expression (a condition for repeating the cycle), operator -

an operator or a sequence of operators included in the body of the cycle.

The execution of the statement begins by checking the condition in parentheses after the

while. If the condition is true, the loop statement is executed, otherwise control is transferred

to the statement following the loop. If at the first check the condition is not met (equal to

false), then the loop will not be executed even once.

This can also be used for purposes such as declaring a loop:

 while (true) { . . . } ;

and organize an exit from inside the loop using break.

Loop do while (with postcondition). The general format of an operator:

do <operator> while (expression);

do {compound operator} while expression;

The do while loop differs from the while loop only in that it checks the condition after

the loop, i.e. it will reliably execute at least once.

The algorithm of this cycle is as follows: first, a simple or compound statement is

executed, which is the body of the cycle, then the value of the expression is determined. If

it is not false, the body of the loop is executed again. The loop terminates when the

expression evaluates to false, or when the loop exits with a control transfer statement.

One application of the do while loop is when input of some value must continue until it

takes on a certain value, for example:

 do {

240

 cout << “Enter the number from 1 to 100 (0 – output) : “;

 cin >> num;

 . . . // actions with numbers

 while (num ! = 0);

 }

Loop for (with parametr). The general format of an operator:

for (initialization; expression; modifications) operator;

A loop with a parameter is one of the most powerful tools in the C++ language. It allows

not only to repeat a sequence of statements a specified number of times, but also to create

complex loops with exit conditions and other advanced features.

The scheme of the for loop is as follows:

1. Initialization is in progress. It is performed only once before the start of the cycle.

Typically, initialization involves setting the counter variable to an initial value.

2. As in the while loop, the truth of the expression is checked, and if it is true, the body

of the loop is executed, otherwise it is skipped.

3. Finally, the operations described in the modifications section are performed, usually

this is a change in the control variable.

Let's look at examples of what loops can be created using for:

Example 1.

for (int n = 1; n<= 10; n++) { . . . }

 In this example, the variable n takes all values from 1 to 10, that is, the loop body will

be executed 10 times (if n does not change in the loop body).

Example 2

for (int i = 1, j = 100; i != j; i ++, j --) {. . .}

This is a more complex example of using the operator. Here, in the initialization section,

initial values are assigned to two variables i and j, after each iteration i by one, and the

second j is decremented by one. The output from the loop occurs when the values of both

variables are equal, that is, there will be 100/2 = 50 iterations in total.

for (int k = 1; ; k++) { . . . }

In this case, the condition for exiting the loop is omitted - in its place is an empty operator,

consisting only of a sign; (semicolon). This means that the loop body will be executed until

the control transfer operator is encountered inside, but at the end of each iteration, the value

of the counter variable k is incremented by one.

Example 3.

for (int i = 1; i <= 10; a[i] = i, i ++);

This example considers the case when it is necessary to initialize an array of ten elements

(in this case, the ordinal numbers of the elements are the values of the array elements). This

241

cycle does not even have a body - all the necessary operations are already performed in the

header, in the modifications section. After the next iteration, first the value is assigned to

the next element of the array, and then the actual increment of the counter.

The do while statement is useful when the loop must be executed at least once (for

example, it has data input, followed by input validation).

The for statement is ideal for a counter-driven loop, but is also handy in many other cases.

In other loops, you can use while, especially if the number of iterations is not known in

advance, there are no obvious loop parameters, or it is convenient to modify them at the end

of the loop.

Solution of one variant:

Task 1. Calculate the value of the functions f1 and f2 for the values of the variable x,

changing in the interval from a to b with step h.

f1= 2x х+1*е-х f2=1+2sinx

//---

 #include <math.h>

#include<iostream.h>

#include<conio.h>

#include <vcl.h>

#pragma hdrstop

//---

#pragma argsused

int main(int argc, char* argv[])

{

 float a, b, h, f1, f2, x ;

 cout<<"Enter the value A, B, H" <<endl;

 cin>>a>>b>>h;

 x=a;

 while (x<=b)

 {

 f1=sqrt(pow(x,2))*x+1*exp(-x);

 f2=1+2*sin(x);

 cout<<"x= "<<x<<" f1="<<f1<<" F2="<<f2<< endl;

 x=x+h;

 }

getch();

 return 0;

242

}

//--

 The program is implemented in console mode.

 Task 2. Create a program for calculating the function F in the interval x Є a, b with

step h, using the loop operator with a postcondition. This program uses Memo, Label,

Edit, Button components.

 Label1: TLabel;

 Label2: TLabel;

 Label3: TLabel;

 Label4: TLabel;

 Label5: TLabel;

 Edit1: TEdit;

 Edit2: TEdit;

 Edit3: TEdit;

 Button1: TButton;

 Label6: TLabel;

 Memo1: TMemo;

Button1 is used to calculate F. Memo1 is used to display all values of the function F on

the range [a,b].

Code of the program

//---

 #include <math.h>

#include <vcl.h>

#pragma hdrstop

#include "Unit1.h"

//---

#pragma package(smart_init)

#pragma resource "*.dfm"

TForm1 *Form1;

//---

__fastcall TForm1::TForm1(TComponent* Owner)

 : TForm(Owner)

{

}

//---

void main();

243

void __fastcall TForm1::Button1Click(TObject *Sender)

{

float a,b,h,f,x;

 h=StrToFloat(Edit1->Text);

 a=StrToFloat(Edit2->Text);

 b=StrToFloat(Edit3->Text);

 x=a;

 do {

 f=x*x +sin(x) +exp(x);

 Memo1->Lines->Add("X= "+FloatToStr(x)+" F= "+FloatToStr(f));

 a=a+h; }

 while (a<=b);

}

//--

When the program is executed, the results will be obtained in the following Form (Fig.

1):

Fig.1. Results form

Write and debug a program to display all the values of the function S(x) for the argument

x, which varies in the range from a to b with a step h and a given n.

 
=

−=
N

k

k
k

k

x
xS

0 !
)1()(.

244

Example of creating a windowed application

The text of handler functions can be as follows (standard text omitted):

//---

void __fastcall TForm1::FormCreate(TObject *Sender)

{

 Edit1->Text="0,1"; Edit2->Text="1,0";

 Edit3->Text="10"; Edit4->Text="0,2";

 Memo1->Lines->Add("Laboratory work 3");

}

Fig.2.

//---

void __fastcall TForm1::Button1Click(TObject *Sender)

{

double a, b, x, h, r, s;

int n, zn = -1, k;

 a = StrToFloat(Edit1->Text);

 b = StrToFloat(Edit2->Text);

 n = StrToInt(Edit3->Text);

 h = StrToFloat(Edit4->Text);

 for(x = a; x<=b; x+=h) {

 r = s = 1;

 for(k = 1; k<=n; k++) {

 r = zn*r*x/k;

 s+=r;

 }

 Memo1->Lines->Add("при x= "+FloatToStrF(x,ffFixed,8,2)

 +" sum= "+FloatToStrF(s,ffFixed,8,5));

245

 }

}

//---

void __fastcall TForm1::Button2Click(TObject *Sender)

{

 Memo1->Clear();

}

An example of creating a console application

The text of the program of the proposed task may look like

#include <vcl.h>

#include <stdio.h>

#include <conio.h>

#pragma hdrstop

#pragma argsused

int main(int argc, char* argv[])

{

 double a, b, x, h, r, s;

 int n, zn = -1, k;

 puts("Input a,b,h,n");

 scanf("%lf%lf%lf%d", &a, &b, &h, &n);

 for(x = a; x<=b; x+=h) {

 r = s = 1;

 for(k = 1; k<=n; k++) {

 r=zn*r*x/k;

 s+=r; }

 printf("\n x= %8.2lf sum= %8.5lf", x,s);

 }

 puts("\nPress any key ... ");

 getch();

 return 0; }

The result of the program with the entered values a=0.1, b=1.0, h=0.2 и n=10:

Fig.3.

246

Variants of tasks for individual laboratory work:

For each x changing from a to b with step h, find the values of the function Y(x), the sums

S(x) and |Y(x)–S(x)| and output it as a table. The values a, b, h and n are entered from the

keyboard. Since the value of S(x) is a series of expansion of the function Y(x), with the

correct solution, the values of S and Y for a given argument x (for test values of the initial

data) must match in the integer part and in the first two to four positions after the decimal

point.

Check the operation of the program for a = 0.1; b = 1.0; h = 0.1; select the value of the

parameter n depending on the task.

1.
)!12(

)1()(
12

0 +
−=

+

=


k

x
xS

kn

k

k
,)sin()(xxY = .

2. ,
)12(2

)1()(
1

2
1


=

+

−
−=

n

k

k
k

kk

x
xS

21ln)()(xxarctgxxY +−= .

3. ,
!

)4/cos(
)(

0

k
n

k

x
k

k
xS 

=


=))4/sin(cos()(4

cos

=



xexY
x

 .

4. ,
)!2(

)1()(
0

2


=

−=
n

k

k
k

k

x
xS)cos()(xxY = .

5. ,
!

)cos(
)(

0


=

=
n

k k

kx
xS))cos(sin()(cos xexY x= .

6. ,
!

12
)(2

0

k
n

k

x
k

k
xS 

=

+
=

2

)21()(2 xexxY += .

7. 
=


=

n

k

k

k

kx
xS

1

)3/cos(
)(,)

3
cos21ln(

2

1
)(2xxxY +


−−= .

8. 
=

=
n

k

k

k

x
xS

0 !

)2(
)(, xexY 2)(= .

9. 
=

+
+

−
−=

n

k

k
k

k

x
xS

1
2

12
1

14
)1()(, 2/)(

2

1
)(

2

xxarctg
x

xY −
+

= .

 10. 
=

=
n

k

k

k

x
xS

0

2

)!2(
)(,

2
)(

xx ee
xY

−+
= .

 11.
k

n

k

x
k

k
xS)2/(

!

1
)(

0

2


=

+
= , 2/2)12/4/()(xexxxY ++= .

12. 
=

+
−=

n

k

kk x
k

k
xS

0

2
2

)!2(

12
)1()(,)sin(

2
)cos()

2
1()(

2

x
x

x
x

xY −−= .

13. 
=

−=
n

k

k
k

k

x
xS

1

2

)!2(

)2(
)1()(,)1(cos2)(2 −= xxY .

247

14. 
=

+

+
=

n

k

k

k

x
xS

0

12

)!12(
)(,

2
)(

xx ee
xY

−−
= .

15. 
=

+

−
−=

n

k

k
k

kk

x
xS

1

2
1

)12(2
)1()(,)(1ln)(2 xarctgxxxY ++−= .

16. ,
!

)4/cos(
)(

0

k
n

k

x
k

k
xS 

=


= 4

cos

)]4/sin(cos[)(



=
x

exxY .

Control questions:

1. What is a cyclic computing process?

2. What loop operators do you know?

3. What types of variables are used as a parameter in a loop statement with a parameter?

4. Difference between WHILE and DO WHILE loop statements.

 5. What components of Borland C++ Builder6 are used in the implementation of cyclic

programs

 6. What procedures are used to process strings in Borland C++ Builder6?

Laboratory work №7

Programming Engineering Problems in an Integrated Environment Implementing

programming through modules and applying engineering problems to object-

oriented programs.

The purpose of the work: to study the regular data type - an array, the main properties

of the StringGrid component. Write and debug a program using one-dimensional arrays.

Tasks:

1. Study the theoretical part.

2. For a given variant, write a program using arrays.

3. Implement the program in console mode or visual mode.

4. Compile a report on the work performed.

Theoretical part

When using simple variables, each area of memory for storing data has its own name. If

it is required to perform similar actions with a group of quantities of the same type, they are

given the same name, and are distinguished by a serial number.

 An array is an object of a complex type, each element of which is defined by a name

(ID) and an integer value of the index (number) by which the array element is accessed.

Consider one-dimensional arrays.

Array indexes in C/C++ start from 0.

In the program, a one-dimensional array is declared as follows:

248

 type ID array [size];

where size is the number of elements in the array. The size of an array can be given by a

constant or a constant expression. To use arrays of variable size, there is a separate

mechanism - dynamic memory allocation.

Array declaration examples:

 int a[5];

 double b[4] = {1.5, 2.5, 3.75};

in an integer array, and the first element is a[0], the second is a[1], ..., the fifth is a[4].

The array b, consisting of real numbers, has been initialized, and the array elements will

have the following values: b[0]=1.5, b[1]=2.5, b[2]=3.75, b[3]=0.

The C/C++ language does not check if an index is out of bounds in an array. The

correctness of the use of indexes of array elements must be controlled by the programmer.

Examples of array descriptions:

const Nmax=10; – setting the maximum value;

typedef double mas1[Nmax*2]; – description of the type of a one-dimensional array;

mas1 a; – declaration of array a of type mas1;

int ss[10]; – an array of ten integers.

Array elements can be used in expressions in the same way as ordinary variables, for

example:

 f = 2*a[3] + a[Ss[i] + 1]*3;

 a[n] = 1 + sqrt(fabs(a[n–1]));

Creating a Window Application of the StringGrid Component

When working with arrays, the input and output of values is usually organized using the

StringGrid component, designed to display information in the form of a two-dimensional

table, each cell of which is a one-line editor window (similar to the Edit window).

Information is accessed using the Cells[ACol][ARow] element of the AnsiString type, where

the integer values ACol, ARow indicate the position of the element.

The first ACol index defines the column number, and the second ARow defines the row

number, unlike array indexes.

In the Object Inspector, the ColCount and RowCount values set the initial values for the

number of columns and rows in the table, while FixedCols and FixedRows set the number

of fixed zone columns and rows. The fixed zone is highlighted in a different color and is

usually used for labels.

Processing two-dimensional dynamic arrays

Objects of any type can be referred to in C by name, as we have done so far, and by

pointer (indirect addressing).

249

A pointer is a variable that can contain the address of some object in the computer's

memory, such as the address of another variable. Through a pointer set to a variable, you

can access the area of RAM allocated by the compiler for its value.

The pointer is declared like this:

 type * pointer ID;

Before use, the pointer must be initialized either with a specific address or with a NULL

(0) value - no pointer.

There are two unary operations associated with pointers: & and *. The & operator means

"take the address", and the unaddress operator * means "the value located at the address",

for example:

 int x, *y; // х – int type variable, у –int type pointer

 y = &x; // y – address of x variable

 *y = 1; // ti address y write down 1, as a result x = 1

When working with pointers, you can use the operations of addition, subtraction, and

comparison, and they are performed in units of the type to which the pointer is set.

The operations of addition, subtraction and comparison (more/less) make sense only for

sequentially located data - arrays. The comparison operations "==" and "!=" make sense for

any pointers, i.e. if two pointers are equal, then they point to the same variable.

Relation of pointers to arrays

Pointers and arrays are closely related. An array identifier is a pointer to its first element,

i.e. for the array int a[10], the expressions a and a[0] have the same values, because the

address of the first (with index 0) element of the array is the address of the beginning of the

placement of its elements in the RAM.

Let declared - an array of 10 elements and a pointer of double type:

 double a[10], *p;

if p = a; (setup pointer p to the start of array a), then the following calls: a[i] , *(a+i)

and *(p+i) are equivalent, i.e. for any pointers, two equivalent forms of accessing array

elements can be used: a[i] and *(a+i). The equivalence of the following expressions is

obvious:

 &a[0]  &(*p) p

Declaration of a multidimensional array:

 type ID[size 1][size 2]…[size N];

and the last index changes faster, because multidimensional arrays are placed in the RAM

in a sequence of columns, for example, an array of integer type, consisting of two rows and

three columns (with initialization of initial values)

int a[2][3] = {{0,1,2},{3,4,5}};

in the RAM will be placed as follows:

 a[0][0]=0, a[0][1]=1, a[0][2]=2, a[1][0]=3, a[1][1]=4, a[1][2]=5.

250

If there is not enough data in the list of initializers, then the corresponding element is

assigned the value 0.

Pointers to pointers

The relationship between pointers and arrays with one dimension is also true for arrays

with more dimensions.

If we consider the previous array (int a[2][3];) as an array of two arrays of three elements

each, then referring to the element a[i][j] corresponds to the equivalent expression

((a+i)+ j), and the declaration of this array using pointers will look like

 int **а;

Thus, the name of a two-dimensional array is the ID of a pointer to a pointer.

Dynamic placement of data

To create arrays with variable dimensions, dynamic placement of data declared by

pointers is used.

To work with dynamic memory, the standard functions of the alloc.h library are used:

void *malloc(size) and void *calloc(n, size) – allocate a memory block of size and nxsize

bytes, respectively; return a pointer to the selected area, NULL on error;

void free(bf); - frees previously allocated memory with address bf.

Another, more preferred approach to dynamic memory allocation is to use the C++

language operators new and delete.

The new operation returns the address of the RAM allocated for the dynamically allocated

object, NULL on error, and the delete operation releases the memory.

The minimum set of actions required to dynamically allocate a one-dimensional array of

real numbers of size n:

 double *а;

 . . .

 а = new double[n]; // Capturing memory for n elements

 . . .

 delete []а; // Freeing up memory

The minimum set of actions required to dynamically allocate a two-dimensional array of

real numbers of size nxm:

 int i, n, m; // n, m – array dimensions

 double **a;

 a = new double *[n]; // Capturing memory under pointers

for(i=0; i<n; i++) a[i] = new double [m]; // and under elements

 . . .

 for(i=0; i<n; i++) delete []a[i]; // Freeing up memory

 delete []a;

251

For modern compilers (versions older than "6"), to free memory, it is enough to write

only delete []a;

A finite named sequence of values of the same type is called an array.

C++ distinguishes between fixed size arrays and variable size (dynamic) arrays. The

number of elements in an array of the first type is known when the program is written and

never changes. The compiler allocates memory for such an array. The number of elements

of a dynamic array is not known at compile time and usually depends on the input data.

Memory for a dynamic array is allocated during program execution using memory allocation

operations.

Solution of one variant

Task 1. A one-dimensional array A is given. Find the maximum and minimum elements

of the array and their sum.

The program code in console mode can be written in the following form:

//---

#include<iostream.h>

#include<conio.h>

#include <vcl.h>

#pragma hdrstop

//---

#pragma argsused

int main(int argc, char* argv[])

{ const n=20;

 float a[n]; int k,i, max,min; float sum;

cout<<"Number of array elements";

cin>>k;

for (i=0; i<k; i++) cin>>a[i];

max=a[0]; min=a[0];

 for (i=1; i<k; i++) if (a[i]>max) max=a[i];

 for (i=1; i<k; i++) if (a[i]<min) min=a[i];

 sum=max+min;

cout<<"max element of array="<<max<<endl;

cout<<"min element of array=”<<min<<endl;

cout<<"Sum Max and Min ="<<sum;

 getch(); return 0;

}

//--

Task 2. Given a square matrix. Calculate the sum of all array elements.

To implement the program for solving this problem in the visual mode, the Lable, Button,

StringGrid components are used. The StringGrid component is used to enter or display

elements of an array in a tabular form, i.e. this component sets the table to the Form (the

252

component is included in the Additional tool palette). The StringGrid component has the

following main properties:

ColCount – setting the number of columns;

RowCount - setting the number of rows;

FixedRow – setting the number of the initial active row;

FixedCol - setting the number of the initial active column.

 Options – defines table options, for example, if the GoEditing parameter is set to true,

then data in cells is allowed to be edited.

 We write the program code in the following form for the matrix А(4Х4):

/---

#include <vcl.h>

#pragma hdrstop

#include "Unit1.h"

//---

#pragma package(smart_init)

#pragma resource "*.dfm"

TForm1 *Form1;

//---

__fastcall TForm1::TForm1(TComponent* Owner)

 : TForm(Owner)

{

}

//---

int sum=0;

void __fastcall TForm1::Button1Click(TObject *Sender)

{

 int i,j, a[4][4];

randomize();

for(i=0;i<4;i++)

for(j=0;j<4;j++)

{ a[i][j]=random(10);

StringGrid1->Cells[i][j]=IntToStr(a[i][j]);

sum+=a[i][j];}

}

//---

void __fastcall TForm1::Button2Click(TObject *Sender)

{

Label1->Caption="Sum of all of the elements=" +IntToStr(sum);

}

//---

253

Button1 used to fill an array (Stringgrid) with random numbers. Button2 is used to

display the sum of all array elements. The general view of the Form and the results obtained

are shown in Figure 1.

Fig.1. View of the Form with the Stringrid component and the results

Task 3. Remove from array A of size N, consisting of integers (positive and negative), all

negative numbers. Do not create a new array. To fill the array, use the random(kod) function,

a generator of random uniformly distributed integers from 0 to (int)kod.

Example of creating a windowed application

Enter the value N from Edit, the values of array A - from the StringGrid component.

Output the result to the StringGrid component.

The dialog panel and the results of the program execution are shown in Fig. 2.

Fig. 2.

Customizing the StringGrid Component

 On the Additional tab, select the icon , set the StringGrid1 and StringGrid2

components and adjust their sizes. In the Object Inspector for both components, set

254

ColCount to 2, RowCount to 1, i.e. two columns and one row, and the FixedCols and

FixedRows values are equal to 0. The DefaultColWidth column cell width value is equal to

40.

By default, input to the StringGrid component is only allowed programmatically. To

allow data input from the keyboard, set the goEditing line for the StringGrid1 component

to true in the Options property.

The text of handler functions may look like this:

 . . .

int n = 4;

//---

void __fastcall TForm1::FormCreate(TObject *Sender)

{

 randomize(); // Changing the start address for random()

 Edit1->Text=IntToStr(n);

 StringGrid1->ColCount=n;

 for(int i=0; i<n;i++) // Filling array A with random numbers

 StringGrid1->Cells[i][0] = IntToStr(random(21)-10);

 Label3->Hide(); // Hide component

 StringGrid2->Hide();

}

//---

void __fastcall TForm1::Button1Click(TObject *Sender)

{

 n=StrToInt(Edit1->Text);

 if(n>10){

 ShowMessage("Maximum amount10!");

 n=10;

 Edit1->Text = "10";

 }

 StringGrid1->ColCount=n;

 for(int i=0; i<n;i++)

 StringGrid1->Cells[i][0]=IntToStr(random(21)-10);

 Label3->Hide();

 StringGrid2->Hide();

}

//---

void __fastcall TForm1::Button2Click(TObject *Sender)

{

 int i, kol = 0, a[10]; // Declaration of a one-dimensional array

// Filling array A with elements from table StringGrid1

255

 for(i=0; i<n;i++)

 a[i]=StrToInt(StringGrid1->Cells[i][0]);

// Removing negative elements from array A

 for(i=0; i<n;i++)

 if(a[i]>=0) a[kol++] = a[i];

 StringGrid2->ColCount = kol;

 StringGrid2->Show(); // Show component

 Label3->Show();

// Outputting the result to a StringGrid 2 table

 for(i=0; i<kol;i++) StringGrid2->Cells[i][0]=IntToStr(a[i]); }

An example of creating a console application

The text of the program may look like this (note that the main function is used in its

simplest form - without parameters and does not return results):

 #include <stdio.h>

#include <conio.h>

void main()

{ int a[10],n, i, kol=0;

 randomize(); // Changing the start address for random()

 printf("Input N (<=10) ");

 scanf("%d", &n);

 puts("\n Massiv A");

 for(i=0; i<n;i++) {

 a[i] = random(21)-10; // Filling array A with random numbers

 printf("%4d", a[i]); } // Removing negative elements from array A

 for(i=0; i<n;i++)

 if(a[i]>=0) a[kol++] = a[i];

 puts("\n Rezult massiv A");

 for(i=0; i<kol;i++) printf("%4d", a[i]);

 puts("\n Press any key ... ");

 getch(); }

 With array A filled with random numbers, the result of the program could be as

follows:

Fig.3.

256

Task 4. Calculate vector BAY

= values, where А – square matrix of NN size, Y and B

– one-dimensional arrays of size N. Elements of the vector Y are determined by the formula


−

=

=
1

0

N

j
jiji BAY .

Example of creating a windowed application

Enter the N value from Edit, A and B from the StringGrid component. Output the result

to the StringGrid component.

The dialog panel and program execution results are shown in fig. 4.

Fig.4.

Setting up the StringGrid component

For the StringGrid1 component, set the ColCount and RowCount values to be equal, for

example, 3 - three columns and three rows, and FixedCols and FixedRows - 1.

Since the StringGrid2 and StringGrid3 components have only one column, they have

ColCount = 1, RowCount = 3, and FixedCols = 0 and FixedRows = 1.

In the Options property, set the goEditing line for the StringGrid1 and StringGrid2

components to true.

To change the size of n, use the EditChange handler function obtained by double-clicking

on the Edit component.

The text of the program may look like this:

 . . .

//---------------------- Global variables -------------------

 int n = 3;

 double **a, *b; // Pointer declarations

//---

void __fastcall TForm1::FormCreate(TObject *Sender)

{

 Edit1->Text=IntToStr(n);

257

 StringGrid1->ColCount = n+1; StringGrid1->RowCount = n+1;

 StringGrid2->RowCount = n+1; StringGrid3->RowCount = n+1;

// Entering the names of arrays in the upper left cell of the table

 StringGrid1->Cells[0][0] = "Matrix A";

 StringGrid2->Cells[0][0] = "Array B";

 StringGrid3->Cells[0][0] = " Array Y";

 for(int i=1; i<=n;i++){

 StringGrid1->Cells[0][i]="i="+IntToStr(i);

 StringGrid1->Cells[i][0]="j="+IntToStr(i);

 } }

//---

void __fastcall TForm1::Edit1Change(TObject *Sender)

{

 int i;

 n=StrToInt(Edit1->Text);

 StringGrid1->ColCount = n+1; StringGrid1->RowCount = n+1;

 StringGrid2->RowCount = n+1; StringGrid3->RowCount = n+1;

 for(i=1; i<=n;i++){

 StringGrid1->Cells[0][i]="i="+IntToStr(i);

 StringGrid1->Cells[i][0]="j="+IntToStr(i);

 } }

//---

void __fastcall TForm1::Button1Click(TObject *Sender)

{

 double s;

 int i,j;

 a = new double*[n]; // Capturing memory for pointers

 for(i=0; i<n;i++) a[i] = new double[n]; // Capturing memory for elements

 b = new double[n];

// Filling arrays A and B with elements from tables StringGrid1 and StringGrid2

 for(i=0; i<n;i++) {

 for(j=0; j<n;j++) a[i][j]=StrToFloat(StringGrid1-

>Cells[j+1][i+1]);

 b[i]=StrToFloat(StringGrid2->Cells[0][i+1]); }

// Multiplying a row of matrix A by vector B and outputting the result s to StringGrid

 for(i=0; i<n;i++){

 for(s=0, j=0; j<n;j++) s += a[i][j]*b[j];

 StringGrid3->Cells[0][i+1] = FloatToStrF(s, ffFixed,8,2);

 } }

//---

258

void __fastcall TForm1::Button2Click(TObject *Sender)

{

 delete []a;

 delete []b;

 ShowMessage("Memory freed!");

 Close();

}

Control questions:

1. What is an index variable? Types of arrays and their differences.

2. Description of a regular type (array) in C++.

3. How are multidimensional arrays described in C++?

4. What types are used for index type and array component types?

5. Define a dynamic array.

6. What components are used to enter array elements?

259

MINISTRY OF SECONDARY AND SPECIAL EDUCATION OF THE REPUBLIC

OF UZBEKISTAN

TASHKENT STATE TECHNICAL UNIVERSITY

NAMED AFTER ISLAM KARIMOV

Instructions and recommendations for topics for performing independent work

on the subject

“Information technologies in technical systems”

Tashkent 2022

260

Types, forms and themes of independent works.

Independent work is designed to teach students to independently perform specific

educational work, search for and independently analyze the necessary information, as well

as the formation and development of skills for making responsible decisions on this basis,

as well as educational and methodological support and the full implementation of the study

load for independent work, defined in the State educational standard for all areas of

undergraduate studies.

To perform current control on independent work, the teachers of the department have

developed options for independent work. For intermediate control, topics for independent

work are compiled. In the final control, two questions out of five are compiled on the basis

of the materials given in independent work.

Recommended topics for independent work:

- Hardware and features of network application systems;

- Software tools and characteristics of network application systems

- Features of modern publishing systems and their application in technical systems.

- Import and export data in MySQL system

- Application of best practices in the creation and processing of information in various

fields;

- Solving engineering problems by branches in technical systems

- Data exchange of electronic documents;

- Creation of documents in Corel Draw;

- Using FTP on the Internet;

- Studying the creation and use of Web page tools;

- Sites. Creating and editing pages using HTML;

- The use of translation programs when translating texts in the specialty;

- Opportunities for distance learning, electronic textbooks;

- Programming of simple, branching and cyclic algorithms;

- Programming using structural data in file types;

Individual task

Create a presentation on a given topic (see below, the number of the topic option matches

the student's serial number in the journal) in accordance with the requirements:

• the number of slides must be at least 15;

• the presentation should be meaningful;

• each of the presentation slides must have a unique markup;

• each of the slides must contain the "personal brand" of the student who created this

presentation;

• The sample notes should explain the content and/or slide show;

261

• the presentation should have a slide - a table of contents, from where you could get to

one of the sections (groups) of slides, and to each of the slides separately (use your own

interactive or standard control buttons for implementation);

• from each of the presentation slides it should be possible to return to the slide table of

contents;

• a unique transition shape must be used for each of the slides;

• on presentation slides it is not allowed to use repeated effects (sound and visual) of the

appearance of slide elements until all available ones have been applied;

• at least one of the presentation slides must run an external program (exe or com file).

Presentation topics:

1. The history of the appearance of the computer

2. Computer architecture (from von Neumann to modern)

3. Monitors and video adapters.

4. Printers

5. Motherboards

6. Processors

7. Scanners

8. External storage media and storage devices

9. Sound cards and multimedia

10. Computer software structure

11.Windows architecture

12.Windows interface

13. Archiving programs and principles of archiving

14. Viruses and anti-virus programs

15. Text processing technology

16. Structured programming and its implementation in the programming language Pascal

17. Operating systems

18. Cryptography

19. Topology of computer networks

20. OLE technology

21. Drag&Drop technology

22. Data archiving

23. Databases

24. Integrated software packages

262

MINISTRY OF SECONDARY AND SPECIAL EDUCATION OF THE REPUBLIC

OF UZBEKISTAN

TASHKENT STATE TECHNICAL UNIVERSITY

NAMED AFTER ISLAM KARIMOV

Glossary

on the subject

“Information technologies in technical systems”

Tashkent 2022

263

Glossary

Definitions

English Russian Uzbek

Automated

information

system (AIS) is an

assembly of computer

hardware, software,

firmware, or any

combination of these,

configured to

accomplish specific

information-handling

operations, such as

communication,

computation,

dissemination,

processing, and storage

of information.

Автоматизированная

информационная система

(АИС)

- организационно-

техническая система,

использующая

автоматизированные

информационные

технологии в целях

информационно-

аналитического обеспечения

научно-инженерных работ и

процессов управления.

Avtomatlashtirilgan axborot

tizimi (AAT)-Tashkiliy

texnik tizim bo’lib,

avtomatlashtirilgan axborot

texnologiyalarini boshqarish

jarayonida va ilmiy –

muhandislik islarida axborot

taxlil ta’minoti maqsadida

ishlatiladi.

Automated

Information System

(AIS) An AIS is a

combination of

computer hardware and

computer software,

data, and/or

telecommunications

that performs functions

such as collecting,

processing, storing,

transmitting and

displaying information.

Автоматизированная

информационная

технология

(АИТ)- информационная

технология, в которой для

передачи, сбора, хранения и

обработки данных

используются методы и

средства вычислительной

техники и систем связи.

Avtomatlashtirilgan axborot

texnologiyalari (AATex)

– Axborot texnologiyasi

bo’lib, ma’lumotlarni

yig’ish, saqlash, uzatish,

qayta ishlashda ishlatiladigan

usullar va xisoblash texnikasi

vositalari va aloqa tizimidan

iborat bo’ladi.

Automated Training

System - system,

which include the

complex of teaching

and learning materials

(demonstrations,

theoretical, practical,

Автоматизированная

обучающая система -

система, включающая

комплекс учебно-

методических материалов

(демонстрационных,

теоретических,

Avtomatlashtirilgan o’qitish

tizimi-bu tizim o’quv

jarayonini boshqaradigan

o’quv-uslubiy kompleks

materiallaridan (namoyish,

nazariy, amaliy, nazorat) va

264

control) and computer

programs that control

the learning process).

практических,

контролирующих) и

компьютерных программ,

управляющих процессом

обучения

kompyuter dasturlaridan

tashkil topgan.

Automated Data Bank

(ADB) - a set of

database management

system and a specific

database (database)

data located (are) under

its control.

Автоматизированный банк

данных (АБД) -

совокупность системы

управления базами данных и

конкретной базы (баз)

данных, находящейся

(находящихся) под ее

управлением.

Avtomatlashtirilgan

ma’lumotlar banki (AMB) –

Ma’lumotlar bazalarini

boshqarish tizimlarining

yig’indisi va ularning

boshqaruvi ostidagi konkret

ma’lumotlar bazasidir.

Security Administrator

is a person who

manually administers

user access rights to

systems. A workflow

system may call on a

Security Administrator

to fulfill an approved

request on systems

where automated

administration agents

are not available or

have not yet been

configured.

Администратор

безопасности

- лицо или группа лиц,

ответственных за

обеспечение безопасности

системы, за реализацию и

непрерывность соблюдения

установленных

административных мер

защиты и осуществляющих

постоянную

организационную

поддержку

функционирования

применяемых физических и

технических средств

защиты.

Havfsizlik adminstratori –

tizim havfsizligini

ta’minlashga javobgar,

adminstratorlar tomonidan

o’rnatilgan himoya tizimini

uzluksiz ishlashini

kuzatuvchi va ximoyani

ta’minlovchi fizikaviy,

texnik vositalarni doimiy

ishlashini tashkillashtiruvchi

shaxs yoki shaxslar

guruhidir.

WEB adress- Every

computer connected to

the internet has its

unique web address,

without which it cannot

be reached by

other computers.

Also called universal re

source locator

Адрес страницы - данные,

точно определяющие

логический адрес сайта

илиWeb-страницы в Internet.

Sahifa manzili – saytning

aniq mantiqiy manzili yoki

Internetdagi Web-sahifa.

http://www.businessdictionary.com/definition/internet.html
http://www.businessdictionary.com/definition/computer.html
http://www.businessdictionary.com/definition/call.html
http://www.businessdictionary.com/definition/resource.html
http://www.businessdictionary.com/definition/resource.html

265

or Uniform Resource

Locator (URL).

Algorithm - is a set of

instructions designed

to perform a specific

task.

Алгоритм - совокупность

действий со строго

определенными правилами

выполнения.

Algоritm – bajarilish ketma-

ketligi qat’iy qoidalarda

aniqlangan amallar majmui.

Algoritmization-

creating algorithm in

order to solve tasks.

Алгоритмизация -

составление алгоритмов для

решения поставленных

задач.

Algaritmlash – Berilgan

masalani echish uchun

algaritm tuzilishi.

A database is a

collection

of information that is

organized so that it can

easily be accessed,

managed, and updated.

In one view, databases

can be classified

according to types of

content: bibliographic,

full-text, numeric, and

images.

Byte-a unit of

computer information

that is equal to eight

bits.

База данных - единая

система данных,

организованная по

определенным правилам,

которые предусматривают

общие принципы описания,

хранения и обработки

данных.

Ma’lumotlar bazasi –

umumiy prinsiplar asosida

tavsiflanadigan, saqlanadigan

va qayta ishlanadigan, aniq

qoidalar asosida tashkil

qilingan umumiy

ma’lumotlarning yagona

tizimi.

Information security,

sometimes shortened to

InfoSec, is the practice

of

defending information

from unauthorized

access, use, disclosure,

disruption,

modification, perusal,

inspection, recording

or destruction. It is a

general term that can

be used regardless of

the form the data may

Безопасность информации -

состояние информации,

информационных ресурсов

и информационных систем,

при котором с требуемой

вероятностью

обеспечивается защита

информации от утечки,

хищения, утраты и т. д.

Axborotni havfsizligi –

axborot, ahborot zaxiralari va

axborot tizimlarida talab

qilingan extimollikda

axborot chiqib ketishidan,

o’g’irlanishidan,

yo’qotilishidan himoya

ta’minlanadi.

http://www.businessdictionary.com/definition/uniform-resource-locator-URL.html
http://www.businessdictionary.com/definition/uniform-resource-locator-URL.html
http://searchsqlserver.techtarget.com/definition/information

266

take (e.g. electronic,

physical).

Browser - a program

with a graphical user

interface for displaying

HTML files, used to

navigate the World

Wide Web.

Браузер (Browser) - средство

просмотра. Более полно:

программное обеспечение,

предоставляющее

графический интерфейс для

интерактивного поиска,

обнаружения, просмотра и

обработки данных в сети.

Browser - ko’rish vositasi.

To’liq: tarmoqda

ma’lumotlarni interaktiv

qidirush, kashf etish, ko’rish

va qayta ishlash uchun grafik

interfeys taqdim etadigan

dastur ta’minoti.

A web client is an

application that

communicates with

a web server, using

Hypertext Transfer

Protocol (HTTP)

Веб-клиент - программа,

позволяющая пользователю

запрашивать документы с

веб-сервера.

Veb-klient –

foydalanuvchiga veb-server

hujjatlarni talab qilish

imkonini beruvchi dastur.

A Web server is a

program that uses

HTTP (Hypertext

Transfer Protocol) to

serve the files that

form Web pages to

users, in response to

their requests, which

are forwarded by their

computers’ HTTP

clients. Dedicated

computers and

appliances may be

referred to as Web

servers as well.

Веб-сервер - программа,

запущенная на компьютере,

предназначенная для

предоставления документов

другим

компьютерам WWW, ко-

торые посылают

соответствующие запросы.

Veb-server – shunday

so’rovlarni jo’natuvchi

boshqa kompyuterlar WWW

xizmati uchun hujjatlarni

taqdim etishga mo’ljallangan

dastur.

Web page - a hypertext

document connected to

the World Wide Web.

Веб-страница - одиночный

документ, содержащий

гиперссылки, размещенный

в WWW и определяемый с

помощью адреса URL. Его

можно

открыть ипросмотреть

содержание с помощью

Vеб-sahifa – WWWga

joylashtirilgan, URL adres

yordamida aniqlanadigan,

gipermurojatli alohida hujjat.

Uni browzer yordamida

ko’rish va ochish mumkin.

Bu multimediua hujjatlariga

matn, grafika, tovush, video,

267

программы просмотра -

браузера.

animatsiya, gipermurojat va

boshqalar kiradi.

Vector graphics is the

use of polygons to

represent images in

computer

graphics. Vectorgraphi

cs are based on vectors,

which lead through

locations called control

points or nodes.

Векторное изображение -

это изображение,

строящееся при помощи

математического описания

простых объектов - линий,

окружностей, из которых

создаются более сложные.

Vektorli tasvir - bu tasvir

oddiy ob’ektlar: chiziqlar,

doiralarni matematik ta’rifi

yordamida barpo etadi va

ular yordamida yanada

murakkab tasvirlarni

yaratadi.

White-board - an area

on a display screen

common to several

users, on which they

can write and draw.

Виртуальная аудиторная

доска (белая доска) -

электронная доска с

возможностями

непосредственного

редактирования текста либо

внесения соответствующих

пометок поверх исходного

текста с передачей этой

информации на расстояние.

Virtual auditoriya

doskasi (oq doska) – matnni

bevosita taxrirlash

imkoniyatiga ega bo’lgan

yoki berilgan matnga kerakli

belgilarni kiritishi mumkin

bo’lgan va axborotni

masofaga uzativchi electron

doska.

A Virtual Library is a

collection of resources

available on one or

more computer

systems, where a single

interface or entry point

to the collections is

provided. The key

point being that the

user need not know

where particular

resources are located --

the location is

"virtual".

Виртуальная библиотека -

учебно-методическая и

дополнительная литература,

размещенная в глобальной

сети Интернет.

Virtual kutubxona – global

Internet tarmog’iga

joylashtirilgan uquv-uslubiy

va qo’shimcha adabiyot.

A virtual reality - the

computer-generated

simulation of a three-

dimensional image or

environment that can

Виртуальная реальность -

новая технология

бесконтактного инфор-

мационного

взаимодействия,

Virtual haqiqat - muloqotsiz

axborot hamkorlikning yangi

texnologiyasi bo’lib,

kompleks multimediya

amaliyot vositalari

268

be interacted with in a

seemingly real or

physical way by a

person using special

electronic equipment,

such as a helmet with a

screen inside or gloves

fitted with sensors.

реализующая с помощью

комплексных мультимедиа-

операционных сред

иллюзию

непосредственного вхожде-

ния и присутствия в

реальном времени в

стереоскопически представ-

ленном «экранном мире».

Более абстрактно - это

мнимый мир, создаваемый в

воображении пользователя.

yordamida real vaqt

oralig’ida "dunyo ekrani"ga

kirish ilyuzasini ta’minlaydi,

Bu foydalanuvchi

tasavvuridagi batafsil

mavhum xayoliy dunyodir.

The virtual

school differs from the

traditional school

through the physical

medium that links

administrators,

teachers, and students.

Виртуальное учебное

заведение - сообщество

географически разделенных

преподавателей и студентов,

которые в процессе

обучения общаются и

взаимодействуют между

собой с использованием

электронных средств

коммуникаций при

минимальном или

полностью отсутствующем

личном, непосредственном

контакте.

Virtual o’quv muassasasi –

bir-biri haqida juda oz

ma’lumotga ega bo’lgan,

yoki umuman tanimagan,

geografik jixatdan ajratilgan,

o’qituvchi va talabalar

jamiyati bo’lib ular electron

kommunikatsion vositalar

yordamida o’quv jarayonida

muloqot va xamkorlik

qiladilar.

Leased line is a private

bidirectional or

symmetric

telecommunications

line between two or

more locations

provided in exchange

for a monthly rent.

Sometimes known as a

private circuit or data

line in the UK.

Hypermedia, a term

derived from hypertext,

extends the notion of

Выделенная линия - линия

связи (канал передачи

данных), установленная

постоянно или на

длительное время. Такой

канал может называться

также арендуемым, так как

оборудование обычно

принадлежит

телекоммуникационным

компаниям и сдается ими в

аренду для исклю-

чительного пользования.

Ajratilgan liniya –doimiy

yoki uzoq muddatga

o’rnatilgan aloqa liniyasi

(ma’lumotlar uzatish kanali).

Telekommunikatsiya

kompaniyalari tomonidan

bunday kanallar ijaraga

beriladi.

http://searchsoa.techtarget.com/definition/hypertext

269

the hypertext link to

include links among

any set of multimedia

objects, including

sound, motion video,

and virtual reality. It

can also connote a

higher level of

user/network

interactivity than the

interactivity already

implicit in hypertext.

Hyperlink is a word,

phrase, or image that

you can click on to

jump to a new

document or a new

section within the

current document.

Hyperlinks are found

in nearly all Web

pages, allowing users

to click their way from

page to page. Text

hyperlinks are often

blue and underlined,

but don’t have to be.

When you move the

cursor over a

hyperlink, whether it is

text or an image, the

arrow should change to

a small hand pointing

at the link. When you

click it, a new page or

place in the current

page will open.

Гиперссылка (Hyperlink) -

элемент документа для

связи между различными

компонентами информации

внутри самого документа, в

других документах, в том

числе и размещенных на

различных компьютерах.

Gipermurojat – bir yoki turli

kompyuterlarda joylashgan,

hujjat ichidagi va

tashqarisidagi turli axborot

komponentalari orasidagi

aloqa.

Hypertext - a software

system that links topics

on the screen to related

Гипертекст (Hypertext) -

понятие, описывающее тип

интерактивной среды с

Gipertekst- interaktiv muhit

turini tasvirlash tushunchasi

bo’lib, murojatlarga o’tish

http://searchsoa.techtarget.com/definition/link

270

information and

graphics, which are

typically accessed by a

point-and-click

method.

возможностями выполнения

переходов по ссылкам.

Ссылки (адреса

форматаURL), внедренные в

слова, фразы или рисунки,

позволяют пользователю

выбрать (установить

указатель и нажать левую

кнопку мыши) текст или

рисунок и немедленно

вывести связанные с ним

сведения и материалы

мультимедиа.

imkoniyatini bajaradi.

So’zlar, iboralar yoki

rasmlarga o’rnatilgan

murojatlarni (URL manzil

formati), foydalanuvchi

(murojat ustida

sichqonchaning chap

tugmasini bosing) tanlashi

matn yoki rasm va darhol

tegishli ma’lumotlarni va

multimedia materiallarlarini

olib chiqish imkonini beradi.

Distance learning - a

method of studying in

which lectures are

broadcast or classes are

conducted by

correspondence or over

the Internet, without

the student’s needing

to attend a school or

college. Also

called distance

education.

Дистанционное обучение -

обучение на расстоянии с

использованием учебников,

персональных компьютеров

и сетей ЭВМ.

Masofaviy o’qitish –

masofadan turib shaxsiy

kompyuter va kompuyter

termog’idan, darsliklardan

foydalanib o’qitish.

Distance education -

teaching system, which

implements the method

of distance learning

educational

qualification

confirmation.

Дистанционное образование

- педагогическая система, в

которой реализуются

способы дистанционного

обучения с подтверждением

образовательного ценза.

Masofaviy ta’lim- malaka

oshirilganligini tasdiqlovchi

pedagogic tizim bo’lib, unda

masofaviy o’qitish usullari

ishlatiladi.

Document - a piece of

written, printed, or

electronic matter that

provides information

or evidence or that

serves as an official

record.

Документ - информация,

зафиксированная на

материальном носителе,

имеющая реквизиты,

позволяющие ее

идентифицировать.

Xujat – identifisirlas

imkonini beruvchi

rekvizitlarga ega bo’lgan

axborot tashuvchiga yozilgan

ahborot.

271

Domain-a group of

computers and devices

on a network that are

administered as a unit

with common rules and

procedures. Within the

Internet, domains are

defined by the IP

address. All devices

sharing a common part

of the IP address are

said to be in the same

domain.

Домен (domain) -

организационная единица в

Интернете, служащая для

идентификации узла или

группы родственных узлов.

Крупные домены могут

подразделяться на

поддомены, отражающие

различные области

интересов или

ответственности.

Domen – Internetning

tashkiliy birligi bo’lib,

identifikatsion tugunlarga

yoki qarindosh guruhlar

tuguniga hizmat qiladi. Katta

domenlar turli soxa qiziqishi

yoki masulligini ifodalovchi

domen octiga bo’linadi.

Data protection - Data

protection is the

process of

safeguarding important

information from

corruption and/or loss.

Защита информации -

действия и средства по

предотвращению утечки,

хищения, искажения или

подделки информации.

Axborot himoyasi –

axborotni soxtalashtirish,

buzish, o’g’rilash, noqonuniy

tarqatishni bartaraf etish

harakatlari va vositalari.

Internet - The global

communication

network that allows

almost all computers

worldwide to connect

and exchange

information. Some of

the early impetus for

such a network came

from the U.S.

government network

Arpanet, starting in the

1960s.

Интернет (Internet) -

открытая мировая

информационная система,

состоящая из

взаимосвязанных

компьютерных сетей,

обеспечивающая доступ к

удаленной информации и

обмен информацией между

компьютерами.

Internet – Kompyuterlar

orasida axborot almashishini

ta’minlaydigan, o’zaro

bog’langan kompyuterlar

tarmog’i bo’lib, ochiq jahon

axborot tizimi tashkil qiladi.

An Internet service

provider (ISP) is a

company that provides

customers with Internet

access. Data may be

transmitted using

several technologies,

including dial-up,

Интернет-

провайдер (Internet Service P

rovider, ISP) - организация,

предоставляющая

пользователям доступ к

Интернету.

Internet provayder

(Internet Service Provider, IS

P) –foydalanuvchilarga

Internetga kirishni

ta’minlovchi tashkilot.

272

DSL, cable modem,

wireless or dedicated

high-speed

interconnects.

Information security,

sometimes shortened to

InfoSec, is the practice

of defending

information from

unauthorized access,

use, disclosure,

disruption,

modification, perusal,

inspection, recording

or destruction. It is a

general term that can

be used regardless of

the form the data may

take (e.g. electronic,

physical).

Информационная

безопасность - состояние

защищенности инфор-

мационной среды,

обеспечивающее ее

формирование,

использование и развитие в

интересах граждан,

организаций, государства.

Axborot xavsizligi – axborot

muxitini himoyalash,

fuqorolar, korxonalar,

davlatlar

axborotini ximoyalangan

xolatini taminlash ,

rivojlantirish va undan

foydalanish.

Information

technology training -

IT Training is specific

to the Information

Technology (IT)

industry, or to the skills

necessary for

performing information

technology jobs. IT

training includes

courses related to the

application, design,

development,

implementation,

support or management

of computer-based

information systems.

Информационная

технология - система

научных и инженерных

знаний, а также методов и

средств, которая

используется для создания,

сбора, передачи, хранения и

обработки информации в

предметной области.

Axborot tеxnologiyalari –

ilmiy va

muxandislik bilimlarini

xamda usullari va vositalrini

foydalanish va ularni ygish,

uzatish ,saklash va kayta

ishlash axborot

tizimi majmuasidir.

Case study is an

account of an activity,

event or problem that

Кейс-технология -

технология организации

учебного процесса, при

Kеys-tеxnologiyasi – ukuv

jarayonida ishlatiladigan

ixtiyoriy ukuv uslubiy

273

contains a real or

hypothetical situation

and includes the

complexities you

would encounter in the

workplace. Case

studies are used to help

you see how the

complexities of real

life influence

decisions.

которой учебно-

методические материалы

комплектуются в

специальный набор (кейс) и

передаются (пересылаются)

студенту для самостоятель-

ного изучения (с

периодическими

консультациями у

назначенных ему

преподавателей).

matеriallar tеxnologiyasi va

talabaga mustakil

ishlarni bеrish va kabul

kilish tuplami.

3D Studio Max –

Application for

modeling, animation

and display of 3D

models.

3D Studio Max – это

программное обеспечение

для моделирование,

анимации и визуализации

3D моделей.

3D Studio Max - uch

o'lchamli modellashtirish,

animatsiya va ko'rsatish

uchun dasturiy ta'minoti.

Kompas – Graphic

application for

diraining documents at

verias ASAP and

ESKD standatr

Комраs – прикладная

програма графики с

возможностями оформления

дизайнерских документов

соответствующих серии

ASAP стандарта ESKD

Kompas – ASAP seriyasi va

ESKD standartlariga mufofiq

dizayn qurilish hujatlarini

pasmiylashtirish

imkoniyatlari bilan

kompyuter quvvat dizayn

tizimlari oilasi

MICROMINE –

multifunctional

application program

for 3D modelling tasks

in mining engenering

and processing

information with

dizaining aperation

MICROMINE –эта много

фуккциональная прикладная

программа для

моделирования задач для

горно-геологических

ресурсов использующихся

для информациии горного

разведовательного дела с

операциями дизайна.

MICROMINE - ko'p

funktsiyali tog'-geologik

resurslari va zaxiralari uch

o'lchovli blok modellari,

tasnifi va miqdor qurish 3D

muhitda ko'rinish va turli

geologik ma'lumotlar talqin,

tizimi, shuningdek kon

operatsiyalari dizayni uchun.

JavaScript – Script

langbge for creating

dynamic sites at

computer Network

JavaScript – скриптовый

язые для создания

динамических сайтов

компьютерных сетях.

JavaScript – Netscape

firmasi tomonidan ishlab

chiqilgan skriptlardan

tuzilgan yangi tildir.

JavaScript yordamida siz

ajoyib Web saxifalar

yaratishingiz mumkin.

274

Client-server

architecture is common

in both local and wide

area networks. For

example, if an office

has a server that stores

the company’s

database on it, the

other computers in the

office that can access

the database are

"clients" of the server.

Клиент (client) -

программное обеспечение

для доступа и получения

данных при взаимодействии

с программным

обеспечением сервера, раз-

мещенного на другом

компьютере.

Mijoz (client) – Kеrak

bulgan ma’lumot yoki

rеsursga kirish uchun mijoz

dastur ishga tushadi boshka

kompyutеrga ulanadi.

CD - A compact disc

[sometimes spelled

disk] (CD) is a small,

portable, round

medium made of

molded polymer (close

in size to the floppy

disk) for electronically

recording, storing, and

playing back audio,

video, text, and other

information in digital

form.

Компакт-диск - оптический

диск, используемый для

постоянного хранения

информации больших

объемов

Kompakt-disk – optik tolali

disk,

ma’lumotlarni saqlash

uchun.

Computer graphics are

simply images

displayed on a

computer screen.

Graphics are often

contrasted with text,

which is comprised of

characters, such as

numbers and letters,

rather than images.

Компьютерная графика - это

создание, демонстрация и

обработка графических

изображений с помощью

компьютера.

Kompyutеr grafikasi – grafik

ko’rinishdagi ma’lumotlarni

kompyutеr yordamida

namoyish etish va qayta

ishlash .

Multimedia - is the

field concerned with

the computer-

controlled integration

of text, graphics,

Мультимедиа (Multimedia) -

компьютерные системы с

интегрированной

поддержкой звукозаписей и

видеозаписей.

Multimеdia (Multimedia) –

tovushli va vidеo yozuvlarni

kompyutеr tizimi orqali

bеvosita boshqarish.

275

drawings, still and

moving images

(Video), animation,

audio, and any other

media where every

type of information can

be represented, stored,

transmitted and

processed digitally.

276

MINISTRY OF HIGHER AND SECONDARY SPECIAL EDUCATION OF THE

REPUBLIC OF UZBEKISTAN

TASHKENT STATE TECHNICAL UNIVERSITY NAMED AFTER ISLAM

KARIMOV

« APPROVE »

 Head of the department

«Information technologies»

_______________ Sagatov M.V..

2022 «_____» ______________

Syllabus

on the subject

“Information technologies in technical systems”

for specialties and directions of training bachelors

of the Faculty of Mechanics

Discussed at a meeting of the Department of Information Technology

Protocol dated «____» __________ 2022 г., № ____

Tashkent – 2022

277

Name of the discipline:
“Information technologies in

technical systems”

Subject type: Mandatory

Subject code:

Stage: 1

Semester: 1

Form of education: Full-time

Form of classes and hours allotted per

semester:
120

Lecture 30

Practical lessons 16

Laboratory lessons 14

Seminar -

Self-studying 60

Amount of credits: 4

Form of education: Full-time

Language of the subject: English

Authors of the

program:

Sagatov Miraziz Vorisovich,

Tashmatova Shaxnoza Sobirovna,

Kurbanova Kabira Erkinovna,

Khamdamova Sevara Mirazizovna

E-mail: informtgtu@mail.ru

Phone number: +99894 626 04 65

Organization:
TSTU named after Islam Karimov, department “Information

technologies”

Brief information about the course (М)

М1

The purpose of teaching the subject is to acquire knowledge on the use of

methods and tools of modern information and communication technologies

in the era of digital technologies and the acquisition of computer modeling

skills, to lay the methodology for ensuring the cybersecurity of information

systems and information resources, the principles of modern programming

technology used in professional activities and the ability to apply the

acquired knowledge and skills in solving specific tasks and problems of their

specialty and makes it possible to use modern information technologies in

various areas of professional activity, scientific and practical work. It

considers: familiarization with modern techniques and methods of using

ICT, IT, IS tools, their use in professional activities in the specialty,

mailto:informtgtu@mail.ru

278

familiarization with the possibilities of the basis of digital technologies,

factors in the development of the digital economy; skills in solving modeling

problems, using multimedia technologies, artificial intelligence systems,

computer-based information systems that automate the input, accumulation,

processing, transmission, operational management of information, the use

of software tools for solving various problems in order to obtain a reliable

result and extract maximum effect when using a computer system.

The objective of the discipline is to teach students how to use a computer

system and computer networks in solving problems of computer modeling,

design, in the development of product design using computer-aided design

systems, modern programming tools and technologies, to demonstrate the

capabilities of information and communication technologies through the

formation of a scientific worldview, to apply analysis methods studied

phenomena, processes and design solutions in the development of IT

technologies requiring legal solutions in situations, analyze the information

security of objects and systems, conduct experiments according to a given

methodology, process the results, evaluate the error and determine the

reliability of the results, as well as manage cybersecurity in the development

and implementation of solutions in the field of modern digital technologies.

Initial requirements for the course

1. Maths, informatics and programming

Competences (learning outcomes) (LO)

LO 1
the possibility of using technical, software and network resources of

information technology in areas of specialty related to the use of information

technology in technical systems.

LO 2
have ideas and knowledge about the modernization of digital infrastructure

in order to develop the digital economy.

LO 3 use of the global information system;

LO 4
select and use analytical, numerical methods for the study of mathematical

models, work with application packages for analytical and numerical study

of mathematical models.

LO 5
document processing and problem solving in various CAD design

systems.

LO 6
carrying out numerical experiments on a computer and a method for

analyzing the results obtained;

LO 7 use of the graphical capabilities of application programs in the design.

LO 8
knowledge of the basics of algorithmization and methods of programming

tasks in modern programming systems

279

Form of lesson: lecture (L) Hours

L1 The subject of the ITTS course, its goals and objectives. 2

L2
Modern automated design systems and their use in technical

systems
2

L3 Modeling. Computer modelling. Object-oriented modeling.

Computational experiment. Software for computer design
2

L4 Mathematical modeling. Use of mathematical packages for

the study and analysis of mathematical models, mathematical

packages (3D Max, Solid Works, Matlab and MathCAD).

2

L5 Graphic modeling Processing of numerical and graphic

information in engineering problems. Implementation of static

and dynamic mathematical models in Matlab and MathCAD

systems.

2

L6 Fundamentals of simulation modeling. Classification of

software simulation tools. Simulation modeling using the

Simulink package

2

L7 Programming in MATLAB. Modules and their functions.

Methods for constructing graphical models in MATLAB.
2

L8 Information security systems. Mathematical foundations of

cryptology. Issues of information security in computer

networks.

2

L9 Cyberspace and the basics of cybersecurity. Computer

technology objects used in cybersecurity.
2

L10 Modern programming technologies. Programming languages 2

L11 Object programming systems. Basic constructions of

languages and features of programming in the system. Classes,

methods and properties

2

L12 Logic programming technology. The logical structure of the

program. Conditional, unconditional and select statements.
2

L13 Components used in visual programming. Loop operators.

Their different forms Complex algorithms.
2

L14 Functions and modules. Standard and user-defined functions

in programming languages. Local, static, dynamic variables.
2

L15 Application in systems of graphic and multimedia

programming. Possibilities of the graphic module and their use.
2

Total 30

Form of lesson: Practice (P) Hours

P1
Modern computer platforms and their technical features.

Architecture and logical nodes of the computer. Requirements

for hardware and software when using CAD systems.

2

P2
MathCad document for calculating the values of expressions.

Representation of data by matrices. Working with vectors and

matrices in MathCAD. Solving systems of equations

2

280

 P3
Fundamentals of work in the MatLab system. System

capabilities. Program interface. Creation of MatLab-document

and their application in technical systems.

2

P4
Using the programming mode in the MatLab system to solve

problems in mechanics.
2

P5 Cryptographic methods of information protection 2

P6
Mathematical modeling of the problem. Algorithmization of

tasks. The use of programming constructs in solving

engineering problems in mechanics

2

P7
Visual programming. Components used in visual

programming in the field of mechanics
2

P8
Using classes and methods to work with graphical objects in

programming.
2

Total 16

Form of lesson: lab (L) Hours

L1

Basics of work in the MathCAD system System

capabilities. Program interface. Creation of MathCad-document

and their application in technical systems. Using simple

functions.

2

L2
Exploring the graphical capabilities of the MathCAD

system. Programming in the MathCAD system.
2

L3
Representation of data by matrices. Working with vectors

and matrices in MatLab.
2

L4
 Development and analysis of simulation models of

technical objects Simulation modeling using the Simulink

package

2

L5
The use of cryptographic elements in computer networks.

Data backup and recovery policy. Logical control of access to

data.

2

L6
Logical structure. Conditional, unconditional and select

statements. Components used in visual programming. Cycle

operators in programming in the field of mechanics.

2

L7

Programming of technical problems in an integrated

environment for solving problems in the field of mechanics.

Implementation of programming through modules and

application of engineering problems to object-oriented

programs.

2

Total 14

Learning strategy

Studying in information technology courses in technical systems based on the credit

system of education includes lectures, practical and laboratory products, video lectures,

presentations, as well as assignments and independent assignments. Materials on the

indicated topics related to practice and laboratory work are given, the procedure for

281

conducting practical and laboratory work and calculating the results is explained. Course

materials are studied by students on their own, practical and laboratory work, students

perform tests individually.

The following materials are available to students:

• Video lectures;

• Lecture summary in electronic form;

• Presentation slides for each topic;

• Guidelines for practical and laboratory work;

• Assignments and control exercises for each topic;

• Educational aids and instructions in electronic form.

During theoretical classes, students will be provided with the necessary notes in the form

of a video lecture. Students will be instructed to use presentations, textbooks, guides, and

other study aids to further reinforce the topic. To check the level of assimilation of the topic

by students, after each topic, a test control is carried out. If the student completes these tests

at the required level, they will be allowed to move on to the next topic.

During practical classes, students are provided with materials, presentations, examples

for solving problems on each topic, as well as tasks to check the level of mastering the topic.

Students who have fully mastered all the topics of lectures, practical and laboratory

materials are allowed to participate in the final control. The student passes the final control

at the end of the semester.

Student assessment

Assessment of students' knowledge is based on the study of educational materials (test,

assignment and written results of work) during the semester and final control.

In the course "Information technologies in technical systems" students are evaluated on a

100-point scale. Of these, 50% of the points are allocated for attendance, assessment of the

current and intermediate control, and 50% of the points relate to the final control. A student

who scores 30 or more points on the final control is considered to have mastered the subject.

Current and final points are distributed as follows:

Tasks Max score

P1 tasks 1,5

maximum

score for

current

control

–

 26 points

P2 tasks 2

P3 tasks 2

P4 tasks 2

P5 tasks 1,5

P6 tasks 1.5

P7 tasks 2

P8 tasks 1,5

L1 tasks 2

L2 tasks 2

L3 tasks 1.5

282

L4 tasks 1,5

L5 tasks 2

L6 tasks 1.5

L7 tasks 1.5

maximum attendance score 4

maximum score for intermediate

control

20

maximum score on the final control 50

Total: 100 100 points

Main educational literature

1.
Кадиров М.М. Ахборот технологиялари. Ўқув қлланма, 1-қисм. -Т.:Сано-

стандарт, 2018. - 320 б.

2.
Кадиров М.М. Техник тизимларда ахборот технологиялари. Дарслик, 2-қисм.

-Т.:Ўзбекистон файласуфлари миллий жамияти, 2019. -306 б.

3.

Дадабаева Р.А., Насридинова Ш.Т., Шоахмедова Н.Х., Ибрагимова Л.Т.,

Ерматов Ш.Т. Ахборот-коммуникация технологиялари ва тизимлари. Ўқув

қлланма. -Т.:Сано-стандарт, 2017, - 552 б

4.

Кенжабайев А.Т., Икромов М.М., Алланазаров А.Ш. Ахборот-коммуникатсия

технологиялари. Ўқув қлланма. – Т.: Ўзбекистон файласуфлари миллий

жамияти, 2017. - 408 б.

5.
Сангин В.Ф., «Комплексная зашита информацсии в корпоративних

системах», Учебное пособие. М.: ИД. «ФОРУМ» - ИНФРА М. 2019, 591с.

Extra educational literature

1.
Назиров Ш.А., обулов Р.В., Бобожонов М.Р., Рахманов .С. C ва C++ тили. Т.:-

Ворис-нашриёт, 2013. - 488 б.

2.

Кеннет C. Лаудон, Жане. П. Лаудон. Манагемент Информатион Сйстемс:

Манагинг те Дигитал Фирм, 13т Едитион, Пеарсон Едуcатион, УСА 2014. П

621.

3.

Кунwоо Лее. Принcиплес оф CАД/CАМ/CАЕ: Те Cомпутер Аидед

Енгинееринг Десигн Сериес. 5ст Едитион. Аддисон Wеслей Лонгман, УСА,

2015..

4. Алех Аллаин. Жумпинг инто C++. УСА, 2014. п 340.

5.

Азимджанова М.Т., Мурадова М.Т., Пазилов М.С. Информатика ва ахборот

технологиялари. Ўқув қлланма. –Т.: Ўзбекистон файласуфлари миллий

жамияти, 2013. -176 б.

6.
Арипов М., Доттойев С., Файзийева М. Wеб технологиялари. Ўқув қлланма. –

Т.: Ўзбекистон файласуфлари миллий жамияти, 2013. -280 б.

283

7.
Ганийев С.К., Каримов М.М., Ташев К.А. Ахборот хавфсизлиги. Дарслик. –

Т.:Фан ва технология, 2017. - 372 б.

Internet sites:

1. www.зиёнет.уз – таълим портали.

2.
www.лех.уз – Ўзбекистон Республикаси қонун ужжатлари маълумотлари

миллий базаси.

284

MINISTRY OF HIGHER AND SECONDARY SPECIAL EDUCATION OF THE

REPUBLIC OF UZBEKISTAN

TASHKENT STATE TECHNICAL UNIVERSITY NAMED AFTER ISLAM

KARIMOV

«A P P R O V E»

Vice Rector for Academic Affairs

______________________ О.О. Zaripov

«_____»_____________ 2022

INFORMATION TECHNOLOGIES IN TECHNICAL SYSTEMS

WORKING CURRICULUM

Field of knowledge: 700 000 – Engineering, manufacturing and construction

industries.

Field of education: 710 000 – Engineering.

720 000 – Industrial and technological sphere.

Directions of

education:

Directions of education indicated in the field of education (for

the Faculty of Mechanics)

Code and name of the direction of

education:

Study load of students, hours Semeste

rs, hours

T
o
ts

l
lo

a
d

Classroom activities

S
el

f-
st

u
d

y
in

g

1

T
o
ta

l

inluding

L
ec

tu
re

P
ra

ct
ic

a
l

le
ss

o
n

s

L
a

b
o

ra
to

r
y

le
ss

o
n

s

за
н

я
т
и

я

S
em

in
a

r

C
o

u
rs

e
w

o
rk

5320100 - Materials science and

technology of new materials (by

industry);

120 60 30 16 14 - - 60 120

5313600 – Metal forming machines 120 60 30 16 14 - - 60 120

5322100 – Rolling production

technology
120 60 30 16 14 - - 60 120

5312800 – Foundry technologies 120 60 30 16 14 - - 60 120

5320300 - Technological machines and

equipment (by industry)
120 60 30 16 14 - - 60 120

5314800 – Welding technology and

equipment
120 60 30 16 14 - - 60 120

5314900 - Machines and units of

refrigeration and cryogenic equipment

and air conditioning systems

120 60 30 16 14 - - 60 120

Tashkent – 2022

285

SUBJECT/CODE OF

MODULe

MBIAF

Academic

year

2022-2023

Semestr(s)

1

ECTS - Credits

4

Subject/module type

Mandatory

Language of education

English

Hours in a week

4

1.

Name of the subject

Classroom lessons

 (hours)

Self-

studying

(Hours)

Total volume

(Hours)

Information technologies in

technical systems

60 60 120

2. The content of the discipline

2.1 Purpose and objectives of the discipline

The purpose of teaching the subject is to acquire knowledge on the use of methods

and tools of modern information and communication technologies in the era of digital

technologies and the acquisition of computer modeling skills, to lay the methodology

for ensuring the cybersecurity of information systems and information resources, the

principles of modern programming technology used in professional activities and the

ability to apply the acquired knowledge and skills in solving specific tasks and problems

of their specialty.

 The objective of the discipline is to teach students how to use a computer system

and computer networks in solving problems of computer modeling, design, in the

development of product design using computer-aided design systems, modern

programming tools and technologies, to demonstrate the capabilities of information and

communication technologies through the formation of a scientific worldview, to apply

analysis methods studied phenomena, processes and design solutions in the

development of IT technologies requiring legal solutions in situations, analyze the

information security of objects and systems, conduct experiments according to a given

methodology, process the results, evaluate the error and determine the reliability of the

results, as well as manage cybersecurity in the development and implementation of

solutions in the field of modern digital technologies.

286

 Distribution of the total load by types of educational process

№ Name of theme

Teaching load by forms of

education, hours

T
o

ta
l

lo
a

d

Classroom

lessons (hours)

S
el

f-
st

u
d

y
in

g

T
o

ta
l

L
ec

tu
re

L
ab

P
ra

ct
ic

e

C
o
u

rs
e

w
o

rk

1 Introduction to the subject "Information

technologies in technical systems". The

subject of the course, its goals and

objectives. Main functions and tasks of

ICT in technical systems. Principles for

the implementation of ICT in technical

areas, modernization of digital

infrastructure in order to develop the

digital economy.

8 4 2 - 2 - 4

2 Modern computer-aided design systems

and their use in technical systems

(CAD/CAE/CAM-systems). CAD in the

field of mechanics. Classification of CAD

by intended purpose. used in computer-

aided design.

8 4 2 2 - - 4

3 Modeling. The main types of modeling,

their scope. Computer modelling.

Classification of models. The principle of

computer simulation. Expert systems.

8 4 2 - 2 - 4

4 Mathematical modeling. The use of

mathematical packages for the study and

analysis of mathematical models,

mathematical packages (3D Max, Solid

Works, Matlab and MathCAD).

8 4 2 2 - - 4

5 Graphic modeling. Processing of

numerical and graphic information in

engineering problems. Implementation of

static and dynamic mathematical models

in Matlab and MathCAD systems.

8 4 2 - 2 - 4

287

6. Fundamentals of simulation modeling.

Classification of simulation software.

Computational experiment. Varieties of

simulation modeling. Simulation

modeling using the Simulink package

8 4 2 2 - - 4

7 Programming in MATLAB. Modules and

their functions. Methods for constructing

graphical models in MATLAB.
8 4 2 - 2 2

8 Information security systems.

Mathematical foundations of cryptology.

Issues of information security in

computer networks.

8 4 2 2 - - 4

9 Cyberspace and the basics of cyber

security. Computer technology objects

used in cybersecurity.
8 4 2 - 2 - 4

10 Modern programming technologies.

Programming languages. 8 4 2 2 - - 4

11 Object programming systems. Basic

constructions of languages and features

of programming in the system. Classes,

methods and properties.

8 4 2 - 2 - 4

12 Logic programming technology. The

logical structure of the program.

Conditional, unconditional and select

statements.

8 4 2 2 - - 4

13 Components used in visual programming.

Loop operators. Their different forms

(parametric, conditional check before and

after). Complex algorithms.

8 4 2 - 2 - 4

14 Functions and modules. Standard and

user-defined functions in programming

languages. Local, static, dynamic

variables.

8 4 2 2 - - 4

15 Application in systems of graphic and

multimedia programming. Capabilities of

the graphic module and their use. Object

animation, animation options

8 4 2 - 2 - 4

Total for the subject 120 60 30 14 16 - 60

288

2.2 The main theoretical part (lectures)

The content of the subject topics:

Topic 1. Introduction to the subject "Information technologies in technical

systems". The subject of the course, its goals and objectives. Main functions and

tasks of ICT in technical systems. Principles for the implementation of ICT in

technical areas, modernization of digital infrastructure in order to develop the digital

economy. Spheres of application of information technologies at the present stage of

development of science and technology. Information, computer and applied ethics as

theoretical components of the ethics of the global communication space.

Topic 2. Modern automated design systems and their use in technical systems.

Modern computer-aided design systems and their use in technical systems

(CAD/CAE/CAM-systems). CAD in the field of mechanics. Classification of CAD

by purpose, classification of models and parameters used in computer-aided design.

Topic 3. Modeling. Basic types of modeling. Computer modelling.

Modeling. Model, the concept of a model, a general property of a model.

Classification of models. The main types of modeling, their scope. Computer

modelling. The principle of computer simulation. Expert systems.

Topic 4. Mathematical modeling. Basic concepts and principles of

mathematical modeling. The main stages of the method of mathematical

modeling.

Mathematical modeling. Basic concepts and principles of mathematical modeling.

The main stages of the method of mathematical modeling. The use of mathematical

packages for the study and analysis of mathematical models, mathematical packages

(3D Max, Solid Works, Matlab and MathCAD).

Topic 5 Graphical modeling Processing of numerical and graphical

information in engineering problems.

Graphical modeling Processing of numerical and graphic information in

engineering problems Implementation of static and dynamic mathematical models in

3D Max, Solid Works, Matlab and MathCAD systems. Mathcad graphics,

Topic 6. Simulation modeling. Simulation modeling using the Simulink

package

Fundamentals of simulation modeling. Classification of simulation software. The

role and place of simulation modeling in the study of complex systems. The essence

of simulation modeling. Object-oriented modeling. Computational experiment.

Varieties of simulation modeling. Simulation modeling using the Simulink package

Topic7. Programming in MATLAB. Modules and their functions. Methods

for constructing graphical models in MATLAB.

Topic 8. Information security systems. Issues of information security in

computer networks. Mathematical foundations of cryptology. Issues of information

289

security in computer networks. Cryptographic methods of information protection.

Electronic digital signature

Topic 9. Cyberspace and the basics of cybersecurity. Objects of computer

technologies used in ensuring cybersecurity Comprehensive assessments of the

security of automated information and telecommunication systems. Organization and

management of cybersecurity in the digitalization of the company's internal processes

(service provision, operations, etc.), cybersecurity management in the development

and implementation of solutions in the field of modern digital technologies.

Topic 10. Modern programming technologies. Programming languages.

Modern approach to programming. Systems of object-oriented programming.

Modern programming languages. Programming languages and systems, features of

their use and classification.

Topic 11. Systems of object programming. Programming systems The main

constructions of languages and features of programming in the system. Classes,

methods and properties. The concept of a class. Type class. Base classes. Properties

and their application to objects. Constructors and destructors. The object and its

components. Operators, types, procedures. The structure of the program project.

Components of the program. Examples of programs for solving engineering problems

in mechanics.

Topic 12. Logic programming technology. Logical structure of the program

The logical structure of the program. Conditional, unconditional and select

statements. Components used in visual programming. Loop operators. Their different

forms (parametric, conditional check before and after).

Topic 13. Visual programming.

Components used in visual programming. Methods of visualization of technical

problems. Operators. Their different forms (parametric, conditional check before and

after). Complex algorithms.

Topic 14. Functions and modules. Using Functions and Modules in

Programming

Standard and custom functions. Implementation of programming through modules

and application of engineering problems to object-oriented programs. Application of

functions on practical examples. Local, static, dynamic variables. Application of

structured programs in technical systems. Programming with arrays. Working with

dynamic arrays.

Topic 15. Application in graphical and multimedia programming systems.

Application in systems of graphic and multimedia programming. Capabilities of

the graphic module and their use. The role and essence of visualized programming in

technical systems. Object animation, animation options Classes and methods for

working with graphic objects. Animation of objects.

290

2.3. Instructions and recommendations for the implementation of practical

work.

In practical classes, students get acquainted and study the architecture and main

platforms of a computer system, modern software tools, the principles of using a

software package, applications for creating and processing graphic objects, the

implementation of mathematical models in MatLab, MathCad systems.

Fundamentals of algorithmization, tools for creating programs in languages for the

implementation of algorithms for solving engineering problems in OOP.

 To conduct practical classes, the teaching staff of the department develops

methodological instructions, options for tasks. In practical classes, students

strengthen knowledge and acquire skills acquired in lectures. It also provides for the

strengthening of students' knowledge through the use of textbooks and electronic

lessons.

Approximate list of practical lessons:

1. Modern computer platforms and their technical features. Computer

architecture. Logical nodes of the computer. Execution of programs using CAD

systems. Requirements for hardware and software when using CAD systems.

2. Working with vectors and matrices in MathCAD. Solving systems of

equations

3. Basics of work in the MatLab system. System capabilities. Program interface.

Creation of MatLab-document and their application in technical systems.

4. Using the programming mode in the MatLab system to solve problems in

mechanics.

5. Cryptographic methods of information protection.

6. Mathematical modeling of the problem. Algorithmization of tasks. The use of

programming constructs in solving engineering problems in mechanics

7. Visual programming. Components used in visual programming. Loop

statements in mechanical programming

8. Using classes and methods to work with graphical objects in programming.

2.4. Instructions and recommendations for the performance of laboratory

work.

The purpose of laboratory works is the assimilation and consolidation of

theoretical knowledge by students obtained in lectures and practical classes on the

subject, and the acquisition of dialogue skills with a computer is provided. Namely,

in laboratory classes, students learn and acquire the skills to use devices (multimedia

tools, a scanner, etc.), purposefully apply the necessary software applications in a

specific area, taking into account their specialty, and also acquire skills and abilities

for processing information in technical systems and implementing engineering tasks

to create electronic documents for their specialty. They get acquainted and master the

technology of applying mathematical and simulation modeling, visual design in CAD

291

systems, study programming and implementation of complex algorithms and the

basics of an object-oriented language.

Approximate list of laboratory lessons:

1. Fundamentals of work in the MathCAD system System capabilities. Program

interface. Creation of MathCad-document and their application in technical systems.

Using simple functions.

2. Studying the graphic capabilities of the MathCAD system. Programming in the

MathCAD system.

3. Data representation by matrices. Working with vectors and matrices in MatLab.

4. Development and analysis of simulation models of technical objects Simulation

modeling using the Simulink package

5. Use of elements of cryptography in computer networks. Data backup and

recovery policy. Logical control of access to data.

6. Logical structure. Conditional, unconditional and select statements.

Components used in visual programming. Loop statements in mechanical

programming

7. Programming of technical problems in an integrated environment for solving

problems in the field of mechanics. Implementation of programming through

modules and application of engineering problems to object-oriented programs.

2.5. Instructions and recommendations for the implementation of the course

work (project)

Coursework (project) is not provided for by the curriculum.

2.6. Instructions and recommendations for the performance of independent

work.

Independent work is designed to teach students to independently perform specific

educational work, search for and independently analyze the necessary information,

as well as the formation and development of skills for making responsible decisions

on this basis, as well as educational and methodological support and the full

implementation of the study load for independent work, defined in the State

educational standard for all areas of undergraduate studies.

To perform current control on independent work, the teachers of the department

have developed options for independent work. For intermediate control, topics for

independent work are compiled. In the final control, two questions out of five are

compiled on the basis of the materials given in independent work.

Recommended topics for self-study:

1. The role of information and communication technologies in the development of

the digital economy.

2. The main directions of development of the information and communication

sphere in Uzbekistan, current laws, decrees of the President of the Republic of

Uzbekistan and resolutions of the Cabinet of Ministers.

292

3. Trends in the development of system and application software.

4. The role of expert systems in management and their application in economic

sectors.

5. Prospects for the use of intelligent control systems in the field of robotics.

6. Application of computer-aided design systems in electronics, mechanics,

mechanical engineering and other areas.

7. Technologies used in the design of 3D graphics capabilities.

8. International documents on cybersecurity and the experience of foreign

countries.

9. Information security in information communication systems.

10. Creation of non-standard modules and their use in the program.

11. Application systems based on web programming.

12. Students are encouraged to prepare and submit an essay on independently

mastered topics.

3. Learning outcomes of the discipline (competencies)

 As a result of mastering the subject, the student:

• understands and knows the concepts and foundations of digital technologies,

factors in the development of the digital economy;

• acquires skills in solving modeling problems, knows the features of design

automation and can use CAD systems for the tasks of his specialty.

• must know the content and technologies of programming, their use in the

fields of technology and be able to make decisions in problems related to the

use of information and communication technologies.

4. Educational technologies and methods:

• lectures;

 • interactive case studies;

 • seminars (logical thinking, quick questions and answers);

 • work in groups;

 • prepare presentations and video tutorials.

 • individual projects;

 • Projects for collaboration and advocacy.

5. Literature:

 5.1. Main literature

1. Информатика. Базовый курс. 2-е издание./ Под ред. Симонович С.В.-

СПб.,Питер,2005-640с.ил.

2. Учебник для вузов.

3. Павловская Т.А. С/С++. Программирование на языке высокого уровня.

Учебник для вузов.- СПб.,Питер,2003-464 с.ил

293

4. Kadirov M.M. Axborot texnologiyalari. Oʻquv qoʻllanma, 1-qism. –T.: “Fan va

texnologiya”, 2018. -316 b.

5. Kadirov M.M. Texnik tizimlarda axborot texnologiyalari. Darslik, 2-qism.

–T.: “Fan va texnologiya”, 2018. -306 b.

6. Kenneth C. Laudon, Jane. P. Laudon. Management Information Systems:

Managing the Digital Firm, 13th Edition, Pearson Education, USA 2014. p 621.

7. Faithe Wempen. Computing Fundamentals IC3 EDITION. John Wiley & Sons

Ltd, United Kingdom. 2014. P 722.

8. Beth Melton. Microsoft Office Professional 2013. Step by Step. USA 2013. p

1184.

9. Kunwoo Lee. Principles of CAD/CAM/CAE: The Computer Aided Engineering

Design Series. 5st Edition. Addison Wesley Longman, USA, 2015.

10. Alex Allain. Jumping into C++. USA, 2014. p 340.

11. Nazirov Sh.A., Qobulov R.V., Bobojonov M.R., Raxmanov Q.S. C va C++ tili.

Darslik. –T.: “Voris”, 2013. -488 b.

5.2. Extra literature:

12. Мирзиёев Ш.М. Критический анализ, строгая дисциплина и личная

ответственность должны быть повседневным правилом каждого руководителя.

Выступление Президента Республики Узбекистан на заседании Кабинета

Министров Республики Узбекистан об итогах 2016 года и перспективах на 2017

год. // Газета "Народное слово". 2017, 16 января, №11.

13. Конституция Республики Узбекистан. - Т .: Узбекистан, 2017. - 46 с.

14. Аюпов Р.Х., Болтабоева Г.Р. Инновационные методы и инструменты

обучения. узб. яз. ТМИ, 2014. -160 с.12. Петров М.Н., Молочков В.П.

Компьютерная графика. Учебник для вузов. -СПб: Питер,2003,736 с.

15. Попов В.Б. Практикум по интернет технологиям. Учбный курс- СПб.,

16. Питер,2005-480с.ил.

17. Кренке Д. Теория и практика построения баз данных; перев.с англ.- СПб.,

18. Питер,2003-800с.ил

5.3. Informational resources.

19. www.gov.uz – Государственный портал Республики Узбекистан.

20. www.lex.uz–Национальная база законадательства Республики

Узбекистан.

21. www.ru.wikipedia.org

22. http://www.intuit.ru/department/informatics/intinfo/

23. http://www.dstu.edu.ru/informatics/mtdss/index.html

6. The model program was approved by the Tashkent State Technical University

protocol No. ___ dated ”___” ___________ 2022.

7. Responsible for the subject (module):

http://www.gov.uz/
http://www.lex.uz/
http://www.ru.wikipedia.org/
http://www.intuit.ru/department/informatics/intinfo/
http://www.dstu.edu.ru/informatics/mtdss/index.html

294

Sagatov M.V. - TSTU, head of the department "Information technologies" doctor of

technical sciences, prof.

Karimova D. - TSTU, associate professor of the department “Information

technologies”

Kadirov M.M. - TSTU, Associate Professor of the Department “Information

technologies”

Tashmatova Sh.S. - TSTU, senior lecturer of the department “Information

technologies”.

8. The working curriculum was discussed at a meeting of the Department of

Information Technology of the Faculty of Electronics and Automation and

recommended to the Faculty's Educational and Methodological Council

(Protocol No. ______ dated "____" __________ 2022).

Head of the Department Sagatov M.V.

Secretary Akbarova Sh.A.

The working curriculum was considered at a meeting of the Educational and

Methodological Council of the Faculty of Mechanics and recommended to the

Scientific and Methodological Council of the University

(Protocol No. ______ dated "____" __________ 2022).

Chairman of the educational and

methodological council of the faculty _____________________

Secretary ______________________

The working curriculum was reviewed and approved by the Scientific and

Methodological Council of the Tashkent State Technical University

(Protocol No. ______ dated "____" __________ 2022).

 Secretary N. Mambetov

295

MINISTRY OF HIGHER AND SECONDARY SPECIAL EDUCATION OF THE

REPUBLIC OF UZBEKISTAN

TASHKENT STATE TECHNICAL UNIVERSITY

Tests

on the subject

“Information technologies in technical systems”

Tashkent 2022

296

1. Hardware and software

All information can be processed by a computer if it is presented:

in binary sign system*

in decimal sign system

in the form of symbols and numbers

only in the form of characters of the Latin alphabet

2. The data is:

information that is processed by a computer in binary computer code

a sequence of instructions that a computer executes in the process of processing data

numeric and text information

sound and graphic information

3. The program is:

information that is processed by a computer in binary computer code

a sequence of instructions that a computer executes in the process of processing data

numeric and text information

sound and graphic information

4. Processes data in accordance with a given program:

CPU

Input Devices

RAM

output devices

5. During processing, the program and data must be loaded:

into working memory

into permanent memory

into long-term memory

6. The number of bits perceived by the microprocessor as a whole is:

processor capacity

clock frequency

computer internal memory

computer performance

7. The number of cycles per second is:

processor capacity

clock frequency

computer internal memory

297

computer performance

8. The program for testing, setting the necessary parameters for the equipment used in this

computer and loading the operating system is located:

in RAM

in permanent memory

in long-term memory

9. For long-term storage of information, the following is used:

1) external memory

2) RAM

3) permanent memory

 10. Write-once discs:

1) CD-ROM and DVD-ROM

2) CD-R and DVD-R

3) CD-RW and DVD-RW

11. Rewritable discs:

1) CD-ROM and DVD-ROM

2) CD-R and DVD-R

3) CD-RW and DVD-RW

12. Read-only drives:

1) CD-ROM and DVD-ROM

2) CD-R and DVD-R

3) CD-RW and DVD-RW

13. A non-volatile type of memory that allows you to record and store data in

microcircuits:

1) hard drive

2) floppy disk

3) laser disc

4) flash memory

14. Information input devices include:

1) keyboard

2) monitor

3) mouse

4) scanner

298

5) modem

15. Output devices include:

1) monitor

2) scanner

3) mouse

4) modem

5) printer

16. A device capable of reading graphic information and converting it into digital form

is:

1) monitor

2) scanner

3) mouse

4) modem

5) printer

17. Devices that allow you to receive video images and photographs directly in digital

(computer) format are:

1) monitor

2) scanner

3) mouse

4) digital cameras

5) printer

18. Device for displaying text and graphic information:

1) monitor

2) scanner

3) mouse

4) modem

5) printer

19. Device for printing text and graphic information on paper:

1) monitor

2) scanner

3) mouse

4) modem

5) printer

299

20. A device for entering numerical and textual information into a computer:

1) monitor

2) scanner

3) keyboard

4) modem

5) printer

21. To connect a computer to a local network, use:

1) network card

2) modem

3) joystick

4) touch panel

5) graphics tablet

22. To connect a computer to a telephone line for transmitting and receiving

information over a long distance, use:

1) network card

2) modem

3) joystick

4) touch panel

5) graphics tablet

23. Programs designed for the operation and maintenance of computers:

1) systemic

2) Programming systems

3) applied

24. Operating systems are ... programs:

1) systemic

2) Programming systems

3) applied

25. Device drivers are ... programs:

1) systemic

2) Programming systems

3) applied

26. Antivirus programs are ... programs:

systemic

300

programming systems

applied

27. Programs that the user uses to solve various problems without resorting to

programming:

systemic

programming systems

applied

?Which panel is used to insert mathematical symbols and operators into

documents?

+ Math

= Controls

= Evaluation

= Standard

?MathCAD window elements include…

+title bar, menu bar, toolbar buttons, worksheet window, status bar

= character conversions, toolbar buttons, program name

= toolbar buttons, program name, context menu

= title bar, program name, context menu

? Which panel is used to insert templates of integration, differentiation,

summation?

 +Calculus

 =Graph

 =Evaluation

 =Matrix

? What is "+" in MathCAD document?

 + input cursor

 = input lines

 = character placeholder

 = mouse pointer

? Dividing X by Z in MathCAD:

+ X

 Z

= X / Z

= X : Z

301

= X \ Z

? How to enter Latin numerals into a mathematical expression?

+ typing on the keyboard

= using the Greek toolbar

= using panel panel graphic

= using panel symbolic panel

? In MathCAD there are:

+ local and global variables

= global and simple variables

= local and simple variables

=complex and simple variables

? Find the correct notation for the mathematical expression: А=(x+3)/2

 in the MathCad package:

 +A =

 =А= (x+3)/2

 =A=2/х+3

 =A=3+х/2

? Which keyboard shortcut cuts parts of a formula to the clipboard?

+ Ctrl+X

= Ctrl+C

= Shift+V

= Shift+S

? To insert a hyperlink, use the "Insert / Hyperlink" command?

+ True

= False

= Shift+C

= Ctrl+C

? Which panel contains arithmetic operators?

+ Calculator Toolbar

= Matrix Toolbar

= Greek Symbol Toolbar

= Graph Toolbar

302

? How to enter the number "pi" on the keyboard?

+ Ctrl+Shift+p

= ++j +Shift

= Ctrl+Shift+z

= Ctrl+Shift+е

? How to place two charts on one template?

+ having typed the name of the first function on the Oy axis, press the comma key

and enter the name of the second function

= having typed the name of the function on the Oy axis, press Enter and enter the

name of the second function

= having typed the name of the function on the Oy axis, press the spacebar and

enter the name of the second function

=by typing on the y-axis the name of the function, press Page Down and the name

of the second function

? What does a red star mean next to an expression in MathCAD?

 + looking for a symbolic solution

= contains an error

= result output

=input variables

? What is the keyboard shortcut for the equal sign?

+ Ctrl+<=>

= Ctrl+<;>

= Alt+<.>

= Alt+<:>

? Which of the operations cannot be performed symbolically with a matrix in

MathCAD

+ define parameters

= compute determinant

= find inverse matrix

= transpose

? Which of the signs cannot be used inside the block for solving a system of

equations?

+ :=

= ≤

303

= ≥

= =

? What is the keyboard shortcut for the matrix template?

+ Ctrl+m

= Ctrl+v

 = Alt+v

 = Alt+n

? How many toolbars in MathCAD

+3

=4

=5

=6

? To enter the derivative of a function, you must use

+ Calculus

= Evaluation

= Boolean

= Calculator

? In the optimization problem, the function to be optimized is introduced

using the sign:

+ :=

= =

= +

= :

? The matrix is given in the form: i=1..5, R_{i}=3\cdot i. How many elements

are in the matrix?

+ 5

= 7

= 8

= 6

? Choose the correct assignment operator

+ k:=p+a*cos(a)

= g = a +b +c

= a:= b**c

304

= y:=cos x + gamma

? Choose the correct assignment operator

+ b:=atan(2.5)+log(5)

= b:=arctg(2.5)+log(5)

= b:=atg(2.5)+log(5)

= b=arctan(2.5)+lg(5)

? What is the ORIGIN system variable used for?

+ To set the initial value of the element number in the array

= To find an original solution to the problem

= To set the accuracy of calculations

= To determine the dimension of the matrix

? Given two vectors V1 and V2 containing 8 elements each. What will be the

result of this operation

+ Matrix with 8 rows and 8 columns

= vector of 8 elements

= one number

= number 64

? What types of areas does a Mathcad document consist of?

+ from computing, graphic and text

=from text and sound

= from graphic and slide

= from slide and sound

? MathCAD allows you to create and edit files with the extension ...

+ mcd

= txt

= rtf

= mp3

? Check the built-in functions of MathCAD that can be called using the

toolbar "Calculator" ("Calculator").

+ sin

= Isolve

= solve

= root

305

? Check the operators that are used to assign a value to a variable in

MathCAD.

+ :=

= =

= :

= -

? Check the operators that are used in MathCAD to set the range of values.

+ . .

= *

= :=

= =

? The MathCAD package is intended for:

+ perform mathematical calculations

= work with graphic files

= creating text documents

= create presentations

? What type of special-purpose programs does the MathCad package belong

to:

+ math packages

= automatic systems

= expert systems

= create presentations

? What is the name of the MathCad program document:

+ worksheet;

= workbook;

= workspace.

= workplace.

? With the help of which in the MathCad program the values of the letter

designations are set:

+ using the assignment operator;

=.using a special control panel;

= using function keys

= using the Enter key.

306

? In the MathCad "Insert Matrix" dialog box, you can define a matrix as

follows:

+ set the number of rows and columns, and click OK;

= select the template of the required matrix;

= choose the number of rows and columns in the m x n matrix.

= using the Enter key

? What graphs can be built in MathCad:

+ 2D and 3D

= 3D only

= 2D only

=multidimensional

? What needs to be done to format a graph in MathCad:

+ double click in the graph area;

= execute command Insert;

= Right-click and select Format.

= Right-click and select Standard.

? Files with extension . mcd refer to:

+ MS MathCAD

= MS PowerPoint

= MS Word

= MS Excel

? MathCAD allows you to create and edit files with the extension ...

+ .mcd

= .txt

=. rtf

=. Mp3

? The MathCAD Math Panel does not contain a button:

+programming panel

= symbolic computation keywords

=bar of trigonometric functions

=calculator

307

? To build two graphs in the same coordinate system, both functions are

entered in the expression window, between which the sign ?

+ ,

- ;

- /

- :

? In order to build a graph of the function f (x) in a rectangular Cartesian

coordinate system, you need to select the button in the graphs panel?

+

=

=

=

? What are arimetic operators used for?

+ to perform arithmetic calculations

= for plotting;

= to solve logical problems;

= for solving static problems;

? What are relativity operators used for?

+ to compare numeric operands

=for plotting;

= to solve logical problems;

= for solving static problems;

? What are logical operators used for?

+ to create boolean expressions

= to perform arithmetic calculations.

= for solving static problems;

= for plotting

? The main toolbars are:

+Standard panel; Formatting panel; Math panel

= Panel Standard; Formatting panel; Drawing panel

= Formatting panel; Drawing panel; Math panel

308

= Math panel; Standard panel; Drawing panel

? To create a new document in Mathcad, the function buttons are used:

+Ctrl+N

=Ctrl+O

=Ctrl+W

=Ctrl+P

? How to save a document created in Mathcad:

+Ctrl+.W

=Ctrl+O

=Ctrl+H

=Ctrl+P

? What keys can be used to activate the matrix window in Mathcad

+Ctrl+M

=Ctrl+O

=Ctrl+H

=Ctrl+P

? Which keys can be used to activate the window for inserting functions in

Mathcad:

+Ctrl+E

=Ctrl+O

=Ctrl+H

=Ctrl+P

? what is the panel used for?

+ for building two- and three-dimensional graphs

= to enter logical operators

= to enter vectors and matrices

= to enter Greek letters

? what is the panel used for?

+ to build two-dimensional graphs;

= To enter logical operators

= To enter vectors and matrices

= To enter Greek letters

309

? what is the panel used for?

+ for scaling Cartesian coordinates

= for 2D plotting

=for 3D plotting

= to enter Greek letters

? what is the panel used for ?

+for tracing the displayed coordinates of the selected graph

= to enter Greek letters

= for 2D plotting

=for 3D plotting

? what is the panel used for ?

+ for building polar graphs

= to enter Greek letters

=for 3D plotting

= for 2D plotting

? what is the panel used for ?

+ for surface plotting

= to enter Greek letters

=for 3D plotting

= for 2D plotting

? what is the panel used for ?

+ to set the graph level line

= to enter Greek letters

=for 3D plotting

= to build two-dimensional graphs;

? what is the panel used for?

+ for surface plotting

= to set characters

= to enter Greek letters

= for 2D plotting

310

? what is the panel used for?

+ for building 3D graphs

= to set characters

= to enter Greek letters

= for 2D plotting

? what is the panel used for?

+ to enter vectors

= to set characters

= to enter Greek letters

= for 2D plotting

? What is " " in a MathCAD document?

+ character placeholder

= assignment operator

 = input cursor

 = mouse pointer

? Choose the correct assignment operator

+ c:=atan(8.3)+log(15)

= c:=arctg(8.3)+log(15)

= b:=atg(8.3)+lg(15)

= c:=arctan(8.3)+lg5(15)

? Check the built-in functions of MathCAD that can be called using the

toolbar "Calculator" ("Calculator").

+ cos

= Isolve

= solve

311

MINISTRY OF SECONDARY AND SPECIAL EDUCATION OF THE REPUBLIC OF

UZBEKISTAN

TASHKENT STATE TECHNICAL UNIVERSITY

NAMED AFTER ISLAM KARIMOV

Literature

on subject

“Information technologies in technical systems”

Tashkent 2022

312

Main literature

1. Kadirov M.M. Axborot texnologiyalari. Oʻquv qoʻllanma, 1-qism. –T.: “Fan va

texnologiya”, 2018. -316 b.

2. Kadirov M.M. Texnik tizimlarda axborot texnologiyalari. Darslik, 2-qism.

–T.: “Fan va texnologiya”, 2018. -306 b.

3. Kenneth C. Laudon, Jane. P. Laudon. Management Information Systems: Managing the

Digital Firm, 13th Edition, Pearson Education, USA 2014. P 621.

4. Faithe Wempen. Computing Fundamentals IC3 EDITION. John Wiley & Sons Ltd, United

Kingdom. 2014. P 722.

5. Beth Melton. Microsoft Office Professional 2013. Step by Step. USA 2013. P 1184.

6. Kunwoo Lee. Principles of CAD/CAM/CAE: The Computer Aided Engineering Design

Series. 5st Edition. Addison Wesley Longman, USA, 2015.

7. Alex Allain. Jumping into C++. USA, 2014. p 340.

8. Nazirov Sh.A., Qobulov R.V., Bobojonov M.R., Raxmanov Q.S. C va C++ tili. Darslik. –

T.: “Voris”, 2013. -488 b.

Extra literature

1. Mirziyoyev Sh.M. Tanqidiy tahlil, qat’iy tartib-intizom va shaxsiy javobgarlik – har bir

rahbar faoliyatining kundalik qoidasi bo‘lishi kerak. O‘zbekiston Respublikasi Vazirlar

Mahkamasining 2016 yil yakunlari va 2017 yil istiqbollariga bag‘ishlangan majlisidagi

O‘zbekiston Respublikasi Prezidentining nutqi. // “Xalq so‘zi” gazetasi. 2017 y., 16 yanvar,

№11.

2. O‘zbekiston Respublikasi Konstitutsiyasi. - T.: O‘zbekiston, 2017. - 46 b.

3. Ayupov R.X., Boltaboyeva G.R. Innovatsiyon ta’lim usullari va vositalari. TMI, 2014. -

160 b.

Internet sites

1. www.gov.uz – Government portal of the Republic of Uzbekistan.

2.www.lex.uz– National database of information on legal documents of the Republic of

Uzbekistan.

3. www.ru.wikipedia.org

4. http://www.intuit.ru/department/informatics/intinfo/

5. http://www.dstu.edu.ru/informatics/mtdss/index.html

