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Preface

Objective of the Book

The first edition of Basic Econometrics was published thirty years ago. Over the years,
there have been important developments in the theory and practice of econometrics. In
each of the subsequent editions, I have tried to incorporate the major developments in the
field. The fifth edition continues that tradition.

What has not changed, however, over all these years is my firm belief that econometrics
can be taught to the beginner in an intuitive and informative way without resorting to
matrix algebra, calculus, or statistics beyond the introductory level. Some subject material
is inherently technical. In that case I have put the material in the appropriate appendix or
refer the reader to the appropriate sources. Even then, I have tried to simplify the technical
material so that the reader can get an intuitive understanding of this material.

I am pleasantly surprised not only by the longevity of this book but also by the fact that
the book is widely used not only by students of economics and finance but also by students
and researchers in the fields of politics, international relations, agriculture, and health
sciences. All these students will find the new edition with its expanded topics and concrete
applications very useful. In this edition I have paid even more attention to the relevance and
timeliness of the real data used in the text. In fact, I have added about fifteen new illustra-
tive examples and more than thirty new end-of-chapter exercises. Also, I have updated
the data for about two dozen of the previous edition’s examples and more than twenty
exercises.

Although I am in the eighth decade of my life, I have not lost my love for econometrics,
and I strive to keep up with the major developments in the field. To assist me in this
endeavor, I am now happy to have Dr. Dawn Porter, Assistant Professor of Statistics at the
Marshall School of Business at the University of Southern California in Los Angeles, as
my co-author. Both of us have been deeply involved in bringing the fifth edition of Basic
Econometrics to fruition.

Major Features of the Fifth Edition

XVi

Before discussing the specific changes in the various chapters, the following features of the
new edition are worth noting:

1. Practically all of the data used in the illustrative examples have been updated.
2. Several new examples have been added.

3. In several chapters, we have included extended concluding examples that illustrate the
various points made in the text.

4. Concrete computer printouts of several examples are included in the book. Most of these
results are based on EViews (version 6) and STATA (version 10), as well as MINITAB
(version 15).

5. Several new diagrams and graphs are included in various chapters.
6. Several new data-based exercises are included in the various chapters.

7. Small-sized data are included in the book, but large sample data are posted on the book’s
website, thereby minimizing the size of the text. The website will also publish all of the
data used in the book and will be periodically updated.
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In a few chapters, we have included class exercises in which students are encouraged to
obtain their own data and implement the various techniques discussed in the book. Some
Monte Carlo simulations are also included in the book.

Specific Changes to the Fifth Edition

Some chapter-specific changes are as follows:

1.

The assumptions underlying the classical linear regression model (CLRM) introduced
in Chapter 3 now make a careful distinction between fixed regressors (explanatory
variables) and random regressors. We discuss the importance of the distinction.

The appendix to Chapter 6 discusses the properties of logarithms, the Box-Cox trans-
formations, and various growth formulas.

Chapter 7 now discusses not only the marginal impact of a single regressor on the
dependent variable but also the impacts of simultaneous changes of all the explanatory
variables on the dependent variable. This chapter has also been reorganized in the same
structure as the assumptions from Chapter 3.

4. A comparison of the various tests of heteroscedasticity is given in Chapter 11.

10.

11.

12.

There is a new discussion of the impact of structural breaks on autocorrelation in
Chapter 12.

New topics included in Chapter 13 are missing data, non-normal error term, and
stochastic, or random, regressors.

A non-linear regression model discussed in Chapter 14 has a concrete application of
the Box-Cox transformation.

Chapter 15 contains several new examples that illustrate the use of logit and probit
models in various fields.

Chapter 16 on panel data regression models has been thoroughly revised and illus-
trated with several applications.

An extended discussion of Sims and Granger causality tests is now included in Chap-
ter 17.

Stationary and non-stationary time series, as well as some of the problems associated
with various tests of stationarity, are now thoroughly discussed in Chapter 21.
Chapter 22 includes a discussion on why taking the first differences of a time series
for the purpose of making it stationary may not be the appropriate strategy in some
situations.

Besides these specific changes, errors and misprints in the previous editions have been cor-
rected and the discussions of several topics in the various chapters have been streamlined.

Organization and Options

The extensive coverage in this edition gives the instructor substantial flexibility in choos-
ing topics that are appropriate to the intended audience. Here are suggestions about how
this book may be used.

One-semester course for the nonspecialist: Appendix A, Chapters 1 through 9, an
overview of Chapters 10, 11, 12 (omitting all the proofs).

One-semester course for economics majors: Appendix A, Chapters 1 through 13.
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Two-semester course for economics majors: Appendices A, B, C, Chapters 1 to 22.
Chapters 14 and 16 may be covered on an optional basis. Some of the technical appen-
dices may be omitted.

Graduate and postgraduate students and researchers: This book is a handy refer-
ence book on the major themes in econometrics.

Supplements

A comprehensive website contains the following supplementary material:

—Data from the text, as well as additional large set data referenced in the book; the data
will be periodically updated by the authors.

—A Solutions Manual, written by Dawn Porter, providing answers to all of the
questions and problems throughout the text.

—A digital image library containing all of the graphs and figures from the text.

For more information, please go to www.mhhe.com/gujaratiSe
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Introduction

I.1 What Is Econometrics?

Literally interpreted, econometrics means “economic measurement.” Although measure-
ment is an important part of econometrics, the scope of econometrics is much broader, as
can be seen from the following quotations:

Econometrics, the result of a certain outlook on the role of economics, consists of the applica-
tion of mathematical statistics to economic data to lend empirical support to the models
constructed by mathematical economics and to obtain numerical results.!

... econometrics may be defined as the quantitative analysis of actual economic phenomena
based on the concurrent development of theory and observation, related by appropriate
methods of inference.”

Econometrics may be defined as the social science in which the tools of economic theory,
mathematics, and statistical inference are applied to the analysis of economic phenomena.’

Econometrics is concerned with the empirical determination of economic laws.*

The art of the econometrician consists in finding the set of assumptions that are both suffi-
ciently specific and sufficiently realistic to allow him to take the best possible advantage of the
data available to him.’

Econometricians . . . are a positive help in trying to dispel the poor public image of economics
(quantitative or otherwise) as a subject in which empty boxes are opened by assuming the
existence of can-openers to reveal contents which any ten economists will interpret in
11 ways.°

The method of econometric research aims, essentially, at a conjunction of economic theory

and actual measurements, using the theory and technique of statistical inference as a bridge
far 7

pier.

'Gerhard Tintner, Methodology of Mathematical Economics and Econometrics, The University of Chicago
Press, Chicago, 1968, p. 74.

2p, A. Samuelson, T. C. Koopmans, and J. R. N. Stone, “Report of the Evaluative Committee for Econo-
metrica,” Econometrica, vol. 22, no. 2, April 1954, pp. 141-146.

3Arthur S. Goldberger, Econometric Theory, John Wiley & Sons, New York, 1964, p. 1.

“4H. Theil, Principles of Econometrics, John Wiley & Sons, New York, 1971, p. 1.

SE. Malinvaud, Statistical Methods of Econometrics, Rand McNally, Chicago, 1966, p. 514.

6Adrian C. Darnell and J. Lynne Evans, The Limits of Econometrics, Edward Elgar Publishing, Hants,
England, 1990, p. 54.

’T. Haavelmo, “The Probability Approach in Econometrics,” Supplement to Econometrica, vol. 12,
1944, preface p. iii.
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[.2 Why a Separate Discipline?

As the preceding definitions suggest, econometrics is an amalgam of economic theory,
mathematical economics, economic statistics, and mathematical statistics. Yet the subject
deserves to be studied in its own right for the following reasons.

Economic theory makes statements or hypotheses that are mostly qualitative in nature.
For example, microeconomic theory states that, other things remaining the same, a reduc-
tion in the price of a commodity is expected to increase the quantity demanded of that com-
modity. Thus, economic theory postulates a negative or inverse relationship between the
price and quantity demanded of a commodity. But the theory itself does not provide any
numerical measure of the relationship between the two; that is, it does not tell by how much
the quantity will go up or down as a result of a certain change in the price of the commod-
ity. It is the job of the econometrician to provide such numerical estimates. Stated differ-
ently, econometrics gives empirical content to most economic theory.

The main concern of mathematical economics is to express economic theory in mathe-
matical form (equations) without regard to measurability or empirical verification of the
theory. Econometrics, as noted previously, is mainly interested in the empirical verification
of economic theory. As we shall see, the econometrician often uses the mathematical
equations proposed by the mathematical economist but puts these equations in such a form
that they lend themselves to empirical testing. And this conversion of mathematical into
econometric equations requires a great deal of ingenuity and practical skill.

Economic statistics is mainly concerned with collecting, processing, and presenting
economic data in the form of charts and tables. These are the jobs of the economic statisti-
cian. It is he or she who is primarily responsible for collecting data on gross national
product (GNP), employment, unemployment, prices, and so on. The data thus collected
constitute the raw data for econometric work. But the economic statistician does not go any
further, not being concerned with using the collected data to test economic theories. Of
course, one who does that becomes an econometrician.

Although mathematical statistics provides many tools used in the trade, the econometri-
cian often needs special methods in view of the unique nature of most economic data,
namely, that the data are not generated as the result of a controlled experiment. The econo-
metrician, like the meteorologist, generally depends on data that cannot be controlled
directly. As Spanos correctly observes:

In econometrics the modeler is often faced with observational as opposed to experimental
data. This has two important implications for empirical modeling in econometrics. First, the
modeler is required to master very different skills than those needed for analyzing experimen-
tal data. . . . Second, the separation of the data collector and the data analyst requires the mod-
eler to familiarize himself/herself thoroughly with the nature and structure of data in question.®

1.3 Methodology of Econometrics

How do econometricians proceed in their analysis of an economic problem? That is, what
is their methodology? Although there are several schools of thought on econometric
methodology, we present here the traditional or classical methodology, which still domi-
nates empirical research in economics and other social and behavioral sciences.’

8Aris Spanos, Probability Theory and Statistical Inference: Econometric Modeling with Observational Data,
Cambridge University Press, United Kingdom, 1999, p. 21.

°For an enlightening, if advanced, discussion on econometric methodology, see David F. Hendry,
Dynamic Econometrics, Oxford University Press, New York, 1995. See also Aris Spanos, op. cit.
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Broadly speaking, traditional econometric methodology proceeds along the following
lines:

. Statement of theory or hypothesis.

. Specification of the mathematical model of the theory.

. Specification of the statistical, or econometric, model.

. Obtaining the data.

. Estimation of the parameters of the econometric model.
Hypothesis testing.

. Forecasting or prediction.

. Using the model for control or policy purposes.

To illustrate the preceding steps, let us consider the well-known Keynesian theory of
consumption.

1. Statement of Theory or Hypothesis
Keynes stated:

The fundamental psychological law . . . is that men [women] are disposed, as a rule and on
average, to increase their consumption as their income increases, but not as much as the
increase in their income. '

In short, Keynes postulated that the marginal propensity to consume (MPC), the rate of
change of consumption for a unit (say, a dollar) change in income, is greater than zero but
less than 1.

2. Specification of the Mathematical Model of Consumption

Although Keynes postulated a positive relationship between consumption and income,
he did not specify the precise form of the functional relationship between the two. For
simplicity, a mathematical economist might suggest the following form of the Keynesian
consumption function:

Y = /31 +ﬂ2X 0< ﬂz <1 (|31)

where Y = consumption expenditure and X = income, and where 8; and f,, known as the
parameters of the model, are, respectively, the intercept and slope coefficients.

The slope coefficient 8, measures the MPC. Geometrically, Equation 1.3.1 is as shown
in Figure I.1. This equation, which states that consumption is linearly related to income, is
an example of a mathematical model of the relationship between consumption and income
that is called the consumption function in economics. A model is simply a set of mathe-
matical equations. If the model has only one equation, as in the preceding example, it is
called a single-equation model, whereas if it has more than one equation, it is known as a
multiple-equation model (the latter will be considered later in the book).

In Eq. (I.3.1) the variable appearing on the left side of the equality sign is called the
dependent variable and the variable(s) on the right side is called the independent, or
explanatory, variable(s). Thus, in the Keynesian consumption function, Eq. (I.3.1), con-
sumption (expenditure) is the dependent variable and income is the explanatory variable.

%9ohn Maynard Keynes, The General Theory of Employment, Interest and Money, Harcourt Brace
Jovanovich, New York, 1936, p. 96.
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FIGURE 1.1

Keynesian
consumption function.

B, = MPC

Consumption expenditure

B

Income

3. Specification of the Econometric Model
of Consumption

The purely mathematical model of the consumption function given in Eq. (I.3.1) is of lim-
ited interest to the econometrician, for it assumes that there is an exact or deterministic
relationship between consumption and income. But relationships between economic vari-
ables are generally inexact. Thus, if we were to obtain data on consumption expenditure and
disposable (i.e., aftertax) income of a sample of, say, 500 American families and plot these
data on a graph paper with consumption expenditure on the vertical axis and disposable in-
come on the horizontal axis, we would not expect all 500 observations to lie exactly on the
straight line of Eq. (I.3.1) because, in addition to income, other variables affect consump-
tion expenditure. For example, size of family, ages of the members in the family, family
religion, etc., are likely to exert some influence on consumption.

To allow for the inexact relationships between economic variables, the econometrician
would modify the deterministic consumption function in Eq. (I.3.1) as follows:

Y=8+BX+u (1.3.2)

where u, known as the disturbance, or error, term, is a random (stochastic) variable that
has well-defined probabilistic properties. The disturbance term u may well represent all
those factors that affect consumption but are not taken into account explicitly.

Equation 1.3.2 is an example of an econometric model. More technically, it is an exam-
ple of a linear regression model, which is the major concern of this book. The economet-
ric consumption function hypothesizes that the dependent variable Y (consumption) is
linearly related to the explanatory variable X (income) but that the relationship between the
two is not exact; it is subject to individual variation.

The econometric model of the consumption function can be depicted as shown in
Figure .2.



FIGURE 1.2
Econometric model
of the Keynesian
consumption function.
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4. Obtaining Data

To estimate the econometric model given in Eq. (I.3.2), that is, to obtain the numerical
values of B; and B,, we need data. Although we will have more to say about the crucial
importance of data for economic analysis in the next chapter, for now let us look at the
data given in Table 1.1, which relate to the U.S. economy for the period 1960-2005. The
Y variable in this table is the aggregate (for the economy as a whole) personal consumption
expenditure (PCE) and the X variable is gross domestic product (GDP), a measure of
aggregate income, both measured in billions of 2000 dollars. Therefore, the data are in
“real” terms; that is, they are measured in constant (2000) prices. The data are plotted
in Figure 1.3 (cf. Figure 1.2). For the time being neglect the line drawn in the figure.

5. Estimation of the Econometric Model

Now that we have the data, our next task is to estimate the parameters of the consumption
function. The numerical estimates of the parameters give empirical content to the con-
sumption function. The actual mechanics of estimating the parameters will be discussed in
Chapter 3. For now, note that the statistical technique of regression analysis is the main
tool used to obtain the estimates. Using this technique and the data given in Table 1.1, we
obtain the following estimates of 8; and B,, namely, —299.5913 and 0.7218. Thus, the
estimated consumption function is:

Y, = —299.5913 + 0.7218X, (1.3.3)

The hat on the Y indicates that it is an estimate.!! The estimated consumption function (i.e.,
regression line) is shown in Figure 1.3.

"TAs a matter of convention, a hat over a variable or parameter indicates that it is an estimated value.
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TABLE 1.1

Data on Y (Personal
Consumption
Expenditure) and

X (Gross Domestic
Product, 1960-2005),
both in 2000 Billions
of Dollars

Source: Economic Report of

the President, 2007, Table B-2,

p. 230.

Year

1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005

PCE(Y)

1597.4
1630.3
1711.1
1781.6
1888.4
2007.7
2121.8
2185.0
2310.5
2396.4
2451.9
2545.5
2701.3
2833.8
2812.3
2876.9
3035.5
3164.1
3303.1
3383.4
3374.1
3422.2
3470.3
3668.6
3863.3
4064.0
4228.9
4369.8
4546.9
4675.0
4770.3
4778.4
4934.8
5099.8
5290.7
5433.5
5619.4
5831.8
6125.8
6438.6
6739.4
6910.4
7099.3
72953
75771
7841.2

GDP(X)

2501.8
2560.0
2715.2
2834.0
2998.6
3191.1
3399.1
3484.6
3652.7
3765.4
3771.9
3898.6
4105.0
4341.5
4319.6
4311.2
4540.9
4750.5
5015.0
5173.4
5161.7
5291.7
5189.3
5423.8
5813.6
6053.7
6263.6
6475.1
6742.7
6981.4
7112.5
7100.5
7336.6
7532.7
7835.5
8031.7
8328.9
8703.5
9066.9
9470.3
9817.0
9890.7
10048.8
10301.0
10703.5
11048.6




FIGURE 1.3
Personal consumption
expenditure (¥) in
relation to GDP (X)),
1960-2005, in billions
of 2000 dollars.
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As Figure 1.3 shows, the regression line fits the data quite well in that the data points are
very close to the regression line. From this figure we see that for the period 1960-2005 the
slope coefficient (i.e., the MPC) was about 0.72, suggesting that for the sample period an
increase in real income of one dollar led, on average, to an increase of about 72 cents in real
consumption expenditure.'> We say on average because the relationship between con-
sumption and income is inexact; as is clear from Figure 1.3, not all the data points lie
exactly on the regression line. In simple terms we can say that, according to our data, the
average, or mean, consumption expenditure went up by about 72 cents for a dollar’s
increase in real income.

6. Hypothesis Testing

Assuming that the fitted model is a reasonably good approximation of reality, we have to
develop suitable criteria to find out whether the estimates obtained in, say, Equation 1.3.3
are in accord with the expectations of the theory that is being tested. According to “posi-
tive” economists like Milton Friedman, a theory or hypothesis that is not verifiable by
appeal to empirical evidence may not be admissible as a part of scientific enquiry.'?

As noted earlier, Keynes expected the MPC to be positive but less than 1. In our exam-
ple we found the MPC to be about 0.72. But before we accept this finding as confirmation
of Keynesian consumption theory, we must enquire whether this estimate is sufficiently

2Do not worry now about how these values were obtained. As we show in Chapter 3, the statistical
method of least squares has produced these estimates. Also, for now do not worry about the
negative value of the intercept.

13See Milton Friedman, “The Methodology of Positive Economics,” Essays in Positive Economics,
University of Chicago Press, Chicago, 1953.
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below unity to convince us that this is not a chance occurrence or peculiarity of the partic-
ular data we have used. In other words, is 0.72 statistically less than 1? If it is, it may sup-
port Keynes’s theory.

Such confirmation or refutation of economic theories on the basis of sample evidence is
based on a branch of statistical theory known as statistical inference (hypothesis testing).
Throughout this book we shall see how this inference process is actually conducted.

7. Forecasting or Prediction

If the chosen model does not refute the hypothesis or theory under consideration, we may
use it to predict the future value(s) of the dependent, or forecast, variable Y on the basis of
the known or expected future value(s) of the explanatory, or predictor, variable X.

To illustrate, suppose we want to predict the mean consumption expenditure for 2006.
The GDP value for 2006 was 11319.4 billion dollars.'* Putting this GDP figure on the
right-hand side of Eq. (1.3.3), we obtain:

Ya006 = —299.5913 + 0.7218 (11319.4)

(1.3.4)
= 7870.7516

or about 7870 billion dollars. Thus, given the value of the GDP, the mean, or average, fore-
cast consumption expenditure is about 7870 billion dollars. The actual value of the con-
sumption expenditure reported in 2006 was 8044 billion dollars. The estimated model
Eq. (I.3.3) thus underpredicted the actual consumption expenditure by about 174 billion
dollars. We could say the forecast error is about 174 billion dollars, which is about
1.5 percent of the actual GDP value for 2006. When we fully discuss the linear regression
model in subsequent chapters, we will try to find out if such an error is “small” or “large.”
But what is important for now is to note that such forecast errors are inevitable given the
statistical nature of our analysis.

There is another use of the estimated model Eq. (I.3.3). Suppose the president decides
to propose a reduction in the income tax. What will be the effect of such a policy on income
and thereby on consumption expenditure and ultimately on employment?

Suppose that, as a result of the proposed policy change, investment expenditure in-
creases. What will be the effect on the economy? As macroeconomic theory shows, the
change in income following, say, a dollar’s worth of change in investment expenditure is
given by the income multiplier M, which is defined as

1

M=—— 1.3.5
1 —MPC ( )

If we use the MPC of 0.72 obtained in Eq. (I.3.3), this multiplier becomes about M = 3.57.
That is, an increase (decrease) of a dollar in investment will eventually lead to more than a
threefold increase (decrease) in income; note that it takes time for the multiplier to work.

The critical value in this computation is MPC, for the multiplier depends on it. And this
estimate of the MPC can be obtained from regression models such as Eq. (1.3.3). Thus, a
quantitative estimate of MPC provides valuable information for policy purposes. Knowing
MPC, one can predict the future course of income, consumption expenditure, and employ-
ment following a change in the government’s fiscal policies.

4Data on PCE and GDP were available for 2006 but we purposely left them out to illustrate the topic
discussed in this section. As we will discuss in subsequent chapters, it is a good idea to save a portion
of the data to find out how well the fitted model predicts the out-of-sample observations.



FIGURE 1.4
Anatomy of
econometric modeling.
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8. Use of the Model for Control or Policy Purposes

Suppose we have the estimated consumption function given in Eq. (I.3.3). Suppose further
the government believes that consumer expenditure of about 8750 (billions of 2000 dollars)
will keep the unemployment rate at its current level of about 4.2 percent (early 2006). What
level of income will guarantee the target amount of consumption expenditure?

If the regression results given in Eq. (I.3.3) seem reasonable, simple arithmetic will
show that

8750 = —299.5913 + 0.7218 (GDPsoos) (1.3.6)

which gives X = 12537, approximately. That is, an income level of about 12537 (billion)
dollars, given an MPC of about 0.72, will produce an expenditure of about 8750 billion
dollars.

As these calculations suggest, an estimated model may be used for control, or policy,
purposes. By appropriate fiscal and monetary policy mix, the government can manipulate
the control variable X to produce the desired level of the target variable Y.

Figure 1.4 summarizes the anatomy of classical econometric modeling.

Choosing among Competing Models

When a governmental agency (e.g., the U.S. Department of Commerce) collects economic
data, such as that shown in Table 1.1, it does not necessarily have any economic theory in
mind. How then does one know that the data really support the Keynesian theory of con-
sumption? Is it because the Keynesian consumption function (i.e., the regression line)
shown in Figure 1.3 is extremely close to the actual data points? Is it possible that another
consumption model (theory) might equally fit the data as well? For example, Milton
Friedman has developed a model of consumption, called the permanent income

| Economic theory |

'

| Mathematical model of theory |

'

| Econometric model of theory |

'

| Data |

'

| Estimation of econometric model |

'

| Hypothesis testing |

| Forecasting or prediction |

'

Using the model for
control or policy purposes




10 Basic Econometrics

hypothesis.'> Robert Hall has also developed a model of consumption, called the life-cycle
permanent income hypothesis.'® Could one or both of these models also fit the data in
Table I.1?

In short, the question facing a researcher in practice is how to choose among competing
hypotheses or models of a given phenomenon, such as the consumption—income relation-
ship. As Miller contends:

No encounter with data is [a] step towards genuine confirmation unless the hypothesis does a
better job of coping with the data than some natural rival. . . . What strengthens a hypothesis,
here, is a victory that is, at the same time, a defeat for a plausible rival.!”

How then does one choose among competing models or hypotheses? Here the advice given
by Clive Granger is worth keeping in mind:'®

I'would like to suggest that in the future, when you are presented with a new piece of theory or
empirical model, you ask these questions:

(i) What purpose does it have? What economic decisions does it help with?
(ii) Is there any evidence being presented that allows me to evaluate its quality compared to
alternative theories or models?

I think attention to such questions will strengthen economic research and discussion.

As we progress through this book, we will come across several competing hypotheses
trying to explain various economic phenomena. For example, students of economics are
familiar with the concept of the production function, which is basically a relationship
between output and inputs (say, capital and labor). In the literature, two of the best known
are the Cobb—Douglas and the constant elasticity of substitution production functions.
Given the data on output and inputs, we will have to find out which of the two production
functions, if any, fits the data well.

The eight-step classical econometric methodology discussed above is neutral in the
sense that it can be used to test any of these rival hypotheses.

Is it possible to develop a methodology that is comprehensive enough to include
competing hypotheses? This is an involved and controversial topic. We will discuss it in
Chapter 13, after we have acquired the necessary econometric theory.

1.4 Types of Econometrics

As the classificatory scheme in Figure 1.5 suggests, econometrics may be divided into two
broad categories: theoretical econometrics and applied econometrics. In each category,
one can approach the subject in the classical or Bayesian tradition. In this book the
emphasis is on the classical approach. For the Bayesian approach, the reader may consult
the references given at the end of the chapter.

TSMilton Friedman, A Theory of Consumption Function, Princeton University Press, Princeton, N.J.,
1957.

T6R. Hall, “Stochastic Implications of the Life Cycle Permanent Income Hypothesis: Theory and
Evidence,” Journal of Political Economy, vol. 86, 1978, pp. 971-987.

7R. W. Miller, Fact and Method: Explanation, Confirmation, and Redlity in the Natural and Social
Sciences, Princeton University Press, Princeton, N.J., 1978, p. 176.

'8Clive W. |. Granger, Empirical Modeling in Economics, Cambridge University Press, U.K., 1999, p. 58.
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Theoretical econometrics is concerned with the development of appropriate methods for
measuring economic relationships specified by econometric models. In this aspect, econo-
metrics leans heavily on mathematical statistics. For example, one of the methods used
extensively in this book is least squares. Theoretical econometrics must spell out the
assumptions of this method, its properties, and what happens to these properties when one
or more of the assumptions of the method are not fulfilled.

In applied econometrics we use the tools of theoretical econometrics to study some
special field(s) of economics and business, such as the production function, investment
function, demand and supply functions, portfolio theory, etc.

This book is concerned largely with the development of econometric methods, their
assumptions, their uses, and their limitations. These methods are illustrated with examples
from various areas of economics and business. But this is not a book of applied economet-
rics in the sense that it delves deeply into any particular field of economic application. That
job is best left to books written specifically for this purpose. References to some of these
books are provided at the end of this book.

I.5 Mathematical and Statistical Prerequisites

Although this book is written at an elementary level, the author assumes that the reader is
familiar with the basic concepts of statistical estimation and hypothesis testing. However, a
broad but nontechnical overview of the basic statistical concepts used in this book is pro-
vided in Appendix A for the benefit of those who want to refresh their knowledge. Insofar
as mathematics is concerned, a nodding acquaintance with the notions of differential
calculus is desirable, although not essential. Although most graduate level books in econo-
metrics make heavy use of matrix algebra, I want to make it clear that it is not needed to
study this book. It is my strong belief that the fundamental ideas of econometrics can be
conveyed without the use of matrix algebra. However, for the benefit of the mathematically
inclined student, Appendix C gives the summary of basic regression theory in matrix
notation. For these students, Appendix B provides a succinct summary of the main results
from matrix algebra.

1.6 The Role of the Computer

Regression analysis, the bread-and-butter tool of econometrics, these days is unthinkable
without the computer and some access to statistical software. (Believe me, I grew up in the
generation of the slide rule!) Fortunately, several excellent regression packages are com-
mercially available, both for the mainframe and the microcomputer, and the list is growing
by the day. Regression software packages, such as ET, LIMDEP, SHAZAM, MICRO
TSP, MINITAB, EVIEWS, SAS, SPSS, STATA, Microfit, PcGive, and BMD have most
of the econometric techniques and tests discussed in this book.
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In this book, from time to time, the reader will be asked to conduct Monte Carlo
experiments using one or more of the statistical packages. Monte Carlo experiments are
“fun” exercises that will enable the reader to appreciate the properties of several statistical
methods discussed in this book. The details of the Monte Carlo experiments will be
discussed at appropriate places.

I.7 Suggestions for Further Reading

The topic of econometric methodology is vast and controversial. For those interested in this
topic, I suggest the following books:

Neil de Marchi and Christopher Gilbert, eds., History and Methodology of Economet-
rics, Oxford University Press, New York, 1989. This collection of readings discusses some
early work on econometric methodology and has an extended discussion of the British
approach to econometrics relating to time series data, that is, data collected over a period
of time.

Wojciech W. Charemza and Derek F. Deadman, New Directions in Econometric
Practice: General to Specific Modelling, Cointegration and Vector Autogression, 2d ed.,
Edward Elgar Publishing Ltd., Hants, England, 1997. The authors of this book critique the
traditional approach to econometrics and give a detailed exposition of new approaches to
econometric methodology.

Adrian C. Darnell and J. Lynne Evans, The Limits of Econometrics, Edward Elgar
Publishing Ltd., Hants, England, 1990. The book provides a somewhat balanced discussion
of the various methodological approaches to econometrics, with renewed allegiance to
traditional econometric methodology.

Mary S. Morgan, The History of Econometric Ideas, Cambridge University Press, New
York, 1990. The author provides an excellent historical perspective on the theory and prac-
tice of econometrics, with an in-depth discussion of the early contributions of Haavelmo
(1990 Nobel Laureate in Economics) to econometrics. In the same spirit, David F. Hendry
and Mary S. Morgan, The Foundation of Econometric Analysis, Cambridge University
Press, UK., 1995, have collected seminal writings in econometrics to show the evolution of
econometric ideas over time.

David Colander and Reuven Brenner, eds., Educating Economists, University of
Michigan Press, Ann Arbor, Michigan, 1992. This text presents a critical, at times agnostic,
view of economic teaching and practice.

For Bayesian statistics and econometrics, the following books are very useful: John H.
Dey, Data in Doubt, Basil Blackwell Ltd., Oxford University Press, England, 1985; Peter
M. Lee, Bayesian Statistics: An Introduction, Oxford University Press, England, 1989, and
Dale I. Porier, Intermediate Statistics and Econometrics: A Comparative Approach, MIT
Press, Cambridge, Massachusetts, 1995. Arnold Zeller, An Introduction to Bayesian Infer-
ence in Econometrics, John Wiley & Sons, New York, 1971, is an advanced reference book.
Another advanced reference book is the Palgrave Handbook of Econometrics: Volume 1:
Econometric Theory, edited by Terence C. Mills and Kerry Patterson, Palgrave Macmillan,
New York, 2007.



Part

Single-Equation
Regression Models

Part 1 of this text introduces single-equation regression models. In these models, one
variable, called the dependent variable, is expressed as a linear function of one or more
other variables, called the explanatory variables. In such models it is assumed implicitly
that causal relationships, if any, between the dependent and explanatory variables flow in
one direction only, namely, from the explanatory variables to the dependent variable.

In Chapter 1, we discuss the historical as well as the modern interpretation of the term
regression and illustrate the difference between the two interpretations with several exam-
ples drawn from economics and other fields.

In Chapter 2, we introduce some fundamental concepts of regression analysis with the
aid of the two-variable linear regression model, a model in which the dependent variable is
expressed as a linear function of only a single explanatory variable.

In Chapter 3, we continue to deal with the two-variable model and introduce what is
known as the classical linear regression model, a model that makes several simplifying
assumptions. With these assumptions, we introduce the method of ordinary least squares
(OLS) to estimate the parameters of the two-variable regression model. The method of OLS
is simple to apply, yet it has some very desirable statistical properties.

In Chapter 4, we introduce the (two-variable) classical normal linear regression model,
a model that assumes that the random dependent variable follows the normal probability
distribution. With this assumption, the OLS estimators obtained in Chapter 3 possess
some stronger statistical properties than the nonnormal classical linear regression model—
properties that enable us to engage in statistical inference, namely, hypothesis testing.

Chapter 5 is devoted to the topic of hypothesis testing. In this chapter, we try to find out
whether the estimated regression coefficients are compatible with the hypothesized values
of such coefficients, the hypothesized values being suggested by theory and/or prior
empirical work.

Chapter 6 considers some extensions of the two-variable regression model. In particu-
lar, it discusses topics such as (1) regression through the origin, (2) scaling and units of
measurement, and (3) functional forms of regression models such as double-log, semilog,
and reciprocal models.
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In Chapter 7, we consider the multiple regression model, a model in which there is
more than one explanatory variable, and show how the method of OLS can be extended to
estimate the parameters of such models.

In Chapter 8, we extend the concepts introduced in Chapter 5 to the multiple regression
model and point out some of the complications arising from the introduction of several
explanatory variables.

Chapter 9 on dummy, or qualitative, explanatory variables concludes Part 1 of the text.
This chapter emphasizes that not all explanatory variables need to be quantitative (i.e., ratio
scale). Variables, such as gender, race, religion, nationality, and region of residence, can-
not be readily quantified, yet they play a valuable role in explaining many an economic
phenomenon.



Chapter

The Nature of

Regression Analysis

As mentioned in the Introduction, regression is a main tool of econometrics, and in this
chapter we consider very briefly the nature of this tool.

1.1 Historical Origin of the Term Regression

The term regression was introduced by Francis Galton. In a famous paper, Galton found
that, although there was a tendency for tall parents to have tall children and for short par-
ents to have short children, the average height of children born of parents of a given height
tended to move or “regress” toward the average height in the population as a whole.! In
other words, the height of the children of unusually tall or unusually short parents tends to
move toward the average height of the population. Galton’s law of universal regression was
confirmed by his friend Karl Pearson, who collected more than a thousand records of
heights of members of family groups.” He found that the average height of sons of a group
of tall fathers was less than their fathers’ height and the average height of sons of a group
of short fathers was greater than their fathers’ height, thus “regressing” tall and short sons
alike toward the average height of all men. In the words of Galton, this was “regression to
mediocrity.”

1.2 The Modern Interpretation of Regression

The modern interpretation of regression is, however, quite different. Broadly speaking, we
may say

Regression analysis is concerned with the study of the dependence of one variable, the
dependent variable, on one or more other variables, the explanatory variables, with a view to
estimating and/or predicting the (population) mean or average value of the former in terms of
the known or fixed (in repeated sampling) values of the latter.

TFrancis Galton, “Family Likeness in Stature,” Proceedings of Royal Society, London, vol. 40, 1886,
pp. 42-72.

2K. Pearson and A. Lee, “On the Laws of Inheritance,” Biometrika, vol. 2, Nov. 1903, pp. 357-462.

15
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FIGURE 1.1
Hypothetical
distribution of sons’
heights corresponding
to given heights of
fathers.

The full import of this view of regression analysis will become clearer as we progress, but
a few simple examples will make the basic concept quite clear.

Examples

1. Reconsider Galton’s law of universal regression. Galton was interested in finding out
why there was a stability in the distribution of heights in a population. But in the modern
view our concern is not with this explanation but rather with finding out how the average
height of sons changes, given the fathers’ height. In other words, our concern is with pre-
dicting the average height of sons knowing the height of their fathers. To see how this can
be done, consider Figure 1.1, which is a scatter diagram, or scattergram. This figure
shows the distribution of heights of sons in a hypothetical population corresponding to the
given or fixed values of the father’s height. Notice that corresponding to any given height of
a father is a range or distribution of the heights of the sons. However, notice that despite the
variability of the height of sons for a given value of father’s height, the average height of
sons generally increases as the height of the father increases. To show this clearly, the cir-
cled crosses in the figure indicate the average height of sons corresponding to a given
height of the father. Connecting these averages, we obtain the line shown in the figure. This
line, as we shall see, is known as the regression line. It shows how the average height of
sons increases with the father’s height.

2. Consider the scattergram in Figure 1.2, which gives the distribution in a hypothetical
population of heights of boys measured at fixed ages. Corresponding to any given age, we
have a range, or distribution, of heights. Obviously, not all boys of a given age are likely to
have identical heights. But height on the average increases with age (of course, up to a
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3At this stage of the development of the subject matter, we shall call this regression line simply the
line connecting the mean, or average, value of the dependent variable (son’s height) corresponding to
the given value of the explanatory variable (father’s height). Note that this line has a positive slope but
the slope is less than 1, which is in conformity with Galton’s regression to mediocrity. (Why?)



FIGURE 1.2
Hypothetical
distribution of heights
corresponding to
selected ages.
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certain age), which can be seen clearly if we draw a line (the regression line) through the cir-
cled points that represent the average height at the given ages. Thus, knowing the age, we
may be able to predict from the regression line the average height corresponding to that age.

3. Turning to economic examples, an economist may be interested in studying the de-
pendence of personal consumption expenditure on aftertax or disposable real personal in-
come. Such an analysis may be helpful in estimating the marginal propensity to consume
(MPC), that is, average change in consumption expenditure for, say, a dollar’s worth of
change in real income (see Figure 1.3).

4. A monopolist who can fix the price or output (but not both) may want to find out
the response of the demand for a product to changes in price. Such an experiment may
enable the estimation of the price elasticity (i.e., price responsiveness) of the demand for the
product and may help determine the most profitable price.

5. A labor economist may want to study the rate of change of money wages in relation to
the unemployment rate. The historical data are shown in the scattergram given in Figure 1.3.
The curve in Figure 1.3 is an example of the celebrated Phillips curve relating changes in the
money wages to the unemployment rate. Such a scattergram may enable the labor economist
to predict the average change in money wages given a certain unemployment rate. Such
knowledge may be helpful in stating something about the inflationary process in an econ-
omy, for increases in money wages are likely to be reflected in increased prices.

6. From monetary economics it is known that, other things remaining the same, the
higher the rate of inflation 7, the lower the proportion & of their income that people would
want to hold in the form of money, as depicted in Figure 1.4. The slope of this line repre-
sents the change in k£ given a change in the inflation rate. A quantitative analysis of this
relationship will enable the monetary economist to predict the amount of money, as a
proportion of their income, that people would want to hold at various rates of inflation.

7. The marketing director of a company may want to know how the demand for the
company’s product is related to, say, advertising expenditure. Such a study will be of
considerable help in finding out the elasticity of demand with respect to advertising ex-
penditure, that is, the percent change in demand in response to, say, a 1 percent change in
the advertising budget. This knowledge may be helpful in determining the “optimum”
advertising budget.
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FIGURE 1.3
Hypothetical Phillips
curve.

FIGURE 1.4
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8. Finally, an agronomist may be interested in studying the dependence of a particular
crop yield, say, of wheat, on temperature, rainfall, amount of sunshine, and fertilizer. Such
a dependence analysis may enable the prediction or forecasting of the average crop yield,
given information about the explanatory variables.

The reader can supply scores of such examples of the dependence of one variable on one
or more other variables. The techniques of regression analysis discussed in this text are
specially designed to study such dependence among variables.
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1.3 Statistical versus Deterministic Relationships

From the examples cited in Section 1.2, the reader will notice that in regression analysis
we are concerned with what is known as the statistical, not functional or deterministic,
dependence among variables, such as those of classical physics. In statistical relation-
ships among variables we essentially deal with random or stochastic* variables, that is,
variables that have probability distributions. In functional or deterministic dependency,
on the other hand, we also deal with variables, but these variables are not random or
stochastic.

The dependence of crop yield on temperature, rainfall, sunshine, and fertilizer, for
example, is statistical in nature in the sense that the explanatory variables, although
certainly important, will not enable the agronomist to predict crop yield exactly because of
errors involved in measuring these variables as well as a host of other factors (variables)
that collectively affect the yield but may be difficult to identify individually. Thus, there is
bound to be some “intrinsic” or random variability in the dependent-variable crop yield that
cannot be fully explained no matter how many explanatory variables we consider.

In deterministic phenomena, on the other hand, we deal with relationships of the type,
say, exhibited by Newton’s law of gravity, which states: Every particle in the universe
attracts every other particle with a force directly proportional to the product of their masses
and inversely proportional to the square of the distance between them. Symbolically,
F = k(mm,/r?*), where F = force, m; and m, are the masses of the two particles, r =
distance, and k& = constant of proportionality. Another example is Ohm’s law, which states:
For metallic conductors over a limited range of temperature the current C is proportional to
the voltage V; that is, C = (%) V where % is the constant of proportionality. Other examples
of such deterministic relationships are Boyle’s gas law, Kirchhoff’s law of electricity, and
Newton’s law of motion.

In this text we are not concerned with such deterministic relationships. Of course, if
there are errors of measurement, say, in the k& of Newton’s law of gravity, the otherwise
deterministic relationship becomes a statistical relationship. In this situation, force can be
predicted only approximately from the given value of k (and m;, m;, and r), which contains
errors. The variable F in this case becomes a random variable.

1.4 Regression versus Causation

Although regression analysis deals with the dependence of one variable on other variables,
it does not necessarily imply causation. In the words of Kendall and Stuart, “A statistical
relationship, however strong and however suggestive, can never establish causal connec-
tion: our ideas of causation must come from outside statistics, ultimately from some theory
or other.”

“The word stochastic comes from the Greek word stokhos meaning “a bull’s eye.” The outcome of
throwing darts on a dart board is a stochastic process, that is, a process fraught with misses.

SM. G. Kendall and A. Stuart, The Advanced Theory of Statistics, Charles Griffin Publishers, New York,
vol. 2, 1961, chap. 26, p. 279.
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In the crop-yield example cited previously, there is no statistical reason to assume that
rainfall does not depend on crop yield. The fact that we treat crop yield as dependent on
rainfall (among other things) is due to nonstatistical considerations: Common sense
suggests that the relationship cannot be reversed, for we cannot control rainfall by varying
crop yield.

In all the examples cited in Section 1.2 the point to note is that a statistical relationship
in itself cannot logically imply causation. To ascribe causality, one must appeal to a priori
or theoretical considerations. Thus, in the third example cited, one can invoke economic
theory in saying that consumption expenditure depends on real income.®

1.5 Regression versus Correlation

Closely related to but conceptually very much different from regression analysis is
correlation analysis, where the primary objective is to measure the strength or degree of
linear association between two variables. The correlation coefficient, which we shall
study in detail in Chapter 3, measures this strength of (linear) association. For example, we
may be interested in finding the correlation (coefficient) between smoking and lung cancer,
between scores on statistics and mathematics examinations, between high school grades
and college grades, and so on. In regression analysis, as already noted, we are not primar-
ily interested in such a measure. Instead, we try to estimate or predict the average value of
one variable on the basis of the fixed values of other variables. Thus, we may want to know
whether we can predict the average score on a statistics examination by knowing a student’s
score on a mathematics examination.

Regression and correlation have some fundamental differences that are worth mention-
ing. In regression analysis there is an asymmetry in the way the dependent and explanatory
variables are treated. The dependent variable is assumed to be statistical, random, or sto-
chastic, that is, to have a probability distribution. The explanatory variables, on the other
hand, are assumed to have fixed values (in repeated sampling),” which was made explicit in
the definition of regression given in Section 1.2. Thus, in Figure 1.2 we assumed that the
variable age was fixed at given levels and height measurements were obtained at these
levels. In correlation analysis, on the other hand, we treat any (two) variables symmetri-
cally; there is no distinction between the dependent and explanatory variables. After all, the
correlation between scores on mathematics and statistics examinations is the same as that
between scores on statistics and mathematics examinations. Moreover, both variables
are assumed to be random. As we shall see, most of the correlation theory is based on the
assumption of randomness of variables, whereas most of the regression theory to be
expounded in this book is conditional upon the assumption that the dependent variable is
stochastic but the explanatory variables are fixed or nonstochastic.®

But as we shall see in Chapter 3, classical regression analysis is based on the assumption that the
model used in the analysis is the correct model. Therefore, the direction of causality may be implicit
in the model postulated.

“It is crucial to note that the explanatory variables may be intrinsically stochastic, but for the purpose
of regression analysis we assume that their values are fixed in repeated sampling (that is, X assumes
the same values in various samples), thus rendering them in effect nonrandom or nonstochastic. But
more on this in Chapter 3, Sec. 3.2.

8In advanced treatment of econometrics, one can relax the assumption that the explanatory variables
are nonstochastic (see introduction to Part 2).
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1.6 Terminology and Notation

Before we proceed to a formal analysis of regression theory, let us dwell briefly on the
matter of terminology and notation. In the literature the terms dependent variable and
explanatory variable are described variously. A representative list is:

Dependent variable Explanatory variable
¢ ¢
Explained variable Independent variable
¢ ¢
Predictand Predictor
¢ ¢
Regressand Regressor
¢ ¢
Response Stimulus
¢ ¢
Endogenous Exogenous
¢ ¢
Outcome Covariate
¢ ¢

Controlled variable Control variable

Although it is a matter of personal taste and tradition, in this text we will use the dependent
variable/explanatory variable or the more neutral regressand and regressor terminology.

If we are studying the dependence of a variable on only a single explanatory variable,
such as that of consumption expenditure on real income, such a study is known as simple,
or two-variable, regression analysis. However, if we are studying the dependence of one
variable on more than one explanatory variable, as in the crop-yield, rainfall, temperature,
sunshine, and fertilizer example, it is known as multiple regression analysis. In other
words, in two-variable regression there is only one explanatory variable, whereas in multi-
ple regression there is more than one explanatory variable.

The term random is a synonym for the term stochastic. As noted earlier, a random or
stochastic variable is a variable that can take on any set of values, positive or negative, with
a given probability.’

Unless stated otherwise, the letter ¥ will denote the dependent variable and the X’s
(X1, X2, ..., Xi) will denote the explanatory variables, X being the kth explanatory
variable. The subscript i or ¢ will denote the ith or the rth observation or value. Xj; (or Xj;)
will denote the ith (or 7th) observation on variable X;. N (or T') will denote the total
number of observations or values in the population, and » (or #) the total number of obser-
vations in a sample. As a matter of convention, the observation subscript i will be used for
cross-sectional data (i.e., data collected at one point in time) and the subscript ¢ will be
used for time series data (i.c., data collected over a period of time). The nature of cross-
sectional and time series data, as well as the important topic of the nature and sources of
data for empirical analysis, is discussed in the following section.

°See Appendix A for formal definition and further details.
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1.7 The Nature and Sources of Data for Economic Analysis'’

The success of any econometric analysis ultimately depends on the availability of the
appropriate data. It is therefore essential that we spend some time discussing the nature,
sources, and limitations of the data that one may encounter in empirical analysis.

Types of Data

Three types of data may be available for empirical analysis: time series, cross-section, and
pooled (i.e., combination of time series and cross-section) data.

Time Series Data

The data shown in Table 1.1 of the Introduction are an example of time series data. A time
series is a set of observations on the values that a variable takes at different times. Such data
may be collected at regular time intervals, such as daily (e.g., stock prices, weather
reports), weekly (e.g., money supply figures), monthly (e.g., the unemployment rate, the
Consumer Price Index [CPI]), quarterly (e.g., GDP), annually (e.g., government
budgets), quinquennially, that is, every 5 years (e.g., the census of manufactures), or
decennially, that is, every 10 years (e.g., the census of population). Sometime data are
available both quarterly as well as annually, as in the case of the data on GDP and consumer
expenditure. With the advent of high-speed computers, data can now be collected over an
extremely short interval of time, such as the data on stock prices, which can be obtained
literally continuously (the so-called real-time quote).

Although time series data are used heavily in econometric studies, they present special
problems for econometricians. As we will show in chapters on time series econometrics
later on, most empirical work based on time series data assumes that the underlying time
series is stationary. Although it is too early to introduce the precise technical meaning of
stationarity at this juncture, loosely speaking, a time series is stationary if its mean and
variance do not vary systematically over time. To see what this means, consider Figure 1.5,
which depicts the behavior of the M1 money supply in the United States from January 1,
1959, to September, 1999. (The actual data are given in Exercise 1.4.) As you can see from
this figure, the M1 money supply shows a steady upward trend as well as variability over
the years, suggesting that the M1 time series is not stationary.!! We will explore this topic
fully in Chapter 21.

Cross-Section Data

Cross-section data are data on one or more variables collected at the same point in time,
such as the census of population conducted by the Census Bureau every 10 years (the lat-
est being in year 2000), the surveys of consumer expenditures conducted by the University
of Michigan, and, of course, the opinion polls by Gallup and umpteen other organizations.
A concrete example of cross-sectional data is given in Table 1.1. This table gives data on
egg production and egg prices for the 50 states in the union for 1990 and 1991. For each

"OFor an informative account, see Michael D. Intriligator, Econometric Models, Techniques, and
Applications, Prentice Hall, Englewood Cliffs, N.J., 1978, chap. 3.

"To see this more clearly, we divided the data into four time periods: 1951:01 to 1962:12; 1963:01
to 1974:12; 1975:01 to 1986:12, and 1987:01 to 1999:09: For these subperiods the mean values of
the money supply (with corresponding standard deviations in parentheses) were, respectively, 165.88
(23.27), 323.20 (72.66), 788.12 (195.43), and 1099 (27.84), all figures in billions of dollars. This is a
rough indication of the fact that the money supply over the entire period was not stationary.



FIGURE 1.5
M1 money supply:
United States,
1951:01-1999:009.
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year the data on the 50 states are cross-sectional data. Thus, in Table 1.1 we have two cross-
sectional samples.

Just as time series data create their own special problems (because of the stationarity
issue), cross-sectional data too have their own problems, specifically the problem of Zetero-
geneity. From the data given in Table 1.1 we see that we have some states that produce huge
amounts of eggs (e.g., Pennsylvania) and some that produce very little (e.g., Alaska). When
we include such heterogeneous units in a statistical analysis, the size or scale effect must be
taken into account so as not to mix apples with oranges. To see this clearly, we plot in Fig-
ure 1.6 the data on eggs produced and their prices in 50 states for the year 1990. This figure
shows how widely scattered the observations are. In Chapter 11 we will see how the scale
effect can be an important factor in assessing relationships among economic variables.

Pooled Data

In pooled, or combined, data are elements of both time series and cross-section data. The
data in Table 1.1 are an example of pooled data. For each year we have 50 cross-sectional
observations and for each state we have two time series observations on prices and output
of eggs, a total of 100 pooled (or combined) observations. Likewise, the data given in
Exercise 1.1 are pooled data in that the Consumer Price Index (CPI) for each country
for 19802005 is time series data, whereas the data on the CPI for the seven countries
for a single year are cross-sectional data. In the pooled data we have 182 observations—
26 annual observations for each of the seven countries.

Panel, Longitudinal, or Micropanel Data

This is a special type of pooled data in which the same cross-sectional unit (say, a family or
a firm) is surveyed over time. For example, the U.S. Department of Commerce carries out
a census of housing at periodic intervals. At each periodic survey the same household
(or the people living at the same address) is interviewed to find out if there has been any
change in the housing and financial conditions of that household since the last survey. By
interviewing the same household periodically, the panel data provide very useful informa-
tion on the dynamics of household behavior, as we shall see in Chapter 16.
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TABLE 1.1 U.S. Egg Production
State Y1 Yz X] Xz State Y1 Y2 X] Xz
AL 2,206 2,186 92.7 91.4 MT 172 164 68.0 66.0
AK 0.7 0.7 151.0 149.0 NE 1,202 1,400 50.3 489
AZ 73 74 61.0 56.0 NV 2.2 1.8 53.9 527
AR 3,620 3,737 86.3 91.8 NH 43 49 109.0 104.0
CA 7,472 7,444 63.4 58.4 N]J 442 491 85.0 83.0
CcO 788 873 77.8 73.0 NM 283 302 74.0 70.0
CT 1,029 948 106.0 104.0 NY 975 987 68.1 64.0
DE 168 164 117.0 113.0 NC 3,033 3,045 828 78.7
FL 2,586 2,537 62.0 57.2 ND 51 45 55.2 48.0
GA 4,302 4,301 80.6 80.8 OH 4,667 4,637 59.1 54.7
HI 227.5 224. 85.0 85.5 OK 869 830 101.0 100.0
ID 187 203 79.1 72.9 OR 652 686 77.0 74.6
IL 793 809 65.0 70.5 PA 4,976 5,130 61.0 520
IN 5,445 5,290 62.7 60.1 RI 53 50 102.0 99.0
IA 2,151 2,247 56.5 53.0 SC 1,422 1,420 70.1  65.9
KS 404 389 54.5 47.8 SD 435 602 48.0 45.8
KY 412 483 67.7 73.5 TN 277 279 71.0 80.7
LA 273 254 115.0 115.0 X 3,317 3,356 76.7 72.6
ME 1,069 1,070 101.0 97.0 uT 456 486 64.0 59.0
MD 885 898 76.6 75.4 VT 31 30 106.0 102.0
MA 235 237 105.0 102.0 VA 943 988 86.3 81.2
Ml 1,406 1,396 58.0 53.8 WA 1,287 1,313 741  71.5
MN 2,499 2,697 57.7 54.0 WV 136 174 104.0 109.0
MS 1,434 1,468 87.8 86.7 Wi 910 873 60.1 54.0
MO 1,580 1,622 55.4 51.5 WYy 1.7 1.7 83.0 83.0

Note: Y = eggs produced in 1990 (millions).
Y, = eggs produced in 1991 (millions).
X, = price per dozen (cents) in 1990.
X, = price per dozen (cents) in 1991.

Source: World Almanac, 1993, p. 119. The data are from the Economic Research Service, U.S. Department of Agriculture.
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As a concrete example, consider the data given in Table 1.2. The data in the table, orig-
inally collected by Y. Grunfeld, refer to the real investment, the real value of the firm, and
the real capital stock of four U.S. companies, namely, General Electric (GM), U.S. Steel
(US), General Motors (GM), and Westinghouse (WEST), for the period 1935-1954.!2
Since the data are for several companies collected over a number of years, this is a classic
example of panel data. In this table, the number of observations for each company is the
same, but this is not always the case. If all the companies have the same number of obser-
vations, we have what is called a balanced panel. If the number of observations is not the
same for each company, it is called an unbalanced panel. In Chapter 16, Panel Data
Regression Models, we will examine such data and show how to estimate such models.

Grunfeld’s purpose in collecting these data was to find out how real gross investment (/)
depends on the real value of the firm (F) a year earlier and real capital stock (C) a year
earlier. Since the companies included in the sample operate in the same capital market, by
studying them together, Grunfeld wanted to find out if they had similar investment functions.

The Sources of Data'3

The data used in empirical analysis may be collected by a governmental agency (e.g., the
Department of Commerce), an international agency (e.g., the International Monetary Fund
[IMF] or the World Bank), a private organization (e.g., the Standard & Poor’s Corporation), or
an individual. Literally, there are thousands of such agencies collecting data for one purpose
or another.

The Internet

The Internet has literally revolutionized data gathering. If you just “surf the net” with a
keyword (e.g., exchange rates), you will be swamped with all kinds of data sources. In
Appendix E we provide some of the frequently visited websites that provide economic and
financial data of all sorts. Most of the data can be downloaded without much cost. You may
want to bookmark the various websites that might provide you with useful economic data.

The data collected by various agencies may be experimental or nonexperimental.
In experimental data, often collected in the natural sciences, the investigator may want to
collect data while holding certain factors constant in order to assess the impact of some
factors on a given phenomenon. For instance, in assessing the impact of obesity on blood
pressure, the researcher would want to collect data while holding constant the eating,
smoking, and drinking habits of the people in order to minimize the influence of these
variables on blood pressure.

In the social sciences, the data that one generally encounters are nonexperimental in
nature, that is, not subject to the control of the researcher.'* For example, the data on GNP,
unemployment, stock prices, etc., are not directly under the control of the investigator. As we
shall see, this lack of control often creates special problems for the researcher in pinning
down the exact cause or causes affecting a particular situation. For example, is it the money
supply that determines the (nominal) GDP or is it the other way around?

12y, Grunfeld, “The Determinants of Corporate Investment,” unpublished PhD thesis, Department of
Economics, University of Chicago, 1958. These data have become a workhorse for illustrating panel
data regression models.

3For an illuminating account, see Albert T. Somers, The U.S. Economy Demystified: What the Major
Economic Statistics Mean and their Significance for Business, D.C. Heath, Lexington, Mass., 1985.

"In the social sciences too sometimes one can have a controlled experiment. An example is given in
Exercise 1.6.
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TABLE 1.2 Investment Data for Four Companies, 1935-1954

Observation I F_, C4
GE
1935 33.1 1170.6 97.8
1936 45.0 2015.8 104.4
1937 77.2 2803.3 118.0
1938 44.6 2039.7 156.2
1939 48.1 2256.2 172.6
1940 74.4 2132.2 186.6
1941 113.0 1834.1 220.9
1942 91.9 1588.0 287.8
1943 61.3 1749.4 319.9
1944 56.8 1687.2 321.3
1945 93.6 2007.7 319.6
1946 159.9 2208.3 346.0
1947 147.2 1656.7 456.4
1948 146.3 1604.4 543.4
1949 98.3 1431.8 618.3
1950 93.5 1610.5 647.4
1951 135.2 1819.4 671.3
1952 157.3 2079.7 726.1
1953 179.5 2371.6 800.3
1954 189.6 2759.9 888.9
GM
1935 317.6 3078.5 2.8
1936 391.8 4661.7 52.6
1937 410.6 5387.1 156.9
1938 257.7 2792.2 209.2
1939 330.8 4313.2 203.4
1940 461.2 4643.9 207.2
1941 512.0 4551.2 255.2
1942 448.0 3244.1 303.7
1943 499.6 4053.7 264.1
1944 547.5 4379.3 201.6
1945 561.2 4840.9 265.0
1946 688.1 4900.0 402.2
1947 568.9 3526.5 761.5
1948 529.2 3245.7 922.4
1949 555.1 3700.2 1020.1
1950 642.9 3755.6 1099.0
1951 755.9 4833.0 1207.7
1952 891.2 4924.9 1430.5
1953 1304.4 6241.7 1777.3
1954 1486.7 5593.6 2226.3

Observation [/ F_; C_4
us
1935 209.9 1362.4 53.8
1936 355.3 1807.1 50.5
1937 469.9 2673.3 118.1
1938 262.3 1801.9 260.2
1939 230.4 1957.3 312.7
1940 361.6 2202.9 254.2
1941 472.8 2380.5 261.4
1942 445.6 2168.6 298.7
1943 361.6 1985.1 301.8
1944 288.2 1813.9 279.1
1945 258.7 1850.2 213.8
1946 420.3 2067.7 232.6
1947 420.5 1796.7 264.8
1948 494.5 1625.8 306.9
1949 405.1 1667.0 351.1
1950 418.8 1677.4 357.8
1951 588.2 2289.5 341.1
1952 645.2 2159.4 444.2
1953 641.0 2031.3 623.6
1954 459.3 2115.5 669.7
WEST
1935 12.93 191.5 1.8
1936 25.90 516.0 0.8
1937 35.05 729.0 7.4
1938 22.89 560.4 18.1
1939 18.84 519.9 23.5
1940 28.57 628.5 26.5
1941 48.51 537.1 36.2
1942 43.34 561.2 60.8
1943 37.02 617.2 84.4
1944 37.81 626.7 91.2
1945 39.27 737.2 92.4
1946 53.46 760.5 86.0
1947 55.56 581.4 111.1
1948 49.56 662.3 130.6
1949 32.04 583.8 141.8
1950 32.24 635.2 136.7
1951 54.38 732.8 129.7
1952 71.78 864.1 145.5
1953 90.08 1193.5 174.8
1954 68.60 1188.9 213.5

Notes: Y =1 = gross investment = additions to plant and equipment plus maintenance and repairs, in millions of dollars deflated by P;.

X, = F = value of the firm = price of common and preferred shares at Dec. 31 (or average price of Dec. 31 and Jan. 31 of the following year) times
number of common and preferred shares outstanding plus total book value of debt at Dec. 31, in millions of dollars deflated by P».

X3 = C = stock of plant and equipment = accumulated sum of net additions to plant and equipment deflated by P; minus depreciation allowance
deflated by Ps in these definitions.
Py = implicit price deflator of producers’ durable equipment (1947 = 100).
P, = implicit price deflator of GNP (1947 = 100).

P; = depreciation expense deflator = 10-year moving average of wholesale price index of metals and metal products (1947 = 100).
Source: Reproduced from H. D. Vinod and Aman Ullah, Recent Advances in Regression Methods, Marcel Dekker, New York, 1981, pp. 259-261.
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The Accuracy of Data'®

Although plenty of data are available for economic research, the quality of the data is often
not that good. There are several reasons for that.

1. Asnoted, most social science data are nonexperimental in nature. Therefore, there is the
possibility of observational errors, either of omission or commission.

2. Even in experimentally collected data, errors of measurement arise from approxima-
tions and roundoffs.

3. In questionnaire-type surveys, the problem of nonresponse can be serious; a researcher
is lucky to get a 40 percent response rate to a questionnaire. Analysis based on such a
partial response rate may not truly reflect the behavior of the 60 percent who did not re-
spond, thereby leading to what is known as (sample) selectivity bias. Then there is the
further problem that those who do respond to the questionnaire may not answer all the
questions, especially questions of a financially sensitive nature, thus leading to additional
selectivity bias.

4. The sampling methods used in obtaining the data may vary so widely that it is often dif-
ficult to compare the results obtained from the various samples.

5. Economic data are generally available at a highly aggregate level. For example, most
macrodata (e.g., GNP, employment, inflation, unemployment) are available for the econ-
omy as a whole or at the most for some broad geographical regions. Such highly aggre-
gated data may not tell us much about the individuals or microunits that may be the
ultimate object of study.

6. Because of confidentiality, certain data can be published only in highly aggregate form.
The IRS, for example, is not allowed by law to disclose data on individual tax returns;
it can only release some broad summary data. Therefore, if one wants to find out how
much individuals with a certain level of income spent on health care, one cannot do so
except at a very highly aggregate level. Such macroanalysis often fails to reveal the dy-
namics of the behavior of the microunits. Similarly, the Department of Commerce,
which conducts the census of business every 5 years, is not allowed to disclose infor-
mation on production, employment, energy consumption, research and development
expenditure, etc., at the firm level. It is therefore difficult to study the interfirm differences
on these items.

Because of all of these and many other problems, the researcher should always keep
in mind that the results of research are only as good as the quality of the data. There-
fore, if in given situations researchers find that the results of the research are “unsatisfac-
tory,” the cause may be not that they used the wrong model but that the quality of the data
was poor. Unfortunately, because of the nonexperimental nature of the data used in most
social science studies, researchers very often have no choice but to depend on the available
data. But they should always keep in mind that the data used may not be the best and should
try not to be too dogmatic about the results obtained from a given study, especially when
the quality of the data is suspect.

A Note on the Measurement Scales of Variables'®

The variables that we will generally encounter fall into four broad categories: ratio scale,
interval scale, ordinal scale, and nominal scale. It is important that we understand each.

5For a critical review, see O. Morgenstern, The Accuracy of Economic Observations, 2d ed., Princeton
University Press, Princeton, N.J., 1963.

16The following discussion relies heavily on Aris Spanos, Probability Theory and Statistical Inference:
Econometric Modeling with Observational Data, Cambridge University Press, New York, 1999, p. 24.
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Ratio Scale

For a variable X, taking two values, X and X5, the ratio X;/X, and the distance (X; — X))
are meaningful quantities. Also, there is a natural ordering (ascending or descending) of the
values along the scale. Therefore, comparisons such as X, < X or X, > X are meaning-
ful. Most economic variables belong to this category. Thus, it is meaningful to ask how big
this year’s GDP is compared with the previous year’s GDP. Personal income, measured
in dollars, is a ratio variable; someone earning $100,000 is making twice as much as an-
other person earning $50,000 (before taxes are assessed, of course!).

Interval Scale

An interval scale variable satisfies the last two properties of the ratio scale variable but not
the first. Thus, the distance between two time periods, say (2000-1995) is meaningful, but
not the ratio of two time periods (2000/1995). At 11:00 a.m. PST on August 11, 2007,
Portland, Oregon, reported a temperature of 60 degrees Fahrenheit while Tallahassee,
Florida, reached 90 degrees. Temperature is not measured on a ratio scale since it does not
make sense to claim that Tallahassee was 50 percent warmer than Portland. This is mainly
due to the fact that the Fahrenheit scale does not use 0 degrees as a natural base.

Ordinal Scale

A variable belongs to this category only if it satisfies the third property of the ratio scale
(i.e., natural ordering). Examples are grading systems (A, B, C grades) or income class
(upper, middle, lower). For these variables the ordering exists but the distances between the
categories cannot be quantified. Students of economics will recall the indifference curves
between two goods. Each higher indifference curve indicates a higher level of utility, but
one cannot quantify by how much one indifference curve is higher than the others.

Nominal Scale

Variables in this category have none of the features of the ratio scale variables. Variables
such as gender (male, female) and marital status (married, unmarried, divorced, separated)
simply denote categories. Question: What is the reason why such variables cannot be
expressed on the ratio, interval, or ordinal scales?

As we shall see, econometric techniques that may be suitable for ratio scale variables
may not be suitable for nominal scale variables. Therefore, it is important to bear in mind
the distinctions among the four types of measurement scales discussed above.

Summary and
Conclusions

—

. The key idea behind regression analysis is the statistical dependence of one variable, the
dependent variable, on one or more other variables, the explanatory variables.

2. The objective of such analysis is to estimate and/or predict the mean or average value of the
dependent variable on the basis of the known or fixed values of the explanatory variables.

3. In practice the success of regression analysis depends on the availability of the appro-
priate data. This chapter discussed the nature, sources, and limitations of the data that
are generally available for research, especially in the social sciences.

4. In any research, the researcher should clearly state the sources of the data used in
the analysis, their definitions, their methods of collection, and any gaps or omissions
in the data as well as any revisions in the data. Keep in mind that the macroeconomic
data published by the government are often revised.

5. Since the reader may not have the time, energy, or resources to track down the data, the
reader has the right to presume that the data used by the researcher have been properly
gathered and that the computations and analysis are correct.



EXERCISES

TABLE 1.3

CPI in Seven
Industrial Countries,
1980-2005
(1982-1984 = 100)
Source: Economic Report of the

President, 2007, Table 108,
p- 354.
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1.1. Table 1.3 gives data on the Consumer Price Index (CPI) for seven industrialized
countries with 1982-1984 = 100 as the base of the index.

a.
b.

From the given data, compute the inflation rate for each country.!’

Plot the inflation rate for each country against time (i.e., use the horizontal axis for
time and the vertical axis for the inflation rate).

What broad conclusions can you draw about the inflation experience in the seven
countries?

d. Which country’s inflation rate seems to be most variable? Can you offer any
explanation?
1.2. a. Using Table 1.3, plot the inflation rate of Canada, France, Germany, Italy, Japan,
and the United Kingdom against the United States inflation rate.
b. Comment generally about the behavior of the inflation rate in the six countries
vis-a-vis the U.S. inflation rate.
c¢. If you find that the six countries’ inflation rates move in the same direction as the
U.S. inflation rate, would that suggest that U.S. inflation “causes” inflation in the
other countries? Why or why not?
Year u.s. Canada Japan France Germany Italy U.K.
1980 82.4 76.1 91.0 72.2 86.7 63.9 78.5
1981 90.9 85.6 95.3 81.8 92.2 75.5 87.9
1982 96.5 94.9 98.1 91.7 97.0 87.8 95.4
1983 99.6 100.4 99.8 100.3 100.3 100.8 99.8
1984 103.9 104.7 102.1 108.0 102.7 111.4 104.8
1985 107.6 109.0 104.2 114.3 104.8 121.7 111.1
1986 109.6 113.5 104.9 117.2 104.6 128.9 114.9
1987 113.6 118.4 104.9 121.1 104.9 135.1 119.7
1988 118.3 123.2 105.6 124.3 106.3 141.9 125.6
1989 124.0 129.3 108.0 128.7 109.2 150.7 135.4
1990 130.7 135.5 111.4 132.9 112.2 160.4 148.2
1991 136.2 143.1 115.0 137.2 116.3 170.5 156.9
1992 140.3 145.3 117.0 140.4 122.2 179.5 162.7
1993 144.5 147.9 118.5 143.4 127.6 187.7 165.3
1994 148.2 148.2 119.3 145.8 131.1 195.3 169.3
1995 152.4 151.4 119.2 148.4 133.3 205.6 175.2
1996 156.9 153.8 119.3 151.4 135.3 213.8 179.4
1997 160.5 156.3 121.5 153.2 137.8 218.2 185.1
1998 163.0 157.8 122.2 154.2 139.1 222.5 191.4
1999 166.6 160.5 121.8 155.0 140.0 226.2 194.3
2000 172.2 164.9 121.0 157.6 142.0 231.9 200.1
2001 177.1 169.1 120.1 160.2 144.8 238.3 203.6
2002 179.9 172.9 119.0 163.3 146.7 2443 207.0
2003 184.0 177.7 118.7 166.7 148.3 250.8 213.0
2004 188.9 181.0 118.7 170.3 150.8 256.3 219.4
2005 195.3 184.9 118.3 173.2 153.7 261.3 225.6

7Subtract from the current year’s CPI the CPI from the previous year, divide the difference by the
previous year’s CPl, and multiply the result by 100. Thus, the inflation rate for Canada for 1981 is
[(85.6 —76.1)/76.1] x 100 = 12.48% (approx.).
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1.3. Table 1.4 gives the foreign exchange rates for nine industrialized countries for the
years 1985-2006. Except for the United Kingdom, the exchange rate is defined as
the units of foreign currency for one U.S. dollar; for the United Kingdom, it is defined
as the number of U.S. dollars for one U.K. pound.

a. Plot these exchange rates against time and comment on the general behavior of the
exchange rates over the given time period.

b. The dollar is said to appreciate if it can buy more units of a foreign currency.
Contrarily, it is said to depreciate if it buys fewer units of a foreign currency. Over
the time period 1985-2006, what has been the general behavior of the U.S. dollar?
Incidentally, look up any textbook on macroeconomics or international economics
to find out what factors determine the appreciation or depreciation of a currency.

1.4. The data behind the M1 money supply in Figure 1.5 are given in Table 1.5. Can you
give reasons why the money supply has been increasing over the time period shown in
the table?

1.5. Suppose you were to develop an economic model of criminal activities, say, the hours
spent in criminal activities (e.g., selling illegal drugs). What variables would you con-
sider in developing such a model? See if your model matches the one developed by the
Nobel laureate economist Gary Becker.!®

TABLE 1.4 Exchange Rates for Nine Countries: 1985-2006

South United
Year Australia Canada ChinaP.R. Japan Mexico Korea Sweden Switzerland Kingdom
1985 0.7003  1.3659 2.9434 238.47  0.257 872.45  8.6032 2.4552 1.2974
1986 0.6709  1.3896 3.4616 168.35  0.612 884.60 7.1273 1.7979 1.4677
1987 0.7014  1.3259 3.7314 144.60 1.378 826.16  6.3469 1.4918 1.6398
1988  0.7841 1.2306 3.7314 128.17  2.273 734.52  6.1370 1.4643 1.7813
1989  0.7919  1.1842 3.7673 138.07  2.461 674.13  6.4559 1.6369 1.6382
1990 0.7807  1.1668 4.7921 145.00 2.813 710.64  5.9231 1.3901 1.7841
1991  0.7787  1.1460 5.3337 134.59 3.018 736.73  6.0521 1.4356 1.7674
1992  0.7352  1.2085 5.5206 126.78 3.095 784.66  5.8258 1.4064 1.7663
1993  0.6799  1.2902 5.7795 111.08 3.116 805.75  7.7956 1.4781 1.5016
1994  0.7316  1.3664 8.6397 102.18 3.385 806.93  7.7161 1.3667 1.5319
1995  0.7407  1.3725 8.3700 93.96  6.447 772.69  7.1406 1.1812 1.5785
1996  0.7828  1.3638 8.3389 108.78 7.600 805.00 6.7082 1.2361 1.5607
1997 0.7437  1.3849 8.3193 121.06 7.918 953.19  7.6446 1.4514 1.6376
1998  0.6291 1.4836 8.3008 130.99  9.152 1,400.40  7.9522 1.4506 1.6573
1999  0.6454  1.4858 8.2783 113.73 9.553 1,189.84  8.2740 1.5045 1.6172
2000 0.5815  1.4855 8.2784 107.80  9.459 1,130.90 9.1735 1.6904 1.5156
2001 0.5169  1.5487 8.2770 121.57  9.337 1,292.02 10.3425 1.6891 1.4396
2002 0.5437  1.5704 8.2771 125.22 9.663 1,250.31 9.7233 1.5567 1.5025
2003  0.6524  1.4008 8.2772 115.94 10.793 1,192.08  8.0787 1.3450 1.6347
2004 0.7365 1.3017 8.2768 108.15 11.290 1,145.24  7.3480 1.2428 1.8330
2005 0.7627  1.2115 8.1936 110.11  10.894 1,023.75  7.4710 1.2459 1.8204
2006  0.7535  1.1340 7.9723 116.31  10.906 95432 73718 1.2532 1.8434

Source: Economic Report of the President, 2007, Table B-110, p. 356.

18G. S. Becker, “Crime and Punishment: An Economic Approach,” Journal of Political Economy, vol. 76,
1968, pp. 169-217.




TABLE 1.5
Seasonally Adjusted
M1 Supply:
1959:01-1999:07
(billions of dollars)

Source: Board of Governors,
Federal Reserve Bank, USA.
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1959:01
1959:07
1960:01
1960:07
1961:01
1961:07
1962:01
1962:07
1963:01
1963:07
1964:01
1964:07
1965:01
1965:07
1966:01
1966:07
1967:01
1967:07
1968:01
1968:07
1969:01
1969:07
1970:01
1970:07
1971:01
1971:07
1972:01
1972:07
1973:01
1973:07
1974:01
1974:07
1975:01
1975:07
1976:01
1976:07
1977:01
1977:07
1978:01
1978:07
1979:01
1979:07
1980:01
1980:07
1981:01
1981:07
1982:01
1982:07
1983:01
1983:07
1984:01
1984:07

138.8900
141.7000
139.9800
140.1800
141.0600
142.9200
145.2400
146.4600
148.2600
151.3400
153.7400
156.8000
160.7100
163.0500
169.0800
170.3100
171.8600
178.1300
184.3300
190.4900
198.6900
201.6600
206.2200
207.9800
215.5400
224.8500
230.0900
238.7900
251.4700
257.5400
263.7600
269.2700
273.9000
283.6800
288.4200
297.2000
308.2600
320.1900
334.4000
347.6300
358.6000
377.2100
385.8500
394.9100
410.8300
427.9000
442.1300
449.0900
476.6800
508.9600
524.4000
542.1300

139.3900
141.9000
139.8700
141.3100
141.6000
143.4900
145.6600
146.5700
148.9000
151.7800
154.3100
157.8200
160.9400
163.6800
169.6200
170.8100
172.9900
179.7100
184.7100
191.8400
199.3500
201.7300
205.0000
209.9300
217.4200
225.5800
232.3200
240.9300
252.1500
257.7600
265.3100
270.1200
275.0000
284.1500
290.7600
299.0500
311.5400
322.2700
335.3000
349.6600
359.9100
378.8200
389.7000
400.0600
414.3800
427.8500
441.4900
452.4900
483.8500
511.6000
526.9900
542.3900

139.7400
141.0100
139.7500
141.1800
141.8700
143.7800
145.9600
146.3000
149.1700
151.9800
154.4800
158.7500
161.4700
164.8500
170.5100
171.9700
174.8100
180.6800
185.4700
192.7400
200.0200
202.1000
205.7500
211.8000
218.7700
226.4700
234.3000
243.1800
251.6700
257.8600
266.6800
271.0500
276.4200
285.6900
292.7000
299.6700
313.9400
324.4800
336.9600
352.2600
362.4500
379.2800
388.1300
405.3600
418.6900
427.4600
442.3700
457.5000
490.1800
513.4100
530.7800
543.8600

139.6900
140.4700
139.5600
140.9200
142.1300
144.1400
146.4000
146.7100
149.7000
152.5500
154.7700
159.2400
162.0300
165.9700
171.8100
171.1600
174.1700
181.6400
186.6000
194.0200
200.7100
202.9000
206.7200
212.8800
220.0000
227.1600
235.5800
245.0200
252.7400
259.0400
267.2000
272.3500
276.1700
285.3900
294.6600
302.0400
316.0200
326.4000
339.9200
353.3500
368.0500
380.8700
383.4400
409.0600
427.0600
428.4500
446.7800
464.5700
492.7700
517.2100
534.0300
543.8700

140.6800
140.3800
139.6100
140.8600
142.6600
144.7600
146.8400
147.2900
150.3900
153.6500
155.3300
159.9600
161.7000
166.7100
171.3300
171.3800
175.6800
182.3800
187.9900
196.0200
200.8100
203.5700
207.2200
213.6600
222.0200
227.7600
235.8900
246.4100
254.8900
260.9800
267.5600
273.7100
279.2000
286.8300
295.9300
303.5900
317.1900
328.6400
344.8600
355.4100
369.5900
380.8100
384.6000
410.3700
424.4300
430.8800
446.5300
471.1200
499.7800
518.5300
536.5900
547.3200

141.1700
139.9500
139.5800
140.6900
142.8800
145.2000
146.5800
147.8200
150.4300
153.2900
155.6200
160.3000
162.1900
167.8500
171.5700
172.0300
177.0200
183.2600
189.4200
197.4100
201.2700
203.8800
207.5400
214.4100
223.4500
228.3200
236.6200
249.2500
256.6900
262.8800
268.4400
274.2000
282.4300
287.0700
296.1600
306.2500
318.7100
330.8700
346.8000
357.2800
373.3400
381.7700
389.4600
408.0600
425.5000
436.1700
447.8900
474.3000
504.3500
520.7900
540.5400
551.1900

(Continued)
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TABLE 1.5 1985:01 555.6600 562.4800 565.7400 569.5500 575.0700  583.1700

(Continued) 1985:07 590.8200 598.0600 604.4700 607.9100 611.8300 619.3600
1986:01 620.4000 624.1400 632.8100 640.3500 652.0100 661.5200
1986:07 672.2000 680.7700 688.5100  695.2600  705.2400  724.2800
1987:01 729.3400 729.8400 733.0100 743.3900 746.0000 743.7200
1987:07 7449600 746.9600 748.6600 756.5000  752.8300  749.6800
1988:01 755.5500 757.0700 761.1800 767.5700  771.6800  779.1000
1988:07  783.4000 785.0800 784.8200 783.6300 784.4600 786.2600
1989:01 784.9200 783.4000 782.7400 778.8200 774.7900  774.2200
1989:07  779.7100  781.1400 782.2000 787.0500 787.9500  792.5700
1990:01 7949300 797.6500 801.2500 806.2400 804.3600  810.3300
1990:07 811.8000 817.8500 821.8300 820.3000 822.0600 824.5600
1991:01 826.7300 832.4000 838.6200 842.7300 848.9600  858.3300
1991:07 862.9500 868.6500 871.5600 878.4000 887.9500 896.7000
1992:01 910.4900 925.1300 936.0000 943.8900 950.7800  954.7100
1992:07 964.6000 975.7100 988.8400 1004.340 1016.040 1024.450
1993:01 1030.900 1033.150 1037990 1047.470 1066.220 1075.610
1993:07 1085.880 1095.560 1105.430 1113.800 1123.900 1129.310
1994:01 1132.200 1136.130 1139.910 1141.420 1142.850 1145.650
1994:07 1151.490 1151.390 1152.440 1150.410 1150.440 1149.750
1995:01 1150.640 1146.740 1146.520 1149.480 1144.650 1144.240
1995:07 1146.500 1146.100 1142.270 1136.430 1133.550 1126.730
1996:01 1122.580 1117.530 1122.590 1124.520 1116.300 1115.470
1996:07 1112.340 1102.180 1095.610 1082.560 1080.490 1081.340
1997:01 1080.520 1076.200 1072.420 1067.450 1063.370 1065.990
1997:07 1067.570 1072.080 1064.820 1062.060 1067.530 1074.870
1998:01 1073.810 1076.020 1080.650 1082.090 1078.170 1077.780
1998:07 1075.370 1072.210 1074.650 1080.400 1088.960  1093.350
1999:01 1091.000 1092.650 1102.010 1108.400 1104.750 1101.110
1999:07 1099.530 1102.400 1093.460

1.6. Controlled experiments in economics: On April 7, 2000, President Clinton signed into
law a bill passed by both Houses of the U.S. Congress that lifted earnings limitations
on Social Security recipients. Until then, recipients between the ages of 65 and 69 who
earned more than $17,000 a year would lose $1 worth of Social Security benefit for
every $3 of income earned in excess of $17,000. How would you devise a study to
assess the impact of this change in the law? Note: There was no income limitation for
recipients over the age of 70 under the old law.

1.7. The data presented in Table 1.6 were published in the March 1, 1984, issue of The Wall
Street Journal. They relate to the advertising budget (in millions of dollars) of 21 firms
for 1983 and millions of impressions retained per week by the viewers of the products
of these firms. The data are based on a survey of 4000 adults in which users of the
products were asked to cite a commercial they had seen for the product category in the
past week.

a. Plot impressions on the vertical axis and advertising expenditure on the horizontal
axis.

b. What can you say about the nature of the relationship between the two variables?

¢. Looking at your graph, do you think it pays to advertise? Think about all those
commercials shown on Super Bowl Sunday or during the World Series.

Note: We will explore further the data given in Table 1.6 in subsequent chapters.
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TABLE 1.6

.. Impressions, Expenditure,

E;lg:ﬁ:l;{l?edvertlsmg Firm rlla1illions miIIionspof 1983 dollars
1. Miller Lite 32.1 50.1

Source: http://lib.stat.cmu.edu/

DASL/Datafiles/tvadsdat.html. 2. Pepsi 99.6 741
3. Stroh’s 11.7 19.3
4. Fed'l Express 21.9 22.9
5. Burger King 60.8 82.4
6. Coca-Cola 78.6 40.1
7. McDonald’s 92.4 185.9
8. MCl 50.7 26.9
9. Diet Cola 21.4 20.4
10. Ford 40.1 166.2
11. Levi's 40.8 27.0
12. Bud Lite 10.4 45.6
13. ATT/Bell 88.9 154.9
14. Calvin Klein 12.0 5.0
15. Wendy'’s 29.2 49.7
16. Polaroid 38.0 26.9
17. Shasta 10.0 5.7
18. Meow Mix 12.3 7.6
19. Oscar Meyer 23.4 9.2
20. Crest 71.1 32.4
21. Kibbles ‘N Bits 4.4 6.1




Chapter

Two-Variable

Regression Analysis:
Some Basic Ideas

In Chapter 1 we discussed the concept of regression in broad terms. In this chapter we
approach the subject somewhat formally. Specifically, this and the following three chapters
introduce the reader to the theory underlying the simplest possible regression analysis,
namely, the bivariate, or two-variable, regression in which the dependent variable (the
regressand) is related to a single explanatory variable (the regressor). This case is consid-
ered first, not because of its practical adequacy, but because it presents the fundamental
ideas of regression analysis as simply as possible and some of these ideas can be illustrated
with the aid of two-dimensional graphs. Moreover, as we shall see, the more general
multiple regression analysis in which the regressand is related to one or more regressors is
in many ways a logical extension of the two-variable case.

2.1 A Hypothetical Example'

34

As noted in Section 1.2, regression analysis is largely concerned with estimating and/or
predicting the (population) mean value of the dependent variable on the basis of the
known or fixed values of the explanatory variable(s).> To understand this, consider the data
given in Table 2.1. The data in the table refer to a total population of 60 families in a
hypothetical community and their weekly income (X)) and weekly consumption expenditure
(Y), both in dollars. The 60 families are divided into 10 income groups (from $80 to $260)
and the weekly expenditures of each family in the various groups are as shown in the table.
Therefore, we have 10 fixed values of X and the corresponding Y values against each of the
X values; so to speak, there are 10 Y subpopulations.

There is considerable variation in weekly consumption expenditure in each income
group, which can be seen clearly from Figure 2.1. But the general picture that one gets is

"The reader whose statistical knowledge has become somewhat rusty may want to freshen it up by
reading the statistical appendix, Appendix A, before reading this chapter.

’The expected value, or expectation, or population mean of a random variable Y is denoted by the
symbol E(Y). On the other hand, the mean value computed from a sample of values from the Y
population is denoted as Y, read as Y bar.



TABLE 2.1
Weekly Family
Income X, $

FIGURE 2.1
Conditional
distribution of
expenditure for various
levels of income

(data of Table 2.1).
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X—

Y ! 80 100 120 140 160 180 200 220 240 260
Weekly family 55 65 79 80 102 110 120 135 137 150
consumption 60 70 84 93 107 115 136 137 145 152
expenditure Y, $ 65 74 90 95 110 120 140 140 155 175

70 80 94 103 116 130 144 152 165 178
75 85 98 108 118 135 145 157 175 180
- 88 - 113 125 140 - 160 189 185
- - - 115 - - - 162 - 191
Total 325 462 445 707 678 750 685 1043 966 1211
Conditional 65 77 8 101 113 125 137 149 161 173
means of 7,
E(Y|X)

that, despite the variability of weekly consumption expenditure within each income
bracket, on the average, weekly consumption expenditure increases as income increases.
To see this clearly, in Table 2.1 we have given the mean, or average, weekly consumption
expenditure corresponding to each of the 10 levels of income. Thus, corresponding to the
weekly income level of $80, the mean consumption expenditure is $65, while correspond-
ing to the income level of $200, it is $137. In all we have 10 mean values for the 10 sub-
populations of Y. We call these mean values conditional expected values, as they depend
on the given values of the (conditioning) variable X. Symbolically, we denote them as
E(Y | X), which is read as the expected value of Y given the value of X (see also Table 2.2).

It is important to distinguish these conditional expected values from the unconditional
expected value of weekly consumption expenditure, E(Y). If we add the weekly consump-
tion expenditures for all the 60 families in the population and divide this number by 60, we
get the number $121.20 ($7272/60), which is the unconditional mean, or expected, value
of weekly consumption expenditure, E£(Y); it is unconditional in the sense that in arriving
at this number we have disregarded the income levels of the various families.® Obviously,

“ 200 -
® E(YIX)

.
.
°
.
.
.

150 -

100

Weekly consumption expenditure

50 L ! I I I I I I I I I
80 100 120 140 160 180 200 220 240 260

Weekly income, $

3As shown in Appendix A, in general the conditional and unconditional mean values are different.
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TABLE 2.2
Conditional
Probabilities p(Y| X))
for the Data of
Table 2.1

X—
p(Y| X)) 80 100 120 140 160 180 200 220 240 260
y
Bs 1 1 1 1 1 1 1 1 1 1
Conditional 5 5 : 5 5 5 5 Z 5 ~
probabilities 1 1 1 1 1 1 1 1 1 1
A 5| 6 5 7 6 6 5 7 6 7
p(Yl XI) 1 1 1 1 1 1 1 1 1 1
5 6 5 7 6 6 5 7 6 7
1 1 1 1 1 1 1 1 1 1
5 6 5 7 6 6 5 7 6 7
1 1 1 1 1 1 1 1 1 1
5 6 5 7 6 6 5 7 6 7
1 1 1 1 1 1 1
- 6 - 7 6 6 - 7 6 7
1 1 1
- - - 7 - - - 7 - 7
Conditional 65 77 89 101 113 125 137 149 161 173
means of Y

the various conditional expected values of Y given in Table 2.1 are different from the
unconditional expected value of Y of $121.20. When we ask the question, “What is the
expected value of weekly consumption expenditure of a family?” we get the answer $121.20
(the unconditional mean). But if we ask the question, “What is the expected value
of weekly consumption expenditure of a family whose monthly income is, say, $140?” we
get the answer $101 (the conditional mean). To put it differently, if we ask the question,
“What is the best (mean) prediction of weekly expenditure of families with a weekly
income of $140?” the answer would be $101. Thus the knowledge of the income level may
enable us to better predict the mean value of consumption expenditure than if we do not
have that knowledge.* This probably is the essence of regression analysis, as we shall
discover throughout this text.

The dark circled points in Figure 2.1 show the conditional mean values of Y against the
various X values. If we join these conditional mean values, we obtain what is known as the
population regression line (PRL), or more generally, the population regression curve.’
More simply, it is the regression of ¥ on X. The adjective “population” comes from the fact
that we are dealing in this example with the entire population of 60 families. Of course, in
reality a population may have many families.

Geometrically, then, a population regression curve is simply the locus of the conditional
means of the dependent variable for the fixed values of the explanatory variable(s). More
simply, it is the curve connecting the means of the subpopulations of ¥ corresponding to the
given values of the regressor X. It can be depicted as in Figure 2.2.

This figure shows that for each X (i.e., income level) there is a population of Y values
(weekly consumption expenditures) that are spread around the (conditional) mean of those
Y values. For simplicity, we are assuming that these Y values are distributed symmetrically
around their respective (conditional) mean values. And the regression line (or curve) passes
through these (conditional) mean values.

With this background, the reader may find it instructive to reread the definition of
regression given in Section 1.2.

4l am indebted to James Davidson on this perspective. See James Davidson, Econometric Theory,
Blackwell Publishers, Oxford, U.K., 2000, p. 11.

3In the present example the PRL is a straight line, but it could be a curve (see Figure 2.3).



FIGURE 2.2
Population regression
line (data of Table 2.1).
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2.2 The Concept of Population Regression Function (PRF)

From the preceding discussion and Figures 2.1 and 2.2, it is clear that each conditional
mean E(Y | X;) is a function of X;, where X; is a given value of X. Symbolically,

E(Y|X;) = f(Xi) (2.2.1)

where f(X;) denotes some function of the explanatory variable X. In our example,
E(Y| X;) is a linear function of X;. Equation 2.2.1 is known as the conditional expectation
function (CEF) or population regression function (PRF) or population regression (PR)
for short. It states merely that the expected value of the distribution of Y given X; is
functionally related to X;. In simple terms, it tells how the mean or average response of ¥
varies with X.

What form does the function f(X;) assume? This is an important question because in
real situations we do not have the entire population available for examination. The func-
tional form of the PRF is therefore an empirical question, although in specific cases theory
may have something to say. For example, an economist might posit that consumption
expenditure is linearly related to income. Therefore, as a first approximation or a working
hypothesis, we may assume that the PRF E(Y | X;) is a linear function of Xj, say, of the type

E(Y|Xi) = B + o Xi (2.2.2)

where 8; and B, are unknown but fixed parameters known as the regression coefficients; 3,
and B, are also known as intercept and slope coefficients, respectively. Equation 2.2.1 itself
is known as the linear population regression function. Some alternative expressions
used in the literature are linear population regression model or simply linear population
regression. In the sequel, the terms regression, regression equation, and regression model
will be used synonymously.
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In regression analysis our interest is in estimating the PRFs like Equation 2.2.2, that is,

estimating the values of the unknowns 8; and B, on the basis of observations on ¥ and X.
This topic will be studied in detail in Chapter 3.

2.3 The Meaning of the Term Linear

Since this text is concerned primarily with linear models like Eq. (2.2.2), it is essential to
know what the term linear really means, for it can be interpreted in two different ways.

Linearity in the Variables

The first and perhaps more “natural” meaning of linearity is that the conditional expecta-
tion of Y is a linear function of X;, such as, for example, Eq. (2.2.2).® Geometrically, the
regression curve in this case is a straight line. In this interpretation, a regression function
suchas E(Y | X;) = B1 + o X 12 is not a linear function because the variable X appears with
a power or index of 2.

Linearity in the Parameters

The second interpretation of linearity is that the conditional expectation of ¥, E(Y | X;),
is a linear function of the parameters, the $’; it may or may not be linear in the variable
X7 In this interpretation E(Y |X;) = B + ,Binz is a linear (in the parameter) re-
gression model. To see this, let us suppose X takes the value 3. Therefore,
E(Y| X =3) = B; + 98>, which is obviously linear in 8 and $,. All the models shown in
Figure 2.3 are thus linear regression models, that is, models linear in the parameters.

Now consider the model E(Y | X;) = Bi + B3 X;. Now suppose X = 3; then we obtain
E(Y| X;) = Bi + 3B3, which is nonlinear in the parameter ;. The preceding model is
an example of a nonlinear (in the parameter) regression model. We will discuss such
models in Chapter 14.

Of the two interpretations of linearity, linearity in the parameters is relevant for the
development of the regression theory to be presented shortly. Therefore, from now on, the
term “linear” regression will always mean a regression that is linear in the parameters;
the B’s (that is, the parameters) are raised to the first power only. It may or may not be linear
in the explanatory variables, the X's. Schematically, we have Table 2.3. Thus, E(Y | X;) =
B1 + B2X;, which is linear both in the parameters and variable, is a LRM, and so is
E(Y | X;) = Bi + BX?, which is linear in the parameters but nonlinear in variable X.

SA function Y = f(X) is said to be linear in X if X appears with a power or index of 1 only (that i,
terms such as X2, v/X, and so on, are excluded) and is not multiplied or divided by any other variable
(for example, X - Z or X/Z, where Z is another variable). If Y depends on X alone, another way to
state that Yis linearly related to X is that the rate of change of Y with respect to X (i.e., the slope, or
derivative, of Y with respect to X, dY/dX) is independent of the value of X. Thus, if ¥ = 4X, dY/dX =4,
which is independent of the value of X. But if Y = 4X?, dY/dX = 8X, which is not independent of
the value taken by X. Hence this function is not linear in X.

7A function is said to be linear in the parameter, say, 1, if 1 appears with a power of 1 only and is
not multiplied or divided by any other parameter (for example, 8182, B2/61, and so on).



FIGURE 2.3
Linear-in-parameter
functions.

TABLE 2.3
Linear Regression
Models
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Y Y
Quadratic Exponential
Y =B+ BoX + B3 X7 Y = eBriBoX

X X

Y

Cubic
Y =B+ BoX + 3 X7+ By X3

X

Model Linear in Parameters? Model Linear in Variables?

Yes No
Yes LRM LRM
No NLRM NLRM

Note: LRM = linear regression model
NLRM = nonlinear regression model

2.4 Stochastic Specification of PRF

It is clear from Figure 2.1 that, as family income increases, family consumption expenditure
on the average increases, too. But what about the consumption expenditure of an individual
family in relation to its (fixed) level of income? It is obvious from Table 2.1 and Figure 2.1
that an individual family’s consumption expenditure does not necessarily increase as the
income level increases. For example, from Table 2.1 we observe that corresponding to the
income level of $100 there is one family whose consumption expenditure of $65 is less than
the consumption expenditures of two families whose weekly income is only $80. But notice
that the average consumption expenditure of families with a weekly income of $100 is
greater than the average consumption expenditure of families with a weekly income of
$80 ($77 versus $65).

What, then, can we say about the relationship between an individual family’s consump-
tion expenditure and a given level of income? We see from Figure 2.1 that, given the
income level of X;, an individual family’s consumption expenditure is clustered around the
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average consumption of all families at that X;, that is, around its conditional expectation.
Therefore, we can express the deviation of an individual Y; around its expected value as
follows:

up =Y, — E(Y|X))
or
Y= E(Y| X)) + us 2.4.1)

where the deviation u; is an unobservable random variable taking positive or negative
values. Technically, u; is known as the stochastic disturbance or stochastic error term.

How do we interpret Equation 2.4.1? We can say that the expenditure of an individual
family, given its income level, can be expressed as the sum of two components:
(1) E(Y | X;), which is simply the mean consumption expenditure of all the families with
the same level of income. This component is known as the systematic, or deterministic,
component, and (2) u;, which is the random, or nonsystematic, component. We shall
examine shortly the nature of the stochastic disturbance term, but for the moment assume
that it is a surrogate or proxy for all the omitted or neglected variables that may affect ¥ but
are not (or cannot be) included in the regression model.

If E(Y | X;) is assumed to be linear in X;, as in Eq. (2.2.2), Eq. (2.4.1) may be written as

Yi = E(Y | X;) +u;
= B+ B Xi +u; (2.4.2)

Equation 2.4.2 posits that the consumption expenditure of a family is linearly related to its
income plus the disturbance term. Thus, the individual consumption expenditures, given
X = $80 (see Table 2.1), can be expressed as

Y1 =55= 1+ (80) +u,
Y, =60 = B + B(80) + us
Y; =65 = B1 + B2(80) +u3 (2.4.3)
Y4 =70 = B + B2(80) + uy
Ys =75 = B + 2(80) + us
Now if we take the expected value of Eq. (2.4.1) on both sides, we obtain
E(Y; | Xi) = E[E(Y | X)] + E(u; | X;)
= E(Y|X:)+ E(u; | Xy) (2.4.49)

where use is made of the fact that the expected value of a constant is that constant itself.®
Notice carefully that in Equation 2.4.4 we have taken the conditional expectation, condi-
tional upon the given X’s.

Since E(Y; | X;) is the same thing as E(Y | X;), Eq. (2.4.4) implies that

E(u;i | X;) =0 (2.4.5)

8See Appendix A for a brief discussion of the properties of the expectation operator E. Note that
E(Y| Xj), once the value of X;is fixed, is a constant.
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Thus, the assumption that the regression line passes through the conditional means of Y
(see Figure 2.2) implies that the conditional mean values of #; (conditional upon the given
X'’s) are zero.

From the previous discussion, it is clear Eq. (2.2.2) and Eq. (2.4.2) are equivalent forms
if E(u; | X;) = 0.° But the stochastic specification in Eq. (2.4.2) has the advantage that it
clearly shows that there are other variables besides income that affect consumption expen-
diture and that an individual family’s consumption expenditure cannot be fully explained
only by the variable(s) included in the regression model.

2.5 The Significance of the Stochastic Disturbance Term

As noted in Section 2.4, the disturbance term u; is a surrogate for all those variables that
are omitted from the model but that collectively affect Y. The obvious question is: Why not
introduce these variables into the model explicitly? Stated otherwise, why not develop a
multiple regression model with as many variables as possible? The reasons are many.

1. Vagueness of theory: The theory, if any, determining the behavior of ¥ may be, and
often is, incomplete. We might know for certain that weekly income X influences weekly
consumption expenditure Y, but we might be ignorant or unsure about the other variables
affecting Y. Therefore, u; may be used as a substitute for all the excluded or omitted vari-
ables from the model.

2. Unavailability of data: Even if we know what some of the excluded variables are and
therefore consider a multiple regression rather than a simple regression, we may not have
quantitative information about these variables. It is a common experience in empirical
analysis that the data we would ideally like to have often are not available. For example, in
principle we could introduce family wealth as an explanatory variable in addition to the in-
come variable to explain family consumption expenditure. But unfortunately, information
on family wealth generally is not available. Therefore, we may be forced to omit the wealth
variable from our model despite its great theoretical relevance in explaining consumption
expenditure.

3. Core variables versus peripheral variables: Assume in our consumption-income ex-
ample that besides income X7, the number of children per family X3, sex X3, religion Xj,
education X5, and geographical region X also affect consumption expenditure. But it is quite
possible that the joint influence of all or some of these variables may be so small and at best
nonsystematic or random that as a practical matter and for cost considerations it does not pay
to introduce them into the model explicitly. One hopes that their combined effect can be
treated as a random variable u;.1°

4. Intrinsic randomness in human behavior: Even if we succeed in introducing all the
relevant variables into the model, there is bound to be some “intrinsic”” randomness in in-
dividual Y’s that cannot be explained no matter how hard we try. The disturbances, the u’s,
may very well reflect this intrinsic randomness.

5. Poor proxy variables: Although the classical regression model (to be developed in
Chapter 3) assumes that the variables Y and X are measured accurately, in practice the data

°As a matter of fact, in the method of least squares to be developed in Chapter 3, it is assumed
explicitly that E(u;| X)) = 0. See Sec. 3.2.

T0A further difficulty is that variables such as sex, education, and religion are difficult to quantify.
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may be plagued by errors of measurement. Consider, for example, Milton Friedman’s well-
known theory of the consumption function.!! He regards permanent consumption (Y?) as
a function of permanent income (X?). But since data on these variables are not directly ob-
servable, in practice we use proxy variables, such as current consumption (Y) and current
income (X), which can be observable. Since the observed Y and X may not equal Y” and
XP?, there is the problem of errors of measurement. The disturbance term « may in this case
then also represent the errors of measurement. As we will see in a later chapter, if there are
such errors of measurement, they can have serious implications for estimating the regres-

sion coefficients, the 8’s.

6. Principle of parsimony: Following Occam’s razor,'> we would like to keep our re-

gression model as simple as possible. If we can explain the behavior of Y “substantially”
with two or three explanatory variables and if our theory is not strong enough to suggest
what other variables might be included, why introduce more variables? Let u; represent all
other variables. Of course, we should not exclude relevant and important variables just to
keep the regression model simple.

7. Wrong functional form: Even if we have theoretically correct variables explaining a
phenomenon and even if we can obtain data on these variables, very often we do not know
the form of the functional relationship between the regressand and the regressors. Is con-
sumption expenditure a linear (invariable) function of income or a nonlinear (invariable)
function? If it is the former, Y; = ) + B, X; + u; is the proper functional relationship
between Y and X, but if it is the latter, ¥; = B; + B X; + B3X 12 + u; may be the correct
functional form. In two-variable models the functional form of the relationship can often
be judged from the scattergram. But in a multiple regression model, it is not easy to deter-
mine the appropriate functional form, for graphically we cannot visualize scattergrams in
multiple dimensions.

For all these reasons, the stochastic disturbances u#; assume an extremely critical role in
regression analysis, which we will see as we progress.

2.6 The Sample Regression Function (SRF)

By confining our discussion so far to the population of ¥ values corresponding to the fixed
X’s, we have deliberately avoided sampling considerations (note that the data of Table 2.1
represent the population, not a sample). But it is about time to face up to the sampling prob-
lems, for in most practical situations what we have is but a sample of Y values correspond-
ing to some fixed X's. Therefore, our task now is to estimate the PRF on the basis of the
sample information.

As an illustration, pretend that the population of Table 2.1 was not known to us and the
only information we had was a randomly selected sample of Y values for the fixed X’s
as given in Table 2.4. Unlike Table 2.1, we now have only one Y value corresponding to
the given X'’s; each Y (given X;) in Table 2.4 is chosen randomly from similar Y’s
corresponding to the same X; from the population of Table 2.1.

"Milton Friedman, A Theory of the Consumption Function, Princeton University Press, Princeton, N.J.,
1957.

12“That descriptions be kept as simple as possible until proved inadequate,” The World of Mathematics,
vol. 2, J. R. Newman (ed.), Simon & Schuster, New York, 1956, p. 1247, or, “Entities should not be
multiplied beyond necessity,” Donald F. Morrison, Applied Linear Statistical Methods, Prentice Hall,
Englewood Cliffs, N.J., 1983, p. 58.



FIGURE 2.4
Regression lines based
on two different
samples.
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The question is: From the sample of Table 2.4 can we predict the average weekly con-
sumption expenditure Y in the population as a whole corresponding to the chosen X’s? In
other words, can we estimate the PRF from the sample data? As the reader surely suspects,
we may not be able to estimate the PRF “accurately” because of sampling fluctuations. To
see this, suppose we draw another random sample from the population of Table 2.1, as
presented in Table 2.5.

Plotting the data of Tables 2.4 and 2.5, we obtain the scattergram given in Figure 2.4. In
the scattergram two sample regression lines are drawn so as to “fit” the scatters reasonably
well: SRF| is based on the first sample, and SRF, is based on the second sample. Which of
the two regression lines represents the “true” population regression line? If we avoid the
temptation of looking at Figure 2.1, which purportedly represents the PR, there is no way
we can be absolutely sure that either of the regression lines shown in Figure 2.4 represents
the true population regression line (or curve). The regression lines in Figure 2.4 are known

TABLE 2.4 TABLE 2.5
A Random Sample from the Another Random Sample from the
Population of Table 2.1 Population of Table 2.1
Y X Y X
70 80 55 80
65 100 88 100
920 120 90 120
95 140 80 140
110 160 118 160
115 180 120 180
120 200 145 200
140 220 135 220
155 240 145 240
150 260 175 260
200
. SRF,
x First sample (Table 2.4) Regression based on -
e Second sample (Table 2.5) the second sample _ - SRF;
150 | \//’/
~

Regression based on
the first sample

100 -

50 -

Weekly consumption expenditure, $

1 | | | | | | | | | |

80 100 120 140 160 180 200 220 240 260
Weekly income, $
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as the sample regression lines. Supposedly they represent the population regression line,
but because of sampling fluctuations they are at best an approximation of the true PR. In
general, we would get N different SRFs for N different samples, and these SRFs are not
likely to be the same.

Now, analogously to the PRF that underlies the population regression line, we can
develop the concept of the sample regression function (SRF) to represent the sample
regression line. The sample counterpart of Eq. (2.2.2) may be written as

A A ~

Yi = B1 + B X; (2.6.1)

where Y is read as “Y-hat” or “Y-cap”
¥; = estimator of E(Y | X;)
B1 = estimator of B
B, = estimator of B,

Note that an estimator, also known as a (sample) statistic, is simply a rule or formula or
method that tells how to estimate the population parameter from the information provided by
the sample at hand. A particular numerical value obtained by the estimator in an application
is known as an estimate.'> It should be noted that an estimator is random, but an estimate is
nonrandom. (Why?)

Now just as we expressed the PRF in two equivalent forms, Eq. (2.2.2) and Eq. (2.4.2),
we can express the SRF in Equation 2.6.1 in its stochastic form as follows:

Y, = :él + Bin +u; (2.6.2)

where, in addition to the symbols already defined, #; denotes the (sample) residual term.
Conceptually #; is analogous to #; and can be regarded as an estimate of u;. It is introduced
in the SRF for the same reasons as u; was introduced in the PRE.

To sum up, then, we find our primary objective in regression analysis is to estimate the
PRF

Y = B1 + BoX; +u; (2.4.2)

on the basis of the SRF

Y =B+ Bxi + 4 (2.6.2)

because more often than not our analysis is based upon a single sample from some popula-
tion. But because of sampling fluctuations, our estimate of the PRF based on the SRF is at
best an approximate one. This approximation is shown diagrammatically in Figure 2.5.

3As noted in the Introduction, a hat above a variable will signify an estimator of the relevant
population value.
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For X = X;, we have one (sample) observation, ¥ = ¥;. In terms of the SRE, the
observed Y; can be expressed as

>

Y =¥+ (2.6.3)

and in terms of the PRE, it can be expressed as
Y =E(Y | X))+ u; (2.6.4)

Now obviously in Figure 2.5 f/l overestimates the true E(Y | X;) for the X; shown therein.
By the same token, for any X; to the left of the point 4, the SRF will underestimate the true
PRF. But the reader can readily see that such over- and underestimation is inevitable
because of sampling fluctuations.

The critical question now is: Granted that the SRF is but an approximation of the PRF,
can we devise a rule or a method that will make this approximation as “close” as possible?
In other words, how should the SRF be constructed so that ﬁl is as “close” as possible to
the true B; and /§2 is as “close” as possible to the true 8, even though we will never know
the true 81 and B8,?

The answer to this question will occupy much of our attention in Chapter 3. We note
here that we can develop procedures that tell us how to construct the SRF to mirror the PRF
as faithfully as possible. It is fascinating to consider that this can be done even though we
never actually determine the PRF itself.

2.7 Illustrative Examples

We conclude this chapter with two examples.
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EXAMPLE 2.1
Mean Hourly
Wage by
Education

TABLE 2.6
Mean Hourly Wage
by Education

Source: Arthur S.
Goldberger, Introductory
Econometrics, Harvard
University Press, Cambridge,
Mass., 1998, Table 1.1, p. 5
(adapted).

FIGURE 2.6
Relationship between
mean wages and
education.

Table 2.6 gives data on the level of education (measured by the number of years of school-
ing), the mean hourly wages earned by people at each level of education, and the number
of people at the stated level of education. Ernst Berndt originally obtained the data
presented in the table, and he derived these data from the population survey conducted
in May 1985.™

Plotting the (conditional) mean wage against education, we obtain the picture in
Figure 2.6. The regression curve in the figure shows how mean wages vary with the level
of education; they generally increase with the level of education, a finding one should not
find surprising. We will study in a later chapter how variables besides education can also
affect the mean wage.

Years of Schooling Mean Wage, $  Number of People

6 4.4567 3
7 5.7700 5
8 5.9787 15
9 7.3317 12
10 7.3182 17
11 6.5844 27
12 7.8182 218
13 7.8351 37
14 11.0223 56
15 10.6738 13
16 10.8361 70
17 13.6150 24
18 13.5310 31
Total 528
14 -

® Mean value

12

10

Mean wage

4 I I I I I ]
6 8 10 12 14 16 18

Education

T4Ernst R. Berndt, The Practice of Econometrics: Classic and Contemporary, Addison Wesley, Reading,
Mass., 1991. Incidentally, this is an excellent book that the reader may want to read to find out how
econometricians go about doing research.
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EXAMPLE 2.2
Mathematics SAT
Scores by Family
Income

FIGURE 2.7
Relationship between
mean mathematics
SAT scores and mean
family income.

Table 2.10 in Exercise 2.17 provides data on mean SAT (Scholastic Aptitude Test) scores on
critical reading, mathematics, and writing for college-bound seniors based on 947,347
students taking the SAT examination in 2007. Plotting the mean mathematics scores on
mean family income, we obtain the picture in Figure 2.7.

Note: Because of the open-ended income brackets for the first and last income
categories shown in Table 2.10, the lowest average family income is assumed to be
$5,000 and the highest average family income is assumed to be $150,000.

560

540

520

Average math score
w
=)
S

480

460

440 | | | |
0 40,000 80,000 120,000 160,000

Average family income, $

As Figure 2.7 shows, the average mathematics score increases as average family
income increases. Since the number of students taking the SAT examination is quite
large, it probably represents the entire population of seniors taking the examination.
Therefore, the regression line sketched in Figure 2.7 probably represents the population
regression line.

There may be several reasons for the observed positive relationship between the two
variables. For example, one might argue that students with higher family income can
better afford private tutoring for the SAT examinations. In addition, students with higher
family income are more likely to have parents who are highly educated. It is also possible
that students with higher mathematics scores come from better schools. The reader can
provide other explanations for the observed positive relationship between the two
variables.
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Summary and 1. The key concept underlying regression analysis is the concept of the conditional
expectation function (CEF), or population regression function (PRF). Our objective
in regression analysis is to find out how the average value of the dependent variable
(or regressand) varies with the given value of the explanatory variable (or regressor).

Conclusions

2. This book largely deals with linear PRFs, that is, regressions that are linear in the
parameters. They may or may not be linear in the regressand or the regressors.

3. For empirical purposes, it is the stochastic PRF that matters. The stochastic
disturbance term u; plays a critical role in estimating the PRF.

4. The PREF is an idealized concept, since in practice one rarely has access to the entire
population of interest. Usually, one has a sample of observations from the population.
Therefore, one uses the stochastic sample regression function (SRF) to estimate the
PREF. How this is actually accomplished is discussed in Chapter 3.

EXERCISES Questions

2.1. What is the conditional expectation function or the population regression function?

2.2. What is the difference between the population and sample regression functions? Is
this a distinction without difference?

2.3. What is the role of the stochastic error term u; in regression analysis? What is the
difference between the stochastic error term and the residual, i;?

2.4. Why do we need regression analysis? Why not simply use the mean value of the
regressand as its best value?

2.5. What do we mean by a linear regression model?

2.6. Determine whether the following models are linear in the parameters, or the
variables, or both. Which of these models are linear regression models?

Model Descriptive Title
1
a. Vi =1+ 8 (7) + uj Reciprocal
i
b. Yi=p8+82InX; +u Semilogarithmic
c.InY; =1+ B2Xi +uj Inverse semilogarithmic
d.InY;=Ing +B2In Xi +u; Logarithmic or double logarithmic
1
e.InY; =81 — 82 (X_) + uj Logarithmic reciprocal
i

Note: In = natural log (i.e., log to the base e); u; is the stochastic disturbance term. We will study these models in Chapter 6.

2.7. Are the following models linear regression models? Why or why not?
a Y = ePrtBaXitu;

1

b 2= 1 + eprtpPaXitu;

1
@ ln}3=ﬁ1+ﬂz<z>+ui

d. Y, =B+ (0.75 — By)e X724y,
e Y, =B +BX +u




FIGURE 2.8
Growth rates of real
manufacturing wages
and exports. Data are
for 50 developing
countries during
1970-90.

Source: The World Bank, World
Development Report 1995,

p. 55. The original source is
UNIDO data, World Bank data.
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Average growth in real manufacturing
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What is meant by an intrinsically linear regression model? If S, in Exercise 2.7d
were 0.8, would it be a linear or nonlinear regression model?
Consider the following nonstochastic models (i.e., models without the stochastic
error term). Are they linear regression models? If not, is it possible, by suitable
algebraic manipulations, to convert them into linear models?

1
a Y, = —
B + B2 X;
Xi
b.Yy=—"——
B1 + B2 X;
1
c. Y

" 14exp (=B — BoXi)

You are given the scattergram in Figure 2.8 along with the regression line. What
general conclusion do you draw from this diagram? Is the regression line sketched in
the diagram a population regression line or the sample regression line?

From the scattergram given in Figure 2.9, what general conclusions do you draw?
What is the economic theory that underlies this scattergram? (Hint: Look up any
international economics textbook and read up on the Heckscher—Ohlin model of
trade.)

What does the scattergram in Figure 2.10 reveal? On the basis of this diagram, would
you argue that minimum wage laws are good for economic well-being?

Is the regression line shown in Figure 1.3 of the Introduction the PRF or the SRF?
Why? How would you interpret the scatterpoints around the regression line? Besides
GDP, what other factors, or variables, might determine personal consumption
expenditure?

12 -

wages, % per year

o_! I I I ]
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Average annual change in export-GNP ratio
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@ Middle East and North Africa

€ South Asia
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FIGURE 2.9

Skill intensity of
exports and human
capital endowment.
Data are for 126
industrial and
developing countries
in 1985. Values along
the horizontal axis are
logarithms of the ratio
of the country’s
average educational
attainment to its land
area; vertical axis
values are logarithms
of the ratio of
manufactured to
primary-products
exports.

Source: World Bank, World
Development Report 1995,

p. 59. Original sources: Export
data from United Nations
Statistical Office COMTRADE
database; education data from
UNDP 1990; land data from the
World Bank.

FIGURE 2.10

The minimum wage
and GNP per capita.
The sample consists of
17 developing
countries. Years vary
by country from 1988
to 1992. Data are in
international prices.

Source: World Bank, World
Development Report 1995,
p. 75.
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Empirical Exercises
2.14. You are given the data in Table 2.7 for the United States for years 1980-2006.

a. Plot the male civilian labor force participation rate against male civilian unemploy-
ment rate. Eyeball a regression line through the scatter points. A priori, what is the ex-
pected relationship between the two and what is the underlying economic theory?
Does the scattergram support the theory?
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TABLE 2.7

Year CLFPRM'  CLFPRF? UNRM3 UNRF* AHE82° AHE®
Labor Force
Participation Data 1980 77.40000 51.50000 6.900000 7.400000 7.990000 6.840000
for U.S. for 1981 77.00000 52.10000 7.400000 7.900000 7.880000 7.430000
1980-2006 1982 76.60000 52.60000 9.900000 9.400000 7.860000 7.860000

1983 76.40000 52.90000  9.900000  9.200000  7.950000  8.190000
pores: eonomic Reportofthe 1984 76.40000  53.60000 7400000  7.600000  7.950000  8.480000
1985  76.30000 54.50000  7.000000  7.400000  7.910000  8.730000
1986  76.30000 55.30000  6.900000 7.100000  7.960000  8.920000
1987  76.20000  56.00000  6.200000  6.200000  7.860000  9.130000
1988  76.20000 56.60000  5.500000  5.600000  7.810000  9.430000
1989  76.40000  57.40000  5.200000  5.400000  7.750000  9.800000
1990  76.40000  57.50000  5.700000  5.500000  7.660000  10.190000
1991  75.80000 57.40000  7.200000  6.400000  7.580000  10.500000
1992 75.80000 57.80000  7.900000  7.000000  7.550000  10.760000
1993 75.40000 57.90000  7.200000  6.600000  7.520000  11.030000
1994 75.10000 58.80000  6.200000  6.000000  7.530000  11.320000
1995  75.00000  58.90000  5.600000  5.600000  7.530000  11.640000
1996  74.90000  59.30000  5.400000  5.400000  7.570000  12.030000
1997  75.00000  59.80000  4.900000  5.000000  7.680000  12.490000
1998  74.90000 59.80000  4.400000  4.600000  7.890000  13.000000
1999 74.70000  60.00000  4.100000  4.300000  8.000000  13.470000
2000  74.80000  59.90000  3.900000  4.100000  8.030000  14.000000
2001  74.40000  59.80000  4.800000  4.700000  8.110000  14.530000
2002 7410000  59.60000  5.900000  5.600000  8.240000  14.950000
2003  73.50000  59.50000  6.300000  5.700000  8.270000  15.350000
2004  73.30000  59.20000  5.600000  5.400000 ~ 8.230000  15.670000
2005 73.30000  59.30000  5.100000  5.100000 8.170000  16.110000
2006  73.50000  59.40000  4.600000  4.600000  8.230000  16.730000

Table citations below refer to the source document.

ICLFPRM, Civilian labor force participation rate, male (%), Table B-39, p. 277.
2CLFPRE, Civilian labor force participation rate, female (%), Table B-39, p. 277.
SUNRM, Civilian unemployment rate, male (%) Table B-42, p. 280.

#UNRE, Civilian unemployment rate, female (%) Table B-42, p. 280.

SAHES2, Average hourly earnings (1982 dollars), Table B-47, p. 286.

®AHE, Average hourly earnings (current dollars), Table B-47, p. 286.

b. Repeat (a) for females.

c. Now plot both the male and female labor participation rates against average hourly
earnings (in 1982 dollars). (You may use separate diagrams.) Now what do you find?
And how would you rationalize your finding?

d. Can you plot the labor force participation rate against the unemployment rate and
the average hourly earnings simultaneously? If not, how would you verbalize the
relationship among the three variables?

2.15. Table 2.8 gives data on expenditure on food and total expenditure, measured in
rupees, for a sample of 55 rural households from India. (In early 2000, a U.S. dollar
was about 40 Indian rupees.)

a. Plot the data, using the vertical axis for expenditure on food and the horizontal axis for
total expenditure, and sketch a regression line through the scatterpoints.

b. What broad conclusions can you draw from this example?
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TABLE 2.8 Food and Total Expenditure (Rupees)

Food Total Food Total
Observation Expenditure Expenditure Observation Expenditure Expenditure
1 217.0000 382.0000 29 390.0000 655.0000
2 196.0000 388.0000 30 385.0000 662.0000
3 303.0000 391.0000 31 470.0000 663.0000
4 270.0000 415.0000 32 322.0000 677.0000
5 325.0000 456.0000 33 540.0000 680.0000
6 260.0000 460.0000 34 433.0000 690.0000
7 300.0000 472.0000 35 295.0000 695.0000
8 325.0000 478.0000 36 340.0000 695.0000
9 336.0000 494.0000 37 500.0000 695.0000
10 345.0000 516.0000 38 450.0000 720.0000
11 325.0000 525.0000 39 415.0000 721.0000
12 362.0000 554.0000 40 540.0000 730.0000
13 315.0000 575.0000 41 360.0000 731.0000
14 355.0000 579.0000 42 450.0000 733.0000
15 325.0000 585.0000 43 395.0000 745.0000
16 370.0000 586.0000 44 430.0000 751.0000
17 390.0000 590.0000 45 332.0000 752.0000
18 420.0000 608.0000 46 397.0000 752.0000
19 410.0000 610.0000 47 446.0000 769.0000
20 383.0000 616.0000 48 480.0000 773.0000
21 315.0000 618.0000 49 352.0000 773.0000
22 267.0000 623.0000 50 410.0000 775.0000
23 420.0000 627.0000 51 380.0000 785.0000
24 300.0000 630.0000 52 610.0000 788.0000
25 410.0000 635.0000 53 530.0000 790.0000
26 220.0000 640.0000 54 360.0000 795.0000
27 403.0000 648.0000 55 305.0000 801.0000
28 350.0000 650.0000

Source: Chandan Mukherjee, Howard White, and Marc Wuyts, Econometrics and Data Analysis for Developing Countries, Routledge, New York, 1998, p. 457.

c. A priori, would you expect expenditure on food to increase linearly as total expendi-
ture increases regardless of the level of total expenditure? Why or why not? You can
use total expenditure as a proxy for total income.

2.16. Table 2.9 gives data on mean Scholastic Aptitude Test (SAT) scores for college-
bound seniors for 1972-2007. These data represent the critical reading and mathe-
matics test scores for both male and female students. The writing category was
introduced in 2006. Therefore, these data are not included.

a. Use the horizontal axis for years and the vertical axis for SAT scores to plot the critical
reading and math scores for males and females separately.

b. What general conclusions do you draw from these graphs?

c. Knowing the critical reading scores of males and females, how would you go about
predicting their math scores?

d. Plot the female math scores against the male math scores. What do you observe?
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TABLE 2.9 Critical Reading Mathematics

Total Group Mean

SAT Reasoning Test Year Male Female Total Male Female Total

Scores: College- 1972 531 529 530 527 489 509

Bound Seniors, 1973 523 521 523 525 489 506

1972-2007 1974 524 520 521 524 488 505

P 1975 515 509 512 518 479 498
1976 511 508 509 520 475 497
1977 509 505 507 520 474 496
1978 511 503 507 517 474 494
1979 509 501 505 516 473 493
1980 506 498 502 515 473 492
1981 508 496 502 516 473 492
1982 509 499 504 516 473 493
1983 508 498 503 516 474 494
1984 511 498 504 518 478 497
1985 514 503 509 522 480 500
1986 515 504 509 523 479 500
1987 512 502 507 523 481 501
1988 512 499 505 521 483 501
1989 510 498 504 523 482 502
1990 505 496 500 521 483 501
1991 503 495 499 520 482 500
1992 504 496 500 521 484 501
1993 504 497 500 524 484 503
1994 501 497 499 523 487 504
1995 505 502 504 525 490 506
1996 507 503 505 527 492 508
1997 507 503 505 530 494 511
1998 509 502 505 531 496 512
1999 509 502 505 531 495 511
2000 507 504 505 533 498 514
2001 509 502 506 533 498 514
2002 507 502 504 534 500 516
2003 512 503 507 537 503 519
2004 512 504 508 537 501 518
2005 513 505 508 538 504 520
2006 505 502 503 536 502 518
2007 504 502 502 533 499 515

Note: For 1972-1986 a formula was applied to the original mean and standard deviation to convert the mean to the recentered scale. For
1987-1995 individual student scores were converted to the recentered scale and then the mean was recomputed. From 1996-1999, nearly
all students received scores on the recentered scale. Any score on the original scale was converted to the recentered scale prior to
computing the mean. From 20002007, all scores are reported on the recentered scale.

2.17. Table 2.10 presents data on mean SAT reasoning test scores classified by income for
three kinds of tests: critical reading, mathematics, and writing. In Example 2.2, we
presented Figure 2.7, which plotted mean math scores on mean family income.

a. Refer to Figure 2.7 and prepare a similar graph relating average critical reading scores
to average family income. Compare your results with those shown in Figure 2.7.
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!ﬁf Il-lliazs;;?ng Test Family Number of Critical Reading  Mathematics Writing
Classified by Family Income ($)  Test Takers Mean SD Mean SD Mean SD
Income <10,000 40610 427 107 451 122 423 104
Source: College Board, 2007 10000-20000 72745 453 106 472 113 446 102
College-Bound Seniors, 20000-30000 61244 454 102 465 107 444 97
TERI ik 30000-40000 83685 476 103 485 106 466 98
40000-50000 75836 489 103 486 105 477 99
50000-60000 80060 497 102 504 104 486 98
60000-70000 75763 504 102 511 103 493 98
70000-80000 81627 508 101 516 103 498 98
80000-100000 130752 520 102 529 104 510 100
>100000 245025 544 105 556 107 537 103

b. Repeat (a), relating average writing scores to average family income and compare your
results with the other two graphs.

c. Looking at the three graphs, what general conclusion can you draw?




Chapter

Two-Variable
Regression Model: The

Problem of Estimation

As noted in Chapter 2, our first task is to estimate the population regression function (PRF)
on the basis of the sample regression function (SRF) as accurately as possible. In Appendix A
we have discussed two generally used methods of estimation: (1) ordinary least squares
(OLS) and (2) maximum likelihood (ML). By and large, it is the method of OLS that is used
extensively in regression analysis primarily because it is intuitively appealing and mathe-
matically much simpler than the method of maximum likelihood. Besides, as we will show
later, in the linear regression context the two methods generally give similar results.

3.1 The Method of Ordinary Least Squares

The method of ordinary least squares is attributed to Carl Friedrich Gauss, a German math-
ematician. Under certain assumptions (discussed in Section 3.2), the method of least
squares has some very attractive statistical properties that have made it one of the most
powerful and popular methods of regression analysis. To understand this method, we first
explain the least-squares principle.

Recall the two-variable PRF:

Y = B1 + BoXi +u; (2.4.2)

However, as we noted in Chapter 2, the PRF is not directly observable. We estimate it from
the SRF:

Y; = B+ BoXi + 1 (2.6.2)

=¥+ (2.6.3)

where )A’, is the estimated (conditional mean) value of Y;.
But how is the SRF itself determined? To see this, let us proceed as follows. First,

express Equation 2.6.3 as
=Y - Y
A A 3.1.1)
=Y = 1 — BoXi

55
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FIGURE 3.1
Least-squares
criterion.

Y

which shows that the #; (the residuals) are simply the differences between the actual and
estimated Y values.

Now given n pairs of observations on Y and X, we would like to determine the SRF in
such a manner that it is as close as possible to the actual Y. To this end, we may adopt the
following criterion: Choose the SRF in such a way that the sum of the residuals
S i; = Y (Y; — Y;) is as small as possible. Although intuitively appealing, this is not a
very good criterion, as can be seen in the hypothetical scattergram shown in Figure 3.1.

If we adopt the criterion of minimizing »_ 4;, Figure 3.1 shows that the residuals i,
and u3 as well as the residuals #, and #4 receive the same weight in the sum
(1) + 1y + 613 + u4), although the first two residuals are much closer to the SRF than the
latter two. In other words, all the residuals receive equal importance no matter how close or
how widely scattered the individual observations are from the SRF. A consequence of this
is that it is quite possible that the algebraic sum of the #; is small (even zero) although the
u; are widely scattered about the SRF. To see this, let uy, @, #i3, and 4 in Figure 3.1
assume the values of 10, —2, +2, and —10, respectively. The algebraic sum of these resid-
uals is zero although #; and 4 are scattered more widely around the SRF than 1, and 5.
We can avoid this problem if we adopt the least-squares criterion, which states that the SRF
can be fixed in such a way that

Yt = Y-

= Z(Yi — Bi — BX;)?
is as small as possible, where 12,2 are the squared residuals. By squaring #;, this method
gives more weight to residuals such as 1) and ii4 in Figure 3.1 than the residuals #; and 3.
As noted previously, under the minimum Y _ i; criterion, the sum can be small even though
the u; are widely spread about the SRF. But this is not possible under the least-squares pro-
cedure, for the larger the #; (in absolute value), the larger the Y #12. A further justification

for the least-squares method lies in the fact that the estimators obtained by it have some
very desirable statistical properties, as we shall see shortly.

(3.1.2)
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Y;i Xt Yai 0y af; Yai Ui a3;
Q) 2 3) (4) (4) (6) @) 8
4 1 2.929 1.071 1.147 4 0 0
5 4 7.000 —2.000 4.000 7 -2 4
7 5 8.357 —1.357 1.841 8 -1 1
12 6 9.714 2.286 5.226 9 3 9
Sum: 28 16 0.0 12.214 0 14

Notes: Y1, = 1.572 + 1357X; (ie., i = 1.572 and i = 1.357)
YZ,_30+10X(1e ﬂ1—3andﬂ2—10)
= (Y; — Yn)
iy = (Y; = Y2)

It is obvious from Equation 3.1.2 that

Yot =f(Bi. B (3.1.3)

that is, the sum of the squared residuals is some function of the estimators /§ 1 and ,32. For
any given set of data, choosing different values for ,31 and ,32 will give different #’s and
hence different values of ) ﬁf To see this clearly, consider the hypothetical data on Y and
X given in the first two columns of Table 3.1. Let us now conduct two experiments. In
experiment 1, let ,31 = 1.572 and ,32 = 1.357 (let us not worry right now about how we got
these values; say, it is just a guess).! Using these ,3 values and the X values given in column (2)
of Table 3.1, we can easily compute the estimated Y; given in column (3) of the table as )A’l i
(the subscript 1 is to denote the first experiment). Now let us conduct another experiment,
but this time using the values of ,31 =3 and ,32 = 1. The estimated values of ¥; from this
experiment are given as > in column (6) of Table 3.1. Since the ,3 values in the two
experiments are different, we get different values for the estimated residuals, as shown in
the table; u,; are the residuals from the first experiment and i,; from the second experi-
ment. The squares of these residuals are given in columns (5) and (8). Obviously, as
expected from Equation 3.1.3, these residual sums of squares are different since they are
based on different sets of B values.

Now which sets of ,3 values should we choose? Since the ﬁ values of the first experiment
give us a lower > ﬁf (= 12.214) than that obtained from the ,3 values of the second experi-
ment (= 14), we might say that the ,é’s of the first experiment are the “best” values. But how
do we know? For, if we had infinite time and infinite patience, we could have conducted
many more such experiments, choosing different sets of ,3 ’s each time and comparing the re-
sulting ) L?f and then choosing that set of /§ values that gives us the least possible value of
> 12% assuming of course that we have considered all the conceivable values of 8 and ;.
But since time, and certainly patience, are generally in short supply, we need to consider
some shortcuts to this trial-and-error process. Fortunately, the method of least squares pro-
vides us such a shortcut. The principle or the method of least squares chooses ﬁl and 32
in such a manner that, for a given sample or set of data, y ﬁf is as small as possible. In other
words, for a given sample, the method of least squares provides us with unique estimates of
B1 and B, that give the smallest possible value of ) ﬁf How is this accomplished? This is a

TFor the curious, these values are obtained by the method of least squares, discussed shortly. See
Egs. (3.1.6) and (3.1.7).
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straightforward exercise in differential calculus. As shown in Appendix 3A, Section 3A.1,
the process of differentiation yields the following equations for estimating 8, and $;:

Y Yi=npi+hY X (3.1.4)

YYXi=h) Xi+h) X (3.1.5)

where n is the sample size. These simultaneous equations are known as the nmormal
equations.
Solving the normal equations simultaneously, we obtain

F; _ny XY= XYY

nY X2 - (LX)

(X — X)(Y; - Y)
pP S - X (3.1.6)
_ D XiYi
5

where X and Y are the sample means of X and ¥ and where we define x; = (X; — X) and
vi = (Y; — Y). Henceforth, we adopt the convention of letting the lowercase letters denote
deviations from mean values.

= XYV -y XY XY

nY. X2 — (¥ X)" (3.1.7)
=7 - X

pi

The last step in Equation 3.1.7 can be obtained directly from Eq. (3.1.4) by simple alge-
braic manipulations.

Incidentally, note that, by making use of simple algebraic identities, formula (3.1.6) for
estimating B, can be alternatively expressed as

A Y Xiyi
B = >
D XY
= W (3.1.8)2
_ D Xiyi
Y X?—nX?

Note 1: " x2 =Y (Xi =XV =2 X2 -2 Xi X+ Y X2 =Y X2 —2X Y X; + 3 X2, since X

is a constant. Further noting that 3" X; = nX and 3" X? = nX? since X is a constant, we finally get

Y x? =Y X? —nX2.

Note 2: 3 xiyi =Y xi(Yi = V)= xVi =V xi =Y xYi =YY (Xi — X) =Y xY;, sinceVisa
constant and since the sum of deviations of a variable from its mean value [e.g., Y_(X; — X)] is always
zero. Likewise, 3" y; = 3 (¥; — V) = 0.



FIGURE 3.2
Diagram showing that
the sample regression
line passes through the
sample mean values of
Yand X.
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The estimators obtained previously are known as the least-squares estimators, for they
are derived from the least-squares principle. Note the following numerical properties of
estimators obtained by the method of OLS: “Numerical properties are those that hold as a
consequence of the use of ordinary least squares, regardless of how the data were gener-
ated.” Shortly, we will also consider the statistical properties of OLS estimators, that is,
properties “that hold only under certain assumptions about the way the data were gener-
ated.”* (See the classical linear regression model in Section 3.2.)

I.  The OLS estimators are expressed solely in terms of the observable (i.e., sample) quan-
tities (i.e., X and Y). Therefore, they can be easily computed.

II. They are point estimators; that is, given the sample, each estimator will provide only
a single (point) value of the relevant population parameter. (In Chapter 5 we will
consider the so-called interval estimators, which provide a range of possible values
for the unknown population parameters.)

III. Once the OLS estimates are obtained from the sample data, the sample regression line
(Figure 3.1) can be easily obtained. The regression line thus obtained has the follow-
ing properties:

1. It passes through the sample means of Y and X. This fact is obvious from
Eq. (3.1.7), for the latter can be written as ¥ = Bi + B,.X, which is shown
diagrammatically in Figure 3.2.

]

P

3Russell Davidson and James G. MacKinnon, Estimation and Inference in Econometrics, Oxford
University Press, New York, 1993, p. 3.

4Ibid.
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2. The mean value of the estimated ¥ = f’, is equal to the mean value of the actual ¥

for
Vi = Bi + B Xi
= (Y — BX) + BoX; (3.1.9)
=¥+ (X — X)

Summing both sides of this last equality over the sample values and dividing
through by the sample size n gives

~

7 =7 (3.1.10)°

where use is made of the fact that 3_(X; — X) = 0. (Why?)
3. The mean value of the residuals #; is zero. From Appendix 3A, Section 3A.1, the
first equation is

-2 Z(Yi — B —pX) =0

But since #1; = Y; — Bi — BrX;, the preceding equation reduces to —2 > a; =0,
whence i = 0.
As a result of the preceding property, the sample regression

Y, = Bl + Bin +u; (2.6.2)

can be expressed in an alternative form where both Y and X are expressed as devia-
tions from their mean values. To see this, sum (2.6.2) on both sides to give

ZE=”E1+B22X1'+Z%

A N 3.1.11)
Znﬁ1+ﬁ22X[ since Zﬁ,—:O
Dividing Equation 3.1.11 through by n, we obtain
Y =B+ X (3.1.12)
which is the same as Eq. (3.1.7). Subtracting Equation 3.1.12 from Eq. (2.6.2), we
obtain
Y- ¥ = hos - D)+ i

or

A

Vi = Boxi + 1 (3.1.13)

where y; and x;, following our convention, are deviations from their respective
(sample) mean values.

SNote that this result is true only when the regression model has the intercept term B in it. As
Appendix 6A, Sec. 6A.1 shows, this result need not hold when g7 is absent from the model.
5This result also requires that the intercept term 81 be present in the model (see Appendix 6A,
Sec. 6A.1).
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Equation 3.1.13 is known as the deviation form. Notice that the intercept term
B1 is no longer present in it. But the intercept term can always be estimated by
Eq. (3.1.7), that is, from the fact that the sample regression line passes through
the sample means of ¥ and X. An advantage of the deviation form is that it often
simplifies computing formulas.

In passing, note that in the deviation form, the SRF can be written as

i = Box; (3.1.14)

whereas in the original units of measurement it was f/, = Bl + ,4§2X i, as shown in
Eq. (2.6.1).

4. The residuals #; are uncorrelated with the predicted Y;. This statement can be verified
as follows: using the deviation form, we can write

Y P =B Yy i
= b in(yi — Boxi)
=5y xiyi— Y x? (3.1.15)
=By i -B) x
=0

where use is made of the fact that 8, = Soxivi /Y oxE.
5. The residuals #; are uncorrelated with X;; that is, > ; X; = 0. This fact follows
from Eq. (2) in Appendix 3A, Section 3A.1.

3.2 The Classical Linear Regression Model: The Assumptions
Underlying the Method of Least Squares

If our objective is to estimate B, and 8, only, the method of OLS discussed in the preceding
section will suffice. But recall from Chapter 2 that in regression analysis our objective is not
only to obtain ,3 1 and ,32 but also to draw inferences about the true 8; and S,. For example,
we would like to know how close B; and B, are to their counterparts in the population or
how close ¥; is to the true E(Y | X;). To that end, we must not only specify the functional
form of the model, as in Eq. (2.4.2), but also make certain assumptions about the manner
in which Y; are generated. To see why this requirement is needed, look at the PRF:
Y; = By + B2 X; + u;. It shows that ¥; depends on both X; and u;. Therefore, unless we are
specific about how X; and u; are created or generated, there is no way we can make any
statistical inference about the Y; and also, as we shall see, about 8; and B,. Thus, the
assumptions made about the X; variable(s) and the error term are extremely critical to the
valid interpretation of the regression estimates.

The Gaussian, standard, or classical linear regression model (CLRM), which is
the cornerstone of most econometric theory, makes 7 assumptions.” We first discuss these
assumptions in the context of the two-variable regression model; and in Chapter 7 we
extend them to multiple regression models, that is, models in which there is more than one
regressor.

“It is classical in the sense that it was developed first by Gauss in 1821 and since then has served as a
norm or a standard against which may be compared the regression models that do not satisfy the
Gaussian assumptions.
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ASSUMPTION 1

Linear Regression Model: The regression model is linear in the parameters,
though it may or may not be linear in the variables. That is the regression model as shown
in Eq. (2.4.2):

Yi= g1+ B2 Xi + u (2.4.2)

As will be discussed in Chapter 7, this model can be extended to include more explanatory
variables.

We have already discussed model (2.4.2) in Chapter 2. Since linear-in-parameter
regression models are the starting point of the CLRM, we will maintain this assumption for
most of this book.® Keep in mind that the regressand Y and the regressor X may be
nonlinear, as discussed in Chapter 2.

ASSUMPTION 2

Fixed X Values or X Values Independent of the Error Term: Values taken by the
regressor X may be considered fixed in repeated samples (the case of fixed regressor) or
they may be sampled along with the dependent variable Y (the case of stochastic
regressor). In the latter case, it is assumed that the X variable(s) and the error term are
independent, that is, cov (X;, u) = 0.

This can be explained in terms of our example given in Table 2.1 (page 35). Consider the
various Y populations corresponding to the levels of income shown in the table. Keeping
the value of income X fixed, say, at level $80, we draw at random a family and observe its
weekly family consumption Y as, say, $60. Still keeping X at $80, we draw at random
another family and observe its Y value at $75. In each of these drawings (i.e., repeated
sampling), the value of X is fixed at $80. We can repeat this process for all the X values
shown in Table 2.1. As a matter of fact, the sample data shown in Tables 2.4 and 2.5 were
drawn in this fashion.

Why do we assume that the X values are nonstochastic? Given that, in most social
sciences, data usually are collected randomly on both the ¥ and X variables, it seems natural
to assume the opposite—that the X variable, like the Y variable, is also random or stochas-
tic. But initially we assume that the X variable(s) is nonstochastic for the following reasons:

First, this is done initially to simplify the analysis and to introduce the reader to the com-
plexities of regression analysis gradually. Second, in experimental situations it may not be
unrealistic to assume that the X values are fixed. For example, a farmer may divide his land
into several parcels and apply different amounts of fertilizer to these parcels to see its effect
on crop yield. Likewise, a department store may decide to offer different rates of discount on
a product to see its effect on consumers. Sometimes we may want to fix the X values for a
specific purpose. Suppose we are trying to find out the average weekly earnings of workers
(Y) with various levels of education (X), as in the case of the data given in Table 2.6. In this
case, the X variable can be considered fixed or nonrandom. Third, as we show in Chap-
ter 13, even if the X variables are stochastic, the statistical results of linear regression based

8However, a brief discussion of nonlinear-in-parameter regression models is given in Chapter 14 for
the benefit of more advanced students.
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on the case of fixed regressors are also valid when the X’s are random, provided that some
conditions are met. One condition is that regressor X and the error term u; are independent.
As James Davidson notes, . . . this model [i.e., stochastic regressors] ‘mimics’ the fixed
regressor model, and . . . many of the statistical properties of least squares in the fixed
regressor model continue to hold.””

For all these reasons, we will first discuss the (fixed-regressor) CLRM in considerable
detail. However, in Chapter 13 we will discuss the case of stochastic regressors in some
detail and point out the occasions where we need to consider the stochastic regressor
models. Incidentally, note that if the X variable(s) is stochastic, the resulting model is called
the neo-classical linear regression model (NLRM),'? in contrast to the CLRM, where the
X’s are treated as fixed or nonrandom. For discussion purposes, we will call the former the
stochastic regressor model and the latter the fixed regressor model.

ASSUMPTION 3

Zero Mean Value of Disturbance u;: Given the value of X; the mean, or expected,
value of the random disturbance term u; is zero. Symbolically, we have

E(uilX) =0 3.2.1)
Or, if X is nonstochastic,

E(U,’) =0

FIGURE 3.3
Conditional
distribution of the
disturbances u;.

Assumption 3 states that the mean value of u; conditional upon the given JX; is zero.
Geometrically, this assumption can be pictured as in Figure 3.3, which shows a few values
of the variable X and the Y populations associated with each of them. As shown, each Y

(® Mean

PRE: Y, = B, + B,X;

| | X
3 X4

°James Davidson, Econometric Theory, Blackwell Publishers, U.K., 2000, p. 10.

10A term due to Arthur S. Goldberger, A Course in Econometrics, Harvard University Press, Cambridge,
MA, 1991, p. 264.
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population corresponding to a given X is distributed around its mean value (shown by the cir-
cled points on the PRF), with some Y values above the mean and some below it. The distances
above and below the mean values are nothing but the u;. Equation 3.2.1 requires that the
average or mean value of these deviations corresponding to any given X should be zero.

This assumption should not be difficult to comprehend in view of the discussion in
Section 2.4 (see Eq. [2.4.5]). Assumption 3 simply says that the factors not explicitly
included in the model, and therefore subsumed in u;, do not systematically affect the mean
value of ¥; in other words, the positive u; values cancel out the negative u; values so that
their average or mean effect on Y is zero.!!

In passing, note that the assumption E(u;|X;) = 0 implies that E(Y;|.X;) = 81 + B X
(Why?) Therefore, the two assumption are equivalent.

It is important to point out that Assumption 3 implies that there is no specification bias
or specification error in the model used in empirical analysis. In other words, the regres-
sion model is correctly specified. Leaving out important explanatory variables, including
unnecessary variables, or choosing the wrong functional form of the relationship between
the Y and X variables are some examples of specification error. We will discuss this topic in
considerable detail in Chapter 13.

Note also that if the conditional mean of one random variable given another random
variable is zero, the covariance between the two variables is zero and hence the two vari-
ables are uncorrelated. Assumption 3 therefore implies that X; and u; are uncorrelated.'?

The reason for assuming that the disturbance term « and the explanatory variable(s) X
are uncorrelated is simple. When we expressed the PRF as in Eq. (2.4.2), we assumed that
X and u (which represent the influence of all omitted variables) have separate (and additive)
influences on Y. But if X and u are correlated, it is not possible to assess their individual
effects on Y. Thus, if X and u are positively correlated, X increases when u increases and
decreases when u« decreases. Similarly, if X and u are negatively correlated, X increases
when u decreases and decreases when u increases. In situations like this it is quite possible
that the error term actually includes some variables that should have been included as
additional regressors in the model. This is why Assumption 3 is another way of stating that
there is no specification error in the chosen regression model.

ASSUMPTION 4

Homoscedasticity or Constant Variance of u;: The variance of the error, or
disturbance, term is the same regardless of the value of X. Symbolically,

var (u) = E[u; — E(uj| X)]?
= E(u?|X), because of Assumption 3
= E(u?), if X; are nonstochastic

- (3.2.2)

where var stands for variance.

"For a more technical reason why Assumption 3 is necessary see E. Malinvaud, Statistical Methods of
Econometrics, Rand McNally, Chicago, 1966, p. 75. See also Exercise 3.3.

2The converse, however, is not true because correlation is a measure of linear association only. That
is, even if X; and u; are uncorrelated, the conditional mean of u; given X; may not be zero. However, if
Xiand u; are correlated, E(uj| X;) must be nonzero, violating Assumption 3. We owe this point to Stock
and Watson. See James H. Stock and Mark W. Watson, Introduction to Econometrics, Addison-Wesley,
Boston, 2003, pp. 104-105.
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Homoscedasticity.

FIGURE 3.5

Heteroscedasticity.
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Equation 3.2.2 states that the variance of u; for each X; (i.e., the conditional variance of
u;) is some positive constant number equal to o®. Technically, Eq. (3.2.2) represents the
assumption of homoscedasticity, or equal (homo) spread (scedasticity) or equal variance.
The word comes from the Greek verb skedanime, which means to disperse or scatter. Stated
differently, Eq. (3.2.2) means that the ¥ populations corresponding to various X values have
the same variance. Put simply, the variation around the regression line (which is the line of
average relationship between Y and X) is the same across the X values; it neither increases
nor decreases as X varies. Diagrammatically, the situation is as depicted in Figure 3.4.

In contrast, consider Figure 3.5, where the conditional variance of the Y population
varies with X. This situation is known appropriately as heteroscedasticity, or unequal
spread, or variance. Symbolically, in this situation, Eq. (3.2.2) can be written as

var (1;| X;) = o> (3.2.3)

Notice the subscript on o”in Equation (3.2.3), which indicates that the variance of the Y
population is no longer constant.

f )

Probability density of u;

PRF:Y; =B+ B,X;

flw)

Probability density of u;
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To make the difference between the two situations clear, let Y represent weekly
consumption expenditure and X weekly income. Figures 3.4 and 3.5 show that as income
increases, the average consumption expenditure also increases. But in Figure 3.4 the
variance of consumption expenditure remains the same at all levels of income, whereas in
Figure 3.5 it increases with increase in income. In other words, richer families on the
average consume more than poorer families, but there is also more variability in the
consumption expenditure of the former.

To understand the rationale behind this assumption, refer to Figure 3.5. As this figure
shows, var(u|X}) < var(u|X>), . . ., <var(u|X;). Therefore, the likelihood is that the Y ob-
servations coming from the population with X = X would be closer to the PRF than those
coming from populations corresponding to X = X3, X = X3, and so on. In short, not all ¥
values corresponding to the various X’s will be equally reliable, reliability being judged by
how closely or distantly the Y values are distributed around their means, that is, the points
on the PRF. If this is in fact the case, would we not prefer to sample from those Y popula-
tions that are closer to their mean than those that are widely spread? But doing so might re-
strict the variation we obtain across X values.

By invoking Assumption 4, we are saying that at this stage, all Y values corresponding
to the various Xs are equally important. In Chapter 11 we shall see what happens if this is
not the case, that is, where there is heteroscedasticity.

In passing, note that Assumption 4 implies that the conditional variances of Y; are also
homoscedastic. That is,

var (Y;| X)) = o? (3.2.9)

Of course, the unconditional variance of Y is o3. Later we will see the importance of
distinguishing between conditional and unconditional variances of Y (see Appendix A for
details of conditional and unconditional variances).

ASSUMPTION 5

No Autocorrelation between the Disturbances: Given any two X values, X; and
Xj(i # j), the correlation between any two u;and u;(i # j) is zero. In short, the observations
are sampled independently. Symbolically,

cov(u;, uj| X;, X) =0 (3.2.5)
cov(u;, u) = 0, if X is nonstochastic

where j and j are two different observations and where cov means covariance.

In words, Equation 3.2.5 postulates that the disturbances u; and w; are uncorrelated.
Technically, this is the assumption of no serial correlation, or no autocorrelation. This
means that, given JX;, the deviations of any two Y values from their mean value do not
exhibit patterns such as those shown in Figures 3.6(a) and (). In Figure 3.6(a), we see that
the u’s are positively correlated, a positive u followed by a positive u or a negative u
followed by a negative u. In Figure 3.6(b), the u’s are negatively correlated, a positive u
followed by a negative u and vice versa.

If the disturbances (deviations) follow systematic patterns, such as those shown in Fig-
ures 3.6(a) and (b), there is auto- or serial correlation, and what Assumption 5 requires is
that such correlations be absent. Figure 3.6(c) shows that there is no systematic pattern to
the u’s, thus indicating zero correlation.
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The full import of this assumption will be explained thoroughly in Chapter 12. But
intuitively one can explain this assumption as follows. Suppose in our PRF (Y, = 81 + f.X; +
u,) that u, and u,_ are positively correlated. Then Y; depends not only on X; but also on u;_,
for u;_; to some extent determines u,. At this stage of the development of the subject mat-
ter, by invoking Assumption 5, we are saying that we will consider the systematic effect, if
any, of X; on Y; and not worry about the other influences that might act on Y as a result of
the possible intercorrelations among the u’s. But, as noted in Chapter 12, we will see how
intercorrelations among the disturbances can be brought into the analysis and with what
consequences.

But it should be added here that the justification of this assumption depends on the type
of data used in the analysis. If the data are cross-sectional and are obtained as a random
sample from the relevant population, this assumption can often be justified. However, if the
data are time series, the assumption of independence is difficult to maintain, for successive
observations of a time series, such as GDP, are highly correlated. But we will deal with this
situation when we discuss time series econometrics later in the text.

ASSUMPTION 6 The Number of Observations n» Must Be Greater than the Number of

Parameters to Be Estimated: Alternatively, the number of observations must be
greater than the number of explanatory variables.
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This assumption is not so innocuous as it seems. In the hypothetical example of
Table 3.1, imagine that we had only the first pair of observations on Y and X (4 and 1). From
this single observation there is no way to estimate the two unknowns, 8, and S,. We need
at least two pairs of observations to estimate the two unknowns. In a later chapter we will
see the critical importance of this assumption.

ASSUMPTION 7

The Nature of X Variables: The X values in a given sample must not all be the same.
Technically, var (X) must be a positive number. Furthermore, there can be no outliers in
the values of the X variable, that is, values that are very large in relation to the rest of the
observations.

The assumption that there is variability in the X values is also not as innocuous as it
looks. Look at Eq. (3.1.6). If all the X values are identical, then X; = X (Why?) and the
denominator of that equation will be zero, making it impossible to estimate B, and
therefore ;. Intuitively, we readily see why this assumption is important. Looking at our
family consumption expenditure example in Chapter 2, if there is very little variation in
family income, we will not be able to explain much of the variation in the consumption
expenditure. The reader should keep in mind that variation in both Y and X is essential to
use regression analysis as a research tool. In short, the variables must vary!

The requirement that there are no outliers in the X values is to avoid the regression results
being dominated by such outliers. If there are a few X values that are, say, 20 times the average
of the X values, the estimated regression lines with or without such observations might be
vastly different. Very often such outliers are the result of human errors of arithmetic or mix-
ing samples from different populations. In Chapter 13 we will discuss this topic further.

Our discussion of the assumptions underlying the classical linear regression model is
now complete. It is important to note that all of these assumptions pertain to the PRF only
and not the SRF. But it is interesting to observe that the method of least squares discussed
previously has some properties that are similar to the assumptions we have made about
the PRE. For example, the finding that Y #; = 0 and, therefore, # = 0, is akin to the
assumption that E(u;|X;) = 0. Likewise, the finding that ) #; X; = 0 is similar to the
assumption that cov(u;, X;) = 0. It is comforting to note that the method of least squares
thus tries to “duplicate” some of the assumptions we have imposed on the PRF.

Of course, the SRF does not duplicate all the assumptions of the CLRM. As we will
show later, although cov(u;, ;) = 0 (i # j) by assumption, it is not true that the sample
cov(u;, ;) = 0 (i # j). As a matter of fact, we will show later that the residuals are not only
autocorrelated but are also heteroscedastic (see Chapter 12).

A Word about These Assumptions
The million-dollar question is: How realistic are all these assumptions? The “reality of
assumptions” is an age-old question in the philosophy of science. Some argue that it does
not matter whether the assumptions are realistic. What matters are the predictions based
on those assumptions. Notable among the “irrelevance-of-assumptions thesis” is Milton
Friedman. To him, unreality of assumptions is a positive advantage: “to be important . . . a
hypothesis must be descriptively false in its assumptions.”!3

One may not subscribe to this viewpoint fully, but recall that in any scientific study we
make certain assumptions because they facilitate the development of the subject matter in
gradual steps, not because they are necessarily realistic in the sense that they replicate

3Milton Friedman, Essays in Positive Economics, University of Chicago Press, Chicago, 1953, p. 14.
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reality exactly. As one author notes, . . . if simplicity is a desirable criterion of good theory,
all good theories idealize and oversimplify outrageously.”'*

What we plan to do is first study the properties of the CLRM thoroughly, and then in
later chapters examine in depth what happens if one or more of the assumptions of CLRM
are not fulfilled. At the end of this chapter, we provide in Table 3.4 a guide to where one can
find out what happens to the CLRM if a particular assumption is not satisfied.

As a colleague pointed out to us, when we review research done by others, we need to
consider whether the assumptions made by the researcher are appropriate to the data and
problem. All too often, published research is based on implicit assumptions about the prob-
lem and data that are likely not correct and that produce estimates based on these assump-
tions. Clearly, the knowledgeable reader should, realizing these problems, adopt a skeptical
attitude toward the research. The assumptions listed in Table 3.4 therefore provide a check-
list for guiding our research and for evaluating the research of others.

With this backdrop, we are now ready to study the CLRM. In particular, we want to find
out the statistical properties of OLS compared with the purely numerical properties
discussed earlier. The statistical properties of OLS are based on the assumptions of CLRM
already discussed and are enshrined in the famous Gauss—Markov theorem. But before we
turn to this theorem, which provides the theoretical justification for the popularity of OLS,
we first need to consider the precision or standard errors of the least-squares estimates.

3.3 Precision or Standard Errors of Least-Squares Estimates

From Egs. (3.1.6) and (3.1.7), it is evident that least-squares estimates are a function of the
sample data. But since the data are likely to change from sample to sample, the estimates
will change ipso facto. Therefore, what is needed is some measure of “reliability” or
precision of the estimators B1 and Bs. In statistics the precision of an estimate is measured
by its standard error (se).!®> Given the Gaussian assumptions, it is shown in Appendix 3A,
Section 3A.3 that the standard errors of the OLS estimates can be obtained as follows:

2

var () = Z"x; (3.3.1)
A o

se(B2) = (3.3.2)

Jo?

- Y x2 o,
var (B)) = p 23;20 (3.3.3)

N 3z

se(B1) = nZZJ;?U (3.3.4)

"“Mark Blaug, The Methodology of Economics: Or How Economists Explain, 2d ed., Cambridge
University Press, New York, 1992, p. 92.

5The standard error is nothing but the standard deviation of the sampling distribution of the esti-
mator, and the sampling distribution of an estimator is simply a probability or frequency distribution
of the estimator, that is, a distribution of the set of values of the estimator obtained from all possible
samples of the same size from a given population. Sampling distributions are used to draw inferences
about the values of the population parameters on the basis of the values of the estimators calculated
from one or more samples. (For details, see Appendix A.)
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2 is the constant or

where var = variance and se = standard error and where o
homoscedastic variance of u; of Assumption 4.

All the quantities entering into the preceding equations except o' can be estimated from
the data. As shown in Appendix 3A, Section 3A.5, o2 itself is estimated by the following

formula:

P (3.3.5)

where 62 is the OLS estimator of the true but unknown o> and where the expression n — 2
is known as the number of degrees of freedom (df), >_ ii? being the sum of the residuals
squared or the residual sum of squares (RSS).'¢

Once Y #? is known, 62 can be easily computed. Y @7 itself can be computed either
from Eq. (3.1.2) or from the following expression (see Section 3.5 for the proof):

Yo=Y yi-BY (3.3.6)

Compared with Eq. (3.1.2), Equation 3.3.6 is easy to use, for it does not require computing
u; for each observation although such a computation will be useful in its own right (as we
shall see in Chapters 11 and 12).

Since

po_ D XiYi
B = 5
X

an alternative expression for computing > #? is

2
Zﬁf — Zytz _ % (3.3.7)

In passing, note that the positive square root of &>

~D
5 Z“; (3.3.8)
P

is known as the standard error of estimate or the standard error of the regression (se).
It is simply the standard deviation of the Y values about the estimated regression line and is
often used as a summary measure of the “goodness of fit” of the estimated regression line,
a topic discussed in Section 3.5.

Earlier we noted that, given X;, o’ represents the (conditional) variance of both u; and
Y;. Therefore, the standard error of the estimate can also be called the (conditional)
standard deviation of u; and Y;. Of course, as usual, o} and oy represent, respectively, the
unconditional variance and unconditional standard deviation of Y.

16The term number of degrees of freedom means the total number of observations in the sample
(= n) less the number of independent (linear) constraints or restrictions put on them. In other words,
it is the number of independent observations out of a total of n observations. For example, before the
RSS (3.1.2) can be computed, B1 and B, must first be obtained. These two estimates therefore put two
restrictions on the RSS. Therefore, there are n — 2, not n, independent observations to compute the
RSS. Following this logic, in the three-variable regression RSS will have n — 3 df, and for the k-variable
model it will have n — k df. The general rule is this: df = (n— number of parameters estimated).
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Note the following features of the variances (and therefore the standard errors) of ,31
and 52.

1. The variance of B, is directly proportional to o® but inversely proportional to y_ x?2.
That is, given o2, the larger the variation in the X values, the smaller the variance of ,32 and
hence the greater the precision with which 8, can be estimated. In short, given o2, if there is
substantial variation in the X values, 8, can be measured more accurately than when the X; do
not vary substantially. Also, given Y x?, the larger the variance of o2, the larger the variance
of B,. Note that as the sample size n increases, the number of terms in the sum, ) xiz, will in-
crease. As n increases, the precision with which 8, can be estimated also increases. (Why?)

2. The variance of ,3 | is directly proportional to o and }_ X 12 but inversely proportional
to > x? and the sample size n.

3. Since B and f, are estimators, they will not only vary from sample to sample but in
a given sample they are likely to be dependent on each other, this dependence being mea-
sured by the covariance between them. It is shown in Appendix 3A, Section 3A.4 that

cov (31, ,32) = —)_(Vaf(,éz)
_/ o2 (3.3.9)
- <2x3>

Since var(B,) is always positive, as is the variance of any variable, the nature of the
covariance between f; and £, depends on the sign of X. If X is positive, then as the
formula shows, the covariance will be negative. Thus, if the slope coefficient j; is overes-
timated (i.e., the slope is too steep), the intercept coefficient 8; will be underestimated (i.e.,
the intercept will be too small). Later on (especially in the chapter on multicollinearity,
Chapter 10), we will see the utility of studying the covariances between the estimated
regression coefficients.

How do the variances and standard errors of the estimated regression coefficients
enable one to judge the reliability of these estimates? This is a problem in statistical
inference, and it will be pursued in Chapters 4 and 5.

3.4 Properties of Least-Squares Estimators: The Gauss—Markov
Theorem!”

As noted earlier, given the assumptions of the classical linear regression model, the least-
squares estimates possess some ideal or optimum properties. These properties are con-
tained in the well-known Gauss—Markov theorem. To understand this theorem, we need
to consider the best linear unbiasedness property of an estimator.'® As explained in
Appendix A, an estimator, say the OLS estimator £, is said to be a best linear unbiased
estimator (BLUE) of B, if the following hold:

1. Itis linear, that is, a linear function of a random variable, such as the dependent variable
Y in the regression model.

7Although known as the Gauss—Markov theorem, the least-squares approach of Gauss antedates
(1821) the minimume-variance approach of Markov (1900).

8The reader should refer to Appendix A for the importance of linear estimators as well as for a
general discussion of the desirable properties of statistical estimators.
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2. Itis unbiased, that is, its average or expected value, £ (ﬁz), is equal to the true value, S,.

3. It has minimum variance in the class of all such linear unbiased estimators; an unbiased
estimator with the least variance is known as an efficient estimator.

In the regression context it can be proved that the OLS estimators are BLUE. This is the
gist of the famous Gauss—Markov theorem, which can be stated as follows:

Gauss—Markov

Given the assumptions of the classical linear regression model, the least-squares

Theorem estimators, in the class of unbiased linear estimators, have minimum variance, that is, they
are BLUE.

The proof of this theorem is sketched in Appendix 3A, Section 3A.6. The full import of
the Gauss—Markov theorem will become clearer as we move along. It is sufficient to note
here that the theorem has theoretical as well as practical importance. '

What all this means can be explained with the aid of Figure 3.7.

FIGURE 3.7

Sampling distribution
of OLS estimator 8,
and alternative
estimator 5;.
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B
\\ A %
ﬂZr ﬁZ

(¢) Sampling distributions of 8, and 5

"9For example, it can be proved that any linear combination of the 8's, such as (81 — 2/82), can be esti-
mated by (/§1 - 232), and this estimator is BLUE. For details, see Henri Theil, Introduction to Econometrics,
Prentice-Hall, Englewood Cliffs, N.J., 1978, pp. 401-402. Note a technical point about the Gauss—Markov
theorem: It provides only the sufficient (but not necessary) condition for OLS to be efficient. | am
indebted to Michael McAleer of the University of Western Australia for bringing this point to my attention.



Chapter 3 Two-Variable Regression Model: The Problem of Estimation 73

In Figure 3.7(a) we have shown the sampling distribution of the OLS estimator ,32, that is,
the distribution of the values taken by ,32 in repeated sampling experiments (recall Table 3.1).
For convenience we have assumed ﬁz to be distributed symmetrically (but more on this in
Chapter 4). As the figure shows, the mean of the ﬁz values, E( ,32), is equal to the true §,. In this
situation we say that ,32 is an unbiased estimator of f,. In Figure 3.7(b) we have shown the
sampling distribution of 85, an alternative estimator of 8, obtained by using another (i.c., other
than OLS) method. For convenience, assume that g5, like ,32, is unbiased, that is, its average
or expected value is equal to ,. Assume further that both ,32 and B; are linear estimators, that
is, they are linear functions of Y. Which estimator, ,32 or 5, would you choose?

To answer this question, superimpose the two figures, as in Figure 3.7(c). It is obvious
that although both ﬁz and B; are unbiased the distribution of 5 is more diffused or wide-
spread around the mean value than the distribution of ,52. In other words, the variance of 85
is larger than the variance of ﬁz. Now given two estimators that are both linear and unbiased,
one would choose the estimator with the smaller variance because it is more likely to be
close to B, than the alternative estimator. In short, one would choose the BLUE estimator.

The Gauss—Markov theorem is remarkable in that it makes no assumptions about the
probability distribution of the random variable u;, and therefore of ¥; (in the next chapter we
will take this up). As long as the assumptions of CLRM are satisfied, the theorem holds. As
a result, we need not look for another linear unbiased estimator, for we will not find such an
estimator whose variance is smaller than the OLS estimator. Of course, if one or more of
these assumptions do not hold, the theorem is invalid. For example, if we consider nonlinear-
in-the-parameter regression models (which are discussed in Chapter 14), we may be able to
obtain estimators that may perform better than the OLS estimators. Also, as we will show in
the chapter on heteroscedasticity, if the assumption of homoscedastic variance is not
fulfilled, the OLS estimators, although unbiased and consistent, are no longer minimum
variance estimators even in the class of linear estimators.

The statistical properties that we have just discussed are known as finite sample
properties: These properties hold regardless of the sample size on which the estimators are
based. Later we will have occasions to consider the asymptotic properties, that is, proper-
ties that hold only if the sample size is very large (technically, infinite). A general discus-
sion of finite-sample and large-sample properties of estimators is given in Appendix A.

3.5 The Coefficient of Determination r2: A Measure of
“Goodness of Fit”

Thus far we were concerned with the problem of estimating regression coefficients, their stan-
dard errors, and some of their properties. We now consider the goodness of fit of the fitted
regression line to a set of data; that is, we shall find out how “well” the sample regression line
fits the data. From Figure 3.1 it is clear that if all the observations were to lie on the regression
line, we would obtain a “perfect” fit, but this is rarely the case. Generally, there will be some
positive z; and some negative ;. What we hope for is that these residuals around the regression
line are as small as possible. The coefficient of determination r2 (two-variable case) or R?
(multiple regression) is a summary measure that tells how well the sample regression line fits
the data.

Before we show how 2 is computed, let us consider a heuristic explanation of 72 in
terms of a graphical device, known as the Venn diagram, or the Ballentine, as shown
in Figure 3.8.2

20See Peter Kennedy, “Ballentine: A Graphical Aid for Econometrics,” Australian Economics Papers,
vol. 20, 1981, pp. 414-416. The name Ballentine is derived from the emblem of the well-known
Ballantine beer with its circles.
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FIGURE 3.8

The Ballentine view
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In this figure the circle Y represents variation in the dependent variable Y and the circle X
represents variation in the explanatory variable X.2! The overlap of the two circles (the
shaded area) indicates the extent to which the variation in Y is explained by the variation in
X (say, via an OLS regression). The greater the extent of the overlap, the greater the variation
in Yis explained by X. The 72 is simply a numerical measure of this overlap. In the figure, as
we move from left to right, the area of the overlap increases, that is, successively a greater
proportion of the variation in Y is explained by X. In short, 7% increases. When there is no
overlap, 72 is obviously zero, but when the overlap is complete, 72 is 1, since 100 percent of
the variation in Y is explained by .X. As we shall show shortly, 72 lies between 0 and 1.

To compute this 2, we proceed as follows: Recall that

Y, =¥ + 4 (2.6.3)

(a)

)

or in the deviation form

yi =yt (3.5.1)

where use is made of Egs. (3.1.13) and (3.1.14). Squaring Equation 3.5.1 on both sides and
summing over the sample, we obtain

D V=D A A A2Y pili
=) W+ a (3.5.2)
=p Y xi+) i

since Y. ;= 0 (why?) and §; = fox;.

The various sums of squares appearing in Equation 3.5.2 can be described as follows:
> y? =3(Y; — Y)? = total variation of the actual Y values about their sample mean,
which may be called the total sum of squares (TSS). Y 5> =Y (¥, = I)? =
S(¥; — ¥)? = 33" x? = variation of the estimated ¥ values about their mean (¥ = ¥),
which appropriately may be called the sum of squares due to regression [i.e., due to the ex-
planatory variable(s)], or explained by regression, or simply the explained sum of squares

21The term variation and variance are different. Variation means the sum of squares of the deviations
of a variable from its mean value. Variance is this sum of squares divided by the appropriate degrees
of freedom. In short, variance = variation/df.
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Breakdown of the
variation of Y; into two
components.
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(ESS). > ftf = residual or unexplained variation of the ¥ values about the regression line,

or simply the residual sum of squares (RSS). Thus, Eq. (3.5.2) is

TSS = ESS + RSS (3.5.3)

and shows that the total variation in the observed Y values about their mean value can be
partitioned into two parts, one attributable to the regression line and the other to random
forces because not all actual Y observations lie on the fitted line. Geometrically, we have

Figure 3.9.
Now dividing Equation 3.5.3 by TSS on both sides, we obtain
ESS RSS
1= — 4=
TSS = TSS 354
_xdi-nr oy G549
DI ST O O
We now define r2 as
Y, —Y)> ESS
}"2 = 72( ! _) = — (3.5.5)
S(Y;—7)  TSS
or, alternatively, as
2
SRS v
' (3.5.54)
. RSS
- TSS

The quantity 2 thus defined is known as the (sample) coefficient of determination and is
the most commonly used measure of the goodness of fit of a regression line. Verbally,
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measures the proportion or percentage of the total variation in Y explained by the regres-
sion model.

Two properties of 7> may be noted:

1. It is a nonnegative quantity. (Why?)

2. Its limits are O <r? < 1. Anr? of | means a perfect fit, that is, Y; = Y; foreachi. On
the other hand, an »? of zero means that there is no relationship between the regressand and
the regressor whatsoever (i.c., B = 0). In this case, as Eq. (3.1.9) shows, Y, = B =7,
that is, the best prediction of any Y value is simply its mean value. In this situation there-
fore the regression line will be horizontal to the X axis.

Although 72 can be computed directly from its definition given in Equation 3.5.5, it can
be obtained more quickly from the following formula:

, ESS
~ TSS
Y3
Xy}
By
D

-#(&5)

If we divide the numerator and the denominator of Equation 3.5.6 by the sample size n (or
n — 1 if the sample size is small), we obtain

iy (52) 3.5.7)

where S? and S? are the sample variances of Y and X, respectively.
Since B, = Z x;yi [3x?, Eq. (3.5.6) can also be expressed as

- (inyi)z
r? = m (3.5.8)

an expression that may be computationally easy to obtain.
Given the definition of 72, we can express ESS and RSS discussed earlier as follows:

(3.5.6)

ESS =2 . TSS

_ 2 Zy'z (3.5.9)
RSS = TSS — ESS

= TSS(1 — ESS/TSS) (3.5.10)

=) y-a=r

Therefore, we can write

TSS = ESS + RSS
3.5.11
=YYy 3.511)

an expression that we will find very useful later.
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A quantity closely related to but conceptually very much different from r2 is the
coefficient of correlation, which, as noted in Chapter 1, is a measure of the degree of
association between two variables. It can be computed either from

r =42 (3.5.12)
or from its definition

_ inyi
() (2)
ny XV, —(Q_X)Q_Y)
Jn s X — (C )2 ¥ — (S 1))

t.22

(3.5.13)

which is known as the sample correlation coefficien
Some of the properties of r are as follows (see Figure 3.10):

1. It can be positive or negative, the sign depending on the sign of the term in the
numerator of Equation 3.5.13, which measures the sample covariation of two variables.

2. It lies between the limits of —1 and +1; thatis, —1 <r < 1.

3. It is symmetrical in nature; that is, the coefficient of correlation between X and
Y (rxy) is the same as that between Y and X (ryy).

4. It is independent of the origin and scale; that is, if we define X} = aX; + C and
Y =bY; +d, wherea > 0, b > 0, and c and d are constants, then » between X* and Y*
is the same as that between the original variables X and Y.

5. If X and Y are statistically independent (see Appendix A for the definition), the
correlation coefficient between them is zero; but if » = 0, it does not mean that two
variables are independent. In other words, zero correlation does not necessarily imply
independence. [See Figure 3.10(%).]

6. It is a measure of linear association or linear dependence only; it has no meaning for
describing nonlinear relations. Thus in Figure 3.10(/), Y = X? is an exact relationship yet
ris zero. (Why?)

7. Although it is a measure of linear association between two variables, it does not
necessarily imply any cause-and-effect relationship, as noted in Chapter 1.

In the regression context, 72 is a more meaningful measure than r, for the former tells us
the proportion of variation in the dependent variable explained by the explanatory vari-
able(s) and therefore provides an overall measure of the extent to which the variation in one
variable determines the variation in the other. The latter does not have such value.>* More-
over, as we shall see, the interpretation of » (= R) in a multiple regression model is of
dubious value. However, we will have more to say about 72 in Chapter 7.

In passing, note that the »> defined previously can also be computed as the squared
coefficient of correlation between actual Y; and the estimated Y;, namely, Y;. That s, using
Eq. (3.5.13), we can write

Y -T2 - 72

a_ X0 =D -DT

22The population correlation coefficient, denoted by p, is defined in Appendix A.

23In regression modeling the underlying theory will indicate the direction of causality between Y and
X, which, in the context of single-equation models, is generally from X to Y.
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FIGURE 3.10
Correlation patterns
(adapted from Henri
Theil, Introduction to
Econometrics,
Prentice-Hall,
Englewood Cliffs, NJ,
1978, p. 86).
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Yili
rt = () (3.5.14)

(X))

where Y; = actual Y, )A’, = estimated Y, and ¥ = Y = the mean of Y. For proof, see
Exercise 3.15. Expression 3.5.14 justifies the description of 7 as a measure of goodness of
fit, for it tells how close the estimated Y values are to their actual values.

3.6 A Numerical Example

We illustrate the econometric theory developed so far by considering the data given in
Table 2.6, which relates mean hourly wage (Y) and years of schooling (X). Basic labor
economics theory tells us, that among many variables, education is an important determi-
nant of wages.

In Table 3.2 we provide the necessary raw data to estimate the quantitative impact of
education on wages.
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TABLE 3.2 Obs Y X X y X3 YiXi
Raw Data Based
on Table 2.6 1 4.4567 6 -6 —4.218 36 25.308
2 5.77 7 -5 —2.9047 25 14.5235
3 5.9787 8 —4 —2.696 16 10.784
4 7.3317 9 -3 —1.343 9 4.029
5 7.3182 10 -2 —1.3565 4 2.713
6 6.5844 11 -1 —2.0903 1 2.0903
7 7.8182 12 0 —0.8565 0 0
8 7.8351 13 1 —0.8396 1 —0.8396
9 11.0223 14 2 2.3476 4 4.6952
10 10.6738 15 3 1.9991 9 5.9973
11 10.8361 16 4 2.1614 16 8.6456
12 13.615 17 5 4,9403 25 24.7015
13 13.531 18 6 4.8563 36 29.1378
Sum 112.7712 156 0 0 182 131.7856
Obs 7
1 36 19.86217 4.165294 0.291406 0.084917
2 49 33.2929 4916863 0.853137 0.727843
3 64 35.74485 5.668432 0.310268 0.096266
4 81 53.75382 6.420001 0.911699 0.831195
5 100 53.55605 717157 0.14663 0.0215
6 121 43.35432 7.923139 —1.33874 1.792222
7 144 61.12425 8.674708 —0.85651 0.733606
8 169 61.38879 9.426277 —-1.59118 2.531844
9 196 121.4911 10.17785 0.844454 0.713103
10 225 113.93 10.92941 —0.25562 0.065339
11 256 117.4211 11.68098 —0.84488 0.713829
12 289 185.3682 12.43255 1.182447 1.398181
13 324 183.088 13.18412 0.346878 0.120324
Sum 2054 1083.376 112.7712 =0 9.83017

Note:
xi=Xi—X;yi=Yi=Y

5 Zyixi 1317856

= = 0.7240967
P T2 182.0
Br =7 — prX = 8.674708 — 0.7240967x 12 = —0.01445
a2 9.83017
6= N =0.893652; 6 = 0.945332
n—2 11
R 52 0.893652 N
var(f) = —— = = 0.004910; se(B2) = +/0.00490 = 0.070072
in 182.0
. xi? L 983017 s
re = — — = — = V.
2(Y; - 1)? 105.1188
r=+r?=09521
. 2 2054
var(B1) = ——1 =0.868132;

nxx? | 13(182)

se(B1) = +/0.868132 = 0.9317359
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FIGURE 3.11
Estimated regression
line for wage-education
data from Table 2.6.
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From the data given in this table, we obtain the estimated regression line as follows:
¥ = —0.0144 + 0.7240.X; (3.6.1)

Geometrically, the estimated regression line is as shown in Figure 3.11.

As we know, each point on the regression line gives an estimate of the mean value of ¥
corresponding to the chosen X value, that is, ¥; is an estimate of E(Y|.X;). The value of $, =
0.7240, which measures the slope of the line, shows that, within the sample range of X
between 6 and 18 years of education, as X increases by 1, the estimated increase in mean
hourly wages is about 72 cents. That is, each additional year of schooling, on average,
increases hourly wages by about 72 cents.

The value of B; = —0.0144, which is the intercept of the line, indicates the average
level of wages when the level of education is zero. Such literal interpretation of the inter-
cept in the present case does not make any sense. How could there be negative wages? As
we will see throughout this book, very often the intercept term has no viable practical
meaning. Besides, zero level of education is not in the observed level of education in our
sample. As we will see in Chapter 5, the observed value of the intercept is not statistically
different from zero.

The 72 value of about 0.90 suggests that education explains about 90 percent of the vari-
ation in hourly wage. Considering that 2 can be at most 1, our regression line fits the data
very well. The coefficient of correlation, » = 0.9521, shows that wages and education are
highly positively correlated.

Before we leave our example, note that our model is extremely simple. Labor econom-
ics theory tells us that, besides education, variables such as gender, race, location, labor
unions, and language are also important factors in the determination of hourly wages. After
we study multiple regression in Chapters 7 and 8, we will consider a more extended model
of wage determination.
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3.7 Mlustrative Examples

EXAMPLE 3.1
Consumption—
Income
Relationship in
the United States,
1960-2005

Let us revisit the consumption income data given in Table I.1 of the Introduction. We have
already shown the data in Figure 1.3, along with the estimated regression line in Eq. (I.3.3).
Now we provide the underlying OLS regression results, which were obtained from EViews 6.
Note Y = personal consumption expenditure (PCE) and X = gross domestic product (GDP),
both measured in 2000 billions of dollars. In this example the data are time series data.

Y, = —299.5913 + 0.7218X, (3.7.1)

var (B1) = 827.4195  se(f) = 28.7649
var (8,) = 0.0000195  se(f,) = 0.004423
r2 =0.9983 G2 = 73.56689

Equation 3.7.1 is the aggregate, or economywide, Keynesian consumption function.
As this equation shows, the marginal propensity to consume (MPC) is about 0.72,
suggesting that if (real income) goes up by a dollar, the average personal consumption
expenditure goes up by about 72 cents. According to Keynesian theory, MPC is expected
to lie between 0 and 1.

The intercept value in this example is negative, which has no viable economic
interpretation. Literally interpreted, it means that if the value of GDP were zero, the
average level of personal consumption expenditure would be a negative value of about
299 billion dollars.

The r? value of 0.9983 means approximately 99 percent of the variation in personal con-
sumption expenditure is explained by variation in the GDP. This value is quite high, consid-
ering that r? can at most be 1. As we will see throughout this book, in regressions involving
time series data one generally obtains high r? values. We will explore the reasons behind
this in the chapter on autocorrelation and also in the chapter on time series econometrics.

EXAMPLE 3.2
Food
Expenditure in
India

Refer to the data given in Table 2.8 of Exercise 2.15. The data relate to a sample of 55 rural
households in India. The regressand in this example is expenditure on food and the
regressor is total expenditure, a proxy for income, both figures in rupees. The data in this
example are thus cross-sectional data.

On the basis of the given data, we obtained the following regression:

FoodExp; = 94.2087 + 0.4368 TotalExp; (3.7.2)
var (Br) = 2560.9401  se(p;) = 50.8563
var (B,) = 0.0061 se(B,) = 0.0783
r2 =0.3698 52 = 4469.6913

From Equation 3.7.2 we see that if total expenditure increases by 1 rupee, on average,
expenditure on food goes up by about 44 paise (1 rupee = 100 paise). If total expendi-
ture were zero, the average expenditure on food would be about 94 rupees. Again, such
a mechanical interpretation of the intercept may not be meaningful. However, in this
example one could argue that even if total expenditure is zero (e.g., because of loss of a
job), people may still maintain some minimum level of food expenditure by borrowing
money or by dissaving.

The r? value of about 0.37 means that only 37 percent of the variation in food expen-
diture is explained by the total expenditure. This might seem a rather low value, but as we
will see throughout this text, in cross-sectional data, typically one obtains low r? values,
possibly because of the diversity of the units in the sample. We will discuss this topic
further in the chapter on heteroscedasticity (see Chapter 11).
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EXAMPLE 3.3
Demand for
Cellular Phones
and Personal
Computers in
Relation to Per
Capita Personal
Income

TABLE 3.3
Number of Cellular
Phone Subscribers
per Hundred
Persons and
Number of Personal
Computers per 100
Persons and Per
Capita Income in
Selected Countries
for 2003

Source: Statistical Abstract
of the United States, 2006,
Table 1364 for data on cell
phones and computers and
Table 1327 for purchasing-
power adjusted per capita
income.

Table 3.3 gives data on the number of cell phone subscribers and the number of personal
computers (PCs), both per 100 persons, and the purchasing-power adjusted per capita in-
come in dollars for a sample of 34 countries. Thus we have cross-sectional data. These data
are for the year 2003 and are obtained from the Statistical Abstract of the United states,

2006.

Although cell phones and personal computers are used extensively in the United
States, that is not the case in many countries. To see if per capita income is a factor in the
use of cell phones and PCs, we regressed each of these means of communication on per
capita income using the sample of 34 countries. The results are as follows:

Country

Argentina
Australia
Belgium
Brazil
Bulgaria
Canada
China
Colombia
Czech Republic
Ecuador
Egypt
France
Germany
Greece
Guatemala
Hungary
India
Indonesia
Italy

Japan
Mexico
Netherlands
Pakistan
Poland
Russia
Saudia Arabia
South Africa
Spain
Sweden
Switzerland
Thailand
U.K.

U.S.
Venezuela

Cellphone

17.76
71.95
79.28
26.36
46.64
41.9
21.48
14.13
96.46
18.92
8.45
69.59
78.52
90.23
13.15
76.88
2.47
8.74
101.76
67.9
29.47
76.76
1.75
45.09
2493
32.11
36.36
91.61
98.05
84.34
39.42
91.17
54.58
27.3

PCs

8.2
60.18
31.81

7.48

5.19
48.7

2.76

4.93
17.74

3.24

2.91
34.71
48.47

8.17

1.44
10.84

0.72

1.19
23.07
38.22

8.3
46.66

0.42
14.2

8.87
13.67

7.26
19.6
62.13
70.87

3.98
40.57
65.98

6.09

Per Capita Income ($)

11410
28780
28920
7510
75.4
30040
4980
6410
15600
3940
3940
27640
27610
19900
4090
13840
2880
3210
26,830
28450
8980
28560
2040
11210
8950
13230
10130
22150
26710
32220
7450
27690
37750
4750

Note: The data on cell phones and personal computers are per 100 persons.
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EXAMPLE 3.3 Demand for Cell Phones. Letting Y = number of cell phone subscribers and X =

(Continued) purchasing-power-adjusted per capita income, we obtained the following regression.
Yi=14.4773 4 0.0022X; (3.7.3)
se(B1) = 6.1523; se(p,) = 0.00032
r?=0.6023

The slope coefficient suggests that if per capita income goes up by, say, $1,000, on
average, the number of cell phone subscribers goes up by about 2.2 per 100 persons.
The intercept value of about 14.47 suggests that even if the per capita income is zero, the
average number of cell phone subscribers is about 14 per 100 subscribers. Again, this
interpretation may not have much meaning, for in our sample we do not have any coun-
try with zero per capita income. The r? value is moderately high. But notice that our
sample includes a variety of countries with varying levels of income. In such a diverse
sample we would not expect a very high r? value.

After we study Chapter 5, we will show how the estimated standard errors reported
in Equation 3.7.3 can be used to assess the statistical significance of the estimated
coefficients.

Demand for Personal Computers. Although the prices of personal computers have come
down substantially over the years, PCs are still not ubiquitous. An important determinant
of the demand for personal computers is personal income. Another determinant is price,
but we do not have comparative data on PC prices for the countries in our sample.
Letting Y denote the number of PCs and X the per capita income, we have the follow-

ing “partial” demand for the PCs (partial because we do not have comparative price data
or data on other variables that might affect the demand for the PCs).
¥ = —6.5833 + 0.0018X; (3.7.4)
se(fB) =2.7437;  se(fB,) =0.00014
r?=0.8290

As these results suggest, per capita personal income has a positive relationship to the
demand for PCs. After we study Chapter 5, you will see that, statistically, per capita
personal income is an important determinant of the demand for PCs. The negative value
of the intercept in the present instance has no practical significance. Despite the diversity
of our sample, the estimated r? value is quite high. The interpretation of the slope coeffi-
cient is that if per capita income increases by, say, $1,000, on average, the demand for
personal computers goes up by about 2 units per 100 persons.

Even though the use of personal computers is spreading quickly, there are many
countries which still use main-frame computers. Therefore, the total usage of computers
in those countries may be much higher than that indicated by the sale of PCs.

3.8 A Note on Monte Carlo Experiments

In this chapter we showed that under the assumptions of CLRM the least-squares estima-
tors have certain desirable statistical features summarized in the BLUE property. In the
appendix to this chapter we prove this property more formally. But in practice how does
one know that the BLUE property holds? For example, how does one find out if the OLS
estimators are unbiased? The answer is provided by the so-called Monte Carlo experi-
ments, which are essentially computer simulation, or sampling, experiments.

To introduce the basic ideas, consider our two-variable PRF:

Yi =B+ BoXi +u; (3.8.1)
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A Monte Carlo experiment proceeds as follows:

1. Suppose the true values of the parameters are as follows: 8; = 20 and 8, = 0.6.
2. You choose the sample size, say n = 25.
3. You fix the values of X for each observation. In all you will have 25 X values.

4. Suppose you go to a random number table, choose 25 values, and call them u; (these
days most statistical packages have built-in random number generators).?*

5. Since you know B, B2, X;, and u;, using Equation 3.8.1 you obtain 25 Y; values.

6. Now using the 25 Y; values thus generated, you regress these on the 25 X values
chosen in step 3, obtaining ,3 1 and ,éz, the least-squares estimators.

7. Suppose you repeat this experiment 99 times, each time using the same S;, S, and
X values. Of course, the u; values will vary from experiment to experiment. Therefore, in
all you have 100 experiments, thus generating 100 values each of 8; and B,. (In practice,
many such experiments are conducted, sometimes 1000 to 2000.) _ ~

8. You take the averages of these 100 estimates and call them B , and ,32.

9. If these average values are about the same as the true values of 8, and f, assumed in
step 1, this Monte Carlo experiment “establishes™ that the least-squares estimators are
indeed unbiased. Recall that under CLRM E(S;) = B; and E(B;) = fs.

These steps characterize the general nature of the Monte Carlo experiments. Such experi-
ments are often used to study the statistical properties of various methods of estimating
population parameters. They are particularly useful to study the behavior of estimators in
small, or finite, samples. These experiments are also an excellent means of driving home
the concept of repeated sampling that is the basis of most of classical statistical inference,
as we shall see in Chapter 5. We shall provide several examples of Monte Carlo experi-
ments by way of exercises for classroom assignment. (See Exercise 3.27.)

Summary and
Conclusions

The important topics and concepts developed in this chapter can be summarized as follows.

1. The basic framework of regression analysis is the CLRM.
2. The CLRM is based on a set of assumptions.

3. Based on these assumptions, the least-squares estimators take on certain properties sum-
marized in the Gauss—Markov theorem, which states that in the class of linear unbiased
estimators, the least-squares estimators have minimum variance. In short, they are
BLUE.

4. The precision of OLS estimators is measured by their standard errors. In Chapters 4
and 5 we shall see how the standard errors enable one to draw inferences on the popula-
tion parameters, the 8 coefficients.

5. The overall goodness of fit of the regression model is measured by the coefficient of
determination, 2. It tells what proportion of the variation in the dependent variable,
or regressand, is explained by the explanatory variable, or regressor. This 2 lies between
0 and 1; the closer it is to 1, the better is the fit.

24In practice it is assumed that u; follows a certain probability distribution, say, normal, with certain
parameters (e.g., the mean and variance). Once the values of the parameters are specified, one can
easily generate the u;using statistical packages.
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6. A concept related to the coefficient of determination is the coefficient of correlation, r.
It is a measure of linear association between two variables and it lies between —1
and +1.

7. The CLRM is a theoretical construct or abstraction because it is based on a set of
assumptions that may be stringent or “unrealistic.” But such abstraction is often neces-
sary in the initial stages of studying any field of knowledge. Once the CLRM is mastered,
one can find out what happens if one or more of its assumptions are not satisfied. The first
part of this book is devoted to studying the CLRM. The other parts of the book consider
the refinements of the CLRM. Table 3.4 gives the road map ahead.

TABLE 3.4 Assumption
What Happens If the Number Type of Violation Where to Study?
Assumptions of . L
CLRM Are Violated? 1 Nonllnez?rlty in parameters Chapter 14
2 Stochastic regressor(s) Chapter 13
3 Nonzero mean of u; Introduction to Part Il
4 Heteroscedasticity Chapter 11
5 Autocorrelated disturbances Chapter 12
6 Sample observations less Chapter 10
than the number of regressors
7 Insufficient variability in regressors Chapter 10
8 Multicollinearity* Chapter 10
9 Specification bias* Chapters 13, 14
10** Nonnormality of disturbances Chapter 13

*These assumptions will be introduced in Chapter 7, when we discuss the multiple regression model.
**Note: The assumption that the disturbances u; are normally distributed is not a part of the CLRM. But more on this in Chapter 4.

EXERCISES Questions

3.1. Given the assumptions in column | of the table, show that the assumptions in column
2 are equivalent to them.

Assumptions of the Classical Model

Q) 2

E(uil X) =0 ECY; | X)) = B2 + B2X
cov (U up)=0i%#j cov(V,Y)=0i%#]j
var (uj| X) = o? var (Y; | X) = o?

3.2. Show that the estimates Bl = 1.572 and ,32 = 1.357 used in the first experiment of
Table 3.1 are in fact the OLS estimators.

3.3. According to Malinvaud (see footnote 11), the assumption that £(u; | X;) = 0is quite
important. To see this, consider the PRF: Y = ) + B8, X; + u;. Now consider
two situations: (i) B1 =0, B, =1, and E(u;) = 0; and (ii)) By = 1, B, =0, and
E(u;) = (X; — 1). Now take the expectation of the PRF conditional upon X in the
two preceding cases and see if you agree with Malinvaud about the significance of
the assumption E(u; | X;) = 0.
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3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

Consider the sample regression
Y= B+ B X+

Imposing the restrictions (i) Y #; = 0 and (i) }_ #; X; = 0, obtain the estimators ,3 1
and ,32 and show that they are identical with the least-squares estimators given in
Egs. (3.1.6) and (3.1.7). This method of obtaining estimators is called the analogy
principle. Give an intuitive justification for imposing restrictions (i) and (ii).
(Hint: Recall the CLRM assumptions about u;.) In passing, note that the analogy prin-
ciple of estimating unknown parameters is also known as the method of moments in
which sample moments (e.g., sample mean) are used to estimate population moments
(e.g., the population mean). As noted in Appendix A, a moment is a summary statis-
tic of a probability distribution, such as the expected value and variance.

Show that 72 defined in (3.5.5) ranges between 0 and 1. You may use the
Cauchy—Schwarz inequality, which states that for any random variables X and Y the
following relationship holds true:

[E(XY)]? < E(X})E(Y?)

Let ﬁyx and 3Xy represent the slopes in the regression of ¥ on X and X on Y,
respectively. Show that

A A 2
BrxBxy =1

where r is the coefficient of correlation between X and Y.

Suppose in Exercise 3.6 that ,3)/ Xﬁ xy = 1. Does it matter then if we regress ¥ on X
or X on Y? Explain carefully.

Spearman’s rank correlation coefficient 7y is defined as follows:
6> d*
n(n? —1)
where d = difference in the ranks assigned to the same individual or phenomenon
and n = number of individuals or phenomena ranked. Derive r; from » defined in

Eq. (3.5.13). Hint: Rank the X and Y values from 1 to n. Note that the sum of X and
Y ranks is n(n + 1)/2 each and therefore their means are (n + 1)/2.

Consider the following formulations of the two-variable PRF:

ey =

Model I:  Y; = B1 + BoXi +u;
Model II:  Y; = o) + a(X; — )_Q + u;

a. Find the estimators of B and «;. Are they identical? Are their variances identical?
b. Find the estimators of 8, and «;. Are they identical? Are their variances identical?
c. What is the advantage, if any, of model II over model I?

Suppose you run the following regression:

Yi = ,31 +Bzxi +i;

where, as usual, y; and x;j_are deviationsAfrom their respective mean values.
What will be the value of 8;? Why? Will B, be the same as that obtained from
Eq. (3.1.6)? Why?
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3.11. Let r; = coefficient of correlation between n pairs of values (Y;, X;) and r, =
coefficient of correlation between 7 pairs of values (a X; + b, c¢Y; + d), where a, b, c,
and d are constants. Show that 7; = r, and hence establish the principle that the coef-
ficient of correlation is invariant with respect to the change of scale and the change of
origin.

Hint: Apply the definition of 7 given in Eq. (3.5.13).
Note: The operations aX;, X; + b, and aX; + b are known, respectively, as the
change of scale, change of origin, and change of both scale and origin.

3.12. Ifr, the coefficient of correlation between n pairs of values (X;, Y;), is positive, then
determine whether each of the following statements is true or false:

a. rbetween (—X;, —Y;) is also positive.

b. r between (—X;, Y;) and that between (X;, —Y;) can be either positive or
negative.

c. Both the slope coefficients B,. and B, are positive, where B, = slope coefficient
in the regression of Y on X and B, = slope coefficient in the regression of X on Y.
3.13. If X}, X, and X3 are uncorrelated variables each having the same standard devia-
tion, show that the coefficient of correlation between X; + X, and X, + Xj3 is equal
to % Why is the correlation coefficient not zero?
3.14. In the regression Y; = B + B X; + u; suppose we multiply each X value by a con-
stant, say, 2. Will it change the residuals and fitted values of ¥Y? Explain. What if we
add a constant value, say, 2, to each X value?
3.15. Show that Eq. (3.5.14) in fact measures the coefficient of determination.
Hint: Apply the definition of r given in Eq. (3.5.13) and recall that > y;; =
> (Pi +4;:)P: = Y_ »?, and remember Eq. (3.5.6).
3.16. Explain with reason whether the following statements are true, false, or uncertain:
a. Since the correlation between two variables, ¥ and X, can range from —1 to +1,
this also means that cov (¥, X) also lies between these limits.

b. If the correlation between two variables is zero, it means that there is no relation-
ship between the two variables whatsoever.

c. If you regress Y; on i (i.e., actual Y on estimated V), the intercept and slope
values will be 0 and 1, respectively.

3.17. Regression without any regressor. Suppose you are given the model: ¥; = f; + u;.
Use OLS to find the estimator of B;. What is its variance and the RSS? Does the
estimated B; make intuitive sense? Now consider the two-variable model
Y; = B1 + BoX; + u;. Is it worth adding X; to the model? If not, why bother with
regression analysis?

Empirical Exercises

3.18. InTable 3.5, you are given the ranks of 10 students in midterm and final examinations
in statistics. Compute Spearman’s coefficient of rank correlation and interpret it.

TABLE 3.5 Student
Rank A B C D E F G H | J
Midterm 1 3 7 10 9 5 4 8 2 6

Final 3 2 8 7 9 6 5 10 1 4
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3.19.

3.20.

3.21.

3.22.

The relationship between nominal exchange rate and relative prices. From annual
observations from 1985 to 2005, the following regression results were obtained,
where Y = exchange rate of the Canadian dollar to the U.S. dollar (CD/$) and X =
ratio of the U.S. consumer price index to the Canadian consumer price index; that is,
X represents the relative prices in the two countries:

f’t = —0.912 + 2.250X, 2 = 0.440
se = 0.096

a. Interpret this regression. How would you interpret 72?

b. Does the positive value of X; make economic sense? What is the underlying
economic theory?

c. Suppose we were to redefine X as the ratio of the Canadian CPI to the U.S. CPL
Would that change the sign of X? Why?

Table 3.6 gives data on indexes of output per hour (X) and real compensation per
hour (Y) for the business and nonfarm business sectors of the U.S. economy for
1960-2005. The base year of the indexes is 1992 = 100 and the indexes are
seasonally adjusted.

a. Plot Y against X for the two sectors separately.

b. What is the economic theory behind the relationship between the two variables?
Does the scattergram support the theory?

c. Estimate the OLS regression of Y on X. Save the results for a further look after we
study Chapter 5.

From a sample of 10 observations, the following results were obtained:
Y Y=1110 Y X;=1,700 Y XY =205500
D XP=322,000 > ¥ =132,100

with coefficient of correlation » = 0.9758. But on rechecking these calculations it
was found that two pairs of observations were recorded:

Y X Y X

90 120 instead of 80 110

140 220 150 210

What will be the effect of this error on ? Obtain the correct r.

Table 3.7 gives data on gold prices, the Consumer Price Index (CPI), and the New

York Stock Exchange (NYSE) Index for the United States for the period 1974 -2006.

The NYSE Index includes most of the stocks listed on the NYSE, some 1500-plus.

a. Plot in the same scattergram gold prices, CPI, and the NYSE Index.

b. An investment is supposed to be a hedge against inflation if its price and/or rate
of return at least keeps pace with inflation. To test this hypothesis, suppose you
decide to fit the following model, assuming the scatterplot in (a) suggests that this
is appropriate:

Gold price, = 81 + B2 CPL; 4+ u,
NYSE index; = 81 + B, CPI, + u;
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TABLE 3.6

e b ] Outputpper Ho§1r of All Real Con:lpenzsgtion per
Related Data, €rsons our
Business Sector Nonfarm Nonfarm
1960-2005 Business Business Business Business
(Index numbers, Year Sector Sector Sector Sector
1992 =100; quarterly 1960 48.9 51.9 60.8 63.3
data seasonally 1961 50.6 53.5 62.5 64.8
adjusted) 1962 52.9 55.9 64.6 66.7
Source: Economic Report of the 1963 55.0 57.8 66.1 68.1
President, 2007, Table 49. 1964 56.8 59.6 67.7 69.3
1965 58.8 61.4 69.1 70.5
1966 61.2 63.6 71.7 72.6
1967 62.5 64.7 73.5 74.5
1968 64.7 66.9 76.2 77.1
1969 65.0 67.0 77.3 78.1
1970 66.3 68.0 78.8 79.2
1971 69.0 70.7 80.2 80.7
1972 71.2 73.1 82.6 83.2
1973 73.4 75.3 84.3 84.7
1974 72.3 74.2 83.3 83.8
1975 74.8 76.2 84.1 84.5
1976 771 78.7 86.4 86.6
1977 78.5 80.0 87.6 88.0
1978 79.3 81.0 89.1 89.6
1979 79.3 80.7 89.3 89.7
1980 79.2 80.6 89.1 89.6
1981 80.8 81.7 89.3 89.8
1982 80.1 80.8 90.4 90.8
1983 83.0 84.5 90.3 90.9
1984 85.2 86.1 90.7 91.1
1985 87.1 87.5 92.0 92.2
1986 89.7 90.2 94.9 95.2
1987 90.1 90.6 95.2 95.5
1988 91.5 92.1 96.5 96.7
1989 92.4 92.8 95.0 95.1
1990 94.4 94.5 96.2 96.1
1991 95.9 96.1 97.4 97.4
1992 100.0 100.0 100.0 100.0
1993 100.4 100.4 99.7 99.5
1994 101.3 101.5 99.0 99.1
1995 101.5 102.0 98.7 98.8
1996 104.5 104.7 99.4 99.4
1997 106.5 106.4 100.5 100.3
1998 109.5 109.4 105.2 104.9
1999 112.8 112.5 108.0 107.5
2000 116.1 115.7 112.0 111.5
2001 119.1 118.6 113.5 112.8
2002 124.0 123.5 115.7 115.1
2003 128.7 128.0 117.7 117.1
2004 132.7 131.8 119.0 118.2
2005 135.7 134.9 120.2 119.3

!Output refers to real gross domestic product in the sector.
2Wages and salaries of employees plus employers’ contributions for social insurance and private benefit plans.
3Hourly compensation divided by the consumer price index for all urban consumers for recent quarters.
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TABLE 3.7

. Year Gold Price NYSE CPI

Gold Prices, New

York Stock Exchange 1974 159.2600 463.5400 49.30000

Index, and Consumer 1975 161.0200 483.5500 53.80000

Price Index for U.S. 1976 124.8400 575.8500 56.90000

for 1974-2006 1977 157.7100 567.6600 60.60000
1978 193.2200 567.8100 65.20000
1979 306.6800 616.6800 72.60000
1980 612.5600 720.1500 82.40000
1981 460.0300 782.6200 90.90000
1982 375.6700 728.8400 96.50000
1983 424.3500 979.5200 99.60000
1984 360.4800 977.3300 103.9000
1985 317.2600 1142.970 107.6000
1986 367.6600 1438.020 109.6000
1987 446.4600 1709.790 113.6000
1988 436.9400 1585.140 118.3000
1989 381.4400 1903.360 124.0000
1990 383.5100 1939.470 130.7000
1991 362.1100 2181.720 136.2000
1992 343.8200 2421.510 140.3000
1993 359.7700 2638.960 144.5000
1994 384.0000 2687.020 148.2000
1995 384.1700 3078.560 152.4000
1996 387.7700 3787.200 156.9000
1997 331.0200 4827.350 160.5000
1998 294.2400 5818.260 163.0000
1999 278.8800 6546.810 166.6000
2000 279.1100 6805.890 172.2000
2001 274.0400 6397.850 177.1000
2002 309.7300 5578.890 179.9000
2003 363.3800 5447.460 184.0000
2004 409.7200 6612.620 188.9000
2005 444.7400 7349.000 195.3000
2006 603.4600 8357.990 201.6000

3.23. Table 3.8 gives data on gross domestic product (GDP) for the United States for the
years 1959-2005.

a. Plot the GDP data in current and constant (i.e., 2000) dollars against time.

b. Letting Y denote GDP and X time (measured chronologically starting with 1 for
1959, 2 for 1960, through 47 for 2005), see if the following model fits the GDP
data:

Yi = B1+ B Xi +uy

Estimate this model for both current and constant-dollar GDP.
c. How would you interpret 8,?

d. If there is a difference between S, estimated for current-dollar GDP and that
estimated for constant-dollar GDP, what explains the difference?

e. From your results what can you say about the nature of inflation in the United
States over the sample period?
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TABLE 3.8 Year NGDP RGDP Year NGDP RGDP
Nominal and Real
St —— 1959 506.6 2,441.3 1983 3,536.7 5,423.8
Product, 10592005 1960 526.4 2,501.8 1984 3,933.2 5,813.6
(billions of dollars, 1961 544.7 2,560.0 1985 4,220.3 6,053.7
except as noted: 1962 585.6 2,715.2 1986 4,462.8 6,263.6
quarterly data gt 1963 617.7 2,834.0 1987 4,739.5 6,475.1
seasonally adjusted 1964 663.6 2,998.6 1988 5,103.8 6,742.7
annual rates; RGDP 1965 719.1 3,191.1 1989 5,484.4 6,981.4
T T e 1966 787.8 3,399.1 1990 5,803.1 7,112.5
[2000] dollars) 1967 832.6 3,484.6 1991 5,995.9 7,100.5
1968 910.0 3,652.7 1992 6,337.7 7,336.6
1969 984.6 3,765.4 1993 6,657.4 7,532.7
1970 1,038.5 3,771.9 1994 7,072.2 7,835.5
1971 1,127.1 3,898.6 1995 7,397.7 8,031.7
1972 1,238.3 4,105.0 1996 7,816.9 8,328.9
1973 1,382.7 4,341.5 1997 8,304.3 8,703.5
1974 1,500.0 4,319.6 1998 8,747.0 9,066.9
1975 1,638.3 4,311.2 1999 9,268.4 9,470.3
1976 1,825.3 4,540.9 2000 9,817.0 9,817.0
1977 2,030.9 4,750.5 2001 10,128.0 9,890.7
1978 2,294.7 5,015.0 2002 10,469.6 10,048.8
1979 2,563.3 5,173.4 2003 10,960.8 10,301.0
1980 2,789.5 5161.7 2004 11,712.5 10,703.5
1981 3,128.4 5,291.7 2005 12,455.8 11,048.6
1982 3,255.0 5,189.3

Source: Economic Report of the President, 2007. Table B-1 and B-2.

3.24. Using the data given in Table I.1 of the Introduction, verify Eq. (3.7.1).
3.25. For the SAT example given in Exercise 2.16 do the following:
a. Plot the female reading score against the male reading score.

b. If the scatterplot suggests that a linear relationship between the two seems
appropriate, obtain the regression of female reading score on male reading score.

c. If there is a relationship between the two reading scores, is the relationship
causal?

3.26. Repeat Exercise 3.25, replacing math scores for reading scores.

3.27. Monte Carlo study classroom assignment: Refer to the 10 X values given in
Table 2.4. Let §; = 25 and B, = 0.5. Assume u; ~ N(0, 9), thatis, u; are normally
distributed with mean 0 and variance 9. Generate 100 samples using these values,
obtaining 100 estimates of 8; and f,. Graph these estimates. What conclusions can
you draw from the Monte Carlo study? Nofe: Most statistical packages now can gen-
erate random variables from most well-known probability distributions. Ask your in-
structor for help, in case you have difficulty generating such variables.

3.28. Using the data given in Table 3.3, plot the number of cell phone subscribers against
the number of personal computers in use. Is there any discernible relationship be-
tween the two? If so, how do you rationalize the relationship?
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Appendix 3A

3A.1 Derivation of Least-Squares Estimates

Differentiating Eq. (3.1.2) partially with respect to A; and 8, we obtain

g~ ik hX) =2} M

1

d 12

% = 2Y (% - B - BXDXi = 23 ik, 2)
2

Setting these equations to zero, after algebraic simplification and manipulation, gives the estimators
given in Egs. (3.1.6) and (3.1.7).

3A.2 Linearity and Unbiasedness Properties
of Least-Squares Estimators

From Eq. (3.1.8) we have

A i Yi
fr= E50 =3 i, 3)

where

which shows that 3, is a linear estimator because it is a linear function of ¥; actually it is a weighted
average of ¥; with k; serving as the weights. It can similarly be shown that 8 too is a linear estimator.
Incidentally, note these properties of the weights £;:

1. Since the X; are assumed to be nonstochastic, the k; are nonstochastic too.

2. Y ki =0.

3.xk =1y

4. Y kix; =) k;X; = 1. These properties can be directly verified from the definition of &; .

For example,

; 1 . . .
Z ki = Z (Z):fo) = Z—xlz Z x;,  since for a given sample ) xl-2 is known

=0, since Y x;, the sum of deviations from the mean value, is
always zero

Now substitute the PRF Y; = B + B, X; + u; into Equation (3) to obtain
Bo =) k(B + BoXi +uy)
=B Y ki+hy kiXi+ ) ki (4)
=B+ ) kiu;

where use is made of the properties of k; noted earlier.




Chapter 3  Two-Variable Regression Model: The Problem of Estimation 93

Now taking expectation of Equation (4) on both sides and noting that k;, being nonstochastic, can
be treated as constants, we obtain

EB) =B+ Y kiE(uy)
=p2

since E(u;) = 0 by assumption. Therefore, ,32 is an unbiased estimator of B,. Likewise, it can be
proved that §; is also an unbiased estimator of S .

(%)

3A.3 Variances and Standard Errors
of Least-Squares Estimators

Now by the definition of variance, we can write

var (B2) = E[By — E(B)Y
= E(pr — Bo)* since E(f,) = 2
=F (Z kiu ,-)2 using Eq. (4) above ©
= E(kfuf FRRE A+ K2 4 2kkauguy + -+ 2kn,1k,lun,,un)
Since by assumption, E(ulz.) = o2 for each i and E(u;uj) =0, i # j, it follows that
var(fe) = o> Y

O_2

Ty
= Eq. (3.3.1)

(using the definition of k7) @)

The variance of ,31 can be obtained following the same line of reasoning already given. Once the
variances of B and B, are obtained, their positive square roots give the corresponding standard
erTors.

3A.4 Covariance between $; and 3,

By definition,
cov (B, B2) = E{[B1 — E(BDIB2 — E(B)]}
=EB — BB —B)  (Why?)
= —XE(p, — p2)° ®)
= —X var(B)
= Eq. (33.9)

vyhere use is _ma}de of the fact Athat Bl =Y - Bg)_( and E(ﬁl) =Y — B X, giving
B1 — E(B1) = —X(B2 — B2). Note: var (B;) is given in Eq. (3.3.1).

3A.5 The Least-Squares Estimator of o2

Recall that

Yi = B1 + B Xi +u; 9
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Therefore,
Y=B1+PX+i (10)
Subtracting Equation (10) from Equation (9) gives
Vi = Poxi + (u; —it) am
Also recall that
i; = yi — Poxi (12)

Therefore, substituting Equation (11) into Equation (12) yields

N

i = Pox; + (u; —it) — Pox; (13)
Collecting terms, squaring, and summing on both sides, we obtain
Yo =B B Y XA Y (wi =) =2B— )Y xiui — i) (14)
Taking expectations on both sides gives
E(Y @) =Y xPE(h — B2 + E[Y (i — 7| = 2B [(Br — )Y xi(wi — 0)]

= Y aFvar(B) + (n = Dyvar(up) = 2B [ Y kuiCxiun)|

=024+ (m—1)0c*-2E [Z k[x,-ulz»:l (15)
=o’+(n—1)0%—202
=(n—2)o?

where, in the last but one step, use is made of the definition of k; given in Eq. (3) and the relation
given in Eq. (4). Also note that

where use is made of the fact that the u; are uncorrelated and the variance of each u; is o2

Thus, we obtain

E(E:ﬁ):(n—zm2 (16)
Therefore, if we define
~2
PRI (17)
n—2
its expected value is
1
AN A; — 2 0 a
E(6°) = p— 2E (Z “1) o using Equation (16) (18)

which shows that 62 is an unbiased estimator of true o2
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3A.6 Minimum-Variance Property
of Least-Squares Estimators

It was shown in Appendix 3A, Section 3A.2, that the least-squares estimator Bz is linear as well as
unbiased (this holds true of ; too). To show that these estimators are also minimum variance in the
class of all linear unbiased estimators, consider the least-squares estimator f;:

B = Z kiY;
where
. X, i — X _ Xi
YXi—-XP XX
which shows that /§2 is a weighted average of the Y'’s, with k; serving as the weights.
Let us define an alternative linear estimator of 8, as follows:

B =Y w¥, (20)
where w; are also weights, not necessarily equal to k;. Now
E(B}) =) wiE(Y:)
= " wi(B1 + B2 X) (21)
=By wi+h Y wikX
Therefore, for B to be unbiased, we must have

S wi=0 @2

(see Appendix 3A.2) (19)

i

and
ZwiXi = | 23)
Also, we may write
var (85) = VarZWiYi
= Z“’?Varyi [Note:varY; = varu; = o'2]

=o? Zwlz [Note:cov(Y;, Y;) =00 # j)]

2
— Z (Wi S aF il ) (Note the mathematical trick)

X X
Dl ) vl 20 22 ()
oy (Wi ) ZX—;?)z g (leg) (24)

(z
because the last term in the next to the last step drops out. (Why?)
Since the last term in Equation (24) is constant, the variance of () can be minimized only by
manipulating the first term. If we let

Xi
R
Eq. (24) reduces to
var (f;) = —lez (25)

= var ()
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In words, with weights w; = k;, which are the least-squares welghts the variance of the linear esti-
mator B is equal to the variance of the least-squares estimator ,32, otherwise var (85) > Var(ﬁz) To
put it differently, if there is a minimum-variance linear unbiased estimator of f,, it must be the least-
squares estimator. Similarly it can be shown that B1 is a minimum-variance linear unbiased estimator
of /3 1.

3A.7 Consistency of Least-Squares Estimators

We have shown that, in the framework of the classical linear regression model, the least-squares esti-
mators are unbiased (and efficient) in any sample size, small or large. But sometimes, as discussed in
Appendix A, an estimator may not satisfy one or more desirable statistical properties in small sam-
ples. But as the sample size increases indefinitely, the estimators possess several desirable statistical
properties. These properties are known as the large sample, or asymptotic, properties. In this ap-
pendix, we will discuss one large sample property, namely, the property of consistency, which is dis-
cussed more fully in Appendix A. For the two-variable model we have already shown that the OLS
estimator ,82 is an unbiased estimator of the true 8;. Now we show that /32 is also a consistent esti-
mator of . As shown in Appendix A, a sufficient condition for consistency is that B is unbiased
and that its variance tends to zero as the sample size » tends to infinity.

Since we have already proved the unbiasedness property, we need only show that the variance of
B> tends to zero as n increases indefinitely. We know that

" o? o?/n
RS VR S 0
By dividing the numerator and denominator by #n, we do not change the equality.
Now
2
lim var (f,) = lim (Z"x—/z'/’n) -0 (27)
n — oo n— oo

where use is made of the facts that (1) the limit of a ratio quantity is the limit of the quantity in the
numerator to the limit of the quantity in the denominator (refer to any calculus book); (2) as n tends
to infinity, o2 /n tends to zero because o is a finite number; and [(>" xiz) /n] # 0 because the vari-
ance of X has a finite limit because of Assumption 7 of CLRM.

The upshot of the preceding discussion is that the OLS estimator B, is a consistent estimator of
true B,. In like fashion, we can establish that | is also a consistent estimator. Thus, in repeated
(small) samples, the OLS estimators are unbiased and as the sample size increases indefinitely the
OLS estimators are consistent. As we shall see later, even if some of the assumptions of CLRM are
not satisfied, we may be able to obtain consistent estimators of the regression coefficients in several
situations.




Chapter

Classical Normal
Linear Regression

Model (CNLRM)

What is known as the classical theory of statistical inference consists of two branches,
namely, estimation and hypothesis testing. We have thus far covered the topic of estima-
tion of the parameters of the (two-variable) linear regression model. Using the method of
OLS we were able to estimate the parameters j, f,, and o2. Under the assumptions of the
classical linear regression model (CLRM), we were able to show that the estimators of
these parameters, ,él, ,32, and 672, satisfy several desirable statistical properties, such as
unbiasedness, minimum variance, etc. (Recall the BLUE property.) Note that, since these
are estimators, their values will change from sample to sample. Therefore, these estimators
are random variables.

But estimation is half the battle. Hypothesis testing is the other half. Recall that in
regression analysis our objective is not only to estimate the sample regression function
(SRF), but also to use it to draw inferences about the population regression function (PRF),
as emphasized in Chapter 2. Thus, we would like to find out how close ﬁ 1 is to the true §;
or how close 62 is to the true o2. For instance, in Example 3.2, we estimated the SRF
as shown in Eq. (3.7.2). But since this regression is based on a sample of 55 families, how
do we know that the estimated MPC of 0.4368 represents the (true) MPC in the population
as a whole?

Therefore, since B I, ,32, and 62 are random variables, we need to find out their proba-
bility distributions, for without that knowledge we will not be able to relate them to their
true values.

4.1 The Probability Distribution of Disturbances u;

To find out the probability distributions of the OLS estimators, we proceed as follows.
Specifically, consider f,. As we showed in Appendix 3A.2,

Br=) kY (4.1.1)

where k; = x;/Y_ xiz. But since the X’s are assumed fixed, or nonstochastic, because ours is
conditional regression analysis, conditional on the fixed values of X;, Equation 4.1.1 shows
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that /§2 is a linear function of Y, which is random by assumption. But since
Y; = B1 + B2 X; + u;, we can write Eq. (4.1.1) as

B = k(P + PoXi + us) (4.1.2)

Because %;, the betas, and X; are all fixed, ;§2 is ultimately a /inear function of the random
variable u;, which is random by assumption. Therefore, the probability distribution of ,32
(and also of ,3 1) will depend on the assumption made about the probability distribution of
u;. And since knowledge of the probability distributions of OLS estimators is necessary to
draw inferences about their population values, the nature of the probability distribution of
u; assumes an extremely important role in hypothesis testing.

Since the method of OLS does not make any assumption about the probabilistic nature
of u;, it is of little help for the purpose of drawing inferences about the PRF from the SRF,
the Gauss—Markov theorem notwithstanding. This void can be filled if we are willing to
assume that the u’s follow some probability distribution. For reasons to be explained
shortly, in the regression context it is usually assumed that the u’s follow the normal distri-
bution. Adding the normality assumption for u#; to the assumptions of the classical linear
regression model (CLRM) discussed in Chapter 3, we obtain what is known as the classical
normal linear regression model (CNLRM).

4.2 The Normality Assumption for u;

The classical normal linear regression model assumes that each u; is distributed normally

with
Mean: E(u;)=0 (4.2.1)
Variance:  E[u; — E(u;)]* = E(u?) = 02 (4.2.2)

cov (u up):  E{[(ui — E(ui)llu; — E(up)l} = E(uiu;) =0 i) (4.2.3)
The assumptions given above can be more compactly stated as
u; ~ N(0,0?%) (4.2.4)

where the symbol ~ means distributed as and N stands for the normal distribution, the
terms in the parentheses representing the two parameters of the normal distribution, namely,
the mean and the variance.

As noted in Appendix A, for two normally distributed variables, zero covariance or
correlation means independence of the two variables. Therefore, with the normality as-
sumption, Equation 4.2.4 means that u; and u; are not only uncorrelated but are also inde-
pendently distributed.

Therefore, we can write Eq. (4.2.4) as

u; ~ NID (0, 0%) (4.2.5)

where NID stands for normally and independently distributed.
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Why the Normality Assumption?

Why do we employ the normality assumption? There are several reasons:

1. As pointed out in Section 2.5, u; represent the combined influence (on the dependent
variable) of a large number of independent variables that are not explicitly introduced in the
regression model. As noted, we hope that the influence of these omitted or neglected
variables is small and at best random. Now by the celebrated central limit theorem (CLT)
of statistics (see Appendix A for details), it can be shown that if there are a large number
of independent and identically distributed random variables, then, with a few exceptions,
the distribution of their sum tends to a normal distribution as the number of such variables
increases indefinitely.! It is the CLT that provides a theoretical justification for the assump-
tion of normality of u;.

2. A variant of the CLT states that, even if the number of variables is not very large
or if these variables are not strictly independent, their sum may still be normally
distributed.?

3. With the normality assumption, the probability distributions of OLS estimators can be
easily derived because, as noted in Appendix A, one property of the normal distribution is
that any linear function of normally distributed variables is itself normally distributed.
As we discussed earlier, OLS estimators ﬁ 1 and 32 are linear functions of u;. Therefore, if u;
are normally distributed, so are ,3 1 and ﬁz, which makes our task of hypothesis testing very
straightforward.

4. The normal distribution is a comparatively simple distribution involving only two
parameters (mean and variance); it is very well known and its theoretical properties have
been extensively studied in mathematical statistics. Besides, many phenomena seem to
follow the normal distribution.

5. If we are dealing with a small, or finite, sample size, say data of less than 100 obser-
vations, the normality assumption assumes a critical role. It not only helps us to derive the
exact probability distributions of OLS estimators but also enables us to use the ¢, F, and x?
statistical tests for regression models. The statistical properties of #, F, and x2 probability
distributions are discussed in Appendix A. As we will show subsequently, if the sample size
is reasonably large, we may be able to relax the normality assumption.

6. Finally, in large samples, t and F statistics have approximately the # and F probabil-
ity distributions so that the 7 and F tests that are based on the assumption that the error term
is normally distributed can still be applied validly.? These days there are many cross-section
and time series data that have a fairly large number of observations. Therefore, the normality
assumption may not be very crucial in large data sets.

A cautionary note: Since we are “imposing” the normality assumption, it behooves us to
find out in practical applications involving small sample size data whether the normality

'For a relatively simple and straightforward discussion of this theorem, see Sheldon M. Ross,
Introduction to Probability and Statistics for Engineers and Scientists, 2d ed., Harcourt Academic Press,
New York, 2000, pp. 193-194. One exception to the theorem is the Cauchy distribution, which has
no mean or higher moments. See M. G. Kendall and A. Stuart, The Advanced Theory of Statistics,
Charles Griffin & Co., London, 1960, vol. 1, pp. 248-249.

2For the various forms of the CLT, see Harald Cramer, Mathematical Methods of Statistics, Princeton
University Press, Princeton, NJ, 1946, Chap. 17.

3For a technical discussion on this point, see Christiaan Heij et al., Econometric Methods with
Applications in Business and Economics, Oxford University Press, Oxford, 2004, p. 197.
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assumption is appropriate. Later, we will develop some tests to do just that. Also, later we
will come across situations where the normality assumption may be inappropriate. But until
then we will continue with the normality assumption for the reasons discussed previously.

4.3 Properties of OLS Estimators under
the Normality Assumption

With the assumption that u; follow the normal distribution as in Equation 4.2.5, the OLS
estimators have the following properties (Appendix A provides a general discussion of the
desirable statistical properties of estimators):

1. They are unbiased.

2. They have minimum variance. Combined with 1, this means that they are minimum-
variance unbiased, or efficient estimators.

3. They have consistency; that is, as the sample size increases indefinitely, the estimators
converge to their true population values.

4. ,31 (being a linear function of u;) is normally distributed with

Mean: E(B) = B 4.3.71)
3 2 XX
var (B): o4 = . szo = (3.3.3) 4.3.2)

Or more compactly, N p
,31 (o N(,Bb GﬂAl)

Then by the properties of the normal distribution, the variable Z, which is defined as

z_Bi=b (4.3.3)

%
follows the standard normal distribution, that is, a normal distribution with zero mean
and unit (= 1) variance, or

Z ~ N(0, 1)

5. ,32 (being a linear function of ;) is normally distributed with

Mean:  E(B) = s (4.3.9)
2
var(f):  o? = Zax? = (3.3.1) (4.3.5)

Or, more compactly, 2
B> ~ N(Ba, 052)
Then, as in Equation 4.3.3,

A 4.3.6
_B-p ( )

%

Z

2

also follows the standard normal distribution. .
Geometrically, the probability distributions of 8; and 8, are shown in Figure 4.1.
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6. (n —2)(62/0?) is distributed as the x2 (chi-square) distribution with (n — 2)df.*
This knowledge will help us to draw inferences about the true o> from the estimated o2, as
we will show in Chapter 5. (The chi-square distribution and its properties are discussed in
Appendix A.)

7. ( Bl , ﬁ2) are distributed independently of &2. The importance of this will be
explained in the next chapter.

8. /§1 and ,32 have minimum variance in the entire class of unbiased estimators, whether
linear or not. This result, due to Rao, is very powerful because, unlike the Gauss—Markov
theorem, it is not restricted to the class of linear estimators only.’ Therefore, we can say that
the least-squares estimators are best unbiased estimators (BUE); that is, they have mini-
mum variance in the entire class of unbiased estimators.

To sum up: The important point to note is that the normality assumption enables us to
derive the probability, or sampling, distributions of 1 and B, (both normal) and 6 (related
to the chi square). As we will see in the next chapter, this simplifies the task of establishing
confidence intervals and testing (statistical) hypotheses.

In passing, note that, with the assumption that u; ~ N(0, o2), Y;, being a linear func-
tion of u;, is itself normally distributed with the mean and variance given by

E(Y) = B1 + B X; (4.3.7)
var(¥;) = o (4.3.8)

More neatly, we can write
Y; ~ N(Bi + B2 Xi, 07) (4.3.9)

“The proof of this statement is slightly involved. An accessible source for the proof is Robert V. Hogg
and Allen T. Craig, Introduction to Mathematical Statistics, 2d ed., Macmillan, New York, 1965, p. 144.

5C. R. Rao, Linear Statistical Inference and Its Applications, John Wiley & Sons, New York, 1965, p. 258.
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4.4 The Method of Maximum Likelihood (ML)

A method of point estimation with some stronger theoretical properties than the method of
OLS is the method of maximum likelihood (ML). Since this method is slightly involved,
it is discussed in the appendix to this chapter. For the general reader, it will suffice to note
that if u; are assumed to be normally distributed, as we have done for reasons already dis-
cussed, the ML and OLS estimators of the regression coefficients, the 8%, are identical, and
this is true of simple as well as multiple regressions. The ML estimator of o2 is }_ #1/n.
This estimator is biased, whereas the OLS estimator of 62 = > ﬁiz /(n —2), as we have
seen, is unbiased. But comparing these two estimators of o2, we see that as the sample size
n gets larger the two estimators of o2 tend to be equal. Thus, asymptotically (i.e., as 7 in-
creases indefinitely), the ML estimator of o2 is also unbiased.

Since the method of least squares with the added assumption of normality of u; provides
us with all the tools necessary for both estimation and hypothesis testing of the linear re-
gression models, there is no loss for readers who may not want to pursue the maximum
likelihood method because of its slight mathematical complexity.

Summary and
Conclusions

1. This chapter discussed the classical normal linear regression model (CNLRM).

2. This model differs from the classical linear regression model (CLRM) in that it specifi-
cally assumes that the disturbance term u; entering the regression model is normally dis-
tributed. The CLRM does not require any assumption about the probability distribution
of u;; it only requires that the mean value of u; is zero and its variance is a finite constant.

3. The theoretical justification for the normality assumption is the central limit theorem.

4. Without the normality assumption, under the other assumptions discussed in Chapter 3,
the Gauss—Markov theorem showed that the OLS estimators are BLUE.

5. With the additional assumption of normality, the OLS estimators are not only best
unbiased estimators (BUE) but also follow well-known probability distributions. The
OLS estimators of the intercept and slope are themselves normally distributed and
the OLS estimator of the variance of u; ( = &?) is related to the chi-square distribution.

6. In Chapters 5 and 8 we show how this knowledge is useful in drawing inferences about
the values of the population parameters.

7. An alternative to the least-squares method is the method of maximum likelihood
(ML). To use this method, however, one must make an assumption about the probabil-
ity distribution of the disturbance term u;. In the regression context, the assumption
most popularly made is that u; follows the normal distribution.

8. Under the normality assumption, the ML and OLS estimators of the intercept and slope
parameters of the regression model are identical. However, the OLS and ML estimators of
the variance of u; are different. In large samples, however, these two estimators converge.

9. Thus the ML method is generally called a large-sample method. The ML method is of
broader application in that it can also be applied to regression models that are nonlin-
ear in the parameters. In the latter case, OLS is generally not used. For more on this,
see Chapter 14.

10. In this text, we will largely rely on the OLS method for practical reasons: (¢) Com-
pared to ML, the OLS is easy to apply; (b) the ML and OLS estimators of 8, and 3, are
identical (which is true of multiple regressions too); and (¢) even in moderately large
samples the OLS and ML estimators of o> do not differ vastly.

However, for the benefit of the mathematically inclined reader, a brief introduction to
ML is given in the appendix to this chapter and also in Appendix A.
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Appendix 4A

4A.1 Maximum Likelihood Estimation
of Two-Variable Regression Model

Assume that in the two-variable model Y; = B + B> X; + u; the Y; are normally and independently
distributed with mean = B; + 8, X; and variance = o%. (See Eq. [4.3.9].) As a result, the joint proba-
bility density function of Y;, Y», ..., Y,, given the preceding mean and variance, can be written as

f(, Yo, .., Y| B+ BoXi, 07)

But in view of the independence of the Y’s, this joint probability density function can be written as a
product of 7 individual density functions as

f(Y1, Yoy o, Yy | Br + BoXi, 02)

= f(Y11B1 + BaXi, o) f(Ya | 1 + BoXis 02) - f(Yu | B1 + B2 Xi, 0) (1)
where

S = (2

2 o?

1 o {_l (Y — B1 — BaXi)* }
o2
which is the density function of a normally distributed variable with the given mean and variance.

(Note: exp means e to the power of the expression indicated by {}.)
Substituting Equation (2) for each Y; into Equation (1) gives

1 Yi — i — BaXi)*
S, Yo, Y | Bi + BoXi, 07) = ——ZM

1
—a" (m)n exp{ 2 =

If Y1, Ya, ..., Y, are known or given, but 81, 8, and o> are not known, the function in Equa-
tion (3) is called a likelihood function, denoted by LF(8;, 82, %), and written as'

} 3)

1 1 (Yi — B1 — B2 Xi)?
LF(IB s ,B s 62) = n €Xp {__ } (4)
b o (\/271) 2 Z o?

The method of maximum likelihood, as the name indicates, consists in estimating the unknown
parameters in such a manner that the probability of observing the given Y’s is as high (or maximum)
as possible. Therefore, we have to find the maximum of the function in Equation (4). This is a
straightforward exercise in differential calculus. For differentiation it is easier to express Equation (4)
in the log term as follows.? (Note: In = natural log.)

n 1 (Yi — 1 — B2 Xi)?
InLF = —nlno — Eln(271) -3 Z g

1 Z (Y; — B1 — B Xi)? (5)

n , N
=—Elna _EIH(ZH)_E =

10f course, if B1, B2, and o2 are known but the Y; are not known, Eq. (4) represents the joint probabil-
ity density function—the probability of jointly observing the Y.
2Since a log function is a monotonic function, In LF will attain its maximum value at the same point as LF.
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Differentiating Equation (5) partially with respect to 81, 82, and o2 we obtain

dInLF 1

g = o 0= B = B ©
dInLF 1

3‘;2 =—— 2 (i = B = BXi)(=X) @)
dInLF 1

et = 307+ 37 LU~ i = X $2

Setting these equations equal to zero (the first-order condition for optimization) and letting A1, f2,
and 62 denote the ML estimators, we obtain®

1 ~ ~
= 2 (i =B = pXi) =0 ©)
1 = -
= 2 (i = B = BX)Xi =0 (10)
1 ~ ~
—355 + 355 L (i — B — BaX) =0 an

After simplifying, Eqs. (9) and (10) yield
Y Yi=npi+hYy X (12)

ZYiXi:/élZXi"‘EZZX;‘Z (13)

which are precisely the normal equations of the least-squares theory obtained in Eqgs. (3.1.4) and
(3.1.5). Therefore, the ML estimators, the 8’s, are the same as the OLS estimators, the /§’s, given in
Eqgs. (3.1.6) and (3.1.7). This equality is not accidental. Examining the likelihood (5), we see that the
last term enters with a negative sign. Therefore, maximizing Equation (5) amounts to minimizing this
term, which is precisely the least-squares approach, as can be seen from Eq. (3.1.2).

Substituting the ML ( = OLS) estimators into Equation (11) and simplifying, we obtain the ML
estimator of G2 as

6= %Z(Yi — B — BoX;)?

1 A A
— D (Yi = 1 = ppXi)? (14
= % Zag

From Equation (14) it is obvious that the ML estimator 62 differs from the OLS estimator
6% = [1/(n — 2)]>_ 42, which was shown to be an unbiased estimator of o in Appendix 3A, Sec-
tion 3A.5. Thus, the ML estimator of o? is biased. The magnitude of this bias can be easily deter-
mined as follows.

3We use ~ (tilde) for ML estimators and ~ (cap or hat) for OLS estimators.
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Taking the mathematical expectation of Equation (14) on both sides, we obtain

E(6?) = %E(Zzﬂ)

—9
= (” )02 using Eq. (16) of Appendix 3A, (15)
" Section 3A.5
2
R
n

which shows that &2 is biased downward (i.e., it underestimates the true ') in small samples. But
notice that as n, the sample size, increases indefinitely, the second term in Equation (15), the bias fac-
tor, tends to be zero. Therefore, asymptotically (i.e., in a very large sample), 2 is unbiased too, that
is, lim E(6%) = 0% as n — oo. It can further be proved that 52 is also a consistent estimator?; that

is, as n increases indefinitely, &2 converges to its true value o2,

4A.2 Maximum Likelihood Estimation
of Food Expenditure in India

Return to Example 3.2 and Equation 3.7.2, which gives the regression of food expenditure on total
expenditure for 55 rural households in India. Since under the normality assumption the OLS and ML es-
timators of the regression coefficients are the same, we obtain the ML estimators as B = 31 = 94.2087
and B = 52 = 0.4368. The OLS estimator of o2 is 62 = 4469.6913, but the ML estimator is
&% = 4407.1563, which is smaller than the OLS estimator. As noted, in small samples the ML estimator
is downward biased; that is, on average it underestimates the true variance 2. Of course, as you would
expect, as the sample size gets bigger, the difference between the two estimators will narrow. Putting the
values of the estimators in the log likelihood function, we obtain the value of —308.1625. If you want the
maximum value of the LF, just take the antilog of —308.1625. No other values of the parameters will give
you a higher probability of obtaining the sample that you have used in the analysis.

Appendix 4A Exercises

4.1. “If two random variables are statistically independent, the coefficient of correlation between the
two is zero. But the converse is not necessarily true; that is, zero correlation does not imply
statistical independence. However, if two variables are normally distributed, zero correlation
necessarily implies statistical independence.” Verify this statement for the following joint
probability density function of two normally distributed variables Y; and Y, (this joint
probability density function is known as the bivariate normal probability density function):

1

1
expy —
2wo1024/1 — p? { 2(1 - p?)

Y — o\’ (Y1 — p1)(Y2 — p2) Yy — 2 \?
XR @il >_2p gice +< o )”

“See Appendix A for a general discussion of the properties of the maximum likelihood estimators as
well as for the distinction between asymptotic unbiasedness and consistency. Roughly speaking, in
asymptotic unbiasedness we try to find out the lim E (52) as n tends to infinity, where n is the sample
size on which the estimator is based, whereas in consistency we try to find out how 52 behaves as n
increases indefinitely. Notice that the unbiasedness property is a repeated sampling property of an
estimator based on a sample of given size, whereas in consistency we are concerned with the
behavior of an estimator as the sample size increases indefinitely.

f(r, o) =




106 Part One

Single-Equation Regression Models

4.2.

4.3.

4.4.

where 1t = mean of Y;
2 = mean of ¥,
o1 = standard deviation of Y;
o, = standard deviation of >
p = coefficient of correlation between Y; and Y>

By applying the second-order conditions for optimization (i.e., second-derivative test), show that
the ML estimators of B, B2, and o2 obtained by solving Eqgs. (9), (10), and (11) do in fact
maximize the likelihood function in Eq. (4).

A random variable X follows the exponential distribution if it has the following probability
density function (PDF):
f(X)=(1/0)e ™  forX >0

=0 elsewhere

where 6 > 0 is the parameter of the distribution. Using the ML method, show that the ML
estimator of 6 is 0 = Z)_( i/n, where n is the sample size. That is, show that the ML estimator
of 0 is the sample mean X.

Suppose that the outcome of an experiment is classified as either a success or a failure. Letting
X =1 when the outcome is a success and X = 0 when it is a failure, the probability density, or
mass, function of X is given by

pX=0=1-p
p(X=1)=p,0=<p=1l

‘What is the maximum likelihood estimator of p, the probability of success?
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Two-Variable

Regression: Interval
Estimation and
Hypothesis Testing

Beware of testing too many hypotheses; the more you torture the data, the more likely they are

to confess, but confession obtained under duress may not be admissible in the court of scientific
C

opinion.

As pointed out in Chapter 4, estimation and hypothesis testing constitute the two major
branches of classical statistics. The theory of estimation consists of two parts: point
estimation and interval estimation. We have discussed point estimation thoroughly in the
previous two chapters where we introduced the OLS and ML methods of point estimation.
In this chapter we first consider interval estimation and then take up the topic of hypothesis
testing, a topic intimately related to interval estimation.

5.1 Statistical Prerequisites

Before we demonstrate the actual mechanics of establishing confidence intervals and
testing statistical hypotheses, it is assumed that the reader is familiar with the funda-
mental concepts of probability and statistics. Although not a substitute for a basic course
in statistics, Appendix A provides the essentials of statistics with which the reader
should be totally familiar. Key concepts such as probability, probability distributions,
Type I and Type II errors, level of significance, power of a statistical test, and
confidence interval are crucial for understanding the material covered in this and the
following chapters.

TStephen M. Stigler, “Testing Hypothesis or Fitting Models? Another Look at Mass Extinctions,” in
Matthew H. Nitecki and Antoni Hoffman, eds., Neutral Models in Biology, Oxford University Press,
Oxford, 1987, p. 148.

107
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5.2 Interval Estimation: Some Basic Ideas

To fix the ideas, consider the wages-education example of Chapter 3. Equation (3.6.1)
shows that the estimated average increase in mean hourly wage related to a one-year
increase in schooling (,32) is 0.7240, which is a one number (point) estimate of the
unknown population value B,. How reliable is this estimate? As noted in Chapter 3, because
of sampling fluctuations, a single estimate is likely to differ from the true value, although
in repeated sampling its mean value is expected to be equal to the true value. [Note:
E (Bz) = f,.] Now in statistics, the reliability of a point estimator is measured by its
standard error. Therefore, instead of relying on the point estimate alone, we may construct
an interval around the point estimator, say within two or three standard errors on either side
of the point estimator, such that this interval has, say, 95 percent probability of including
the true parameter value. This is roughly the idea behind interval estimation.

To be more specific, assume that we want to find out how “close,” say, B> is to B,. For
this purpose we try to find out two positive numbers § and «, the latter lying between 0 and
1, such that the probability that the random interval (,32 -4, 32 + &) contains the true 3,
is I — «. Symbolically,

Pr(fr—8<Ppr<h+d=1-a (5.2.1)

Such an interval, if it exists, is known as a confidence interval; 1 — « is known as the
confidence coefficient; and o (0 < a < 1) is known as the level of significance.? The end-
points of the confidence interval are known as the confidence limits (also known as critical
values), B, — 8 being the lower confidence /imit and Bo+6 the upper confidence /imit.
In passing, note that in practice o and 1 — ¢ are often expressed in percentage forms as
100« and 100(1 — «) percent.

Equation 5.2.1 shows that an interval estimator, in contrast to a point estimator, is an
interval constructed in such a manner that it has a specified probability 1 — « of including
within its limits the true value of the parameter. For example, if o = 0.05, or 5 percent,
Eq. (5.2.1) would read: The probability that the (random) interval shown there includes the
true B, is 0.95, or 95 percent. The interval estimator thus gives a range of values within
which the true 8, may lie.

It is very important to know the following aspects of interval estimation:

1. Eq. (5.2.1) does not say that the probability of 8, lying between the given limits is
1 — «a. Since B,, although an unknown, is assumed to be some fixed number, either it lies
in the interval or it does not. What Eq. (5.2.1) states is that, for the method described in this
chapter, the probability of constructing an interval that contains f, is 1 — «.

2. The interval in Eq. (5.2.1) is a random interval; that is, it will vary from one sample
to the next because it is based on A, which is random. (Why?)

3. Since the confidence interval is random, the probability statements attached to it
should be understood in the long-run sense, that is, repeated sampling. More specifically,
Eq. (5.2.1) means: If in repeated sampling confidence intervals like it are constructed a

2Also known as the probability of committing a Type | error. A Type | error consists in
rejecting a true hypothesis, whereas a Type Il error consists in accepting a false hypothesis. (This
topic is discussed more fully in Appendix A.) The symbol « is also known as the size of the
(statistical) test.
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great many times on the 1 — « probability basis, then, in the long run, on the average, such
intervals will enclose in 1 — « of the cases the true value of the parameter.

4. As noted in (2), the interval in Eq. (5.2.1) is random so long as $ is not known. But
once we have a specific sample and once we obtain a specific numerical value of p, the in-
terval in Eq. (5.2.1) is no longer random; it is fixed. In this case, we cannot make the prob-
abilistic statement in Eq. (5.2.1); that is, we cannot say that the probability is 1 — « that a
given fixed interval includes the true ;. In this situation, S, is either in the fixed interval or
outside it. Therefore, the probability is either 1 or 0. Thus, for our wages-education exam-
ple, if the 95 percent confidence interval were obtained as (0.5700 < 8, < 0.8780), as we
do shortly in Eq. (5.3.9), we cannot say the probability is 95 percent that this interval in-
cludes the true ;. That probability is either 1 or 0.

How are the confidence intervals constructed? From the preceding discussion one may
expect that if the sampling or probability distributions of the estimators are known, one
can make confidence interval statements such as Eq. (5.2.1). In Chapter 4 we saw that
under the assumption of normality of the disturbances u; the OLS estimators ,3 1 and ,32 are
themselves normally distributed and that the OLS estimator &2 is related to the x? (chi-
square) distribution. It would then seem that the task of constructing confidence intervals is
a simple one. And it is!

5.3 Confidence Intervals for Regression Coefficients 81 and f2

Confidence Interval for g,

It was shown in Chapter 4, Section 4.3, that, with the normality assumption for u;, the OLS
estimators 31 and Bz are themselves normally distributed with means and variances given
therein. Therefore, for example, the variable

7 B2 —A,Bz
se(f)
R (5.3.1)
_(B= P X xF
-

as noted in Eq. (4.3.6), is a standardized normal variable. It therefore seems that we can use
the normal distribution to make probabilistic statements about 8, provided the true popula-
tion variance o2 is known. If o' is known, an important property of a normally distributed
variable with mean p and variance o2 is that the area under the normal curve between . + o
is about 68 percent, that between the limits o = 20 is about 95 percent, and that between
1 £ 30 is about 99.7 percent.

But o2 is rarely known, and in practice it is determined by the unbiased estimator 2. If
we replace o by &, Equation 5.3.1 may be written as

,32 — B Estimator — Parameter

se ( Bz) " Estimated standard error of estimator
. (5.3.2)
(B2 — o)/ > x}P

o
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where the se (52) now refers to the estimated standard error. It can be shown (see Appen-
dix 5A, Section 5A.2) that the ¢ variable thus defined follows the ¢ distribution with » — 2 df.
[Note the difference between Eqs. (5.3.1) and (5.3.2).] Therefore, instead of using the nor-
mal distribution, we can use the ¢ distribution to establish a confidence interval for 8, as
follows:

Pr(—typ <t <typ)=1-a (5.3.3)

where the ¢ value in the middle of this double inequality is the ¢ value given by Equa-
tion 5.3.2 and where 1, is the value of the 7 variable obtained from the ¢ distribution for
a/2 level of significance and n — 2 df; it is often called the critical 7 value at «/2 level of
significance. Substitution of Eq. (5.3.2) into Equation 5.3.3 yields

Pr [— a2 P ta/z} =l—a (5.3.4)
s
Rearranging Equation 5.3.4, we obtain

PrBs—tappse (B2) < o < Pr+tappse(B2)] =1—a (5.3.5)3

Equation 5.3.5 provides a 100(1 — «) percent confidence interval for 8, which can be
written more compactly as

100(1 — )% confidence interval for S;:

Bo % 12 se(B2) (5.3.6)
Arguing analogously, and using Eqs. (4.3.1) and (4.3.2), we can then write:
Pr [ﬁl — lo2 S€ (,BAI) = ,31 = ﬁl + Taj2 S€ (Bl)] =1—«a (537)

or, more compactly,

100(1 — )% confidence interval for S;:
,BAl E= o/ S€ (Bl) (538)

Notice an important feature of the confidence intervals given in Equations 5.3.6 and
5.3.8: In both cases the width of the confidence interval is proportional to the standard
error of the estimator. That is, the larger the standard error, the larger is the width of the
confidence interval. Put differently, the larger the standard error of the estimator, the
greater is the uncertainty of estimating the true value of the unknown parameter. Thus,
the standard error of an estimator is often described as a measure of the precision of the
estimator (i.e., how precisely the estimator measures the true population value).

3Some authors prefer to write Eq. (5.3.5) with the df explicitly indicated. Thus, they would write

PrB2 — tin-2,0/25€(B2) < P2 < B2+ tn-2as25¢ (B)] =1 —
But for simplicity we will stick to our notation; the context clarifies the appropriate df involved.
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Returning to our regression example in Chapter 3 (Section 3.6) of mean hourly wages
(Y) on education (X), recall that we found in Table 3.2 that 8, = 0.7240; se (B,) = 0.0700.
Since there are 13 observations, the degrees of freedom (df) are 11. If we assume o = 5%,
that is, a 95% confidence coefficient, then the 7 table shows that for 11 df the critical
ta/2 = 2.201. Substituting these values in Eq. (5.3.5), the reader should verify that the
95 percent confidence interval for j; is as follows:*

0.5700 < B, < 0.8780 (5.3.9)
Or, using Eq. (5.3.6), it is
0.7240 +2.201(0.0700)
that is,
0.7240 £ 0.1540 (5.3.10)

The interpretation of this confidence interval is: Given the confidence coefficient of
95 percent, in 95 out of 100 cases intervals like Equation 5.3.9 will contain the true ;. But,
as warned earlier, we cannot say that the probability is 95 percent that the specific interval
in Eq. (5.3.9) contains the true 8, because this interval is now fixed and no longer random;
therefore B, either lies in it or it does not: The probability that the specified fixed interval
includes the true B, is therefore 1 or 0.

Following Eq. (5.3.7), and the data in Table 3.2, the reader can easily verify that the
95 percent confidence interval for 8, for our example is

—1.8871 < B < 1.8583 (5.3.11)

Again you should be careful in interpreting this confidence interval. In 95 out of 100
cases, intervals like Equation 5.3.11 will contain the true ;; the probability that this par-
ticular fixed interval includes the true B is either 1 or 0.

Confidence Interval for g, and g, Simultaneously

There are occasions when one needs to construct a joint confidence interval for B, and B,
such that with a confidence coefficient (1 — ), say, 95 percent, that interval includes 8, and
B> simultaneously. Since this topic is involved, the interested reader may want to consult
appropriate references.’ We will touch on this topic briefly in Chapters 8 and 10.

5.4 Confidence Interval for o2

As pointed out in Chapter 4, Section 4.3, under the normality assumption, the variable

2 &2
X =(n—2); (5.4.1)

“Because of rounding errors in Table 3.2, the answers given below may not exactly match the
answers obtained from a statistical package.

SFor an accessible discussion, see John Neter, William Wasserman, and Michael H. Kutner, Applied
Linear Regression Models, Richard D. Irwin, Homewood, lll., 1983, Chap. 5.
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FIGURE 5.1
The 95% confidence
interval for x2 (11 df).
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follows the x? distribution with n — 2 df.® Therefore, we can use the x? distribution to
establish a confidence interval for o2

Pr(xf op < x> < xop)=1-0a (5.4.2)

where the x? value in the middle of this double inequality is as given by Equation 5.4.1 and
where x7_, /o and x2 /» are two values of x? (the critical x? values) obtained from the chi-
square table for » — 2 df in such a manner that they cut off 100(«/2) percent tail areas of the
x? distribution, as shown in Figure 5.1.

Substituting x? from Eq. (5.4.1) into Equation 5.4.2 and rearranging the terms, we
obtain

(5.4.3)

~2 22
Pr (n—2)UT§(72§(n—2) ; =1—«
Xay2 Xi—a)2

which gives the 100(1 — «)% confidence interval for 0.

Continuing with our wages-education example, we found in Table 3.2 that for our
data we have 6% = 0.8936. If we choose a of 5%, the chi-square table for 11 df gives the
following critical values: X(%.ozs = 21.9200, and Xg.975 = 3.8157. These values show that
the probability of a chi-square value exceeding 21.9200 is 2.5 percent and that of 3.8157 is
97.5 percent. Therefore, the interval between these two values is the 95 percent confidence
interval for x2, as shown in Figure 5.1. (Note the skewed characteristic of the chi-square
distribution.)

Substituting the data of our example into Eq. (5.4.3), the reader can verify that the
95 percent confidence interval for o2 is as follows:

0.4484 < 02 < 2.5760 (5.4.4)

The interpretation of this interval is: If we establish 95 percent confidence limits on o2

and if we maintain a priori that these limits will include the true o', we will be right in the
long run 95 percent of the time.

SFor proof, see Robert V. Hogg and Allen T. Craig, Introduction to Mathematical Statistics, 2d ed.,
Macmillan, New York, 1965, p. 144.
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5.5 Hypothesis Testing: General Comments

Having discussed the problem of point and interval estimation, we shall now consider the
topic of hypothesis testing. In this section we discuss briefly some general aspects of this
topic; Appendix A gives some additional details.

The problem of statistical hypothesis testing may be stated simply as follows: Is a given
observation or finding compatible with some stated hypothesis or not? The word “compati-
ble,” as used here, means “sufficiently” close to the hypothesized value so that we do not re-
ject the stated hypothesis. Thus, if some theory or prior experience leads us to believe that
the true slope coefficient 8, of the wages-education example is unity, is the observed B =
0.724 obtained from the sample of Table 3.2 consistent with the stated hypothesis? If it is, we
do not reject the hypothesis; otherwise, we may reject it.

In the language of statistics, the stated hypothesis is known as the null hypothesis and
is denoted by the symbol Hj. The null hypothesis is usually tested against an alternative
hypothesis (also known as maintained hypothesis) denoted by H;, which may state, for
example, that true §, is different from unity. The alternative hypothesis may be simple or
composite.7 For example, H;: B, = 1.5 is a simple hypothesis, but H;: 8, # 1.5 is a com-
posite hypothesis.

The theory of hypothesis testing is concerned with developing rules or procedures for
deciding whether to reject or not reject the null hypothesis. There are two mutually comple-
mentary approaches for devising such rules, namely, confidence interval and test of
significance. Both these approaches predicate that the variable (statistic or estimator) under
consideration has some probability distribution and that hypothesis testing involves making
statements or assertions about the value(s) of the parameter(s) of such distribution. For
example, we know that with the normality assumption B, is normally distributed with mean
equal to B, and variance given by Eq. (4.3.5). If we hypothesize that 8, = 1, we are making
an assertion about one of the parameters of the normal distribution, namely, the mean. Most
of the statistical hypotheses encountered in this text will be of this type—making assertions
about one or more values of the parameters of some assumed probability distribution such as
the normal, F, ¢, or x2. How this is accomplished is discussed in the following two sections.

5.6 Hypothesis Testing: The Confidence-Interval Approach

Two-Sided or Two-Tail Test

To illustrate the confidence interval approach, once again we revert to our wages-education
example. From the regression results given in Eq. (3.6.1), we know that the slope coeffi-
cient is 0.7240. Suppose we postulate that

Hol ,32 =0.5
Hliﬂz 75 0.5

that is, the true slope coefficient is 0.5 under the null hypothesis but less than or greater than
0.5 under the alternative hypothesis. The null hypothesis is a simple hypothesis, whereas

7A statistical hypothesis is called a simple hypothesis if it specifies the precise value(s) of the
parameter(s) of a probability density function; otherwise, it is called a composite hypothesis. For
example, in the normal pdf (1/0+/27) exp {—[(X — u)/o1?}, if we assert that Hy: e = 15 and o = 2,
it is a simple hypothesis; but if Hi:x =15 and o > 15, it is a composite hypothesis, because the
standard deviation does not have a specific value.
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FIGURE 5.2

A 100(1 — a)%
confidence interval
for B,.
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the alternative hypothesis is composite; actually it is what is known as a two-sided
hypothesis. Very often such a two-sided alternative hypothesis reflects the fact that we do
not have a strong a priori or theoretical expectation about the direction in which the
alternative hypothesis should move from the null hypothesis.

Is the observed B> compatible with Hy? To answer this question, let us refer to the confi-
dence interval in Eq. (5.3.9). We know that in the long run intervals like (0.5700, 0.8780) will
contain the true 8, with 95 percent probability. Consequently, in the long run (i.e., repeated
sampling) such intervals provide a range or limits within which the true 8, may lie with a con-
fidence coefficient of, say, 95 percent. Thus, the confidence interval provides a set of plausible
null hypotheses. Therefore, if 8, under H, falls within the 100(1 — «)% confidence interval,
we do not reject the null hypothesis; if it lies outside the interval, we may reject it.® This range
is illustrated schematically in Figure 5.2.

Decision Rule

Construct a 100(1 — )% confidence interval for B,. If the B, under Hy falls within this
confidence interval, do not reject Ho, but if it falls outside this interval, reject Ho.

Following this rule, for our hypothetical example, Hy: , = 0.5 clearly lies outside the
95 percent confidence interval given in Eq. (5.3.9). Therefore, we can reject the hypothesis
that the true slope is 0.5, with 95 percent confidence. If the null hypothesis were true, the
probability of our obtaining a value of slope of as much as 0.7240 by sheer chance or fluke
is at the most about 5 percent, a small probability.

In statistics, when we reject the null hypothesis, we say that our finding is statistically
significant. On the other hand, when we do not reject the null hypothesis, we say that our
finding is not statistically significant.

Some authors use a phrase such as “highly statistically significant.” By this they usually
mean that when they reject the null hypothesis, the probability of committing a Type I error
(i.e., o) is a small number, usually 1 percent. But as our discussion of the p value in Sec-
tion 5.8 will show, it is better to leave it to the researcher to decide whether a statistical find-

EENT3

ing is “significant,” “moderately significant,” or “highly significant.”

8Always bear in mind that there is a 100« percent chance that the confidence interval does not
contain Bz under Hp even though the hypothesis is correct. In short, there is a 100« percent chance
of committing a Type I error. Thus, if « = 0.05, there is a 5 percent chance that we could reject the
null hypothesis even though it is true.
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One-Sided or One-Tail Test

Sometimes we have a strong a priori or theoretical expectation (or expectations based on
some previous empirical work) that the alternative hypothesis is one-sided or unidirectional
rather than two-sided, as just discussed. Thus, for our wages-education example, one could
postulate that

Hy: B, <05 and Hy:B,>05

Perhaps economic theory or prior empirical work suggests that the slope is greater than 0.5.
Although the procedure to test this hypothesis can be easily derived from Eq. (5.3.5), the ac-
tual mechanics are better explained in terms of the test-of-significance approach discussed
next.’

5.7 Hypothesis Testing: The Test-of-Significance Approach

Testing the Significance of Regression Coefficients: The t Test
An alternative but complementary approach to the confidence-interval method of testing
statistical hypotheses is the test-of-significance approach developed along independent
lines by R. A. Fisher and jointly by Neyman and Pearson.'® Broadly speaking, a test of
significance is a procedure by which sample results are used to verify the truth or falsity
of a null hypothesis. The key idea behind tests of significance is that of a test statistic
(estimator) and the sampling distribution of such a statistic under the null hypothesis. The
decision to accept or reject Hy is made on the basis of the value of the test statistic obtained
from the data at hand.
As an illustration, recall that under the normality assumption the variable

- B — B
se ()

B (B — Bo)y/ X x?

o

(5.3.2)

follows the ¢ distribution with n — 2 df. If the value of true §, is specified under the null hy-
pothesis, the 7 value of Eq. (5.3.2) can readily be computed from the available sample, and
therefore it can serve as a test statistic. And since this test statistic follows the ¢ distribution,
confidence-interval statements such as the following can be made:

Pr |:_ w2 = i _Aﬁz < Ia/2:| =1—-« (5.7.1)

where B3 is the value of 8, under Hy and where —#,,, and 1./, are the values of # (the
critical 7 values) obtained from the ¢ table for («/2) level of significance and n — 2 df
[cf. Eq. (5.3.4)]. The ¢ table is given in Appendix D.

°If you want to use the confidence interval approach, construct a (100 — «)% one-sided or one-tail
confidence interval for 8. Why?

10Details may be found in E. L. Lehman, Testing Statistical Hypotheses, John Wiley & Sons, New York,
1959.
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FIGURE 5.3

The 95% confidence
interval for ﬁz under
the hypothesis that
Br=0.5.

Rearranging Equation 5.7.1, we obtain
PriB; —tuppse(Ba) < Bo < B3 +tapp se ()] = 1 -« (5.7.2)

which gives the interval in which ,32 will fall with 1 — o probability, given 8, = 5. In the
language of hypothesis testing, the 100(1 — «)% confidence interval established in Equa-
tion 5.7.2 is known as the region of acceptance (of the null hypothesis) and the region(s)
outside the confidence interval is (are) called the region(s) of rejection (of Hy) or the
critical region(s). As noted previously, the confidence limits, the endpoints of the confi-
dence interval, are also called critical values.

The intimate connection between the confidence-interval and test-of-significance
approaches to hypothesis testing can now be seen by comparing Eq. (5.3.5) with Eq. (5.7.2).
In the confidence-interval procedure we try to establish a range or an interval that has a cer-
tain probability of including the true but unknown B,, whereas in the test-of-significance
approach we hypothesize some value for B, and try to see whether the computed ,32 lies
within reasonable (confidence) limits around the hypothesized value.

Once again let us return to our wages-education example. We know that 32 = 0.7240,
se (ﬁz) = 0.0700, and df = 11. If we assume o = 5%, to/2 = 2.201.

If we assume Hy: B, = B5 = 0.5 and H;: B, # 0.5, Eq. (5.7.2) becomes

Pr (0.3460 < f, < 0.6540) (5.7.3)"

as shown diagrammatically in Figure 5.3.

In practice, there is no need to estimate Eq. (5.7.2) explicitly. One can compute the
t value in the middle of the double inequality given by Eq. (5.7.1) and see whether it lies
between the critical ¢ values or outside them. For our example,

0.7240 — 0.5
=—=32 7.4
0.0700 3 (5.7.4)

which clearly lies in the critical region of Figure 5.4. The conclusion remains the same;
namely, we reject H.

1(B2)

oy

47

=)

(0] ~

= B> =0.7240
Critical lies in this
region critical region
2.5% 2.5%

. B,

0.3460 0.5 0.6540

"In Sec. 5.2, point 4, it was stated that we cannot say that the probability is 95 percent that the fixed
interval (0.5700, 0.8780) includes the true ;. But we can make the probabilistic statement given in
Eq. (5.7.3) because B3, being an estimator, is a random variable.
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The 95% confidence
interval for (11 df).
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Notice that if the estimated 8, (= ,32) is equal to the hypothesized f,, the ¢ value in Equa-
tion 5.7.4 will be zero. However, as the estimated 8, value departs from the hypothesized 8,
value, |¢| (that is, the absolute ¢ value; note: t can be positive as well as negative) will be in-
creasingly large. Therefore, a “large” |t| value will be evidence against the null hypothesis. Of
course, we can always use the # table to determine whether a particular ¢ value is large or small;
the answer, as we know, depends on the degrees of freedom as well as on the probability of
Type I error that we are willing to accept. If you take a look at the 7 table given in Appendix D
(Table D.2), you will observe that for any given value of df the probability of obtaining an
increasingly large |¢| value becomes progressively smaller. Thus, for 20 df the probability of
obtaining a |#| value of 1.725 or greater is 0.10 or 10 percent, but for the same df the probabil-
ity of obtaining a |¢| value of 3.552 or greater is only 0.002 or 0.2 percent.

Since we use the ¢ distribution, the preceding testing procedure is called appropriately
the 7 test. In the language of significance tests, a statistic is said to be statistically sig-
nificant if the value of the test statistic lies in the critical region. In this case the null
hypothesis is rejected. By the same token, a test is said to be statistically insignificant
if the value of the test statistic lies in the acceptance region. In this situation, the null hy-
pothesis is not rejected. In our example, the ¢ test is significant and hence we reject the null
hypothesis.

Before concluding our discussion of hypothesis testing, note that the testing procedure
just outlined is known as a two-sided, or two-tail, test-of-significance procedure in that we
consider the two extreme tails of the relevant probability distribution, the rejection
regions, and reject the null hypothesis if it lies in either tail. But this happens because our
H, was a two-sided composite hypothesis; f, # 0.5 means S, is either greater than or less
than 0.5. But suppose prior experience suggests to us that the slope is expected to be greater
than 0.5. In this case we have: Hy: f, < 0.5 and H;: B, > 0.5. Although H; is still a com-
posite hypothesis, it is now one-sided. To test this hypothesis, we use the one-tail test (the
right tail), as shown in Figure 5.5. (See also the discussion in Section 5.6.)

The test procedure is the same as before except that the upper confidence limit or criti-
cal value now corresponds to 7, = s, that is, the 5 percent level. As Figure 5.5 shows, we
need not consider the lower tail of the # distribution in this case. Whether one uses a two- or
one-tail test of significance will depend upon how the alternative hypothesis is formulated,
which, in turn, may depend upon some a priori considerations or prior empirical experi-
ence. (But more on this in Section 5.8.)

We can summarize the ¢ test of significance approach to hypothesis testing as shown in
Table 5.1.
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FIGURE 5.5 B
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to.05 (11 df)

TABLE 3.1 Type of Ho: The Null Hi: The Alternative Decision Rule:
The ¢ Test of Hvoothesis Hvpothesis I Rotoct HOIf
Significance: Decision yp . yp X yp - ) 0
Rules Two-tail B2= B> B2 # B> [t] > ty2,qf
Right-tail B2 < B3 B> B> t >ty
Left-tail B2> B> B2 < B o i

Notes: B3 is the hypothesized numerical value of f,.

|#| means the absolute value of 7.

to OF ¢y means the critical 7 value at the o or «r/2 level of significance.

df: degrees of freedom, (n — 2) for the two-variable model, (n — 3) for the three-variable model, and so on.
The same procedure holds to test hypotheses about .

Testing the Significance of 0% The 42 Test
As another illustration of the test-of-significance methodology, consider the following
variable:

2 &2
x=w—@; (5.4.1)

which, as noted previously, follows the x? distribution with n — 2 df. For our example,
62 =0.8937 and df = 11. If we postulate that Hy: o> = 0.6 versus H;:0> # 0.6, Equa-
tion 5.4.1 provides the test statistic for Hy. Substituting the appropriate values in Eq. (5.4.1),
it can be found that under Hy, x> = 16.3845. If we assume « = 5%, the critical x> values
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A Summary of the

x* Test
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Ho: The Null Hy: The Alternative Critical Region:
Hypothesis Hypothesis Reject Hy If
A2
o2 =04 o? > ab df(g ) . X2 df
00
2 2 2 2 df(é 2) 2
0% =0y 0% < 0p 2 < X(—-a),df
00
df(s? _ >
o= U% o2+ O‘% o = Xaj2,df

2
O < X(1—ay2),df

Note: o4 is the value of ¢ under the null hypothesis. The first subscript on x in the last column is the level of significance, and
the second subscript is the degrees of freedom. These are critical chi-square values. Note that df is (n — 2) for the two-variable
regression model, (n — 3) for the three-variable regression model, and so on.

are 3.81575 and 21.9200. Since the computed x? lies between these limits, the data support
the null hypothesis and we do not reject it. (See Figure 5.1.) This test procedure is called the
chi-square test of significance. The x? test of significance approach to hypothesis testing
is summarized in Table 5.2.

5.8 Hypothesis Testing: Some Practical Aspects

The Meaning of “Accepting” or “Rejecting” a Hypothesis

If, on the basis of a test of significance, say, the 7 test, we decide to “accept” the null
hypothesis, all we are saying is that on the basis of the sample evidence we have no reason
to reject it; we are not saying that the null hypothesis is true beyond any doubt. Why? To
answer this, let us return to our wages-education example and assume that Hy: 8, = 0.70.
Now the estimated value of the slope is Bz = 0.7241 with a se (Bz) = 0.0701. Then on the

0.7241 - 0.7
basis of the ¢ test we find thatt = W = 0.3438, which is insignificant, say, at
o = 5%. Therefore, we say “accept” Hj. But now let us assume Hy: 8, = 0.6. Applying
0.7241 — 0.6
the ¢ test again, we obtain ¢ = w = 1.7703, which is also statistically

insignificant. So now we say “accept” this Hy. Which of these two null hypotheses is the
“truth”? We do not know. Therefore, in “accepting” a null hypothesis we should always be
aware that another null hypothesis may be equally compatible with the data. It is therefore
preferable to say that we may accept the null hypothesis rather than we (do) accept it. Better
still,

... just as a court pronounces a verdict as “not guilty” rather than “innocent,” so the conclu-
sion of a statistical test is “do not reject” rather than “accept.”?

2Jan Kmenta, Elements of Econometrics, Macmillan, New York, 1971, p. 114.
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The “Zero” Null Hypothesis and the “2-t” Rule of Thumb

A null hypothesis that is commonly tested in empirical work is Hy: 8, = 0, that is, the slope
coefficient is zero. This “zero” null hypothesis is a kind of straw man, the objective being
to find out whether Y is related at all to X, the explanatory variable. If there is no relation-
ship between Y and X to begin with, then testing a hypothesis such as 8, = 0.3 or any other
value is meaningless.

This null hypothesis can be easily tested by the confidence interval or the #-test approach
discussed in the preceding sections. But very often such formal testing can be shortcut by
adopting the “2-¢” rule of significance, which may be stated as

“2-t” Rule of
Thumb

If the number of degrees of freedom is 20 or more and if «, the level of significance, is set
at 0.05, then the null hypothesis 8, = 0 can be rejected if the t value [ = ,/se (8,)] com-
puted from Eq. (5.3.2) exceeds 2 in absolute value.

The rationale for this rule is not too difficult to grasp. From Eq. (5.7.1) we know that we
will reject Hy: B = 0 if

t = Bz/SC(Bz) > ta/z when ,32 >0
or

t=pa/se(fr) < — )2 when f, < 0

or when

~

” 5.8.1
se (B2 7 e ( )

for the appropriate degrees of freedom.

Now if we examine the ¢ table given in Appendix D, we see that for df of about 20 or
more a computed ¢ value in excess of 2 (in absolute terms), say, 2.1, is statistically signifi-
cant at the 5 percent level, implying rejection of the null hypothesis. Therefore, if we find
that for 20 or more df the computed 7 value is, say, 2.5 or 3, we do not even have to refer to
the 7 table to assess the significance of the estimated slope coefficient. Of course, one can
always refer to the ¢ table to obtain the precise level of significance, and one should always
do so when the df are fewer than, say, 20.

In passing, note that if we are testing the one-sided hypothesis f, = 0 versus 8, > 0 or
B> < 0, then we should reject the null hypothesis if

~

B2

se ()

If we fix « at 0.05, then from the # table we observe that for 20 or more df a ¢ value in excess
of 1.73 is statistically significant at the 5 percent level of significance (one-tail). Hence,
whenever a ¢ value exceeds, say, 1.8 (in absolute terms) and the df are 20 or more, one need
not consult the ¢ table for the statistical significance of the observed coefficient. Of course,
if we choose « at 0.01 or any other level, we will have to decide on the appropriate ¢ value
as the benchmark value. But by now the reader should be able to do that.

> 1 (5.8.2)
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Forming the Null and Alternative Hypotheses'3

Given the null and the alternative hypotheses, testing them for statistical significance
should no longer be a mystery. But how does one formulate these hypotheses? There are no
hard-and-fast rules. Very often the phenomenon under study will suggest the nature of the
null and alternative hypotheses. For example, consider the capital market line (CML) of
portfolio theory, which postulates that E; = 8 4+ f,0;, where E = expected return on
portfolio and o = the standard deviation of return, a measure of risk. Since return and risk
are expected to be positively related—the higher the risk, the higher the return—the natural
alternative hypothesis to the null hypothesis that 8, = 0 would be 8, > 0. That is, one
would not choose to consider values of 8, less than zero.

But consider the case of the demand for money. As we shall show later, one of the
important determinants of the demand for money is income. Prior studies of the money
demand functions have shown that the income elasticity of demand for money (the percent
change in the demand for money for a 1 percent change in income) has typically ranged
between 0.7 and 1.3. Therefore, in a new study of demand for money, if one postulates that
the income-elasticity coefficient 8, is 1, the alternative hypothesis could be that 8, # 1, a
two-sided alternative hypothesis.

Thus, theoretical expectations or prior empirical work or both can be relied upon to
formulate hypotheses. But no matter how the hypotheses are formed, it is extremely impor-
tant that the researcher establish these hypotheses before carrying out the empirical investi-
gation. Otherwise, he or she will be guilty of circular reasoning or self-fulfilling prophesies.
That is, if one were to formulate hypotheses after examining the empirical results, there may
be the temptation to form hypotheses that justify one’s results. Such a practice should be
avoided at all costs, at least for the sake of scientific objectivity. Keep in mind the Stigler
quotation given at the beginning of this chapter!

Choosing «, the Level of Significance
It should be clear from the discussion so far that whether we reject or do not reject the null
hypothesis depends critically on «, the level of significance or the probability of committing
a Type I error—the probability of rejecting the true hypothesis. In Appendix A we discuss
fully the nature of a Type I error, its relationship to a Type II error (the probability of
accepting the false hypothesis) and why classical statistics generally concentrates on a
Type I error. But even then, why is @ commonly fixed at the 1, 5, or, at the most, 10 percent
levels? As a matter of fact, there is nothing sacrosanct about these values; any other values
will do just as well.

In an introductory book like this it is not possible to discuss in depth why one chooses the
1, 5, or 10 percent levels of significance, for that will take us into the field of statistical
decision making, a discipline unto itself. A brief summary, however, can be offered. As we
discuss in Appendix A, for a given sample size, if we try to reduce a Type I error, a Tipe Il
error increases, and vice versa. That is, given the sample size, if we try to reduce the proba-
bility of rejecting the true hypothesis, we at the same time increase the probability of ac-
cepting the false hypothesis. So there is a trade-off involved between these two types of errors,

3For an interesting discussion about formulating hypotheses, see ]. Bradford De Long and Kevin
Lang, “Are All Economic Hypotheses False?” Journal of Political Economy, vol. 100, no. 6, 1992,
pp. 1257-1272.
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given the sample size. Now the only way we can decide about the trade-off is to find out the
relative costs of the two types of errors. Then,

If the error of rejecting the null hypothesis which is in fact true (Error Type 1) is costly relative
to the error of not rejecting the null hypothesis which is in fact false (Error Type 1), it will be
rational to set the probability of the first kind of error low. If, on the other hand, the cost of
making Error Type I is low relative to the cost of making Error Type 11, it will pay to make the
probability of the first kind of error high (thus making the probability of the second type of
error low).'*

Of course, the rub is that we rarely know the costs of making the two types of errors. Thus,
applied econometricians generally follow the practice of setting the value of w ata 1 ora 5
or at most a 10 percent level and choose a test statistic that would make the probability of
committing a Type II error as small as possible. Since one minus the probability of com-
mitting a Type 11 error is known as the power of the test, this procedure amounts to maxi-
mizing the power of the test. (See Appendix A for a discussion of the power of a test.)

Fortunately, the dilemma of choosing the appropriate value of o can be avoided by using
what is known as the p value of the test statistic, which is discussed next.

The Exact Level of Significance: The p Value

As just noted, the Achilles heel of the classical approach to hypothesis testing is its arbi-
trariness in selecting «. Once a test statistic (e.g., the ¢ statistic) is obtained in a given
example, why not simply go to the appropriate statistical table and find out the actual prob-
ability of obtaining a value of the test statistic as much as or greater than that obtained in
the example? This probability is called the p value (i.c., probability value), also known as
the observed or exact level of significance or the exact probability of committing a Type
I error. More technically, the p value is defined as the lowest significance level at which
a null hypothesis can be rejected.

To illustrate, let us return to our wages-education example. Given the null hypothesis
that the true coefficient of education is 0.5, we obtained a ¢ value of 3.2 in Eq. (5.7.4). What
is the p value of obtaining a ¢ value of as much as or greater than 3.2? Looking up the 7 table
given in Appendix D, we observe that for 11 df the probability of obtaining such a ¢ value
must be smaller than 0.005 (one-tail) or 0.010 (two-tail).

If you use Stata or EViews statistical packages, you will find that the p value of obtain-
ing a ¢ value of 3.2 or greater is about 0.00001, that is, extremely small. This is the p value
of the observed 7 statistic. This exact level of significance of the ¢ statistic is much smaller
than the conventionally, and arbitrarily, fixed level of significance, such as 1, 5, or 10 per-
cent. As a matter of fact, if we were to use the p value just computed, and reject the null
hypothesis that the true coefficient of education is 0.5, the probability of our committing a
Type I error would be only about 1 in 100,000!

As we noted earlier, if the data do not support the null hypothesis, |¢| obtained under the
null hypothesis will be “large” and therefore the p value of obtaining such a |¢| value will
be “small.” In other words, for a given sample size, as || increases, the p value decreases,
and one can therefore reject the null hypothesis with increasing confidence.

What is the relationship of the p value to the level of significance «? If we make the habit
of fixing « equal to the p value of a test statistic (e.g., the 7 statistic), then there is no conflict
between the two values. To put it differently, it is better to give up fixing o arbitrarily at

"4Jan Kmenta, Elements of Econometrics, Macmillan, New York, 1971, pp. 126-127.
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some level and simply choose the p value of the test statistic. It is preferable to leave it
to the reader to decide whether to reject the null hypothesis at the given p value. If in an
application the p value of a test statistic happens to be, say, 0.145, or 14.5 percent, and if
the reader wants to reject the null hypothesis at this (exact) level of significance, so be it.
Nothing is wrong with taking a chance of being wrong 14.5 percent of the time if you reject
the true null hypothesis. Similarly, as in our wages-education example, there is nothing
wrong if the researcher wants to choose a p value of about 0.02 percent and not take a
chance of being wrong more than 2 out of 10,000 times. After all, some investigators may
be risk-lovers and some risk-averters!

In the rest of this text, we will generally quote the p value of a given test statistic. Some
readers may want to fix « at some level and reject the null hypothesis if the p value is less
than «. That is their choice.

Statistical Significance versus Practical Significance

Look back at Example 3.1 and the regression results given in Equation (3.7.1). This regres-
sion relates personal consumption expenditure (PCE) to gross domestic product (GDP) in
the U.S. for the period 1960-2005, both variables being measured in 2000 billions of dollars.

From this regression we see that the marginal propensity to consume (MPC), that is, the
additional consumption as a result of an additional dollar of income (as measured by GDP)
is about 0.72 or about 72 cents. Using the data in Eq. (3.7.1), the reader can verify that the
95 percent confidence interval for the MPC is (0.7129, 0.7306). (Nofe: Since there are 44 df
in this problem, we do not have a precise critical ¢ value for these df. Hence, you can use
the 2-¢ rule of thumb to compute the 95 percent confidence interval.)

Suppose someone maintains that the true MPC is 0.74. Is this number different from
0.727 It is, if we strictly adhere to the confidence interval established above.

But what is the practical or substantive significance of our finding? That is, what differ-
ence does it make if we take the MPC to be 0.74 rather than 0.72? Is this difference of 0.02
between the two MPCs that important practically?

The answer to this question depends on what we plan to do with these estimates. For
example, from macroeconomics we know that the income multiplier is 1/(1 — MPC). Thus,
if the MPC is 0.72, the multiplier is 3.57, but it is 3.84 if the MPC is 0.74. If the govern-
ment were to increase its expenditure by $1 to lift the economy out of a recession, income
would eventually increase by $3.57 if the MPC were 0.72, but it would increase by $3.84 if
the MPC were 0.74. And that difference may or may not be crucial to resuscitating the
economy.

The point of all this discussion is that one should not confuse statistical significance
with practical, or economic, significance. As Goldberger notes:

When a null, say, B; = 1, is specified, the likely intent is that §; is close to 1, so close that for
all practical purposes it may be treated as if it were 1. But whether 1.1 is “practically the same
as” 1.0 is a matter of economics, not of statistics. One cannot resolve the matter by relying on
a hypothesis test, because the test statistic [ =] (b; — 1)/6}; measures the estimated coeffi-
cient in standard error units, which are not meaningful units in which to measure the economic
parameter 8; — 1. It may be a good idea to reserve the term “significance” for the statistical
concept, adopting “substantial” for the economic concept.'

TSArthur S. Goldberger, A Course in Econometrics, Harvard University Press, Cambridge, Massachusetts,
1991, p. 240. Note b; is the OLS estimator of 8; and 6y; is its standard error. For a corroborating
view, see D. N. McCloskey, “The Loss Function Has Been Mislaid: The Rhetoric of Significance Tests,”
American Economic Review, vol. 75, 1985, pp. 201-205. See also D. N. McCloskey and S. T. Ziliak,
“The Standard Error of Regression,” Journal of Economic Literature, vol. 37, 1996, pp. 97-114.
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The point made by Goldberger is important. As sample size becomes very large, issues
of statistical significance become much less important but issues of economic significance
become critical. Indeed, since with very large samples almost any null hypothesis will be
rejected, there may be studies in which the magnitude of the point estimates may be
the only issue.

The Choice between Confidence-Interval and Test-of-
Significance Approaches to Hypothesis Testing
In most applied economic analyses, the null hypothesis is set up as a straw man and the
objective of the empirical work is to knock it down, that is, reject the null hypothesis. Thus,
in our consumption—income example, the null hypothesis that the MPC g, = 0 is patently
absurd, but we often use it to dramatize the empirical results. Apparently editors of reputed
journals do not find it exciting to publish an empirical piece that does not reject the null
hypothesis. Somehow the finding that the MPC is statistically different from zero is more
newsworthy than the finding that it is equal to, say, 0.7!

Thus, J. Bradford De Long and Kevin Lang argue that it is better for economists

... to concentrate on the magnitudes of coefficients and to report confidence levels and not
significance tests. If all or almost all null hypotheses are false, there is little point in concen-
trating on whether or not an estimate is indistinguishable from its predicted value under the
null. Instead, we wish to cast light on what models are good approximations, which requires
that we know ranges of parameter values that are excluded by empirical estimates.'6

In short, these authors prefer the confidence-interval approach to the test-of-significance
approach. The reader may want to keep this advice in mind.'”

5.9 Regression Analysis and Analysis of Variance

In this section we study regression analysis from the point of view of the analysis of
variance and introduce the reader to an illuminating and complementary way of looking at
the statistical inference problem.

In Chapter 3, Section 3.5, we developed the following identity:

D= R A=) 5+ i (3.5.2)

that is, TSS = ESS + RSS, which decomposed the total sum of squares (TSS) into two
components: explained sum of squares (ESS) and residual sum of squares (RSS). A study
of these components of TSS is known as the analysis of variance (ANOVA) from the
regression viewpoint.

Associated with any sum of squares is its df, the number of independent observations on
which it is based. TSS has n — 1 df because we lose 1 df in computing the sample mean Y.
RSS has n — 2 df. (Why?) (Note: This is true only for the two-variable regression model
with the intercept B, present.) ESS has 1 df (again true of the two-variable case only),
which follows from the fact that ESS = 3 3" x? is a function of $, only, since 3" x? is
known.

16See their article cited in footnote 13, p. 1271.

7For a somewhat different perspective, see Carter Hill, William Griffiths, and George Judge,
Undergraduate Econometrics, Wiley & Sons, New York, 2001, p. 108.
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Source of Variation SS* df MssT
Due to regression (ESS) Yy =By x? 1 B2y x?

~2
Due to residuals (RSS) Y a? n-2 nz_u'z =42
TSS Yyl n—1

*SS means sum of squares.
"Mean sum of squares, which is obtained by dividing SS by their df.

Let us arrange the various sums of squares and their associated df in Table 5.3, which is
the standard form of the AOV table, sometimes called the ANOVA table. Given the entries
of Table 5.3, we now consider the following variable:

_ MSS of ESS
~ MSS of RSS

By
S T (5.9.1)

By

62

If we assume that the disturbances u; are normally distributed, which we do under the
CNLRM, and if the null hypothesis ( Hp) is that 8, = 0, then it can be shown that the F vari-
able of Equation 5.9.1 follows the F distribution with 1 df in the numerator and (n — 2) df
in the denominator. (See Appendix 5A, Section 5A.3, for the proof. The general properties
of the F distribution are discussed in Appendix A.)

What use can be made of the preceding F ratio? It can be shown'® that

E (B§ Zx,?) =04+ 2 x? (5.9.2)
and
~2
EXY _ peh) = o (5.9.3)
n—2

(Note that 8, and o2 appearing on the right sides of these equations are the true parame-
ters.) Therefore, if B, is in fact zero, Equations 5.9.2 and 5.9.3 both provide us with identi-
cal estimates of true 2. In this situation, the explanatory variable X has no linear influence
on Y whatsoever and the entire variation in Y is explained by the random disturbances u;.
If, on the other hand, B, is not zero, Egs. (5.9.2) and (5.9.3) will be different and part of the
variation in Y will be ascribable to X. Therefore, the F ratio of Eq. (5.9.1) provides a test of
the null hypothesis Hy: 8, = 0. Since all the quantities entering into this equation can be
obtained from the available sample, this F' ratio provides a test statistic to test the null
hypothesis that true B, is zero. All that needs to be done is to compute the F ratio and
compare it with the critical /' value obtained from the F tables at the chosen level of
significance, or obtain the p value of the computed F statistic.

"8For proof, see K. A. Brownlee, Statistical Theory and Methodology in Science and Engineering, John
Wiley & Sons, New York, 1960, pp. 278-280.
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TABLE 5.4

ANOVA Table for the
Wages-Education
Example

Source of Variation SS df MSS
95.4255
Due to regression (ESS) 95.4255 1 95.4255 =
0.8811
Due to residuals (RSS) 9.6928 11 0.8811 =108.3026
TSS 105.1183 12

To illustrate, let us continue with our illustrative example. The ANOVA table for this ex-
ample is as shown in Table 5.4. The computed F value is seen to be 108.3026. The p value
of this F statistic corresponding to 1 and 11 df cannot be obtained from the F table given in
Appendix D, but by using electronic statistical tables it can be shown that the p value is
0.0000001, an extremely small probability indeed. If you decide to choose the level-of-
significance approach to hypothesis testing and fix « at 0.01, or a 1 percent level, you can
see that the computed F of 108.3026 is obviously significant at this level. Therefore, if we
reject the null hypothesis that 8, = 0, the probability of committing a Type I error is very
small. For all practical purposes, our sample could not have come from a population with
zero B, value and we can conclude with great confidence that X, education, does affect Y,
average wages.

Refer to Theorem 5.7 of Appendix 5A.1, which states that the square of the ¢ value with
k dfis an F value with 1 df in the numerator and & df in the denominator. For our example, if
we assume Hy: B, = 0, then from Eq. (5.3.2) it can be easily verified that the estimated ¢
value is 10.41. This ¢ value has 11 df. Under the same null hypothesis, the F' value was
108.3026 with 1 and 11 df. Hence (10.3428)? = F value, except for the rounding errors.

Thus, the ¢ and the F tests provide us with two alternative but complementary ways of
testing the null hypothesis that 8, = 0. If this is the case, why not just rely on the ¢ test and
not worry about the F'test and the accompanying analysis of variance? For the two-variable
model there really is no need to resort to the F test. But when we consider the topic of
multiple regression we will see that the F test has several interesting applications that make
it a very useful and powerful method of testing statistical hypotheses.

5.10 Application of Regression Analysis:
The Problem of Prediction

On the basis of the sample data of Table 3.2 we obtained the following sample regression:
Y = —0.0144 + 0.7240X; (3.6.1)

where 7; is the estimator of true E(Y;) corresponding to given X. What use can be made of
this historical regression? One use is to “predict” or “forecast” the future mean wages Y
corresponding to some given level of education X. Now there are two kinds of predictions:
(1) prediction of the conditional mean value of Y corresponding to a chosen X, say, X, that
is the point on the population regression line itself (see Figure 2.2), and (2) prediction of
an individual Y value corresponding to Xy. We shall call these two predictions the mean
prediction and individual prediction.
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Mean Prediction'

To fix the ideas, assume that X, = 20 and we want to predict £(Y | Xo = 20). Now it can be
shown that the historical regression in Eq. (3.6.1) provides the point estimate of this mean
prediction as follows:

Yo = B1 + B2 Xo
— —0.0144 + 0.7240(20) (5.10.1)
= 14.4656

where ¥ = estimator of E(Y | Xo). It can be proved that this point predictor is a best linear
unbiased estimator (BLUE).

Since Y, is an estimator, it is likely to be different from its true value. The difference be-
tween the two values will give some idea about the prediction or forecast error. To assess
this error, we need to find out the sampling distribution of Yp. It is shown in Appendix 5A,
Section 5A.4, that f/o in Equation 5.10.1 is normally distributed with mean (8, 4+ 8, Xy)
and the variance is given by the following formula:

(5.10.2)

Var(f’o) =02 [% F M}

xf

By replacing the unknown o2 by its unbiased estimator 62, we see that the variable

P Yo — (B1 + B2X0)

i .10.
(o) (5.10.3)

follows the ¢ distribution with n — 2 df. The ¢ distribution can therefore be used to derive
confidence intervals for the true E(Y; | Xo) and test hypotheses about it in the usual man-
ner, namely,

Pr[B1 + B2Xo — taj2 se (Vo) < Bi + BoXo < Bi + BoXo + tapp se(F)] = 1 —«

(5.10.4)

where se ()70) is obtained from Eq. (5.10.2).
For our data (see Table 3.2),

. 1 (20—12)2
) = 08936 | — 4+ 2
var (Yo) [13 TS ]

= 0.3826
and

se(Yy) = 0.6185

Therefore, the 95 percent confidence interval for true E(Y | Xo) = B1 + B2 X is given by
14.4656 — 2.201(.6185) < E(Yy | X = 20) < 14.4656 + 2.20(0.6185)

"9For the proofs of the various statements made, see App. 5A, Sec. 5A.4.



128 Part One Single-Equation Regression Models

FIGURE 5.6
Confidence intervals
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that is,

13.1043 < E(Y | X = 20) < 15.8260 (5.10.5)
Thus, given X, = 100, in repeated sampling, 95 out of 100 intervals like Equation 5.10.5
will include the true mean value; the single best estimate of the true mean value is of course
the point estimate 14.4656.

If we obtain 95 percent confidence intervals like Eq. (5.10.5) for each of the X values
given in Table 3.2, we obtain what is known as the confidence interval, or confidence
band, for the population regression function, which is shown in Figure 5.6.

Individual Prediction

If our interest lies in predicting an individual Y value, Y, corresponding to a given X value,
say, Xy, then, as shown in Appendix 5, Section 5A.4, a best linear unbiased estimator of ¥
is also given by Eq. (5.10.1), but its variance is as follows:

L . X)Z} (5.10.6)

VaI‘(Y() — ?0) = E[Yo — ?()]2 = 02 [1 I = =F T~ 2
n Yox;

It can be shown further that Y, also follows the normal distribution with mean and variance
given by Egs. (5.10.1) and (5.10.6), respectively. Substituting 6> for the unknown o2, it
follows that

Yo — Yo
se(Yy — Tp)
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also follows the ¢ distribution. Therefore, the 7 distribution can be used to draw inferences
about the true Y. Continuing with our example, we see that the point prediction of Yj is
14.4656, the same as that of )A’o, and its variance is 1.2357 (the reader should verify this cal-
culation). Therefore, the 95 percent confidence interval for ¥ corresponding to Xy = 100 is
seen to be

(12.0190 < Yy | Xo = 20 < 16.9122) (5.10.7)

Comparing this interval with Eq. (5.10.5), we see that the confidence interval for indi-
vidual Yy is wider than that for the mean value of Yj. (Why?) Computing confidence inter-
vals like Equation 5.10.7 conditional upon the X values given in Table 3.2, we obtain the
95 percent confidence band for the individual Y values corresponding to these X values.
This confidence band along with the confidence band for Yo associated with the same X’s is
shown in Figure 5.6.

Notice an important feature of the confidence bands shown in Figure 5.6. The width of
these bands is smallest when X, = X. (Why?) However, the width widens sharply as X,
moves away from X. (Why?) This change would suggest that the predictive ability of the
historical sample regression line falls markedly as X, departs progressively from X. There-
fore, one should exercise great caution in “extrapolating” the historical regression
line to predict E(Y | X)) or Y associated with a given X, that is far removed from the
sample mean X.

5.11 Reporting the Results of Regression Analysis

There are various ways of reporting the results of regression analysis, but in this text we
shall use the following format, employing the wages-education example of Chapter 3 as an
illustration:

¥ =—-0.0144 + 0.7240X;

se = (0.9317) (0.0700) r2 = 0.9065
(5.11.1)
t = (—0.0154) (10.3428) df =11
p = (0.987) (0.000) Fi i = 108.30

In Equation 5.11.1 the figures in the first set of parentheses are the estimated standard
errors of the regression coefficients, the figures in the second set are estimated ¢ values
computed from Eq. (5.3.2) under the null hypothesis that the true population value of each
regression coefficient individually is zero (e.g., 10.3428 = %), and the figures in the
third set are the estimated p values. Thus, for 11 df the probability of obtaining a 7 value of
10.3428 or greater is 0.00009, which is practically zero.

By presenting the p values of the estimated ¢ coefficients, we can see at once the exact
level of significance of each estimated ¢ value. Thus, under the null hypothesis that the true
population slope value is zero (i.e., that is, education has no effect on mean wages), the
exact probability of obtaining a ¢ value of 10.3428 or greater is practically zero. Recall that
the smaller the p value, the smaller the probability of making a mistake if we reject the null
hypothesis.
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Earlier we showed the intimate connection between the F and ¢ statistics, namely,
Fyx = t7. Under the null hypothesis that the true g, = 0, Eq. (5.11.1) shows that the F
value is 108.30 (for 1 numerator and 11 denominator df) and the ¢ value is about 10.34
(11 df); as expected, the former value is the square of the latter value, except for the round-
off errors. The ANOVA table for this problem has already been discussed.

5.12 Evaluating the Results of Regression Analysis

In Figure 1.4 of the Introduction we sketched the anatomy of econometric modeling. Now
that we have presented the results of regression analysis of our wages-education example in
Eq. (5.11.1), we would like to question the adequacy of the fitted model. How “good” is the
fitted model? We need some criteria with which to answer this question.

First, are the signs of the estimated coefficients in accordance with theoretical or prior
expectations? A priori, 5, in the wages-education example should be positive. In the pre-
sent example it is. Second, if theory says that the relationship should be not only positive
but also statistically significant, is this the case in the present application? As we discussed
in Section 5.11, the education coefficient is not only positive but also statistically signifi-
cantly different from zero; the p value of the estimated ¢ value is extremely small. The
comment about significance applies about the intercept coefficient. Third, how well does
the regression model explain variation in our example? One can use 7> to answer this
question. In the present example 72 is about 0.90, which is a very high value considering
that 2 can be at most 1.

Thus, the model we have chosen for explaining mean wages seems quite good. But
before we sign off, we would like to find out whether our model satisfies the assumptions
of CNLRM. We will not look at the various assumptions now because the model is patently
so simple. But there is one assumption that we would like to check, namely, the normality
of the disturbance term, u;. Recall that the ¢ and F tests used before require that the error
term follow the normal distribution. Otherwise, the testing procedure will not be valid in
small, or finite, samples.

Normality Tests

Although several tests of normality are discussed in the literature, we will consider just
three: (1) histogram of residuals; (2) normal probability plot (NPP), a graphical device; and
(3) the Jarque—Bera test.

Histogram of Residuals

A histogram of residuals is a simple graphic device that is used to learn something about
the shape of the probability density function (PDF) of a random variable. On the horizon-
tal axis, we divide the values of the variable of interest (e.g., OLS residuals) into suitable
intervals, and in each class interval we erect rectangles equal in height to the number of
observations (i.e., frequency) in that class interval. If you mentally superimpose the bell-
shaped normal distribution curve on the histogram, you will get some idea as to whether
normal (PDF) approximation may be appropriate. For the wages-education regression, the
histogram of the residuals is as shown in Figure 5.7.

This diagram shows that the residuals are not perfectly normally distributed; for a
normally distributed variable the skewness (a measure of symmetry) should be zero and
kurtosis (which measures how tall or squatty the normal distribution is) should be 3.

But it is always a good practice to plot the histogram of residuals from any regression as
a rough and ready method of testing for the normality assumption.



FIGURE 5.7
Histogram of residuals
for wages—education
data.
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Normal Probability Plot

A comparatively simple graphical device to study the shape of the probability density func-
tion (PDF) of a random variable is the normal probability plot (NPP), which makes use
of normal probability paper, a specially designed graph paper. On the horizontal, or X axis,
we plot values of the variable of interest (say, OLS residuals, #;), and on the vertical, or Y,
axis, we show the expected value of this variable if it were normally distributed. Therefore,
if the variable is in fact from the normal population, the NPP will be approximately a
straight line. The NPP of the residuals from our wages-education regression is shown in
Figure 5.8, which is obtained from the MINITAB software package, version 15. As noted
earlier, if the fitted line in the NPP is approximately a straight line, one can conclude that
the variable of interest is normally distributed. In Figure 5.8, we see that residuals from our
illustrative example are approximately normally distributed, because a straight line seems
to fit the data reasonably well.

MINITAB also produces the Anderson-Darling normality test, known as the 4>
statistic. The underlying null hypothesis is that the variable under consideration is
normally distributed. As Figure 5.8 shows, for our example, the computed A2 statistic is
0.289. The p value of obtaining such a value of 42 is 0.558, which is reasonably high.
Therefore, we do not reject the hypothesis that the residuals from our illustrative example
are normally distributed. Incidentally, Figure 5.8 shows the parameters of the (normal)
distribution, the mean is approximately 0, and the standard deviation is about 0.8987.

Jarque—Bera (JB) Test of Normality*°

The JB test of normality is an asymptotic, or large-sample, test. It is also based on the OLS
residuals. This test first computes the skewness and kurtosis (discussed in Appendix A)
measures of the OLS residuals and uses the following test statistic:

O[S (K -3

20See C. M. Jarque and A. K. Bera, “A Test for Normality of Observations and Regression Residuals,”
International Statistical Review, vol. 55, 1987, pp. 163-172.
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FIGURE 5.8
Residuals from wages-
education regression.
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where n = sample size, S = skewness coefficient, and K = kurtosis coefficient. For a nor-
mally distributed variable, S = 0 and K = 3. Therefore, the JB test of normality is a test of
the joint hypothesis that S and K are 0 and 3, respectively. In that case the value of the JB
statistic is expected to be 0.

Under the null hypothesis that the residuals are normally distributed, Jarque and
Bera showed that asymptotically (i.e., in large samples) the JB statistic given in Equa-
tion (5.12.1) follows the chi-square distribution with 2 df. If the computed p value of the
JB statistic in an application is sufficiently low, which will happen if the value of the statis-
tic is very different from 0, one can reject the hypothesis that the residuals are normally
distributed. But if the p value is reasonably high, which will happen if the value of the
statistic is close to zero, we do not reject the normality assumption.

For our example, the estimated JB statistic for our wages-education example is 0.8286.
The null hypothesis that the residuals in the present example are normally distributed can-
not be rejected, for the p value of obtaining a JB statistic as much as 0.8286 or greater is
about 0.66 or 66 percent. This probability is quite high. Note that although our regression
has 13 observations, these observations were obtained from a sample of 528 observations,
which seems reasonably high.

Other Tests of Model Adequacy

Remember that the CNLRM makes many more assumptions than the normality of the error
term. As we examine econometric theory further, we will consider several tests of model
adequacy (see Chapter 13). Until then, keep in mind that our regression modeling is based
on several simplifying assumptions that may not hold in each and every case.
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A Concluding
Example

FIGURE 5.9
Residuals from the
food expenditure
regression.

Let us return to Example 3.2 about food expenditure in India. Using the data given in Equa-
tion (3.7.2) and adopting the format of Equation (5.11.1), we obtain the following expen-
diture equation:

FoodExp;= 94.2087 + 0.4368 TotalExp;

se = (50.8563) (0.0783)
t= (1.8524) (5.5770) (5.12.2)
p= (0.0695) (0.0000)*
r’=0.3698; df =53
Fis3= 31.1034 (p value = 0.0000)*

where* denotes extremely small.

First, let us interpret this regression. As expected, there is a positive relationship between
expenditure on food and total expenditure. If total expenditure went up by a rupee, on
average, expenditure on food increased by about 44 paise. If total expenditure were zero,
the average expenditure on food would be about 94 rupees. Of course, this mechanical
interpretation of the intercept may not make much economic sense. The r? value of about
0.37 means that 37 percent of the variation in food expenditure is explained by total
expenditure, a proxy for income.

Suppose we want to test the null hypothesis that there is no relationship between food
expenditure and total expenditure, that is, the true slope coefficient 8, = 0. The estimated
value of B, is 0.4368. If the null hypothesis were true, what is the probability of obtaining
a value of 0.4368? Under the null hypothesis, we observe from Eq. (5.12.2) that the t value
is 5.5770 and the p value of obtaining such a t value is practically zero. In other words,
we can reject the null hypothesis resoundingly. But suppose the null hypothesis were that
B2 = 0.5. Now what? Using the t test we obtain:

0.4368 — 0.5
- 0.0783
The probability of obtaining a |t| of 0.8071 is greater than 20 percent. Hence we do not
reject the hypothesis that the true 8, is 0.5.

Notice that, under the null hypothesis, the true slope coefficient is zero, the Fvalue is
31.1034, as shown in Eq. (5.12.2). Under the same null hypothesis, we obtained a t value
of 5.5770. If we square this value, we obtain 31.1029, which is about the same as the F
value, again showing the close relationship between the t and the F statistic. (Note: The
numerator df for the F statistic must be 1, which is the case here.)

Using the estimated residuals from the regression, what can we say about the probabil-
ity distribution of the error term? The information is given in Figure 5.9. As the figure shows,

= —0.8071

14 Series: Residuals
] Sample 1 55

" 12 Observations 55
5
= 10~ ] Mean -1.19x107
% Median 7.747849
8 8r Maximum 171.5859
= Minimum -153.7664
° 6r Std. dev. 66.23382
2 T Skewness 0.119816
E 4f ] Kurtosis 3.234473
Z,

2r- Jarque-Bera 0.257585

. T 1] AH_\ Probability 0.879156
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(Continued)
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A Concluding
Example
(Continued)

the residuals from the food expenditure regression seem to be symmetrically distributed.
Application of the Jarque—Bera test shows that the ]B statistic is about 0.2576, and the prob-
ability of obtaining such a statistic under the normality assumption is about 88 percent.
Therefore, we do not reject the hypothesis that the error terms are normally distributed. But
keep in mind that the sample size of 55 observations may not be large enough.

We leave it to the reader to establish confidence intervals for the two regression
coefficients as well as to obtain the normal probability plot and do mean and individual
predictions.

Summary and
Conclusions

1. Estimation and hypothesis testing constitute the two main branches of classical statistics.

Having discussed the problem of estimation in Chapters 3 and 4, we have taken up the
problem of hypothesis testing in this chapter.

. Hypothesis testing answers this question: Is a given finding compatible with a stated

hypothesis or not?

. There are two mutually complementary approaches to answering the preceding

question: confidence interval and test of significance.

. Underlying the confidence-interval approach is the concept of interval estimation. An

interval estimator is an interval or range constructed in such a manner that it has a spec-
ified probability of including within its limits the true value of the unknown parameter.
The interval thus constructed is known as a confidence interval, which is often stated in
percent form, such as 90 or 95 percent. The confidence interval provides a set of plausi-
ble hypotheses about the value of the unknown parameter. If the null-hypothesized value
lies in the confidence interval, the hypothesis is not rejected, whereas if it lies outside this
interval, the null hypothesis can be rejected.

. In the significance test procedure, one develops a test statistic and examines its sam-

pling distribution under the null hypothesis. The test statistic usually follows a well-
defined probability distribution such as the normal, ¢, F, or chi-square. Once a test
statistic (e.g., the 7 statistic) is computed from the data at hand, its p value can be easily
obtained. The p value gives the exact probability of obtaining the estimated test statistic
under the null hypothesis. If this p value is small, one can reject the null hypothesis, but
if it is large one may not reject it. What constitutes a small or large p value is up to the
investigator. In choosing the p value the investigator has to bear in mind the probabili-
ties of committing Type I and Type II errors.

. In practice, one should be careful in fixing «, the probability of committing a Type I

error, at arbitrary values such as 1, 5, or 10 percent. It is better to quote the p value of
the test statistic. Also, the statistical significance of an estimate should not be confused
with its practical significance.

. Of course, hypothesis testing presumes that the model chosen for empirical analysis is

adequate in the sense that it does not violate one or more assumptions underlying the
classical normal linear regression model. Therefore, tests of model adequacy should
precede tests of hypothesis. This chapter introduced one such test, the normality test, to
find out whether the error term follows the normal distribution. Since in small, or finite,
samples, the 7, F, and chi-square tests require the normality assumption, it is important
that this assumption be checked formally.

. If the model is deemed practically adequate, it may be used for forecasting purposes. But

in forecasting the future values of the regressand, one should not go too far out of the sam-
ple range of the regressor values. Otherwise, forecasting errors can increase dramatically.
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EXERCISES Questions

5.1.

5.2.

5.3.

5.4.

5.5.

State with reason whether the following statements are true, false, or uncertain. Be
precise.

a. The t test of significance discussed in this chapter requires that the sampling
distributions of estimators 8; and j, follow the normal distribution.

b. Even though the disturbance term in the CLRM is not normally distributed, the
OLS estimators are still unbiased.

c. If there is no intercept in the regression model, the estimated u;( = ;) will not
sum to zero.

d. The p value and the size of a test statistic mean the same thing.

(3

. In a regression model that contains the intercept, the sum of the residuals is
always zero.

If a null hypothesis is not rejected, it is true.
. The higher the value of o2, the larger is the variance of B> given in Eq. (3.3.1).

= 0 TN

. The conditional and unconditional means of a random variable are the same things.

i. In the two-variable PRE if the slope coefficient B, is zero, the intercept B is
estimated by the sample mean Y.

Jj. The conditional variance, var (¥; | X;) = 0% and the unconditional variance of Y,
var (Y) = o}, will be the same if X had no influence on Y.

Set up the ANOVA table in the manner of Table 5.4 for the regression model given

in Eq. (3.7.2) and test the hypothesis that there is no relationship between food

expenditure and total expenditure in India.

Refer to the demand for cell phones regression given in Eq. (3.7.3).

a. Is the estimated intercept coefficient significant at the 5 percent level of signifi-
cance? What is the null hypothesis you are testing?

b. Is the estimated slope coefficient significant at the 5 percent level? What is the
underlying null hypothesis?

c. Establish a 95 percent confidence for the true slope coefficient.

d. What is the mean forecast value of cell phones demanded if the per capita
income is $9,000? What is the 95 percent confidence interval for the forecast
value?

Let p? represent the true population coefficient of determination. Suppose you

want to test the hypothesis that p?> = 0. Verbally explain how you would test this

hypothesis. Hint: Use Eq. (3.5.11). See also Exercise 5.7.

What is known as the characteristic line of modern investment analysis is simply

the regression line obtained from the following model:

Tig = 0 + Bty + Uy

where r; = the rate of return on the ith security in time ¢
rm: = the rate of return on the market portfolio in time ¢
u,; = stochastic disturbance term

In this model g; is known as the beta coefficient of the ith security, a measure of
market (or systematic) risk of a security.”

*See Haim Levy and Marshall Sarnat, Portfolio and Investment Selection: Theory and Practice, Prentice
Hall International, Englewood Cliffs, NJ, 1984, Chap. 12.
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5.6.

5.7.

5.8.

On the basis of 240 monthly rates of return for the period 1956—-1976, Fogler and
Ganapathy obtained the following characteristic line for IBM stock in relation to
the market portfolio index developed at the University of Chicago:”

i = 0.7264 + 1.0598r,, % =0.4710
se = (0.3001) (0.0728) df = 238
F1238 =211.896

a. A security whose beta coefficient is greater than one is said to be a volatile or
aggressive security. Was IBM a volatile security in the time period under study?

b. Is the intercept coefficient significantly different from zero? If it is, what is its
practical meaning?

Equation (5.3.5) can also be written as

PrBy —tappse(Ba) < Bo <Pt tapse(f)]=1—a

That is, the weak inequality (<) can be replaced by the strong inequality (<). Why?
R. A. Fisher has derived the sampling distribution of the correlation coefficient
defined in Eq. (3.5.13). If it is assumed that the variables X and Y are jointly
normally distributed, that is, if they come from a bivariate normal distribution (see
Appendix 4A, Exercise 4.1), then under the assumption that the population corre-
lation coefficient p is zero, it can be shown that t = r+/n — 2/+/1 — r2 follows
Student’s # distribution with n — 2 df.”* Show that this # value is identical with the ¢
value given in Eq. (5.3.2) under the null hypothesis that §, = 0. Hence establish
that under the same null hypothesis F = ¢. (See Section 5.9.)

Consider the following regression output:

¥: = 0.2033 + 0.6560,
se = (0.0976) (0.1961)
2= 0397 RSS=0.0544  ESS=0.0358

where Y = labor force participation rate (LFPR) of women in 1972 and X = LFPR

of women in 1968. The regression results were obtained from a sample of 19 cities

in the United States.

a. How do you interpret this regression?

b. Test the hypothesis: Hy: B, = 1 against H;: 8, > 1. Which test do you use? And
why? What are the underlying assumptions of the test(s) you use?

c. Suppose that the LFPR in 1968 was 0.58 (or 58 percent). On the basis of the regres-
sion results given above, what is the mean LFPR in 19727 Establish a 95 percent con-
fidence interval for the mean prediction.

d. How would you test the hypothesis that the error term in the population regression is
normally distributed? Show the necessary calculations.

*H. Russell Fogler and Sundaram Ganapathy, Financial Econometrics, Prentice Hall, Englewood Cliffs,
NJ, 1982, p. 13.

**If p is in fact zero, Fisher has shown that r follows the same t distribution provided either X or Yis
normally distributed. But if p is not equal to zero, both variables must be normally distributed. See R.
L. Anderson and T. A. Bancroft, Statistical Theory in Research, McGraw-Hill, New York, 1952,

pp. 87-88.

TAdapted from Samprit Chatterjee, Ali S. Hadi, and Bertram Price, Regression Analysis by Example,
3d ed., Wiley Interscience, New York, 2000, pp. 46—47.
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TABLE 5.5

Average Salary and Observation Salary Spending Observation Salary Spending
Per Pupil Spending 1 19,583 3346 27 22,795 3366
(dollars), 1985 2 20,263 3114 28 21,570 2920
3 20,325 3554 29 22,080 2980
e e o b 4 26,800 4642 30 22,250 3731
Alipe Tl 5 29,470 4669 31 20,940 2853
Nov. 7, 1986. 6 26,610 4888 32 21,800 2533
7 30,678 5710 33 22,934 2729
8 27,170 5536 34 18,443 2305
9 25,853 4168 35 19,538 2642
10 24,500 3547 36 20,460 3124
11 24,274 3159 37 21,419 2752
12 27,170 3621 38 25,160 3429
13 30,168 3782 39 22,482 3947
14 26,525 4247 40 20,969 2509
15 27,360 3982 41 27,224 5440
16 21,690 3568 42 25,892 4042
17 21,974 3155 43 22,644 3402
18 20,816 3059 44 24,640 2829
19 18,095 2967 45 22,341 2297
20 20,939 3285 46 25,610 2932
21 22,644 3914 47 26,015 3705
22 24,624 4517 48 25,788 4123
23 27,186 4349 49 29,132 3608
24 33,990 5020 50 41,480 8349
25 23,382 3594 51 25,845 3766
26 20,627 2821

Empirical Exercises
5.9. Table 5.5 gives data on average public teacher pay (annual salary in dollars) and spend-
ing on public schools per pupil (dollars) in 1985 for 50 states and the District of

Columbia.

To find out if there is any relationship between teacher’s pay and per pupil expendi-

ture in public schools, the following model was suggested: Pay; = 8; + B, Spend; +

u;, where Pay stands for teacher’s salary and Spend stands for per pupil expenditure.

a. Plot the data and eyeball a regression line.

b. Suppose on the basis of (a) you decide to estimate the above regression model.
Obtain the estimates of the parameters, their standard errors, *, RSS, and ESS.

c. Interpret the regression. Does it make economic sense?

d. Establish a 95 percent confidence interval for 8,. Would you reject the hypothesis
that the true slope coefficient is 3.0?

e. Obtain the mean and individual forecast value of Pay if per pupil spending is
$5,000. Also establish 95 percent confidence intervals for the true mean and indi-
vidual values of Pay for the given spending figure.

/. How would you test the assumption of the normality of the error term? Show the
test(s) you use.

5.10. Refer to Exercise 3.20 and set up the ANOVA tables and test the hypothesis that there
is no relationship between productivity and real wage compensation. Do this for both
the business and nonfarm business sectors.
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5.11.

5.12.

5.13.

5.14.

5.15.

Refer to Exercise 1.7.

a. Plot the data with impressions on the vertical axis and advertising expenditure on
the horizontal axis. What kind of relationship do you observe?

b. Would it be appropriate to fit a bivariate linear regression model to the data? Why
or why not? If not, what type of regression model will you fit the data to? Do we
have the necessary tools to fit such a model?

c¢. Suppose you do not plot the data and simply fit the bivariate regression model to
the data. Obtain the usual regression output. Save the results for a later look at this
problem.

Refer to Exercise 1.1.

a. Plot the U.S. Consumer Price Index (CPI) against the Canadian CPI. What does
the plot show?

b. Suppose you want to predict the U.S. CPI on the basis of the Canadian CPIL.
Develop a suitable model.

c. Test the hypothesis that there is no relationship between the two CPIs. Use
a = 5%. If you reject the null hypothesis, does that mean the Canadian CPI
“causes” the U.S. CPI? Why or why not?

Refer to Problem 3.22.

a. Estimate the two regressions given there, obtaining standard errors and the other
usual output.

b. Test the hypothesis that the disturbances in the two regression models are
normally distributed.

c. In the gold price regression, test the hypothesis that 8, = 1, that is, there is a one-
to-one relationship between gold prices and CPI (i.e., gold is a perfect hedge). What
is the p value of the estimated test statistic?

d. Repeat step (c) for the NYSE Index regression. Is investment in the stock market
a perfect hedge against inflation? What is the null hypothesis you are testing?
What is its p value?

e. Between gold and stock, which investment would you choose? What is the basis
of your decision?

Table 5.6 gives data on GNP and four definitions of the money stock for the United

States for 1970—1983. Regressing GNP on the various definitions of money, we

obtain the results shown in Table 5.7.

The monetarists or quantity theorists maintain that nominal income (i.e., nominal
GNP) is largely determined by changes in the quantity or the stock of money, although
there is no consensus as to the “right” definition of money. Given the results in the
preceding table, consider these questions:

a. Which definition of money seems to be closely related to nominal GNP?

b. Since the 7? terms are uniformly high, does this fact mean that our choice for
definition of money does not matter?

c. If the Fed wants to control the money supply, which one of these money measures
is a better target for that purpose? Can you tell from the regression results?

Suppose the equation of an indifference curve between two goods is
XY = B+ BoXi

How would you estimate the parameters of this model? Apply the preceding model
to the data in Table 5.8 and comment on your results.
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TABLE 5.6 Money Stock Measure, $ billion
GNP and Four GNP
Secasures of Money Year $ billion My M, M; L
o 1970 992.70 216.6 628.2 677.5 816.3
Source: Economic Report of the
ppuree: Bcononic Keport o he 1971 1,077.6 230.8 712.8 776.2 903.1
Table B-1, p. 232; money stock 1972 1,185.9 252.0 805.2 886.0 1,023.0
data from Table B-61, p. 303. 1973 1,326.4 265.9 861.0 985.0 1,141.7
1974 1,434.2 277.6 908.5 1,070.5 1,249.3
1975 1,549.2 291.2 1,023.3 1,174.2 1,367.9
1976 1,718.0 310.4 1,163.6 1,311.9 1,516.6
1977 1,918.3 335.4 1,286.7 1,472.9 1,704.7
1978 2,163.9 363.1 1,389.1 1,647.1 1,910.6
1979 2,417.8 389.1 1,498.5 1,804.8 2,1171
1980 2,631.7 414.9 1,632.6 1,990.0 2,326.2
1981 2,957.8 441.9 1,796.6 2,238.2 2,599.8
1982 3,069.3 480.5 1,965.4 2,462.5 2,870.8
1983 3,304.8 525.4 2,196.3 2,710.4 3,183.1
Definitions:
M, = Currency + Demand deposits + Travelers checks and other checkable deposits (OCDs).
M, = M, + Overnight RPs and Eurodollars + MMMF (Money market mutual fund) balances + MMDAs (Money market
deposit accounts) + Savings and small deposits.
M3 = M, + Large time deposits + Term RPs + Institutional MMMF.
L = M3 + Other liquid assets.
-(I-}ANE’LIE/ISJ Stock 1) 6@% = —787.4723 + 8.0863 My r’=0.9912
—voney Stoc (77.9664) (0.2197)
Regressions, — P
1970-1983 2) GNP; = —44.0626 + 1.5875 My, r<=0.9905
(61.0134) (0.0448)
3) GNP, = 159.1366 + 1.2034 Ms, r2 =0.9943
(42.9882) (0.0262)
4) GNP, = 164.2071 + 1.0290 L, r2=0.9938
(44.7658) (0.0234)
Note: The figures in parentheses are the estimated standard errors.
TABLE 5.8

Consumption of good X: 1 2 3 4 5
Consumption of good Y: 4 3.5 2.8 1.9 0.8

5.16. Since 1986 the Economist has been publishing the Big Mac Index as a crude, and hi-
larious, measure of whether international currencies are at their “correct” exchange
rate, as judged by the theory of purchasing power parity (PPP). The PPP holds that
a unit of currency should be able to buy the same bundle of goods in all countries.
The proponents of PPP argue that, in the long run, currencies tend to move toward
their PPP. The Economist uses McDonald’s Big Mac as a representative bundle and
gives the information in Table 5.9.

Consider the following regression model:

Y; = B1 + BoXi +u;

where Y = actual exchange rate and X = implied PPP of the dollar.
a. If the PPP holds, what values of 8; and 8, would you expect a priori?




TABLE 5.9

The Hamburger (VL i ()
Standard e . Dollar Over (.+)
el Ak Implied Exchange  Valuation
Source: McDonald’s; The In Local In PPP’ of Rate, against the
e, Ry o U0 Currency Dollars  the Dollar  Jan 31st Dollar, %
United States' $3.22 3.22
Argentina Peso 8.25 2.65 2.56 3.11 -18
Australia A$3.45 2.67 1.07 1.29 -17
Brazil Real 6.4 3.01 1.99 2.13 -6
Britain £1.99 3.90 1.62% 1.96+ +21
Canada C$3.63 3.08 1.13 1.18 —4
Chile Peso 1,670 3.07 519 544 =5
China Yuan 11.0 1.41 3.42 7.77 —56
Colombia Peso 6,900 3.06 2,143 2,254 -5
Costa Rica Colones 1,130 2.18 351 519 —32
Czech Republic Koruna 52.1 2.41 16.2 21.6 —25
Denmark DKr27.75 4.84 8.62 5.74 +50
Egypt Pound 9.09 1.60 2.82 5.70 -50
Estonia Kroon 30 2.49 9.32 12.0 -23
Euro area® €2.94 3.82 1.0 1.30%* +19
Hong Kong HK$12.0 1.54 3.73 7.81 —52
Hungary Forint 590 3.00 183 197 =7/
Iceland Kronur 509 7.44 158 68.4 +131
Indonesia Rupiah 15,900 1.75 4,938 9,100 —46
Japan ¥280 2.31 87.0 121 —28
Latvia Lats 1.35 2.52 0.42 0.54 —22
Lithuania Litas 6.50 2.45 2.02 2.66 —24
Malaysia Ringgit 5.50 1.57 1.71 3.50 —51
Mexico Peso 29.0 2.66 9.01 10.9 -17
New Zealand NZ$4.60 3.16 1.43 1.45 -2
Norway Kroner 41.5 6.63 12.9 6.26 +106
Pakistan Rupee 140 2.31 43.5 60.7 —28
Paraguay Guarani 10,000 1.90 3,106 5,250 —41
Peru New Sol 9.50 2.97 2.95 3.20 -8
Philippines Peso 85.0 1.74 26.4 48.9 —46
Poland Zloty 6.90 2.29 2.14 3.01 -29
Russia Rouble 49.0 1.85 15.2 26.5 —43
Saudi Arabia Riyal 9.00 2.40 2.80 3.75 —25
Singapore $$3.60 2.34 1.12 1.54 —27
Slovakia Crown 57.98 2.13 18.0 27.2 —34
South Africa Rand 15.5 2.14 4.81 7.25 —34
South Korea Won 2,900 3.08 901 942 —4
Sri Lanka Rupee 190 1.75 59.0 109 —46
Sweden SKr32.0 4.59 9.94 6.97 43
Switzerland SFr6.30 5.05 1.96 1.25 +57
Taiwan NT$75.0 2.28 233 32.9 -29
Thailand Baht 62.0 1.78 19.3 34.7 —45
Turkey Lire 4.55 3.22 1.41 1.41 nil
UAE Dirhams 10.0 2.72 3.11 3.67 -15
Ukraine Hryvnia 9.00 1.71 2.80 5.27 —47
Uruguay Peso 55.0 2.17 17.1 253 -33
Venezuela Bolivar 6,800 1.58 2,112 4,307 —51

140

*Purchasing power parity: local price divided by price in the United States.

**Dollars per euro.

TAverage of New York, Chicago, San Francisco, and Atlanta.

*Dollars per pound.

SWeighted average of prices in euro area.



TABLE 5.10

CPI and PPI, USA,
1980-2006

Source: Economic Report of the

President, 2007, Tables B-62
and B-65.

5.17.

5.18.

5.19.
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b. Do the regression results support your expectation? What formal test do you use
to test your hypothesis?

c. Should the Economist continue to publish the Big Mac Index? Why or why not?

Refer to the SAT data given in Exercise 2.16. Suppose you want to predict the male

math (Y) scores on the basis of the female math scores (X)) by running the following

regression:

Y, = B+ BoX; +u,

a. Estimate the preceding model.

b. From the estimated residuals, find out if the normality assumption can be
sustained.

c. Now test the hypothesis that 8, = 1, that is, there is a one-to-one correspondence
between male and female math scores.

d. Set up the ANOVA table for this problem.

Repeat the exercise in the preceding problem but let ¥ and X denote the male and fe-

male critical reading scores, respectively.

Table 5.10 gives annual data on the Consumer Price Index (CPI) and the Wholesale

Price Index (WPI), also called Producer Price Index (PPI), for the U.S. economy for

the period 1980-2006.

PPI (Total
CPI Total Finished Goods)
1980 82.4 88.0
1981 90.9 96.1
1982 96.5 100.0
1983 99.6 101.6
1984 103.9 103.7
1985 107.6 104.7
1986 109.6 103.2
1987 113.6 105.4
1988 118.3 108.0
1989 124.0 113.6
1990 130.7 119.2
1991 136.2 121.7
1992 140.3 123.2
1993 144.5 124.7
1994 148.2 125.5
1995 152.4 127.9
1996 156.9 131.3
1997 160.5 131.8
1998 163.0 130.7
1999 166.6 133.0
2000 172.2 138.0
2001 177.1 140.7
2002 179.9 138.9
2003 184.0 143.3
2004 188.9 148.5
2005 195.3 155.7

2006 201.6 160.3
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a. Plot the CPI on the vertical axis and the WPI on the horizontal axis. A priori, what
kind of relationship do you expect between the two indexes? Why?

b. Suppose you want to predict one of these indexes on the basis of the other index.
Which will you use as the regressand and which as the regressor? Why?

c. Run the regression you have decided in (b). Show the standard output. Test the
hypothesis that there is a one-to-one relationship between the two indexes.

d. From the residuals obtained from the regression in (c¢), can you entertain the
hypothesis that the true error term is normally distributed? Show the tests you use.

5.20. Table 5.11 provides data on the lung cancer mortality index (100 = average) and the
smoking index (100 = average) for 25 occupational groups.

a. Plot the cancer mortality index against the smoking index. What general pattern
do you observe?

b. Letting Y = cancer mortality index and X = smoking index, estimate a linear
regression model and obtain the usual regression statistics.

c. Test the hypothesis that smoking has no influence on lung cancer at @ = 5%.

d. Which are the risky occupations in terms of lung cancer mortality? Can you give
some reasons why this might be so?

e. Is there any way to bring occupation category explicitly into the regression

analysis?
gﬁ?llc-iigsz;l(} Lung Occupation Smoking Cancer
Cancer Farmers, foresters, fishermen 77 84
} Miners and quarrymen 137 116
f;l:,r.cc:u}/ng/:\//slib/g:;ﬁ1cs/ Gas, coke, and chemical makers 117 123
SmokingandCancer.html. Glass and ceramic makers 94 128
Furnace forge foundry workers 116 155
Electrical and electronic workers 102 101
Engineering and allied trades 111 118
Wood workers 93 113
Leather workers 88 104
Textile workers 102 88
Clothing workers 91 104
Food, drink, and tobacco workers 104 129
Paper and printing workers 107 86
Makers of other products 112 96
Construction workers 113 144
Painters and decorators 110 139
Drivers of engines, cranes, etc. 125 113
Laborers not included elsewhere 113 146
Transportation, and communication workers 115 128
Warehousemen, store keepers, etc. 105 115
Clerical workers 87 79
Sales workers 91 85
Service, sports, recreation workers 100 120
Administrators and managers 76 60

Artists and professional and technical workers 66 51
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Appendix SA

5A.1 Probability Distributions Related
to the Normal Distribution

The ¢, chi-square (x?), and F probability distributions, whose salient features are discussed in
Appendix A, are intimately related to the normal distribution. Since we will make heavy use of these
probability distributions in the following chapters, we summarize their relationship with the normal
distribution in the following theorem; the proofs, which are beyond the scope of this book, can be
found in the references.’

Theorem 5.1. If Z,Z,,...,Z, are normally and independently distributed random
variables such that Z; ~ N(u;, cff), then the sum Z = ) k; Z;, where k; are constants not all
zero, is also distributed normally with mean ) k;u; and variance ) k?al.z; that is,
Z ~ N(X_kipi, Y k?a?). Note: ju denotes the mean value.

In short, linear combinations of normal variables are themselves normally distributed. For example,
if Z, and Z, are normally and independently distributed as Z; ~ N(10, 2) and Z, ~ N(8, 1.5),
then the linear combination Z = 0.8Z; + 0.2Z; is also normally distributed with mean = 0.8(10) +
0.2(8) = 9.6 and variance = 0.64(2) + 0.04(1.5) = 1.34, thatis, Z ~ (9.6, 1.34).

Theorem 5.2. If Z;, Z,, ..., Z, are normally distributed but are not independent, the sum
Z =Y kiZ;, where k; are constants not all zero, is also normally distributed with mean
> ki and variance [y k202 + 2> kikj cov(Zi, Z;),i # jl.

Thus, if Z; ~ N(6,2) and Z, ~ N(7,3) and cov(Z;, Z;) = 0.8, then the linear combination
0.6Z; +0.4Z, is also normally distributed with mean = 0.6(6) + 0.4(7) = 6.4 and variance =
[0.36(2) + 0.16(3) + 2(0.6)(0.4)(0.8)] = 1.584.

Theorem 5.3. If Z;, Z,...,Z, are normally and independently distributed random
variables such that each Z; ~ N(0, 1), that is, a standardized normal variable, then ) Zl»2 =
Z3 + Z3 + -+ - + Z2 follows the chi-square distribution with n df. Symbolically, > Z? ~ x2,
where n denotes the degrees of freedom, df.

In short, “the sum of the squares of independent standard normal variables has a chi-square
distribution with degrees of freedom equal to the number of terms in the sum.”?

Theorem 5.4. If Z), Z,,..., Z, are independently distributed random variables each
following chi-square distribution with &; df, then the sum ) Z; = Z; + Z» + - - - + Z, also
follows a chi-square distribution with k = > &; df.

Thus, if Z; and Z, are independent X2 variables with df of k; and k;, respectively, then
Z = 7, + Z, is also a x? variable with (k; + k) degrees of freedom. This is called the reproductive
property of the x? distribution.

"For proofs of the various theorems, see Alexander M. Mood, Franklin A. Graybill, and Duane C. Bose,
Introduction to the Theory of Statistics, 3d ed., McGraw-Hill, New York, 1974, pp. 239-249.

2|bid., p. 243.
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Theorem 5.5. If Z; is a standardized normal variable [Z; ~ N(0, 1)] and another variable
Z, follows the chi-square distribution with k£ df and is independent of Z;, then the variable
defined as

A 4 vk Standard normal variable

= = ~t
VZ2 |k N4 \/ Independent chi-square variable/df ,

follows Student’s # distribution with & df. Note: This distribution is discussed in Appendix A
and is illustrated in Chapter 5.

Incidentally, note that as £, the df, increases indefinitely (i.e., as k — 00), the Student’s 7 distribu-
tion approaches the standardized normal distribution.> As a matter of convention, the notation 7,
means Student’s ¢ distribution or variable with & df.

Theorem 5.6. If Z; and Z, are independently distributed chi-square variables with &; and
ky df, respectively, then the variable

_ Z1/k
2/ k2

~ Fi.k,

has the £ distribution with 4 and &, degrees of freedom, where k; is known as the numerator
degrees of freedom and 4, the denominator degrees of freedom.

Again as a matter of convention, the notation Fj, , means an F variable with k; and k, degrees of
freedom, the df in the numerator being quoted first.

In other words, Theorem 5.6 states that the F variable is simply the ratio of two independently dis-
tributed chi-square variables divided by their respective degrees of freedom.

Theorem 5.7. The square of (Student’s) ¢ variable with & df has an F distribution with k| =
1 df in the numerator and k» = k df in the denominator.* That is,

F Lk = tl?
Note that for this equality to hold, the numerator df of the F variable must be 1. Thus,
Fia=t}or Fiy; = t223 and so on.

As noted, we will see the practical utility of the preceding theorems as we progress.

Theorem 5.8. For large denominator df, the numerator df times the F value is approximately
equal to the chi-square value with the numerator df. Thus,

mFEy,=x> asn— 00

Theorem 5.9. For sufficiently large df, the chi-square distribution can be approximated by
the standard normal distribution as follows:

Z =242 = V2k—1~ N(0, 1)

where k denotes df.

3For proof, see Henri Theil, Introduction to Econometrics, Prentice Hall, Englewood Cliffs, NJ, 1978,
pp. 237-245.
“For proof, see Egs. (5.3.2) and (5.9.1).
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5A.2 Derivation of Equation (5.3.2)

Let
fh—p (Bo— 132)\/;
1= — = M
and se(f2) o
27
Zy=(n-27 @

Provided o is known, Z; follows the standardized normal distribution; that is, Z; ~ N(O, 1).
(Why?) Z, follows the x? distribution with (n — 2) df*> Furthermore, it can be shown that Z, is dis-
tributed independently of Z;.® Therefore, by virtue of Theorem 5.5, the variable

f= Z“/n -2
N4

follows the ¢ distribution with » — 2 df. Substitution of Egs. (1) and (2) into Eq. (3) gives Eq. (5.3.2).

(3)

5A.3 Derivation of Equation (5.9.1)

Equation (1) shows that Z; ~ N(0, 1). Therefore, by Theorem 5.3, the preceding quantity

_ (B — B2)? X x?

Zz
1 02

follows the x? distribution with 1 df. As noted in Section 5A.1,

27 9

o u;
Zzz(n—2)—2=22’

o o

also follows the x?2 distribution with n — 2 df. Moreover, as noted in Section 4.3, Z, is distributed in-
dependently of Z;. Then from Theorem 5.6, it follows that

_ Zp _(32—/32)2(2)%2)
/(-2 Ya(n-2)

follows the F distribution with 1 and n — 2 df; respectively. Under the null hypothesis Hy: 2 = 0, the
preceding F ratio reduces to Eq. (5.9.1).

5A.4 Derivations of Equations (5.10.2) and (5.10.6)

Variance of Mean Prediction
Given X; = X, the true mean prediction £(Yy | Xo) is given by

E(Yo | Xo) = B1 + B2 X0 M

SFor proof, see Robert V. Hogg and Allen T. Craig, Introduction to Mathematical Statistics, 2d ed.,
Macmillan, New York, 1965, p. 144.

SFor proof, see |. Johnston, Econometric Methods, 3d ed., McGraw-Hill, New York, 1984, pp. 181-182.
(Knowledge of matrix algebra is required to follow the proof.)
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We estimate Eq. (1) from
Yo = i + B Xo 2
Taking the expectation of Eq. (2), given Xy, we get

E(Yo) = E(B1) + E(B2) Xo
= B1 + B2 Xo

because ﬁl and 32 are unbiased estimators. Therefore,
E(Yo) = E(Yo| Xo) = Bi + B2 Xo ®3)

That is, fo is an unbiased predictor of E(Yy | Xo).
Now using the property that var (a + b) = var (a) + var (b) + 2 cov (a, b), we obtain

var (Yo) = var (B1) + var (B2) X + 2 cov (B152) Xo 4)

Using the formulas for variances and covariance of ,31 and ,32 given in Egs. (3.3.1), (3.3.3), and
(3.3.9) and manipulating terms, we obtain

2
! M] = (5.10.2)

ar)A’zz—
var (Yo) U[n+ 52

Variance of Individual Prediction
We want to predict an individual Y corresponding to X = Xj; that is, we want to obtain

Yo = B1 + BaXo +uo ©)
We predict this as
Yo = i + B Xo (6)
The prediction error, Yy — f’o, is

Yo — Yo = B1 + B2Xo + uo — (B1 + B2 Xo)
=(B1 — B1) + (B — B2) Xo + uo (7)

Therefore,

E(Yy — Yo) = E(B1 — B1) + E(B> — B2)Xo — E(uo)
=0

because 31, ,32 are unbiased, X is a fixed number, and £(u) is zero by assumption.
Squaring Eq. (7) on both sides and taking expectations, we get var(Yy— Yp) =

var (ﬁl) + {(é var (ﬁz) + 2 Xy cov(Bi, B2) + var (up). Using the variance and covariance formulas

for B and B, given earlier, and noting that var (19) = o>, we obtain

1 (Xo—ff)z]

% 2
Var(Y()—Y()):U |:1+;+Tx12 = (5.10.6)




Chapter

Extensions of the
Two-Variable Linear

Regression Model

Some aspects of linear regression analysis can be easily introduced within the framework
of the two-variable linear regression model that we have been discussing so far. First we
consider the case of regression through the origin, that is, a situation where the inter-
cept term, B, is absent from the model. Then we consider the question of the units of
measurement, that is, how the ¥ and X variables are measured and whether a change in the
units of measurement affects the regression results. Finally, we consider the question of the
functional form of the linear regression model. So far we have considered models that
are linear in the parameters as well as in the variables. But recall that the regression theory
developed in the previous chapters requires only that the parameters be linear; the variables
may or may not enter linearly in the model. By considering models that are linear in the
parameters but not necessarily in the variables, we show in this chapter how the two-
variable models can deal with some interesting practical problems.

Once the ideas introduced in this chapter are grasped, their extension to multiple
regression models is quite straightforward, as we shall show in Chapters 7 and 8.

6.1 Regression through the Origin

There are occasions when the two-variable population regression function (PRF) assumes
the following form:

Yi = BoXi +u; 6.1.1)

In this model the intercept term is absent or zero, hence the name regression through the
origin.

As an illustration, consider the capital asset pricing model (CAPM) of modern portfolio
theory, which, in its risk-premium form, may be expressed as'

(ER, - l/'f) = /Bi(ERm - rf) (612)

TSee Haim Levy and Marshall Sarnat, Portfolio and Investment Selection: Theory and Practice, Prentice-
Hall International, Englewood Cliffs, NJ, 1984, Chap. 14.

147
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FIGURE 6.1

Systematic risk.

where ER; = expected rate of return on security i
ER,, = expected rate of return on the market portfolio as represented by, say, the

S&P 500 composite stock index

ry = risk-free rate of return, say, the return on 90-day Treasury bills

B; = the Beta coefficient, a measure of systematic risk, i.e., risk that cannot be
eliminated through diversification. Also, a measure of the extent to which
the ith security’s rate of return moves with the market. A ; > 1 implies a
volatile or aggressive security, whereas a 8; < 1 suggests a defensive secu-
rity. (Note: Do not confuse this §; with the slope coefficient of the two-
variable regression, f3,.)

If capital markets work efficiently, then CAPM postulates that security i’s expected risk
premium (= ER; — ry) is equal to that security’s B coefficient times the expected market
risk premium (= ER,, — ry). If the CAPM holds, we have the situation depicted in Fig-
ure 6.1. The line shown in the figure is known as the security market line (SML).

For empirical purposes, Equation 6.1.2 is often expressed as

Ri—rp = Bi(R —rp) +u; 6.1.3)
or
Ri—ry=ai+ Bi(Rm —ry) +u; (6.1.4)

The latter model is known as the Market Model.> If CAPM holds, «; is expected to be
zero. (See Figure 6.2.)

In passing, note that in Equation 6.1.4 the dependent variable, Y, is (R; — ry) and the
explanatory variable, X, is B, the volatility coefficient, and not (R,, — ry). Therefore, to run
regression Eq. (6.1.4), one must first estimate f;, which is usually derived from the
characteristic line, as described in Exercise 5.5. (For further details, see Exercise 8.28.)

As this example shows, sometimes the underlying theory dictates that the intercept
term be absent from the model. Other instances where the zero-intercept model may be
appropriate are Milton Friedman’s permanent income hypothesis, which states that perma-
nent consumption is proportional to permanent income; cost analysis theory, where it is

ERi - I’f

Security market line

ERZ-— Vf

2See, for instance, Diana R. Harrington, Modern Portfolio Theory and the Capital Asset Pricing Model: A
User’s Guide, Prentice Hall, Englewood Cliffs, NJ, 1983, p. 71.



FIGURE 6.2

The Market Model
of Portfolio Theory
(assuming «; = 0).
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»
|
=3

o Security risk premium

Bi

Systematic risk

postulated that the variable cost of production is proportional to output; and some versions
of monetarist theory that state that the rate of change of prices (i.e., the rate of inflation) is
proportional to the rate of change of the money supply.

How do we estimate models like Eq. (6.1.1), and what special problems do they pose? To
answer these questions, let us first write the sample regression function (SRF) of Eq. (6.1.1),
namely,

Y = BoXi + il (6.1.5)

Now applying the ordinary least squares (OLS) method to Eq. (6.1.5), we obtain the fol-
lowing formulas for B, and its variance (proofs are given in Appendix 6A, Section 6A.1):

5 XiY;
L ZZXZ (6.1.6)
. o?
var(B;) = S X2 (6.1.7)
where o? is estimated by
~2
62 = nz_”l (6.1.8)

It is interesting to compare these formulas with those obtained when the intercept term is
included in the model:

b _ D Xiyi

=55 (3.1.6)
2
var () = ZGxZ (3.3.1)
2
62 = Z_”f (3.3.5)

n—2
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The differences between the two sets of formulas should be obvious: In the model with the
intercept term absent, we use raw sums of squares and cross products but in the intercept-
present model, we use adjusted (from mean) sums of squares and cross products. Second,
the df for computing 62 is (n — 1) in the first case and (n — 2) in the second case. (Why?)

Although the interceptless or zero intercept model may be appropriate on occasions,
there are some features of this model that need to be noted. First, Y #;, which is always
zero for the model with the intercept term (the conventional model), need not be zero when
that term is absent. In short, Y #; need not be zero for the regression through the origin.
Second, 72, the coefficient of determination introduced in Chapter 3, which is always non-
negative for the conventional model, can on occasions turn out to be negative for the inter-
ceptless model! This anomalous result arises because the 7 introduced in Chapter 3
explicitly assumes that the intercept is included in the model. Therefore, the conventionally
computed 7> may not be appropriate for regression-through-the-origin models.?

r? for Regression-through-Origin Model

As just noted, and as further discussed in Appendix 6A, Section 6A.1, the conventional 7>
given in Chapter 3 is not appropriate for regressions that do not contain the intercept. But
one can compute what is known as the raw r? for such models, which is defined as

2
mwﬂ—(zxn) (6.1.9)

IR DG
Note: These are raw (i.e., not mean-corrected) sums of squares and cross products.

Although this raw 72 satisfies the relation 0 < 72 < 1, it is not directly comparable to the
conventional #* value. For this reason some authors do not report the »> value for zero
intercept regression models.

Because of these special features of this model, one needs to exercise great caution in
using the zero intercept regression model. Unless there is very strong a priori expectation,
one would be well advised to stick to the conventional, intercept-present model. This has a
dual advantage. First, if the intercept term is included in the model but it turns out to be sta-
tistically insignificant (i.e., statistically equal to zero), for all practical purposes we have a
regression through the origin.* Second, and more important, if in fact there is an intercept
in the model but we insist on fitting a regression through the origin, we would be commit-
ting a specification error. We will discuss this more in Chapter 7.

EXAMPLE 6.1

Table 6.1 gives data on excess returns Y; (%) on an index of 104 stocks in the sector of
cyclical consumer goods and excess returns X; (%) on the overall stock market index for
the U.K. for the monthly data for the period 1980-1999, for a total of 240 observations.
Excess return refers to return in excess of return on a riskless asset (see the CAPM model).

3For additional discussion, see Dennis ]. Aigner, Basic Econometrics, Prentice Hall, Englewood Cliffs, NJ,
1971, pp. 85-88.

“Henri Theil points out that if the intercept is in fact absent, the slope coefficient may be estimated
with far greater precision than with the intercept term left in. See his Introduction to Econometrics,
Prentice Hall, Englewood Cliffs, NJ, 1978, p. 76. See also the numerical example given next.

These data, originally obtained from DataStream databank, are reproduced from Christiaan Heij et al.,
Econometrics Methods with Applications in Business and Economics, Oxford University Press, Oxford,
U.K., 2004.



TABLE 6.1

OBS

1980:01
1980:02
1980:03
1980:04
1980:05
1980:06
1980:07
1980:08
1980:09
1980:10
1980:11
1980:12
1981:01
1981:02
1981:03
1981:04
1981:05
1981:06
1981:07
1981:08
1981:09
1981:10
1981:11
1981:12
1982:01
1982:02
1982:03
1982:04
1982:05
1982:06
1982:07
1982:08
1982:09
1982:10
1982:11
1982:12
1983:01
1983:02
1983:03
1983:04
1983:05
1983:06
1983:07
1983:08
1983:09
1983:10
1983:11
1983:12
1984:01
1984:02
1984:03
1984:04
1984:05
1984:06
1984:07
1984:08
1984:09
1984:10
1984:11

Y

6.08022852
—0.924185461
—3.286174252

5.211976571

-16.16421111
—1.054703649
11.17237699

—11.06327551

—16.77699609
—7.021834032
—9.71684668

5.215705717
—6.612000956

4.264498443

4.916710821
22.20495946

—11.29868524
—5.770507783
—5.217764717
16.19620175

=17.16995395

1.105334728

11.6853367
—2.301451728
8.643728679
—11.12907503

1.724627956

0.157879967
—1.875202616

—10.62481767
—5.761135416
5.481432596

—17.02207459

7.625420708
—6.575721646
—2.372829861

17.52374936

1.354655809

16.26861049
—6.074547158
—0.826650702

3.807881996

0.57570091

3.755563441
—5.365927271
—3.750302815

4.898751703

4.379256151

16.56016188

1.523127464

1.0206078
—3.899307684

—14.32501615

3.056627177
—0.02153592

3.355102212

0.100006778

1.691250318

8.20075301

X

7.263448404
6.339895504
—9.285216834
0.793290771
—2.902420985
8.613150875
3.982062848
—1.150170907
3.486125868
4.329850278
0.936875279
—5.202455846
—2.082757509
2.728522893
0.653397106
6.436071962
—4.259197932
0.543909707
—0.486845933
2.843999508
—16.4572142
4.468938171
5.885519658
—0.390698164
2.499567896
—4.033607075
3.042525777
0.734564665
2.779732288
—5.900116576
3.005344385
3.954990619
2.547127067
4.329008106
0.191940594
—0.92167555
3.394682577
0.758714353
1.862073664
6.797751341
—1.699253628
4.092592402
—2.926299262
1.773424306
—2.800815667
—1.505394995
4.18696284
1.201416981
6.769320788
—1.686027417
5.245806105
1.728710264
—7.279075595
—0.77947067
—2.439634487
8.445977813
1.221080129
2.733386772
5.12753329

OBS

1984:12
1985:01
1985:02
1985:03
1985:04
1985:05
1985:06
1985:07
1985:08
1985:09
1985:10
1985:11
1985:12
1986:01
1986:02
1986:03
1986:04
1986:05
1986:06
1986:07
1986:08
1986:09
1986:10
1986:11
1986:12
1987:01
1987:02
1987:03
1987:04
1987:05
1987:06
1987:07
1987:08
1987:09
1987:10
1987:11
1987:12
1988:01
1988:02
1988:03
1988:04
1988:05
1988:06
1988:07
1988:08
1988:09
1988:10
1988:11
1988:12
1989:01
1989:02
1989:03
1989:04
1989:05
1989:06
1989:07
1989:08
1989:09
1989:10

Y

3.52786616
4.554587707
5.365478677
4.525231564
2.944654344
—0.268599528
—3.661040481
—4.540505062
9.195292816
—1.894817019
12.00661274
1.233987382
—1.446329607
6.023618851
10.51235756
13.40071024
—7.796262998
0.211540446
6.471111064
—9.037475168
—5.47838091
—6.756881852
—2.564960223
2.456599468
1.476421303
17.0694004
7.565726727
—3.239325817
3.662578335
7.157455113
4.774901623
4.23770166
—0.881352219
11.49688416
—35.56617624
—14.59137369
14.87271664
1.748599294
—0.606016446
—6.078095523
3.976153828
—1.050910058
3.317856956
0.407100105
—11.87932524
—8.801026046
6.784211277
—10.20578119
—6.73805381
12.83903643
3.302860922
—0.155918301
3.623090767
—1.167680873
—1.221603303
5.262902744
4.845013219
—5.069564838
—13.57963526

X

3.191554763
3.907838688
—1.708567484
0.435218492
0.958067845
1.095477375
—6.816108909
2.785054354
3.900209023
—4.203004414
5.60179802
1.570093976
—1.084427121
0.778669473
6.470651262
8.953781192
—2.387761685
—2.873838588
3.440269098
—5.891053375
6.375582004
—5.734839396
3.63088408
—1.31606687
3.521601216
8.673412896
6.914361923
—0.460660854
4.295976077
7.719692529
3.039887622
2.510223804
—3.039443563
3.787092018
—27.86969311
—9.956367094
7.975865948
3.936938398
—0.32797064
—2.161544202
2.721787842
—0.514825422
3.128796482
0.181502075
—7.892363786
3.347081899
3.158592144
—4.816470363
—0.008549997
13.46098219
—0.764474692
2.298491097
0.762074588
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(Continued)
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First we fit model (6.1.3) to these data. Using EViews6 we obtained the following
regression results, which are given in the standard EViews format.

Dependent Variable: Y
Method: Least Squares
Sample: 1980M01 1999M12
Included observations: 240

Coefficient  Std. Error t-Statistic Prob.

X 1.155512 0.074396 15.53200 0.0000
R-squared 0.500309 Mean dependent var. 0.499826
Adjusted R-squared”  0.500309  S.D. dependent var. 7.849594
S.E. of regression 5.548786 Durbin-Watson stat.* 1.972853

Sum squared resid. 7358.578

*We will discuss this statistic in Chapter 12.
See Chapter 7.

As these results show, the slope coefficient, which is the Beta coefficient, is highly significant,
for its p value is extremely small. The interpretation here is that if the excess market rate goes
up by 1 percentage point, the excess return on the index of consumer goods sector goes up
by about 1.15 percentage points. Not only is the slope coefficient statistically significant, but
it is significantly greater than 1 (can you verify this?). If a Beta coefficient is greater than 1,
such a security (here a portifolio of 104 stocks) is said to be volatile; it moves more than
proportionately with the overall stock market index. But this finding should not be surprising,
for in this example we are considering stocks from the sector of cyclical consumer goods such
as houshold durables, automobiles, textiles, and sports equipment.
If we fit model (6.1.4), we obtain the following results:

Dependent Variable: Y
Method: Least Squares
Sample: 1980M01 1999M12
Included observations: 240

Coefficient  Std. Error t-Statistic  Prob.

C —0.447481 0.362943 —1.232924 0.2188

X 1.171128 0.075386 15.53500 0.0000
R-squared 0.503480 Mean dependent var. 0.499826
Adjusted R-squared 0.501394  S.D. dependent var. 7.849594
S.E. of regression 5.542759  Durbin-Watson stat. 1.984746
Sum squared resid. 7311.877  Prob. (F-statistic) 0.000000
F-statistic 241.3363

From these results we see that the intercept is not statistically different from zero, although
the slope coefficient (the Beta coefficient) is highly statistically significant. This suggests
that the regression-through-the-origin model fits the data well. Besides, statistically there is
no difference in the value of the slope coefficient in the two models. Note that the standard
error of the slope coefficient in the regression-through-the-origin model is slightly lower
than the one in the intercept-present model, thus supporting Theil’s argument given in
footnote 4. Even then, the slope coefficient is statistically greater than 1, once again con-
firming that returns on the stocks in the cyclical consumer goods sector are volatile.

By the way, note that the r? value given for the regression-through-the-origin model
should be taken with a grain of salt, for the traditional formula of r?is not applicable for such
models. EViews, however, routinely presents the standard r? value even for such models.
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6.2 Scaling and Units of Measurement

TABLE 6.2

Gross Private
Domestic Investment
and GDP, United
States, 1990-2005
(Billions of chained
[2000] dollars, except
as noted; quarterly
data at seasonally
adjusted annual
rates)

Source: Economic Report

of the President, 2007,
Table B-2, p. 328.

To grasp the ideas developed in this section, consider the data given in Table 6.2, which
refers to U.S. gross private domestic investment (GPDI) and gross domestic product (GDP),

in billions as well as millions of (chained) 2000 dollars.

Suppose in the regression of GPDI on GDP one researcher uses data in billions of dol-
lars but another expresses data in millions of dollars. Will the regression results be the same
in both cases? If not, which results should one use? In short, do the units in which the

regressand and regressor(s) are measured make any difference in the regression results? If

so, what is the sensible course to follow in choosing units of measurement for regression

analysis? To answer these questions, let us proceed systematically. Let

Vi = B+ B X +

where Y = GPDI and X = GDP. Define

Y =wY;
Xz* =W2Xi

(6.2.1)

(6.2.2)
(6.2.3)

where w; and w, are constants, called the scale factors; w; may equal w; or be different.
From Equations 6.2.2 and 6.2.3 it is clear that Y;* and X are rescaled Y; and X;. Thus,
if ¥; and X; are measured in billions of dollars and one wants to express them in millions
of dollars, we will have Y¥;* = 1000 ¥; and X7 = 1000 X;; here w; = w, = 1000.
Now consider the regression using Y;* and X variables:

Y =B+ BiX il (6.2.4)
where ¥* = w, Y;, X7 = wyX;, and af = wyi;. (Why?)

Year GPDIBL GPDIM GDPB GDPM
1990 886.6 886,600.0 7,112.5 7,112,500.0
1991 829.1 829,100.0 7,100.5 7,100,500.0
1992 878.3 878,300.0 7,336.6 7,336,600.0
1993 953.5 953,500.0 7,532.7 7,532,700.0
1994 1,042.3 1,042,300.0 7,835.5 7,835,500.0
1995 1,109.6 1,109,600.0 8,031.7 8,031,700.0
1996 1,209.2 1,209,200.0 8,328.9 8,328,900.0
1997 1,320.6 1,320,600.0 8,703.5 8,703,500.0
1998 1,455.0 1,455,000.0 9,066.9 9,066,900.0
1999 1,576.3 1,576,300.0 9,470.3 9,470,300.0
2000 1,679.0 1,679,000.0 9,817.0 9,817,000.0
2001 1,629.4 1,629,400.0 9,890.7 9,890,700.0
2002 1,544.6 1,544,600.0 10,048.8 10,048,800.0
2003 1,596.9 1,596,900.0 10,301.0 10,301,000.0
2004 1,713.9 1,713,900.0 10,703.5 10,703,500.0
2005 1,842.0 1,842,000.0 11,048.6 11,048,600.0

Note: GPDIBL = gross private domestic investment, billions of 2000 dollars.
GPDIM = gross private domestic investments, millions of 2000 dollars.
GDPB = gross domestic product, billions of 2000 dollars.
GDPM = gross domestic product, millions of 2000 dollars.
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We want to find out the relationships between the following pairs:
él and é !

pand B3

var (B1) and var (By)

var ( Bz) and var ( Bf )

6% and 6*2

rfy and r)?*y*

AN S

From least-squares theory we know (see Chapter 3) that

Bi=Y - BX (6.2.5)
by = szxf (6.2.6)
R X2
var(B)) = nzzxz o2 (6.2.7)
A 0’2
var(f8;) = S22 (6.2.8)
~2
52 = nz_“’z (6.2.9)

Applying the OLS method to Equation 6.2.4, we obtain similarly

Br=Y"—BiX* (6.2.10)
o% xz*yz*
B = ZZX%Z (6.2.11)
. X2,
= .o" 6.2.12
Var(ﬂ]) n Zx;kz o ( )
R 0*2
Var(ﬂ;) = W (6.2.13)
A%
A K2 Zui
= 6.2.14
Al ( )

From these results it is easy to establish relationships between the two sets of parameter
estimates. All that one has to do is recall these definitional relationships: Y = w;Y; (or
i =wii); X =wX; (or xF = wyx;); iiF = widl;; Y* = wiY; and X* = wp X. Making
use of these definitions, the reader can easily verify that

By = (ﬂ)éz (6.2.15)
wy

B =wih (6.2.16)

6 = wg? (6.2.17)

var (BF) = w? var (1) (6.2.18)
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2
var (B7) = (:—;) var (£2) (6.2.19)
I =Ty (6.2.20)

From the preceding results it should be clear that, given the regression results based on
one scale of measurement, one can derive the results based on another scale of measure-
ment once the scaling factors, the w’s, are known. In practice, though, one should choose
the units of measurement sensibly; there is little point in carrying all those zeros in
expressing numbers in millions or billions of dollars.

From the results given in (6.2.15) through (6.2.20) one can easily derive some special
cases. For instance, if w; = wy, that is, the scaling factors are identical, the slope coefficient
and its standard error remain unaffected in going from the (Y;, X;) to the (¥, X7) scale,
which should be intuitively clear. However, the intercept and its standard error are both mul-
tiplied by wy. But if the X scale is not changed (i.e., w, = 1) and the Y scale is changed by
the factor wy, the slope as well as the intercept coefficients and their respective standard
errors are all multiplied by the same w/ factor. Finally, if the ¥ scale remains unchanged (i.e.,
w; = 1) but the X scale is changed by the factor w,, the slope coefficient and its standard
error are multiplied by the factor (1/w,) but the intercept coefficient and its standard error
remain unaffected.

It should, however, be noted that the transformation from the (¥, X) to the (Y*, X™) scale
does not affect the properties of the OLS estimators discussed in the preceding chapters.

EXAMPLE 6.2
The Relationship
between the
GDPI and GDP
United States,
1990-2005

To substantiate the preceding theoretical results, let us return to the data given in
Table 6.2 and examine the following results (numbers in parentheses are the estimated
standard errors).

Both GPDI and GDP in billions of dollars:

GPDI; = —926.090 + 0.2535 GDP;
se= (116.358) (0.0129)  r2=0.9648 (6.2.21)

Both GPDI and GDP in millions of dollars:

GPDI; = —926,090 + 0.2535 GDP;
se = (116,358) (0.0129) r’=0.9648 (6.2.22)
Notice that the intercept as well as its standard error is 1000 times the corresponding val-
ues in the regression (6.2.21) (note that w; = 1000 in going from billions to millions of
dollars), but the slope coefficient as well as its standard error is unchanged, in accordance

with the theory.
GPDI in billions of dollars and GDP in millions of dollars:

GPDI; = —926.090 + 0.0002535 GDP,
se = (116.358) (0.0000129) r?=0.9648 (6.2.23)
As expected, the slope coefficient as well as its standard error is 1/1000 its value in

Eq. (6.2.21), since only the X, or GDP, scale is changed.
GPDI in millions of dollars and GDP in billions of dollars:

GPDI; = —926,090 + 253.524 GDP,
se = (116,358.7) (12.9465)  r?—0.9648 (6.2.24)
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EXAMPLE 6.2 Again notice that both the intercept and the slope coefficients as well as their respective
(Continued) standard errors are 1000 times their values in Eq. (6.2.21), in accordance with our theo-
retical results.
Notice that in all the regressions presented above, the r? value remains the same, which
is not surprising because the r? value is invariant to changes in the unit of measurement,
as it is a pure, or dimensionless, number.

A Word about Interpretation

Since the slope coefficient 8, is simply the rate of change, it is measured in the units of the
ratio

Units of the dependent variable

Units of the explanatory variable

Thus in regression (6.2.21) the interpretation of the slope coefficient 0.2535 is that
if GDP changes by a unit, which is 1 billion dollars, GPDI on the average changes by
0.2535 billion dollars. In regression (6.2.23) a unit change in GDP, which is 1 million
dollars, leads on average to a 0.0002535 billion dollar change in GPDI. The two results are
of course identical in the effects of GDP on GPDI; they are simply expressed in different
units of measurement.

6.3 Regression on Standardized Variables

We saw in the previous section that the units in which the regressand and regressor(s) are

expressed affect the interpretation of the regression coefficients. This can be avoided if

we are willing to express the regressand and regressor(s) as standardized variables. A vari-

able is said to be standardized if we subtract the mean value of the variable from its

individual values and divide the difference by the standard deviation of that variable.
Thus, in the regression of Y and X, if we redefine these variables as

* Yl_)_f
Yl.:
Sy
ﬁ:x—i
Sx

6.3.1)

(6.3.2)

where ¥ = sample mean of ¥, Sy = sample standard deviation of ¥, X = sample mean
of X, and Sy is the sample standard deviation of X; the variables Y and X} are called
standardized variables.

An interesting property of a standardized variable is that its mean value is always zero
and its standard deviation is always 1. (For proof, see Appendix 6A, Section 6A.2.)

As a result, it does not matter in what unit the regressand and regressor(s) are measured.
Therefore, instead of running the standard (bivariate) regression:

Yi =1+ o Xi +u; (6.3.3)
we could run regression on the standardized variables as
Y =B+ BX +uf (6.3.49)

= BIXT +u (6.3.5)
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since it is easy to show that, in the regression involving standardized regressand and
regressor(s), the intercept term is always zero.® The regression coefficients of the standard-
ized variables, denoted by B; and B3, are known in the literature as the beta coefficients.’
Incidentally, notice that (6.3.5) is a regression through the origin.

How do we interpret the beta coefficients? The interpretation is that if the (standardized)
regressor increases by one standard deviation, on average, the (standardized) regressand
increases by 5 standard deviation units. Thus, unlike the traditional model in Eq. (6.3.3), we
measure the effect not in terms of the original units in which Y and X are expressed, but in
standard deviation units.

To show the difference between Eqgs. (6.3.3) and (6.3.5), let us return to the GPDI and
GDP example discussed in the preceding section. The results of (6.2.21) discussed previ-
ously are reproduced here for convenience.

GPDI, = —926.090 + 0.2535 GDP,
se= (116358) (0.0129) 72 =0.9648

where GPDI and GDP are measured in billions of dollars.
The results corresponding to Eq. (6.3.5) are as follows, where the starred variables are
standardized variables:

(6.3.6)

—— %
GPDI, = 0.9822 GDP*
‘ ‘ (6.3.7)
se = (0.0485)

We know how to interpret Eq. (6.3.6): If GDP goes up by a dollar, on average GPDI goes
up by about 25 cents. How about Eq. (6.3.7)? Here the interpretation is that if the (stan-
dardized) GDP increases by one standard deviation, on average, the (standardized) GPDI
increases by about 0.98 standard deviations.

What is the advantage of the standardized regression model over the traditional model?
The advantage becomes more apparent if there is more than one regressor, a topic we
will take up in Chapter 7. By standardizing all regressors, we put them on an equal basis
and therefore can compare them directly. If the coefficient of a standardized regressor is
larger than that of another standardized regressor appearing in that model, then the latter
contributes more relatively to the explanation of the regressand than the former. In other
words, we can use the beta coefficients as a measure of relative strength of the various
regressors. But more on this in the next two chapters.

Before we leave this topic, two points may be noted. First, for the standardized regres-
sion in Eq. (6.3.7) we have not given the 72 value because this is a regression through
the origin for which the usual 72 is not applicable, as pointed out in Section 6.1. Second,
there is an interesting relationship between the 8 coefficients of the conventional model
and the beta coefficients. For the bivariate case, the relationship is as follows:

. ~ (S

= n() (6.3.8)
¥

where S, = the sample standard deviation of the X regressor and S, = the sample standard

deviation of the regressand. Therefore, we can crisscross between the 8 and beta coefficients

SRecall from Eq. (3.1.7) that Intercept = Mean value of the dependent variable — Slope x Mean
value of the regressor. But for the standardized variables the mean values of the dependent variable
and the regressor are zero. Hence the intercept value is zero.

Do not confuse these beta coefficients with the beta coefficients of finance theory.
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if we know the (sample) standard deviation of the regressor and regressand. We will see in the

next chapter that this relationship holds true in the multiple regression also. It is left as an
exercise for the reader to verify Eq. (6.3.8) for our illustrative example.

6.4 Functional Forms of Regression Models

As noted in Chapter 2, this text is concerned primarily with models that are linear in the pa-
rameters; they may or may not be linear in the variables. In the sections that follow we con-
sider some commonly used regression models that may be nonlinear in the variables but are
linear in the parameters or that can be made so by suitable transformations of the variables.
In particular, we discuss the following regression models:

1. The log-linear model

2. Semilog models

3. Reciprocal models

4. The logarithmic reciprocal model

We discuss the special features of each model, when they are appropriate, and how they are
estimated. Each model is illustrated with suitable examples.

6.5 How to Measure Elasticity: The Log-Linear Model

Consider the following model, known as the exponential regression model:
Y = B xPet (6.5.1)

which may be expressed alternatively as®

InY; =Inp+ foInX; +u; (6.5.2)

where In = natural log (i.e., log to the base e, and where e = 2.718).°
If we write Eq. (6.5.2) as

InY; =a+ B InX; +u; (653)

where @ = In By, this model is linear in the parameters « and f, linear in the logarithms of
the variables Y and X, and can be estimated by OLS regression. Because of this linearity,
such models are called log-log, double-log, or log-linear models. See Appendix 6A.3 for
the properties of logarithms.

If the assumptions of the classical linear regression model are fulfilled, the parameters
of Eq. (6.5.3) can be estimated by the OLS method by letting

Y=o+ B XF +u; (6.5.4)

where Y* = InY; and X = In X;. The OLS estimators & and ,32 obtained will be best lin-
ear unbiased estimators of « and B,, respectively.

8Note these properties of the logarithms: (1) In(AB) =In A+InB, (2)In(A/B) =In A—1In B, and
3) In(A%) = kIn A, assuming that A and B are positive, and where k is some constant.

°In practice one may use common logarithms, that is, log to the base 10. The relationship between the
natural log and common log is: In, X = 2.3026 log1o X. By convention, In means natural logarithm, and
log means logarithm to the base 10; hence there is no need to write the subscripts e and 10 explicitly.
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FIGURE 6.3
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One attractive feature of the log-log model, which has made it popular in applied work,
is that the slope coefficient 8, measures the elasticity of ¥ with respect to X, that is, the per-
centage change in Y for a given (small) percentage change in X.'° Thus, if Y represents the
quantity of a commodity demanded and X its unit price, 8, measures the price elasticity of
demand, a parameter of considerable economic interest. If the relationship between quan-
tity demanded and price is as shown in Figure 6.3a, the double-log transformation as shown
in Figure 6.35 will then give the estimate of the price elasticity (—f;).

Two special features of the log-linear model may be noted: The model assumes that
the elasticity coefficient between Y and X, B, remains constant throughout (why?), hence
the alternative name constant elasticity model.'' In other words, as Figure 6.3b shows, the
change in In Y per unit change in In X (i.e., the elasticity, 8,) remains the same no matter at
which In X we measure the elasticity. Another feature of the model is that although & and
p, are unbiased estimates of « and ,, B (the parameter entering the original model) when
estimated as B = antilog (@) is itself a biased estimator. In most practical problems, how-
ever, the intercept term is of secondary importance, and one need not worry about obtain-
ing its unbiased estimate.'?

10The elasticity coefficient, in calculus notation, is defined as (dY/Y)/(dX/ X) = [(dY/dX)(X/YV)].
Readers familiar with differential calculus will readily see that 8, is in fact the elasticity coefficient.

A technical note: The calculus-minded reader will note that d(In X)/dX = 1/X or d(In X) = dX/ X,
that is, for infinitesimally small changes (note the differential operator d) the change in In X is equal
to the relative or proportional change in X. In practice, though, if the change in X is small, this rela-
tionship can be written as: change in In X = relative change in X, where = means approximately.
Thus, for small changes,

(In Xt —1In X¢—1) = (Xt — X¢—1)/ Xt—1 = relative changein X

Incidentally, the reader should note these terms, which will occur frequently: (1) absolute change,
(2) relative or proportional change, and (3) percentage change, or percent growth rate.
Thus, (Xt — X¢—1) represents absolute change, (X — X¢—1)/ Xt—1 = (X¢/ X¢t—1 — 1) is relative or
proportional change, and [(X; — X¢-1)/ X;—1]100 is the percentage change, or the growth rate.

Xt and X;_1 are, respectively, the current and previous values of the variable X.

1A constant elasticity model will give a constant total revenue change for a given percentage change
in price regardless of the absolute level of price. Readers should contrast this result with the elasticity
conditions implied by a simple linear demand function, Y; = 81 + 82 X; + uj. However, a simple linear
function gives a constant quantity change per unit change in price. Contrast this with what the log-
linear model implies for a given dollar change in price.

2Concerning the nature of the bias and what can be done about it, see Arthur S. Goldberger, Topics
in Regression Analysis, Macmillan, New York, 1978, p. 120.
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In the two-variable model, the simplest way to decide whether the log-linear model fits
the data is to plot the scattergram of In Y; against In X; and see if the scatter points lie
approximately on a straight line, as in Figure 6.35.

A cautionary note: The reader should be aware of the distinction between a percent
change and a percentage point change. For example, the unemployment rate is often
expressed in percent form, say, the unemployment rate of 6%. If this rate goes to 8%, we say
that the percentage point change in the unemployment rate is 2, whereas the percent change
in the unemployment rate is (8 — 6)/6, or about 33%. So be careful when you deal with
percent and percentage point changes, for the two are very different concepts.

EXAMPLE 6.3
Expenditure

on Durable
Goods in
Relation to
Total Personal
Consumption
Expenditure

TABLE 6.3

Total Personal
Expenditure and
Categories
(Billions of chained
[2000] dollars;
quarterly data at
seasonally adjusted
annual rates)

Sources: Department of
Commerce, Bureau of
Economic Analysis.
Economic Report

of the President, 2007,
Table B-17, p. 347.

Table 6.3 presents data on total personal consumption expenditure (PCEXP), expenditure on
durable goods (EXPDUR), expenditure on nondurable goods (EXPNONDUR), and expendi-
ture on services (EXPSERVICES), all measured in 2000 billions of dollars.'?

Suppose we wish to find the elasticity of expenditure on durable goods with respect
to total personal consumption expenditure. Plotting the log of expenditure on durable
goods against the log of total personal consumption expenditure, you will see that
the relationship between the two variables is linear. Hence, the double-log model may be
appropriate. The regression results are as follows:

InEXDUR,= —7.5417 + 1.6266 In PCEX,
se= (0.7161)  (0.0800) (6.5.5)
t=(-10.5309)* (20.3152)*  r?>=0.9695
where * indicates that the p value is extremely small.

Year or quarter EXPSERVICES EXPDUR EXPNONDUR PCEXP
2003-1 4,143.3 971.4 2,072.5 7,184.9
2003-I1 4,161.3 1,009.8 2,084.2 7,249.3
2003-111 4,190.7 1,049.6 2,123.0 7,352.9
2003-1IvV 4,220.2 1,051.4 2,132.5 7,394.3
2004-1 4,268.2 1,067.0 2,155.3 7,479.8
2004-11 4,308.4 1,071.4 2,164.3 7,534.4
2004-111 4,341.5 1,093.9 2,184.0 7,607.1
2004-1vV 4,377.4 1,110.3 2,213.1 7,687.1
2005-1 4,395.3 1,116.8 2,241.5 7,739.4
2005-11 4,420.0 1,150.8 2,268.4 7,819.8
2005-111 4,454.5 1,175.9 2,287.6 7,895.3
2005-1V 4,476.7 1,137.9 2,309.6 7,910.2
2006-| 4,494.5 1,190.5 2,342.8 8,003.8
2006-11 4,535.4 1,190.3 2,351.1 8,055.0
2006-111 4,566.6 1,208.8 2,360.1 8,111.2

Note: See Table B-2 for data for total personal consumption expenditures for 1959—1989.

EXPSERVICES = expenditure on services, billions of 2000 dollars.
EXPDUR = expenditure on durable goods, billions of 2000 dollars.
EXPNONDUR = expenditure on nondurable goods, billions of 2000 dollars.
PCEXP = total personal consumption expenditure, billions of 2000 dollars.
(Continued)

3Durable goods include motor vehicles and parts, furniture, and household equipment; nondurable
goods include food, clothing, gasoline and oil, fuel oil and coal; and services include housing, elec-
tricity and gas, transportation, and medical care.
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EXAMPLE 6.3
(Continued)

As these results show, the elasticity of EXPDUR with respect to PCEX is about 1.63, sug-
gesting that if total personal expenditure goes up by 1 percent, on average, the expendi-
ture on durable goods goes up by about 1.63 percent. Thus, expenditure on durable goods
is very responsive to changes in personal consumption expenditure. This is one reason why
producers of durable goods keep a keen eye on changes in personal income and personal
consumption expenditure. In Exercise 6.18, the reader is asked to carry out a similar exer-
cise for nondurable goods expenditure.

6.6 Semilog Models: Log-Lin and Lin-Log Models

How to Measure the Growth Rate:
The Log-Lin Model

Economists, businesspeople, and governments are often interested in finding out the rate of
growth of certain economic variables, such as population, GNP, money supply, employ-
ment, productivity, and trade deficit.

Suppose we want to find out the growth rate of personal consumption expenditure on
services for the data given in Table 6.3. Let Y, denote real expenditure on services at time ¢
and Y the initial value of the expenditure on services (i.e., the value at the end of 2002-1V).
You may recall the following well-known compound interest formula from your introduc-
tory course in economics.

Y, = Yol +r)' (6.6.1)

where 7 is the compound (i.e., over time) rate of growth of Y. Taking the natural logarithm
of Equation 6.6.1, we can write

InY,=InYy+¢tIn(l+r) (6.6.2)
Now letting
B =InY, (6.6.3)
Bo=In(1+7r) (6.6.49)
we can write Equation 6.6.2 as
InY, = g1 + Bat (6.6.5)
Adding the disturbance term to Equation 6.6.5, we obtain'4
InY; = B + Bat +u; (6.6.6)

This model is like any other linear regression model in that the parameters 8; and 3, are lin-
ear. The only difference is that the regressand is the logarithm of Y and the regressor is
“time,” which will take values of 1, 2, 3, etc.

Models like Eq. (6.6.6) are called semilog models because only one variable (in this
case the regressand) appears in the logarithmic form. For descriptive purposes a model in
which the regressand is logarithmic will be called a log—lin model. Later we will consider
a model in which the regressand is linear but the regressor(s) is logarithmic and call it a
lin—log model.

TWe add the error term because the compound interest formula will not hold exactly. Why we add
the error after the logarithmic transformation is explained in Sec. 6.8.
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Before we present the regression results, let us examine the properties of model (6.6.5).
In this model the slope coefficient measures the constant proportional or relative change
in'Y for a given absolute change in the value of the regressor (in this case the variable f),
that is,"?

relative change in regressand

> (6.6.7)

absolute change in regressor

If we multiply the relative change in Y by 100, Equation 6.6.7 will then give the percentage
change, or the growth rate, in Y for an absolute change in X, the regressor. That is, 100 times
B> gives the growth rate in ¥; 100 times B, is known in the literature as the semielasticity of ¥
with respect to X. (Question: To get the elasticity, what will we have to do?)'®

EXAMPLE 6.4
The Rate of
Growth
Expenditure on
Services

FIGURE 6.4

To illustrate the growth model (6.6.6), consider the data on expenditure on services given
in Table 6.3. The regression results over time (t) are as follows:

INEXS, = 83226 + 0.00705t
se=  (0.0016) (0.00018)  r2=0.9919 (6.6.8)

t=(5201.625)* (39.1667)*

Note: EXS stands for expenditure on services and * denotes that the p value is extremely
small.

The interpretation of Equation 6.6.8 is that over the quarterly period 2003-1 to 2006-IlI,
expenditures on services increased at the (quarterly) rate of 0.705 percent. Roughly, this is
equal to an annual growth rate of 2.82 percent. Since 8.3226 = log of EXS at the begin-
ning of the study period, by taking its antilog we obtain 4115.96 (billion dollars) as the
beginning value of EXS (i.e., the value at the beginning of 2003). The regression line
obtained in Eq. (6.6.8) is sketched in Figure 6.4.
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15Using differential calculus one can show that g, = d(In Y)/dX = (1/Y)(dY/dX) = (dY/Y)/dX,
which is nothing but Eq. (6.6.7). For small changes in Y and X this relation may be approximated by
(Ye = Y1)/ Vs
(Xt = Xe-1)
Note: Here, X = t.
16See Appendix 6A.4 for various growth formulas.
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Instantaneous versus Compound Rate of Growth

The coefficient of the trend variable in the growth model (6.6.6), §,, gives the instantaneous
(at a point in time) rate of growth and not the compound (over a period of time)
rate of growth. But the latter can be easily found from Eq. (6.6.4) by taking the antilog of
the estimated $, and subtracting 1 from it and multiplying the difference by 100. Thus, for
our illustrative example, the estimated slope coefficient is 0.00705. Therefore,
[antilog(0.00705) — 1] = 0.00708 or 0.708 percent. Thus, in the illustrative example, the
compound rate of growth on expenditure on services was about 0.708 percent per quarter,
which is slightly higher than the instantaneous growth rate of 0.705 percent. This is of course
due to the compounding effect.

Linear Trend Model
Instead of estimating model (6.6.6), researchers sometimes estimate the following model:

Yi = B1 + Bat +uy (6.6.9)

That is, instead of regressing the log of Y on time, they regress Y on time, where Y is the
regressand under consideration. Such a model is called a linear trend model and the
time variable ¢ is known as the trend variable. If the slope coefficient in Equation 6.6.9 is
positive, there is an upward trend in Y, whereas if it is negative, there is a downward
trend in Y.

For the expenditure on services data that we considered earlier, the results of fitting the
linear trend model (6.6.9) are as follows:

EXS, = 4111.545 + 30.674¢

(6.6.10)
t= (655.5628) (44.4671)  r*=0.9935

In contrast to Eq. (6.6.8), the interpretation of Eq. (6.6.10) is as follows: Over the quarterly
period 2003-1 to 2006-111, on average, expenditure on services increased at the absolute
(note: not relative) rate of about 30 billion dollars per quarter. That is, there was an upward
trend in the expenditure on services.

The choice between the growth rate model (6.6.8) and the linear trend model (6.6.10)
will depend upon whether one is interested in the relative or absolute change in the expen-
diture on services, although for comparative purposes it is the relative change that is gen-
erally more relevant. In passing, observe that we cannot compare the r* values of models
(6.6.8) and (6.6.10) because the regressands in the two models are different. We will show
in Chapter 7 how one compares the 7>’s of models like (6.6.8) and (6.6.10).

The Lin-Log Model

Unlike the growth model just discussed, in which we were interested in finding the per-
cent growth in Y for an absolute change in X, suppose we now want to find the absolute
change in Y for a percent change in X. A model that can accomplish this purpose can be
written as:

Yi=p1+ BaInX; +u; (6.6.11)

For descriptive purposes we call such a model a lin-log model.
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Let us interpret the slope coefficient 8,.!7 As usual,

Change in Y
Change inln X
Change in Y

B2 =

~ relative change in X

The second step follows from the fact that a change in the log of a number is a relative
change.
Symbolically, we have
AY

~AX/X

B (6.6.12)

where, as usual, A denotes a small change. Equation 6.6.12 can be written, equivalently, as
AY = Br(AX/X) (6.6.13)

This equation states that the absolute change in Y ( = AY) is equal to slope times the rela-
tive change in X. If the latter is multiplied by 100, then Eq. (6.6.13) gives the absolute
change in Y for a percentage change in X. Thus, if (AX/X) changes by 0.01 unit (or 1 per-
cent), the absolute change in Yis 0.01(,); if in an application one finds that 8, = 500, the
absolute change in Y'is (0.01)(500) = 5.0. Therefore, when regression (6.6.11) is estimated
by OLS, do not forget to multiply the value of the estimated slope coefficient by 0.01, or,
what amounts to the same thing, divide it by 100. If you do not keep this in mind, your in-
terpretation in an application will be highly misleading.

The practical question is: When is a lin—log model like Eq. (6.6.11) useful? An interest-
ing application has been found in the so-called Engel expenditure models, named after the
German statistician Ernst Engel, 1821-1896. (See Exercise 6.10.) Engel postulated that
“the total expenditure that is devoted to food tends to increase in arithmetic progression as
total expenditure increases in geometric progression.”'®

EXAMPLE 6.5

As an illustration of the lin-log model, let us revisit our example on food expenditure in
India, Example 3.2. There we fitted a linear-in-variables model as a first approximation.
But if we plot the data we obtain the plot in Figure 6.5. As this figure suggests, food
expenditure increases more slowly as total expenditure increases, perhaps giving credence
to Engel’s law. The results of fitting the lin-log model to the data are as follows:

F@p; =-1283.912 + 257.2700 In TotalExp;
t= (—4.3848)* (5.6625)* r?=0.3769 (6.6.14)

Note: * denotes an extremely small p value.
(Continued)

7Again, using differential calculus, we have

Therefore, ay
B2 = 4x =(6.6.12)

X

8See Chandan Mukherjee, Howard White, and Marc Wuyts, Econometrics and Data Analysis for Devel-
oping Countries, Routledge, London, 1998, p. 158. This quote is attributed to H. Working, “Statistical
Laws of Family Expenditure,” Journal of the American Statistical Association, vol. 38, 1943, pp. 43-56.
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EXAMPLE 6.5
(Continued)

FIGURE 6.5
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Interpreted in the manner described earlier, the slope coefficient of about 257 means
that an increase in the total food expenditure of 1 percent, on average, leads to about
2.57 rupees increase in the expenditure on food of the 55 families included in the sample.
(Note: We have divided the estimated slope coefficient by 100.)

Before proceeding further, note that if you want to compute the elasticity coefficient
for the log-lin or lin-log models, you can do so from the definition of the elasticity coeffi-
cient given before, namely,

dy X
axy
As a matter of fact, once the functional form of a model is known, one can compute elas-

ticities by applying the preceding definition. (Table 6.6, given later, summarizes the elas-
ticity coefficients for the various models.)

Elasticity =

It may be noted that sometimes logarithmic transformation is used to reduce
heteroscedasticity as well as skewness. (See Chapter 11.) A common feature of many
economic variables, is that they are positively skewed (e.g., size distribution of firms or
distribution of income or wealth) and they are heteroscedastic. A logarithmic transforma-
tion of such variables reduces both skewness and heteroscedasticity. That is why labor
economists often use the logarithms of wages in the regression of wages on, say, schooling,
as measured by years of education.

6.7 Reciprocal Models

Models of the following type are known as reciprocal models.

Y= By + o (Xi) +u; 6.7.1)

Although this model is nonlinear in the variable X because it enters inversely or recipro-
cally, the model is linear in 8, and S, and is therefore a linear regression model."’

This model has these features: As X increases indefinitely, the term S,(1/X) appro-
aches zero (note: B, is a constant) and Y approaches the limiting or asymptotic value B;.

19If we let Xf=(1/X;), then Eq. (6.7.1) is linear in the parameters as well as the variables Y;and X}.
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The reciprocal model:

Y=ﬁ1+ﬂz<%).
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Therefore, models like (6.7.1) have built in them an asymptote or limit value that the de-
pendent variable will take when the value of the X variable increases indefinitely.>” Some
likely shapes of the curve corresponding to Eq. (6.7.1) are shown in Figure 6.6.

EXAMPLE 6.6

FIGURE 6.7

Relationship between

child mortality and
per capita GNP in
66 countries.

As an illustration of Figure 6.6a, consider the data given in Table 6.4. These are cross-
sectional data for 64 countries on child mortality and a few other variables. For now, con-
centrate on the variables child mortality (CM) and per capita GNP, which are plotted in
Figure 6.7.

As you can see, this figure resembles Figure 6.6a: As per capita GNP increases, one
would expect child mortality to decrease because people can afford to spend more on
health care, assuming all other factors remain constant. But the relationship is not a
straight line one: As per capita GNP increases, initially there is a dramatic drop in CM but
the drop tapers off as per capita GNP continues to increase.
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20The slope of Eq. (6.7.1) is: dY/dX = —B2(1/ X2), implying that if 8, is positive, the slope is
negative throughout, and if 3, is negative, the slope is positive throughout. See Figures 6.6a
and 6.6¢, respectively.
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EXAMPLE 6.6
(Continued)

TABLE 6.4 Fertility and Other Data for 64 Countries

Observation CM FLFP

1 128
2 204
3 202
4 197
5 96
6 209
7 170
8 240
9 241
10 55
11 75
12 129
13 24
14 165
15 94
16 96
17 148
18 98
19 161
20 118
21 269
22 189
23 126
24 12
25 167
26 135
27 107
28 72
29 128
30 27
31 152
32 224

37
22
16
65
76
26
45
29
11
55
87
55
93
31
77
80
30
69
43
47
17
35
58
81
29
65
87
63
49
63
84
23

PGNP

1870
130
310
570

2050
200
670
300
120
290

1180
900

1730

1150

1160

1270
580
660
420

1080
290
270
560

4240
240
430

3020

1420
420

19830
420
530

TFR

6.66
6.15
7.00
6.25
3.81
6.44
6.19
5.89
5.89
2.36
3.93
5.99
3.50
7.41
4.21
5.00
5.27
5.21
6.50
6.12
6.19
5.05
6.16
1.80
4.75
4.10
6.66
7.28
8.12
5.23
5.79
6.50

Observation CM FLFP PGNP

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

142
104
287
41
312
77
142
262
215
246
191
182
37
103
67
143
83
223
240
312
12
52
79
61
168
28
121
115
186
47
178
142

50
62
31
66
11
88
22
22
12

9
31
19
88
35
85
78
85
33
19
21
79
83
43
88
28
95
41
62
45
85
45
67

8640
350
230

1620
190

2090
900
230
140
330

1010
300

1730
780

1300
930
690
200
450
280

4430
270

1340
670
410

4370

1310

1470
300

3630
220
560

TFR

717
6.60
7.00
3.91
6.70
4.20
543
6.50
6.25
7.10
7.10
7.00
3.46
5.66
4.82
5.00
4.74
8.49
6.50
6.50
1.69
3.25
717
3.52
6.09
2.86
4.88
3.89
6.90
4.10
6.09
7.20

Note:  CM = Child mortality, the number of deaths of children under age 5 in a year per 1000 live births.
FLFP = Female literacy rate, percent.

PGNP = per capita GNP in 1980.

TFR = total fertility rate, 1980-1985, the average number of children born to a woman, using age-specific fertility

rates for a given year.

Source: Chandan Mukherjee, Howard White, and Marc Whyte, Econometrics and Data Analysis for Developing Countries, Routledge,

London, 1998, p. 456.

If we try to fit the reciprocal model (6.7.1), we obtain the following regression results:

CM; = 81.79436 + 27,237.1 7(

se = (10.8321)
t= (7.5511)

(3759.999)

(7.2535)

PGNP;)

r? =0.4590

(6.7.2)

As per capita GNP increases indefinitely, child mortality approaches its asymptotic value
of about 82 deaths per thousand. As explained in footnote 20, the positive value of the
coefficient of (1/PGNP;) implies that the rate of change of CM with respect to PGNP is

negative.



Chapter 6 Extensions of the Two-Variable Linear Regression Model 169

EXAMPLE 6.6 FIGURE 6.8 The Phillips curve.
(Continued)

The natural rate of unemployment
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One of the important applications of Figure 6.6b is the celebrated Phillips curve of
macroeconomics. Using the data on percent rate of change of money wages (Y) and the
unemployment rate (X) for the United Kingdom for the period 1861-1957, Phillips
obtained a curve whose general shape resembles Figure 6.6b (Figure 6.8).%'

As Figure 6.8 shows, there is an asymmetry in the response of wage changes to the level
of the unemployment rate: Wages rise faster for a unit change in unemployment if the
unemployment rate is below UN, which is called the natural rate of unemployment by econ-
omists (defined as the rate of unemployment required to keep [wage] inflation constant),
and then they fall slowly for an equivalent change when the unemployment rate is above
the natural rate, UV, indicating the asymptotic floor, or —p7, for wage change. This partic-
ular feature of the Phillips curve may be due to institutional factors, such as union bargaining
power, minimum wages, unemployment compensation, etc.

Since the publication of Phillips’s article, there has been very extensive research on the
Phillips curve at the theoretical as well as empirical levels. Space does not permit us to go
into the details of the controversy surrounding the Phillips curve. The Phillips curve itself
has gone through several incarnations. A comparatively recent formulation is provided by
Olivier Blanchard.?? If we let 7r; denote the inflation rate at time t, which is defined as the
percentage change in the price level as measured by a representative price index, such as
the Consumer Price Index (CPI), and UN; denote the unemployment rate at time ¢, then a
modern version of the Phillips curve can be expressed in the following format:

ﬁt—ﬂf:ﬂz(UNt— UN)+Ut (6.7.3)

where m; = actual inflation rate at time ¢t

nf = expected inflation rate at time t, the expectation being

formed in year (t — 1) (Continued)

21A. W. Phillips, “The Relationship between Unemployment and the Rate of Change of Money Wages
in the United Kingdom, 1861-1957,” Economica, November 1958, vol. 15, pp. 283-299. Note that
the original curve did not cross the unemployment rate axis, but Fig. 6.8 represents a later version of
the curve.

225ee Olivier Blanchard, Macroeconomics, Prentice Hall, Englewood Cliffs, NJ, 1997, Chap. 17.
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EXAMPLE 6.6
(Continued)

UN; = actual unemployment rate prevailing at time ¢
UN = natural rate of unemployment
ur = stochastic error term?3

Since mf is not directly observable, as a starting point one can make the
simplifying assumption that 7z{ = m;_1; that is, the inflation rate expected this year is the
inflation rate that prevailed in the last year; of course, more complicated assumptions
about expectations formation can be made, and we will discuss this topic in Chapter 17,
on distributed lag models.

Substituting this assumption into Eq. (6.7.3) and writing the regression model in the
standard form, we obtain the following estimating equation:

7t — w1 = B1 + B2UN¢ + ue (6.7.4)

where g = —gUN. Equation 6.7.4 states that the change in the inflation rate between
two time periods is linearly related to the current unemployment rate. A priori, S5 is
expected to be negative (why?) and g, is expected to be positive (this figures, since B, is
negative and UV is positive).

Incidentally, the Phillips relationship given in Eq. (6.7.3) is known in the literature as the
modified Phillips curve, or the expectations-augmented Phillips curve (to indicate
that 7r;_1 stands for expected inflation), or the accelerationist Phillips curve (to suggest
that a low unemployment rate leads to an increase in the inflation rate and hence an accel-
eration of the price level).

EXAMPLE 6.7

As an illustration of the modified Phillips curve, we present in Table 6.5 data on inflation
as measured by year-to-year percentage in the Consumer Price Index (CPIflation) and
the unemployment rate for the period 1960-2006. The unemployment rate represents
the civilian unemployment rate. From these data we obtained the change in the inflation
rate (r; — m:—1) and plotted it against the civilian unemployment rate; we are using the CPI
as a measure of inflation. The resulting graph appears in Figure 6.9.

As expected, the relation between the change in inflation rate and the unemployment
rate is negative—a low unemployment rate leads to an increase in the inflation rate and
therefore an acceleration of the price level, hence the name accelerationist Phillips curve.

Looking at Figure 6.9, it is not obvious whether a linear (straight line) regression model
or a reciprocal model fits the data; there may be a curvilinear relationship between the
two variables. We present below regressions based on both the models. However, keep in
mind that for the reciprocal model the intercept term is expected to be negative and the
slope positive, as noted in footnote 20.

Linear model: (7 — 7r1) = 3.7844 — 0.6385 UN;

5 (6.7.5)
t=(4.1912) (—4.2756) r<=0.2935
Reciprocal model:
_ 1
— 1) = —3.0684 + 17.2077( —
(¢ — 721) 3.0684 + 0 (UNt) (6.7.6)

t=(-3.1635) (3.2886) r2=0.1973

All the estimated coefficients in both the models are individually statistically significant, all
the p values being lower than the 0.005 level.

23Economists believe this error term represents some kind of supply shock, such as the OPEC oil
embargoes of 1973 and 1979.



TABLE 6.5
Inflation Rate and
Unemployment
Rate, United States,
1960-2006

(For all urban
consumers;
1982-1984 = 100,
except as noted)
Source: Economic Report of
the President, 2007, Table
B-60, p. 399, for CPI changes

and Table B-42, p. 376, for
the unemployment rate.

FIGURE 6.9
The modified
Phillips curve.
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Year INFLRATE UNRATE Year INFLRATE UNRATE
1960 1.718 55 1984 4.317 7.5
1961 1.014 6.7 1985 3.561 7.2
1962 1.003 55 1986 1.859 7.0
1963 1.325 5.7 1987 3.650 6.2
1964 1.307 5.2 1988 4.137 55
1965 1.613 4.5 1989 4.818 53
1966 2.857 3.8 1990 5.403 5.6
1967 3.086 3.8 1991 4.208 6.8
1968 4.192 3.6 1992 3.010 7.5
1969 5.460 3.5 1993 2.994 6.9
1970 5.722 4.9 1994 2.561 6.1
1971 4.381 5.9 1995 2.834 5.6
1972 3.210 5.6 1996 2.953 5.4
1973 6.220 4.9 1997 2.294 4.9
1974 11.036 5.6 1998 1.558 4.5
1975 9.128 8.5 1999 2.209 4.2
1976 5.762 7.7 2000 3.361 4.0
1977 6.503 7.1 2001 2.846 4.7
1978 7.591 6.1 2002 1.581 5.8
1979 11.350 5.8 2003 2.279 6.0
1980 13.499 7.1 2004 2.663 55
1981 10.316 7.6 2005 3.388 5.1
1982 6.161 9.7 2006 3.226 4.6
1983 3.212 9.6

Note: The inflation rate is the percent year-to-year change in CPI. The unemployment rate is the civilian unemployment rate.

Change in inflation rate
o

3 4 5 6 7 8 9 10
Unemployment rate (%)

Model (6.7.5) shows that if the unemployment rate goes down by 1 percentage point,
on average, the change in the inflation rate goes up by about 0.64 percentage points, and
vice versa. Model (6.7.6) shows that even if the unemployment rate increases indefinitely,
the most the change in the inflation rate will go down will be about 3.07 percentage
points. Incidentally, from Eq. (6.7.5), we can compute the underlying natural rate of
unemployment as:

fr  3.7844
—f, 0.6385
That is, the natural rate of unemployment is about 5.93%. Economists put the natural rate

between 5 and 6%, although in the recent past in the United States the actual rate has
been much below this rate.

uN = =5.9270

(6.7.7)
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FIGURE 6.10
The log reciprocal
model.

Log Hyperbola or Logarithmic Reciprocal Model

We conclude our discussion of reciprocal models by considering the logarithmic reciprocal
model, which takes the following form:

InY;, =8 —58 (XL) + u; (678)
Its shape is as depicted in Figure 6.10. As this figure shows, initially Y increases at an in-
creasing rate (i.e., the curve is initially convex) and then it increases at a decreasing rate
(i.e., the curve becomes concave).>* Such a model may therefore be appropriate to model a
short-run production function. Recall from microeconomics that if labor and capital are the
inputs in a production function and if we keep the capital input constant but increase the
labor input, the short-run output—labor relationship will resemble Figure 6.10. (See Exam-
ple 7.3, Chapter 7.)

6.8 Choice of Functional Form

In this chapter we discussed several functional forms an empirical model can assume, even
within the confines of the linear-in-parameter regression models. The choice of a particular
functional form may be comparatively easy in the two-variable case, because we can plot
the variables and get some rough idea about the appropriate model. The choice becomes
much harder when we consider the multiple regression model involving more than one re-
gressor, as we will discover when we discuss this topic in the next two chapters. There is no

24From calculus, it can be shown that

ax 0 ==pa( 5z ) = 2 5z

But
d 1dy
H(In Y)= v dx
Making this substitution, we obtain
dy Y
ax =Pz

which is the slope of Y with respect to X.
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. dy L. dy X

Model Equation Slope <_ ﬁ) Elasticity (_ ﬁ?)

N X *
Linear Y=p1+ BX B2 ﬁz(v)
Log-linear InY=p81+B2In X ﬁz(%/) B2
Log-lin INY= 81+ B2 X B2 (Y) B2 (X)*

Q '| 'I *
Lin—lo Y=81+B2InX _ —_

J prvfe ﬂ2<X> '32<Y>

. 1 1 T\
Reciprocal Y=p81+ ﬁ2<7> —ﬁ2<ﬁ) _ﬂz(W>

InY=p - ﬁz(%) ﬁz(%)

Note: * indicates that the elasticity is variable, depending on the value taken by X or ¥ or both. When no X and Y values are
specified, in practice, very often these elasticities are measured at the mean values of these variables, namely, X and Y.

Log reciprocal

denying that a great deal of skill and experience are required in choosing an appropriate
model for empirical estimation. But some guidelines can be offered:

1. The underlying theory (e.g., the Phillips curve) may suggest a particular functional
form.

2. Itis good practice to find out the rate of change (i.e., the slope) of the regressand with
respect to the regressor as well as to find out the elasticity of the regressand with respect to
the regressor. For the various models considered in this chapter, we provide the necessary
formulas for the slope and elasticity coefficients of the various models in Table 6.6. The
knowledge of these formulas will help us to compare the various models.

3. The coefficients of the model chosen should satisfy certain a priori expectations. For
example, if we are considering the demand for automobiles as a function of price and some
other variables, we should expect a negative coefficient for the price variable.

4. Sometimes more than one model may fit a given set of data reasonably well. In the
modified Phillips curve, we fitted both a linear and a reciprocal model to the same data. In
both cases the coefficients were in line with prior expectations and they were all statistically
significant. One major difference was that the 72 value of the linear model was larger than
that of the reciprocal model. One may therefore give a slight edge to the linear model over
the reciprocal model. But make sure that in comparing two r* values the dependent vari-
able, or the regressand, of the two models is the same; the regressor(s) can take any form.
We will explain the reason for this in the next chapter.

5. In general one should not overemphasize the > measure in the sense that the higher
the 72 the better the model. As we will discuss in the next chapter, 7 increases as we add
more regressors to the model. What is of greater importance is the theoretical underpinning
of the chosen model, the signs of the estimated coefficients and their statistical signifi-
cance. If a model is good on these criteria, a model with a lower 7> may be quite acceptable.
We will revisit this important topic in greater depth in Chapter 13.

6. In some situations it may not be easy to settle on a particular functional form, in
which case we may use the so-called Box-Cox transformations. Since this topic is rather
technical, we discuss the Box-Cox procedure in Appendix 6A.5.
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*6.9 A Note on the Nature of the Stochastic Error Term: Additive
versus Multiplicative Stochastic Error Term

Consider the following regression model, which is the same as Eq. (6.5.1) but without the

error term:
Y, = pixf* (6.9.1)
For estimation purposes, we can express this model in three different forms:
Y; = Bi X u; (6.9.2)
Y = B X e (6.9.3)
Y = BiXP +u (6.9.4)

Taking the logarithms on both sides of these equations, we obtain

InY; =a+ B InX; + Inuy; (6.9.2q)
InY, =a+ B InX; +u; (6.9.3a)
InY; = In (B X* + u;) (6.9.4a)

where o = In f3.

Models like Eq. (6.9.2) are intrinsically linear (in-parameter) regression models in the
sense that by suitable (log) transformation the models can be made linear in the parameters
a and B;. (Note: These models are nonlinear in §;.) But model (6.9.4) is intrinsically
nonlinear-in-parameter. There is no simple way to take the log of Eq. (6.9.4) because
In(A+ B)#1In4+1nB.

Although Egs. (6.9.2) and (6.9.3) are linear regression models and can be estimated by
ordinary least squares (OLS) or maximum likelihood (ML), we have to be careful about the
properties of the stochastic error term that enters these models. Remember that the BLUE
property of OLS (best linear unbiased estimator) requires that u; has zero mean value, con-
stant variance, and zero autocorrelation. For hypothesis testing, we further assume that u;
follows the normal distribution with mean and variance values just discussed. In short, we
have assumed that u; ~ N(0, o%).

Now consider model (6.9.2). Its statistical counterpart is given in (6.9.2a). To use the
classical normal linear regression model (CNLRM), we have to assume that

Inu; ~ N(0,5?) (6.9.5)

Therefore, when we run the regression (6.9.2a), we will have to apply the normality tests
discussed in Chapter 5 to the residuals obtained from this regression. Incidentally, note that
if In u; follows the normal distribution with zero mean and constant variance, then statisti-
cal theory shows that #; in Eq. (6.9.2) must follow the log-normal distribution with mean
¢°’/? and variance ¢” (¢°” — 1).

As the preceding analysis shows, one has to pay very careful attention to the error
term in transforming a model for regression analysis. As for Eq. (6.9.4), this model is a
nonlinear-in-parameter regression model and will have to be solved by some iterative
computer routine. Model (6.9.3) should not pose any problems for estimation.

*Optional
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To sum up, pay very careful attention to the disturbance term when you transform a

model for regression analysis. Otherwise, a blind application of OLS to the transformed
model will not produce a model with desirable statistical properties.

Summary and
Conclusions

This chapter introduced several of the finer points of the classical linear regression model
(CLRM).

1.

Sometimes a regression model may not contain an explicit intercept term. Such models
are known as regression through the origin. Although the algebra of estimating such
models is simple, one should use such models with caution. In such models the sum
of the residuals }_ #; is nonzero; additionally, the conventionally computed 2 may not
be meaningful. Unless there is a strong theoretical reason, it is better to introduce the
intercept in the model explicitly.

. The units and scale in which the regressand and the regressor(s) are expressed are very

important because the interpretation of regression coefficients critically depends on
them. In empirical research the researcher should not only quote the sources of data but
also state explicitly how the variables are measured.

. Just as important is the functional form of the relationship between the regressand and

the regressor(s). Some of the important functional forms discussed in this chapter are
(a) the log—linear or constant elasticity model, (b) semilog regression models, and
(c) reciprocal models.

. In the log—linear model both the regressand and the regressor(s) are expressed in the log-

arithmic form. The regression coefficient attached to the log of a regressor is interpreted
as the elasticity of the regressand with respect to the regressor.

. In the semilog model either the regressand or the regressor(s) are in the log form. In the

semilog model where the regressand is logarithmic and the regressor X is time, the esti-
mated slope coefficient (multiplied by 100) measures the (instantaneous) rate of growth
of the regressand. Such models are often used to measure the growth rate of many eco-
nomic phenomena. In the semilog model if the regressor is logarithmic, its coefficient
measures the absolute rate of change in the regressand for a given percent change in the
value of the regressor.

. In the reciprocal models, either the regressand or the regressor is expressed in recipro-

cal, or inverse, form to capture nonlinear relationships between economic variables, as
in the celebrated Phillips curve.

. In choosing the various functional forms, great attention should be paid to the stochastic

disturbance term u;. As noted in Chapter 5, the CLRM explicitly assumes that the distur-
bance term has zero mean value and constant (homoscedastic) variance and that it is un-
correlated with the regressor(s). It is under these assumptions that the OLS estimators are
BLUE. Further, under the CNLRM, the OLS estimators are also normally distributed. One
should therefore find out if these assumptions hold in the functional form chosen for em-
pirical analysis. After the regression is run, the researcher should apply diagnostic tests,
such as the normality test, discussed in Chapter 5. This point cannot be overemphasized, for
the classical tests of hypothesis, such as the ¢, F, and Xz’ rest on the assumption that the dis-
turbances are normally distributed. This is especially critical if the sample size is small.

. Although the discussion so far has been confined to two-variable regression models, the

subsequent chapters will show that in many cases the extension to multiple regression
models simply involves more algebra without necessarily introducing more fundamen-
tal concepts. That is why it is so very important that the reader have a firm grasp of the
two-variable regression model.
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EXERCISES Questions

6.1. Consider the regression model
Vi =B+ Boxi +u;

where y; = (Y; — ¥) and x; = (X; — X). In this case, the regression line must pass
through the origin. True or false? Show your calculations.

6.2. The following regression results were based on monthly data over the period January
1978 to December 1987:
Y = 0.00681  + 0.75815X,
se = (0.02596)  (0.27009)
t=1(0.26229) (2.80700)
p value = (0.7984) (0.0186) r? = 0.4406
Y, = 0.76214X,
se = (0.265799)
t = (2.95408)
p value = (0.0131) r? =0.43684

where Y = monthly rate of return on Texaco common stock, %, and X = monthly
market rate of return,%."

a. What is the difference between the two regression models?

b. Given the preceding results, would you retain the intercept term in the first
model? Why or why not?

. How would you interpret the slope coefficients in the two models?
. What is the theory underlying the two models?
. Can you compare the 72 terms of the two models? Why or why not?

N 0 Q0

The Jarque—Bera normality statistic for the first model in this problem is 1.1167
and for the second model it is 1.1170. What conclusions can you draw from these
statistics?

g. The t value of the slope coefficient in the zero intercept model is about 2.95,
whereas that with the intercept present is about 2.81. Can you rationalize this
result?

6.3. Consider the following regression model:

1 1
E—ﬂﬁ‘ﬁz (Z>+ui

Note: Neither Y nor X assumes zero value.

a. Is this a linear regression model?

b. How would you estimate this model?

c. What is the behavior of Y as X tends to infinity?

d. Can you give an example where such a model may be appropriate?

*The underlying data were obtained from the data diskette included in Ernst R. Berndt, The Practice of
Econometrics: Classic and Contemporary, Addison-Wesley, Reading, Mass., 1991.
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Consider the log—linear model:
InY; =81+ B InX; +u;

Plot Y on the vertical axis and X on the horizontal axis. Draw the curves showing the
relationship between Y and X when 8, = 1, and when 8, > 1, and when 8, < 1.

Consider the following models:
Model I: Y; = B1 + BoXi +u;
Model II: Y =) + aX] +u;

1

where Y and X" are standardized variables. Show that &, = Bz(Sx /Sy) and hence es-
tablish that although the regression slope coefficients are independent of the change
of origin they are not independent of the change of scale.

Consider the following models:
InY* = o + o In X +uf
InY; = g1+ B InX; +u;

where Y* = w1 Y; and X} = w, X;, the w’s being constants.

a. Establish the relationships between the two sets of regression coefficients and
their standard errors.

b. Is the 2 different between the two models?

Between regressions (6.6.8) and (6.6.10), which model do you prefer? Why?

For the regression (6.6.8), test the hypothesis that the slope coefficient is not signifi-
cantly different from 0.005.

From the Phillips curve given in Eq. (6.7.3), is it possible to estimate the natural rate
of unemployment? How?

The Engel expenditure curve relates a consumer’s expenditure on a commodity to his
or her total income. Letting ¥ = consumption expenditure on a commodity and X =
consumer income, consider the following models:
Yy =B+ BoXi +u;
Yi = B+ Ba(1/X:) + u;
InY; =Ing; + B InX; +u;
InY; =Inpgi + Bo(1/X;) + u;
Yi=pfi+BnX; +u;
Which of these model(s) would you choose for the Engel expenditure curve and

why? (Hint: Interpret the various slope coefficients, find out the expressions for
elasticity of expenditure with respect to income, etc.)

Consider the following model:

ePrthaXi

= 1 + epithXi

As it stands, is this a linear regression model? If not, what “trick,” if any, can you use
to make it a linear regression model? How would you interpret the resulting model?
Under what circumstances might such a model be appropriate?
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6.12.

6.13.

Graph the following models (for ease of exposition, we have omitted the observation
subscript, 7):

a. Y =X forfo>1,=1,0<pB<1,....

b. Y = piePX  for B > 0and B, < 0.

Discuss where such models might be appropriate.

Consider the following regression:”

SPI; = —17.8 + 33.2 Gini;
se= (49) (11.8) r2=0.16

Where SPI = index of sociopolitical instability, average for 1960—1985, and Gini =
Gini coefficient for 1975 or the closest available year within the range of 1970—1980.
The sample consist of 40 countries.

The Gini coefficient is a measure of income inequality and it lies between 0 and 1.
The closer it is to 0, the greater the income equality, and the closer it is to 1, the
greater the income inequality.

a. How do you interpret this regression?

b. Suppose the Gini coefficient increases from 0.25 to 0.55. By how much does SPI
go up? What does that mean in practice?

c. Is the estimated slope coefficient statistically significant at the 5% level? Show the
necessary calculations.

d. Based on the preceding regression, can you argue that countries with greater in-
come inequality are politically unstable?

Empirical Exercises

6.14.

You are given the data in Table 6.7."" Fit the following model to these data and obtain
the usual regression statistics and interpret the results:

100 1
100—)1_&“32(7)

TABLE 6.7

86 79 76 69 65 62 52 51 51 48
3 7 12 17 25 35 45 55 70 120

6.15.

To study the relationship between investment rate (investment expenditure as a ratio
of the GDP) and savings rate (savings as a ratio of GDP), Martin Feldstein and
Charles Horioka obtained data for a sample of 21 countries. (See Table 6.8.) The
investment rate for each country is the average rate for the period 1960—1974 and the
savings rate is the average savings rate for the period 1960-1974. The variable Invrate
represents the investment rate and the variable Savrate represents the savings rate.

a. Plot the investment rate against the savings rate.

*See David N. Weil, Economic Growth, Addison Wesley, Boston, 2005, p. 392.

**Adapted from J. Johnston, Econometric Methods, 3d ed., McGraw-Hill, New York, 1984, p. 87. Actu-
ally this is taken from an econometric examination of Oxford University in 1975.

"Martin Feldstein and Charles Horioka, “Domestic Saving and International Capital Flows,” Economic
Journal, vol. 90, June 1980, pp. 314-329. Data reproduced from Michael P. Murray, Econometrics: A
Modern Introduction, Addison-Wesley, Boston, 2006.
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TABLE 6.8

SAVRATE INVRATE
Australia 0.250 0.270
Austria 0.285 0.282
Belgium 0.235 0.224
Canada 0.219 0.231
Denmark 0.202 0.224
Finland 0.288 0.305
France 0.254 0.260
Germany 0.271 0.264
Greece 0.219 0.248
Ireland 0.190 0.218
Italy 0.235 0.224
Japan 0.372 0.368
Luxembourg 0.313 0.277
Netherlands 0.273 0.266
New Zealand 0.232 0.249
Norway 0.278 0.299
Spain 0.235 0.241
Sweden 0.241 0.242
Switzerland 0.297 0.297
U.K. 0.184 0.192
u.s. 0.186 0.186

Note: SAVRATE = Savings as a ratio of GDP.
INVRATE = Investment expenditure as a ratio of GDP.

b. Based on this plot, do you think the following models might fit the data equally
well?

Invrate; = B + B,Savrate; + u;
In Invrate; = o + a5 In Savrate; + u;

c. Estimate both of these models and obtain the usual statistics.

d. How would you interpret the slope coefficient in the linear model? In the log—
linear model? Is there a difference in the interpretation of these coefficients?

e. How would you interpret the intercepts in the two models? Is there a difference in
your interpretation?

f Would you compare the two 72 coefficients? Why or why not?

g. Suppose you want to compute the elasticity of the investment rate with respect to
the savings rate. How would you obtain this elasticity for the linear model? For
the log—linear model? Note that this elasticity is defined as the percentage change
in the investment rate for a percentage change in the savings rate.

h. Given the results of the two regression models, which model would you prefer?
Why?

6.16. Table 6.9* gives the variable definitions for various kinds of expenditures, total

expenditure, income, age of household, and the number of children for a sample of

1,519 households drawn from the 1980-1982 British Family Expenditure Surveys.

*The data are from Richard Blundell and Krishna Pendakur, “Semiparametric Estimation and
Consumer Demand,” Journal of Applied Econometrics, vol. 13, no. 5, 1998, pp. 435-462. Data
reproduced from R. Carter Hill, William E. Griffiths, and George G. Judge, Undergraduate Econometrics,
2d ed., John Wiley & Sons, New York, 2001.
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TABLE 6.9 List of Variables:

wfood = budget share for food expenditure

wfuel = budget share for fuel expenditure
wcloth = budget share for clothing expenditure

walc = budget share for alcohol expenditure
wtrans = budget share for transportation expenditure
wother = budget share for other expenditures

totexp = total household expenditure
(rounded to the nearest 10 U.K. pounds sterling)
income = total net household income
(rounded to the nearest 10 U.K. pounds sterling)
age = age of household head
nk = number of children

The budget share of a commodity, say food, is defined as:
expenditure on food

wfood = =
total expenditure

The actual dataset can be found on this text’s website. The data include only house-
holds with one or two children living in Greater London. The sample does not in-
clude self-employed or retired households.

a. Using the data on food expenditure in relation to total expenditure, determine which
of the models summarized in Table 6.6 fits the data.

b. Based on the regression results obtained in (a), which model seems appropriate in the
present instance?

Note: Save these data for further analysis in the next chapter on multiple regression.

6.17. Refer to Table 6.3. Find out the rate of growth of expenditure on durable goods. What is
the estimated semielasticity? Interpret your results. Would it make sense to run a double-
log regression with expenditure on durable goods as the regressand and time as the
regressor? How would you interpret the slope coefficient in this case?

6.18. From the data given in Table 6.3, find out the growth rate of expenditure on nondurable
goods and compare your results with those obtained from Exercise 6.17.

6.19. Table 6.10 gives data for the UK. on total consumer expenditure (in £ millions) and
advertising expenditure (in £ millions) for 29 product categories.*

a. Considering the various functional forms we have discussed in the chapter, which
functional form might fit the data given in Table 6.10?

b. Estimate the parameters of the chosen regression model and interpret your results.

c. If you take the ratio of advertising expenditure to total consumer expenditure, what do
you observe? Are there any product categories for which this ratio seems unusually
high? Is there anything special about these product categories that might explain the
relatively high expenditure on advertising?

6.20. Refer to Example 3.3 in Chapter 3 to complete the following:

a. Plot cell phone demand against purchasing power (PP) adjusted per capita income.

b. Plot the log of cell phone demand against the log of PP-adjusted per capita income.

c. What is the difference between the two graphs?

d. From these two graphs, do you think that a double-log model might provide a better fit
to the data than the linear model? Estimate the double-log model.

e. How do you interpret the slope coefficient in the double-log model?

- Is the estimated slope coefficient in the double-log model statistically significant at the
5% level?

*These data are from Advertising Statistics Year Book, 1996, and are reproduced from http://www.
Economicswebinstitute.org/ecdata.htm.
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- obs ADEXP CONEXP RATIO

Advertising

Expenditure and 1 87957.00 13599.00 0.006468

Total Expenditure 2 23578.00 4699.000 0.005018

29 Product 4 6550.000 6119.000 0.001070

UK. 6 9127.000 1142.000 0.007992

7 1675.000 143.0000 0.011713

L 8 1110.000 138.0000 0.008043

nomicswebinsti .O1g;

ecdata.htm. 9 3351.000 85.00000 0.039424

10 1140.000 108.0000 0.010556

11 6376.000 307.0000 0.020769

12 4500.000 1545.000 0.002913

13 1899.000 943.0000 0.002014

14 10101.00 369.0000 0.027374

15 3831.000 285.0000 0.013442

16 99528.00 1052.000 0.094608

17 15855.00 862.0000 0.018393

18 8827.000 84.00000 0.105083

19 54517.00 1174.000 0.046437

20 49593.00 2531.000 0.019594

21 39664.00 408.0000 0.097216

22 327.0000 295.0000 0.001108

23 22549.00 488.0000 0.046207

24 416422.0 19200.00 0.021689

25 14212.00 94.00000 0.151191

26 54174.00 5320.000 0.010183

27 20218.00 357.0000 0.056633

28 11041.00 159.0000 0.069440

29 22542.00 244.0000 0.092385

Note: ADEXP = Advertising expenditure (£, millions)
CONEXP = Total consumer expenditure (£, millions)

g. How would you estimate the elasticity of cell phone demand with respect to PP-
adjusted income for the linear model given in Eq. (3.7.3)? What additional informa-
tion, if any, do you need? Call the estimated elasticity the income elasticity.

h. Is there a difference between the income elasticity estimated from the double-log model
and that estimated from the linear model? If so, which model would you choose?

6.21. Repeat Exercise 6.20 but refer to the demand for personal computers given in Eq. (3.7.4).
Is there a difference between the estimated income elasticities for cell phones and
personal computers? If so, what factors might account for the difference?

6.22. Refer to the data in Table 3.3. To find out if people who own PCs also own cell phones,
run the following regression:

CellPhone; = B; + B,PCs; + u;

Estimate the parameters of this regression.
Is the estimated slope coefficient statistically significant?
c. Does it matter if you run the following regression?

SR

PCs; = o + axCellphone; + u;

d. Estimate the preceding regression and test the statistical significance of the estimated
slope coefficient.
e. How would you decide between the first and the second regression?
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Appendix 6A

6A.1 Derivation of Least-Squares Estimators
for Regression through the Origin

‘We want to minimize

doar =) (¥ - pXi)? Q)
with respect to ﬁg.

Differentiating (1) with respect to B2, we obtain

>y i? .
L _, > (Y - B Xi)(—X) )
dp,
Setting Eq. (2) equal to zero and simplifying, we get
A XY
= 6.1.6) = (3
B2 > (6.1.6) = (3)

Now substituting the PRF: ¥; = B, X; + u; into this equation, we obtain
s 2 Xi(BoXi +ui)

B2 e ,
_ ,B + ZX,‘M, ( )
X
[Note: E(B2) = B.] Therefore,
X Xu;
E(p— B> =E [ZZ X‘; ] (5)

Expanding the right-hand side of Eq. (5) and noting that the X; are nonstochastic and the u; are ho-
moscedastic and uncorrelated, we obtain
o

var (B2) = E(B> — 2)* =
XX
Incidentally, note that from Eq. (2) we get, after equating it to zero,
> aiX; =0 )

From Appendix 3A, Section 3A.1, we see that when the intercept term is present in the model, we get
in addition to Eq. (7) the condition Y #; = 0. From the mathematics just given it should be clear why
the regression through the origin model may not have the error sum, Y %;, equal to zero.

Suppose we want to impose the condition that ) #; = 0. In that case we have

Y Yi=hY Xi+) i

2

(6.1.7) = (6)

. ®
=B Z X, since Z u; = 0 by construction
This expression then gives
A Y;
B = Lt
2 X
%)

. Y __ mean value of Y
" X mean value of X

But this estimator is not the same as Eq. (3) above or Eq. (6.1.6). And since the Bs of Eq. (3) is
unbiased (why?), the o of Eq. (9) cannot be unbiased.

The upshot is that, in regression through the origin, we cannot have both )" #; X; and ) #; equal
to zero, as in the conventional model. The only condition that is satisfied is that ) #; X; is zero.
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Recall that
Y=Y+ (2.6.3)
Summing this equation on both sides and dividing by A, the sample size, we obtain
f=V+a (10)
Since for the zero intercept model Y #; and, therefore 1:4, need not be zero, it then follows that
727 an

that is, the mean of actual Y values need not be equal to the mean of the estimated Y values; the two
mean values are identical for the intercept-present model, as can be seen from Eq. (3.1.10).
It was noted that, for the zero-intercept model, 7> can be negative, whereas for the conventional
model it can never be negative. This condition can be shown as follows.
Using Eq. (3.5.5a), we can write
RSS > a?
(R SF:
Now for the conventional, or intercept-present, model, Eq. (3.3.6) shows that

RSS=) =) ¥ —B Y 7<) % (13)

unless /§2 is zero (i.e., X has no influence on Y whatsoever). That is, for the conventional model,
RSS < TSS, or, 72 can never be negative.
For the zero-intercept model it can be shown analogously that

RSS=) if =) V- f3) X} (14)
(Note: The sums of squares of ¥ and X are not mean-adjusted.) Now there is no guarantee that this
RSS will always be less than > y? = Y ¥?> — NY? (the TSS), which suggests that RSS can be
greater than TSS, implying that 72, as conventionally defined, can be negative. Incidentally, notice that
in this case RSS will be greater than TSS if 85 > X? < NY2.

1

6A.2 Proof that a Standardized Variable
Has Zero Mean and Unit Variance

(12)

Consider the random variable (r.v.) ¥ with the (sample) mean value of ¥ and (sample) standard devi-
ation of S). Define
rr=t (15)
Sy
Hence Y}" is a standardized variable. Notice that standardization involves a dual operation: (1) change
of the origin, which is the numerator of Eq. (15), and (2) change of scale, which is the denominator.
Thus, standardization involves both a change of the origin and change of scale.

Now _
1Y%-9) _
S, n

V= 0 (16)

since the sum of deviation of a variable from its mean value is always zero. Hence the mean value of
the standardized value is zero. (Note: We could pull out the S, term from the summation sign because
its value is known.)

How ( ¥)?/(n — 1)
Y, —-Y n—
= s
1 )
ZmZ(Yi—Y)Z (17)
y
_(m=1S; .

- (n—DS?
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Note that

S2:Z(Yi—f’)2
Y n—1

which is the sample variance of Y.

6A.3 Logarithms

Consider the numbers 5 and 25. We know that
25 = 52 (18)

We say that the exponent 2 is the logarithm of 25 to the base 5. More formally, the logarithm of a
number (e.g., 25) to a given base (e.g., 5) is the power (2) to which the base (5) must be raised to ob-
tain the given number (25).

More generally, if

Y =b" (b > 0) (19)
then
log, Y = X (20)

Inmathematics the function (19) is called an exponential function and the function (20) is called the log-
arithmic function. As is clear from Egs. (19) and (20), one function is the inverse of the other function.
Although any (positive) base can be used, in practice, the two commonly used bases are 10 and the
mathematical number e =2.71828 . . . .
Logarithms to base 10 are called common logarithms. Thus,

log;p 100 =2 log;,30 ~ 1.48

That is, in the first case, 100 = 10? and in the latter case, 30 ~ 1043,
Logarithms to the base e are called natural logarithms. Thus,

log,100 ~ 4.6051 and log,30 ~ 3.4012

All these calculations can be done routinely on a hand calculator.

By convention, the logarithm to base 10 is denoted by the letters log and to the base e by In. Thus,
in the preceding example, we can write log 100 or log 30 or In 100 or In 30.

There is a fixed relationship between the common log and natural log, which is

In X' = 2.3026 log X (21)
That is, the natural log of the number X is equal to 2.3026 times the log of X to the base 10. Thus,
In 30 = 2.3026 log 30 = 2.3026(1.48) = 3.4012 (approx.)

as before. Therefore, it does not matter whether one uses common or natural logs. But in mathemat-
ics the base that is usually preferred is e, that is, the natural logarithm. Hence, in this book all logs are
natural logs, unless stated explicitly. Of course, we can convert the log of a number from one basis to
the other using Eq. (21).

Keep in mind that logarithms of negative numbers are not defined. Thus, the log of (—5) or the In
(=5) is not defined.

Some properties of logarithms are as follows: If 4 and B are any positive numbers, then it can be
shown that:

1. In(AXB)=In4 +1nB (22)
That is, the log of the product of two (positive) numbers A4 and B is equal to the sum of their logs.

2. In(4/B)=In4 —InB (23)




FIGURE 6A.1
Exponential and
logarithmic functions:
(a) Exponential
function;

(b) logarithmic
function.
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That is, the log of the ratio of 4 to B is the difference in the logs of 4 and B.
3. In(4+B)#In A+InB (24)

That is,the log of the sum or difference of 4 and B is not equal to the sum or difference of
their logs.

4. In (4% =kIn4 (25)
That is, the log of 4 raised to power £ is k times the log of 4.

5. Ine=1 (26)
That is, the log of e to itself as a base is 1 (as is the log of 10 to the base 10).

6. Inl1=0 (27)
That is, the natural log of the number 1 is zero (as is the common log of number 1).

7. fY=InX,
Yy 1
dX — X
That is, the rate of change (i.e., the derivative) of Y with respect to X is 1 over X. The exponential
and (natural) logarithmic functions are depicted in Figure 6A.1.
Although the number whose log is taken is always positive, the logarithm of that number can be
positive as well as negative. It can be easily verified that if

(28)

0<Y <1 then InY <0
Y=1 then InY =0
Y>1 then InY >0

Also note that although the logarithmic curve shown in Figure 6A.1(b) is positively sloping,
implying that the larger the number is, the larger its logarithmic value will be, the curve is increasing
at a decreasing rate (mathematically, the second derivative of the function is negative). Thus, In(10) =
2.3026 (approx.) and In(20) = 2.9957 (approx.). That is, if a number is doubled, its logarithm does
not double.

This is why the logarithm transformation is called a nonlinear transformation. This can also be
seen from Equation (28), which notes that if ¥ = In X, dY/dX = 1/X. This means that the slope of the
logarithmic function depends on the value of X; that is, it is not constant (recall the definition of
linearity in the variable).

Logarithms and percentages: Since d((lj'}x) = )l(, or d(ln X) = dTX, for very small changes the
change in In X is equal to the relative or proportional change in X. In practice, if the change in X is
reasonably small, the preceding relationship can be written as the change in In X ~ to the relative
change in X, where &~ means approximately.

Y YooX X=InY

X=lnY

45° 45°

(a) ®)
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Thus, for small changes,
X — Xi—
(InX; —In X;_y) =~ (tXitl) =relative change in X
-1

6A.4 Growth Rate Formulas

Let the variable Y be a function of time, Y = (), where ¢ denotes time. The instantaneous (i.e., a
point in time) rate of growth of Y, gy is defined as
_dYjdr 14y
="y TYa
Note that if we multiply gy by 100, we get the percent rate of growth, where ‘2—’; is the rate of change
of ¥ with respect to time.
Now if we let In ¥ = Inf(¢), where In stands for the natural logarithm, then
dlny 1dY
dt Y dt

(29)

(30)

This is the same as Eq. (29).
Therefore, logarithmic transformations are very useful in computing growth rates, especially if ¥’
is a function of some other time-dependent variables, as the following example will show. Let

Y=X-Z 31

where Y is nominal GDP, X is real GDP, and Z is the (GDP) price deflator. In words, the nominal GDP
is real GDP multiplied by the (GDP) price deflator. All these variables are functions of time, as they
vary over time.

Now taking logs on both sides of Eq. (31), we obtain:

InY=IhX+1InZ (32)

Differentiating Eq. (32) with respect to time, we get

tar_iax 14z -
Ydt Xdt Zdt
that is, gy = gx + gz, where g denotes growth rate.

In words, the instantaneous rate of growth of Y is equal to the sum of the instantaneous rate of
growth of X plus the instantaneous rate of growth of Z. In the present example, the instantaneous rate
of growth of nominal GDP is equal to the sum of the instantaneous rate of growth of real GDP and
the instantaneous rate of growth of the GDP price deflator.

More generally, the instantaneous rate of growth of a product is the sum of the instantaneous rates
of growth of its components. This can be generalized to the product of more than two variables.

In similar fashion, if we have

y== (34)

2 35)

that is, gy = gx — gz. In other words, the instantaneous rate of growth of Y is the difference between
the instantaneous rate of growth of X'minus the instantaneous rate of growth of Z. Thus if Y = per capita
income, X = GDP and Z = population, then the instantaneous rate of growth of per capita income is
equal to the instantaneous rate of growth of GDP minus the instantaneous rate of growth of population.

Now let Y = X 4 Z. What is the rate of growth of ¥? Let ¥ = total employment, X = blue collar
employment, and Z = white collar employment. Since

In(X + Z2) # In X + InY,
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it is not easy to compute the rate of growth of Y, but with some algebra, it can be shown that

X VA
=Xzt xz%
That is, the rate of growth of a sum is a weighted average of the rates of growth of its components.
For our example, the rate of growth of total employment is a weighted average of the rates of growth
of white collar employment and blue collar employment, the weights being the share of each compo-
nent in total employment.

(36)

8y

6A.5 Box-Cox Regression Model

Consider the following regression model

Y'=Bi+pXi+tu Y>0 (37)

1

where A (Greek lamda) is a parameter, which may be negative, zero, or positive. Since Y is raised to
the power A, we will get several transformations of Y, depending on the value of A.

Equation (37) is known as the Box-Cox regression model, named after the statisticians Box and
Cox.! Depending on the value of A, we have the following regression models, which are shown in
tabular form:

Value of A Regression Model
1 Yi = B1 + B2 Xi + ui
2 Y? = B+ B2 Xi + ui
0.5 VYi =81+ B2 Xi + uj
0 InY; =By + B2 Xi + uj
1
~0.5 = Xi + uj
«/Ti B1 + B2 Xi + ui
1
-1.0 ?=,31+/32X,'+u,'
1

As you can see, linear and log-linear models are special cases of the Box-Cox family of
transformations.

Of course, we can apply such transformations to the X variable(s) also. It is interesting to note that
when A is zero, we get the log-transformation of Y. The proof of this is slightly involved and is best
left for the references. (Calculus-minded readers will have to recall the 1’Hopital Rule.)

But how do we actually determine the appropriate value of A in a given situation? We cannot
estimate Eq. (37) directly, for it involves not only the regression parameters B and B, but also A,
which enters nonlinearly. But it can be shown that we can use the method of maximum likelihood to
estimate all these parameters. Regression packages exist to do just that.

We will not pursue this topic here because the procedure is somewhat involved.

However, we can proceed by trial and error. Choose several values of A, transform Y accordingly,
run regression (37), and obtain the residual sum of squares (RSS) for each transformed regression.
Choose the value of A that gives the minimum RSS.?

'G.E.P. Box and D.R. Cox, “An Analysis of Transformations,” Journal of the Royal Statistical Society, B26,
1964, pp. 211-243.

2For an accessible discussion, refer to John Neter, Michael Kutner, Christopher Nachtsheim, and
William Wasserman, Applied Linear Regression Models, 3rd ed., Richard D. Irwin, Chicago, 1996.




Chapter

Multiple Regression
Analysis: The Problem

of Estimation

The two-variable model studied extensively in the previous chapters is often inadequate in
practice. In our consumption—income example (Example 3.1), for instance, it was assumed
implicitly that only income X is related to consumption Y. But economic theory is seldom so
simple for, besides income, a number of other variables are also likely to affect consump-
tion expenditure. An obvious example is wealth of the consumer. As another example, the
demand for a commodity is likely to depend not only on its own price but also on the prices
of other competing or complementary goods, income of the consumer, social status, etc.
Therefore, we need to extend our simple two-variable regression model to cover models
involving more than two variables. Adding more variables leads us to the discussion of
multiple regression models, that is, models in which the dependent variable, or regressand,
Y depends on two or more explanatory variables, or regressors.

The simplest possible multiple regression model is three-variable regression, with one
dependent variable and two explanatory variables. In this and the next chapter we shall
study this model. Throughout, we are concerned with multiple linear regression models,
that is, models linear in the parameters; they may or may not be linear in the variables.

7.1 The Three-Variable Model: Notation and Assumptions

188

Generalizing the two-variable population regression function (PRF) Eq. (2.4.2), we may
write the three-variable PRF as

Yi = B+ BaXoi + B3 X5 +u; (7.1.7)

where Y is the dependent variable, X, and X3 the explanatory variables (or regressors), u the
stochastic disturbance term, and i the ith observation; in case the data are time series, the
subscript ¢ will denote the 7th observation.'

TFor notational symmetry, Eq. (7.1.1) can also be written as
Yi =B X1i + B2X2i + B3 X3 + Ui

with the provision that X1; =1 for all i.
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In Eq. (7.1.1) B is the intercept term. As usual, it gives the mean or average effect on ¥
of all the variables excluded from the model, although its mechanical interpretation is the
average value of ¥ when X, and X3 are set equal to zero. The coefficients 5, and B3 are
called the partial regression coefficients, and their meaning will be explained shortly.

We continue to operate within the framework of the classical linear regression model
(CLRM) first introduced in Chapter 3. As a reminder, we assume the following:

ASSUMPTIONS

=

Linear regression model, or linear in the parameters. (7.1.2)

2. Fixed X values or X values independent of the error term. Here, this means
we require zero covariance between u; and each X variables.

cov (u;, X)) = cov (u;, X3)) = 0 (7.1.3)2
3. Zero mean value of disturbance u;.
E(u;| X2 X31) = 0 for each i (7.1.4)
4. Homoscedasticity or constant variance of u;.
var (u;) = o2 (7.1.5)
5. No autocorrelation, or serial correlation, between the disturbances.
cov (u;, u)) = 0 i#j (7.1.6)
6. The number of observations n must be greater than the number of
parameters to be estimated, which is 3 in our current case. (7.1.7)
7. There must be variation in the values of the X variables. (7.1.8)

We will also address two other requirements.
8. No exact collinearity between the X variables.
No exact linear relationship between X; and X3 (7.1.9)
In Section 7.7, we will spend more time discussing the final assumption.
9. There is no specification bias.
The model is correctly specified. (7.1.10)

The rationale for assumptions (7.1.2) through (7.1.10) is the same as that discussed in
Section 3.2. Assumption (7.1.9), that there is no exact linear relationship between X, and
Xj, is technically known as the assumption of no collinearity or no multicollinearity if
more than one exact linear relationship is involved.

Informally, no collinearity means none of the regressors can be written as exact linear
combinations of the remaining regressors in the model.

Formally, no collinearity means that there exists no set of numbers, A, and A3, not both
zero such that

MXoi +A3X5 =0 (7.1.11)

2This assumption is automatically fulfilled if X, and X3 are nonstochastic and Eq. (7.1.4) holds.
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If such an exact linear relationship exists, then X, and X3 are said to be collinear or
linearly dependent. On the other hand, if Eq. (7.1.11) holds true only when A, =
A3 = 0, then X, and X; are said to be linearly independent.

Thus, if

Xy = —4X5,  or Xy +4X3 =0 (7.1.12)

the two variables are linearly dependent, and if both are included in a regression model, we
will have perfect collinearity or an exact linear relationship between the two regressors.

Although we shall consider the problem of multicollinearity in depth in Chapter 10, in-
tuitively the logic behind the assumption of no multicollinearity is not too difficult to grasp.
Suppose that in Eq. (7.1.1) Y, X;, and X3 represent consumption expenditure, income, and
wealth of the consumer, respectively. In postulating that consumption expenditure is lin-
early related to income and wealth, economic theory presumes that wealth and income may
have some independent influence on consumption. If not, there is no sense in including
both income and wealth variables in the model. In the extreme, if there is an exact linear re-
lationship between income and wealth, we have only one independent variable, not two,
and there is no way to assess the separate influence of income and wealth on consumption.
To see this clearly, let X3; = 2.X,; in the consumption—-income—wealth regression. Then the
regression (7.1.1) becomes

Y; = B1 + BoXoi + B3(2X2) 4 u;
=B+ (B2 +2B3) Xoi +u; (7.1.13)
=B+ aXy +u;

where o = (8, + 283). That is, we in fact have a two-variable and not a three-variable
regression. Moreover, if we run the regression (7.1.13) and obtain «, there is no way to
estimate the separate influence of X, (= f,) and X3 (= B3) on Y, for « gives the combined
influence of X, and X3 on Y3

In short, the assumption of no multicollinearity requires that in the PRF we include only
those variables that are not exact linear functions of one or more variables in the model.
Although we will discuss this topic more fully in Chapter 10, a couple of points may be
noted here.

First, the assumption of no multicollinearity pertains to our theoretical (i.e., PRF)
model. In practice, when we collect data for empirical analysis there is no guarantee that
there will not be correlations among the regressors. As a matter of fact, in most applied
work it is almost impossible to find two or more (economic) variables that may not be
correlated to some extent, as we will show in our illustrative examples later in the chapter.
What we require is that there be no exact linear relationships among the regressors, as in
Eq. (7.1.12).

Second, keep in mind that we are talking only about perfect /inear relationships between
two or more variables. Multicollinearity does not rule out nonlinear relationships between
variables. Suppose X3; = X3,.This does not violate the assumption of no perfect collinearity,
as the relationship between the variables here is nonlinear.

3Mathematically speaking, @ = (82 + 23) is one equation in two unknowns and there is no unique
way of estimating 82 and 3 from the estimated «.
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7.2 Interpretation of Multiple Regression Equation

Given the assumptions of the classical regression model, it follows that, on taking the con-
ditional expectation of ¥ on both sides of Eq. (7.1.1), we obtain

E(Y; | Xoi, X3;) = B1 + o Xoi + B3i X3 (7.2.1)

In words, Eq. (7.2.1) gives the conditional mean or expected value of Y conditional upon
the given or fixed values of X, and Xj3. Therefore, as in the two-variable case, multiple
regression analysis is regression analysis conditional upon the fixed values of the regres-
sors, and what we obtain is the average or mean value of Y or the mean response of Y for
the given values of the regressors.

7.3 'The Meaning of Partial Regression Coefficients

As mentioned earlier, the regression coefficients 8, and B3 are known as partial regression
or partial slope coefficients. The meaning of partial regression coefficient is as follows: 8,
measures the change in the mean value of Y, E(Y), per unit change in X>, holding the value
of X3 constant. Put differently, it gives the “direct” or the “net” effect of a unit change in
X, on the mean value of ¥, net of any effect that X3 may have on mean Y. Likewise, B3
measures the change in the mean value of Y per unit change in X3, holding the value of X,
constant.* That is, it gives the “direct” or “net” effect of a unit change in X3 on the mean
value of Y, net of any effect that X, may have on mean Y.

How do we actually go about holding the influence of a regressor constant? To explain
this, let us revert to our child mortality example (Example 6.6). Recall that in that example,
Y = child mortality (CM), X, = per capita GNP (PGNP), and X3 = female literacy rate
(FLR). Let us suppose we want to hold the influence of FLR constant. Since FLR may
have some effect on CM as well as PGNP in any given concrete data, what we can do is
remove the (linear) influence of FLR from both CM and PGNP by running the regression of
CM on FLR and of PGNP on FLR separately and then looking at the residuals obtained from
these regressions. Using the data given in Table 6.4, we obtain the following regressions:

CM; = 263.8635 — 2.3905 FLR; + iiy;

(7.3.1)
se = (12.2249) (0.2133) r? = 0.6695
where #; represents the residual term of this regression.
PGNP; = —39.3033 + 28.1427 FLR, + iix;
: . (7.3.2)

se = (734.9526)  (12.8211) 2 =0.0721

where #,; represents the residual term of this regression.

“The calculus-minded reader will notice at once that 8, and B3 are the partial derivatives of
E(Y| X2, X3) with respect to X, and Xs.

SIncidentally, the terms holding constant, controlling for, allowing or accounting for the influence of,
correcting the influence of, and sweeping out the influence of are synonymous and will be used
interchangeably in this text.
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Now

u1; = (CM; —263.8635 +2.3905 FLR)) (7.3.3)
represents that part of CM left after removing from it the (linear) influence of FLR. Likewise,
iy = (PGNP; + 39.3033 — 28.1427 FLR;) (7.3.4)

represents that part of PGNP left after removing from it the (linear) influence of FLR.

Therefore, if we now regress ii1; on ily;, which are “purified” of the (linear) influence of
FLR, wouldn’t we obtain the net effect of PGNP on CM? That is indeed the case (see
Appendix 7A, Section 7A.2). The regression results are as follows:

1 = —0.00560;

(7.3.5)
se= (0.0019) 12 =0.1152

Note: This regression has no intercept term because the mean value of the OLS residuals
i11; and w1y; is zero. (Why?)

The slope coefficient of —0.0056 now gives the “true” or net effect of a unit change in
PGNP on CM or the true slope of CM with respect to PGNP. That is, it gives the partial
regression coefficient of CM with respect to PGNP, 3.

Readers who want to get the partial regression coefficient of CM with respect to FLR
can replicate the above procedure by first regressing CM on PGNP and getting the residu-
als from this regression (#y;), then regressing FLR on PGNP and obtaining the residuals
from this regression (il,; ), and then regressing i;; on iiy;. I am sure readers get the idea.

Do we have to go through this multistep procedure every time we want to find out the
true partial regression coefficient? Fortunately, we do not have to do that, for the same job
can be accomplished fairly quickly and routinely by the OLS procedure discussed in the
next section. The multistep procedure just outlined is merely for pedagogic purposes to
drive home the meaning of “partial” regression coefficient.

7.4 OLS and ML Estimation of the Partial

Regression Coefficients

To estimate the parameters of the three-variable regression model (7.1.1), we first consider
the method of ordinary least squares (OLS) introduced in Chapter 3 and then consider
briefly the method of maximum likelihood (ML) discussed in Chapter 4.

OLS Estimators

To find the OLS estimators, let us first write the sample regression function (SRF) corre-
sponding to the PRF of Eq. (7.1.1) as follows:

Y = Bi + BoXoi + B3 Xsi + i (7.4.7)

where u; is the residual term, the sample counterpart of the stochastic disturbance
term u; .
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As noted in Chapter 3, the OLS procedure consists of choosing the values of the
unknown parameters so that the residual sum of squares (RSS) Y @7 is as small as possi-
ble. Symbolically,

min Y a7 =Y (Y — i — B X — B3 X))’ (7.4.2)

where the expression for the RSS is obtained by simple algebraic manipulations of
Eq. (7.4.1).

The most straightforward procedure to obtain the estimators that will minimize
Eq. (7.4.2) is to differentiate it with respect to the unknowns, set the resulting expressions
to zero, and solve them simultaneously. As shown in Appendix 7A, Section 7A.1, this pro-
cedure gives the following normal equations [cf. Egs. (3.1.4) and (3.1.5)]:

Y = Bi + poXs + B3 X (7.4.3)
Z YiXo = B ZXZi + B2 ZX; + B ZXyXy (7.4.9)
Z YiXs3 = Bi ZXy + b ZXZiX3i + B ZX%' (7.:4.5)

From Eq. (7.4.3) we see at once that
Br=Y - pXo - B X5 (7.4.6)

which is the OLS estimator of the population intercept ;.

Following the convention of letting the lowercase letters denote deviations from sample
mean values, one can derive the following formulas from the normal equations (7.4.3)
to (7.4.5):

2 (Z J’ixzi)(z x32,») - (Z yix3i)(2 x2ix3i)

B = 5 (7.4.7)°
(Z x%i) (Z x321) - (Z x2ix3i)
By = (2 yixsi) (0 x3) — (3 wixai ) (3 xaixsi) (7.48)

(Cx3) (X a3) — (Cxaxy)”

which give the OLS estimators of the population partial regression coefficients f, and fs,
respectively.

In passing, note the following: (1) Equations (7.4.7) and (7.4.8) are symmetrical in na-
ture because one can be obtained from the other by interchanging the roles of X, and Xj;
(2) the denominators of these two equations are identical; and (3) the three-variable case is
a natural extension of the two-variable case.

5This estimator is equal to that of Eq. (7.3.5), as shown in App. 7A, Sec. 7A.2.
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Variances and Standard Errors of OLS Estimators

Having obtained the OLS estimators of the partial regression coefficients, we can derive
the variances and standard errors of these estimators in the manner indicated in Appen-
dix 3A.3. As in the two-variable case, we need the standard errors for two main purposes:
to establish confidence intervals and to test statistical hypotheses. The relevant formulas are
as follows:’

var () — L, X33+ X3 %% —2X0 X5 Y xaixy;
" Yoy Yo — (ZXZix3i)2

se(B1) = +y/var (B1) (7.4.10)

2
var (f) = 2%, o2 (7.4.11)

(Xa3)(Xx3) - (ZxZix3i)2

} .02 (7.4.9)

or, equivalently,
2

v
ZX% (1 _’"223)

where r; 3 is the sample coefficient of correlation between X, and X3 as defined in Chapter 38

se(f) = +/var ($o) (7.4.13)

Zx%i o2

var (B,) = (7.4.12)

var (B5) = (7.4.14)
T () (E) - (D)
or, equivalently,
A 0'2
var(Ps) = Y2 (1= r2y) (7.4.15)
se(Bs3) = 4/ var (B) (7.4.16)

—7”2302

(EEANO BEENO 3 (7.4.17)

In all these formulas o2 is the (homoscedastic) variance of the population disturbances ;.
Following the argument of Appendix 3A, Section 3A.5, the reader can verify that an
unbiased estimator of o' is given by

cov (B, B3) =

S}

52 XU (7.4.18)

S
W

’The derivations of these formulas are easier using matrix notation. Advanced readers may refer to
Appendix C.

8Using the definition of r given in Chapter 3, we have

> X21X3i)2

2
23— 2 2
Do X5 2o X5
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Note the similarity between this estimator of o? and its two-variable counterpart
[62 = (Y. 4?)/(n — 2)]. The degrees of freedom are now (n — 3) because in estimating
3" 42 we must first estimate 1, B2, and B3, which consume 3 df. (The argument is quite
general. Thus, in the four-variable case the df will be n — 4.)

The estimator 62 can be computed from Eq. (7.4.18) once the residuals are available,
but it can also be obtained more readily by using the following relation (for proof, see
Appendix 7A, Section 7A.3):

DA =Dy =By = By Y i (7.4.19)

which is the three-variable counterpart of the relation given in Eq. (3.3.6).

Properties of OLS Estimators

The properties of OLS estimators of the multiple regression model parallel those of the
two-variable model. Specifically:

1. The three-variable regression line (surface) passes through the means Y, X, and
X3, which is evident from Eq. (7.4.3) (cf. Eq. [3.1.7] of the two-variable model). This prop-
erty holds generally. Thus in the k-variable linear regression model (a regressand and
[k — 1] regressors)

Yi = B+ BoXoi + B3 Xsi + - 4 B X + ui (7.4.20)
we have
Bi=7—BXo— BsXs — - — Xy (7.4.21)

2. The mean value of the estimated Y; ( = I?',-) is equal to the mean value of the actual
Y;, which is easy to prove:
Y = Bi + BaXoi + B3 X
= (¥ = Xy — B3 X3) + BoXoi + B3 X (Why?)
=Y + Bo(Xoi — X2) + Bs(X3i — X3) (7.4.22)
=Y + Boxai + Bsxsi
where as usual small letters indicate values of the variables as deviations from their
respective means.

Summing both sides_of Eq. (7.4.22) over the sample values and dividing through by
the sample size n gives Y = Y. (Note: Y x2; = Y x3; = 0. Why?) Notice that by virtue of
Eq. (7.4.22) we can write

P = Boxai + Paxsi (7.4.23)
where §; = (¥; — V).
Therefore, the SRF (7.4.1) can be expressed in the deviation form as
yi =i+l = Paxar + Paxsi + 1 (7.4.24)

3. 0= 4 = 0, which can be verified from Eq. (7.4.24). (Hint: Sum both sides

of Eq. [7.4.24] over the sample values.)

4. The residuals #; are uncorrelated with X5; and X3;, thatis, Y 0, Xy =Y 41, X3 =0
(see Appendix 7A.1 for proof).
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5. The residuals ii; are uncorrelated with ¥;; that is, Y 1, ¥; = 0. Why? (Hint: Multiply
Eq. [7.4.23] on both sides by #; and sum over the sample values.)

6. From Egs. (7.4.12) and (7.4.15) it is evident that as 7,3, the correlation coefficient
between X > and X3, increases toward 1, the variances of ,32 and ﬂ3 increase for given val-
ues of 02 and Y x2 or Y xZ. In the hmlt, when r,3 = 1 (i.e., perfect collinearity), these
variances become infinite. The implications of this will be explored fully in Chapter 10, but
intuitively the reader can see that as ;3 increases it is going to be increasingly difficult to
know what the true values of 8, and 5 are. (More on this in the next chapter, but refer to
Eq.[7.1.13])

7. It is also clear from Egs. (7.4.12) and (7.4.15) that for given values of 7,3 and le
ory. x3l, the Varlances of the OLS estimators are directly proportlonal to o2; that is, they
increase as o2 increases. Slmllarly, for given values of o? and ry3, the variance of ﬁz is
inversely proportional to ) le ; that is, the greater the variation in the sample values of X,
the smaller the variance of ,32 and therefore f, can be estimated more precisely. A similar
statement can be made about the variance of 33.

8. Given the assumptions of the classical linear regression model, which are spelled
out in Section 7.1, one can prove that the OLS estimators of the partial regression coeffi-
cients not only are linear and unbiased but also have minimum variance in the class of all
linear unbiased estimators. In short, they are BLUE. Put differently, they satisfy
the Gauss—Markov theorem. (The proof parallels the two-variable case proved in Appen-
dix 3A, Section 3A.6 and will be presented more compactly using matrix notation in
Appendix C.)

Maximum Likelihood Estimators

We noted in Chapter 4 that under the assumption that u;, the population disturbances, are
normally distributed with zero mean and constant variance o2, the maximum likelihood
(ML) estimators and the OLS estimators of the regression coefficients of the two-variable
model are identical. This equality extends to models containing any number of variables.
(For proof, see Appendix 7A, Section 7A.4.) However, this is not true of the estimator
of o2, It can be shown that the ML estimator of 02 is ) ﬁiz/ n regardless of the number of
variables in the model, whereas the OLS estimator of o2 is Y #2/(n —2) in the two-
variable case, Y #1?/(n — 3) in the three-variable case, and Y_ #1%/(n — k) in the case of the
k-variable model (7.4.20). In short, the OLS estimator of o? takes into account the number
of degrees of freedom, whereas the ML estimator does not. Of course, if # is very large, the
ML and OLS estimators of o will tend to be close to each other. (Why?)

7.5 The Multiple Coefficient of Determination R?2
and the Multiple Coefficient of Correlation R

In the two-variable case we saw that 7> as defined in Eq. (3.5.5) measures the goodness of
fit of the regression equation; that is, it gives the proportion or percentage of the total vari-
ation in the dependent variable Y explained by the (single) explanatory variable X. This
notation of 72 can be easily extended to regression models containing more than two vari-
ables. Thus, in the three-variable model we would like to know the proportion of the varia-
tion in Y explained by the variables X, and X3 jointly. The quantity that gives this
information is known as the multiple coefficient of determination and is denoted by R%:
conceptually it is akin to 72.
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To derive R?, we may follow the derivation of 72 given in Section 3.5. Recall that

BoXoi 4 B3 X3 + s

Y =pi +
(7.5.1)
+

where )A’, is the estimated value of ¥; from the fitted regression line and is an estimator of
true E(Y; | X2, X3;). Upon shifting to lowercase letters to indicate deviations from the
mean values, Eq. (7.5.1) may be written as

yi = ,ézxzi + BSx3i + u;
(7.5.2)
=Ji + i

Squaring Eq. (7.5.2) on both sides and summing over the sample values, we obtain

Doi=) Y ai42) pi
=) W+ (Why)

Verbally, Eq. (7.5.3) states that the total sum of squares (TSS) equals the explained sum of
squares (ESS) plus the residual sum of squares (RSS). Now substituting for }_ @7 from
Eq. (7.4.19), we obtain

Zyz'z = Z)Aﬁz"‘zyzz _I§2 Z)’ixzi —,33 Z%‘xﬁ

which, on rearranging, gives

(7.5.3)

ESS =) 77 =F2 ) v + s )y (7.5.4)
Now, by definition
R? = ESS
TSS ;
3 3 7.5.5
_B Do Vixai + B3 ) yixsi ( )

2
(cf. Eq. [7.5.5] with Eq. [3.5.6]). ’

Since the quantities entering Eq. (7.5.5) are generally computed routinely, R can be
computed easily. Note that R?, like 72, lies between 0 and 1. If it is 1, the fitted regression
line explains 100 percent of the variation in Y. On the other hand, if it is 0, the model does
not explain any of the variation in Y. Typically, however, R? lies between these extreme val-

ues. The fit of the model is said to be “better” the closer R% is to 1.

°Note that R? can also be computed as follows:

R2_q RS _ . Xu _ ., (n-3)5°
TSS R (n—-1$82
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Recall that in the two-variable case we defined the quantity 7 as the coefficient of correla-
tion and indicated that it measures the degree of (linear) association between two variables.
The three-or-more-variable analogue of 7 is the coefficient of multiple correlation, denoted
by R, and it is a measure of the degree of association between Y and all the explanatory vari-
ables jointly. Although r can be positive or negative, R is always taken to be positive. In prac-
tice, however, R is of little importance. The more meaningful quantity is R?.

Before proceeding further, let us note the following relationship between R? and the
variance of a partial regression coefficient in the k-variable multiple regression model given
in Eq. (7.4.20):

o 2 1
Var(,B,) = ﬁ (m) (7.5.6)
J J

where ,éj is the partial regression coefficient of regressor X; and R% is the R? in the
regression of X; on the remaining (k — 2) regressors. (Note: There are [k — 1] regressors
in the k-variable regression model.) Although the utility of Eq. (7.5.6) will become appar-
ent in Chapter 10 on multicollinearity, observe that this equation is simply an extension of
the formula given in Eq. (7.4.12) or Eq. (7.4.15) for the three-variable regression model,
one regressand and two regressors.

7.6 An Illustrative Example

EXAMPLE 7.1
Child Mortality
in Relation to
per Capita GNP
and Female
Literacy Rate

In Chapter 6 we considered the behavior of child mortality (CM) in relation to per capita
GNP (PGNP). There we found that PGNP has a negative impact on CM, as one would
expect. Now let us bring in female literacy as measured by the female literacy rate (FLR).
A priori, we expect that FLR too will have a negative impact on CM. Now when we intro-
duce both the variables in our model, we need to net out the influence of each of the
regressors. That is, we need to estimate the (partial) regression coefficients of each regressor.
Thus our model is:

CM; = B1 + B2PGNP; + B3FLR; + u; (7.6.1)

The necessary data are given in Table 6.4. Keep in mind that CM is the number of deaths
of children under five per 1000 live births, PGNP is per capita GNP in 1980, and FLR is
measured in percent. Our sample consists of 64 countries.

Using the EViewsé6 statistical package, we obtained the following results:

CM; = 263.6416 — 0.0056 PGNP; — 2.2316 FLR;

(7.6.2)
se = (11.5932) (0.0019) (0.2099)  R2=0.7077

R? = 0.6981*

where figures in parentheses are the estimated standard errors. Before we interpret this re-
gression, observe the partial slope coefficient of PGNP, namely, —0.0056. Is it not precisely
the same as that obtained from the three-step procedure discussed in the previous section
(see Eq. [7.3.5])? But should that surprise you? Not only that, but the two standard errors
are precisely the same, which is again unsurprising. But we did so without the three-step
cumbersome procedure.

*On this, see Section 7.8.
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Let us now interpret these regression coefficients: —0.0056 is the partial regression
coefficient of PGNP and tells us that with the influence of FLR held constant, as PGNP
increases, say, by a dollar, on average, child mortality goes down by 0.0056 units. To make
it more economically interpretable, if the per capita GNP goes up by a thousand dollars, on
average, the number of deaths of children under age 5 goes down by about 5.6 per thou-
sand live births. The coefficient —2.2316 tells us that holding the influence of PGNP
constant, on average, the number of deaths of children under age 5 goes down by about
2.23 per thousand live births as the female literacy rate increases by one percentage point.
The intercept value of about 263, mechanically interpreted, means that if the values of
PGNP and FLR rate were fixed at zero, the mean child mortality rate would be about 263
deaths per thousand live births. Of course, such an interpretation should be taken with a
grain of salt. All one could infer is that if the two regressors were fixed at zero, child mor-
tality will be quite high, which makes practical sense. The R? value of about 0.71 means
that about 71 percent of the variation in child mortality is explained by PGNP and FLR, a
fairly high value considering that the maximum value of R? can at most be 1. All told, the
regression results make sense.

What about the statistical significance of the estimated coefficients? We will take this
topic up in Chapter 8. As we will see there, in many ways this chapter will be an extension
of Chapter 5, which dealt with the two-variable model. As we will also show, there are
some important differences in statistical inference (i.e., hypothesis testing) between the
two-variable and multivariable regression models.

Regression on Standardized Variables

In the preceding chapter we introduced the topic of regression on standardized variables
and stated that the analysis can be extended to multivariable regressions. Recall that a vari-
able is said to be standardized or in standard deviation units if it is expressed in terms of
deviation from its mean and divided by its standard deviation.

For our child mortality example, the results are as follows:

CM" = — 0.2026 PGNP* — 0.7639 FLR* (7.6.3)
se=(0.0713) 0.0713) 2 =0.7077

Note: The starred variables are standardized variables. Also note that there is no intercept
in the model for reasons already discussed in the previous chapter.

As you can see from this regression, with FLR held constant, a standard deviation
increase in PGNP leads, on average, to a 0.2026 standard deviation decrease in CM. Simi-
larly, holding PGNP constant, a standard deviation increase in FLR, on average, leads to a
0.7639 standard deviation decrease in CM. Relatively speaking, female literacy has more
impact on child mortality than per capita GNP. Here you will see the advantage of using
standardized variables, for standardization puts all variables on equal footing because all
standardized variables have zero means and unit variances.

Impact on the Dependent Variable of a Unit Change in More
than One Regressor

Before proceeding further, suppose we want to find out what would happen to the child
mortality rate if we were to increase PGNP and FLR simultaneously. Suppose per capita
GNP were to increase by a dollar and at the same time the female literacy rate were to go
up by one percentage point. What would be the impact of this simultaneous change on the
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child mortality rate? To find out, all we have to do is multiply the coefficients of PGNP and
FLR by the proposed changes and add the resulting terms. In our example this gives us:

—0.0056(1) — 2.2316(1) = 2.2372

That is, as a result of this simultaneous change in PGNP and FLR, the number of deaths of
children under age 5 would go down by about 2.24 deaths.

More generally, if we want to find out the total impact on the dependent variable of a unit
change in more than one regressor, all we have to do is multiply the coefficients of those re-
gressors by the proposed changes and add up the products. Note that the intercept term
does not enter into these calculations. (Why?)

7.7 Simple Regression in the Context of Multiple Regression:

Introduction to Specification Bias

Recall that assumption (7.1.10) of the classical linear regression model states that the re-
gression model used in the analysis is “correctly” specified; that is, there is no specifica-
tion bias or specification error (see Chapter 3 for some introductory remarks). Although
the topic of specification error will be discussed more fully in Chapter 13, the illustrative
example given in the preceding section provides a splendid opportunity not only to drive
home the importance of assumption (7.1.10) but also to shed additional light on the mean-
ing of partial regression coefficient and provide a somewhat informal introduction to the
topic of specification bias.

Assume that Eq. (7.6.1) is the “true” model explaining the behavior of child mortality in
relation to per capita GNP and female literacy rate (FLR). But suppose we disregard FLR
and estimate the following simple regression:

Yi = o1 + o Xo + uy; (771)

where ¥ = CM and X, = PGNP

Since Eq. (7.6.1) is the true model, estimating Eq. (7.7.1) would constitute a specifica-
tion error; the error here consists in omitting the variable Xj3, the female literacy rate. Notice
that we are using different parameter symbols (the alphas) in Eq. (7.7.1) to distinguish them
from the true parameters (the betas) given in Eq. (7.6.1).

Now will o, provide an unbiased estimate of the true impact of PGNP, which is given by
B in model (7.6.1)? Will E(&;) = B2, where @, is the estimated value of a,? In other
words, will the coefficient of PGNP in Eq. (7.7.1) provide an unbiased estimate of the true
impact of PGNP on CM, knowing that we have omitted the variable X3 (FLR) from the
model? As you would suspect, in general, &, will not be an unbiased estimator of the true
B>. To give a glimpse of the bias, let us run the regression (7.7.1), which gave the follow-
ing results.

CM; = 157.4244 — 0.0114 PGNP,
se= (9.8455) (0.0032) 2 =0.1662

(7.7.2)

Observe several things about this regression compared to the “true” multiple regres-
sion (7.6.1):

1. In absolute terms (i.e., disregarding the sign), the PGNP coefficient has increased from
0.0056 to 0.0114, almost a two-fold increase.
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2. The standard errors are different.
3. The intercept values are different.

4. The r? values are dramatically different, although it is generally the case that, as the
number of regressors in the model increases, the 7> value increases.

Now suppose that you regress child mortality on female literacy rate, disregarding the
influence of PGNP. You will obtain the following results:

CM; = 263.8635 — 2.3905 FLR,

(7.7.3)
se = (21.2249) (0.2133) r? = 0.6696
Again if you compare the results of this (misspecified) regression with the “true” multi-
ple regression, you will see that the results are different, although the difference here is not
as noticeable as in the case of regression (7.7.2).
The important point to note is that serious consequences can ensue if you misfit a model.
We will look into this topic more thoroughly in Chapter 13, on specification errors.

7.8 R? and the Adjusted R?

An important property of R? is that it is a nondecreasing function of the number of
explanatory variables or regressors present in the model, unless the added variable is per-
fectly collinear with the other regressors; as the number of regressors increases, R> almost
invariably increases and never decreases. Stated differently, an additional X variable will
not decrease R>. Compare, for instance, regression (7.7.2) or (7.7.3) with (7.6.2). To see
this, recall the definition of the coefficient of determination:

R ESS
" TSS

RSS
=1—-— 8.1
TSS (7.8.1)

X

—1
> 7

Now Y yl.2 is independent of the number of X variables in the model because it is simply
MY — )7)2. The RSS, Y ﬁf, however, depends on the number of regressors present in the
model. Intuitively, it is clear that as the number of X variables increases, 1212 is likely to
decrease (at least it will not increase); hence R? as defined in Eq. (7.8.1) will increase. In
view of this, in comparing two regression models with the same dependent variable but
differing number of X variables, one should be very wary of choosing the model with the
highest R2.

To compare two R? terms, one must take into account the number of X variables present
in the model. This can be done readily if we consider an alternative coefficient of determi-
nation, which is as follows:

a2 /(n — k)

R =/ h
Y yi/(n—1)

(7.8.2)
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where k& = the number of parameters in the model including the intercept term. (In the
three-variable regression, k = 3. Why?) The R? thus defined is known as the adjusted R?,
denoted by R?. The term adjusted means adjusted for the df associated with the sums of
squares entering into Eq. (7.8.1): ) ftlz has n — k df in a model involving k parameters,
which include the intercept term, and yi2 has n — 1 df. (Why?) For the three-variable
case, we know that ) i has n — 3 df.

Equation (7.8.2) can also be written as

R=1-= (7.8.3)

where 62 is the residual variance, an unbiased estimator of true o2, and S} is the sample
variance of Y.

It is easy to see that R> and R? are related because, substituting Eq. (7.8.1) into
Eq. (7.8.2), we obtain

n—1

n—k

R*=1-(1-R%» (7.8.4)

It is immediately apparent from Eq. (7.8.4) that (1) for k > 1, R*> < R? which implies that
as the number of X variables increases, the adjusted R? increases less than the unadjusted
R?; and (2) R? can be negative, although R? is necessarily nonnegative.'® In case R? turns
out to be negative in an application, its value is taken as zero.

Which R? should one use in practice? As Theil notes:

... itis good practice to use R? rather than R? because R tends to give an overly optimistic picture
of the fit of the regression, particularly when the number of explanatory variables is not very small
compared with the number of observations.!!

But Theil’s view is not uniformly shared, for he has offered no general theoretical justifica-
tion for the “superiority” of R?. For example, Goldberger argues that the following R, call
it modified R?, will do just as well:'?

Modified R?* = (1 — k/n)R? (7.8.5)

His advice is to report R%, n, and k and let the reader decide how to adjust R* by allowing
for n and .

"Note, however, that if RZ =1, R2 = R2 =1. When R2 =0, R2 = (1 —k)/(n— k), in which case R?
can be negative if k > 1.

"Henri Theil, Introduction to Econometrics, Prentice Hall, Englewood Cliffs, NJ, 1978, p. 135.

2Arthur S. Goldberger, A Course in Econometrics, Harvard University Press, Cambridge, Mass., 1991,

p. 178. For a more critical view of R?, see S. Cameron, “Why Is the R Squared Adjusted Reported?”
Journal of Quantitative Economics, vol. 9, no. 1, January 1993, pp. 183-186. He argues that “It [R?] is
NOT a test statistic and there seems to be no clear intuitive justification for its use as a descriptive
statistic. Finally, we should be clear that it is not an effective tool for the prevention of data mining”

(p. 186).
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Despite this advice, it is the adjusted R?, as given in Eq. (7.8.4), that is reported by most
statistical packages along with the conventional R2. The reader is well advised to treat R>
as just another summary statistic.

Incidentally, for the child mortality regression (7.6.2), the reader should verify that R>
is 0.6981, keeping in mind that in this example (n — 1) = 63 and (n — k) = 60. As ex-
pected, R? of 0.6981 is less than R? of 0.7077.

Besides R? and adjusted R? as goodness of fit measures, other criteria are often used to
judge the adequacy of a regression model. Two of these are Akaike’s Information crite-
rion and Amemiya’s Prediction criteria, which are used to select between competing
models. We will discuss these criteria when we consider the problem of model selection in
greater detail in a later chapter (see Chapter 13).

Comparing Two R? Values

It is crucial to note that in comparing two models on the basis of the coefficient of deter-
mination, whether adjusted or not, the sample size n and the dependent variable must be the
same, the explanatory variables may take any form. Thus for the models

InY; = B1 + BoXoi + B3Xz +u; (7.8.6)
Yi = a) +arx Xy + a3 X3 +u; (7.8.7)

the computed R? terms cannot be compared. The reason is as follows: By definition,
R? measures the proportion of the variation in the dependent variable accounted for by the
explanatory variable(s). Therefore, in Eq. (7.8.6) R* measures the proportion of the varia-
tion in In Y explained by X, and X3, whereas in Eq. (7.8.7) it measures the proportion of the
variation in Y, and the two are not the same thing: As noted in Chapter 6, a change in In Y
gives a relative or proportional change in Y, whereas a change in Y gives an absolute
change. Therefore, var f/, /var Y; is not equal to var (In Y;)/var (In Y;); that is, the two coef-
ficients of determination are not the same.'?

How then does one compare the R*’s of two models when the regressand is not in the
same form? To answer this question, let us first consider a numerical example.

13From the definition of R, we know that

1—-R?2= RSS = 270’2_
TSS (Y - Y)?
for the linear model and
1o 2B
S(InY; —InY)2

for the log model. Since the denominators on the right-hand sides of these expressions are different,
we cannot compare the two R? terms directly.

As shown in Example 7.2, for the linear specification, the RSS = 0.1491 (the residual sum of
squares of coffee consumption), and for the log-linear specification, the RSS = 0.0226 (the residual
sum of squares of log of coffee consumption). These residuals are of different orders of magnitude
and hence are not directly comparable.
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EXAMPLE 7.2
Coffee

Consumption in
the United States,
1970-1980

TABLE 7.1

U.S. Coffee
Consumption (Y) in
Relation to Average
Real Retail Price
(X),* 1970-1980

Source: The data for Y are
from Summary of National
Coffee Drinking Study, Data
Group, Elkins Park, Penn.,
1981; and the data on
nominal X (i.e., X in current
prices) are from Nielsen Food
Index, A. C. Nielsen, New
York, 1981.

I'am indebted to Scott E.
Sandberg for collecting the
data.

Consider the data in Table 7.1. The data pertain to consumption of cups of coffee per day
(Y) and real retail price of coffee (X) in the United States for years 1970-1980. Applying
OLS to the data, we obtain the following regression results:

Vo= 2.6911 — 0.4795X,

se =(0.1216) (0.1140) (7.8.8)

RSS =0.1491; r? = 0.6628

The results make economic sense: As the price of coffee increases, on average, coffee con-
sumption goes down by about half a cup per day. The r? value of about 0.66 means that
the price of coffee explains about 66 percent of the variation in coffee consumption. The
reader can readily verify that the slope coefficient is statistically significant.

From the same data, the following double-log, or constant elasticity, model can be
estimated:

InY; = 0.7774 — 0.2530 In X;

se=(0.0152) (0.0494) (7.8.9)

RSS = 0.0226; r2 = 0.7448

Since this is a double-log model, the slope coefficient gives a direct estimate of the price
elasticity coefficient. In the present instance, it tells us that if the price of coffee per pound
goes up by 1 percent, on average, per day coffee consumption goes down by about
0.25 percent. Remember that in the linear model (7.8.8) the slope coefficient only gives
the rate of change of coffee consumption with respect to price. (How will you estimate the
price elasticity for the linear model?) The r? value of about 0.74 means that about 74 per-
cent of the variation in the log of coffee demand is explained by the variation in the log of
coffee price.

Since the r? value of the linear model of 0.6628 is smaller than the r? value of 0.7448
of the log-linear model, you might be tempted to choose the latter model because of its

Y,
Cups per Person X,
Year per Day $ perlb
1970 2.57 0.77
1971 2.50 0.74
1972 2.35 0.72
1973 2.30 0.73
1974 2.25 0.76
1975 2.20 0.75
1976 2.11 1.08
1977 1.94 1.81
1978 1.97 1.39
1979 2.06 1.20
1980 2.02 1.17

*Note: The nominal price was divided by the Consumer Price Index (CPI) for food and beverages, 1967 = 100.
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TABLE 7.2
Raw Data for
Comparing Two
R? Values
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high r? value. But for reasons already noted, we cannot do so. But if you do want to com-
pare the two r? values, you may proceed as follows:

1. Obtain Iﬁ\Yt from Eq. (7.8.9) for each observation; that is, obtain the estimated log
value of each observation from this model. Take the antilog of these values and then
compute r? between these antilog values and actual Y; in the manner indicated by
EqQ. (3.5.14). This r2 value is comparable to the r? value of the linear model (7.8.8).

2. Alternatively, assuming all Y values are positive, take logarithms of the Y values, In Y.
Obtain the estimated Y values, Y;, from the linear model (7.8.8), take the logarithms of
these estimated Y values (i.e., In ¥;), and compute the r? between (In ¥;) and (In ¥;) in
the manner indicated in Eq. (3.5.14). This r? value is comparable to the r? value
obtained from Eq. (7.8.9).

For our coffee example, we present the necessary raw data to compute the comparable
r?'s in Table 7.2. To compare the r? value of the linear model (7.8.8) with that of (7.8.9),
we first obtain log of YD) (given in column [6] of Table 7.2), then we obtain the log of
actual Y values (given in column [5] of the table), and then compute r? between these two
sets of values using Eq. (3.5.14). The result is an r? value of 0.6779, which is now compa-
rable with the r2 value of the log-linear model of 0.7448. The difference between the two
r? values is about 0.07.

On the other hand, if we want to compare the r? value of the log-linear model with the
linear model, we obtain InY; for each observation from Eq. (7.8.9) (given in column [3] of
the table), obtain their antilog values (given in column [4] of the table), and finally compute
r? between these antilog values and the actual Y values, using formula (3.5.14). This will
give an r? value of 0.7187, which is slightly higher than that obtained from the linear model
(7.8.8), namely, 0.6628.

Using either method, it seems that the log-linear model gives a slightly better fit.

Antilog of
Y, 2 InY; InY, In Y, In (V)
Year (1) ) 3) 4) (5) 6)

1970 2.57 2321887 0.843555  2.324616  0.943906 0.842380
1971 2,50 2336272 0.853611 2.348111 0.916291  0.848557
1972 235 2345863 0.860544  2.364447  0.854415 0.852653
1973 230 2341068 0.857054  2.356209  0.832909 0.850607
1974  2.25 2326682 0.846863  2.332318  0.810930  0.844443
1975 2.20 2331477 0.850214  2.340149  0.788457 0.846502
1976 211 2173233 0.757943  2.133882  0.746688 0.776216
1977 194 1.823176 0.627279 1.872508  0.662688  0.600580
1978 1.97 2.024579 0.694089  2.001884  0.678034 0.705362
1979 2.06 2.115689 0.731282  2.077742  0.722706  0.749381
1980 2.02 2.130075 0.737688  2.091096  0.703098 0.756157

Notes: Column (1): Actual Y values from Table 7.1.
Column (2): Estimated Y values from the linear model (7.8.8).
Column (3): Estimated log Y values from the double-log model (7.8.9).
Column (4): Antilog of values in column (3).
Column (5): Log values of Y in column (1).
Column (6): Log values of ¥, in column (2).
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Allocating R? among Regressors

Let us return to our child mortality example. We saw in Eq. (7.6.2) that the two regressors
PGNP and FLR explain 0.7077 or 70.77 percent of the variation in child mortality. But now
consider the regression (7.7.2) where we dropped the FLR variable and as a result the
r? value dropped to 0.1662. Does that mean the difference in the »? value of 0.5415
(0.7077 — 0.1662) is attributable to the dropped variable FLR? On the other hand, if you
consider regression (7.7.3), where we dropped the PGNP variable, the 7> value drops to
0.6696. Does that mean the difference in the 72 value of 0.0381 (0.7077 — 0.6696) is due
to the omitted variable PGNP?

The question then is: Can we allocate the multiple R? of 0.7077 between the two regres-
sors, PGNP and FLR, in this manner? Unfortunately, we cannot do so, for the allocation
depends on the order in which the regressors are introduced, as we just illustrated. Part of
the problem here is that the two regressors are correlated, the correlation coefficient
between the two being 0.2685 (verify it from the data given in Table 6.4). In most applied
work with several regressors, correlation among them is a common problem. Of course, the
problem will be very serious if there is perfect collinearity among the regressors.

The best practical advice is that there is little point in trying to allocate the R* value to
its constituent regressors.

The “Game” of Maximizing R?
In concluding this section, a warning is in order: Sometimes researchers play the game of
maximizing R?, that is, choosing the model that gives the highest R2. But this may be dan-
gerous, for in regression analysis our objective is not to obtain a high R? per se but rather to
obtain dependable estimates of the true population regression coefficients and draw statisti-
cal inferences about them. In empirical analysis it is not unusual to obtain a very high R? but
find that some of the regression coefficients either are statistically insignificant or have signs
that are contrary to a priori expectations. Therefore, the researcher should be more con-
cerned about the logical or theoretical relevance of the explanatory variables to the depen-
dent variable and their statistical significance. If in this process we obtain a high R?, well and
good; on the other hand, if R? is low, it does not mean the model is necessarily bad.'*

As a matter of fact, Goldberger is very critical about the role of R%. He has said:

From our perspective, R? has a very modest role in regression analysis, being a measure of
the goodness of fit of a sample LS [least-squares] linear regression in a body of data. Nothing
in the CR [CLRM] model requires that R?be high. Hence a high R 2 is not evidence in favor of
the model and a low R? is not evidence against it.

In fact the most important thing about R is that it is not important in the CR model.
The CR model is concerned with parameters in a population, not with goodness of fit in the

“Some authors would like to deemphasize the use of R? as a measure of goodness of fit as well as its
use for comparing two or more R? values. See Christopher H. Achen, Interpreting and Using
Regression, Sage Publications, Beverly Hills, Calif., 1982, pp. 58-67, and C. Granger and P. Newbold,
“R? and the Transformation of Regression Variables,” Journal of Econometrics, vol. 4, 1976, pp. 205-210.
Incidentally, the practice of choosing a model on the basis of highest R?, a kind of data mining, intro-
duces what is known as pretest bias, which might destroy some of the properties of OLS estimators
of the classical linear regression model. On this topic, the reader may want to consult George G.
Judge, Carter R. Hill, William E. Griffiths, Helmut Litkepohl, and Tsoung-Chao Lee, Introduction to the
Theory and Practice of Econometrics, John Wiley, New York, 1982, Chapter 21.
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sample. . . . If one insists on a measure of predictive success (or rather failure), then o? might
suffice: after all, the parameter o2 is the expected squared forecast error that would result if
the population CEF [PRF] were used as the predictor. Alternatively, the squared standard error
of forecast . . . at relevant values of x [regressors] may be informative.'>

7.9 The Cobb-Douglas Production Function:

More on Functional Form

In Section 6.4 we showed how with appropriate transformations we can convert nonlinear
relationships into linear ones so that we can work within the framework of the classical lin-
ear regression model. The various transformations discussed there in the context of the
two-variable case can be easily extended to multiple regression models. We demonstrate
transformations in this section by taking up the multivariable extension of the two-variable
log—linear model; others can be found in the exercises and in the illustrative examples
discussed throughout the rest of this book. The specific example we discuss is the cele-
brated Cobb—Douglas production function of production theory.
The Cobb—Douglas production function, in its stochastic form, may be expressed as

Y = B XD xDen (7.9.1)

where Y = output
X, = labor input
X3 = capital input
u = stochastic disturbance term
e = base of natural logarithm

From Eq. (7.9.1) it is clear that the relationship between output and the two inputs is
nonlinear. However, if we log-transform this model, we obtain:

InY; =1Ingi + BaIn Xy + B3 In X3 +u;

(7.9.2)
= Bo+ BoIn Xy + B3 In X3 + u;

where Sy = In ;.

Thus written, the model is linear in the parameters Sy, 8, and B3 and is therefore a lin-
ear regression model. Notice, though, it is nonlinear in the variables ¥ and X but linear in
the logs of these variables. In short, Eq. (7.9.2) is a log-log, double-log, or log—linear
model, the multiple regression counterpart of the two-variable log—linear model (6.5.3).

The properties of the Cobb—Douglas production function are quite well known:

1. B, is the (partial) elasticity of output with respect to the labor input, that is, it measures
the percentage change in output for, say, a 1 percent change in the labor input, holding the cap-
ital input constant (see Exercise 7.9).

2. Likewise, Bs is the (partial) elasticity of output with respect to the capital input, hold-
ing the labor input constant.

3. The sum (B, + B3) gives information about the refurns to scale, that is, the response
of output to a proportionate change in the inputs. If this sum is 1, then there are constant
returns to scale, that is, doubling the inputs will double the output, tripling the inputs will

TSArther S. Goldberger, op. cit., pp. 177-178.
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triple the output, and so on. If the sum is less than 1, there are decreasing returns to scale—
doubling the inputs will less than double the output. Finally, if the sum is greater than 1,
there are increasing returns to scale—doubling the inputs will more than double the output.

Before proceeding further, note that whenever you have a log—linear regression model
involving any number of variables the coefficient of each of the X variables measures the
(partial) elasticity of the dependent variable Y with respect to that variable. Thus, if you have
a k-variable log—linear model:

InY; =80+ BInXy +B35In X5 + -+ B In Xy + u; (793)

each of the (partial) regression coefficients, B, through B, is the (partial) elasticity of ¥
with respect to variables X, through X;.!6

EXAMPLE 7.3
Value Added,
Labor Hours, and
Capital Input in
the Manufactur-
ing Sector

TABLE 7.3

Value Added, Labor
Hours, and Capital
Input in the Manu-
facturing Sector of
the U.S., 2005

Source: 2005 Annual Survey
of Manufacturers, Sector 31:
Supplemental Statistics

for U.S.

To illustrate the Cobb-Douglas production function, we obtained the data shown in
Table 7.3; these data are for the manufacturing sector of all 50 states and Washington, DC,
for 2005.

Assuming that the model (7.9.2) satisfies the assumptions of the classical linear regres-
sion model,'” we obtained the following regression by the OLS method (see Appendix 7A,
Section 7A.5 for the computer printout):

Capital Input
Output Labor Input Capital
Value Added Worker Hrs Expenditure
(thousands of $) (thousands) (thousands of $)
Area Y X2 X3
Alabama 38,372,840 424,471 2,689,076
Alaska 1,805,427 19,895 57,997
Arizona 23,736,129 206,893 2,308,272
Arkansas 26,981,983 304,055 1,376,235
California 217,546,032 1,809,756 13,554,116
Colorado 19,462,751 180,366 1,790,751
Connecticut 28,972,772 224,267 1,210,229
Delaware 14,313,157 54,455 421,064
District of Columbia 159,921 2,029 7,188
Florida 47,289,846 471,211 2,761,281
Georgia 63,015,125 659,379 3,540,475
Hawaii 1,809,052 17,528 146,371
Idaho 10,511,786 75,414 848,220
lllinois 105,324,866 963,156 5,870,409
Indiana 90,120,459 835,083 5,832,503
lowa 39,079,550 336,159 1,795,976
Kansas 22,826,760 246,144 1,595,118
Kentucky 38,686,340 384,484 2,503,693
Louisiana 69,910,555 216,149 4,726,625

16To see this, differentiate Eq. (7.9.3) partially with respect to the log of each X variable. Therefore,
alnY/aln X =(aY/9X2)(X2/Y) = B2, which, by definition, is the elasticity of Y with respect to X,
and dInY/3In X3 = (9Y/3X3)(X3/Y) = B3, which is the elasticity of Y with respect to X3, and so on.
7Notice that in the Cobb-Douglas production function (7.9.1) we have introduced the stochastic
error term in a special way so that in the resulting logarithmic transformation it enters in the usual
linear form. On this, see Section 6.9.



EXAMPLE 7.3
(Continued)

Chapter 7 Multiple Regression Analysis: The Problem of Estimation 209

Maine 7,856,947 82,021 415,131
Maryland 21,352,966 174,855 1,729,116
Massachusetts 46,044,292 355,701 2,706,065
Michigan 92,335,528 943,298 5,294,356
Minnesota 48,304,274 456,553 2,833,525
Mississippi 17,207,903 267,806 1,212,281
Missouri 47,340,157 439,427 2,404,122
Montana 2,644,567 24,167 334,008
Nebraska 14,650,080 163,637 627,806
Nevada 7,290,360 59,737 522,335
New Hampshire 9,188,322 96,106 507,488
New Jersey 51,298,516 407,076 3,295,056
New Mexico 20,401,410 43,079 404,749
New York 87,756,129 727,177 4,260,353
North Carolina 101,268,432 820,013 4,086,558
North Dakota 3,556,025 34,723 184,700
Ohio 124,986,166 1,174,540 6,301,421
Oklahoma 20,451,196 201,284 1,327,353
Oregon 34,808,109 257,820 1,456,683
Pennsylvania 104,858,322 944,998 5,896,392
Rhode Island 6,541,356 68,987 297,618
South Carolina 37,668,126 400,317 2,500,071
South Dakota 4,988,905 56,524 311,251
Tennessee 62,828,100 582,241 4,126,465
Texas 172,960,157 1,120,382 11,588,283
Utah 15,702,637 150,030 762,671
Vermont 5,418,786 48,134 276,293
Virginia 49,166,991 425,346 2,731,669
Washington 46,164,427 313,279 1,945,860
West Virginia 9,185,967 89,639 685,587
Wisconsin 66,964,978 694,628 3,902,823
Wyoming 2,979,475 15,221 361,536
iny; = 3.8876 + 0.4683InX5; + 0.5213InX3;
(0.3962) (0.0989) (0.0969)
t=1(9.8115) (4.7342) (5.3803) (7.9.4)
R? =0.9642 df = 48
R2=0.9627

From Eq. (7.9.4) we see that in the U.S. manufacturing sector for 2005, the output elas-
ticities of labor and capital were 0.4683 and 0.5213, respectively. In other words, over the
50 U.S. states and the District of Columbia, holding the capital input constant, a 1 percent
increase in the labor input led on the average to about a 0.47 percent increase in the out-
put. Similarly, holding the labor input constant, a 1 percent increase in the capital input
led on the average to about a 0.52 percent increase in the output. Adding the two output
elasticities, we obtain 0.99, which gives the value of the returns to scale parameter. As is
evident, the manufacturing sector for the 50 United States and the District of Columbia
was characterized by constant returns to scale.

From a purely statistics viewpoint, the estimated regression line fits the data quite well.
The R? value of 0.9642 means that about 96 percent of the variation in the (log of) output is
explained by the (logs of) labor and capital. In Chapter 8, we shall see how the estimated
standard errors can be used to test hypotheses about the “true” values of the parameters of
the Cobb-Douglas production function for the U.S. manufacturing sector of the economy.
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7.10 Polynomial Regression Models

FIGURE 7.1
The U-shaped
marginal cost curve.

We now consider a class of multiple regression models, the polynomial regression
models, that have found extensive use in econometric research relating to cost and produc-
tion functions. In introducing these models, we further extend the range of models to which
the classical linear regression model can easily be applied.

To fix the ideas, consider Figure 7.1, which relates the short-run marginal cost (MC) of
production (Y) of a commodity to the level of its output (X). The visually-drawn MC curve
in the figure, the textbook U-shaped curve, shows that the relationship between MC and
output is nonlinear. If we were to quantify this relationship from the given scatterpoints,
how would we go about it? In other words, what type of econometric model would capture
first the declining and then the increasing nature of marginal cost?

Geometrically, the MC curve depicted in Figure 7.1 represents a parabola. Mathemati-
cally, the parabola is represented by the following equation:

Y = Bo+ BiX + B X? (7.10.1)

which is called a quadratic function, or more generally, a second-degree polynomial in the
variable X—the highest power of X represents the degree of the polynomial (if X> were
added to the preceding function, it would be a third-degree polynomial, and so on).

The stochastic version of Eq. (7.10.1) may be written as

Yi = Bo+ BiXi + B X7 +u; (7.10.2)

which is called a second-degree polynomial regression.
The general kth degree polynomial regression may be written as

Yi = Bo+ BiXi + X7+ + BX} +u; (7.10.3)

Notice that in these types of polynomial regressions there is only one explanatory variable
on the right-hand side but it appears with various powers, thus making them multiple re-
gression models. Incidentally, note that if X; is assumed to be fixed or nonstochastic, the
powered terms of X; also become fixed or nonstochastic.

Do these models present any special estimation problems? Since the second-degree
polynomial (7.10.2) or the kth degree polynomial (7.10.13) is linear in the parameters, the
B’s, they can be estimated by the usual OLS or ML methodology. But what about the

Marginal cost

Output
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collinearity problem? Aren’t the various X’s highly correlated since they are all powers of
X? Yes, but remember that terms like X2, X3, X*, etc., are all nonlinear functions of X and
hence, strictly speaking, do not violate the no multicollinearity assumption. In short, poly-
nomial regression models can be estimated by the techniques presented in this chapter and
present no new estimation problems.

EXAMPLE 7.4
Estimating the
Total Cost
Function

TABLE 7.4
Total Cost (Y) and
Output (X)

As an example of the polynomial regression, consider the data on output and total cost of
production of a commodity in the short run given in Table 7.4. What type of regression
model will fit these data? For this purpose, let us first draw the scattergram, which is
shown in Figure 7.2.

From this figure it is clear that the relationship between total cost and output resem-
bles the elongated S curve; notice how the total cost curve first increases gradually and
then rapidly, as predicted by the celebrated law of diminishing returns. This S shape of the
total cost curve can be captured by the following cubic or third-degree polynomial:

Y;zﬁo+,81X,+52Xi2+ﬁ3Xi3+u; (7.10.49)

where Y = total cost and X = output.

Given the data of Table 7.4, we can apply the OLS method to estimate the parameters
of Eq. (7.10.4). But before we do that, let us find out what economic theory has to say
about the short-run cubic cost function (7.10.4). Elementary price theory shows that in
the short run the marginal cost (MC) and average cost (AC) curves of production are
typically U-shaped—initially, as output increases both MC and AC decline, but after a
certain level of output they both turn upward, again the consequence of the law of di-
minishing return. This can be seen in Figure 7.3 (see also Figure 7.1). And since the MC
and AC curves are derived from the total cost curve, the U-shaped nature of these curves
puts some restrictions on the parameters of the total cost curve (7.10.4). As a matter of

FIGURE 7.2 The total cost curve.
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EXAMPLE 7.4
(Continued)

FIGURE 7.3 Short-run cost functions.
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fact, it can be shown that the parameters of Eq. (7.10.4) must satisfy the following

restrictions if one is to observe the typical U-shaped short-run marginal and average cost
18

curves:

1 ﬂO/ﬁ]land :33 >0
2. 8, <0 (7.10.5)

3. B3 <3B1PBs

All this theoretical discussion might seem a bit tedious. But this knowledge is extremely
useful when we examine the empirical results, for if the empirical results do not agree with
prior expectations, then, assuming we have not committed a specification error (i.e., cho-
sen the wrong model), we will have to modify our theory or look for a new theory and
start the empirical enquiry all over again. But as noted in the Introduction, this is the na-
ture of any empirical investigation.

Empirical Results. When the third-degree polynomial regression was fitted to the data
of Table 7.4, we obtained the following results:

Yi = 141.7667 + 63.4776X; — 12.9615X? 4+ 0.9396 X}
(6.3753) (4.7786)  (0.9857)  (0.0591) R? = 0.9983 (7.10.6)
(Note: The figures in parentheses are the estimated standard errors.) Although we will examine
the statistical significance of these results in the next chapter, the reader can verify that they

are in conformity with the theoretical expectations listed in Eq. (7.10.5). We leave it as an
exercise for the reader to interpret the regression (7.10.6).

'8See Alpha C. Chiang, Fundamental Methods of Mathematical Economics, 3d ed., McGraw-Hill, New
York, 1984, pp. 250-252.
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EXAMPLE 7.5
GDP Growth
Rate and Relative
per Capita GDP
Sfor 2007 in 190
Countries (in
billions of 2000
dollars)

Source: World Bank World
Development Indicators,
adjusted to 2000 base and
estimated and projected
values developed by the
Economic Research Service.

As an additional economic example of the polynomial regression model, consider the
following regression results:
GDPG;= 5.5347 — 5.5788 RGDP + 2.8378 RGDP?
se = (0.2435) (1.5995) (1.4391)
R? = 0.1092 adj R? = 0.0996

(7.10.7)

Where GDPG = GDP growth rate, percent in 2007, and RGDP = relative per capita GDP
in 2007 (percentage of U.S. GDP per capita, 2007). The adjusted R? (adj R?) tells us that
after taking into account the number of regressors, the model explains only about
9.96 percent of the variation in GDPG. Even the unadjusted R? of 0.1092 seems low. This
might seem to be a disappointing value, but as we shall show in the next chapter,
such low R? values are frequently encountered in cross-sectional data with a large number
of observations. Besides, even an apparently low R? value can be statistically significant
(i.e., different from zero), as we will show in the next chapter.

*7.11 Partial Correlation Coefficients

Explanation of Simple and Partial Correlation Coefficients

In Chapter 3 we introduced the coefficient of correlation  as a measure of the degree of
linear association between two variables. For the three-variable regression model we can
compute three correlation coefficients: 7, (correlation between Y and X;), 713 (correlation
coefficient between Y and X3), and 7,3 (correlation coefficient between X, and X3); notice
that we are letting the subscript 1 represent Y for notational convenience. These correlation
coefficients are called gross or simple correlation coefficients, or correlation coefficients
of zero order. These coefficients can be computed by the definition of correlation coeffi-
cient given in Eq. (3.5.13).

But now consider this question: Does, say, 7, in fact measure the “true” degree of (lin-
ear) association between Y and X, when a third variable X3 may be associated with both of
them? This question is analogous to the following question: Suppose the true regression
model is (7.1.1) but we omit from the model the variable X3 and simply regress ¥ on X5,
obtaining the slope coefficient of, say, b,. Will this coefficient be equal to the true coeffi-
cient B, if the model (7.1.1) were estimated to begin with? The answer should be apparent
from our discussion in Section 7.7. In general, 7|, is not likely to reflect the true degree of
association between Y and X, in the presence of X3. As a matter of fact, it is likely to give a
false impression of the nature of association between Y and X;, as will be shown shortly.
Therefore, what we need is a correlation coefficient that is independent of the influence,
if any, of X3 on X, and Y. Such a correlation coefficient can be obtained and is known
appropriately as the partial correlation coefficient. Conceptually, it is similar to the partial
regression coefficient. We define

r12.3 = partial correlation coefficient between Y and X3, holding X3 constant
r13.2 = partial correlation coefficient between Y and X3, holding X, constant

ry3.1 = partial correlation coefficient between X, and X3, holding Y constant

*Optional.
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These partial correlations can be easily obtained from the simple or zero-order, correlation
coefficients as follows (for proofs, see the exercises):'’

ri2 —risrns

r23 = (7.11.1)
Ja=rd) (1=13,)

r32 = [ Taras (7.11.2)
Ja=rt) (1=r2)

723 —112r'13 (7.11.3)

T = G-

The partial correlations given in Egs. (7.11.1) to (7.11.3) are called first-order correlation
coefficients. By order we mean the number of secondary subscripts. Thus 7,34 would be
the correlation coefficient of order two, 712 345 would be the correlation coefficient of order
three, and so on. As noted previously, r1,, 713, and so on are called simple or zero-order
correlations. The interpretation of, say, 71,34 is that it gives the coefficient of correlation
between Y and X5, holding X3 and X constant.

Interpretation of Simple and Partial
Correlation Coefficients

In the two-variable case, the simple » had a straightforward meaning: It measured the
degree of (linear) association (and not causation) between the dependent variable Y and the
single explanatory variable X. But once we go beyond the two-variable case, we need to
pay careful attention to the interpretation of the simple correlation coefficient. From
Eq. (7.11.1), for example, we observe the following:

1. Evenifr;, =0, 1,3 will not be zero unless 73 or 7,3 or both are zero.

2. Ifrj, = 0and r; 3 and 7, 3 are nonzero and are of the same sign, 7, 3 will be negative,
whereas if they are of the opposite signs, it will be positive. An example will make this
point clear. Let Y = crop yield, X, = rainfall, and X3 = temperature. Assume |, = 0, that
is, no association between crop yield and rainfall. Assume further that r; is positive and
r3 is negative. Then, as Eq. (7.11.1) shows, 3 will be positive; that is, holding tempera-
ture constant, there is a positive association between yield and rainfall. This seemingly
paradoxical result, however, is not surprising. Since temperature X3 affects both yield Y and
rainfall X, in order to find out the net relationship between crop yield and rainfall, we need
to remove the influence of the “nuisance” variable temperature. This example shows how
one might be misled by the simple coefficient of correlation.

3. The terms r}, 3 and r|; (and similar comparisons) need not have the same sign.

4. In the two-variable case we have seen that 7 lies between 0 and 1. The same property
holds true of the squared partial correlation coefficients. Using this fact, the reader should
verify that one can obtain the following expression from Eq. (7.11.1):

0 <riy+ris+r35—2rr13m3 < 1 (7.11.4)

"Most computer programs for multiple regression analysis routinely compute the simple correlation
coefficients; hence the partial correlation coefficients can be readily computed.
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which gives the interrelationships among the three zero-order correlation coefficients. Sim-
ilar expressions can be derived from Eqs. (7.11.2) and (7.11.3).

5. Suppose that ;3 = r,3 = 0. Does this mean that r, is also zero? The answer is
obvious from Eq. (7.11.4). The fact that ¥ and X5 and X, and X3 are uncorrelated does not
mean that ¥ and X, are uncorrelated.

In passing, note that the expression r7,; may be called the coefficient of partial
determination and may be interpreted as the proportion of the variation in ¥ not explained
by the variable X3 that has been explained by the inclusion of X, into the model (see Exer-
cise 7.5). Conceptually it is similar to R%.

Before moving on, note the following relationships between R?, simple correlation co-
efficients, and partial correlation coefficients:

2 2
ST +ri; — 2riorisr;

R? 7.11.5

1 —r223 ( )
R2=r122+(1—r122)r123_2 (7.11.6)
R =riy+ (1 =rf3)rias (7.11.7)

In concluding this section, consider the following: It was stated previously that R> will
not decrease if an additional explanatory variable is introduced into the model, which can
be seen clearly from Eq. (7.11.6). This equation states that the proportion of the variation in
Y explained by X, and X3 jointly is the sum of two parts: the part explained by X, alone
(= r%,) and the part not explained by X, (= 1 — r#,) times the proportion that is explained
by X; after holding the influence of X, constant. Now R? > r{, so long as r{;, > 0. At

worst, 775 , will be zero, in which case R = r?,.

Summary and
Conclusions

—

This chapter introduced the simplest possible multiple linear regression model, namely,
the three-variable regression model. It is understood that the term /linear refers to
linearity in the parameters and not necessarily in the variables.

2. Although a three-variable regression model is in many ways an extension of the two-
variable model, there are some new concepts involved, such as partial regression coeffi-
cients, partial correlation coefficients, multiple correlation coefficient, adjusted and
unadjusted (for degrees of freedom) R?, multicollinearity, and specification bias.

3. This chapter also considered the functional form of the multiple regression model, such
as the Cobb—Douglas production function and the polynomial regression model.

4. Although R? and adjusted R? are overall measures of how the chosen model fits a given
set of data, their importance should not be overplayed. What is critical is the underlying
theoretical expectations about the model in terms of a priori signs of the coefficients
of the variables entering the model and, as it is shown in the following chapter, their sta-
tistical significance.

5. The results presented in this chapter can be easily generalized to a multiple linear
regression model involving any number of regressors. But the algebra becomes very
tedious. This tedium can be avoided by resorting to matrix algebra. For the interested
reader, the extension to the k-variable regression model using matrix algebra is
presented in Appendix C, which is optional. But the general reader can read the
remainder of the text without knowing much of matrix algebra.
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EXERCISES Questions
7.1. Consider the data in Table 7.5.

TABLE 7.5 Y X, Xs
1 1 2
3 2 1
8 3 -3

Based on these data, estimate the following regressions:

Yi = a1 + X +uy; Q)
Yi = X 4+ A3X5 4+ uy; (2)
Y = B1 + BoXoi + B3 X5 +u; 3)

Note: Estimate only the coefficients and not the standard errors.
a. Is ap = B,? Why or why not?

b. Is A3 = f3? Why or why not?

What important conclusion do you draw from this exercise?

7.2. From the following data estimate the partial regression coefficients, their standard
errors, and the adjusted and unadjusted R? values:

Y =367.693 X, =402.760 X3 =8.0
D (Y = 7)? = 66042269 Y (X — X;)* = 84855.096
D (X3 — X3)? =280.000 Y (¥ — V)(Xy — Xy) = 74778.346
D (Y = V(X3 — X3) =4250.900 > (Xo — X2)(X3; — X3) = 4796.000
n=15
7.3. Show that Eq. (7.4.7) can also be expressed as

by = Y yi(x2 — by3xs;)
Y (x2i — by3x3;)?

net (of x3) covariation between y and x;

net (of x3) variation in x;

where b, 3 is the slope coefficient in the regression of X, on Xj. (Hint: Recall that
by =Y x2x3i/ Y X3;.)

7.4. In a multiple regression model you are told that the error term u; has the following
probability distribution, namely, #; ~ N(0, 4). How would you set up a Monte Carlo
experiment to verify that the true variance is in fact 4?

7.5. Show that r122'3 =(R> - r123)/(1 — r123) and interpret the equation.

7.6. If the relation oy X7 + oo X5 + a3 X5 = 0 holds true for all values of X, X, and X3,
find the values of the three partial correlation coefficients.

7.7. Is it possible to obtain the following from a set of data?
a. ryz = 09, ry3 = —0.2, rip = 0.8
b. ri2 = 0.6, ry3 = —0.9, r3p = —0.5
c. rp1 =0.01,7r13 =0.66,r,3 =—0.7
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7.8. Consider the following model:
Y; = B + B, Education; + B, Years of experience + u;

Suppose you leave out the years of experience variable. What kinds of problems or
biases would you expect? Explain verbally.

7.9. Show that 8, and B3 in Eq. (7.9.2) do, in fact, give output elasticities of labor and
capital. (This question can be answered without using calculus; just recall the defin-
ition of the elasticity coefficient and remember that a change in the logarithm of a
variable is a relative change, assuming the changes are rather small.)

7.10. Consider the three-variable linear regression model discussed in this chapter.

a. Suppose you multiply all the X; values by 2. What will be the effect of this rescal-
ing, if any, on the estimates of the parameters and their standard errors?

b. Now instead of (a), suppose you multiply all the ¥ values by 2. What will be the
effect of this, if any, on the estimated parameters and their standard errors?

7.11. In general R? # rZ, +r?;, but it is so only if 7,3 = 0. Comment and point out the
significance of this finding. (Hint: See Eq. [7.11.5].)

7.12. Consider the following models.”

Model A: Y, = a1 + ax Xy + a3 X3, + uy;
Model B: (Y, — X5,) = B1 + BoXor + B3 X3 + uay

a. Will OLS estimates of «; and B, be the same? Why?
b. Will OLS estimates of o3 and B3 be the same? Why?
c. What is the relationship between o; and 8,?
d. Can you compare the R? terms of the two models? Why or why not?
7.13. Suppose you estimate the consumption function’
Vi =a1 + X +uy;
and the savings function
Zi =B+ B Xi +uzi
where Y = consumption, Z = savings, X = income, and X =Y + Z, that is,
income is equal to consumption plus savings.
a. What is the relationship, if any, between a, and 8,? Show your calculations.
b. Will the residual sum of squares, RSS, be the same for the two models? Explain.
c. Can you compare the R? terms of the two models? Why or why not?
7.14. Suppose you express the Cobb—Douglas model given in Eq. (7.9.1) as follows:
Y, = B X5 X5 u,;
If you take the log-transform of this model, you will have In u; as the disturbance
term on the right-hand side.
a. What probabilistic assumptions do you have to make about In u; to be able to
apply the classical normal linear regression model (CNLRM)? How would you
test this with the data given in Table 7.3?
b. Do the same assumptions apply to u;? Why or why not?
*Adapted from Wojciech W. Charemza and Derek F. Deadman, Econometric Practice: General to Specific

Modelling, Cointegration and Vector Autogression, Edward Elgar, Brookfield, Vermont, 1992, p. 18.

fAdapted from Peter Kennedy, A Guide to Econometrics, 3d ed., The MIT Press, Cambridge,
Massachusetts, 1992, p. 308, Question #9.
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7.15. Regression through the origin. Consider the following regression through the origin:

Y = BoXoi + BsXsi + il

S

. How would you go about estimating the unknowns?
Will " &1; be zero for this model? Why or why not?
Will Y ;X5 = > 41; X3 = 0 for this model?

. When would you use such a model?

VSIS

Can you generalize your results to the k-variable model?

)

(Hint: Follow the discussion for the two-variable case given in Chapter 6.)

Empirical Exercises
7.16. The demand for roses.” Table 7.6 gives quarterly data on these variables:
Y = quantity of roses sold, dozens
X, = average wholesale price of roses, $/dozen
Xz = average wholesale price of carnations, $/dozen
X, = average weekly family disposable income, $/week
Xs = the trend variable taking values of 1, 2, and so on, for the period 1971-III to
1975-11 in the Detroit metropolitan area

You are asked to consider the following demand functions:
Y, = oy + Xy + a3 Xa + oa Xy + s X5 + uy
InY, = g1 + B2 InXy + B3 In X3, + Ba InXu + Bs X5 + uy

a. Estimate the parameters of the linear model and interpret the results.
b. Estimate the parameters of the log—linear model and interpret the results.

TABLE 7.6
Quarterly Demand LRI
for Roses in Metro (OVELT £ Xz % & Xs
Detroit Area, from 197111 1 1,484 2.26 3.49 158.11 1
1971-I11 to 1975-I1 -1V 9,348 2.54 2.85 173.36 2
1972-1 8,429 3.07 4.06 165.26 3
—ll 10,079 291 3.64 172.92 4
—lll 9,240 2.73 3.21 178.46 5
o\ 8,862 2.77 3.66 198.62 6
1973 6,216 3.59 3.76 186.28 7
—ll 8,253 3.23 3.49 188.98 8
—ll 8,038 2.60 3.13 180.49 9
-V 7,476 2.89 3.20 183.33 10
1974 5,911 3.77 3.65 181.87 11
—ll 7,950 3.64 3.60 185.00 12
=l 6,134 2.82 2.94 184.00 13
Y% 5,868 2.96 3.12 188.20 14
1975-1 3,160 4.24 3.58 175.67 15
—ll 5,872 3.69 3.53 188.00 16

‘I am indebted to Joe Walsh for collecting these data from a major wholesaler in the Detroit
metropolitan area and subsequently processing them.
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c. P, B3, and Ba give, respectively, the own-price, cross-price, and income elastici-
ties of demand. What are their a priori signs? Do the results concur with the a
priori expectations?

d. How would you compute the own-price, cross-price, and income elasticities for
the linear model?

e. On the basis of your analysis, which model, if either, would you choose and why?

Wildcat activity. Wildcats are wells drilled to find and produce oil and/or gas in an
improved area or to find a new reservoir in a field previously found to be productive
of oil or gas or to extend the limit of a known oil or gas reservoir. Table 7.7 gives data
on these variables:”

= the number of wildcats drilled

X, = price at the wellhead in the previous period
(in constant dollars, 1972 = 100)

= domestic output
X4 = GNP constant dollars (1972 = 100)
Xs = trend variable, 1948 =1, 1949 =2, ..., 1978 = 31

See if the following model fits the data:
Yy = B+ BoXor + B3 In X3, + BuXas + Bs Xs: + uq

a. Can you offer an a priori rationale to this model?

b. Assuming the model is acceptable, estimate the parameters of the model and their
standard errors, and obtain R? and R?.

c. Comment on your results in view of your prior expectations.
d. What other specification would you suggest to explain wildcat activity? Why?

U.S. defense budget outlays, 1962—1981. In order to explain the U.S. defense budget,
you are asked to consider the following model:

Y, = B1 + B Xy + B3 X3 + BaXy + BsXsi +uy

where Y, = defense budget-outlay for year ¢, $ billions
X,; = GNP for year ¢, $ billions
X3, = U.S. military sales/assistance in year ¢, $ billions
X4; = aerospace industry sales, $ billions

X5, = military conflicts involving more than 100,000 troops. This variable
takes a value of 1 when 100,000 or more troops are involved but is
equal to zero when that number is under 100,000.

To test this model, you are given the data in Table 7.8.

a. Estimate the parameters of this model and their standard errors and obtain R?,
modified R?, and R?.

b. Comment on the results, taking into account any prior expectations you have
about the relationship between Y and the various X variables.

c. What other variable(s) might you want to include in the model and why?

“l am indebted to Raymond Savino for collecting and processing these data.
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TABLE 7.7

X .. Domestic
Wildcat Activity Output
Source: Energy Information Per Barrel (miIIions of GNP,
Administration, 1978 Reportto Thousands Price, barrels Constant
e of Wildcats, Constant $ per day) $ Billions Time
Y) (X2) (X3) (Xa) (Xs)
8.01 4.89 5.52 487.67 1948 =1
9.06 4.83 5.05 490.59 1949 =2
10.31 4.68 5.41 533.55 1950 =3
11.76 4.42 6.16 576.57 1951 =4
12.43 4.36 6.26 598.62 1952 =5
13.31 4.55 6.34 621.77 1953 =6
13.10 4.66 6.81 613.67 1954 =7
14.94 4.54 7.15 654.80 1955 =38
16.17 4.44 717 668.84 1956 =9
14.71 4.75 6.71 681.02 1957 =10
13.20 4.56 7.05 679.53 1958 =11
13.19 4.29 7.04 720.53 1959 =12
11.70 4.19 7.18 736.86 1960 =13
10.99 417 7.33 755.34 1961 =14
10.80 411 7.54 799.15 1962 =15
10.66 4.04 7.61 830.70 1963 =16
10.75 3.96 7.80 874.29 1964 =17
9.47 3.85 8.30 925.86 1965 =18
10.31 3.75 8.81 980.98 1966 =19
8.88 3.69 8.66 1,007.72 1967 = 20
8.88 3.56 8.78 1,051.83 1968 = 21
9.70 3.56 9.18 1,078.76 1969 = 22
7.69 3.48 9.03 1,075.31 1970 = 23
6.92 3.53 9.00 1,107.48 1971 =24
7.54 3.39 8.78 1,171.10 1972 =25
7.47 3.68 8.38 1,234.97 1973 = 26
8.63 5.92 8.01 1,217.81 1974 = 27
9.21 6.03 7.78 1,202.36 1975 =28
9.23 6.12 7.88 1,271.01 1976 = 29
9.96 6.05 7.88 1,332.67 1977 =30
10.78 5.89 8.67 1,385.10 1978 = 31

7.19. The demand for chicken in the United States, 1960—1982. To study the per capita
consumption of chicken in the United States, you are given the data in Table 7.9,

where Y = per capita consumption of chickens, 1b
X, = real disposable income per capita, $
X3 = real retail price of chicken per Ib, ¢
X4 = real retail price of pork per 1b, ¢

X5 = real retail price of beef per Ib, ¢

X¢ = composite real price of chicken substitutes per lb, ¢, which is a
weighted average of the real retail prices per Ib of pork and beef, the
weights being the relative consumptions of beef and pork in total beef
and pork consumption
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TABLE 7.8

Defense U.S. Military Aerospace
g’:{l:‘)esfe;l;gz]illlggt Budget Sales/ Industry Conflicts
¥s, Outlays GNP Assistance Sales 100,000+
Source: These data were Year ) (X2) (X3) (Xa) (Xs)
oo s 1962 51.1 560.3 0.6 16.0 0
publications. 1963 523 590.5 0.9 16.4 0
1964 53.6 632.4 1.1 16.7 0
1965 49.6 684.9 1.4 17.0 1
1966 56.8 749.9 1.6 20.2 1
1967 70.1 793.9 1.0 23.4 1
1968 80.5 865.0 0.8 25.6 1
1969 81.2 931.4 1.5 24.6 1
1970 80.3 992.7 1.0 24.8 1
1971 77.7 1,077.6 1.5 21.7 1
1972 78.3 1,185.9 2.95 21.5 1
1973 74.5 1,326.4 4.8 243 0
1974 77.8 1,434.2 10.3 26.8 0
1975 85.6 1,549.2 16.0 29.5 0
1976 89.4 1,718.0 14.7 30.4 0
1977 97.5 1,918.3 8.3 33.3 0
1978 105.2 2,163.9 11.0 38.0 0
1979 117.7 2,417.8 13.0 46.2 0
1980 135.9 2,633.1 15.3 57.6 0
1981 162.1 2,937.7 18.0 68.9 0
TABLE7.9 Year Y X X3 X4 Xs Xs
o e:l':ea'{}isf"rlfgg_c:‘;;z 1960 27.8 397.5 42.2 50.7 78.3 65.8
1961 29.9 413.3 38.1 52.0 79.2 66.9
Source: Data on ¥ are from 1962 29.8 439.2 40.3 54.0 79.2 67.8
Citibase and on Yy through Xs 1963 30.8 459.7 39.5 55.3 79.2 69.6
are from the U.S. Department of
Agriculture. I am indebted to 1964 31.2 492.9 37.3 54.7 77.4 68.7
Robert J. Fisher for collecting 1965 33.3 528.6 38.1 63.7 80.2 73.6
e andforthesatiteal 1966 35.6 560.3 39.3 69.8 80.4 76.3
1967 36.4 624.6 37.8 65.9 83.9 77.2
1968 36.7 666.4 38.4 64.5 85.5 78.1
1969 38.4 717.8 40.1 70.0 93.7 84.7
1970 40.4 768.2 38.6 73.2 106.1 93.3
1971 40.3 843.3 39.8 67.8 104.8 89.7
1972 41.8 911.6 39.7 79.1 114.0 100.7
1973 40.4 931.1 52.1 95.4 124.1 113.5
1974 40.7 1,021.5 48.9 94.2 127.6 115.3
1975 40.1 1,165.9 58.3 123.5 142.9 136.7
1976 42.7 1,349.6 57.9 129.9 143.6 139.2
1977 441 1,449.4 56.5 117.6 139.2 132.0
1978 46.7 1,575.5 63.7 130.9 165.5 132.1
1979 50.6 1,759.1 61.6 129.8 203.3 154.4
1980 50.1 1,994.2 58.9 128.0 219.6 174.9
1981 51.7 2,258.1 66.4 141.0 221.6 180.8
1982 52.9 2,478.7 70.4 168.2 232.6 189.4

Note: The real prices were obtained by dividing the nominal prices by the Consumer Price Index for food
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7.20.

Now consider the following demand functions:

InY;, = o) + a2 In Xy, + a3 In X3, + u; (1)
InY, =y +y2In Xy + y3In X3 + y4In Xy +u, (2)
InY, = A + A In Xy, + A3 In X3; + Ay In Xs; + uy 3)
InY, =01 + 60 In Xp; + 603 In X3, + 04 In Xy + 05 In X5, + 1y (4)
InY, = 1+ B2In Xp, + B3 In X3, + BaIn Xo; + 14y ()

From microeconomic theory it is known that the demand for a commodity generally
depends on the real income of the consumer, the real price of the commodity, and
the real prices of competing or complementary commodities. In view of these
considerations, answer the following questions.

a.

b.
c.
d.

Which demand function among the ones given here would you choose, and why?
How would you interpret the coefficients of In X;; and In X3, in these models?
What is the difference between specifications (2) and (4)?

What problems do you foresee if you adopt specification (4)? (Hint: Prices of
both pork and beef are included along with the price of chicken.)

. Since specification (5) includes the composite price of beef and pork, would you

prefer the demand function (5) to the function (4)? Why?

Are pork and/or beef competing or substitute products to chicken? How do you
know?

. Assume function (5) is the “correct” demand function. Estimate the parameters of

this model, obtain their standard errors, and R?, Rz’ and modified R?. Interpret
your results.

. Now suppose you run the “incorrect” model (2). Assess the consequences of this

mis-specification by considering the values of y, and y; in relation to 8, and 3,
respectively. (Hint: Pay attention to the discussion in Section 7.7.)

In a study of turnover in the labor market, James F. Ragan, Jr., obtained the follow-
ing results for the U.S. economy for the period of 19501 to 1979-IV." (Figures in the
parentheses are the estimated ¢ statistics.)

InY, = 447 — 034InXy+ 1221In X3+ 1.221nXy
(4.28) (=5.31) (3.64) (3.10)
+ 0.80InXs— 0.0055X,  R?=0.5370
(1.10) (—3.09)

Note: We will discuss the ¢ statistics in the next chapter.

where Y = quit rate in manufacturing, defined as number of people leaving jobs

voluntarily per 100 employees

X, = an instrumental or proxy variable for adult male unemployment rate

X3 = percentage of employees younger than 25

X4 = N;_1/N;_4 = ratio of manufacturing employment in quarter (¢ — 1) to that
in quarter (z — 4)

X5 = percentage of women employees

X = time trend (1950-1 = 1)

“Source: See Ragan’s article, “Turnover in the Labor Market: A Study of Quit and Layoff Rates,”
Economic Review, Federal Reserve Bank of Kansas City, May 1981, pp. 13-22.



TABLE 7.10
Demand for Money
in the United States,
1980-1998

Source: Economic Report of the
President, 2000, Tables
B-1, B-58, B-67, B-71.
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a. Interpret the foregoing results.

b. Is the observed negative relationship between the logs of Y and X; justifiable a
priori?

c. Why is the coefficient of In X3 positive?

d. Since the trend coefficient is negative, there is a secular decline of what percent in
the quit rate and why is there such a decline?

e. Is the R? “too” low?

/- Can you estimate the standard errors of the regression coefficients from the given
data? Why or why not?

7.21. Consider the following demand function for money in the United States for the
period 1980-1998:
M, = B Ytﬂzrtﬂseu

where M = real money demand, using the M2 definition of money

Y = real GDP

7 = interest rate
To estimate the above demand for money function, you are given the data in
Table 7.10.

Note: To convert nominal quantities into real quantities, divide M and GDP by
CPI. There is no need to divide the interest rate variable by CPI. Also, note that we
have given two interest rates, a short-term rate as measured by the 3-month treasury
bill rate and the long-term rate as measured by the yield on the 30-year treasury bond,
as prior empirical studies have used both types of interest rates.

Observation GDP M2 CPI LTRATE TBRATE
1980 2795.6 1600.4 82.4 11.27 11.506
1981 3131.3 1756.1 90.9 13.45 14.029
1982 3259.2 1911.2 96.5 12.76 10.686
1983 3534.9 2127.8 99.6 11.18 8.630
1984 3932.7 2311.7 103.9 12.41 9.580
1985 4213.0 2497.4 107.6 10.79 7.480
1986 4452.9 2734.0 109.6 7.78 5.980
1987 4742.5 2832.8 113.6 8.59 5.820
1988 5108.3 2995.8 118.3 8.96 6.690
1989 5489.1 3159.9 124.0 8.45 8.120
1990 5803.2 3279.1 130.7 8.61 7.510
1991 5986.2 3379.8 136.2 8.14 5.420
1992 6318.9 3434.1 140.3 7.67 3.450
1993 6642.3 3487.5 144.5 6.59 3.020
1994 7054.3 3502.2 148.2 7.37 4.290
1995 7400.5 3649.3 152.4 6.88 5.510
1996 7813.2 3824.2 156.9 6.71 5.020
1997 8300.8 4046.7 160.5 6.61 5.070
1998 8759.9 4401.4 163.0 5.58 4.810

Notes: GDP: gross domestic product ($ billions).

M,: M, money supply.

CPI: Consumer Price Index (1982-1984 = 100).
LTRATE: long-term interest rate (30-year Treasury bond).
TBRATE: three-month Treasury bill rate (% per annum).
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a. Given the data, estimate the above demand function. What are the income and
interest rate elasticities of demand for money?

b. Instead of estimating the above demand function, suppose you were to fit the
function (M/Y); = ayr{*e*. How would you interpret the results? Show the
necessary calculations.

c. How will you decide which is a better specification? (Nofe: A formal statistical
test will be given in Chapter 8.)

7.22. Table 7.11 gives data for the manufacturing sector of the Greek economy for the

period 1961-1987.

a. See if the Cobb—Douglas production function fits the data given in the table and
interpret the results. What general conclusion do you draw?

b. Now consider the following model:
Output/labor = A(K/L)Pe"
where the regressand represents labor productivity and the regressor represents the

capital labor ratio. What is the economic significance of such a relationship, if any?
Estimate the parameters of this model and interpret your results.

TABLE 7.11 -
Greek Industrial . q Capltal-t?-Labor
Sector Observation Output* Capital Labor® Ratio
. 1961 35.858 59.600 637.0 0.0936
e 1962 37.504 64.200 643.2 0.0998
Christopher Newport 1963 40.378 68.800 651.0 0.1057
i*lz'efsityv Virginia, for these 1964 46.147 75.500 685.7 0.1101
’ 1965 51.047 84.400 710.7 0.1188
1966 53.871 91.800 724.3 0.1267
1967 56.834 99.900 735.2 0.1359
1968 65.439 109.100 760.3 0.1435
1969 74.939 120.700 777.6 0.1552
1970 80.976 132.000 780.8 0.1691
1971 90.802 146.600 825.8 0.1775
1972 101.955 162.700 864.1 0.1883
1973 114.367 180.600 894.2 0.2020
1974 101.823 197.100 891.2 0.2212
1975 107.572 209.600 887.5 0.2362
1976 117.600 221.900 892.3 0.2487
1977 123.224 232.500 930.1 0.2500
1978 130.971 243.500 969.9 0.2511
1979 138.842 257.700 1006.9 0.2559
1980 135.486 274.400 1020.9 0.2688
1981 133.441 289.500 1017.1 0.2846
1982 130.388 301.900 1016.1 0.2971
1983 130.615 314.900 1008.1 0.3124
1984 132.244 327.700 985.1 0.3327
1985 137.318 339.400 977.1 0.3474
1986 137.468 349.492 1007.2 0.3470
1987 135.750 358.231 1000.0 0.3582

*Billions of Drachmas at constant 1970 prices.
fThousands of workers per year.




TABLE 7.12

Real Consumption
Expenditure, Real
Income, Real Wealth,
and Real Interest
Rates for the U.S.,
1947-2000

Sources: C, Yd, and quarterly
and annual chain-type price
indexes (1996 = 100): Bureau
of Economic Analysis, U.S.
Department of Commerce
(http://www.bea.doc.gov/bea/
dnl.htm).

Nominal annual yield on
3-month Treasury securities:
Economic Report of the
President, 2002.

Nominal wealth = end-of-
year nominal net worth of
households and nonprofits
(from Federal Reserve flow
of funds data: http://www.
federalreserve.gov).
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7.23. Monte Carlo experiment: Consider the following model:
Yi = B1 + BaXoi + B3 X5 +u;

You are told that 8; = 262, B, = —0.006, B3 = —2.4, 6> = 42, andu; ~ N(0, 42).

Generate 10 sets of 64 observations on u; from the given normal distribution and use

the 64 observations given in Table 6.4, where ¥ = CM, X, = PGNP, and X3 = FLR

to generate 10 sets of the estimated g coefficients (each set will have the three estimated

parameters). Take the averages of each of the estimated S coefficients and relate them to

the true values of these coefficients given above. What overall conclusion do you draw?

7.24. Table 7.12 gives data for real consumption expenditure, real income, real wealth, and

real interest rates for the U.S. for the years 1947-2000. These data will be used again

for Exercise 8.35.

a. Given the data in the table, estimate the linear consumption function using income,

wealth, and interest rate. What is the fitted equation?
b. What do the estimated coefficients indicate about the variables’ relationships to
consumption expenditure?

Year C Yd Wealth Interest Rate
1947 976.4 1035.2 5166.8 —10.351
1948 998.1 1090.0 5280.8 —4.720
1949 1025.3 1095.6 5607.4 1.044
1950 1090.9 1192.7 5759.5 0.407
1951 1107.1 1227.0 6086.1 —5.283
1952 1142.4 1266.8 6243.9 —0.277
1953 1197.2 1327.5 6355.6 0.561
1954 1221.9 1344.0 6797.0 —0.138
1955 1310.4 1433.8 7172.2 0.262
1956 1348.8 1502.3 7375.2 —0.736
1957 1381.8 1539.5 7315.3 —0.261
1958 1393.0 1553.7 7870.0 —0.575
1959 1470.7 1623.8 8188.1 2.296
1960 1510.8 1664.8 8351.8 1.511
1961 1541.2 1720.0 8971.9 1.296
1962 1617.3 1803.5 9091.5 1.396
1963 1684.0 1871.5 9436.1 2.058
1964 1784.8 2006.9 10003.4 2.027
1965 1897.6 2131.0 10562.8 2112
1966 2006.1 2244.6 10522.0 2.020
1967 2066.2 2340.5 11312.1 1.213
1968 2184.2 2448.2 12145.4 1.055
1969 2264.8 25243 11672.3 1.732
1970 2314.5 2630.0 11650.0 1.166
1971 2405.2 2745.3 12312.9 —0.712
1972 2550.5 2874.3 13499.9 —0.156
1973 2675.9 3072.3 13081.0 1.414
1974 2653.7 3051.9 11868.8 —1.043
1975 2710.9 3108.5 12634.4 —3.534
1976 2868.9 3243.5 13456.8 —0.657

Continued
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TABLE 7.12 Year C Yd Wealth Interest Rate
(Continued) 1977 2992.1 3360.7 13786.3 ~1.190
1978 3124.7 3527.5 14450.5 0.113
1979 3203.2 3628.6 15340.0 1.704
1980 3193.0 3658.0 15965.0 2.298
1981 3236.0 3741.1 15965.0 4.704
1982 3275.5 3791.7 16312.5 4.449
1983 3454.3 3906.9 16944.8 4.691
1984 3640.6 4207.6 17526.7 5.848
1985 3820.9 4347.8 19068.3 4.331
1986 3981.2 4486.6 20530.0 3.768
1987 4113.4 4582.5 21235.7 2.819
1988 4279.5 4784.1 22332.0 3.287
1989 4393.7 4906.5 23659.8 4318
1990 4474.5 5014.2 23105.1 3.595
1991 4466.6 5033.0 24050.2 1.803
1992 4594.5 5189.3 24418.2 1.007
1993 4748.9 5261.3 25092.3 0.625
1994 4928.1 5397.2 25218.6 2.206
1995 5075.6 5539.1 27439.7 3.333
1996 5237.5 5677.7 294482 3.083
1997 5423.9 5854.5 32664.1 3.120
1998 5683.7 6168.6 35587.0 3.584
1999 5968.4 6320.0 39591.3 3.245
2000 6257.8 6539.2 38167.7 3.576

Notes: Year = calendar year.
C = real consumption expenditures in billions of chained 1996 dollars.
Yd = real personal disposable income in billions of chained 1996 dollars.
Wealth = real wealth in billions of chained 1996 dollars.
Interest = nominal annual yield on 3-month Treasury securities—inflation rate (measured by the annual % change in annual chained
price index).

The nominal real wealth variable was created using data from the Federal Reserve Board’s measure of end-of-year net worth for
households and nonprofits in the flow of funds accounts. The price index used to convert this nominal wealth variable to a real wealth
variable was the average of the chained price index from the 4th quarter of the current year and the 1st quarter of the subsequent year.

7.25. Estimating Qualcomm stock prices. As an example of the polynomial regression,
consider data on the weekly stock prices of Qualcomm, Inc., a digital wireless
telecommunications designer and manufacturer over the time period of 1995 to
2000. The full data can be found on the textbook’s website in Table 7.13. During
the late 1990, technological stocks were particularly profitable, but what type of
regression model will best fit these data? Figure 7.4 shows a basic plot of the data for
those years.

This plot does seem to resemble an elongated S curve; there seems to be a slight
increase in the average stock price, but then the rate increases dramatically toward the
far right side of the graph. As the demand for more specialized phones dramatically
increased and the technology boom got under way, the stock price followed suit and
increased at a much faster rate.

a. Estimate a linear model to predict the closing stock price based on time. Does this
model seem to fit the data well?

b. Now estimate a squared model by using both fime and time-squared. s this a bet-
ter fit than in (a)?
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FIGURE 7.4 Price
Qualcomm stock 500
prices over time.
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c¢. Finally, fit the following cubic or third-degree polynomial:
Y = Bo+ BiXi + BoX? + B X} +u;

where Y = stock price and X = time. Which model seems to be the best estimator
for the stock prices?

Appendix ZA

7A.1 Derivation of OLS Estimators
Given in Equations (7.4.3) to (7.4.5)

Differentiating the equation
i =Y — B — prXai — PsXai)? (7.4.2)
partially with respect to the three unknowns and setting the resulting equations to zero, we obtain

ayat
ap
0y 0?2 A R A
82;”’ = ZZ(Yi — B1 — BaXoi — B3 X3i)(—X2i) =0
)
9y 0?2 A A A
a%u’ = ZZ(Yi — B1 — BoXoi — B3 X3i)(—X31) =0
3

=2 (Y, — B — B Xoi — B X3)(—1) =0

Simplifying these, we obtain Egs. (7.4.3) to (7.4.5).
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In passing, note that the three preceding equations can also be written as

Za,-)@,- =0

which show the properties of the least-squares fit, namely, that the residuals sum to zero and that they
are uncorrelated with the explanatory variables X, and X;.

Incidentally, notice that to obtain the OLS estimators of the k-variable linear regression model
(7.4.20) we proceed analogously. Thus, we first write

Zﬁzz = Z(Yi — b1 — PoXoi — - — BeXu)

Differentiating this expression partially with respect to each of the £ unknowns, setting the resulting
equations equal to zero, and rearranging, we obtain the following & normal equations in the &
unknowns:

ZYi =np +E22X2i+B3ZX3i+"'+/§kZin
D VX =B Xoi+B) Xp+B ) XoXsi+- 4B ) XoiXu

Z Y, X5 = B ZXSi +h ZXZiX3i +Bs ZX%i +-+ B ZXSiin

Or, switching to small letters, these equations can be expressed as
ZinZi = szzi +bs ZXZiXSi o+ B ZXZixki
Zyix3i =h szl'xy +Bs foi +oot B Zx3ixki

Zyixki = A szixki + B ZXSixki +o B le%i

It should further be noted that the k-variable model also satisfies these equations:

> =0
th‘Xzi = Zﬁth == Zﬁtht =0



Chapter 7 Multiple Regression Analysis: The Problem of Estimation 229

7A.2 Equality between the Coefficients of PGNP
in Equations (7.3.5) and (7.6.2)

Letting ¥ = CM, X, = PGNP, and X3 = FLR and using the deviation form, write

Vi = by3xs; + iy M
Xoi = by3x3; + o 2
Now regress % on i to obtain:
a; = M = —0.0056 (for our example) 3)
Ui

Note that because the #’s are residuals, their mean values are zero. Using (1) and (2), we can write
(3) as

_ (v — b13x3;)(x2i — b23x3;)

a 4
: Y (x2i — ba3x3;)? &
Expand the preceding expression, and note that
Z X2i X3i
by3 = =+ &)
x5
and
2 Vixsi
bz = Z— (6)
pREZH
Making these substitutions into (4), we get
4 — (X yixai) (C x3) = (O yixai) (O x2ix3i) 7.4.7)

(Xx3) (Xx5) - (ZXZix3i)2
= —0.0056 (for our example)

7A.3 Derivation of Equation (7.4.19)

Recall that

i =Y, — 1 — poXoi — B3 X3
which can also be written as
ij = yi — Paxgi — P3xz

where small letters, as usual, indicate deviations from mean values.
Now

D oar =y (@)
= Zz},—(y,- — Boxai — Pax3i)

= Zﬁiyi
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where use is made of the fact that > 71;x5; = Y u;x3; = 0. (Why?) Also

D diyi =y vl =Y yi(yi — Boxa — Baxi)
Zﬁzz = Z)’lz - b Z,Vz‘xm' — B3 Zyix3i (7.4.19)

which is the required result.

that is,

7A.4 Maximum Likelihood Estimation
of the Multiple Regression Model

Extending the ideas introduced in Chapter 4, Appendix 4A, we can write the log-likelihood function
for the k-variable linear regression model (7.4.20) as

n. 5, n 1 (Y — Bi — BoaXoi — -+ — BiXui)?
lnL:—Elna —Eln(Zn)—EZ 2

Differentiating this function partially with respect to 1, B2, . . ., B« and a2, we obtain the following
(K + 1) equations:

a;;f = Y~ B~ B — -~ A=) 0
o = =% L = B~ fuas = = A=) @
aalgkL = —é > (Y = B — BoXoi — - — BiXi)(—Xii) (K)
O = ot s (Y= i — B -+ — Beia) (K+1)

Setting these equations equal to zero (the first-order condition for optimization) and letting
Bi1, B2, - .., Br and 5% denote the ML estimators, we obtain, after simple algebraic manipulations,

Y Yi=nfi+hY Xoit-+hy Xu
ZYini =hA ZXZi + b ZX% +"'+5kZX2iin

D ViXu=H) Xi+hP Y XoiXui+-+B ) X

which are precisely the normal equations of the least-squares theory, as can be seen from Appen-
dix 7A, Section 7A.1. Therefore, the ML estimators, the /§ ’s, are the same as the OLS estimators, the
ﬁ’s, given previously. But as noted in Chapter 4, Appendix 4A, this equality is not accidental.

Substituting the ML (= OLS) estimators into the (K + 1)st equation just given, we obtain, after
simplification, the ML estimator of o> as

1 - - -
5% = P Z(Yi — B — BoXoi — -+ — BrXii)?

1 2
= — u:
PO
As noted in the text, this estimator differs from the OLS estimator 62 = 5 ﬁlz /(n — k). And since the

latter is an unbiased estimator of o2, this conclusion implies that the ML estimator &2 is a biased
estimator. But, as can be readily verified, asymptotically, &2 is unbiased too.
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7A.5 EViews Output of the Cobb-Douglas Production
Function in Equation (7.9.4)

Dependent Variable: Y1
Method: Least Squares
Included observations: 51

Coefficient Std. Error t-Statistic Prob.

C 3.887600 0.396228 9.811514 0.0000
Y2 0.468332 0.098926 4.734170 0.0000
Y3 0.521279 0.096887 5.380274 0.0000
R-squared 0.964175 Mean dependent var. 16.94139

Adjusted R-squared 0.962683 S.D. dependent var. 1.380870

S.E. of regression 0.266752 Akaike info criterion 0.252028

Sum squared resid. 3.415520 Schwarz criterion 0.365665

Log likelihood —3.426721 Hannan-Quinn criterion 0.295452

F-statistic 645.9311 Durbin-Watson stat. 1.946387

Prob. (F-statistic) 0.000000

Covariance of Estimates

C Y2 Y3

C 0.156997 0.010364 —0.020014

Y2 0.010364 0.009786 —0.009205

Y3 —0.020014 —0.009205 0.009387
Y X2 X3 Y1 Y2 Y3 YTHAT Y1RESID
38,372,840 424,471 2,689,076 17.4629 12.9586 14.8047 17.6739 —0.2110
1,805,427 19,895 57,997 14.4063 9.8982 10.9681 14.2407 0.1656
23,736,129 206,893 2,308,272 16.9825 12.2400 14.6520 17.2577 —0.2752
26,981,983 304,055 1,376,235 17.1107 12.6250 14.1349 17.1685 —0.0578
217,546,032 1,809,756 13,554,116 19.1979 14.4087 16.4222 19.1962 0.0017
19,462,751 180,366 1,790,751 16.7840 12.1027 14.3981 17.0612 —0.2771
28,972,772 224,267 1,210,229 17.1819 12.3206 14.0063 16.9589 0.2229
14,313,157 54,455 421,064 16.4767 10.9051 12.9505 15.7457 0.7310
159,921 2,029 7,188 11.9824 7.6153 8.8802 12.0831 —0.1007
47,289,846 471,211 2,761,281 17.6718 13.0631 14.8312 17.7366 —0.0648
63,015,125 659,379 3,540,475 17.9589 13.3991 15.0798 18.0236 —0.0647
1,809,052 17,528 146,371 14.4083 9.7716 11.8939 14.6640 —0.2557
10,511,786 75,414 848,220 16.1680 11.2307 13.6509 16.2632 —0.0952
105,324,866 963,156 5,870,409 18.4726 13.7780 15.5854 18.4646 0.0079
90,120,459 835,083 5,832,503 18.3167 13.6353 15.5790 18.3944 —0.0778
39,079,550 336,159 1,795,976 17.4811 12.7253 14.4011 17.3543 0.1269
22,826,760 246,144 1,595,118 16.9434 12.4137 14.2825 17.1465 —0.2030
38,686,340 384,484 2,503,693 17.4710 12.8597 14.7333 17.5903 —0.1193
69,910,555 216,149 4,726,625 18.0627 12.2837 15.3687 17.6519 0.4109
7,856,947 82,021 415,131 15.8769 11.3147 12.9363 15.9301 —0.0532
21,352,966 174,855 1,729,116 16.8767 12.0717 14.3631 17.0284 —0.1517
46,044,292 355,701 2,706,065 17.6451 12.7818 14.8110 17.5944 0.0507

(Continued)
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Y X2 X3 Y1 Y2 Y3 YTHAT Y1RESID
92,335,528 943,298 5,294,356 18.3409 13.7571 15.4822 18.4010 —0.0601
48,304,274 456,553 2,833,525 17.6930 13.0315 14.8570 17.7353 —0.0423
17,207,903 267,806 1,212,281 16.6609 12.4980 14.0080 17.0429 —0.3820
47,340,157 439,427 2,404,122 17.6729 12.9932 14.6927 17.6317 0.0411

2,644,567 24,167 334,008 14.7880 10.0927 12.7189 15.2445 —0.4564
14,650,080 163,637 627,806 16.5000 12.0054 13.3500 16.4692 0.0308
7,290,360 59,737 522,335 15.8021 10.9977 13.1661 15.9014 —0.0993
9,188,322 96,106 507,488 16.0334 11.4732 13.1372 16.1090 —0.0756
51,298,516 407,076 3,295,056 17.7532 12.9168 15.0079 17.7603 —0.0071
20,401,410 43,079 404,749 16.8311 10.6708 12.9110 15.6153 1.2158
87,756,129 727,177 4,260,353 18.2901 13.4969 15.2649 18.1659 0.1242
101,268,432 820,013 4,086,558 18.4333 13.6171 15.2232 18.2005 0.2328
3,556,025 34,723 184,700 15.0842 10.4552 12.1265 15.1054 —0.0212
124,986,166 1,174,540 6,301,421 18.6437 13.9764 15.6563 18.5945 0.0492
20,451,196 201,284 1,327,353 16.8336 12.2125 14.0987 16.9564 —-0.1229
34,808,109 257,820 1,456,683 17.3654 12.4600 14.1917 17.1208 0.2445
104,858,322 944,998 5,896,392 18.4681 13.7589 15.5899 18.4580 0.0101
6,541,356 68,987 297,618 15.6937 11.1417 12.6036 15.6756 0.0181
37,668,126 400,317 2,500,071 17.4443 12.9000 14.7318 17.6085 —0.1642
4,988,905 56,524 311,251 15.4227 10.9424 12.6484 15.6056 —0.1829
62,828,100 582,241 4,126,465 17.9559 13.2746 15.2329 18.0451 —0.0892
172,960,157 1,120,382 11,588,283 18.9686 13.9292 16.2655 18.8899 0.0786
15,702,637 150,030 762,671 16.5693 11.9186 13.5446 16.5300 0.0394
5,418,786 48,134 276,293 15.5054 10.7817 12.5292 15.4683 0.0371
49,166,991 425,346 2,731,669 17.7107 12.9607 14.8204 17.6831 0.0277
46,164,427 313,279 1,945,860 17.6477 12.6548 14.4812 17.3630 0.2847
9,185,967 89,639 685,587 16.0332 11.4035 13.4380 16.2332 —0.2000
66,964,978 694,628 3,902,823 18.0197 13.4511 15.1772 18.0988 —0.0791
2,979,475 15,221 361,536 14.9073 9.6304 12.7981 15.0692 —0.1620

Notes: Y1 =InY; Y2 =1n X2;Y3 = In X3.
The eigenvalues are 3.7861 and 187,5269, which will be used in Chapter 10.




Chapter

Multiple Regression
Analysis: The Problem

of Inference

This chapter, a continuation of Chapter 5, extends the ideas of interval estimation and hypo-
thesis testing developed there to models involving three or more variables. Although in
many ways the concepts developed in Chapter 5 can be applied straightforwardly to the
multiple regression model, a few additional features are unique to such models, and it is
these features that will receive more attention in this chapter.

8.1 The Normality Assumption Once Again

We know by now that if our sole objective is point estimation of the parameters of the
regression models, the method of ordinary least squares (OLS), which does not make any
assumption about the probability distribution of the disturbances u;, will suffice. But if our
objective is estimation as well as inference, then, as argued in Chapters 4 and 5, we need to
assume that the u; follow some probability distribution.

For reasons already clearly spelled out, we assumed that the ; follow the normal distri-
bution with zero mean and constant variance o>. We continue to make the same assump-
tion for multiple regression models. With the normality assumption and following the
discussion of Chapters 4 and 7, we find that the OLS estimators of the partial regression
coefficients, which are identical with the maximum likelihood (ML) estimators, are best
linear unbiased estimators (BLUE).! Moreover, the estimators B>, B3, and B, are them-
selves normally distributed with means equal to true §,, 83, and §; and the variances given
in Chapter 7. Furthermore, (n — 3)62 /0 follows the x 2 distribution with n — 3 df, and the
three OLS estimators are distributed independently of 62. The proofs follow the two-
variable case discussed in Appendix 3A, Section 3A. As a result and following Chapter 5,

'With the normality assumption, the OLS estimators B2, B3, and Bq are minimum-variance estimators
in the entire class of unbiased estimators, whether linear or not. In short, they are BUE (best unbiased
estimators). See C. R. Rao, Linear Statistical Inference and Its Applications, John Wiley & Sons, New
York, 1965, p. 258.
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one can show that, upon replacing 0% by its unbiased estimator 52 in the computation of the
standard errors, each of the following variables

B — B

= - 8.1.1
se(B1) ( )
B2 — B

t = = 1.2
e (Bo) 12
B — Bs

= - 8.1.3
se(B3) ( )

follows the ¢ distribution with n — 3 df.

Note that the df are now n — 3 because in computing Y  #7 and hence 6% we first need
to estimate the three partial regression coefficients, which therefore put three restrictions
on the residual sum of squares (RSS) (following this logic in the four-variable case there
will be n — 4 df, and so on). Therefore, the ¢ distribution can be used to establish confi-
dence intervals as well as test statistical hypotheses about the true population partial re-
gression coefficients. Similarly, the x 2 distribution can be used to test hypotheses about the
true o2. To demonstrate the actual mechanics, we use the following illustrative example.

EXAMPLE 8.1
Child Mortality
Example
Revisited

In Chapter 7 we regressed child mortality (CM) on per capita GNP (PGNP) and the female
literacy rate (FLR) for a sample of 64 countries. The regression results given in Eq. (7.6.2)
are reproduced below with some additional information:

CMi=263.6416 — 0.0056 PGNP, — 2.2316 FLR;
se= (11.5932)  (0.0019) (0.2099)
t=(22.7411) (-2.8187) (—10.6293) (8.1.4)
pvalue= (0.0000)°  (0.0065) (0.0000)"

R2=0.7077 RZ =0.6981

where " denotes extremely low value.

In Eq. (8.1.4) we have followed the format first introduced in Eq. (5.11.1), where the
figures in the first set of parentheses are the estimated standard errors, those in the sec-
ond set are the t values under the null hypothesis that the relevant population coefficient
has a value of zero, and those in the third are the estimated p values. Also given are R? and
adjusted R? values. We have already interpreted this regression in Example 7.1.

What about the statistical significance of the observed results? Consider, for example,
the coefficient of PGNP of —0.0056. Is this coefficient statistically significant, that is,
statistically different from zero? Likewise, is the coefficient of FLR of —2.2316 statistically
significant? Are both coefficients statistically significant? To answer this and related ques-
tions, let us first consider the kinds of hypothesis testing that one may encounter in the
context of a multiple regression model.

8.2 Hypothesis Testing in Multiple Regression: General Comments

Once we go beyond the simple world of the two-variable linear regression model, hypoth-
esis testing assumes several interesting forms, such as the following:

1. Testing hypotheses about an individual partial regression coefficient (Section 8.3).

2. Testing the overall significance of the estimated multiple regression model, that is, find-
ing out if all the partial slope coefficients are simultaneously equal to zero (Section 8.4).
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3. Testing that two or more coefficients are equal to one another (Section 8.5).
4. Testing that the partial regression coefficients satisfy certain restrictions (Section 8.6).

5. Testing the stability of the estimated regression model over time or in different cross-
sectional units (Section 8.7).

6. Testing the functional form of regression models (Section 8.8).

Since testing of one or more of these types occurs so commonly in empirical analysis, we
devote a section to each type.

8.3 Hypothesis Testing about Individual Regression Coefficients

If we invoke the assumption that u; ~ N(0, 0%), then, as noted in Section 8.1, we can use
the ¢ test to test a hypothesis about any individual partial regression coefficient. To illustrate
the mechanics, consider the child mortality regression, Eq. (8.1.4). Let us postulate that

H()Zﬁzzo and Hliﬂz#o

The null hypothesis states that, with X3 (female literacy rate) held constant, X, (PGNP)
has no (linear) influence on Y (child mortality).? To test the null hypothesis, we use the ¢ test
given in Eq. (8.1.2). Following Chapter 5 (see Table 5.1), if the computed ¢ value exceeds
the critical ¢ value at the chosen level of significance, we may reject the null hypothesis;
otherwise, we may not reject it. For our illustrative example, using Eq. (8.1.2) and noting
that 8, = 0 under the null hypothesis, we obtain

t= —0.0056 = —2.8187 (8.3.1)
0.0020
as shown in Eq. (8.1.4).

Notice that we have 64 observations. Therefore, the degrees of freedom in this example
are 61 (why?). If you refer to the ¢ table given in Appendix D, we do not have data corre-
sponding to 61 df. The closest we have are for 60 df. If we use these df, and assume «, the
level of significance (i.e., the probability of committing a Type I error) of 5 percent, the crit-
ical ¢ value is 2.0 for a two-tail test (look up 7,/ for 60 df) or 1.671 for a one-tail test (look
up t, for 60 df).

For our example, the alternative hypothesis is two-sided. Therefore, we use the two-tail
t value. Since the computed 7 value of 2.8187 (in absolute terms) exceeds the critical 7 value
of 2, we can reject the null hypothesis that PGNP has no effect on child mortality. To put it
more positively, with the female literacy rate held constant, per capita GNP has a signifi-
cant (negative) effect on child mortality, as one would expect a priori. Graphically, the sit-
uation is as shown in Figure 8.1.

In practice, one does not have to assume a particular value of « to conduct hypothesis
testing. One can simply use the p value given in Eq. (8.1.4), which in the present case is
0.0065. The interpretation of this p value (i.e., the exact level of significance) is that if the
null hypothesis were true, the probability of obtaining a ¢ value of as much as 2.8187 or
greater (in absolute terms) is only 0.0065 or 0.65 percent, which is indeed a small proba-
bility, much smaller than the artificially adopted value of o = 5%.

2In most empirical investigations the null hypothesis is stated in this form, that is, taking the extreme
position (a kind of straw man) that there is no relationship between the dependent variable and the
explanatory variable under consideration. The idea here is to find out whether the relationship
between the two is a trivial one to begin with.
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FIGURE 8.1
The 95% confidence
interval for 7 (60 df).
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This example provides us an opportunity to decide whether we want to use a one-tail
or a two-tail ¢ test. Since a priori child mortality and per capita GNP are expected to be
negatively related (why?), we should use the one-tail test. That is, our null and alternative
hypothesis should be:

Hy: B, <0 and Hi:8,>0

As the reader knows by now, we can reject the null hypothesis on the basis of the one-tail
t test in the present instance. If we can reject the null hypothesis in a two-sided test, we will
have enough evidence to reject in the one-sided scenario as long as the statistic is in the
same direction as the test.

In Chapter 5 we saw the intimate connection between hypothesis testing and confidence
interval estimation. For our example, the 95 percent confidence interval for ; is:

B — tappse(B2) < Ba < B + tupr se(Ba)

which in our example becomes

—0.0056 — 2(0.0020) < B, < —0.0056 + 2(0.0020)
that is,

A

—0.0096 < B, < —0.0016 (8.3.2)

that is, the interval, —0.0096 to —0.0016 includes the true g, coefficient with 95 percent
confidence coefficient. Thus, if 100 samples of size 64 are selected and 100 confidence in-
tervals like Eq. (8.3.2) are constructed, we expect 95 of them to contain the true population
parameter f,. Since the interval (8.3.2) does not include the null-hypothesized value of
zero, we can reject the null hypothesis that the true 8, is zero with 95 percent confidence.

Thus, whether we use the 7 test of significance as in (8.3.1) or the confidence interval
estimation as in (8.3.2), we reach the same conclusion. However, this should not be
surprising in view of the close connection between confidence interval estimation and
hypothesis testing.

Following the procedure just described, we can test hypotheses about the other parame-
ters of our child mortality regression model. The necessary data are already provided in
Eq. (8.1.4). For example, suppose we want to test the hypothesis that, with the influence of
PGNP held constant, the female literacy rate has no effect whatsoever on child mortality. We
can confidently reject this hypothesis, for under this null hypothesis the p value of obtaining
an absolute ¢ value of as much as 10.6 or greater is practically zero.

Before moving on, remember that the 7-testing procedure is based on the assumption
that the error term u; follows the normal distribution. Although we cannot directly observe
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u;, we can observe their proxy, the u;, that is, the residuals. For our mortality regression,
the histogram of the residuals is as shown in Figure 8.2.

From the histogram it seems that the residuals are normally distributed. We can also
compute the Jarque—Bera (JB) test of normality, as shown in Eq. (5.12.1). In our case the
JB value is 0.5594 with a p value 0.76.3 Therefore, it seems that the error term in our
example follows the normal distribution. Of course, keep in mind that the JB test is a large-
sample test and our sample of 64 observations may not be necessarily large.

8.4 Testing the Overall Significance of the Sample Regression

Throughout the previous section we were concerned with testing the significance of the
estimated partial regression coefficients individually, that is, under the separate hypothesis
that each true population partial regression coefficient was zero. But now consider the
following hypothesis:

Hy:B=p3=0 (8.4.1)

This null hypothesis is a joint hypothesis that 8, and 3 are jointly or simultaneously equal
to zero. A test of such a hypothesis is called a test of the overall significance of the ob-
served or estimated regression line, that is, whether Y is linearly related to both X, and X3.

Can the joint hypothesis in Eq. (8.4.1) be tested by testing the significance of ,32 and ,33
individually as in Section 8.3? The answer is no, and the reasoning is as follows.

In testing the individual significance of an observed partial regression coefficient in
Section 8.3, we assumed implicitly that each test of significance was based on a different
(i.e., independent) sample. Thus, in testing the significance of 8, under the hypothesis that
B> = 0, it was assumed tacitly that the testing was based on a different sample from the one
used in testing the significance of 5 under the null hypothesis that 83 = 0. But to test the joint
hypothesis of Eq. (8.4.1), if we use the same sample data, we shall be violating the
assumption underlying the test procedure.* The matter can be put differently: In Eq. (8.3.2)

3For our example, the skewness value is 0.2276 and the kurtosis value is 2.9488. Recall that for a
normally distributed variable the skewness and kurtosis values are, respectively, 0 and 3.

“In any given sample the cov (82, f3) may not be zero; that is, 8, and A3 may be correlated. See
Eq. (7.4.17).



238 Part One Single-Equation Regression Models

we established a 95 percent confidence interval for 8,. But if we use the same sample data
to establish a confidence interval for B, say, with a confidence coefficient of 95 percent, we
cannot assert that both 8, and S5 lie in their respective confidence intervals with a proba-
bility of (1 — a)(1 — @) = (0.95)(0.95).

In other words, although the statements

Pr[fr —tapse(B2) < o < Po +tappse(B)] =1 —a
PrBs —typnse(Bs) < B3 < Bs+tupse(f)] =1 —a

are individually true, it is not true that the probability that the intervals

(B2 % tujase(B2), B3 % tujase(B3)]

simultaneously include B, and s is (1 — «)?, because the intervals may not be indepen-
dent when the same data are used to derive them. To state the matter differently,

.. . testing a series of single [individual] hypotheses is not equivalent to testing those same
hypotheses jointly. The intuitive reason for this is that in a joint test of several hypotheses any
single hypothesis is “affected” by the information in the other hypotheses.’

The upshot of the preceding argument is that for a given example (sample) only one con-
fidence interval or only one test of significance can be obtained. How, then, does one test
the simultaneous null hypothesis that 8, = 3 = 0? The answer follows.

The Analysis of Variance Approach to Testing the Overall
Significance of an Observed Multiple Regression: The F Test
For reasons just explained, we cannot use the usual 7 test to test the joint hypothesis that the
true partial slope coefficients are zero simultaneously. However, this joint hypothesis can be
tested by the analysis of variance (ANOVA) technique first introduced in Section 5.9,
which can be demonstrated as follows.

Recall the identity

Zyiz = ,32 Zyixzi + ,33 Zyix3i + Z ﬁzz (8.4.2)

TSS = ESS + RSS

TSS has, as usual, » — 1 df and RSS has n — 3 df for reasons already discussed. ESS has
2 df since it is a function of B, and Bs. Therefore, following the ANOVA procedure dis-
cussed in Section 5.9, we can set up Table 8.1.

Now it can be shown® that, under the assumption of normal distribution for #; and the
null hypothesis B, = 3 = 0, the variable

(B2 X yixai + Bs > yixsi) /2 _ ESS/df

r= Y 2/(n—3) ~ RSS/df

(8.4.3)

is distributed as the F distribution with 2 and n — 3 df.

SThomas B. Fomby, R. Carter Hill, and Stanley R. Johnson, Advanced Econometric Methods, Springer-
Verlag, New York, 1984, p. 37.

5See K. A. Brownlee, Statistical Theory and Methodology in Science and Engineering, John Wiley & Sons,
New York, 1960, pp. 278-280.
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ANOVA Table for the
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TABLE 8.2
A Summary of the F
Statistic
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Source of Variation SS df MSS

Due to regression (ESS) B2 Y yixai + B3 Y yix3i 2 P2} yixai -2Fﬂ3 2 Vi3
02

Due to residual (RSS) > 47 n-3 6%2= HZ—UI?)

Total > y? n—1

What use can be made of the preceding F ratio? It can be proved’ that under the as-
sumption that the u; ~ N(0, 02),

B

= E(6%) =0 (8.4.4)
n—3

With the additional assumption that 8, = 3 = 0, it can be shown that

E(BZ Zyix% +B3 Zyix3i) _ Uz (8 4 5)
3 4.

Therefore, if the null hypothesis is true, both Egs. (8.4.4) and (8.4.5) give identical esti-
mates of true o2, This statement should not be surprising because if there is a trivial rela-
tionship between Y and X, and X3, the sole source of variation in Y is due to the random
forces represented by u;. If, however, the null hypothesis is false, that is, X, and X3 defi-
nitely influence 7, the equality between Egs. (8.4.4) and (8.4.5) will not hold. In this case,
the ESS will be relatively larger than the RSS, taking due account of their respective df.
Therefore, the F value of Eq. (8.4.3) provides a test of the null hypothesis that the true slope
coefficients are simultaneously zero. If the F' value computed from Eq. (8.4.3) exceeds the
critical F' value from the F table at the o percent level of significance, we reject Hy; other-
wise we do not reject it. Alternatively, if the p value of the observed F is sufficiently low,
we can reject H,.

Table 8.2 summarizes the F' test. Turning to our illustrative example, we obtain the
ANOVA table, as shown in Table 8.3.

Null Hypothesis Alternative Hypothesis Critical Region-
Ho H] Reject Ho If
S 2
02 =o? o > o2 5—12 > Fo ndf, ddf
522
of =03 of #02 542 > Foy2,ndf,ddf
2

or < F1—u/2),ndf,ddf

Notes:

. 012 and (722 are the two population variances.

. Stand S7are the two sample variances.

. ndf and ddf denote, respectively, the numerator and denominator df.

. In computing the F ratio, put the larger S2 value in the numerator.

. The critical F' values are given in the last column. The first subscript of F is the level of significance and the second subscript
is the numerator and denominator df.

. Note that F(1 —a/2)ndrddr = 1/Fas2.ddtndr-

[ R S

N

’See K. A. Brownlee, Statistical Theory and Methodology in Science and Engineering, John Wiley & Sons,
New York, 1960, pp. 278-280.
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TABLE 8.3

ANOVA Table for the
Child Mortality
Example

Source of Variation SS df MSS
Due to regression 257,362.4 2 128,681.2
Due to residuals 106,315.6 61 1742.88
Total 363,678 63

Using Eq. (8.4.3), we obtain

_ 128,681.2

= 73.8325 (8.4.6)
1742.88

The p value of obtaining an F value of as much as 73.8325 or greater is almost zero, leading
to the rejection of the hypothesis that together PGNP and FLR have no effect on child mor-
tality. If you were to use the conventional 5 percent level-of-significance value, the critical '
value for 2 df in the numerator and 60 df in the denominator (the actual df, however, are 61)
is about 3.15, or about 4.98 if you were to use the 1 percent level of significance. Obviously,
the observed F of about 74 far exceeds any of these critical F' values.

We can generalize the preceding F-testing procedure as follows.

Testing the Overall Significance of a Multiple
Regression: The F Test

Decision Rule

Given the k-variable regression model:
Yi = B1 + B2 Xoi + B3 Xz + - + B Xui + Ui
To test the hypothesis
Ho: B2 =B3=---=p=0
(i.e., all slope coefficients are simultaneously zero) versus
H,: Not all slope coefficients are simultaneously zero

compute
_ ESS/df  ESS/(k—1)
~ RSS/df ~ RSS/(n— k)
If F > F,(k—1, n—k), reject Hop; otherwise you do not reject it, where F,(k —1, n— k)
is the critical Fvalue at the « level of significance and (k — 1) numerator df and (n — k) de-
nominator df. Alternatively, if the p value of F obtained from Eq. (8.4.7) is sufficiently low,
one can reject Ho.

(8.4.7)

Needless to say, in the three-variable case (Y and X3, X3) k is 3, in the four-variable case
kis 4, and so on.

In passing, note that most regression packages routinely calculate the F' value (given in
the analysis of variance table) along with the usual regression output, such as the estimated
coefficients, their standard errors, ¢ values, etc. The null hypothesis for the # computation is
usually assumed to be 8; = 0.
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Individual versus Joint Testing of Hypotheses

In Section 8.3 we discussed the test of significance of a single regression coefficient and in
Section 8.4 we have discussed the joint or overall test of significance of the estimated re-
gression (i.e., all slope coefficients are simultaneously equal to zero). We reiterate that
these tests are different. Thus, on the basis of the 7 test or confidence interval (of Sec-
tion 8.3) it is possible to accept the hypothesis that a particular slope coefficient, Sy, is zero,
and yet reject the joint hypothesis that all slope coefficients are zero.

The lesson to be learned is that the joint “message” of individual confidence intervals is no
substitute for a joint confidence region [implied by the F test] in performing joint tests of
hypotheses and making joint confidence statements.®

An Important Relationship between R? and F

There is an intimate relationship between the coefficient of determination R? and the F test
used in the analysis of variance. Assuming the normal distribution for the disturbances u;
and the null hypothesis that 8, = B3 = 0, we have seen that

ESS/2

= RS/ (8.4.8)

is distributed as the F distribution with 2 and n — 3 df.
More generally, in the k-variable case (including intercept), if we assume that the distur-
bances are normally distributed and that the null hypothesis is

Hy:po=p3=---=p =0 (8.4.9)
then it follows that

ESS/(k—1
= ESS/k = 1) (8.4.7) = (8.4.10)

RSS/(n — k)
follows the F distribution with k£ — 1 and n — k df. (Nofe: The total number of parameters
to be estimated is &, of which 1 is the intercept term.)

Let us manipulate Eq. (8.4.10) as follows:

_n—kESS
" k—1RSS
_n—k ESS

k— 1TSS — ESS
n—k ESS/TSS

~ k—11— (ESS/TSS) ®4.11)
_n—k R
k—11-R2
R?/(k - 1)

T (1= R)/(n—k)

8Fomby et al., op. cit., p. 42.
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TABLE 8.4 . Source of Variation SS df MSS*
ANOVA Table in
Terms of R? Due to regression RA(X v?) 2 R¥A(X v?)/2
Due to residuals a-RrRH(Xyd) n-3 A -RHyA/(n-3)
Total > y? n—1
*Note that in computing the F value there is no need to multiply R? and (1 — R?) by ZJ’iz because it drops out, as shown in
Eq. (8.4.12).
where use is made of the definition R? = ESS/TSS. Equation (8.4.11) shows how F and R*
are related. These two vary directly. When R? = 0, F is zero ipso facto. The larger the R?,
the greater the F value. In the limit, when R? = 1, F is infinite. Thus the F test, which is a
measure of the overall significance of the estimated regression, is also a test of significance
of R. In other words, testing the null hypothesis in Eq. (8.4.9) is equivalent to testing the
null hypothesis that (the population) R? is zero.
For the three-variable case, Eq. (8.4.11) becomes
R?/2
o R/ (8.4.12)
(1-R?»/(n-3)
By virtue of the close connection between F and R?, the ANOVA Table (Table 8.1) can be
recast as Table 8.4.
For our illustrative example, using Eq. (8.4.12) we obtain:
0.7077/2
= __07077/2 = 73.8726
(1 —-10.7077)/61
which is about the same as obtained before, except for the rounding errors.
One advantage of the F test expressed in terms of R is its ease of computation: All that
one needs to know is the R? value. Therefore, the overall F test of significance given in
Eq. (8.4.7) can be recast in terms of R? as shown in Table 8.4.
Testing the Overall Significance of a Multiple
Regression in Terms of R?
Decision Rule Testing the overall significance of a regression in terms of R%: Alternative but equivalent

test to Eq. (8.4.7).
Given the k-variable regression model:

Yi = Bi + B2 Xoi + B3 X3i + -+ + BxXui + Ui
To test the hypothesis

Ho:po=p3=---=pc=0
versus
Hq: Not all slope coefficients are simultaneously zero
compute
R2/(k —1
fF = _RGk=1) (8.4.13)

(1= R2)/(n—k)

If F > Fo-1,n—k), reject Ho; otherwise you may accept Ho where F,«—1,n—k) is the critical
Fvalue at the « level of significance and (k — 1) numerator df and (n — k) denominator df.
Alternatively, if the p value of F obtained from Eq. (8.4.13) is sufficiently low, reject Ho.
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Before moving on, return to Example 7.5 in Chapter 7. From regression (7.10.7) we
observe that RGDP (relative per capita GDP) and RGDP squared explain only about
10.92 percent of the variation in GDPG (GDP growth rate) in a sample of 190 countries.
This R? of 0.1092 seems a “low” value. Is it really statistically different from zero? How do
we find that out?

Recall our earlier discussion in “An Important Relationship between R> and F” about
the relationship between R? and the F value as given in Eq. (8.4.11) or Eq. (8.4.12) for the
specific case of two regressors. As noted, if R? is zero, then F is zero ipso facto, which will
be the case if the regressors have no impact whatsoever on the regressand. Therefore, if we
insert R? = 0.1092 into formula (8.4.12), we obtain

0.1092/2
F= /2 _ 114618 (8.4.13)
(1=0.1092)/187

Under the null hypothesis that R? = 0, the preceding F value follows the F distribution with
2 and 187 df in the numerator, respectively. (Note: There are 190 observations and two re-
gressors.) From the F table we see that this F value is significant at about the 5 percent level;
the p value is actually 0.00002. Therefore, we can reject the null hypothesis that the two re-
gressors have no impact on the regressand, notwithstanding the fact that the R? is only 0.1092.

This example brings out an important empirical observation that in cross-sectional data
involving several observations, one generally obtains low R* because of the diversity of the
cross-sectional units. Therefore, one should not be surprised or worried about finding low
R?’s in cross-sectional regressions. What is relevant is that the model is correctly specified,
that the regressors have the correct (i.e., theoretically expected) signs, and that (hopefully)
the regression coefficients are statistically significant. The reader should check that individ-
ually both of the regressors in Eq. (7.10.7) are statistically significant at the 5 percent or
better level (i.e., lower than 5 percent).

The “Incremental” or “Marginal” Contribution
of an Explanatory Variable

In Chapter 7 we stated that generally we cannot allocate the R? value among the various re-
gressors. In our child mortality example we found that the R? was 0.7077 but we cannot say
what part of this value is due to the regressor PGNP and what part is due to female literacy
rate (FLR) because of possible correlation between the two regressors in the sample at
hand. We can shed more light on this using the analysis of variance technique.

For our illustrative example we found that individually X, (PGNP) and X3 (FLR) were
statistically significant on the basis of (separate) t tests. We have also found that on the
basis of the F test collectively both the regressors have a significant effect on the regressand
Y (child mortality).

Now suppose we introduce PGNP and FLR sequentially, that is, we first regress child
mortality on PGNP and assess its significance and then add FLR to the model to find out
whether it contributes anything (of course, the order in which PGNP and FLR enter can be re-
versed). By contribution we mean whether the addition of the variable to the model increases
ESS (and hence R?) “significantly” in relation to the RSS. This contribution may appropri-
ately be called the incremental, or marginal, contribution of an explanatory variable.

The topic of incremental contribution is an important one in practice. In most empirical
investigations the researcher may not be completely sure whether it is worth adding an X
variable to the model knowing that several other X variables are already present in the
model. One does not wish to include a variable(s) that contributes very little toward ESS.
By the same token, one does not want to exclude a variable(s) that substantially increases
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TABLE 8.5
ANOVA Table for
Regression
Equation (8.4.14)

Source of Variation SS df MSS

ESS (due to PGNP) 60,449.5 1 60,449.5
RSS 303,228.5 62 4890.7822
Total 363,678 63

ESS. But how does one decide whether an X variable significantly reduces RSS? The analy-
sis of variance technique can be easily extended to answer this question.
Suppose we first regress child mortality on PGNP and obtain the following regression:

CM; = 157.4244 —  0.0114 PGNP (8.4.14)
r= (15.9894) (—3.5156) 2 =0.1662
pvalue = (0.0000) (0.0008) adj r? = 0.1528

As these results show, PGNP has a significant effect on CM. The ANOVA table corre-
sponding to the preceding regression is given in Table 8.5.

Assuming the disturbances u; are normally distributed and the hypothesis that PGNP
has no effect on CM, we obtain the F value of

_60,449.5
T 4890.7822

which follows the F' distribution with 1 and 62 df. This F value is highly significant, as the
computed p value is 0.0008. Thus, as before, we reject the hypothesis that PGNP has no
effect on CM. Incidentally, note that > = (—3.5156)? = 12.3594, which is approximately
the same as the /' value of Eq. (8.4.15), where the 7 value is obtained from Eq. (8.4.14). But
this should not be surprising in view of the fact that the square of the ¢ statistic with n df is
equal to the /" value with 1 df in the numerator and » df in the denominator, a relationship first
established in Chapter 5. Note that in the present example, n = 64.

Having run the regression (8.4.14), let us suppose we decide to add FLR to the model
and obtain the multiple regression (8.1.4). The questions we want to answer are:

= 12.3598 (8.4.15)

1. What is the marginal, or incremental, contribution of FLR, knowing that PGNP is
already in the model and that it is significantly related to CM?

2. Is the incremental contribution of FLR statistically significant?

3. What is the criterion for adding variables to the model?

The preceding questions can be answered by the ANOVA technique. To see this, let us con-
struct Table 8.6. In this table X, refers to PGNP and X3 refers to FLR.

To assess the incremental contribution of X3 after allowing for the contribution of X;, we
form

Fo 0y /df
Qq/df

(ESS,cw — ESS14)/number of new regressors

B RSS,ew/df (= n — number of parameters in the new model)

_ 91
04/61

for our example (8.4.16)



TABLE 8.6
ANOVA Table to
Assess Incremental
Contribution of a
Variable(s)

TABLE 8.7

ANOVA Table for the
Ilustrative Example:
Incremental Analysis
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Source of Variation SS df MSS
ESS due to X; alone Qi =p42,3x3 1 %
ESS due to the addition of X3 QL=Qq—Q 1 %
ESS due to both X5, X3 Q3 =5 > yixai + B3 > Vixai 2 %
RSS Q= Qs - Qs n-3 Qs
Total Qs =Y y? n—1 n-—3

where ESS,.w = ESS under the new model (i.e., after adding the new regressors = (03),
ESSiq = ESS under the old model (= Q;), and RSS;,.y = RSS under the new model (i.e.,
after taking into account all the regressors = Q4). For our illustrative example the results
are as shown in Table 8.7.

Now applying Eq. (8.4.16), we obtain:

196,912.9

=727 —112.9814 (8.4.17)
1742.8786

Under the usual assumptions, this F' value follows the F distribution with 1 and 62 df. The
reader should check that this F value is highly significant, suggesting that the addition of
FLR to the model significantly increases ESS and hence the R? value. Therefore, FLR
should be added to the model. Again, note that if you square the #-statistic value of the FLR
coefficient in the multiple regression (8.1.4), which is (—10.6293)?, you will obtain the F
value of Eq. (8.4.17), save for the rounding errors.

Incidentally, the F ratio of Eq. (8.4.16) can be recast by using the R? values only, as we
did in Eq. (8.4.13). As Exercise 8.2 shows, the F ratio of Eq. (8.4.16) is equivalent to the
following F ratio:’

(Rlzww B Rgld)/df

F =
(1 - R%lew)/df
B (R, — R%4) /number of new regressors
(1 — R2,,)/df (= n — number of parameters in the new model)

(8.4.18)

Source of Variation SS df MsS

ESS due to PGNP 60,449.5 1 60,449.5

ESS due to the addition of FLR 196,912.9 1 196,912.9

ESS due to PGNP and FLR 257,362.4 2 128,681.2

RSS 106,315.6 61 1742.8786

Total 363,678 63

°The following F test is a special case of the more general F test given in Eq. (8.6.9) or Eq. (8.6.10) in
Section 8.6.
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This F ratio follows the F distribution with the appropriate numerator and denominator df,
1 and 61 in our illustrative example.
For our example, R2. = 0.7077 (from Eq. [8.1.4]) and Rgld =0.1662 (from

Eq. [8.4.14]). Therefore,

5 (07077 - 0.1662)/1

(1-0.7077)/61

=113.05 (8.4.19)

which is about the same as that obtained from Eq. (8.4.17), except for the rounding errors.
This F is highly significant, reinforcing our earlier finding that the variable FLR belongs in
the model.

A cautionary note: If you use the R? version of the F test given in Eq. (8.4.11), make
sure that the dependent variable in the new and the old models is the same. If they are dif-
ferent, use the F test given in Eq. (8.4.16).

When to Add a New Variable

The F-test procedure just outlined provides a formal method of deciding whether a variable
should be added to a regression model. Often researchers are faced with the task of choos-
ing from several competing models involving the same dependent variable but with dif-
ferent explanatory variables. As a matter of ad hoc choice (because very often the theoretical
foundation of the analysis is weak), these researchers frequently choose the model that gives
the highest adjusted R2. Therefore, if the inclusion of a variable increases R, it is retained
in the model although it does not reduce RSS significantly in the statistical sense. The ques-
tion then becomes: When does the adjusted R? increase? It can be shown that R* will in-
crease if the t value of the coefficient of the newly added variable is larger than 1 in absolute
value, where the t value is computed under the hypothesis that the population value of the
said coefficient is zero (i.e., the ¢ value computed from Eq. [5.3.2] under the hypothesis that
the true B value is zero).'” The preceding criterion can also be stated differently: R? will in-
crease with the addition of an extra explanatory variable only if the F( = t*) value of that
variable exceeds 1.

Applying either criterion, the FLR variable in our child mortality example with a ¢ value
of —10.6293 or an F value of 112.9814 should increase R2, which indeed it does—when
FLR is added to the model, R? increases from 0.1528 to 0.6981.

When to Add a Group of Variables

Can we develop a similar rule for deciding whether it is worth adding (or dropping) a group
of variables from a model? The answer should be apparent from Eq. (8.4.18): If adding
(dropping) a group of variables to the model gives an F value greater (less) than 1, R* will
increase (decrease). Of course, from Eq. (8.4.18) one can easily find out whether the addi-
tion (subtraction) of a group of variables significantly increases (decreases) the explanatory
power of a regression model.

8.5 Testing the Equality of Two Regression Coefficients

Suppose in the multiple regression

Yi = B+ BoXoi + B3 Xsi + BaXui +u; (8.5.1)

"OFor proof, see Dennis J. Aigner, Basic Econometrics, Prentice Hall, Englewood Cliffs, NJ, 1971,
pp. 91-92.
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we want to test the hypotheses
Hy:Bs=ps or  (B3—p4)=0
Hi:ps#Bs or  (Bs—Pa)#0

that is, the two slope coefficients 83 and S, are equal.

Such a null hypothesis is of practical importance. For example, let Eq. (8.5.1) represent
the demand function for a commodity where ¥ = amount of a commodity demanded, X, =
price of the commodity, X3 = income of the consumer, and X4 = wealth of the consumer.
The null hypothesis in this case means that the income and wealth coefficients are the same.
Or, if ¥; and the X’s are expressed in logarithmic form, the null hypothesis in Eq. (8.5.2) im-
plies that the income and wealth elasticities of consumption are the same. (Why?)

How do we test such a null hypothesis? Under the classical assumptions, it can be shown
that

(8.5.2)

_ (Bs—Ba) — (Bs — Ba)

t = ~
se (B3 — Ba)

(8.5.3)

follows the ¢ distribution with (n — 4) df because Eq. (8.5.1) is a four-variable model or,
more generally, with (n — k) df, where k is the total number of parameters estimated,
including the constant term. The se (,33 - ,34) is obtained from the following well-known
formula (see Appendix A for details):

e (Bs — Ba) = y/var (B) + var (Bg) — 2cov (B, ) (8.5.4)

If we substitute the null hypothesis and the expression for the se (;§3 — By) into
Eq. (8.5.3), our test statistic becomes
Bs — Ba
r= = = — (8.5.5)
Jvar (B) +var (Be) — 2cov (B, i)

Now the testing procedure involves the following steps:

1. Estimate B3 and Bs. Any standard computer package can do that.

2. Most standard computer packages routinely compute the variances and covariances of
the estimated parameters.!! From these estimates the standard error in the denominator
of Eq. (8.5.5) can be easily obtained.

3. Obtain the ¢ ratio from Eq. (8.5.5). Note the null hypothesis in the present case is
(By — Bs) = 0.

4. If the ¢ variable computed from Eq. (8.5.5) exceeds the critical ¢ value at the designated
level of significance for given df, then you can reject the null hypothesis; otherwise, you
do not reject it. Alternatively, if the p value of the ¢ statistic from Eq. (8.5.5) is reason-
ably low, one can reject the null hypothesis. Note that the lower the p value, the greater
the evidence against the null hypothesis. Therefore, when we say that a p value is low or
reasonably low, we mean that it is less than the significance level, such as 10, 5, or 1 per-
cent. Some personal judgment is involved in this decision.

"The algebraic expression for the covariance formula is rather involved. Appendix C provides a
compact expression for it, however, using matrix notation.
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EXAMPLE 8.2
The Cubic Cost
Function
Revisited

Recall the cubic total cost function estimated in Example 7.4, Section 7.10, which for con-
venience is reproduced below:

Yi =141.7667 + 63.4777X; — 12.9615X7 + 0.9396X
se= (6.3753) (4.7786)  (0.9857)  (0.0591) (7.10.6)
cov(fs, fa) = —0.0576;  R? =0.9983

where Y is total cost and X is output, and where the figures in parentheses are the esti-
mated standard errors.

Suppose we want to test the hypothesis that the coefficients of the X2 and X3 terms in
the cubic cost function are the same, that is, 83 = B4 or (83 — B4) = 0. In the regression
(7.10.6) we have all the necessary output to conduct the ¢ test of Eq. (8.5.5). The actual
mechanics are as follows:

B3 — Pa
Jvar (Bs) +var (5s) — 2.cov (Bs, fis)
—-12.9615 - 0.9396

t=

- /(0.9867)2 + (0.0591)2 — 2(—0.0576) (8.5.6)
—~13.9011
= W =—-13.3130

The reader can verify that for 6 df (why?) the observed t value exceeds the critical t value
even at the 0.002 (or 0.2 percent) level of significance (two-tail test); the p value is ex-
tremely small, 0.000006. Hence we can reject the hypothesis that the coefficients of X?
and X3 in the cubic cost function are identical.

8.6 Restricted Least Squares: Testing Linear Equality Restrictions

There are occasions where economic theory may suggest that the coefficients in a regression
model satisfy some linear equality restrictions. For instance, consider the Cobb—Douglas
production function:

Y, = BiXpEXe (7.9.1) = (8.6.1)

where Y = output, X, = labor input, and X3 = capital input. Written in log form, the equa-
tion becomes

InY; = Bo+ BoInXoi + B3 In X3 + u; (8.6.2)

where By = In ;.
Now if there are constant returns to scale (equiproportional change in output for an
equiproportional change in the inputs), economic theory would suggest that

B+ B =1 (8.6.3)

which is an example of a linear equality restriction.'?
How does one find out if there are constant returns to scale, that is, if the restriction
(8.6.3) is valid? There are two approaches.

2f we had 8, + B3 < 1, this relation would be an example of a linear inequality restriction. To handle
such restrictions, one needs to use mathematical programming techniques.
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The t-Test Approach

The simplest procedure is to estimate Eq. (8.6.2) in the usual manner without taking into
account the restriction (8.6.3) explicitly. This is called the unrestricted or unconstrained
regression. Having estimated 8, and B (say, by the OLS method), a test of the hypothesis
or restriction (8.6.3) can be conducted by the ¢ test of Eq. (8.5.3), namely,

_ (Bt By = (B2 + By
se (B2 + Bs)
(Br+B3) — 1 (8.6.4)

\/var (,32) + var (/§3) + 2 cov (,32, /§3)

where (8, + f3) = 1 under the null hypothesis and where the denominator is the standard
error of (ﬂz + ,33) Then following Section 8.5, if the ¢ value computed from Eq. (8.6.4) ex-
ceeds the critical ¢ value at the chosen level of significance, we reject the hypothesis of con-
stant returns to scale; otherwise we do not reject it.

The F-Test Approach: Restricted Least Squares

The preceding ¢ test is a kind of postmortem examination because we try to find out whether
the linear restriction is satisfied after estimating the “unrestricted” regression. A direct ap-
proach would be to incorporate the restriction (8.6.3) into the estimating procedure at the
outset. In the present example, this procedure can be done easily. From (8.6.3) we see that

Br=1-8s (8.6.5)

or
B=1-p (8.6.6)

Therefore, using either of these equalities, we can eliminate one of the 8 coefficients in
Eq. (8.6.2) and estimate the resulting equation. Thus, if we use Eq. (8.6.5), we can write the
Cobb—-Douglas production function as

InY; =Bo+ (1 —B3) InXy + B3In X3 +u;
= fo+In Xy + B3(In X3 — In X)) +u;
or
(InY; —InXy;) = Bo + B3(In X3 — In Xo;) +u; (8.6.7)
or
In(Y:/X2) = Bo + B3 In (X5 /X2i) + u; (8.6.8)

where (Y; /X»;) = output/labor ratio and (X3; /X3;) = capital labor ratio, quantities of great
economic importance.

Notice how the original equation (8.6.2) is transformed. Once we estimate 3 from
Eq. (8.6.7) or Eq. (8.6.8), B, can be easily estimated from the relation (8.6.5). Needless to
say, this procedure will guarantee that the sum of the estimated coefficients of the two inputs
will equal 1. The procedure outlined in Eq. (8.6.7) or Eq. (8.6.8) is known as restricted
least squares (RLS). This procedure can be generalized to models containing any number
of explanatory variables and more than one linear equality restriction. The generalization
can be found in Theil.'3 (See also general F testing below.)

3Henri Theil, Principles of Econometrics, John Wiley & Sons, New York, 1971, pp. 43-45.
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How do we compare the unrestricted and restricted least-squares regressions? In other
words, how do we know that, say, the restriction (8.6.3) is valid? This question can be an-
swered by applying the F test as follows. Let
> @13z = RSS of the unrestricted regression (8.6.2)

> L?zR = RSS of the restricted regression (8.6.7)
m = number of linear restrictions (1 in the present example)
k = number of parameters in the unrestricted regression
n = number of observations

Then,

. (RSSR — RSSUR)/I’}’!
~ RSSwr/(n—k)

(2 = D) /m
Y ity /(n — k)

(8.6.9)

follows the F distribution with m, (n — k) df. (Note: UR and R stand for unrestricted and
restricted, respectively.)
The F test above can also be expressed in terms of R? as follows:

_ (RI2JR - Rf{)/m
F= 0G5 (8.6.10)

where R, and R3 are, respectively, the R? values obtained from the unrestricted and
restricted regressions, that is, from the regressions (8.6.2) and (8.6.7). It should be noted that

Rip > R} (8.6.11)

and

> atg <Y ax (8.6.12)

In Exercise 8.4 you are asked to justify these statements.

A cautionary note:  In using Eq. (8.6.10) keep in mind that if the dependent variable in
the restricted and unrestricted models is not the same, R, and R% are not directly compa-
rable. In that case, use the procedure described in Chapter 7 to render the two R? values
comparable (see Example 8.3 below) or use the F test given in Eq. (8.6.9).

EXAMPLE 8.3
The Cobb—
Douglas
Production
Function for the
Mexican

Economy,
1955-1974

By way of illustrating the preceding discussion, consider the data given in Table 8.8.
Attempting to fit the Cobb-Douglas production function to these data yielded the fol-
lowing results:

in GDP;= —1.6524 + 0.3397 In Labor, + 0.8460 In Capital, (8.6.13)
t=(—2.7259) (1.8295) (9.0625)
pvalue= (0.0144) (0.0849) (0.0000)

R? =0.9951 RSSur=0.0136



TABLE 8.8

Real GDP,
Employment, and
Real Fixed
Capital—Mexico

Source: Victor J. Elias,
Sources of Growth: A Study
of Seven Latin American
Economies, International

Center for Economic Growth,

ICS Press, San Francisco,
1992. Data from Tables ES5,
E12, and E14.
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Year GDP* Employment? Fixed Capital*
1955 114043 8310 182113
1956 120410 8529 193749
1957 129187 8738 205192
1958 134705 8952 215130
1959 139960 9171 225021
1960 150511 9569 237026
1961 157897 9527 248897
1962 165286 9662 260661
1963 178491 10334 275466
1964 199457 10981 295378
1965 212323 11746 315715
1966 226977 11521 337642
1967 241194 11540 363599
1968 260881 12066 391847
1969 277498 12297 422382
1970 296530 12955 455049
1971 306712 13338 484677
1972 329030 13738 520553
1973 354057 15924 561531
1974 374977 14154 609825

*Millions of 1960 pesos.
"Thousands of people.
Millions of 1960 pesos.

where RSSyg is the unrestricted RSS, as we have put no restrictions on estimating
Eq. (8.6.13).

We have already seen in Chapter 7 how to interpret the coefficients of the Cobb-—
Douglas production function. As you can see, the output/labor elasticity is about 0.34
and the output/capital elasticity is about 0.85. If we add these coefficients, we obtain
1.19, suggesting that perhaps the Mexican economy during the stated time period was
experiencing increasing returns to scale. Of course, we do not know if 1.19 is statisti-
cally different from 1.

To see if that is the case, let us impose the restriction of constant returns to scale,
which gives the following regression:

In (GDP/Labor); = —0.4947 + 1.0153 In (Capital/Labor), (8.6.14)
t=(-4.0612) (28.1056)
pvalue= (0.0007)  (0.0000)

RZ=0.9777  RSSg = 0.0166

where RSSg is the restricted RSS, for we have imposed the restriction that there are con-
stant returns to scale.

(Continued)
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EXAMPLE 8.3
(Continued)

Since the dependent variable in the preceding two regressions is different, we have to
use the F test given in Eq. (8.6.9). We have the necessary data to obtain the F value.

_ (RSSgr — RSSur)/m
~ RSSwr/(n—k)

_ (0.0166 — 0.0136)/1
~ 7(0.0136)/(20 — 3)

=3.75

Note in the present case m = 1, as we have imposed only one restriction and (n — k) is 17,
since we have 20 observations and three parameters in the unrestricted regression.

This F value follows the F distribution with 1 df in the numerator and 17 df in the
denominator. The reader can easily check that this F value is not significant at the 5% level.
(See Appendix D, Table D.3.)

The conclusion then is that the Mexican economy was probably characterized by con-
stant returns to scale over the sample period and therefore there may be no harm in using
the restricted regression given in Eq. (8.6.14). As this regression shows, if capital/labor
ratio increased by 1 percent, on average, labor productivity went up by about 1 percent.

General F Testing™*

The F test given in Eq. (8.6.10) or its equivalent in Eq. (8.6.9) provides a general method
of testing hypotheses about one or more parameters of the k-variable regression model:

Yi =1+ BoaXoi + B3 Xsi + - + BiXii + i (8.6.15)

The F test of Eq. (8.4.16) or the ¢ test of Eq. (8.5.3) is but a specific application of
Eq. (8.6.10). Thus, hypotheses such as

Hy: ,32 = /33 (8616)

Ho: B3+ B4+ Bs =3 (8.6.17)

which involve some linear restrictions on the parameters of the k-variable model, or
hypotheses such as

Hy:ps = Pa=PBs =P =0 (8.6.18)

which imply that some regressors are absent from the model, can all be tested by the F test
of Eq. (8.6.10).

From the discussion in Sections 8.4 and 8.6, the reader will have noticed that the general
strategy of F testing is this: There is a larger model, the unconstrained model (8.6.15), and
then there is a smaller model, the constrained or restricted model, which is obtained from
the larger model by deleting some variables from it, e.g., Eq. (8.6.18), or by putting some
linear restrictions on one or more coefficients of the larger model, e.g., Eq. (8.6.16) or
Eq. (8.6.17).

4f one is using the maximum likelihood approach to estimation, then a test similar to the one dis-
cussed shortly is the likelihood ratio test, which is slightly involved and is therefore discussed in
the appendix to the chapter. For further discussion, see Theil, op. cit., pp. 179-184.
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We then fit the unconstrained and constrained models to the data and obtain the respec-
tive coefficients of determination, namely, R7 and R3. We note the df in the unconstrained
model (= n — k) and also note the df in the constrained model ( = m), m being the num-
ber of linear restriction (e.g., 1 in Eq. [8.6.16] or Eq. [8.6.18]) or the number of regressors
omitted from the model (e.g., m = 4 if Eq. [8.6.18] holds, since four regressors are as-
sumed to be absent from the model). We then compute the F'ratio as indicated in Eq. (8.6.9)
or Eq. (8.6.10) and use this Decision Rule: If the computed F exceeds F,(m,n — k), where
Fy(m,n — k) is the critical F at the o level of significance, we reject the null hypothesis:
otherwise we do not reject it.

Let us illustrate:

EXAMPLE 8.4
The Demand for
Chicken in the
United States,
1960-1982

In Exercise 7.19, among other things, you were asked to consider the following demand
function for chicken:

InY; = B1+ B2 In X5t + B3 In X3¢ + Ba In X4t + Bs In Xs¢ + uj (8.6.19)

where Y = per capita consumption of chicken, Ib, X, = real disposable per capita income,
$, X3 = real retail price of chicken per Ib, ¢, X4 = real retail price of pork per Ib, ¢, and X5 =
real retail price of beef per Ib, ¢.

In this model B, B3, B4, and Bs are, respectively, the income, own-price, cross-price
(pork), and cross-price (beef) elasticities. (Why?) According to economic theory,

B2>0
B3 <0
B4 >0, if chicken and pork are competing products
<0, if chicken and pork are complementary products (8.6.20)
=0, if chicken and pork are unrelated products
Bs >0, if chicken and beef are competing products
<0, if chicken and pork are complementary products
=0, if chicken and pork are unrelated products

Suppose someone maintains that chicken and pork and beef are unrelated products in
the sense that chicken consumption is not affected by the prices of pork and beef. In short,

H()Z ﬂ4 = ﬂs =0 (8.6.21)
Therefore, the constrained regression becomes
InYe= g1+ B2In Xoe + B3 In X3¢ + ue (8.6.22)

Equation (8.6.19) is of course the unconstrained regression.
Using the data given in Exercise 7.19, we obtain the following:
Unconstrained regression:

InY, = 2.1898 + 0.3425 In Xz — 0.5046 In X3, + 0.1485 In X4 + 0.0911 In Xs;

(0.1557) (0.0833) (0.1109) (0.0997) (0.1007)
Rir=0.9823  (8.6.23)
Constrained regression:

inY;= 2.0328 + 0.45151In Xy — 0.3772 In X3;
(0.1162) (0.0247) (0.0635) (8.6.24)
RZ = 0.9801

(Continued)
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EXAMPLE 8.4
(Continued)

where the figures in parentheses are the estimated standard errors. Note: The R? values of
Egs. (8.6.23) and (8.6.24) are comparable since the dependent variable in the two mod-
els is the same.
Now the F ratio to test the hypothesis of Eq. (8.6.21) is
2 2
F — M (8.6.10)
(1= Rgr) /(n— k)

The value of min the present case is 2, since there are two restrictions involved: 4 = 0 and
Bs = 0. The denominator df, (n — k), is 18, since n =23 and k = 5 (5 B coefficients).
Therefore, the Fratio is

_(0.9823 —0.9801)/2
T (1-0.9823)/18 (8.6.25)

=1.1224

which has the F distribution with 2 and 18 df.

At 5 percent, clearly this F value is not statistically significant [F5(2,18) = 3.55]. The
p value is 0.3472. Therefore, there is no reason to reject the null hypothesis—the demand
for chicken does not depend on pork and beef prices. In short, we can accept the con-
strained regression (8.6.24) as representing the demand function for chicken.

Notice that the demand function satisfies a priori economic expectations in that the
own-price elasticity is negative and that the income elasticity is positive. However, the es-
timated price elasticity, in absolute value, is statistically less than unity, implying that the
demand for chicken is price inelastic. (Why?) Also, the income elasticity, although positive,
is also statistically less than unity, suggesting that chicken is not a luxury item; by conven-
tion, an item is said to be a luxury item if its income elasticity is greater than 1.

8.7 Testing for Structural or Parameter Stability of Regression
Models: The Chow Test

When we use a regression model involving time series data, it may happen that there is a
structural change in the relationship between the regressand Y and the regressors. By
structural change, we mean that the values of the parameters of the model do not remain the
same through the entire time period. Sometimes the structural change may be due to exter-
nal forces (e.g., the oil embargoes imposed by the OPEC oil cartel in 1973 and 1979 or the
Gulf War of 1990-1991), policy changes (such as the switch from a fixed exchange-rate
system to a flexible exchange-rate system around 1973), actions taken by Congress (e.g.,
the tax changes initiated by President Reagan in his two terms in office or changes in the
minimum wage rate), or a variety of other causes.

How do we find out that a structural change has in fact occurred? To be specific, con-
sider the data given in Table 8.9. This table gives data on disposable personal income and
personal savings, in billions of dollars, for the United States for the period 1970-1995.
Suppose we want to estimate a simple savings function that relates savings (Y) to dispos-
able personal income DPI (X). Since we have the data, we can obtain an OLS regression of
Y on X. But if we do that, we are maintaining that the relationship between savings and DPI
has not changed much over the span of 26 years. That may be a tall assumption. For exam-
ple, it is well known that in 1982 the United States suffered its worst peacetime recession.
The civilian unemployment rate that year reached 9.7 percent, the highest since 1948. An



TABLE 8.9

Savings and Personal
Disposable Income
(billions of dollars),
United States,
1970-1995

Source: Economic Report
of the President, 1997,
Table B-28, p. 332.
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Observation

1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982

Savings Income Observation
61.0 727.1 1983
68.6 790.2 1984
63.6 855.3 1985
89.6 965.0 1986
97.6 1054.2 1987

104.4 1159.2 1988
96.4 1273.0 1989
92.5 1401.4 1990

112.6 1580.1 1991

130.1 1769.5 1992

161.8 1973.3 1993

199.1 2200.2 1994

205.5 2347.3 1995

Savings Income
167.0 2522.4
235.7 2810.0
206.2 3002.0
196.5 3187.6
168.4 3363.1
189.1 3640.8
187.8 3894.5
208.7 4166.8
246.4 4343.7
272.6 4613.7
214.4 4790.2
189.4 5021.7
249.3 5320.8

event such as this might disturb the relationship between savings and DPI. To see if this

happened, let us divide our sample data into two time periods: 1970-1981 and 1982-1995,

the pre- and post-1982 recession periods.
Now we have three possible regressions:

Time period 1970-1981: Y, = A1 + M X, +uy,  np =12
Time period 1982-1995: Y, =y + X, +uy  np, =14

Time period 1970-1995: Y, = o) + oo X, + u;

(8.7.1)
(8.7.2)

n=(n +n) =26 (8.7.3)

Regression (8.7.3) assumes that there is no difference between the two time periods and
therefore estimates the relationship between savings and DPI for the entire time period con-
sisting of 26 observations. In other words, this regression assumes that the intercept as well
as the slope coefficient remains the same over the entire period; that is, there is no structural
change. If this is in fact the situation, then ¢y = A} = y; and oy = Ay = y».

Regressions (8.7.1) and (8.7.2) assume that the regressions in the two time periods are
different; that is, the intercept and the slope coefficients are different, as indicated by the
subscripted parameters. In the preceding regressions, the u’s represent the error terms and
the n’s represent the number of observations.

For the data given in Table 8.9, the empirical counterparts of the preceding three regres-
sions are as follows:

¥, = 1.0161 + 0.0803 X,
t= (0.0873) (9.6015)

2 =0.9021 RSS; = 1785.032 df =10

¥, = 153.4947 + 0.0148X,
r= (4.6922) (1.7707)

R* =0.2971 RSS, = 10,005.22 df =12

Y, = 62.4226 + 0.0376 X, + - -
t= (4.8917) (8.8937)+ -

R* =0.7672 RSS; = 23,248.30 df =24

(8.7.1a)

(8.7.2a)

(8.7.3a)
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FIGURE 8.3
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In the preceding regressions, RSS denotes the residual sum of squares, and the figures in
parentheses are the estimated ¢ values.

A look at the estimated regressions suggests that the relationship between savings and
DPI is not the same in the two subperiods. The slope in the preceding savings-income
regressions represents the marginal propensity to save (MPS), that is, the (mean) change
in savings as a result of a dollar’s increase in disposable personal income. In the period
1970-1981 the MPS was about 0.08, whereas in the period 1982—1995 it was about 0.02.
Whether this change was due to the economic policies pursued by President Reagan is hard
to say. This further suggests that the pooled regression (8.7.3a)—that is, the one that pools
all the 26 observations and runs a common regression, disregarding possible differences in
the two subperiods—may not be appropriate. Of course, the preceding statements need to
be supported by an appropriate statistical test(s). Incidentally, the scattergrams and the es-
timated regression lines are as shown in Figure 8.3.

Now the possible differences, that is, structural changes, may be caused by differences in
the intercept or the slope coefficient or both. How do we find that out? A visual feeling about
this can be obtained as shown in Figure 8.3. But it would be useful to have a formal test.

This is where the Chow test comes in handy.'® This test assumes that:

1. uy; ~ N(0,0%) and uy ~ N(0, o). That is, the error terms in the subperiod regres-

sions are normally distributed with the same (homoscedastic) variance 2.

2. The two error terms uy; and uy, are independently distributed.

The mechanics of the Chow test are as follows:

1. Estimate regression (8.7.3), which is appropriate if there is no parameter instability,
and obtain RSS; with df = (n; + n, — k), where k is the number of parameters estimated,
2 in the present case. For our example RSS; = 23,248.30. We call RSS; the restricted
residual sum of squares (RSSg) because it is obtained by imposing the restrictions that
A1 = y) and A, = y,, that is, the subperiod regressions are not different.

2. Estimate Eq. (8.7.1) and obtain its residual sum of squares, RSS;, with df = (n; — k).
In our example, RSS; = 1785.032 and df = 10.

3. Estimate Eq. (8.7.2) and obtain its residual sum of squares, RSS,, with df = (n, — k).
In our example, RSS, = 10,005.22 with df = 12.

15Gregory C. Chow, “Tests of Equality Between Sets of Coefficients in Two Linear Regressions,”
Econometrica, vol. 28, no. 3, 1960, pp. 591-605.
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4. Since the two sets of samples are deemed independent, we can add RSS; and RSS,
to obtain what may be called the unrestricted residual sum of squares (RSSyg), that is,

RSSur = RSS; +RSS; with df = (ny + ny — 2k)
In the present case,
RSSyr = (1785.032 + 10,005.22) = 11,790.252

5. Now the idea behind the Chow test is that if in fact there is no structural change
(i.e., regressions [8.7.1] and [8.7.2] are essentially the same), then the RSSg and RSSygr
should not be statistically different. Therefore, if we form the following ratio:

_ (RSSg —RSSpRr)/k
~ (RSSur)/(n1 + na — 2k)

~ Flke (n,+n,-26)] (8.7.4)

then Chow has shown that under the null hypothesis the regressions (8.7.1) and (8.7.2) are
(statistically) the same (i.e., no structural change or break) and the F' ratio given above
follows the F distribution with k and (n; + n, — 2k) df in the numerator and denominator,
respectively.

6. Therefore, we do not reject the null hypothesis of parameter stability (i.e., no struc-
tural change) if the computed F value in an application does not exceed the critical F value
obtained from the F table at the chosen level of significance (or the p value). In this case we
may be justified in using the pooled (restricted?) regression (8.7.3). Contrarily, if the com-
puted F value exceeds the critical F' value, we reject the hypothesis of parameter stability
and conclude that the regressions (8.7.1) and (8.7.2) are different, in which case the pooled
regression (8.7.3) is of dubious value, to say the least.

Returning to our example, we find that

(23,248.30 — 11,790.252) /2
N (11,790.252) /22 (8.7.5)
=10.69

From the F tables, we find that for 2 and 22 df the 1 percent critical F value is 5.72. There-
fore, the probability of obtaining an F value of as much as or greater than 10.69 is much
smaller than 1 percent; actually the p value is only 0.00057.

The Chow test therefore seems to support our earlier hunch that the savings—income
relation has undergone a structural change in the United States over the period 1970-1995,
assuming that the assumptions underlying the test are fulfilled. We will have more to say
about this shortly.

Incidentally, note that the Chow test can be easily generalized to handle cases of more
than one structural break. For example, if we believe that the savings—income relation
changed after President Clinton took office in January 1992, we could divide our sample
into three periods: 1970-1981, 1982—-1991, 1992-1995, and carry out the Chow test. Of
course, we will have four RSS terms, one for each subperiod and one for the pooled data.
But the logic of the test remains the same. Data through 2007 are now available to extend
the last period to 2007.

There are some caveats about the Chow test that must be kept in mind:

1. The assumptions underlying the test must be fulfilled. For example, one should find
out if the error variances in the regressions (8.7.1) and (8.7.2) are the same. We will discuss
this point shortly.
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2. The Chow test will tell us only if the two regressions (8.7.1) and (8.7.2) are different,
without telling us whether the difference is on account of the intercepts, or the slopes, or
both. But in Chapter 9, on dummy variables, we will see how we can answer this question.

3. The Chow test assumes that we know the point(s) of structural break. In our exam-
ple, we assumed it to be in 1982. However, if it is not possible to determine when the struc-
tural change actually took place, we may have to use other methods.'®

Before we leave the Chow test and our savings—income regression, let us examine one
of the assumptions underlying the Chow test, namely, that the error variances in the two
periods are the same. Since we cannot observe the true error variances, we can obtain their
estimates from the RSS given in the regressions (8.7.1a) and (8.7.2a), namely,

.o  RSS; 1785.032
o) = =

= = = 178.5032 8.7.6
ny — 2 10 ( )

. RSS,  10,005.22
2 >

— - — 833.7683 8.7.7
2T 2T 142 8.7.7)

Notice that, since there are two parameters estimated in each equation, we deduct 2 from
the number of observations to obtain the df. Given the assumptions underlying the Chow
test, 62 and 67 are unbiased estimators of the true variances in the two subperiods. As a
result, if 012 = 022, that is, the variances in the two subpopulations are the same (as assumed
by the Chow test), then it can be shown that

~2 ) 2
(6i/ei) 8.7.8
573y~ Fon-,00-0 (8.7.8)
(63/03)
follows the F distribution with (n; — k) and (n, — k) df in the numerator and the denomi-
nator, respectively, in our example k£ = 2, since there are only two parameters in each sub-
regression.
Of course, if of = 03, the preceding F test reduces to computing

F=2 (8.7.9)

Note: By convention we put the larger of the two estimated variances in the numerator. (See
Appendix A for the details of the F' and other probability distributions.)

Computing this F in an application and comparing it with the critical F value with the
appropriate df, one can decide to reject or not reject the null hypothesis that the variances
in the two subpopulations are the same. If the null hypothesis is not rejected, then one can
use the Chow test.

Returning to our savings—income regression, we obtain the following result:

833.7683

=———— =4.6701 7.1
178.5032 (8.7.10)

Under the null hypothesis of equality of variances in the two subpopulations, this F' value
follows the F distribution with 12 and 10 df, in the numerator and denominator, respec-
tively. (Note: We have put the larger of the two estimated variances in the numerator.) From
the F' tables in Appendix D, we see that the 5 and 1 percent critical /' values for 12 and

T6For a detailed discussion, see William H. Greene, Econometric Analysis, 4th ed., Prentice Hall,
Englewood Cliffs, NJ, 2000, pp. 293-297.
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10 df are 2.91 and 4.71, respectively. The computed F value is significant at the 5 percent
level and is almost significant at the 1 percent level. Thus, our conclusion would be that the
two subpopulation variances are not the same and, therefore, strictly speaking we should
not use the Chow test.

Our purpose here has been to demonstrate the mechanics of the Chow test, which is used
popularly in applied work. If the error variances in the two subpopulations are het-
eroscedastic, the Chow test can be modified. But the procedure is beyond the scope of this
book.!”

Another point we made earlier was that the Chow test is sensitive to the choice of the
time at which the regression parameters might have changed. In our example, we assumed
that the change probably took place in the recession year of 1982. If we had assumed it to
be 1981, when Ronald Reagan began his presidency, we might have found the computed <
value to be different. As a matter of fact, in Exercise 8.34 the reader is asked to check this out.

If we do not want to choose the point at which the break in the underlying relationship
might have occurred, we could choose alternative methods, such as the recursive residual
test. We will take this topic up in Chapter 13, the chapter on model specification analysis.

8.8 Prediction with Multiple Regression

In Section 5.10 we showed how the estimated two-variable regression model can be used
for (1) mean prediction, that is, predicting the point on the population regression function
(PRF), as well as for (2) individual prediction, that is, predicting an individual value of ¥
given the value of the regressor X = Xj, where X is the specified numerical value of X.

The estimated multiple regression too can be used for similar purposes, and the proce-
dure for doing that is a straightforward extension of the two-variable case, except the for-
mulas for estimating the variances and standard errors of the forecast value (comparable to
Egs. [5.10.2] and [5.10.6] of the two-variable model) are rather involved and are better han-
dled by the matrix methods discussed in Appendix C. Of course, most standard regression
packages can do this routinely, so there is no need to look up the matrix formulation. It is
given in Appendix C for the benefit of the mathematically inclined students. This appen-
dix also gives a fully worked out example.

*8.9 The Troika of Hypothesis Tests: The Likelihood Ratio (LR),
Wald (W), and Lagrange Multiplier (LM) Tests!®

In this and the previous chapters we have, by and large, used the #, F, and chi-square tests
to test a variety of hypotheses in the context of linear (in-parameter) regression models. But
once we go beyond the somewhat comfortable world of linear regression models, we need
a method(s) to test hypotheses that can handle regression models, linear or not.

The well-known trinity of likelihood, Wald, and Lagrange multiplier tests can ac-
complish this purpose. The interesting thing to note is that asymptotically (i.e., in large

*Optional.

17For a discussion of the Chow test under heteroscedasticity, see William H. Greene, Econometric
Analysis, 4th ed., Prentice Hall, Englewood Cliffs, NJ, 2000, pp. 292-293, and Adrian C. Darnell,
A Dictionary of Econometrics, Edward Elgar, U.K., 1994, p. 51.

"8For an accessible discussion, see A. Buse, “The Likelihood Ratio, Wald and Lagrange Multiplier Tests:
An Expository Note,” American Statistician, vol. 36, 1982, pp. 153-157.
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samples) all three tests are equivalent in that the test statistic associated with each of these
tests follows the chi-square distribution.

Although we will discuss the likelihood ratio test in the appendix to this chapter, in
general we will not use these tests in this textbook for the pragmatic reason that in small, or
finite, samples, which is unfortunately what most researchers deal with, the F' test that we
have used so far will suffice. As Davidson and MacKinnon note:

For linear regression models, with or without normal errors, there is of course no need to look
at LM, W and LR at all, since no information is gained from doing so over and above what is
already contained in F.!°

“8.10 Testing the Functional Form of Regression: Choosing
between Linear and Log-Linear Regression Models

The choice between a linear regression model (the regressand is a linear function of the
regressors) or a log—linear regression model (the log of the regressand is a function of the
logs of the regressors) is a perennial question in empirical analysis. We can use a test pro-
posed by MacKinnon, White, and Davidson, which for brevity we call the MWD test, to
choose between the two models.?

To illustrate this test, assume the following

Hy: Linear Model: Y is a linear function of regressors, the X’s.
H,: Log—Linear Model: In Y is a linear function of logs of regressors, the logs of X’s.

where, as usual, Hy and H; denote the null and alternative hypotheses.
The MWD test involves the following steps:>!

Step I: Estimate the linear model and obtain the estimated Y values. Call them Y1 (i.e., Y ).
Step: II: Estimate the log—linear model and obtain the estimated In ¥ values; call them
Inf(.e.,InY).

Step III: Obtain Z;, = (InYf — Inf).

Step IV: Regress Y on X’s and Z; obtained in Step III. Reject H if the coefficient of
Z, is statistically significant by the usual ¢ test.

Step V: Obtain Z, = (antilog of Inf'— Y f).
Step VI: Regress log of Y on the logs of X’s and Z,. Reject H if the coefficient of Z,
is statistically significant by the usual 7 test.

Although the MWD test seems involved, the logic of the test is quite simple. If the linear
model is in fact the correct model, the constructed variable Z; should not be statistically sig-
nificant in Step IV, for in that case the estimated Y values from the linear model and those
estimated from the log—linear model (after taking their antilog values for comparative pur-
poses) should not be different. The same comment applies to the alternative hypothesis H;.

*Optional.

19Russell Davidson and James G. MacKinnon, Estimation and Inference in Econometrics, Oxford Univer-
sity Press, New York, 1993, p. 456.

20, MacKinnon, H. White, and R. Davidson, “Tests for Model Specification in the Presence of Alterna-
tive Hypothesis; Some Further Results,” Journal of Econometrics, vol. 21, 1983, pp. 53-70. A similar
test is proposed in A. K. Bera and C. M. Jarque, “Model Specification Tests: A Simultaneous Approach,”
Journal of Econometrics, vol. 20, 1982, pp. 59-82.

21This discussion is based on William H. Greene, ET. The Econometrics Toolkit Version 3, Econometric
Software, Bellport, New York, 1992, pp. 245-246.
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EXAMPLE 8.5 Refer to Exercise 7.16 where we have presented data on the demand for roses in the
The Demand for Detroit metropolitan area for the period 1971l to 1975-II. For illustrative purposes, we
will consider the demand for roses as a function only of the prices of roses and carna-

itgmes tions, leaving out the income variable for the time being. Now we consider the follow-
ing models:

Linear model: Yi= oy + axXpr + a3 X3t + Up (8.10.1)

Log-linear model: InY:=B1+ B2 In Xy + B3 In X3¢ + uy (8.10.2)

where Y is the quantity of roses in dozens, X; is the average wholesale price of roses
($/dozen), and X3 is the average wholesale price of carnations ($/dozen). A priori, o
and B, are expected to be negative (why?), and a3 and B3 are expected to be positive
(why?). As we know, the slope coefficients in the log-linear model are elasticity
coefficients.

The regression results are as follows:

Ye=9734.2176 — 3782.1956X + 2815.2515X3,
t= (3.3705) (—6.6069) (2.9712) (8.10.3)
F=21.84 R2=0.77096
InY, = 9.2278 — 1.7607 InXz + 1.3398 InXs;
t=(16.2349) (—5.9044) (2.5407) (8.10.4)
F=17.50 R2=0.7292

As these results show, both the linear and the log-linear models seem to fit the data rea-
sonably well: The parameters have the expected signs and the t and R? values are statisti-
cally significant.

To decide between these models on the basis of the MWD test, we first test the hy-
pothesis that the true model is linear. Then, following Step IV of the test, we obtain the
following regression:

Yi=9727.5685 — 3783.0623X,; + 2817.7157 X3, + 85.2319.7;;
t= (3.2178) (-6.3337) (2.8366)  (0.0207) (8.10.5)
F=13.44 R2=0.7707

Since the coefficient of Z; is not statistically significant (the p value of the estimated t is
0.98), we do not reject the hypothesis that the true model is linear.

Suppose we switch gears and assume that the true model is log-linear. Following step
VI of the MWD test, we obtain the following regression results:

INY,= 9.1486 — 1.9699 InX;+ 1.5891InXy— 0.0013Zy
t=(17.0825) (—6.4189) (3.0728) (~1.6612) (8.10.6)
F=14.17 R?=0.7798

The coefficient of Z; is statistically significant at about the 12 percent level (p value is
0.1225). Therefore, we can reject the hypothesis that the true model is log-linear at this
level of significance. Of course, if one sticks to the conventional 1 or 5 percent signifi-
cance levels, then one cannot reject the hypothesis that the true model is log-linear. As
this example shows, it is quite possible that in a given situation we cannot reject either
of the specifications.
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Summary and 1. Thischapter extended and refined the ideas of interval estimation and hypothesis testing

Conclusions first introduced in Chapter 5 in the context of the two-variable linear regression model.

2. In a multiple regression, testing the individual significance of a partial regression coef-
ficient (using the ¢ test) and testing the overall significance of the regression (i.e., Hy: all
partial slope coefficients are zero or R* = 0) are not the same thing.

3. In particular, the finding that one or more partial regression coefficients are statistically
insignificant on the basis of the individual t test does not mean that all partial regression
coefficients are also (collectively) statistically insignificant. The latter hypothesis can be
tested only by the F test.

4. The F test is versatile in that it can test a variety of hypotheses, such as whether (1) an
individual regression coefficient is statistically significant, (2) all partial slope coeffi-
cients are zero, (3) two or more coefficients are statistically equal, (4) the coefficients
satisfy some linear restrictions, and (5) there is structural stability of the regression
model.

5. As in the two-variable case, the multiple regression model can be used for the purpose
of mean and/or individual prediction.

EXERCISES Questions

8.1. Suppose you want to study the behavior of sales of a product, say, automobiles over
a number of years and suppose someone suggests you try the following models:

Y, = Bo+ Bt
Y, =Ol0+0l1t+0€2l‘2

where Y, = sales at time 7 and ¢ = time, measured in years. The first model postu-
lates that sales is a linear function of time, whereas the second model states that it is
a quadratic function of time.

a. Discuss the properties of these models.
b. How would you decide between the two models?
c. In what situations will the quadratic model be useful?

d. Try to obtain data on automobile sales in the United States over the past 20 years
and see which of the models fits the data better.

8.2. Show that the F ratio of Eq. (8.4.16) is equal to the F ratio of Eq. (8.4.18). (Hint:
ESS/TSS = R?)

8.3. Show that F tests of Eq. (8.4.18) and Eq. (8.6.10) are equivalent.
8.4. Establish statements (8.6.11) and (8.6.12).
8.5. Consider the Cobb—Douglas production function

Y = g1 LA KFs Mm

where Y = output, L = labor input, and K = capital input. Dividing (1) through by
K, we get

(Y/K) = ﬂl(L/K)ﬁZKﬂ2+ﬂ3_] (2)
Taking the natural log of (2) and adding the error term, we obtain

In(Y/K) = B0+ BIn(L/K)+(Bo+B5—1)In K +u; 3
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where By = In f;.

a. Suppose you had data to run the regression (3). How would you test the hypothe-
sis that there are constant returns to scale, i.e., (8; + B3) = 1?

b. If there are constant returns to scale, how would you interpret regression (3)?

¢. Does it make any difference whether we divide (1) by L rather than by K?

8.6. Critical values of R* when true R* = 0. Equation (8.4.11) gave the relationship be-
tween F and R? under the hypothesis that all partial slope coefficients are simultane-
ously equal to zero (i.e., R* = 0). Just as we can find the critical F value at the o level
of significance from the F table, we can find the critical R? value from the following
relation:

R (k—1)F
T (k=D)F+(n—k)

where £ is the number of parameters in the regression model including the intercept
and where F is the critical F value at the « level of significance. If the observed R?
exceeds the critical R?> obtained from the preceding formula, we can reject the
hypothesis that the true R? is zero.

Establish the preceding formula and find out the critical R? value (at o = 5 per-
cent) for the regression (8.1.4).

8.7. From annual data for the years 1968—1987, the following regression results were

obtained:
17', = —859.92 + 0.6470.X,, — 23.195X5; R? =0.9776 @)
)A’, = —261.09 + 0.2452 X5, R? =0.9388 2)

where ¥ = U.S. expenditure on imported goods, billions of 1982 dollars, X; = per-
sonal disposable income, billions of 1982 dollars, and X3 = trend variable. True or
false: The standard error of X3 in (1) is 4.2750. Show your calculations. (Hint: Use
the relationship between R?, F, and t.)

8.8. Suppose in the regression
In(Y;/X5) = a1 + o In Xp; + a3 In X3 +u;

the values of the regression coefficients and their standard errors are known.” From
this knowledge, how would you estimate the parameters and standard errors of the
following regression model?

InY; = B1 + BoIn Xp; + B3 In X3; + u;
8.9. Assume the following:
Yi = B1 + BaXoi + B3 X3 + BaX2i Xz +u;

where Y is personal consumption expenditure, X, is personal income, and X3 is per-
sonal wealth.’ The term (X2 X3;) is known as the interaction term. What is meant
by this expression? How would you test the hypothesis that the marginal propensity
to consume (MPC) (i.e., 8;) is independent of the wealth of the consumer?

“Adapted from Peter Kennedy, A Guide to Econometrics, the MIT Press, 3d ed., Cambridge, Mass.,
1992, p. 310.

fIbid., p. 327.
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8.10. You are given the following regression results:

¥, = 16,899 — 2978.5X5, R*=0.6149
t=  (85152)  (—4.7280)

7, = 97342 —37822X + 2815Xy R% = 0.7706
t= (33705  (—6.6070) (2.9712)

Can you find out the sample size underlying these results? (Hint: Recall the relation-
ship between R?, F, and  values.)

8.11. Based on our discussion of individual and joint tests of hypothesis based, respec-
tively, on the 7 and F tests, which of the following situations are likely?

1. Reject the joint null on the basis of the F statistic, but do not reject each separate
null on the basis of the individual ¢ tests.

2. Reject the joint null on the basis of the F statistic, reject one individual hypothe-
sis on the basis of the 7 test, and do not reject the other individual hypotheses on
the basis of the 7 test.

3. Reject the joint null hypothesis on the basis of the F statistic, and reject each sep-
arate null hypothesis on the basis of the individual ¢ tests.

4. Do not reject the joint null on the basis of the F statistic, and do not reject each
separate null on the basis of individual ¢ tests.

5. Do not reject the joint null on the basis of the F statistic, reject one individual hy-
pothesis on the basis of a ¢ test, and do not reject the other individual hypotheses
on the basis of the 7 test.

6. Do not reject the joint null on the basis of the F statistic, but reject each separate
null on the basis of individual ¢ tests.”

Empirical Exercises
8.12. Refer to Exercise 7.21.
a. What are the real income and interest rate elasticities of real cash balances?
b. Are the preceding elasticities statistically significant individually?
c. Test the overall significance of the estimated regression.
d. Is the income elasticity of demand for real cash balances significantly different
from unity?
e. Should the interest rate variable be retained in the model? Why?

8.13. From the data for 46 states in the United States for 1992, Baltagi obtained the
following regression results:

logC = 430 — 1.341log P+ 0.17 log ¥
se =(0.91) (0.32) (0.20) R? =027

where C = cigarette consumption, packs per year
P = real price per pack
Y = real disposable income per capita

“Quoted from Ernst R. Berndt, The Practice of Econometrics: Classic and Contemporary, Addison-Wesley,
Reading, Mass., 1991, p. 79.

See Badi H. Baltagi, Econometrics, Springer-Verlag, New York, 1998, p. 111.
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a. What is the elasticity of demand for cigarettes with respect to price? Is it statisti-
cally significant? If so, is it statistically different from 1?

b. What is the income elasticity of demand for cigarettes? Is it statistically signifi-
cant? If not, what might be the reasons for it?

c. How would you retrieve R? from the adjusted R? given above?
8.14. From a sample of 209 firms, Wooldridge obtained the following regression results:"

log (salary) = 4.32 + 0.280 log (sales) + 0.0174 roe + 0.00024 ros
se = (0.32) (0.035) (0.0041) (0.00054)
R?=0.283

where salary = salary of CEO
sales = annual firm sales
roe = return on equity in percent
ros = return on firm’s stock

and where figures in the parentheses are the estimated standard errors.

a. Interpret the preceding regression taking into account any prior expectations that
you may have about the signs of the various coefficients.

b. Which of the coefficients are individually statistically significant at the 5 percent

level?
c. What is the overall significance of the regression? Which test do you use?
And why?
d. Can you interpret the coefficients of roe and ros as elasticity coefficients? Why or
why not?
8.15. Assuming that ¥ and X;, X3, ..., X are jointly normally distributed and assuming

that the null hypothesis is that the population partial correlations are individually
equal to zero, R. A. Fisher has shown that

, _ M234.kv0 = k=2

/ 2
1 =725

follows the ¢ distribution with n — k — 2 df, where £ is the kth-order partial correla-
tion coefficient and where 7 is the total number of observations. (Nofe: r ;3 is a first-
order partial correlation coefficient, 71,34 is a second-order partial correlation
coefficient, and so on.) Refer to Exercise 7.2. Assuming Y and X, and X3 to be
jointly normally distributed, compute the three partial correlations 71233, 7132, and
r23.1 and test their significance under the hypothesis that the corresponding popula-
tion correlations are individually equal to zero.

8.16. In studying the demand for farm tractors in the United States for the periods
1921-1941 and 19481957, Griliches' obtained the following results:

log?; = constant — 0.519 log X5, — 4.933 log X,  R? = 0.793
0.231) (0.477)

“See Jeffrey M. Wooldridge, Introductory Econometrics, South-Western Publishing Co., 2000,

pp. 154-155.

tZ. Griliches, “The Demand for a Durable Input: Farm Tractors in the United States, 1921-1957,” in
The Demand for Durable Goods, Arnold C. Harberger (ed.), The University of Chicago Press, Chicago,
1960, Table 1, p. 192.
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where Y; = value of stock of tractors on farms as of January 1, in 1935-1939 dollars,
X, = index of prices paid for tractors divided by an index of prices received for all
crops at time ¢/ — 1,and X3 = interest rate prevailing in year # — 1. The estimated
standard errors are given in the parentheses.

a. Interpret the preceding regression.

b. Are the estimated slope coefficients individually statistically significant? Are they
significantly different from unity?

c. Use the analysis of variance technique to test the significance of the overall re-
gression. Hint: Use the R? variant of the ANOVA technique.

d. How would you compute the interest-rate elasticity of demand for farm tractors?
e. How would you test the significance of estimated R>?

8.17. Consider the following wage-determination equation for the British economy” for
the period 1950-1969:

W, = 8.582 + 0.364(PF),+ 0.004(PF)._, — 2.560U,
(1.129)  (0.080) (0.072) (0.658)
R>=0.873 df=15

where W = wages and salaries per employee
PF = prices of final output at factor cost
U = unemployment in Great Britain as a percentage of the total number of
employees in Great Britain
t = time
(The figures in the parentheses are the estimated standard errors.)
a. Interpret the preceding equation.
Are the estimated coefficients individually significant?
What is the rationale for the introduction of (PF),_;?
Should the variable (PF);_; be dropped from the model? Why?

How would you compute the elasticity of wages and salaries per employee with
respect to the unemployment rate U?

SN

8.18. A variation of the wage-determination equation given in Exercise 8.17 is as follows:
W, = 1.073 + 5.288V,— 0.116X,+ 0.054M,+ 0.046M,_,
(0.797)  (0.812)  (0.111)  (0.022) (0.019)
R*=0.934 df=14

where W = wages and salaries per employee
V' = unfilled job vacancies in Great Britain as a percentage of the total
number of employees in Great Britain
X = gross domestic product per person employed
M = import prices
M,_; = import prices in the previous (or lagged) year

(The estimated standard errors are given in the parentheses.)

“Taken from Prices and Earnings in 1951-1969: An Econometric Assessment, Dept. of Employment,
HMSO, 1971, Eq. (19), p. 35.

fIbid., Eq. (67), p. 37.
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a. Interpret the preceding equation.
b. Which of the estimated coefficients are individually statistically significant?

c. What is the rationale for the introduction of the X variable? A priori, is the sign of
X expected to be negative?

d. What is the purpose of introducing both M, and M,_; in the model?

e. Which of the variables may be dropped from the model? Why?

/- Test the overall significance of the observed regression.

For the demand for chicken function estimated in Eq. (8.6.24), is the estimated

income elasticity equal to 1? Is the price elasticity equal to —1?

For the demand function in Eq. (8.6.24) how would you test the hypothesis that the

income elasticity is equal in value but opposite in sign to the price elasticity of

demand? Show the necessary calculations. (Note: cov [, B3] = —0.00142.)

Refer to the demand for roses function of Exercise 7.16. Confining your considera-

tions to the logarithmic specification,

a. What is the estimated own-price elasticity of demand (i.e., elasticity with respect
to the price of roses)?

b. Is it statistically significant?

o

If so, is it significantly different from unity?

d. A priori, what are the expected signs of X3 (price of carnations) and X4 (income)?
Are the empirical results in accord with these expectations?

e. If the coefficients of X3 and X, are statistically insignificant, what may be the
reasons?

Refer to Exercise 7.17 relating to wildcat activity.

a. Is each of the estimated slope coefficients individually statistically significant at
the 5 percent level?

b. Would you reject the hypothesis that R> = 0?

c. What is the instantaneous rate of growth of wildcat activity over the period
1948-1978? The corresponding compound rate of growth?

Refer to the U.S. defense budget outlay regression estimated in Exercise 7.18.
a. Comment generally on the estimated regression results.

b. Set up the ANOVA table and test the hypothesis that all the partial slope coeffi-
cients are zero.

The following is known as the transcendental production function (TPF), a gener-
alization of the well-known Cobb—Douglas production function:

Y, = IBILﬁzkﬂseﬁ4L+ﬂ5K

where Y = output, L = labor input, and K = capital input.
After taking logarithms and adding the stochastic disturbance term, we obtain the
stochastic TPF as

InY; =B+ BoInL; + B3 InK; + B4L; + BsK; + u;

where By = In ;.
a. What are the properties of this function?

b. For the TPF to reduce to the Cobb—Douglas production function, what must be the
values of B4 and Bs?
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c. If you had the data, how would you go about finding out whether the TPF red-
uces to the Cobb—Douglas production function? What testing procedure would
you use?

d. See if the TPF fits the data given in Table 8.8. Show your calculations.

8.25. Energy prices and capital formation: United States, 1948—1978. To test the hypo-
thesis that a rise in the price of energy relative to output leads to a decline in the
productivity of existing capital and labor resources, John A. Tatom estimated the
following production function for the United States for the quarterly period 19481
to 1978-1I:"

In(y/k)= 15492+ 0.7135In(k/k)— 0.1081 In(P,/P)

(16.33) (21.69) (—6.42)
+ 0.0045¢ R?2=0.98
(15.86)

where y = real output in the private business sector
k = a measure of the flow of capital services
h = person hours in the private business sector
P, = producer price index for fuel and related products
P = private business sector price deflator
t = time

The numbers in parentheses are ¢ statistics.

a. Do the results support the author’s hypothesis?

b. Between 1972 and 1977 the relative price of energy, (P./P), increased by 60 per-
cent. From the estimated regression, what is the loss in productivity?

c. After allowing for the changes in (%/k) and (P./P), what has been the trend rate
of growth of productivity over the sample period?

d. How would you interpret the coefficient value of 0.7135?

e. Does the fact that each estimated partial slope coefficient is individually statisti-
cally significant (why?) mean we can reject the hypothesis that R?> = 0? Why or
why not?

8.26. The demand for cable. Table 8.10 gives data used by a telephone cable manufacturer

to predict sales to a major customer for the period 1968—1983.F
The variables in the table are defined as follows:

Y = annual sales in MPE, million paired feet
X, = gross national product (GNP), $, billions
X3 = housing starts, thousands of units
X4 = unemployment rate, %

Xs = prime rate lagged 6 months
Xs = Customer line gains, %

“See his “Energy Prices and Capital Formation: 1972-1977,” Review, Federal Reserve Bank of St. Louis,
vol. 61, no. 5, May 1979, p. 4.

I am indebted to Daniel J. Reardon for collecting and processing the data.
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TABLE 8.10 Regression Variables

Year

1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983

XZ/
GNP

1051.8
1078.8
1075.3
1107.5
1171.1
1235.0
1217.8
1202.3
1271.0
1332.7
1399.2
1431.6
1480.7
1510.3
1492.2
1535.4

X3, Xa, Xs, Xe, Y,
Housing Unemployment, Prime Rate Customer Line Annual
Starts % Lag, 6 mos. Gains, % Sales (MPF)
1503.6 3.6 5.8 5.9 5873
1486.7 3.5 6.7 4.5 7852
1434.8 5.0 8.4 4.2 8189
2035.6 6.0 6.2 4.2 7497
2360.8 5.6 5.4 4.9 8534
2043.9 4.9 5.9 5.0 8688
1331.9 5.6 9.4 4.1 7270
1160.0 8.5 9.4 3.4 5020
1535.0 7.7 7.2 4.2 6035
1961.8 7.0 6.6 4.5 7425
2009.3 6.0 7.6 3.9 9400
1721.9 6.0 10.6 4.4 9350
1298.0 7.2 14.9 3.9 6540
1100.0 7.6 16.6 3.1 7675
1039.0 9.2 17.5 0.6 7419
1200.0 8.8 16.0 1.5 7923

You are to consider the following model:
Y = B1 + BaXor + B3 X + BaXar + Bs X5 + BoXer + s
. Estimate the preceding regression.

What are the expected signs of the coefficients of this model?
Are the empirical results in accordance with prior expectations?

L O &8

. Are the estimated partial regression coefficients individually statistically signifi-
cant at the 5 percent level of significance?

e. Suppose you first regress ¥ on X3, X3, and X only and then decide to add the vari-

ables X5 and X5. How would you find out if it is worth adding the variables X5 and

X? Which test do you use? Show the necessary calculations.

8.27. Marc Nerlove has estimated the following cost function for electricity generation:*
Y = AXP p pe pay @)

where Y = total cost of production
X = output in kilowatt hours
P, = price of labor input
P, = price of capital input
P5 = price of fuel
u = disturbance term

*Marc Nerlove, “Returns to Scale in Electric Supply,” in Carl Christ, ed., Measurement in Economics,
Stanford University Press, Palo Alto, Calif., 1963. The notation has been changed.
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8.28.

Theoretically, the sum of the price elasticities is expected to be unity, i.e.,
(a1 + a2 + a3) = 1. By imposing this restriction, the preceding cost function can be
written as

(Y/Ps) = AXP(Py/P3)* (Py/ P3)*u @
In other words, (1) is an unrestricted and (2) is the restricted cost function.

On the basis of a sample of 29 medium-sized firms, and after logarithmic trans-
formation, Nerlove obtained the following regression results:

InY, = —4.93 + 0.94InX;+ 031InP, -
se = (1.96) 0.11) (0.23)
—0.26InP, + 0.441nP5
(0.29) (0.07) RSS = 0.336
In(Y/P3) = —6.55+ 091 InX + 0.51 In(P,/P3)+ 0.09 In (P,/P5)
se= (0.16) (0.11) (0.19) (0.16) RSS = 0.364
4

a. Interpret Egs. (3) and (4).

b. How would you find out if the restriction (o + o + a3) = 1 is valid? Show your
calculations.

Estimating the capital asset pricing model (CAPM). In Section 6.1 we considered
briefly the well-known capital asset pricing model of modern portfolio theory. In em-
pirical analysis, the CAPM is estimated in two stages.

Stage I (Time-series regression). For each of the N securities included in the
sample, we run the following regression over time:

Ri=8 + BiRm + e M

where R;; and R, are the rates of return on the ith security and on the market portfo-
lio (say, the S&P 500) in year ¢; ;, as noted elsewhere, is the Beta or market volatil-
ity coefficient of the ith security, and e;; are the residuals. In all there are N such
regressions, one for each security, giving therefore N estimates of ;.

Stage II (Cross-section regression). In this stage we run the following regression
over the N securities:

Ri=p+ Db +ui 2

where R; is the average or mean rate of return for security i computed over the sam-
ple period covered by Stage I, B is the estimated beta coefficient from the first-stage
regression, and u; is the residual term.

Comparing the second-stage regression (2) with the CAPM Eq. (6.1.2), written as

ER; =77 + Bi(ER,, —717) 3)

where 7 is the risk-free rate of return, we see that 71 is an estimate of rrand 7, is
an estimate of (ER,, — /), the market risk premium.



Chapter 8 Multiple Regression Analysis: The Problem of Inference 271

Thus, in the empirical testing of CAPM, R; and ﬁi are used as estimators of ER;
and B;, respectively. Now if CAPM holds, statistically,

n=ry
=R, — 7y, the estimator of (ER,, — ry)

Next consider an alternative model:

Ri =P+ DB + st +u; 4)

where sezi is the residual variance of the ith security from the first-stage regression.
Then, if CAPM is valid, 75 should not be significantly different from zero.

To test the CAPM, Levy ran regressions (2) and (4) on a sample of 101 stocks for
the period 19481968 and obtained the following results:"

Ri= 0.109 + 0.0376;
(0.009)  (0.008) Q@)
t=(12.0)  (5.1) R =021

Ri= 0106 + 0.00245; + 020152
(0.008) (0.007)  (0.038) )
t=(132) (33 (5.3) R =039

a. Are these results supportive of the CAPM?

b. Is it worth adding the variable sezl_ to the model? How do you know?

c. If the CAPM holds, p; in (2)" should approximate the average value of the risk-
free rate, . The estimated value is 10.9 percent. Does this seem a reasonable
estimate of the risk-free rate of return during the observation period, 1948—1968?
(You may consider the rate of return on Treasury bills or a similar comparatively
risk-free asset.)

d. If the CAPM holds, the market risk premium (R, — ry) from (2) is about
3.7 percent. If 7, is assumed to be 10.9 percent, this implies R,, for the sample
period was about 14.6 percent. Does this sound like a reasonable estimate?

e. What can you say about the CAPM generally?

8.29. Refer to Exercise 7.21c. Now that you have the necessary tools, which test(s) would
you use to choose between the two models? Show the necessary computations. Note
that the dependent variables in the two models are different.

8.30. Refer to Example 8.3. Use the ¢ test as shown in Eq. (8.6.4) to find out if there were
constant returns to scale in the Mexican economy for the period of the study.

8.31. Return to the child mortality example that we have discussed several times. In
regression (7.6.2) we regressed child mortality (CM) on per capita GNP (PGNP)
and female literacy rate (FLR). Now we extend this model by including total

“H. Levy, “Equilibrium in an Imperfect Market: A Constraint on the Number of Securities in the Portfolio,”
American Economic Review, vol. 68, no. 4, September 1978, pp. 643-658.
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8.32.

8.33.

fertility rate (TFR). The data on all these variables are already given in Table 6.4. We
reproduce regression (7.6.2) and give results of the extended regression model
below:

1. CM; = 263.6416 — 0.0056 PGNP; — 2.2316 FLR; (7.6.2)
se = (11.5932) (0.0019) (0.2099)  R?>=0.7077
2. CM; = 168.3067 — 0.0055 PGNP; — 1.7680 FLR; + 12.8686TFR;
se = (32.8916) (0.0018) (0.2480) ?)
R =0.7474

a. How would you interpret the coefficient of TFR? A priori, would you expect a
positive or negative relationship between CM and TFR? Justify your answer.

b. Have the coefficient values of PGNP and FR changed between the two equations?
If so, what may be the reason(s) for such a change? Is the observed difference sta-
tistically significant? Which test do you use and why?

¢. How would you choose between models 1 and 2? Which statistical test would you
use to answer this question? Show the necessary calculations.

d. We have not given the standard error of the coefficient of TFR. Can you find it
out? (Hint: Recall the relationship between the # and F distributions.)

Return to Exercise 1.7, which gave data on advertising impressions retained and
advertising expenditure for a sample of 21 firms. In Exercise 5.11 you were asked to
plot these data and decide on an appropriate model about the relationship between
impressions and advertising expenditure. Letting Y represent impressions retained
and X the advertising expenditure, the following regressions were obtained:

Model I:  ¥; =22.163 + 0.363LX;
se = (7.089) (0.0971) 12 =0.424
Model Il:  ¥; = 7.059 + 1.0847.X; — 0.0040.X>
se =(9.986) (0.3699)  (0.0019) R2=10.53

Interpret both models.
Which is a better model? Why?
Which statistical test(s) would you use to choose between the two models?

ST

Are there “diminishing returns” to advertising expenditure, that is, after a certain

level of advertising expenditure (the saturation level), does it not pay to advertise?

Can you find out what that level of expenditure might be? Show the necessary cal-

culations.

In regression (7.9.4), we presented the results of the Cobb—Douglas production func-

tion fitted to the manufacturing sector of all 50 states and Washington, DC, for 2005.

On the basis of that regression, find out if there are constant returns to scale in that

sector, using

a. The ¢ test given in Eq. (8.6.4). You are told that the covariance between the two
slope estimators is —0.03843.

b. The F test given in Eq. (8.6.9).

c. Is there a difference in the two test results? And what is your conclusion regard-

ing the returns to scale in the manufacturing sector of the 50 states and

Washington, DC, over the sample period?
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8.34. Reconsider the savings—income regression in Section 8.7. Suppose we divide the

8.35.

8.36.

sample into two periods as 1970—-1982 and 1983—-1995. Using the Chow test, decide
if there is a structural change in the savings—income regression in the two periods.
Comparing your results with those given in Section 8.7, what overall conclusion do
you draw about the sensitivity of the Chow test to the choice of the break point that
divides the sample into two (or more) periods?

Refer to Exercise 7.24 and the data in Table 7.12 concerning four economic variables
in the U.S. from 1947-2000.

a. Based on the regression of consumption expenditure on real income, real
wealth and real interest rate, find out which of the regression coefficients are
individually statistically significant at the 5 percent level of significance. Are the
signs of the estimated coefficients in accord with economic theory?

b. Based on the results in (@), how would you estimate the income, wealth, and
interest rate elasticities? What additional information, if any, do you need to com-
pute the elasticities?

¢. How would you test the hypothesis that the income and wealth elasticities are the
same? Show the necessary calculations.

d. Suppose instead of the linear consumption function estimated in (@), you regress
the logarithm of consumption expenditure on the logarithms of income and
wealth and the interest rate. Show the regression results. How would you interpret
the results?

e. What are the income and wealth elasticities estimated in (d)? How would you
interpret the coefficient of the interest rate estimated in (d)?

/- In the regression in (d) could you have used the logarithm of the interest rate
instead of the interest rate? Why or why not?

How would you compare the elasticities estimated in (b) and in (d)?

s 09

Between the regression models estimated in (a) and (d), which would you

prefer? Why?

i. Suppose instead of estimating the model given in (4 ), you only regress the loga-
rithm of consumption expenditure on the logarithm of income. How would you
decide if it is worth adding the logarithm of wealth in the model? And how would
you decide if it is worth adding both the logarithm of wealth and interest rate vari-
ables in the model? Show the necessary calculations.

Refer to Section 8.8 and the data in Table 8.9 concerning disposable personal income

and personal savings for the period 1970-1995. In that section, the Chow test was

introduced to see if a structural change occurred within the data between two time

periods. Table 8.11 includes updated data containing the values from 1970-2005.

According to the National Bureau of Economic Research, the most recent U.S. busi-

ness contraction cycle ended in late 2001. Split the data into three sections:

(1) 1970-1981, (2) 19822001, and (3) 2002—2005.

a. Estimate both the model for the full dataset (years 1970-2005) and the third
section (post-2002). Using the Chow test, determine if there is a significant break
between the third period and the full dataset.

b. With this new data in Table 8.11, determine if there is still a significant difference
between the first set of years (1970-1981) and the full dataset, now that there are
more observations available.

c¢. Perform the Chow test on the middle period (1982—2001) versus the full dataset to

see if the data in this period behave significantly differently than the rest of the data.
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TABLE 8.11

Savings and Personal LD Sl TS
Disposable Income 1970 69.5 735.7
(billions of dollars), 1971 80.6 801.8
United States, 1972 77.2 869.1
1970-2005 (billions of 1973 102.7 978.3
dollars, except as 1974 113.6 1,071 .6
noted; quarterly data 1975 125.6 1,187.4
at seasonally adjusted 1976 122.3 1,302.5
annual rates) 1977 125.3 1,435.7
1978 142.5 1,608.3
e 1979 159.1 1,793.5
Economic Analysis. 1980 201.4 2,0090
1981 2443 2,246.1
1982 270.8 2,421.2
1983 233.6 2,608.4
1984 314.8 2,912.0
1985 280.0 3,109.3
1986 268.4 3,285.1
1987 241.4 3,458.3
1988 272.9 3,748.7
1989 287.1 4,021.7
1990 299.4 4,285.8
1991 324.2 4,464.3
1992 366.0 4,751.4
1993 284.0 4,911.9
1994 249.5 5,151.8
1995 250.9 5,408.2
1996 228.4 5,688.5
1997 218.3 5,988.8
1998 276.8 6,395.9
1999 158.6 6,695.0
2000 168.5 7,194.0
2001 132.3 7,486.8
2002 184.7 7,830.1
2003 174.9 8,162.5
2004 174.3 8,681.6
2005 34.8 9,036.1

“Appendix 8A2

Likelihood Ratio (LR) Test

The LR test is based on the maximum likelihood (ML) principle discussed in Appendix 4A, where
we showed how one obtains the ML estimators of the two-variable regression model. The principle
can be straightforwardly extended to the multiple regression model. Under the assumption that
the disturbances u; are normally distributed, we showed that, for the two-variable regression model,
the OLS and ML estimators of the regression coefficients are identical, but the estimated error

“Optional.




Chapter 8 Multiple Regression Analysis: The Problem of Inference 275

variances are different. The OLS estimator of o2 is Y ﬁlz /(n — 2) but the ML estimator is y ﬁf/ n,
the former being unbiased and the latter biased, although in large samples the bias tends to disappear.

The same is true in the multiple regression case. To illustrate, consider the three-variable regres-
sion model:

Y; = B1 + BoXoi + B3 X3 +u; Q)

Corresponding to Eq. (5) of Appendix 4A, the log-likelihood function for the model (1) can be
written as:

1
InLF = —% In(o?) — %ln(Zn) =502 Z(Yi — B — BoXoi — B3 X3i)? (2)

As shown in Appendix 4A, differentiating this function with respect to 1, B2, B3, and o2, setting the
resulting expressions to zero, and solving, we obtain the ML estimators of these estimators. The ML
estimators of B, B2, and B3 will be identical to OLS estimators, which are already given in
Egs. (7.4.6) to (7.4.8), but the error variance will be different in that the residual sum of squares (RSS)
will be divided by # rather than by (n — 3), as in the case of OLS.

Now let us suppose that our null hypothesis H, is that g3, the coefficient of X3, is zero. In this
case, log LF given in (2) will become

In LF = —% In (02) — % In(27) — % > (% = B — BrXai)? A3)

Equation (3) is known as the restricted log-likelihood function (RLLF) because it is estimated with
the restriction that a priori S5 is zero, whereas Eq. (1) is known as the unrestricted log LF (ULLF)
because a priori there are no restrictions put on the parameters. To test the validity of the a priori re-
striction that S3 is zero, the LR test obtains the following test statistic:

*

A = 2(ULLF — RLLF) 4

where ULLF and RLLF are, respectively, the unrestricted log-likelihood function (Eq. [2]) and the
restricted log-likelihood function (Eq. [3]). If the sample size is large, it can be shown that the test
statistic A given in Eq. (4) follows the chi-square (x?) distribution with df equal to the number of
restrictions imposed by the null hypothesis, 1 in the present case.

The basic idea behind the LR test is simple: If the a priori restriction(s) is valid, the restricted and
unrestricted (log) LF should not be different, in which case X in Eq. (4) will be zero. But if that is not
the case, the two LFs will diverge. And since in a large sample we know that A follows the chi-square
distribution, we can find out if the divergence is statistically significant, say, at a 1 or 5 percent level
of significance. Or else, we can find out the p value of the estimated A.

Let us illustrate the LR test with our child mortality example. If we regress child mortality (CM)
on per capita GNP (PGNP) and female literacy rate (FLR) as we did in Eq. (8.1.4), we obtain ULLF
of —328.1012, but if we regress CM on PGNP only, we obtain the RLLF of —361.6396. In absolute
value (i.e., disregarding the sign), the former is smaller than the latter, which makes sense since we
have an additional variable in the former model.

The question now is whether it is worth adding the FLR variable. If it is not, the restricted and un-
restricted LLF should not differ much, but if it is, the LLFs will be different. To see if this difference
is statistically significant, we now use the LR test given in Eq. (4), which gives:

A = 2[—328.1012 — (—361.6396)] = 67.0768

“This expression can also be expressed as —2(RLLF — ULLF) or as —2 In (RLF/ULF).




276 Part One Single-Equation Regression Models

Asymptotically, this is distributed as the chi-square distribution with 1 df (because we have only one
restriction imposed when we omitted the FLR variable from the full model). The p value of obtaining
such a chi-square value for 1 df is almost zero, leading to the conclusion that the FLR variable should
not be excluded from the model. In other words, the restricted regression in the present instance is not
valid.

Letting RRSS and URSS denote the restricted and unrestricted residual sums of squares, Eq. (4)
can also be expressed as:

—21In A = n(InRRSS — In URSS) (5)

which is distributed as x> with 7 degrees of freedom, where 7 is the number of restrictions imposed
on the model (i.e., the number of 7 coefficients omitted from the original model).
Although we will not go into the details of the Wald and LM tests, these tests can be implemented

as follows:
. (n — k)(RRSS — URSS) 5
‘Wald Statist = ~
ald Statistic (W) URSS X (6)
—k RRSS — URSS
Lagrange Multiplier Statistic (LM) = ( + r)I({RSS ) ~ sz @)

Where k is the number of regressors in the unrestricted model and 7 is the number of restrictions.

As you can see from the preceding equations, all three tests are asymptotically (i.e., in large sam-
ples) equivalent, that is, they give similar answers. However, in small samples the answers can differ.
There is an interesting relationship among these statistics in that it can be shown that:

W >LR >LM

Therefore, in small samples, a hypothesis can be rejected by the Wald statistic but not rejected by the
LM statistic.”

As noted in the text, for most of our purposes the 7 and F tests will suffice. But the three tests dis-
cussed above are of general applicability in that they can be applied to testing nonlinear hypotheses
in linear models, or testing restrictions on variance-covariance matrices. They also can be applied in
situations where the assumption that the errors are normally distributed is not tenable.

Because of the mathematical complexity of the Wald and LM tests, we will not go into more de-
tail here. But as noted, asymptotically, the LR, Wald, and LM tests give identical answers, the choice
of the test depending on computational convenience.

“For an explanation, see G. S. Maddala, Introduction to Econometrics, 3d ed., John Wiley & Sons, New
York, 2001, p. 177.




Chapter

Dummy Variable
Regression Models

In Chapter 1 we discussed briefly the four types of variables that one generally encounters
in empirical analysis: These are: ratio scale, interval scale, ordinal scale, and nominal
scale. The types of variables that we have encountered in the preceding chapters were
essentially ratio scale. But this should not give the impression that regression models can
deal only with ratio scale variables. Regression models can also handle other types of
variables mentioned previously. In this chapter, we consider models that may involve
not only ratio scale variables but also nominal scale variables. Such variables are also
known as indicator variables, categorical variables, qualitative variables, or dummy
variables.'

9.1 The Nature of Dummy Variables

In regression analysis the dependent variable, or regressand, is frequently influenced not
only by ratio scale variables (e.g., income, output, prices, costs, height, temperature) but
also by variables that are essentially qualitative, or nominal scale, in nature, such as sex,
race, color, religion, nationality, geographical region, political upheavals, and party affilia-
tion. For example, holding all other factors constant, female workers are found to earn less
than their male counterparts or nonwhite workers are found to earn less than whites.? This
pattern may result from sex or racial discrimination, but whatever the reason, qualitative
variables such as sex and race seem to influence the regressand and clearly should be
included among the explanatory variables, or the regressors.

Since such variables usually indicate the presence or absence of a “quality” or an
attribute, such as male or female, black or white, Catholic or non-Catholic, Democrat or
Republican, they are essentially nominal scale variables. One way we could “quantify”
such attributes is by constructing artificial variables that take on values of 1 or 0, 1 indicat-
ing the presence (or possession) of that attribute and O indicating the absence of that
attribute. For example, | may indicate that a person is a female and 0 may designate a male;
or 1 may indicate that a person is a college graduate, and 0 that the person is not, and so on.

"We will discuss ordinal scale variables in Chapter 15.

2For a review of the evidence on this subject, see Bruce E. Kaufman and Julie L. Hotchkiss, The
Economics of Labor Markets, 5th ed., Dryden Press, New York, 2000.
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Variables that assume such 0 and 1 values are called dummy variables.® Such variables
are thus essentially a device to classify data into mutually exclusive categories such as
male or female.

Dummy variables can be incorporated in regression models just as easily as quantitative
variables. As a matter of fact, a regression model may contain regressors that are all exclu-
sively dummy, or qualitative, in nature. Such models are called Analysis of Variance
(ANOVA) models.*

9.2 ANOVA Models

To illustrate the ANOVA models, consider the following example.

EXAMPLE 9.1
Public School
Teachers’
Salaries by
Geographical
Region

Table 9.1 gives data on average salary (in dollars) of public school teachers in 50 states and
the District of Columbia for the academic year 2005-2006. These 51 areas are classified
into three geographical regions: (1) Northeast and North Central (21 states in all),
(2) South (17 states in all), and (3) West (13 states in all). For the time being, do not worry
about the format of the table and the other data given in the table.

Suppose we want to find out if the average annual salary of public school teachers differs
among the three geographical regions of the country. If you take the simple arith-
metic average of the average salaries of the teachers in the three regions, you will find that
these averages for the three regions are as follows: $49,538.71 (Northeast and North
Central), $46,293.59 (South), and $48,104.62 (West). These numbers look different, but
are they statistically different from one another? There are various statistical techniques to
compare two or more mean values, which generally go by the name of analysis of
variance.® But the same objective can be accomplished within the framework of regres-
sion analysis.

To see this, consider the following model:

Yi= g1 + B2D2i + B3Dsi + u; (9.2.1)

where Y, = (average) salary of public school teacher in state i
D,; = 1 if the state is in the Northeast or North Central
= 0 otherwise (i.e., in other regions of the country)
Ds; = 1 if the state is in the South
= 0 otherwise (i.e., in other regions of the country)

Note that Eqg. (9.2.1) is like any multiple regression model considered previously, except
that, instead of quantitative regressors, we have only qualitative, or dummy, regressors,

3|t is not absolutely essential that dummy variables take the values of 0 and 1. The pair (0,1) can be
transformed into any other pair by a linear function such that Z = a+ bD (b # 0), where a and b are
constants and where D = 1 or 0. When D = 1, we have Z = a + b, and when D = 0, we have Z = a.
Thus the pair (0, 1) becomes (a, a + b). For example, if a =1 and b = 2, the dummy variables will be
(1, 3). This expression shows that qualitative, or dummy, variables do not have a natural scale of measure-
ment. That is why they are described as nominal scale variables.

4“ANOVA models are used to assess the statistical significance of the relationship between a quantita-
tive regressand and qualitative or dummy regressors. They are often used to compare the differences
in the mean values of two or more groups or categories, and are therefore more general than the t
test, which can be used to compare the means of two groups or categories only.

SFor an applied treatment, see John Fox, Applied Regression Analysis, Linear Models, and Related
Methods, Sage Publications, 1997, Chapter 8.
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TABLE 9.1 Average Salary of Public School Teachers by State, 2005-2006

Salary Spending D, D3 Salary Spending D; D3
Connecticut 60,822 12,436 1 0 Georgia 49,905 8,534 0 1
Illinois 58,246 9,275 1 0 Kentucky 43,646 8,300 0 1
Indiana 47,831 8,935 1 0 Louisiana 42,816 8,519 0 1
lowa 43,130 7,807 1 0 Maryland 56,927 9,771 0 1
Kansas 43,334 8,373 1 0 Mississippi 40,182 7,215 0 1
Maine 41,596 11,285 1 0 North Carolina 46,410 7,675 0 1
Massachusetts 58,624 12,596 1 0 Oklahoma 42,379 6,944 0 1
Michigan 54,895 9,880 1 0 South Carolina 44,133 8,377 0 1
Minnesota 49,634 9,675 1 0 Tennessee 43,816 6,979 0 1
Missouri 41,839 7,840 1 0 Texas 44,897 7,547 0 1
Nebraska 42,044 7,900 1 0 Virginia 44,727 9,275 0 1
New Hampshire 46,527 10,206 1 0 West Virginia 40,531 9,886 0 1
New Jersey 59,920 13,781 1 0 Alaska 54,658 10,171 0 0
New York 58,537 13,551 1 0 Arizona 45,941 5,585 0 0
North Dakota 38,822 7,807 1 0 California 63,640 8,486 0 0
Ohio 51,937 10,034 1 0 Colorado 45,833 8,861 0 0
Pennsylvania 54,970 10,711 1 0 Hawaii 51,922 9,879 0 0
Rhode Island 55,956 11,089 1 0 Idaho 42,798 7,042 0 0
South Dakota 35,378 7,911 1 0 Montana 41,225 8,361 0 0
Vermont 48,370 12,475 1 0 Nevada 45,342 6,755 0 0
Wisconsin 47,901 9,965 1 0 New Mexico 42,780 8,622 0 0
Alabama 43,389 7,706 0 1 Oregon 50,911 8,649 0 0
Arkansas 44,245 8,402 0 1 Utah 40,566 5,347 0 0
Delaware 54,680 12,036 0 1 Washington, D.C. 47,882 7,958 0 0
District of 59,000 15,508 0 1 Wyoming 50,692 11,596 0 0

Columbia

Florida 45,308 7,762 0 1
Note: D, = 1 for states in the Northeast and North Central; 0 otherwise.

D; = 1 for states in the South; 0 otherwise.

Source: National Educational Association, as reported in 2007.

taking the value of 1 if the observation belongs to a particular category and 0 if it does not
belong to that category or group. Hereafter, we shall designate all dummy variables by the
letter D. Table 9.1 shows the dummy variables thus constructed.
What does the model (9.2.1) tell us? Assuming that the error term satisfies the usual
OLS assumptions, on taking expectation of Eq. (9.2.1) on both sides, we obtain:
Mean salary of public school teachers in the Northeast and North Central:

E(Yi |D2i =1, D3 =0) = p1 + B2 (9.2.2)
Mean salary of public school teachers in the South:
E(Yi|D2i =0, D3i=1)= p1 + B3 (9.2.3)

You might wonder how we find out the mean salary of teachers in the West. If you
guessed that this is equal to 81, you would be absolutely right, for
Mean salary of public school teachers in the West:

E(Yi|D2i = 0, D3j = 0) = f (9.2.4)

(Continued)
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EXAMPLE 9.1
(Continued)

FIGURE 9.1
Average salary

(in dollars) of public
school teachers in
three regions.

In other words, the mean salary of public school teachers in the West is given by the
intercept, B1, in the multiple regression (9.2.1), and the “slope” coefficients 8, and B3 tell
by how much the mean salaries of teachers in the Northeast and North Central and in the
South differ from the mean salary of teachers in the West. But how do we know if
these differences are statistically significant? Before we answer this question, let us present
the results based on the regression (9.2.1). Using the data given in Table 9.1, we obtain the
following results:

Y = 48,014.615  + 1,524.099D,; — 1,721.027Ds;
se = (1857.204) (2363.139) (2467.151) 9.2.5)
t=  (25.853) (0.645) (—0.698)
(0.0000)* (0.5220)* (0.4888)* R?2 = 0.0440

where * indicates the p values.

As these regression results show, the mean salary of teachers in the West is about
$48,015, that of teachers in the Northeast and North Central is higher by about $1,524,
and that of teachers in the South is lower by about $1,721. The actual mean salaries in the
last two regions can be easily obtained by adding these differential salaries to the mean
salary of teachers in the West, as shown in Egs. (9.2.3) and (9.2.4). Doing this, we will find
that the mean salaries in the latter two regions are about $49,539 and $46,294.

But how do we know that these mean salaries are statistically different from the mean
salary of teachers in the West, the comparison category? That is easy enough. All we have
to dois to find out if each of the “slope” coefficients in Eq. (9.2.5) is statistically significant.
As can be seen from this regression, the estimated slope coefficient for Northeast and
North Central is not statistically significant, as its p value is 52 percent, and that of the
South is also not statistically significant, as the p value is about 49 percent. Therefore, the
overall conclusion is that statistically the mean salaries of public school teachers in the West,
the Northeast and North Central, and the South are about the same. Diagrammatically, the
situation is shown in Figure 9.1.

A caution is in order in interpreting these differences. The dummy variables will simply
point out the differences, if they exist, but they do not suggest the reasons for the differ-
ences. Differences in educational levels, cost of living indexes, gender, and race may all
have some effect on the observed differences. Therefore, unless we take into account all
the other variables that may affect a teacher’s salary, we will not be able to pin down the
cause(s) of the differences.

From the preceding discussion, it is clear that all one has to do is see if the coefficients
attached to the various dummy variables are individually statistically significant. This example
also shows how easy it is to incorporate qualitative, or dummy, regressors in the regression
models.

B, = $49,539
1

|
|
1$48,015 (B, + B,)

I—I

|
: $46,294 (B, + By)
1

Northeast and West South
North Central
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Caution in the Use of Dummy Variables

Although they are easy to incorporate in the regression models, one must use the dummy
variables carefully. In particular, consider the following aspects:

1. In Example 9.1, to distinguish the three regions, we used only two dummy variables,
D, and D3. Why did we not use three dummies to distinguish the three regions? Suppose we
do that and write the model (9.2.1) as:

Yi = o+ Bi1Dy; + BoDyi + B3 D3 +u; (9.2.6)

where Dy, takes a value of 1 for states in the West and 0 otherwise. Thus, we now have a
dummy variable for each of the three geographical regions. Using the data in Table 9.1, if
you were to run the regression (9.2.6), the computer would “refuse” to run the regression
(try it).> Why? The reason is that in the setup of Eq. (9.2.6) where you have a dummy variable
for each category or group and also an intercept, you have a case of perfect collinearity, that
is, exact linear relationships among the variables. Why? Refer to Table 9.1. Imagine that now
we add the Dy column, taking the value of 1 whenever a state is in the West and 0 otherwise.
Now if you add the three D columns horizontally, you will obtain a column that has 51 ones
in it. But since the value of the intercept « is (implicitly) 1 for each observation, you will
have a column that also contains 51 ones. In other words, the sum of the three D columns will
simply reproduce the intercept column, thus leading to perfect collinearity. In this case,
estimation of the model (9.2.6) is impossible.

The message here is: If a qualitative variable has m categories, introduce only (m — 1)
dummy variables. In our example, since the qualitative variable “region” has three cate-
gories, we introduced only two dummies. If you do not follow this rule, you will fall into
what is called the dummy variable trap, that is, the situation of perfect collinearity or per-
fect multicollinearity, if there is more than one exact relationship among the variables. This
rule also applies if we have more than one qualitative variable in the model, an example of
which is presented later. Thus we should restate the preceding rule as: For each qualitative
regressor, the number of dummy variables introduced must be one less than the
categories of that variable. Thus, if in Example 9.1 we had information about the gender
of the teacher, we would use an additional dummy variable (but not two) taking a value of
1 for female and 0 for male or vice versa.

2. The category for which no dummy variable is assigned is known as the base,
benchmark, control, comparison, reference, or omitted category. And all comparisons
are made in relation to the benchmark category.

3. The intercept value () represents the mean value of the benchmark category. In
Example 9.1, the benchmark category is the Western region. Hence, in the regression
(9.2.5) the intercept value of about 48,015 represents the mean salary of teachers in the
Western states.

4. The coefficients attached to the dummy variables in Eq. (9.2.1) are known as the
differential intercept coefficients because they tell by how much the value of the category
that receives the value of 1 differs from the intercept coefficient of the benchmark category.
For example, in Eq. (9.2.5), the value of about 1,524 tells us that the mean salary of teachers
in the Northeast or North Central is larger by about $1,524 than the mean salary of about
$48,015 for the benchmark category, the West.

SActually you will get a message saying that the data matrix is singular.
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5. If a qualitative variable has more than one category, as in our illustrative example, the
choice of the benchmark category is strictly up to the researcher. Sometimes the choice of
the benchmark is dictated by the particular problem at hand. In our illustrative example, we
could have chosen the South as the benchmark category. In that case the regression results
given in Eq. (9.2.5) will change, because now all comparisons are made in relation to the
South. Of course, this will not change the overall conclusion of our example (why?). In this
case, the intercept value will be about $46,294, which is the mean salary of teachers in the
South.

6. We warned above about the dummy variable trap. There is a way to circumvent this
trap by introducing as many dummy variables as the number of categories of that variable,
provided we do not introduce the intercept in such a model. Thus, if we drop the intercept
term from Eq. (9.2.6), and consider the following model,

Yi = Bi1Dii + B2 Do + B3 Dy + u; (9.2.7)

we do not fall into the dummy variable trap, as there is no longer perfect collinearity. But
make sure that when you run this regression, you use the no-intercept option in your
regression package.

How do we interpret regression (9.2.7)? If you take the expectation of Eq. (9.2.7), you
will find that:

B1 = mean salary of teachers in the West
B> = mean salary of teachers in the Northeast and North Central
B3 = mean salary of teachers in the South
In other words, with the intercept suppressed, and allowing a dummy variable for each cat-

egory, we obtain directly the mean values of the various categories. The results of Eq. (9.2.7)
for our illustrative example are as follows:

Y, = 48,014.62D,; + 49,538.71D,; + 46,293.59D;;
se = (1857.204) (1461.240) (1624.077) (9.2.8)
r=  (25.853)" (33.902)" (28.505)"

R* = 0.044

where * indicates that the p values of these ¢ ratios are very small.
As you can see, the dummy coefficients give directly the mean (salary) values in the
three regions? West, Northeast and North Central, and South.

7. Which is a better method of introducing a dummy variable: (1) introduce a dummy
for each category and omit the intercept term or (2) include the intercept term and introduce
only (m — 1) dummies, where m is the number of categories of the dummy variable? As
Kennedy notes:

Most researchers find the equation with an intercept more convenient because it allows them
to address more easily the questions in which they usually have the most interest, namely,
whether or not the categorization makes a difference, and if so, by how much. If the catego-
rization does make a difference, by how much is measured directly by the dummy variable
coefficient estimates. Testing whether or not the categorization is relevant can be done by
running a ¢ test of a dummy variable coefficient against zero (or, to be more general, an F' test
on the appropriate set of dummy variable coefficient estimates).”

"Peter Kennedy, A Guide to Econometrics, 4th ed., MIT Press, Cambridge, Mass., 1998, p. 223.
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9.3 ANOVA Models with Two Qualitative Variables

In the previous section we considered an ANOVA model with one qualitative variable with
three categories. In this section we consider another ANOVA model, but with two qualita-
tive variables, and bring out some additional points about dummy variables.

EXAMPLE 9.2
Hourly Wages in
Relation to
Marital Status
and Region of
Residence

From a sample of 528 persons in May 1985, the following regression results were
obtained.®

V= 8.8148 + 1.0997D, — 1.6729D;;
se= (0.4015) (0.4642) (0.4854)
t=(21.9528) (2.3688) (—3.4462) (9.3.1)
(0.0000)* (0.0182)* (0.0006)*
R? = 0.0322

where Y = hourly wage ($)
D, = married status; 1 = married, 0 = otherwise
D; = region of residence; 1 = South, 0 = otherwise

and * denotes the p values.

In this example we have two qualitative regressors, each with two categories. Hence
we have assigned a single dummy variable for each category.

Which is the benchmark category here? Obviously, it is unmarried, non-South resi-
dence. In other words, unmarried persons who do not live in the South are the omitted
category. Therefore, all comparisons are made in relation to this group. The mean hourly
wage in this benchmark is about $8.81. Compared with this, the average hourly wage of
those who are married is higher by about $1.10, for an actual average wage of $9.91
(=8.81 + 1.10). By contrast, for those who live in the South, the average hourly wage is
lower by about $1.67, for an actual average hourly wage of $7.14.

Are the preceding average hourly wages statistically different compared to the base
category? They are, for all the differential intercepts are statistically significant, as their p
values are quite low.

The point to note about this example is this: Once you go beyond one qualitative
variable, you have to pay close attention to the category that is treated as the base category,
since all comparisons are made in relation to that category. This is especially important when
you have several qualitative regressors, each with several categories. But the mechanics of
introducing several qualitative variables should be clear by now.

9.4 Regression with a Mixture of Quantitative and Qualitative

Regressors: The ANCOVA Models

ANOVA models of the type discussed in the preceding two sections, although common
in fields such as sociology, psychology, education, and market research, are not that com-
mon in economics. Typically, in most economic research a regression model contains

8The data are obtained from the data disk in Arthur S. Goldberger, Introductory Econometrics, Harvard
University Press, Cambridge, Mass., 1998. We have already considered these data in Chapter 2.
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some explanatory variables that are quantitative and some that are qualitative. Regression
models containing an admixture of quantitative and qualitative variables are called
analysis of covariance (ANCOVA) models. ANCOVA models are an extension of the
ANOVA models in that they provide a method of statistically controlling the effects of
quantitative regressors, called covariates or control variables, in a model that includes
both quantitative and qualitative, or dummy, regressors. We now illustrate the ANCOVA
models.

EXAMPLE 9.3
Teachers’ Salary
in Relation to
Region and
Spending on
Public School
per Pupil

To motivate the analysis, let us reconsider Example 9.1 by maintaining that the average
salary of public school teachers may not be different in the three regions if we take into
account any variables that cannot be standardized across the regions. Consider, for
example, the variable expenditure on public schools by local authorities, as public education
is primarily a local and state question. To see if this is the case, we develop the following
model:

Yi = p1 + B2D2i + B3 D3i + Ba Xi + ui (9.4.1)

where Y; = average annual salary of public school teachers in state ($)
X; = spending on public school per pupil ($)
D,; = 1, if the state is in the Northeast or North Central
= 0, otherwise
Ds; = 1, if the state is in the South
= 0, otherwise

The data on X are given in Table 9.1. Keep in mind that we are treating the West as the
benchmark category. Also, note that besides the two qualitative regressors, we have a
quantitative variable, X, which in the context of the ANCOVA models is known as a
covariate, as noted earlier.

From the data in Table 9.1, the results of the model (9.4.1) are as follows:

¥, = 28,694.918  — 2,954.127Dy — 3,112.194D3; + 2.3404X;
se= (3262.521)  (1862.576)  (1819.873) (0.3592)
t=  (8.795)* (~1.586)**  (=1.7100*  (6.515)* (9.4.2)
R? = 0.4977

where * indicates p values less than 5 percent, and ** indicates p values greater than
5 percent.

As these results suggest, ceteris paribus: as public expenditure goes up by a dollar, on
average, a public school teacher’s salary goes up by about $2.34. Controlling for spend-
ing on education, we now see that the differential intercept coefficient is not significant
for either the Northeast and North Central region or for the South. These results are
different from those of Eq. (9.2.5). But this should not be surprising, for in Eq. (9.2.5) we
did not account for the covariate, differences in per pupil public spending on education.
Diagrammatically, we have the situation shown in Figure 9.2.

Note that although we have shown three regression lines for the three regions, statis-
tically the regression lines are the same for all three regions. Also note that the three
regression lines are drawn parallel. (Why?)
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FIGURE 9.2 Y
Public school
teacher’s salary (Y)
in relation to per
pupil expenditure on
education (X).
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9.5 The Dummy Variable Alternative to the Chow Test’

In Section 8.7 we discussed the Chow test to examine the structural stability of a regression
model. The example we discussed there related to the relationship between savings and in-
come in the United States over the period 1970-1995. We divided the sample period into
two, 1970-1981 and 1982—-1995, and showed on the basis of the Chow test that there was a
difference in the regression of savings on income between the two periods.

However, we could not tell whether the difference in the two regressions was because of
differences in the intercept terms or the slope coefficients or both. Very often this knowl-
edge itself is very useful.

Referring to Egs. (8.7.1) and (8.7.2), we see that there are four possibilities, which we
illustrate in Figure 9.3.

1. Both the intercept and the slope coefficients are the same in the two regressions. This, the
case of coincident regressions, is shown in Figure 9.3a.

2. Only the intercepts in the two regressions are different but the slopes are the same. This
is the case of parallel regressions, which is shown in Figure 9.35.

3. The intercepts in the two regressions are the same, but the slopes are different. This is
the situation of concurrent regressions (Figure 9.3¢).

4. Both the intercepts and slopes in the two regressions are different. This is the case of dis-
similar regressions, which is shown in Figure 9.3d.

The multistep Chow test procedure discussed in Section 8.7, as noted earlier, tells us only
if two (or more) regressions are different without telling us what the source of the difference is.

°The material in this section draws on the author’s articles, “Use of Dummy Variables in Testing for
Equality between Sets of Coefficients in Two Linear Regressions: A Note,” and “Use of Dummy
Variables . . . A Generalization,” both published in the American Statistician, vol. 24, nos. 1 and 5,
1970, pp. 50-52 and 18-21.
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FIGURE 9.3
Plausible
savings—income
regressions.
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The source of difference, if any, can be pinned down by pooling all the observations (26 in
all) and running just one multiple regression as shown below: '

th = +C(2Dt+ﬂ]Xf+ﬂ2(DtXt)+ut (9.5.1)
where ¥ = savings
X = income
t = time

D =1 for observations in 1982—-1995
= 0, otherwise (i.e., for observations in 1970-1981)

Table 9.2 shows the structure of the data matrix.
To see the implications of Eq. (9.5.1), and, assuming, as usual, that E(u;) = 0, we
obtain:

Mean savings function for 1970-1981:

E(Y;|D:=0,X;) =1 + 1 X; (9.5.2)
Mean savings function for 1982—1995:
E(Y, D, =1,X,) = (a1 + a2) + (B1 + B2)Xs (9.5.3)

The reader will notice that these are the same functions as Egs. (8.7.1) and (8.7.2), with
A =y, Ay = B, y1 = (a1 + ), and y» = (B1 + Bo). Therefore, estimating Eq. (9.5.1) is
equivalent to estimating the two individual savings functions in Egs. (8.7.1) and (8.7.2).

10As in the Chow test, the pooling technique assumes homoscedasticity, that is, 012 = 022 =02



TABLE 9.2

Savings and Income
Data, United States,
1970-1995

Source: Economic Report of the

President, 1997, Table B-28,
p. 332.
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Observation Savings Income Dum
1970 61 727.1 0
1971 68.6 790.2 0
1972 63.6 855.3 0
1973 89.6 965 0
1974 97.6 1054.2 0
1975 104.4 1159.2 0
1976 96.4 1273 0
1977 92.5 1401.4 0
1978 112.6 1580.1 0
1979 130.1 1769.5 0
1980 161.8 1973.3 0
1981 199.1 2200.2 0
1982 205.5 2347.3 1
1983 167 2522.4 1
1984 235.7 2810 1
1985 206.2 3002 1
1986 196.5 3187.6 1
1987 168.4 3363.1 1
1988 189.1 3640.8 1
1989 187.8 3894.5 1
1990 208.7 4166.8 1
1991 246.4 4343.7 1
1992 272.6 4613.7 1
1993 214.4 4790.2 1
1994 189.4 5021.7 1
1995 249.3 5320.8 1

Note: Dum = 1 for observations beginning in 1982; 0 otherwise.

Savings and income figures are in billions of dollars.

In Eq. (9.5.1), « is the differential intercept, as previously, and B, is the differential
slope coefficient (also called the slope drifter), indicating by how much the slope coeffi-
cient of the second period’s savings function (the category that receives the dummy value
of 1) differs from that of the first period. Notice how the introduction of the dummy
variable D in the interactive, or multiplicative, form (D multiplied by X) enables us to dif-
ferentiate between slope coefficients of the two periods, just as the introduction of the
dummy variable in the additive form enabled us to distinguish between the intercepts of
the two periods.

EXAMPLE 9.4
Structural
Differences in
the U.S. Savings—
Income
Regression,

the Dummy
Variable
Approach

Before we proceed further, let us first present the regression results of model (9.5.1)
applied to the U.S. savings—income data.

Vo= 1.0161 -+ 152.4786D;+ 0.0803X; — 0.0655(D:Xy)
se=(20.1648)  (33.0824)  (0.0144)  (0.0159) (9.5.4)
t= (0.0504)"  (4.6090)° (5.5413)" (—4.0963)"

R2 = 0.8819

where * indicates p values less than 5 percent and ** indicates p values greater than
5 percent.

(Continued)
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EXAMPLE 9.4
(Continued)

As these regression results show, both the differential intercept and slope coefficients
are statistically significant, strongly suggesting that the savings-income regressions for the
two time periods are different, as in Figure 9.3d.

From Eq. (9.5.4), we can derive equations (9.5.2) and (9.5.3), which are:
Savings—income regression, 1970-1981:

¥Y:=1.0161 + 0.0803X; (9.5.5)

Savings—income regression, 1982-1995:

Yt

(1.0161 + 152.4786) + (0.0803 — 0.0655)X;
=153.4947 + 0.0148X; (9.5.6)

These are precisely the results we obtained in Egs. (8.7.1a) and (8.7.2a), which should not
be surprising. These regressions are already shown in Figure 8.3.

The advantages of the dummy variable technique (i.e., estimating Eq. [9.5.1] ) over the
Chow test (i.e., estimating the three regressions [8.7.1], [8.7.2], and [8.7.3] ) can now be
seen readily:

1. We need to run only a single regression because the individual regressions can easily be
derived from it in the manner indicated by equations (9.5.2) and (9.5.3).

2. The single regression (9.5.1) can be used to test a variety of hypotheses. Thus if the
differential intercept coefficient o, is statistically insignificant, we may accept the
hypothesis that the two regressions have the same intercept, that is, the two
regressions are concurrent (see Figure 9.3¢). Similarly, if the differential slope coefficient
B2 is statistically insignificant but «; is significant, we may not reject the hypothesis that
the two regressions have the same slope, that is, the two regression lines are parallel
(cf. Figure 9.3b). The test of the stability of the entire regression (i.e., a; = 2 = 0O,
simultaneously) can be made by the usual F test (recall the restricted least-squares F
test). If this hypothesis is not rejected, the regression lines will be coincident, as shown
in Figure 9.3a.

3. The Chow test does not explicitly tell us which coefficient, intercept, or slope is
different, or whether (as in this example) both are different in the two periods. That is,
one can obtain a significant Chow test because the slope only is different or the
intercept only is different, or both are different. In other words, we cannot tell, via the
Chow test, which one of the four possibilities depicted in Figure 9.3 exists in a given
instance. In this respect, the dummy variable approach has a distinct advantage, for it
not only tells if the two are different but also pinpoints the source(s) of the difference—
whether it is due to the intercept or the slope or both. In practice, the knowledge that
two regressions differ in this or that coefficient is as important as, if not more than, the
plain knowledge that they are different.

4. Finally, since pooling (i.e., including all the observations in one regression) increases the
degrees of freedom, it may improve the relative precision of the estimated parameters.
Of course, keep in mind that every addition of a dummy variable will consume one degree
of freedom.

9.6 Interaction Effects Using Dummy Variables

Dummy variables are a flexible tool that can handle a variety of interesting problems. To see
this, consider the following model:

Yi=a1+ayDy +a3D3; + BX; +u; (9.6.1)
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where Y = hourly wage in dollars
X = education (years of schooling)
D, =1 if female, 0 otherwise
D5 =1 if nonwhite and non-Hispanic, 0 otherwise

In this model gender and race are qualitative regressors and education is a quantitative
regressor.'! Implicit in this model is the assumption that the differential effect of the gen-
der dummy D, is constant across the two categories of race and the differential effect of the
race dummy Dj is also constant across the two sexes. That is to say, if the mean salary is
higher for males than for females, this is so whether they are nonwhite/non-Hispanic or not.
Likewise, if, say, nonwhite/non-Hispanics have lower mean wages, this is so whether they
are females or males.

In many applications such an assumption may be untenable. A female nonwhite/
non-Hispanic may earn lower wages than a male nonwhite/non-Hispanic. In other words,
there may be interaction between the two qualitative variables D, and Ds. Therefore their
effect on mean Y may not be simply additive as in Eq. (9.6.1) but multiplicative as well, as in
the following model.

Yi = a1 + a2 Dy + a3 Ds; + 0a( Dy D3;) + BX; + u; (9.6.2)

where the variables are as defined for model (9.6.1).
From Eq. (9.6.2), we obtain:

E(Y;|Dy=1,D3; =1, X;) =(a1 + oo + a3 +a4) + BX;  (9.6.3)

which is the mean hourly wage function for female nonwhite/non-Hispanic workers.
Observe that

a, = differential effect of being a female
a3 = differential effect of being a nonwhite/non-Hispanic
a4 = differential effect of being a female nonwhite/non-Hispanic

which shows that the mean hourly wages of female nonwhite/non-Hispanics is different
(by ag) from the mean hourly wages of females or nonwhite/non-Hispanics. If, for instance,
all the three differential dummy coefficients are negative, this would imply that female
nonwhite/non-Hispanic workers earn much lower mean hourly wages than female or
nonwhite/non-Hispanic workers as compared with the base category, which in the present
example is male white or Hispanic.

Now the reader can see how the interaction dummy (i.e., the product of two qualitative
or dummy variables) modifies the effect of the two attributes considered individually (i.e.,
additively).

EXAMPLE 9.5
Average Hourly
Earnings in
Relation to
Education,
Gender, and
Race

Let us first present the regression results based on model (9.6.1). Using the data that
were used to estimate regression (9.3.1), we obtained the following results:

Yi= —0.2610 — 2.3606Dy — 1.7327Ds; + 0.8028X;
t =(—0.2357)" (-5.4873)" (—2.1803)"  (9.9094) (9.6.4)
R%Z =0.2032 n=>528

where * indicates p values less than 5 percent and ** indicates p values greater than

S percent. (Continued)

if we were to define education as less than high school, high school, and more than high school,
we could then use two dummies to represent the three classes.
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EXAMPLE 9.5
(Continued)

The reader can check that the differential intercept coefficients are statistically
significant, that they have the expected signs (why?), and that education has a strong
positive effect on hourly wage, an unsurprising finding.

As Eq. (9.6.4) shows, ceteris paribus, the average hourly earnings of females are lower
by about $2.36, and the average hourly earnings of nonwhite non-Hispanic workers are
also lower by about $1.73.

We now consider the results of model (9.6.2), which includes the interaction dummy.

Yi= —0.26100 — 2.3606D, — 1.7327Ds; + 2.1289D,Ds; + 0.8028X;
t=(=0.2357)" (—5.4873)" (-2.1803)"  (1.7420)" (9.9095)" (9.6.5)

R? = 0.2032 n=528

where * indicates p values less than 5 percent and ** indicates p values greater than
5 percent.

As you can see, the two additive dummies are still statistically significant, but the
interactive dummy is not at the conventional 5 percent level; the actual p value of the
interaction dummy is about the 8 percent level. If you think this is a low enough
probability, then the results of Eq. (9.6.5) can be interpreted as follows: Holding the
level of education constant, if you add the three dummy coefficients you will obtain:
—1.964 (= —2.3605 — 1.7327 + 2.1289), which means that mean hourly wages of
nonwhite/non-Hispanic female workers is lower by about $1.96, which is between the
value of —2.3605 (gender difference alone) and —1.7327 (race difference alone).

9.7 The Use

The preceding example clearly reveals the role of interaction dummies when two or
more qualitative regressors are included in the model. It is important to note that in the
model (9.6.5) we are assuming that the rate of increase of hourly earnings with respect to
education (of about 80 cents per additional year of schooling) remains constant across
gender and race. But this may not be the case. If you want to test for this, you will have to
introduce differential slope coefficients (see Exercise 9.25).

of Dummy Variables in Seasonal Analysis

Many economic time series based on monthly or quarterly data exhibit seasonal patterns
(regular oscillatory movements). Examples are sales of department stores at Christmas and
other major holiday times, demand for money (or cash balances) by households at holiday
times, demand for ice cream and soft drinks during summer, prices of crops right after har-
vesting season, demand for air travel, etc. Often it is desirable to remove the seasonal
factor, or component, from a time series so that one can concentrate on the other compo-
nents, such as the trend.'> The process of removing the seasonal component from a time
series is known as deseasonalization or seasonal adjustment, and the time series thus
obtained is called the deseasonalized, or seasonally adjusted, time series. Important
economic time series, such as the unemployment rate, the consumer price index (CPI), the
producer’s price index (PPI), and the index of industrial production, are usually published
in seasonally adjusted form.

12A time series may contain four components: (1) seasonal, (2) cyclical, (3) trend, and (4) strictly
random.



TABLE 9.3
Quarterly Data on
Appliance Sales (in
thousands) and
Expenditure on
Durable Goods
(1978-1 to 1985-1V)

Source: Business Statistics and
Survey of Current Business,
Department of Commerce
(various issues).
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DISH DISP FRIG WASH DUR DISH DISP FRIG WASH DUR
841 798 1317 1271 2526 480 706 943 1036 247.7

957 837 1615 1295 2724 530 582 1175 1019  249.1
999 821 1662 1313 270.9 557 659 1269 1047 251.8
960 858 1295 1150 273.9 602 837 973 918 262

894 837 1271 1289  268.9 658 867 1102 1137 263.3
851 838 1555 1245 262.9 749 860 1344 1167 280

863 832 1639 1270 270.9 827 918 1641 1230 288.5
878 818 1238 1103 2634 858 1017 1225 1081 300.5
792 868 1277 1273  260.6 808 1063 1429 1326 312.6
589 623 1258 1031 231.9 840 955 1699 1228 3225
657 662 1417 1143  242.7 893 973 1749 1297 3243
699 822 1185 1101 248.6 950 1096 1117 1198  333.1
675 871 1196 1181  258.7 838 1086 1242 1292 34438
652 791 1410 1116 248.4 884 990 1684 1342 350.3
628 759 1417 1190  255.5 905 1028 1764 1323 369.1
529 734 919 1125 240.4 909 1003 1328 1274 356.4

Note: DISH = dishwashers; DISP = garbage disposers; FRIG = refrigerators; WASH = washing machines; DUR = durable
goods expenditure, billions of 1982 dollars.

There are several methods of deseasonalizing a time series, but we will consider only one
of these methods, namely, the method of dummy variables." To illustrate how the dummy
variables can be used to deseasonalize economic time series, consider the data given in
Table 9.3. This table gives quarterly data for the years 1978—1995 on the sale of four major
appliances, dishwashers, garbage disposers, refrigerators, and washing machines, all data in
thousands of units. The table also gives data on durable goods expenditure in 1982 billions of
dollars.

To illustrate the dummy technique, we will consider only the sales of refrigerators over
the sample period. But first let us look at the data, which is shown in Figure 9.4. This fig-
ure suggests that perhaps there is a seasonal pattern in the data associated with the various
quarters. To see if this is the case, consider the following model:

Y = a1 Dy + Dy + a3 D3 + g Dy + 1y (9-7-1)

where Y; = sales of refrigerators (in thousands) and the D’s are the dummies, taking a value
of 1 in the relevant quarter and 0 otherwise. Note that to avoid the dummy variable trap, we
are assigning a dummy to each quarter of the year, but omitting the intercept term. If there
is any seasonal effect in a given quarter, that will be indicated by a statistically significant ¢
value of the dummy coefficient for that quarter.'*

Notice that in Eq. (9.7.1) we are regressing Y effectively on an intercept, except that we
allow for a different intercept in each season (i.e., quarter). As a result, the dummy coeffi-
cient of each quarter will give us the mean refrigerator sales in each quarter or season
(why?).

3For the various methods of seasonal adjustment, see, for instance, Francis X. Diebold, Elements of
Forecasting, 2d ed., South-Western Publishing, 2001, Chapter 5.

"Note a technical point. This method of assigning a dummy to each quarter assumes that the
seasonal factor, if present, is deterministic and not stochastic. We will revisit this topic when we
discuss time series econometrics in Part V of this book.
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FIGURE 9.4

Sales of refrigerators

1978-1985 (quarterly).
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EXAMPLE 9.6
Seasonality in
Refrigerator
Sales

TABLE 9.4

U.S. Refrigerator
Sales (thousands),
1978-1985
(quarterly)

Source: Business Statistics

and Survey of Current
Business, Department of

Commerce (various issues).

From the data on refrigerator sales given in Table 9.4, we obtain the following regression
results:

Vs =1,222.125Dy; + 1,467.500D,; + 1,569.750D5; + 1,160.000D4;
t= (20.3720) (24.4622) (26.1666) (19.3364)
RZ=0.5317

(9.7.2)

Note: We have not given the standard errors of the estimated coefficients, as each stan-
dard error is equal to 59.9904, because all the dummies take only a value of 1 or zero.

The estimated o coefficients in Eq. (9.7.2) represent the average, or mean, sales of
refrigerators (in thousands of units) in each season (i.e., quarter). Thus, the average sale of
refrigerators in the first quarter, in thousands of units, is about 1,222, that in the second
quarter about 1,468, that in the third quarter about 1,570, and that in the fourth quarter
about 1,160.

FRIG DUR D, D3 D4 FRIG DUR D, D3 Dy
1317 252.6 0 0 0 943 247.7 0 0 0
1615 272.4 1 0 0 1175 249.1 1 0 0
1662 270.9 0 1 0 1269 251.8 0 1 0
1295 273.9 0 0 1 973 262.0 0 0 1

1271 268.9 0 0 0 1102 263.3 0 0 0
1555 262.9 1 0 0 1344 280.0 1 0 0
1639 270.9 0 1 0 1641 288.5 0 1 0
1238 263.4 0 0 1 1225 300.5 0 0 1

1277 260.6 0 0 0 1429 312.6 0 0 0
1258 231.9 1 0 0 1699 322.5 1 0 0
1417 242.7 0 1 0 1749 324.3 0 1 0
1185 248.6 0 0 1 1117 333.1 0 0 1

1196 258.7 0 0 0 1242 344.8 0 0 0
1410 248.4 1 0 0 1684 350.3 1 0 0
1417 255.5 0 1 0 1764 369.1 0 1 0
919 240.4 0 0 1 1328 356.4 0 0 1

Note: FRIG = refrigerator sales, thousands.
DUR = durable goods expenditure, billions of 1982 dollars.
D, =1 in the second quarter, 0 otherwise.
D3 =1 in the third quarter, 0 otherwise.
D, = 1 in the fourth quarter, 0 otherwise.
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Incidentally, instead of assigning a dummy for each quarter and suppressing the inter-
cept term to avoid the dummy variable trap, we could assign only three dummies and
include the intercept term. Suppose we treat the first quarter as the reference quarter
and assign dummies to the second, third, and fourth quarters. This produces the follow-
ing regression results (see Table 9.4 for the data setup):

Yy =1,222.1250 + 245.3750Dy; + 347.6250D3; — 62.1250D4;

t= (20.3720)*  (2.8922)* (4.0974)*  (—0.7322)** (9.7.3)
R2 = 0.5318

where * indicates p values less than 5 percent and ** indicates p values greater than 5 percent.

Since we are treating the first quarter as the benchmark, the coefficients attached to
the various dummies are now differential intercepts, showing by how much the average
value of Y in the quarter that receives a dummy value of 1 differs from that of the bench-
mark quarter. Put differently, the coefficients on the seasonal dummies will give the
seasonal increase or decrease in the average value of Y relative to the base season. If you
add the various differential intercept values to the benchmark average value of 1,222.125,
you will get the average value for the various quarters. Doing so, you will reproduce
exactly Eq. (9.7.2), except for the rounding errors.

But now you will see the value of treating one quarter as the benchmark quarter, for
Eq. (9.7.3) shows that the average value of Yfor the fourth quarter is not statistically different
from the average value for the first quarter, as the dummy coefficient for the fourth quarter
is not statistically significant. Of course, your answer will change, depending on which quar-
ter you treat as the benchmark quarter, but the overall conclusion will not change.

How do we obtain the deseasonalized time series of refrigerator sales? This can be done
easily. You estimate the values of Y from model (9.7.2) (or [9.7.3]) for each observation
and subtract them from the actual values of Y, that is, you obtain (Y; — Y¢) which are simply
the residuals from the regression (9.7.2). We show them in Table 9.5."° To these residuals,
we have to add the mean of the Y series to get the forecasted values.

What do these residuals represent? They represent the remaining components of the
refrigerator time series, namely, the trend, cycle, and random components (but see the
caution given in footnote 15).

Since models (9.7.2) and (9.7.3) do not contain any covariates, will the picture change
if we bring in a quantitative regressor in the model? Since expenditure on durable goods
has an important factor influence on the demand for refrigerators, let us expand our
model (9.7.3) by bringing in this variable. The data for durable goods expenditure in
billions of 1982 dollars are already given in Table 9.3. This is our (quantitative) X variable
in the model. The regression results are as follows

Y: =456.2440 + 242.4976D; + 325.2643D3; — 86.0804D4; + 2.7734X;

t= (2.5593)*  (3.6951)* (4.9421)%  (=1.3073)** (4.4496)* (9.7.4)
R2 = 0.7298

where * indicates p values less than 5 percent and ** indicates p values greater than

5 percent. .
(Continued)

150f course, this assumes that the dummy variables technique is an appropriate method of deseason-
alizing a time series and that a time series (TS) can be represented as: TS = s + c + t + u, where s
represents the seasonal, t the trend, ¢ the cyclical, and u the random component. However, if the
time series is of the form, TS = (s)(c)(t)(u), where the four components enter multiplicatively, the
preceding method of deseasonalization is inappropriate, for that method assumes that the four
components of a time series are additive. But we will have more to say about this topic in the
chapters on time series econometrics.
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EXAMPLE 9.6
(Continued)

TABLE 9.5 Refrigerator Sales Regression: Actual, Fitted, and Residual Values (Eq. 9.7.3)

Residuals Graph
Actual Fitted Residuals 0

19781 1317 1222.12 94.875 . *
19781 1615 1467.50 147.500 . *
1978l 1662 1569.75 92.250 . *,
1978-1V 1295 1160.00 135.000 . *
1979-1 1271 1222.12 48.875 . *
1979-1 1555 1467.50 87.500 . *,
19791l 1639 1569.75 69.250 . *,
1979-1V 1238 1160.00 78.000 . *,
1980-| 1277 1222.12 54.875 . *
1980-II 1258 1467.50 —209.500 *,
1980-llI 1417 1569.75 —152.750 *
1980-1V 1185 1160.00 25.000 £
1981-1 1196 1222.12 —26.125 . A
1981-lI 1410 1467.50 —57.500 .o*
1981-lll 1417 1569.75 —152.750 L*
1981-1V 919 1160.00 —241.000 *,
19821 943 1222.12 —279.125 *
198211 1175 1467.50 —292.500 *
1982-1li 1269 1569.75 —300.750 *
1982-1V 973 1160.00 —187.000 *,
19831 1102 1222.12 —120.125 L *
19831 1344 1467.50 —123.500 * .
1983-llI 1641 1569.75 71.250 . * .
1983-1V 1225 1160.00 65.000 . * .
19841 1429 1222.12 206.875 . x
198411 1699 1467.50 231.500 . "
1984-lll 1749 1569.75 179.250 . L *
1984-1V 1117 1160.00 —43.000 Lox
19851 1242 1222.12 19.875 . *
198511 1684 1467.50 216.500 . L o*
1985-lll 1764 1569.75 194.250 . L *
1985-1V 1328 1160.00 168.000 . *

- 0 +

Again, keep in mind that we are treating the first quarter as our base. As in Eq. (9.7.3),
we see that the differential intercept coefficients for the second and third quarters are sta-
tistically different from that of the first quarter, but the intercepts of the fourth quarter and
the first quarter are statistically about the same. The coefficient of X (durable goods
expenditure) of about 2.77 tells us that, allowing for seasonal effects, if expenditure on
durable goods goes up by a dollar, on average, sales of refrigerators go up by about
2.77 units, that is, approximately 3 units; bear in mind that refrigerators are in thousands
of units and X is in (1982) billions of dollars.

An interesting question here is: Just as sales of refrigerators exhibit seasonal patterns,
would not expenditure on durable goods also exhibit seasonal patterns? How then do we
take into account seasonality in X? The interesting thing about Eq. (9.7.4) is that the
dummy variables in that model not only remove the seasonality in Y but also the season-
ality, if any, in X. (This follows from a well-known theorem in statistics, known as the
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Frisch-Waugh theorem.'®) So to speak, we kill (deseasonalize) two birds (two series)
with one stone (the dummy technique).

If you want an informal proof of the preceding statement, just follow these steps:
(1) Run the regression of Y on the dummies as in Eq. (9.7.2) or Eq. (9.7.3) and save the
residuals, say, Si; these residuals represent deseasonalized Y. (2) Run a similar regression
for X and obtain the residuals from this regression, say, S,; these residuals represent
deseasonalized X. (3) Regress S; on S;. You will find that the slope coefficient in this
regression is precisely the coefficient of X in the regression (9.7.4).

9.8 Piecewise Linear Regression

FIGURE 9.5
Hypothetical
relationship between
sales commission and
sales volume.

(Note: The intercept on
the Y axis denotes
minimum guaranteed
commission.)

To illustrate yet another use of dummy variables, consider Figure 9.5, which shows how a
hypothetical company remunerates its sales representatives. It pays commissions based on
sales in such a manner that up to a certain level, the farget, or threshold, level X*, there is
one (stochastic) commission structure and beyond that level another. (Nofe: Besides sales,
other factors affect sales commission. Assume that these other factors are represented
by the stochastic disturbance term.) More specifically, it is assumed that sales commission
increases linearly with sales until the threshold level X*, after which it continues to increase
linearly with sales but at a much steeper rate. Thus, we have a piecewise linear regression
consisting of two linear pieces or segments, which are labeled I and II in Figure 9.5, and
the commission function changes its slope at the threshold value. Given the data on com-
mission, sales, and the value of the threshold level X*, the technique of dummy variables
can be used to estimate the (differing) slopes of the two segments of the piecewise linear
regression shown in Figure 9.5. We proceed as follows:

Yi = a1+ BiXi + o(Xi — X)D; + u; (9.8.1)

Sales commission

X (sales)

T6For proof, see Adrian C. Darnell, A Dictionary of Econometrics, Edward Elgar, Lyme, U.K., 1995,
pp. 150-152.
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FIGURE 9.6
Parameters of the
piecewise linear
regression.

where Y; = sales commission
X; = volume of sales generated by the sales person
X* = threshold value of sales also known as a knot (known in advance)'’
D=1 ifX;>X*
=0 ifX; <X*

Assuming E(u;) = 0, we see at once that
E(Y:|D; =0,X;, X*) =1 + 1 X; (9.8.2)
which gives the mean sales commission up to the target level X* and
E(Y;|D; =1,X;, X*) =a; — B X"+ (B1 + B Xi (9.8.3)

which gives the mean sales commission beyond the target level X*.

Thus, B, gives the slope of the regression line in segment I, and 8, + B, gives the slope
of the regression line in segment II of the piecewise linear regression shown in Figure 9.5.
A test of the hypothesis that there is no break in the regression at the threshold value X* can
be conducted easily by noting the statistical significance of the estimated differential slope
coefficient ,32 (see Figure 9.6).

Incidentally, the piecewise linear regression we have just discussed is an example of a
more general class of functions known as spline functions.'®

Y

Sales commission

(23]

X (sales)

o —ﬁzX*

7The threshold value may not always be apparent, however. An ad hoc approach is to plot the
dependent variable against the explanatory variable(s) and observe if there seems to be a sharp
change in the relation after a given value of X (i.e., X*). An analytical approach to finding the break
point can be found in the so-called switching regression models. But this is an advanced topic
and a textbook discussion may be found in Thomas Fomby, R. Carter Hill, and Stanley Johnson,
Advanced Econometric Methods, Springer-Verlag, New York, 1984, Chapter 14.

8For an accessible discussion on splines (i.e., piecewise polynomials of order k), see Douglas C.
Montgomery, Elizabeth A. Peck, and G. Geoffrey Vining, Introduction to Linear Regression Analysis,
John Wiley & Sons, 3d ed., New York, 2001, pp. 228-230.
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EXAMPLE 9.7 As an example of the application of the piecewise linear regression, consider the hypo-
Total Cost in thetical total cost—total output data given in Table 9.6. We are told that the total cost may
change its slope at the output level of 5,500 units.

Letting Yin Eq. (9.8.4) represent total cost and X total output, we obtain the following
Output results:

Relation to

Yi=—-145.72 + 0.2791X; + 0.0945(X; — X7)D;
t= (—0.8245) (6.0669) (1.1447) (9.8.4)
R2=0.9737 X*=15,500

As these results show, the marginal cost of production is about 28 cents per unit and al-
though it is about 37 cents (28 + 9) for output over 5,500 units, the difference between
the two is not statistically significant because the dummy variable is not significant at,
say, the 5 percent level. For all practical purposes, then, one can regress total cost on
total output, dropping the dummy variable.

TABLE 9.6 B
BypotheticallData Total Cost, Dollars Output, Units
on Output and 256 1,000
Total Cost 414 2,000
634 3,000
778 4,000
1,003 5,000
1,839 6,000
2,081 7,000
2,423 8,000
2,734 9,000
2,914 10,000

9.9 Panel Data Regression Models

Recall that in Chapter 1 we discussed a variety of data that are available for empirical
analysis, such as cross-section, time series, pooled (combination of time series and cross-
section data), and panel data. The technique of dummy variable can be easily extended to
pooled and panel data. Since the use of panel data is becoming increasingly common in
applied work, we will consider this topic in some detail in Chapter 16.

9.10 Some Technical Aspects of the Dummy Variable Technique

The Interpretation of Dummy Variables
in Semilogarithmic Regressions

In Chapter 6 we discussed the log—lin models, where the regressand is logarithmic and
the regressors are linear. In such a model, the slope coefficients of the regressors give the
semielasticity, that is, the percentage change in the regressand for a unit change in the
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regressor. This is only so if the regressor is quantitative. What happens if a regressor is a
dummy variable? To be specific, consider the following model:

InY; =p1+ BD;i +u; (9101)
where Y = hourly wage rate ($) and D = 1 for female and 0 for male.
How do we interpret such a model? Assuming £(u;) = 0, we obtain:

Wage function for male workers:
E(InY; | D; =0) =B (9.10.2)

Wage function for female workers:
EnY;|D;=1)=8+5 (9.10.3)

Therefore, the intercept 8, gives the mean log hourly earnings and the “slope” coefficient
gives the difference in the mean log hourly earnings of male and females. This is a rather
awkward way of stating things. But if we take the antilog of 8, what we obtain is not the
mean hourly wages of male workers, but their median wages. As you know, mean, median,
and mode are the three measures of central tendency of a random variable. And if we take
the antilog of (8; + B,), we obtain the median hourly wages of female workers.

EXAMPLE 9.8
Logarithm of
Hourly Wages
in Relation

to Gender

To illustrate Eq. (9.10.1), we use the data that underlie Example 9.2. The regression results
based on 528 observations are as follows:

InY,= 21763 — 0.2437D;
t=(72.2943)*  (—5.5048)* (9.10.4)
R2 = 0.0544

where * indicates p values are practically zero.

Taking the antilog of 2.1763, we find 8.8136 ($), which is the median hourly earnings
of male workers, and taking the antilog of [(2.1763 — 0.2437) = 1.92857], we obtain
6.8796 ($), which is the median hourly earnings of female workers. Thus, the female
workers’ median hourly earnings are lower by about 21.94 percent compared to their male
counterparts [(8.8136 — 6.8796)/8.8136].

Interestingly, we can obtain semielasticity for a dummy regressor directly by the device
suggested by Halvorsen and Palmquist. Take the antilog (to base e) of the estimated
dummy coefficient and subtract 1 from it and multiply the difference by 100. (For the under-
lying logic, see Appendix 9.A.1.) Therefore, if you take the antilog of —0.2437, you will
obtain 0.78366. Subtracting 1 from this gives —0.2163. After multiplying this by 100, we
get —21.63 percent, suggesting that a female worker’s (D = 1) median salary is lower than
that of her male counterpart by about 21.63 percent, the same as we obtained previously,
save the rounding errors.

Dummy Variables and Heteroscedasticity

Let us revisit our savings—income regression for the United States for the periods

1970-1981 and 1982-1995 and for the entire period 1970-1995. In testing for structural

stability using the dummy technique, we assumed that the error var (u,;) = var (uy;) = o2,

""Robert Halvorsen and Raymond Palmquist, “The Interpretation of Dummy Variables in Semilogarithmic
Equations,” American Economic Review, vol. 70, no. 3, pp. 474-475.
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that is, the error variances in the two periods, were the same. This was also the assumption
underlying the Chow test. If this assumption is not valid—that is, the error variances in the
two subperiods are different—it is quite possible to draw misleading conclusions. There-
fore, one must first check on the equality of variances in the subperiod, using suitable
statistical techniques. Although we will discuss this topic more thoroughly in the chapter
on heteroscedasticity, in Chapter 8 we showed how the F test can be used for this purpose.?’
(See our discussion of the Chow test in that chapter.) As we showed there, it seems the error
variances in the two periods are not the same. Hence, the results of both the Chow test and
the dummy variable technique presented before may not be entirely reliable. Of course, our
purpose here is to illustrate the various techniques that one can use to handle a problem
(e.g., the problem of structural stability). In any particular application, these techniques
may not be valid. But that is par for most statistical techniques. Of course, one can take
appropriate remedial actions to resolve the problem, as we will do in the chapter on
heteroscedasticity later (however, see Exercise 9.28).

Dummy Variables and Autocorrelation

Besides homoscedasticity, the classical linear regression model assumes that the error
term in the regression models is uncorrelated. But what happens if that is not the case, espe-
cially in models involving dummy regressors? Since we will discuss the topic of autocor-
relation in depth in the chapter on autocorrelation, we will defer the answer to this question
until then.

What Happens If the Dependent Variable
Is a Dummy Variable?

So far we have considered models in which the regressand is quantitative and the regressors
are quantitative or qualitative or both. But there are occasions where the regressand can
also be qualitative or dummy. Consider, for example, the decision of a worker to participate
in the labor force. The decision to participate is of the yes or no type, yes if the person
decides to participate and no otherwise. Thus, the labor force participation variable is a
dummy variable. Of course, the decision to participate in the labor force depends on several
factors, such as the starting wage rate, education, and conditions in the labor market
(as measured by the unemployment rate).

Can we still use ordinary least squares (OLS) to estimate regression models where the
regressand is dummy? Yes, mechanically, we can do so. But there are several statistical
problems that one faces in such models. And since there are alternatives to OLS estima-
tion that do not face these problems, we will discuss this topic in a later chapter
(see Chapter 15 on logit and probit models). In that chapter we will also discuss models
in which the regressand has more than two categories; for example, the decision to travel
to work by car, bus, or train, or the decision to work part-time, full time, or not work at
all. Such models are called polytomous dependent variable models in contrast to
dichotomous dependent variable models in which the dependent variable has only two
categories.

20The Chow test procedure can be performed even in the presence of heteroscedasticity, but then
one will have to use the Wald test. The mathematics involved behind the test are somewhat
involved. But in the chapter on heteroscedasticity, we will revisit this topic.
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9.11 Topics for Further Study

Several topics related to dummy variables are discussed in the literature that are rather ad-
vanced, including (1) random, or varying, parameters models, (2) switching regression
models, and (3) disequilibrium models.

In the regression models considered in this text it is assumed that the parameters, the
B’s, are unknown but fixed entities. The random coefficient models—and there are several
versions of them—assume the 8’s can be random too. A major reference work in this area
is by Swamy.?!

In the dummy variable model using both differential intercepts and slopes, it is implicitly
assumed that we know the point of break. Thus, in our savings—income example for
1970-1995, we divided the period into 1970—1981 and 1982—1995, the pre- and postreces-
sion periods, under the belief that the recession in 1982 changed the relation between
savings and income. Sometimes it is not easy to pinpoint when the break has taken place.
The technique of switching regression models (SRM) has been developed for such situa-
tions. SRM treats the breakpoint as a random variable and through an iterative process
determines when the break might have actually taken place. The seminal work in this area is
by Goldfeld and Quandt.??

Special estimation techniques are required to deal with what are known as disequilib-
rium situations, that is, situations where markets do not clear (i.e., demand is not equal to
supply). The classic example is that of demand for and supply of a commodity. The demand
for a commodity is a function of its price and other variables, and the supply of the com-
modity is a function of its price and other variables, some of which are different from those
entering the demand function. Now the quantity actually bought and sold of the commod-
ity may not necessarily be equal to the one obtained by equating the demand to supply, thus
leading to disequilibrium. For a thorough discussion of disequilibrium models, the reader
may refer to Quandt.?

9.12 A Concluding Example

We end this chapter with an example that illustrates some of the points made in this chap-
ter. Table 9.7 provides data on a sample of 261 workers in an industrial town in southern
India in 1990.

The variables are defined as follows:

WI = weekly wage income in rupees

Age = age in years

Dgex = 1 for male workers and 0 for female workers

DE, = a dummy variable taking a value of 1 for workers with an education level up to primary

DE3 = a dummy variable taking a value of 1 for workers up to a secondary level of
education

DE, = a dummy variable taking a value of 1 for workers with higher than secondary
education

DPT = a dummy variable taking a value of 1 for workers with permanent jobs and a
value of 0 for temporary workers

21p, AV.B. Swamy, Statistical Inference in Random Coefficient Regression Models, Springer-Verlag, Berlin,
1971.

225 Goldfeld and R. Quandt, Nonlinear Methods in Econometrics, North Holland, Amsterdam, 1972.
23Richard E. Quandt, The Econometrics of Disequilibrium, Basil Blackwell, New York, 1988.



TABLE 9.7

Indian Wage Earners, 1990

Wi AGE DE, DE; DE4; DPT  Dsex
120 57 0 0 0 0 0
224 48 0 0 1 1 0
132 38 0 0 0 0 0
75 27 0 1 0 0 0
111 23 0 1 0 0 1
127 22 0 1 0 0 0
30 18 0 0 0 0 0
24 12 0 0 0 0 0
119 38 0 0 0 1 0
75 55 0 0 0 0 0
324 26 0 1 0 0 0
42 18 0 0 0 0 0
100 32 0 0 0 0 0
136 41 0 0 0 0 0
107 48 0 0 0 0 0
50 16 1 0 0 0 1
90 45 0 0 0 0 0
377 46 0 0 0 1 0
150 30 0 1 0 0 0
162 40 0 0 0 0 0
18 19 1 0 0 0 0
128 25 1 0 0 0 0
47.5 46 0 0 0 0 1
135 25 0 1 0 0 0
400 57 0 0 0 1 0
91.8 35 0 0 1 1 0
140 44 0 0 0 1 0
49.2 22 0 0 0 0 0
30 19 1 0 0 0 0
40.5 37 0 0 0 0 1
81 20 0 0 0 0 0
105 40 0 0 0 0 0
200 30 0 0 0 0 0
140 30 0 0 0 1 0
80 26 0 0 0 0 0
47 41 0 0 0 0 1
125 22 0 0 0 0 0
500 21 0 0 0 0 0
100 19 0 0 0 0 0
105 35 0 0 0 0 0
300 35 0 1 0 1 0
115 33 0 1 0 1 1
103 27 0 0 1 1 1
190 62 1 0 0 0 0
62.5 18 0 1 0 0 0
50 25 1 0 0 0 0
273 43 0 0 1 1 1
175 40 0 1 0 1 0
117 26 1 0 0 1 0
950 47 0 0 1 0 0
100 30 0 0 0 0 0
140 30 0 0 0 0 0
97 25 0 1 0 0 0
150 36 0 0 0 0 0
25 28 0 0 0 0 1
15 13 0 0 0 0 1
131 55 0 0 0 0 0

Wi AGE DE, DE; DE4; DPT  Dsex
120 21 0 0 0 0 0
25 18 0 0 0 0 1
25 11 0 0 0 0 1
30 38 0 0 0 1 1
30 17 0 0 0 1 1
122 20 0 0 0 0 0
288 50 0 1 0 1 0
75 45 0 0 0 0 1
79 60 0 0 0 0 0
85.3 26 1 0 0 0 1
350 42 0 1 0 1 0
54 62 0 0 0 1 0
110 23 0 0 0 0 0
342 56 0 0 0 1 0
77.5 19 0 0 0 1 0
370 46 0 0 0 0 0
156 26 0 0 0 1 0
261 23 0 0 0 0 0
54 16 0 1 0 0 0
130 33 0 0 0 0 0
112 27 1 0 0 0 0
82 22 1 0 0 0 0
385 30 0 1 0 1 0
94.3 22 0 0 1 1 1
350 57 0 0 0 1 0
108 26 0 0 0 0 0
20 14 0 0 0 0 0
53.8 14 0 0 0 0 1
427 55 0 0 0 1 0
18 12 0 0 0 0 0
120 38 0 0 0 0 0
40.5 17 0 0 0 0 0
375 42 1 0 0 1 0
120 34 0 0 0 0 0
175 33 1 0 0 1 0
50 26 0 0 0 0 1
100 33 1 0 0 1 0
25 22 0 0 0 1 1
40 15 0 0 0 1 0
65 14 0 0 0 1 0
47.5 25 0 0 0 1 1
163 25 0 0 0 1 0
175 50 0 0 0 1 1
150 24 0 0 0 1 1
163 28 0 0 0 1 0
163 30 1 0 0 1 0
50 25 0 0 0 1 1
395 45 0 1 0 1 0
175 40 0 0 0 1 1
87.5 25 1 0 0 0 0
75 18 0 0 0 0 0
163 24 0 0 0 1 0
325 55 0 0 0 1 0
121 27 0 1 0 0 0
600 35 1 0 0 0 0
52 19 0 0 0 0 0
117 28 1 0 0 0 0

301
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The reference category is male workers with no primary education and temporary jobs.
Our interest is in finding out how weekly wages relate to age, sex, level of education, and
job tenure. For this purpose, we estimate the following regression model:

In WI,; = 81 + B2 AGE,; + B3Dsgx + Ba DEy + BsDEs + B¢ DE4 + B7 DPT + u;

Following the literature in Labor Economics, we are expressing the (natural) log of wages
as a function of the explanatory variables. As noted in Chapter 6, the size distribution of
variables such as wages tends to be skewed; logarithmic transformations of such variables
reduce both skewness and heteroscedasticity.

Using EViews6, we obtain the following regression results.

Dependent Variable: Ln(WI)
Method: Least Squares
Sample: 1 261

Included observations: 261

Coefficient Std. Error t-Statistic Prob.
C 3.706872 0.113845 32.56055 0.0000
AGE 0.026549 0.003117 8.516848 0.0000
Dsex -0.656338 0.088796 -7.391529 0.0000
DE, 0.113862 0.098542 1.155473 0.2490
DFE3 0.412589 0.096383 4.280732 0.0000
DEy 0.554129 0.155224 3.569862 0.0004
DPT 0.558348 0.079990 6.980248 0.0000
R-squared 0.534969 Mean dependent var. 4.793390
Adjusted R-squared 0.523984 S.D. dependent var. 0.834277
S.E. of regression 0.575600 Akaike info criterion 1.759648
Sum squared resid. 84.15421 Schwarz criterion 1.855248
Log likelihood -222.6340 Hannan-Quinn criter. 1.798076
F-statistic 48.70008 Durbin-Watson stat. 1.853361
Prob (F-statistic) 0.000000

These results show that the logarithm of wages is positively related to age, education, and
job permanency but negatively related to gender, an unsurprising finding. Although there
seems to be no practical difference in the weekly wages of workers with primary or less-
than-primary education, the weekly wages are higher for workers with secondary education
and much more so for workers with higher education.

The coefficients of the dummy variables are to be interpreted as differential values from
the reference category. Thus, the coefficient of the DPT variable suggests that those work-
ers who have permanent jobs on average make more money than those workers whose jobs
are temporary.

As we know from Chapter 6, in a log—lin model (dependent variable in the logarithm
form and the explanatory variables in the linear form), the slope coefficient of an
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explanatory variable represents semielasticity, that is, it gives the relative or percentage
change in the dependent variable for a unit change in the value of the explanatory variable.
But as noted in the text, when the explanatory variable is a dummy variable, we have to be
very careful. Here we have to take the anti-log of the estimated dummy coefficient, subtract
1 from it, and multiply the result by 100. Thus, to find out the percentage change in weekly
wages for those workers who have permanent jobs versus those who have temporary
jobs, we take the anti-log of the DPT coefficient of 0.558348, subtract 1, and then multiply
the difference by 100. For our example, this turns out to be (*3°8348—1) = (1.74778 —1) =
0.74778, or about 75%. The reader is advised to calculate such percentage changes for the
other dummy variables included in the model.

Our results show that gender and education have differential effects on weekly earnings.
Is it possible that there is an interaction between gender and the level of education? Do
male workers with higher education earn higher weekly wages than female workers with
higher education? To examine this possibility, we can extend the above wage regression by
interacting gender with education. The regression results are as follows:

Dependent Variable: Ln (WI)
Method: Least Squares
Sample: 1 261

Included observations: 261

Coefficient std. Error t-Statistic Prob.
C 3.717540 0.114536 32.45734 0.0000
AGE 0.027051 0.003133 8.634553 0.0000
Dsrx -0.758975 0.110410 -6.874148 0.0000
DE, 0.088923 0.106827 0.832402 0.4060
DE5 0.350574 0.104309 3.360913 0.0009
DE, 0.438673 0.186996 2.345898 0.0198
Dgpx* DE; 0.114908 0.275039 0.417788 0.6765
Dgpx* DE; 0.391052 0.259261 1.508337 0.1327
Dgrx* DEy 0.369520 0.313503 1.178681 0.2396
DPT 0.551658 0.080076 6.889198 0.0000
R-squared 0.540810 Mean dependent var. 4.793390
Adjusted R-squared 0.524345 S.D. dependent var. 0.834277
S.E. of regression 0.575382 Akaike info criterion 1.769997
Sum squared resid. 83.09731 Schwarz criterion 1.906569
Log likelihood -220.9847 Hannan-Quinn criter. 1.824895
F-statistic 32.84603 Durbin-Watson stat. 1.856488
Prob (F-statistic) 0.000000

Although the interaction dummies show that there is some interaction between gender
and the level of education, the effect is not statistically significant, for all the interaction
coefficients are not individually statistically significant.
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Interestingly, if we drop the education dummies but retain the interaction dummies, we

obtain the following results:

Dependent Variable: LOG (WI)
Method: Least Squares
Sample: 1 261

Included observations: 261

Coefficient std. Error t-Statistic Prob.
C 3.836483 0.106785 35.92725 0.0000
AGE 0.025990 0.003170 8.197991 0.0000
Dspx -0.868617 0.106429 -8.161508 0.0000
Dgpx* DE, 0.200823 0.259511 0.773851 0.4397
Dgpx* DE; 0.716722 0.245021 2.925140 0.0038
Dgpx* DE, 0.752652 0.265975 2.829789 0.0050
DPT 0.627272 0.078869 7.953332 0.0000
R-squared 0.514449 Mean dependent var. 4.793390
Adjusted R-squared 0.502979 S.D. dependent var. 0.834277
S.E. of regression 0.588163 Akaike info criterion 1.802828
Sum squared resid. 87.86766 Schwarz criterion 1.898429
Log likelihood -228.2691 Hannan-Quinn criter. 1.841257
F-statistic 44.85284 Durbin-Watson stat. 1.873421
Prob (F-statistic) 0.000000

It now seems that education dummies by themselves have no effect on weekly wages, but
introduced in an interactive format they seem to. As this exercise shows, one must be care-
ful in the use of dummy variables. It is left as an exercise for the reader to find out if the
education dummies interact with DPT.

Summary and
Conclusions

1.

2.

Dummy variables, taking values of 1 and zero (or their linear transforms), are a means
of introducing qualitative regressors in regression models.

Dummy variables are a data-classifying device in that they divide a sample into various
subgroups based on qualities or attributes (gender, marital status, race, religion, etc.)
and implicitly allow one to run individual regressions for each subgroup. If there are
differences in the response of the regressand to the variation in the qualitative variables
in the various subgroups, they will be reflected in the differences in the intercepts or
slope coefficients, or both, of the various subgroup regressions.

. Although a versatile tool, the dummy variable technique needs to be handled carefully.

First, if the regression contains a constant term, the number of dummy variables must be
one less than the number of classifications of each qualitative variable. Second, the
coefficient attached to the dummy variables must always be interpreted in relation to
the base, or reference, group—that is, the group that receives the value of zero. The base
chosen will depend on the purpose of research at hand. Finally, if a model has several
qualitative variables with several classes, introduction of dummy variables can consume
a large number of degrees of freedom. Therefore, one should always weigh the number
of dummy variables to be introduced against the total number of observations available
for analysis.
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4. Among its various applications, this chapter considered but a few. These included
(1) comparing two (or more) regressions, (2) deseasonalizing time series data, (3) inter-
active dummies, (4) interpretation of dummies in semilog models, and (4) piecewise
linear regression models.

5. We also sounded cautionary notes in the use of dummy variables in situations of
heteroscedasticity and autocorrelation. But since we will cover these topics fully in
subsequent chapters, we will revisit these topics then.

EXERCISES Questions

9.1. If you have monthly data over a number of years, how many dummy variables will
you introduce to test the following hypotheses:

a. All the 12 months of the year exhibit seasonal patterns.

b. Only February, April, June, August, October, and December exhibit seasonal
patterns.

9.2. Consider the following regression results (¢ ratios are in parentheses):”

Y, =1286  +10497X; — 0.026X3;;+ 120Xy +  0.69Xs

t= (4.67) (3.70)  (—3.80) (0.24) (0.08)
—19.47X; + 266.06X7; — 118.64Xg; — 110.61Xy,
(—0.40) (6.94) (=3.04)  (—6.14)

R* =0.383 n = 1543

where ¥ = wife’s annual desired hours of work, calculated as usual hours of work

per year plus weeks looking for work

X, = after-tax real average hourly earnings of wife

X3 = husband’s previous year after-tax real annual earnings

X, = wife’s age in years

X5 = years of schooling completed by wife

X = attitude variable, 1 = if respondent felt that it was all right for a woman
to work if she desired and her husband agrees, 0 = otherwise

X7 = attitude variable, 1 = if the respondent’s husband favored his wife’s
working, 0 = otherwise

Xg = number of children less than 6 years of age

X9 = number of children in age groups 6 to 13

a. Do the signs of the coefficients of the various nondummy regressors make
economic sense? Justify your answer.

b. How would you interpret the dummy variables, X and X7? Are these dummies sta-
tistically significant? Since the sample is quite large, you may use the “2-#” rule of
thumb to answer the question.

¢. Why do you think that age and education variables are not significant factors in a
woman’s labor force participation decision in this study?

“Jane Leuthold, “The Effect of Taxation on the Hours Worked by Married Women,” Industrial and
Labor Relations Review, no. 4, July 1978, pp. 520-526 (notation changed to suit our format).
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TABLE 9.8

X Unem- Job Unem- Job
Data Matrix for
R . Year ployment Vacancy Year ployment Vacancy
Eegre.s Smgn:’;m and Rate UN, RateV, and Rate UN, RateV,
xercise 2. Quarter % % D DV Quarter % % D DV
e e 1958V 1.915 0510 0 0 1965-1 1.201 0997 0 0
e Behaviour of
Unemployment and Unfilled 1959_] 1.876 0.541 0 0 - 1.192 1.035 0 0
Vacancies: Great Britain, _
19581971,” The Economic -l 1.842 0541 0 0 i 1.259 - 1.040 00
Journal, vol. 82, March 1972, —ll 1.750 0.690 O 0 -V 1.192 1.086 0 0
i 202, -V 1.648 0.771 0 0 1966-1 1.089 1.101 0 0
1960-1 1450 0836 0 0 -1.101 1.058 0 0
— 1.322 0.968 0 0 -V  1.623 0.819 1 0.819
-V 1.260 0998 0 0 1967-1 1.821 0.740 1 0.740
- 1.182 0.964 0 0 - 2.114 0.660 1T 0.660
~ 1.221 0.952 0 0 -Iv 2115 0.698 1T 0.698
-V 1.340 0.849 0 0 19681 2.150 0.695 1 0.695
1962-1 1.411 0.748 0 0 | 2.141 0.732 1 0.732
- 1.600 0.658 0 0 - 2.167 0.749 1 0.749
_ 1.780 0562 0 0 -Iv  2.107 0.800 1 0.800
-V 1.941 0.510 0 0 1969-1 2.104 0.783 1 0.783
19631 2.178 0510 0 0 || 2.056 0.800 1 0.800
_” 2.067 0544 0 0 - 2.170 0.794 1 0.794
-V 1.764 0.677 0 0 1970 2.225 0.757 1 0.757
-1V 1.296 0978 0 0 1971 2.516* 0.583* 1 0.583*
-1l 2.909* 0.524* 1 0.524*

*Preliminary estimates.

9.3. Consider the following regression results.” (The actual data are in Table 9.8.)

UN, = 27491 + 1.1507D, —  1.5294V, — 0.8511(D,V))
t=(26896) (3.6288)  (—12.5552)  (—1.9819)
R? =0.9128

where UN = unemployment rate, %
V' = job vacancy rate, %
D = 1, for period beginning in 19661V
= 0, for period before 19661V
t = time, measured in quarters

Note: In the fourth quarter of 1966, the (then) Labor government liberalized the
National Insurance Act by replacing the flat-rate system of short-term unemploy-
ment benefits by a mixed system of flat-rate and (previous) earnings-related benefits,
which increased the level of unemployment benefits.

"Damodar Guijarati, “The Behaviour of Unemployment and Unfilled Vacancies: Great Britain,
1958-1971," The Economic Journal, vol. 82, March 1972, pp. 195-202.
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a. What are your prior expectations about the relationship between the unemploy-
ment and vacancy rates?

b. Holding the job vacancy rate constant, what is the average unemployment rate in
the period beginning in the fourth quarter of 19667? Is it statistically different from
the period before 1966 fourth quarter? How do you know?

c. Are the slopes in the pre- and post-1966 fourth quarter statistically different? How
do you know?

d. Is it safe to conclude from this study that generous unemployment benefits lead to
higher unemployment rates? Does this make economic sense?

9.4. From annual data for 1972—-1979, William Nordhaus estimated the following model
to explain the OPECs oil price behavior (standard errors in parentheses).”

)/;t = 0.3x1t+ 5.22)(:21
se = (0.03)  (0.50)

where y = difference between current and previous year’s price (dollars per barrel)
x; = difference between current year’s spot price and OPEC’s price in the
previous year
xp; = 1 for 1974 and 0 otherwise

Interpret this result and show the results graphically. What do these results suggest
about OPEC’s monopoly power?

9.5. Consider the following model
Yi =1+ D + BX; +u;

where Y = annual salary of a college professor
X = years of teaching experience
D = dummy for gender

Consider three ways of defining the dummy variable.
a. D = 1 for male, 0 for female.

b. D = 1 for female, 2 for male.

c. D = 1 for female, —1 for male.

Interpret the preceding regression model for each dummy assignment. Is one method
preferable to another? Justify your answer.

9.6. Refer to regression (9.7.3). How would you test the hypothesis that the coefficients
of D, and Dj; are the same? And that the coefficients of D, and D, are the same? If
the coefficient of D; is statistically different from that of D, and the coefficient of Dy
is different from that of D,, does that mean that the coefficients D3 and D, are also
different?

Hint: var (A £ B) = var (4) + var (B) &£ 2 cov (4, B)

9.7. Refer to the U.S. savings—income example discussed in Section 9.5.

a. How would you obtain the standard errors of the regression coefficients given in
Egs. (9.5.5) and (9.5.6), which were obtained from the pooled regression (9.5.4)?

b. To obtain numerical answers, what additional information, if any, is required?

“Oil and Economic Performance in Industrial Countries,” Brookings Papers on Economic Activity, 1980,
pp. 341-388.
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9.8.

9.9.

9.10.

In his study on the labor hours spent by the FDIC (Federal Deposit Insurance Corpo-
ration) on 91 bank examinations, R. J. Miller estimated the following function:”

nY =241 + 03674 In X; + 02217 In X, + 0.0803 In X;

(0.0477) (0.0628) (0.0287)
—0.1755D; 4+ 0.2799D, + 0.5634D; — 0.2572D;
(0.2905) (0.1044)  (0.1657)  (0.0787)

R? = 0.766

where Y = FDIC examiner labor hours
X, = total assets of bank
X, = total number of offices in bank
X5 = ratio of classified loans to total loans for bank
D; = 1 if management rating was “good”
D, = 1 if management rating was “fair”
D5 = 1 if management rating was “satisfactory”
D, = 1 if examination was conducted jointly with the state

The figures in parentheses are the estimated standard errors.
a. Interpret these results.
b. Is there any problem in interpreting the dummy variables in this model since Y is
in the log form?
¢. How would you interpret the dummy coefficients?
To assess the effect of the Fed’s policy of deregulating interest rates beginning in July
1979, Sidney Langer, a student of mine, estimated the following model for the quar-
terly period of 1975111 to 198311
Y, = 85871 — 0.1328P, — 0.7102Un, — 0.2389M,
se = (1.9563)  (0.0992) (0.1909) (0.0727)

+ 0.6592Y,; + 2.5831Dum, R? = 0.9156
(0.1036) (0.7549)

where ¥ = 3-month Treasury bill rate
P = expected rate of inflation
Un = seasonally adjusted unemployment rate
M = changes in the monetary base
Dum = dummy, taking value of 1 for observations beginning July 1, 1979

a. Interpret these results.

b. What has been the effect of interest rate deregulation? Do the results make
economic sense?

c. The coefficients of P;, Un,, and M, are negative. Can you offer an economic
rationale?

Refer to the piecewise regression discussed in the text. Suppose there not only is a

change in the slope coefficient at X* but also the regression line jumps, as shown in

Figure 9.7. How would you modify Eq. (9.8.1) to take into account the jump in the

regression line at X*?

““Examination of Man-Hour Cost for Independent, Joint, and Divided Examination Programs,” Journal
of Bank Research, vol. 11, 1980, pp. 28-35. Note: The notations have been altered to conform with
our notations.

fSidney Langer, “Interest Rate Deregulation and Short-Term Interest Rates,” unpublished term paper.
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9.11. Determinants of price per ounce of cola. Cathy Schaefer, a student of mine,
estimated the following regression from cross-sectional data of 77 observations:”

P; = Bo + B1D1; + B2 Dy + B3 D3; +

where P; = price per ounce of cola
Dy; = 001 if discount store
= 010 if chain store
= 100 if convenience store
D,; = 10 if branded good
= 01 if unbranded good
= 0001 if 67.6 ounce (2 liter) bottle
= 0010 if 28-33.8 ounce bottles (Note: 33.8 oz = 1 liter)
0100 if 16-ounce bottle
1000 if 12-ounce can

D5

The results were as follows:
f’,- = 0.0143 — 0.000004D;; + 0.0090D,; + 0.00001Ds;

se = (0.00001) (0.00011)  (0.00000)
t= (—0.3837) (83927)  (5.8125)
R® = 0.6033

Note: The standard errors are shown only to five decimal places.
a. Comment on the way the dummies have been introduced in the model.
b. Assuming the dummy setup is acceptable, how would you interpret the results?
c. The coefficient of Dj is positive and statistically significant. How do you rational-
ize this result?

9.12. From data for 101 countries on per capita income in dollars (X) and life expectancy in
yearsT(Y) in the early 1970s, Sen and Srivastava obtained the following regression re-
sults:

Y = =240 + 9.391InX; — 3.36 [D;(In X; — 7)]
se= (473) (0.859)  (2.42) R?=0.752

where D; = 1 if InX; > 7, and D; = 0 otherwise. Note: When In X; =7, X =
$1,097 (approximately).

“Cathy Schaefer, “Price Per Ounce of Cola Beverage as a Function of Place of Purchase, Size of
Container, and Branded or Unbranded Product,” unpublished term project.

TAshish Sen and Muni Srivastava, Regression Analysis: Theory, Methods, and Applications, Springer-
Verlag, New York, 1990, p. 92. Notation changed.
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9.13.

9.14.

9.15.

a. What might be the reason(s) for introducing the income variable in the log form?

b. How would you interpret the coefficient 9.39 of In X;?

¢. What might be the reason for introducing the regressor D;(In X; — 7)? How do
you explain this regressor verbally? And how do you interpret the coefficient
—3.36 of this regressor (Hint: linear piecewise regression)?

d. Assuming per capita income of $1,097 as the dividing line between poorer and
richer countries, how would you derive the regression for countries whose per
capita is less than $1,097 and the regression for countries whose per capita income
is greater than $1,097?

e. What general conclusions do you draw from the regression result presented in this
problem?

Consider the following model:

Yi =P+ BDi +u;

where D; = 0 for the first 20 observations and D; = 1 for the remaining 30

observations. You are also told that var (u?) = 300.

a. How would you interpret 8; and 8,?

b. What are the mean values of the two groups?

¢. How would you compute the variance of (8; + f,)? Note: You are given that the
cov (B1, B) = —15.

To assess the effect of state right-to-work laws (which do not require membership in

the union as a precondition of employment) on union membership, the following re-

gression results were obtained, from the data for 50 states in the United States for
1982:"

PVT; = 19.8066 — 9.3917 RTW,
t = (17.0352) (—5.1086)
72 = 03522

where PVT = percentage of private sector employees in unions, 1982, and RTW = 1

if right-to-work law exists, 0 otherwise. Nofe: In 1982, twenty states had right-to-

work laws.

a. A priori, what is the expected relationship between PVT and RTW?

b. Do the regression results support the prior expectations?

c. Interpret the regression results.

d. What was the average percent of private sector employees in unions in the states
that did not have the right-to-work laws?

In the following regression model:

Y =1+ BoDi +u;

Y represents hourly wage in dollars and D is the dummy variable, taking a value of 1
for a college graduate and a value of 0 for a high-school graduate. Using the OLS for-
mulas given in Chapter 3, show that /31 = Y} and /32 = Y., — Yyg, Where the sub-
scripts have the following meanings: hg = high-school graduate, cg = college
graduate. In all, there are n; high-school graduates and 7, college graduates, for a total
sample of n = ny + n,.

“The data used in the regression results were obtained from N. M. Meltz, “Interstate and
Interprovincial Differences in Union Density,” Industrial Relations, vol. 28, no. 2, 1989, pp. 142-158.
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9.16. To study the rate of growth of population in Belize over the period 1970-1992,
Mukherjee et al. estimated the following models:”

ModelI:  In(Pop), = 473 + 0.024¢
t= (78125) (54.71)

Model 1. In(Pop), = 477 + 0015t — 0.075D,+ 0.011(Dy)
= (2477.92) (34.01) (—17.03) (25.54)

where Pop = population in millions, # = trend variable, D, = 1 for observations be-
ginning in 1978 and 0 before 1978, and In stands for natural logarithm.

a. In Model I, what is the rate of growth of Belize’s population over the sample period?

b. Are the population growth rates statistically different pre- and post-1978? How do
you know? If they are different, what are the growth rates for 1972—-1977 and
1978-1992?

Empirical Exercises
9.17. Using the data given in Table 9.8, test the hypothesis that the error variances in the
two subperiods 1958—1V to 196611l and 1966-1V to 1971-II are the same.

9.18. Using the methodology discussed in Chapter 8, compare the unrestricted and restricted
regressions (9.7.3) and (9.7.4); that is, test for the validity of the imposed restrictions.

9.19. In the U.S. savings—income regression (9.5.4) discussed in the chapter, suppose that
instead of using 1 and 0 values for the dummy variable you use Z; = a + bD;, where
D; =1land0,a = 2, and b = 3. Compare your results.

9.20. Continuing with the savings—income regression (9.5.4), suppose you were to assign
D; = 0 to observations in the second period and D; = 1 to observations in the first
period. How would the results shown in Eq. (9.5.4) change?

9.21. Use the data given in Table 9.2 and consider the following model:
In Savings; = 81 + B> In Income; + B3 In D; + u;
where In stands for natural log and where D; = 1 for 1970-1981 and 10 for
1982-1995.
a. What is the rationale behind assigning dummy values as suggested?
b. Estimate the preceding model and interpret your results.

c. What are the intercept values of the savings function in the two subperiods and
how do you interpret them?
9.22. Refer to the quarterly appliance sales data given in Table 9.3. Consider the following
model:

Sales; = oy + an Dy; + a3 D3 + a4 Ds; + u;

where the D’s are dummies taking 1 and 0 values for quarters II through I'V.

a. Estimate the preceding model for dishwashers, disposers, and washing machines
individually.

b. How would you interpret the estimated slope coefficients?

¢. How would you use the estimated o’s to deseasonalize the sales data for individ-
ual appliances?

“Chandan Mukherjee, Howard White, and Marc Wuyts, Econometrics and Data Analysis for Developing
Countries, Routledge, London, 1998, pp. 372-375. Notations adapted.
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TABLE 9.9
U.S. Presidential
Elections, 19162004

Obs. Year 74 w D G I N P
1 1916 0.5168 0 1 2.229 1 3 4.252
2 1920 0.3612 1 0 —11.46 1 5 16.535
3 1924 0.4176 0 —1 —3.872 -1 10 5.161
4 1928 0.4118 0 0 4.623 —1 7 0.183
5 1932 0.5916 0 —1 —-14.9 —1 4 7.069
6 1936 0.6246 0 1 11.921 1 9 2.362
7 1940 0.55 0 1 3.708 1 8 0.028
8 1944 0.5377 1 1 4119 1 14 5.678
9 1948 0.5237 1 1 1.849 1 5 8.722
10 1952 0.446 0 0 0.627 1 6 2.288
11 1956 0.4224 0 —1 —1.527 —1 5 1.936
12 1960 0.5009 0 0 0.114 —1 5 1.932
13 1964 0.6134 0 1 5.054 1 10 1.247
14 1968 0.496 0 0 4.836 1 7 3.215
15 1972 0.3821 0 —1 6.278 —1 4 4.766
16 1976 0.5105 0 0 3.663 —1 4 7.657
17 1980 0.447 0 1 —3.789 1 5 8.093
18 1984 0.4083 0 —1 5.387 —1 7 5.403
19 1988 0.461 0 0 2.068 —1 6 3.272
20 1992 0.5345 0 -1 2.293 -1 1 3.692
21 1996 0.5474 0 1 2.918 1 3 2.268
22 2000 0.50265 0 0 1.219 1 8 1.605
23 2004 0.51233 0 1 2.69 —1 1 2.325

Notes:
Year Election year

4
w
D

T ZTQ

Incumbent share of the two-party presidential vote.

Indicator variable (1 for the elections of 1920, 1944, and 1948, and 0 otherwise).

Indicator variable (1 if a Democratic incumbent is running for election, —1 if a Republican incumbent is running for election, and 0
otherwise).

Growth rate of real per capita GDP in the first three quarters of the election year.

Indicator variable (1 if there is a Democratic incumbent at the time of the election and —1 if there is a Republican incumbent).
Number of quarters in the first 15 quarters of the administration in which the growth rate of real per capita GDP is greater than 3.2%.
Absolute value of the growth rate of the GDP deflator in the first 15 quarters of the administration.

9.23. Reestimate the model in Exercise 9.22 by adding the regressor, expenditure on

durable goods.

a. Is there a difference in the regression results you obtained in Exercise 9.22 and in
this exercise? If so, what explains the difference?

b. If there is seasonality in the durable goods expenditure data, how would you
account for it?

9.24. Table 9.9 gives data on quadrennial presidential elections in the United States from

1916 to 2004."

a. Using the data given in Table 9.9, develop a suitable model to predict the
Democratic share of the two-party presidential vote.

b. How would you use this model to predict the outcome of a presidential election?

“These data were originally compiled by Ray Fair of Yale University, who has been predicting the out-
come of presidential elections for several years. The data are reproduced from Samprit Chatterjee, Ali

S.

Hadi, and Bertram Price, Regression Analysis by Example, 3d ed., John Wiley & Sons, New York,

2000, pp. 150-151 and updated from http://fairmodel.econ.yale.edu/rayfair/pdf/2006 CHTM.HTM.
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c. Chatterjee et al. suggested considering the following model as a trial model to pre-
dict presidential elections:

V= Bo+ Bl + B2D+ BsW + Bs(GI) + BsP + Bs N + u

Estimate this model and comment on the results in relation to the results of the model
you have chosen.

9.25. Refer to regression (9.6.4). Test the hypothesis that the rate of increase of average
hourly earnings with respect to education differs by gender and race. (Hint: Use mul-
tiplicative dummies.)

9.26. Refer to the regression (9.3.1). How would you modify the model to find out if there
is any interaction between the gender and the region of residence dummies? Present
the results based on this model and compare them with those given in Eq. (9.3.1).

9.27. Inthe model Y; = By + B2 D; + u;, let D; = 0 for the first 40 observations and D; = 1
for the remaining 60 observations. You are told that u; has zero mean and a variance of
100. What are the mean values and variances of the two sets of observations?”

9.28. Refer to the U.S. savings—income regression discussed in the chapter. As an
alternative to Eq. (9.5.1), consider the following model:

InY, = g1 + BoD; + B3 Xy + Ba(D X)) + uy

where Y is savings and X is income.

a. Estimate the preceding model and compare the results with those given in
Eq. (9.5.4). Which is a better model?

b. How would you interpret the dummy coefficient in this model?

c. As we will see in the chapter on heteroscedasticity, very often a log transforma-
tion of the dependent variable reduces heteroscedasticity in the data. See if this
is the case in the present example by running the regression of log of ¥ on X for
the two periods and see if the estimated error variances in the two periods are sta-
tistically the same. If they are, the Chow test can be used to pool the data in the
manner indicated in the chapter.

9.29. Refer to the Indian wage earners example (Section 9.12) and the data in Table 9.7.7

As a reminder, the variables are defined as follows:

WI = weekly wage income in rupees

Age = age in years

Dy = 1 for male workers and 0 for female workers

DE, = a dummy variable taking a value of 1 for workers with up to a primary
education

DE; = a dummy variable taking a value of 1 for workers with up to a secondary
education

DE4 = a dummy variable taking a value of 1 for workers with higher education

DPT = a dummy variable taking a value of 1 for workers with permanent jobs and a
value of 0 for temporary workers

The reference category is male workers with no primary education and temporary jobs.

“This example is adapted from Peter Kennedy, A Guide to Econometrics, 4th ed., MIT Press,
Cambridge, Mass., 1998, p. 347.

The data come from Econometrics and Data Analysis for Developing Countries, by Chandan
Mukherjee, Howard White, and Marc Wuyts, Routledge Press, London, 1998, in the Appendix.
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In Section 9.12, interaction terms were created between the education variables
(DE,, DE5, and DE4) and the gender variable (Dsex). What happens if we create in-
teraction terms between the education dummies and the permanent worker dummy
variable (DPT)?

a. Estimate the model predicting In WI containing age, gender, the education
dummy variables, and three new interaction terms: DE, x DPT, DE; x DPT, and
DE4 x DPT. Does there appear to be a significant interaction effect among the
new terms?

b. Is there a significant difference between workers with an education level up to pri-
mary and those without a primary education? Assess this with respect to both the
education dummy variable and the interaction term and explain the results. What
about the difference between workers with a secondary level of education and
those without a primary level of education? What about the difference between
those with an education level beyond secondary, compared to those without a pri-
mary level of education?

c. Now assess the results of deleting the education dummies from the model. Do the
interaction terms change in significance?

Appendix 9A

Semilogarithmic Regression with Dummy Regressor
In Section 9.10 we noted that in models of the type
InY; = g1 + B2 D; @

the relative change in Y (i.e., semielasticity), with respect to the dummy regressor taking values of 1
or 0, can be obtained as (antilog of estimated ;) — 1 times 100, that is, as

(e — 1) x 100 Q)
The proof is as follows: Since In and exp (= e) are inverse functions, we can write Eq. (1) as:
InY; = By + In(eP™) 3)

Now when D = 0, e”? = 1 and when D = 1, /2P = ¢f2 . Therefore, in going from state 0 to state
1, In ¥; changes by (e? — 1). But a change in the log of a variable is a relative change, which after
multiplication by 100 becomes a percentage change. Hence the percentage change is
(e — 1) x 100, as claimed. (Note: In, e = 1, that is, the log of e to base e is 1, just as the log of 10
to base 10 is 1. Recall that log to base e is called the natural log and that log to base 10 is called the
common log.)




Part

Relaxing
the Assumptions of

the Classical Model

In Part 1 we considered at length the classical normal linear regression model and showed
how it can be used to handle the twin problems of statistical inference, namely, estimation
and hypothesis testing, as well as the problem of prediction. But recall that this model is
based on several simplifying assumptions, which are as follows.

Assumption 1. The regression model is linear in the parameters.

Assumption 2. The values of the regressors, the X’s, are fixed, or X values are
independent of the error term. Here, this means we require zero
covariance between u; and each X variable.

Assumption 3. For given Xs, the mean value of disturbance u; is zero.
Assumption 4. For given X’s, the variance of u; is constant or homoscedastic.

Assumption 5. For given X's, there is no autocorrelation, or serial correlation,
between the disturbances.

Assumption 6. The number of observations » must be greater than the number of
parameters to be estimated.

Assumption 7. There must be sufficient variation in the values of the X variables.
We are also including the following 3 assumptions in this part of the text:

Assumption 8. There is no exact collinearity between the X variables.
Assumption 9. The model is correctly specified, so there is no specification bias.

Assumption 10. The stochastic (disturbance) term u; is normally distributed.

Before proceeding further, let us note that most textbooks list fewer than 10 assumptions.
For example, assumptions 6 and 7 are taken for granted rather than spelled out explicitly. We
decided to state them explicitly because distinguishing between the assumptions required
for ordinary least squares (OLS) to have desirable statistical properties (such as BLUE) and
the conditions required for OLS to be useful seems sensible. For example, OLS estimators
are BLUE (best linear unbiased estimators) even if assumption 7 is not satisfied. But in that
case the standard errors of the OLS estimators will be large relative to their coefficients
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(i.e., the # ratios will be small), thereby making it difficult to assess the contribution of one
or more regressors to the explained sum of squares.

As Wetherill notes, in practice two major types of problems arise in applying the classi-
cal linear regression model: (1) those due to assumptions about the specification of the
model and about the disturbances u; and (2) those due to assumptions about the data.! In the
first category are Assumptions 1, 2, 3,4, 5, 9, and 10. Those in the second category include
Assumptions 6, 7, and 8. In addition, data problems, such as outliers (unusual or untypical
observations) and errors of measurement in the data, also fall into the second category.

With respect to problems arising from the assumptions about disturbances and model spec-
ifications, three major questions arise: (1) How severe must the departure be from a particular
assumption before it really matters? For example, if u; are not exactly normally distributed,
what level of departure from this assumption can one accept before the BLUE property of the
OLS estimators is destroyed? (2) How do we find out whether a particular assumption is in fact
violated in a concrete case? Thus, how does one find out if the disturbances are normally
distributed in a given application? We have already discussed the Anderson—Darling
A? statistic and Jarque—Bera tests of normality. (3) What remedial measures can we take if
one or more of the assumptions are false? For example, if the assumption of homoscedasticity
is found to be false in an application, what do we do then?

With regard to problems attributable to assumptions about the data, we also face similar
questions. (1) How serious is a particular problem? For example, is multicollinearity so
severe that it makes estimation and inference very difficult? (2) How do we find out the
severity of the data problem? For example, how do we decide whether the inclusion or
exclusion of an observation or observations that may represent outliers will make a
tremendous difference in the analysis? (3) Can some of the data problems be easily reme-
died? For example, can one have access to the original data to find out the sources of errors
of measurement in the data?

Unfortunately, satisfactory answers cannot be given to all these questions. In the rest of
Part 2 we will look at some of the assumptions more critically, but not all will receive full
scrutiny. In particular, we will not discuss in depth the following: Assumptions 2, 3, and 10.
The reasons are as follows:

Assumption 2: Fixed versus Stochastic Regressors

Remember that our regression analysis is based on the assumption that the regressors are
nonstochastic and assume fixed values in repeated sampling. There is a good reason for this
strategy. Unlike scientists in the physical sciences, as noted in Chapter 1, economists gener-
ally have no control over the data they use. More often than not, economists depend on sec-
ondary data, that is, data collected by someone else, such as the government and private
organizations. Therefore, the practical strategy to follow is to assume that for the problem at
hand the values of the explanatory variables are given even though the variables themselves
may be intrinsically stochastic or random. Hence, the results of the regression analysis are
conditional upon these given values.

But suppose that we cannot regard the X’s as truly nonstochastic or fixed. This is the
case of random or stochastic regressors. Now the situation is rather involved. The u;, by

1G. Barrie Wetherill, Regression Analysis with Applications, Chapman and Hall, New York, 1986,
pp. 14-15.
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assumption, are stochastic. If the X’s too are stochastic, then we must specify how the X’s
and u; are distributed. If we are willing to make Assumption 2 (i.e., the X’s, although ran-
dom, are distributed independently of, or at least uncorrelated with, u;), then for all practi-
cal purposes we can continue to operate as if the X’s were nonstochastic. As Kmenta notes:

Thus, relaxing the assumption that X is nonstochastic and replacing it by the assumption that
X is stochastic but independent of [u] does not change the desirable properties and feasibility
of least squares estimation.”

Therefore, we will retain Assumption 2 until we come to deal with simultaneous equa-
tions models in Part 4.3 Also, a brief discussion of nonstochastic regressors will be given in
Chapter 13.

Assumption 3: Zero Mean Value of u;
Recall the k-variable linear regression model:

Y =B1+ BoXoi + B Xz + -+ B X +u; m
Let us now assume that

E(ui| X2i, Xsiy ooy Xii) =W )

where w is a constant; note in the standard model w = 0, but now we let it be any constant.
Taking the conditional expectation of Eq.(1), we obtain

E(Yi| X2, Xiy oy Xii) = B1+ BoXoi + B3 X3 + - + B X +w
= (B1 + W)+ BoXoi + B3 X3 + - + Br Xy 3)
=a+ B Xoi + B3 Xz + - - - + B X

where o = (f; + w) and where in taking the expectations one should note that the X’s are
treated as constants. (Why?)

Therefore, if Assumption 3 is not fulfilled, we see that we cannot estimate the original
intercept B;; what we obtain is «, which contains 8; and E(u;) = w. In short, we obtain a
biased estimate of S;.

But as we have noted on many occasions, in many practical situations the intercept term,
Bi, is of little importance; the more meaningful quantities are the slope coefficients, which
remain unaffected even if Assumption 3 is violated.* Besides, in many applications the
intercept term has no physical interpretation.

2Jan Kmenta, Elements of Econometrics, 2d ed., Macmillan, New York, 1986, p. 338. (Emphasis in the
original.)

3A technical point may be noted here. Instead of the strong assumption that the X’s and u are inde-
pendent, we may use the weaker assumption that the values of X variables and u are uncorrelated
contemporaneously (i.e., at the same point in time). In this case OLS estimators may be biased but
they are consistent, that is, as the sample size increases indefinitely, the estimators converge on
their true values. If, however, the X’s and u are contemporaneously correlated, the OLS estimators
are biased as well as inconsistent. In Chapter 17 we will show how the method of instrumental
variables can sometimes be used to obtain consistent estimators in this situation.

“4It is very important to note that this statement is true only if E(u;) = w for each i. However, if E(u) = w;,
that is, a different constant for each j, the partial slope coefficients may be biased as well as inconsis-
tent. In this case violation of Assumption 3 will be critical. For proof and further details, see Peter
Schmidt, Econometrics, Marcel Dekker, New York, 1976, pp. 36-39.
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Assumption 10: Normality of u

This assumption is not essential if our objective is estimation only. As noted in Chapter 3,
the OLS estimators are BLUE regardless of whether the u; are normally distributed or not.
With the normality assumption, however, we were able to establish that the OLS estimators
of the regression coefficients follow the normal distribution, that (n — k)62 /0% has the x?2
distribution, and that one could use the # and F tests to test various statistical hypotheses re-
gardless of the sample size.

But what happens if the u; are not normally distributed? We then rely on the following
extension of the central limit theorem; recall that it was the central limit theorem we in-
voked to justify the normality assumption in the first place:

If the disturbances [u;] are independently and identically distributed with zero mean and
[constant] variance o> and if the explanatory variables are constant in repeated samples, the
[O]LS coefficient estimators are asymptotically normally distributed with means equal to the
corresponding f’s.

Therefore, the usual test procedures—the ¢ and F' tests—are still valid asymptotically,
that is, in the large sample, but not in the finite or small samples.

The fact that if the disturbances are not normally distributed the OLS estimators are still
normally distributed asymptotically (under the assumption of homoscedastic variance and
fixed X’s) is of little comfort to practicing economists, who often do not have the luxury of
large-sample data. Therefore, the normality assumption becomes extremely important for
the purposes of hypothesis testing and prediction. Hence, with the twin problems of estima-
tion and hypothesis testing in mind, and given the fact that small samples are the rule rather
than the exception in most economic analyses, we shall continue to use the normality
assumption.® (But see Chapter 13, Section 13.12.)

Of course, this means that when we deal with a finite sample, we must explicitly test for
the normality assumption. We have already considered the Anderson—Darling and the
Jarque—Bera tests of normality. The reader is strongly urged to apply these or other tests
of normality to regression residuals. Keep in mind that in finite samples without the nor-
mality assumption the usual 7 and F statistics may not follow the 7 and F distributions.

We are left with Assumptions 1, 4, 5, 6, 7, 8, and 9. Assumptions 6, 7, and 8 are closely
related and are discussed in the chapter on multicollinearity (Chapter 10). Assumption 4 is
discussed in the chapter on heteroscedasticity (Chapter 11). Assumption 5 is discussed in
the chapter on autocorrelation (Chapter 12). Assumption 9 is discussed in the chapter
on model specification and diagnostic testing (Chapter 13). Because of its specialized
nature and mathematical demands, Assumption 1 is discussed as a special topic in Part 3
(Chapter 14).

For pedagogical reasons, in each of these chapters we follow a common format, namely,
(1) identify the nature of the problem, (2) examine its consequences, (3) suggest methods
of detecting it, and (4) consider remedial measures so that they may lead to estimators that
possess the desirable statistical properties discussed in Part 1.

Henri Theil, Introduction to Econometrics, Prentice-Hall, Englewood Cliffs, NJ, 1978, p. 240. It must be
noted the assumptions of fixed X’s and constant o2 are crucial for this result.

%In passing, note that the effects of departure from normality and related topics are often discussed
under the topic of robust estimation in the literature, a topic beyond the scope of this book.
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A cautionary note is in order: As noted earlier, satisfactory answers to all the problems
arising out of the violation of the assumptions of the classical linear regression model
(CLRM) do not exist. Moreover, there may be more than one solution to a particular prob-
lem, and often it is not clear which method is best. Besides, in a particular application more
than one violation of the CLRM may be involved. Thus, specification bias, multicollinear-
ity, and heteroscedasticity may coexist in an application, and there is no single omnipotent
test that will solve all the problems simultaneously.” Furthermore, a particular test that was
popular at one time may not be in vogue later because somebody found a flaw in the earlier
test. But this is how science progresses. Econometrics is no exception.

“This is not for lack of trying. See A. K. Bera and C. M. Jarque, “Efficient Tests for Normality,
Homoscedasticity and Serial Independence of Regression Residuals: Monte Carlo Evidence,”
Economic Letters, vol. 7, 1981, pp. 313-318.



Chapter I O

Multicollinearity:
What Happens

If the Regressors
Are Correlated?

There is no pair of words that is more misused both in econometrics texts and in the applied
literature than the pair “multi-collinearity problem.” That many of our explanatory variables are
highly collinear is a fact of life. And it is completely clear that there are experimental designs
X'X [i.e., data matrix] which would be much preferred to the designs the natural experiment has
provided us [i.e., the sample at hand]. But a complaint about the apparent malevolence of nature
is not at all constructive, and the ad hoc cures for a bad design, such as stepwise regression or
ridge regression, can be disastrously inappropriate. Better that we should rightly accept the fact
that our non-experiments [i.e., data not collected by designed experiments] are sometimes not
very informative about parameters of interest.!

Assumption 8 of the classical linear regression model (CLRM) is that there is no
multicollinearity among the regressors included in the regression model. In this chapter
we take a critical look at this assumption by seeking answers to the following questions:

. What is the nature of multicollinearity?
. Is multicollinearity really a problem?

. What are its practical consequences?

. How does one detect it?

W\ AW N =

. What remedial measures can be taken to alleviate the problem of multicollinearity?

In this chapter we also discuss Assumption 6 of the CLRM, namely, that the number of
observations in the sample must be greater than the number of regressors, and Assumption 7,
which requires that there be sufficient variability in the values of the regressors, for they are

TEdward E. Leamer, “Model Choice and Specification Analysis,” in Zvi Griliches and Michael D. Intrili-
gator, eds., Handbook of Econometrics, vol. |, North Holland Publishing Company, Amsterdam, 1983,
pp. 300-301.
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intimately related to the assumption of no multicollinearity. Arthur Goldberger has chris-

tened Assumption 6 as the problem of micronumerosity,” which simply means small sam-
ple size.

10.1 The Nature of Multicollinearity

The term multicollinearity is due to Ragnar Frisch.> Originally it meant the existence of a
“perfect,” or exact, linear relationship among some or all explanatory variables of a regres-
sion model.* For the k-variable regression involving explanatory variables X, X5, ..., Xx
(where X} =1 for all observations to allow for the intercept term), an exact linear rela-
tionship is said to exist if the following condition is satisfied:

MXT+MLX X =0 (10.1.1)

where Ay, A2, ..., A are constants such that not all of them are zero simultaneously.5

Today, however, the term multicollinearity is used in a broader sense to include the case
of perfect multicollinearity, as shown by Eq. (10.1.1), as well as the case where the X vari-
ables are intercorrelated but not perfectly so, as follows:®

MXT X+ X+ =0 (10.1.2)

where v; is a stochastic error term.
To see the difference between perfect and less than perfect multicollinearity, assume, for
example, that A, # 0. Then, Eq. (10.1.1) can be written as

)\1 )\,3 )\k
X[I——X[—_X[_"'__Xi 10.1.3

which shows how X; is exactly linearly related to other variables or how it can be derived
from a linear combination of other X variables. In this situation, the coefficient of correla-
tion between the variable X, and the linear combination on the right side of Eq. (10.1.3) is

bound to be unity.
Similarly, if A, # 0, Eq. (10.1.2) can be written as
Al A3 Ak 1
Xoo=—Xu— —X3— - — — X — —Vi 10.1.4
2i )\2 li )\2 3i )b2 ki )\2 Vi ( )

which shows that X, is not an exact linear combination of other X’s because it is also
determined by the stochastic error term v;.

2See his A Course in Econometrics, Harvard University Press, Cambridge, Mass., 1991, p. 249.

3Ragnar Frisch, Statistical Confluence Analysis by Means of Complete Regression Systems, Institute of
Economics, Oslo University, publ. no. 5, 1934.

4Strictly speaking, multicollinearity refers to the existence of more than one exact linear relationship,
and collinearity refers to the existence of a single linear relationship. But this distinction is rarely
maintained in practice, and multicollinearity refers to both cases.

5The chances of one’s obtaining a sample of values where the regressors are related in this fashion are
indeed very small in practice except by design when, for example, the number of observations is
smaller than the number of regressors or if one falls into the “dummy variable trap” as discussed in
Chapter 9. See Exercise 10.2.

61 there are only two explanatory variables, intercorrelation can be measured by the zero-order or
simple correlation coefficient. But if there are more than two X variables, intercorrelation can be
measured by the partial correlation coefficients or by the multiple correlation coefficient R of one

X variable with all other X variables taken together.
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FIGURE 10.1
The Ballentine view
of multicollinearity.

As a numerical example, consider the following hypothetical data:

X2 X3 X3
10 50 52
15 75 75
18 90 97
24 120 129
30 150 152

It is apparent that X3, = 5X5;. Therefore, there is perfect collinearity between X, and X3
since the coefficient of correlation 73 is unity. The variable X3 was created from X; by sim-
ply adding to it the following numbers, which were taken from a table of random numbers:
2,0,7,9, 2. Now there is no longer perfect collinearity between X, and X3 However, the
two variables are highly correlated because calculations will show that the coefficient of
correlation between them is 0.9959.

The preceding algebraic approach to multicollinearity can be portrayed succinctly by
the Ballentine (recall Figure 3.8, reproduced in Figure 10.1). In this figure the circles ¥, X3,
and Xj represent, respectively, the variations in Y (the dependent variable) and X; and X;
(the explanatory variables). The degree of collinearity can be measured by the extent of the
overlap (shaded area) of the X, and Xj circles. In Figure 10.1a there is no overlap between
X, and X3, and hence no collinearity. In Figure 10.15 through 10.1e there is a “low” to
“high” degree of collinearity—the greater the overlap between X, and Xj (i.e., the larger the

(a) No collinearity (b) Low collinearity

(¢) Moderate collinearity (d) High collinearity (e) Very high collinearity
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shaded area), the higher the degree of collinearity. In the extreme, if X, and X3 were to over-
lap completely (or if X, were completely inside X3, or vice versa), collinearity would be
perfect.

In passing, note that multicollinearity, as we have defined it, refers only to linear rela-
tionships among the X variables. It does not rule out nonlinear relationships among them.
For example, consider the following regression model:

Yi = Bo+ BiXi + Bo X7 + B3 X] +u (10.1.5)

where, say, Y = total cost of production and X = output. The variables X? (output squared)
and X ,3 (output cubed) are obviously functionally related to X;, but the relationship is non-
linear. Strictly, therefore, models such as Eq. (10.1.5) do not violate the assumption of no
multicollinearity. However, in concrete applications, the conventionally measured correla-
tion coefficient will show X;, X 127 and X 13 to be highly correlated, which, as we shall show,
will make it difficult to estimate the parameters of Eq. (10.1.5) with greater precision (i.e.,
with smaller standard errors).

Why does the classical linear regression model assume that there is no multicollinearity
among the X’s? The reasoning is this: If multicollinearity is perfect in the sense of
Eq. (10.1.1), the regression coefficients of the X variables are indeterminate and their
standard errors are infinite. If multicollinearity is less than perfect, as in Eq. (10.1.2),
the regression coefficients, although determinate, possess large standard errors (in re-
lation to the coefficients themselves), which means the coefficients cannot be estimated
with great precision or accuracy. The proofs of these statements are given in the follow-
ing sections.

There are several sources of multicollinearity. As Montgomery and Peck note, multi-
collinearity may be due to the following factors:’

1. The data collection method employed. For example, sampling over a limited range of
the values taken by the regressors in the population.

2. Constraints on the model or in the population being sampled. For example, in the
regression of electricity consumption on income (X>) and house size (X3) there is a physi-
cal constraint in the population in that families with higher incomes generally have larger
homes than families with lower incomes.

3. Model specification. For example, adding polynomial terms to a regression model,
especially when the range of the X variable is small.

4. An overdetermined model. This happens when the model has more explanatory vari-
ables than the number of observations. This could happen in medical research where there
may be a small number of patients about whom information is collected on a large number
of variables.

An additional reason for multicollinearity, especially in time series data, may be that the
regressors included in the model share a common trend, that is, they all increase or decrease
over time. Thus, in the regression of consumption expenditure on income, wealth, and pop-
ulation, the regressors income, wealth, and population may all be growing over time at more
or less the same rate, leading to collinearity among these variables.

’Douglas Montgomery and Elizabeth Peck, Introduction to Linear Regression Analysis, John Wiley &
Sons, New York, 1982, pp. 289-290. See also R. L. Mason, R. F. Gunst, and . T. Webster, “Regression
Analysis and Problems of Multicollinearity,” Communications in Statistics A, vol. 4, no. 3, 1975,

pp. 277-292; R. F. Gunst, and R. L. Mason, “Advantages of Examining Multicollinearities in Regression
Analysis,” Biometrics, vol. 33, 1977, pp. 249-260.
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10.2 Estimation in the Presence of Perfect Multicollinearity

It was stated previously that in the case of perfect multicollinearity the regression coeffi-
cients remain indeterminate and their standard errors are infinite. This fact can be demon-
strated readily in terms of the three-variable regression model. Using the deviation form,
where all the variables are expressed as deviations from their sample means, we can write
the three-variable regression model as

yi = Boxai + Bsxsi + 1 (10.2.1)

Now from Chapter 7 we obtain

5 (o yiwa) (2 x5) — (3 yiesi) (X xaixs)

P2 = - (7.4.7)
(Z x%i) (Z x%i) - (Z x2ix3i)
By = (2 wixai) (2 x3) — (3 wiai) (0 xaix3:) (7.48)

(Cx3) (X a3) — (X xaxs)’

Assume that X3; = AX,;, where A is a nonzero constant (e.g., 2, 4, 1.8, etc.). Substituting
this into Eq. (7.4.7), we obtain

B, = (X yixa) (A2 X x3) — (A X yixar) (A X x3)
(Xx3) (2 X x3) =22 (La3)° (10.2.2)

which is an indeterminate expression. The reader can verify that B is also indeterminate.®

Why do we obtain the result shown in Eq. (10.2.2)? Recall the meaning of Bo: It gives
the rate of change in the average value of Y as X, changes by a unit, holding X3 constant.
But if X3 and X, are perfectly collinear, there is no way X3 can be kept constant: As X,
changes, so does X3 by the factor L. What it means, then, is that there is no way of disen-
tangling the separate influences of X, and X3 from the given sample: For practical purposes
X, and Xj are indistinguishable. In applied econometrics this problem is most damaging
since the entire intent is to separate the partial effects of each X upon the dependent
variable.

To see this differently, let us substitute X3; = A.X,; into Eq. (10.2.1) and obtain the
following [see also Eq. (7.1.12)]:

vi = Poxai + B3(Axz) + iy

= (B2 + MBs)xai + s (10.2.3)
= QX + 1
where R A
@ = (B + AB3) (10.2.4)

8Another way of seeing this is as follows: By definition, the coefficient of correlation between X, and X3,

3, is Yo x2ix3i /)3 x5 3 X2, If r35 = 1, i.e., perfect collinearity between X, and X3, the denominator of
Eq. (7.4.7) will be zero, making estimation of 8, (or of 3) impossible.
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Applying the usual OLS formula to Eq. (10.2.3), we get

~ 5 5 X2i Vi
a =P+ rB3) = b3 22y (10.2.5)
2%y
Therefore, although we can estimate o uniquely, there is no way to estimate 3, and 83 uniquely;
mathematically
& =P+ rps (10.2.6)

gives us only one equation in two unknowns (note X is given) and there is an infinity of
solutions to Eq. (10.2.6) for given values of @ and A. To put this idea in concrete terms, let
a = 0.8 and A = 2. Then we have

0.8 =F5+28; (10.2.7)
or
B> =0.8—2p; (10.2.8)

Now choose a value of ,33 arbitrarily, and we will have a solution for 52. Choose another
value for ,33, and we will have another solution for ,32. No matter how hard we try, there is
no unique value for 52.

The upshot of the preceding discussion is that in the case of perfect multicollinearity one
cannot get a unique solution for the individual regression coefficients. But notice that one
can get a unique solution for linear combinations of these coefficients. The linear combi-
nation (8, + AB3) is uniquely estimated by «, given the value of 2.’

In passing, note that in the case of perfect multicollinearity the variances and standard
errors of ,32 and /§3 individually are infinite. (See Exercise 10.21.)

10.3 Estimation in the Presence of “High”
but “Imperfect” Multicollinearity

The perfect multicollinearity situation is a pathological extreme. Generally, there is no
exact linear relationship among the X variables, especially in data involving economic time
series. Thus, turning to the three-variable model in the deviation form given in Eq. (10.2.1),
instead of exact multicollinearity, we may have

X3 = Axo; +v; (1031)

where A # 0 and where v; is a stochastic error term such that Y x,;v; = 0. (Why?)
Incidentally, the Ballentines shown in Figure 10.15 to 10.1e represent cases of imperfect
collinearity.
In this case, estimation of regression coefficients 8, and B3 may be possible. For exam-
ple, substituting Eq. (10.3.1) into Eq. (7.4.7), we obtain

by = Y i) (A2 x4+ i) — (A X yixai + X yivi) (A X2 x3))
Y3 (2 L+ ) - (A Xa3)

(10.3.2)

where use is made of Y _ x,;v; = 0. A similar expression can be derived for f;.

°In econometric literature, a function such as (8, + 1f3) is known as an estimable function.
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Now, unlike Eq. (10.2.2), there is no reason to believe a priori that Eq. (10.3.2) cannot
be estimated. Of course, if v; is sufficiently small, say, very close to zero, Eq. (10.3.1) will
indicate almost perfect collinearity and we shall be back to the indeterminate case of
Eq. (10.2.2).

10.4 Multicollinearity: Much Ado about Nothing?

Theoretical Consequences of Multicollinearity

Recall that if the assumptions of the classical model are satisfied, the OLS estimators of the
regression estimators are BLUE (or BUE, if the normality assumption is added). Now it
can be shown that even if multicollinearity is very high, as in the case of near multi-
collinearity, the OLS estimators still retain the property of BLUE.'? Then what is the mul-
ticollinearity fuss all about? As Christopher Achen remarks (note also the Leamer quote at
the beginning of this chapter):

Beginning students of methodology occasionally worry that their independent variables are
correlated—the so-called multicollinearity problem. But multicollinearity violates no regres-
sion assumptions. Unbiased, consistent estimates will occur, and their standard errors will be
correctly estimated. The only effect of multicollinearity is to make it hard to get coefficient
estimates with small standard error. But having a small number of observations also has that
effect, as does having independent variables with small variances. (In fact, at a theoretical level,
multicollinearity, few observations and small variances on the independent variables are essen-
tially all the same problem.) Thus “What should I do about multicollinearity?” is a question like
“What should I do if I don’t have many observations?”” No statistical answer can be given.!!

To drive home the importance of sample size, Goldberger coined the term
micronumerosity, to counter the exotic polysyllabic name multicollinearity. According to
Goldberger, exact micronumerosity (the counterpart of exact multicollinearity) arises
when 7, the sample size, is zero, in which case any kind of estimation is impossible. Near
micronumerosity, like near multicollinearity, arises when the number of observations barely
exceeds the number of parameters to be estimated.

Leamer, Achen, and Goldberger are right in bemoaning the lack of attention given to the
sample size problem and the undue attention to the multicollinearity problem. Unfortu-
nately, in applied work involving secondary data (i.e., data collected by some agency, such
as the GNP data collected by the government), an individual researcher may not be able to
do much about the size of the sample data and may have to face “estimating problems
important enough to warrant our treating it [i.e., multicollinearity] as a violation of the
CLR [classical linear regression] model.”'?

First, it is true that even in the case of near multicollinearity the OLS estimators are un-
biased. But unbiasedness is a multisample or repeated sampling property. What it means is
that, keeping the values of the X variables fixed, if one obtains repeated samples and com-
putes the OLS estimators for each of these samples, the average of the sample values will
converge to the true population values of the estimators as the number of samples increases.
But this says nothing about the properties of estimators in any given sample.

10Since near multicollinearity per se does not violate the other assumptions listed in Chapter 7, the
OLS estimators are BLUE as indicated there.

"Christopher H. Achen, Interpreting and Using Regression, Sage Publications, Beverly Hills, Calif.,
1982, pp. 82-83.

2peter Kennedy, A Guide to Econometrics, 3d ed., The MIT Press, Cambridge, Mass., 1992, p. 177.
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Second, it is also true that collinearity does not destroy the property of minimum vari-
ance: In the class of all linear unbiased estimators, the OLS estimators have minimum vari-
ance; that is, they are efficient. But this does not mean that the variance of an OLS estimator
will necessarily be small (in relation to the value of the estimator) in any given sample, as
we shall demonstrate shortly.

Third, multicollinearity is essentially a sample (regression) phenomenon in the sense
that, even if the X variables are not linearly related in the population, they may be so related
in the particular sample at hand: When we postulate the theoretical or population regression
function (PRF), we believe that all the X variables included in the model have a separate or
independent influence on the dependent variable Y. But it may happen that in any given
sample that is used to test the PRF some or all of the X variables are so highly collinear that
we cannot isolate their individual influence on Y. So to speak, our sample lets us down,
although the theory says that all the X’s are important. In short, our sample may not be
“rich” enough to accommodate all X variables in the analysis.

As an illustration, reconsider the consumption—income example of Chapter 3 (Exam-
ple 3.1). Economists theorize that, besides income, the wealth of the consumer is also an
important determinant of consumption expenditure. Thus, we may write

Consumption; = f; + B, Income; + B3 Wealth; + u;

Now it may happen that when we obtain data on income and wealth, the two variables may
be highly, if not perfectly, correlated: Wealthier people generally tend to have higher in-
comes. Thus, although in theory income and wealth are logical candidates to explain the
behavior of consumption expenditure, in practice (i.e., in the sample) it may be difficult to
disentangle the separate influences of income and wealth on consumption expenditure.

Ideally, to assess the individual effects of wealth and income on consumption expendi-
ture we need a sufficient number of sample observations of wealthy individuals with low
income, and high-income individuals with low wealth (recall Assumption 7). Although this
may be possible in cross-sectional studies (by increasing the sample size), it is very diffi-
cult to achieve in aggregate time series work.

For all these reasons, the fact that the OLS estimators are BLUE despite multicollinear-
ity is of little consolation in practice. We must see what happens or is likely to happen in
any given sample, a topic discussed in the following section.

10.5 Practical Consequences of Multicollinearity

In cases of near or high multicollinearity, one is likely to encounter the following consequences:

1. Although BLUE, the OLS estimators have large variances and covariances, making pre-
cise estimation difficult.

2. Because of consequence 1, the confidence intervals tend to be much wider, leading to
the acceptance of the “zero null hypothesis” (i.e., the true population coefficient is zero)
more readily.

3. Also because of consequence 1, the ¢ ratio of one or more coefficients tends to be
statistically insignificant.

4. Although the ¢ ratio of one or more coefficients is statistically insignificant, R?, the overall
measure of goodness of fit, can be very high.

5. The OLS estimators and their standard errors can be sensitive to small changes in the data.

The preceding consequences can be demonstrated as follows.
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Large Variances and Covariances of OLS Estimators

To see large variances and covariances, recall that for the model (10.2.1) the variances and
covariances of f, and B3 are given by

o2

Var(Bz) = m (7.4.12)
2
Var(,B3) = m (7.4.15)
_ 2
cov (B, fy) = 1239 (7.4.17)

(l - ”23)\/ szz me

where ;3 1s the coefficient of correlation between X5, and X3.

It is apparent from Eqgs. (7.4.12) and (7.4.15) that as 7,3 tends toward 1, that is, as
collinearity increases, the variances of the two estimators increase and in the limit when
r23 = 1, they are infinite. It is equally clear from Eq. (7.4.17) that as r, 3 increases toward 1,
the covariance of the two estimators also increases in absolute value. [Note: cov ( ,32, /33) =
cov (B3, B2).]

The speed with which variances and covariances increase can be seen with the
variance-inflating factor (VIF), which is defined as

VIF= 1 (10.5.1)

(1 _”223)

VIF shows how the variance of an estimator is inflated by the presence of multicollinearity.
As 72, approaches 1, the VIF approaches infinity. That is, as the extent of collinearity
increases, the variance of an estimator increases, and in the limit it can become infinite. As
can be readily seen, if there is no collinearity between X, and X3, VIF will be 1.

Using this definition, we can express Egs. (7.4.12) and (7.4.15) as

o2
Var(ﬂz) = _Z VIF (10.5.2)
21

var (B3) = Z— VIF (10.5.3)
31

which show that the variances of 4, and f; are directly proportional to the VIF.

To give some idea about how fast the variances and covariances increase as 7,3
increases, consider Table 10.1, which gives these variances and covariances for selected
values of r,3. As this table shows, increases in ;3 have a dramatic effect on the estimated
variances and covariances of the OLS estimators. When 7,3 = 0.50, the var (Bz) is 1.33
times the variance when r; 3 is zero, but by the time 7,3 reaches 0.95 it is about 10 times as
high as when there is no collinearity. And lo and behold, an increase of ;3 from 0.95 to
0.995 makes the estimated variance 100 times that when collinearity is zero. The same dra-
matic effect is seen on the estimated covariance. All this can be seen in Figure 10.2.

The results just discussed can be easily extended to the k-variable model. In such a
model, the variance of the kth coefficient, as noted in Eq. (7.5.6), can be expressed as:

2 1
var(ﬂ,) ZU (1 — R2> (7.5.6)
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The Effect of
Increasing r; 3 on
var (,@2) imd

cov (B2, B3)

FIGURE 10.2

The behavior of

var (Bz) as a function
of r23.
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var (B2)(rz2;s # 0)

Value of r;3 VIF var (82) var (B2) (r23 = 0) cov (B, B3)
Q) 2 (23)* 4 (5)
0.00 1.00 A — 0
> X22i
0.50 1.33 133 x A 1.33 0.67 x B
0.70 1.96 1.96 x A 1.96 1.37 x B
0.80 2.78 278 x A 2.78 2.22 x B
0.90 5.76 526 x A 5.26 473 x B
0.95 10.26 10.26 x A 10.26 9.74 x B
0.97 16.92 16.92 x A 16.92 16.41 x B
0.99 50.25 50.25 x A 50.25 49.75 x B
0.995 100.00 100.00 x A 100.00 99.50 x B
0.999 500.00 500.00 x A 500.00 499.50 x B
0.2
Note: 4 = x%f
o2
B ——
Y, in' Zx;'
X = times

*To find out the effect of increasing 73 on var (83), note that 4 = o2/ > x%i when 73 = 0, but the variance and
covariance magnifying factors remain the same.

var ()

5.26A

1.334
A

I [ B
0 0.5 0.8 09 1.0

1’23

where ,3j = (estimated) partial regression coefficient of regressor X;
R> = R* in the regression of X; on the remaining (k — 2) regressions (Note: There
are [k — 1] regressors in the k-variable regression model.)

Yx=3(X; - X))
We can also write Eq. (7.5.6) as

2
var (B)) = évmj (10.5.4)
J

As you can see from this expression, var ( ﬁ ) is proportional to o2 and VIF but inversely
proportional to fo Thus, whether var (Bj) is large or small will depend on the three
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TABLE 10.2

The Effect of Value of r;3 95% Confidence Interval for 8,
Increasing 0.00 /32 +1.96 o?

Collinearity on the V Z X5

95% Confidence =

Interval for 0.50 B2 £1.96/(1.33) | —

Ba: By = 1.96 se (By) LK

2
0.95 B> +1.96/(10.26) |-
Z 2i
2
0.995 Bz £1.96/(T00) | ——
2 X3
2
0.999 Bz +1.96/(500) | ——
2 X3

Note: We are using the normal distribution because o is assumed for convenience to be
known. Hence the use of 1.96, the 95% confidence factor for the normal distribution.

The standard errors corresponding to the various 7,3 values are obtained from
Table 10.1.

ingredients: (1) 2, (2) VIF, and (3) }_ x jz' The last one, which ties in with Assumption 8§
of the classical model, states that the larger the variability in a regressor, the smaller the
variance of the coefficient of that regressor, assuming the other two ingredients are con-
stant, and therefore the greater the precision with which that coefficient can be estimated.

Before proceeding further, it may be noted that the inverse of the VIF is called tolerance
(TOL). That s,

1
TOL, = — = (1 — R? 10.5.5
! VIF, ( ) ¢ )
When R2 =1 (i.e., perfect collinearity), TOL; = 0 and when R2 = 0 (i.e., no collinearity
whatsoever) TOL; is 1. Because of the intimate connection between VIF and TOL, one can
use them 1nterchangeably.

Wider Confidence Intervals

Because of the large standard errors, the confidence intervals for the relevant population
parameters tend to be larger, as can be seen from Table 10.2. For example, when 3 = 0.95,
the confidence interval for 3, is larger than when 7,3 = 0 by a factor of 4/10.26, or about 3.

Therefore, in cases of high multicollinearity, the sample data may be compatible with a
diverse set of hypotheses. Hence, the probability of accepting a false hypothesis (i.e., type II
error) increases.

“Insignificant” t Ratios

Recall that to test the null hypothesis that, say, 8, = 0, we use the ¢ ratio, that is, 32 /se ( ;§2),
and compare the estimated ¢ value with the critical 7 value from the ¢ table. But as we have
seen, in cases of high collinearity the estimated standard errors increase dramatically,
thereby making the ¢ values smaller. Therefore, in such cases, one will increasingly accept
the null hypothesis that the relevant true population value is zero.'?

3In terms of the confidence intervals, > = 0 value will lie increasingly in the acceptance region as
the degree of collinearity increases.
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A High R? but Few Significant t Ratios

Consider the k-variable linear regression model:
Yi = B+ BoXoi + B3 X + -+ BeXii +ui

In cases of high collinearity, it is possible to find, as we have just noted, that one or more of
the partial slope coefficients are individually statistically insignificant on the basis of the ¢
test. Yet the R? in such situations may be so high, say, in excess of 0.9, that on the basis
of the F test one can convincingly reject the hypothesis that f, = 3 =--- = B = 0.
Indeed, this is one of the signals of multicollinearity—insignificant ¢ values but a high
overall R? (and a significant F value)!

We shall demonstrate this signal in the next section, but this outcome should not be sur-
prising in view of our discussion on individual versus joint testing in Chapter 8. As you
may recall, the real problem here is the covariances between the estimators, which, as for-
mula (7.4.17) indicates, are related to the correlations between the regressors.

Sensitivity of OLS Estimators and Their Standard
Errors to Small Changes in Data

As long as multicollinearity is not perfect, estimation of the regression coefficients is pos-
sible but the estimates and their standard errors become very sensitive to even the slightest
change in the data.

To see this, consider Table 10.3. Based on these data, we obtain the following multiple
regression:

Vi = 1.1939 4+ 0.4463X5; 4+ 0.0030X3;
(0.7737) (0.1848)  (0.0851)
r=(1.5431) (2.4151)  (0.0358) (10.5.6)
R2=0.8101 ry3=0.5523
cov (B, B3) = —0.00868  df =2

Regression (10.5.6) shows that none of the regression coefficients is individually signifi-
cant at the conventional 1 or 5 percent levels of significance, although /§2 is significant at
the 10 percent level on the basis of a one-tail ¢ test.

Now consider Table 10.4. The only difference between Tables 10.3 and 10.4 is that the
third and fourth values of Xj are interchanged. Using the data of Table 10.4, we now obtain

Y, = 12108 + 0.4014X5; + 0.0270X5;
(0.7480) (0.2721)  (0.1252)
t=(1.6187) (1.4752)  (0.2158) (10.5.7)
R*=10.8143  ry3=0.8285
cov(Ba, B3) = —0.0282  df=2

As aresult of a slight change in the data, we see that f>, which was statistically significant
before at the 10 percent level of significance, is no longer significant even at that level. Also
note that in Eq. (10.5.6) cov (B, B3) = —0.00868 whereas in Eq. (10.5.7) it is —0.0282, a
more than threefold increase. All these changes may be attributable to increased multi-
collinearity: In Eq. (10.5.6) 1,3 = 0.5523, whereas in Eq. (10.5.7) it is 0.8285. Similarly, the
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TABLE 10.3 Hypothetical Data on TABLE 10.4 Hypothetical Data on
Y, X, and X; Y, X5, and X;
Y X2 X3 Y XZ X3
1 2 4 1 2 4
2 0 2 2 0 2
3 4 12 3 4 0
4 6 0 4 6 12
5 8 16 5 8 16

standard errors of B, and fB; increase between the two regressions, a usual symptom of
collinearity.

We noted earlier that in the presence of high collinearity one cannot estimate the indi-
vidual regression coefficients precisely but that linear combinations of these coefficients
may be estimated more precisely. This fact can be substantiated from the regressions
(10.5.6) and (10.5.7). In the first regression the sum of the two partial slope coefficients is
0.4493 and in the second it is 0.4284, practically the same. Not only that, their standard
errors are practically the same, 0.1550 vs. 0.1823.!% Note, however, the coefficient of X3 has
changed dramatically, from 0.003 to 0.027.

Consequences of Micronumerosity

In a parody of the consequences of multicollinearity, and in a tongue-in-cheek manner,
Goldberger cites exactly similar consequences of micronumerosity, that is, analysis based
on small sample size.'> The reader is advised to read Goldberger’s analysis to see why he
regards micronumerosity as being as important as multicollinearity.

10.6 An Hlustrative Example

EXAMPLE 10.1
Consumption
Expenditure

in Relation to

Income and
Wealth

To illustrate the various points made thus far, let us consider the consumption—-income ex-
ample from the introduction. Table 10.5 contains hypothetical data on consumption,
income, and wealth. If we assume that consumption expenditure is linearly related to
income and wealth, then, from Table 10.5 we obtain the following regression:

Yi = 24.7747 + 0.9415X;— 0.0424X3;

(6.7525) (0.8229) (0.0807)
t= (3.6690) (1.1442)  (~0.5261) (10.6.1)
R?= 0.9635 R?2=0.9531 df=7

T4These standard errors are obtained from the formula

se (B2 + B3) = yvar (B2) +var (B3) + 2 cov (B2, Bs)

Note that increasing collinearity increases the variances of ,32 and Bg, but these variances may be
offset if there is high negative covariance between the two, as our results clearly point out.

5Goldberger, op. cit., pp. 248-250.
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TABLE 10.6
ANOVA Table for
the Consumption—
Income—Wealth
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TABLE 10.5 Hypothetical Data on Consumption Expenditure ¥, Income X;, and Wealth X3

Y,$ X2, $ X3, $
70 80 810
65 100 1009
90 120 1273
95 140 1425
110 160 1633
115 180 1876
120 200 2052
140 220 2201
155 240 2435
150 260 2686
Source of Variation SS df MSS
Due to regression 8,565.5541 2 4,282.7770
Due to residual 324.4459 7 46.3494

Regression (10.6.1) shows that income and wealth together explain about 96 percent
of the variation in consumption expenditure, and yet neither of the slope coefficients is
individually statistically significant. Moreover, not only is the wealth variable statistically
insignificant but also it has the wrong sign. A priori, one would expect a positive relation-
ship between consumption and wealth. Although B, and f3 are individually statistically
insignificant, if we test the hypothesis that 8, = 3 = 0 simultaneously, this hypothesis can
be rejected, as Table 10.6 shows. Under the usual assumption we obtain

4282.7770
= 263494 — 92.4019 (10.6.2)
This F value is obviously highly significant.

It is interesting to look at this result geometrically. (See Figure 10.3.) Based on the re-
gression (10.6.1), we have established the individual 95 percent confidence intervals for
B2 and B3 following the usual procedure discussed in Chapter 8. As these intervals show,
individually each of them includes the value of zero. Therefore, individually we can accept
the hypothesis that the two partial slopes are zero. But, when we establish the joint confi-
dence interval to test the hypothesis that g, = 83 = 0, that hypothesis cannot be accepted
since the joint confidence interval, actually an ellipse, does not include the origin.'
As already pointed out, when collinearity is high, tests on individual regressors are not re-
liable; in such cases it is the overall F test that will show if Y is related to the various
regressors.

Our example shows dramatically what multicollinearity does. The fact that the F test is
significant but the t values of X; and X3 are individually insignificant means that the two
variables are so highly correlated that it is impossible to isolate the individual impact of

(Continued)

T6As noted in Section 5.3, the topic of joint confidence interval is rather involved. The interested
reader may consult the reference cited there.
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EXAMPLE 10.1
(Continued)

FIGURE 10.3 Individual confidence intervals for 8, and B3 and joint confidence
interval (ellipse) for B, and Bs.
Bs
Joint 95% confidence
0.1484 interval for , and f;
95% confidence
interval for 3
B>
-1.004 0\ \ 2.887

95% confidence
interval for f3,

-0.2332

either income or wealth on consumption. As a matter of fact, if we regress X3 on X;, we
obtain

X3i= 7.5454 + 10.1909Xy;

(29.4758)  (0.1643) (10.6.3)
t = (0.2560) (62.0405) R?> =0.9979
which shows that there is almost perfect collinearity between X3 and X,.
Now let us see what happens if we regress Y on X; only:
Y; =24.4545 + 0.5091Xy;
(6.4138)  (0.0357) (10.6.4)
t=(3.8128) (14.2432) R? =0.9621

In Eq. (10.6.1) the income variable was statistically insignificant, whereas now it is highly
significant. If instead of regressing Y on X;, we regress it on X3, we obtain

Yi =24.411 + 0.0498Xs;
(6.874)  (0.0037)
t= (3.551) (13.29)

(10.6.5)
R2 = 0.9567

We see that wealth has now a significant impact on consumption expenditure, whereas in
Eqg. (10.6.1) it had no effect on consumption expenditure.

Regressions (10.6.4) and (10.6.5) show very clearly that in situations of extreme multi-
collinearity dropping the highly collinear variable will often make the other X variable
statistically significant. This result would suggest that a way out of extreme collinearity is
to drop the collinear variable, but we shall have more to say about it in Section 10.8.
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EXAMPLE 10.2 We now consider a concrete set of data on real consumption expenditure (C), real dis-
Consumption posable personal income (Yd), real wealth (W), and real interest rate (I) for the United
States for the period 1947-2000. The raw data are given in Table 10.7.

Function for

United States, TABLE 10.7 U.S. Consumption Expenditure for the Period 1947-2000

1947=2000 Year C Yd w I

Source: SecTable 7.12. 1947 976.4 1035.2 5166.815 ~10.35094
1948 998.1 1090 5280.757 —4.719804
1949 1025.3 1095.6 5607.351 1.044063
1950 1090.9 1192.7 5759.515 0.407346
1951 1107.1 1227 6086.056 —5.283152
1952 1142.4 1266.8 6243.864 —0.277011
1953 1197.2 1327.5 6355.613 0.561137
1954 1221.9 1344 6797.027 —0.138476
1955 1310.4 1433.8 7172.242 0.261997
1956 1348.8 1502.3 7375.18 —0.736124
1957 1381.8 1539.5 7315.286 —0.260683
1958 1393 1553.7 7869.975 —0.57463
1959 1470.7 1623.8 8188.054 2.295943
1960 1510.8 1664.8 8351.757 1.511181
1961 1541.2 1720 8971.872 1.296432
1962 1617.3 1803.5 9091.545 1.395922
1963 1684 1871.5 9436.097 2.057616
1964 1784.8 2006.9 10003.4 2.026599
1965 1897.6 2131 10562.81 2.111669
1966 2006.1 2244.6 10522.04 2.020251
1967 2066.2 2340.5 11312.07 1.212616
1968 2184.2 2448.2 12145.41 1.054986
1969 2264.8 2524.3 11672.25 1.732154
1970 2317.5 2630 11650.04 1.166228
1971 2405.2 2745.3 12312.92 —0.712241
1972 2550.5 2874.3 13499.92 —0.155737
1973 2675.9 3072.3 13080.96 1.413839
1974 2653.7 3051.9 11868.79 —1.042571
1975 2710.9 3108.5 12634.36 —3.533585
1976 2868.9 3243.5 13456.78 —0.656766
1977 2992.1 3360.7 13786.31 —1.190427
1978 3124.7 3527.5 14450.5 0.113048
1979 3203.2 3628.6 15340 1.70421
1980 3193 3658 15964.95 2.298496
1981 3236 3741.1 15964.99 4.703847
1982 3275.5 3791.7 16312.