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Preface
Objective of the Book

The first edition of Basic Econometrics was published thirty years ago. Over the years,
there have been important developments in the theory and practice of econometrics. In
each of the subsequent editions, I have tried to incorporate the major developments in the
field. The fifth edition continues that tradition.

What has not changed, however, over all these years is my firm belief that econometrics
can be taught to the beginner in an intuitive and informative way without resorting to
matrix algebra, calculus, or statistics beyond the introductory level. Some subject material
is inherently technical. In that case I have put the material in the appropriate appendix or
refer the reader to the appropriate sources. Even then, I have tried to simplify the technical
material so that the reader can get an intuitive understanding of this material.

I am pleasantly surprised not only by the longevity of this book but also by the fact that
the book is widely used not only by students of economics and finance but also by students
and researchers in the fields of politics, international relations, agriculture, and health
sciences. All these students will find the new edition with its expanded topics and concrete
applications very useful. In this edition I have paid even more attention to the relevance and
timeliness of the real data used in the text. In fact, I have added about fifteen new illustra-
tive examples and more than thirty new end-of-chapter exercises. Also, I have updated
the data for about two dozen of the previous edition’s examples and more than twenty
exercises.

Although I am in the eighth decade of my life, I have not lost my love for econometrics,
and I strive to keep up with the major developments in the field. To assist me in this
endeavor, I am now happy to have Dr. Dawn Porter, Assistant Professor of Statistics at the
Marshall School of Business at the University of Southern California in Los Angeles, as
my co-author. Both of us have been deeply involved in bringing the fifth edition of Basic
Econometrics to fruition. 

Major Features of the Fifth Edition

Before discussing the specific changes in the various chapters, the following features of the
new edition are worth noting:

1. Practically all of the data used in the illustrative examples have been updated. 

2. Several new examples have been added.

3. In several chapters, we have included extended concluding examples that illustrate the
various points made in the text.

4. Concrete computer printouts of several examples are included in the book. Most of these
results are based on EViews (version 6) and STATA (version 10), as well as MINITAB
(version 15).

5. Several new diagrams and graphs are included in various chapters.

6. Several new data-based exercises are included in the various chapters. 

7. Small-sized data are included in the book, but large sample data are posted on the book’s
website, thereby minimizing the size of the text. The website will also publish all of the
data used in the book and will be periodically updated.

xvi
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8. In a few chapters, we have included class exercises in which students are encouraged to
obtain their own data and implement the various techniques discussed in the book. Some
Monte Carlo simulations are also included in the book.

Specific Changes to the Fifth Edition

Some chapter-specific changes are as follows:

1. The assumptions underlying the classical linear regression model (CLRM) introduced
in Chapter 3 now make a careful distinction between fixed regressors (explanatory
variables) and random regressors. We discuss the importance of the distinction.

2. The appendix to Chapter 6 discusses the properties of logarithms, the Box-Cox trans-
formations, and various growth formulas.

3. Chapter 7 now discusses not only the marginal impact of a single regressor on the
dependent variable but also the impacts of simultaneous changes of all the explanatory
variables on the dependent variable. This chapter has also been reorganized in the same
structure as the assumptions from Chapter 3.

4. A comparison of the various tests of heteroscedasticity is given in Chapter 11.

5. There is a new discussion of the impact of structural breaks on autocorrelation in
Chapter 12.

6. New topics included in Chapter 13 are missing data, non-normal error term, and
stochastic, or random, regressors. 

7. A non-linear regression model discussed in Chapter 14 has a concrete application of
the Box-Cox transformation.

8. Chapter 15 contains several new examples that illustrate the use of logit and probit
models in various fields.

9. Chapter 16 on panel data regression models has been thoroughly revised and illus-
trated with several applications.

10. An extended discussion of Sims and Granger causality tests is now included in Chap-
ter 17.

11. Stationary and non-stationary time series, as well as some of the problems associated
with various tests of stationarity, are now thoroughly discussed in Chapter 21.

12. Chapter 22 includes a discussion on why taking the first differences of a time series
for the purpose of making it stationary may not be the appropriate strategy in some
situations.

Besides these specific changes, errors and misprints in the previous editions have been cor-
rected and the discussions of several topics in the various chapters have been streamlined. 

Organization and Options

The extensive coverage in this edition gives the instructor substantial flexibility in choos-
ing topics that are appropriate to the intended audience. Here are suggestions about how
this book may be used.

One-semester course for the nonspecialist: Appendix A, Chapters 1 through 9, an
overview of Chapters 10, 11, 12 (omitting all the proofs).

One-semester course for economics majors: Appendix A, Chapters 1 through 13.
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Two-semester course for economics majors: Appendices A, B, C, Chapters 1 to 22.
Chapters 14 and 16 may be covered on an optional basis. Some of the technical appen-
dices may be omitted.

Graduate and postgraduate students and researchers: This book is a handy refer-
ence book on the major themes in econometrics.

Supplements

A comprehensive website contains the following supplementary material:

–Data from the text, as well as additional large set data referenced in the book; the data
will be periodically updated by the authors.

–A Solutions Manual, written by Dawn Porter, providing answers to all of the
questions and problems throughout the text.

–A digital image library containing all of the graphs and figures from the text.

For more information, please go to www.mhhe.com/gujarati5e
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1

I.1 What Is Econometrics?

Literally interpreted, econometrics means “economic measurement.” Although measure-
ment is an important part of econometrics, the scope of econometrics is much broader, as
can be seen from the following quotations:

Econometrics, the result of a certain outlook on the role of economics, consists of the applica-
tion of mathematical statistics to economic data to lend empirical support to the models
constructed by mathematical economics and to obtain numerical results.1

. . . econometrics may be defined as the quantitative analysis of actual economic phenomena
based on the concurrent development of theory and observation, related by appropriate
methods of inference.2

Econometrics may be defined as the social science in which the tools of economic theory,
mathematics, and statistical inference are applied to the analysis of economic phenomena.3

Econometrics is concerned with the empirical determination of economic laws.4

The art of the econometrician consists in finding the set of assumptions that are both suffi-
ciently specific and sufficiently realistic to allow him to take the best possible advantage of the
data available to him.5

Econometricians . . . are a positive help in trying to dispel the poor public image of economics
(quantitative or otherwise) as a subject in which empty boxes are opened by assuming the
existence of can-openers to reveal contents which any ten economists will interpret in
11 ways.6

The method of econometric research aims, essentially, at a conjunction of economic theory
and actual measurements, using the theory and technique of statistical inference as a bridge
pier.7

1Gerhard Tintner, Methodology of Mathematical Economics and Econometrics, The University of Chicago
Press, Chicago, 1968, p. 74.
2P. A. Samuelson, T. C. Koopmans, and J. R. N. Stone, “Report of the Evaluative Committee for Econo-
metrica,” Econometrica, vol. 22, no. 2, April 1954, pp. 141–146.
3Arthur S. Goldberger, Econometric Theory, John Wiley & Sons, New York, 1964, p. 1.
4H. Theil, Principles of Econometrics, John Wiley & Sons, New York, 1971, p. 1.
5E. Malinvaud, Statistical Methods of Econometrics, Rand McNally, Chicago, 1966, p. 514.
6Adrian C. Darnell and J. Lynne Evans, The Limits of Econometrics, Edward Elgar Publishing, Hants,
England, 1990, p. 54.
7T. Haavelmo, “The Probability Approach in Econometrics,” Supplement to Econometrica, vol. 12,
1944, preface p. iii.

Introduction
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2 Basic Econometrics

I.2 Why a Separate Discipline?

As the preceding definitions suggest, econometrics is an amalgam of economic theory,
mathematical economics, economic statistics, and mathematical statistics. Yet the subject
deserves to be studied in its own right for the following reasons.

Economic theory makes statements or hypotheses that are mostly qualitative in nature.
For example, microeconomic theory states that, other things remaining the same, a reduc-
tion in the price of a commodity is expected to increase the quantity demanded of that com-
modity. Thus, economic theory postulates a negative or inverse relationship between the
price and quantity demanded of a commodity. But the theory itself does not provide any
numerical measure of the relationship between the two; that is, it does not tell by how much
the quantity will go up or down as a result of a certain change in the price of the commod-
ity. It is the job of the econometrician to provide such numerical estimates. Stated differ-
ently, econometrics gives empirical content to most economic theory.

The main concern of mathematical economics is to express economic theory in mathe-
matical form (equations) without regard to measurability or empirical verification of the
theory. Econometrics, as noted previously, is mainly interested in the empirical verification
of economic theory. As we shall see, the econometrician often uses the mathematical
equations proposed by the mathematical economist but puts these equations in such a form
that they lend themselves to empirical testing. And this conversion of mathematical into
econometric equations requires a great deal of ingenuity and practical skill.

Economic statistics is mainly concerned with collecting, processing, and presenting
economic data in the form of charts and tables. These are the jobs of the economic statisti-
cian. It is he or she who is primarily responsible for collecting data on gross national
product (GNP), employment, unemployment, prices, and so on. The data thus collected
constitute the raw data for econometric work. But the economic statistician does not go any
further, not being concerned with using the collected data to test economic theories. Of
course, one who does that becomes an econometrician.

Although mathematical statistics provides many tools used in the trade, the econometri-
cian often needs special methods in view of the unique nature of most economic data,
namely, that the data are not generated as the result of a controlled experiment. The econo-
metrician, like the meteorologist, generally depends on data that cannot be controlled
directly. As Spanos correctly observes:

In econometrics the modeler is often faced with observational as opposed to experimental
data. This has two important implications for empirical modeling in econometrics. First, the
modeler is required to master very different skills than those needed for analyzing experimen-
tal data. . . . Second, the separation of the data collector and the data analyst requires the mod-
eler to familiarize himself/herself thoroughly with the nature and structure of data in question.8

I.3 Methodology of Econometrics

How do econometricians proceed in their analysis of an economic problem? That is, what
is their methodology? Although there are several schools of thought on econometric
methodology, we present here the traditional or classical methodology, which still domi-
nates empirical research in economics and other social and behavioral sciences.9

8Aris Spanos, Probability Theory and Statistical Inference: Econometric Modeling with Observational Data,
Cambridge University Press, United Kingdom, 1999, p. 21.
9For an enlightening, if advanced, discussion on econometric methodology, see David F. Hendry,
Dynamic Econometrics, Oxford University Press, New York, 1995. See also Aris Spanos, op. cit.
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Introduction 3

Broadly speaking, traditional econometric methodology proceeds along the following
lines:

1. Statement of theory or hypothesis.

2. Specification of the mathematical model of the theory.

3. Specification of the statistical, or econometric, model.

4. Obtaining the data.

5. Estimation of the parameters of the econometric model.

6. Hypothesis testing.

7. Forecasting or prediction.

8. Using the model for control or policy purposes.

To illustrate the preceding steps, let us consider the well-known Keynesian theory of
consumption.

1. Statement of Theory or Hypothesis
Keynes stated:

The fundamental psychological law . . . is that men [women] are disposed, as a rule and on
average, to increase their consumption as their income increases, but not as much as the
increase in their income.10

In short, Keynes postulated that the marginal propensity to consume (MPC), the rate of
change of consumption for a unit (say, a dollar) change in income, is greater than zero but
less than 1.

2. Specification of the Mathematical Model of Consumption
Although Keynes postulated a positive relationship between consumption and income,
he did not specify the precise form of the functional relationship between the two. For
simplicity, a mathematical economist might suggest the following form of the Keynesian
consumption function:

Y = β1 + β2 X 0 < β2 < 1 (I.3.1)

where Y = consumption expenditure and X = income, and where β1 and β2, known as the
parameters of the model, are, respectively, the intercept and slope coefficients.

The slope coefficient β2 measures the MPC. Geometrically, Equation I.3.1 is as shown
in Figure I.1. This equation, which states that consumption is linearly related to income, is
an example of a mathematical model of the relationship between consumption and income
that is called the consumption function in economics. A model is simply a set of mathe-
matical equations. If the model has only one equation, as in the preceding example, it is
called a single-equation model, whereas if it has more than one equation, it is known as a
multiple-equation model (the latter will be considered later in the book).

In Eq. (I.3.1) the variable appearing on the left side of the equality sign is called the
dependent variable and the variable(s) on the right side is called the independent, or
explanatory, variable(s). Thus, in the Keynesian consumption function, Eq. (I.3.1), con-
sumption (expenditure) is the dependent variable and income is the explanatory variable.

10John Maynard Keynes, The General Theory of Employment, Interest and Money, Harcourt Brace
Jovanovich, New York, 1936, p. 96.
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4 Basic Econometrics

3. Specification of the Econometric Model
of Consumption

The purely mathematical model of the consumption function given in Eq. (I.3.1) is of lim-
ited interest to the econometrician, for it assumes that there is an exact or deterministic
relationship between consumption and income. But relationships between economic vari-
ables are generally inexact. Thus, if we were to obtain data on consumption expenditure and
disposable (i.e., aftertax) income of a sample of, say, 500 American families and plot these
data on a graph paper with consumption expenditure on the vertical axis and disposable in-
come on the horizontal axis, we would not expect all 500 observations to lie exactly on the
straight line of Eq. (I.3.1) because, in addition to income, other variables affect consump-
tion expenditure. For example, size of family, ages of the members in the family, family
religion, etc., are likely to exert some influence on consumption.

To allow for the inexact relationships between economic variables, the econometrician
would modify the deterministic consumption function in Eq. (I.3.1) as follows:

Y = β1 + β2 X + u (I.3.2)

where u, known as the disturbance, or error, term, is a random (stochastic) variable that
has well-defined probabilistic properties. The disturbance term u may well represent all
those factors that affect consumption but are not taken into account explicitly.

Equation I.3.2 is an example of an econometric model. More technically, it is an exam-
ple of a linear regression model, which is the major concern of this book. The economet-
ric consumption function hypothesizes that the dependent variable Y (consumption) is
linearly related to the explanatory variable X (income) but that the relationship between the
two is not exact; it is subject to individual variation.

The econometric model of the consumption function can be depicted as shown in
Figure I.2.

FIGURE I.1
Keynesian 
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FIGURE I.2
Econometric model
of the Keynesian
consumption function.
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4. Obtaining Data
To estimate the econometric model given in Eq. (I.3.2), that is, to obtain the numerical
values of β1 and β2, we need data. Although we will have more to say about the crucial
importance of data for economic analysis in the next chapter, for now let us look at the
data given in Table I.1, which relate to the U.S. economy for the period 1960–2005. The
Y variable in this table is the aggregate (for the economy as a whole) personal consumption
expenditure (PCE) and the X variable is gross domestic product (GDP), a measure of
aggregate income, both measured in billions of 2000 dollars. Therefore, the data are in
“real” terms; that is, they are measured in constant (2000) prices. The data are plotted
in Figure I.3 (cf. Figure I.2). For the time being neglect the line drawn in the figure.

5. Estimation of the Econometric Model
Now that we have the data, our next task is to estimate the parameters of the consumption
function. The numerical estimates of the parameters give empirical content to the con-
sumption function. The actual mechanics of estimating the parameters will be discussed in
Chapter 3. For now, note that the statistical technique of regression analysis is the main
tool used to obtain the estimates. Using this technique and the data given in Table I.1, we
obtain the following estimates of β1 and β2, namely, −299.5913 and 0.7218. Thus, the
estimated consumption function is:

Ŷt = −299.5913 + 0.7218Xt (I.3.3)

The hat on the Y indicates that it is an estimate.11 The estimated consumption function (i.e.,
regression line) is shown in Figure I.3.

11As a matter of convention, a hat over a variable or parameter indicates that it is an estimated value.
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6 Basic Econometrics

Year PCE(Y) GDP(X)

1960 1597.4 2501.8
1961 1630.3 2560.0
1962 1711.1 2715.2
1963 1781.6 2834.0
1964 1888.4 2998.6
1965 2007.7 3191.1
1966 2121.8 3399.1
1967 2185.0 3484.6
1968 2310.5 3652.7
1969 2396.4 3765.4
1970 2451.9 3771.9
1971 2545.5 3898.6
1972 2701.3 4105.0
1973 2833.8 4341.5
1974 2812.3 4319.6
1975 2876.9 4311.2
1976 3035.5 4540.9
1977 3164.1 4750.5
1978 3303.1 5015.0
1979 3383.4 5173.4
1980 3374.1 5161.7
1981 3422.2 5291.7
1982 3470.3 5189.3
1983 3668.6 5423.8
1984 3863.3 5813.6
1985 4064.0 6053.7
1986 4228.9 6263.6
1987 4369.8 6475.1
1988 4546.9 6742.7
1989 4675.0 6981.4
1990 4770.3 7112.5
1991 4778.4 7100.5
1992 4934.8 7336.6
1993 5099.8 7532.7
1994 5290.7 7835.5
1995 5433.5 8031.7
1996 5619.4 8328.9
1997 5831.8 8703.5
1998 6125.8 9066.9
1999 6438.6 9470.3
2000 6739.4 9817.0
2001 6910.4 9890.7
2002 7099.3 10048.8
2003 7295.3 10301.0
2004 7577.1 10703.5
2005 7841.2 11048.6

TABLE I.1
Data on Y (Personal
Consumption
Expenditure) and
X (Gross Domestic
Product, 1960–2005),
both in 2000 Billions
of Dollars

Source: Economic Report of
the President, 2007, Table B–2,
p. 230.
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Introduction 7

As Figure I.3 shows, the regression line fits the data quite well in that the data points are
very close to the regression line. From this figure we see that for the period 1960–2005 the
slope coefficient (i.e., the MPC) was about 0.72, suggesting that for the sample period an
increase in real income of one dollar led, on average, to an increase of about 72 cents in real
consumption expenditure.12 We say on average because the relationship between con-
sumption and income is inexact; as is clear from Figure I.3, not all the data points lie
exactly on the regression line. In simple terms we can say that, according to our data, the
average, or mean, consumption expenditure went up by about 72 cents for a dollar’s
increase in real income.

6. Hypothesis Testing
Assuming that the fitted model is a reasonably good approximation of reality, we have to
develop suitable criteria to find out whether the estimates obtained in, say, Equation I.3.3
are in accord with the expectations of the theory that is being tested. According to “posi-
tive” economists like Milton Friedman, a theory or hypothesis that is not verifiable by
appeal to empirical evidence may not be admissible as a part of scientific enquiry.13

As noted earlier, Keynes expected the MPC to be positive but less than 1. In our exam-
ple we found the MPC to be about 0.72. But before we accept this finding as confirmation
of Keynesian consumption theory, we must enquire whether this estimate is sufficiently
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FIGURE I.3
Personal consumption
expenditure (Y ) in
relation to GDP (X),
1960–2005, in billions
of 2000 dollars.

12Do not worry now about how these values were obtained. As we show in Chapter 3, the statistical
method of least squares has produced these estimates. Also, for now do not worry about the
negative value of the intercept.
13See Milton Friedman, “The Methodology of Positive Economics,” Essays in Positive Economics,
University of Chicago Press, Chicago, 1953.
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8 Basic Econometrics

below unity to convince us that this is not a chance occurrence or peculiarity of the partic-
ular data we have used. In other words, is 0.72 statistically less than 1? If it is, it may sup-
port Keynes’s theory.

Such confirmation or refutation of economic theories on the basis of sample evidence is
based on a branch of statistical theory known as statistical inference (hypothesis testing).
Throughout this book we shall see how this inference process is actually conducted.

7. Forecasting or Prediction
If the chosen model does not refute the hypothesis or theory under consideration, we may
use it to predict the future value(s) of the dependent, or forecast, variable Y on the basis of
the known or expected future value(s) of the explanatory, or predictor, variable X.

To illustrate, suppose we want to predict the mean consumption expenditure for 2006.
The GDP value for 2006 was 11319.4 billion dollars.14 Putting this GDP figure on the
right-hand side of Eq. (I.3.3), we obtain:

Ŷ2006 = −299.5913 + 0.7218 (11319.4)

= 7870.7516
(I.3.4)

or about 7870 billion dollars. Thus, given the value of the GDP, the mean, or average, fore-
cast consumption expenditure is about 7870 billion dollars. The actual value of the con-
sumption expenditure reported in 2006 was 8044 billion dollars. The estimated model
Eq. (I.3.3) thus underpredicted the actual consumption expenditure by about 174 billion
dollars. We could say the forecast error is about 174 billion dollars, which is about
1.5 percent of the actual GDP value for 2006. When we fully discuss the linear regression
model in subsequent chapters, we will try to find out if such an error is “small” or “large.”
But what is important for now is to note that such forecast errors are inevitable given the
statistical nature of our analysis.

There is another use of the estimated model Eq. (I.3.3). Suppose the president decides
to propose a reduction in the income tax. What will be the effect of such a policy on income
and thereby on consumption expenditure and ultimately on employment?

Suppose that, as a result of the proposed policy change, investment expenditure in-
creases. What will be the effect on the economy? As macroeconomic theory shows, the
change in income following, say, a dollar’s worth of change in investment expenditure is
given by the income multiplier M, which is defined as

M = 1

1 − MPC
(I.3.5)

If we use the MPC of 0.72 obtained in Eq. (I.3.3), this multiplier becomes about M = 3.57.

That is, an increase (decrease) of a dollar in investment will eventually lead to more than a
threefold increase (decrease) in income; note that it takes time for the multiplier to work.

The critical value in this computation is MPC, for the multiplier depends on it. And this
estimate of the MPC can be obtained from regression models such as Eq. (I.3.3). Thus, a
quantitative estimate of MPC provides valuable information for policy purposes. Knowing
MPC, one can predict the future course of income, consumption expenditure, and employ-
ment following a change in the government’s fiscal policies.

14Data on PCE and GDP were available for 2006 but we purposely left them out to illustrate the topic
discussed in this section. As we will discuss in subsequent chapters, it is a good idea to save a portion
of the data to find out how well the fitted model predicts the out-of-sample observations.
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Introduction 9

8. Use of the Model for Control or Policy Purposes
Suppose we have the estimated consumption function given in Eq. (I.3.3). Suppose further
the government believes that consumer expenditure of about 8750 (billions of 2000 dollars)
will keep the unemployment rate at its current level of about 4.2 percent (early 2006). What
level of income will guarantee the target amount of consumption expenditure?

If the regression results given in Eq. (I.3.3) seem reasonable, simple arithmetic will
show that

8750 = −299.5913 + 0.7218(GDP2006) (I.3.6)

which gives X = 12537, approximately. That is, an income level of about 12537 (billion)
dollars, given an MPC of about 0.72, will produce an expenditure of about 8750 billion
dollars.

As these calculations suggest, an estimated model may be used for control, or policy,
purposes. By appropriate fiscal and monetary policy mix, the government can manipulate
the control variable X to produce the desired level of the target variable Y.

Figure I.4 summarizes the anatomy of classical econometric modeling.

Choosing among Competing Models
When a governmental agency (e.g., the U.S. Department of Commerce) collects economic
data, such as that shown in Table I.1, it does not necessarily have any economic theory in
mind. How then does one know that the data really support the Keynesian theory of con-
sumption? Is it because the Keynesian consumption function (i.e., the regression line)
shown in Figure I.3 is extremely close to the actual data points? Is it possible that another
consumption model (theory) might equally fit the data as well? For example, Milton
Friedman has developed a model of consumption, called the permanent income

Estimation of econometric model

Econometric model of theory

Economic theory

Data

Forecasting or prediction

Using the model for
control or policy purposes

Hypothesis testing

Mathematical model of theory

FIGURE I.4
Anatomy of
econometric modeling.
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10 Basic Econometrics

hypothesis.15 Robert Hall has also developed a model of consumption, called the life-cycle
permanent income hypothesis.16 Could one or both of these models also fit the data in
Table I.1?

In short, the question facing a researcher in practice is how to choose among competing
hypotheses or models of a given phenomenon, such as the consumption–income relation-
ship. As Miller contends:

No encounter with data is [a] step towards genuine confirmation unless the hypothesis does a
better job of coping with the data than some natural rival. . . . What strengthens a hypothesis,
here, is a victory that is, at the same time, a defeat for a plausible rival.17

How then does one choose among competing models or hypotheses? Here the advice given
by Clive Granger is worth keeping in mind:18

I would like to suggest that in the future, when you are presented with a new piece of theory or
empirical model, you ask these questions:

(i) What purpose does it have? What economic decisions does it help with?

(ii) Is there any evidence being presented that allows me to evaluate its quality compared to
alternative theories or models?

I think attention to such questions will strengthen economic research and discussion.

As we progress through this book, we will come across several competing hypotheses
trying to explain various economic phenomena. For example, students of economics are
familiar with the concept of the production function, which is basically a relationship
between output and inputs (say, capital and labor). In the literature, two of the best known
are the Cobb–Douglas and the constant elasticity of substitution production functions.
Given the data on output and inputs, we will have to find out which of the two production
functions, if any, fits the data well.

The eight-step classical econometric methodology discussed above is neutral in the
sense that it can be used to test any of these rival hypotheses.

Is it possible to develop a methodology that is comprehensive enough to include
competing hypotheses? This is an involved and controversial topic. We will discuss it in
Chapter 13, after we have acquired the necessary econometric theory.

I.4 Types of Econometrics

As the classificatory scheme in Figure I.5 suggests, econometrics may be divided into two
broad categories: theoretical econometrics and applied econometrics. In each category,
one can approach the subject in the classical or Bayesian tradition. In this book the
emphasis is on the classical approach. For the Bayesian approach, the reader may consult
the references given at the end of the chapter.

15Milton Friedman, A Theory of Consumption Function, Princeton University Press, Princeton, N.J.,
1957.
16R. Hall, “Stochastic Implications of the Life Cycle Permanent Income Hypothesis: Theory and
Evidence,” Journal of Political Economy, vol. 86, 1978, pp. 971–987.
17R. W. Miller, Fact and Method: Explanation, Confirmation, and Reality in the Natural and Social
Sciences, Princeton University Press, Princeton, N.J., 1978, p. 176.
18Clive W. J. Granger, Empirical Modeling in Economics, Cambridge University Press, U.K., 1999, p. 58.
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Introduction 11

Theoretical econometrics is concerned with the development of appropriate methods for
measuring economic relationships specified by econometric models. In this aspect, econo-
metrics leans heavily on mathematical statistics. For example, one of the methods used
extensively in this book is least squares. Theoretical econometrics must spell out the
assumptions of this method, its properties, and what happens to these properties when one
or more of the assumptions of the method are not fulfilled.

In applied econometrics we use the tools of theoretical econometrics to study some
special field(s) of economics and business, such as the production function, investment
function, demand and supply functions, portfolio theory, etc.

This book is concerned largely with the development of econometric methods, their
assumptions, their uses, and their limitations. These methods are illustrated with examples
from various areas of economics and business. But this is not a book of applied economet-
rics in the sense that it delves deeply into any particular field of economic application. That
job is best left to books written specifically for this purpose. References to some of these
books are provided at the end of this book.

I.5 Mathematical and Statistical Prerequisites

Although this book is written at an elementary level, the author assumes that the reader is
familiar with the basic concepts of statistical estimation and hypothesis testing. However, a
broad but nontechnical overview of the basic statistical concepts used in this book is pro-
vided in Appendix A for the benefit of those who want to refresh their knowledge. Insofar
as mathematics is concerned, a nodding acquaintance with the notions of differential
calculus is desirable, although not essential. Although most graduate level books in econo-
metrics make heavy use of matrix algebra, I want to make it clear that it is not needed to
study this book. It is my strong belief that the fundamental ideas of econometrics can be
conveyed without the use of matrix algebra. However, for the benefit of the mathematically
inclined student, Appendix C gives the summary of basic regression theory in matrix
notation. For these students, Appendix B provides a succinct summary of the main results
from matrix algebra.

I.6 The Role of the Computer

Regression analysis, the bread-and-butter tool of econometrics, these days is unthinkable
without the computer and some access to statistical software. (Believe me, I grew up in the
generation of the slide rule!) Fortunately, several excellent regression packages are com-
mercially available, both for the mainframe and the microcomputer, and the list is growing
by the day. Regression software packages, such as ET, LIMDEP, SHAZAM, MICRO
TSP, MINITAB, EVIEWS, SAS, SPSS, STATA, Microfit, PcGive, and BMD have most
of the econometric techniques and tests discussed in this book.

Econometrics

Theoretical

Classical Bayesian

Applied

Classical Bayesian

FIGURE I.5
Categories of
econometrics.
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12 Basic Econometrics

In this book, from time to time, the reader will be asked to conduct Monte Carlo
experiments using one or more of the statistical packages. Monte Carlo experiments are
“fun” exercises that will enable the reader to appreciate the properties of several statistical
methods discussed in this book. The details of the Monte Carlo experiments will be
discussed at appropriate places.

I.7 Suggestions for Further Reading

The topic of econometric methodology is vast and controversial. For those interested in this
topic, I suggest the following books:

Neil de Marchi and Christopher Gilbert, eds., History and Methodology of Economet-
rics, Oxford University Press, New York, 1989. This collection of readings discusses some
early work on econometric methodology and has an extended discussion of the British
approach to econometrics relating to time series data, that is, data collected over a period
of time.

Wojciech W. Charemza and Derek F. Deadman, New Directions in Econometric
Practice: General to Specific Modelling, Cointegration and Vector Autogression, 2d ed.,
Edward Elgar Publishing Ltd., Hants, England, 1997. The authors of this book critique the
traditional approach to econometrics and give a detailed exposition of new approaches to
econometric methodology.

Adrian C. Darnell and J. Lynne Evans, The Limits of Econometrics, Edward Elgar
Publishing Ltd., Hants, England, 1990. The book provides a somewhat balanced discussion
of the various methodological approaches to econometrics, with renewed allegiance to
traditional econometric methodology.

Mary S. Morgan, The History of Econometric Ideas, Cambridge University Press, New
York, 1990. The author provides an excellent historical perspective on the theory and prac-
tice of econometrics, with an in-depth discussion of the early contributions of Haavelmo
(1990 Nobel Laureate in Economics) to econometrics. In the same spirit, David F. Hendry
and Mary S. Morgan, The Foundation of Econometric Analysis, Cambridge University
Press, U.K., 1995, have collected seminal writings in econometrics to show the evolution of
econometric ideas over time.

David Colander and Reuven Brenner, eds., Educating Economists, University of
Michigan Press, Ann Arbor, Michigan, 1992. This text presents a critical, at times agnostic,
view of economic teaching and practice.

For Bayesian statistics and econometrics, the following books are very useful: John H.
Dey, Data in Doubt, Basil Blackwell Ltd., Oxford University Press, England, 1985; Peter
M. Lee, Bayesian Statistics: An Introduction, Oxford University Press, England, 1989; and
Dale J. Porier, Intermediate Statistics and Econometrics: A Comparative Approach, MIT
Press, Cambridge, Massachusetts, 1995. Arnold Zeller, An Introduction to Bayesian Infer-
ence in Econometrics, John Wiley & Sons, New York, 1971, is an advanced reference book.
Another advanced reference book is the Palgrave Handbook of Econometrics: Volume 1:
Econometric Theory, edited by Terence C. Mills and Kerry Patterson, Palgrave Macmillan,
New York, 2007.
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Part 

Part 1 of this text introduces single-equation regression models. In these models, one
variable, called the dependent variable, is expressed as a linear function of one or more
other variables, called the explanatory variables. In such models it is assumed implicitly
that causal relationships, if any, between the dependent and explanatory variables flow in
one direction only, namely, from the explanatory variables to the dependent variable.

In Chapter 1, we discuss the historical as well as the modern interpretation of the term
regression and illustrate the difference between the two interpretations with several exam-
ples drawn from economics and other fields.

In Chapter 2, we introduce some fundamental concepts of regression analysis with the
aid of the two-variable linear regression model, a model in which the dependent variable is
expressed as a linear function of only a single explanatory variable.

In Chapter 3, we continue to deal with the two-variable model and introduce what is
known as the classical linear regression model, a model that makes several simplifying
assumptions. With these assumptions, we introduce the method of ordinary least squares
(OLS) to estimate the parameters of the two-variable regression model. The method of OLS
is simple to apply, yet it has some very desirable statistical properties.

In Chapter 4, we introduce the (two-variable) classical normal linear regression model,
a model that assumes that the random dependent variable follows the normal probability
distribution. With this assumption, the OLS estimators obtained in Chapter 3 possess
some stronger statistical properties than the nonnormal classical linear regression model—
properties that enable us to engage in statistical inference, namely, hypothesis testing.

Chapter 5 is devoted to the topic of hypothesis testing. In this chapter, we try to find out
whether the estimated regression coefficients are compatible with the hypothesized values
of such coefficients, the hypothesized values being suggested by theory and/or prior
empirical work.

Chapter 6 considers some extensions of the two-variable regression model. In particu-
lar, it discusses topics such as (1) regression through the origin, (2) scaling and units of
measurement, and (3) functional forms of regression models such as double-log, semilog,
and reciprocal models.

1Single-Equation 
Regression Models
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14 Part One Single-Equation Regression Models

In Chapter 7, we consider the multiple regression model, a model in which there is
more than one explanatory variable, and show how the method of OLS can be extended to
estimate the parameters of such models.

In Chapter 8, we extend the concepts introduced in Chapter 5 to the multiple regression
model and point out some of the complications arising from the introduction of several
explanatory variables.

Chapter 9 on dummy, or qualitative, explanatory variables concludes Part 1 of the text.
This chapter emphasizes that not all explanatory variables need to be quantitative (i.e., ratio
scale). Variables, such as gender, race, religion, nationality, and region of residence, can-
not be readily quantified, yet they play a valuable role in explaining many an economic
phenomenon.
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As mentioned in the Introduction, regression is a main tool of econometrics, and in this
chapter we consider very briefly the nature of this tool.

1.1 Historical Origin of the Term Regression

The term regression was introduced by Francis Galton. In a famous paper, Galton found
that, although there was a tendency for tall parents to have tall children and for short par-
ents to have short children, the average height of children born of parents of a given height
tended to move or “regress” toward the average height in the population as a whole.1 In
other words, the height of the children of unusually tall or unusually short parents tends to
move toward the average height of the population. Galton’s law of universal regression was
confirmed by his friend Karl Pearson, who collected more than a thousand records of
heights of members of family groups.2 He found that the average height of sons of a group
of tall fathers was less than their fathers’ height and the average height of sons of a group
of short fathers was greater than their fathers’ height, thus “regressing” tall and short sons
alike toward the average height of all men. In the words of Galton, this was “regression to
mediocrity.”

1.2 The Modern Interpretation of Regression

The modern interpretation of regression is, however, quite different. Broadly speaking, we
may say

Regression analysis is concerned with the study of the dependence of one variable, the
dependent variable, on one or more other variables, the explanatory variables, with a view to
estimating and/or predicting the (population) mean or average value of the former in terms of
the known or fixed (in repeated sampling) values of the latter.

Chapter

1Francis Galton, “Family Likeness in Stature,” Proceedings of Royal Society, London, vol. 40, 1886,
pp. 42–72.
2K. Pearson and A. Lee, “On the Laws of Inheritance,’’ Biometrika, vol. 2, Nov. 1903, pp. 357–462.

1
The Nature of
Regression Analysis
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16 Part One Single-Equation Regression Models

The full import of this view of regression analysis will become clearer as we progress, but
a few simple examples will make the basic concept quite clear.

Examples
1. Reconsider Galton’s law of universal regression. Galton was interested in finding out

why there was a stability in the distribution of heights in a population. But in the modern
view our concern is not with this explanation but rather with finding out how the average
height of sons changes, given the fathers’ height. In other words, our concern is with pre-
dicting the average height of sons knowing the height of their fathers. To see how this can
be done, consider Figure 1.1, which is a scatter diagram, or scattergram. This figure
shows the distribution of heights of sons in a hypothetical population corresponding to the
given or fixed values of the father’s height. Notice that corresponding to any given height of
a father is a range or distribution of the heights of the sons. However, notice that despite the
variability of the height of sons for a given value of father’s height, the average height of
sons generally increases as the height of the father increases. To show this clearly, the cir-
cled crosses in the figure indicate the average height of sons corresponding to a given
height of the father. Connecting these averages, we obtain the line shown in the figure. This
line, as we shall see, is known as the regression line. It shows how the average height of
sons increases with the father’s height.3

2. Consider the scattergram in Figure 1.2, which gives the distribution in a hypothetical
population of heights of boys measured at fixed ages. Corresponding to any given age, we
have a range, or distribution, of heights. Obviously, not all boys of a given age are likely to
have identical heights. But height on the average increases with age (of course, up to a

3At this stage of the development of the subject matter, we shall call this regression line simply the
line connecting the mean, or average, value of the dependent variable (son’s height) corresponding to
the given value of the explanatory variable (father’s height). Note that this line has a positive slope but
the slope is less than 1, which is in conformity with Galton’s regression to mediocrity. (Why?)
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Chapter 1 The Nature of Regression Analysis 17

certain age), which can be seen clearly if we draw a line (the regression line) through the cir-
cled points that represent the average height at the given ages. Thus, knowing the age, we
may be able to predict from the regression line the average height corresponding to that age.

3. Turning to economic examples, an economist may be interested in studying the de-
pendence of personal consumption expenditure on aftertax or disposable real personal in-
come. Such an analysis may be helpful in estimating the marginal propensity to consume
(MPC), that is, average change in consumption expenditure for, say, a dollar’s worth of
change in real income (see Figure 1.3).

4. A monopolist who can fix the price or output (but not both) may want to find out
the response of the demand for a product to changes in price. Such an experiment may
enable the estimation of the price elasticity (i.e., price responsiveness) of the demand for the
product and may help determine the most profitable price.

5. A labor economist may want to study the rate of change of money wages in relation to
the unemployment rate. The historical data are shown in the scattergram given in Figure 1.3.
The curve in Figure 1.3 is an example of the celebrated Phillips curve relating changes in the
money wages to the unemployment rate. Such a scattergram may enable the labor economist
to predict the average change in money wages given a certain unemployment rate. Such
knowledge may be helpful in stating something about the inflationary process in an econ-
omy, for increases in money wages are likely to be reflected in increased prices.

6. From monetary economics it is known that, other things remaining the same, the
higher the rate of inflation π, the lower the proportion k of their income that people would
want to hold in the form of money, as depicted in Figure 1.4. The slope of this line repre-
sents the change in k given a change in the inflation rate. A quantitative analysis of this
relationship will enable the monetary economist to predict the amount of money, as a
proportion of their income, that people would want to hold at various rates of inflation.

7. The marketing director of a company may want to know how the demand for the
company’s product is related to, say, advertising expenditure. Such a study will be of
considerable help in finding out the elasticity of demand with respect to advertising ex-
penditure, that is, the percent change in demand in response to, say, a 1 percent change in
the advertising budget. This knowledge may be helpful in determining the “optimum”
advertising budget.
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18 Part One Single-Equation Regression Models

8. Finally, an agronomist may be interested in studying the dependence of a particular
crop yield, say, of wheat, on temperature, rainfall, amount of sunshine, and fertilizer. Such
a dependence analysis may enable the prediction or forecasting of the average crop yield,
given information about the explanatory variables.

The reader can supply scores of such examples of the dependence of one variable on one
or more other variables. The techniques of regression analysis discussed in this text are
specially designed to study such dependence among variables.
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Chapter 1 The Nature of Regression Analysis 19

1.3 Statistical versus Deterministic Relationships

From the examples cited in Section 1.2, the reader will notice that in regression analysis
we are concerned with what is known as the statistical, not functional or deterministic,
dependence among variables, such as those of classical physics. In statistical relation-
ships among variables we essentially deal with random or stochastic4 variables, that is,
variables that have probability distributions. In functional or deterministic dependency,
on the other hand, we also deal with variables, but these variables are not random or
stochastic.

The dependence of crop yield on temperature, rainfall, sunshine, and fertilizer, for
example, is statistical in nature in the sense that the explanatory variables, although
certainly important, will not enable the agronomist to predict crop yield exactly because of
errors involved in measuring these variables as well as a host of other factors (variables)
that collectively affect the yield but may be difficult to identify individually. Thus, there is
bound to be some “intrinsic” or random variability in the dependent-variable crop yield that
cannot be fully explained no matter how many explanatory variables we consider.

In deterministic phenomena, on the other hand, we deal with relationships of the type,
say, exhibited by Newton’s law of gravity, which states: Every particle in the universe
attracts every other particle with a force directly proportional to the product of their masses
and inversely proportional to the square of the distance between them. Symbolically,
F = k(m1m2/r2), where F = force, m1 and m2 are the masses of the two particles, r =
distance, and k = constant of proportionality. Another example is Ohm’s law, which states:
For metallic conductors over a limited range of temperature the current C is proportional to
the voltage V; that is, C = ( 1

k )V where 1
k is the constant of proportionality. Other examples

of such deterministic relationships are Boyle’s gas law, Kirchhoff’s law of electricity, and
Newton’s law of motion.

In this text we are not concerned with such deterministic relationships. Of course, if
there are errors of measurement, say, in the k of Newton’s law of gravity, the otherwise
deterministic relationship becomes a statistical relationship. In this situation, force can be
predicted only approximately from the given value of k (and m1, m2, and r), which contains
errors. The variable F in this case becomes a random variable.

1.4 Regression versus Causation

Although regression analysis deals with the dependence of one variable on other variables,
it does not necessarily imply causation. In the words of Kendall and Stuart, “A statistical
relationship, however strong and however suggestive, can never establish causal connec-
tion: our ideas of causation must come from outside statistics, ultimately from some theory
or other.”5

4The word stochastic comes from the Greek word stokhos meaning “a bull’s eye.” The outcome of
throwing darts on a dart board is a stochastic process, that is, a process fraught with misses.
5M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, Charles Griffin Publishers, New York,
vol. 2, 1961, chap. 26, p. 279.

guj75772_ch01.qxd  31/07/2008  11:00 AM  Page 19



20 Part One Single-Equation Regression Models

In the crop-yield example cited previously, there is no statistical reason to assume that
rainfall does not depend on crop yield. The fact that we treat crop yield as dependent on
rainfall (among other things) is due to nonstatistical considerations: Common sense
suggests that the relationship cannot be reversed, for we cannot control rainfall by varying
crop yield.

In all the examples cited in Section 1.2 the point to note is that a statistical relationship
in itself cannot logically imply causation. To ascribe causality, one must appeal to a priori
or theoretical considerations. Thus, in the third example cited, one can invoke economic
theory in saying that consumption expenditure depends on real income.6

1.5 Regression versus Correlation

Closely related to but conceptually very much different from regression analysis is
correlation analysis, where the primary objective is to measure the strength or degree of
linear association between two variables. The correlation coefficient, which we shall
study in detail in Chapter 3, measures this strength of (linear) association. For example, we
may be interested in finding the correlation (coefficient) between smoking and lung cancer,
between scores on statistics and mathematics examinations, between high school grades
and college grades, and so on. In regression analysis, as already noted, we are not primar-
ily interested in such a measure. Instead, we try to estimate or predict the average value of
one variable on the basis of the fixed values of other variables. Thus, we may want to know
whether we can predict the average score on a statistics examination by knowing a student’s
score on a mathematics examination.

Regression and correlation have some fundamental differences that are worth mention-
ing. In regression analysis there is an asymmetry in the way the dependent and explanatory
variables are treated. The dependent variable is assumed to be statistical, random, or sto-
chastic, that is, to have a probability distribution. The explanatory variables, on the other
hand, are assumed to have fixed values (in repeated sampling),7 which was made explicit in
the definition of regression given in Section 1.2. Thus, in Figure 1.2 we assumed that the
variable age was fixed at given levels and height measurements were obtained at these
levels. In correlation analysis, on the other hand, we treat any (two) variables symmetri-
cally; there is no distinction between the dependent and explanatory variables. After all, the
correlation between scores on mathematics and statistics examinations is the same as that
between scores on statistics and mathematics examinations. Moreover, both variables
are assumed to be random. As we shall see, most of the correlation theory is based on the
assumption of randomness of variables, whereas most of the regression theory to be
expounded in this book is conditional upon the assumption that the dependent variable is
stochastic but the explanatory variables are fixed or nonstochastic.8

6But as we shall see in Chapter 3, classical regression analysis is based on the assumption that the
model used in the analysis is the correct model. Therefore, the direction of causality may be implicit
in the model postulated.
7It is crucial to note that the explanatory variables may be intrinsically stochastic, but for the purpose
of regression analysis we assume that their values are fixed in repeated sampling (that is, X assumes
the same values in various samples), thus rendering them in effect nonrandom or nonstochastic. But
more on this in Chapter 3, Sec. 3.2.
8In advanced treatment of econometrics, one can relax the assumption that the explanatory variables
are nonstochastic (see introduction to Part 2).
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Chapter 1 The Nature of Regression Analysis 21

1.6 Terminology and Notation

Before we proceed to a formal analysis of regression theory, let us dwell briefly on the
matter of terminology and notation. In the literature the terms dependent variable and
explanatory variable are described variously. A representative list is:

Dependent variable Explanatory variable

� �
Explained variable Independent variable

� �
Predictand Predictor

� �
Regressand Regressor

� �
Response Stimulus

� �
Endogenous Exogenous

� �
Outcome Covariate

� �
Controlled variable Control variable

Although it is a matter of personal taste and tradition, in this text we will use the dependent
variable/explanatory variable or the more neutral regressand and regressor terminology.

If we are studying the dependence of a variable on only a single explanatory variable,
such as that of consumption expenditure on real income, such a study is known as simple,
or two-variable, regression analysis. However, if we are studying the dependence of one
variable on more than one explanatory variable, as in the crop-yield, rainfall, temperature,
sunshine, and fertilizer example, it is known as multiple regression analysis. In other
words, in two-variable regression there is only one explanatory variable, whereas in multi-
ple regression there is more than one explanatory variable.

The term random is a synonym for the term stochastic. As noted earlier, a random or
stochastic variable is a variable that can take on any set of values, positive or negative, with
a given probability.9

Unless stated otherwise, the letter Y will denote the dependent variable and the X’s
(X1, X2, . . . , Xk) will denote the explanatory variables, Xk being the kth explanatory
variable. The subscript i or t will denote the ith or the tth observation or value. Xki (or Xkt )
will denote the ith (or tth) observation on variable Xk . N (or T ) will denote the total
number of observations or values in the population, and n (or t) the total number of obser-
vations in a sample. As a matter of convention, the observation subscript i will be used for
cross-sectional data (i.e., data collected at one point in time) and the subscript t will be
used for time series data (i.e., data collected over a period of time). The nature of cross-
sectional and time series data, as well as the important topic of the nature and sources of
data for empirical analysis, is discussed in the following section.

9See Appendix A for formal definition and further details.
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22 Part One Single-Equation Regression Models

1.7 The Nature and Sources of Data for Economic Analysis10

The success of any econometric analysis ultimately depends on the availability of the
appropriate data. It is therefore essential that we spend some time discussing the nature,
sources, and limitations of the data that one may encounter in empirical analysis.

Types of Data
Three types of data may be available for empirical analysis: time series, cross-section, and
pooled (i.e., combination of time series and cross-section) data.

Time Series Data
The data shown in Table 1.1 of the Introduction are an example of time series data. A time
series is a set of observations on the values that a variable takes at different times. Such data
may be collected at regular time intervals, such as daily (e.g., stock prices, weather
reports), weekly (e.g., money supply figures), monthly (e.g., the unemployment rate, the
Consumer Price Index [CPI]), quarterly (e.g., GDP), annually (e.g., government
budgets), quinquennially, that is, every 5 years (e.g., the census of manufactures), or
decennially, that is, every 10 years (e.g., the census of population). Sometime data are
available both quarterly as well as annually, as in the case of the data on GDP and consumer
expenditure. With the advent of high-speed computers, data can now be collected over an
extremely short interval of time, such as the data on stock prices, which can be obtained
literally continuously (the so-called real-time quote).

Although time series data are used heavily in econometric studies, they present special
problems for econometricians. As we will show in chapters on time series econometrics
later on, most empirical work based on time series data assumes that the underlying time
series is stationary. Although it is too early to introduce the precise technical meaning of
stationarity at this juncture, loosely speaking, a time series is stationary if its mean and
variance do not vary systematically over time. To see what this means, consider Figure 1.5,
which depicts the behavior of the M1 money supply in the United States from January 1,
1959, to September, 1999. (The actual data are given in Exercise 1.4.) As you can see from
this figure, the M1 money supply shows a steady upward trend as well as variability over
the years, suggesting that the M1 time series is not stationary.11 We will explore this topic
fully in Chapter 21.

Cross-Section Data
Cross-section data are data on one or more variables collected at the same point in time,
such as the census of population conducted by the Census Bureau every 10 years (the lat-
est being in year 2000), the surveys of consumer expenditures conducted by the University
of Michigan, and, of course, the opinion polls by Gallup and umpteen other organizations.
A concrete example of cross-sectional data is given in Table 1.1. This table gives data on
egg production and egg prices for the 50 states in the union for 1990 and 1991. For each

10For an informative account, see Michael D. Intriligator, Econometric Models, Techniques, and
Applications, Prentice Hall, Englewood Cliffs, N.J., 1978, chap. 3.
11To see this more clearly, we divided the data into four time periods: 1951:01 to 1962:12; 1963:01
to 1974:12; 1975:01 to 1986:12, and 1987:01 to 1999:09: For these subperiods the mean values of
the money supply (with corresponding standard deviations in parentheses) were, respectively, 165.88
(23.27), 323.20 (72.66), 788.12 (195.43), and 1099 (27.84), all figures in billions of dollars. This is a
rough indication of the fact that the money supply over the entire period was not stationary.
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Chapter 1 The Nature of Regression Analysis 23

year the data on the 50 states are cross-sectional data. Thus, in Table 1.1 we have two cross-
sectional samples.

Just as time series data create their own special problems (because of the stationarity
issue), cross-sectional data too have their own problems, specifically the problem of hetero-
geneity. From the data given in Table 1.1 we see that we have some states that produce huge
amounts of eggs (e.g., Pennsylvania) and some that produce very little (e.g., Alaska). When
we include such heterogeneous units in a statistical analysis, the size or scale effect must be
taken into account so as not to mix apples with oranges. To see this clearly, we plot in Fig-
ure 1.6 the data on eggs produced and their prices in 50 states for the year 1990. This figure
shows how widely scattered the observations are. In Chapter 11 we will see how the scale
effect can be an important factor in assessing relationships among economic variables.

Pooled Data
In pooled, or combined, data are elements of both time series and cross-section data. The
data in Table 1.1 are an example of pooled data. For each year we have 50 cross-sectional
observations and for each state we have two time series observations on prices and output
of eggs, a total of 100 pooled (or combined) observations. Likewise, the data given in
Exercise 1.1 are pooled data in that the Consumer Price Index (CPI) for each country
for 1980–2005 is time series data, whereas the data on the CPI for the seven countries
for a single year are cross-sectional data. In the pooled data we have 182 observations—
26 annual observations for each of the seven countries.

Panel, Longitudinal, or Micropanel Data
This is a special type of pooled data in which the same cross-sectional unit (say, a family or
a firm) is surveyed over time. For example, the U.S. Department of Commerce carries out
a census of housing at periodic intervals. At each periodic survey the same household
(or the people living at the same address) is interviewed to find out if there has been any
change in the housing and financial conditions of that household since the last survey. By
interviewing the same household periodically, the panel data provide very useful informa-
tion on the dynamics of household behavior, as we shall see in Chapter 16.
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24 Part One Single-Equation Regression Models

TABLE 1.1 U.S. Egg Production

State Y1 Y2 X1 X2 State Y1 Y2 X1 X2

AL 2,206 2,186 92.7 91.4 MT 172 164 68.0 66.0
AK 0.7 0.7 151.0 149.0 NE 1,202 1,400 50.3 48.9
AZ 73 74 61.0 56.0 NV 2.2 1.8 53.9 52.7
AR 3,620 3,737 86.3 91.8 NH 43 49 109.0 104.0
CA 7,472 7,444 63.4 58.4 NJ 442 491 85.0 83.0
CO 788 873 77.8 73.0 NM 283 302 74.0 70.0
CT 1,029 948 106.0 104.0 NY 975 987 68.1 64.0
DE 168 164 117.0 113.0 NC 3,033 3,045 82.8 78.7
FL 2,586 2,537 62.0 57.2 ND 51 45 55.2 48.0
GA 4,302 4,301 80.6 80.8 OH 4,667 4,637 59.1 54.7
HI 227.5 224.5 85.0 85.5 OK 869 830 101.0 100.0
ID 187 203 79.1 72.9 OR 652 686 77.0 74.6
IL 793 809 65.0 70.5 PA 4,976 5,130 61.0 52.0
IN 5,445 5,290 62.7 60.1 RI 53 50 102.0 99.0
IA 2,151 2,247 56.5 53.0 SC 1,422 1,420 70.1 65.9
KS 404 389 54.5 47.8 SD 435 602 48.0 45.8
KY 412 483 67.7 73.5 TN 277 279 71.0 80.7
LA 273 254 115.0 115.0 TX 3,317 3,356 76.7 72.6
ME 1,069 1,070 101.0 97.0 UT 456 486 64.0 59.0
MD 885 898 76.6 75.4 VT 31 30 106.0 102.0
MA 235 237 105.0 102.0 VA 943 988 86.3 81.2
MI 1,406 1,396 58.0 53.8 WA 1,287 1,313 74.1 71.5
MN 2,499 2,697 57.7 54.0 WV 136 174 104.0 109.0
MS 1,434 1,468 87.8 86.7 WI 910 873 60.1 54.0
MO 1,580 1,622 55.4 51.5 WY 1.7 1.7 83.0 83.0

Note: Y1 = eggs produced in 1990 (millions).
Y2 = eggs produced in 1991 (millions).
X1 = price per dozen (cents) in 1990.
X2 = price per dozen (cents) in 1991.

Source: World Almanac, 1993, p. 119. The data are from the Economic Research Service, U.S. Department of Agriculture.
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Chapter 1 The Nature of Regression Analysis 25

As a concrete example, consider the data given in Table 1.2. The data in the table, orig-
inally collected by Y. Grunfeld, refer to the real investment, the real value of the firm, and
the real capital stock of four U.S. companies, namely, General Electric (GM), U.S. Steel
(US), General Motors (GM), and Westinghouse (WEST), for the period 1935–1954.12

Since the data are for several companies collected over a number of years, this is a classic
example of panel data. In this table, the number of observations for each company is the
same, but this is not always the case. If all the companies have the same number of obser-
vations, we have what is called a balanced panel. If the number of observations is not the
same for each company, it is called an unbalanced panel. In Chapter 16, Panel Data
Regression Models, we will examine such data and show how to estimate such models.

Grunfeld’s purpose in collecting these data was to find out how real gross investment (I)
depends on the real value of the firm (F) a year earlier and real capital stock (C) a year
earlier. Since the companies included in the sample operate in the same capital market, by
studying them together, Grunfeld wanted to find out if they had similar investment functions.

The Sources of Data13

The data used in empirical analysis may be collected by a governmental agency (e.g., the
Department of Commerce), an international agency (e.g., the International Monetary Fund
[IMF] or the World Bank), a private organization (e.g., the Standard & Poor’s Corporation), or
an individual. Literally, there are thousands of such agencies collecting data for one purpose
or another.

The Internet
The Internet has literally revolutionized data gathering. If you just “surf the net” with a
keyword (e.g., exchange rates), you will be swamped with all kinds of data sources. In
Appendix E we provide some of the frequently visited websites that provide economic and
financial data of all sorts. Most of the data can be downloaded without much cost. You may
want to bookmark the various websites that might provide you with useful economic data.

The data collected by various agencies may be experimental or nonexperimental.
In experimental data, often collected in the natural sciences, the investigator may want to
collect data while holding certain factors constant in order to assess the impact of some
factors on a given phenomenon. For instance, in assessing the impact of obesity on blood
pressure, the researcher would want to collect data while holding constant the eating,
smoking, and drinking habits of the people in order to minimize the influence of these
variables on blood pressure.

In the social sciences, the data that one generally encounters are nonexperimental in
nature, that is, not subject to the control of the researcher.14 For example, the data on GNP,
unemployment, stock prices, etc., are not directly under the control of the investigator. As we
shall see, this lack of control often creates special problems for the researcher in pinning
down the exact cause or causes affecting a particular situation. For example, is it the money
supply that determines the (nominal) GDP or is it the other way around?

12Y. Grunfeld, “The Determinants of Corporate Investment,” unpublished PhD thesis, Department of
Economics, University of Chicago, 1958. These data have become a workhorse for illustrating panel
data regression models.
13For an illuminating account, see Albert T. Somers, The U.S. Economy Demystified: What the Major
Economic Statistics Mean and their Significance for Business, D.C. Heath, Lexington, Mass., 1985.
14In the social sciences too sometimes one can have a controlled experiment. An example is given in
Exercise 1.6.
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26 Part One Single-Equation Regression Models

1935 209.9 1362.4 53.8
1936 355.3 1807.1 50.5
1937 469.9 2673.3 118.1
1938 262.3 1801.9 260.2
1939 230.4 1957.3 312.7
1940 361.6 2202.9 254.2
1941 472.8 2380.5 261.4
1942 445.6 2168.6 298.7
1943 361.6 1985.1 301.8
1944 288.2 1813.9 279.1
1945 258.7 1850.2 213.8
1946 420.3 2067.7 232.6
1947 420.5 1796.7 264.8
1948 494.5 1625.8 306.9
1949 405.1 1667.0 351.1
1950 418.8 1677.4 357.8
1951 588.2 2289.5 341.1
1952 645.2 2159.4 444.2
1953 641.0 2031.3 623.6
1954 459.3 2115.5 669.7

WEST

1935 12.93 191.5 1.8
1936 25.90 516.0 0.8
1937 35.05 729.0 7.4
1938 22.89 560.4 18.1
1939 18.84 519.9 23.5
1940 28.57 628.5 26.5
1941 48.51 537.1 36.2
1942 43.34 561.2 60.8
1943 37.02 617.2 84.4
1944 37.81 626.7 91.2
1945 39.27 737.2 92.4
1946 53.46 760.5 86.0
1947 55.56 581.4 111.1
1948 49.56 662.3 130.6
1949 32.04 583.8 141.8
1950 32.24 635.2 136.7
1951 54.38 732.8 129.7
1952 71.78 864.1 145.5
1953 90.08 1193.5 174.8
1954 68.60 1188.9 213.5

TABLE 1.2 Investment Data for Four Companies, 1935–1954

Observation I F−1 C−1 Observation I F−1 C−1

GE US

1935 33.1 1170.6 97.8
1936 45.0 2015.8 104.4
1937 77.2 2803.3 118.0
1938 44.6 2039.7 156.2
1939 48.1 2256.2 172.6
1940 74.4 2132.2 186.6
1941 113.0 1834.1 220.9
1942 91.9 1588.0 287.8
1943 61.3 1749.4 319.9
1944 56.8 1687.2 321.3
1945 93.6 2007.7 319.6
1946 159.9 2208.3 346.0
1947 147.2 1656.7 456.4
1948 146.3 1604.4 543.4
1949 98.3 1431.8 618.3
1950 93.5 1610.5 647.4
1951 135.2 1819.4 671.3
1952 157.3 2079.7 726.1
1953 179.5 2371.6 800.3
1954 189.6 2759.9 888.9

GM

1935 317.6 3078.5 2.8
1936 391.8 4661.7 52.6
1937 410.6 5387.1 156.9
1938 257.7 2792.2 209.2
1939 330.8 4313.2 203.4
1940 461.2 4643.9 207.2
1941 512.0 4551.2 255.2
1942 448.0 3244.1 303.7
1943 499.6 4053.7 264.1
1944 547.5 4379.3 201.6
1945 561.2 4840.9 265.0
1946 688.1 4900.0 402.2
1947 568.9 3526.5 761.5
1948 529.2 3245.7 922.4
1949 555.1 3700.2 1020.1
1950 642.9 3755.6 1099.0
1951 755.9 4833.0 1207.7
1952 891.2 4924.9 1430.5
1953 1304.4 6241.7 1777.3
1954 1486.7 5593.6 2226.3

Notes: Y = I = gross investment = additions to plant and equipment plus maintenance and repairs, in millions of dollars deflated by P1.
X2 = F = value of the firm = price of common and preferred shares at Dec. 31 (or average price of Dec. 31 and Jan. 31 of the following year) times

number of common and preferred shares outstanding plus total book value of debt at Dec. 31, in millions of dollars deflated by P2.
X3 = C = stock of plant and equipment = accumulated sum of net additions to plant and equipment deflated by P1 minus depreciation allowance

deflated by P3 in these definitions.
P1 = implicit price deflator of producers’ durable equipment (1947 = 100).
P2 = implicit price deflator of GNP (1947 = 100).
P3 = depreciation expense deflator = 10-year moving average of wholesale price index of metals and metal products (1947 = 100).

Source: Reproduced from H. D. Vinod and Aman Ullah, Recent Advances in Regression Methods, Marcel Dekker, New York, 1981, pp. 259–261.
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The Accuracy of Data15

Although plenty of data are available for economic research, the quality of the data is often
not that good. There are several reasons for that.

1. As noted, most social science data are nonexperimental in nature. Therefore, there is the
possibility of observational errors, either of omission or commission.

2. Even in experimentally collected data, errors of measurement arise from approxima-
tions and roundoffs.

3. In questionnaire-type surveys, the problem of nonresponse can be serious; a researcher
is lucky to get a 40 percent response rate to a questionnaire. Analysis based on such a
partial response rate may not truly reflect the behavior of the 60 percent who did not re-
spond, thereby leading to what is known as (sample) selectivity bias. Then there is the
further problem that those who do respond to the questionnaire may not answer all the
questions, especially questions of a financially sensitive nature, thus leading to additional
selectivity bias.

4. The sampling methods used in obtaining the data may vary so widely that it is often dif-
ficult to compare the results obtained from the various samples.

5. Economic data are generally available at a highly aggregate level. For example, most
macrodata (e.g., GNP, employment, inflation, unemployment) are available for the econ-
omy as a whole or at the most for some broad geographical regions. Such highly aggre-
gated data may not tell us much about the individuals or microunits that may be the
ultimate object of study.

6. Because of confidentiality, certain data can be published only in highly aggregate form.
The IRS, for example, is not allowed by law to disclose data on individual tax returns;
it can only release some broad summary data. Therefore, if one wants to find out how
much individuals with a certain level of income spent on health care, one cannot do so
except at a very highly aggregate level. Such macroanalysis often fails to reveal the dy-
namics of the behavior of the microunits. Similarly, the Department of Commerce,
which conducts the census of business every 5 years, is not allowed to disclose infor-
mation on production, employment, energy consumption, research and development
expenditure, etc., at the firm level. It is therefore difficult to study the interfirm differences
on these items.

Because of all of these and many other problems, the researcher should always keep
in mind that the results of research are only as good as the quality of the data. There-
fore, if in given situations researchers find that the results of the research are “unsatisfac-
tory,” the cause may be not that they used the wrong model but that the quality of the data
was poor. Unfortunately, because of the nonexperimental nature of the data used in most
social science studies, researchers very often have no choice but to depend on the available
data. But they should always keep in mind that the data used may not be the best and should
try not to be too dogmatic about the results obtained from a given study, especially when
the quality of the data is suspect.

A Note on the Measurement Scales of Variables16

The variables that we will generally encounter fall into four broad categories: ratio scale,
interval scale, ordinal scale, and nominal scale. It is important that we understand each.

15For a critical review, see O. Morgenstern, The Accuracy of Economic Observations, 2d ed., Princeton
University Press, Princeton, N.J., 1963.
16The following discussion relies heavily on Aris Spanos, Probability Theory and Statistical Inference:
Econometric Modeling with Observational Data, Cambridge University Press, New York, 1999, p. 24.
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Ratio Scale
For a variable X, taking two values, X1 and X2, the ratio X1�X2 and the distance (X2 − X1)
are meaningful quantities. Also, there is a natural ordering (ascending or descending) of the
values along the scale. Therefore, comparisons such as X2 ≤ X1 or X2 ≥ X1 are meaning-
ful. Most economic variables  belong to this category. Thus, it is meaningful to ask how big
this year’s GDP is compared with the previous year’s GDP. Personal income, measured
in dollars, is a ratio variable; someone earning $100,000 is making twice as much as an-
other person earning $50,000 (before taxes are assessed, of course!).

Interval Scale
An interval scale variable satisfies the last two properties of the ratio scale variable but not
the first. Thus, the distance between two time periods, say (2000–1995) is meaningful, but
not the ratio of two time periods (2000/1995). At 11:00 a.m. PST on August 11, 2007,
Portland, Oregon, reported a temperature of 60 degrees Fahrenheit while Tallahassee,
Florida, reached 90 degrees. Temperature is not measured on a ratio scale since it does not
make sense to claim that Tallahassee was 50 percent warmer than Portland. This is mainly
due to the fact that the Fahrenheit scale does not use 0 degrees as a natural base.

Ordinal Scale
A variable belongs to this category only if it satisfies the third property of the ratio scale
(i.e., natural ordering). Examples are grading systems (A, B, C grades) or income class
(upper, middle, lower). For these variables the ordering exists but the distances between the
categories cannot be quantified. Students of economics will recall the indifference curves
between two goods. Each higher indifference curve indicates a higher level of utility, but
one cannot quantify by how much one indifference curve is higher than the others.

Nominal Scale
Variables in this category have none of the features of the ratio scale variables. Variables
such as gender (male, female) and marital status (married, unmarried, divorced, separated)
simply denote categories. Question: What is the reason why such variables cannot be
expressed on the ratio, interval, or ordinal scales?

As we shall see, econometric techniques that may be suitable for ratio scale variables
may not be suitable for nominal scale variables. Therefore, it is important to bear in mind
the distinctions among the four types of measurement scales discussed above.

Summary and
Conclusions

1. The key idea behind regression analysis is the statistical dependence of one variable, the
dependent variable, on one or more other variables, the explanatory variables.

2. The objective of such analysis is to estimate and/or predict the mean or average value of the
dependent variable on the basis of the known or fixed values of the explanatory variables.

3. In practice the success of regression analysis depends on the availability of the appro-
priate data. This chapter discussed the nature, sources, and limitations of the data that
are generally available for research, especially in the social sciences.

4. In any research, the researcher should clearly state the sources of the data used in
the analysis, their definitions, their methods of collection, and any gaps or omissions
in the data as well as any revisions in the data. Keep in mind that the macroeconomic
data published by the government are often revised.

5. Since the reader may not have the time, energy, or resources to track down the data, the
reader has the right to presume that the data used by the researcher have been properly
gathered and that the computations and analysis are correct.
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EXERCISES

Year U.S. Canada Japan France Germany Italy U.K.

1980 82.4 76.1 91.0 72.2 86.7 63.9 78.5
1981 90.9 85.6 95.3 81.8 92.2 75.5 87.9
1982 96.5 94.9 98.1 91.7 97.0 87.8 95.4
1983 99.6 100.4 99.8 100.3 100.3 100.8 99.8
1984 103.9 104.7 102.1 108.0 102.7 111.4 104.8
1985 107.6 109.0 104.2 114.3 104.8 121.7 111.1
1986 109.6 113.5 104.9 117.2 104.6 128.9 114.9
1987 113.6 118.4 104.9 121.1 104.9 135.1 119.7
1988 118.3 123.2 105.6 124.3 106.3 141.9 125.6
1989 124.0 129.3 108.0 128.7 109.2 150.7 135.4
1990 130.7 135.5 111.4 132.9 112.2 160.4 148.2
1991 136.2 143.1 115.0 137.2 116.3 170.5 156.9
1992 140.3 145.3 117.0 140.4 122.2 179.5 162.7
1993 144.5 147.9 118.5 143.4 127.6 187.7 165.3
1994 148.2 148.2 119.3 145.8 131.1 195.3 169.3
1995 152.4 151.4 119.2 148.4 133.3 205.6 175.2
1996 156.9 153.8 119.3 151.4 135.3 213.8 179.4
1997 160.5 156.3 121.5 153.2 137.8 218.2 185.1
1998 163.0 157.8 122.2 154.2 139.1 222.5 191.4
1999 166.6 160.5 121.8 155.0 140.0 226.2 194.3
2000 172.2 164.9 121.0 157.6 142.0 231.9 200.1
2001 177.1 169.1 120.1 160.2 144.8 238.3 203.6
2002 179.9 172.9 119.0 163.3 146.7 244.3 207.0
2003 184.0 177.7 118.7 166.7 148.3 250.8 213.0
2004 188.9 181.0 118.7 170.3 150.8 256.3 219.4
2005 195.3 184.9 118.3 173.2 153.7 261.3 225.6

17Subtract from the current year’s CPI the CPI from the previous year, divide the difference by the
previous year’s CPI, and multiply the result by 100. Thus, the inflation rate for Canada for 1981 is
[(85.6 − 76.1)/76.1] × 100 = 12.48% (approx.).

TABLE 1.3
CPI in Seven
Industrial Countries,
1980–2005
(1982–1984 = 100)

Source: Economic Report of the
President, 2007, Table 108,
p. 354.

1.1. Table 1.3 gives data on the Consumer Price Index (CPI) for seven industrialized
countries with 1982–1984 = 100 as the base of the index.

a. From the given data, compute the inflation rate for each country.17

b. Plot the inflation rate for each country against time (i.e., use the horizontal axis for
time and the vertical axis for the inflation rate).

c. What broad conclusions can you draw about the inflation experience in the seven
countries?

d. Which country’s inflation rate seems to be most variable? Can you offer any
explanation?

1.2. a. Using Table 1.3, plot the inflation rate of Canada, France, Germany, Italy, Japan,
and the United Kingdom against the United States inflation rate.

b. Comment generally about the behavior of the inflation rate in the six countries 
vis-à-vis the U.S. inflation rate.

c. If you find that the six countries’ inflation rates move in the same direction as the
U.S. inflation rate, would that suggest that U.S. inflation “causes” inflation in the
other countries? Why or why not?
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1.3. Table 1.4 gives the foreign exchange rates for nine industrialized countries for the
years 1985–2006. Except for the United Kingdom, the exchange rate is defined as
the units of foreign currency for one U.S. dollar; for the United Kingdom, it is defined
as the number of U.S. dollars for one U.K. pound.

a. Plot these exchange rates against time and comment on the general behavior of the
exchange rates over the given time period.

b. The dollar is said to appreciate if it can buy more units of a foreign currency.
Contrarily, it is said to depreciate if it buys fewer units of a foreign currency. Over
the time period 1985–2006, what has been the general behavior of the U.S. dollar?
Incidentally, look up any textbook on macroeconomics or international economics
to find out what factors determine the appreciation or depreciation of a currency.

1.4. The data behind the M1 money supply in Figure 1.5 are given in Table 1.5. Can you
give reasons why the money supply has been increasing over the time period shown in
the table?

1.5. Suppose you were to develop an economic model of criminal activities, say, the hours
spent in criminal activities (e.g., selling illegal drugs). What variables would you con-
sider in developing such a model? See if your model matches the one developed by the
Nobel laureate economist Gary Becker.18

TABLE 1.4 Exchange Rates for Nine Countries: 1985–2006

South United
Year Australia Canada China P. R. Japan Mexico Korea Sweden Switzerland Kingdom

1985 0.7003 1.3659 2.9434 238.47 0.257 872.45 8.6032 2.4552 1.2974
1986 0.6709 1.3896 3.4616 168.35 0.612 884.60 7.1273 1.7979 1.4677
1987 0.7014 1.3259 3.7314 144.60 1.378 826.16 6.3469 1.4918 1.6398
1988 0.7841 1.2306 3.7314 128.17 2.273 734.52 6.1370 1.4643 1.7813
1989 0.7919 1.1842 3.7673 138.07 2.461 674.13 6.4559 1.6369 1.6382
1990 0.7807 1.1668 4.7921 145.00 2.813 710.64 5.9231 1.3901 1.7841
1991 0.7787 1.1460 5.3337 134.59 3.018 736.73 6.0521 1.4356 1.7674
1992 0.7352 1.2085 5.5206 126.78 3.095 784.66 5.8258 1.4064 1.7663
1993 0.6799 1.2902 5.7795 111.08 3.116 805.75 7.7956 1.4781 1.5016
1994 0.7316 1.3664 8.6397 102.18 3.385 806.93 7.7161 1.3667 1.5319
1995 0.7407 1.3725 8.3700 93.96 6.447 772.69 7.1406 1.1812 1.5785
1996 0.7828 1.3638 8.3389 108.78 7.600 805.00 6.7082 1.2361 1.5607
1997 0.7437 1.3849 8.3193 121.06 7.918 953.19 7.6446 1.4514 1.6376
1998 0.6291 1.4836 8.3008 130.99 9.152 1,400.40 7.9522 1.4506 1.6573
1999 0.6454 1.4858 8.2783 113.73 9.553 1,189.84 8.2740 1.5045 1.6172
2000 0.5815 1.4855 8.2784 107.80 9.459 1,130.90 9.1735 1.6904 1.5156
2001 0.5169 1.5487 8.2770 121.57 9.337 1,292.02 10.3425 1.6891 1.4396
2002 0.5437 1.5704 8.2771 125.22 9.663 1,250.31 9.7233 1.5567 1.5025
2003 0.6524 1.4008 8.2772 115.94 10.793 1,192.08 8.0787 1.3450 1.6347
2004 0.7365 1.3017 8.2768 108.15 11.290 1,145.24 7.3480 1.2428 1.8330
2005 0.7627 1.2115 8.1936 110.11 10.894 1,023.75 7.4710 1.2459 1.8204
2006 0.7535 1.1340 7.9723 116.31 10.906 954.32 7.3718 1.2532 1.8434

Source: Economic Report of the President, 2007, Table B–110, p. 356.

18G. S. Becker, “Crime and Punishment: An Economic Approach,” Journal of Political Economy, vol. 76,
1968, pp. 169–217.
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1959:01 138.8900 139.3900 139.7400 139.6900 140.6800 141.1700
1959:07 141.7000 141.9000 141.0100 140.4700 140.3800 139.9500
1960:01 139.9800 139.8700 139.7500 139.5600 139.6100 139.5800
1960:07 140.1800 141.3100 141.1800 140.9200 140.8600 140.6900
1961:01 141.0600 141.6000 141.8700 142.1300 142.6600 142.8800
1961:07 142.9200 143.4900 143.7800 144.1400 144.7600 145.2000
1962:01 145.2400 145.6600 145.9600 146.4000 146.8400 146.5800
1962:07 146.4600 146.5700 146.3000 146.7100 147.2900 147.8200
1963:01 148.2600 148.9000 149.1700 149.7000 150.3900 150.4300
1963:07 151.3400 151.7800 151.9800 152.5500 153.6500 153.2900
1964:01 153.7400 154.3100 154.4800 154.7700 155.3300 155.6200
1964:07 156.8000 157.8200 158.7500 159.2400 159.9600 160.3000
1965:01 160.7100 160.9400 161.4700 162.0300 161.7000 162.1900
1965:07 163.0500 163.6800 164.8500 165.9700 166.7100 167.8500
1966:01 169.0800 169.6200 170.5100 171.8100 171.3300 171.5700
1966:07 170.3100 170.8100 171.9700 171.1600 171.3800 172.0300
1967:01 171.8600 172.9900 174.8100 174.1700 175.6800 177.0200
1967:07 178.1300 179.7100 180.6800 181.6400 182.3800 183.2600
1968:01 184.3300 184.7100 185.4700 186.6000 187.9900 189.4200
1968:07 190.4900 191.8400 192.7400 194.0200 196.0200 197.4100
1969:01 198.6900 199.3500 200.0200 200.7100 200.8100 201.2700
1969:07 201.6600 201.7300 202.1000 202.9000 203.5700 203.8800
1970:01 206.2200 205.0000 205.7500 206.7200 207.2200 207.5400
1970:07 207.9800 209.9300 211.8000 212.8800 213.6600 214.4100
1971:01 215.5400 217.4200 218.7700 220.0000 222.0200 223.4500
1971:07 224.8500 225.5800 226.4700 227.1600 227.7600 228.3200
1972:01 230.0900 232.3200 234.3000 235.5800 235.8900 236.6200
1972:07 238.7900 240.9300 243.1800 245.0200 246.4100 249.2500
1973:01 251.4700 252.1500 251.6700 252.7400 254.8900 256.6900
1973:07 257.5400 257.7600 257.8600 259.0400 260.9800 262.8800
1974:01 263.7600 265.3100 266.6800 267.2000 267.5600 268.4400
1974:07 269.2700 270.1200 271.0500 272.3500 273.7100 274.2000
1975:01 273.9000 275.0000 276.4200 276.1700 279.2000 282.4300
1975:07 283.6800 284.1500 285.6900 285.3900 286.8300 287.0700
1976:01 288.4200 290.7600 292.7000 294.6600 295.9300 296.1600
1976:07 297.2000 299.0500 299.6700 302.0400 303.5900 306.2500
1977:01 308.2600 311.5400 313.9400 316.0200 317.1900 318.7100
1977:07 320.1900 322.2700 324.4800 326.4000 328.6400 330.8700
1978:01 334.4000 335.3000 336.9600 339.9200 344.8600 346.8000
1978:07 347.6300 349.6600 352.2600 353.3500 355.4100 357.2800
1979:01 358.6000 359.9100 362.4500 368.0500 369.5900 373.3400
1979:07 377.2100 378.8200 379.2800 380.8700 380.8100 381.7700
1980:01 385.8500 389.7000 388.1300 383.4400 384.6000 389.4600
1980:07 394.9100 400.0600 405.3600 409.0600 410.3700 408.0600
1981:01 410.8300 414.3800 418.6900 427.0600 424.4300 425.5000
1981:07 427.9000 427.8500 427.4600 428.4500 430.8800 436.1700
1982:01 442.1300 441.4900 442.3700 446.7800 446.5300 447.8900
1982:07 449.0900 452.4900 457.5000 464.5700 471.1200 474.3000
1983:01 476.6800 483.8500 490.1800 492.7700 499.7800 504.3500
1983:07 508.9600 511.6000 513.4100 517.2100 518.5300 520.7900
1984:01 524.4000 526.9900 530.7800 534.0300 536.5900 540.5400
1984:07 542.1300 542.3900 543.8600 543.8700 547.3200 551.1900

TABLE 1.5
Seasonally Adjusted
M1 Supply:
1959:01–1999:07
(billions of dollars)

Source: Board of Governors,
Federal Reserve Bank, USA.

(Continued)
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1985:01 555.6600 562.4800 565.7400 569.5500 575.0700 583.1700
1985:07 590.8200 598.0600 604.4700 607.9100 611.8300 619.3600
1986:01 620.4000 624.1400 632.8100 640.3500 652.0100 661.5200
1986:07 672.2000 680.7700 688.5100 695.2600 705.2400 724.2800
1987:01 729.3400 729.8400 733.0100 743.3900 746.0000 743.7200
1987:07 744.9600 746.9600 748.6600 756.5000 752.8300 749.6800
1988:01 755.5500 757.0700 761.1800 767.5700 771.6800 779.1000
1988:07 783.4000 785.0800 784.8200 783.6300 784.4600 786.2600
1989:01 784.9200 783.4000 782.7400 778.8200 774.7900 774.2200
1989:07 779.7100 781.1400 782.2000 787.0500 787.9500 792.5700
1990:01 794.9300 797.6500 801.2500 806.2400 804.3600 810.3300
1990:07 811.8000 817.8500 821.8300 820.3000 822.0600 824.5600
1991:01 826.7300 832.4000 838.6200 842.7300 848.9600 858.3300
1991:07 862.9500 868.6500 871.5600 878.4000 887.9500 896.7000
1992:01 910.4900 925.1300 936.0000 943.8900 950.7800 954.7100
1992:07 964.6000 975.7100 988.8400 1004.340 1016.040 1024.450
1993:01 1030.900 1033.150 1037.990 1047.470 1066.220 1075.610
1993:07 1085.880 1095.560 1105.430 1113.800 1123.900 1129.310
1994:01 1132.200 1136.130 1139.910 1141.420 1142.850 1145.650
1994:07 1151.490 1151.390 1152.440 1150.410 1150.440 1149.750
1995:01 1150.640 1146.740 1146.520 1149.480 1144.650 1144.240
1995:07 1146.500 1146.100 1142.270 1136.430 1133.550 1126.730
1996:01 1122.580 1117.530 1122.590 1124.520 1116.300 1115.470
1996:07 1112.340 1102.180 1095.610 1082.560 1080.490 1081.340
1997:01 1080.520 1076.200 1072.420 1067.450 1063.370 1065.990
1997:07 1067.570 1072.080 1064.820 1062.060 1067.530 1074.870
1998:01 1073.810 1076.020 1080.650 1082.090 1078.170 1077.780
1998:07 1075.370 1072.210 1074.650 1080.400 1088.960 1093.350
1999:01 1091.000 1092.650 1102.010 1108.400 1104.750 1101.110
1999:07 1099.530 1102.400 1093.460

TABLE 1.5
(Continued)

1.6. Controlled experiments in economics: On April 7, 2000, President Clinton signed into
law a bill passed by both Houses of the U.S. Congress that lifted earnings limitations
on Social Security recipients. Until then, recipients between the ages of 65 and 69 who
earned more than $17,000 a year would lose $1 worth of Social Security benefit for
every $3 of income earned in excess of $17,000. How would you devise a study to
assess the impact of this change in the law? Note: There was no income limitation for
recipients over the age of 70 under the old law.

1.7. The data presented in Table 1.6 were published in the March 1, 1984, issue of The Wall
Street Journal. They relate to the advertising budget (in millions of dollars) of 21 firms
for 1983 and millions of impressions retained per week by the viewers of the products
of these firms. The data are based on a survey of 4000 adults in which users of the
products were asked to cite a commercial they had seen for the product category in the
past week.

a. Plot impressions on the vertical axis and advertising expenditure on the horizontal
axis.

b. What can you say about the nature of the relationship between the two variables?

c. Looking at your graph, do you think it pays to advertise? Think about all those
commercials shown on Super Bowl Sunday or during the World Series.

Note: We will explore further the data given in Table 1.6 in subsequent chapters.
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Impressions, Expenditure,
Firm millions millions of 1983 dollars

1. Miller Lite 32.1 50.1

2. Pepsi 99.6 74.1

3. Stroh’s 11.7 19.3

4. Fed’l Express 21.9 22.9

5. Burger King 60.8 82.4

6. Coca-Cola 78.6 40.1

7. McDonald’s 92.4 185.9

8. MCl 50.7 26.9

9. Diet Cola 21.4 20.4

10. Ford 40.1 166.2

11. Levi’s 40.8 27.0

12. Bud Lite 10.4 45.6

13. ATT/Bell 88.9 154.9

14. Calvin Klein 12.0 5.0

15. Wendy’s 29.2 49.7

16. Polaroid 38.0 26.9

17. Shasta 10.0 5.7

18. Meow Mix 12.3 7.6

19. Oscar Meyer 23.4 9.2

20. Crest 71.1 32.4

21. Kibbles ‘N Bits 4.4 6.1

TABLE 1.6
Impact of Advertising
Expenditure

Source: http://lib.stat.cmu.edu/
DASL/Datafiles/tvadsdat.html.
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In Chapter 1 we discussed the concept of regression in broad terms. In this chapter we
approach the subject somewhat formally. Specifically, this and the following three chapters
introduce the reader to the theory underlying the simplest possible regression analysis,
namely, the bivariate, or two-variable, regression in which the dependent variable (the
regressand) is related to a single explanatory variable (the regressor). This case is consid-
ered first, not because of its practical adequacy, but because it presents the fundamental
ideas of regression analysis as simply as possible and some of these ideas can be illustrated
with the aid of two-dimensional graphs. Moreover, as we shall see, the more general
multiple regression analysis in which the regressand is related to one or more regressors is
in many ways a logical extension of the two-variable case.

2.1 A Hypothetical Example1

As noted in Section 1.2, regression analysis is largely concerned with estimating and/or
predicting the (population) mean value of the dependent variable on the basis of the
known or fixed values of the explanatory variable(s).2 To understand this, consider the data
given in Table 2.1. The data in the table refer to a total population of 60 families in a
hypothetical community and their weekly income (X) and weekly consumption expenditure
(Y ), both in dollars. The 60 families are divided into 10 income groups (from $80 to $260)
and the weekly expenditures of each family in the various groups are as shown in the table.
Therefore, we have 10 fixed values of X and the corresponding Y values against each of the
X values; so to speak, there are 10 Y subpopulations.

There is considerable variation in weekly consumption expenditure in each income
group, which can be seen clearly from Figure 2.1. But the general picture that one gets is

Chapter

1The reader whose statistical knowledge has become somewhat rusty may want to freshen it up by
reading the statistical appendix, Appendix A, before reading this chapter.
2The expected value, or expectation, or population mean of a random variable Y is denoted by the
symbol E(Y). On the other hand, the mean value computed from a sample of values from the Y
population is denoted as Y

–
, read as Y bar.

2
Two-Variable
Regression Analysis:
Some Basic Ideas
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that, despite the variability of weekly consumption expenditure within each income
bracket, on the average, weekly consumption expenditure increases as income increases.
To see this clearly, in Table 2.1 we have given the mean, or average, weekly consumption
expenditure corresponding to each of the 10 levels of income. Thus, corresponding to the
weekly income level of $80, the mean consumption expenditure is $65, while correspond-
ing to the income level of $200, it is $137. In all we have 10 mean values for the 10 sub-
populations of Y. We call these mean values conditional expected values, as they depend
on the given values of the (conditioning) variable X. Symbolically, we denote them as
E(Y | X), which is read as the expected value of Y given the value of X (see also Table 2.2).

It is important to distinguish these conditional expected values from the unconditional
expected value of weekly consumption expenditure, E(Y ). If we add the weekly consump-
tion expenditures for all the 60 families in the population and divide this number by 60, we
get the number $121.20 ($7272/60), which is the unconditional mean, or expected, value
of weekly consumption expenditure, E(Y); it is unconditional in the sense that in arriving
at this number we have disregarded the income levels of the various families.3 Obviously,

TABLE 2.1
Weekly Family
Income X, $

X→
Y↓ 80 100 120 140 160 180 200 220 240 260

Weekly family 55 65 79 80 102 110 120 135 137 150
consumption 60 70 84 93 107 115 136 137 145 152
expenditure Y, $ 65 74 90 95 110 120 140 140 155 175

70 80 94 103 116 130 144 152 165 178
75 85 98 108 118 135 145 157 175 180
– 88 – 113 125 140 – 160 189 185
– – – 115 – – – 162 – 191

Total 325 462 445 707 678 750 685 1043 966 1211

Conditional 65 77 89 101 113 125 137 149 161 173
means of Y, 
E(Y |X )
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50

E(Y |X)

FIGURE 2.1
Conditional
distribution of
expenditure for various
levels of income
(data of Table 2.1).

3As shown in Appendix A, in general the conditional and unconditional mean values are different.
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36 Part One Single-Equation Regression Models

the various conditional expected values of Y given in Table 2.1 are different from the
unconditional expected value of Y of $121.20. When we ask the question, “What is the
expected value of weekly consumption expenditure of a family?” we get the answer $121.20
(the unconditional mean). But if we ask the question, “What is the expected value
of weekly consumption expenditure of a family whose monthly income is, say, $140?” we
get the answer $101 (the conditional mean). To put it differently, if we ask the question,
“What is the best (mean) prediction of weekly expenditure of families with a weekly
income of $140?” the answer would be $101. Thus the knowledge of the income level may
enable us to better predict the mean value of consumption expenditure than if we do not
have that knowledge.4 This probably is the essence of regression analysis, as we shall
discover throughout this text.

The dark circled points in Figure 2.1 show the conditional mean values of Y against the
various X values. If we join these conditional mean values, we obtain what is known as the
population regression line (PRL), or more generally, the population regression curve.5

More simply, it is the regression of Y on X. The adjective “population” comes from the fact
that we are dealing in this example with the entire population of 60 families. Of course, in
reality a population may have many families.

Geometrically, then, a population regression curve is simply the locus of the conditional
means of the dependent variable for the fixed values of the explanatory variable(s). More
simply, it is the curve connecting the means of the subpopulations of Y corresponding to the
given values of the regressor X. It can be depicted as in Figure 2.2.

This figure shows that for each X (i.e., income level) there is a population of Y values
(weekly consumption expenditures) that are spread around the (conditional) mean of those
Y values. For simplicity, we are assuming that these Y values are distributed symmetrically
around their respective (conditional) mean values. And the regression line (or curve) passes
through these (conditional) mean values.

With this background, the reader may find it instructive to reread the definition of
regression given in Section 1.2.

TABLE 2.2
Conditional
Probabilities p(Y | Xi)
for the Data of 
Table 2.1

X→
p(Y |Xi) 80 100 120 140 160 180 200 220 240 260

Conditional 1
5

1
6

1
5

1
7

1
6

1
6

1
5

1
7

1
6

1
7

probabilities 1
5

1
6

1
5

1
7

1
6

1
6

1
5

1
7

1
6

1
7p(Y |Xi)

1
5

1
6

1
5

1
7

1
6

1
6

1
5

1
7

1
6

1
7

1
5

1
6

1
5

1
7

1
6

1
6

1
5

1
7

1
6

1
7

1
5

1
6

1
5

1
7

1
6

1
6

1
5

1
7

1
6

1
7

– 1
6

– 1
7

1
6

1
6

– 1
7

1
6

1
7

– – – 1
7

– – – 1
7

– 1
7

Conditional 65 77 89 101 113 125 137 149 161 173
means of Y

4I am indebted to James Davidson on this perspective. See James Davidson, Econometric Theory,
Blackwell Publishers, Oxford, U.K., 2000, p. 11.
5In the present example the PRL is a straight line, but it could be a curve (see Figure 2.3).

↓
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Chapter 2 Two-Variable Regression Analysis: Some Basic Ideas 37

2.2 The Concept of Population Regression Function (PRF)

From the preceding discussion and Figures 2.1 and 2.2, it is clear that each conditional
mean E(Y | Xi ) is a function of Xi, where Xi is a given value of X. Symbolically,

E(Y | Xi ) = f (Xi ) (2.2.1)

where f (Xi ) denotes some function of the explanatory variable X. In our example,
E(Y | Xi ) is a linear function of Xi. Equation 2.2.1 is known as the conditional expectation
function (CEF) or population regression function (PRF) or population regression (PR)
for short. It states merely that the expected value of the distribution of Y given Xi is
functionally related to Xi. In simple terms, it tells how the mean or average response of Y
varies with X.

What form does the function f (Xi ) assume? This is an important question because in
real situations we do not have the entire population available for examination. The func-
tional form of the PRF is therefore an empirical question, although in specific cases theory
may have something to say. For example, an economist might posit that consumption
expenditure is linearly related to income. Therefore, as a first approximation or a working
hypothesis, we may assume that the PRF E(Y | Xi ) is a linear function of Xi, say, of the type

E(Y | Xi ) = β1 + β2 Xi (2.2.2)

where β1 and β2 are unknown but fixed parameters known as the regression coefficients; β1

and β2 are also known as intercept and slope coefficients, respectively. Equation 2.2.1 itself
is known as the linear population regression function. Some alternative expressions
used in the literature are linear population regression model or simply linear population
regression. In the sequel, the terms regression, regression equation, and regression model
will be used synonymously.
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FIGURE 2.2
Population regression
line (data of Table 2.1).
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38 Part One Single-Equation Regression Models

In regression analysis our interest is in estimating the PRFs like Equation 2.2.2, that is,
estimating the values of the unknowns β1 and β2 on the basis of observations on Y and X.
This topic will be studied in detail in Chapter 3.

2.3 The Meaning of the Term Linear

Since this text is concerned primarily with linear models like Eq. (2.2.2), it is essential to
know what the term linear really means, for it can be interpreted in two different ways.

Linearity in the Variables
The first and perhaps more “natural” meaning of linearity is that the conditional expecta-
tion of Y is a linear function of Xi, such as, for example, Eq. (2.2.2).6 Geometrically, the
regression curve in this case is a straight line. In this interpretation, a regression function
such as E(Y | Xi ) = β1 + β2 X2

i is not a linear function because the variable X appears with
a power or index of 2.

Linearity in the Parameters
The second interpretation of linearity is that the conditional expectation of Y, E(Y | Xi ),
is a linear function of the parameters, the β’s; it may or may not be linear in the variable
X.7 In this interpretation E(Y | Xi ) = β1 + β2 X2

i is a linear (in the parameter) re-
gression model. To see this, let us suppose X takes the value 3. Therefore,
E(Y | X = 3) = β1 + 9β2 , which is obviously linear in β1 and β2. All the models shown in
Figure 2.3 are thus linear regression models, that is, models linear in the parameters.

Now consider the model E(Y | Xi ) = β1 + β2
2 Xi . Now suppose X = 3; then we obtain

E(Y | Xi ) = β1 + 3β2
2 , which is nonlinear in the parameter β2. The preceding model is

an example of a nonlinear (in the parameter) regression model. We will discuss such
models in Chapter 14.

Of the two interpretations of linearity, linearity in the parameters is relevant for the
development of the regression theory to be presented shortly. Therefore, from now on, the
term “linear” regression will always mean a regression that is linear in the parameters;
the β’s (that is, the parameters) are raised to the first power only. It may or may not be linear
in the explanatory variables, the X’s. Schematically, we have Table 2.3. Thus, E(Y | Xi ) =
β1 + β2 Xi , which is linear both in the parameters and variable, is a LRM, and so is
E(Y | Xi ) = β1 + β2 X2

i , which is linear in the parameters but nonlinear in variable X.

6A function Y = f (X) is said to be linear in X if X appears with a power or index of 1 only (that is,
terms such as X2, 

√
X , and so on, are excluded) and is not multiplied or divided by any other variable

(for example, X · Z or X/Z, where Z is another variable). If Y depends on X alone, another way to
state that Y is linearly related to X is that the rate of change of Y with respect to X (i.e., the slope, or
derivative, of Y with respect to X, dY/dX) is independent of the value of X. Thus, if Y = 4X, dY/dX = 4,
which is independent of the value of X. But if Y = 4X2, dY/dX = 8X , which is not independent of
the value taken by X. Hence this function is not linear in X.
7A function is said to be linear in the parameter, say, β1, if β1 appears with a power of 1 only and is
not multiplied or divided by any other parameter (for example, β1β2, β2/β1, and so on).
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Chapter 2 Two-Variable Regression Analysis: Some Basic Ideas 39

2.4 Stochastic Specification of PRF

It is clear from Figure 2.1 that, as family income increases, family consumption expenditure
on the average increases, too. But what about the consumption expenditure of an individual
family in relation to its (fixed) level of income? It is obvious from Table 2.1 and Figure 2.1
that an individual family’s consumption expenditure does not necessarily increase as the
income level increases. For example, from Table 2.1 we observe that corresponding to the
income level of $100 there is one family whose consumption expenditure of $65 is less than
the consumption expenditures of two families whose weekly income is only $80. But notice
that the average consumption expenditure of families with a weekly income of $100 is
greater than the average consumption expenditure of families with a weekly income of
$80 ($77 versus $65).

What, then, can we say about the relationship between an individual family’s consump-
tion expenditure and a given level of income? We see from Figure 2.1 that, given the
income level of Xi , an individual family’s consumption expenditure is clustered around the

Quadratic

Y

X

+Y = X +β1 β2 X2β3

+Y = X +β1 β2 X2β3 + X3β4

Cubic

Y

X

Exponential

Y

X

+ Xβ1 β2Y = e

FIGURE 2.3
Linear-in-parameter
functions.

TABLE 2.3
Linear Regression
Models

Model Linear in Parameters? Model Linear in Variables?

Yes No

Yes LRM LRM
No NLRM NLRM

Note: LRM = linear regression model
NLRM = nonlinear regression model
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40 Part One Single-Equation Regression Models

average consumption of all families at that Xi , that is, around its conditional expectation.
Therefore, we can express the deviation of an individual Yi around its expected value as
follows:

ui = Yi − E(Y | Xi )

or

Yi = E(Y | Xi ) + ui (2.4.1)

where the deviation ui is an unobservable random variable taking positive or negative
values. Technically, ui is known as the stochastic disturbance or stochastic error term.

How do we interpret Equation 2.4.1? We can say that the expenditure of an individual
family, given its income level, can be expressed as the sum of two components:
(1) E(Y | Xi ), which is simply the mean consumption expenditure of all the families with
the same level of income. This component is known as the systematic, or deterministic,
component, and (2) ui , which is the random, or nonsystematic, component. We shall
examine shortly the nature of the stochastic disturbance term, but for the moment assume
that it is a surrogate or proxy for all the omitted or neglected variables that may affect Y but
are not (or cannot be) included in the regression model.

If E(Y | Xi ) is assumed to be linear in Xi , as in Eq. (2.2.2), Eq. (2.4.1) may be written as

Yi = E(Y | Xi ) + ui

= β1 + β2 Xi + ui (2.4.2)

Equation 2.4.2 posits that the consumption expenditure of a family is linearly related to its
income plus the disturbance term. Thus, the individual consumption expenditures, given
X = $80 (see Table 2.1), can be expressed as

Y1 = 55 = β1 + β2(80) + u1

Y2 = 60 = β1 + β2(80) + u2

Y3 = 65 = β1 + β2(80) + u3 (2.4.3)

Y4 = 70 = β1 + β2(80) + u4

Y5 = 75 = β1 + β2(80) + u5

Now if we take the expected value of Eq. (2.4.1) on both sides, we obtain

E(Yi | Xi ) = E[E(Y | Xi )] + E(ui | Xi )

= E(Y | Xi ) + E(ui | Xi ) (2.4.4)

where use is made of the fact that the expected value of a constant is that constant itself.8

Notice carefully that in Equation 2.4.4 we have taken the conditional expectation, condi-
tional upon the given X’s.

Since E(Yi | Xi ) is the same thing as E(Y | Xi ), Eq. (2.4.4) implies that

E(ui | Xi ) = 0 (2.4.5)

8See Appendix A for a brief discussion of the properties of the expectation operator E. Note that
E(Y |Xi), once the value of Xi is fixed, is a constant.
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Chapter 2 Two-Variable Regression Analysis: Some Basic Ideas 41

Thus, the assumption that the regression line passes through the conditional means of Y
(see Figure 2.2) implies that the conditional mean values of ui (conditional upon the given
X’s) are zero.

From the previous discussion, it is clear Eq. (2.2.2) and Eq. (2.4.2) are equivalent forms
if E(ui | Xi ) = 0.9 But the stochastic specification in Eq. (2.4.2) has the advantage that it
clearly shows that there are other variables besides income that affect consumption expen-
diture and that an individual family’s consumption expenditure cannot be fully explained
only by the variable(s) included in the regression model.

2.5 The Significance of the Stochastic Disturbance Term

As noted in Section 2.4, the disturbance term ui is a surrogate for all those variables that
are omitted from the model but that collectively affect Y. The obvious question is: Why not
introduce these variables into the model explicitly? Stated otherwise, why not develop a
multiple regression model with as many variables as possible? The reasons are many.

1. Vagueness of theory: The theory, if any, determining the behavior of Y may be, and
often is, incomplete. We might know for certain that weekly income X influences weekly
consumption expenditure Y, but we might be ignorant or unsure about the other variables
affecting Y. Therefore, ui may be used as a substitute for all the excluded or omitted vari-
ables from the model.

2. Unavailability of data: Even if we know what some of the excluded variables are and
therefore consider a multiple regression rather than a simple regression, we may not have
quantitative information about these variables. It is a common experience in empirical
analysis that the data we would ideally like to have often are not available. For example, in
principle we could introduce family wealth as an explanatory variable in addition to the in-
come variable to explain family consumption expenditure. But unfortunately, information
on family wealth generally is not available. Therefore, we may be forced to omit the wealth
variable from our model despite its great theoretical relevance in explaining consumption
expenditure.

3. Core variables versus peripheral variables: Assume in our consumption-income ex-
ample that besides income X1, the number of children per family X2, sex X3, religion X4,
education X5, and geographical region X6 also affect consumption expenditure. But it is quite
possible that the joint influence of all or some of these variables may be so small and at best
nonsystematic or random that as a practical matter and for cost considerations it does not pay
to introduce them into the model explicitly. One hopes that their combined effect can be
treated as a random variable ui .10

4. Intrinsic randomness in human behavior: Even if we succeed in introducing all the
relevant variables into the model, there is bound to be some “intrinsic” randomness in in-
dividual Y ’s that cannot be explained no matter how hard we try. The disturbances, the u’s,
may very well reflect this intrinsic randomness.

5. Poor proxy variables: Although the classical regression model (to be developed in
Chapter 3) assumes that the variables Y and X are measured accurately, in practice the data

9As a matter of fact, in the method of least squares to be developed in Chapter 3, it is assumed
explicitly that E(ui |Xi) = 0. See Sec. 3.2.
10A further difficulty is that variables such as sex, education, and religion are difficult to quantify.
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42 Part One Single-Equation Regression Models

may be plagued by errors of measurement. Consider, for example, Milton Friedman’s well-
known theory of the consumption function.11 He regards permanent consumption (Y p) as
a function of permanent income (X p). But since data on these variables are not directly ob-
servable, in practice we use proxy variables, such as current consumption (Y ) and current
income (X), which can be observable. Since the observed Y and X may not equal Y p and
X p, there is the problem of errors of measurement. The disturbance term u may in this case
then also represent the errors of measurement. As we will see in a later chapter, if there are
such errors of measurement, they can have serious implications for estimating the regres-
sion coefficients, the β’s.

6. Principle of parsimony: Following Occam’s razor,12 we would like to keep our re-
gression model as simple as possible. If we can explain the behavior of Y “substantially”
with two or three explanatory variables and if our theory is not strong enough to suggest
what other variables might be included, why introduce more variables? Let ui represent all
other variables. Of course, we should not exclude relevant and important variables just to
keep the regression model simple.

7. Wrong functional form: Even if we have theoretically correct variables explaining a
phenomenon and even if we can obtain data on these variables, very often we do not know
the form of the functional relationship between the regressand and the regressors. Is con-
sumption expenditure a linear (invariable) function of income or a nonlinear (invariable)
function? If it is the former, Yi = β1 + β2 Xi + ui is the proper functional relationship
between Y and X, but if it is the latter, Yi = β1 + β2 Xi + β3 X2

i + ui may be the correct
functional form. In two-variable models the functional form of the relationship can often
be judged from the scattergram. But in a multiple regression model, it is not easy to deter-
mine the appropriate functional form, for graphically we cannot visualize scattergrams in
multiple dimensions.

For all these reasons, the stochastic disturbances ui assume an extremely critical role in
regression analysis, which we will see as we progress.

2.6 The Sample Regression Function (SRF)

By confining our discussion so far to the population of Y values corresponding to the fixed
X’s, we have deliberately avoided sampling considerations (note that the data of Table 2.1
represent the population, not a sample). But it is about time to face up to the sampling prob-
lems, for in most practical situations what we have is but a sample of Y values correspond-
ing to some fixed X’s. Therefore, our task now is to estimate the PRF on the basis of the
sample information.

As an illustration, pretend that the population of Table 2.1 was not known to us and the
only information we had was a randomly selected sample of Y values for the fixed X’s
as given in Table 2.4. Unlike Table 2.1, we now have only one Y value corresponding to
the given X’s; each Y (given Xi) in Table 2.4 is chosen randomly from similar Y’s
corresponding to the same Xi from the population of Table 2.1.

11Milton Friedman, A Theory of the Consumption Function, Princeton University Press, Princeton, N.J.,
1957.
12“That descriptions be kept as simple as possible until proved inadequate,” The World of Mathematics,
vol. 2, J. R. Newman (ed.), Simon & Schuster, New York, 1956, p. 1247, or, “Entities should not be
multiplied beyond necessity,” Donald F. Morrison, Applied Linear Statistical Methods, Prentice Hall,
Englewood Cliffs, N.J., 1983, p. 58.
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Chapter 2 Two-Variable Regression Analysis: Some Basic Ideas 43

The question is: From the sample of Table 2.4 can we predict the average weekly con-
sumption expenditure Y in the population as a whole corresponding to the chosen X’s? In
other words, can we estimate the PRF from the sample data? As the reader surely suspects,
we may not be able to estimate the PRF “accurately” because of sampling fluctuations. To
see this, suppose we draw another random sample from the population of Table 2.1, as
presented in Table 2.5.

Plotting the data of Tables 2.4 and 2.5, we obtain the scattergram given in Figure 2.4. In
the scattergram two sample regression lines are drawn so as to “fit” the scatters reasonably
well: SRF1 is based on the first sample, and SRF2 is based on the second sample. Which of
the two regression lines represents the “true” population regression line? If we avoid the
temptation of looking at Figure 2.1, which purportedly represents the PR, there is no way
we can be absolutely sure that either of the regression lines shown in Figure 2.4 represents
the true population regression line (or curve). The regression lines in Figure 2.4 are known
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TABLE 2.4
A Random Sample from the
Population of Table 2.1

Y X

70 80
65 100
90 120
95 140

110 160
115 180
120 200
140 220
155 240
150 260

TABLE 2.5
Another Random Sample from the
Population of Table 2.1

Y X

55 80
88 100
90 120
80 140

118 160
120 180
145 200
135 220
145 240
175 260
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44 Part One Single-Equation Regression Models

as the sample regression lines. Supposedly they represent the population regression line,
but because of sampling fluctuations they are at best an approximation of the true PR. In
general, we would get N different SRFs for N different samples, and these SRFs are not
likely to be the same.

Now, analogously to the PRF that underlies the population regression line, we can
develop the concept of the sample regression function (SRF) to represent the sample
regression line. The sample counterpart of Eq. (2.2.2) may be written as 

Ŷi = β̂1 + β̂2 Xi (2.6.1)

where Ŷ is read as “Y-hat’’ or “Y-cap’’
Ŷi = estimator of E(Y | Xi )
β̂1 = estimator of β1

β̂2 = estimator of β2

Note that an estimator, also known as a (sample) statistic, is simply a rule or formula or
method that tells how to estimate the population parameter from the information provided by
the sample at hand. A particular numerical value obtained by the estimator in an application
is known as an estimate.13 It should be noted that an estimator is random, but an estimate is
nonrandom. (Why?)

Now just as we expressed the PRF in two equivalent forms, Eq. (2.2.2) and Eq. (2.4.2),
we can express the SRF in Equation 2.6.1 in its stochastic form as follows:

Yi = β̂1 + β̂2 Xi + û i (2.6.2)

where, in addition to the symbols already defined, û i denotes the (sample) residual term.
Conceptually û i is analogous to ui and can be regarded as an estimate of ui . It is introduced
in the SRF for the same reasons as ui was introduced in the PRF.

To sum up, then, we find our primary objective in regression analysis is to estimate the
PRF

(2.4.2)

on the basis of the SRF

(2.6.2)

because more often than not our analysis is based upon a single sample from some popula-
tion. But because of sampling fluctuations, our estimate of the PRF based on the SRF is at
best an approximate one. This approximation is shown diagrammatically in Figure 2.5.

Yi = β̂1 + β̂xi + ûi

Yi = β1 + β2 Xi + ui

13As noted in the Introduction, a hat above a variable will signify an estimator of the relevant
population value.
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For X = Xi , we have one (sample) observation, Y = Yi . In terms of the SRF, the
observed Yi can be expressed as

Yi = Ŷi + û i (2.6.3)

and in terms of the PRF, it can be expressed as

Yi = E(Y | Xi ) + ui (2.6.4)

Now obviously in Figure 2.5 Ŷi overestimates the true E(Y | Xi ) for the Xi shown therein.
By the same token, for any Xi to the left of the point A, the SRF will underestimate the true
PRF. But the reader can readily see that such over- and underestimation is inevitable
because of sampling fluctuations.

The critical question now is: Granted that the SRF is but an approximation of the PRF,
can we devise a rule or a method that will make this approximation as “close” as possible?
In other words, how should the SRF be constructed so that β̂1 is as “close” as possible to
the true β1 and β̂2 is as “close” as possible to the true β2 even though we will never know
the true β1 and β2?

The answer to this question will occupy much of our attention in Chapter 3. We note
here that we can develop procedures that tell us how to construct the SRF to mirror the PRF
as faithfully as possible. It is fascinating to consider that this can be done even though we
never actually determine the PRF itself.

2.7 Illustrative Examples

We conclude this chapter with two examples.
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EXAMPLE 2.1
Mean Hourly
Wage by
Education

Table 2.6 gives data on the level of education (measured by the number of years of school-
ing), the mean hourly wages earned by people at each level of education, and the number
of people at the stated level of education. Ernst Berndt originally obtained the data
presented in the table, and he derived these data from the population survey conducted
in May 1985.14

Plotting the (conditional) mean wage against education, we obtain the picture in
Figure 2.6. The regression curve in the figure shows how mean wages vary with the level
of education; they generally increase with the level of education, a finding one should not
find surprising. We will study in a later chapter how variables besides education can also
affect the mean wage.

Years of Schooling Mean Wage, $ Number of People

6 4.4567 3
7 5.7700 5
8 5.9787 15
9 7.3317 12

10 7.3182 17
11 6.5844 27
12 7.8182 218
13 7.8351 37
14 11.0223 56
15 10.6738 13
16 10.8361 70
17 13.6150 24
18 13.5310 31

Total 528

181614121086
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Mean value
FIGURE 2.6
Relationship between
mean wages and
education.

TABLE 2.6
Mean Hourly Wage
by Education

14Ernst R. Berndt, The Practice of Econometrics: Classic and Contemporary, Addison Wesley, Reading,
Mass., 1991. Incidentally, this is an excellent book that the reader may want to read to find out how
econometricians go about doing research.

Source: Arthur S.
Goldberger, Introductory
Econometrics, Harvard
University Press, Cambridge,
Mass., 1998, Table 1.1, p. 5
(adapted).
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Chapter 2 Two-Variable Regression Analysis: Some Basic Ideas 47

EXAMPLE 2.2
Mathematics SAT
Scores by Family
Income

Table 2.10 in Exercise 2.17 provides data on mean SAT (Scholastic Aptitude Test) scores on
critical reading, mathematics, and writing for college-bound seniors based on 947,347
students taking the SAT examination in 2007. Plotting the mean mathematics scores on
mean family income, we obtain the picture in Figure 2.7.

Note: Because of the open-ended income brackets for the first and last income
categories shown in Table 2.10, the lowest average family income is assumed to be
$5,000 and the highest average family income is assumed to be $150,000.
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FIGURE 2.7
Relationship between
mean mathematics
SAT scores and mean
family income.

As Figure 2.7 shows, the average mathematics score increases as average family
income increases. Since the number of students taking the SAT examination is quite
large, it probably represents the entire population of seniors taking the examination.
Therefore, the regression line sketched in Figure 2.7 probably represents the population
regression line.

There may be several reasons for the observed positive relationship between the two
variables. For example, one might argue that students with higher family income can
better afford private tutoring for the SAT examinations. In addition, students with higher
family income are more likely to have parents who are highly educated. It is also possible
that students with higher mathematics scores come from better schools. The reader can
provide other explanations for the observed positive relationship between the two
variables.
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48 Part One Single-Equation Regression Models

EXERCISES

Summary and
Conclusions

1. The key concept underlying regression analysis is the concept of the conditional
expectation function (CEF), or population regression function (PRF). Our objective
in regression analysis is to find out how the average value of the dependent variable
(or regressand) varies with the given value of the explanatory variable (or regressor).

2. This book largely deals with linear PRFs, that is, regressions that are linear in the
parameters. They may or may not be linear in the regressand or the regressors.

3. For empirical purposes, it is the stochastic PRF that matters. The stochastic
disturbance term ui plays a critical role in estimating the PRF.

4. The PRF is an idealized concept, since in practice one rarely has access to the entire
population of interest. Usually, one has a sample of observations from the population.
Therefore, one uses the stochastic sample regression function (SRF) to estimate the
PRF. How this is actually accomplished is discussed in Chapter 3.

Questions
2.1. What is the conditional expectation function or the population regression function?

2.2. What is the difference between the population and sample regression functions? Is
this a distinction without difference?

2.3. What is the role of the stochastic error term ui in regression analysis? What is the
difference between the stochastic error term and the residual, û i ?

2.4. Why do we need regression analysis? Why not simply use the mean value of the
regressand as its best value?

2.5. What do we mean by a linear regression model?

2.6. Determine whether the following models are linear in the parameters, or the
variables, or both. Which of these models are linear regression models?

Model Descriptive Title

a. Yi = β1 + β2

(
1
Xi

)
+ ui Reciprocal

b. Yi = β1 + β2 ln Xi + ui Semilogarithmic
c. ln Yi = β1 + β2 Xi + ui Inverse semilogarithmic
d. ln Yi = ln β1 + β2 ln Xi + ui Logarithmic or double logarithmic

e. ln Yi = β1 − β2

(
1
Xi

)
+ ui Logarithmic reciprocal

Note: ln = natural log (i.e., log to the base e); ui is the stochastic disturbance term. We will study these models in Chapter 6.

2.7. Are the following models linear regression models? Why or why not?

a. Yi = eβ1+β2 Xi +u i

b. Yi = 1

1 + eβ1+β2 Xi +u i

c. ln Yi = β1 + β2

(
1

Xi

)
+ ui

d. Yi = β1 + (0.75 − β1)e−β2(Xi −2) + ui

e. Yi = β1 + β3
2 Xi + ui
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2.8. What is meant by an intrinsically linear regression model? If β2 in Exercise 2.7d
were 0.8, would it be a linear or nonlinear regression model?

2.9. Consider the following nonstochastic models (i.e., models without the stochastic
error term). Are they linear regression models? If not, is it possible, by suitable
algebraic manipulations, to convert them into linear models?

a. Yi = 1

β1 + β2 Xi

b. Yi = Xi

β1 + β2 Xi

c. Yi = 1

1 + exp (−β1 − β2 Xi )

2.10. You are given the scattergram in Figure 2.8 along with the regression line. What
general conclusion do you draw from this diagram? Is the regression line sketched in
the diagram a population regression line or the sample regression line?

2.11. From the scattergram given in Figure 2.9, what general conclusions do you draw?
What is the economic theory that underlies this scattergram? (Hint: Look up any
international economics textbook and read up on the Heckscher–Ohlin model of
trade.)

2.12. What does the scattergram in Figure 2.10 reveal? On the basis of this diagram, would
you argue that minimum wage laws are good for economic well-being?

2.13. Is the regression line shown in Figure I.3 of the Introduction the PRF or the SRF?
Why? How would you interpret the scatterpoints around the regression line? Besides
GDP, what other factors, or variables, might determine personal consumption
expenditure?
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FIGURE 2.8
Growth rates of real
manufacturing wages
and exports. Data are
for 50 developing
countries during
1970–90.

Source: The World Bank, World
Development Report 1995,
p. 55. The original source is
UNIDO data, World Bank data.
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and GNP per capita.
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17 developing
countries. Years vary
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international prices.

Source: World Bank, World
Development Report 1995,
p. 75.

Empirical Exercises
2.14. You are given the data in Table 2.7 for the United States for years 1980–2006.

a. Plot the male civilian labor force participation rate against male civilian unemploy-
ment rate. Eyeball a regression line through the scatter points. A priori, what is the ex-
pected relationship between the two and what is the underlying economic theory?
Does the scattergram support the theory?
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b. Repeat (a) for females.

c. Now plot both the male and female labor participation rates against average hourly
earnings (in 1982 dollars). (You may use separate diagrams.) Now what do you find?
And how would you rationalize your finding?

d. Can you plot the labor force participation rate against the unemployment rate and
the average hourly earnings simultaneously? If not, how would you verbalize the
relationship among the three variables?

2.15. Table 2.8 gives data on expenditure on food and total expenditure, measured in
rupees, for a sample of 55 rural households from India. (In early 2000, a U.S. dollar
was about 40 Indian rupees.)
a. Plot the data, using the vertical axis for expenditure on food and the horizontal axis for

total expenditure, and sketch a regression line through the scatterpoints.

b. What broad conclusions can you draw from this example?

Year CLFPRM1 CLFPRF2 UNRM3 UNRF4 AHE825 AHE6

1980 77.40000 51.50000 6.900000 7.400000 7.990000 6.840000
1981 77.00000 52.10000 7.400000 7.900000 7.880000 7.430000
1982 76.60000 52.60000 9.900000 9.400000 7.860000 7.860000
1983 76.40000 52.90000 9.900000 9.200000 7.950000 8.190000
1984 76.40000 53.60000 7.400000 7.600000 7.950000 8.480000
1985 76.30000 54.50000 7.000000 7.400000 7.910000 8.730000
1986 76.30000 55.30000 6.900000 7.100000 7.960000 8.920000
1987 76.20000 56.00000 6.200000 6.200000 7.860000 9.130000
1988 76.20000 56.60000 5.500000 5.600000 7.810000 9.430000
1989 76.40000 57.40000 5.200000 5.400000 7.750000 9.800000
1990 76.40000 57.50000 5.700000 5.500000 7.660000 10.190000
1991 75.80000 57.40000 7.200000 6.400000 7.580000 10.500000
1992 75.80000 57.80000 7.900000 7.000000 7.550000 10.760000
1993 75.40000 57.90000 7.200000 6.600000 7.520000 11.030000
1994 75.10000 58.80000 6.200000 6.000000 7.530000 11.320000
1995 75.00000 58.90000 5.600000 5.600000 7.530000 11.640000
1996 74.90000 59.30000 5.400000 5.400000 7.570000 12.030000
1997 75.00000 59.80000 4.900000 5.000000 7.680000 12.490000
1998 74.90000 59.80000 4.400000 4.600000 7.890000 13.000000
1999 74.70000 60.00000 4.100000 4.300000 8.000000 13.470000
2000 74.80000 59.90000 3.900000 4.100000 8.030000 14.000000
2001 74.40000 59.80000 4.800000 4.700000 8.110000 14.530000
2002 74.10000 59.60000 5.900000 5.600000 8.240000 14.950000
2003 73.50000 59.50000 6.300000 5.700000 8.270000 15.350000
2004 73.30000 59.20000 5.600000 5.400000 8.230000 15.670000
2005 73.30000 59.30000 5.100000 5.100000 8.170000 16.110000
2006 73.50000 59.40000 4.600000 4.600000 8.230000 16.730000

Table citations below refer to the source document.
1CLFPRM, Civilian labor force participation rate, male (%), Table B-39, p. 277.
2CLFPRF, Civilian labor force participation rate, female (%), Table B-39, p. 277.
3UNRM, Civilian unemployment rate, male (%) Table B-42, p. 280.
4UNRF, Civilian unemployment rate, female (%) Table B-42, p. 280.
5AHE82, Average hourly earnings (1982 dollars), Table B-47, p. 286.
6AHE, Average hourly earnings (current dollars), Table B-47, p. 286.

TABLE 2.7
Labor Force
Participation Data
for U.S. for
1980–2006

Source: Economic Report of the
President, 2007.
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c. A priori, would you expect expenditure on food to increase linearly as total expendi-
ture increases regardless of the level of total expenditure? Why or why not? You can
use total expenditure as a proxy for total income.

2.16. Table 2.9 gives data on mean Scholastic Aptitude Test (SAT) scores for college-
bound seniors for 1972–2007. These data represent the critical reading and mathe-
matics test scores for both male and female students. The writing category was
introduced in 2006. Therefore, these data are not included.
a. Use the horizontal axis for years and the vertical axis for SAT scores to plot the critical

reading and math scores for males and females separately.

b. What general conclusions do you draw from these graphs?

c. Knowing the critical reading scores of males and females, how would you go about
predicting their math scores?

d. Plot the female math scores against the male math scores. What do you observe?

Food Total Food Total
Observation Expenditure Expenditure Observation Expenditure Expenditure

1 217.0000 382.0000 29 390.0000 655.0000
2 196.0000 388.0000 30 385.0000 662.0000
3 303.0000 391.0000 31 470.0000 663.0000
4 270.0000 415.0000 32 322.0000 677.0000
5 325.0000 456.0000 33 540.0000 680.0000
6 260.0000 460.0000 34 433.0000 690.0000
7 300.0000 472.0000 35 295.0000 695.0000
8 325.0000 478.0000 36 340.0000 695.0000
9 336.0000 494.0000 37 500.0000 695.0000

10 345.0000 516.0000 38 450.0000 720.0000
11 325.0000 525.0000 39 415.0000 721.0000
12 362.0000 554.0000 40 540.0000 730.0000
13 315.0000 575.0000 41 360.0000 731.0000
14 355.0000 579.0000 42 450.0000 733.0000
15 325.0000 585.0000 43 395.0000 745.0000
16 370.0000 586.0000 44 430.0000 751.0000
17 390.0000 590.0000 45 332.0000 752.0000
18 420.0000 608.0000 46 397.0000 752.0000
19 410.0000 610.0000 47 446.0000 769.0000
20 383.0000 616.0000 48 480.0000 773.0000
21 315.0000 618.0000 49 352.0000 773.0000
22 267.0000 623.0000 50 410.0000 775.0000
23 420.0000 627.0000 51 380.0000 785.0000
24 300.0000 630.0000 52 610.0000 788.0000
25 410.0000 635.0000 53 530.0000 790.0000
26 220.0000 640.0000 54 360.0000 795.0000
27 403.0000 648.0000 55 305.0000 801.0000
28 350.0000 650.0000

Source: Chandan Mukherjee, Howard White, and Marc Wuyts, Econometrics and Data Analysis for Developing Countries, Routledge, New York, 1998, p. 457.

TABLE 2.8 Food and Total Expenditure (Rupees)
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2.17. Table 2.10 presents data on mean SAT reasoning test scores classified by income for
three kinds of tests: critical reading, mathematics, and writing. In Example 2.2, we
presented Figure 2.7, which plotted mean math scores on mean family income.
a. Refer to Figure 2.7 and prepare a similar graph relating average critical reading scores

to average family income. Compare your results with those shown in Figure 2.7.

Critical Reading Mathematics

Year Male Female Total Male Female Total

1972 531 529 530 527 489 509
1973 523 521 523 525 489 506
1974 524 520 521 524 488 505
1975 515 509 512 518 479 498
1976 511 508 509 520 475 497
1977 509 505 507 520 474 496
1978 511 503 507 517 474 494
1979 509 501 505 516 473 493
1980 506 498 502 515 473 492
1981 508 496 502 516 473 492
1982 509 499 504 516 473 493
1983 508 498 503 516 474 494
1984 511 498 504 518 478 497
1985 514 503 509 522 480 500
1986 515 504 509 523 479 500
1987 512 502 507 523 481 501
1988 512 499 505 521 483 501
1989 510 498 504 523 482 502
1990 505 496 500 521 483 501
1991 503 495 499 520 482 500
1992 504 496 500 521 484 501
1993 504 497 500 524 484 503
1994 501 497 499 523 487 504
1995 505 502 504 525 490 506
1996 507 503 505 527 492 508
1997 507 503 505 530 494 511
1998 509 502 505 531 496 512
1999 509 502 505 531 495 511
2000 507 504 505 533 498 514
2001 509 502 506 533 498 514
2002 507 502 504 534 500 516
2003 512 503 507 537 503 519
2004 512 504 508 537 501 518
2005 513 505 508 538 504 520
2006 505 502 503 536 502 518
2007 504 502 502 533 499 515

Note: For 1972–1986 a formula was applied to the original mean and standard deviation to convert the mean to the recentered scale. For
1987–1995 individual student scores were converted to the recentered scale and then the mean was recomputed. From 1996–1999, nearly
all students received scores on the recentered scale. Any score on the original scale was converted to the recentered scale prior to
computing the mean. From 2000–2007, all scores are reported on the recentered scale.

TABLE 2.9
Total Group Mean
SAT Reasoning Test
Scores: College-
Bound Seniors,
1972–2007

Source: College Board, 2007.

guj75772_ch02.qxd  23/08/2008  12:42 PM  Page 53



54 Part One Single-Equation Regression Models

Family Number of Critical Reading Mathematics Writing

Income ($) Test Takers Mean SD Mean SD Mean SD

�10,000 40610 427 107 451 122 423 104
10000–20000 72745 453 106 472 113 446 102
20000–30000 61244 454 102 465 107 444 97
30000–40000 83685 476 103 485 106 466 98
40000–50000 75836 489 103 486 105 477 99
50000–60000 80060 497 102 504 104 486 98
60000–70000 75763 504 102 511 103 493 98
70000–80000 81627 508 101 516 103 498 98
80000–100000 130752 520 102 529 104 510 100
�100000 245025 544 105 556 107 537 103

TABLE 2.10
SAT Reasoning Test
Classified by Family
Income

Source: College Board, 2007
College-Bound Seniors, 
Table 11.

b. Repeat (a), relating average writing scores to average family income and compare your
results with the other two graphs.

c. Looking at the three graphs, what general conclusion can you draw?
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As noted in Chapter 2, our first task is to estimate the population regression function (PRF)
on the basis of the sample regression function (SRF) as accurately as possible. In AppendixA
we have discussed two generally used methods of estimation: (1) ordinary least squares
(OLS) and (2) maximum likelihood (ML). By and large, it is the method of OLS that is used
extensively in regression analysis primarily because it is intuitively appealing and mathe-
matically much simpler than the method of maximum likelihood. Besides, as we will show
later, in the linear regression context the two methods generally give similar results.

3.1 The Method of Ordinary Least Squares

The method of ordinary least squares is attributed to Carl Friedrich Gauss, a German math-
ematician. Under certain assumptions (discussed in Section 3.2), the method of least
squares has some very attractive statistical properties that have made it one of the most
powerful and popular methods of regression analysis. To understand this method, we first
explain the least-squares principle.

Recall the two-variable PRF:

Yi = β1 + β2 Xi + ui (2.4.2)

However, as we noted in Chapter 2, the PRF is not directly observable. We estimate it from
the SRF:

Yi = β̂1 + β̂2 Xi + û i (2.6.2)

= Ŷi + û i (2.6.3)

where Ŷi is the estimated (conditional mean) value of Yi .
But how is the SRF itself determined? To see this, let us proceed as follows. First,

express Equation 2.6.3 as

ûi = Yi − Ŷi

= Yi − β̂1 − β̂2 Xi

(3.1.1)

Chapter 3
Two-Variable
Regression Model: The
Problem of Estimation
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which shows that the û i (the residuals) are simply the differences between the actual and
estimated Y values.

Now given n pairs of observations on Y and X, we would like to determine the SRF in
such a manner that it is as close as possible to the actual Y. To this end, we may adopt the
following criterion: Choose the SRF in such a way that the sum of the residuals∑

û i = ∑
(Yi − Ŷi ) is as small as possible. Although intuitively appealing, this is not a

very good criterion, as can be seen in the hypothetical scattergram shown in Figure 3.1.
If we adopt the criterion of minimizing

∑
û i , Figure 3.1 shows that the residuals û2

and û3 as well as the residuals û1 and û4 receive the same weight in the sum
(û1 + û2 + û3 + û4), although the first two residuals are much closer to the SRF than the
latter two. In other words, all the residuals receive equal importance no matter how close or
how widely scattered the individual observations are from the SRF. A consequence of this
is that it is quite possible that the algebraic sum of the û i is small (even zero) although the
û i are widely scattered about the SRF. To see this, let û1, û2, û3, and û4 in Figure 3.1
assume the values of 10, −2, +2, and −10, respectively. The algebraic sum of these resid-
uals is zero although û1 and û4 are scattered more widely around the SRF than û2 and û3.

We can avoid this problem if we adopt the least-squares criterion, which states that the SRF
can be fixed in such a way that

∑
û2

i =
∑

(Yi − Ŷi )
2

=
∑

(Yi − β̂1 − β̂2 Xi )
2

(3.1.2)

is as small as possible, where û2
i are the squared residuals. By squaring û i , this method

gives more weight to residuals such as û1 and û4 in Figure 3.1 than the residuals û2 and û3.
As noted previously, under the minimum 

∑
û i criterion, the sum can be small even though

the û i are widely spread about the SRF. But this is not possible under the least-squares pro-
cedure, for the larger the û i (in absolute value), the larger the 

∑
û2

i . A further justification
for the least-squares method lies in the fact that the estimators obtained by it have some
very desirable statistical properties, as we shall see shortly.

SRF

X1

Y

X

Yi = β β1 + 2Xi

Yi

X2 X3 X4

u1

u2

u3

u4

FIGURE 3.1
Least-squares
criterion.
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It is obvious from Equation 3.1.2 that∑
û2

i = f (β̂1, β̂2) (3.1.3)

that is, the sum of the squared residuals is some function of the estimators β̂1 and β̂2. For
any given set of data, choosing different values for β̂1 and β̂2 will give different û’s and
hence different values of 

∑
û2

i . To see this clearly, consider the hypothetical data on Y and
X given in the first two columns of Table 3.1. Let us now conduct two experiments. In
experiment 1, let β̂1 = 1.572 and β̂2 = 1.357 (let us not worry right now about how we got
these values; say, it is just a guess).1 Using these β̂ values and the X values given in column (2)
of Table 3.1, we can easily compute the estimated Yi given in column (3) of the table as Ŷ1i

(the subscript 1 is to denote the first experiment). Now let us conduct another experiment,
but this time using the values of β̂1 = 3 and β̂2 = 1. The estimated values of Yi from this
experiment are given as Ŷ2i in column (6) of Table 3.1. Since the β̂ values in the two
experiments are different, we get different values for the estimated residuals, as shown in
the table; û1i are the residuals from the first experiment and û2i from the second experi-
ment. The squares of these residuals are given in columns (5) and (8). Obviously, as
expected from Equation 3.1.3, these residual sums of squares are different since they are
based on different sets of β̂ values.

Now which sets of β̂ values should we choose? Since the β̂ values of the first experiment
give us a lower

∑
û2

i (= 12.214) than that obtained from the β̂ values of the second experi-
ment (= 14), we might say that the β̂’s of the first experiment are the “best” values. But how
do we know? For, if we had infinite time and infinite patience, we could have conducted
many more such experiments, choosing different sets of β̂’s each time and comparing the re-
sulting

∑
û2

i and then choosing that set of β̂ values that gives us the least possible value of∑
û2

i assuming of course that we have considered all the conceivable values of β1 and β2.

But since time, and certainly patience, are generally in short supply, we need to consider
some shortcuts to this trial-and-error process. Fortunately, the method of least squares pro-
vides us such a shortcut. The principle or the method of least squares chooses β̂1 and β̂2

in such a manner that, for a given sample or set of data,
∑

û2
i is as small as possible. In other

words, for a given sample, the method of least squares provides us with unique estimates of
β1 and β2 that give the smallest possible value of

∑
û2

i . How is this accomplished? This is a

TABLE 3.1
Experimental
Determination of
the SRF

Yi Xt Ŷ1i û1i û1i
2 Ŷ2i û2i û2i

2

(1) (2) (3) (4) (5) (6) (7) (8)

4 1 2.929 1.071 1.147 4 0 0
5 4 7.000 −2.000 4.000 7 −2 4
7 5 8.357 −1.357 1.841 8 −1 1

12 6 9.714 2.286 5.226 9 3 9

Sum: 28 16 0.0 12.214 0 14

Notes: Ŷ1i = 1.572 + 1.357Xi (i.e., β̂1 = 1.572 and  β̂2 = 1.357)
Ŷ2i = 3.0 + 1.0Xi (i.e.,  β̂1 = 3 and  β̂2 = 1.0)
û1i = (Yi − Ŷ1i)
û2i = (Yi − Ŷ2i)

1For the curious, these values are obtained by the method of least squares, discussed shortly. See
Eqs. (3.1.6) and (3.1.7).
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straightforward exercise in differential calculus. As shown in Appendix 3A, Section 3A.1,
the process of differentiation yields the following equations for estimating β1 and β2:

(3.1.4)

(3.1.5)

where n is the sample size. These simultaneous equations are known as the normal
equations.

Solving the normal equations simultaneously, we obtain 

where X̄ and Ȳ are the sample means of X and Y and where we define xi = (Xi − X̄) and
yi = (Yi − Ȳ ). Henceforth, we adopt the convention of letting the lowercase letters denote
deviations from mean values.

The last step in Equation 3.1.7 can be obtained directly from Eq. (3.1.4) by simple alge-
braic manipulations.

Incidentally, note that, by making use of simple algebraic identities, formula (3.1.6) for
estimating β2 can be alternatively expressed as

(3.1.8)2

β̂2 =
∑

xi yi∑
x2

i

=
∑

xi Yi∑
X2

i − nX̄2

=
∑

X i yi∑
X2

i − nX̄2

(3.1.7)
β̂1 =

∑
X2

i

∑
Yi − ∑

Xi
∑

Xi Yi

n
∑

X2
i − (∑

Xi

)2

= Ȳ − β̂2 X̄

(3.1.6)

β̂2 = n
∑

Xi Yi − ∑
Xi

∑
Yi

n
∑

X2
i − (∑

Xi

)2

=
∑

(Xi − X̄)(Yi − Ȳ )∑
(Xi − X̄)2

=
∑

xi yi∑
x2

i

∑
Yi Xi = β̂1

∑
Xi + β̂2

∑
X2

i

∑
Yi = nβ̂1 + β̂2

∑
Xi

2Note 1:
∑

x2
i = ∑

(Xi − X̄)2 = ∑
X2

i − 2
∑

Xi X̄ + ∑
X̄2 = ∑

X2
i − 2X̄

∑
Xi + ∑

X̄2, since X̄

is a constant. Further noting that 
∑

Xi = nX̄ and 
∑

X̄2 = nX̄2 since X̄ is a constant, we finally get∑
x2

i = ∑
X2

i − nX̄2.

Note 2:
∑

xi yi = ∑
xi (Yi − Ȳ ) = ∑

xi Yi − Ȳ
∑

xi = ∑
xi Yi − Ȳ

∑
(Xi − X̄) = ∑

xi Yi , since Ȳ is a
constant and since the sum of deviations of a variable from its mean value [e.g., 

∑
(Xi − X̄)] is always

zero. Likewise, 
∑

yi = ∑
(Yi − Ȳ ) = 0.
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The estimators obtained previously are known as the least-squares estimators, for they
are derived from the least-squares principle. Note the following numerical properties of
estimators obtained by the method of OLS: “Numerical properties are those that hold as a
consequence of the use of ordinary least squares, regardless of how the data were gener-
ated.”3 Shortly, we will also consider the statistical properties of OLS estimators, that is,
properties “that hold only under certain assumptions about the way the data were gener-
ated.”4 (See the classical linear regression model in Section 3.2.)

I. The OLS estimators are expressed solely in terms of the observable (i.e., sample) quan-
tities (i.e., X and Y). Therefore, they can be easily computed.

II. They are point estimators; that is, given the sample, each estimator will provide only
a single (point) value of the relevant population parameter. (In Chapter 5 we will
consider the so-called interval estimators, which provide a range of possible values
for the unknown population parameters.)

III. Once the OLS estimates are obtained from the sample data, the sample regression line
(Figure 3.1) can be easily obtained. The regression line thus obtained has the follow-
ing properties:
1. It passes through the sample means of Y and X. This fact is obvious from

Eq. (3.1.7), for the latter can be written as Ȳ = β̂1 + β̂2 X̄ , which is shown
diagrammatically in Figure 3.2.

Y

Y

X
X

SRF

Yi = β β1 + 2 Xi

FIGURE 3.2
Diagram showing that
the sample regression
line passes through the
sample mean values of
Y and X.

3Russell Davidson and James G. MacKinnon, Estimation and Inference in Econometrics, Oxford
University Press, New York, 1993, p. 3.
4Ibid.
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60 Part One Single-Equation Regression Models

2. The mean value of the estimated Y = Ŷi is equal to the mean value of the actual Y
for

Ŷi = β̂1 + β̂2 Xi

= (Ȳ − β̂2 X̄) + β̂2 Xi

= Ȳ + β̂2(Xi − X̄)

(3.1.9)

Summing both sides of this last equality over the sample values and dividing
through by the sample size n gives

¯̂Y = Ȳ (3.1.10)5 

where use is made of the fact that 
∑

(Xi − X̄) = 0. (Why?)
3. The mean value of the residuals û i is zero. From Appendix 3A, Section 3A.1, the

first equation is 

−2
∑

(Yi − β̂1 − β̂2 Xi ) = 0

But since û i = Yi − β̂1 − β̂2 Xi , the preceding equation reduces to −2
∑

û i = 0,
whence ¯̂u = 0.6

As a result of the preceding property, the sample regression

Yi = β̂1 + β̂2 Xi + û i (2.6.2)

can be expressed in an alternative form where both Y and X are expressed as devia-
tions from their mean values. To see this, sum (2.6.2) on both sides to give∑

Yi = nβ̂1 + β̂2

∑
Xi +

∑
û i

= nβ̂1 + β̂2

∑
Xi since

∑
û i = 0

(3.1.11)

Dividing Equation 3.1.11 through by n, we obtain

Ȳ = β̂1 + β̂2 X̄ (3.1.12)

which is the same as Eq. (3.1.7). Subtracting Equation 3.1.12 from Eq. (2.6.2), we
obtain

or

(3.1.13)

where yi and xi , following our convention, are deviations from their respective
(sample) mean values.

yi = β̂2xi + û i

Yi − Ȳ = β̂2(Xi − X̄) + û i

5Note that this result is true only when the regression model has the intercept term β1 in it. As
Appendix 6A, Sec. 6A.1 shows, this result need not hold when β1 is absent from the model.
6This result also requires that the intercept term β1 be present in the model (see Appendix 6A,
Sec. 6A.1).
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Equation 3.1.13 is known as the deviation form. Notice that the intercept term
β̂1 is no longer present in it. But the intercept term can always be estimated by
Eq. (3.1.7), that is, from the fact that the sample regression line passes through
the sample means of Y and X. An advantage of the deviation form is that it often
simplifies computing formulas.

In passing, note that in the deviation form, the SRF can be written as

(3.1.14)

whereas in the original units of measurement it was Ŷi = β̂1 + β̂2 Xi , as shown in
Eq. (2.6.1).

4. The residuals û i are uncorrelated with the predicted Yi .This statement can be verified
as follows: using the deviation form, we can write∑

ŷi û i = β̂2

∑
xi û i

= β̂2

∑
xi (yi − β̂2xi )

= β̂2

∑
xi yi − β̂2

2

∑
x2

i
(3.1.15)

= β̂2
2

∑
x2

i − β̂2
2

∑
x2

i

= 0

where use is made of the fact that β̂2 = ∑
xi yi/

∑
x2

i .

5. The residuals û i are uncorrelated with Xi ; that is, 
∑

û i Xi = 0. This fact follows
from Eq. (2) in Appendix 3A, Section 3A.1.

3.2 The Classical Linear Regression Model: The Assumptions
Underlying the Method of Least Squares

If our objective is to estimate β1 and β2 only, the method of OLS discussed in the preceding
section will suffice. But recall from Chapter 2 that in regression analysis our objective is not
only to obtain β̂1 and β̂2 but also to draw inferences about the true β1 and β2. For example,
we would like to know how close β̂1 and β̂2 are to their counterparts in the population or
how close Ŷi is to the true E(Y | Xi ). To that end, we must not only specify the functional
form of the model, as in Eq. (2.4.2), but also make certain assumptions about the manner
in which Yi are generated. To see why this requirement is needed, look at the PRF:
Yi = β1 + β2 Xi + ui . It shows that Yi depends on both Xi and ui . Therefore, unless we are
specific about how Xi and ui are created or generated, there is no way we can make any
statistical inference about the Yi and also, as we shall see, about β1 and β2. Thus, the
assumptions made about the Xi variable(s) and the error term are extremely critical to the
valid interpretation of the regression estimates.

The Gaussian, standard, or classical linear regression model (CLRM), which is
the cornerstone of most econometric theory, makes 7 assumptions.7 We first discuss these
assumptions in the context of the two-variable regression model; and in Chapter 7 we
extend them to multiple regression models, that is, models in which there is more than one
regressor. 

ŷi = β̂2xi

7It is classical in the sense that it was developed first by Gauss in 1821 and since then has served as a
norm or a standard against which may be compared the regression models that do not satisfy the
Gaussian assumptions.
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62 Part One Single-Equation Regression Models

We have already discussed model (2.4.2) in Chapter 2. Since linear-in-parameter
regression models are the starting point of the CLRM, we will maintain this assumption for
most of this book.8 Keep in mind that the regressand Y and the regressor X may be
nonlinear, as discussed in Chapter 2.

ASSUMPTION 1 Linear Regression Model: The regression model is linear in the parameters,
though it may or may not be linear in the variables. That is the regression model as shown
in Eq. (2.4.2):

Yi = β1 + β2 Xi  + ui (2.4.2)

As will be discussed in Chapter 7, this model can be extended to include more explanatory
variables.

ASSUMPTION 2 Fixed X Values or X Values Independent of the Error Term: Values taken by the
regressor X may be considered fixed in repeated samples (the case of fixed regressor) or
they may be sampled along with the dependent variable Y (the case of stochastic
regressor). In the latter case, it is assumed that the X variable(s) and the error term are
independent, that is, cov (Xi , ui) = 0.

This can be explained in terms of our example given in Table 2.1 (page 35). Consider the
various Y populations corresponding to the levels of income shown in the table. Keeping
the value of income X fixed, say, at level $80, we draw at random a family and observe its
weekly family consumption Y as, say, $60. Still keeping X at $80, we draw at random
another family and observe its Y value at $75. In each of these drawings (i.e., repeated
sampling), the value of X is fixed at $80. We can repeat this process for all the X values
shown in Table 2.1. As a matter of fact, the sample data shown in Tables 2.4 and 2.5 were
drawn in this fashion.

Why do we assume that the X values are nonstochastic? Given that, in most social
sciences, data usually are collected randomly on both the Y and X variables, it seems natural
to assume the opposite—that the X variable, like the Y variable, is also random or stochas-
tic. But initially we assume that the X variable(s) is nonstochastic for the following reasons:

First, this is done initially to simplify the analysis and to introduce the reader to the com-
plexities of regression analysis gradually. Second, in experimental situations it may not be
unrealistic to assume that the X values are fixed. For example, a farmer may divide his land
into several parcels and apply different amounts of fertilizer to these parcels to see its effect
on crop yield. Likewise, a department store may decide to offer different rates of discount on
a product to see its effect on consumers. Sometimes we may want to fix the X values for a
specific purpose. Suppose we are trying to find out the average weekly earnings of workers
(Y) with various levels of education (X), as in the case of the data given in Table 2.6. In this
case, the X variable can be considered fixed or nonrandom. Third, as we show in Chap-
ter 13, even if the X variables are stochastic, the statistical results of linear regression based

8However, a brief discussion of nonlinear-in-parameter regression models is given in Chapter 14 for
the benefit of more advanced students.
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on the case of fixed regressors are also valid when the X’s are random, provided that some
conditions are met. One condition is that regressor X and the error term ui are independent.
As James Davidson notes, “. . . this model [i.e., stochastic regressors] ‘mimics’ the fixed
regressor model, and . . . many of the statistical properties of least squares in the fixed
regressor model continue to hold.”9

For all these reasons, we will first discuss the (fixed-regressor) CLRM in considerable
detail. However, in Chapter 13 we will discuss the case of stochastic regressors in some
detail and point out the occasions where we need to consider the stochastic regressor
models. Incidentally, note that if the X variable(s) is stochastic, the resulting model is called
the neo-classical linear regression model (NLRM),10 in contrast to the CLRM, where the
X’s are treated as fixed or nonrandom. For discussion purposes, we will call the former the
stochastic regressor model and the latter the fixed regressor model.

9James Davidson, Econometric Theory, Blackwell Publishers, U.K., 2000, p. 10.
10A term due to Arthur S. Goldberger, A Course in Econometrics, Harvard University Press, Cambridge,
MA, 1991, p. 264.

ASSUMPTION 3 Zero Mean Value of Disturbance ui: Given the value of Xi, the mean, or expected,
value of the random disturbance term ui is zero. Symbolically, we have

E(ui |Xi) = 0 (3.2.1)

Or, if X is nonstochastic,

E(ui) = 0

Assumption 3 states that the mean value of ui conditional upon the given Xi is zero.
Geometrically, this assumption can be pictured as in Figure 3.3, which shows a few values
of the variable X and the Y populations associated with each of them. As shown, each Y

X1 X2 X3 X4

X

Y
Mean

Yi = β β1 + 2XiPRF:

+ui

–ui

FIGURE 3.3
Conditional
distribution of the
disturbances ui.
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64 Part One Single-Equation Regression Models

population corresponding to a given X is distributed around its mean value (shown by the cir-
cled points on the PRF), with some Y values above the mean and some below it. The distances
above and below the mean values are nothing but the ui. Equation 3.2.1 requires that the
average or mean value of these deviations corresponding to any given X should be zero.

This assumption should not be difficult to comprehend in view of the discussion in
Section 2.4 (see Eq. [2.4.5]). Assumption 3 simply says that the factors not explicitly
included in the model, and therefore subsumed in ui, do not systematically affect the mean
value of Y; in other words, the positive ui values cancel out the negative ui values so that
their average or mean effect on Y is zero.11

In passing, note that the assumption E(ui |Xi) = 0 implies that E(Yi |Xi) = β1 + β2 Xi.
(Why?) Therefore, the two assumption are equivalent.

It is important to point out that Assumption 3 implies that there is no specification bias
or specification error in the model used in empirical analysis. In other words, the regres-
sion model is correctly specified. Leaving out important explanatory variables, including
unnecessary variables, or choosing the wrong functional form of the relationship between
the Y and X variables are some examples of specification error. We will discuss this topic in
considerable detail in Chapter 13.

Note also that if the conditional mean of one random variable given another random
variable is zero, the covariance between the two variables is zero and hence the two vari-
ables are uncorrelated. Assumption 3 therefore implies that Xi and ui are uncorrelated.12

The reason for assuming that the disturbance term u and the explanatory variable(s) X
are uncorrelated is simple. When we expressed the PRF as in Eq. (2.4.2), we assumed that
X and u (which represent the influence of all omitted variables) have separate (and additive)
influences on Y. But if X and u are correlated, it is not possible to assess their individual
effects on Y. Thus, if X and u are positively correlated, X increases when u increases and
decreases when u decreases. Similarly, if X and u are negatively correlated, X increases
when u decreases and decreases when u increases. In situations like this it is quite possible
that the error term actually includes some variables that should have been included as
additional regressors in the model. This is why Assumption 3 is another way of stating that
there is no specification error in the chosen regression model.

11For a more technical reason why Assumption 3 is necessary see E. Malinvaud, Statistical Methods of
Econometrics, Rand McNally, Chicago, 1966, p. 75. See also Exercise 3.3.
12The converse, however, is not true because correlation is a measure of linear association only. That
is, even if Xi and ui are uncorrelated, the conditional mean of ui given Xi may not be zero. However, if
Xi and ui are correlated, E(ui |Xi) must be nonzero, violating Assumption 3. We owe this point to Stock
and Watson. See James H. Stock and Mark W. Watson, Introduction to Econometrics, Addison-Wesley,
Boston, 2003, pp. 104–105.

ASSUMPTION 4 Homoscedasticity or Constant Variance of ui: The variance of the error, or
disturbance, term is the same regardless of the value of X. Symbolically,

var (ui) = E [ui − E(ui |Xi)]2

= E(u2
i |Xi), because of Assumption 3

= E(u2
i ), if Xi are nonstochastic

= σ2 (3.2.2)

where var stands for variance.

guj75772_ch03.qxd  23/08/2008  02:34 PM  Page 64



Chapter 3 Two-Variable Regression Model: The Problem of Estimation 65

Equation 3.2.2 states that the variance of ui for each Xi (i.e., the conditional variance of
ui) is some positive constant number equal to σ2. Technically, Eq. (3.2.2) represents the
assumption of homoscedasticity, or equal (homo) spread (scedasticity) or equal variance.
The word comes from the Greek verb skedanime, which means to disperse or scatter. Stated
differently, Eq. (3.2.2) means that the Y populations corresponding to various X values have
the same variance. Put simply, the variation around the regression line (which is the line of
average relationship between Y and X) is the same across the X values; it neither increases
nor decreases as X varies. Diagrammatically, the situation is as depicted in Figure 3.4.

In contrast, consider Figure 3.5, where the conditional variance of the Y population
varies with X. This situation is known appropriately as heteroscedasticity, or unequal
spread, or variance. Symbolically, in this situation, Eq. (3.2.2) can be written as

var (ui |Xi) = σ2
i (3.2.3)

Notice the subscript on σ2 in Equation (3.2.3), which indicates that the variance of the Y
population is no longer constant.
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66 Part One Single-Equation Regression Models

To make the difference between the two situations clear, let Y represent weekly
consumption expenditure and X weekly income. Figures 3.4 and 3.5 show that as income
increases, the average consumption expenditure also increases. But in Figure 3.4 the
variance of consumption expenditure remains the same at all levels of income, whereas in
Figure 3.5 it increases with increase in income. In other words, richer families on the
average consume more than poorer families, but there is also more variability in the
consumption expenditure of the former.

To understand the rationale behind this assumption, refer to Figure 3.5. As this figure
shows, var(u|X1) < var(u|X2), . . . , < var(u|Xi). Therefore, the likelihood is that the Y ob-
servations coming from the population with X = X1 would be closer to the PRF than those
coming from populations corresponding to X = X2, X = X3, and so on. In short, not all Y
values corresponding to the various X’s will be equally reliable, reliability being judged by
how closely or distantly the Y values are distributed around their means, that is, the points
on the PRF. If this is in fact the case, would we not prefer to sample from those Y popula-
tions that are closer to their mean than those that are widely spread? But doing so might re-
strict the variation we obtain across X values.

By invoking Assumption 4, we are saying that at this stage, all Y values corresponding
to the various X’s are equally important. In Chapter 11 we shall see what happens if this is
not the case, that is, where there is heteroscedasticity.

In passing, note that Assumption 4 implies that the conditional variances of Yi are also
homoscedastic. That is,

var (Yi |Xi) = σ2 (3.2.4)

Of course, the unconditional variance of Y is σ2
Y. Later we will see the importance of

distinguishing between conditional and unconditional variances of Y (see Appendix A for
details of conditional and unconditional variances).

ASSUMPTION 5 No Autocorrelation between the Disturbances: Given any two X values, Xi and 
Xj(i � j), the correlation between any two ui and uj(i � j) is zero. In short, the observations
are sampled independently. Symbolically,

cov(ui, uj |Xi, Xj) = 0 (3.2.5)

cov(ui, uj) = 0, if X is nonstochastic

where i and j are two different observations and where cov means covariance.

In words, Equation 3.2.5 postulates that the disturbances ui and uj are uncorrelated.
Technically, this is the assumption of no serial correlation, or no autocorrelation. This
means that, given Xi, the deviations of any two Y values from their mean value do not
exhibit patterns such as those shown in Figures 3.6(a) and (b). In Figure 3.6(a), we see that
the u’s are positively correlated, a positive u followed by a positive u or a negative u
followed by a negative u. In Figure 3.6(b), the u’s are negatively correlated, a positive u
followed by a negative u and vice versa.

If the disturbances (deviations) follow systematic patterns, such as those shown in Fig-
ures 3.6(a) and (b), there is auto- or serial correlation, and what Assumption 5 requires is
that such correlations be absent. Figure 3.6(c) shows that there is no systematic pattern to
the u’s, thus indicating zero correlation.
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The full import of this assumption will be explained thoroughly in Chapter 12. But
intuitively one can explain this assumption as follows. Suppose in our PRF (Yt = β1 + β2Xt +
ut) that ut and ut−1 are positively correlated. Then Yt depends not only on Xt but also on ut−1,
for ut−1 to some extent determines ut. At this stage of the development of the subject mat-
ter, by invoking Assumption 5, we are saying that we will consider the systematic effect, if
any, of Xt on Yt and not worry about the other influences that might act on Y as a result of
the possible intercorrelations among the u’s. But, as noted in Chapter 12, we will see how
intercorrelations among the disturbances can be brought into the analysis and with what
consequences.

But it should be added here that the justification of this assumption depends on the type
of data used in the analysis. If the data are cross-sectional and are obtained as a random
sample from the relevant population, this assumption can often be justified. However, if the
data are time series, the assumption of independence is difficult to maintain, for successive
observations of a time series, such as GDP, are highly correlated. But we will deal with this
situation when we discuss time series econometrics later in the text.

+ui

–ui

+ui

–ui

+ui

–ui

+ui

–ui

+ui

–ui

+ui

–ui

(a) (b)

(c)

FIGURE 3.6
Patterns of correlation
among the
disturbances.
(a) positive serial
correlation;
(b) negative serial
correlation; (c) zero
correlation.

ASSUMPTION 6 The Number of Observations n Must Be Greater than the Number of
Parameters to Be Estimated: Alternatively, the number of observations must be
greater than the number of explanatory variables.
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This assumption is not so innocuous as it seems. In the hypothetical example of
Table 3.1, imagine that we had only the first pair of observations on Y and X (4 and 1). From
this single observation there is no way to estimate the two unknowns, β1 and β2. We need
at least two pairs of observations to estimate the two unknowns. In a later chapter we will
see the critical importance of this assumption.

ASSUMPTION 7 The Nature of X Variables: The X values in a given sample must not all be the same.
Technically, var (X) must be a positive number. Furthermore, there can be no outliers in
the values of the X variable, that is, values that are very large in relation to the rest of the
observations.

The assumption that there is variability in the X values is also not as innocuous as it
looks. Look at Eq. (3.1.6). If all the X values are identical, then Xi = X̄ (Why?) and the
denominator of that equation will be zero, making it impossible to estimate β2 and
therefore β1. Intuitively, we readily see why this assumption is important. Looking at our
family consumption expenditure example in Chapter 2, if there is very little variation in
family income, we will not be able to explain much of the variation in the consumption
expenditure. The reader should keep in mind that variation in both Y and X is essential to
use regression analysis as a research tool. In short, the variables must vary!

The requirement that there are no outliers in the X values is to avoid the regression results
being dominated by such outliers. If there are a few X values that are, say, 20 times the average
of the X values, the estimated regression lines with or without such observations might be
vastly different. Very often such outliers are the result of human errors of arithmetic or mix-
ing samples from different populations. In Chapter 13 we will discuss this topic further.

Our discussion of the assumptions underlying the classical linear regression model is
now complete. It is important to note that all of these assumptions pertain to the PRF only
and not the SRF. But it is interesting to observe that the method of least squares discussed
previously has some properties that are similar to the assumptions we have made about
the PRF. For example, the finding that 

∑
ûi = 0 and, therefore, ¯̂u = 0, is akin to the

assumption that E(ui |Xi) = 0. Likewise, the finding that 
∑

ûi Xi = 0 is similar to the
assumption that cov(ui, Xi) = 0. It is comforting to note that the method of least squares
thus tries to “duplicate” some of the assumptions we have imposed on the PRF.

Of course, the SRF does not duplicate all the assumptions of the CLRM. As we will
show later, although cov(ui, uj) = 0 (i � j) by assumption, it is not true that the sample
cov(ûi, ûj) = 0 (i � j). As a matter of fact, we will show later that the residuals are not only
autocorrelated but are also heteroscedastic (see Chapter 12).

A Word about These Assumptions
The million-dollar question is: How realistic are all these assumptions? The “reality of
assumptions” is an age-old question in the philosophy of science. Some argue that it does
not matter whether the assumptions are realistic. What matters are the predictions based
on those assumptions. Notable among the “irrelevance-of-assumptions thesis” is Milton
Friedman. To him, unreality of assumptions is a positive advantage: “to be important . . . a
hypothesis must be descriptively false in its assumptions.”13

One may not subscribe to this viewpoint fully, but recall that in any scientific study we
make certain assumptions because they facilitate the development of the subject matter in
gradual steps, not because they are necessarily realistic in the sense that they replicate

13Milton Friedman, Essays in Positive Economics, University of Chicago Press, Chicago, 1953, p. 14.
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reality exactly. As one author notes, “. . . if simplicity is a desirable criterion of good theory,
all good theories idealize and oversimplify outrageously.”14

What we plan to do is first study the properties of the CLRM thoroughly, and then in
later chapters examine in depth what happens if one or more of the assumptions of CLRM
are not fulfilled. At the end of this chapter, we provide in Table 3.4 a guide to where one can
find out what happens to the CLRM if a particular assumption is not satisfied.

As a colleague pointed out to us, when we review research done by others, we need to
consider whether the assumptions made by the researcher are appropriate to the data and
problem. All too often, published research is based on implicit assumptions about the prob-
lem and data that are likely not correct and that produce estimates based on these assump-
tions. Clearly, the knowledgeable reader should, realizing these problems, adopt a skeptical
attitude toward the research. The assumptions listed in Table 3.4 therefore provide a check-
list for guiding our research and for evaluating the research of others.

With this backdrop, we are now ready to study the CLRM. In particular, we want to find
out the statistical properties of OLS compared with the purely numerical properties
discussed earlier. The statistical properties of OLS are based on the assumptions of CLRM
already discussed and are enshrined in the famous Gauss–Markov theorem. But before we
turn to this theorem, which provides the theoretical justification for the popularity of OLS,
we first need to consider the precision or standard errors of the least-squares estimates.

3.3 Precision or Standard Errors of Least-Squares Estimates

From Eqs. (3.1.6) and (3.1.7), it is evident that least-squares estimates are a function of the
sample data. But since the data are likely to change from sample to sample, the estimates
will change ipso facto. Therefore, what is needed is some measure of “reliability” or
precision of the estimators β̂1 and β̂2. In statistics the precision of an estimate is measured
by its standard error (se).15 Given the Gaussian assumptions, it is shown in Appendix 3A,
Section 3A.3 that the standard errors of the OLS estimates can be obtained as follows:

(3.3.1)

(3.3.2)

(3.3.3)

(3.3.4)

var (β̂2) = σ 2∑
x2

i

se (β̂2) = σ√∑
x2

i

var (β̂1) =
∑

X2
i

n
∑

x2
i

σ 2

se (β̂1) =
√ ∑

X2
i

n
∑

x2
i

σ

14Mark Blaug, The Methodology of Economics: Or How Economists Explain, 2d ed., Cambridge
University Press, New York, 1992, p. 92.
15The standard error is nothing but the standard deviation of the sampling distribution of the esti-
mator, and the sampling distribution of an estimator is simply a probability or frequency distribution
of the estimator, that is, a distribution of the set of values of the estimator obtained from all possible
samples of the same size from a given population. Sampling distributions are used to draw inferences
about the values of the population parameters on the basis of the values of the estimators calculated
from one or more samples. (For details, see Appendix A.)
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70 Part One Single-Equation Regression Models

where var = variance and se = standard error and where σ 2 is the constant or
homoscedastic variance of ui of Assumption 4.

All the quantities entering into the preceding equations except σ 2 can be estimated from
the data. As shown in Appendix 3A, Section 3A.5, σ 2 itself is estimated by the following
formula:

σ̂ 2 =
∑

û2
i

n − 2
(3.3.5)

where σ̂ 2 is the OLS estimator of the true but unknown σ 2 and where the expression n − 2
is known as the number of degrees of freedom (df),

∑
û2

i being the sum of the residuals
squared or the residual sum of squares (RSS).16

Once 
∑

û2
i is known, σ̂ 2 can be easily computed. 

∑
û2

i itself can be computed either
from Eq. (3.1.2) or from the following expression (see Section 3.5 for the proof):∑

û2
i =

∑
y2

i − β̂2
2

∑
x2

i (3.3.6)

Compared with Eq. (3.1.2), Equation 3.3.6 is easy to use, for it does not require computing
û i for each observation although such a computation will be useful in its own right (as we
shall see in Chapters 11 and 12).

Since

β̂2 =
∑

xi yi∑
x2

i

an alternative expression for computing 
∑

û2
i is

(3.3.7)

In passing, note that the positive square root of σ̂ 2

(3.3.8)

is known as the standard error of estimate or the standard error of the regression (se).
It is simply the standard deviation of the Y values about the estimated regression line and is
often used as a summary measure of the “goodness of fit” of the estimated regression line,
a topic discussed in Section 3.5.

Earlier we noted that, given Xi , σ 2 represents the (conditional) variance of both ui and
Yi . Therefore, the standard error of the estimate can also be called the (conditional)
standard deviation of ui and Yi . Of course, as usual, σ 2

Y and σY represent, respectively, the
unconditional variance and unconditional standard deviation of Y.

σ̂ =
√ ∑

û2
i

n − 2

∑
û2

i =
∑

y2
i −

(∑
xi yi

)2

∑
x2

i

16The term number of degrees of freedom means the total number of observations in the sample
(= n) less the number of independent (linear) constraints or restrictions put on them. In other words,
it is the number of independent observations out of a total of n observations. For example, before the
RSS (3.1.2) can be computed, β̂1 and β̂2 must first be obtained. These two estimates therefore put two
restrictions on the RSS. Therefore, there are n − 2, not n, independent observations to compute the
RSS. Following this logic, in the three-variable regression RSS will have n − 3 df, and for the k-variable
model it will have n − k df. The general rule is this: df = (n − number of parameters estimated).

guj75772_ch03.qxd  23/08/2008  02:34 PM  Page 70



Chapter 3 Two-Variable Regression Model: The Problem of Estimation 71

Note the following features of the variances (and therefore the standard errors) of β̂1

and β̂2.

1. The variance of β̂2 is directly proportional to σ 2 but inversely proportional to
∑

x2
i .

That is, given σ 2, the larger the variation in the X values, the smaller the variance of β̂2 and
hence the greater the precision with which β2 can be estimated. In short, given σ 2, if there is
substantial variation in the X values, β2 can be measured more accurately than when the Xi do
not vary substantially. Also, given

∑
x2

i , the larger the variance of σ 2, the larger the variance
of β2. Note that as the sample size n increases, the number of terms in the sum,

∑
x2

i , will in-
crease. As n increases, the precision with which β2 can be estimated also increases. (Why?)

2. The variance of β̂1 is directly proportional to σ 2 and 
∑

X2
i but inversely proportional

to 
∑

x2
i and the sample size n.

3. Since β̂1 and β̂2 are estimators, they will not only vary from sample to sample but in
a given sample they are likely to be dependent on each other, this dependence being mea-
sured by the covariance between them. It is shown in Appendix 3A, Section 3A.4 that

(3.3.9)

Since var (β̂2) is always positive, as is the variance of any variable, the nature of the
covariance between β̂1 and β̂2 depends on the sign of X̄ . If X̄ is positive, then as the
formula shows, the covariance will be negative. Thus, if the slope coefficient β2 is overes-
timated (i.e., the slope is too steep), the intercept coefficient β1 will be underestimated (i.e.,
the intercept will be too small). Later on (especially in the chapter on multicollinearity,
Chapter 10), we will see the utility of studying the covariances between the estimated
regression coefficients.

How do the variances and standard errors of the estimated regression coefficients
enable one to judge the reliability of these estimates? This is a problem in statistical
inference, and it will be pursued in Chapters 4 and 5.

3.4 Properties of Least-Squares Estimators: The Gauss–Markov
Theorem17

As noted earlier, given the assumptions of the classical linear regression model, the least-
squares estimates possess some ideal or optimum properties. These properties are con-
tained in the well-known Gauss–Markov theorem. To understand this theorem, we need
to consider the best linear unbiasedness property of an estimator.18 As explained in
Appendix A, an estimator, say the OLS estimator β̂2, is said to be a best linear unbiased
estimator (BLUE) of β2 if the following hold:

1. It is linear, that is, a linear function of a random variable, such as the dependent variable
Y in the regression model.

cov (β̂1, β̂2) = −X̄ var (β̂2)

= −X̄

(
σ 2∑

x2
i

)

17Although known as the Gauss–Markov theorem, the least-squares approach of Gauss antedates
(1821) the minimum-variance approach of Markov (1900).
18The reader should refer to Appendix A for the importance of linear estimators as well as for a
general discussion of the desirable properties of statistical estimators.
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72 Part One Single-Equation Regression Models

2. It is unbiased, that is, its average or expected value, E(β̂2), is equal to the true value, β2.

3. It has minimum variance in the class of all such linear unbiased estimators; an unbiased
estimator with the least variance is known as an efficient estimator.

In the regression context it can be proved that the OLS estimators are BLUE. This is the
gist of the famous Gauss–Markov theorem, which can be stated as follows:

Gauss–Markov
Theorem

Given the assumptions of the classical linear regression model, the least-squares
estimators, in the class of unbiased linear estimators, have minimum variance, that is, they
are BLUE.

The proof of this theorem is sketched in Appendix 3A, Section 3A.6. The full import of
the Gauss–Markov theorem will become clearer as we move along. It is sufficient to note
here that the theorem has theoretical as well as practical importance.19

What all this means can be explained with the aid of Figure 3.7.

β2, β2β  β

β2β

β2β

β2β

β2β

β2β
(c) Sampling distributions of b2 and bβ2β β2β

(b) Sampling distribution of 2β
E(β2) = β2 ββ

(a) Sampling distribution of β2β
E(β2) = β2 ββ

*
*

*

*

*

*

FIGURE 3.7
Sampling distribution
of OLS estimator β̂2

and alternative
estimator β2

*.

19For example, it can be proved that any linear combination of the β’s, such as (β1 − 2β2), can be esti-
mated by (β̂1 − 2β̂2), and this estimator is BLUE. For details, see Henri Theil, Introduction to Econometrics,
Prentice-Hall, Englewood Cliffs, N.J., 1978, pp. 401–402. Note a technical point about the Gauss–Markov
theorem: It provides only the sufficient (but not necessary) condition for OLS to be efficient. I am
indebted to Michael McAleer of the University of Western Australia for bringing this point to my attention.
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In Figure 3.7(a) we have shown the sampling distribution of the OLS estimator β̂2, that is,
the distribution of the values taken by β̂2 in repeated sampling experiments (recall Table 3.1).
For convenience we have assumed β̂2 to be distributed symmetrically (but more on this in
Chapter 4).As the figure shows, the mean of the β̂2 values, E(β̂2), is equal to the true β2. In this
situation we say that β̂2 is an unbiased estimator of β2. In Figure 3.7(b) we have shown the
sampling distribution of β∗

2 , an alternative estimator ofβ2 obtained by using another (i.e., other
than OLS) method. For convenience, assume that β∗

2 , like β̂2, is unbiased, that is, its average
or expected value is equal to β2.Assume further that both β̂2 and β∗

2 are linear estimators, that
is, they are linear functions of Y. Which estimator, β̂2 or β∗

2 , would you choose?
To answer this question, superimpose the two figures, as in Figure 3.7(c). It is obvious

that although both β̂2 and β∗
2 are unbiased the distribution of β∗

2 is more diffused or wide-
spread around the mean value than the distribution of β̂2. In other words, the variance of β∗

2
is larger than the variance of β̂2. Now given two estimators that are both linear and unbiased,
one would choose the estimator with the smaller variance because it is more likely to be
close to β2 than the alternative estimator. In short, one would choose the BLUE estimator.

The Gauss–Markov theorem is remarkable in that it makes no assumptions about the
probability distribution of the random variable ui , and therefore of Yi (in the next chapter we
will take this up). As long as the assumptions of CLRM are satisfied, the theorem holds. As
a result, we need not look for another linear unbiased estimator, for we will not find such an
estimator whose variance is smaller than the OLS estimator. Of course, if one or more of
these assumptions do not hold, the theorem is invalid. For example, if we consider nonlinear-
in-the-parameter regression models (which are discussed in Chapter 14), we may be able to
obtain estimators that may perform better than the OLS estimators. Also, as we will show in
the chapter on heteroscedasticity, if the assumption of homoscedastic variance is not
fulfilled, the OLS estimators, although unbiased and consistent, are no longer minimum
variance estimators even in the class of linear estimators.

The statistical properties that we have just discussed are known as finite sample
properties: These properties hold regardless of the sample size on which the estimators are
based. Later we will have occasions to consider the asymptotic properties, that is, proper-
ties that hold only if the sample size is very large (technically, infinite). A general discus-
sion of finite-sample and large-sample properties of estimators is given in Appendix A.

3.5 The Coefficient of Determination r2: A Measure of
“Goodness of Fit”

Thus far we were concerned with the problem of estimating regression coefficients, their stan-
dard errors, and some of their properties. We now consider the goodness of fit of the fitted
regression line to a set of data; that is, we shall find out how “well” the sample regression line
fits the data. From Figure 3.1 it is clear that if all the observations were to lie on the regression
line, we would obtain a “perfect” fit, but this is rarely the case. Generally, there will be some
positive û i and some negative û i .What we hope for is that these residuals around the regression
line are as small as possible. The coefficient of determination r2 (two-variable case) or R2

(multiple regression) is a summary measure that tells how well the sample regression line fits
the data.

Before we show how r2 is computed, let us consider a heuristic explanation of r2 in
terms of a graphical device, known as the Venn diagram, or the Ballentine, as shown
in Figure 3.8.20

20See Peter Kennedy, “Ballentine: A Graphical Aid for Econometrics,” Australian Economics Papers,
vol. 20, 1981, pp. 414–416. The name Ballentine is derived from the emblem of the well-known 
Ballantine beer with its circles.

guj75772_ch03.qxd  23/08/2008  02:34 PM  Page 73



74 Part One Single-Equation Regression Models

In this figure the circle Y represents variation in the dependent variable Y and the circle X
represents variation in the explanatory variable X.21 The overlap of the two circles (the
shaded area) indicates the extent to which the variation in Y is explained by the variation in
X (say, via an OLS regression). The greater the extent of the overlap, the greater the variation
in Y is explained by X. The r2 is simply a numerical measure of this overlap. In the figure, as
we move from left to right, the area of the overlap increases, that is, successively a greater
proportion of the variation in Y is explained by X. In short, r2 increases. When there is no
overlap, r2 is obviously zero, but when the overlap is complete, r2 is 1, since 100 percent of
the variation in Y is explained by X. As we shall show shortly, r2 lies between 0 and 1.

To compute this r2, we proceed as follows: Recall that

Yi = Ŷi + û i (2.6.3)

or in the deviation form

yi = ŷi + û i (3.5.1)

where use is made of Eqs. (3.1.13) and (3.1.14). Squaring Equation 3.5.1 on both sides and
summing over the sample, we obtain

(3.5.2)

since 
∑

ŷi û i = 0 (why?) and ŷi = β̂2xi .

The various sums of squares appearing in Equation 3.5.2 can be described as follows:∑
y2

i = ∑
(Yi − Ȳ )2 = total variation of the actual Y values about their sample mean,

which may be called the total sum of squares (TSS).
∑

ŷ2
i = ∑

(Ŷi − ¯̂Y )2 =∑
(Ŷi − Ȳ )2 = β̂2

2

∑
x2

i = variation of the estimated Y values about their mean ( ¯̂Y = Ȳ ),
which appropriately may be called the sum of squares due to regression [i.e., due to the ex-
planatory variable(s)], or explained by regression, or simply the explained sum of squares

∑
y2

i =
∑

ŷ2
i +

∑
û2

i + 2
∑

ŷi û i

=
∑

ŷ2
i +

∑
û2

i

= β̂2
2

∑
x2

i +
∑

û2
i

Y X Y X Y X

Y X
Y = X

Y X

(a) (b) (c)

(d) (e) (f )

FIGURE 3.8
The Ballentine view
of r 2: (a) r 2 = 0; 
(f ) r 2 = 1.

21The term variation and variance are different. Variation means the sum of squares of the deviations
of a variable from its mean value. Variance is this sum of squares divided by the appropriate degrees
of freedom. In short, variance = variation/df.
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(ESS).
∑

û2
i = residual or unexplained variation of the Y values about the regression line,

or simply the residual sum of squares (RSS). Thus, Eq. (3.5.2) is

TSS = ESS + RSS (3.5.3)

and shows that the total variation in the observed Y values about their mean value can be
partitioned into two parts, one attributable to the regression line and the other to random
forces because not all actual Y observations lie on the fitted line. Geometrically, we have
Figure 3.9.

Now dividing Equation 3.5.3 by TSS on both sides, we obtain

1 = ESS

TSS
+ RSS

TSS

=
∑

(Ŷi − Ȳ )2∑
(Yi − Ȳ )2

+
∑

û2
i∑

(Yi − Ȳ )2

(3.5.4)

We now define r2 as

(3.5.5)

or, alternatively, as

(3.5.5a)

The quantity r2 thus defined is known as the (sample) coefficient of determination and is
the most commonly used measure of the goodness of fit of a regression line. Verbally, r2

r2 = 1 −
∑

û2
i∑

(Yi − Ȳ )2

= 1 − RSS

TSS

r2 =
∑

(Ŷi − Ȳ )2∑
(Yi − Ȳ )2

= ESS

TSS

(Yi –Y ) = total

ui  = due to residual

SRF

B1 + B2Xiβ β

Yi

(Yi –Y ) = due to regression

Y

Y

0 Xi

X

Yi

FIGURE 3.9
Breakdown of the
variation of Yi into two
components.
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76 Part One Single-Equation Regression Models

measures the proportion or percentage of the total variation in Y explained by the regres-
sion model.

Two properties of r2 may be noted:

1. It is a nonnegative quantity. (Why?)

2. Its limits are 0 ≤ r2 ≤ 1. An r2 of 1 means a perfect fit, that is, Ŷi = Yi for each i. On
the other hand, an r2 of zero means that there is no relationship between the regressand and
the regressor whatsoever (i.e., β̂2 = 0). In this case, as Eq. (3.1.9) shows, Ŷi = β̂1 = Ȳ ,
that is, the best prediction of any Y value is simply its mean value. In this situation there-
fore the regression line will be horizontal to the X axis.

Although r2 can be computed directly from its definition given in Equation 3.5.5, it can
be obtained more quickly from the following formula:

If we divide the numerator and the denominator of Equation 3.5.6 by the sample size n (or
n − 1 if the sample size is small), we obtain

(3.5.7)

where S2
y and S2

x are the sample variances of Y and X, respectively.
Since β̂2 = ∑

xi yi

/∑
x2

i , Eq. (3.5.6) can also be expressed as

(3.5.8)

an expression that may be computationally easy to obtain.
Given the definition of r2, we can express ESS and RSS discussed earlier as follows:

ESS = r2 · TSS

= r2
∑

y2
i

(3.5.9)

RSS = TSS − ESS

= TSS(1 − ESS/TSS) (3.5.10)

=
∑

y2
i · (1 − r2)

Therefore, we can write

(3.5.11)

an expression that we will find very useful later.

TSS = ESS + RSS∑
y2

i = r2
∑

y2
i + (1 − r2)

∑
y2

i

r2 =
(∑

xi yi

)2

∑
x2

i

∑
y2

i

r2 = β̂2
2

(
S2

x

S2
y

)

(3.5.6)

r2 = ESS

TSS

=
∑

ŷ2
i∑

y2
i

= β̂2
2

∑
x2

i∑
y2

i

= β̂2
2

(∑
x2

i∑
y2

i

)
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A quantity closely related to but conceptually very much different from r2 is the
coefficient of correlation, which, as noted in Chapter 1, is a measure of the degree of
association between two variables. It can be computed either from

r = ±
√

r2 (3.5.12)
or from its definition

which is known as the sample correlation coefficient.22

Some of the properties of r are as follows (see Figure 3.10):

1. It can be positive or negative, the sign depending on the sign of the term in the
numerator of Equation 3.5.13, which measures the sample covariation of two variables.

2. It lies between the limits of −1 and +1; that is, −1 ≤ r ≤ 1.

3. It is symmetrical in nature; that is, the coefficient of correlation between X and
Y (rXY ) is the same as that between Y and X (rY X ).

4. It is independent of the origin and scale; that is, if we define X∗
i = aXi + C and

Y ∗
i = bYi + d, where a > 0, b > 0, and c and d are constants, then r between X∗ and Y ∗

is the same as that between the original variables X and Y.

5. If X and Y are statistically independent (see Appendix A for the definition), the
correlation coefficient between them is zero; but if r = 0, it does not mean that two
variables are independent. In other words, zero correlation does not necessarily imply
independence. [See Figure 3.10(h).]

6. It is a measure of linear association or linear dependence only; it has no meaning for
describing nonlinear relations. Thus in Figure 3.10(h), Y = X2 is an exact relationship yet
r is zero. (Why?)

7. Although it is a measure of linear association between two variables, it does not
necessarily imply any cause-and-effect relationship, as noted in Chapter 1.

In the regression context, r2 is a more meaningful measure than r, for the former tells us
the proportion of variation in the dependent variable explained by the explanatory vari-
able(s) and therefore provides an overall measure of the extent to which the variation in one
variable determines the variation in the other. The latter does not have such value.23 More-
over, as we shall see, the interpretation of r (= R) in a multiple regression model is of
dubious value. However, we will have more to say about r2 in Chapter 7.

In passing, note that the r2 defined previously can also be computed as the squared
coefficient of correlation between actual Yi and the estimated Yi , namely, Ŷi . That is, using
Eq. (3.5.13), we can write

r2 =
[∑

(Yi − Ȳ )(Ŷi − Ȳ )
]2

∑
(Yi − Ȳ )2

∑
(Ŷi − Ȳ )2

(3.5.13)

r =
∑

xi yi√(∑
x2

i

)(∑
y2

i

)

= n
∑

Xi Yi − (
∑

Xi )(
∑

Yi )√[
n

∑
X2

i − (∑
Xi

)2][
n

∑
Y 2

i − (∑
Yi

)2]

22The population correlation coefficient, denoted by ρ, is defined in Appendix A.
23In regression modeling the underlying theory will indicate the direction of causality between Y and
X, which, in the context of single-equation models, is generally from X to Y.
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That is,

(3.5.14)

where Yi = actual Y, Ŷi = estimated Y, and Ȳ = ¯̂Y = the mean of Y. For proof, see
Exercise 3.15. Expression 3.5.14 justifies the description of r2 as a measure of goodness of
fit, for it tells how close the estimated Y values are to their actual values.

3.6 A Numerical Example

We illustrate the econometric theory developed so far by considering the data given in
Table 2.6, which relates mean hourly wage (Y ) and years of schooling (X ). Basic labor
economics theory tells us, that among many variables, education is an important determi-
nant of wages.

In Table 3.2 we provide the necessary raw data to estimate the quantitative impact of
education on wages.

r2 =
(∑

yi ŷi

)2

(∑
y2

i

)(∑
ŷ2

i

)

(d) (e) (f )

X

Y

r = +1 r = –1

X

Y

X

Y

(a) (b) (c)

X

Y

X

Y

X

Y

X

Y

X

Y

(h)(g)

r close to –1

r close to +1

r positive but
close to zero

r negative but
close to zero

r = 0 Y = X2

but r = 0

FIGURE 3.10
Correlation patterns
(adapted from Henri
Theil, Introduction to
Econometrics,
Prentice-Hall,
Englewood Cliffs, NJ,
1978, p. 86).
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Obs Y X x y x2
i yixi

1 4.4567 6 −6 −4.218 36 25.308
2 5.77 7 −5 −2.9047 25 14.5235
3 5.9787 8 −4 −2.696 16 10.784
4 7.3317 9 −3 −1.343 9 4.029
5 7.3182 10 −2 −1.3565 4 2.713
6 6.5844 11 −1 −2.0903 1 2.0903
7 7.8182 12 0 −0.8565 0 0
8 7.8351 13 1 −0.8396 1 −0.8396
9 11.0223 14 2 2.3476 4 4.6952

10 10.6738 15 3 1.9991 9 5.9973
11 10.8361 16 4 2.1614 16 8.6456
12 13.615 17 5 4.9403 25 24.7015
13 13.531 18 6 4.8563 36 29.1378

Sum 112.7712 156 0 0 182 131.7856

Obs X 2
i Yi

2 Yiˆ ui
ˆ = Yi −Ŷ ui

2ˆ
1 36 19.86217 4.165294 0.291406 0.084917
2 49 33.2929 4.916863 0.853137 0.727843
3 64 35.74485 5.668432 0.310268 0.096266
4 81 53.75382 6.420001 0.911699 0.831195
5 100 53.55605 7.17157 0.14663 0.0215
6 121 43.35432 7.923139 −1.33874 1.792222
7 144 61.12425 8.674708 −0.85651 0.733606
8 169 61.38879 9.426277 −1.59118 2.531844
9 196 121.4911 10.17785 0.844454 0.713103

10 225 113.93 10.92941 −0.25562 0.065339
11 256 117.4211 11.68098 −0.84488 0.713829
12 289 185.3682 12.43255 1.182447 1.398181
13 324 183.088 13.18412 0.346878 0.120324

Sum 2054 1083.376 112.7712 �0 9.83017

Note:

xi = Xi − X̄; yi = Yi = Ȳ

β̂2 = �yi xi

�x2
i

= 131.7856

182.0
= 0.7240967

β̂1 = Ȳ − β̂2 X̄ = 8.674708 − 0.7240967x12 = −0.01445

σ̂ 2 = �û2
i

n − 2
= 9.83017

11
= 0.893652; σ̂ = 0.945332

var(β̂2) = σ̂ 2

�x2
i

= 0.893652

182.0
= 0.004910; se(β̂2) =

√
0.00490 = 0.070072

r2 = 1 − �û2
i

�(Yi − Ȳ )2
= 1 − 9.83017

105.1188
= 0.9065

r =
√

r2 = 0.9521

var(β̂1) = �x2
i

n�x2
i

= 2054

13(182)
= 0.868132;

se(β̂1) = √
0.868132 = 0.9317359

TABLE 3.2
Raw Data Based 
on Table 2.6
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80 Part One Single-Equation Regression Models

From the data given in this table, we obtain the estimated regression line as follows:

Ŷi = −0.0144 + 0.7240Xi (3.6.1)

Geometrically, the estimated regression line is as shown in Figure 3.11.
As we know, each point on the regression line gives an estimate of the mean value of Y

corresponding to the chosen X value, that is, Ŷi is an estimate of E(Y |Xi). The value of β̂2 =
0.7240, which measures the slope of the line, shows that, within the sample range of X
between 6 and 18 years of education, as X increases by 1, the estimated increase in mean
hourly wages is about 72 cents. That is, each additional year of schooling, on average,
increases hourly wages by about 72 cents.

The value of β̂1 = −0.0144, which is the intercept of the line, indicates the average
level of wages when the level of education is zero. Such literal interpretation of the inter-
cept in the present case does not make any sense. How could there be negative wages? As
we will see throughout this book, very often the intercept term has no viable practical
meaning. Besides, zero level of education is not in the observed level of education in our
sample. As we will see in Chapter 5, the observed value of the intercept is not statistically
different from zero.

The r2 value of about 0.90 suggests that education explains about 90 percent of the vari-
ation in hourly wage. Considering that r2 can be at most 1, our regression line fits the data
very well. The coefficient of correlation, r = 0.9521, shows that wages and education are
highly positively correlated.

Before we leave our example, note that our model is extremely simple. Labor econom-
ics theory tells us that, besides education, variables such as gender, race, location, labor
unions, and language are also important factors in the determination of hourly wages. After
we study multiple regression in Chapters 7 and 8, we will consider a more extended model
of wage determination.
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FIGURE 3.11
Estimated regression
line for wage-education
data from Table 2.6.
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3.7 Illustrative Examples

EXAMPLE 3.1
Consumption–
Income
Relationship in
the United States,
1960–2005

Let us revisit the consumption income data given in Table I.1 of the Introduction. We have
already shown the data in Figure I.3, along with the estimated regression line in Eq. (I.3.3).
Now we provide the underlying OLS regression results, which were obtained from EViews 6.
Note Y = personal consumption expenditure (PCE) and X = gross domestic product (GDP),
both measured in 2000 billions of dollars. In this example the data are time series data.

Ŷt � �299.5913 � 0.7218Xt (3.7.1)

var (β̂1) � 827.4195 se (β̂1) � 28.7649

var (β̂2) � 0.0000195 se (β̂2) � 0.004423

r 2 � 0.9983 �̂2 � 73.56689

Equation 3.7.1 is the aggregate, or economywide, Keynesian consumption function.
As this equation shows, the marginal propensity to consume (MPC) is about 0.72,
suggesting that if (real income) goes up by a dollar, the average personal consumption
expenditure goes up by about 72 cents. According to Keynesian theory, MPC is expected
to lie between 0 and 1.

The intercept value in this example is negative, which has no viable economic
interpretation. Literally interpreted, it means that if the value of GDP were zero, the
average level of personal consumption expenditure would be a negative value of about
299 billion dollars.

The r2 value of 0.9983 means approximately 99 percent of the variation in personal con-
sumption expenditure is explained by variation in the GDP. This value is quite high, consid-
ering that r2 can at most be 1. As we will see throughout this book, in regressions involving
time series data one generally obtains high r2 values. We will explore the reasons behind
this in the chapter on autocorrelation and also in the chapter on time series econometrics.

EXAMPLE 3.2
Food
Expenditure in
India

Refer to the data given in Table 2.8 of Exercise 2.15. The data relate to a sample of 55 rural
households in India. The regressand in this example is expenditure on food and the
regressor is total expenditure, a proxy for income, both figures in rupees. The data in this
example are thus cross-sectional data.

On the basis of the given data, we obtained the following regression:

F̂oodExpi = 94.2087 + 0.4368 TotalExpi (3.7.2)

var ( β̂1) = 2560.9401 se ( β̂1) = 50.8563

var ( β̂2) = 0.0061 se ( β̂2) = 0.0783
r 2 = 0.3698 σ̂2 = 4469.6913

From Equation 3.7.2 we see that if total expenditure increases by 1 rupee, on average,
expenditure on food goes up by about 44 paise (1 rupee = 100 paise). If total expendi-
ture were zero, the average expenditure on food would be about 94 rupees. Again, such
a mechanical interpretation of the intercept may not be meaningful. However, in this
example one could argue that even if total expenditure is zero (e.g., because of loss of a
job), people may still maintain some minimum level of food expenditure by borrowing
money or by dissaving.

The r 2 value of about 0.37 means that only 37 percent of the variation in food expen-
diture is explained by the total expenditure. This might seem a rather low value, but as we
will see throughout this text, in cross-sectional data, typically one obtains low r 2 values,
possibly because of the diversity of the units in the sample. We will discuss this topic
further in the chapter on heteroscedasticity (see Chapter 11).
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Country Cellphone PCs Per Capita Income ($)

Argentina 17.76 8.2 11410
Australia 71.95 60.18 28780
Belgium 79.28 31.81 28920
Brazil 26.36 7.48 7510
Bulgaria 46.64 5.19 75.4
Canada 41.9 48.7 30040
China 21.48 2.76 4980
Colombia 14.13 4.93 6410
Czech Republic 96.46 17.74 15600
Ecuador 18.92 3.24 3940
Egypt 8.45 2.91 3940
France 69.59 34.71 27640
Germany 78.52 48.47 27610
Greece 90.23 8.17 19900
Guatemala 13.15 1.44 4090
Hungary 76.88 10.84 13840
India 2.47 0.72 2880
Indonesia 8.74 1.19 3210
Italy 101.76 23.07 26,830
Japan 67.9 38.22 28450
Mexico 29.47 8.3 8980
Netherlands 76.76 46.66 28560
Pakistan 1.75 0.42 2040
Poland 45.09 14.2 11210
Russia 24.93 8.87 8950
Saudia Arabia 32.11 13.67 13230
South Africa 36.36 7.26 10130
Spain 91.61 19.6 22150
Sweden 98.05 62.13 26710
Switzerland 84.34 70.87 32220
Thailand 39.42 3.98 7450
U.K. 91.17 40.57 27690
U.S. 54.58 65.98 37750
Venezuela 27.3 6.09 4750

Note: The data on cell phones and personal computers are per 100 persons.

TABLE 3.3
Number of Cellular
Phone Subscribers
per Hundred
Persons and
Number of Personal
Computers per 100
Persons and Per
Capita Income in
Selected Countries
for 2003

Source: Statistical Abstract
of the United States, 2006,
Table 1364 for data on cell
phones and computers and
Table 1327 for purchasing-
power adjusted per capita
income.

EXAMPLE 3.3
Demand for
Cellular Phones
and Personal
Computers in
Relation to Per
Capita Personal
Income

Table 3.3 gives data on the number of cell phone subscribers and the number of personal
computers (PCs), both per 100 persons, and the purchasing-power adjusted per capita in-
come in dollars for a sample of 34 countries. Thus we have cross-sectional data. These data
are for the year 2003 and are obtained from the Statistical Abstract of the United states,
2006.

Although cell phones and personal computers are used extensively in the United
States, that is not the case in many countries. To see if per capita income is a factor in the
use of cell phones and PCs, we regressed each of these means of communication on per
capita income using the sample of 34 countries. The results are as follows:
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3.8 A Note on Monte Carlo Experiments

In this chapter we showed that under the assumptions of CLRM the least-squares estima-
tors have certain desirable statistical features summarized in the BLUE property. In the
appendix to this chapter we prove this property more formally. But in practice how does
one know that the BLUE property holds? For example, how does one find out if the OLS
estimators are unbiased? The answer is provided by the so-called Monte Carlo experi-
ments, which are essentially computer simulation, or sampling, experiments.

To introduce the basic ideas, consider our two-variable PRF:

Yi = β1 + β2 Xi + ui (3.8.1)

Demand for Cell Phones. Letting Y = number of cell phone subscribers and X =
purchasing-power-adjusted per capita income, we obtained the following regression.

Ŷi = 14.4773 + 0.0022Xi (3.7.3)

se ( β̂1) = 6.1523; se ( β̂2) = 0.00032
r2 = 0.6023

The slope coefficient suggests that if per capita income goes up by, say, $1,000, on
average, the number of cell phone subscribers goes up by about 2.2 per 100 persons.
The intercept value of about 14.47 suggests that even if the per capita income is zero, the
average number of cell phone subscribers is about 14 per 100 subscribers. Again, this
interpretation may not have much meaning, for in our sample we do not have any coun-
try with zero per capita income. The r 2 value is moderately high. But notice that our
sample includes a variety of countries with varying levels of income. In such a diverse
sample we would not expect a very high r 2 value.

After we study Chapter 5, we will show how the estimated standard errors reported
in Equation 3.7.3 can be used to assess the statistical significance of the estimated
coefficients.

Demand for Personal Computers. Although the prices of personal computers have come
down substantially over the years, PCs are still not ubiquitous. An important determinant
of the demand for personal computers is personal income. Another determinant is price,
but we do not have comparative data on PC prices for the countries in our sample.

Letting Y denote the number of PCs and X the per capita income, we have the follow-
ing “partial” demand for the PCs (partial because we do not have comparative price data
or data on other variables that might affect the demand for the PCs).

Ŷi = −6.5833 + 0.0018Xi (3.7.4)
se ( β̂1) = 2.7437; se ( β̂2) = 0.00014

r2 = 0.8290

As these results suggest, per capita personal income has a positive relationship to the
demand for PCs. After we study Chapter 5, you will see that, statistically, per capita
personal income is an important determinant of the demand for PCs. The negative value
of the intercept in the present instance has no practical significance. Despite the diversity
of our sample, the estimated r2 value is quite high. The interpretation of the slope coeffi-
cient is that if per capita income increases by, say, $1,000, on average, the demand for
personal computers goes up by about 2 units per 100 persons.

Even though the use of personal computers is spreading quickly, there are many
countries which still use main-frame computers. Therefore, the total usage of computers
in those countries may be much higher than that indicated by the sale of PCs.

EXAMPLE 3.3
(Continued)
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A Monte Carlo experiment proceeds as follows:

1. Suppose the true values of the parameters are as follows: β1 = 20 and β2 = 0.6.

2. You choose the sample size, say n = 25.

3. You fix the values of X for each observation. In all you will have 25 X values.

4. Suppose you go to a random number table, choose 25 values, and call them ui (these
days most statistical packages have built-in random number generators).24

5. Since you know β1, β2, Xi , and ui , using Equation 3.8.1 you obtain 25 Yi values.

6. Now using the 25 Yi values thus generated, you regress these on the 25 X values
chosen in step 3, obtaining β̂1 and β̂2, the least-squares estimators.

7. Suppose you repeat this experiment 99 times, each time using the same β1, β2, and
X values. Of course, the ui values will vary from experiment to experiment. Therefore, in
all you have 100 experiments, thus generating 100 values each of β1 and β2. (In practice,
many such experiments are conducted, sometimes 1000 to 2000.)

8. You take the averages of these 100 estimates and call them ¯̂
β1 and ¯̂

β2.

9. If these average values are about the same as the true values of β1 and β2 assumed in
step 1, this Monte Carlo experiment “establishes” that the least-squares estimators are
indeed unbiased. Recall that under CLRM E(β̂1) = β1 and E(β̂2) = β2.

These steps characterize the general nature of the Monte Carlo experiments. Such experi-
ments are often used to study the statistical properties of various methods of estimating
population parameters. They are particularly useful to study the behavior of estimators in
small, or finite, samples. These experiments are also an excellent means of driving home
the concept of repeated sampling that is the basis of most of classical statistical inference,
as we shall see in Chapter 5. We shall provide several examples of Monte Carlo experi-
ments by way of exercises for classroom assignment. (See Exercise 3.27.)

24In practice it is assumed that ui follows a certain probability distribution, say, normal, with certain
parameters (e.g., the mean and variance). Once the values of the parameters are specified, one can
easily generate the ui using statistical packages.

Summary and
Conclusions

The important topics and concepts developed in this chapter can be summarized as follows.

1. The basic framework of regression analysis is the CLRM.

2. The CLRM is based on a set of assumptions.

3. Based on these assumptions, the least-squares estimators take on certain properties sum-
marized in the Gauss–Markov theorem, which states that in the class of linear unbiased
estimators, the least-squares estimators have minimum variance. In short, they are
BLUE.

4. The precision of OLS estimators is measured by their standard errors. In Chapters 4
and 5 we shall see how the standard errors enable one to draw inferences on the popula-
tion parameters, the β coefficients.

5. The overall goodness of fit of the regression model is measured by the coefficient of
determination, r2. It tells what proportion of the variation in the dependent variable,
or regressand, is explained by the explanatory variable, or regressor. This r2 lies between
0 and 1; the closer it is to 1, the better is the fit.
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6. A concept related to the coefficient of determination is the coefficient of correlation, r.
It is a measure of linear association between two variables and it lies between −1
and +1.

7. The CLRM is a theoretical construct or abstraction because it is based on a set of
assumptions that may be stringent or “unrealistic.” But such abstraction is often neces-
sary in the initial stages of studying any field of knowledge. Once the CLRM is mastered,
one can find out what happens if one or more of its assumptions are not satisfied. The first
part of this book is devoted to studying the CLRM. The other parts of the book consider
the refinements of the CLRM. Table 3.4 gives the road map ahead.

Questions
3.1. Given the assumptions in column 1 of the table, show that the assumptions in column

2 are equivalent to them.

Assumptions of the Classical Model

(1) (2)

E(ui |Xi) = 0 E(Yi |Xi) = β2 + β2X

cov (ui, uj) = 0 i �= j cov (Yi, Yj) = 0 i �= j

var (ui |Xi) = σ2 var (Yi |Xi) = σ2

3.2. Show that the estimates β̂1 = 1.572 and β̂2 = 1.357 used in the first experiment of
Table 3.1 are in fact the OLS estimators.

3.3. According to Malinvaud (see footnote 11), the assumption that E(ui | Xi ) = 0 is quite
important. To see this, consider the PRF: Y = β1 + β2 Xi + ui . Now consider
two situations: (i) β1 = 0, β2 = 1, and E(ui ) = 0; and (ii) β1 = 1, β2 = 0, and
E(ui ) = (Xi − 1). Now take the expectation of the PRF conditional upon X in the
two preceding cases and see if you agree with Malinvaud about the significance of
the assumption E(ui | Xi ) = 0.

EXERCISES

Assumption 
Number Type of Violation Where to Study?

1 Nonlinearity in parameters Chapter 14
2 Stochastic regressor(s) Chapter 13
3 Nonzero mean of ui Introduction to Part II
4 Heteroscedasticity Chapter 11
5 Autocorrelated disturbances Chapter 12
6 Sample observations less Chapter 10

than the number of regressors
7 Insufficient variability in regressors Chapter 10
8 Multicollinearity* Chapter 10
9 Specification bias* Chapters 13, 14

1 0** Nonnormality of disturbances Chapter 13

*These assumptions will be introduced in Chapter 7, when we discuss the multiple regression model. 

**Note: The assumption that the disturbances ui are normally distributed is not a part of the CLRM. But more on this in Chapter 4.

TABLE 3.4
What Happens If the
Assumptions of
CLRM Are Violated?
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3.4. Consider the sample regression

Yi = β̂1 + β̂2 Xi + û i

Imposing the restrictions (i)
∑

û i = 0 and (ii)
∑

û i Xi = 0, obtain the estimators β̂1

and β̂2 and show that they are identical with the least-squares estimators given in
Eqs. (3.1.6) and (3.1.7). This method of obtaining estimators is called the analogy
principle. Give an intuitive justification for imposing restrictions (i) and (ii).
(Hint: Recall the CLRM assumptions about ui .) In passing, note that the analogy prin-
ciple of estimating unknown parameters is also known as the method of moments in
which sample moments (e.g., sample mean) are used to estimate population moments
(e.g., the population mean). As noted in Appendix A, a moment is a summary statis-
tic of a probability distribution, such as the expected value and variance.

3.5. Show that r2 defined in (3.5.5) ranges between 0 and 1. You may use the
Cauchy–Schwarz inequality, which states that for any random variables X and Y the
following relationship holds true:

[E(XY )]2 ≤ E(X2)E(Y 2)

3.6. Let β̂Y X and β̂XY represent the slopes in the regression of Y on X and X on Y,
respectively. Show that

β̂Y X β̂XY = r2

where r is the coefficient of correlation between X and Y.

3.7. Suppose in Exercise 3.6 that β̂Y X β̂XY = 1. Does it matter then if we regress Y on X
or X on Y? Explain carefully.

3.8. Spearman’s rank correlation coefficient rs is defined as follows:

rs = 1 − 6
∑

d2

n(n2 − 1)

where d = difference in the ranks assigned to the same individual or phenomenon
and n = number of individuals or phenomena ranked. Derive rs from r defined in
Eq. (3.5.13). Hint: Rank the X and Y values from 1 to n. Note that the sum of X and
Y ranks is n(n + 1)/2 each and therefore their means are (n + 1)/2.

3.9. Consider the following formulations of the two-variable PRF:

Model I: Yi = β1 + β2 Xi + ui

Model II: Yi = α1 + α2(Xi − X̄) + ui

a. Find the estimators of β1 and α1. Are they identical? Are their variances identical?

b. Find the estimators of β2 and α2. Are they identical? Are their variances identical?

c. What is the advantage, if any, of model II over model I?

3.10. Suppose you run the following regression:

yi = β̂1 + β̂2xi + û i

where, as usual, yi and xi are deviations from their respective mean values.
What will be the value of β̂1? Why? Will β̂2 be the same as that obtained from
Eq. (3.1.6)? Why?
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3.11. Let r1 = coefficient of correlation between n pairs of values (Yi , Xi ) and r2 =
coefficient of correlation between n pairs of values (aXi + b, cYi + d), where a, b, c,
and d are constants. Show that r1 = r2 and hence establish the principle that the coef-
ficient of correlation is invariant with respect to the change of scale and the change of
origin.

Hint: Apply the definition of r given in Eq. (3.5.13).

Note: The operations aXi , Xi + b, and aXi + b are known, respectively, as the
change of scale, change of origin, and change of both scale and origin.

3.12. If r, the coefficient of correlation between n pairs of values (Xi , Yi ), is positive, then
determine whether each of the following statements is true or false:

a. r between (−Xi , −Yi ) is also positive.

b. r between (−Xi , Yi ) and that between (Xi , −Yi ) can be either positive or
negative.

c. Both the slope coefficients βyx and βxy are positive, where βyx = slope coefficient
in the regression of Y on X and βxy = slope coefficient in the regression of X on Y.

3.13. If X1, X2, and X3 are uncorrelated variables each having the same standard devia-
tion, show that the coefficient of correlation between X1 + X2 and X2 + X3 is equal
to 1

2 . Why is the correlation coefficient not zero?

3.14. In the regression Yi = β1 + β2 Xi + ui suppose we multiply each X value by a con-
stant, say, 2. Will it change the residuals and fitted values of Y? Explain. What if we
add a constant value, say, 2, to each X value?

3.15. Show that Eq. (3.5.14) in fact measures the coefficient of determination.
Hint: Apply the definition of r given in Eq. (3.5.13) and recall that 

∑
yi ŷi =∑

( ŷi + û i ) ŷi = ∑
ŷ2

i , and remember Eq. (3.5.6).

3.16. Explain with reason whether the following statements are true, false, or uncertain:

a. Since the correlation between two variables, Y and X, can range from −1 to +1,
this also means that cov (Y, X) also lies between these limits.

b. If the correlation between two variables is zero, it means that there is no relation-
ship between the two variables whatsoever.

c. If you regress Yi on Ŷi (i.e., actual Y on estimated Y ), the intercept and slope
values will be 0 and 1, respectively.

3.17. Regression without any regressor. Suppose you are given the model: Yi = β1 + ui .

Use OLS to find the estimator of β1. What is its variance and the RSS? Does the
estimated β1 make intuitive sense? Now consider the two-variable model
Yi = β1 + β2 Xi + ui . Is it worth adding Xi to the model? If not, why bother with
regression analysis?

Empirical Exercises
3.18. In Table 3.5, you are given the ranks of 10 students in midterm and final examinations

in statistics. Compute Spearman’s coefficient of rank correlation and interpret it.

Student

Rank A B C D E F G H I J

Midterm 1 3 7 10 9 5 4 8 2 6
Final 3 2 8 7 9 6 5 10 1 4

TABLE 3.5 
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3.19. The relationship between nominal exchange rate and relative prices. From annual
observations from 1985 to 2005, the following regression results were obtained,
where Y = exchange rate of the Canadian dollar to the U.S. dollar (CD�$) and X =
ratio of the U.S. consumer price index to the Canadian consumer price index; that is,
X represents the relative prices in the two countries:

Ŷt = −0.912 + 2.250Xt r2 = 0.440

se = 0.096

a. Interpret this regression. How would you interpret r2?

b. Does the positive value of Xt make economic sense? What is the underlying
economic theory?

c. Suppose we were to redefine X as the ratio of the Canadian CPI to the U.S. CPI.
Would that change the sign of X? Why?

3.20. Table 3.6 gives data on indexes of output per hour (X) and real compensation per
hour (Y) for the business and nonfarm business sectors of the U.S. economy for
1960–2005. The base year of the indexes is 1992 = 100 and the indexes are
seasonally adjusted.

a. Plot Y against X for the two sectors separately.

b. What is the economic theory behind the relationship between the two variables?
Does the scattergram support the theory?

c. Estimate the OLS regression of Y on X. Save the results for a further look after we
study Chapter 5.

3.21. From a sample of 10 observations, the following results were obtained:

∑
Yi = 1,110

∑
Xi = 1,700

∑
Xi Yi = 205,500

∑
X2

i = 322,000
∑

Y 2
i = 132,100

with coefficient of correlation r = 0.9758. But on rechecking these calculations it
was found that two pairs of observations were recorded:

Y X Y X

90 120 instead of 80 110
140 220 150 210

What will be the effect of this error on r? Obtain the correct r.

3.22. Table 3.7 gives data on gold prices, the Consumer Price Index (CPI), and the New
York Stock Exchange (NYSE) Index for the United States for the period 1974 –2006.
The NYSE Index includes most of the stocks listed on the NYSE, some 1500-plus.

a. Plot in the same scattergram gold prices, CPI, and the NYSE Index.

b. An investment is supposed to be a hedge against inflation if its price and/or rate
of return at least keeps pace with inflation. To test this hypothesis, suppose you
decide to fit the following model, assuming the scatterplot in (a) suggests that this
is appropriate:

Gold pricet = β1 + β2 CPIt + ut

NYSE indext = β1 + β2 CPIt + ut
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Output per Hour of All Real Compensation per 
Persons1 Hour2,3

Nonfarm Nonfarm
Business Business Business Business 

Year Sector Sector Sector Sector 

1960 48.9 51.9 60.8 63.3
1961 50.6 53.5 62.5 64.8
1962 52.9 55.9 64.6 66.7
1963 55.0 57.8 66.1 68.1
1964 56.8 59.6 67.7 69.3
1965 58.8 61.4 69.1 70.5
1966 61.2 63.6 71.7 72.6
1967 62.5 64.7 73.5 74.5
1968 64.7 66.9 76.2 77.1
1969 65.0 67.0 77.3 78.1
1970 66.3 68.0 78.8 79.2
1971 69.0 70.7 80.2 80.7
1972 71.2 73.1 82.6 83.2
1973 73.4 75.3 84.3 84.7
1974 72.3 74.2 83.3 83.8
1975 74.8 76.2 84.1 84.5
1976 77.1 78.7 86.4 86.6
1977 78.5 80.0 87.6 88.0
1978 79.3 81.0 89.1 89.6
1979 79.3 80.7 89.3 89.7
1980 79.2 80.6 89.1 89.6
1981 80.8 81.7 89.3 89.8
1982 80.1 80.8 90.4 90.8
1983 83.0 84.5 90.3 90.9
1984 85.2 86.1 90.7 91.1
1985 87.1 87.5 92.0 92.2
1986 89.7 90.2 94.9 95.2
1987 90.1 90.6 95.2 95.5
1988 91.5 92.1 96.5 96.7
1989 92.4 92.8 95.0 95.1
1990 94.4 94.5 96.2 96.1
1991 95.9 96.1 97.4 97.4
1992 100.0 100.0 100.0 100.0
1993 100.4 100.4 99.7 99.5
1994 101.3 101.5 99.0 99.1
1995 101.5 102.0 98.7 98.8
1996 104.5 104.7 99.4 99.4
1997 106.5 106.4 100.5 100.3
1998 109.5 109.4 105.2 104.9
1999 112.8 112.5 108.0 107.5
2000 116.1 115.7 112.0 111.5
2001 119.1 118.6 113.5 112.8
2002 124.0 123.5 115.7 115.1
2003 128.7 128.0 117.7 117.1
2004 132.7 131.8 119.0 118.2
2005 135.7 134.9 120.2 119.3

1Output refers to real gross domestic product in the sector.
2Wages and salaries of employees plus employers’ contributions for social insurance and private benefit plans.
3Hourly compensation divided by the consumer price index for all urban consumers for recent quarters.

TABLE 3.6
Productivity and
Related Data,
Business Sector
1960–2005
(Index numbers,
1992 =100; quarterly
data seasonally
adjusted)

Source: Economic Report of the
President, 2007, Table 49.
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3.23. Table 3.8 gives data on gross domestic product (GDP) for the United States for the
years 1959–2005.

a. Plot the GDP data in current and constant (i.e., 2000) dollars against time.

b. Letting Y denote GDP and X time (measured chronologically starting with 1 for
1959, 2 for 1960, through 47 for 2005), see if the following model fits the GDP
data:

Yt = β1 + β2 Xt + ut

Estimate this model for both current and constant-dollar GDP.

c. How would you interpret β2?

d. If there is a difference between β2 estimated for current-dollar GDP and that
estimated for constant-dollar GDP, what explains the difference?

e. From your results what can you say about the nature of inflation in the United
States over the sample period?

Year Gold Price NYSE CPI

1974 159.2600 463.5400 49.30000
1975 161.0200 483.5500 53.80000
1976 124.8400 575.8500 56.90000
1977 157.7100 567.6600 60.60000
1978 193.2200 567.8100 65.20000
1979 306.6800 616.6800 72.60000
1980 612.5600 720.1500 82.40000
1981 460.0300 782.6200 90.90000
1982 375.6700 728.8400 96.50000
1983 424.3500 979.5200 99.60000
1984 360.4800 977.3300 103.9000
1985 317.2600 1142.970 107.6000
1986 367.6600 1438.020 109.6000
1987 446.4600 1709.790 113.6000
1988 436.9400 1585.140 118.3000
1989 381.4400 1903.360 124.0000
1990 383.5100 1939.470 130.7000
1991 362.1100 2181.720 136.2000
1992 343.8200 2421.510 140.3000
1993 359.7700 2638.960 144.5000
1994 384.0000 2687.020 148.2000
1995 384.1700 3078.560 152.4000
1996 387.7700 3787.200 156.9000
1997 331.0200 4827.350 160.5000
1998 294.2400 5818.260 163.0000
1999 278.8800 6546.810 166.6000
2000 279.1100 6805.890 172.2000
2001 274.0400 6397.850 177.1000
2002 309.7300 5578.890 179.9000
2003 363.3800 5447.460 184.0000
2004 409.7200 6612.620 188.9000
2005 444.7400 7349.000 195.3000
2006 603.4600 8357.990 201.6000

TABLE 3.7
Gold Prices, New
York Stock Exchange
Index, and Consumer
Price Index for U.S.
for 1974–2006
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3.24. Using the data given in Table I.1 of the Introduction, verify Eq. (3.7.1).

3.25. For the SAT example given in Exercise 2.16 do the following:

a. Plot the female reading score against the male reading score.

b. If the scatterplot suggests that a linear relationship between the two seems
appropriate, obtain the regression of female reading score on male reading score.

c. If there is a relationship between the two reading scores, is the relationship
causal?

3.26. Repeat Exercise 3.25, replacing math scores for reading scores.

3.27. Monte Carlo study classroom assignment: Refer to the 10 X values given in
Table 2.4. Let β1 = 25 and β2 = 0.5. Assume ui ≈ N (0, 9), that is, ui are normally
distributed with mean 0 and variance 9. Generate 100 samples using these values,
obtaining 100 estimates of β1 and β2. Graph these estimates. What conclusions can
you draw from the Monte Carlo study? Note: Most statistical packages now can gen-
erate random variables from most well-known probability distributions. Ask your in-
structor for help, in case you have difficulty generating such variables.

3.28. Using the data given in Table 3.3, plot the number of cell phone subscribers against
the number of personal computers in use. Is there any discernible relationship be-
tween the two? If so, how do you rationalize the relationship?

Year NGDP RGDP Year NGDP RGDP

1959 506.6 2,441.3 1983 3,536.7 5,423.8
1960 526.4 2,501.8 1984 3,933.2 5,813.6
1961 544.7 2,560.0 1985 4,220.3 6,053.7
1962 585.6 2,715.2 1986 4,462.8 6,263.6
1963 617.7 2,834.0 1987 4,739.5 6,475.1
1964 663.6 2,998.6 1988 5,103.8 6,742.7
1965 719.1 3,191.1 1989 5,484.4 6,981.4
1966 787.8 3,399.1 1990 5,803.1 7,112.5
1967 832.6 3,484.6 1991 5,995.9 7,100.5
1968 910.0 3,652.7 1992 6,337.7 7,336.6
1969 984.6 3,765.4 1993 6,657.4 7,532.7
1970 1,038.5 3,771.9 1994 7,072.2 7,835.5
1971 1,127.1 3,898.6 1995 7,397.7 8,031.7
1972 1,238.3 4,105.0 1996 7,816.9 8,328.9
1973 1,382.7 4,341.5 1997 8,304.3 8,703.5
1974 1,500.0 4,319.6 1998 8,747.0 9,066.9
1975 1,638.3 4,311.2 1999 9,268.4 9,470.3
1976 1,825.3 4,540.9 2000 9,817.0 9,817.0
1977 2,030.9 4,750.5 2001 10,128.0 9,890.7
1978 2,294.7 5,015.0 2002 10,469.6 10,048.8
1979 2,563.3 5,173.4 2003 10,960.8 10,301.0
1980 2,789.5 5,161.7 2004 11,712.5 10,703.5
1981 3,128.4 5,291.7 2005 12,455.8 11,048.6
1982 3,255.0 5,189.3

Source: Economic Report of the President, 2007. Table B-1 and B-2.

TABLE 3.8
Nominal and Real
Gross Domestic
Product, 1959–2005
(billions of dollars,
except as noted;
quarterly data at
seasonally adjusted
annual rates; RGDP
in billions of chained
[2000] dollars)
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Appendix 3A

3A.1 Derivation of Least-Squares Estimates

Differentiating Eq. (3.1.2) partially with respect to β̂1 and β̂2, we obtain

∂
(∑

û2
i

)

∂β̂1

= −2
∑

(Yi − β̂1 − β̂2 Xi ) = −2
∑

û i
(1)

∂
(∑

û2
i

)

∂β̂2

= −2
∑

(Yi − β̂1 − β̂2 Xi )Xi = −2
∑

û i Xi
(2)

Setting these equations to zero, after algebraic simplification and manipulation, gives the estimators
given in Eqs. (3.1.6) and (3.1.7).

3A.2 Linearity and Unbiasedness Properties 
of Least-Squares Estimators

From Eq. (3.1.8) we have

β̂2 =
∑

xi Yi∑
x2

i

=
∑

ki Yi (3)

where
ki = xi(∑

x2
i

)

which shows that β̂2 is a linear estimator because it is a linear function of Y; actually it is a weighted
average of Yi with ki serving as the weights. It can similarly be shown that β̂1 too is a linear estimator.

Incidentally, note these properties of the weights ki :

1. Since the Xi are assumed to be nonstochastic, the ki are nonstochastic too.

2.
∑

ki = 0.

3.
∑

k2
i = 1

/∑
x2

i .

4.
∑

ki xi = ∑
ki Xi = 1. These properties can be directly verified from the definition of ki .

For example,

∑
ki =

∑(
xi∑

x2
i

)
= 1∑

x2
i

∑
xi , since for a given sample

∑
x2

i is known

= 0, since 
∑

xi , the sum of deviations from the mean value, is
always zero

Now substitute the PRF Yi = β1 + β2 Xi + ui into Equation (3) to obtain

β̂2 =
∑

ki (β1 + β2 Xi + ui )

= β1

∑
ki + β2

∑
ki Xi +

∑
ki u i (4)

= β2 +
∑

ki u i

where use is made of the properties of ki noted earlier.
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Now taking expectation of Equation (4) on both sides and noting that ki , being nonstochastic, can
be treated as constants, we obtain

E(β̂2) = β2 +
∑

ki E(ui )

= β2

(5)

since E(ui ) = 0 by assumption. Therefore, β̂2 is an unbiased estimator of β2. Likewise, it can be
proved that β̂1 is also an unbiased estimator of β1.

3A.3 Variances and Standard Errors 
of Least-Squares Estimators

Now by the definition of variance, we can write

var (β̂2) = E[β̂2 − E(β̂2)]2

= E(β̂2 − β2)2 since E(β̂2) = β2

= E
(∑

ki u i

)2
using Eq. (4) above

= E
(

k2
1u2

1 + k2
2u2

2 + · · · + k2
nu2

n + 2k1k2u1u2 + · · · + 2kn−1knun−1un

)
(6)

Since by assumption, E(u2
i ) = σ 2 for each i and E(ui uj ) = 0, i �= j, it follows that

var (β̂2) = σ 2
∑

k2
i

= σ 2∑
x2

i

(using the definition of k2
i )

= Eq. (3.3.1)

(7)

The variance of β̂1 can be obtained following the same line of reasoning already given. Once the
variances of β̂1 and β̂2 are obtained, their positive square roots give the corresponding standard
errors.

3A.4 Covariance between β1ˆ and β2ˆ
By definition,

cov (β̂1, β̂2) = E{[β̂1 − E(β̂1)][β̂2 − E(β̂2)]}
= E(β̂1 − β1)(β̂2 − β2) (Why?)

= −X̄ E(β̂2 − β2)2 (8)

= −X̄ var (β̂2)

= Eq. (3.3.9)

where use is made of the fact that β̂1 = Ȳ − β̂2 X̄ and E(β̂1) = Ȳ − β2 X̄ , giving
β̂1 − E(β̂1) = −X̄(β̂2 − β2). Note: var (β̂2) is given in Eq. (3.3.1).

3A.5 The Least-Squares Estimator of σ2

Recall that

Yi = β1 + β2 Xi + ui (9)

guj75772_ch03.qxd  23/08/2008  02:35 PM  Page 93
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Therefore,

Ȳ = β1 + β2 X̄ + ū (10)

Subtracting Equation (10) from Equation (9) gives

yi = β2xi + (ui − ū) (11)

Also recall that

û i = yi − β̂2xi (12)

Therefore, substituting Equation (11) into Equation (12) yields

û i = β2xi + (ui − ū) − β̂2xi (13)

Collecting terms, squaring, and summing on both sides, we obtain∑
û2

i = (β̂2 − β2)2
∑

x2
i +

∑
(ui − ū)2 − 2(β̂2 − β2)

∑
xi (ui − ū) (14)

Taking expectations on both sides gives

E
(∑

û2
i

)
=

∑
x2

i E(β̂2 − β2)2 + E
[∑

(ui − ū)2
]

− 2E
[
(β̂2 − β2)

∑
xi (ui − ū)

]

=
∑

x2
i var (β̂2) + (n − 1) var (ui ) − 2E

[∑
ki u i (xi u i )

]

= σ 2 + (n − 1) σ 2 − 2E
[∑

ki xi u
2
i

]
(15)

= σ 2 + (n − 1) σ 2 − 2σ 2

= (n − 2)σ 2

where, in the last but one step, use is made of the definition of ki given in Eq. (3) and the relation
given in Eq. (4). Also note that

E
∑

(ui − ū)2 = E
[∑

u2
i − nū2

]

= E

[∑
u2

i − n

(∑
ui

n

)2
]

= E

[∑
u2

i − 1

n

∑(
u2

i

)]

= nσ 2 − n

n
σ 2 = (n − 1)σ 2

where use is made of the fact that the ui are uncorrelated and the variance of each ui is σ 2.

Thus, we obtain

E
(∑

û2
i

)
= (n − 2)σ 2 (16)

Therefore, if we define

σ̂ 2 =
∑

û2
i

n − 2
(17)

its expected value is

E(σ̂ 2) = 1

n − 2
E

(∑
û2

i

)
= σ 2 using Equation (16) (18)

which shows that σ̂ 2 is an unbiased estimator of true σ 2.
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3A.6 Minimum-Variance Property 
of Least-Squares Estimators

It was shown in Appendix 3A, Section 3A.2, that the least-squares estimator β̂2 is linear as well as
unbiased (this holds true of β̂1 too). To show that these estimators are also minimum variance in the
class of all linear unbiased estimators, consider the least-squares estimator β̂2:

β̂2 =
∑

ki Yi

where

ki = Xi − X̄∑
(Xi − X̄)2

= xi∑
x2

i

(see Appendix 3A.2) (19)

which shows that β̂2 is a weighted average of the Y ’s, with ki serving as the weights.
Let us define an alternative linear estimator of β2 as follows:

β∗
2 =

∑
wi Yi (20)

where wi are also weights, not necessarily equal to ki . Now

E(β∗
2 ) =

∑
wi E(Yi )

=
∑

wi (β1 + β2 Xi ) (21)

= β1

∑
wi + β2

∑
wi Xi

Therefore, for β∗
2 to be unbiased, we must have∑

wi = 0 (22)

and ∑
wi Xi = 1 (23)

Also, we may write

var (β∗
2 ) = var

∑
wi Yi

=
∑

w2
i var Yi [Note: var Yi = var ui = σ 2]

= σ 2
∑

w2
i [Note: cov (Yi , Yj ) = 0 (i �= j)]

= σ 2
∑(

wi − xi∑
x2

i

+ xi∑
x2

i

)2

(Note the mathematical trick)

= σ 2
∑(

wi − xi∑
x2

i

)2

+ σ 2

∑
x2

i(∑
x2

i

)2 + 2σ 2
∑(

wi − xi∑
x2

i

)(
xi∑

x2
i

)

= σ 2
∑(

wi − xi∑
x2

i

)2

+ σ 2
(

1∑
x2

i

)
(24)

because the last term in the next to the last step drops out. (Why?)
Since the last term in Equation (24) is constant, the variance of (β∗

2 ) can be minimized only by
manipulating the first term. If we let

wi = xi∑
x2

i
Eq. (24) reduces to

var (β∗
2 ) = σ 2∑

x2
i

= var (β̂2)

(25)
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In words, with weights wi = ki , which are the least-squares weights, the variance of the linear esti-
mator β∗

2 is equal to the variance of the least-squares estimator β̂2; otherwise var (β∗
2 ) > var (β̂2). To

put it differently, if there is a minimum-variance linear unbiased estimator of β2, it must be the least-
squares estimator. Similarly it can be shown that β̂1 is a minimum-variance linear unbiased estimator
of β1.

3A.7 Consistency of Least-Squares Estimators

We have shown that, in the framework of the classical linear regression model, the least-squares esti-
mators are unbiased (and efficient) in any sample size, small or large. But sometimes, as discussed in
Appendix A, an estimator may not satisfy one or more desirable statistical properties in small sam-
ples. But as the sample size increases indefinitely, the estimators possess several desirable statistical
properties. These properties are known as the large sample, or asymptotic, properties. In this ap-
pendix, we will discuss one large sample property, namely, the property of consistency, which is dis-
cussed more fully in Appendix A. For the two-variable model we have already shown that the OLS
estimator β̂2 is an unbiased estimator of the true β2. Now we show that β̂2 is also a consistent esti-
mator of β2. As shown in Appendix A, a sufficient condition for consistency is that β̂2 is unbiased
and that its variance tends to zero as the sample size n tends to infinity.

Since we have already proved the unbiasedness property, we need only show that the variance of
β̂2 tends to zero as n increases indefinitely. We know that

var (β̂2) = σ 2∑
x2

i

= σ 2/n∑
x2

i /n
(26)

By dividing the numerator and denominator by n, we do not change the equality.
Now

lim var (β̂2)

︸ ︷︷ ︸
= lim

(
σ 2/n∑

x2
i /n

)
︸ ︷︷ ︸

= 0 (27)

n → ∞ n → ∞

where use is made of the facts that (1) the limit of a ratio quantity is the limit of the quantity in the
numerator to the limit of the quantity in the denominator (refer to any calculus book); (2) as n tends
to infinity, σ 2/n tends to zero because σ 2 is a finite number; and [(

∑
x2

i )/n] �= 0 because the vari-
ance of X has a finite limit because of Assumption 7 of CLRM.

The upshot of the preceding discussion is that the OLS estimator β̂2 is a consistent estimator of
true β2. In like fashion, we can establish that β̂1 is also a consistent estimator. Thus, in repeated
(small) samples, the OLS estimators are unbiased and as the sample size increases indefinitely the
OLS estimators are consistent. As we shall see later, even if some of the assumptions of CLRM are
not satisfied, we may be able to obtain consistent estimators of the regression coefficients in several
situations.
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Chapter 4
Classical Normal 
Linear Regression
Model (CNLRM)
What is known as the classical theory of statistical inference consists of two branches,
namely, estimation and hypothesis testing. We have thus far covered the topic of estima-
tion of the parameters of the (two-variable) linear regression model. Using the method of
OLS we were able to estimate the parameters β1, β2, and σ2. Under the assumptions of the
classical linear regression model (CLRM), we were able to show that the estimators of
these parameters, β̂1, β̂2, and σ̂ 2, satisfy several desirable statistical properties, such as
unbiasedness, minimum variance, etc. (Recall the BLUE property.) Note that, since these
are estimators, their values will change from sample to sample. Therefore, these estimators
are random variables.

But estimation is half the battle. Hypothesis testing is the other half. Recall that in
regression analysis our objective is not only to estimate the sample regression function
(SRF), but also to use it to draw inferences about the population regression function (PRF),
as emphasized in Chapter 2. Thus, we would like to find out how close β̂1 is to the true β1

or how close σ̂ 2 is to the true σ 2. For instance, in Example 3.2, we estimated the SRF
as shown in Eq. (3.7.2). But since this regression is based on a sample of 55 families, how
do we know that the estimated MPC of 0.4368 represents the (true) MPC in the population
as a whole?

Therefore, since β̂1, β̂2, and σ̂ 2 are random variables, we need to find out their proba-
bility distributions, for without that knowledge we will not be able to relate them to their
true values.

4.1 The Probability Distribution of Disturbances ui

To find out the probability distributions of the OLS estimators, we proceed as follows.
Specifically, consider β̂2. As we showed in Appendix 3A.2,

β̂2 =
∑

ki Yi (4.1.1)

where ki = xi/
∑

x2
i . But since the X’s are assumed fixed, or nonstochastic, because ours is

conditional regression analysis, conditional on the fixed values of Xi, Equation 4.1.1 shows
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that β̂2 is a linear function of Yi, which is random by assumption. But since
Yi = β1 + β2 Xi + ui , we can write Eq. (4.1.1) as

β̂2 =
∑

ki (β1 + β2 Xi + ui ) (4.1.2)

Because ki, the betas, and Xi are all fixed, β̂2 is ultimately a linear function of the random
variable ui, which is random by assumption. Therefore, the probability distribution of β̂2

(and also of β̂1) will depend on the assumption made about the probability distribution of
ui . And since knowledge of the probability distributions of OLS estimators is necessary to
draw inferences about their population values, the nature of the probability distribution of
ui assumes an extremely important role in hypothesis testing.

Since the method of OLS does not make any assumption about the probabilistic nature
of ui , it is of little help for the purpose of drawing inferences about the PRF from the SRF,
the Gauss–Markov theorem notwithstanding. This void can be filled if we are willing to
assume that the u’s follow some probability distribution. For reasons to be explained
shortly, in the regression context it is usually assumed that the u’s follow the normal distri-
bution. Adding the normality assumption for ui to the assumptions of the classical linear
regression model (CLRM) discussed in Chapter 3, we obtain what is known as the classical
normal linear regression model (CNLRM).

4.2 The Normality Assumption for ui

The classical normal linear regression model assumes that each ui is distributed normally
with

Mean: E(ui ) = 0 (4.2.1)

Variance: E[ui − E(ui )]2 = E
(
u2

i

) = σ 2 (4.2.2)

cov (ui, uj): E{[(ui − E(ui )][uj − E(uj )]} = E(ui uj ) = 0 i �= j (4.2.3)

The assumptions given above can be more compactly stated as

ui ∼ N (0, σ 2) (4.2.4)

where the symbol ∼ means distributed as and N stands for the normal distribution, the
terms in the parentheses representing the two parameters of the normal distribution, namely,
the mean and the variance.

As noted in Appendix A, for two normally distributed variables, zero covariance or
correlation means independence of the two variables. Therefore, with the normality as-
sumption, Equation 4.2.4 means that ui and uj are not only uncorrelated but are also inde-
pendently distributed.

Therefore, we can write Eq. (4.2.4) as

ui ∼ NID (0, σ 2) (4.2.5)

where NID stands for normally and independently distributed.
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Why the Normality Assumption?
Why do we employ the normality assumption? There are several reasons:

1. As pointed out in Section 2.5, ui represent the combined influence (on the dependent
variable) of a large number of independent variables that are not explicitly introduced in the
regression model. As noted, we hope that the influence of these omitted or neglected
variables is small and at best random. Now by the celebrated central limit theorem (CLT)
of statistics (see Appendix A for details), it can be shown that if there are a large number
of independent and identically distributed random variables, then, with a few exceptions,
the distribution of their sum tends to a normal distribution as the number of such variables
increases indefinitely.1 It is the CLT that provides a theoretical justification for the assump-
tion of normality of ui .

2. A variant of the CLT states that, even if the number of variables is not very large
or if these variables are not strictly independent, their sum may still be normally
distributed.2

3. With the normality assumption, the probability distributions of OLS estimators can be
easily derived because, as noted in Appendix A, one property of the normal distribution is
that any linear function of normally distributed variables is itself normally distributed.
As we discussed earlier, OLS estimators β̂1 and β̂2 are linear functions of ui .Therefore, if ui

are normally distributed, so are β̂1 and β̂2, which makes our task of hypothesis testing very
straightforward.

4. The normal distribution is a comparatively simple distribution involving only two
parameters (mean and variance); it is very well known and its theoretical properties have
been extensively studied in mathematical statistics. Besides, many phenomena seem to
follow the normal distribution.

5. If we are dealing with a small, or finite, sample size, say data of less than 100 obser-
vations, the normality assumption assumes a critical role. It not only helps us to derive the
exact probability distributions of OLS estimators but also enables us to use the t, F, and χ2

statistical tests for regression models. The statistical properties of t, F, and χ2 probability
distributions are discussed in Appendix A. As we will show subsequently, if the sample size
is reasonably large, we may be able to relax the normality assumption.

6. Finally, in large samples, t and F statistics have approximately the t and F probabil-
ity distributions so that the t and F tests that are based on the assumption that the error term
is normally distributed can still be applied validly.3 These days there are many cross-section
and time series data that have a fairly large number of observations. Therefore, the normality
assumption may not be very crucial in large data sets.

A cautionary note: Since we are “imposing” the normality assumption, it behooves us to
find out in practical applications involving small sample size data whether the normality

1For a relatively simple and straightforward discussion of this theorem, see Sheldon M. Ross, 
Introduction to Probability and Statistics for Engineers and Scientists, 2d ed., Harcourt Academic Press,
New York, 2000, pp. 193–194. One exception to the theorem is the Cauchy distribution, which has
no mean or higher moments. See M. G. Kendall and A. Stuart, The Advanced Theory of Statistics,
Charles Griffin & Co., London, 1960, vol. 1, pp. 248–249.
2For the various forms of the CLT, see Harald Cramer, Mathematical Methods of Statistics, Princeton
University Press, Princeton, NJ, 1946, Chap. 17.
3For a technical discussion on this point, see Christiaan Heij et al., Econometric Methods with 
Applications in Business and Economics, Oxford University Press, Oxford, 2004, p. 197.
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100 Part One Single-Equation Regression Models

assumption is appropriate. Later, we will develop some tests to do just that. Also, later we
will come across situations where the normality assumption may be inappropriate. But until
then we will continue with the normality assumption for the reasons discussed previously.

4.3 Properties of OLS Estimators under 
the Normality Assumption

With the assumption that ui follow the normal distribution as in Equation 4.2.5, the OLS
estimators have the following properties (Appendix A provides a general discussion of the
desirable statistical properties of estimators):

1. They are unbiased.

2. They have minimum variance. Combined with 1, this means that they are minimum-
variance unbiased, or efficient estimators.

3. They have consistency; that is, as the sample size increases indefinitely, the estimators
converge to their true population values.

4. β̂1 (being a linear function of ui ) is normally distributed with

(4.3.1)

= (3.3.3) (4.3.2)

Or more compactly,

Then by the properties of the normal distribution, the variable Z, which is defined as

(4.3.3)

follows the standard normal distribution, that is, a normal distribution with zero mean
and unit (= 1) variance, or

5. β̂2 (being a linear function of ui ) is normally distributed with

(4.3.4)

= (3.3.1) (4.3.5)

Or, more compactly,

Then, as in Equation 4.3.3,
(4.3.6)

also follows the standard normal distribution.
Geometrically, the probability distributions of β̂1 and β̂2 are shown in Figure 4.1.

Z = β̂2 − β2

σβ̂2

β̂2 ∼ N
(
β2, σ 2

β̂2

)

Mean: E(β̂2) = β2

var (β̂2): σ 2
β̂2

= σ 2∑
x2

i

Z ∼ N (0, 1)

Z = β̂1 − β1

σβ̂1

β̂1 ∼ N
(
β1, σ 2

β̂1

)

Mean: E(β̂1) = β1

var (β̂1): σ 2
β̂1

=
∑

X2
i

n
∑

x2
i

σ 2
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Chapter 4 Classical Normal Linear Regression Model (CNLRM) 101

6. (n − 2)(σ̂ 2/σ 2) is distributed as the χ2 (chi-square) distribution with (n − 2)df.4

This knowledge will help us to draw inferences about the true σ 2 from the estimated σ 2, as
we will show in Chapter 5. (The chi-square distribution and its properties are discussed in
Appendix A.)

7. (β̂1, β̂2) are distributed independently of σ̂ 2. The importance of this will be
explained in the next chapter.

8. β̂1 and β̂2 have minimum variance in the entire class of unbiased estimators, whether
linear or not. This result, due to Rao, is very powerful because, unlike the Gauss–Markov
theorem, it is not restricted to the class of linear estimators only.5 Therefore, we can say that
the least-squares estimators are best unbiased estimators (BUE); that is, they have mini-
mum variance in the entire class of unbiased estimators.

To sum up: The important point to note is that the normality assumption enables us to
derive the probability, or sampling, distributions of β̂1 and β̂2 (both normal) and σ̂ 2 (related
to the chi square). As we will see in the next chapter, this simplifies the task of establishing
confidence intervals and testing (statistical) hypotheses.

In passing, note that, with the assumption that ui ∼ N (0, σ 2), Yi , being a linear func-
tion of ui , is itself normally distributed with the mean and variance given by

E(Yi ) = β1 + β2 Xi (4.3.7)

var (Yi ) = σ 2 (4.3.8)

More neatly, we can write

Yi ∼ N (β1 + β2 Xi , σ 2) (4.3.9)

FIGURE 4.1
Probability
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4The proof of this statement is slightly involved. An accessible source for the proof is Robert V. Hogg
and Allen T. Craig, Introduction to Mathematical Statistics, 2d ed., Macmillan, New York, 1965, p. 144.
5C. R. Rao, Linear Statistical Inference and Its Applications, John Wiley & Sons, New York, 1965, p. 258.
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102 Part One Single-Equation Regression Models

4.4 The Method of Maximum Likelihood (ML)

A method of point estimation with some stronger theoretical properties than the method of
OLS is the method of maximum likelihood (ML). Since this method is slightly involved,
it is discussed in the appendix to this chapter. For the general reader, it will suffice to note
that if ui are assumed to be normally distributed, as we have done for reasons already dis-
cussed, the ML and OLS estimators of the regression coefficients, the β’s, are identical, and
this is true of simple as well as multiple regressions. The ML estimator of σ 2 is 

∑
û2

i /n.

This estimator is biased, whereas the OLS estimator of σ 2 = ∑
û2

i /(n − 2), as we have
seen, is unbiased. But comparing these two estimators of σ 2, we see that as the sample size
n gets larger the two estimators of σ 2 tend to be equal. Thus, asymptotically (i.e., as n in-
creases indefinitely), the ML estimator of σ 2 is also unbiased.

Since the method of least squares with the added assumption of normality of ui provides
us with all the tools necessary for both estimation and hypothesis testing of the linear re-
gression models, there is no loss for readers who may not want to pursue the maximum
likelihood method because of its slight mathematical complexity.

1. This chapter discussed the classical normal linear regression model (CNLRM).

2. This model differs from the classical linear regression model (CLRM) in that it specifi-
cally assumes that the disturbance term ui entering the regression model is normally dis-
tributed. The CLRM does not require any assumption about the probability distribution
of ui ; it only requires that the mean value of ui is zero and its variance is a finite constant.

3. The theoretical justification for the normality assumption is the central limit theorem.

4. Without the normality assumption, under the other assumptions discussed in Chapter 3,
the Gauss–Markov theorem showed that the OLS estimators are BLUE.

5. With the additional assumption of normality, the OLS estimators are not only best
unbiased estimators (BUE) but also follow well-known probability distributions. The
OLS estimators of the intercept and slope are themselves normally distributed and
the OLS estimator of the variance of ui ( = σ̂ 2) is related to the chi-square distribution.

6. In Chapters 5 and 8 we show how this knowledge is useful in drawing inferences about
the values of the population parameters.

7. An alternative to the least-squares method is the method of maximum likelihood
(ML). To use this method, however, one must make an assumption about the probabil-
ity distribution of the disturbance term ui . In the regression context, the assumption
most popularly made is that ui follows the normal distribution.

8. Under the normality assumption, the ML and OLS estimators of the intercept and slope
parameters of the regression model are identical. However, the OLS and ML estimators of
the variance of ui are different. In large samples, however, these two estimators converge.

9. Thus the ML method is generally called a large-sample method. The ML method is of
broader application in that it can also be applied to regression models that are nonlin-
ear in the parameters. In the latter case, OLS is generally not used. For more on this,
see Chapter 14.

10. In this text, we will largely rely on the OLS method for practical reasons: (a) Com-
pared to ML, the OLS is easy to apply; (b) the ML and OLS estimators of β1 and β2 are
identical (which is true of multiple regressions too); and (c) even in moderately large
samples the OLS and ML estimators of σ 2 do not differ vastly.

However, for the benefit of the mathematically inclined reader, a brief introduction to
ML is given in the appendix to this chapter and also in Appendix A.

Summary and
Conclusions
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Appendix 4A

4A.1 Maximum Likelihood Estimation 
of Two-Variable Regression Model

Assume that in the two-variable model Yi = β1 + β2 Xi + ui the Yi are normally and independently
distributed with mean = β1 + β2 Xi and variance = σ 2. (See Eq. [4.3.9].) As a result, the joint proba-
bility density function of Y1, Y2, . . . , Yn , given the preceding mean and variance, can be written as

f (Y1, Y2, . . . , Yn |β1 + β2 Xi , σ 2)

But in view of the independence of the Y’s, this joint probability density function can be written as a
product of n individual density functions as

f (Y1, Y2, . . . , Yn |β1 + β2 Xi , σ 2)
= f (Y1 |β1 + β2 Xi , σ 2) f (Y2 |β1 + β2 Xi , σ 2) · · · f (Yn |β1 + β2 Xi , σ 2) (1)

where

f (Yi ) = 1

σ
√

2π
exp

{
−1

2

(Yi − β1 − β2 Xi )2

σ 2

}
(2)

which is the density function of a normally distributed variable with the given mean and variance.
(Note: exp means e to the power of the expression indicated by {}.)
Substituting Equation (2) for each Yi into Equation (1) gives

f (Yi , Y2, . . . , Yn |β1 + β2 Xi , σ 2) = 1

σ n
(√

2π
)n exp

{
−1

2

∑ (Yi − β1 − β2 Xi )2

σ 2

}
(3)

If Y1, Y2, . . . , Yn are known or given, but β1, β2, and σ 2 are not known, the function in Equa-
tion (3) is called a likelihood function, denoted by LF(β1, β2, σ 2), and written as1

LF(β1, β2, σ 2) = 1

σ n
(√

2π
)n exp

{
−1

2

∑ (Yi − β1 − β2 Xi )2

σ 2

}
(4)

The method of maximum likelihood, as the name indicates, consists in estimating the unknown
parameters in such a manner that the probability of observing the given Y ’s is as high (or maximum)
as possible. Therefore, we have to find the maximum of the function in Equation (4). This is a
straightforward exercise in differential calculus. For differentiation it is easier to express Equation (4)
in the log term as follows.2 (Note: ln = natural log.)

ln LF = −n ln σ − n

2
ln (2π) − 1

2

∑ (Yi − β1 − β2 Xi )2

σ 2

= −n

2
ln σ 2 − n

2
ln (2π) − 1

2

∑ (Yi − β1 − β2 Xi )2

σ 2
(5)

1Of course, if β1, β2, and σ2 are known but the Yi are not known, Eq. (4) represents the joint probabil-
ity density function—the probability of jointly observing the Yi.
2Since a log function is a monotonic function, ln LF will attain its maximum value at the same point as LF.
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104 Part One Single-Equation Regression Models

Differentiating Equation (5) partially with respect to β1, β2, and σ 2, we obtain

∂ ln LF

∂β1
= − 1

σ 2

∑
(Yi − β1 − β2 Xi )(−1) (6)

∂ ln LF

∂β2
= − 1

σ 2

∑
(Yi − β1 − β2 Xi )(−Xi ) (7)

∂ ln LF

∂σ 2
= − n

2σ 2
+ 1

2σ 4

∑
(Yi − β1 − β2 Xi )

2 (8)

Setting these equations equal to zero (the first-order condition for optimization) and letting β̃1, β̃2,
and σ̃ 2 denote the ML estimators, we obtain3

1

σ̃ 2

∑
(Yi − β̃1 − β̃2 Xi ) = 0 (9)

1

σ̃ 2

∑
(Yi − β̃1 − β̃2 Xi )Xi = 0 (10)

− n

2σ̃ 2
+ 1

2σ̃ 4

∑
(Yi − β̃1 − β̃2 Xi )

2 = 0 (11)

After simplifying, Eqs. (9) and (10) yield

∑
Yi = nβ̃1 + β̃2

∑
Xi (12)

∑
Yi Xi = β̃1

∑
Xi + β̃2

∑
X2

i (13)

which are precisely the normal equations of the least-squares theory obtained in Eqs. (3.1.4) and
(3.1.5). Therefore, the ML estimators, the β̃’s, are the same as the OLS estimators, the β̂’s, given in
Eqs. (3.1.6) and (3.1.7). This equality is not accidental. Examining the likelihood (5), we see that the
last term enters with a negative sign. Therefore, maximizing Equation (5) amounts to minimizing this
term, which is precisely the least-squares approach, as can be seen from Eq. (3.1.2).

Substituting the ML ( = OLS) estimators into Equation (11) and simplifying, we obtain the ML
estimator of σ̃ 2 as

σ̃ 2 = 1

n

∑
(Yi − β̃1 − β̃2 Xi )

2

= 1

n

∑
(Yi − β̂1 − β̂2 Xi )

2 (14)

= 1

n

∑
û2

i

From Equation (14) it is obvious that the ML estimator σ̃ 2 differs from the OLS estimator
σ̂ 2 = [1/(n − 2)]

∑
û2

i , which was shown to be an unbiased estimator of σ 2 in Appendix 3A, Sec-
tion 3A.5. Thus, the ML estimator of σ 2 is biased. The magnitude of this bias can be easily deter-
mined as follows.

3We use ˜ (tilde) for ML estimators and ˆ (cap or hat) for OLS estimators.
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Taking the mathematical expectation of Equation (14) on both sides, we obtain

E(σ̃ 2) = 1

n
E

(∑
û2

i

)

=
(

n − 2

n

)
σ 2 using Eq. (16) of Appendix 3A, (15)

Section 3A.5

= σ 2 − 2

n
σ 2

which shows that σ̃ 2 is biased downward (i.e., it underestimates the true σ 2) in small samples. But
notice that as n, the sample size, increases indefinitely, the second term in Equation (15), the bias fac-
tor, tends to be zero. Therefore, asymptotically (i.e., in a very large sample), σ̃ 2 is unbiased too, that
is, lim E(σ̃ 2) = σ 2 as n → ∞. It can further be proved that σ̃ 2 is also a consistent estimator4; that
is, as n increases indefinitely, σ̃ 2 converges to its true value σ 2.

4A.2 Maximum Likelihood Estimation 
of Food Expenditure in India

Return to Example 3.2 and Equation 3.7.2, which gives the regression of food expenditure on total
expenditure for 55 rural households in India. Since under the normality assumption the OLS and ML es-
timators of the regression coefficients are the same, we obtain the ML estimators as β̃1 = β̂1 = 94.2087
and β̃2 = β̂2 = 0.4368. The OLS estimator of σ 2 is σ̂ 2 = 4469.6913, but the ML estimator is
σ̃ 2 = 4407.1563, which is smaller than the OLS estimator. As noted, in small samples the ML estimator
is downward biased; that is, on average it underestimates the true variance σ 2. Of course, as you would
expect, as the sample size gets bigger, the difference between the two estimators will narrow. Putting the
values of the estimators in the log likelihood function, we obtain the value of −308.1625. If you want the
maximum value of the LF, just take the antilog of −308.1625. No other values of the parameters will give
you a higher probability of obtaining the sample that you have used in the analysis.

Appendix 4A Exercises

4.1. “If two random variables are statistically independent, the coefficient of correlation between the
two is zero. But the converse is not necessarily true; that is, zero correlation does not imply
statistical independence. However, if two variables are normally distributed, zero correlation
necessarily implies statistical independence.” Verify this statement for the following joint
probability density function of two normally distributed variables Y1 and Y2 (this joint
probability density function is known as the bivariate normal probability density function):

f (Y1, Y2) = 1

2πσ1σ2

√
1 − ρ2

exp

{
− 1

2(1 − ρ2)

×
[(

Y1 − µ1

σ1

)2

− 2ρ
(Y1 − µ1)(Y2 − µ2)

σ1σ2
+

(
Y2 − µ2

σ 2

)2
]}

4See Appendix A for a general discussion of the properties of the maximum likelihood estimators as
well as for the distinction between asymptotic unbiasedness and consistency. Roughly speaking, in
asymptotic unbiasedness we try to find out the lim E (σ̃2

n ) as n tends to infinity, where n is the sample
size on which the estimator is based, whereas in consistency we try to find out how σ̃2

n behaves as n
increases indefinitely. Notice that the unbiasedness property is a repeated sampling property of an
estimator based on a sample of given size, whereas in consistency we are concerned with the
behavior of an estimator as the sample size increases indefinitely.

guj75772_ch04.qxd  07/08/2008  07:29 PM  Page 105



106 Part One Single-Equation Regression Models

where µ1 = mean of Y1

µ2 = mean of Y2

σ1 = standard deviation of Y1

σ2 = standard deviation of Y2

ρ = coefficient of correlation between Y1 and Y2

4.2. By applying the second-order conditions for optimization (i.e., second-derivative test), show that
the ML estimators of β1, β2, and σ 2 obtained by solving Eqs. (9), (10), and (11) do in fact
maximize the likelihood function in Eq. (4).

4.3. A random variable X follows the exponential distribution if it has the following probability
density function (PDF):

f (X) = (1/θ)e−X/θ for X > 0

= 0 elsewhere

where θ > 0 is the parameter of the distribution. Using the ML method, show that the ML
estimator of θ is θ̂ = ∑

Xi/n, where n is the sample size. That is, show that the ML estimator
of θ is the sample mean X̄ .

4.4. Suppose that the outcome of an experiment is classified as either a success or a failure. Letting
X = 1 when the outcome is a success and X = 0 when it is a failure, the probability density, or
mass, function of X is given by

p(X = 0) = 1 − p

p(X = 1) = p, 0 ≤ p ≤ 1

What is the maximum likelihood estimator of p, the probability of success?
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Beware of testing too many hypotheses; the more you torture the data, the more likely they are
to confess, but confession obtained under duress may not be admissible in the court of scientific
opinion.1

As pointed out in Chapter 4, estimation and hypothesis testing constitute the two major
branches of classical statistics. The theory of estimation consists of two parts: point
estimation and interval estimation. We have discussed point estimation thoroughly in the
previous two chapters where we introduced the OLS and ML methods of point estimation.
In this chapter we first consider interval estimation and then take up the topic of hypothesis
testing, a topic intimately related to interval estimation.

5.1 Statistical Prerequisites

Before we demonstrate the actual mechanics of establishing confidence intervals and
testing statistical hypotheses, it is assumed that the reader is familiar with the funda-
mental concepts of probability and statistics. Although not a substitute for a basic course
in statistics, Appendix A provides the essentials of statistics with which the reader
should be totally familiar. Key concepts such as probability, probability distributions,
Type I and Type II errors, level of significance, power of a statistical test, and
confidence interval are crucial for understanding the material covered in this and the
following chapters.

Chapter

1Stephen M. Stigler, “Testing Hypothesis or Fitting Models? Another Look at Mass Extinctions,” in
Matthew H. Nitecki and Antoni Hoffman, eds., Neutral Models in Biology, Oxford University Press,
Oxford, 1987, p. 148.

5
Two-Variable
Regression: Interval
Estimation and
Hypothesis Testing
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108 Part One Single-Equation Regression Models

5.2 Interval Estimation: Some Basic Ideas

To fix the ideas, consider the wages-education example of Chapter 3. Equation (3.6.1)
shows that the estimated average increase in mean hourly wage related to a one-year
increase in schooling (β̂2) is 0.7240, which is a one number (point) estimate of the
unknown population value β2. How reliable is this estimate? As noted in Chapter 3, because
of sampling fluctuations, a single estimate is likely to differ from the true value, although
in repeated sampling its mean value is expected to be equal to the true value. [Note:
E(β̂2) = β2.] Now in statistics, the reliability of a point estimator is measured by its
standard error. Therefore, instead of relying on the point estimate alone, we may construct
an interval around the point estimator, say within two or three standard errors on either side
of the point estimator, such that this interval has, say, 95 percent probability of including
the true parameter value. This is roughly the idea behind interval estimation.

To be more specific, assume that we want to find out how “close,” say, β̂2 is to β2. For
this purpose we try to find out two positive numbers δ and α, the latter lying between 0 and
1, such that the probability that the random interval (β̂2 − δ, β̂2 + δ) contains the true β2

is 1 − α. Symbolically,

Pr (β̂2 − δ ≤ β2 ≤ β̂2 + δ) = 1 − α (5.2.1)

Such an interval, if it exists, is known as a confidence interval; 1 − α is known as the
confidence coefficient; and α (0 < α < 1) is known as the level of significance.2 The end-
points of the confidence interval are known as the confidence limits (also known as critical
values), β̂2 − δ being the lower confidence limit and β̂2 + δ the upper confidence limit.
In passing, note that in practice α and 1 − α are often expressed in percentage forms as
100α and 100(1 − α) percent.

Equation 5.2.1 shows that an interval estimator, in contrast to a point estimator, is an
interval constructed in such a manner that it has a specified probability 1 − α of including
within its limits the true value of the parameter. For example, if α = 0.05, or 5 percent,
Eq. (5.2.1) would read: The probability that the (random) interval shown there includes the
true β2 is 0.95, or 95 percent. The interval estimator thus gives a range of values within
which the true β2 may lie.

It is very important to know the following aspects of interval estimation:

1. Eq. (5.2.1) does not say that the probability of β2 lying between the given limits is
1 − α. Since β2, although an unknown, is assumed to be some fixed number, either it lies
in the interval or it does not. What Eq. (5.2.1) states is that, for the method described in this
chapter, the probability of constructing an interval that contains β2 is 1 − α.

2. The interval in Eq. (5.2.1) is a random interval; that is, it will vary from one sample
to the next because it is based on β̂2, which is random. (Why?)

3. Since the confidence interval is random, the probability statements attached to it
should be understood in the long-run sense, that is, repeated sampling. More specifically,
Eq. (5.2.1) means: If in repeated sampling confidence intervals like it are constructed a

2Also known as the probability of committing a Type I error. A Type I error consists in
rejecting a true hypothesis, whereas a Type II error consists in accepting a false hypothesis. (This
topic is discussed more fully in Appendix A.) The symbol α is also known as the size of the
(statistical) test.
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great many times on the 1 − α probability basis, then, in the long run, on the average, such
intervals will enclose in 1 − α of the cases the true value of the parameter.

4. As noted in (2), the interval in Eq. (5.2.1) is random so long as β̂2 is not known. But
once we have a specific sample and once we obtain a specific numerical value of β̂2, the in-
terval in Eq. (5.2.1) is no longer random; it is fixed. In this case, we cannot make the prob-
abilistic statement in Eq. (5.2.1); that is, we cannot say that the probability is 1 − α that a
given fixed interval includes the true β2. In this situation, β2 is either in the fixed interval or
outside it. Therefore, the probability is either 1 or 0. Thus, for our wages-education exam-
ple, if the 95 percent confidence interval were obtained as (0.5700 ≤ β2 ≤ 0.8780), as we
do shortly in Eq. (5.3.9), we cannot say the probability is 95 percent that this interval in-
cludes the true β2. That probability is either 1 or 0.

How are the confidence intervals constructed? From the preceding discussion one may
expect that if the sampling or probability distributions of the estimators are known, one
can make confidence interval statements such as Eq. (5.2.1). In Chapter 4 we saw that
under the assumption of normality of the disturbances ui the OLS estimators β̂1 and β̂2 are
themselves normally distributed and that the OLS estimator σ̂ 2 is related to the χ2 (chi-
square) distribution. It would then seem that the task of constructing confidence intervals is
a simple one. And it is!

5.3 Confidence Intervals for Regression Coefficients β1 and β2

Confidence Interval for β2
It was shown in Chapter 4, Section 4.3, that, with the normality assumption for ui, the OLS
estimators β̂1 and β̂2 are themselves normally distributed with means and variances given
therein. Therefore, for example, the variable

Z = β̂2 − β2

se (β̂2)

=
(β̂2 − β2)

√∑
x2

i

σ

(5.3.1)

as noted in Eq. (4.3.6), is a standardized normal variable. It therefore seems that we can use
the normal distribution to make probabilistic statements about β2 provided the true popula-
tion variance σ 2 is known. If σ 2 is known, an important property of a normally distributed
variable with mean µ and variance σ 2 is that the area under the normal curve between µ ± σ

is about 68 percent, that between the limits µ ± 2σ is about 95 percent, and that between
µ ± 3σ is about 99.7 percent.

But σ 2 is rarely known, and in practice it is determined by the unbiased estimator σ̂ 2. If
we replace σ by σ̂ , Equation 5.3.1 may be written as

t = β̂2 − β2

se (β̂2)
= Estimator − Parameter

Estimated standard error of estimator

=
(β̂2 − β2)

√∑
x2

i

σ̂

(5.3.2)
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where the se (β̂2) now refers to the estimated standard error. It can be shown (see Appen-
dix 5A, Section 5A.2) that the t variable thus defined follows the t distribution with n − 2 df.
[Note the difference between Eqs. (5.3.1) and (5.3.2).] Therefore, instead of using the nor-
mal distribution, we can use the t distribution to establish a confidence interval for β2 as
follows:

Pr (−tα/2 ≤ t ≤ tα/2) = 1 − α (5.3.3)

where the t value in the middle of this double inequality is the t value given by Equa-
tion 5.3.2 and where tα/2 is the value of the t variable obtained from the t distribution for
α/2 level of significance and n − 2 df; it is often called the critical t value at α/2 level of
significance. Substitution of Eq. (5.3.2) into Equation 5.3.3 yields

Pr

[
−tα/2 ≤ β̂2 − β2

se (β̂2)
≤ tα/2

]
= 1 − α (5.3.4)

Rearranging Equation 5.3.4, we obtain

(5.3.5)3

Equation 5.3.5 provides a 100(1 − α) percent confidence interval for β2, which can be
written more compactly as

100(1 − α)% confidence interval for β2:

(5.3.6)

Arguing analogously, and using Eqs. (4.3.1) and (4.3.2), we can then write:

(5.3.7)

or, more compactly,

100(1 − α)% confidence interval for β1:

(5.3.8)

Notice an important feature of the confidence intervals given in Equations 5.3.6 and
5.3.8: In both cases the width of the confidence interval is proportional to the standard
error of the estimator. That is, the larger the standard error, the larger is the width of the
confidence interval. Put differently, the larger the standard error of the estimator, the
greater is the uncertainty of estimating the true value of the unknown parameter. Thus,
the standard error of an estimator is often described as a measure of the precision of the
estimator (i.e., how precisely the estimator measures the true population value).

β̂1 ± tα/2 se (β̂1)

Pr [β̂1 − tα/2 se (β̂1) ≤ β1 ≤ β̂1 + tα/2 se (β̂1)] = 1 − α

β̂2 ± tα/2 se (β̂2)

Pr [β2 − tα/2 se (β̂2) ≤ β2 ≤ β̂2 + tα/2 se (β̂2)] = 1 − α

3Some authors prefer to write Eq. (5.3.5) with the df explicitly indicated. Thus, they would write
Pr [β̂2 − t(n−2),α/2 se (β̂2) ≤ β2 ≤ β̂2 + t(n−2)α/2 se (β̂2)] = 1 − α

But for simplicity we will stick to our notation; the context clarifies the appropriate df involved.
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Returning to our regression example in Chapter 3 (Section 3.6) of mean hourly wages
(Y ) on education (X ), recall that we found in Table 3.2 that β̂2 = 0.7240; se (β̂2) = 0.0700.
Since there are 13 observations, the degrees of freedom (df ) are 11. If we assume α = 5%,
that is, a 95% confidence coefficient, then the t table shows that for 11 df the critical
tα/2 = 2.201. Substituting these values in Eq. (5.3.5), the reader should verify that the
95 percent confidence interval for β2 is as follows:4

0.5700 ≤ β2 ≤ 0.8780 (5.3.9)

Or, using Eq. (5.3.6), it is

0.7240 ± 2.201(0.0700)

that is,

0.7240 ± 0.1540 (5.3.10)

The interpretation of this confidence interval is: Given the confidence coefficient of
95 percent, in 95 out of 100 cases intervals like Equation 5.3.9 will contain the true β2. But,
as warned earlier, we cannot say that the probability is 95 percent that the specific interval
in Eq. (5.3.9) contains the true β2 because this interval is now fixed and no longer random;
therefore β2 either lies in it or it does not: The probability that the specified fixed interval
includes the true β2 is therefore 1 or 0.

Following Eq. (5.3.7), and the data in Table 3.2, the reader can easily verify that the
95 percent confidence interval for β1 for our example is 

−1.8871 ≤ β1 ≤ 1.8583 (5.3.11)

Again you should be careful in interpreting this confidence interval. In 95 out of 100
cases, intervals like Equation 5.3.11 will contain the true β1; the probability that this par-
ticular fixed interval includes the true β1 is either 1 or 0.

Confidence Interval for β1 and β2 Simultaneously
There are occasions when one needs to construct a joint confidence interval for β1 and β2

such that with a confidence coefficient (1 − α), say, 95 percent, that interval includes β1 and
β2 simultaneously. Since this topic is involved, the interested reader may want to consult
appropriate references.5 We will touch on this topic briefly in Chapters 8 and 10.

5.4 Confidence Interval for σ2

As pointed out in Chapter 4, Section 4.3, under the normality assumption, the variable

χ2 = (n − 2)
σ̂ 2

σ 2
(5.4.1)

4Because of rounding errors in Table 3.2, the answers given below may not exactly match the
answers obtained from a statistical package.
5For an accessible discussion, see John Neter, William Wasserman, and Michael H. Kutner, Applied
Linear Regression Models, Richard D. Irwin, Homewood, Ill., 1983, Chap. 5.
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follows the χ2 distribution with n − 2 df.6 Therefore, we can use the χ2 distribution to
establish a confidence interval for σ 2

Pr
(
χ2

1−α/2 ≤ χ2 ≤ χ2
α/2

) = 1 − α (5.4.2)

where the χ2 value in the middle of this double inequality is as given by Equation 5.4.1 and
where χ2

1−α/2 and χ2
α/2 are two values of χ2 (the critical χ2 values) obtained from the chi-

square table for n − 2 df in such a manner that they cut off 100(α/2) percent tail areas of the
χ2 distribution, as shown in Figure 5.1.

Substituting χ2 from Eq. (5.4.1) into Equation 5.4.2 and rearranging the terms, we
obtain

(5.4.3)

which gives the 100(1 − α)% confidence interval for σ 2.
Continuing with our wages-education example, we found in Table 3.2 that for our

data we have σ̂ 2 = 0.8936. If we choose α of 5%, the chi-square table for 11 df gives the
following critical values: χ2

0.025 = 21.9200, and χ2
0.975 = 3.8157. These values show that

the probability of a chi-square value exceeding 21.9200 is 2.5 percent and that of 3.8157 is
97.5 percent. Therefore, the interval between these two values is the 95 percent confidence
interval for χ2, as shown in Figure 5.1. (Note the skewed characteristic of the chi-square
distribution.)

Substituting the data of our example into Eq. (5.4.3), the reader can verify that the
95 percent confidence interval for σ 2 is as follows:

0.4484 ≤ σ 2 ≤ 2.5760 (5.4.4)

The interpretation of this interval is: If we establish 95 percent confidence limits on σ 2

and if we maintain a priori that these limits will include the true σ 2, we will be right in the
long run 95 percent of the time.

Pr

[
(n − 2)

σ̂ 2

χ2
α/2

≤ σ 2 ≤ (n − 2)
σ̂ 2

χ2
1−α/2

]
= 1 − α

f(χ2)

χ2
D

en
si

ty

95%2.5% 2.5%

21.9200 3.8157
χ2

0.025
χ2

0.975

FIGURE 5.1
The 95% confidence
interval for χ2 (11 df).

6For proof, see Robert V. Hogg and Allen T. Craig, Introduction to Mathematical Statistics, 2d ed.,
Macmillan, New York, 1965, p. 144.
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5.5 Hypothesis Testing: General Comments

Having discussed the problem of point and interval estimation, we shall now consider the
topic of hypothesis testing. In this section we discuss briefly some general aspects of this
topic; Appendix A gives some additional details.

The problem of statistical hypothesis testing may be stated simply as follows: Is a given
observation or finding compatible with some stated hypothesis or not? The word “compati-
ble,” as used here, means “sufficiently” close to the hypothesized value so that we do not re-
ject the stated hypothesis. Thus, if some theory or prior experience leads us to believe that
the true slope coefficient β2 of the wages-education example is unity, is the observed  β̂2 �
0.724 obtained from the sample of Table 3.2 consistent with the stated hypothesis? If it is, we
do not reject the hypothesis; otherwise, we may reject it.

In the language of statistics, the stated hypothesis is known as the null hypothesis and
is denoted by the symbol H0. The null hypothesis is usually tested against an alternative
hypothesis (also known as maintained hypothesis) denoted by H1, which may state, for
example, that true β2 is different from unity. The alternative hypothesis may be simple or
composite.7 For example, H1: β2 = 1.5 is a simple hypothesis, but H1: β2 �= 1.5 is a com-
posite hypothesis.

The theory of hypothesis testing is concerned with developing rules or procedures for
deciding whether to reject or not reject the null hypothesis. There are two mutually comple-
mentary approaches for devising such rules, namely, confidence interval and test of
significance. Both these approaches predicate that the variable (statistic or estimator) under
consideration has some probability distribution and that hypothesis testing involves making
statements or assertions about the value(s) of the parameter(s) of such distribution. For
example, we know that with the normality assumption β̂2 is normally distributed with mean
equal to β2 and variance given by Eq. (4.3.5). If we hypothesize that β2 = 1, we are making
an assertion about one of the parameters of the normal distribution, namely, the mean. Most
of the statistical hypotheses encountered in this text will be of this type—making assertions
about one or more values of the parameters of some assumed probability distribution such as
the normal, F, t, or χ2. How this is accomplished is discussed in the following two sections.

5.6 Hypothesis Testing: The Confidence-Interval Approach
Two-Sided or Two-Tail Test
To illustrate the confidence interval approach, once again we revert to our wages-education
example. From the regression results given in Eq. (3.6.1), we know that the slope coeffi-
cient is 0.7240. Suppose we postulate that

H0: β2 = 0.5

H1: β2 �= 0.5

that is, the true slope coefficient is 0.5 under the null hypothesis but less than or greater than
0.5 under the alternative hypothesis. The null hypothesis is a simple hypothesis, whereas

7A statistical hypothesis is called a simple hypothesis if it specifies the precise value(s) of the
parameter(s) of a probability density function; otherwise, it is called a composite hypothesis. For
example, in the normal pdf (1/σ

√
2π) exp {− 1

2 [(X − µ)/σ ]2}, if we assert that H1: µ = 15 and σ = 2,
it is a simple hypothesis; but if H1: µ = 15 and σ > 15, it is a composite hypothesis, because the
standard deviation does not have a specific value.

guj75772_ch05.qxd  07/08/2008  12:46 PM  Page 113



114 Part One Single-Equation Regression Models

the alternative hypothesis is composite; actually it is what is known as a two-sided
hypothesis. Very often such a two-sided alternative hypothesis reflects the fact that we do
not have a strong a priori or theoretical expectation about the direction in which the
alternative hypothesis should move from the null hypothesis.

Is the observed β̂2 compatible with H0? To answer this question, let us refer to the confi-
dence interval in Eq. (5.3.9). We know that in the long run intervals like (0.5700, 0.8780) will
contain the true β2 with 95 percent probability. Consequently, in the long run (i.e., repeated
sampling) such intervals provide a range or limits within which the true β2 may lie with a con-
fidence coefficient of, say, 95 percent. Thus, the confidence interval provides a set of plausible
null hypotheses. Therefore, if β2 under H0 falls within the 100(1 − α)% confidence interval,
we do not reject the null hypothesis; if it lies outside the interval, we may reject it.8 This range
is illustrated schematically in Figure 5.2.

Construct a 100(1 − α)% confidence interval for β2. If the β2 under H0 falls within this
confidence interval, do not reject H0, but if it falls outside this interval, reject H0.

Decision Rule

Following this rule, for our hypothetical example, H0: β2 � 0.5 clearly lies outside the
95 percent confidence interval given in Eq. (5.3.9). Therefore, we can reject the hypothesis
that the true slope is 0.5, with 95 percent confidence. If the null hypothesis were true, the
probability of our obtaining a value of slope of as much as 0.7240 by sheer chance or fluke
is at the most about 5 percent, a small probability.

In statistics, when we reject the null hypothesis, we say that our finding is statistically
significant. On the other hand, when we do not reject the null hypothesis, we say that our
finding is not statistically significant.

Some authors use a phrase such as “highly statistically significant.” By this they usually
mean that when they reject the null hypothesis, the probability of committing a Type I error
(i.e., α) is a small number, usually 1 percent. But as our discussion of the p value in Sec-
tion 5.8 will show, it is better to leave it to the researcher to decide whether a statistical find-
ing is “significant,” “moderately significant,” or “highly significant.”

8Always bear in mind that there is a 100α percent chance that the confidence interval does not
contain β2 under H0 even though the hypothesis is correct. In short, there is a 100α percent chance
of committing a Type I error. Thus, if α = 0.05, there is a 5 percent chance that we could reject the
null hypothesis even though it is true.

β2
– tα/2 se(β2)βα β2

+ tα/2 se(β2)ββ α

α
Values of β2 lying in this interval are 
plausible under H0 with 100 (1 –    )% 
confidence.  Hence, do not reject 
H0 if β2 lies in this region.β

β

β

FIGURE 5.2
A 100(1 − α)%
confidence interval
for β2.
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One-Sided or One-Tail Test
Sometimes we have a strong a priori or theoretical expectation (or expectations based on
some previous empirical work) that the alternative hypothesis is one-sided or unidirectional
rather than two-sided, as just discussed. Thus, for our wages-education example, one could
postulate that

H0: β2 ≤ 0.5 and H1: β2 � 0.5

Perhaps economic theory or prior empirical work suggests that the slope is greater than 0.5.
Although the procedure to test this hypothesis can be easily derived from Eq. (5.3.5), the ac-
tual mechanics are better explained in terms of the test-of-significance approach discussed
next.9

5.7 Hypothesis Testing: The Test-of-Significance Approach

Testing the Significance of Regression Coefficients: The t Test
An alternative but complementary approach to the confidence-interval method of testing
statistical hypotheses is the test-of-significance approach developed along independent
lines by R. A. Fisher and jointly by Neyman and Pearson.10 Broadly speaking, a test of
significance is a procedure by which sample results are used to verify the truth or falsity
of a null hypothesis. The key idea behind tests of significance is that of a test statistic
(estimator) and the sampling distribution of such a statistic under the null hypothesis. The
decision to accept or reject H0 is made on the basis of the value of the test statistic obtained
from the data at hand.

As an illustration, recall that under the normality assumption the variable

t = β̂2 − β2

se (β̂2)

=
(β̂2 − β2)

√∑
x2

i

σ̂

(5.3.2)

follows the t distribution with n − 2 df. If the value of true β2 is specified under the null hy-
pothesis, the t value of Eq. (5.3.2) can readily be computed from the available sample, and
therefore it can serve as a test statistic. And since this test statistic follows the t distribution,
confidence-interval statements such as the following can be made:

Pr

[
−tα/2 ≤ β̂2 − β∗

2

se (β̂2)
≤ tα/2

]
= 1 − α (5.7.1)

where β∗
2 is the value of β2 under H0 and where −tα/2 and tα/2 are the values of t (the

critical t values) obtained from the t table for (α/2) level of significance and n − 2 df
[cf. Eq. (5.3.4)]. The t table is given in Appendix D.

9If you want to use the confidence interval approach, construct a (100 − α)% one-sided or one-tail
confidence interval for β2. Why?
10Details may be found in E. L. Lehman, Testing Statistical Hypotheses, John Wiley & Sons, New York,
1959.
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Rearranging Equation 5.7.1, we obtain

(5.7.2)

which gives the interval in which β̂2 will fall with 1 − α probability, given β2 = β∗
2 . In the

language of hypothesis testing, the 100(1 − α)% confidence interval established in Equa-
tion 5.7.2 is known as the region of acceptance (of the null hypothesis) and the region(s)
outside the confidence interval is (are) called the region(s) of rejection (of H0) or the
critical region(s). As noted previously, the confidence limits, the endpoints of the confi-
dence interval, are also called critical values.

The intimate connection between the confidence-interval and test-of-significance
approaches to hypothesis testing can now be seen by comparing Eq. (5.3.5) with Eq. (5.7.2).
In the confidence-interval procedure we try to establish a range or an interval that has a cer-
tain probability of including the true but unknown β2, whereas in the test-of-significance
approach we hypothesize some value for β2 and try to see whether the computed β̂2 lies
within reasonable (confidence) limits around the hypothesized value.

Once again let us return to our wages-education example. We know that β̂2 = 0.7240,
se (β̂2) = 0.0700, and df = 11. If we assume α = 5%, tα/2 = 2.201.

If we assume H0: β2 = β∗
2 = 0.5 and H1: β2 �= 0.5, Eq. (5.7.2) becomes

Pr (0.3460 ≤ β̂2 ≤ 0.6540) (5.7.3)11

as shown diagrammatically in Figure 5.3. 
In practice, there is no need to estimate Eq. (5.7.2) explicitly. One can compute the

t value in the middle of the double inequality given by Eq. (5.7.1) and see whether it lies
between the critical t values or outside them. For our example,

t = 0.7240 − 0.5

0.0700
= 3.2 (5.7.4)

which clearly lies in the critical region of Figure 5.4. The conclusion remains the same;
namely, we reject H0.

Pr [β∗
2 − tα/2 se (β̂2) ≤ β̂2 ≤ β∗

2 + tα/2 se (β̂2)] = 1 − α

D
en

si
ty

f(    2)β

Critical 
region
2.5%

b2 = 0.7240
lies in this 
critical region
2.5%

b2β

0.3460 0.5 0.6540

ˆ
2β

FIGURE 5.3
The 95% confidence
interval for β̂2 under
the hypothesis that 
β2 = 0.5.

11In Sec. 5.2, point 4, it was stated that we cannot say that the probability is 95 percent that the fixed
interval (0.5700, 0.8780) includes the true β2. But we can make the probabilistic statement given in
Eq. (5.7.3) because β̂2, being an estimator, is a random variable.
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Notice that if the estimated β2 ( = β̂2) is equal to the hypothesized β2, the t value in Equa-
tion 5.7.4 will be zero. However, as the estimated β2 value departs from the hypothesized β2

value, |t | (that is, the absolute t value; note: t can be positive as well as negative) will be in-
creasingly large. Therefore, a “large” |t | value will be evidence against the null hypothesis. Of
course, we can always use the t table to determine whether a particular t value is large or small;
the answer, as we know, depends on the degrees of freedom as well as on the probability of
Type I error that we are willing to accept. If you take a look at the t table given in Appendix D
(Table D.2), you will observe that for any given value of df the probability of obtaining an
increasingly large |t | value becomes progressively smaller. Thus, for 20 df the probability of
obtaining a |t | value of 1.725 or greater is 0.10 or 10 percent, but for the same df the probabil-
ity of obtaining a |t | value of 3.552 or greater is only 0.002 or 0.2 percent.

Since we use the t distribution, the preceding testing procedure is called appropriately
the t test. In the language of significance tests, a statistic is said to be statistically sig-
nificant if the value of the test statistic lies in the critical region. In this case the null
hypothesis is rejected. By the same token, a test is said to be statistically insignificant
if the value of the test statistic lies in the acceptance region. In this situation, the null hy-
pothesis is not rejected. In our example, the t test is significant and hence we reject the null
hypothesis.

Before concluding our discussion of hypothesis testing, note that the testing procedure
just outlined is known as a two-sided, or two-tail, test-of-significance procedure in that we
consider the two extreme tails of the relevant probability distribution, the rejection
regions, and reject the null hypothesis if it lies in either tail. But this happens because our
H1 was a two-sided composite hypothesis; β2 �= 0.5 means β2 is either greater than or less
than 0.5. But suppose prior experience suggests to us that the slope is expected to be greater
than 0.5. In this case we have: H0: β2 ≤ 0.5 and H1: β2 > 0.5. Although H1 is still a com-
posite hypothesis, it is now one-sided. To test this hypothesis, we use the one-tail test (the
right tail), as shown in Figure 5.5. (See also the discussion in Section 5.6.)

The test procedure is the same as before except that the upper confidence limit or criti-
cal value now corresponds to tα = t.05, that is, the 5 percent level. As Figure 5.5 shows, we
need not consider the lower tail of the t distribution in this case. Whether one uses a two- or
one-tail test of significance will depend upon how the alternative hypothesis is formulated,
which, in turn, may depend upon some a priori considerations or prior empirical experi-
ence. (But more on this in Section 5.8.)

We can summarize the t test of significance approach to hypothesis testing as shown in
Table 5.1.

D
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f(t)

t

Critical 
region
2.5%

t = 3.2
lies in this 
critical region
2.5%

–2.201 0 +2.201

95%
Region of
acceptance

FIGURE 5.4
The 95% confidence
interval for t(11 df).
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1.796

t0.05 (11 df)

95%
Region of
acceptance

[b2 + 1.796 se( b )]b2βb2β
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b2β

b2 = 0.7240
lies in this 
critical region
2.5%

b2β

0.5 0.6257

*

FIGURE 5.5
One-tail test of
significance.

TABLE 5.1
The t Test of
Significance: Decision
Rules

Type of H0: The Null H1: The Alternative Decision Rule:
Hypothesis Hypothesis Hypothesis Reject H0 If

Two-tail β2 = β2* β2 �= β2* |t | > tα/2,df

Right-tail β2 ≤ β2* β2 > β2* t > tα,df

Left-tail β2 ≥ β2* β2 < β2* t < −tα,df

Notes: β*2 is the hypothesized numerical value of β2.|t | means the absolute value of t.
tα or tα/2 means the critical t value at the α or α/2 level of significance.
df: degrees of freedom, (n − 2) for the two-variable model, (n − 3) for the three-variable model, and so on.
The same procedure holds to test hypotheses about β1.

Testing the Significance of σ2: The χ2 Test
As another illustration of the test-of-significance methodology, consider the following
variable:

χ2 = (n − 2)
σ̂ 2

σ 2
(5.4.1)

which, as noted previously, follows the χ2 distribution with n − 2 df. For our example,
σ̂ 2 = 0.8937 and df = 11. If we postulate that H0: σ 2 = 0.6 versus H1: σ 2 �= 0.6, Equa-
tion 5.4.1 provides the test statistic for H0. Substituting the appropriate values in Eq. (5.4.1),
it can be found that under H0, χ2 = 16.3845. If we assume α = 5%, the critical χ2 values
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are 3.81575 and 21.9200. Since the computed χ2 lies between these limits, the data support
the null hypothesis and we do not reject it. (See Figure 5.1.) This test procedure is called the
chi-square test of significance. The χ2 test of significance approach to hypothesis testing
is summarized in Table 5.2.

5.8 Hypothesis Testing: Some Practical Aspects

The Meaning of “Accepting” or “Rejecting” a Hypothesis
If, on the basis of a test of significance, say, the t test, we decide to “accept” the null
hypothesis, all we are saying is that on the basis of the sample evidence we have no reason
to reject it; we are not saying that the null hypothesis is true beyond any doubt. Why? To
answer this, let us return to our wages-education example and assume that H0: β2 = 0.70.
Now the estimated value of the slope is β̂2 = 0.7241 with a se (β̂2) = 0.0701. Then on the

basis of the t test we find that t = (0.7241 − 0.7)

0.0701
= 0.3438, which is insignificant, say, at

α = 5%. Therefore, we say “accept” H0. But now let us assume H0: β2 = 0.6. Applying

the t test again, we obtain t = (0.7241 − 0.6)

0.0701
= 1.7703, which is also statistically 

insignificant. So now we say “accept” this H0. Which of these two null hypotheses is the
“truth”? We do not know. Therefore, in “accepting” a null hypothesis we should always be
aware that another null hypothesis may be equally compatible with the data. It is therefore
preferable to say that we may accept the null hypothesis rather than we (do) accept it. Better
still,

. . . just as a court pronounces a verdict as “not guilty” rather than “innocent,” so the conclu-
sion of a statistical test is “do not reject” rather than “accept.”12

TABLE 5.2
A Summary of the 
χ2 Test

H0: The Null H1: The Alternative Critical Region:
Hypothesis Hypothesis Reject H0 If

σ2 = σ
2
0 σ2 > σ

2
0

σ2 = σ
2
0 σ2 < σ

2
0

σ2 = σ
2
0 σ2 �= σ

2
0

or < χ2
(1−α/2),df

Note: σ
2
0 is the value of σ 2 under the null hypothesis. The first subscript on χ2 in the last column is the level of significance, and

the second subscript is the degrees of freedom. These are critical chi-square values. Note that df is (n − 2) for the two-variable
regression model, (n − 3) for the three-variable regression model, and so on.

df(σ̂ 2)
> χ2

α/2,df
σ

2
0

df(σ̂ 2)
< χ2

(1−α),df
σ

2
0

df(σ̂ 2)
> χ2

α,df
σ

2
0

12Jan Kmenta, Elements of Econometrics, Macmillan, New York, 1971, p. 114.
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The “Zero” Null Hypothesis and the “2-t” Rule of Thumb
A null hypothesis that is commonly tested in empirical work is H0: β2 = 0, that is, the slope
coefficient is zero. This “zero” null hypothesis is a kind of straw man, the objective being
to find out whether Y is related at all to X, the explanatory variable. If there is no relation-
ship between Y and X to begin with, then testing a hypothesis such as β2 = 0.3 or any other
value is meaningless.

This null hypothesis can be easily tested by the confidence interval or the t-test approach
discussed in the preceding sections. But very often such formal testing can be shortcut by
adopting the “2-t” rule of significance, which may be stated as

If the number of degrees of freedom is 20 or more and if α, the level of significance, is set
at 0.05, then the null hypothesis β2 = 0 can be rejected if the t value [ = β̂2/se (β̂2)] com-
puted from Eq. (5.3.2) exceeds 2 in absolute value.

“2-t” Rule of
Thumb

The rationale for this rule is not too difficult to grasp. From Eq. (5.7.1) we know that we
will reject H0: β2 = 0 if

t = β̂2/se (β̂2) > tα/2 when β̂2 > 0

or

t = β̂2/se (β̂2) < −tα/2 when β̂2 < 0

or when

|t | =
∣∣∣∣∣

β̂2

se (β̂2)

∣∣∣∣∣ > tα/2 (5.8.1)

for the appropriate degrees of freedom.
Now if we examine the t table given in Appendix D, we see that for df of about 20 or

more a computed t value in excess of 2 (in absolute terms), say, 2.1, is statistically signifi-
cant at the 5 percent level, implying rejection of the null hypothesis. Therefore, if we find
that for 20 or more df the computed t value is, say, 2.5 or 3, we do not even have to refer to
the t table to assess the significance of the estimated slope coefficient. Of course, one can
always refer to the t table to obtain the precise level of significance, and one should always
do so when the df are fewer than, say, 20.

In passing, note that if we are testing the one-sided hypothesis β2 = 0 versus β2 > 0 or
β2 < 0, then we should reject the null hypothesis if

|t | =
∣∣∣∣∣

β̂2

se (β̂2)

∣∣∣∣∣ > tα (5.8.2)

If we fix α at 0.05, then from the t table we observe that for 20 or more df a t value in excess
of 1.73 is statistically significant at the 5 percent level of significance (one-tail). Hence,
whenever a t value exceeds, say, 1.8 (in absolute terms) and the df are 20 or more, one need
not consult the t table for the statistical significance of the observed coefficient. Of course,
if we choose α at 0.01 or any other level, we will have to decide on the appropriate t value
as the benchmark value. But by now the reader should be able to do that.
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Forming the Null and Alternative Hypotheses13

Given the null and the alternative hypotheses, testing them for statistical significance
should no longer be a mystery. But how does one formulate these hypotheses? There are no
hard-and-fast rules. Very often the phenomenon under study will suggest the nature of the
null and alternative hypotheses. For example, consider the capital market line (CML) of
portfolio theory, which postulates that Ei = β1 + β2σi , where E = expected return on
portfolio and σ = the standard deviation of return, a measure of risk. Since return and risk
are expected to be positively related—the higher the risk, the higher the return—the natural
alternative hypothesis to the null hypothesis that β2 = 0 would be β2 > 0. That is, one
would not choose to consider values of β2 less than zero.

But consider the case of the demand for money. As we shall show later, one of the
important determinants of the demand for money is income. Prior studies of the money
demand functions have shown that the income elasticity of demand for money (the percent
change in the demand for money for a 1 percent change in income) has typically ranged
between 0.7 and 1.3. Therefore, in a new study of demand for money, if one postulates that
the income-elasticity coefficient β2 is 1, the alternative hypothesis could be that β2 �= 1, a
two-sided alternative hypothesis.

Thus, theoretical expectations or prior empirical work or both can be relied upon to
formulate hypotheses. But no matter how the hypotheses are formed, it is extremely impor-
tant that the researcher establish these hypotheses before carrying out the empirical investi-
gation. Otherwise, he or she will be guilty of circular reasoning or self-fulfilling prophesies.
That is, if one were to formulate hypotheses after examining the empirical results, there may
be the temptation to form hypotheses that justify one’s results. Such a practice should be
avoided at all costs, at least for the sake of scientific objectivity. Keep in mind the Stigler
quotation given at the beginning of this chapter!

Choosing α, the Level of Significance
It should be clear from the discussion so far that whether we reject or do not reject the null
hypothesis depends critically on α, the level of significance or the probability of committing
a Type I error—the probability of rejecting the true hypothesis. In Appendix A we discuss
fully the nature of a Type I error, its relationship to a Type II error (the probability of
accepting the false hypothesis) and why classical statistics generally concentrates on a
Type I error. But even then, why is α commonly fixed at the 1, 5, or, at the most, 10 percent
levels? As a matter of fact, there is nothing sacrosanct about these values; any other values
will do just as well.

In an introductory book like this it is not possible to discuss in depth why one chooses the
1, 5, or 10 percent levels of significance, for that will take us into the field of statistical
decision making, a discipline unto itself. A brief summary, however, can be offered. As we
discuss in Appendix A, for a given sample size, if we try to reduce a Type I error, a Type II
error increases, and vice versa. That is, given the sample size, if we try to reduce the proba-
bility of rejecting the true hypothesis, we at the same time increase the probability of ac-
cepting the false hypothesis. So there is a trade-off involved between these two types of errors,

13For an interesting discussion about formulating hypotheses, see J. Bradford De Long and Kevin
Lang, “Are All Economic Hypotheses False?” Journal of Political Economy, vol. 100, no. 6, 1992,
pp. 1257–1272.
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122 Part One Single-Equation Regression Models

given the sample size. Now the only way we can decide about the trade-off is to find out the
relative costs of the two types of errors. Then,

If the error of rejecting the null hypothesis which is in fact true (Error Type I) is costly relative
to the error of not rejecting the null hypothesis which is in fact false (Error Type II), it will be
rational to set the probability of the first kind of error low. If, on the other hand, the cost of
making Error Type I is low relative to the cost of making Error Type II, it will pay to make the
probability of the first kind of error high (thus making the probability of the second type of
error low).14

Of course, the rub is that we rarely know the costs of making the two types of errors. Thus,
applied econometricians generally follow the practice of setting the value of α at a 1 or a 5
or at most a 10 percent level and choose a test statistic that would make the probability of
committing a Type II error as small as possible. Since one minus the probability of com-
mitting a Type II error is known as the power of the test, this procedure amounts to maxi-
mizing the power of the test. (See Appendix A for a discussion of the power of a test.)

Fortunately, the dilemma of choosing the appropriate value of α can be avoided by using
what is known as the p value of the test statistic, which is discussed next.

The Exact Level of Significance: The p Value
As just noted, the Achilles heel of the classical approach to hypothesis testing is its arbi-
trariness in selecting α. Once a test statistic (e.g., the t statistic) is obtained in a given
example, why not simply go to the appropriate statistical table and find out the actual prob-
ability of obtaining a value of the test statistic as much as or greater than that obtained in
the example? This probability is called the p value (i.e., probability value), also known as
the observed or exact level of significance or the exact probability of committing a Type
I error. More technically, the p value is defined as the lowest significance level at which
a null hypothesis can be rejected.

To illustrate, let us return to our wages-education example. Given the null hypothesis
that the true coefficient of education is 0.5, we obtained a t value of 3.2 in Eq. (5.7.4). What
is the p value of obtaining a t value of as much as or greater than 3.2? Looking up the t table
given in Appendix D, we observe that for 11 df the probability of obtaining such a t value
must be smaller than 0.005 (one-tail) or 0.010 (two-tail).

If you use Stata or EViews statistical packages, you will find that the p value of obtain-
ing a t value of 3.2 or greater is about 0.00001, that is, extremely small. This is the p value
of the observed t statistic. This exact level of significance of the t statistic is much smaller
than the conventionally, and arbitrarily, fixed level of significance, such as 1, 5, or 10 per-
cent. As a matter of fact, if we were to use the p value just computed, and reject the null
hypothesis that the true coefficient of education is 0.5, the probability of our committing a
Type I error would be only about 1 in 100,000!

As we noted earlier, if the data do not support the null hypothesis, |t | obtained under the
null hypothesis will be “large” and therefore the p value of obtaining such a |t | value will
be “small.” In other words, for a given sample size, as |t | increases, the p value decreases,
and one can therefore reject the null hypothesis with increasing confidence.

What is the relationship of the p value to the level of significance α? If we make the habit
of fixing α equal to the p value of a test statistic (e.g., the t statistic), then there is no conflict
between the two values. To put it differently, it is better to give up fixing α arbitrarily at

14Jan Kmenta, Elements of Econometrics, Macmillan, New York, 1971, pp. 126–127.
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some level and simply choose the p value of the test statistic. It is preferable to leave it
to the reader to decide whether to reject the null hypothesis at the given p value. If in an
application the p value of a test statistic happens to be, say, 0.145, or 14.5 percent, and if
the reader wants to reject the null hypothesis at this (exact) level of significance, so be it.
Nothing is wrong with taking a chance of being wrong 14.5 percent of the time if you reject
the true null hypothesis. Similarly, as in our wages-education example, there is nothing
wrong if the researcher wants to choose a p value of about 0.02 percent and not take a
chance of being wrong more than 2 out of 10,000 times. After all, some investigators may
be risk-lovers and some risk-averters!

In the rest of this text, we will generally quote the p value of a given test statistic. Some
readers may want to fix α at some level and reject the null hypothesis if the p value is less
than α. That is their choice.

Statistical Significance versus Practical Significance
Look back at Example 3.1 and the regression results given in Equation (3.7.1). This regres-
sion relates personal consumption expenditure (PCE) to gross domestic product (GDP) in
the U.S. for the period 1960–2005, both variables being measured in 2000 billions of dollars.

From this regression we see that the marginal propensity to consume (MPC), that is, the
additional consumption as a result of an additional dollar of income (as measured by GDP)
is about 0.72 or about 72 cents. Using the data in Eq. (3.7.1), the reader can verify that the
95 percent confidence interval for the MPC is (0.7129, 0.7306). (Note: Since there are 44 df
in this problem, we do not have a precise critical t value for these df. Hence, you can use
the 2-t rule of thumb to compute the 95 percent confidence interval.)

Suppose someone maintains that the true MPC is 0.74. Is this number different from
0.72? It is, if we strictly adhere to the confidence interval established above.

But what is the practical or substantive significance of our finding? That is, what differ-
ence does it make if we take the MPC to be 0.74 rather than 0.72? Is this difference of 0.02
between the two MPCs that important practically?

The answer to this question depends on what we plan to do with these estimates. For
example, from macroeconomics we know that the income multiplier is 1�(1 − MPC). Thus,
if the MPC is 0.72, the multiplier is 3.57, but it is 3.84 if the MPC is 0.74. If the govern-
ment were to increase its expenditure by $1 to lift the economy out of a recession, income
would eventually increase by $3.57 if the MPC were 0.72, but it would increase by $3.84 if
the MPC were 0.74. And that difference may or may not be crucial to resuscitating the
economy.

The point of all this discussion is that one should not confuse statistical significance
with practical, or economic, significance. As Goldberger notes:

When a null, say, βj = 1, is specified, the likely intent is that βj is close to 1, so close that for
all practical purposes it may be treated as if it were 1. But whether 1.1 is “practically the same
as” 1.0 is a matter of economics, not of statistics. One cannot resolve the matter by relying on
a hypothesis test, because the test statistic [t = ] (bj − 1)/σ̂bj measures the estimated coeffi-
cient in standard error units, which are not meaningful units in which to measure the economic
parameter βj − 1. It may be a good idea to reserve the term “significance” for the statistical
concept, adopting “substantial” for the economic concept.15

15Arthur S. Goldberger, A Course in Econometrics, Harvard University Press, Cambridge, Massachusetts,
1991, p. 240. Note bj is the OLS estimator of βj and σ̂bj is its standard error. For a corroborating
view, see D. N. McCloskey, “The Loss Function Has Been Mislaid: The Rhetoric of Significance Tests,”
American Economic Review, vol. 75, 1985, pp. 201–205. See also D. N. McCloskey and S. T. Ziliak,
“The Standard Error of Regression,” Journal of Economic Literature, vol. 37, 1996, pp. 97–114.
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124 Part One Single-Equation Regression Models

The point made by Goldberger is important. As sample size becomes very large, issues
of statistical significance become much less important but issues of economic significance
become critical. Indeed, since with very large samples almost any null hypothesis will be
rejected, there may be studies in which the magnitude of the point estimates may be
the only issue.

The Choice between Confidence-Interval and Test-of-
Significance Approaches to Hypothesis Testing
In most applied economic analyses, the null hypothesis is set up as a straw man and the
objective of the empirical work is to knock it down, that is, reject the null hypothesis. Thus,
in our consumption–income example, the null hypothesis that the MPC β2 = 0 is patently
absurd, but we often use it to dramatize the empirical results. Apparently editors of reputed
journals do not find it exciting to publish an empirical piece that does not reject the null
hypothesis. Somehow the finding that the MPC is statistically different from zero is more
newsworthy than the finding that it is equal to, say, 0.7!

Thus, J. Bradford De Long and Kevin Lang argue that it is better for economists

. . . to concentrate on the magnitudes of coefficients and to report confidence levels and not
significance tests. If all or almost all null hypotheses are false, there is little point in concen-
trating on whether or not an estimate is indistinguishable from its predicted value under the
null. Instead, we wish to cast light on what models are good approximations, which requires
that we know ranges of parameter values that are excluded by empirical estimates.16

In short, these authors prefer the confidence-interval approach to the test-of-significance
approach. The reader may want to keep this advice in mind.17

5.9 Regression Analysis and Analysis of Variance

In this section we study regression analysis from the point of view of the analysis of
variance and introduce the reader to an illuminating and complementary way of looking at
the statistical inference problem.

In Chapter 3, Section 3.5, we developed the following identity:

∑
y2

i =
∑

ŷ2
i +

∑
û2

i = β̂2
2

∑
x2

i +
∑

û2
i (3.5.2)

that is, TSS = ESS + RSS, which decomposed the total sum of squares (TSS) into two
components: explained sum of squares (ESS) and residual sum of squares (RSS). A study
of these components of TSS is known as the analysis of variance (ANOVA) from the
regression viewpoint.

Associated with any sum of squares is its df, the number of independent observations on
which it is based. TSS has n − 1 df because we lose 1 df in computing the sample mean Ȳ .
RSS has n − 2 df. (Why?) (Note: This is true only for the two-variable regression model
with the intercept β1 present.) ESS has 1 df (again true of the two-variable case only),
which follows from the fact that ESS = β̂2

2

∑
x2

i is a function of β̂2 only, since 
∑

x2
i is

known.

16See their article cited in footnote 13, p. 1271.
17For a somewhat different perspective, see Carter Hill, William Griffiths, and George Judge,
Undergraduate Econometrics, Wiley & Sons, New York, 2001, p. 108.
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Let us arrange the various sums of squares and their associated df in Table 5.3, which is
the standard form of the AOV table, sometimes called the ANOVA table. Given the entries
of Table 5.3, we now consider the following variable:

F = MSS of ESS

MSS of RSS

= β̂2
2

∑
x2

i∑
û2

i

/
(n − 2)

(5.9.1)

= β̂2
2

∑
x2

i

σ̂ 2

If we assume that the disturbances ui are normally distributed, which we do under the
CNLRM, and if the null hypothesis (H0) is that β2 = 0, then it can be shown that the F vari-
able of Equation 5.9.1 follows the F distribution with 1 df in the numerator and (n − 2) df
in the denominator. (See Appendix 5A, Section 5A.3, for the proof. The general properties
of the F distribution are discussed in Appendix A.)

What use can be made of the preceding F ratio? It can be shown18 that

E
(
β̂2

2

∑
x2

i

)
= σ 2 + β2

2

∑
x2

i (5.9.2)

and

E

∑
û2

i

n − 2
= E(σ̂ 2) = σ 2 (5.9.3)

(Note that β2 and σ 2 appearing on the right sides of these equations are the true parame-
ters.) Therefore, if β2 is in fact zero, Equations 5.9.2 and 5.9.3 both provide us with identi-
cal estimates of true σ 2. In this situation, the explanatory variable X has no linear influence
on Y whatsoever and the entire variation in Y is explained by the random disturbances ui .
If, on the other hand, β2 is not zero, Eqs. (5.9.2) and (5.9.3) will be different and part of the
variation in Y will be ascribable to X. Therefore, the F ratio of Eq. (5.9.1) provides a test of
the null hypothesis H0: β2 = 0. Since all the quantities entering into this equation can be
obtained from the available sample, this F ratio provides a test statistic to test the null
hypothesis that true β2 is zero. All that needs to be done is to compute the F ratio and
compare it with the critical F value obtained from the F tables at the chosen level of
significance, or obtain the p value of the computed F statistic.

18For proof, see K. A. Brownlee, Statistical Theory and Methodology in Science and Engineering, John
Wiley & Sons, New York, 1960, pp. 278–280.

TABLE 5.3
ANOVA Table for the
Two-Variable
Regression Model

Source of Variation SS* df MSS†

Due to regression (ESS)
∑

ŷ2
i = β̂ 2

2
∑

x 2
i 1 β̂ 2

2
∑

x 2
i

Due to residuals (RSS)
∑

û 2
i n − 2

∑
û2

i

n − 2
= σ̂ 2

TSS
∑

y 2
i n − 1

*SS means sum of squares.
†Mean sum of squares, which is obtained by dividing SS by their df.
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To illustrate, let us continue with our illustrative example. The ANOVA table for this ex-
ample is as shown in Table 5.4. The computed F value is seen to be 108.3026. The p value
of this F statistic corresponding to 1 and 11 df cannot be obtained from the F table given in
Appendix D, but by using electronic statistical tables it can be shown that the p value is
0.0000001, an extremely small probability indeed. If you decide to choose the level-of-
significance approach to hypothesis testing and fix α at 0.01, or a 1 percent level, you can
see that the computed F of 108.3026 is obviously significant at this level. Therefore, if we
reject the null hypothesis that β2 = 0, the probability of committing a Type I error is very
small. For all practical purposes, our sample could not have come from a population with
zero β2 value and we can conclude with great confidence that X, education, does affect Y,
average wages.

Refer to Theorem 5.7 of Appendix 5A.1, which states that the square of the t value with
k df is an F value with 1 df in the numerator and k df in the denominator. For our example, if
we assume H0: β2 = 0, then from Eq. (5.3.2) it can be easily verified that the estimated t
value is 10.41. This t value has 11 df. Under the same null hypothesis, the F value was
108.3026 with 1 and 11 df. Hence (10.3428)2 = F value, except for the rounding errors.

Thus, the t and the F tests provide us with two alternative but complementary ways of
testing the null hypothesis that β2 = 0. If this is the case, why not just rely on the t test and
not worry about the F test and the accompanying analysis of variance? For the two-variable
model there really is no need to resort to the F test. But when we consider the topic of
multiple regression we will see that the F test has several interesting applications that make
it a very useful and powerful method of testing statistical hypotheses.

5.10 Application of Regression Analysis: 
The Problem of Prediction

On the basis of the sample data of Table 3.2 we obtained the following sample regression:

Ŷi = −0.0144 + 0.7240Xi (3.6.1)

where Ŷi is the estimator of true E(Yi) corresponding to given X. What use can be made of
this historical regression? One use is to “predict” or “forecast” the future mean wages Y
corresponding to some given level of education X. Now there are two kinds of predictions:
(1) prediction of the conditional mean value of Y corresponding to a chosen X, say, X0, that
is the point on the population regression line itself (see Figure 2.2), and (2) prediction of
an individual Y value corresponding to X0. We shall call these two predictions the mean
prediction and individual prediction.

TABLE 5.4
ANOVA Table for the
Wages-Education
Example

Source of Variation SS df MSS

Due to regression (ESS) 95.4255 1 95.4255 F = 95.4255
0.8811

Due to residuals (RSS) 9.6928 11 0.8811 = 108.3026

TSS 105.1183 12
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Mean Prediction19

To fix the ideas, assume that X0 = 20 and we want to predict E(Y | X0 = 20). Now it can be
shown that the historical regression in Eq. (3.6.1) provides the point estimate of this mean
prediction as follows:

Ŷ0 = β̂1 + β̂2 X0

= −0.0144 + 0.7240(20) (5.10.1)

= 14.4656

where Ŷ0 = estimator of E(Y | X0). It can be proved that this point predictor is a best linear
unbiased estimator (BLUE).

Since Ŷ0 is an estimator, it is likely to be different from its true value. The difference be-
tween the two values will give some idea about the prediction or forecast error. To assess
this error, we need to find out the sampling distribution of Ŷ0. It is shown in Appendix 5A,
Section 5A.4, that Ŷ0 in Equation 5.10.1 is normally distributed with mean (β1 + β2 X0)
and the variance is given by the following formula:

(5.10.2)

By replacing the unknown σ 2 by its unbiased estimator σ̂ 2, we see that the variable

t = Ŷ0 − (β1 + β2 X0)

se (Ŷ0)
(5.10.3)

follows the t distribution with n − 2 df. The t distribution can therefore be used to derive
confidence intervals for the true E(Y0 | X0) and test hypotheses about it in the usual man-
ner, namely,

(5.10.4)
where se (Ŷ0) is obtained from Eq. (5.10.2).

For our data (see Table 3.2),

var (Ŷ0) = 0.8936

[
1

13
+ (20 − 12)2

182

]

= 0.3826

and

se (Ŷ0) = 0.6185

Therefore, the 95 percent confidence interval for true E(Y | X0) = β1 + β2 X0 is given by

14.4656 − 2.201(.6185) ≤ E(Y0 | X = 20) ≤ 14.4656 + 2.20(0.6185)

Pr [β̂1 + β̂2 X0 − tα/2 se (Ŷ0) ≤ β1 + β2 X0 ≤ β̂1 + β̂2 X0 + tα/2 se (Ŷ0)] = 1 − α

var (Ŷ0) = σ 2

[
1

n
+ (X0 − X̄)2∑

x2
i

]

19For the proofs of the various statements made, see App. 5A, Sec. 5A.4.
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that is,

13.1043 ≤ E(Y | X = 20) ≤ 15.8260 (5.10.5)

Thus, given X0 = 100, in repeated sampling, 95 out of 100 intervals like Equation 5.10.5
will include the true mean value; the single best estimate of the true mean value is of course
the point estimate 14.4656.

If we obtain 95 percent confidence intervals like Eq. (5.10.5) for each of the X values
given in Table 3.2, we obtain what is known as the confidence interval, or confidence
band, for the population regression function, which is shown in Figure 5.6.

Individual Prediction
If our interest lies in predicting an individual Y value, Y0, corresponding to a given X value,
say, X0, then, as shown in Appendix 5, Section 5A.4, a best linear unbiased estimator of Y0

is also given by Eq. (5.10.1), but its variance is as follows:

(5.10.6)

It can be shown further that Y0 also follows the normal distribution with mean and variance
given by Eqs. (5.10.1) and (5.10.6), respectively. Substituting σ̂ 2 for the unknown σ 2, it
follows that

t = Y0 − Ŷ0

se (Y0 − Ŷ0)

var (Y0 − Ŷ0) = E[Y0 − Ŷ0]2 = σ 2

[
1 + 1

n
+ (X0 − X̄)2∑

x2
i

]
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also follows the t distribution. Therefore, the t distribution can be used to draw inferences
about the true Y0. Continuing with our example, we see that the point prediction of Y0 is
14.4656, the same as that of Ŷ0, and its variance is 1.2357 (the reader should verify this cal-
culation). Therefore, the 95 percent confidence interval for Y0 corresponding to X0 = 100 is
seen to be

(12.0190 ≤ Y0 | X0 = 20 ≤ 16.9122) (5.10.7)

Comparing this interval with Eq. (5.10.5), we see that the confidence interval for indi-
vidual Y0 is wider than that for the mean value of Y0. (Why?) Computing confidence inter-
vals like Equation 5.10.7 conditional upon the X values given in Table 3.2, we obtain the
95 percent confidence band for the individual Y values corresponding to these X values.
This confidence band along with the confidence band for Ŷ0 associated with the same X’s is
shown in Figure 5.6.

Notice an important feature of the confidence bands shown in Figure 5.6. The width of
these bands is smallest when X0 = X̄ . (Why?) However, the width widens sharply as X0

moves away from X̄ . (Why?) This change would suggest that the predictive ability of the
historical sample regression line falls markedly as X0 departs progressively from X̄ . There-
fore, one should exercise great caution in “extrapolating” the historical regression
line to predict E(Y | X0) or Y0 associated with a given X0 that is far removed from the
sample mean X̄ .

5.11 Reporting the Results of Regression Analysis

There are various ways of reporting the results of regression analysis, but in this text we
shall use the following format, employing the wages-education example of Chapter 3 as an
illustration:

Ŷi = −0.0144 + 0.7240Xi

se = (0.9317) (0.0700) r2 = 0.9065
(5.11.1)

t = (−0.0154) (10.3428) df = 11

p = (0.987) (0.000) F1.11 = 108.30

In Equation 5.11.1 the figures in the first set of parentheses are the estimated standard
errors of the regression coefficients, the figures in the second set are estimated t values
computed from Eq. (5.3.2) under the null hypothesis that the true population value of each 
regression coefficient individually is zero (e.g., 10.3428 = 0.7240

0.0700 ), and the figures in the
third set are the estimated p values. Thus, for 11 df the probability of obtaining a t value of
10.3428 or greater is 0.00009, which is practically zero.

By presenting the p values of the estimated t coefficients, we can see at once the exact
level of significance of each estimated t value. Thus, under the null hypothesis that the true
population slope value is zero (i.e., that is, education has no effect on mean wages), the
exact probability of obtaining a t value of 10.3428 or greater is practically zero. Recall that
the smaller the p value, the smaller the probability of making a mistake if we reject the null
hypothesis.
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Earlier we showed the intimate connection between the F and t statistics, namely,
F1,k = t2

k . Under the null hypothesis that the true β2 = 0, Eq. (5.11.1) shows that the F
value is 108.30 (for 1 numerator and 11 denominator df) and the t value is about 10.34
(11 df); as expected, the former value is the square of the latter value, except for the round-
off errors. The ANOVA table for this problem has already been discussed.

5.12 Evaluating the Results of Regression Analysis

In Figure I.4 of the Introduction we sketched the anatomy of econometric modeling. Now
that we have presented the results of regression analysis of our wages-education example in
Eq. (5.11.1), we would like to question the adequacy of the fitted model. How “good” is the
fitted model? We need some criteria with which to answer this question.

First, are the signs of the estimated coefficients in accordance with theoretical or prior
expectations? A priori, β2 in the wages-education example should be positive. In the pre-
sent example it is. Second, if theory says that the relationship should be not only positive
but also statistically significant, is this the case in the present application? As we discussed
in Section 5.11, the education coefficient is not only positive but also statistically signifi-
cantly different from zero; the p value of the estimated t value is extremely small. The
comment about significance applies about the intercept coefficient. Third, how well does
the regression model explain variation in our example? One can use r2 to answer this
question. In the present example r2 is about 0.90, which is a very high value considering
that r2 can be at most 1.

Thus, the model we have chosen for explaining mean wages seems quite good. But
before we sign off, we would like to find out whether our model satisfies the assumptions
of CNLRM. We will not look at the various assumptions now because the model is patently
so simple. But there is one assumption that we would like to check, namely, the normality
of the disturbance term, ui . Recall that the t and F tests used before require that the error
term follow the normal distribution. Otherwise, the testing procedure will not be valid in
small, or finite, samples.

Normality Tests
Although several tests of normality are discussed in the literature, we will consider just
three: (1) histogram of residuals; (2) normal probability plot (NPP), a graphical device; and
(3) the Jarque–Bera test.

Histogram of Residuals
A histogram of residuals is a simple graphic device that is used to learn something about
the shape of the probability density function (PDF) of a random variable. On the horizon-
tal axis, we divide the values of the variable of interest (e.g., OLS residuals) into suitable
intervals, and in each class interval we erect rectangles equal in height to the number of
observations (i.e., frequency) in that class interval. If you mentally superimpose the bell-
shaped normal distribution curve on the histogram, you will get some idea as to whether
normal (PDF) approximation may be appropriate. For the wages-education regression, the
histogram of the residuals is as shown in Figure 5.7.

This diagram shows that the residuals are not perfectly normally distributed; for a
normally distributed variable the skewness (a measure of symmetry) should be zero and
kurtosis (which measures how tall or squatty the normal distribution is) should be 3.

But it is always a good practice to plot the histogram of residuals from any regression as
a rough and ready method of testing for the normality assumption.
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Normal Probability Plot
A comparatively simple graphical device to study the shape of the probability density func-
tion (PDF) of a random variable is the normal probability plot (NPP), which makes use
of normal probability paper, a specially designed graph paper. On the horizontal, or X, axis,
we plot values of the variable of interest (say, OLS residuals, û i ), and on the vertical, or Y,
axis, we show the expected value of this variable if it were normally distributed. Therefore,
if the variable is in fact from the normal population, the NPP will be approximately a
straight line. The NPP of the residuals from our wages-education regression is shown in
Figure 5.8, which is obtained from the MINITAB software package, version 15. As noted
earlier, if the fitted line in the NPP is approximately a straight line, one can conclude that
the variable of interest is normally distributed. In Figure 5.8, we see that residuals from our
illustrative example are approximately normally distributed, because a straight line seems
to fit the data reasonably well.

MINITAB also produces the Anderson–Darling normality test, known as the A2

statistic. The underlying null hypothesis is that the variable under consideration is
normally distributed. As Figure 5.8 shows, for our example, the computed A2 statistic is
0.289. The p value of obtaining such a value of A2 is 0.558, which is reasonably high.
Therefore, we do not reject the hypothesis that the residuals from our illustrative example
are normally distributed. Incidentally, Figure 5.8 shows the parameters of the (normal)
distribution, the mean is approximately 0, and the standard deviation is about 0.8987.

Jarque–Bera (JB) Test of Normality20

The JB test of normality is an asymptotic, or large-sample, test. It is also based on the OLS
residuals. This test first computes the skewness and kurtosis (discussed in Appendix A)
measures of the OLS residuals and uses the following test statistic:

JB = n

[
S2

6
+ (K − 3)2

24

]
(5.12.1)
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FIGURE 5.7
Histogram of residuals
for wages—education
data.

20See C. M. Jarque and A. K. Bera, “A Test for Normality of Observations and Regression Residuals,”
International Statistical Review, vol. 55, 1987, pp. 163–172.
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where n = sample size, S = skewness coefficient, and K = kurtosis coefficient. For a nor-
mally distributed variable, S = 0 and K = 3. Therefore, the JB test of normality is a test of
the joint hypothesis that S and K are 0 and 3, respectively. In that case the value of the JB
statistic is expected to be 0.

Under the null hypothesis that the residuals are normally distributed, Jarque and
Bera showed that asymptotically (i.e., in large samples) the JB statistic given in Equa-
tion (5.12.1) follows the chi-square distribution with 2 df. If the computed p value of the
JB statistic in an application is sufficiently low, which will happen if the value of the statis-
tic is very different from 0, one can reject the hypothesis that the residuals are normally
distributed. But if the p value is reasonably high, which will happen if the value of the
statistic is close to zero, we do not reject the normality assumption.

For our example, the estimated JB statistic for our wages-education example is 0.8286.
The null hypothesis that the residuals in the present example are normally distributed can-
not be rejected, for the p value of obtaining a JB statistic as much as 0.8286 or greater is
about 0.66 or 66 percent. This probability is quite high. Note that although our regression
has 13 observations, these observations were obtained from a sample of 528 observations,
which seems reasonably high.

Other Tests of Model Adequacy
Remember that the CNLRM makes many more assumptions than the normality of the error
term. As we examine econometric theory further, we will consider several tests of model
adequacy (see Chapter 13). Until then, keep in mind that our regression modeling is based
on several simplifying assumptions that may not hold in each and every case.

FIGURE 5.8
Residuals from wages-
education regression.
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Let us return to Example 3.2 about food expenditure in India. Using the data given in Equa-
tion (3.7.2) and adopting the format of Equation (5.11.1), we obtain the following expen-
diture equation:

F̂oodExpi = 94.2087 + 0.4368 TotalExpi

se = (50.8563) (0.0783)
t = (1.8524) (5.5770) (5.12.2)
p = (0.0695) (0.0000)*

r 2 = 0.3698; df = 53
F1,53 = 31.1034 (p value = 0.0000)*

where* denotes extremely small.
First, let us interpret this regression. As expected, there is a positive relationship between

expenditure on food and total expenditure. If total expenditure went up by a rupee, on
average, expenditure on food increased by about 44 paise. If total expenditure were zero,
the average expenditure on food would be about 94 rupees. Of course, this mechanical
interpretation of the intercept may not make much economic sense. The r 2 value of about
0.37 means that 37 percent of the variation in food expenditure is explained by total
expenditure, a proxy for income.

Suppose we want to test the null hypothesis that there is no relationship between food
expenditure and total expenditure, that is, the true slope coefficient β2 = 0. The estimated
value of β2 is 0.4368. If the null hypothesis were true, what is the probability of obtaining
a value of 0.4368? Under the null hypothesis, we observe from Eq. (5.12.2) that the t value
is 5.5770 and the p value of obtaining such a t value is practically zero. In other words,
we can reject the null hypothesis resoundingly. But suppose the null hypothesis were that
β2 = 0.5. Now what? Using the t test we obtain:

t = 0.4368 − 0.5
0.0783

= −0.8071

The probability of obtaining a |t | of 0.8071 is greater than 20 percent. Hence we do not
reject the hypothesis that the true β2 is 0.5.

Notice that, under the null hypothesis, the true slope coefficient is zero, the F value is
31.1034, as shown in Eq. (5.12.2). Under the same null hypothesis, we obtained a t value
of 5.5770. If we square this value, we obtain 31.1029, which is about the same as the F
value, again showing the close relationship between the t and the F statistic. (Note: The
numerator df for the F statistic must be 1, which is the case here.)

Using the estimated residuals from the regression, what can we say about the probabil-
ity distribution of the error term? The information is given in Figure 5.9. As the figure shows,
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Summary and
Conclusions

1. Estimation and hypothesis testing constitute the two main branches of classical statistics.
Having discussed the problem of estimation in Chapters 3 and 4, we have taken up the
problem of hypothesis testing in this chapter.

2. Hypothesis testing answers this question: Is a given finding compatible with a stated
hypothesis or not?

3. There are two mutually complementary approaches to answering the preceding
question: confidence interval and test of significance.

4. Underlying the confidence-interval approach is the concept of interval estimation. An
interval estimator is an interval or range constructed in such a manner that it has a spec-
ified probability of including within its limits the true value of the unknown parameter.
The interval thus constructed is known as a confidence interval, which is often stated in
percent form, such as 90 or 95 percent. The confidence interval provides a set of plausi-
ble hypotheses about the value of the unknown parameter. If the null-hypothesized value
lies in the confidence interval, the hypothesis is not rejected, whereas if it lies outside this
interval, the null hypothesis can be rejected.

5. In the significance test procedure, one develops a test statistic and examines its sam-
pling distribution under the null hypothesis. The test statistic usually follows a well-
defined probability distribution such as the normal, t, F, or chi-square. Once a test
statistic (e.g., the t statistic) is computed from the data at hand, its p value can be easily
obtained. The p value gives the exact probability of obtaining the estimated test statistic
under the null hypothesis. If this p value is small, one can reject the null hypothesis, but
if it is large one may not reject it. What constitutes a small or large p value is up to the
investigator. In choosing the p value the investigator has to bear in mind the probabili-
ties of committing Type I and Type II errors.

6. In practice, one should be careful in fixing α, the probability of committing a Type I
error, at arbitrary values such as 1, 5, or 10 percent. It is better to quote the p value of
the test statistic. Also, the statistical significance of an estimate should not be confused
with its practical significance.

7. Of course, hypothesis testing presumes that the model chosen for empirical analysis is
adequate in the sense that it does not violate one or more assumptions underlying the
classical normal linear regression model. Therefore, tests of model adequacy should
precede tests of hypothesis. This chapter introduced one such test, the normality test, to
find out whether the error term follows the normal distribution. Since in small, or finite,
samples, the t, F, and chi-square tests require the normality assumption, it is important
that this assumption be checked formally.

8. If the model is deemed practically adequate, it may be used for forecasting purposes. But
in forecasting the future values of the regressand, one should not go too far out of the sam-
ple range of the regressor values. Otherwise, forecasting errors can increase dramatically.

the residuals from the food expenditure regression seem to be symmetrically distributed.
Application of the Jarque–Bera test shows that the JB statistic is about 0.2576, and the prob-
ability of obtaining such a statistic under the normality assumption is about 88 percent.
Therefore, we do not reject the hypothesis that the error terms are normally distributed. But
keep in mind that the sample size of 55 observations may not be large enough.

We leave it to the reader to establish confidence intervals for the two regression
coefficients as well as to obtain the normal probability plot and do mean and individual
predictions.

A Concluding
Example
(Continued)
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EXERCISES Questions
5.1. State with reason whether the following statements are true, false, or uncertain. Be

precise.

a. The t test of significance discussed in this chapter requires that the sampling
distributions of estimators β̂1 and β̂2 follow the normal distribution.

b. Even though the disturbance term in the CLRM is not normally distributed, the
OLS estimators are still unbiased.

c. If there is no intercept in the regression model, the estimated ui ( = ûi ) will not
sum to zero.

d. The p value and the size of a test statistic mean the same thing.

e. In a regression model that contains the intercept, the sum of the residuals is
always zero.

f. If a null hypothesis is not rejected, it is true.

g. The higher the value of σ 2, the larger is the variance of β̂2 given in Eq. (3.3.1).

h. The conditional and unconditional means of a random variable are the same things.

i. In the two-variable PRF, if the slope coefficient β2 is zero, the intercept β1 is
estimated by the sample mean Ȳ .

j. The conditional variance, var (Yi | Xi ) = σ 2, and the unconditional variance of Y,
var (Y ) = σ 2

Y , will be the same if X had no influence on Y.

5.2. Set up the ANOVA table in the manner of Table 5.4 for the regression model given
in Eq. (3.7.2) and test the hypothesis that there is no relationship between food
expenditure and total expenditure in India.

5.3. Refer to the demand for cell phones regression given in Eq. (3.7.3).

a. Is the estimated intercept coefficient significant at the 5 percent level of signifi-
cance? What is the null hypothesis you are testing?

b. Is the estimated slope coefficient significant at the 5 percent level? What is the
underlying null hypothesis?

c. Establish a 95 percent confidence for the true slope coefficient.

d. What is the mean forecast value of cell phones demanded if the per capita
income is $9,000? What is the 95 percent confidence interval for the forecast
value?

5.4. Let ρ2 represent the true population coefficient of determination. Suppose you
want to test the hypothesis that ρ2 = 0. Verbally explain how you would test this
hypothesis. Hint: Use Eq. (3.5.11). See also Exercise 5.7.

5.5. What is known as the characteristic line of modern investment analysis is simply
the regression line obtained from the following model:

rit = αi + βi rmt + ut

where rit = the rate of return on the ith security in time t
rmt = the rate of return on the market portfolio in time t
ut = stochastic disturbance term

In this model βi is known as the beta coefficient of the ith security, a measure of
market (or systematic) risk of a security.*

*See Haim Levy and Marshall Sarnat, Portfolio and Investment Selection: Theory and Practice, Prentice
Hall International, Englewood Cliffs, NJ, 1984, Chap. 12.
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On the basis of 240 monthly rates of return for the period 1956–1976, Fogler and
Ganapathy obtained the following characteristic line for IBM stock in relation to
the market portfolio index developed at the University of Chicago:*

r̂i t = 0.7264 + 1.0598rmt r2 = 0.4710

se = (0.3001) (0.0728) df = 238

F1,238 = 211.896

a. A security whose beta coefficient is greater than one is said to be a volatile or
aggressive security. Was IBM a volatile security in the time period under study?

b. Is the intercept coefficient significantly different from zero? If it is, what is its
practical meaning?

5.6. Equation (5.3.5) can also be written as

Pr [β̂2 − tα/2se (β̂2) < β2 < β̂2 + tα/2se (β̂2)] = 1 − α

That is, the weak inequality (≤) can be replaced by the strong inequality (<). Why?

5.7. R. A. Fisher has derived the sampling distribution of the correlation coefficient
defined in Eq. (3.5.13). If it is assumed that the variables X and Y are jointly
normally distributed, that is, if they come from a bivariate normal distribution (see
Appendix 4A, Exercise 4.1), then under the assumption that the population corre-
lation coefficient ρ is zero, it can be shown that t = r

√
n − 2/

√
1 − r2 follows

Student’s t distribution with n − 2 df.** Show that this t value is identical with the t
value given in Eq. (5.3.2) under the null hypothesis that β2 = 0. Hence establish
that under the same null hypothesis F = t2. (See Section 5.9.)

5.8. Consider the following regression output:†

Ŷi = 0.2033 + 0.6560Xt

se = (0.0976) (0.1961)

r2 = 0.397 RSS = 0.0544 ESS = 0.0358

where Y = labor force participation rate (LFPR) of women in 1972 and X = LFPR
of women in 1968. The regression results were obtained from a sample of 19 cities
in the United States.
a. How do you interpret this regression?

b. Test the hypothesis: H0: β2 = 1 against H1: β2 > 1. Which test do you use? And
why? What are the underlying assumptions of the test(s) you use?

c. Suppose that the LFPR in 1968 was 0.58 (or 58 percent). On the basis of the regres-
sion results given above, what is the mean LFPR in 1972? Establish a 95 percent con-
fidence interval for the mean prediction.

d. How would you test the hypothesis that the error term in the population regression is
normally distributed? Show the necessary calculations.

*H. Russell Fogler and Sundaram Ganapathy, Financial Econometrics, Prentice Hall, Englewood Cliffs,
NJ, 1982, p. 13.

**If ρ is in fact zero, Fisher has shown that r follows the same t distribution provided either X or Y is
normally distributed. But if ρ is not equal to zero, both variables must be normally distributed. See R.
L. Anderson and T. A. Bancroft, Statistical Theory in Research, McGraw-Hill, New York, 1952,
pp. 87–88.
†Adapted from Samprit Chatterjee, Ali S. Hadi, and Bertram Price, Regression Analysis by Example,
3d ed., Wiley Interscience, New York, 2000, pp. 46–47.
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Observation Salary Spending Observation Salary Spending

1 19,583 3346 27 22,795 3366
2 20,263 3114 28 21,570 2920
3 20,325 3554 29 22,080 2980
4 26,800 4642 30 22,250 3731
5 29,470 4669 31 20,940 2853
6 26,610 4888 32 21,800 2533
7 30,678 5710 33 22,934 2729
8 27,170 5536 34 18,443 2305
9 25,853 4168 35 19,538 2642

10 24,500 3547 36 20,460 3124
11 24,274 3159 37 21,419 2752
12 27,170 3621 38 25,160 3429
13 30,168 3782 39 22,482 3947
14 26,525 4247 40 20,969 2509
15 27,360 3982 41 27,224 5440
16 21,690 3568 42 25,892 4042
17 21,974 3155 43 22,644 3402
18 20,816 3059 44 24,640 2829
19 18,095 2967 45 22,341 2297
20 20,939 3285 46 25,610 2932
21 22,644 3914 47 26,015 3705
22 24,624 4517 48 25,788 4123
23 27,186 4349 49 29,132 3608
24 33,990 5020 50 41,480 8349
25 23,382 3594 51 25,845 3766
26 20,627 2821

TABLE 5.5
Average Salary and
Per Pupil Spending
(dollars), 1985

Source: National Education
Association, as reported by
Albuquerque Tribune,
Nov. 7, 1986. 

Empirical Exercises
5.9. Table 5.5 gives data on average public teacher pay (annual salary in dollars) and spend-

ing on public schools per pupil (dollars) in 1985 for 50 states and the District of
Columbia.

To find out if there is any relationship between teacher’s pay and per pupil expendi-
ture in public schools, the following model was suggested: Payi = β1 + β2 Spendi +
ui, where Pay stands for teacher’s salary and Spend stands for per pupil expenditure.

a. Plot the data and eyeball a regression line.

b. Suppose on the basis of (a) you decide to estimate the above regression model.
Obtain the estimates of the parameters, their standard errors, r2, RSS, and ESS.

c. Interpret the regression. Does it make economic sense?

d. Establish a 95 percent confidence interval for β2. Would you reject the hypothesis
that the true slope coefficient is 3.0?

e. Obtain the mean and individual forecast value of Pay if per pupil spending is
$5,000. Also establish 95 percent confidence intervals for the true mean and indi-
vidual values of Pay for the given spending figure.

f. How would you test the assumption of the normality of the error term? Show the
test(s) you use.

5.10. Refer to Exercise 3.20 and set up the ANOVA tables and test the hypothesis that there
is no relationship between productivity and real wage compensation. Do this for both
the business and nonfarm business sectors.
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5.11. Refer to Exercise 1.7.

a. Plot the data with impressions on the vertical axis and advertising expenditure on
the horizontal axis. What kind of relationship do you observe?

b. Would it be appropriate to fit a bivariate linear regression model to the data? Why
or why not? If not, what type of regression model will you fit the data to? Do we
have the necessary tools to fit such a model?

c. Suppose you do not plot the data and simply fit the bivariate regression model to
the data. Obtain the usual regression output. Save the results for a later look at this
problem.

5.12. Refer to Exercise 1.1.

a. Plot the U.S. Consumer Price Index (CPI) against the Canadian CPI. What does
the plot show?

b. Suppose you want to predict the U.S. CPI on the basis of the Canadian CPI.
Develop a suitable model.

c. Test the hypothesis that there is no relationship between the two CPIs. Use
α = 5%. If you reject the null hypothesis, does that mean the Canadian CPI
“causes” the U.S. CPI? Why or why not?

5.13. Refer to Problem 3.22.

a. Estimate the two regressions given there, obtaining standard errors and the other
usual output.

b. Test the hypothesis that the disturbances in the two regression models are
normally distributed.

c. In the gold price regression, test the hypothesis that β2 = 1, that is, there is a one-
to-one relationship between gold prices and CPI (i.e., gold is a perfect hedge). What
is the p value of the estimated test statistic?

d. Repeat step (c) for the NYSE Index regression. Is investment in the stock market
a perfect hedge against inflation? What is the null hypothesis you are testing?
What is its p value?

e. Between gold and stock, which investment would you choose? What is the basis
of your decision?

5.14. Table 5.6 gives data on GNP and four definitions of the money stock for the United
States for 1970–1983. Regressing GNP on the various definitions of money, we
obtain the results shown in Table 5.7. 

The monetarists or quantity theorists maintain that nominal income (i.e., nominal
GNP) is largely determined by changes in the quantity or the stock of money, although
there is no consensus as to the “right” definition of money. Given the results in the
preceding table, consider these questions:

a. Which definition of money seems to be closely related to nominal GNP?

b. Since the r2 terms are uniformly high, does this fact mean that our choice for
definition of money does not matter?

c. If the Fed wants to control the money supply, which one of these money measures
is a better target for that purpose? Can you tell from the regression results?

5.15. Suppose the equation of an indifference curve between two goods is

Xi Yi = β1 + β2 Xi

How would you estimate the parameters of this model? Apply the preceding model
to the data in Table 5.8 and comment on your results.
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5.16. Since 1986 the Economist has been publishing the Big Mac Index as a crude, and hi-
larious, measure of whether international currencies are at their “correct” exchange
rate, as judged by the theory of purchasing power parity (PPP). The PPP holds that
a unit of currency should be able to buy the same bundle of goods in all countries.
The proponents of PPP argue that, in the long run, currencies tend to move toward
their PPP. The Economist uses McDonald’s Big Mac as a representative bundle and
gives the information in Table 5.9.

Consider the following regression model:

Yi = β1 + β2 Xi + ui

where Y = actual exchange rate and X = implied PPP of the dollar.

a. If the PPP holds, what values of β1 and β2 would you expect a priori?

Money Stock Measure, $ billion
GNP

Year $ billion M1 M2 M3 L

1970 992.70 216.6 628.2 677.5 816.3
1971 1,077.6 230.8 712.8 776.2 903.1
1972 1,185.9 252.0 805.2 886.0 1,023.0
1973 1,326.4 265.9 861.0 985.0 1,141.7
1974 1,434.2 277.6 908.5 1,070.5 1,249.3
1975 1,549.2 291.2 1,023.3 1,174.2 1,367.9
1976 1,718.0 310.4 1,163.6 1,311.9 1,516.6
1977 1,918.3 335.4 1,286.7 1,472.9 1,704.7
1978 2,163.9 363.1 1,389.1 1,647.1 1,910.6
1979 2,417.8 389.1 1,498.5 1,804.8 2,117.1
1980 2,631.7 414.9 1,632.6 1,990.0 2,326.2
1981 2,957.8 441.9 1,796.6 2,238.2 2,599.8
1982 3,069.3 480.5 1,965.4 2,462.5 2,870.8
1983 3,304.8 525.4 2,196.3 2,710.4 3,183.1

Definitions:

M1 = Currency + Demand deposits + Travelers checks and other checkable deposits (OCDs).
M2 = M1 + Overnight RPs and Eurodollars + MMMF (Money market mutual fund) balances + MMDAs (Money market
deposit accounts) + Savings and small deposits.
M3 = M2 + Large time deposits + Term RPs + Institutional MMMF.

L = M3 + Other liquid assets.

TABLE 5.6
GNP and Four
Measures of Money
Stock

Source: Economic Report of the
President, 1985, GNP data from
Table B-1, p. 232; money stock
data from Table B-61, p. 303.

1) ĜNPt = −787.4723 + 8.0863 M1t r 2 = 0.9912
(77.9664) (0.2197)

2) ĜNPt = −44.0626 + 1.5875 M2t r 2 = 0.9905
(61.0134) (0.0448)

3) ĜNPt = 159.1366 + 1.2034 M3t r 2 = 0.9943
(42.9882) (0.0262)

4) ĜNPt = 164.2071 + 1.0290 Lt r 2 = 0.9938
(44.7658) (0.0234)

Note: The figures in parentheses are the estimated standard errors.

Consumption of good X : 1 2 3 4 5
Consumption of good Y : 4 3.5 2.8 1.9 0.8

TABLE 5.8 

TABLE 5.7
GNP–Money Stock
Regressions,
1970–1983
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TABLE 5.9
The Hamburger
Standard

Source: McDonald’s; The
Economist, February 1, 2007.

*Purchasing power parity: local price divided by price in the United States.
**Dollars per euro.
†Average of New York, Chicago, San Francisco, and Atlanta.
‡Dollars per pound.
§Weighted average of prices in euro area.

Actual Under (−)�
Big Mac Prices

Dollar Over (+)
Implied Exchange Valuation

In Local In PPP* of Rate, against the
Currency Dollars the Dollar Jan 31st Dollar, %

United States† $3.22 3.22
Argentina Peso 8.25 2.65 2.56 3.11 −18
Australia A$3.45 2.67 1.07 1.29 −17
Brazil Real 6.4 3.01 1.99 2.13 −6
Britain £1.99 3.90 1.62‡ 1.96‡ +21
Canada C$3.63 3.08 1.13 1.18 −4
Chile Peso 1,670 3.07 519 544 −5
China Yuan 11.0 1.41 3.42 7.77 −56
Colombia Peso 6,900 3.06 2,143 2,254 −5
Costa Rica Colones 1,130 2.18 351 519 −32
Czech Republic Koruna 52.1 2.41 16.2 21.6 −25
Denmark DKr27.75 4.84 8.62 5.74 +50
Egypt Pound 9.09 1.60 2.82 5.70 −50
Estonia Kroon 30 2.49 9.32 12.0 −23
Euro area§

€2.94 3.82 1.10** 1.30** +19
Hong Kong HK$12.0 1.54 3.73 7.81 −52
Hungary Forint 590 3.00 183 197 −7
Iceland Kronur 509 7.44 158 68.4 +131
Indonesia Rupiah 15,900 1.75 4,938 9,100 −46
Japan ¥280 2.31 87.0 121 −28
Latvia Lats 1.35 2.52 0.42 0.54 −22
Lithuania Litas 6.50 2.45 2.02 2.66 −24
Malaysia Ringgit 5.50 1.57 1.71 3.50 −51
Mexico Peso 29.0 2.66 9.01 10.9 −17
New Zealand NZ$4.60 3.16 1.43 1.45 −2
Norway Kroner 41.5 6.63 12.9 6.26 +106
Pakistan Rupee 140 2.31 43.5 60.7 −28
Paraguay Guarani 10,000 1.90 3,106 5,250 −41
Peru New Sol 9.50 2.97 2.95 3.20 −8
Philippines Peso 85.0 1.74 26.4 48.9 −46
Poland Zloty 6.90 2.29 2.14 3.01 −29
Russia Rouble 49.0 1.85 15.2 26.5 −43
Saudi Arabia Riyal 9.00 2.40 2.80 3.75 −25
Singapore S$3.60 2.34 1.12 1.54 −27
Slovakia Crown 57.98 2.13 18.0 27.2 −34
South Africa Rand 15.5 2.14 4.81 7.25 −34
South Korea Won 2,900 3.08 901 942 −4
Sri Lanka Rupee 190 1.75 59.0 109 −46
Sweden SKr32.0 4.59 9.94 6.97 +43
Switzerland SFr6.30 5.05 1.96 1.25 +57
Taiwan NT$75.0 2.28 23.3 32.9 −29
Thailand Baht 62.0 1.78 19.3 34.7 −45
Turkey Lire 4.55 3.22 1.41 1.41 nil
UAE Dirhams 10.0 2.72 3.11 3.67 −15
Ukraine Hryvnia 9.00 1.71 2.80 5.27 −47
Uruguay Peso 55.0 2.17 17.1 25.3 −33
Venezuela Bolivar 6,800 1.58 2,112 4,307 −51

140
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b. Do the regression results support your expectation? What formal test do you use
to test your hypothesis?

c. Should the Economist continue to publish the Big Mac Index? Why or why not?

5.17. Refer to the SAT data given in Exercise 2.16. Suppose you want to predict the male
math (Y ) scores on the basis of the female math scores (X) by running the following
regression:

Yt = β1 + β2 Xt + ut

a. Estimate the preceding model.

b. From the estimated residuals, find out if the normality assumption can be
sustained.

c. Now test the hypothesis that β2 = 1, that is, there is a one-to-one correspondence
between male and female math scores.

d. Set up the ANOVA table for this problem.

5.18. Repeat the exercise in the preceding problem but let Y and X denote the male and fe-
male critical reading scores, respectively.

5.19. Table 5.10 gives annual data on the Consumer Price Index (CPI) and the Wholesale
Price Index (WPI), also called Producer Price Index (PPI), for the U.S. economy for
the period 1980–2006.

PPI (Total
CPI Total Finished Goods)

1980 82.4 88.0
1981 90.9 96.1
1982 96.5 100.0
1983 99.6 101.6
1984 103.9 103.7
1985 107.6 104.7
1986 109.6 103.2
1987 113.6 105.4
1988 118.3 108.0
1989 124.0 113.6

1990 130.7 119.2
1991 136.2 121.7
1992 140.3 123.2
1993 144.5 124.7
1994 148.2 125.5
1995 152.4 127.9
1996 156.9 131.3
1997 160.5 131.8
1998 163.0 130.7
1999 166.6 133.0

2000 172.2 138.0
2001 177.1 140.7
2002 179.9 138.9
2003 184.0 143.3
2004 188.9 148.5
2005 195.3 155.7
2006 201.6 160.3

TABLE 5.10
CPI and PPI, USA,
1980–2006

Source: Economic Report of the
President, 2007, Tables B-62
and B-65.
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a. Plot the CPI on the vertical axis and the WPI on the horizontal axis. A priori, what
kind of relationship do you expect between the two indexes? Why?

b. Suppose you want to predict one of these indexes on the basis of the other index.
Which will you use as the regressand and which as the regressor? Why?

c. Run the regression you have decided in (b). Show the standard output. Test the
hypothesis that there is a one-to-one relationship between the two indexes.

d. From the residuals obtained from the regression in (c), can you entertain the
hypothesis that the true error term is normally distributed? Show the tests you use.

5.20. Table 5.11 provides data on the lung cancer mortality index (100 = average) and the
smoking index (100 = average) for 25 occupational groups.

a. Plot the cancer mortality index against the smoking index. What general pattern
do you observe?

b. Letting Y = cancer mortality index and X = smoking index, estimate a linear
regression model and obtain the usual regression statistics.

c. Test the hypothesis that smoking has no influence on lung cancer at α = 5%.

d. Which are the risky occupations in terms of lung cancer mortality? Can you give
some reasons why this might be so?

e. Is there any way to bring occupation category explicitly into the regression
analysis?

Occupation Smoking Cancer

Farmers, foresters, fishermen 77 84
Miners and quarrymen 137 116
Gas, coke, and chemical makers 117 123
Glass and ceramic makers 94 128
Furnace forge foundry workers 116 155
Electrical and electronic workers 102 101
Engineering and allied trades 111 118
Wood workers 93 113
Leather workers 88 104
Textile workers 102 88
Clothing workers 91 104
Food, drink, and tobacco workers 104 129
Paper and printing workers 107 86
Makers of other products 112 96
Construction workers 113 144
Painters and decorators 110 139
Drivers of engines, cranes, etc. 125 113
Laborers not included elsewhere 113 146
Transportation, and communication workers 115 128
Warehousemen, store keepers, etc. 105 115
Clerical workers 87 79
Sales workers 91 85
Service, sports, recreation workers 100 120
Administrators and managers 76 60
Artists and professional and technical workers 66 51

TABLE 5.11
Smoking and Lung
Cancer

Source: http://lib.stat.
cmu.edu/ DASL/Datafiles/
SmokingandCancer.html.
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Appendix 5A

5A.1 Probability Distributions Related 
to the Normal Distribution

The t, chi-square (χ2), and F probability distributions, whose salient features are discussed in
Appendix A, are intimately related to the normal distribution. Since we will make heavy use of these
probability distributions in the following chapters, we summarize their relationship with the normal
distribution in the following theorem; the proofs, which are beyond the scope of this book, can be
found in the references.1

Theorem 5.1. If Z1, Z2, . . . , Zn are normally and independently distributed random
variables such that Zi ∼ N (µi , σ 2

i ), then the sum Z = ∑
ki Zi , where k i are constants not all

zero, is also distributed normally with mean 
∑

k iµi and variance 
∑

k2
i σ

2
i ; that is,

Z ∼ N (
∑

kiµi ,
∑

k2
i σ

2
i ). Note: µ denotes the mean value.

In short, linear combinations of normal variables are themselves normally distributed. For example,
if Z1 and Z2 are normally and independently distributed as Z1 ∼ N(10, 2) and Z2 ∼ N (8, 1.5),
then the linear combination Z = 0.8Z1 + 0.2Z2 is also normally distributed with mean = 0.8(10) +
0.2(8) = 9.6 and variance = 0.64(2) + 0.04(1.5) = 1.34, that is, Z ∼ (9.6, 1.34).

Theorem 5.2. If Z1, Z2, . . . , Zn are normally distributed but are not independent, the sum
Z = ∑

ki Zi , where ki are constants not all zero, is also normally distributed with mean∑
kiµi and variance [

∑
k2

i σ
2
i + 2

∑
ki kj cov (Zi , Zj ), i �= j].

Thus, if Z1 ∼ N (6, 2) and Z2 ∼ N (7, 3) and cov (Z1, Z2) = 0.8, then the linear combination
0.6Z1 + 0.4Z2 is also normally distributed with mean = 0.6(6) + 0.4(7) = 6.4 and variance =
[0.36(2) + 0.16(3) + 2(0.6)(0.4)(0.8)] = 1.584.

Theorem 5.3. If Z1, Z2, . . . , Zn are normally and independently distributed random
variables such that each Zi ∼ N (0, 1), that is, a standardized normal variable, then 

∑
Z2

i =
Z2

1 + Z2
2 + · · · + Z2

n follows the chi-square distribution with n df. Symbolically, 
∑

Z2
i ∼ χ2

n ,
where n denotes the degrees of freedom, df.

In short, “the sum of the squares of independent standard normal variables has a chi-square
distribution with degrees of freedom equal to the number of terms in the sum.”2

Theorem 5.4. If Z1, Z2, . . . , Zn are independently distributed random variables each
following chi-square distribution with ki df, then the sum

∑
Zi = Z1 + Z2 + · · · + Zn also

follows a chi-square distribution with k = ∑
ki df.

Thus, if Z1 and Z2 are independent χ2 variables with df of k1 and k2, respectively, then
Z = Z1 + Z2 is also a χ2 variable with (k1 + k2) degrees of freedom. This is called the reproductive
property of the χ2 distribution.

1For proofs of the various theorems, see Alexander M. Mood, Franklin A. Graybill, and Duane C. Bose,
Introduction to the Theory of Statistics, 3d ed., McGraw-Hill, New York, 1974, pp. 239–249.
2Ibid., p. 243.
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Theorem 5.5. If Z1 is a standardized normal variable [Z1 ∼ N (0, 1)] and another variable
Z2 follows the chi-square distribution with k df and is independent of Z1, then the variable
defined as

t = Z1√
Z2/

√
k

= Z1
√

k√
Z2

= Standard normal variable√
Independent chi-square variable/df

∼ tk

follows Student’s t distribution with k df. Note: This distribution is discussed in Appendix A
and is illustrated in Chapter 5.

Incidentally, note that as k, the df, increases indefinitely (i.e., as k → ∞), the Student’s t distribu-
tion approaches the standardized normal distribution.3 As a matter of convention, the notation tk
means Student’s t distribution or variable with k df.

Theorem 5.6. If Z1 and Z2 are independently distributed chi-square variables with k1 and
k2 df, respectively, then the variable

F = Z1/k1

Z2/k2
∼ Fk1,k2

has the F distribution with k1 and k2 degrees of freedom, where k1 is known as the numerator
degrees of freedom and k2 the denominator degrees of freedom.

Again as a matter of convention, the notation Fk1,k2 means an F variable with k1 and k2 degrees of
freedom, the df in the numerator being quoted first.

In other words, Theorem 5.6 states that the F variable is simply the ratio of two independently dis-
tributed chi-square variables divided by their respective degrees of freedom.

Theorem 5.7. The square of (Student’s) t variable with k df has an F distribution with k1 =
1 df in the numerator and k2 = k df in the denominator.4 That is,

F1,k = t2
k

Note that for this equality to hold, the numerator df of the F variable must be 1. Thus,
F1,4 = t2

4 or F1,23 = t2
23 and so on.

As noted, we will see the practical utility of the preceding theorems as we progress.

Theorem 5.8. For large denominator df, the numerator df times the F value is approximately
equal to the chi-square value with the numerator df. Thus,

m Fm,n = χ2
m as n → ∞

Theorem 5.9. For sufficiently large df, the chi-square distribution can be approximated by
the standard normal distribution as follows:

Z =
√

2χ2 − √
2k − 1 ∼ N (0, 1)

where k denotes df.

3For proof, see Henri Theil, Introduction to Econometrics, Prentice Hall, Englewood Cliffs, NJ, 1978,
pp. 237–245.
4For proof, see Eqs. (5.3.2) and (5.9.1).
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5A.2 Derivation of Equation (5.3.2)

Let

Z1 = β̂2 − β2

se (β̂2)
=

(β̂2 − β2)
√

x2
i

σ
(1)

and

Z2 = (n − 2)
σ̂ 2

σ 2
(2)

Provided σ is known, Z1 follows the standardized normal distribution; that is, Z1 ∼ N (0, 1).
(Why?) Z2 follows the χ2 distribution with (n − 2) df.5 Furthermore, it can be shown that Z2 is dis-
tributed independently of Z1.6 Therefore, by virtue of Theorem 5.5, the variable

t = Z1
√

n − 2√
Z2

(3)

follows the t distribution with n − 2 df. Substitution of Eqs. (1) and (2) into Eq. (3) gives Eq. (5.3.2).

5A.3 Derivation of Equation (5.9.1)

Equation (1) shows that Z1 ∼ N (0, 1). Therefore, by Theorem 5.3, the preceding quantity

Z2
1 = (β̂2 − β2)2 ∑

x2
i

σ 2

follows the χ2 distribution with 1 df. As noted in Section 5A.1,

Z2 = (n − 2)
σ̂ 2

σ 2
=

∑
û2

i

σ 2

also follows the χ2 distribution with n − 2 df. Moreover, as noted in Section 4.3, Z2 is distributed in-
dependently of Z1. Then from Theorem 5.6, it follows that

F = Z2
1/1

Z2/(n − 2)
=

(β̂2 − β2)2
(∑

x2
i

)
∑

û2
i /(n − 2)

follows the F distribution with 1 and n − 2 df, respectively. Under the null hypothesis H0: β2 = 0, the
preceding F ratio reduces to Eq. (5.9.1).

5A.4 Derivations of Equations (5.10.2) and (5.10.6)

Variance of Mean Prediction
Given Xi = X0, the true mean prediction E(Y0 | X0) is given by

E(Y0 | X0) = β1 + β2 X0 (1)

5For proof, see Robert V. Hogg and Allen T. Craig, Introduction to Mathematical Statistics, 2d ed.,
Macmillan, New York, 1965, p. 144.
6For proof, see J. Johnston, Econometric Methods, 3d ed., McGraw-Hill, New York, 1984, pp. 181–182.
(Knowledge of matrix algebra is required to follow the proof.)
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We estimate Eq. (1) from

Ŷ0 = β̂1 + β̂2 X0 (2)

Taking the expectation of Eq. (2), given X0, we get

E(Ŷ0) = E(β̂1) + E(β̂2)X0

= β1 + β2 X0

because β̂1 and β̂2 are unbiased estimators. Therefore,

E(Ŷ0) = E(Y0 | X0) = β1 + β2 X0 (3)

That is, Ŷ0 is an unbiased predictor of E(Y0 | X0).
Now using the property that var (a + b) = var (a) + var (b) + 2 cov (a, b) , we obtain

var (Ŷ0) = var (β̂1) + var (β̂2)X2
0 + 2 cov (β̂1β̂2)X0 (4)

Using the formulas for variances and covariance of β̂1 and β̂2 given in Eqs. (3.3.1), (3.3.3), and
(3.3.9) and manipulating terms, we obtain

var (Ŷ0) = σ 2
[

1

n
+ (X0 − X̄)2∑

x2
i

]
= (5.10.2)

Variance of Individual Prediction
We want to predict an individual Y corresponding to X = X0; that is, we want to obtain

Y0 = β1 + β2 X0 + u0 (5)

We predict this as

Ŷ0 = β̂1 + β̂2 X0 (6)

The prediction error, Y0 − Ŷ0, is

Y0 − Ŷ0 = β1 + β2 X0 + u0 − (β̂1 + β̂2 X0)

= (β1 − β̂1) + (β2 − β̂2)X0 + u0 (7)

Therefore,

E(Y0 − Ŷ0) = E(β1 − β̂1) + E(β2 − β̂2)X0 − E(u0)

= 0

because β̂1, β̂2 are unbiased, X0 is a fixed number, and E(u0) is zero by assumption.
Squaring Eq. (7) on both sides and taking expectations, we get var (Y0 − Ŷ0) =

var (β̂1) + X2
0 var (β̂2) + 2X0 cov (β1, β2) + var (u0). Using the variance and covariance formulas

for β̂1 and β̂2 given earlier, and noting that var (u0) = σ 2, we obtain

var (Y0 − Ŷ0) = σ 2
[

1 + 1

n
+ (X0 − X̄)2∑

x2
i

]
= (5.10.6)
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Some aspects of linear regression analysis can be easily introduced within the framework
of the two-variable linear regression model that we have been discussing so far. First we
consider the case of regression through the origin, that is, a situation where the inter-
cept term, β1, is absent from the model. Then we consider the question of the units of
measurement, that is, how the Y and X variables are measured and whether a change in the
units of measurement affects the regression results. Finally, we consider the question of the
functional form of the linear regression model. So far we have considered models that
are linear in the parameters as well as in the variables. But recall that the regression theory
developed in the previous chapters requires only that the parameters be linear; the variables
may or may not enter linearly in the model. By considering models that are linear in the
parameters but not necessarily in the variables, we show in this chapter how the two-
variable models can deal with some interesting practical problems.

Once the ideas introduced in this chapter are grasped, their extension to multiple
regression models is quite straightforward, as we shall show in Chapters 7 and 8.

6.1 Regression through the Origin

There are occasions when the two-variable population regression function (PRF) assumes
the following form:

(6.1.1)

In this model the intercept term is absent or zero, hence the name regression through the
origin.

As an illustration, consider the capital asset pricing model (CAPM) of modern portfolio
theory, which, in its risk-premium form, may be expressed as1

(ER i − r f ) = βi (ERm − r f ) (6.1.2)

Yi = β2 Xi + ui

Chapter 6
Extensions of the
Two-Variable Linear
Regression Model

1See Haim Levy and Marshall Sarnat, Portfolio and Investment Selection: Theory and Practice, Prentice-
Hall International, Englewood Cliffs, NJ, 1984, Chap. 14.
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148 Part One Single-Equation Regression Models

where ERi = expected rate of return on security i
ERm = expected rate of return on the market portfolio as represented by, say, the

S&P 500 composite stock index 
rf = risk-free rate of return, say, the return on 90-day Treasury bills
βi = the Beta coefficient, a measure of systematic risk, i.e., risk that cannot be

eliminated through diversification. Also, a measure of the extent to which
the ith security’s rate of return moves with the market. A βi > 1 implies a
volatile or aggressive security, whereas a βi < 1 suggests a defensive secu-
rity. (Note: Do not confuse this βi with the slope coefficient of the two-
variable regression, β2.)

If capital markets work efficiently, then CAPM postulates that security i’s expected risk
premium (= ERi − rf) is equal to that security’s β coefficient times the expected market
risk premium (= ERm − rf). If the CAPM holds, we have the situation depicted in Fig-
ure 6.1. The line shown in the figure is known as the security market line (SML).

For empirical purposes, Equation 6.1.2 is often expressed as

R i − r f = βi (Rm − r f ) + ui (6.1.3)
or

R i − r f = αi + βi (Rm − r f ) + ui (6.1.4)

The latter model is known as the Market Model.2 If CAPM holds, αi is expected to be
zero. (See Figure 6.2.)

In passing, note that in Equation 6.1.4 the dependent variable, Y, is (Ri − rf) and the
explanatory variable, X, is βi, the volatility coefficient, and not (Rm − rf). Therefore, to run
regression Eq. (6.1.4), one must first estimate βi, which is usually derived from the
characteristic line, as described in Exercise 5.5. (For further details, see Exercise 8.28.)

As this example shows, sometimes the underlying theory dictates that the intercept
term be absent from the model. Other instances where the zero-intercept model may be
appropriate are Milton Friedman’s permanent income hypothesis, which states that perma-
nent consumption is proportional to permanent income; cost analysis theory, where it is

1

ER i – rf

Security market line

0 βi

ER i – rfFIGURE 6.1
Systematic risk.

2See, for instance, Diana R. Harrington, Modern Portfolio Theory and the Capital Asset Pricing Model: A
User’s Guide, Prentice Hall, Englewood Cliffs, NJ, 1983, p. 71.
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Chapter 6 Extensions of the Two-Variable Linear Regression Model 149

postulated that the variable cost of production is proportional to output; and some versions
of monetarist theory that state that the rate of change of prices (i.e., the rate of inflation) is
proportional to the rate of change of the money supply.

How do we estimate models like Eq. (6.1.1), and what special problems do they pose? To
answer these questions, let us first write the sample regression function (SRF) of Eq. (6.1.1),
namely,

Yi = β̂2 Xi + ûi (6.1.5)

Now applying the ordinary least squares (OLS) method to Eq. (6.1.5), we obtain the fol-
lowing formulas for β̂2 and its variance (proofs are given in Appendix 6A, Section 6A.1):

β̂2 =
∑

Xi Yi∑
X2

i

(6.1.6)

var (β̂2) = σ 2∑
X2

i

(6.1.7)

where σ2 is estimated by

σ̂ 2 =
∑

û2
i

n − 1
(6.1.8)

It is interesting to compare these formulas with those obtained when the intercept term is
included in the model:

β̂2 =
∑

xi yi∑
x2

i

(3.1.6)

var (β̂2) = σ 2∑
x2

i

(3.3.1)

σ̂ 2 =
∑

û2
i

n − 2
(3.3.5)

βi
Systematic risk

S
ec

u
ri

ty
 r

is
k 

p
re

m
iu

m

0

Ri – rfFIGURE 6.2
The Market Model
of Portfolio Theory
(assuming αi = 0).
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The differences between the two sets of formulas should be obvious: In the model with the
intercept term absent, we use raw sums of squares and cross products but in the intercept-
present model, we use adjusted (from mean) sums of squares and cross products. Second,
the df for computing σ̂ 2 is (n − 1) in the first case and (n − 2) in the second case. (Why?)

Although the interceptless or zero intercept model may be appropriate on occasions,
there are some features of this model that need to be noted. First, 

∑
ûi , which is always

zero for the model with the intercept term (the conventional model), need not be zero when
that term is absent. In short, 

∑
û i need not be zero for the regression through the origin.

Second, r2, the coefficient of determination introduced in Chapter 3, which is always non-
negative for the conventional model, can on occasions turn out to be negative for the inter-
ceptless model! This anomalous result arises because the r2 introduced in Chapter 3
explicitly assumes that the intercept is included in the model. Therefore, the conventionally
computed r2 may not be appropriate for regression-through-the-origin models.3

r 2 for Regression-through-Origin Model
As just noted, and as further discussed in Appendix 6A, Section 6A.1, the conventional r2

given in Chapter 3 is not appropriate for regressions that do not contain the intercept. But
one can compute what is known as the raw r2 for such models, which is defined as

raw r2 =
(∑

Xi Yi

)2

∑
X2

i

∑
Y 2

i

(6.1.9)

Note: These are raw (i.e., not mean-corrected) sums of squares and cross products.
Although this raw r2 satisfies the relation 0 < r2 < 1, it is not directly comparable to the

conventional r2 value. For this reason some authors do not report the r2 value for zero
intercept regression models.

Because of these special features of this model, one needs to exercise great caution in
using the zero intercept regression model. Unless there is very strong a priori expectation,
one would be well advised to stick to the conventional, intercept-present model. This has a
dual advantage. First, if the intercept term is included in the model but it turns out to be sta-
tistically insignificant (i.e., statistically equal to zero), for all practical purposes we have a
regression through the origin.4 Second, and more important, if in fact there is an intercept
in the model but we insist on fitting a regression through the origin, we would be commit-
ting a specification error. We will discuss this more in Chapter 7.

3For additional discussion, see Dennis J. Aigner, Basic Econometrics, Prentice Hall, Englewood Cliffs, NJ,
1971, pp. 85–88.
4Henri Theil points out that if the intercept is in fact absent, the slope coefficient may be estimated
with far greater precision than with the intercept term left in. See his Introduction to Econometrics,
Prentice Hall, Englewood Cliffs, NJ, 1978, p. 76. See also the numerical example given next.
5These data, originally obtained from DataStream databank, are reproduced from Christiaan Heij et al.,
Econometrics Methods with Applications in Business and Economics, Oxford University Press, Oxford,
U.K., 2004.

EXAMPLE 6.1 Table 6.1 gives data on excess returns Yt (%) on an index of 104 stocks in the sector of
cyclical consumer goods and excess returns Xt (%) on the overall stock market index for
the U.K. for the monthly data for the period 1980–1999, for a total of 240 observations.5

Excess return refers to return in excess of return on a riskless asset (see the CAPM model).
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OBS Y X OBS Y X

TABLE 6.1

1984:12 3.52786616 3.191554763
1985:01 4.554587707 3.907838688
1985:02 5.365478677 �1.708567484
1985:03 4.525231564 0.435218492
1985:04 2.944654344 0.958067845
1985:05 �0.268599528 1.095477375
1985:06 �3.661040481 �6.816108909
1985:07 �4.540505062 2.785054354
1985:08 9.195292816 3.900209023
1985:09 �1.894817019 �4.203004414
1985:10 12.00661274 5.60179802
1985:11 1.233987382 1.570093976
1985:12 �1.446329607 �1.084427121
1986:01 6.023618851 0.778669473
1986:02 10.51235756 6.470651262
1986:03 13.40071024 8.953781192
1986:04 �7.796262998 �2.387761685
1986:05 0.211540446 �2.873838588
1986:06 6.471111064 3.440269098
1986:07 �9.037475168 �5.891053375
1986:08 �5.47838091 6.375582004
1986:09 �6.756881852 �5.734839396
1986:10 �2.564960223 3.63088408
1986:11 2.456599468 �1.31606687
1986:12 1.476421303 3.521601216
1987:01 17.0694004 8.673412896
1987:02 7.565726727 6.914361923
1987:03 �3.239325817 �0.460660854
1987:04 3.662578335 4.295976077
1987:05 7.157455113 7.719692529
1987:06 4.774901623 3.039887622
1987:07 4.23770166 2.510223804
1987:08 �0.881352219 �3.039443563
1987:09 11.49688416 3.787092018
1987:10 �35.56617624 �27.86969311
1987:11 �14.59137369 �9.956367094
1987:12 14.87271664 7.975865948
1988:01 1.748599294 3.936938398
1988:02 �0.606016446 �0.32797064
1988:03 �6.078095523 �2.161544202
1988:04 3.976153828 2.721787842
1988:05 �1.050910058 �0.514825422
1988:06 3.317856956 3.128796482
1988:07 0.407100105 0.181502075
1988:08 �11.87932524 �7.892363786
1988:09 �8.801026046 3.347081899
1988:10 6.784211277 3.158592144
1988:11 �10.20578119 �4.816470363
1988:12 �6.73805381 �0.008549997
1989:01 12.83903643 13.46098219
1989:02 3.302860922 �0.764474692
1989:03 �0.155918301 2.298491097
1989:04 3.623090767 0.762074588
1989:05 �1.167680873 �0.495796117
1989:06 �1.221603303 1.206636013
1989:07 5.262902744 4.637026116
1989:08 4.845013219 2.680874116
1989:09 �5.069564838 �5.303858035
1989:10 �13.57963526 �7.210655599

1980:01 6.08022852 7.263448404
1980:02 �0.924185461 6.339895504
1980:03 �3.286174252 �9.285216834
1980:04 5.211976571 0.793290771
1980:05 �16.16421111 �2.902420985
1980:06 �1.054703649 8.613150875
1980:07 11.17237699 3.982062848
1980:08 �11.06327551 �1.150170907
1980:09 �16.77699609 3.486125868
1980:10 �7.021834032 4.329850278
1980:11 �9.71684668 0.936875279
1980:12 5.215705717 �5.202455846
1981:01 �6.612000956 �2.082757509
1981:02 4.264498443 2.728522893
1981:03 4.916710821 0.653397106
1981:04 22.20495946 6.436071962
1981:05 �11.29868524 �4.259197932
1981:06 �5.770507783 0.543909707
1981:07 �5.217764717 �0.486845933
1981:08 16.19620175 2.843999508
1981:09 �17.16995395 �16.4572142
1981:10 1.105334728 4.468938171
1981:11 11.6853367 5.885519658
1981:12 �2.301451728 �0.390698164
1982:01 8.643728679 2.499567896
1982:02 �11.12907503 �4.033607075
1982:03 1.724627956 3.042525777
1982:04 0.157879967 0.734564665
1982:05 �1.875202616 2.779732288
1982:06 �10.62481767 �5.900116576
1982:07 �5.761135416 3.005344385
1982:08 5.481432596 3.954990619
1982:09 �17.02207459 2.547127067
1982:10 7.625420708 4.329008106
1982:11 �6.575721646 0.191940594
1982:12 �2.372829861 �0.92167555
1983:01 17.52374936 3.394682577
1983:02 1.354655809 0.758714353
1983:03 16.26861049 1.862073664
1983:04 �6.074547158 6.797751341
1983:05 �0.826650702 �1.699253628
1983:06 3.807881996 4.092592402
1983:07 0.57570091 �2.926299262
1983:08 3.755563441 1.773424306
1983:09 �5.365927271 �2.800815667
1983:10 �3.750302815 �1.505394995
1983:11 4.898751703 4.18696284
1983:12 4.379256151 1.201416981
1984:01 16.56016188 6.769320788
1984:02 1.523127464 �1.686027417
1984:03 1.0206078 5.245806105
1984:04 �3.899307684 1.728710264
1984:05 �14.32501615 �7.279075595
1984:06 3.056627177 �0.77947067
1984:07 �0.02153592 �2.439634487
1984:08 3.355102212 8.445977813
1984:09 0.100006778 1.221080129
1984:10 1.691250318 2.733386772
1984:11 8.20075301 5.12753329

(Continued )

151

guj75772_ch06.qxd  07/08/2008  07:00 PM  Page 151



1989:11 1.100607603 5.350185944
1989:12 4.925083189 4.106245855
1990:01 �2.532068851 �3.629547374
1990:02 �6.601872876 �5.205804299
1990:03 �1.023768943 �2.183244863
1990:04 �7.097917266 �5.408563794
1990:05 6.376626925 10.57599169
1990:06 1.861974711 �0.338612099
1990:07 �5.591527585 �2.21316202
1990:08 �15.31758975 �8.476177427
1990:09 �10.17227358 �7.45941471
1990:10 �2.217396045 �0.085887763
1990:11 5.974205798 5.034770534
1990:12 �0.857289036 �1.767714908
1991:01 �3.780184589 0.189108456
1991:02 20.64721437 10.38741504
1991:03 10.94068018 2.921913827
1991:04 �3.145639589 0.971720188
1991:05 �3.142887645 �0.4317819
1991:06 �1.960866141 �3.342924986
1991:07 7.330964031 5.242811509
1991:08 7.854387926 2.880654691
1991:09 2.539177843 �1.121472224
1991:10 �1.233244642 �3.969577956
1991:11 �11.7460404 �5.707995062
1991:12 1.078226286 1.502567049
1992:01 5.937904622 2.599565094
1992:02 4.113184542 0.135881087
1992:03 �0.655199392 �6.146138064
1992:04 15.28430278 10.45736831
1992:05 3.994517585 1.415987046
1992:06 �11.94450998 �8.261109424
1992:07 �2.530701327 �3.778812167
1992:08 �9.842366221 �5.386818488
1992:09 18.11573724 11.19436372
1992:10 0.200950206 3.999870038
1992:11 1.125853097 3.620674752
1992:12 7.639180786 2.887222251
1993:01 2.919569408 1.336746091
1993:02 �1.062404105 1.240273846
1993:03 1.292641409 0.407144312
1993:04 0.420241384 �1.734930047
1993:05 �2.514080553 1.111533687
1993:06 0.419362276 1.354127742
1993:07 4.374024535 1.943061568
1993:08 1.733528075 4.961979827
1993:09 �3.659808969 �1.618729936
1993:10 5.85690764 4.215408608
1993:11 �1.365550294 1.880360165
1993:12 �1.346979017 5.826352413
1994:01 12.89578758 2.973540693
1994:02 �5.346700561 �5.479858563
1994:03 �7.614726564 �5.784547088
1994:04 10.22042923 1.157083438
1994:05 �6.928422261 �6.356199493
1994:06 �5.065919037 �0.843583888
1994:07 7.483498556 5.779953224
1994:08 1.828762662 3.298130184
1994:09 �5.69293279 �7.110010085
1994:10 �2.426962489 2.968005597
1994:11 2.125100668 �1.531245158

1994:12 �4.225370964 0.264280259
1995:01 �6.302392617 �2.420388431
1995:02 1.27867637 0.138795213
1995:03 10.90890516 3.231656585
1995:04 2.497849434 2.215804682
1995:05 2.891526594 3.856813589
1995:06 �3.773000069 �0.952204306
1995:07 8.776288715 4.020036363
1995:08 2.88256097 1.423600345
1995:09 2.14691333 �0.037912571
1995:10 �4.590104662 �1.17655329
1995:11 �1.293255187 3.760277356
1995:12 �4.244101531 0.434626357
1996:01 6.647088904 1.906345103
1996:02 1.635900742 0.301898961
1996:03 7.8581899 �0.314132324
1996:04 0.789544896 3.034331741
1996:05 �0.907725397 �1.497346299
1996:06 �0.392246948 �0.894676854
1996:07 �1.035896351 �0.532816274
1996:08 2.556816005 3.863737088
1996:09 3.131830038 2.118254897
1996:10 �0.020947358 �0.853553262
1996:11 �5.312287782 1.770340939
1996:12 �5.196176326 1.702551635
1997:01 �0.753247124 3.465753348
1997:02 �2.474343938 1.115253221
1997:03 2.47647802 �2.057818461
1997:04 �1.119104196 3.57089955
1997:05 3.352076269 1.953480438
1997:06 �1.910172239 2.458700404
1997:07 0.142814607 2.992341297
1997:08 10.50199263 �0.457968038
1997:09 12.98501943 8.111278967
1997:10 �4.134761655 �6.967124504
1997:11 �4.148579856 �0.155924791
1997:12 �1.752478236 3.853283433
1998:01 �3.349121498 7.379466014
1998:02 14.07471304 4.299097886
1998:03 7.791650968 3.410780517
1998:04 5.154679109 �0.081494993
1998:05 3.293686179 �1.613131159
1998:06 �13.25461802 �0.397288954
1998:07 �7.714205916 �2.237365283
1998:08 �15.26340483 �12.4631993
1998:09 �15.22865141 �5.170734985
1998:10 15.96218038 11.70544788
1998:11 �8.684089113 �0.380200223
1998:12 17.13842369 4.986705187
1999:01 �1.468448611 2.493727994
1999:02 8.5036 0.937105259
1999:03 10.8943073 4.280082506
1999:04 13.03497394 3.960824402
1999:05 �5.654671597 �4.499198079
1999:06 8.321969316 3.656745699
1999:07 0.507652273 �2.503971473
1999:08 �5.022980561 �0.121901923
1999:09 �2.305448839 �5.388032432
1999:10 �1.876879466 4.010989716
1999:11 1.348824769 6.265312975
1999:12 �2.64164938 4.045658427

OBS Y X OBS Y X
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Chapter 6 Extensions of the Two-Variable Linear Regression Model 153

First we fit model (6.1.3) to these data. Using EViews6 we obtained the following
regression results, which are given in the standard EViews format.

Dependent Variable: Y
Method: Least Squares
Sample: 1980M01 1999M12
Included observations: 240

Coefficient Std. Error t-Statistic Prob.

X 1.155512 0.074396 15.53200 0.0000

R-squared 0.500309 Mean dependent var. 0.499826
Adjusted R-squared† 0.500309 S.D. dependent var. 7.849594
S.E. of regression 5.548786 Durbin-Watson stat.* 1.972853
Sum squared resid. 7358.578

*We will discuss this statistic in Chapter 12.
†See Chapter 7.

As these results show, the slope coefficient, which is the Beta coefficient, is highly significant,
for its p value is extremely small. The interpretation here is that if the excess market rate goes
up by 1 percentage point, the excess return on the index of consumer goods sector goes up
by about 1.15 percentage points. Not only is the slope coefficient statistically significant, but
it is significantly greater than 1 (can you verify this?). If a Beta coefficient is greater than 1,
such a security (here a portifolio of 104 stocks) is said to be volatile; it moves more than
proportionately with the overall stock market index. But this finding should not be surprising,
for in this example we are considering stocks from the sector of cyclical consumer goods such
as houshold durables, automobiles, textiles, and sports equipment.

If we fit model (6.1.4), we obtain the following results:

Dependent Variable: Y
Method: Least Squares
Sample: 1980M01 1999M12
Included observations: 240

Coefficient Std. Error t-Statistic Prob.

C −0.447481 0.362943 �1.232924 0.2188
X 1.171128 0.075386 15.53500 0.0000

R-squared 0.503480 Mean dependent var. 0.499826
Adjusted R-squared 0.501394 S.D. dependent var. 7.849594
S.E. of regression 5.542759 Durbin-Watson stat. 1.984746
Sum squared resid. 7311.877 Prob. (F-statistic) 0.000000
F-statistic 241.3363

From these results we see that the intercept is not statistically different from zero, although
the slope coefficient (the Beta coefficient) is highly statistically significant. This suggests
that the regression-through-the-origin model fits the data well. Besides, statistically there is
no difference in the value of the slope coefficient in the two models. Note that the standard
error of the slope coefficient in the regression-through-the-origin model is slightly lower
than the one in the intercept-present model, thus supporting Theil’s argument given in
footnote 4. Even then, the slope coefficient is statistically greater than 1, once again con-
firming that returns on the stocks in the cyclical consumer goods sector are volatile.

By the way, note that the r2 value given for the regression-through-the-origin model
should be taken with a grain of salt, for the traditional formula of r2 is not applicable for such
models. EViews, however, routinely presents the standard r2 value even for such models.

EXAMPLE 6.1
(Continued)
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154 Part One Single-Equation Regression Models

6.2 Scaling and Units of Measurement 

To grasp the ideas developed in this section, consider the data given in Table 6.2, which
refers to U.S. gross private domestic investment (GPDI) and gross domestic product (GDP),
in billions as well as millions of (chained) 2000 dollars.

Suppose in the regression of GPDI on GDP one researcher uses data in billions of dol-
lars but another expresses data in millions of dollars. Will the regression results be the same
in both cases? If not, which results should one use? In short, do the units in which the
regressand and regressor(s) are measured make any difference in the regression results? If
so, what is the sensible course to follow in choosing units of measurement for regression
analysis? To answer these questions, let us proceed systematically. Let

Yi = β̂1 + β̂2 Xi + û i (6.2.1)

where Y = GPDI and X = GDP. Define

Y ∗
i = w1Yi (6.2.2)

X∗
i = w2 Xi (6.2.3)

where w1 and w2 are constants, called the scale factors; w1 may equal w2 or be different.
From Equations 6.2.2 and 6.2.3 it is clear that Y ∗

i and X∗
i are rescaled Yi and Xi . Thus,

if Yi and Xi are measured in billions of dollars and one wants to express them in millions
of dollars, we will have Y ∗

i = 1000 Yi and X∗
i = 1000 Xi ; here w1 = w2 = 1000.

Now consider the regression using Y ∗
i and X∗

i variables:

Y ∗
i = β̂∗

1 + β̂∗
2 X∗

i + û∗
i (6.2.4)

where Y ∗
i = w1Yi , X∗

i = w2 Xi , and û∗
i = w1ûi . (Why?)

TABLE 6.2
Gross Private
Domestic Investment
and GDP, United
States, 1990–2005
(Billions of chained
[2000] dollars, except
as noted; quarterly
data at seasonally
adjusted annual
rates)

Year GPDIBL GPDIM GDPB GDPM

1990 886.6 886,600.0 7,112.5 7,112,500.0
1991 829.1 829,100.0 7,100.5 7,100,500.0
1992 878.3 878,300.0 7,336.6 7,336,600.0
1993 953.5 953,500.0 7,532.7 7,532,700.0
1994 1,042.3 1,042,300.0 7,835.5 7,835,500.0
1995 1,109.6 1,109,600.0 8,031.7 8,031,700.0
1996 1,209.2 1,209,200.0 8,328.9 8,328,900.0
1997 1,320.6 1,320,600.0 8,703.5 8,703,500.0
1998 1,455.0 1,455,000.0 9,066.9 9,066,900.0
1999 1,576.3 1,576,300.0 9,470.3 9,470,300.0
2000 1,679.0 1,679,000.0 9,817.0 9,817,000.0
2001 1,629.4 1,629,400.0 9,890.7 9,890,700.0
2002 1,544.6 1,544,600.0 10,048.8 10,048,800.0
2003 1,596.9 1,596,900.0 10,301.0 10,301,000.0
2004 1,713.9 1,713,900.0 10,703.5 10,703,500.0
2005 1,842.0 1,842,000.0 11,048.6 11,048,600.0

Note: GPDIBL = gross private domestic investment, billions of 2000 dollars.
GPDIM = gross private domestic investments, millions of 2000 dollars.

GDPB = gross domestic product, billions of 2000 dollars.
GDPM = gross domestic product, millions of 2000 dollars.

Source: Economic Report 
of the President, 2007, 
Table B-2, p. 328.
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Chapter 6 Extensions of the Two-Variable Linear Regression Model 155

We want to find out the relationships between the following pairs:

1. β̂1 and β̂∗
1

2. β̂2 and β̂∗
2

3. var (β̂1) and var (β̂∗
1 )

4. var (β̂2) and var (β̂∗
2 )

5. σ̂ 2 and σ̂ ∗2

6. r2
xy and r2

x∗ y∗

From least-squares theory we know (see Chapter 3) that

β̂1 = Ȳ − β̂2 X̄ (6.2.5)

β̂2 =
∑

xi yi∑
x2

i

(6.2.6)

var (β̂1) =
∑

X2
i

n
∑

x2
i

· σ 2 (6.2.7)

var (β̂2) = σ 2∑
x2

i

(6.2.8)

σ̂ 2 =
∑

û2
i

n − 2
(6.2.9)

Applying the OLS method to Equation 6.2.4, we obtain similarly

β̂∗
1 = Ȳ ∗ − β̂∗

2 X̄∗ (6.2.10)

β̂∗
2 =

∑
x∗

i y∗
i∑

x∗2
i

(6.2.11)

var (β̂∗
1 ) =

∑
X∗2

i

n
∑

x∗2
i

· σ ∗2 (6.2.12)

var (β̂∗
2 ) = σ ∗2∑

x∗2
i

(6.2.13)

σ̂ ∗2 =
∑

û∗2
i

(n − 2)
(6.2.14)

From these results it is easy to establish relationships between the two sets of parameter
estimates. All that one has to do is recall these definitional relationships: Y ∗

i = w1Yi (or
y∗

i = w1 yi ); X∗
i = w2 Xi (or x∗

i = w2xi ); û∗
i = w1ûi ; Ȳ ∗ = w1Ȳ ; and X̄∗ = w2 X̄ . Making

use of these definitions, the reader can easily verify that

β̂∗
2 =

(
w1

w2

)
β̂2 (6.2.15)

β̂∗
1 = w1β̂1 (6.2.16)

σ̂ ∗2 = w2
1σ̂

2 (6.2.17)

var (β̂∗
1 ) = w2

1 var (β̂1) (6.2.18)
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156 Part One Single-Equation Regression Models

var (β̂∗
2 ) =

(
w1

w2

)2

var (β̂2) (6.2.19)

r2
xy = r2

x∗ y∗ (6.2.20)

From the preceding results it should be clear that, given the regression results based on
one scale of measurement, one can derive the results based on another scale of measure-
ment once the scaling factors, the w’s, are known. In practice, though, one should choose
the units of measurement sensibly; there is little point in carrying all those zeros in
expressing numbers in millions or billions of dollars.

From the results given in (6.2.15) through (6.2.20) one can easily derive some special
cases. For instance, if w1 = w2, that is, the scaling factors are identical, the slope coefficient
and its standard error remain unaffected in going from the (Yi , Xi ) to the (Y ∗

i , X∗
i ) scale,

which should be intuitively clear. However, the intercept and its standard error are both mul-
tiplied by w1. But if the X scale is not changed (i.e., w2 = 1) and the Y scale is changed by
the factor w1, the slope as well as the intercept coefficients and their respective standard
errors are all multiplied by the same w1 factor. Finally, if the Y scale remains unchanged (i.e.,
w1 = 1) but the X scale is changed by the factor w2, the slope coefficient and its standard
error are multiplied by the factor (1/w2) but the intercept coefficient and its standard error
remain unaffected.

It should, however, be noted that the transformation from the (Y, X ) to the (Y ∗, X∗) scale
does not affect the properties of the OLS estimators discussed in the preceding chapters.

EXAMPLE 6.2
The Relationship
between the
GDPI and GDP,
United States,
1990–2005

To substantiate the preceding theoretical results, let us return to the data given in
Table 6.2 and examine the following results (numbers in parentheses are the estimated
standard errors).

Both GPDI and GDP in billions of dollars:

ĜPDIt = −926.090 + 0.2535 GDPt

se = (116.358) (0.0129) r2 = 0.9648 (6.2.21)

Both GPDI and GDP in millions of dollars:

ĜPDIt = −926,090 + 0.2535 GDPt

se = (116,358) (0.0129) r2 = 0.9648 (6.2.22)

Notice that the intercept as well as its standard error is 1000 times the corresponding val-
ues in the regression (6.2.21) (note that w1 = 1000 in going from billions to millions of
dollars), but the slope coefficient as well as its standard error is unchanged, in accordance
with the theory.

GPDI in billions of dollars and GDP in millions of dollars:

ĜPDIt = −926.090 + 0.0002535 GDPt

se = (116.358) (0.0000129) r2 = 0.9648 (6.2.23)

As expected, the slope coefficient as well as its standard error is 1/1000 its value in
Eq. (6.2.21), since only the X, or GDP, scale is changed.

GPDI in millions of dollars and GDP in billions of dollars:

ĜPDIt = −926,090 + 253.524 GDPt

se = (116,358.7) (12.9465) r2 = 0.9648 (6.2.24)
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A Word about Interpretation
Since the slope coefficient β2 is simply the rate of change, it is measured in the units of the
ratio

Units of the dependent variable

Units of the explanatory variable

Thus in regression (6.2.21) the interpretation of the slope coefficient 0.2535 is that
if GDP changes by a unit, which is 1 billion dollars, GPDI on the average changes by
0.2535 billion dollars. In regression (6.2.23) a unit change in GDP, which is 1 million
dollars, leads on average to a 0.0002535 billion dollar change in GPDI. The two results are
of course identical in the effects of GDP on GPDI; they are simply expressed in different
units of measurement.

6.3 Regression on Standardized Variables 

We saw in the previous section that the units in which the regressand and regressor(s) are
expressed affect the interpretation of the regression coefficients. This can be avoided if
we are willing to express the regressand and regressor(s) as standardized variables. A vari-
able is said to be standardized if we subtract the mean value of the variable from its
individual values and divide the difference by the standard deviation of that variable.

Thus, in the regression of Y and X, if we redefine these variables as

Y ∗
i = Yi − Ȳ

SY
(6.3.1) 

X∗
i = Xi − X̄

SX
(6.3.2)

where Ȳ = sample mean of Y, SY = sample standard deviation of Y, X̄ = sample mean
of X, and SX is the sample standard deviation of X; the variables Y ∗

i and X∗
i are called

standardized variables.
An interesting property of a standardized variable is that its mean value is always zero

and its standard deviation is always 1. (For proof, see Appendix 6A, Section 6A.2.)
As a result, it does not matter in what unit the regressand and regressor(s) are measured.

Therefore, instead of running the standard (bivariate) regression:

Yi = β1 + β2 Xi + ui (6.3.3)

we could run regression on the standardized variables as

Y ∗
i = β∗

1 + β∗
2 X∗

i + u∗
i (6.3.4)

= β∗
2 X∗

i + u∗
i (6.3.5)

Again notice that both the intercept and the slope coefficients as well as their respective
standard errors are 1000 times their values in Eq. (6.2.21), in accordance with our theo-
retical results.

Notice that in all the regressions presented above, the r2 value remains the same, which
is not surprising because the r2 value is invariant to changes in the unit of measurement,
as it is a pure, or dimensionless, number.

EXAMPLE 6.2
(Continued)
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158 Part One Single-Equation Regression Models

since it is easy to show that, in the regression involving standardized regressand and
regressor(s), the intercept term is always zero.6 The regression coefficients of the standard-
ized variables, denoted by β∗

1 and β∗
2 , are known in the literature as the beta coefficients.7

Incidentally, notice that (6.3.5) is a regression through the origin.
How do we interpret the beta coefficients? The interpretation is that if the (standardized)

regressor increases by one standard deviation, on average, the (standardized) regressand
increases by β∗

2 standard deviation units. Thus, unlike the traditional model in Eq. (6.3.3), we
measure the effect not in terms of the original units in which Y and X are expressed, but in
standard deviation units.

To show the difference between Eqs. (6.3.3) and (6.3.5), let us return to the GPDI and
GDP example discussed in the preceding section. The results of (6.2.21) discussed previ-
ously are reproduced here for convenience.

ĜPDIt = −926.090 + 0.2535 GDPt (6.3.6)
se = (116.358) (0.0129) r2 = 0.9648

where GPDI and GDP are measured in billions of dollars.
The results corresponding to Eq. (6.3.5) are as follows, where the starred variables are

standardized variables:

ĜPDI
∗
t = 0.9822 GDP∗

t (6.3.7)
se = (0.0485)

We know how to interpret Eq. (6.3.6): If GDP goes up by a dollar, on average GPDI goes
up by about 25 cents. How about Eq. (6.3.7)? Here the interpretation is that if the (stan-
dardized) GDP increases by one standard deviation, on average, the (standardized) GPDI
increases by about 0.98 standard deviations.

What is the advantage of the standardized regression model over the traditional model?
The advantage becomes more apparent if there is more than one regressor, a topic we
will take up in Chapter 7. By standardizing all regressors, we put them on an equal basis
and therefore can compare them directly. If the coefficient of a standardized regressor is
larger than that of another standardized regressor appearing in that model, then the latter
contributes more relatively to the explanation of the regressand than the former. In other
words, we can use the beta coefficients as a measure of relative strength of the various
regressors. But more on this in the next two chapters.

Before we leave this topic, two points may be noted. First, for the standardized regres-
sion in Eq. (6.3.7) we have not given the r2 value because this is a regression through
the origin for which the usual r2 is not applicable, as pointed out in Section 6.1. Second,
there is an interesting relationship between the β coefficients of the conventional model
and the beta coefficients. For the bivariate case, the relationship is as follows:

β̂∗
2 = β̂2

(
S x

S y

)
(6.3.8)

where Sx = the sample standard deviation of the X regressor and Sy = the sample standard
deviation of the regressand. Therefore, we can crisscross between the β and beta coefficients

6Recall from Eq. (3.1.7) that Intercept = Mean value of the dependent variable − Slope × Mean
value of the regressor. But for the standardized variables the mean values of the dependent variable
and the regressor are zero. Hence the intercept value is zero.
7Do not confuse these beta coefficients with the beta coefficients of finance theory.
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Chapter 6 Extensions of the Two-Variable Linear Regression Model 159

if we know the (sample) standard deviation of the regressor and regressand. We will see in the
next chapter that this relationship holds true in the multiple regression also. It is left as an
exercise for the reader to verify Eq. (6.3.8) for our illustrative example.

6.4 Functional Forms of Regression Models

As noted in Chapter 2, this text is concerned primarily with models that are linear in the pa-
rameters; they may or may not be linear in the variables. In the sections that follow we con-
sider some commonly used regression models that may be nonlinear in the variables but are
linear in the parameters or that can be made so by suitable transformations of the variables.
In particular, we discuss the following regression models:

1. The log-linear model

2. Semilog models

3. Reciprocal models

4. The logarithmic reciprocal model

We discuss the special features of each model, when they are appropriate, and how they are
estimated. Each model is illustrated with suitable examples.

6.5 How to Measure Elasticity: The Log-Linear Model

Consider the following model, known as the exponential regression model:

Yi = β1 Xβ2

i eu i (6.5.1)

which may be expressed alternatively as8

(6.5.2)

where ln = natural log (i.e., log to the base e, and where e = 2.718).9

If we write Eq. (6.5.2) as

(6.5.3)

where α = ln β1, this model is linear in the parameters α and β2, linear in the logarithms of
the variables Y and X, and can be estimated by OLS regression. Because of this linearity,
such models are called log-log, double-log, or log-linear models. See Appendix 6A.3 for
the properties of logarithms.

If the assumptions of the classical linear regression model are fulfilled, the parameters
of Eq. (6.5.3) can be estimated by the OLS method by letting

Y ∗
i = α + β2 X∗

i + ui (6.5.4)

where Y ∗
i = ln Yi and X∗

i = ln Xi . The OLS estimators α̂ and β̂2 obtained will be best lin-
ear unbiased estimators of α and β2, respectively.

ln Yi = α + β2 ln Xi + ui

ln Yi = ln β1 + β2 ln Xi + ui

8Note these properties of the logarithms: (1) ln (AB ) = ln A + ln B , (2) ln (A/B ) = ln A − ln B , and
(3) ln (Ak) = k ln A, assuming that A and B are positive, and where k is some constant.
9In practice one may use common logarithms, that is, log to the base 10. The relationship between the
natural log and common log is: lne X = 2.3026 log10 X. By convention, ln means natural logarithm, and
log means logarithm to the base 10; hence there is no need to write the subscripts e and 10 explicitly.
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160 Part One Single-Equation Regression Models

One attractive feature of the log-log model, which has made it popular in applied work,
is that the slope coefficient β2 measures the elasticity of Y with respect to X, that is, the per-
centage change in Y for a given (small) percentage change in X.10 Thus, if Y represents the
quantity of a commodity demanded and X its unit price, β2 measures the price elasticity of
demand, a parameter of considerable economic interest. If the relationship between quan-
tity demanded and price is as shown in Figure 6.3a, the double-log transformation as shown
in Figure 6.3b will then give the estimate of the price elasticity (−β2).

Two special features of the log-linear model may be noted: The model assumes that
the elasticity coefficient between Y and X, β2, remains constant throughout (why?), hence
the alternative name constant elasticity model.11 In other words, as Figure 6.3b shows, the
change in ln Y per unit change in ln X (i.e., the elasticity, β2) remains the same no matter at
which ln X we measure the elasticity. Another feature of the model is that although α̂ and
β̂2 are unbiased estimates of α and β2, β1 (the parameter entering the original model) when
estimated as β̂1 = antilog (α̂) is itself a biased estimator. In most practical problems, how-
ever, the intercept term is of secondary importance, and one need not worry about obtain-
ing its unbiased estimate.12
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–β 2ββ lnY= ln β1– β2  ln Xiββ

FIGURE 6.3
Constant elasticity
model.

10The elasticity coefficient, in calculus notation, is defined as (dY/Y )/(dX/X) = [(dY/dX)(X/Y )].
Readers familiar with differential calculus will readily see that β2 is in fact the elasticity coefficient.

A technical note: The calculus-minded reader will note that d(ln X)/dX = 1/X or d(ln X) = dX/X,
that is, for infinitesimally small changes (note the differential operator d) the change in ln X is equal
to the relative or proportional change in X. In practice, though, if the change in X is small, this rela-
tionship can be written as: change in ln X =. relative change in X, where =. means approximately.
Thus, for small changes,

(ln Xt − ln Xt−1) =. (Xt − Xt−1)/Xt−1 = relative change in X

Incidentally, the reader should note these terms, which will occur frequently: (1) absolute change,
(2) relative or proportional change, and (3) percentage change, or percent growth rate.
Thus, (Xt − Xt−1) represents absolute change, (Xt − Xt−1)/Xt−1 = (Xt/Xt−1 − 1) is relative or
proportional change, and [(Xt − Xt−1)/Xt−1]100 is the percentage change, or the growth rate.
Xt and Xt−1 are, respectively, the current and previous values of the variable X. 
11A constant elasticity model will give a constant total revenue change for a given percentage change
in price regardless of the absolute level of price. Readers should contrast this result with the elasticity
conditions implied by a simple linear demand function, Yi = β1 + β2 Xi + ui . However, a simple linear
function gives a constant quantity change per unit change in price. Contrast this with what the log-
linear model implies for a given dollar change in price.
12Concerning the nature of the bias and what can be done about it, see Arthur S. Goldberger, Topics
in Regression Analysis, Macmillan, New York, 1978, p. 120.
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In the two-variable model, the simplest way to decide whether the log-linear model fits
the data is to plot the scattergram of ln Yi against ln Xi and see if the scatter points lie
approximately on a straight line, as in Figure 6.3b. 

A cautionary note: The reader should be aware of the distinction between a percent
change and a percentage point change. For example, the unemployment rate is often
expressed in percent form, say, the unemployment rate of 6%. If this rate goes to 8%, we say
that the percentage point change in the unemployment rate is 2, whereas the percent change
in the unemployment rate is (8 − 6)/6, or about 33%. So be careful when you deal with
percent and percentage point changes, for the two are very different concepts.

13Durable goods include motor vehicles and parts, furniture, and household equipment; nondurable
goods include food, clothing, gasoline and oil, fuel oil and coal; and services include housing, elec-
tricity and gas, transportation, and medical care.

EXAMPLE 6.3
Expenditure
on Durable
Goods in
Relation to
Total Personal
Consumption
Expenditure

Table6.3presentsdataon totalpersonal consumptionexpenditure (PCEXP), expenditureon
durable goods (EXPDUR), expenditure on nondurable goods (EXPNONDUR), and expendi-
ture on services (EXPSERVICES), all measured in 2000 billions of dollars.13

Suppose we wish to find the elasticity of expenditure on durable goods with respect
to total personal consumption expenditure. Plotting the log of expenditure on durable
goods against the log of total personal consumption expenditure, you will see that 
the relationship between the two variables is linear. Hence, the double-log model may be
appropriate. The regression results are as follows:

l̂n EXDURt = −7.5417 + 1.6266 ln PCEXt

se = (0.7161) (0.0800) (6.5.5)
t = (−10.5309)* (20.3152)* r2 = 0.9695

where * indicates that the p value is extremely small.

Year or quarter EXPSERVICES EXPDUR EXPNONDUR PCEXP

2003-I 4,143.3 971.4 2,072.5 7,184.9
2003-II 4,161.3 1,009.8 2,084.2 7,249.3
2003-III 4,190.7 1,049.6 2,123.0 7,352.9
2003-IV 4,220.2 1,051.4 2,132.5 7,394.3
2004-I 4,268.2 1,067.0 2,155.3 7,479.8
2004-II 4,308.4 1,071.4 2,164.3 7,534.4
2004-III 4,341.5 1,093.9 2,184.0 7,607.1
2004-IV 4,377.4 1,110.3 2,213.1 7,687.1
2005-I 4,395.3 1,116.8 2,241.5 7,739.4
2005-II 4,420.0 1,150.8 2,268.4 7,819.8
2005-III 4,454.5 1,175.9 2,287.6 7,895.3
2005-IV 4,476.7 1,137.9 2,309.6 7,910.2
2006-I 4,494.5 1,190.5 2,342.8 8,003.8
2006-II 4,535.4 1,190.3 2,351.1 8,055.0
2006-III 4,566.6 1,208.8 2,360.1 8,111.2

Note: See Table B-2 for data for total personal consumption expenditures for 1959–1989.
EXPSERVICES = expenditure on services, billions of 2000 dollars.

EXPDUR = expenditure on durable goods, billions of 2000 dollars.
EXPNONDUR = expenditure on nondurable goods, billions of 2000 dollars.

PCEXP = total personal consumption expenditure, billions of 2000 dollars.

TABLE 6.3 
Total Personal
Expenditure and
Categories
(Billions of chained
[2000] dollars;
quarterly data at
seasonally adjusted
annual rates)

Sources: Department of
Commerce, Bureau of
Economic Analysis.
Economic Report 
of the President, 2007, 
Table B-17, p. 347.

(Continued )
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162 Part One Single-Equation Regression Models

6.6 Semilog Models: Log–Lin and Lin–Log Models

How to Measure the Growth Rate: 
The Log–Lin Model
Economists, businesspeople, and governments are often interested in finding out the rate of
growth of certain economic variables, such as population, GNP, money supply, employ-
ment, productivity, and trade deficit.

Suppose we want to find out the growth rate of personal consumption expenditure on
services for the data given in Table 6.3. Let Yt denote real expenditure on services at time t
and Y0 the initial value of the expenditure on services (i.e., the value at the end of 2002-IV).
You may recall the following well-known compound interest formula from your introduc-
tory course in economics.

Yt = Y0(1 + r)t (6.6.1)

where r is the compound (i.e., over time) rate of growth of Y. Taking the natural logarithm
of Equation 6.6.1, we can write

ln Yt = ln Y0 + t ln (1 + r) (6.6.2)

Now letting

β1 = ln Y0 (6.6.3)

β2 = ln (1 + r) (6.6.4)

we can write Equation 6.6.2 as

ln Yt = β1 + β2t (6.6.5)

Adding the disturbance term to Equation 6.6.5, we obtain14

ln Yt = β1 + β2t + ut (6.6.6)

This model is like any other linear regression model in that the parameters β1 and β2 are lin-
ear. The only difference is that the regressand is the logarithm of Y and the regressor is
“time,” which will take values of 1, 2, 3, etc.

Models like Eq. (6.6.6) are called semilog models because only one variable (in this
case the regressand) appears in the logarithmic form. For descriptive purposes a model in
which the regressand is logarithmic will be called a log–lin model. Later we will consider
a model in which the regressand is linear but the regressor(s) is logarithmic and call it a
lin–log model.

As these results show, the elasticity of EXPDUR with respect to PCEX is about 1.63, sug-
gesting that if total personal expenditure goes up by 1 percent, on average, the expendi-
ture on durable goods goes up by about 1.63 percent. Thus, expenditure on durable goods
is very responsive to changes in personal consumption expenditure. This is one reason why
producers of durable goods keep a keen eye on changes in personal income and personal
consumption expenditure. In Exercise 6.18, the reader is asked to carry out a similar exer-
cise for nondurable goods expenditure.

14We add the error term because the compound interest formula will not hold exactly. Why we add
the error after the logarithmic transformation is explained in Sec. 6.8.

EXAMPLE 6.3
(Continued)

guj75772_ch06.qxd  07/08/2008  07:00 PM  Page 162



Chapter 6 Extensions of the Two-Variable Linear Regression Model 163

Before we present the regression results, let us examine the properties of model (6.6.5).
In this model the slope coefficient measures the constant proportional or relative change
in Y for a given absolute change in the value of the regressor (in this case the variable t),
that is,15

β2 = relative change in regressand

absolute change in regressor
(6.6.7)

If we multiply the relative change in Y by 100, Equation 6.6.7 will then give the percentage
change, or the growth rate, in Y for an absolute change in X, the regressor. That is, 100 times
β2 gives the growth rate in Y; 100 times β2 is known in the literature as the semielasticity of Y
with respect to X. (Question: To get the elasticity, what will we have to do?)16

15Using differential calculus one can show that β2 = d(ln Y )/dX = (1/Y )(dY/dX) = (dY/Y )/dX,
which is nothing but Eq. (6.6.7). For small changes in Y and X this relation may be approximated by

(Yt − Yt−1)/Yt−1

(Xt − Xt−1)

Note: Here, X = t.
16See Appendix 6A.4 for various growth formulas.

EXAMPLE 6.4 
The Rate of
Growth
Expenditure on
Services

To illustrate the growth model (6.6.6), consider the data on expenditure on services given
in Table 6.3. The regression results over time (t) are as follows:

l̂n EXSt = 8.3226 + 0.00705t

se =  (0.0016) (0.00018) r2 = 0.9919 (6.6.8)

t = (5201.625)* (39.1667)*

Note: EXS stands for expenditure on services and * denotes that the p value is extremely
small.

The interpretation of Equation 6.6.8 is that over the quarterly period 2003-I to 2006-III,
expenditures on services increased at the (quarterly) rate of 0.705 percent. Roughly, this is
equal to an annual growth rate of 2.82 percent. Since 8.3226 = log of EXS at the begin-
ning of the study period, by taking its antilog we obtain 4115.96 (billion dollars) as the
beginning value of EXS (i.e., the value at the beginning of 2003). The regression line
obtained in Eq. (6.6.8) is sketched in Figure 6.4.
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Instantaneous versus Compound Rate of Growth
The coefficient of the trend variable in the growth model (6.6.6), β2, gives the instantaneous
(at a point in time) rate of growth and not the compound (over a period of time)
rate of growth. But the latter can be easily found from Eq. (6.6.4) by taking the antilog of
the estimated β2 and subtracting 1 from it and multiplying the difference by 100. Thus, for
our illustrative example, the estimated slope coefficient is 0.00705. Therefore,
[antilog(0.00705) − 1] = 0.00708 or 0.708 percent. Thus, in the illustrative example, the
compound rate of growth on expenditure on services was about 0.708 percent per quarter,
which is slightly higher than the instantaneous growth rate of 0.705 percent.This is of course
due to the compounding effect.

Linear Trend Model
Instead of estimating model (6.6.6), researchers sometimes estimate the following model:

Yt = β1 + β2t + ut (6.6.9)

That is, instead of regressing the log of Y on time, they regress Y on time, where Y is the
regressand under consideration. Such a model is called a linear trend model and the
time variable t is known as the trend variable. If the slope coefficient in Equation 6.6.9 is
positive, there is an upward trend in Y, whereas if it is negative, there is a downward
trend in Y.

For the expenditure on services data that we considered earlier, the results of fitting the
linear trend model (6.6.9) are as follows:

ÊXSt = 4111.545 + 30.674t
(6.6.10)

t = (655.5628) (44.4671) r2 = 0.9935

In contrast to Eq. (6.6.8), the interpretation of Eq. (6.6.10) is as follows: Over the quarterly
period 2003-I to 2006-III, on average, expenditure on services increased at the absolute
(note: not relative) rate of about 30 billion dollars per quarter. That is, there was an upward
trend in the expenditure on services.

The choice between the growth rate model (6.6.8) and the linear trend model (6.6.10)
will depend upon whether one is interested in the relative or absolute change in the expen-
diture on services, although for comparative purposes it is the relative change that is gen-
erally more relevant. In passing, observe that we cannot compare the r2 values of models
(6.6.8) and (6.6.10) because the regressands in the two models are different. We will show
in Chapter 7 how one compares the r2’s of models like (6.6.8) and (6.6.10).

The Lin–Log Model
Unlike the growth model just discussed, in which we were interested in finding the per-
cent growth in Y for an absolute change in X, suppose we now want to find the absolute
change in Y for a percent change in X. A model that can accomplish this purpose can be
written as:

Yi = β1 + β2 ln Xi + ui (6.6.11)

For descriptive purposes we call such a model a lin–log model.
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Let us interpret the slope coefficient β2.17 As usual,

β2 = Change in Y

Change in ln X

= Change in Y

relative change in X

The second step follows from the fact that a change in the log of a number is a relative
change.

Symbolically, we have

β2 = �Y

�X/X
(6.6.12)

where, as usual, � denotes a small change. Equation 6.6.12 can be written, equivalently, as

�Y = β2(�X/X ) (6.6.13)

This equation states that the absolute change in Y ( = �Y ) is equal to slope times the rela-
tive change in X. If the latter is multiplied by 100, then Eq. (6.6.13) gives the absolute
change in Y for a percentage change in X. Thus, if (�X/X) changes by 0.01 unit (or 1 per-
cent), the absolute change in Y is 0.01(β2); if in an application one finds that β2 = 500, the
absolute change in Y is (0.01)(500) = 5.0. Therefore, when regression (6.6.11) is estimated
by OLS, do not forget to multiply the value of the estimated slope coefficient by 0.01, or,
what amounts to the same thing, divide it by 100. If you do not keep this in mind, your in-
terpretation in an application will be highly misleading.

The practical question is: When is a lin–log model like Eq. (6.6.11) useful? An interest-
ing application has been found in the so-called Engel expenditure models, named after the
German statistician Ernst Engel, 1821–1896. (See Exercise 6.10.) Engel postulated that
“the total expenditure that is devoted to food tends to increase in arithmetic progression as
total expenditure increases in geometric progression.”18 

17Again, using differential calculus, we have

dY
dX

= β2

(
1
X

)

Therefore,

β2 = dY
dX
X

= (6.6.12)

18See Chandan Mukherjee, Howard White, and Marc Wuyts, Econometrics and Data Analysis for Devel-
oping Countries, Routledge, London, 1998, p. 158. This quote is attributed to H. Working, “Statistical
Laws of Family Expenditure,” Journal of the American Statistical Association, vol. 38, 1943, pp. 43–56.

As an illustration of the lin–log model, let us revisit our example on food expenditure in
India, Example 3.2. There we fitted a linear-in-variables model as a first approximation.
But if we plot the data we obtain the plot in Figure 6.5. As this figure suggests, food
expenditure increases more slowly as total expenditure increases, perhaps giving credence
to Engel’s law. The results of fitting the lin–log model to the data are as follows:

̂FoodExpi = −1283.912 + 257.2700 ln TotalExpi

t = (−4.3848)* (5.6625)* r 2 = 0.3769 (6.6.14)

Note: * denotes an extremely small p value.

(Continued )

EXAMPLE 6.5
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166 Part One Single-Equation Regression Models

It may be noted that sometimes logarithmic transformation is used to reduce
heteroscedasticity as well as skewness. (See Chapter 11.) A common feature of many
economic variables, is that they are positively skewed (e.g., size distribution of firms or
distribution of income or wealth) and they are heteroscedastic. A logarithmic transforma-
tion of such variables reduces both skewness and heteroscedasticity. That is why labor
economists often use the logarithms of wages in the regression of wages on, say, schooling,
as measured by years of education.

6.7 Reciprocal Models

Models of the following type are known as reciprocal models.

(6.7.1)

Although this model is nonlinear in the variable X because it enters inversely or recipro-
cally, the model is linear in β1 and β2 and is therefore a linear regression model.19

This model has these features: As X increases indefinitely, the term β2(l/X) appro-
aches zero (note: β2 is a constant) and Y approaches the limiting or asymptotic value β1.

Yi = β1 + β2

(
1

Xi

)
+ ui

Interpreted in the manner described earlier, the slope coefficient of about 257 means
that an increase in the total food expenditure of 1 percent, on average, leads to about
2.57 rupees increase in the expenditure on food of the 55 families included in the sample.
(Note: We have divided the estimated slope coefficient by 100.)

Before proceeding further, note that if you want to compute the elasticity coefficient
for the log–lin or lin–log models, you can do so from the definition of the elasticity coeffi-
cient given before, namely,

Elasticity = dY
dX

X
Y

As a matter of fact, once the functional form of a model is known, one can compute elas-
ticities by applying the preceding definition. (Table 6.6, given later, summarizes the elas-
ticity coefficients for the various models.)
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FIGURE 6.5

19If we let X∗
i = (1/Xi ), then Eq. (6.7.1) is linear in the parameters as well as the variables Yi and X∗

i .

EXAMPLE 6.5
(Continued )
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Chapter 6 Extensions of the Two-Variable Linear Regression Model 167

Therefore, models like (6.7.1) have built in them an asymptote or limit value that the de-
pendent variable will take when the value of the X variable increases indefinitely.20 Some
likely shapes of the curve corresponding to Eq. (6.7.1) are shown in Figure 6.6.

20The slope of Eq. (6.7.1) is: dY/dX = −β2(1/X2), implying that if β2 is positive, the slope is
negative throughout, and if β2 is negative, the slope is positive throughout. See Figures 6.6a
and 6.6c, respectively.
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FIGURE 6.6
The reciprocal model: 

Y = β1 + β2 

(
1

X

)
.

EXAMPLE 6.6 As an illustration of Figure 6.6a, consider the data given in Table 6.4. These are cross-
sectional data for 64 countries on child mortality and a few other variables. For now, con-
centrate on the variables child mortality (CM) and per capita GNP, which are plotted in
Figure 6.7.

As you can see, this figure resembles Figure 6.6a: As per capita GNP increases, one
would expect child mortality to decrease because people can afford to spend more on
health care, assuming all other factors remain constant. But the relationship is not a
straight line one: As per capita GNP increases, initially there is a dramatic drop in CM but
the drop tapers off as per capita GNP continues to increase.

0
0

5000 10000
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15000 20000
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200

Child Mortality and PGNP

C
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300

400
FIGURE 6.7
Relationship between
child mortality and
per capita GNP in
66 countries.

(Continued )
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168 Part One Single-Equation Regression Models

If we try to fit the reciprocal model (6.7.1), we obtain the following regression results:

ĈMi = 81.79436 + 27,237.17
(

1
PGNPi

)

se = (10.8321) (3759.999)
(6.7.2)

t = (7.5511) (7.2535) r2 = 0.4590

As per capita GNP increases indefinitely, child mortality approaches its asymptotic value
of about 82 deaths per thousand. As explained in footnote 20, the positive value of the
coefficient of (1/PGNPt) implies that the rate of change of CM with respect to PGNP is
negative.

Observation CM FLFP PGNP TFR Observation CM FLFP PGNP TFR

1 128 37 1870 6.66 33 142 50 8640 7.17
2 204 22 130 6.15 34 104 62 350 6.60
3 202 16 310 7.00 35 287 31 230 7.00
4 197 65 570 6.25 36 41 66 1620 3.91
5 96 76 2050 3.81 37 312 11 190 6.70
6 209 26 200 6.44 38 77 88 2090 4.20
7 170 45 670 6.19 39 142 22 900 5.43
8 240 29 300 5.89 40 262 22 230 6.50
9 241 11 120 5.89 41 215 12 140 6.25

10 55 55 290 2.36 42 246 9 330 7.10
11 75 87 1180 3.93 43 191 31 1010 7.10
12 129 55 900 5.99 44 182 19 300 7.00
13 24 93 1730 3.50 45 37 88 1730 3.46
14 165 31 1150 7.41 46 103 35 780 5.66
15 94 77 1160 4.21 47 67 85 1300 4.82
16 96 80 1270 5.00 48 143 78 930 5.00
17 148 30 580 5.27 49 83 85 690 4.74
18 98 69 660 5.21 50 223 33 200 8.49
19 161 43 420 6.50 51 240 19 450 6.50
20 118 47 1080 6.12 52 312 21 280 6.50
21 269 17 290 6.19 53 12 79 4430 1.69
22 189 35 270 5.05 54 52 83 270 3.25
23 126 58 560 6.16 55 79 43 1340 7.17
24 12 81 4240 1.80 56 61 88 670 3.52
25 167 29 240 4.75 57 168 28 410 6.09
26 135 65 430 4.10 58 28 95 4370 2.86
27 107 87 3020 6.66 59 121 41 1310 4.88
28 72 63 1420 7.28 60 115 62 1470 3.89
29 128 49 420 8.12 61 186 45 300 6.90
30 27 63 19830 5.23 62 47 85 3630 4.10
31 152 84 420 5.79 63 178 45 220 6.09
32 224 23 530 6.50 64 142 67 560 7.20

Note: CM = Child mortality, the number of deaths of children under age 5 in a year per 1000 live births.
FLFP = Female literacy rate, percent.

PGNP = per capita GNP in 1980.
TFR = total fertility rate, 1980–1985, the average number of children born to a woman, using age-specific fertility

rates for a given year.

Source: Chandan Mukherjee, Howard White, and Marc Whyte, Econometrics and Data Analysis for Developing Countries, Routledge,
London, 1998, p. 456.

EXAMPLE 6.6
(Continued)

TABLE 6.4 Fertility and Other Data for 64 Countries
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Chapter 6 Extensions of the Two-Variable Linear Regression Model 169

21A. W. Phillips, “The Relationship between Unemployment and the Rate of Change of Money Wages
in the United Kingdom, 1861–1957,” Economica, November 1958, vol. 15, pp. 283–299. Note that
the original curve did not cross the unemployment rate axis, but Fig. 6.8 represents a later version of
the curve.
22See Olivier Blanchard, Macroeconomics, Prentice Hall, Englewood Cliffs, NJ, 1997, Chap. 17.

(Continued)

FIGURE 6.8 The Phillips curve.
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One of the important applications of Figure 6.6b is the celebrated Phillips curve of
macroeconomics. Using the data on percent rate of change of money wages (Y) and the
unemployment rate (X) for the United Kingdom for the period 1861–1957, Phillips
obtained a curve whose general shape resembles Figure 6.6b (Figure 6.8).21

As Figure 6.8 shows, there is an asymmetry in the response of wage changes to the level
of the unemployment rate: Wages rise faster for a unit change in unemployment if the
unemployment rate is below UN, which is called the natural rate of unemployment by econ-
omists (defined as the rate of unemployment required to keep [wage] inflation constant),
and then they fall slowly for an equivalent change when the unemployment rate is above
the natural rate, UN, indicating the asymptotic floor, or −β1, for wage change. This partic-
ular feature of the Phillips curve may be due to institutional factors, such as union bargaining
power, minimum wages, unemployment compensation, etc.

Since the publication of Phillips’s article, there has been very extensive research on the
Phillips curve at the theoretical as well as empirical levels. Space does not permit us to go
into the details of the controversy surrounding the Phillips curve. The Phillips curve itself
has gone through several incarnations. A comparatively recent formulation is provided by
Olivier Blanchard.22 If we let πt denote the inflation rate at time t, which is defined as the
percentage change in the price level as measured by a representative price index, such as
the Consumer Price Index (CPI), and UNt denote the unemployment rate at time t, then a
modern version of the Phillips curve can be expressed in the following format:

πt − πe
t = β2(UNt − U N) + ut (6.7.3)

where πt = actual inflation rate at time t
πe

t = expected inflation rate at time t, the expectation being 
formed in year (t − 1)

EXAMPLE 6.6
(Continued)
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170 Part One Single-Equation Regression Models

UNt = actual unemployment rate prevailing at time t
UN = natural rate of unemployment
ut = stochastic error term23

Since πe
t is not directly observable, as a starting point one can make the 

simplifying assumption that πe
t = πt−1; that is, the inflation rate expected this year is the

inflation rate that prevailed in the last year; of course, more complicated assumptions
about expectations formation can be made, and we will discuss this topic in Chapter 17,
on distributed lag models.

Substituting this assumption into Eq. (6.7.3) and writing the regression model in the
standard form, we obtain the following estimating equation:

πt − πt−1 = β1 + β2UNt + ut (6.7.4)

where β1 = −β2U N . Equation 6.7.4 states that the change in the inflation rate between
two time periods is linearly related to the current unemployment rate. A priori, β2 is
expected to be negative (why?) and β1 is expected to be positive (this figures, since β2 is
negative and UN is positive).

Incidentally, the Phillips relationship given in Eq. (6.7.3) is known in the literature as the
modified Phillips curve, or the expectations-augmented Phillips curve (to indicate
that πt−1 stands for expected inflation), or the accelerationist Phillips curve (to suggest
that a low unemployment rate leads to an increase in the inflation rate and hence an accel-
eration of the price level).

23Economists believe this error term represents some kind of supply shock, such as the OPEC oil
embargoes of 1973 and 1979.

EXAMPLE 6.6
(Continued)

As an illustration of the modified Phillips curve, we present in Table 6.5 data on inflation
as measured by year-to-year percentage in the Consumer Price Index (CPIflation) and
the unemployment rate for the period 1960–2006. The unemployment rate represents
the civilian unemployment rate. From these data we obtained the change in the inflation
rate (πt − πt−1) and plotted it against the civilian unemployment rate; we are using the CPI
as a measure of inflation. The resulting graph appears in Figure 6.9.

As expected, the relation between the change in inflation rate and the unemployment
rate is negative—a low unemployment rate leads to an increase in the inflation rate and
therefore an acceleration of the price level, hence the name accelerationist Phillips curve.

Looking at Figure 6.9, it is not obvious whether a linear (straight line) regression model
or a reciprocal model fits the data; there may be a curvilinear relationship between the
two variables. We present below regressions based on both the models. However, keep in
mind that for the reciprocal model the intercept term is expected to be negative and the
slope positive, as noted in footnote 20.

Linear model: (̂πt − πt−1) = 3.7844 − 0.6385 UNt
(6.7.5)

t = (4.1912) (−4.2756) r2 = 0.2935

Reciprocal model:

(̂πt − πt−1) =  −3.0684 + 17.2077
(

1
UN t

)
(6.7.6)

t = (−3.1635) (3.2886) r2 = 0.1973

All the estimated coefficients in both the models are individually statistically significant, all
the p values being lower than the 0.005 level.

EXAMPLE 6.7
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Chapter 6 Extensions of the Two-Variable Linear Regression Model 171

Model (6.7.5) shows that if the unemployment rate goes down by 1 percentage point,
on average, the change in the inflation rate goes up by about 0.64 percentage points, and
vice versa. Model (6.7.6) shows that even if the unemployment rate increases indefinitely,
the most the change in the inflation rate will go down will be about 3.07 percentage
points. Incidentally, from Eq. (6.7.5), we can compute the underlying natural rate of
unemployment as:

U N = β̂1

−β̂2
= 3.7844

0.6385
= 5.9270 (6.7.7)

That is, the natural rate of unemployment is about 5.93%. Economists put the natural rate
between 5 and 6%, although in the recent past in the United States the actual rate has
been much below this rate.

Year INFLRATE UNRATE Year INFLRATE UNRATE

1960 1.718 5.5 1984 4.317 7.5
1961 1.014 6.7 1985 3.561 7.2
1962 1.003 5.5 1986 1.859 7.0
1963 1.325 5.7 1987 3.650 6.2
1964 1.307 5.2 1988 4.137 5.5
1965 1.613 4.5 1989 4.818 5.3
1966 2.857 3.8 1990 5.403 5.6
1967 3.086 3.8 1991 4.208 6.8
1968 4.192 3.6 1992 3.010 7.5
1969 5.460 3.5 1993 2.994 6.9
1970 5.722 4.9 1994 2.561 6.1
1971 4.381 5.9 1995 2.834 5.6
1972 3.210 5.6 1996 2.953 5.4
1973 6.220 4.9 1997 2.294 4.9
1974 11.036 5.6 1998 1.558 4.5
1975 9.128 8.5 1999 2.209 4.2
1976 5.762 7.7 2000 3.361 4.0
1977 6.503 7.1 2001 2.846 4.7
1978 7.591 6.1 2002 1.581 5.8
1979 11.350 5.8 2003 2.279 6.0
1980 13.499 7.1 2004 2.663 5.5
1981 10.316 7.6 2005 3.388 5.1
1982 6.161 9.7 2006 3.226 4.6
1983 3.212 9.6

Note: The inflation rate is the percent year-to-year change in CPI. The unemployment rate is the civilian unemployment rate.

TABLE 6.5
Inflation Rate and
Unemployment
Rate, United States,
1960–2006
(For all urban
consumers;
1982–1984 = 100,
except as noted)

Source: Economic Report of
the President, 2007, Table 
B-60, p. 399, for CPI changes
and Table B-42, p. 376, for
the unemployment rate.

FIGURE 6.9
The modified
Phillips curve.

3
–5

Unemployment rate (%)

10987654

–3

–4

0

–1

–2

C
h

an
ge

 i
n

 i
n

fl
at

io
n

 r
at

e

3

2

1

4

5

6

guj75772_ch06.qxd  23/08/2008  03:18 PM  Page 171



172 Part One Single-Equation Regression Models

Log Hyperbola or Logarithmic Reciprocal Model
We conclude our discussion of reciprocal models by considering the logarithmic reciprocal
model, which takes the following form:

ln Yi = β1 − β2

(
1

Xi

)
+ ui (6.7.8)

Its shape is as depicted in Figure 6.10. As this figure shows, initially Y increases at an in-
creasing rate (i.e., the curve is initially convex) and then it increases at a decreasing rate
(i.e., the curve becomes concave).24 Such a model may therefore be appropriate to model a
short-run production function. Recall from microeconomics that if labor and capital are the
inputs in a production function and if we keep the capital input constant but increase the
labor input, the short-run output–labor relationship will resemble Figure 6.10. (See Exam-
ple 7.3, Chapter 7.)

6.8 Choice of Functional Form

In this chapter we discussed several functional forms an empirical model can assume, even
within the confines of the linear-in-parameter regression models. The choice of a particular
functional form may be comparatively easy in the two-variable case, because we can plot
the variables and get some rough idea about the appropriate model. The choice becomes
much harder when we consider the multiple regression model involving more than one re-
gressor, as we will discover when we discuss this topic in the next two chapters. There is no

FIGURE 6.10
The log reciprocal
model.

Y

X

24From calculus, it can be shown that

d
dX

(ln Y ) = −β2

(
− 1

X2

)
= β2

(
1
X2

)

But
d

dX
(ln Y ) = 1

Y
dY
dX

Making this substitution, we obtain

dY
dX

= β2
Y
X2

which is the slope of Y with respect to X.
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Chapter 6 Extensions of the Two-Variable Linear Regression Model 173

denying that a great deal of skill and experience are required in choosing an appropriate
model for empirical estimation. But some guidelines can be offered:

1. The underlying theory (e.g., the Phillips curve) may suggest a particular functional
form.

2. It is good practice to find out the rate of change (i.e., the slope) of the regressand with
respect to the regressor as well as to find out the elasticity of the regressand with respect to
the regressor. For the various models considered in this chapter, we provide the necessary
formulas for the slope and elasticity coefficients of the various models in Table 6.6. The
knowledge of these formulas will help us to compare the various models.

3. The coefficients of the model chosen should satisfy certain a priori expectations. For
example, if we are considering the demand for automobiles as a function of price and some
other variables, we should expect a negative coefficient for the price variable.

4. Sometimes more than one model may fit a given set of data reasonably well. In the
modified Phillips curve, we fitted both a linear and a reciprocal model to the same data. In
both cases the coefficients were in line with prior expectations and they were all statistically
significant. One major difference was that the r2 value of the linear model was larger than
that of the reciprocal model. One may therefore give a slight edge to the linear model over
the reciprocal model. But make sure that in comparing two r2 values the dependent vari-
able, or the regressand, of the two models is the same; the regressor(s) can take any form.
We will explain the reason for this in the next chapter.

5. In general one should not overemphasize the r2 measure in the sense that the higher
the r2 the better the model. As we will discuss in the next chapter, r2 increases as we add
more regressors to the model. What is of greater importance is the theoretical underpinning
of the chosen model, the signs of the estimated coefficients and their statistical signifi-
cance. If a model is good on these criteria, a model with a lower r2 may be quite acceptable.
We will revisit this important topic in greater depth in Chapter 13.

6. In some situations it may not be easy to settle on a particular functional form, in
which case we may use the so-called Box-Cox transformations. Since this topic is rather
technical, we discuss the Box-Cox procedure in Appendix 6A.5.

Model Equation Slope 
(

=
)

Elasticity 
(

=
)

Linear Y = β1 + β2X β2 β2

( )
*

Log–linear lnY = β1 + β2 ln X β2

( )
β2

Log–lin lnY = β1 + β2 X β2 (Y ) β2 (X )*

Lin–log Y = β1 + β2 ln X β2

( )
β2

( )
*

Reciprocal Y = β1 + β2

( )
−β2

( )
−β2

( )
*

Log reciprocal lnY = β1 − β2

( )
β2

( )
β2

( )
*

Note: * indicates that the elasticity is variable, depending on the value taken by X or Y or both. When no X and Y values are
specified, in practice, very often these elasticities are measured at the mean values of these variables, namely, X̄ and Ȳ .

1
X

Y
X 2

1
X

1
XY

1
X 2

1
X

1
Y

1
X

Y
X

X
Y

X
Y

dY
dX

dY
dX

TABLE 6.6 
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*6.9 A Note on the Nature of the Stochastic Error Term: Additive
versus Multiplicative Stochastic Error Term

Consider the following regression model, which is the same as Eq. (6.5.1) but without the
error term:

Yi = β1 Xβ2

i (6.9.1)

For estimation purposes, we can express this model in three different forms:

Yi = β1 Xβ2

i ui (6.9.2)

Yi = β1 Xβ2

i eui (6.9.3)

Yi = β1 Xβ2

i + ui (6.9.4)

Taking the logarithms on both sides of these equations, we obtain

ln Yi = α + β2 ln Xi + ln ui (6.9.2a)

ln Yi = α + β2 ln Xi + ui (6.9.3a)

ln Yi = ln
(
β1 Xβ2

i + ui

)
(6.9.4a)

where α = ln β1.
Models like Eq. (6.9.2) are intrinsically linear (in-parameter) regression models in the

sense that by suitable (log) transformation the models can be made linear in the parameters
α and β2. (Note: These models are nonlinear in β1.) But model (6.9.4) is intrinsically
nonlinear-in-parameter. There is no simple way to take the log of Eq. (6.9.4) because
ln ( A + B) �= ln A + ln B.

Although Eqs. (6.9.2) and (6.9.3) are linear regression models and can be estimated by
ordinary least squares (OLS) or maximum likelihood (ML), we have to be careful about the
properties of the stochastic error term that enters these models. Remember that the BLUE
property of OLS (best linear unbiased estimator) requires that ui has zero mean value, con-
stant variance, and zero autocorrelation. For hypothesis testing, we further assume that ui

follows the normal distribution with mean and variance values just discussed. In short, we
have assumed that ui ∼ N (0, σ 2).

Now consider model (6.9.2). Its statistical counterpart is given in (6.9.2a). To use the
classical normal linear regression model (CNLRM), we have to assume that

ln ui ∼ N (0, σ 2) (6.9.5)

Therefore, when we run the regression (6.9.2a), we will have to apply the normality tests
discussed in Chapter 5 to the residuals obtained from this regression. Incidentally, note that
if ln ui follows the normal distribution with zero mean and constant variance, then statisti-
cal theory shows that ui in Eq. (6.9.2) must follow the log-normal distribution with mean
eσ 2/2 and variance eσ 2

(eσ 2 − 1).
As the preceding analysis shows, one has to pay very careful attention to the error

term in transforming a model for regression analysis. As for Eq. (6.9.4), this model is a
nonlinear-in-parameter regression model and will have to be solved by some iterative
computer routine. Model (6.9.3) should not pose any problems for estimation.

*Optional

guj75772_ch06.qxd  07/08/2008  07:00 PM  Page 174



Chapter 6 Extensions of the Two-Variable Linear Regression Model 175

To sum up, pay very careful attention to the disturbance term when you transform a
model for regression analysis. Otherwise, a blind application of OLS to the transformed
model will not produce a model with desirable statistical properties.

Summary and
Conclusions 

This chapter introduced several of the finer points of the classical linear regression model
(CLRM).

1. Sometimes a regression model may not contain an explicit intercept term. Such models
are known as regression through the origin. Although the algebra of estimating such
models is simple, one should use such models with caution. In such models the sum
of the residuals 

∑
ûi is nonzero; additionally, the conventionally computed r2 may not

be meaningful. Unless there is a strong theoretical reason, it is better to introduce the
intercept in the model explicitly.

2. The units and scale in which the regressand and the regressor(s) are expressed are very
important because the interpretation of regression coefficients critically depends on
them. In empirical research the researcher should not only quote the sources of data but
also state explicitly how the variables are measured.

3. Just as important is the functional form of the relationship between the regressand and
the regressor(s). Some of the important functional forms discussed in this chapter are
(a) the log–linear or constant elasticity model, (b) semilog regression models, and
(c) reciprocal models.

4. In the log–linear model both the regressand and the regressor(s) are expressed in the log-
arithmic form. The regression coefficient attached to the log of a regressor is interpreted
as the elasticity of the regressand with respect to the regressor.

5. In the semilog model either the regressand or the regressor(s) are in the log form. In the
semilog model where the regressand is logarithmic and the regressor X is time, the esti-
mated slope coefficient (multiplied by 100) measures the (instantaneous) rate of growth
of the regressand. Such models are often used to measure the growth rate of many eco-
nomic phenomena. In the semilog model if the regressor is logarithmic, its coefficient
measures the absolute rate of change in the regressand for a given percent change in the
value of the regressor.

6. In the reciprocal models, either the regressand or the regressor is expressed in recipro-
cal, or inverse, form to capture nonlinear relationships between economic variables, as
in the celebrated Phillips curve.

7. In choosing the various functional forms, great attention should be paid to the stochastic
disturbance term ui. As noted in Chapter 5, the CLRM explicitly assumes that the distur-
bance term has zero mean value and constant (homoscedastic) variance and that it is un-
correlated with the regressor(s). It is under these assumptions that the OLS estimators are
BLUE. Further, under the CNLRM, the OLS estimators are also normally distributed. One
should therefore find out if these assumptions hold in the functional form chosen for em-
pirical analysis. After the regression is run, the researcher should apply diagnostic tests,
such as the normality test, discussed in Chapter 5.This point cannot be overemphasized, for
the classical tests of hypothesis, such as the t, F, and χ2, rest on the assumption that the dis-
turbances are normally distributed.This is especially critical if the sample size is small.

8. Although the discussion so far has been confined to two-variable regression models, the
subsequent chapters will show that in many cases the extension to multiple regression
models simply involves more algebra without necessarily introducing more fundamen-
tal concepts. That is why it is so very important that the reader have a firm grasp of the
two-variable regression model.
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176 Part One Single-Equation Regression Models

Questions
6.1. Consider the regression model

yi = β1 + β2xi + ui

where yi = (Yi − Ȳ ) and xi = (Xi − X̄). In this case, the regression line must pass
through the origin. True or false? Show your calculations.

6.2. The following regression results were based on monthly data over the period January
1978 to December 1987:

Ŷt = 0.00681 + 0.75815Xt

se = (0.02596) (0.27009)

t = (0.26229) (2.80700)

p value = (0.7984) (0.0186) r2 = 0.4406

Ŷt = 0.76214Xt

se = (0.265799)

t = (2.95408)

p value = (0.0131) r2 = 0.43684

where Y = monthly rate of return on Texaco common stock, %, and X = monthly
market rate of return,%.*

a. What is the difference between the two regression models?

b. Given the preceding results, would you retain the intercept term in the first
model? Why or why not?

c. How would you interpret the slope coefficients in the two models?

d. What is the theory underlying the two models?

e. Can you compare the r2 terms of the two models? Why or why not?

f. The Jarque–Bera normality statistic for the first model in this problem is 1.1167
and for the second model it is 1.1170. What conclusions can you draw from these
statistics?

g. The t value of the slope coefficient in the zero intercept model is about 2.95,
whereas that with the intercept present is about 2.81. Can you rationalize this
result?

6.3. Consider the following regression model:

1

Yi
= β1 + β2

(
1

Xi

)
+ ui

Note: Neither Y nor X assumes zero value.

a. Is this a linear regression model?

b. How would you estimate this model?

c. What is the behavior of Y as X tends to infinity?

d. Can you give an example where such a model may be appropriate?

EXERCISES

*The underlying data were obtained from the data diskette included in Ernst R. Berndt, The Practice of
Econometrics: Classic and Contemporary, Addison-Wesley, Reading, Mass., 1991.
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6.4. Consider the log–linear model:

ln Yi = β1 + β2 ln Xi + ui

Plot Y on the vertical axis and X on the horizontal axis. Draw the curves showing the
relationship between Y and X when β2 = 1, and when β2 > 1, and when β2 < 1.

6.5. Consider the following models:

Model I: Yi = β1 + β2 Xi + ui

Model II: Y ∗
i = α1 + α2 X∗

i + ui

where Y* and X* are standardized variables. Show that α̂2 = β̂2(Sx/Sy) and hence es-
tablish that although the regression slope coefficients are independent of the change
of origin they are not independent of the change of scale.

6.6. Consider the following models:

ln Y ∗
i = α1 + α2 ln X∗

i + u∗
i

ln Yi = β1 + β2 ln Xi + ui

where Y ∗
i = w1Yi and X∗

i = w2 Xi , the w’s being constants.

a. Establish the relationships between the two sets of regression coefficients and
their standard errors.

b. Is the r2 different between the two models?

6.7. Between regressions (6.6.8) and (6.6.10), which model do you prefer? Why?

6.8. For the regression (6.6.8), test the hypothesis that the slope coefficient is not signifi-
cantly different from 0.005.

6.9. From the Phillips curve given in Eq. (6.7.3), is it possible to estimate the natural rate
of unemployment? How?

6.10. The Engel expenditure curve relates a consumer’s expenditure on a commodity to his
or her total income. Letting Y = consumption expenditure on a commodity and X =
consumer income, consider the following models:

Yi = β1 + β2 Xi + ui

Yi = β1 + β2(1/Xi ) + ui

ln Yi = ln β1 + β2 ln Xi + ui

ln Yi = ln β1 + β2(1/Xi ) + ui

Yi = β1 + β2 ln Xi + ui

Which of these model(s) would you choose for the Engel expenditure curve and
why? (Hint: Interpret the various slope coefficients, find out the expressions for
elasticity of expenditure with respect to income, etc.)

6.11. Consider the following model:

Yi = eβ1+β2 Xi

1 + eβ1+β2 Xi

As it stands, is this a linear regression model? If not, what “trick,” if any, can you use
to make it a linear regression model? How would you interpret the resulting model?
Under what circumstances might such a model be appropriate?
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6.12. Graph the following models (for ease of exposition, we have omitted the observation
subscript, i):

a. Y = β1 Xβ2, for β2 > 1, β2 = 1, 0 < β2 < 1, . . . .

b. Y = β1eβ2 X, for β2 > 0 and β2 < 0.

Discuss where such models might be appropriate.

6.13. Consider the following regression:*

SPIi = −17.8 + 33.2 Ginii
se =   (4.9) (11.8) r2 = 0.16

Where SPI � index of sociopolitical instability, average for 1960–1985, and Gini �
Gini coefficient for 1975 or the closest available year within the range of 1970–1980.
The sample consist of 40 countries.

The Gini coefficient is a measure of income inequality and it lies between 0 and 1.
The closer it is to 0, the greater the income equality, and the closer it is to 1, the
greater the income inequality.

a. How do you interpret this regression?

b. Suppose the Gini coefficient increases from 0.25 to 0.55. By how much does SPI
go up? What does that mean in practice?

c. Is the estimated slope coefficient statistically significant at the 5% level? Show the
necessary calculations.

d. Based on the preceding regression, can you argue that countries with greater in-
come inequality are politically unstable?

TABLE 6.7 Yi 86 79 76 69 65 62 52 51 51 48

Xi 3 7 12 17 25 35 45 55 70 120 

*See David N. Weil, Economic Growth, Addison Wesley, Boston, 2005, p. 392.

**Adapted from J. Johnston, Econometric Methods, 3d ed., McGraw-Hill, New York, 1984, p. 87. Actu-
ally this is taken from an econometric examination of Oxford University in 1975.
†Martin Feldstein and Charles Horioka, “Domestic Saving and International Capital Flows,” Economic
Journal, vol. 90, June 1980, pp. 314–329. Data reproduced from Michael P. Murray, Econometrics: A
Modern Introduction, Addison-Wesley, Boston, 2006. 

6.15. To study the relationship between investment rate (investment expenditure as a ratio
of the GDP) and savings rate (savings as a ratio of GDP), Martin Feldstein and
Charles Horioka obtained data for a sample of 21 countries. (See Table 6.8.) The
investment rate for each country is the average rate for the period 1960–1974 and the
savings rate is the average savings rate for the period 1960–1974. The variable Invrate
represents the investment rate and the variable Savrate represents the savings rate.†

a. Plot the investment rate against the savings rate.

Empirical Exercises
6.14. You are given the data in Table 6.7.** Fit the following model to these data and obtain

the usual regression statistics and interpret the results:

100

100 − Yi
= β1 + β2

(
1

Xi

)
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b. Based on this plot, do you think the following models might fit the data equally
well?

Invratei = β1 + β2Savratei + ui

ln Invratei = α1 + α2 ln Savratei + ui

c. Estimate both of these models and obtain the usual statistics.

d. How would you interpret the slope coefficient in the linear model? In the log–
linear model? Is there a difference in the interpretation of these coefficients?

e. How would you interpret the intercepts in the two models? Is there a difference in
your interpretation?

f. Would you compare the two r2 coefficients? Why or why not?

g. Suppose you want to compute the elasticity of the investment rate with respect to
the savings rate. How would you obtain this elasticity for the linear model? For
the log–linear model? Note that this elasticity is defined as the percentage change
in the investment rate for a percentage change in the savings rate.

h. Given the results of the two regression models, which model would you prefer?
Why?

6.16. Table 6.9* gives the variable definitions for various kinds of expenditures, total
expenditure, income, age of household, and the number of children for a sample of
1,519 households drawn from the 1980–1982 British Family Expenditure Surveys.

TABLE 6.8 SAVRATE INVRATE

Australia 0.250 0.270
Austria 0.285 0.282
Belgium 0.235 0.224
Canada 0.219 0.231
Denmark 0.202 0.224
Finland 0.288 0.305
France 0.254 0.260
Germany 0.271 0.264
Greece 0.219 0.248
Ireland 0.190 0.218
Italy 0.235 0.224
Japan 0.372 0.368
Luxembourg 0.313 0.277
Netherlands 0.273 0.266
New Zealand 0.232 0.249
Norway 0.278 0.299
Spain 0.235 0.241
Sweden 0.241 0.242
Switzerland 0.297 0.297
U.K. 0.184 0.192
U.S. 0.186 0.186

Note: SAVRATE � Savings as a ratio of GDP.
INVRATE � Investment expenditure as a ratio of GDP.

*The data are from Richard Blundell and Krishna Pendakur, “Semiparametric Estimation and
Consumer Demand,” Journal of Applied Econometrics, vol. 13, no. 5, 1998, pp. 435–462. Data
reproduced from R. Carter Hill, William E. Griffiths, and George G. Judge, Undergraduate Econometrics,
2d ed., John Wiley & Sons, New York, 2001.
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The actual dataset can be found on this text’s website. The data include only house-
holds with one or two children living in Greater London. The sample does not in-
clude self-employed or retired households.
a. Using the data on food expenditure in relation to total expenditure, determine which

of the models summarized in Table 6.6 fits the data.

b. Based on the regression results obtained in (a), which model seems appropriate in the
present instance?

Note: Save these data for further analysis in the next chapter on multiple regression.

6.17. Refer to Table 6.3. Find out the rate of growth of expenditure on durable goods. What is
the estimated semielasticity? Interpret your results. Would it make sense to run a double-
log regression with expenditure on durable goods as the regressand and time as the
regressor? How would you interpret the slope coefficient in this case?

6.18. From the data given in Table 6.3, find out the growth rate of expenditure on nondurable
goods and compare your results with those obtained from Exercise 6.17.

6.19. Table 6.10 gives data for the U.K. on total consumer expenditure (in £ millions) and
advertising expenditure (in £ millions) for 29 product categories.*
a. Considering the various functional forms we have discussed in the chapter, which

functional form might fit the data given in Table 6.10?
b. Estimate the parameters of the chosen regression model and interpret your results.
c. If you take the ratio of advertising expenditure to total consumer expenditure, what do

you observe? Are there any product categories for which this ratio seems unusually
high? Is there anything special about these product categories that might explain the
relatively high expenditure on advertising?

6.20. Refer to Example 3.3 in Chapter 3 to complete the following:
a. Plot cell phone demand against purchasing power (PP) adjusted per capita income.
b. Plot the log of cell phone demand against the log of PP-adjusted per capita income.
c. What is the difference between the two graphs?
d. From these two graphs, do you think that a double-log model might provide a better fit

to the data than the linear model? Estimate the double-log model.
e. How do you interpret the slope coefficient in the double-log model?
f. Is the estimated slope coefficient in the double-log model statistically significant at the

5% level?

List of Variables:

wfood = budget share for food expenditure
wfuel = budget share for fuel expenditure

wcloth = budget share for clothing expenditure
walc = budget share for alcohol expenditure

wtrans = budget share for transportation expenditure
wother = budget share for other expenditures

totexp = total household expenditure
(rounded to the nearest 10 U.K. pounds sterling)

income = total net household income
(rounded to the nearest 10 U.K. pounds sterling)

age = age of household head
nk = number of children

The budget share of a commodity, say food, is defined as:

wfood = expenditure on food
total expenditure

TABLE 6.9

*These data are from Advertising Statistics Year Book, 1996, and are reproduced from http://www.
Economicswebinstitute.org/ecdata.htm.
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g. How would you estimate the elasticity of cell phone demand with respect to PP-
adjusted income for the linear model given in Eq. (3.7.3)? What additional informa-
tion, if any, do you need? Call the estimated elasticity the income elasticity.

h. Is there a difference between the income elasticity estimated from the double-log model
and that estimated from the linear model? If so, which model would you choose?

6.21. Repeat Exercise 6.20 but refer to the demand for personal computers given in Eq. (3.7.4).
Is there a difference between the estimated income elasticities for cell phones and
personal computers? If so, what factors might account for the difference?

6.22. Refer to the data in Table 3.3. To find out if people who own PCs also own cell phones,
run the following regression:

CellPhonei = β1 + β2PCsi + ui

a. Estimate the parameters of this regression.
b. Is the estimated slope coefficient statistically significant?
c. Does it matter if you run the following regression?

PCsi = α1 + α2Cellphonei + ui

d. Estimate the preceding regression and test the statistical significance of the estimated
slope coefficient.

e. How would you decide between the first and the second regression?

obs ADEXP CONEXP RATIO

1 87957.00 13599.00 0.006468
2 23578.00 4699.000 0.005018
3 16345.00 5473.000 0.002986
4 6550.000 6119.000 0.001070
5 10230.00 8811.000 0.001161
6 9127.000 1142.000 0.007992
7 1675.000 143.0000 0.011713
8 1110.000 138.0000 0.008043
9 3351.000 85.00000 0.039424

10 1140.000 108.0000 0.010556
11 6376.000 307.0000 0.020769
12 4500.000 1545.000 0.002913
13 1899.000 943.0000 0.002014
14 10101.00 369.0000 0.027374
15 3831.000 285.0000 0.013442
16 99528.00 1052.000 0.094608
17 15855.00 862.0000 0.018393
18 8827.000 84.00000 0.105083
19 54517.00 1174.000 0.046437
20 49593.00 2531.000 0.019594
21 39664.00 408.0000 0.097216
22 327.0000 295.0000 0.001108
23 22549.00 488.0000 0.046207
24 416422.0 19200.00 0.021689
25 14212.00 94.00000 0.151191
26 54174.00 5320.000 0.010183
27 20218.00 357.0000 0.056633
28 11041.00 159.0000 0.069440
29 22542.00 244.0000 0.092385

Note: ADEXP = Advertising expenditure (£, millions)
CONEXP = Total consumer expenditure (£, millions)

TABLE 6.10
Advertising
Expenditure and
Total Expenditure
(in £ millions) for
29 Product
Categories in the
U.K.

Source: http://www.
Economicswebinstitute.org/
ecdata.htm.
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Appendix 6A

6A.1 Derivation of Least-Squares Estimators
for Regression through the Origin 

We want to minimize ∑
û2

i =
∑

(Yi − β̂2 Xi )
2 (1)

with respect to β̂2.
Differentiating (1) with respect to β̂2, we obtain

d
∑

û2
i

dβ̂2

= 2
∑

(Yi − β̂2 Xi )(−Xi ) (2)

Setting Eq. (2) equal to zero and simplifying, we get

β̂2 =
∑

Xi Yi∑
X2

i

(6.1.6) = (3)

Now substituting the PRF: Yi = β2 Xi + ui into this equation, we obtain

β̂2 =
∑

Xi (β2 Xi + ui )∑
X2

i (4)
= β2 +

∑
Xi u i∑
X2

i

[Note: E(β̂2) = β2.] Therefore,

E(β̂2 − β2)2 = E

[∑
Xi u i∑
X2

i

]2

(5)

Expanding the right-hand side of Eq. (5) and noting that the Xi are nonstochastic and the ui are ho-
moscedastic and uncorrelated, we obtain

var (β̂2) = E(β̂2 − β2)2 = σ 2∑
X2

i

(6.1.7) = (6)

Incidentally, note that from Eq. (2) we get, after equating it to zero,∑
û i Xi = 0 (7)

From Appendix 3A, Section 3A.1, we see that when the intercept term is present in the model, we get
in addition to Eq. (7) the condition 

∑
û i = 0. From the mathematics just given it should be clear why

the regression through the origin model may not have the error sum, 
∑

û i , equal to zero.
Suppose we want to impose the condition that 

∑
û i = 0. In that case we have

∑
Yi = β̂2

∑
Xi +

∑
û i

(8)
= β̂2

∑
Xi , since

∑
û i = 0 by construction

This expression then gives

β̂2 =
∑

Yi∑
Xi

(9)
= Ȳ

X̄
= mean value of Y

mean value of X

But this estimator is not the same as Eq. (3) above or Eq. (6.1.6). And since the β̂2 of Eq. (3) is
unbiased (why?), the β̂2 of Eq. (9) cannot be unbiased.

The upshot is that, in regression through the origin, we cannot have both 
∑

û i Xi and 
∑

û i equal
to zero, as in the conventional model. The only condition that is satisfied is that 

∑
û i Xi is zero.
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Recall that

Yi = Ŷi + ûi (2.6.3)

Summing this equation on both sides and dividing by N, the sample size, we obtain

Ȳ = ¯̂Y + ¯̂u (10)

Since for the zero intercept model 
∑

ûi and, therefore ¯̂u, need not be zero, it then follows that

Ȳ �= ¯̂Y (11)

that is, the mean of actual Y values need not be equal to the mean of the estimated Y values; the two
mean values are identical for the intercept-present model, as can be seen from Eq. (3.1.10).

It was noted that, for the zero-intercept model, r2 can be negative, whereas for the conventional
model it can never be negative. This condition can be shown as follows.

Using Eq. (3.5.5a), we can write

r2 = 1 − RSS

TSS
= 1 −

∑
û2

i∑
y2

i

(12)

Now for the conventional, or intercept-present, model, Eq. (3.3.6) shows that

RSS =
∑

û2
i =

∑
y2

i − β̂2
2

∑
x2

i ≤
∑

y2
i (13)

unless β̂2 is zero (i.e., X has no influence on Y whatsoever). That is, for the conventional model,
RSS ≤ TSS, or, r2 can never be negative.

For the zero-intercept model it can be shown analogously that

RSS =
∑

û2
i =

∑
Y 2

i − β̂2
2

∑
X2

i (14)

(Note: The sums of squares of Y and X are not mean-adjusted.) Now there is no guarantee that this
RSS will always be less than 

∑
y2

i = ∑
Y 2

i − NȲ 2 (the TSS), which suggests that RSS can be
greater than TSS, implying that r2, as conventionally defined, can be negative. Incidentally, notice that
in this case RSS will be greater than TSS if β̂2

2

∑
X2

i < NȲ 2.

6A.2 Proof that a Standardized Variable 
Has Zero Mean and Unit Variance

Consider the random variable (r.v.) Y with the (sample) mean value of Ȳ and (sample) standard devi-
ation of Sy. Define

Y ∗
i = Yi − Ȳ

Sy
(15)

Hence Y ∗
i is a standardized variable. Notice that standardization involves a dual operation: (1) change

of the origin, which is the numerator of Eq. (15), and (2) change of scale, which is the denominator.
Thus, standardization involves both a change of the origin and change of scale.

Now

Ȳ ∗
i = 1

Sy

∑
(Yi − Ȳ )

n
= 0 (16)

since the sum of deviation of a variable from its mean value is always zero. Hence the mean value of
the standardized value is zero. (Note: We could pull out the Sy term from the summation sign because
its value is known.)

Now

S2
y∗ =

∑ (Yi − Ȳ )2/(n − 1)

S2
y

= 1

(n − 1)S2
y

∑
(Yi − Ȳ )2 (17)

= (n − 1)S2
y

(n − 1)S2
y

= 1
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Note that

S2
y =

∑
(Yi − Ȳ )2

n − 1

which is the sample variance of Y.

6A.3 Logarithms

Consider the numbers 5 and 25. We know that

25 = 52 (18)

We say that the exponent 2 is the logarithm of 25 to the base 5. More formally, the logarithm of a
number (e.g., 25) to a given base (e.g., 5) is the power (2) to which the base (5) must be raised to ob-
tain the given number (25).

More generally, if

Y = bX (b > 0) (19)

then

logbY = X (20)

In mathematics the function (19) is called an exponential function and the function (20) is called the log-
arithmic function. As is clear from Eqs. (19) and (20), one function is the inverse of the other function.

Although any (positive) base can be used, in practice, the two commonly used bases are 10 and the
mathematical number e = 2.71828 . . . .

Logarithms to base 10 are called common logarithms. Thus,

log10 100 = 2 log1030 ≈ 1.48

That is, in the first case, 100 = 102 and in the latter case, 30 ≈ 101.48.
Logarithms to the base e are called natural logarithms. Thus,

loge100 ≈ 4.6051 and loge30 ≈ 3.4012

All these calculations can be done routinely on a hand calculator.
By convention, the logarithm to base 10 is denoted by the letters log and to the base e by ln. Thus,

in the preceding example, we can write log 100 or log 30 or ln 100 or ln 30.
There is a fixed relationship between the common log and natural log, which is

ln X � 2.3026 log X (21)

That is, the natural log of the number X is equal to 2.3026 times the log of X to the base 10. Thus, 

ln 30 � 2.3026 log 30 � 2.3026(1.48) � 3.4012 (approx.)

as before. Therefore, it does not matter whether one uses common or natural logs. But in mathemat-
ics the base that is usually preferred is e, that is, the natural logarithm. Hence, in this book all logs are
natural logs, unless stated explicitly. Of course, we can convert the log of a number from one basis to
the other using Eq. (21).

Keep in mind that logarithms of negative numbers are not defined. Thus, the log of (−5) or the ln
(−5) is not defined.

Some properties of logarithms are as follows: If A and B are any positive numbers, then it can be
shown that:

1. ln (A � B) � ln A � ln B (22)

That is, the log of the product of two (positive) numbers A and B is equal to the sum of their logs.

2. ln (A�B) � ln A � ln B (23)
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That is, the log of the ratio of A to B is the difference in the logs of A and B.

3. ln ( A ± B) �= ln A ± ln B (24)

That is,the log of the sum or difference of A and B is not equal to the sum or difference of
their logs.

4. ln (Ak) � k ln A (25)

That is, the log of A raised to power k is k times the log of A.

5. ln e � 1 (26)

That is, the log of e to itself as a base is 1 (as is the log of 10 to the base 10).

6. ln 1 � 0 (27)

That is, the natural log of the number 1 is zero (as is the common log of number 1).

7. If Y � ln X,
dY

d X
= 1

X
(28)

That is, the rate of change (i.e., the derivative) of Y with respect to X is 1 over X. The exponential
and (natural) logarithmic functions are depicted in Figure 6A.1.

Although the number whose log is taken is always positive, the logarithm of that number can be
positive as well as negative. It can be easily verified that if

0 < Y < 1 then ln Y < 0

Y = 1 then ln Y = 0

Y > 1 then ln Y > 0

Also note that although the logarithmic curve shown in Figure 6A.1(b) is positively sloping,
implying that the larger the number is, the larger its logarithmic value will be, the curve is increasing
at a decreasing rate (mathematically, the second derivative of the function is negative). Thus, ln(10) =
2.3026 (approx.) and ln(20) = 2.9957 (approx.). That is, if a number is doubled, its logarithm does
not double.

This is why the logarithm transformation is called a nonlinear transformation. This can also be
seen from Equation (28), which notes that if Y = ln X, dY�dX = 1�X. This means that the slope of the
logarithmic function depends on the value of X; that is, it is not constant (recall the definition of
linearity in the variable).

Logarithms and percentages: Since d(ln X)
d X = 1

X , or d(ln X) = d X
X , for very small changes the

change in ln X is equal to the relative or proportional change in X. In practice, if the change in X is
reasonably small, the preceding relationship can be written as the change in ln X ≈ to the relative
change in X, where ≈ means approximately.

FIGURE 6A.1
Exponential and
logarithmic functions:
(a) Exponential
function; 
(b) logarithmic
function.

(a)

1

10 0
45°

Y

(b)

X = ln Y

X = ln Y

YX

Y = eX

45°
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Thus, for small changes,

(ln Xt − ln Xt−1) ≈ (Xt − Xt−1)

Xt−1
= relative change in X

6A.4 Growth Rate Formulas

Let the variable Y be a function of time, Y � f(t), where t denotes time. The instantaneous (i.e., a
point in time) rate of growth of Y, gY is defined as

gY = dY/dt

Y
= 1

Y

dY

dt
(29)

Note that if we multiply gY by 100, we get the percent rate of growth, where dY
dt is the rate of change

of Y with respect to time.
Now if we let ln Y = lnf(t), where ln stands for the natural logarithm, then

d lnY

dt
= 1

Y

dY

dt
(30)

This is the same as Eq. (29).
Therefore, logarithmic transformations are very useful in computing growth rates, especially if Y

is a function of some other time-dependent variables, as the following example will show. Let

Y = X · Z (31)

where Y is nominal GDP, X is real GDP, and Z is the (GDP) price deflator. In words, the nominal GDP
is real GDP multiplied by the (GDP) price deflator. All these variables are functions of time, as they
vary over time.

Now taking logs on both sides of Eq. (31), we obtain:

ln Y � ln X � ln Z (32)

Differentiating Eq. (32) with respect to time, we get

1

Y

dY

dt
= 1

X

d X

dt
+ 1

Z

d Z

dt
(33)

that is, gY = gX + gZ , where g denotes growth rate.
In words, the instantaneous rate of growth of Y is equal to the sum of the instantaneous rate of

growth of X plus the instantaneous rate of growth of Z. In the present example, the instantaneous rate
of growth of nominal GDP is equal to the sum of the instantaneous rate of growth of real GDP and
the instantaneous rate of growth of the GDP price deflator.

More generally, the instantaneous rate of growth of a product is the sum of the instantaneous rates
of growth of its components. This can be generalized to the product of more than two variables.

In similar fashion, if we have

Y = X

Z
(34)

1

Y

dY

dt
= 1

X

d X

dt
− 1

Z

d Z

dt
(35)

that is, gY = gX − gZ . In other words, the instantaneous rate of growth of Y is the difference between
the instantaneous rate of growth of X minus the instantaneous rate of growth of Z. Thus if Y = per capita
income, X = GDP and Z = population, then the instantaneous rate of growth of per capita income is
equal to the instantaneous rate of growth of GDP minus the instantaneous rate of growth of population.

Now let Y = X + Z. What is the rate of growth of Y? Let Y = total employment, X = blue collar
employment, and Z = white collar employment. Since 

ln(X + Z) �= ln X + lnY,

guj75772_ch06.qxd  07/08/2008  07:00 PM  Page 186



Chapter 6 Extensions of the Two-Variable Linear Regression Model 187

it is not easy to compute the rate of growth of Y, but with some algebra, it can be shown that

gY = X

X + Z
gX + Z

X + Z
gZ (36)

That is, the rate of growth of a sum is a weighted average of the rates of growth of its components.
For our example, the rate of growth of total employment is a weighted average of the rates of growth
of white collar employment and blue collar employment, the weights being the share of each compo-
nent in total employment.

6A.5 Box-Cox Regression Model

Consider the following regression model

Y λ
i = β1 + β2 Xi + ui Y > 0 (37)

where λ (Greek lamda) is a parameter, which may be negative, zero, or positive. Since Y is raised to
the power λ, we will get several transformations of Y, depending on the value of λ.

Equation (37) is known as the Box-Cox regression model, named after the statisticians Box and
Cox.1 Depending on the value of λ, we have the following regression models, which are shown in
tabular form:

Value of λ Regression Model

1 Yi = β1 + β2 Xi + ui

2 Y 2
i = β1 + β2 Xi + ui

0.5
√

Yi = β1 + β2 Xi + ui

0 ln Yi = β1 + β2 Xi + ui

�0.5
1√
Yi

= β1 + β2 Xi + ui

�1.0
1
Yi

= β1 + β2 Xi + ui

As you can see, linear and log-linear models are special cases of the Box-Cox family of
transformations.

Of course, we can apply such transformations to the X variable(s) also. It is interesting to note that
when λ is zero, we get the log-transformation of Y. The proof of this is slightly involved and is best
left for the references. (Calculus-minded readers will have to recall the l’Hopital Rule.)

But how do we actually determine the appropriate value of λ in a given situation? We cannot
estimate Eq. (37) directly, for it involves not only the regression parameters β1 and β2 but also λ,
which enters nonlinearly. But it can be shown that we can use the method of maximum likelihood to
estimate all these parameters. Regression packages exist to do just that.

We will not pursue this topic here because the procedure is somewhat involved.
However, we can proceed by trial and error. Choose several values of λ, transform Y accordingly,

run regression (37), and obtain the residual sum of squares (RSS) for each transformed regression.
Choose the value of λ that gives the minimum RSS.2

1G.E.P. Box and D.R. Cox, “An Analysis of Transformations,” Journal of the Royal Statistical Society, B26,
1964, pp. 211–243.
2For an accessible discussion, refer to John Neter, Michael Kutner, Christopher Nachtsheim, and
William Wasserman, Applied Linear Regression Models, 3rd ed., Richard D. Irwin, Chicago, 1996.

guj75772_ch06.qxd  07/08/2008  07:00 PM  Page 187



188188

The two-variable model studied extensively in the previous chapters is often inadequate in
practice. In our consumption–income example (Example 3.1), for instance, it was assumed
implicitly that only income X is related to consumption Y. But economic theory is seldom so
simple for, besides income, a number of other variables are also likely to affect consump-
tion expenditure. An obvious example is wealth of the consumer. As another example, the
demand for a commodity is likely to depend not only on its own price but also on the prices
of other competing or complementary goods, income of the consumer, social status, etc.
Therefore, we need to extend our simple two-variable regression model to cover models
involving more than two variables. Adding more variables leads us to the discussion of
multiple regression models, that is, models in which the dependent variable, or regressand,
Y depends on two or more explanatory variables, or regressors.

The simplest possible multiple regression model is three-variable regression, with one
dependent variable and two explanatory variables. In this and the next chapter we shall
study this model. Throughout, we are concerned with multiple linear regression models,
that is, models linear in the parameters; they may or may not be linear in the variables.

7.1 The Three-Variable Model: Notation and Assumptions

Generalizing the two-variable population regression function (PRF) Eq. (2.4.2), we may
write the three-variable PRF as

(7.1.1)

where Y is the dependent variable, X2 and X3 the explanatory variables (or regressors), u the
stochastic disturbance term, and i the ith observation; in case the data are time series, the
subscript t will denote the tth observation.1

Yi = β1 + β2 X2i + β3 X3i + ui

Chapter

1For notational symmetry, Eq. (7.1.1) can also be written as

Yi = β1 X1i + β2 X2i + β3 X3i + ui

with the provision that X1i = 1 for all i.

7
Multiple Regression
Analysis: The Problem
of Estimation
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Chapter 7 Multiple Regression Analysis: The Problem of Estimation 189

In Eq. (7.1.1) β1 is the intercept term. As usual, it gives the mean or average effect on Y
of all the variables excluded from the model, although its mechanical interpretation is the
average value of Y when X2 and X3 are set equal to zero. The coefficients β2 and β3 are
called the partial regression coefficients, and their meaning will be explained shortly.

We continue to operate within the framework of the classical linear regression model
(CLRM) first introduced in Chapter 3. As a reminder, we assume the following:

2This assumption is automatically fulfilled if X2 and X3 are nonstochastic and Eq. (7.1.4) holds.

1. Linear regression model, or linear in the parameters. (7.1.2)

2. Fixed X values or X values independent of the error term. Here, this means 
we require zero covariance between ui and each X variables. 

cov (ui , X2i) � cov (ui , X3i) � 0 (7.1.3)2

3. Zero mean value of disturbance ui .

E(ui | X2i, X3i) � 0 for each i (7.1.4)

4. Homoscedasticity or constant variance of ui .

var (ui ) � σ2 (7.1.5)

5. No autocorrelation, or serial correlation, between the disturbances.

cov (ui , uj) � 0 i �= j (7.1.6)

6. The number of observations n must be greater than the number of 
parameters to be estimated, which is 3 in our current case. (7.1.7)

7. There must be variation in the values of the X variables. (7.1.8)

We will also address two other requirements.

8. No exact collinearity between the X variables.

No exact linear relationship between X2 and X3 (7.1.9)

In Section 7.7, we will spend more time discussing the final assumption.

9. There is no specification bias.

The model is correctly specified. (7.1.10)

The rationale for assumptions (7.1.2) through (7.1.10) is the same as that discussed in
Section 3.2. Assumption (7.1.9), that there is no exact linear relationship between X2 and
X3, is technically known as the assumption of no collinearity or no multicollinearity if
more than one exact linear relationship is involved.

Informally, no collinearity means none of the regressors can be written as exact linear
combinations of the remaining regressors in the model.

Formally, no collinearity means that there exists no set of numbers, λ2 and λ3, not both
zero such that

λ2 X2i + λ3 X3i = 0 (7.1.11)

ASSUMPTIONS
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190 Part One Single-Equation Regression Models

If such an exact linear relationship exists, then X2 and X3 are said to be collinear or
linearly dependent. On the other hand, if Eq. (7.1.11) holds true only when λ2 =
λ3 = 0, then X2 and X3 are said to be linearly independent.

Thus, if

X2i = −4X3i or X2i + 4X3i = 0 (7.1.12)

the two variables are linearly dependent, and if both are included in a regression model, we
will have perfect collinearity or an exact linear relationship between the two regressors.

Although we shall consider the problem of multicollinearity in depth in Chapter 10, in-
tuitively the logic behind the assumption of no multicollinearity is not too difficult to grasp.
Suppose that in Eq. (7.1.1) Y, X2, and X3 represent consumption expenditure, income, and
wealth of the consumer, respectively. In postulating that consumption expenditure is lin-
early related to income and wealth, economic theory presumes that wealth and income may
have some independent influence on consumption. If not, there is no sense in including
both income and wealth variables in the model. In the extreme, if there is an exact linear re-
lationship between income and wealth, we have only one independent variable, not two,
and there is no way to assess the separate influence of income and wealth on consumption.
To see this clearly, let X3i = 2X2i in the consumption–income–wealth regression. Then the
regression (7.1.1) becomes

Yi = β1 + β2 X2i + β3(2X2i ) + ui

= β1 + (β2 + 2β3)X2i + ui (7.1.13)

= β1 + αX2i + ui

where α = (β2 + 2β3). That is, we in fact have a two-variable and not a three-variable
regression. Moreover, if we run the regression (7.1.13) and obtain α, there is no way to
estimate the separate influence of X2 ( = β2) and X3 ( = β3) on Y, for α gives the combined
influence of X2 and X3 on Y.3

In short, the assumption of no multicollinearity requires that in the PRF we include only
those variables that are not exact linear functions of one or more variables in the model.
Although we will discuss this topic more fully in Chapter 10, a couple of points may be
noted here.

First, the assumption of no multicollinearity pertains to our theoretical (i.e., PRF)
model. In practice, when we collect data for empirical analysis there is no guarantee that
there will not be correlations among the regressors. As a matter of fact, in most applied
work it is almost impossible to find two or more (economic) variables that may not be
correlated to some extent, as we will show in our illustrative examples later in the chapter.
What we require is that there be no exact linear relationships among the regressors, as in
Eq. (7.1.12).

Second, keep in mind that we are talking only about perfect linear relationships between
two or more variables. Multicollinearity does not rule out nonlinear relationships between
variables. Suppose X3i = X2

2i .This does not violate the assumption of no perfect collinearity,
as the relationship between the variables here is nonlinear.

3Mathematically speaking, α = (β2 + 2β3) is one equation in two unknowns and there is no unique
way of estimating β2 and β3 from the estimated α.
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7.2 Interpretation of Multiple Regression Equation

Given the assumptions of the classical regression model, it follows that, on taking the con-
ditional expectation of Y on both sides of Eq. (7.1.1), we obtain

E(Yi | X2i, X3i ) = β1 + β2 X2i + β3i X3i (7.2.1)

In words, Eq. (7.2.1) gives the conditional mean or expected value of Y conditional upon
the given or fixed values of X2 and X3. Therefore, as in the two-variable case, multiple
regression analysis is regression analysis conditional upon the fixed values of the regres-
sors, and what we obtain is the average or mean value of Y or the mean response of Y for
the given values of the regressors.

7.3 The Meaning of Partial Regression Coefficients

As mentioned earlier, the regression coefficients β2 and β3 are known as partial regression
or partial slope coefficients. The meaning of partial regression coefficient is as follows: β2

measures the change in the mean value of Y, E(Y ), per unit change in X2, holding the value
of X3 constant. Put differently, it gives the “direct” or the “net” effect of a unit change in
X2 on the mean value of Y, net of any effect that X3 may have on mean Y. Likewise, β3

measures the change in the mean value of Y per unit change in X3, holding the value of X2

constant.4 That is, it gives the “direct” or “net” effect of a unit change in X3 on the mean
value of Y, net of any effect that X2 may have on mean Y.5

How do we actually go about holding the influence of a regressor constant? To explain
this, let us revert to our child mortality example (Example 6.6). Recall that in that example,
Y = child mortality (CM), X2 = per capita GNP (PGNP), and X3 = female literacy rate
(FLR). Let us suppose we want to hold the influence of FLR constant. Since FLR may
have some effect on CM as well as PGNP in any given concrete data, what we can do is
remove the (linear) influence of FLR from both CM and PGNP by running the regression of
CM on FLR and of PGNP on FLR separately and then looking at the residuals obtained from
these regressions. Using the data given in Table 6.4, we obtain the following regressions:

ĈMi = 263.8635 − 2.3905 FLRi + û1i
(7.3.1)

se = (12.2249) (0.2133) r2 = 0.6695

where û1i represents the residual term of this regression.

P̂GNPi = −39.3033 + 28.1427 FLRi + û2i
(7.3.2)

se = (734.9526) (12.8211) r2 = 0.0721

where û2i represents the residual term of this regression.

4The calculus-minded reader will notice at once that β2 and β3 are the partial derivatives of
E (Y |X2, X3) with respect to X2 and X3.
5Incidentally, the terms holding constant, controlling for, allowing or accounting for the influence of,
correcting the influence of, and sweeping out the influence of are synonymous and will be used
interchangeably in this text.
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Now

û1i = (CMi − 263.8635 + 2.3905 FLRi ) (7.3.3)

represents that part of CM left after removing from it the (linear) influence of FLR. Likewise,

û2i = (PGNPi + 39.3033 − 28.1427 FLRi ) (7.3.4)

represents that part of PGNP left after removing from it the (linear) influence of FLR.
Therefore, if we now regress û1i on û2i , which are “purified” of the (linear) influence of

FLR, wouldn’t we obtain the net effect of PGNP on CM? That is indeed the case (see
Appendix 7A, Section 7A.2). The regression results are as follows:

ˆ̂u1i = −0.0056û2i
(7.3.5)

se = (0.0019) r2 = 0.1152

Note: This regression has no intercept term because the mean value of the OLS residuals
û1i and û2i is zero. (Why?)

The slope coefficient of −0.0056 now gives the “true” or net effect of a unit change in
PGNP on CM or the true slope of CM with respect to PGNP. That is, it gives the partial
regression coefficient of CM with respect to PGNP, β2.

Readers who want to get the partial regression coefficient of CM with respect to FLR
can replicate the above procedure by first regressing CM on PGNP and getting the residu-
als from this regression (û1i ), then regressing FLR on PGNP and obtaining the residuals
from this regression (û2i ), and then regressing û1i on û2i . I am sure readers get the idea.

Do we have to go through this multistep procedure every time we want to find out the
true partial regression coefficient? Fortunately, we do not have to do that, for the same job
can be accomplished fairly quickly and routinely by the OLS procedure discussed in the
next section. The multistep procedure just outlined is merely for pedagogic purposes to
drive home the meaning of “partial” regression coefficient.

7.4 OLS and ML Estimation of the Partial 
Regression Coefficients

To estimate the parameters of the three-variable regression model (7.1.1), we first consider
the method of ordinary least squares (OLS) introduced in Chapter 3 and then consider
briefly the method of maximum likelihood (ML) discussed in Chapter 4.

OLS Estimators
To find the OLS estimators, let us first write the sample regression function (SRF) corre-
sponding to the PRF of Eq. (7.1.1) as follows:

Yi = β̂1 + β̂2 X2i + β̂3 X3i + û i (7.4.1)

where û i is the residual term, the sample counterpart of the stochastic disturbance
term ui .
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As noted in Chapter 3, the OLS procedure consists of choosing the values of the
unknown parameters so that the residual sum of squares (RSS) 

∑
û2

i is as small as possi-
ble. Symbolically,

(7.4.2)

where the expression for the RSS is obtained by simple algebraic manipulations of
Eq. (7.4.1).

The most straightforward procedure to obtain the estimators that will minimize
Eq. (7.4.2) is to differentiate it with respect to the unknowns, set the resulting expressions
to zero, and solve them simultaneously. As shown in Appendix 7A, Section 7A.1, this pro-
cedure gives the following normal equations [cf. Eqs. (3.1.4) and (3.1.5)]:

From Eq. (7.4.3) we see at once that

β̂1 = Ȳ − β̂2 X̄2 − β̂3 X̄3 (7.4.6)

which is the OLS estimator of the population intercept β1.

Following the convention of letting the lowercase letters denote deviations from sample
mean values, one can derive the following formulas from the normal equations (7.4.3)
to (7.4.5):

β̂2 =
(∑

yi x2i

)(∑
x2

3i

) − (∑
yi x3i

)(∑
x2i x3i

)
(∑

x2
2i

)(∑
x2

3i

) − (∑
x2i x3i

)2 (7.4.7)6

β̂3 =
(∑

yi x3i

)(∑
x2

2i

) − (∑
yi x2i

)(∑
x2i x3i

)
(∑

x2
2i

)(∑
x2

3i

) − (∑
x2i x3i

)2 (7.4.8)

which give the OLS estimators of the population partial regression coefficients β2 and β3,
respectively.

In passing, note the following: (1) Equations (7.4.7) and (7.4.8) are symmetrical in na-
ture because one can be obtained from the other by interchanging the roles of X2 and X3;
(2) the denominators of these two equations are identical; and (3) the three-variable case is
a natural extension of the two-variable case.

(7.4.3)

(7.4.4)

(7.4.5)

Ȳ = β̂1 + β̂2 X̄2 + β̂3 X̄3∑
Yi X2i = β̂1

∑
X2i + β̂2

∑
X2

2i + β̂3

∑
X2i X3i

∑
Yi X3i = β̂1

∑
X3i + β̂2

∑
X2i X3i + β̂3

∑
X2

3i

min
∑

û2
i =

∑
(Yi − β̂1 − β̂2 X2i − β̂3 X3i )

2

6This estimator is equal to that of Eq. (7.3.5), as shown in App. 7A, Sec. 7A.2.
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Variances and Standard Errors of OLS Estimators
Having obtained the OLS estimators of the partial regression coefficients, we can derive
the variances and standard errors of these estimators in the manner indicated in Appen-
dix 3A.3. As in the two-variable case, we need the standard errors for two main purposes:
to establish confidence intervals and to test statistical hypotheses. The relevant formulas are
as follows:7

var (β̂1) =
[

1

n
+ X̄2

2

∑
x2

3i + X̄2
3

∑
x2

2i − 2X̄2 X̄3
∑

x2i x3i∑
x2

2i

∑
x2

3i − (∑
x2i x3i

)2

]
· σ 2 (7.4.9)

se (β̂1) = +
√

var (β̂1) (7.4.10)

var (β̂2) =
∑

x2
3i(∑

x2
2i

)(∑
x2

3i

) − (∑
x2i x3i

)2 σ 2 (7.4.11)

or, equivalently,

(7.4.12)

where r2 3 is the sample coefficient of correlation between X2 and X3 as defined in Chapter 3.8

se (β̂2) = +
√

var (β̂2) (7.4.13)

var (β̂3) =
∑

x2
2i(∑

x2
2i

)(∑
x2

3i

) − (∑
x2i x3i

)2 σ 2 (7.4.14)

or, equivalently,

var (β̂3) = σ 2∑
x2

3i

(
1 − r2

2 3

)
(7.4.15)

se (β̂3) = +
√

var (β̂3) (7.4.16)

cov (β̂2, β̂3) = −r2 3σ
2

(
1 − r2

2 3

)√∑
x2

2i

√∑
x2

3i
(7.4.17)

In all these formulas σ 2 is the (homoscedastic) variance of the population disturbances ui .

Following the argument of Appendix 3A, Section 3A.5, the reader can verify that an
unbiased estimator of σ 2 is given by

(7.4.18)σ̂ 2 =
∑

û2
i

n − 3

var (β̂2) = σ 2∑
x2

2i

(
1 − r2

2 3

)

7The derivations of these formulas are easier using matrix notation. Advanced readers may refer to
Appendix C.
8Using the definition of r given in Chapter 3, we have

r 2
2 3 =

(∑
x2i x3i

)2

∑
x2

2i
∑

x2
3i
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Note the similarity between this estimator of σ 2 and its two-variable counterpart
[σ̂ 2 = (

∑
û2

i )/(n − 2)]. The degrees of freedom are now (n − 3) because in estimating∑
û2

i we must first estimate β1, β2, and β3, which consume 3 df. (The argument is quite
general. Thus, in the four-variable case the df will be n − 4.)

The estimator σ̂ 2 can be computed from Eq. (7.4.18) once the residuals are available,
but it can also be obtained more readily by using the following relation (for proof, see
Appendix 7A, Section 7A.3):

(7.4.19)

which is the three-variable counterpart of the relation given in Eq. (3.3.6).

Properties of OLS Estimators
The properties of OLS estimators of the multiple regression model parallel those of the
two-variable model. Specifically:

1. The three-variable regression line (surface) passes through the means Ȳ , X̄2, and
X̄3, which is evident from Eq. (7.4.3) (cf. Eq. [3.1.7] of the two-variable model). This prop-
erty holds generally. Thus in the k-variable linear regression model (a regressand and
[k − 1] regressors)

Yi = β1 + β2 X2i + β3 X3i + · · · + βk Xki + ui (7.4.20)

we have

β̂1 = Ȳ − β2 X̄2 − β3 X̂3 − · · · − βk X̄k (7.4.21)

2. The mean value of the estimated Yi ( = Ŷi ) is equal to the mean value of the actual
Yi , which is easy to prove:

Ŷi = β̂1 + β̂2 X2i + β̂3 X3i

= (Ȳ − β̂2 X̄2 − β̂3 X̄3) + β̂2 X2i + β̂3 X3i (Why?)

= Ȳ + β̂2(X2i − X̄2) + β̂3(X3i − X̄3) (7.4.22)

= Ȳ + β̂2x2i + β̂3x3i

where as usual small letters indicate values of the variables as deviations from their
respective means.

Summing both sides of Eq. (7.4.22) over the sample values and dividing through by
the sample size n gives ¯̂Y = Ȳ . (Note:

∑
x2i = ∑

x3i = 0. Why?) Notice that by virtue of
Eq. (7.4.22) we can write

ŷi = β̂2x2i + β̂3x3i (7.4.23)

where ŷi = (Ŷi − Ȳ ).
Therefore, the SRF (7.4.1) can be expressed in the deviation form as

yi = ŷi + û i = β̂2x2i + β̂3x3i + û i (7.4.24)

3.
∑

ûi = ¯̂u = 0, which can be verified from Eq. (7.4.24). (Hint: Sum both sides
of Eq. [7.4.24] over the sample values.)

4. The residuals ûi are uncorrelated with X2i and X3i , that is, 
∑

û i X2i = ∑
û i X3i = 0

(see Appendix 7A.1 for proof).

∑
û2

i =
∑

y2
i − β̂2

∑
yi x2i − β̂3

∑
yi x3i
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5. The residuals ûi are uncorrelated with Ŷi ; that is, 
∑

ûi Ŷi = 0. Why? (Hint: Multiply
Eq. [7.4.23] on both sides by û i and sum over the sample values.)

6. From Eqs. (7.4.12) and (7.4.15) it is evident that as r2 3, the correlation coefficient
between X2 and X3, increases toward 1, the variances of β̂2 and β̂3 increase for given val-
ues of σ 2 and 

∑
x2

2i or
∑

x2
3i . In the limit, when r2 3 = 1 (i.e., perfect collinearity), these

variances become infinite. The implications of this will be explored fully in Chapter 10, but
intuitively the reader can see that as r2 3 increases it is going to be increasingly difficult to
know what the true values of β2 and β3 are. (More on this in the next chapter, but refer to
Eq. [7.1.13].)

7. It is also clear from Eqs. (7.4.12) and (7.4.15) that for given values of r2 3 and 
∑

x2
2i

or 
∑

x2
3i , the variances of the OLS estimators are directly proportional to σ 2; that is, they

increase as σ 2 increases. Similarly, for given values of σ 2 and r2 3, the variance of β̂2 is
inversely proportional to 

∑
x2

2i ; that is, the greater the variation in the sample values of X2,
the smaller the variance of β̂2 and therefore β2 can be estimated more precisely. A similar
statement can be made about the variance of β̂3.

8. Given the assumptions of the classical linear regression model, which are spelled
out in Section 7.1, one can prove that the OLS estimators of the partial regression coeffi-
cients not only are linear and unbiased but also have minimum variance in the class of all
linear unbiased estimators. In short, they are BLUE. Put differently, they satisfy
the Gauss–Markov theorem. (The proof parallels the two-variable case proved in Appen-
dix 3A, Section 3A.6 and will be presented more compactly using matrix notation in
Appendix C.)

Maximum Likelihood Estimators
We noted in Chapter 4 that under the assumption that ui , the population disturbances, are
normally distributed with zero mean and constant variance σ 2, the maximum likelihood
(ML) estimators and the OLS estimators of the regression coefficients of the two-variable
model are identical. This equality extends to models containing any number of variables.
(For proof, see Appendix 7A, Section 7A.4.) However, this is not true of the estimator
of σ 2. It can be shown that the ML estimator of σ 2 is

∑
û2

i/n regardless of the number of
variables in the model, whereas the OLS estimator of σ 2 is

∑
û2

i/(n − 2) in the two-
variable case,

∑
û2

i /(n − 3) in the three-variable case, and
∑

û2
i/(n − k) in the case of the

k-variable model (7.4.20). In short, the OLS estimator of σ 2 takes into account the number
of degrees of freedom, whereas the ML estimator does not. Of course, if n is very large, the
ML and OLS estimators of σ 2 will tend to be close to each other. (Why?)

7.5 The Multiple Coefficient of Determination R2

and the Multiple Coefficient of Correlation R

In the two-variable case we saw that r2 as defined in Eq. (3.5.5) measures the goodness of
fit of the regression equation; that is, it gives the proportion or percentage of the total vari-
ation in the dependent variable Y explained by the (single) explanatory variable X. This
notation of r2 can be easily extended to regression models containing more than two vari-
ables. Thus, in the three-variable model we would like to know the proportion of the varia-
tion in Y explained by the variables X2 and X3 jointly. The quantity that gives this
information is known as the multiple coefficient of determination and is denoted by R2;
conceptually it is akin to r2.
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To derive R2, we may follow the derivation of r2 given in Section 3.5. Recall that

Yi = β̂1 + β̂2 X2i + β̂3 X3i + ûi

= Ŷi + û i

(7.5.1)

where Ŷi is the estimated value of Yi from the fitted regression line and is an estimator of
true E(Yi | X2i , X3i ). Upon shifting to lowercase letters to indicate deviations from the
mean values, Eq. (7.5.1) may be written as

yi = β̂2x2i + β̂3x3i + ûi

= ŷi + ûi

(7.5.2)

Squaring Eq. (7.5.2) on both sides and summing over the sample values, we obtain

∑
y2

i =
∑

ŷ2
i +

∑
û2

i + 2
∑

ŷi ûi

=
∑

ŷ2
i +

∑
û2

i (Why?)
(7.5.3)

Verbally, Eq. (7.5.3) states that the total sum of squares (TSS) equals the explained sum of
squares (ESS) plus the residual sum of squares (RSS). Now substituting for 

∑
û2

i from
Eq. (7.4.19), we obtain

∑
y2

i =
∑

ŷ2
i +

∑
y2

i − β̂2

∑
yi x2i − β̂3

∑
yi x3i

which, on rearranging, gives

ESS =
∑

ŷ2
i = β̂2

∑
yi x2i + β̂3

∑
yi x3i (7.5.4)

Now, by definition

R2 = ESS

TSS

= β̂2
∑

yi x2i + β̂3
∑

yi x3i∑
y2

i

(7.5.5)9

(cf. Eq. [7.5.5] with Eq. [3.5.6]).
Since the quantities entering Eq. (7.5.5) are generally computed routinely, R2 can be

computed easily. Note that R2, like r2, lies between 0 and 1. If it is 1, the fitted regression
line explains 100 percent of the variation in Y. On the other hand, if it is 0, the model does
not explain any of the variation in Y. Typically, however, R2 lies between these extreme val-
ues. The fit of the model is said to be “better’’ the closer R2 is to 1.

9Note that R2 can also be computed as follows:

R2 = 1 − RSS
TSS

= 1 −
∑

û2
i∑

y2
i

= 1 − (n − 3)σ̂2

(n − 1)S2
y
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Recall that in the two-variable case we defined the quantity r as the coefficient of correla-
tion and indicated that it measures the degree of (linear) association between two variables.
The three-or-more-variable analogue of r is the coefficient of multiple correlation, denoted
by R, and it is a measure of the degree of association between Y and all the explanatory vari-
ables jointly. Although r can be positive or negative, R is always taken to be positive. In prac-
tice, however, R is of little importance. The more meaningful quantity is R2.

Before proceeding further, let us note the following relationship between R2 and the
variance of a partial regression coefficient in the k-variable multiple regression model given
in Eq. (7.4.20):

var (β̂j ) = σ 2∑
x2

j

(
1

1 − R2
j

)
(7.5.6)

where β̂j is the partial regression coefficient of regressor X j and R2
j is the R2 in the

regression of Xj on the remaining (k − 2) regressors. (Note: There are [k − 1] regressors
in the k-variable regression model.) Although the utility of Eq. (7.5.6) will become appar-
ent in Chapter 10 on multicollinearity, observe that this equation is simply an extension of
the formula given in Eq. (7.4.12) or Eq. (7.4.15) for the three-variable regression model,
one regressand and two regressors.

7.6 An Illustrative Example 

EXAMPLE 7.1
Child Mortality
in Relation to
per Capita GNP
and Female
Literacy Rate

In Chapter 6 we considered the behavior of child mortality (CM) in relation to per capita
GNP (PGNP). There we found that PGNP has a negative impact on CM, as one would
expect. Now let us bring in female literacy as measured by the female literacy rate (FLR).
A priori, we expect that FLR too will have a negative impact on CM. Now when we intro-
duce both the variables in our model, we need to net out the influence of each of the
regressors. That is, we need to estimate the (partial) regression coefficients of each regressor.
Thus our model is:

CMi = β1 + β2PGNPi + β3FLRi + ui (7.6.1)

The necessary data are given in Table 6.4. Keep in mind that CM is the number of deaths
of children under five per 1000 live births, PGNP is per capita GNP in 1980, and FLR is
measured in percent. Our sample consists of 64 countries.

Using the EViews6 statistical package, we obtained the following results:

ĈMi = 263.6416 − 0.0056 PGNPi − 2.2316 FLR i

(7.6.2)
se = (11.5932) (0.0019) (0.2099) R2 = 0.7077

R̄2 = 0.6981*

where figures in parentheses are the estimated standard errors. Before we interpret this re-
gression, observe the partial slope coefficient of PGNP, namely, −0.0056. Is it not precisely
the same as that obtained from the three-step procedure discussed in the previous section
(see Eq. [7.3.5])? But should that surprise you? Not only that, but the two standard errors
are precisely the same, which is again unsurprising. But we did so without the three-step
cumbersome procedure.

*On this, see Section 7.8.
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Regression on Standardized Variables
In the preceding chapter we introduced the topic of regression on standardized variables
and stated that the analysis can be extended to multivariable regressions. Recall that a vari-
able is said to be standardized or in standard deviation units if it is expressed in terms of
deviation from its mean and divided by its standard deviation.

For our child mortality example, the results are as follows:

ĈM
∗ = − 0.2026 PGNP∗

i − 0.7639 FLR∗
i (7.6.3)

se = (0.0713) (0.0713) r2 = 0.7077

Note: The starred variables are standardized variables. Also note that there is no intercept
in the model for reasons already discussed in the previous chapter.

As you can see from this regression, with FLR held constant, a standard deviation
increase in PGNP leads, on average, to a 0.2026 standard deviation decrease in CM. Simi-
larly, holding PGNP constant, a standard deviation increase in FLR, on average, leads to a
0.7639 standard deviation decrease in CM. Relatively speaking, female literacy has more
impact on child mortality than per capita GNP. Here you will see the advantage of using
standardized variables, for standardization puts all variables on equal footing because all
standardized variables have zero means and unit variances.

Impact on the Dependent Variable of a Unit Change in More
than One Regressor
Before proceeding further, suppose we want to find out what would happen to the child
mortality rate if we were to increase PGNP and FLR simultaneously. Suppose per capita
GNP were to increase by a dollar and at the same time the female literacy rate were to go
up by one percentage point. What would be the impact of this simultaneous change on the

Let us now interpret these regression coefficients: −0.0056 is the partial regression
coefficient of PGNP and tells us that with the influence of FLR held constant, as PGNP
increases, say, by a dollar, on average, child mortality goes down by 0.0056 units. To make
it more economically interpretable, if the per capita GNP goes up by a thousand dollars, on
average, the number of deaths of children under age 5 goes down by about 5.6 per thou-
sand live births. The coefficient −2.2316 tells us that holding the influence of PGNP
constant, on average, the number of deaths of children under age 5 goes down by about
2.23 per thousand live births as the female literacy rate increases by one percentage point.
The intercept value of about 263, mechanically interpreted, means that if the values of
PGNP and FLR rate were fixed at zero, the mean child mortality rate would be about 263
deaths per thousand live births. Of course, such an interpretation should be taken with a
grain of salt. All one could infer is that if the two regressors were fixed at zero, child mor-
tality will be quite high, which makes practical sense. The R2 value of about 0.71 means
that about 71 percent of the variation in child mortality is explained by PGNP and FLR, a
fairly high value considering that the maximum value of R2 can at most be 1. All told, the
regression results make sense.

What about the statistical significance of the estimated coefficients? We will take this
topic up in Chapter 8. As we will see there, in many ways this chapter will be an extension
of Chapter 5, which dealt with the two-variable model. As we will also show, there are
some important differences in statistical inference (i.e., hypothesis testing) between the
two-variable and multivariable regression models.

EXAMPLE 7.1
(Continued)
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200 Part One Single-Equation Regression Models

child mortality rate? To find out, all we have to do is multiply the coefficients of PGNP and
FLR by the proposed changes and add the resulting terms. In our example this gives us:

�0.0056(1) � 2.2316(1) � 2.2372

That is, as a result of this simultaneous change in PGNP and FLR, the number of deaths of
children under age 5 would go down by about 2.24 deaths.

More generally, if we want to find out the total impact on the dependent variable of a unit
change in more than one regressor, all we have to do is multiply the coefficients of those re-
gressors by the proposed changes and add up the products. Note that the intercept term
does not enter into these calculations. (Why?)

7.7 Simple Regression in the Context of Multiple Regression:
Introduction to Specification Bias

Recall that assumption (7.1.10) of the classical linear regression model states that the re-
gression model used in the analysis is “correctly” specified; that is, there is no specifica-
tion bias or specification error (see Chapter 3 for some introductory remarks). Although
the topic of specification error will be discussed more fully in Chapter 13, the illustrative
example given in the preceding section provides a splendid opportunity not only to drive
home the importance of assumption (7.1.10) but also to shed additional light on the mean-
ing of partial regression coefficient and provide a somewhat informal introduction to the
topic of specification bias.

Assume that Eq. (7.6.1) is the “true” model explaining the behavior of child mortality in
relation to per capita GNP and female literacy rate (FLR). But suppose we disregard FLR
and estimate the following simple regression:

Yi = α1 + α2 X2i + u1i (7.7.1)

where Y = CM and X2 = PGNP.
Since Eq. (7.6.1) is the true model, estimating Eq. (7.7.1) would constitute a specifica-

tion error; the error here consists in omitting the variable X3, the female literacy rate. Notice
that we are using different parameter symbols (the alphas) in Eq. (7.7.1) to distinguish them
from the true parameters (the betas) given in Eq. (7.6.1).

Now will α2 provide an unbiased estimate of the true impact of PGNP, which is given by
β2 in model (7.6.1)? Will E(α̂2) = β2, where α̂2 is the estimated value of α2? In other
words, will the coefficient of PGNP in Eq. (7.7.1) provide an unbiased estimate of the true
impact of PGNP on CM, knowing that we have omitted the variable X3 (FLR) from the
model? As you would suspect, in general, α̂2 will not be an unbiased estimator of the true
β2. To give a glimpse of the bias, let us run the regression (7.7.1), which gave the follow-
ing results.

ĈMi = 157.4244 − 0.0114 PGNPi (7.7.2)
se = (9.8455) (0.0032) r2 = 0.1662

Observe several things about this regression compared to the “true” multiple regres-
sion (7.6.1):

1. In absolute terms (i.e., disregarding the sign), the PGNP coefficient has increased from
0.0056 to 0.0114, almost a two-fold increase.
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2. The standard errors are different.

3. The intercept values are different.

4. The r2 values are dramatically different, although it is generally the case that, as the
number of regressors in the model increases, the r2 value increases.

Now suppose that you regress child mortality on female literacy rate, disregarding the
influence of PGNP. You will obtain the following results:

ĈMi = 263.8635 − 2.3905 FLRi

se = (21.2249) (0.2133) r2 = 0.6696
(7.7.3)

Again if you compare the results of this (misspecified) regression with the “true” multi-
ple regression, you will see that the results are different, although the difference here is not
as noticeable as in the case of regression (7.7.2).

The important point to note is that serious consequences can ensue if you misfit a model.
We will look into this topic more thoroughly in Chapter 13, on specification errors.

7.8 R2 and the Adjusted R2

An important property of R2 is that it is a nondecreasing function of the number of
explanatory variables or regressors present in the model, unless the added variable is per-
fectly collinear with the other regressors; as the number of regressors increases, R2 almost
invariably increases and never decreases. Stated differently, an additional X variable will
not decrease R2. Compare, for instance, regression (7.7.2) or (7.7.3) with (7.6.2). To see
this, recall the definition of the coefficient of determination:

R2 = ESS

TSS

= 1 − RSS

TSS
(7.8.1)

= 1 −
∑

û2
i∑

y2
i

Now 
∑

y2
i is independent of the number of X variables in the model because it is simply∑

(Yi − Ȳ )2. The RSS, 
∑

û2
i , however, depends on the number of regressors present in the

model. Intuitively, it is clear that as the number of X variables increases, 
∑

û2
i is likely to

decrease (at least it will not increase); hence R2 as defined in Eq. (7.8.1) will increase. In
view of this, in comparing two regression models with the same dependent variable but
differing number of X variables, one should be very wary of choosing the model with the
highest R2.

To compare two R2 terms, one must take into account the number of X variables present
in the model. This can be done readily if we consider an alternative coefficient of determi-
nation, which is as follows:

(7.8.2)R̄2 = 1 −
∑

û2
i

/
(n − k)∑

y2
i

/
(n − 1)
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where k = the number of parameters in the model including the intercept term. (In the
three-variable regression, k = 3. Why?) The R2 thus defined is known as the adjusted R2,
denoted by R̄2. The term adjusted means adjusted for the df associated with the sums of
squares entering into Eq. (7.8.1):

∑
û2

i has n − k df in a model involving k parameters,
which include the intercept term, and 

∑
y2

i has n − 1 df. (Why?) For the three-variable
case, we know that 

∑
û2

i has n − 3 df.
Equation (7.8.2) can also be written as

R̄2 = 1 − σ̂ 2

S2
Y

(7.8.3)

where σ̂ 2 is the residual variance, an unbiased estimator of true σ 2, and S2
Y is the sample

variance of Y.
It is easy to see that R̄2 and R2 are related because, substituting Eq. (7.8.1) into

Eq. (7.8.2), we obtain

R̄2 = 1 − (1 − R2)
n − 1

n − k
(7.8.4)

It is immediately apparent from Eq. (7.8.4) that (1) for k > 1, R̄2 < R2 which implies that
as the number of X variables increases, the adjusted R2 increases less than the unadjusted
R2; and (2) R̄2 can be negative, although R2 is necessarily nonnegative.10 In case R̄2 turns
out to be negative in an application, its value is taken as zero.

Which R2 should one use in practice? As Theil notes:

. . . it is good practice to use R̄2 rather than R2 because R2 tends to give an overly optimistic picture
of the fit of the regression, particularly when the number of explanatory variables is not very small
compared with the number of observations.11

But Theil’s view is not uniformly shared, for he has offered no general theoretical justifica-
tion for the “superiority’’ of R̄2. For example, Goldberger argues that the following R2, call
it modified R2, will do just as well:12

Modified R2 = (1 − k/n)R2 (7.8.5)

His advice is to report R2, n, and k and let the reader decide how to adjust R2 by allowing
for n and k.

10Note, however, that if R2 = 1, R̄2 = R2 = 1. When R2 = 0, R̄2 = (1 − k)/(n − k), in which case R̄2

can be negative if k > 1.

11Henri Theil, Introduction to Econometrics, Prentice Hall, Englewood Cliffs, NJ, 1978, p. 135.
12Arthur S. Goldberger, A Course in Econometrics, Harvard University Press, Cambridge, Mass., 1991,
p. 178. For a more critical view of R2, see S. Cameron, “Why Is the R Squared Adjusted Reported?”
Journal of Quantitative Economics, vol. 9, no. 1, January 1993, pp. 183–186. He argues that “It [R2] is
NOT a test statistic and there seems to be no clear intuitive justification for its use as a descriptive
statistic. Finally, we should be clear that it is not an effective tool for the prevention of data mining”
(p. 186).
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Despite this advice, it is the adjusted R2, as given in Eq. (7.8.4), that is reported by most
statistical packages along with the conventional R2. The reader is well advised to treat R̄2

as just another summary statistic.
Incidentally, for the child mortality regression (7.6.2), the reader should verify that R̄2

is 0.6981, keeping in mind that in this example (n − 1) = 63 and (n − k) = 60. As ex-
pected, R̄2 of 0.6981 is less than R2 of 0.7077.

Besides R2 and adjusted R2 as goodness of fit measures, other criteria are often used to
judge the adequacy of a regression model. Two of these are Akaike’s Information crite-
rion and Amemiya’s Prediction criteria, which are used to select between competing
models. We will discuss these criteria when we consider the problem of model selection in
greater detail in a later chapter (see Chapter 13).

Comparing Two R2 Values
It is crucial to note that in comparing two models on the basis of the coefficient of deter-
mination, whether adjusted or not, the sample size n and the dependent variable must be the
same; the explanatory variables may take any form. Thus for the models

ln Yi = β1 + β2 X2i + β3 X3i + ui (7.8.6)

Yi = α1 + α2 X2i + α3 X3i + ui (7.8.7)

the computed R2 terms cannot be compared. The reason is as follows: By definition,
R2 measures the proportion of the variation in the dependent variable accounted for by the
explanatory variable(s). Therefore, in Eq. (7.8.6) R2 measures the proportion of the varia-
tion in ln Y explained by X2 and X3, whereas in Eq. (7.8.7) it measures the proportion of the
variation in Y, and the two are not the same thing: As noted in Chapter 6, a change in ln Y
gives a relative or proportional change in Y, whereas a change in Y gives an absolute
change. Therefore, var Ŷi/var Yi is not equal to var (l̂n Y i )/var (ln Yi ); that is, the two coef-
ficients of determination are not the same.13

How then does one compare the R2’s of two models when the regressand is not in the
same form? To answer this question, let us first consider a numerical example.

13From the definition of R2, we know that

1 − R2 = RSS
TSS

=
∑

û2
i∑

(Yi − Ȳ )2

for the linear model and

1 − R2 =
∑

û2
i∑

(ln Yi − ln Y )2

for the log model. Since the denominators on the right-hand sides of these expressions are different,
we cannot compare the two R2 terms directly.

As shown in Example 7.2, for the linear specification, the RSS = 0.1491 (the residual sum of
squares of coffee consumption), and for the log–linear specification, the RSS = 0.0226 (the residual
sum of squares of log of coffee consumption). These residuals are of different orders of magnitude
and hence are not directly comparable.
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EXAMPLE 7.2
Coffee
Consumption in
the United States,
1970–1980

Consider the data in Table 7.1. The data pertain to consumption of cups of coffee per day
(Y ) and real retail price of coffee (X ) in the United States for years 1970–1980. Applying
OLS to the data, we obtain the following regression results:

Ŷt = 2.6911 − 0.4795Xt
(7.8.8)se = (0.1216) (0.1140) RSS = 0.1491; r 2 = 0.6628

The results make economic sense: As the price of coffee increases, on average, coffee con-
sumption goes down by about half a cup per day. The r 2 value of about 0.66 means that
the price of coffee explains about 66 percent of the variation in coffee consumption. The
reader can readily verify that the slope coefficient is statistically significant.

From the same data, the following double-log, or constant elasticity, model can be
estimated:

l̂nYt = 0.7774 − 0.2530 ln Xt
(7.8.9)

se = (0.0152) (0.0494) RSS = 0.0226; r 2 = 0.7448

Since this is a double-log model, the slope coefficient gives a direct estimate of the price
elasticity coefficient. In the present instance, it tells us that if the price of coffee per pound
goes up by 1 percent, on average, per day coffee consumption goes down by about
0.25 percent. Remember that in the linear model (7.8.8) the slope coefficient only gives
the rate of change of coffee consumption with respect to price. (How will you estimate the
price elasticity for the linear model?) The r 2 value of about 0.74 means that about 74 per-
cent of the variation in the log of coffee demand is explained by the variation in the log of
coffee price.

Since the r 2 value of the linear model of 0.6628 is smaller than the r 2 value of 0.7448
of the log–linear model, you might be tempted to choose the latter model because of its

Y,
Cups per Person X,

Year per Day $ per lb

1970 2.57 0.77
1971 2.50 0.74
1972 2.35 0.72
1973 2.30 0.73
1974 2.25 0.76
1975 2.20 0.75
1976 2.11 1.08
1977 1.94 1.81
1978 1.97 1.39
1979 2.06 1.20
1980 2.02 1.17

*Note: The nominal price was divided by the Consumer Price Index (CPI) for food and beverages, 1967 = 100.

TABLE 7.1
U.S. Coffee
Consumption (Y ) in
Relation to Average
Real Retail Price
(X ),* 1970–1980

Source: The data for Y are
from Summary of National
Coffee Drinking Study, Data
Group, Elkins Park, Penn.,
1981; and the data on
nominal X (i.e., X in current
prices) are from Nielsen Food
Index, A. C. Nielsen, New
York, 1981.

I am indebted to Scott E.
Sandberg for collecting the
data.
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high r 2 value. But for reasons already noted, we cannot do so. But if you do want to com-
pare the two r 2 values, you may proceed as follows:

1. Obtain l̂nYt from Eq. (7.8.9) for each observation; that is, obtain the estimated log
value of each observation from this model. Take the antilog of these values and then
compute r 2 between these antilog values and actual Yt in the manner indicated by
Eq. (3.5.14). This r 2 value is comparable to the r 2 value of the linear model (7.8.8).

2. Alternatively, assuming all Y values are positive, take logarithms of the Y values, ln Y.
Obtain the estimated Y values, Ŷt , from the linear model (7.8.8), take the logarithms of
these estimated Y values (i.e., ln Ŷt), and compute the r 2 between (ln Yt) and (ln Ŷt) in
the manner indicated in Eq. (3.5.14). This r 2 value is comparable to the r 2 value
obtained from Eq. (7.8.9).

For our coffee example, we present the necessary raw data to compute the comparable
r 2’s in Table 7.2. To compare the r 2 value of the linear model (7.8.8) with that of (7.8.9),
we first obtain log of (Ŷt) (given in column [6] of Table 7.2), then we obtain the log of
actual Y values (given in column [5] of the table), and then compute r 2 between these two
sets of values using Eq. (3.5.14). The result is an r 2 value of 0.6779, which is now compa-
rable with the r 2 value of the log–linear model of 0.7448. The difference between the two
r2 values is about 0.07.

On the other hand, if we want to compare the r 2 value of the log–linear model with the
linear model, we obtain l̂nYt for each observation from Eq. (7.8.9) (given in column [3] of
the table), obtain their antilog values (given in column [4] of the table), and finally compute
r 2 between these antilog values and the actual Y values, using formula (3.5.14). This will
give an r 2 value of 0.7187, which is slightly higher than that obtained from the linear model
(7.8.8), namely, 0.6628.

Using either method, it seems that the log–linear model gives a slightly better fit.

Antilog of
Yt Ŷt l̂nYt l̂nYt ln Yt ln (Ŷt)

Year (1) (2) (3) (4) (5) (6)

1970 2.57 2.321887 0.843555 2.324616 0.943906 0.842380
1971 2.50 2.336272 0.853611 2.348111 0.916291 0.848557
1972 2.35 2.345863 0.860544 2.364447 0.854415 0.852653
1973 2.30 2.341068 0.857054 2.356209 0.832909 0.850607
1974 2.25 2.326682 0.846863 2.332318 0.810930 0.844443
1975 2.20 2.331477 0.850214 2.340149 0.788457 0.846502
1976 2.11 2.173233 0.757943 2.133882 0.746688 0.776216
1977 1.94 1.823176 0.627279 1.872508 0.662688 0.600580
1978 1.97 2.024579 0.694089 2.001884 0.678034 0.705362
1979 2.06 2.115689 0.731282 2.077742 0.722706 0.749381
1980 2.02 2.130075 0.737688 2.091096 0.703098 0.756157

Notes: Column (1): Actual Y values from Table 7.1.
Column (2): Estimated Y values from the linear model (7.8.8).
Column (3): Estimated log Y values from the double-log model (7.8.9).
Column (4): Antilog of values in column (3).
Column (5): Log values of Y in column (1).
Column (6): Log values of  Ŷt in column (2).

TABLE 7.2
Raw Data for
Comparing Two 
R2 Values

EXAMPLE 7.2
(Continued)
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Allocating R2 among Regressors
Let us return to our child mortality example. We saw in Eq. (7.6.2) that the two regressors
PGNP and FLR explain 0.7077 or 70.77 percent of the variation in child mortality. But now
consider the regression (7.7.2) where we dropped the FLR variable and as a result the
r 2 value dropped to 0.1662. Does that mean the difference in the r2 value of 0.5415
(0.7077 − 0.1662) is attributable to the dropped variable FLR? On the other hand, if you
consider regression (7.7.3), where we dropped the PGNP variable, the r2 value drops to
0.6696. Does that mean the difference in the r2 value of 0.0381 (0.7077 − 0.6696) is due
to the omitted variable PGNP?

The question then is: Can we allocate the multiple R2 of 0.7077 between the two regres-
sors, PGNP and FLR, in this manner? Unfortunately, we cannot do so, for the allocation
depends on the order in which the regressors are introduced, as we just illustrated. Part of
the problem here is that the two regressors are correlated, the correlation coefficient
between the two being 0.2685 (verify it from the data given in Table 6.4). In most applied
work with several regressors, correlation among them is a common problem. Of course, the
problem will be very serious if there is perfect collinearity among the regressors.

The best practical advice is that there is little point in trying to allocate the R2 value to
its constituent regressors.

The “Game’’ of Maximizing R
–2

In concluding this section, a warning is in order: Sometimes researchers play the game of
maximizing R̄2, that is, choosing the model that gives the highest R̄2. But this may be dan-
gerous, for in regression analysis our objective is not to obtain a high R̄2 per se but rather to
obtain dependable estimates of the true population regression coefficients and draw statisti-
cal inferences about them. In empirical analysis it is not unusual to obtain a very high R̄2 but
find that some of the regression coefficients either are statistically insignificant or have signs
that are contrary to a priori expectations. Therefore, the researcher should be more con-
cerned about the logical or theoretical relevance of the explanatory variables to the depen-
dent variable and their statistical significance. If in this process we obtain a high R̄2, well and
good; on the other hand, if R̄2 is low, it does not mean the model is necessarily bad.14

As a matter of fact, Goldberger is very critical about the role of R2. He has said: 

From our perspective, R2 has a very modest role in regression analysis, being a measure of
the goodness of fit of a sample LS [least-squares] linear regression in a body of data. Nothing
in the CR [CLRM] model requires that R2 be high. Hence a high R2 is not evidence in favor of
the model and a low R2 is not evidence against it.

In fact the most important thing about R2 is that it is not important in the CR model.
The CR model is concerned with parameters in a population, not with goodness of fit in the

14Some authors would like to deemphasize the use of R2 as a measure of goodness of fit as well as its
use for comparing two or more R2 values. See Christopher H. Achen, Interpreting and Using
Regression, Sage Publications, Beverly Hills, Calif., 1982, pp. 58–67, and C. Granger and P. Newbold,
“R2 and the Transformation of Regression Variables,” Journal of Econometrics, vol. 4, 1976, pp. 205–210.
Incidentally, the practice of choosing a model on the basis of highest R2, a kind of data mining, intro-
duces what is known as pretest bias, which might destroy some of the properties of OLS estimators
of the classical linear regression model. On this topic, the reader may want to consult George G.
Judge, Carter R. Hill, William E. Griffiths, Helmut Lütkepohl, and Tsoung-Chao Lee, Introduction to the
Theory and Practice of Econometrics, John Wiley, New York, 1982, Chapter 21.
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sample. . . . If one insists on a measure of predictive success (or rather failure), then σ 2 might
suffice: after all, the parameter σ 2 is the expected squared forecast error that would result if
the population CEF [PRF] were used as the predictor. Alternatively, the squared standard error
of forecast . . . at relevant values of x [regressors] may be informative.15

7.9 The Cobb–Douglas Production Function:
More on Functional Form

In Section 6.4 we showed how with appropriate transformations we can convert nonlinear
relationships into linear ones so that we can work within the framework of the classical lin-
ear regression model. The various transformations discussed there in the context of the
two-variable case can be easily extended to multiple regression models. We demonstrate
transformations in this section by taking up the multivariable extension of the two-variable
log–linear model; others can be found in the exercises and in the illustrative examples
discussed throughout the rest of this book. The specific example we discuss is the cele-
brated Cobb–Douglas production function of production theory.

The Cobb–Douglas production function, in its stochastic form, may be expressed as

Yi = β1 Xβ2

2i Xβ3

3i eu i (7.9.1)

where Y = output
X2 = labor input
X3 = capital input
u = stochastic disturbance term
e = base of natural logarithm

From Eq. (7.9.1) it is clear that the relationship between output and the two inputs is
nonlinear. However, if we log-transform this model, we obtain:

ln Yi = ln β1 + β2 ln X2i + β3 ln X3i + ui

= β0 + β2 ln X2i + β3 ln X3i + ui

(7.9.2)

where β0 = ln β1.

Thus written, the model is linear in the parameters β0, β2, and β3 and is therefore a lin-
ear regression model. Notice, though, it is nonlinear in the variables Y and X but linear in
the logs of these variables. In short, Eq. (7.9.2) is a log-log, double-log, or log–linear
model, the multiple regression counterpart of the two-variable log–linear model (6.5.3).

The properties of the Cobb–Douglas production function are quite well known:

1. β2 is the (partial) elasticity of output with respect to the labor input, that is, it measures
the percentage change in output for, say, a 1 percent change in the labor input, holding the cap-
ital input constant (see Exercise 7.9).

2. Likewise, β3 is the (partial) elasticity of output with respect to the capital input, hold-
ing the labor input constant.

3. The sum (β2 + β3) gives information about the returns to scale, that is, the response
of output to a proportionate change in the inputs. If this sum is 1, then there are constant
returns to scale, that is, doubling the inputs will double the output, tripling the inputs will

15Arther S. Goldberger, op. cit., pp. 177–178.
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triple the output, and so on. If the sum is less than 1, there are decreasing returns to scale—
doubling the inputs will less than double the output. Finally, if the sum is greater than 1,
there are increasing returns to scale—doubling the inputs will more than double the output.

Before proceeding further, note that whenever you have a log–linear regression model
involving any number of variables the coefficient of each of the X variables measures the
(partial) elasticity of the dependent variable Y with respect to that variable. Thus, if you have
a k-variable log–linear model:

ln Yi = β0 + β2 ln X2i + β3 ln X3i + · · · + βk ln Xki + ui (7.9.3)

each of the (partial) regression coefficients, β2 through βk , is the (partial) elasticity of Y
with respect to variables X2 through Xk.16

EXAMPLE 7.3
ValueAdded,
Labor Hours, and
Capital Input in
the Manufactur-
ing Sector

To illustrate the Cobb–Douglas production function, we obtained the data shown in
Table 7.3; these data are for the manufacturing sector of all 50 states and Washington, DC,
for 2005.

Assuming that the model (7.9.2) satisfies the assumptions of the classical linear regres-
sion model,17 we obtained the following regression by the OLS method (see Appendix 7A,
Section 7A.5 for the computer printout):

Capital Input
Output Labor Input Capital

Value Added Worker Hrs Expenditure
(thousands of $) (thousands) (thousands of $)

Area Y X2 X3

Alabama 38,372,840 424,471 2,689,076
Alaska 1,805,427 19,895 57,997
Arizona 23,736,129 206,893 2,308,272
Arkansas 26,981,983 304,055 1,376,235
California 217,546,032 1,809,756 13,554,116
Colorado 19,462,751 180,366 1,790,751
Connecticut 28,972,772 224,267 1,210,229
Delaware 14,313,157 54,455 421,064
District of Columbia 159,921 2,029 7,188
Florida 47,289,846 471,211 2,761,281
Georgia 63,015,125 659,379 3,540,475
Hawaii 1,809,052 17,528 146,371
Idaho 10,511,786 75,414 848,220
Illinois 105,324,866 963,156 5,870,409
Indiana 90,120,459 835,083 5,832,503
Iowa 39,079,550 336,159 1,795,976
Kansas 22,826,760 246,144 1,595,118
Kentucky 38,686,340 384,484 2,503,693
Louisiana 69,910,555 216,149 4,726,625

TABLE 7.3 
Value Added, Labor
Hours, and Capital
Input in the Manu-
facturing Sector of
the U.S., 2005

Source: 2005 Annual Survey
of Manufacturers, Sector 31:
Supplemental Statistics
for U.S.

16To see this, differentiate Eq. (7.9.3) partially with respect to the log of each X variable. Therefore,
∂ ln Y/∂ ln X2 = (∂Y/∂ X2)(X2/Y ) = β2, which, by definition, is the elasticity of Y with respect to X2

and ∂ ln Y/∂ ln X3 = (∂Y/∂ X3)(X3/Y ) = β3, which is the elasticity of Y with respect to X3, and so on.
17Notice that in the Cobb–Douglas production function (7.9.1) we have introduced the stochastic
error term in a special way so that in the resulting logarithmic transformation it enters in the usual
linear form. On this, see Section 6.9.
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Maine 7,856,947 82,021 415,131
Maryland 21,352,966 174,855 1,729,116
Massachusetts 46,044,292 355,701 2,706,065
Michigan 92,335,528 943,298 5,294,356
Minnesota 48,304,274 456,553 2,833,525
Mississippi 17,207,903 267,806 1,212,281
Missouri 47,340,157 439,427 2,404,122
Montana 2,644,567 24,167 334,008
Nebraska 14,650,080 163,637 627,806
Nevada 7,290,360 59,737 522,335
New Hampshire 9,188,322 96,106 507,488
New Jersey 51,298,516 407,076 3,295,056
New Mexico 20,401,410 43,079 404,749
New York 87,756,129 727,177 4,260,353
North Carolina 101,268,432 820,013 4,086,558
North Dakota 3,556,025 34,723 184,700
Ohio 124,986,166 1,174,540 6,301,421
Oklahoma 20,451,196 201,284 1,327,353
Oregon 34,808,109 257,820 1,456,683
Pennsylvania 104,858,322 944,998 5,896,392
Rhode Island 6,541,356 68,987 297,618
South Carolina 37,668,126 400,317 2,500,071
South Dakota 4,988,905 56,524 311,251
Tennessee 62,828,100 582,241 4,126,465
Texas 172,960,157 1,120,382 11,588,283
Utah 15,702,637 150,030 762,671
Vermont 5,418,786 48,134 276,293
Virginia 49,166,991 425,346 2,731,669
Washington 46,164,427 313,279 1,945,860
West Virginia 9,185,967 89,639 685,587
Wisconsin 66,964,978 694,628 3,902,823
Wyoming 2,979,475 15,221 361,536

EXAMPLE 7.3
(Continued)

l̂nYi = 3.8876 � 0.4683lnX2i � 0.5213lnX3i

(0.3962) (0.0989) (0.0969)

t = (9.8115) (4.7342) (5.3803) (7.9.4)

R2 =0.9642 df = 48

R̄2 = 0.9627

From Eq. (7.9.4) we see that in the U.S. manufacturing sector for 2005, the output elas-
ticities of labor and capital were 0.4683 and 0.5213, respectively. In other words, over the
50 U.S. states and the District of Columbia, holding the capital input constant, a 1 percent
increase in the labor input led on the average to about a 0.47 percent increase in the out-
put. Similarly, holding the labor input constant, a 1 percent increase in the capital input
led on the average to about a 0.52 percent increase in the output. Adding the two output
elasticities, we obtain 0.99, which gives the value of the returns to scale parameter. As is
evident, the manufacturing sector for the 50 United States and the District of Columbia
was characterized by constant returns to scale.

From a purely statistics viewpoint, the estimated regression line fits the data quite well.
The R2 value of 0.9642 means that about 96 percent of the variation in the (log of) output is
explained by the (logs of) labor and capital. In Chapter 8, we shall see how the estimated
standard errors can be used to test hypotheses about the “true” values of the parameters of
the Cobb–Douglas production function for the U.S. manufacturing sector of the economy.
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7.10 Polynomial Regression Models

We now consider a class of multiple regression models, the polynomial regression
models, that have found extensive use in econometric research relating to cost and produc-
tion functions. In introducing these models, we further extend the range of models to which
the classical linear regression model can easily be applied.

To fix the ideas, consider Figure 7.1, which relates the short-run marginal cost (MC) of
production (Y ) of a commodity to the level of its output (X ). The visually-drawn MC curve
in the figure, the textbook U-shaped curve, shows that the relationship between MC and
output is nonlinear. If we were to quantify this relationship from the given scatterpoints,
how would we go about it? In other words, what type of econometric model would capture
first the declining and then the increasing nature of marginal cost?

Geometrically, the MC curve depicted in Figure 7.1 represents a parabola. Mathemati-
cally, the parabola is represented by the following equation:

Y = β0 + β1 X + β2 X2 (7.10.1)

which is called a quadratic function, or more generally, a second-degree polynomial in the
variable X—the highest power of X represents the degree of the polynomial (if X3 were
added to the preceding function, it would be a third-degree polynomial, and so on).

The stochastic version of Eq. (7.10.1) may be written as

Yi = β0 + β1 Xi + β2 X2
i + ui (7.10.2)

which is called a second-degree polynomial regression.
The general kth degree polynomial regression may be written as

Yi = β0 + β1 Xi + β2 X2
i + · · · + βk Xk

i + ui (7.10.3)

Notice that in these types of polynomial regressions there is only one explanatory variable
on the right-hand side but it appears with various powers, thus making them multiple re-
gression models. Incidentally, note that if Xi is assumed to be fixed or nonstochastic, the
powered terms of Xi also become fixed or nonstochastic.

Do these models present any special estimation problems? Since the second-degree
polynomial (7.10.2) or the kth degree polynomial (7.10.13) is linear in the parameters, the
β’s, they can be estimated by the usual OLS or ML methodology. But what about the
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FIGURE 7.1
The U-shaped
marginal cost curve.
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EXAMPLE 7.4
Estimating the
Total Cost
Function

As an example of the polynomial regression, consider the data on output and total cost of
production of a commodity in the short run given in Table 7.4. What type of regression
model will fit these data? For this purpose, let us first draw the scattergram, which is
shown in Figure 7.2.

From this figure it is clear that the relationship between total cost and output resem-
bles the elongated S curve; notice how the total cost curve first increases gradually and
then rapidly, as predicted by the celebrated law of diminishing returns. This S shape of the
total cost curve can be captured by the following cubic or third-degree polynomial:

Yi = β0 + β1 Xi + β2 X 2
i + β3 X 3

i + ui (7.10.4)

where Y = total cost and X = output.
Given the data of Table 7.4, we can apply the OLS method to estimate the parameters

of Eq. (7.10.4). But before we do that, let us find out what economic theory has to say
about the short-run cubic cost function (7.10.4). Elementary price theory shows that in
the short run the marginal cost (MC) and average cost (AC) curves of production are
typically U-shaped—initially, as output increases both MC and AC decline, but after a
certain level of output they both turn upward, again the consequence of the law of di-
minishing return. This can be seen in Figure 7.3 (see also Figure 7.1). And since the MC
and AC curves are derived from the total cost curve, the U-shaped nature of these curves
puts some restrictions on the parameters of the total cost curve (7.10.4). As a matter of

Output Total Cost, $

1 193
2 226
3 240
4 244
5 257
6 260
7 274
8 297
9 350

10 420

collinearity problem? Aren’t the various X’s highly correlated since they are all powers of
X? Yes, but remember that terms like X2, X3, X4, etc., are all nonlinear functions of X and
hence, strictly speaking, do not violate the no multicollinearity assumption. In short, poly-
nomial regression models can be estimated by the techniques presented in this chapter and
present no new estimation problems.

TABLE 7.4
Total Cost (Y ) and
Output (X )

X
1 2 3 4 5 6 7 8 9 10
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FIGURE 7.2 The total cost curve.

(Continued)
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EXAMPLE 7.4
(Continued)
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FIGURE 7.3 Short-run cost functions.

fact, it can be shown that the parameters of Eq. (7.10.4) must satisfy the following
restrictions if one is to observe the typical U-shaped short-run marginal and average cost
curves:18

1. β0, β1, and β3 > 0

2. β2 < 0 (7.10.5)

3. β2
2 < 3β1β3

All this theoretical discussion might seem a bit tedious. But this knowledge is extremely
useful when we examine the empirical results, for if the empirical results do not agree with
prior expectations, then, assuming we have not committed a specification error (i.e., cho-
sen the wrong model), we will have to modify our theory or look for a new theory and
start the empirical enquiry all over again. But as noted in the Introduction, this is the na-
ture of any empirical investigation.

Empirical Results. When the third-degree polynomial regression was fitted to the data
of Table 7.4, we obtained the following results:

Ŷi = 141.7667 + 63.4776Xi − 12.9615X 2
i + 0.9396X 3

i

(6.3753) (4.7786)     (0.9857) (0.0591) R2 = 0.9983 (7.10.6)

(Note: The figures in parentheses are the estimated standard errors.) Although we will examine
the statistical significance of these results in the next chapter, the reader can verify that they
are in conformity with the theoretical expectations listed in Eq. (7.10.5). We leave it as an
exercise for the reader to interpret the regression (7.10.6).

18See Alpha C. Chiang, Fundamental Methods of Mathematical Economics, 3d ed., McGraw-Hill, New
York, 1984, pp. 250–252.
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*7.11 Partial Correlation Coefficients

Explanation of Simple and Partial Correlation Coefficients
In Chapter 3 we introduced the coefficient of correlation r as a measure of the degree of
linear association between two variables. For the three-variable regression model we can
compute three correlation coefficients: r1 2 (correlation between Y and X2), r1 3 (correlation
coefficient between Y and X3), and r2 3 (correlation coefficient between X2 and X3); notice
that we are letting the subscript 1 represent Y for notational convenience. These correlation
coefficients are called gross or simple correlation coefficients, or correlation coefficients
of zero order. These coefficients can be computed by the definition of correlation coeffi-
cient given in Eq. (3.5.13).

But now consider this question: Does, say, r1 2 in fact measure the “true” degree of (lin-
ear) association between Y and X2 when a third variable X3 may be associated with both of
them? This question is analogous to the following question: Suppose the true regression
model is (7.1.1) but we omit from the model the variable X3 and simply regress Y on X2,
obtaining the slope coefficient of, say, b1 2. Will this coefficient be equal to the true coeffi-
cient β2 if the model (7.1.1) were estimated to begin with? The answer should be apparent
from our discussion in Section 7.7. In general, r1 2 is not likely to reflect the true degree of
association between Y and X2 in the presence of X3. As a matter of fact, it is likely to give a
false impression of the nature of association between Y and X2, as will be shown shortly.
Therefore, what we need is a correlation coefficient that is independent of the influence,
if any, of X3 on X2 and Y. Such a correlation coefficient can be obtained and is known
appropriately as the partial correlation coefficient. Conceptually, it is similar to the partial
regression coefficient. We define

r1 2.3 = partial correlation coefficient between Y and X2, holding X3 constant

r1 3.2 = partial correlation coefficient between Y and X3, holding X2 constant

r2 3.1 = partial correlation coefficient between X2 and X3, holding Y constant

EXAMPLE 7.5
GDP Growth
Rate and Relative
per Capita GDP
for 2007 in 190
Countries (in
billions of 2000
dollars)

As an additional economic example of the polynomial regression model, consider the
following regression results:

ĜDPGi � 5.5347 � 5.5788 RGDP � 2.8378 RGDP2

se = (0.2435) (1.5995) (1.4391) (7.10.7)
R2 = 0.1092 adj R2 � 0.0996

Where GDPG � GDP growth rate, percent in 2007, and RGDP � relative per capita GDP
in 2007 (percentage of U.S. GDP per capita, 2007). The adjusted R2 (adj R2) tells us that
after taking into account the number of regressors, the model explains only about
9.96 percent of the variation in GDPG. Even the unadjusted R2 of 0.1092 seems low. This
might seem to be a disappointing value, but as we shall show in the next chapter,
such low R2 values are frequently encountered in cross-sectional data with a large number
of observations. Besides, even an apparently low R2 value can be statistically significant
(i.e., different from zero), as we will show in the next chapter.

*Optional.

Source: World Bank World
Development Indicators,
adjusted to 2000 base and
estimated and projected
values developed by the
Economic Research Service.
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These partial correlations can be easily obtained from the simple or zero-order, correlation
coefficients as follows (for proofs, see the exercises):19

r1 2.3 = r1 2 − r1 3r2 3√(
1 − r2

1 3

) (
1 − r2

2 3

) (7.11.1)

r1 3.2 = r1 3 − r1 2r2 3√(
1 − r2

1 2

) (
1 − r2

2 3

) (7.11.2)

r2 3.1 = r2 3 − r1 2r1 3√(
1 − r2

1 2

) (
1 − r2

1 3

) (7.11.3)

The partial correlations given in Eqs. (7.11.1) to (7.11.3) are called first-order correlation
coefficients. By order we mean the number of secondary subscripts. Thus r1 2.3 4 would be
the correlation coefficient of order two, r1 2.3 4 5 would be the correlation coefficient of order
three, and so on. As noted previously, r1 2, r1 3, and so on are called simple or zero-order
correlations. The interpretation of, say, r1 2.3 4 is that it gives the coefficient of correlation
between Y and X2, holding X3 and X4 constant.

Interpretation of Simple and Partial
Correlation Coefficients 
In the two-variable case, the simple r had a straightforward meaning: It measured the
degree of (linear) association (and not causation) between the dependent variable Y and the
single explanatory variable X. But once we go beyond the two-variable case, we need to
pay careful attention to the interpretation of the simple correlation coefficient. From
Eq. (7.11.1), for example, we observe the following:

1. Even if r1 2 = 0, r1 2.3 will not be zero unless r1 3 or r2 3 or both are zero.

2. If r1 2 = 0 and r1 3 and r2 3 are nonzero and are of the same sign, r1 2.3 will be negative,
whereas if they are of the opposite signs, it will be positive. An example will make this
point clear. Let Y = crop yield, X2 = rainfall, and X3 = temperature. Assume r1 2 = 0, that
is, no association between crop yield and rainfall. Assume further that r1 3 is positive and
r2 3 is negative. Then, as Eq. (7.11.1) shows, r1 2.3 will be positive; that is, holding tempera-
ture constant, there is a positive association between yield and rainfall. This seemingly
paradoxical result, however, is not surprising. Since temperature X3 affects both yield Y and
rainfall X2, in order to find out the net relationship between crop yield and rainfall, we need
to remove the influence of the “nuisance” variable temperature. This example shows how
one might be misled by the simple coefficient of correlation.

3. The terms r1 2.3 and r1 2 (and similar comparisons) need not have the same sign.

4. In the two-variable case we have seen that r2 lies between 0 and 1. The same property
holds true of the squared partial correlation coefficients. Using this fact, the reader should
verify that one can obtain the following expression from Eq. (7.11.1):

0 ≤ r2
1 2 + r2

1 3 + r2
2 3 − 2r1 2r1 3r2 3 ≤ 1 (7.11.4)

19Most computer programs for multiple regression analysis routinely compute the simple correlation
coefficients; hence the partial correlation coefficients can be readily computed.
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which gives the interrelationships among the three zero-order correlation coefficients. Sim-
ilar expressions can be derived from Eqs. (7.11.2) and (7.11.3).

5. Suppose that r1 3 = r2 3 = 0. Does this mean that r1 2 is also zero? The answer is
obvious from Eq. (7.11.4). The fact that Y and X3 and X2 and X3 are uncorrelated does not
mean that Y and X2 are uncorrelated.

In passing, note that the expression r2
1 2.3 may be called the coefficient of partial

determination and may be interpreted as the proportion of the variation in Y not explained
by the variable X3 that has been explained by the inclusion of X2 into the model (see Exer-
cise 7.5). Conceptually it is similar to R2.

Before moving on, note the following relationships between R2, simple correlation co-
efficients, and partial correlation coefficients:

R2 = r2
1 2 + r2

1 3 − 2r1 2r1 3r2 3

1 − r2
2 3

(7.11.5)

R2 = r2
1 2 + (

1 − r2
1 2

)
r2

1 3.2 (7.11.6)

R2 = r2
1 3 + (

1 − r2
1 3

)
r2

1 2.3 (7.11.7)

In concluding this section, consider the following: It was stated previously that R2 will
not decrease if an additional explanatory variable is introduced into the model, which can
be seen clearly from Eq. (7.11.6). This equation states that the proportion of the variation in
Y explained by X2 and X3 jointly is the sum of two parts: the part explained by X2 alone
( = r2

1 2) and the part not explained by X2 ( = 1 − r2
1 2) times the proportion that is explained

by X3 after holding the influence of X2 constant. Now R2 > r2
1 2 so long as r2

1 3.2 > 0. At
worst, r2

1 3.2 will be zero, in which case R2 = r2
1 2.

Summary and 
Conclusions

1. This chapter introduced the simplest possible multiple linear regression model, namely,
the three-variable regression model. It is understood that the term linear refers to
linearity in the parameters and not necessarily in the variables.

2. Although a three-variable regression model is in many ways an extension of the two-
variable model, there are some new concepts involved, such as partial regression coeffi-
cients, partial correlation coefficients, multiple correlation coefficient, adjusted and
unadjusted (for degrees of freedom) R2, multicollinearity, and specification bias.

3. This chapter also considered the functional form of the multiple regression model, such
as the Cobb–Douglas production function and the polynomial regression model.

4. Although R2 and adjusted R2 are overall measures of how the chosen model fits a given
set of data, their importance should not be overplayed. What is critical is the underlying
theoretical expectations about the model in terms of a priori signs of the coefficients
of the variables entering the model and, as it is shown in the following chapter, their sta-
tistical significance.

5. The results presented in this chapter can be easily generalized to a multiple linear
regression model involving any number of regressors. But the algebra becomes very
tedious. This tedium can be avoided by resorting to matrix algebra. For the interested
reader, the extension to the k-variable regression model using matrix algebra is
presented in Appendix C, which is optional. But the general reader can read the
remainder of the text without knowing much of matrix algebra.
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EXERCISES

TABLE 7.5 Y X2 X3

1 1 2
3 2 1
8 3 �3

Questions
7.1. Consider the data in Table 7.5.

Based on these data, estimate the following regressions:

Yi = α1 + α2 X2i + u1i (1)
Yi = λ1 + λ3 X3i + u2i (2)
Yi = β1 + β2 X2i + β3 X3i + ui (3)

Note: Estimate only the coefficients and not the standard errors.

a. Is α2 = β2? Why or why not?

b. Is λ3 = β3? Why or why not?

What important conclusion do you draw from this exercise?

7.2. From the following data estimate the partial regression coefficients, their standard
errors, and the adjusted and unadjusted R2 values:

Ȳ = 367.693 X̄2 = 402.760 X̄3 = 8.0∑
(Yi − Ȳ )2 = 66042.269

∑
(X2i − X̄2)2 = 84855.096∑

(X3i − X̄3)2 = 280.000
∑

(Yi − Ȳ )(X2i − X̄2) = 74778.346∑
(Yi − Ȳ )(X3i − X̄3) = 4250.900

∑
(X2i − X̄2)(X3i − X̄3) = 4796.000

n = 15

7.3. Show that Eq. (7.4.7) can also be expressed as

β̂2 =
∑

yi (x2i − b2 3x3i )∑
(x2i − b2 3x3i )2

= net (of x3) covariation between y and x2

net (of x3) variation in x2

where b2 3 is the slope coefficient in the regression of X2 on X3. (Hint: Recall that
b2 3 = ∑

x2i x3i/
∑

x2
3i .)

7.4. In a multiple regression model you are told that the error term ui has the following
probability distribution, namely, ui ∼ N (0, 4). How would you set up a Monte Carlo
experiment to verify that the true variance is in fact 4?

7.5. Show that r2
1 2.3 = (R2 − r2

1 3)/(1 − r2
1 3) and interpret the equation.

7.6. If the relation α1 X1 + α2 X2 + α3 X3 = 0 holds true for all values of X1, X2, and X3,
find the values of the three partial correlation coefficients.

7.7. Is it possible to obtain the following from a set of data?

a. r2 3 = 0.9, r1 3 = −0.2, r1 2 = 0.8

b. r1 2 = 0.6, r2 3 = −0.9, r3 1 = −0.5

c. r2 1 = 0.01, r1 3 = 0.66, r2 3 = −0.7
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7.8. Consider the following model:

Yi = β1 + β2 Education i + β2 Years of experience + ui

Suppose you leave out the years of experience variable. What kinds of problems or
biases would you expect? Explain verbally.

7.9. Show that β2 and β3 in Eq. (7.9.2) do, in fact, give output elasticities of labor and
capital. (This question can be answered without using calculus; just recall the defin-
ition of the elasticity coefficient and remember that a change in the logarithm of a
variable is a relative change, assuming the changes are rather small.)

7.10. Consider the three-variable linear regression model discussed in this chapter.

a. Suppose you multiply all the X2 values by 2. What will be the effect of this rescal-
ing, if any, on the estimates of the parameters and their standard errors?

b. Now instead of (a), suppose you multiply all the Y values by 2. What will be the
effect of this, if any, on the estimated parameters and their standard errors?

7.11. In general R2 �= r2
1 2 + r2

1 3, but it is so only if r2 3 = 0. Comment and point out the
significance of this finding. (Hint: See Eq. [7.11.5].)

7.12. Consider the following models.*

Model A: Yt = α1 + α2 X2t + α3 X3t + u1t

Model B: (Yt − X2t ) = β1 + β2 X2t + β3 X3t + u2t

a. Will OLS estimates of α1 and β1 be the same? Why?

b. Will OLS estimates of α3 and β3 be the same? Why?

c. What is the relationship between α2 and β2?

d. Can you compare the R2 terms of the two models? Why or why not?

7.13. Suppose you estimate the consumption function†

Yi = α1 + α2 Xi + u1i

and the savings function

Zi = β1 + β2 Xi + u2i

where Y = consumption, Z = savings, X = income, and X = Y + Z , that is,
income is equal to consumption plus savings.

a. What is the relationship, if any, between α2 and β2? Show your calculations.

b. Will the residual sum of squares, RSS, be the same for the two models? Explain.

c. Can you compare the R2 terms of the two models? Why or why not?

7.14. Suppose you express the Cobb–Douglas model given in Eq. (7.9.1) as follows:

Yi = β1 Xβ2

2i Xβ3

3i u i

If you take the log-transform of this model, you will have ln ui as the disturbance
term on the right-hand side.

a. What probabilistic assumptions do you have to make about ln ui to be able to
apply the classical normal linear regression model (CNLRM)? How would you
test this with the data given in Table 7.3?

b. Do the same assumptions apply to ui ? Why or why not?

*Adapted from Wojciech W. Charemza and Derek F. Deadman, Econometric Practice: General to Specific
Modelling, Cointegration and Vector Autogression, Edward Elgar, Brookfield, Vermont, 1992, p. 18.
†Adapted from Peter Kennedy, A Guide to Econometrics, 3d ed., The MIT Press, Cambridge,
Massachusetts, 1992, p. 308, Question #9.
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218 Part One Single-Equation Regression Models

7.15. Regression through the origin. Consider the following regression through the origin:

Yi = β̂2 X2i + β̂3 X3i + û i

a. How would you go about estimating the unknowns?

b. Will 
∑

û i be zero for this model? Why or why not?

c. Will 
∑

û i X2i = ∑
û i X3i = 0 for this model?

d. When would you use such a model?

e. Can you generalize your results to the k-variable model?

(Hint: Follow the discussion for the two-variable case given in Chapter 6.)

*I am indebted to Joe Walsh for collecting these data from a major wholesaler in the Detroit
metropolitan area and subsequently processing them.

TABLE 7.6
Quarterly Demand
for Roses in Metro
Detroit Area, from
1971-III to 1975-II

Year and 
Quarter Y X2 X3 X4 X5

1971–III 11,484 2.26 3.49 158.11 1
–IV 9,348 2.54 2.85 173.36 2

1972–I 8,429 3.07 4.06 165.26 3
–II 10,079 2.91 3.64 172.92 4
–III 9,240 2.73 3.21 178.46 5
–IV 8,862 2.77 3.66 198.62 6

1973–I 6,216 3.59 3.76 186.28 7
–II 8,253 3.23 3.49 188.98 8
–III 8,038 2.60 3.13 180.49 9
–IV 7,476 2.89 3.20 183.33 10

1974–I 5,911 3.77 3.65 181.87 11
–II 7,950 3.64 3.60 185.00 12
–III 6,134 2.82 2.94 184.00 13
–IV 5,868 2.96 3.12 188.20 14

1975–I 3,160 4.24 3.58 175.67 15
–II 5,872 3.69 3.53 188.00 16

Empirical Exercises
7.16. The demand for roses.* Table 7.6 gives quarterly data on these variables:

Y = quantity of roses sold, dozens

X2 = average wholesale price of roses, $/dozen

X3 = average wholesale price of carnations, $/dozen

X4 = average weekly family disposable income, $/week

X5 = the trend variable taking values of 1, 2, and so on, for the period 1971–III to
1975–II in the Detroit metropolitan area

You are asked to consider the following demand functions:

Yt = α1 + α2 X2t + α3 X3t + α4 X4t + α5 X5t + ut

lnYt = β1 + β2 lnX2t + β3 lnX3t + β4 lnX4t + β5 X5t + ut

a. Estimate the parameters of the linear model and interpret the results.

b. Estimate the parameters of the log–linear model and interpret the results.
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c. β2, β3, and β4 give, respectively, the own-price, cross-price, and income elastici-
ties of demand. What are their a priori signs? Do the results concur with the a
priori expectations?

d. How would you compute the own-price, cross-price, and income elasticities for
the linear model?

e. On the basis of your analysis, which model, if either, would you choose and why?

7.17. Wildcat activity. Wildcats are wells drilled to find and produce oil and/or gas in an
improved area or to find a new reservoir in a field previously found to be productive
of oil or gas or to extend the limit of a known oil or gas reservoir. Table 7.7 gives data
on these variables:*

Y = the number of wildcats drilled

X2 = price at the wellhead in the previous period 
(in constant dollars, 1972 = 100)

X3 = domestic output

X4 = GNP constant dollars (1972 = 100)

X5 = trend variable, 1948 = 1, 1949 = 2, . . . , 1978 = 31

See if the following model fits the data:

Yt = β1 + β2 X2t + β3 ln X3t + β4 X4t + β5 X5t + ut

a. Can you offer an a priori rationale to this model?

b. Assuming the model is acceptable, estimate the parameters of the model and their
standard errors, and obtain R2 and R̄2.

c. Comment on your results in view of your prior expectations.

d. What other specification would you suggest to explain wildcat activity? Why?

7.18. U.S. defense budget outlays, 1962–1981. In order to explain the U.S. defense budget,
you are asked to consider the following model:

Yt = β1 + β2 X2t + β3 X3t + β4 X4t + β5 X5t + ut

where Yt = defense budget-outlay for year t, $ billions

X2t = GNP for year t, $ billions

X3t = U.S. military sales/assistance in year t, $ billions

X4t = aerospace industry sales, $ billions

X5t = military conflicts involving more than 100,000 troops. This variable
takes a value of 1 when 100,000 or more troops are involved but is
equal to zero when that number is under 100,000.

To test this model, you are given the data in Table 7.8.

a. Estimate the parameters of this model and their standard errors and obtain R2,
modified R2, and R̄2.

b. Comment on the results, taking into account any prior expectations you have
about the relationship between Y and the various X variables.

c. What other variable(s) might you want to include in the model and why?

*I am indebted to Raymond Savino for collecting and processing these data.
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220 Part One Single-Equation Regression Models

7.19. The demand for chicken in the United States, 1960–1982. To study the per capita
consumption of chicken in the United States, you are given the data in Table 7.9,

where Y = per capita consumption of chickens, lb

X2 = real disposable income per capita, $

X3 = real retail price of chicken per lb, ¢

X4 = real retail price of pork per lb, ¢

X5 = real retail price of beef per lb, ¢

X6 = composite real price of chicken substitutes per lb, ¢, which is a
weighted average of the real retail prices per lb of pork and beef, the
weights being the relative consumptions of beef and pork in total beef
and pork consumption

TABLE 7.7
Wildcat Activity 

Domestic
Output

Per Barrel (millions of GNP,
Thousands Price, barrels Constant
of Wildcats, Constant $ per day) $ Billions Time

(Y ) (X2) (X3) (X4) (X5)

8.01 4.89 5.52 487.67 1948 = 1
9.06 4.83 5.05 490.59 1949 = 2

10.31 4.68 5.41 533.55 1950 = 3
11.76 4.42 6.16 576.57 1951 = 4
12.43 4.36 6.26 598.62 1952 = 5
13.31 4.55 6.34 621.77 1953 = 6
13.10 4.66 6.81 613.67 1954 = 7
14.94 4.54 7.15 654.80 1955 = 8
16.17 4.44 7.17 668.84 1956 = 9
14.71 4.75 6.71 681.02 1957 = 10
13.20 4.56 7.05 679.53 1958 = 11
13.19 4.29 7.04 720.53 1959 = 12
11.70 4.19 7.18 736.86 1960 = 13
10.99 4.17 7.33 755.34 1961 = 14
10.80 4.11 7.54 799.15 1962 = 15
10.66 4.04 7.61 830.70 1963 = 16
10.75 3.96 7.80 874.29 1964 = 17
9.47 3.85 8.30 925.86 1965 = 18

10.31 3.75 8.81 980.98 1966 = 19
8.88 3.69 8.66 1,007.72 1967 = 20
8.88 3.56 8.78 1,051.83 1968 = 21
9.70 3.56 9.18 1,078.76 1969 = 22
7.69 3.48 9.03 1,075.31 1970 = 23
6.92 3.53 9.00 1,107.48 1971 = 24
7.54 3.39 8.78 1,171.10 1972 = 25
7.47 3.68 8.38 1,234.97 1973 = 26
8.63 5.92 8.01 1,217.81 1974 = 27
9.21 6.03 7.78 1,202.36 1975 = 28
9.23 6.12 7.88 1,271.01 1976 = 29
9.96 6.05 7.88 1,332.67 1977 = 30

10.78 5.89 8.67 1,385.10 1978 = 31

Source: Energy Information
Administration, 1978 Report to
Congress.
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TABLE 7.8
U.S. Defense Budget
Outlays, 1962–1981 

Defense U.S. Military Aerospace
Budget Sales/ Industry Conflicts
Outlays GNP Assistance Sales 100,000�

Year (Y) (X2) (X3) (X4) (X5)

1962 51.1 560.3 0.6 16.0 0
1963 52.3 590.5 0.9 16.4 0
1964 53.6 632.4 1.1 16.7 0
1965 49.6 684.9 1.4 17.0 1
1966 56.8 749.9 1.6 20.2 1
1967 70.1 793.9 1.0 23.4 1
1968 80.5 865.0 0.8 25.6 1
1969 81.2 931.4 1.5 24.6 1
1970 80.3 992.7 1.0 24.8 1
1971 77.7 1,077.6 1.5 21.7 1
1972 78.3 1,185.9 2.95 21.5 1
1973 74.5 1,326.4 4.8 24.3 0
1974 77.8 1,434.2 10.3 26.8 0
1975 85.6 1,549.2 16.0 29.5 0
1976 89.4 1,718.0 14.7 30.4 0
1977 97.5 1,918.3 8.3 33.3 0
1978 105.2 2,163.9 11.0 38.0 0
1979 117.7 2,417.8 13.0 46.2 0
1980 135.9 2,633.1 15.3 57.6 0
1981 162.1 2,937.7 18.0 68.9 0

Source: These data were
collected by Albert Lucchino
from various government
publications.

TABLE 7.9
Demand for Chicken
in the U.S., 1960–1982

Year Y X2 X3 X4 X5 X6

1960 27.8 397.5 42.2 50.7 78.3 65.8
1961 29.9 413.3 38.1 52.0 79.2 66.9
1962 29.8 439.2 40.3 54.0 79.2 67.8
1963 30.8 459.7 39.5 55.3 79.2 69.6
1964 31.2 492.9 37.3 54.7 77.4 68.7
1965 33.3 528.6 38.1 63.7 80.2 73.6
1966 35.6 560.3 39.3 69.8 80.4 76.3
1967 36.4 624.6 37.8 65.9 83.9 77.2
1968 36.7 666.4 38.4 64.5 85.5 78.1
1969 38.4 717.8 40.1 70.0 93.7 84.7
1970 40.4 768.2 38.6 73.2 106.1 93.3
1971 40.3 843.3 39.8 67.8 104.8 89.7
1972 41.8 911.6 39.7 79.1 114.0 100.7
1973 40.4 931.1 52.1 95.4 124.1 113.5
1974 40.7 1,021.5 48.9 94.2 127.6 115.3
1975 40.1 1,165.9 58.3 123.5 142.9 136.7
1976 42.7 1,349.6 57.9 129.9 143.6 139.2
1977 44.1 1,449.4 56.5 117.6 139.2 132.0
1978 46.7 1,575.5 63.7 130.9 165.5 132.1
1979 50.6 1,759.1 61.6 129.8 203.3 154.4
1980 50.1 1,994.2 58.9 128.0 219.6 174.9
1981 51.7 2,258.1 66.4 141.0 221.6 180.8
1982 52.9 2,478.7 70.4 168.2 232.6 189.4

Note: The real prices were obtained by dividing the nominal prices by the Consumer Price Index for food

Source: Data on Y are from
Citibase and on X2 through X6

are from the U.S. Department of
Agriculture. I am indebted to
Robert J. Fisher for collecting
the data and for the statistical
analysis.
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Now consider the following demand functions:

ln Yt = α1 + α2 ln X2t + α3 ln X3t + ut (1)
ln Yt = γ1 + γ2 ln X2t + γ3 ln X3t + γ4 ln X4t + ut (2)
ln Yt = λ1 + λ2 ln X2t + λ3 ln X3t + λ4 ln X5t + ut (3)
ln Yt = θ1 + θ2 ln X2t + θ3 ln X3t + θ4 ln X4t + θ5 ln X5t + ut (4)
ln Yt = β1 + β2 ln X2t + β3 ln X3t + β4 ln X6t + ut (5)

From microeconomic theory it is known that the demand for a commodity generally
depends on the real income of the consumer, the real price of the commodity, and
the real prices of competing or complementary commodities. In view of these
considerations, answer the following questions.

a. Which demand function among the ones given here would you choose, and why?

b. How would you interpret the coefficients of ln X2t and ln X3t in these models?

c. What is the difference between specifications (2) and (4)?

d. What problems do you foresee if you adopt specification (4)? (Hint: Prices of
both pork and beef are included along with the price of chicken.)

e. Since specification (5) includes the composite price of beef and pork, would you
prefer the demand function (5) to the function (4)? Why?

f. Are pork and/or beef competing or substitute products to chicken? How do you
know?

g. Assume function (5) is the “correct” demand function. Estimate the parameters of
this model, obtain their standard errors, and R2, R̄2, and modified R2. Interpret
your results.

h. Now suppose you run the “incorrect” model (2). Assess the consequences of this
mis-specification by considering the values of γ2 and γ3 in relation to β2 and β3,
respectively. (Hint: Pay attention to the discussion in Section 7.7.)

7.20. In a study of turnover in the labor market, James F. Ragan, Jr., obtained the follow-
ing results for the U.S. economy for the period of 1950–I to 1979–IV.* (Figures in the
parentheses are the estimated t statistics.)

l̂nYt = 4.47 − 0.34 ln X2t + 1.22 ln X3t + 1.22 ln X4t

(4.28) (−5.31) (3.64) (3.10)

+ 0.80 ln X5t − 0.0055 X6t R̄2 = 0.5370

(1.10) (−3.09)

Note: We will discuss the t statistics in the next chapter.

where Y = quit rate in manufacturing, defined as number of people leaving jobs
voluntarily per 100 employees

X2 = an instrumental or proxy variable for adult male unemployment rate
X3 = percentage of employees younger than 25
X4 = Nt−1/Nt−4 = ratio of manufacturing employment in quarter (t − 1) to that

in quarter (t − 4)
X5 = percentage of women employees
X6 = time trend (1950–I = 1)

*Source: See Ragan’s article, “Turnover in the Labor Market: A Study of Quit and Layoff Rates,”
Economic Review, Federal Reserve Bank of Kansas City, May 1981, pp. 13–22.
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a. Interpret the foregoing results.

b. Is the observed negative relationship between the logs of Y and X2 justifiable a
priori?

c. Why is the coefficient of ln X3 positive?

d. Since the trend coefficient is negative, there is a secular decline of what percent in
the quit rate and why is there such a decline?

e. Is the R̄2 “too” low?

f. Can you estimate the standard errors of the regression coefficients from the given
data? Why or why not?

7.21. Consider the following demand function for money in the United States for the
period 1980–1998:

Mt = β1Y β2
t rβ3

t eut

where M = real money demand, using the M2 definition of money
Y = real GDP
r = interest rate

To estimate the above demand for money function, you are given the data in
Table 7.10.

Note: To convert nominal quantities into real quantities, divide M and GDP by
CPI. There is no need to divide the interest rate variable by CPI. Also, note that we
have given two interest rates, a short-term rate as measured by the 3-month treasury
bill rate and the long-term rate as measured by the yield on the 30-year treasury bond,
as prior empirical studies have used both types of interest rates.

Observation GDP M2 CPI LTRATE TBRATE

1980 2795.6 1600.4 82.4 11.27 11.506
1981 3131.3 1756.1 90.9 13.45 14.029
1982 3259.2 1911.2 96.5 12.76 10.686
1983 3534.9 2127.8 99.6 11.18 8.630
1984 3932.7 2311.7 103.9 12.41 9.580
1985 4213.0 2497.4 107.6 10.79 7.480
1986 4452.9 2734.0 109.6 7.78 5.980
1987 4742.5 2832.8 113.6 8.59 5.820
1988 5108.3 2995.8 118.3 8.96 6.690
1989 5489.1 3159.9 124.0 8.45 8.120
1990 5803.2 3279.1 130.7 8.61 7.510
1991 5986.2 3379.8 136.2 8.14 5.420
1992 6318.9 3434.1 140.3 7.67 3.450
1993 6642.3 3487.5 144.5 6.59 3.020
1994 7054.3 3502.2 148.2 7.37 4.290
1995 7400.5 3649.3 152.4 6.88 5.510
1996 7813.2 3824.2 156.9 6.71 5.020
1997 8300.8 4046.7 160.5 6.61 5.070
1998 8759.9 4401.4 163.0 5.58 4.810

Notes: GDP: gross domestic product ($ billions).
M2: M2 money supply.
CPI: Consumer Price Index (1982–1984 = 100).
LTRATE: long-term interest rate (30-year Treasury bond).
TBRATE: three-month Treasury bill rate (% per annum).

TABLE 7.10
Demand for Money
in the United States,
1980–1998

Source: Economic Report of the
President, 2000, Tables 
B-1, B-58, B-67, B-71.
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224 Part One Single-Equation Regression Models

a. Given the data, estimate the above demand function. What are the income and
interest rate elasticities of demand for money?

b. Instead of estimating the above demand function, suppose you were to fit the
function (M/Y )t = α1rα2

t eut. How would you interpret the results? Show the
necessary calculations.

c. How will you decide which is a better specification? (Note: A formal statistical
test will be given in Chapter 8.)

7.22. Table 7.11 gives data for the manufacturing sector of the Greek economy for the
period 1961–1987.

a. See if the Cobb–Douglas production function fits the data given in the table and
interpret the results. What general conclusion do you draw?

b. Now consider the following model:

Output/labor = A(K/L)βeu

where the regressand represents labor productivity and the regressor represents the
capital labor ratio. What is the economic significance of such a relationship, if any?
Estimate the parameters of this model and interpret your results.

Capital-to-Labor
Observation Output* Capital Labor† Ratio

1961 35.858 59.600 637.0 0.0936
1962 37.504 64.200 643.2 0.0998
1963 40.378 68.800 651.0 0.1057
1964 46.147 75.500 685.7 0.1101
1965 51.047 84.400 710.7 0.1188
1966 53.871 91.800 724.3 0.1267
1967 56.834 99.900 735.2 0.1359
1968 65.439 109.100 760.3 0.1435
1969 74.939 120.700 777.6 0.1552
1970 80.976 132.000 780.8 0.1691
1971 90.802 146.600 825.8 0.1775
1972 101.955 162.700 864.1 0.1883
1973 114.367 180.600 894.2 0.2020
1974 101.823 197.100 891.2 0.2212
1975 107.572 209.600 887.5 0.2362
1976 117.600 221.900 892.3 0.2487
1977 123.224 232.500 930.1 0.2500
1978 130.971 243.500 969.9 0.2511
1979 138.842 257.700 1006.9 0.2559
1980 135.486 274.400 1020.9 0.2688
1981 133.441 289.500 1017.1 0.2846
1982 130.388 301.900 1016.1 0.2971
1983 130.615 314.900 1008.1 0.3124
1984 132.244 327.700 985.1 0.3327
1985 137.318 339.400 977.1 0.3474
1986 137.468 349.492 1007.2 0.3470
1987 135.750 358.231 1000.0 0.3582

*Billions of Drachmas at constant 1970 prices.
†Thousands of workers per year.

TABLE 7.11
Greek Industrial
Sector

Source: I am indebted to
George K. Zestos of
Christopher Newport
University, Virginia, for these
data.
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7.23. Monte Carlo experiment: Consider the following model:

Yi = β1 + β2 X2i + β3 X3i + ui

You are told that β1 = 262, β2 = −0.006, β3 = −2.4, σ 2 = 42, and ui ∼ N (0, 42).
Generate 10 sets of 64 observations on ui from the given normal distribution and use
the 64 observations given in Table 6.4, where Y = CM, X2 = PGNP, and X3 = FLR
to generate 10 sets of the estimated β coefficients (each set will have the three estimated
parameters).Take the averages of each of the estimated β coefficients and relate them to
the true values of these coefficients given above. What overall conclusion do you draw?

7.24. Table 7.12 gives data for real consumption expenditure, real income, real wealth, and
real interest rates for the U.S. for the years 1947–2000. These data will be used again
for Exercise 8.35.

a. Given the data in the table, estimate the linear consumption function using income,
wealth, and interest rate. What is the fitted equation?

b. What do the estimated coefficients indicate about the variables’ relationships to
consumption expenditure?

Year C Yd Wealth Interest Rate

1947 976.4 1035.2 5166.8 −10.351
1948 998.1 1090.0 5280.8 −4.720
1949 1025.3 1095.6 5607.4 1.044
1950 1090.9 1192.7 5759.5 0.407
1951 1107.1 1227.0 6086.1 −5.283
1952 1142.4 1266.8 6243.9 −0.277
1953 1197.2 1327.5 6355.6 0.561
1954 1221.9 1344.0 6797.0 −0.138
1955 1310.4 1433.8 7172.2 0.262
1956 1348.8 1502.3 7375.2 −0.736
1957 1381.8 1539.5 7315.3 −0.261
1958 1393.0 1553.7 7870.0 −0.575
1959 1470.7 1623.8 8188.1 2.296
1960 1510.8 1664.8 8351.8 1.511
1961 1541.2 1720.0 8971.9 1.296
1962 1617.3 1803.5 9091.5 1.396
1963 1684.0 1871.5 9436.1 2.058
1964 1784.8 2006.9 10003.4 2.027
1965 1897.6 2131.0 10562.8 2.112
1966 2006.1 2244.6 10522.0 2.020
1967 2066.2 2340.5 11312.1 1.213
1968 2184.2 2448.2 12145.4 1.055
1969 2264.8 2524.3 11672.3 1.732
1970 2314.5 2630.0 11650.0 1.166
1971 2405.2 2745.3 12312.9 −0.712
1972 2550.5 2874.3 13499.9 −0.156
1973 2675.9 3072.3 13081.0 1.414
1974 2653.7 3051.9 11868.8 −1.043
1975 2710.9 3108.5 12634.4 −3.534
1976 2868.9 3243.5 13456.8 −0.657

TABLE 7.12
Real Consumption
Expenditure, Real
Income, Real Wealth,
and Real Interest
Rates for the U.S.,
1947–2000

Sources: C, Yd, and quarterly
and annual chain-type price
indexes (1996 = 100): Bureau
of Economic Analysis, U.S.
Department of Commerce
(http://www.bea.doc.gov/bea/
dn1.htm).
Nominal annual yield on
3-month Treasury securities:
Economic Report of the
President, 2002.
Nominal wealth = end-of-
year nominal net worth of
households and nonprofits
(from Federal Reserve flow
of funds data: http://www.
federalreserve.gov).

Continued
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226 Part One Single-Equation Regression Models

7.25. Estimating Qualcomm stock prices. As an example of the polynomial regression,
consider data on the weekly stock prices of Qualcomm, Inc., a digital wireless
telecommunications designer and manufacturer over the time period of 1995 to
2000. The full data can be found on the textbook’s website in Table 7.13. During
the late 1990, technological stocks were particularly profitable, but what type of
regression model will best fit these data? Figure 7.4 shows a basic plot of the data for
those years.

This plot does seem to resemble an elongated S curve; there seems to be a slight
increase in the average stock price, but then the rate increases dramatically toward the
far right side of the graph. As the demand for more specialized phones dramatically
increased and the technology boom got under way, the stock price followed suit and
increased at a much faster rate.

a. Estimate a linear model to predict the closing stock price based on time. Does this
model seem to fit the data well?

b. Now estimate a squared model by using both time and time-squared. Is this a bet-
ter fit than in (a)?

Year C Yd Wealth Interest Rate

1977 2992.1 3360.7 13786.3 −1.190
1978 3124.7 3527.5 14450.5 0.113
1979 3203.2 3628.6 15340.0 1.704
1980 3193.0 3658.0 15965.0 2.298
1981 3236.0 3741.1 15965.0 4.704
1982 3275.5 3791.7 16312.5 4.449
1983 3454.3 3906.9 16944.8 4.691
1984 3640.6 4207.6 17526.7 5.848
1985 3820.9 4347.8 19068.3 4.331
1986 3981.2 4486.6 20530.0 3.768
1987 4113.4 4582.5 21235.7 2.819
1988 4279.5 4784.1 22332.0 3.287
1989 4393.7 4906.5 23659.8 4.318
1990 4474.5 5014.2 23105.1 3.595
1991 4466.6 5033.0 24050.2 1.803
1992 4594.5 5189.3 24418.2 1.007
1993 4748.9 5261.3 25092.3 0.625
1994 4928.1 5397.2 25218.6 2.206
1995 5075.6 5539.1 27439.7 3.333
1996 5237.5 5677.7 29448.2 3.083
1997 5423.9 5854.5 32664.1 3.120
1998 5683.7 6168.6 35587.0 3.584
1999 5968.4 6320.0 39591.3 3.245
2000 6257.8 6539.2 38167.7 3.576

Notes: Year = calendar year.
C = real consumption expenditures in billions of chained 1996 dollars.

Yd = real personal disposable income in billions of chained 1996 dollars.
Wealth = real wealth in billions of chained 1996 dollars.
Interest = nominal annual yield on 3-month Treasury securities–inflation rate (measured by the annual % change in annual chained

price index).

The nominal real wealth variable was created using data from the Federal Reserve Board’s measure of end-of-year net worth for
households and nonprofits in the flow of funds accounts. The price index used to convert this nominal wealth variable to a real wealth
variable was the average of the chained price index from the 4th quarter of the current year and the 1st quarter of the subsequent year.

TABLE 7.12
(Continued)
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FIGURE 7.4
Qualcomm stock
prices over time.

c. Finally, fit the following cubic or third-degree polynomial:

Yi = β0 + β1 Xi + β2 X2
i + β3 X3

i + ui

where Y = stock price and X = time. Which model seems to be the best estimator
for the stock prices?

Appendix 7A

7A.1 Derivation of OLS Estimators
Given in Equations (7.4.3) to (7.4.5)

Differentiating the equation

∑
û2

i =
∑

(Yi − β̂1 − β̂2 X2i − β̂3 X3i )
2 (7.4.2)

partially with respect to the three unknowns and setting the resulting equations to zero, we obtain

∂
∑

û2
i

∂β̂1

= 2
∑

(Yi − β̂1 − β̂2 X2i − β̂3 X3i )(−1) = 0

∂
∑

û2
i

∂β̂2

= 2
∑

(Yi − β̂1 − β̂2 X2i − β̂3 X3i )(−X2i ) = 0

∂
∑

û2
i

∂β̂3

= 2
∑

(Yi − β̂1 − β̂2 X2i − β̂3 X3i )(−X3i ) = 0

Simplifying these, we obtain Eqs. (7.4.3) to (7.4.5).
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228 Part One Single-Equation Regression Models

In passing, note that the three preceding equations can also be written as

∑
û i = 0

∑
û i X2i = 0 (Why?)

∑
û i X3i = 0

which show the properties of the least-squares fit, namely, that the residuals sum to zero and that they
are uncorrelated with the explanatory variables X2 and X3.

Incidentally, notice that to obtain the OLS estimators of the k-variable linear regression model
(7.4.20) we proceed analogously. Thus, we first write

∑
û2

i =
∑

(Yi − β̂1 − β̂2 X2i − · · · − β̂k Xki )
2

Differentiating this expression partially with respect to each of the k unknowns, setting the resulting
equations equal to zero, and rearranging, we obtain the following k normal equations in the k
unknowns:

∑
Yi = nβ̂1 + β̂2

∑
X2i + β̂3

∑
X3i + · · · + β̂k

∑
Xki

∑
Yi X2i = β̂1

∑
X2i + β̂2

∑
X2

2i + β̂3

∑
X2i X3i + · · · + β̂k

∑
X2i Xki

∑
Yi X3i = β̂1

∑
X3i + β̂2

∑
X2i X3i + β̂3

∑
X2

3i + · · · + β̂k

∑
X3i Xki

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∑

Yi Xki = β̂1

∑
Xki + β̂2

∑
X2i Xki + β̂3

∑
X3i Xki + · · · + β̂k

∑
X2

ki

Or, switching to small letters, these equations can be expressed as

∑
yi x2i = β̂2

∑
x2

2i + β̂3

∑
x2i x3i + · · · + β̂k

∑
x2i xki

∑
yi x3i = β̂2

∑
x2i x3i + β̂3

∑
x2

3i + · · · + β̂k

∑
x3i xki

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∑

yi xki = β̂2

∑
x2i xki + β̂3

∑
x3i xki + · · · + β̂k

∑
x2

ki

It should further be noted that the k-variable model also satisfies these equations:

∑
û i = 0

∑
û i X2i =

∑
û i X3i = · · · =

∑
û i Xki = 0
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7A.2 Equality between the Coefficients of PGNP 
in Equations (7.3.5) and (7.6.2)

Letting Y = CM, X2 = PGNP, and X3 = FLR and using the deviation form, write

yi = b1 3x3i + û1i (1)

x2i = b2 3x3i + û2i (2)

Now regress û1 on û2 to obtain:

a1 =
∑

û1i û2i

û2
2i

= −0.0056 (for our example) (3)

Note that because the û’s are residuals, their mean values are zero. Using (1) and (2), we can write
(3) as

a1 =
∑

(yi − b1 3x3i )(x2i − b2 3x3i )∑
(x2i − b2 3x3i )2

(4)

Expand the preceding expression, and note that

b2 3 =
∑

x2i x3i∑
x2

3i

(5)

and

b1 3 =
∑

yi x3i∑
x2

3i

(6)

Making these substitutions into (4), we get

β̂2 =
(∑

yi x2i
) (∑

x2
3i

) − (∑
yi x3i

) (∑
x2i x3i

)
(∑

x2
2i

) (∑
x2

3i

) − (∑
x2i x3i

)2 (7.4.7)

� −0.0056 (for our example)

7A.3 Derivation of Equation (7.4.19)

Recall that

û i = Yi − β̂1 − β̂2 X2i − β̂3 X3i

which can also be written as

û i = yi − β̂2x2i − β̂3x3i

where small letters, as usual, indicate deviations from mean values.
Now

∑
û2

i =
∑

(û i û i )

=
∑

û i (yi − β̂2x2i − β̂3x3i )

=
∑

û i yi
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where use is made of the fact that 
∑

û i x2i = ∑
û i x3i = 0. (Why?) Also∑

û i yi =
∑

yi û i =
∑

yi (yi − β̂2x2i − β̂3x3i )

that is, ∑
û2

i =
∑

y2
i − β̂2

∑
yi x2i − β̂3

∑
yi x3i (7.4.19)

which is the required result.

7A.4 Maximum Likelihood Estimation
of the Multiple Regression Model

Extending the ideas introduced in Chapter 4, Appendix 4A, we can write the log-likelihood function
for the k-variable linear regression model (7.4.20) as

ln L = −n

2
ln σ 2 − n

2
ln (2π) − 1

2

∑ (Yi − β1 − β2 X2i − · · · − βk Xki )2

σ 2

Differentiating this function partially with respect to β1, β2, . . . , βk and σ 2, we obtain the following
(K + 1) equations:

∂ ln L

∂β1
= − 1

σ 2

∑
(Yi − β1 − β2 X2i − · · · − βk Xki )(−1) (1)

∂ ln L

∂β2
= − 1

σ 2

∑
(Yi − β1 − β2 X2i − · · · − βk Xki )(−X2i ) (2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

∂ ln L

∂βk
= − 1

σ 2

∑
(Yi − β1 − β2 X2i − · · · − βk Xki )(−Xki ) (K)

∂ ln L

∂σ 2
= − n

2σ 2
+ 1

2σ 4

∑
(Yi − β1 − β2 X2i − · · · − βk Xki )

2 (K + 1)

Setting these equations equal to zero (the first-order condition for optimization) and letting
β̃1, β̃2, . . . , β̃k and σ̃ 2 denote the ML estimators, we obtain, after simple algebraic manipulations,

∑
Yi = nβ̃1 + β̃2

∑
X2i + · · · + β̃k

∑
Xki

∑
Yi X2i = β̃1

∑
X2i + β̃2

∑
X2

2i + · · · + β̃k

∑
X2i Xki

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∑
Yi Xki = β̃1

∑
Xki + β̃2

∑
X2i Xki + · · · + β̃k

∑
X2

ki

which are precisely the normal equations of the least-squares theory, as can be seen from Appen-
dix 7A, Section 7A.1. Therefore, the ML estimators, the β̃’s, are the same as the OLS estimators, the
β̂’s, given previously. But as noted in Chapter 4, Appendix 4A, this equality is not accidental.

Substituting the ML ( = OLS) estimators into the (K + 1)st equation just given, we obtain, after
simplification, the ML estimator of σ 2 as

σ̃ 2 = 1

n

∑
(Yi − β̃1 − β̃2 X2i − · · · − β̃k Xki )

2

= 1

n

∑
û2

i

As noted in the text, this estimator differs from the OLS estimator σ̂ 2 = ∑
û2

i /(n − k). And since the
latter is an unbiased estimator of σ 2, this conclusion implies that the ML estimator σ̃ 2 is a biased
estimator. But, as can be readily verified, asymptotically, σ̃ 2 is unbiased too.
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7A.5 EViews Output of the Cobb–Douglas Production
Function in Equation (7.9.4)

Dependent Variable: Y1
Method: Least Squares
Included observations: 51

Coefficient Std. Error t-Statistic Prob.

C 3.887600 0.396228 9.811514 0.0000
Y2 0.468332 0.098926 4.734170 0.0000
Y3 0.521279 0.096887 5.380274 0.0000

R-squared 0.964175 Mean dependent var. 16.94139
Adjusted R-squared 0.962683 S.D. dependent var. 1.380870
S.E. of regression 0.266752 Akaike info criterion 0.252028
Sum squared resid. 3.415520 Schwarz criterion 0.365665
Log likelihood −3.426721 Hannan-Quinn criterion 0.295452
F-statistic 645.9311 Durbin-Watson stat. 1.946387
Prob. (F-statistic) 0.000000

Covariance of Estimates

C Y2 Y3

C 0.156997 0.010364 −0.020014
Y2 0.010364 0.009786 −0.009205
Y3 −0.020014 −0.009205 0.009387

Y X2 X3 Y1 Y2 Y3 Y1HAT Y1RESID

38,372,840 424,471 2,689,076 17.4629 12.9586 14.8047 17.6739 −0.2110
1,805,427 19,895 57,997 14.4063 9.8982 10.9681 14.2407 0.1656

23,736,129 206,893 2,308,272 16.9825 12.2400 14.6520 17.2577 −0.2752
26,981,983 304,055 1,376,235 17.1107 12.6250 14.1349 17.1685 −0.0578

217,546,032 1,809,756 13,554,116 19.1979 14.4087 16.4222 19.1962 0.0017
19,462,751 180,366 1,790,751 16.7840 12.1027 14.3981 17.0612 −0.2771
28,972,772 224,267 1,210,229 17.1819 12.3206 14.0063 16.9589 0.2229
14,313,157 54,455 421,064 16.4767 10.9051 12.9505 15.7457 0.7310

159,921 2,029 7,188 11.9824 7.6153 8.8802 12.0831 −0.1007
47,289,846 471,211 2,761,281 17.6718 13.0631 14.8312 17.7366 −0.0648
63,015,125 659,379 3,540,475 17.9589 13.3991 15.0798 18.0236 −0.0647

1,809,052 17,528 146,371 14.4083 9.7716 11.8939 14.6640 −0.2557
10,511,786 75,414 848,220 16.1680 11.2307 13.6509 16.2632 −0.0952

105,324,866 963,156 5,870,409 18.4726 13.7780 15.5854 18.4646 0.0079
90,120,459 835,083 5,832,503 18.3167 13.6353 15.5790 18.3944 −0.0778
39,079,550 336,159 1,795,976 17.4811 12.7253 14.4011 17.3543 0.1269
22,826,760 246,144 1,595,118 16.9434 12.4137 14.2825 17.1465 −0.2030
38,686,340 384,484 2,503,693 17.4710 12.8597 14.7333 17.5903 −0.1193
69,910,555 216,149 4,726,625 18.0627 12.2837 15.3687 17.6519 0.4109

7,856,947 82,021 415,131 15.8769 11.3147 12.9363 15.9301 −0.0532
21,352,966 174,855 1,729,116 16.8767 12.0717 14.3631 17.0284 −0.1517
46,044,292 355,701 2,706,065 17.6451 12.7818 14.8110 17.5944 0.0507

(Continued )
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Y X2 X3 Y1 Y2 Y3 Y1HAT Y1RESID

92,335,528 943,298 5,294,356 18.3409 13.7571 15.4822 18.4010 −0.0601
48,304,274 456,553 2,833,525 17.6930 13.0315 14.8570 17.7353 −0.0423
17,207,903 267,806 1,212,281 16.6609 12.4980 14.0080 17.0429 −0.3820
47,340,157 439,427 2,404,122 17.6729 12.9932 14.6927 17.6317 0.0411

2,644,567 24,167 334,008 14.7880 10.0927 12.7189 15.2445 −0.4564
14,650,080 163,637 627,806 16.5000 12.0054 13.3500 16.4692 0.0308

7,290,360 59,737 522,335 15.8021 10.9977 13.1661 15.9014 −0.0993
9,188,322 96,106 507,488 16.0334 11.4732 13.1372 16.1090 −0.0756

51,298,516 407,076 3,295,056 17.7532 12.9168 15.0079 17.7603 −0.0071
20,401,410 43,079 404,749 16.8311 10.6708 12.9110 15.6153 1.2158
87,756,129 727,177 4,260,353 18.2901 13.4969 15.2649 18.1659 0.1242

101,268,432 820,013 4,086,558 18.4333 13.6171 15.2232 18.2005 0.2328
3,556,025 34,723 184,700 15.0842 10.4552 12.1265 15.1054 −0.0212

124,986,166 1,174,540 6,301,421 18.6437 13.9764 15.6563 18.5945 0.0492
20,451,196 201,284 1,327,353 16.8336 12.2125 14.0987 16.9564 −0.1229
34,808,109 257,820 1,456,683 17.3654 12.4600 14.1917 17.1208 0.2445

104,858,322 944,998 5,896,392 18.4681 13.7589 15.5899 18.4580 0.0101
6,541,356 68,987 297,618 15.6937 11.1417 12.6036 15.6756 0.0181

37,668,126 400,317 2,500,071 17.4443 12.9000 14.7318 17.6085 −0.1642
4,988,905 56,524 311,251 15.4227 10.9424 12.6484 15.6056 −0.1829

62,828,100 582,241 4,126,465 17.9559 13.2746 15.2329 18.0451 −0.0892
172,960,157 1,120,382 11,588,283 18.9686 13.9292 16.2655 18.8899 0.0786

15,702,637 150,030 762,671 16.5693 11.9186 13.5446 16.5300 0.0394
5,418,786 48,134 276,293 15.5054 10.7817 12.5292 15.4683 0.0371

49,166,991 425,346 2,731,669 17.7107 12.9607 14.8204 17.6831 0.0277
46,164,427 313,279 1,945,860 17.6477 12.6548 14.4812 17.3630 0.2847

9,185,967 89,639 685,587 16.0332 11.4035 13.4380 16.2332 −0.2000
66,964,978 694,628 3,902,823 18.0197 13.4511 15.1772 18.0988 −0.0791

2,979,475 15,221 361,536 14.9073 9.6304 12.7981 15.0692 −0.1620

Notes: Y1 = ln Y; Y2 = ln X2; Y3 = ln X3.
The eigenvalues are 3.7861 and 187,5269, which will be used in Chapter 10.
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This chapter, a continuation of Chapter 5, extends the ideas of interval estimation and hypo-
thesis testing developed there to models involving three or more variables. Although in
many ways the concepts developed in Chapter 5 can be applied straightforwardly to the
multiple regression model, a few additional features are unique to such models, and it is
these features that will receive more attention in this chapter.

8.1 The Normality Assumption Once Again

We know by now that if our sole objective is point estimation of the parameters of the
regression models, the method of ordinary least squares (OLS), which does not make any
assumption about the probability distribution of the disturbances ui , will suffice. But if our
objective is estimation as well as inference, then, as argued in Chapters 4 and 5, we need to
assume that the ui follow some probability distribution.

For reasons already clearly spelled out, we assumed that the ui follow the normal distri-
bution with zero mean and constant variance σ 2. We continue to make the same assump-
tion for multiple regression models. With the normality assumption and following the
discussion of Chapters 4 and 7, we find that the OLS estimators of the partial regression
coefficients, which are identical with the maximum likelihood (ML) estimators, are best
linear unbiased estimators (BLUE).1 Moreover, the estimators β̂2, β̂3, and β̂1 are them-
selves normally distributed with means equal to true β2, β3, and β1 and the variances given
in Chapter 7. Furthermore, (n − 3)σ̂ 2/σ 2 follows the χ2 distribution with n − 3 df, and the
three OLS estimators are distributed independently of σ̂ 2. The proofs follow the two-
variable case discussed in Appendix 3A, Section 3A. As a result and following Chapter 5,

Chapter 8
Multiple Regression
Analysis: The Problem
of Inference

1With the normality assumption, the OLS estimators β̂2, β̂3, and β̂1 are minimum-variance estimators
in the entire class of unbiased estimators, whether linear or not. In short, they are BUE (best unbiased
estimators). See C. R. Rao, Linear Statistical Inference and Its Applications, John Wiley & Sons, New
York, 1965, p. 258.
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234 Part One Single-Equation Regression Models

one can show that, upon replacing σ 2 by its unbiased estimator σ̂ 2 in the computation of the
standard errors, each of the following variables

follows the t distribution with n − 3 df.
Note that the df are now n − 3 because in computing 

∑
û2

i and hence σ̂ 2 we first need
to estimate the three partial regression coefficients, which therefore put three restrictions
on the residual sum of squares (RSS) (following this logic in the four-variable case there
will be n − 4 df, and so on). Therefore, the t distribution can be used to establish confi-
dence intervals as well as test statistical hypotheses about the true population partial re-
gression coefficients. Similarly, the χ2 distribution can be used to test hypotheses about the
true σ 2. To demonstrate the actual mechanics, we use the following illustrative example.

(8.1.1)

(8.1.2)

(8.1.3)

t = β̂1 − β1

se (β̂1)

t = β̂2 − β2

se (β̂2)

t = β̂3 − β3

se (β̂3)

EXAMPLE 8.1
Child Mortality
Example
Revisited

In Chapter 7 we regressed child mortality (CM) on per capita GNP (PGNP) and the female
literacy rate (FLR) for a sample of 64 countries. The regression results given in Eq. (7.6.2)
are reproduced below with some additional information:

ĈMi = 263.6416 − 0.0056 PGNPi − 2.2316 FLRi

se = (11.5932) (0.0019) (0.2099)

t = (22.7411) (−2.8187) (−10.6293) (8.1.4)

p value = (0.0000)* (0.0065) (0.0000)*

R2 = 0.7077 R̄2 = 0.6981

where * denotes extremely low value.
In Eq. (8.1.4) we have followed the format first introduced in Eq. (5.11.1), where the

figures in the first set of parentheses are the estimated standard errors, those in the sec-
ond set are the t values under the null hypothesis that the relevant population coefficient
has a value of zero, and those in the third are the estimated p values. Also given are R2 and
adjusted R2 values. We have already interpreted this regression in Example 7.1.

What about the statistical significance of the observed results? Consider, for example,
the coefficient of PGNP of −0.0056. Is this coefficient statistically significant, that is,
statistically different from zero? Likewise, is the coefficient of FLR of −2.2316 statistically
significant? Are both coefficients statistically significant? To answer this and related ques-
tions, let us first consider the kinds of hypothesis testing that one may encounter in the
context of a multiple regression model.

8.2 Hypothesis Testing in Multiple Regression: General Comments

Once we go beyond the simple world of the two-variable linear regression model, hypoth-
esis testing assumes several interesting forms, such as the following:

1. Testing hypotheses about an individual partial regression coefficient (Section 8.3).

2. Testing the overall significance of the estimated multiple regression model, that is, find-
ing out if all the partial slope coefficients are simultaneously equal to zero (Section 8.4).
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Chapter 8 Multiple Regression Analysis: The Problem of Inference 235

3. Testing that two or more coefficients are equal to one another (Section 8.5).

4. Testing that the partial regression coefficients satisfy certain restrictions (Section 8.6).

5. Testing the stability of the estimated regression model over time or in different cross-
sectional units (Section 8.7).

6. Testing the functional form of regression models (Section 8.8).

Since testing of one or more of these types occurs so commonly in empirical analysis, we
devote a section to each type.

8.3 Hypothesis Testing about Individual Regression Coefficients

If we invoke the assumption that ui ∼ N (0, σ 2), then, as noted in Section 8.1, we can use
the t test to test a hypothesis about any individual partial regression coefficient. To illustrate
the mechanics, consider the child mortality regression, Eq. (8.1.4). Let us postulate that

H0: β2 = 0 and H1: β2 �= 0

The null hypothesis states that, with X3 (female literacy rate) held constant, X2 (PGNP)
has no (linear) influence on Y (child mortality).2 To test the null hypothesis, we use the t test
given in Eq. (8.1.2). Following Chapter 5 (see Table 5.1), if the computed t value exceeds
the critical t value at the chosen level of significance, we may reject the null hypothesis;
otherwise, we may not reject it. For our illustrative example, using Eq. (8.1.2) and noting
that β2 = 0 under the null hypothesis, we obtain

t = −0.0056

0.0020
= −2.8187 (8.3.1)

as shown in Eq. (8.1.4).
Notice that we have 64 observations. Therefore, the degrees of freedom in this example

are 61 (why?). If you refer to the t table given in Appendix D, we do not have data corre-
sponding to 61 df. The closest we have are for 60 df. If we use these df, and assume α, the
level of significance (i.e., the probability of committing a Type I error) of 5 percent, the crit-
ical t value is 2.0 for a two-tail test (look up tα/2 for 60 df) or 1.671 for a one-tail test (look
up tα for 60 df).

For our example, the alternative hypothesis is two-sided. Therefore, we use the two-tail
t value. Since the computed t value of 2.8187 (in absolute terms) exceeds the critical t value
of 2, we can reject the null hypothesis that PGNP has no effect on child mortality. To put it
more positively, with the female literacy rate held constant, per capita GNP has a signifi-
cant (negative) effect on child mortality, as one would expect a priori. Graphically, the sit-
uation is as shown in Figure 8.1.

In practice, one does not have to assume a particular value of α to conduct hypothesis
testing. One can simply use the p value given in Eq. (8.1.4), which in the present case is
0.0065. The interpretation of this p value (i.e., the exact level of significance) is that if the
null hypothesis were true, the probability of obtaining a t value of as much as 2.8187 or
greater (in absolute terms) is only 0.0065 or 0.65 percent, which is indeed a small proba-
bility, much smaller than the artificially adopted value of α = 5%.

2In most empirical investigations the null hypothesis is stated in this form, that is, taking the extreme
position (a kind of straw man) that there is no relationship between the dependent variable and the
explanatory variable under consideration. The idea here is to find out whether the relationship
between the two is a trivial one to begin with.
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236 Part One Single-Equation Regression Models

This example provides us an opportunity to decide whether we want to use a one-tail
or a two-tail t test. Since a priori child mortality and per capita GNP are expected to be
negatively related (why?), we should use the one-tail test. That is, our null and alternative
hypothesis should be:

H0: β2 < 0 and H1: β2 ≥ 0

As the reader knows by now, we can reject the null hypothesis on the basis of the one-tail
t test in the present instance. If we can reject the null hypothesis in a two-sided test, we will
have enough evidence to reject in the one-sided scenario as long as the statistic is in the
same direction as the test.

In Chapter 5 we saw the intimate connection between hypothesis testing and confidence
interval estimation. For our example, the 95 percent confidence interval for β2 is:

which in our example becomes

−0.0056 − 2(0.0020) ≤ β2 ≤ −0.0056 + 2(0.0020)

that is,

−0.0096 ≤ β2 ≤ −0.0016 (8.3.2)

that is, the interval, −0.0096 to −0.0016 includes the true β2 coefficient with 95 percent
confidence coefficient. Thus, if 100 samples of size 64 are selected and 100 confidence in-
tervals like Eq. (8.3.2) are constructed, we expect 95 of them to contain the true population
parameter β2. Since the interval (8.3.2) does not include the null-hypothesized value of
zero, we can reject the null hypothesis that the true β2 is zero with 95 percent confidence.

Thus, whether we use the t test of significance as in (8.3.1) or the confidence interval
estimation as in (8.3.2), we reach the same conclusion. However, this should not be
surprising in view of the close connection between confidence interval estimation and
hypothesis testing.

Following the procedure just described, we can test hypotheses about the other parame-
ters of our child mortality regression model. The necessary data are already provided in
Eq. (8.1.4). For example, suppose we want to test the hypothesis that, with the influence of
PGNP held constant, the female literacy rate has no effect whatsoever on child mortality. We
can confidently reject this hypothesis, for under this null hypothesis the p value of obtaining
an absolute t value of as much as 10.6 or greater is practically zero.

Before moving on, remember that the t-testing procedure is based on the assumption
that the error term ui follows the normal distribution. Although we cannot directly observe

β̂2 − tα/2 se (β̂2) ≤ β2 ≤ β̂2 + tα/2 se (β̂2)

FIGURE 8.1
The 95% confidence
interval for t (60 df).
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Chapter 8 Multiple Regression Analysis: The Problem of Inference 237

ui , we can observe their proxy, the û i , that is, the residuals. For our mortality regression,
the histogram of the residuals is as shown in Figure 8.2.

From the histogram it seems that the residuals are normally distributed. We can also
compute the Jarque–Bera (JB) test of normality, as shown in Eq. (5.12.1). In our case the
JB value is 0.5594 with a p value 0.76.3 Therefore, it seems that the error term in our
example follows the normal distribution. Of course, keep in mind that the JB test is a large-
sample test and our sample of 64 observations may not be necessarily large.

8.4 Testing the Overall Significance of the Sample Regression

Throughout the previous section we were concerned with testing the significance of the
estimated partial regression coefficients individually, that is, under the separate hypothesis
that each true population partial regression coefficient was zero. But now consider the
following hypothesis:

H0: β2 = β3 = 0 (8.4.1)

This null hypothesis is a joint hypothesis that β2 and β3 are jointly or simultaneously equal
to zero. A test of such a hypothesis is called a test of the overall significance of the ob-
served or estimated regression line, that is, whether Y is linearly related to both X2 and X3.

Can the joint hypothesis in Eq. (8.4.1) be tested by testing the significance of β̂2 and β̂3

individually as in Section 8.3? The answer is no, and the reasoning is as follows.
In testing the individual significance of an observed partial regression coefficient in

Section 8.3, we assumed implicitly that each test of significance was based on a different
(i.e., independent) sample. Thus, in testing the significance of β̂2 under the hypothesis that
β2 = 0, it was assumed tacitly that the testing was based on a different sample from the one
used in testing the significance of β̂3 under the null hypothesis that β3 = 0. But to test the joint
hypothesis of Eq. (8.4.1), if we use the same sample data, we shall be violating the
assumption underlying the test procedure.4 The matter can be put differently: In Eq. (8.3.2)

FIGURE 8.2
Histogram of
residuals from
regression (8.1.4).
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Series: Residuals
Sample 1 64
Observations 64

Mean –4.95 x 10–14

Median  0.709227
Maximum  96.80276
Minimum –84.26686
Std. dev.  41.07980
Skewness  0.227575
Kurtosis  2.948855

Jarque–Bera  0.559405
Probability  0.756009

3For our example, the skewness value is 0.2276 and the kurtosis value is 2.9488. Recall that for a
normally distributed variable the skewness and kurtosis values are, respectively, 0 and 3.
4In any given sample the cov (β̂2, β̂3) may not be zero; that is, β̂2 and β̂3 may be correlated. See
Eq. (7.4.17).

guj75772_ch08.qxd  12/08/2008  10:03 AM  Page 237



238 Part One Single-Equation Regression Models

we established a 95 percent confidence interval for β2. But if we use the same sample data
to establish a confidence interval for β3, say, with a confidence coefficient of 95 percent, we
cannot assert that both β2 and β3 lie in their respective confidence intervals with a proba-
bility of (1 − α)(1 − α) = (0.95)(0.95).

In other words, although the statements

Pr [β̂2 − tα/2 se (β̂2) ≤ β2 ≤ β̂2 + tα/2 se (β̂2)] = 1 − α

Pr [β̂3 − tα/2 se (β̂3) ≤ β3 ≤ β̂3 + tα/2 se (β̂3)] = 1 − α

are individually true, it is not true that the probability that the intervals

[β̂2 ± tα/2 se (β̂2), β̂3 ± tα/2 se (β̂3)]

simultaneously include β2 and β3 is (1 − α)2, because the intervals may not be indepen-
dent when the same data are used to derive them. To state the matter differently,

. . . testing a series of single [individual] hypotheses is not equivalent to testing those same
hypotheses jointly. The intuitive reason for this is that in a joint test of several hypotheses any
single hypothesis is “affected’’ by the information in the other hypotheses.5

The upshot of the preceding argument is that for a given example (sample) only one con-
fidence interval or only one test of significance can be obtained. How, then, does one test
the simultaneous null hypothesis that β2 = β3 = 0? The answer follows.

The Analysis of Variance Approach to Testing the Overall
Significance of an Observed Multiple Regression: The F Test
For reasons just explained, we cannot use the usual t test to test the joint hypothesis that the
true partial slope coefficients are zero simultaneously. However, this joint hypothesis can be
tested by the analysis of variance (ANOVA) technique first introduced in Section 5.9,
which can be demonstrated as follows.

Recall the identity

∑
y2

i = β̂2

∑
yi x2i + β̂3

∑
yi x3i +

∑
û2

i (8.4.2)

TSS = ESS + RSS

TSS has, as usual, n − 1 df and RSS has n − 3 df for reasons already discussed. ESS has 
2 df since it is a function of β̂2 and β̂3. Therefore, following the ANOVA procedure dis-
cussed in Section 5.9, we can set up Table 8.1.

Now it can be shown6 that, under the assumption of normal distribution for ui and the
null hypothesis β2 = β3 = 0, the variable

F =
(
β̂2

∑
yi x2i + β̂3

∑
yi x3i

)/
2∑

û2
i

/
(n − 3)

= ESS/df

RSS/df
(8.4.3)

is distributed as the F distribution with 2 and n − 3 df.

5Thomas B. Fomby, R. Carter Hill, and Stanley R. Johnson, Advanced Econometric Methods, Springer-
Verlag, New York, 1984, p. 37.
6See K. A. Brownlee, Statistical Theory and Methodology in Science and Engineering, John Wiley & Sons,
New York, 1960, pp. 278–280.
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What use can be made of the preceding F ratio? It can be proved7 that under the as-
sumption that the ui ∼ N (0, σ 2),

E

∑
û2

i

n − 3
= E(σ̂ 2) = σ 2 (8.4.4)

With the additional assumption that β2 = β3 = 0, it can be shown that

E
(
β̂2

∑
yi x2i + β̂3

∑
yi x3i

)
2

= σ 2 (8.4.5)

Therefore, if the null hypothesis is true, both Eqs. (8.4.4) and (8.4.5) give identical esti-
mates of true σ 2. This statement should not be surprising because if there is a trivial rela-
tionship between Y and X2 and X3, the sole source of variation in Y is due to the random
forces represented by ui . If, however, the null hypothesis is false, that is, X2 and X3 defi-
nitely influence Y, the equality between Eqs. (8.4.4) and (8.4.5) will not hold. In this case,
the ESS will be relatively larger than the RSS, taking due account of their respective df.
Therefore, the F value of Eq. (8.4.3) provides a test of the null hypothesis that the true slope
coefficients are simultaneously zero. If the F value computed from Eq. (8.4.3) exceeds the
critical F value from the F table at the � percent level of significance, we reject H0; other-
wise we do not reject it. Alternatively, if the p value of the observed F is sufficiently low,
we can reject H0.

Table 8.2 summarizes the F test. Turning to our illustrative example, we obtain the
ANOVA table, as shown in Table 8.3.

7See K. A. Brownlee, Statistical Theory and Methodology in Science and Engineering, John Wiley & Sons,
New York, 1960, pp. 278–280.

TABLE 8.2
A Summary of the F
Statistic

Null Hypothesis Alternative Hypothesis Critical Region-
H0 H1 Reject H0 If

σ 2
1 = σ 2

2 σ 2
1 > σ 2

2
S 2

1

S 2
2

> Fα,ndf,ddf

σ 2
1 = σ 2

2 σ 2
1 �= σ 2

2
S 2

1

S 2
2

> Fα/2,ndf,ddf

or < F(1−α/2),ndf,ddf

Notes:

1. σ 2
1 and σ 2

2 are the two population variances.

2. S2
1 and S2

2 are the two sample variances.
3. ndf and ddf denote, respectively, the numerator and denominator df.
4. In computing the F ratio, put the larger S 2 value in the numerator.
5. The critical F values are given in the last column. The first subscript of F is the level of significance and the second subscript

is the numerator and denominator df.
6. Note that F(1−α/2),n df,d df = 1/Fα/2,ddf,ndf.

TABLE 8.1
ANOVA Table for the
Three-Variable
Regression

Source of Variation SS df MSS

Due to regression (ESS) β̂2
∑

yi x2i + β̂3
∑

yi x3i 2
β̂2

∑
yi x2i + β̂3

∑
yi x3i

2

Due to residual (RSS)
∑

û2
i n − 3 σ̂ 2 =

∑
û2

i

n − 3

Total
∑

y 2
i n − 1
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Using Eq. (8.4.3), we obtain

F = 128,681.2

1742.88
= 73.8325 (8.4.6)

The p value of obtaining an F value of as much as 73.8325 or greater is almost zero, leading
to the rejection of the hypothesis that together PGNP and FLR have no effect on child mor-
tality. If you were to use the conventional 5 percent level-of-significance value, the critical F
value for 2 df in the numerator and 60 df in the denominator (the actual df, however, are 61)
is about 3.15, or about 4.98 if you were to use the 1 percent level of significance. Obviously,
the observed F of about 74 far exceeds any of these critical F values.

We can generalize the preceding F-testing procedure as follows.

Testing the Overall Significance of a Multiple
Regression: The F Test

TABLE 8.3
ANOVA Table for the
Child Mortality
Example

Source of Variation SS df MSS

Due to regression 257,362.4 2 128,681.2
Due to residuals 106,315.6 61 1742.88

Total 363,678 63 

Given the k-variable regression model:

Yi = β1 + β2 X2i + β3 X3i + · · · + βk Xki + ui

To test the hypothesis

H0: β2 = β3 = · · · = βk = 0

(i.e., all slope coefficients are simultaneously zero) versus

H1: Not all slope coefficients are simultaneously zero

compute

F = ESS/df
RSS/df

= ESS/(k − 1)
RSS/(n − k)

(8.4.7)

If F > F α(k − 1, n − k), reject H0; otherwise you do not reject it, where F α(k − 1, n − k)
is the critical F value at the α level of significance and (k − 1) numerator df and (n − k) de-
nominator df. Alternatively, if the p value of F obtained from Eq. (8.4.7) is sufficiently low,
one can reject H0.

Needless to say, in the three-variable case (Y and X2, X3) k is 3, in the four-variable case
k is 4, and so on.

In passing, note that most regression packages routinely calculate the F value (given in
the analysis of variance table) along with the usual regression output, such as the estimated
coefficients, their standard errors, t values, etc. The null hypothesis for the t computation is
usually assumed to be βi = 0.

Decision Rule
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Individual versus Joint Testing of Hypotheses
In Section 8.3 we discussed the test of significance of a single regression coefficient and in
Section 8.4 we have discussed the joint or overall test of significance of the estimated re-
gression (i.e., all slope coefficients are simultaneously equal to zero). We reiterate that
these tests are different. Thus, on the basis of the t test or confidence interval (of Sec-
tion 8.3) it is possible to accept the hypothesis that a particular slope coefficient, βk , is zero,
and yet reject the joint hypothesis that all slope coefficients are zero.

The lesson to be learned is that the joint “message’’ of individual confidence intervals is no
substitute for a joint confidence region [implied by the F test] in performing joint tests of
hypotheses and making joint confidence statements.8

An Important Relationship between R2 and F
There is an intimate relationship between the coefficient of determination R2 and the F test
used in the analysis of variance. Assuming the normal distribution for the disturbances ui

and the null hypothesis that β2 = β3 = 0, we have seen that

F = ESS/2

RSS/(n − 3)
(8.4.8)

is distributed as the F distribution with 2 and n − 3 df.
More generally, in the k-variable case (including intercept), if we assume that the distur-

bances are normally distributed and that the null hypothesis is

H0: β2 = β3 = · · · = βk = 0 (8.4.9)

then it follows that

F = ESS/(k − 1)

RSS/(n − k)
(8.4.7) = (8.4.10)

follows the F distribution with k − 1 and n − k df. (Note: The total number of parameters
to be estimated is k, of which 1 is the intercept term.)

Let us manipulate Eq. (8.4.10) as follows:

(8.4.11)

F = n − k

k − 1

ESS

RSS

= n − k

k − 1

ESS

TSS − ESS

= n − k

k − 1

ESS/TSS

1 − (ESS/TSS)

= n − k

k − 1

R2

1 − R2

= R2/(k − 1)

(1 − R2)/(n − k)

8Fomby et al., op. cit., p. 42.
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where use is made of the definition R2 = ESS/TSS. Equation (8.4.11) shows how F and R2

are related. These two vary directly. When R2 = 0, F is zero ipso facto. The larger the R2,
the greater the F value. In the limit, when R2 = 1, F is infinite. Thus the F test, which is a
measure of the overall significance of the estimated regression, is also a test of significance
of R2. In other words, testing the null hypothesis in Eq. (8.4.9) is equivalent to testing the
null hypothesis that (the population) R2 is zero.

For the three-variable case, Eq. (8.4.11) becomes

F = R2/2

(1 − R2)/(n − 3)
(8.4.12)

By virtue of the close connection between F and R2, the ANOVA Table (Table 8.1) can be
recast as Table 8.4.

For our illustrative example, using Eq. (8.4.12) we obtain:

F = 0.7077/2

(1 − 0.7077)/61
= 73.8726

which is about the same as obtained before, except for the rounding errors.
One advantage of the F test expressed in terms of R2 is its ease of computation: All that

one needs to know is the R2 value. Therefore, the overall F test of significance given in
Eq. (8.4.7) can be recast in terms of R2 as shown in Table 8.4.

Testing the Overall Significance of a Multiple
Regression in Terms of R2

TABLE 8.4
ANOVA Table in
Terms of R2

Source of Variation SS df MSS*

Due to regression R2(
∑

y 2
i ) 2 R2(

∑
y 2

i )/2

Due to residuals (1 − R2)(
∑

y 2
i ) n − 3 (1 − R2)(

∑
y 2

i )/(n − 3)

Total
∑

y 2
i n − 1

*Note that in computing the F value there is no need to multiply R2 and (1 − R2) by 
∑

y 2
i because it drops out, as shown in

Eq. (8.4.12).

Testing the overall significance of a regression in terms of R2: Alternative but equivalent
test to Eq. (8.4.7).

Given the k-variable regression model:

Yi = βi + β2 X2i + β3 X3i + · · · + βx Xki + ui

To test the hypothesis

H0: β2 = β3 = · · · = βk = 0

versus

H1: Not all slope coefficients are simultaneously zero

compute

F = R2/(k − 1)
(1 − R2)/(n − k)

(8.4.13)

If F > F α(k−1,n−k) , reject H0; otherwise you may accept H0 where F α(k−1,n−k) is the critical
F value at the α level of significance and (k − 1) numerator df and (n − k) denominator df.
Alternatively, if the p value of F obtained from Eq. (8.4.13) is sufficiently low, reject H0.

Decision Rule
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Chapter 8 Multiple Regression Analysis: The Problem of Inference 243

Before moving on, return to Example 7.5 in Chapter 7. From regression (7.10.7) we
observe that RGDP (relative per capita GDP) and RGDP squared explain only about
10.92 percent of the variation in GDPG (GDP growth rate) in a sample of 190 countries.
This R2 of 0.1092 seems a “low” value. Is it really statistically different from zero? How do
we find that out?

Recall our earlier discussion in “An Important Relationship between R2 and F” about
the relationship between R2 and the F value as given in Eq. (8.4.11) or Eq. (8.4.12) for the
specific case of two regressors. As noted, if R2 is zero, then F is zero ipso facto, which will
be the case if the regressors have no impact whatsoever on the regressand. Therefore, if we
insert R2 = 0.1092 into formula (8.4.12), we obtain

F = 0.1092/2

(1 − 0.1092)/187
= 11.4618 (8.4.13)

Under the null hypothesis that R2 = 0, the preceding F value follows the F distribution with
2 and 187 df in the numerator, respectively. (Note: There are 190 observations and two re-
gressors.) From the F table we see that this F value is significant at about the 5 percent level;
the p value is actually 0.00002. Therefore, we can reject the null hypothesis that the two re-
gressors have no impact on the regressand, notwithstanding the fact that the R2 is only 0.1092.

This example brings out an important empirical observation that in cross-sectional data
involving several observations, one generally obtains low R2 because of the diversity of the
cross-sectional units. Therefore, one should not be surprised or worried about finding low
R2’s in cross-sectional regressions. What is relevant is that the model is correctly specified,
that the regressors have the correct (i.e., theoretically expected) signs, and that (hopefully)
the regression coefficients are statistically significant. The reader should check that individ-
ually both of the regressors in Eq. (7.10.7) are statistically significant at the 5 percent or
better level (i.e., lower than 5 percent).

The “Incremental” or “Marginal” Contribution
of an Explanatory Variable
In Chapter 7 we stated that generally we cannot allocate the R2 value among the various re-
gressors. In our child mortality example we found that the R2 was 0.7077 but we cannot say
what part of this value is due to the regressor PGNP and what part is due to female literacy
rate (FLR) because of possible correlation between the two regressors in the sample at
hand. We can shed more light on this using the analysis of variance technique.

For our illustrative example we found that individually X2 (PGNP) and X3 (FLR) were
statistically significant on the basis of (separate) t tests. We have also found that on the
basis of the F test collectively both the regressors have a significant effect on the regressand
Y (child mortality).

Now suppose we introduce PGNP and FLR sequentially; that is, we first regress child
mortality on PGNP and assess its significance and then add FLR to the model to find out
whether it contributes anything (of course, the order in which PGNP and FLR enter can be re-
versed). By contribution we mean whether the addition of the variable to the model increases
ESS (and hence R2) “significantly” in relation to the RSS. This contribution may appropri-
ately be called the incremental, or marginal, contribution of an explanatory variable.

The topic of incremental contribution is an important one in practice. In most empirical
investigations the researcher may not be completely sure whether it is worth adding an X
variable to the model knowing that several other X variables are already present in the
model. One does not wish to include a variable(s) that contributes very little toward ESS.
By the same token, one does not want to exclude a variable(s) that substantially increases
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TABLE 8.5
ANOVA Table for
Regression
Equation (8.4.14)

Source of Variation SS df MSS

ESS (due to PGNP) 60,449.5 1 60,449.5
RSS 303,228.5 62 4890.7822

Total 363,678 63

244 Part One Single-Equation Regression Models

ESS. But how does one decide whether an X variable significantly reduces RSS? The analy-
sis of variance technique can be easily extended to answer this question.

Suppose we first regress child mortality on PGNP and obtain the following regression:

ĈMi = 157.4244 − 0.0114 PGNP (8.4.14)
t = (15.9894) (−3.5156) r2 = 0.1662

p value = (0.0000) (0.0008) adj r2 = 0.1528

As these results show, PGNP has a significant effect on CM. The ANOVA table corre-
sponding to the preceding regression is given in Table 8.5.

Assuming the disturbances ui are normally distributed and the hypothesis that PGNP
has no effect on CM, we obtain the F value of

F = 60,449.5

4890.7822
= 12.3598 (8.4.15)

which follows the F distribution with 1 and 62 df. This F value is highly significant, as the
computed p value is 0.0008. Thus, as before, we reject the hypothesis that PGNP has no
effect on CM. Incidentally, note that t2 = (−3.5156)2 = 12.3594, which is approximately
the same as the F value of Eq. (8.4.15), where the t value is obtained from Eq. (8.4.14). But
this should not be surprising in view of the fact that the square of the t statistic with n df is
equal to the F value with 1 df in the numerator and n df in the denominator, a relationship first
established in Chapter 5. Note that in the present example, n = 64.

Having run the regression (8.4.14), let us suppose we decide to add FLR to the model
and obtain the multiple regression (8.1.4). The questions we want to answer are:

1. What is the marginal, or incremental, contribution of FLR, knowing that PGNP is
already in the model and that it is significantly related to CM?

2. Is the incremental contribution of FLR statistically significant?

3. What is the criterion for adding variables to the model?

The preceding questions can be answered by the ANOVA technique. To see this, let us con-
struct Table 8.6. In this table X2 refers to PGNP and X3 refers to FLR.

To assess the incremental contribution of X3 after allowing for the contribution of X2, we
form

= Q2/1

Q4/61
for our example (8.4.16)

F = Q2/df

Q4/df

= (ESSnew − ESSold)/number of new regressors

RSSnew/df ( = n − number of parameters in the new model)
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where ESSnew = ESS under the new model (i.e., after adding the new regressors = Q3),
ESSold = ESS under the old model ( = Q1), and RSSnew = RSS under the new model (i.e.,
after taking into account all the regressors = Q4). For our illustrative example the results
are as shown in Table 8.7.

Now applying Eq. (8.4.16), we obtain:

F = 196,912.9

1742.8786
= 112.9814 (8.4.17)

Under the usual assumptions, this F value follows the F distribution with 1 and 62 df. The
reader should check that this F value is highly significant, suggesting that the addition of
FLR to the model significantly increases ESS and hence the R2 value. Therefore, FLR
should be added to the model. Again, note that if you square the t-statistic value of the FLR
coefficient in the multiple regression (8.1.4), which is (−10.6293)2, you will obtain the F
value of Eq. (8.4.17), save for the rounding errors.

Incidentally, the F ratio of Eq. (8.4.16) can be recast by using the R2 values only, as we
did in Eq. (8.4.13). As Exercise 8.2 shows, the F ratio of Eq. (8.4.16) is equivalent to the
following F ratio:9

(8.4.18)

F =
(
R2

new − R2
old

)/
df(

1 − R2
new

)/
df

=
(
R2

new − R2
old

)/
number of new regressors(

1 − R2
new

)/
df ( = n − number of parameters in the new model)

TABLE 8.6
ANOVA Table to
Assess Incremental
Contribution of a
Variable(s)

Source of Variation SS df MSS

ESS due to X2 alone Q1 = β̂2
1 2

∑
x 2

2 1 Q1

1

ESS due to the addition of X3 Q2 = Q3 − Q1 1 Q2

1

ESS due to both X2, X3 Q3 = β̂2
∑

yi x2i + β̂3
∑

yi x3i 2 Q3

2

RSS Q4 = Q5 − Q3 n − 3

Total Q5 = ∑
y 2

i n − 1

9The following F test is a special case of the more general F test given in Eq. (8.6.9) or Eq. (8.6.10) in
Section 8.6.

TABLE 8.7
ANOVA Table for the
Illustrative Example:
Incremental Analysis

Source of Variation SS df MSS

ESS due to PGNP 60,449.5 1 60,449.5
ESS due to the addition of FLR 196,912.9 1 196,912.9
ESS due to PGNP and FLR 257,362.4 2 128,681.2
RSS 106,315.6 61 1742.8786

Total 363,678 63

Q4

n − 3
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This F ratio follows the F distribution with the appropriate numerator and denominator df,
1 and 61 in our illustrative example.

For our example, R2
new = 0.7077 (from Eq. [8.1.4]) and R2

old = 0.1662 (from
Eq. [8.4.14]). Therefore,

F = (0.7077 − 0.1662)/1

(1 − 0.7077)/61
= 113.05 (8.4.19)

which is about the same as that obtained from Eq. (8.4.17), except for the rounding errors.
This F is highly significant, reinforcing our earlier finding that the variable FLR belongs in
the model.

A cautionary note: If you use the R2 version of the F test given in Eq. (8.4.11), make
sure that the dependent variable in the new and the old models is the same. If they are dif-
ferent, use the F test given in Eq. (8.4.16).

When to Add a New Variable
The F-test procedure just outlined provides a formal method of deciding whether a variable
should be added to a regression model. Often researchers are faced with the task of choos-
ing from several competing models involving the same dependent variable but with dif-
ferent explanatory variables.As a matter of ad hoc choice (because very often the theoretical
foundation of the analysis is weak), these researchers frequently choose the model that gives
the highest adjusted R2. Therefore, if the inclusion of a variable increases R̄2, it is retained
in the model although it does not reduce RSS significantly in the statistical sense. The ques-
tion then becomes: When does the adjusted R2 increase? It can be shown that R̄2 will in-
crease if the t value of the coefficient of the newly added variable is larger than 1 in absolute
value, where the t value is computed under the hypothesis that the population value of the
said coefficient is zero (i.e., the t value computed from Eq. [5.3.2] under the hypothesis that
the true β value is zero).10 The preceding criterion can also be stated differently: R̄2 will in-
crease with the addition of an extra explanatory variable only if the F( = t2) value of that
variable exceeds 1.

Applying either criterion, the FLR variable in our child mortality example with a t value
of −10.6293 or an F value of 112.9814 should increase R̄2, which indeed it does—when
FLR is added to the model, R̄2 increases from 0.1528 to 0.6981.

When to Add a Group of Variables
Can we develop a similar rule for deciding whether it is worth adding (or dropping) a group
of variables from a model? The answer should be apparent from Eq. (8.4.18): If adding
(dropping) a group of variables to the model gives an F value greater (less) than 1, R2 will
increase (decrease). Of course, from Eq. (8.4.18) one can easily find out whether the addi-
tion (subtraction) of a group of variables significantly increases (decreases) the explanatory
power of a regression model.

8.5 Testing the Equality of Two Regression Coefficients

Suppose in the multiple regression

Yi = β1 + β2 X2i + β3 X3i + β4 X4i + ui (8.5.1)

10For proof, see Dennis J. Aigner, Basic Econometrics, Prentice Hall, Englewood Cliffs, NJ, 1971,
pp. 91–92.
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we want to test the hypotheses

H0: β3 = β4 or (β3 − β4) = 0

H1: β3 �= β4 or (β3 − β4) �= 0
(8.5.2)

that is, the two slope coefficients β3 and β4 are equal.
Such a null hypothesis is of practical importance. For example, let Eq. (8.5.1) represent

the demand function for a commodity where Y = amount of a commodity demanded, X2 =
price of the commodity, X3 = income of the consumer, and X4 = wealth of the consumer.
The null hypothesis in this case means that the income and wealth coefficients are the same.
Or, if Yi and the X’s are expressed in logarithmic form, the null hypothesis in Eq. (8.5.2) im-
plies that the income and wealth elasticities of consumption are the same. (Why?)

How do we test such a null hypothesis? Under the classical assumptions, it can be shown
that

(8.5.3)

follows the t distribution with (n − 4) df because Eq. (8.5.1) is a four-variable model or,
more generally, with (n − k) df, where k is the total number of parameters estimated,
including the constant term. The se (β̂3 − β̂4) is obtained from the following well-known
formula (see Appendix A for details):

(8.5.4)

If we substitute the null hypothesis and the expression for the se (β̂3 − β̂4) into 
Eq. (8.5.3), our test statistic becomes

t = β̂3 − β̂4√
var (β̂3) + var (β̂4) − 2 cov (β̂3, β̂4)

(8.5.5)

Now the testing procedure involves the following steps:

1. Estimate β̂3 and β̂4. Any standard computer package can do that.

2. Most standard computer packages routinely compute the variances and covariances of
the estimated parameters.11 From these estimates the standard error in the denominator
of Eq. (8.5.5) can be easily obtained.

3. Obtain the t ratio from Eq. (8.5.5). Note the null hypothesis in the present case is
(β3 − β4) = 0.

4. If the t variable computed from Eq. (8.5.5) exceeds the critical t value at the designated
level of significance for given df, then you can reject the null hypothesis; otherwise, you
do not reject it. Alternatively, if the p value of the t statistic from Eq. (8.5.5) is reason-
ably low, one can reject the null hypothesis. Note that the lower the p value, the greater
the evidence against the null hypothesis. Therefore, when we say that a p value is low or
reasonably low, we mean that it is less than the significance level, such as 10, 5, or 1 per-
cent. Some personal judgment is involved in this decision.

se (β̂3 − β̂4) =
√

var (β̂3) + var (β̂4) − 2 cov (β̂3, β̂4)

t = (β̂3 − β̂4) − (β3 − β4)

se (β̂3 − β̂4)

11The algebraic expression for the covariance formula is rather involved. Appendix C provides a
compact expression for it, however, using matrix notation.
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8.6 Restricted Least Squares: Testing Linear Equality Restrictions

There are occasions where economic theory may suggest that the coefficients in a regression
model satisfy some linear equality restrictions. For instance, consider the Cobb–Douglas
production function:

Yi = β1 Xβ2

2i Xβ3

3i eui (7.9.1) = (8.6.1)

where Y = output, X2 = labor input, and X3 = capital input. Written in log form, the equa-
tion becomes

ln Yi = β0 + β2 ln X2i + β3 ln X3i + ui (8.6.2)

where β0 = ln β1.

Now if there are constant returns to scale (equiproportional change in output for an
equiproportional change in the inputs), economic theory would suggest that

β2 + β3 = 1 (8.6.3)

which is an example of a linear equality restriction.12

How does one find out if there are constant returns to scale, that is, if the restriction
(8.6.3) is valid? There are two approaches.

EXAMPLE 8.2
The Cubic Cost
Function
Revisited

Recall the cubic total cost function estimated in Example 7.4, Section 7.10, which for con-
venience is reproduced below:

Ŷ i = 141.7667 + 63.4777Xi − 12.9615X 2
i + 0.9396Xi

3

se = (6.3753) (4.7786) (0.9857) (0.0591) (7.10.6)

cov (β̂3, β̂4) = −0.0576; R 2 = 0.9983

where Y is total cost and X is output, and where the figures in parentheses are the esti-
mated standard errors.

Suppose we want to test the hypothesis that the coefficients of the X 2 and X 3 terms in
the cubic cost function are the same, that is, β3 = β4 or (β3 − β4) = 0. In the regression
(7.10.6) we have all the necessary output to conduct the t test of Eq. (8.5.5). The actual
mechanics are as follows:

t = β̂3 − β̂4√
var (β̂3) + var (β̂4) − 2 cov (β̂3, β̂4)

= −12.9615 − 0.9396√
(0.9867)2 + (0.0591)2 − 2(−0.0576) (8.5.6)

= −13.9011
1.0442

= −13.3130

The reader can verify that for 6 df (why?) the observed t value exceeds the critical t value
even at the 0.002 (or 0.2 percent) level of significance (two-tail test); the p value is ex-
tremely small, 0.000006. Hence we can reject the hypothesis that the coefficients of X 2

and X 3 in the cubic cost function are identical.

12If we had β2 + β3 < 1, this relation would be an example of a linear inequality restriction. To handle
such restrictions, one needs to use mathematical programming techniques.
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The t-Test Approach
The simplest procedure is to estimate Eq. (8.6.2) in the usual manner without taking into
account the restriction (8.6.3) explicitly. This is called the unrestricted or unconstrained
regression. Having estimated β2 and β3 (say, by the OLS method), a test of the hypothesis
or restriction (8.6.3) can be conducted by the t test of Eq. (8.5.3), namely,

(8.6.4)

where (β2 + β3) = 1 under the null hypothesis and where the denominator is the standard
error of (β̂2 + β̂3). Then following Section 8.5, if the t value computed from Eq. (8.6.4) ex-
ceeds the critical t value at the chosen level of significance, we reject the hypothesis of con-
stant returns to scale; otherwise we do not reject it.

The F-Test Approach: Restricted Least Squares
The preceding t test is a kind of postmortem examination because we try to find out whether
the linear restriction is satisfied after estimating the “unrestricted’’ regression. A direct ap-
proach would be to incorporate the restriction (8.6.3) into the estimating procedure at the
outset. In the present example, this procedure can be done easily. From (8.6.3) we see that

β2 = 1 − β3 (8.6.5)
or

β3 = 1 − β2 (8.6.6)

Therefore, using either of these equalities, we can eliminate one of the β coefficients in 
Eq. (8.6.2) and estimate the resulting equation. Thus, if we use Eq. (8.6.5), we can write the
Cobb–Douglas production function as

ln Yi = β0 + (1 − β3) ln X2i + β3 ln X3i + ui

= β0 + ln X2i + β3(ln X3i − ln X2i ) + ui

or

(ln Yi − ln X2i ) = β0 + β3(ln X3i − ln X2i ) + ui (8.6.7)

or

ln (Yi/X2i ) = β0 + β3 ln (X3i/X2i ) + ui (8.6.8)

where (Yi/X2i ) = output/labor ratio and (X3i/X2i ) = capital labor ratio, quantities of great
economic importance.

Notice how the original equation (8.6.2) is transformed. Once we estimate β3 from 
Eq. (8.6.7) or Eq. (8.6.8), β2 can be easily estimated from the relation (8.6.5). Needless to
say, this procedure will guarantee that the sum of the estimated coefficients of the two inputs
will equal 1. The procedure outlined in Eq. (8.6.7) or Eq. (8.6.8) is known as restricted
least squares (RLS). This procedure can be generalized to models containing any number
of explanatory variables and more than one linear equality restriction. The generalization
can be found in Theil.13 (See also general F testing below.)

t = (β̂2 + β̂3) − (β2 + β3)

se (β̂2 + β̂3)

= (β̂2 + β̂3) − 1√
var (β̂2) + var (β̂3) + 2 cov (β̂2, β̂3)

13Henri Theil, Principles of Econometrics, John Wiley & Sons, New York, 1971, pp. 43–45.
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How do we compare the unrestricted and restricted least-squares regressions? In other
words, how do we know that, say, the restriction (8.6.3) is valid? This question can be an-
swered by applying the F test as follows. Let∑

û2
UR = RSS of the unrestricted regression (8.6.2)∑
û2

R = RSS of the restricted regression (8.6.7)

m = number of linear restrictions (1 in the present example)

k = number of parameters in the unrestricted regression

n = number of observations

Then,

follows the F distribution with m, (n − k) df. (Note: UR and R stand for unrestricted and
restricted, respectively.)

The F test above can also be expressed in terms of R2 as follows:

(8.6.10)

where R2
UR and R2

R are, respectively, the R2 values obtained from the unrestricted and 
restricted regressions, that is, from the regressions (8.6.2) and (8.6.7). It should be noted that

R2
UR ≥ R2

R (8.6.11)

and ∑
û2

UR ≤
∑

û2
R (8.6.12)

In Exercise 8.4 you are asked to justify these statements.
A cautionary note: In using Eq. (8.6.10) keep in mind that if the dependent variable in

the restricted and unrestricted models is not the same, R2
UR and R2

R are not directly compa-
rable. In that case, use the procedure described in Chapter 7 to render the two R2 values
comparable (see Example 8.3 below) or use the F test given in Eq. (8.6.9).

F =
(
R2

UR − R2
R

)/
m(

1 − R2
UR

)/
(n − k)

(8.6.9)

F = (RSSR − RSSUR)/m

RSSUR/(n − k)

=
(∑

û2
R − ∑

û2
UR

)/
m∑

û2
UR

/
(n − k)

EXAMPLE 8.3
The Cobb–
Douglas
Production
Function for the
Mexican
Economy,
1955–1974

By way of illustrating the preceding discussion, consider the data given in Table 8.8.
Attempting to fit the Cobb–Douglas production function to these data yielded the fol-
lowing results:

l̂n GDPt = −1.6524 + 0.3397 ln Labort + 0.8460 ln Capitalt (8.6.13)

t = (−2.7259) (1.8295) (9.0625)

p value = (0.0144) (0.0849) (0.0000)

R2 = 0.9951 RSSUR = 0.0136
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where RSSUR is the unrestricted RSS, as we have put no restrictions on estimating
Eq. (8.6.13).

We have already seen in Chapter 7 how to interpret the coefficients of the Cobb–
Douglas production function. As you can see, the output/labor elasticity is about 0.34
and the output/capital elasticity is about 0.85. If we add these coefficients, we obtain
1.19, suggesting that perhaps the Mexican economy during the stated time period was
experiencing increasing returns to scale. Of course, we do not know if 1.19 is statisti-
cally different from 1.

To see if that is the case, let us impose the restriction of constant returns to scale,
which gives the following regression:

l̂n (GDP/Labor)t = −0.4947 + 1.0153 ln (Capital/Labor)t (8.6.14)

t = (−4.0612) (28.1056)

p value = (0.0007) (0.0000)

R2
R = 0.9777 RSSR = 0.0166

where RSSR is the restricted RSS, for we have imposed the restriction that there are con-
stant returns to scale.

Year GDP* Employment† Fixed Capital‡

1955 114043 8310 182113
1956 120410 8529 193749
1957 129187 8738 205192
1958 134705 8952 215130
1959 139960 9171 225021
1960 150511 9569 237026
1961 157897 9527 248897
1962 165286 9662 260661
1963 178491 10334 275466
1964 199457 10981 295378
1965 212323 11746 315715
1966 226977 11521 337642
1967 241194 11540 363599
1968 260881 12066 391847
1969 277498 12297 422382
1970 296530 12955 455049
1971 306712 13338 484677
1972 329030 13738 520553
1973 354057 15924 561531
1974 374977 14154 609825

*Millions of 1960 pesos. 
†Thousands of people.
‡Millions of 1960 pesos.

TABLE 8.8
Real GDP,
Employment, and
Real Fixed
Capital—Mexico

(Continued )

Source: Victor J. Elias,
Sources of Growth: A Study
of Seven Latin American
Economies, International
Center for Economic Growth,
ICS Press, San Francisco,
1992. Data from Tables E5,
E12, and E14.
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General F Testing14

The F test given in Eq. (8.6.10) or its equivalent in Eq. (8.6.9) provides a general method
of testing hypotheses about one or more parameters of the k-variable regression model:

Yi = β1 + β2 X2i + β3 X3i + · · · + βk Xki + ui (8.6.15)

The F test of Eq. (8.4.16) or the t test of Eq. (8.5.3) is but a specific application of
Eq. (8.6.10). Thus, hypotheses such as

H0: β2 = β3 (8.6.16)

H0: β3 + β4 + β5 = 3 (8.6.17)

which involve some linear restrictions on the parameters of the k-variable model, or
hypotheses such as

H0: β3 = β4 = β5 = β6 = 0 (8.6.18)

which imply that some regressors are absent from the model, can all be tested by the F test
of Eq. (8.6.10).

From the discussion in Sections 8.4 and 8.6, the reader will have noticed that the general
strategy of F testing is this: There is a larger model, the unconstrained model (8.6.15), and
then there is a smaller model, the constrained or restricted model, which is obtained from
the larger model by deleting some variables from it, e.g., Eq. (8.6.18), or by putting some
linear restrictions on one or more coefficients of the larger model, e.g., Eq. (8.6.16) or
Eq. (8.6.17).

Since the dependent variable in the preceding two regressions is different, we have to
use the F test given in Eq. (8.6.9). We have the necessary data to obtain the F value.

F = (RSSR − RSSUR)/m
RSSUR/(n − k)

= (0.0166 − 0.0136)/1
(0.0136)/(20 − 3)

= 3.75

Note in the present case m = 1, as we have imposed only one restriction and (n − k) is 17,
since we have 20 observations and three parameters in the unrestricted regression.

This F value follows the F distribution with 1 df in the numerator and 17 df in the
denominator. The reader can easily check that this F value is not significant at the 5% level.
(See Appendix D, Table D.3.)

The conclusion then is that the Mexican economy was probably characterized by con-
stant returns to scale over the sample period and therefore there may be no harm in using
the restricted regression given in Eq. (8.6.14). As this regression shows, if capital/labor
ratio increased by 1 percent, on average, labor productivity went up by about 1 percent.

14If one is using the maximum likelihood approach to estimation, then a test similar to the one dis-
cussed shortly is the likelihood ratio test, which is slightly involved and is therefore discussed in
the appendix to the chapter. For further discussion, see Theil, op. cit., pp. 179–184.

EXAMPLE 8.3
(Continued)
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We then fit the unconstrained and constrained models to the data and obtain the respec-
tive coefficients of determination, namely, R2

UR and R2
R. We note the df in the unconstrained

model ( = n − k) and also note the df in the constrained model ( = m), m being the num-
ber of linear restriction (e.g., 1 in Eq. [8.6.16] or Eq. [8.6.18]) or the number of regressors
omitted from the model (e.g., m = 4 if Eq. [8.6.18] holds, since four regressors are as-
sumed to be absent from the model). We then compute the F ratio as indicated in Eq. (8.6.9)
or Eq. (8.6.10) and use this Decision Rule: If the computed F exceeds Fα(m, n − k), where
Fα(m, n − k) is the critical F at the α level of significance, we reject the null hypothesis:
otherwise we do not reject it.

Let us illustrate:

EXAMPLE 8.4
The Demand for
Chicken in the
United States,
1960–1982

In Exercise 7.19, among other things, you were asked to consider the following demand
function for chicken:

lnYt = β1 + β2 ln X2t + β3 ln X3t + β4 ln X4t + β5 ln X5t + ui (8.6.19)

where Y = per capita consumption of chicken, lb, X2 = real disposable per capita income, 
$, X3 = real retail price of chicken per lb, ¢, X4 = real retail price of pork per lb, ¢, and X5 =
real retail price of beef per lb, ¢.

In this model β2, β3, β4, and β5 are, respectively, the income, own-price, cross-price
(pork), and cross-price (beef) elasticities. (Why?) According to economic theory,

β2 > 0

β3 < 0

β4 > 0, if chicken and pork are competing products

< 0, if chicken and pork are complementary products (8.6.20)

= 0, if chicken and pork are unrelated products

β5 > 0, if chicken and beef are competing products

< 0, if chicken and pork are complementary products

= 0, if chicken and pork are unrelated products

Suppose someone maintains that chicken and pork and beef are unrelated products in
the sense that chicken consumption is not affected by the prices of pork and beef. In short,

H0: β4 = β5 = 0 (8.6.21)

Therefore, the constrained regression becomes

lnYt = β1 + β2 ln X2t + β3 ln X3t + ut (8.6.22)

Equation (8.6.19) is of course the unconstrained regression.
Using the data given in Exercise 7.19, we obtain the following:
Unconstrained regression:

l̂nYt = 2.1898 + 0.3425 ln X2t − 0.5046 ln X3t + 0.1485 ln X4t + 0.0911 ln X5t

(0.1557) (0.0833) (0.1109) (0.0997) (0.1007)

R2
UR = 0.9823 (8.6.23)

Constrained regression:

l̂nYt = 2.0328 + 0.4515 ln X2t − 0.3772 ln X3t

(0.1162) (0.0247) (0.0635) (8.6.24)

R 2
R = 0.9801

(Continued)
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8.7 Testing for Structural or Parameter Stability of Regression
Models: The Chow Test

When we use a regression model involving time series data, it may happen that there is a
structural change in the relationship between the regressand Y and the regressors. By
structural change, we mean that the values of the parameters of the model do not remain the
same through the entire time period. Sometimes the structural change may be due to exter-
nal forces (e.g., the oil embargoes imposed by the OPEC oil cartel in 1973 and 1979 or the
Gulf War of 1990–1991), policy changes (such as the switch from a fixed exchange-rate
system to a flexible exchange-rate system around 1973), actions taken by Congress (e.g.,
the tax changes initiated by President Reagan in his two terms in office or changes in the
minimum wage rate), or a variety of other causes.

How do we find out that a structural change has in fact occurred? To be specific, con-
sider the data given in Table 8.9. This table gives data on disposable personal income and
personal savings, in billions of dollars, for the United States for the period 1970–1995.
Suppose we want to estimate a simple savings function that relates savings (Y) to dispos-
able personal income DPI (X). Since we have the data, we can obtain an OLS regression of
Y on X. But if we do that, we are maintaining that the relationship between savings and DPI
has not changed much over the span of 26 years. That may be a tall assumption. For exam-
ple, it is well known that in 1982 the United States suffered its worst peacetime recession.
The civilian unemployment rate that year reached 9.7 percent, the highest since 1948. An

where the figures in parentheses are the estimated standard errors. Note: The R 2 values of
Eqs. (8.6.23) and (8.6.24) are comparable since the dependent variable in the two mod-
els is the same.

Now the F ratio to test the hypothesis of Eq. (8.6.21) is

F =
(
R2

UR − R2
R

)
/m(

1 − R2
UR

)
/(n − k)

(8.6.10)

The value of m in the present case is 2, since there are two restrictions involved: β4 = 0 and
β5 = 0. The denominator df, (n − k), is 18, since n = 23 and k = 5 (5 β coefficients).

Therefore, the F ratio is

F = (0.9823 − 0.9801)/2
(1 − 0.9823)/18

= 1.1224

(8.6.25)

which has the F distribution with 2 and 18 df.
At 5 percent, clearly this F value is not statistically significant [F0.5 (2,18) = 3.55]. The

p value is 0.3472. Therefore, there is no reason to reject the null hypothesis—the demand
for chicken does not depend on pork and beef prices. In short, we can accept the con-
strained regression (8.6.24) as representing the demand function for chicken.

Notice that the demand function satisfies a priori economic expectations in that the
own-price elasticity is negative and that the income elasticity is positive. However, the es-
timated price elasticity, in absolute value, is statistically less than unity, implying that the
demand for chicken is price inelastic. (Why?) Also, the income elasticity, although positive,
is also statistically less than unity, suggesting that chicken is not a luxury item; by conven-
tion, an item is said to be a luxury item if its income elasticity is greater than 1.

EXAMPLE 8.4
(Continued)
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event such as this might disturb the relationship between savings and DPI. To see if this
happened, let us divide our sample data into two time periods: 1970–1981 and 1982–1995,
the pre- and post-1982 recession periods.

Now we have three possible regressions:

Time period 1970–1981: Yt = λ1 + λ2 Xt + u1t n1 = 12 (8.7.1)

Time period 1982–1995: Yt = γ1 + γ2 Xt + u2t n2 = 14 (8.7.2)

Time period 1970–1995: Yt = α1 + α2 Xt + ut n = (n1 + n2) = 26 (8.7.3)

Regression (8.7.3) assumes that there is no difference between the two time periods and
therefore estimates the relationship between savings and DPI for the entire time period con-
sisting of 26 observations. In other words, this regression assumes that the intercept as well
as the slope coefficient remains the same over the entire period; that is, there is no structural
change. If this is in fact the situation, then α1 = λ1 = γ1 and α2 = λ2 = γ2.

Regressions (8.7.1) and (8.7.2) assume that the regressions in the two time periods are
different; that is, the intercept and the slope coefficients are different, as indicated by the
subscripted parameters. In the preceding regressions, the u’s represent the error terms and
the n’s represent the number of observations.

For the data given in Table 8.9, the empirical counterparts of the preceding three regres-
sions are as follows:

Ŷt = 1.0161 + 0.0803 Xt

t = (0.0873) (9.6015) (8.7.1a)

R2 = 0.9021 RSS1 = 1785.032 df = 10

Ŷt = 153.4947 + 0.0148Xt

t = (4.6922) (1.7707) (8.7.2a)

R2 = 0.2971 RSS2 = 10,005.22 df = 12

Ŷt = 62.4226 + 0.0376 Xt + · · ·
t = (4.8917) (8.8937) + · · · (8.7.3a)

R2 = 0.7672 RSS3 = 23,248.30 df = 24

TABLE 8.9
Savings and Personal
Disposable Income
(billions of dollars),
United States,
1970–1995

Observation Savings Income Observation Savings Income

1970 61.0 727.1 1983 167.0 2522.4
1971 68.6 790.2 1984 235.7 2810.0
1972 63.6 855.3 1985 206.2 3002.0
1973 89.6 965.0 1986 196.5 3187.6
1974 97.6 1054.2 1987 168.4 3363.1
1975 104.4 1159.2 1988 189.1 3640.8
1976 96.4 1273.0 1989 187.8 3894.5
1977 92.5 1401.4 1990 208.7 4166.8
1978 112.6 1580.1 1991 246.4 4343.7
1979 130.1 1769.5 1992 272.6 4613.7
1980 161.8 1973.3 1993 214.4 4790.2
1981 199.1 2200.2 1994 189.4 5021.7
1982 205.5 2347.3 1995 249.3 5320.8

Source: Economic Report
of the President, 1997, 
Table B-28, p. 332.
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15Gregory C. Chow, “Tests of Equality Between Sets of Coefficients in Two Linear Regressions,”
Econometrica, vol. 28, no. 3, 1960, pp. 591–605.
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FIGURE 8.3

In the preceding regressions, RSS denotes the residual sum of squares, and the figures in
parentheses are the estimated t values.

A look at the estimated regressions suggests that the relationship between savings and
DPI is not the same in the two subperiods. The slope in the preceding savings-income
regressions represents the marginal propensity to save (MPS), that is, the (mean) change
in savings as a result of a dollar’s increase in disposable personal income. In the period
1970–1981 the MPS was about 0.08, whereas in the period 1982–1995 it was about 0.02.
Whether this change was due to the economic policies pursued by President Reagan is hard
to say. This further suggests that the pooled regression (8.7.3a)—that is, the one that pools
all the 26 observations and runs a common regression, disregarding possible differences in
the two subperiods—may not be appropriate. Of course, the preceding statements need to
be supported by an appropriate statistical test(s). Incidentally, the scattergrams and the es-
timated regression lines are as shown in Figure 8.3.

Now the possible differences, that is, structural changes, may be caused by differences in
the intercept or the slope coefficient or both. How do we find that out? A visual feeling about
this can be obtained as shown in Figure 8.3. But it would be useful to have a formal test.

This is where the Chow test comes in handy.15 This test assumes that:

1. u1t ∼ N (0, σ 2) and u2t ∼ N (0, σ 2). That is, the error terms in the subperiod regres-
sions are normally distributed with the same (homoscedastic) variance σ 2.

2. The two error terms u1t and u2t are independently distributed. 

The mechanics of the Chow test are as follows:

1. Estimate regression (8.7.3), which is appropriate if there is no parameter instability,
and obtain RSS3 with df = (n1 + n2 − k), where k is the number of parameters estimated,
2 in the present case. For our example RSS3 = 23,248.30. We call RSS3 the restricted
residual sum of squares (RSSR) because it is obtained by imposing the restrictions that
λ1 = γ1 and λ2 = γ2, that is, the subperiod regressions are not different.

2. Estimate Eq. (8.7.1) and obtain its residual sum of squares, RSS1, with df = (n1 − k).
In our example, RSS1 = 1785.032 and df = 10.

3. Estimate Eq. (8.7.2) and obtain its residual sum of squares, RSS2, with df = (n2 − k).
In our example, RSS2 = 10,005.22 with df = 12.
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4. Since the two sets of samples are deemed independent, we can add RSS1 and RSS2

to obtain what may be called the unrestricted residual sum of squares (RSSUR), that is,

RSSUR = RSS1 + RSS2 with df = (n1 + n2 − 2k)

In the present case,

RSSUR = (1785.032 + 10,005.22) = 11,790.252

5. Now the idea behind the Chow test is that if in fact there is no structural change
(i.e., regressions [8.7.1] and [8.7.2] are essentially the same), then the RSSR and RSSUR

should not be statistically different. Therefore, if we form the following ratio:

F = (RSSR − RSSUR)/k

(RSSUR)/(n1 + n2 − 2k)
∼ F[k,(n1+n2−2k)] (8.7.4)

then Chow has shown that under the null hypothesis the regressions (8.7.1) and (8.7.2) are
(statistically) the same (i.e., no structural change or break) and the F ratio given above
follows the F distribution with k and (n1 + n2 − 2k) df in the numerator and denominator,
respectively.

6. Therefore, we do not reject the null hypothesis of parameter stability (i.e., no struc-
tural change) if the computed F value in an application does not exceed the critical F value
obtained from the F table at the chosen level of significance (or the p value). In this case we
may be justified in using the pooled (restricted?) regression (8.7.3). Contrarily, if the com-
puted F value exceeds the critical F value, we reject the hypothesis of parameter stability
and conclude that the regressions (8.7.1) and (8.7.2) are different, in which case the pooled
regression (8.7.3) is of dubious value, to say the least.

Returning to our example, we find that

F = (23,248.30 − 11,790.252)/2

(11,790.252)/22

= 10.69
(8.7.5)

From the F tables, we find that for 2 and 22 df the 1 percent critical F value is 5.72. There-
fore, the probability of obtaining an F value of as much as or greater than 10.69 is much
smaller than 1 percent; actually the p value is only 0.00057.

The Chow test therefore seems to support our earlier hunch that the savings–income
relation has undergone a structural change in the United States over the period 1970–1995,
assuming that the assumptions underlying the test are fulfilled. We will have more to say
about this shortly.

Incidentally, note that the Chow test can be easily generalized to handle cases of more
than one structural break. For example, if we believe that the savings–income relation
changed after President Clinton took office in January 1992, we could divide our sample
into three periods: 1970–1981, 1982–1991, 1992–1995, and carry out the Chow test. Of
course, we will have four RSS terms, one for each subperiod and one for the pooled data.
But the logic of the test remains the same. Data through 2007 are now available to extend
the last period to 2007.

There are some caveats about the Chow test that must be kept in mind:

1. The assumptions underlying the test must be fulfilled. For example, one should find
out if the error variances in the regressions (8.7.1) and (8.7.2) are the same. We will discuss
this point shortly.
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2. The Chow test will tell us only if the two regressions (8.7.1) and (8.7.2) are different,
without telling us whether the difference is on account of the intercepts, or the slopes, or
both. But in Chapter 9, on dummy variables, we will see how we can answer this question.

3. The Chow test assumes that we know the point(s) of structural break. In our exam-
ple, we assumed it to be in 1982. However, if it is not possible to determine when the struc-
tural change actually took place, we may have to use other methods.16

Before we leave the Chow test and our savings–income regression, let us examine one
of the assumptions underlying the Chow test, namely, that the error variances in the two
periods are the same. Since we cannot observe the true error variances, we can obtain their
estimates from the RSS given in the regressions (8.7.1a) and (8.7.2a), namely,

σ̂ 2
1 = RSS1

n1 − 2
= 1785.032

10
= 178.5032 (8.7.6)

σ̂ 2
2 = RSS2

n2 − 2
= 10,005.22

14 − 2
= 833.7683 (8.7.7)

Notice that, since there are two parameters estimated in each equation, we deduct 2 from
the number of observations to obtain the df. Given the assumptions underlying the Chow
test, σ̂ 2

1 and σ̂ 2
2 are unbiased estimators of the true variances in the two subperiods. As a

result, if σ 2
1 = σ 2

2 , that is, the variances in the two subpopulations are the same (as assumed
by the Chow test), then it can be shown that

(
σ̂ 2

1

/
σ 2

1

)
(
σ̂ 2

2

/
σ 2

2

) ∼ F(n1−k),(n2−k) (8.7.8)

follows the F distribution with (n1 − k) and (n2 − k) df in the numerator and the denomi-
nator, respectively, in our example k = 2, since there are only two parameters in each sub-
regression.

Of course, if σ 2
1 = σ 2

2 , the preceding F test reduces to computing

F = σ̂ 2
1

σ̂ 2
2

(8.7.9)

Note: By convention we put the larger of the two estimated variances in the numerator. (See
Appendix A for the details of the F and other probability distributions.)

Computing this F in an application and comparing it with the critical F value with the
appropriate df, one can decide to reject or not reject the null hypothesis that the variances
in the two subpopulations are the same. If the null hypothesis is not rejected, then one can
use the Chow test.

Returning to our savings–income regression, we obtain the following result:

F = 833.7683

178.5032
= 4.6701 (8.7.10)

Under the null hypothesis of equality of variances in the two subpopulations, this F value
follows the F distribution with 12 and 10 df, in the numerator and denominator, respec-
tively. (Note: We have put the larger of the two estimated variances in the numerator.) From
the F tables in Appendix D, we see that the 5 and 1 percent critical F values for 12 and

16For a detailed discussion, see William H. Greene, Econometric Analysis, 4th ed., Prentice Hall,
Englewood Cliffs, NJ, 2000, pp. 293–297.
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10 df are 2.91 and 4.71, respectively. The computed F value is significant at the 5 percent
level and is almost significant at the 1 percent level. Thus, our conclusion would be that the
two subpopulation variances are not the same and, therefore, strictly speaking we should
not use the Chow test.

Our purpose here has been to demonstrate the mechanics of the Chow test, which is used
popularly in applied work. If the error variances in the two subpopulations are het-
eroscedastic, the Chow test can be modified. But the procedure is beyond the scope of this
book.17

Another point we made earlier was that the Chow test is sensitive to the choice of the
time at which the regression parameters might have changed. In our example, we assumed
that the change probably took place in the recession year of 1982. If we had assumed it to
be 1981, when Ronald Reagan began his presidency, we might have found the computed F
value to be different. As a matter of fact, in Exercise 8.34 the reader is asked to check this out.

If we do not want to choose the point at which the break in the underlying relationship
might have occurred, we could choose alternative methods, such as the recursive residual
test. We will take this topic up in Chapter 13, the chapter on model specification analysis.

8.8 Prediction with Multiple Regression

In Section 5.10 we showed how the estimated two-variable regression model can be used
for (1) mean prediction, that is, predicting the point on the population regression function
(PRF), as well as for (2) individual prediction, that is, predicting an individual value of Y
given the value of the regressor X = X0, where X0 is the specified numerical value of X.

The estimated multiple regression too can be used for similar purposes, and the proce-
dure for doing that is a straightforward extension of the two-variable case, except the for-
mulas for estimating the variances and standard errors of the forecast value (comparable to
Eqs. [5.10.2] and [5.10.6] of the two-variable model) are rather involved and are better han-
dled by the matrix methods discussed in Appendix C. Of course, most standard regression
packages can do this routinely, so there is no need to look up the matrix formulation. It is
given in Appendix C for the benefit of the mathematically inclined students. This appen-
dix also gives a fully worked out example.

*8.9 The Troika of Hypothesis Tests: The Likelihood Ratio (LR),
Wald (W), and Lagrange Multiplier (LM) Tests18

In this and the previous chapters we have, by and large, used the t, F, and chi-square tests
to test a variety of hypotheses in the context of linear (in-parameter) regression models. But
once we go beyond the somewhat comfortable world of linear regression models, we need
a method(s) to test hypotheses that can handle regression models, linear or not.

The well-known trinity of likelihood, Wald, and Lagrange multiplier tests can ac-
complish this purpose. The interesting thing to note is that asymptotically (i.e., in large

*Optional.
17For a discussion of the Chow test under heteroscedasticity, see William H. Greene, Econometric
Analysis, 4th ed., Prentice Hall, Englewood Cliffs, NJ, 2000, pp. 292–293, and Adrian C. Darnell,
A Dictionary of Econometrics, Edward Elgar, U.K., 1994, p. 51.
18For an accessible discussion, see A. Buse, “The Likelihood Ratio, Wald and Lagrange Multiplier Tests:
An Expository Note,’’ American Statistician, vol. 36, 1982, pp. 153–157.
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samples) all three tests are equivalent in that the test statistic associated with each of these
tests follows the chi-square distribution.

Although we will discuss the likelihood ratio test in the appendix to this chapter, in
general we will not use these tests in this textbook for the pragmatic reason that in small, or
finite, samples, which is unfortunately what most researchers deal with, the F test that we
have used so far will suffice. As Davidson and MacKinnon note:

For linear regression models, with or without normal errors, there is of course no need to look
at LM, W and LR at all, since no information is gained from doing so over and above what is
already contained in F.19

*8.10 Testing the Functional Form of Regression: Choosing
between Linear and Log–Linear Regression Models

The choice between a linear regression model (the regressand is a linear function of the
regressors) or a log–linear regression model (the log of the regressand is a function of the
logs of the regressors) is a perennial question in empirical analysis. We can use a test pro-
posed by MacKinnon, White, and Davidson, which for brevity we call the MWD test, to
choose between the two models.20

To illustrate this test, assume the following

H0: Linear Model: Y is a linear function of regressors, the X’s.

H1: Log–Linear Model: ln Y is a linear function of logs of regressors, the logs of X’s.

where, as usual, H0 and H1 denote the null and alternative hypotheses.
The MWD test involves the following steps:21

Step I: Estimate the linear model and obtain the estimated Y values. Call them Yf (i.e., Ŷ).

Step: II: Estimate the log–linear model and obtain the estimated ln Y values; call them
ln f (i.e., l̂n Y ).

Step III: Obtain Z1 = (ln Y f − ln f ).

Step IV: Regress Y on X ’s and Z1 obtained in Step III. Reject H0 if the coefficient of
Z1 is statistically significant by the usual t test.

Step V: Obtain Z2 = (antilog of ln f − Y f ).

Step VI: Regress log of Y on the logs of X’s and Z2. Reject H1 if the coefficient of Z2

is statistically significant by the usual t test.

Although the MWD test seems involved, the logic of the test is quite simple. If the linear
model is in fact the correct model, the constructed variable Z1 should not be statistically sig-
nificant in Step IV, for in that case the estimated Y values from the linear model and those
estimated from the log–linear model (after taking their antilog values for comparative pur-
poses) should not be different. The same comment applies to the alternative hypothesis H1.

*Optional.
19Russell Davidson and James G. MacKinnon, Estimation and Inference in Econometrics, Oxford Univer-
sity Press, New York, 1993, p. 456.
20J. MacKinnon, H. White, and R. Davidson, “Tests for Model Specification in the Presence of Alterna-
tive Hypothesis; Some Further Results,” Journal of Econometrics, vol. 21, 1983, pp. 53–70. A similar
test is proposed in A. K. Bera and C. M. Jarque, “Model Specification Tests: A Simultaneous Approach,”
Journal of Econometrics, vol. 20, 1982, pp. 59–82.
21This discussion is based on William H. Greene, ET. The Econometrics Toolkit Version 3, Econometric
Software, Bellport, New York, 1992, pp. 245–246.
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EXAMPLE 8.5
The Demand for
Roses

Refer to Exercise 7.16 where we have presented data on the demand for roses in the
Detroit metropolitan area for the period 1971–III to 1975–II. For illustrative purposes, we
will consider the demand for roses as a function only of the prices of roses and carna-
tions, leaving out the income variable for the time being. Now we consider the follow-
ing models:

Linear model: Yt = α1 + α2X2t + α3X3t + ut (8.10.1)

Log–linear model: lnYt = β1 + β2 lnX2t + β3 lnX3t + ut (8.10.2)

where Y is the quantity of roses in dozens, X2 is the average wholesale price of roses
($/dozen), and X3 is the average wholesale price of carnations ($/dozen). A priori, α2

and β2 are expected to be negative (why?), and α3 and β3 are expected to be positive
(why?). As we know, the slope coefficients in the log–linear model are elasticity
coefficients.

The regression results are as follows:

Ŷ t = 9734.2176 − 3782.1956X2t + 2815.2515X3t

t = (3.3705) (−6.6069) (2.9712) (8.10.3)

F = 21.84 R 2 = 0.77096

̂ln Yt = 9.2278 − 1.7607 lnX2t + 1.3398 lnX3t

t = (16.2349) (−5.9044) (2.5407) (8.10.4)

F = 17.50 R 2 = 0.7292

As these results show, both the linear and the log–linear models seem to fit the data rea-
sonably well: The parameters have the expected signs and the t and R2 values are statisti-
cally significant.

To decide between these models on the basis of the MWD test, we first test the hy-
pothesis that the true model is linear. Then, following Step IV of the test, we obtain the
following regression:

Ŷ t = 9727.5685 − 3783.0623X2t + 2817.7157X3t + 85.2319Z1t

t = (3.2178) (−6.3337) (2.8366) (0.0207) (8.10.5)

F = 13.44 R 2 = 0.7707

Since the coefficient of Z1 is not statistically significant (the p value of the estimated t is
0.98), we do not reject the hypothesis that the true model is linear.

Suppose we switch gears and assume that the true model is log–linear. Following step
VI of the MWD test, we obtain the following regression results:

l̂n Y t = 9.1486 − 1.9699 ln Xt + 1.5891 ln X2t − 0.0013Z2t

t = (17.0825) (−6.4189) (3.0728) (−1.6612) (8.10.6)

F = 14.17 R2 = 0.7798

The coefficient of Z2 is statistically significant at about the 12 percent level (p value is
0.1225). Therefore, we can reject the hypothesis that the true model is log–linear at this
level of significance. Of course, if one sticks to the conventional 1 or 5 percent signifi-
cance levels, then one cannot reject the hypothesis that the true model is log–linear. As
this example shows, it is quite possible that in a given situation we cannot reject either
of the specifications.
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Summary and
Conclusions

1. This chapter extended and refined the ideas of interval estimation and hypothesis testing
first introduced in Chapter 5 in the context of the two-variable linear regression model.

2. In a multiple regression, testing the individual significance of a partial regression coef-
ficient (using the t test) and testing the overall significance of the regression (i.e., H0: all
partial slope coefficients are zero or R2 = 0) are not the same thing.

3. In particular, the finding that one or more partial regression coefficients are statistically
insignificant on the basis of the individual t test does not mean that all partial regression
coefficients are also (collectively) statistically insignificant. The latter hypothesis can be
tested only by the F test.

4. The F test is versatile in that it can test a variety of hypotheses, such as whether (1) an
individual regression coefficient is statistically significant, (2) all partial slope coeffi-
cients are zero, (3) two or more coefficients are statistically equal, (4) the coefficients
satisfy some linear restrictions, and (5) there is structural stability of the regression
model.

5. As in the two-variable case, the multiple regression model can be used for the purpose
of mean and/or individual prediction.

EXERCISES Questions
8.1. Suppose you want to study the behavior of sales of a product, say, automobiles over

a number of years and suppose someone suggests you try the following models:

Yt = β0 + β1t

Yt = α0 + α1t + α2t2

where Yt = sales at time t and t = time, measured in years. The first model postu-
lates that sales is a linear function of time, whereas the second model states that it is
a quadratic function of time.

a. Discuss the properties of these models.

b. How would you decide between the two models?

c. In what situations will the quadratic model be useful?

d. Try to obtain data on automobile sales in the United States over the past 20 years
and see which of the models fits the data better.

8.2. Show that the F ratio of Eq. (8.4.16) is equal to the F ratio of Eq. (8.4.18). (Hint:
ESS/TSS = R2.)

8.3. Show that F tests of Eq. (8.4.18) and Eq. (8.6.10) are equivalent.

8.4. Establish statements (8.6.11) and (8.6.12).

8.5. Consider the Cobb–Douglas production function

Y = β1Lβ2 K β3 (1)

where Y = output, L = labor input, and K = capital input. Dividing (1) through by
K, we get

(Y/K ) = β1(L/K )β2 K β2+β3−1 (2)

Taking the natural log of (2) and adding the error term, we obtain

ln (Y/K ) = β0 + β2 ln (L/K ) + (β2 + β3 − 1) ln K + ui (3)
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where β0 = ln β1.

a. Suppose you had data to run the regression (3). How would you test the hypothe-
sis that there are constant returns to scale, i.e., (β2 + β3) = 1?

b. If there are constant returns to scale, how would you interpret regression (3)?

c. Does it make any difference whether we divide (1) by L rather than by K?

8.6. Critical values of R2 when true R2 � 0. Equation (8.4.11) gave the relationship be-
tween F and R2 under the hypothesis that all partial slope coefficients are simultane-
ously equal to zero (i.e., R2 = 0). Just as we can find the critical F value at the α level
of significance from the F table, we can find the critical R2 value from the following
relation:

R2 = (k − 1)F

(k − 1)F + (n − k)

where k is the number of parameters in the regression model including the intercept
and where F is the critical F value at the α level of significance. If the observed R2

exceeds the critical R2 obtained from the preceding formula, we can reject the
hypothesis that the true R2 is zero.

Establish the preceding formula and find out the critical R2 value (at α = 5 per-
cent) for the regression (8.1.4).

8.7. From annual data for the years 1968–1987, the following regression results were 
obtained:

Ŷt = −859.92 + 0.6470X2t − 23.195X3t R2 = 0.9776 (1)

Ŷt = −261.09 + 0.2452X2t R2 = 0.9388 (2)

where Y = U.S. expenditure on imported goods, billions of 1982 dollars, X2 = per-
sonal disposable income, billions of 1982 dollars, and X3 = trend variable. True or
false: The standard error of X3 in (1) is 4.2750. Show your calculations. (Hint: Use
the relationship between R2, F, and t.)

8.8. Suppose in the regression

ln (Yi/X2i ) = α1 + α2 ln X2i + α3 ln X3i + ui

the values of the regression coefficients and their standard errors are known.* From
this knowledge, how would you estimate the parameters and standard errors of the
following regression model?

ln Yi = β1 + β2 ln X2i + β3 ln X3i + ui

8.9. Assume the following:

Yi = β1 + β2 X2i + β3 X3i + β4 X2i X3i + ui

where Y is personal consumption expenditure, X2 is personal income, and X3 is per-
sonal wealth.† The term (X2i X3i ) is known as the interaction term. What is meant
by this expression? How would you test the hypothesis that the marginal propensity
to consume (MPC) (i.e., β2) is independent of the wealth of the consumer?

*Adapted from Peter Kennedy, A Guide to Econometrics, the MIT Press, 3d ed., Cambridge, Mass.,
1992, p. 310.
†Ibid., p. 327.
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8.10. You are given the following regression results:

Ŷt = 16,899 − 2978.5X2t R2 = 0.6149

t = (8.5152) (−4.7280)

Ŷt = 9734.2 − 3782.2X2t + 2815X3t R2 = 0.7706

t = (3.3705) (−6.6070) (2.9712)

Can you find out the sample size underlying these results? (Hint: Recall the relation-
ship between R2, F, and t values.)

8.11. Based on our discussion of individual and joint tests of hypothesis based, respec-
tively, on the t and F tests, which of the following situations are likely?

1. Reject the joint null on the basis of the F statistic, but do not reject each separate
null on the basis of the individual t tests.

2. Reject the joint null on the basis of the F statistic, reject one individual hypothe-
sis on the basis of the t test, and do not reject the other individual hypotheses on
the basis of the t test.

3. Reject the joint null hypothesis on the basis of the F statistic, and reject each sep-
arate null hypothesis on the basis of the individual t tests.

4. Do not reject the joint null on the basis of the F statistic, and do not reject each
separate null on the basis of individual t tests.

5. Do not reject the joint null on the basis of the F statistic, reject one individual hy-
pothesis on the basis of a t test, and do not reject the other individual hypotheses
on the basis of the t test.

6. Do not reject the joint null on the basis of the F statistic, but reject each separate
null on the basis of individual t tests.*

*Quoted from Ernst R. Berndt, The Practice of Econometrics: Classic and Contemporary, Addison-Wesley,
Reading, Mass., 1991, p. 79.
†See Badi H. Baltagi, Econometrics, Springer-Verlag, New York, 1998, p. 111.

Empirical Exercises
8.12. Refer to Exercise 7.21.

a. What are the real income and interest rate elasticities of real cash balances?

b. Are the preceding elasticities statistically significant individually?

c. Test the overall significance of the estimated regression.

d. Is the income elasticity of demand for real cash balances significantly different
from unity?

e. Should the interest rate variable be retained in the model? Why?

8.13. From the data for 46 states in the United States for 1992, Baltagi obtained the
following regression results:†

l̂og C = 4.30 − 1.34 log P + 0.17 log Y

se = (0.91) (0.32) (0.20) R̄2 = 0.27

where C = cigarette consumption, packs per year
P = real price per pack
Y = real disposable income per capita

guj75772_ch08.qxd  12/08/2008  10:03 AM  Page 264



Chapter 8 Multiple Regression Analysis: The Problem of Inference 265

a. What is the elasticity of demand for cigarettes with respect to price? Is it statisti-
cally significant? If so, is it statistically different from 1?

b. What is the income elasticity of demand for cigarettes? Is it statistically signifi-
cant? If not, what might be the reasons for it?

c. How would you retrieve R2 from the adjusted R2 given above?

8.14. From a sample of 209 firms, Wooldridge obtained the following regression results:*

log (ŝalary) = 4.32 + 0.280 log (sales) + 0.0174 roe + 0.00024 ros

se = (0.32) (0.035) (0.0041) (0.00054)

R2 = 0.283

where salary = salary of CEO
sales = annual firm sales

roe = return on equity in percent
ros = return on firm’s stock

and where figures in the parentheses are the estimated standard errors.

a. Interpret the preceding regression taking into account any prior expectations that
you may have about the signs of the various coefficients.

b. Which of the coefficients are individually statistically significant at the 5 percent
level?

c. What is the overall significance of the regression? Which test do you use? 
And why?

d. Can you interpret the coefficients of roe and ros as elasticity coefficients? Why or
why not?

8.15. Assuming that Y and X2, X3, . . . , Xk are jointly normally distributed and assuming
that the null hypothesis is that the population partial correlations are individually
equal to zero, R. A. Fisher has shown that

t = r1 2.3 4...k
√

n − k − 2√
1 − r2

1 2.3 4...k

follows the t distribution with n − k − 2 df, where k is the kth-order partial correla-
tion coefficient and where n is the total number of observations. (Note: r1 2.3 is a first-
order partial correlation coefficient, r1 2.3 4 is a second-order partial correlation
coefficient, and so on.) Refer to Exercise 7.2. Assuming Y and X2 and X3 to be
jointly normally distributed, compute the three partial correlations r1 2.3, r1 3.2, and
r2 3.1 and test their significance under the hypothesis that the corresponding popula-
tion correlations are individually equal to zero.

8.16. In studying the demand for farm tractors in the United States for the periods
1921–1941 and 1948–1957, Griliches† obtained the following results:

l̂ogYt = constant − 0.519 log X2t − 4.933 log X3t R2 = 0.793

(0.231) (0.477)

*See Jeffrey M. Wooldridge, Introductory Econometrics, South-Western Publishing Co., 2000, 
pp. 154–155.
†Z. Griliches, “The Demand for a Durable Input: Farm Tractors in the United States, 1921–1957,” in
The Demand for Durable Goods, Arnold C. Harberger (ed.), The University of Chicago Press, Chicago,
1960, Table 1, p. 192.
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where Yt = value of stock of tractors on farms as of January 1, in 1935–1939 dollars,
X2 = index of prices paid for tractors divided by an index of prices received for all
crops at time t − 1,and X3 = interest rate prevailing in year t − 1. The estimated
standard errors are given in the parentheses.

a. Interpret the preceding regression.

b. Are the estimated slope coefficients individually statistically significant? Are they
significantly different from unity?

c. Use the analysis of variance technique to test the significance of the overall re-
gression. Hint: Use the R2 variant of the ANOVA technique.

d. How would you compute the interest-rate elasticity of demand for farm tractors?

e. How would you test the significance of estimated R2?

8.17. Consider the following wage-determination equation for the British economy* for
the period 1950–1969:

Ŵt = 8.582 + 0.364(PF)t + 0.004(PF)t−1 − 2.560Ut

(1.129) (0.080) (0.072) (0.658)

R2 = 0.873 df = 15

where W = wages and salaries per employee
PF = prices of final output at factor cost
U = unemployment in Great Britain as a percentage of the total number of

employees in Great Britain
t = time

(The figures in the parentheses are the estimated standard errors.)

a. Interpret the preceding equation.

b. Are the estimated coefficients individually significant?

c. What is the rationale for the introduction of (PF)t−1?

d. Should the variable (PF)t−1 be dropped from the model? Why?

e. How would you compute the elasticity of wages and salaries per employee with
respect to the unemployment rate U?

8.18. A variation of the wage-determination equation given in Exercise 8.17 is as follows:†

Ŵt = 1.073 + 5.288Vt − 0.116Xt + 0.054Mt + 0.046Mt−1

(0.797) (0.812) (0.111) (0.022) (0.019)

R2 = 0.934 df = 14

where W = wages and salaries per employee
V = unfilled job vacancies in Great Britain as a percentage of the total 

number of employees in Great Britain
X = gross domestic product per person employed
M = import prices

Mt−1 = import prices in the previous (or lagged) year

(The estimated standard errors are given in the parentheses.)

*Taken from Prices and Earnings in 1951–1969: An Econometric Assessment, Dept. of Employment,
HMSO, 1971, Eq. (19), p. 35.
†Ibid., Eq. (67), p. 37.
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a. Interpret the preceding equation.

b. Which of the estimated coefficients are individually statistically significant?

c. What is the rationale for the introduction of the X variable? A priori, is the sign of
X expected to be negative?

d. What is the purpose of introducing both Mt and Mt−1 in the model?

e. Which of the variables may be dropped from the model? Why?

f. Test the overall significance of the observed regression.

8.19. For the demand for chicken function estimated in Eq. (8.6.24), is the estimated
income elasticity equal to 1? Is the price elasticity equal to −1?

8.20. For the demand function in Eq. (8.6.24) how would you test the hypothesis that the
income elasticity is equal in value but opposite in sign to the price elasticity of
demand? Show the necessary calculations. (Note: cov [β̂2, β̂3] = −0.00142.)

8.21. Refer to the demand for roses function of Exercise 7.16. Confining your considera-
tions to the logarithmic specification,

a. What is the estimated own-price elasticity of demand (i.e., elasticity with respect
to the price of roses)?

b. Is it statistically significant?

c. If so, is it significantly different from unity?

d. A priori, what are the expected signs of X3 (price of carnations) and X4 (income)?
Are the empirical results in accord with these expectations?

e. If the coefficients of X3 and X4 are statistically insignificant, what may be the
reasons?

8.22. Refer to Exercise 7.17 relating to wildcat activity.

a. Is each of the estimated slope coefficients individually statistically significant at
the 5 percent level?

b. Would you reject the hypothesis that R2 = 0?

c. What is the instantaneous rate of growth of wildcat activity over the period
1948–1978? The corresponding compound rate of growth?

8.23. Refer to the U.S. defense budget outlay regression estimated in Exercise 7.18.

a. Comment generally on the estimated regression results.

b. Set up the ANOVA table and test the hypothesis that all the partial slope coeffi-
cients are zero.

8.24. The following is known as the transcendental production function (TPF), a gener-
alization of the well-known Cobb–Douglas production function:

Yi = β1Lβ2 kβ3 eβ4 L+β5 K

where Y = output, L = labor input, and K = capital input.
After taking logarithms and adding the stochastic disturbance term, we obtain the

stochastic TPF as

ln Yi = β0 + β2 ln Li + β3 ln Ki + β4Li + β5 Ki + ui

where β0 = ln β1.

a. What are the properties of this function?

b. For the TPF to reduce to the Cobb–Douglas production function, what must be the
values of β4 and β5?
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c. If you had the data, how would you go about finding out whether the TPF red-
uces to the Cobb–Douglas production function? What testing procedure would
you use?

d. See if the TPF fits the data given in Table 8.8. Show your calculations.

8.25. Energy prices and capital formation: United States, 1948–1978. To test the hypo-
thesis that a rise in the price of energy relative to output leads to a decline in the
productivity of existing capital and labor resources, John A. Tatom estimated the
following production function for the United States for the quarterly period 1948–I
to 1978–II:*

l̂n (y/k) = 1.5492 + 0.7135 ln (h/k) − 0.1081 ln (Pe/P)

(16.33) (21.69) (−6.42)

+ 0.0045t R2 = 0.98

(15.86)

where y = real output in the private business sector
k = a measure of the flow of capital services
h = person hours in the private business sector

Pe = producer price index for fuel and related products
P = private business sector price deflator
t = time

The numbers in parentheses are t statistics.

a. Do the results support the author’s hypothesis?

b. Between 1972 and 1977 the relative price of energy, (Pe/P), increased by 60 per-
cent. From the estimated regression, what is the loss in productivity?

c. After allowing for the changes in (h/k) and (Pe/P), what has been the trend rate
of growth of productivity over the sample period?

d. How would you interpret the coefficient value of 0.7135?

e. Does the fact that each estimated partial slope coefficient is individually statisti-
cally significant (why?) mean we can reject the hypothesis that R2 = 0? Why or
why not?

8.26. The demand for cable. Table 8.10 gives data used by a telephone cable manufacturer
to predict sales to a major customer for the period 1968–1983.†

The variables in the table are defined as follows:

Y = annual sales in MPF, million paired feet
X2 = gross national product (GNP), $, billions
X3 = housing starts, thousands of units
X4 = unemployment rate, %
X5 = prime rate lagged 6 months
X6 = Customer line gains, %

*See his “Energy Prices and Capital Formation: 1972–1977,” Review, Federal Reserve Bank of St. Louis,
vol. 61, no. 5, May 1979, p. 4.
†I am indebted to Daniel J. Reardon for collecting and processing the data.

guj75772_ch08.qxd  12/08/2008  10:03 AM  Page 268



Chapter 8 Multiple Regression Analysis: The Problem of Inference 269

You are to consider the following model:

Yi = β1 + β2 X2t + β3 X3t + β4 X4t + β5 X5t + β6 X6t + ut

a. Estimate the preceding regression.

b. What are the expected signs of the coefficients of this model?

c. Are the empirical results in accordance with prior expectations?

d. Are the estimated partial regression coefficients individually statistically signifi-
cant at the 5 percent level of significance?

e. Suppose you first regress Y on X2, X3, and X4 only and then decide to add the vari-
ables X5 and X6. How would you find out if it is worth adding the variables X5 and
X6? Which test do you use? Show the necessary calculations.

8.27. Marc Nerlove has estimated the following cost function for electricity generation:*

Y = AXβ Pα1 Pα2 Pα3 u (1)

where Y = total cost of production
X = output in kilowatt hours

P1 = price of labor input
P2 = price of capital input
P3 = price of fuel
u = disturbance term

TABLE 8.10 Regression Variables

X3, X4, X5, X6, Y,
X2, Housing Unemployment, Prime Rate Customer Line Annual

Year GNP Starts % Lag, 6 mos. Gains, % Sales (MPF)

1968 1051.8 1503.6 3.6 5.8 5.9 5873
1969 1078.8 1486.7 3.5 6.7 4.5 7852
1970 1075.3 1434.8 5.0 8.4 4.2 8189
1971 1107.5 2035.6 6.0 6.2 4.2 7497
1972 1171.1 2360.8 5.6 5.4 4.9 8534
1973 1235.0 2043.9 4.9 5.9 5.0 8688
1974 1217.8 1331.9 5.6 9.4 4.1 7270
1975 1202.3 1160.0 8.5 9.4 3.4 5020
1976 1271.0 1535.0 7.7 7.2 4.2 6035
1977 1332.7 1961.8 7.0 6.6 4.5 7425
1978 1399.2 2009.3 6.0 7.6 3.9 9400
1979 1431.6 1721.9 6.0 10.6 4.4 9350
1980 1480.7 1298.0 7.2 14.9 3.9 6540
1981 1510.3 1100.0 7.6 16.6 3.1 7675
1982 1492.2 1039.0 9.2 17.5 0.6 7419
1983 1535.4 1200.0 8.8 16.0 1.5 7923 

*Marc Nerlove, “Returns to Scale in Electric Supply,’’ in Carl Christ, ed., Measurement in Economics,
Stanford University Press, Palo Alto, Calif., 1963. The notation has been changed.
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Theoretically, the sum of the price elasticities is expected to be unity, i.e.,
(α1 + α2 + α3) = 1. By imposing this restriction, the preceding cost function can be
written as

(Y/P3) = AXβ( P1/P3)α1 ( P2/P3)α2 u (2)

In other words, (1) is an unrestricted and (2) is the restricted cost function.
On the basis of a sample of 29 medium-sized firms, and after logarithmic trans-

formation, Nerlove obtained the following regression results:

l̂n Yi = −4.93 + 0.94 ln Xi + 0.31 ln P1

se = (1.96) (0.11) (0.23)
(3)

−0.26 ln P2 + 0.44 ln P3

(0.29) (0.07) RSS = 0.336

l̂n (Y/P3) = −6.55 + 0.91 ln X + 0.51 ln (P1/P3) + 0.09 ln (P2/P3)

se = (0.16) (0.11) (0.19) (0.16) RSS = 0.364
(4)

a. Interpret Eqs. (3) and (4).

b. How would you find out if the restriction (α1 + α2 + α3) = 1 is valid? Show your
calculations.

8.28. Estimating the capital asset pricing model (CAPM). In Section 6.1 we considered
briefly the well-known capital asset pricing model of modern portfolio theory. In em-
pirical analysis, the CAPM is estimated in two stages.

Stage I (Time-series regression). For each of the N securities included in the
sample, we run the following regression over time:

R it = α̂i + β̂i Rmt + eit (1)

where Rit and Rmt are the rates of return on the ith security and on the market portfo-
lio (say, the S&P 500) in year t; βi , as noted elsewhere, is the Beta or market volatil-
ity coefficient of the ith security, and eit are the residuals. In all there are N such
regressions, one for each security, giving therefore N estimates of βi .

Stage II (Cross-section regression). In this stage we run the following regression
over the N securities:

R̄ i = γ̂1 + γ̂2β̂i + ui (2)

where R̄ i is the average or mean rate of return for security i computed over the sam-
ple period covered by Stage I, β̂i is the estimated beta coefficient from the first-stage
regression, and ui is the residual term.

Comparing the second-stage regression (2) with the CAPM Eq. (6.1.2), written as

ERi = rf + βi (ERm − rf ) (3)

where rf is the risk-free rate of return, we see that γ̂1 is an estimate of rf and γ̂2 is
an estimate of (ERm − rf ), the market risk premium.
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Thus, in the empirical testing of CAPM, R̄ i and β̂i are used as estimators of ERi

and βi , respectively. Now if CAPM holds, statistically,

γ̂1 = rf

γ̂2 = Rm − rf , the estimator of (ERm − rf)

Next consider an alternative model:

R̄ i = γ̂1 + γ̂2β̂i + γ̂3s2
ei

+ ui (4)

where s2
ei

is the residual variance of the ith security from the first-stage regression.
Then, if CAPM is valid, γ̂3 should not be significantly different from zero.

To test the CAPM, Levy ran regressions (2) and (4) on a sample of 101 stocks for
the period 1948–1968 and obtained the following results:*

ˆ̄Ri = 0.109 + 0.037βi

(0.009) (0.008) (2)′

t = (12.0) (5.1) R2 = 0.21

ˆ̄Ri = 0.106 + 0.0024β̂i + 0.201s2
ei

(0.008) (0.007) (0.038) (4)′

t = (13.2) (3.3) (5.3) R2 = 0.39

a. Are these results supportive of the CAPM?

b. Is it worth adding the variable s2
ei

to the model? How do you know?

c. If the CAPM holds, γ̂1 in (2)′ should approximate the average value of the risk-
free rate, r f . The estimated value is 10.9 percent. Does this seem a reasonable
estimate of the risk-free rate of return during the observation period, 1948–1968?
(You may consider the rate of return on Treasury bills or a similar comparatively
risk-free asset.)

d. If the CAPM holds, the market risk premium ( R̄ m − r f ) from (2)′ is about
3.7 percent. If r f is assumed to be 10.9 percent, this implies R̄m for the sample
period was about 14.6 percent. Does this sound like a reasonable estimate?

e. What can you say about the CAPM generally?

8.29. Refer to Exercise 7.21c. Now that you have the necessary tools, which test(s) would
you use to choose between the two models? Show the necessary computations. Note
that the dependent variables in the two models are different.

8.30. Refer to Example 8.3. Use the t test as shown in Eq. (8.6.4) to find out if there were
constant returns to scale in the Mexican economy for the period of the study.

8.31. Return to the child mortality example that we have discussed several times. In
regression (7.6.2) we regressed child mortality (CM) on per capita GNP (PGNP)
and female literacy rate (FLR). Now we extend this model by including total

*H. Levy, “Equilibrium in an Imperfect Market: A Constraint on the Number of Securities in the Portfolio,”
American Economic Review, vol. 68, no. 4, September 1978, pp. 643–658.
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fertility rate (TFR). The data on all these variables are already given in Table 6.4. We
reproduce regression (7.6.2) and give results of the extended regression model
below:

1. ĈMi = 263.6416 − 0.0056 PGNPi − 2.2316 FLRi (7.6.2)

se = (11.5932) (0.0019) (0.2099) R2 = 0.7077

2. ĈMi = 168.3067 − 0.0055 PGNPi − 1.7680 FLRi + 12.8686TFRi

se = (32.8916) (0.0018) (0.2480) (?)

R2 = 0.7474

a. How would you interpret the coefficient of TFR? A priori, would you expect a
positive or negative relationship between CM and TFR? Justify your answer.

b. Have the coefficient values of PGNP and FR changed between the two equations?
If so, what may be the reason(s) for such a change? Is the observed difference sta-
tistically significant? Which test do you use and why?

c. How would you choose between models 1 and 2? Which statistical test would you
use to answer this question? Show the necessary calculations.

d. We have not given the standard error of the coefficient of TFR. Can you find it
out? (Hint: Recall the relationship between the t and F distributions.)

8.32. Return to Exercise 1.7, which gave data on advertising impressions retained and
advertising expenditure for a sample of 21 firms. In Exercise 5.11 you were asked to
plot these data and decide on an appropriate model about the relationship between
impressions and advertising expenditure. Letting Y represent impressions retained
and X the advertising expenditure, the following regressions were obtained:

Model I: Ŷi = 22.163 + 0.3631Xi

se = (7.089) (0.0971) r2 = 0.424

Model II: Ŷi = 7.059 + 1.0847Xi − 0.0040X2
i

se = (9.986) (0.3699) (0.0019) R2 = 0.53

a. Interpret both models.

b. Which is a better model? Why?

c. Which statistical test(s) would you use to choose between the two models?

d. Are there “diminishing returns” to advertising expenditure, that is, after a certain
level of advertising expenditure (the saturation level), does it not pay to advertise?
Can you find out what that level of expenditure might be? Show the necessary cal-
culations.

8.33. In regression (7.9.4), we presented the results of the Cobb–Douglas production func-
tion fitted to the manufacturing sector of all 50 states and Washington, DC, for 2005.
On the basis of that regression, find out if there are constant returns to scale in that
sector, using

a. The t test given in Eq. (8.6.4). You are told that the covariance between the two
slope estimators is −0.03843.

b. The F test given in Eq. (8.6.9).

c. Is there a difference in the two test results? And what is your conclusion regard-
ing the returns to scale in the manufacturing sector of the 50 states and
Washington, DC, over the sample period?
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8.34. Reconsider the savings–income regression in Section 8.7. Suppose we divide the
sample into two periods as 1970–1982 and 1983–1995. Using the Chow test, decide
if there is a structural change in the savings–income regression in the two periods.
Comparing your results with those given in Section 8.7, what overall conclusion do
you draw about the sensitivity of the Chow test to the choice of the break point that
divides the sample into two (or more) periods?

8.35. Refer to Exercise 7.24 and the data in Table 7.12 concerning four economic variables
in the U.S. from 1947–2000.

a. Based on the regression of consumption expenditure on real income, real
wealth and real interest rate, find out which of the regression coefficients are
individually statistically significant at the 5 percent level of significance. Are the
signs of the estimated coefficients in accord with economic theory?

b. Based on the results in (a), how would you estimate the income, wealth, and
interest rate elasticities? What additional information, if any, do you need to com-
pute the elasticities?

c. How would you test the hypothesis that the income and wealth elasticities are the
same? Show the necessary calculations.

d. Suppose instead of the linear consumption function estimated in (a), you regress
the logarithm of consumption expenditure on the logarithms of income and
wealth and the interest rate. Show the regression results. How would you interpret
the results?

e. What are the income and wealth elasticities estimated in (d)? How would you
interpret the coefficient of the interest rate estimated in (d )?

f. In the regression in (d ) could you have used the logarithm of the interest rate
instead of the interest rate? Why or why not?

g. How would you compare the elasticities estimated in (b) and in (d )?

h. Between the regression models estimated in (a) and (d ), which would you
prefer? Why?

ii. Suppose instead of estimating the model given in (d ), you only regress the loga-
rithm of consumption expenditure on the logarithm of income. How would you
decide if it is worth adding the logarithm of wealth in the model? And how would
you decide if it is worth adding both the logarithm of wealth and interest rate vari-
ables in the model? Show the necessary calculations.

8.36. Refer to Section 8.8 and the data in Table 8.9 concerning disposable personal income
and personal savings for the period 1970–1995. In that section, the Chow test was
introduced to see if a structural change occurred within the data between two time
periods. Table 8.11 includes updated data containing the values from 1970–2005.
According to the National Bureau of Economic Research, the most recent U.S. busi-
ness contraction cycle ended in late 2001. Split the data into three sections:
(1) 1970–1981, (2) 1982–2001, and (3) 2002–2005.

a. Estimate both the model for the full dataset (years 1970–2005) and the third
section (post-2002). Using the Chow test, determine if there is a significant break
between the third period and the full dataset.

b. With this new data in Table 8.11, determine if there is still a significant difference
between the first set of years (1970–1981) and the full dataset, now that there are
more observations available.

c. Perform the Chow test on the middle period (1982–2001) versus the full dataset to
see if the data in this period behave significantly differently than the rest of the data.
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*Optional.

TABLE 8.11
Savings and Personal
Disposable Income
(billions of dollars),
United States,
1970–2005 (billions of
dollars, except as
noted; quarterly data
at seasonally adjusted
annual rates)

Source: Department of
Commerce, Bureau of
Economic Analysis.

Year Savings Income

1970 69.5 735.7
1971 80.6 801.8
1972 77.2 869.1
1973 102.7 978.3
1974 113.6 1,071.6
1975 125.6 1,187.4
1976 122.3 1,302.5
1977 125.3 1,435.7
1978 142.5 1,608.3
1979 159.1 1,793.5
1980 201.4 2,009.0
1981 244.3 2,246.1
1982 270.8 2,421.2
1983 233.6 2,608.4
1984 314.8 2,912.0
1985 280.0 3,109.3
1986 268.4 3,285.1
1987 241.4 3,458.3
1988 272.9 3,748.7
1989 287.1 4,021.7
1990 299.4 4,285.8
1991 324.2 4,464.3
1992 366.0 4,751.4
1993 284.0 4,911.9
1994 249.5 5,151.8
1995 250.9 5,408.2
1996 228.4 5,688.5
1997 218.3 5,988.8
1998 276.8 6,395.9
1999 158.6 6,695.0
2000 168.5 7,194.0
2001 132.3 7,486.8
2002 184.7 7,830.1
2003 174.9 8,162.5
2004 174.3 8,681.6
2005 34.8 9,036.1

*Appendix 8A2

Likelihood Ratio (LR) Test
The LR test is based on the maximum likelihood (ML) principle discussed in Appendix 4A, where
we showed how one obtains the ML estimators of the two-variable regression model. The principle
can be straightforwardly extended to the multiple regression model. Under the assumption that
the disturbances ui are normally distributed, we showed that, for the two-variable regression model,
the OLS and ML estimators of the regression coefficients are identical, but the estimated error
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variances are different. The OLS estimator of σ 2 is 
∑

û2
i /(n − 2) but the ML estimator is 

∑
û2

i /n,
the former being unbiased and the latter biased, although in large samples the bias tends to disappear.

The same is true in the multiple regression case. To illustrate, consider the three-variable regres-
sion model:

Yi = β1 + β2 X2i + β3 X3i + ui (1)

Corresponding to Eq. (5) of Appendix 4A, the log-likelihood function for the model (1) can be
written as:

ln LF = −n

2
ln (σ 2) − n

2
ln (2π) − 1

2σ 2

∑
(Yi − β1 − β2 X2i − β3 X3i )

2 (2)

As shown in Appendix 4A, differentiating this function with respect to β1, β2, β3, and σ 2, setting the
resulting expressions to zero, and solving, we obtain the ML estimators of these estimators. The ML
estimators of β1, β2, and β3 will be identical to OLS estimators, which are already given in
Eqs. (7.4.6) to (7.4.8), but the error variance will be different in that the residual sum of squares (RSS)
will be divided by n rather than by (n − 3), as in the case of OLS.

Now let us suppose that our null hypothesis H0 is that β3, the coefficient of X3, is zero. In this
case, log LF given in (2) will become

ln LF = −n

2
ln (σ 2) − n

2
ln (2π) − 1

2σ 2

∑
(Yi − β1 − β2 X2i )

2 (3)

Equation (3) is known as the restricted log-likelihood function (RLLF) because it is estimated with
the restriction that a priori β3 is zero, whereas Eq. (1) is known as the unrestricted log LF (ULLF)
because a priori there are no restrictions put on the parameters. To test the validity of the a priori re-
striction that β3 is zero, the LR test obtains the following test statistic:

λ = 2(ULLF − RLLF) (4)*

where ULLF and RLLF are, respectively, the unrestricted log-likelihood function (Eq. [2]) and the
restricted log-likelihood function (Eq. [3]). If the sample size is large, it can be shown that the test
statistic λ given in Eq. (4) follows the chi-square (χ2) distribution with df equal to the number of
restrictions imposed by the null hypothesis, 1 in the present case.

The basic idea behind the LR test is simple: If the a priori restriction(s) is valid, the restricted and
unrestricted (log) LF should not be different, in which case λ in Eq. (4) will be zero. But if that is not
the case, the two LFs will diverge. And since in a large sample we know that λ follows the chi-square
distribution, we can find out if the divergence is statistically significant, say, at a 1 or 5 percent level
of significance. Or else, we can find out the p value of the estimated λ.

Let us illustrate the LR test with our child mortality example. If we regress child mortality (CM)
on per capita GNP (PGNP) and female literacy rate (FLR) as we did in Eq. (8.1.4), we obtain ULLF
of −328.1012, but if we regress CM on PGNP only, we obtain the RLLF of −361.6396. In absolute
value (i.e., disregarding the sign), the former is smaller than the latter, which makes sense since we
have an additional variable in the former model.

The question now is whether it is worth adding the FLR variable. If it is not, the restricted and un-
restricted LLF should not differ much, but if it is, the LLFs will be different. To see if this difference
is statistically significant, we now use the LR test given in Eq. (4), which gives:

λ = 2[−328.1012 − (−361.6396)] = 67.0768

*This expression can also be expressed as −2(RLLF − ULLF) or as −2 ln (RLF/ULF).
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Asymptotically, this is distributed as the chi-square distribution with 1 df (because we have only one
restriction imposed when we omitted the FLR variable from the full model). The p value of obtaining
such a chi-square value for 1 df is almost zero, leading to the conclusion that the FLR variable should
not be excluded from the model. In other words, the restricted regression in the present instance is not
valid.

Letting RRSS and URSS denote the restricted and unrestricted residual sums of squares, Eq. (4)
can also be expressed as:

−2 ln λ = n(ln RRSS − ln URSS) (5)

which is distributed as χ2 with r degrees of freedom, where r is the number of restrictions imposed
on the model (i.e., the number of r coefficients omitted from the original model).

Although we will not go into the details of the Wald and LM tests, these tests can be implemented
as follows:

Wald Statistic (W) = (n − k)(RRSS − URSS)

URSS
∼ χ2

r (6)

Lagrange Multiplier Statistic (LM) = (n − k + r)(RRSS − URSS)

RRSS
∼ χ2

r (7)

Where k is the number of regressors in the unrestricted model and r is the number of restrictions.
As you can see from the preceding equations, all three tests are asymptotically (i.e., in large sam-

ples) equivalent, that is, they give similar answers. However, in small samples the answers can differ.
There is an interesting relationship among these statistics in that it can be shown that:

W ≥ LR ≥ LM

Therefore, in small samples, a hypothesis can be rejected by the Wald statistic but not rejected by the
LM statistic.*

As noted in the text, for most of our purposes the t and F tests will suffice. But the three tests dis-
cussed above are of general applicability in that they can be applied to testing nonlinear hypotheses
in linear models, or testing restrictions on variance-covariance matrices. They also can be applied in
situations where the assumption that the errors are normally distributed is not tenable.

Because of the mathematical complexity of the Wald and LM tests, we will not go into more de-
tail here. But as noted, asymptotically, the LR, Wald, and LM tests give identical answers, the choice
of the test depending on computational convenience.

*For an explanation, see G. S. Maddala, Introduction to Econometrics, 3d ed., John Wiley & Sons, New
York, 2001, p. 177.
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1We will discuss ordinal scale variables in Chapter 15.
2For a review of the evidence on this subject, see Bruce E. Kaufman and Julie L. Hotchkiss, The
Economics of Labor Markets, 5th ed., Dryden Press, New York, 2000.

9
Dummy Variable
Regression Models
In Chapter 1 we discussed briefly the four types of variables that one generally encounters
in empirical analysis: These are: ratio scale, interval scale, ordinal scale, and nominal
scale. The types of variables that we have encountered in the preceding chapters were
essentially ratio scale. But this should not give the impression that regression models can
deal only with ratio scale variables. Regression models can also handle other types of
variables mentioned previously. In this chapter, we consider models that may involve
not only ratio scale variables but also nominal scale variables. Such variables are also
known as indicator variables, categorical variables, qualitative variables, or dummy
variables.1

9.1 The Nature of Dummy Variables

In regression analysis the dependent variable, or regressand, is frequently influenced not
only by ratio scale variables (e.g., income, output, prices, costs, height, temperature) but
also by variables that are essentially qualitative, or nominal scale, in nature, such as sex,
race, color, religion, nationality, geographical region, political upheavals, and party affilia-
tion. For example, holding all other factors constant, female workers are found to earn less
than their male counterparts or nonwhite workers are found to earn less than whites.2 This
pattern may result from sex or racial discrimination, but whatever the reason, qualitative
variables such as sex and race seem to influence the regressand and clearly should be
included among the explanatory variables, or the regressors.

Since such variables usually indicate the presence or absence of a “quality” or an
attribute, such as male or female, black or white, Catholic or non-Catholic, Democrat or
Republican, they are essentially nominal scale variables. One way we could “quantify”
such attributes is by constructing artificial variables that take on values of 1 or 0, 1 indicat-
ing the presence (or possession) of that attribute and 0 indicating the absence of that
attribute. For example, 1 may indicate that a person is a female and 0 may designate a male;
or 1 may indicate that a person is a college graduate, and 0 that the person is not, and so on.
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Variables that assume such 0 and 1 values are called dummy variables.3 Such variables
are thus essentially a device to classify data into mutually exclusive categories such as
male or female.

Dummy variables can be incorporated in regression models just as easily as quantitative
variables. As a matter of fact, a regression model may contain regressors that are all exclu-
sively dummy, or qualitative, in nature. Such models are called Analysis of Variance
(ANOVA) models.4

9.2 ANOVA Models

To illustrate the ANOVA models, consider the following example.

3It is not absolutely essential that dummy variables take the values of 0 and 1. The pair (0,1) can be
transformed into any other pair by a linear function such that Z = a + bD (b �= 0), where a and b are
constants and where D = 1 or 0. When D = 1, we have Z = a + b, and when D = 0, we have Z = a.
Thus the pair (0, 1) becomes (a, a + b). For example, if a = 1 and b = 2, the dummy variables will be
(1, 3). This expression shows that qualitative, or dummy, variables do not have a natural scale of measure-
ment. That is why they are described as nominal scale variables.
4ANOVA models are used to assess the statistical significance of the relationship between a quantita-
tive regressand and qualitative or dummy regressors. They are often used to compare the differences
in the mean values of two or more groups or categories, and are therefore more general than the t
test, which can be used to compare the means of two groups or categories only.
5For an applied treatment, see John Fox, Applied Regression Analysis, Linear Models, and Related
Methods, Sage Publications, 1997, Chapter 8.

EXAMPLE 9.1
Public School
Teachers’
Salaries by
Geographical
Region

Table 9.1 gives data on average salary (in dollars) of public school teachers in 50 states and
the District of Columbia for the academic year 2005–2006. These 51 areas are classified
into three geographical regions: (1) Northeast and North Central (21 states in all),
(2) South (17 states in all), and (3) West (13 states in all). For the time being, do not worry
about the format of the table and the other data given in the table.

Suppose we want to find out if the average annual salary of public school teachers differs
among the three geographical regions of the country. If you take the simple arith-
metic average of the average salaries of the teachers in the three regions, you will find that
these averages for the three regions are as follows: $49,538.71 (Northeast and North
Central), $46,293.59 (South), and $48,104.62 (West). These numbers look different, but
are they statistically different from one another? There are various statistical techniques to
compare two or more mean values, which generally go by the name of analysis of
variance.5 But the same objective can be accomplished within the framework of regres-
sion analysis.

To see this, consider the following model:

Yi = β1 + β2D2i + β3iD3i + ui (9.2.1)

where Yi = (average) salary of public school teacher in state i
D2i = 1 if the state is in the Northeast or North Central

= 0 otherwise (i.e., in other regions of the country)
D3i = 1 if the state is in the South

= 0 otherwise (i.e., in other regions of the country)

Note that Eq. (9.2.1) is like any multiple regression model considered previously, except
that, instead of quantitative regressors, we have only qualitative, or dummy, regressors,
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TABLE 9.1 Average Salary of Public School Teachers by State, 2005–2006

Salary Spending D2 D3 Salary Spending D2 D3

Connecticut 60,822 12,436 1 0 Georgia 49,905 8,534 0 1 
Illinois 58,246 9,275 1 0 Kentucky 43,646 8,300 0 1
Indiana 47,831 8,935 1 0 Louisiana 42,816 8,519 0 1
Iowa 43,130 7,807 1 0 Maryland 56,927 9,771 0 1
Kansas 43,334 8,373 1 0 Mississippi 40,182 7,215 0 1
Maine 41,596 11,285 1 0 North Carolina 46,410 7,675 0 1
Massachusetts 58,624 12,596 1 0 Oklahoma 42,379 6,944 0 1
Michigan 54,895 9,880 1 0 South Carolina 44,133 8,377 0 1
Minnesota 49,634 9,675 1 0 Tennessee 43,816 6,979 0 1
Missouri 41,839 7,840 1 0 Texas 44,897 7,547 0 1
Nebraska 42,044 7,900 1 0 Virginia 44,727 9,275 0 1
New Hampshire 46,527 10,206 1 0 West Virginia 40,531 9,886 0 1
New Jersey 59,920 13,781 1 0 Alaska 54,658 10,171 0 0
New York 58,537 13,551 1 0 Arizona 45,941 5,585 0 0
North Dakota 38,822 7,807 1 0 California 63,640 8,486 0 0
Ohio 51,937 10,034 1 0 Colorado 45,833 8,861 0 0
Pennsylvania 54,970 10,711 1 0 Hawaii 51,922 9,879 0 0
Rhode Island 55,956 11,089 1 0 Idaho 42,798 7,042 0 0
South Dakota 35,378 7,911 1 0 Montana 41,225 8,361 0 0
Vermont 48,370 12,475 1 0 Nevada 45,342 6,755 0 0
Wisconsin 47,901 9,965 1 0 New Mexico 42,780 8,622 0 0
Alabama 43,389 7,706 0 1 Oregon 50,911 8,649 0 0
Arkansas 44,245 8,402 0 1 Utah 40,566 5,347 0 0
Delaware 54,680 12,036 0 1 Washington, D.C. 47,882 7,958 0 0
District of 59,000 15,508 0 1 Wyoming 50,692 11,596 0 0

Columbia
Florida 45,308 7,762 0 1

Note: D2 = 1 for states in the Northeast and North Central; 0 otherwise.
D3 = 1 for states in the South; 0 otherwise.

Source: National Educational Association, as reported in 2007.

taking the value of 1 if the observation belongs to a particular category and 0 if it does not
belong to that category or group. Hereafter, we shall designate all dummy variables by the
letter D. Table 9.1 shows the dummy variables thus constructed.

What does the model (9.2.1) tell us? Assuming that the error term satisfies the usual
OLS assumptions, on taking expectation of Eq. (9.2.1) on both sides, we obtain:

Mean salary of public school teachers in the Northeast and North Central:

E(Yi |D2i = 1, D3i = 0) = β1 + β2 (9.2.2)

Mean salary of public school teachers in the South:

E(Yi |D2i = 0, D3i = 1) = β1 + β3 (9.2.3)

You might wonder how we find out the mean salary of teachers in the West. If you
guessed that this is equal to β1, you would be absolutely right, for 

Mean salary of public school teachers in the West:

E(Yi |D2i = 0, D3i = 0) = β1 (9.2.4)

(Continued)
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In other words, the mean salary of public school teachers in the West is given by the
intercept, β1, in the multiple regression (9.2.1), and the “slope” coefficients β2 and β3 tell
by how much the mean salaries of teachers in the Northeast and North Central and in the
South differ from the mean salary of teachers in the West. But how do we know if
these differences are statistically significant? Before we answer this question, let us present
the results based on the regression (9.2.1). Using the data given in Table 9.1, we obtain the
following results:

Ŷi = 48,014.615 + 1,524.099D2i − 1,721.027D3i

se =  (1857.204) (2363.139)      (2467.151)

t =     (25.853)  (0.645)      (−0.698)
(9.2.5)

(0.0000)*    (0.5220)*     (0.4888)* R2 = 0.0440

where * indicates the p values.
As these regression results show, the mean salary of teachers in the West is about

$48,015, that of teachers in the Northeast and North Central is higher by about $1,524,
and that of teachers in the South is lower by about $1,721. The actual mean salaries in the
last two regions can be easily obtained by adding these differential salaries to the mean
salary of teachers in the West, as shown in Eqs. (9.2.3) and (9.2.4). Doing this, we will find
that the mean salaries in the latter two regions are about $49,539 and $46,294.

But how do we know that these mean salaries are statistically different from the mean
salary of teachers in the West, the comparison category? That is easy enough. All we have
to do is to find out if each of the “slope” coefficients in Eq. (9.2.5) is statistically significant.
As can be seen from this regression, the estimated slope coefficient for Northeast and
North Central is not statistically significant, as its p value is 52 percent, and that of the
South is also not statistically significant, as the p value is about 49 percent. Therefore, the
overall conclusion is that statistically the mean salaries of public school teachers in the West,
the Northeast and North Central, and the South are about the same. Diagrammatically, the
situation is shown in Figure 9.1.

A caution is in order in interpreting these differences. The dummy variables will simply
point out the differences, if they exist, but they do not suggest the reasons for the differ-
ences. Differences in educational levels, cost of living indexes, gender, and race may all
have some effect on the observed differences. Therefore, unless we take into account all
the other variables that may affect a teacher’s salary, we will not be able to pin down the
cause(s) of the differences.

From the preceding discussion, it is clear that all one has to do is see if the coefficients
attached to the various dummy variables are individually statistically significant. This example
also shows how easy it is to incorporate qualitative, or dummy, regressors in the regression
models.

FIGURE 9.1
Average salary
(in dollars) of public
school teachers in
three regions.

Northeast and
North Central

West South

β β1 + 2)$48,015 (

β1 = $49,539

β β1 + 3)$46,294 (

EXAMPLE 9.1
(Continued)
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Caution in the Use of Dummy Variables
Although they are easy to incorporate in the regression models, one must use the dummy
variables carefully. In particular, consider the following aspects:

1. In Example 9.1, to distinguish the three regions, we used only two dummy variables,
D2 and D3. Why did we not use three dummies to distinguish the three regions? Suppose we
do that and write the model (9.2.1) as:

Yi = α + β1 D1i + β2 D2i + β3 D3i + ui (9.2.6)

where D1i takes a value of 1 for states in the West and 0 otherwise. Thus, we now have a
dummy variable for each of the three geographical regions. Using the data in Table 9.1, if
you were to run the regression (9.2.6), the computer would “refuse” to run the regression
(try it).6 Why? The reason is that in the setup of Eq. (9.2.6) where you have a dummy variable
for each category or group and also an intercept, you have a case of perfect collinearity, that
is, exact linear relationships among the variables. Why? Refer to Table 9.1. Imagine that now
we add the D1 column, taking the value of 1 whenever a state is in the West and 0 otherwise.
Now if you add the three D columns horizontally, you will obtain a column that has 51 ones
in it. But since the value of the intercept α is (implicitly) 1 for each observation, you will
have a column that also contains 51 ones. In other words, the sum of the three D columns will
simply reproduce the intercept column, thus leading to perfect collinearity. In this case,
estimation of the model (9.2.6) is impossible.

The message here is: If a qualitative variable has m categories, introduce only (m − 1)
dummy variables. In our example, since the qualitative variable “region” has three cate-
gories, we introduced only two dummies. If you do not follow this rule, you will fall into
what is called the dummy variable trap, that is, the situation of perfect collinearity or per-
fect multicollinearity, if there is more than one exact relationship among the variables. This
rule also applies if we have more than one qualitative variable in the model, an example of
which is presented later. Thus we should restate the preceding rule as: For each qualitative
regressor, the number of dummy variables introduced must be one less than the
categories of that variable. Thus, if in Example 9.1 we had information about the gender
of the teacher, we would use an additional dummy variable (but not two) taking a value of
1 for female and 0 for male or vice versa.

2. The category for which no dummy variable is assigned is known as the base,
benchmark, control, comparison, reference, or omitted category. And all comparisons
are made in relation to the benchmark category.

3. The intercept value (β1) represents the mean value of the benchmark category. In
Example 9.1, the benchmark category is the Western region. Hence, in the regression
(9.2.5) the intercept value of about 48,015 represents the mean salary of teachers in the
Western states.

4. The coefficients attached to the dummy variables in Eq. (9.2.1) are known as the
differential intercept coefficients because they tell by how much the value of the category
that receives the value of 1 differs from the intercept coefficient of the benchmark category.
For example, in Eq. (9.2.5), the value of about 1,524 tells us that the mean salary of teachers
in the Northeast or North Central is larger by about $1,524 than the mean salary of about
$48,015 for the benchmark category, the West.

6Actually you will get a message saying that the data matrix is singular.
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5. If a qualitative variable has more than one category, as in our illustrative example, the
choice of the benchmark category is strictly up to the researcher. Sometimes the choice of
the benchmark is dictated by the particular problem at hand. In our illustrative example, we
could have chosen the South as the benchmark category. In that case the regression results
given in Eq. (9.2.5) will change, because now all comparisons are made in relation to the
South. Of course, this will not change the overall conclusion of our example (why?). In this
case, the intercept value will be about $46,294, which is the mean salary of teachers in the
South.

6. We warned above about the dummy variable trap. There is a way to circumvent this
trap by introducing as many dummy variables as the number of categories of that variable,
provided we do not introduce the intercept in such a model. Thus, if we drop the intercept
term from Eq. (9.2.6), and consider the following model,

Yi = β1 D1i + β2 D2i + β3 D3i + ui (9.2.7)

we do not fall into the dummy variable trap, as there is no longer perfect collinearity. But
make sure that when you run this regression, you use the no-intercept option in your
regression package.

How do we interpret regression (9.2.7)? If you take the expectation of Eq. (9.2.7), you
will find that:

β1 = mean salary of teachers in the West

β2 = mean salary of teachers in the Northeast and North Central

β3 = mean salary of teachers in the South

In other words, with the intercept suppressed, and allowing a dummy variable for each cat-
egory, we obtain directly the mean values of the various categories. The results of Eq. (9.2.7)
for our illustrative example are as follows:

Ŷi = 48,014.62D1i + 49,538.71D2i + 46,293.59D3i

se = (1857.204) (1461.240) (1624.077) (9.2.8)

t = (25.853)* (33.902)* (28.505)*

R2 = 0.044

where * indicates that the p values of these t ratios are very small.
As you can see, the dummy coefficients give directly the mean (salary) values in the

three regions? West, Northeast and North Central, and South.

7. Which is a better method of introducing a dummy variable: (1) introduce a dummy
for each category and omit the intercept term or (2) include the intercept term and introduce
only (m − 1) dummies, where m is the number of categories of the dummy variable? As
Kennedy notes:

Most researchers find the equation with an intercept more convenient because it allows them
to address more easily the questions in which they usually have the most interest, namely,
whether or not the categorization makes a difference, and if so, by how much. If the catego-
rization does make a difference, by how much is measured directly by the dummy variable
coefficient estimates. Testing whether or not the categorization is relevant can be done by
running a t test of a dummy variable coefficient against zero (or, to be more general, an F test
on the appropriate set of dummy variable coefficient estimates).7

7Peter Kennedy, A Guide to Econometrics, 4th ed., MIT Press, Cambridge, Mass., 1998, p. 223.
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9.3 ANOVA Models with Two Qualitative Variables

In the previous section we considered an ANOVA model with one qualitative variable with
three categories. In this section we consider another ANOVA model, but with two qualita-
tive variables, and bring out some additional points about dummy variables.

EXAMPLE 9.2
Hourly Wages in
Relation to
Marital Status
and Region of
Residence

From a sample of 528 persons in May 1985, the following regression results were
obtained.8

Ŷi = 8.8148  + 1.0997D2i − 1.6729D3i

se = (0.4015)  (0.4642) (0.4854)

t = (21.9528)   (2.3688) (−3.4462) (9.3.1)

(0.0000)* (0.0182)* (0.0006)*

R2 = 0.0322

where Y = hourly wage ($)
D2 = married status; 1 = married, 0 = otherwise
D3 = region of residence; 1 = South, 0 = otherwise

and * denotes the p values.
In this example we have two qualitative regressors, each with two categories. Hence

we have assigned a single dummy variable for each category.
Which is the benchmark category here? Obviously, it is unmarried, non-South resi-

dence. In other words, unmarried persons who do not live in the South are the omitted
category. Therefore, all comparisons are made in relation to this group. The mean hourly
wage in this benchmark is about $8.81. Compared with this, the average hourly wage of
those who are married is higher by about $1.10, for an actual average wage of $9.91
( = 8.81 + 1.10). By contrast, for those who live in the South, the average hourly wage is
lower by about $1.67, for an actual average hourly wage of $7.14.

Are the preceding average hourly wages statistically different compared to the base
category? They are, for all the differential intercepts are statistically significant, as their p
values are quite low.

The point to note about this example is this: Once you go beyond one qualitative
variable, you have to pay close attention to the category that is treated as the base category,
since all comparisons are made in relation to that category. This is especially important when
you have several qualitative regressors, each with several categories. But the mechanics of
introducing several qualitative variables should be clear by now.

9.4 Regression with a Mixture of Quantitative and Qualitative
Regressors: The ANCOVA Models

ANOVA models of the type discussed in the preceding two sections, although common
in fields such as sociology, psychology, education, and market research, are not that com-
mon in economics. Typically, in most economic research a regression model contains

8The data are obtained from the data disk in Arthur S. Goldberger, Introductory Econometrics, Harvard
University Press, Cambridge, Mass., 1998. We have already considered these data in Chapter 2.
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some explanatory variables that are quantitative and some that are qualitative. Regression
models containing an admixture of quantitative and qualitative variables are called
analysis of covariance (ANCOVA) models. ANCOVA models are an extension of the
ANOVA models in that they provide a method of statistically controlling the effects of
quantitative regressors, called covariates or control variables, in a model that includes
both quantitative and qualitative, or dummy, regressors. We now illustrate the ANCOVA
models.

To motivate the analysis, let us reconsider Example 9.1 by maintaining that the average
salary of public school teachers may not be different in the three regions if we take into
account any variables that cannot be standardized across the regions. Consider, for
example, the variable expenditure on public schools by local authorities, as public education
is primarily a local and state question. To see if this is the case, we develop the following
model:

Yi = β1 + β2 D2i + β3 D3i + β4 Xi + ui (9.4.1)

where Yi = average annual salary of public school teachers in state ($)
Xi = spending on public school per pupil ($)

D2i = 1, if the state is in the Northeast or North Central
= 0, otherwise

D3i = 1, if the state is in the South
= 0, otherwise

The data on X are given in Table 9.1. Keep in mind that we are treating the West as the
benchmark category. Also, note that besides the two qualitative regressors, we have a
quantitative variable, X, which in the context of the ANCOVA models is known as a
covariate, as noted earlier.

From the data in Table 9.1, the results of the model (9.4.1) are as follows:

Ŷi = 28,694.918 − 2,954.127D2i − 3,112.194D3i + 2.3404Xi

se = (3262.521) (1862.576) (1819.873) (0.3592)
(9.4.2)t = (8.795)* (−1.586)** (−1.710)** (6.515)*

R2 = 0.4977

where * indicates p values less than 5 percent, and ** indicates p values greater than
5 percent.

As these results suggest, ceteris paribus: as public expenditure goes up by a dollar, on
average, a public school teacher’s salary goes up by about $2.34. Controlling for spend-
ing on education, we now see that the differential intercept coefficient is not significant
for either the Northeast and North Central region or for the South. These results are
different from those of Eq. (9.2.5). But this should not be surprising, for in Eq. (9.2.5) we
did not account for the covariate, differences in per pupil public spending on education.
Diagrammatically, we have the situation shown in Figure 9.2.

Note that although we have shown three regression lines for the three regions, statis-
tically the regression lines are the same for all three regions. Also note that the three
regression lines are drawn parallel. (Why?)

EXAMPLE 9.3
Teachers’ Salary
in Relation to
Region and 
Spending on
Public School
per Pupil
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9.5 The Dummy Variable Alternative to the Chow Test9

In Section 8.7 we discussed the Chow test to examine the structural stability of a regression
model. The example we discussed there related to the relationship between savings and in-
come in the United States over the period 1970–1995. We divided the sample period into
two, 1970–1981 and 1982–1995, and showed on the basis of the Chow test that there was a
difference in the regression of savings on income between the two periods.

However, we could not tell whether the difference in the two regressions was because of
differences in the intercept terms or the slope coefficients or both. Very often this knowl-
edge itself is very useful.

Referring to Eqs. (8.7.1) and (8.7.2), we see that there are four possibilities, which we
illustrate in Figure 9.3.

1. Both the intercept and the slope coefficients are the same in the two regressions. This, the
case of coincident regressions, is shown in Figure 9.3a.

2. Only the intercepts in the two regressions are different but the slopes are the same. This
is the case of parallel regressions, which is shown in Figure 9.3b.

3. The intercepts in the two regressions are the same, but the slopes are different. This is
the situation of concurrent regressions (Figure 9.3c).

4. Both the intercepts and slopes in the two regressions are different. This is the case of dis-
similar regressions, which is shown in Figure 9.3d.

The multistep Chow test procedure discussed in Section 8.7, as noted earlier, tells us only
if two (or more) regressions are different without telling us what the source of the difference is.

28,695

1

West

2.34

2.34

2.34
South

Northeast and

North Central

1

1

Y

X

25,741

25,583

FIGURE 9.2
Public school
teacher’s salary (Y )
in relation to per
pupil expenditure on
education (X ).

9The material in this section draws on the author’s articles, “Use of Dummy Variables in Testing for
Equality between Sets of Coefficients in Two Linear Regressions: A Note,” and “Use of Dummy
Variables . . . A Generalization,” both published in the American Statistician, vol. 24, nos. 1 and 5,
1970, pp. 50–52 and 18–21.
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The source of difference, if any, can be pinned down by pooling all the observations (26 in
all) and running just one multiple regression as shown below:10

Yt = α1 + α2 Dt + β1 Xt + β2(Dt Xt ) + ut (9.5.1)

where Y = savings
X = income
t = time

D = 1 for observations in 1982–1995
= 0, otherwise (i.e., for observations in 1970–1981)

Table 9.2 shows the structure of the data matrix.
To see the implications of Eq. (9.5.1), and, assuming, as usual, that E(ui ) = 0, we

obtain:

Mean savings function for 1970–1981:

E(Yt | Dt = 0, Xt ) = α1 + β1 Xt (9.5.2)

Mean savings function for 1982–1995:

E(Yt | Dt = 1, Xt ) = (α1 + α2) + (β1 + β2)Xt (9.5.3)

The reader will notice that these are the same functions as Eqs. (8.7.1) and (8.7.2), with
λ1 = α1, λ2 = β1, γ1 = (α1 + α2), and γ2 = (β1 + β2). Therefore, estimating Eq. (9.5.1) is
equivalent to estimating the two individual savings functions in Eqs. (8.7.1) and (8.7.2).

Savings

Income
(a) Coincident regressions

Savings

Income
(c) Concurrent regressions

Savings

Income
(b) Parallel regressions

Savings

Income
(d) Dissimilar regressions

γ1γ

y1λ

1

1

1

1

1

1

1

γ2 = λ2λγ

γ2γ

γ2γ

λ2λ

γ1 = λ1γ λ λ1λ

γ1γ

γ2 = λ2λγ

γ2 = λ2λγ

γ1 = λ1λγ

λ2λ

FIGURE 9.3
Plausible
savings–income
regressions.

10As in the Chow test, the pooling technique assumes homoscedasticity, that is, σ2
1 = σ2

2 = σ2.
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In Eq. (9.5.1), α2 is the differential intercept, as previously, and β2 is the differential
slope coefficient (also called the slope drifter), indicating by how much the slope coeffi-
cient of the second period’s savings function (the category that receives the dummy value
of 1) differs from that of the first period. Notice how the introduction of the dummy
variable D in the interactive, or multiplicative, form (D multiplied by X ) enables us to dif-
ferentiate between slope coefficients of the two periods, just as the introduction of the
dummy variable in the additive form enabled us to distinguish between the intercepts of
the two periods.

TABLE 9.2
Savings and Income
Data, United States,
1970–1995

Source: Economic Report of the
President, 1997, Table B-28,
p. 332.

Observation Savings Income Dum

1970 61 727.1 0
1971 68.6 790.2 0
1972 63.6 855.3 0
1973 89.6 965 0
1974 97.6 1054.2 0
1975 104.4 1159.2 0
1976 96.4 1273 0
1977 92.5 1401.4 0
1978 112.6 1580.1 0
1979 130.1 1769.5 0
1980 161.8 1973.3 0
1981 199.1 2200.2 0
1982 205.5 2347.3 1
1983 167 2522.4 1
1984 235.7 2810 1
1985 206.2 3002 1
1986 196.5 3187.6 1
1987 168.4 3363.1 1
1988 189.1 3640.8 1
1989 187.8 3894.5 1
1990 208.7 4166.8 1
1991 246.4 4343.7 1
1992 272.6 4613.7 1
1993 214.4 4790.2 1
1994 189.4 5021.7 1
1995 249.3 5320.8 1

Note: Dum = 1 for observations beginning in 1982; 0 otherwise.
Savings and income figures are in billions of dollars.

EXAMPLE 9.4
Structural
Differences in
the U.S. Savings–
Income
Regression,
the Dummy
Variable
Approach

Before we proceed further, let us first present the regression results of model (9.5.1)
applied to the U.S. savings–income data.

Ŷt = 1.0161 + 152.4786Dt + 0.0803Xt − 0.0655(DtXt)
se = (20.1648) (33.0824) (0.0144) (0.0159) (9.5.4)
t = (0.0504)** (4.6090)* (5.5413)* (−4.0963)*

R2 = 0.8819

where * indicates p values less than 5 percent and ** indicates p values greater than
5 percent.

(Continued)
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9.6 Interaction Effects Using Dummy Variables

Dummy variables are a flexible tool that can handle a variety of interesting problems. To see
this, consider the following model:

Yi = α1 + α2 D2i + α3 D3i + βXi + ui (9.6.1)

As these regression results show, both the differential intercept and slope coefficients
are statistically significant, strongly suggesting that the savings–income regressions for the
two time periods are different, as in Figure 9.3d.

From Eq. (9.5.4), we can derive equations (9.5.2) and (9.5.3), which are:
Savings–income regression, 1970–1981:

Ŷt = 1.0161 + 0.0803Xt (9.5.5)

Savings–income regression, 1982–1995:

Ŷt = (1.0161 + 152.4786) + (0.0803 − 0.0655)Xt

= 153.4947 + 0.0148Xt (9.5.6)

These are precisely the results we obtained in Eqs. (8.7.1a) and (8.7.2a), which should not
be surprising. These regressions are already shown in Figure 8.3.

The advantages of the dummy variable technique (i.e., estimating Eq. [9.5.1] ) over the
Chow test (i.e., estimating the three regressions [8.7.1], [8.7.2], and [8.7.3] ) can now be
seen readily:

1. We need to run only a single regression because the individual regressions can easily be
derived from it in the manner indicated by equations (9.5.2) and (9.5.3).

2. The single regression (9.5.1) can be used to test a variety of hypotheses. Thus if the
differential intercept coefficient α2 is statistically insignificant, we may accept the
hypothesis that the two regressions have the same intercept, that is, the two
regressions are concurrent (see Figure 9.3c). Similarly, if the differential slope coefficient
β2 is statistically insignificant but α2 is significant, we may not reject the hypothesis that
the two regressions have the same slope, that is, the two regression lines are parallel
(cf. Figure 9.3b). The test of the stability of the entire regression (i.e., α2 = β2 = 0,
simultaneously) can be made by the usual F test (recall the restricted least-squares F
test). If this hypothesis is not rejected, the regression lines will be coincident, as shown
in Figure 9.3a.

3. The Chow test does not explicitly tell us which coefficient, intercept, or slope is
different, or whether (as in this example) both are different in the two periods. That is,
one can obtain a significant Chow test because the slope only is different or the
intercept only is different, or both are different. In other words, we cannot tell, via the
Chow test, which one of the four possibilities depicted in Figure 9.3 exists in a given
instance. In this respect, the dummy variable approach has a distinct advantage, for it
not only tells if the two are different but also pinpoints the source(s) of the difference—
whether it is due to the intercept or the slope or both. In practice, the knowledge that
two regressions differ in this or that coefficient is as important as, if not more than, the
plain knowledge that they are different.

4. Finally, since pooling (i.e., including all the observations in one regression) increases the
degrees of freedom, it may improve the relative precision of the estimated parameters.
Of course, keep in mind that every addition of a dummy variable will consume one degree
of freedom.

EXAMPLE 9.4
(Continued)
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where Y = hourly wage in dollars
X = education (years of schooling)

D2 = 1 if female, 0 otherwise
D3 = 1 if nonwhite and non-Hispanic, 0 otherwise

In this model gender and race are qualitative regressors and education is a quantitative
regressor.11 Implicit in this model is the assumption that the differential effect of the gen-
der dummy D2 is constant across the two categories of race and the differential effect of the
race dummy D3 is also constant across the two sexes. That is to say, if the mean salary is
higher for males than for females, this is so whether they are nonwhite/non-Hispanic or not.
Likewise, if, say, nonwhite/non-Hispanics have lower mean wages, this is so whether they
are females or males.

In many applications such an assumption may be untenable. A female nonwhite/
non-Hispanic may earn lower wages than a male nonwhite/non-Hispanic. In other words,
there may be interaction between the two qualitative variables D2 and D3. Therefore their
effect on mean Y may not be simply additive as in Eq. (9.6.1) but multiplicative as well, as in
the following model.

Yi = α1 + α2 D2i + α3 D3i + α4(D2i D3i ) + βXi + ui (9.6.2)

where the variables are as defined for model (9.6.1).
From Eq. (9.6.2), we obtain:

E(Yi | D2i = 1, D3i = 1, Xi ) = (α1 + α2 + α3 + α4) + βXi (9.6.3)

which is the mean hourly wage function for female nonwhite/non-Hispanic workers.
Observe that

α2 = differential effect of being a female
α3 = differential effect of being a nonwhite/non-Hispanic
α4 = differential effect of being a female nonwhite/non-Hispanic

which shows that the mean hourly wages of female nonwhite/non-Hispanics is different
(by α4) from the mean hourly wages of females or nonwhite/non-Hispanics. If, for instance,
all the three differential dummy coefficients are negative, this would imply that female
nonwhite/non-Hispanic workers earn much lower mean hourly wages than female or
nonwhite/non-Hispanic workers as compared with the base category, which in the present
example is male white or Hispanic.

Now the reader can see how the interaction dummy (i.e., the product of two qualitative
or dummy variables) modifies the effect of the two attributes considered individually (i.e.,
additively).

11If we were to define education as less than high school, high school, and more than high school,
we could then use two dummies to represent the three classes.

EXAMPLE 9.5
Average Hourly
Earnings in
Relation to
Education,
Gender, and
Race

Let us first present the regression results based on model (9.6.1). Using the data that
were used to estimate regression (9.3.1), we obtained the following results:

Ŷi = −0.2610 −    2.3606D2i −    1.7327D3i + 0.8028Xi

t = (−0.2357)** (−5.4873)* (−2.1803)* (9.9094)* (9.6.4)
R2 = 0.2032 n = 528

where * indicates p values less than 5 percent and ** indicates p values greater than
5 percent.

(Continued)

guj75772_ch09.qxd  12/08/2008  04:19 PM  Page 289



290 Part One Single-Equation Regression Models

The preceding example clearly reveals the role of interaction dummies when two or
more qualitative regressors are included in the model. It is important to note that in the
model (9.6.5) we are assuming that the rate of increase of hourly earnings with respect to
education (of about 80 cents per additional year of schooling) remains constant across
gender and race. But this may not be the case. If you want to test for this, you will have to
introduce differential slope coefficients (see Exercise 9.25).

9.7 The Use of Dummy Variables in Seasonal Analysis

Many economic time series based on monthly or quarterly data exhibit seasonal patterns
(regular oscillatory movements). Examples are sales of department stores at Christmas and
other major holiday times, demand for money (or cash balances) by households at holiday
times, demand for ice cream and soft drinks during summer, prices of crops right after har-
vesting season, demand for air travel, etc. Often it is desirable to remove the seasonal
factor, or component, from a time series so that one can concentrate on the other compo-
nents, such as the trend.12 The process of removing the seasonal component from a time
series is known as deseasonalization or seasonal adjustment, and the time series thus
obtained is called the deseasonalized, or seasonally adjusted, time series. Important
economic time series, such as the unemployment rate, the consumer price index (CPI), the
producer’s price index (PPI), and the index of industrial production, are usually published
in seasonally adjusted form.

12A time series may contain four components: (1) seasonal, (2) cyclical, (3) trend, and (4) strictly
random.

The reader can check that the differential intercept coefficients are statistically
significant, that they have the expected signs (why?), and that education has a strong
positive effect on hourly wage, an unsurprising finding.

As Eq. (9.6.4) shows, ceteris paribus, the average hourly earnings of females are lower
by about $2.36, and the average hourly earnings of nonwhite non-Hispanic workers are
also lower by about $1.73.

We now consider the results of model (9.6.2), which includes the interaction dummy.

Ŷi = −0.26100 −   2.3606D2i −   1.7327D3i + 2.1289D2iD3i + 0.8028Xi

t = (−0.2357)** (−5.4873)* (−2.1803)* (1.7420)** (9.9095)** (9.6.5)

R2 = 0.2032 n = 528

where * indicates p values less than 5 percent and ** indicates p values greater than
5 percent.

As you can see, the two additive dummies are still statistically significant, but the
interactive dummy is not at the conventional 5 percent level; the actual p value of the
interaction dummy is about the 8 percent level. If you think this is a low enough
probability, then the results of Eq. (9.6.5) can be interpreted as follows: Holding the
level of education constant, if you add the three dummy coefficients you will obtain:
−1.964 (= −2.3605 − 1.7327 + 2.1289), which means that mean hourly wages of
nonwhite/non-Hispanic female workers is lower by about $1.96, which is between the
value of −2.3605 (gender difference alone) and −1.7327 (race difference alone).

EXAMPLE 9.5
(Continued)
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There are several methods of deseasonalizing a time series, but we will consider only one
of these methods, namely, the method of dummy variables.13 To illustrate how the dummy
variables can be used to deseasonalize economic time series, consider the data given in
Table 9.3. This table gives quarterly data for the years 1978–1995 on the sale of four major
appliances, dishwashers, garbage disposers, refrigerators, and washing machines, all data in
thousands of units. The table also gives data on durable goods expenditure in 1982 billions of
dollars.

To illustrate the dummy technique, we will consider only the sales of refrigerators over
the sample period. But first let us look at the data, which is shown in Figure 9.4. This fig-
ure suggests that perhaps there is a seasonal pattern in the data associated with the various
quarters. To see if this is the case, consider the following model:

Yt = α1 D1t + α2 D2t + α3t D3t + α4 D4t + ut (9.7.1)

where Yt = sales of refrigerators (in thousands) and the D’s are the dummies, taking a value
of 1 in the relevant quarter and 0 otherwise. Note that to avoid the dummy variable trap, we
are assigning a dummy to each quarter of the year, but omitting the intercept term. If there
is any seasonal effect in a given quarter, that will be indicated by a statistically significant t
value of the dummy coefficient for that quarter.14

Notice that in Eq. (9.7.1) we are regressing Y effectively on an intercept, except that we
allow for a different intercept in each season (i.e., quarter). As a result, the dummy coeffi-
cient of each quarter will give us the mean refrigerator sales in each quarter or season
(why?).

TABLE 9.3
Quarterly Data on
Appliance Sales (in
thousands) and
Expenditure on
Durable Goods
(1978–I to 1985–IV)

Source: Business Statistics and
Survey of Current Business,
Department of Commerce
(various issues).

DISH DISP FRIG WASH DUR DISH DISP FRIG WASH DUR

841 798 1317 1271 252.6 480 706 943 1036 247.7
957 837 1615 1295 272.4 530 582 1175 1019 249.1
999 821 1662 1313 270.9 557 659 1269 1047 251.8
960 858 1295 1150 273.9 602 837 973 918 262
894 837 1271 1289 268.9 658 867 1102 1137 263.3
851 838 1555 1245 262.9 749 860 1344 1167 280
863 832 1639 1270 270.9 827 918 1641 1230 288.5
878 818 1238 1103 263.4 858 1017 1225 1081 300.5
792 868 1277 1273 260.6 808 1063 1429 1326 312.6
589 623 1258 1031 231.9 840 955 1699 1228 322.5
657 662 1417 1143 242.7 893 973 1749 1297 324.3
699 822 1185 1101 248.6 950 1096 1117 1198 333.1
675 871 1196 1181 258.7 838 1086 1242 1292 344.8
652 791 1410 1116 248.4 884 990 1684 1342 350.3
628 759 1417 1190 255.5 905 1028 1764 1323 369.1
529 734 919 1125 240.4 909 1003 1328 1274 356.4

Note: DISH = dishwashers; DISP = garbage disposers; FRIG = refrigerators; WASH = washing machines; DUR = durable
goods expenditure, billions of 1982 dollars.

13For the various methods of seasonal adjustment, see, for instance, Francis X. Diebold, Elements of
Forecasting, 2d ed., South-Western Publishing, 2001, Chapter 5.
14Note a technical point. This method of assigning a dummy to each quarter assumes that the
seasonal factor, if present, is deterministic and not stochastic. We will revisit this topic when we
discuss time series econometrics in Part V of this book.
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FIGURE 9.4
Sales of refrigerators
1978–1985 (quarterly).

EXAMPLE 9.6
Seasonality in
Refrigerator
Sales

From the data on refrigerator sales given in Table 9.4, we obtain the following regression
results:

Ŷt = 1,222.125D1t + 1,467.500D2t + 1,569.750D3t + 1,160.000D4t

t = (20.3720) (24.4622) (26.1666) (19.3364) (9.7.2)
R2 = 0.5317

Note: We have not given the standard errors of the estimated coefficients, as each stan-
dard error is equal to 59.9904, because all the dummies take only a value of 1 or zero.

The estimated α coefficients in Eq. (9.7.2) represent the average, or mean, sales of
refrigerators (in thousands of units) in each season (i.e., quarter). Thus, the average sale of
refrigerators in the first quarter, in thousands of units, is about 1,222, that in the second
quarter about 1,468, that in the third quarter about 1,570, and that in the fourth quarter
about 1,160.

FRIG DUR D2 D3 D4 FRIG DUR D2 D3 D4

1317 252.6 0 0 0 943 247.7 0 0 0
1615 272.4 1 0 0 1175 249.1 1 0 0
1662 270.9 0 1 0 1269 251.8 0 1 0
1295 273.9 0 0 1 973 262.0 0 0 1
1271 268.9 0 0 0 1102 263.3 0 0 0
1555 262.9 1 0 0 1344 280.0 1 0 0
1639 270.9 0 1 0 1641 288.5 0 1 0
1238 263.4 0 0 1 1225 300.5 0 0 1
1277 260.6 0 0 0 1429 312.6 0 0 0
1258 231.9 1 0 0 1699 322.5 1 0 0
1417 242.7 0 1 0 1749 324.3 0 1 0
1185 248.6 0 0 1 1117 333.1 0 0 1
1196 258.7 0 0 0 1242 344.8 0 0 0
1410 248.4 1 0 0 1684 350.3 1 0 0
1417 255.5 0 1 0 1764 369.1 0 1 0
919 240.4 0 0 1 1328 356.4 0 0 1

Note: FRIG = refrigerator sales, thousands.
DUR = durable goods expenditure, billions of 1982 dollars.

D2 = 1 in the second quarter, 0 otherwise.
D3 = 1 in the third quarter, 0 otherwise.
D4 = 1 in the fourth quarter, 0 otherwise.

TABLE 9.4
U.S. Refrigerator
Sales (thousands),
1978–1985
(quarterly)

Source: Business Statistics
and Survey of Current
Business, Department of
Commerce (various issues).
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Incidentally, instead of assigning a dummy for each quarter and suppressing the inter-
cept term to avoid the dummy variable trap, we could assign only three dummies and
include the intercept term. Suppose we treat the first quarter as the reference quarter
and assign dummies to the second, third, and fourth quarters. This produces the follow-
ing regression results (see Table 9.4 for the data setup):

Ŷt = 1,222.1250 + 245.3750D2t + 347.6250D3t − 62.1250D4t

t = (20.3720)* (2.8922)* (4.0974)* (−0.7322)** (9.7.3)
R2 = 0.5318

where * indicates p values less than 5 percent and ** indicates p values greater than 5 percent.
Since we are treating the first quarter as the benchmark, the coefficients attached to

the various dummies are now differential intercepts, showing by how much the average
value of Y in the quarter that receives a dummy value of 1 differs from that of the bench-
mark quarter. Put differently, the coefficients on the seasonal dummies will give the
seasonal increase or decrease in the average value of Y relative to the base season. If you
add the various differential intercept values to the benchmark average value of 1,222.125,
you will get the average value for the various quarters. Doing so, you will reproduce
exactly Eq. (9.7.2), except for the rounding errors.

But now you will see the value of treating one quarter as the benchmark quarter, for
Eq. (9.7.3) shows that the average value of Y for the fourth quarter is not statistically different
from the average value for the first quarter, as the dummy coefficient for the fourth quarter
is not statistically significant. Of course, your answer will change, depending on which quar-
ter you treat as the benchmark quarter, but the overall conclusion will not change.

How do we obtain the deseasonalized time series of refrigerator sales? This can be done
easily. You estimate the values of Y from model (9.7.2) (or [9.7.3]) for each observation
and subtract them from the actual values of Y, that is, you obtain (Yt −Ŷt ) which are simply
the residuals from the regression (9.7.2). We show them in Table 9.5.15 To these residuals,
we have to add the mean of the Y series to get the forecasted values.

What do these residuals represent? They represent the remaining components of the
refrigerator time series, namely, the trend, cycle, and random components (but see the
caution given in footnote 15).

Since models (9.7.2) and (9.7.3) do not contain any covariates, will the picture change
if we bring in a quantitative regressor in the model? Since expenditure on durable goods
has an important factor influence on the demand for refrigerators, let us expand our
model (9.7.3) by bringing in this variable. The data for durable goods expenditure in
billions of 1982 dollars are already given in Table 9.3. This is our (quantitative) X variable
in the model. The regression results are as follows

Ŷt = 456.2440   + 242.4976D2t + 325.2643D3t − 86.0804D4t + 2.7734Xt

t = (2.5593)* (3.6951)* (4.9421)* (−1.3073)** (4.4496)* (9.7.4)
R2 = 0.7298

where * indicates p values less than 5 percent and ** indicates p values greater than
5 percent.

15Of course, this assumes that the dummy variables technique is an appropriate method of deseason-
alizing a time series and that a time series (TS) can be represented as: TS = s + c + t + u, where s
represents the seasonal, t the trend, c the cyclical, and u the random component. However, if the
time series is of the form, TS = (s)(c)(t)(u), where the four components enter multiplicatively, the
preceding method of deseasonalization is inappropriate, for that method assumes that the four
components of a time series are additive. But we will have more to say about this topic in the
chapters on time series econometrics.

(Continued)

EXAMPLE 9.6
(Continued)
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Again, keep in mind that we are treating the first quarter as our base. As in Eq. (9.7.3),
we see that the differential intercept coefficients for the second and third quarters are sta-
tistically different from that of the first quarter, but the intercepts of the fourth quarter and
the first quarter are statistically about the same. The coefficient of X (durable goods
expenditure) of about 2.77 tells us that, allowing for seasonal effects, if expenditure on
durable goods goes up by a dollar, on average, sales of refrigerators go up by about
2.77 units, that is, approximately 3 units; bear in mind that refrigerators are in thousands
of units and X is in (1982) billions of dollars.

An interesting question here is: Just as sales of refrigerators exhibit seasonal patterns,
would not expenditure on durable goods also exhibit seasonal patterns? How then do we
take into account seasonality in X? The interesting thing about Eq. (9.7.4) is that the
dummy variables in that model not only remove the seasonality in Y but also the season-
ality, if any, in X. (This follows from a well-known theorem in statistics, known as the

TABLE 9.5 Refrigerator Sales Regression: Actual, Fitted, and Residual Values (Eq. 9.7.3)

Residuals Graph
Actual Fitted Residuals 0

1978–I 1317 1222.12 94.875 . .
1978–II 1615 1467.50 147.500 . .
1978–III 1662 1569.75 92.250 . .
1978–IV 1295 1160.00 135.000 . .

1979–I 1271 1222.12 48.875 . .
1979–II 1555 1467.50 87.500 . .
1979–III 1639 1569.75 69.250 . .
1979–IV 1238 1160.00 78.000 . .

1980–I 1277 1222.12 54.875 . .
1980–II 1258 1467.50 −209.500 . .
1980–III 1417 1569.75 −152.750 . .
1980–IV 1185 1160.00 25.000 . .

1981–I 1196 1222.12 −26.125 . .
1981–II 1410 1467.50 −57.500 . .
1981–III 1417 1569.75 −152.750 . .
1981–IV 919 1160.00 −241.000 . .

1982–I 943 1222.12 −279.125 . .
1982–II 1175 1467.50 −292.500 . .
1982–III 1269 1569.75 −300.750 . .
1982–IV 973 1160.00 −187.000 . .

1983–I 1102 1222.12 −120.125 . .
1983–II 1344 1467.50 −123.500 . .
1983–III 1641 1569.75 71.250 . .
1983–IV 1225 1160.00 65.000 . .

1984–I 1429 1222.12 206.875 . .
1984–II 1699 1467.50 231.500 . .
1984–III 1749 1569.75 179.250 . .
1984–IV 1117 1160.00 −43.000 . .

1985–I 1242 1222.12 19.875 . .
1985–II 1684 1467.50 216.500 . .
1985–III 1764 1569.75 194.250 . .
1985–IV 1328 1160.00 168.000 .

− 0 +

EXAMPLE 9.6
(Continued)

*
*

*
*

*
*
*
*

*
*
*

*

*
*

*
*

*
*
*

*

*
*

*
*

*
*

*
*

*
*

*
*

guj75772_ch09.qxd  12/08/2008  04:19 PM  Page 294



Chapter 9 Dummy Variable Regression Models 295

9.8 Piecewise Linear Regression

To illustrate yet another use of dummy variables, consider Figure 9.5, which shows how a
hypothetical company remunerates its sales representatives. It pays commissions based on
sales in such a manner that up to a certain level, the target, or threshold, level X∗, there is
one (stochastic) commission structure and beyond that level another. (Note: Besides sales,
other factors affect sales commission. Assume that these other factors are represented
by the stochastic disturbance term.) More specifically, it is assumed that sales commission
increases linearly with sales until the threshold level X∗, after which it continues to increase
linearly with sales but at a much steeper rate. Thus, we have a piecewise linear regression
consisting of two linear pieces or segments, which are labeled I and II in Figure 9.5, and
the commission function changes its slope at the threshold value. Given the data on com-
mission, sales, and the value of the threshold level X∗, the technique of dummy variables
can be used to estimate the (differing) slopes of the two segments of the piecewise linear
regression shown in Figure 9.5. We proceed as follows:

Yi = α1 + β1 Xi + β2(Xi − X∗)Di + ui (9.8.1)

Frisch–Waugh theorem.16) So to speak, we kill (deseasonalize) two birds (two series)
with one stone (the dummy technique).

If you want an informal proof of the preceding statement, just follow these steps:
(1) Run the regression of Y on the dummies as in Eq. (9.7.2) or Eq. (9.7.3) and save the
residuals, say, S1; these residuals represent deseasonalized Y. (2) Run a similar regression
for X and obtain the residuals from this regression, say, S2; these residuals represent
deseasonalized X. (3) Regress S1 on S2. You will find that the slope coefficient in this
regression is precisely the coefficient of X in the regression (9.7.4).

16For proof, see Adrian C. Darnell, A Dictionary of Econometrics, Edward Elgar, Lyme, U.K., 1995,
pp. 150–152.
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FIGURE 9.5
Hypothetical
relationship between
sales commission and
sales volume.
(Note: The intercept on
the Y axis denotes
minimum guaranteed
commission.)

EXAMPLE 9.6
(Continued)
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296 Part One Single-Equation Regression Models

where Yi = sales commission
Xi = volume of sales generated by the sales person

X∗ = threshold value of sales also known as a knot (known in advance)17

D = 1 if Xi > X∗

= 0 if Xi < X∗

Assuming E(ui ) = 0, we see at once that

E(Yi | Di = 0, Xi , X∗) = α1 + β1 Xi (9.8.2)

which gives the mean sales commission up to the target level X∗ and

E(Yi | Di = 1, Xi , X∗) = α1 − β2 X∗ + (β1 + β2)Xi (9.8.3)

which gives the mean sales commission beyond the target level X∗.
Thus, β1 gives the slope of the regression line in segment I, and β1 + β2 gives the slope

of the regression line in segment II of the piecewise linear regression shown in Figure 9.5.
A test of the hypothesis that there is no break in the regression at the threshold value X* can
be conducted easily by noting the statistical significance of the estimated differential slope
coefficient β̂2 (see Figure 9.6).

Incidentally, the piecewise linear regression we have just discussed is an example of a
more general class of functions known as spline functions.18

17The threshold value may not always be apparent, however. An ad hoc approach is to plot the
dependent variable against the explanatory variable(s) and observe if there seems to be a sharp
change in the relation after a given value of X (i.e., X*). An analytical approach to finding the break
point can be found in the so-called switching regression models. But this is an advanced topic
and a textbook discussion may be found in Thomas Fomby, R. Carter Hill, and Stanley Johnson, 
Advanced Econometric Methods, Springer-Verlag, New York, 1984, Chapter 14.
18For an accessible discussion on splines (i.e., piecewise polynomials of order k), see Douglas C.
Montgomery, Elizabeth A. Peck, and G. Geoffrey Vining, Introduction to Linear Regression Analysis,
John Wiley & Sons, 3d ed., New York, 2001, pp. 228–230.
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FIGURE 9.6
Parameters of the
piecewise linear
regression.
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9.9 Panel Data Regression Models

Recall that in Chapter 1 we discussed a variety of data that are available for empirical
analysis, such as cross-section, time series, pooled (combination of time series and cross-
section data), and panel data. The technique of dummy variable can be easily extended to
pooled and panel data. Since the use of panel data is becoming increasingly common in
applied work, we will consider this topic in some detail in Chapter 16.

9.10 Some Technical Aspects of the Dummy Variable Technique
The Interpretation of Dummy Variables 
in Semilogarithmic Regressions
In Chapter 6 we discussed the log–lin models, where the regressand is logarithmic and
the regressors are linear. In such a model, the slope coefficients of the regressors give the
semielasticity, that is, the percentage change in the regressand for a unit change in the

EXAMPLE 9.7
Total Cost in
Relation to
Output

As an example of the application of the piecewise linear regression, consider the hypo-
thetical total cost–total output data given in Table 9.6. We are told that the total cost may
change its slope at the output level of 5,500 units.

Letting Y in Eq. (9.8.4) represent total cost and X total output, we obtain the following
results:

Ŷi = −145.72 + 0.2791Xi + 0.0945(Xi − X*i )Di

t = (−0.8245)    (6.0669) (1.1447) (9.8.4)

R2 = 0.9737 X* = 5,500

As these results show, the marginal cost of production is about 28 cents per unit and al-
though it is about 37 cents (28 + 9) for output over 5,500 units, the difference between
the two is not statistically significant because the dummy variable is not significant at,
say, the 5 percent level. For all practical purposes, then, one can regress total cost on
total output, dropping the dummy variable.

Total Cost, Dollars Output, Units

256 1,000
414 2,000
634 3,000
778 4,000

1,003 5,000
1,839 6,000
2,081 7,000
2,423 8,000
2,734 9,000
2,914 10,000

TABLE 9.6
Hypothetical Data
on Output and
Total Cost
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regressor. This is only so if the regressor is quantitative. What happens if a regressor is a
dummy variable? To be specific, consider the following model:

ln Yi = β1 + β2 Di + ui (9.10.1)

where Y = hourly wage rate ($) and D = 1 for female and 0 for male.
How do we interpret such a model? Assuming E(ui ) = 0, we obtain:

Wage function for male workers:

E(ln Yi | Di = 0) = β1 (9.10.2)

Wage function for female workers:

E(ln Yi | Di = 1) = β1 + β2 (9.10.3)

Therefore, the intercept β1 gives the mean log hourly earnings and the “slope” coefficient
gives the difference in the mean log hourly earnings of male and females. This is a rather
awkward way of stating things. But if we take the antilog of β1, what we obtain is not the
mean hourly wages of male workers, but their median wages. As you know, mean, median,
and mode are the three measures of central tendency of a random variable. And if we take
the antilog of (β1 + β2), we obtain the median hourly wages of female workers.

EXAMPLE 9.8
Logarithm of
Hourly Wages
in Relation
to Gender

To illustrate Eq. (9.10.1), we use the data that underlie Example 9.2. The regression results
based on 528 observations are as follows:

̂ln Yi = 2.1763 − 0.2437Di

t = (72.2943)*      (−5.5048)* (9.10.4)

R2 = 0.0544

where * indicates p values are practically zero.
Taking the antilog of 2.1763, we find 8.8136 ($), which is the median hourly earnings

of male workers, and taking the antilog of [(2.1763 − 0.2437) = 1.92857], we obtain
6.8796 ($), which is the median hourly earnings of female workers. Thus, the female
workers’ median hourly earnings are lower by about 21.94 percent compared to their male
counterparts [(8.8136 − 6.8796)/8.8136].

Interestingly, we can obtain semielasticity for a dummy regressor directly by the device
suggested by Halvorsen and Palmquist.19 Take the antilog (to base e) of the estimated
dummy coefficient and subtract 1 from it and multiply the difference by 100. (For the under-
lying logic, see Appendix 9.A.1.) Therefore, if you take the antilog of −0.2437, you will
obtain 0.78366. Subtracting 1 from this gives −0.2163. After multiplying this by 100, we
get −21.63 percent, suggesting that a female worker’s (D = 1) median salary is lower than
that of her male counterpart by about 21.63 percent, the same as we obtained previously,
save the rounding errors.

19Robert Halvorsen and Raymond Palmquist, “The Interpretation of Dummy Variables in Semilogarithmic
Equations,” American Economic Review, vol. 70, no. 3, pp. 474–475. 

Dummy Variables and Heteroscedasticity
Let us revisit our savings–income regression for the United States for the periods
1970–1981 and 1982–1995 and for the entire period 1970–1995. In testing for structural
stability using the dummy technique, we assumed that the error var (u1i ) = var (u2i ) = σ 2,
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that is, the error variances in the two periods, were the same. This was also the assumption
underlying the Chow test. If this assumption is not valid—that is, the error variances in the
two subperiods are different—it is quite possible to draw misleading conclusions. There-
fore, one must first check on the equality of variances in the subperiod, using suitable
statistical techniques. Although we will discuss this topic more thoroughly in the chapter
on heteroscedasticity, in Chapter 8 we showed how the F test can be used for this purpose.20

(See our discussion of the Chow test in that chapter.) As we showed there, it seems the error
variances in the two periods are not the same. Hence, the results of both the Chow test and
the dummy variable technique presented before may not be entirely reliable. Of course, our
purpose here is to illustrate the various techniques that one can use to handle a problem
(e.g., the problem of structural stability). In any particular application, these techniques
may not be valid. But that is par for most statistical techniques. Of course, one can take
appropriate remedial actions to resolve the problem, as we will do in the chapter on
heteroscedasticity later (however, see Exercise 9.28).

Dummy Variables and Autocorrelation
Besides homoscedasticity, the classical linear regression model assumes that the error
term in the regression models is uncorrelated. But what happens if that is not the case, espe-
cially in models involving dummy regressors? Since we will discuss the topic of autocor-
relation in depth in the chapter on autocorrelation, we will defer the answer to this question
until then.

What Happens If the Dependent Variable
Is a Dummy Variable?
So far we have considered models in which the regressand is quantitative and the regressors
are quantitative or qualitative or both. But there are occasions where the regressand can
also be qualitative or dummy. Consider, for example, the decision of a worker to participate
in the labor force. The decision to participate is of the yes or no type, yes if the person
decides to participate and no otherwise. Thus, the labor force participation variable is a
dummy variable. Of course, the decision to participate in the labor force depends on several
factors, such as the starting wage rate, education, and conditions in the labor market
(as measured by the unemployment rate).

Can we still use ordinary least squares (OLS) to estimate regression models where the
regressand is dummy? Yes, mechanically, we can do so. But there are several statistical
problems that one faces in such models. And since there are alternatives to OLS estima-
tion that do not face these problems, we will discuss this topic in a later chapter
(see Chapter 15 on logit and probit models). In that chapter we will also discuss models
in which the regressand has more than two categories; for example, the decision to travel
to work by car, bus, or train, or the decision to work part-time, full time, or not work at
all. Such models are called polytomous dependent variable models in contrast to
dichotomous dependent variable models in which the dependent variable has only two
categories.

20The Chow test procedure can be performed even in the presence of heteroscedasticity, but then
one will have to use the Wald test. The mathematics involved behind the test are somewhat
involved. But in the chapter on heteroscedasticity, we will revisit this topic.
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9.11 Topics for Further Study

Several topics related to dummy variables are discussed in the literature that are rather ad-
vanced, including (1) random, or varying, parameters models, (2) switching regression
models, and (3) disequilibrium models.

In the regression models considered in this text it is assumed that the parameters, the
β’s, are unknown but fixed entities. The random coefficient models—and there are several
versions of them—assume the β’s can be random too. A major reference work in this area
is by Swamy.21

In the dummy variable model using both differential intercepts and slopes, it is implicitly
assumed that we know the point of break. Thus, in our savings–income example for
1970–1995, we divided the period into 1970–1981 and 1982–1995, the pre- and postreces-
sion periods, under the belief that the recession in 1982 changed the relation between
savings and income. Sometimes it is not easy to pinpoint when the break has taken place.
The technique of switching regression models (SRM) has been developed for such situa-
tions. SRM treats the breakpoint as a random variable and through an iterative process
determines when the break might have actually taken place. The seminal work in this area is
by Goldfeld and Quandt.22

Special estimation techniques are required to deal with what are known as disequilib-
rium situations, that is, situations where markets do not clear (i.e., demand is not equal to
supply). The classic example is that of demand for and supply of a commodity. The demand
for a commodity is a function of its price and other variables, and the supply of the com-
modity is a function of its price and other variables, some of which are different from those
entering the demand function. Now the quantity actually bought and sold of the commod-
ity may not necessarily be equal to the one obtained by equating the demand to supply, thus
leading to disequilibrium. For a thorough discussion of disequilibrium models, the reader
may refer to Quandt.23

9.12 A Concluding Example

We end this chapter with an example that illustrates some of the points made in this chap-
ter. Table 9.7 provides data on a sample of 261 workers in an industrial town in southern
India in 1990.

The variables are defined as follows:

WI = weekly wage income in rupees
Age = age in years
Dsex = 1 for male workers and 0 for female workers
DE2 = a dummy variable taking a value of 1 for workers with an education level up to primary
DE3 = a dummy variable taking a value of 1 for workers up to a secondary level of

education
DE4 = a dummy variable taking a value of 1 for workers with higher than secondary

education
DPT = a dummy variable taking a value of 1 for workers with permanent jobs and a

value of 0 for temporary workers

21P.A.V.B. Swamy, Statistical Inference in Random Coefficient Regression Models, Springer-Verlag, Berlin,
1971.
22S. Goldfeld and R. Quandt, Nonlinear Methods in Econometrics, North Holland, Amsterdam, 1972.
23Richard E. Quandt, The Econometrics of Disequilibrium, Basil Blackwell, New York, 1988.
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TABLE 9.7 Indian Wage Earners, 1990

WI AGE DE2 DE3 DE4 DPT DSEX WI AGE DE2 DE3 DE4 DPT DSEX

120 57 0 0 0 0 0 120 21 0 0 0 0 0
224 48 0 0 1 1 0 25 18 0 0 0 0 1
132 38 0 0 0 0 0 25 11 0 0 0 0 1
75 27 0 1 0 0 0 30 38 0 0 0 1 1

111 23 0 1 0 0 1 30 17 0 0 0 1 1
127 22 0 1 0 0 0 122 20 0 0 0 0 0
30 18 0 0 0 0 0 288 50 0 1 0 1 0
24 12 0 0 0 0 0 75 45 0 0 0 0 1

119 38 0 0 0 1 0 79 60 0 0 0 0 0
75 55 0 0 0 0 0 85.3 26 1 0 0 0 1

324 26 0 1 0 0 0 350 42 0 1 0 1 0
42 18 0 0 0 0 0 54 62 0 0 0 1 0

100 32 0 0 0 0 0 110 23 0 0 0 0 0
136 41 0 0 0 0 0 342 56 0 0 0 1 0
107 48 0 0 0 0 0 77.5 19 0 0 0 1 0
50 16 1 0 0 0 1 370 46 0 0 0 0 0
90 45 0 0 0 0 0 156 26 0 0 0 1 0

377 46 0 0 0 1 0 261 23 0 0 0 0 0
150 30 0 1 0 0 0 54 16 0 1 0 0 0
162 40 0 0 0 0 0 130 33 0 0 0 0 0
18 19 1 0 0 0 0 112 27 1 0 0 0 0

128 25 1 0 0 0 0 82 22 1 0 0 0 0
47.5 46 0 0 0 0 1 385 30 0 1 0 1 0

135 25 0 1 0 0 0 94.3 22 0 0 1 1 1
400 57 0 0 0 1 0 350 57 0 0 0 1 0
91.8 35 0 0 1 1 0 108 26 0 0 0 0 0

140 44 0 0 0 1 0 20 14 0 0 0 0 0
49.2 22 0 0 0 0 0 53.8 14 0 0 0 0 1
30 19 1 0 0 0 0 427 55 0 0 0 1 0
40.5 37 0 0 0 0 1 18 12 0 0 0 0 0
81 20 0 0 0 0 0 120 38 0 0 0 0 0

105 40 0 0 0 0 0 40.5 17 0 0 0 0 0
200 30 0 0 0 0 0 375 42 1 0 0 1 0
140 30 0 0 0 1 0 120 34 0 0 0 0 0
80 26 0 0 0 0 0 175 33 1 0 0 1 0
47 41 0 0 0 0 1 50 26 0 0 0 0 1

125 22 0 0 0 0 0 100 33 1 0 0 1 0
500 21 0 0 0 0 0 25 22 0 0 0 1 1
100 19 0 0 0 0 0 40 15 0 0 0 1 0
105 35 0 0 0 0 0 65 14 0 0 0 1 0
300 35 0 1 0 1 0 47.5 25 0 0 0 1 1
115 33 0 1 0 1 1 163 25 0 0 0 1 0
103 27 0 0 1 1 1 175 50 0 0 0 1 1
190 62 1 0 0 0 0 150 24 0 0 0 1 1
62.5 18 0 1 0 0 0 163 28 0 0 0 1 0
50 25 1 0 0 0 0 163 30 1 0 0 1 0

273 43 0 0 1 1 1 50 25 0 0 0 1 1
175 40 0 1 0 1 0 395 45 0 1 0 1 0
117 26 1 0 0 1 0 175 40 0 0 0 1 1
950 47 0 0 1 0 0 87.5 25 1 0 0 0 0
100 30 0 0 0 0 0 75 18 0 0 0 0 0
140 30 0 0 0 0 0 163 24 0 0 0 1 0
97 25 0 1 0 0 0 325 55 0 0 0 1 0

150 36 0 0 0 0 0 121 27 0 1 0 0 0
25 28 0 0 0 0 1 600 35 1 0 0 0 0
15 13 0 0 0 0 1 52 19 0 0 0 0 0

131 55 0 0 0 0 0 117 28 1 0 0 0 0 
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302 Part One Single-Equation Regression Models

The reference category is male workers with no primary education and temporary jobs.
Our interest is in finding out how weekly wages relate to age, sex, level of education, and
job tenure. For this purpose, we estimate the following regression model:

ln WIi = β1 + β2AGEi + β3DSEX + β4 DE2 + β5DE3 + β6 DE4 + β7 DPT + ui

Following the literature in Labor Economics, we are expressing the (natural) log of wages
as a function of the explanatory variables. As noted in Chapter 6, the size distribution of
variables such as wages tends to be skewed; logarithmic transformations of such variables
reduce both skewness and heteroscedasticity.

Using EViews6, we obtain the following regression results.

These  results show that the logarithm of wages is positively related to age, education, and
job permanency but negatively related to gender, an unsurprising finding. Although there
seems to be no practical difference in the weekly wages of workers with primary or less-
than-primary education, the weekly wages are higher for workers with secondary education
and much more so for workers with higher education.

The coefficients of the dummy variables are to be interpreted as differential values from
the reference category. Thus, the coefficient of the DPT variable suggests that those work-
ers who have permanent jobs on average make more money than those workers whose jobs
are temporary.

As we know from Chapter 6, in a log–lin model (dependent variable in the logarithm
form and the explanatory variables in the linear form), the slope coefficient of an

Dependent Variable: Ln(WI)
Method: Least Squares
Sample: 1 261
Included observations: 261

Coefficient Std. Error t-Statistic Prob.

C 3.706872 0.113845 32.56055 0.0000
AGE 0.026549 0.003117 8.516848 0.0000
DSEX -0.656338 0.088796 -7.391529 0.0000
DE2 0.113862 0.098542 1.155473 0.2490
DE3 0.412589 0.096383 4.280732 0.0000
DE4 0.554129 0.155224 3.569862 0.0004
DPT 0.558348 0.079990 6.980248 0.0000

R-squared 0.534969 Mean dependent var. 4.793390
Adjusted R-squared 0.523984 S.D. dependent var. 0.834277
S.E. of regression 0.575600 Akaike info criterion 1.759648
Sum squared resid. 84.15421 Schwarz criterion 1.855248
Log likelihood -222.6340 Hannan-Quinn criter. 1.798076
F-statistic 48.70008 Durbin-Watson stat. 1.853361
Prob(F-statistic) 0.000000 
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Chapter 9 Dummy Variable Regression Models 303

explanatory variable represents semielasticity, that is, it gives the relative or percentage
change in the dependent variable for a unit change in the value of the explanatory variable.
But as noted in the text, when the explanatory variable is a dummy variable, we have to be
very careful. Here we have to take the anti-log of the estimated dummy coefficient, subtract
1 from it, and multiply the result by 100. Thus, to find out the percentage change in weekly
wages for those workers who have permanent jobs versus those who have temporary
jobs, we take the anti-log of the DPT coefficient  of 0.558348, subtract 1, and then multiply
the difference by 100. For our example, this turns out to be (e0.558348−1) = (1.74778 −1) =
0.74778, or about 75%. The reader is advised to calculate such percentage changes for the
other dummy variables included in the model.

Our results show that gender and education have differential effects on weekly earnings.
Is it possible that there is an interaction between gender and the level of education? Do
male workers with higher education earn higher weekly wages than female workers with
higher education? To examine this possibility, we can extend the above wage regression by
interacting gender with education. The regression results are as follows:

Dependent Variable: Ln(WI)
Method: Least Squares
Sample: 1 261
Included observations: 261

Coefficient Std. Error t-Statistic Prob.

C 3.717540 0.114536 32.45734 0.0000
AGE 0.027051 0.003133 8.634553 0.0000
DSEX -0.758975 0.110410 -6.874148 0.0000
DE2 0.088923 0.106827 0.832402 0.4060
DE3 0.350574 0.104309 3.360913 0.0009
DE4 0.438673 0.186996 2.345898 0.0198
DSEX*DE2 0.114908 0.275039 0.417788 0.6765
DSEX*DE3 0.391052 0.259261 1.508337 0.1327
DSEX*DE4 0.369520 0.313503 1.178681 0.2396
DPT 0.551658 0.080076 6.889198 0.0000

R-squared 0.540810 Mean dependent var. 4.793390
Adjusted R-squared 0.524345 S.D. dependent var. 0.834277
S.E. of regression 0.575382 Akaike info criterion 1.769997
Sum squared resid. 83.09731 Schwarz criterion 1.906569
Log likelihood -220.9847 Hannan-Quinn criter. 1.824895
F-statistic 32.84603 Durbin-Watson stat. 1.856488
Prob (F-statistic) 0.000000 

Although the interaction dummies show that there is some interaction between gender
and the level of education, the effect is not statistically significant, for all the interaction
coefficients are not individually statistically significant.
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It now seems that education dummies by themselves have no effect on weekly wages, but
introduced in an interactive format they seem to. As this exercise shows, one must be care-
ful in the use of dummy variables. It is left as an exercise for the reader to find out if the
education dummies interact with DPT.

Summary and 
Conclusions

304 Part One Single-Equation Regression Models

1. Dummy variables, taking values of 1 and zero (or their linear transforms), are a means
of introducing qualitative regressors in regression models.

2. Dummy variables are a data-classifying device in that they divide a sample into various
subgroups based on qualities or attributes (gender, marital status, race, religion, etc.)
and implicitly allow one to run individual regressions for each subgroup. If there are
differences in the response of the regressand to the variation in the qualitative variables
in the various subgroups, they will be reflected in the differences in the intercepts or
slope coefficients, or both, of the various subgroup regressions.

3. Although a versatile tool, the dummy variable technique needs to be handled carefully.
First, if the regression contains a constant term, the number of dummy variables must be
one less than the number of classifications of each qualitative variable. Second, the
coefficient attached to the dummy variables must always be interpreted in relation to
the base, or reference, group—that is, the group that receives the value of zero. The base
chosen will depend on the purpose of research at hand. Finally, if a model has several
qualitative variables with several classes, introduction of dummy variables can consume
a large number of degrees of freedom. Therefore, one should always weigh the number
of dummy variables to be introduced against the total number of observations available
for analysis.

Dependent Variable: LOG(WI)
Method: Least Squares
Sample: 1 261
Included observations: 261

Coefficient Std. Error t-Statistic Prob.

C 3.836483 0.106785 35.92725 0.0000
AGE 0.025990 0.003170 8.197991 0.0000
DSEX -0.868617 0.106429 -8.161508 0.0000
DSEX*DE2 0.200823 0.259511 0.773851 0.4397
DSEX*DE3 0.716722 0.245021 2.925140 0.0038
DSEX*DE4 0.752652 0.265975 2.829789 0.0050
DPT 0.627272 0.078869 7.953332 0.0000

R-squared 0.514449 Mean dependent var. 4.793390
Adjusted R-squared 0.502979 S.D. dependent var. 0.834277
S.E. of regression 0.588163 Akaike info criterion 1.802828
Sum squared resid. 87.86766 Schwarz criterion 1.898429
Log likelihood -228.2691 Hannan-Quinn criter. 1.841257
F-statistic 44.85284 Durbin-Watson stat. 1.873421
Prob (F-statistic) 0.000000 

Interestingly, if we drop the education dummies but retain the interaction dummies, we
obtain the following results:
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Questions
9.1. If you have monthly data over a number of years, how many dummy variables will

you introduce to test the following hypotheses:

a. All the 12 months of the year exhibit seasonal patterns.

b. Only February, April, June, August, October, and December exhibit seasonal
patterns.

9.2. Consider the following regression results (t ratios are in parentheses):*

Ŷi = 1286 + 104.97X2i − 0.026X3i + 1.20X4i + 0.69X5i

t = (4.67) (3.70) (−3.80) (0.24) (0.08)

−19.47X6i + 266.06X7i − 118.64X8i − 110.61X9i

(−0.40) (6.94) (−3.04) (−6.14)

R2 = 0.383 n = 1543 

where Y = wife’s annual desired hours of work, calculated as usual hours of work
per year plus weeks looking for work

X2 = after-tax real average hourly earnings of wife
X3 = husband’s previous year after-tax real annual earnings
X4 = wife’s age in years
X5 = years of schooling completed by wife
X6 = attitude variable, 1 = if respondent felt that it was all right for a woman

to work if she desired and her husband agrees, 0 = otherwise
X7 = attitude variable, 1 = if the respondent’s husband favored his wife’s

working, 0 = otherwise
X8 = number of children less than 6 years of age
X9 = number of children in age groups 6 to 13

a. Do the signs of the coefficients of the various nondummy regressors make
economic sense? Justify your answer.

b. How would you interpret the dummy variables, X6 and X7? Are these dummies sta-
tistically significant? Since the sample is quite large, you may use the “2-t” rule of
thumb to answer the question.

c. Why do you think that age and education variables are not significant factors in a
woman’s labor force participation decision in this study? 

EXERCISES

4. Among its various applications, this chapter considered but a few. These included
(1) comparing two (or more) regressions, (2) deseasonalizing time series data, (3) inter-
active dummies, (4) interpretation of dummies in semilog models, and (4) piecewise
linear regression models.

5. We also sounded cautionary notes in the use of dummy variables in situations of
heteroscedasticity and autocorrelation. But since we will cover these topics fully in
subsequent chapters, we will revisit these topics then. 

*Jane Leuthold, “The Effect of Taxation on the Hours Worked by Married Women,” Industrial and
Labor Relations Review, no. 4, July 1978, pp. 520–526 (notation changed to suit our format).
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306 Part One Single-Equation Regression Models

9.3. Consider the following regression results.* (The actual data are in Table 9.8.)

ÛNt = 2.7491 + 1.1507Dt −      1.5294Vt −   0.8511(DtVt)

t = (26.896)     (3.6288)       (−12.5552)       (−1.9819)

R2 = 0.9128

where UN = unemployment rate, %
V = job vacancy rate, %
D = 1, for period beginning in 1966–IV

= 0, for period before 1966–IV
t = time, measured in quarters

Note: In the fourth quarter of 1966, the (then) Labor government liberalized the
National Insurance Act by replacing the flat-rate system of short-term unemploy-
ment benefits by a mixed system of flat-rate and (previous) earnings-related benefits,
which increased the level of unemployment benefits.

*Damodar Gujarati, “The Behaviour of Unemployment and Unfilled Vacancies: Great Britain,
1958–1971,” The Economic Journal, vol. 82, March 1972, pp. 195–202.

TABLE 9.8
Data Matrix for
Regression, in
Exercise 9.3

Source: Damodar Gujarati,
“The Behaviour of
Unemployment and Unfilled
Vacancies: Great Britain,
1958–1971,” The Economic
Journal, vol. 82, March 1972,
p. 202.

*Preliminary estimates.

Unem- Job
Year ployment Vacancy
and Rate UN, Rate V,

Quarter % % D DV

1958–IV 1.915 0.510 0 0

1959–I 1.876 0.541 0 0
–II 1.842 0.541 0 0
–III 1.750 0.690 0 0
–IV 1.648 0.771 0 0

1960–I 1.450 0.836 0 0
–II 1.393 0.908 0 0
–III 1.322 0.968 0 0
–IV 1.260 0.998 0 0

1961–I 1.171 0.968 0 0
–II 1.182 0.964 0 0
–III 1.221 0.952 0 0
–IV 1.340 0.849 0 0

1962–I 1.411 0.748 0 0
–II 1.600 0.658 0 0
–III 1.780 0.562 0 0
–IV 1.941 0.510 0 0

1963–I 2.178 0.510 0 0
–II 2.067 0.544 0 0
–III 1.942 0.568 0 0
–IV 1.764 0.677 0 0

1964–I 1.532 0.794 0 0
–II 1.455 0.838 0 0
–III 1.409 0.885 0 0
–IV 1.296 0.978 0 0

Unem- Job
Year ployment Vacancy
and Rate UN, Rate V,

Quarter % % D DV

1965–I 1.201 0.997 0 0
–II 1.192 1.035 0 0
–III 1.259 1.040 0 0
–IV 1.192 1.086 0 0

1966–I 1.089 1.101 0 0
–II 1.101 1.058 0 0
–III 1.243 0.987 0 0
–IV 1.623 0.819 1 0.819

1967–I 1.821 0.740 1 0.740
–II 1.990 0.661 1 0.661
–III 2.114 0.660 1 0.660
–IV 2.115 0.698 1 0.698

1968–I 2.150 0.695 1 0.695
–II 2.141 0.732 1 0.732
–III 2.167 0.749 1 0.749
–IV 2.107 0.800 1 0.800

1969–I 2.104 0.783 1 0.783
–II 2.056 0.800 1 0.800
–III 2.170 0.794 1 0.794
–IV 2.161 0.790 1 0.790

1970–I 2.225 0.757 1 0.757
–II 2.241 0.746 1 0.746
–III 2.366 0.739 1 0.739
–IV 2.324 0.707 1 0.707

1971–I 2.516* 0.583* 1 0.583*
–II 2.909* 0.524* 1 0.524* 
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a. What are your prior expectations about the relationship between the unemploy-
ment and vacancy rates?

b. Holding the job vacancy rate constant, what is the average unemployment rate in
the period beginning in the fourth quarter of 1966? Is it statistically different from
the period before 1966 fourth quarter? How do you know?

c. Are the slopes in the pre- and post-1966 fourth quarter statistically different? How
do you know?

d. Is it safe to conclude from this study that generous unemployment benefits lead to
higher unemployment rates? Does this make economic sense?

9.4. From annual data for 1972–1979, William Nordhaus estimated the following model
to explain the OPEC’s oil price behavior (standard errors in parentheses).*

ŷt = 0.3x1t + 5.22x2t

se = (0.03) (0.50)

where y = difference between current and previous year’s price (dollars per barrel)
x1 = difference between current year’s spot price and OPEC’s price in the

previous year
x2 = 1 for 1974 and 0 otherwise

Interpret this result and show the results graphically. What do these results suggest
about OPEC’s monopoly power?

9.5. Consider the following model

Yi = α1 + α2 Di + βXi + ui

where Y = annual salary of a college professor
X = years of teaching experience
D = dummy for gender

Consider three ways of defining the dummy variable.

a. D = 1 for male, 0 for female.

b. D = 1 for female, 2 for male.

c. D = 1 for female, −1 for male.

Interpret the preceding regression model for each dummy assignment. Is one method
preferable to another? Justify your answer.

9.6. Refer to regression (9.7.3). How would you test the hypothesis that the coefficients
of D2 and D3 are the same? And that the coefficients of D2 and D4 are the same? If
the coefficient of D3 is statistically different from that of D2 and the coefficient of D4

is different from that of D2, does that mean that the coefficients D3 and D4 are also
different?
Hint: var ( A ± B) = var (A) + var (B) ± 2 cov (A, B)

9.7. Refer to the U.S. savings–income example discussed in Section 9.5.

a. How would you obtain the standard errors of the regression coefficients given in
Eqs. (9.5.5) and (9.5.6), which were obtained from the pooled regression (9.5.4)?

b. To obtain numerical answers, what additional information, if any, is required?

*“Oil and Economic Performance in Industrial Countries,” Brookings Papers on Economic Activity, 1980,
pp. 341–388.
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9.8. In his study on the labor hours spent by the FDIC (Federal Deposit Insurance Corpo-
ration) on 91 bank examinations, R. J. Miller estimated the following function:*

l̂n Y = 2.41 + 0.3674 ln X1 + 0.2217 ln X2 + 0.0803 ln X3
(0.0477) (0.0628) (0.0287)

−0.1755D1    + 0.2799D2 + 0.5634D3 − 0.2572D4

(0.2905)          (0.1044) (0.1657) (0.0787)
R2 = 0.766

where Y = FDIC examiner labor hours
X1 = total assets of bank
X2 = total number of offices in bank
X3 = ratio of classified loans to total loans for bank
D1 = 1 if management rating was “good”
D2 = 1 if management rating was “fair”
D3 = 1 if management rating was “satisfactory”
D4 = 1 if examination was conducted jointly with the state

The figures in parentheses are the estimated standard errors.

a. Interpret these results.

b. Is there any problem in interpreting the dummy variables in this model since Y is
in the log form?

c. How would you interpret the dummy coefficients?

9.9. To assess the effect of the Fed’s policy of deregulating interest rates beginning in July
1979, Sidney Langer, a student of mine, estimated the following model for the quar-
terly period of 1975–III to 1983–II.†

Ŷt = 8.5871 − 0.1328Pt − 0.7102Unt −  0.2389Mt

se = (1.9563) (0.0992) (0.1909) (0.0727)

+ 0.6592Yt−1 + 2.5831Dumt R2 = 0.9156

(0.1036) (0.7549)

where Y = 3-month Treasury bill rate
P = expected rate of inflation

Un = seasonally adjusted unemployment rate
M = changes in the monetary base

Dum = dummy, taking value of 1 for observations beginning July 1, 1979

a. Interpret these results.

b. What has been the effect of interest rate deregulation? Do the results make
economic sense?

c. The coefficients of Pt , Unt, and Mt are negative. Can you offer an economic
rationale?

9.10. Refer to the piecewise regression discussed in the text. Suppose there not only is a
change in the slope coefficient at X∗ but also the regression line jumps, as shown in
Figure 9.7. How would you modify Eq. (9.8.1) to take into account the jump in the
regression line at X∗?

*“Examination of Man-Hour Cost for Independent, Joint, and Divided Examination Programs,” Journal
of Bank Research, vol. 11, 1980, pp. 28–35. Note: The notations have been altered to conform with
our notations.
†Sidney Langer, “Interest Rate Deregulation and Short-Term Interest Rates,” unpublished term paper.
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9.11. Determinants of price per ounce of cola. Cathy Schaefer, a student of mine,
estimated the following regression from cross-sectional data of 77 observations:*

Pi = β0 + β1 D1i + β2 D2i + β3 D3i + µi

where Pi = price per ounce of cola
D1i = 001 if discount store

= 010 if chain store
= 100 if convenience store

D2i = 10 if branded good
= 01 if unbranded good

D3i = 0001 if 67.6 ounce (2 liter) bottle
= 0010 if 28–33.8 ounce bottles (Note: 33.8 oz = 1 liter)
= 0100 if 16-ounce bottle
= 1000 if 12-ounce can

The results were as follows:

P̂i = 0.0143 − 0.000004D1i + 0.0090D2i +  0.00001D3i

se = (0.00001)          (0.00011) (0.00000)

t = (−0.3837)            (8.3927) (5.8125)

R2 = 0.6033

Note: The standard errors are shown only to five decimal places.

a. Comment on the way the dummies have been introduced in the model.

b. Assuming the dummy setup is acceptable, how would you interpret the results?

c. The coefficient of D3 is positive and statistically significant. How do you rational-
ize this result?

9.12. From data for 101 countries on per capita income in dollars (X) and life expectancy in
years (Y) in the early 1970s, Sen and Srivastava obtained the following regression re-
sults:†

Ŷi = −2.40 +  9.39 ln Xi − 3.36 [Di(ln Xi − 7)]

se = (4.73)     (0.859)         (2.42) R2 = 0.752

where Di = 1 if ln Xi > 7, and Di = 0 otherwise. Note: When ln Xi = 7, X =
$1,097 (approximately).

*Cathy Schaefer, “Price Per Ounce of Cola Beverage as a Function of Place of Purchase, Size of
Container, and Branded or Unbranded Product,” unpublished term project.
†Ashish Sen and Muni Srivastava, Regression Analysis: Theory, Methods, and Applications, Springer-
Verlag, New York, 1990, p. 92. Notation changed.

Y

X*
X

FIGURE 9.7
Discontinuous
piecewise linear
regression.
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a. What might be the reason(s) for introducing the income variable in the log form?

b. How would you interpret the coefficient 9.39 of ln Xi ?

c. What might be the reason for introducing the regressor Di (ln Xi − 7)? How do
you explain this regressor verbally? And how do you interpret the coefficient
−3.36 of this regressor (Hint: linear piecewise regression)?

d. Assuming per capita income of $1,097 as the dividing line between poorer and
richer countries, how would you derive the regression for countries whose per
capita is less than $1,097 and the regression for countries whose per capita income
is greater than $1,097?

e. What general conclusions do you draw from the regression result presented in this
problem?

9.13. Consider the following model:

Yi = β1 + β2 Di + ui

where Di = 0 for the first 20 observations and Di = 1 for the remaining 30
observations. You are also told that var (u2

i ) = 300.

a. How would you interpret β1 and β2?

b. What are the mean values of the two groups?

c. How would you compute the variance of (β̂1 + β̂2)? Note: You are given that the
cov (β̂1, β̂2) = −15.

9.14. To assess the effect of state right-to-work laws (which do not require membership in
the union as a precondition of employment) on union membership, the following re-
gression results were obtained, from the data for 50 states in the United States for
1982:*

P̂VTi = 19.8066 − 9.3917 RTWi

t = (17.0352)  (−5.1086)

r2 = 0.3522

where PVT = percentage of private sector employees in unions, 1982, and RTW = 1
if right-to-work law exists, 0 otherwise. Note: In 1982, twenty states had right-to-
work laws.

a. A priori, what is the expected relationship between PVT and RTW?

b. Do the regression results support the prior expectations?

c. Interpret the regression results.

d. What was the average percent of private sector employees in unions in the states
that did not have the right-to-work laws?

9.15. In the following regression model:

Yi = β1 + β2 Di + ui

Y represents hourly wage in dollars and D is the dummy variable, taking a value of 1
for a college graduate and a value of 0 for a high-school graduate. Using the OLS for-
mulas given in Chapter 3, show that β̂1 = Ȳhg and β̂2 = Ȳcg − Ȳhg, where the sub-
scripts have the following meanings: hg = high-school graduate, cg = college
graduate. In all, there are n1 high-school graduates and n2 college graduates, for a total
sample of n = n1 + n2.

*The data used in the regression results were obtained from N. M. Meltz, “Interstate and
Interprovincial Differences in Union Density,” Industrial Relations, vol. 28, no. 2, 1989, pp. 142–158.
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9.16. To study the rate of growth of population in Belize over the period 1970–1992,
Mukherjee et al. estimated the following models:*

Model I: l̂n (Pop)t = 4.73  + 0.024t
t = (781.25)  (54.71)

Model II: l̂n (Pop)t = 4.77  + 0.015t −   0.075Dt +   0.011(Dtt)
t = (2477.92)   (34.01) (−17.03) (25.54)

where Pop = population in millions, t = trend variable, Dt = 1 for observations be-
ginning in 1978 and 0 before 1978, and ln stands for natural logarithm.

a. In Model I, what is the rate of growth of Belize’s population over the sample period?

b. Are the population growth rates statistically different pre- and post-1978? How do
you know? If they are different, what are the growth rates for 1972–1977 and
1978–1992?

Empirical Exercises
9.17. Using the data given in Table 9.8, test the hypothesis that the error variances in the

two subperiods 1958–IV to 1966–III and 1966–IV to 1971–II are the same.

9.18. Using the methodology discussed in Chapter 8, compare the unrestricted and restricted
regressions (9.7.3) and (9.7.4); that is, test for the validity of the imposed restrictions.

9.19. In the U.S. savings–income regression (9.5.4) discussed in the chapter, suppose that
instead of using 1 and 0 values for the dummy variable you use Zi = a + bDi , where
Di = 1 and 0, a = 2, and b = 3. Compare your results.

9.20. Continuing with the savings–income regression (9.5.4), suppose you were to assign
Di = 0 to observations in the second period and Di = 1 to observations in the first
period. How would the results shown in Eq. (9.5.4) change?

9.21. Use the data given in Table 9.2 and consider the following model:

ln Savingsi = β1 + β2 ln Incomei + β3 ln Di + ui

where ln stands for natural log and where Di = 1 for 1970–1981 and 10 for
1982–1995.

a. What is the rationale behind assigning dummy values as suggested?

b. Estimate the preceding model and interpret your results.

c. What are the intercept values of the savings function in the two subperiods and
how do you interpret them?

9.22. Refer to the quarterly appliance sales data given in Table 9.3. Consider the following
model:

Salesi = α1 + α2 D2i + α3 D3i + α4 D4i + ui

where the D’s are dummies taking 1 and 0 values for quarters II through IV.

a. Estimate the preceding model for dishwashers, disposers, and washing machines
individually.

b. How would you interpret the estimated slope coefficients?

c. How would you use the estimated α’s to deseasonalize the sales data for individ-
ual appliances?

*Chandan Mukherjee, Howard White, and Marc Wuyts, Econometrics and Data Analysis for Developing
Countries, Routledge, London, 1998, pp. 372–375. Notations adapted.
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9.23. Reestimate the model in Exercise 9.22 by adding the regressor, expenditure on
durable goods.

a. Is there a difference in the regression results you obtained in Exercise 9.22 and in
this exercise? If so, what explains the difference?

b. If there is seasonality in the durable goods expenditure data, how would you
account for it?

9.24. Table 9.9 gives data on quadrennial presidential elections in the United States from
1916 to 2004.*

a. Using the data given in Table 9.9, develop a suitable model to predict the
Democratic share of the two-party presidential vote.

b. How would you use this model to predict the outcome of a presidential election?

*These data were originally compiled by Ray Fair of Yale University, who has been predicting the out-
come of presidential elections for several years. The data are reproduced from Samprit Chatterjee, Ali
S. Hadi, and Bertram Price, Regression Analysis by Example, 3d ed., John Wiley & Sons, New York,
2000, pp. 150–151 and updated from http://fairmodel.econ.yale.edu/rayfair/pdf/2006CHTM.HTM.

Obs. Year V W D G I N P

1 1916 0.5168 0 1 2.229 1 3 4.252
2 1920 0.3612 1 0 −11.46 1 5 16.535
3 1924 0.4176 0 −1 −3.872 −1 10 5.161
4 1928 0.4118 0 0 4.623 −1 7 0.183
5 1932 0.5916 0 −1 −14.9 −1 4 7.069
6 1936 0.6246 0 1 11.921 1 9 2.362
7 1940 0.55 0 1 3.708 1 8 0.028
8 1944 0.5377 1 1 4.119 1 14 5.678
9 1948 0.5237 1 1 1.849 1 5 8.722
10 1952 0.446 0 0 0.627 1 6 2.288
11 1956 0.4224 0 −1 −1.527 −1 5 1.936
12 1960 0.5009 0 0 0.114 −1 5 1.932
13 1964 0.6134 0 1 5.054 1 10 1.247
14 1968 0.496 0 0 4.836 1 7 3.215
15 1972 0.3821 0 −1 6.278 −1 4 4.766
16 1976 0.5105 0 0 3.663 −1 4 7.657
17 1980 0.447 0 1 −3.789 1 5 8.093
18 1984 0.4083 0 −1 5.387 −1 7 5.403
19 1988 0.461 0 0 2.068 −1 6 3.272
20 1992 0.5345 0 −1 2.293 −1 1 3.692
21 1996 0.5474 0 1 2.918 1 3 2.268
22 2000 0.50265 0 0 1.219 1 8 1.605
23 2004 0.51233 0 1 2.69 −1 1 2.325

Notes:
Year Election year
V Incumbent share of the two-party presidential vote.
W Indicator variable (1 for the elections of 1920, 1944, and 1948, and 0 otherwise).
D Indicator variable (1 if a Democratic incumbent is running for election, −1 if a Republican incumbent is running for election, and 0

otherwise).
G Growth rate of real per capita GDP in the first three quarters of the election year.
I Indicator variable (1 if there is a Democratic incumbent at the time of the election and −1 if there is a Republican incumbent).
N Number of quarters in the first 15 quarters of the administration in which the growth rate of real per capita GDP is greater than 3.2%.
P Absolute value of the growth rate of the GDP deflator in the first 15 quarters of the administration.

TABLE 9.9
U.S. Presidential
Elections, 1916–2004
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c. Chatterjee et al. suggested considering the following model as a trial model to pre-
dict presidential elections:

V = β0 + β1 I + β2 D + β3W + β4(G I ) + β5 P + β6 N + u

Estimate this model and comment on the results in relation to the results of the model
you have chosen.

9.25. Refer to regression (9.6.4). Test the hypothesis that the rate of increase of average
hourly earnings with respect to education differs by gender and race. (Hint: Use mul-
tiplicative dummies.)

9.26. Refer to the regression (9.3.1). How would you modify the model to find out if there
is any interaction between the gender and the region of residence dummies? Present
the results based on this model and compare them with those given in Eq. (9.3.1).

9.27. In the model Yi = β1 + β2 Di + ui , let Di = 0 for the first 40 observations and Di = 1
for the remaining 60 observations.You are told that ui has zero mean and a variance of
100. What are the mean values and variances of the two sets of observations?*

9.28. Refer to the U.S. savings–income regression discussed in the chapter. As an
alternative to Eq. (9.5.1), consider the following model:

ln Yt = β1 + β2 Dt + β3 Xt + β4(Dt Xt ) + ut

where Y is savings and X is income.
a. Estimate the preceding model and compare the results with those given in

Eq. (9.5.4). Which is a better model?
b. How would you interpret the dummy coefficient in this model?
c. As we will see in the chapter on heteroscedasticity, very often a log transforma-

tion of the dependent variable reduces heteroscedasticity in the data. See if this
is the case in the present example by running the regression of log of Y on X for
the two periods and see if the estimated error variances in the two periods are sta-
tistically the same. If they are, the Chow test can be used to pool the data in the
manner indicated in the chapter.

9.29. Refer to the Indian wage earners example (Section 9.12) and the data in Table 9.7.†

As a reminder, the variables are defined as follows:

WI = weekly wage income in rupees
Age = age in years
Dsex = 1 for male workers and 0 for female workers
DE2 = a dummy variable taking a value of 1 for workers with up to a primary

education
DE3 = a dummy variable taking a value of 1 for workers with up to a secondary

education
DE4 = a dummy variable taking a value of 1 for workers with higher education
DPT = a dummy variable taking a value of 1 for workers with permanent jobs and a

value of 0 for temporary workers

The reference category is male workers with no primary education and temporary jobs.

*This example is adapted from Peter Kennedy, A Guide to Econometrics, 4th ed., MIT Press,
Cambridge, Mass., 1998, p. 347.
†The data come from Econometrics and Data Analysis for Developing Countries, by Chandan 
Mukherjee, Howard White, and Marc Wuyts, Routledge Press, London, 1998, in the Appendix.
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In Section 9.12, interaction terms were created between the education variables
(DE2, DE3, and DE4) and the gender variable (Dsex). What happens if we create in-
teraction terms between the education dummies and the permanent worker dummy
variable (DPT )?
a. Estimate the model predicting ln WI containing age, gender, the education

dummy variables, and three new interaction terms: DE2 × DPT, DE3 × DPT, and
DE4 × DPT. Does there appear to be a significant interaction effect among the
new terms?

b. Is there a significant difference between workers with an education level up to pri-
mary and those without a primary education? Assess this with respect to both the
education dummy variable and the interaction term and explain the results. What
about the difference between workers with a secondary level of education and
those without a primary level of education? What about the difference between
those with an education level beyond secondary, compared to those without a pri-
mary level of education?

c. Now assess the results of deleting the education dummies from the model. Do the
interaction terms change in significance?

Appendix 9A

Semilogarithmic Regression with Dummy Regressor
In Section 9.10 we noted that in models of the type

ln Yi = β1 + β2 Di (1)

the relative change in Y (i.e., semielasticity), with respect to the dummy regressor taking values of 1
or 0, can be obtained as (antilog of estimated β2) − 1 times 100, that is, as

(eβ̂2 − 1) × 100 (2)

The proof is as follows: Since ln and exp (= e) are inverse functions, we can write Eq. (1) as:

ln Yi = β1 + ln(eβ2 Di ) (3)

Now when D = 0, eβ2 Di = 1 and when D = 1, eβ2 Di = eβ2 . Therefore, in going from state 0 to state
1, ln Yi changes by (eβ2 − 1). But a change in the log of a variable is a relative change, which after
multiplication by 100 becomes a percentage change. Hence the percentage change is
(eβ2 − 1) × 100, as claimed. (Note: lne e = 1, that is, the log of e to base e is 1, just as the log of 10
to base 10 is 1. Recall that log to base e is called the natural log and that log to base 10 is called the
common log.)
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Part 

In Part 1 we considered at length the classical normal linear regression model and showed
how it can be used to handle the twin problems of statistical inference, namely, estimation
and hypothesis testing, as well as the problem of prediction. But recall that this model is
based on several simplifying assumptions, which are as follows.

Assumption 1. The regression model is linear in the parameters.

Assumption 2. The values of the regressors, the X ’s, are fixed, or X values are
independent of the error term. Here, this means we require zero
covariance between ui and each X variable.

Assumption 3. For given X’s, the mean value of disturbance ui is zero.

Assumption 4. For given X’s, the variance of ui is constant or homoscedastic.

Assumption 5. For given X’s, there is no autocorrelation, or serial correlation,
between the disturbances.

Assumption 6. The number of observations n must be greater than the number of
parameters to be estimated.

Assumption 7. There must be sufficient variation in the values of the X variables.

We are also including the following 3 assumptions in this part of the text:

Assumption 8. There is no exact collinearity between the X variables.

Assumption 9. The model is correctly specified, so there is no specification bias.

Assumption 10. The stochastic (disturbance) term ui is normally distributed.

Before proceeding further, let us note that most textbooks list fewer than 10 assumptions.
For example, assumptions 6 and 7 are taken for granted rather than spelled out explicitly. We
decided to state them explicitly because distinguishing between the assumptions required
for ordinary least squares (OLS) to have desirable statistical properties (such as BLUE) and
the conditions required for OLS to be useful seems sensible. For example, OLS estimators
are BLUE (best linear unbiased estimators) even if assumption 7 is not satisfied. But in that
case the standard errors of the OLS estimators will be large relative to their coefficients

2Relaxing 
the Assumptions of
the Classical Model
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316 Part Two Relaxing the Assumptions of the Classical Model

(i.e., the t ratios will be small), thereby making it difficult to assess the contribution of one
or more regressors to the explained sum of squares.

As Wetherill notes, in practice two major types of problems arise in applying the classi-
cal linear regression model: (1) those due to assumptions about the specification of the
model and about the disturbances ui and (2) those due to assumptions about the data.1 In the
first category are Assumptions 1, 2, 3, 4, 5, 9, and 10. Those in the second category include
Assumptions 6, 7, and 8. In addition, data problems, such as outliers (unusual or untypical
observations) and errors of measurement in the data, also fall into the second category. 

With respect to problems arising from the assumptions about disturbances and model spec-
ifications, three major questions arise: (1) How severe must the departure be from a particular
assumption before it really matters? For example, if ui are not exactly normally distributed,
what level of departure from this assumption can one accept before the BLUE property of the
OLS estimators is destroyed? (2) How do we find out whether a particular assumption is in fact
violated in a concrete case? Thus, how does one find out if the disturbances are normally
distributed in a given application? We have already discussed the Anderson–Darling
A2 statistic and Jarque–Bera tests of normality. (3) What remedial measures can we take if
one or more of the assumptions are false? For example, if the assumption of homoscedasticity
is found to be false in an application, what do we do then?

With regard to problems attributable to assumptions about the data, we also face similar
questions. (1) How serious is a particular problem? For example, is multicollinearity so
severe that it makes estimation and inference very difficult? (2) How do we find out the
severity of the data problem? For example, how do we decide whether the inclusion or
exclusion of an observation or observations that may represent outliers will make a
tremendous difference in the analysis? (3) Can some of the data problems be easily reme-
died? For example, can one have access to the original data to find out the sources of errors
of measurement in the data?

Unfortunately, satisfactory answers cannot be given to all these questions. In the rest of
Part 2 we will look at some of the assumptions more critically, but not all will receive full
scrutiny. In particular, we will not discuss in depth the following: Assumptions 2, 3, and 10.
The reasons are as follows:

Assumption 2: Fixed versus Stochastic Regressors

Remember that our regression analysis is based on the assumption that the regressors are
nonstochastic and assume fixed values in repeated sampling. There is a good reason for this
strategy. Unlike scientists in the physical sciences, as noted in Chapter 1, economists gener-
ally have no control over the data they use. More often than not, economists depend on sec-
ondary data, that is, data collected by someone else, such as the government and private
organizations. Therefore, the practical strategy to follow is to assume that for the problem at
hand the values of the explanatory variables are given even though the variables themselves
may be intrinsically stochastic or random. Hence, the results of the regression analysis are
conditional upon these given values.

But suppose that we cannot regard the X’s as truly nonstochastic or fixed. This is the
case of random or stochastic regressors. Now the situation is rather involved. The ui, by

1G. Barrie Wetherill, Regression Analysis with Applications, Chapman and Hall, New York, 1986, 
pp. 14–15.
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assumption, are stochastic. If the X’s too are stochastic, then we must specify how the X’s
and ui are distributed. If we are willing to make Assumption 2 (i.e., the X’s, although ran-
dom, are distributed independently of, or at least uncorrelated with, ui), then for all practi-
cal purposes we can continue to operate as if the X’s were nonstochastic. As Kmenta notes: 

Thus, relaxing the assumption that X is nonstochastic and replacing it by the assumption that
X is stochastic but independent of [u] does not change the desirable properties and feasibility
of least squares estimation.2

Therefore, we will retain Assumption 2 until we come to deal with simultaneous equa-
tions models in Part 4.3 Also, a brief discussion of nonstochastic regressors will be given in
Chapter 13.

Assumption 3: Zero Mean Value of ui

Recall the k-variable linear regression model:

Yi = β1 + β2 X2i + β3 X3i + · · · + βk Xki + ui (1)

Let us now assume that

E(ui |X2i , X3i , . . . , Xki ) = w (2)

where w is a constant; note in the standard model w = 0, but now we let it be any constant.
Taking the conditional expectation of Eq.(1), we obtain

E(Yi |X2i , X3i , . . . , Xki ) = β1 + β2 X2i + β3 X3i + · · · + βk Xki + w

= (β1 + w) + β2 X2i + β3 X3i + · · · + βk Xki (3)

= α + β2 X2i + β3 X3i + · · · + βk Xki

where α = (β1 + w) and where in taking the expectations one should note that the X’s are
treated as constants. (Why?)

Therefore, if Assumption 3 is not fulfilled, we see that we cannot estimate the original
intercept β1; what we obtain is α, which contains β1 and E(ui) = w. In short, we obtain a
biased estimate of β1.

But as we have noted on many occasions, in many practical situations the intercept term,
β1, is of little importance; the more meaningful quantities are the slope coefficients, which
remain unaffected even if Assumption 3 is violated.4 Besides, in many applications the
intercept term has no physical interpretation.

2Jan Kmenta, Elements of Econometrics, 2d ed., Macmillan, New York, 1986, p. 338. (Emphasis in the
original.)
3A technical point may be noted here. Instead of the strong assumption that the X’s and u are inde-
pendent, we may use the weaker assumption that the values of X variables and u are uncorrelated
contemporaneously (i.e., at the same point in time). In this case OLS estimators may be biased but
they are consistent, that is, as the sample size increases indefinitely, the estimators converge on
their true values. If, however, the X’s and u are contemporaneously correlated, the OLS estimators
are biased as well as inconsistent. In Chapter 17 we will show how the method of instrumental
variables can sometimes be used to obtain consistent estimators in this situation.
4It is very important to note that this statement is true only if E(ui) = w for each i. However, if E(ui) = wi ,
that is, a different constant for each i, the partial slope coefficients may be biased as well as inconsis-
tent. In this case violation of Assumption 3 will be critical. For proof and further details, see Peter
Schmidt, Econometrics, Marcel Dekker, New York, 1976, pp. 36–39.
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Assumption 10: Normality of u

This assumption is not essential if our objective is estimation only. As noted in Chapter 3,
the OLS estimators are BLUE regardless of whether the ui are normally distributed or not.
With the normality assumption, however, we were able to establish that the OLS estimators
of the regression coefficients follow the normal distribution, that (n − k)σ̂ 2/σ 2 has the χ2

distribution, and that one could use the t and F tests to test various statistical hypotheses re-
gardless of the sample size.

But what happens if the ui are not normally distributed? We then rely on the following
extension of the central limit theorem; recall that it was the central limit theorem we in-
voked to justify the normality assumption in the first place:

If the disturbances [ui] are independently and identically distributed with zero mean and
[constant] variance σ 2 and if the explanatory variables are constant in repeated samples, the
[O]LS coefficient estimators are asymptotically normally distributed with means equal to the
corresponding β’s.5

Therefore, the usual test procedures—the t and F tests—are still valid asymptotically,
that is, in the large sample, but not in the finite or small samples.

The fact that if the disturbances are not normally distributed the OLS estimators are still
normally distributed asymptotically (under the assumption of homoscedastic variance and
fixed X’s) is of little comfort to practicing economists, who often do not have the luxury of
large-sample data. Therefore, the normality assumption becomes extremely important for
the purposes of hypothesis testing and prediction. Hence, with the twin problems of estima-
tion and hypothesis testing in mind, and given the fact that small samples are the rule rather
than the exception in most economic analyses, we shall continue to use the normality
assumption.6 (But see Chapter 13, Section 13.12.)

Of course, this means that when we deal with a finite sample, we must explicitly test for
the normality assumption. We have already considered the Anderson–Darling and the
Jarque–Bera tests of normality. The reader is strongly urged to apply these or other tests
of normality to regression residuals. Keep in mind that in finite samples without the nor-
mality assumption the usual t and F statistics may not follow the t and F distributions.

We are left with Assumptions 1, 4, 5, 6, 7, 8, and 9. Assumptions 6, 7, and 8 are closely
related and are discussed in the chapter on multicollinearity (Chapter 10). Assumption 4 is
discussed in the chapter on heteroscedasticity (Chapter 11). Assumption 5 is discussed in
the chapter on autocorrelation (Chapter 12). Assumption 9 is discussed in the chapter
on model specification and diagnostic testing (Chapter 13). Because of its specialized
nature and mathematical demands, Assumption 1 is discussed as a special topic in Part 3
(Chapter 14).

For pedagogical reasons, in each of these chapters we follow a common format, namely,
(1) identify the nature of the problem, (2) examine its consequences, (3) suggest methods
of detecting it, and (4) consider remedial measures so that they may lead to estimators that
possess the desirable statistical properties discussed in Part 1.

5Henri Theil, Introduction to Econometrics, Prentice-Hall, Englewood Cliffs, NJ, 1978, p. 240. It must be
noted the assumptions of fixed X ’s and constant σ2 are crucial for this result.
6In passing, note that the effects of departure from normality and related topics are often discussed
under the topic of robust estimation in the literature, a topic beyond the scope of this book. 
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7This is not for lack of trying. See A. K. Bera and C. M. Jarque, “Efficient Tests for Normality,
Homoscedasticity and Serial Independence of Regression Residuals: Monte Carlo Evidence,”
Economic Letters, vol. 7, 1981, pp. 313–318.

A cautionary note is in order: As noted earlier, satisfactory answers to all the problems
arising out of the violation of the assumptions of the classical linear regression model
(CLRM) do not exist. Moreover, there may be more than one solution to a particular prob-
lem, and often it is not clear which method is best. Besides, in a particular application more
than one violation of the CLRM may be involved. Thus, specification bias, multicollinear-
ity, and heteroscedasticity may coexist in an application, and there is no single omnipotent
test that will solve all the problems simultaneously.7 Furthermore, a particular test that was
popular at one time may not be in vogue later because somebody found a flaw in the earlier
test. But this is how science progresses. Econometrics is no exception.
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Chapter 10
Multicollinearity:
What Happens
If the Regressors
Are Correlated?

1Edward E. Leamer, “Model Choice and Specification Analysis,” in Zvi Griliches and Michael D. Intrili-
gator, eds., Handbook of Econometrics, vol. I, North Holland Publishing Company, Amsterdam, 1983,
pp. 300–301.

There is no pair of words that is more misused both in econometrics texts and in the applied
literature than the pair “multi-collinearity problem.” That many of our explanatory variables are
highly collinear is a fact of life. And it is completely clear that there are experimental designs
X′X [i.e., data matrix] which would be much preferred to the designs the natural experiment has
provided us [i.e., the sample at hand]. But a complaint about the apparent malevolence of nature
is not at all constructive, and the ad hoc cures for a bad design, such as stepwise regression or
ridge regression, can be disastrously inappropriate. Better that we should rightly accept the fact
that our non-experiments [i.e., data not collected by designed experiments] are sometimes not
very informative about parameters of interest.1

Assumption 8 of the classical linear regression model (CLRM) is that there is no
multicollinearity among the regressors included in the regression model. In this chapter
we take a critical look at this assumption by seeking answers to the following questions:

1. What is the nature of multicollinearity?

2. Is multicollinearity really a problem?

3. What are its practical consequences?

4. How does one detect it?

5. What remedial measures can be taken to alleviate the problem of multicollinearity?

In this chapter we also discuss Assumption 6 of the CLRM, namely, that the number of
observations in the sample must be greater than the number of regressors, and Assumption 7,
which requires that there be sufficient variability in the values of the regressors, for they are
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intimately related to the assumption of no multicollinearity. Arthur Goldberger has chris-
tened Assumption 6 as the problem of micronumerosity,2 which simply means small sam-
ple size.

10.1 The Nature of Multicollinearity

The term multicollinearity is due to Ragnar Frisch.3 Originally it meant the existence of a
“perfect,” or exact, linear relationship among some or all explanatory variables of a regres-
sion model.4 For the k-variable regression involving explanatory variables X1, X2, . . . , Xk

(where X1 = 1 for all observations to allow for the intercept term), an exact linear rela-
tionship is said to exist if the following condition is satisfied:

λ1 X1 + λ2 X2 + · · · + λk Xk = 0 (10.1.1)

where λ1, λ2, . . . , λk are constants such that not all of them are zero simultaneously.5

Today, however, the term multicollinearity is used in a broader sense to include the case
of perfect multicollinearity, as shown by Eq. (10.1.1), as well as the case where the X vari-
ables are intercorrelated but not perfectly so, as follows:6

λ1 X1 + λ2 X2 + · · · + λ2 Xk + vi = 0 (10.1.2)

where vi is a stochastic error term.
To see the difference between perfect and less than perfect multicollinearity, assume, for

example, that λ2 �= 0. Then, Eq. (10.1.1) can be written as

X2i = −λ1

λ2
X1i − λ3

λ2
X3i − · · · − λk

λ2
Xki (10.1.3)

which shows how X2 is exactly linearly related to other variables or how it can be derived
from a linear combination of other X variables. In this situation, the coefficient of correla-
tion between the variable X2 and the linear combination on the right side of Eq. (10.1.3) is
bound to be unity.

Similarly, if λ2 �= 0, Eq. (10.1.2) can be written as

X2i = −λ1

λ2
X1i − λ3

λ2
X3i − · · · − λk

λ2
Xki − 1

λ2
vi (10.1.4)

which shows that X2 is not an exact linear combination of other X ’s because it is also
determined by the stochastic error term vi.

2See his A Course in Econometrics, Harvard University Press, Cambridge, Mass., 1991, p. 249.
3Ragnar Frisch, Statistical Confluence Analysis by Means of Complete Regression Systems, Institute of
Economics, Oslo University, publ. no. 5, 1934.
4Strictly speaking, multicollinearity refers to the existence of more than one exact linear relationship,
and collinearity refers to the existence of a single linear relationship. But this distinction is rarely
maintained in practice, and multicollinearity refers to both cases.
5The chances of one’s obtaining a sample of values where the regressors are related in this fashion are
indeed very small in practice except by design when, for example, the number of observations is
smaller than the number of regressors or if one falls into the “dummy variable trap” as discussed in
Chapter 9. See Exercise 10.2.
6If there are only two explanatory variables, intercorrelation can be measured by the zero-order or
simple correlation coefficient. But if there are more than two X variables, intercorrelation can be
measured by the partial correlation coefficients or by the multiple correlation coefficient R of one 
X variable with all other X variables taken together.
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322 Part Two Relaxing the Assumptions of the Classical Model

As a numerical example, consider the following hypothetical data:

X2 X3 X*3

10 50 52
15 75 75
18 90 97
24 120 129
30 150 152

It is apparent that X3i = 5X2i . Therefore, there is perfect collinearity between X2 and X3

since the coefficient of correlation r23 is unity. The variable X*3 was created from X3 by sim-
ply adding to it the following numbers, which were taken from a table of random numbers:
2, 0, 7, 9, 2. Now there is no longer perfect collinearity between X2 and X*3. However, the
two variables are highly correlated because calculations will show that the coefficient of
correlation between them is 0.9959.

The preceding algebraic approach to multicollinearity can be portrayed succinctly by
the Ballentine (recall Figure 3.8, reproduced in Figure 10.1). In this figure the circles Y, X2,
and X3 represent, respectively, the variations in Y (the dependent variable) and X2 and X3

(the explanatory variables). The degree of collinearity can be measured by the extent of the
overlap (shaded area) of the X2 and X3 circles. In Figure 10.1a there is no overlap between
X2 and X3, and hence no collinearity. In Figure 10.1b through 10.1e there is a “low” to
“high” degree of collinearity—the greater the overlap between X2 and X3 (i.e., the larger the

Y

X2

X3

Y

X2

X3

Y

X2

X3

Y

X2 X3

Y

X2 X3

(a) No collinearity (b) Low collinearity

(c) Moderate collinearity (d) High collinearity (e) Very high collinearity

FIGURE 10.1
The Ballentine view 
of multicollinearity.
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shaded area), the higher the degree of collinearity. In the extreme, if X2 and X3 were to over-
lap completely (or if X2 were completely inside X3, or vice versa), collinearity would be
perfect.

In passing, note that multicollinearity, as we have defined it, refers only to linear rela-
tionships among the X variables. It does not rule out nonlinear relationships among them.
For example, consider the following regression model:

Yi = β0 + β1 Xi + β2 X2
i + β3 X3

i + ui (10.1.5)

where, say, Y = total cost of production and X = output. The variables X2
i (output squared)

and X3
i (output cubed) are obviously functionally related to Xi , but the relationship is non-

linear. Strictly, therefore, models such as Eq. (10.1.5) do not violate the assumption of no
multicollinearity. However, in concrete applications, the conventionally measured correla-
tion coefficient will show Xi , X2

i , and X3
i to be highly correlated, which, as we shall show,

will make it difficult to estimate the parameters of Eq. (10.1.5) with greater precision (i.e.,
with smaller standard errors).

Why does the classical linear regression model assume that there is no multicollinearity
among the X’s? The reasoning is this: If multicollinearity is perfect in the sense of 
Eq. (10.1.1), the regression coefficients of the X variables are indeterminate and their
standard errors are infinite. If multicollinearity is less than perfect, as in Eq. (10.1.2),
the regression coefficients, although determinate, possess large standard errors (in re-
lation to the coefficients themselves), which means the coefficients cannot be estimated
with great precision or accuracy. The proofs of these statements are given in the follow-
ing sections.

There are several sources of multicollinearity. As Montgomery and Peck note, multi-
collinearity may be due to the following factors:7

1. The data collection method employed. For example, sampling over a limited range of
the values taken by the regressors in the population.

2. Constraints on the model or in the population being sampled. For example, in the
regression of electricity consumption on income (X2) and house size (X3) there is a physi-
cal constraint in the population in that families with higher incomes generally have larger
homes than families with lower incomes.

3. Model specification. For example, adding polynomial terms to a regression model,
especially when the range of the X variable is small.

4. An overdetermined model. This happens when the model has more explanatory vari-
ables than the number of observations. This could happen in medical research where there
may be a small number of patients about whom information is collected on a large number
of variables.

An additional reason for multicollinearity, especially in time series data, may be that the
regressors included in the model share a common trend, that is, they all increase or decrease
over time. Thus, in the regression of consumption expenditure on income, wealth, and pop-
ulation, the regressors income, wealth, and population may all be growing over time at more
or less the same rate, leading to collinearity among these variables.

7Douglas Montgomery and Elizabeth Peck, Introduction to Linear Regression Analysis, John Wiley &
Sons, New York, 1982, pp. 289–290. See also R. L. Mason, R. F. Gunst, and J. T. Webster, “Regression
Analysis and Problems of Multicollinearity,” Communications in Statistics A, vol. 4, no. 3, 1975,
pp. 277–292; R. F. Gunst, and R. L. Mason, “Advantages of Examining Multicollinearities in Regression
Analysis,” Biometrics, vol. 33, 1977, pp. 249–260.
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324 Part Two Relaxing the Assumptions of the Classical Model

10.2 Estimation in the Presence of Perfect Multicollinearity

It was stated previously that in the case of perfect multicollinearity the regression coeffi-
cients remain indeterminate and their standard errors are infinite. This fact can be demon-
strated readily in terms of the three-variable regression model. Using the deviation form,
where all the variables are expressed as deviations from their sample means, we can write
the three-variable regression model as

yi = β̂2x2i + β̂3x3i + ûi (10.2.1)

Now from Chapter 7 we obtain

β̂2 =
(∑

yi x2i

)(∑
x2

3i

) − (∑
yi x3i

)(∑
x2i x3i

)
(∑

x2
2i

)(∑
x2

3i

) − (∑
x2i x3i

)2 (7.4.7)

β̂3 =
(∑

yi x3i

)(∑
x2

2i

) − (∑
yi x2i

)(∑
x2i x3i

)
(∑

x2
2i

)(∑
x2

3i

) − (∑
x2i x3i

)2 (7.4.8)

Assume that X3i = λX2i , where λ is a nonzero constant (e.g., 2, 4, 1.8, etc.). Substituting
this into Eq. (7.4.7), we obtain

β̂2 =
(∑

yi x2i

)(
λ2

∑
x2

2i

) − (
λ

∑
yi x2i

)(
λ

∑
x2

2i

)
(∑

x2
2i

)(
λ2

∑
x2

2i

) − λ2
(∑

x2
2i

)2

= 0

0

(10.2.2)

which is an indeterminate expression. The reader can verify that β̂3 is also indeterminate.8

Why do we obtain the result shown in Eq. (10.2.2)? Recall the meaning of β̂2: It gives
the rate of change in the average value of Y as X2 changes by a unit, holding X3 constant.
But if X3 and X2 are perfectly collinear, there is no way X3 can be kept constant: As X2

changes, so does X3 by the factor λ. What it means, then, is that there is no way of disen-
tangling the separate influences of X2 and X3 from the given sample: For practical purposes
X2 and X3 are indistinguishable. In applied econometrics this problem is most damaging
since the entire intent is to separate the partial effects of each X upon the dependent
variable.

To see this differently, let us substitute X3i = λX2i into Eq. (10.2.1) and obtain the
following [see also Eq. (7.1.12)]:

yi = β̂2x2i + β̂3(λx2i) + ûi

= (β̂2 + λβ̂3)x2i + ûi (10.2.3)

= α̂x2i + ûi

where
α̂ = (β̂2 + λβ̂3) (10.2.4)

8Another way of seeing this is as follows: By definition, the coefficient of correlation between X2 and X3,

r23, is 
∑

x2i x3i /

√∑
x2

2i
∑

x2
3i . If r

2
2 3 = 1, i.e., perfect collinearity between X2 and X3, the denominator of

Eq. (7.4.7) will be zero, making estimation of β2 (or of β3) impossible.
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Applying the usual OLS formula to Eq. (10.2.3), we get

α̂ = (β̂2 + λβ̂3) =
∑

x2i yi∑
x2

2i

(10.2.5)

Therefore, although we can estimate α uniquely, there is no way to estimate β2 and β3 uniquely;
mathematically

α̂ = β̂2 + λβ̂3 (10.2.6)

gives us only one equation in two unknowns (note λ is given) and there is an infinity of
solutions to Eq. (10.2.6) for given values of α̂ and λ. To put this idea in concrete terms, let
α̂ = 0.8 and λ = 2. Then we have

0.8 = β̂2 + 2β̂3 (10.2.7)

or

β̂2 = 0.8 − 2β̂3 (10.2.8)

Now choose a value of β̂3 arbitrarily, and we will have a solution for β̂2. Choose another
value for β̂3, and we will have another solution for β̂2. No matter how hard we try, there is
no unique value for β̂2.

The upshot of the preceding discussion is that in the case of perfect multicollinearity one
cannot get a unique solution for the individual regression coefficients. But notice that one
can get a unique solution for linear combinations of these coefficients. The linear combi-
nation (β2 + λβ3) is uniquely estimated by α, given the value of λ.9

In passing, note that in the case of perfect multicollinearity the variances and standard
errors of β̂2 and β̂3 individually are infinite. (See Exercise 10.21.)

10.3 Estimation in the Presence of “High”
but “Imperfect” Multicollinearity

The perfect multicollinearity situation is a pathological extreme. Generally, there is no
exact linear relationship among the X variables, especially in data involving economic time
series. Thus, turning to the three-variable model in the deviation form given in Eq. (10.2.1),
instead of exact multicollinearity, we may have

x3i = λx2i + vi (10.3.1)

where λ �= 0 and where vi is a stochastic error term such that 
∑

x2i vi = 0. (Why?)
Incidentally, the Ballentines shown in Figure 10.1b to 10.1e represent cases of imperfect

collinearity.
In this case, estimation of regression coefficients β2 and β3 may be possible. For exam-

ple, substituting Eq. (10.3.1) into Eq. (7.4.7), we obtain

β̂2 =
∑

(yi x2i )
(
λ2

∑
x2

2i + ∑
v2

i

) − (
λ

∑
yi x2i + ∑

yi vi

)(
λ

∑
x2

2i

)
∑

x2
2i

(
λ2

∑
x2

2i + ∑
v2

i

) − (
λ

∑
x2

2i

)2 (10.3.2)

where use is made of 
∑

x2i vi = 0. A similar expression can be derived for β̂3.

9In econometric literature, a function such as (β2 + λβ3) is known as an estimable function.
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Now, unlike Eq. (10.2.2), there is no reason to believe a priori that Eq. (10.3.2) cannot
be estimated. Of course, if vi is sufficiently small, say, very close to zero, Eq. (10.3.1) will
indicate almost perfect collinearity and we shall be back to the indeterminate case of 
Eq. (10.2.2).

10.4 Multicollinearity: Much Ado about Nothing? 
Theoretical Consequences of Multicollinearity

Recall that if the assumptions of the classical model are satisfied, the OLS estimators of the
regression estimators are BLUE (or BUE, if the normality assumption is added). Now it
can be shown that even if multicollinearity is very high, as in the case of near multi-
collinearity, the OLS estimators still retain the property of BLUE.10 Then what is the mul-
ticollinearity fuss all about? As Christopher Achen remarks (note also the Leamer quote at
the beginning of this chapter):

Beginning students of methodology occasionally worry that their independent variables are
correlated—the so-called multicollinearity problem. But multicollinearity violates no regres-
sion assumptions. Unbiased, consistent estimates will occur, and their standard errors will be
correctly estimated. The only effect of multicollinearity is to make it hard to get coefficient
estimates with small standard error. But having a small number of observations also has that
effect, as does having independent variables with small variances. (In fact, at a theoretical level,
multicollinearity, few observations and small variances on the independent variables are essen-
tially all the same problem.) Thus “What should I do about multicollinearity?” is a question like
“What should I do if I don’t have many observations?” No statistical answer can be given.11

To drive home the importance of sample size, Goldberger coined the term
micronumerosity, to counter the exotic polysyllabic name multicollinearity. According to
Goldberger, exact micronumerosity (the counterpart of exact multicollinearity) arises
when n, the sample size, is zero, in which case any kind of estimation is impossible. Near
micronumerosity, like near multicollinearity, arises when the number of observations barely
exceeds the number of parameters to be estimated.

Leamer, Achen, and Goldberger are right in bemoaning the lack of attention given to the
sample size problem and the undue attention to the multicollinearity problem. Unfortu-
nately, in applied work involving secondary data (i.e., data collected by some agency, such
as the GNP data collected by the government), an individual researcher may not be able to
do much about the size of the sample data and may have to face “estimating problems
important enough to warrant our treating it [i.e., multicollinearity] as a violation of the
CLR [classical linear regression] model.”12

First, it is true that even in the case of near multicollinearity the OLS estimators are un-
biased. But unbiasedness is a multisample or repeated sampling property. What it means is
that, keeping the values of the X variables fixed, if one obtains repeated samples and com-
putes the OLS estimators for each of these samples, the average of the sample values will
converge to the true population values of the estimators as the number of samples increases.
But this says nothing about the properties of estimators in any given sample.

10Since near multicollinearity per se does not violate the other assumptions listed in Chapter 7, the
OLS estimators are BLUE as indicated there.
11Christopher H. Achen, Interpreting and Using Regression, Sage Publications, Beverly Hills, Calif.,
1982, pp. 82–83.
12Peter Kennedy, A Guide to Econometrics, 3d ed., The MIT Press, Cambridge, Mass., 1992, p. 177.
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Second, it is also true that collinearity does not destroy the property of minimum vari-
ance: In the class of all linear unbiased estimators, the OLS estimators have minimum vari-
ance; that is, they are efficient. But this does not mean that the variance of an OLS estimator
will necessarily be small (in relation to the value of the estimator) in any given sample, as
we shall demonstrate shortly.

Third, multicollinearity is essentially a sample (regression) phenomenon in the sense
that, even if the X variables are not linearly related in the population, they may be so related
in the particular sample at hand: When we postulate the theoretical or population regression
function (PRF), we believe that all the X variables included in the model have a separate or
independent influence on the dependent variable Y. But it may happen that in any given
sample that is used to test the PRF some or all of the X variables are so highly collinear that
we cannot isolate their individual influence on Y. So to speak, our sample lets us down,
although the theory says that all the X’s are important. In short, our sample may not be
“rich” enough to accommodate all X variables in the analysis.

As an illustration, reconsider the consumption–income example of Chapter 3 (Exam-
ple 3.1). Economists theorize that, besides income, the wealth of the consumer is also an
important determinant of consumption expenditure. Thus, we may write

Consumptioni = β1 + β2 Incomei + β3 Wealthi + ui

Now it may happen that when we obtain data on income and wealth, the two variables may
be highly, if not perfectly, correlated: Wealthier people generally tend to have higher in-
comes. Thus, although in theory income and wealth are logical candidates to explain the
behavior of consumption expenditure, in practice (i.e., in the sample) it may be difficult to
disentangle the separate influences of income and wealth on consumption expenditure.

Ideally, to assess the individual effects of wealth and income on consumption expendi-
ture we need a sufficient number of sample observations of wealthy individuals with low
income, and high-income individuals with low wealth (recall Assumption 7). Although this
may be possible in cross-sectional studies (by increasing the sample size), it is very diffi-
cult to achieve in aggregate time series work.

For all these reasons, the fact that the OLS estimators are BLUE despite multicollinear-
ity is of little consolation in practice. We must see what happens or is likely to happen in
any given sample, a topic discussed in the following section.

10.5 Practical Consequences of Multicollinearity

In cases of near or high multicollinearity, one is likely to encounter the following consequences:

1. Although BLUE, the OLS estimators have large variances and covariances, making pre-
cise estimation difficult.

2. Because of consequence 1, the confidence intervals tend to be much wider, leading to
the acceptance of the “zero null hypothesis” (i.e., the true population coefficient is zero)
more readily.

3. Also because of consequence 1, the t ratio of one or more coefficients tends to be
statistically insignificant.

4. Although the t ratio of one or more coefficients is statistically insignificant, R2, the overall
measure of goodness of fit, can be very high.

5. The OLS estimators and their standard errors can be sensitive to small changes in the data.

The preceding consequences can be demonstrated as follows.
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Large Variances and Covariances of OLS Estimators
To see large variances and covariances, recall that for the model (10.2.1) the variances and
covariances of β̂2 and β̂3 are given by

var (β̂2) = σ 2∑
x2

2i

(
1 − r2

2 3

) (7.4.12)

var (β̂3) = σ 2∑
x2

3i

(
1 − r2

2 3

) (7.4.15)

cov (β̂2, β̂3) = −r2 3σ
2

(
1 − r2

2 3

)√∑
x2

2i

∑
x2

3i

(7.4.17)

where r2 3 is the coefficient of correlation between X2 and X3.
It is apparent from Eqs. (7.4.12) and (7.4.15) that as r2 3 tends toward 1, that is, as

collinearity increases, the variances of the two estimators increase and in the limit when 
r2 3 = 1, they are infinite. It is equally clear from Eq. (7.4.17) that as r2 3 increases toward 1,
the covariance of the two estimators also increases in absolute value. [Note: cov (β̂2, β̂3) ≡
cov (β̂3, β̂2).]

The speed with which variances and covariances increase can be seen with the
variance-inflating factor (VIF), which is defined as

(10.5.1)

VIF shows how the variance of an estimator is inflated by the presence of multicollinearity.
As r2

2 3 approaches 1, the VIF approaches infinity. That is, as the extent of collinearity
increases, the variance of an estimator increases, and in the limit it can become infinite. As
can be readily seen, if there is no collinearity between X2 and X3, VIF will be 1.

Using this definition, we can express Eqs. (7.4.12) and (7.4.15) as

var (β̂2) = σ 2∑
x2

2i

VIF (10.5.2)

var (β̂3) = σ 2∑
x2

3i

VIF (10.5.3)

which show that the variances of β̂2 and β̂3 are directly proportional to the VIF.
To give some idea about how fast the variances and covariances increase as r2 3

increases, consider Table 10.1, which gives these variances and covariances for selected
values of r2 3. As this table shows, increases in r2 3 have a dramatic effect on the estimated
variances and covariances of the OLS estimators. When r2 3 = 0.50, the var (β̂2) is 1.33
times the variance when r2 3 is zero, but by the time r2 3 reaches 0.95 it is about 10 times as
high as when there is no collinearity. And lo and behold, an increase of r2 3 from 0.95 to
0.995 makes the estimated variance 100 times that when collinearity is zero. The same dra-
matic effect is seen on the estimated covariance. All this can be seen in Figure 10.2.

The results just discussed can be easily extended to the k-variable model. In such a
model, the variance of the kth coefficient, as noted in Eq. (7.5.6), can be expressed as:

var (β̂j ) = σ 2∑
x2

j

(
1

1 − R2
j

)
(7.5.6)

VIF = 1(
1 − r2

2 3

)
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where β̂j = (estimated) partial regression coefficient of regressor Xj

R2
j = R2 in the regression of Xj on the remaining (k − 2) regressions (Note: There

are [k − 1] regressors in the k-variable regression model.)∑
x2

j = ∑
(X j − X̄ j )2

We can also write Eq. (7.5.6) as

var (β̂j ) = σ 2∑
x2

j

VIFj (10.5.4)

As you can see from this expression, var (β̂j ) is proportional to σ 2 and VIF but inversely

proportional to 
∑

x2
j . Thus, whether var (β̂j ) is large or small will depend on the three

TABLE 10.1
The Effect of
Increasing r2 3 on
var (β̂2) and
cov (β̂2, β̂3)

Value of r2 3 VIF var (β̂2) cov (β̂2, β̂3)
(1) (2) (3)* (4) (5) 

0.00 1.00
σ 2∑
x 2

2i

= A — 0

0.50 1.33 1.33 × A 1.33 0.67 × B
0.70 1.96 1.96 × A 1.96 1.37 × B
0.80 2.78 2.78 × A 2.78 2.22 × B
0.90 5.76 5.26 × A 5.26 4.73 × B
0.95 10.26 10.26 × A 10.26 9.74 × B
0.97 16.92 16.92 × A 16.92 16.41 × B
0.99 50.25 50.25 × A 50.25 49.75 × B
0.995 100.00 100.00 × A 100.00 99.50 × B
0.999 500.00 500.00 × A 500.00 499.50 × B 

Note: A = σ 2∑
x 2

2i

B = −σ 2√∑
x 2

2i

∑
x 3

3i

× = times

*To find out the effect of increasing  r2 3 on var (β̂3), note that A = σ 2/
∑

x 2
3i when r2 3 = 0, but the variance and

covariance magnifying factors remain the same.

1.33A
A

5.26A

0 0.9 1.00.80.5

var ( β2)

A = σ
Σx 

r
2 3

2

2
2i

FIGURE 10.2
The behavior of
var (β̂2) as a function
of r2 3.

var (β̂2)(r23  � 0)

var (β̂2)(r23  � 0)
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ingredients: (1) σ 2, (2) VIF, and (3) 
∑

x2
j . The last one, which ties in with Assumption 8

of the classical model, states that the larger the variability in a regressor, the smaller the
variance of the coefficient of that regressor, assuming the other two ingredients are con-
stant, and therefore the greater the precision with which that coefficient can be estimated.

Before proceeding further, it may be noted that the inverse of the VIF is called tolerance
(TOL). That is,

(10.5.5)

When R2
j = 1 (i.e., perfect collinearity), TOLj = 0 and when R2

j = 0 (i.e., no collinearity
whatsoever), TOLj is 1. Because of the intimate connection between VIF and TOL, one can
use them interchangeably.

Wider Confidence Intervals
Because of the large standard errors, the confidence intervals for the relevant population
parameters tend to be larger, as can be seen from Table 10.2. For example, when r2 3 = 0.95,
the confidence interval for β2 is larger than when r2 3 = 0 by a factor of 

√
10.26, or about 3.

Therefore, in cases of high multicollinearity, the sample data may be compatible with a
diverse set of hypotheses. Hence, the probability of accepting a false hypothesis (i.e., type II
error) increases.

“Insignificant” t Ratios
Recall that to test the null hypothesis that, say, β2 = 0, we use the t ratio, that is, β̂2/se (β̂2),
and compare the estimated t value with the critical t value from the t table. But as we have
seen, in cases of high collinearity the estimated standard errors increase dramatically,
thereby making the t values smaller. Therefore, in such cases, one will increasingly accept
the null hypothesis that the relevant true population value is zero.13

TOLj = 1

VIFj
= (

1 − R2
j

)

TABLE 10.2
The Effect of
Increasing
Collinearity on the
95% Confidence
Interval for
β2: β̂2 � 1.96 se (β̂2)

Value of r2 3 95% Confidence Interval for β2

0.00 β̂2 ± 1.96

√
σ 2∑
x 2

2i

0.50 β̂2 ± 1.96
√

(1.33)

√
σ 2∑
x 2

2i

0.95 β̂2 ± 1.96
√

(10.26)

√
σ 2∑
x 2

2i

0.995 β̂2 ± 1.96
√

(100)

√
σ 2∑
x 2

2i

0.999 β̂2 ± 1.96
√

(500)

√
σ 2∑
x 2

2i

Note: We are using the normal distribution because σ2 is assumed for convenience to be
known. Hence the use of 1.96, the 95% confidence factor for the normal distribution.

The standard errors corresponding to the various r2 3 values are obtained from
Table 10.1.

13In terms of the confidence intervals, β2 = 0 value will lie increasingly in the acceptance region as
the degree of collinearity increases.
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A High R2 but Few Significant t Ratios
Consider the k-variable linear regression model:

Yi = β1 + β2 X2i + β3 X3i + · · · + βk Xki + ui

In cases of high collinearity, it is possible to find, as we have just noted, that one or more of
the partial slope coefficients are individually statistically insignificant on the basis of the t
test. Yet the R2 in such situations may be so high, say, in excess of 0.9, that on the basis
of the F test one can convincingly reject the hypothesis that β2 = β3 = · · · = βk = 0.

Indeed, this is one of the signals of multicollinearity—insignificant t values but a high
overall R2 (and a significant F value)!

We shall demonstrate this signal in the next section, but this outcome should not be sur-
prising in view of our discussion on individual versus joint testing in Chapter 8. As you
may recall, the real problem here is the covariances between the estimators, which, as for-
mula (7.4.17) indicates, are related to the correlations between the regressors.

Sensitivity of OLS Estimators and Their Standard
Errors to Small Changes in Data
As long as multicollinearity is not perfect, estimation of the regression coefficients is pos-
sible but the estimates and their standard errors become very sensitive to even the slightest
change in the data.

To see this, consider Table 10.3. Based on these data, we obtain the following multiple
regression:

Ŷi = 1.1939  + 0.4463X2i + 0.0030X3i

(0.7737) (0.1848) (0.0851)

t = (1.5431) (2.4151) (0.0358) (10.5.6)

R2 = 0.8101 r2 3 = 0.5523

cov (β̂2, β̂3) = −0.00868 df = 2

Regression (10.5.6) shows that none of the regression coefficients is individually signifi-
cant at the conventional 1 or 5 percent levels of significance, although β̂2 is significant at
the 10 percent level on the basis of a one-tail t test.

Now consider Table 10.4. The only difference between Tables 10.3 and 10.4 is that the
third and fourth values of X3 are interchanged. Using the data of Table 10.4, we now obtain

Ŷi = 1.2108  + 0.4014X2i + 0.0270X3i

(0.7480) (0.2721) (0.1252)

t = (1.6187) (1.4752) (0.2158) (10.5.7)

R2 = 0.8143 r2 3 = 0.8285

cov (β̂2, β̂3) = −0.0282 df = 2

As a result of a slight change in the data, we see that β̂2, which was statistically significant
before at the 10 percent level of significance, is no longer significant even at that level. Also
note that in Eq. (10.5.6) cov (β̂2, β̂3) = −0.00868 whereas in Eq. (10.5.7) it is −0.0282, a
more than threefold increase. All these changes may be attributable to increased multi-
collinearity: In Eq. (10.5.6) r2 3 = 0.5523, whereas in Eq. (10.5.7) it is 0.8285. Similarly, the
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standard errors of β̂2 and β̂3 increase between the two regressions, a usual symptom of
collinearity.

We noted earlier that in the presence of high collinearity one cannot estimate the indi-
vidual regression coefficients precisely but that linear combinations of these coefficients
may be estimated more precisely. This fact can be substantiated from the regressions
(10.5.6) and (10.5.7). In the first regression the sum of the two partial slope coefficients is
0.4493 and in the second it is 0.4284, practically the same. Not only that, their standard
errors are practically the same, 0.1550 vs. 0.1823.14 Note, however, the coefficient of X3 has
changed dramatically, from 0.003 to 0.027.

Consequences of Micronumerosity
In a parody of the consequences of multicollinearity, and in a tongue-in-cheek manner,
Goldberger cites exactly similar consequences of micronumerosity, that is, analysis based
on small sample size.15 The reader is advised to read Goldberger’s analysis to see why he
regards micronumerosity as being as important as multicollinearity.

10.6 An Illustrative Example

TABLE 10.3 Hypothetical Data on 
Y, X2, and X3

Y X2 X3

1 2 4
2 0 2
3 4 12
4 6 0
5 8 16

TABLE 10.4 Hypothetical Data on 
Y, X2, and X3

Y X2 X3

1 2 4
2 0 2
3 4 0
4 6 12
5 8 16

14These standard errors are obtained from the formula

se (β̂2 + β̂3) =
√

var (β̂2) + var (β̂3) + 2 cov (β̂2, β̂3)

Note that increasing collinearity increases the variances of β̂2 and β̂3, but these variances may be
offset if there is high negative covariance between the two, as our results clearly point out.
15Goldberger, op. cit., pp. 248–250.

EXAMPLE 10.1
Consumption
Expenditure 
in Relation to
Income and
Wealth

To illustrate the various points made thus far, let us consider the consumption–income ex-
ample from the introduction. Table 10.5 contains hypothetical data on consumption,
income, and wealth. If we assume that consumption expenditure is linearly related to
income and wealth, then, from Table 10.5 we obtain the following regression:

Ŷi = 24.7747 + 0.9415X2i − 0.0424X3i

(6.7525) (0.8229) (0.0807)

t = (3.6690) (1.1442) (−0.5261) (10.6.1)

R2 = 0.9635 R̄2 = 0.9531 df = 7
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Regression (10.6.1) shows that income and wealth together explain about 96 percent
of the variation in consumption expenditure, and yet neither of the slope coefficients is
individually statistically significant. Moreover, not only is the wealth variable statistically
insignificant but also it has the wrong sign. A priori, one would expect a positive relation-
ship between consumption and wealth. Although β̂2 and β̂3 are individually statistically
insignificant, if we test the hypothesis that β2 = β3 = 0 simultaneously, this hypothesis can
be rejected, as Table 10.6 shows. Under the usual assumption we obtain

F = 4282.7770
46.3494

= 92.4019 (10.6.2)

This F value is obviously highly significant.
It is interesting to look at this result geometrically. (See Figure 10.3.) Based on the re-

gression (10.6.1), we have established the individual 95 percent confidence intervals for
β2 and β3 following the usual procedure discussed in Chapter 8. As these intervals show,
individually each of them includes the value of zero. Therefore, individually we can accept
the hypothesis that the two partial slopes are zero. But, when we establish the joint confi-
dence interval to test the hypothesis that β2 = β3 = 0, that hypothesis cannot be accepted
since the joint confidence interval, actually an ellipse, does not include the origin.16

As already pointed out, when collinearity is high, tests on individual regressors are not re-
liable; in such cases it is the overall F test that will show if Y is related to the various
regressors.

Our example shows dramatically what multicollinearity does. The fact that the F test is
significant but the t values of X2 and X3 are individually insignificant means that the two
variables are so highly correlated that it is impossible to isolate the individual impact of

Y, $ X2, $ X3, $

70 80 810
65 100 1009
90 120 1273
95 140 1425

110 160 1633
115 180 1876
120 200 2052
140 220 2201
155 240 2435
150 260 2686

TABLE 10.5 Hypothetical Data on Consumption Expenditure Y, Income X2, and Wealth X3

Source of Variation SS df MSS

Due to regression 8,565.5541 2 4,282.7770
Due to residual 324.4459 7 46.3494

TABLE 10.6
ANOVA Table for
the Consumption–
Income–Wealth
Example

16As noted in Section 5.3, the topic of joint confidence interval is rather involved. The interested
reader may consult the reference cited there.

(Continued)

EXAMPLE 10.1
(Continued)
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either income or wealth on consumption. As a matter of fact, if we regress X3 on X2, we
obtain

X̂3i = 7.5454 + 10.1909X2i

(29.4758) (0.1643) (10.6.3)

t = (0.2560) (62.0405) R2 = 0.9979

which shows that there is almost perfect collinearity between X3 and X2.
Now let us see what happens if we regress Y on X2 only:

Ŷi = 24.4545 + 0.5091X2i

(6.4138) (0.0357) (10.6.4)

t = (3.8128) (14.2432) R2 = 0.9621

In Eq. (10.6.1) the income variable was statistically insignificant, whereas now it is highly
significant. If instead of regressing Y on X2, we regress it on X3, we obtain

Ŷi = 24.411 + 0.0498X3i

(6.874) (0.0037) (10.6.5)

t = (3.551) (13.29) R2 = 0.9567

We see that wealth has now a significant impact on consumption expenditure, whereas in
Eq. (10.6.1) it had no effect on consumption expenditure.

Regressions (10.6.4) and (10.6.5) show very clearly that in situations of extreme multi-
collinearity dropping the highly collinear variable will often make the other X variable
statistically significant. This result would suggest that a way out of extreme collinearity is
to drop the collinear variable, but we shall have more to say about it in Section 10.8.

334 Part Two Relaxing the Assumptions of the Classical Model

FIGURE 10.3 Individual confidence intervals for β2 and β3 and joint confidence
interval (ellipse) for β2 and β3.
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EXAMPLE 10.1
(Continued)
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EXAMPLE 10.2 
Consumption
Function for
United States,
1947–2000

We now consider a concrete set of data on real consumption expenditure (C), real dis-
posable personal income (Yd), real wealth (W), and real interest rate (I) for the United
States for the period 1947–2000. The raw data are given in Table 10.7.

TABLE 10.7 U.S. Consumption Expenditure for the Period 1947–2000

Year C Yd W I

1947 976.4 1035.2 5166.815 �10.35094
1948 998.1 1090 5280.757 �4.719804
1949 1025.3 1095.6 5607.351 1.044063
1950 1090.9 1192.7 5759.515 0.407346
1951 1107.1 1227 6086.056 �5.283152
1952 1142.4 1266.8 6243.864 �0.277011
1953 1197.2 1327.5 6355.613 0.561137
1954 1221.9 1344 6797.027 �0.138476
1955 1310.4 1433.8 7172.242 0.261997
1956 1348.8 1502.3 7375.18 �0.736124
1957 1381.8 1539.5 7315.286 �0.260683
1958 1393 1553.7 7869.975 �0.57463
1959 1470.7 1623.8 8188.054 2.295943
1960 1510.8 1664.8 8351.757 1.511181
1961 1541.2 1720 8971.872 1.296432
1962 1617.3 1803.5 9091.545 1.395922
1963 1684 1871.5 9436.097 2.057616
1964 1784.8 2006.9 10003.4 2.026599
1965 1897.6 2131 10562.81 2.111669
1966 2006.1 2244.6 10522.04 2.020251
1967 2066.2 2340.5 11312.07 1.212616
1968 2184.2 2448.2 12145.41 1.054986
1969 2264.8 2524.3 11672.25 1.732154
1970 2317.5 2630 11650.04 1.166228
1971 2405.2 2745.3 12312.92 �0.712241
1972 2550.5 2874.3 13499.92 �0.155737
1973 2675.9 3072.3 13080.96 1.413839
1974 2653.7 3051.9 11868.79 �1.042571
1975 2710.9 3108.5 12634.36 �3.533585
1976 2868.9 3243.5 13456.78 �0.656766
1977 2992.1 3360.7 13786.31 �1.190427
1978 3124.7 3527.5 14450.5 0.113048
1979 3203.2 3628.6 15340 1.70421
1980 3193 3658 15964.95 2.298496
1981 3236 3741.1 15964.99 4.703847
1982 3275.5 3791.7 16312.51 4.449027
1983 3454.3 3906.9 16944.85 4.690972
1984 3640.6 4207.6 17526.75 5.848332
1985 3820.9 4347.8 19068.35 4.330504
1986 3981.2 4486.6 20530.04 3.768031
1987 4113.4 4582.5 21235.69 2.819469
1988 4279.5 4784.1 22331.99 3.287061

(Continued)

Source: See Table 7.12.
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TABLE 10.7 Continued

Year C Yd W I

1989 4393.7 4906.5 23659.8 4.317956
1990 4474.5 5014.2 23105.13 3.595025
1991 4466.6 5033 24050.21 1.802757
1992 4594.5 5189.3 24418.2 1.007439
1993 4748.9 5261.3 25092.33 0.62479
1994 4928.1 5397.2 25218.6 2.206002
1995 5075.6 5539.1 27439.73 3.333143
1996 5237.5 5677.7 29448.19 3.083201
1997 5423.9 5854.5 32664.07 3.12
1998 5683.7 6168.6 35587.02 3.583909
1999 5968.4 6320 39591.26 3.245271
2000 6257.8 6539.2 38167.72 3.57597

We use the following for analysis

ln Ct = β1 + β2 ln Ydt + β3 ln Wt + β4 It + ut (10.6.6)

where ln stands for logarithm.
In this model the coefficients β2 and β3 give income and wealth elasticities, respectively

(why?) and β4 gives semielasticity (why?). The results of regression (10.6.6) are given in
the following table.

Dependent Variable: LOG (C)
Method: Least Squares
Sample: 1947–2000
Included observations: 54

Coefficient Std. Error t-Statistic Prob.

C -0.467711 0.042778 -10.93343 0.0000
LOG (YD) 0.804873 0.017498 45.99836 0.0000
LOG (WEALTH) 0.201270 0.017593 11.44060 0.0000

INTEREST -0.002689 0.000762 -3.529265 0.0009

R-squared 0.999560 Mean dependent var. 7.826093

Adjusted R-squared 0.999533 S.D. dependent var. 0.552368

S.E. of regression 0.011934 Akaike info criterion -5.947703

Sum squared resid. 0.007121 Schwarz criterion -5.800371

Log likelihood 164.5880 Hannan-Quinn cariter. -5.890883

F-statistic 37832.59 Durbin-Watson stat. 1.289219

Prob(F-statistic) 0.000000

Note: LOG stands for natural log.

The results show that all the estimated coefficients are highly statistically significant, for
their p values are extremely small. The estimated coefficients are interpreted as follows.
The income elasticity is ≈ 0.80, suggesting that, holding other variables constant, if
income goes up by 1 percent, the mean consumption expenditure goes up by about

EXAMPLE 10.2
(Continued)
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0.8 percent. The wealth coefficient is ≈ 0.20, meaning that if wealth goes up by 1 percent,
mean consumption goes up by only 0.2 percent, again holding other variables constant.
The coefficient of the interest rate variable tells us that as the interest rate goes up by one
percentage point, consumption expenditure goes down by 0.26 percent, ceteris paribus.

All the regressors have signs that accord with prior expectations, that is, income and
wealth both have a positive impact on consumption but interest rate has a negative
impact.

Do we have to worry about the problem of multicollinearity in the present case? Ap-
parently not, because all the coefficients have the right signs, each coefficient is individu-
ally statistically significant, and the F value is also statistically highly significant, suggesting
that, collectively, all the variables have a significant impact on consumption expenditure.
The R2 value is also quite high.

Of course, there is usually some degree of collinearity among economic variables. As
long as it is not exact, we can still estimate the parameters of the model. For now, all we
can say is that, in the present example, collinearity, if any, does not seem to be very severe.
But in Section 10.7 we provide some diagnostic tests to detect collinearity and reexamine
the U.S. consumption function to determine whether it is plagued by the collinearity
problem.

10.7 Detection of Multicollinearity

Having studied the nature and consequences of multicollinearity, the natural question is:
How does one know that collinearity is present in any given situation, especially in models
involving more than two explanatory variables? Here it is useful to bear in mind Kmenta’s
warning:

1. Multicollinearity is a question of degree and not of kind. The meaningful distinction is
not between the presence and the absence of multicollinearity, but between its various degrees.

2. Since multicollinearity refers to the condition of the explanatory variables that are as-
sumed to be nonstochastic, it is a feature of the sample and not of the population.

Therefore, we do not “test for multicollinearity” but can, if we wish, measure its degree in
any particular sample.17

Since multicollinearity is essentially a sample phenomenon, arising out of the largely
nonexperimental data collected in most social sciences, we do not have one unique method
of detecting it or measuring its strength. What we have are some rules of thumb, some in-
formal and some formal, but rules of thumb all the same. We now consider some of these
rules.

1. High R2 but few significant t ratios. As noted, this is the “classic” symptom of mul-
ticollinearity. If R2 is high, say, in excess of 0.8, the F test in most cases will reject the
hypothesis that the partial slope coefficients are simultaneously equal to zero, but the indi-
vidual t tests will show that none or very few of the partial slope coefficients are statistically
different from zero. This fact was clearly demonstrated by our consumption–income–wealth
example.

Although this diagnostic is sensible, its disadvantage is that “it is too strong in the sense
that multicollinearity is considered as harmful only when all of the influences of the
explanatory variables on Y cannot be disentangled.”18

17Jan Kmenta, Elements of Econometrics, 2d ed., Macmillan, New York, 1986, p. 431.
18Ibid., p. 439.

EXAMPLE 10.2
(Continued)

guj75772_ch10.qxd  12/08/2008  02:45 PM  Page 337



2. High pair-wise correlations among regressors. Another suggested rule of thumb is
that if the pair-wise or zero-order correlation coefficient between two regressors is high,
say, in excess of 0.8, then multicollinearity is a serious problem. The problem with this
criterion is that, although high zero-order correlations may suggest collinearity, it is not
necessary that they be high to have collinearity in any specific case. To put the matter some-
what technically, high zero-order correlations are a sufficient but not a necessary condition
for the existence of multicollinearity because it can exist even though the zero-order or
simple correlations are comparatively low (say, less than 0.50). To see this relationship,
suppose we have a four-variable model:

Yi = β1 + β2 X2i + β3 X3i + β4 X4i + ui

and suppose that

X4i = λ2 X2i + λ3 X3i

where λ2 and λ3 are constants, not both zero. Obviously, X4 is an exact linear combination
of X2 and X3, giving R2

4.2 3 = 1, the coefficient of determination in the regression of X4 on
X2 and X3.

Now recalling the formula (7.11.5) from Chapter 7, we can write

(10.7.1)

But since R2
4.2 3 = 1 because of perfect collinearity, we obtain

1 = r2
4 2 + r2

4 3 − 2r4 2r4 3r2 3

1 − r2
2 3

(10.7.2)

It is not difficult to see that Eq. (10.7.2) is satisfied by r4 2 = 0.5, r4 3 = 0.5, and
r2 3 = −0.5, which are not very high values.

Therefore, in models involving more than two explanatory variables, the simple or zero-
order correlation will not provide an infallible guide to the presence of multicollinearity. Of
course, if there are only two explanatory variables, the zero-order correlations will suffice.

3. Examination of partial correlations. Because of the problem just mentioned in
relying on zero-order correlations, Farrar and Glauber have suggested that one should look
at the partial correlation coefficients.19 Thus, in the regression of Y on X2, X3, and X4, a find-
ing that R2

1.2 3 4 is very high but r2
1 2.3 4, r2

1 3.2 4, and r2
1 4.2 3 are comparatively low may suggest

that the variables X2, X3, and X4 are highly intercorrelated and that at least one of these vari-
ables is superfluous.

Although a study of the partial correlations may be useful, there is no guarantee that
they will provide an infallible guide to multicollinearity, for it may happen that both R2 and
all the partial correlations are sufficiently high. But more importantly, C. Robert Wichers
has shown20 that the Farrar–Glauber partial correlation test is ineffective in that a given
partial correlation may be compatible with different multicollinearity patterns. The

R2
4.2 3 = r2

4 2 + r2
4 3 − 2r4 2r4 3r2 3

1 − r2
2 3

338 Part Two Relaxing the Assumptions of the Classical Model

19D. E. Farrar and R. R. Glauber, “Multicollinearity in Regression Analysis: The Problem Revisited,”
Review of Economics and Statistics, vol. 49, 1967, pp. 92–107.
20“The Detection of Multicollinearity: A Comment,” Review of Economics and Statistics, vol. 57, 1975,
pp. 365–366.
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Farrar–Glauber test has also been severely criticized by T. Krishna Kumar21 and John
O’Hagan and Brendan McCabe.22

4. Auxiliary regressions. Since multicollinearity arises because one or more of the
regressors are exact or approximately linear combinations of the other regressors, one way
of finding out which X variable is related to other X variables is to regress each Xi on the
remaining X variables and compute the corresponding R2, which we designate as R2

i ; each
one of these regressions is called an auxiliary regression, auxiliary to the main regression
of Y on the X ’s. Then, following the relationship between F and R2 established in
Eq. (8.4.11), the variable

(10.7.3)

follows the F distribution with k − 2 and n − k + 1 df. In Eq. (10.7.3) n stands for the
sample size, k stands for the number of explanatory variables including the intercept term,
and R2

xi ·x2x3···xk
is the coefficient of determination in the regression of variable Xi on the

remaining X variables.23

If the computed F exceeds the critical Fi at the chosen level of significance, it is taken to
mean that the particular Xi is collinear with other X’s; if it does not exceed the critical Fi,
we say that it is not collinear with other X’s, in which case we may retain that variable in the
model. If Fi is statistically significant, we will still have to decide whether the particular Xi

should be dropped from the model. This question will be taken up in Section 10.8.
But this method is not without its drawbacks, for

. . . if the multicollinearity involves only a few variables so that the auxiliary regressions do not
suffer from extensive multicollinearity, the estimated coefficients may reveal the nature of the
linear dependence among the regressors. Unfortunately, if there are several complex linear
associations, this curve fitting exercise may not prove to be of much value as it will be difficult
to identify the separate interrelationships.24

Instead of formally testing all auxiliary R2 values, one may adopt Klein’ rule of thumb,
which suggests that multicollinearity may be a troublesome problem only if the R2 obtained
from an auxiliary regression is greater than the overall R2, that is, that obtained from the
regression of Y on all the regressors.25 Of course, like all other rules of thumb, this one
should be used judiciously.

5. Eigenvalues and condition index. From EViews and Stata, we can find the eigen-
values and the condition index, to diagnose multicollinearity.We will not discuss eigenvalues
here, for that would take us into topics in matrix algebra that are beyond the scope of this

Fi = R2
xi ·x2x3···xk

/
(k − 2)(

1 − R2
xi ·x2x3···xk

)/
(n − k + 1)

21“Multicollinearity in Regression Analysis,” Review of Economics and Statistics, vol. 57, 1975, pp. 366–368.
22“Tests for the Severity of Multicollinearity in Regression Analysis: A Comment,” Review of Economics
and Statistics, vol. 57, 1975, pp. 368–370.
23For example, R2

x2
can be obtained by regressing X2i as follows: X2i = a1 + a3 X3i + a4 X4i +

· · · + ak Xki + ûi .

24George G. Judge, R. Carter Hill, William E. Griffiths, Helmut Lütkepohl, and Tsoung-Chao Lee,
Introduction to the Theory and Practice of Econometrics, John Wiley & Sons, New York, 1982, p. 621.
25Lawrence R. Klein, An Introduction to Econometrics, Prentice-Hall, Englewood Cliffs, NJ, 1962, p. 101.
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book. From these eigenvalues, however, we can derive what is known as the condition
number k defined as

k = Maximum eigenvalue

Minimum eigenvalue

and the condition index (CI) defined as

CI =
√

Maximum eigenvalue

Minimum eigenvalue
=

√
k

Then we have this rule of thumb: If k is between 100 and 1000 there is moderate to strong
multicollinearity and if it exceeds 1000 there is severe multicollinearity. Alternatively, if
the CI ( = √

k) is between 10 and 30, there is moderate to strong multicollinearity and if it
exceeds 30 there is severe multicollinearity.

For the illustrative example in App. 7A.5, the smallest eigenvalue is 3.786 and
the largest eigenvalue is 187.5269 giving k = 187.5269/3.786 or about 49.53. Therefore
CI = √

49.53 = 7.0377. Both k and CI suggest that we do not have a serious collinearity
problem. Incidentally, note that a low eigenvalue (in relation to the maximum eigenvalue)
is generally an indication of near-linear dependencies in the data.

Some authors believe that the condition index is the best available multicollinearity diag-
nostic. But this opinion is not shared widely. For us, then, the CI is just a rule of thumb, a bit
more sophisticated perhaps. But for further details, the reader may consult the references.26

6. Tolerance and variance inflation factor. We have already introduced TOL and
VIF. As R2

j , the coefficient of determination in the regression of regressor Xj on the
remaining regressors in the model, increases toward unity, that is, as the collinearity of Xj

with the other regressors increases, VIF also increases and in the limit it can be infinite.
Some authors therefore use the VIF as an indicator of multicollinearity. The larger the

value of VIFj, the more “troublesome” or collinear the variable Xj. As a rule of thumb, if
the VIF of a variable exceeds 10, which will happen if R2

j exceeds 0.90, that variable is said
be highly collinear.27

Of course, one could use TOLj as a measure of multicollinearity in view of its intimate
connection with VIFj. The closer TOLj is to zero, the greater the degree of collinearity of
that variable with the other regressors. On the other hand, the closer TOLj is to 1, the greater
the evidence that Xj is not collinear with the other regressors.

VIF (or tolerance) as a measure of collinearity is not free of criticism. As Eq. (10.5.4)
shows, var (β̂j ) depends on three factors: σ 2,

∑
x2

j , and VIFj. A high VIF can be counter-
balanced by a low σ 2 or a high 

∑
x2

j . To put it differently, a high VIF is neither necessary
nor sufficient to get high variances and high standard errors. Therefore, high multicolli-
nearity, as measured by a high VIF, may not necessarily cause high standard errors. In all
this discussion, the terms high and low are used in a relative sense.

7. Scatterplot. It is a good practice to use a scatterplot to see how the various variables
in a regression model are related. Figure 10.4 presents the scatterplot for the U.S.

26See especially D. A. Belsley, E. Kuh, and R. E. Welsch, Regression Diagnostics: Identifying Influential
Data and Sources of Collinearity, John Wiley & Sons, New York, 1980, Chapter 3. However, this book is
not for the beginner.
27See David G. Kleinbaum, Lawrence L. Kupper, and Keith E. Muller, Applied Regression Analysis and
Other Multivariate Methods, 2d ed., PWS-Kent, Boston, Mass., 1988, p. 210.
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consumption example discussed in the previous section (Example 10.2). This is a four-by-
four box diagram because we have four variables in the model, a dependent variable
(C) and three explanatory variables: real disposable personal income (Yd), real wealth (W),
and real interest rate (I).

First consider the main diagonal, going from the upper left-hand corner to the lower
right-hand corner. There are no scatterpoints in these boxes that lie on the main diagonal. If
there were, they would have a correlation coefficient of 1, for the plots would be of a given
variable against itself. The off-diagonal boxes show intercorrelations among the variables.
Take, for instance, the wealth box (W). It shows that wealth and income are highly corre-
lated (the correlation coefficient between the two is 0.97), but not perfectly so. If they were
perfectly correlated (i.e., if they had a correlation coefficient of 1), we would not have been
able to estimate the regression (10.6.6) because we would have an exact linear relationship
between wealth and income. The scatterplot also shows that the interest rate is not highly
correlated with the other three variables.

Since the scatterplot function is now included in several statistical packages, this diag-
nostic should be considered along with the ones discussed earlier. But keep in mind that
simple correlations between pairs of variables may not be a definitive indicator of collinear-
ity, as pointed out earlier.

To conclude our discussion of detecting multicollinearity, we stress that the various
methods we have discussed are essentially in the nature of “fishing expeditions,” for we
cannot tell which of these methods will work in any particular application. Alas, not much
can be done about it, for multicollinearity is specific to a given sample over which the
researcher may not have much control, especially if the data are nonexperimental in
nature—the usual fate of researchers in the social sciences.

Again as a parody of multicollinearity, Goldberger cites numerous ways of detecting
micronumerosity, such as developing critical values of the sample size, n*, such that micron-
umerosity is a problem only if the actual sample size, n, is smaller than n*. The point of
Goldberger’s parody is to emphasize that small sample size and lack of variability in the
explanatory variables may cause problems that are at least as serious as those due to
multicollinearity.

FIGURE 10.4
Scatterplot for
Example 10.2 data.
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10.8 Remedial Measures

What can be done if multicollinearity is serious? We have two choices: (1) do nothing or
(2) follow some rules of thumb.

Do Nothing
The “do nothing” school of thought is expressed by Blanchard as follows:28

When students run their first ordinary least squares (OLS) regression, the first problem that they
usually encounter is that of multicollinearity. Many of them conclude that there is something
wrong with OLS; some resort to new and often creative techniques to get around the problem.
But, we tell them, this is wrong. Multicollinearity is God’s will, not a problem with OLS or
statistical technique in general.

What Blanchard is saying is that multicollinearity is essentially a data deficiency prob-
lem (micronumerosity, again) and sometimes we have no choice over the data we have
available for empirical analysis.

Also, it is not that all the coefficients in a regression model are statistically insignificant.
Moreover, even if we cannot estimate one or more regression coefficients with greater pre-
cision, a linear combination of them (i.e., estimable function) can be estimated relatively
efficiently. As we saw in Eq. (10.2.3), we can estimate α uniquely, even if we cannot esti-
mate its two components given there individually. Sometimes this is the best we can do with
a given set of data.29

Rule-of-Thumb Procedures
One can try the following rules of thumb to address the problem of multicollinearity; their
success will depend on the severity of the collinearity problem.

1. A priori information. Suppose we consider the model

Yi = β1 + β2 X2i + β3 X3i + ui

where Y = consumption, X2 = income, and X3 = wealth. As noted before, income and
wealth variables tend to be highly collinear. But suppose a priori we believe that
β3 = 0.10β2; that is, the rate of change of consumption with respect to wealth is one-tenth
the corresponding rate with respect to income. We can then run the following regression:

Yi = β1 + β2 X2i + 0.10 β2 X3i + ui

= β1 + β2 Xi + ui

where Xi = X2i + 0.1X3i . Once we obtain β̂2, we can estimate β̂3 from the postulated
relationship between β2 and β3.

How does one obtain a priori information? It could come from previous empirical work
in which the collinearity problem happens to be less serious or from the relevant theory

28O. J. Blanchard, Comment, Journal of Business and Economic Statistics, vol. 5, 1967, pp. 449–451.
The quote is reproduced from Peter Kennedy, A Guide to Econometrics, 4th ed., MIT Press, Cambridge,
Mass., 1998, p. 190.
29For an interesting discussion on this, see J. Conlisk, “When Collinearity Is Desirable,” Western
Economic Journal, vol. 9, 1971, pp. 393–407.
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underlying the field of study. For example, in the Cobb–Douglas–type production function
(7.9.1), if one expects constant returns to scale to prevail, then (β2 + β3) = 1, in which
case we could run the regression (8.6.14), regressing the output-labor ratio on the capital-
labor ratio. If there is collinearity between labor and capital, as generally is the case in most
sample data, such a transformation may reduce or eliminate the collinearity problem. But a
warning is in order here regarding imposing such a priori restrictions, “. . . since in general
we will want to test economic theory’s a priori predictions rather than simply impose them
on data for which they may not be true.”30 However, we know from Section 8.6 how to test
for the validity of such restrictions explicitly.

2. Combining cross-sectional and time series data. A variant of the extraneous or a
priori information technique is the combination of cross-sectional and time series data,
known as pooling the data. Suppose we want to study the demand for automobiles in the
United States and assume we have time series data on the number of cars sold, average
price of the car, and consumer income. Suppose also that

ln Yt = β1 + β2 ln Pt + β3 ln It + ut

where Y = number of cars sold, P = average price, I = income, and t = time. Our objective
is to estimate the price elasticity, β2, and income elasticity, β3.

In time series data the price and income variables generally tend to be highly collinear.
Therefore, if we run the preceding regression, we shall be faced with the usual multi-
collinearity problem. A way out of this has been suggested by Tobin.31 He says that if we
have cross-sectional data (for example, data generated by consumer panels, or budget stud-
ies conducted by various private and governmental agencies), we can obtain a fairly reliable
estimate of the income elasticity β3 because in such data, which are at a point in time, the
prices do not vary much. Let the cross-sectionally estimated income elasticity be β̂3. Using
this estimate, we may write the preceding time series regression as

Y ∗
t = β1 + β2 ln Pt + ut

where Y ∗ = ln Y − β̂3 ln I, that is, Y ∗ represents that value of Y after removing from it the
effect of income. We can now obtain an estimate of the price elasticity β2 from the preced-
ing regression.

Although it is an appealing technique, pooling the time series and cross-sectional data in
the manner just suggested may create problems of interpretation, because we are assuming
implicitly that the cross-sectionally estimated income elasticity is the same thing as that
which would be obtained from a pure time series analysis.32 Nonetheless, the technique has
been used in many applications and is worthy of consideration in situations where the cross-
sectional estimates do not vary substantially from one cross section to another. An example
of this technique is provided in Exercise 10.26.

3. Dropping a variable(s) and specification bias. When faced with severe multi-
collinearity, one of the “simplest” things to do is to drop one of the collinear variables.

30Mark B. Stewart and Kenneth F. Wallis, Introductory Econometrics, 2d ed., John Wiley & Sons, A
Halstead Press Book, New York, 1981, p. 154.
31J. Tobin, “A Statistical Demand Function for Food in the U.S.A.,” Journal of the Royal Statistical
Society, Ser. A, 1950, pp. 113–141.
32For a thorough discussion and application of the pooling technique, see Edwin Kuh, Capital Stock
Growth: A Micro-Econometric Approach, North-Holland Publishing Company, Amsterdam, 1963,
Chapters 5 and 6.
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Thus, in our consumption–income–wealth illustration, when we drop the wealth variable,
we obtain regression (10.6.4), which shows that, whereas in the original model the income
variable was statistically insignificant, it is now “highly” significant.

But in dropping a variable from the model we may be committing a specification bias
or specification error. Specification bias arises from incorrect specification of the model
used in the analysis. Thus, if economic theory says that income and wealth should both be
included in the model explaining the consumption expenditure, dropping the wealth vari-
able would constitute specification bias.

Although we will discuss the topic of specification bias in Chapter 13, we caught a
glimpse of it in Section 7.7. If, for example, the true model is

Yi = β1 + β2 X2i + β3 X3i + ui

but we mistakenly fit the model

Yi = b1 + b1 2 X2i + ûi (10.8.1)

then it can be shown that (see Appendix 13A.1)

E(b1 2) = β2 + β3b3 2 (10.8.2)

where b3 2 = slope coefficient in the regression of X3 on X2. Therefore, it is obvious from
Eq. (10.8.2) that b12 will be a biased estimate of β2 as long as b3 2 is different from zero (it
is assumed that β3 is different from zero; otherwise there is no sense in including X3 in the
original model).33 Of course, if b3 2 is zero, we have no multicollinearity problem to begin
with. It is also clear from Eq. (10.8.2) that if both b3 2 and β3 are positive (or both are neg-
ative), E(b1 2) will be greater than β2; hence, on the average b1 2 will overestimate β2, lead-
ing to a positive bias. Similarly, if the product b3 2β3 is negative, on the average b1 2 will
underestimate β2, leading to a negative bias.

From the preceding discussion it is clear that dropping a variable from the model to
alleviate the problem of multicollinearity may lead to the specification bias. Hence the rem-
edy may be worse than the disease in some situations because, whereas multicollinearity
may prevent precise estimation of the parameters of the model, omitting a variable may
seriously mislead us as to the true values of the parameters. Recall that OLS estimators are
BLUE despite near collinearity.

4. Transformation of variables. Suppose we have time series data on consumption
expenditure, income, and wealth. One reason for high multicollinearity between income
and wealth in such data is that over time both the variables tend to move in the same direc-
tion. One way of minimizing this dependence is to proceed as follows.

If the relation

Yt = β1 + β2 X2t + β3 X3t + ut (10.8.3)

holds at time t, it must also hold at time t − 1 because the origin of time is arbitrary any-
way. Therefore, we have

Yt−1 = β1 + β2 X2,t−1 + β3 X3,t−1 + ut−1 (10.8.4)

If we subtract Eq. (10.8.4) from Eq. (10.8.3), we obtain

Yt − Yt−1 = β2(X2t − X2,t−1) + β3(X3t − X3,t−1) + vt (10.8.5)

33Note further that if b32 does not approach zero as the sample size is increased indefinitely, then b12

will be not only biased but also inconsistent.
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where vt = ut − ut−1. Equation (10.8.5) is known as the first difference form because we
run the regression not on the original variables but on the differences of successive values
of the variables.

The first difference regression model often reduces the severity of multicollinearity
because, although the levels of X2 and X3 may be highly correlated, there is no a priori rea-
son to believe that their differences will also be highly correlated.

As we shall see in the chapters on time series econometrics, an incidental advantage of
the first difference transformation is that it may make a nonstationary time series station-
ary. In those chapters we will see the importance of stationary time series. As noted in
Chapter 1, loosely speaking, a time series, say, Yt, is stationary if its mean and variance do
not change systematically over time.

Another commonly used transformation in practice is the ratio transformation. Con-
sider the model:

Yt = β1 + β2 X2t + β3 X3t + ut (10.8.6)

where Y is consumption expenditure in real dollars, X2 is GDP, and X3 is total population.
Since GDP and population grow over time, they are likely to be correlated. One “solution”
to this problem is to express the model on a per capita basis, that is, by dividing Eq. (10.8.4)
by X3, to obtain:

Yt

X3t
= β1

(
1

X3t

)
+ β2

(
X2t

X3t

)
+ β3 +

(
ut

X3t

)
(10.8.7)

Such a transformation may reduce collinearity in the original variables.
But the first difference or ratio transformations are not without problems. For instance,

the error term vt in Eq. (10.8.5) may not satisfy one of the assumptions of the classical lin-
ear regression model, namely, that the disturbances are serially uncorrelated. As we will see
in Chapter 12, if the original disturbance term ut is serially uncorrelated, the error term vt

obtained previously will in most cases be serially correlated. Therefore, the remedy may be
worse than the disease. Moreover, there is a loss of one observation due to the differencing
procedure, and therefore the degrees of freedom are reduced by one. In a small sample, this
could be a factor one would wish at least to take into consideration. Furthermore, the first-
differencing procedure may not be appropriate in cross-sectional data where there is no log-
ical ordering of the observations.

Similarly, in the ratio model (10.8.7), the error term
(

ut

X3t

)

will be heteroscedastic, if the original error term ut is homoscedastic, as we shall see in
Chapter 11. Again, the remedy may be worse than the disease of collinearity.

In short, one should be careful in using the first difference or ratio method of trans-
forming the data to resolve the problem of multicollinearity.

5. Additional or new data. Since multicollinearity is a sample feature, it is possible
that in another sample involving the same variables collinearity may not be so serious as in
the first sample. Sometimes simply increasing the size of the sample (if possible) may
attenuate the collinearity problem. For example, in the three-variable model we saw that

var (β̂2) = σ 2∑
x2

2i

(
1 − r2

2 3

)
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Now as the sample size increases, 
∑

x2
2i will generally increase. (Why?) Therefore, for any

given r2 3, the variance of β̂2 will decrease, thus decreasing the standard error, which will
enable us to estimate β2 more precisely.

As an illustration, consider the following regression of consumption expenditure Y on
income X2 and wealth X3 based on 10 observations:34

Ŷi = 24.377 + 0.8716X2i − 0.0349X3i

t = (3.875) (2.7726) (−1.1595) R2 = 0.9682
(10.8.8)

The wealth coefficient in this regression not only has the wrong sign but is also statistically
insignificant at the 5 percent level. But when the sample size was increased to 40 observa-
tions (micronumerosity?), the following results were obtained:

Ŷi = 2.0907 + 0.7299X2i + 0.0605X3i

t = (0.8713) (6.0014) (2.0014) R2 = 0.9672
(10.8.9)

Now the wealth coefficient not only has the correct sign but also is statistically significant
at the 5 percent level.

Obtaining additional or “better” data is not always that easy, for as Judge et al. note:

Unfortunately, economists seldom can obtain additional data without bearing large costs,
much less choose the values of the explanatory variables they desire. In addition, when adding
new variables in situations that are not controlled, we must be aware of adding observations
that were generated by a process other than that associated with the original data set; that is,
we must be sure that the economic structure associated with the new observations is the same
as the original structure.35

6. Reducing collinearity in polynomial regressions. In Section 7.10 we discussed
polynomial regression models. A special feature of these models is that the explanatory
variable(s) appears with various powers. Thus, in the total cubic cost function involving the
regression of total cost on output, (output)2, and (output)3, as in Eq. (7.10.4), the various
output terms are going to be correlated, making it difficult to estimate the various slope co-
efficients precisely.36 In practice though, it has been found that if the explanatory vari-
able(s) is expressed in the deviation form (i.e., deviation from the mean value),
multicollinearity is substantially reduced. But even then the problem may persist,37 in
which case one may want to consider techniques such as orthogonal polynomials.38

7. Other methods of remedying multicollinearity. Multivariate statistical techniques
such as factor analysis and principal components or techniques such as ridge regression
are often employed to “solve” the problem of multicollinearity. Unfortunately, these tech-
niques are beyond the scope of this book, for they cannot be discussed competently with-
out resorting to matrix algebra.39

34I am indebted to the late Albert Zucker for providing the results given in the following regressions.
35Judge et al., op. cit., p. 625. See also Section 10.9.
36As noted, since the relationship between X, X2, and X3 is nonlinear, polynomial regressions do not
violate the assumption of no multicollinearity of the classical model, strictly speaking.
37See R. A. Bradley and S. S. Srivastava, “Correlation and Polynomial Regression,” American Statisti-
cian, vol. 33, 1979, pp. 11–14.
38See Norman Draper and Harry Smith, Applied Regression Analysis, 2d ed., John Wiley & Sons, New
York, 1981, pp. 266–274.
39A readable account of these techniques from an applied viewpoint can be found in Samprit Chatter-
jee and Bertram Price, Regression Analysis by Example, John Wiley & Sons, New York, 1977, Chapters 7
and 8. See also H. D. Vinod, “A Survey of Ridge Regression and Related Techniques for Improvements
over Ordinary Least Squares,” Review of Economics and Statistics, vol. 60, February 1978, pp. 121–131.
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10.9 Is Multicollinearity Necessarily Bad? Maybe Not,
If the Objective Is Prediction Only

It has been said that if the sole purpose of regression analysis is prediction or forecasting,
then multicollinearity is not a serious problem because the higher the R2, the better the pre-
diction.40 But this may be so “. . . as long as the values of the explanatory variables for
which predictions are desired obey the same near-exact linear dependencies as the original
design [data] matrix X.”41 Thus, if in an estimated regression it was found that X2 = 2X3

approximately, then in a future sample used to forecast Y, X2 should also be approximately
equal to 2X3, a condition difficult to meet in practice (see footnote 35), in which case
prediction will become increasingly uncertain.42 Moreover, if the objective of the analysis
is not only prediction but also reliable estimation of the parameters, serious multicollinear-
ity will be a problem because we have seen that it leads to large standard errors of the
estimators.

In one situation, however, multicollinearity may not pose a serious problem. This is the
case when R2 is high and the regression coefficients are individually significant as revealed
by the higher t values. Yet, multicollinearity diagnostics, say, the condition index, indicate
that there is serious collinearity in the data. When can such a situation arise? As Johnston
notes:

This can arise if individual coefficients happen to be numerically well in excess of the true
value, so that the effect still shows up in spite of the inflated standard error and/or because the
true value itself is so large that even an estimate on the downside still shows up as significant.43

10.10 An Extended Example: The Longley Data

We conclude this chapter by analyzing the data collected by Longley.44 Although originally
collected to assess the computational accuracy of least-squares estimates in several com-
puter programs, the Longley data have become the workhorse to illustrate several econo-
metric problems, including multicollinearity. The data are reproduced in Table 10.8. The
data are time series for the years 1947–1962 and pertain to Y = number of people
employed, in thousands; X1 = GNP implicit price deflator; X2 = GNP, millions of dollars;
X3 = number of people unemployed in thousands, X4 = number of people in the armed
forces, X5 = noninstitutionalized population over 14 years of age; and X6 = year, equal to
1 in 1947, 2 in 1948, and 16 in 1962.

40See R. C. Geary, “Some Results about Relations between Stochastic Variables: A Discussion Docu-
ment,” Review of International Statistical Institute, vol. 31, 1963, pp. 163–181.
41Judge et al., op. cit., p. 619. You will also find on this page proof of why, despite collinearity, one
can obtain better mean predictions if the existing collinearity structure also continues in the future
samples.
42For an excellent discussion, see E. Malinvaud, Statistical Methods of Econometrics, 2d ed., North-
Holland Publishing Company, Amsterdam, 1970, pp. 220–221.
43J. Johnston, Econometric Methods, 3d ed., McGraw-Hill, New York, 1984, p. 249.
44J. Longley, “An Appraisal of Least-Squares Programs from the Point of the User,” Journal of the
American Statistical Association, vol. 62, 1967, pp. 819–841.

guj75772_ch10.qxd  12/08/2008  08:07 PM  Page 347



348 Part Two Relaxing the Assumptions of the Classical Model

Assume that our objective is to predict Y on the basis of the six X variables. Using
EViews6, we obtain the following regression results:

TABLE 10.8
Longley Data

Observation Y X1 X2 X3 X4 X5 Time

1947 60,323 830 234,289 2,356 1,590 107,608 1
1948 61,122 885 259,426 2,325 1,456 108,632 2
1949 60,171 882 258,054 3,682 1,616 109,773 3
1950 61,187 895 284,599 3,351 1,650 110,929 4
1951 63,221 962 328,975 2,099 3,099 112,075 5
1952 63,639 981 346,999 1,932 3,594 113,270 6
1953 64,989 990 365,385 1,870 3,547 115,094 7
1954 63,761 1,000 363,112 3,578 3,350 116,219 8
1955 66,019 1,012 397,469 2,904 3,048 117,388 9
1956 67,857 1,046 419,180 2,822 2,857 118,734 10
1957 68,169 1,084 442,769 2,936 2,798 120,445 11
1958 66,513 1,108 444,546 4,681 2,637 121,950 12
1959 68,655 1,126 482,704 3,813 2,552 123,366 13
1960 69,564 1,142 502,601 3,931 2,514 125,368 14
1961 69,331 1,157 518,173 4,806 2,572 127,852 15
1962 70,551 1,169 554,894 4,007 2,827 130,081 16

Source: J. Longley, “An
Appraisal of Least-Squares
Programs from the Point of the
User,” Journal of the American
Statistical Association, vol. 62,
1967, pp. 819–841.

Dependent Variable: Y
Sample: 1947–1962

Variable Coefficient Std. Error t-Statistic Prob.

C -3482259. 890420.4 -3.910803 0.0036
X1 15.06187 84.91493 0.177376 0.8631
X2 -0.035819 0.033491 -1.069516 0.3127
X3 -2.020230 0.488400 -4.136427 0.0025
X4 -1.033227 0.214274 -4.821985 0.0009
X5 -0.051104 0.226073 -0.226051 0.8262
X6 1829.151 455.4785 4.015890 0.0030

R-squared 0.995479 Mean dependent var. 65317.00
Adjusted R-squared 0.992465 S.D. dependent var. 3511.968
S.E. of regression 304.8541 Akaike info criterion 14.57718
Sum squared resid. 836424.1 Schwarz criterion 14.91519
Log likelihood -109.6174 F-statistic 330.2853
Durbin-Watson stat. 2.559488 Prob(F-statistic) 0.000000

A glance at these results would suggest that we have the collinearity problem, for the R2

value is very high, but quite a few variables are statistically insignificant (X1, X2, and X5), a
classic symptom of multicollinearity. To shed more light on this, we show in Table 10.9 the
intercorrelations among the six regressors.

This table gives what is called the correlation matrix. In this table the entries on the
main diagonal (those running from the upper left-hand corner to the lower right-hand
corner) give the correlation of one variable with itself, which is always 1 by definition, and
the entries off the main diagonal are the pair-wise correlations among the X variables. If
you take the first row of this table, this gives the correlation of X1 with the other X variables.
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For example, 0.991589 is the correlation between X1 and X2, 0.620633 is the correlation
between X1 and X3, and so on.

As you can see, several of these pair-wise correlations are quite high, suggesting that
there may be a severe collinearity problem. Of course, remember the warning given earlier
that such pair-wise correlations may be a sufficient but not a necessary condition for the
existence of multicollinearity.

To shed further light on the nature of the multicollinearity problem, let us run the auxil-
iary regressions, that is the regression of each X variable on the remaining X variables. To
save space, we will present only the R2 values obtained from these regressions, which are
given in Table 10.10. Since the R2 values in the auxiliary regressions are very high (with the
possible exception of the regression of X4) on the remaining X variables, it seems that we do
have a serious collinearity problem. The same information is obtained from the tolerance
factors. As noted previously, the closer the tolerance factor is to zero, the greater is the
evidence of collinearity.

Applying Klein’s rule of thumb, we see that the R2 values obtained from the auxiliary
regressions exceed the overall R2 value (that is, the one obtained from the regression of Y
on all the X variables) of 0.9954 in 3 out of 6 auxiliary regressions, again suggesting that
indeed the Longley data are plagued by the multicollinearity problem. Incidentally, apply-
ing the F test given in Eq. (10.7.3) the reader should verify that the R2 values given in the
preceding tables are all statistically significantly different from zero.

We noted earlier that the OLS estimators and their standard errors are sensitive to small
changes in the data. In Exercise 10.32 the reader is asked to rerun the regression of Y on all
the six X variables but drop the last data observations, that is, run the regression for the
period 1947–1961. You will see how the regression results change by dropping just a single
year’s observations.

Now that we have established that we have the multicollinearity problem, what “reme-
dial” actions can we take? Let us reconsider our original model. First of all, we could
express GNP not in nominal terms, but in real terms, which we can do by dividing nominal
GNP by the implicit price deflator. Second, since noninstitutional population over 14 years
of age grows over time because of natural population growth, it will be highly correlated
with time, the variable X6 in our model. Therefore, instead of keeping both these variables,
we will keep the variable X5 and drop X6. Third, there is no compelling reason to include X3,

TABLE 10.9
Intercorrelations

X1 X2 X3 X4 X5 X6

X1 1.000000 0.991589 0.620633 0.464744 0.979163 0.991149
X2 0.991589 1.000000 0.604261 0.446437 0.991090 0.995273
X3 0.620633 0.604261 1.000000 −0.177421 0.686552 0.668257
X4 0.464744 0.446437 −0.177421 1.000000 0.364416 0.417245
X5 0.979163 0.991090 0.686552 0.364416 1.000000 0.993953
X6 0.991149 0.995273 0.668257 0.417245 0.993953 1.000000

TABLE 10.10
R2 Values from the
Auxiliary Regressions

Dependent Variable R2 Value Tolerance (TOL) = 1 − R2

X1 0.9926 0.0074
X2 0.9994 0.0006
X3 0.9702 0.0298
X4 0.7213 0.2787
X5 0.9970 0.0030
X6 0.9986 0.0014
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the number of people unemployed; perhaps the unemployment rate would have been a
better measure of labor market conditions. But we have no data on the latter. So, we will
drop the variable X3. Making these changes, we obtain the following regression results
(RGNP = real GNP):45

45The coefficient of correlation between X5 and X6 is about 0.9939, a very high correlation indeed.

Dependent Variable: Y
Sample: 1947–1962

Variable Coefficient Std. Error t-Statistic Prob.

C 65720.37 10624.81 6.185558 0.0000
RGNP 9.736496 1.791552 5.434671 0.0002
X4 -0.687966 0.322238 -2.134965 0.0541
X5 -0.299537 0.141761 -2.112965 0.0562

R-squared 0.981404 Mean dependent var. 65317.00
Adjusted R-squared 0.976755 S.D. dependent var. 3511.968
S.E. of regression 535.4492 Akaike info criterion 15.61641
Sum squared resid. 3440470. Schwarz criterion 15.80955
Log likelihood -120.9313 F-statistic 211.0972
Durbin-Watson stat. 1.654069 Prob(F-statistic) 0.000000

Although the R2 value has declined slightly compared with the original R2, it is still very
high. Now all the estimated coefficients are significant and the signs of the coefficients
make economic sense.

We leave it for the reader to devise alternative models and see how the results change.
Also keep in mind the warning sounded earlier about using the ratio method of transforming
the data to alleviate the problem of collinearity. We will revisit this question in Chapter 11.

1. One of the assumptions of the classical linear regression model is that there is no multi-
collinearity among the explanatory variables, the X’s. Broadly interpreted, multi-
collinearity refers to the situation where there is either an exact or approximately exact
linear relationship among the X variables.

2. The consequences of multicollinearity are as follows: If there is perfect collinearity
among the X ’s, their regression coefficients are indeterminate and their standard errors
are not defined. If collinearity is high but not perfect, estimation of regression coeffi-
cients is possible but their standard errors tend to be large. As a result, the population
values of the coefficients cannot be estimated precisely. However, if the objective is to
estimate linear combinations of these coefficients, the estimable functions, this can be
done even in the presence of perfect multicollinearity.

3. Although there are no sure methods of detecting collinearity, there are several indicators
of it, which are as follows:

(a) The clearest sign of multicollinearity is when R2 is very high but none of the regres-
sion coefficients is statistically significant on the basis of the conventional t test. This
case is, of course, extreme.

Summary and 
Conclusions
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(b) In models involving just two explanatory variables, a fairly good idea of collinear-
ity can be obtained by examining the zero-order, or simple, correlation coefficient
between the two variables. If this correlation is high, multicollinearity is generally
the culprit.

(c) However, the zero-order correlation coefficients can be misleading in models in-
volving more than two X variables since it is possible to have low zero-order corre-
lations and yet find high multicollinearity. In situations like these, one may need to
examine the partial correlation coefficients.

(d) If R2 is high but the partial correlations are low, multicollinearity is a possibility.
Here one or more variables may be superfluous. But if R2 is high and the partial cor-
relations are also high, multicollinearity may not be readily detectable. Also, as
pointed out by C. Robert Wichers, Krishna Kumar, John O’Hagan, and Brendan
McCabe, there are some statistical problems with the partial correlation test sug-
gested by Farrar and Glauber.

(e) Therefore, one may regress each of the Xi variables on the remaining X variables in
the model and find out the corresponding coefficients of determination R 2

i . A high
R 2

i would suggest that Xi is highly correlated with the rest of the X’s. Thus, one may
drop that Xi from the model, provided it does not lead to serious specification bias.

4. Detection of multicollinearity is half the battle. The other half is concerned with how to
get rid of the problem. Again there are no sure methods, only a few rules of thumb. Some
of these rules are as follows: (1) using extraneous or prior information, (2) combining
cross-sectional and time series data, (3) omitting a highly collinear variable, (4) trans-
forming data, and (5) obtaining additional or new data. Of course, which of these rules
will work in practice will depend on the nature of the data and severity of the collinear-
ity problem.

5. We noted the role of multicollinearity in prediction and pointed out that unless the
collinearity structure continues in the future sample it is hazardous to use the estimated
regression that has been plagued by multicollinearity for the purpose of forecasting.

6. Although multicollinearity has received extensive (some would say excessive) attention in
the literature, an equally important problem encountered in empirical research is that of
micronumerosity, smallness of sample size. According to Goldberger, “When a research
article complains about multicollinearity, readers ought to see whether the complaints
would be convincing if “micronumerosity” were substituted for “multicollinearity.”46 He
suggests that the reader ought to decide how small n, the number of observations, is before
deciding that one has a small-sample problem, just as one decides how high an R2 value is
in an auxiliary regression before declaring that the collinearity problem is very severe.

Questions
10.1. In the k-variable linear regression model there are k normal equations to estimate the

k unknowns. These normal equations are given in Appendix C. Assume that Xk is a
perfect linear combination of the remaining X variables. How would you show that
in this case it is impossible to estimate the k regression coefficients?

EXERCISES

46Goldberger, op. cit., p. 250.

guj75772_ch10.qxd  12/08/2008  02:45 PM  Page 351



352 Part Two Relaxing the Assumptions of the Classical Model

TABLE 10.11 Y X2 X3

−10 1 1
−8 2 3
−6 3 5
−4 4 7
−2 5 9

0 6 11
2 7 13
4 8 15
6 9 17
8 10 19

10 11 21

Dependent Variable: CM

Variable Coefficient Std. Error t-Statistic Prob.

C 168.3067 32.89165 5.117003 0.0000
PGNP -0.005511 0.001878 -2.934275 0.0047
FLR -1.768029 0.248017 -7.128663 0.0000
TFR 12.86864 4.190533 3.070883 0.0032

R-squared 0.747372 Mean dependent var. 141.5000
Adjusted R-squared 0.734740 S.D. dependent var. 75.97807
S.E. of regression 39.13127 Akaike info criterion 10.23218
Sum squared resid. 91875.38 Schwarz criterion 10.36711
Log likelihood -323.4298 F-statistic 59.16767
Durbin–Watson stat. 2.170318 Prob(F-statistic) 0.000000

a. Compare these regression results with those given in Eq. (8.1.4). What changes
do you see? How do you account for them?

b. Is it worth adding the variable TFR to the model? Why?

c. Since all the individual t coefficients are statistically significant, can we say that
we do not have a collinearity problem in the present case?

10.4. If the relation λ1 X1i + λ2 X2i + λ3 X3i = 0 holds true for all values of λ1, λ2, and
λ3, estimate r1 2.3, r1 3.2, and r2 3.1. Also find R2

1.2 3, R2
2.1 3, and R2

3.12. What is the

10.2. Consider the set of hypothetical data in Table 10.11. Suppose you want to fit the
model

Yi = β1 + β2 X2i + β3 X3i + ui

to the data.

a. Can you estimate the three unknowns? Why or why not?

b. If not, what linear functions of these parameters, the estimable functions, can you
estimate? Show the necessary calculations.

10.3. Refer to the child mortality example discussed in Chapter 8 (Example 8.1). The
example there involved the regression of the child mortality (CM) rate on per capita
GNP (PGNP) and female literacy rate (FLR). Now suppose we add the variable, total
fertility rate (TFR). This gives the following regression results.
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degree of multicollinearity in this situation? Note: R2
1.2 3 is the coefficient of deter-

mination in the regression of Y on X2 and X3. Other R2 values are to be interpreted
similarly.

10.5. Consider the following model:

Yt = β1 + β2 Xt + β3 Xt−1 + β4 Xt−2 + β5 Xt−3 + β6 Xt−4 + ut

where Y = consumption, X = income, and t = time. The preceding model postu-
lates that consumption expenditure at time t is a function not only of income at time
t but also of income through previous periods. Thus, consumption expenditure in
the first quarter of 2000 is a function of income in that quarter and the four quarters
of 1999. Such models are called distributed lag models, and we shall discuss them
in a later chapter.

a. Would you expect multicollinearity in such models and why?

b. If collinearity is expected, how would you resolve the problem?

10.6. Consider the illustrative example of Section 10.6 (Example 10.1). How would you
reconcile the difference in the marginal propensity to consume obtained from
Eqs. (10.6.1) and (10.6.4)?

10.7. In data involving economic time series such as GNP, money supply, prices, income,
unemployment, etc., multicollinearity is usually suspected. Why?

10.8. Suppose in the model

Yi = β1 + β2 X2i + β3 X3i + ui

that r2 3, the coefficient of correlation between X2 and X3, is zero. Therefore, some-
one suggests that you run the following regressions:

Yi = α1 + α2 X2i + u1i

Yi = γ1 + γ3 X3i + u2i

a. Will α̂2 = β̂2 and γ̂3 = β̂3? Why?

b. Will β̂1 equal α̂1 or γ̂1 or some combination thereof?

c. Will var (β̂2) = var (α̂2) and var (β̂3) = var (γ̂3)?

10.9. Refer to the illustrative example of Chapter 7 where we fitted the Cobb–
Douglas production function to the manufacturing sector of all 50 states and the
District of Columbia for 2005. The results of the regression given in Eq. (7.9.4)
show that both the labor and capital coefficients are individually statistically
significant.

a. Find out whether the variables labor and capital are highly correlated.

b. If your answer to (a) is affirmative, would you drop, say, the labor variable from
the model and regress the output variable on capital input only?

c. If you do so, what kind of specification bias is committed? Find out the nature
of this bias.

10.10. Refer to Example 7.4. For this problem the correlation matrix is as follows:

Xi Xi
2 Xi

3

Xi 1 0.9742 0.9284
X 2

i 1.0 0.9872
X 3

i 1.0
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a. “Since the zero-order correlations are very high, there must be serious multi-
collinearity.” Comment.

b. Would you drop variables X2
i and X3

i from the model?

c. If you drop them, what will happen to the value of the coefficient of Xi ?

10.11. Stepwise regression. In deciding on the “best” set of explanatory variables for a
regression model, researchers often follow the method of stepwise regression. In
this method one proceeds either by introducing the X variables one at a time (step-
wise forward regression) or by including all the possible X variables in one multi-
ple regression and rejecting them one at a time (stepwise backward regression).
The decision to add or drop a variable is usually made on the basis of the
contribution of that variable to the ESS, as judged by the F test. Knowing what you
do now about multicollinearity, would you recommend either procedure? Why or
why not?* 

10.12. State with reason whether the following statements are true, false, or uncertain:

a. Despite perfect multicollinearity, OLS estimators are BLUE.

b. In cases of high multicollinearity, it is not possible to assess the individual sig-
nificance of one or more partial regression coefficients.

c. If an auxiliary regression shows that a particular R2
i is high, there is definite

evidence of high collinearity.

d. High pair-wise correlations do not suggest that there is high multicollinearity.

e. Multicollinearity is harmless if the objective of the analysis is prediction only.

f. Ceteris paribus, the higher the VIF is, the larger the variances of OLS estimators.

g. The tolerance (TOL) is a better measure of multicollinearity than the VIF.

h. You will not obtain a high R2 value in a multiple regression if all the partial slope
coefficients are individually statistically insignificant on the basis of the usual
t test.

i. In the regression of Y on X2 and X3, suppose there is little variability in the val-
ues of X3. This would increase var (β̂3). In the extreme, if all X3 are identical,
var (β̂3) is infinite.

10.13. a. Show that if r1i = 0 for i = 2, 3, . . . , k then

R1.2 3. . . k = 0

b. What is the importance of this finding for the regression of variable X1(=Y) on
X2, X3, . . . , Xk?

10.14. Suppose all the zero-order correlation coefficients of X1(= Y), X2, . . . , Xk are 
equal to r.

a. What is the value of R2
1.2 3 . . . k?

b. What are the values of the first-order correlation coefficients?
**10.15. In matrix notation it can be shown (see Appendix C) that

β̂ = (X′X)−1X′y

a. What happens to β̂ when there is perfect collinearity among the X ’s?

b. How would you know if perfect collinearity exists?

*See if your reasoning agrees with that of Arthur S. Goldberger and D. B. Jochems, “Note on Step-
wise Least-Squares,” Journal of the American Statistical Association, vol. 56, March 1961, pp. 105–110.
**Optional. 
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*10.16. Using matrix notation, it can be shown 

var–cov (�̂) = σ 2(X′X)−1

What happens to this var–cov matrix:

a. When there is perfect multicollinearity?

b. When collinearity is high but not perfect?
*10.17. Consider the following correlation matrix:

R =
X2

X3

Xk




X2 X3 · · · Xk

1 r2 3 · · · r2k

r3 2 1 · · · r3k

· · · · · · · · ·
rk2 rk3 · · · 1




Describe how you would find out from the correlation matrix whether (a) there is
perfect collinearity, (b) there is less than perfect collinearity, and (c) the X’s are
uncorrelated.

Hint: You may use |R| to answer these questions, where |R| denotes the deter-
minant of R.

*10.18. Orthogonal explanatory variables. Suppose in the model

Yi = β1 + β2 X2i + β3 X3i + · · · + βk Xki + ui

X2 to Xk are all uncorrelated. Such variables are called orthogonal variables. If this
is the case:

a. What will be the structure of the (X′X) matrix?

b. How would you obtain �̂ = (X′X)−1X′y?

c. What will be the nature of the var–cov matrix of �̂?

d. Suppose you have run the regression and afterward you want to introduce an-
other orthogonal variable, say, Xk+1 into the model. Do you have to recompute
all the previous coefficients β̂1 to β̂k? Why or why not?

10.19. Consider the following model:

GNPt = β1 + β2Mt + β3Mt−1 + β4(Mt − Mt−1) + ut

where GNPt = GNP at time t, Mt = money supply at time t, Mt−1 = money supply
at time (t − 1), and (Mt − Mt−1) = change in the money supply between time t and
time (t − 1). This model thus postulates that the level of GNP at time t is a function
of the money supply at time t and time (t − 1) as well as the change in the money
supply between these time periods.

a. Assuming you have the data to estimate the preceding model, would you succeed
in estimating all the coefficients of this model? Why or why not?

b. If not, what coefficients can be estimated?

c. Suppose that the β3Mt−1 terms were absent from the model. Would your answer
to (a) be the same?

d. Repeat (c), assuming that the terms β2Mt were absent from the model.

*Optional. 

guj75772_ch10.qxd  12/08/2008  02:45 PM  Page 355



356 Part Two Relaxing the Assumptions of the Classical Model

10.20. Show that Eqs. (7.4.7) and (7.4.8) can also be expressed as

β̂2 =
(∑

yi x2i

)(∑
x2

3i

) − (∑
yi x3i

)(∑
x2i x3i

)
(∑

x2
2i

)(∑
x2

3i

)(
1 − r2

2 3

)

β̂3 =
(∑

yi x3i

)(∑
x2

2i

)− (∑
yi x2i

) (∑
x2i x3i

)
(∑

x2
2i

)(∑
x2

3i

)(
1 − r2

2 3

)

where r2 3 is the coefficient of correlation between X2 and X3.

10.21. Using Eqs. (7.4.12) and (7.4.15), show that when there is perfect collinearity, the
variances of β̂2 and β̂3 are infinite.

10.22. Verify that the standard errors of the sums of the slope coefficients estimated from
Eqs. (10.5.6) and (10.5.7) are, respectively, 0.1549 and 0.1825. (See Section 10.5.)

10.23. For the k-variable regression model, it can be shown that the variance of the kth
(k = 2, 3, . . . , K ) partial regression coefficient given in Eq. (7.5.6) can also be ex-
pressed as* 

var (β̂k) = 1

n − k

σ 2
y

σ 2
k

(
1 − R2

1 − R2
k

)

where σ 2
y = variance of Y, σ 2

k = variance of the kth explanatory variable, R2
k = R2

from the regression of Xk on the remaining X variables, and R2 = coefficient of
determination from the multiple regression, that is, regression of Y on all the X
variables.

a. Other things the same, if σ 2
k increases, what happens to var (β̂k)? What are the

implications for the multicollinearity problem?

b. What happens to the preceding formula when collinearity is perfect?

c. True or false: “The variance of β̂k decreases as R2 rises, so that the effect of a
high R2

k can be offset by a high R2.”

10.24. From the annual data for the U.S. manufacturing sector for 1899–1922, Dougherty
obtained the following regression results:†

l̂og Y = 2.81 − 0.53 log K + 0.91 log L + 0.047t

se = (1.38) (0.34) (0.14) (0.021) (1)

R2 = 0.97 F = 189.8

where Y = index of real output, K = index of real capital input, L = index of real
labor input, t = time or trend.

Using the same data, he also obtained the following regression:

l̂og (Y/L) = −0.11 + 0.11 log (K/L) + 0.006t

se = (0.03) (0.15) (0.006) (2)

R2 = 0.65 F = 19.5

*This formula is given by R. Stone, “The Analysis of Market Demand,” Journal of the Royal Statistical
Society, vol. B7, 1945, p. 297. Also recall Eq. (7.5.6). For further discussion, see Peter Kennedy, A
Guide to Econometrics, 2d ed., The MIT Press, Cambridge, Mass., 1985, p. 156.
†Christopher Dougherty, Introduction to Econometrics, Oxford University Press, New York, 1992,
pp. 159–160.
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*Samprit Chatterjee, Ali S. Hadi, and Bertram Price, Regression Analysis by Example, 3d ed., John Wiley
& Sons, New York, 2000, p. 226.
**Russel Davidson and James G. MacKinnon, Estimation and Inference in Econometrics, Oxford Univer-
sity Press, New York, 1993, p. 186.
†Peter Kennedy, A Guide to Econometrics, 4th ed., MIT Press, Cambridge, Mass., 1998, p. 187.
‡This quote attributed to the late econometrician Zvi Griliches, is obtained from Ernst R. Berndt, The
Practice of Econometrics: Classic and Contemporary, Addison Wesley, Reading, Mass., 1991, p. 224.

a. Is there multicollinearity in regression (1)? How do you know?

b. In regression (1), what is the a priori sign of log K? Do the results conform to this
expectation? Why or why not?

c. How would you justify the functional form of regression (1)? (Hint: Cobb–
Douglas production function.)

d. Interpret regression (1). What is the role of the trend variable in this regression?

e. What is the logic behind estimating regression (2)?

f. If there was multicollinearity in regression (1), has that been reduced by regres-
sion (2)? How do you know?

g. If regression (2) is a restricted version of regression (1), what restriction is
imposed by the author? (Hint: returns to scale.) How do you know if this
restriction is valid? Which test do you use? Show all your calculations.

h. Are the R2 values of the two regressions comparable? Why or why not? How
would you make them comparable, if they are not comparable in the present
form?

10.25. Critically evaluate the following statements:

a. “In fact, multicollinearity is not a modeling error. It is a condition of deficient
data.”* 

b. “If it is not feasible to obtain more data, then one must accept the fact that the
data one has contain a limited amount of information and must simplify the
model accordingly. Trying to estimate models that are too complicated is one of
the most common mistakes among inexperienced applied econometricians.”** 

c. “It is common for researchers to claim that multicollinearity is at work whenever
their hypothesized signs are not found in the regression results, when variables
that they know a priori to be important have insignificant t values, or when var-
ious regression results are changed substantively whenever an explanatory vari-
able is deleted. Unfortunately, none of these conditions is either necessary or
sufficient for the existence of collinearity, and furthermore none provides any
useful suggestions as to what kind of extra information might be required to
solve the estimation problem they present.”†

d. “. . . any time series regression containing more than four independent variables
results in garbage.”‡ 

Empirical Exercises
10.26. Klein and Goldberger attempted to fit the following regression model to the U.S.

economy:

Yi = β1 + β2 X2i + β3 X3i + β4 X4i + ui

where Y = consumption, X2 = wage income, X3 = nonwage, nonfarm income, and
X4 = farm income. But since X2, X3, and X4 are expected to be highly collinear,
they obtained estimates of β3 and β4 from cross-sectional analysis as follows:
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β3 = 0.75β2 and β4 = 0.625β2. Using these estimates, they reformulated their
consumption function as follows:

Yi = β1 + β2(X2i + 0.75X3i + 0.625X4i ) + ui = β1 + β2 Zi + ui

where Zi = X2i + 0.75X3i + 0.625X4i .

a. Fit the modified model to the data in Table 10.12 and obtain estimates of β1 to β4.

b. How would you interpret the variable Z?

10.27. Table 10.13 gives data on imports, GDP, and the Consumer Price Index (CPI) for
the United States over the period 1975–2005. You are asked to consider the follow-
ing model:

ln Importst = β1 + β2 ln GDPt + β3 ln CPIt + ut

a. Estimate the parameters of this model using the data given in the table.

b. Do you suspect that there is multicollinearity in the data?

c. Regress: (1) ln Importst = A1 + A2 ln GDPt

(2) ln Importst = B1 + B2 ln CPIt

(3) ln GDPt = C1 + C2 ln CPIt

On the basis of these regressions, what can you say about the nature of mul-
ticollinearity in the data?

TABLE 10.12 Year Y X2 X3 X4 Year Y X2 X3 X4

1936 62.8 43.41 17.10 3.96 1946 95.7 76.73 28.26 9.76
1937 65.0 46.44 18.65 5.48 1947 98.3 75.91 27.91 9.31
1938 63.9 44.35 17.09 4.37 1948 100.3 77.62 32.30 9.85
1939 67.5 47.82 19.28 4.51 1949 103.2 78.01 31.39 7.21
1940 71.3 51.02 23.24 4.88 1950 108.9 83.57 35.61 7.39
1941 76.6 58.71 28.11 6.37 1951 108.5 90.59 37.58 7.98
1945* 86.3 87.69 30.29 8.96 1952 111.4 95.47 35.17 7.42

*The data for the war years 1942–1944 are missing. The data for other years are billions of 1939 dollars.

Source: L. R. Klein and A. S.
Goldberger, An Economic
Model of the United States,
1929–1952, North Holland
Publishing Company,
Amsterdam, 1964, p. 131.

TABLE 10.13
U.S. Imports, GDP,
and CPI, 1975–2005
(For all urban
consumers; 1982–84 =
100, except as noted)

Year CPI GDP Imports Year CPI GDP Imports

1975 53.8 1,638.3 98185 1991 136.2 5,995.9 491020
1976 56.9 1,825.3 124228 1992 140.3 6,337.7 536528
1977 60.6 2,030.9 151907 1993 144.5 6,657.4 589394
1978 65.2 2,294.7 176002 1994 148.2 7,072.2 668690
1979 72.6 2,563.3 212007 1995 152.4 7,397.7 749374
1980 82.4 2,789.5 249750 1996 156.9 7,816.9 803113
1981 90.9 3,128.4 265067 1997 160.5 8,304.3 876470
1982 96.5 3,225.0 247642 1998 163.0 8,747.0 917103
1983 99.6 3,536.7 268901 1999 166.6 9,268.4 1029980
1984 103.9 3,933.2 332418 2000 172.2 9,817.0 1224408
1985 107.6 4,220.3 338088 2001 177.1 10,128.0 1145900
1986 109.6 4,462.8 368425 2002 179.9 10,469.6 1164720
1987 113.6 4,739.5 409765 2003 184.0 10,960.8 1260717
1988 118.3 5,103.8 447189 2004 188.9 11,712.5 1472926
1989 124.0 5,484.4 477665 2005 195.3 12,455.8 1677371
1990 130.7 5,803.1 498438

Source: Department of Labor,
Bureau of Labor Statistics.
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d. Suppose there is multicollinearity in the data but β̂2 and β̂3 are individually sig-
nificant at the 5 percent level and the overall F test is also significant. In this case
should we worry about the collinearity problem?

10.28. Refer to Exercise 7.19 about the demand function for chicken in the United States.

a. Using the log–linear, or double-log, model, estimate the various auxiliary re-
gressions. How many are there?

b. From these auxiliary regressions, how do you decide which regressor(s) is
highly collinear? Which test do you use? Show the details of your calculations.

c. If there is significant collinearity in the data, which variable(s) would you drop
to reduce the severity of the collinearity problem? If you do that, what econo-
metric problems do you face?

d. Do you have any suggestions, other than dropping variables, to ameliorate the
collinearity problem? Explain.

10.29. Table 10.14 gives data on new passenger cars sold in the United States as a function
of several variables.

a. Develop a suitable linear or log–linear model to estimate a demand function for
automobiles in the United States.

b. If you decide to include all the regressors given in the table as explanatory vari-
ables, do you expect to face the multicollinearity problem? Why?

c. If you do expect to face the multicollinearity problem, how will you go about
resolving the problem? State your assumptions clearly and show all the calcula-
tions explicitly.

10.30. To assess the feasibility of a guaranteed annual wage (negative income tax), the
Rand Corporation conducted a study to assess the response of labor supply (average

TABLE 10.14
Passenger Car Data 

Year Y X2 X3 X4 X5 X6

1971 10,227 112.0 121.3 776.8 4.89 79,367
1972 10,872 111.0 125.3 839.6 4.55 82,153
1973 11,350 111.1 133.1 949.8 7.38 85,064
1974 8,775 117.5 147.7 1,038.4 8.61 86,794
1975 8,539 127.6 161.2 1,142.8 6.16 85,846
1976 9,994 135.7 170.5 1,252.6 5.22 88,752
1977 11,046 142.9 181.5 1,379.3 5.50 92,017
1978 11,164 153.8 195.3 1,551.2 7.78 96,048
1979 10,559 166.0 217.7 1,729.3 10.25 98,824
1980 8,979 179.3 247.0 1,918.0 11.28 99,303
1981 8,535 190.2 272.3 2,127.6 13.73 100,397
1982 7,980 197.6 286.6 2,261.4 11.20 99,526
1983 9,179 202.6 297.4 2,428.1 8.69 100,834
1984 10,394 208.5 307.6 2,670.6 9.65 105,005
1985 11,039 215.2 318.5 2,841.1 7.75 107,150
1986 11,450 224.4 323.4 3,022.1 6.31 109,597

Y = new passenger cars sold (thousands), seasonally unadjusted.
X2 = new cars, Consumer Price Index, 1967 = 100, seasonally unadjusted.
X3 = Consumer Price Index, all items, all urban consumers, 1967 = 100, seasonally unadjusted.
X4 = the personal disposable income (PDI), billions of dollars, unadjusted for seasonal variation.
X5 = the interest rate, percent, finance company paper placed directly.
X6 = the employed civilian labor force (thousands), unadjusted for seasonal variation.

Source: Business Statistics,
1986, A Supplement to the
Current Survey of Business,
U.S. Department of Commerce.
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TABLE 10.15
Hours of Work and
Other Data for
35 Groups

Observation Hours Rate ERSP ERNO NEIN Assets Age DEP School

1 2157 2.905 1121 291 380 7250 38.5 2.340 10.5
2 2174 2.970 1128 301 398 7744 39.3 2.335 10.5
3 2062 2.350 1214 326 185 3068 40.1 2.851 8.9
4 2111 2.511 1203 49 117 1632 22.4 1.159 11.5
5 2134 2.791 1013 594 730 12710 57.7 1.229 8.8
6 2185 3.040 1135 287 382 7706 38.6 2.602 10.7
7 2210 3.222 1100 295 474 9338 39.0 2.187 11.2
8 2105 2.493 1180 310 255 4730 39.9 2.616 9.3
9 2267 2.838 1298 252 431 8317 38.9 2.024 11.1

10 2205 2.356 885 264 373 6789 38.8 2.662 9.5
11 2121 2.922 1251 328 312 5907 39.8 2.287 10.3
12 2109 2.499 1207 347 271 5069 39.7 3.193 8.9
13 2108 2.796 1036 300 259 4614 38.2 2.040 9.2
14 2047 2.453 1213 297 139 1987 40.3 2.545 9.1
15 2174 3.582 1141 414 498 10239 40.0 2.064 11.7
16 2067 2.909 1805 290 239 4439 39.1 2.301 10.5
17 2159 2.511 1075 289 308 5621 39.3 2.486 9.5
18 2257 2.516 1093 176 392 7293 37.9 2.042 10.1
19 1985 1.423 553 381 146 1866 40.6 3.833 6.6
20 2184 3.636 1091 291 560 11240 39.1 2.328 11.6
21 2084 2.983 1327 331 296 5653 39.8 2.208 10.2
22 2051 2.573 1194 279 172 2806 40.0 2.362 9.1
23 2127 3.262 1226 314 408 8042 39.5 2.259 10.8
24 2102 3.234 1188 414 352 7557 39.8 2.019 10.7
25 2098 2.280 973 364 272 4400 40.6 2.661 8.4
26 2042 2.304 1085 328 140 1739 41.8 2.444 8.2
27 2181 2.912 1072 304 383 7340 39.0 2.337 10.2
28 2186 3.015 1122 30 352 7292 37.2 2.046 10.9
29 2188 3.010 990 366 374 7325 38.4 2.847 10.6
30 2077 1.901 350 209 95 1370 37.4 4.158 8.2
31 2196 3.009 947 294 342 6888 37.5 3.047 10.6
32 2093 1.899 342 311 120 1425 37.5 4.512 8.1
33 2173 2.959 1116 296 387 7625 39.2 2.342 10.5
34 2179 2.971 1128 312 397 7779 39.4 2.341 10.5
35 2200 2.980 1126 204 393 7885 39.2 2.341 10.6

Notes: Hours = average hours worked during the year.
Rate = average hourly wage (dollars).

ERSP = average yearly earnings of spouse (dollars).
ERNO = average yearly earnings of other family members (dollars).
NEIN = average yearly nonearned income.
Assets = average family asset holdings (bank account, etc.) (dollars).

Age = average age of respondent.
Dep = average number of dependents.

School = average highest grade of school completed.

Source: D. H. Greenberg and
M. Kosters, Income Guarantees
and the Working Poor, Rand
Corporation, R-579-OEO,
December 1970.

hours of work) to increasing hourly wages.* The data for this study were
drawn from a national sample of 6,000 households with a male head earning less
than $15,000 annually. The data were divided into 39 demographic groups for
analysis. These data are given in Table 10.15. Because data for four demographic
groups were missing for some variables, the data given in the table refer to only
35 demographic groups. The definitions of the various variables used in the analy-
sis are given at the end of the table.

*D. H. Greenberg and M. Kosters, Income Guarantees and the Working Poor, Rand Corporation, R-579-
OEO, December 1970.
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a. Regress average hours worked during the year on the variables given in the table
and interpret your regression.

b. Is there evidence of multicollinearity in the data? How do you know?

c. Compute the variance inflation factors (VIF) and TOL measures for the various
regressors.

d. If there is the multicollinearity problem, what remedial action, if any, would
you take?

e. What does this study tell about the feasibility of a negative income tax?

10.31. Table 10.16 gives data on the crime rate in 47 states in the United States for 1960.
Try to develop a suitable model to explain the crime rate in relation to the 14
socioeconomic variables given in the table. Pay particular attention to the collinearity
problem in developing your model.

10.32. Refer to the Longley data given in Section 10.10. Repeat the regression given in the
table there by omitting the data for 1962; that is, run the regression for the period
1947–1961. Compare the two regressions. What general conclusion can you draw
from this exercise?

10.33. Updated Longley data. We have extended the data given in Section 10.10 to include
observations from 1959–2005. The new data are in Table 10.17. The data pertain to
Y = number of people employed, in thousands; X1 = GNP implicit price deflator;
X2 = GNP, millions of dollars; X3 = number of people unemployed in thousands;
X4 = number of people in the armed forces in thousands; X5 = noninstitutionalized
population over 16 years of age; and X6 = year, equal to 1 in 1959, 2 in 1960, and
47 in 2005.

a. Create scatterplots as suggested in the chapter to assess the relationships
between the independent variables. Are there any strong relationships? Do they
seem linear?

b. Create a correlation matrix. Which variables seem to be the most related to each
other, not including the dependent variable?

c. Run a standard OLS regression to predict the number of people employed in
thousands. Do the coefficients on the independent variables behave as you would
expect?

d. Based on the above results, do you believe these data suffer from multicollinearity?
*10.34. As cheese ages, several chemical processes take place that determine the taste of the

final product. The data given in Table 10.18 pertain to concentrations of various
chemicals in a sample of 30 mature cheddar cheeses and subjective measures of
taste for each sample. The variables acetic and H2S are the natural logarithm of con-
centration of acetic acid and hydrogen sulfide, respectively. The variable lactic has
not been log-transformed.

a. Draw a scatterplot of the four variables.

b. Perform a bivariate regression of taste on acetic and H2S and interpret your results.

c. Perform a bivariate regression of taste on lactic and H2S, and interpret the results.

d. Perform a multiple regression of taste on acetic, H2S, and lactic. Interpret your re-
sults.

e. Knowing what you know about multicollinearity, how would you decide among
these regressions?

f. What overall conclusions can you draw from your analysis?

*Optional. 
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TABLE 10.16 U.S. Crime Data for 47 States in 1960

Observation R Age S ED EX0 EX1 LF M N NW U1 U2 W X
1 79.1 151 1 91 58 56 510 950 33 301 108 41 394 261
2 163.5 143 0 113 103 95 583 1012 13 102 96 36 557 194
3 57.8 142 1 89 45 44 533 969 18 219 94 33 318 250
4 196.9 136 0 121 149 141 577 994 157 80 102 39 673 167
5 123.4 141 0 121 109 101 591 985 18 30 91 20 578 174
6 68.2 121 0 110 118 115 547 964 25 44 84 29 689 126
7 96.3 127 1 111 82 79 519 982 4 139 97 38 620 168
8 155.5 131 1 109 115 109 542 969 50 179 79 35 472 206
9 85.6 157 1 90 65 62 553 955 39 286 81 28 421 239

10 70.5 140 0 118 71 68 632 1029 7 15 100 24 526 174
11 167.4 124 0 105 121 116 580 966 101 106 77 35 657 170
12 84.9 134 0 108 75 71 595 972 47 59 83 31 580 172
13 51.1 128 0 113 67 60 624 972 28 10 77 25 507 206
14 66.4 135 0 117 62 61 595 986 22 46 77 27 529 190
15 79.8 152 1 87 57 53 530 986 30 72 92 43 405 264
16 94.6 142 1 88 81 77 497 956 33 321 116 47 427 247
17 53.9 143 0 110 66 63 537 977 10 6 114 35 487 166
18 92.9 135 1 104 123 115 537 978 31 170 89 34 631 165
19 75.0 130 0 116 128 128 536 934 51 24 78 34 627 135
20 122.5 125 0 108 113 105 567 985 78 94 130 58 626 166
21 74.2 126 0 108 74 67 602 984 34 12 102 33 557 195
22 43.9 157 1 89 47 44 512 962 22 423 97 34 288 276
23 121.6 132 0 96 87 83 564 953 43 92 83 32 513 227
24 96.8 131 0 116 78 73 574 1038 7 36 142 42 540 176
25 52.3 130 0 116 63 57 641 984 14 26 70 21 486 196
26 199.3 131 0 121 160 143 631 1071 3 77 102 41 674 152
27 34.2 135 0 109 69 71 540 965 6 4 80 22 564 139
28 121.6 152 0 112 82 76 571 1018 10 79 103 28 537 215
29 104.3 119 0 107 166 157 521 938 168 89 92 36 637 154
30 69.6 166 1 89 58 54 521 973 46 254 72 26 396 237
31 37.3 140 0 93 55 54 535 1045 6 20 135 40 453 200
32 75.4 125 0 109 90 81 586 964 97 82 105 43 617 163
33 107.2 147 1 104 63 64 560 972 23 95 76 24 462 233
34 92.3 126 0 118 97 97 542 990 18 21 102 35 589 166
35 65.3 123 0 102 97 87 526 948 113 76 124 50 572 158
36 127.2 150 0 100 109 98 531 964 9 24 87 38 559 153
37 83.1 177 1 87 58 56 638 974 24 349 76 28 382 254
38 56.6 133 0 104 51 47 599 1024 7 40 99 27 425 225
39 82.6 149 1 88 61 54 515 953 36 165 86 35 395 251
40 115.1 145 1 104 82 74 560 981 96 126 88 31 488 228
41 88.0 148 0 122 72 66 601 998 9 19 84 20 590 144
42 54.2 141 0 109 56 54 523 968 4 2 107 37 489 170
43 82.3 162 1 99 75 70 522 996 40 208 73 27 496 224
44 103.0 136 0 121 95 96 574 1012 29 36 111 37 622 162
45 45.5 139 1 88 46 41 480 968 19 49 135 53 457 249
46 50.8 126 0 104 106 97 599 989 40 24 78 25 593 171
47 84.9 130 0 121 90 91 623 1049 3 22 113 40 588 160

Source: W. Vandaele, “Participation in Illegitimate Activities: Erlich Revisted,” in A. Blumstein, J. Cohen, and D. Nagin, eds., Deterrence and Incapacitation, National
Academy of Sciences, 1978, pp. 270–335.

Definitions of variables:
R = crime rate, number of offenses reported to police per million population.

Age = number of males of age 14–24 per 1,000 population.
S = indicator variable for southern states (0 = no, 1 = yes).

ED = mean number of years of schooling times 10 for persons age 25 or older.
EX0 = 1960 per capita expenditure on police by state and local government.
EX1 = 1959 per capita expenditure on police by state and local government.

LF = labor force participation rate per 1,000 civilian urban males age 14–24.
M = number of males per 1,000 females.
N = state population size in hundred thousands.

NW = number of nonwhites per 1,000 population.
U1 = unemployment rate of urban males per 1,000 of age 14–24.
U2 = unemployment rate of urban males per 1,000 of age 35–39.
W = median value of transferable goods and assets or family income in tens of dollars.
X = the number of families per 1,000 earnings 1⁄2 the median income.

Observation = state (47 states for the year 1960).
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TABLE 10.17
Updated Longley
Data, 1959–2005

Observation Y X1 X2 X3 X4 X5 X6

1959 64,630 82.908 509,300 3,740 2552 120,287 1
1960 65,778 84.074 529,500 3,852 2514 121,836 2
1961 65,746 85.015 548,200 4,714 2573 123,404 3
1962 66,702 86.186 589,700 3,911 2827 124,864 4
1963 67,762 87.103 622,200 4,070 2737 127,274 5
1964 69,305 88.438 668,500 3,786 2738 129,427 6
1965 71,088 90.055 724,400 3,366 2722 131,541 7
1966 72,895 92.624 792,900 2,875 3123 133,650 8
1967 74,372 95.491 838,000 2,975 3446 135,905 9
1968 75,920 99.56 916,100 2,817 3535 138,171 10
1969 77,902 104.504 990,700 2,832 3506 140,461 11
1970 78,678 110.046 1,044,900 4,093 3188 143,070 12
1971 79,367 115.549 1,134,700 5,016 2816 145,826 13
1972 82,153 120.556 1,246,800 4,882 2449 148,592 14
1973 85,064 127.307 1,395,300 4,365 2327 151,476 15
1974 86,794 138.82 1,515,500 5,156 2229 154,378 16
1975 85,846 151.857 1,651,300 7,929 2180 157,344 17
1976 88,752 160.68 1,842,100 7,406 2144 160,319 18
1977 92,017 170.884 2,051,200 6,991 2133 163,377 19
1978 96,048 182.863 2,316,300 6,202 2117 166,422 20
1979 98,824 198.077 2,595,300 6,137 2088 169,440 21
1980 99,303 216.073 2,823,700 7,637 2102 172,437 22
1981 100,397 236.385 3,161,400 8,273 2142 174,929 23
1982 99,526 250.798 3,291,500 10,678 2179 177,176 24
1983 100,834 260.68 3,573,800 10,717 2199 179,234 25
1984 105,005 270.496 3,969,500 8,539 2219 181,192 26
1985 107,150 278.759 4,246,800 8,312 2234 183,174 27
1986 109,597 284.895 4,480,600 8,237 2244 185,284 28
1987 112,440 292.691 4,757,400 7,425 2257 187,419 29
1988 114,968 302.68 5,127,400 6,701 2224 189,233 30
1989 117,342 314.179 5,510,600 6,528 2208 190,862 31
1990 118,793 326.357 5,837,900 7,047 2167 192,644 32
1991 117,718 337.747 6,026,300 8,628 2118 194,936 33
1992 118,492 345.477 6,367,400 9,613 1966 197,205 34
1993 120,259 353.516 6,689,300 8,940 1760 199,622 35
1994 123,060 361.026 7,098,400 7,996 1673 201,970 36
1995 124,900 368.444 7,433,400 7,404 1579 204,420 37
1996 126,708 375.429 7,851,900 7,236 1502 207,087 38
1997 129,558 381.663 8,337,300 6,739 1457 209,846 39
1998 131,463 385.881 8,768,300 6,210 1423 212,638 40
1999 133,488 391.452 9,302,200 5,880 1380 215,404 41
2000 136,891 399.986 9,855,900 5,692 1405 218,061 42
2001 136,933 409.582 10,171,600 6,801 1412 220,800 43
2002 136,485 416.704 10,500,200 8,378 1425 223,532 44
2003 137,736 425.553 11,017,600 8,774 1423 226,223 45
2004 139,252 437.795 11,762,100 8,149 1411 228,892 46
2005 141,730 451.946 12,502,400 7,591 1378 231,552 47

Source: Department of Labor,
Bureau of Labor Statistics and
http://siadapp.dmdc.osd.mil/
personnel/MILITARY/Miltop.
htm.
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TABLE 10.18
Chemicals in Cheeses 

Obs. Taste Acetic H2S Lactic

1 12.30000 4.543000 3.135000 0.860000
2 20.90000 5.159000 5.043000 1.530000
3 39.00000 5.366000 5.438000 1.570000
4 47.90000 5.759000 7.496000 1.810000
5 5.600000 4.663000 3.807000 0.990000
6 25.90000 5.697000 7.601000 1.090000
7 37.30000 5.892000 8.726000 1.290000
8 21.90000 6.078000 7.966000 1.780000
9 18.10000 4.898000 3.850000 1.290000

10 21.00000 5.242000 4.174000 1.580000
11 34.90000 5.740000 6.142000 1.680000
12 57.20000 6.446000 7.908000 1.900000
13 0.700000 4.477000 2.996000 1.060000
14 25.90000 5.236000 4.942000 1.300000
15 54.90000 6.151000 6.752000 1.520000
16 40.90000 3.365000 9.588000 1.740000
17 15.90000 4.787000 3.912000 1.160000
18 6.400000 5.142000 4.700000 1.490000
19 18.00000 5.247000 6.174000 1.630000
20 38.90000 5.438000 9.064000 1.990000
21 14.00000 4.564000 4.949000 1.150000
22 15.20000 5.298000 5.220000 1.330000
23 32.00000 5.455000 9.242000 1.440000
24 56.70000 5.855000 10.19900 2.010000
25 16.80000 5.366000 3.664000 1.310000
26 11.60000 6.043000 3.219000 1.460000
27 26.50000 6.458000 6.962000 1.720000
28 0.700000 5.328000 3.912000 1.250000
29 13.40000 5.802000 6.685000 1.080000
30 5.500000 6.176000 4.787000 1.250000

Source: http://lib.stat.cmu.edu/
DASL/Datafiles/Cheese.html.
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An important assumption of the classical linear regression model (Assumption 4) is that
the disturbances ui appearing in the population regression function are homoscedastic; that
is, they all have the same variance. In this chapter we examine the validity of this assump-
tion and find out what happens if this assumption is not fulfilled. As in Chapter 10, we seek
answers to the following questions:

1. What is the nature of heteroscedasticity?

2. What are its consequences?

3. How does one detect it?

4. What are the remedial measures?

11.1 The Nature of Heteroscedasticity

As noted in Chapter 3, one of the important assumptions of the classical linear regression
model is that the variance of each disturbance term ui , conditional on the chosen values
of the explanatory variables, is some constant number equal to σ 2. This is the assump-
tion of homoscedasticity, or equal (homo) spread (scedasticity), that is, equal variance. 
Symbolically,

E
(
u2

i

) = σ 2 i = 1, 2, . . . , n (11.1.1)

Diagrammatically, in the two-variable regression model homoscedasticity can be shown
as in Figure 3.4, which, for convenience, is reproduced as Figure 11.1. As Figure 11.1
shows, the conditional variance of Yi (which is equal to that of ui ), conditional upon the
given Xi , remains the same regardless of the values taken by the variable X.

In contrast, consider Figure 11.2, which shows that the conditional variance of Yi

increases as X increases. Here, the variances of Yi are not the same. Hence, there is
heteroscedasticity. Symbolically,

E
(
u2

i

) = σ 2
i (11.1.2)

Chapter 11
Heteroscedasticity:
What Happens If the
Error Variance Is
Nonconstant?
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366 Part Two Relaxing the Assumptions of the Classical Model

Notice the subscript of σ 2, which reminds us that the conditional variances of ui

( = conditional variances of Yi ) are no longer constant.
To make the difference between homoscedasticity and heteroscedasticity clear, assume

that in the two-variable model Yi = β1 + β2 Xi + ui , Y represents savings and X represents
income. Figures 11.1 and 11.2 show that as income increases, savings on the average also
increase. But in Figure 11.1 the variance of savings remains the same at all levels of
income, whereas in Figure 11.2 it increases with income. It seems that in Figure 11.2 the
higher-income families on the average save more than the lower-income families, but there
is also more variability in their savings.

There are several reasons why the variances of ui may be variable, some of which are as
follows.1

1. Following the error-learning models, as people learn, their errors of behavior become
smaller over time or the number of errors becomes more consistent. In this case, σ 2

i is
expected to decrease. As an example, consider Figure 11.3, which relates the number of
typing errors made in a given time period on a test to the hours put in typing practice. As
Figure 11.3 shows, as the number of hours of typing practice increases, the average number
of typing errors as well as their variances decreases.

2. As incomes grow, people have more discretionary income2 and hence more scope
for choice about the disposition of their income. Hence, σ 2

i is likely to increase with

D
en

si
ty

Income

Savings

X

Y

β1 + β2 Xiββ

FIGURE 11.1
Homoscedastic
disturbances.

D
en
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ty

Income

Savings

X

Y

β1 + β2 Xiβ β

FIGURE 11.2
Heteroscedastic
disturbances.

1See Stefan Valavanis, Econometrics, McGraw-Hill, New York, 1959, p. 48.
2As Valavanis puts it, “Income grows, and people now barely discern dollars whereas previously they
discerned dimes,’’ ibid., p. 48.
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income. Thus in the regression of savings on income one is likely to find σ 2
i increasing

with income (as in Figure 11.2) because people have more choices about their savings be-
havior. Similarly, companies with larger profits are generally expected to show greater
variability in their dividend policies than companies with lower profits. Also, growth-
oriented companies are likely to show more variability in their dividend payout ratio than
established companies.

3. As data collecting techniques improve, σ 2
i is likely to decrease. Thus, banks that have

sophisticated data processing equipment are likely to commit fewer errors in the monthly
or quarterly statements of their customers than banks without such facilities.

4. Heteroscedasticity can also arise as a result of the presence of outliers. An outlying
observation, or outlier, is an observation that is much different (either very small or very
large) in relation to the observations in the sample. More precisely, an outlier is an obser-
vation from a different population to that generating the remaining sample observations.3

The inclusion or exclusion of such an observation, especially if the sample size is small,
can substantially alter the results of regression analysis.

As an example, consider the scattergram given in Figure 11.4. Based on the data given in
Table 11.9 in Exercise 11.22, this figure plots percent rate of change of stock prices (Y ) and
consumer prices (X ) for the post–World War II period through 1969 for 20 countries. In this
figure the observation on Y and X for Chile can be regarded as an outlier because the given Y
and X values are much larger than for the rest of the countries. In situations such as this, it
would be hard to maintain the assumption of homoscedasticity. In Exercise 11.22, you are
asked to find out what happens to the regression results if the observations for Chile are
dropped from the analysis.

5. Another source of heteroscedasticity arises from violating Assumption 9 of the classi-
cal linear regression model (CLRM), namely, that the regression model is correctly specified.
Although we will discuss the topic of specification errors more fully in Chapter 13, very often
what looks like heteroscedasticity may be due to the fact that some important variables are
omitted from the model. Thus, in the demand function for a commodity, if we do not include
the prices of commodities complementary to or competing with the commodity in question
(the omitted variable bias), the residuals obtained from the regression may give the distinct
impression that the error variance may not be constant. But if the omitted variables are in-
cluded in the model, that impression may disappear.

D
en

si
ty

X

Y

β1 + β2 Xi

Typing errors

Hours of typing practice

β β

FIGURE 11.3
Illustration of
heteroscedasticity.

3I am indebted to Michael McAleer for pointing this out to me.
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368 Part Two Relaxing the Assumptions of the Classical Model

As a concrete example, recall our study of advertising impressions retained (Y ) in rela-
tion to advertising expenditure (X). (See Exercise 8.32.) If you regress Y on X only and ob-
serve the residuals from this regression, you will see one pattern, but if you regress Y on X
and X2, you will see another pattern, which can be seen clearly from Figure 11.5. We have
already seen that X2 belongs in the model. (See Exercise 8.32.)

6. Another source of heteroscedasticity is skewness in the distribution of one or more
regressors included in the model. Examples are economic variables such as income,
wealth, and education. It is well known that the distribution of income and wealth in most
societies is uneven, with the bulk of the income and wealth being owned by a few at the top.

7. Other sources of heteroscedasticity: As David Hendry notes, heteroscedasticity can
also arise because of (1) incorrect data transformation (e.g., ratio or first difference transfor-
mations) and (2) incorrect functional form (e.g., linear versus log–linear models).4
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4David F. Hendry, Dynamic Econometrics, Oxford University Press, 1995, p. 45.
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Note that the problem of heteroscedasticity is likely to be more common in cross-
sectional than in time series data. In cross-sectional data, one usually deals with members of
a population at a given point in time, such as individual consumers or their families, firms,
industries, or geographical subdivisions such as state, country, city, etc. Moreover, these
members may be of different sizes, such as small, medium, or large firms or low, medium,
or high income. In time series data, on the other hand, the variables tend to be of similar or-
ders of magnitude because one generally collects the data for the same entity over a period
of time. Examples are gross national product (GNP), consumption expenditure, savings, or
employment in the United States, say, for the period 1955–2005.

As an illustration of heteroscedasticity likely to be encountered in cross-sectional analysis,
consider Table 11.1. This table gives data on compensation per employee in 10 nondurable
goods manufacturing industries, classified by the employment size of the firm or the estab-
lishment for the year 1958. Also given in the table are average productivity figures for nine
employment classes.

Although the industries differ in their output composition, Table 11.1 shows clearly that
on the average large firms pay more than small firms. As an example, firms employing one
to four employees paid on the average about $3,396, whereas those employing 1,000 to
2,499 employees on the average paid about $4,843. But notice that there is considerable
variability in earnings among various employment classes as indicated by the estimated

TABLE 11.1 Compensation per Employee ($) in Nondurable Manufacturing Industries According to Employment
Size of Establishment, 1958

Employment Size (average number of employees)

Industry 1–4 5–9 10–19 20–49 50–99 100–249 250–499 500–999 1,000–2,499

Food and kindred
products 2,994 3,295 3,565 3,907 4,189 4,486 4,676 4,968 5,342

Tobacco products 1,721 2,057 3,336 3,320 2,980 2,848 3,072 2,969 3,822
Textile mill 

products 3,600 3,657 3,674 3,437 3,340 3,334 3,225 3,163 3,168
Apparel and 

related products 3,494 3,787 3,533 3,215 3,030 2,834 2,750 2,967 3,453
Paper and allied

products 3,498 3,847 3,913 4,135 4,445 4,885 5,132 5,342 5,326
Printing and

publishing 3,611 4,206 4,695 5,083 5,301 5,269 5,182 5,395 5,552
Chemicals and

allied products 3,875 4,660 4,930 5,005 5,114 5,248 5,630 5,870 5,876
Petroleum and

coal products 4,616 5,181 5,317 5,337 5,421 5,710 6,316 6,455 6,347
Rubber and 

plastic products 3,538 3,984 4,014 4,287 4,221 4,539 4,721 4,905 5,481
Leather and 

leather products 3,016 3,196 3,149 3,317 3,414 3,254 3,177 3,346 4,067
Average 

compensation 3,396 3,787 4,013 4,104 4,146 4,241 4,388 4,538 4,843
Standard deviation 742.2 851.4 727.8 805.06 929.9 1,080.6 1,241.2 1,307.7 1,110.7
Average 

productivity 9,355 8,584 7,962 8,275 8,389 9,418 9,795 10,281 11,750

Source: The Census of Manufacturers, U.S. Department of Commerce, 1958 (computed by author).
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370 Part Two Relaxing the Assumptions of the Classical Model

standard deviations of earnings. This can be seen also from Figure 11.6, which plots the
standard deviation of compensation and average compensation in each employment class.
As can be seen clearly, on average, the standard deviation of compensation increases with
the average value of compensation.

11.2 OLS Estimation in the Presence of Heteroscedasticity

What happens to ordinary least squares (OLS) estimators and their variances if we intro-
duce heteroscedasticity by letting E(u2

i ) = σ 2
i but retain all other assumptions of the clas-

sical model? To answer this question, let us revert to the two-variable model:

Yi = β1 + β2 Xi + ui

Applying the usual formula, the OLS estimator of β2 is

β̂2 =
∑

xi yi∑
x2

i

= n
∑

Xi Yi − ∑
Xi

∑
Yi

n
∑

X2
i − (

∑
Xi )2

(11.2.1)

but its variance is now given by the following expression (see Appendix 11A, Section 11A.1):

(11.2.2)

which is obviously different from the usual variance formula obtained under the assump-
tion of homoscedasticity, namely,

(11.2.3)var (β̂2) = σ 2∑
x2

i

var (β̂2) =
∑

x2
i σ 2

i(∑
x2

i
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Of course, if σ 2
i = σ 2 for each i, the two formulas will be identical. (Why?)

Recall that β̂2 is best linear unbiased estimator (BLUE) if the assumptions of the classi-
cal model, including homoscedasticity, hold. Is it still BLUE when we drop only the
homoscedasticity assumption and replace it with the assumption of heteroscedasticity? It is
easy to prove that β̂2 is still linear and unbiased. As a matter of fact, as shown in Appendix
3A, Section 3A.2, to establish the unbiasedness of β̂2 it is not necessary that the disturbances
(ui) be homoscedastic. In fact, the variance of ui , homoscedastic or heteroscedastic, plays
no part in the determination of the unbiasedness property. Recall that in Appendix 3A, Sec-
tion 3A.7, we showed that β̂2 is a consistent estimator under the assumptions of the classical
linear regression model. Although we will not prove it, it can be shown that β̂2 is a consistent
estimator despite heteroscedasticity; that is, as the sample size increases indefinitely, 
the estimated β2 converges to its true value. Furthermore, it can also be shown that under
certain conditions (called regularity conditions), β̂2 is asymptotically normally distributed.
Of course, what we have said about β̂2 also holds true of other parameters of a multiple
regression model.

Granted that β̂2 is still linear unbiased and consistent, is it “efficient” or “best”? That is,
does it have minimum variance in the class of unbiased estimators? And is that minimum
variance given by Eq. (11.2.2)? The answer is no to both the questions: β̂2 is no longer best
and the minimum variance is not given by Eq. (11.2.2). Then what is BLUE  in the presence
of heteroscedasticity? The answer is given in the following section.

11.3 The Method of Generalized Least Squares (GLS)

Why is the usual OLS estimator of β2 given in Eq. (11.2.1) not best, although it is still unbi-
ased? Intuitively, we can see the reason from Table 11.1. As the table shows, there is consid-
erable variability in the earnings between employment classes. If we were to regress
per-employee compensation on the size of employment, we would like to make use of the
knowledge that there is considerable interclass variability in earnings. Ideally, we would like
to devise the estimating scheme in such a manner that observations coming from populations
with greater variability are given less weight than those coming from populations with
smaller variability. Examining Table 11.1, we would like to weight observations coming
from employment classes 10–19 and 20–49 more heavily than those coming from employ-
ment classes like 5–9 and 250–499, for the former are more closely clustered around their
mean values than the latter, thereby enabling us to estimate the population regression func-
tion (PRF) more accurately.

Unfortunately, the usual OLS method does not follow this strategy and therefore does
not make use of the “information” contained in the unequal variability of the dependent
variable Y, say, employee compensation of Table 11.1: It assigns equal weight or impor-
tance to each observation. But a method of estimation, known as generalized least squares
(GLS), takes such information into account explicitly and is therefore capable of produc-
ing estimators that are BLUE. To see how this is accomplished, let us continue with the
now-familiar two-variable model:

Yi = β1 + β2 Xi + ui (11.3.1)

which for ease of algebraic manipulation we write as

Yi = β1 X0i + β2 Xi + ui (11.3.2)

where X0i = 1 for each i. The reader can see that these two formulations are identical.
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Now assume that the heteroscedastic variances σ 2
i are known. Divide Eq. (11.3.2)

through by σi to obtain

Yi

σi
= β1

(
X0i

σi

)
+ β2

(
Xi

σi

)
+

(
ui

σi

)
(11.3.3)

which for ease of exposition we write as

Y ∗
i = β∗

1 X∗
0i + β∗

2 X∗
i + u∗

i (11.3.4)

where the starred, or transformed, variables are the original variables divided by (the known)
σi . We use the notation β∗

1 and β∗
2 , the parameters of the transformed model, to distinguish

them from the usual OLS parameters β1 and β2.
What is the purpose of transforming the original model? To see this, notice the follow-

ing feature of the transformed error term u∗
i :

var (u∗
i ) = E(u∗

i )2 = E

(
ui

σi

)2

since E(u∗
i ) = 0

= 1

σ 2
i

E
(
u2

i

)
since σ 2

i is known

= 1

σ 2
i

(
σ 2

i

)
since E

(
u2

i

) = σ 2
i

= 1

which is a constant. That is, the variance of the transformed disturbance term u∗
i is now ho-

moscedastic. Since we are still retaining the other assumptions of the classical model, the
finding that it is u∗ that is homoscedastic suggests that if we apply OLS to the transformed
model (11.3.3) it will produce estimators that are BLUE. In short, the estimated β∗

1 and β∗
2

are now BLUE and not the OLS estimators β̂1 and β̂2.
This procedure of transforming the original variables in such a way that the transformed

variables satisfy the assumptions of the classical model and then applying OLS to them is
known as the method of generalized least squares (GLS). In short, GLS is OLS on the trans-
formed variables that satisfy the standard least-squares assumptions. The estimators thus
obtained are known as GLS estimators, and it is these estimators that are BLUE.

The actual mechanics of estimating β∗
1 and β∗

2 are as follows. First, we write down the
sample regression function (SRF) of Eq. (11.3.3)

Yi

σi
= β̂∗

1

(
X0i

σi

)
+ β̂∗

2

(
Xi

σi

)
+

(
ûi

σi

)

or

Y ∗
i = β̂∗

1 X∗
0i + β̂∗

2 X∗
i + û∗

i (11.3.6)

Now, to obtain the GLS estimators, we minimize∑
û2∗

i =
∑

(Y ∗
i − β̂∗

1 X∗
0i − β̂∗

2 X∗
i )2

that is,

∑(
ûi

σi

)2

=
∑[(

Yi

σi

)
− β̂∗

1

(
X0i

σi

)
− β̂∗

2

(
Xi

σi

)]2

(11.3.7)

(11.3.5)
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The actual mechanics of minimizing Eq. (11.3.7) follow the standard calculus techniques
and are given in Appendix 11A, Section 11A.2. As shown there, the GLS estimator of β∗

2 is

(11.3.8)

and its variance is given by

(11.3.9)

where wi = 1/σ 2
i .

Difference between OLS and GLS
Recall from Chapter 3 that in OLS we minimize

∑
û2

i =
∑

(Yi − β̂1 − β̂2 Xi )
2 (11.3.10)

but in GLS we minimize the expression (11.3.7), which can also be written as

(11.3.11)

where wi = 1/σ 2
i (verify that Eq. [11.3.11] and Eq. [11.3.7] are identical).

Thus, in GLS we minimize a weighted sum of residual squares with wi = 1/σ 2
i acting

as the weights, but in OLS we minimize an unweighted or (what amounts to the same thing)
equally weighted residual sum of squares (RSS). As Eq. (11.3.7) shows, in GLS the weight
assigned to each observation is inversely proportional to its σi , that is, observations
coming from a population with larger σi will get relatively smaller weight and those from
a population with smaller σi will get proportionately larger weight in minimizing the
RSS (11.3.11). To see the difference between OLS and GLS clearly, consider the hypothet-
ical scattergram given in Figure 11.7.

In the (unweighted) OLS, each û2
i associated with points A, B, and C will receive the

same weight in minimizing the RSS. Obviously, in this case the û2
i associated with point C

will dominate the RSS. But in GLS the extreme observation C will get relatively smaller
weight than the other two observations. As noted earlier, this is the right strategy, for in
estimating the population regression function (PRF) more reliably we would like to give
more weight to observations that are closely clustered around their (population) mean than
to those that are widely scattered about.

Since Eq. (11.3.11) minimizes a weighted RSS, it is appropriately known as weighted
least squares (WLS), and the estimators thus obtained and given in Eqs. (11.3.8) and (11.3.9)
are known as WLS estimators. But WLS is just a special case of the more general estimating
technique, GLS. In the context of heteroscedasticity, one can treat the two terms WLS and
GLS interchangeably. In later chapters we will come across other special cases of GLS.

In passing, note that if wi = w, a constant for all i, β̂∗
2 is identical with β̂2 and var (β̂∗

2 )
is identical with the usual (i.e., homoscedastic) var (β̂2) given in Eq. (11.2.3), which should
not be surprising. (Why?) (See Exercise 11.8.)

∑
wi û

2
i =

∑
wi (Yi − β̂∗

1 X0i − β̂∗
2 Xi )

2
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∑
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)(∑
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) − (∑
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(∑
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374 Part Two Relaxing the Assumptions of the Classical Model

11.4 Consequences of Using OLS in the Presence 
of Heteroscedasticity

As we have seen, both β̂∗
2 and β̂2 are (linear) unbiased estimators: In repeated sampling, on

the average, β̂∗
2 and β̂2 will equal the true β2; that is, they are both unbiased estimators. But

we know that it is β̂∗
2 that is efficient, that is, has the smallest variance. What happens to our

confidence interval, hypotheses testing, and other procedures if we continue to use the OLS
estimator β̂2? We distinguish two cases.

OLS Estimation Allowing for Heteroscedasticity
Suppose we use β̂2 and use the variance formula given in Eq. (11.2.2), which takes into
account heteroscedasticity explicitly. Using this variance, and assuming σ 2

i are known, can
we establish confidence intervals and test hypotheses with the usual t and F tests? The
answer generally is no because it can be shown that var (β̂∗

2 ) ≤ var (β̂2), 5 which means that
confidence intervals based on the latter will be unnecessarily larger. As a result, the t and F
tests are likely to give us inaccurate results in that var (β̂2) is overly large and what appears
to be a statistically insignificant coefficient (because the t value is smaller than what is
appropriate) may in fact be significant if the correct confidence intervals were established on
the basis of the GLS procedure.

OLS Estimation Disregarding Heteroscedasticity
The situation can become serious if we not only use β̂2 but also continue to use the usual
(homoscedastic) variance formula given in Eq. (11.2.3) even if heteroscedasticity is present
or suspected: Note that this is the more likely case of the two we discuss here, because
running a standard OLS regression package and ignoring (or being ignorant of)
heteroscedasticity will yield variance of β̂2 as given in Eq. (11.2.3). First of all, var (β̂2)
given in Eq. (11.2.3) is a biased estimator of var (β̂2) given in Eq. (11.2.2), that is, on the

X

Y

A
B

Yi = β β1 + 2 Xi

u

u

C

0

u{

FIGURE 11.7
Hypothetical
scattergram.

5A formal proof can be found in Phoebus J. Dhrymes, Introductory Econometrics, Springer-Verlag, 
New York, 1978, pp. 110–111. In passing, note that the loss of efficiency of β̂2 (i.e., by how much
var [β̂2] exceeds var [β̂∗

2]) depends on the sample values of the X variables and the value of σ2
i .
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average it overestimates or underestimates the latter, and in general we cannot tell whether
the bias is positive (overestimation) or negative (underestimation) because it depends on
the nature of the relationship between σ 2

i and the values taken by the explanatory variable
X, as can be seen clearly from Eq. (11.2.2) (see Exercise 11.9). The bias arises from the fact
that σ̂ 2, the conventional estimator of σ 2, namely, 

∑
û2

i /(n − 2) is no longer an unbiased
estimator of the latter when heteroscedasticity is present (see Appendix 11A.3). As a result,
we can no longer rely on the conventionally computed confidence intervals and the
conventionally employed t and F tests.6 In short, if we persist in using the usual testing
procedures despite heteroscedasticity, whatever conclusions we draw or inferences we
make may be very misleading.

To throw more light on this topic, we refer to a Monte Carlo study conducted by Davidson
and MacKinnon.7 They consider the following simple model, which in our notation is

Yi = β1 + β2 Xi + ui (11.4.1)

They assume that β1 = 1, β2 = 1, and ui ∼ N (0, Xα
i ). As the last expression shows, they

assume that the error variance is heteroscedastic and is related to the value of the regressor X
with power α. If, for example, α = 1, the error variance is proportional to the value of X; if
α = 2, the error variance is proportional to the square of the value of X, and so on. In Sec-
tion 11.6 we will consider the logic behind such a procedure. Based on 20,000 replications
and allowing for various values for α, they obtain the standard errors of the two regression
coefficients using OLS (see Eq. [11.2.3]), OLS allowing for heteroscedasticity (see
Eq. [11.2.2]), and GLS (see Eq. [11.3.9]). We quote their results for selected values of α:

Standard error of ı̂1 Standard error of ı̂2

Value of Å OLS OLShet GLS OLS OLShet GLS

0.5 0.164 0.134 0.110 0.285 0.277 0.243
1.0 0.142 0.101 0.048 0.246 0.247 0.173
2.0 0.116 0.074 0.0073 0.200 0.220 0.109
3.0 0.100 0.064 0.0013 0.173 0.206 0.056
4.0 0.089 0.059 0.0003 0.154 0.195 0.017

Note: OLShet means OLS allowing for heteroscedasticity.

The most striking feature of these results is that OLS, with or without correction for het-
eroscedasticity, consistently overestimates the true standard error obtained by the (correct)
GLS procedure, especially for large values of α, thus establishing the superiority of GLS.
These results also show that if we do not use GLS and rely on OLS—allowing for or not
allowing for heteroscedasticity—the picture is mixed. The usual OLS standard errors are
either too large (for the intercept) or generally too small (for the slope coefficient) in relation
to those obtained by OLS allowing for heteroscedasticity. The message is clear: In the pres-
ence of heteroscedasticity, use GLS. However, for reasons explained later in the chapter, in
practice it is not always easy to apply GLS. Also, as we discuss later, unless heteroscedastic-
ity is very severe, one may not abandon OLS in favor of GLS or WLS.

From the preceding discussion it is clear that heteroscedasticity is potentially a serious
problem and the researcher needs to know whether it is present in a given situation. If its

6From Eq. (5.3.6) we know that the 100(1 − α)% confidence interval for β2 is [β̂2 ± tα/2 se (β̂2)]. But
if se (β̂2) cannot be estimated unbiasedly, what trust can we put in the conventionally computed 
confidence interval?
7Russell Davidson and James G. MacKinnon, Estimation and Inference in Econometrics, Oxford 
University Press, New York, 1993, pp. 549–550.
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presence is detected, then one can take corrective action, such as using the weighted least-
squares regression or some other technique. Before we turn to examining the various cor-
rective procedures, however, we must first find out whether heteroscedasticity is present or
likely to be present in a given case. This topic is discussed in the following section.

A Technical Note
Although we have stated that, in cases of heteroscedasticity, it is the GLS, not the OLS, that
is BLUE, there are examples where OLS can be BLUE, despite heteroscedasticity.8 But
such examples are infrequent in practice.

11.5 Detection of Heteroscedasticity

As with multicollinearity, the important practical question is: How does one know that
heteroscedasticity is present in a specific situation? Again, as in the case of multicollinearity,
there are no hard-and-fast rules for detecting heteroscedasticity, only a few rules of thumb. But
this situation is inevitable because σ 2

i can be known only if we have the entire Y population
corresponding to the chosen X’s, such as the population shown in Table 2.1 or Table 11.1.
But such data are an exception rather than the rule in most economic investigations. In this
respect the econometrician differs from scientists in fields such as agriculture and biology,
where researchers have a good deal of control over their subjects. More often than not, in
economic studies there is only one sample Y value corresponding to a particular value of X.
And there is no way one can know σ 2

i from just one Y observation. Therefore, in most cases
involving econometric investigations, heteroscedasticity may be a matter of intuition, edu-
cated guesswork, prior empirical experience, or sheer speculation.

With the preceding caveat in mind, let us examine some of the informal and formal
methods of detecting heteroscedasticity. As the following discussion will reveal, most of
these methods are based on the examination of the OLS residuals ûi since they are the ones
we observe, and not the disturbances ui . One hopes that they are good estimates of ui , a
hope that may be fulfilled if the sample size is fairly large.

Informal Methods
Nature of the Problem
Very often the nature of the problem under consideration suggests whether heteroscedas-
ticity is likely to be encountered. For example, following the pioneering work of Prais and
Houthakker on family budget studies, where they found that the residual variance around
the regression of consumption on income increased with income, one now generally as-
sumes that in similar surveys one can expect unequal variances among the disturbances.9

As a matter of fact, in cross-sectional data involving heterogeneous units, heteroscedastic-
ity may be the rule rather than the exception. Thus, in a cross-sectional analysis involving
the investment expenditure in relation to sales, rate of interest, etc., heteroscedasticity is
generally expected if small-, medium-, and large-size firms are sampled together.

8The reason for this is that the Gauss–Markov theorem provides the sufficient (but not necessary)
condition for OLS to be efficient. The necessary and sufficient condition for OLS to be BLUE is given by
Kruskal’s theorem. But this topic is beyond the scope of this book. I am indebted to Michael McAleer
for bringing this to my attention. For further details, see Denzil G. Fiebig, Michael McAleer, and Robert
Bartels, “Properties of Ordinary Least Squares Estimators in Regression Models with Nonspherical
Disturbances,” Journal of Econometrics, vol. 54, No. 1–3, Oct.–Dec., 1992, pp. 321–334. For the
mathematically inclined student, I discuss this topic further in Appendix C, using matrix algebra.
9S. J. Prais and H. S. Houthakker, The Analysis of Family Budgets, Cambridge University Press, New
York, 1955.
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As a matter of fact, we have already come across examples of this. In Chapter 2 we dis-
cussed the relationship between mean, or average, hourly wages in relation to years of
schooling in the United States. In that chapter we also discussed the relationship between
expenditure on food and total expenditure for 55 families in India (see Exercise 11.16).

Graphical Method
If there is no a priori or empirical information about the nature of heteroscedasticity, in
practice one can do the regression analysis on the assumption that there is no heteroscedas-
ticity and then do a postmortem examination of the residual squared û2

i to see if they exhibit
any systematic pattern. Although û2

i are not the same thing as u2
i , they can be used as prox-

ies especially if the sample size is sufficiently large.10 An examination of the û2
i may reveal

patterns such as those shown in Figure 11.8.
In Figure 11.8, û2

i are plotted against Ŷi , the estimated Yi from the regression line, the idea
being to find out whether the estimated mean value of Y is systematically related to the
squared residual. In Figure 11.8a we see that there is no systematic pattern between the two
variables, suggesting that perhaps no heteroscedasticity is present in the data. Figures 11.8b
to e, however, exhibit definite patterns. For instance, Figure 11.8c suggests a linear relation-
ship, whereas Figures 11.8d and e indicate a quadratic relationship between û2

i and Ŷi . Using
such knowledge, albeit informal, one may transform the data in such a manner that the trans-
formed data do not exhibit heteroscedasticity. In Section 11.6 we shall examine several such
transformations.

Instead of plotting û2
i against Ŷi , one may plot them against one of the explanatory

variables, especially if plotting û2
i against Ŷi results in the pattern shown in Figure 11.8a.

Such a plot, which is shown in Figure 11.9, may reveal patterns similar to those given in
Figure 11.8. (In the case of the two-variable model, plotting û2

i against Ŷi is equivalent to

10For the relationship between ûi and ui , see E. Malinvaud, Statistical Methods of Econometrics, North
Holland Publishing Company, Amsterdam, 1970, pp. 88–89.

(a) (b) (c)

u2 u2 u2

u2

(e)

Y

Y Y Y
0 0 0

0 0

u2

(d)

Y

FIGURE 11.8
Hypothetical patterns
of estimated squared
residuals.

guj75772_ch11.qxd  12/08/2008  07:04 PM  Page 377



378 Part Two Relaxing the Assumptions of the Classical Model

(a) (b) (c)

u2 u2 u2

u2

(e)

X

X X X
0 0 0

0 0

u2

(d)

X

FIGURE 11.9
Scattergram of
estimated squared
residuals against X.

11R. E. Park, “Estimation with Heteroscedastic Error Terms,’’ Econometrica, vol. 34, no. 4, October
1966, p. 888. The Park test is a special case of the general test proposed by A. C. Harvey in 
“Estimating Regression Models with Multiplicative Heteroscedasticity,’’ Econometrica, vol. 44, no. 3,
1976, pp. 461–465.

plotting it against Xi , and therefore Figure 11.9 is similar to Figure 11.8. But this is not the
situation when we consider a model involving two or more X variables; in this instance, û2

i
may be plotted against any X variable included in the model.)

A pattern such as that shown in Figure 11.9c, for instance, suggests that the variance of
the disturbance term is linearly related to the X variable. Thus, if in the regression of sav-
ings on income one finds a pattern such as that shown in Figure 11.9c, it suggests that the
heteroscedastic variance may be proportional to the value of the income variable. This
knowledge may help us in transforming our data in such a manner that in the regression on
the transformed data the variance of the disturbance is homoscedastic. We shall return to
this topic in the next section.

Formal Methods
Park Test11

Park formalizes the graphical method by suggesting that σ 2
i is some function of the

explanatory variable Xi . The functional form he suggests is

σ2
i = σ 2 Xβ

i evi

or

ln σ2
i = ln σ 2 + β ln Xi + vi (11.5.1)

where vi is the stochastic disturbance term.
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Since σ2
i is generally not known, Park suggests using û2

i as a proxy and running the
following regression:

ln û2
i = ln σ 2 + β ln Xi + vi

= α + β ln Xi + vi

(11.5.2)

If β turns out to be statistically significant, it would suggest that heteroscedasticity is
present in the data. If it turns out to be insignificant, we may accept the assumption of
homoscedasticity. The Park test is thus a two-stage procedure. In the first stage we run the
OLS regression disregarding the heteroscedasticity question. We obtain ûi from this
regression, and then in the second stage we run the regression (11.5.2).

Although empirically appealing, the Park test has some problems. Goldfeld and Quandt
have argued that the error term vi entering into Eq. (11.5.2) may not satisfy the OLS assump-
tions and may itself be heteroscedastic.12 Nonetheless, as a strictly exploratory method, one
may use the Park test.

12Stephen M. Goldfeld and Richard E. Quandt, Nonlinear Methods in Econometrics, North Holland
Publishing Company, Amsterdam, 1972, pp. 93–94.
13The particular functional form chosen by Park is only suggestive. A different functional form may reveal
significant relationships. For example, one may use û2

i instead of ln û2
i as the dependent variable.

14H. Glejser, “A New Test for Heteroscedasticity,’’ Journal of the American Statistical Association, vol. 64,
1969, pp. 316–323.

EXAMPLE 11.1
Relationship
between
Compensation
and Productivity

To illustrate the Park approach, we use the data given in Table 11.1 to run the following
regression:

Yi = β1 + β2 Xi + ui

where Y = average compensation in thousands of dollars, X = average productivity in
thousands of dollars, and i = i th employment size of the establishment. The results of the
regression are as follows:

Ŷi = 1992.3452 + 0.2329Xi

se = (936.4791) (0.0998) (11.5.3)

t = (2.1275) (2.333) R2 = 0.4375

The results reveal that the estimated slope coefficient is significant at the 5 percent level
on the basis of a one-tail t test. The equation shows that as labor productivity increases by,
say, a dollar, labor compensation on the average increases by about 23 cents.

The residuals obtained from regression (11.5.3) are then regressed on Xi as suggested
in Eq. (11.5.2), giving the following results:

l̂n û2
i = 35.817  − 2.8099 ln Xi

se = (38.319) (4.216) (11.5.4)

t = (0.934)   (−0.667) R2 = 0.0595

Obviously, there is no statistically significant relationship between the two variables.
Following the Park test, one may conclude that there is no heteroscedasticity in the error
variance.13

Glejser Test14

The Glejser test is similar in spirit to the Park test. After obtaining the residuals ûi from the
OLS regression, Glejser suggests regressing the absolute values of ûi on the X variable that
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15For details, see Goldfeld and Quandt, op. cit., Chapter 3.

is thought to be closely associated with σ 2
i . In his experiments, Glejser uses the following

functional forms:

|ûi | = β1 + β2 Xi + vi

|ûi | = β1 + β2

√
Xi + vi

|ûi | = β1 + β2
1

Xi
+ vi

|ûi | = β1 + β2
1√
Xi

+ vi

|ûi | = √β1 + β2 Xi + vi

|ûi | = 
√

β1 + β2 X2
i + vi

where vi is the error term.
Again as an empirical or practical matter, one may use the Glejser approach. But Gold-

feld and Quandt point out that the error term vi has some problems in that its expected
value is nonzero, it is serially correlated (see Chapter 12), and, ironically, it is het-
eroscedastic.15 An additional difficulty with the Glejser method is that models such as 

|ûi | =
√

β1 + β2 Xi + vi

and

|ûi | =
√

β1 + β2 X2
i + vi

are nonlinear in the parameters and therefore cannot be estimated with the usual OLS
procedure.

Glejser has found that for large samples the first four of the preceding models give
generally satisfactory results in detecting heteroscedasticity. As a practical matter, there-
fore, the Glejser technique may be used for large samples and may be used in the small
samples strictly as a qualitative device to learn something about heteroscedasticity. 

EXAMPLE 11.2
Relationship
between
Compensation
and Productivity:
The Glejser Test

Continuing with Example 11.1, the absolute value of the residuals obtained from regres-
sion (11.5.3) were regressed on average productivity (X ), giving the following results:

|̂ûi | = 407.2783  − 0.0203Xi

se = (633.1621)   (0.0675) r 2 = 0.0127 (11.5.5)

t = (0.6432)   (−0.3012)

As you can see from this regression, there is no relationship between the absolute value of
the residuals and the regressor, average productivity. This reinforces the conclusion based
on the Park test.

Spearman’s Rank Correlation Test
In Exercise 3.8 we defined the Spearman’s rank correlation coefficient as

(11.5.6)rs = 1 − 6

[ ∑
d2

i

n(n2 − 1)

]
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where di = difference in the ranks assigned to two different characteristics of the ith indi-
vidual or phenomenon and n = number of individuals or phenomena ranked. The preced-
ing rank correlation coefficient can be used to detect heteroscedasticity as follows: Assume
Yi = β0 + β1 Xi + ui .

Step 1. Fit the regression to the data on Y and X and obtain the residuals û i .

Step 2. Ignoring the sign of û i , that is, taking their absolute value |û i |, rank both |û i |
and Xi (or Ŷi ) according to an ascending or descending order and compute the Spear-
man’s rank correlation coefficient given previously.

Step 3. Assuming that the population rank correlation coefficient ρs is zero and
n > 8, the significance of the sample rs can be tested by the t test as follows:16

(11.5.7)

with df = n − 2.

If the computed t value exceeds the critical t value, we may accept the hypothesis of
heteroscedasticity; otherwise we may reject it. If the regression model involves more than
one X variable, rs can be computed between |ûi | and each of the X variables separately and
can be tested for statistical significance by the t test given in Eq. (11.5.7).

t = rs
√

n − 2√
1 − r2

s

16See G. Udny Yule and M. G. Kendall, An Introduction to the Theory of Statistics, Charles Griffin &
Company, London, 1953, p. 455.

Ei, σi, d,
Average Standard Difference
Annual Deviation |ûi|‡ between

Name of Return, of Annual Residuals, Rank Rank Two
Mutual Fund % Return, % Êi

† |(Ei − Êi)| of |ûi| of σi Rankings d 2

Boston Fund 12.4 12.1 11.37 1.03 9 4 5 25
Delaware Fund 14.4 21.4 15.64 1.24 10 9 1 1
Equity Fund 14.6 18.7 14.40 0.20 4 7 −3 9
Fundamental Investors 16.0 21.7 15.78 0.22 5 10 −5 25
Investors Mutual 11.3 12.5 11.56 0.26 6 5 1 1
Loomis-Sales Mutual Fund 10.0 10.4 10.59 0.59 7 2 5 25
Massachusetts Investors Trust 16.2 20.8 15.37 0.83 8 8 0 0
New England Fund 10.4 10.2 10.50 0.10 3 1 2 4
Putnam Fund of Boston 13.1 16.0 13.16 0.06 2 6 −4 16
Wellington Fund 11.3 12.0 11.33 0.03 1 3 −2 4

Total 0 110

†Obtained from the regression: Êi = 5.8194 + 0.4590 σi.
‡Absolute value of the residuals.
Note: The ranking is in ascending order of values.

TABLE 11.2 Rank Correlation Test of Heteroscedasticity

EXAMPLE 11.3
Illustration of the
Rank Correlation
Test

To illustrate the rank correlation test, consider the data given in Table 11.2. The data
pertain to the average annual return (E, %) and the standard deviation of annual return
(σi , %) of 10 mutual funds.

(Continued)
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Goldfeld–Quandt Test17

This popular method is applicable if one assumes that the heteroscedastic variance, σ 2
i , is

positively related to one of the explanatory variables in the regression model. For simplic-
ity, consider the usual two-variable model:

Yi = β1 + β2 Xi + ui

Suppose σ 2
i is positively related to Xi as

σ 2
i = σ 2 X2

i (11.5.10)

where σ 2 is a constant.18

Assumption (11.5.10) postulates that σ 2
i is proportional to the square of the X variable.

Such an assumption has been found quite useful by Prais and Houthakker in their study of
family budgets. (See Section 11.5, informal methods.)

If Eq. (11.5.10) is appropriate, it would mean σ 2
i would be larger, the larger the values

of Xi. If that turns out to be the case, heteroscedasticity is most likely to be present in the
model. To test this explicitly, Goldfeld and Quandt suggest the following steps:

Step 1. Order or rank the observations according to the values of Xi, beginning with
the lowest X value.

Step 2. Omit c central observations, where c is specified a priori, and divide the
remaining (n − c) observations into two groups each of (n − c)� 2 observations.

Step 3. Fit separate OLS regressions to the first (n − c)� 2 observations and the last 
(n − c)� 2 observations, and obtain the respective residual sums of squares RSS1 and

The capital market line (CML) of portfolio theory postulates a linear relationship
between expected return (E i ) and risk (as measured by the standard deviation, σ ) of a
portfolio as follows:

E i = βi + β2σi

Using the data in Table 11.2, the preceding model was estimated and the residuals from
this model were computed. Since the data relate to 10 mutual funds of differing sizes and
investment goals, a priori one might expect heteroscedasticity. To test this hypothesis, we
apply the rank correlation test. The necessary calculations are given in Table 11.2.

Applying formula (11.5.6), we obtain

rs = 1 − 6
110

10(100 − 1)

= 0.3333

(11.5.8)

Applying the t test given in Eq. (11.5.7), we obtain

t = (0.3333)(
√

8)√
1 − 0.1110

= 0.9998

(11.5.9)

For 8 df this t value is not significant even at the 10 percent level of significance; the p
value is 0.17. Thus, there is no evidence of a systematic relationship between the ex-
planatory variable and the absolute values of the residuals, which might suggest that there
is no heteroscedasticity.

17Goldfeld and Quandt, op. cit., Chapter 3.
18This is only one plausible assumption. Actually, what is required is that σ2

i be monotonically 
related to Xi.

EXAMPLE 11.3
(Continued)
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RSS2, RSS1 representing the RSS from the regression corresponding to the smaller Xi

values (the small variance group) and RSS2 that from the larger Xi values (the large
variance group). These RSS each have

(n − c)

2
− k or

(
n − c − 2k

2

)
df

where k is the number of parameters to be estimated, including the intercept. (Why?)
For the two-variable case k is of course 2.

Step 4. Compute the ratio

λ = RSS2/df

RSS1/df
(11.5.11)

If we assume ui are normally distributed (which we usually do), and if the assumption
of homoscedasticity is valid, then it can be shown that λ of Eq. (11.5.10) follows the F
distribution with numerator and denominator df each of (n − c − 2k)/2.

If in an application the computed λ ( = F) is greater than the critical F at the chosen
level of significance, we can reject the hypothesis of homoscedasticity, that is, we can say
that heteroscedasticity is very likely.

Before illustrating the test, a word about omitting the c central observations is in order.
These observations are omitted to sharpen or accentuate the difference between the small
variance group (i.e., RSS1) and the large variance group (i.e., RSS2). But the ability of the
Goldfeld–Quandt test to do this successfully depends on how c is chosen.19 For the two-
variable model the Monte Carlo experiments done by Goldfeld and Quandt suggest that c
is about 8 if the sample size is about 30, and it is about 16 if the sample size is about 60.
But Judge et al. note that c = 4 if n = 30 and c = 10 if n is about 60 have been found sat-
isfactory in practice.20

Before moving on, it may be noted that in case there is more than one X variable in the model,
the ranking of observations, the first step in the test, can be done according to any one of them.
Thus in the model: Yi = β1 + β2X2i + β3X3i + β4X4i + ui, we can rank-order the data accord-
ing to any one of these X’s. If a priori we are not sure which X variable is appropriate, we can
conduct the test on each of the X variables, or via a Park test, in turn, on each X.

19Technically, the power of the test depends on how c is chosen. In statistics, the power of a test is mea-
sured by the probability of rejecting the null hypothesis when it is false (i.e., by 1 − Prob [type II error]).
Here the null hypothesis is that the variances of the two groups are the same, i.e., homoscedasticity. For
further discussion, see M. M. Ali and C. Giaccotto, “A Study of Several New and Existing Tests for 
Heteroscedasticity in the General Linear Model,’’ Journal of Econometrics, vol. 26, 1984, pp. 355–373.
20George G. Judge, R. Carter Hill, William E. Griffiths, Helmut Lütkepohl, and Tsoung-Chao Lee, 
Introduction to the Theory and Practice of Econometrics, John Wiley & Sons, New York, 1982, p. 422.

EXAMPLE 11.4
The
Goldfeld–Quandt
Test

To illustrate the Goldfeld–Quandt test, we present in Table 11.3 data on consumption
expenditure in relation to income for a cross section of 30 families. Suppose we postulate
that consumption expenditure is linearly related to income but that heteroscedasticity is
present in the data. We further postulate that the nature of heteroscedasticity is as given in
Eq. (11.5.10). The necessary reordering of the data for the application of the test is also
presented in Table 11.3.

Dropping the middle 4 observations, the OLS regressions based on the first 13 and the
last 13 observations and their associated residual sums of squares are as shown next (stan-
dard errors in the parentheses).

(Continued)
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Regression based on the first 13 observations:

Ŷ i = 3.4094   + 0.6968Xi

(8.7049)    (0.0744) r 2 = 0.8887 RSS1 = 377.17 df = 11
Regression based on the last 13 observations:

Ŷ i = − 28.0272  + 0.7941Xi

(30.6421) (0.1319)  r 2 = 0.7681 RSS2 = 1536.8 df = 11
From these results we obtain

λ = RSS2/df
RSS1/df

= 1536.8/11
377.17/11

λ = 4.07

The critical F value for 11 numerator and 11 denominator df at the 5 percent level is 2.82.
Since the estimated F ( = λ) value exceeds the critical value, we may conclude that there
is heteroscedasticity in the error variance. However, if the level of significance is fixed at
1 percent, we may not reject the assumption of homoscedasticity. (Why?) Note that the p
value of the observed λ is 0.014.

Data Ranked by
X Values

Y X Y X

55 80 55 80
65 100 70 85
70 85 75 90
80 110 65 100
79 120 74 105
84 115 80 110
98 130 84 115
95 140 79 120
90 125 90 125
75 90 98 130
74 105 95 140

110 160 108 145
113 150 113 150
125 165 110 160
108 145 125 165
115 180 115 180
140 225 130 185
120 200 135 190
145 240 120 200
130 185 140 205
152 220 144 210
144 210 152 220
175 245 140 225
180 260 137 230
135 190 145 240
140 205 175 245
178 265 189 250
191 270 180 260
137 230 178 265
189 250 191 270

TABLE 11.3 Hypothetical Data on Consumption Expenditure Y($) and Income X($) to
Illustrate the Goldfeld–Quandt Test

Middle 4
observations�

EXAMPLE 11.4
(Continued)
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Breusch–Pagan–Godfrey Test21

The success of the Goldfeld–Quandt test depends not only on the value of c (the number of
central observations to be omitted) but also on identifying the correct X variable with which
to order the observations. This limitation of this test can be avoided if we consider the
Breusch–Pagan–Godfrey (BPG) test.

To illustrate this test, consider the k-variable linear regression model

Yi = β1 + β2 X2i + · · · + βk Xki + ui (11.5.12)

Assume that the error variance σ 2
i is described as

σ 2
i = f (α1 + α2 Z2i + · · · + αm Zm i ) (11.5.13)

that is, σ 2
i is some function of the nonstochastic Z variables; some or all of the X’s can serve

as Z’s. Specifically, assume that

σ 2
i = α1 + α2 Z2i + · · · + αm Zm i (11.5.14)

that is, σ 2
i is a linear function of the Z’s. If α2 = α3 = · · · = αm = 0, σ 2

i = α1, which is a
constant. Therefore, to test whether σ 2

i is homoscedastic, one can test the hypothesis that
α2 = α3 = · · · = αm = 0. This is the basic idea behind the Breusch–Pagan–Godfrey test.
The actual test procedure is as follows.

Step 1. Estimate Eq. (11.5.12) by OLS and obtain the residuals û1, û2, . . . , ûn.

Step 2. Obtain σ̃ 2 = ∑
û2

i /n. Recall from Chapter 4 that this is the maximum 
likelihood (ML) estimator of σ 2. (Note: The OLS estimator is 

∑
û2

i /[n − k].)

Step 3. Construct variables pi defined as

pi = û2
i

/
σ̃ 2

which is simply each residual squared divided by σ̃ 2.

Step 4. Regress pi thus constructed on the Z’s as

pi = α1 + α2 Z2i + · · · + αm Zm i + vi (11.5.15)

where vi is the residual term of this regression.

Step 5. Obtain the ESS (explained sum of squares) from Eq. (11.5.15) and define

� = 1

2
(ESS) (11.5.16)

Assuming ui are normally distributed, one can show that if there is homoscedasticity
and if the sample size n increases indefinitely, then

� ∼
asy

χ2
m−1 (11.5.17)

that is, � follows the chi-square distribution with (m − 1) degrees of freedom. 
(Note: asy means asymptotically.)

21T. Breusch and A. Pagan, “A Simple Test for Heteroscedasticity and Random Coefficient Variation,’’
Econometrica, vol. 47, 1979, pp. 1287–1294. See also L. Godfrey, “Testing for Multiplicative 
Heteroscedasticity,’’ Journal of Econometrics, vol. 8, 1978, pp. 227–236. Because of similarity, these
tests are known as Breusch–Pagan–Godfrey tests of heteroscedasticity.
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Therefore, if in an application the computed � ( = χ2) exceeds the critical χ2 value at
the chosen level of significance, one can reject the hypothesis of homoscedasticity;
otherwise one does not reject it.

The reader may wonder why BPG chose 1
2 ESS as the test statistic. The reasoning is slightly

involved and is left for the references.22

22See Adrian C. Darnell, A Dictionary of Econometrics, Edward Elgar, Cheltenham, U.K., 1994, 
pp. 178–179.
23On this, see R. Koenker, “A Note on Studentizing a Test for Heteroscedasticity,” Journal of 
Econometrics, vol. 17, 1981, pp. 1180–1200.

EXAMPLE 11.5
The Breusch–
Pagan–Godfrey
(BPG) Test

As an example, let us revisit the data (Table 11.3) that were used to illustrate the Goldfeld–
Quandt heteroscedasticity test. Regressing Y on X, we obtain the following:

Step 1.

Ŷ i = 9.2903  + 0.6378Xi

se = (5.2314) (0.0286) RSS = 2361.153 R2 =  0.9466 (11.5.18)

Step 2.

σ̃ 2 =
∑

û2
i /30 = 2361.153/30 = 78.7051

Step 3. Divide the squared residuals ûi obtained from regression (11.5.18) by 78.7051
to construct the variable pi.
Step 4. Assuming that pi are linearly related to Xi ( = Zi ) as per Eq. (11.5.14), we
obtain the regression

p̂i = −0.7426 + 0.0101Xi

se = (0.7529) (0.0041) ESS = 10.4280 R2 = 0.18 (11.5.19)

Step 5.

� = 1
2

(ESS) = 5.2140 (11.5.20)

Under the assumptions of the BPG test � in Eq. (11.5.20) asymptotically follows the 
chi-square distribution with 1 df. (Note: There is only one regressor in Eq. [11.5.19].) Now
from the chi-square table we find that for 1 df the 5 percent critical chi-square value is
3.8414 and the 1 percent critical χ2 value is 6.6349. Thus, the observed chi-square value
of 5.2140 is significant at the 5 percent but not the 1 percent level of significance. There-
fore, we reach the same conclusion as the Goldfeld–Quandt test. But keep in mind that,
strictly speaking, the BPG test is an asymptotic, or large-sample, test and in the present
example 30 observations may not constitute a large sample. It should also be pointed out
that in small samples the test is sensitive to the assumption that the disturbances ui are
normally distributed. Of course, we can test the normality assumption by the tests
discussed in Chapter 5.23

White’s General Heteroscedasticity Test
Unlike the Goldfeld–Quandt test, which requires reordering the observations with respect
to the X variable that supposedly caused heteroscedasticity, or the BPG test, which is sen-
sitive to the normality assumption, the general test of heteroscedasticity proposed by White
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does not rely on the normality assumption and is easy to implement.24 As an illustration of
the basic idea, consider the following three-variable regression model (the generalization to
the k-variable model is straightforward):

Yi = β1 + β2 X2i + β3 X3i + ui (11.5.21)

The White test proceeds as follows:

Step 1. Given the data, we estimate Eq. (11.5.21) and obtain the residuals, ûi .

Step 2. We then run the following (auxiliary) regression:

û2
i = α1 + α2 X2i + α3 X3i + α4 X2

2i + α5 X2
3i + α6 X2i X3i + vi

(11.5.22)25

That is, the squared residuals from the original regression are regressed on the
original X variables or regressors, their squared values, and the cross product(s) of the
regressors. Higher powers of regressors can also be introduced. Note that there is a
constant term in this equation even though the original regression may or may not con-
tain it. Obtain the R2 from this (auxiliary) regression.

Step 3. Under the null hypothesis that there is no heteroscedasticity, it can be shown
that sample size (n) times the R2 obtained from the auxiliary regression asymptotically
follows the chi-square distribution with df equal to the number of regressors (exclud-
ing the constant term) in the auxiliary regression. That is,

n · R2 ∼
asy

χ2
df (11.5.23)

where df is as defined previously. In our example, there are 5 df since there are 
5 regressors in the auxiliary regression.

Step 4. If the chi-square value obtained in Eq. (11.5.23) exceeds the critical 
chi-square value at the chosen level of significance, the conclusion is that there is 
heteroscedasticity. If it does not exceed the critical chi-square value, there is no 
heteroscedasticity, which is to say that in the auxiliary regression (11.5.22),
α2 = α3 = α4 = α5 = α6 = 0 (see footnote 25).

24H. White, “A Heteroscedasticity Consistent Covariance Matrix Estimator and a Direct Test of 
Heteroscedasticity,’’ Econometrica, vol. 48, 1980, pp. 817–818.
25Implied in this procedure is the assumption that the error variance of ui ,σ2

i , is functionally related
to the regressors, their squares, and their cross products. If all the partial slope coefficients in this
regression are simultaneously equal to zero, then the error variance is the homoscedastic constant
equal to α1.
26Stephen R. Lewis, “Government Revenue from Foreign Trade,’’ Manchester School of Economics and
Social Studies, vol. 31, 1963, pp. 39–47.

EXAMPLE 11.6
White’s
Heteroscedasticity
Test

From cross-sectional data on 41 countries, Stephen Lewis estimated the following regres-
sion model:26

ln Yi = β1 + β2 ln X2i + β3 ln X3i + ui (11.5.24)

where Y = ratio of trade taxes (import and export taxes) to total government revenue,
X2 = ratio of the sum of exports plus imports to GNP, and X3 = GNP per capita; and ln
stands for natural log. His hypotheses were that Y and X2 would be positively related (the
higher the trade volume, the higher the trade tax revenue) and that Y and X3 would be

(Continued)
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388 Part Two Relaxing the Assumptions of the Classical Model

A comment is in order regarding the White test. If a model has several regressors, then
introducing all the regressors, their squared (or higher-powered) terms, and their cross
products can quickly consume degrees of freedom. Therefore, one must use caution in
using the test.28

In cases where the White test statistic given in Eq. (11.5.25) is statistically significant,
heteroscedasticity may not necessarily be the cause, but specification errors, about which
more will be said in Chapter 13 (recall point 5 of Section 11.1). In other words, the White
test can be a test of (pure) heteroscedasticity or specification error or both. It has been
argued that if no cross-product terms are present in the White test procedure, then it is a test
of pure heteroscedasticity. If cross-product terms are present, then it is a test of both het-
eroscedasticity and specification bias.29

Other Tests of Heteroscedasticity
There are several other tests of heteroscedasticity, each based on certain assumptions. The
interested reader may want to consult the references.30 We mention but one of these tests
because of its simplicity. This is the Koenker–Bassett (KB) test. Like the Park,
Breusch–Pagan–Godfrey, and White’s tests of heteroscedasticity, the KB test is based on
the squared residuals, û2

i , but instead of being regressed on one or more regressors, the
squared residuals are regressed on the squared estimated values of the regressand. Specifi-
cally, if the original model is:

Yi = β1 + β2 X2i + β3 X3i + · · · + βk Xki + ui (11.5.26)

negatively related (as income increases, government finds it is easier to collect direct
taxes—e.g., income tax—than it is to rely on trade taxes).

The empirical results supported the hypotheses. For our purpose, the important point
is whether there is heteroscedasticity in the data. Since the data are cross-sectional involv-
ing a heterogeneity of countries, a priori one would expect heteroscedasticity in the error
variance. By applying White’s heteroscedasticity test to the residuals obtained from re-
gression (11.5.24), the following results were obtained:27

̂̂u2
i = −5.8417 + 2.5629 ln Tradei + 0.6918 ln GNPi

−0.4081(ln Tradei)2 − 0.0491(ln GNPi)2 (11.5.25)

+0.0015(ln Tradei)(ln GNPi) R 2 = 0.1148

Note: The standard errors are not given, as they are not pertinent for our purpose here.
Now n · R 2 = 41(0.1148) = 4.7068, which has, asymptotically, a chi-square distri-

bution with 5 df (why?). The 5 percent critical chi-square  value for 5 df is 11.0705, the
10 percent critical value is 9.2363, and the 25 percent critical value is 6.62568. For all
practical purposes, one can conclude, on the basis of the White test, that there is no
heteroscedasticity.

27These results, with change in notation, are reproduced from William F. Lott and Subhash C. Ray, 
Applied Econometrics: Problems with Data Sets, Instructor’s Manual, Chapter 22, pp. 137–140.
28Sometimes the test can be modified to conserve degrees of freedom. See Exercise 11.18.
29See Richard Harris, Using Cointegration Analysis in Econometrics Modelling, Prentice Hall & Harvester
Wheatsheaf, U.K., 1995, p. 68.
30See M. J. Harrison and B. P. McCabe, “A Test for Heteroscedasticity Based on Ordinary Least Squares
Residuals,” Journal of the American Statistical Association, vol. 74, 1979, pp. 494–499; J. Szroeter,
“A Class of Parametric Tests for Heteroscedasticity in Linear Econometric Models,’’ Econometrica,
vol. 46, 1978, pp. 1311–1327; M. A. Evans and M. L. King, “A Further Class of Tests for Heteroscedas-
ticity,’’ Journal of Econometrics, vol. 37, 1988, pp. 265–276; and R. Koenker and G. Bassett, “Robust
Tests for Heteroscedasticity Based on Regression Quantiles,” Econometrica, vol. 50, 1982, pp. 43–61.

EXAMPLE 11.6
(Continued)
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you estimate this model, obtain ûi from this model, and then estimate

û2
i = α1 + α2(Ŷi )

2 + vi (11.5.27)

where Ŷi are the estimated values from the model (11.5.26). The null hypothesis is that
α2 = 0. If this is not rejected, then one could conclude that there is no heteroscedasticity. The
null hypothesis can be tested by the usual t test or the F test. (Note that F1,k = tk 2.) If the
model (11.5.26) is double log, then the squared residuals are regressed on (log Ŷi )2. One other
advantage of the KB test is that it is applicable even if the error term in the original model
(11.5.26) is not normally distributed. If you apply the KB test to Example 11.1, you will find
that the slope coefficient in the regression of the squared residuals obtained from Eq. (11.5.3)
on the estimated Ŷ 2

i from Eq. (11.5.3) is statistically not different from zero, thus reinforcing
the Park test. This result should not be surprising since in the present instance we only have a
single regressor. But the KB test is applicable if there is one regressor or many.

A Note Regarding the Tests of Heteroscedasticity
We have discussed several tests of heteroscedasticity in this section. So how do we decide
which is the best test? This is not an easy question to answer, for these tests are based on var-
ious assumptions. In comparing the tests, we need to pay attention to their size (or level of sig-
nificance), power (the probability of rejecting a false hypothesis), and sensitivity to outliers.

We have already pointed out some of the limitations of the popular and easy-to-apply
White’s test of heteroscedasticity. As a result of these limitations, it may have low power
against the alternatives. Besides, the test is of little help in identifying the factors or vari-
ables that cause heteroscedasticity.

Similarly, the Breusch–Pagan–Godfrey test is sensitive to the assumption of normality.
In contrast, the test of Koenker–Bassett does not rely on the normality assumption and
may therefore be more powerful.31 In the Goldfeld–Quandt test if we omit too many
observations, we may diminish the power of the test.

It is beyond the scope of this text to provide a comparative analysis of the various
heteroscedasticity tests. But the interested reader may refer to the article by John Lyon and
Chin-Ling Tsai to get some idea about the strengths and weaknesses of the various tests of
heteroscedasticity.32

11.6 Remedial Measures

As we have seen, heteroscedasticity does not destroy the unbiasedness and consistency
properties of the OLS estimators, but they are no longer efficient, not even asymptotically
(i.e., large sample size). This lack of efficiency makes the usual hypothesis-testing proce-
dure of dubious value. Therefore, remedial measures may be called for. There are two
approaches to remediation: when σ 2

i is known and when σ 2
i is not known.

When Í 2
i Is Known: The Method of Weighted Least Squares

As we have seen in Section 11.3, if σ 2
i is known, the most straightforward method of

correcting heteroscedasticity is by means of weighted least squares, for the estimators thus
obtained are BLUE.

31For details, see William H. Green, Econometric Analysis, 6th ed., Pearson/Prentice-Hall, New Jersey,
2008, pp. 165–167.
32See their article, “A Comparison of Tests of Heteroscedasticity,” The Statistician, vol. 45, no. 3,
1996, pp. 337–349.
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390 Part Two Relaxing the Assumptions of the Classical Model

EXAMPLE 11.7
Illustration of the
Method of
Weighted Least
Squares

To illustrate the method, suppose we want to study the relationship between compensa-
tion and employment size for the data presented in Table 11.1. For simplicity, we measure
employment size by 1 (1–4 employees), 2 (5–9 employees), . . . , 9 (1,000–2499 employ-
ees), although we could also measure it by the midpoint of the various employment classes
given in the table.

Now letting Y represent average compensation per employee ($) and X the employ-
ment size, we run the following regression (see Eq. [11.3.6]):

Yi /σi = β̂∗
1(1/σi ) + β̂∗

2(Xi /σi ) + (ûi /σi ) (11.6.1)

where σi are the standard deviations of wages as reported in Table 11.1. The necessary
raw data to run this regression are given in Table 11.4.

33As noted in footnote 3 of Chapter 6, the R2 of the regression through the origin is not directly 
comparable with the R2 of the intercept-present model. The reported R2 of 0.9993 takes this
difference into account. (See the various packages for further details about how the R2 is corrected to
take into account the absence of the intercept term. See also Appendix 6A, Sec. 6A1.)

Compensation, Employment Size,
Y X σi Yi/σi Xi/σi

3,396 1 742.2 4.5664 0.0013
3,787 2 851.4 4.4480 0.0023
4,013 3 727.8 5.5139 0.0041
4,104 4 805.06 5.0978 0.0050
4,146 5 929.9 4.4585 0.0054
4,241 6 1,080.6 3.9247 0.0055
4,387 7 1,241.2 3.5288 0.0056
4,538 8 1,307.7 3.4702 0.0061
4,843 9 1,110.7 4.3532 0.0081

Note: In regression (11.6.2), the dependent variable is (Yi /σi ) and the independent variables are (1/σi ) and (Xi /σi ).

TABLE 11.4
Illustration 
of Weighted Least-
Squares Regression

Source: Data on Y and σi
(standard deviation of
compensation) are from 
Table 11.1. Employment size:
1 = 1–4 employees, 2 = 5–9
employees, etc. The latter
data are also from Table 11.1.

Before going on to the regression results, note that Eq. (11.6.1) has no intercept term.
(Why?) Therefore, one will have to use the regression-through-the-origin model to
estimate β∗

1 and β∗
2, a topic discussed in Chapter 6. But most computer packages these

days have an option to suppress the intercept term (see Minitab or EViews, for example).
Also note another interesting feature of Eq. (11.6.1): It has two explanatory variables,
(1/σi ) and (Xi /σi ), whereas if we were to use OLS, regressing compensation on employ-
ment size, that regression would have a single explanatory variable, Xi . (Why?)

The regression results of WLS are as follows:

̂(Yi /σi ) = 3406.639(1/σi ) + 154.153(Xi /σi )

(80.983) (16.959) (11.6.2)

t = (42.066) (9.090)

R2 = 0.999333

For comparison, we give the usual or unweighted OLS regression results:

Ŷ i = 3417.833 + 148.767 Xi

(81.136) (14.418) (11.6.3)

t = (42.125) (10.318) R2 = 0.9383

In Exercise 11.7 you are asked to compare these two regressions.
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When σi
2 Is Not Known

As noted earlier, if true σ 2
i are known, we can use the WLS method to obtain BLUE estimators.

Since the true σ 2
i are rarely known, is there a way of obtaining consistent (in the statistical

sense) estimates of the variances and covariances of OLS estimators even if there is het-
eroscedasticity? The answer is yes.

White’s Heteroscedasticity-Consistent Variances and Standard Errors
White has shown that this estimate can be performed so that asymptotically valid (i.e.,
large-sample) statistical inferences can be made about the true parameter values.34 We will
not present the mathematical details, for they are beyond the scope of this book. However,
Appendix 11A.4 outlines White’s procedure. Nowadays, several computer packages pre-
sent White’s heteroscedasticity-corrected variances and standard errors along with the
usual OLS variances and standard errors.35 Incidentally, White’s heteroscedasticity-
corrected standard errors are also known as robust standard errors.

34See H. White, op. cit.
35More technically, they are known as heteroscedasticity-consistent covariance matrix 
estimators.
36William H. Greene, Econometric Analysis, 2d ed., Macmillan, New York, 1993, p. 385.
37T. Dudley Wallace and J. Lew Silver, Econometrics: An Introduction, Addison-Wesley, Reading, Mass.,
1988, p. 265. 

EXAMPLE 11.8
Illustration of
White’s Procedure

As an example, we quote the following results due to Greene:36

Ŷi = 832.91 − 1834.2 (Income) + 1587.04 (Income)2

OLS se = (327.3) (829.0) (519.1)

t = (2.54) (2.21) (3.06) (11.6.4)

White se = (460.9) (1243.0) (830.0)

t = (1.81) (−1.48) (1.91)

where Y = per capita expenditure on public schools by state in 1979 and Income = per
capita income by state in 1979. The sample consisted of 50 states plus Washington, DC.

As the preceding results show, (White’s) heteroscedasticity-corrected standard errors are
considerably larger than the OLS standard errors and therefore the estimated t values are
much smaller than those obtained by OLS. On the basis of the latter, both the regressors
are statistically significant at the 5 percent level, whereas on the basis of White estimators
they are not. However, it should be pointed out that White’s heteroscedasticity-corrected
standard errors can be larger or smaller than the uncorrected standard errors.

Since White’s heteroscedasticity-consistent estimators of the variances are now avail-
able in established regression packages, it is recommended that the reader report them. As
Wallace and Silver note:

Generally speaking, it is probably a good idea to use the WHITE option [available in regres-
sion programs] routinely, perhaps comparing the output with regular OLS output as a check to
see whether heteroscedasticity is a serious problem in a particular set of data.37

Plausible Assumptions about Heteroscedasticity Pattern
Apart from being a large-sample procedure, one drawback of the White procedure is that
the estimators thus obtained may not be so efficient as those obtained by methods that

guj75772_ch11.qxd  12/08/2008  07:04 PM  Page 391



392 Part Two Relaxing the Assumptions of the Classical Model

transform data to reflect specific types of heteroscedasticity. To illustrate this, let us revert
to the two-variable regression model:

Yi = β1 + β2 Xi + ui

We now consider several assumptions about the pattern of heteroscedasticity.

The error variance is proportional to X 2
i :

E
(
u 2

i

) = σ 2 X 2
i (11.6.5)38

If, as a matter of “speculation,” graphical methods, or Park and Glejser approaches, it is
believed that the variance of ui is proportional to the square of the explanatory variable X
(see Figure 11.10), one may transform the original model as follows. Divide the original
model through by Xi :

Yi

Xi
= β1

Xi
+ β2 + ui

Xi

= β1
1

Xi
+ β2 + vi

(11.6.6)

where vi is the transformed disturbance term, equal to ui/Xi . Now it is easy to verify that

E
(
v2

i

) = E

(
ui

Xi

)2

= 1

X2
i

E
(
u2

i

)

= σ 2 using (11.6.5)

Hence the variance of vi is now homoscedastic, and one may proceed to apply OLS to the
transformed equation (11.6.6), regressing Yi/Xi on 1/Xi .

38Recall that we have already encountered this assumption in our discussion of the Goldfeld–Quandt
test.

ASSUMPTION 1

X

σ  i 2σ FIGURE 11.10
Error variance
proportional to X 2.
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If it is believed that the variance of ui , instead of being proportional to the squared Xi ,
is proportional to Xi itself, then the original model can be transformed as follows (see Fig-
ure 11.11):

Yi√
Xi

= β1√
Xi

+ β2

√
Xi + ui√

Xi

= β1
1√
Xi

+ β2

√
Xi + vi

(11.6.8)

where vi = ui/
√

Xi and where Xi > 0.

Given assumption 2, one can readily verify that E(v2
i ) = σ 2, a homoscedastic situation.

Therefore, one may proceed to apply OLS to Eq. (11.6.8), regressing Yi/
√

Xi on 1/
√

Xi

and 
√

Xi .

Note an important feature of the transformed model: It has no intercept term. Therefore,
one will have to use the regression-through-the-origin model to estimate β1 and β2. Having
run Eq. (11.6.8), one can get back to the original model simply by multiplying Eq. (11.6.8)
by

√
Xi .

An interesting case is the zero intercept model, namely, Yi = β2 Xi + ui . In this case,
Eq. (11.6.8) becomes:

Yi√
Xi

= β2

√
Xi + ui√

Xi
(11.6.8a)

The error variance is proportional to Xi. The square root transformation:

E
(
u 2

i

)
= σ 2 Xi (11.6.7)

ASSUMPTION 2

Notice that in the transformed regression the intercept term β2 is the slope coefficient in
the original equation and the slope coefficient β1 is the intercept term in the original model.
Therefore, to get back to the original model we shall have to multiply the estimated
Eq. (11.6.6) by Xi . An application of this transformation is given in Exercise 11.20.

X

σ i 
2σ FIGURE 11.11

Error variance
proportional to X.
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And it can be shown that

β̂2 = Ȳ

X̄
(11.6.8b)

That is, the weighted least-squares estimator is simply the ratio of the means of the depen-
dent and explanatory variables. (To prove Eq. [11.6.8b], just apply the regression-through-
the-origin formula given in Eq. [6.1.6].)

The error variance is proportional to the square of the mean value of Y.

E
(
u 2

i

)
= σ 2[E (Yi )]2 (11.6.9)

Equation (11.6.9) postulates that the variance of ui is proportional to the square of the
expected value of Y (see Figure 11.8e). Now

E(Yi ) = β1 + β2 Xi

Therefore, if we transform the original equation as follows,

Yi

E(Yi )
= β1

E(Yi )
+ β2

Xi

E(Yi )
+ ui

E(Yi )

= β1

(
1

E(Yi )

)
+ β2

Xi

E(Yi )
+ vi

(11.6.10)

where vi = ui/E(Yi ), it can be seen that E(v2
i ) = σ 2; that is, the disturbances vi are ho-

moscedastic. Hence, it is regression (11.6.10) that will satisfy the homoscedasticity as-
sumption of the classical linear regression model.

The transformation (11.6.10) is, however, inoperational because E(Yi ) depends on β1

and β2, which are unknown. Of course, we know Ŷi = β̂1 + β̂2 Xi , which is an estimator of
E(Yi ). Therefore, we may proceed in two steps: First, we run the usual OLS regression, dis-
regarding the heteroscedasticity problem, and obtain Ŷi . Then, using the estimated Ŷi , we
transform our model as follows:

Yi

Ŷi

= β1

(
1

Ŷi

)
+ β2

(
Xi

Ŷi

)
+ vi (11.6.11)

where vi = (ui/Ŷi ). In Step 2, we run the regression (11.6.11). Although Ŷi are not exactly
E(Yi ), they are consistent estimators; that is, as the sample size increases indefinitely, they
converge to true E(Yi ). Hence, the transformation (11.6.11) will perform satisfactorily in
practice if the sample size is reasonably large.

ASSUMPTION 3

A log transformation such as

ln Yi = β1 + β2 ln Xi + ui (11.6.12)

very often reduces heteroscedasticity when compared with the regression 
Yi = β1 + β2 Xi + ui .

ASSUMPTION 4 
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This result arises because log transformation compresses the scales in which the vari-
ables are measured, thereby reducing a tenfold difference between two values to a twofold
difference. Thus, the number 80 is 10 times the number 8, but ln 80 ( = 4.3280) is about
twice as large as ln 8 ( = 2.0794).

An additional advantage of the log transformation is that the slope coefficient β2 mea-
sures the elasticity of Y with respect to X, that is, the percentage change in Y for a percent-
age change in X. For example, if Y is consumption and X is income, β2 in Eq. (11.6.12) will
measure income elasticity, whereas in the original model β2 measures only the rate of
change of mean consumption for a unit change in income. It is one reason why the log
models are quite popular in empirical econometrics. (For some of the problems associated
with log transformation, see Exercise 11.4.)

To conclude our discussion of the remedial measures, we reemphasize that all the
transformations discussed previously are ad hoc; we are essentially speculating about
the nature of σ 2

i . Which of the transformations discussed previously will work will depend
on the nature of the problem and the severity of heteroscedasticity. There are some
additional problems with the transformations we have considered that should be borne
in mind:

1. When we go beyond the two-variable model, we may not know a priori which of the
X variables should be chosen for transforming the data.39

2. Log transformation as discussed in Assumption 4 is not applicable if some of the Y
and X values are zero or negative.40

3. Then there is the problem of spurious correlation. This term, due to Karl Pearson,
refers to the situation where correlation is found to be present between the ratios of vari-
ables even though the original variables are uncorrelated or random.41 Thus, in the model
Yi = β1+ β2 Xi + ui , Y and X may not be correlated but in the transformed model
Yi/Xi = β1(1/Xi ) + β2 , Yi/Xi and 1/Xi are often found to be correlated.

4. When σ 2
i are not directly known and are estimated from one or more of the trans-

formations that we have discussed earlier, all our testing procedures using the t tests,
F tests, etc., are, strictly speaking, valid only in large samples. Therefore, one has to be
careful in interpreting the results based on the various transformations in small or finite
samples.42

11.7 Concluding Examples

In concluding our discussion of heteroscedasticity we present three examples illustrating
the main points made in this chapter.

39However, as a practical matter, one may plot û2
i against each variable and decide which X variable

may be used for transforming the data. (See Fig. 11.9.)
40Sometimes we can use ln (Yi + k) or ln (Xi + k), where k is a positive number chosen in such a way
that all the values of Y and X become positive.
41For example, if X1, X2, and X3 are mutually uncorrelated r12 = r13 = r23 = 0 and we find that the
(values of the) ratios X1/X3 and X2/X3 are correlated, then there is spurious correlation. “More gener-
ally, correlation may be described as spurious if it is induced by the method of handling the data and
is not present in the original material.” M. G. Kendall and W. R. Buckland, A Dictionary of Statistical
Terms, Hafner Publishing, New York, 1972, p. 143.
42For further details, see George G. Judge et al., op. cit., Section 14.4, pp. 415–420.
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EXAMPLE 11.9
Child Mortality
Revisited

Let us return to the child mortality example we have considered on several occasions. From
data for 64 countries, we obtained the regression results shown in Eq. (8.1.4). Since the data
are cross-sectional, involving diverse countries with different child mortality experiences, it
is likely that we might encounter heteroscedasticity. To find this out, let us first consider
the residuals obtained from Eq. (8.1.4). These residuals are plotted in Figure 11.12. From
this figure it seems that the residuals do not show any distinct pattern that might suggest
heteroscedasticity. Nonetheless, appearances can be deceptive. So, let us apply the Park,
Glejser, and White tests to see if there is any evidence of heteroscedasticity.

Park Test. Since there are two regressors, GNP and FLR, we can regress the squared resid-
uals from regression (8.1.4) on either of these variables. Or, we can regress them on the
estimated CM values ( = ĈM) from regression (8.1.4). Using the latter, we obtained the fol-
lowing results.

̂̂u 2
i = 854.4006 + 5.7016 ĈMi

(11.7.1)
t = (1.2010) (1.2428) r 2 = 0.024

Note: ûi are the residuals obtained from regression (8.1.4) and ĈM are the estimated values
of CM from regression (8.1.4).

As this regression shows, there is no systematic relation between the squared residuals
and the estimated CM values (why?), suggesting that the assumption of homoscedastic-
ity may be valid. Incidentally, regressing the log of the squared residual values on the log
of ĈM did not change the conclusion.

Glejser Test. The absolute values of the residual obtained from Eq. (8.1.4), when re-
gressed on the estimated CM value from the same regression, gave the following results:

|̂ûi | = 22.3127 + 0.0646 ĈMi
(11.7.2)

t = (2.8086) (1.2622) r 2 = 0.0250

Again, there is not much systematic relationship between the absolute values of the resid-
uals and the estimated CM values, as the t value of the slope coefficient is not statistically
significant.

White Test. Applying White’s heteroscedasticity test with and without cross-product
terms, we did not find any evidence of heteroscedasticity. We also reestimated Eq. (8.1.4)
to obtain White’s heteroscedasticity-consistent standard errors and t values, but the results
were quite similar to those given in Eq. (8.1.4), which should not be surprising in view of
the various heteroscedasticity tests we conducted earlier.

In sum, it seems that our child mortality regression (8.1.4) does not suffer from
heteroscedasticity.

5
–100

10 15 20 25 30 35 40 45 50 55 60 65

–50
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50

100FIGURE 11.12
Residuals from
regression (8.1.4).
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EXAMPLE 11.10
R&D
Expenditure,
Sales, and Profits
in 14 Industry
Groupings in the
United States,
2005

Table 11.5 gives data on research and development (R&D) expenditure, sales, and profits
for 14 industry groupings in the United States (all figures in millions of dollars). Since the
cross-sectional data presented in this table are quite heterogeneous, in a regression of
R&D on sales, heteroscedasticity is likely. The regression results are as follows:

R̂&Di = 1338 + 0.0437 Salesi

se = (5015) (0.0277) (11.7.3)

t = (0.27) (1.58) r 2 = 0.172

Not surprisingly, there is a positive relationship between R&D and sales, although it is not
statistically significant at the traditional levels.

Industry Sales R&D Profits

1 Food 374,342 2,716 234,662
2 Textiles, apparel, and leather 51,639 816 53,510
3 Basic chemicals 109,899 2,277 75,168
4 Resin, synthetic rubber, fibers, 

and filament 132,934 2,294 34,645
5 Pharmaceuticals and medicines 273,377 34,839 127,639
6 Plastics and rubber products 90,176 1,760 96,162
7 Fabricated metal products 174,165 1,375 155,801
8 Machinery 230,941 8,531 143,472
9 Computers and peripheral equipment 91,010 4,955 34,004

10 Semiconductor and other 
electronic components 176,054 18,724 81,317

11 Navigational, measuring, electromedical, 
and control instruments 118,648 15,204 73,258

12 Electrical equipment, appliances, 
and components 101,398 2,424 54,742

13 Aerospace products and parts 227,271 15,005 72,090
14 Medical equipment and supplies 56,661 4,374 52,443

TABLE 11.5
Sales and
Employment 
for Companies
Performing
Industrial R&D 
in the United States,
by Industry, 2005
(values are in
millions of dollars)

Source: National Science
Foundation, Division of
Science Resources Statistics,
Survey of Industrial Research
and Development: 2005 and
the U.S. Census Bureau
Annual Survey of
Manufacturers, 2005.

To see if the regression (11.7.3) suffers from heteroscedasticity, we obtained the resid-
uals, ûi , and the squared residuals, û2

i , from the model and plotted them against sales, as
shown in Figure 11.13. It seems from this figure that there is a systematic pattern between
the residuals and squared residuals and sales, perhaps suggesting that there is het-
eroscedasticity. To test this formally, we used the Park, Glejser, and White tests, which gave
the following results:

Park Test

̂̂u2
i = −72,493,719 + 916.1 Salesi

se = (54,940,238) (303.9) (11.7.4)

t = (−1.32) (3.01) r 2 = 0.431

The Park test suggests that there is a statistically significant positive relationship between
squared residuals and sales.

(Continued)
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FIGURE 11.13 Residuals (a) and squared residuals (b) on sales.

Glejser Test

|̂ûi | = −1003  + 0.04639 Salesi

se = (2316)  (0.0128) (11.7.5)

t = (−0.43) (3.62) r 2 = 0.522

The Glejser test also suggests that there is a systematic relationship between the absolute
values of the residuals and sales, raising the possibility that the regression (11.7.3) suffers
from heteroscedasticity.

White Test
̂̂u2

i = −46,746,325 + 578 Salesi + 0.000846 Sales2
i

se = (112,224,348) (1308) (0.003171)
(11.7.6)

t = (−0.42) (0.44) (0.27)

R2 = 0.435

Using the R 2 value and n = 14, we obtain n R2 = 6.090. Under the null hypothesis of no
heteroscedasticity, this should follow a chi-square distribution with 2 df (because there are
two regressors in Eq. [11.7.6]). The p value of obtaining a chi-square value of as much as
6.090 or greater is about 0.0476. Since this is a low value, the White test also suggests that
there is heteroscedasticity.

EXAMPLE 11.10
(Continued)
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In sum, then, on the basis of the residual graphs and the Park, Glejser, and White tests,
it seems that our R&D regression (11.7.3) suffers from heteroscedasticity. Since the true
error variance is unknown, we cannot use the method of weighted least squares to obtain
heteroscedasticity-corrected standard errors and t values. Therefore, we would have to
make some educated guesses about the nature of the error variance.

To conclude our example, we present below White’s heteroscedasticity-consistent
standard errors, as discussed in Section 11.6.

R̂ & Di = 1337.87 + 0.0437 Salesi

se = (4892.447) (0.0411) (11.7.7)

t = (0.27) (1.06) r 2 = 0.172

Comparing Eq. (11.7.7) with Eq. (11.7.3) (the latter not having been corrected for
heteroscedasticity), we see that the parameter estimates have not changed (as we
would expect), the standard error of the intercept coefficient has decreased slightly,
and the standard error of the slope coefficient has increased slightly. But remember
that the White procedure is strictly a large-sample procedure, whereas we have only
14 observations.

EXAMPLE 11.11 Table 11.6 on the textbook website provides salary and related data on 94 school districts
in Northwest Ohio. Initially, the following regression was estimated from these data:

ln(Salary)i = β1 + β2 ln(Famincome) + β3 ln(Propvalue) + ui

Where Salary = mean salary of classroom teachers ($), famincome = mean family income
in the district ($), and propvalue = mean property value in the district ($).

Since this is a double-log model, all the slope coefficients are elasticities. Based on the
various heteroscedasticity tests discussed in the text, it was found that the preceding
model suffered from heteroscedasticity. We, therefore, obtained (White’s) robust standard
errors. The following table gives the results of the preceding regression with and without
robust standard errors.

Variable Coefficient OLS se Robust se

Intercept 7.0198 0.8053 0.7721
(8.7171) (9.0908)

ln(famincome) 0.2575 0.0799 0.1009
(3.2230) (2.5516)

ln(propvalue) 0.0704 0.0207 0.0460
(3.3976) (1.5311)

R2 0.2198

Note: Figures in parentheses are the estimated t ratios.

Although the coefficient values and R2 remain the same whether we use OLS or
White’s method, the standard errors have changed; the most dramatic change is in the
standard error of the ln(propvalue) coefficient. The usual OLS would suggest that the es-
timated coefficient of this variable is highly statistically significant, whereas White’s robust
standard error suggests that this coefficient is not significant even at the 10 percent level.
The point of this example is that if there is heteroscedasticity, we should take it into
account in estimating a model. 

EXAMPLE 11.10
(Continued)
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11.8 A Caution about Overreacting to Heteroscedasticity

Reverting to the R&D example discussed in the previous section, we saw that when we
used the square root transformation to correct for heteroscedasticity in the original model
(11.7.3), the standard error of the slope coefficient decreased and its t value increased. Is
this change so significant that one should worry about it in practice? To put the matter dif-
ferently, when should we really worry about the heteroscedasticity problem? As one author
contends, “heteroscedasticity has never been a reason to throw out an otherwise good
model.”43

Here it may be useful to bear in mind the caution sounded by John Fox:

. . . unequal error variance is worth correcting only when the problem is severe.
The impact of nonconstant error variance on the efficiency of ordinary least-squares

estimator and on the validity of least-squares inference depends on several factors, includ-
ing the sample size, the degree of variation in the σ 2

i , the configuration of the X [i.e.,
regressor] values, and the relationship between the error variance and the X’s. It is therefore
not possible to develop wholly general conclusions concerning the harm produced by
heteroscedasticity.44

Returning to the model (11.3.1), we saw earlier that variance of the slope estimator, var
(β̂2), is given by the usual formula shown in (11.2.3). Under GLS the variance of the slope
estimator, var (β̂∗

2 ), is given by (11.3.9). We know that the latter is more efficient than the
former. But how large does the former (i.e., OLS) variance have to be in relation to the GLS
variance before one should really worry about it? As a rule of thumb, Fox suggests that we
worry about this problem “. . . when the largest error variance is more than about 10 times
the smallest.”45 Thus, returning to the Monte Carlo simulations results of Davidson and
MacKinnon presented in Section 11.4, consider the value of α = 2. The variance of the
estimated β2 is 0.04 under OLS and 0.012 under GLS, the ratio of the former to the latter
thus being about 3.33.46 According to the Fox rule, the severity of heteroscedasticity in this
case may not be large enough to worry about.

Also remember that, despite heteroscedasticity, OLS estimators are linear unbiased and
are (under general conditions) asymptotically (i.e., in large samples) normally distributed.

As we will see when we discuss other violations of the assumptions of the classical
linear regression model, the caution sounded in this section is appropriate as a general rule.
Otherwise, one can go overboard.

400 Part Two Relaxing the Assumptions of the Classical Model

43N. Gregory Mankiw, “A Quick Refresher Course in Macroeconomics,” Journal of Economic Literature,
vol. XXVIII, December 1990, p. 1648.
44John Fox, Applied Regression Analysis, Linear Models, and Related Methods, Sage Publications, 
California, 1997, p. 306.
45Ibid., p. 307.
46Note that we have squared the standard errors to obtain the variances.

1. A critical assumption of the classical linear regression model is that the distur-
bances ui have all the same variance, σ 2. If this assumption is not satisfied, there is
heteroscedasticity.

2. Heteroscedasticity does not destroy the unbiasedness and consistency properties of OLS
estimators.

3. But these estimators are no longer minimum variance or efficient. That is, they are not
BLUE.

Summary and
Conclusions
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4. The BLUE estimators are provided by the method of weighted least squares, provided
the heteroscedastic error variances, σ 2

i , are known.

5. In the presence of heteroscedasticity, the variances of OLS estimators are not provided
by the usual OLS formulas. But if we persist in using the usual OLS formulas, the t and
F tests based on them can be highly misleading, resulting in erroneous conclusions.

6. Documenting the consequences of heteroscedasticity is easier than detecting it. There
are several diagnostic tests available, but one cannot tell for sure which will work in a
given situation.

7. Even if heteroscedasticity is suspected and detected, it is not easy to correct the problem.
If the sample is large, one can obtain White’s heteroscedasticity-corrected standard er-
rors of OLS estimators and conduct statistical inference based on these standard errors.

8. Otherwise, on the basis of OLS residuals, one can make educated guesses of the likely
pattern of heteroscedasticity and transform the original data in such a way that in the
transformed data there is no heteroscedasticity.

Questions
11.1. State with brief reason whether the following statements are true, false, or uncertain:

a. In the presence of heteroscedasticity OLS estimators are biased as well as 
inefficient.

b. If heteroscedasticity is present, the conventional t and F tests are invalid.

c. In the presence of heteroscedasticity the usual OLS method always overesti-
mates the standard errors of estimators.

d. If residuals estimated from an OLS regression exhibit a systematic pattern, it
means heteroscedasticity is present in the data.

e. There is no general test of heteroscedasticity that is free of any assumption about
which variable the error term is correlated with.

f. If a regression model is mis-specified (e.g., an important variable is omitted), the
OLS residuals will show a distinct pattern.

g. If a regressor that has nonconstant variance is (incorrectly) omitted from a
model, the (OLS) residuals will be heteroscedastic.

11.2. In a regression of average wages (W, $) on the number of employees (N) for a
random sample of 30 firms, the following regression results were obtained:*

Ŵ = 7.5 + 0.009N
(1)

t = n.a. (16.10) R2 = 0.90

Ŵ/N = 0.008 + 7.8(1/N)
(2)

t = (14.43) (76.58) R2 = 0.99

a. How do you interpret the two regressions?

b. What is the author assuming in going from Eq. (1) to Eq. (2)? Was he worried
about heteroscedasticity? How do you know?

c. Can you relate the slopes and intercepts of the two models?

d. Can you compare the R2 values of the two models? Why or why not?

EXERCISES

*See Dominick Salvatore, Managerial Economics, McGraw-Hill, New York, 1989, p. 157.
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11.3. a. Can you estimate the parameters of the models

|ûi | = √
β1 + β2 Xi + vi

|ûi | =
√

β1 + β2 X2
i + vi

by the method of ordinary least squares? Why or why not?

b. If not, can you suggest a method, informal or formal, of estimating the parame-
ters of such models? (See Chapter 14.)

11.4. Although log models as shown in Eq. (11.6.12) often reduce heteroscedasticity, one
has to pay careful attention to the properties of the disturbance term of such mod-
els. For example, the model

Yi = β1 Xβ2

i ui (1)

can be written as

ln Yi = ln β1 + β2 ln Xi + ln ui (2)

a. If ln ui is to have zero expectation, what must be the distribution of ui?

b. If E(ui) = 1, will E(ln ui) = 0? Why or why not?

c. If E(ln ui) is not zero, what can be done to make it zero?

11.5. Show that β∗
2 of Eq. (11.3.8) can also be expressed as

β∗
2 =

∑
wi y∗

i x∗
i∑

wi x2∗
i

and var (β∗
2 ) given in Eq. (11.3.9) can also be expressed as

var (β∗
2 ) = 1∑

wi x2∗
i

where y∗
i = Yi − Ȳ ∗ and x∗

i = Xi − X̄∗ represent deviations from the weighted

means Ȳ ∗ and X̄∗ defined as

Ȳ ∗ =
∑

wi Yi

/∑
wi

X̄∗ =
∑

wi Xi

/∑
wi

11.6. For pedagogic purposes Hanushek and Jackson estimate the following model:

Ct = β1 + β2GNPt + β3Dt + ui (1)

where Ct = aggregate private consumption expenditure in year t, GNPt = gross
national product in year t, and D = national defense expenditures in year t, the
objective of the analysis being to study the effect of defense expenditures on other
expenditures in the economy.

Postulating that σ 2
t = σ 2(GNPt )

2, they transform (1) and estimate

Ct/GNPt = β1 (1/GNPt) + β2 + β3 (Dt/GNPt) + ut/GNPt (2)
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The empirical results based on the data for 1946–1975 were as follows (standard
errors in the parentheses):*

Ĉt = 26.19 + 0.6248 GNPt − 0.4398 Dt

(2.73) (0.0060) (0.0736) R2 = 0.999

Ĉt/GNPt = 25.92 (1/GNPt) + 0.6246 − 0.4315 (Dt/GNPt)

(2.22) (0.0068) (0.0597) R2 = 0.875

a. What assumption is made by the authors about the nature of heteroscedasticity?
Can you justify it?

b. Compare the results of the two regressions. Has the transformation of the origi-
nal model improved the results, that is, reduced the estimated standard errors?
Why or why not?

c. Can you compare the two R2 values? Why or why not? (Hint: Examine the
dependent variables.)

11.7. Refer to the estimated regression in Eqs. (11.6.2) and (11.6.3). The regression
results are quite similar. What could account for this outcome?

11.8. Prove that if wi = w, a constant, for each i, β∗
2 and β̂2 as well as their variance are

identical.

11.9. Refer to formulas (11.2.2) and (11.2.3). Assume

σ 2
i = σ 2ki

where σ2 is a constant and where ki are known weights, not necessarily all equal.
Using this assumption, show that the variance given in Eq. (11.2.2) can be

expressed as

var (β̂2) = σ 2∑
x2

i

·
∑

x2
i ki∑
x2

i

The first term on the right side is the variance formula given in Eq. (11.2.3), that
is, var (β̂2) under homoscedasticity. What can you say about the nature of the rela-
tionship between var (β̂2) under heteroscedasticity and under homoscedasticity?
(Hint: Examine the second term on the right side of the preceding formula.) Can
you draw any general conclusions about the relationships between Eqs. (11.2.2)
and (11.2.3)?

11.10. In the model

Yi = β2 Xi + ui (Note: there is no intercept)

you are told that var (ui ) = σ 2 X2
i . Show that

var (β̂2) = σ 2
∑

X4
i(∑

X2
i

)2

*Eric A. Hanushek and John E. Jackson, Statistical Methods for Social Scientists, Academic, New York,
1977, p. 160.
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TABLE 11.6
Asset Size (millions 
of dollars)

Year and
Quarter 1–10 10–25 25–50 50–100 100–250 250–1,000 1,000 �

1971–I 6.696 6.929 6.858 6.966 7.819 7.557 7.860
–II 6.826 7.311 7.299 7.081 7.907 7.685 7.351
–III 6.338 7.035 7.082 7.145 7.691 7.309 7.088
–IV 6.272 6.265 6.874 6.485 6.778 7.120 6.765

1972–I 6.692 6.236 7.101 7.060 7.104 7.584 6.717
–II 6.818 7.010 7.719 7.009 8.064 7.457 7.280
–III 6.783 6.934 7.182 6.923 7.784 7.142 6.619
–IV 6.779 6.988 6.531 7.146 7.279 6.928 6.919

1973–I 7.291 7.428 7.272 7.571 7.583 7.053 6.630
–II 7.766 9.071 7.818 8.692 8.608 7.571 6.805
–III 7.733 8.357 8.090 8.357 7.680 7.654 6.772
–IV 8.316 7.621 7.766 7.867 7.666 7.380 7.072 

Source: Quarterly Financial
Report for Manufacturing
Corporations, Federal Trade
Commission and the Securities
and Exchange Commission,
U.S. government, various issues
(computed).

*See “Properties of Sufficiency and Statistical Tests,” Proceedings of the Royal Society of London A,
vol. 160, 1937, p. 268.

Empirical Exercises
11.11. For the data given in Table 11.1, regress average compensation Y on average

productivity X, treating employment size as the unit of observation. Interpret your
results, and see if your results agree with those given in Eq. (11.5.3).
a. From the preceding regression obtain the residuals ûi .

b. Following the Park test, regress ln û2
i on ln Xi and verify the regression

Eq. (11.5.4).
c. Following the Glejser approach, regress |ûi | on Xi and then regress |ûi | on 

√
Xi

and comment on your results.
d. Find the rank correlation between |ûi | and Xi and comment on the nature of het-

eroscedasticity, if any, present in the data.

11.12. Table 11.6 gives data on the sales/cash ratio in U.S. manufacturing industries classi-
fied by the asset size of the establishment for the period 1971–I to 1973–IV. (The data
are on a quarterly basis.) The sales/cash ratio may be regarded as a measure of in-
come velocity in the corporate sector, that is, the number of times a dollar turns over.
a. For each asset size compute the mean and standard deviation of the sales/cash ratio.
b. Plot the mean value against the standard deviation as computed in (a), using asset

size as the unit of observation.
c. By means of a suitable regression model decide whether standard deviation of the

ratio increases with the mean value. If not, how would you rationalize the result?
d. If there is a statistically significant relationship between the two, how would you

transform the data so that there is no heteroscedasticity?
11.13. Bartlett’s homogeneity-of-variance test.* Suppose there are k independent sample

variances s2
1 , s2

2 , . . . , s2
k with f1, f2, . . . , fk df, each from populations which are

normally distributed with mean µ and variance σ 2
i . Suppose further that we want

to test the null hypothesis H0: σ 2
1 = σ 2

2 = · · · = σ 2
k = σ 2; that is, each sample vari-

ance is an estimate of the same population variance σ 2.

If the null hypothesis is true, then

s2 =

k∑
i=1

fi s2
i∑

fi
=

∑
fi s2

i

f
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provides an estimate of the common (pooled) estimate of the population variance
σ 2, where fi = (ni − 1), ni being the number of observations in the ith group and
where f = ∑k

i=1 fi .

Bartlett has shown that the null hypothesis can be tested by the ratio A/B,
which is approximately distributed as the χ2 distribution with k − 1 df, where

A = f ln s2 −
∑(

fi ln s2
i

)
and

B = 1 + 1

3(k − 1)

[∑(
1

fi

)
− 1

f

]

Apply Bartlett’s test to the data of Table 11.1 and verify that the hypothesis that
population variances of employee compensation are the same in each employment
size of the establishment cannot be rejected at the 5 percent level of significance.

Note: fi, the df for each sample variance, is 9, since ni for each sample (i.e.,
employment class) is 10.

11.14. Consider the following regression-through-the origin model:

Yi = βXi + ui, for i = 1, 2

You are told that u1 ∼ N (0, σ 2) and u2 ∼ N (0, 2σ 2) and that they are statistically
independent. If X1 = +1 and X2 = −1, obtain the weighted least-squares (WLS)
estimate of β and its variance. If in this situation you had assumed incorrectly that
the two error variances were the same (say, equal to σ2), what would be the OLS
estimator of β? And its variance? Compare these estimates with the estimates
obtained by the method of WLS. What general conclusion do you draw?* 

11.15. Table 11.7 gives data on 81 cars about MPG (average miles per gallons), HP (en-
gine horsepower), VOL (cubic feet of cab space), SP (top speed, miles per hour),
and WT (vehicle weight in 100 lbs.).

a. Consider the following model:

MPGi = β1 + β2SPi + β3HPi + β4WTi + ui

Estimate the parameters of this model and interpret the results. Do they make
economic sense?

b. Would you expect the error variance in the preceding model to be heteroscedas-
tic? Why?

c. Use the White test to find out if the error variance is heteroscedastic.

d. Obtain White’s heteroscedasticity-consistent standard errors and t values and
compare your results with those obtained from OLS.

e. If heteroscedasticity is established, how would you transform the data so that in
the transformed data the error variance is homoscedastic? Show the necessary
calculations.

11.16. Food expenditure in India. In Table 2.8 we have given data on expenditure on food
and total expenditure for 55 families in India.

a. Regress expenditure on food on total expenditure, and examine the residuals
obtained from this regression.

b. Plot the residuals obtained in (a) against total expenditure and see if you observe
any systematic pattern.

*Adapted from F. A. F. Seber, Linear Regression Analysis, John Wiley & Sons, New York, 1977, p. 64.
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TABLE 11.7 Passenger Car Mileage Data

Observation MPG SP HP VOL WT Observation MPG SP HP VOL WT

1 65.4 96 49 89 17.5 42 32.2 106 95 106 30.0
2 56.0 97 55 92 20.0 43 32.2 109 102 92 30.0
3 55.9 97 55 92 20.0 44 32.2 106 95 88 30.0
4 49.0 105 70 92 20.0 45 31.5 105 93 102 30.0
5 46.5 96 53 92 20.0 46 31.5 108 100 99 30.0
6 46.2 105 70 89 20.0 47 31.4 108 100 111 30.0
7 45.4 97 55 92 20.0 48 31.4 107 98 103 30.0
8 59.2 98 62 50 22.5 49 31.2 120 130 86 30.0
9 53.3 98 62 50 22.5 50 33.7 109 115 101 35.0

10 43.4 107 80 94 22.5 51 32.6 109 115 101 35.0
11 41.1 103 73 89 22.5 52 31.3 109 115 101 35.0
12 40.9 113 92 50 22.5 53 31.3 109 115 124 35.0
13 40.9 113 92 99 22.5 54 30.4 133 180 113 35.0
14 40.4 103 73 89 22.5 55 28.9 125 160 113 35.0
15 39.6 100 66 89 22.5 56 28.0 115 130 124 35.0
16 39.3 103 73 89 22.5 57 28.0 102 96 92 35.0
17 38.9 106 78 91 22.5 58 28.0 109 115 101 35.0
18 38.8 113 92 50 22.5 59 28.0 104 100 94 35.0
19 38.2 106 78 91 22.5 60 28.0 105 100 115 35.0
20 42.2 109 90 103 25.0 61 27.7 120 145 111 35.0
21 40.9 110 92 99 25.0 62 25.6 107 120 116 40.0
22 40.7 101 74 107 25.0 63 25.3 114 140 131 40.0
23 40.0 111 95 101 25.0 64 23.9 114 140 123 40.0
24 39.3 105 81 96 25.0 65 23.6 117 150 121 40.0
25 38.8 111 95 89 25.0 66 23.6 122 165 50 40.0
26 38.4 110 92 50 25.0 67 23.6 122 165 114 40.0
27 38.4 110 92 117 25.0 68 23.6 122 165 127 40.0
28 38.4 110 92 99 25.0 69 23.6 122 165 123 40.0
29 46.9 90 52 104 27.5 70 23.5 148 245 112 40.0
30 36.3 112 103 107 27.5 71 23.4 160 280 50 40.0
31 36.1 103 84 114 27.5 72 23.4 121 162 135 40.0
32 36.1 103 84 101 27.5 73 23.1 121 162 132 40.0
33 35.4 111 102 97 27.5 74 22.9 110 140 160 45.0
34 35.3 111 102 113 27.5 75 22.9 110 140 129 45.0
35 35.1 102 81 101 27.5 76 19.5 121 175 129 45.0
36 35.1 106 90 98 27.5 77 18.1 165 322 50 45.0
37 35.0 106 90 88 27.5 78 17.2 140 238 115 45.0
38 33.2 109 102 86 30.0 79 17.0 147 263 50 45.0
39 32.9 109 102 86 30.0 80 16.7 157 295 119 45.0
40 32.3 120 130 92 30.0 81 13.2 130 236 107 55.0
41 32.2 106 95 113 30.0

Note: 
VOL = cubic feet of cab space.

HP = engine horsepower.
MPG = average miles per gallon.

SP = top speed, miles per hour.
WT = vehicle weight, hundreds of pounds.

Observation = car observation number (Names of cars not disclosed).

Source: U.S. Environmental Protection Agency, 1991, Report EPA/AA/CTAB/91-02.
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c. If the plot in (b) suggests that there is heteroscedasticity, apply the Park, Glejser,
and White tests to find out if the impression of heteroscedasticity observed in (b)
is supported by these tests.

d. Obtain White’s heteroscedasticity-consistent standard errors and compare those
with the OLS standard errors. Decide if it is worth correcting for heteroscedas-
ticity in this example.

11.17. Repeat Exercise 11.16, but this time regress the logarithm of expenditure on food
on the logarithm of total expenditure. If you observe heteroscedasticity in the linear
model of Exercise 11.16 but not in the log–linear model, what conclusion do you
draw? Show all the necessary calculations.

11.18. A shortcut to White’s test. As noted in the text, the White test can consume degrees
of freedom if there are several regressors and if we introduce all the regressors,
their squared terms, and their cross products. Therefore, instead of estimating
regressions like Eq. (11.5.22), why not simply run the following regression:

û2
i = α1 + α2Ŷi + α2Ŷ 2

i + νi

where Ŷi are the estimated Y (i.e., regressand) values from whatever model you are
estimating? After all, Ŷi is simply the weighted average of the regressors, with the
estimated regression coefficients serving as the weights.

Obtain the R2 value from the preceding regression and use Eq. (11.5.22) to test
the hypothesis that there is no heteroscedasticity.

Apply the preceding test to the food expenditure example of Exercise 11.16.

11.19. Return to the R&D example discussed in Section 11.7 (Exercise 11.10). Repeat the
example using profits as the regressor. A priori, would you expect your results to be
different from those using sales as the regressor? Why or why not?

11.20. Table 11.8 gives data on median salaries of full professors in statistics in research
universities in the United States for the academic year 2007.

a. Plot median salaries against years in rank (as a measure of years of experience).
For the plotting purposes, assume that the median salaries refer to the midpoint
of years in rank. Thus, the salary $124,578 in the range 4–5 refers to 4.5 years in
the rank, and so on. For the last group, assume that the range is 31–33.

b. Consider the following regression models:

Yi = α1 + α2 Xi + ui (1)

Yi = β1 + β2 Xi + β3 X2
i + νi (2)

TABLE 11.8
Median Salaries of
Full Professors in
Statistics, 2007

Years in Rank Count Median

0 to 1 40 $101,478
2 to 3 24 102,400
4 to 5 35 124,578
6 to 7 34 122,850
8 to 9 33 116,900

10 to 14 73 119,465
15 to 19 69 114,900
20 to 24 54 129,072
25 to 30 44 131,704
31 or more 25 143,000

Source: American Statistical
Association, “2007 Salary
Report.”
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where Y = median salary, X = years in rank (measured at midpoint of the
range), and u and v are the error terms. Can you argue why model (2) might be
preferable to model (1)? From the data given, estimate both the models.

c. If you observe heteroscedasticity in model (1) but not in model (2), what con-
clusion would you draw? Show the necessary computations.

d. If heteroscedasticity is observed in model (2), how would you transform the data
so that in the transformed model there is no heteroscedasticity?

11.21. You are given the following data:

RSS1 based on the first 30 observations = 55, df = 25

RSS2 based on the last 30 observations = 140, df = 25

Carry out the Goldfeld–Quandt test of heteroscedasticity at the 5 percent level of
significance.

11.22. Table 11.9 gives data on percent change per year for stock prices (Y) and consumer
prices (X) for a cross section of 20 countries.

a. Plot the data in a scattergram.

b. Regress Y on X and examine the residuals from this regression. What do you
observe?

c. Since the data for Chile seem atypical (outlier?), repeat the regression in (b),
dropping the data on Chile. Now examine the residuals from this regression.
What do you observe?

d. If on the basis of the results in (b) you conclude that there was heteroscedastic-
ity in error variance but on the basis of the results in (c) you reverse your con-
clusion, what general conclusions do you draw?

TABLE 11.9
Stock and Consumer
Prices, Post–World
War II Period
(through 1969)

Rate of Change, % per Year

Stock Prices, Consumer Prices,

Country Y X

1. Australia 5.0 4.3
2. Austria 11.1 4.6
3. Belgium 3.2 2.4
4. Canada 7.9 2.4
5. Chile 25.5 26.4
6. Denmark 3.8 4.2
7. Finland 11.1 5.5
8. France 9.9 4.7
9. Germany 13.3 2.2

10. India 1.5 4.0
11. Ireland 6.4 4.0
12. Israel 8.9 8.4
13. Italy 8.1 3.3
14. Japan 13.5 4.7
15. Mexico 4.7 5.2
16. Netherlands 7.5 3.6
17. New Zealand 4.7 3.6
18. Sweden 8.0 4.0
19. United Kingdom 7.5 3.9
20. United States 9.0 2.1

Source: Phillip Cagan, Common
Stock Values and Inflation: The
Historical Record of Many
Countries, National Bureau of
Economic Research, Suppl.,
March 1974, Table 1, p. 4.

guj75772_ch11.qxd  12/08/2008  07:04 PM  Page 408



Chapter 11 Heteroscedasticity: What Happens If the Error Variance Is Nonconstant? 409

11.23. Table 11.10 from the website gives salary and related data on 447 executives of
Fortune 500 companies. Data include salary = 1999 salary and bonuses; totcomp =
1999 CEO total compensation; tenure = number of years as CEO (0 if less than
6 months); age = age of CEO; sales = total 1998 sales revenue of the firm; profits =
1998 profits for the firm; and assets = total assets of the firm in 1998.

a. Estimate the following regression from these data and obtain the Breusch–
Pagan–Godfrey statistic to check for heteroscedasticity:

salaryi = β1 + β2tenurei + β3agei + β4salesi + β5profitsi + β6assetsi + ui

Does there seem to be a problem with heteroscedasticity?

b. Now create a second model using ln(Salary) as the dependent variable. Is there
any improvement in the heteroscedasticity?

c. Create scattergrams of salary vs. each of the independent variables. Can you dis-
cern which variable(s) is (are) contributing to the issue? What suggestions would
you make now to address this? What is your final model?

Appendix 11A

11A.1 Proof of Equation (11.2.2)

From Appendix 3A, Section 3A.3, we have

var (β̂2) = E
(

k2
1u2

1 + k2
2u2

2 + · · · + k2
nu2

n + 2 cross-product terms
)

= E
(

k2
1u2

1 + k2
2u2

2 + · · · + k2
nu2

n

)

since the expectations of the cross-product terms are zero because of the assumption of no serial
correlation,

var (β̂2) = k2
1 E

(
u2

1

)
+ k2

2 E
(

u2
2

)
+ · · · + k2

n E
(

u2
n

)

since the ki are known. (Why?)

var (β̂2) = k2
1σ

2
1 + k2

2σ
2
2 + · · · + k2

nσ
2
n

since E(u2
i ) = σ 2

i .

var (β̂2) =
∑

k2
i σ

2
i

=
∑[(

xi∑
x2

i

)2

σ 2
i

]
since ki = xi∑

x2
i

(11.2.2)

=
∑

x2
i σ 2

i(∑
x2

i

)2

11A.2 The Method of Weighted Least Squares

To illustrate the method, we use the two-variable model Yi = β1 + β2 Xi + ui . The unweighted least-
squares method minimizes ∑

û2
i =

∑
(Yi − β̂1 − β̂2 Xi )

2 (1)
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to obtain the estimates, whereas the weighted least-squares method minimizes the weighted residual
sum of squares: ∑

wi û
2
i =

∑
wi (Yi − β̂∗

1 − β̂∗
2 Xi )

2 (2)

where β∗
1 and β∗

2 are the weighted least-squares estimators and where the weights wi are such that

wi = 1

σ 2
i

(3)

that is, the weights are inversely proportional to the variance of ui or Yi conditional upon the given Xi ,
it being understood that var (ui | Xi ) = var (Yi | Xi ) = σ 2

i .

Differentiating Eq. (2) with respect to β̂∗
1 and β̂∗

2 , we obtain

∂
∑

wi û2
i

∂β∗
1

= 2
∑

wi (Yi − β̂∗
1 − β̂∗

2 Xi )(−1)

∂
∑

wi û2
i

∂β∗
2

= 2
∑

wi (Yi − β̂∗
1 − β̂∗

2 Xi )(−Xi )

Setting the preceding expressions equal to zero, we obtain the following two normal equations:∑
wi Yi = β̂∗

1

∑
wi + β̂∗

2

∑
wi Xi (4)

∑
wi Xi Yi = β̂∗

1

∑
wi Xi + β̂∗

2

∑
wi X2

i (5)

Notice the similarity between these normal equations and the normal equations of the unweighted
least squares.

Solving these equations simultaneously, we obtain

β̂∗
1 = Ȳ ∗ − β̂∗

2 X̄∗ (6)

and

β̂∗
2 =

(∑
wi

)(∑
wi Xi Yi

)
−

(∑
wi Xi

)(∑
wi Yi

)
(∑

wi

)(∑
wi X2

i

)
−

(∑
wi Xi

)2
(11.3.8) = (7)

The variance of β̂∗
2 shown in Eq. (11.3.9) can be obtained in the manner of the variance of β̂2 shown

in Appendix 3A, Section 3A.3.
Note: Ȳ ∗ = ∑

wi Yi/
∑

wi and X̄∗ = ∑
wi Xi/

∑
wi . As can be readily verified, these weighted

means coincide with the usual or unweighted means Ȳ and X̄ when wi = w, a constant, for all i.

11A.3 Proof that E(σ̂2) �σ2 in the Presence 
of Heteroscedasticity

Consider the two-variable model:

Yi = β1 + β2 Xi + ui (1)

where var (ui ) = σ 2
i

Now

σ̂ 2 =
∑

û2
i

n − 2
=

∑
(Yi − Ŷi )2

n − 2
=

∑
[β1 + β2 Xi + ui − β̂1 − β̂2 Xi ]2

n − 2

=
∑

[−(β̂1 − β1) − (β̂2 − β2)Xi + ui ]2

n − 2

(2)
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Noting that (β̂1 − β1) = −(β̂2 − β2) X̄ + ū , and substituting this into Eq. (2) and taking expecta-
tions on both sides, we get:

E(σ̂ 2) = 1

n − 2

{
−

∑
x2

i var (β̂2) + E
[∑

(ui − ū)2
]}

= 1

n − 2

[
−

∑
x2

i σ 2
i∑

x2
i

+ (n − 1)
∑

σ 2
i

n

] (3)

where use is made of Eq. (11.2.2).
As you can see from Eq. (3), if there is homoscedasticity, that is, σ 2

i = σ 2 for each i, E(σ̂ 2) = σ 2.
Therefore, the expected value of the conventionally computed σ̂ 2 = ∑

û2/(n − 2) will not be equal
to the true σ 2 in the presence of heteroscedasticity.1

11A.4 White’s Robust Standard Errors

To give you some idea about White’s heteroscedasticity-corrected standard errors, consider the two-
variable regression model:

Yi = β1 + β2 Xi + ui var (ui ) = σ 2
i (1)

As shown in Eq. (11.2.2),

var (β̂2) =
∑

x2
i σ 2

i(∑
x2

i

)2 (2)

Since σ 2
i are not directly observable, White suggests using û2

i , the squared residual for each i, in place
of σ 2

i and estimating the var (β̂2) as follows:

var (β̂2) =
∑

x2
i û2

i(∑
x2

i

)2 (3)

White has shown that Eq. (3) is a consistent estimator of Eq. (2), that is, as the sample size increases
indefinitely, Eq. (3) converges to Eq. (2).2

Incidentally, note that if your software package does not contain White’s robust standard error pro-
cedure, you can do it as shown in Eq. (3) by first running the usual OLS regression, obtaining the
residuals from this regression, and then using formula (3).

White’s procedure can be generalized to the k-variable regression model

Yi = β1 + β2 X2i + β3 X3i + · · · + βk Xki + ui (4)

The variance of any partial regression coefficient, say β̂j , is obtained as follows:

var (β̂j ) =
∑

ŵ2
j i û

2
i(∑

ŵ2
j i

)2 (5)

where ûi are the residuals obtained from the (original) regression (4) and ŵj are the residuals
obtained from the (auxiliary) regression of the regressor X j on the remaining regressors in Eq. (4).

Obviously, this is a time-consuming procedure, for you will have to estimate Eq. (5) for each X
variable. Of course, all this labor can be avoided if you have a statistical package that does this rou-
tinely. Packages such as PC-GIVE, EViews, MICROFIT, SHAZAM, STATA, and LIMDEP now
obtain White’s heteroscedasticity-robust standard errors very easily.

1Further details can be obtained from Jan Kmenta, Elements of Econometrics, 2d. ed., Macmillan, New
York, 1986, pp. 276–278.
2To be more precise, n times Eq. (3) converges in probability to E [(Xi − µX )2u2

i ]/(σ2
X )2, which is the

probability limit of n times Eq. (2), where n is the sample size, µx is the expected value of X, and σ2
X is

the (population) variance of X. For more details, see Jeffrey M. Wooldridge, Introductory Econometrics:
A Modern Approach, South-Western Publishing, 2000, p. 250.
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Chapter 12
Autocorrelation: What
Happens If the Error
Terms Are Correlated?
The reader may recall that there are generally three types of data that are available for
empirical analysis: (1) cross section, (2) time series, and (3) combination of cross sec-
tion and time series, also known as pooled data. In developing the classical linear regres-
sion model (CLRM) in Part 1 we made several assumptions, which were discussed
in Section 7.1. However, we noted that not all of these assumptions would hold in
every type of data. As a matter of fact, we saw in the previous chapter that the assumption
of homoscedasticity, or equal error variance, may not always be tenable in cross-
sectional data. In other words, cross-sectional data are often plagued by the problem of
heteroscedasticity.

However, in cross-section studies, data are often collected on the basis of a random
sample of cross-sectional units, such as households (in a consumption function analysis) or
firms (in an investment study analysis) so that there is no prior reason to believe that the
error term pertaining to one household or firm is correlated with the error term of another
household or firm. If by chance such a correlation is observed in cross-sectional units, it is
called spatial autocorrelation, that is, correlation in space rather than over time. However,
it is important to remember that, in cross-sectional analysis, the ordering of the data must
have some logic, or economic interest, to make sense of any determination of whether
(spatial) autocorrelation is present or not.

The situation, however, is likely to be very different if we are dealing with time series
data, for the observations in such data follow a natural ordering over time so that successive
observations are likely to exhibit intercorrelations, especially if the time interval between
successive observations is short, such as a day, a week, or a month rather than a year. If you
observe stock price indexes, such as the Dow Jones or S&P 500, over successive days, it is
not unusual to find that these indexes move up or down for several days in succession.
Obviously, in situations like this, the assumption of no auto-, or serial, correlation in the
error terms that underlies the CLRM will be violated.

In this chapter we take a critical look at this assumption with a view to answering the
following questions:

1. What is the nature of autocorrelation?

2. What are the theoretical and practical consequences of autocorrelation?
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3. Since the assumption of no autocorrelation relates to the unobservable disturbances ut ,
how does one know that there is autocorrelation in any given situation? Notice that we
now use the subscript t to emphasize that we are dealing with time series data.

4. How does one remedy the problem of autocorrelation?

The reader will find this chapter in many ways similar to the preceding chapter on het-
eroscedasticity in that under both heteroscedasticity and autocorrelation the usual
OLS estimators, although linear, unbiased, and asymptotically (i.e., in large samples)
normally distributed,1 are no longer minimum variance among all linear unbiased
estimators. In short, they are not efficient relative to other linear and unbiased
estimators. Put differently, they may not be best linear unbiased estimators (BLUE).
As a result, the usual, t, F, and χ2 may not be valid.

12.1 The Nature of the Problem

The term autocorrelation may be defined as “correlation between members of series of
observations ordered in time [as in time series data] or space [as in cross-sectional data].’’2

In the regression context, the classical linear regression model assumes that such autocor-
relation does not exist in the disturbances ui . Symbolically,

cov(ui , uj |xi , xj ) = E(ui uj ) = 0 i �= j (3.2.5)

Put simply, the classical model assumes that the disturbance term relating to any observa-
tion is not influenced by the disturbance term relating to any other observation. For exam-
ple, if we are dealing with quarterly time series data involving the regression of output on
labor and capital inputs and if, say, there is a labor strike affecting output in one quarter,
there is no reason to believe that this disruption will be carried over to the next quarter. That
is, if output is lower this quarter, there is no reason to expect it to be lower next quarter.
Similarly, if we are dealing with cross-sectional data involving the regression of family
consumption expenditure on family income, the effect of an increase of one family’s income
on its consumption expenditure is not expected to affect the consumption expenditure of
another family.

However, if there is such a dependence, we have autocorrelation. Symbolically,

E(ui uj ) �= 0 i �= j (12.1.1)

In this situation, the disruption caused by a strike this quarter may very well affect output
next quarter, or the increases in the consumption expenditure of one family may very well
prompt another family to increase its consumption expenditure if it wants to keep up with
the Joneses.

Before we find out why autocorrelation exists, it is essential to clear up some termino-
logical questions. Although it is now a common practice to treat the terms autocorrelation
and serial correlation synonymously, some authors prefer to distinguish the two terms. For
example, Tintner defines autocorrelation as “lag correlation of a given series with itself,
lagged by a number of time units,’’ whereas he reserves the term serial correlation to define

1On this, see William H. Greene, Econometric Analysis, 4th ed., Prentice Hall, NJ, 2000, Chapter 11,
and Paul A. Rudd, An Introduction to Classical Econometric Theory, Oxford University Press, 2000,
Chapter 19.
2Maurice G. Kendall and William R. Buckland, A Dictionary of Statistical Terms, Hafner Publishing
Company, New York, 1971, p. 8.
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“lag correlation between two different series.’’3 Thus, correlation between two time series
such as u1, u2, . . . , u10 and u2, u3, . . . , u11, where the former is the latter series lagged by
one time period, is autocorrelation, whereas correlation between time series such as
u1, u2, . . . , u10 and v2, v3, . . . , v11, where u and v are two different time series, is called
serial correlation. Although the distinction between the two terms may be useful, in this
book we shall treat them synonymously.

Let us visualize some of the plausible patterns of auto- and nonautocorrelation, which are
given in Figure 12.1. Figures 12.1a to d show that there is a discernible pattern among the u’s.
Figure 12.1a shows a cyclical pattern; Figures 12.1b and c suggest an upward or downward
linear trend in the disturbances; whereas Figure 12.1d indicates that both linear and quadratic
trend terms are present in the disturbances. Only Figure 12.1e indicates no systematic pat-
tern, supporting the nonautocorrelation assumption of the classical linear regression model.

The natural question is: Why does serial correlation occur? There are several reasons,
some of which are as follows:

Inertia
A salient feature of most economic time series is inertia, or sluggishness. As is well known,
time series such as GNP, price indexes, production, employment, and unemployment exhibit
(business) cycles. Starting at the bottom of the recession, when economic recovery starts,
most of these series start moving upward. In this upswing, the value of a series at one point
in time is greater than its previous value. Thus there is a “momentum’’ built into them, and
it continues until something happens (e.g., increase in interest rate or taxes or both) to slow
them down. Therefore, in regressions involving time series data, successive observations are
likely to be interdependent.

Specification Bias: Excluded Variables Case
In empirical analysis the researcher often starts with a plausible regression model that may
not be the most “perfect’’ one. After the regression analysis, the researcher does the post-
mortem to find out whether the results accord with a priori expectations. If not, surgery is
begun. For example, the researcher may plot the residuals ûi obtained from the fitted re-
gression and may observe patterns such as those shown in Figure 12.1a to d. These residu-
als (which are proxies for ui ) may suggest that some variables that were originally
candidates but were not included in the model for a variety of reasons should be included.
This is the case of excluded variable specification bias. Often the inclusion of such vari-
ables removes the correlation pattern observed among the residuals. For example, suppose
we have the following demand model:

Yt = β1 + β2 X2t + β3 X3t + β4 X4t + ut (12.1.2)

where Y = quantity of beef demanded, X2 = price of beef, X3 = consumer income, X4 =
price of pork, and t = time.4 However, for some reason we run the following regression:

Yt = β1 + β2 X2t + β3 X3t + vt (12.1.3)

Now if Eq. (12.1.2) is the “correct’’ model or the “truth’’ or true relation, running
Eq. (12.1.3) is tantamount to letting vt = β4 X4t + ut . And to the extent the price of pork
affects the consumption of beef, the error or disturbance term v will reflect a systematic

414 Part Two Relaxing the Assumptions of the Classical Model

3Gerhard Tintner, Econometrics, John Wiley & Sons, New York, 1965.
4As a matter of convention, we shall use the subscript t to denote time series data and the usual sub-
script i for cross-sectional data.
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FIGURE 12.1
Patterns of
autocorrelation and
nonautocorrelation.

pattern, thus creating (false) autocorrelation. A simple test of this would be to run both
Eqs. (12.1.2) and (12.1.3) and see whether autocorrelation, if any, observed in model (12.1.3)
disappears when model (12.1.2) is run.5 The actual mechanics of detecting autocorrelation
will be discussed in Section 12.6 where we will show that a plot of the residuals from
regressions (12.1.2) and (12.1.3) will often shed considerable light on serial correlation.

5If it is found that the real problem is one of specification bias, not autocorrelation, then as will be
shown in Chapter 13, the OLS estimators of the parameters in Eq. (12.1.3) may be biased as well as
inconsistent.
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Specification bias:
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Specification Bias: Incorrect Functional Form
Suppose the “true’’ or correct model in a cost-output study is as follows:

Marginal costi = β1 + β2 outputi + β3 output2i + ui (12.1.4)

but we fit the following model:

Marginal costi = α1 + α2 outputi + vi (12.1.5)

The marginal cost curve corresponding to the “true’’ model is shown in Figure 12.2 along
with the “incorrect’’ linear cost curve.

As Figure 12.2 shows, between points A and B the linear marginal cost curve will con-
sistently overestimate the true marginal cost, whereas beyond these points it will consis-
tently underestimate the true marginal cost. This result is to be expected, because the
disturbance term vi is, in fact, equal to output2 + ui , and hence will catch the systematic
effect of the output2 term on marginal cost. In this case, vi will reflect autocorrelation
because of the use of an incorrect functional form. In Chapter 13 we will consider several
methods of detecting specification bias.

Cobweb Phenomenon
The supply of many agricultural commodities reflects the so-called cobweb phenomenon,
where supply reacts to price with a lag of one time period because supply decisions
take time to implement (the gestation period). Thus, at the beginning of this year’s planting
of crops, farmers are influenced by the price prevailing last year, so that their supply
function is

Supplyt = β1 + β2 Pt−1 + ut (12.1.6)

Suppose at the end of period t, price Pt turns out to be lower than Pt−1. Therefore, in period
t + 1 farmers may very well decide to produce less than they did in period t. Obviously, in
this situation the disturbances ut are not expected to be random because if the farmers over-
produce in year t, they are likely to reduce their production in t + 1, and so on, leading to
a cobweb pattern.

Lags
In a time series regression of consumption expenditure on income, it is not uncommon to
find that the consumption expenditure in the current period depends, among other things,
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on the consumption expenditure of the previous period. That is,

Consumptiont = β1 + β2 incomet + β3 consumptiont−1 + ut (12.1.7)

A regression such as Eq. (12.1.7) is known as autoregression because one of the explana-
tory variables is the lagged value of the dependent variable. (We shall study such models in
Chapter 17.) The rationale for a model such as Eq. (12.1.7) is simple. Consumers do not
change their consumption habits readily for psychological, technological, or institutional
reasons. Now if we neglect the lagged term in Eq. (12.1.7), the resulting error term will
reflect a systematic pattern due to the influence of lagged consumption on current
consumption.

“Manipulation’’ of Data
In empirical analysis, the raw data are often “manipulated.’’ For example, in time series re-
gressions involving quarterly data, such data are usually derived from the monthly data
by simply adding three monthly observations and dividing the sum by 3. This averaging
introduces smoothness into the data by dampening the fluctuations in the monthly data.
Therefore, the graph plotting the quarterly data looks much smoother than the monthly
data, and this smoothness may itself lend to a systematic pattern in the disturbances,
thereby introducing autocorrelation. Another source of manipulation is interpolation or
extrapolation of data. For example, the Census of Population is conducted every 10 years
in this country, the last being in 2000 and the one before that in 1990. Now if there is a
need to obtain data for some year within the intercensus period 1990–2000, the common
practice is to interpolate on the basis of some ad hoc assumptions. All such data “massag-
ing’’ techniques might impose upon the data a systematic pattern that might not exist in
the original data.6

Data Transformation
As an example of this, consider the following model:

Yt = β1 + β2 Xt + ut (12.1.8)

where, say, Y = consumption expenditure and X = income. Since Eq. (12.1.8) holds true
at every time period, it holds true also in the previous time period, (t − 1). So, we can write
Eq. (12.1.8) as

Yt−1 = β1 + β2 Xt−1 + ut−1 (12.1.9)

Yt−1, Xt−1, and ut−1 are known as the lagged values of Y, X, and u, respectively, here
lagged by one period. We will see the importance of the lagged values later in the chapter
as well in several places in the text.

Now if we subtract Eq. (12.1.9) from Eq. (12.1.8), we obtain

�Yt = β2�Xt + �ut (12.1.10)

where �, known as the first difference operator, tells us to take successive differences
of the variables in question. Thus, �Yt = (Yt − Yt−1), �Xt = (Xt − Xt−1), and �ut =
(ut − ut−1). For empirical purposes, we write Eq. (12.1.10) as

�Yt = β2�Xt + vt (12.1.11)

where vt = �ut = (ut − ut−1).

6On this, see William H. Greene, op. cit., p. 526.
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Equation (12.1.9) is known as the level form and Eq. (12.1.10) is known as the (first)
difference form. Both forms are often used in empirical analysis. For example, if in
Eq. (12.1.9) Y and X represent the logarithms of consumption expenditure and income, then
in Eq. (12.1.10) �Y and �X will represent changes in the logs of consumption expendi-
ture and income. But as we know, a change in the log of a variable is a relative change, or a
percentage change, if the former is multiplied by 100. So, instead of studying relationships
between variables in the level form, we may be interested in their relationships in the
growth form.

Now if the error term in Eq. (12.1.8) satisfies the standard OLS assumptions, particu-
larly the assumption of no autocorrelation, it can be shown that the error term vt in
Eq. (12.1.11) is autocorrelated. (The proof is given in Appendix 12A, Section 12A.1.) It
may be noted here that models like Eq. (12.1.11) are known as dynamic regression
models, that is, models involving lagged regressands. We will study such models in depth
in Chapter 17.

The point of the preceding example is that sometimes autocorrelation may be induced
as a result of transforming the original model.

Nonstationarity
We mentioned in Chapter 1 that, while dealing with time series data, we may have to find
out if a given time series is stationary. Although we will discuss the topic of nonstationary
time series more thoroughly in the chapters on time series econometrics in Part 5 of the
text, loosely speaking, a time series is stationary if its characteristics (e.g., mean, variance,
and covariance) are time invariant; that is, they do not change over time. If that is not the
case, we have a nonstationary time series.

As we will discuss in Part 5, in a regression model such as Eq. (12.1.8), it is quite possible
that both Y and X are nonstationary and therefore the error u is also nonstationary.7 In that
case, the error term will exhibit autocorrelation.

In summary, then, there are a variety of reasons why the error term in a regression model
may be autocorrelated. In the rest of the chapter we investigate in some detail the problems
posed by autocorrelation and what can be done about it.

It should be noted also that autocorrelation can be positive (Figure 12.3a) as well as
negative, although most economic time series generally exhibit positive autocorrelation
because most of them ether move upward or downward over extended time periods and do
not exhibit a constant up-and-down movement such as that shown in Figure 12.3b.

12.2 OLS Estimation in the Presence of Autocorrelation

What happens to the OLS estimators and their variances if we introduce autocorrelation in
the disturbances by assuming that E(ut ut+s) �= 0 (s �= 0) but retain all the other assump-
tions of the classical model?8 Note again that we are now using the subscript t on the dis-
turbances to emphasize that we are dealing with time series data.

We revert once again to the two-variable regression model to explain the basic ideas
involved, namely, Yt = β1 + β2 Xt + ut . To make any headway, we must assume the mech-
anism that generates ut , for E(ut ut+s) �= 0 (s �= 0) is too general an assumption to be of

418 Part Two Relaxing the Assumptions of the Classical Model

7As we will also see in Part 5, even though Y and X are nonstationary, it is possible to find u to be
stationary. We will explore the implication of that later on.
8If s = 0, we obtain E (u2

t ). Since E (ut) = 0 by assumption, E (u2
t ) will represent the variance of the

error term, which obviously is nonzero (why?).
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any practical use. As a starting point, or first approximation, one can assume that the dis-
turbance, or error, terms are generated by the following mechanism.

ut = ρut−1 + εt −1 < ρ < 1 (12.2.1)

where ρ ( = rho) is known as the coefficient of autocovariance and where εt is the sto-
chastic disturbance term such that it satisfies the standard OLS assumptions, namely,

E(εt ) = 0

var (εt ) = σ 2
ε (12.2.2)

cov (εt , εt+s) = 0 s �= 0

In the engineering literature, an error term with the preceding properties is often called
a white noise error term. What Eq. (12.2.1) postulates is that the value of the disturbance
term in period t is equal to ρ times its value in the previous period plus a purely random
error term.

The scheme (12.2.1) is known as a Markov first-order autoregressive scheme, or sim-
ply a first-order autoregressive scheme, usually denoted as AR(1). The name autoregres-
sive is appropriate because Eq. (12.2.1) can be interpreted as the regression of ut on itself
lagged one period. It is first order because ut and its immediate past value are involved; that
is, the maximum lag is 1. If the model were ut = ρ1ut−1 + ρ2ut−2 + εt , it would be an
AR(2), or second-order, autoregressive scheme, and so on. We will examine such higher-
order schemes in the chapters on time series econometrics in Part 5.

ut–10  Time

ut ut

ut ut

(a)

(b)

 Time ut–10

FIGURE 12.3
(a) Positive and
(b) negative
autocorrelation.
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In passing, note that ρ, the coefficient of autocovariance in Eq. (12.2.1), can also be
interpreted as the first-order coefficient of autocorrelation, or more accurately, the
coefficient of autocorrelation at lag 1.9

Given the AR(1) scheme, it can be shown that (see Appendix 12A, Section 12A.2):

var (ut ) = E
(
u2

t

) = σ 2
ε

1 − ρ2
(12.2.3)

cov (ut , ut+s) = E(ut ut−s) = ρs σ 2
ε

1 − ρ2
(12.2.4)

cor (ut , ut+s) = ρs (12.2.5)

where cov (ut , ut+s) means covariance between error terms s periods apart and where
cor (ut , ut+s) means correlation between error terms s periods apart. Note that because of
the symmetry property of covariances and correlations, cov (ut , ut+s) = cov (ut , ut−s) and
cor (ut , ut+s) = cor (ut , ut−s).

Since ρ is a constant between −1 and +1, Eq. (12.2.3) shows that under the AR(1)
scheme, the variance of ut is still homoscedastic, but ut is correlated not only with its im-
mediate past value but its values several periods in the past. It is critical to note that
|ρ| < 1, that is, the absolute value of ρ is less than 1. If, for example, ρ is 1, the variances
and covariances listed above are not defined. If |ρ| < 1, we say that the AR(1) process
given in Eq. (12.2.1) is stationary; that is, the mean, variance, and covariance of ut do not
change over time. If |ρ| is less than 1, then it is clear from Eq. (12.2.4) that the value of the
covariance will decline as we go into the distant past. We will see the utility of the preced-
ing results shortly.

One reason we use the AR(1) process is not only because of its simplicity compared to
higher-order AR schemes, but also because in many applications it has proved to be quite
useful. Additionally, a considerable amount of theoretical and empirical work has been
done on the AR(1) scheme.

Now return to our two-variable regression model: Yt = β1 + β2 Xt + ut . We know from
Chapter 3 that the OLS estimator of the slope coefficient is

β̂2 =
∑

xt yt∑
x2

t
(12.2.6)

and its variance is given by

var (β̂2) = σ 2∑
x2

i

(12.2.7)

where the small letters as usual denote deviation from the mean values.

420 Part Two Relaxing the Assumptions of the Classical Model

9This name can be easily justified. By definition, the (population) coefficient of correlation between
ut and ut−1 is

ρ = E {[ut − E (ut)][ut−1 − E (ut−1)]}√
var (ut)

√
var (ut−1)

= E (utut−1)
var (ut−1)

since E (ut) = 0 for each t and var (ut) = var (ut−1) because we are retaining the assumption of
homoscedasticity. The reader can see that ρ is also the slope coefficient in the regression of ut on ut−1.
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Now under the AR(1) scheme, it can be shown that the variance of this estimator is:

var (β̂2)AR1 = σ 2∑
x2

t

[
1 + 2ρ

∑
xt xt−1∑

x2
t

+ 2ρ2

∑
xt xt−2∑

x2
t

+ · · · + 2ρn−1 x1xn∑
x2

t

]

(12.2.8)

where var (β̂2)AR1 means the variance of β̂2 under a first-order autoregressive scheme.
A comparison of Eq. (12.2.8) with Eq. (12.2.7) shows the former is equal to the latter

times a term that depends on ρ as well as the sample autocorrelations between the values
taken by the regressor X at various lags.10 And in general we cannot foretell whether
var (β̂2) is less than or greater than var (β̂2)AR1 (but see Eq. [12.4.1] below). Of course, if ρ
is zero, the two formulas will coincide, as they should (why?). Also, if the correlations
among the successive values of the regressor are very small, the usual OLS variance of the
slope estimator will not be seriously biased. But, as a general principle, the two variances
will not be the same.

To give some idea about the difference between the variances given in Eqs. (12.2.7) and
(12.2.8), assume that the regressor X also follows the first-order autoregressive scheme
with a coefficient of autocorrelation of r. Then it can be shown that Eq. (12.2.8) reduces to:

var (β̂2)AR(1) = σ 2∑
x2

t

(
1 + rρ

1 − rρ

)
= var (β̂2)OLS

(
1 + rρ

1 − rρ

)
(12.2.9)

If, for example, r = 0.6 and ρ = 0.8, using Eq. (12.2.9) we can check that var (β̂2)AR1 =
2.8461 var (β̂2)OLS. To put it another way, var (β̂2)OLS = 1

2.8461 var (β̂2)AR1 = 0.3513
var (β̂2)AR1. That is, the usual OLS formula (i.e., Eq. [12.2.7]) will underestimate the vari-
ance of (β̂2)AR1 by about 65 percent. As you will realize, this answer is specific for the
given values of r and ρ. But the point of this exercise is to warn you that a blind application
of the usual OLS formulas to compute the variances and standard errors of the OLS
estimators could give seriously misleading results.

Suppose we continue to use the OLS estimator β̂2 and adjust the usual variance for-
mula by taking into account the AR(1) scheme. That is, we use β̂2 given by Eq. (12.2.6)
but use the variance formula given by Eq. (12.2.8). What now are the properties of β̂2? It
is easy to prove that β̂2 is still linear and unbiased. As a matter of fact, as shown in Ap-
pendix 3A, Section 3A.2, the assumption of no serial correlation, like the assumption of
no heteroscedasticity, is not required to prove that β̂2 is unbiased. Is β̂2 still BLUE? Un-
fortunately, it is not; in the class of linear unbiased estimators, it does not have minimum
variance. In short, β̂2, although linear-unbiased, is not efficient (relatively speaking, of
course). The reader will notice that this finding is quite similar to the finding that β̂2 is
less efficient in the presence of heteroscedasticity. There we saw that it was the weighted
least-square estimator β̂∗

2 given in Eq. (11.3.8), a special case of the generalized least-
squares (GLS) estimator, that was efficient. In the case of autocorrelation can we find an
estimator that is BLUE? The answer is yes, as can be seen from the discussion in the
following section.

10Note that the term r = ∑
xtxt+1/

∑
x2

t is the correlation between Xt and Xt+1 (or Xt−1, since the
correlation coefficient is symmetric); r 2 = ∑

xtxt+2/
∑

x2
t is the correlation between the X ’s lagged

two periods; and so on.
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12.3 The BLUE Estimator in the Presence of Autocorrelation

Continuing with the two-variable model and assuming the AR(1) process, we can show that
the BLUE estimator of β2 is given by the following expression:11

where C is a correction factor that may be disregarded in practice. Note that the subscript t
now runs from t = 2 to t = n. And its variance is given by

where D too is a correction factor that may also be disregarded in practice. (See Exer-
cise 12.18.)

The estimator β̂GLS
2 , as the superscript suggests, is obtained by the method of GLS. As

noted in Chapter 11, in GLS we incorporate any additional information we have (e.g., the
nature of the heteroscedasticity or of the autocorrelation) directly into the estimating pro-
cedure by transforming the variables, whereas in OLS such side information is not directly
taken into consideration. As the reader can see, the GLS estimator of β2 given in
Eq. (12.3.1) incorporates the autocorrelation parameter ρ in the estimating formula,
whereas the OLS formula given in Eq. (12.2.6) simply neglects it. Intuitively, this is the rea-
son why the GLS estimator is BLUE and not the OLS estimator—the GLS estimator makes
the most use of the available information.12 It hardly needs to be added that if ρ = 0, there
is no additional information to be considered and hence both the GLS and OLS estimators
are identical.

In short, under autocorrelation, it is the GLS estimator given in Eq. (12.3.1) that is
BLUE, and the minimum variance is now given by Eq. (12.3.2) and not by Eq. (12.2.8) and
obviously not by Eq. (12.2.7).

A Technical Note
As we noted in the previous chapter, the Gauss–Markov theorem provides only the suffi-
cient condition for OLS to be BLUE. The necessary and sufficient conditions for OLS to be
BLUE are given by Kruskal’s theorem, mentioned in the previous chapter. Therefore, in
some cases it can happen that OLS is BLUE despite autocorrelation. But such cases are
infrequent in practice.

What happens if we blithely continue to work with the usual OLS procedure despite
autocorrelation? The answer is provided in the following section.

(12.3.2)var β̂GLS
2 = σ 2∑n

t=2(xt − ρxt−1)2
+ D

(12.3.1)β̂GLS
2 =

∑n
t=2(xt − ρxt−1)(yt − ρyt−1)∑n

t=2(xt − ρxt−1)2
+ C

422 Part Two Relaxing the Assumptions of the Classical Model

11For proofs, see Jan Kmenta, Elements of Econometrics, Macmillan, New York, 1971, pp. 274–275.
The correction factor C pertains to the first observation, (Y1, X1). On this point see Exercise 12.18.
12The formal proof that β̂GLS

2 is BLUE can be found in Kmenta, ibid. But the tedious algebraic proof
can be simplified considerably using matrix notation. See J. Johnston, Econometric Methods, 3d ed.,
McGraw-Hill, New York, 1984, pp. 291–293.
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12.4 Consequences of Using OLS in the Presence 
of Autocorrelation

As in the case of heteroscedasticity, in the presence of autocorrelation the OLS estimators
are still linear unbiased as well as consistent and asymptotically normally distributed, but
they are no longer efficient (i.e., minimum variance). What then happens to our usual hy-
pothesis testing procedures if we continue to use the OLS estimators? Again, as in the case
of heteroscedasticity, we distinguish two cases. For pedagogical purposes we still continue
to work with the two-variable model, although the following discussion can be extended to
multiple regressions without much trouble.13

OLS Estimation Allowing for Autocorrelation
As noted, β̂2 is not BLUE, and even if we use var (β̂2)AR1, the confidence intervals derived
from there are likely to be wider than those based on the GLS procedure. As Kmenta
shows, this result is likely to be the case even if the sample size increases indefinitely.14

That is, β̂2 is not asymptotically efficient. The implication of this finding for hypothesis test-
ing is clear: We are likely to declare a coefficient statistically insignificant (i.e., not differ-
ent from zero) even though in fact (i.e., based on the correct GLS procedure) it may be.
This difference can be seen clearly from Figure 12.4. In this figure we show the 95% OLS
[AR(1)] and GLS confidence intervals assuming that true β2 = 0. Consider a particular
estimate of β2, say, b2. Since b2 lies in the OLS confidence interval, we could accept the
hypothesis that true β2 is zero with 95 percent confidence. But if we were to use the (cor-
rect) GLS confidence interval, we could reject the null hypothesis that true β2 is zero, for
b2 lies in the region of rejection.

The message is: To establish confidence intervals and to test hypotheses, one should
use GLS and not OLS even though the estimators derived from the latter are unbiased
and consistent. (However, see Section 12.11 later.)

13But matrix algebra becomes almost a necessity to avoid tedious algebraic manipulations.
14See Kmenta, op. cit., pp. 277–278.

GLS 95% interval 

OLS 95% interval

0

H0:   2 = 0β

β2

b2

FIGURE 12.4
GLS and OLS 95%
confidence intervals.

OLS Estimation Disregarding Autocorrelation
The situation is potentially very serious if we not only use β̂2 but also continue to use
var (β̂2) = σ 2/

∑
x2

t , which completely disregards the problem of autocorrelation, that is,
we mistakenly believe that the usual assumptions of the classical model hold true. Errors
will arise for the following reasons:

1. The residual variance σ̂ 2 = ∑
û2

t /(n − 2) is likely to underestimate the true σ 2.

2. As a result, we are likely to overestimate R2.
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3. Even if σ 2 is not underestimated, var (β̂2) may underestimate var (β̂2)AR1 (Eq. [12.2.8]),
its variance under (first-order) autocorrelation, even though the latter is inefficient com-
pared to var (β̂2)GLS.

4. Therefore, the usual t and F tests of significance are no longer valid, and if applied, are
likely to give seriously misleading conclusions about the statistical significance of the
estimated regression coefficients.

To establish some of these propositions, let us revert to the two-variable model. We
know from Chapter 3 that under the classical assumption 

σ̂ 2 =
∑

û2
i

(n − 2)

provides an unbiased estimator of σ 2, that is, E(σ̂ 2) = σ 2. But if there is autocorrelation,
given by AR(1), it can be shown that

E(σ̂ 2) = σ 2{n − [2/(1 − ρ)] − 2ρr}
n − 2

(12.4.1)

where r = ∑n−1
t=1 xt xt−1/

∑n
t=1 x2

t , which can be interpreted as the (sample) correlation
coefficient between successive values of the X ’s.15 If ρ and r are both positive (not an
unlikely assumption for most economic time series), it is apparent from Eq. (12.4.1) that
E(σ̂ 2) < σ 2; that is, the usual residual variance formula, on average, will underestimate
the true σ 2. In other words, σ̂ 2 will be biased downward. Needless to say, this bias in σ̂ 2

will be transmitted to var (β̂2) because in practice we estimate the latter by the formula
σ̂ 2/

∑
x2

t .
But even if σ 2 is not underestimated, var (β̂2) is a biased estimator of var (β̂2)AR1, which

can be readily seen by comparing Eq. (12.2.7) with Eq. (12.2.8),16 for the two formulas are
not the same. As a matter of fact, if ρ is positive (which is true of most economic time
series) and the X’s are positively correlated (also true of most economic time series), then
it is clear that

var (β̂2) < var (β̂2)AR1 (12.4.2)

that is, the usual OLS variance of β̂2 underestimates its variance under AR(1) (see
Eq. [12.2.9]). Therefore, if we use var (β̂2), we shall inflate the precision or accuracy (i.e.,
underestimate the standard error) of the estimator β̂2. As a result, in computing the t ratio
as t = β̂2/se (β̂2) (under the hypothesis that β2 = 0), we shall be overestimating the t value
and hence the statistical significance of the estimated β2. The situation is likely to get worse
if additionally σ 2 is underestimated, as noted previously.

To see how OLS is likely to underestimate σ 2 and the variance of β̂2, let us conduct the
following Monte Carlo experiment. Suppose in the two-variable model we “know’’ that
the true β1 = 1 and β2 = 0.8. Therefore, the stochastic PRF is

Yt = 1.0 + 0.8Xt + ut (12.4.3)

424 Part Two Relaxing the Assumptions of the Classical Model

15See S. M. Goldfeld and R. E. Quandt, Nonlinear Methods in Econometrics, North Holland Publishing
Company, Amsterdam, 1972, p. 183. In passing, note that if the errors are positively autocorrelated,
the R2 value tends to have an upward bias, that is, it tends to be larger than the R2 in the absence of
such correlation.
16For a formal proof, see Kmenta, op. cit., p. 281.
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Hence,

E(Yt | Xt ) = 1.0 + 0.8Xt (12.4.4)

which gives the true population regression line. Let us assume that ut are generated by the
first-order autoregressive scheme as follows:

ut = 0.7ut−1 + εt (12.4.5)

where εt satisfy all the OLS assumptions. We assume further for convenience that the εt are
normally distributed with zero mean and unit ( = 1) variance. Equation (12.4.5) postulates
that the successive disturbances are positively correlated, with a coefficient of autocorrela-
tion of +0.7, a rather high degree of dependence.

Now, using a table of random normal numbers with zero mean and unit variance, we
generated 10 random numbers shown in Table 12.1 and then by the scheme (12.4.5) we
generated ut . To start off the scheme, we need to specify the initial value of u, say, u0 = 5.

Plotting the ut generated in Table 12.1, we obtain Figure 12.5, which shows that initially
each successive ut is higher than its previous value and subsequently it is generally smaller
than its previous value showing, in general, a positive autocorrelation.

Now suppose the values of X are fixed at 1, 2, 3, . . . , 10. Then, given these X ’s, we can
generate a sample of 10 Y values from Eq. (12.4.3) and the values of ut given in Table 12.1.
The details are given in Table 12.2. Using the data of Table 12.2, if we regress Y on X, we
obtain the following (sample) regression:

Ŷt = 6.5452 + 0.3051Xt

(0.6153) (0.0992)

t = (10.6366) (3.0763)
(12.4.6)

r2 = 0.5419 σ̂ 2 = 0.8114

whereas the true regression line is as given by Eq. (12.4.4). Both the regression lines are
given in Figure 12.6, which shows clearly how much the fitted regression line distorts the
true regression line; it seriously underestimates the true slope coefficient but overestimates
the true intercept. (But note that the OLS estimators are still unbiased.)

Figure 12.6 also shows why the true variance of ui is likely to be underestimated by the
estimator σ̂ 2, which is computed from the ûi . The ûi are generally close to the fitted line

TABLE 12.1
A Hypothetical
Example of Positively
Autocorrelated Error
Terms

�t ut � 0.7ut�1 � �t

0 0 u0 = 5 (assumed)
1 0.464 u1 = 0.7(5) + 0.464 = 3.964
2 2.026 u2 = 0.7(3.964) + 2.0262 = 4.8008
3 2.455 u3 = 0.7(4.8010) + 2.455 = 5.8157
4 −0.323 u4 = 0.7(5.8157) − 0.323 = 3.7480
5 −0.068 u5 = 0.7(3.7480) − 0.068 = 2.5556
6 0.296 u6 = 0.7(2.5556) + 0.296 = 2.0849
7 −0.288 u7 = 0.7(2.0849) − 0.288 = 1.1714
8 1.298 u8 = 0.7(1.1714) + 1.298 = 2.1180
9 0.241 u9 = 0.7(2.1180) + 0.241 = 1.7236

10 −0.957 u10 = 0.7(1.7236) − 0.957 = 0.2495

Note: �t data obtained from A Million Random Digits and One Hundred Thousand Deviates, Rand
Corporation, Santa Monica, Calif., 1950.
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Correlation generated
by the scheme
ut = 0.7ut−1 + εt

(Table 12.1).

TABLE 12.2
Generation of Y
Sample Values

Xt ut Yt � 1.0 � 0.8Xt � ut

1 3.9640 Y1 = 1.0 + 0.8(1) + 3.9640 = 5.7640
2 4.8010 Y2 = 1.0 + 0.8(2) + 4.8008 = 7.4008
3 5.8157 Y3 = 1.0 + 0.8(3) + 5.8157 = 9.2157
4 3.7480 Y4 = 1.0 + 0.8(4) + 3.7480 = 7.9480
5 2.5556 Y5 = 1.0 + 0.8(5) + 2.5556 = 7.5556
6 2.0849 Y6 = 1.0 + 0.8(6) + 2.0849 = 7.8849
7 1.1714 Y7 = 1.0 + 0.8(7) + 1.1714 = 7.7714
8 2.1180 Y8 = 1.0 + 0.8(8) + 2.1180 = 9.5180
9 1.7236 Y9 = 1.0 + 0.8(9) + 1.7236 = 9.9236

10 0.2495 Y10 = 1.0 + 0.8(10) + 0.2495 = 9.2495

Note: ut data obtained from Table 12.1.

(which is due to the OLS procedure) but deviate substantially from the true PRF. Hence,
they do not give a correct picture of ui . To gain some insight into the extent of underesti-
mation of true σ 2, suppose we conduct another sampling experiment. Keeping the Xt and
εt given in Tables 12.1 and 12.2, let us assume ρ = 0, that is, no autocorrelation. The new
sample of Y values thus generated is given in Table 12.3.
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estimated regression
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TABLE 12.3
Sample of Y Values
with Zero Serial
Correlation

Xt �t � ut Yt � 1.0 � 0.8Xt � �t

1 0.464 2.264
2 2.026 4.626
3 2.455 5.855
4 −0.323 3.877
5 −0.068 4.932
6 0.296 6.096
7 −0.288 6.312
8 1.298 8.698
9 0.241 8.441

10 −0.957 8.043

Note: Since there is no autocorrelation, the ut and εt are identical. The εt are
from Table 12.1.

The regression based on Table 12.3 is as follows:

Ŷt = 2.5345 + 0.6145Xt

(0.6796) (0.1087)

t = (3.7910) (5.6541)
(12.4.7)

r2 = 0.7997 σ̂ 2 = 0.9752

This regression is much closer to the “truth’’ because the Y ’s are now essentially random.
Notice that σ̂ 2 has increased from 0.8114 (ρ = 0.7) to 0.9752 (ρ = 0). Also notice that the
standard errors of β̂1 and β̂2 have increased. This result is in accord with the theoretical
results considered previously.
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12.5 Relationship between Wages and Productivity in the Business
Sector of the United States, 1960–2005

Now that we have discussed the consequences of autocorrelation, the obvious question is,
How do we detect it and how do we correct for it? Before we turn to these topics, it is use-
ful to consider a concrete example. Table 12.4 gives data on indexes of real compensation
per hour Y (RCOMPB) and output per hour X (PRODB) in the business sector of the U.S.
economy for the period 1960–2005, the base of the indexes being 1992 = 100.

First plotting the data on Y and X, we obtain Figure 12.7. Since the relationship between
real compensation and labor productivity is expected to be positive, it is not surprising that
the two variables are positively related. What is surprising is that the relationship between
the two is almost linear, although there is some hint that at higher values of productivity the
relationship between the two may be slightly nonlinear. Therefore, we decided to estimate
a linear as well as a log–linear model, with the following results:

Ŷt = 32.7419 + 0.6704Xt

se = (1.3940) (0.0157)

t = (23.4874) (42.7813) (12.5.1)

r2 = 0.9765 d = 0.1739 σ̂ = 2.3845

428 Part Two Relaxing the Assumptions of the Classical Model

TABLE 12.4
Indexes of Real
Compensation and
Productivity, U.S.,
1960–2005
(Index numbers,
1992 � 100;
quarterly data
seasonally adjusted)

Year Y X Year Y X

1960 60.8 48.9 1983 90.3 83.0
1961 62.5 50.6 1984 90.7 85.2
1962 64.6 52.9 1985 92.0 87.1
1963 66.1 55.0 1986 94.9 89.7
1964 67.7 56.8 1987 95.2 90.1
1965 69.1 58.8 1988 96.5 91.5
1966 71.7 61.2 1989 95.0 92.4
1967 73.5 62.5 1990 96.2 94.4
1968 76.2 64.7 1991 97.4 95.9
1969 77.3 65.0 1992 100.0 100.0
1970 78.8 66.3 1993 99.7 100.4
1971 80.2 69.0 1994 99.0 101.3
1972 82.6 71.2 1995 98.7 101.5
1973 84.3 73.4 1996 99.4 104.5
1974 83.3 72.3 1997 100.5 106.5
1975 84.1 74.8 1998 105.2 109.5
1976 86.4 77.1 1999 108.0 112.8
1977 87.6 78.5 2000 112.0 116.1
1978 89.1 79.3 2001 113.5 119.1
1979 89.3 79.3 2002 115.7 124.0
1980 89.1 79.2 2003 117.7 128.7
1981 89.3 80.8 2004 119.0 132.7
1982 90.4 80.1 2005 120.2 135.7

Notes: Y = index of real compensation per hour, business sector (1992 = 100).
X = index of output, business sector (1992 = 100).

Source: Economic Report of the
President, 2007, Table B-49.
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where d is the Durbin–Watson statistic, which will be discussed shortly.

l̂n Yt = 1.6067 + 0.6522 ln Xt

se = (0.0547) (0.0124)

t = (29.3680) (52.7996) (12.5.2)

r2 = 0.9845 d = 0.2176 σ̂ = 0.0221

Since the above model is double-log, the slope coefficient represents elasticity. In the
present case, we see that if labor productivity goes up by 1 percent, the average compensa-
tion goes up by about 0.65 percent.

Qualitatively, both the models give similar results. In both cases the estimated coeffi-
cients are “highly” significant, as indicated by the high t values. In the linear model, if the
index of productivity goes up by a unit, on average, the index of compensation goes up by
about 0.67 units. In the log–linear model, the slope coefficient being elasticity (why?), we
find that if the index of productivity goes up by 1 percent, on average, the index of real
compensation goes up by about 0.65 percent.

How reliable are the results given in Eqs. (12.5.1) and (12.5.2) if there is autocorrela-
tion? As stated previously, if there is autocorrelation, the estimated standard errors are
biased, as a result of which the estimated t ratios are unreliable. We obviously need to find
out if our data suffer from autocorrelation. In the following section we discuss several
methods of detecting autocorrelation. We will illustrate these methods with the log–linear
model (12.5.2).

12.6 Detecting Autocorrelation

I. Graphical Method
Recall that the assumption of nonautocorrelation of the classical model relates to the pop-
ulation disturbances ut , which are not directly observable. What we have instead are their
proxies, the residuals ût , which can be obtained by the usual OLS procedure. Although the
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FIGURE 12.7
Index of compensation
(Y ) and index of
productivity (X ),
United States,
1960–2005.
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17Even if the disturbances ut are homoscedastic and uncorrelated, their estimators, the residuals, ût ,
are heteroscedastic and autocorrelated. On this, see G. S. Maddala, Introduction to Econometrics,
2d ed., Macmillan, New York, 1992, pp. 480–481. However, it can be shown that as the sample
size increases indefinitely, the residuals tend to converge to their true values, the ut ’s. On this see,
E. Malinvaud, Statistical Methods of Econometrics, 2d ed., North-Holland Publishers, Amsterdam,
1970, p. 88.
18Stanford Weisberg, Applied Linear Regression, John Wiley & Sons, New York, 1980, p. 120. 
19Actually, it is the so-called Studentized residuals that have a unit variance. But in practice the stan-
dardized residuals will give the same picture, and hence we may rely on them. On this, see Norman
Draper and Harry Smith, Applied Regression Analysis, 3d ed., John Wiley & Sons, New York, 1998,
pp. 207–208.
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FIGURE 12.8
Residuals (magnified
100 times) and
standardized residuals
from the
wages–productivity
regression (log form:
model 12.5.2).

ût are not the same thing as ut ,17 very often a visual examination of the û’s gives us some
clues about the likely presence of autocorrelation in the u’s. Actually, a visual examination
of ût or (û2

t ) can provide useful information not only about autocorrelation but also about
heteroscedasticity (as we saw in the preceding chapter), model inadequacy, or specification
bias, as we shall see in the next chapter. As one author notes:

The importance of producing and analyzing plots [of residuals] as a standard part of statistical
analysis cannot be overemphasized. Besides occasionally providing an easy to understand
summary of a complex problem, they allow the simultaneous examination of the data as an ag-
gregate while clearly displaying the behavior of individual cases.18

There are various ways of examining the residuals. We can simply plot them against
time, the time sequence plot, as we have done in Figure 12.8, which shows the residuals
obtained from the log wages–productivity regression (12.5.2). The values of these residu-
als are given in Table 12.5 along with some other data. 

Alternatively, we can plot the standardized residuals against time, which are also
shown in Figure 12.8 and Table 12.5. The standardized residuals are simply the residuals
(ût ) divided by the standard error of the regression (

√
σ̂ 2), that is, they are (ût/σ̂ ). Notice

that ût and σ̂ are measured in the units in which the regressand Y is measured. The values of
the standardized residuals will therefore be pure numbers (devoid of units of measurement)
and can be compared with the standardized residuals of other regressions. Moreover, the
standardized residuals, like ût , have zero mean (why?) and approximately unit variance.19
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TABLE 12.5 Residuals: Actual, Standardized, and Lagged

Obs. S1 SDRES S1(�1) Obs. S1 SDRES S1(�1)

1960 −0.036068 −1.639433 NA 1983 0.014416 0.655291 0.038719
1961 −0.030780 −1.399078 −0.036068 1984 0.001774 0.080626 0.014416
1962 −0.026724 −1.214729 −0.030780 1985 0.001620 0.073640 0.001774
1963 −0.029160 −1.325472 −0.026724 1986 0.013471 0.612317 0.001620
1964 −0.026246 −1.193017 −0.029160 1987 0.013725 0.623875 0.013471
1965 −0.028348 −1.288551 −0.026246 1988 0.017232 0.783269 0.013725
1966 −0.017504 −0.795647 −0.028348 1989 −0.004818 −0.219005 0.017232
1967 −0.006419 −0.291762 −0.017504 1990 −0.006232 −0.283285 −0.004818
1968 0.007094 0.322459 −0.006419 1991 −0.004118 −0.187161 −0.006232
1969 0.018409 0.836791 0.007094 1992 −0.005078 −0.230822 −0.004118
1970 0.024713 1.123311 0.018409 1993 −0.010686 −0.485739 −0.005078
1971 0.016289 0.740413 0.024713 1994 −0.023553 −1.070573 −0.010686
1972 0.025305 1.150208 0.016289 1995 −0.027874 −1.266997 −0.023553
1973 0.025829 1.174049 0.025305 1996 −0.039805 −1.809304 −0.027874
1974 0.023744 1.079278 0.025829 1997 −0.041164 −1.871079 −0.039805
1975 0.011131 0.505948 0.023744 1998 −0.013576 −0.617112 −0.041164
1976 0.018359 0.834515 0.011131 1999 −0.006674 −0.303364 −0.013576
1977 0.020416 0.927990 0.018359 2000 0.010887 0.494846 −0.006674
1978 0.030781 1.399135 0.020416 2001 0.007551 0.343250 0.010887
1979 0.033023 1.501051 0.030781 2002 0.000453 0.020599 0.007551
1980 0.031604 1.436543 0.033023 2003 −0.006673 −0.303298 0.000453
1981 0.020801 0.945516 0.031604 2004 −0.015650 −0.711380 −0.006673
1982 0.038719 1.759960 0.020801 2005 −0.020198 −0.918070 −0.015650

Notes: S1 = residuals from the wages–productivity regression (log form).
S1 (−1) = residuals lagged one period.
SDRES = standardized residuals = residuals/standard error of estimate.

In large samples (ût/σ̂ ) is approximately normally distributed with zero mean and unit vari-
ance. For our example, σ̂ = 2.6755.

Examining the time sequence plot given in Figure 12.8, we observe that both ût and the
standardized ût exhibit a pattern observed in Figure 12.1d, suggesting that perhaps ut are
not random.

To see this differently, we can plot ût against ût−1, that is, plot the residuals at time t
against their value at time (t − 1), a kind of empirical test of the AR(1) scheme. If the
residuals are nonrandom, we should obtain pictures similar to those shown in Figure 12.3.
This plot for our log wages–productivity regression is as shown in Figure 12.9; the under-
lying data are given in Table 12.5. As this figure reveals, most of the residuals are bunched
in the second (northeast) and the fourth (southwest) quadrants, suggesting a strong positive
correlation in the residuals.

The graphical method we have just discussed, although powerful and suggestive, is sub-
jective or qualitative in nature. But there are several quantitative tests that one can use to
supplement the purely qualitative approach. We now consider some of these tests.

II. The Runs Test
If we carefully examine Figure 12.8, we notice a peculiar feature: Initially, we have several
residuals that are negative, then there is a series of positive residuals, and then there are sev-
eral residuals that are negative. If these residuals were purely random, could we observe
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such a pattern? Intuitively, it seems unlikely. This intuition can be checked by the so-called
runs test, sometimes also known as the Geary test, a nonparametric test.20

To explain the runs test, let us simply note down the signs (� or �) of the residuals
obtained from the wages–productivity regression, which are given in the first column of
Table 12.5.

(−−−−−−−−)(+++++++++++++++++++++)(−−−−−−−−−−−)(+++)(−−−)

(12.6.1)

Thus there are 8 negative residuals, followed by 21 positive residuals, followed by 11 neg-
ative residuals, followed by 3 positive residuals, followed by 3 negative residuals, for a total
of 46 observations.

We now define a run as an uninterrupted sequence of one symbol or attribute, such as
+ or −. We further define the length of a run as the number of elements in it. In the se-
quence shown in Eq. (12.6.1), there are 5 runs: a run of 8 minuses (i.e., of length 8), a run
of 21 pluses (i.e., of length 21), a run of 11 minuses (i.e., of length 11), a run of 3 pluses
(i.e., of length 3), and a run of 3 minuses (i.e., of length 3). For a better visual effect, we
have presented the various runs in parentheses.

By examining how runs behave in a strictly random sequence of observations, one can
derive a test of randomness of runs. We ask this question: Are the 5 runs observed in our
illustrative example consisting of 46 observations too many or too few compared with the
number of runs expected in a strictly random sequence of 46 observations? If there are too

20In nonparametric tests we make no assumptions about the (probability) distribution from which
the observations are drawn. On the Geary test, see R. C. Geary, “Relative Efficiency of Count Sign
Changes for Assessing Residual Autoregression in Least Squares Regression,’’ Biometrika, vol. 57,
1970, pp. 123–127.
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many runs, it would mean that in our example the residuals change sign frequently, thus
indicating negative serial correlation (cf. Figure 12.3b). Similarly, if there are too few runs,
they may suggest positive autocorrelation, as in Figure 12.3a. A priori, then, Figure 12.8
would indicate positive correlation in the residuals.

Now let

Then under the null hypothesis that the successive outcomes (here, residuals) are indepen-
dent, and assuming that N1 > 10 and N2 > 10, the number of runs is (asymptotically)
normally distributed with

Note: N = N1 + N2.
If the null hypothesis of randomness is sustainable, following the properties of the nor-

mal distribution, we should expect that

Prob [E(R) − 1.96σR ≤ R ≤ E(R) + 1.96σR] = 0.95 (12.6.3)

That is, the probability is 95 percent that the preceding interval will include R. Therefore
we have this rule:

(12.6.2)

Mean: E(R) = 2N1 N2

N
+ 1

Variance: σ 2
R = 2N1 N2(2N1 N2 − N )

(N )2(N − 1)

N = total number of observations = N1 + N2

N1 = number of + symbols (i.e., + residuals)

N2 = number of − symbols (i.e., − residuals)

R = number of runs

Decision Rule Do not reject the null hypothesis of randomness with 95% confidence if R, the number of
runs, lies in the preceding confidence interval; reject the null hypothesis if the estimated R
lies outside these limits. (Note: You can choose any level of confidence you want.)

Returning to our example, we know that N1, the number of pluses, is 24 and N2, the num-
ber of minuses, is 22 and R = 5. Using the formulas given in Eq. (12.6.2), we obtain:

The 95% confidence interval for R in our example is thus:

[24 ± 1.96(3.32)] = (17.5, 30.5)

Obviously, this interval does not include 5. Hence, we can reject the hypothesis that the
residuals in our wages–productivity regression are random with 95% confidence. In other
words, the residuals exhibit autocorrelation. As a general rule, if there is positive autocor-
relation, the number of runs will be few, whereas if there is negative autocorrelation, the

(12.6.4)

E(R) = 24

σ 2
R = 11

σR = 3.32
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number of runs will be many. Of course, from Eq. (12.6.2) we can find out whether we have
too many runs or too few runs.

Swed and Eisenhart have developed special tables that give critical values of the runs
expected in a random sequence of N observations if N1 or N2 is smaller than 20. These
tables are given in Appendix D, Table D.6. Using these tables, the reader can verify that the
residuals in our wages–productivity regression are indeed nonrandom; actually they are
positively correlated.

III. Durbin–Watson d Test21

The most celebrated test for detecting serial correlation is that developed by statisticians
Durbin and Watson. It is popularly known as the Durbin–Watson d statistic, which is de-
fined as

(12.6.5)

which is simply the ratio of the sum of squared differences in successive residuals to the
RSS. Note that in the numerator of the d statistic the number of observations is n − 1 be-
cause one observation is lost in taking successive differences.

A great advantage of the d statistic is that it is based on the estimated residuals, which
are routinely computed in regression analysis. Because of this advantage, it is now a com-
mon practice to report the Durbin–Watson d along with summary measures, such as R2, ad-
justed R2, t, and F.Although it is now routinely used, it is important to note the assumptions
underlying the d statistic.

1. The regression model includes the intercept term. If it is not present, as in the case of
the regression through the origin, it is essential to rerun the regression including the inter-
cept term to obtain the RSS.22

2. The explanatory variables, the X ’s, are nonstochastic, or fixed in repeated sampling.

3. The disturbances ut are generated by the first-order autoregressive scheme:
ut = ρut−1 + εt . Therefore, it cannot be used to detect higher-order autoregressive
schemes.

4. The error term ut is assumed to be normally distributed.

5. The regression model does not include the lagged value(s) of the dependent variable
as one of the explanatory variables. Thus, the test is inapplicable in models of the follow-
ing type:

Yt = β1 + β2 X2t + β3 X3t + · · · + βk Xkt + γ Yt−1 + ut (12.6.6)

where Yt−1 is the one period lagged value of Y. Such models are known as autoregressive
models, which we will study in Chapter 17.

6. There are no missing observations in the data. Thus, in our wages–productivity regres-
sion for the period 1960–2005, if observations for, say, 1978 and 1982 were missing for some
reason, the d statistic would make no allowance for such missing observations.23

d =
∑t=n

t=2(ût − ût−1)2∑t=n
t=1 û2

t

434 Part Two Relaxing the Assumptions of the Classical Model

21J. Durbin and G. S. Watson, “Testing for Serial Correlation in Least-Squares Regression,’’ Biometrika,
vol. 38, 1951, pp. 159–171.
22However, R. W. Farebrother has calculated d values when the intercept term is absent from the
model. See his “The Durbin–Watson Test for Serial Correlation When There Is No Intercept in the
Regression,’’ Econometrica, vol. 48, 1980, pp. 1553–1563.
23For further details, see Gabor Korosi, Laszlo Matyas, and Istvan P. Szekey, Practical Econometrics,
Avebury Press, England, 1992, pp. 88–89. 
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The exact sampling or probability distribution of the d statistic given in Eq. (12.6.5) is
difficult to derive because, as Durbin and Watson have shown, it depends in a complicated
way on the X values present in a given sample.24 This difficulty should be understandable
because d is computed from ût , which are, of course, dependent on the given X’s. There-
fore, unlike the t, F, or χ2 tests, there is no unique critical value that will lead to the rejec-
tion or the acceptance of the null hypothesis that there is no first-order serial correlation in
the disturbances ui . However, Durbin and Watson were successful in deriving a lower
bound dL and an upper bound dU such that if the computed d from Eq. (12.6.5) lies outside
these critical values, a decision can be made regarding the presence of positive or negative
serial correlation. Moreover, these limits depend only on the number of observations n and
the number of explanatory variables and do not depend on the values taken by these
explanatory variables. These limits, for n going from 6 to 200 and up to 20 explanatory
variables, have been tabulated by Durbin and Watson and are reproduced in Appendix D,
Table D.5 (up to 20 explanatory variables).

The actual test procedure can be explained better with the aid of Figure 12.10, which
shows that the limits of d are 0 and 4. These can be established as follows. Expand
Eq. (12.6.5) to obtain

d =
∑

û2
t + ∑

û2
t−1 − 2

∑
ût ût−1∑

û2
t

(12.6.7)

Since 
∑

û2
t and 

∑
û2

t−1 differ in only one observation, they are approximately equal.
Therefore, setting 

∑
û2

t−1 ≈ ∑
û2

t , Eq. (12.6.7) may be written as

d ≈ 2

(
1 −

∑
ût ût−1∑

û2
t

)
(12.6.8)

where ≈ means approximately.
Now let us define

(12.6.9)ρ̂ =
∑

ût ût−1∑
û2

t

24But see the discussion on the “exact’’ Durbin–Watson test given later in the section.
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as the sample first-order coefficient of autocorrelation, an estimator of ρ. (See footnote 9.)
Using Eq. (12.6.9), we can express Eq. (12.6.8) as

But since −1 ≤ ρ ≤ 1, Eq. (12.6.10) implies that

0 ≤ d ≤ 4 (12.6.11)

These are the bounds of d; any estimated d value must lie within these limits.
It is apparent from Eq. (12.6.10) that if ρ̂ = 0, d = 2; that is, if there is no serial corre-

lation (of the first-order), d is expected to be about 2. Therefore, as a rule of thumb, if d is
found to be 2 in an application, one may assume that there is no first-order autocorrelation,
either positive or negative. If ρ̂ = +1, indicating perfect positive correlation in the residu-
als, d ≈ 0. Therefore, the closer d is to 0, the greater the evidence of positive serial corre-
lation. This relationship should be evident from Eq. (12.6.5) because if there is positive
autocorrelation, the ût ’s will be bunched together and their differences will therefore tend
to be small. As a result, the numerator sum of squares will be smaller in comparison with
the denominator sum of squares, which remains a unique value for any given regression.

If ρ̂ = −1, that is, there is perfect negative correlation among successive residuals,
d ≈ 4. Hence, the closer d is to 4, the greater the evidence of negative serial correlation.
Again, looking at Eq. (12.6.5), this is understandable. For if there is negative autocorrela-
tion, a positive ût will tend to be followed by a negative ût and vice versa so that |ût − ût−1|
will usually be greater than |ût |. Therefore, the numerator of d will be comparatively larger
than the denominator.

The mechanics of the Durbin–Watson test are as follows, assuming that the assumptions
underlying the test are fulfilled:

1. Run the OLS regression and obtain the residuals.

2. Compute d from Eq. (12.6.5). (Most computer programs now do this routinely.)

3. For the given sample size and given number of explanatory variables, find out the criti-
cal dL and dU values.

4. Now follow the decision rules given in Table 12.6. For ease of reference, these decision
rules are also depicted in Figure 12.10.

To illustrate the mechanics, let us return to our wages–productivity regression. From the
data given in Table 12.5 the estimated d value can be shown to be 0.2175, suggesting that
there is positive serial correlation in the residuals. From the Durbin–Watson tables, we
find that for 46 observations and one explanatory variable, dL = 1.475 and dU = 1.566 at
the 5 percent level. Since the computed d of 0.2175 lies below dL , we cannot reject the
hypothesis that there is positive serial correlation in the residuals.

Although extremely popular, the d test has one great drawback in that, if it falls in the
indecisive zone, one cannot conclude that (first-order) autocorrelation does or does not

(12.6.10)d ≈ 2(1 − ρ̂)
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TABLE 12.6
Durbin–Watson d
Test: Decision Rules

Null Hypothesis Decision If

No positive autocorrelation Reject 0 < d < dL

No positive autocorrelation No decision dL ≤ d ≤ dU

No negative correlation Reject 4 − dL < d < 4
No negative correlation No decision 4 − dU ≤ d ≤ 4 − dL

No autocorrelation, positive or negative Do not reject dU < d < 4 − dU

guj75772_ch12.qxd  14/08/2008  10:40 AM  Page 436



Chapter 12 Autocorrelation: What Happens If the Error Terms Are Correlated? 437

exist. To solve this problem, several authors have proposed modifications of the d test but
they are rather involved and beyond the scope of this book.25 In many situations, however,
it has been found that the upper limit dU is approximately the true significance limit and
therefore in case d lies in the indecisive zone, one can use the following modified d test:
Given the level of significance α,

1. H0: ρ = 0 versus H1: ρ > 0. Reject H0 at α level if d < dU . That is, there is statistically
significant positive autocorrelation.

2. H0: ρ = 0 versus H1: ρ < 0. Reject H0 at α level if the estimated (4 − d) < dU , that is,
there is statistically significant evidence of negative autocorrelation.

3. H0: ρ = 0 versus H1: ρ �= 0. Reject H0 at 2α level if d < dU or (4 − d) < dU , that is,
there is statistically significant evidence of autocorrelation, positive or negative.

It may be pointed out that the indecisive zone narrows as the sample size increases,
which can be seen clearly from the Durbin–Watson tables. For example, with 4 regressors
and 20 observations, the 5 percent lower and upper d values are 0.894 and 1.828, respec-
tively, but these values are 1.515 and 1.739 if the sample size is 75.

The computer program SHAZAM performs an exact d test, that is, it gives the p value,
the exact probability of the computed d value. With modern computing facilities, it is no
longer difficult to find the p value of the computed d statistic. Using SHAZAM (version 9)
for our wages–productivity regression, we find the p value of the computed d of 0.2176 is
practically zero, thereby reconfirming our earlier conclusion based on the Durbin–Watson
tables.

The Durbin–Watson d test has become so venerable that practitioners often forget the as-
sumptions underlying the test. In particular, the assumptions that (1) the explanatory vari-
ables, or regressors, are nonstochastic; (2) the error term follows the normal distribution;
(3) the regression models do not include the lagged value(s) of the regressand; and (4) only
the first-order serial correlation is taken into account are very important for the application
of the d test. It should also be added that a significant d statistic may not necessarily indi-
cate autocorrelation. Rather, it may be an indication of omission of relevant variables from
the model.

If a regression model contains lagged value(s) of the regressand, the d value in such
cases is often around 2, which would suggest that there is no (first-order) autocorrelation in
such models. Thus, there is a built-in bias against discovering (first-order) autocorrelation
in such models. This does not mean that autoregressive models do not suffer from the au-
tocorrelation problem. As a matter of fact, Durbin has developed the so-called h test to test
serial correlation in such models. But this test is not as powerful, in a statistical sense, as
the Breusch–Godfrey test to be discussed shortly, so there is no need to use the h test.
However, because of its historical importance, it is discussed in Exercise 12.36.

Also, if the error term ut are not NIID, the routinely used d test may not be reliable.26 In
this respect the runs test discussed earlier has an advantage in that it does not make any
(probability) distributional assumption about the error term. However, if the sample is large
(technically infinite), we can use the Durbin–Watson d, for it can be shown that27

√
n

(
1 − 1

2
d

)
≈ N (0, 1) (12.6.12)

25For details, see Thomas B. Fomby, R. Carter Hill, and Stanley R. Johnson, Advanced Econometric
Methods, Springer Verlag, New York, 1984, pp. 225–228.
26For an advanced discussion, see Ron C. Mittelhammer, George G. Judge, and Douglas J. Miller,
Econometric Foundations, Cambridge University Press, New York, 2000, p. 550.
27See James Davidson, Econometric Theory, Blackwell Publishers, New York, 2000, p. 161.
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That is, in large samples the d statistic as transformed in Eq. (12.6.12) follows the standard
normal distribution. Incidentally, in view of the relationship between d and ρ̂, the estimated
first-order autocorrelation coefficient, shown in Eq. (12.6.10), it follows that 

√
nρ̂ ≈ N (0, 1) (12.6.13)

that is, in large samples, the square root of the sample size times the estimated first-order
autocorrelation coefficient also follows the standard normal distribution.

As an illustration of the test, for our wages–productivity example, we found that
d = 0.2176 with n = 46. Therefore, from Eq. (12.6.12) we find that 

√
46

(
1 − 0.2176

2

)
≈ 6.0447

Asymptotically, if the null hypothesis of zero (first-order) autocorrelation were true, the
probability of obtaining a Z value (i.e., a standardized normal variable) of as much as 6.0447
or greater is extremely small. Recall that for a standard normal distribution, the (two-tail)
critical 5 percent Z value is only 1.96 and the 1 percent critical Z value is about 2.58. Al-
though our sample size is only 46, for practical purposes it may be large enough to use the
normal approximation. The conclusion remains the same, namely, that the residuals from
the wages–productivity regression suffer from autocorrelation.

But the most serious problem with the d test is the assumption that the regressors are
nonstochastic, that is, their values are fixed in repeated sampling. If this is not the case, then
the d test is not valid either in finite, or small, samples or in large samples.28 And since this
assumption is usually difficult to maintain in economic models involving time series data,
one author contends that the Durbin–Watson statistic may not be useful in econometrics in-
volving time series data.29 In his view, more useful tests of autocorrelation are available,
but they are all based on large samples. We discuss one such test below, the Breusch–
Godfrey test.

IV. A General Test of Autocorrelation:
The Breusch–Godfrey (BG) Test30

To avoid some of the pitfalls of the Durbin–Watson d test of autocorrelation, statisticians
Breusch and Godfrey have developed a test of autocorrelation that is general in the sense
that it allows for (1) nonstochastic regressors, such as the lagged values of the regressand;
(2) higher-order autoregressive schemes, such as AR(1), AR(2), etc.; and (3) simple or
higher-order moving averages of white noise error terms, such as εt in Eq. (12.2.1).31

Without going into the mathematical details, which can be obtained from the refer-
ences, the BG test, which is also known as the LM test,32 proceeds as follows: We use the
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28Ibid., p. 161.
29Fumio Hayashi, Econometrics, Princeton University Press, Princeton, NJ, 2000, p. 45.
30See, L. G. Godfrey, “Testing Against General Autoregressive and Moving Average Error Models
When the Regressor Includes Lagged Dependent Variables,’’ Econometrica, vol. 46, 1978,
pp. 1293–1302, and T. S. Breusch, “Testing for Autocorrelation in Dynamic Linear Models,’’
Australian Economic Papers, vol. 17, 1978, pp. 334–355.
31For example, in the regression Yt = β1 + β2 Xt + ut the error term can be represented as
ut = εt + λ1εt−1 + λ2εt−2 , which represents a three-period moving average of the white noise error
term εt .
32The test is based on the Lagrange multiplier principle briefly mentioned in Chapter 8. 
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two-variable regression model to illustrate the test, although many regressors can be added
to the model. Also, lagged values of the regressand can be added to the model. Let

Yt = β1 + β2 Xt + ut (12.6.14)

Assume that the error term ut follows the pth-order autoregressive, AR(p), scheme as follows:

ut = ρ1ut−1 + ρ2ut−2 + · · · + ρput−p + εt (12.6.15)

where εt is a white noise error term as discussed previously. As you will recognize, this is
simply the extension of the AR(1) scheme.

The null hypothesis H0 to be tested is that

H0: ρ1 = ρ2 = · · · = ρp = 0 (12.6.16)

That is, there is no serial correlation of any order. The BG test involves the following steps:

1. Estimate Eq. (12.6.14) by OLS and obtain the residuals, ût .

2. Regress ût on the original Xt (if there is more than one X variable in the original
model, include them also) and ût−1, ût−2, . . . , ût−p , where the latter are the lagged values
of the estimated residuals in step 1. Thus, if p = 4, we will introduce four lagged values of
the residuals as additional regressors in the model. Note that to run this regression we will
have only (n − p) observations (why?). In short, run the following regression:

ût = α1 + α2 Xt + ρ̂1ût−1 + ρ̂2ût−2 + · · · + ρ̂pût−p + εt (12.6.17)

and obtain R2 from this (auxiliary) regression.33

3. If the sample size is large (technically, infinite), Breusch and Godfrey have shown
that

(n − p)R2 ∼ χ2
p (12.6.18)

That is, asymptotically, n − p times the R2 value obtained from the auxiliary regression
(12.6.17) follows the chi-square distribution with p df. If in an application, (n − p)R2 ex-
ceeds the critical chi-square value at the chosen level of significance, we reject the null
hypothesis, in which case at least one ρ in Eq. (12.6.15) is statistically significantly different
from zero.

The following practical points about the BG test may be noted:

1. The regressors included in the regression model may contain lagged values of the re-
gressand Y, that is, Yt−1, Yt−2, etc., may appear as explanatory variables. Contrast this
model with the Durbin–Watson test restriction that there may be no lagged values of the re-
gressand among the regressors.

2. As noted earlier, the BG test is applicable even if the disturbances follow a pth-order
moving average (MA) process, that is, the ut are generated as follows:

ut = εt + λ1εt−1 + λ2εt−2 + · · · + λpεt−p (12.6.19)

where εt is a white noise error term, that is, the error term that satisfies all the classical
assumptions.

33The reason that the original regressor X is included in the model is to allow for the fact that X
may not be strictly nonstochastic. But if it is strictly nonstochastic, it may be omitted from the model.
On this, see Jeffrey M. Wooldridge, Introductory Econometrics: A Modern Approach, South-Western
Publishing Co., 2003, p. 386.
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In the chapters on time series econometrics, we will study in some detail the pth-order
autoregressive and moving average processes.

3. If in Eq. (12.6.15) p = 1, meaning first-order autoregression, then the BG test is
known as Durbin’s M test.

4. A drawback of the BG test is that the value of p, the length of the lag, cannot be spec-
ified a priori. Some experimentation with the p value is inevitable. Sometimes one can use
the so-called Akaike and Schwarz information criteria to select the lag length. We will dis-
cuss these criteria in Chapter 13 and later in the chapters on time series econometrics.

5. Given the values of the X variable(s) and the lagged values of u, the test assumes that
the variance of u in Eq. (12.6.15) is homoscedastic.
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Illustration of the
BG Test: The
Wages–
Productivity
Relation

To illustrate the test, we will apply it to our illustrative example. Using an AR(6) scheme,
we obtained the results shown in Exercise 12.25. From the regression results given there,
it can be seen that (n − p) = 40 and R 2 = 0.7498. Therefore, multiplying these two, we
obtain a chi-square value of 29.992. For 6 df (why?), the probability of obtaining a chi-
square value of as much as 29.992 or greater is extremely small; the chi-square table in
Appendix D.4 shows that the probability of obtaining a chi-square value of as much as
18.5476 or greater is only 0.005. Therefore, for the same df, the probability of obtaining
a chi-square value of about 30 must be extremely small. As a matter of fact, the actual
p value is almost zero.

Therefore, the conclusion is that, for our example, at least one of the six autocorrela-
tions must be nonzero.

Trying varying lag lengths from 1 to 6, we find that only the AR(1) coefficient is signifi-
cant, suggesting that there is no need to consider more than one lag. In essence the BG test
in this case turns out to be Durbin’s m test.

Why So Many Tests of Autocorrelation?
The answer to this question is that “. . . no particular test has yet been judged to be un-
equivocally best [i.e., more powerful in the statistical sense], and thus the analyst is still in
the unenviable position of considering a varied collection of test procedures for detecting
the presence or structure, or both, of autocorrelation.”34 Of course, a similar argument can
be made about the various tests of heteroscedasticity discussed in the previous chapter.

12.7 What to Do When You Find Autocorrelation:
Remedial Measures

If after applying one or more of the diagnostic tests of autocorrelation discussed in the pre-
vious section, we find that there is autocorrelation, what then? We have four options:

1. Try to find out if the autocorrelation is pure autocorrelation and not the result of
mis-specification of the model. As we discussed in Section 12.1, sometimes we observe
patterns in residuals because the model is mis-specified—that is, it has excluded some
important variables—or because its functional form is incorrect.

34Ron C. Mittelhammer et al., op. cit., p. 547. Recall that the power of a statistical test is 1 minus
the probability of committing a Type II error, that is, 1 minus the probability of accepting a false
hypothesis. The maximum power of a test is 1 and the minimum is 0. The closer the power of a test
is to zero, the worse is that test, and the closer it is to 1, the more powerful is that test. What these
authors are essentially saying is that there is no single most powerful test of autocorrelation.
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2. If it is pure autocorrelation, one can use appropriate transformation of the original
model so that in the transformed model we do not have the problem of (pure) autocorrela-
tion. As in the case of heteroscedasticity, we will have to use some type of generalized
least-square (GLS) method.

3. In large samples, we can use the Newey–West method to obtain standard errors of
OLS estimators that are corrected for autocorrelation. This method is actually an extension
of White’s heteroscedasticity-consistent standard errors method that we discussed in the
previous chapter.

4. In some situations we can continue to use the OLS method.

Because of the importance of each of these topics, we devote a section to each one.

12.8 Model Mis-Specification versus Pure Autocorrelation

Let us return to our wages–productivity regression given in Eq. (12.5.2). There we saw that
the d value was 0.2176 and based on the Durbin–Watson d test we concluded that there was
positive correlation in the error term. Could this correlation have arisen because our model
was not correctly specified? Since the data underlying regression (12.5.1) is time series
data, it is quite possible that both wages and productivity exhibit trends. If that is the case,
then we need to include the time or trend, t, variable in the model to see the relationship
between wages and productivity net of the trends in the two variables.

To test this, we included the trend variable in Eq. (12.5.2) and obtained the following
results

Ŷt = 0.1209 + 1.0283Xt − 0.0075t

se = (0.3070) (0.0776) (0.0015)

t = (0.3939) (13.2594) (−4.8903)
(12.8.1)

R2 = 0.9900; d = 0.4497

The interpretation of this model is straightforward: Over time, the index of real wages has
been decreasing by about 0.75 units per year. After allowing for this, if the productivity
index went up by one unit, on average, the real compensation went up by about one unit.
What is interesting to note is that even allowing for the trend variable, the d value is still
very low, suggesting that Eq. (12.8.1) suffers from pure autocorrelation and not necessarily
specification error.

How do we know that Eq. (12.8.1) is the correct specification? To test this, we regress Y
on X and X2 to test for the possibility that the real wage index may be nonlinearly related
to the productivity index. The results of this regression are as follows:

Ŷt = −1.7843 + 2.1963Xt − 0.1752X2
t

t = (−2.7713) (7.5040) (−5.2785) (12.8.2)

R2 = 0.9906 d = 0.3561

We leave it to the reader to interpret these results. For the present purposes, look at the
Durbin–Watson, which is still quite low, suggesting that we still have positive serial corre-
lation in the residuals.

It may be safe to conclude from the preceding analysis that our wages–productivity re-
gression probably suffers from pure autocorrelation and not necessarily from specification
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bias. Knowing the consequences of autocorrelation, we may therefore want to take some
corrective action. We will do so shortly.

Incidentally, for all the wages–productivity regressions that we have presented above,
we applied the Jarque–Bera test of normality and found that the residuals were normally
distributed, which is comforting because the d test assumes normality of the error term.

12.9 Correcting for (Pure) Autocorrelation: 
The Method of Generalized Least Squares (GLS)

Knowing the consequences of autocorrelation, especially the lack of efficiency of OLS
estimators, we may need to remedy the problem. The remedy depends on the knowledge
one has about the nature of interdependence among the disturbances, that is, knowledge
about the structure of autocorrelation.

As a starter, consider the two-variable regression model:

Yt = β1 + β2 Xt + ut (12.9.1)

and assume that the error term follows the AR(1) scheme, namely,

ut = ρut−1 + εt −1 < ρ < 1 (12.9.2)

Now we consider two cases: (1) ρ is known and (2) ρ is not known but has to be estimated.

When ρ Is Known
If the coefficient of first-order autocorrelation is known, the problem of autocorrelation can
be easily solved. If Eq. (12.9.1) holds true at time t, it also holds true at time (t − 1). Hence,

Yt−1 = β1 + β2 Xt−1 + ut−1 (12.9.3)

Multiplying Eq. (12.9.3) by ρ on both sides, we obtain

ρYt−1 = ρβ1 + ρβ2 Xt−1 + ρut−1 (12.9.4)

Subtracting Eq. (12.9.4) from Eq. (12.9.1) gives

(Yt − ρYt−1) = β1(1 − ρ) + β2(Xt − ρXt−1) + εt (12.9.5)

where εt = (ut − ρut−1)
We can express Eq. (12.9.5) as

Y ∗
t = β∗

1 + β∗
2 X∗

t + εt (12.9.6)

where β∗
1 = β1(1 − ρ), Y ∗

t = (Yt − ρYt−1), X∗
t = (Xt − ρXt−1) , and β∗

2 = β2.
Since the error term in Eq. (12.9.6) satisfies the usual OLS assumptions, we can apply

OLS to the transformed variables Y ∗ and X∗ and obtain estimators with all the optimum
properties, namely, BLUE. In effect, running Eq. (12.9.6) is tantamount to using general-
ized least squares (GLS) discussed in the previous chapter—recall that GLS is nothing but
OLS applied to the transformed model that satisfies the classical assumptions.

Regression (12.9.5) isknownas the generalized,or quasi,differenceequation. It involves
regressing Y on X, not in the original form, but in the difference form, which is obtained by
subtracting a proportion ( = ρ) of the value of a variable in the previous time period from its
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value in the current time period. In this differencing procedure we lose one observation
because the first observation has no antecedent. To avoid this loss of one observation, the
first observation on Y and X is transformed as follows:35 Y1

√
1 − ρ2 and X1

√
1 − ρ2. This

transformation is known as the Prais–Winsten transformation.

When ρ Is Not Known
Although conceptually straightforward to apply, the method of generalized difference
given in Eq. (12.9.5) is difficult to implement because ρ is rarely known in practice. There-
fore, we need to find ways of estimating ρ. We have several possibilities.

The First-Difference Method
Since ρ lies between 0 and ±1, one could start from two extreme positions. At one extreme,
one could assume that ρ = 0, that is, no (first-order) serial correlation, and at the other
extreme we could let ρ = ±1, that is, perfect positive or negative correlation. As a matter
of fact, when a regression is run, one generally assumes that there is no autocorrelation
and then lets the Durbin–Watson or other test show whether this assumption is justified.
If, however, ρ = +1, the generalized difference equation (12.9.5) reduces to the first-
difference equation:

Yt − Yt−1 = β2(Xt − Xt−1) + (ut − ut−1)

or

�Yt = β2�Xt + εt (12.9.7)

where � is the first-difference operator introduced in Eq. (12.1.10).
Since the error term in Eq. (12.9.7) is free from (first-order) serial correlation (why?), to

run the regression (12.9.7) all one has to do is form the first differences of both the regres-
sand and regressor(s) and run the regression on these first differences.

The first-difference transformation may be appropriate if the coefficient of autocorrela-
tion is very high, say in excess of 0.8, or the Durbin–Watson d is quite low. Maddala has
proposed this rough rule of thumb: Use the first-difference form whenever d < R2.36 This is
the case in our wages–productivity regression (12.5.2), where we found that d = 0.2176 and
r2 = 0.9845. The first-difference regression for our illustrative example will be presented
shortly.

An interesting feature of the first-difference model (12.9.7) is that there is no intercept
in it. Hence, to estimate Eq. (12.9.7), you have to use the regression through the origin
routine (that is, suppress the intercept term), which is now available in most software pack-
ages. If, however, you forget to drop the intercept term in the model and estimate the fol-
lowing model that includes the intercept term

�Yt = β1 + β2�Xt + εt (12.9.8)

35The loss of one observation may not be very serious in large samples but can make a substantial
difference in the results in small samples. Without transforming the first observation as indicated, the
error variance will not be homoscedastic. On this, see Jeffrey Wooldridge, op. cit., p. 388. For some
Monte Carlo results on the importance of the first observation, see Russell Davidson and James G.
MacKinnon, Estimation and Inference in Econometrics, Oxford University Press, New York, 1993,
Table 10.1, p. 349.
36Maddala, op. cit., p. 232.
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then the original model must have a trend in it and β1 represents the coefficient of the trend
variable.37 Therefore, one “accidental” benefit of introducing the intercept term in the first-
difference model is to test for the presence of a trend variable in the original model.

Returning to our wages–productivity regression (12.5.2), and given the AR(1) scheme
and a low d value in relation to r2, we rerun Eq. (12.5.2) in the first-difference form with-
out the intercept term; remember that Eq. (12.5.2) is in the level form. The results are as
follows:38

Compared with the level form regression (12.5.2), we see that the slope coefficient has not
changed much, but the r2 value has dropped considerably. This is generally the case
because by taking the first differences we are essentially studying the behavior of variables
around their (linear) trend values. Of course, we cannot compare the r2 of Eq. (12.9.9)
directly with that of the r2 of Eq. (12.5.2) because the dependent variables in the two mod-
els are different.39 Also, notice that compared with the original regression, the d value has
increased dramatically, perhaps indicating that there is little autocorrelation in the first-
difference regression.40

Another interesting aspect of the first-difference transformation relates to the stationar-
ity properties of the underlying time series. Return to Eq. (12.2.1), which describes the
AR(1) scheme. Now if in fact ρ = 1, then it is clear from Eqs. (12.2.3) and (12.2.4) that the
series ut is nonstationary, for the variances and covariances become infinite. That is why,
when we discussed this topic, we put the restriction that |ρ| < 1. But it is clear from
Eq. (12.2.1) that if the autocorrelation coefficient is in fact 1, then Eq. (12.2.1) becomes

ut = ut−1 + εt

or

(ut − ut−1) = �ut = εt (12.9.10)

That is, it is the first-differenced ut that becomes stationary, for it is equal to εt , which is a
white noise error term.

The point of the preceding discussion is that if the original time series are nonstationary,
very often their first differences become stationary. And, therefore, first-difference trans-
formation serves a dual purpose in that it might get rid of (first-order) autocorrelation and
also render the time series stationary. We will revisit this topic in Part 5, where we discuss
the econometrics of time series analysis in some depth.

We mentioned that the first-difference transformation may be appropriate if ρ is high or
d is low. Strictly speaking, the first-difference transformation is valid only if ρ = 1. As a

(12.9.9)
�̂Y t = 0.6539�Xt

t = (11.4042) r2 = 0.4264 d = 1.7442
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37This is easy to show. Let Yt = α1 + β1t + β2 Xt + ut . Therefore, Yt−1 = α + β1(t − 1) + β2 Xt−1 + ut−1.
Subtracting the latter from the former, you will obtain: �Yt = β1 + β2�Xt + εt , which shows that the
intercept term in this equation is indeed the coefficient of the trend variable in the original model.
Remember that we are assuming that ρ = 1.
38In Exercise 12.38 you are asked to run this model, including the constant term.
39The comparison of r 2 in the level and first-difference form is slightly involved. For an extended
discussion on this, see Maddala, op. cit., Chapter 6.
40It is not clear whether the computed d in the first-difference regression can be interpreted in the
same way as it was in the original, level form regression. However, applying the runs test, it can be
seen that there is no evidence of autocorrelation in the residuals of the first-difference regression.
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matter of fact, there is a test, called the Berenblutt–Webb test,41 to test the hypothesis that
ρ = 1. The test statistic they use is called the g statistic, which is defined as follows:

g =
∑n

2 ê2
t∑n

1 û2
t

(12.9.11)

where ût are the OLS residuals from the original (i.e., level form) regression and et are the
OLS residuals from the first-difference regression. Keep in mind that in the first-difference
form there is no intercept.

To test the significance of the g statistic, assuming that the level form regression con-
tains the intercept term, we can use the Durbin–Watson tables except that now the null
hypothesis is that ρ = 1 rather than the Durbin–Watson hypothesis that ρ = 0.

Revisiting our wages–productivity regression, for the original regression (12.5.2) we
obtain 

∑
û2

t = 0.0214 and 
∑

ê2
t = 0.0046. Putting these values into the g statistic given in

Eq. (12.9.11), we obtain

g = 0.0046

0.0214
= 0.2149 (12.9.12)

Consulting the Durbin–Watson table for 45 observations (the number closest to 45 obser-
vations) and 1 explanatory variable (Appendix D, Table D.5), we find that dL = 1.288 and
dU = 1.376 (5 percent level). Since the observed g lies below the lower limit of d, we do
not reject the hypothesis that true ρ = 1. Keep in mind that although we use the same
Durbin–Watson tables, now the null hypothesis is that ρ = 1 and not that ρ = 0. In view of
this finding, the results given in Eq. (12.9.9) may be acceptable.

ρ Based on Durbin–Watson d Statistic
If we cannot use the first-difference transformation because ρ is not sufficiently close
to unity, we have an easy method of estimating it from the relationship between d and
ρ established previously in Eq. (12.6.10), from which we can estimate ρ as follows:

ρ̂ ≈ 1 − d

2
(12.9.13)

Thus, in reasonably large samples one can obtain ρ from Eq. (12.9.13) and use it to trans-
form the data as shown in the generalized difference equation (12.9.5). Keep in mind that
the relationship between ρ and d given in Eq. (12.9.13) may not hold true in small samples,
for which Theil and Nagar have proposed a modification, which is given in Exercise 12.6.

In our wages–productivity regression (12.5.2), we obtain a d value of 0.2176. Using this
value in Eq. (12.9.13), we obtain ρ̂ ≈ 0.8912. Using this estimated ρ value, we can esti-
mate regression (12.9.5). All we have to do is subtract 0.8912 times the previous value of Y
from its current value and similarly subtract 0.8912 times the previous value of X from
its current value and run the OLS regression on the variables thus transformed as in
Eq. (12.9.6), where Y ∗

t = (Yt − 0.8912Yt−1) and X∗
t = (Xt − 0.8912Xt−1) .

ρ Estimated from the Residuals
If the AR(1) scheme ut = ρut−1 + εt is valid, a simple way to estimate ρ is to regress the
residuals ût on ût−1, for the ût are consistent estimators of the true ut , as noted previously.
That is, we run the following regression:

ût = ρ . ût−1 + vt (12.9.14)

41I. I. Berenblutt and G. I. Webb, “A New Test for Autocorrelated Errors in the Linear Regression
Model,” Journal of the Royal Statistical Society, Series B, vol. 35, no.1, 1973, pp. 33–50. 
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where ût are the residuals obtained from the original (level form) regression and where vt

are the error term of this regression. Note that there is no need to introduce the intercept
term in Eq. (12.9.14), for we know the OLS residuals sum to zero.

The residuals from our wages–productivity regression given in Eq. (12.5.1) are already
shown in Table 12.5. Using these residuals, the following regression results were obtained:

As this regression shows, ρ̂ = 0.8678. Using this estimate, one can transform the original
model as per Eq. (12.9.6). Since the ρ estimated by this procedure is about the same as that
obtained from the Durbin–Watson d, the regression results using the ρ of Eq. (12.9.15)
should not be very different from those obtained from the ρ estimated from the
Durbin–Watson d. We leave it to the reader to verify this.

Iterative Methods of Estimating ρ
All the methods of estimating ρ discussed previously provide us with only a single estimate
of ρ. But there are the so-called iterative methods that estimate ρ iteratively, that is, by
successive approximation, starting with some initial value of ρ. Among these methods the
following may be mentioned: the Cochrane–Orcutt iterative procedure, the Cochrane–
Orcutt two-step procedure, the Durbin two–step procedure, and the Hildreth–Lu
scanning or search procedure. Of these, the most popular is the Cochran–Orcutt iterative
method. To save space, the iterative methods are discussed by way of exercises. Remember
that the ultimate objective of these methods is to provide an estimate of ρ that may be used
to obtain GLS estimates of the parameters. One advantage of the Cochrane–Orcutt iterative
method is that it can be used to estimate not only an AR(1) scheme, but also higher-order
autoregressive schemes, such as ût = ρ̂1ût−1 + ρ̂2ût−2 + vt , which is AR(2). Having ob-
tained the two ρs, one can easily extend the generalized difference equation (12.9.6). Of
course, the computer can now do all this.

Returning to our wages–productivity regression, and assuming an AR(1) scheme, we
use the Cochrane–Orcutt iterative method, which gives the following estimates of ρ:
0.8876, 0.9944, and 0.8827. The last value of 0.8827 can now be used to transform the
original model as in Eq. (12.9.6) and estimate it by OLS. Of course, OLS on the trans-
formed model is simply the GLS. The results are as follows:

Stata can estimate the coefficients of the model along with ρ. For example, if we assume
the AR(1), Stata produces the following results:

Ŷ ∗
t = 43.1042 + 0.5712Xt

se = (4.3722) (0.0415) (12.9.16)

t = (9.8586) (13.7638) r2 = 0.8146

From these results, we can see that the estimated rho (ρ̂) is �0.8827, which is not very
much different from the ρ̂ in Eq. (12.9.15).

As noted before, in the generalized difference equation (12.9.6) we lose one observation
because the first observation has no antecedent. To avoid losing the first observation, we
can use the Prais–Winsten transformation. Using this transformation, and using STATA
(version �10), we obtain the following results for our wages–productivity regression:

Rcompbt = 32.0434  + 0.6628 Prodbt

se = (3.7182) (0.0386) r2 = 0.8799 (12.9.17)

(12.9.15)
̂̂ut = 0.8678ût−1

t = (12.7359) r2 = 0.7863
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In this transformation, the ρ value was 0.9193, which was obtained after 13 iterations. It
should be pointed out that if we do not transform the first observation à la Prais–Winsten
and drop that observation, the results sometimes are substantially different, especially in
small samples. Notice that the ρ obtained here is not much different from the one obtained
in Eq. (12.9.15).

General Comments
There are several points about correcting for autocorrelation using the various methods dis-
cussed above.

First, since the OLS estimators are consistent despite autocorrelation, in large samples,
it makes little difference whether we estimate ρ from the Durbin–Watson d, or from the re-
gression of the residuals in the current period on the residuals in the previous period, or
from the Cochrane–Orcutt iterative procedure because they all provide consistent estimates
of the true ρ. Second, the various methods discussed above are basically two-step methods.
In step 1 we obtain an estimate of the unknown ρ and in step 2 we use that estimate to trans-
form the variables to estimate the generalized difference equation, which is basically GLS.
But since we use ρ̂ instead of the true ρ, all these methods of estimation are known in the
literature as feasible GLS (FGLS) or estimated GLS (EGLS) methods.

Third, it is important to note that whenever we use an FGLS or EGLS method to estimate
the parameters of the transformed model, the estimated coefficients will not necessarily have
the usual optimum properties of the classical model, such as BLUE, especially in small
samples. Without going into complex technicalities, it may be stated as a general principle
that whenever we use an estimator in place of its true value, the estimated OLS coefficients
may have the usual optimum properties asymptotically, that is, in large samples. Also, the
conventional hypothesis testing procedures are, strictly speaking, valid asymptotically. In
small samples, therefore, one has to be careful in interpreting the estimated results.

Fourth, in using EGLS, if we do not include the first observation (as was originally the
case with the Cochrane–Orcutt procedure), not only the numerical values but also the effi-
ciency of the estimators can be adversely affected, especially if the sample size is small and
if the regressors are not strictly speaking nonstochastic.42 Therefore, in small samples it is
important to keep the first observation à la Prais–Winsten. Of course, if the sample size is
reasonably large, EGLS, with or without the first observation, gives similar results. Inci-
dentally, in the literature EGLS with Prais–Winsten transformation is known as the full
EGLS, or FEGLS, for short.

12.10 The Newey–West Method of Correcting
the OLS Standard Errors

Instead of using the FGLS methods discussed in the previous section, we can still use
OLS but correct the standard errors for autocorrelation by a procedure developed by
Newey and West.43 This is an extension of White’s heteroscedasticity-consistent standard
errors that we discussed in the previous chapter. The corrected standard errors are known
as HAC (heteroscedasticity- and autocorrelation-consistent) standard errors or
simply Newey–West standard errors. We will not present the mathematics behind the

42This is especially so if the regressors exhibit a trend, which is quite common in economic data.
43W. K. Newey and K. West, “A Simple Positive Semi-Definite Heteroscedasticity and Autocorrelation
Consistent Covariance Matrix, Econometrica, vol. 55, 1987, pp. 703–708.
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Newey–West procedure, for it is involved.44 But most modern computer packages now
calculate the Newey–West standard errors. It is important to point out that the
Newey–West procedure is strictly speaking valid in large samples and may not be appro-
priate in small samples. But in large samples we now have a method that produces
autocorrelation-corrected standard errors so that we do not have to worry about the EGLS
transformations discussed in the previous section. Therefore, if a sample is reasonably
large, one should use the Newey–West procedure to correct OLS standard errors not only
in situations of autocorrelation only but also in cases of heteroscedasticity, for the HAC
method can handle both, unlike the White method, which was designed specifically for
heteroscedasticity.

Once again let us return to our wages–productivity regression (12.5.1). We know that
this regression suffers from autocorrelation. Our sample of 46 observations is reasonably
large, so we can use the HAC procedure. Using EViews 4, we obtain the following regres-
sion results:

Ŷt= 32.7419 + 0.6704Xt

se = (2.9162)* (0.0302)* (12.10.1)

r2 = 0.9765 d = 0.1719

where * denotes HAC standard errors.
Comparing this regression with Eq. (12.5.1), we find that in both the equations the esti-

mated coefficients and the r2 value are the same. But, importantly, note that the HAC stan-
dard errors are much greater than the OLS standard errors and therefore the HAC t ratios
are much smaller than the OLS t ratios. This shows that OLS had in fact underestimated the
true standard errors. Curiously, the d statistics in both Eqs. (12.5.1) and (12.10.1) are the
same. But don’t worry, for the HAC procedure has already taken this into account in cor-
recting the OLS standard errors.

12.11 OLS versus FGLS and HAC

The practical problem facing the researcher is this: In the presence of autocorrelation, OLS
estimators, although unbiased, consistent, and asymptotically normally distributed, are not
efficient. Therefore, the usual inference procedure based on the t, F, and χ2 tests is no
longer appropriate. On the other hand, FGLS and HAC produce estimators that are effi-
cient, but the finite, or small-sample, properties of these estimators are not well docu-
mented. This means in small samples the FGLS and HAC might actually do worse than
OLS. As a matter of fact, in a Monte Carlo study Griliches and Rao45 found that if the sam-
ple is relatively small and the coefficient of autocorrelation, ρ, is less than 0.3, OLS is as
good or better than FGLS. As a practical matter, then, one may use OLS in small samples
in which the estimated ρ is, say, less than 0.3. Of course, what is a large and what is a small
sample are relative questions, and one has to use some practical judgment. If you have only
15 to 20 observations, the sample may be small, but if you have, say, 50 or more observa-
tions, the sample may be reasonably large.
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44If you can handle matrix algebra, the method is discussed in Greene, op. cit, 4th ed., pp. 462–463.
45Z. Griliches, and P. Rao, “Small Sample Properties of Several Two-stage Regression Methods in
the Context of Autocorrelated Errors,” Journal of the American Statistical Association, vol. 64, 1969,
pp. 253–272.
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12.12 Additional Aspects of Autocorrelation
Dummy Variables and Autocorrelation
In Chapter 9 we considered dummy variable regression models. In particular, recall the
U.S. savings–income regression model for 1970–1995 that we presented in Eq. (9.5.1),
which for convenience is reproduced below:

Yt = α1 + α2 Dt + β1 Xt + β2(Dt Xt ) + ut (12.12.1)

where Y = savings
X = income
D = 1 for observations in period 1982–1995
D = 0 for observations in period 1970–1981

The regression results based on this model are given in Eq. (9.5.4). Of course, this model
was estimated with the usual OLS assumptions.

But now suppose that ut follows a first-order autoregressive, AR(1), scheme. That is,
ut = ρut−1 + εt . Ordinarily, if ρ is known or can be estimated by one of the methods dis-
cussed above, we can use the generalized difference method to estimate the parameters of
the model that is free from (first-order) autocorrelation. However, the presence of the
dummy variable D poses a special problem: Note that the dummy variable simply classifies
an observation as belonging to the first or second period. How do we transform it? One can
follow the following procedure.46

1. In Eq. (12.12.1), values of D are zero for all observations in the first period; in period
2 the value of D for the first observation is 1/(1 − ρ) instead of 1, and 1 for all other
observations.

2. The variable Xt is transformed as (Xt − ρXt−1). Note that we lose one observation in
this transformation, unless one resorts to Prais–Winsten transformation for the first
observation, as noted earlier.

3. The value of Dt Xt is zero for all observations in the first period (note: Dt is zero
in the first period); in the second period the first observation takes the value of Dt Xt = Xt

and the remaining observations in the second period are set to (Dt Xt − DtρXt−1) =
(Xt − ρXt−1). (Note: the value of Dt in the second period is 1.)

As the preceding discussion points out, the critical observation is the first observation in
the second period. If this is taken care of in the manner just suggested, there should be no
problem in estimating regressions like Eq. (12.12.1) subject to AR(1) autocorrelation. In
Exercise 12.37, the reader is asked to carry such a transformation for the data on U.S. sav-
ings and income given in Chapter 9.

ARCH and GARCH Models
Just as the error term u at time t can be correlated with the error term at time (t – 1) in an
AR(1) scheme or with various lagged error terms in a general AR(p) scheme, can there be
autocorrelation in the variance σ 2 at time t with its values lagged one or more periods? Such
an autocorrelation has been observed by researchers engaged in forecasting financial time
series, such as stock prices, inflation rates, and foreign exchange rates. Such autocorrelation
is given the rather daunting names autoregressive conditional heteroscedasticity (ARCH)
if the error variance is related to the squared error term in the previous term and generalized
autoregressive conditional heteroscedasticity (GARCH) if the error variance is related to

46See Maddala, op. cit., pp. 321–322.
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squared error terms several periods in the past. Since this topic belongs in the general area
of time series econometrics, we will discuss it in some depth in the chapters on time series
econometrics. Our objective here is to point out that autocorrelation is not confined to rela-
tionships between current and past error terms but also with current and past error variances.

Coexistence of Autocorrelation and Heteroscedasticity
What happens if a regression model suffers from both heteroscedasticity and autocorrelation?
Can we solve the problem sequentially, that is, take care of heteroscedasticity first and then
autocorrelation? As a matter of fact, one author contends that, “Autoregression can only be
detected after the heteroscedasticity is controlled for.”47 But can we develop an omnipotent
test that can solve these and other problems (e.g., model specification) simultaneously? Yes,
such tests exist, but their discussion will take us far afield. It is better to leave them for refer-
ences.48 However, as noted earlier, we can use the HAC standard errors, for they take into ac-
count both autocorrelation and heteroscedasticity, provided the sample is reasonably large.

12.13 A Concluding Example

In Example 10.2, we presented data on consumption, income, wealth, and interest rates for
the U.S., all in real terms. Based on these data, we estimated the following consumption
function for the U.S. for the period 1947–2000, regressing the log of consumption on the
logs of income and wealth. We did not express the interest rate in the log form because
some of the real interest rate figures were negative.

450 Part Two Relaxing the Assumptions of the Classical Model

47Lois W. Sayrs, Pooled Time Series Analysis, Sage Publications, California, 1989, p. 19.
48See Jeffrey M. Wooldridge, op. cit., pp. 402–403, and A. K. Bera and C. M. Jarque, “Efficient Tests
for Normality, Homoscedasticity and Serial Independence of Regression Residuals: Monte Carlo
Evidence,” Economic Letters, vol. 7, 1981, pp. 313–318.

Dependent Variable: ln(CONSUMPTION)
Method: Least Squares
Sample: 1947–2000
Included observations: 54

Coefficient Std. Error t-Statistic Prob.

C -0.467711 0.042778 -10.93343 0.0000
ln(INCOME) 0.804873 0.017498 45.99836 0.0000
ln(WEALTH) 0.201270 0.017593 11.44060 0.0000
INTEREST -0.002689 0.000762 -3.529265 0.0009

R-squared 0.999560 Mean dependent var. 7.826093
Adjusted R-squared 0.999533 S.D. dependent var. 0.552368
S.E. of regression 0.011934 F-statistic 37832.59
Sum squared resid. 0.007121 Prob. (F-statistic) 0.000000
Log likelihood 164.5880 Durbin-Watson stat. 1.289219

As expected, the income and wealth elasticities are positive and the interest rate semielastic-
ity is negative. Although the estimated coefficients seem to be individually highly statistically
significant, we need to check for possible autocorrelation in the error term. As we know, in the
presence of autocorrelation, the estimated standard errors may be underestimated. Examing
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the Durbin–Watson d statistic, it seems the error terms in the consumption function suffer
from (first-degree) autocorrelation (check this out).

To confirm this, we estimated the consumption function, allowing for AR(1) autocorre-
lation. The results are as follows:

Dependent Variable: lnCONSUMPTION
Method: Least Squares
Sample (adjusted): 1948–2000
Included observations: 53 after adjustments
Convergence achieved after 11 iterations

Coefficient Std. Error t-Statistic Prob.

C -0.399833 0.070954 -5.635112 0.0000
lnINCOME 0.845854 0.029275 28.89313 0.0000
lnWEALTH 0.159131 0.027462 5.794501 0.0000
INTEREST 0.001214 0.000925 1.312986 0.1954
AR(1) 0.612443 0.100591 6.088462 0.0000

R-squared 0.999688 Mean dependent var. 7.843871
Adjusted R-squared 0.999662 S.D. dependent var. 0.541833
S.E. of regression 0.009954 F-statistic 38503.91
Sum squared resid. 0.004756 Prob. (F-statistic) 0.00000
Log likelihood 171.7381 Durbin-Watson stat. 1.874724

These results clearly show that our regression suffers from autocorrelation. We leave it to
the reader to remove autocorrelation using some of the transformations discussed in this
chapter. You may use the estimated ρ of 0.6124 for the transformations. Below, we present the
results based on Newey–West (HAC) standard errors that take into account autocorrelation.

Dependent Variable: LCONSUMPTION
Method: Least Squares
Sample: 1947–2000
Included observations: 54
Newey-West HAC Standard Errors & Convariance (lag truncation = 3)

Coefficient Std. Error t-Statistic Prob.

C -0.467714 0.043937 -10.64516 0.0000
LINCOME 0.804871 0.017117 47.02132 0.0000
LWEALTH 0.201272 0.015447 13.02988 0.0000
INTEREST -0.002689 0.000880 -3.056306 0.0036

R-squared 0.999560 Mean dependent var. 7.826093
Adjusted R-squared 0.999533 S.D. dependent var. 0.552368
S.E. of regression 0.011934 F-statistic 37832.71
Sum squared resid. 0.007121 Prob. (F-statistic) 0.000000

Durbin-Watson stat. 1.289237

The major difference between the first and the last of the above regressions is that the
standard errors of the estimated coefficients have changed substantially. Despite this, the
estimated slope coefficients are still highly statistically significant. However, there is no
guarantee that this will always be the case.
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Summary and
Conclusions

1. If the assumption of the classical linear regression model—that the errors or distur-
bances ut entering into the population regression function (PRF) are random or
uncorrelated—is violated, the problem of serial or autocorrelation arises.

2. Autocorrelation can arise for several reasons, such as inertia or sluggishness of
economic time series, specification bias resulting from excluding important variables
from the model or using incorrect functional form, the cobweb phenomenon, data mas-
saging, and data transformation. As a result, it is useful to distinguish between pure
autocorrelation and “induced” autocorrelation because of one or more factors just
discussed.

3. Although in the presence of autocorrelation the OLS estimators remain unbiased, con-
sistent, and asymptotically normally distributed, they are no longer efficient. As a con-
sequence, the usual t, F, and χ2 tests cannot be legitimately applied. Hence, remedial
results may be called for.

4. The remedy depends on the nature of the interdependence among the disturbances ut .
But since the disturbances are unobservable, the common practice is to assume that
they are generated by some mechanism.

5. The mechanism that is commonly assumed is the Markov first-order autoregressive
scheme, which assumes that the disturbance in the current time period is linearly re-
lated to the disturbance term in the previous time period, the coefficient of autocorre-
lation ρ providing the extent of the interdependence. This mechanism is known as the
AR(1) scheme.

6. If the AR(1) scheme is valid and the coefficient of autocorrelation is known, the serial
correlation problem can be easily attacked by transforming the data following the gen-
eralized difference procedure. The AR(1) scheme can be easily generalized to an
AR(p). One can also assume a moving average (MA) mechanism or a mixture of AR
and MA schemes, known asARMA. This topic will be discussed in the chapters on time
series econometrics.

7. Even if we use an AR(1) scheme, the coefficient of autocorrelation is not known a pri-
ori. We considered several methods of estimating ρ, such as the Durbin–Watson d,
Theil–Nagar modified d, Cochrane–Orcutt (C–O) iterative procedure, C–O two-step
method, and the Durbin two-step procedure. In large samples, these methods generally
yield similar estimates of ρ, although in small samples they perform differently. In
practice, the C–O iterative method has become quite popular.

8. Using any of the methods just discussed, we can use the generalized difference method
to estimate the parameters of the transformed model by OLS, which essentially
amounts to GLS. But since we estimate ρ ( = ρ̂), we call the method of estimation fea-
sible, or estimated, GLS, or FGLS or EGLS for short.

9. In using EGLS, one has to be careful in dropping the first observation, for in small
samples the inclusion or exclusion of the first observation can make a dramatic differ-
ence in the results. Therefore, in small samples it is advisable to transform the first ob-
servation according to the Prais–Winsten procedure. In large samples, however, it
makes little difference if the first observation is included or not.

10. It is very important to note that the method of EGLS has the usual optimum statistical
properties only in large samples. In small samples, OLS may actually do better that
EGLS, especially if ρ < 0.3.

11. Instead of using EGLS, we can still use OLS but correct the standard errors for auto-
correlation by the Newey–West HAC procedure. Strictly speaking, this procedure is
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valid in large samples. One advantage of the HAC procedure is that it not only corrects
for autocorrelation but also for heteroscedasticity, if it is present.

12. Of course, before remediation comes detection of autocorrelation. There are formal and
informal methods of detection. Among the informal methods, one can simply plot the
actual or standardized residuals, or plot current residuals against past residuals. Among
formal methods, one can use the runs test, the Durbin–Watson d test, the asymptotic
normality test, the Berenblutt–Webb test, and the Breusch–Godfrey (BG) test. Of these,
the most popular and routinely used is the Durbin–Watson d test. Despite its hoary past,
this test has severe limitations. It is better to use the BG test, for it is much more general
in that it allows for both AR and MA error structures as well as the presence of lagged
regressand as an explanatory variable. But keep in mind that it is a large sample test.

13. In this chapter we also discussed very briefly the detection of autocorrelation in the
presence of dummy regressors.

Questions
12.1. State whether the following statements are true or false. Briefly justify your answer.

a. When autocorrelation is present, OLS estimators are biased as well as
inefficient.

b. The Durbin–Watson d test assumes that the variance of the error term ut is
homoscedastic.

c. The first-difference transformation to eliminate autocorrelation assumes that the
coefficient of autocorrelation ρ is −1.

d. The R2 values of two models, one involving regression in the first-difference
form and another in the level form, are not directly comparable.

e. A significant Durbin–Watson d does not necessarily mean there is autocorrela-
tion of the first order.

f. In the presence of autocorrelation, the conventionally computed variances and
standard errors of forecast values are inefficient.

g. The exclusion of an important variable(s) from a regression model may give a
significant d value.

h. In the AR(1) scheme, a test of the hypothesis that ρ = 1 can be made by the
Berenblutt–Webb g statistic as well as the Durbin–Watson d statistic.

i. In the regression of the first difference of Y on the first differences of X, if there
is a constant term and a linear trend term, it means in the original model there is
a linear as well as a quadratic trend term.

12.2. Given a sample of 50 observations and 4 explanatory variables, what can you say
about autocorrelation if (a) d = 1.05? (b) d = 1.40? (c) d = 2.50? (d) d = 3.97?

12.3. In studying the movement in the production workers’ share in the value added (i.e.,
labor’s share), the following models were considered by Gujarati:*

Model A: Yt = β0 + β1t + ut

Model B: Yt = α0 + α1t + α2t2 + ut

EXERCISES

*Damodar Gujarati, “Labor’s Share in Manufacturing Industries,’’ Industrial and Labor Relations Review,
vol. 23, no. 1, October 1969, pp. 65–75.
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454 Part Two Relaxing the Assumptions of the Classical Model

where Y = labor’s share and t = time. Based on annual data for 1949–1964, the
following results were obtained for the primary metal industry:

Model A: Ŷt = 0.4529 − 0.0041t R2 = 0.5284 d = 0.8252

(−3.9608)

Model B: Ŷt = 0.4786 − 0.0127t + 0.0005t2

(−3.2724) (2.7777)

R2 = 0.6629 d = 1.82

where the figures in the parentheses are t ratios.

a. Is there serial correlation in model A? In model B?

b. What accounts for the serial correlation?

c. How would you distinguish between “pure’’ autocorrelation and specification
bias?

12.4. Detecting autocorrelation: von Neumann ratio test.* Assuming that the residual ût

are random drawings from normal distribution, von Neumann has shown that for
large n, the ratio

δ2

s2
=

∑
(ûi − ûi−1)2/(n − 1)∑

(ûi − ¯̂u)2/n
Note: ¯̂u = 0 in OLS

called the von Neumann ratio, is approximately normally distributed with mean

E
δ2

s2
= 2n

n − 1

and variance

var
δ2

s2
= 4n2 n − 2

(n + 1)(n − 1)3

a. If n is sufficiently large, how would you use the von Neumann ratio to test for
autocorrelation?

b. What is the relationship between the Durbin–Watson d and the von Neumann
ratio?

c. The d statistic lies between 0 and 4. What are the corresponding limits for the
von Neumann ratio?

d. Since the ratio depends on the assumption that the û’s are random drawings from
normal distribution, how valid is this assumption for the OLS residuals?

e. Suppose in an application the ratio was found to be 2.88 with 100 observations.
Test the hypothesis that there is no serial correlation in the data.

Note: B. I. Hart has tabulated the critical values of the von Neumann ratio for
sample sizes of up to 60 observations.†

12.5. In a sequence of 17 residuals, 11 positive and 6 negative, the number of runs was 3.
Is there evidence of autocorrelation? Would the answer change if there were 14 runs?

*J. von Neumann, “Distribution of the Ratio of the Mean Square Successive Difference to the
Variance,’’ Annals of Mathematical Statistics, vol. 12, 1941, pp. 367–395.
†The table may be found in Johnston, op. cit., 3d ed., p. 559. 
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12.6. Theil–Nagar ρ estimate based on d statistic. Theil and Nagar have suggested that,
in small samples, instead of estimating ρ as (1 − d/2), it should be estimated as

ρ̂ = n2(1 − d/2) + k2

n2 − k2

where n = total number of observations, d = Durbin–Watson d, and k = number
of coefficients (including the intercept) to be estimated.

Show that for large n, this estimate of ρ is equal to the one obtained by the sim-
pler formula (1 − d/2).

12.7. Estimating ρ: The Hildreth–Lu scanning or search procedure.* Since in the first-
order autoregressive scheme

ut = ρut−1 + εt

ρ is expected to lie between −1 and +1, Hildreth and Lu suggest a systematic
“scanning’’ or search procedure to locate it. They recommend selecting ρ between
−1 and +1 using, say, 0.1 unit intervals and transforming the data by the generalized
difference equation (12.6.5). Thus, one may choose ρ from −0.9, −0.8, . . . , 0.8,
0.9. For each chosen ρ we run the generalized difference equation and obtain the as-
sociated RSS: 

∑
û2

t . Hildreth and Lu suggest choosing that ρ which minimizes the
RSS (hence maximizing the R2). If further refinement is needed, they suggest using
smaller unit intervals, say, 0.01 units such as −0.99, −0.98, . . . , 0.90, 0.91, and so on.

a. What are the advantages of the Hildreth–Lu procedure?

b. How does one know that the ρ value ultimately chosen to transform the data will,
in fact, guarantee minimum 

∑
û2

t ?

12.8. Estimating ρ: The Cochrane–Orcutt (C–O) iterative procedure.† As an illustration
of this procedure, consider the two-variable model:

Yt = β1 + β2 Xt + ut (1)

and the AR(1) scheme

ut = ρut−1 + εt , −1 < ρ < 1 (2)

Cochrane and Orcutt then recommend the following steps to estimate ρ.

1. Estimate Eq. (1) by the usual OLS routine and obtain the residuals, ût .
Incidentally, note that you can have more than one X variable in the model.

2. Using the residuals obtained in step 1, run the following regression:

ût = ρ̂ût−1 + vt (3)

which is the empirical counterpart of Eq. (2).‡

3. Using ρ̂ obtained in Eq. (3), estimate the generalized difference equation (12.9.6).

*G. Hildreth and J. Y. Lu, “Demand Relations with Autocorrelated Disturbances,’’ Michigan State
University, Agricultural Experiment Station, Tech. Bull. 276, November 1960.
†D. Cochrane and G. H. Orcutt, “Applications of Least-Squares Regressions to Relationships
Containing Autocorrelated Error Terms,” Journal of the American Statistical Association, vol. 44, 1949,
pp 32–61.
‡Note that ρ̂ = ∑

ût ût−1/
∑

û2
t (why?). Although biased, ρ̂ is a consistent estimator of the true ρ.

guj75772_ch12.qxd  14/08/2008  10:41 AM  Page 455



456 Part Two Relaxing the Assumptions of the Classical Model

4. Since a priori it is not known if the ρ̂ obtained from Eq. (3) is the best estimate
of ρ, substitute the values of β̂∗

1 and β̂∗
2 obtained in step (3) in the original re-

gression Eq. (1) and obtain the new residuals, say, û∗
t as

û∗
t = Yt − β̂∗

1 − β̂∗
2 Xt (4)

which can be easily computed since Yt , Xt , β̂∗
1 , and β̂∗

2 are all known.

5. Now estimate the following regression:

û∗
t = ρ̂∗û∗

t−1 + wt (5)

which is similar to Eq. (3) and thus provides the second-round estimate of ρ.

Since we do not know whether this second-round estimate of ρ is the best estimate
of the true ρ, we go into the third-round estimate, and so on. That is why the C–O
procedure is called an iterative procedure. But how long should we go on this
(merry-) go-round? The general recommendation is to stop carrying out iterations
when the successive estimates of ρ differ by a small amount, say, by less than 0.01 or
0.005. In our wages–productivity example, it took about three iterations before we
stopped.

a. Use the Cochrane–Orcutt iterative procedure to estimate ρ for the wages–
productivity regression, Eq. (12.5.2). How many iterations were involved before
you obtained the “final” estimate of ρ?

b. Using the final estimate of ρ obtained in (a), estimate the wages–productivity re-
gression, dropping the first observation as well as retaining the first observation.
What difference you see in the results?

c. Do you think that it is important to keep the first observation in transforming the
data to solve the autocorrelation problem?

12.9. Estimating ρ: The Cochrane–Orcutt two-step procedure. This is a shortened ver-
sion of the C–O iterative procedure. In step 1, we estimate ρ from the first iteration,
that is from Eq. (3) in the preceding exercise, and in step 2 we use that estimate of
ρ to run the generalized difference equation, as in Eq. (4) in the preceding exercise.
Sometimes in practice, this two-step method gives results quite similar to those
obtained from the more elaborate C–O iterative procedure.

Apply the C–O two-step method to the illustrative wages–productivity
regression (12.5.1) given in this chapter and compare your results with those ob-
tained from the iterative method. Pay special attention to the first observation in the
transformation.

12.10. Estimating ρ: Durbin’s two-step method.* To explain this method, we can write the
generalized difference equation (12.9.5) equivalently as follows:

Yt = β1(1 − ρ) + β2 Xt − β2ρXt−1 + ρYt−1 + εt (1)

Durbin suggests the following two-step procedure to estimate ρ. First, treat Eq. (1)
as a multiple regression model, regressing Yt on Xt , Xt−1, and Yt−1 and treat the
estimated value of the regression coefficient of Yt−1 ( = ρ̂) as an estimate of ρ.
Second, having obtained ρ̂ , use it to estimate the parameters of generalized differ-
ence equation (12.9.5) or its equivalent, Eq. (12.9.6).

*J. Durbin, “Estimation of Parameters in Time-Series Regression Models,” Journal of the Royal Statistical
Society, series B, vol. 22, 1960, p. 139–153.
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a. Apply the Durbin two-step method to the wages–productivity example discussed
in this chapter and compare your results with those obtained from the
Cochrane–Orcutt iterative procedure and the C–O two-step method. Comment
on the “quality” of your results.

b. If you examine Eq. (1) above, you will observe that the coefficient of
Xt−1 ( = −ρβ2) is equal to minus 1 times the product of the coefficient of
Xt ( = β2) and the coefficient of Yt−1 ( = ρ). How would you test that coeffi-
cients obey the preceding restriction?

12.11. In measuring returns to scale in electricity supply, Nerlove used cross-sectional
data of 145 privately owned utilities in the United States for the period 1955 and re-
gressed the log of total cost on the logs of output, wage rate, price of capital, and
price of fuel. He found that the residuals estimated from this regression exhibited
“serial’’ correlation, as judged by the Durbin–Watson d. To seek a remedy, he plot-
ted the estimated residuals on the log of output and obtained Figure 12.11.

a. What does Figure 12.11 show?

b. How can you get rid of “serial’’ correlation in the preceding situation?

12.12. The residuals from a regression when plotted against time gave the scattergram in
Figure 12.12. The encircled “extreme’’ residual is called an outlier. An outlier is an
observation whose value exceeds the values of other observations in the sample by a
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FIGURE 12.11
Regression residuals
from the Nerlove
study. (Adapted from
Marc Nerlove, “Return
to Scale in Electric
Supply,” in Carl F.
Christ et al.,
Measurement in
Economics, Stanford
University Press,
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458 Part Two Relaxing the Assumptions of the Classical Model

large amount, perhaps three or four standard deviations away from the mean value of
all the observations.

a. What are the reasons for the existence of the outlier(s)?

b. If there is an outlier(s), should that observation(s) be discarded and the regres-
sion run on the remaining observations?

c. Is the Durbin–Watson d applicable in the presence of the outlier(s)?

12.13. Based on the Durbin–Watson d statistic, how would you distinguish “pure’’ auto-
correlation from specification bias?

12.14. Suppose in the model

Yt = β1 + β2 Xt + ut

the u’s are in fact serially independent. What would happen in this situation if, as-
suming that ut = ρut−1 + εt , we were to use the following generalized difference
regression?

Yt − ρYt−1 = β1(1 − ρ) + β2 Xt − ρβ2 Xt−1 + εt

Discuss in particular the properties of the disturbance term εt .

12.15. In a study of the determination of prices of final output at factor cost in the United
Kingdom, the following results were obtained on the basis of annual data for the
period 1951–1969:

P̂Ft = 2.033 + 0.273Wt − 0.521Xt + 0.256Mt + 0.028Mt−1 + 0.121PFt−1

se = (0.992) (0.127) (0.099) (0.024) (0.039) (0.119)

R2 = 0.984 d = 2.54

where PF = prices of final output at factor cost, W = wages and salaries per employee,
X = gross domestic product per person employed, M = import prices, Mt−1 =
import prices lagged 1 year, and PFt−1 = prices of final output at factor cost in the
previous year.* 

“Since for 18 observations and 5 explanatory variables, the 5 percent lower and
upper d values are 0.71 and 2.06, the estimated d value of 2.54 indicates that there
is no positive autocorrelation.’’ Comment.

12.16. Give circumstances under which each of the following methods of estimating the
first-order coefficient of autocorrelation ρ may be appropriate:

a. First-difference regression.

b. Moving average regression.

c. Theil–Nagar transform.

d. Cochrane and Orcutt iterative procedure.

e. Hildreth–Lu scanning procedure.

f. Durbin two-step procedure.

12.17. Consider the model:

Yt = β1 + β2 Xt + ut

where

ut = ρ1ut−1 + ρ2ut−2 + εt

*Source: Prices and Earnings in 1951–1969: An Econometric Assessment, Department of Employment,
Her Majesty’s Stationery Office, 1971, Table C, p. 37, Eq. 63.
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Chapter 12 Autocorrelation: What Happens If the Error Terms Are Correlated? 459

that is, the error term follows an AR(2) scheme and εt is a white noise error term.
Outline the steps you would take to estimate the model taking into account the
second-order autoregression.

12.18. Including the correction factor C, the formula for β̂GLS
2 given in Eq. (12.3.1) is

β̂GLS
2 = (1 − ρ2)x1 y1 + ∑n

t=2(xt − ρxt−1)(yt − ρyt−1)

(1 − ρ2)x2
1 + ∑n

t=2(xt − ρxt−1)2

Given this formula and Eq. (12.3.1), find the expression for the correction factor C.

12.19. Show that estimating Eq. (12.9.5) is equivalent to estimating the GLS discussed in
Section 12.3, excluding the first observation on Y and X.

12.20. For regression (12.9.9), the estimated residuals have the following signs, which for
ease of exposition are bracketed.

(++++)(−)(+++++++)(−)(++++)(−−)(+)(−−)(+)(−−)(++)(−)

(+)(−−−−−−−−−)(+)

On the basis of the runs test, do you reject the null hypothesis that there is no auto-
correlation in the residuals?

*12.21. Testing for higher-order serial correlation. Suppose we have time series data on a
quarterly basis. In regression models involving quarterly data, instead of using the
AR(1) scheme given in Eq. (12.2.1), it may be more appropriate to assume an
AR(4) scheme as follows:

ut = ρ4ut−4 + εt

that is, to assume that the current disturbance term is correlated with that of the
same quarter in the previous year rather than that of the preceding quarter.

To test the hypothesis that ρ4 = 0, Wallis† suggests the following modified
Durbin–Watson d test:

d4 =
∑n

t=5(ût − ût−4)2∑n
t=1 û2

t

The testing procedure follows the usual d test routine discussed in the text. Wallis
has prepared d4 tables, which may be found in his original article.

Suppose now we have monthly data. Could the Durbin–Watson test be
generalized to take into account such data? If so, write down the appropriate d12

formula.

12.22. Suppose you estimate the following regression:

�ln outputt = β1 + β2�ln Lt + β3�ln Kt + ut

where Y is output, L is labor input, K is capital input, and � is the first-difference
operator. How would you interpret β1 in this model? Could it be regarded as an es-
timate of technological change? Justify your answer.

*Optional.
†Kenneth Wallis, “Testing for Fourth Order Autocorrelation in Quarterly Regression Equations,’’ Economet-
rica, vol. 40, 1972, pp. 617–636. Tables of d4 can also be found in J. Johnston, op. cit., 3d ed., p. 558.
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460 Part Two Relaxing the Assumptions of the Classical Model

12.23. As noted in the text, Maddala has suggested that if the Durbin–Watson d is smaller
than R2, one may run the regression in the first-difference form. What is the logic
behind this suggestion?

12.24. Refer to Eq. (12.4.1). Assume r = 0 but ρ �= 0. What is the effect on E(σ̂ 2) if (a)
0 < ρ < 1 and (b) −1 < ρ < 0? When will the bias in σ̂ 2 be reasonably small?

12.25. The residuals from the wages–productivity regression given in Eq. (12.5.2) were
regressed on lagged residuals going back six periods (i.e., AR[6]), yielding the fol-
lowing results:

Dependent Variable: S1
Method: Least Squares
Sample (adjusted): 1966–2005
Included observations: 40 after adjustments

Coefficient Std. Error t-Statistic Prob.

S1(-1) 1.019716 0.170999 5.963275 0.0000
S1(-2) -0.029679 0.244152 -0.121560 0.9040
S1(-3) -0.286782 0.241975 -1.185171 0.2442
S1(-4) 0.149212 0.242076 0.616386 0.5417
S1(-5) -0.071371 0.243386 -0.293240 0.7711
S1(-6) 0.034362 0.167077 0.205663 0.8383

R-squared 0.749857 Mean dependent var. 0.004433
Adjusted R-squared 0.713071 S.D. dependent var. 0.019843
S.E. of regression 0.010629 Durbin-Waston stat. 1.956818
Sum squared resid. 0.003841

a. From the preceding results, what can you say about the nature of autocorrelation
in the logarithmic wages–productivity data?

b. If you think that an AR(1) mechanism characterizes autocorrelation in our data,
would you use the first-difference transformation to get rid of autocorrelation?
Justify your answer.

Empirical Exercises
12.26. Refer to the data on the copper industry given in Table 12.7.

a. From these data estimate the following regression model:

ln Ct = β1 + β2 ln It + β3 ln Lt + β4 ln Ht + β5 ln At + ut

Interpret the results.

b. Obtain the residuals and standardized residuals from the preceding regression
and plot them. What can you surmise about the presence of autocorrelation in
these residuals?

c. Estimate the Durbin–Watson d statistic and comment on the nature of autocor-
relation present in the data.

d. Carry out the runs test and see if your answer differs from that just given in (c).

e. How would you find out if an AR( p) process better describes autocorrelation
than an AR(1) process?

Note: Save the data for further analysis. (See Exercise 12.28.)
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12.27. You are given the data in Table 12.8.

a. Verify that Durbin–Watson d = 0.4148.

b. Is there positive serial correlation in the disturbances?

c. If so, estimate ρ by the
i. Theil–Nagar method.
ii. Durbin two-step procedure.
iii. Cochrane–Orcutt method.

d. Use the Theil–Nagar method to transform the data and run the regression on the
transformed data.

e. Does the regression estimated in (d) exhibit autocorrelation? If so, how would
you get rid of it?

TABLE 12.7
Determinants of U.S.
Domestic Price of
Copper, 1951–1980

Year C G I L H A

1951 21.89 330.2 45.1 220.4 1,491.0 19.00
52 22.29 347.2 50.9 259.5 1,504.0 19.41
53 19.63 366.1 53.3 256.3 1,438.0 20.93
54 22.85 366.3 53.6 249.3 1,551.0 21.78
55 33.77 399.3 54.6 352.3 1,646.0 23.68
56 39.18 420.7 61.1 329.1 1,349.0 26.01
57 30.58 442.0 61.9 219.6 1,224.0 27.52
58 26.30 447.0 57.9 234.8 1,382.0 26.89
59 30.70 483.0 64.8 237.4 1,553.7 26.85
60 32.10 506.0 66.2 245.8 1,296.1 27.23
61 30.00 523.3 66.7 229.2 1,365.0 25.46
62 30.80 563.8 72.2 233.9 1,492.5 23.88
63 30.80 594.7 76.5 234.2 1,634.9 22.62
64 32.60 635.7 81.7 347.0 1,561.0 23.72
65 35.40 688.1 89.8 468.1 1,509.7 24.50
66 36.60 753.0 97.8 555.0 1,195.8 24.50
67 38.60 796.3 100.0 418.0 1,321.9 24.98
68 42.20 868.5 106.3 525.2 1,545.4 25.58
69 47.90 935.5 111.1 620.7 1,499.5 27.18
70 58.20 982.4 107.8 588.6 1,469.0 28.72
71 52.00 1,063.4 109.6 444.4 2,084.5 29.00
72 51.20 1,171.1 119.7 427.8 2,378.5 26.67
73 59.50 1,306.6 129.8 727.1 2,057.5 25.33
74 77.30 1,412.9 129.3 877.6 1,352.5 34.06
75 64.20 1,528.8 117.8 556.6 1,171.4 39.79
76 69.60 1,700.1 129.8 780.6 1,547.6 44.49
77 66.80 1,887.2 137.1 750.7 1,989.8 51.23
78 66.50 2,127.6 145.2 709.8 2,023.3 54.42
79 98.30 2,628.8 152.5 935.7 1,749.2 61.01
80 101.40 2,633.1 147.1 940.9 1,298.5 70.87

Note: The data were collected by Gary R. Smith from sources such as American Metal Market, Metals Week, and U.S.
Department of Commerce publications.
C = 12-month average U.S. domestic price of copper (cents per pound).
G = annual gross national product ($, billions).
I = 12-month average index of industrial production.

L = 12-month average London Metal Exchange price of copper (pounds sterling).
H = number of housing starts per year (thousands of units).
A = 12-month average price of aluminum (cents per pound).
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12.28. Refer to Exercise 12.26 and the data given in Table 12.7. If the results of this exer-
cise show serial correlation,

a. Use the Cochrane–Orcutt two-stage procedure and obtain the estimates of the
feasible GLS or the generalized difference regression and compare your results.

b. If the ρ estimated from the Cochrane–Orcutt method in (a) differs substantially
from that estimated from the d statistic, which method of estimating ρ would you
choose and why?

12.29. Refer to Example 7.4. Omitting the variables X2 and X3, run the regression and
examine the residuals for “serial’’ correlation. If serial correlation is found, how
would you rationalize it? What remedial measures would you suggest?

12.30. Refer to Exercise 7.21. A priori autocorrelation is expected in such data. Therefore,
it is suggested that you regress the log of real money supply on the logs of real na-
tional income and long-term interest rate in the first-difference form. Run this
regression, and then rerun the regression in the original form. Is the assumption un-
derlying the first-difference transformation satisfied? If not, what kinds of biases
are likely to result from such a transformation? Illustrate with the data at hand.

12.31. The use of Durbin–Watson d for testing nonlinearity. Continue with Exercise 12.29.
Arrange the residuals obtained in that regression according to increasing values of
X. Using the formula given in Eq. (12.6.5), estimate d from the rearranged residu-
als. If the computed d value indicates autocorrelation, this would imply that the lin-
ear model was incorrect and that the full model should include X2

i and X3
i terms.

Can you give an intuitive justification for such a procedure? See if your answer
agrees with that given by Henri Theil.*

12.32. Refer to Exercise 11.22. Obtain the residuals and find out if there is autocorrelation
in the residuals. How would you transform the data in case serial correlation is de-
tected? What is the meaning of serial correlation in the present instance?

TABLE 12.8 Y, Personal Consumption
Expenditure, Billions

of 1958 Dollars X, Time Ŷ, Estimated Y û, Residuals

281.4 1 ( = 1956) 261.4208 19.9791
288.1 2 276.6026 11.4973
290.0 3 291.7844 −1.7844
307.3 4 306.9661 0.3338
316.1 5 322.1479 −6.0479
322.5 6 337.3297 −14.8297
338.4 7 352.5115 −14.1115
353.3 8 367.6933 −14.3933
373.7 9 382.8751 −9.1751
397.7 10 398.0569 −0.3569
418.1 11 413.2386 4.8613
430.1 12 428.4206 1.6795
452.7 13 443.6022 9.0977
469.1 14 458.7840 10.3159
476.9 15 ( = 1970) 473.9658 2.9341

Note: Data for Ŷ obtained from the regression Yt = β0 + β1Xt + ut. 

*Henri Theil, Introduction to Econometrics, Prentice Hall, Englewood Cliffs, NJ, 1978, pp. 307–308.
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12.33. Monte Carlo experiment. Refer to Tables 12.1 and 12.2. Using εt and Xt data given
there, generate a sample of 10 Y values from the model

Yt = 3.0 + 0.5Xt + ut

where ut = 0.9ut−1 + εt . Assume u0 = 10.

a. Estimate the equation and comment on your results.

b. Now assume u0 = 17. Repeat this exercise 10 times and comment on the results.

c. Keep the preceding setup intact except now let ρ = 0.3 instead of ρ = 0.9 and
compare your results with those given in (b).

12.34. Using the data given in Table 12.9, estimate the model

Yt = β1 + β2 Xt + ut

where Y = inventories and X = sales, both measured in billions of dollars.

a. Estimate the preceding regression.

b. From the estimated residuals find out if there is positive autocorrelation using (i) the
Durbin–Watson test and (ii) the large-sample normality test given in Eq. (12.6.13).

c. If ρ is positive, apply the Berenblutt–Webb test to test the hypothesis that ρ = 1.

d. If you suspect that the autoregressive error structure is of order p, use the
Breusch–Godfrey test to verify this. How would you choose the order of p?

e. On the basis of the results of this test, how would you transform the data to
remove autocorrelation? Show all your calculations.

TABLE 12.9 Inventories and Sales in U.S. Manufacturing, 1950–1991 (millions of dollars)

Year Sales* Inventories† Ratio Year Sales* Inventories† Ratio

1950 46,486 84,646 1.82 1971 224,619 369,374 1.57
1951 50,229 90,560 1.80 1972 236,698 391,212 1.63
1952 53,501 98,145 1.83 1973 242,686 405,073 1.65
1953 52,805 101,599 1.92 1974 239,847 390,950 1.65
1954 55,906 102,567 1.83 1975 250,394 382,510 1.54
1955 63,027 108,121 1.72 1976 242,002 378,762 1.57
1956 72,931 124,499 1.71 1977 251,708 379,706 1.50
1957 84,790 157,625 1.86 1978 269,843 399,970 1.44
1958 86,589 159,708 1.84 1979 289,973 424,843 1.44
1959 98,797 174,636 1.77 1980 299,766 430,518 1.43
1960 113,201 188,378 1.66 1981 319,558 443,622 1.37
1961 126,905 211,691 1.67 1982 324,984 449,083 1.38
1962 143,936 242,157 1.68 1983 335,991 463,563 1.35
1963 154,391 265,215 1.72 1984 350,715 481,633 1.35
1964 168,129 283,413 1.69 1985 330,875 428,108 1.38
1965 163,351 311,852 1.95 1986 326,227 423,082 1.29
1966 172,547 312,379 1.78 1987 334,616 408,226 1.24
1967 190,682 339,516 1.73 1988 359,081 439,821 1.18
1968 194,538 334,749 1.73 1989 394,615 479,106 1.17
1969 194,657 322,654 1.68 1990 411,663 509,902 1.21
1970 206,326 338,109 1.59

*Annual data are averages of monthly, not seasonally adjusted, figures.
†Seasonally adjusted, end of period figures beginning 1982 are not comparable with earlier period. 

Source: Economic Report of the President, 1993, Table B-53, p. 408. 
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f. Repeat the preceding steps using the following model:

ln Yt = β1 + β2 ln Xt + ut

g. How would you decide between the linear and log–linear specifications? Show
explicitly the test(s) you use.

12.35. Table 12.10 gives data on real rate of return on common stocks at time (RRt ), out-
put growth in period (t + 1), (OGt+1), and inflation in period t (Inft ), all in percent
form, for the U.S. economy for the period 1954–1981.

a. Regress RRt on inflation.

b. Regress RRt on OGt+1 and Inft

c. Comment on the two regression results in view of Eugene Fama’s observation
that “the negative simple correlation between real stock returns and inflation is
spurious because it is the result of two structural relationships: a positive relation
between current real stock returns and expected output growth [measured by
OGt+1], and a negative relationship between expected output growth and current
inflation.”

d. Would you expect autocorrelation in either of the regressions in (a) and (b)?
Why or why not? If you do, take the appropriate corrective action and present the
revised results.

TABLE 12.10
Rate of Return,
Output Growth and
Inflation, United
States, 1954–1981

Observation RR Growth Inflation

1954 53.0 6.7 −0.4
1955 31.2 2.1 0.4
1956 3.7 1.8 2.9
1957 −13.8 −0.4 3.0
1958 41.7 6.0 1.7
1959 10.5 2.1 1.5
1960 −1.3 2.6 1.8
1961 26.1 5.8 0.8
1962 −10.5 4.0 1.8
1963 21.2 5.3 1.6
1964 15.5 6.0 1.0
1965 10.2 6.0 2.3
1966 −13.3 2.7 3.2
1967 21.3 4.6 2.7
1968 6.8 2.8 4.3
1969 −13.5 −0.2 5.0
1970 −0.4 3.4 4.4
1971 10.5 5.7 3.8
1972 15.4 5.8 3.6
1973 −22.6 −0.6 7.9
1974 −37.3 −1.2 10.8
1975 31.2 5.4 6.0
1976 19.1 5.5 4.7
1977 −13.1 5.0 5.9
1978 −1.3 2.8 7.9
1979 8.6 −0.3 9.8
1980 −22.2 2.6 10.2
1981 −12.2 −1.9 7.3 
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12.36. The Durbin h statistic. Consider the following model of wage determination:

Yt = β1 + β2 Xt + β3Yt−1 + ut

where Y = wages = index of real compensation per hour
X = productivity = index of output per hour.

a. Using the data in Table 12.4, estimate the above model and interpret your results.
b. Since the model contains lagged regressand as a regressor, the Durbin–Watson d

is not appropriate to find out if there is serial correlation in the data. For
such models, called autoregressive models, Durbin has developed the so-called
h statistic to test for first-order autocorrelation, which is defined as:*

h = ρ̂

√
n

1 − n[var (β̂3)]

where n = sample size, var (β̂3) = variance of the coefficient of the lagged Yt−1,
and ρ̂ = estimate of the first-order serial correlation.

For large sample size (technically, asymptotic), Durbin has shown that, under
the null hypothesis that ρ = 0,

h ∼ N (0, 1)

that is, the h statistic follows the standard normal distribution. From the proper-
ties of the normal distribution we know that the probability of |h| > 1.96 is
about 5 percent. Therefore, if in an application |h| > 1.96, we can reject the null
hypothesis that ρ = 0, that is, there is evidence of first-order autocorrelation in
the autoregressive model given above.

To apply the test, we proceed as follows: First, estimate the above model by
OLS (don’t worry about any estimation problems at this stage). Second, note
var (β̂3) in this model as well as the routinely computed d statistic. Third, using
the d value, obtain ρ̂ ≈ (1 − d/2). It is interesting to note that although we can-
not use the d value to test for serial correlation in this model, we can use it to ob-
tain an estimate of ρ. Fourth, now compute the h statistic. Fifth, if the sample
size is reasonably large and if the computed |h| exceeds 1.96, we can conclude
that there is evidence of first-order autocorrelation. Of course, you can use any
level of significance you want.

Apply the h test to the autoregressive wage determination model given earlier
and draw appropriate conclusions and compare your results with those given in
regression (12.5.1).

12.37. Dummy variables and autocorrelation. Refer to the savings–income regression dis-
cussed in Chapter 9. Using the data given in Table 9.2, and assuming an AR(1)
scheme, reestimate the savings–income regression, taking into account autocorre-
lation. Pay close attention to the transformation of the dummy variable. Compare
your results with those presented in Chapter 9.

12.38. Using the wages–productivity data given in Table 12.4, estimate model (12.9.8) and
compare your results with those given in regression (12.9.9). What conclusion(s)
do you draw?

*J. Durbin, “Testing for Serial Correlation in Least-squares Regression When Some of the Regressors
Are Lagged Dependent Variables,” Econometrica, vol. 38, pp. 410–421.
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Appendix 12A

12A.1 Proof that the Error Term vt in
Equation (12.1.11) Is Autocorrelated

Since vt = ut − ut−1, it is easy to show that E(vt ) = E(ut − ut−1) = E(ut ) − E(ut−1) = 0, since
E(u) = 0, for each t. Now, var (vt ) = var (ut − ut−1) = var (ut ) + var (ut−1) = 2σ 2 , since the vari-
ance of each ut is σ 2 and the u’s are independently distributed. Hence, vt is homoscedastic. But 

cov (vt , vt−1) = E(vt vt−1) = E[(ut − ut−1)(ut−1 − ut−2)]

= −σ 2

which is obviously nonzero. Therefore, although the u’s are not autocorrelated, the v’s are.

12A.2 Proof of Equations (12.2.3), (12.2.4),
and (12.2.5)

Under AR(1),

ut = ρut−1 + εt (1)

Therefore,

E(ut ) = ρE(ut−1) + E(εt ) = 0 (2)

So,

var (ut ) = ρ2 var (ut−1) + var (εt ) (3)

because the u’s and ε’s are uncorrelated.
Since var (ut ) = var (ut−1) = σ 2 and var (εt ) = σ 2

ε , we get

var (ut ) = σ 2
ε

1 − ρ2
(4)

Now multiply Eq. (1) by ut−1 and take expectations on both sides to obtain:

cov (ut , ut−1) = E(ut ut−1) = E
[
ρu2

t−1 + ut−1εt
] = ρE

(
u2

t−1

)
Noting that the covariance between ut−1 and εt is zero (why?) and that var (ut ) = var (ut−1) =
σ 2

ε /(1 − ρ2), we obtain

cov (ut , ut−1) = ρ
σ 2

ε

(1 − ρ2)
(5)

Continuing in this fashion,

cov (ut , ut−2) = ρ2 σ 2
ε

(1 − ρ2)

cov (ut , ut−3) = ρ3 σ 2
ε

(1 − ρ2)

and so on. Now the correlation coefficient is the ratio of covariance to variance. Hence,

cor (ut , ut−1) = ρ cov (ut , ut−2) = ρ2

and so on.
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Applied econometrics cannot be done mechanically; it needs understanding, intuition and
skill.1

. . . we generally drive across bridges without worrying about the soundness of their construc-
tion because we are reasonably sure that someone rigorously checked their engineering princi-
ples and practice. Economists must do likewise with models or else attach the warning “not
responsible if attempted use leads to collapse.”2

Economists’ search for “truth” has over the years given rise to the view that economists are
people searching in a dark room for a non-existent black cat; econometricians are regularly
accused of finding one.3

One of the assumptions of the classical linear regression model (CLRM), Assumption 9, is
that the regression model used in the analysis is “correctly” specified: If the model is not
“correctly” specified, we encounter the problem of model specification error or model
specification bias. In this chapter we take a close and critical look at this assumption,
because searching for the correct model is like searching for the Holy Grail. In particular
we examine the following questions:

1. How does one go about finding the “correct” model? In other words, what are the
criteria in choosing a model for empirical analysis?

2. What types of model specification errors is one likely to encounter in practice?

3. What are the consequences of specification errors?

4. How does one detect specification errors? In other words, what are some of the
diagnostic tools that one can use?

5. Having detected specification errors, what remedies can one adopt and with what
benefits?

6. How does one evaluate the performance of competing models?

Chapter

1Keith Cuthbertson, Stephen G. Hall, and Mark P. Taylor, Applied Econometrics Techniques, Michigan
University Press, 1992, p. X.
2David F. Hendry, Dynamic Econometrics, Oxford University Press, U.K., 1995, p. 68.
3Peter Kennedy, A Guide to Econometrics, 3d ed., The MIT Press, Cambridge, Mass., 1992, p. 82.

13
Econometric Modeling:
Model Specification 
and Diagnostic Testing
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468 Part Two Relaxing the Assumptions of the Classical Model

The topic of model specification and evaluation is vast, and very extensive empirical
work has been done in this area. Not only that, but there are philosophical differences on
this topic. Although we cannot do full justice to this topic in one chapter, we hope to bring
out some of the essential issues involved in model specification and model evaluation.

13.1 Model Selection Criteria

According to Hendry and Richard, a model chosen for empirical analysis should satisfy the
following criteria:4

1. Be data admissible; that is, predictions made from the model must be logically
possible.

2. Be consistent with theory; that is, it must make good economic sense. For example,
if Milton Friedman’s permanent income hypothesis holds, the intercept value in the
regression of permanent consumption on permanent income is expected to be zero.

3. Have weakly exogenous regressors; that is, the explanatory variables, or regressors,
must be uncorrelated with the error term. It may be added that in some situations the
exogenous regressors may be strictly exogenous. A strictly exogenous variable is indepen-
dent of current, future, and past values of the error term.

4. Exhibit parameter constancy; that is, the values of the parameters should be stable.
Otherwise, forecasting will be difficult. As Friedman notes, “The only relevant test of
the validity of a hypothesis [model] is comparison of its predictions with experience.”5 In
the absence of parameter constancy, such predictions will not be reliable.

5. Exhibit data coherency; that is, the residuals estimated from the model must be
purely random (technically, white noise). In other words, if the regression model is
adequate, the residuals from this model must be white noise. If that is not the case, there
is some specification error in the model. Shortly, we will explore the nature of specification
error(s).

6. Be encompassing; that is, the model should encompass or include all the rival models
in the sense that it is capable of explaining their results. In short, other models cannot be an
improvement over the chosen model. 

It is one thing to list criteria of a “good” model and quite another to actually develop it,
for in practice one is likely to commit various model specification errors, which we discuss
in the next section.

13.2 Types of Specification Errors

Assume that on the basis of the criteria just listed we arrive at a model that we accept as a
good model. To be concrete, let this model be

Yi = β1 + β2 Xi + β3 X2
i + β4 X3

i + u1i (13.2.1)

where Y = total cost of production and X = output. Equation (13.2.1) is the familiar text-
book example of the cubic total cost function.

4D. F. Hendry and J. F. Richard, “The Econometric Analysis of Economic Time Series,” International
Statistical Review, vol. 51, 1983, pp. 3–33.
5Milton Friedman, “The Methodology of Positive Economics,” in Essays in Positive Economics,
University of Chicago Press, Chicago, 1953, p. 7.
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But suppose for some reason (say, laziness in plotting the scattergram) a researcher
decides to use the following model:

Yi = α1 + α2 Xi + α3 X2
i + u2i (13.2.2)

Note that we have changed the notation to distinguish this model from the true model.
Since Eq. (13.2.1) is assumed true, adopting Eq. (13.2.2) would constitute a specification

error, the error consisting in omitting a relevant variable (X3
i ). Therefore, the error term

u2i in Eq. (13.2.2) is in fact

u2i = u1i + β4 X3
i (13.2.3)

We shall see shortly the importance of this relationship.
Now suppose that another researcher uses the following model:

Yi = λ1 + λ2 Xi + λ3 X2
i + λ4 X3

i + λ5 X4
i + u3i (13.2.4)

If Eq. (13.2.1) is the “truth,” Eq. (13.2.4) also constitutes a specification error, the error
here consisting in including an unnecessary or irrelevant variable in the sense that the
true model assumes λ5 to be zero. The new error term is in fact

u3i = u1i − λ5 X4
i

= u1i since λ5 = 0 in the true model (Why?)
(13.2.5)

Now assume that yet another researcher postulates the following model:

ln Yi = γ1 + γ2 Xi + γ3 X2
i + γ4 X3

i + u4i (13.2.6)

In relation to the true model, Eq. (13.2.6) would also constitute a specification bias, the bias
here being the use of the wrong functional form: In Eq. (13.2.1) Y appears linearly,
whereas in Eq. (13.2.6) it appears log-linearly.

Finally, consider the researcher who uses the following model:

Y ∗
i = β∗

1 + β∗
2 X∗

i + β∗
3 X∗2

i + β∗
4 X∗3

i + u∗
i (13.2.7)

where Y ∗
i = Yi + ε i and X∗

i = Xi + wi , εi and wi being the errors of measurement. What
Eq. (13.2.7) states is that instead of using the true Yi and Xi we use their proxies, Y ∗

i and
X∗

i , which may contain errors of measurement. Therefore, in Eq. (13.2.7) we commit the
errors of measurement bias. In applied work data are plagued by errors of approximations
or errors of incomplete coverage or simply errors of omitting some observations. In the
social sciences we often depend on secondary data and usually have no way of knowing the
types of errors, if any, made by the primary data-collecting agency.

Another type of specification error relates to the way the stochastic error ui (or ut) enters
the regression model. Consider for instance, the following bivariate regression model
without the intercept term:

Yi = βXi ui (13.2.8)

where the stochastic error term enters multiplicatively with the property that ln ui satisfies
the assumptions of the CLRM, against the following model

Yi = αXi + ui (13.2.9)

where the error term enters additively. Although the variables are the same in the two
models, we have denoted the slope coefficient in Eq. (13.2.8) by β and the slope coefficient
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in Eq. (13.2.9) by α. Now if Eq. (13.2.8) is the “correct” or “true” model, would the esti-
mated α provide an unbiased estimate of the true β? That is, will E(α̂) = β? If that is not
the case, improper stochastic specification of the error term will constitute another source
of specification error.

A specification error that is sometimes overlooked is the interaction among the regressors,
that is, the multiplicative effect of one or more regressors on the regressand. To illustrate,
consider the following simplified wage function:

ln Wi = β1 + β2 Educationi + β3 Genderi

+ β4 (Education) (Gender) + u
(13.2.10)

In this model, the change in the relative wages with respect to education depends not only
on education but also on the gender ( ∂ ln W

∂Education = β2 + β4Gender) . Likewise, the change in
relative wages with respect to gender depends not only on gender but also on education.

To sum up, in developing an empirical model, one is likely to commit one or more of the
following specification errors:

1. Omission of a relevant variable(s).

2. Inclusion of an unnecessary variable(s).

3. Adoption of the wrong functional form.

4. Errors of measurement.

5. Incorrect specification of the stochastic error term.

6. Assumption that the error term is normally distributed.

Before turning to an examination of these specification errors in some detail, it may be
fruitful to distinguish between model specification errors and model mis-specification
errors. The first four types of error discussed above are essentially in the nature of model
specification errors in that we have in mind a “true” model but somehow we do not estimate
the correct model. In model mis-specification errors, we do not know what the true model
is to begin with. In this context one may recall the controversy between the Keynesians and
the monetarists. The monetarists give primacy to money in explaining changes in GDP,
whereas the Keynesians emphasize the role of government expenditure to explain changes
in GDP. So to speak, these are two competing models.

In what follows, we will first consider model specification errors and then examine
model mis-specification errors.

13.3 Consequences of Model Specification Errors

Whatever the sources of specification errors, what are the consequences? To keep the dis-
cussion simple, we will answer this question in the context of the three-variable model and
consider in this section the first two types of specification errors discussed earlier, namely,
(1) underfitting a model, that is, omitting relevant variables, and (2) overfitting a model,
that is, including unnecessary variables. Our discussion here can be easily generalized to
more than two regressors, but with tedious algebra;6 matrix algebra becomes almost a
necessity once we go beyond the three-variable case.

6But see Exercise 13.32.
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Underfitting a Model (Omitting a Relevant Variable)
Suppose the true model is:

Yi = β1 + β2 X2i + β3 X3i + ui (13.3.1)

but for some reason we fit the following model:

Yi = α1 + α2 X2i + vi (13.3.2)

The consequences of omitting variable X3 are as follows:

1. If the left-out, or omitted, variable X3 is correlated with the included variable X2, that
is, r2 3, the correlation coefficient between the two variables is nonzero and α̂1 and α̂2 are
biased as well as inconsistent. That is, E(α̂1) �= β1 and E(α̂2) �= β2, and the bias does not
disappear as the sample size gets larger.

2. Even if X2 and X3 are not correlated, α̂1 is biased, although α̂2 is now unbiased.

3. The disturbance variance σ 2 is incorrectly estimated.

4. The conventionally measured variance of α̂2 ( = σ 2/
∑

x2
2i ) is a biased estimator of

the variance of the true estimator β̂2.

5. In consequence, the usual confidence interval and hypothesis-testing procedures are
likely to give misleading conclusions about the statistical significance of the estimated
parameters.

6. As another consequence, the forecasts based on the incorrect model and the forecast
(confidence) intervals will be unreliable.

Although proofs of each of the above statements will take us far afield,7 it is shown in
Appendix 13A, Section 13A.1, that

E(α̂2) = β2 + β3b3 2 (13.3.3)

where b3 2 is the slope in the regression of the excluded variable X3 on the included variable
X2 (b3 2 = ∑

x3i x2i/
∑

x2
2i ). As Eq. (13.3.3) shows, α̂2 is biased, unless β3 or b3 2 or both

are zero. We rule out β3 being zero, because in that case we do not have specification error
to begin with. The coefficient b3 2 will be zero if X2 and X3 are uncorrelated, which is
unlikely in most economic data. 

Generally, however, the extent of the bias will depend on the bias term β3b3 2. If, for in-
stance, β3 is positive (i.e., X3 has a positive effect on Y ) and b3 2 is positive (i.e., X2 and X3

are positively correlated), α̂2, on average, will overestimate the true β2 (i.e., positive bias).
But this result should not be surprising, for X2 represents not only its direct effect on Y but
also its indirect effect (via X3) on Y. In short, X2 gets credit for the influence that is rightly
attributable to X3, the latter being prevented from showing its effect explicitly because it is
not “allowed” to enter the model. As a concrete example, consider the example discussed
in Chapter 7 (Example 7.1).

7For an algebraic treatment, see Jan Kmenta, Elements of Econometrics, Macmillan, New York, 1971,
pp. 391–399. Those with a matrix algebra background may want to consult J. Johnston, Econometrics
Methods, 4th ed., McGraw-Hill, New York, 1997, pp. 119–112.
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472 Part Two Relaxing the Assumptions of the Classical Model

Now let us examine the variances of α̂2 and β̂2

var (α̂2) = σ 2∑
x2

2i

(13.3.4)

var (β̂2) = σ 2∑
x2

2i

(
1 − r2

2 3

) = σ 2∑
x2

2i

VIF (13.3.5)

where VIF (a measure of collinearity) is the variance inflation factor [ = 1/(1 − r2
2 3)]

discussed in Chapter 10 and r23 is the correlation coefficient between variables X2 and X3;
Eqs. (13.3.4) and (13.3.5) are familiar to us from Chapters 3 and 7.

As formulas (13.3.4) and (13.3.5) are not the same, in general, var (α̂2) will be different
from var (β̂2). But we know that var (β̂2) is unbiased (why?). Therefore, var (α̂2) is biased,
thus substantiating the statement made in point 4 earlier. Since 0 < r2

2 3 < 1, it would seem
that in the present case var (α̂2) < var (β̂2). Now we face a dilemma: Although α̂2 is biased,
its variance is smaller than the variance of the unbiased estimator β̂2 (of course, we are rul-
ing out the case where r23 = 0, since in practice there is some correlation between regres-
sors). So, there is a trade-off involved here.10

The story is not complete yet, however, for the σ 2 estimated from model (13.3.2) and
that estimated from the true model (13.3.1) are not the same because the residual sum of
squares (RSS) of the two models as well as their degrees of freedom (df) are different. You
may recall that we obtain an estimate of σ 2 as σ̂ 2 = RSS/df, which depends on the num-
ber of regressors included in the model as well as the df ( = n, number of parameters

EXAMPLE 13.1
Illustrative
Example: Child
Mortality
Revisited

Regressing child mortality (CM) on per capita GNP (PGNP) and the female literacy rate
(FLR), we obtained the regression results shown in Eq. (7.6.2), giving the partial slope
coefficient values of the two variables as −0.0056 and −2.2316, respectively. But if we
now drop the FLR variable, we obtain the results shown in Eq. (7.7.2). If we regard
Eq. (7.6.2) as the correct model, then Eq. (7.7.2) is a mis-specified model in that it omits
the relevant variable FLR. Now you can see that in the correct model the coefficient of the
PGNP variable was −0.0056, whereas in the “incorrect” model (7.7.2) it is now −0.0114.

In absolute terms, now PGNP has a greater impact on CM as compared with the true
model. But if we regress FLR on PGNP (regression of the excluded variable on the included
variable), the slope coefficient in this regression (b32 in terms of Eq. [13.3.3]) is 0.00256.8

This suggests that as PGNP increases by a unit, on average, FLR goes up by 0.00256 units.
But if FLR goes up by these units, its effect on CM will be (−2.2316) (0.00256) = β̂3b3 2 =
−0.00543.

Therefore, from Eq. (13.3.3) we finally have (β̂2 + β̂3b3 2) = [−0.0056 + (−2.2316)
(0.00256)] ≈ −0.0111, which is about the value of the PGNP coefficient obtained in the
incorrect model (7.7.2).9 As this example illustrates, the true impact of PGNP on CM is much
less (−0.0056) than that suggested by the incorrect model (7.7.2), namely, (−0.0114).

8The regression results are:

F̂LR = 47.5971 + 0.00256PGNP

se = (3.5553) (0.0011) r2 = 0.0721

9Note that in the true model β̂2 and β̂3 are unbiased estimates of their true values.
10To bypass the trade-off between bias and efficiency, one could choose to minimize the mean square
error (MSE), since it accounts for both bias and efficiency. On MSE, see the statistical appendix,
Appendix A. See also Exercise 13.6.
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estimated). Now if we add variables to the model, the RSS generally decreases (recall that
as more variables are added to the model, the R2 increases), but the degrees of freedom also
decrease because more parameters are estimated. The net outcome depends on whether the
RSS decreases sufficiently to offset the loss of degrees of freedom due to the addition of
regressors. It is quite possible that if a regressor has a strong impact on the regressand—for
example, it may reduce RSS more than the loss in degrees of freedom as a result of its
addition to the model—inclusion of such variables will not only reduce the bias but will
also increase the precision (i.e., reduce the standard errors) of the estimators.

On the other hand, if the relevant variables have only a marginal impact on the regres-
sand, and if they are highly correlated (i.e., VIF is larger), we may reduce the bias in the
coefficients of the variables already included in the model, but increase their standard
errors (i.e., make them less efficient). Indeed, the trade-off in this situation between bias and
precision can be substantial. As you can see from this discussion, the trade-off will depend
on the relative importance of the various regressors.

To conclude this discussion, let us consider the special case where r23 = 0, that is, X2

and X3 are uncorrelated. This will result in b3 2 being zero (why?). Therefore, it can be seen
from Eq. (13.3.3) that α̂2 is now unbiased.11 Also, it seems from Eqs. (13.3.4) and (13.3.5)
that the variances of α̂2 and β̂2 are the same. Is there no harm in dropping the variable X3

from the model even though it may be relevant theoretically? The answer generally is no,
for in this case, as noted earlier, var (α̂2) estimated from Eq. (13.3.4) is still biased and
therefore our hypothesis-testing procedures are likely to remain suspect.12 Besides, in most
economic research X2 and X3 will be correlated, thus creating the problems discussed
previously. The point is clear: Once a model is formulated on the basis of the relevant
theory, one is ill-advised to drop a variable from such a model.

Inclusion of an Irrelevant Variable (Overfitting a Model)
Now let us assume that

Yi = β1 + β2 X2i + ui (13.3.6)

is the truth, but we fit the following model:

Yi = α1 + α2 X2i + α3 X3i + vi (13.3.7)

and thus commit the specification error of including an unnecessary variable in the model.
The consequences of this specification error are as follows:

1. The OLS estimators of the parameters of the “incorrect” model are all unbiased and
consistent, that is, E(α1) = β1, E(α̂2) = β2, and E(α̂3) = β3 = 0.

2. The error variance σ 2 is correctly estimated.

3. The usual confidence interval and hypothesis-testing procedures remain valid.

4. However, the estimated α’s will be generally inefficient, that is, their variances will
be generally larger than those of the β̂’s of the true model. The proofs of some of these
statements can be found in Appendix 13A, Section 13A.2. The point of interest here is
the relative inefficiency of the α̂’s. This can be shown easily.

11Note, though, α̂1 is still biased, which can be seen intuitively as follows: We know that
β̂1 = Ȳ − β̂2 X̄2 − β̂3 X̄3, whereas α̂1 = Ȳ − α̂2 X̄2, and even if α̂2 = β̂2, the two intercept estimators
will not be the same.
12For details, see Adrian C. Darnell, A Dictionary of Econometrics, Edward Elgar Publisher, 1994,
pp. 371–372.
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From the usual OLS formula we know that

var (β̂2) = σ 2∑
x2

2i

(13.3.8)

and

var (α̂2) = σ 2∑
x2

2i

(
1 − r2

2 3

)
(13.3.9)

Therefore,

var (α̂2)

var (β̂2)
= 1

1 − r2
2 3

(13.3.10)

Since 0 ≤ r2
2 3 ≤ 1, it follows that var (α̂2) ≥ var (β̂2); that is, the variance of α̂2 is gener-

ally greater than the variance of β̂2 even though, on average, α̂2 = β2 [i.e., E(α̂2) = β2].
The implication of this finding is that the inclusion of the unnecessary variable X3 makes the

variance of α̂2 larger than necessary, thereby making α̂2 less precise. This is also true of α̂1.
Notice the asymmetry in the two types of specification biases we have considered. If

we exclude a relevant variable, the coefficients of the variables retained in the model are
generally biased as well as inconsistent, the error variance is incorrectly estimated, and the
usual hypothesis-testing procedures become invalid. On the other hand, including an irrel-
evant variable in the model still gives us unbiased and consistent estimates of the coeffi-
cients in the true model, the error variance is correctly estimated, and the conventional
hypothesis-testing methods are still valid; the only penalty we pay for the inclusion of the
superfluous variable is that the estimated variances of the coefficients are larger, and as a
result our probability inferences about the parameters are less precise. An unwanted con-
clusion here would be that it is better to include irrelevant variables than to omit the rele-
vant ones. But this philosophy is not to be espoused because the addition of unnecessary
variables will lead to a loss in the efficiency of the estimators and may also lead to the prob-
lem of multicollinearity (why?), not to mention the loss of degrees of freedom. Therefore,

In general, the best approach is to include only explanatory variables that, on theoretical
grounds, directly influence the dependent variable and that are not accounted for by other
included variables.13

13.4 Tests of Specification Errors

Knowing the consequences of specification errors is one thing but finding out whether
one has committed such errors is quite another, for we do not deliberately set out to com-
mit such errors. Very often specification biases arise inadvertently, perhaps from our
inability to formulate the model as precisely as possible because the underlying theory is
weak or because we do not have the right kind of data to test the model. As Davidson
notes, “Because of the non-experimental nature of economics, we are never sure how the
observed data were generated. The test of any hypothesis in economics always turns out
to depend on additional assumptions necessary to specify a reasonably parsimonious
model, which may or may not be justified.”14

13Michael D. Intriligator, Econometric Models, Techniques and Applications, Prentice Hall, Englewood
Cliffs, NJ, 1978, p. 189. Recall the Occam’s razor principle.
14James Davidson, Econometric Theory, Blackwell Publishers, Oxford, U.K., 2000, p. 153.
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The practical question then is not why specification errors are made, for they generally
are, but how to detect them. Once it is found that specification errors have been made, the
remedies often suggest themselves. If, for example, it can be shown that a variable is inap-
propriately omitted from a model, the obvious remedy is to include that variable in the
analysis, assuming, of course, the data on that variable are available.

In this section we discuss some tests that one may use to detect specification errors.

Detecting the Presence of Unnecessary Variables
(Overfitting a Model)
Suppose we develop a k-variable model to explain a phenomenon:

Yi = β1 + β2 X2i + · · · + βk Xki + ui (13.4.1)

However, we are not totally sure that, say, the variable Xk really belongs in the model. One
simple way to find this out is to test the significance of the estimated βk with the usual t test:
t = β̂k/se (β̂k). But suppose that we are not sure whether, say, X3 and X4 legitimately
belong in the model. This can be easily ascertained by the F test discussed in Chapter 8.
Thus, detecting the presence of an irrelevant variable (or variables) is not a difficult task.

It is, however, very important to remember that in carrying out these tests of significance
we have a specific model in mind. We accept that model as the maintained hypothesis or
the “truth,” however tentative it may be. Given that model, then, we can find out whether
one or more regressors are really relevant by the usual t and F tests. But note carefully that
we should not use the t and F tests to build a model iteratively, that is, we should not say
that initially Y is related to X2 only because β̂2 is statistically significant and then expand
the model to include X3 and decide to keep that variable in the model if β̂3 turns out to be
statistically significant, and so on. This strategy of building a model is called the bottom-
up approach (starting with a smaller model and expanding it as one goes along) or by
the somewhat pejorative term, data mining (other names are regression fishing, data
grubbing, data snooping, and number crunching).

The primary objective of data mining is to develop the “best” model after several diag-
nostic tests so that the model finally chosen is a “good” model in the sense that all the
estimated coefficients have the “right” signs, they are statistically significant on the basis of
the t and F tests, the R2 value is reasonably high, and the Durbin–Watson d has acceptable
value (around 2), etc. The purists in the profession look down on the practice of data
mining. In the words of William Pool, “. . . making an empirical regularity the foundation,
rather than an implication of economic theory, is always dangerous.”15 One reason for
“condemning” data mining is as follows.

Nominal versus True Level of Significance in the Presence of Data Mining
A danger of data mining that the unwary researcher faces is that the conventional levels of
significance (α) such as 1, 5, or 10 percent are not the true levels of significance. Lovell has
suggested that if there are c candidate regressors out of which k are finally selected (k ≤ c)
on the basis of data mining, then the true level of significance (α*) is related to the nominal
level of significance (α) as follows:16

α∗ = 1 − (1 − α)c/k (13.4.2)

15William Pool, “Is Inflation Too Low?” the Cato Journal, vol. 18, no. 3, Winter 1999, p. 456.
16M. Lovell, “Data Mining,” Review of Economics and Statistics, vol. 65, 1983, pp. 1–12.
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or approximately as

α∗ ≈ (c/k)α (13.4.3)

For example, if c = 15, k = 5, and α = 5 percent, from Eq. (13.4.3) the true level of
significance is (15/5)(5) = 15 percent. Therefore, if a researcher data-mines and selects
5 out of 15 regressors and reports only the results of the condensed model at the nominal
5 percent level of significance and declares that the results are statistically significant, one
should take this conclusion with a big grain of salt, for we know the (true) level of signifi-
cance is in fact 15 percent. It should be noted that if c = k, that is, there is no data mining,
the true and nominal levels of significance are the same. Of course, in practice most
researchers report only the results of their “final” regression without necessarily telling
about all the data mining, or pretesting, that has gone before.17

Despite some of its obvious drawbacks, there is increasing recognition, especially
among applied econometricians, that the purist (i.e., non–data  mining) approach to model
building is not tenable. As Zaman notes:

Unfortunately, experience with real data sets shows that such a [purist approach] is neither fea-
sible nor desirable. It is not feasible because it is a rare economic theory which leads to a
unique model. It is not desirable because a crucial aspect of learning from the data is learning
what types of models are and are not supported by data. Even if, by rare luck, the initial model
shows a good fit, it is frequently important to explore and learn the types of the models the data
does or does not agree with.18

A similar view is expressed by Kerry Patterson, who maintains that:

This [data mining] approach suggests that economic theory and empirical specification
[should] interact rather than be kept in separate compartments.19

Instead of getting caught in the data mining versus the purist approach to model-building
controversy, one can endorse the view expressed by Peter Kennedy:

[that model specification] needs to be a well-thought-out combination of theory and data, and
that testing procedures used in specification searches should be designed to minimize the costs
of data mining. Examples of such procedures are setting aside data for out-of-sample predic-
tion tests, adjusting significance levels [a la Lovell], and avoiding questionable criteria such as
maximizing R2.20

If we look at data mining in a broader perspective as a process of discovering empiri-
cal regularities that might suggest errors and/or omissions in (existing) theoretical mod-
els, it has a very useful role to play. To quote Kennedy again, “The art of the applied
econometrician is to allow for data-driven theory while avoiding the considerable dangers
in data mining.”21

17For a detailed discussion of pretesting and the biases it can lead to, see T. D. Wallace, “Pretest
Estimation in Regression: A Survey,” American Journal of Agricultural Economics, vol. 59, 1977,
pp. 431–443.
18Asad Zaman, Statistical Foundations for Econometric Techniques, Academic Press, New York, 1996,
p. 226.
19Kerry Patterson, An Introduction to Applied Econometrics, St. Martin’s Press, New York, 2000, p. 10.
20Peter Kennedy, “Sinning in the Basement: What Are the Rules? The Ten Commandments of Applied
Econometrics,” unpublished manuscript.
21Kennedy, op. cit., p. 13.
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Tests for Omitted Variables and Incorrect Functional Form
In practice we are never sure that the model adopted for empirical testing is “the truth, the
whole truth and nothing but the truth.” On the basis of theory or introspection and prior
empirical work, we develop a model that we believe captures the essence of the subject
under study. We then subject the model to empirical testing. After we obtain the results, we
begin the post-mortem, keeping in mind the criteria of a good model discussed earlier. It
is at this stage that we come to know if the chosen model is adequate. In determining model
adequacy, we look at some broad features of the results, such as the R̄2 value, the estimated
t ratios, the signs of the estimated coefficients in relation to their prior expectations, the
Durbin–Watson statistic, and the like. If these diagnostics are reasonably good, we pro-
claim that the chosen model is a fair representation of reality. By the same token, if the
results do not look encouraging because the R̄2 value is too low or because very few coef-
ficients are statistically significant or have the correct signs or because the Durbin–Watson
d is too low, then we begin to worry about model adequacy and look for remedies: Maybe
we have omitted an important variable, or have used the wrong functional form, or have not
first-differenced the time series (to remove serial correlation), and so on. To aid us in
determining whether model inadequacy is on account of one or more of these problems, we
can use some of the following methods.

Examination of Residuals
As noted in Chapter 12, examination of the residuals is a good visual diagnostic to detect
autocorrelation or heteroscedasticity. But these residuals can also be examined, especially
in cross-sectional data, for model specification errors, such as omission of an important
variable or incorrect functional form. If in fact there are such errors, a plot of the residuals
will exhibit distinct patterns.

To illustrate, let us reconsider the cubic total cost of production function first considered
in Chapter 7.Assume that the true total cost function is described as follows, where Y = total
cost and X = output:

Yi = β1 + β2 Xi + β3 X2
i + β4 X3

i + ui (13.4.4)

but a researcher fits the following quadratic function:

Yi = α1 + α2 Xi + α3 X2
i + u2i (13.4.5)

and another researcher fits the following linear function:

Yi = λ1 + λ2 Xi + u3i (13.4.6)

Although we know that both researchers have made specification errors, for pedagogical
purposes let us see how the estimated residuals look in the three models. (The cost-output
data are given in Table 7.4.) Figure 13.1 speaks for itself: As we move from left to right, that
is, as we approach the truth, not only are the residuals smaller (in absolute value) but also
they do not exhibit the pronounced cyclical swings associated with the misfitted models.

The utility of examining the residual plot is thus clear: If there are specification errors,
the residuals will exhibit noticeable patterns.

The Durbin–Watson d Statistic Once Again
If we examine the routinely calculated Durbin–Watson d in Table 13.1, we see that for the
linear cost function the estimated d is 0.716, suggesting that there is positive “correlation”
in the estimated residuals: for n = 10 and k ′ = 1, the 5 percent critical d values are
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478 Part Two Relaxing the Assumptions of the Classical Model

dL = 0.879 and dU = 1.320. Likewise, the computed d value for the quadratic cost function
is 1.038, whereas the 5 percent critical values are dL = 0.697 and dU = 1.641, indicating
indecision. But if we use the modified d test (see Chapter 12), we can say that there is
positive “correlation” in the residuals, for the computed d is less than dU. For the cubic cost
function, the true specification, the estimated d value does not indicate any positive “corre-
lation” in the residuals.22

The observed positive “correlation” in the residuals when we fit the linear or quadratic
model is not a measure of (first-order) serial correlation but of (model) specification

X0

ui
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id
u
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Output

(a) (b) (c)

FIGURE 13.1
Residuals ûi from (a)
linear, (b) quadratic,
and (c) cubic total cost
functions.

Observation ûi, ûi, ûi,
Number Linear Model* Quadratic Model† Cubic Model**

1 6.600 −23.900 −0.222
2 19.667 9.500 1.607
3 13.733 18.817 −0.915
4 −2.200 13.050 −4.426
5 −9.133 11.200 4.435
6 −26.067 −5.733 1.032
7 −32.000 −16.750 0.726
8 −28.933 −23.850 −4.119
9 4.133 −6.033 1.859

10 54.200 23.700 0.022

*Ŷi = 166.467  + 19.933Xi R2 = 0.8409
(19.021) (3.066) R

–2 = 0.8210
(8.752) (6.502) d = 0.716

†Ŷi = 222.383  − 8.0250Xi + 2.542Xi
2 R2 = 0.9284

(23.488) (9.809) (0.869) R
–2 = 0.9079

(9.468) (−0.818) (2.925) d = 1.038

**Ŷi = 141.767  + 63.478Xi − 12.962Xi
2 + 0.939Xi

3 R2 = 0.9983
(6.375) (4.778) (0.9856) (0.0592) R

–2 = 0.9975
(22.238) (13.285) (−13.151) (15.861) d = 2.70

TABLE 13.1
Estimated Residuals
from the Linear,
Quadratic, and Cubic
Total Cost Functions

22In the present context, a value of d = 2 will mean no specification error. (Why?)
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error(s). The observed correlation simply reflects the fact that some variable(s) that belongs
in the model is included in the error term and needs to be culled out from it and introduced
in its own right as an explanatory variable: If we exclude the X3

i from the cost function,
then as Eq. (13.2.3) shows, the error term in the mis-specified model (13.2.2) is in fact
(u1i + β4 X3

i ) and it will exhibit a systematic pattern (e.g., positive autocorrelation) if X3
i in

fact affects Y significantly.
To use the Durbin–Watson test for detecting model specification error(s), we proceed as

follows:

1. From the assumed model, obtain the ordinary least squares (OLS) residuals.

2. If it is believed that the assumed model is mis-specified because it excludes a relevant
explanatory variable, say, Z from the model, order the residuals obtained in Step 1 accord-
ing to increasing values of Z. Note: The Z variable could be one of the X variables included
in the assumed model or it could be some function of that variable, such as X2 or X3.

3. Compute the d statistic from the residuals thus ordered by the usual d formula,
namely,

d =
∑n

t=2(ût − ût−1)2∑n
t=1 û2

t

Note: The subscript t is the index of observation here and does not necessarily mean that
the data are time series.

4. From the Durbin–Watson tables, if the estimated d value is significant, then one can
accept the hypothesis of model mis-specification. If that turns out to be the case, the reme-
dial measures will naturally suggest themselves.

In our cost example, the Z ( = X ) variable (output) was already ordered.23 Therefore,
we do not have to compute the d statistic afresh. As we have seen, the d statistic for both the
linear and quadratic cost functions suggests specification errors. The remedies are clear: In-
troduce the quadratic and cubic terms in the linear cost function and the cubic term in the
quadratic cost function. In short, run the cubic cost model.

Ramsey’s RESET Test
Ramsey has proposed a general test of specification error called RESET (regression speci-
fication error test).24 Here we will illustrate only the simplest version of the test. To fix
ideas, let us continue with our cost-output example and assume that the cost function is
linear in output as

Yi = λ1 + λ2 Xi + u3i (13.4.6)

where Y = total cost and X = output. Now if we plot the residuals ûi obtained from this
regression against Ŷi , the estimated Yi from this model, we get the picture shown in Fig-
ure 13.2. Although

∑
ûi and

∑
ûi Ŷi are necessarily zero (why? see Chapter 3), the residu-

als in this figure show a pattern in which their mean changes systematically with Ŷi . This
would suggest that if we introduce Ŷi in some form as a regressor(s) in Eq. (13.4.6), it
should increase R2. And if the increase in R2 is statistically significant (on the basis of the
F test discussed in Chapter 8), it would suggest that the linear cost function (13.4.6) was

23It does not matter if we order ûi according to X2
i or X3

i since these are functions of Xi, which is
already ordered.
24J. B. Ramsey, “Tests for Specification Errors in Classical Linear Least Squares Regression Analysis,”
Journal of the Royal Statistical Society, series B, vol. 31, 1969, pp. 350–371.
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mis-specified. This is essentially the idea behind RESET. The steps involved in RESET are
as follows:

1. From the chosen model, e.g., Eq. (13.4.6), obtain the estimated Yi, that is, Ŷi .

2. Rerun Eq. (13.4.6) introducing Ŷi in some form as an additional regressor(s). From
Figure 13.2, we observe that there is a curvilinear relationship between ûi and Ŷi , suggest-
ing that one can introduce Ŷ 2

i and Ŷ 3
i as additional regressors. Thus, we run

Yi = β1 + β2 Xi + β3Ŷ 2
i + β4Ŷ 3

i + ui (13.4.7)

3. Let the R2 obtained from Eq. (13.4.7) be R2
new and that obtained from Eq. (13.4.6) be

R2
old. Then we can use the F test first introduced in Eq. (8.4.18), namely,

F =
(
R2

new − R2
old

)/
number of new regressors(

1 − R2
new

)/
(n − number of parameters in the new model)

(8.4.18)

to find out if the increase in R2 from using Eq. (13.4.7) is statistically significant.

4. If the computed F value is significant, say, at the 5 percent level, one can accept the
hypothesis that the model (13.4.6) is mis-specified.

Returning to our illustrative example, we have the following results (standard errors in
parentheses):

Ŷi = 166.467 + 19.933Xi (13.4.8)

(19.021) (3.066) R2 = 0.8409

0

ui

Y
150 200 300 400250 350

FIGURE 13.2
Residuals ûi and
estimated Y from the
linear cost function: 
Yi = λ1 + λ2Xi + ui.
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Ŷi = 2140.7223 + 476.6557Xi − 0.09187Ŷ 2
i + 0.000119Ŷ 3

i

(132.0044) (33.3951) (0.00620) (0.0000074) (13.4.9)

R2 = 0.9983

Note: Ŷ 2
i and Ŷ 3

i in Eq. (13.4.9) are obtained from Eq. (13.4.8).
Now applying the F test we find

F = (0.9983 − 0.8409)/2

(1 − 0.9983)/(10 − 4)

= 284.4035
(13.4.10)

The reader can easily verify that this F value is highly significant, indicating that the model
(13.4.8) is mis-specified. Of course, we have reached the same conclusion on the basis of
the visual examination of the residuals as well as the Durbin–Watson d value. It should be
added that, since Ŷi is estimated, it is a random variable and, therefore, the usual tests of
significance apply if the sample is reasonably large.

One advantage of RESET is that it is easy to apply, for it does not require one to specify
what the alternative model is. But that is also its disadvantage because knowing that a
model is mis-specified does not help us necessarily in choosing a better alternative.

As one author notes:

In practice, the RESET test may not be particularly good at detecting any specific alternative
to a proposed model, and its usefulness lies in acting as a general indicator that something is
wrong. For this reason, a test such as RESET is sometimes described as a test of misspecifica-
tion, as opposed to a test of specification. This distinction is rather subtle, but the basic idea is
that a specification test looks at some particular aspect of a given equation, with clear null and
alternative hypotheses in mind. A misspecification test, on the other hand, can detect a range of
alternatives and indicate that something is wrong under the null, without necessarily giving
clear guidance as to what alternative hypothesis is appropriate.25

Lagrange Multiplier (LM) Test for Adding Variables
This is an alternative to Ramsey’s RESET test. To illustrate this test, we will continue with
the preceding illustrative example.

If we compare the linear cost function (13.4.6) with the cubic cost function (13.4.4), the
former is a restricted version of the latter (recall our discussion of restricted least squares
from Chapter 8). The restricted regression (13.4.6) assumes that the coefficients of the
squared and cubed output terms are equal to zero. To test this, the LM test proceeds as
follows:

1. Estimate the restricted regression (13.4.6) by OLS and obtain the residuals, ûi .

2. If in fact the unrestricted regression (13.4.4) is the true regression, the residuals
obtained in Eq. (13.4.6) should be related to the squared and cubed output terms, that is, X2

i
and X3

i .

3. This suggests that we regress the ûi obtained in Step 1 on all the regressors (includ-
ing those in the restricted regression), which in the present case means

û i = α1 + α2 Xi + α3 X2
i + α4 X3

i + vi (13.4.11)

where v is an error term with the usual properties.

25Jon Stewart and Len Gill, Econometrics, 2d ed., Prentice-Hall Europe, 1998, p. 69.
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4. For large-sample size, Engle has shown that n (the sample size) times the R2 esti-
mated from the (auxiliary) regression (13.4.11) follows the chi-square distribution with df
equal to the number of restrictions imposed by the restricted regression, two in the present
example since the terms X2

i and X3
i are dropped from the model.26 Symbolically, we write

nR2 ∼
asy

χ2
(number of restrictions) (13.4.12)

where asy means asymptotically, that is, in large samples.

5. If the chi-square value obtained from Eq. (13.4.12) exceeds the critical chi-square
value at the chosen level of significance, we reject the restricted regression. Otherwise, we
do not reject it.

For our example, the regression results are as follows:

Ŷi = 166.467 + 19.333Xi (13.4.13)

where Y is total cost and X is output. The standard errors for this regression are already
given in Table 13.1.

When the residuals from Eq. (13.4.13) are regressed as just suggested in Step 3, we ob-
tain the following results:

̂̂ui = −24.7 + 43.5443Xi − 12.9615X2
i + 0.9396X3

i

se = (6.375) (4.779) (0.986) (0.059) (13.4.14)

R2 = 0.9896

Although our sample size of 10 is by no means large, just to illustrate the LM mechanism,
we obtain nR2 = (10)(0.9896) = 9.896. From the chi-square table we observe that for 2 df
the 1 percent critical chi-square value is about 9.21. Therefore, the observed value of 9.896
is significant at the 1 percent level, and our conclusion would be to reject the restricted re-
gression (i.e., the linear cost function). We reached a similar conclusion on the basis of
Ramsey’s RESET test.

13.5 Errors of Measurement

All along we have assumed implicitly that the dependent variable Y and the explanatory
variables, the X ’s, are measured without any errors. Thus, in the regression of consumption
expenditure on income and wealth of households, we assume that the data on these vari-
ables are “accurate”; they are not guess estimates, extrapolated, interpolated, or rounded off
in any systematic manner, such as to the nearest hundredth dollar, and so on. Unfortunately,
this ideal is not met in practice for a variety of reasons, such as nonresponse errors, report-
ing errors, and computing errors. Whatever the reasons, error of measurement is a poten-
tially troublesome problem, for it constitutes yet another example of specification bias with
the consequences noted below.

Errors of Measurement in the Dependent Variable Y
Consider the following model:

Y ∗
i = α + βXi + ui (13.5.1)

26R. F. Engle, “A General Approach to Lagrangian Multiplier Model Diagnostics,” Journal of 
Econometrics, vol. 20, 1982, pp. 83–104.
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where Y ∗
i = permanent consumption expenditure27

Xi = current income
ui = stochastic disturbance term

Since Y ∗
i is not directly measurable, we may use an observable expenditure variable Yi such that

Yi = Y ∗
i + εi (13.5.2)

where εi denote errors of measurement in Y ∗
i . Therefore, instead of estimating Eq. (13.5.1),

we estimate

Yi = (α + βXi + ui ) + εi

= α + βXi + (ui + εi ) (13.5.3)

= α + βXi + vi

where vi = ui + εi is a composite error term, containing the population disturbance term
(which may be called the equation error term) and the measurement error term.

For simplicity assume that E(ui) = E(εi) = 0, cov (Xi, ui) = 0 (which is the assumption
of the classical linear regression), and cov (Xi, εi) = 0; that is, the errors of measurement in
Y ∗

i are uncorrelated with Xi, and cov (ui, εi) = 0; that is, the equation error and the mea-
surement error are uncorrelated. With these assumptions, it can be seen that β estimated
from either Eq. (13.5.1) or Eq. (13.5.3) will be an unbiased estimator of the true β (see
Exercise 13.7); that is, the errors of measurement in the dependent variable Y do not destroy
the unbiasedness property of the OLS estimators. However, the variances and standard
errors of β estimated from Eqs. (13.5.1) and (13.5.3) will be different because, employing
the usual formulas (see Chapter 3), we obtain

Model (13.5.1): var (β̂) = σ 2
u∑
x2

i

(13.5.4)

Model (13.5.3): var (β̂) = σ 2
v∑
x2

i

= σ 2
u + σ 2

ε∑
x2

i

(13.5.5)

Obviously, the latter variance is larger than the former.28 Therefore, although the errors of
measurement in the dependent variable still give unbiased estimates of the parame-
ters and their variances, the estimated variances are now larger than in the case where
there are no such errors of measurement.

Errors of Measurement in the Explanatory Variable X
Now assume that instead of Eq. (13.5.1), we have the following model:

Yi = α + βX∗
i + ui (13.5.6)

where Yi = current consumption expenditure
X∗

i = permanent income
ui = disturbance term (equation error)

27This phrase is due to Milton Friedman. See also Exercise 13.8.
28But note that this variance is still unbiased because under the stated conditions the composite error
term vi = ui + εi still satisfies the assumptions underlying the method of least squares.
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484 Part Two Relaxing the Assumptions of the Classical Model

Suppose instead of observing X∗
i , we observe

Xi = X∗
i + wi (13.5.7)

where wi represents errors of measurement in X∗
i . Therefore, instead of estimating

Eq. (13.5.6), we estimate

Yi = α + β(Xi − wi ) + ui

= α + βXi + (ui − βwi ) (13.5.8)

= α + βXi + zi

where zi = ui − βwi, a compound of equation and measurement errors.
Now even if we assume that wi has zero mean, is serially independent, and is uncorre-

lated with ui, we can no longer assume that the composite error term zi is independent of
the explanatory variable Xi because (assuming E[zi] = 0)

cov (zi , Xi ) = E[zi − E(zi )][Xi − E(Xi )]

= E(ui − βwi )(wi ) using (13.5.7)

= E
(−βw2

i

)
(13.5.9)

= −βσ 2
w

Thus, the explanatory variable and the error term in Eq. (13.5.8) are correlated, which vio-
lates the crucial assumption of the classical linear regression model that the explanatory
variable is uncorrelated with the stochastic disturbance term. If this assumption is violated,
it can be shown that the OLS estimators are not only biased but also inconsistent, that is,
they remain biased even if the sample size n increases indefinitely.29

For model (13.5.8), it is shown in Appendix 13A, Section 13A.3 that

plim β̂ = β

[
1

1 + σ 2
w

/
σ 2

X∗

]
(13.5.10)

where σ 2
w and σ 2

X∗ are variances of wi and X*, respectively, and where plim β̂ means the
probability limit of β .

Since the term inside the brackets is expected to be less than 1 (why?), Eq. (13.5.10)
shows that even if the sample size increases indefinitely, β̂ will not converge to β. Actually,
if β is assumed positive, β̂ will underestimate β, that is, it is biased toward zero. Of course,
if there are no measurement errors in X (i.e., σ 2

w = 0), β̂ will provide a consistent estimator
of β.

Therefore, measurement errors pose a serious problem when they are present in the
explanatory variable(s) because they make consistent estimation of the parameters impos-
sible. Of course, as we saw, if they are present only in the dependent variable, the estimators
remain unbiased and hence they are consistent too. If errors of measurement are present in
the explanatory variable(s), what is the solution? The answer is not easy. At one extreme,
we can assume that if σ 2

w is small compared to σ 2
X∗ , for all practical purposes we can

“assume away” the problem and proceed with the usual OLS estimation. Of course, the rub

29As shown in Appendix A, β̂ is a consistent estimator of β if, as n increases indefinitely, the sampling
distribution of β̂ will ultimately collapse to the true β. Technically, this is stated as plimn→∞β̂ = β . As
noted in Appendix A, consistency is a large-sample property and is often used to study the behavior
of an estimator when its finite or small-sample properties (e.g., unbiasedness) cannot be determined.

guj75772_ch13.qxd  16/08/2008  03:24 PM  Page 484



Chapter 13 Econometric Modeling: Model Specification and Diagnostic Testing 485

here is that we cannot readily observe or measure σ 2
w and σ 2

X∗ and therefore there is no way
to judge their relative magnitudes.

One other suggested remedy is the use of instrumental or proxy variables that,
although highly correlated with the original X variables, are uncorrelated with the equation
and measurement error terms (i.e., ui and wi). If such proxy variables can be found, then one
can obtain a consistent estimate of β. But this task is much easier said than done. In prac-
tice it is not easy to find good proxies; we are often in the situation of complaining about
the bad weather without being able to do much about it. Besides, it is not easy to find out if
the selected instrumental variable is in fact independent of the error terms ui and wi.

In the literature there are other suggestions to solve the problem.30 But most of them are
specific to the given situation and are based on restrictive assumptions. There is really no
satisfactory answer to the measurement errors problem. That is why it is so crucial to mea-
sure the data as accurately as possible.

30See Thomas B. Fomby, R. Carter Hill, and Stanley R. Johnson, Advanced Econometric Methods,
Springer-Verlag, New York, 1984, pp. 273–277. See also Kennedy, op. cit., pp. 138–140, for a discus-
sion of weighted regression as well as instrumental variables. See also: G. S. Maddala, Introduction to
Econometrics, 3d ed., John Wiley & Sons, New York, 2001, pp. 437–462, and Quirino Paris, “Robust
Estimators of Errors-in-Variables Models: Part I,” Working Paper No. 04–007, 200, Department of
Agricultural and Resource Economics, University of California at Davis, August 2004.
31I am indebted to Kenneth J. White for constructing this example. See his Computer Handbook Using
SHAZAM, for use with Damodar Gujarati, Basic Econometrics, September 1985, pp. 117–121.

EXAMPLE 13.2
An Example

We conclude this section with an example constructed to highlight the preceding points.
Table 13.2 gives hypothetical data on true consumption expenditure Y*, true income

X*, measured consumption Y, and measured income X. The table also explains how these
variables were measured.31

Measurement Errors in the Dependent Variable Y Only. Based on the given data, the
true consumption function is

Ŷ*i = 25.00 + 0.6000X*i

(10.477) (0.0584)

t = (2.3861) (10.276)
(13.5.11)

R2 = 0.9296

Y* X* Y X ε w u

75.4666 80.00 67.6011 80.0940 −7.8655 0.0940 2.4666
74.9801 100.00 75.4438 91.5721 0.4636 −8.4279 −10.0199

102.8242 120.00 109.6956 112.1406 6.8714 2.1406 5.8242
125.7651 140.00 129.4159 145.5969 3.6509 5.5969 16.7651
106.5035 160.00 104.2388 168.5579 −2.2647 8.5579 −14.4965
131.4318 180.00 125.8319 171.4793 −5.5999 −8.5207 −1.5682
149.3693 200.00 153.9926 203.5366 4.6233 3.5366 4.3693
143.8628 220.00 152.9208 222.8533 9.0579 2.8533 −13.1372
177.5218 240.00 176.3344 232.9879 −1.1874 −7.0120 8.5218
182.2748 260.00 174.5252 261.1813 −7.7496 1.1813 1.2748

Note: The data on X* are assumed to be given. In deriving the other variables the assumptions made were as follows:
(1) E(ui) = E(εi) = E(wi) = 0; (2) cov (X, u) = cov (X, ε) = cov (u, ε) = cov (w, u) = cov (ε, w) = 0; (3) σ2

u = 100, σ2
s = 36, and σ2

w = 36;
and (4) Y*i = 25 + 0.6X*i + ui , Yi = Y*i + εi, and Xi = X*i + wi.

TABLE 13.2
Hypothetical Data
on Y * (True
Consumption
Expenditure),
X* (True Income),
Y (Measured
Consumption
Expenditure), and X
(Measured Income);
All Data in Dollars

(Continued)
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486 Part Two Relaxing the Assumptions of the Classical Model

13.6 Incorrect Specification of the Stochastic Error Term

A common problem facing a researcher is the specification of the error term ui that enters
the regression model. Since the error term is not directly observable, there is no easy way
to determine the form in which it enters the model. To see this, let us return to the models
given in Eqs. (13.2.8) and  (13.2.9). For simplicity of exposition, we have assumed that
there is no intercept in the model. We further assume that ui in Eq. (13.2.8) is such that ln
ui satisfies the usual OLS assumptions.

If we assume that Eq. (13.2.8) is the “correct” model but estimate Eq. (13.2.9), what are the
consequences? It is shown in Appendix 13.A, Section 13A.4, that if ln ui ∼ N (0, σ 2), then

ui ∼ log normal
[
eσ 2/2, eσ 2(

eσ 2 − 1
)]

(13.6.1)

As a result,

E(α̂) = βeσ 2/2 (13.6.2)

where e is the base of the natural logarithm.

whereas, if we use Yi instead of Yi*, we obtain

Ŷ i = 25.00 + 0.6000X*i

(12.218) (0.0681)

t = (2.0461) (8.8118)
(13.5.12)

R2 = 0.9066

As these results show, and according to the theory, the estimated coefficients remain
the same. The only effect of errors of measurement in the dependent variable is that
the estimated standard errors of the coefficients tend to be larger (see Eq. [13.5.5]),
which is clearly seen in Eq. (13.5.12). In passing, note that the regression coefficients in
Eqs. (13.5.11) and (13.5.12) are the same because the sample was generated to match
the assumptions of the measurement error model.

Errors of Measurement in X. We know that the true regression is Eq. (13.5.11). Suppose
now that instead of using X *i, we use Xi. (Note: In reality X *i is rarely observable.) The
regression results are as follows:

Ŷ *i = 25.992 + 0.5942Xi

(11.0810) (0.0617)
(13.5.13)

t = (2.3457) (9.6270)

R2 = 0.9205

These results are in accord with the theory—when there are measurement errors in the ex-
planatory variable(s), the estimated coefficients are biased. Fortunately, in this example
the bias is rather small—from  Eq. (13.5.10) it is evident that the bias depends on σ 2

w/σ 2
X *,

and in generating the data it was assumed that σ 2
w = 36 and σ 2

X* = 3667, thus making the
bias factor rather small, about 0.98 percent ( = 36/3667).

We leave it to the reader to find out what happens when there are errors of measure-
ment in both Y and X, that is, if we regress Yi on Xi rather than Y *i on X *i (see Exercise 13.23).

EXAMPLE 13.2
(Continued)
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As you can see, α̂ is a biased estimator, as its average value is not equal to the true β.
We will have more to say about the specification of the stochastic error term in the chap-

ter on nonlinear-in-the-parameter regression models.

13.7 Nested versus Non-Nested Models

In carrying out specification testing, it is useful to distinguish between nested and non-
nested models. To distinguish between the two, consider the following models:

Model A: Yi = β1 + β2 X2i + β3 X3i + β4 X4i + β5 X5i + ui

Model B: Yi = β1 + β2 X2i + β3 X3i + ui

We say that Model B is nested in Model A because it is a special case of Model A: If we
estimate Model A and test the hypothesis that β4 = β5 = 0 and do not reject it on the basis
of, say, the F test,32 Model A reduces to Model B. If we add variable X4 to Model B, then
Model A will reduce to Model B if β5 is zero; here we will use the t test to test the hypoth-
esis that the coefficient of X5 is zero.

Without calling them such, the specification error tests that we have discussed previ-
ously and the restricted F test that we discussed in Chapter 8 are essentially tests of nested
hypothesis.

Now consider the following models:

Model C: Yi = α1 + α2 X2i + α3 X3i + ui

Model D: Yi = β1 + β2 Z2i + β3 Z3i + vi

where the X’s and Z’s are different variables. We say that Models C and D are non-nested
because one cannot be derived as a special case of the other. In economics, as in other sci-
ences, more than one competing theory may explain a phenomenon. Thus, the monetarists
would emphasize the role of money in explaining changes in GDP, whereas the Keynesians
may explain them by changes in government expenditure.

It may be noted here that one can allow Models C and D to contain regressors that are
common to both. For example, X3 could be included in Model D and Z2 could be included
in Model C. Even then these are non-nested models, because Model C does not contain Z3

and Model D does not contain X2.
Even if the same variables enter the model, the functional form may make two models

non-nested. For example, consider the model:

Model E: Yi = β1 + β2 ln Z2i + β3 ln Z3i + wi

Models D and E are non-nested, as one cannot be derived as a special case of the other.
Since we already have looked at tests of nested models (t and F tests), in the following

section we discuss some of the tests of non-nested models, which earlier we called model
mis-specification errors.

32More generally, one can use the likelihood ratio test, or the Wald test or the Lagrange Multiplier
test, which were discussed briefly in Chapter 8.
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488 Part Two Relaxing the Assumptions of the Classical Model

13.8 Tests of Non-Nested Hypotheses

According to Harvey,33 there are two approaches to testing non-nested hypotheses: (1) the
discrimination approach, where given two or more competing models, one chooses a
model based on some criteria of goodness of fit, and (2) the discerning approach (our ter-
minology) where, in investigating one model, we take into account information provided by
other models. We consider these approaches briefly.

The Discrimination Approach
Consider Models C and D in Section 3.7. Since both models involve the same dependent vari-
able, we can choose between two (or more) models based on some goodness-of-fit criterion,
such as R2 or adjusted R2, which we have already discussed. But keep in mind that in com-
paring two or more models, the regressand must be the same. Besides these criteria, there are
other criteria that are also used. These include Akaike’s information criterion (AIC),
Schwarz’s information criterion (SIC), and Mallows’s Cp criterion. We discuss these cri-
teria in Section 13.9. Most modern statistical software packages have one or more of these
criteria built into their regression routines. In the last section of this chapter, we will illustrate
these criteria using an extended example. On the basis of one or more of these criteria a model
is finally selected that has the highest R̄2 or the lowest value of AIC or SIC, etc.

The Discerning Approach
The Non-Nested F Test or Encompassing F Test
Consider Models C and D introduced in Section 3.7. How do we choose between the two
models? For this purpose suppose we estimate the following nested or hybrid model:

Model F: Yi = λ1 + λ2 X2i + λ3 X3i + λ4 Z2i + λ5 Z3i + ui

Notice that Model F nests or encompasses Models C and D. But note that C is not nested in
D and D is not nested in C, so they are non-nested models.

Now if Model C is correct, λ4 = λ5 = 0, whereas Model D is correct if λ2 = λ3 = 0.

This testing can be done by the usual F test, hence the name non-nested F test.
However, there are problems with this testing procedure. First, if the X’s and the Z’s are

highly correlated, then, as noted in the chapter on multicollinearity, it is quite likely that one
or more of the λ’s are individually statistically insignificant, although on the basis of the F
test one can reject the hypothesis that all the slope coefficients are simultaneously zero. In
this case, we have no way of deciding whether Model C or Model D is the correct model.
Second, there is another problem. Suppose we choose Model C as the reference hypothesis
or model, and find that all its coefficients are significant. Now we add Z2 or Z3 or both to the
model and find, using the F test, that their incremental contribution to the explained sum of
squares (ESS) is statistically insignificant. Therefore, we decide to choose Model C.

But suppose we had instead chosen Model D as the reference model and found that all
its coefficients were statistically significant. But when we add X2 or X3 or both to this
model, we find, again using the F test, that their incremental contribution to ESS is
insignificant. Therefore, we would have chosen model D as the correct model. Hence, “the
choice of the reference hypothesis could determine the outcome of the choice model,”34

especially if severe multicollinearity is present in the competing regressors. Finally, the
artificially nested model F may not have any economic meaning.

33Andrew Harvey, The Econometric Analysis of Time Series, 2d ed., The MIT Press, Cambridge, Mass.,
1990, Chapter 5.
34Thomas B. Fomby, R. Carter Hill, and Stanley R. Johnson, Advanced Econometric Methods, Springer
Verlag, New York, 1984, p. 416.
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35See Keith M. Carlson, “Does the St. Louis Equation Now Believe in Fiscal Policy?” Review, Federal
Reserve Bank of St. Louis, vol. 60, no. 2, February 1978, p. 17, table IV.

EXAMPLE 13.3
An Illustrative
Example: The 
St. Louis Model

To determine whether changes in nominal GNP can be explained by changes in the
money supply (monetarism) or by changes in government expenditure (Keynesianism),
we consider the following models:

Ẏt = α + β0Ṁt + β1Ṁt−1 + β2Ṁt−2 + β3Ṁt−3 + β4Ṁt−4 + u1t

= α +
4∑

i=0

βi Ṁt−i + u1t (13.8.1)

Ẏt = γ + λ0 Ė t + λ1 Ė t−1 + λ2 Ė t−2 + λ3 Ė t−3 + λ4 Ė t−4 + u2t

= γ +
4∑

i=0

λi Ė t−i + u2t (13.8.2)

where Ẏt = rate of growth in nominal GNP at time t
Ṁt = rate of growth in the money supply (M1 version) at time t
Ė t = rate of growth in full, or high, employment government expenditure 

at time t

In passing, note that Eqs. (13.8.1) and (13.8.2) are examples of distributed-lag models,
a topic thoroughly discussed in Chapter 17. For the time being, simply note that the effect
of a unit change in the money supply or government expenditure on GNP is distributed
over a period of time and is not instantaneous.

Since a priori it may be difficult to decide between the two competing models, let us
enmesh the two models as shown below:

Ẏt = constant +
4∑

i=0

βi Ṁt−i +
4∑

i=0

λi Ė t−i + u3t (13.8.3)

This nested model is one form in which the famous (Federal Reserve Bank of) St. Louis
model, a pro-monetary-school bank, has been expressed and estimated. The results of this
model for the period 1953–I to 1976–IV for the United States are as follows (t ratios in
parentheses):35

Coefficient Estimate Coefficient Estimate

β0 0.40 (2.96) λ0 0.08 (2.26)
β1 0.41 (5.26) λ1 0.06 (2.52)
β2 0.25 (2.14) λ2 0.00 (0.02)
β3 0.06 (0.71) λ3 −0.06 (−2.20) (13.8.4)
β4 −0.05 (−0.37) λ4 −0.07 (−1.83)

4∑
i=0

βi 1.06 (5.59)
4∑

i=0

λi 0.03 (0.40)

R2 = 0.40
d = 1.78

What do these results suggest about the superiority of one model over the other? If we
consider the cumulative effect of a unit change in Ṁ and Ė on Ẏ , we obtain, respectively,∑4

i=0 βi = 1.06 and 
∑4

i=0 λi = 0.03, the former being statistically significant and the lat-
ter not. This comparison would tend to support the monetarist claim that it is changes in
the money supply that determine changes in the (nominal) GNP. It is left as an exercise for
the reader to critically evaluate this claim.

guj75772_ch13.qxd  19/08/2008  12:06 PM  Page 489



490 Part Two Relaxing the Assumptions of the Classical Model

Davidson–MacKinnon J Test36

Because of the problems just listed in the non-nested F testing procedure, alternatives have
been suggested. One is the Davidson–MacKinnon J test. To illustrate this test, suppose we
want to compare hypothesis or Model C with hypothesis or Model D. The J test proceeds
as follows:

1. We estimate Model D and from it we obtain the estimated Y values, Ŷ D
i .

2. We add the predicted Y value in Step 1 as an additional regressor to Model C and
estimate the following model:

Yi = α1 + α2 X2i + α3 X3i + α4 Ŷ D
i + ui (13.8.5)

where the Ŷ D
i values are obtained from Step 1. This model is an example of the

encompassing principle, as in the Hendry methodology.

3. Using the t test, test the hypothesis that α4 = 0.

4. If the hypothesis that α4 = 0 is not rejected, we can accept (i.e., not reject) Model C
as the true model because Ŷ D

i included in Eq. (13.8.5), which represents the influence of
variables not included in Model C, has no additional explanatory power beyond that con-
tributed by Model C. In other words, Model C encompasses Model D in the sense that the
latter model does not contain any additional information that will improve the performance
of Model C. By the same token, if the null hypothesis is rejected, Model C cannot be the
true model (why?).

5. Now we reverse the roles of hypotheses, or Models C and D. We now estimate Model
C first, use the estimated Y values from this model as the regressor in Eq. (13.8.5), repeat
Step 4, and decide whether to accept Model D over Model C. More specifically, we esti-
mate the following model:

Yi = β1 + β2 Z2i + β3 Z3i + β4Ŷ C
i + ui (13.8.6)

where Ŷ C
i are the estimated Y values from Model C. We now test the hypothesis that

β4 = 0. If this hypothesis is not rejected, we choose Model D over C. If the hypothesis that
β4 = 0 is rejected, we choose C over D, as the latter does not improve over the performance
of C.

Although it is intuitively appealing, the J test has some problems. Since the tests given
in Eqs. (13.8.5) and (13.8.6) are performed independently, we have the following likely
outcomes:

Hypothesis: α4 = 0

Hypothesis: β4 = 0 Do Not Reject Reject
Do not reject Accept both C and D Accept D, reject C
Reject Accept C, reject D Reject both C and D

As this table shows, we will not be able to get a clear answer if the J testing procedure leads
to the acceptance or rejection of both models. In case both models are rejected, neither
model helps us to explain the behavior of Y. Similarly, if both models are accepted, as
Kmenta notes, “the data are apparently not rich enough to discriminate between the two
hypotheses [models].”37

36R. Davidson and J. G. MacKinnon, “Several Tests for Model Specification in the Presence of Alterna-
tive Hypotheses,” Econometrica, vol. 49, 1981, pp. 781–793.
37Jan Kmenta, op. cit., p. 597.
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Another problem with the J test is that when we use the t statistic to test the significance
of the estimated Y variable in models (13.8.5) and (13.8.6), the t statistic has the standard
normal distribution only asymptotically, that is, in large samples. Therefore, the J test may
not be very powerful (in the statistical sense) in small samples because it tends to reject the
true hypothesis or model more frequently than it ought to.

EXAMPLE 13.4
Personal
Consumption
Expenditure and
Disposable
Personal Income

To illustrate the J test, consider the data given in Table 13.3. This table gives data on per
capita personal consumption expenditure (PPCE) and per capita disposable personal
income (PDPI), both measured in current (2008) dollars for the United States for the
period 1970–2005. Consider the following rival models:

Model A: PPCEt = α1 + α2PDPIt + α3PDPIt−1 + ut (13.8.7)

Model B: PPCEt = β1 + β2PDPIt + β3PCPEt−1 + ut (13.8.8)

Model A states that PPCE depends on PDPI in the current and previous time period;
this model is an example of what is known as the distributed-lag model (see Chapter 17).
Model B postulates that PPCE depends on current PDPI as well as PPCE in the previous time
period; this model represents what is known as the autoregressive model (see Chapter 17
again). The reason for introducing the lagged value of PPCE in this model is to reflect iner-
tia or habit persistence.

The results of estimating these models separately were as follows:

Model A: P̂PCEt = −606.6347 + 0.6170 PDPIt + 0.3530 PDPIt−1

t = (−3.8334) (2.5706) (1.4377) (13.8.9)

R2 = 0.9983 d = 0.2161

Model B: P̂PCEt = 76.8947 + 0.2074 PDPIt + 0.8104 PPCEt−1

t = (0.7256) (2.6734) (9.7343) (13.8.10)

R2 = 0.9996 d = 0.9732

Year PPCE PDPI Year PPCE PDPI

1970 3,162 3,587 1988 13,685 15,297
1971 3,379 3,860 1989 14,546 16,257
1972 3,671 4,140 1990 15,349 17,131
1973 4,022 4,616 1991 15,722 17,609
1974 4,364 5,010 1992 16,485 18,494
1975 4,789 5,498 1993 17,204 18,872
1976 5,282 5,972 1994 18,004 19,555
1977 5,804 6,517 1995 18,665 20,287
1978 6,417 7,224 1996 19,490 21,091
1979 7,073 7,967 1997 20,323 21,940
1980 7,716 8,822 1998 21,291 23,161
1981 8,439 9,765 1999 22,491 23,968
1982 8,945 10,426 2000 23,862 25,472
1983 9,775 11,131 2001 24,722 26,235
1984 10,589 12,319 2002 25,501 27,164
1985 11,406 13,037 2003 26,463 28,039
1986 12,048 13,649 2004 27,937 29,536
1987 12,766 14,241 2005 29,468 30,458

TABLE 13.3
Per Capita Personal
Consumption
Expenditure
(PPCE) and per
Capita Personal
Disposable Income
(PDPI), U.S.,
1970–2005

Source: Economic Report of
the President, 2007.

(Continued)
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EXAMPLE 13.4
(Continued)

If one were to choose between these two models on the basis of the discrimination
approach, using the highest R2 criterion, one would probably choose Model B (13.8.10)
because it is just slightly higher than Model A (13.8.9). Also, in Model B (13.8.10), both
variables are individually statistically significant, whereas in Model A (13.8.9) only the
current PDPI is statistically significant (there might be a collinearity problem, though). For
predictive purposes, there is not much difference between the two estimated R2 values,
though.

To apply the J test, suppose we assume Model A is the null hypothesis, or the main-
tained model, and Model B is the alternative hypothesis. Following the J test steps
discussed earlier, we use the estimated PPCE values from model (13.8.10) as an additional
regressor in Model A. The following is the outcome from this regression:

P̂PCEt = −35.17 + 0.2762 PDPIt − 0.5141PDPIt−1 + 1.2351P̂PCE
B

t

t = (−0.43) (2.60) (−4.05) (12.06) (13.8.11)

R2 = 1.00 d = 1.5205

where P̂PCE
B

t on the right-hand side of Eq. (13.8.11) represents the estimated PPCE values
from the original Model B (13.8.10). Since the coefficient of this variable is statistically
significant with a very high t-statistic of 12.06, following the J test procedure we have to
reject Model A in favor of Model B.

Now we will assume Model B is the maintained hypothesis and Model A is the alterna-
tive. Following the exact same procedure, we obtain the following results:

P̂PCEt = −823.7 + 1.4309 PDPIt + 1.0009 PPCEt−1 − 1.4563 P̂PCE
A

t

t = (−3.45) (4.64) (12.06) (−4.05) (13.8.12)

R2 = 1.00 d = 1.5205

where P̂PCEt
A on the right-hand side of Eq. (13.8.12) represents the estimated PPCE values

from the original Model A (13.8.9). In this regression, the coefficient of P̂PCEt
A is also sta-

tistically significant with a t-statistic of −4.05. This result suggests that we should now
reject Model B in favor of Model A.

All this tells us is that neither model is particularly useful in explaining the behavior of
per capita personal consumption expenditure in the United States over the period
1970–2005. Of course, we have considered only two competing models. In reality, there
may be more than two models. The J test procedure can be extended to multiple model
comparisons, although the analysis can quickly become complex.

This example shows very vividly why the CLRM assumes that the regression model
used in the analysis is correctly specified. Obviously, in developing a model it is crucial to
pay very careful attention to the phenomenon being modeled.

Other Tests of Model Selection
The J test just discussed is only one of a group of tests of model selection. There is the Cox
test, the JA test, the P test, the Mizon–Richard encompassing test, and variants of these
tests. Obviously, we cannot hope to discuss these specialized tests, for which the reader
may want to consult the references cited in the various footnotes.38

38See also Badi H. Baltagi, Econometrics, Springer, New York, 1998, pp. 209–222.
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13.9 Model Selection Criteria

In this section we discuss several criteria that have been used to choose among competing
models and/or to compare models for forecasting purposes. Here we distinguish between
in-sample forecasting and out-of-sample forecasting. In-sample forecasting essentially
tells us how the chosen model fits the data in a given sample. Out-of-sample forecasting is
concerned with determining how a fitted model forecasts future values of the regressand,
given the values of the regressors.

Several criteria are used for this purpose. In particular, we discuss these criteria: (1) R2,
(2) adjusted R2( = R̄2), (3) Akaike’s information criterion (AIC), (4) Schwarz’s information
criterion (SIC), (5) Mallows’s Cp criterion, and (6) forecast χ2 (chi-square). All these crite-
ria aim at minimizing the residual sum of squares (RSS) (or increasing the R2 value). How-
ever, except for the first criterion, criteria (2), (3), (4), and (5) impose a penalty for including
an increasingly large number of regressors. Thus there is a trade-off between goodness of fit
of the model and its complexity (as judged by the number of regressors).

The R2 Criterion
We know that one of the measures of goodness of fit of a regression model is R2, which, as
we know, is defined as:

R2 = ESS

TSS
= 1 − RSS

TSS
(13.9.1)

R2, thus defined, of necessity lies between 0 and 1. The closer it is to 1, the better is the fit.
But there are problems with R2. First, it measures in-sample goodness of fit in the sense of
how close an estimated Y value is to its actual value in the given sample. There is no guar-
antee that it will forecast well out-of-sample observations. Second, in comparing two or
more R2’s, the dependent variable, or regressand, must be the same. Third, and more
importantly, an R2 cannot fall when more variables are added to the model. Therefore, there
is every temptation to play the game of “maximizing the R2” by simply adding more vari-
ables to the model. Of course, adding more variables to the model may increase R2 but it
may also increase the variance of forecast error.

Adjusted R2

As a penalty for adding regressors to increase the R2 value, Henry Theil developed the
adjusted R2, denoted by R̄2, which we studied in Chapter 7. Recall that

(13.9.2)

As you can see from this formula, R̄2 ≤ R2, showing how the adjusted R2 penalizes for
adding more regressors. As we noted in Chapter 8, unlike R2, the adjusted R2 will increase
only if the absolute t value of the added variable is greater than 1. For comparative pur-
poses, therefore, R̄2 is a better measure than R2. But again keep in mind that the regressand
must be the same for the comparison to be valid.

R̄2 = 1 − RSS/(n − k)

TSS/(n − 1)
= 1 − (1 − R2)

n − 1

n − k
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Akaike’s Information Criterion (AIC)
The idea of imposing a penalty for adding regressors to the model has been carried further
in the AIC criterion, which is defined as:

(13.9.3)

where k is the number of regressors (including the intercept) and n is the number of obser-
vations. For mathematical convenience, Eq. (13.9.3) is written as

(13.9.4)

where ln AIC = natural log of AIC and 2k/n = penalty factor. Some textbooks and soft-
ware packages define AIC only in terms of its log transform so there is no need to put ln
before AIC. As you see from this formula, AIC imposes a harsher penalty than R̄2 for
adding more regressors. In comparing two or more models, the model with the lowest value
of AIC is preferred. One advantage of AIC is that it is useful for not only in-sample but also
out-of-sample forecasting performance of a regression model. Also, it is useful for both
nested and non-nested models. It also has been used to determine the lag length in an
AR(p) model.

Schwarz’s Information Criterion (SIC)
Similar in spirit to the AIC, the SIC criterion is defined as:

(13.9.5)

or in log-form:

(13.9.6)

where [(k/n) ln n] is the penalty factor. SIC imposes a harsher penalty than  AIC, as is ob-
vious from comparing Eq. (13.9.6) to Eq. (13.9.4). Like AIC, the lower the value of SIC,
the better the model. Again, like AIC, SIC can be used to compare in-sample or out-of-
sample forecasting performance of a model.

Mallows’s Cp Criterion
Suppose we have a model consisting of k regressors, including the intercept. Let σ̂ 2 as
usual be the estimator of the true σ 2. But suppose that we only choose p regressors ( p ≤ k)
and obtain the RSS from the regression using these p regressors. Let RSSp denote the

ln SIC = k

n
ln n + ln

(
RSS

n

)

SIC = nk/n

∑
û2

n
= nk/n RSS

n

ln AIC =
(

2k

n

)
+ ln

(
RSS

n

)

AIC = e2k/n

∑
û2

i

n
= e2k/n RSS

n
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residual sum of squares using the p regressors. Now C. P. Mallows has developed the
following criterion for model selection, known as the Cp criterion:

(13.9.7)

where n is the number of observations.
We know that E(σ̂ 2) is an unbiased estimator of the true σ 2. Now, if the model with p

regressors is adequate in that it does not suffer from lack of fit, it can be shown39 that
E(RSSp) = (n − p)σ 2. In consequence, it is true approximately that

E(Cp) ≈ (n − p)σ 2

σ 2
− (n − 2p) ≈ p (13.9.8)

In choosing a model according to the Cp criterion, we would look for a model that has a low
Cp value, about equal to p. In other words, following the principle of parsimony, we will
choose a model with p regressors ( p < k) that gives a fairly good fit to the data.

In practice, one usually plots Cp computed from Eq. (13.9.7) against p. An “adequate”
model will show up as a point close to the Cp = p line, as can be seen from Figure 13.3. As
this figure shows, Model A may be preferable to Model B, as it is closer to the Cp = p line
than Model B.

A Word of Caution about Model Selection Criteria
We have discussed several model selection criteria. But one should look at these criteria as
an adjunct to the various specification tests we have discussed in this chapter. Some of the
criteria discussed above are purely descriptive and may not have strong theoretical prop-
erties. Some of them may even be open to the charge of data mining. Nonetheless, they are
so frequently used by the practitioner that the reader should be aware of them. No one of
these criteria is necessarily superior to the others.40 Most modern software packages now

Cp = RSSp

σ̂ 2
− (n − 2p)

39Norman D. Draper and Harry Smith, Applied Regression Analysis, 3d ed., John Wiley & Sons, New
York, 1998, p. 332. See this book for some worked examples of Cp.
40For a useful discussion on this topic, see Francis X. Diebold, Elements of Forecasting, 2d ed., South
Western Publishing, 2001, pp. 83–89. On balance, Diebold recommends the SIC criterion.
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include R2, adjusted R2, AIC, and SIC. Mallows’s Cp is not routinely given, although it can
be easily computed from its definition.

Forecast Chi-Square (χ2)
Suppose we have a regression model based on n observations and suppose we want to use
it to forecast the (mean) values of the regressand for an additional t observations. As noted
elsewhere, it is a good idea to save part of the sample data to see how the estimated model
forecasts the observations not included in the sample, the postsample period.

Now the forecast χ2 test is defined as follows:

Forecast, χ2 =
∑n+t

n+1 û2
i

σ̂ 2
(13.9.9)

where ûi is the forecast error made for period i ( = n + 1, n + 2, . . . , + n + t), using the
parameters obtained from the fitted regression and the values of the regressors in the post-
sample period. σ̂ 2 is the usual OLS estimator of σ 2 based on the fitted regression.

If we hypothesize that the parameter values have not changed between the sample and
postsample periods, it can be shown that the statistic given in Eq. (13.9.9) follows the
chi-square distribution with t degrees of freedom, where t is the number of periods for
which the forecast is made. As Charemza and Deadman note, the forecast χ2 test has
weak statistical power, meaning that the probability that the test will correctly reject a
false null hypothesis is low and therefore the test should be used as a signal rather than a
definitive test.41

13.10 Additional Topics in Econometric Modeling

As noted in the introduction to this chapter, the topic of econometric modeling and diag-
nostic testing is so vast and evolving that specialized books are written on this topic. In the
previous section we have touched on some major themes in this area. In this section we
consider a few additional features that researchers may find useful in practice. In particu-
lar, we consider these topics: (1) outliers, leverage, and influence; (2) recursive least
squares; and (3) Chow’s prediction failure test. Of necessity the discussion of each of
these topics will be brief.

Outliers, Leverage, and Influence42

Recall that, in minimizing the residual sum of squares (RSS), OLS gives equal weight to
every observation in the sample. But every observation may not have equal impact on the
regression results because of the presence of three types of special data points called
outliers, leverage, and influence points. It is important that we know what they are and
how they influence regression analysis.

In the regression context, an outlier may be defined as an observation with a “large residual.”
Recall that ûi = (Yi − Ŷi ), that is, the residual represents the difference (positive or negative)
between the actual value of the regressand and its value estimated from the regression model.

41Wojciech W. Charemza and Derek F. Deadman, New Directions in Econometric Practice: A General to
Specific Modelling, Cointegration and Vector Autoregression, 2d ed., Edward Elgar Publishers, 1997,
p. 30. See also pp. 250–252 for their views on various model selection criteria.
42The following discussion is influenced by Chandan Mukherjee, Howard White, and Marc Wyuts,
Econometrics and Data Analysis for Developing Countries, Routledge, New York, 1998, pp. 137–148.
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When we say that a residual is large, it is in comparison with the other residuals and very often
such a large residual catches our attention immediately because of its rather large vertical dis-
tance from the estimated regression line. Note that in a data set there may be more than one
outlier. We have already encountered an example of this in Exercise 11.22, where you were
asked to regress percent change in stock prices (Y) on percent change in consumer prices (X)
for a sample of 20 countries. One observation, that relating to Chile, was an outlier.

A data point is said to exert (high) leverage if it is disproportionately distant from the
bulk of the values of a regressor(s). Why does a leverage point matter? It matters be-
cause it is capable of pulling the regression line toward itself, thus distorting the slope of
the regression line. If this actually happens, then we call such a leverage (data) point an
influential point. The removal of such a data point from the sample can dramatically
affect the regression line. Returning to Exercise 11.22, you will see that if you regress Y
on X including the observation for Chile, the slope coefficient is positive and “highly sta-
tistically significant.” But if you drop the observation for Chile, the slope coefficient is
practically zero. Thus the Chilean observation has leverage and is also an influential
observation.

To further clarify the nature of outliers, leverage, and influence points, consider the dia-
gram in Figure 13.4, which is self-explanatory.43

How do we handle such data points? Should we just drop them and confine our attention
to the remaining data points? According to Draper and Smith:

Automatic rejection of outliers is not always a wise procedure. Sometimes the outlier is pro-
viding information that other data points cannot due to the fact that it arises from an unusual
combination of circumstances which may be of vital interest and requires further investigation
rather than rejection. As a general rule, outliers should be rejected out of hand only if they can
be traced to causes such as errors of recording the observations or setting up the apparatus [in
a physical experiment]. Otherwise, careful investigation is in order.44

Y

X

(a)

Y

X

(b)

Y

X

(c)

In each subfigure, the solid line gives the OLS line for all the data and the broken line gives the
OLS line with the outlier, denoted by an , omitted. In (a), the outlier is near the mean value
of X and has low leverage and little influence on the regression coefficients. In (b), the outlier
is far away from the mean value of X and has high leverage as well as substantial influence on
the regression coefficients. In (c), the outlier has high leverage but low influence on the
regression coefficients because it is in line with the rest of the observations.

*

Source: Adapted from John Fox, op. cit., p. 268.

43Adapted from John Fox, Applied Regression Analysis, Linear Models, and Related Methods, Sage
Publications, California, 1997, p. 268.
44Norman R. Draper and Harry Smith, op. cit., p. 76.

FIGURE 13.4
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498 Part Two Relaxing the Assumptions of the Classical Model

What are some of the tests that one can use to detect outliers and leverage points? There are
several tests discussed in the literature, but we will not discuss them here because that will
take us far afield.45 Software packages such as SHAZAM and MICROFIT have routines to
detect outliers, leverage, and influential points.

Recursive Least Squares
In Chapter 8 we examined the question of the structural stability of a regression model
involving time series data and showed how the Chow test can be used for this purpose.
Specifically, you may recall that in that chapter we discussed a simple savings function (sav-
ings as a function of income) for the United States for the period 1970–2005. There we saw
that the savings income relationship probably changed around 1982. Knowing the point of
the structural break we were able to confirm it with the Chow test.

But what happens if we do not know the point of the structural break (or breaks)? This
is where one can use recursive least squares (RELS). The basic idea behind RELS is very
simple and can be explained with the savings–income regression.

Yt = β1 + β2 Xt + ut

where Y = savings and X = income and where the sample is for the period 1970–2005.
(See the data in Table 8.11.)

Suppose we first use the data for 1970–1974 and estimate the savings function, obtain-
ing the estimates of β1 and β2. Then we use the data for 1970–1975 and again estimate the
savings function and obtain the estimates of the two parameters. Then we use the data for
1970–1976 and re-estimate the savings model. In this fashion we go on adding an addi-
tional data point on Y and X until we exhaust the entire sample. As you can imagine, each
regression run will give you a new set of estimates of β1 and β2. If you plot the estimated
values of these parameters against each iteration, you will see how the values of estimated
parameters change. If the model under consideration is structurally stable, the changes in
the estimated values of the two parameters will be small and essentially random. However,
if the estimated values of the parameters change significantly, it would indicate a structural
break. RELS is thus a useful routine with time series data since time is ordered chronolog-
ically. It is also a useful diagnostic tool in cross-sectional data where the data are ordered
by some “size” or “scale” variable, such as the employment or asset size of the firm. In
Exercise 13.30 you are asked to apply RELS to the savings data given in Table 8.11.

Software packages such as SHAZAM, EViews, and MICROFIT now do recursive least-
squares estimates routinely. RELS also generates recursive residuals on which several
diagnostic tests have been based.46

Chow’s Prediction Failure Test
We have already discussed Chow’s test of structural stability in Chapter 8. Chow has shown
that his test can be modified to test the predictive power of a regression model. Again, we
will revert to the U.S. savings–income regression for the period 1970–1995.

45Here are some accessible sources: Alvin C. Rencher, Linear Models in Statistics, John Wiley & Sons,
New York, 2000, pp. 219–224; A. C. Atkinson, Plots, Transformations and Regression: An Introduction
to Graphical Methods of Diagnostic Regression Analysis, Oxford University Press, New York, 1985,
Chapter 3; Ashis Sen and Muni Srivastava, Regression Analysis: Theory, Methods, and Applications,
Springer-Verlag, New York, 1990, Chapter 8; and John Fox, op. cit., Chapter 11.
46For details, see Jack Johnston and John DiNardo, Econometric Methods, 4th ed., McGraw-Hill, New
York, 1997, pp. 117–121.
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Suppose we estimate the savings–income regression for the period 1970–1981, obtain-
ing β̂1,70−81 and β̂2,70−81, which are the estimated intercept and slope coefficients based on
the data for 1970–1981. Now using the actual values of income for the period 1982–1995
and the intercept and slope values for the period 1970–1981, we predict the values of
savings for each of 1982–1995 years. The logic here is that if there is no serious structural
change in the parameter values, the values of savings estimated for 1982–1995, based on
the parameter estimates for the earlier period, should not be very different from the actual
values of savings prevailing in the latter period. Of course, if there is a vast difference
between the actual and predicted values of savings for the latter period, it will cast doubts
on the stability of the savings–income relation for the entire data period.

Whether the difference between the actual and estimated savings value is large or small
can be tested by the F test as follows:

F =
(∑

û∗2
t − ∑

û2
t

)/
n2(∑

û2
t

)/
(n1 − k)

(13.10.1)

where n1 = number of observations in the first period (1970–1981) on which the initial
regression is based, n2 = number of observations in the second or forecast period, 

∑
û∗2

t =
RSS when the equation is estimated for all the observations (n1 + n2), and 

∑
û2

t = RSS
when the equation is estimated for the first n1 observations, and k is the number of para-
meters estimated (two in the present instance). If the errors are independent, and identi-
cally, normally distributed, the F statistic given in Eq. (13.10.1) follows the F distribution
with n2 and n1 df, respectively. In Exercise 13.31 you are asked to apply Chow’s predictive
failure test to find out if the savings–income relation has in fact changed. In passing, note
the similarity between this test and the forecast χ2 test discussed previously.

Missing Data
In applied work it is not uncommon to find that sometimes observations are missing from
the sample data. For example, in time series data there may be gaps in the data because of
special circumstances. During the Second World War, data on some macro variables were
not available or were not published for strategic reasons. In cross-section data it is not un-
common to find that information on some variables for some individuals is missing, espe-
cially in data collected from questionnaire-type surveys. In panel data also, over time some
respondents drop out or do not provide information on all the questions.

Whatever the reason, missing data is a problem that every researcher faces from time
to time. The question is how we deal with the missing data. Is there any way to impute
values to the missing observations?

This is not an easy question to answer. Although there are some complicated solutions
suggested in the literature, we will not pursue them here because of their complexity.47 How-
ever, we will discuss two cases.48 In the first case, the reasons for the missing data are inde-
pendent of the available observations, which are called by Darnell the “ignorable case.” In
the second case, not only are the available data incomplete, but the missing observations may
be systematically related to the available data. This is a more serious case, for it may be the
result of self-selection bias, that is, the observed data are not truly randomly collected.

47For a thorough, but rather advanced, treatment of the subject, see A. Colin Cameron and Pravin K.
Trivedi, Microeconometrics: Methods and Applications, Cambridge University Press, New York, 2005,
Chapter 27, pp. 923–941.
48The following discussion is based on Adrian C. Darnell, A Dictionary of Econometrics, Edward Elgar
Publishing, Lyne, U.K., 1994, pp. 256–258.
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In the ignorable case, we may simply ignore the missing observations and use the avail-
able observations. Most statistical packages do this automatically. Of course, in this case
the sample size is reduced and we may not be able to get precise estimates of the regression
coefficients. We might use the available data to shed some light on the missing observa-
tions, however. Here we consider three possibilities.

1. Out of a total number of observations of N, we have complete data on N1 (N1 < N) for
both the regressand and k regressors denoted by Y1 and X1, respectively. (Y1 is vector of
N1 observations and X1 is a row vector of k regressors).

2. For some observations (N2 < N) there are complete data on the regressand, denoted by
Y2, but incomplete observations on some X2 (again these are vectors).

3. For some observations (N3 < N), there are no data on Y, but complete data on X, denoted
by X3.

In the first case, regression of Y1 on X1 will produce estimates of the regression coefficients
that are unbiased but they may not be efficient because we ignore N2 and N3 observations.
The other two cases are rather complicated and we leave it for the reader to follow the ref-
erences for solutions.49

13.11 Concluding Examples

We conclude this chapter with two examples that illustrate one or more points raised in the
chapter. The first example on wage determination uses cross-section data and the second
example, which considers the real consumption function for the U.S., uses time series data.

1. A Model of Hourly Wage Determination 
To examine what factors determine hourly wages, we consider a Mincer-type wage model,
which has become popular with labor economists. This model has the following form:50

ln wagei = β1 + β2Edui + β3Expi + β4Fei + β5NWi + β6UNi + β7WKi + ui

(13.11.1)

Where ln wage = natural log of hourly wage ($), Edu = education in years, Exp = labor
market experience, Fe = 1 if female, 0 otherwise, NW = 1 if non-white, 0 otherwise, UN = 1
if in union, 0 otherwise, and WK = 1 for non-hourly paid workers, 0 otherwise. For the
non-hourly paid workers, the hourly wage is computed as weekly earnings divided by the
usual hours worked.

There are many more variables that could be added to this model. Some of these vari-
ables are ethnic origin, marital status, number of children under age 6, and wealth or non-
labor income. For now, we will work with the model shown in Eq. (13.11.1).

The data consist of 1,289 persons interviewed in March 1985 as a part of the Current
Population Survey (CPS) periodically conducted by the U.S. Census Bureau. These data
were originally collected by Paul Rudd.51

49Besides the references already cited, see A. A. Afifi, and R. M. Elashoff, “Missing Observations in
Multivariate Statistics,” Journal of the American Statistical Association, vol. 61, 1966, pp. 595–604, and
vol. 62, 1967, pp. 10–29.
50See J. Mincer, School, Experience and Earnings, Columbia University Press, New York, 1974.
51Paul A. Rudd, An Introduction to Classical Econometric Theory, Oxford University Press, New York,
2000. We have not included data on age because it is highly collinear with job experience.
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A priori, we would expect education and experience to have a positive impact on wages.
The dummy variables Fe and NW are expected to have a negative impact on wages if there
is some kind of discrimination and UN is expected to have a positive impact because of
uncertainty of income.

When all the dummy variables take a value of zero, Eq. (13.11.1) reduces to 

ln wagei = β1 + β2Edui + β3Expi + ui (13.11.2)

which is the wage function for a non-unionized white male worker who is on an hourly
wage rate. This is the base, or reference, category.

Let us now present the regression results and then discuss them.

TABLE 13.4
EViews Regression
Results Based on
Equation (13.11.1)

Dependent Variable: LW
Method: Least Squares
Sample: 1–1,289
Included observations: 1,289

Coefficient Std. Error t Statistic Prob.

C 1.037880 0.074370 13.95563 0.0000
EDU 0.084037 0.005110 16.44509 0.0000
EXP 0.011152 0.001163 9.591954 0.0000
FE -0.234934 0.026071 -9.011170 0.0000
NW -0.124447 0.036340 -3.424498 0.0006
UN 0.207508 0.036265 5.721963 0.0000
WK 0.228725 0.028939 7.903647 0.0000

R-squared 0.376053 Mean dependent var. 2.342416
Adjusted R-squared 0.373133 S.D. dependent var. 0.586356
S.E. of regression 0.464247 Akaike info criterion 1.308614
Sum squared resid. 276.3030 Schwarz criterion 1.336645
Log likelihood -836.4018 Hannan-Quinn criter. 1.319136
F-statistic 128.7771 Durbin-Watson stat. 1.977004
Prob. (F-statistic) 0.000000 

The first thing to notice is that all the estimated coefficients are individually highly signifi-
cant, for the p-values are so low. The F is also very high, suggesting that collectively, also,
all the variables are statistically important.

Compared to the reference worker, the average wage of a female worker and a non-white
worker is lower. Union workers and those who are paid weekly, on average, make more
wages.

How adequate is model (13.11.1), given the variables we have considered? Is it possi-
ble that non-white female workers earn less than white workers? Is it possible that non-
white female non-union workers earn less than white female non-union workers? In other
words, are there any interaction effects between the quantitative regressors and the dummy
variables?

Statistical packages have routines to answer such questions. For instance, EViews has
such a facility. After a model is estimated, if you think that some variables can be added
to the model but you are not sure of their importance, you can run the test of omitted
variables.

To show this, suppose we estimate Eq. (13.11.1) and now want to find out if the prod-
ucts of Fe and NW, FE and UN, and FE and WK should be added to the model to take into
account the interaction between the explanatory variables. Using the EViews 6 routine, we
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obtain the following answer: The null hypothesis is that these three added variables have no
effect on the estimated model.

As you would suspect, we can use the F test (discussed in Chapter 8) to assess the in-
cremental, or marginal, contribution of the added variables and test the null hypothesis. For
our example, the results are as follows:

TABLE 13.5
Partial EViews
Results Using
Interactions

Omitted Variables: FE*NW FE*UN FE*WK

F-statistic 0.805344 Prob. F (3,1279) 0.4909
Log likelihood ratio 2.432625 Prob. chi-square (3) 0.4876

We do not reject the null hypothesis that the interaction between female and non-white,
female and union, and female and weekly wage earners, collectively, has no significant
impact on the estimated model given in Table 13.4, for the estimated F value of 0.8053 is
not statistically significant, the p value being about 49 percent.

We leave it for the reader to try other combinations of the regressors to assess their
contribution to the original model.

Before proceeding further, the model (13.11.1) suggests that the influence of experience
on log wages is linear, that is, holding other variables constant, the relative increase in wages
(remember the regressand is in log form), remains the same for every year’s increase in job
experience. This assumption may be true over some years of experience, but as basic labor
economics suggests, as workers get older, the rate of wage increase decreases. To see if this
is the case in our example, we added the squared experience term to our initial model and
obtained the following results:

TABLE 13.6
EViews Results with
Experience Squared

Dependent Variable: LW
Method: Least Squares
Sample: 1–1,289
Included observations: 1,289

Coefficient Std. Error t Statistic Prob.

C 0.912279 0.075151 12.13922 0.0000
EDU 0.079867 0.005051 15.81218 0.0000
EXP 0.036659 0.003800 9.647230 0.0000
FE -0.228848 0.025606 -8.937218 0.0000
NW -0.121805 0.035673 -3.414458 0.0007
UN 0.199957 0.035614 5.614579 0.0000
WK 0.222549 0.028420 7.830675 0.0000

EXP*EXP -0.000611 8.68E-05 -7.037304 0.0000

R-squared 0.399277 Mean dependent var. 2.342416
Adjusted R-squared 0.395995 S.D. dependent var. 0.586356
S.E. of regression 0.455703 Akaike info criterion 1.272234
Sum squared resid. 266.0186 Schwarz criterion 1.304269
Log likelihood -811.9549 Hannan-Quinn criter. 1.284259
F-statistic 121.6331 Durbin-Watson stat. 1.971753
Prob. (F-statistic) 0.000000 

The squared experience term is not only negative but it is also highly statistically signifi-
cant. It also accords with labor market behavior; over time, the rate of growth of wages 

slows down 

(
∂lw

∂EXP
= 0.0366 − 0.0012EXP

)
.
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We take this opportunity to discuss the Akaike and Schwarz criteria. Like R2, these are
tests of the goodness of fit of the estimated model; the difference is that under the R2

criterion, the higher its value, the better the model explains the behavior of the regressand.
On the other hand, under the Akaike and Schwarz criteria, the lower the value of these
statistics, the better is the model.

Of course, all these criteria are meaningful if we want to compare two or more models.
Thus, if you compare the model in Table 13.4 with the model in Table 13.6, which has the
experience-squared as an additional regressor, we see that the model in Table 13.6 is prefer-
able to the one in Table 13.4 on the basis of the three criteria.

Incidentally, note that in both models the R2 values seem “low,” but such low values are typ-
ically observed in cross-section data with a large number of observations. However, note that
this “low” R2 value is statistically significant, since in both models the computed F statistic is
highly significant (recall the relationship between F and R2 discussed in Chapter 8).

Let us continue with the expanded model given in Table 13.6. Although the model looks
satisfactory, let us explore a couple of points. First, since we are dealing with cross-section
data, there is every chance that the model suffers from heteroscedasticity. So, we need to
find out if this is the case. We applied several of the tests of heteroscedasticity discussed in
Chapter 11 and found that the model does in fact suffer from heteroscedasticity. The reader
should verify this assertion.

To correct for the observed heteroscedasticity, we can obtain White’s heteroscedasticity-
consistent standard errors, which were discussed in Chapter 11. The results are given in the
following table.

TABLE 13.7
EViews Results Using
White’s Corrected
STD Errors

Dependent Variable: LW
Method: Least Squares
Sample: 1–1,289
Included observations: 1,289
White’s Heteroscedasticity-Consistent Standard Errors 
and Covariance

Coefficient Std. Error t Statistic Prob.

C 0.912279 0.077524 11.76777 0.0000
EDU 0.079867 0.005640 14.15988 0.0000
EXP 0.036659 0.003789 9.675724 0.0000
FE -0.228848 0.025764 -8.882625 0.0000
NW -0.121805 0.033698 -3.614573 0.0003
UN 0.199957 0.029985 6.668458 0.0000
WK 0.222549 0.031301 7.110051 0.0000

EXP*EXP -0.000611 9.44E-05 -6.470218 0.0000

R-squared 0.399277 Mean dependent var. 2.342416
Adjusted R-squared 0.395995 S.D. dependent var. 0.586356
S.E. of regression 0.455703 Akaike info criterion 1.272234
Sum squared resid. 266.0186 Schwarz criterion 1.304269
Log likelihood -811.9549 Hannan-Quinn criter. 1.284259
F-statistic 121.6331 Durbin-Watson stat. 1.971753
Prob. (F-statistic) 0.000000 

As you would expect, there are some changes in the estimated standard errors, although
this does not change the conclusion that all the regressors are important, both individually
as well as collectively, in explaining the behavior of relative wages.

Let us now examine if the error terms are normally distributed. The histogram of the
residuals obtained from the model in Table 13.7 is shown in Figure 13.5. The Jarque–Bera
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statistic rejects the hypothesis that the errors are normally distributed, for the JB statistic
is high and the p value is practically zero: Note that for a normally distributed variable, the
skewness and kurtosis coefficients are, respectively, 0 and 3.

Now what? Our hypothesis testing procedure thus far has rested on the assumption that the
disturbance, or error, term in the regression model is normally distributed. Does this mean
that we cannot legitimately use the t and F tests to test hypotheses in our wage regression?

The answer is no. As noted in the chapter, the OLS estimators are asymptotically normally
distributed with the caveat noted in the chapter, namely that the error term has finite variance,
is homoscedastic, and the mean value of the error term, given the values of the explanatory
variables, is zero. As a result, we can continue to use the usual t and F tests, provided the
sample is reasonably large. In passing it may be noted that we did not need the normality
assumption to obtain OLS estimators. Even without the normality assumption the OLS esti-
mators are best linear unbiased estimators (BLUE) under the Gauss–Markov assumptions.

How large is a large sample? There is no definitive answer to this question, but the sam-
ple size of 1,289 observations in our wage regression seems reasonably large.

Are there any “outliers” in our wage regression? Some idea about this can be gleaned
from the graph in Figure 13.6, which gives the actual and estimated values of the dependent
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TABLE 13.8
Sample: 1–1,289

W EDU EXP

Mean 12.36585 13.14507 18.78976
Median 10.08000 12.00000 18.00000
Maximum 64.08000 20.00000 56.00000
Minimum 0.840000 0.000000 0.000000
Std. Dev. 7.896350 2.813823 11.66284
Skewness 1.848114 -0.290381 0.375669
Kurtosis 7.836565 5.977464 2.327946

Jarque–Bera 1990.134 494.2552 54.57664
Probability 0.000000 0.000000 0.000000

Sum 15939.58 16944.00 24220.00
Sum Sq. Dev. 80309.82 10197.87 175196.0

Observations 1,289 1,289 1,289

variable (ln wage) and the residuals, which are the differences between the actual and es-
timated values of the regressand.

Although the mean value of the residuals is always zero (why?), the graph in Figure 13.6
shows that there are several residuals that seem large (in absolute value) compared with the
bulk of the residuals. It is possible that there are outliers in the data. We provide the raw
statistics on the three quantitative variables in Table 13.8 to aid the reader in deciding
whether there are indeed outliers.

TABLE 13.9
Results of Regression
Equation (13.11.3)

Method: Least Squares
Sample: 1947–2000
Included observations: 54

Coefficient Std. Error t Statistic Prob.

C -0.467711 0.042778 -10.93343 0.0000
LOG(YD) 0.804873 0.017498 45.99836 0.0000

LOG(WEALTH) 0.201270 0.017593 11.44060 0.0000
INTEREST -0.002689 0.000762 -3.529265 0.0009

R-squared 0.999560 Mean dependent var. 7.826093
Adjusted R-squared 0.999533 S.D. dependent var. 0.552368
S.E. of regression 0.011934 Akaike info criterion -5.947703
Sum squared resid. 0.007121 Schwarz criterion -5.800371
Log likelihood 164.5880 Hannan-Quinn criter. -5.890883
F-statistc 37832.59 Durbin-Watson stat. 1.289219
Prob. (F-statistic) 0.000000 

2. Real Consumption Function for the United States, 1947–2000
In Chapter 10 we considered the consumption function for the U.S. for the years 1947–2000.
The specific form of the consumption function we considered was:

ln TCt = β1 + β2 ln YDt + β3 ln W + β4Interestt + ut (13.11.3)

Where TC, YD, W, and Interest are, respectively, total consumption expenditure, personal
disposable income, wealth, and interest rate, all in real terms. The results based on our data
are as follows:
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Since TC, YD, and Wealth enter in logarithmic form, the estimated slope coefficients of YD
and Wealth are, respectively, income and wealth elasticities. As you would expect, these
elasticities are positive and are highly statistically significant. Numerically, the income and
wealth elasticities are about 0.80 and 0.20. The coefficient of the interest rate variable
represents semielasticity (why?). Holding other variables constant, the results show that if
the interest rate goes up by 1 percentage point, on average, real consumption expenditure
goes down by about 0.27 percent. Note that the estimated semielasticity is also highly
statistically significant.

Look at some of the summary statistics. The R2 value is very high, almost reaching
100 percent. The F value is also highly statistically significant, suggesting that, not only
individually, but also collectively, all the explanatory variables have a significant impact on
consumption expenditure.

The Durbin–Watson statistic, however, suggests that errors in the model are serially cor-
related. If we consult the Durbin–Watson tables (Table D.5 in Appendix D), we see that for
55 observations (the closest number to 54) and three explanatory variables, the lower and
upper 5 percent critical d values are 1.452 and 1.681. Since the observed d in our example,
1.2892, is below the lower critical d values, we may conclude that the errors in our con-
sumption function are positively correlated. This should not be a surprising finding, for
most time series regressions suffer from autocorrelation.

But before we accept this conclusion, let us find out if there are any specification errors.
As we know, sometimes autocorrelation may be apparent because we have omitted
some important variables. To see if this is the case, we consider the regression obtained in
Table 13.10.

TABLE 13.10
Dependent Variable: LTC
Method: Least Squares
Sample: 1947–2000
Included observations: 54

Coefficient Std. Error t Statistic Prob.

C 2.689644 0.566034 4.751737 0.0000
LYD 0.512836 0.054056 9.487076 0.0000
LW -0.205281 0.074068 -2.771510 0.0079

INTEREST -0.001162 0.000661 -1.759143 0.0848
LYD*LW 0.039901 0.007141 5.587986 0.0000

R-squared 0.999731 Mean dependent var. 7.826093
Adjusted R-squared 0.999709 S.D. dependent var. 0.552368
S.E. of regression 0.009421 Akaike info criterion -6.403689
Sum squared resid. 0.004349 Schwarz criterion -6.219524
Log likelihood 177.8996 Hannan-Quinn criter. -6.332663
F-statistic 45534.94 Durbin-Watson Stat. 1.530268
Prob. (F-statistic) 0.000000 

The additional variable in this model is the interaction of the logs of disposable income
and wealth. This interaction term is highly significant. Notice that now the interest variable
has become less significant ( p value of about 8 percent), although it retains its negative sign.
But now the Durbin–Watson d value has increased from about 1.28 to about 1.53.

The 5 percent critical d values now are 1.378 and 1.721. The observed d value of 1.53
lies between these values, suggesting that, on the basis of the Durbin–Watson statistic, we
cannot determine whether or not we have autocorrelation. However, the observed d value is
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closer to the upper limit d value. As noted in the chapter on autocorrelation, some authors
suggest using the upper limit of the d statistic as approximately the true significance limit;
therefore, if the computed d value is below the upper limit, there is evidence of positive au-
tocorrelation. By that criterion, in the present instance we can conclude that our model suf-
fers from positive autocorrelation.

We also applied the Breusch–Godfrey test of autocorrelation that we discussed in Chap-
ter 12. Adding the two lagged terms of the estimated residuals in Equation (12.6.15) to the
model in Table 13.9, we obtained the following results:

TABLE 13.11
Breusch–Godfrey Serial Correlation LM Test:

F-statistic 3.254131 Prob. F(2,48) 0.0473
Obs*R-squared 6.447576 Prob. chi-square (2) 0.0398

Dependent Variable: RESID
Method: Least Squares
Sample: 1947–2000
Included observations: 54
Presample missing value lagged residuals set to zero.

Coefficient Std. Error t Statistic Prob.

C -0.006514 0.041528 -0.156851 0.8760
LYD -0.004197 0.017158 -0.244619 0.8078
LW 0.004191 0.017271 0.242674 0.8093

INTEREST 0.000116 0.000736 0.156964 0.8759
RESID(-1) 0.385190 0.151581 2.541147 0.0143
RESID(-2) -0.165609 0.154695 -1.070556 0.2897

R-squared 0.119400 Mean dependent var. -9.02E-17
Adjusted R-squared 0.027670 S.D. dependent var. 0.011591
S.E. of regression 0.011430 Akaike info criterion -6.000781
Sum squared resid. 0.006271 Schwarz criterion -5.779782
Log likelihood 168.0211 Hannan-Quinn criter. -5.915550
F-statistic 1.301653 Durbin-Watson Stat. 1.848014
Prob. (F-statistic) 0.279040 

The F reported at the top tests the hypothesis that the two lagged residuals included in the
model have zero values. This hypothesis is rejected because the F is significant at about the
5 percent level.

To sum up, it seems that there is autocorrelation in the error term. We can apply one or
more procedures discussed in Chapter 12 to remove autocorrelation. But to save space, we
leave that task to the reader.

In Table 13.12 we report the results of regression analysis that present the HAC or
Newey–West standard errors that take into account the autocorrelation. Our sample size of
54 observations is large enough to use the HAC standard errors.

If you compare these results with those given in Table 13.9, you will observe that the
regression coefficients remain the same, but that the standard errors are somewhat different.

In this chapter we discussed Chow’s prediction failure test. We have a sample period that
extends from 1947 to 2000. Over this period, we have had several business cycles, mostly
of short durations. For example, there was a recession in 1990 and another one in 2000. Is
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TABLE 13.13
Chow’s Test of
Predictive Failure

Chow’s Forecast Test: Forecast from 1991 to 2000

F-statistic 1.957745 Prob. F (10,40) 0.0652
Log likelihood ratio 21.51348 Prob. chi-square (10) 0.0178

Dependent Variable: LTC
Method: Least Squares
Sample: 1947–1990
Included observations: 44

Coefficient Std. Error t Statistic Prob.

C -0.287952 0.095089 -3.028236 0.0043
LYD 0.853172 0.028473 29.96474 0.0000
LW 0.141513 0.033085 4.277239 0.0001

INTEREST -0.002060 0.000804 -2.562790 0.0143

R-squared 0.999496 Mean dependent var. 7.659729
Adjusted R-squared 0.999458 S.D. dependent var. 0.469580
S.E. of regression 0.010933 Akaike info criterion -6.107640
Sum squared resid. 0.004781 Schwarz criterion -5.945441
Log likelihood 138.3681 Hannan-Quinn criter. -6.047489
F-statistic 26430.49 Durbin-Watson Stat. 1.262748
Prob. (F-statistic) 0.000000 

TABLE 13.12
Dependent Variable: LTC
Method: Least Squares
Sample: 1947–2000
Included observations: 54
Newey–West HAC Standard Errors and Covariance (lag 
truncation = 3)

Coefficient Std. Error t Statistic Prob.

C -0.467714 0.043937 -10.64516 0.0000
LYD 0.804871 0.017117 47.02132 0.0000
LW 0.201272 0.015447 13.02988 0.0000

INTEREST -0.002689 0.000880 -3.056306 0.0036

R-squared 0.999560 Mean dependent var. 7.826093
Adjusted R-squared 0.999533 S.D. dependent var. 0.552368
S.E. of regression 0.011934 Akaike info criterion -5.947707
Sum squared resid. 0.007121 Schwarz criterion -5.800374
Log likelihood 164.5881 Hannan-Quinn criter. -5.890886
F-statistic 37832.71 Durbin-Watson Stat. 1.289237
Prob. (F-statistic) 0.000000 

the behavior of consumer expenditure in relation to income, wealth, and the interest rate
different during recessions?

To shed light on this question, let us consider the 1990 recession and apply Chow’s predic-
tion failure test. The details of this test have already been discussed in the chapter. Using
Chow’s predictive failure test in EViews, version 6, we obtain the results given in Table 13.13.
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Apparently, it seems that the consumption function pre- and post-1990 are statistically
different, for the computed F statistic, following Eq. (8.7.4), is highly statistically signifi-
cant because the p value is only 0.0052.

The reader is encouraged to apply Chow’s parameter stability and predictive failure tests
to determine if the consumption function pre- and post-2000 has changed. To do this, you
will have to extend the data beyond 2000. Also note that to apply these tests the number of
observations must be greater than the number of coefficients estimated.

We have exhausted all of the diagnostic tests that we can apply to our consumption data.
But the analysis provided thus far should give you a fairly good idea about how one can
apply the various tests.

13.12 Non-Normal Errors and Stochastic Regressors

In this section we discuss two topics that are of a somewhat advanced nature, namely,
non-normal distribution of the error term, and stochastic, or random, regressors and their
practical importance.

1. What Happens If the Error Term Is Not Normally Distributed?
In the classical normal linear regression model (CNLRM) discussed in Chapter 4, we
assumed that the error term u follows the normal distribution. We invoked the central limit
theorem (CLT) to justify the normality assumption. Because of this assumption, we were
able to establish that the OLS estimators are also normally distributed. As a result, we were
able to do hypothesis testing using the t and F tests regardless of the sample size. We also
discussed using the Jarque–Bera and Anderson–Darling normality tests to find out if the
estimated errors are normally distributed in any practical application.

What happens if the errors are not normally distributed? It can be stated that the OLS
estimators are still BLUE, that is, they are unbiased and in the class of linear estimators
they show minimum variance. Intuitively, this should not be surprising, for to establish the
Gauss–Markov (BLUE) theorem we did not need the normality assumption.

Then what is the problem?
The problem is that we need the sampling, or probability, distributions of the OLS

estimators.Without that we cannot engage in any kind of hypothesis testing regarding the true
values of these estimators. As shown in Chapters 3 and 7, the OLS estimators are linear

TABLE 13.14
Chow’s Test of
Parameter Stability

Chow Breakpoint Test: 1990
Null Hypothesis: No breaks at specified breakpoints
Varying regressors: All equation variables
Equation Sample: 1947–2000

F-statistic 4.254054 Prob. F(4,46) 0.0052
Log likelihood ratio 16.99654 Prob. chi-square (4) 0.0019
Wald statistic 17.01622 Prob. chi-square (4) 0.0019 

The F statistic given in the top portion of Table 13.13 suggests that there probably is not
a substantial difference in the consumption function pre- and post-1990, for its p value is
not significant at the 5 percent level. But if you choose the 10 percent level of significance,
the F value is statistically significant.

We can look at this problem differently. In Chapter 8 we discussed a test of parameter
stability. To see if there has been any statistically significant change in the consumption
function regression coefficients, we used the Chow test discussed in Section 8.7 of Chapter 8
and obtained the results given in Table 13.14.
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funtions of the dependent variable Y, and Y itself is a linear function of the stochastic error
term u, assuming that the explanatory variables are non-stochastic, or fixed in repeated
sampling. Ultimately, then, we need the probability distribution of u.

As noted above, the classical normal linear regression model (CNLRM) assumes that
the error term follows the normal distribution (with zero mean and constant variance).
Using the central limit theorem (CLT) to justify the normality of the error term, we were
able to show that the OLS estimators themselves are normally distributed with means and
variance discussed in Chapters 4 and 7. This in turn allowed us to use the t and F statistics
in hypothesis testing in small, or finite, samples as well as in large samples. Therefore, the
role of the normality assumption is very critical, especially in small samples.

But what if we cannot maintain the normality assumption on the basis of various nor-
mality tests? What then? We have two choices. The first is bootstrapping and the second is
to invoke large, or asymptotic, sample theory.

A discussion of bootstrapping, which is gradually seeping into applied econometrics,
will take us far afield. The basic idea underlying bootstrapping is to churn (or regurgitate)
a given sample over and over again and then obtain the sampling distributions of the para-
meters of interest (OLS estimators for our purpose). How this is done in practice is best left
for references.52 By the way, the term bootstrapping comes from the commonly used ex-
pression, “to pull oneself up by one’s own bootstrap.”

The other approach to deal with non-normal error terms is to use asymptotic, or large
sample theory. As a matter of fact, a glimpse of this was given in Appendix 3A.7 in Chap-
ter 3, where we showed that the OLS estimators are consistent.As discussed in AppendixA,
an estimator is consistent if it approaches the true value of the estimator as the sample size
gets larger and larger (see Figure A.11 in Appendix A).

But how does that help us in hypothesis testing? Can we still use the t and F tests? It can
be shown that under the Gauss–Markov assumptions the OLS estimators are asymptotically
normally distributed with the means and variances discussed in Chapters 4 and 7.53 As a
result, the t and F tests developed under the normality assumption are approximately valid
in large samples. The approximation becomes quite good as the sample size increases.54

2. Stochastic Explanatory Variables
In Chapter 3 we introduced the classical linear (in parameter) regression model under some
simplifying assumptions. One of the assumptions was that the explanatory variables, or
regressors, were either fixed or non-stochastic, or if stochastic, they were independent of
the error term. We called the former case the fixed regressor case and the latter the random
regressor case.

52For an informal discussion, see Christopher Z. Mooney and Robert D. Duval, Bootstrapping: A 
Nonparametric Approach to Statistical Inference, Sage University Press, California, 1993. For a more 
formal textbook discussion, see Russell Davidson and James G. MacKinnon, Econometric Theory and
Methods, Oxford University Press, New York, 2004, pp. 159–166.
53Recall the Gauss–Markov assumptions, namely, the expected value of the error term is zero, 
the error term and each of the explanatory variables are independent, the error variance is
homoscedastic, and there is no autocorrelation in the error term. It is also assumed that the 
variance-covariance matrix of the explanatory variables is finite. We can also relax the condition of
independence between the error term and the regressors and assume the weaker condition that they
are uncorrelated.
54The proof of asymptotic normality of OLS estimators is beyond the scope of this book. See James H.
Stock and Mark W. Watson, Introduction to Econometrics, 2d ed., Pearson/Addison Wesley, Boston,
2007, pp. 710–711. 
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In the fixed regressor case, we already know the properties of the OLS estimators (see
Chapters 5 and 8). In the random regressor case, if we proceed with the assumption that our
analysis is conditional on the given values of the regressors, the properties of OLS estima-
tors that we have studied under the fixed regressor case continue to hold true.

If in the random regressor case we assume that these regressors and the error term are
independently distributed, the OLS estimators are still unbiased but they are no longer
efficient.55

Things get complicated if the error term is not normally distributed, or regressors are
stochastic, or both. Here it is difficult to make any general statements regarding the finite-
sample properties of the OLS estimators. However, under certain conditions, we can invoke
the central limit theorem to establish the asymptotic normality of OLS estimators. Although
beyond the scope of this book, the proofs can be found elsewhere.56

13.13 A Word to the Practitioner

We have covered a lot of ground in this chapter. There is no question that model building is
an art as well as a science. A practical researcher may be bewildered by theoretical niceties
and an array of diagnostic tools. But it is well to keep in mind Martin Feldstein’s caution
that “The applied econometrician, like the theorist, soon discovers from experience that a
useful model is not one that is ‘true’ or ‘realistic’ but one that is parsimonious, plausible
and informative.”57

Peter Kennedy of Simon Fraser University in Canada advocates the following “Ten
Commandments of Applied Econometrics”:58

1. Thou shalt use common sense and economic theory.

2. Thou shalt ask the right questions (i.e., put relevance before mathematical elegance).

3. Thou shalt know the context (do not perform ignorant statistical analysis).

4. Thou shalt inspect the data.

5. Thou shalt not worship complexity. Use the KISS principle, that is, keep it stochasti-
cally simple.

6. Thou shalt look long and hard at thy results.

7. Thou shalt beware the costs of data mining.

8. Thou shalt be willing to compromise (do not worship textbook prescriptions).

9. Thou shalt not confuse significance with substance (do not confuse statistical signifi-
cance with practical significance).

10. Thou shalt confess in the presence of sensitivity (that is, anticipate criticism).

You may want to read Kennedy’s paper fully to appreciate the conviction with which he
advocates the above ten commandments. Some of these commandments may sound
tongue-in-cheek, but there is a grain of truth in each.

55For technical details, see William H. Greene, Econometric Analysis, 6th ed., Pearson/Prentice-Hall,
New Jersey, 2008, pp. 49–50.
56See Greene, op. cit.
57Martin S. Feldstein, “Inflation, Tax Rules and Investment: Some Econometric Evidence,” 
Econometrica, vol. 30, 1982, p. 829.
58Peter Kennedy, op. cit., pp. 17–18.

guj75772_ch13.qxd  16/08/2008  03:24 PM  Page 511



512 Part Two Relaxing the Assumptions of the Classical Model

1. The assumption of the CLRM that the econometric model used in analysis is correctly
specified has two meanings. One, there are no equation specification errors, and two,
there are no model specification errors. In this chapter the major focus was on equation
specification errors.

2. The equation specification errors discussed in this chapter were (1) omission of an im-
portant variable(s), (2) inclusion of a superfluous variable(s), (3) adoption of the
wrong function form, (4) incorrect specification of the error term ui, and (5) errors of
measurement in the regressand and regressors.

3. When legitimate variables are omitted from a model, the consequences can be very
serious: The OLS estimators of the variables retained in the model are not only bi-
ased but inconsistent as well. Additionally, the variances and standard errors of
these coefficients are incorrectly estimated, thereby vitiating the usual hypothesis-
testing procedures.

4. The consequences of including irrelevant variables in the model are fortunately less
serious: The estimators of the coefficients of the relevant as well as “irrelevant” vari-
ables remain unbiased as well as consistent, and the error variance σ 2 remains cor-
rectly estimated. The only problem is that the estimated variances tend to be larger than
necessary, thereby making for less precise estimation of the parameters. That is, the
confidence intervals tend to be larger than necessary.

5. To detect equation specification errors, we considered several tests, such as (1) exam-
ination of residuals, (2) the Durbin–Watson d statistic, (3) Ramsey’s RESET test, and
(4) the Lagrange multiplier test.

6. A special kind of specification error is errors of measurement in the values of the
regressand and regressors. If there are errors of measurement in the regressand only,
the OLS estimators are unbiased as well as consistent but they are less efficient. If
there are errors of measurement in the regressors, the OLS estimators are biased as
well as inconsistent.

7. Even if errors of measurement are detected or suspected, the remedies are often not
easy. The use of instrumental or proxy variables is theoretically attractive but not
always practical. Thus it is very important in practice that the researcher be careful in
stating the sources of his/her data, how they were collected, what definitions were used,
etc. Data collected by official agencies often come with several footnotes and the
researcher should bring those to the attention of the reader.

8. Model mis-specification errors can be as serious as equation specification errors. In
particular, we distinguished between nested and non-nested models. To decide on the
appropriate model we discussed the non-nested, or encompassing, F test and the
Davidson–MacKinnon J test and pointed out the limitations of each test.

9. In choosing an empirical model in practice researchers have used a variety of criteria.
We discussed some of these, such as the Akaike and Schwarz information criteria,
Mallows’s Cp criterion, and forecast χ2 criterion. We discussed the advantages and
disadvantages of these criteria and also warned the reader that these criteria are not
absolute but are adjunct to a careful specification analysis.

10. We also discussed these additional topics: (1) outliers, leverage, and influence; 
(2) recursive least squares; and (3) Chow’s prediction failure test. We discussed the
role of each in applied work.

11. We discussed briefly two special cases, namely, non-normality of the stochastic error term
and random regressors and the role of asymptotic, or large, sample theory in situations
where small, or finite, sample properties of OLS estimators canot be established.

Summary and
Conclusions
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12. We concluded this chapter by discussing Peter Kennedy’s “ten commandments of
applied econometrics.” The point of these commandments is to ask the researcher to
look beyond the purely technical aspects of econometrics.

Questions
13.1. Refer to the demand function for chicken estimated in Eq. (8.6.23). Considering the

attributes of a good model discussed in Section 13.1, could you say that this de-
mand function is “correctly” specified?

13.2. Suppose that the true model is

Yi = β1 Xi + ui (1)

but instead of fitting this regression through the origin you routinely fit the usual
intercept-present model:

Yi = α0 + α1 Xi + vi (2)

Assess the consequences of this specification error.

13.3. Continue with Exercise 13.2 but assume that it is model (2) that is the truth. Discuss
the consequences of fitting the mis-specified model (1).

13.4. Suppose that the “true” model is

Yi = β1 + β2 X2i + ut (1)

but we add an “irrelevant” variable X3 to the model (irrelevant in the sense that the
true β3 coefficient attached to the variable X3 is zero) and estimate

Yi = β1 + β2 X2i + β3 X3i + vi (2)

a. Would the R2 and the adjusted R2 for model (2) be larger than that for model (1)?

b. Are the estimates of β1 and β2 obtained from model (2) unbiased?

c. Does the inclusion of the “irrelevant” variable X3 affect the variances of β̂1 and β̂2?

13.5. Consider the following “true” (Cobb–Douglas) production function:

ln Yi = α0 + α1 ln L1i + α2 ln L2i + α3 ln Ki + ui

where Y = output
L1 = production labor
L2 = nonproduction labor
K = capital

But suppose the regression actually used in empirical investigation is

ln Yi = β0 + β1 ln L1i + β2 ln Ki + ui

On the assumption that you have cross-sectional data on the relevant variables,

a. Will E(β̂1) = α1 and E(β̂2) = α3?

b. Will the answer in (a) hold if it is known that L2 is an irrelevant input in the pro-
duction function? Show the necessary derivations.

13.6. Refer to Eqs. (13.3.4) and (13.3.5). As you can see, α̂2, although biased, has a
smaller variance than β̂2, which is unbiased. How would you decide on the trade-off

EXERCISES
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514 Part Two Relaxing the Assumptions of the Classical Model

between bias and smaller variance? Hint: The MSE (mean-square error) for the two
estimators is expressed as

MSE(α̂2) =
(
σ 2

/∑
x2

2i

)
+ β2

3 b2
3 2

= sampling variance + square of bias

MSE(β̂2) = σ 2
/∑

x2
2

(
1 − r2

2 3

)

On MSE, see Appendix A.

13.7. Show that β estimated from either Eq. (13.5.1) or Eq. (13.5.3) provides an unbiased
estimate of true β.

13.8. Following Friedman’s permanent income hypothesis, we may write

Y ∗
i = α + βX∗

i (1)

where Y ∗
i = “permanent” consumption expenditure and X∗

i = “permanent” income.
Instead of observing the “permanent” variables, we observe

Yi = Y ∗
i + ui

Xi = X∗
i + vi

where Yi and Xi are the quantities that can be observed or measured and where ui

and vi are measurement errors in Y ∗ and X∗, respectively.
Using the observable quantities, we can write the consumption function as

Yi = α + β(Xi − vi ) + ui

= α + βXi + (ui − βvi ) (2)

Assuming that (1) E(ui ) = E(vi ) = 0, (2) var (ui ) = σ 2
u and var (vi ) = σ 2

v ,
(3) cov (Y ∗

i , ui ) = 0, cov (X∗
i, vi ) = 0, and (4) cov (ui, X∗

i ) = cov (vi, Y ∗
i ) =

cov(ui, vi ) = 0, show that in large samplesβestimated from Eq. (2) can be expressed as

plim (β̂) = β

1 + (
σ 2

v /σ 2
X∗

)
a. What can you say about the nature of the bias in β̂?

b. If the sample size increases indefinitely, will the estimated β tend toward equal-
ity with the true β?

13.9. Capital asset pricing model. The capital asset pricing model (CAPM) of modern
investment theory postulates the following relationship between the average rate of
return of a security (common stock), measured over a certain period, and the volatil-
ity of the security, called the beta coefficient (volatility is measure of risk):

R̄i = α1 + α2(βi ) + ui (1)

where R̄ i = average rate of return of security i

βi = true beta coefficient of security i

ui = stochastic disturbance term

The true βi is not directly observable but is measured as follows:

rit = α1 + β∗rmt + et (2)
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where rit = rate of return of security i for time t

rmt = market rate of return for time t (this rate is the rate of return on some
broad market index, such as the S&P index of industrial securities)

et = residual term

and where β∗ is an estimate of the “true” beta coefficient. In practice, therefore,
instead of estimating Eq. (1), one estimates

R̄i = α1 + α2(β∗
i ) + ui (3)

where β∗
i are obtained from the regression (2). But since β∗

i are estimated, the rela-
tionship between true β and β∗ can be written as

β∗
i = βi + vi (4)

where vi can be called the error of measurement.

a. What will be the effect of this error of measurement on the estimate of α2?

b. Will the α2 estimated from Eq. (3) provide an unbiased estimate of true α2? If not,
is it a consistent estimate of α2? If not, what remedial measures do you suggest?

13.10. Consider the model

Yi = β1 + β2 X2i + ui (1)

To find out whether this model is mis-specified because it omits the variable X3

from the model, you decide to regress the residuals obtained from model (1) on the
variable X3 only. (Note: There is an intercept in this regression.) The Lagrange mul-
tiplier (LM) test, however, requires you to regress the residuals from model (1) on
both X2 and X3 and a constant. Why is your procedure likely to be inappropriate?* 

13.11. Consider the model

Yi = β1 + β2 X∗
i + ui

In practice we measure X∗
i by Xi such that

a. Xi = X∗
i + 5

b. Xi = 3X∗
i

c. Xi = (X∗
i + εi ), where εi is a purely random term with the usual properties

What will be the effect of these measurement errors on estimates of true β1 and β2?

13.12. Refer to the regression Eqs. (13.3.1) and (13.3.2). In a manner similar to Eq. (13.3.3)
show that

E(α̂1) = β1 + β3( X̄3 − b32 X̄2)

where b3 2 is the slope coefficient in the regression of the omitted variable X3 on the
included variable X2.

13.13. Critically evaluate the following view expressed by Leamer:†

My interest in metastatistics [i.e., theory of inference actually drawn from data] stems
from my observations of economists at work. The opinion that econometric theory is

*See Maddala, op. cit., p. 477.
†Edward E. Leamer, Specification Searches: Ad Hoc Inference with Nonexperimental Data, John Wiley &
Sons, New York, 1978, p. vi.
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516 Part Two Relaxing the Assumptions of the Classical Model

irrelevant is held by an embarrassingly large share of the economic profession. The
wide gap between econometric theory and econometric practice might be expected to
cause professional tension. In fact, a calm equilibrium permeates our journals and our
[professional] meetings. We comfortably divide ourselves into a celibate priesthood of
statistical theorists, on the one hand, and a legion of inveterate sinner-data analysts, on
the other. The priests are empowered to draw up lists of sins and are revered for the
special talents they display. Sinners are not expected to avoid sins; they need only con-
fess their errors openly.

13.14. Evaluate the following statement made by Henry Theil:*

Given the present state of the art, the most sensible procedure is to interpret confi-
dence coefficients and significance limits liberally when confidence intervals and
test statistics are computed from the final regression of a regression strategy in the
conventional way. That is, a 95 percent confidence coefficient may actually be an
80 percent confidence coefficient and a 1 percent significance level may actually be a
10 percent level.

13.15. Commenting on the econometric methodology practiced in the 1950s and early
1960s, Blaug stated:†

. . . much of it [i.e., empirical research] is like playing tennis with the net down:
instead of attempting to refute testable predictions, modern economists all too fre-
quently are satisfied to demonstrate that the real world conforms to their predictions,
thus replacing falsification [à la Popper], which is difficult, with verification, which
is easy.

Do you agree with this view? You may want to peruse Blaug’s book to learn more
about his views.

13.16. According to Blaug, “There is no logic of proof but there is logic of disproof.”‡

What does he mean by this?

13.17. Refer to the St. Louis model discussed in the text. Keeping in mind the problems
associated with the nested F test, critically evaluate the results presented in regres-
sion (13.8.4).

13.18. Suppose the true model is

Yi = β1 + β2 Xi + β2 X2
i + β3 X3

i + ui

but you estimate

Yi = α1 + α2 Xi + vi

If you use observations of Y at X = −3, −2, −1, 0, 1, 2, 3, and estimate the
“incorrect” model, what bias will result in these estimates?§ 

13.19. To see if the variable X2
i belongs in the model Yi = β1 + β2 Xi + ui , Ramsey’s

RESET test would estimate the linear model, obtaining the estimated Yi values from
this model [i.e., Ŷi = β̂1 + β̂2 Xi ] and then estimating the model Yi = α1 + α2 Xi+
α3Ŷ 2

i + vi and testing the significance of α3. Prove that, if α̂3 turns out to be statisti-
cally significant in the preceding (RESET) equation, it is the same thing as estimating

*Henry Theil, Principles of Econometrics, John Wiley & Sons, New York, 1971, pp. 605–606.
†M. Blaug, The Methodology of Economics. Or How Economists Explain, Cambridge University Press,
New York, 1980, p. 256.
‡Ibid., p. 14.
§Adapted from G. A. F., Sebeir, Linear Regression Analysis, John Wiley & Sons, New York, 1977, p. 176.
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the following model directly: Yi = β1 + β2 Xi + β3 X2
i + ui . (Hint: Substitute for

Ŷi in the RESET regression.)* 

13.20. State with reason whether the following statements are true or false.† 

a. An observation can be influential but not an outlier.

b. An observation can be an outlier but not influential.

c. An observation can be both influential and an outlier.

d. If in the model Yi = β1 + β2 Xi + β3 X2
i + ui β̂3 turns out to be statistically

significant, we should retain the linear term Xi even if β̂2 is statistically
insignificant.

e. If you estimate the model Yi = β1 + β2 X2i + β3 X3i + ui or Yi = α1 + β2x2i+
β3x3i + ui by OLS, the estimated regression line is the same, where x2i =
(X2i − X̄2) and x3i = (X3i − X̄3).

Empirical Exercises

*Adapted from Kerry Peterson, op. cit., pp. 184–185.
†Adapted from Norman R. Draper and Harry Smith, op. cit., pp. 606–607.

13.21. Use the data for the demand for chicken given in Exercise 7.19. Suppose you are
told that the true demand function is

ln Yt = β1 + β2 ln X2t + β3 ln X3t + β6 ln X6t + ut (1)

but you think differently and estimate the following demand function:

ln Yt = α1 + α2 ln X2t + α3 ln X3t + vt (2)

where  Y = per capita consumption of chickens (lb)

X2 = real disposable per capita income

X3 = real retail price of chickens

X6 = composite real price of chicken substitutes

a. Carry out RESET and LM tests of specification errors, assuming the demand
function (1) just given is the truth.

b. Suppose β̂6 in Eq. (1) turns out to be statistically insignificant. Does that mean
there is no specification error if we fit Eq. (2) to the data?

c. If β̂6 turns out to be insignificant, does that mean one should not introduce the
price of a substitute product(s) as an argument in the demand function?

13.22. Continue with Exercise 13.21. Strictly for pedagogical purposes, assume that
model (2) is the true demand function.

a. If we now estimate model (1), what type of specification error is committed in
this instance?

b. What are the theoretical consequences of this specification error? Illustrate with
the data at hand.

13.23. The true model is

Y ∗
i = β1 + β2 X∗

i + ui (1)

but because of errors of measurement you estimate

Yi = α1 + α2 Xi + vi (2)

where Yi = Y ∗
i + εi and Xi = X∗

i + wi , where εi and wi are measurement errors.
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518 Part Two Relaxing the Assumptions of the Classical Model

Using the data given in Table 13.2, document the consequences of estimating
model (2) instead of the true model (1).

13.24. Monte Carlo experiment.* Ten individuals had weekly permanent income as fol-
lows: $200, 220, 240, 260, 280, 300, 320, 340, 380, and 400. Permanent consump-
tion (Y ∗

i ) was related to permanent income X∗
i as

Y ∗
i = 0.8X∗

i (1)

Each of these individuals had transitory income equal to 100 times a random num-
ber ui drawn from a normal population with mean = 0 and σ 2 = 1 (i.e., standard
normal variable). Assume that there is no transitory component in consumption.
Thus, measured consumption and permanent consumption are the same.

a. Draw 10 random numbers from a normal population with zero mean and unit
variance and obtain 10 numbers for measured income Xi ( = X∗

i + 100ui ).

b. Regress permanent ( = measured) consumption on measured income using the
data obtained in (a) and compare your results with those shown in Eq. (1). A
priori, the intercept should be zero (why?). Is that the case? Why or why not?

c. Repeat (a) 100 times and obtain 100 regressions as shown in (b) and compare
your results with the true regression (1). What general conclusions do you draw?

13.25. Refer to Exercise 8.26. With the definitions of the variables given there, consider
the following two models to explain Y:

Model A: Yt = α1 + α2 X3t + α3 X4t + α4 X6t + ut

Model B: Yt = β1 + β2 X2t + β3 X5t + β4 X6t + ut

Using the nested F test, how will you choose between the two models?

13.26. Continue with Exercise 13.25. Using the J test, how would you decide between the
two models?

13.27. Refer to Exercise 7.19, which is concerned with the demand for chicken in the
United States. There you were given five models.

a. What is the difference between model 1 and model 2? If model 2 is correct and
you estimate model 1, what kind of error is committed? Which test would you
apply—equation specification error or model selection error? Show the neces-
sary calculations.

b. Between models 1 and 5, which would you choose? Which test(s) do you use
and why?

13.28. Refer to Table 8.11, which gives data on personal savings (Y) and personal dispos-
able income (X) for the period 1970–2005. Now consider the following models:

Model A: Yt = α1 + α2 Xt + α3 Xt−1 + ut

Model B: Yt = β1 + β2 Xt + β3Yt−1 + ut

How would you choose between these two models? State clearly the test proce-
dure(s) you use and show all the calculations. Suppose someone contends that the
interest rate variable belongs in the savings function. How would you test this?
Collect data on the 3-month treasury bill rate as a proxy for the interest and demon-
strate your answer.

*Adapted from Christopher Dougherty, Introduction to Econometrics, Oxford University Press, 
New York, 1992, pp. 253–256.
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*This can be generalized to the case where more than one relevant X variable is excluded from the
model. On this, see Chandan Mukherjee et al., op. cit., p. 215.

13.29. Use the data in Exercise 13.28.To familiarize yourself with recursive least squares, es-
timate the savings functions for 1970–1981, 1970–1985, 1970–1990, and 1970–1995.
Comment on the stability of estimated coefficients in the savings functions.

13.30. Continue with Exercise 13.29, but now use the updated data in Table 8.10.

a. Suppose you estimate the savings function for 1970–1981. Using the parameters
thus estimated and the personal disposable income data from 1982–2000, esti-
mate the predicted savings for the latter period and use Chow’s prediction failure
test to find out if it rejects the hypothesis that the savings function between the
two time periods has not changed.

b. Now estimate the savings function for the data from 2000–2005. Compare the
results to the function for the 1982–2000 period using the same method as above
(Chow’s prediction failure test). Is there a significant change in the savings func-
tion between the two periods?

13.31. Omission of a variable in the K-variable regression model. Refer to Eq. (13.3.3),
which shows the bias in omitting the variable X3 from the model Yi = β1+
β2 X2i + β3 X3i + ui . This can be generalized as follows: In the k-variable model
Yi = β1 + β2 X2i + · · · + βk Xki + ui , suppose we omit the variable Xk . Then it can
be shown that the omitted variable bias of the slope coefficient of included variable
Xj is:

E(β̂j ) = βj + βkbk j j = 2, 3, . . . , (k − 1)

where bkj is the (partial) slope coefficient of Xj in the auxiliary regression of the
excluded variable Xk on all the explanatory variables included in the model.* 

Refer to Exercise 13.21. Find out the bias of the coefficients in Eq. (1) if we
excluded the variable ln X6 from the model. Is this exclusion serious? Show the
necessary calculations.

Appendix 13A

13A.1 The Proof that E(b12) = β2 + β3b32
[Equation (13.3.3)]

In the deviation form the three-variable population regression model can be written as

yi = β2x2i + β3x3i + (ui − ū) (1)

First multiplying by x2 and then by x3, the usual normal equations are

∑
yi x2i = β2

∑
x2

2i + β3

∑
x2i x3i +

∑
x2i (ui − ū) (2)

∑
yi x3i = β2

∑
x2i x3i + β3

∑
x2

3i +
∑

x3i (ui − ū) (3)

Dividing Eq. (2) by 
∑

x2
2i on both sides, we obtain

∑
yi x2i∑
x2

2i

= β2 + β3

∑
x2i x3i∑

x2
2i

+
∑

x2i (ui − ū)∑
x2

2i

(4)
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Now recalling that

b1 2 =
∑

yi x2i∑
x2

2i

b3 2 =
∑

x2i x3i∑
x2

2i

Eq. (4) can be written as 

b1 2 = β2 + β3b3 2 +
∑

x2i (ui − ū)∑
x2

2i

(5)

Taking the expected value of Eq. (5) on both sides, we finally obtain

E(b1 2) = β2 + β3b3 2 (6)

where use is made of the facts that (a) for a given sample, b3 2 is a known fixed quantity, (b) β2 and
β3 are constants, and (c) ui is uncorrelated with X2i (as well as X3i ).

13A.2 The Consequences of Including an Irrelevant
Variable: The Unbiasedness Property

For the true model (13.3.6), we have

β̂2 =
∑

yx2∑
x2

2

(1)

and we know that it is unbiased.
For the model (13.3.7), we obtain

α̂2 =
(∑

yx2

)(∑
x2

3

)
−

(∑
yx3

)(∑
x2x3

)
∑

x2
2

∑
x2

3 −
(∑

x2x3

)2 (2)

Now the true model in deviation form is

yi = β2x2 + (ui − ū) (3)

Substituting for yi from model (3) into model (2) and simplifying, we obtain

E(α̂2) = β2

∑
x2

2

∑
x2

3 −
(∑

x2x3

)2

∑
x2

2

∑
x2

3 −
(∑

x2x3

)2

= β2

(4)

that is, α̂2 remains unbiased.
We also obtain

α̂3 =
(∑

yx3

)(∑
x2

2

)
−

(∑
yx2

)(∑
x2x3

)
∑

x2
2

∑
x2

3 −
(∑

x2x3

)2 (5)
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Substituting for yi from model (3) into model (5) and simplifying, we obtain

E(α̂3) = β2

[(∑
x2x3

)(∑
x2

2

)
−

(∑
x2x3

)(∑
x2

2

)]
∑

x2
2

∑
x2

3 −
(∑

x2x3

)2

= 0

(6)

which is its value in the true model since X3 is absent from the true model.

13A.3 The Proof of Equation (13.5.10)

We have

Y = α + βX∗
i + ui (1)

Xi = X∗
i + wi (2)

Therefore, in deviation form we obtain

yi = βx∗
i + (ui − ū) (3)

xi = x∗
i + (wi − w̄) (4)

Now when we use

Yi = α + βXi + ui (5)

we obtain

β̂ =
∑

yx∑
x2

=
∑

[βx∗ + (u − ū)][x∗ + (w − w̄)]∑
[x∗ + (w − w̄)]2

using (3) and (4)

= β
∑

x∗2 + β
∑

x∗(w − w̄) + ∑
x∗(u − ū) + ∑

(u − ū)(w − w̄)∑
x∗2 + 2

∑
x∗(w − w̄) + ∑

(w − w̄)2

Since we cannot take expectation of this expression because the expectation of the ratio of two
variables is not equal to the ratio of their expectations (note: the expectations operator E is a linear
operator), first we divide each term of the numerator and the denominator by n and take the proba-
bility limit, plim (see Appendix A for details of plim), of

β̂ = (1/n)
[
β

∑
x∗2 + β

∑
x∗(w − w̄) + ∑

x∗(u − ū) + ∑
(u − ū)(w − w̄)

]
(1/n)

[∑
x∗2 + 2

∑
x∗(w − w̄) + ∑

(w − w̄)2
]

Now the probability limit of the ratio of two variables is the ratio of their probability limits. Applying
this rule and taking plim of each term, we obtain

plim β̂ = βσ 2
X∗

σ 2
X∗ + σ 2

w

where σ 2
X∗ and σ 2

w are variances of X∗ and w as sample size increases indefinitely and where we have
used the fact that as the sample size increases indefinitely there is no correlation between the errors u
and w as well as between them and the true X∗. From the preceding expression, we finally obtain

plim β̂ = β


 1

1 +
(
σ 2

w

/
σ 2

X∗
)




which is the required result.
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522 Part Two Relaxing the Assumptions of the Classical Model

13A.4 The Proof of Equation (13.6.2)

Since there is no intercept in the model, the estimate of α, according to the formula for the regression
through the origin, is as follows:

α̂ =
∑

Xi Yi∑
X2

i

(1)

Substituting for Y from the true model (13.2.8), we obtain

α̂ =
∑

Xi (βXi u i )∑
X2

i

= β

∑
X2

i u i∑
X2

i

(2)

Statistical theory shows that if ln ui ∼ N (0, σ 2) then

ui = log normal
[
eσ 2/2, eσ 2

(
eσ 2−1

)]
(3)

Therefore, 

E(α̂) = βE




∑
X2

i u i∑
X2

i




= β


E

(
X2

1u1 + X2
2u2 + · · · + X2

nun

)
∑

X2
i




= βeσ 2/2




∑
X2

i∑
X2

i


 = βeσ 2/2

where use is made of the fact that the X ’s are nonstochastic and each ui has an expected value of
eσ 2/2.

Since E(α̂) �= β, α̂ is a biased estimator of β .
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In Part 1 we introduced the classical linear regression model with all its assumptions.
In Part 2 we examined in detail the consequences that ensue when one or more of the
assumptions are not satisfied and what can be done about them. In Part 3 we study some
selected but commonly encountered econometric techniques. In particular, we discuss
these topics: (1) nonlinear-in-the-parameter regression models, (2) qualitative response
regression models, (3) panel data regression models, and (4) dynamic econometric
models.

In Chapter 14, we consider models that are intrinsically nonlinear in the parameters.
With the ready availability of software packages, it is no longer a big challenge to estimate
such models. Although the underlying mathematics may elude some readers, the basic
ideas of nonlinear-in-the-parameter regression models can be explained intuitively. With
suitable examples, this chapter shows how such models are estimated and interpreted.

In Chapter 15, we consider regression models in which the dependent variable is qualita-
tive in nature. This chapter therefore complements Chapter 9, where we discussed models in
which the explanatory variables were qualitative in nature. The basic thrust of this chapter is
on developing models in which the regressand is of the yes or no type. Since ordinary least
squares (OLS) poses several problems in estimating such models, several alternatives have
been developed. In this chapter we consider two such alternatives, namely, the logit model
and the probit model. This chapter also discusses several variants of the qualitative response
models, such as the Tobit model and the Poisson regression model. Several extensions of
the qualitative response models are also briefly discussed, such as the ordered probit,
ordered logit, and multinomial logit.

In Chapter 16 we discuss panel data regression models. Such models combine time
series and cross-section observations. Although by combining such observations we increase
the sample size, panel data regression models pose several estimation challenges. In this
chapter we discuss only the essentials of such models and guide the reader to the appropriate
resources for further study.

Part3Topics in
Econometrics
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In Chapter 17, we consider regression models that include current as well as past, or
lagged, values of the explanatory variables in addition to models that include the lagged
value(s) of the dependent variable as one of the explanatory variables. These models are
called, respectively, distributed lag and autoregressive models. Although such models are
extremely useful in empirical econometrics, they pose some special estimating problems
because they violate one or more assumptions of the classical regression model. We con-
sider these special problems in the context of the Koyck, the adaptive-expectations (AE),
and the partial-adjustment models. We also note the criticism leveled against the AE model
by the advocates of the so-called rational expectations (RE) school.
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Chapter 14
Nonlinear
Regression Models
The major emphasis of this book is on linear regression models, that is, models that are
linear in the parameters and/or models that can be transformed so that they are linear in
the parameters. On occasions, however, for theoretical or empirical reasons we have to
consider models that are nonlinear in the parameters.1 In this chapter we take a look at
such models and study their special features.

14.1 Intrinsically Linear and Intrinsically
Nonlinear Regression Models

When we started our discussion of linear regression models in Chapter 2, we stated that our
concern in this book is basically with models that are linear in the parameters; they may or
may not be linear in the variables. If you refer to Table 2.3, you will see that a model that is
linear in the parameters as well as the variables is a linear regression model and so is a
model that is linear in the parameters but nonlinear in the variables. On the other hand, if a
model is nonlinear in the parameters it is a nonlinear (in-the-parameter) regression model
whether the variables of such a model are linear or not.

However, one has to be careful here, for some models look nonlinear in the parameters
but are inherently or intrinsically linear because with suitable transformation they can be
made linear-in-the-parameter regression models. But if such models cannot be linearized in
the parameters, they are called intrinsically nonlinear regression models. From now on
when we talk about a nonlinear regression model, we mean that it is intrinsically nonlinear.
For brevity, we will call them NLRM.

To drive home the distinction between the two, let us revisit Exercises 2.6 and 2.7. In Ex-
ercise 2.6, Models a, b, c, and e are linear regression models because they are all linear in
the parameters. Model d is a mixed bag, for β2 is linear but not ln β1. But if we let
α = ln β1, then this model is linear in α and β2.

In Exercise 2.7, Models d and e are intrinsically nonlinear because there is no simple way
to linearize them. Model c is obviously a linear regression model. What about Models a

1We noted in Chapter 4 that under the assumption of normally distributed error term, the OLS esti-
mators are not only BLUE but are BUE (best unbiased estimator) in the entire class of estimators,
linear or not. But if we drop the assumption of normality, as Davidson and MacKinnon note, it is
possible to obtain nonlinear and/or biased estimators that may perform better than the OLS estima-
tors. See Russell Davidson and James G. MacKinnon, Estimation and Inference in Econometrics, Oxford
University Press, New York, 1993, p. 161.
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526 Part Three Topics in Econometrics

and b? Taking the logarithms on both sides of a, we obtain ln Yi = β1 + β2 Xi + ui , which is
linear in the parameters. Hence Model a is intrinsically a linear regression model. Model b
is an example of the logistic (probability) distribution function, and we will study this in
Chapter 15. On the surface, it seems that this is a nonlinear regression model. But a simple
mathematical trick will render it a linear regression model, namely,

ln

(
1 − Yi

Yi

)
= β1 + β2 Xi + ui (14.1.1)

Therefore, Model b is intrinsically linear. We will see the utility of models like Eq. (14.1.1)
in the next chapter.

Consider now the famous Cobb–Douglas (C–D) production function. Letting
Y = output, X2 = labor input, and X3 = capital input, we will write this function in three
different ways:

Yi = β1 Xβ2

2i Xβ3

3i eui (14.1.2)

or,

ln Yi = α + β2 ln X2i + β3 ln X3i + ui (14.1.2a)

where α = ln β1. Thus in this format the C–D function is intrinsically linear.
Now consider this version of the C–D function:

Yi = β1 Xβ2

2i Xβ3

3i ui (14.1.3)

or,

ln Yi = α + β2 ln X2i + β3 ln X3i + ln ui (14.1.3a)

where α = ln β1. This model too is linear in the parameters.
But now consider the following version of the C–D function:

Yi = β1 Xβ2

2i Xβ3

3i + ui (14.1.4)

As we just noted, C–D versions (14.1.2a) and (14.1.3a) are intrinsically linear (in the para-
meter) regression models, but there is no way to transform Eq. (14.1.4) so that the trans-
formed model can be made linear in the parameters.2 Therefore, Eq. (14.1.4) is intrinsically
a nonlinear regression model.

Another well-known but intrinsically nonlinear function is the constant elasticity of
substitution (CES) production function of which the Cobb–Douglas production is a spe-
cial case. The CES production takes the following form:

Yi = A
[
δK −β

i + (1 − δ)L−β

i

]−1/β (14.1.5)

where Y = output, K = capital input, L = labor input, A = scale parameter,
δ = distribution parameter (0 < δ < 1), and β = substitution parameter (β ≥ −1).3 No
matter in what form you enter the stochastic error term ui in this production function, there
is no way to make it a linear (in parameter) regression model. It is intrinsically a nonlinear
regression model.

2If you try to log-transform the model, it will not work because ln (A + B ) �= ln A + ln B .
3For properties of the CES production function, see Michael D. Intriligator, Ronald Bodkin, and Cheng
Hsiao, Econometric Models, Techniques, and Applications, 2d ed., Prentice Hall, 1996, pp. 294–295.
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14.2 Estimation of Linear and Nonlinear Regression Models

To see the difference in estimating linear and nonlinear regression models, consider the fol-
lowing two models:

Yi = β1 + β2 Xi + ui (14.2.1)

Yi = β1eβ2 Xi + ui (14.2.2)

By now you know that Eq. (14.2.1) is a linear regression model, whereas Eq. (14.2.2) is a
nonlinear regression model. Regression (14.2.2) is known as the exponential regression
model and is often used to measure the growth of a variable, such as population, GDP, or
money supply.

Suppose we consider estimating the parameters of the two models by ordinary least
squares (OLS). In OLS we minimize the residual sum of squares (RSS), which for model
(14.2.1) is: ∑

û2
i =

∑
(Yi − β̂1 − β̂2 Xi )

2
(14.2.3)

where as usual β̂1 and β̂2 are the OLS estimators of the true β’s. Differentiating the preced-
ing expression with respect to the two unknowns, we obtain the normal equations shown in
Eqs. (3.1.4) and (3.1.5). Solving these equations simultaneously, we obtain the OLS estima-
tors given in Eqs. (3.1.6) and (3.1.7). Observe very carefully that in these equations the
unknowns (β’s) are on the left-hand side and the knowns (X and Y) are on the right-hand
side. As a result we get explicit solutions of the two unknowns in terms of our data.

Now see what happens if we try to minimize the RSS of Eq. (14.2.2). As shown in
Appendix 14A, Section 14A.1, the normal equations corresponding to Eqs. (3.1.4) and
(3.1.5) are as follows:

∑
Yi e

β̂2 Xi = β1e2β̂2 Xi (14.2.4)
∑

Yi Xi e
β̂2 Xi = β̂1

∑
Xi e

2β̂2 Xi (14.2.5)

Unlike the normal equations in the case of the linear regression model, the normal equa-
tions for nonlinear regression have the unknowns (the β̂’s) both on the left- and right-hand
sides of the equations. As a consequence, we cannot obtain explicit solutions of the un-
knowns in terms of the known quantities. To put it differently, the unknowns are expressed
in terms of themselves and the data! Therefore, although we can apply the method of least
squares to estimate the parameters of the nonlinear regression models, we cannot obtain
explicit solutions of the unknowns. Incidentally, OLS applied to a nonlinear regression
model is called nonlinear least squares (NLLS). So, what is the solution? We take this
question up next.

14.3 Estimating Nonlinear Regression Models: 
The Trial-and-Error Method

To set the stage, let us consider a concrete example. The data in Table 14.1 relates to the
management fees that a leading mutual fund in the United States pays to its investment ad-
visors to manage its assets. The fees paid depend on the net asset value of the fund. As you
can see, the higher the net asset value of the fund, the lower are the advisory fees, which can
be seen clearly from Figure 14.1.
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528 Part Three Topics in Econometrics

To see how the exponential regression model in Eq. (14.2.2) fits the data given in Table
14.1, we can proceed by trial and error. Suppose we assume that initially β1 = 0.45 and
β2 = 0.01. These are pure guesses, sometimes based on prior experience or prior empirical
work or obtained by just fitting a linear regression model even though it may not be appro-
priate. At this stage do not worry about how these values are obtained.

Since we know the values of β1 and β2, we can write Eq. (14.2.2) as:

ui = Yi − β1eβ2 Xi = Yi − 0.45e0.01Xi (14.3.1)

Therefore, ∑
u2

i =
∑

(Yi − 0.45e0.01Xi )2 (14.3.2)

Since Y, X, β1, and β2 are known, we can easily find the error sum of squares in Eq. (14.3.2).4

Remember that in OLS our objective is to find those values of the unknown parameters that
will make the error sum of squares as small as possible. This will happen if the estimated

0
0.36

10 20 30 40

Asset, billions of dollars

50 60 70

0.40

0.44

0.48

F
ee

, %

0.52

0.56FIGURE 14.1
Relationship of
advisory fees to fund
assets.

TABLE 14.1
Advisory Fees
Charged and Asset
Size

Fee, % Asset*

1 0.520 0.5
2 0.508 5.0
3 0.484 10
4 0.46 15
5 0.4398 20
6 0.4238 25
7 0.4115 30
8 0.402 35
9 0.3944 40

10 0.388 45
11 0.3825 55
12 0.3738 60

*Asset represents net asset value, billions of dollars.

4Note that we call 
∑

u2
i the error sum of squares and not the usual residual sum of squares because

the values of the parameters are assumed to be known.
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Y values from the model are as close as possible to the actual Y values. With the given
values, we obtain 

∑
u2

i = 0.3044. But how do we know that this is the least possible error
sum of squares that we can obtain? What happens if you choose another value for β1 and
β2, say, 0.50 and −0.01, respectively? Repeating the procedure just laid down, we find that
we now obtain 

∑
u2

i = 0.0073. Obviously, this error sum of squares is much smaller than
the one obtained before, namely, 0.3044. But how do we know that we have reached the
lowest possible error sum of squares, if by choosing yet another set of values for the β’s, we
will obtain yet another error sum of squares?

As you can see, such a trial-and-error, or iterative, process can be easily implemented.
And if one has infinite time and infinite patience, the trial-and-error process may ultimately
produce values of β1 and β2 that may guarantee the lowest possible error sum of squares. But
you might ask, how did we go from (β1 = 0.45; β2 = 0.01) to (β1 = 0.50; β2 = −0.01)?
Clearly, we need some kind of algorithm that will tell us how we go from one set of values
of the unknowns to another set before we stop. Fortunately such algorithms are available,
and we discuss them in the next section.

14.4 Approaches to Estimating Nonlinear Regression Models

There are several approaches, or algorithms, to NLRMs: (1) direct search or trial and error,
(2) direct optimization, and (3) iterative linearization.5

Direct Search or Trial-and-Error or Derivative-Free Method
In the previous section we showed how this method works. Although intuitively appealing
because it does not require the use of calculus methods as the other methods do, this
method is generally not used. First, if an NLRM involves several parameters, the method
becomes very cumbersome and computationally expensive. For example, if an NLRM in-
volves 5 parameters and 25 alternative values for each parameter are considered, you will
have to compute the error sum of squares (25)5 = 9,765,625 times! Second, there is no
guarantee that the final set of parameter values you have selected will necessarily give you
the absolute minimum error sum of squares. In the language of calculus, you may obtain a
local and not an absolute minimum. In fact, no method guarantees a global minimum.

Direct Optimization
In direct optimization we differentiate the error sum of squares with respect to each unknown
coefficient, or parameter, set the resulting equation to zero, and solve the resulting normal
equations simultaneously. We have already seen this in Eqs. (14.2.4) and (14.2.5). But as you
can see from these equations, they cannot be solved explicitly or analytically. Some iterative
routine is therefore called for. One routine is called the method of steepest descent. We will
not discuss the technical details of this method as they are somewhat involved, but the reader
can find the details in the references. Like the method of trial and error, the method of steepest
descent also involves selecting initial trial values of the unknown parameters but then it pro-
ceeds more systematically than the hit-or-miss or trial-and-error method. One disadvantage of
this method is that it may converge to the final values of the parameters extremely slowly.

5The following discussion leans heavily on these sources: Robert S. Pindyck and Daniel L. Rubinfeld,
Econometric Models and Economic Forecasts, 4th ed., McGraw-Hill, 1998, Chapter 10; Norman R.
Draper and Harry Smith, Applied Regression Analysis, 3d ed., John Wiley & Sons, 1998, Chapter 24;
Arthur S. Goldberger, A Course in Econometrics, Harvard University Press, 1991, Chapter 29; Russell
Davidson and James MacKinnon, op. cit., pp. 201–207; John Fox, Applied Regression Analysis, Linear
Models, and Related Methods, Sage Publications, 1997, pp. 393–400; and Ronald Gallant, Nonlinear
Statistical Models, John Wiley and Sons, 1987.
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Iterative Linearization Method
In this method we linearize a nonlinear equation around some initial values of the parame-
ters. The linearized equation is then estimated by OLS and the initially chosen values are
adjusted. These adjusted values are used to relinearize the model, and again we estimate it
by OLS and readjust the estimated values. This process is continued until there is no sub-
stantial change in the estimated values from the last couple of iterations. The main tech-
nique used in linearizing a nonlinear equation is the Taylor series expansion from
calculus. Rudimentary details of this method are given in Appendix 14A, Section 14A.2.
Estimating NLRM using Taylor series expansion is systematized in two algorithms, known
as the Gauss–Newton iterative method and the Newton–Raphson iterative method.
Since one or both of these methods are now incorporated in several computer packages,
and since a discussion of their technical details will take us far beyond the scope of this
book, there is no need to dwell on them here.6 In the next section we discuss some exam-
ples using these methods.

14.5 Illustrative Examples

6There is another method that is sometimes used, called the Marquard method, which is a com-
promise between the method of steepest descent and the linearization (or Taylor series) method. The
interested reader may consult the references for the details of this method.
7EViews provides three options: quadratic hill climbing, Newton–Raphson, and Berndt–
Hall–Hall–Hausman. The default option is quadratic hill climbing, which is a variation of the 
Newton–Raphson method.

EXAMPLE 14.1
Mutual Fund
Advisory Fees

Refer to the data given in Table 14.1 and the NLRM (14.2.2). Using the EViews 6 nonlinear
regression routine, which uses the linearization method,7 we obtained the following
regression results; the coefficients, their standard errors, and their t values are given in a
tabular form:

Variable Coefficient Std. Error t Value p Value

Intercept 0.5089 0.0074 68.2246 0.0000
Asset −0.0059 0.00048 −12.3150 0.0000

R 2 = 0.9385 d = 0.3493

From these results, we can write the estimated model as:

F̂eei = 0.5089 Asset−0.0059 (14.5.1)

Before we discuss these results, it may be noted that if you do not supply the initial values
of the parameters to start the linearization process, EViews will do it on its own. It took
EViews five iterations to obtain the results shown in Eq. (14.5.1). However, you can supply
your own initial values to start the process. To demonstrate, we chose the initial value of
β1 = 0.45 and β2 = 0.01. We obtained the same results as in Eq. (14.5.1) but it took eight
iterations. It is important to note that fewer iterations will be required if your initial values are
not very far from the final values. In some cases you can choose the initial values of the
parameters by simply running an OLS regression of the regressand on the regressor(s),
simply ignoring the nonlinearities. For instance, using the data in Table 14.1, if you were
to regress fee on assets, the OLS estimate of β1 is 0.5028 and that of β2 is −0.002, which
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are much closer to the final values given in Eq. (14.5.1). (For the technical details, see
Appendix 14A, Section 14A.3.)

Now about the properties of nonlinear least squares (NLLS) estimators. You may recall
that, in the case of linear regression models with normally distributed error terms, we were
able to develop exact inference procedures (i.e., test hypotheses) using the t, F, and χ2

tests in small as well as large samples. Unfortunately, this is not the case with NLRMs, even
with normally distributed error terms. The NLLS estimators are not normally distributed, are
not unbiased, and do not have minimum variance in finite, or small, samples. As a result, we
cannot use the t test (to test the significance of an individual coefficient) or the F test (to
test the overall significance of the estimated regression) because we cannot obtain an
unbiased estimate of the error variance σ 2 from the estimated residuals. Furthermore, the
residuals (the difference between the actual Y values and the estimated Y values from the
NLRM) do not necessarily sum to zero, ESS and RSS do not necessarily add up to the TSS,
and therefore R 2 = ESS/TSS may not be a meaningful descriptive statistic for such mod-
els. However, we can compute R 2 as:

R 2 = 1 −
∑

û2
i∑

(Y i − Ȳ )2
(14.5.2)

where Y = regressand and û i = Yi − Ŷ i , where Ŷ i are the estimated Y values from the
(fitted) NLRM.

Consequently, inferences about the regression parameters in nonlinear regression are
usually based on large-sample theory. This theory tells us that the least-squares and max-
imum likelihood estimators for nonlinear regression models with normal error terms,
when the sample size is large, are approximately normally distributed and almost unbi-
ased, and have almost minimum variance. This large-sample theory also applies when the
error terms are not normally distributed.8

In short, then, all inference procedures in NLRM are large sample, or asymptotic.
Returning to Example 14.1, the t statistics given in Eq. (14.5.1) are meaningful only if
interpreted in the large-sample context. In that sense, we can say that estimated coeffi-
cients shown in Eq. (14.5.1) are individually statistically significant. Of course, our sample in
the present instance is rather small.

Returning to Eq. (14.5.1), how do we find out the rate of change of Y ( = fee) with re-
spect to X (asset size)? Using the basic rules of derivatives, the reader can see that the rate
of change of Y with respect to X is:

dY
dX

= β1β2e β2 X = (−0.0059)(0.5089)e−0.0059X (14.5.3)

As can be seen, the rate of change of fee depends on the value of the assets. For
example, if X = 20 (million), the expected rate of change in the fees charged can be
seen from Eq. (14.5.3) to be about −0.0031 percent. Of course, this answer will
change depending on the X value used in the computation. Judged by the R2 as com-
puted from Eq. (14.5.2), the R2 value of 0.9385 suggests that the chosen NLRM fits the
data in Table 14.1 quite well. The estimated Durbin–Watson value of 0.3493 may sug-
gest that there is autocorrelation or possibly model specification error. Although there
are procedures to take care of these problems as well as the problem of heteroscedas-
ticity in NLRM, we will not pursue these topics here. The interested reader may consult
the references.

8John Neter, Michael H. Kutner, Christopher J. Nachtsheim, and William Wasserman, Applied Regres-
sion Analysis, 3d ed., Irwin, 1996, pp. 548–549.

EXAMPLE 14.1
(Continued)
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EXAMPLE 14.2
The Cobb–
Douglas
Production
Function of 
the Mexican
Economy

Refer to the data given in Exercise 14.9 (Table 14.3). These data refer to the Mexican econ-
omy for years 1955–1974. We will see if the NLRM given in Eq. (14.1.4) fits the data, not-
ing that Y = output, X2 = labor input, and X3 = capital input. Using EViews 6, we obtained
the following regression results, after 32 iterations.

Variable Coefficient Std. Error t Value p Value

Intercept 0.5292 0.2712 1.9511 0.0677
Labor 0.1810 0.1412 1.2814 0.2173
Capital 0.8827 0.0708 12.4658 0.0000

R 2 = 0.9942 d = 0.2899

Therefore, the estimated Cobb–Douglas production function is:

ĜDPt = 0.5292Labor0.1810
t Capital0.8827

t (14.5.4)

Interpreted asymptotically, the equation shows that only the coefficient of the capital input is
significant in this model. In Exercise 14.9 you are asked to compare these results with those
obtained from the multiplicative Cobb–Douglas production function as given in Eq. (14.1.2).

EXAMPLE 14.3
Growth of U.S.
Population,
1970–2007

The Table in Exercise 14.8 gives data on total U.S. population for the period 1970–2007.
A logistic model of the following type is often used to measure the growth of some
populations, human beings, bacteria, etc.:

Yt = β1

1 + e (β2+βt
3)

+ ut (14.5.5)

Where Y = population, in millions; t = time, measured chronologically; and the β’s are the
parameters. 

This model is nonlinear in the parameters; there is no simple way to convert it into a model
that is linear in the parameters. So we will need to use one of the nonlinear estimation meth-
ods to estimate the parameters. Notice an interesting feature of this model: Although there
are only two variables in the model, population and time, there are three unknown parame-
ters, which shows that in a NLRM there can be more parameters than variables.

An attempt to fit Eq. (14.5.5) to our data was not successful, as all the estimated coef-
ficients were statistically insignificant. This is probably not surprising, for if we plot popu-
lation against time, we obtain Figure 14.2.
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This figure shows that there is an almost linear relationship between the two vari-
ables. If we plot the logarithm of population against time, we obtain the following 
figure:

The slope of this figure (multiplied by 100) gives us the growth rate of population
(why?).

As a matter of fact, if we regress the log of population on time, we get the following
results:

Dependent Variable: LPOPULATION
Method: Least Squares
Sample: 1970–2007
Included observations: 38

Coefficient Std. Error t-Statistic Prob.

C -8.710413 0.147737 -58.95892 0.0000
YEAR 0.010628 7.43E-05 143.0568 0.0000

R-squared 0.998244 Mean dependent var. 12.42405
Adjusted R-squared 0.998195 S.D. dependent var. 0.118217
S.E. of regression 0.005022 Akaike info criterion -7.698713
Sum squared resid. 0.000908 Schwarz criterion -7.612525
Log likelihood 148.2756 Hannan–Quinn criter. -7.668048
F-statistic 20465.26 Durbin–Watson stat. 0.366006
Prob. (F-statistic) 0.000000

This table shows that, over the period 1970–2007, the U.S. population has been growing
at the rate of about 1.06 percent per year. The R2 value of 0.998 suggests that there is
almost a perfect fit.

This example brings out an important point that sometimes a linear (in the parameter)
model might be preferable to a nonlinear (in the parameter) model.
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EXAMPLE 14.3
(Continued)
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EXAMPLE 14.4
Box-Cox
Transformation:
U.S. Population
1970–2007

In Appendix 6A.5 we briefly considered the Box-Cox transformation. Let us continue with
Example 14.3 but assume the following model:

Populationλ = β1 + β2 Year + u

As noted in Appendix 6A.5, depending on the value of λ we have the following possibilities:

Value of λ Model

−1
1

Population
= β1 + β2 Year + u

0 ln Population = β1 + β2 Year + u

1 Populationi = β1 + β2 Year + u

The first is an inverse model, the second is a semilog model (which we have already esti-
mated in Example 14.3), and the third is a linear (in the variables) model.

Which of these models is appropriate for the population data? The Box-Cox routine in
STATA (Version 10) can be used to answer this question:

Test Restricted LR statistic p-value
H0: Log likelihood chi2 Prob > chi2

θ = −1 −444.42475 0.14 0.707
θ = 0 −444.38813 0.07 0.794
θ = 1 −444.75684 0.81 0.369

Note: In our notation, theta (θ) is the same thing as lamda (λ). The table shows that on the
basis of the likelihood ratio (LR) test, we cannot reject any of these λ values as possible val-
ues for power of population; that is, in the present example, linear, inverse and semilog
models are equal candidates to depict the behavior of population over the sample period
1970–2007. Therefore, we present the results of all three models:

Dependent variable Intercept Slope R2

1/Population 0.000089 −4.28e-08 0.9986

t (166.14) (−1568.10)

In Population −8.7104 0.0106 0.9982

t (−58.96) (143.06)

Population −5042627 2661.825 0.9928

t (−66.92) (70.24)

In all of these models the estimated coefficients are all highly statistically significant. But
note that the R2 values are not directly comparable because the dependent variables in the
three models are different.

This example shows how nonlinear estimation techniques can be applied in concrete
situations.
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The main points discussed in this chapter can be summarized as follows:

1. Although linear regression models predominate theory and practice, there are occasions
where nonlinear-in-the-parameter regression models (NLRM) are useful.

2. The mathematics underlying linear regression models is comparatively simple in
that one can obtain explicit, or analytical, solutions of the coefficients of such mod-
els. The small-sample and large-sample theory of inference of such models is well
established.

3. In contrast, for intrinsically nonlinear regression models (NLRM), parameter values
cannot be obtained explicitly. They have to be estimated numerically, that is, by iterative
procedures.

4. There are several methods of obtaining estimates of NLRMs, such as (1) trial and
error, (2) nonlinear least squares (NLLS), and (3) linearization through Taylor series
expansion.

5. Computer packages now have built-in routines, such as Gauss–Newton, Newton–
Raphson, and Marquard. These are all iterative routines.

6. NLLS estimators do not possess optimal properties in finite samples, but in large sam-
ples they do have such properties. Therefore, the results of NLLS in small samples must
be interpreted carefully.

7. Autocorrelation, heteroscedasticity, and model specification problems can plague
NLRM, as they do linear regression models.

8. We illustrated the NLLS with several examples. With the ready availability of user-
friendly software packages, estimation of NLRM should no longer be a mystery. There-
fore, the reader should not shy away from such models whenever theoretical or practical
reasons dictate their use. As a matter of fact, if you refer to Exercise 12.10, you will
see from Eq. (1) that it is intrinsically a nonlinear regression model that should be
estimated as such.

Chapter 14 Nonlinear Regression Models 535

Summary and
Conclusions

Questions
14.1. What is meant by intrinsically linear and intrinsically nonlinear regression models?

Give some examples.

14.2. Since the error term in the Cobb–Douglas production function can be entered multi-
plicatively or additively, how would you decide between the two?

14.3. What is the difference between OLS and nonlinear least-squares (NLLS) 
estimation?

14.4. The relationship between pressure and temperature in saturated steam can be
expressed as:*

Y = β1(10)β2t/(γ+t) + ut

where Y = pressure and t = temperature. Using the method of nonlinear least 
squares (NLLS), obtain the normal equations for this model.

EXERCISES

*Adapted from Draper and Smith, op. cit., p. 554.
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14.5. State whether the following statements are true or false. Give your reasoning.

a. Statistical inference in NLLS regression cannot be made on the basis of the usual
t, F, and χ2 tests even if the error term is assumed to be normally distributed.

b. The coefficient of determination (R2) is not a particularly meaningful number for
an NLRM.

14.6. How would you linearize the CES production function discussed in the chapter?
Show the necessary steps.

14.7. Models that describe the behavior of a variable over time are called growth models.
Such models are used in a variety of fields, such as economics, biology, botany, ecol-
ogy, and demography. Growth models can take a variety of forms, both linear and non-
linear. Consider the following models, where Y is the variable whose growth we want
to measure; t is time, measured chronologically; and ut is the stochastic error term.

a. Yt = β1 + β2t + ut

b. ln Yt = β1 + β2t + ut

c. Logistic growth model: Yt = β1

1 + β2e−β3 t + ut

d. Gompertz growth model: Yt = β1e−β2e−β3 t + ut

Find out the properties of these models by considering the growth of Y in relation
to time.

Empirical Exercises

14.8. The data in Table 14.2 gives U.S. population, in millions of persons, for the period
1970–2007. Fit the growth models given in Exercise 14.7 and decide which model
gives a better fit. Interpret the parameters of the model.

14.9. Table 14.3 gives data on real GDP, labor, and capital for Mexico for the period
1955–1974. See if the multiplicative Cobb–Douglas production function given in
Eq. (14.1.2a) fits these data. Compare your results with those obtained from fitting
the additive Cobb–Douglas production function given in Eq. (14.1.4), whose results
are given in Example 14.2. Which is a better fit?

TABLE 14.2
U.S. Population
(Millions)

Year Population

1970 205,052
1971 207,661
1972 209,896
1973 211,909
1974 213,854
1975 215,973
1976 218,035
1977 220,239
1978 222,585
1979 225,055
1980 227,726
1981 229,966
1982 232,188
1983 234,307
1984 236,348
1985 238,466
1986 240,651
1987 242,804
1988 245,021

Year Population

1989 247,342
1990 250,132
1991 253,493
1992 256,894
1993 260,255
1994 263,436
1995 266,557
1996 269,667
1997 272,912
1998 276,115
1999 279,295
2000 282,407
2001 285,339
2002 288,189
2003 290,941
2004 293,609
2005 299,801
2006 299,157
2007 302,405

Source: Economic Report of the
President, 2008.
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TABLE 14.3 Production Function Data for the Mexican Economy

Observation GDP Labor Capital Observation GDP Labor Capital

1955 114,043 8,310 182,113 1965 212,323 11,746 315,715
1956 120,410 8,529 193,749 1966 226,977 11,521 337,642
1957 129,187 8,738 205,192 1967 241,194 11,540 363,599
1958 134,705 8,952 215,130 1968 260,881 12,066 391,847
1959 139,960 9,171 225,021 1969 277,498 12,297 422,382
1960 150,511 9,569 237,026 1970 296,530 12,955 455,049
1961 157,897 9,527 248,897 1971 306,712 13,338 484,677
1962 165,286 9,662 260,661 1972 329,030 13,738 520,553
1963 178,491 10,334 275,466 1973 354,057 15,924 561,531
1964 199,457 10,981 295,378 1974 374,977 14,154 609,825

Notes: GDP is in millions of 1960 pesos. 
Labor is in thousands of people.
Capital is in millions of 1960 pesos.

Source: Victor J. Elias, Sources of Growth: A Study of Seven Latin American Economies, International Center for Economic Growth, ICS Press, San Francisco, 1992, 
Tables E-5, E-12, E-14.

Appendix 14A

14A.1 Derivation of Equations (14.2.4) and (14.2.5)

Write Eq. (14.2.2) as

u i = Yi − β1eβ2 Xi (1)

Therefore, ∑
u2

i =
∑(

Yi − β1eβ2 Xi
)2 (2)

The error sum of squares is thus a function of β1 and β2, since the values of Y and X are known. There-
fore, to minimize the error sum of squares, we have to partially differentiate it with respect to the two
unknowns, which gives:

∂
∑

u2
i

∂β1
= 2

∑(
Yi − β1eβ2 Xi

)(−1eβ2 Xi
)

(3)

∂
∑

u2
i

∂β2
= 2

∑(
Yi − β1eβ2 Xi

)(−β1eβ2 Xi Xi
)

(4)

By the first-order condition of optimization, setting the preceding equations to zero and solving them
simultaneously, we obtain Eqs. (14.2.4) and (14.2.5). Note that in differentiating the error sum of
squares we have used the chain rule.

14A.2 The Linearization Method

Students familiar with calculus will recall Taylor’s theorem, which states that any arbitrary function
f (X) that is continuous and has a continuous nth-order derivative can be approximated around point
X = X0 by a polynomial function and a remainder as follows:

f (X) = f (X0)

0!
+ f ′(X0)(X − X0)

1!
+ f ′′(X0)(X − X0)2

2!
+ · · ·

+ f n(X0)(X − X0)n

n!
+ R (1)
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where f ′(X0) is the first derivative of f (X) evaluated at X = X0, f ′′(X0) is the second derivative of
f (X) evaluated at X = X0 and so on, where n! (read n factorial) stands for n(n − 1)(n − 2) . . . 1 with
the convention that 0! = 1, and R stands for the remainder. If we take n = 1, we get a linear
approximation; choosing n = 2, we get a second-degree polynomial approximation. As you can
expect, the higher the order of the polynomial, the better the approximation to the original function.
The series given in Eq. (1) is called Taylor’s series expansion of f(X) around the point X = X0. As
an example, consider the function:

Y = f (X) = α1 + α2 X + α3 X2 + α4 X3

Suppose we want to approximate it at X = 0. We now obtain:

f (0) = α1 f ′(0) = α2 f ′′(0) = 2α3 f ′′′(0) = 6α4

Hence we can obtain the following approximations:

First order: Y = α1 + f ′(0)

1!
= α1 + a2 X + remainder

(= α3 X2 + α4 X3)

Second order: Y = f (0) + f ′(0)

1!
X + f ′′(0)

2!
X2

= α1 + α2 X + α3 X2 + remainder
(= α4 X3)

Third order: Y = α1 + α2 X + α3 X2 + α4 X3

The third-order approximation reproduces the original equation exactly.
The objective of Taylor series approximation is usually to choose a lower-order polynomial in the

hope that the remainder term will be inconsequential. It is often used to approximate a nonlinear
function by a linear function, by dropping the higher-order terms.

The Taylor series approximation can be easily extended to a function containing more than one X.
For example, consider the following function:

Y = f (X, Z ) (2)

and suppose we want to expand it around X = a and Z = b. Taylor’s theorem shows that

f (x , z) = f (a, b) + fx (a, b)(x − a)

+ fz(a, b) f (z − b) + 1

2!
[ fxx (a, b)(x − a)2 (3)

− 2 fxz(a, b)(x − a)(z − b) + fzz(a, b)(z − b)2] + · · ·

where fx = partial derivative of the function with respect to (w.r.t.) X, fxx = second partial derivative
of the function w.r.t. X and similarly for the variable Z. If we want a linear approximation to the function,
we will use the first two terms in Eq. (3), if we want a quadratic, or second-degree, approximation, we
will use the first three terms in Eq. (3), and so on.

14A.3 Linear Approximation of the Exponential
Function Given in Equation (14.2.2)

The function under consideration is:

Y = f (β1, β2) = β1eβ2 X (1)

Note: For ease of manipulation, we have dropped the observation subscript. 
Remember that in this function the unknowns are the β coefficients. Let us linearize this function

at β1 = β∗
1 and β2 = β∗

2 , where the starred quantities are given fixed values. To linearize this, we pro-
ceed as follows:

Y = f (β1, β2) = f (β∗
1 , β∗

2 ) + fβ1 (β∗
1 , β∗

2 )(β1 − β∗
1 ) + fβ2 (β∗

1 , β∗
2 )(β2 − β∗

2 ) (2)
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where fβ1 and fβ2 are the partial derivatives of the function (1) with respect to the unknowns and these
derivatives will be evaluated at the (assumed) starred values of the unknown parameters. Note that we
are using only the first derivatives in the preceding expression, since we are linearizing the function.
Now assume that β∗

1 = 0.45 and β∗
2 = 0.01, which are pure guess–estimates of the true coefficients.

Now

f (β∗
1 = 0.45, β∗

2 = 0.01) = 0.45e0.01Xi

(3)
fβ1 = eβ2 Xi and fβ2 = β1 Xi eβ2 Xi

by the standard rules of differentiation. Evaluating these derivatives at the given values and reverting
to Eq. (2), we obtain:

Yi = 0.45e0.01Xi + e0.01Xi (β1 − 0.45) + (0.45)Xi e
0.01Xi (β2 − 0.01) (4)

which we write as:

(Yi − 0.45e0.01Xi ) = e0.01Xi α1 + 0.45Xi e
0.01Xi α2 (5)

where

α1 = (β1 − 0.45) and α2 = (β2 − 0.01) (6)

Now let Y ∗
i = (Yi − 0.45e0.01Xi ), X1 = e0.01Xi , and X2i = 0.45Xi e0.01Xi . Using these definitions and

adding the error term ui , we can finally write Eq. (5) as:

Y ∗
i = α1 X1i + α2 X2i + u i (7)

Lo and behold, we now have a linear regression model. Since Y ∗
i , X1i , and X2i can be readily com-

puted from the data, we can easily estimate Eq. (7) by OLS and obtain the values of α1 and α2. Then,
from Eq. (6), we obtain:

β1 = α̂1 + 0.45 and β2 = α̂2 + 0.01 (8)

Call these values β∗∗
1 and β∗∗

2 , respectively. Using these (revised) values, we can start the iterative
process given in Eq. (2), obtaining yet another set of values of the β coefficients. We can go on iter-
ating (or linearizing) in this fashion until there is no substantial change in the values of the β coef-
ficients. In Example 14.1, it took five iterations, but for the Mexican Cobb–Douglas example
(Example 14.2), it took 32 iterations. But the underlying logic behind these iterations is the proce-
dure just illustrated.

For the mutual fund fee structure example in Section 14.3, the Y*, X1, and X2 as given in Eq. (6)
are as shown in Table 14.4; the basic data are given in Table 14.1. From these values, the regression
results corresponding to Eq. (7) are:

Dependent variable: Y*

Method: Least squares

Variable Coefficient Std. Error t-Statistic Prob.

X1 0.022739 0.014126 1.609705 0.1385
X2 -0.010693 0.000790 -13.52990 0.0000

R2 = 0.968324 Durbin–Watson d statistic = 0.308883

Now using Eq. (8), the reader can verify that

β∗
1 = 0.4727 and β∗

2 = −0.00069 (9)
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Contrast these numbers with the initial guesses of 0.45 and 0.01, respectively, for the two para-
meters. Using the new estimates given in Eq. (9), you can start the iterative procedure once more and
go on iterating until there is “convergence” in the sense that the final round of the estimates does not
differ much from the round before that. Of course, you will require fewer iterations if your initial
guess is closer to the final values. Also, notice that we have used only the linear term in Taylor’s series
expansion. If you were to use the quadratic or higher-order terms in the expansion, perhaps you would
reach the final values much quicker. But in many applications the linear approximation has proved to
be quite good.

TABLE 14.4 Y * X1 X2

0.067744 1.005013 0.226128
0.034928 1.051271 2.365360

−0.013327 1.105171 4.973269
−0.062825 1.161834 7.842381
−0.109831 1.221403 10.99262
−0.154011 1.284025 14.44529
−0.195936 1.349859 18.22309
−0.236580 1.419068 22.35031
−0.276921 1.491825 26.85284
−0.317740 1.568312 31.75832
−0.397464 1.733253 42.89801
−0.446153 1.822119 49.19721
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In all the regression models that we have considered so far, we have implicitly assumed that
the regressand, the dependent variable, or the response variable Y is quantitative, whereas
the explanatory variables are either quantitative, qualitative (or dummy), or a mixture
thereof. In fact, in Chapter 9, on dummy variables, we saw how the dummy regressors are
introduced in a regression model and what role they play in specific situations.

In this chapter we consider several models in which the regressand itself is qualitative in
nature. Although increasingly used in various areas of social sciences and medical research,
qualitative response regression models pose interesting estimation and interpretation chal-
lenges. In this chapter we only touch on some of the major themes in this area, leaving the
details to more specialized books.1

15.1 The Nature of Qualitative Response Models

Suppose we want to study the labor force participation (LFP) decision of adult males. Since
an adult is either in the labor force or not, LFP is a yes or no decision. Hence, the response
variable, or regressand, can take only two values, say, 1 if the person is in the labor
force and 0 if he or she is not. In other words, the regressand is a binary, or dichotomous,
variable. Labor economics research suggests that the LFP decision is a function of the
unemployment rate, average wage rate, education, family income, etc.

As another example, consider U.S. presidential elections. Assume that there are two
political parties, Democratic and Republican. The dependent variable here is vote choice
between the two political parties. Suppose we let Y = 1, if the vote is for a Democratic
candidate, and Y = 0, if the vote is for a Republican candidate. A considerable amount of
research on this topic has been done by the economist Ray Fair of Yale University and sev-
eral political scientists.2 Some of the variables used in the vote choice are growth rate of
GDP, unemployment and inflation rates, whether the candidate is running for reelection, etc.

Chapter 15
Qualitative Response
Regression Models

1At the introductory level, the reader may find the following sources very useful. Daniel A. Powers
and Yu Xie, Statistical Methods for Categorical Data Analysis, Academic Press, 2000; John H. Aldrich
and Forrest Nelson, Linear Probability, Logit, and Probit Models, Sage Publications, 1984; and Tim
Futing Liao, Interpreting Probability Models: Logit, Probit and Other Generalized Linear Models, Sage
Publications, 1994. For a very comprehensive review of the literature, see G. S. Maddala, Limited-
Dependent and Qualitative Variables in Econometrics, Cambridge University Press, 1983.
2See, for example, Ray Fair, “Econometrics and Presidential Elections,” Journal of Economic Perspective,
Summer 1996, pp. 89–102, and Michael S. Lewis-Beck, Economics and Elections: The Major Western
Democracies, University of Michigan Press, Ann Arbor, 1980.
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For the present purposes, the important thing to note is that the regressand is a qualitative
variable.

One can think of several other examples where the regressand is qualitative in nature.Thus,
a family either owns a house or it does not, it has disability insurance or it does not, both hus-
band and wife are in the labor force or only one spouse is. Similarly, a certain drug is effective
in curing an illness or it is not. A firm decides to declare a stock dividend or not, a senator
decides to vote for a tax cut or not, a U.S. president decides to veto a bill or accept it, etc.

We do not have to restrict our response variable to yes/no or dichotomous categories
only. Returning to our presidential elections example, suppose there are three parties,
Democratic, Republican, and Independent. The response variable here is trichotomous. In
general, we can have a polychotomous (or multiple-category) response variable.

What we plan to do is to first consider the dichotomous regressand and then consider
various extensions of the basic model. But before we do that, it is important to note a fun-
damental difference between a regression model where the regressand Y is quantitative and
a model where it is qualitative.

In a model where Y is quantitative, our objective is to estimate its expected, or mean,
value given the values of the regressors. In terms of Chapter 2, what we want is
E(Yi | X1i , X2i , . . . , Xki ), where the X ’s are regressors, both quantitative and qualitative. In
models where Y is qualitative, our objective is to find the probability of something happen-
ing, such as voting for a Democratic candidate, or owning a house, or belonging to a union,
or participating in a sport, etc. Hence, qualitative response regression models are often
known as probability models.

In the rest of this chapter, we seek answers to the following questions:

1. How do we estimate qualitative response regression models? Can we simply estimate
them with the usual OLS procedures?

2. Are there special inference problems? In other words, is the hypothesis testing proce-
dure any different from the ones we have learned so far?

3. If a regressand is qualitative, how can we measure the goodness of fit of such models?
Is the conventionally computed R2 of any value in such models?

4. Once we go beyond the dichotomous regressand case, how do we estimate and interpret
the polychotomous regression models? Also, how do we handle models in which the re-
gressand is ordinal, that is, an ordered categorical variable, such as schooling (less than
8 years, 8 to 11 years, 12 years, and 13 or more years), or the regressand is nominal where
there is no inherent ordering, such as ethnicity (Black, White, Hispanic, Asian, and other)?

5. How do we model phenomena such as the number of visits to one’s physician per year,
the number of patents received by a firm in a given year, the number of articles published
by a college professor in a year, the number of telephone calls received in a span of
5 minutes, or the number of cars passing through a toll booth in a span of 5 minutes?
Such phenomena, called count data, or rare event data, are an example of the Poisson
(probability) process.

In this chapter we provide answers to some of these questions at the elementary level,
for some of the topics are quite advanced and require more background in mathematics and
statistics than assumed in this book. References cited in the various footnotes may be
consulted for further details.

We start our study of qualitative response models by first considering the binary
response regression model. There are four approaches to developing a probability model
for a binary response variable:

1. The linear probability model (LPM)
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2. The logit model

3. The probit model

4. The tobit model

Because of its comparative simplicity, and because it can be estimated by ordinary least
squares (OLS), we will first consider the LPM, leaving the other two models for subsequent
sections.

15.2 The Linear Probability Model (LPM)

To fix ideas, consider the following regression model:

Yi = β1 + β2 Xi + ui (15.2.1)

where X = family income and Y = 1 if the family owns a house and 0 if it does not own a
house.

Model (15.2.1) looks like a typical linear regression model but because the regressand
is binary, or dichotomous, it is called a linear probability model (LPM). This is because
the conditional expectation of Yi given Xi , E(Yi | Xi ), can be interpreted as the conditional
probability that the event will occur given Xi , that is, Pr (Yi = 1 | Xi ). Thus, in our exam-
ple, E(Yi | Xi ) gives the probability of a family owning a house and whose income is the
given amount Xi .

The justification of the name LPM for models like Eq. (15.2.1) can be seen as follows:
Assuming E(ui ) = 0, as usual (to obtain unbiased estimators), we obtain

E(Yi | Xi ) = β1 + β2 Xi (15.2.2)

Now, if Pi = probability that Yi = 1 (that is, the event occurs), and (1 − Pi ) = probability
that Yi = 0 (that is, the event does not occur), the variable Yi has the following (probabil-
ity) distribution:

Yi Probability

0 1 − Pi

1 Pi

Total 1

That is, Yi follows the Bernoulli probability distribution.
Now, by the definition of mathematical expectation, we obtain:

E(Yi ) = 0(1 − Pi ) + 1( Pi ) = Pi (15.2.3)

Comparing Eq. (15.2.2) with Eq. (15.2.3), we can equate

E(Yi | Xi ) = β1 + β2 Xi = Pi (15.2.4)

that is, the conditional expectation of the model (15.2.1) can, in fact, be interpreted as the
conditional probability of Yi . In general, the expectation of a Bernoulli random variable
is the probability that the random variable equals 1. In passing note that if there are n
independent trials, each with a probability p of success and probability (1 − p) of failure,
and X of these trials represent the number of successes, then X is said to follow the
binomial distribution. The mean of the binomial distribution is np and its variance is
np(1 − p). The term success is defined in the context of the problem.
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3Recall that we have recommended that the normality assumption be checked in an application by
suitable normality tests, such as the Jarque–Bera test.
4The proof is based on the central limit theorem and may be found in E. Malinvaud, Statistical
Methods of Econometrics, Rand McNally, Chicago, 1966, pp. 195–197. If the regressors are deemed
stochastic and are jointly normally distributed, the F and t tests can still be used even though the
disturbances are non-normal. Also keep in mind that as the sample size increases indefinitely, the
binomial distribution converges to the normal distribution.

Since the probability Pi must lie between 0 and 1, we have the restriction

0 ≤ E(Yi | Xi ) ≤ 1 (15.2.5)

that is, the conditional expectation (or conditional probability) must lie between 0 and 1.
From the preceding discussion it would seem that OLS can be easily extended to binary

dependent variable regression models. So, perhaps there is nothing new here. Unfortu-
nately, this is not the case, for the LPM poses several problems, which are as follows:

Non-Normality of the Disturbances ui
Although OLS does not require the disturbances (ui ) to be normally distributed, we
assumed them to be so distributed for the purpose of statistical inference.3 But the
assumption of normality for ui is not tenable for the LPMs because, like Yi , the distur-
bances ui also take only two values; that is, they also follow the Bernoulli distribution. This
can be seen clearly if we write Eq. (15.2.1) as

ui = Yi − β1 − β2 Xi (15.2.6)

The probability distribution of ui is

ui Probability

When Yi = 1 1 − β1 − β2 Xi Pi

When Yi = 0 −β1 − β2 Xi (1 − Pi )
(15.2.7)

Obviously, ui cannot be assumed to be normally distributed; they follow the Bernoulli
distribution.

But the nonfulfillment of the normality assumption may not be so critical as it appears
because we know that the OLS point estimates still remain unbiased (recall that, if the
objective is point estimation, the normality assumption is not necessary). Besides, as the
sample size increases indefinitely, statistical theory shows that the OLS estimators tend to
be normally distributed generally.4 As a result, in large samples the statistical inference of
the LPM will follow the usual OLS procedure under the normality assumption.

Heteroscedastic Variances of the Disturbances
Even if E(ui ) = 0 and cov (ui , uj ) = 0 for i �= j (i.e., no serial correlation), it can no
longer be maintained that in the LPM the disturbances are homoscedastic. This is, however,
not surprising. As statistical theory shows, for a Bernoulli distribution the theoretical mean
and variance are, respectively, p and p(1 − p), where p is the probability of success
(i.e., something happening), showing that the variance is a function of the mean. Hence the
error variance is heteroscedastic.

For the distribution of the error term given in Eq. (15.2.7), applying the definition of
variance, the reader should verify that (see Exercise 15.10)

var (ui ) = Pi (1 − Pi ) (15.2.8)
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5For the justification of this procedure, see Arthur S. Goldberger, Econometric Theory, John Wiley &
Sons, New York, 1964, pp. 249–250. The justification is basically a large-sample one that we
discussed under the topic of feasible or estimated generalized least squares in the chapter on
heteroscedasticity (see Sec. 11.6).

That is, the variance of the error term in the LPM is heteroscedastic. Since
Pi = E(Yi | Xi ) = β1 + β2 Xi , the variance of ui ultimately depends on the values of X and
hence is not homoscedastic.

We already know that, in the presence of heteroscedasticity, the OLS estimators,
although unbiased, are not efficient; that is, they do not have minimum variance. But the
problem of heteroscedasticity, like the problem of non-normality, is not insurmountable. In
Chapter 11 we discussed several methods of handling the heteroscedasticity problem.
Since the variance of ui depends on E(Yi | Xi ), one way to resolve the heteroscedasticity
problem is to transform the model (15.2.1) by dividing it through by√

E(Yi |Xi )[1 − E(Yi |Xi )] = √
Pi (1 − Pi ) = say

√
wi

that is,

Yi√
wi

= β1√
wi

+ β2
Xi√
wi

+ ui√
wi

(15.2.9)

As you can readily verify, the transformed error term in Eq. (15.2.9) is homoscedastic.
Therefore, after estimating Eq. (15.2.1), we can now estimate Eq. (15.2.9) by OLS, which
is nothing but the weighted least squares (WLS) with wi serving as the weights.

In theory, what we have just described is fine. But in practice the true E(Yi | Xi ) is
unknown; hence the weights wi are unknown. To estimate wi , we can use the following two-
step procedure:5

Step 1. Run the OLS regression (15.2.1) despite the heteroscedasticity problem and
obtain Ŷi = estimate of the true E(Yi | Xi ). Then obtain ŵi = Ŷi (1 − Ŷi ), the estimate
of wi.

Step 2. Use the estimated wi to transform the data as shown in Eq. (15.2.9) and esti-
mate the transformed equation by OLS (i.e., weighted least squares).

Although we will illustrate this procedure for our example shortly, it may be noted that we
can use White’s heteroscedasticity-corrected standard errors to deal with heteroscedastic-
ity, provided the sample is reasonably large.

Even if we correct for heteroscedasticity, we first need to address another problem that
plagues LPM.

Nonfulfillment of 0 ≤ E(Yi | Xi) ≤ 1
Since E(Yi | Xi ) in the linear probability models measures the conditional probability of the
event Y occurring given X, it must necessarily lie between 0 and 1. Although this is true a
priori, there is no guarantee that Ŷi , the estimators of E(Yi | Xi ), will necessarily fulfill this
restriction, and this is the real problem with the OLS estimation of the LPM. This happens
because OLS does not take into account the restriction that 0 ≤ E(Yi ) ≤ 1 (an inequality
restriction). There are two ways of finding out whether the estimated Ŷi lie between 0 and 1.
One is to estimate the LPM by the usual OLS method and find out whether the estimated Ŷi

lie between 0 and 1. If some are less than 0 (that is, negative), Ŷi is assumed to be zero for
those cases; if they are greater than 1, they are assumed to be 1. The second procedure is to
devise an estimating technique that will guarantee that the estimated conditional probabili-
ties Ŷi will lie between 0 and 1. The logit and probit models discussed later will guarantee
that the estimated probabilities will indeed lie between the logical limits 0 and 1.
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Questionable Value of R2 as a Measure of Goodness of Fit
The conventionally computed R2 is of limited value in the dichotomous response mod-
els. To see why, consider Figure 15.1. Corresponding to a given X, Y is either 0 or 1.
Therefore, all the Y values will either lie along the X axis or along the line correspond-
ing to 1. Therefore, generally no LPM is expected to fit such a scatter well, whether it is
the unconstrained LPM (Figure 15.1a) or the truncated or constrained LPM (Fig-
ure 15.1b), an LPM estimated in such a way that it will not fall outside the logical band
0–1. As a result, the conventionally computed R2 is likely to be much lower than 1 for
such models. In most practical applications the R2 ranges between 0.2 to 0.6. R2 in such
models will be high, say, in excess of 0.8 only when the actual scatter is very closely
clustered around points A and B (Figure 15.1c), for in that case it is easy to fix the
straight line by joining the two points A and B. In this case the predicted Yi will be very
close to either 0 or 1.

Y

0
X

LPM (unconstrained)

Y

0
X

LPM (constrained)

0
X

LPM

1

(a)

(b)

(c)

1

1
B

A

Y

FIGURE 15.1
Linear probability
models.
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For these reasons John Aldrich and Forrest Nelson contend that “use of the coefficient
of determination as a summary statistic should be avoided in models with qualitative
dependent variable[s].’’6

6Aldrich and Nelson, op. cit., p. 15. For other measures of goodness of fit in models involving
dummy regressands, see T. Amemiya, “Qualitative Response Models,’’ Journal of Economic Literature,
vol. 19, 1981, pp. 331–354.
7One can loosely interpret the highly negative value as near improbability of owning a house when
income is zero.

TABLE 15.1
Hypothetical
Data on Home
Ownership (Y = 1
If owns home,
0 Otherwise)
and Income X
(Thousands of
dollars)

Family Y X Family Y X

1 0 8 21 1 22
2 1 16 22 1 16
3 1 18 23 0 12
4 0 11 24 0 11
5 0 12 25 1 16
6 1 19 26 0 11
7 1 20 27 1 20
8 0 13 28 1 18
9 0 9 29 0 11

10 0 10 30 0 10
11 1 17 31 1 17
12 1 18 32 0 13
13 0 14 33 1 21
14 1 20 34 1 20
15 0 6 35 0 11
16 1 19 36 0 8
17 1 16 37 1 17
18 0 10 38 1 16
19 0 8 39 0 7
20 1 18 40 1 17

EXAMPLE 15.1
LPM:
A Numerical
Example

To illustrate some of the points made about the LPM in this section, we present a numer-
ical example. Table 15.1 gives invented data on home ownership Y (1 = owns a house,
0 = does not own a house) and family income X (thousands of dollars) for 40 families.
From these data the LPM estimated by OLS was as follows:

Ŷ i = −0.9457  + 0.1021Xi

(0.1228)    (0.0082) (15.2.10)

t = (−7.6984) (12.515) R 2 = 0.8048

First, let us interpret this regression. The intercept of −0.9457 gives the “probability’’ that
a family with zero income will own a house. Since this value is negative, and since proba-
bility cannot be negative, we treat this value as zero, which is sensible in the present in-
stance.7 The slope value of 0.1021 means that for a unit change in income (here $1,000),
on the average the probability of owning a house increases by 0.1021 or about 10 percent.
Of course, given a particular level of income, we can estimate the actual probability of
owning a house from Eq. (15.2.10). Thus, for X = 12 ($12,000), the estimated probabil-
ity of owning a house is

(Ŷ i | X = 12) = −0.9457 + 12(0.1021)

= 0.2795

(Continued )
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That is, the probability that a family with an income of $12,000 will own a house is about
28 percent. Table 15.2 shows the estimated probabilities, Ŷ i , for the various income levels
listed in the table. The most noticeable feature of this table is that six estimated values are
negative and six values are in excess of 1, demonstrating clearly the point made earlier that,
although E (Yi | Xi ) is positive and less than 1, their estimators, Ŷ i , need not be necessarily
positive or less than 1. This is one reason that the LPM is not the recommended model
when the dependent variable is dichotomous.

Even if the estimated Yi were all positive and less than 1, the LPM still suffers from the
problem of heteroscedasticity, which can be seen readily from Eq. (15.2.8). As a conse-
quence, we cannot trust the estimated standard errors reported in Eq. (15.2.10). (Why?) But
we can use the weighted least-squares (WLS) procedure discussed earlier to obtain more
efficient estimates of the standard errors. The necessary weights,ŵi , required for the applica-
tion of WLS are also shown in Table 15.2. But note that since some Yi are negative and some
are in excess of one, the ŵi corresponding to these values will be negative. Thus, we cannot
use these observations in WLS (why?), thereby reducing the number of observations, from
40 to 28 in the present example.8 Omitting these observations, the WLS regression is

Ŷ i√
ŵi

= −1.2456
1√
ŵi

+ 0.1196
Xi√
ŵi

(0.1206) (0.0069)
(15.2.11)

t = (−10.332) (17.454) R 2 = 0.9214

TABLE 15.2 Actual Y, Estimated Y, and Weights wi for the Home Ownership Example

Yi Ŷi ŵi
‡ √

Yi Ŷi ŵi
‡ √

0 −0.129* 1 1.301†

1 0.688 0.2146 0.4633 1 0.688 0.2147 0.4633
1 0.893 0.0956 0.3091 0 0.280 0.2016 0.4990
0 0.178 0.1463 0.3825 0 0.178 0.1463 0.3825
0 0.280 0.2016 0.4490 1 0.688 0.2147 0.4633
1 0.995 0.00498 0.0705 0 0.178 0.1463 0.3825
1 1.098† 1 1.097†

0 0.382 0.2361 0.4859 1 0.893 0.0956 0.3091
0 −0.0265* 0 0.178 0.1463 0.3825
0 0.076 0.0702 0.2650 0 0.076 0.0702 0.2650
1 0.791 0.1653 0.4066 1 0.791 0.1653 0.4055
1 0.893 0.0956 0.3091 0 0.382 0.2361 0.4859
0 0.484 0.2497 0.4997 1 1.199†

1 1.097† 1 1.097†

0 −0.333* 0 0.178 0.1463 0.3825
1 0.995 0.00498 0.0705 0 −0.129*
1 0.688 0.2147 0.4633 1 0.791 0.1653 0.4066
0 0.076 0.0702 0.2650 1 0.688 0.2147 0.4633
0 −0.129* 0 −0.231*
1 0.893 0.0956 0.3091 1 0.791 0.1653 0.4066

* Treated as zero to avoid probabilities being negative.
†Treated as unity to avoid probabilities exceeding one.
‡Ŷi(1 − Ŷi)

EXAMPLE 15.1
(Continued)

8To avoid the loss of the degrees of freedom, we could let Ŷi = 0.01 when the estimated Yi are nega-
tive and Ŷi = 0.99 when they are in excess of or equal to 1. See Exercise 15.1.

ŵi ŵi
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15.3 Applications of LPM

Until the availability of readily accessible computer packages to estimate the logit and pro-
bit models (to be discussed shortly), the LPM was used quite extensively because of its
simplicity. We now illustrate some of these applications.

9Malcolm S. Cohen, Samuel A. Rea, Jr., and Robert I. Lerman, A Micro Model of Labor Supply, BLS Staff
Paper 4, U.S. Department of Labor, 1970.

EXAMPLE 15.2
Cohen–Rea–
Lerman Study9

In a study prepared for the U.S. Department of Labor, Cohen, Rea, and Lerman were in-
terested in examining the labor-force participation of various categories of labor as a
function of several socioeconomic–demographic variables. In all their regressions, the
dependent variable is a dummy, taking a value of 1 if a person is in the labor force, 0 if
he or she is not. In Table 15.3 we reproduce one of their several dummy-dependent vari-
able regressions.

Before interpreting the results, note these features: The preceding regression was es-
timated by using the OLS. To correct for heteroscedasticity, the authors used the two-
step procedure outlined previously in some of their regressions but found that the
standard errors of the estimates thus obtained did not differ materially from those ob-
tained without correction for heteroscedasticity. Perhaps this result is due to the sheer
size of the sample, namely, about 25,000. Because of this large sample size, the esti-
mated t values may be tested for statistical significance by the usual OLS procedure even
though the error term takes dichotomous values. The estimated R2 of 0.175 may seem
rather low, but in view of the large sample size, this R2 is still significant on the basis of
the F test (See Section 8.4). Finally, notice how the authors have blended quantitative
and qualitative variables and how they have taken into account the interaction effects.

Turning to the interpretations of the findings, we see that each slope coefficient gives
the rate of change in the conditional probability of the event occurring for a given unit
change in the value of the explanatory variable. For instance, the coefficient of −0.2753
attached to the variable “age 65 and over’’ means, holding all other factors constant, the
probability of participation in the labor force by women in this age group is smaller by
about 27 percent (as compared with the base category of women aged 22 to 54). By the
same token, the coefficient of 0.3061 attached to the variable “16 or more years of
schooling’’ means, holding all other factors constant, the probability of women with this
much education participating in the labor force is higher by about 31 percent (as com-
pared with women with less than 5 years of schooling, the base category).

Now consider the interaction term marital status and age. The table shows that the
labor-force participation probability is higher by some 29 percent for those women who
were never married (as compared with the base category) and smaller by about 28 per-
cent for those women who are 65 and over (again in relation to the base category). But
the probability of participation of women who were never married and are 65 or over is
smaller by about 20 percent as compared with the base category. This implies that women
aged 65 and over but never married are likely to participate in the labor force more than
those who are aged 65 and over and are married or fall into the “other’’ category.

(Continued )

These results show that, compared with Eq. (15.2.10), the estimated standard errors are
smaller and, correspondingly, the estimated t ratios (in absolute value) are larger. But one
should take this result with a grain of salt since in estimating Eq. (15.2.11) we had to drop
12 observations. Also, since wi are estimated, the usual statistical hypothesis-testing pro-
cedures are, strictly speaking, valid in the large samples (see Chapter 11).

EXAMPLE 15.1
(Continued)
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TABLE 15.3 Labor-Force Participation
Regression of women, age 22 and over, living in largest 96 standard metropolitan statistical
areas (SMSA) (dependent variable: in or out of labor force during 1966)

Explanatory Variable Coefficient t Ratio

Constant 0.4368 15.4

Marital status
Married, spouse present — —
Married, other 0.1523 13.8
Never married 0.2915 22.0

Age 
22–54 — —
55–64 −0.0594 −5.7
65 and over −0.2753 −9.0 

Years of schooling
0–4 — —
5–8 0.1255 5.8
9–11 0.1704 7.9
12–15 0.2231 10.6
16 and over 0.3061 13.3

Unemployment rate (1966), %
Under 2.5 — —
2.5–3.4 −0.0213 −1.6
3.5–4.0 −0.0269 −2.0
4.1–5.0 −0.0291 −2.2
5.1 and over −0.0311 −2.4

Employment change (1965–1966), %
Under 3.5 — —
3.5–6.49 0.0301 3.2
6.5 and over 0.0529 5.1

Relative employment opportunities, %
Under 62 — —
62–73.9 0.0381 3.2
74 and over 0.0571 3.2

FILOW, $
Less than 1,500 and negative — —
1,500–7,499 −0.1451 −15.4
7,500 and over −0.2455 −24.4

Interaction (marital status and age)
Marital status Age

Other 55–64 −0.0406 −2.1
Other 65 and over −0.1391 −7.4
Never married 55–64 −0.1104 −3.3
Never married 65 and over −0.2045 −6.4

Interaction (age and years of schooling completed)
Age Years of schooling

65 and over 5–8 −0.0885 −2.8
65 and over 9–11 −0.0848 −2.4
65 and over 12–15 −0.1288 −4.0
65 and over 16 and over −0.1628 −3.6

R2 = 0.175
No. of observations = 25,153

Note: — indicates the base or omitted category.
FILOW: family income less own wage and salary income.

Source: Malcolm S. Cohen, Samuel A. Rea, Jr., and Robert I. Lerman, A Micro Model of Labor Supply, BLS Staff Paper 4,
U.S. Department of Labor, 1970, Table F-6, pp. 212–213.

EXAMPLE 15.2
(Continued)
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EXAMPLE 15.3
Predicting a
Bond Rating

Based on a pooled time series and cross-sectional data of 200 Aa (high-quality) and Baa
(medium-quality) bonds over the period 1961–1966, Joseph Cappelleri estimated the
following bond rating prediction model.10

Yi = β1 + β2 X 2
2i + β3 X3i + β4 X4i + β5 X5i + ui

where Yi = 1 if the bond rating is Aa (Moody’s rating)
= 0 if the bond rating is Baa (Moody’s rating)

X2 = debt capitalization ratio, a measure of leverage

= dollar value of long-term debt
dollar value of total capitalization

· 100

X3 = profit rate

= dollar value of after-tax income
dollar value of net total assets

· 100

X4 = standard deviation of the profit rate, a measure of profit rate variability
X5 = net total assets (thousands of dollars), a measure of size

A priori, β2 and β4 are expected to be negative (why?) and β3 and β5 are expected to be
positive.

After correcting for heteroscedasticity and first-order autocorrelation, Cappelleri ob-
tained the following results:11

Ŷ i = 0.6860 − 0.0179X 2
2i + 0.0486X3i + 0.0572X4i + 0.378(E-7)X5

(0.1775) (0.0024) (0.0486) (0.0178) (0.039)(E-8) (15.3.1)

R 2 = 0.6933

Note: 0.378 (E-7) means 0.0000000378, etc.
All but the coefficient of X4 have the correct signs. It is left to finance students to ra-

tionalize why the profit rate variability coefficient has a positive sign, for one would ex-
pect that the greater the variability in profits, the less likely it is Moody’s would give an
Aa rating, other things remaining the same.

The interpretation of the regression is straightforward. For example, 0.0486 attached
to X3 means that, other things being the same, a 1 percentage point increase in the
profit rate will lead on average to about a 0.05 increase in the probability of a bond get-
ting the Aa rating. Similarly, the higher the squared leveraged ratio, the lower by 0.02 is
the probability of a bond being classified as an Aa bond per unit increase in this ratio.

Following this procedure, the reader can easily interpret the rest of the coefficients
given in Table 15.3. From the given information, it is easy to obtain the estimates of the
conditional probabilities of labor-force participation of the various categories. Thus, if we
want to find the probability for married women (other), aged 22 to 54, with 12 to 15
years of schooling, with an unemployment rate of 2.5 to 3.4 percent, employment
change of 3.5 to 6.49 percent, relative employment opportunities of 74 percent and
over, and with FILOW of $7,500 and over, we obtain

0.4368 + 0.1523 + 0.2231 − 0.0213 + 0.0301 + 0.0571 − 0.2455 = 0.6326

In other words, the probability of labor-force participation by women with the preced-
ing characteristics is estimated to be about 63 percent.

10Joseph Cappelleri, “Predicting a Bond Rating,’’ unpublished term paper, C.U.N.Y. The model used in
the paper is a modification of the model used by Thomas F. Pogue and Robert M. Soldofsky, “What Is
in a Bond Rating?’’ Journal of Financial and Quantitative Analysis, June 1969, pp. 201–228.
11Some of the estimated probabilities before correcting for heteroscedasticity were negative and
some were in excess of 1; in these cases they were assumed to be 0.01 and 0.99, respectively, to
facilitate the computation of the weights wi.

EXAMPLE 15.2
(Continued)
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12The data used in the analysis are obtained from Douglas A. Lind, William G. Marchal, and Robert D.
Mason, Statistical Techniques in Business and Economics, 11th Ed., McGraw-Hill, 2002, Appendix N,
pp. 775–776. We have not used all the variables used by the authors.

EXAMPLE 15.4
Who Holds a
Debit Card?

Like credit cards, debit cards are now used extensively by consumers. Vendors prefer
them because when you use a debit card, the amount of your purchase is automatically
deducted from your checking or other designated account. To find out what factors de-
termine the use of the debit card, we obtained data on 60 customers and considered the
following model:12

Yi = β1 + β2 X2i + β3 X3i + β4 X4i + ui

where Y = 1 for debit card holder, 0 otherwise; X2 = account balance in dollars; X3 =
number of ATM transactions; X4 = 1 if interest is received on the account, 0 otherwise.

Since the linear probability model (LPM) exhibits heteroscedasticity, we present the
usual OLS results and the OLS results corrected for heteroscedasticity in a tabular form.

Variable Coefficient Coefficient*

Constant 0.3631 0.3631
(0.1796)** (0.1604)**

Balance 0.00028** 0.00028**
(0.00015) (0.00014)

ATM �0.0269 �0.0269
(0.208) (0.0202)

Interest �0.3019** �0.3019**
(0.1448) (0.1353)

R2 0.1056 (0.1056)

Note: *denotes heteroscedasticity-corrected standard errors.

**significant at about 5% level.

As these results show, those who have higher account balances will tend to hold a debit
card. The higher the interest rate paid on account balances, the less the tendency to hold
a debit card. Although the ATM variable is not significant, note that it has a negative
sign. This is perhaps due to ATM transaction fees.

There is not a vast difference between the estimated standard errors with and with-
out heteroscedasticity correction. To save space, we have not presented the fitted values
(i.e., the estimated probabilities), but they all were within the limits of 0 and 1. However,
there is no guarantee that this will happen in every case.

15.4 Alternatives to LPM

As we have seen, the LPM is plagued by several problems, such as (1) non-normality of ui ,
(2) heteroscedasticity of ui , (3) possibility of Ŷi lying outside the 0–1 range, and (4) the
generally lower R2 values. But these problems are surmountable. For example, we can
use WLS to resolve the heteroscedasticity problem or increase the sample size to minimize
the non-normality problem. By resorting to restricted least-squares or mathematical pro-
gramming techniques we can even make the estimated probabilities lie in the 0–1 interval.

But even then the fundamental problem with the LPM is that it is not logically a very at-
tractive model because it assumes that Pi = E(Y = 1 | X) increases linearly with X, that is,
the marginal or incremental effect of X remains constant throughout. Thus, in our home
ownership example we found that as X increases by a unit ($1,000), the probability of
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owning a house increases by the same constant amount of 0.10. This is so whether the in-
come level is $8,000, $10,000, $18,000, or $22,000. This seems patently unrealistic. In re-
ality one would expect that Pi is nonlinearly related to Xi : At very low income a family will
not own a house but at a sufficiently high level of income, say, X*, it most likely will own a
house. Any increase in income beyond X* will have little effect on the probability of own-
ing a house. Thus, at both ends of the income distribution, the probability of owning a
house will be virtually unaffected by a small increase in X.

Therefore, what we need is a (probability) model that has these two features: (1) As Xi

increases, Pi = E(Y = 1 | X) increases but never steps outside the 0–1 interval, and
(2) the relationship between Pi and Xi is nonlinear, that is, “one which approaches zero at
slower and slower rates as Xi gets small and approaches one at slower and slower rates as
Xi gets very large.’’13

Geometrically, the model we want would look something like Figure 15.2. Notice in this
model that the probability lies between 0 and 1 and that it varies nonlinearly with X.

The reader will realize that the sigmoid, or S-shaped, curve in the figure very much resem-
bles the cumulative distribution function (CDF) of a random variable.14 Therefore, one can
easily use the CDF to model regressions where the response variable is dichotomous, taking
0–1 values. The practical question now is, which CDF? For although all CDFs are S shaped,
for each random variable there is a unique CDF. For historical as well as practical reasons, the
CDFs commonly chosen to represent the 0–1 response models are (1) the logistic and (2) the
normal, the former giving rise to the logit model and the latter to the probit (or normit) model.

Although a detailed discussion of the logit and probit models is beyond the scope of this
book, we will indicate somewhat informally how one estimates such models and how one
interprets them.

15.5 The Logit Model

We will continue with our home ownership example to explain the basic ideas underlying
the logit model. Recall that in explaining home ownership in relation to income, the LPM was

(15.5.1)Pi = β1 + β2 Xi

13John Aldrich and Forrest Nelson, op. cit., p. 26.
14As discussed in Appendix A, the CDF of a random variable X is simply the probability that it takes
a value less than or equal to x0, where x0 is some specified numerical value of X. In short, F (X), the
CDF of X, is F (X = x0) = P (X ≤ x0).

P

0
X

–

CDF
1

∞ ∞

FIGURE 15.2
A cumulative
distribution function
(CDF).
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where X is income and Pi = E(Yi = 1|Xi ) means the family owns a house. But now con-
sider the following representation of home ownership:

(15.5.2)

For ease of exposition, we write Eq. (15.5.2) as

Pi = 1

1 + e−Zi
= eZ

1 + eZ
(15.5.3)

where Zi = β1 + β2 Xi .

Equation (15.5.3) represents what is known as the (cumulative) logistic distribution
function.15

It is easy to verify that as Zi ranges from −∞ to +∞, Pi ranges between 0 and 1 and
that Pi is nonlinearly related to Zi (i.e., Xi ), thus satisfying the two requirements consid-
ered earlier.16 But it seems that in satisfying these requirements, we have created an
estimation problem because Pi is nonlinear not only in X but also in the β’s as can be seen
clearly from Eq. (15.5.2). This means that we cannot use the familiar OLS procedure to es-
timate the parameters.17 But this problem is more apparent than real because Eq. (15.5.2)
can be linearized, which can be shown as follows.

If Pi , the probability of owning a house, is given by Eq. (15.5.3), then (1 − Pi ), the
probability of not owning a house, is

1 − Pi = 1

1 + eZi
(15.5.4)

Therefore, we can write

Pi

1 − Pi
= 1 + eZi

1 + e−Zi
= eZi (15.5.5)

Now Pi/(1 − Pi ) is simply the odds ratio in favor of owning a house—the ratio of the
probability that a family will own a house to the probability that it will not own a house.
Thus, if Pi = 0.8, it means that odds are 4 to 1 in favor of the family owning a house.

Now if we take the natural log of Eq. (15.5.5), we obtain a very interesting result,
namely,

(15.5.6)
Li = ln

(
Pi

1 − Pi

)
= Zi

= β1 + β2 Xi

Pi = 1

1 + e−(β1+β2 Xi )

15The logistic model has been used extensively in analyzing growth phenomena, such as population,
GNP, money supply, etc. For theoretical and practical details of logit and probit models, see J. S. Kramer,
The Logit Model for Economists, Edward Arnold Publishers, London, 1991; and G. S. Maddala, op. cit.
16Note that as Zi → +∞, e−Zi tends to zero and as Zi → −∞, e−Zi increases indefinitely. Recall that
e = 2.71828.
17Of course, one could use nonlinear estimation techniques discussed in Chapter 14. See also
Section 15.8.
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that is, L, the log of the odds ratio, is not only linear in X, but also (from the estimation
viewpoint) linear in the parameters.18 L is called the logit, and hence the name logit model
for models like Eq. (15.5.6).

Notice these features of the logit model.

1. As P goes from 0 to 1 (i.e., as Z varies from −∞ to +∞), the logit L goes from −∞
to +∞. That is, although the probabilities (of necessity) lie between 0 and 1, the logits are
not so bounded.

2. Although L is linear in X, the probabilities themselves are not. This property is in
contrast with the LPM model (15.5.1) where the probabilities increase linearly with X.19

3. Although we have included only a single X variable, or regressor, in the preceding
model, one can add as many regressors as may be dictated by the underlying theory.

4. If L, the logit, is positive, it means that when the value of the regressor(s) increases,
the odds that the regressand equals 1 (meaning some event of interest happens) increases.
If L is negative, the odds that the regressand equals 1 decreases as the value of X increases.
To put it differently, the logit becomes negative and increasingly large in magnitude as the
odds ratio decreases from 1 to 0 and becomes increasingly large and positive as the odds
ratio increases from 1 to infinity.20

5. More formally, the interpretation of the logit model given in Eq. (15.5.6) is as follows:
β2, the slope, measures the change in L for a unit change in X, that is, it tells how the log-
odds in favor of owning a house change as income changes by a unit, say, $1,000. The
intercept β1 is the value of the log-odds in favor of owning a house if income is zero. Like
most interpretations of intercepts, this interpretation may not have any physical meaning.

6. Given a certain level of income, say, X*, if we actually want to estimate not the odds
in favor of owning a house but the probability of owning a house itself, this can be done di-
rectly from Eq. (15.5.3) once the estimates of β1 and β2 are available. This, however, raises
the most important question: How do we estimate β1 and β2 in the first place? The answer
is given in the next section.

7. Whereas the LPM assumes that Pi is linearly related to Xi, the logit model assumes
that the log of the odds ratio is linearly related to Xi .

15.6 Estimation of the Logit Model

For estimation purposes, we write Eq. (15.5.6) as follows:

Li = ln

(
Pi

1 − Pi

)
= β1 + β2 Xi + ui (15.6.1)

We will discuss the properties of the stochastic error term ui shortly.

18Recall that the linearity assumption of OLS does not require that the X variable be necessarily linear.
So we can have X2, X3, etc., as regressors in the model. For our purpose, it is linearity in the parame-
ters that is crucial.
19Using calculus, it can be shown that dP /dX = β2 P (1 − P ), which shows that the rate of change in
probability with respect to X involves not only β2 but also the level of probability from which the
change is measured (but more on this in Section 15.7). In passing, note that the effect of a unit
change in Xi on P is greatest when P = 0.5 and least when P is close to 0 or 1.
20This point is due to David Garson.
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To estimate Eq. (15.6.1), we need, apart from Xi, the values of the regressand, or logit,
Li. This depends on the type of data we have for analysis. We distinguish two types of data:
(1) data at the individual, or micro, level, and (2) grouped or replicated data.

Data at the Individual Level
If we have data on individual families, as in the case of Table 15.1, OLS estimation of
Eq. (15.6.1) is infeasible. This is easy to see. In terms of the data given in Table 15.1,
Pi = 1 if a family owns a house and Pi = 0 if it does not own a house. But if we put these
values directly into the logit Li , we obtain:

Li = ln

(
1

0

)
if a family own a house

Li = ln

(
0

1

)
if a family does not own a house

Obviously, these expressions are meaningless. Therefore, if we have data at the micro, or
individual, level, we cannot estimate Eq. (15.6.1) by the standard OLS routine. In this
situation we may have to resort to the maximum-likelihood (ML) method to estimate the
parameters. Although the rudiments of this method were discussed in the appendix to
Chapter 4, its application in the present context will be discussed in Appendix 15A, Sec-
tion 15A.1, for the benefit of readers who would like to learn more about it.21 Software pack-
ages, such as MICROFIT, EViews, LIMDEP, SHAZAM, PC-GIVE, STATA, and MINITAB,
have built-in routines to estimate the logit model at the individual level. We will illustrate
the use of the ML method later in the chapter.

Grouped or Replicated Data
Now consider the data given in Table 15.4. This table gives data on several families grouped
or replicated (repeat observations) according to income level and the number of families
owning a house at each income level. Corresponding to each income level Xi , there are Ni

families, ni among whom are home owners (ni ≤ Ni ). Therefore, if we compute

P̂i = ni

Ni
(15.6.2)

21For a comparatively simple discussion of maximum likelihood in the context of the logit model, see
John Aldrich and Forrest Nelson, op. cit., pp. 49–54. See also, Alfred Demarsi, Logit Modeling: Practical
Applications, Sage Publications, Newbury Park, Calif., 1992. 

TABLE 15.4
Hypothetical Data on
Xi (Income), Ni

(Number of Families
at Income Xi), and ni

(Number of Families
Owning a House)

X
(thousands of dollars) Ni ni

6 40 8
8 50 12

10 60 18
13 80 28
15 100 45
20 70 36
25 65 39
30 50 33
35 40 30
40 25 20 
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that is, the relative frequency, we can use it as an estimate of the true Pi corresponding to
each Xi . If Ni is fairly large, P̂i will be a reasonably good estimate of Pi .22 Using the esti-
mated Pi, we can obtain the estimated logit as

L̂ i = ln

(
P̂i

1 − P̂i

)
= β̂1 + β̂2 Xi (15.6.3)

which will be a fairly good estimate of the true logit Li if the number of observations Ni at
each Xi is reasonably large.

In short, given the grouped or replicated data, such as Table 15.4, one can obtain the data
on the dependent variable, the logits, to estimate the model (15.6.1). Can we then apply
OLS to Eq. (15.6.3) and estimate the parameters in the usual fashion? The answer is, not
quite, since we have not yet said anything about the properties of the stochastic disturbance
term. It can be shown that if Ni is fairly large and if each observation in a given income
class Xi is distributed independently as a binomial variable, then

ui ∼ N

[
0,

1

Ni Pi (1 − Pi )

]
(15.6.4)

that is, ui follows the normal distribution with zero mean and variance equal to
1/[Ni Pi (1 − Pi )].23

Therefore, as in the case of the LPM, the disturbance term in the logit model is het-
eroscedastic. Thus, instead of using OLS we will have to use the weighted least squares
(WLS). For empirical purposes, however, we will replace the unknown Pi by P̂i and use

σ̂ 2 = 1

Ni P̂i (1 − P̂i )
(15.6.5)

as estimator of σ 2.

We now describe the various steps in estimating the logit regression in Eq. (15.6.1):

1. For each income level X, compute the probability of owning a house as P̂i = ni/Ni .

2. For each Xi , obtain the logit as24

L̂i = ln [P̂i/(1 − P̂i )]

3. To resolve the problem of heteroscedasticity, transform Eq. (15.6.1) as follows:25

√
wiLi = β1

√
wi + β2

√
wi Xi + √

wiui (15.6.6)

22From elementary statistics recall that the probability of an event is the limit of the relative frequency
as the sample size becomes infinitely large.
23As shown in elementary probability theory, P̂i , the proportion of successes (here, owning a house),
follows the binomial distribution with mean equal to true Pi and variance equal to Pi (1 − Pi )/Ni ; and
as Ni increases indefinitely the binomial distribution approximates the normal distribution. The distri-
butional properties of ui given in Eq. (15.6.4) follow from this basic theory. For details, see Henry
Theil, “On the Relationships Involving Qualitative Variables,’’ American Journal of Sociology, vol. 76,
July 1970, pp. 103–154.
24Since P̂i = ni /Ni , L i can be alternatively expressed as L̂ i = ln ni /(Ni − ni ). In passing it should
be noted that to avoid P̂i taking the value of 0 or 1, in practice L̂ i is measured as L̂ i = ln (ni + 1

2 )/
(Ni − ni + 1

2 ) = ln ( P̂i + 1/2Ni )/(1 − P̂i + 1/2Ni ). It is recommended as a rule of thumb that Ni be
at least 5 at each value of Xi . For additional details, see D. R. Cox, Analysis of Binary Data, Methuen,
London, 1970, p. 33.
25If we estimate Eq. (15.6.1) disregarding heteroscedasticity, the estimators, although unbiased, will
not be efficient, as we know from Chapter 11.
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which we write as

L∗
i = β1

√
wi + β2 X∗

i + vi (15.6.7)

where the weights wi = Ni P̂i (1 − P̂i ); L∗
i = transformed or weighted Li ; X∗

i =
transformed or weighted Xi ; and vi = transformed error term. It is easy to verify that
the transformed error term vi is homoscedastic, keeping in mind that the original error
variance is σ 2

u = 1/[Ni Pi (1 − Pi )].

4. Estimate Eq. (15.6.6) by OLS—recall that WLS is OLS on the transformed data.
Notice that in Eq. (15.6.6) there is no intercept term introduced explicitly (why?).
Therefore, one will have to use the regression through the origin routine to estimate
Eq. (15.6.6).

5. Establish confidence intervals and/or test hypotheses in the usual OLS framework, but
keep in mind that all the conclusions will be valid strictly speaking only if the sample is
reasonably large (why?). Therefore, in small samples, the estimated results should be
interpreted carefully.

15.7 The Grouped Logit (Glogit) Model: A Numerical Example

To illustrate the theory just discussed, we will use the data given in Table 15.4. Since the
data in the table are grouped, the logit model based on this data will be called a grouped
logit model, glogit, for short. The necessary raw data and other relevant calculations neces-
sary to implement glogit are given in Table 15.5. The results of the weighted least-squares
regression (15.6.7) based on the data given in Table 15.5 are as follows: Note that there
is no intercept in Eq. (15.6.7); hence the regression-through-the-origin procedure is
appropriate here.

L̂∗
i = −1.59474

√
wi + 0.07862X∗

i

se = (0.11046) (0.00539) (15.7.1)

t = (−14.43619) (14.56675) R2 = 0.9642

The R2 is the squared correlation coefficient between actual and estimated L∗
i . L∗

i and X∗
i

are weighted Li and Xi , as shown in Eq. (15.6.6). Although we have shown the calculations
of the grouped logit in Table 15.5 for pedagogical reasons, this can be done easily by in-
voking the glogit (grouped logit) command in STATA.

Interpretation of the Estimated Logit Model
How do we interpret Eq. (15.7.1)? There are various ways, some intuitive and some not:

Logit Interpretation
As Eq. (15.7.1) shows, the estimated slope coefficient suggests that for a unit ($1,000) in-
crease in weighted income, the weighted log of the odds in favor of owning a house goes up
by 0.08 units. This mechanical interpretation, however, is not very appealing.

Odds Interpretation
Remember that Li = ln [Pi/(1 − Pi )]. Therefore, taking the antilog of the estimated
logit, we get Pi/(1 − Pi ), that is, the odds ratio. Hence, taking the antilog of Eq. (15.7.1),
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we obtain:

P̂i

1 − P̂i

= e−1.59474
√

wi+0.07862X∗
i

(15.7.2)

= e−1.59474
√

wi · e0.07862X∗
i

Using a calculator, you can easily verify that e0.07862 = 1.0817. This means that for a unit
increase in weighted income, the (weighted) odds in favor of owning a house increases by
1.0817 or about 8.17 percent. In general, if you take the antilog of the jth slope coefficient
(in case there is more than one regressor in the model), subtract 1 from it, and multiply the
result by 100, you will get the percent change in the odds for a unit increase in the jth
regressor.

Incidentally, if you want to carry the analysis in terms of unweighted logit, all you
have to do is divide the estimated L∗

i by 
√

wi. Table 15.6 gives the estimated weighted
and unweighted logits for each observation and some other data, which we will discuss
shortly.

Computing Probabilities
Since the language of logit and odds ratio may be unfamiliar to some, we can always com-
pute the probability of owning a house at a certain level of income. Suppose we want to
compute this probability at X = 20 ($20,000). Plugging this value into Eq. (15.7.1), we ob-
tain: L̂∗

i = −0.09311 and dividing this by
√

wi = 4.1816 (see Table 15.5), we obtain
L̂i = −0.02226. Therefore, at the income level of $20,000, we have

−0.02199 = ln

(
P̂i

1 − P̂i

)

Therefore,

P̂

1 − P̂i

= e−0.02199 = 0.97825

Solving this for

P̂i = e−0.02199

1 + e−0.02199

TABLE 15.6
Lstar, Xstar,
Estimated Lstar,
Probability, and
Change in
Probability*

Probability,
Lstar Xstar ELstar Logit P̂ Change in Probability†

−3.50710 15.1788 −2.84096 −1.12299 0.24545 0.01456
−3.48070 24.15920 −2.91648 −0.96575 0.27572 0.01570
−3.48070 35.49600 −2.86988 −0.80850 0.30821 0.01676
−2.64070 55.45930 −2.44293 −0.57263 0.36063 0.01813
−0.99850 74.62350 −2.06652 −0.41538 0.39762 0.01883

0.16730 83.65060 −0.09311 −0.02226 0.49443 0.01965
1.60120 98.74250 1.46472 0.37984 0.59166 0.01899
2.22118 100.48800 2.55896 0.76396 0.68221 0.01704
3.00860 95.84050 3.16794 1.15677 0.76074 0.01431
2.77260 80.00000 3.10038 1.55019 0.82494 0.01135

*Lstar and Xstar are from Table 15.5. ELstar is the estimated Lstar. Logit is the unweighted logit. Probability is the estimated
probability of owning a house. Change in probability is the change per unit change in income.
†Computed from β̂2 P̂(1 − P̂ ) = 0.07862P̂(1 − P̂ ).
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the reader can see that the estimated probability is 0.4945. That is, given the income of
$20,000, the probability of a family owning a house is about 49 percent.Table 15.6 shows
the probabilities thus computed at various income levels. As this table shows, the proba-
bility of house ownership increases with income, but not linearly as with the LPM model.

Computing the Rate of Change of Probability
As you can gather from Table 15.6, the probability of owning a house depends on the in-
come level. How can we compute the rate of change of probabilities as income varies? As
noted in footnote 19, that depends not only on the estimated slope coefficient β2 but also on
the level of the probability from which the change is measured; the latter of course depends
on the income level at which the probability is computed.

To illustrate, suppose we want to measure the change in the probability of owning a house
at the income level $20,000. Then, from footnote 19 the change in probability for a unit in-
crease in income from the level 20 (thousand) is: β̂(1 − P̂) P̂ = 0.07862(0.5056)(0.4944) =
0.01965.

It is left as an exercise for the reader to show that at income level $40,000, the change in
probability is 0.01135. Table 15.6 shows the change in probability of owning a house at var-
ious income levels; these probabilities are also depicted in Figure 15.3.

To conclude our discussion of the glogit model, we present the results based on OLS, or
unweighted regression, for the home ownership example:

L̂i = −1.6587  + 0.0792Xi

se = (0.0958) (0.0041) (15.7.3)

t = (−17.32)       (19.11)      r2 = 0.9786

We leave it to the reader to compare this regression with the weighted least-squares regres-
sion given by Eq. (15.7.1).

15.8 The Logit Model for Ungrouped or Individual Data

To set the stage, consider the data given in Table 15.7. Letting Y = 1 if a student’s final
grade in an intermediate microeconomics course was A and Y = 0 if the final grade
was a B or a C, Spector and Mazzeo used grade point average (GPA), TUCE, and
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Personalized System of Instruction (PSI) as the grade predictors. The logit model here can
be written as:

Li = ln

(
Pi

1 − Pi

)
= β1 + β2GPAi + β3TUCEi + β4PSIi + ui (15.8.1)

As we noted in Section 15.6, we cannot simply put Pi = 1 if a family owns a house, and
zero if it does not own a house. Here neither OLS nor weighted least squares (WLS) is
helpful. We have to resort to nonlinear estimating procedures using the method of maxi-
mum likelihood. The details of this method are given in Appendix 15A, Section 15A.1.
Since most modern statistical packages have routines to estimate logit models on the basis
of ungrouped data, we will present the results of model (15.8.1) using the data given in
Table 15.7 and show how to interpret the results. The results are given in Table 15.8 in tab-
ular form and are obtained by using EViews 6. Before interpreting these results, some gen-
eral observations are in order.

1. Since we are using the method of maximum likelihood, which is generally a large-
sample method, the estimated standard errors are asymptotic.

2. As a result, instead of using the t statistic to evaluate the statistical significance of a
coefficient, we use the (standard normal) Z statistic. So inferences are based on the normal
table. Recall that if the sample size is reasonably large, the t distribution converges to the
normal distribution.

3. As noted earlier, the conventional measure of goodness of fit, R2, is not particularly
meaningful in binary regressand models. Measures similar to R2, called pseudo R2, are

TABLE 15.7 Data on the Effect of Personalized System of Instruction (PSI) on Course Grades 

GPA TUCE Letter GPA TUCE Letter
Observation Grade Grade PSI Grade Grade Observation Grade Grade PSI Grade Grade

1 2.66 20 0 0 C 17 2.75 25 0 0 C
2 2.89 22 0 0 B 18 2.83 19 0 0 C
3 3.28 24 0 0 B 19 3.12 23 1 0 B
4 2.92 12 0 0 B 20 3.16 25 1 1 A
5 4.00 21 0 1 A 21 2.06 22 1 0 C
6 2.86 17 0 0 B 22 3.62 28 1 1 A
7 2.76 17 0 0 B 23 2.89 14 1 0 C
8 2.87 21 0 0 B 24 3.51 26 1 0 B
9 3.03 25 0 0 C 25 3.54 24 1 1 A

10 3.92 29 0 1 A 26 2.83 27 1 1 A
11 2.63 20 0 0 C 27 3.39 17 1 1 A
12 3.32 23 0 0 B 28 2.67 24 1 0 B
13 3.57 23 0 0 B 29 3.65 21 1 1 A
14 3.26 25 0 1 A 30 4.00 23 1 1 A
15 3.53 26 0 0 B 31 3.10 21 1 0 C
16 2.74 19 0 0 B 32 2.39 19 1 1 A

Notes: Grade Y = 1 if the final grade is A
= 0 if the final grade is B or C

TUCE = score on an examination given at the beginning of the term to test entering knowledge of macroeconomics
PSI = 1 if the new teaching method is used

= 0 otherwise
GPA = the entering grade point average

Source: L. Spector and M. Mazzeo, “Probit Analysis and Economic Education,” Journal of Economic Education, vol. 11, 1980, pp. 37–44.
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available, and there are a variety of them.26 EViews presents one such measure, the McFadden
R2, denoted by R2

McF, whose value in our example is 0.3740.27 Like R2, R2
McF also ranges be-

tween 0 and 1. Another comparatively simple measure of goodness of fit is the count R2,
which is defined as:

Count R2 = number of correct predictions

total number of observations
(15.8.2)

Since the regressand in the logit model takes a value of 1 or zero, if the predicted prob-
ability is greater than 0.5, we classify that as 1, but if it is less than 0.5, we classify that
as 0. We then count the number of correct predictions and compute the R2 as given in
Eq. (15.8.2). We will illustrate this shortly.

It should be noted, however, that in binary regressand models, goodness of fit is of sec-
ondary importance. What matters is the expected signs of the regression coefficients and
their statistical and/or practical significance.

4. To test the null hypothesis that all the slope coefficients are simultaneously equal to
zero, the equivalent of the F test in the linear regression model is the likelihood ratio (LR)
statistic. Given the null hypothesis, the LR statistic follows the χ2 distribution with df
equal to the number of explanatory variables, three in the present example. (Note: Exclude
the intercept term in computing the df.)

Now let us interpret the regression results given in Eq. (15.8.1). Each slope coefficient
in this equation is a partial slope coefficient and measures the change in the estimated logit
for a unit change in the value of the given regressor (holding other regressors constant).
Thus, the GPA coefficient of 2.8261 means, with other variables held constant, that if GPA
increases by a unit, on average the estimated logit increases by about 2.83 units, suggesting
a positive relationship between the two. As you can see, all the other regressors have a pos-
itive effect on the logit, although statistically the effect of TUCE is not significant. How-
ever, together all the regressors have a significant impact on the final grade, as the LR
statistic is 15.40 with a p value of about 0.0015, which is very small.

As noted previously, a more meaningful interpretation is in terms of odds, which are
obtained by taking the antilog of the various slope coefficients. Thus, if you take the antilog
of the PSI coefficient of 2.3786 you will get 10.7897 ( ≈ e2.3786). This suggests that

26For an accessible discussion, see J. Scott Long, Regression Models for Categorical and Limited Depen-
dent Variables, Sage Publications, Newbury Park, California, 1997, pp. 102–113.
27Technically, this is defined as: 1 − (LLFur/LLFr), where LLFur is the unrestricted log likelihood function
where all regressors are included in the model and LLFr is the restricted log likelihood function where
only the intercept is included in the model. Conceptually, LLFur is equivalent to RSS and LLFr is equiva-
lent to TSS of the linear regression model.

TABLE 15.8
Regression Results of
Equation (15.8.1)

Dependent Variable: Grade
Method: ML-Binary Logit
Convergence achieved after 5 iterations

Variable Coefficient Std. Error Z Statistic Probability

C -13.0213 4.931 -2.6405 0.0082
GPA 2.8261 1.2629 2.2377 0.0252
TUCE 0.0951 0.1415 0.67223 0.5014
PSI 2.3786 1.0645 2.2345 0.0255

McFadden R2 = 0.3740 LR statistic (3 df) = 15.40419
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TABLE 15.9
Actual and Fitted
Values Based on
Regression in
Table 15.8

Observation Actual Fitted Residual Residual Plot

1 0 0.02658 −0.02658
2 0 0.05950 −0.05950
3 0 0.18726 −0.18726
4 0 0.02590 −0.02590
5 1 0.56989 0.43011
6 0 0.03486 −0.03486
7 0 0.02650 −0.02650
8 0 0.05156 −0.05156
9 0 0.11113 −0.11113

10 1 0.69351 0.30649
11 0 0.02447 −0.02447
12 0 0.19000 −0.19000
13 0 0.32224 −0.32224

*14 1 0.19321 0.80679
15 0 0.36099 −0.36099
16 0 0.03018 −0.03018
17 0 0.05363 −0.05363
18 0 0.03859 −0.03859

*19 0 0.58987 −0.58987
20 1 0.66079 0.33921
21 0 0.06138 −0.06138
22 1 0.90485 0.09515
23 0 0.24177 −0.24177

*24 0 0.85209 −0.85209
25 1 0.83829 0.16171

*26 1 0.48113 0.51887
27 1 0.63542 0.36458
28 0 0.30722 −0.30722
29 1 0.84170 0.15830
30 1 0.94534 0.05466

*31 0 0.52912 −0.52912
*32 1 0.11103 0.88897

*Incorrect predictions.

students who are exposed to the new method of teaching are more than 10 times as likely
to get an A than students who are not exposed to it, other things remaining the same.

Suppose we want to compute the actual probability of a student getting an A grade. Con-
sider student number 10 in Table 15.7. Putting the actual data for this student in the esti-
mated logit model given in Table 15.8, the reader can check that the estimated logit value
for this student is 0.8178. Using Eq. (15.5.2), the reader can easily check that the estimated
probability is 0.69351. Since this student’s actual final grade was an A, and since our logit
model assigns a probability of 1 to a student who gets an A, the estimated probability of
0.69351 is not exactly 1 but close to it.

Recall the count R2 defined earlier. Table 15.9 gives you the actual and predicted values
of the regressand for our illustrative example. From this table you can observe that, out of
32 observations, there were 6 incorrect predictions (students 14, 19, 24, 26, 31, and 32).
Hence the count R2 value is 26/32 = 0.8125, whereas the McFadden R2 value is 0.3740.
Although these two values are not directly comparable, they give you some idea about the
orders of magnitude. Besides, one should not overplay the importance of goodness of fit in
models where the regressand is dichotomous.
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EXAMPLE 15.5
Who Owns a
Debit Card?
Logit Analysis

The positive sign of Balance and the negative signs of ATM and Interest are similar to the
LPM, although we cannot directly compare the two. The interpretation of the coefficients
in the logit model is different from the LPM. Here, for example, if the interest rate goes up
by 1 percentage point, the logit goes down by about 1.35, holding other variables con-
stant. If we take the anti-log of −1.352086, we get about 0.2587. This means that if in-
terest rate is paid on account balances, on average only about one-fourth of the customers
are likely to hold debit cards.

From the estimated LR statistic we see that collectively the three variables are statisti-
cally significant at about the 8.5 percent level. If we use the conventional 5 percent
significance level, then these variables are only marginally significant.

The McFadden R2 value is quite low. Using the data, the reader can find out the value
of the count R2.

As noted earlier, unlike the LPM, the slope coefficients do not give us the rate of change
of probability for a unit change in the regressor. We have to calculate them as shown in
Table 15.6. Fortunately, this manual task is not necessary, for statistical packages like STATA
can do this routinely. For our example, the results are as follows:

Marginal effects after logit

Y = Pr(debit) (predict)

= .42512423

Variable | dy/dx Std. Error z p > |z| [ 95% C.I. ] x

Balance | .000305 .00017 1.79 0.073 -.000029 .000639 1499.87
Interest*| -.2993972 .12919 -2.32 0.020 -.552595 −.046199 .266667
ATM | -.0293822 .02297 -1.28 0.201 -.074396 .015631 10.3

*dy/dx is for discrete change of dummy variable from 0 to 1.

(Continued )

We have already seen the results of the linear probability model (LPM) applied to the bank
debit card data, so let us see how the logit model does. The results are as follows:

Dependent Variable: DEBIT
Method: ML–Binary Logit (Quadratic hill climbing)
Sample: 1–60
Included observations: 60
Convergence achieved after 4 iterations
Covariance matrix computed using second derivatives

Variable Coefficient Std. Error z-Statistic Prob.

C -0.574900 0.785787 -0.731624 0.4644
Balance 0.001248 0.000697 1.789897 0.0735
ATM -0.120225 0.093984 -1.279205 0.2008
Interest -1.352086 0.680988 -1.985478 0.0471

McFadden R-squared 0.080471 Mean dependent var. 0.433333
S.D. dependent var. 0.499717 S.E. of regression 0.486274
Akaike info criterion 1.391675 Sum squared resid. 13.24192
Schwarz criterion 1.531298 Log likelihood -37.75024
Hannan-Quinn criter. 1.446289 Restr. log likelihood -41.05391
LR statistic 6.607325 Avg. log likelihood -0.629171
Prob. (LR statistic) 0.085525

Obs. with Dep = 0 34 Total obs. 60
Obs. with Dep = 1 26
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15.9 The Probit Model

As we have noted, to explain the behavior of a dichotomous dependent variable we will
have to use a suitably chosen cumulative distribution function (CDF). The logit model uses
the cumulative logistic function, as shown in Eq. (15.5.2). But this is not the only CDF that
one can use. In some applications, the normal CDF has been found useful. The estimating
model that emerges from the normal CDF28 is popularly known as the probit model,
although sometimes it is also known as the normit model. In principle one could substitute
the normal CDF in place of the logistic CDF in Eq. (15.5.2) and proceed as in Section 16.5.
Instead of following this route, we will present the probit model based on utility theory, or
rational choice perspective on behavior, as developed by McFadden.29

To motivate the probit model, assume that in our home ownership example the decision
of the ith family to own a house or not depends on an unobservable utility index Ii (also
known as a latent variable), that is determined by one or more explanatory variables, say
income Xi , in such a way that the larger the value of the index Ii , the greater the probability
of a family owning a house. We express the index Ii as

Ii = β1 + β2 Xi (15.9.1)

where Xi is the income of the ith family.
How is the (unobservable) index related to the actual decision to own a house? As

before, let Y = 1 if the family owns a house and Y = 0 if it does not. Now it is reasonable
to assume that there is a critical or threshold level of the index, call it I ∗

i , such that if Ii

exceeds I ∗
i , the family will own a house, otherwise it will not. The threshold I ∗

i , like Ii , is
not observable, but if we assume that it is normally distributed with the same mean and
variance, it is possible not only to estimate the parameters of the index given in Eq. (15.9.1)
but also to get some information about the unobservable index itself. This calculation is as
follows.

Given the assumption of normality, the probability that I ∗
i is less than or equal to Ii can

be computed from the standardized normal CDF as:30

Pi = P(Y = 1 | X) = P( I ∗
i ≤ Ii ) = P(Zi ≤ β1 + β2 Xi ) = F(β1 + β2 Xi )

(15.9.2)

The coefficient of 0.000305 suggests that customers with higher balances have a
0.03 percent higher probability of owning a debit card, but if the interest rate goes up
by 1 percentage point, the probability of owning a debit card goes down by about 30 per-
cent. The coefficient of ATM, although statistically insignificant, suggests that if ATM
transactions go up by a unit, the probability of owning a debit card goes down by about
2.9 percent.

28See Appendix A for a discussion of the normal CDF. Briefly, if a variable X follows the normal
distribution with mean µ and variance σ2, its PDF is

f (X) = 1√
2σ2π

e−(X−µ)2/2σ2

and its CDF is

F (X) =
∫ X0

−∞
1√

2σ2π
e−(X−µ)2/2σ2

where X0 is some specified value of X.
29D. McFadden, “Conditional Logit Analysis of Qualitative Choice Behavior,” in P. Zarembka (ed.),
Frontiers in Econometrics, Academic Press, New York, 1973.
30A normal distribution with zero mean and unit ( = 1) variance is known as a standard or
standardized normal variable (see Appendix A).

EXAMPLE 15.5
(Continued)
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where P(Y = 1 | X) means the probability that an event occurs given the value(s) of the X,
or explanatory, variable(s) and where Zi is the standard normal variable, i.e.,
Z ∼ N (0, σ 2). F is the standard normal CDF, which written explicitly in the present
context is:

F( Ii ) = 1√
2π

∫ Ii

−∞
e−z2/2 dz

= 1√
2π

∫ β1+β2 Xi

−∞
e−z2/2 dz

(15.9.3)

Since P represents the probability that an event will occur, here the probability of own-
ing a house, it is measured by the area of the standard normal curve from −∞ to Ii as
shown in Figure 15.4a.

Now to obtain information on Ii , the utility index, as well as on β1 and β2, we take the
inverse of Eq. (15.9.2) to obtain:

Ii = F−1( Ii ) = F−1( Pi )

= β1 + β2 Xi

(15.9.4)

where F−1 is the inverse of the normal CDF. What all this means can be made clear from
Figure 15.4. In panel (a) of this figure we obtain from the ordinate the (cumulative) proba-
bility of owning a house given I ∗

i ≤ Ii , whereas in panel (b) we obtain from the abscissa the
value of Ii given the value of Pi , which is simply the reverse of the former.

But how do we actually go about obtaining the index Ii as well as estimating β1 and β2?
As in the case of the logit model, the answer depends on whether we have grouped data or
ungrouped data. We consider the two cases individually.

Probit Estimation with Grouped Data: gprobit
We will use the same data that we used for glogit, which is given in Table 15.4. Since we
already have P̂i , the relative frequency (the empirical measure of probability) of owning a
house at various income levels as shown in Table 15.5, we can use it to obtain Ii from the
normal CDF as shown in Table 15.10, or from Figure 15.5.

FIGURE 15.4
Probit model: (a) given
Ii, read Pi from the
ordinate; (b) given Pi,
read Ii from the
abscissa.

1

Pi

0

(a)

1

Pi

0

(b)

Pi = F(Ii) Pi = F(Ii)

Ii = β1 + β2 Xi ββ Ii = F–1(Pi)

Pr (Ii
* ≤ It)  

– –+ +∞ ∞ ∞ ∞
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Once we have the estimated Ii , estimating β1 and β2 is relatively straightforward, as we
show shortly. In passing, note that in the language of probit analysis the unobservable
utility index Ii is known as the normal equivalent deviate (n.e.d.) or simply normit.
Since the n.e.d. or Ii will be negative whenever Pi < 0.5, in practice the number 5 is added
to the n.e.d. and the result is called a probit.

0

1

0.66

0.4– +∞ ∞

FIGURE 15.5
Normal CDF.

31The following results are not corrected for heteroscedasticity. See Exercise 15.12 for the appropriate
procedure to correct heteroscedasticity.

TABLE 15.10
Estimating the Index
Ii from the Standard
Normal CDF

P̂i li = F−1(P̂i)

0.20 −0.8416
0.24 −0.7063
0.30 −0.5244
0.35 −0.3853
0.45 −0.1257
0.51 0.0251
0.60 0.2533
0.66 0.4125
0.75 0.6745
0.80 0.8416

Notes: (1) P̂i are from Table 15.5; (2) Ii are estimated from the standard normal
CDF.

EXAMPLE 15.6
Illustration of
Gprobit Using
Housing
Example

Let us continue with our housing example. We have already presented the results of the
glogit model for this example. The grouped probit (gprobit) results of the same data are
as follows:

Using the n.e.d. ( = I ) given in Table 15.10, the regression results are as shown in
Table 15.11.31 The regression results based on the probits ( = n.e.d. + 5) are as shown
in Table 15.12.

Except for the intercept term, these results are identical with those given in the
previous table. But this should not be surprising. (Why?)
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Interpretation of the Probit Estimates in Table 15.11
How do we interpret the preceding results? Suppose we want to find out the effect of a unit
change in X (income measured in thousands of dollars) on the probability that Y = 1,
that is, a family purchases a house. To do this, look at Eq. (15.9.2). We want to take the
derivative of this function with respect to X (that is, the rate of change of the probability
with respect to income). It turns out that this derivative is:

d Pi

d Xi
= f (β1 + β2 Xi )β2 (15.9.5)32

where f (β1 + β2 Xi ) is the standard normal probability density function evaluated at
β1 + β2 Xi . As you will realize, this evaluation will depend on the particular value of the X
variables. Let us take a value of X from Table 15.5, say, X = 6 (thousand dollars). Using the
estimated values of the parameters given in Table 15.11, we thus want to find the normal
density function at f [−1.0166 + 0.04846(6)] = f (−0.72548). If you refer to the normal
distribution tables, you will find that for Z = −0.72548, the normal density is about
0.3066.33 Now multiplying this value by the estimated slope coefficient of 0.04846, we
obtain 0.01485. This means that starting with an income level of $6,000, if the income goes
up by $1,000, the probability of a family purchasing a house goes up by about 1.4 percent.
(Compare this result with that given in Table 15.6.)

As you can see from the preceding discussion, compared with the LPM and logit
models, the computation of changes in probability using the probit model is a bit tedious.

Instead of computing changes in probability, suppose you want to find the estimated
probabilities from the fitted gprobit model. This can be done easily. Using the data in

Dependent Variable: I

Variable Coefficient Std. Error t-Statistic Probability

C -1.0166 0.0572 -17.7473 1.0397E-07
Income 0.04846 0.00247 19.5585 4.8547E-08

R2 = 0.97951 Durbin–Watson statistic = 0.91384

TABLE 15.11

Dependent Variable: Probit

Variable Coefficient Std. Error t-Statistic Probability

C 3.9833 0.05728 69.5336 2.03737E-12
Income 0.04846 0.00247 19.5585 4.8547E-08

R2 = 0.9795 Durbin–Watson statistic = 0.9138

Note: These results are not corrected for heteroscedasticity (see Exercise 15.12).

TABLE 15.12

EXAMPLE 15.6
(Continued)

32We use the chain rule of derivatives:

dPi

dXi
= dF (t)

dt
· dt

dX

where t = β1 + β2 Xi .
33Note that the standard normal Z can range from −∞ to +∞, but the density function f (Z) is
always positive.
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Table 15.11 and inserting the values of X from Table 15.5, the reader can check that the
estimated n.i.d. values (to two digits) are as follows:

X 6 8 10 13 15 20 25 30 35 40
Estimated n.i.d. −0.72 −0.63 −0.53 −0.39 −0.29 −0.05 0.19 0.43 0.68 0.92

Now statistical packages such as MINITAB can easily compute the (cumulative) probabil-
ities associated with the various n.i.d.’s. For example, corresponding to an n.i.d. value
−0.63, the estimated probability is 0.2647 and, corresponding to an n.i.d. value of 0.43, the
estimated probability is 0.6691. If you compare these estimates with the actual values given
in Table 15.5, you will find that the two are fairly close, suggesting that the fitted model
is quite good. Graphically, what we have just done is already shown in Figure 15.4.

The Probit Model for Ungrouped or Individual Data
Let us revisit Table 15.7, which gives data on 32 individuals about their final grade in an
intermediate microeconomics course in relation to the variables GPA, TUCE, and PSI. The
results of the logit regression are given in Table 15.8. Let us see what the probit results look
like. Notice that as in the case of the logit model for individual data, we will have to use a
nonlinear estimating procedure based on the method of maximum likelihood. The regres-
sion results calculated by EViews 6 are given in Table 15.13.

“Qualitatively,” the results of the probit model are comparable with those obtained from
the logit model in that GPA and PSI are individually statistically significant. Collectively,
all the coefficients are statistically significant, since the value of the LR statistic is 15.5458
with a p value of 0.0014. For reasons discussed in the next sections, we cannot directly
compare the logit and probit regression coefficients.

For comparative purposes, we present the results based on the linear probability model
(LPM) for the grade data in Table 15.14. Again, qualitatively, the LPM results are similar

TABLE 15.13

TABLE 15.14

Dependent Variable: grade
Method: ML—Binary probit
Convergence achieved after 5 iterations

Variable Coefficient Std. Error Z-Statistic Probability

C -7.4523 2.5424 -2.9311 0.0033
GPA 1.6258 0.6938 2.3430 0.0191
TUCE 0.0517 0.0838 0.6166 0.5374
PSI 1.4263 5950 2.3970 0.0165

LR statistic (3 df) = 15.5458 McFadden R2 = 0.3774
Probability (LR stat) = 0.0014

Dependent Variable: grade

Variable Coefficient Std. Error t-Statistic Probability

C -1.4980 0.5238 -2.8594 0.0079
GPA 0.4638 0.1619 2.8640 0.0078
TUCE 0.0104 0.0194 0.5386 0.5943
PSI 0.3785 0.1391 2.7200 0.0110

R2 = 0.4159 Durbin–Watson d = 2.3464 F-statistic = 6.6456
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to the logit and probit models in that GPA and PSI are individually statistically significant
but TUCE is not. Also, together the explanatory variables have a significant impact on
grade, as the F value of 6.6456 is statistically significant because its p value is only 0.0015.

The Marginal Effect of a Unit Change in the Value 
of a Regressor in the Various Regression Models
In the linear regression model, the slope coefficient measures the change in the average
value of the regressand for a unit change in the value of a regressor, with all other variables
held constant.

In the LPM, the slope coefficient measures directly the change in the probability of an
event occurring as the result of a unit change in the value of a regressor, with the effect of
all other variables held constant.

In the logit model the slope coefficient of a variable gives the change in the log of the odds
associated with a unit change in that variable, again holding all other variables constant. But
as noted previously, for the logit model the rate of change in the probability of an event hap-
pening is given by βj Pi (1 − Pi ), where βj is the (partial regression) coefficient of the jth re-
gressor. But in evaluating Pi , all the variables included in the analysis are involved.

In the probit model, as we saw earlier, the rate of change in the probability is somewhat
complicated and is given by βj f (Zi ), where f (Zi ) is the density function of the standard
normal variable and Zi = β1 + β2 X2i + · · · + βk Xki , that is, the regression model used in
the analysis.

Thus, in both the logit and probit models all the regressors are involved in computing the
changes in probability, whereas in the LPM only the jth regressor is involved. This difference
may be one reason for the early popularity of the LPM model. Statistical packages, such as
STATA, have made the task of finding the rate of change of probability for the logit and pro-
bit models much easier. So now there is no need to choose LPM just because of its simplicity.

15.10 Logit and Probit Models

Although for our grade example LPM, logit, and probit give qualitatively similar results,
we will confine our attention to logit and probit models because of the problems with the
LPM noted earlier. Between logit and probit, which model is preferable? In most applica-
tions the models are quite similar, the main difference being that the logistic distribution
has slightly fatter tails, which can be seen from Figure 15.6. That is to say, the conditional
probability Pi approaches 0 or 1 at a slower rate in logit than in probit. This can be seen
more clearly from Table 15.15. Therefore, there is no compelling reason to choose one over
the other. In practice many researchers choose the logit model because of its comparative
mathematical simplicity.

Though the models are similar, one has to be careful in interpreting the coefficients
estimated by the two models. For example, for our grade example, the coefficient of GPA
of 1.6258 of the probit model (see Table 15.13) and 2.8261 of the logit model (see
Table 15.8) are not directly comparable. The reason is that, although the standard logistic
(the basis of logit) and the standard normal distributions (the basis of probit) both have a
mean value of zero, their variances are different; 1 for the standard normal (as we already
know) and π2/3 for the logistic distribution, where π ≈ 22/7. Therefore, if you multiply
the probit coefficient by about 1.81 (which is approximately = π/

√
3), you will get

approximately the logit coefficient. For our example, the probit coefficient of GPA is
1.6258. Multiplying this by 1.81, we obtain 2.94, which is close to the logit coefficient.
Alternatively, if you multiply a logit coefficient by 0.55 ( = 1/1.81), you will get the probit
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coefficient. Amemiya, however, suggests multiplying a logit estimate by 0.625 to get a bet-
ter estimate of the corresponding probit estimate.34 Conversely, multiplying a probit coef-
ficient by 1.6 ( = 1/0.625) gives the corresponding logit coefficient.

Incidentally, Amemiya has also shown that the coefficients of LPM and logit models are
related as follows:

βLPM = 0.25βlogit except for intercept

and

βLPM = 0.25βlogit + 0.5 for intercept

We leave it to the reader to find out if these approximations hold for our grade example.
To conclude our discussion of LPM, logit, and probit models, we consider an extended

example.

TABLE 15.15
Values of Cumulative
Probability Functions

Cumulative Normal Cumulative Logistic

Z

−3.0 0.0013 0.0474
−2.0 0.0228 0.1192
−1.5 0.0668 0.1824
−1.0 0.1587 0.2689
−0.5 0.3085 0.3775

0 0.5000 0.5000
0.5 0.6915 0.6225
1.0 0.8413 0.7311
1.5 0.9332 0.8176
2.0 0.9772 0.8808
3.0 0.9987 0.9526

0

1

P

Probit
Logit

FIGURE 15.6
Logit and probit
cumulative
distributions.

34T. Amemiya, “Qualitative Response Model: A Survey,” Journal of Economic Literature, vol. 19, 1981,
pp. 481–536. 

√1
2π

P1(Z) =
∫

e−s2/2dsz

−∞
P2(Z) = 1

1 + e−z
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35These data are from Michael P. Murray, Econometrics: A Modern Introduction, Pearson/Addison-
Wesley, Boston, 2006, and can be downloaded from www.aw-bc.com/murray.

EXAMPLE 15.7
To Smoke or 
Not to Smoke

To find out what factors determine whether or not a person becomes a smoker, we ob-
tained data on 1,196 individuals.35 For each individual, there is information on education,
age, income, and the price of cigarettes in 1979. The dependent variable is smoker, with
1-smokers and 0-nonsmokers. Further analysis will be examined by Exercise 15.20 and the
data can be found in Table 15.28 on the textbook website. For comparative purposes,
we present the results based on LPM, logit, and probit models in a tabular form (see
Table 15.16). These results have been obtained from STATA version 10.

TABLE 15.16
Variables LPM Logit Probit

Constant 1.1230 2.7450 1.7019
(5.96) (3.31) (3.33)

Age −0.0047 −0.0208 −0.0129
(−5.70) (−5.58) (−5.66)

Education −0.0206 −0.0909 −0.0562
(−4.47) (−4.40) (−4.45)

Income 1.03e–0.6 4.72e–06 2.72e–06
(0.63) (0.66) (0.62)

Pcigs79 −0.0051 −0.0223 −0.0137
(−1.80) (−1.79) (−1.79)

R2 0.0388 0.0297 0.0301

Notes: Figures in the parentheses are t ratios for LPM and z ratios for logit and probit. For logit and
probit, the R2 values are pseudo R2 values.

Although the coefficients of the three models are not directly comparable, qualitatively
they are similar. Thus, age, education, and price of cigarettes have a negative impact on
smoking and income has positive impact. Statistically, the income effect is zero and the
price effect is significant at about an 8 percent level. In Exercise 15.20, you are asked to
apply the conversion factor to render the various coefficients comparable.

In Table 15.17 we present the marginal effect of each variable on the probability of
smoking for each model type.

TABLE 15.17 Variables LPM Logit Probit

Age −0.0047 −0.0048 −0.0049
Education −0.0206 −0.0213 −0.0213
Income 1.03e–06 1.11e–06 1.03e–06
Pcigs79 −0.0051 −0.0052 −0.0052

Note: Except for income, the estimated coefficients are highly statistically significant for age and
education, and significant at about the 8 percent level for the price of cigarettes.

As you will recognize, the marginal effect of a variable on the probability of smoking for
LPM is directly obtained from the estimated regression coefficients, but for the logit and
probit models they have to be computed as discussed in the chapter.

It is interesting that the marginal effects are quite similar for the three models. For
example, if the level of education goes up, on average, the probability of someone
becoming a smoker goes down by about 2 percent.
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15.11 The Tobit Model

An extension of the probit model is the tobit model originally developed by James Tobin,
the Nobel laureate economist. To explain this model, we continue with our home ownership
example. In the probit model our concern was with estimating the probability of owning a
house as a function of some socioeconomic variables. In the tobit model our interest is in
finding out the amount of money a person or family spends on a house in relation to
socioeconomic variables. Now we face a dilemma: If a consumer does not purchase a
house, obviously we have no data on housing expenditure for such consumers; we have
such data only on consumers who actually purchase a house.

Thus consumers are divided into two groups, one consisting of, say, n1 consumers about
whom we have information on the regressors (say, income, mortgage interest rate, number
of people in the family, etc.) as well as the regressand (amount of expenditure on housing)
and another consisting of n2 consumers about whom we have information only on the
regressors but not on the regressand. A sample in which information on the regressand is
available only for some observations is known as a censored sample.36 Therefore, the tobit
model is also known as a censored regression model. Some authors call such models
limited dependent variable regression models because of the restriction put on the values
taken by the regressand.

Statistically, we can express the tobit model as

Yi = β1 + β2 Xi + ui if RHS > 0
(15.11.1)= 0 otherwise

where RHS = right-hand side. Note: Additional X variables can be easily added to the
model.

Can we estimate regression (15.11.1) using only n1 observations and not worry about the
remaining n2 observations? The answer is no, for the OLS estimates of the parameters ob-
tained from the subset of n1 observations will be biased as well as inconsistent; that is, they
are biased even asymptotically.37

To see this, consider Figure 15.7. As the figure shows, if Y is not observed (because of
censoring), all such observations ( = n2), denoted by crosses, will lie on the horizontal axis.
If Y is observed, the observations ( = n1), denoted by dots, will lie in the X–Y plane. It is
intuitively clear that if we estimate a regression line based on the n1 observations only, the
resulting intercept and slope coefficients are bound to be different than if all the (n1 + n2)
observations were taken into account.

How then does one estimate tobit, or censored regression, models, such as Eq. (15.11.1)?
The actual mechanics involves the method of maximum likelihood, which is rather involved
and is beyond the scope of this book. But the reader can get more information about the ML
method from the references.38

36A censored sample should be distinguished from a truncated sample in which information on
the regressors is available only if the regressand is observed. We will not pursue this topic here, but
the interested reader may consult  William H. Greene, Econometric Analysis, Prentice Hall, 4th ed.,
Englewood Cliffs, NJ, Chapter 19. For an intuitive discussion, see Peter Kennedy, A Guide to
Econometrics, The MIT Press, Cambridge, Mass., 4th ed., 1998, Chapter 16.
37The bias arises from the fact that if we consider only the n1 observations and omit the others, there
is no guarantee that E (ui ) will be necessarily zero. And without E (ui ) = 0 we cannot guarantee that
the OLS estimates will be unbiased. This bias can be readily seen from the discussion in Appendix 3A,
Eqs. (4) and (5).
38See Greene, op. cit. A somewhat less technical discussion can be found in Richard Breen, Regression
Models: Censored, Sample Selected or Truncated Data, Sage Publications, Newbury Park, California, 1996.
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James Heckman has proposed an alternative to the ML method, which is comparatively
simple.39 This alternative consists of a two-step estimating procedure. In step 1, we first
estimate the probability of a consumer owning a house, which is done on the basis of the
probit model. In step 2, we estimate the model (15.11.1) by adding to it a variable (called
the inverse Mills ratio or the hazard rate) that is derived from the probit estimate. For the
actual mechanics, see the Heckman article. The Heckman procedure yields consistent
estimates of the parameters of Eq. (15.11.1), but they are not as efficient as the ML
estimates. Since most modern statistical software packages have the ML routine, it may be
preferable to use these packages rather than the Heckman two-step procedure.

Illustration of the Tobit Model: Ray Fair’s Model 
of Extramarital Affairs40

In an interesting and theoretically innovative article, Ray Fair collected a sample of 601
men and women then married for the first time and analyzed their responses to a question
about extramarital affairs.41 The variables used in this study are defined as follows:

Y = number of affairs in the past year, 0, 1, 2, 3, 4–10 (coded as 7)
Z1 = 0 for female and 1 for male
Z2 = age
Z3 = number of years married
Z4 = children: 0 if no children and 1 if children
Z5 = religiousness on a scale of 1 to 5, 1 being antireligion
Z6 = education, years: grade school = 9; high school = 12, Ph.D. or other = 20
Z7 = occupation, “Hollingshead” scale, 1–7
Z8 = self-rating of marriage, 1 = very unhappy, 5 = very happy

39J. J. Heckman, “Sample Selection Bias as a Specification Error,” Econometrica, vol. 47, pp. 153–161.
40Ray Fair, “A Theory of Extramarital Affairs,” Journal of Political Economy, vol. 86, 1978, pp. 45–61.
For the article and the data, see http://fairmodel.econ.yale.edu/rayfair/pdf/1978DAT.ZIP.
41In 1969 Psychology Today published a 101-question survey on sex and asked its readers to mail in
their answers. In the July 1970 issue of the magazine the survey results were discussed on the basis of
about 2,000 replies that were collected in electronic form. Ray Fair extracted the sample of 601 from
these replies.
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Of the 601 responses, 451 individuals had no extramarital affairs, and 150 individuals had
one or more affairs.

In terms of Figure 15.7, if we plot the number of affairs on the vertical axis and, say,
education on the horizontal axis, there will be 451 observations lying along the horizontal
axis. Thus, we have a censored sample, and a tobit model may be appropriate.

Table 15.18 gives estimates of the preceding model using both (the inappropriate) OLS
and (the appropriate) ML procedures. As you can see, OLS includes 451 individuals who
had no affairs and 150 who had one or more affairs. The ML method takes this into account
explicitly but the OLS method does not, thus the difference between the two estimates.
For reasons already discussed, one should rely on the ML and not the OLS estimates. The
coefficients in the two models can be interpreted like any other regression coefficients.
The negative coefficient of Z8 (marital happiness) means that the higher the marital happi-
ness, the lower is the incidence of extramarital affairs, perhaps an unsurprising finding.

In passing, note that if we are interested in the probability of extramarital affairs and not
in the number of such affairs, we can use the probit model assigning Y = 0 for individuals
who did not have any affairs and Y = 1 for those who had such affairs, giving the results
shown in Table 15.19. With the knowledge of probit modeling, readers should be able to
interpret the probit results given in this table on their own.

15.12 Modeling Count Data: The Poisson Regression Model

There are many phenomena where the regressand is of the count type, such as the number
of vacations taken by a family per year, the number of patents received by a firm per year,
the number of visits to a dentist or a doctor per year, the number of visits to a grocery store
per week, the number of parking or speeding tickets received per year, the number of days
stayed in a hospital in a given period, the number of cars passing through a toll booth in a
span of, say, 5 minutes, and so on. The underlying variable in each case is discrete, taking
only a finite number of values. Sometimes count data can also refer to rare, or infrequent,
occurrences, such as getting hit by lightning in a span of a week, winning more than one lot-
tery within 2 weeks, or having two or more heart attacks in a span of 4 weeks. How do we
model such phenomena?

TABLE 15.18
OLS and Tobit
Estimates of
Extramarital Affairs

Explanatory Variable OLS Estimate Tobit Estimate

Intercept 5.8720 (5.1622)* 7.6084 (1.9479)†

Z1 0.0540 (0.1799) 0.9457 (0.8898)
Z2 −0.0509 (−2.2536) −0.1926 (−2.3799)
Z3 0.1694 (4.1109) 0.5331 (3.6368)
Z4 −0.1426 (−0.4072) 1.0191 (0.7965)
Z5 −0.4776 (−4.2747) −1.6990 (−4.1906)
Z6 −0.0137 (−0.2143) 0.0253 (0.1113)
Z7 0.1049 (1.1803) 0.2129 (0.6631)
Z8 −0.7118 (−5.9319) −2.2732 (−5.4724)

R2 0.1317 0.1515

*The figures in the parentheses are the t values.
†The figures in the parentheses are the Z (standard normal) values.

Note: In all there are 601 observations, of which 451 have zero values for the dependent variable (number of extramarital
affairs) and 150 have nonzero values.
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Just as the Bernoulli distribution was chosen to model the yes/no decision in the linear
probability model, the probability distribution that is specifically suited for count data is the
Poisson probability distribution. The pdf of the Poisson distribution is given by:42

f (Yi ) = µY e−µ

Y !
Y = 0, 1, 2, . . . (15.12.1)

where f (Y ) denotes the probability that the variable Y takes non-negative integer values,
and where Y ! (read Y factorial) stands for Y ! = Y × (Y − 1) × (Y − 2) × 2 × 1. It can be
proved that

E(Y ) = µ (15.12.2)

var (Y ) = µ (15.12.3)

Notice an interesting feature of the Poisson distribution: Its variance is the same as its
mean value.

The Poisson regression model may be written as:

Yi = E(Yi ) + ui = µi + ui (15.12.4) 

TABLE 15.19

Dependent Variable: YSTAR
Method: ML—Binary probit

Sample: 1–601
Included observations: 601
Convergence achieved after 5 iterations

Variable Coefficient Std. Error Z Statistic Probability

C 0.779402 0.512549 1.520638 0.1284
Z1 0.173457 0.137991 1.257015 0.2087
Z2 -0.024584 0.010418 -2.359844 0.0183
Z3 0.054343 0.018809 2.889278 0.0039
Z4 0.216644 0.165168 1.311657 0.1896
Z5 -0.185468 0.051626 -3.592551 0.0003
Z6 0.011262 0.029517 0.381556 0.7028
Z7 0.013669 0.041404 0.330129 0.7413
Z8 -0.271791 0.053475 -5.082608 0.0000

Mean dependent var. 0.249584 S.D. dependent var. 0.433133
S.E. of regression 0.410279 Akaike info criterion 1.045584
Sum squared resid. 99.65088 Schwarz criterion 1.111453
Log likelihood -305.1980 Hannan–Quinn criter. 1.071224
Restr. log likelihood -337.6885 Avg. log likelihood -0.507817
LR statistic (8 df) 64.98107 McFadden R-squared 0.096215
Probability (LR stat) 4.87E-11

Obs. with Dep = 0        451   Total obs. 601
Obs. with Dep = 1        150

42See any standard book on statistics for the details of this distribution.
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where the Y ’s are independently distributed as Poisson random variables with mean µi for
each individual expressed as 

µi = E(Yi ) = β1 + β2 X2i + β3 X3i + · · · + βk Xki (15.12.5)

where the X ’s are some of the variables that might affect the mean value. For example, if
our count variable is the number of visits to the Metropolitan Museum of Art in New York
in a given year, this number will depend on variables such as income of the consumer,
admission price, distance from the museum, and parking fees.

For estimation purposes, we write the model as:

Yi = µY e−µ

Y !
+ ui (15.12.6)

with µ replaced by Eq. (5.12.5). As you can readily see, the resulting regression model will
be nonlinear in the parameters, necessitating nonlinear regression estimation discussed in
the previous chapter. Let us consider a concrete example to see how all this works out.

43John Neter, Michael H. Kutner, Christopher J. Nachtsheim, and William Wasserman, Applied
Regression Models, Irwin, 3d ed., Chicago, 1996. The data were obtained from the data disk included
in the book and refer to Exercise 14.28.

EXAMPLE 15.8
An Illustrative
Example:
Geriatric Study
of Frequency of
Falls

The data used here were collected by Neter et al.43 The data relate to 100 individuals
65 years of age and older. The objective of the study was to record the number of falls
( = Y ) suffered by these individuals in relation to gender (X2 = 0 female and 1 for male),
a balance index (X3), and a strength index (X4). The higher the balance index, the more
stable is the subject, and the higher the strength index, the stronger is the subject. To find
out if education or education plus aerobic exercise has any effect on the number of falls,
the authors introduced an additional variable (X1), called the intervention variable, such
that X1 = 0 if only education and X1 = 1 if education plus aerobic exercise training. The
subjects were randomly assigned to the two intervention methods.

Using EViews 6, we obtained the output in Table 15.20.

Dependent Variable: Y
Sample: 1–100
Convergence achieved after 7 iterations
Y=EXP(C(0)+C(1)*X1+C(2)*X2+C(3)*X3+C(4)*X4)

Coefficient Std. Error t-Statistic Probability

C(0) 0.37020 0.3459 1.0701 0.2873
C(1) -1.10036 0.1705 -6.4525 0.0000
C(2) -0.02194 0.1105 -0.1985 0.8430
C(3) 0.01066 0.0027 3.9483 0.0001
C(4) 0.00927 0.00414 2.2380 0.0275

R2 = 0.4857 Adjusted R2 = 0.4640
Log likelihood = -197.2096 Durbin–Watson statistic = 1.7358

Note: EXP( ) means e (the base of natural logarithm) raised by the expression in ( ).

TABLE 15.20
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15.13 Further Topics in Qualitative Response Regression Models

As noted at the outset, the topic of qualitative response regression models is vast. What we
have presented in this chapter are some of the basic models in this area. For those who want
to pursue this topic further, we discuss below very briefly some other models in this area.
We will not pursue them here, for that would take us far away from the scope of this book.

Interpretation of Results. Keep in mind that what we have obtained in Table 15.20 is
the estimated mean value for the ith individual, µ̂i ; that is, what we have estimated is:

µ̂i = e0.3702−1.100366X1i −0.02194X2i +0.0106X3i +0.00927X4i (15.12.7)

To find the actual mean value for the ith subject, we need to put the values of the various
X variables for that subject. For example, subject 99 had these values: Y = 4, X1 = 0,
X2 = 1, X3 = 50, and X4 = 56. Putting these values in Eq. (15.12.7), we obtain µ̂99 =
3.3538 as the estimated mean value for the 99th subject. The actual Y value for this
individual was 4.

Now if we want to find out the probability that a subject similar to subject 99 has less
than 5 falls per year, we can obtain it as follows:

P (Y < 5) = P (Y = 0) + P (Y = 1) + P (Y = 2) + P (Y = 3) + P (Y = 4)

= (3.3538)0e−3.3538

0!
+ (3.3538)1e−3.3538

1!
+ (3.3538)2e−3.3538

2!

+ (3.3538)3e−3.3538

3!
+ (3.3538)4e−3.3538

4!
= 0.7491

We can also find out the marginal, or partial, effect of a regressor on the mean value of
Y as follows. In terms of our illustrative example, suppose we want to find out the effect of
a unit increase in the strength index (X4) on mean Y. Since

µ = eC0+C1 X1i +C2 X2i +C 3 X3i +C4 X4i (15.12.8)

we want to find ∂µ/∂X4. Using the chain rule of calculus, it can be easily shown that this
is equal to

∂µ

∂X4
= C4eC0+C1 X1i +C2 X2i +C 3 X3i +C4 X4i = C4µ (15.12.9)

That is, the rate of change of the mean value with respect to a regressor is equal to the
coefficient of that regressor times the mean value. Of course, the mean value µ will
depend on the values taken by all the regressors in the model. This is similar to the logit
and probit models we discussed earlier, where the marginal contribution of a variable also
depended on the values taken by all the variables in the model.

Returning to the statistical significance of the individual coefficients, we see that the
intercept and variable X2 are individually statistically insignificant. But note that the stan-
dard errors given in the table are asymptotic and hence the t values are to be interpreted
asymptotically. As noted previously, generally the results of all nonlinear iterative estimat-
ing procedures have validity in large samples only.

In concluding our discussion of the Poisson regression model, it may be noted that the
model makes restrictive assumptions in that the mean and the variance of the Poisson
process are the same and that the probability of an occurrence is constant at any point
in time.

EXAMPLE 15.8
(Continued)
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Ordinal Logit and Probit Models
In the bivariate logit and probit models we were interested in modeling a yes or no re-
sponse variable. But often the response variable, or regressand, can have more than two
outcomes and very often these outcomes are ordinal in nature; that is, they cannot be ex-
pressed on an interval scale. Frequently, in survey-type research the responses are on a
Likert-type scale, such as “strongly agree,” “somewhat agree,” or “strongly disagree.” Or
the responses in an educational survey may be “less than high school,” “high school,”
“college,” or “professional degrees.” Very often these responses are coded as 0 (less than
high school), 1 (high school), 2 (college), 3 (postgraduate). These are ordinal scales in that
there is clear ranking among the categories but we cannot say that 2 (college education) is
twice 1 (high school education) or 3 (postgraduate education) is three times 1 (high school
education).

To study phenomena such as the preceding, one can extend the bivariate logit and probit
models to take into account multiple ranked categories. The arithmetic gets quite involved
as we have to use multistage normal and logistic probability distributions to allow for the
various ranked categories. For the underlying mathematics and some of the applications,
the reader may consult the Greene and Maddala texts cited earlier. At a comparatively
intuitive level, the reader may consult the Liao monograph.44 Software packages such as
LIMDEP, EViews, STATA, and SHAZAM have routines to estimate ordered logit and
probit models.

Multinomial Logit and Probit Models
In the ordered probit and logit models the response variable has more than two ordered, or
ranked, categories. But there are situations where the regressand is unordered. Take, for
example, the choice of transportation mode to work. The choices may be bicycle, motor-
bike, car, bus, or train. Although these are categorical responses, there is no ranking or
order here; they are essentially nominal in character. For another example, consider occu-
pational classifications, such as unskilled, semiskilled, and highly skilled. Again, there is no
order here. Similarly, occupational choices such as self-employed, working for a private
firm, working for a local government, and working for the federal government are essen-
tially nominal in character.

The techniques of multinomial logit or probit models can be employed to study such
nominal categories. Again, the mathematics gets a little involved. The references cited pre-
viously will give the essentials of these techniques. And the statistical packages cited earlier
can be used to implement such models, if their use is required in specific cases.

Duration Models
Consider questions such as these: (1) What determines the duration of unemployment
spells? (2) What determines the life of a light bulb? (3) What factors determine the dura-
tion of a strike? (4) What determines the survival time of an HIV-positive patient?

Subjects such as these are the topic of duration models, popularly known as survival
analysis or time-to-event data analysis. In each of the examples cited above, the key
variable is the length of time or spell length, which is modeled as a random variable. Again
the mathematics involves the CDFs and PDFs of appropriate probability distributions.
Although the technical details can be tedious, there are accessible books on this subject.45

44Tim Futing Liao, op. cit. 
45See, for example, David W. Hosmer, Jr., and Stanley Lemeshow, Applied Survival Analysis, John Wiley
& Sons, New York, 1999.
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Statistical packages such as STATA and LIMDEP can easily estimate such duration
models. These packages have worked examples to aid the researcher in the use of such
models.

Summary and
Conclusions

1. Qualitative response regression models refer to models in which the response, or re-
gressand, variable is not quantitative or an interval scale.

2. The simplest possible qualitative response regression model is the binary model in which
the regressand is of the yes/no or presence/absence type.

3. The simplest possible binary regression model is the linear probability model (LPM)
in which the binary response variable is regressed on the relevant explanatory vari-
ables by using the standard OLS methodology. Simplicity may not be a virtue here, for
the LPM suffers from several estimation problems. Even if some of the estimation
problems can be overcome, the fundamental weakness of the LPM is that it assumes
that the probability of something happening increases linearly with the level of the re-
gressor. This very restrictive assumption can be avoided if we use the logit and probit
models.

4. In the logit model the dependent variable is the log of the odds ratio, which is a linear
function of the regressors. The probability function that underlies the logit model is the
logistic distribution. If the data are available in grouped form, we can use OLS to
estimate the parameters of the logit model, provided we take into account explicitly the
heteroscedastic nature of the error term. If the data are available at the individual, or
micro, level, nonlinear-in-the-parameter estimating procedures are called for.

5. If we choose the normal distribution as the appropriate probability distribution, then
we can use the probit model. This model is mathematically a bit difficult as it involves
integrals. But for all practical purposes, both logit and probit models give similar
results. In practice, the choice therefore depends on the ease of computation, which
is not a serious problem with sophisticated statistical packages that are now readily
available. 

6. If the response variable is of the count type, the model that is most frequently used in ap-
plied work is the Poisson regression model, which is based on the Poisson probability
distribution. 

7. A model that is closely related to the probit model is the tobit model, also known as a
censored regression model. In this model, the response variable is observed only if a
certain condition(s) is met. Thus, the question of how much one spends on a car is
meaningful only if one decides to buy a car to begin with. However, Maddala notes that
the tobit model is “applicable only in those cases where the latent variable [i.e., the
basic variable underlying a phenomenon] can, in principle, take negative values and the
observed zero values are a consequence of censoring and nonobservability.”46

8. There are various extensions of the binary response regression models. These include
ordered probit and logit and nominal probit and logit models. The philosophy underly-
ing these models is the same as the simpler logit and probit models, although the math-
ematics gets rather complicated.

9. Finally, we considered briefly the so-called duration models in which the duration
of a phenomenon, such as unemployment or sickness, depends on several factors. In such
models, the length, or the spell of duration, becomes the variable of research interest.

46G. S. Maddala, Introduction to Econometrics, 2d ed., Macmillan, New York, 1992, p. 342.
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Questions
15.1. Refer to the data given in Table 15.2. If Ŷi is negative, assume it to be equal to 0.01

and if it is greater than 1, assume it to be equal to 0.99. Recalculate the weights wi

and estimate the LPM using WLS. Compare your results with those given in
Eq. (15.2.11) and comment.

15.2. For the home ownership data given in Table 15.1, the maximum likelihood
estimates of the logit model are as follows:

L̂ i = ln

(
P̂i

1 − P̂i

)
= −493.54 + 32.96 income

t = (−0.000008)(0.000008)

Comment on these results, bearing in mind that all values of income above 16 (thou-
sand dollars) correspond to Y = 1 and all values of income below 16 correspond to
Y = 0. A priori, what would you expect in such a situation?

15.3. In studying the purchase of durable goods Y (Y = 1 if purchased, Y = 0 if no
purchase) as a function of several variables for a total of 762 households, Janet A.
Fisher∗obtained the following LPM results:

Explanatory Variable Coefficient Standard Error

Constant 0.1411 —
1957 disposable income, X1 0.0251 0.0118
(Disposable income = X1)2, X2 −0.0004 0.0004
Checking accounts, X3 −0.0051 0.0108
Savings accounts, X4 0.0013 0.0047
U.S. savings bonds, X5 −0.0079 0.0067
Housing status: rent, X6 −0.0469 0.0937
Housing status: own, X7 0.0136 0.0712
Monthly rent, X8 −0.7540 1.0983 
Monthly mortgage payments, X9 −0.9809 0.5162
Personal noninstallment debt, X10 −0.0367 0.0326
Age, X11 0.0046 0.0084
Age squared, X12 −0.0001 0.0001
Marital status, X13 (1 = married) 0.1760 0.0501
Number of children, X14 0.0398 0.0358
(Number of children = X14)2, X15 −0.0036 0.0072
Purchase plans, X16 (1 = planned; 0 otherwise) 0.1760 0.0384

R2 = 0.1336

Notes: All financial variables are in thousands of dollars.
Housing status: Rent (1 if rents; 0 otherwise).

Housing status: Own (1 if owns; 0 otherwise).

Source: Janet A. Fisher, “An Analysis of Consumer Goods Expenditure,” The Review of Economics and Statistics, vol. 64,
no. 1, Table 1, 1962, p. 67.

a. Comment generally on the fit of the equation.

b. How would you interpret the coefficient of −0.0051 attached to the checking ac-
counts variable? How would you rationalize the negative sign for this variable?

c. What is the rationale behind introducing the age-squared and number of children-
squared variables? Why is the sign negative in both cases?

*“An Analysis of Consumer Goods Expenditure,” The Review of Economics and Statistics, vol. 64, no. 1,
1962, pp. 64–71.

EXERCISES
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d. Assuming values of zero for all but the income variable, find out the conditional
probability of a household whose income is $20,000 purchasing a durable good.

e. Estimate the conditional probability of owning durable good(s), given: X1 =
$15,000, X3 = $3,000, X4 = $5,000, X6 = 0, X7 = 1, X8 = $500, X9 = $300,
X10 = 0, X11 = 35, X13 = 1, X14 = 2, X16 = 0.

15.4. The R2 value in the labor-force participation regression given in Table 15.3 is 0.175,
which is rather low. Can you test this value for statistical significance? Which test do
you use and why? Comment in general on the value of R2 in such models.

15.5. Estimate the probabilities of owning a house at the various income levels underly-
ing the regression (15.7.1). Plot them against income and comment on the resulting
relationship.

*15.6. In the probit regression given in Table 15.11 show that the intercept is equal to
−µx/σx and the slope is equal to 1/σx , where µx and σx are the mean and standard
deviation of X.

15.7. From data for 54 standard metropolitan statistical areas (SMSA), Demaris estimated
the following logit model to explain high murder rate versus low murder rate:**

lnÔi = 1.1387 + 0.0014Pi + 0.0561Ci − 0.4050Ri

se = (0.0009) (0.0227) (0.1568)

where O = the odds of a high murder rate, P = 1980 population size in thousands,
C = population growth rate from 1970 to 1980, R = reading quotient, and the se are
the asymptotic standard errors.

a. How would you interpret the various coefficients?

b. Which of the coefficients are individually statistically significant?

c. What is the effect of a unit increase in the reading quotient on the odds of hav-
ing a higher murder rate?

d. What is the effect of a percentage point increase in the population growth rate on
the odds of having a higher murder rate?

15.8. Compare and comment on the OLS and WLS regressions in Eqs. (15.7.3) and
(15.7.1).

Empirical Exercises
15.9. From the household budget survey of 1980 of the Dutch Central Bureau of Statis-

tics, J. S. Cramer obtained the following logit model based on a sample of 2,820
households. (The results given here are based on the method of maximum likeli-
hood and are after the third iteration.)† The purpose of the logit model was to
determine car ownership as a function of (logarithm of) income. Car ownership was
a binary variable: Y = 1 if a household owns a car, zero otherwise.

L̂ i = −2.77231 + 0.347582 ln Income

t = (−3.35) (4.05)

χ2(1 df) = 16.681 ( p value = 0.0000)

where L̂ i = estimated logit and where ln Income is the logarithm of income. The χ2

measures the goodness of fit of the model.

*Optional.
**Demaris, op. cit., p. 46.
†J. S. Cramer, An Introduction to the Logit Model for Economist, 2d ed., published and distributed by
Timberlake Consultants Ltd., 2001, p. 33. These results are reproduced from the statistical package
PC-GIVE 10 published by Timberlake Consultants, p. 51.
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a. Interpret the estimated logit model.

b. From the estimated logit model, how would you obtain the expression for the
probability of car ownership?

c. What is the probability that a household with an income of $20,000 will own a
car? And at an income level of $25,000? What is the rate of change of probabil-
ity at the income level of $20,000?

d. Comment on the statistical significance of the estimated logit model.

15.10. Establish Eq. (15.2.8).

15.11. In an important study of college graduation rates of all high school matriculants
and Black-only matriculants, Bowen and Bok obtained the results in Table 15.21,
based on the logit model.* 

TABLE 15.21 Logistic Regression Model Predicting Graduation Rates, 1989 Entering Cohort

All Matriculants Black Only

Parameter Standard Odds Parameter Standard Odds
Variable Estimate Error Ratio Estimate Error Ratio

Intercept 0.957 0.052 — 0.455 0.112 —
Female 0.280 0.031 1.323 0.265 0.101 1.303
Black −0.513 0.056 0.599
Hispanic −0.350 0.080 0.705
Asian 0.122 0.055 1.130
Other race −0.330 0.104 0.719
SAT > 1,299 0.331 0.059 1.393 0.128 0.248 1.137
SAT 1,200–1,299 0.253 0.055 1.288 0.232 0.179 1.261
SAT 1,100–1,199 0.350 0.053 1.420 0.308 0.149 1.361
SAT 1,000–1,099 0.192 0.054 1.211 0.141 0.136 1.151
SAT not available −0.330 0.127 0.719 0.048 0.349 1.050
Top 10% of high 0.342 0.036 1.407 0.315 0.117 1.370

school class
High school class rank −0.065 0.046 0.937 −0.065 0.148 0.937

not available
High socioeconomic 0.283 0.036 1.327 0.557 0.175 1.746

status (SES)
Low SES −0.385 0.079 0.680 −0.305 0.143 0.737
SES not available 0.110 0.050 1.116 0.031 0.172 1.031
SEL-1 1.092 0.058 2.979 0.712 0.161 2.038
SEL-2 0.193 0.036 1.212 0.280 0.119 1.323
Women’s college −0.299 0.069 0.742 0.158 0.269 1.171
Number of observations 32,524 2,354
−2 log likelihood

Restricted 31,553 2,667
Unrestricted 30,160 2,569

Chi square 1,393 with 18 d.f. 98 with 14 d.f.

Notes: Bold coefficients are significant at the .05 level; other coefficients are not. The omitted categories in the model are White, male, SAT < 1,000, bottom 90% of high
school class, middle SES, SEL-3, coed institution. Graduation rates are 6-year, first-school graduation rates, as defined in the notes to Appendix Table D.3.1. Institutional
selectivity categories are as defined in the notes to Appendix Table D.3.1. See Appendix B for definition of socioeconomic status (SES).

SEL-1 = institutions with mean combined SAT scores of 1,300 and above.
SEL-2 = institutions with mean combined SAT scores between 1,150 and 1,299.
SEL-3 = institutions with mean combined SAT scores below 1,150.

Source: Bowen and Bok, op. cit., p. 381.

*William G. Bowen and Derek Bok, The Shape of the River: Long Term Consequences of Considering Race
in College and University Admissions, Princeton University Press, Princeton, NJ, 1998, p. 381.
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a. What general conclusion do you draw about graduation rates of all matriculants
and black-only matriculants?

b. The odds ratio is the ratio of two odds. Compare two groups of all matriculants,
one with a SAT score of greater than 1,299 and the other with a SAT score of less
than 1,000 (the base category). The odds ratio of 1.393 means the odds of ma-
triculants in the first category graduating from college are 39 percent higher than
those in the latter category. Do the various odds ratios shown in the table accord
with a priori expectations?

c. What can you say about the statistical significance of the estimated parameters?
What about the overall significance of the estimated model?

15.12. In the probit model given in Table 15.11 the disturbance ui has this variance:

σ 2
u = Pi (1 − Pi )

Ni f 2
i

where fi is the standard normal density function evaluated at F−1(Pi).

a. Given the preceding variance of ui, how would you transform the model in
Table 15.10 to make the resulting error term homoscedastic?

b. Use the data in Table 15.10 to show the transformed data.

c. Estimate the probit model based on the transformed data and compare the results
with those based on the original data.

15.13. Since R2 as a measure of goodness of fit is not particularly well suited for the
dichotomous dependent variable models, one suggested alternative is the χ2 test
described below:

χ2 =
G∑

i=1

Ni ( P̂i − P∗
i )2

P∗
i (1 − P∗

i )

where Ni = number of observations in the ith cell

P̂i = actual probability of the event occurring ( = ni/Ni)

P∗
I = estimated probability

G = number of cells (i.e., the number of levels at which Xi is measured, e.g.,
10 in Table 15.4)

It can be shown that, for large samples, χ2 is distributed according to the χ2 distri-
bution with (G − k) df, where k is the number of parameters in the estimating
model (k < G).

Apply the preceding χ2 test to regression (15.7.1) and comment on the resulting
goodness of fit and compare it with the reported R2 value.

15.14. Table 15.22 gives data on the results of spraying rotenone of different concentra-
tions on the chrysanthemum aphis in batches of approximately fifty. Develop a suit-
able model to express the probability of death as a function of the log of X, the log
of dosage, and comment on the results. Also compute the χ2 test of fit discussed in
Exercise 15.13.

15.15. Thirteen applicants to a graduate program had quantitative and verbal scores on the
GRE as listed in Table 15.23. Six students were admitted to the program.

a. Use the LPM to predict the probability of admission to the program based on
quantitative and verbal scores in the GRE.

b. Is this a satisfactory model? If not, what alternative(s) do you suggest?
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15.16. To study the effectiveness of a price discount coupon on a six-pack of a soft drink,
Douglas Montgomery and Elizabeth Peck collected the data shown in Table 15.24.
A sample of 5,500 consumers was randomly assigned to the eleven discount cate-
gories shown in the table, 500 per category. The response variable is whether or not
consumers redeemed the coupon within one month.

a. See if the logit model fits the data, treating the redemption rate as the dependent
variable and price discount as the explanatory variable.

b. See if the probit model does as well as the logit model.

GRE Aptitude Test Scores Admitted to
Graduate Program

Student Number Quantitative, Q Verbal, V (Yes = 1, No = 0)

1 760 550 1
2 600 350 0
3 720 320 0
4 710 630 1
5 530 430 0
6 650 570 0
7 800 500 1
8 650 680 1
9 520 660 0

10 800 250 0
11 670 480 0
12 670 520 1
13 780 710 1

TABLE 15.23
GRE Scores 

Source: Donald F. Morrison,
Applied Linear Statistical
Methods, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1983,
p. 279 (adapted).

Concentration,
Milligrams per Liter Total, Death,

X log (X ) Ni ni P̂i = ni/Ni

2.6 0.4150 50 6 0.120
3.8 0.5797 48 16 0.333
5.1 0.7076 46 24 0.522
7.7 0.8865 49 42 0.857

10.2 1.0086 50 44 0.880

TABLE 15.22
Toxicity Study and
Rotenone on
Chrysanthemum
Aphis

Source: D. J. Fennet, Probit
Analysis, Cambridge University
Press, London, 1964.

Price Discount Sample Size Number of Coupons Redeemed
X, ¢ Ni ni

5 500 100
7 500 122
9 500 147

11 500 176
13 500 211
15 500 244
17 500 277
19 500 310
21 500 343
23 500 372
25 500 391

TABLE 15.24
Price of Soda with
Discount Coupon

Source: Douglas C.
Montgomery and Elizabeth
A. Peck, Introduction to
Linear Regression
Analysis, John Wiley &
Sons, New York, 1982,
p. 243 (notation changed).
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c. What is the predicted redemption rate if the price discount was 17 cents?

d. Estimate the price discount for which 70 percent of the coupons will be
redeemed.

15.17. To find out who has a bank account (checking, savings, etc.) and who doesn’t, John
Caskey and Andrew Peterson estimated a probit model for the years 1977 and 1989,
using data on U.S. households. The results are given in Table 15.25. The values of
the slope coefficients given in the table measure the implied effect of a unit change
in a regressor on the probability that a household has a bank account, these
marginal effects being calculated at the mean values of the regressors included in
the model.

a. For 1977, what is the effect of marital status on ownership of a bank account?
And for 1989? Do these results make economic sense?

b. Why is the coefficient for the minority variable negative for both 1977 and 1989?

c. How can you rationalize the negative sign for the number of children variable?

d. What does the chi-square statistic given in the table suggest? (Hint: See Exer-
cise 15.13.)

TABLE 15.25 Probit Regressions Where Dependent Variable Is Ownership of a Deposit Account

1977 Data 1989 Data

Coefficients Implied Slope Coefficients Implied Slope
Constant −1.06 −2.20

(3.3)* (6.8)*
Income (thousands 1991 $) 0.030 0.002 0.025 0.002

(6.9) (6.8)
Married 0.127 0.008 0.235 0.023

(0.8) (1.7)
Number of children −0.131 −0.009 −0.084 −0.008

(3.6) (2.0)
Age of head of household (HH) 0.006 0.0004 0.021 0.002

(1.7) (6.3)
Education of HH 0.121 0.008 0.128 0.012

(7.4) (7.7)
Male HH −0.078 −0.005 −0.144 −0.011

(0.5) (0.9)
Minority −0.750 −0.050 −0.600 −0.058

(6.8) (6.5)
Employed 0.186 0.012 0.402 0.039

(1.6) (3.6)
Homeowner 0.520 0.035 0.522 0.051

(4.7) (5.3)

Log likelihood −430.7 −526.0
Chi-square statistic 408 602

(H0: All coefficients except
constant equal zero)

Number of observations 2,025 2,091
Percentage in sample
with correct predictions 91 90

*Numbers in parentheses are t statistics.

Source: John P. Caskey and Andrew Peterson, “Who Has a Bank Account and Who Doesn’t: 1977 and 1989,” Research Working Paper 93-10, Federal Reserve Bank of Kansas
City, October 1993.
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15.18. Monte Carlo study. As an aid to understanding the probit model, William Becker
and Donald Waldman assumed the following:*

E(Y | X) = −1 + 3X

Then, letting Yi = −1 + 3X + εi , where εi is assumed standard normal (i.e., zero
mean and unit variance), they generated a sample of 35 observations as shown in
Table 15.26.

a. From the data on Y and X given in this table, can you estimate an LPM?
Remember that the true E(Y | X) = −1 + 3X .

b. Given X = 0.48, estimate E(Y | X = 0.48) and compare it with the true
E(Y | X = 0.48). Note X̄ = 0.48.

c. Using the data on Y* and X given in Table 15.26, estimate a probit model. You
may use any statistical package you want. The authors’ estimated probit model is
the following:

Ŷ ∗
i = −0.969 + 2.764Xi

Find out the P(Y ∗ = 1 | X = 0.48), that is, P(Y1 > 0 | X = 0.48). See if your
answer agrees with the authors’ answer of 0.64.

d. The sample standard deviation of the X values given in Table 15.26 is 0.31. What
is the predicted change in probability if X is one standard deviation above the
mean value, that is, what is P(Y ∗ = 1 | X = 0.79)? The authors’ answer is 0.25.

*William E. Becker and Donald M. Waldman, “A Graphical Interpretation of Probit Coefficients,’’
Journal of Economic Education, vol. 20, no. 4, Fall 1989, pp. 371–378.

Y Y* X Y Y* X

−0.3786 0 0.29 −0.3753 0 0.56
1.1974 1 0.59 1.9701 1 0.61

−0.4648 0 0.14 −0.4054 0 0.17
1.1400 1 0.81 2.4416 1 0.89
0.3188 1 0.35 0.8150 1 0.65
2.2013 1 1.00 −0.1223 0 0.23
2.4473 1 0.80 0.1428 1 0.26
0.1153 1 0.40 −0.6681 0 0.64
0.4110 1 0.07 1.8286 1 0.67
2.6950 1 0.87 −0.6459 0 0.26
2.2009 1 0.98 2.9784 1 0.63
0.6389 1 0.28 −2.3326 0 0.09
4.3192 1 0.99 0.8056 1 0.54

−1.9906 0 0.04 −0.8983 0 0.74
−0.9021 0 0.37 −0.2355 0 0.17

0.9433 1 0.94 1.1429 1 0.57
−3.2235 0 0.04 −0.2965 0 0.18

0.1690 1 0.07

TABLE 15.26
Hypothetical Data
Set Generated by
the Model Y = −1 +
3X + ε and Y* = 1 
If Y > 0

Source: William E. Becker and
Donald M. Waldman, “A
Graphical Interpretation
of Probit Coefficients,” Journal
of Economic Education, Fall
1989, Table 1, p. 373.
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*Data are provided on 50 women who were diagnosed as having benign breast disease and 150 age-
matched controls, with three controls per case. Trained interviewers administered a standardized
structured questionnaire to collect information from each subject (see Pastides, et al. [1983] and
Pastides, et al. [1985]).
†The following discussion leans heavily on John Neter, Michael H. Kutner, Christopher J. Nachsteim,
and William Wasserman, Applied Linear Statistical Models, 4th ed., Irwin, 1996, pp. 573–574.

15.19. Table 15.27 on the textbook website gives data for 2,000 women regarding work
(1 = a woman works, 0 = otherwise), age, marital status (1 = married, 0 = other-
wise), number of children, and education (number of years of schooling). Out of a
total of 2,000 women, 657 were recorded as not being wage earners.

a. Using these data, estimate the linear probability model (LPM).

b. Using the same data, estimate a logit model and obtain the marginal effects of
the various variables.

c. Repeat (b) for the probit model.

d. Which model would you choose? Why?

15.20. For the smokers example discussed in the text (see Section 15.10) download the
data from the textbook website in Table 15.28. See if the product of education and
income (i.e., the interaction effect) has any effect on the probability of becoming a
smoker.

15.21. Download the data set Benign, which is Table 15.29, from the textbook website. The
variable cancer is a dummy variable, where 1 = had breast cancer and 0 = did not
have breast cancer.* Using the variables age (= age of subject), HIGD (= highest
grade completed in school), CHK (= 0 if subject did not undergo regular medical
checkups and = 1 if subject did undergo regular checkups), AGPI (= age at first
pregnancy), miscarriages (= number of miscarriages), and weight (= weight of
subject), perform a logistic regression to conclude if these variables are statistically
useful for predicting whether a woman will contract breast cancer or not.

Appendix 15A

15A.1 Maximum Likelihood Estimation of the Logit
and Probit Models for Individual (Ungrouped)
Data†

As in the text, assume that we are interested in estimating the probability that an individual owns a
house, given the individual’s income X. We assume that this probability can be expressed by the
logistic function (15.5.2), which is reproduced below for convenience. 

Pi = 1

1 + e−(β1+β2 Xi )
(1)

We do not actually observe Pi, but only observe the outcome Y = 1, if an individual owns a house,
and Y = 0, if the individual does not own a house. 

Since each Yi is a Bernoulli random variable, we can write

Pr (Yi = 1) = Pi (2)

Pr (Yi = 0) = (1 − Pi ) (3)
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Suppose we have a random sample of n observations. Letting fi (Yi ) denote the probability that Yi =
1 or 0, the joint probability of observing the n Y values, i.e., f (Y1, Y2, . . . , Yn) is given as:

f (Y1, Y2, . . . , Yn) =
n∏
1

fi (Yi ) =
n∏
1

PYi
i (1 − Pi )

1−Yi (4)

where 
∏

is the product operator. Note that we can write the joint probability density function as a
product of individual density functions because each Yi is drawn independently and each Yi has the
same (logistic) density function. The joint probability given in Eq. (4) is known as the likelihood
function (LF).

Equation (4) is a little awkward to manipulate. But if we take its natural logarithm, we obtain what
is called the log likelihood function (LLF):

ln f (Y1, Y2, . . . , Yn) =
n∑
1

[Yi ln Pi + (1 − Yi ) ln (1 − Pi )]

=
n∑
1

[Yi ln Pi − Yi ln (1 − Pi ) + ln (1 − Pi )] (5)

=
n∑
1

[
Yi ln

(
Pi

1 − Pi

)]
+

n∑
1

ln (1 − Pi )

From Eq. (1) it is easy to verify that

(1 − Pi ) = 1

1 + eβ1+β2 Xi
(6)

as well as

ln

(
Pi

1 − Pi

)
= β1 + β2Xi (7)

Using Eqs. (6) and (7), we can write the LLF (5) as:

ln f (Y1, Y2, . . . , Yn) =
n∑
1

Yi (β1 + β2 Xi ) −
n∑
1

ln
[
1 + e(β1+β2 Xi )

]
(8)

As you can see from Eq. (8), the log likelihood function is a function of the parameters β1 and β2,
since the Xi are known.

In ML our objective is to maximize the LF (or LLF), that is, to obtain the values of the unknown
parameters in such a manner that the probability of observing the given Y ’s is as high (maximum) as
possible. For this purpose, we differentiate Eq. (8) partially with respect to each unknown, set the re-
sulting expressions to zero, and solve the resulting expressions. One can then apply the second-order
condition of maximization to verify that the values of the parameters we have obtained do in fact
maximize the LF.

So, you have to differentiate Eq. (8) with respect to β1 and β2 and proceed as indicated. As you will
quickly realize, the resulting expressions become highly nonlinear in the parameters and no explicit
solutions can be obtained. That is why we will have to use one of the methods of nonlinear estimation
discussed in the previous chapter to obtain numerical solutions. Once the numerical values of β1 and
β2 are obtained, we can easily estimate Eq. (1).

The ML procedure for the probit model is similar to that for the logit model, except that in Eq. (1)
we use the normal CDF rather than the logistic CDF. The resulting expression becomes rather com-
plicated, but the general idea is the same. So, we will not pursue it any further. 
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In Chapter 1 we discussed briefly the types of data that are generally available for empir-
ical analysis, namely, time series, cross section, and panel. In time series data we observe
the values of one or more variables over a period of time (e.g., GDP for several quarters
or years). In cross-section data, values of one or more variables are collected for several
sample units, or subjects, at the same point in time (e.g., crime rates for 50 states in the
United States for a given year). In panel data the same cross-sectional unit (say a family
or a firm or a state) is surveyed over time. In short, panel data have space as well as time
dimensions.

We have already seen an example of this in Table 1.1, which gives data on eggs produced
and their prices for 50 states in the United States for years 1990 and 1991. For any given
year, the data on eggs and their prices represent a cross-sectional sample. For any given
state, there are two time series observations on eggs and their prices. Thus, we have in all
100 (pooled) observations on eggs produced and their prices.

Another example of panel data was given in Table 1.2, which gives data on investment,
value of the firm, and capital stock for four companies for the period 1935–1954. The data
for each company over the period 1935–1954 constitute time series data, with 20 observa-
tions; data, for all four companies for a given year is an example of cross-section data, with
only four observations; and data for all the companies for all the years is an example of
panel data, with a total of 80 observations.

There are other names for panel data, such as pooled data (pooling of time series
and cross-sectional observations), combination of time series and cross-section data,
micropanel data, longitudinal data (a study over time of a variable or group of subjects),
event history analysis (studying the movement over time of subjects through successive
states or conditions), and cohort analysis (e.g., following the career path of 1965 graduates
of a business school). Although there are subtle variations, all these names essentially con-
note movement over time of cross-sectional units. We will therefore use the term panel data
in a generic sense to include one or more of these terms. And we will call regression mod-
els based on such data panel data regression models.

Panel data are now being used increasingly in economic research. Some of the well-
known panel data sets are:

1. The Panel Study of Income Dynamics (PSID) conducted by the Institute of Social
Research at the University of Michigan. Started in 1968, each year the Institute col-
lects data on some 5,000 families about various socioeconomic and demographic
variables.

Chapter 16
Panel Data Regression
Models
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2. The Bureau of the Census of the Department of Commerce conducts a survey similar to
PSID, called the Survey of Income and Program Participation (SIPP). Four times a
year respondents are interviewed about their economic condition.

3. The German Socio-Economic Panel (GESOEP) studied 1,761 individuals every year
between 1984 and 2002. Information on year of birth, gender, life satisfaction, marital
status, individual labor earnings, and annual hours of work was collected for each indi-
vidual for the period 1984 to 2002.

There are also many other surveys that are conducted by various governmental agencies,
such as:

Household, Income and Labor Dynamics in Australia Survey (HILDA)

British Household Panel Survey (BHPS)

Korean Labor and Income Panel Study (KLIPS)

At the outset a warning is in order: The topic of panel data regressions is vast, and some of
the mathematics and statistics involved are quite complicated. We only hope to touch on some
of the essentials of the panel data regression models, leaving the details for the references.1 But
be forewarned that some of these references are highly technical. Fortunately, user-friendly
software packages such as LIMDEP, PC-GIVE, SAS, STATA, SHAZAM, and EViews, among
others, have made the task of actually implementing panel data regressions quite easy.

16.1 Why Panel Data?

What are the advantages of panel data over cross-section or time series data? Baltagi lists
the following advantages of panel data:2

1. Since panel data relate to individuals, firms, states, countries, etc., over time, there is
bound to be heterogeneity in these units. The techniques of panel data estimation can
take such heterogeneity explicitly into account by allowing for subject-specific vari-
ables, as we shall show shortly. We use the term subject in a generic sense to include
microunits such as individuals, firms, states, and countries.

2. By combining time series of cross-section observations, panel data gives “more infor-
mative data, more variability, less collinearity among variables, more degrees of free-
dom and more efficiency.”

3. By studying the repeated cross section of observations, panel data are better suited to
study the dynamics of change. Spells of unemployment, job turnover, and labor mobility
are better studied with panel data.

4. Panel data can better detect and measure effects that simply cannot be observed in pure
cross-section or pure time series data. For example, the effects of minimum wage laws

1Some of the references are G. Chamberlain, “Panel Data,” in Handbook of Econometrics, vol. II; 
Z. Griliches and M. D. Intriligator, eds., North-Holland Publishers, 1984, Chapter 22; C. Hsiao,
Analysis of Panel Data, Cambridge University Press, 1986; G. G. Judge, R. C. Hill, W. E. Griffiths, 
H. Lutkepohl, and T. C. Lee, Introduction to the Theory and Practice of Econometrics, 2d ed., John Wiley
& Sons, New York, 1985, Chapter 11; W. H. Greene, Econometric Analysis, 6th ed., Prentice-Hall, 
Englewood Cliffs, NJ, 2008, Chapter 9; Badi H. Baltagi, Econometric Analysis of Panel Data, John Wiley
and Sons, New York, 1995; and J. M. Wooldridge, Econometric Analysis of Cross Section and Panel
Data, MIT Press, Cambridge, Mass., 1999. For a detailed treatment of the subject with empirical 
applications, see Edward W. Frees, Longitudinal and Panel Data: Analysis and Applications in the Social
Sciences, Cambridge University Press, New York, 2004.
2Baltagi, op. cit., pp. 3–6.
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on employment and earnings can be better studied if we include successive waves of
minimum wage increases in the federal and/or state minimum wages.

5. Panel data enables us to study more complicated behavioral models. For example,
phenomena such as economies of scale and technological change can be better handled
by panel data than by pure cross-section or pure time series data.

6. By making data available for several thousand units, panel data can minimize the bias
that might result if we aggregate individuals or firms into broad aggregates.

In short, panel data can enrich empirical analysis in ways that may not be possible if we use only
cross-section or time series data. This is not to suggest that there are no problems with panel
data modeling. We will discuss them after we cover some theory and discuss some examples.

16.2 Panel Data: An Illustrative Example

To set the stage, let us consider a concrete example. Consider the data given as Table 16.1
on the textbook website, which were originally collected by Professor Moshe Kim and are
reproduced from William Greene.3 The data analyzes the costs of six airline firms for the
period 1970–1984, for a total of 90 panel data observations.

The variables are defined as: I = airline id; T = year id; Q = output, in revenue passen-
ger miles, an index number; C = total cost, in $1,000; PF = fuel price; and LF = load fac-
tor, the average capacity utilization of the fleet.

Suppose we are interested in finding out how total cost (C) behaves in relation to output (Q),
fuel price (PF), and load factor (LF). In short, we wish to estimate an airline cost function.

How do we go about estimating this function? Of course, we can estimate the cost func-
tion for each airline using the data for 1970–1984 (i.e., a time series regression). This can
be accomplished with the usual ordinary least squares (OLS) procedure. We will have in all
six cost functions, one for each airline. But then we neglect the information about the other
airlines which operate in the same (regulatory) environment.

We can also estimate a cross-section cost function (i.e., a cross-section regression).
We will have in all 15 cross-section regressions, one for each year. But this would not make
much sense in the present context, for we have only six observations per year and there are
three explanatory variables (plus the intercept term); we will have very few degrees of free-
dom to do a meaningful analysis. Also, we will not “exploit” the panel nature of our data. 

Incidentally, the panel data in our example is called a balanced panel; a panel is said to
be balanced if each subject (firm, individuals, etc.) has the same number of observations. If
each entity has a different number of observations, then we have an unbalanced panel. For
most of this chapter, we will deal with balanced panels. In the panel data literature you will
also come across the terms short panel and long panel. In a short panel the number of
cross-sectional subjects, N, is greater than the number of time periods, T. In a long panel, it
is T that is greater than N. As we discuss later, the estimating techniques can depend on
whether we have a short panel or a long one.

What, then, are the options? There are four possibilities:

1. Pooled OLS model. We simply pool all 90 observations and estimate a “grand”
regression, neglecting the cross-section and time series nature of our data.

2. The fixed effects least squares dummy variable (LSDV) model. Here we pool all 90
observations, but allow each cross-section unit (i.e., airline in our example) to have its
own (intercept) dummy variable.

3William H. Greene, Econometric Analysis, 6th ed., 2008. Data are located at http://pages.stern.nyu.edu/
~wgreen/Text/econometricanalysis.htm.
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3. The fixed effects within-group model. Here also we pool all 90 observations, but for
each airline we express each variable as a deviation from its mean value and then esti-
mate an OLS regression on such mean-corrected or “de-meaned” values.

4. The random effects model (REM). Unlike the LSDV model, in which we allow each
airline to have its own (fixed) intercept value, we assume that the intercept values are a
random drawing from a much bigger population of airlines.

We now discuss each of these methods using the data given in Table 16.1. (See textbook
website.)

16.3 Pooled OLS Regression or Constant Coefficients Model

Consider the following model:

Cit = β1 + β2 Qit + β3 P Fit + β4L Fit + uit (16.3.1)
i = 1, 2, . . . , 6

t = 1, 2, . . . , 15

where i is ith subject and t is the time period for the variables we defined previously. We
have chosen the linear cost function for illustrative purposes, but in Exercise 16.10 you are
asked to estimate a log–linear, or double-log function, in which case the slope coefficients
will give the elasticity estimates.

Notice that we have pooled together all 90 observations, but note that we are assuming
the regression coefficients are the same for all the airlines. That is, there is no distinction
between the airlines—one airline is as good as the other, an assumption that may be diffi-
cult to maintain.

It is assumed that the explanatory variables are nonstochastic. If they are stochastic, they
are uncorrelated with the error term. Sometimes it is assumed that the explanatory variables
are strictly exogenous. A variable is said to be strictly exogenous if it does not depend on
current, past, and future values of the error term uit .

It is also assumed that the error term is uit ∼ i id(0, σ 2
u ), that is, it is independently and

identically distributed with zero mean and constant variance. For the purpose of hypothe-
sis testing, it may be assumed that the error term is also normally distributed. Notice the
double-subscripted notation in Eq. (16.3.1), which should be self-explanatory.

Let us first present the results of the estimated equation (16.3.1) and then discuss some
of the problems with this model. The regression results based on EViews, Version 6 are pre-
sented in Table 16.2.

If you examine the results of the pooled regression and apply the conventional criteria,
you will see that all the regression coefficients are not only highly statistically significant
but are also in accord with prior expectations and that the R2 value is very high. The only
“fly in the ointment” is that the estimated Durbin–Watson statistic is quite low, suggesting
that perhaps there is autocorrelation and/or spatial correlation in the data. Of course, as we
know, a low Durbin–Watson could also be due to specification errors.

The major problem with this model is that it does not distinguish between the various
airlines nor does it tell us whether the response of total cost to the explanatory variables
over time is the same for all the airlines. In other words, by lumping together different air-
lines at different times we camouflage the heterogeneity (individuality or uniqueness) that
may exist among the airlines. Another way of stating this is that the individuality of each
subject is subsumed in the disturbance term uit . As a consequence, it is quite possible that
the error term may be correlated with some of the regressors included in the model. If that
is the case, the estimated coefficients in Eq. (16.3.1) may be biased as well as inconsistent.
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Recall that one of the important assumptions of the classical linear regression model is that
there is no correlation between the regressors and the disturbance or error term.

To see how the error term may be correlated with the regressors, let us consider the
following revision of model (16.3.1):

Cit = β1 + β2 P Fit + β3L Fit + β4 Mit + uit (16.3.2)

where the additional variable M = management philosophy or management quality. Of the
variables included in Eq. (16.3.2), only the variable M is time-invariant (or time-constant)
because it varies among subjects but is constant over time for a given subject (airline). 

Although it is time-invariant, the variable M is not directly observable and therefore we
cannot measure its contribution to the cost function. We can, however, do this indirectly if
we write Eq. (16.3.2) as

Cit = β1 + β2 P Fit + β3L Fit + αi + uit (16.3.3)

where αi , called the unobserved, or heterogeneity, effect, reflects the impact of M on
cost. Note that for simplicity we have shown only the unobserved effect of M on cost, but
in reality there may be more such unobserved effects, for example, the nature of ownership
(privately owned or publicly owned), whether it is a minority-owned company, whether the
CEO is a man or a woman, etc. Although such variables may differ among the subjects (air-
lines), they will probably remain the same for any given subject over the sample period.

Since αi is not directly observable, why not consider it random and include it in the error
term uit , and thereby consider the composite error term vit = αi + uit ? We now write
Eq. (16.3.3) as:

Cit = β1 + β2 P Fit + β3L Fit + vit (16.3.4)

But if the αi term included in the error term vit is correlated with any of the regressors
in Eq. (16.3.4), we have a violation of one of the key assumptions of the classical linear re-
gression model—namely, that the error term is not correlated with the regressors. As we
know in this situation, the OLS estimates are not only biased but they are also inconsistent.

There is a real possibility that the unobservable αi is correlated with one or more of the
regressors. For example, the management of one airline may be astute enough to buy future
contracts of the fuel price to avoid severe price fluctuations. This will have the effect of
lowering the cost of airline services. As a result of this correlation, it can be shown that
cov (vit , vis) = σ 2

u ; t �= s, which is non-zero, and therefore, the (unobserved) heterogene-
ity induces autocorrelation and we will have to pay attention to it. We will show later how
this problem can be handled.

TABLE 16.2
Dependent Variable: C
Method: Least Squares
Included observations: 90

Coefficient Std. Error t Statistic Prob.

C (intercept) 1158559. 360592.7 3.212930 0.0018
Q 2026114. 61806.95 32.78134 0.0000
PF 1.225348 0.103722 11.81380 0.0000
LF -3065753. 696327.3 -4.402747 0.0000

R-squared 0.946093 Mean dependent var. 1122524.
Adjusted R-squared 0.944213 S.D. dependent var. 1192075.
S.E. of regression 281559.5 F-statistic 503.1176
Sum squared resid. 6.82E+12 Prob. (F-statistic) 0.000000

Durbin–Watson 0.434162
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The question, therefore, is how we account for the unobservable, or heterogeneity, effect(s)
so that we can obtain consistent and/or efficient estimates of the parameters of the variables
of prime interest, which are output, fuel price, and load factor in our case. Our prime interest
may not be in obtaining the impact of the unobservable variables because they remain the
same for a given subject. That is why such unobservable, or heterogeneity, effects are called
nuisance parameters. How then do we proceed? It is to this question we now turn.

16.4 The Fixed Effect Least-Squares Dummy 
Variable (LSDV) Model

The least-squares dummy variable (LSDV) model allows for heterogeneity among subjects
by allowing each entity to have its own intercept value, as shown in model (16.4.1). Again,
we continue with our airlines example.

Cit = β1i + β2 Qit + β3 P Fit + β4L Fit + uit (16.4.1)
i = 1, 2 . . . , 6

t = 1, 2, . . . , 15

Notice that we have put the subscript i on the intercept term to suggest that the intercepts of the
six airlines may be different. The difference may be due to special features of each airline, such
as managerial style, managerial philosophy, or the type of market each airline is serving.

In the literature, model (16.4.1) is known as the fixed effects (regression) model
(FEM). The term “fixed effects” is due to the fact that, although the intercept may differ
across subjects (here the six airlines), each entity’s intercept does not vary over time, that
is, it is time-invariant. Notice that if we were to write the intercept as β1i t , it would sug-
gest that the intercept of each entity or individual is time-variant. It may be noted that the
FEM given in Eq. (16.4.1) assumes that the (slope) coefficients of the regressors do not
vary across individuals or over time.

Before proceeding further, it may be useful to visualize the difference between the
pooled regression model and the LSDV model. For simplicity assume that we want to
regress total cost on output only. In Figure 16.1 we show this cost function estimated for
two airline companies separately, as well as the cost function if we pool the data for the two

Output
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FIGURE 16.1
Bias from ignoring 
fixed effects.
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companies; this is equivalent to neglecting the fixed effects.4 You can see from Figure 16.1
how the pooled regression can bias the slope estimate.

How do we actually allow for the (fixed effect) intercept to vary among the airlines? We can
easily do this by using the dummy variable technique, particularly the differential intercept
dummy technique, which we learned in Chapter 9. Now we write Eq. (16.4.1) as:

Cit = α1 + α2 D2i + α3 D3i + α4 D4i + α5 D5i + α6 D6i

+β2 Qit + β3 P Fit + β4L Fit + uit (16.4.2)

where D2i = 1 for airline 2, 0 otherwise; D3i = 1 for airline 3, 0 otherwise; and so on.
Notice that since we have six airlines, we have introduced only five dummy variables to
avoid falling into the dummy-variable trap (i.e., the situation of perfect collinearity). Here
we are treating airline 1 as the base, or reference, category. Of course, you can choose any
airline as the reference point. As a result, the intercept α1 is the intercept value of airline 1
and the other α coefficients represent by how much the intercept values of the other airlines
differ from the intercept value of the first airline. Thus, α2 tells by how much the intercept
value of the second airline differs from α1. The sum (α1 + α2) gives the actual value of the
intercept for airline 2. The intercept values of the other airlines can be computed similarly.
Keep in mind that if you want to introduce a dummy for each airline, you will have to drop
the (common) intercept; otherwise, you will fall into the dummy-variable trap.

The results of the model (16.4.2) for our data are presented in Table 16.3.
The first thing to notice about these results is that all the differential intercept coeffi-

cients are individually highly statistically significant, suggesting that perhaps the six air-
lines are heterogeneous and, therefore, the pooled regression results given in Table 16.2
may be suspect. The values of the slope coefficients given in Tables 16.2 and 16.3 are also
different, again casting some doubt on the results given in Table 16.2. It seems model
(16.4.1) is better than model (16.3.1). In passing, note that OLS applied to a fixed effect
model produces estimators that are called fixed effect estimators.

4Adapted from the unpublished notes of Alan Duncan.

TABLE 16.3
Dependent Variable: TC
Method: Least Squares
Sample: 1–90
Included observations: 90

Coefficient Std. Error t Statistic Prob.

C (=α1) -131236.0 350777.1 -0.374129 0.7093
Q 3319023. 171354.1 19.36939 0.0000
PF 0.773071 0.097319 7.943676 0.0000
LF -3797368. 613773.1 -6.186924 0.0000
DUM2 601733.2 100895.7 5.963913 0.0000
DUM3 1337180. 186171.0 7.182538 0.0000
DUM4 1777592. 213162.9 8.339126 0.0000
DUM5 1828252. 231229.7 7.906651 0.0000
DUM6 1706474. 228300.9 7.474672 0.0000

R-squared 0.971642 Mean dependent var. 1122524.
Adjusted R-squared 0.968841 S.D. dependent var. 1192075.
S.E. of regression 210422.8 F-statistics 346.9188
Sum squared resid. 3.59E+12 Prob. (F-statistic) 0.000000
Log likelihood -1226.082 Durbin-Watson stat. 0.693288
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We can provide a formal test of the two models. In relation to model (16.4.1), model
(16.3.1) is a restricted model in that it imposes a common intercept for all the airlines.
Therefore, we can use the restricted F test discussed in Chapter 8. Using formula (8.6.10),
the reader can check that in the present case the F value is:

F = (0.971642 − 0.946093)/5

(1 − 0.971642)/81
≈ 14.99

Note: The restricted and unrestricted R2 values are obtained from Tables 16.1 and 16.2.
Also note that the number of restrictions is 5 (why?).

The null hypothesis here is that all the differential intercepts are equal to zero. The com-
puted F value for 5 numerator and 81 denominator df is highly statistically significant.
Therefore, we reject the null hypothesis that all the (differential) intercepts are zero. If the
F value were not statistically significant, we would have concluded that there is no differ-
ence in the intercepts of the six airlines. In this case, we would have pooled all 90 of the
observations, as we did in the pooled regression given in Table 16.2.

Model (16.4.1) is known as a one-way fixed effects model because we have allowed the
intercepts to differ between airlines. But we can also allow for time effect if we believe that
the cost function changes over time because of factors such as technological changes, changes
in government regulation and/or tax policies, and other such effects. Such a time effect can be
easily accounted for if we introduce time dummies, one for each year from 1970 to 1984.
Since we have data for 15 years, we can introduce 14 time dummies (why?) and extend model
(16.4.1) by adding these variables. If we do that, the model that emerges is called a two-way
fixed effects model because we have allowed for both individual and time effects.

In the present example, if we add the time dummies, we will have in all 23 coefficients to
estimate—the common intercept, five airlines dummies, 14 time dummies, and three slope
coefficients. As you can see, we will consume several degrees of freedom. Furthermore, if
we decide to allow the slope coefficients to differ among the companies, we can interact the
five firm (airline) dummies with each of the three explanatory variables and introduce
differential slope dummy coefficients. Then we will have to estimate 15 additional coeffi-
cients (five dummies interacted with three explanatory variables). As if this is not enough, if we
interact the 14 time dummies with the three explanatory variables, we will have in all 42 addi-
tional coefficients to estimate. As you can see, we will not have any degrees of freedom left.

A Caution in the Use of the Fixed Effect LSDV Model
As the preceding discussion suggests, the LSDV model has several problems that need to
be borne in mind:

First, if you introduce too many dummy variables, you will run up against the degrees
of freedom problem. That is, you will lack enough observations to do a meaningful statis-
tical analysis. Second, with many dummy variables in the model, both individual and inter-
active or multiplicative, there is always the possibility of multicollinearity, which might
make precise estimation of one or more parameters difficult.

Third, in some situations the LSDV may not be able to identify the impact of time-
invariant variables. Suppose we want to estimate a wage function for a group of workers
using panel data. Besides wage, a wage function may include age, experience, and educa-
tion as explanatory variables. Suppose we also decide to add sex, color, and ethnicity as
additional variables in the model. Since these variables will not change over time for an
individual subject, the LSDV approach may not be able to identify the impact of such time-
invariant variables on wages. To put it differently, the subject-specific intercepts absorb all
heterogeneity that may exist in the dependent and explanatory variables. Incidentally, the
time-invariant variables are sometimes called nuisance variables or lurking variables.
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Fourth, we have to think carefully about the error term uit . The results we have pre-
sented in Eqs. (16.3.1) and (16.4.1) are based on the assumption that the error term follows
the classical assumptions, namely, uit ∼ N (0, σ 2). Since the index i refers to cross-section
observations and t to time series observations, the classical assumption for uit may have to
be modified. There are several possibilities, including:

1. We can assume that the error variance is the same for all cross-section units or we can
assume that the error variance is heteroscedastic.5

2. For each entity, we can assume that there is no autocorrelation over time. Thus, in our
illustrative example, we can assume that the error term of the cost function for airline #1 is
non-autocorrelated, or we can assume that it is autocorrelated, say, of the AR(1) type.

3. For a given time, it is possible that the error term for airline #1 is correlated with the
error term for, say, airline #2.6 Or we can assume that there is no such correlation.

There are also other combinations and permutations of the error term. As you will quickly
realize, allowing one or more of these possibilities will make the analysis that much more com-
plicated. (Space and mathematical demands preclude us from considering all the possibilities.
The references in footnote 1 discuss some of these topics.) Some of these problems may be
alleviated, however, if we consider the alternatives discussed in the next two sections.

16.5 The Fixed-Effect Within-Group (WG) Estimator

One way to estimate a pooled regression is to eliminate the fixed effect, β1i , by expressing
the values of the dependent and explanatory variables for each airline as deviations from
their respective mean values. Thus, for airline #1 we will obtain the sample mean values of
TC, Q, PF, and LF, (T C, Q, P F , and L F , respectively) and subtract them from the indi-
vidual values of these variables. The resulting values are called “de-meaned” or mean-
corrected values. We do this for each airline and then pool all the (90) mean-corrected
values and run an OLS regression.

Letting tcit , qit , p fit , and l fi t represent the mean-corrected values, we now run the
regression:

tcit = β2qit + β3 p fit + β4l fi t + uit (16.5.1)

where i = 1, 2, . . ., 6, and t = 1, 2, . . ., 15. Note that Eq. (16.5.1) does not have an inter-
cept term (why?).

Returning to our example, we obtain the results in Table 16.4. Note: The prefix DM
means that the values are mean-corrected or expressed as deviations from their sample
means. 

Note the difference between the pooled regression given in Table 16.2 and the pooled
regression in Table 16.4. The former simply ignores the heterogeneity among the six air-
lines, whereas the latter takes it into account, not by the dummy variable method, but by
eliminating it by differencing sample observations around their sample means. The differ-
ence between the two is obvious, as shown in Figure 16.2.

It can be shown that the WG estimator produces consistent estimates of the slope
coefficients, whereas the ordinary pooled regression may not. It should be added, however,

5STATA provides heteroscedasticity-corrected standard errors in the panel data regression models.
6This leads to the so-called seemingly unrelated regression (SURE) model, originally proposed
by Arnold Zellner. See A. Zellner, “An Efficient Method of Estimating Seemingly Unrelated Regressions
and Tests for Aggregation Bias,” Journal of the American Statistical Association, vol. 57, 1962, 
pp. 348–368.
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that WG estimators, although consistent, are inefficient (i.e., have larger variances)
compared to the ordinary pooled regression results.7 Observe that the slope coefficients of
the Q, PF, and LF are identical in Tables 16.3 and 16.4. This is because mathematically the
two models are identical. Incidentally, the regression coefficients estimated by the WG
method are called WG estimators.

One disadvantage of the WG estimator can be explained with the following wage
regression model:

Wit = β1i + β2Experiencei t + β3Agei t + β4Genderi t + β5Educationi t + β6Racei t

(16.5.2)

In this wage function, variables such as gender, education, and race are time-invariant. If
we use the WG estimators, these time-invariant variables will be wiped out (because of

7The reason for this is that when we express variables as deviations from their mean values, the varia-
tion in these mean-corrected values will be much smaller than the variation in the original values of
the variables. In that case, the variation in the disturbance term uit may be relatively large, thus
leading to higher standard errors of the estimated coefficients.

Output

To
ta

l c
os

t
Y*it

X*it

2α

1α E(Y*it|X*it) = βX*it

FIGURE 16.2
The within-groups
estimator.

Source: Alan Duncan, “Cross-
Section and Panel Data
Econometrics,” unpublished
lecture notes (adapted).

TABLE 16.4 
Dependent Variable: DMTC
Method: Least Squares
Sample: 1–90
Included observations: 90

Coefficient Std. Error t Statistic Prob.

DMQ 3319023. 165339.8 20.07396 0.0000
DMPF 0.773071 0.093903 8.232630 0.0000
DMLF -3797368. 592230.5 -6.411976 0.0000

R-squared 0.929366 Mean dependent var. 2.59E-11
Adjusted R-squared 0.927743 S.D. dependent var. 755325.8
S.E. of regression 203037.2 Durbin–Watson stat. 0.693287
Sum squared resid. 3.59E+12
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differencing). As a result, we will not know how wage reacts to these time-invariant vari-
ables.8 But this is the price we have to pay to avoid the correlation between the error term
(αi included in vit ) and the explanatory variables.

Another disadvantage of the WG estimator is that, “. . . it may distort the parameter val-
ues and can certainly remove any long run effects.”9 In general, when we difference a vari-
able, we remove the long-run component from that variable. What is left is the short-run
value of that variable. We will discuss this further when we discuss time series economet-
rics later in the book.

In using LSDV we obtained direct estimates of the intercepts for each airline. How can
we obtain the estimates of the intercepts using the WG method? For the airlines example,
they are obtained as follows:

α̂i = Ci − β̂2 Qi − β̂3 P Fi − β̂4L F (16.5.3)

where bars over the variables denote the sample mean values of the variables for the ith
airline.

That is, we obtain the intercept value of the ith airline by subtracting from the mean
value of the dependent variable the mean values of the explanatory variables for that airline
times the estimated slope coefficients from the WG estimators. Note that the estimated
slope coefficients remain the same for all of the airlines, as shown in Table 16.4. It may be
noted that the intercept estimated in Eq. (16.5.3) is similar to the intercept we estimate in
the standard linear regression model, which can be see from Eq. (7.4.21). We leave it for
the reader to find the intercepts of the six airlines in the manner shown and verify that they
are the same as the intercept values derived in Table 16.3, save for the rounding errors.

It may be noted that the estimated intercept of each airline represents the subject-specific
characteristics of each airline, but we will not be able to identify these characteristics indi-
vidually. Thus, the α1 intercept for airline #1 represents the management philosophy of that
airline, the composition of its board of directors, the personality of the CEO, the gender of
the CEO, etc. All these heterogeneity characteristics are subsumed in the intercept value.
As we will see later, such characteristics can be included in the random effects model.

In passing, we note that an alternative to the WG estimator is the first-difference
method. In the WG method, we express each variable as a deviation from that variable’s
mean value. In the first-difference method, for each subject we take successive differences
of the variables. Thus, for airline #1 we subtract the first observation of TC from the second
observation of TC, the second observation of TC from the third observation of TC, and so
on. We do this for each of the remaining variables and repeat this process for the remaining
five airlines. After this process we have only 14 observations for each airline, since the first
observation has no previous value. As a result, we now have 84 observations instead of the
original 90 observations. We then regress the first-differenced values of the TC variable on
the first-differenced values of the explanatory variables as follows:

�T Cit = β2�Qit + β3�P Fit + β4�L Fit + (uit − ui,t−1)

i = 1, 2, . . . , 6 (16.5.4)
t = 1, 2, . . . , 84

where � = (T Cit − T Ci, t−1). As noted in Chapter 11, � is called the first difference
operator.10

8This is also true of the LSDV model.
9Dimitrios Asteriou and Stephen G. Hall, Applied Econometrics: A Modern Approach, Palgrave 
Macmillan, New York, 2007, p. 347.
10Notice that Eq. (16.5.3) has no intercept term (why?), but we can include it if there is a trend
variable in the original model.
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In passing, note that the original disturbance term is now replaced by the difference
between the current and previous values of the disturbance term. If the original disturbance
term is not autocorrelated, the transformed disturbance is, and therefore it poses the kinds
of estimation problems that we discussed in Chapter 11. However, if the explanatory vari-
ables are strictly exogenous, the first difference estimator is unbiased, given the values of
the explanatory variables. Also note that the first-difference method has the same disad-
vantages as the WG method in that the explanatory variables that remain fixed over time for
an individual are wiped out in the first-difference transformation.

It may be pointed out that the first difference and fixed effects estimators are the same
when we have only two time periods, but if there are more than two periods, these estima-
tors differ. The reasons for this are rather involved and the interested reader may consult the
references.11 It is left as an exercise for the reader to apply the first difference method to our
airlines example and compare the results with the other fixed effects estimators.

16.6 The Random Effects Model (REM)

Commenting on fixed effect, or LSDV, modeling, Kmenta writes:12

An obvious question in connection with the covariance [i.e., LSDV] model is whether the inclu-
sion of the dummy variables—and the consequent loss of the number of degrees of freedom—is
really necessary. The reasoning underlying the covariance model is that in specifying the regres-
sion model we have failed to include relevant explanatory variables that do not change over time
(and possibly others that do change over time but have the same value for all cross-sectional
units), and that the inclusion of dummy variables is a coverup of our ignorance.

If the dummy variables do in fact represent a lack of knowledge about the (true) model,
why not express this ignorance through the disturbance term? This is precisely the approach
suggested by the proponents of the so-called error components model (ECM) or random
effects model (REM), which we will now illustrate with our airline cost function.

The basic idea is to start with Eq. (16.4.1):

T Cit = β1i + β2 Qit + β3 P Fit + β4L Fit + uit (16.6.1)

Instead of treating β1i as fixed, we assume that it is a random variable with a mean value
of β1 (no subscript i here).The intercept value for an individual company can be expressed as

β1i = β1 + εi (16.6.2)

where εi is a random error term with a mean value of zero and a variance of σ 2
ε .

What we are essentially saying is that the six firms included in our sample are a drawing
from a much larger universe of such companies and that they have a common mean value
for the intercept (= β1). The individual differences in the intercept values of each company
are reflected in the error term εi .

Substituting Eq. (16.6.2) into Eq. (16.6.1), we obtain:

T Cit = β1 + β2 Qit + β3 P Fit + β4L Fit + εi + uit (16.6.3)= β1 + β2 Qit + β3 P Fit + β4L Fit + wit

where

wit = εi + uit (16.6.4)

11See in particular Jeffrey M. Wooldridge, Econometric Analysis of Cross Section and Panel Data, MIT
Press, Cambridge, Mass., 2002, pp. 279–283.
12Jan Kmenta, Elements of Econometrics, 2d ed., Macmillan, New York, 1986, p. 633.
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The composite error term wit consists of two components: εi , which is the cross-section,
or individual-specific, error component, and uit , which is the combined time series and
cross-section error component and is sometimes called the idiosyncratic term because it
varies over cross-section (i.e., subject) as well as time. The error components model (ECM)
is so named because the composite error term consists of two (or more) error components.

The usual assumptions made by the ECM are that

εi ∼ N (0, σ 2
ε )

uit ∼ N
(
0, σ 2

u

)
(16.6.5)

E(εi uit ) = 0; E(εiεj ) = 0 (i �= j)

E(uit uis) = E(ui j ui j ) = E(uit u js) = 0 (i �= j; t �= s)

that is, the individual error components are not correlated with each other and are not autocor-
related across both cross-section and time series units. It is also very important to note that wit

is not correlated with any of the explanatory variables included in the model. Since εi is a com-
ponent of wit , it is possible that the latter is correlated with the explantory variables. If that is
indeed the case, the ECM will result in inconsistent estimation of the regression coefficients.
Shortly, we will discuss the Hausman test, which will tell us in a given application if wit is cor-
related with the explanatory variables, that is, whether ECM is the appropriate model.

Notice carefully the difference between FEM and ECM. In FEM each cross-sectional
unit has its own (fixed) intercept value, in all N such values for N cross-sectional units. In
ECM, on the other hand, the (common) intercept represents the mean value of all the
(cross-sectional) intercepts and the error component εi represents the (random) deviation
of individual intercept from this mean value. Keep in mind, however, that εi is not directly
observable; it is what is known as an unobservable, or latent, variable.

As a result of the assumptions stated in Eq. (16.6.5), it follows that

E(wit ) = 0 (16.6.6)

var (wit ) = σ 2
ε + σ 2

u (16.6.7)

Now if σ 2
ε = 0, there is no difference between models (16.3.1) and (16.6.3) and we can

simply pool all the (cross-sectional and time series) observations and run the pooled regres-
sion, as we did in Eq. (16.3.1). This is true because in this situation there are either no
subject-specific effects or they have all been accounted for in the explanatory variables.

As Eq. (16.6.7) shows, the error term is homoscedastic. However, it can be shown that wit

and wis(t �= s) are correlated; that is, the error terms of a given cross-sectional unit at two dif-
ferent points in time are correlated. The correlation coefficient, corr (wit , wis), is as follows:

ρ = corr (wit , wis) = σ 2
ε

σ 2
ε + σ 2

u

; t �= s (16.6.8)

Notice two special features of the preceding correlation coefficient. First, for any given
cross-sectional unit, the value of the correlation between error terms at two different times
remains the same no matter how far apart the two time periods are, as is clear from
Eq. (16.6.8). This is in strong contrast to the first-order [AR(1)] scheme that we discussed
in Chapter 12, where we found that the correlation between periods declines over time.
Second, the correlation structure given in Eq. (16.6.8) remains the same for all cross-
sectional units; that is, it is identical for all subjects.

If we do not take this correlation structure into account, and estimate Eq. (16.6.3) by
OLS, the resulting estimators will be inefficient. The most appropriate method here is the
method of generalized least squares (GLS).

guj75772_ch16.qxd  22/08/2008  07:14 PM  Page 603



604 Part Three Topics in Econometrics

We will not discuss the mathematics of GLS in the present context because of its com-
plexity.13 Since most modern statistical software packages now have routines to estimate
ECM (as well as FEM), we will present the results for our illustrative example only. But
before we do that, it may be noted that we can easily extend Eq. (16.4.2) to allow for a ran-
dom error component to take into account variation over time (see Exercise 16.6).

The results of ECM estimation of the airline cost function are presented in Table 16.5.
Notice these features of the REM. The (average) intercept value is 107429.3. The (differ-

ential) intercept values of the six entities are given at the bottom of the regression results.
Firm number 1, for example, has an intercept value which is 270615 units lower than the
common intercept value of 107429.3; the actual value of the intercept for this airline is
then −163185.7. On the other hand, the intercept value of firm number 6 is higher by 57383
units than the common intercept value; the actual intercept value for this airline is
(107429.3 + 57383), or 164812.3. The intercept values for the other airlines can be derived
similarly. However, note that if you add the (differential) intercept values of all the six air-
lines, the sum is 0, as it should be (why?).

If you compare the results of the fixed-effect and random-effect regressions, you will see
that there are substantial differences between the two. The important question now is:
Which results are reliable? Or, to put it differently, which should be the choice between the
two models? We can apply the Hausman test to shed light on this question.

The null hypothesis underlying the Hausman test is that the FEM and ECM estimators
do not differ substantially. The test statistic developed by Hausman has an asymptotic χ2

13See Kmenta, op. cit., pp. 625–630.

TABLE 16.5 
Dependent Variable: TC
Method: Panel EGLS (Cross-section random effects)

Sample: 1–15
Periods included: 15
Cross-sections included: 6
Total panel (balanced) observations: 90
Swamy and Arora estimator of component variances

Coefficient Std. Error t Statistic Prob.

C 107429.3 303966.2 3.534251 0.0007
Q 2288588. 88172.77 25.95572 0.0000
PF 1.123591 0.083298 13.48877 0.0000
LF -3084994. 584373.2 -5.279151 0.0000

Effects Specification
S.D. Rho

Cross-section random 107411.2 0.2067
Idiosyncratic random 210422.8 0.7933

Firm Effect

1 1.000000 -270615.0
2 2.000000 -87061.32
3 3.000000 -21338.40
4 4.000000 187142.9
5 5.000000 134488.9
6 6.000000 57383.00
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distribution. If the null hypothesis is rejected, the conclusion is that the ECM is not appro-
priate because the random effects are probably correlated with one or more regressors. In
this case, FEM is preferred to ECM. For our example, the results of the Hausman test are
as shown in Table 16.6.

The Hausman test clearly rejects the null hypothesis, for the estimated χ2 value for 3 df
is highly significant; if the null hypothesis were true, the probability of obtaining a chi-
square value of as much as 49.62 or greater would be practically zero. As a result, we can
reject the ECM (REM) in favor of FEM. Incidentally, the last part of the preceding table
compares the fixed-effect and random-effect coefficients of each variable and, as the last
column shows, in the present example the differences are statistically significant.

Breusch and Pagan Lagrange Multiplier Test14

Besides the Hausman test, we can also use the Breusch-Pagan (BP) test to test the hypoth-
esis that there are no random effects, i.e., σ 2

u in Eq. (16.6.7) is zero. This test is built into
software packages such as STATA. Under the null hypothesis, BP follows a chi-square dis-
tribution with 1 df; there is only 1 df because we are testing the single hypothesis that
σ 2

u = 0. We will not present the formula underlying the test, for it is rather complicated.
Turning to our airlines example, an application of the BP test produces a chi-square value

of 0.61. With 1 df, the p value of obtaining a chi-square value of 0.61 or greater is about 43 per-
cent. Therefore, we do not reject the null hypothesis. In other words, the random effects model
is not appropriate in the present example. The BP test thus reinforces the Hausman test, which
also found that the random effects model is not appropriate for our airlines example.

16.7 Properties of Various Estimators15

We have discussed several methods of estimating (linear) panel regression models, namely,
pooled estimators, fixed effects estimators that include least squares dummy variable (LSDV)
estimators, fixed-effect within-group estimators, first-difference estimators, and random effects
estimators. What are their statistical properties? Since panel data generally involve a large num-
ber of observations, we will concentrate on the consistency property of these estimators.

TABLE 16.6 
Correlated Random Effects—Hausman Test
Equation: Untitled
Test cross-section random effects

Chi-Sq.
Test Summary Statistic Chi-Sq. d.f. Prob.

Cross-section random 49.619687 3 0.0000

Cross-section random effects test comparisons:

Variable Fixed Random Var(Diff.) Prob.

Q 3319023.28 2288587.95 21587779733. 0.0000
PF 0.773071 1.123591 0.002532 0.0000
LF -3797367.59 -3084994.0 35225469544. 0.0001

14T. Breusch and A. R. Pagan, “The Lagrange Multiplier Test and Its Application to Model Specifica-
tion in Econometrics,” Review of Economic Studies, vol. 47, 1980, pp. 239–253.
15The following discussion draws on A. Colin Cameron and Pravin K. Trivedi, Microeconometrics: 
Methods and Applications, Cambridge University Press, Cambridge, New York, 2005, Chapter 21.

guj75772_ch16.qxd  22/08/2008  07:14 PM  Page 605



606 Part Three Topics in Econometrics

Pooled Estimators
Assuming the slope coefficients are constant across subjects, if the error term in Eq. (16.3.1)
is uncorrelated with the regressors, pooled estimators are consistent. However, as noted
earlier, the error terms are likely to be correlated over time for a given subject. Therefore,
panel-corrected standard errors must be used for hypothesis testing. Make sure the
statistical package you use has this facility, otherwise the computed standard errors may
be underestimated. It should be noted that if the fixed effects model is appropriate but we
use the pooled estimator, the estimated coefficients will be inconsistent.

Fixed Effects Estimators
Even if it is assumed that the underlying model is pooled or random, the fixed effects
estimators are always consistent.

Random Effects Estimators
The random effects model is consistent even if the true model is the pooled estimator. How-
ever, if the true model is fixed effects, the random effects estimator is inconsistent.

For proofs and further details about these properties, refer to the textbooks of Cameron
and Trivedi, Greene, and Wooldridge cited in the footnotes.

16.8 Fixed Effects versus Random Effects Model: Some Guidelines

The challenge facing a researcher is: Which model is better, FEM or ECM? The answer to
this question hinges around the assumption we make about the likely correlation between
the individual, or cross-section specific, error component εi and the X regressors.

If it is assumed that εi and the X’s are uncorrelated, ECM may be appropriate, whereas
if εi and the X’s are correlated, FEM may be appropriate.

The assumption underlying ECM is that the εi are random drawings from a much larger
population, but sometimes this may not be so. For example, suppose we want to study the
crime rate across the 50 states in the United States. Obviously, in this case, the assumption
that the 50 states are a random sample is not tenable.

Keeping this fundamental difference in the two approaches in mind, what more can we
say about the choice between FEM and ECM? Here the observations made by Judge et al.
may be helpful:16

1. If T (the number of time series data) is large and N (the number of cross-sectional units)
is small, there is likely to be little difference in the values of the parameters estimated by
FEM and ECM. Hence the choice here is based on computational convenience. On this
score, FEM may be preferable.

2. When N is large and T is small (i.e., a short panel), the estimates obtained by the two meth-
ods can differ significantly. Recall that in ECM β1i = β1 + εi , where εi is the cross-
sectional random component, whereas in FEM we treat β1i as fixed and not random. In the
latter case, statistical inference is conditional on the observed cross-sectional units in
the sample. This is appropriate if we strongly believe that the individual, or cross-sectional,
units in our sample are not random drawings from a larger sample. In that case, FEM is
appropriate. If the cross-sectional units in the sample are regarded as random drawings,
however, then ECM is appropriate, for in that case statistical inference is unconditional.

3. If the individual error component εi and one or more regressors are correlated, then the
ECM estimators are biased, whereas those obtained from FEM are unbiased.

16Judge et al., op. cit., pp. 489–491.
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4. If N is large and T is small, and if the assumptions underlying ECM hold, ECM estima-
tors are more efficient than FEM.

5. Unlike FEM, ECM can estimate coefficients of time-invariant variables such as gender
and ethnicity. The FEM does control for such time-invariant variables, but it cannot
estimate them directly, as is clear from the LSDV or within-group estimator models. On
the other hand, FEM controls for all time-invariant variables (why?), whereas ECM can
estimate only such time-invariant variables as are explicitly introduced in the model.

Despite the Hausman test, it is important to keep in mind the warning sounded by
Johnston and DiNardo. In deciding between fixed effects or random effects models, they
argue that, “ . . . there is no simple rule to help the researcher navigate past the Scylla of
fixed effects and the Charybdis of measurement error and dynamic selection. Although
they are an improvement over cross-section data, panel data do not provide a cure-all for all
of an econometrician’s problems.”17

16.9 Panel Data Regressions: Some Concluding Comments

As noted at the outset, the topic of panel data modeling is vast and complex. We have barely
scratched the surface. The following are among the many topics we have not discussed.

1. Hypothesis testing with panel data.

2. Heteroscedasticity and autocorrelation in ECM.

3. Unbalanced panel data.

4. Dynamic panel data models in which the lagged value(s) of the regressand appears as an
explanatory variable.

5. Simultaneous equations involving panel data.

6. Qualitative dependent variables and panel data.

7. Unit roots in panel data (on unit roots, see Chapter 21).

One or more of these topics can be found in the references cited in this chapter, and the
reader is urged to consult them to learn more about this topic. These references also cite
several empirical studies in various areas of business and economics that have used panel
data regression models. The beginner is well-advised to read some of these applications to
get a feel for how researchers have actually implemented such models.18

16.10 Some Illustrative Examples

EXAMPLE 16.1
Productivity and
Public
Investment

To find out why productivity has declined and what the role of public investment is, Alicia
Munnell studied productivity data in 48 continental United States for 17 years from 1970 to
1986, for a total of 816 observations.19 Using these data, we estimated the pooled regression
in Table 16.7. Note that this regression does not take into account the panel nature of the data.

The dependent variable in this model is GSP (gross state product), and the explanatory
variables are: PRIVCAP (private capital), PUBCAP (public capital), WATER (water utility
capital), and UNEMP (unemployment rate). Note: L stands for natural log.

17Jack Johnston and John DiNardo, Econometric Methods, 4th ed., McGraw-Hill, 1997, p. 403.
18For further details and concrete applications, see Paul D. Allison, Fixed Effects Regression Methods for
Longitudinal Data, Using SAS, SAS Institute, Cary, North Carolina, 2005.
19The Munnell data can be found at www.aw-bc.com/murray.

(Continued)
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EXAMPLE 16.1
(Continued)

All the variables have the expected signs and all are individually, as well as collectively,
statistically significant, assuming all the assumptions of the classical linear regression
model hold true.

To take into account the panel dimension of the data, in Table 16.8 we estimated a fixed
effects model using 47 dummies for the 48 states to avoid falling into the dummy-variable

TABLE 16.7

Dependent Variable: LGSP
Method: Panel Least Squares

Sample: 1970–1986
Periods included: 17
Cross-sections included: 48
Total panel (balanced) observations: 816

Coefficient Std. Error t Statistic Prob.

C 0.907604 0.091328 9.937854 0.0000
LPRIVCAP 0.376011 0.027753 13.54847 0.0000
LPUBCAP 0.351478 0.016162 21.74758 0.0000
LWATER 0.312959 0.018739 16.70062 0.0000
LUNEMP -0.069886 0.015092 -4.630528 0.0000

R-squared 0.981624 Mean dependent var. 10.50885
Adjusted R-squared 0.981533 S.D. dependent var. 1.021132
S.E. of regression 0.138765 F-statistic. 10830.51
Sum squared resid. 15.61630 Prob. (F-statistic) 0.000000
Log likelihood 456.2346 Durbin–Watson stat. 0.063016

TABLE 16.8
Dependent Variable: LGSP
Method: Panel Least Squares

Sample: 1970–1986
Periods included: 17
Cross-sections included: 48
Total panel (balanced) observations: 816

Coefficient Std. Error t Statistic Prob.

C -0.033235 0.208648 -0.159286 0.8735
LPRIVCAP 0.267096 0.037015 7.215864 0.0000
LPUBCAP 0.714094 0.026520 26.92636 0.0000
LWATER 0.088272 0.021581 4.090291 0.0000
LUNEMP -0.138854 0.007851 -17.68611 0.0000

Effects Specification

Cross-section fixed (dummy variables)

R-squared 0.997634 Mean dependent var. 10.50885
Adjusted R-squared 0.997476 S.D. dependent var. 1.021132
S.E. of regression 0.051303 F-statistic 6315.897
Sum squared resid. 2.010854 Prob. (F-statistic) 0.000000
Log likelihood 1292.535 Durbin–Watson stat. 0.520682
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trap. To save space, we only present the estimated regression coefficients and not the indi-
vidual dummy coefficients. But it should be added that all of the 47 state dummies were
individually highly statistically significant.

You can see that there are substantial differences between the pooled regression and
the fixed-effects regression, casting doubt on the results of the pooled regression.

To see if the random effects model is more appropriate in this case, we present the
results of the random effects regression model in Table 16.9.

To choose between the two models, we use the Hausman test, which gives the results
shown in Table 16.10.

Since the estimated chi-square value is highly statistically significant, we reject the
hypothesis that there is no significant difference in the estimated coefficients of the two
models. It seems there is correlation between the error term and one or more regressors.
Hence, we can reject the random effects model in favor of the fixed effects model. Note,
however, as the last part of Table 16.10 shows, not all coefficients differ in the two mod-
els. For example, there is not a statistically significant difference in the values of the
LUNEMP coefficient in the two models.

EXAMPLE 16.1
(Continued)

TABLE 16.10
Chi-Sq.

Test Summary Statistic Chi-Sq. d.f. Prob.

Cross-section random 42.458353 4 0.0000

Cross-section random effects test comparisons:

Variable Fixed Random Var (Diff.) Prob.

LPRIVCAP 0.267096 0.313980 0.000486 0.0334
LPUBCAP 0.714094 0.641926 0.000159 0.0000
LWATER 0.088272 0.130768 0.000054 0.0000
LUNEMP -0.138854 -0.139820 0.000006 0.6993

TABLE 16.9

Dependent Variable: LGSP
Method: Panel EGLS (Cross-section random effects)

Sample: 1970–1986
Periods included: 17
Cross-sections included: 48
Total panel (balanced) observations: 816
Swamy and Arora estimator of component variances

Coefficient Std. Error t Statistic Prob.

C -0.046176 0.161637 -0.285680 0.7752
LPRIVCAP 0.313980 0.029740 10.55760 0.0000
LPUBCAP 0.641926 0.023330 27.51514 0.0000
LWATER 0.130768 0.020281 6.447875 0.0000
LUNEMP -0.139820 0.007442 -18.78669 0.0000

Effects Specification

S.D. Rho

Cross-section random 0.130128 0.8655
Idiosyncratic random 0.051303 0.1345
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20G. S. Maddala, Robert P. Trost, Hongyi Li, and Frederick Joutz, “Estimation of Short-run and Long-
run Elasticities of Demand from Panel Data Using Shrikdage Estimators,” Journal of Business and
Economic Statistics, vol. 15, no. 1, January 1997, pp. 90–100.

EXAMPLE 16.2 
Demand for
Electricity 
in the USA

In their article, Maddala et al. considered the demand for residential electricity and natural
gas in 49 states in the USA for the period 1970–1990; Hawaii was not included in the
analysis.20 They collected data on several variables; these data can be found on the book’s
website. In this example, we will only consider the demand for residential electricity. We
first present the results based on the fixed effects estimation (Table 16.11) and then the
random effects estimation (Table 16.12), followed by a comparison of the two models.

Dependent Variable: Log(ESRCBPC)
Method: Panel Least Squares

Sample: 1971–1990
Periods included: 20
Cross-sections included: 49
Total panel (balanced) observations: 980

Coefficient Std. Error t Statistic Prob.

C -12.55760 0.363436 -34.55249 0.0000
Log(RESRCD) -0.628967 0.029089 -21.62236 0.0000
Log(YDPC) 1.062439 0.040280 26.37663 0.0000

Effects Specification

Cross-section fixed (dummy variables)

R-squared 0.757600 Mean dependent var. -4.536187
Adjusted R-squared 0.744553 S.D. dependent var. 0.316205
S.E. of regression 0.159816 Akaike info criterion -0.778954
Sum squared resid. 23.72762 Schwarz criterion -0.524602
Log likelihood 432.6876 Hannan-Quinn criter. -0.682188
F-statistic 58.07007 Durbin–Watson stat. 0.404314
Prob. (F-statistic) 0.000000

TABLE 16.11

where Log (ESRCBPC) = natural log of residential electricity consumption per capita (in
billion btu), Log(RESRCD) = natural log of real 1987 electricity price, and Log(YDPC) =
natural log of real 1987 disposable income per capita.

Since this is a double-log model, the estimated slope coefficients represent elasticities.
Thus, holding other things the same, if real per capita income goes up by 1 percent, the
mean consumption of electricity goes up by about 1 percent. Likewise, holding other
things constant, if the real price of electricity goes up by 1 percent, the average con-
sumption of electricity goes down by about 0.6 percent. All the estimated elasticities are
statistically significant.

The results of the random error model are as shown in Table 16.12.
It seems that there is not much difference in the two models. But we can use the

Hausman test to find out if this is so. The results of this test are as shown in Table 16.13.
Although the coefficients of the two models in Tables 16.11 and 16.12 look quite sim-

ilar, the Hausman test shows that this is not the case. The chi-square value is highly statis-
tically significant. Therefore, we can choose the fixed effects model over the random
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effects model. This example brings out the important point that when the sample size is large,
in our case 980 observations, even small differences in the estimated coefficients of the two
models can be statistically significant. Thus, the coefficients of the Log(RESRCD) variable in
the two models look reasonably close, but statistically they are not.

EXAMPLE 16.2
(Continued) Dependent Variable: Log(ESRCBPC)

Method: Panel EGLS (Cross-section random effects)

Sample: 1971–1990
Periods included: 20 
Cross-sections included: 49
Total panel (balanced) observations: 980
Swamy and Arora estimator of component variances

Coefficient Std. Error t Statistic Prob.

C -11.68536 0.353285 -33.07631 0.0000
Log(RESRCD) -0.665570 0.028088 -23.69612 0.0000
Log(YDPC) 0.980877 0.039257 24.98617 0.0000

Effects Specification

S.D. Rho

Cross-section random 0.123560 0.3741
Idiosyncratic random 0.159816 0.6259

Weighted Statistics

R-squared 0.462591 Mean dependent var. -1.260296
Adjusted R-squared 0.461491 S.D. dependent var. 0.229066
S.E. of regression 0.168096 Sum squared resid. 27.60641
F-statistic 420.4906 Durbin–Watson stat. 0.345453
Prob. (F-statistic) 0.000000

Unweighted Statistics

R-squared 0.267681 Mean dependent var. -4.536187
Sum squared resid. 71.68384 Durbin–Watson stat. 0.133039

TABLE 16.12

Correlated Random Effects—Hausman Test
Equation: Untitled
Test cross-section random effects

Chi-Sq.
Test Summary Statistic Chi-Sq. d.f. Prob.

Cross-section random 105.865216 2 0.0000

Cross-section random effects test comparisons:

Variable Fixed Random Var (Diff.) Prob.

Log(RESRCD) -0.628967 -0.665570 0.000057 0.0000
Log(YDPC) 1.062439 0.980877 0.000081 0.0000

TABLE 16.13
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1. Panel regression models are based on panel data. Panel data consist of observations on
the same cross-sectional, or individual, units over several time periods.

2. There are several advantages to using panel data. First, they increase the sample size
considerably. Second, by studying repeated cross-section observations, panel data are
better suited to study the dynamics of change. Third, panel data enable us to study
more complicated behavioral models.

3. Despite their substantial advantages, panel data pose several estimation and inference
problems. Since such data involve both cross-section and time dimensions, problems
that plague cross-sectional data (e.g., heteroscedasticity) and time series data (e.g.,
autocorrelation) need to be addressed. There are some additional problems as well,
such as cross-correlation in individual units at the same point in time.

612 Part Three Topics in Econometrics

21The data used here are obtained from the website of Michael P. Murphy, Econometrics: A Modern In-
troduction, Pearson/Addison Wesley, Boston, 2006, but the original data were collected by Philip
Cook for his book, Paying the Tab: The Costs and Benefits of Alcohol Control, Princeton University Press,
Princeton, New Jersey, 2007.

EXAMPLE 16.3
Beer
Consumption,
Income and 
Beer Tax

To assess the impact of beer tax on beer consumption, Philip Cook investigated the rela-
tionship between the two, after allowing for the effect of income.21 His data pertain to 50
states and Washington, D.C, for the period 1975–2000. In this example we study the
relationship of per capita beer sales to tax rate and income, all at the state level. We pre-
sent the results of pooled OLS, fixed effects, and random effects models in tabular form in
Table 16.14. The dependent variable is per capita beer sales.

These results are interesting. As per economic theory, we would expect a negative
relationship between beer consumption and beer taxes, which is the case for the three
models. The negative income effect on beer consumption would suggest that beer is an
inferior good. An inferior good is one whose demand decreases as consumers’ income
rises. Maybe when their income rises, consumers prefer champagne!

For our purpose, what is interesting is the difference in the estimated coefficients.
Apparently there is not much difference in estimated coefficients between FEM and ECM.
As a matter of fact, the Hausman test produces a chi-square value of 3.4, which is not
significant for 2 df at the 5 percent level; the p value is 0.1783.

The results based on OLS, however, are vastly different. The coefficient of the beer tax
variable, in absolute value, is much smaller than that obtained from FEM or ECM. The
income variable, although it has the negative sign, is not statistically significant, whereas
the other two models show that it is highly significant.

This example shows very vividly what could happen if we neglect the panel structure
of the data and estimate a pooled regression.

Variable OLS FEM REM

Constant 1.4192 1.7617 1.7542
(24.37) (52.23) (39.22)

Beer tax −0.0067 −0.0183 −0.0181
(−2.13) (−9.67) (−9.69)

Income −3.54(e−6) −0.000020 −0.000019
(−1.12) (−9.17) (−9.10)

R2 0.0062 0.0052 0.0052

Notes: Figures in parentheses are the estimated t ratios. −3.54(e−6) = −0.00000354.

TABLE 16.14

Summary and 
Conclusions
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4. There are several estimation techniques to address one or more of these problems. The
two most prominent are (1) the fixed effects model (FEM) and (2) the random effects
model (REM), or error components model (ECM).

5. In FEM, the intercept in the regression model is allowed to differ among individuals in
recognition of the fact that each individual, or cross-sectional, unit may have some special
characteristics of its own. To take into account the differing intercepts, one can use dummy
variables. The FEM using dummy variables is known as the least-squares dummy variable
(LSDV) model. FEM is appropriate in situations where the individual-specific intercept
may be correlated with one or more regressors. A disadvantage of LSDV is that it consumes
a lot of degrees of freedom when the number of cross-sectional units, N, is very large, in
which case we have to introduce N dummies (but suppress the common intercept term).

6. An alternative to FEM is ECM. In ECM it is assumed that the intercept of an individual
unit is a random drawing from a much larger population with a constant mean value. The
individual intercept is then expressed as a deviation from this constant mean value. One
advantage of ECM over FEM is that it is economical in degrees of freedom, as we do not
have to estimate N cross-sectional intercepts. We need only to estimate the mean value of
the intercept and its variance. ECM is appropriate in situations where the (random) inter-
cept of each cross-sectional unit is uncorrelated with the regressors. Another advantage
of ECM is that we can introduce variables such as gender, religion, and ethnicity, which
remain constant for a given subject. In FEM we cannot do that because all such variables
are colinear with the subject-specific intercept. Moreover, if we use the within-group
estimator or first-difference estimator, all such time-invariance will be swept out.

7. The Hausman test can be used to decide between FEM and ECM. We can also use the
Breusch–Pagan test to see if ECM is appropriate.

8. Despite its increasing popularity in applied research, and despite the increasing avail-
ability of such data, panel data regressions may not be appropriate in every situation.
One has to use some practical judgment in each case.

9. There are some specific problems with panel data that need to be borne in mind. The
most serious is the problem of attrition, whereby, for one reason or another, subjects of
the panel drop out over time so that over subsequent surveys (or cross-sections) fewer
original subjects remain in the panel. Even if there is no attrition, over time subjects may
refuse or be unwilling to answer some questions.

EXERCISES Questions
16.1. What are the special features of (a) cross-section data, (b) time series data, and 

(c) panel data?

16.2. What is meant by a fixed effects model (FEM)? Since panel data have both time and
space dimensions, how does FEM allow for both dimensions?

16.3. What is meant by an error components model (ECM)? How does it differ from
FEM? When is ECM appropriate? And when is FEM appropriate?

16.4. Is there a difference between LSDV, within-estimator, and first-difference models?

16.5. When are panel data regression models inappropriate? Give examples.

16.6. How would you extend model (16.4.2) to allow for a time error component? Write
down the model explicitly.

16.7. Refer to the data on eggs produced and their prices given in Table 1.1. Which model
may be appropriate here, FEM or ECM? Why?
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16.8. For the investment data given in Table 1.2, which model would you choose—FEM 
or REM? Why?

16.9. Based on the Michigan Income Dynamics Study, Hausman attempted to estimate
a wage, or earnings, model using a sample of 629 high school graduates, who
were followed for a period of six years, thus giving in all 3,774 observations. The de-
pendent variable in this study was logarithm of wage, and the explanatory variables
were: age (divided into several age groups); unemployment in the previous year;
poor health in the previous year; self-employment; region of residence (for graduate
from the South, South = 1 and 0 otherwise) and area of residence (for a graduate
from rural area, Rural = 1 and 0 otherwise). Hausman used both FEM and ECM.
The results are given in Table 16.15 (standard errors in parentheses).

TABLE 16.15
Wage Equations
(Dependent Variable:
Log Wage)

Source: Reproduced from
Cheng Hsiao, Analysis of Panel
Data, Cambridge University
Press, 1986, p. 42. Original
source: J. A. Hausman,
“Specification Tests in
Econometrics,” Econometrica,
vol. 46, 1978, pp. 1251–1271.

Variable Fixed Effects Random Effects

1. Age 1 (20–35) 0.0557 (0.0042) 0.0393 (0.0033)
2. Age 2 (35–45) 0.0351 (0.0051) 0.0092 (0.0036)
3. Age 3 (45–55) 0.0209 (0.0055) −0.0007 (0.0042)
4. Age 4 (55–65) 0.0209 (0.0078) −0.0097 (0.0060)
5. Age 5 (65–    ) −0.0171 (0.0155) −0.0423 (0.0121)
6. Unemployed previous year −0.0042 (0.0153) −0.0277 (0.0151)
7. Poor health previous year −0.0204 (0.0221) −0.0250 (0.0215)
8. Self-employment −0.2190 (0.0297) −0.2670 (0.0263)
9. South −0.1569 (0.0656) −0.0324 (0.0333)

10. Rural −0.0101 (0.0317) −0.1215 (0.0237)
11. Constant — — 0.8499 (0.0433)

S2 0.0567 0.0694
Degrees of freedom 3,135 3,763

a. Do the results make economic sense?

b. Is there a vast difference in the results produced by the two models? If so, what
might account for these differences?

c. On the basis of the data given in the table, which model, if any, would you choose?

Empirical Exercises
16.10. Refer to the airline example discussed in the text. Instead of the linear model given

in Eq. (16.4.2), estimate a log–linear regression model and compare your results
with those given in Table 16.2.

16.11. Refer to the data in Table 1.1.

a. Let Y = eggs produced (in millions) and X = price of eggs (cents per dozen).
Estimate the model for the years 1990 and 1991 separately.

b. Pool the observations for the two years and estimate the pooled regression. What
assumptions are you making in pooling the data?

c. Use the fixed effects model, distinguishing the two years, and present the
regression results.

d. Can you use the fixed effects model, distinguishing the 50 states? Why or why not?

e. Would it make sense to distinguish both the state effect and the year effect? If so,
how many dummy variables would you have to introduce?

f. Would the error components model be appropriate to model the production of
eggs? Why or why not? See if you can estimate such a model using, say, EViews.
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16.12. Continue with Exercise 16.11. Before deciding to run the pooled regression, you
want to find out whether the data are “poolable.” For this purpose you decide to use
the Chow test discussed in Chapter 8. Show the necessary calculations involved and
determine if the pooled regression makes any sense.

16.13. Use the investment data given in Table 1.6.

a. Estimate the Grunfeld investment function for each company individually.

b. Now pool the data for all the companies and estimate the Grunfeld investment
function by OLS.

c. Use LSDV to estimate the investment function and compare your results with
the pooled regression estimated in (b).

d. How would you decide between the pooled regression and the LSDV regression?
Show the necessary calculations.

16.14. Table 16.16 gives data on the hourly compensation rate in manufacturing in U.S.
dollars, Y (%), and the civilian unemployment rate, X (index, 1992 = 100), for
Canada, the United Kingdom, and the United States for the period 1980–2006.
Consider the model:

Yit = β1 + β2 Xit + uit (1)

TABLE 16.16
Unemployment Rate
and Hourly
Compensation in
Manufacturing, in
the United States,
Canada, and the
United Kingdom,
1980–2006.

Source: Economic Report of the
President, January 2008, 
Table B-109.

Year COMP_U.S. UN_U.S. COMP_CAN UN_CAN COMP_U.K. UN_U.K.

1980 55.9 7.1 49.0 7.3 47.1 6.9
1981 61.6 7.6 53.8 7.3 47.5 9.7
1982 67.2 9.7 60.1 10.7 45.1 10.8
1983 69.3 9.6 64.3 11.6 41.9 11.5
1984 71.6 7.5 65.0 10.9 39.8 11.8
1985 75.3 7.2 65.0 10.2 42.3 11.4
1986 78.8 7.0 64.9 9.3 52.0 11.4
1987 81.3 6.2 69.6 8.4 64.5 10.5
1988 84.1 5.5 78.5 7.4 74.8 8.6
1989 86.6 5.3 85.5 7.1 73.5 7.3

5.6
1990 90.5 92.4 7.7 89.6 7.1
1991 95.6 6.8 100.7 9.8 99.9 8.9
1992 100.0 7.5 100.0 10.6 100.0 10.0
1993 102.0 6.9 94.8 10.8 88.8 10.4

6.1
1994 105.3 92.1 9.6 92.8 8.7
1995 107.3 5.6 93.9 8.6 97.3 8.7
1996 109.3 5.4 95.9 8.8 96.0 8.1
1997 112.2 4.9 96.7 8.4 104.1 7.0
1998 118.7 4.5 94.9 7.7 113.8 6.3
1999 123.4 4.2 96.8 7.0 117.5 6.0
2000 134.7 4.0 100.0 6.1 114.8 5.5
2001 137.8 4.7 98.9 6.5 114.7 5.1
2002 147.8 5.8 101.0 7.0 126.8 5.2
2003 158.2 6.0 116.7 6.9 145.2 5.0
2004 161.5 5.5 127.1 6.4 171.4 4.8
2005 168.3 5.1 141.8 6.0 177.4 4.8
2006 172.4 4.6 155.5 5.5 192.3 5.5

Notes: UN = Unemployment rate %.
COMP = Index of hourly compensation in U. S. dollars, 1992–100.

CAN = Canada.
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a. A priori, what is the expected relationship between Y and X? Why?

b. Estimate the model given in Eq. (1) for each country.

c. Estimate the model, pooling all of the 81 observations.

d. Estimate the fixed effects model.

e. Estimate the error components model.

f. Which is a better model, FEM or ECM? Justify your answer (Hint: Apply the
Hausman Test).

16.15. Baltagi and Griffin considered the following gasoline demand function:*

ln Yit = β1 + β2 ln X2i t + β3 ln X3i t + β4 ln X4i t + uit

Where Y = gasoline consumption per car; X2 = real income per capita, X3 = real
gasoline price, X4 = number of cars per capita, i = country code, in all 18 OECD
countries, and t = time (annual observations from 1960–1978). Note: Values in
table are logged already.

a. Estimate the above demand function pooling the data for all 18 of the countries
(a total of 342 observations).

b. Estimate a fixed effects model using the same data.

c. Estimate a random components model using the same data.

d. From your analysis, which model best describes the gasoline demand in the
18 OECD countries? Justify your answer.

16.16. The article by Subhayu Bandyopadhyay and Howard J. Wall, “The Determinants of
Aid in the Post-Cold War Era,” Review, Federal Reserve Bank of St. Louis, 
November/December 2007, vol. 89, number 6, pp. 533–547, uses panel data to
estimate the responsiveness of aid to recipient countries’ economic and physical
needs, civil/political rights, and government effectiveness. The data are for
135 countries for three years. The article and data can be found at: http://
research.stlouisfed.org/publications/review/past/2007 in the November/December
Vol. 89, No. 10 section. The data can also be found on the textbook website in
Table 16.18. Estimate the authors’ model (given on page 534 of their article) using
a random effects estimator. Compare your results with those of the pooled and fixed
effects estimators given by the authors in Table 2 of their article. Which model is
appropriate here, fixed effects or random effects? Why?

16.17. Refer to the airlines example discussed in the text. For each airline, estimate a time
series logarithmic cost function. How do these regressions compare with the fixed
effects and random effects models discussed in the chapter? Would you also esti-
mate 15 cross-section logarithmic cost functions? Why or why not?

*B. H. Baltagi and J. M. Griffin, “Gasoline Demand in the OECD: An Application of Pooling and Test-
ing Procedures,” European Economic Review, vol. 22, 1983, pp. 117–137. The data for 18 OECD coun-
tries for the years 1960–1978 can be obtained from: http://www.wiley.com/legacy/wileychi/baltagi/
supp/Gasoline.dat, or from the textbook website, Table 16.17.

guj75772_ch16.qxd  22/08/2008  07:14 PM  Page 616



617

In regression analysis involving time series data, if the regression model includes not only
the current but also the lagged (past) values of the explanatory variables (the X ’s), it is
called a distributed-lag model. If the model includes one or more lagged values of the
dependent variable among its explanatory variables, it is called an autoregressive model.
Thus,

Yt = α + β0 Xt + β1 Xt−1 + β2 Xt−2 + ut

represents a distributed-lag model, whereas

Yt = α + βXt + γ Yt−1 + ut

is an example of an autoregressive model. The latter are also known as dynamic models
since they portray the time path of the dependent variable in relation to its past value(s).

Autoregressive and distributed-lag models are used extensively in econometric analysis,
and in this chapter we take a close look at such models with a view to finding out the
following:

1. What is the role of lags in economics?

2. What are the reasons for the lags?

3. Is there any theoretical justification for the commonly used lagged models in empirical
econometrics?

4. What is the relationship, if any, between autoregressive and distributed-lag models?
Can one be derived from the other?

5. What are some of the statistical problems involved in estimating such models?

6. Does a lead–lag relationship between variables imply causality? If so, how does one
measure it?

Chapter 17
Dynamic Econometric
Models: Autoregressive
and Distributed-Lag
Models
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17.1 The Role of “Time,’’ or “Lag,’’ in Economics

In economics the dependence of a variable Y (the dependent variable) on another vari-
able(s) X (the explanatory variable) is rarely instantaneous. Very often, Y responds to X
with a lapse of time. Such a lapse of time is called a lag. To illustrate the nature of the lag,
we consider several examples.

EXAMPLE 17.1
The Consumption
Function

Suppose a person receives a salary increase of $2,000 in annual pay, and suppose that this
is a “permanent’’ increase in the sense that the increase in salary is maintained. What will
be the effect of this increase in income on the person’s annual consumption expenditure?

Following such a gain in income, people usually do not rush to spend all the increase
immediately. Thus, our recipient may decide to increase consumption expenditure by
$800 in the first year following the salary increase in income, by another $600 in the next
year, and by another $400 in the following year, saving the remainder. By the end of the
third year, the person’s annual consumption expenditure will be increased by $1,800. We
can thus write the consumption function as

Yt = constant + 0.4Xt + 0.3Xt−1 + 0.2Xt−2 + ut (17.1.1)

where Y is consumption expenditure and X is income.
Equation (17.1.1) shows that the effect of an increase in income of $2,000 is spread, or

distributed, over a period of 3 years. Models such as Eq. (17.1.1) are therefore called
distributed-lag models because the effect of a given cause (income) is spread over a
number of time periods. Geometrically, the distributed-lag model (17.1.1) is shown in
Figure 17.1, or alternatively, in Figure 17.2.
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Example of
distributed lags.
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More generally we may write

Yt = α + β0 Xt + β1 Xt−1 + β2 Xt−2 + · · · + βk Xt−k + ut (17.1.2)

which is a distributed-lag model with a finite lag of k time periods. The coefficient β0 is
known as the short-run, or impact, multiplier because it gives the change in the mean
value of Y following a unit change in X in the same time period.1 If the change in X is
maintained at the same level thereafter, then (β0 + β1) gives the change in (the mean
value of ) Y in the next period, (β0 + β1 + β2) in the following period, and so on. These
partial sums are called interim, or intermediate, multipliers. Finally, after k periods we
obtain

k∑
i=0

βi = β0 + β1 + β2 + · · · + βk = β (17.1.3)

which is known as the long-run, or total, distributed-lag multiplier, provided the sum β
exists (to be discussed elsewhere).

If we define

β∗
i = βi∑

βi
= βi

β
(17.1.4)

we obtain “standardized’’ βi . Partial sums of the standardized βi then give the proportion
of the long-run, or total, impact felt by a certain time period.

Returning to the consumption regression (17.1.1), we see that the short-run multiplier,
which is nothing but the short-run marginal propensity to consume (MPC), is 0.4, whereas
the long-run multiplier, which is the long-run marginal propensity to consume, is 0.4 + 0.3 +
0.2 = 0.9. That is, following a $1 increase in income, the consumer will increase his or her
level of consumption by about 40 cents in the year of increase, by another 30 cents in the
next year, and by yet another 20 cents in the following year. The long-run impact of an
increase of $1 in income is thus 90 cents. If we divide each βi by 0.9, we obtain, respec-
tively, 0.44, 0.33, and 0.23, which indicate that 44 percent of the total impact of a unit
change in X on Y is felt immediately, 77 percent after one year, and 100 percent by the end
of the second year.

1Technically, β0 is the partial derivative of Y with respect to Xt, β1 that with respect to Xt−1, β2 that
with respect to Xt−2, and so forth. Symbolically, ∂Yt/∂ Xt−k = βk .

EXAMPLE 17.2
Creation of Bank
Money (Demand
Deposits)

Suppose the Federal Reserve System pours $1,000 of new money into the banking system
by buying government securities. What will be the total amount of bank money, or
demand deposits, that will be generated ultimately?

Following the fractional reserve system, if we assume that the law requires banks to
keep a 20 percent reserve backing for the deposits they create, then by the well-known
multiplier process the total amount of demand deposits that will be generated will
be equal to $1,000[1/(1 − 0.8)] = $5,000. Of course, $5,000 in demand deposits will
not be created overnight. The process takes time, which can be shown schematically in
Figure 17.3.

(Continued )
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FIGURE 17.3 Cumulative expansion in bank deposits (initial reserve $1,000 and 20 percent
reserve requirement).

EXAMPLE 17.3
Link between
Money and
Prices

According to the monetarists, inflation is essentially a monetary phenomenon in the sense
that a continuous increase in the general price level is due to the rate of expansion in
money supply far in excess of the amount of money actually demanded by the economic
units. Of course, this link between inflation and changes in money supply is not instanta-
neous. Studies have shown that the lag between the two is anywhere from 3 to about
20 quarters. The results of one such study are shown in Table 17.1,2 where we see the ef-
fect of a 1 percent change in the M1B money supply ( = currency + checkable deposits at
financial institutions) is felt over a period of 20 quarters. The long-run impact of a 1 per-
cent change in the money supply on inflation is about 1 ( = ∑

mi ), which is statistically
significant, whereas the short-run impact is about 0.04, which is not significant, although
the intermediate multipliers seem to be generally significant. Incidentally, note that since
P and M are both in percent forms, the mi (βi in our usual notation) give the elasticity of
P with respect to M, that is, the percent response of prices to a 1 percent increase in the
money supply. Thus, m0 = 0.041 means that for a 1 percent increase in the money supply
the short-run elasticity of prices is about 0.04 percent. The long-term elasticity is 1.03 per-
cent, implying that in the long run a 1 percent increase in the money supply is reflected
by just about the same percentage increase in the prices. In short, a 1 percent increase
in the money supply is accompanied in the long run by a 1 percent increase in the infla-
tion rate.

2Keith M. Carlson, “The Lag from Money to Prices,’’ Review, Federal Reserve Bank of St. Louis,
October 1980, Table 1, p. 4.

EXAMPLE 17.2
(Continued)
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EXAMPLE 17.3
(Continued)

TABLE 17.1 Estimate of Money–Price Equation: Original Specification

Sample period: 1955–I to 1969–IV: m21 = 0

Ṗ = −0.146 +
20∑

i=0
mi Ṁ−i

(0.395)

Coeff. |t | Coeff. |t | Coeff. |t |

m0 0.041 1.276 m8 0.048 3.249 m16 0.069 3.943
m1 0.034 1.538 m9 0.054 3.783 m17 0.062 3.712
m2 0.030 1.903 m10 0.059 4.305 m18 0.053 3.511
m3 0.029 2.171 m11 0.065 4.673 m19 0.039 3.338
m4 0.030 2.235 m12 0.069 4.795 m20 0.022 3.191
m5 0.033 2.294 m13 0.072 4.694

∑
mi 1.031 7.870

m6 0.037 2.475 m14 0.073 4.468 Mean lag 10.959 5.634
m7 0.042 2.798 m15 0.072 4.202

R̄
2 0.525 se 1.066 D.W. 2.00

Notation: P
. = compounded annual rate of change of GNP deflator.

M
. = compounded annual rate of change of M1B.

Source: Keith M. Carlson, “The Lag from Money to Prices,” Review, Federal Reserve Bank of St. Louis, October 1980, Table 1, p. 4.

EXAMPLE 17.4
Lag between
R&D
Expenditure and
Productivity

The decision to invest in research and development (R&D) expenditure and its ultimate
payoff in terms of increased productivity involve considerable lag, actually several lags,
such as, “. . . the lag between the investment of funds and the time inventions actually
begin to appear, the lag between the invention of an idea or device and its development
up to a commercially applicable stage, and the lag which is introduced by the process of
diffusion: it takes time before all the old machines are replaced by the better new ones.’’3

EXAMPLE 17.5
The J Curve of
International
Economics

Students of international economics are familiar with what is called the J curve, which
shows the relationship between trade balance and depreciation of currency. Following
depreciation of a country’s currency (e.g., due to devaluation), initially the trade balance
deteriorates but eventually it improves, assuming other things are the same. The curve is
as shown in Figure 17.4.

2

1 3

Time

Real depreciation takes
place and J curve begins

Current account
(in domestic output units)

Long-run effect of
real depreciation
on the current
account

End of
J curve

FIGURE 17.4
The J curve.
Source: Paul R. Krugman
and Maurice Obstfeld,
International Economics:
Theory and Practice, 3d
ed., Harper Collins, New
York, 1994, p. 465.

3Zvi Griliches, “Distributed Lags: A Survey,’’ Econometrica, vol. 36, no. 1, January 1967, pp. 16–49.
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The preceding examples are only a sample of the use of lag in economics. Undoubtedly,
the reader can produce several examples from his or her own experience.

17.2 The Reasons for Lags4

Although the examples cited in Section 17.1 point out the nature of lagged phenomena,
they do not fully explain why lags occur. There are three main reasons:

1. Psychological reasons. As a result of the force of habit (inertia), people do not change
their consumption habits immediately following a price decrease or an income increase
perhaps because the process of change may involve some immediate disutility. Thus,
those who become instant millionaires by winning lotteries may not change the
lifestyles to which they were accustomed for a long time because they may not know
how to react to such a windfall gain immediately. Of course, given reasonable time, they
may learn to live with their newly acquired fortune. Also, people may not know whether
a change is “permanent’’ or “transitory.’’Thus, my reaction to an increase in my income
will depend on whether or not the increase is permanent. If it is only a nonrecurring
increase and in succeeding periods my income returns to its previous level, I may save
the entire increase, whereas someone else in my position might decide to “live it up.’’

2. Technological reasons. Suppose the price of capital relative to labor declines, making
substitution of capital for labor economically feasible. Of course, addition of capital
takes time (the gestation period). Moreover, if the drop in price is expected to be tempo-
rary, firms may not rush to substitute capital for labor, especially if they expect that after
the temporary drop the price of capital may increase beyond its previous level. Some-
times, imperfect knowledge also accounts for lags. At present the market for personal
computers is glutted with all kinds of computers with varying features and prices. More-
over, since their introduction in the late 1970s, the prices of most personal computers
have dropped dramatically. As a result, prospective consumers for the personal computer
may hesitate to buy until they have had time to look into the features and prices of all the
competing brands. Moreover, they may hesitate to buy in the expectation of further
decline in price or innovations.

3. Institutional reasons. These reasons also contribute to lags. For example, contractual
obligations may prevent firms from switching from one source of labor or raw material to
another. As another example, those who have placed funds in long-term savings accounts
for fixed durations such as one year, three years, or seven years are essentially “locked in’’
even though money market conditions may be such that higher yields are available else-
where. Similarly, employers often give their employees a choice among several health
insurance plans, but once a choice is made, an employee may not switch to another plan
for at least one year. Although this may be done for administrative convenience, the
employee is locked in for one year.

EXAMPLE 17.6
The Accelerator
Model of
Investment

In its simplest form, the acceleration principle of investment theory states that investment
is proportional to changes in output. Symbolically,

It = β(Xt − Xt−1) β > 0 (17.1.5)

where It is investment at time t, Xt is output at time t, and Xt−1 is output at time (t − 1).

4This section leans heavily on Marc Nerlove, Distributed Lags and Demand Analysis for Agricultural and
Other Commodities, Agricultural Handbook No. 141, U.S. Department of Agriculture, June 1958.
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For the reasons just discussed, lag occupies a central role in economics. This is clearly
reflected in the short-run–long-run methodology of economics. It is for this reason we say
that short-run price or income elasticities are generally smaller (in absolute value) than the
corresponding long-run elasticities or that short-run marginal propensity to consume is
generally smaller than long-run marginal propensity to consume.

17.3 Estimation of Distributed-Lag Models

Granted that distributed-lag models play a highly useful role in economics, how does one
estimate such models? Specifically, suppose we have the following distributed-lag model in
one explanatory variable:5

Yt = α + β0 Xt + β1 Xt−1 + β2 Xt−2 + · · · + ut (17.3.1)

where we have not defined the length of the lag, that is, how far back into the past we want
to go. Such a model is called an infinite (lag) model, whereas a model of the type shown
in Eq. (17.1.2) is called a finite (lag) distributed-lag model because the length of the lag
k is specified. We shall continue to use Eq. (17.3.1) because it is easy to handle mathemat-
ically, as we shall see.6

How do we estimate the α and β’s of Eq. (17.3.1)? We may adopt two approaches: (1) ad
hoc estimation and (2) a priori restrictions on the β’s by assuming that the β’s follow some
systematic pattern. We shall consider ad hoc estimation in this section and the other
approach in Section 17.4.

Ad Hoc Estimation of Distributed-Lag Models
Since the explanatory variable Xt is assumed to be nonstochastic (or at least uncorrelated
with the disturbance term ut ), Xt−1, Xt−2, and so on, are nonstochastic, too. Therefore, in
principle, the ordinary least squares (OLS) can be applied to Eq. (17.3.1). This is the ap-
proach taken by Alt7 and Tinbergen.8 They suggest that to estimate Eq. (17.3.1) one may 
proceed sequentially; that is, first regress Yt on Xt , then regress Yt on Xt and Xt−1, then
regress Yt on Xt , Xt−1, and Xt−2, and so on. This sequential procedure stops when the
regression coefficients of the lagged variables start becoming statistically insignificant
and/or the coefficient of at least one of the variables changes signs from positive to negative
or vice versa. Following this precept, Alt regressed fuel oil consumption Y on new orders X.
Based on the quarterly data for the period 1930–1939, the results were as follows:

Ŷt = 8.37 + 0.171Xt

Ŷt = 8.27 + 0.111Xt + 0.064Xt−1

Ŷt = 8.27 + 0.109Xt + 0.071Xt−1 − 0.055Xt−2

Ŷt = 8.32 + 0.108Xt + 0.063Xt−1 + 0.022Xt−2 − 0.020Xt−3

5If there is more than one explanatory variable in the model, each variable may have a lagged effect
on Y. For simplicity only, we assume one explanatory variable.
6In practice, however, the coefficients of the distant X values are expected to have a negligible effect
on Y.
7F. F. Alt, “Distributed Lags,’’ Econometrica, vol. 10, 1942, pp. 113–128.
8J. Tinbergen, “Long-Term Foreign Trade Elasticities,’’ Metroeconomica, vol. 1, 1949, pp. 174–185.
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Alt chose the second regression as the “best’’ one because in the last two equations the sign
of Xt−2 was not stable and in the last equation the sign of Xt−3 was negative, which may be
difficult to interpret economically.

Although seemingly straightforward, ad hoc estimation suffers from many drawbacks,
such as the following:

1. There is no a priori guide as to what is the maximum length of the lag.9

2. As one estimates successive lags, there are fewer degrees of freedom left, making sta-
tistical inference somewhat shaky. Economists are not usually that lucky to have a long
series of data so that they can go on estimating numerous lags.

3. More importantly, in economic time series data, successive values (lags) tend to be highly
correlated; hence multicollinearity rears its ugly head. As noted in Chapter 10, multi-
collinearity leads to imprecise estimation; that is, the standard errors tend to be large
in relation to the estimated coefficients. As a result, based on the routinely computed t
ratios, we may tend to declare (erroneously), that a lagged coefficient(s) is statistically
insignificant.

4. The sequential search for the lag length opens the researcher to the charge of data mining.
Also, as we noted in Section 13.4, the nominal and true level of significance to test
statistical hypotheses becomes an important issue in such sequential searches (see 
Eq. [13.4.2]).

In view of the preceding problems, the ad hoc estimation procedure has very little to rec-
ommend it. Clearly, some prior or theoretical considerations must be brought to bear upon
the various β’s if we are to make headway with the estimation problem.

17.4 The Koyck Approach to Distributed-Lag Models

Koyck has proposed an ingenious method of estimating distributed-lag models. Suppose we
start with the infinite lag distributed-lag model (17.3.1). Assuming that the β’s are all of the
same sign, Koyck assumes that they decline geometrically as follows.10

(17.4.1)11

where λ, such that 0 < λ < 1, is known as the rate of decline, or decay, of the distributed
lag and where 1 − λ is known as the speed of adjustment.

What Eq. (17.4.1) postulates is that each successive β coefficient is numerically less
than each preceding β (this statement follows since λ < 1), implying that as one goes back
into the distant past, the effect of that lag on Yt becomes progressively smaller, a quite plau-
sible assumption. After all, current and recent past incomes are expected to affect current
consumption expenditure more heavily than income in the distant past. Geometrically, the
Koyck scheme is depicted in Figure 17.5.

As this figure shows, the value of the lag coefficient βk depends, apart from the common
β0, on the value of λ. The closer λ is to 1, the slower the rate of decline in βk , whereas the

βk = β0λ
k k = 0, 1, . . .

9If the lag length, k, is incorrectly specified, we will have to contend with the problem of misspecifica-
tion errors discussed in Chapter. 13. Also keep in mind the warning about data mining.
10L. M. Koyck, Distributed Lags and Investment Analysis, North Holland Publishing Company,
Amsterdam, 1954.
11Sometimes this is also written as

βk = β0(1 − λ)λk k = 0, 1, . . .

for reasons given in footnote 12.
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closer it is to zero, the more rapid the decline in βk . In the former case, distant past values
of X will exert sizable impact on Yt , whereas in the latter case their influence on Yt will
peter out quickly. This pattern can be seen clearly from the following illustration:

λ β0 β1 β2 β3 β4 β5 · · · β10

0.75 β0 0.75β0 0.56β0 0.42β0 0.32β0 0.24β0 · · · 0.06β0

0.25 β0 0.25β0 0.06β0 0.02β0 0.004β0 0.001β0 · · · 0.0

Note these features of the Koyck scheme: (1) By assuming nonnegative values for λ,
Koyck rules out the β’s from changing sign; (2) by assuming λ < 1, he gives lesser weight
to the distant β’s than the current ones; and (3) he ensures that the sum of the β’s, which
gives the long-run multiplier, is finite, namely,

∞∑
k=0

βk = β0

(
1

1 − λ

)
(17.4.2)12

As a result of Eq. (17.4.1), the infinite lag model (17.3.1) may be written as

Yt = α + β0 Xt + β0λXt−1 + β0λ
2 Xt−2 + · · · + ut (17.4.3)

As it stands, the model is still not amenable to easy estimation since a large (literally infi-
nite) number of parameters remain to be estimated and the parameter λ enters in a highly

λ = −1
2

Lag (time)
0

βk

λ

λ = −3
4

λ

λ = −1
4

λ

FIGURE 17.5
Koyck scheme
(declining geometric
distribution).

12This is because

∑
βk = β0(1 + λ + λ2 + λ3 + · · ·) = β0

(
1

1 − λ

)

since the expression in the parentheses on the right side is an infinite geometric series whose sum is
1/(1 − λ) provided 0 < λ < 1. In passing, note that if βk is as defined in footnote 11,∑

βk = β0(1 − λ)/(1 − λ) = β0 , thus ensuring that the weights (1 − λ)λk sum to 1.

guj75772_ch17.qxd  22/08/2008  12:09 PM  Page 625



626 Part Three Topics in Econometrics

nonlinear form: Strictly speaking, the method of linear (in the parameters) regression
analysis cannot be applied to such a model. But now Koyck suggests an ingenious way out.
He lags Eq. (17.4.3) by one period to obtain

Yt−1 = α + β0 Xt−1 + β0λXt−2 + β0λ
2 Xt−3 + · · · + ut−1 (17.4.4)

He then multiplies Eq. (17.4.4) by λ to obtain

λYt−1 = λα + λβ0 Xt−1 + β0λ
2 Xt−2 + β0λ

3 Xt−3 + · · · + λut−1 (17.4.5)

Subtracting Eq. (17.4.5) from Eq. (17.4.3), he gets

Yt − λYt−1 = α(1 − λ) + β0 Xt + (ut − λut−1) (17.4.6)

or, rearranging,

(17.4.7)

where vt = (ut − λut−1), a moving average of ut and ut−1.
The procedure just described is known as the Koyck transformation. Comparing

Eq. (17.4.7) with Eq. (17.3.1), we see the tremendous simplification accomplished by
Koyck. Whereas before we had to estimate α and an infinite number of β’s, we now
have to estimate only three unknowns: α, β0, and λ. Now there is no reason to expect
multicollinearity. In a sense, multicollinearity is resolved by replacing Xt−1, Xt−2, . . . ,
by a single variable, namely, Yt−1. But note the following features of the Koyck
transformation:

1. We started with a distributed-lag model but ended up with an autoregressive model
because Yt−1 appears as one of the explanatory variables. This transformation shows
how one can “convert’’ a distributed-lag model into an autoregressive model.

2. The appearance of Yt−1 is likely to create some statistical problems. Yt−1, like Yt , is sto-
chastic, which means that we have a stochastic explanatory variable in the model. Recall
that the classical least-squares theory is predicated on the assumption that the explana-
tory variables either are nonstochastic or, if stochastic, are distributed independently
of the stochastic disturbance term. Hence, we must find out if Yt−1 satisfies this
assumption. (We shall return to this point in Section 17.8.)

3. In the original model (17.3.1) the disturbance term was ut , whereas in the transformed
model it is vt = (ut − λut−1). The statistical properties of vt depend on what is assumed
about the statistical properties of ut , for, as shown later, if the original ut ’s are serially
uncorrelated, the vt ’s are serially correlated. Therefore, we may have to face up to the se-
rial correlation problem in addition to the stochastic explanatory variable Yt−1. We shall
do that in Section 17.8.

4. The presence of lagged Y violates one of the assumptions underlying the Durbin–
Watson d test. Therefore, we will have to develop an alternative to test for serial corre-
lation in the presence of lagged Y. One alternative is the Durbin h test, which is
discussed in Section 17.10.

As we saw in Eq. (17.1.4), the partial sums of the standardized βi tell us the proportion
of the long-run, or total, impact felt by a certain time period. In practice, though, the mean
or median lag is often used to characterize the nature of the lag structure of a distributed-
lag model.

Yt = α(1 − λ) + β0 Xt + λYt−1 + vt
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The Median Lag
The median lag is the time required for the first half, or 50 percent, of the total change in Y
following a unit sustained change in X. For the Koyck model, the median lag is as follows
(see Exercise 17.6):

(17.4.8)

Thus, if λ = 0.2 the median lag is 0.4306, but if λ = 0.8 the median lag is 3.1067. Verbally,
in the former case 50 percent of the total change in Y is accomplished in less than half a pe-
riod, whereas in the latter case it takes more than 3 periods to accomplish the 50 percent
change. But this contrast should not be surprising, for as we know, the higher the value of
λ the lower the speed of adjustment, and the lower the value of λ the greater the speed of
adjustment.

The Mean Lag
Provided all βk are positive, the mean, or average, lag is defined as

(17.4.9)

which is simply the weighted average of all the lags involved, with the respective β coef-
ficients serving as weights. In short, it is a lag-weighted average of time. For the Koyck
model the mean lag is (see Exercise 17.7)

(17.4.10)

Thus, if λ = 1
2 , the mean lag is 1.

From the preceding discussion it is clear that the median and mean lags serve as a sum-
mary measure of the speed with which Y responds to X. In the example given in Table 17.1
the mean lag is about 11 quarters, showing that it takes quite some time, on the average, for
the effect of changes in the money supply to be felt on price changes.

Koyck model: Mean lag = λ

1 − λ

Mean lag =
∑∞

0 kβk∑∞
0 βk

Koyck model: Median lag = − log 2

log λ

EXAMPLE 17.7
Per Capita
Personal
Consumption
Expenditure
(PPCE) and Per
Capita
Disposable
Income (PPDI)

This example examines PPCE in relation to PPDI, both expressed in 2000 dollars, for the
United States for the period 1959–2006. As an illustration of the Koyck model, consider
the data given in Table 17.2. Regression of PPCE on PPDI and lagged PPCE gives the
results shown in Table 17.3.

The consumption function in this table can be called the short-run consumption func-
tion. We will derive the long-run consumption function shortly.

Using the estimated value of λ, we can compute the distributed lag coefficients. If β0 ≈
0.2139, β1 = (0.2139)(0.7971) ≈ 0.1704, β2 = (0.2139)(0.7971)2 ≈ 0.0231, and so on,
which are short- and medium-term multipliers. Finally, using Eq. (17.4.2), we can obtain
the long-run multiplier, that is, the total impact of change in income on consumption after
all lagged effects are taken into account, which in the present example becomes

∞∑
0

βk = β0

(
1

1 − λ

)
= (0.2139)

(
1

1 − 0.7971

)
≈ 1.0537

(Continued )
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Year PPCE PPDI Year PPCE PPDI

1959 8,776 9,685 1983 15,656 17,828
1960 8,873 9,735 1984 16,343 19,011
1961 8,873 9,901 1985 17,040 19,476
1962 9,170 10,227 1986 17,570 19,906
1963 9,412 10,455 1987 17,994 20,072
1964 9,839 11,061 1988 18,554 20,740
1965 10,331 11,594 1989 18,898 21,120
1966 10,793 12,065 1990 19,067 21,281
1967 10,994 12,457 1991 18,848 21,109
1968 11,510 12,892 1992 19,208 21,548
1969 11,820 13,163 1993 19,593 21,493
1970 11,955 13,563 1994 20,082 21,812
1971 12,256 14,001 1995 20,382 22,153
1972 12,868 14,512 1996 20,835 22,546
1973 13,371 15,345 1997 21,365 23,065
1974 13,148 15,094 1998 22,183 24,131
1975 13,320 15,291 1999 23,050 24,564
1976 13,919 15,738 2000 23,860 25,469
1977 14,364 16,128 2001 24,205 25,687
1978 14,837 16,704 2002 24,612 26,217
1979 15,030 16,931 2003 25,043 26,535
1980 14,816 16,940 2004 25,711 27,232
1981 14,879 17,217 2005 26,277 27,436
1982 14,944 17,418 2006 26,828 28,005

Notes: PPCE = per capita personal consumption expenditure in chained 2000 dollars.
PPDI = per capita personal disposable income in chained 2000 dollars.

Source: Economic Report of the President, 2007, Table B-31.

TABLE 17.2 PPCE and PPDI, 1959–2006

Dependent Variable: PPCE
Method: Least Squares
Sample (adjusted): 1960–2006
Included observations: 47 after adjustments

Coefficient Std. Error t Statistic Prob.

C -252.9190 157.3517 -1.607348 0.1151
PPDI 0.213890 0.070617 3.028892 0.0041
PPCE(-1) 0.797146 0.073308 10.87389 0.0000

R-squared 0.998216 Mean dependent var. 16691.28
Adjusted R-squared 0.998134 S.D. dependent var. 5205.873
S.E. of regression 224.8504 Akaike info criterion 13.73045
Sum squared resid. 2224539. Schwarz criterion 13.84854
Log likelihood -319.6656 Hannan-Quinn criter. 13.77489
F-statistic 12306.99 Durbin-Watson stat. 0.961921
Prob. (F-statistic) 0.000000 Durbin h = 3.8269*

*The calculation of Durbin h is discussed in Section 17.10.

TABLE 17.3

EXAMPLE 17.7
(Continued)
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17.5 Rationalization of the Koyck Model:
The Adaptive Expectations Model

Although very neat, the Koyck model (17.4.7) is ad hoc since it was obtained by a purely
algebraic process; it is devoid of any theoretical underpinning. But this gap can be filled if
we start from a different perspective. Suppose we postulate the following model:

(17.5.1)

where Y = demand for money (real cash balances)
X* = equilibrium, optimum, expected long-run or normal rate of 

interest
u = error term

Equation (17.5.1) postulates that the demand for money is a function of expected (i.e., an-
ticipated) rate of interest.

Since the expectational variable X∗ is not directly observable, let us propose the follow-
ing hypothesis about how expectations are formed:

(17.5.2)14X∗
t − X∗

t−1 = γ (Xt − X∗
t−1)

Yt = β0 + β1 X∗
t + ut

In words, a sustained increase of a dollar in PPDI will eventually lead to about 1.05 dollars
increase in PPCE, the immediate, or short-run impact being only 21 cents.

The long-run consumption function can now be written as:

PPCEt = −1247.1351 + 1.0537PPDIt

This is obtained by dividing the short-run consumption function given in Table 17.3 by
0.2029 on both sides and dropping the lagged PPDI term.13

In the long run the marginal propensity to consume (MPC) is about 1. This means that
when consumers have had time to adjust to a dollar’s increase in PPDI, they will increase
their PPCE by almost a dollar. In the short run, however, as Table 17.3 shows, the MPC is
only about 21 cents. What is the reason for such a difference between the short- and long-
run MPC?

The answer can be found in the median and mean lags. Given λ = 0.7971, the median
lag is

− log(2)
log λ

= − log(2)
log(0.7971)

= 3.0589

and the mean lag is

λ

1 − λ
= 3.9285

It seems real PPCE adjusts to real PPDI with a substantial lag: Recall that the larger the
value of λ (between 0 and 1), the longer it takes for the full impact of a change in the value
of the explanatory variable to be felt on the dependent variable.

EXAMPLE 17.7
(Continued)

13In equilibrium all PPCE values will be the same. Therefore, PPCEt = PPCEt−1. Making this substitu-
tion, you should get the long-run consumption function.
14Sometimes the model is expressed as

X∗
t − X∗

t−1 = γ (Xt−1 − X∗
t−1)
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where γ, such that 0 < γ ≤ 1, is known as the coefficient of expectation. Hypothesis
(17.5.2) is known as the adaptive expectation, progressive expectation, or error learning
hypothesis, popularized by Cagan15 and Friedman.16

What Eq. (17.5.2) implies is that “economic agents will adapt their expectations in the
light of past experience and that in particular they will learn from their mistakes.’’17 More
specifically, Eq. (17.5.2) states that expectations are revised each period by a fraction γ of
the gap between the current value of the variable and its previous expected value. Thus, for
our model this would mean that expectations about interest rates are revised each period by
a fraction γ of the discrepancy between the rate of interest observed in the current period
and what its anticipated value had been in the previous period. Another way of stating this
would be to write Eq. (17.5.2) as

X∗
t = γ Xt + (1 − γ )X∗

t−1 (17.5.3)

which shows that the expected value of the rate of interest at time t is a weighted average of
the actual value of the interest rate at time t and its value expected in the previous period,
with weights of γ and 1 − γ, respectively. If γ = 1, X∗

t = Xt , meaning that expectations are
realized immediately and fully, that is, in the same time period. If, on the other hand, γ = 0,
X∗

t = X∗
t−1, meaning that expectations are static, that is, “conditions prevailing today will

be maintained in all subsequent periods. Expected future values then become identified
with current values.’’18

Substituting Eq. (17.5.3) into Eq. (17.5.1), we obtain

Yt = β0 + β1[γ Xt + (1 − γ )X∗
t−1] + ut

= β0 + β1γ Xt + β1(1 − γ )X∗
t−1 + ut

(17.5.4)

Now lag Eq. (17.5.1) one period, multiply it by 1 − γ, and subtract the product from 
Eq. (17.5.4). After simple algebraic manipulations, we obtain

(17.5.5)

where vt = ut − (1 − γ)ut−1.
Before proceeding any further, let us note the difference between Eq. (17.5.1) and

Eq. (17.5.5). In the former, β1 measures the average response of Y to a unit change in X∗,
the equilibrium or long-run value of X. In Eq. (17.5.5), on the other hand, γβ1 measures the
average response of Y to a unit change in the actual or observed value of X. These responses
will not be the same unless, of course, γ = 1, that is, the current and long-run values of X
are the same. In practice, we first estimate Eq. (17.5.5). Once an estimate of γ is obtained
from the coefficient of lagged Y, we can easily compute β1 by simply dividing the coeffi-
cient of Xt ( = γβ1) by γ.

Yt = γβ0 + γβ1 Xt + (1 − γ )Yt−1 + ut − (1 − γ )ut−1

= γβ0 + γβ1 Xt + (1 − γ )Yt−1 + vt

15P. Cagan, “The Monetary Dynamics of Hyperinflations,’’ in M. Friedman (ed.), Studies in the Quan-
tity Theory of Money, University of Chicago Press, Chicago, 1956.
16Milton Friedman, A Theory of the Consumption Function, National Bureau of Economic Research,
Princeton University Press, Princeton, NJ, 1957.
17G. K. Shaw, Rational Expectations: An Elementary Exposition, St. Martin’s Press, New York, 1984,
p. 25.
18Ibid., pp. 19–20.
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The similarity between the adaptive expectations model (17.5.5) and the Koyck model
(17.4.7) should be readily apparent although the interpretations of the coefficients in the
two models are different. Note that like the Koyck model, the adaptive expectations model
is autoregressive and its error term is similar to the Koyck error term. We shall return to the
estimation of the adaptive expectations model in Section 17.8 and to some examples in
Section 17.12. Now that we have sketched the adaptive expectations (AE) model, how re-
alistic is it? It is true that it is more appealing than the purely algebraic Koyck approach, but
is the AE hypothesis reasonable? In favor of the AE hypothesis one can say the following:

It provides a fairly simple means of modelling expectations in economic theory whilst postu-
lating a mode of behaviour upon the part of economic agents which seems eminently sensible.
The belief that people learn from experience is obviously a more sensible starting point than
the implicit assumption that they are totally devoid of memory, characteristic of static expec-
tations thesis. Moreover, the assertion that more distant experiences exert a lesser effect than
more recent experience would accord with common sense and would appear to be amply con-
firmed by simple observation.19

Until the advent of the rational expectations (RE) hypothesis, initially put forward by
J. Muth and later propagated by Robert Lucas and Thomas Sargent, the AE hypothesis was
quite popular in empirical economics. The proponents of the RE hypothesis contend that
the AE hypothesis is inadequate because it relies solely on the past values of a variable in
formulating expectations,20 whereas the RE hypothesis assumes that “individual economic
agents use current available and relevant information in forming their expectations and do
not rely purely upon past experience.’’21 In short, the RE hypothesis contends that “expec-
tations are ‘rational’ in the sense that they efficiently incorporate all information available
at the time the expectation is formulated’’22 and not just the past information.

The criticism directed by the RE proponents against the AE hypothesis is well-taken,
although there are many critics of the RE hypothesis itself.23 This is not the place to get
bogged down with this rather heady material. Perhaps one could agree with Stephen
McNees that, “At best, the adaptive expectations assumption can be defended only as a
‘working hypothesis’ proxying for a more complex, perhaps changing expectations formu-
lation mechanism.’’24

19Ibid., p. 27.
20Like the Koyck model, it can be shown that, under AE, expectations of a variable are an exponen-
tially weighted average of past values of that variable.
21G. K. Shaw, op. cit., p. 47. For additional details of the RE hypothesis, see Steven M. Sheffrin, Ratio-
nal Expectations, Cambridge University Press, New York, 1983.
22Stephen K. McNees, “The Phillips Curve: Forward- or Backward-Looking?’’ New England Economic
Review, July–August 1979, p. 50.
23For a recent critical appraisal of the RE hypothesis, see Michael C. Lovell, “Test of the Rational
Expectations Hypothesis,’’ American Economic Review, March 1966, pp. 110–124.
24Stephen K. McNees, op. cit., p. 50.

EXAMPLE 17.8
Example 17.7
Revisited

Since the Koyck transformation underlies the adaptive expectations model, the results
presented in Table 17.3 can also be interpreted in terms of Equation (17.5.5). Thus γ̂ β̂0 =
−252.9190; γ̂ β̂1 = 0.21389, and (1− γ̂) = 0.797146. So the expectation coefficient 
γ̂ ≈ 0.2028, and, following the preceding discussion about the AE model, we can say that
about 20 percent of the discrepancy between actual and expected PPDI is eliminated
within a year.
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17.6 Another Rationalization of the Koyck Model: 
The Stock Adjustment, or Partial Adjustment, Model

The adaptive expectations model is one way of rationalizing the Koyck model. Another 
rationalization is provided by Marc Nerlove in the so-called stock adjustment or partial
adjustment model (PAM).25 To illustrate this model, consider the flexible accelerator
model of economic theory, which assumes that there is an equilibrium, optimal, desired, or
long-run amount of capital stock needed to produce a given output under the given state of
technology, rate of interest, etc. For simplicity assume that this desired level of capital Y ∗

t
is a linear function of output X as follows:

(17.6.1)

Since the desired level of capital is not directly observable, Nerlove postulates the follow-
ing hypothesis, known as the partial adjustment, or stock adjustment, hypothesis:

(17.6.2)26

where δ, such that 0 < δ ≤ 1, is known as the coefficient of adjustment and where
Yt − Yt−1 = actual change and (Y ∗

t − Yt−1) = desired change.
Since Yt − Yt−1, the change in capital stock between two periods, is nothing but invest-

ment, Eq. (17.6.2) can alternatively be written as

It = δ(Y ∗
t − Yt−1) (17.6.3)

where It = investment in time period t.
Equation (17.6.2) postulates that the actual change in capital stock (investment) in any

given time period t is some fraction δ of the desired change for that period. If δ = 1, it
means that the actual stock of capital is equal to the desired stock; that is, actual stock ad-
justs to the desired stock instantaneously (in the same time period). However, if δ = 0, it
means that nothing changes since actual stock at time t is the same as that observed in the
previous time period. Typically, δ is expected to lie between these extremes since adjust-
ment to the desired stock of capital is likely to be incomplete because of rigidity, inertia,
contractual obligations, etc.—hence the name partial adjustment model. Note that the ad-
justment mechanism (17.6.2) alternatively can be written as

Yt = δY ∗
t + (1 − δ)Yt−1 (17.6.4)

showing that the observed capital stock at time t is a weighted average of the desired capi-
tal stock at that time and the capital stock existing in the previous time period, δ and (1 − δ)
being the weights. Now substitution of Eq. (17.6.1) into Eq. (17.6.4) gives

(17.6.5)
Yt = δ(β0 + β1 Xt + ut ) + (1 − δ)Yt−1

= δβ0 + δβ1 Xt + (1 − δ)Yt−1 + δut

Yt − Yt−1 = δ(Y ∗
t − Yt−1)

Y ∗
t = β0 + β1 Xt + ut

25Marc Nerlove, Distributed Lags and Demand Analysis for Agricultural and Other Commodities, op. cit.
26Some authors do not add the stochastic disturbance term ut to the relation (17.6.1) but add it to
this relation, believing that if the former is truly an equilibrium relation, there is no scope for the error
term, whereas the adjustment mechanism can be imperfect and may require the disturbance term. In
passing, note that Eq. (17.6.2) is sometimes also written as

Yt − Yt−1 = δ(Y ∗
t−1 − Yt−1)
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This model is called the partial adjustment model (PAM).
Since Eq. (17.6.1) represents the long-run, or equilibrium, demand for capital stock,

Eq. (17.6.5) can be called the short-run demand function for capital stock since in the short
run the existing capital stock may not necessarily be equal to its long-run level. Once we es-
timate the short-run function (17.6.5) and obtain the estimate of the adjustment coefficient
δ (from the coefficient of Yt−1), we can easily derive the long-run function by simply divid-
ing δβ0 and δβ1 by δ and omitting the lagged Y term, which will then give Eq. (17.6.1).

Geometrically, the partial adjustment model can be shown as in Figure 17.6.27 In this
figure Y* is the desired capital stock and Y1 the current actual capital stock. For illustrative
purposes assume that δ = 0.5. This implies that the firm plans to close half the gap between
the actual and the desired stock of capital each period. Thus, in the first period it moves to
Y2, with investment equal to (Y2 − Y1), which in turn is equal to half of (Y ∗ − Y1). In each
subsequent period it closes half the gap between the capital stock at the beginning of the pe-
riod and the desired capital stock Y ∗.

The partial adjustment model resembles both the Koyck and adaptive expectations mod-
els in that it is autoregressive. But it has a much simpler disturbance term: the original dis-
turbance term ut multiplied by a constant δ. But bear in mind that although similar in
appearance, the adaptive expectations and partial adjustment models are conceptually very
different. The former is based on uncertainty (about the future course of prices, interest rates,
etc.), whereas the latter is due to technical or institutional rigidities, inertia, cost of change,
etc. However, both of these models are theoretically much sounder than the Koyck model.

Since in appearance the adaptive expectations and partial adjustment models are indis-
tinguishable, the γ coefficient of 0.2028 of the adaptive expectations model can also be in-
terpreted as the δ coefficient of the stock adjustment model if we assume that the latter
model is operative in the present case (i.e., it is the desired or expected PPCE that is linearly
related to the current PDPI).

The important point to keep in mind is that since Koyck, adaptive expectations, and
stock adjustment models—apart from the difference in the appearance of the error term—
yield the same final estimating model, a researcher must be extremely careful in telling the
reader which model he or she is using and why. Thus, researchers must specify the theoret-
ical underpinning of their model.

Y *

Y2

Y1

0 Time

C
ap

it
al

 s
to

ck

FIGURE 17.6
The gradual
adjustment of the
capital stock.

27This is adapted from Figure 7.4 from Rudiger Dornbusch and Stanley Fischer, Macroeconomics, 3d
ed., McGraw-Hill, New York, 1984, p. 216.
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*17.7 Combination of Adaptive Expectations
and Partial Adjustment Models

Consider the following model:

Y ∗
t = β0 + β1 X∗

t + ut (17.7.1)

where Y ∗
t = desired stock of capital and X∗

t = expected level of output.
Since neither Y ∗

t nor X∗
t are directly observable, one could use the partial adjustment

mechanism for Y ∗
t and the adaptive expectations model for X∗

t to arrive at the following es-
timating equation (see Exercise 17.2):

(17.7.2)

where vt = δ[ut − (1 − γ )ut−1]. This model too is autoregressive, the only difference
from the purely adaptive expectations model being that Yt−2 appears along with Yt−1 as an
explanatory variable. Like Koyck and the AE models, the error term in Eq. (17.7.2) follows
a moving average process. Another feature of this model is that although the model is lin-
ear in the α’s, it is nonlinear in the original parameters.

A celebrated application of Eq. (17.7.1) has been Friedman’s permanent income
hypothesis, which states that “permanent’’ or long-run consumption is a function of
“permanent’’ or long-run income.28

The estimation of Eq. (17.7.2) presents the same estimation problems as the Koyck or
the AE model in that all these models are autoregressive with similar error structures. In ad-
dition, Eq. (17.7.2) involves some nonlinear estimation problems that we consider briefly
in Exercise 17.10, but do not delve into in this book.

17.8 Estimation of Autoregressive Models

From our discussion thus far we have the following three models:

Koyck

Yt = α(1 − λ) + β0Xt + λYt−1 + vt (17.4.7)

Adaptive expectations

Yt = γβ0 + γβ1Xt + (1 − γ)Yt−1 + [ut − (1 − γ)ut−1] (17.5.5)

Partial adjustment

Yt = δβ0 + δβ1Xt + (1 − δ)Yt−1 + δut (17.6.5)

Yt = β0δγ + β1δγ Xt + [(1 − γ ) + (1 − δ)]Yt−1

− (1 − δ)(1 − γ )Yt−2 + [δut − δ(1 − γ )ut−1]

= α0 + α1 Xt + α2Yt−1 + α3Yt−2 + vt

*Optional.
28Milton Friedman, A Theory of Consumption Function, Princeton University Press, Princeton, N.J.,
1957.
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All these models have the following common form:

Yt = α0 + α1Xt + α2Yt−1 + vt (17.8.1)

that is, they are all autoregressive in nature. Therefore, we must now look at the estimation
problem of such models, because the classical least-squares theory may not be directly
applicable to them. The reason is twofold: the presence of stochastic explanatory
variables and the possibility of serial correlation.

Now, as noted previously, for the application of the classical least-squares theory, it must
be shown that the stochastic explanatory variable Yt−1 is distributed independently of the
disturbance term vt. To determine whether this is so, it is essential to know the properties of
vt. If we assume that the original disturbance term ut satisfies all the classical assumptions,
such as E(ut) = 0, var (ut) = σ2 (the assumption of homoscedasticity), and cov (ut, ut+s) =
0 for s �= 0 (the assumption of no autocorrelation), vt may not inherit all these properties.
Consider, for example, the error term in the Koyck model, which is vt = (ut − λut−1).
Given the assumptions about ut, we can easily show that vt is serially correlated because

E(vt vt−1) = −λσ 2 (17.8.2)29

which is nonzero (unless λ happens to be zero). And since Yt−1 appears in the Koyck model
as an explanatory variable, it is bound to be correlated with vt (via the presence of ut−1 in it).
As a matter of fact, it can be shown that

cov [Yt−1, (ut − λut−1)] = −λσ 2 (17.8.3)

which is the same as Eq. (17.8.2). The reader can verify that the same holds true of the
adaptive expectations model.

What is the implication of the finding that in the Koyck model as well as the adaptive
expectations model the stochastic explanatory variable Yt−1 is correlated with the error
term vt? As noted previously, if an explanatory variable in a regression model is corre-
lated with the stochastic disturbance term, the OLS estimators are not only biased but
also not even consistent; that is, even if the sample size is increased indefinitely, the es-
timators do not approximate their true population values.30 Therefore, estimation of
the Koyck and adaptive expectations models by the usual OLS procedure may yield
seriously misleading results.

The partial adjustment model is different, however. In this model vt = δut , where
0 < δ ≤ 1. Therefore, if ut satisfies the assumptions of the classical linear regression model
given previously, so will δut . Thus, OLS estimation of the partial adjustment model will
yield consistent estimates although the estimates tend to be biased (in finite or small
samples).31 Intuitively, the reason for consistency is this: Although Yt−1 depends on ut−1

29E (vtvt−1) = E (ut − λut−1)(ut−1 − λut−2)

= −λE (ut−1)2 since covariances between u’s are zero by assumption

= −λσ2

30The proof is beyond the scope of this book and may be found in Griliches, op. cit., pp. 36–38.
However, see Chapter 18 for an outline of the proof in another context. See also Asatoshi Maeshiro,
“Teaching Regressions with a Lagged Dependent Variable and Autocorrelated Disturbances,” The
Journal of Economic Education, Winter 1996, vol. 27, no. 1, pp. 72–84.
31For proof, see J. Johnston, Econometric Methods, 3d ed., McGraw-Hill, New York, 1984,
pp. 360–362. See also H. E. Doran and J. W. B. Guise, Single Equation Methods in Econometrics: Applied
Regression Analysis, University of New England Teaching Monograph Series 3, Armidale, NSW,
Australia, 1984, pp. 236–244.
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and all the previous disturbance terms, it is not related to the current error term ut. Therefore,
as long as ut is serially independent, Yt−1 will also be independent or at least uncorrelated
with ut, thereby satisfying an important assumption of OLS, namely, noncorrelation be-
tween the explanatory variable(s) and the stochastic disturbance term.

Although OLS estimation of the stock, or partial, adjustment model provides consistent
estimation because of the simple structure of the error term in such a model, one should not
assume that it applies rather than the Koyck or adaptive expectations model.32 The reader is
strongly advised against doing so. A model should be chosen on the basis of strong theoret-
ical considerations, not simply because it leads to easy statistical estimation. Every model
should be considered on its own merit, paying due attention to the stochastic disturbances
appearing therein. If in models such as the Koyck or adaptive expectations model OLS can-
not be straightforwardly applied, methods need to be devised to resolve the estimation prob-
lem. Several alternative estimation methods are available although some of them may be
computationally tedious. In the following section we consider one such method.

17.9 The Method of Instrumental Variables (IV)

The reason why OLS cannot be applied to the Koyck or adaptive expectations model is that
the explanatory variable Yt−1 tends to be correlated with the error term vt. If somehow this
correlation can be removed, one can apply OLS to obtain consistent estimates, as noted pre-
viously. (Note: There will be some small sample bias.) How can this be accomplished?
Liviatan has proposed the following solution.33

Let us suppose that we find a proxy for Yt−1 that is highly correlated with Yt−1 but is un-
correlated with vt, where vt is the error term appearing in the Koyck or adaptive expecta-
tions model. Such a proxy is called an instrumental variable (IV).34 Liviatan suggests
Xt−1 as the instrumental variable for Yt−1 and further suggests that the parameters of the
regression (17.8.1) can be obtained by solving the following normal equations:∑

Yt = n α̂0 + α̂1

∑
Xt + α̂2

∑
Yt−1

∑
Yt Xt = α̂0

∑
Xt + α̂1

∑
X2

t + α̂2

∑
Yt−1 Xt (17.9.1)

∑
Yt Xt−1 = α̂0

∑
Xt−1 + α̂1

∑
Xt Xt−1 + α̂2

∑
Yt−1 Xt−1

Notice that if we were to apply OLS directly to Eq. (17.8.1), the usual OLS normal equa-
tions would be (see Section 7.4):

∑
Yt = n α̂0 + α̂1

∑
Xt + α̂2

∑
Yt−1

∑
Yt Xt = α̂0

∑
Xt + α̂1

∑
X2

t + α̂2

∑
Yt−1 Xt (17.9.2)

∑
Yt Yt−1 = α̂0

∑
Yt−1 + α̂1

∑
Xt Yt−1 + α̂2

∑
Y 2

t−1

The difference between the two sets of normal equations should be readily apparent.
Liviatan has shown that the α’s estimated from Eq. (17.9.1) are consistent, whereas those

32Also, as J. Johnston notes (op. cit., p. 350), “[the] pattern of adjustment [suggested by the partial
adjustment model] . . . may sometimes be implausible.’’
33N. Liviatan, “Consistent Estimation of Distributed Lags,’’ International Economic Review, vol. 4,
January 1963, pp. 44–52.
34Such instrumental variables are used frequently in simultaneous equation models (see Chapter 20).
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estimated from Eq. (17.9.2) may not be consistent because Yt−1 and vt [ = ut − λut−1 or
ut − (1 − γ )ut−1] may be correlated whereas Xt and Xt−1 are uncorrelated with vt. (Why?)

Although easy to apply in practice once a suitable proxy is found, the Liviatan technique
is likely to suffer from the multicollinearity problem because Xt and Xt−1, which enter in the
normal equations of (17.9.1), are likely to be highly correlated (as noted in Chapter 12,
most economic time series typically exhibit a high degree of correlation between succes-
sive values). The implication, then, is that although the Liviatan procedure yields consistent
estimates, the estimators are likely to be inefficient.35

Before we move on, the obvious question is: How does one find a “good’’ proxy for Yt−1

in such a way that, although highly correlated with Yt−1, it is uncorrelated with vt? There
are some suggestions in the literature, which we take up by way of an exercise (see Exer-
cise 17.5). But it must be stated that finding good proxies is not always easy, in which case
the IV method is of little practical use and one may have to resort to maximum likelihood
estimation techniques, which are beyond the scope of this book.36

Is there a test one can use to find out if the chosen instrument(s) is valid? Dennis Sargan
has developed a test, dubbed the SARG test, for this purpose. The test is described in
Appendix 17A, Section 17A.1.

17.10 Detecting Autocorrelation in Autoregressive Models:
Durbin h Test

As we have seen, the likely serial correlation in the errors vt make the estimation problem
in the autoregressive model rather complex: In the stock adjustment model the error term vt

did not have (first-order) serial correlation if the error term ut in the original model was se-
rially uncorrelated, whereas in the Koyck and adaptive expectations models vt was serially
correlated even if ut was serially independent. The question, then, is: How does one know
if there is serial correlation in the error term appearing in the autoregressive models?

As noted in Chapter 12, the Durbin–Watson d statistic may not be used to detect (first-
order) serial correlation in autoregressive models, because the computed d value in such
models generally tends toward 2, which is the value of d expected in a truly random se-
quence. In other words, if we routinely compute the d statistic for such models, there is a
built-in bias against discovering (first-order) serial correlation. Despite this, many re-
searchers compute the d value for want of anything better. However, Durbin himself has
proposed a large-sample test of first-order serial correlation in autoregressive models.37

This test is called the h statistic.
We have already discussed the Durbin h test in Exercise 12.36. For convenience, we re-

produce the h statistic (with a slight change in notation):

h = ρ̂

√
n

1 − n[var (α̂2)]
(17.10.1)

35To see how the efficiency of the estimators can be improved, consult Lawrence R. Klien, A Textbook
of Econometrics, 2d ed., Prentice-Hall, Englewood Cliffs, NJ., 1974, p. 99. See also William H. Greene,
Econometric Analysis, Macmillan, 2d ed., New York, 1993, pp. 535–538.
36For a condensed discussion of the ML methods, see J. Johnston, op. cit., pp. 366–371, as well as
Appendix 4A and Appendix 15A.
37J. Durbin, “Testing for Serial Correlation in Least-Squares Regression When Some of the Regressors
Are Lagged Dependent Variables,’’ Econometrica, vol. 38, 1970, pp. 410–421.
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where n is the sample size, var (α̂2) is the variance of the lagged Yt ( = Yt−1) coefficient
in Eq. (17.8.1), and ρ̂ is an estimate of the first-order serial correlation ρ , first discussed in
Chapter 12.

As noted in Exercise 12.36, for a large sample, Durbin has shown that, under the null
hypothesis that ρ = 0, the h statistic of Eq. (17.10.1) follows the standard normal distribu-
tion. That is,

hasy ∼ N (0, 1) (17.10.2)

where asy means asymptotically.
In practice, as noted in Chapter 12, one can estimate ρ as

ρ̂ ≈ 1 − d

2
(17.10.3)

It is interesting to observe that although we cannot use the Durbin d to test for autocorrela-
tion in autoregressive models, we can use it as an input in computing the h statistic.

Let us illustrate the use of the h statistic with our Example 17.7. In this example,
n = 47, ρ̂ ≈ (1 − d/2) = 0.5190 (note: d = 0.9619), and var (α̂2) = var (PPCEt−1) =
(0.0733)2 = 0.0053. Putting these values in Eq. (17.10.1), we obtain:

h = 0.5190

√
47

1 − 47(0.0053)
= 4.1061 (17.10.4)

Since this h value has the standard normal distribution under the null hypothesis, the prob-
ability of obtaining such a high h value is very small. Recall that the probability that a stan-
dard normal variate exceeds the value of ±3 is extremely small. In the present example our
conclusion, then, is that there is (positive) autocorrelation. Of course, bear in mind that h
follows the standard normal distribution asymptotically. Our sample of 47 observations is
reasonably large.

Note these features of the h statistic.

1. It does not matter how many X variables or how many lagged values of Y are included in
the regression model. To compute h, we need consider only the variance of the coeffi-
cient of lagged Yt−1.

2. The test is not applicable if [n var (α̂2)] exceeds 1. (Why?) In practice, though, this does
not usually happen.

3. Since the test is a large-sample test, its application in small samples is not strictly justi-
fied, as shown by Inder38 and Kiviet.39 It has been suggested that the Breusch–Godfrey
(BG) test, also known as the Lagrange multiplier test, discussed in Chapter 12 is statis-
tically more powerful not only in the large samples but also in finite, or small, samples
and is therefore preferable to the h test.40

The conclusion based on the h test that our model suffers from autocorrelation is
confirmed by the Breusch–Godfrey (BG) test, which is shown in Equation (12.6.17). Using
the seven lagged values of the residuals estimated from the regression shown in Table 17.3,

38B. Inder, “An Approximation to the Null Distribution of the Durbin–Watson Statistic in Models
Containing Lagged Dependent Variables,’’ Econometric Theory, vol. 2, no. 3, 1986, pp. 413–428.
39J. F. Kiviet, “On the Vigour of Some Misspecification Tests for Modelling Dynamic Relationships,’’
Review of Economic Studies, vol. 53, no. 173, 1986, pp. 241–262.
40Gabor Korosi, Laszlo Matyas, and Istvan P. Szekely, Practical Econometrics, Ashgate Publishing
Company, Brookfield, Vermont, 1992, p. 92.
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the BG test shown in Eq. (12.6.18) obtained a χ2 value of 15.3869. For seven degrees of
freedom (the number of lagged residuals used in the BG test), the probability of obtaining
a chi-square value of as much as 15.38 or greater is about 3 percent, which is quite low.

For this reason, we need to correct the standard errors shown in Table 17.3, which can
be done by the Newey–West HAC procedure discussed in Chapter 12. The results are as
shown in Table 17.4.

It seems OLS underestimates the standard errors of the regression coefficients.

17.11 A Numerical Example: The Demand for Money 
in Canada, 1979–I to 1988–IV

To illustrate the use of the models we have discussed thus far, consider one of the earlier
empirical applications, namely, the demand for money (or real cash balances). In particu-
lar, consider the following model.41

M∗
t = β0 Rβ1

t Y β2
t eut (17.11.1)

where M∗
t = desired, or long-run, demand for money (real cash balances)

Rt = long-term interest rate, %
Yt = aggregate real national income

For statistical estimation, Eq. (17.11.1) may be expressed conveniently in log form as

ln M∗
t = ln β0 + β1 ln R t + β2 ln Yt + ut (17.11.2)

TABLE 17.4

41For a similar model, see Gregory C. Chow, “On the Long-Run and Short-Run Demand for Money,’’
Journal of Political Economy, vol. 74, no. 2, 1966, pp. 111–131. Note that one advantage of the
multiplicative function is that the exponents of the variables give direct estimates of elasticities
(see Chapter 6).

Dependent Variable: PCE
Method: Least Squares
Sample (adjusted): 1960–2006
Included observations: 47 after adjustments
Newey–West HAC Standard Errors & Covariance (lag truncation = 3)

Coefficient Std. Error t Statistic Prob.

C -252.9190 168.4610 -1.501350 0.1404
PPDI 0.213890 0.051245 4.173888 0.0001
PPCE(-1) 0.797146 0.051825 15.38148 0.0000

R-squared 0.998216 Mean dependent var. 16691.28
Adjusted R-squared 0.998134 S.D. dependent var. 5205.873
S.E. of regression 224.8504 Akaike info criterion 13.73045
Sum squared resid. 2224539. Schwarz criterion 13.84854
Log likelihood -319.6656 Hannan-Quinn criter. 13.77489
F-statistic 12306.99 Durbin-Watson stat. 0.961921
Prob.(F-statistic) 0.000000
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Since the desired demand variable is not directly observable, let us assume the stock
adjustment hypothesis, namely,

Mt

Mt−1
=

(
M∗

t

Mt−1

)δ

0 < δ ≤ 1 (17.11.3)

Equation (17.11.3) states that a constant percentage (why?) of the discrepancy between the
actual and desired real cash balances is eliminated within a single period (year). In log
form, Eq. (17.11.3) may be expressed as

ln Mt − ln Mt−1 = δ(ln M∗
t − ln Mt−1) (17.11.4)

Substituting ln M∗
t from Eq. (17.11.2) into Eq. (17.11.4) and rearranging, we obtain

ln Mt = δ ln β0 + β1δ ln R t + β2δ ln Yt + (1 − δ) ln Mt−1 + δut (17.11.5)42

which may be called the short-run demand function for money. (Why?)
As an illustration of the short-term and long-term demand for real cash balances, con-

sider the data given in Table 17.5. These quarterly data pertain to Canada for the period
1979 to 1988. The variables are defined as follows: M [as defined by M1 money supply,
Canadian dollars (C$), millions], P (implicit price deflator, 1981 = 100), GDP at constant
1981 prices (C$, millions), and R (90-day prime corporate rate of interest, %).43 M1 was
deflated by P to obtain figures for real cash balances. A priori, real money demand is
expected to be positively related to GDP (positive income effect) and negatively related to
R (the higher the interest rate, the higher the opportunity cost of holding money, as M1
money pays very little interest, if any).

The regression results were as follows:44

l̂n Mt = 0.8561 − 0.0634 ln Rt − 0.0237 ln GDPt + 0.9607 ln Mt−1

se = (0.5101) (0.0131) (0.0366) (0.0414)

t = (1.6782) (−4.8134) (−0.6466) (23.1972)

R2 = 0.9482 d = 2.4582 F = 213.7234 (17.11.6)

The estimated short-run demand function shows that the short-run interest elasticity has
the correct sign and that it is statistically quite significant, as its p value is almost zero. The
short-run income elasticity is surprisingly negative, although statistically it is not different
from zero. The coefficient of adjustment is δ = (1 − 0.9607) = 0.0393, implying that only
about 4 percent of the discrepancy between the desired and actual real cash balances is
eliminated in a quarter, a rather slow adjustment.

42In passing, note that this model is essentially nonlinear in the parameters. Therefore, although OLS
may give an unbiased estimate of, say, β1δ taken together, it may not give unbiased estimates of β1

and δ individually, especially if the sample is small.
43These data are obtained from B. Bhaskar Rao, ed., Cointegration for the Applied Economist, St. Martin’s
Press, New York, 1994, pp. 210–213. The original data is from 1956–I to 1988–IV, but for illustration
purposes we begin our analysis from the first quarter of 1979.
44Note this feature of the estimated standard errors. The standard error of, say, the coefficient of ln Rt

refers to the standard error of β̂1δ, an estimator of β1δ. There is no simple way to obtain the standard
errors of β̂1 and δ̂ individually from the standard error of β̂1δ, especially if the sample is relatively
small. For large samples, however, individual standard errors of β̂1 and δ̂ can be obtained approxi-
mately, but the computations are involved. See Jan Kmenta, Elements of Econometrics, Macmillan,
New York, 1971, p. 444.
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TABLE 17.5
Money, Interest Rate,
Price Index, and
GDP, Canada

Source: Rao, op. cit.,
pp. 210–213.

Observation M1 R P GDP

1979–1 22,175.00 11.13333 0.77947 334,800
1979–2 22,841.00 11.16667 0.80861 336,708
1979–3 23,461.00 11.80000 0.82649 340,096
1979–4 23,427.00 14.18333 0.84863 341,844
1980–1 23,811.00 14.38333 0.86693 342,776
1980–2 23,612.33 12.98333 0.88950 342,264
1980–3 24,543.00 10.71667 0.91553 340,716
1980–4 25,638.66 14.53333 0.93743 347,780
1981–1 25,316.00 17.13333 0.96523 354,836
1981–2 25,501.33 18.56667 0.98774 359,352
1981–3 25,382.33 21.01666 1.01314 356,152
1981–4 24,753.00 16.61665 1.03410 353,636
1982–1 25,094.33 15.35000 1.05743 349,568
1982–2 25,253.66 16.04999 1.07748 345,284
1982–3 24,936.66 14.31667 1.09666 343,028
1982–4 25,553.00 10.88333 1.11641 340,292
1983–1 26,755.33 9.616670 1.12303 346,072
1983–2 27,412.00 9.316670 1.13395 353,860
1983–3 28,403.33 9.333330 1.14721 359,544
1983–4 28,402.33 9.550000 1.16059 362,304
1984–1 28,715.66 10.08333 1.17117 368,280
1984–2 28,996.33 11.45000 1.17406 376,768
1984–3 28,479.33 12.45000 1.17795 381,016
1984–4 28,669.00 10.76667 1.18438 385,396
1985–1 29,018.66 10.51667 1.18990 390,240
1985–2 29,398.66 9.666670 1.20625 391,580
1985–3 30,203.66 9.033330 1.21492 396,384
1985–4 31,059.33 9.016670 1.21805 405,308
1986–1 30,745.33 11.03333 1.22408 405,680
1986–2 30,477.66 8.733330 1.22856 408,116
1986–3 31,563.66 8.466670 1.23916 409,160
1986–4 32,800.66 8.400000 1.25368 409,616
1987–1 33,958.33 7.250000 1.27117 416,484
1987–2 35,795.66 8.300000 1.28429 422,916
1987–3 35,878.66 9.300000 1.29599 429,980
1987–4 36,336.00 8.700000 1.31001 436,264
1988–1 36,480.33 8.616670 1.32325 440,592
1988–2 37,108.66 9.133330 1.33219 446,680
1988–3 38,423.00 10.05000 1.35065 450,328
1988–4 38,480.66 10.83333 1.36648 453,516

Notes: M1 = C$, millions.
P = implicit price deflator (1981 = 100).
R = 90-day prime corporate interest rate, %.

GDP = C$, millions (1981 prices).

To get back to the long-run demand function (17.11.2), all that needs to be done is to divide
the short-run demand function through by δ (why?) and drop the ln Mt−1 term.The results are:

l̂n M∗
t = 21.7888 − 1.6132 ln R t − 0.6030 ln GDP (17.11.7)45

45Note that we have not presented the standard errors of the estimated coefficients for reasons
discussed in footnote 44.
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As can be seen, the long-run interest elasticity of demand for money is substantially greater
(in absolute terms) than the corresponding short-run elasticity, which is also true of the in-
come elasticity, although in the present instance its economic and statistical significance is
dubious.

Note that the estimated Durbin–Watson d is 2.4582, which is close to 2. This substanti-
ates our previous remark that in the autoregressive models the computed d is generally
close to 2. Therefore, we should not trust the computed d to find out whether there was se-
rial correlation in our data. The sample size in our case is 40 observations, which may be
reasonably large to apply the h test. In the present case, the reader can verify that the esti-
mated h value is −1.5008, which is not significant at the 5 percent level, perhaps suggest-
ing that there is no first-order autocorrelation in the error term.

17.12 Illustrative Examples

In this section we present a few examples of distributed lag models to show how
researchers have used them in empirical studies.

46“The Fed and the Real Rate of Interest,’’ Review, Federal Reserve Bank of St. Louis, December 1982,
pp. 8–18.
47Ibid. p. 15.

EXAMPLE 17.9
The Fed and the
Real Rate of
Interest

To assess the effect of M1 (currency + checkable deposits) growth on Aaa bond real inter-
est rate measure, G. J. Santoni and Courtenay C. Stone46 estimated, using monthly data,
the following distributed lag model for the United States.

rt = constant +
11∑

i=0

ai Ṁt−i + ui (17.12.1)

where rt = Moody’s Index of Aaa bond yield minus the average annual rate of change in
the seasonally adjusted consumer price index over the prior 36 months, which is used as
the measure of real interest rate, and Ṁt = monthly M1 growth.

According to the “neutrality of money doctrine,’’ real economic variables—such as out-
put, employment, economic growth, and the real rate of interest—are not influenced per-
manently by money growth and, therefore, are essentially unaffected by monetary policy. . . .
Given this argument, the Federal Reserve has no permanent influence over the real rate of
interest whatsoever.47

If this doctrine is valid, then one should expect the distributed lag coefficients ai as well
as their sum to be statistically indifferent from zero. To find out whether this is the case,
the authors estimated Eq. (17.12.1) for two different time periods, February 1951 to Sep-
tember 1979 and October 1979 to November 1982, the latter to take into account the
change in the Fed’s monetary policy, which since October 1979 has paid more attention
to the rate of growth of the money supply than to the rate of interest, which was the
policy in the earlier period. Their regression results are presented in Table 17.6. The results
seem to support the “neutrality of money doctrine,’’ since for the period February 1951 to
September 1979 the current as well as lagged money growth had no statistically signifi-
cant effect on the real interest rate measure. For the latter period, too, the neutrality doc-
trine seems to hold since 

∑
ai is not statistically different from zero; only the coefficient a1

is significant, but it has the wrong sign. (Why?)
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r = constant +
11∑

i=0
ai Ṁ1t−1

February 1951 to October 1979 to
September 1979 November 1982

Coefficient |t|* Coefficient |t|*

Constant 1.4885† 2.068 1.0360 0.801
a0 −0.00088 0.388 0.00840 1.014
a1 0.00171 0.510 0.03960† 3.419
a2 0.00170 0.423 0.03112 2.003
a3 0.00233 0.542 0.02719 1.502
a4 −0.00249 0.553 0.00901 0.423
a5 −0.00160 0.348 0.01940 0.863
a6 0.00292 0.631 0.02411 1.056
a7 0.00253 0.556 0.01446 0.666
a8 0.00000 0.001 −0.00036 0.019
a9 0.00074 0.181 −0.00499 0.301
a10 0.00016 0.045 −0.01126 0.888
a11 0.00025 0.107 −0.00178 0.211∑

ai 0.00737 0.221 0.1549 0.926

R̄ 2 0.9826 0.8662
D-W 2.07 2.04
RH01 1.27† 24.536 1.40† 9.838
RH02 −0.28† 5.410 −0.48† 3.373
NOB 344. 38.
SER ( = RSS) 0.1548 0.3899

*|t| = absolute t value.
†Significantly different from zero at the 0.05 level.

Source: G. J. Santoni and Courtenay C. Stone, “The Fed and the Real Rate of Interest,” Review, Federal Reserve Bank of St. Louis,
December 1982, p. 16.

TABLE 17.6 Influence of Monthly M1 Growth on an Aaa Bond Real Interest Rate 
Measure: February 1951 to November 1982

EXAMPLE 17.10
The Short- and
Long-Run
Aggregate
Consumption for
Sri Lanka,
1967–1993

Suppose consumption C is linearly related to permanent income X*:
Ct = β1 + β2 Xt* + ut (17.12.2)

Since Xt* is not directly observable, we need to specify the mechanism that generates per-
manent income. Suppose we adopt the adaptive expectations hypothesis specified in
Eq. (17.5.2). Using Eq. (17.5.2) and simplifying, we obtain the following estimating
equation (cf. 17.5.5):

Ct = α1 + α2 Xt + α3Ct−1 + vt (17.12.3)

where α1 = γβ1
α2 = γβ2
α3 = (1 − γ )
vt = [ut − (1 − γ )ut−1]

As we know, β2 gives the mean response of consumption to, say, a $1 increase in per-
manent income, whereas α2 gives the mean response of consumption to a $1 increase in
current income.

(Continued )

EXAMPLE 17.9
(Continued)

guj75772_ch17.qxd  22/08/2008  07:55 PM  Page 643



644 Part Three Topics in Econometrics

From annual data for Sri Lanka for the period 1967–1993 given in Table 17.7, the
following regression results were obtained:48

Ĉ = 1038.403 + 0.4043Xt + 0.5009Ct−1

se = (2501.455) (0.0919) (0.1213) (17.12.4)

t = (0.4151) (4.3979) (4.1293)

R2 = 0.9912 d = 1.4162 F = 1298.466

where C = private consumption expenditure, and X = GDP, both at constant prices. We
also introduced real interest rate in the model, but it was not statistically significant.

The results show that the short-run marginal propensity to consume (MPC) is 0.4043,
suggesting that a 1 rupee increase in the current or observed real income (as measured by
real GDP) would increase mean consumption by about 0.40 rupee. But if the increase in
income is sustained, then eventually the MPC out of the permanent income will be
β2 = γβ2/γ = 0.4043/0.4991 = 0.8100, or about 0.81 rupee. In other words, when con-
sumers have had time to adjust to the 1 rupee change in income, they will increase their
consumption ultimately by about 0.81 rupee.

Now suppose that our consumption function were

Ct* = β1 + β2 Xt + ut (17.12.5)

In this formulation permanent or long-run consumption Ct is a linear function of the cur-
rent or observed income. Since Ct* is not directly observable, let us invoke the partial ad-
justment model (17.6.2). Using this model, and after algebraic manipulations, we obtain

Ct = δβ1 + δβ2 Xt + (1 − δ)Ct−1 + δut

= α1 + α2 Xt + α3Ct−1 + vt
(17.12.6)

In appearance, this model is indistinguishable from the adaptive expectations model
(17.12.3). Therefore, the regression results given in (17.12.4) are equally applicable here.
However, there is a major difference in the interpretation of the two models, not to mention
the estimation problem associated with the autoregressive and possibly serially correlated

Observation PCON GDP Observation PCON GDP

1967 61,284 78,221 1981 120,477 152,846
1968 68,814 83,326 1982 133,868 164,318
1969 76,766 90,490 1983 148,004 172,414
1970 73,576 92,692 1984 149,735 178,433
1971 73,256 94,814 1985 155,200 185,753
1972 67,502 92,590 1986 154,165 192,059
1973 78,832 101,419 1987 155,445 191,288
1974 80,240 105,267 1988 157,199 196,055
1975 84,477 112,149 1989 158,576 202,477
1976 86,038 116,078 1990 169,238 223,225
1977 96,275 122,040 1991 179,001 233,231
1978 101,292 128,578 1992 183,687 242,762
1979 105,448 136,851 1993 198,273 259,555
1980 114,570 144,734

Notes: PCON = private consumption expenditure.
GDP = gross domestic product.

TABLE 17.7
Private
Consumption
Expenditure and
GDP, Sri Lanka

Source: See footnote 48.

EXAMPLE 17.10
(Continued)

48The data are obtained from the data disk in Chandan Mukherjee, Howard White, and Marc Wuyts,
Econometrics and Data Analysis for Developing Countries, Routledge, New York, 1998. The original data
are from World Bank’s World Tables.
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17.13 The Almon Approach to Distributed-Lag Models: 
The Almon or Polynomial Distributed Lag (PDL)49

Although used extensively in practice, the Koyck distributed-lag model is based on the
assumption that the β coefficients decline geometrically as the lag lengthens (see Fig-
ure 17.5). This assumption may be too restrictive in some situations. Consider, for exam-
ple, Figure 17.7.

In Figure 17.7a it is assumed that the β’s increase at first and then decrease, whereas in
Figure 17.7c it is assumed that they follow a cyclical pattern. Obviously, the Koyck scheme
of distributed-lag models will not work in these cases. However, after looking at Fig-
ures 17.7a and c, it seems that one can express βi as a function of i, the length of the lag
(time), and fit suitable curves to reflect the functional relationship between the two, as
indicated in Figures 17.7b and d. This approach is precisely the one suggested by Shirley
Almon. To illustrate her technique, let us revert to the finite distributed-lag model consid-
ered previously, namely,

Yt = α + β0 Xt + β1 Xt−1 + β2 Xt−2 + · · · + βk Xt−k + ut (17.1.2)

which may be written more compactly as

Yt = α +
k∑

i=0

βi Xt−i + ut (17.13.1)

Following a theorem in mathematics known as Weierstrass’ theorem, Almon assumes
that βi can be approximated by a suitable-degree polynomial in i, the length of the lag.50 For
instance, if the lag scheme shown in Figure 17.7a applies, we can write

βi = a0 + a1i + a2i2 (17.13.2)

49Shirley Almon, “The Distributed Lag between Capital Appropriations and Expenditures,’’ Economet-
rica, vol. 33, January 1965, pp. 178–196.
50Broadly speaking, the theorem states that on a finite closed interval any continuous function may
be approximated uniformly by a polynomial of a suitable degree.

model (17.12.3). The model (17.12.5) is the long-run, or equilibrium, consumption func-
tion, whereas the model (17.12.6) is the short-run consumption function. β2 measures the
long-run MPC, whereas α2 (= δβ2) gives the short-run MPC; the former can be obtained
from the latter by dividing it by δ, the coefficient of adjustment.

Returning to (17.12.4), we can now interpret 0.4043 as the short-run MPC. Since
δ = 0.4991, the long-run MPC is 0.81. Note that the adjustment coefficient of about 0.50
suggests that in any given time period consumers only adjust their consumption one-half
of the way toward its desired or long-run level.

This example brings out the crucial point that in appearance the adaptive expectations
and the partial adjustment models, or the Koyck model for that matter, are so similar that
by just looking at the estimated regression, such as Eq. (17.12.4), one cannot tell which is
the correct specification. That is why it is so vital that one specify the theoretical under-
pinning of the model chosen for empirical analysis and then proceed appropriately.
If habit or inertia characterizes consumption behavior, then the partial adjustment model
is appropriate. On the other hand, if consumption behavior is forward-looking in the sense
that it is based on expected future income, then the adaptive expectations model is ap-
propriate. If it is the latter, then, one will have to pay close attention to the estimation
problem to obtain consistent estimators. In the former case, the OLS will provide consis-
tent estimators, provided the usual OLS assumptions are fulfilled.

EXAMPLE 17.10
(Continued)
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which is a quadratic, or second-degree, polynomial in i (see Figure 17.7b). However, if the
β’s follow the pattern of Figure 17.7c, we can write

βi = a0 + a1i + a2i2 + a3i3 (17.13.3)

which is a third-degree polynomial in i (see Figure 17.7d). More generally, we may write

βi = a0 + a1i + a2i2 + · · · + amim (17.13.4)

which is an mth-degree polynomial in i. It is assumed that m (the degree of the polynomial)
is less than k (the maximum length of the lag).

To explain how the Almon scheme works, let us assume that the β’s follow the pattern
shown in Figure 17.7a and, therefore, the second-degree polynomial approximation is
appropriate. Substituting Eq. (17.13.2) into Eq. (17.13.1), we obtain

Yt = α +
k∑

i=0

(a0 + a1i + a2i2)Xt−i + ut

= α + a0

k∑
i=0

Xt−i + a1

k∑
i=0

i Xt−i + a2

k∑
i=0

i2 Xt−i + ut

(17.13.5)
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FIGURE 17.7
Almon polynomial-lag
scheme.
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Defining

Z0t =
k∑

i=0

Xt−i

Z1t =
k∑

i=0

i Xt−i (17.13.6)

Z2t =
k∑

i=0

i2 Xt−i

we may write Eq. (17.13.5) as

Yt = α + a0 Z0t + a1 Z1t + a2 Z2t + ut (17.13.7)

In the Almon scheme Y is regressed on the constructed variables Z, not the original X
variables. Note that Eq. (17.13.7) can be estimated by the usual OLS procedure. The esti-
mates of α and ai thus obtained will have all the desirable statistical properties provided the
stochastic disturbance term u satisfies the assumptions of the classical linear regression
model. In this respect, the Almon technique has a distinct advantage over the Koyck
method because, as we have seen, the latter has some serious estimation problems that
result from the presence of the stochastic explanatory variable Yt−1 and its likely correla-
tion with the disturbance term.

Once the a’s are estimated from Eq. (17.13.7), the original β’s can be estimated from 
Eq. (17.13.2) (or more generally from Eq. [17.13.4]) as follows:

β̂0 = â0

β̂1 = â0 + â1 + â2

β̂2 = â0 + 2â1 + 4â2 (17.13.8)
β̂3 = â0 + 3â1 + 9â2

. . . . . . . . . . . . . . . . .

β̂k = â0 + kâ1 + k2â2

Before we apply the Almon technique, we must resolve the following practical
problems.

1. The maximum length of the lag k must be specified in advance. Here perhaps one can
follow the advice of Davidson and MacKinnon:

The best approach is probably to settle the question of lag length first, by starting with a very
large value of q [the lag length] and then seeing whether the fit of the model deteriorates sig-
nificantly when it is reduced without imposing any restrictions on the shape of the distributed
lag.51

Remember that if there is some “true’’ lag length, choosing fewer lags will lead to the “omis-
sion of relevant variable bias,’’ whose consequences, as we saw in Chapter 13, can be very
serious. On the other hand, choosing more lags than necessary will lead to the “inclusion of
irrelevant variable bias,’’ whose consequences are less serious; the coefficients can be con-
sistently estimated by OLS, although their variances may be less efficient.

51Russell Davidson and James G. MacKinnon, Estimation and Inference in Econometrics, Oxford
University Press, New York, 1993, pp. 675–676.
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One can use the Akaike or Schwarz information criterion discussed in Chapter 13 to
choose the appropriate lag length. These criteria can also be used to discuss the appropriate
degree of the polynomial in addition to the discussion in point 2.

2. Having specified k, we must also specify the degree of the polynomial m. Generally,
the degree of the polynomial should be at least one more than the number of turning points
in the curve relating βi to i. Thus, in Figure 17.7a there is only one turning point; hence a
second-degree polynomial will be a good approximation. In Figure 17.7c there are two
turning points; hence a third-degree polynomial will provide a good approximation. A
priori, however, one may not know the number of turning points, and therefore, the choice
of m is largely subjective. However, theory may suggest a particular shape in some cases.
In practice, one hopes that a fairly low-degree polynomial (say, m = 2 or 3) will give good
results. Having chosen a particular value of m, if we want to find out whether a higher-
degree polynomial will give a better fit, we can proceed as follows.

Suppose we must decide between the second- and third-degree polynomials. For the
second-degree polynomial the estimating equation is as given by Eq. (17.13.7). For the
third-degree polynomial the corresponding equation is

Yt = α + a0 Z0t + a1 Z1t + a2 Z2t + a3 Z3t + ut (17.13.9)

where Z3t = ∑k
i=0 i3 Xt−i . After running regression (17.13.9), if we find that a2 is statisti-

cally significant but a3 is not, we may assume that the second-degree polynomial provides a
reasonably good approximation.

Alternatively, as Davidson and MacKinnon suggest, “After q [the lag length] is deter-
mined, one can then attempt to determine d [the degree of the polynomial] once again start-
ing with a large value and then reducing it.’’52

However, we must beware of the problem of multicollinearity, which is likely to arise
because of the way the Z’s are constructed from the X’s, as shown in Eq. (17.13.6) (see
also Eq. [17.13.10]). As shown in Chapter 10, in cases of serious multicollinearity, â3

may turn out to be statistically insignificant, not because the true a3 is zero, but simply
because the sample at hand does not allow us to assess the separate impact of Z3 on Y.
Therefore, in our illustration, before we accept the conclusion that the third-degree
polynomial is not the correct choice, we must make sure that the multicollinearity prob-
lem is not serious enough, which can be done by applying the techniques discussed in
Chapter 10.

3. Once m and k are specified, the Z’s can be readily constructed. For instance, if m = 2
and k = 5, the Z’s are

Z0t =
5∑

i=0

Xt−i = (Xt + Xt−1 + Xt−2 + Xt−3 + Xt−4 + Xt−5)

Z1t =
5∑

i=0

i Xt−i = (Xt−1 + 2Xt−2 + 3Xt−3 + 4Xt−4 + 5Xt−5) (17.13.10)

Z2t =
5∑

i=0

i2 Xt−i = (Xt−1 + 4Xt−2 + 9Xt−3 + 16Xt−4 + 25Xt−5)

Notice that the Z’s are linear combinations of the original X’s. Also notice why the Z’s
are likely to exhibit multicollinearity.

52Ibid., pp. 675–676.
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EXAMPLE 17.11
Illustration of the
Almon Distributed-
Lag Model

To illustrate the Almon technique, Table 17.8 gives data on inventories Y and sales X for
the United States for the period 1954–1999.

For illustrative purposes, assume that inventories depend on sales in the current year
and in the preceding 3 years as follows:

Yt = α + β0 Xt + β1 Xt−1 + β2 Xt−2 + β3 Xt−3 + ut (17.13.11)

Furthermore, assume that βi can be approximated by a second-degree polynomial as
shown in Eq. (17.13.2). Then, following Eq. (17.13.7), we may write

Yt = α + a0 Z0t + a1 Z1t + a2 Z2t + ut (17.13.12)

where

Z0t =
3∑

i=0

Xt−i = (Xt + Xt−1 + Xt−2 + Xt−3)

Z1t =
3∑

i=0

i Xt−i = (Xt−1 + 2Xt−2 + 3Xt−3) (17.13.13)

Z2t =
3∑

i=0

i 2 Xt−i = (Xt−1 + 4Xt−2 + 9Xt−3)

The Z variables thus constructed are shown in Table 17.8. Using the data on Y and the Z ’s,
we obtain the following regression:

Ŷ t = 25,845.06 + 1.1149Z0t − 0.3713Z1t − 0.0600Z2t

se = (6596.998) (0.5381) (1.3743) (0.4549)

t = (3.9177) (2.0718) (−0.2702) (−0.1319)
(17.13.14)

R2 = 0.9755 d = 0.1643 F = 517.7656

Note: Since we are using a 3-year lag, the total number of observations has been reduced
from 46 to 43.

(Continued )

Before proceeding to a numerical example, note the advantages of the Almon method.
First, it provides a flexible method of incorporating a variety of lag structures (see Exer-
cise 17.17). The Koyck technique, on the other hand, is quite rigid in that it assumes that
the β’s decline geometrically. Second, unlike the Koyck technique, in the Almon method
we do not have to worry about the presence of the lagged dependent variable as an ex-
planatory variable in the model and the problems it creates for estimation. Finally, if a
sufficiently low-degree polynomial can be fitted, the number of coefficients to be esti-
mated (the a’s) is considerably smaller than the original number of coefficients (the β’s).

But let us re-emphasize the problems with the Almon technique. First, the degree of the
polynomial as well as the maximum value of the lag is largely a subjective decision. Second,
for reasons noted previously, the Z variables are likely to exhibit multicollinearity. Therefore,
in models like Eq. (17.13.9) the estimated a’s are likely to show large standard errors (relative
to the values of these coefficients), thereby rendering one or more such coefficients statisti-
cally insignificant on the basis of the conventional t test. But this does not necessarily mean
that one or more of the original β̂ coefficients will also be statistically insignificant. (The proof
of this statement is slightly involved but is suggested in Exercise 17.18.) As a result, the mul-
ticollinearity problem may not be as serious as one might think. Besides, as we know, in cases
of multicollinearity even if we cannot estimate an individual coefficient precisely, a linear
combination of such coefficients (the estimable function) can be estimated more precisely.
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TABLE 17.8 Inventories Y and Sales X, U.S. Manufacturing, and Constructed Z’s

Observation Inventory Sales Z0 Z1 Z2

1954 41,612 23,355 NA NA NA
1955 45,069 26,480 NA NA NA
1956 50,642 27,740 NA NA NA
1957 51,871 28,736 106,311 150,765 343,855
1958 50,203 27,248 110,204 163,656 378,016
1959 52,913 30,286 114,010 167,940 391,852
1960 53,786 30,878 117,148 170,990 397,902
1961 54,871 30,922 119,334 173,194 397,254
1962 58,172 33,358 125,444 183,536 427,008
1963 60,029 35,058 130,216 187,836 434,948
1964 63,410 37,331 136,669 194,540 446,788
1965 68,207 40,995 146,742 207,521 477,785
1966 77,986 44,870 158,254 220,831 505,841
1967 84,646 46,486 169,682 238,853 544,829
1968 90,560 50,229 182,580 259,211 594,921
1969 98,145 53,501 195,086 277,811 640,003
1970 101,599 52,805 203,021 293,417 672,791
1971 102,567 55,906 212,441 310,494 718,870
1972 108,121 63,027 225,239 322,019 748,635
1973 124,499 72,931 244,669 333,254 761,896
1974 157,625 84,790 276,654 366,703 828,193
1975 159,708 86,589 307,337 419,733 943,757
1976 174,636 98,797 343,107 474,962 1,082,128
1977 188,378 113,201 383,377 526,345 1,208,263
1978 211,691 126,905 425,492 570,562 1,287,690
1979 242,157 143,936 482,839 649,698 1,468,882
1980 265,215 154,391 538,433 737,349 1,670,365
1981 283,413 168,129 593,361 822,978 1,872,280
1982 311,852 163,351 629,807 908,719 2,081,117
1983 312,379 172,547 658,418 962,782 2,225,386
1984 339,516 190,682 694,709 1,003,636 2,339,112
1985 334,749 194,538 721,118 1,025,829 2,351,029
1986 322,654 194,657 752,424 1,093,543 2,510,189
1987 338,109 206,326 786,203 1,155,779 2,688,947
1988 369,374 224,619 820,140 1,179,254 2,735,796
1989 391,212 236,698 862,300 1,221,242 2,801,836
1990 405,073 242,686 910,329 1,304,914 2,992,108
1991 390,905 239,847 943,850 1,389,939 3,211,049
1992 382,510 250,394 969,625 1,435,313 3,340,873
1993 384,039 260,635 993,562 1,458,146 3,393,956
1994 404,877 279,002 1,029,878 1,480,964 3,420,834
1995 430,985 299,555 1,089,586 1,551,454 3,575,088
1996 436,729 309,622 1,148,814 1,639,464 3,761,278
1997 456,133 327,452 1,215,631 1,745,738 4,018,860
1998 466,798 337,687 1,274,316 1,845,361 4,261,935
1999 470,377 354,961 1,329,722 1,921,457 4,434,093

Note: Y and X are in millions of dollars, seasonally adjusted.

Source: Economic Report of the President, 2001, Table B-57, p. 340. The Z ’s are as shown in Eq. (17.13.13).

EXAMPLE 17.11
(Continued)
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Our illustrative example may be used to point out a few additional features of the Almon
lag procedure:

1. The standard errors of the a coefficients are directly obtainable from the OLS regression
(17.13.14), but the standard errors of some of the β̂ coefficients, the objective of primary
interest, cannot be so obtained. But they can be obtained from the standard errors of the
estimated a coefficients by using a well-known formula from statistics, which is given in
Exercise 17.18. Of course, there is no need to do this manually, for most statistical pack-
ages can do this routinely. The standard errors given in Eq. (17.13.15) were obtained
from EViews 6.

A brief comment on the preceding results is in order. Of the three Z variables, only Z0

is individually statistically significant at the 5 percent level, but the others are not, yet the
F value is so high that we can reject the null hypothesis that collectively the Z ’s have no
effect on Y. As you may suspect, this might very well be due to multicollinearity. Also, note
that the computed d value is very low. This does not necessarily mean that the residuals
suffer from autocorrelation. More likely, the low d value suggests that the model we have
used is probably mis-specified. We will comment on this shortly.

From the estimated a’s given in Eq. (17.13.3), we can easily estimate the original β’s
easily, as shown in Eq. (17.13.8). In the present example, the results are as follows:

β̂0 = â 0 = 1.1149

β̂1 = (â 0 + â1 + â 2) = 0.6836

β̂2 = (â 0 + 2â1 + 4â 2) = 0.1321
(17.13.15)

β̂3 = (â 0 + 3â1 + 9â 2) = −0.5394

Thus, the estimated distributed-lag model corresponding to Eq. (17.13.11) is:

Ŷt = 25,845.0 + 1.1150X0 + 0.6836Xt−1 + 0.1321Xt−2 − 0.5394Xt−3

se = (6596.99) (0.5381) (0.4672) (0.4656) (0.5656) (17.13.16)

t = (3.9177) (2.0718) (1.4630) (0.2837) (−0.9537)

Geometrically, the estimated βi is as shown in Figure 17.8.

EXAMPLE 17.11
(Continued)

FIGURE 17.8
Lag structure of the
illustrative example.

0.5
-0.8

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Lag

B
et

a

-0.4

0.0

0.4

0.8

1.2

guj75772_ch17.qxd  22/08/2008  12:09 PM  Page 651



652 Part Three Topics in Econometrics

2. The β̂’s obtained in Eq. (17.13.16) are called unrestricted estimates in the sense that no
a priori restrictions are placed on them. In some situations, however, one may want to
impose the so-called endpoint restrictions on the β’s by assuming that β0 and βk (the
current and kth lagged coefficient) are zero. Because of psychological, institutional, or
technical reasons, the value of the explanatory variable in the current period may not
have any impact on the current value of the regressand, thereby justifying the zero value
for β0. By the same token, beyond a certain time the kth lagged coefficient may not have
any impact on the regressand, thus supporting the assumption that βk is zero. In our
inventory example (Example 17.11), the coefficient of Xt−3 had a negative sign, which
may not make economic sense. Hence, one may want to constrain that coefficient to
zero.53 Of course, you do not have to constrain both ends; you could put restriction only
on the first coefficient, called near-end restriction, or on the last coefficient, called
far-end restriction. For our inventory example, this is illustrated in Exercise 17.28.
Sometimes the β’s are estimated with the restriction that their sum is 1. But one should
not put such restrictions mindlessly because such restrictions also affect the values of
the other (unconstrained) lagged coefficients.

3. Since the choice of the number of lagged coefficients as well as the degree of the poly-
nomial is at the discretion of the modeler, some trial and error is inevitable, the charge
of data mining notwithstanding. Here is where the Akaike and Schwarz information
criteria discussed in Chapter 13 may come in handy.

4. Since we estimated Eq. (17.13.16) using three lags and the second-degree polynomial,
it is a restricted least-squares model. Suppose we decide to use three lags but do not use
the Almon polynomial approach. That is, we estimate Eq. (17.13.11) by OLS. What
then? Let us first see the results:

Ŷt = 26,008.60 + 0.9771Xt + 1.0139X t−1 − 0.2022 Xt−2 − 0.3935Xt−3

se = (6691.12) (0.6820) (1.0920) (1.1021) (0.7186)

t = (3.8870) (1.4327) (0.9284) (−0.1835) (−0.5476)

R2 = 0.9755 d = 0.1571 F = 379.51 (17.13.17)

If you compare these results with those given in Eq. (17.13.16), you will see that the over-
all R2 is practically the same, although the lagged pattern in (17.13.17) shows more of a
humped shape than that exhibited by Eq. (17.13.16). It is left to the reader to verify the R2

value from (17.13.16).
As this example illustrates, one has to be careful in using the Almon distributed lag tech-

nique, as the results might be sensitive to the choice of the degree of the polynomial and/or
the number of lagged coefficients.

17.14 Causality in Economics: The Granger Causality Test54

Back in Section 1.4 we noted that, although regression analysis deals with the dependence
of one variable on other variables, it does not necessarily imply causation. In other words,
the existence of a relationship between variables does not prove causality or the direction

53For a concrete application, see D. B. Batten and Daniel Thornton, “Polynomial Distributed Lags and the
Estimation of the St. Louis Equation,” Review, Federal Reserve Bank of St. Louis, April 1983, pp. 13–25.
54There is another test of causality that is sometimes used, the so-called Sims test of causality. We
discuss it by way of an exercise.
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of influence. But in regressions involving time series data, the situation may be somewhat
different because, as one author puts it,

. . . time does not run backward. That is, if event A happens before event B, then it is possible
that A is causing B. However, it is not possible that B is causing A. In other words, events in the
past can cause events to happen today. Future events cannot.55 [Emphasis added.]

This is roughly the idea behind the so-called Granger causality test.56 But it should be noted
clearly that the question of causality is deeply philosophical with all kinds of controversies.
At one extreme are people who believe that “everything causes everything,” and at the other
extreme are people who deny the existence of causation whatsoever.57 The econometrician
Edward Leamer prefers the term precedence over causality. Francis Diebold prefers the
term predictive causality. As he writes:

. . . the statement “yi causes yj” is just shorthand for the more precise, but long-winded,
statement, “yi contains useful information for predicting yj (in the linear least squares
sense), over and above the past histories of the other variables in the system.” To save
space, we simply say that yi causes yj.58

The Granger Test 
To explain the Granger test, we will consider the often asked question in macroeconomics:
Is it GDP that “causes” the money supply M (GDP → M)? Or is it the money supply M
that causes GDP (M → GDP)? (where the arrow points to the direction of causality). The
Granger causality test assumes that the information relevant to the prediction of the
respective variables, GDP and M, is contained solely in the time series data on these
variables. The test involves estimating the following pair of regressions:

GDPt =
n∑

i=1

αi Mt−i +
n∑

j=1

βj GDPt− j + u1t (17.14.1)

Mt =
n∑

i=1

λi Mt−i +
n∑

j=1

δj GDPt− j + u2t (17.14.2)

where it is assumed that the disturbances u1t and u2t are uncorrelated. In passing, note that, since
we have two variables, we are dealing with bilateral causality. In the chapters on time series
econometrics, we will extend this to multivariable causality through the technique of vector
autoregression (VAR).

Equation (17.14.1) postulates that current GDP is related to past values of itself as well as
that of M, and Eq. (17.14.2) postulates a similar behavior for M. Note that these regressions can

55Gary Koop, Analysis of Economic Data, John Wiley & Sons, New York, 2000, p. 175.
56C. W. J. Granger, “Investigating Causal Relations by Econometric Models and Cross-Spectral Meth-
ods,” Econometrica, July 1969, pp. 424–438. Although popularly known as the Granger causality test,
it is appropriate to call it the Wiener–Granger causality test, for it was earlier suggested by
Wiener. See N. Wiener, “The Theory of Prediction,” in E. F. Beckenback, ed., Modern Mathematics for
Engineers, McGraw-Hill, New York, 1956, pp. 165–190.
57For an excellent discussion of this topic, see Arnold Zellner, “Causality and Econometrics,” Carnegie-
Rochester Conference Series, 10, K. Brunner and A. H. Meltzer, eds., North Holland Publishing
Company, Amsterdam, 1979, pp. 9–50.
58Francis X. Diebold, Elements of Forecasting, South Western Publishing, 2d ed., 2001, p. 254.
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be cast in growth forms, ˙GDP and Ṁ, where a dot over a variable indicates its growth rate. We
now distinguish four cases:

1. Unidirectional causality from M to GDP is indicated if the estimated coefficients on the
lagged M in Eq. (17.14.1) are statistically different from zero as a group and the set of
estimated coefficients on the lagged GDP in Eq. (17.14.2) is not statistically different
from zero.

2. Conversely, unidirectional causality from GDP to M exists if the set of lagged M coeffi-
cients in Eq. (17.14.1) is not statistically different from zero and the set of the lagged
GDP coefficients in Eq. (17.14.2) is statistically different from zero.

3. Feedback, or bilateral causality, is suggested when the sets of M and GDP coefficients
are statistically significantly different from zero in both regressions.

4. Finally, independence is suggested when the sets of M and GDP coefficients are not sta-
tistically significant in either of the regressions.

More generally, since the future cannot predict the past, if variable X (Granger) causes
variable Y, then changes in X should precede changes in Y. Therefore, in a regression of Y
on other variables (including its own past values) if we include past or lagged values of X
and it significantly improves the prediction of Y, then we can say that X (Granger) causes Y.
A similar definition applies if Y (Granger) causes X.

The steps involved in implementing the Granger causality test are as follows. We illus-
trate these steps with the GDP-money example given in Eq. (17.14.1).

1. Regress current GDP on all lagged GDP terms and other variables, if any, but do not
include the lagged M variables in this regression. As per Chapter 8, this is the
restricted regression. From this regression obtain the restricted residual sum of
squares, RSSR.

2. Now run the regression including the lagged M terms. In the language of Chapter 8, this
is the unrestricted regression. From this regression obtain the unrestricted residual sum
of squares, RSSUR.

3. The null hypothesis is H0: αi = 0, i = 1, 2, . . . , n, that is, lagged M terms do not be-
long in the regression.

4. To test this hypothesis, we apply the F test given by Eq. (8.7.9), namely,

F = (RSSR − RSSUR)/m

RSSUR/(n − k)
(8.7.9)

which follows the F distribution with m and (n − k) df. In the present case m is equal to
the number of lagged M terms and k is the number of parameters estimated in the unre-
stricted regression.

5. If the computed F value exceeds the critical F value at the chosen level of significance, we
reject the null hypothesis, in which case the lagged M terms belong in the regression. This
is another way of saying that M causes GDP.

6. Steps 1 to 5 can be repeated to test the model (17.14.2), that is, whether GDP causes M.

Before we illustrate the Granger causality test, there are several things that need to be
noted:

1. It is assumed that the two variables, GDP and M, are stationary. We have already dis-
cussed the concept of stationarity in intuitive terms before and will discuss it more for-
mally in Chapter 21. Sometimes taking the first differences of the variables makes them
stationary, if they are not already stationary in the level form.
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59For further details, see Wojciech W. Charemza and Derek F. Deadman, New Directions in Econometric
Practice: General to Specific Modelling, Cointegration and Vector Autoregression, 3d ed., Edward Elgar
Publishing, 1997, Chapter 6.
60On this, see J. H. Stock and M. W. Watson, “Interpreting the Evidence on Money-Income Causality,”
Journal of Econometrics, vol. 40, 1989, pp. 783–820.
61R. W. Hafer, “The Role of Fiscal Policy in the St. Louis Equation,” Review, Federal Reserve Bank of 
St. Louis, January 1982, pp. 17–22. See his footnote 12 for the details of the procedure.

EXAMPLE 17.12
Causality between
Money and
Income

R. W. Hafer used the Granger test to find out the nature of causality between GNP (rather
than GDP) and M for the United States for the period 1960–I to 1980–IV. Instead of using
the gross values of these variables, he used their growth rates, ˙GNP and Ṁ, and used four
lags of each variable in the two regressions given previously. The results were as follows:61

The null hypothesis in each case is that the variable under consideration does not
“Granger-cause” the other variable.

Direction of Causality F Value Decision

Ṁ → ˙GNP 2.68 Reject
˙GNP → Ṁ 0.56 Do not reject

These results suggest that the direction of causality is from money growth to GNP
growth since the estimated F is significant at the 5 percent level; the critical F value is 2.50
(for 4 and 71 df). On the other hand, there is no “reverse causation” from GNP growth to
money growth, since the F value is statistically insignificant.

EXAMPLE 17.13
Causality between
Money and
Interest Rate in
Canada

Refer to the Canadian data given in Table 17.5. Suppose we want to find out if there is any
causality between money supply and interest rate in Canada for the quarterly periods of
1979–1988. To show that the Granger causality test depends critically on the number of
lagged terms introduced in the model, we present below the results of the F test using
several (quarterly) lags. In each case, the null hypothesis is that interest rate does not
(Granger-) cause money supply and vice versa.

2. The number of lagged terms to be introduced in the causality tests is an important prac-
tical question. As in the case of the distributed-lag models, we may have to use the Akaike
or Schwarz information criterion to make the choice. But it should be added that the
direction of causality may depend critically on the number of lagged terms included.

3. We have assumed that the error terms entering the causality test are uncorrelated. If this
is not the case, appropriate transformation, as discussed in Chapter 12, may have to be
taken.59

4. Since our interest is in testing for causality, one need not present the estimated coeffi-
cients of models (17.14.1) and (17.14.2) explicitly (to save space); just the results of the
F test given in Eq. (8.7.9) will suffice.

5. One has to guard against “spurious” causality. In our GDP-money example, suppose we
consider interest rate, say the short-term interest rate. It is quite possible that money
“Granger-causes” the interest rate and the interest rate in turn “Granger-causes” GDP.
Therefore, if we do not account for the interest rate, and find that it is money that causes
GDP, then, the observed causality between GDP and money may be spurious.60 As noted
previously, one way of dealing with this is to consider a multiple-equation system, such as
vector autoregression (VAR), which we will discuss in some length in Chapter 22.

(Continued )
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EXAMPLE 17.14
Causality between
GDP Growth Rate
and Gross Savings
Rate in Nine East
Asian Countries

A study of the bilateral causality between GDP growth rate (g) and gross savings rate (s)
showed the results given in Table 17.9.62 For comparison, the results for the United States
are also presented in the table. By and large, the results presented in Table 17.9 show that
for most East Asian countries the causality runs from the GDP growth rate to the gross
savings rate. By contrast, for the United States for the period 1950–1988 up to lag 3,
causality ran in both directions, but for lags 4 and 5, the causality ran from the GDP
growth rate to the savings rate but not the other way round.

62These results are obtained from The East Asian Miracle: Economic Growth and Public Policy, published
for the World Bank by Oxford University Press, 1993, p. 244.

Lagged Right-hand Lagged Right-hand
Economy, Years Side Variable Economy, Years Side Variable

Years of Lags Savings Growth Years of Lags Savings Growth

Hong Kong, 1 Sig Sig Philippines, 1 NS Sig
1960–88 2 Sig Sig 1950–88 2 NS Sig

3 Sig Sig 3 NS Sig
4 Sig Sig 4 NS Sig
5 Sig Sig 5 NS Sig

Indonesia, 1 Sig Sig Singapore, 1 NS NS
1965 2 NS Sig 1960–88 2 NS NS

3 NS Sig 3 NS NS
4 NS Sig 4 Sig NS
5 NS Sig 5 Sig NS

Japan, 1 NS Sig Taiwan, China, 1 Sig Sig
1950–88 2 NS Sig 1950–88 2 NS Sig

3 NS Sig 3 NS Sig
4 NS Sig 4 NS Sig
5 NS Sig 5 NS Sig

Korea, Rep. of, 1 Sig Sig Thailand, 1 NS Sig
1955–88 2 NS Sig 1950–88 2 NS Sig

3 NS Sig 3 NS Sig
4 NS Sig 4 NS Sig
5 NS Sig 5 NS Sig

Malaysia, 1 Sig Sig United States, 1 Sig Sig
1955–88 2 Sig Sig 1950–88 2 Sig Sig

3 NS NS 3 Sig Sig
4 NS NS 4 NS Sig
5 NS Sig 5 NS Sig

Sig: Significant; NS: Not significant.
Note: Growth is real per capita GDP growth at 1985 international prices.

TABLE 17.9
Tests of Bivariate
Granger Causality
between the Real
Per Capita GDP
Growth Rate
and the Gross
Savings Rate

Source: World Bank, The
East Asian Miracle:
Economic Growth and
Public Policy, Oxford
University Press, New
York, 1993, p. 244,
(Table A5-2). The original
source is Robert Summers
and Alan Heston, “The
Penn World Tables (Mark 5):
An Expanded Set of
International Comparisons,
1950–88,” Quarterly
Journal of Economics,
vol. 105, no. 2, 1991.

Direction of Causality Number of Lags F Value Decision

R → M 2 12.92 Reject
M → R 2 3.22 Reject
R → M 4 5.59 Reject
M → R 4 2.45 Reject (at 7%)
R → M 6 3.5163 Reject
M → R 6 2.71 Reject
R → M 8 1.40 Do not reject
M → R 8 1.62 Do not reject

Note these features of the preceding results of the F test: Up to six lags, there is bilateral
causality between money supply and interest rate. However, at eight lags, there is no
statistically discernible relationship between the two variables. This reinforces the point
made earlier that the outcome of the Granger test is sensitive to the number of lags intro-
duced in the model.

EXAMPLE 17.13
(Continued)
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*A Note on Causality and Exogeneity
As we will study in the chapters on simultaneous-equation models in Part 4 of this text, eco-
nomic variables are often classified into two broad categories, endogenous and exogenous.
Loosely speaking, endogenous variables are the equivalent of the dependent variable in the
single-equation regression model and exogenous variables are the equivalent of the X vari-
ables, or regressors, in such a model, provided the X variables are uncorrelated with the error
term in that equation.63

Now we raise an interesting question: Suppose in a Granger causality test we find that
an X variable (Granger-) causes a Y variable without being caused by the latter (i.e., no
bilateral causality). Can we then treat the X variable as exogenous? In other words, can we
use Granger causality (or noncausality) to establish exogeneity?

To answer this question, we need to distinguish three types of exogeneity: (1) weak,
(2) strong, and (3) super. To keep the exposition simple, suppose we consider only two vari-
ables, Yt and Xt, and further suppose we regress Yt on Xt. We say that Xt is weakly exogenous
if Yt also does not explain Xt. In this case estimation and testing of the regression model can
be done, conditional on the values of Xt. As a matter of fact, going back to Chapter 2, you
will realize that our regression modeling was conditional on the values of the X variables.
Xt is said to be strongly exogenous if current and lagged Y values do not explain it (i.e., no
feedback relationship). And Xt is super-exogenous if the parameters in the regression of Y
on X do not change even if the X values change; that is, the parameter values are invariant
to changes in the value(s) of X. If that is in fact the case, then, the famous “Lucas critique”
may lose its force.64

The reason for distinguishing the three types of exogeneity is that, “In general, weak
exogeneity is all that is needed for estimating and testing, strong exogeneity is necessary
for forecasting and super exogeneity for policy analysis.”65

Returning to Granger causality, if a variable, say Y, does not cause another variable, say
X, can we then assume that the latter is exogenous? Unfortunately, the answer is not
straightforward. If we are talking about weak exogeneity, it can be shown that Granger
causality is neither necessary nor sufficient to establish exogeneity. On the other hand,
Granger causality is necessary (but not sufficient) for strong exogeneity. The proofs of
these statements are beyond the scope of this book.66 For our purpose, then, it is better to

*Optional.
63Of course, if the explanatory variables include one or more lagged terms of the endogenous
variable, this requirement may not be fulfilled.
64The Nobel laureate Robert Lucas put forth the proposition that existing relations between economic
variables may change when policy changes, in which case the estimated parameters from a
regression model will be of little value for prediction. On this, see Oliver Blanchard, Macroeconomics,
Prentice Hall, 1997, pp. 371–372.
65Keith Cuthbertson, Stephen G. Hall, and Mark  P. Taylor, Applied Econometric Techniques, University
of Michigan Press, 1992, p. 100.
66For a comparatively simple discussion, see G. S. Maddala, Introduction to Econometrics, 2d ed.,
Macmillan, New York, 1992, pp. 394–395, and also David F. Hendry, Dynamic Econometrics, Oxford
University Press, New York, 1995, Chapter 5.

To conclude our discussion of Granger causality, keep in mind that the question we are
examining is whether statistically one can detect the direction of causality when temporally
there is a lead–lag relationship between two variables. If causality is established, it suggests
that one can use a variable to better predict the other variable than simply the past history
of that other variable. In the case of the East Asian economies, it seems that we can better
predict the gross savings rate by considering the lagged values of the GDP growth rate
than merely the lagged values of the gross savings rate.

EXAMPLE 17.14
(Continued)
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keep the concepts of Granger causality and exogeneity separate and treat the former as a
useful descriptive tool for time series data. In Chapter 19 we will discuss a test that can be
used to find out if a variable can be treated as exogenous.

67For applications of these models, see Arnold C. Harberger, ed., The Demand for Durable Goods,
University of Chicago Press, Chicago, 1960.

Summary and
Conclusions

1. For psychological, technological, and institutional reasons, a regressand may respond
to a regressor(s) with a time lag. Regression models that take into account time lags are
known as dynamic or lagged regression models.

2. There are two types of lagged models: distributed-lag and autoregressive. In the 
former, the current and lagged values of regressors are explanatory variables. In the
latter, the lagged value(s) of the regressand appears as an explanatory variable(s).

3. A purely distributed-lag model can be estimated by OLS, but in that case there is the
problem of multicollinearity since successive lagged values of a regressor tend to be
correlated.

4. As a result, some shortcut methods have been devised. These include the Koyck, the
adaptive expectations, and partial adjustment mechanisms, the first being a purely
algebraic approach and the other two being based on economic principles.

5. A unique feature of the Koyck,adaptive expectations, and partial adjustment models
is that they all are autoregressive in nature in that the lagged value(s) of the regressand
appears as one of the explanatory variables.

6. Autoregressiveness poses estimation challenges; if the lagged regressand is correlated
with the error term, OLS estimators of such models are not only biased but also are
inconsistent. Bias and inconsistency are the case with the Koyck and the adaptive
expectations models; the partial adjustment model is different in that it can be consis-
tently estimated by OLS despite the presence of the lagged regressand.

7. To estimate the Koyck and adaptive expectations models consistently, the most popu-
lar method is the method of instrumental variable. The instrumental variable is a
proxy variable for the lagged regressand but with the property that it is uncorrelated
with the error term.

8. An alternative to the lagged regression models just discussed is the Almon polynomial
distributed-lag model, which avoids the estimation problems associated with the
autoregressive models. The major problem with the Almon approach, however, is that
one must prespecify both the lag length and the degree of the polynomial. There are
both formal and informal methods of resolving the choice of the lag length and the
degree of the polynomial.

9. Despite the estimation problems, which can be surmounted, the distributed and
autoregressive models have proved extremely useful in empirical economics because
they make the otherwise static economic theory a dynamic one by taking into account
explicitly the role of time. Such models help us to distinguish between the short- and
the long-run responses of the dependent variable to a unit change in the value of the
explanatory variable(s). Thus, for estimating short- and long-run price, income,
substitution, and other elasticities these models have proved to be highly useful.67

10. Because of the lags involved, distributed and/or autoregressive models raise the topic
of causality in economic variables. In applied work, Granger causality modeling has
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received considerable attention. But one has to exercise great caution in using the
Granger methodology because it is very sensitive to the lag length used in the model.

11. Even if a variable (X) “Granger-causes” another variable (Y), it does not mean that X is
exogenous. We distinguished three types of exogeneity—weak, strong, and super—
and pointed out the importance of the distinction.

*Adapted from G. K. Shaw, op. cit., p. 26.

EXERCISES Questions
17.1. Explain with a brief reason whether the following statements are true, false, or

uncertain:

a. All econometric models are essentially dynamic.

b. The Koyck model will not make much sense if some of the distributed-lag coef-
ficients are positive and some are negative.

c. If the Koyck and adaptive expectations models are estimated by OLS, the esti-
mators will be biased but consistent.

d. In the partial adjustment model, OLS estimators are biased in finite samples.

e. In the presence of a stochastic regressor(s) and an autocorrelated error term,
the method of instrumental variables will produce unbiased as well as consistent
estimates.

f. In the presence of a lagged regressand as a regressor, the Durbin–Watson d sta-
tistic to detect autocorrelation is practically useless.

g. The Durbin h test is valid in both large and small samples.

h. The Granger test is a test of precedence rather than a test of causality.

17.2. Establish Eq. (17.7.2).

17.3. Prove Eq. (17.8.3).

17.4. Assume that prices are formed according to the following adaptive expectations 
hypothesis:

P∗
t = γPt−1 + (1 − γ ) P∗

t−1

where P* is the expected price and P the actual price.

Complete the following table, assuming γ = 0.5:*

Period P* P

t − 3 100 110
t − 2 125
t − 1 155
t 185
t + 1 —

17.5. Consider the model

Yt = α + β1 X1t + β2 X2t + β3Yt−1 + vt
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Suppose Yt−1 and vt are correlated. To remove the correlation, suppose we use the
following instrumental variable approach: First regress Yt on X1t and X2t and obtain
the estimated Ŷt from this regression. Then regress

Yt = α + β1 X1t + β2 X2t + β3Ŷt−1 + vt

where Ŷt−1 are estimated from the first-stage regression.

a. How does this procedure remove the correlation between Yt−1 and vt in the orig-
inal model?

b. What are the advantages of the recommended procedure over the Liviatan
approach?

*17.6. a. Establish (17.4.8).

b. Evaluate the median lag for λ = 0.2, 0.4, 0.6, 0.8.

c. Is there any systematic relationship between the value of λ and the value of the
median lag?

17.7. a. Prove that for the Koyck model, the mean lag is as shown in Eq. (17.4.10).

b. If λ is relatively large, what are its implications?

17.8. Using the formula for the mean lag given in Eq. (17.4.9), verify the mean lag of
10.959 quarters reported in the illustration of Table 17.1.

17.9. Suppose

Mt = α + β1Y ∗
t + β2 R∗

t + ut

where M = demand for real cash balances, Y* = expected real income, and R* =
expected interest rate. Assume that expectations are formulated as follows:

Y ∗
t = γ1Yt + (1 − γ1)Y ∗

t−1

R∗
t = γ2 Rt + (1 − γ2)R∗

t−1

where γ1 and γ2 are coefficients of expectation, both lying between 0 and 1.

a. How would you express Mt in terms of the observable quantities?

b. What estimation problems do you foresee?

*17.10. If you estimate Eq. (17.7.2) by OLS, can you derive estimates of the original pa-
rameters? What problems do you foresee? (For details, see Roger N. Waud.)†

17.11. Serial correlation model. Consider the following model:

Yt = α + βXt + ut

Assume that ut follows the Markov first-order autoregressive scheme given in
Chapter 12, namely,

ut = ρut−1 + εt

where ρ is the coefficient of (first-order) autocorrelation and where εt satisfies all
the assumptions of the classical OLS. Then, as shown in Chapter 12, the model

Yt = α(1 − ρ) + β(Xt − ρXt−1) + ρYt−1 + εt

will have a serially independent error term, making OLS estimation possible. But
this model, called the serial correlation model, very much resembles the Koyck,

*Optional.
†“Misspecification in the ‘Partial Adjustment’ and ‘Adaptive Expectations’ Models,” International
Economic Review, vol. 9, no. 2, June 1968, pp. 204–217.
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adaptive expectations, and partial adjustment models. How would you know in any
given situation which of the preceding models is appropriate?*

17.12. Consider the Koyck (or, for that matter, the adaptive expectations) model given in
Eq. (17.4.7), namely,

Yt = α(1 − λ) + β0 Xt + λYt−1 + (ut − λut−1)

Suppose in the original model ut follows the first-order autoregressive scheme
ut − ρu1−t = εt , where ρ is the coefficient of autocorrelation and where εt satis-
fies all the classical OLS assumptions.

a. If ρ = λ, can the Koyck model be estimated by OLS?

b. Will the estimates thus obtained be unbiased? Consistent? Why or why not?

c. How reasonable is it to assume that ρ = λ?

17.13. Triangular, or arithmetic, distributed-lag model.† This model assumes that the
stimulus (explanatory variable) exerts its greatest impact in the current time period
and then declines by equal decrements to zero as one goes into the distant past.
Geometrically, it is shown in Figure 17.9. Following this distribution, suppose we
run the following succession of regressions:

Yt = α + β

(
2Xt + Xt−1

3

)

Yt = α + β

(
3Xt + 2Xt−1 + Xt−2

6

)

Yt = α + β

(
4Xt + 3Xt−1 + 2Xt−2 + Xt−1

10

)

etc., and choose the regression that gives the highest R2 as the “best’’ regression.
Comment on this strategy.

*For a discussion of the serial correlation model, see Zvi Griliches, “Distributed Lags: A Survey,”
Econometrica, vol. 35, no. 1, January 1967, p. 34.
†This model was proposed by Irving Fisher in “Note on a Short-Cut Method for Calculating Distrib-
uted Lags,” International Statistical Bulletin, 1937, pp. 323–328.

0
Time

kβFIGURE 17.9
Triangular or
arithmetic lag scheme
(Fisher’s).
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17.14. From the quarterly data for the period 1950–1960, F. P. R. Brechling obtained the
following demand function for labor for the British economy (the figures in paren-
theses are standard errors):*

̂̇Et = 14.22 + 0.172Qt − 0.028t − 0.0007t2 − 0.297Et−1

(2.61) (0.014) (0.015) (0.0002) (0.033)

R̄2 = 0.76 d = 1.37

where Ėt = (Et − Et−1)
Q = output
t = time

The preceding equation was based on the assumption that the desired level of em-
ployment E∗

t is a function of output, time, and time squared and on the hypothesis
that Et − Et−1 = δ(E∗

t − Et−1), where δ, the coefficient of adjustment, lies
between 0 and 1.

a. Interpret the preceding regression.

b. What is the value of δ?

c. Derive the long-run demand function for labor from the estimated short-run
demand function.

d. How would you test for serial correlation in the preceding model?

17.15. In studying the farm demand for tractors, Griliches used the following model:†

T ∗
t = αXβ1

1,t−1 Xβ2
2,t−1

where T* = desired stock of tractors
X1 = relative price of tractors
X2 = interest rate

Using the stock adjustment model, he obtained the following results for the period
1921–1957:

l̂og Tt = constant − 0.218 log X1,t−1 − 0.855 log X2,t−1 + 0.864 log Tt−1

(0.051) (0.170) (0.035)

R2 = 0.987

where the figures in the parentheses are the estimated standard errors.

a. What is the estimated coefficient of adjustment?

b. What are the short- and long-run price elasticities?

c. What are the corresponding interest elasticities?

d. What are the reasons for high or low rate of adjustment in the present model?

17.16. Whenever the lagged dependent variable appears as an explanatory variable, the R2

is usually much higher than when it is not included. What are the reasons for this
observation?

*F. P. R. Brechling, “The Relationship between Output and Employment in British Manufacturing
Industries,” Review of Economic Studies, vol. 32, July 1965.
†Zvi Griliches, “The Demand for a Durable Input: Farm Tractors in the United States, 1921–1957,” in
Arnold C. Harberger, ed., The Demand for Durable Goods, University of Chicago Press, Chicago, 1960.
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17.17. Consider the lag patterns in Figure 17.10. What degree polynomials would you fit
to the lag structures and why?

17.18. Consider Eq. (17.13.4):

βi = a0 + a1i + a2i2 + · · · + amim

To obtain the variance of β̂i from the variances of âi , we use the following formula:

var (β̂i ) = var (â0 + â1i + â2i2 + · · · + âmim)

=
m∑

j=0

i2 j var (âj ) + 2
∑
j<p

i ( j+p)cov (âj âp)

a. Using the preceding formula, find the variance of β̂i expressed as

β̂i = â0 + â1i + â2i2

β̂i = â0 + â1i + â2i2 + â3i3

b. If the variances of âi are large relative to themselves, will the variance of β̂i be
large also? Why or why not?

17.19. Consider the following distributed-lag model:

Yt = α + β0 Xt + β1 Xt−1 + β2 Xt−2 + β3 Xt−3 + β4 Xt−4 + ut
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FIGURE 17.10
Hypothetical lag
structures.
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iβ

kβ
i

0 1 2 3

Lag

FIGURE 17.11
Inverted V distributed-
lag model.

*See his article, “The Demand for Capital Goods by Manufacturers: A Study of Quarterly Time Series,”
Econometrica, vol. 30, no. 3, July 1962, pp. 407–423.

Assume that βi can be adequately expressed by the second-degree polynomial as
follows:

βi = a0 + a1i + a2i2

How would you estimate the β’s if we want to impose the restriction that
β0 = β4 = 0?

17.20. The inverted V distributed-lag model. Consider the k-period finite distributed-lag
model

Yt = α + β0 Xt + β1 Xt−1 + β2 Xt−2 + · · · + βk Xt−k + ut

F. DeLeeuw has proposed the structure for the β’s as in Figure 17.11, where the β’s
follow the inverted V shape. Assuming for simplicity that k (the maximum length
of the lag) is an even number, and further assuming that β0 and βk are zero,
DeLeeuw suggests the following scheme for the β’s:* 

βi = iβ 0 ≤ i ≤ k

2

= (k − i)β
k

2
≤ i < k

How would you use the DeLeeuw scheme to estimate the parameters of the pre-
ceding k-period distributed-lag model?

17.21. Refer to Exercise 12.15. Since the d value shown there is of little use in detecting
(first-order) autocorrelation (why?), how would you test for autocorrelation in this
case?

Empirical Exercises
17.22. Consider the following model:

Y ∗
i = α + β0 Xt + ut

where Y ∗ = desired, or long-run, business expenditure for new plant and equip-
ment, Xt = sales, and t = time. Using the stock adjustment model, estimate the

guj75772_ch17.qxd  22/08/2008  07:55 PM  Page 664



Chapter 17 Dynamic Econometric Models: Autoregressive and Distributed-Lag Models 665

parameters of the long- and short-run demand function for expenditure on new
plant and equipment given in Table 17.10.

How would you find out if there is serial correlation in the data?

17.23. Use the data of Exercise 17.22 but consider the following model:

Y ∗
i = β0 Xβ1

t eut

Using the stock adjustment model (why?), estimate the short- and long-run elastic-
ities of expenditure on new plant and equipment with respect to sales. Compare
your results with those for Exercise 17.22. Which model would you choose and
why? Is there serial correlation in the data? How do you know?

17.24. Use the data of Exercise 17.22 but assume that

Yt = α + βX∗
t + ut

where X∗
t are the desired sales. Estimate the parameters of this model and compare

the results with those obtained in Exercise 17.22. How would you decide which is
the appropriate model? On the basis of the h statistic, would you conclude there
is serial correlation in the data?

17.25. Suppose someone convinces you that the relationship between business expendi-
ture for new plant and equipment and sales is as follows:

Y ∗
t = α + βX∗

t + ut

where Y ∗ is desired expenditure and X∗ is desired or expected sales. Use the data
given in Exercise 17.22 to estimate this model and comment on your results.

17.26. Using the data given in Exercise 17.22, determine whether plant expenditure
Granger-causes sales or whether sales Granger-cause plant expenditure. Use up to
six lags and comment on your results. What important conclusion do you draw
from this exercise?

17.27. Assume that sales in Exercise 17.22 has a distributed-lag effect on expenditure on
plant and equipment. Fit a suitable Almon lag model to the data.

17.28. Reestimate Eq. (17.13.16) imposing (1) near-end restriction, (2) far-end restriction,
and (3) both end restrictions and compare your results given in Eq. (17.13.16).
What general conclusion do you draw?

TABLE 17.10
Investment in Fixed
Plant and Equipment
in Manufacturing Y
and Manufacturing
Sales X2 in Billions of
Dollars, Seasonally
Adjusted,
United States,
1970–1991

Source: Economic Report of
the President, 1993. Data on
Y from Table B-52, p. 407;
data on X2 from Table 8-53,
p. 408.

Year Plant Expenditure, Y Sales, X2 Year Plant Expenditure, Y Sales, X2

1970 36.99 52.805 1981 128.68 168.129
1971 33.60 55.906 1982 123.97 163.351
1972 35.42 63.027 1983 117.35 172.547
1973 42.35 72.931 1984 139.61 190.682
1974 52.48 84.790 1985 152.88 194.538
1975 53.66 86.589 1986 137.95 194.657
1976 58.53 98.797 1987 141.06 206.326
1977 67.48 113.201 1988 163.45 223.541
1978 78.13 126.905 1989 183.80 232.724
1979 95.13 143.936 1990 192.61 239.459
1980 112.60 154.391 1991 182.81 235.142
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17.29. Table 17.11 gives data on private fixed investment in information processing and
equipment (Y, in billions of dollars), sales in total manufacturing and trade (X2, in
millions of dollars), and interest rate (X3, Moody’s Aaa corporate bond rate, per-
cent); data on Y and X2 are seasonally adjusted.

a. Test for bilateral causality between Y and X2, paying careful attention to the lag
length.

b. Test for bilateral causality between Y and X3, again paying careful attention to the lag
length.

c. To allow for the distributed lag effect of sales on investment, suppose you decide
to use the Almon lag technique. Show the estimated model, after paying due at-
tention to the length of the lag as well as the degree of the polynomial.

17.30. Table 17.12 gives data on indexes of real compensation per hour (Y) and output per
hour (X2), with both indexes to base 1992 = 100, in the business sector of the U.S.
economy for the period 1960–1999, as well as the civilian unemployment rate (X3)
for the same period.

a. How would you decide whether it is wage compensation that determines labor
productivity or the other way round?

b. Develop a suitable model to test your conjecture in (a), providing the usual statistics.

c. Do you think the unemployment rate has any effect on wage compensation, and if
so, how would you take that into account? Show the necessary statistical analysis.

TABLE 17.11 Investments, Sales, and Interest Rate, United States, 1960–1999

Observation Investment Sales Interest Observation Investment Sales Interest

1960 4.9 60,827 4.41 1980 69.6 327,233 11.94
1961 5.2 61,159 4.35 1981 82.4 355,822 14.17
1962 5.7 65,662 4.33 1982 88.9 347,625 13.79
1963 6.5 68,995 4.26 1983 100.8 369,286 12.04
1964 7.3 73,682 4.40 1984 121.7 410,124 12.71
1965 8.5 80,283 4.49 1985 130.8 422,583 11.37
1966 10.6 87,187 5.13 1986 137.6 430,419 9.02
1967 11.2 90,820 5.51 1987 141.9 457,735 9.38
1968 11.9 96,685 6.18 1988 155.9 497,157 9.71
1969 14.6 105,690 7.03 1989 173.0 527,039 9.26
1970 16.7 108,221 8.04 1990 176.1 545,909 9.32
1971 17.3 116,895 7.39 1991 181.4 542,815 8.77
1972 19.3 131,081 7.21 1992 197.5 567,176 8.14
1973 23.0 153,677 7.44 1993 215.0 595,628 7.22
1974 26.8 177,912 8.57 1994 233.7 639,163 7.96
1975 28.2 182,198 8.83 1995 262.0 684,982 7.59
1976 32.4 204,150 8.43 1996 287.3 718,113 7.37
1977 38.6 229,513 8.02 1997 325.2 753,445 7.26
1978 48.3 260,320 8.73 1998 367.4 779,413 6.53
1979 58.6 297,701 9.63 1999 433.0 833,079 7.04

Notes: Investment = private fixed investment in information processing equipment and software, billions of dollars, seasonally adjusted.
Sales = sales in total manufacturing and trade, millions of dollars, seasonally adjusted.

Interest = Moody’s Aaa corporate bond rate, %.

Source: Economic Report of the President, 2001, Tables B-18, B-57, and B-73.
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17.31. In a test of Granger causality, Christopher Sims exploits the fact that the  future
cannot cause the present.* To decide whether a variable Y causes a variable X, Sims
suggests estimating the following pair of equations:

Yt = α1 +
i=n∑
i=1

βi Xt−i +
i=m∑
i=1

γi Yt−i +
i=p∑
i=1

λi Xt+i + u1t (1)

Xt = α2 +
i=n∑
i=1

δi Xt−i +
i=m∑
i=1

θi Yt−i +
i=p∑
i=1

ωi Yt+i + u2t (2)

These regressions include the lagged, current, and future, or lead, values of the
regressors; terms such as Xt+1,  Xt+2, etc., are called lead terms.

If Y is to Granger-cause X, then there must be some relationship between Y and
the lead, or future, values of X. Therefore, instead of testing that 
βi = 0, we should
test 
λi = 0 in Eq. (1). If we reject this hypothesis, the causality then runs from Y
to X, and not from X to Y, because the future cannot cause the present. Similar com-
ments apply to Equation (2).

TABLE 17.12 Compensation, Productivity and Unemployment Rate, United States, 1960–1999

Observation COMP PRODUCT UNRate Observation COMP PRODUCT UNRate

1960 60.0 48.8 5.5 1980 89.5 80.4 7.1
1961 61.8 50.6 6.7 1981 89.5 82.0 7.6
1962 63.9 52.9 5.5 1982 90.9 81.7 9.7
1963 65.4 55.0 5.7 1983 91.0 84.6 9.6
1964 67.9 57.5 5.2 1984 91.3 87.0 7.5
1965 69.4 59.6 4.5 1985 92.7 88.7 7.2
1966 71.9 62.0 3.8 1986 95.8 91.4 7.0
1967 73.8 63.4 3.8 1987 96.3 91.9 6.2
1968 76.3 65.4 3.6 1988 97.3 93.0 5.5
1969 77.4 65.7 3.5 1989 95.9 93.9 5.3
1970 78.9 67.0 4.9 1990 96.5 95.2 5.6
1971 80.4 69.9 5.9 1991 97.5 96.3 6.8
1972 82.7 72.2 5.6 1992 100.0 100.0 7.5
1973 84.5 74.5 4.9 1993 99.9 100.5 6.9
1974 83.5 73.2 5.6 1994 99.7 101.9 6.1
1975 84.4 75.8 8.5 1995 99.3 102.6 5.6
1976 86.8 78.5 7.7 1996 99.7 105.4 5.4
1977 87.9 79.8 7.1 1997 100.4 107.6 4.9
1978 89.5 80.7 6.1 1998 104.3 110.5 4.5
1979 89.7 80.7 5.8 1999 107.3 114.0 4.2

Notes: COMP = index of real compensation per hour (1992 = 100).
PRODUCT = index of output per hour (1992 = 100).

UNRate = civilian unemployment rate, %.

Source: Economic Report of the President, 2001, Table B-49, p. 332.

*C. A. Sims, “Money, Income, and Causality,” American Economic Review, vol. 62, 1972, 
pp. 540–552.
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To carry out the Sims test, we estimate Eq. (1) without the lead terms (call it
restricted regression) and then estimate Eq. (1) with the lead terms (call it
unrestricted regression). Then we carry out the F test as indicated in Equation
(8.7.9). If the F statistic is significant (say, at the 5% level), then we conclude that
it is Y that Granger-causes X. Similar comments apply to Equation (2).

Which test do we choose—Granger or Sims? We can apply both tests.* The one
factor that is in favor of the Granger test is that it uses fewer degrees of freedom

TABLE 17.13
Macroeconomic Data
for the Greek
Economy, 1960–1995

Source: H. R. Seddighi, K. A.
Lawler, and A. V. Katos,
Econometrics: A Practical
Approach, Routledge,
London, 2000, p. 158.

Year PC PDI Grossinv GNP LTI

1960 107808 117179 29121 145458 8
1961 115147 127599 31476 161802 8
1962 120050 135007 34128 164674 8
1963 126115 142128 35996 181534 8.25
1964 137192 159649 43445 196586 9
1965 147707 172756 49003 214922 9
1966 157687 182366 50567 228040 9
1967 167528 195611 49770 240791 9
1968 179025 204470 60397 257226 8.75
1969 190089 222638 71653 282168 8
1970 206813 246819 70663 304420 8
1971 217212 269249 80558 327723 8
1972 232312 297266 92977 356886 8
1973 250057 335522 100093 383916 9
1974 251650 310231 74500 369325 11.83
1975 266884 327521 74660 390000 11.88
1976 281066 350427 79750 415491 11.5
1977 293928 366730 85950 431164 12
1978 310640 390189 91100 458675 13.46
1979 318817 406857 99121 476048 16.71
1980 319341 401942 92705 485108 21.25
1981 325851 419669 85750 484259 21.33
1982 338507 421716 84100 483879 20.5
1983 339425 417930 83000 481198 20.5
1984 345194 434696 78300 490881 20.5
1985 358671 456576 82360 502258 20.5
1986 361026 439654 77234 507199 20.5
1987 365473 438454 73315 505713 21.82
1988 378488 476345 79831 529460 22.89
1989 394942 492334 87873 546572 23.26
1990 403194 495939 96139 546982 27.62
1991 412458 513173 91726 566586 29.45
1992 420028 502520 93140 568582 28.71
1993 420585 523066 91292 569724 28.56
1994 426893 520728 93073 579846 27.44
1995 433723 518407 98470 588691 23.05

Note: All nominal data are expressed at constant market prices of year 1970 in millions of drachmas. Private disposable income is deflated
by the consumption price deflator.

*The choice between Granger and Sims causality tests is not clear. For further discussion of these
tests, see G. Chamberlain, “The General Equivalence of Granger and Sims Causality,” Econometrica,
vol. 50, 1982, pp. 569–582.
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because it does not use the lead terms. If the sample is not sufficiently large, we will
have to use the Sims test cautiously.

Refer to the data given in Exercise 12.34. For pedagogical purposes, apply the
Sims test of causality to determine whether it is sales that causes plant expenditure
or vice versa. Use the last four years’ data as the lead terms in your analysis.

17.32. Table 17.13 gives some macroeconomic data for the Greek economy for the years
1960–1995.

Consider the following consumption function:

ln PC∗
t = β1 + β2 ln PDIt + β3LTIt + ut

Where PCt
* = real desired private consumption expenditure at time t; PDIt = real

private disposable income at time t; LTIt = long-term interest rate at time t; and ln
stands for natural logarithm.

a. From the data given in Table 17.13, estimate the previous consumption func-
tion, stating clearly how you measured the real desired private consumption
expenditure.

b. What econometric problems did you encounter in estimating the preceding con-
sumption function? How did you resolve them? Explain fully.

17.33. Using the data in Table 17.13, develop a suitable model to explain the behavior of
gross real investment in the Greek economy for the period 1960–1995. Look up any
textbook on macroeconomics for the accelerator model of investment.

Appendix 17A

17A.1 The Sargan Test for the Validity of Instruments

Suppose we use an instrumental variable(s) to replace an explanatory variable(s) that is correlated
with the error term. How valid is the instrumental variable(s), that is, how do we know that the in-
struments chosen are independent of the error term? Sargan has developed a statistic, dubbed SARG,
to test the validity of the instruments used in instrumental variable(s) (IV).* The steps involved in
SARG are as follows:†

1. Divide the variables included in a regression equation into two groups, those that are independent
of the error term (say, X1, X2, . . . , Xp) and those that are not independent of the error term (say,
Z1, Z2, . . . , Zq).

2. Let W1, W2, . . . , Ws be the instruments chosen for the Z variables in 1, where s > q.

3. Estimate the original regression, replacing the Z’s by the W’s, that is, estimate the original
regression by IV and obtain the residuals, say, û.

4. Regress û on a constant, all the X variables and all the W variables but exclude all the Z variables.
Obtain R2 from this regression.

5. Now compute the SARG statistic, defined as: 

SARG = (n − k)R2 ∼ χ2
s−q (17A.1.1)

*J. D. Sargan, “Wages and Prices in the United Kingdom: A Study in Econometric Methodology,” 
in P. E. Hart, G. Mills, and J. K. Whitaker (eds.) Econometric Analysis for National Economic Planning,
Butterworths, London, 1964.
†The following discussion leans on H. R. Seddighi, K. A. Lawler, and A. V. Katos, Econometrics: 
A Practical Approach, Routledge, New York, 2000, pp. 155–156.
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Where n = the number of observations and k is the number of coefficients in the original
regression equation. Under the null hypothesis that the instruments are exogenous, Sargan has
shown the SARG test asymptotically has the χ2 distribution with (s − q) degrees of freedom,
where s is the number of instruments (i.e., the variables in W) and q is the number of regressors in
the original equation. If the computed chi-square value in an application is statistically significant,
we reject the validity of the instruments. If it is not statistically significant, we can accept the
chosen instrument as valid. It should be emphasized that s > q , that is, the number of instruments
must be greater than q. If that is not the case (i.e., s ≤ q), the SARG test is not valid.

6. The null hypothesis is that all (W ) instruments are valid. If the computed chi-square exceeds the
critical chi-square value, we reject the null hypothesis, which means that at least one instrument
is correlated with the error term and therefore the IV estimates based on the chosen instruments
are not valid.
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Part 

A casual look at the published empirical work in business and economics will reveal that
many economic relationships are of the single-equation type. That is why we devoted the
first three parts of this book to the discussion of single-equation regression models. In such
models, one variable (the dependent variable Y ) is expressed as a linear function of one or
more other variables (the explanatory variables, the X ’s). In such models an implicit
assumption is that the cause-and-effect relationship, if any, between Y and the X ’s is unidi-
rectional: The explanatory variables are the cause and the dependent variable is the effect.

However, there are situations where there is a two-way flow of influence among economic
variables; that is, one economic variable affects another economic variable(s) and is, in turn,
affected by it (them). Thus, in the regression of money M on the rate of interest r, the single-
equation methodology assumes implicitly that the rate of interest is fixed (say, by the Federal
Reserve System) and tries to find out the response of money demanded to the changes in the
level of the interest rate. But what happens if the rate of interest depends on the demand for
money? In this case, the conditional regression analysis made in this book thus far may
not be appropriate because now M depends on r and r depends on M. Thus, we need to
consider two equations, one relating M to r and another relating r to M. And this leads us
to consider simultaneous-equation models, models in which there is more than one regres-
sion equation, one for each interdependent variable.

In Part 4 we present a very elementary and often heuristic introduction to the complex
subject of simultaneous-equation models, the details being left for the references.

In Chapter 18, we provide several examples of simultaneous-equation models and show
why the method of ordinary least squares considered previously is generally inapplicable in
estimating the parameters of each of the equations in the model.

In Chapter 19, we consider the so-called identification problem. If in a system of si-
multaneous equations containing two or more equations it is not possible to obtain numer-
ical values of each parameter in each equation because the equations are observationally
indistinguishable, or look too much like one another, then we have the identification

4
Simultaneous-
Equation Models 
and Time Series
Econometrics
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problem. Thus, in the regression of quantity Q on price P, is the resulting equation a de-
mand function or a supply function (for Q and P enter into both functions)? Therefore, if
we have data on Q and P only and no other information, it will be difficult if not impossi-
ble to identify the regression as the demand or supply function. It is essential to resolve the
identification problem before we proceed to estimation because if we do not know what we
are estimating, estimation per se is meaningless. In Chapter 19 we offer various methods of
solving the identification problem.

In Chapter 20, we consider several estimation methods that are designed specifically for
estimating the simultaneous-equation models and consider their merits and limitations.
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Chapter 18
Simultaneous-Equation
Models
In this and the following two chapters we discuss the simultaneous-equation models. In
particular, we discuss their special features, their estimation, and some of the statistical
problems associated with them.

18.1 The Nature of Simultaneous-Equation Models

In Parts 1 to 3 of this text we were concerned exclusively with single-equation models, i.e.,
models in which there was a single dependent variable Y and one or more explanatory vari-
ables, the X ’s. In such models the emphasis was on estimating and/or predicting the aver-
age value of Y conditional upon the fixed values of the X variables. The cause-and-effect
relationship, if any, in such models therefore ran from the X ’s to the Y.

But in many situations, such a one-way or unidirectional cause-and-effect relationship is
not meaningful. This occurs if Y is determined by the X ’s, and some of the X ’s are, in turn,
determined by Y. In short, there is a two-way, or simultaneous, relationship between Y and
(some of) the X ’s, which makes the distinction between dependent and explanatory vari-
ables of dubious value. It is better to lump together a set of variables that can be determined
simultaneously by the remaining set of variables—precisely what is done in simultaneous-
equation models. In such models there is more than one equation—one for each of the
mutually, or jointly, dependent or endogenous variables.1 And unlike the single-equation
models, in the simultaneous-equation models one may not estimate the parameters of a
single equation without taking into account information provided by other equations in the
system.

What happens if the parameters of each equation are estimated by applying, say, the
method of ordinary least squares (OLS), disregarding other equations in the system? Recall
that one of the crucial assumptions of the method of OLS is that the explanatory X variables
are either nonstochastic or, if stochastic (random), distributed independently of the sto-
chastic disturbance term. If neither of these conditions is met, then, as shown later, the
least-squares estimators are not only biased but also inconsistent; that is, as the sample size

1In the context of the simultaneous-equation models, the jointly dependent variables are called
endogenous variables and the variables that are truly nonstochastic or can be so regarded are
called the exogenous, or predetermined, variables. (More on this in Chapter 19.)
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increases indefinitely, the estimators do not converge to their true (population) values.
Thus, in the following hypothetical system of equations,2

Y1i = β10 + β12Y2i + γ11 X1i + u1i (18.1.1)

Y2i = β20 + β21Y1i + γ21 X1i + u2i (18.1.2)

where Y1 and Y2 are mutually dependent, or endogenous, variables and X1 is an exogenous
variable and where u1 and u2 are the stochastic disturbance terms, the variables Y1 and Y2

are both stochastic. Therefore, unless it can be shown that the stochastic explanatory vari-
able Y2 in Eq. (18.1.1) is distributed independently of u1 and the stochastic explanatory
variable Y1 in Eq. (18.1.2) is distributed independently of u2, application of the classical
OLS to these equations individually will lead to inconsistent estimates.

In the remainder of this chapter we give a few examples of simultaneous-equation mod-
els and show the bias involved in the direct application of the least-squares method to such
models. After discussing the so-called identification problem in Chapter 19, in Chapter 20
we discuss some of the special methods developed to handle the simultaneous-equation
models.

18.2 Examples of Simultaneous-Equation Models

2These economical but self-explanatory notations will be generalized to more than two equations in
Chapter 19.

EXAMPLE 18.1
Demand-and-
Supply Model

As is well known, the price P of a commodity and the quantity Q sold are determined by
the intersection of the demand-and-supply curves for that commodity. Thus, assuming for
simplicity that the demand-and-supply curves are linear and adding the stochastic distur-
bance terms u1 and u2, we may write the empirical demand-and-supply functions as:

Demand function: Qd
t = α0 + α1 Pt + u1t α1 < 0 (18.2.1)

Supply function: Qs
t = β0 + β1 Pt + u2t β1 > 0 (18.2.2)

Equilibrium condition: Qd
t = Qs

t

where Qd = quantity demanded
Qs = quantity supplied

t = time

and the α’s and β’s are the parameters. A priori, α1 is expected to be negative (down-
ward-sloping demand curve), and β1 is expected to be positive (upward-sloping supply
curve).

Now it is not too difficult to see that P and Q are jointly dependent variables. If, for
example, u1t in Eq. (18.2.1) changes because of changes in other variables affecting Qd

t
(such as income, wealth, and tastes), the demand curve will shift upward if u1t is positive
and downward if u1t is negative. These shifts are shown in Figure 18.1.

As the figure shows, a shift in the demand curve changes both P and Q. Similarly, a
change in u2t (because of strikes, weather, import or export restrictions, etc.) will shift
the supply curve, again affecting both P and Q. Because of this simultaneous dependence
between Q and P, u1t and Pt in Eq. (18.2.1) and u2t and Pt in Eq. (18.2.2) cannot be
independent. Therefore, a regression of Q on P as in Eq. (18.2.1) would violate an
important assumption of the classical linear regression model, namely, the assumption of
no correlation between the explanatory variable(s) and the disturbance term.
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EXAMPLE 18.2
Keynesian Model
of Income
Determination

Consider the simple Keynesian model of income determination:

Consumption function: Ct = β0 + β1Yt + ut 0 < β1 < 1 (18.2.3)

Income identity: Yt = C t + It ( = S t) (18.2.4)

where C = consumption expenditure
Y = income
I = investment (assumed exogenous)
S = savings
t = time
u = stochastic disturbance term

β0 and β1 = parameters

The parameter β1 is known as the marginal propensity to consume (MPC) (the amount
of extra consumption expenditure resulting from an extra dollar of income). From eco-
nomic theory, β1 is expected to lie between 0 and 1. Equation (18.2.3) is the (stochastic)
consumption function; and Eq. (18.2.4) is the national income identity, signifying that total
income is equal to total consumption expenditure plus total investment expenditure, it
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FIGURE 18.1 Interdependence of price and quantity.

(Continued)

EXAMPLE 18.1
(Continued)
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being understood that total investment expenditure is equal to total savings. Diagrammat-
ically, we have Figure 18.2.

From the postulated consumption function and Figure 18.2 it is clear that C and Y
are interdependent and that Yt in Eq. (18.2.3) is not expected to be independent of the
disturbance term because when ut shifts (because of a variety of factors subsumed in the
error term), then the consumption function also shifts, which, in turn, affects Yt. Therefore,
once again the classical least-squares method is inapplicable to Eq. (18.2.3). If applied, the
estimators thus obtained will be inconsistent, as we shall show later.

EXAMPLE 18.2
(Continued)
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FIGURE 18.2
Keynesian model
of income
determination.

EXAMPLE 18.3
Wage–Price
Models

Consider the following Phillips-type model of money-wage and price determination:

Ẇt = α0 + α1UNt + α2 Ṗ t + u1t (18.2.5)

Ṗ t = β0 + β1Ẇt + β2 Ṙ t + β3Ṁt + u2t (18.2.6)

where Ẇ = rate of change of money wages
UN = unemployment rate, %

Ṗ = rate of change of prices
Ṙ = rate of change of cost of capital
Ṁ = rate of change of price of imported raw material
t = time

u1, u2 = stochastic disturbances

Since the price variable Ṗ enters into the wage equation and the wage variable Ẇ enters
into the price equation, the two variables are jointly dependent. Therefore, these stochas-
tic explanatory variables are expected to be correlated with the relevant stochastic distur-
bances, once again rendering the classical OLS method inapplicable to estimate the
parameters of the two equations individually.
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EXAMPLE 18.4
The IS Model of
Macroeconomics

The celebrated IS, or goods market equilibrium, model of macroeconomics3 in its non-
stochastic form can be expressed as:

Consumption function: Ct = β0 + β1Ydt 0 < β1 < 1 (18.2.7)

Tax function: Tt = α0 + α1Yt 0 < α1 < 1 (18.2.8)

Investment function: It = γ0 + γ1rt (18.2.9)

Definition: Ydt = Yt − Tt (18.2.10)

Government expenditure: Gt = Ḡ (18.2.11)

National income identity: Yt = Ct + It + Gt (18.2.12)

where Y = national income
C = consumption spending
I = planned or desired net investment

Ḡ = given level of government expenditure
T = taxes
Yd = disposable income

r = interest rate

If you substitute Eqs. (18.2.10) and (18.2.8) into Eq. (18.2.7) and substitute the result-
ing equation for C and Eqs. (18.2.9) and (18.2.11) into Eq. (18.2.12), you should obtain
the IS equation:

Yt = π0 + π1rt (18.2.13)

where π0 = β0 − α0β1 + γ0 + Ḡ
1 − β1(1 − α1)

(18.2.14)
π1 = 1

1 − β1(1 − α1)

Equation (18.2.13) is the equation of the IS, or goods market equilibrium, that is, it gives
the combinations of the interest rate and level of income such that the goods market
clears or is in equilibrium. Geometrically, the IS curve is shown in Figure 18.3.

3“The goods market equilibrium schedule, or IS schedule, shows combinations of interest rates and
levels of output such that planned spending equals income.’’ See Rudiger Dornbusch and Stanley
Fischer, Macroeconomics, 3d ed., McGraw-Hill, New York, 1984, p. 102. Note that for simplicity we
have assumed away the foreign trade sector.
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What would happen if we were to estimate, say, the consumption function (18.2.7) in
isolation? Could we obtain unbiased and/or consistent estimates of β0 and β1? Such a
result is unlikely because consumption depends on disposable income, which depends on
national income Y, but the latter depends on r and Ḡ as well as the other parameters
entering in π0. Therefore, unless we take into account all these influences, a simple
regression of C on Yd is bound to give biased and/or inconsistent estimates of β0 and β1.

EXAMPLE 18.4
(Continued)

EXAMPLE 18.5
The LM Model

The other half of the famous IS–LM paradigm is the LM, or money market equilibrium, re-
lation, which gives the combinations of the interest rate and level of income such that the
money market is cleared, that is, the demand for money is equal to its supply. Alge-
braically, the model, in the nonstochastic form, may be expressed as:

Money demand function: Md
t = a + bYt − crt (18.2.15)

Money supply function: Ms
t = M̄ (18.2.16)

Equilibrium condition: Md
t = Ms

t (18.2.17)

where Y = income, r = interest rate, and M̄ = assumed level of money supply, say,
determined by the Fed.

Equating the money demand and supply functions and simplifying, we obtain the LM
equation:

Yt = λ0 + λ1M̄ + λ2rt (18.2.18)

where
λ0 = −a/b

λ1 = 1/b (18.2.19)
λ2 = c/b

For a given M = M̄, the LM curve representing the relation (18.2.18) is as shown in
Figure 18.4.

The IS and LM curves show, respectively, that a whole array of interest rates is consis-
tent with goods market equilibrium and a whole array of interest rates is compatible with
equilibrium in the money market. Of course, only one interest rate and one level of
income will be consistent simultaneously with the two equilibria. To obtain these, all that
needs to be done is to equate Eqs. (18.2.13) and (18.2.18). In Exercise 18.4 you are asked
to show the level of the interest rate and income that is simultaneously compatible with
the goods and money market equilibrium.

In
te
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LM(M = M)

Income
Y

rFIGURE 18.4
The LM curve.

guj75772_ch18.qxd  28/08/2008  06:21 PM  Page 678



Chapter 18 Simultaneous-Equation Models 679

18.3 The Simultaneous-Equation Bias:
Inconsistency of OLS Estimators

As stated previously, the method of least squares may not be applied to estimate a single
equation embedded in a system of simultaneous equations if one or more of the explana-
tory variables are correlated with the disturbance term in that equation because the estima-
tors thus obtained are inconsistent. To show this, let us revert to the simple Keynesian

EXAMPLE 18.6
Econometric
Models

An extensive use of simultaneous-equation models has been made in the econometric
models built by several econometricians. An early pioneer in this field was Professor
Lawrence Klein of the Wharton School of the University of Pennsylvania. His initial model,
known as Klein’s model I, is as follows:

Consumption function: Ct = β0 + β1 Pt + β2(W + W ′)t + β3 Pt−1 + u1t

Investment function: It = β4 + β5 Pt + β6 Pt−1 + β7K t−1 + u2t

Demand for labor: Wt = β8 + β9(Y + T − W ′)t

+β10(Y + T − W ′)t−1 + β11t + u3t

Identity: Yt + Tt = Ct + It + Gt

(18.2.20)

Identity: Yt = W ′
t + Wt + Pt

Identity: K t = K t−1 + It

where C = consumption expenditure
I = investment expenditure

G = government expenditure
P = profits

W = private wage bill
W ′ = government wage bill

K = capital stock
T = taxes
Y = income after tax
t = time

u1, u2, and u3 = stochastic disturbances4

In the preceding model the variables C, I, W, Y, P, and K are treated as jointly dependent,
or endogenous, variables and the variables Pt−1, K t−1, and Yt−1 are treated as predeter-
mined.5 In all, there are six equations (including the three identities) to study the interde-
pendence of six endogenous variables.

In Chapter 20 we shall see how such econometric models are estimated. For the time
being, note that because of the interdependence among the endogenous variables, in
general they are not independent of the stochastic disturbance terms, which therefore
makes it inappropriate to apply the method of OLS to an individual equation in the sys-
tem. As shown in Section 18.3, the estimators thus obtained are inconsistent; they do not
converge to their true population values even when the sample size is very large.

4L. R. Klein, Economic Fluctuations in the United States, 1921–1941, John Wiley & Sons, New York, 1950.
5The model builder will have to specify which of the variables in a model are endogenous and which
are predetermined. Kt−1 and Yt−1 are predetermined because at time t their values are known. (More
on this in Chapter 19.)
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model of income determination given in Example 18.2. Suppose that we want to estimate
the parameters of the consumption function (18.2.3). Assuming that E(ut ) = 0,
E(u2

t ) = σ 2, E(ut ut+ j ) = 0 (for j �= 0), and cov ( It , ut ) = 0, which are the assumptions of
the classical linear regression model, we first show that Yt and ut in (18.2.3) are correlated
and then prove that β̂1 is an inconsistent estimator of β1.

To prove that Yt and ut are correlated, we proceed as follows. Substitute Eq. (18.2.3) into
Eq. (18.2.4) to obtain

Yt = β0 + β1Yt + ut + It

that is,

Yt = β0

1 − β1
+ 1

1 − β1
It + 1

1 − β1
ut (18.3.1)

Now

E(Yt ) = β0

1 − β1
+ 1

1 − β1
It (18.3.2)

where use is made of the fact that E(ut ) = 0 and that It being exogenous, or predetermined
(because it is fixed in advance), has as its expected value It .

Therefore, subtracting Eq. (18.3.2) from Eq. (18.3.1) results in

Yt − E(Yt ) = ut

1 − β1
(18.3.3)

Moreover,

ut − E(ut ) = ut (Why?) (18.3.4)
whence

cov (Yt , ut ) = E[Yt − E(Yt )][ut − E(ut )]

= E
(
u2

t

)
1 − β1

from Eqs. (18.3.3) and (18.3.4) (18.3.5)

= σ 2

1 − β1

Since σ 2 is positive by assumption (why?), the covariance between Y and u given in
Eq. (18.3.5) is bound to be different from zero.6 As a result, Yt and ut in Eq. (18.2.3) are ex-
pected to be correlated, which violates the assumption of the classical linear regression
model that the disturbances are independent or at least uncorrelated with the explanatory
variables. As noted previously, the OLS estimators in this situation are inconsistent.

To show that the OLS estimator β̂1 is an inconsistent estimator of β1 because of corre-
lation between Yt and ut , we proceed as follows:

β̂1 =
∑

(Ct − C̄)(Yt − Ȳ )∑
(Yt − Ȳ )2

=
∑

ct yt∑
y2

t
(18.3.6)

=
∑

Ct yt∑
y2

t

6It will be greater than zero as long as β1, the MPC, lies between 0 and 1, and it will be negative if β1

is greater than unity. Of course, a value of MPC greater than unity would not make much economic
sense. In reality therefore the covariance between Yt and ut is expected to be positive.
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where the lowercase letters, as usual, indicate deviations from the (sample) mean values.
Substituting for Ct from Eq. (18.2.3), we obtain

β̂1 =
∑

(β0 + β1Yt + ut )yt∑
y2

t
(18.3.7)

= β1 +
∑

yt ut∑
y2

t

where in the last step use is made of the fact that 
∑

yt = 0 and (
∑

Yt yt/
∑

y2
t ) = 1

(why?).
If we take the expectation of Eq. (18.3.7) on both sides, we obtain

E(β̂1) = β1 + E

[∑
yt ut∑
y2

t

]
(18.3.8)

Unfortunately, we cannot evaluate E(
∑

yt ut/
∑

y2
t ) since the expectations operator is a lin-

ear operator. [Note: E( A/B) �= E( A)/E(B).] But intuitively it should be clear that unless
the term (

∑
yt ut/

∑
y2

t ) is zero, β̂1 is a biased estimator of β1. But have we not shown in
Eq. (18.3.5) that the covariance between Y and u is nonzero and therefore would β̂1 not be bi-
ased? The answer is, not quite, since cov (Yt , ut ), a population concept, is not quite

∑
yt ut ,

which is a sample measure, although as the sample size increases indefinitely the latter will
tend toward the former. But if the sample size increases indefinitely, then we can resort to the
concept of consistent estimator and find out what happens to β̂1 as n, the sample size,
increases indefinitely. In short, when we cannot explicitly evaluate the expected value of an
estimator, as in Eq. (18.3.8), we can turn our attention to its behavior in the large sample.

Now an estimator is said to be consistent if its probability limit,7 or plim for short, is
equal to its true (population) value. Therefore, to show that β̂1 of Eq. (18.3.7) is inconsis-
tent, we must show that its plim is not equal to the true β1. Applying the rules of probability
limit to Eq. (18.3.7), we obtain:8

plim (β̂1) = plim (β1) + plim

(∑
yt ut∑
y2

t

)

= plim (β1) + plim

(∑
yt ut

/
n∑

y2
t

/
n

)
(18.3.9)

= β1 + plim
(∑

yt ut

/
n
)

plim
(∑

y2
t

/
n
)

where in the second step we have divided 
∑

yt ut and 
∑

y2
t by the total number of obser-

vations in the sample n so that the quantities in the parentheses are now the sample covari-
ance between Y and u and the sample variance of Y, respectively.

In words, Eq. (18.3.9) states that the probability limit of β̂1 is equal to true β1 plus the ratio
of the plim of the sample covariance between Y and u to the plim of the sample variance of Y.
Now as the sample size n increases indefinitely, one would expect the sample covariance be-
tween Y and u to approximate the true population covariance E[Yt − E(Yt )][ut − E(ut )],
which from Eq. (18.3.5) is equal to [σ 2/(1 − β1)]. Similarly, as n tends to infinity, the sample

7See Appendix A for the definition of probability limit.
8As stated in Appendix A, the plim of a constant (for example, β1) is the same constant and the
plim of (A/B) = plim (A)/plim (B). Note, however, that E(A/B) �= E(A)/E(B). 
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682 Part Four Simultaneous-Equation Models and Time Series Econometrics

variance of Y will approximate its population variance, say σ 2
Y . Therefore, Eq. (18.3.9) may

be written as

plim (β̂1) = β1 + σ 2/(1 − β1)

σ 2
Y

= β1 + 1

1 − β1

(
σ 2

σ 2
Y

) (18.3.10)

Given that 0 < β1 < 1 and that σ 2 and σ 2
Y are both positive, it is obvious from Eq. (18.3.10)

that plim (β̂1) will always be greater than β1; that is, β̂1 will overestimate the true β1.9 In
other words, β̂1 is a biased estimator, and the bias will not disappear no matter how large
the sample size.

18.4 The Simultaneous-Equation Bias: A Numerical Example

To demonstrate some of the points made in the preceding section, let us return to the sim-
ple Keynesian model of income determination given in Example 18.2 and carry out the fol-
lowing Monte Carlo study.10 Assume that the values of investment I are as shown in
column 3 of Table 18.1. Further assume that

E(ut ) = 0

E(ut ut+ j ) = 0 ( j �= 0)

var (ut ) = σ 2 = 0.04

cov (ut , It ) = 0

The ut thus generated are shown in column 4.
For the consumption function (18.2.3) assume that the values of the true parameters are

known and are β0 = 2 and β1 = 0.8.

From the assumed values of β0 and β1 and the generated values of ut we can generate
the values of income Yt from Eq. (18.3.1), which are shown in column 1 of Table 18.1.
Once Yt are known, and knowing β0, β1, and ut , one can easily generate the values of con-
sumption Ct from Eq. (18.2.3). The C’s thus generated are given in column 2.

Since the true β0 and β1 are known, and since our sample errors are exactly the same as
the “true’’ errors (because of the way we designed the Monte Carlo study), if we use the
data of Table 18.1 to regress Ct on Yt we should obtain β0 = 2 and β1 = 0.8, if OLS were
unbiased. But from Eq. (18.3.7) we know that this will not be the case if the regressor Yt

and the disturbance ut are correlated. Now it is not too difficult to verify from our data that
the (sample) covariance between Yt and ut is 

∑
yt ut = 3.8 and that 

∑
y2

t = 184. Then, as
Eq. (18.3.7) shows, we should have

β̂1 = β1 +
∑

yt ut∑
y2

t

= 0.8 + 3.8

184

(18.4.1)

= 0.82065

That is, β̂1 is upward-biased by 0.02065.

9In general, however, the direction of the bias will depend on the structure of the particular model
and the true values of the regression coefficients.
10This is borrowed from Kenneth J. White, Nancy G. Horsman, and Justin B. Wyatt, SHAZAM: Computer
Handbook for Econometrics for Use with Basic Econometrics, McGraw-Hill, New York, 1985, pp. 131–134.
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Now let us regress Ct on Yt , using the data given in Table 18.1. The regression results
are

Ĉ t = 1.4940 + 0.82065Yt

se = (0.35413) (0.01434) (18.4.2)

t = (4.2188) (57.209) R2 = 0.9945

As expected, the estimated β1 is precisely the one predicted by Eq. (18.4.1). In passing,
note that the estimated β0 too is biased.

In general, the amount of the bias in β̂1 depends on β1, σ 2 and var (Y) and, in particular,
on the degree of covariance between Y and u.11 As Kenneth White et al. note, “This is what
simultaneous equation bias is all about. In contrast to single equation models, we can no
longer assume that variables on the right hand side of the equation are uncorrelated with the
error term.’’12 Bear in mind that this bias remains even in large samples.

In view of the potentially serious consequences of applying OLS in simultaneous-
equation models, is there a test of simultaneity that can tell us whether in a given instance
we have the simultaneity problem? One version of the Hausman specification test can be
used for this purpose, which we discuss in Chapter 19.

TABLE 18.1 Yt Ct It ut

(1) (2) (3) (4)

18.15697 16.15697 2.0 −0.3686055
19.59980 17.59980 2.0 −0.8004084E-01
21.93468 19.73468 2.2 0.1869357
21.55145 19.35145 2.2 0.1102906
21.88427 19.48427 2.4 −0.2314535E-01
22.42648 20.02648 2.4 0.8529544E-01
25.40940 22.80940 2.6 0.4818807
22.69523 20.09523 2.6 −0.6095481E-01
24.36465 21.56465 2.8 0.7292983E-01
24.39334 21.59334 2.8 0.7866819E-01
24.09215 21.09215 3.0 −0.1815703
24.87450 21.87450 3.0 −0.2509900E-01
25.31580 22.11580 3.2 −0.1368398
26.30465 23.10465 3.2 0.6092946E-01
25.78235 22.38235 3.4 −0.2435298
26.08018 22.68018 3.4 −0.1839638
27.24440 23.64440 3.6 −0.1511200
28.00963 24.40963 3.6 0.1926739E-02
30.89301 27.09301 3.8 0.3786015
28.98706 25.18706 3.8 −0.2588852E-02

Source: Kenneth J. White, Nancy G. Horsman, and Justin B. Wyatt, SHAZAM: Computer Handbook for Econometrics for Use
with Damodar Gujarati: Basic Econometrics, September 1985, p. 132.

11See Eq. (18.3.5).
12Op. cit., pp. 133–134.
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1. In contrast to single-equation models, in simultaneous-equation models more than one
dependent, or endogenous, variable is involved, necessitating as many equations as the
number of endogenous variables.

2. A unique feature of simultaneous-equation models is that the endogenous variable (i.e.,
regressand) in one equation may appear as an explanatory variable (i.e., regressor) in an-
other equation of the system.

3. As a consequence, such an endogenous explanatory variable becomes stochastic and
is usually correlated with the disturbance term of the equation in which it appears as an
explanatory variable.

4. In this situation the classical OLS method may not be applied because the estimators
thus obtained are not consistent, that is, they do not converge to their true population val-
ues no matter how large the sample size.

5. The Monte Carlo example presented in the text shows the nature of the bias involved in
applying OLS to estimate the parameters of a regression equation in which the regres-
sor is correlated with the disturbance term, which is typically the case in simultaneous-
equation models.

6. Since simultaneous-equation models are used frequently, especially in econometric
models, alternative estimating techniques have been developed by various authors.
These are discussed in Chapter 20, after the topic of the identification problem is con-
sidered in Chapter 19, a topic logically prior to estimation.

Summary and
Conclusions

EXERCISES Questions
18.1. Develop a simultaneous-equation model for the supply of and demand for dentists

in the United States. Specify the endogenous and exogenous variables in the model.

18.2. Develop a simple model of the demand for and supply of money in the United
States and compare your model with those developed by K. Brunner and A. H.
Meltzer* and R. Tiegen.†

18.3. a. For the demand-and-supply model of Example 18.1, obtain the expression for
the probability limit of α̂1.

b. Under what conditions will this probability limit be equal to the true α1?

18.4. For the IS-LM model discussed in the text, find the level of interest rate and income
that is simultaneously compatible with the goods and money market equilibrium.

18.5. To study the relationship between inflation and yield on common stock, Bruno
Oudet‡ used the following model:

Rbt = α1 + α2 Rst + α3 Rbt−1 + α4Lt + α5Yt + α6NISt + α7 It + u1t

Rst = β1 + β2 Rbt + β3 Rbt−1 + β4Lt + β5Yt + β6NISt + β7 Et + u2t

*“Some Further Evidence on Supply and Demand Functions for Money,’’ Journal of Finance, vol. 19,
May 1964, pp. 240–283.
†“Demand and Supply Functions for Money in the United States,’’ Econometrica, vol. 32, no. 4, 
October 1964, pp. 476–509.
‡Bruno A. Oudet, “The Variation of the Return on Stocks in Periods of Inflation,’’ Journal of Financial
and Quantitative Analysis, vol. 8, no. 2, March 1973, pp. 247–258.
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where L = real per capita monetary base
Y = real per capita income
I = the expected rate of inflation

NIS = a new issue variable
E = expected end-of-period stock returns, proxied by lagged stock price ratios

Rbt = bond yield
Rst = common stock returns

a. Offer a theoretical justification for this model and see if your reasoning agrees
with that of Oudet.

b. Which are the endogenous variables in the model? Which are the exogenous 
variables?

c. How would you treat the lagged Rbt—endogenous or exogenous?

18.6. In their article, “A Model of the Distribution of Branded Personal Products in
Jamaica,’’* John U. Farley and Harold J. Levitt developed the following model (the
personal products considered were shaving cream, skin cream, sanitary napkins,
and toothpaste):

Y1i = α1 + β1Y2i + β2Y3i + β3Y4i + u1i

Y2i = α2 + β4Y1i + β5Y5i + γ1 X1i + γ2 X2i + u2i

Y3i = α3 + β6Y2i + γ3 X3i + u3i

Y4i = α4 + β7Y2i + γ4 X4i + u4i

Y5i = α5 + β8Y2i + β9Y3i + β10Y4i + u5i

where Y1 = percent of stores stocking the product
Y2 = sales in units per month
Y3 = index of direct contact with importer and manufacturer for the product
Y4 = index of wholesale activity in the area
Y5 = index of depth of brand stocking for the product (i.e., average number of

brands of the product stocked by stores carrying the product)
X1 = target population for the product
X2 = income per capita in the parish where the area is
X3 = distance from the population center of gravity to Kingston
X4 = distance from population center to nearest wholesale town

a. Can you identify the endogenous and exogenous variables in the preceding
model?

b. Can one or more equations in the model be estimated by the method of least
squares? Why or why not?

18.7. To study the relationship between advertising expenditure and sales of cigarettes,
Frank Bass used the following model:†

Y1t = α1 + β1Y3t + β2Y4t + γ1 X1t + γ2 X2t + u1t

Y2t = α2 + β3Y3t + β4Y4t + γ3 X1t + γ4 X2t + u2t

Y3t = α3 + β5Y1t + β6Y2t + u3t

Y4t = α4 + β7Y1t + β8Y2t + u4t

*Journal of Marketing Research, November 1968, pp. 362–368.
†“A Simultaneous Equation Regression Study of Advertising and Sales of Cigarettes,’’ Journal of Mar-
keting Research, vol. 6, August 1969, pp. 291–300.
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where Y1 = logarithm of sales of filter cigarettes (number of cigarettes) divided by
population over age 20

Y2 = logarithm of sales of nonfilter cigarettes (number of cigarettes) divided by
population over age 20

Y3 = logarithm of advertising dollars for filter cigarettes divided by population
over age 20 divided by advertising price index

Y4 = logarithm of advertising dollars for nonfilter cigarettes divided by popula-
tion over age 20 divided by advertising price index

X1 = logarithm of disposable personal income divided by population over age 20
divided by consumer price index

X2 = logarithm of price per package of nonfilter cigarettes divided by consumer
price index

a. In the preceding model the Y ’s are endogenous and the X ’s are exogenous. Why
does the author assume X2 to be exogenous?

b. If X2 is treated as an endogenous variable, how would you modify the preceding
model?

18.8. G. Menges developed the following econometric model for the West German
economy:*

Yt = β0 + β1Yt−1 + β2 It + u1t

It = β3 + β4Yt + β5 Qt + u2t

Ct = β6 + β7Yt + β8Ct−1 + β9 Pt + u3t

Qt = β10 + β11 Qt−1 + β12 Rt + u4t

where Y = national income
I = net capital formation

C = personal consumption
Q = profits
P = cost of living index
R = industrial productivity
t = time
u = stochastic disturbances

a. Which of the variables would you regard as endogenous and which as exogenous?

b. Is there any equation in the system that can be estimated by the single-equation
least-squares method?

c. What is the reason behind including the variable P in the consumption function?

18.9. L. E. Gallaway and P. E. Smith developed a simple model for the United States
economy, which is as follows:†

Yt = Ct + It + Gt

Ct = β1 + β2YDt−1 + β3 Mt + u1t

It = β4 + β5(Yt−1 − Yt−2) + β6 Zt−1 + u2t

Gt = β7 + β8Gt−1 + u3t

*G. Menges, “Ein Ökonometriches Modell der Bundesrepublik Deutschland (Vier Strukturgleichungen),’’
I.F.O. Studien, vol. 5, 1959, pp. 1–22.
†“A Quarterly Econometric Model of the United States,’’ Journal of American Statistical Association,
vol. 56, 1961, pp. 379–383.
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where Y = gross national product
C = personal consumption expenditure
I = gross private domestic investment

G = government expenditure plus net foreign investment
YD = disposable, or after-tax, income

M = money supply at the beginning of the quarter
Z = property income before taxes
t = time

u1, u2, and u3 = stochastic disturbances

All variables are measured in the first-difference form.

From the quarterly data from 1948–1957, the authors applied the least-squares
method to each equation individually and obtained the following results:

Ĉt = 0.09 + 0.43YDt−1 + 0.23Mt R2 = 0.23

Ît = 0.08 + 0.43(Yt−1 − Yt−2) + 0.48Zt R2 = 0.40

Ĝt = 0.13 + 0.67Gt−1 R2 = 0.42

a. How would you justify the use of the single-equation least-squares method in
this case?

b. Why are the R2 values rather low?

Empirical Exercises
18.10. Table 18.2 gives you data on Y (gross domestic product), I (gross private domestic

investment), and C (personal consumption expenditure) for the United States for the
period 1970–2006. All data are in 1996 billions of dollars. Assume that C is linearly
related to Y as in the simple Keynesian model of income determination of Exam-
ple 18.2. Obtain OLS estimates of the parameters of the consumption function. Save the
results for another look at the same data using the methods developed in Chapter 20.

18.11. Using the data given in Exercise 18.10, regress gross domestic investment I on
GDP and save the results for further examination in a later chapter.

18.12. Consider the macroeconomics identity

C + I = Y ( = GDP)

As before, assume that

Ct = β0 + β1Yt + ut

and, following the accelerator model of macroeconomics, let

It = α0 + α1(Yt − Yt−1) + vt

where u and v are error terms. From the data given in Exercise 18.10, estimate the
accelerator model and save the results for further study.

18.13. Supply and demand for gas. Table 18.3, found on the textbook website, gives data
on some of the variables that determine demand for and supply of gasoline in the
U.S. from January 1978 to August 2002.* The variables are: pricegas (cents per

*These data are taken from the website of Stephen J. Schmidt, Econometrics, McGraw-Hill, New York,
2005. See www.mhhe.com/economics.
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gallon); quantgas (thousands of barrels per day, unleaded); persincome (personal
income, billions of dollars); and car sales (millions of cars per year).

a. Develop a suitable supply-and-demand model for gasoline consumption.

b. Which variables in the model in (a) are endogenous and which are exogenous?

c. If you estimate the demand-and-supply functions that you have developed by
OLS, will your results be reliable? Why or why not?

d. Save the OLS estimates of your demand-and-supply functions for another look
after we discuss Chapter 20.

18.14. Table 18.4, found on the textbook website, gives macroeconomic data on several
variables for the U.S. economy for the quarterly periods 1951–I to 2000–IV.* The
variables are as follows: Year � date; Qtr � quarter; Realgdp � real GDP (billions
of dollars); Realcons � real consumption expenditure; Realinvs � real investment
by private sector; Realgovt � real government expenditure; Realdpi � real dispos-
able personal income; CPI_U � consumer price index; M1 � nominal money
stock; Tbilrate � quarterly average of month-end 90-day T-bill rate; Pop �
population, millions, interpolate of year-end figures using constant growth rate per
quarter; Infl � rate of inflation (first observation is missing); and Realint � expost
real interest rate � Tbilrate–Infl (first observation missing).

Using these data, develop a simple macroeconomic model of the U.S. economy.
You will be asked to estimate this model in Chapter 20.

TABLE 18.2 Personal Consumption Expenditure, Gross Private Domestic Investment, and GDP, United States,
1970–2006 (billions of 1996 dollars)

Observation C I Y Observation C I Y

1970 2,451.9 427.1 3,771.9 1989 4,675.0 926.2 6,981.4
1971 2,545.5 475.7 3,898.6 1990 4,770.3 895.1 7,112.5
1972 2,701.3 532.1 4,105.0 1991 4,778.4 822.2 7,100.5
1973 2,833.8 594.4 4,341.5 1992 4,934.8 889.0 7,336.6
1974 2,812.3 550.6 4,319.6 1993 5,099.8 968.3 7,532.7
1975 2,876.9 453.1 4,311.2 1994 5,290.7 1,099.6 7,835.5
1976 3,035.5 544.7 4,540.9 1995 5,433.5 1,134.0 8,031.7
1977 3,164.1 627.0 4,750.5 1996 5,619.4 1,234.3 8,328.9
1978 3,303.1 702.6 5,015.0 1997 5,831.8 1,387.7 8,703.5
1979 3,383.4 725.0 5,173.4 1998 6,125.8 1,524.1 9,066.9
1980 3,374.1 645.3 5,161.7 1999 6,438.6 1,642.6 9,470.3
1981 3,422.2 704.9 5,291.7 2000 6,739.4 1,735.5 9,817.0
1982 3,470.3 606.0 5,189.3 2001 6,910.4 1,598.4 9,890.7
1983 3,668.6 662.5 5,423.8 2002 7,099.3 1,557.1 10,048.8
1984 3,863.3 857.7 5,813.6 2003 7,295.3 1,613.1 10,301.0
1985 4,064.0 849.7 6,053.7 2004 7,561.4 1,770.2 10,675.8
1986 4,228.9 843.9 6,263.6 2005 7,803.6 1,869.3 11,003.4
1987 4,369.8 870.0 6,475.1 2006 8,044.1 1,919.5 11,319.4
1988 4,546.9 890.5 6,742.7

Notes: C � personal consumption expenditure.
I � gross private domestic investment.
Y � gross domestic product.

Source: Economic Report of the President, 2008, Table B-2.

*These data are originally from the Department of Commerce, Bureau of Economic Analysis, and from
www.economagic.com, and are reproduced from William H. Greene, Econometric Analysis, 6th ed.,
2008, Table F5.1, p.1083.
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In this chapter we consider the nature and significance of the identification problem. The
crux of the identification problem is as follows: Recall the demand-and-supply model
introduced in Section 18.2. Suppose that we have time series data on Q and P only and no
additional information (such as income of the consumer, price prevailing in the previous
period, and weather condition). The identification problem then consists in seeking an
answer to this question: Given only the data on P and Q, how do we know whether we are
estimating the demand function or the supply function? Alternatively, if we think we are
fitting a demand function, how do we guarantee that it is, in fact, the demand function that
we are estimating and not something else?

A moment’s reflection will reveal that an answer to the preceding question is necessary
before one proceeds to estimate the parameters of our demand function. In this chapter we
shall show how the identification problem is resolved. We first introduce a few notations
and definitions and then illustrate the identification problem with several examples. This is
followed by the rules that may be used to find out whether an equation in a simultaneous-
equation model is identified, that is, whether it is the relationship that we are actually esti-
mating, be it the demand or supply function or something else.

19.1 Notations and Definitions

To facilitate our discussion, we introduce the following notations and definitions.
The general M equations model in M endogenous, or jointly dependent, variables may

be written as Eq. (19.1.1):

Y1t = β12Y2t + β13Y3t + · · · + β1M YMt

+ γ11 X1t + γ12 X2t + · · · + γ1K X K t + u1t

Y2t = β21Y1t + β23Y3t + · · · + β2M YMt

+ γ21 X1t + γ22 X2t + · · · + γ2K X K t + u2t

Y3t = β31Y1t + β32Y2t + · · · + β3M YMt

+ γ31 X1t + γ32 X2t + · · · + γ3K X K t + u3t
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

YMT = βM1Y1t + βM2Y2t + · · · + βM, M−1YM−1,t

+ γM1 X1t + γM2 X2t + · · · + γM K X K t + uMt

(19.1.1)

Chapter 19
The Identification
Problem
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690 Part Four Simultaneous-Equation Models and Time Series Econometrics

where Y1, Y2, . . . , YM = M endogenous, or jointly dependent, variables
X1, X2, . . . , X K = K predetermined variables (one of these X variables may take a

value of unity to allow for the intercept term in each equation)
u1, u2, . . . , uM = M stochastic disturbances

t = 1, 2, . . . , T = total number of observations
β’s = coefficients of the endogenous variables
γ ’s = coefficients of the predetermined variables

In passing, note that not each and every variable need appear in each equation. As a matter
of fact, we see in Section 19.2 that this must not be the case if an equation is to be identified.

As Eq. (19.1.1) shows, the variables entering a simultaneous-equation model are of two
types: endogenous, that is, those (whose values are) determined within the model; and
predetermined, that is, those (whose values are) determined outside the model. The endoge-
nous variables are regarded as stochastic, whereas the predetermined variables are treated
as nonstochastic.

The predetermined variables are divided into two categories: exogenous, current as well
as lagged, and lagged endogenous. Thus, X1t is a current (present-time) exogenous variable,
whereas X1(t−1) is a lagged exogenous variable, with a lag of one time period. Y(t−1) is a
lagged endogenous variable with a lag of one time period, but since the value of Y1(t−1) is
known at the current time t, it is regarded as nonstochastic, hence, a predetermined variable.1

In short, current exogenous, lagged exogenous, and lagged endogenous variables are deemed
predetermined; their values are not determined by the model in the current time period.

It is up to the model builder to specify which variables are endogenous and which are
predetermined. Although (noneconomic) variables, such as temperature and rainfall, are
clearly exogenous or predetermined, the model builder must exercise great care in classify-
ing economic variables as endogenous or predetermined: He or she must defend the classi-
fication on a priori or theoretical grounds. However, later in the chapter we provide a
statistical test of exogeneity.

The equations appearing in (19.1.1) are known as the structural, or behavioral, equa-
tions because they may portray the structure (of an economic model) of an economy or the
behavior of an economic agent (e.g., consumer or producer). The β’s and γ’s are known as
the structural parameters or coefficients.

From the structural equations one can solve for the M endogenous variables and derive
the reduced-form equations and the associated reduced-form coefficients. A reduced-
form equation is one that expresses an endogenous variable solely in terms of the
predetermined variables and the stochastic disturbances. To illustrate, consider the
Keynesian model of income determination encountered in Chapter 18:

Consumption function: Ct = β0 + β1Yt + ut 0 < β1 < 1 (18.2.3)
Income identity: Yt = Ct + It (18.2.4)

In this model C (consumption) andY (income) are the endogenous variables and I (investment
expenditure) is treated as an exogenous variable. Both these equations are structural equations,
Eq. (18.2.4) being an identity. As usual, the MPC β1 is assumed to lie between 0 and 1.

If Eq. (18.2.3) is substituted into Eq. (18.2.4), we obtain, after simple algebraic
manipulation,

Yt = �0 + �1 It + wt (19.1.2)

1It is assumed implicitly here that the stochastic disturbances, the u’s, are serially uncorrelated. If this
is not the case, Yt−1 will be correlated with the current period disturbance term ut . Hence, we cannot
treat it as predetermined.
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where

Equation (19.1.2) is a reduced-form equation; it expresses the endogenous variable Y
solely as a function of the exogenous (or predetermined) variable I and the stochastic distur-
bance term u. �0 and �1 are the associated reduced-form coefficients. Notice that these
reduced-form coefficients are nonlinear combinations of the structural coefficient(s).

Substituting the value of Y from Eq. (19.1.2) into C of Eq. (18.2.3), we obtain another
reduced-form equation:

Ct = �2 + �3 It + wt (19.1.4)

where

�2 = β0

1 − β1
�3 = β1

1 − β1
(19.1.5)

wt = ut

1 − β1

The reduced-form coefficients, such as �1 and �3, are also known as impact, or short-
run, multipliers, because they measure the immediate impact on the endogenous variable
of a unit change in the value of the exogenous variable.2 If in the preceding Keynesian
model the investment expenditure is increased by, say, $1 and if the MPC is assumed to be
0.8, then from Eq. (19.1.3) we obtain �1 = 5. This result means that increasing the invest-
ment by $1 will immediately (i.e., in the current time period) lead to an increase in income
of $5, that is, a fivefold increase. Similarly, under the assumed conditions, Eq. (19.1.5)
shows that �3 = 4, meaning that $1 increase in investment expenditure will lead immedi-
ately to $4 increase in consumption expenditure.

In the context of econometric models, equations such as Eq. (18.2.4) or Qd
t = Qs

t
(quantity demanded equal to quantity supplied) are known as the equilibrium conditions.
Identity (18.2.4) states that aggregate income Y must be equal to aggregate consumption
(i.e., consumption expenditure plus investment expenditure). When equilibrium is
achieved, the endogenous variables assume their equilibrium values.3

Notice an interesting feature of the reduced-form equations. Since only the predeter-
mined variables and stochastic disturbances appear on the right sides of these equations,
and since the predetermined variables are assumed to be uncorrelated with the disturbance
terms, the OLS method can be applied to estimate the coefficients of the reduced-form
equations (the �’s). From the estimated reduced-form coefficients one may estimate the
structural coefficients (the β’s), as shown later. This procedure is known as indirect least
squares (ILS), and the estimated structural coefficients are called ILS estimates.

(19.1.3)

�0 = β0

1 − β1

�1 = 1

1 − β1

wt = ut

1 − β1

2In econometric models the exogenous variables play a crucial role. Very often, such variables are
under the direct control of the government. Examples are the rate of personal and corporate taxes,
subsidies, unemployment compensation, etc.
3For details, see Jan Kmenta, Elements of Econometrics, 2d ed., Macmillan, New York, 1986, pp. 723–731.
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We shall study the ILS method in greater detail in Chapter 20. In the meantime, note that
since the reduced-form coefficients can be estimated by the OLS method, and since these co-
efficients are combinations of the structural coefficients, the possibility exists that the
structural coefficients can be “retrieved” from the reduced-form coefficients, and it is in
the estimation of the structural parameters that we may be ultimately interested. How does
one retrieve the structural coefficients from the reduced-form coefficients? The answer is
given in Section 19.2, an answer that brings out the crux of the identification problem.

19.2 The Identification Problem

By the identification problem we mean whether numerical estimates of the parameters of
a structural equation can be obtained from the estimated reduced-form coefficients. If this
can be done, we say that the particular equation is identified. If this cannot be done, then we
say that the equation under consideration is unidentified, or underidentified.

An identified equation may be either exactly (or fully or just) identified or overidentified.
It is said to be exactly identified if unique numerical values of the structural parameters can
be obtained. It is said to be overidentified if more than one numerical value can be obtained
for some of the parameters of the structural equations. The circumstances under which each
of these cases occurs will be shown in the following discussion.

The identification problem arises because different sets of structural coefficients may be
compatible with the same set of data. To put the matter differently, a given reduced-form
equation may be compatible with different structural equations or different hypotheses
(models), and it may be difficult to tell which particular hypothesis (model) we are investi-
gating. In the remainder of this section we consider several examples to show the nature of
the identification problem.

Underidentification
Consider once again the demand-and-supply model (18.2.1) and (18.2.2), together with the
market-clearing, or equilibrium, condition that demand is equal to supply. By the equilib-
rium condition, we obtain

α0 + α1 Pt + u1t = β0 + β1 Pt + u2t (19.2.1)

Solving Eq. (19.2.1), we obtain the equilibrium price

Pt = �0 + vt (19.2.2)

where

�0 = β0 − α0

α1 − β1
(19.2.3)

vt = u2t − u1t

α1 − β1
(19.2.4)

Substituting Pt from Eq. (19.2.2) into Eq. (18.2.1) or (18.2.2), we obtain the following
equilibrium quantity:

Qt = �1 + wt (19.2.5)

where

�1 = α1β0 − α0β1

α1 − β1
(19.2.6)

wt = α1u2t − β1u1t

α1 − β1
(19.2.7)

guj75772_ch19.qxd  27/08/2008  03:26 PM  Page 692



Chapter 19 The Identification Problem 693

Incidentally, note that the error terms vt and wt are linear combinations of the original error
terms u1 and u2.

Equations (19.2.2) and (19.2.5) are reduced-form equations. Now our demand-and-
supply model contains four structural coefficients α0, α1, β0, and β1, but there is no unique
way of estimating them. Why? The answer lies in the two reduced-form coefficients given in
Eqs. (19.2.3) and (19.2.6). These reduced-form coefficients contain all four structural para-
meters, but there is no way in which the four structural unknowns can be estimated from only
two reduced-form coefficients. Recall from high school algebra that to estimate four un-
knowns we must have four (independent) equations, and, in general, to estimate k unknowns
we must have k (independent) equations. Incidentally, if we run the reduced-form regression
(19.2.2) and (19.2.5), we will see that there are no explanatory variables, only the constants,
and these constants will simply give the mean values of P and Q (why?).

What all this means is that, given time series data on P (price) and Q (quantity) and no
other information, there is no way the researcher can guarantee whether he or she is esti-
mating the demand function or the supply function. That is, a given Pt and Qt represent
simply the point of intersection of the appropriate demand-and-supply curves because of
the equilibrium condition that demand is equal to supply. To see this clearly, consider the
scattergram shown in Figure 19.1.

Figure 19.1a gives a few scatterpoints relating Q to P. Each scatterpoint represents the
intersection of a demand and a supply curve, as shown in Figure 19.1b. Now consider a sin-
gle point, such as that shown in Figure 19.1c. There is no way we can be sure which demand-
and-supply curve of a whole family of curves shown in that panel generated that point.
Clearly, some additional information about the nature of the demand-and-supply curves is
needed. For example, if the demand curve shifts over time because of change in income,
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694 Part Four Simultaneous-Equation Models and Time Series Econometrics

tastes, etc., but the supply curve remains relatively stable, as in Figure 19.1d, the scatter-
points trace out a supply curve. In this situation, we say that the supply curve is identified.
By the same token, if the supply curve shifts over time because of changes in weather con-
ditions (in the case of agricultural commodities) or other extraneous factors but the demand
curve remains relatively stable, as in Figure 19.1e, the scatterpoints trace out a demand
curve. In this case, we say that the demand curve is identified.

There is an alternative and perhaps more illuminating way of looking at the identifica-
tion problem. Suppose we multiply Eq. (18.2.1) by λ (0 ≤ λ ≤ 1) and Eq. (18.2.2) by 1 − λ

to obtain the following equations (note: we drop the superscripts on Q):

λQt = λα0 + λα1 Pt + λu1t (19.2.8)

(1 − λ)Qt = (1 − λ)β0 + (1 − λ)β1 Pt + (1 − λ)u2t (19.2.9)

Adding these two equations gives the following linear combination of the original demand-
and-supply equations:

Qt = γ0 + γ1 Pt + wt (19.2.10)

where

γ0 = λα0 + (1 − λ)β0

γ1 = λα1 + (1 − λ)β1 (19.2.11)

wt = λu1t + (1 − λ)u2t

The “bogus,” or “mongrel,” equation (19.2.10) is observationally indistinguishable
from either Eq. (18.2.1) or Eq. (18.2.2) because they involve the regression of Q and P.
Therefore, if we have time series data on P and Q only, any of Eqs. (18.2.1), (18.2.2), or
(19.2.10) may be compatible with the same data. In other words, the same data may be
compatible with the “hypothesis” Eqs. (18.2.1), (18.2.2), or (19.2.10), and there is no way
we can tell which one of these hypotheses we are testing.

For an equation to be identified, that is, for its parameters to be estimated, it must be shown
that the given set of data will not produce a structural equation that looks similar in appearance
to the one in which we are interested. If we set out to estimate the demand function, we must
show that the given data are not consistent with the supply function or some mongrel equation.

Just, or Exact, Identification
The reason we could not identify the preceding demand function or the supply function was
that the same variables P and Q are present in both functions and there is no additional in-
formation, such as that indicated in Figure 19.1d or e. But suppose we consider the follow-
ing demand-and-supply model:

Demand function: Qt = α0 + α1 Pt + α2 It + u1t α1 < 0, α2 > 0 (19.2.12)

Supply function: Qt = β0 + β1 Pt + u2t β1 > 0 (19.2.13)

where I = income of the consumer, an exogenous variable, and all other variables are as
defined previously.

Notice that the only difference between the preceding model and our original demand-
and-supply model is that there is an additional variable in the demand function, namely, in-
come. From economic theory of demand we know that income is usually an important
determinant of demand for most goods and services. Therefore, its inclusion in the demand
function will give us some additional information about consumer behavior. For most com-
modities income is expected to have a positive effect on consumption (α2 > 0).
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Using the market-clearing mechanism, quantity demanded = quantity supplied, we have

α0 + α1 Pt + α2 It + u1t = β0 + β1 Pt + u2t (19.2.14)

Solving Eq. (19.2.14) provides the following equilibrium value of Pt :

Pt = �0 + �1 It + vt (19.2.15)

where the reduced-form coefficients are

�0 = β0 − α0

α1 − β1

�1 = − α2

α1 − β1

(19.2.16)

and

vt = u2t − u1t

α1 − β1

Substituting the equilibrium value of Pt into the preceding demand or supply function, we
obtain the following equilibrium quantity:

Qt = �2 + �3 It + wt (19.2.17)

where

�2 = α1β0 − α0β1

α1 − β1

�3 = − α2β1

α1 − β1

(19.2.18)

and

wt = α1u2t − β1u1t

α1 − β1

Since Eqs. (19.2.15) and (19.2.17) are both reduced-form equations, the ordinary least
squares (OLS) method can be applied to estimate their parameters. Now the demand-and-
supply model (19.2.12) and (19.2.13) contains five structural coefficients—α0, α1, α2, β0

and β1. But there are only four equations to estimate them, namely, the four reduced-form
coefficients �0, �1, �2, and �3 given in Eqs. (19.2.16) and (19.2.18). Hence, unique so-
lution of all the structural coefficients is not possible. But it can be readily shown that the
parameters of the supply function can be identified (estimated) because

But there is no unique way of estimating the parameters of the demand function; therefore,
it remains underidentified. Incidentally, note that the structural coefficient β1 is a nonlinear
function of the reduced-form coefficients, which poses some problems when it comes to es-
timating the standard error of the estimated β1, as we shall see in Chapter 20.

To verify that the demand function (19.2.12) cannot be identified (estimated), let us mul-
tiply it by λ (0 ≤ λ ≤ 1) and (19.2.13) by 1 − λ and add them up to obtain the following
“mongrel” equation:

Qt = γ0 + γ1 Pt + γ2 It + wt (19.2.20)

(19.2.19)

β0 = �2 − β1�0

β1 = �3

�1
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where

γ0 = λα0 + (1 − λ)β0

γ1 = λα1 + (1 − λ)β1 (19.2.21)

γ2 = λα2

and

wt = λu1t + (1 − λ)u2t

Equation (19.2.20) is observationally indistinguishable from the demand function (19.2.12)
although it is distinguishable from the supply function (19.2.13), which does not contain the
variable I as an explanatory variable. Hence, the demand function remains unidentified.

Notice an interesting fact: It is the presence of an additional variable in the demand
function that enables us to identify the supply function! Why? The inclusion of the
income variable in the demand equation provides us some additional information about the
variability of the function, as indicated in Figure 19.1d. The figure shows how the inter-
section of the stable supply curve with the shifting demand curve (on account of changes in
income) enables us to trace (identify) the supply curve. As will be shown shortly, very often
the identifiability of an equation depends on whether it excludes one or more variables that
are included in other equations in the model.

But suppose we consider the following demand-and-supply model:

Demand function: Qt = α0 + α1 Pt + α2 It + u1t α1 < 0, α2 > 0

(19.2.12)

Supply function: Qt = β0 + β1 Pt + β2 Pt−1 + u2t β1 > 0, β2 > 0

(19.2.22)

where the demand function remains as before but the supply function includes an addi-
tional explanatory variable, price lagged one period. The supply function postulates that the
quantity of a commodity supplied depends on its current and previous period’s price, a
model often used to explain the supply of many agricultural commodities. Note that Pt−1 is
a predetermined variable because its value is known at time t.

By the market-clearing mechanism we have

α0 + α1 Pt + α2 It + u1t = β0 + β1 Pt + β2 Pt−1 + u2t (19.2.23)

Solving this equation, we obtain the following equilibrium price:

Pt = �0 + �1 It + �2 Pt−1 + vt (19.2.24)

where

(19.2.25)

�0 = β0 − α0

α1 − β1

�1 = − α2

α1 − β1

�2 = β2

α1 − β1

vt = u2t − u1t

α1 − β1
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Substituting the equilibrium price into the demand or supply equation, we obtain the
corresponding equilibrium quantity:

Qt = �3 + �4 It + �5 Pt−1 + wt (19.2.26)

where the reduced-form coefficients are

and

wt = α1u2t − β1u1t

α1 − β1

The demand-and-supply model given in Eqs. (19.2.12) and (19.2.22) contains six structural
coefficients—α0, α1, α2, β0, β1, and β2—and there are six reduced-form coefficients—
�0, �1, �2, �3, �4, and �5—to estimate them. Thus, we have six equations in six un-
knowns, and normally we should be able to obtain unique estimates.Therefore, the parameters
of both the demand-and-supply equations can be identified, and the system as a whole can be
identified. (In Exercise 19.2 the reader is asked to express the six structural coefficients in
terms of the six reduced-form coefficients given previously to show that unique estimation of
the model is possible.)

To check that the preceding demand-and-supply functions are identified, we can also
resort to the device of multiplying the demand equation (19.2.12) by λ (0 ≤ λ ≤ 1) and the
supply equation (19.2.22) by 1 − λ and add them to obtain a mongrel equation. This mon-
grel equation will contain both the predetermined variables It and Pt−1; hence, it will be
observationally different from the demand as well as the supply equation because the former
does not contain Pt−1 and the latter does not contain It .

Overidentification
For certain goods and services, income as well as wealth of the consumer is an important
determinant of demand. Therefore, let us modify the demand function (19.2.12) as follows,
keeping the supply function as before:

Demand function: Qt = α0 + α1 Pt + α2 It + α3 Rt + u1t (19.2.28)

Supply function: Qt = β0 + β1 Pt + β2 Pt−1 + u2t (19.2.22)

where in addition to the variables already defined, R represents wealth; for most goods and
services, wealth, like income, is expected to have a positive effect on consumption.

Equating demand to supply, we obtain the following equilibrium price and quantity:

Pt = �0 + �1 It + �2 Rt + �3 Pt−1 + vt (19.2.29)

Qt = �4 + �5 It + �6 Rt + �7 Pt−1 + wt (19.2.30)

(19.2.27)

�3 = α1β0 − α0β1

α1 − β1

�4 = − α2β1

α1 − β1

�5 = α1β2

α1 − β1
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where

�0 = β0 − α0

α1 − β1
�1 = − α2

α1 − β1

�2 = − α3

α1 − β1
�3 = β2

α1 − β1

�4 = α1β0 − α0β1

α1 − β1
�5 = − α2β1

α1 − β1
(19.2.31)

�6 = − α3β1

α1 − β1
�7 = α1β2

α1 − β1

wt = α1u2t − β1u1t

α1 − β1
vt = u2t − u1t

α1 − β1

The preceding demand-and-supply model contains seven structural coefficients, but
there are eight equations to estimate them—the eight reduced-form coefficients given in
Eq. (19.2.31); that is, the number of equations is greater than the number of unknowns. As
a result, unique estimation of all the parameters of our model is not possible, which can be
shown easily. From the preceding reduced-form coefficients, we can obtain

β1 = �6

�2
(19.2.32)

or

β1 = �5

�1
(19.2.33)

that is, there are two estimates of the price coefficient in the supply function, and there is no
guarantee that these two values or solutions will be identical.4 Moreover, since β1 appears
in the denominators of all the reduced-form coefficients, the ambiguity in the estimation of
β1 will be transmitted to other estimates too.

Why was the supply function identified in the system (19.2.12) and (19.2.22) but not in
the system (19.2.28) and (19.2.22), although in both cases the supply function remains the
same? The answer is that we have “too much,” or an oversufficiency of information, to
identify the supply curve. This situation is the opposite of the case of underidentification,
where there is too little information. The oversufficiency of the information results from the
fact that in the model (19.2.12) and (19.2.22) the exclusion of the income variable from
the supply function was enough to identify it, but in the model (19.2.28) and (19.2.22) the
supply function excludes not only the income variable but also the wealth variable. In other
words, in the latter model we put “too many” restrictions on the supply function by
requiring it to exclude more variables than necessary to identify it. However, this situation
does not imply that overidentification is necessarily bad because we shall see in Chapter 20
how we can handle the problem of too much information, or too many restrictions.

We have now exhausted all the cases. As the preceding discussion shows, an equation in
a simultaneous-equation model may be underidentified or identified (either over- or just).
The model as a whole is identified if each equation in it is identified. To secure identifica-
tion, we resort to the reduced-form equations. But in Section 19.3, we consider an alterna-
tive and perhaps less time-consuming method of determining whether or not an equation in
a simultaneous-equation model is identified.

4Notice the difference between under- and overidentification. In the former case, it is impossible
to obtain estimates of the structural parameters, whereas in the latter case, there may be several 
estimates of one or more structural coefficients.

guj75772_ch19.qxd  27/08/2008  03:26 PM  Page 698



Chapter 19 The Identification Problem 699

19.3 Rules for Identification

As the examples in Section 19.2 show, in principle it is possible to resort to the reduced-
form equations to determine the identification of an equation in a system of simultaneous
equations. But these examples also show how time-consuming and laborious the process
can be. Fortunately, it is not essential to use this procedure. The so-called order and rank
conditions of identification lighten the task by providing a systematic routine.

To understand the order and rank conditions, we introduce the following notations:

M = number of endogenous variables in the model
m = number of endogenous variables in a given equation
K = number of predetermined variables in the model including the intercept
k = number of predetermined variables in a given equation

The Order Condition of Identifiability5

A necessary (but not sufficient) condition of identification, known as the order condition,
may be stated in two different but equivalent ways as follows (the necessary as well as suf-
ficient condition of identification will be presented shortly):

Definition 19.1 In a model of M simultaneous equations, in order for an equation to be identified, it must
exclude at least M − 1 variables (endogenous as well as predetermined) appearing in the
model. If it excludes exactly M − 1 variables, the equation is just identified. If it excludes
more than M − 1 variables, it is overidentified.

Definition 19.2 In a model of M simultaneous equations, in order for an equation to be identified, the
number of predetermined variables excluded from the equation must not be less than the
number of endogenous variables included in that equation less 1, that is,

K − k ≥ m − 1 (19.3.1)

If K − k = m − 1, the equation is just identified, but if K − k > m − 1, it is overidentified.

In Exercise 19.1 the reader is asked to prove that the preceding two definitions of identifi-
cation are equivalent.

To illustrate the order condition, let us revert to our previous examples.

5The term order refers to the order of a matrix, that is, the number of rows and columns present in a
matrix. See Appendix B.

EXAMPLE 19.1 Demand function: Qd
t = α0 + α1Pt + u1t (18.2.1)

Supply function: Qs
t = β0 + β1Pt + u2t (18.2.2)

This model has two endogenous variables P and Q and no predetermined variables. To be
identified, each of these equations must exclude at least M − 1 = 1 variable. Since this is
not the case, neither equation is identified.

EXAMPLE 19.2 Demand function: Qd
t = α0 + α1Pt + α2It + u1t (19.2.12)

Supply function: Qs
t = β0 + β1Pt + u2t (19.2.13)

In this model Q and P are endogenous and I is exogenous. Applying the order condition
given in Eq. (19.3.1), we see that the demand function is unidentified. On the other hand,
the supply function is just identified because it excludes exactly M − 1 = 1 variable It.
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700 Part Four Simultaneous-Equation Models and Time Series Econometrics

As the previous examples show, identification of an equation in a model of simultaneous
equations is possible if that equation excludes one or more variables that are present else-
where in the model. This situation is known as the exclusion (of variables) criterion, or the
zero restrictions criterion (the coefficients of variables not appearing in an equation are
assumed to have zero values). This criterion is by far the most commonly used method of
securing or determining identification of an equation. But notice that the zero restrictions
criterion is based on a priori or theoretical expectations that certain variables do not appear
in a given equation. It is up to the researcher to spell out clearly why he or she does expect
certain variables to appear in some equations and not in others.

The Rank Condition of Identifiability6

The order condition discussed previously is a necessary but not sufficient condition for iden-
tification; that is, even if it is satisfied, it may happen that an equation is not identified. Thus,
in Example 19.2, the supply equation was identified by the order condition because it
excluded the income variable It , which appeared in the demand function. But identification
is accomplished only if α2, the coefficient of It in the demand function, is not zero, that is,
if the income variable not only probably but actually does enter the demand function.

More generally, even if the order condition K − k ≥ m − 1 is satisfied by an equation, it
may be unidentified because the predetermined variables excluded from this equation but
present in the model may not all be independent so that there may not be one-to-one corre-
spondence between the structural coefficients (the β’s) and the reduced-form coefficients

EXAMPLE 19.3 Demand function: Qd
t = α0 + α1Pt + α2It + u1t (19.2.12)

Supply function: Qs
t = β0 + β1Pt + β2Pt−1 + u2t (19.2.22)

Given that Pt and Qt are endogenous and It and Pt−1 are predetermined, Eq. (19.2.12)
excludes exactly one variable Pt−1 and Eq. (19.2.22) also excludes exactly one variable It.
Hence each equation is identified by the order condition. Therefore, the model as a whole
is identified.

EXAMPLE 19.4 Demand function: Qd
t = α0 + α1Pt + α2It + α3Rt + u1t (19.2.28)

Supply function: Qs
t = β0 + β1Pt + β2Pt−1 + u2t (19.2.22)

In this model Pt and Qt are endogenous and It, Rt, and Pt−1 are predetermined. The demand
function excludes exactly one variable Pt−1, and hence by the order condition it is exactly
identified. But the supply function excludes two variables It and Rt, and hence it is overi-
dentified. As noted before, in this case there are two ways of estimating β1, the coefficient
of the price variable.

Notice a slight complication here. By the order condition the demand function is iden-
tified. But if we try to estimate the parameters of this equation from the reduced-form
coefficients given in Eq. (19.2.31), the estimates will not be unique because β1, which
enters into the computations, takes two values and we shall have to decide which of these
values is appropriate. But this complication can be obviated because it is shown in Chap-
ter 20 that in cases of overidentification the method of indirect least squares is not appro-
priate and should be discarded in favor of other methods. One such method is two-stage
least squares, which we shall discuss fully in Chapter 20.

6The term rank refers to the rank of a matrix and is given by the largest-order square matrix 
(contained in the given matrix) whose determinant is nonzero. Alternatively, the rank of a matrix is
the largest number of linearly independent rows or columns of that matrix. See Appendix B.
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(the �’s). That is, we may not be able to estimate the structural parameters from the reduced-
form coefficients, as we shall show shortly. Therefore, we need both a necessary and suffi-
cient condition for identification. This is provided by the rank condition of identification,
which may be stated as follows:

Rank Condition
of Identification

In a model containing M equations in M endogenous variables, an equation is identified if
and only if at least one nonzero determinant of order (M − 1)(M − 1) can be constructed
from the coefficients of the variables (both endogenous and predetermined) excluded
from that particular equation but included in the other equations of the model.

As an illustration of the rank condition of identification, consider the following hypo-
thetical system of simultaneous equations in which the Y variables are endogenous and the
X variables are predetermined.7

Y1t − β10 − β12Y2t − β13Y3t − γ11 X1t = u1t

(19.3.2)

Y2t − β20 −β23Y3t − γ21 X1t − γ22 X2t = u2t

(19.3.3)

Y3t − β30 − β31Y1t − γ31 X1t − γ32 X2t = u3t

(19.3.4)

Y4t − β40 − β41Y1t − β42Y2t −γ43 X3t = u4t

(19.3.5)

To facilitate identification, let us write the preceding system in Table 19.1, which is self-
explanatory.

Let us first apply the order condition of identification, as shown in Table 19.2. By the
order condition each equation is identified. Let us recheck with the rank condition. Con-
sider the first equation, which excludes variables Y4, X2, and X3 (this is represented by
zeros in the first row of Table 19.1). For this equation to be identified, we must obtain at

7The simultaneous-equation system presented in Eq. (19.1.1) may be shown in the following
alternative form, which may be convenient for matrix manipulations.

TABLE 19.1
Coefficients of the Variables

Equation No. 1 Y1 Y2 Y3 Y4 X1 X2 X3

(19.3.2) −β10 1 −β12 −β13 0 −γ11 0 0
(19.3.3) −β20 0 1 −β23 0 −γ21 −γ22 0
(19.3.4) −β30 −β31 0 1 0 −γ31 −γ32 0
(19.3.5) −β40 −β41 −β42 0 1 0 0 −γ43

TABLE 19.2
No. of Predetermined No. of Endogenous

Variables Excluded, Variables Included,
Equation No. (K − k) Less One, (m − 1) Identified?

(19.3.2) 2 2 Exactly
(19.3.3) 1 1 Exactly
(19.3.4) 1 1 Exactly
(19.3.5) 2 2 Exactly
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702 Part Four Simultaneous-Equation Models and Time Series Econometrics

least one nonzero determinant of order 3 × 3 from the coefficients of the variables excluded
from this equation but included in other equations. To obtain the determinant we first obtain
the relevant matrix of coefficients of variables Y4, X2, and X3 included in the other equa-
tions. In the present case there is only one such matrix, call it A, defined as follows:

A =
[ 0 −γ22 0

0 −γ32 0
1 0 −γ43

]
(19.3.6)

It can be seen that the determinant of this matrix is zero:

det A =
∣∣∣∣∣
0 −γ22 0
0 −γ32 0
1 0 −γ43

∣∣∣∣∣ (19.3.7)

Since the determinant is zero, the rank of the matrix (19.3.6), denoted by ρ(A), is less than 3.
Therefore, Eq. (19.3.2) does not satisfy the rank condition and hence is not identified.

As noted, the rank condition is both a necessary and sufficient condition for identifica-
tion. Therefore, although the order condition shows that Eq. (19.3.2) is identified, the rank
condition shows that it is not. Apparently, the columns or rows of the matrix A given in
Eq. (19.3.6) are not (linearly) independent, meaning that there is some relationship between
the variables Y4, X2, and X3. As a result, we may not have enough information to estimate
the parameters of equation (19.3.2); the reduced-form equations for the preceding model
will show that it is not possible to obtain the structural coefficients of that equation from the
reduced-form coefficients. The reader should verify that by the rank condition Eqs. (19.3.3)
and (19.3.4) are also unidentified but Eq. (19.3.5) is identified.

As the preceding discussion shows, the rank condition tells us whether the equation
under consideration is identified or not, whereas the order condition tells us if it is exactly
identified or overidentified.

To apply the rank condition one may proceed as follows:

1. Write down the system in a tabular form, as shown in Table 19.1.

2. Strike out the coefficients of the row in which the equation under consideration appears.

3. Also strike out the columns corresponding to those coefficients in step (2) which are
nonzero.

4. The entries left in the table will then give only the coefficients of the variables included
in the system but not in the equation under consideration. From these entries form all
possible matrices, like A, of order M − 1 and obtain the corresponding determinants. If
at least one nonvanishing or nonzero determinant can be found, the equation in question
is ( just or over-) identified. The rank of the matrix, say, A, in this case is exactly equal
to M − 1. If all the possible (M − 1)(M − 1) determinants are zero, the rank of the ma-
trix A is less than M − 1 and the equation under investigation is not identified.

Our discussion of the order and rank conditions of identification leads to the following
general principles of identifiability of a structural equation in a system of M simultaneous
equations:

1. If K − k > m − 1 and the rank of the A matrix is M − 1, the equation is overidentified.
2. If K − k = m − 1 and the rank of the matrix A is M − 1, the equation is exactly identified.
3. If K − k ≥ m − 1 and the rank of the matrix A is less than M − 1, the equation is

underidentified.
4. If K − k < m − 1, the structural equation is unidentified. The rank of the A matrix in

this case is bound to be less than M − 1. (Why?)
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Henceforth, when we talk about identification we mean exact identification or overidentifi-
cation. There is no point in considering unidentified, or underidentified, equations because no
matter how extensive the data, the structural parameters cannot be estimated. Besides, most
simultaneous-equation systems in economics and finance are overidentified rather than under-
identified, so we need not worry too much about underidentification. However, as shown in
Chapter 20, parameters of overidentified as well as just identified equations can be estimated.

Which condition should one use in practice: Order or rank? For large simultaneous-
equation models, applying the rank condition is a formidable task. Therefore, as Harvey notes,

Fortunately, the order condition is usually sufficient to ensure identifiability, and although it is
important to be aware of the rank condition, a failure to verify it will rarely result in disaster.8

*19.4 A Test of Simultaneity9

If there is no simultaneous equation, or simultaneity problem, the OLS estimators produce
consistent and efficient estimators. On the other hand, if there is simultaneity, OLS
estimators are not even consistent. In the presence of simultaneity, as we will show in Chap-
ter 20, the methods of two-stage least squares (2SLS) and instrumental variables (IV)
will give estimators that are consistent and efficient. Oddly, if we apply these alternative
methods when there is in fact no simultaneity, these methods yield estimators that are con-
sistent but not efficient (i.e., with smaller variance). This discussion suggests that we should
check for the simultaneity problem before we discard OLS in favor of the alternatives.

As we showed earlier, the simultaneity problem arises because some of the regressors are
endogenous and are therefore likely to be correlated with the disturbance, or error, term.
Therefore, a test of simultaneity is essentially a test of whether (an endogenous) regressor is
correlated with the error term. If it is, the simultaneity problem exists, in which case alter-
natives to OLS must be found; if it is not, we can use OLS. To find out which is the case in
a concrete situation, we can use Hausman’s specification error test.

Hausman Specification Test
A version of the Hausman specification error test that can be used for testing the simul-
taneity problem can be explained as follows:10

To fix ideas, consider the following two-equation model:

Demand function: Qd
t = α0 + α1 Pt + α2 It + α3 Rt + u1t (19.4.1)

Supply function: Qs
t = β0 + β1 Pt + u2t (19.4.2)

where P = price
Q = quantity
I = income
R = wealth

u’s = error terms

Assume that I and R are exogenous. Of course, P and Q are endogenous.

*Optional.
8Andrew Harvey, The Econometric Analysis of Time Series, 2d ed., The MIT Press, Cambridge, Mass.,
1990, p. 328.
9The following discussion draws from Robert S. Pindyck and Daniel L. Rubinfeld, Econometric Models
and Economic Forecasts, 3d ed., McGraw-Hill, New York, 1991, pp. 303–305.
10J. A. Hausman, “Specification Tests in Econometrics,” Econometrica, vol. 46, November 1976, 
pp. 1251–1271. See also A. Nakamura and M. Nakamura, “On the Relationship among Several
Specification Error Tests Presented by Durbin, Wu, and Hausman,” Econometrica, vol. 49, November
1981, pp. 1583–1588.
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Now consider the supply function (19.4.2). If there is no simultaneity problem (i.e., P
and Q are mutually independent), Pt and u2t should be uncorrelated (why?). On the other
hand, if there is simultaneity, Pt and u2t will be correlated. To find out which is the case, the
Hausman test proceeds as follows:

First, from Eqs. (19.4.1) and (19.4.2) we obtain the following reduced-form equations:

Pt = �0 + �1 It + �2 Rt + vt (19.4.3)

Qt = �3 + �4 It + �5 Rt + wt (19.4.4)

where v and w are the reduced-form error terms. Estimating Eq. (19.4.3) by OLS we obtain

P̂t = �̂0 + �̂1 It + �̂2 Rt (19.4.5)
Therefore,

Pt = P̂t + v̂t (19.4.6)

where P̂t are estimated Pt and v̂t are the estimated residuals. Now consider the following
equation:

Qt = β0 + β1 P̂t + β1v̂t + u2t (19.4.7)

Note: The coefficients of Pt and vt are the same. The difference between this equation and
the original supply equation is that it includes the additional variable v̂t , the residual from
regression (19.4.3).

Now, if the null hypothesis is that there is no simultaneity, that is, Pt is not an endogenous
variable, the correlation between v̂t and u2t should be zero, asymptotically. Thus, if we run the
regression (19.4.7) and find that the coefficient of vt in Eq. (19.4.7) is statistically zero, we can
conclude that there is no simultaneity problem. Of course, this conclusion will be reversed if
we find this coefficient to be statistically significant. In passing, note that Hausman’s simul-
taneity test is also known as the Hausman test of endogeneity: In the present example we want
to find out if Pt is endogenous. If it is, we have the simultaneity problem.

Essentially, then, the Hausman test involves the following steps:

Step 1. Regress Pt on It and Rt to obtain v̂t .

Step 2. Regress Qt on P̂t and v̂t and perform a t test on the coefficient of v̂t . If it is sig-
nificant, do not reject the hypothesis of simultaneity; otherwise, reject it.11 For efficient
estimation, however, Pindyck and Rubinfeld suggest regressing Qt on Pt and v̂t .12

There are alternative ways to apply the Hausman test, which are given by way of an
exercise.

11If more than one endogenous regressor is involved, we will have to use the F test.
12Pindyck and Rubinfeld, op. cit., p. 304. Note: The regressor is Pt and not P̂t .
13Pindyck and Rubinfeld, op. cit., pp. 176–177. Notations slightly altered.

EXAMPLE 19.5
Pindyck–
Rubinfeld Model
of Public
Spending13

To study the behavior of U.S. state and local government expenditure, the authors devel-
oped the following simultaneous-equation model:

EXP = β1 + β2AID + β3INC + β4POP + ui (19.4.8)

AID = δ1 + δ2EXP + δ3PS + vi (19.4.9)

where EXP = state and local government public expenditures
AID = level of federal grants-in-aid
INC = income of states
POP = state population

PS = population of primary and secondary school children
u and v = error terms

In this model, INC, POP, and PS are regarded as exogenous.
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*19.5 Tests for Exogeneity

We noted earlier that it is the researcher’s responsibility to specify which variables are
endogenous and which are exogenous. This will depend on the problem at hand and the a
priori information the researcher has. But is it possible to develop a statistical test of
exogeneity, in the manner of Granger’s causality test?

The Hausman test discussed in Section 19.4 can be utilized to answer this question. Sup-
pose we have a three-equation model in three endogenous variables, Y1, Y2, and Y3, and
suppose there are three exogenous variables, X1, X2, and X3. Further, suppose that the first
equation of the model is

Y1i = β0 + β2Y2i + β3Y3i + α1 X1i + u1i (19.5.1)

If Y2 and Y3 are truly endogenous, we cannot estimate Eq. (19.5.1) by OLS (why?). But
how do we find that out? We can proceed as follows. We obtain the reduced-form equations
for Y2 and Y3 (Note: the reduced-form equations will have only predetermined variables on
the right-hand side). From these reduced-form equations, we obtain Ŷ2i and Ŷ3i , the pre-
dicted values of Y2i and Y3i , respectively. Then in the spirit of the Hausman test discussed
earlier, we can estimate the following equation by OLS:

Y1i = β0 + β2Y2i + β3Y3i + α1 X1i + λ2Ŷ2i + λ3Ŷ3i + u1i (19.5.2)

Using the F test, we test the hypothesis that λ2 = λ3 = 0. If this hypothesis is rejected, Y2

and Y3 can be deemed endogenous, but if it is not rejected, they can be treated as exoge-
nous. For a concrete example, see Exercise 19.16. 

Because of the possibility of simultaneity between EXP and AID, the authors first regress
AID on INC, POP, and PS (i.e., the reduced-form regression). Let the error term in this
regression be wi . From this regression the calculated residual is ŵi . The authors then
regress EXP on AID, INC, POP, and ŵi , to obtain the following results:

ÊXP = −89.41 + 4.50AID + 0.00013INC − 0.518POP − 1.39ŵi

t = (−1.04) (5.89) (3.06) (−4.63) (−1.73) (19.4.10)14

R 2 = 0.99

At the 5 percent level of significance, the coefficient of ŵi is not statistically significant, and
therefore, at this level, there is no simultaneity problem. However, at the 10 percent level
of significance, it is statistically significant, raising the possibility that the simultaneity
problem is present.

Incidentally, the OLS estimation of Eq. (19.4.8) is as follows:

ÊXP = −46.81 + 3.24AID + 0.00019INC − 0.597POP

t = (−0.56) (13.64) (8.12) (−5.71) (19.4.11)

R 2 = 0.993

Notice an interesting feature of the results given in Eqs. (19.4.10) and (19.4.11): When
simultaneity is explicitly taken into account, the AID variable is less significant although
numerically it is greater in magnitude.

*Optional.
14As in footnote 12, the authors use AID rather than ÂID as the regressor.

EXAMPLE 19.5
(Continued)
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1. The problem of identification precedes the problem of estimation.

2. The identification problem asks whether one can obtain unique numerical estimates of
the structural coefficients from the estimated reduced-form coefficients.

3. If this can be done, an equation in a system of simultaneous equations is identified. If
this cannot be done, that equation is un- or under-identified.

4. An identified equation can be just identified or overidentified. In the former case,
unique values of structural coefficients can be obtained; in the latter, there may be
more than one value for one or more structural parameters.

5. The identification problem arises because the same set of data may be compatible with
different sets of structural coefficients, that is, different models. Thus, in the regression
of price on quantity only, it is difficult to tell whether one is estimating the supply func-
tion or the demand function, because price and quantity enter both equations.

6. To assess the identifiability of a structural equation, one may apply the technique of
reduced-form equations, which expresses an endogenous variable solely as a function
of predetermined variables.

7. However, this time-consuming procedure can be avoided by resorting to either the order
condition or the rank condition of identification. Although the order condition is easy to
apply, it provides only a necessary condition for identification. On the other hand, the rank
condition is both a necessary and sufficient condition for identification. If the rank condi-
tion is satisfied, the order condition is satisfied, too, although the converse is not true. In
practice, though, the order condition is generally adequate to ensure identifiability.

8. In the presence of simultaneity, OLS is generally not applicable, as was shown in
Chapter 18. But if one wants to use it nonetheless, it is imperative to test for simul-
taneity explicitly. The Hausman specification test can be used for this purpose.

9. Although in practice deciding whether a variable is endogenous or exogenous is a
matter of judgment, one can use the Hausman specification test to determine whether
a variable or group of variables is endogenous or exogenous.

10. Although they are in the same family, the concepts of causality and exogeneity are dif-
ferent and one may not necessarily imply the other. In practice it is better to keep those
concepts separate (see Section 17.14).

Summary and 
Conclusions

Questions
19.1. Show that the two definitions of the order condition of identification (see Sec-

tion 19.3) are equivalent.
19.2. Deduce the structural coefficients from the reduced-form coefficients given in

Eqs. (19.2.25) and (19.2.27).
19.3. Obtain the reduced form of the following models and determine in each case whether

the structural equations are unidentified, just identified, or overidentified:
a. Chap. 18, Example 18.2.
b. Chap. 18, Example 18.3.
c. Chap. 18, Example 18.6.

19.4. Check the identifiability of the models of Exercise 19.3 by applying both the order
and rank conditions of identification.

19.5. In the model (19.2.22) of the text it was shown that the supply equation was overi-
dentified. What restrictions, if any, on the structural parameters will make this
equation just identified? Justify the restrictions you impose.

EXERCISES
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19.6. From the model

Y1t = β10 + β12Y2t + γ11 X1t + u1t

Y2t = β20 + β21Y1t + γ22 X2t + u2t

the following reduced-form equations are obtained:

Y1t = �10 + �11 X1t + �12 X2t + wt

Y2t = �20 + �21 X1t + �22 X2t + vt

a. Are the structural equations identified?

b. What happens to identification if it is known a priori that γ11 = 0?

19.7. Refer to Exercise 19.6. The estimated reduced-form equations are as follows:

Y1t = 4 + 3X1t + 8X2t

Y2t = 2 + 6X1t + 10X2t

a. Obtain the values of the structural parameters.

b. How would you test the null hypothesis that γ11 = 0?

19.8. The model

Y1t = β10 + β12Y2t + γ11 X1t + u1t

Y2t = β20 + β21Y1t + u2t

produces the following reduced-form equations:

Y1t = 4 + 8X1t

Y2t = 2 + 12X1t

a. Which structural coefficients, if any, can be estimated from the reduced-form
coefficients? Demonstrate your contention.

b. How does the answer to (a) change if it is known a priori that (1) β12 = 0 and
(2) β10 = 0?

19.9. Determine whether the structural equations of the model given in Exercise 18.8 are
identified.

19.10. Refer to Exercise 18.7 and find out which structural equations can be identified.

19.11. Table 19.3 is a model in five equations with five endogenous variables Y and four
exogenous variables X:

TABLE 19.3 Coefficients of the Variables

Equation No. Y1 Y2 Y3 Y4 Y5 X1 X2 X3 X4

1 1 β12 0 β14 0 γ11 0 0 γ14

2 0 1 β23 β24 0 0 γ22 γ23 0
3 β31 0 1 β34 β35 0 0 γ33 γ34

4 0 β42 0 1 0 γ41 0 γ43 0
5 β51 0 0 β54 1 0 γ52 γ53 0

Determine the identifiability of each equation with the aid of the order and rank
conditions of identifications.

19.12. Consider the following extended Keynesian model of income determination:

Consumption function: Ct = β1 + β2Yt − β3Tt + u1t

Investment function: It = α0 + α1Yt−1 + u2t

Taxation function: Tt = γ0 + γ1Yt + u3t

Income identity: Yt = Ct + It + Gt
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708 Part Four Simultaneous-Equation Models and Time Series Econometrics

where C = consumption expenditure
Y = income
I = investment
T = taxes
G = government expenditure

u’s = the disturbance terms

In the model the endogenous variables are C, I, T, andY and the predetermined vari-
ables are G and Yt−1.

By applying the order condition, check the identifiability of each of the equa-
tions in the system and of the system as a whole. What would happen if rt , the in-
terest rate, assumed to be exogenous, were to appear on the right-hand side of the
investment function?

19.13. Refer to the data given in Table 18.1 of Chapter 18. Using these data, estimate the
reduced-form regressions (19.1.2) and (19.1.4). Can you estimate β0 and β1? Show
your calculations. Is the model identified? Why or why not?

19.14. Suppose we propose yet another definition of the order condition of identifiability:

K ≥ m + k − 1

which states that the number of predetermined variables in the system can be no
less than the number of unknown coefficients in the equation to be identified. Show
that this definition is equivalent to the two other definitions of the order condition
given in the text.

19.15. A simplified version of Suits’s model of the watermelon market is as follows:*

Demand equation: Pt = α0 + α1(Qt/Nt ) + α2(Yt/Nt ) + α3 Ft + u1t

Crop supply function: Qt = β0 + β1( Pt/Wt ) + β2 Pt−1 + β3Ct−1 + β4Tt−1 + u2t

where P = price
(Q/N ) = per capita quantity demanded
(Y/N ) = per capita income

Ft = freight costs
( P/W ) = price relative to the farm wage rate

C = price of cotton
T = price of other vegetables
N = population

P and Q are the endogenous variables.

a. Obtain the reduced form.

b. Determine whether the demand, the supply, or both functions are identified.

Empirical Exercises
19.16. Consider the following demand-and-supply model for money:

Money demand: Md
t = β0 + β1Yt + β2 Rt + β3 Pt + u1t

Money supply: Ms
t = α0 + α1Yt + u2t

*D. B. Suits, “An Econometric Model of the Watermelon Market,” Journal of Farm Economics, vol. 37,
1955, pp. 237–251.
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where M =money
Y = income
R = rate of interest
P = price

u’s = error terms

Assume that R and P are exogenous and M and Y are endogenous. Table 19.4 gives
data on M (M2 definition), Y (GDP), R (3-month Treasury bill rate) and P (Con-
sumer Price Index), for the United States for 1970–2006.

TABLE 19.4
Money, GDP, Interest
Rate, and Consumer
Price Index, United
States, 1970–2006

Observation M2 GDP TBRATE CPI

1970 626.5 3,771.9 6.458 38.8
1971 710.3 3,898.6 4.348 40.5
1972 802.3 4,105.0 4.071 41.8
1973 855.5 4,341.5 7.041 44.4
1974 902.1 4,319.6 7.886 49.3
1975 1,016.2 4,311.2 5.838 53.8
1976 1,152.0 4,540.9 4.989 56.9
1977 1,270.3 4,750.5 5.265 60.6
1978 1,366.0 5,015.0 7.221 65.2
1979 1,473.7 5,173.4 10.041 72.6
1980 1,599.8 5,161.7 11.506 82.4
1981 1,755.5 5,291.7 14.029 90.9
1982 1,910.1 5,189.3 10.686 96.5
1983 2,126.4 5,423.8 8.63 99.6
1984 2,309.8 5,813.6 9.58 103.9
1985 2,495.5 6,053.7 7.48 107.6
1986 2,732.2 6,263.6 5.98 109.6
1987 2,831.3 6,475.1 5.82 113.6
1988 2,994.3 6,742.7 6.69 118.3
1989 3,158.3 6,981.4 8.12 124.0
1990 3,277.7 7,112.5 7.51 130.7
1991 3,378.3 7,100.5 5.42 136.2
1992 3,431.8 7,336.6 3.45 140.3
1993 3,482.5 7,532.7 3.02 144.5
1994 3,498.5 7,835.5 4.29 148.2
1995 3,641.7 8,031.7 5.51 152.4
1996 3,820.5 8,328.9 5.02 156.9
1997 4,035.0 8,703.5 5.07 160.5
1998 4,381.8 9,066.9 4.81 163.0
1999 4,639.2 9,470.3 4.66 166.6
2000 4,921.7 9,817.0 5.85 172.2
2001 5,433.5 9,890.7 3.45 177.1
2002 5,779.2 10,048.8 1.62 179.9
2003 6,071.2 10,301.0 1.02 184.0
2004 6,421.6 10,675.8 1.38 188.9
2005 6,691.7 11,003.4 3.16 195.3
2006 7,035.5 11,319.4 4.73 201.6

Notes: M2 = M2 Money supply (billions of dollars).
GDP = gross domestic product (billions of dollars).

TBRATE = 3-month Treasury bill rate, %.
CPI = Consumer Price Index (1982–1984 = 100).

Source: Economic Report of the
President, 2007, Tables B-2, 
B-60, B-69, B-73.
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710 Part Four Simultaneous-Equation Models and Time Series Econometrics

a. Is the demand function identified?

b. Is the supply function identified?

c. Obtain the expressions for the reduced-form equations for M and Y.

d. Apply the test of simultaneity to the supply function.

e. How would we find out if Y in the money supply function is in fact endogenous?

19.17. The Hausman test discussed in the text can also be conducted in the following way.
Consider Eq. (19.4.7):

Qt = β0 + β1 Pt + β1vt + u2t

a. Since Pt and vt have the same coefficients, how would you test that in a given
application that is indeed the case? What are the implications of this?

b. Since Pt is uncorrelated with u2t by design (why?), one way to find out if Pt is
exogenous is to see if vt is correlated with u2t . How would you go about testing
this? Which test do you use? (Hint: Substitute Pt from [19.4.6] into Eq. [19.4.7].)
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Having discussed the nature of the simultaneous-equation models in the previous two chap-
ters, in this chapter we turn to the problem of estimation of the parameters of such models.
At the outset it may be noted that the estimation problem is rather complex because there
are a variety of estimation techniques with varying statistical properties. In view of the in-
troductory nature of this text, we shall consider only a few of these techniques. Our discus-
sion will be simple and often heuristic, the finer points being left to the references.

20.1 Approaches to Estimation

If we consider the general M equations model in M endogenous variables given in Eq. (19.1.1),
we may adopt two approaches to estimate the structural equations, namely, single-equation
methods, also known as limited information methods, and system methods, also known
as full information methods. In the single-equation methods to be considered shortly, we
estimate each equation in the system (of simultaneous equations) individually, taking into
account any restrictions placed on that equation (such as exclusion of some variables) with-
out worrying about the restrictions on the other equations in the system,1 hence the name
limited information methods. In the system methods, on the other hand, we estimate all the
equations in the model simultaneously, taking due account of all restrictions on such equa-
tions by the omission or absence of some variables (recall that for identification such
restrictions are essential), hence the name full information methods.

As an example, consider the following four-equations model:

Y1t = β10 + + β12Y2t + β13Y3t + + γ11X1t + + u1t

Y2t = β20 + + β23Y3t + γ21X1t + γ22X2t + u2t

Y3t = β30 + β31Y1t + + β34Y4t + γ31X1t + γ32X2t + + u3t

Y4t = β40 + + β42Y2t + γ43X3t + u4t

(20.1.1)

Chapter 20
Simultaneous-Equation
Methods

1For the purpose of identification, however, information provided by other equations will have to be
taken into account. But as noted in Chapter 19, estimation is possible only in the case of (fully or
over-) identified equations. In this chapter we assume that the identification problem is solved using
the techniques of Chapter 19.
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712 Part Four Simultaneous-Equation Models and Time Series Econometrics

where the Y’s are the endogenous variables and the X ’s are the exogenous variables. If we
are interested in estimating, say, the third equation, the single-equation methods will con-
sider this equation only, noting that variables Y2 and X3 are excluded from it. In the systems
methods, on the other hand, we try to estimate all four equations simultaneously, taking into
account all the restrictions imposed on the various equations of the system.

To preserve the spirit of simultaneous-equation models, ideally one should use the sys-
tems method, such as the full information maximum likelihood (FIML) method.2 In
practice, however, such methods are not commonly used for a variety of reasons. First, the
computational burden is enormous. For example, the comparatively small (20 equations)
1955 Klein–Goldberger model of the U.S. economy had 151 nonzero coefficients, of which
the authors estimated only 51 coefficients using the time series data. The Brookings-Social
Science Research Council (SSRC) econometric model of the U.S. economy published in
1965 initially had 150 equations.3 Although such elaborate models may furnish finer details
of the various sectors of the economy, the computations are a stupendous task even in these
days of high-speed computers, not to mention the cost involved. Second, the systems meth-
ods, such as FIML, lead to solutions that are highly nonlinear in the parameters and are
therefore often difficult to determine. Third, if there is a specification error (say, a wrong
functional form or exclusion of relevant variables) in one or more equations of the system,
that error is transmitted to the rest of the system. As a result, the systems methods become
very sensitive to specification errors.

In practice, therefore, single-equation methods are often used. As Klein puts it,

Single equation methods, in the context of a simultaneous system, may be less sensitive to
specification error in the sense that those parts of the system that are correctly specified may
not be affected appreciably by errors in specification in another part.4

In the rest of the chapter we shall deal with single-equation methods only. Specifically,
we shall discuss the following single-equation methods:

1. Ordinary least squares (OLS)

2. Indirect least squares (ILS)

3. Two-stage least squares (2SLS)

20.2 Recursive Models and Ordinary Least Squares

We saw in Chapter 18 that, because of the interdependence between the stochastic distur-
bance term and the endogenous explanatory variable(s), the OLS method is inappropriate
for the estimation of an equation in a system of simultaneous equations. If applied erro-
neously, then, as we saw in Section 18.3, the estimators are not only biased (in small sam-
ples) but also inconsistent; that is, the bias does not disappear no matter how large the
sample size. There is, however, one situation where OLS can be applied appropriately even
in the context of simultaneous equations. This is the case of the recursive, triangular, or

2For a simple discussion of this method, see Carl F. Christ, Econometric Models and Methods, John
Wiley & Sons, New York, 1966, pp. 395–401.
3James S. Duesenberry, Gary Fromm, Lawrence R. Klein, and Edwin Kuh, eds., A Quarterly Model of the
United States Economy, Rand McNally, Chicago, 1965.
4Lawrence R. Klein, A Textbook of Econometrics, 2d ed., Prentice Hall, Englewood Cliffs, NJ, 1974,
p. 150.
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Chapter 20 Simultaneous-Equation Methods 713

causal models. To see the nature of these models, consider the following three-equation
system:

Y1t = β10 + γ11X1t + γ12X2t + u1t

Y2t = β20 + β21Y1t + γ21X1t + γ22X2t + u2t (20.2.1)

Y3t = β30 + β31Y1t + β32Y2t + γ31X1t + γ32X2t + u3t

where, as usual, the Y ’s and the X’s are, respectively, the endogenous and exogenous
variables. The disturbances are such that

cov (u1t, u2t) = cov (u1t, u3t) = cov (u2t, u3t) = 0

that is, the same-period disturbances in different equations are uncorrelated (technically, this
is the assumption of zero contemporaneous correlation).

Now consider the first equation of (20.2.1). Since it contains only the exogenous vari-
ables on the right-hand side and since by assumption they are uncorrelated with the distur-
bance term u1t, this equation satisfies the critical assumption of the classical OLS, namely,
uncorrelatedness between the explanatory variables and the stochastic disturbances.
Hence, OLS can be applied straightforwardly to this equation. Next consider the second
equation of (20.2.1), which contains the endogenous variable Y1 as an explanatory variable
along with the nonstochastic X’s. Now OLS can also be applied to this equation, provided
Y1t and u2t are uncorrelated. Is this so? The answer is yes because u1, which affects Y1, is by
assumption uncorrelated with u2. Therefore, for all practical purposes, Y1 is a predeter-
mined variable insofar as Y2 is concerned. Hence, one can proceed with OLS estimation of
this equation. Carrying this argument a step further, we can also apply OLS to the third
equation in (20.2.1) because both Y1 and Y2 are uncorrelated with u3.

Thus, in the recursive system OLS can be applied to each equation separately.Actually, we
do not have a simultaneous-equation problem in this situation. From the structure of such
systems, it is clear that there is no interdependence among the endogenous variables.Thus, Y1

affects Y2, but Y2 does not affect Y1. Similarly, Y1 and Y2 influence Y3 without, in turn, being
influenced by Y3. In other words, each equation exhibits a unilateral causal dependence, hence
the name causal models.5 Schematically, we have Figure 20.1.

Y3

Y2

Y1u1

u2

u3

(X1, X2)

FIGURE 20.1
Recursive model.

5The alternative name triangular stems from the fact that if we form the matrix of the coefficients of
the endogenous variables given in Eq. (20.2.1), we obtain the following triangular matrix:




Y1 Y2 Y3

Equation 1 1 0 0

Equation 2 β21 1 0

Equation 3 β31 β32 1




Note that the entries above the main diagonal are zeros (why?).
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714 Part Four Simultaneous-Equation Models and Time Series Econometrics

As an example of a recursive system, one may postulate the following model of wage
and price determination:

Price equation: Ṗt = β10 + β11Ẇt−1 + β12 Ṙt + β13 Ṁt + β14 L̇ t + u1t

Wage equation: Ẇt = β20 + β21UNt + β32 Ṗt + u2t (20.2.2)

where Ṗ = rate of change of price per unit of output
Ẇ = rate of change of wages per employee
Ṙ = rate of change of price of capital

Ṁ = rate of change of import prices
L̇ = rate of change of labor productivity

UN = unemployment rate, %6

The price equation postulates that the rate of change of price in the current period is a
function of the rates of change in the prices of capital and of raw material, the rate of
change in labor productivity, and the rate of change in wages in the previous period. The
wage equation shows that the rate of change in wages in the current period is determined
by the current period rate of change in price and the unemployment rate. It is clear that the
causal chain runs from Ẇt−1 → Ṗt → Ẇt , and hence OLS may be applied to estimate the
parameters of the two equations individually.

Although recursive models have proved to be useful, most simultaneous-equation mod-
els do not exhibit such a unilateral cause-and-effect relationship. Therefore, OLS, in gen-
eral, is inappropriate to estimate a single equation in the context of a simultaneous-equation
model.7

There are some who argue that, although OLS is generally inapplicable to simultaneous-
equation models, one can use it, if only as a standard or norm of comparison. That is, one
can estimate a structural equation by OLS, with the resulting properties of biasedness,
inconsistency, etc. Then the same equation may be estimated by other methods especially
designed to handle the simultaneity problem and the results of the two methods compared,
at least qualitatively. In many applications the results of the inappropriately applied
OLS may not differ very much from those obtained by more sophisticated methods, as
we shall see later. In principle, one should not have much objection to the production of
the results based on OLS so long as estimates based on alternative methods devised for
simultaneous-equation models are also given. In fact, this approach might give us some
idea about how badly OLS does in situations when it is applied inappropriately.8

6Note: The dotted symbol means “time derivative.” For example, Ṗ = dP/dt. For discrete time series,
dP/dt is sometimes approximated by �P/�t, where the symbol � is the first difference operator,
which was originally introduced in Chapter 12.
7It is important to keep in mind that we are assuming that the disturbances across equations are
contemporaneously uncorrelated. If this is not the case, we may have to resort to the Zellner SURE
(seemingly unrelated regressions) estimation technique to estimate the parameters of the recursive
system. See A. Zellner, “An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests
for Aggregation Bias,” Journal of the American Statistical Association, vol. 57, 1962, pp. 348–368.
8It may also be noted that in small samples the alternative estimators, like the OLS estimators, are also
biased. But the OLS estimator has the “virtue” that it has minimum variance among these alternative
estimators. But this is true of small samples only.
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20.3 Estimation of a Just Identified Equation: The Method
of Indirect Least Squares (ILS)

For a just or exactly identified structural equation, the method of obtaining the estimates of
the structural coefficients from the OLS estimates of the reduced-form coefficients is known
as the method of indirect least squares (ILS), and the estimates thus obtained are known
as the indirect least-squares estimates. ILS involves the following three steps:

Step 1. We first obtain the reduced-form equations. As noted in Chapter 19, these
reduced-form equations are obtained from the structural equations in such a manner
that the dependent variable in each equation is the only endogenous variable and is a
function solely of the predetermined (exogenous or lagged endogenous) variables and
the stochastic error term(s).

Step 2. We apply OLS to the reduced-form equations individually. This operation is
permissible since the explanatory variables in these equations are predetermined and
hence uncorrelated with the stochastic disturbances. The estimates thus obtained are
consistent.9

Step 3. We obtain estimates of the original structural coefficients from the estimated
reduced-form coefficients obtained in Step 2. As noted in Chapter 19, if an equation is
exactly identified, there is a one-to-one correspondence between the structural and
reduced-form coefficients; that is, one can derive unique estimates of the former from
the latter.

As this three-step procedure indicates, the name ILS derives from the fact that structural
coefficients (the object of primary enquiry in most cases) are obtained indirectly from the
OLS estimates of the reduced-form coefficients.

An Illustrative Example
Consider the demand-and-supply model introduced in Section 19.2, which for convenience
is given below with a slight change in notation:

Demand function: Qt = α0 + α1 Pt + α2 Xt + u1t (20.3.1)

Supply function: Qt = β0 + β1 Pt + u2t (20.3.2)

where Q = quantity
P = price
X = income or expenditure

Assume that X is exogenous. As noted previously, the supply function is exactly identified
whereas the demand function is not identified.

The reduced-form equations corresponding to the preceding structural equations are

Pt = �0 + �1 Xt + wt (20.3.3)

Qt = �2 + �3 Xt + vt (20.3.4)

9In addition to being consistent, the estimates “may be best unbiased and/or asymptotically efficient,
depending respectively upon whether (i) the z’s [ = X ’s] are exogenous and not merely predeter-
mined [i.e., do not contain lagged values of endogenous variables] and/or (ii) the distribution of the
disturbances is normal.” See W. C. Hood and Tjalling C. Koopmans, Studies in Econometric Method,
John Wiley & Sons, New York, 1953, p. 133.
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716 Part Four Simultaneous-Equation Models and Time Series Econometrics

where the �’s are the reduced-form coefficients and are (nonlinear) combinations of the
structural coefficients, as shown in Eqs. (19.2.16) and (19.2.18), and where w and v are
linear combinations of the structural disturbances u1 and u2.

Notice that each reduced-form equation contains only one endogenous variable, which
is the dependent variable and which is a function solely of the exogenous variable X
(income) and the stochastic disturbances. Hence, the parameters of the preceding reduced-
form equations may be estimated by OLS. These estimates are

�̂1 =
∑

pt xt∑
x2

t
(20.3.5)

�̂0 = P̄ − �̂1 X̄ (20.3.6)

�̂3 =
∑

qt xt∑
x2

t
(20.3.7)

�̂2 = Q̄ − �̂3 X̄ (20.3.8)

where the lowercase letters, as usual, denote deviations from sample means and where Q̄
and P̄ are the sample mean values of Q and P. As noted previously, the �̂i ’s are consistent
estimators and under appropriate assumptions are also minimum variance unbiased or
asymptotically efficient (see footnote 9).

Since our primary objective is to determine the structural coefficients, let us see if we
can estimate them from the reduced-form coefficients. Now as shown in Section 19.2, the
supply function is exactly identified. Therefore, its parameters can be estimated uniquely
from the reduced-form coefficients as follows:

β0 = �2 − β1�0 and β1 = �3

�1

Hence, the estimates of these parameters can be obtained from the estimates of the
reduced-form coefficients as

β̂0 = �̂2 − β̂1�̂0 (20.3.9)

β̂1 = �̂3

�̂1

(20.3.10)

which are the ILS estimators. Note that the parameters of the demand function cannot be
thus estimated (however, see Exercise 20.13).

To give some numerical results, we obtained the data shown in Table 20.1. First we esti-
mate the reduced-form equations, regressing separately price and quantity on per capita
real consumption expenditure. The results are as follows:

P̂t = 90.9601 + 0.0007Xt

se = (4.0517) (0.0002) (20.3.11)
t = (22.4499) (3.0060) R2 = (0.2440)

Q̂t = 59.7618 + 0.0020Xt

se = (1.5600) (0.00009) (20.3.12)

t = (38.3080) (20.9273) R2 = 0.9399

Using Eqs. (20.3.9) and (20.3.10), we obtain these ILS estimates:

β̂0 = −183.7043 (20.3.13)

β̂1 = 2.6766 (20.3.14)
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Therefore, the estimated ILS regression is10

Q̂t = −183.7043 + 2.6766Pt (20.3.15)

For comparison, we give the results of the (inappropriately applied) OLS regression of
Q on P:

Q̂t = 20.89 + 0.673Pt

se = (23.04) (0.2246) (20.3.16)
t = (0.91) (2.99) R2 = 0.2430

These results show how OLS can distort the “true” picture when it is applied in inappro-
priate situations.

TABLE 20.1
Crop Production,
Crop Prices, and
per Capita Personal
Consumption
Expenditures, 2007
Dollars, United
States, 1975–2004

Source: Economic Report of the
President, 2007. Data on Q
(Table B-99), on P
(Table B-101), and on X
(Table B-31).

Index of Crop Index of Crop Prices Real per Capita
Production Received by Farmers Personal Consumption

Observation (1996 = 100), Q (1990–1992 = 100), P Expenditure, X

1975 66 88 4,789
1976 67 87 5,282
1977 71 83 5,804
1978 73 89 6,417
1979 78 98 7,073
1980 75 107 7,716
1981 81 111 8,439
1982 82 98 8,945
1983 71 108 9,775
1984 81 111 10,589
1985 85 98 11,406
1986 82 87 12,048
1987 84 86 12,766
1988 80 104 13,685
1989 86 109 14,546
1990 90 103 15,349
1991 90 101 15,722
1992 96 101 16,485
1993 91 102 17,204
1994 101 105 18,004
1995 96 112 18,665
1996 100 127 19,490
1997 104 115 20,323
1998 105 107 21,291
1999 108 97 22,491
2000 108 96 23,862
2001 108 99 24,722
2002 107 105 25,501
2003 108 111 26,463
2004 112 117 27,937

10We have not presented the standard errors of the estimated structural coefficients because, as
noted previously, these coefficients are generally nonlinear functions of the reduced-form coefficients
and there is no simple method of estimating their standard errors from the standard errors of the
reduced-form coefficients. For large-sample size, however, standard errors of the structural
coefficients can be obtained approximately. For details, see Jan Kmenta, Elements of Econometrics,
Macmillan, New York, 1971, p. 444.
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Properties of ILS Estimators
We have seen that the estimators of the reduced-form coefficients are consistent and under
appropriate assumptions also best unbiased or asymptotically efficient (see footnote 9). Do
these properties carry over to the ILS estimators? It can be shown that the ILS estimators
inherit all the asymptotic properties of the reduced-form estimators, such as consistency
and asymptotic efficiency. But (the small sample) properties such as unbiasedness do not
generally hold true. It is shown in Appendix 20A, Section 20A.1, that the ILS estimators β̂0

and β̂1 of the supply function given previously are biased but the bias disappears as the
sample size increases indefinitely (that is, the estimators are consistent).11

20.4 Estimation of an Overidentified Equation: The Method
of Two-Stage Least Squares (2SLS)

Consider the following model:

Income function: Y1t = β10 + + β11Y2t + γ11X1t + γ12X2t + u1t

(20.4.1)

Money supply Y2t = β20 + β21Y1t + u2t

function: (20.4.2)

where Y1 = income
Y2 = stock of money
X1 = investment expenditure
X2 = government expenditure on goods and services

The variables X1 and X2 are exogenous.
The income equation, a hybrid of quantity-theory–Keynesian approaches to income de-

termination, states that income is determined by money supply, investment expenditure, and
government expenditure. The money supply function postulates that the stock of money is
determined (by the Federal Reserve System) on the basis of the level of income. Obviously,
we have a simultaneous-equation problem, which can be checked by the simultaneity test
discussed in Chapter 19.

Applying the order condition of identification, we can see that the income equation is
underidentified whereas the money supply equation is overidentified. There is not much
that can be done about the income equation short of changing the model specification. The
overidentified money supply function may not be estimated by ILS because there are two
estimates of β21 (the reader should verify this via the reduced-form coefficients).

As a matter of practice, one may apply OLS to the money supply equation, but the
estimates thus obtained will be inconsistent in view of the likely correlation between
the stochastic explanatory variable Y1 and the stochastic disturbance term u2. Suppose,
however, we find a “proxy” for the stochastic explanatory variable Y1 such that, although
“resembling” Y1 (in the sense that it is highly correlated with Y1), it is uncorrelated with u2.
Such a proxy is also known as an instrumental variable (see Chapter 17). If one can find
such a proxy, OLS can be used straightforwardly to estimate the money supply function.

11Intuitively this can be seen as follows: E (β̂1) = β1 if E (�̂3/�̂1) = (�3/�1). Now even if
E (�̂3) = �3 and E (�̂1), = �1, it can be shown that E (�̂3/�̂1) �= E (�̂3)/E (�̂1); that is, the
expectation of the ratio of two variables is not equal to the ratio of the expectations of the two
variables. However, as shown in Appendix 20A.1, plim (�̂3/�̂1) = plim (�̂3)/plim (�̂1) = �3/�1
since �̂3 and �̂1 are consistent estimators.
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But how does one obtain such an instrumental variable? One answer is provided by the two-
stage least squares (2SLS), developed independently by Henri Theil12 and Robert
Basmann.13 As the name indicates, the method involves two successive applications of
OLS. The process is as follows:

Stage 1. To get rid of the likely correlation between Y1 and u2, regress first Y1 on all the
predetermined variables in the whole system, not just that equation. In the present case,
this means regressing Y1 on X1 and X2 as follows:

Y1t = �̂0 + �̂1 X1t + �̂2 X2t + ût (20.4.3)

where ût are the usual OLS residuals. From Eq. (20.4.3) we obtain

Ŷ1t = �̂0 + �̂1 X1t + �̂2 X2t (20.4.4)

where Ŷ1t is an estimate of the mean value of Y conditional upon the fixed X’s. Note
that Eq. (20.4.3) is nothing but a reduced-form regression because only the exogenous
or predetermined variables appear on the right-hand side.

Equation (20.4.3) can now be expressed as

Y1t = Ŷ1t + ût (20.4.5)

which shows that the stochastic Y1 consists of two parts: Ŷ1t , which is a linear
combination of the nonstochastic X’s, and a random component ût . Following the
OLS theory, Ŷ1t and ût are uncorrelated. (Why?)

Stage 2. The overidentified money supply equation can now be written as

Y2t = β20 + β21(Ŷ1t + ût ) + u2t

= β20 + β21Ŷ1t + (u2t + β21ût ) (20.4.6)

= β20 + β21Ŷ1t + u∗
t

where u∗
t = u2t + β21ût .

Comparing Eq. (20.4.6) with Eq. (20.4.2), we see that they are very similar in ap-
pearance, the only difference being that Y1 is replaced by Ŷ1. What is the advantage of
Eq. (20.4.6)? It can be shown that although Y1 in the original money supply equation is
correlated or likely to be correlated with the disturbance term u2 (hence rendering OLS
inappropriate), Ŷ1t in Eq. (20.4.6) is uncorrelated with u∗

t asymptotically, that is, in the
large sample (or more accurately, as the sample size increases indefinitely). As a result,
OLS can be applied to Eq. (20.4.6), which will give consistent estimates of the para-
meters of the money supply function.14

12Henri Theil, “Repeated Least-Squares Applied to Complete Equation Systems,” The Hague: The
Central Planning Bureau, The Netherlands, 1953 (mimeographed).
13Robert L. Basmann, “A Generalized Classical Method of Linear Estimation of Coefficients in a
Structural Equation,” Econometrica, vol. 25, 1957, pp. 77–83.
14But note that in small samples Ŷ1t is likely to be correlated with u∗

i . The reason is as follows: From
Eq. (20.4.4) we see that Ŷ1t is a weighted linear combination of the predetermined X’s, with �̂’s as
the weights. Now even if the predetermined variables are truly nonstochastic, the �̂’s, being estima-
tors, are stochastic. Therefore, Ŷ1t is stochastic too. Now from our discussion of the reduced-form
equations and indirect least-squares estimation, it is clear that the reduced-coefficients, the �̂’s, are
functions of the stochastic disturbances, such as u2. And since Ŷ1t depends on the �̂’s, it is likely to be
correlated with u2, which is a component of u∗

t . As a result, Ŷ1t is expected to be correlated with u∗
t .

But as noted previously, this correlation disappears as the sample size tends to infinity. The upshot of
all this is that in small samples the 2SLS procedure may lead to biased estimation.
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As this two-stage procedure indicates, the basic idea behind 2SLS is to “purify” the sto-
chastic explanatory variable Y1 of the influence of the stochastic disturbance u2. This goal
is accomplished by performing the reduced-form regression of Y1 on all the predetermined
variables in the system (Stage 1), obtaining the estimates Ŷ1t and replacing Y1t in the orig-
inal equation by the estimated Ŷ1t , and then applying OLS to the equation thus transformed
(Stage 2). The estimators thus obtained are consistent; that is, they converge to their true
values as the sample size increases indefinitely.

To illustrate 2SLS further, let us modify the income–money supply model as follows:

Y1t = β10 + β12Y2t + γ11X1t + γ12X2t + u1t (20.4.7)

Y2t = β20 + β21Y1t + γ23X3t + γ24X4t + u2t (20.4.8)

where, in addition to the variables already defined, X3 = income in the previous time period
and X4 = money supply in the previous period. Both X3 and X4 are predetermined.

It can be readily verified that both Eqs. (20.4.7) and (20.4.8) are overidentified. To apply
2SLS, we proceed as follows: In Stage 1 we regress the endogenous variables on all the
predetermined variables in the system. Thus,

Y1t = �̂10 + �̂11 X1t + �̂12 X2t + �̂13 X3t + �̂14 X4t + û1t (20.4.9)

Y2t = �̂20 + �̂21 X1t + �̂22 X2t + �̂23 X3t + �̂24 X4t + û2t (20.4.10)

In Stage 2 we replace Y1 and Y2 in the original (structural) equations by their estimated val-
ues from the preceding two regressions and then run the OLS regressions as follows:

Y1t = β10 + β12Ŷ2t + γ11 X1t + γ12 X2t + u∗
1t (20.4.11)

Y2t = β20 + β21Ŷ1t + γ23 X3t + γ24 X4t + u∗
2t (20.4.12)

where u∗
1t = u1t + β12û2t and û∗

2t = u2t + β21û1t . The estimates thus obtained will be
consistent.

Note the following features of 2SLS.

1. It can be applied to an individual equation in the system without directly taking into
account any other equation(s) in the system. Hence, for solving econometric models in-
volving a large number of equations, 2SLS offers an economical method. For this rea-
son the method has been used extensively in practice.

2. Unlike ILS, which provides multiple estimates of parameters in the overidentified
equations, 2SLS provides only one estimate per parameter.

3. It is easy to apply because all one needs to know is the total number of exogenous or pre-
determined variables in the system without knowing any other variables in the system.

4. Although specially designed to handle overidentified equations, the method can also
be applied to exactly identified equations. But then ILS and 2SLS will give identical
estimates. (Why?)

5. If the R2 values in the reduced-form regressions (that is, Stage 1 regressions) are very
high, say, in excess of 0.8, the classical OLS estimates and 2SLS estimates will be very
close. But this result should not be surprising because if the R2 value in the first stage
is very high, it means that the estimated values of the endogenous variables are very
close to their actual values, and hence the latter are less likely to be correlated with
the stochastic disturbances in the original structural equations. (Why?)15 If, however, the

15In the extreme case of R2 = 1 in the first-stage regression, the endogenous explanatory variable in
the original (overidentified) equation will be practically nonstochastic (why?).
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R2 values in the first-stage regressions are very low, the 2SLS estimates will be practi-
cally meaningless because we shall be replacing the original Y’s in the second-stage re-
gressions by the estimated Ŷ ’s from the first-stage regressions, which will essentially
represent the disturbances in the first-stage regressions. In other words, in this case, the
Ŷ ’s will be very poor proxies for the original Y’s.

6. Notice that in reporting the ILS regression in Eq. (20.3.15) we did not state the standard
errors of the estimated coefficients (for reasons explained in footnote 10). But we can do
this for the 2SLS estimates because the structural coefficients are directly estimated
from the second-stage (OLS) regressions. There is, however, a caution to be exercised.
The estimated standard errors in the second-stage regressions need to be modified
because, as can be seen from Eq. (20.4.6), the error term u∗

t is, in fact, the original error
term u2t plus β21ût . Hence, the variance of u∗

t is not exactly equal to the variance of the
original u2t . However, the modification required can be easily effected by the formula
given in Appendix 20A, Section 20A.2.

7. In using the 2SLS, bear in mind the following remarks of Henri Theil:

The statistical justification of the 2SLS is of the large-sample type. When there are no lagged
endogenous variables, . . . the 2SLS coefficient estimators are consistent if the exogenous
variables are constant in repeated samples and if the disturbance[s] [appearing in the various
behavioral or structural equations] . . . are independently and identically distributed with zero
means and finite variances. . . . If these two conditions are satisfied, the sampling distribution
of 2SLS coefficient estimators becomes approximately normal for large samples. . . .

When the equation system contains lagged endogenous variables, the consistency and
large-sample normality of the 2SLS coefficient estimators require an additional condition, . . .
that as the sample increases the mean square of the values taken by each lagged endogenous
variable converges in probability to a positive limit. . . .

If [the disturbances appearing in the various structural equations are] not independently
distributed, lagged endogenous variables are not independent of the current operation of the
equation system . . . , which means these variables are not really predetermined. If these
variables are nevertheless treated as predetermined in the 2SLS procedure, the resulting
estimators are not consistent.16

20.5 2SLS: A Numerical Example

To illustrate the 2SLS method, consider the income–money supply model given previously
in Eqs. (20.4.1) and (20.4.2). As shown, the money supply equation is overidentified. To
estimate the parameters of this equation, we resort to the two-stage least-squares method.
The data required for analysis are given in Table 20.2; this table also gives some data that
are required to answer some of the questions given in the exercises.

Stage 1 Regression
We first regress the stochastic explanatory variable income Y1, represented by GDP, on the
predetermined variables private investment X1 and government expenditure X2, obtaining
the following results:

Ŷ1t = 2689.848 + 1.8700X1t + 2.0343X2t

se = (67.9874) (0.1717) (0.1075) (20.5.1)

t = (39.5639) (10.8938) (18.9295) R2 = 0.9964

16Henri Theil, Introduction to Econometrics, Prentice Hall, Englewood Cliffs, NJ, 1978, pp. 341–342.
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TABLE 20.2
GDP, M2, FEDEXP,
TB6, USA, 1970–2005

Source: Economic Report of the
President, 2007. Tables B-2, 
B-69, B-84, and B-73.

Observation GDP (Y1) M2 (Y2) GPDI (X1) FEDEXP (X2) TB6 (X3)

1970 3,771.9 626.5 427.1 201.1 6.562
1971 3,898.6 710.3 475.7 220.0 4.511
1972 4,105.0 802.3 532.1 244.4 4.466
1973 4,341.5 855.5 594.4 261.7 7.178
1974 4,319.6 902.1 550.6 293.3 7.926
1975 4,311.2 1,016.2 453.1 346.2 6.122
1976 4,540.9 1,152.0 544.7 374.3 5.266
1977 4,750.5 1,270.3 627.0 407.5 5.510
1978 5,015.0 1,366.0 702.6 450.0 7.572
1979 5,173.4 1,473.7 725.0 497.5 10.017
1980 5,161.7 1,599.8 645.3 585.7 11.374
1981 5,291.7 1,755.4 704.9 672.7 13.776
1982 5,189.3 1,910.3 606.0 748.5 11.084
1983 5,423.8 2,126.5 662.5 815.4 8.75
1984 5,813.6 2,310.0 857.7 877.1 9.80
1985 6,053.7 2,495.7 849.7 948.2 7.66
1986 6,263.6 2,732.4 843.9 1,006.0 6.03
1987 6,475.1 2,831.4 870.0 1,041.6 6.05
1988 6,742.7 2,994.5 890.5 1,092.7 6.92
1989 6,981.4 3,158.5 926.2 1,167.5 8.04
1990 7,112.5 3,278.6 895.1 1,253.5 7.47
1991 7,100.5 3,379.1 822.2 1,315.0 5.49
1992 7,336.6 3,432.5 889.0 1,444.6 3.57
1993 7,532.7 3,484.0 968.3 1,496.0 3.14
1994 7,835.5 3,497.5 1,099.6 1,533.1 4.66
1995 8,031.7 3,640.4 1,134.0 1,603.5 5.59
1996 8,328.9 3,815.1 1,234.3 1,665.8 5.09
1997 8,703.5 4,031.6 1,387.7 1,708.9 5.18
1998 9,066.9 4,379.0 1,524.1 1,734.9 4.85
1999 9,470.3 4,641.1 1,642.6 1,787.6 4.76
2000 9,817.0 4,920.9 1,735.5 1,864.4 5.92
2001 9,890.7 5,430.3 1,598.4 1,969.5 3.39
2002 10,048.8 5,774.1 1,557.1 2,101.1 1.69
2003 10,301.0 6,062.0 1,613.1 2,252.1 1.06
2004 10,703.5 6,411.7 1,770.6 2,383.0 1.58
2005 11,048.6 6,669.4 1,866.3 2,555.9 3.40

Notes: Y1 = GDP = gross domestic product (billions of chained 2000 dollars).
Y2 = M2 = M2 money supply (billions of dollars).
X1 = GPDI = gross private domestic investment (billions of chained 2000 dollars).
X2 = FEDEXP = Federal government expenditure (billions of dollars).
X3 = TB6 = 6-month Treasury bill rate (%).

Stage 2 Regression
We now estimate the money supply function (20.4.2), replacing the endogenous variable Y1

by Y1 estimated from Eq. (20.5.1) ( = Ŷ1). The results are as follows:

Ŷ2t = −2440.180 + 0.7920Ŷ1t

se = (127.3720) (0.0178) (20.5.2)

t = (−19.1579) (44.5246) R2 = 0.9831
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As we pointed out previously, the estimated standard errors given in Eq. (20.5.2) need to
be corrected in the manner suggested in Appendix 20.A, Section 20A.2. Effecting
this correction (most econometric packages can do it now), we obtain the following
results:

Ŷ2t = −2440.180 + 0.7920Ŷ1t

se = (126.9598) (0.0212) (20.5.3)

t = (−17.3149) (37.3057) R2 = 0.9803

As noted in Appendix 20A, Section 20A.2, the standard errors given in Eq. (20.5.3) do
not differ much from those given in Eq. (20.5.2) because the R2 in Stage 1 regression is
very high.

OLS Regression
For comparison, we give the regression of money stock on income as shown in Eq. (20.4.2)
without “purging” the stochastic Y1t of the influence of the stochastic disturbance term.

Ŷ2t = −2195.468 + 0.7911Y1t

se = (126.6460) (0.0211) (20.5.4)

t = (−17.3354) (37.3812) R2 = 0.9803

Comparing the “inappropriate” OLS results with the Stage 2 regression, we see that the
two regressions are virtually the same. Does this mean that the 2SLS procedure is worth-
less? Not at all. That in the present situation the two results are practically identical should
not be surprising because, as noted previously, the R2 value in the first stage is very high,
thus making the estimated Ŷ1t virtually identical with the actual Y1t . Therefore, in this case
the OLS and second-stage regressions will be more or less similar. But there is no guaran-
tee that this will happen in every application. An implication, then, is that in overidentified
equations one should not accept the classical OLS procedure without checking the second-
stage regression(s).

Simultaneity between GDP and Money Supply
Let us find out if GDP (Y1) and money supply (Y2) are mutually dependent. For this purpose
we use the Hausman test of simultaneity discussed in Chapter 19.

First we regress GDP on X1 (investment expenditure) and X2 (government expenditure),
the exogenous variables in the system (i.e., we estimate the reduced-form regression). From
this regression we obtain the estimated GDP and the residuals v̂t , as suggested in
Eq. (19.4.7). Then we regress money supply on estimated GDP and vt to obtain the follow-
ing results:

Ŷ2t = −2198.297 + 0.7915Ŷ1t + 0.6984v̂t

se = (129.0548) (0.0215) (0.2970) (20.5.5)

t = (−17.0338) (36.70016) (2.3511)

Since the t value of v̂t is statistically significant (the p value is 0.0263), we cannot reject the
hypothesis of simultaneity between money supply and GDP, which should not be surpris-
ing. (Note: Strictly speaking, this conclusion is valid only in large samples; technically, it
is only valid as the sample size increases indefinitely.)
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Hypothesis Testing
Suppose we want to test the hypothesis that income has no effect on money demand. Can
we test this hypothesis with the usual t test from the estimated regression (20.5.2)? Yes,
provided the sample is large and provided we correct the standard errors as shown in
Eq. (20.5.3), we can use the t test to test the significance of an individual coefficient and the
F test to test joint significance of two or more coefficients, using formula (8.4.7).17

What happens if the error term in a structural equation is autocorrelated and/or corre-
lated with the error term in another structural equation in the system? A full answer to this
question will take us beyond the scope of the book and is better left for the references (see
the reference given in footnote 7). Nevertheless, estimation techniques (such as Zellner’s
SURE technique) do exist to handle these complications.

To conclude the discussion of our numerical example, it may be added that the various
steps involved in the application of 2SLS are now routinely handled by software packages
such as STATA and EViews. It was only for pedagogical reason we showed the details of
2SLS. See Exercise 20.15.

20.6 Illustrative Examples

In this section we consider some applications of the simultaneous-equation methods.

17But take this precaution: The restricted and unrestricted RSS in the numerator must be calculated
using predicted Y (as in Stage 2 of 2SLS) and the RSS in the denominator is calculated using actual
rather than predicted values of the regressors. For an accessible discussion of this point, see T. Dudley
Wallace and J. Lew Silver, Econometrics: An Introduction, Addison–Wesley, Reading, Mass., 1988,
Sec. 8.5.
18See their “Advertising, Concentration, and Price-Cost Margins,” Journal of Political Economy, vol. 84,
no. 5, 1976, pp. 1109–1121.

EXAMPLE 20.1
Advertising,
Concentration,
and Price
Margins

To study the interrelationships among advertising, concentration (as measured by the
concentration ratio), and price-cost margins, Allyn D. Strickland and Leonard W. Weiss
formulated the following three-equation model.18

Advertising intensity function:

Ad/S = a0 + a1M + a2(CD/S) + a3C + a4C2 + a5Gr + a6Dur (20.6.1)

Concentration function:

C = b0 + b1(Ad/S) + b2(MES/S) (20.6.2)

Price-cost margin function:

M = c0 + c1(K/S) + c2Gr + c3C + c4GD + c5(Ad/S) + c6(MES/S) (20.6.3)

where Ad = advertising expense
S = value of shipments
C = four-firm concentration ratio

CD = consumer demand
MES = minimum efficient scale

M = price/cost margin
Gr = annual rate of growth of industrial production

Dur = dummy variable for durable goods industry
K = capital stock

GD = measure of geographic dispersion of output
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By the order conditions for identifiability, Eq. (20.6.2) is overidentified, whereas
Eqs. (20.6.1) and (20.6.3) are exactly identified.

The data for the analysis came largely from the 1963 Census of Manufacturers and
covered 408 of the 417 four-digit manufacturing industries. The three equations were first
estimated by OLS, yielding the results shown in Table 20.3. To correct for the simultaneous-
equation bias, the authors reestimated the model using 2SLS. The ensuing results are
given in Table 20.4. We leave it to the reader to compare the two results.

Dependent Variable

Ad/S C M
Eq. (20.6.1) Eq. (20.6.2) Eq. (20.6.3)

Constant −0.0314 (−7.45) 0.2638 (25.93) 0.1682 (17.15)
C 0.0554 (3.56) — 0.0629 (2.89)
C2 −0.0568 (−3.38) — —
M 0.1123 (9.84) — —
CD/S 0.0257 (8.94) — —
Gr 0.0387 (1.64) 0.2255 (2.61)
Dur −0.0021 (−1.11) — —
Ad/S — 1.1613 (3.3) 1.6536 (11.00)
MES/S — 4.1852 (18.99) 0.0686 (0.54)
K/S — — 0.1123 (8.03)
GD — — −0.0003 (−2.90)
R 2 0.374 0.485 0.402
df 401 405 401

Dependent Variable

Ad/S C M
Eq. (20.6.1) Eq. (20.6.2) Eq. (20.6.3)

Constant −0.0245 (−3.86) 0.2591 (21.30) 0.1736 (14.66)
C 0.0737 (2.84) — 0.0377 (0.93)
C2 −0.0643 (−2.64) — —
M 0.0544 (2.01) — —
CD/S 0.0269 (8.96) — —
Gr 0.0539 (2.09) — 0.2336 (2.61)
Dur −0.0018 (−0.93) — —
Ad/S — 1.5347 (2.42) 1.6256 (5.52)
MES/S — 4.169 (18.84) 0.1720 (0.92)
K/S — — 0.1165 (7.30)
GD — — −0.0003 (−2.79)

TABLE 20.3
OLS Estimates of
Three Equations 
(t ratios in
parentheses)

TABLE 20.4
Two-Stage Least-
Squares Estimates
of Three Equations 
(t ratios in
parentheses)

EXAMPLE 20.2
Klein’s Model I

In Example 18.6 we discussed briefly the pioneering model of Klein. Initially, the model
was estimated for the period 1920–1941. The underlying data are given in Table 20.5; and
OLS, reduced-form, and 2SLS estimates are given in Table 20.6. We leave it to the reader
to interpret these results.

(Continued)

EXAMPLE 20.1
(Continued)
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Year C* P W I K−1 X W ′ G T

1920 39.8 12.7 28.8 2.7 180.1 44.9 2.2 2.4 3.4
1921 41.9 12.4 25.5 −0.2 182.8 45.6 2.7 3.9 7.7
1922 45.0 16.9 29.3 1.9 182.6 50.1 2.9 3.2 3.9
1923 49.2 18.4 34.1 5.2 184.5 57.2 2.9 2.8 4.7
1924 50.6 19.4 33.9 3.0 189.7 57.1 3.1 3.5 3.8
1925 52.6 20.1 35.4 5.1 192.7 61.0 3.2 3.3 5.5
1926 55.1 19.6 37.4 5.6 197.8 64.0 3.3 3.3 7.0
1927 56.2 19.8 37.9 4.2 203.4 64.4 3.6 4.0 6.7
1928 57.3 21.1 39.2 3.0 207.6 64.5 3.7 4.2 4.2
1929 57.8 21.7 41.3 5.1 210.6 67.0 4.0 4.1 4.0
1930 55.0 15.6 37.9 1.0 215.7 61.2 4.2 5.2 7.7
1931 50.9 11.4 34.5 −3.4 216.7 53.4 4.8 5.9 7.5
1932 45.6 7.0 29.0 −6.2 213.3 44.3 5.3 4.9 8.3
1933 46.5 11.2 28.5 −5.1 207.1 45.1 5.6 3.7 5.4
1934 48.7 12.3 30.6 −3.0 202.0 49.7 6.0 4.0 6.8
1935 51.3 14.0 33.2 −1.3 199.0 54.4 6.1 4.4 7.2
1936 57.7 17.6 36.8 2.1 197.7 62.7 7.4 2.9 8.3
1937 58.7 17.3 41.0 2.0 199.8 65.0 6.7 4.3 6.7
1938 57.5 15.3 38.2 −1.9 201.8 60.9 7.7 5.3 7.4
1939 61.6 19.0 41.6 1.3 199.9 69.5 7.8 6.6 8.9
1940 65.0 21.1 45.0 3.3 201.2 75.7 8.0 7.4 9.6
1941 69.7 23.5 53.3 4.9 204.5 88.4 8.5 13.8 11.6

*Interpretation of column heads is listed in Example 18.6.

Source: These data are taken from G. S. Maddala, Econometrics, McGraw-Hill, New York, 1977, p. 238.

OLS:
Ĉ = 16.237 + 0.193P + 0.796(W + W ′) + 0.089P−1 R̄ 2 = 0.978 DW = 1.367

(1.203) (0.091) (0.040) (0.090)
Î = 10.125 + 0.479P + 0.333P−1 − 0.112K−1 R̄ 2 = 0.919 DW = 1.810

(5.465) (0.097) (0.100) (0.026)
Ŵ = 0.064 + 0.439X + 0.146X−1 + 0.130t R̄ 2 = 0.985 DW = 1.958

(1.151) (0.032) (0.037) (0.031)
Reduced-form:

P̂ = 46.383 + 0.813P−1 − 0.213K−1 + 0.015X−1 + 0.297t − 0.926T + 0.443G
(10.870) (0.444) (0.067) (0.252) (0.154) (0.385) (0.373)

R̄ 2 = 0.753 DW = 1.854
Ŵ + W ′ = 40.278 + 0.823P−1 − 0.144K−1 + 0.115X−1 + 0.881t − 0.567T + 0.859G

(8.787) (0.359) (0.054) (0.204) (0.124) (0.311) (0.302)
R̄ 2 = 0.949 DW = 2.395

X̂ = 78.281 + 1.724P−1 − 0.319K−1 + 0.094X−1 + 0.878t − 0.565T + 1.317G
(18.860) (0.771) (0.110) (0.438) (0.267) (0.669) (0.648)

R̄ 2 = 0.882 DW = 2.049
2SLS:

Ĉ = 16.543 + 0.019P + 0.810(W + W ′) + 0.214P−1 R̄ 2 = 0.9726
(1.464) (0.130) (0.044) (0.118)

Î = 20.284 + 0.149P + 0.616P−1 − 0.157K−1 R̄ 2 = 0.8643
(8.361) (0.191) (0.180) (0.040)

Ŵ = 0.065 + 0.438X + 0.146X−1 + 0.130t R̄ 2 = 0.9852
(1.894) (0.065) (0.070) (0.053)

*Interpretation of variables is listed in Example 18.6 (standard errors in parentheses).

EXAMPLE 20.2
(Continued)

TABLE 20.5 Underlying Data for Klein’s Model I

TABLE 20.6*
OLS, Reduced-
Form and 2SLS
Estimates of Klein’s
Model I

Source: G. S. Maddala,
Econometrics, McGraw-Hill,
New York, 1977, p. 242.
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Chapter 20 Simultaneous-Equation Methods 727

EXAMPLE 20.3
The Capital Asset
Pricing Model
Expressed as a
Recursive System

In a rather unusual application of recursive simultaneous-equation modeling, Cheng F. Lee
and W. P. Lloyd19 estimated the following model for the oil industry:

R1t = α1 + γ1Mt + u1t

R2t = α2 + β21R1t + γ2Mt + u2t

R3t = α3 + β31R1t + β32R2t + γ3Mt + u3t

R4t = α4 + β41R1t + β42R2t + β43R3t + γ4Mt + u4t

R5t = α5 + β51R1t + β52R2t + β53R3t + β54R4t + γ5Mt + u5t

R6t = α6 + β61R1t + β62R2t + β63R3t + β64R4t + β65R5t + γ6Mt + u6t

R7t = α7 + β71R1t + β72R2t + β73R3t + β74R4t + β75R5t + β76R6t + γ7Mt + u7t

where R1 = rate of return on security 1 ( = Imperial Oil)
R2 = rate of return on security 2 ( = Sun Oil)
...

R7 = rate of return on security 7 ( = Standard of Indiana)
Mt = rate of return on the market index
uit = disturbances (i = 1, 2, . . . , 7)

Before we present the results, the obvious question is: How do we choose which is
security 1, which is security 2, and so on? Lee and Lloyd answer this question purely
empirically. They regress the rate of return on security i on the rates of return of the
remaining six securities and observe the resulting R 2. Thus, there will be seven such
regressions. Then they order the estimated R 2 values, from the lowest to the highest. The
security having the lowest R 2 is designated as security 1 and the one having the highest
R 2 is designated as security 7. The idea behind this is intuitively simple. If the R 2 of the
rate of return of, say, Imperial Oil, is lowest with respect to the other six securities, it
would suggest that this security is affected least by the movements in the returns of
the other securities. Therefore, the causal ordering, if any, runs from this security to the
others and there is no feedback from the other securities.

Although one may object to such a purely empirical approach to causal ordering, let us
present their empirical results nonetheless, which are given in Table 20.7.

In Exercise 5.5 we introduced the characteristic line of modern investment theory,
which is simply the regression of the rate of return on security i on the market rate of
return. The slope coefficient, known as the beta coefficient, is a measure of the volatility
of the security’s return. What the Lee–Lloyd regression results suggest is that there are
significant intra-industry relationships between security returns, apart from the common
market influence represented by the market portfolio. Thus, Standard of Indiana’s return
depends not only on the market rate of return but also on the rates of return on Shell Oil,
Phillips Petroleum, and Union Oil. To put the matter differently, the movement in the
rate of return on Standard of Indiana can be better explained if in addition to the mar-
ket rate of return we also consider the rates of return experienced by Shell Oil, Phillips
Petroleum, and Union Oil.

19“The Capital Asset Pricing Model Expressed as a Recursive System: An Empirical Investigation,”
Journal of Financial and Quantitative Analysis, June 1976, pp. 237–249.

(Continued)
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728 Part Four Simultaneous-Equation Models and Time Series Econometrics

Linear Form 
Dependent Variables

Standard Shell Phillips Union Standard Sun Imperial
of Indiana Oil Petroleum Oil of Ohio Oil Oil

Standard
of Indiana
Shell Oil 0.2100*

(2.859)
Phillips 0.2293* 0.0791
Petroleum (2.176) (1.065)
Union Oil 0.1754* 0.2171* 0.2225*

(2.472) (3.177) (2.337)
Standard −0.0794 0.0147 0.4248* 0.1468*
of Ohio (−1.294) (0.235) (5.501) (1.735)
Sun Oil 0.1249 0.1710* 0.0472 0.1339 0.0499

(1.343) (1.843) (0.355) (0.908) (0.271)
Imperial Oil −0.1077 0.0526 0.0354 0.1580 −0.2541* 0.0828

(−1.412) (0.6804) (0.319) (1.290) (−1.691) (0.971)
Constant 0.0868 −0.0384 −0.0127 −0.2034 0.3009 0.2013 0.3710*

(0.681) (1.296) (−0.068) (0.986) (1.204) (1.399) (2.161)
Market index 0.3681* 0.4997* 0.2884 0.7609* 0.9089* 0.7161* 0.6432*

(2.165) (3.039) (1.232) (3.069) (3.094) (4.783) (3.774)
R2 0.5020 0.4658 0.4106 0.2532 0.0985 0.2404 0.1247
Durbin– 2.1083 2.4714 2.2306 2.3468 2.2181 2.3109 1.9592
Watson

*Denotes significance at 0.10 level or better for two-tailed test.
Note: The t values appear in parentheses beneath the coefficients.

Source: Cheng F. Lee and W. P. Lloyd, op. cit., Table 3b.

TABLE 20.7 Recursive System Estimates for the Oil IndustryEXAMPLE 20.3
(Continued)

EXAMPLE 20.4
Revised Form of
St. Louis Model20

The well-known, and often controversial, St. Louis model originally developed in the late
1960s has been revised from time to time. One such revision is given in Table 20.8, and
the empirical results based on this revised model are given in Table 20.9. (Note: A dot over
a variable means the growth rate of that variable.) The model basically consists of Eqs. (1),
(2), (4), and (5) in Table 20.8, the other equations representing the definitions. Equa-
tion (1) was estimated by OLS. Equations (1), (2), and (4) were estimated using the Almon
distributed-lag method with (endpoint) constraints on the coefficients. Where relevant,
the equations were corrected for first-order (ρ1) and/or second-order (ρ2) serial
correlation.

Examining the results, we observe that it is the rate of growth in the money supply that
primarily determines the rate of growth of (nominal) GNP and not the rate of growth
in high-employment expenditures. The sum of the M coefficients is 1.06, suggesting
that a 1 percent (sustained) increase in the money supply on the average leads to about
1.06 percent increase in the nominal GNP. On the other hand, the sum of the E coeffi-
cients, about 0.05, suggests that a change in high-employment government expenditure
has little impact on the rate of growth of nominal GNP. It is left to the reader to interpret
the results of the other regressions reported in Table 20.9.

20Federal Reserve Bank of St. Louis, Review, May 1982, p. 14.
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(1) Ẏ 1 = C1 +
4∑

i=0
C Mi (Ṁt−i ) +

4∑
i=0

C E ( Ė t−i ) + ε1t

(2) Ṗt = C2 +
4∑

i=1
CPEi (ṖEt−i ) +

5∑
i=0

C Di (Ẋ t−i − ẊF*t−i 1)

+ CPA(ṖAt) + CDUM1(DUM1) + CDUM2(DUM2) + ε2t

(3) ṖAt =
21∑

i=1
CPRLi (Ṗ t−i )

(4) RLt = C 3 +
20∑

i=0
CPRLi (Ṗ t−i ) + ε3t

(5) Ut − UFt = CG(GAPt) + CG1(GAPt−1) + ε4t

(6) Yt = (Pt/100)(Xt)

(7) Ẏt = [(Yt/Yt−i)4 − 1]100

(8) Ẋt = [(Xt/Xt−i)4 − 1]100

(9) Ṗt = [(Pt/Pt−i)4 − 1]100

(10) GAPt = [(XFt/Xt)/XFt]100

(11) ẊF*t = [(XFt/Xt−1)4 − 1]100

(1) ̂̇Yt = 2.44 + 0.40Ṁt + 0.39Ṁt−1 + 0.22Ṁt−2 + 0.06Ṁt−3 − 0.01Ṁt−4

(2.15) (3.38) (5.06) (2.18) (0.82) (0.11)
+ 0.06Ė t + 0.02Ėt−1 − 0.02Ėt−2 − 0.02Ėt−3 + 0.01Ėt−4

(1.46) (0.63) (0.57) (0.52) (0.34)
R2 = 0.39 se = 3.50 DW = 2.02

(2) ̂̇Pt = 0.96 + 0.01ṖEt−1 + 0.04ṖEt−2 − 0.01ṖEt−3 + 0.02ṖEt−4

(2.53) (0.75) (1.96) (0.73) (1.38)
− 0.00( Ẋ t− ẊF*t ) + 0.01( Ẋ t−1− ẊF*t−1) + 0.02(Ẋ t−2− ẊF*t−2)

(0.18) (1.43) (4.63)
+ 0.02( Ẋ t−3− ẊF*t−3) + 0.02( Ẋ t−4− ẊF*t−4 + 0.01( Ẋ t−5− ẊF*t−5)

(3.00) (2.42) (2.16)
+ 1.03(ṖAt) − 0.61(DUM1t) + 1.65(DUM2t)

(10.49) (1.02) (2.71)
R2 = 0.80 se = 1.28 DW = 1.97 ρ̂ = 0.12

(4) R̂Lt = 2.97 + 0.96
20∑

i=0
Ṗt−i

(3.12) (5.22) 
R2 = 0.32 se = 0.33 DW = 1.76 ρ̂ = 0.94

(5) ̂Ut − UFt = 0.28(GAPt) + 0.14(GAPt−1)
(11.89) (6.31)

R2 = 0.63 se = 0.17 DW = 1.95 ρ̂1 = 1.43 ρ̂2 = 0.52

TABLE 20.8 The St. Louis Model

TABLE 20.9
In-Sample
Estimation: 1960–I
to 1980–IV
(absolute value of
t statistic
in parentheses)

Source: Federal Reserve
Bank of St. Louis, Review,
May 1982, p. 14.

EXAMPLE 20.4
(Continued)

XF = potential output (Rasche/Tatom)
RL = corporate bond rate

U = unemployment rate
UF = unemployment rate at full employment

DUM1 = control dummy (1971–III to 1973–I = 1; 0 elsewhere)
DUM2 = postcontrol dummy (1973–II to 1975–I = 1; 0 elsewhere)

Y = nominal GNP 
M = money stock (M1)
E = high employment expenditures
P = GNP deflator (1972 = 100)

PE = relative price of energy
X = output in 1972 dollars

Source: Federal Reserve Bank of St. Louis, Review, May 1982, p. 14.
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730 Part Four Simultaneous-Equation Models and Time Series Econometrics

Summary and
Conclusions

1. Assuming that an equation in a simultaneous-equation model is identified (either
exactly or over-), we have several methods to estimate it.

2. These methods fall into two broad categories: Single-equation methods and systems
methods.

3. For reasons of economy, specification errors, etc., the single-equation methods are by far
the most popular. A unique feature of these methods is that one can estimate a single-
equation in a multiequation model without worrying too much about other equations in
the system. (Note: For identification purposes, however, the other equations in the
system count.)

4. Three commonly used single-equation methods are OLS, ILS, and  2SLS.

5. Although OLS is, in general, inappropriate in the context of simultaneous-equation
models, it can be applied to the so-called recursive models where there is a definite but
unidirectional cause-and-effect relationship among the endogenous variables.

6. The method of ILS is suited for just or exactly identified equations. In this method OLS
is applied to the reduced-form equation, and it is from the reduced-form coefficients that
one estimates the original structural coefficients.

7. The method of 2SLS is especially designed for overidentified equations, although it can
also be applied to exactly identified equations. But then the results of 2SLS and ILS are
identical. The basic idea behind 2SLS is to replace the (stochastic) endogenous ex-
planatory variable by a linear combination of the predetermined variables in the model
and use this combination as the explanatory variable in lieu of the original endogenous
variable. The 2SLS method thus resembles the instrumental variable method of
estimation in that the linear combination of the predetermined variables serves as an
instrument, or proxy, for the endogenous regressor.

8. A noteworthy feature of both ILS and 2SLS is that the estimates obtained are consistent,
that is, as the sample size increases indefinitely, the estimates converge to their true
population values. The estimates may not satisfy small-sample properties, such as unbi-
asedness and minimum variance. Therefore, the results obtained by applying these
methods to small samples and the inferences drawn from them should be interpreted
with due caution.

Questions
20.1. State whether each of the following statements is true or false:

a. The method of OLS is not applicable to estimate a structural equation in a
simultaneous-equation model.

b. In case an equation is not identified, 2SLS is not applicable.

c. The problem of simultaneity does not arise in a recursive simultaneous-equation
model.

d. The problems of simultaneity and exogeneity mean the same thing.

e. The 2SLS and other methods of estimating structural equations have desirable
statistical properties only in large samples.

f. There is no such thing as an R2 for the simultaneous-equation model as a whole.
*g. The 2SLS and other methods of estimating structural equations are not applicable

if the equation errors are autocorrelated and/or are correlated across equations.

h. If an equation is exactly identified, ILS and 2SLS give identical results.

EXERCISES

*Optional.
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20.2. Why is it unnecessary to apply the two-stage least-squares method to exactly iden-
tified equations?

20.3. Consider the following modified Keynesian model of income determination:

Ct = β10 + β11Yt + u1t

It = β20 + β21Yt + β22Yt−1 + u2t

Yt = Ct + It + Gt

where C = consumption expenditure
I = investment expenditure
Y = income
G = government expenditure

Gt and Yt−1 are assumed predetermined

a. Obtain the reduced-form equations and determine which of the preceding
equations are identified (either just or over-).

b. Which method will you use to estimate the parameters of the overidentified
equation and of the exactly identified equation? Justify your answer.

20.4. Consider the following results:*

OLS: ̂̇Wt = 0.276 + 0.258Ṗt + 0.046Ṗt−1 + 4.959Vt R2 = 0.924

OLS: ̂̇Pt = 2.693 + 0.232Ẇt − 0.544Ẋt + 0.247Ṁt + 0.064Ṁt−1 R2 = 0.982

2SLS: ̂̇Wt = 0.272 + 0.257Ṗt + 0.046Ṗt−1 + 4.966Vt R2 = 0.920

2SLS: ̂̇Pt = 2.686 + 0.233Ẇt − 0.544Ẋt + 0.246Ṁt + 0.046Ṁt−1 R2 = 0.981

where Ẇt , Ṗt , Ṁt , and Ẋt are percentage changes in earnings, prices, import
prices, and labor productivity (all percentage changes are over the previous year),
respectively, and where Vt represents unfilled job vacancies (percentage of total
number of employees).

“Since the OLS and 2SLS results are practically identical, 2SLS is meaningless.”
Comment.

†20.5. Assume that production is characterized by the Cobb–Douglas production function

Qi = AK α
i Lβ

i

where Q = output
K = capital input
L = labor input

A, α, and β = parameters
i = ith firm

Given the price of final output P, the price of labor W, and the price of capital R,
and assuming profit maximization, we obtain the following empirical model of
production:

Production function:

ln Qi = ln A + α ln Ki + β ln Li + ln u1i (1)

*Source: Prices and Earnings in 1951–1969: An Econometric Assessment, Department of Employment,
United Kingdom, Her Majesty’s Stationery Office, London, 1971, p. 30.
†Optional.
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732 Part Four Simultaneous-Equation Models and Time Series Econometrics

Marginal product of labor function:

ln Qi = − ln β + ln Li + ln
W

P
+ ln u2i (2)

Marginal product of capital function:

ln Qi = − ln α + ln Ki + ln
R

P
+ ln u3i (3)

where u1, u2, and u3 are stochastic disturbances.

In the preceding model there are three equations in three endogenous variables
Q, L, and K. P, R, and W are exogenous.

a. What problems do you encounter in estimating the model if α + β = 1, that is,
when there are constant returns to scale?

b. Even if α + β �= 1, can you estimate the equations? Answer by considering the
identifiability of the system.

c. If the system is not identified, what can be done to make it identifiable?

Note: Equations (2) and (3) are obtained by differentiating Q with respect to labor
and capital, respectively, setting them equal to W/P and R/P, transforming the
resulting expressions into logarithms, and adding (the logarithm of) the disturbance
terms.

20.6. Consider the following demand-and-supply model for money:

Demand for money: Md
t = β0 + β1Y1 + β2 Rt + β3 Pt + u1t

Supply of money: Ms
t = α0 + α1Yt + u2t

where M = money
Y = income
R = rate of interest
P = price

Assume that R and P are predetermined.

a. Is the demand function identified?

b. Is the supply function identified?

c. Which method would you use to estimate the parameters of the identified
equation(s)? Why?

d. Suppose we modify the supply function by adding the explanatory variables Yt−1

and Mt−1. What happens to the identification problem? Would you still use the
method you used in (c)? Why or why not?

20.7. Refer to Exercise 18.10. For the two-equation system there obtain the reduced-form
equations and estimate their parameters. Estimate the indirect least-squares regres-
sion of consumption on income and compare your results with the OLS regression.

Empirical Exercises
20.8. Consider the following model:

Rt = β0 + β1 Mt + β2Yt + u1t

Yt = α0 + α1 Rt + u2t

where Mt (money supply) is exogenous, Rt is the interest rate, and Yt is GDP.

a. How would you justify the model?

b. Are the equations identified?

c. Using the data given in Table 20.2, estimate the parameters of the identified
equations. Justify the method(s) you use.

guj75772_ch20.qxd  28/08/2008  07:15 PM  Page 732



Chapter 20 Simultaneous-Equation Methods 733

20.9. Suppose we change the model in Exercise 20.8 as follows:

Rt = β0 + β1 Mt + β2Yt + β3Yt−1 + u1t

Yt = α0 + α1 Rt + u2t

a. Find out if the system is identified.

b. Using the data given in Table 20.2, estimate the parameters of the identified
equation(s).

20.10. Consider the following model:

Rt = β0 + β1 Mt + β2Yt + u1t

Yt = α0 + α1 Rt + α2 It + u2t

where the variables are as defined in Exercise 20.8. Treating I (domestic invest-
ment) and M exogenously, determine the identification of the system. Using the
data given in Table 20.2, estimate the parameters of the identified equation(s).

20.11. Suppose we change the model of Exercise 20.10 as follows:

Rt = β0 + β1 Mt + β2Yt + u1t

Yt = α0 + α1 Rt + α2 It + u2t

It = γ0 + γ1 Rt + u3t

Assume that M is determined exogenously.

a. Find out which of the equations are identified.

b. Estimate the parameters of the identified equation(s) using the data given in
Table 20.2. Justify your method(s).

20.12. Verify the standard errors reported in Eq. (20.5.3).

20.13. Return to the demand-and-supply model given in Eqs. (20.3.1) and (20.3.2).
Suppose the supply function is altered as follows:

Qt = β0 + β1 Pt−1 + u2t

where Pt−1 is the price prevailing in the previous period.

a. If X (expenditure) and Pt−1 are predetermined, is there a simultaneity problem?

b. If there is, are the demand and supply functions each identified? If they are, obtain
their reduced-form equations and estimate them from the data given in Table 20.1.

c. From the reduced-form coefficients, can you derive the structural coefficients?
Show the necessary computations.

20.14. Class Exercise: Consider the following simple macroeconomic model for the U.S.
economy, say, for the period 1960–1999.* 

Private consumption function:

Ct = α0 + α1Yt + α2Ct−1 + u1t α1 > 0, 0 < α2 < 1

Private gross investment function:

It = β0 + β1Yt + β2 Rt + β3 It−1 + u2t β1 > 0, β2 < 0, 0 < β3 < 1

A money demand function:

Rt = λ0 + λ1Yt + λ2 Mt−1 + λ3 Pt + λ4 Rt−1 + u3t

λ1 > 0, λ2 < 0, λ3 > 0, 0 < λ4 < 1

*Adapted from H. R. Seddighi, K. A. Lawler, and A. V. Katos, Econometrics: A Practical Approach,
Routledge, New York, 2000, p. 204.
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734 Part Four Simultaneous-Equation Models and Time Series Econometrics

Income identity:
Yt = Ct + It + Gt

where C = real private consumption; I = real gross private investment, G = real
government expenditure, Y = real GDP, M = M2 money supply at current prices,
R = long-term interest rate (%), and P = Consumer Price Index. The endogenous
variables are C, I, R, and Y. The predetermined variables are: Ct−1, It−1,
Mt−1, Pt , Rt−1, and Gt plus the intercept term. The u’s are the error terms.

a. Using the order condition of identification, determine which of the four equa-
tions are identified, either exact or over-.

b. Which method(s) do you use to estimate the identified equations?

c. Obtain suitable data from government and/or private sources, estimate the
model, and comment on your results.

20.15. In this exercise we examine data for 534 workers obtained from the Current Popu-
lation Survey (CPS) for 1985. The data can be found as Table 20.10 on the textbook
website.* The variables in this table are defined as follows:
W = wages $, per hour; occup = occupation; sector = 1 for manufacturing, 2 for
construction, 0 for other; union = 1 if union member, 0 otherwise; educ = years of
schooling; exper = work experience in years; age = age in years; sex = 1 for
female; marital status = 1 if married; race = 1 for other, 2 for Hispanic, 3 for white;
region = 1 if lives in the South.

Consider the following simple wage determination model:

ln W = β1 + β2Educ + β3Exper + β4Exper2 + ui (1)

a. Suppose education, like wages, is endogenous. How would you find out that in
Equation (1) education is in fact endogenous? Use the data given in the table in
your analysis.

b. Does the Hausman test support your analysis in (a)? Explain fully.

20.16. Class Exercise: Consider the following demand-and-supply model for loans of
commercial banks to businesses:

Demand: Qd
t = α1 + α2 Rt + α2RDt + α4IPIt + u1t

Supply: Qs
t = β1 + β2 Rt + β3RSt + β4TBDt + u2t

Where Q = total commercial bank loans ($billion); R = average prime rate; RS =
3-month Treasury bill rate; RD = AAA corporate bond rate; IPI = Index of
Industrial Production; and TBD = total bank deposits.

a. Collect data on these variables for the period 1980–2007 from various sources,
such as www.economagic.com, the website of the Federal Reserve Bank of
St. Louis, or any other source.

b. Are the demand and supply functions identified? List which variables are
endogenous and which are exogenous.

c. How would you go about estimating the demand and supply functions listed
above? Show the necessary calculations.

d. Why are both R and RS included in the model? What is the role of IPI in the
model?

*Data can be found on the Web, at http://lib.stat.cmu.edu/datasets/cps_85_wages.
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Appendix 20A

20A.1 Bias in the Indirect Least-Squares Estimators

To show that the ILS estimators, although consistent, are biased, we use the demand-and-supply
model given in Eqs. (20.3.1) and (20.3.2). From Eq. (20.3.10) we obtain

β̂1 = �̂3

�̂1

Now

�̂3 =
∑

qt xt∑
x2

t
from Eq. (20.3.7)

and

�̂1 =
∑

pt xt∑
x2

t
from Eq. (20.3.5)

Therefore, on substitution, we obtain

β̂1 =
∑

qt xt∑
pt xt

(1)

Using Eqs. (20.3.3) and (20.3.4), we obtain

pt = �1xt + (wt − w̄) (2)

qt = �3xt + (vt − v̄) (3)

where w̄ and v̄ are the mean values of wt and vt, respectively.
Substituting Eqs. (2) and (3) into Eq. (1), we obtain

β̂1 = �3
∑

x2
t + ∑

(vt − v̄)xt

�1
∑

x2
t + ∑

(wt − w̄)xt

= �3 + ∑
(vt − v̄)xt/

∑
x2

t

�1 + ∑
(wt − w̄)xt/

∑
x2

t

(4)

Since the expectation operator E is a linear operator, we cannot take the expectation of Eq. (4),
although it is clear that β̂1 �= (�3/�1) generally. (Why?)

But as the sample size tends to infinity, we can obtain

plim (β̂1) = plim �3 + plim
∑

(vt − v̄)xt/
∑

x2
t

plim �1 + plim
∑

(wt − w̄)xt/
∑

x2
t

(5)

where use is made of the properties of plim, namely, that

plim ( A + B) = plim A + plim B and plim

(
A

B

)
= plim A

plim B

Now as the sample size is increased indefinitely, the second term in both the denominator and the
numerator of Eq. (5) tends to zero (why?), yielding

plim (β̂1) = �3

�1
(6)

showing that, although biased, β̂1 is a consistent estimator of β1.
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736 Part Four Simultaneous-Equation Models and Time Series Econometrics

20A.2 Estimation of Standard Errors 
of 2SLS Estimators

The purpose of this appendix is to show that the standard errors of the estimates obtained from the
second-page regression of the 2SLS procedure, using the formula applicable in OLS estimation, are
not the “proper” estimates of the “true” standard errors. To see this, we use the income–money sup-
ply model given in Eqs. (20.4.1) and (20.4.2). We estimate the parameters of the overidentified money
supply function from the second-stage regression as

Y2t = β20 + β21Ŷ1t + u∗
t (20.4.6)

where

u∗
t = u2t + β21ût (7)

Now when we run regression (20.4.6), the standard error of, say, β̂21 is obtained from the following
expression:

var (β̂21) = σ̂ 2
u∗∑
ŷ2

1t

(8)

where

σ̂ 2
u∗ =

∑
(û∗

t )2

n − 2
=

∑
(Y2t − β̂20 − β̂21Ŷ1t )2

n − 2
(9)

But σ 2
u∗ is not the same thing as σ̂ 2

u2
, where the latter is an unbiased estimate of the true variance

of u2. This difference can be readily verified from Eq. (7). To obtain the true (as defined previously)
σ̂ 2

u2
, we proceed as follows:

û2t = Y2t − β̂20 − β̂21Y1t

where β̂20 and β̂21 are the estimates from the second-stage regression. Hence,

σ̂ 2
u2

=
∑

(Y2t − β̂20 − β̂21Y1t )2

n − 2
(10)

Note the difference between Eqs. (9) and (10): In Eq. (10) we use actual Y1 rather than the estimated
Y1 from the first-stage regression.

Having estimated Eq. (10), the easiest way to correct the standard errors of coefficients estimated
in the second-stage regression is to multiply each one of them by σ̂u2/σ̂ u‡. Note that if Y1t and Ŷ1t are
very close, that is, the R2 in the first-stage regression is very high, the correction factor σ̂u2/σ̂ u* will
be close to 1, in which case the estimated standard errors in the second-stage regression may be taken
as the true estimates. But in other situations, we shall have to use the preceding correction factor.

guj75772_ch20.qxd  27/08/2008  04:09 PM  Page 736



737

We noted in Chapter 1 that one of the important types of data used in empirical analysis is
time series data. In this and the following chapter we take a closer look at such data not
only because of the frequency with which they are used in practice but also because they
pose several challenges to econometricians and practitioners.

First, empirical work based on time series data assumes that the underlying time series
is stationary.Although we have discussed the concept of stationarity intuitively in Chapter 1,
we discuss it more fully in this chapter. More specifically, we will try to find out what sta-
tionarity means and why one should worry about it.

Second, in Chapter 12, on autocorrelation, we discussed several causes of autocorrela-
tion. Sometimes autocorrelation results because the underlying time series is nonstationary.

Third, in regressing a time series variable on another time series variable(s), one often
obtains a very high R2 (in excess of 0.9) even though there is no meaningful relationship
between the two variables. Sometimes we expect no relationship between two variables, yet
a regression of one on the other variable often shows a significant relationship. This situa-
tion exemplifies the problem of spurious, or nonsense, regression, whose nature will be
explored shortly. It is therefore very important to find out if the relationship between eco-
nomic variables is spurious or nonsensical. We will see in this chapter how spurious
regressions can arise if time series are not stationary.

Fourth, some financial time series, such as stock prices, exhibit what is known as the
random walk phenomenon. This means the best prediction of the price of a stock, say
IBM, tomorrow is equal to its price today plus a purely random shock (or error term). If this
were in fact the case, forecasting asset prices would be a futile exercise.

Fifth, regression models involving time series data are often used for forecasting. In
view of the preceding discussion, we would like to know if such forecasting is valid if the
underlying time series are not stationary.

Finally, causality tests (recall the Granger and Sims causality tests discussed in Cha-
pter 17) assume that the time series involved in analysis are stationary. Therefore, tests of
stationarity should precede tests of causality.

At the outset a disclaimer is in order. The topic of time series analysis is so vast and
evolving and some of the mathematics underlying the various techniques of time series
analysis is so involved that the best we hope to achieve in an introductory text like this is to

Chapter 21
Time Series 
Econometrics:
Some Basic Concepts
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738 Part Four Simultaneous-Equation Models and Time Series Econometrics

give the reader a glimpse of some of the fundamental concepts of time series analysis. For
those who want to pursue this topic further, we provide references.1

21.1 A Look at Selected U.S. Economic Time Series

To set the ball rolling, and to give the reader a feel for the somewhat esoteric concepts of
time series analysis to be developed in this chapter, it might be useful to consider several
U.S. economic time series of general interest. The time series we consider are:

DPI = real disposable personal income (billions of dollars)
GDP = gross domestic product (billions of dollars)
PCE = real personal consumption expenditure (billions of dollars)

CP = corporate profits (billions of dollars)
Dividend = dividends, (billions of dollars)

The time period covered is from 1947–I to 2007–IV, for a total of 244 quarters, and all data
are seasonally adjusted at the annual rate. All the data are collected from FRED, the
economic website of the Federal Reserve Bank of St. Louis. GDP, DPI, and PCE are in
constant dollars, here 2000 dollars. CP and Dividend are in nominal dollars.

To save space, the raw data are posted on the book’s website. But to get some idea of
these data, we have plotted them in the following two figures. Figure 21.1 is a plot of the
data of logarithms of GDP, DPI, and PCE and Figure 21.2 presents the logs of the other
two time series (CP and Dividend). It is common practice to plot the log of a time series
to get a glimpse of the growth rate of such a series. A visual plot of the data is usually the
first step in the analysis of time series. In these figures the letter L denotes the natural
logarithm.

The first impression we get from these two figures is that all these time series seem to be
“trending” upward, albeit with fluctuations. Suppose we want to speculate on the shape of
these curves beyond the sample period, say for all the quarters of 2008.2 We can do that if
we know the statistical, or stochastic, mechanism, or the data generating process (DGP)
that generated these curves. But what is that mechanism? To answer this and related ques-
tions, we need to study some “new” vocabulary that has been developed by time series
analysts, to which we now turn.

1At the introductory level, these references may be helpful: Gary Koop, Analysis of Economic Data,
John Wiley & Sons, New York, 2000; Jeff B. Cromwell, Walter C. Labys, and Michel Terraza, Univariate
Tests for Time Series Models, Sage Publications, California, Ansbury Park, 1994; Jeff B. Cromwell,
Michael H. Hannan, Walter C. Labys, and Michel Terraza, Multivariate Tests for Time Series Models,
Sage Publications, California, Ansbury Park, 1994; and H. R. Seddighi, K. A. Lawler, and A. V. Katos,
Econometrics: A Practical Approach, Routledge, New York, 2000. At the intermediate level, see Walter
Enders, Applied Econometric Time Series, John Wiley & Sons, New York, 1995; Kerry Patterson, An Intro-
duction to Applied Econometrics: A Time Series Approach, St. Martin’s Press, New York, 2000; T. C. Mills,
The Econometric Modelling of Financial Time Series, 2d ed., Cambridge University Press, New York,
1999; Marno Verbeek, A Guide to Modern Econometrics, John Wiley & Sons, New York, 2000; and 
Wojciech W. Charemza and Derek F. Deadman, New Directions in Econometric Practice: General to
Specific Modelling and Vector Autoregression, 2d ed., Edward Elgar Publisher, New York, 1997. At the
advanced level, see J. D. Hamilton, Time Series Analysis, Princeton University Press, Princeton, NJ,
1994, and G. S. Maddala and In-Moo Kim, Unit Roots, Cointegration, and Structural Change,
Cambridge University Press, 1998. At the applied level, see B. Bhaskara Rao, ed., Cointegration for the
Applied Economist, St. Martin’s Press, New York, 1994, and Chandan Mukherjee, Howard White, and
Marc Wuyts, Econometrics and Data Analysis for Developing Countries, Routledge, New York, 1998.
2Of course, we have the actual data for this period now and could compare it with the data that is
“predicted” on the basis of the earlier period.
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Chapter 21 Time Series Econometrics: Some Basic Concepts 739

21.2 Key Concepts3

What is this vocabulary? It consists of concepts such as these:

1. Stochastic processes
2. Stationarity processes
3. Purely random processes
4. Nonstationary processes
5. Integrated variables
6. Random walk models
7. Cointegration
8. Deterministic and stochastic trends
9. Unit root tests

In what follows we will discuss each of these concepts. Our discussion will often be heuristic.
Wherever possible and helpful, we will provide appropriate examples.
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Note: L denotes logarithm.

3The following discussion is based on Maddala et al., op. cit., Charemza et al., op. cit., and Carol
Alexander, Market Models: A Guide to Financial Data Analysis, John Wiley & Sons, New York, 2001.
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740 Part Four Simultaneous-Equation Models and Time Series Econometrics

21.3 Stochastic Processes

A random or stochastic process is a collection of random variables ordered in time.4 If we
let Y denote a random variable, and if it is continuous, we denote it as Y(t), but if it is dis-
crete, we denoted it as Yt . An example of the former is an electrocardiogram, and an exam-
ple of the latter is GDP, DPI, etc. Since most economic data are collected at discrete points
in time, for our purpose we will use the notation Yt rather than Y (t). If we let Y represent
GDP, for our data we have Y1, Y2, Y3, . . . , Y242, Y243, Y244 , where the subscript 1 denotes
the first observation (i.e., GDP for the first quarter of 1947) and the subscript 244 denotes
the last observation (i.e., GDP for the fourth quarter of 2007). Keep in mind that each of
these Y’s is a random variable.

In what sense can we regard GDP as a stochastic process? Consider for instance the real
GDP of $3,759.997 billion for 1970–I. In theory, the GDP figure for the first quarter of
1970 could have been any number, depending on the economic and political climate then
prevailing. The figure of 3,759.997 is a particular realization of all such possibilities.5

Therefore, we can say that GDP is a stochastic process and the actual values we observed
for the period 1947–I to 2007–IV are particular realizations of that process (i.e., sample).
The distinction between the stochastic process and its realization is akin to the distinction
between population and sample in cross-sectional data. Just as we use sample data to draw
inferences about a population, in time series we use the realization to draw inferences about
the underlying stochastic process.

Stationary Stochastic Processes
A type of stochastic process that has received a great deal of attention and scrutiny by time
series analysts is the so-called stationary stochastic process. Broadly speaking, a stochas-
tic process is said to be stationary if its mean and variance are constant over time and the
value of the covariance between the two time periods depends only on the distance or gap or
lag between the two time periods and not the actual time at which the covariance is computed.
In the time series literature, such a stochastic process is known as a weakly stationary, or
covariance stationary, or second-order stationary, or wide sense, stochastic process. For
the purpose of this chapter, and in most practical situations, this type of stationarity often
suffices.6

To explain weak stationarity, let Yt be a stochastic time series with these properties:

Mean: E(Yt ) = µ (21.3.1)

Variance: var (Yt ) = E(Yt − µ)2 = σ 2 (21.3.2)

Covariance: γk = E[(Yt − µ)(Yt+k − µ)] (21.3.3)

where γk , the covariance (or autocovariance) at lag k, is the covariance between the values
of Yt and Yt+k , that is, between two Y values k periods apart. If k = 0, we obtain γ0, which

4The term “stochastic” comes from the Greek word “stokhos,” which means a target or bull’s-eye. If
you have ever thrown darts on a dart board with the aim of hitting the bull’s-eye, how often did you
hit the bull’s-eye? Out of a hundred darts you may be lucky to hit the bull’s-eye only a few times; at
other times the darts will be spread randomly around the bull’s-eye.
5You can think of the value of $3,759.997 billion as the mean value of all possible values of GDP for
the first quarter of 1970.
6A time series is strictly stationary if all the moments of its probability distribution and not just the first
two (i.e., mean and variance) are invariant over time. If, however, the stationary process is normal,
the weakly stationary stochastic process is also strictly stationary, for the normal stochastic process is
fully specified by its two moments, the mean and the variance.
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Chapter 21 Time Series Econometrics: Some Basic Concepts 741

is simply the variance of Y ( = σ 2); if k = 1, γ1 is the covariance between two adjacent
values of Y, the type of covariance we encountered in Chapter 12 (recall the Markov first-
order autoregressive scheme).

Suppose we shift the origin of Y from Yt to Yt+m (say, from the first quarter of 1947 to
the first quarter of 1952 for our GDP data). Now if Yt is to be stationary, the mean, variance,
and autocovariances of Yt+m must be the same as those of Yt . In short, if a time series is sta-
tionary, its mean, variance, and autocovariance (at various lags) remain the same no mat-
ter at what point we measure them; that is, they are time invariant. Such a time series will
tend to return to its mean (called mean reversion) and fluctuations around this mean (mea-
sured by its variance) will have a broadly constant amplitude.7 To put it differently, a
stationary process will not drift too far away from its mean value because of the finite vari-
ance. As we shall see shortly, this is not the case with nonstationary stochastic processes. It
should be noted that for a stationary process the speed of mean reversion depends on the
autocovariances; it is quick if the autocovariances are small and slow when they are large,
as we will show shortly.

If a time series is not stationary in the sense just defined, it is called a nonstationary time
series (keep in mind we are talking only about weak stationarity). In other words, a nonsta-
tionary time series will have a time-varying mean or a time-varying variance or both.

Why are stationary time series so important? Because if a time series is nonstationary,
we can study its behavior only for the time period under consideration. Each set of time se-
ries data will therefore be for a particular episode. As a consequence, it is not possible to
generalize it to other time periods. Therefore, for the purpose of forecasting, such (nonsta-
tionary) time series may be of little practical value.

How do we know that a particular time series is stationary? In particular, are the time se-
ries shown in Figures 21.1 and 21.2 stationary? We will take this important topic up in Sec-
tions 21.8 and 21.9, where we will consider several tests of stationarity. But if we depend
on common sense, it would seem that the time series depicted in Figures 21.1 and 21.2 are
nonstationary, at least in the mean values. But more on this later.

Before we move on, we mention a special type of stochastic process (or time series),
namely, a purely random, or white noise, process. We call a stochastic process purely ran-
dom if it has zero mean, constant variance σ 2, and is serially uncorrelated.8 You may recall
that the error term ut, entering the classical normal linear regression model that we dis-
cussed in Part 1 of this book, was assumed to be a white noise process, which we denoted
as ut ∼ IIDN(0, σ 2); that is, ut is independently and identically distributed as a normal dis-
tribution with zero mean and constant variance. Such a process is called a Gaussian white
noise process.

Nonstationary Stochastic Processes
Although our interest is in stationary time series, one often encounters nonstationary time
series, the classic example being the random walk model (RWM).9 It is often said that asset
prices, such as stock prices or exchange rates, follow a random walk; that is, they are non-
stationary. We distinguish two types of random walks: (1) random walk without drift (i.e., no
constant or intercept term) and (2) random walk with drift (i.e., a constant term is present).

7This point has been made by Keith Cuthbertson, Stephen G. Hall, and Mark P. Taylor, Applied Econo-
metric Techniques, The University of Michigan Press, 1995, p. 130.
8If it is also independent, such a process is called strictly white noise.
9The term random walk is often compared with a drunkard’s walk. Leaving a bar, the drunkard moves
a random distance ut at time t, and, continuing to walk indefinitely, will eventually drift farther and
farther away from the bar. The same is said about stock prices. Today’s stock price is equal to yester-
day’s stock price plus a random shock.
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742 Part Four Simultaneous-Equation Models and Time Series Econometrics

Random Walk without Drift
Suppose ut is a white noise error term with mean 0 and varianceσ 2.Then the series Yt is said
to be a random walk if

Yt = Yt−1 + ut (21.3.4)

In the random walk model, as Eq. (21.3.4) shows, the value of Y at time t is equal to its
value at time (t − 1) plus a random shock; thus it is an AR(1) model in the language of
Chapters 12 and 17. We can think of Eq. (21.3.4) as a regression of Y at time t on its value
lagged one period. Believers in the efficient capital market hypothesis argue that stock
prices are essentially random and therefore there is no scope for profitable speculation in
the stock market: If one could predict tomorrow’s price on the basis of today’s price, we
would all be millionaires.

Now from Eq. (21.3.4) we can write

Y1 = Y0 + u1

Y2 = Y1 + u2 = Y0 + u1 + u2

Y3 = Y2 + u3 = Y0 + u1 + u2 + u3

In general, if the process started at some time 0 with a value of Y0, we have

Yt = Y0 +
∑

ut (21.3.5)

Therefore,

E(Yt ) = E
(

Y0 +
∑

ut

)
= Y0 (why?) (21.3.6)

In like fashion, it can be shown that

var (Yt ) = tσ 2 (21.3.7)

As the preceding expression shows, the mean of Y is equal to its initial, or starting, value,
which is constant, but as t increases, its variance increases indefinitely, thus violating a con-
dition of stationarity. In short, the RWM without drift is a nonstationary stochastic process.
In practice Y0 is often set at zero, in which case E(Yt ) = 0.

An interesting feature of the RWM is the persistence of random shocks (i.e., random er-
rors), which is clear from Eq. (21.3.5): Yt is the sum of initial Y0 plus the sum of random
shocks. As a result, the impact of a particular shock does not die away. For example, if
u2 = 2 rather than u2 = 0, then all Yt ’s from Y2 onward will be 2 units higher and the ef-
fect of this shock never dies out. That is why random walk is said to have an infinite mem-
ory. As Kerry Patterson notes, random walk remembers the shock forever;10 that is, it has
infinite memory. The sum 

∑
ut is also known as a stochastic trend, about which more will

be said shortly.
Interestingly, if you write Eq. (21.3.4) as

(Yt − Yt−1) = �Yt = ut (21.3.8)

where � is the first difference operator that we discussed in Chapter 12, it is easy to show
that, while Yt is nonstationary, its first difference is stationary. In other words, the first dif-
ferences of a random walk time series are stationary. But we will have more to say about
this later.

10Kerry Patterson, op cit., Chapter 6.
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Random Walk with Drift
Let us modify Eq. (21.3.4) as follows:

Yt = δ + Yt−1 + ut (21.3.9)

where δ is known as the drift parameter. The name drift comes from the fact that if we
write the preceding equation as

Yt − Yt−1 = �Yt = δ + ut (21.3.10)

it shows that Yt drifts upward or downward, depending on δ being positive or negative. Note
that model (21.3.9) is also an AR(1) model.

Following the procedure discussed for random walk without drift, it can be shown that
for the random walk with drift model (21.3.9),

E(Yt ) = Y0 + t · δ (21.3.11)

var (Yt ) = tσ 2 (21.3.12)

As you can see, for RWM with drift the mean as well as the variance increases over time,
again violating the conditions of (weak) stationarity. In short, RWM, with or without drift,
is a nonstationary stochastic process.

To give a glimpse of the random walk with and without drift, we conducted two simula-
tions as follows:

Yt = Y0 + ut (21.3.13)

where ut are white noise error terms such that each ut ∼ N (0, 1); that is, each ut follows
the standard normal distribution. From a random number generator, we obtained 500 val-
ues of u and generated Yt as shown in  Eq. (21.3.13). We assumed Y0 = 0. Thus,
Eq. (21.3.13) is an RWM without drift.

Now consider

Yt = δ + Y0 + ut (21.3.14)

which is RWM with drift. We assumed ut and Y0 as in Eq. (21.3.13) and assumed that
δ = 2.

The graphs of models (21.3.13) and (21.3.14), respectively, are in Figures 21.3 and 21.4.
The reader can compare these two diagrams in light of our discussion of the RWM with and
without drift.
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FIGURE 21.3
A random walk
without drift.
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744 Part Four Simultaneous-Equation Models and Time Series Econometrics

The random walk model is an example of what is known in the literature as a unit root
process. Since this term has gained tremendous currency in the time series literature, we
next explain what a unit root process is.

21.4 Unit Root Stochastic Process

Let us write the RWM (21.3.4) as:

Yt = ρYt−1 + ut −1 ≤ ρ ≤ 1 (21.4.1) 

This model resembles the Markov first-order autoregressive model that we discussed in the
chapter on autocorrelation. If ρ = 1, Eq. (21.4.1) becomes a RWM (without drift). If ρ is in
fact 1, we face what is known as the unit root problem, that is, a situation of nonstationar-
ity; we already know that in this case the variance of Yt is not stationary. The name unit root
is due to the fact that ρ = 1.11 Thus the terms nonstationarity, random walk, unit root, and
stochastic trend can be treated synonymously.

If, however, |ρ| < 1, that is if the absolute value of ρ is less than one, then it can be
shown that the time series Yt is stationary in the sense we have defined it.12

In practice, then, it is important to find out if a time series possesses a unit root.13 In Sec-
tion 21.9 we will discuss several tests of unit root, that is, several tests of stationarity. In that
section we will also determine whether the time series depicted in Figures 21.1 and 21.2 are
stationary. Perhaps the reader might suspect that they are not. But we shall see.
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Yt = 2 + Yt–1 + ut  [Y0 = 0]

FIGURE 21.4
A random walk with
drift.

11A technical point: If ρ = 1, we can write Eq. (21.4.1) as Yt − Yt−1 = ut. Now using the lag operator
L so that LYt = Yt−1, L2Yt = Yt−2, and so on, we can write Eq. (21.4.1) as (1 − L)Yt = ut. The term unit
root refers to the root of the polynomial in the lag operator. If you set (1 − L) = 0, we obtain, L = 1,
hence the name unit root.
12If in Eq. (21.4.1) it is assumed that the initial value of Y ( = Y0) is zero, |ρ| < 1, and ut is white noise
and distributed normally with zero mean and unit variance, then it follows that E(Yt) = 0 and
var (Yt) = 1/(1 − ρ2). Since both these are constants, by the definition of weak stationarity, Yt is sta-
tionary. On the other hand, as we saw before, if ρ = 1, Yt is a random walk or nonstationary.
13A time series may contain more than one unit root. But we will discuss this situation later in the
chapter.
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21.5 Trend Stationary (TS) and Difference Stationary (DS)
Stochastic Processes

The distinction between stationary and nonstationary stochastic processes (or time series)
has a crucial bearing on whether the trend (the slow long-run evolution of the time series
under consideration) observed in the constructed time series in Figures 21.3 and 21.4 or in
the actual economic time series of Figures 21.1 and 21.2 is deterministic or stochastic.
Broadly speaking, if the trend in a time series is a deterministic function of time, such as
time, time-squared etc., we call it a deterministic trend, whereas if it is not predictable, we
call it a stochastic trend. To make the definition more formal, consider the following model
of the time series Yt .

Yt = β1 + β2t + β3Yt−1 + ut (21.5.1)

where ut is a white noise error term and where t is time measured chronologically. Now we
have the following possibilities:

Pure random walk: If in Eq. (21.5.1) β1 = 0, β2 = 0, β3 = 1, we get

Yt = Yt−1 + ut (21.5.2)

which is nothing but a RWM without drift and is therefore nonstationary. But note that,
if we write Eq. (21.5.2) as

�Yt = (Yt − Yt−1) = ut (21.3.8)

it becomes stationary, as noted before. Hence, a RWM without drift is a difference
stationary process (DSP).

Random walk with drift: If in Eq. (21.5.1) β1 �= 0, β2 = 0, β3 = 1, we get

Yt = β1 + Yt−1 + ut (21.5.3)

which is a random walk with drift and is therefore nonstationary. If we write it as

(Yt − Yt−1) = �Yt = β1 + ut (21.5.3a)

this means Yt will exhibit a positive (β1 > 0) or negative (β1 < 0) trend (see Fig-
ure 21.4). Such a trend is called a stochastic trend. Equation (21.5.3a) is a DSP
process because the nonstationarity in Yt can be eliminated by taking first differences
of the time series. Remember that ut in Eq. (21.5.3a) is a white noise error term.

Deterministic trend: If in Eq. (21.5.1), β1 �= 0, β2 �= 0, β3 = 0, we obtain

Yt = β1 + β2t + ut (21.5.4)

which is called a trend stationary process (TSP). Although the mean of Yt is
β1 + β2t , which is not constant, its variance ( = σ2) is. Once the values of β1 and β2

are known, the mean can be forecast perfectly. Therefore, if we subtract the mean of Yt

from Yt , the resulting series will be stationary, hence the name trend stationary. This
procedure of removing the (deterministic) trend is called detrending.

Random walk with drift and deterministic trend: If in Eq. (21.5.1), β1 �= 0,
β2 �= 0, β3 = 1, we obtain:

Yt = β1 + β2t + Yt−1 + ut (21.5.5)
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in which case we have a random walk with drift and a deterministic trend, which can
be seen if we write this equation as

�Yt = β1 + β2t + ut (21.5.5a)

which means that Yt is nonstationary.
Deterministic trend with stationary AR(1) component: If in Eq. (21.5.1)

β1 �= 0, β2 �= 0, β3 < 1, then we get

Yt = β1 + β2t + β3Yt−1 + ut (21.5.6)

which is stationary around the deterministic trend.

To see the difference between stochastic and deterministic trends, consider Fig-
ure 21.5.14 The series named stochastic in this figure is generated by an RWM with drift:
Yt = 0.5 + Yt−1 + ut , where 500 values of ut were generated from a standard normal dis-
tribution and where the initial value of Y was set at 1. The series named deterministic is gen-
erated as follows: Yt = 0.5t + ut , where ut were generated as above and where t is time
measured chronologically.

As you can see from Figure 21.5, in the case of the deterministic trend, the deviations
from the trend line (which represents the nonstationary mean) are purely random and they
die out quickly; they do not contribute to the long-run development of the time series,
which is determined by the trend component 0.5t. In the case of the stochastic trend, on the
other hand, the random component ut affects the long-run course of the series Yt .

21.6 Integrated Stochastic Processes

The random walk model is but a specific case of a more general class of stochastic
processes known as integrated processes. Recall that the RWM without drift is nonsta-
tionary, but its first difference, as shown in Eq. (21.3.8), is stationary. Therefore, we call the
RWM without drift integrated of order 1, denoted as I(1). Similarly, if a time series has to
be differenced twice (i.e., take the first difference of the first differences) to make it station-
ary, we call such a time series integrated of order 2.15 In general, if a (nonstationary) time

–5
Time

Stochastic

Deterministic

0

5

10

15

20

FIGURE 21.5
Deterministic versus
stochastic trend.

Source: Charemza et al., op.
cit., p. 91.

14The following discussion is based on Wojciech W. Charemza et al., op. cit., pp. 89–91.
15For example if Yt is I(2), then ��Yt = �(Yt − Yt−1) = �Yt − �Yt−1 = Yt − 2Yt−1 + Yt−2 will become
stationary. But note that ��Yt = �2Yt �= Yt − Yt−2.
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series has to be differenced d times to make it stationary, that time series is said to be
integrated of order d. A time series Yt integrated of order d is denoted as Yt ∼ I (d). If
a time series Yt is stationary to begin with (i.e., it does not require any differencing), it is said
to be integrated of order zero, denoted by Yt ∼ I (0).Thus, we will use the terms “stationary
time series” and “time series integrated of order zero” to mean the same thing.

Most economic time series are generally I(1); that is, they generally become stationary
only after taking their first differences. Are the time series shown in Figures 21.1 and 21.2
I(1) or of higher order? We will examine them in Sections 21.8 and 21.9.

Properties of Integrated Series
The following properties of integrated time series may be noted: Let Xt , Yt , and Zt be three
time series.

1. If Xt ∼ I (0) and Yt ∼ I (1), then Zt = (Xt + Yt ) = I (1); that is, a linear combination
or sum of stationary and nonstationary time series is nonstationary.

2. If Xt ∼ I (d), then Zt = (a + bXt ) = I (d), where a and b are constants. That is, a linear
combination of an I(d) series is also I(d). Thus, if Xt ∼ I (0), then Zt =
(a + bXt ) ∼ I (0).

3. If Xt ∼ I (d1) and Yt ∼ I (d2), then Zt = (aXt + bYt ) ∼ I (d2), where d1 < d2.

4. If Xt ∼ I (d) and Yt ∼ I (d), then Zt = (aXt + bYt ) ∼ I (d∗); d∗ is generally equal to
d, but in some cases d∗ < d (see the topic of cointegration in Section 21.11).

As you can see from the preceding statements, one has to pay careful attention in combin-
ing two or more time series that are integrated of different order.

To see why this is important, consider the two-variable regression model discussed in Chap-
ter 3, namely, Yt = β1 + β2 Xt + ut . Under the classical OLS assumptions, we know that

β̂2 =
∑

xt yt∑
x2

t
(21.6.1)

where the small letters, as usual, indicate deviation from mean values. Suppose Yt is I(0), but
Xt is I(1); that is, the former is stationary and the latter is not. Since Xt is nonstationary, its
variance will increase indefinitely, thus dominating the numerator term in Eq. (21.6.1) with
the result that β̂2 will converge to zero asymptotically (i.e., in large samples) and it will not
even have an asymptotic distribution.16

21.7 The Phenomenon of Spurious Regression

To see why stationary time series are so important, consider the following two random walk
models:

Yt = Yt−1 + ut (21.7.1)

Xt = Xt−1 + vt (21.7.2)

where we generated 500 observations of ut from ut ∼ N (0, 1) and 500 observations of vt

from vt ∼ N (0, 1) and assumed that the initial values of both Y and X were zero. We also
assumed that ut and vt are serially uncorrelated as well as mutually uncorrelated. As you
know by now, both these time series are nonstationary; that is, they are I(1) or exhibit sto-
chastic trends.

16This point is due to Maddala et al., op. cit., p. 26.
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Suppose we regress Yt on Xt . Since Yt and Xt are uncorrelated I(1) processes, the R2

from the regression of Y on X should tend to zero; that is, there should not be any relation-
ship between the two variables. But wait till you see the regression results:

Variable Coefficient Std. Error t Statistic

C -13.2556 0.6203 -21.36856
X 0.3376 0.0443 7.61223

R2 = 0.1044 d = 0.0121

As you can see, the coefficient of X is highly statistically significant, and, although the
R2 value is low, it is statistically significantly different from zero. From these results, you
may be tempted to conclude that there is a significant statistical relationship between Y and
X, whereas a priori there should be none. This is in a nutshell the phenomenon of spuri-
ous or nonsense regression, first discovered by Yule.17 Yule showed that (spurious) corre-
lation could persist in nonstationary time series even if the sample is very large. That there
is something wrong in the preceding regression is suggested by the extremely low
Durbin–Watson d value, which suggests very strong first-order autocorrelation. According
to Granger and Newbold, an R2 > d is a good rule of thumb to suspect that the estimated
regression is spurious, as in the example above. It may be added that the R2 and the t statistic
from such a spurious regression are misleading, and the t statistics are not distributed as
(Student’s) t distribution and, therefore, cannot be used for testing hypotheses about the
parameters.

That the regression results presented above are meaningless can be easily seen from
regressing the first differences of Yt ( = �Yt ) on the first differences of Xt ( = �Xt );
remember that although Yt and Xt are nonstationary, their first differences are stationary. In
such a regression you will find that R2 is practically zero, as it should be, and the
Durbin–Watson d is about 2. In Exercise 21.24 you are asked to run this regression and
verify the statement just made.

Although dramatic, this example is a strong reminder that one should be extremely wary
of conducting regression analyses based on time series that exhibit stochastic trends. And
one should therefore be extremely cautious in reading too much into the regression results
based on I(1) variables. For an example, see Exercise 21.26. To some extent, this is true of
time series subject to deterministic trends, an example of which is given in Exercise 21.25.

21.8 Tests of Stationarity

By now the reader probably has a good idea about the nature of stationary stochastic pro-
cesses and their importance. In practice we face two important questions: (1) How do we
find out if a given time series is stationary? (2) If we find that a given time series is not
stationary, is there a way that it can be made stationary? We take up the first question in this
section and discuss the second question in Section 21.10.

Before we proceed, keep in mind that we are primarily concerned with weak, or covari-
ance, stationarity.

Although there are several tests of stationarity, we discuss only those that are prominently
discussed in the literature. In this section we discuss two tests: (1) graphical analysis and

17G. U. Yule, “Why Do We Sometimes Get Nonsense Correlations Between Time Series? A Study in
Sampling and the Nature of Time Series,” Journal of the Royal Statistical Society, vol. 89, 1926,
pp. 1–64. For extensive Monte Carlo simulations on spurious regression see C. W. J. Granger and
P. Newbold, “Spurious Regressions in Econometrics,” Journal of Econometrics, vol. 2, 1974, pp. 111–120.
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(2) the correlogram test. Because of the importance attached to it in the recent past, we
discuss the unit root test in the next section. We illustrate these tests with appropriate
examples.

1. Graphical Analysis
As noted earlier, before one pursues formal tests, it is always advisable to plot the time
series under study, as we have done in Figures 21.1 and 21.2 for the U.S. economic time
series data posted on the book’s website. Such plots give an initial clue about the likely
nature of the time series. Take, for instance, the GDP time series shown in Figure 21.1. You
will see that over the period of study the log of GDP has been increasing, that is, showing
an upward trend, suggesting perhaps that the mean of the log of GDP has been changing.
This perhaps suggests that the log of the GDP series is not stationary. This is also more or
less true of the other U.S. economic time series shown in Figure 21.2. Such an intuitive feel
is the starting point of more formal tests of stationarity.

2. Autocorrelation Function (ACF) and Correlogram
One simple test of stationarity is based on the so-called autocorrelation function (ACF).
The ACF at lag k, denoted by ρk , is defined as

ρk = γk

γ0 (21.8.1)

= covariance at lag k

variance

where covariance at lag k and variance are as defined before. Note that if k = 0, ρ0 = 1
(why?)

Since both covariance and variance are measured in the same units of measurement, ρk

is a unitless, or pure, number. It lies between −1 and +1, as any correlation coefficient does.
If we plot ρk against k, the graph we obtain is known as the population correlogram.

Since in practice we only have a realization (i.e., sample) of a stochastic process, we can
only compute the sample autocorrelation function (SAFC), ρ̂k. To compute this, we must
first compute the sample covariance at lag k, γ̂k , and the sample variance, γ̂0, which are
defined as:18

γ̂k =
∑

(Yt − Ȳ )(Yt+k − Ȳ )

n
(21.8.2)

γ̂0 =
∑

(Yt − Ȳ )2

n
(21.8.3)

where n is the sample size and Ȳ is the sample mean.
Therefore, the sample autocorrelation function at lag k is:

ρ̂k = γ̂k

γ̂0
(21.8.4)

which is simply the ratio of sample covariance (at lag k) to sample variance. A plot of ρ̂k

against k is known as the sample correlogram.
How does a sample correlogram enable us to find out if a particular time series is sta-

tionary? For this purpose, let us first present the sample correlograms of a purely white noise

18Strictly speaking, we should divide the sample covariance at lag k by (n − k) and the sample vari-
ance by (n − 1) rather than by n (why?), where n is the sample size.
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random process and of a random walk process. Return to the driftless RWM (21.3.13). There
we generated a sample of 500 error terms, the u’s, from the standard normal distribution.
The correlogram of these 500 purely random error terms is as shown in Figure 21.6; we have
shown this correlogram up to 30 lags. We will comment shortly on how one chooses the lag
length.

For the time being, just look at the column labeled AC, which is the sample autocorre-
lation function, and the first diagram on the left, labeled Autocorrelation. The solid vertical
line in this diagram represents the zero axis; observations to the right of the line are posi-
tive values and those to the left of the line are negative values. As is very clear from this
diagram, for a purely white noise process the autocorrelations at various lags hover around
zero. This is the picture of a correlogram of a stationary time series. Thus, if the correlo-
gram of an actual (economic) time series resembles the correlogram of a white noise time
series, we can say that time series is probably stationary.
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FIGURE 21.6
Correlogram of white
noise error term u.
AC = autocorrelation,
PAC = partial
autocorrelation 
(see Chapter 22), 
Q-Stat = Q statistic,
Prob = probability.

Sample: 2 500
Included observations: 499

guj75772_ch21.qxd  01/09/2008  02:43 PM  Page 750



Chapter 21 Time Series Econometrics: Some Basic Concepts 751

Now look at the correlogram of a random walk series, as generated, say, by Eq. (21.3.13).
The picture is as shown in Figure 21.7. The most striking feature of this correlogram is that
the autocorrelation coefficients at various lags are very high even up to a lag of 33 quarters.
As a matter of fact, if we consider lags of up to 60 quarters, the autocorrelation coefficients
are quite high; the coefficient is about 0.7 at lag 60. Figure 21.7 is the typical correlogram of
a nonstationary time series: The autocorrelation coefficient starts at a very high value and
declines very slowly toward zero as the lag lengthens.

Now let us take a concrete economic example. Let us examine the correlogram of the
LGDP time series plotted using the U.S. economic times series data posted on the book’s
website (see Section 21.1). The correlogram up to 36 lags is shown in Figure 21.8.The LGDP
correlogram up to 36 lags also shows a pattern similar to the correlogram of the random walk
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Correlogram of a
random walk time
series. See Figure 21.6
for definitions.
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model in Figure 21.7. The autocorrelation coefficient starts at a very high value at lag 1
(0.977) and declines very slowly. Thus it seems that the LGDP time series is nonstationary. If
you plot the correlograms of the other U.S. economic time series shown in Figures 21.1 and
21.2, you will also see a similar pattern, leading to the conclusion that all these time series are
nonstationary; they may be nonstationary in mean or variance or both.

Two practical questions may be posed here. First, how do we choose the lag length to
compute the ACF? Second, how do you decide whether a correlation coefficient at a certain
lag is statistically significant? The answer follows.
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FIGURE 21.8
Correlogram of 
U.S. LGDP, 1947–I
to 2007–IV. See 
Figure 21.6 for
definitions.
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Included observations: 244
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The Choice of Lag Length
This is basically an empirical question. A rule of thumb is to compute ACF up to one-third to
one-quarter the length of the time series. Since for our economic data we have 244 quarterly
observations, by this rule lags of 61 to 81 quarters will do. To save space, we have only shown
36 lags in the ACF graph in Figure 21.8. The best practical advice is to start with sufficiently
large lags and then reduce them by some statistical criterion, such as the Akaike or Schwarz
information criterion that we discussed in Chapter 13. Alternatively, one can use the follow-
ing statistical tests.

Statistical Significance of Autocorrelation Coefficients
Consider, for instance, the correlogram of the LGDP time series given in Figure 21.8. How
do we decide whether the correlation coefficient of 0.780 at lag 10 (quarters) is statistically
significant? The statistical significance of any ρ̂k can be judged by its standard error.
Bartlett has shown that if a time series is purely random, that is, it exhibits white noise (see
Figure 21.6), the sample autocorrelation coefficients ρ̂k are approximately19

ρ̂k ∼ N (0, 1/n) (21.8.5)

that is, in large samples the sample autocorrelation coefficients are normally distributed
with zero mean and variance equal to one over the sample size. Since we have 244 obser-
vations, the variance is 1/244 ≈ 0.0041 and the standard error is 

√
0.0041 ≈ 0.0640. Then

following the properties of the standard normal distribution, the 95 percent confidence
interval for any (population) ρk is:

ρ̂k ± 1.96(0.0640) = ρ̂k ± 0.1254 (21.8.6)

In other words,

Prob (ρ̂k − 0.1254 ≤ ρk ≤ ρ̂k + 0.1254) = 0.95 (21.8.7)

If the preceding interval includes the value of zero, we do not reject the hypothesis that the
true ρk is zero, but if this interval does not include 0, we reject the hypothesis that the true
ρk is zero. Applying this to the estimated value of ρ̂10 = 0.873, the reader can verify that
the 95 percent confidence interval for true ρ10 is (0.873 ± 0.1254) or (0.7476, 0.9984).20

Obviously, this interval does not include the value of zero, suggesting that we are 95 per-
cent confident that the true ρ10 is significantly different from zero.21 As you can check, even
at lag 20 the estimated ρ20 is statistically significant at the 5 percent level.

Instead of testing the statistical significance of any individual autocorrelation coefficient, we
can test the joint hypothesis that all the ρk up to certain lags are simultaneously equal to zero.
This can be done by using the Q statistic developed by Box and Pierce, which is defined as22

Q = n
m∑

k=1

ρ̂2
k (21.8.8)

19M. S. Bartlett, “On the Theoretical Specification of Sampling Properties of Autocorrelated Time
Series,” Journal of the Royal Statistical Society, Series B, vol. 27, 1946, pp. 27–41.
20Our sample size of 244 observations is reasonably large to use the normal approximation.
21Alternatively, if you divide the estimated value of any ρk by the standard error of (

√
1/n), for suffi-

ciently large n, you will obtain the standard Z value, whose probability can be easily obtained from
the standard normal table. Thus for the estimated ρ10 = 0.780, the Z value is 0.780/0.1066 = 7.32
(approx.). If the true ρ10 were in fact zero, the probability of obtaining a Z value of as much as 7.32
or greater is very small, thus rejecting the hypothesis that the true ρ10 is zero.
22 G. E. P. Box and D. A. Pierce, “Distribution of Residual Autocorrelations in Autoregressive Integrated
Moving Average Time Series Models,” Journal of the American Statistical Association, vol. 65, 1970,
pp. 1509–1526.
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where n = sample size and m = lag length. The Q statistic is often used as a test of whether
a time series is white noise. In large samples, it is approximately distributed as the chi-square
distribution with m df. In an application, if the computed Q exceeds the critical Q value from
the chi-square distribution at the chosen level of significance, one can reject the null
hypothesis that all the (true) ρk are zero; at least some of them must be nonzero.

A variant of the Box–Pierce Q statistic is the Ljung–Box (LB) statistic, which is
defined as23

LB = n(n + 2)
m∑

k=1

(
ρ̂2

k

n − k

)
∼ χ2m (21.8.9)

Although in large samples both Q and LB statistics follow the chi-square distribution with
m df, the LB statistic has been found to have better (more powerful, in the statistical sense)
small-sample properties than the Q statistic.24

Returning to the LGDP example given in Figure 21.8, the value of the Q statistic up to
lag 36 is about 4096. The probability of obtaining such a Q value under the null hypothesis
that the sum of 36 squared estimated autocorrelation coefficients is zero is practically zero,
as the last column of that figures shows. Therefore, the conclusion is that the LGDP time
series is probably nonstationary, therefore reinforcing our hunch from Figure 21.1 that the
LGDP series may be nonstationary. In Exercise 21.16 you are asked to confirm that
the other four U.S. economic time series are also nonstationary.

21.9 The Unit Root Test

A test of stationarity (or nonstationarity) that has become widely popular over the past sev-
eral years is the unit root test. We will first explain it, then illustrate it, and then consider
some of its limitations.

The starting point is the unit root (stochastic) process that we discussed in Section 21.4.
We start with

Yt = ρYt−1 + ut −1 ≤ ρ ≤ 1 (21.4.1)

where ut is a white noise error term.
We know that if ρ = 1, that is, in the case of the unit root, Eq. (21.4.1) becomes a ran-

dom walk model without drift, which we know is a nonstationary stochastic process. There-
fore, why not simply regress Yt on its (one-period) lagged value Yt−1 and find out if the
estimated ρ is statistically equal to 1? If it is, then Yt is nonstationary. This is the general
idea behind the unit root test of stationarity.

However, we cannot estimate Eq. (21.4.1) by OLS and test the hypothesis that ρ = 1 by
the usual t test because that test is severely biased in the case of a unit root. Therefore, we
manipulate Eq. (21.4.1) as follows: Subtract Yt−1 from both sides of Eq. (21.4.1) to obtain:

Yt − Yt−1 = ρYt−1 − Yt−1 + ut

(21.9.1)= (ρ − 1)Yt−1 + ut

which can be alternatively written as:

�Yt = δYt−1 + ut (21.9.2)

where δ = (ρ − 1) and �, as usual, is the first difference operator.

23G. M. Ljung and G. E. P. Box, “On a Measure of Lack of Fit in Time Series Models,” Biometrika,
vol. 66, 1978, pp. 66–72.
24The Q and LB statistics may not be appropriate in every case. For a critique, see Maddala et al., 
op. cit., p. 19.
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In practice, therefore, instead of estimating Eq. (21.4.1), we estimate Eq. (21.9.2) and test
the (null) hypothesis that δ = 0, the alternative hypothesis being that δ < 0 (see footnote 25).
If δ = 0, then ρ = 1, that is we have a unit root, meaning the time series under consideration
is nonstationary.

Before we proceed to estimate Eq. (21.9.2), it may be noted that if δ = 0, Eq. (21.9.2)
will become

�Yt = (Yt − Yt−1) = ut (21.9.3)

Since ut is a white noise error term, it is stationary, which means that the first differences of
a random walk time series are stationary, a point we have already made before.

Now let us turn to the estimation of Eq. (21.9.2). This is simple enough; all we have to do is
to take the first differences of Yt and regress them on Yt−1 and see if the estimated slope coef-
ficient in this regression ( = δ̂) is zero or not. If it is zero, we conclude that Yt is nonstationary.
But if it is negative, we conclude that Yt is stationary.25 The only question is which test we use
to find out if the estimated coefficient of Yt−1 in Eq. (21.9.2) is zero or not. You might be
tempted to say, why not use the usual t test? Unfortunately, under the null hypothesis that δ = 0
(i.e., ρ = 1), the t value of the estimated coefficient of Yt−1 does not follow the t distribution
even in large samples; that is, it does not have an asymptotic normal distribution.

What is the alternative? Dickey and Fuller have shown that under the null hypothesis
that δ = 0, the estimated t value of the coefficient of Yt−1 in Eq. (21.9.2) follows the τ (tau)
statistic.26 These authors have computed the critical values of the tau statistic on the basis
of Monte Carlo simulations. A sample of these critical values is given in Appendix D,
Table D.7. The table is limited, but MacKinnon has prepared more extensive tables, which
are now incorporated in several econometric packages.27 In the literature the tau statistic
or test is known as the Dickey–Fuller (DF) test, in honor of its discoverers. Interestingly,
if the hypothesis that δ = 0 is rejected (i.e., the time series is stationary), we can use the
usual (Student’s) t test. Keep in mind that the Dickey–Fuller test is one-sided because the
alternative hypothesis is that δ < 0 (or ρ < 1).

The actual procedure of implementing the DF test involves several decisions. In dis-
cussing the nature of the unit root process in Sections 21.4 and 21.5, we noted that a ran-
dom walk process may have no drift, or it may have drift, or it may have both deterministic
and stochastic trends. To allow for the various possibilities, the DF test is estimated in three
different forms, that is, under three different null hypotheses.

Yt is a random walk: �Yt = δYt−1 + ut (21.9.2)

Yt is a random walk with drift: �Yt = β1 + δYt−1 + ut (21.9.4)

Yt is a random walk with drift 
around a deterministic trend: �Yt = β1 + β2t + δYt−1 + ut (21.9.5)

25Since δ = (ρ − 1), for stationarity ρ must be less than one. For this to happen δ must be negative.
26D. A. Dickey and W. A. Fuller, “Distribution of the Estimators for Autoregressive Time Series with a
Unit Root,” Journal of the American Statistical Association, vol. 74, 1979, pp. 427–431. See also W. A.
Fuller, Introduction to Statistical Time Series, John Wiley & Sons, New York, 1976.
27J. G. MacKinnon, “Critical Values of Cointegration Tests,” in R. E. Engle and C. W. J. Granger, eds.,
Long-Run Economic Relationships: Readings in Cointegration, Chapter 13, Oxford University Press,
New York, 1991.
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where t is the time or trend variable. In each case the hypotheses are:

Null hypothesis: H0 : δ = 0 (i.e., there is a unit root or the time series is nonstationary,
or it has a stochastic trend).

Alternative hypothesis: H1 : δ < 0 (i.e., the time series is stationary, possibly around a
deterministic trend).28

If the null hypothesis is rejected, it means either (1) Yt is stationary with zero mean, in the
case of Eq. (21.9.2), or (2) Yt is stationary with nonzero mean, in the case of Eq. (21.9.4).
In the case of Eq. (21.9.5), we can test for δ < 0 (i.e., no stochastic trend) and α �= 0 (i.e.,
the existence of a deterministic trend) simultaneously, using the F test, but using the criti-
cal values tabulated by Dickey and Fuller. It may be noted that a time series may contain
both a stochastic and a deterministic trend.

It is extremely important to note that the critical values of the tau test to test the hypoth-
esis that δ = 0 are different for each of the preceding three specifications of the DF test,
which can be seen clearly from Appendix D, Table D.7. Moreover, if, say, specification
(21.9.4) is correct, but we estimate Eq. (21.9.2), we will be committing a specification
error, whose consequences we already know from Chapter 13. The same is true if we esti-
mate Eq. (21.9.4) rather than the true Eq. (21.9.5). Of course, there is no way of knowing
which specification is correct to begin with. Some trial and error is inevitable, data mining
notwithstanding.

The actual estimation procedure is as follows: Estimate Eq. (21.9.2), or Eq. (21.9.3), or
Eq. (21.9.4) by OLS; divide the estimated coefficient of Yt−1 in each case by its standard
error to compute the (τ) tau statistic; and refer to the DF tables (or any statistical package).
If the computed absolute value of the tau statistic (|τ |) exceeds the absolute DF or
MacKinnon critical tau values, we reject the hypothesis that δ = 0, in which case the time
series is stationary. On the other hand, if the computed |τ | does not exceed the absolute crit-
ical tau value, we do not reject the null hypothesis, in which case the time series is nonsta-
tionary. Make sure that you use the appropriate critical τ values. In most applications the
tau value will be negative. Therefore, alternatively we can say that if the computed (nega-
tive) tau value is smaller than (i.e., more negative than) the critical tau value, we reject the
null hypothesis (i.e., the time series is stationary) otherwise, we do not reject it (i.e., the
time series is nonstationary).

Let us return to the U.S. GDP time series. For this series, the results of the three regres-
sions (21.9.2), (21.9.4), and (21.9.5) are as follows: The dependent variable in each case is
�Yt = �LGDPt , where LGDP is the logarithm of real GDP.

�̂LGDPt = 0.000968LGDPt−1
(21.9.6)

t = (12.9270) R2 = 0.0147 d = 1.3194

�̂LGDPt = 0.0221 − 0.00165LGDPt−1
(21.9.7)

t = (2.4342) (−1.5294) R2 = 0.0096 d = 1.3484

�̂LGDPt = 0.2092  + 0.0002t − 0.0269LGDPt−1

t = (1.8991) (1.7040) (−1.8102)
(21.9.8)

R2 = 0.0215 d = 1.3308

28We rule out the possibility that δ > 0, because in that case ρ > 1, in which case the underlying time
series will be explosive.
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Our primary interest in all these regressions is in the t (= τ ) value of the LGDPt−1

coefficient. If you look at Table D.7 in Appendix D, you will see that the 5 percent critical
tau values for sample size 250 (the closest number to our sample of 244 observations) are
−1.95 (no intercept, no trend), −2.88 (intercept but no trend), and −3.43 (intercept as well
as trend). EViews and other statistical packages provide critical values for the sample size
used in the analysis.

Before we examine the results, we have to decide which of the three models may be
appropriate. We should rule out model (21.9.6) because the coefficient of LGDPt−1, which is
equal to δ is positive. But since δ = (ρ − 1), a positive δ would imply that ρ > 1. Although a
theoretical possibility, we rule this out because in this case the LGDP time series would be
explosive.29 That leaves us with models (21.9.7) and (21.9.8). In both cases the estimated δ

coefficient is negative, implying that the estimated ρ is less than 1. For these two models, the
estimated ρ values are 0.9984 and 0.9731, respectively. The only question now is if these val-
ues are statistically significantly below 1 for us to declare that the GDP time series is stationary.

For model (21.9.7) the estimated τ value is −1.5294, whereas the 5 percent critical τ
value, as noted above, is −2.88. Since, in absolute terms, the former is smaller than the lat-
ter, our conclusion is that the LGDP time series is not stationary.30

The story is the same for model (21.9.8). The computed τ value of −1.8102, in absolute
terms, is smaller than the 5 percent critical value of −3.43.

Therefore, on the basis of graphical analysis, the correlogram, and the Dickey–Fuller
test, the conclusion is that for the quarterly periods of 1947 to 2007, the U.S. LGDP time
series was nonstationary; i.e., it contained a unit root, or it had a stochastic trend.

The Augmented Dickey–Fuller (ADF) Test
In conducting the DF test as in Eqs. (21.9.2), (21.9.4), and (21.9.5), it was assumed that the
error term ut was uncorrelated. But in case the ut are correlated, Dickey and Fuller have de-
veloped another test, known as the augmented Dickey–Fuller (ADF) test. This test is
conducted by “augmenting” the preceding three equations by adding the lagged values of
the dependent variable �Yt . To be specific, suppose we use Eq. (21.9.5). The ADF test here
consists of estimating the following regression:

�Yt = β1 + β2t + δYt−1 +
m∑

i=1

αi�Yt−i + εt (21.9.9)

where εt is a pure white noise error term and where �Yt−1 = (Yt−1 − Yt−2), �Yt−2 =
(Yt−2 − Yt−3), etc. The number of lagged difference terms to include is often determined em-
pirically, the idea being to include enough terms so that the error term in Eq. (21.9.9) is serially
uncorrelated, so that we can obtain an unbiased estimate of δ, the coefficient of lagged Yt−1.

EViews 6 has an option that automatically selects the lag length based onAkaike, Schwarz, and
other information criteria. In ADF we still test whether δ = 0 and the ADF test follows the
same asymptotic distribution as the DF statistic, so the same critical values can be used.

To give a glimpse of this procedure, we estimated Eq. (21.9.9) for the LGDP series.
Since we have quarterly data, we decided to use four lags. The results of the ADF regres-
sion are as follows:31

29More technically, since Eq. (21.9.2) is a first-order difference equation, the so-called stability condi-
tion requires that |ρ| < 1.

30Another way of stating this is that the computed τ value should be more negative than the critical τ
value, which is not the case here. Hence the conclusion stays. Since in general δ is expected to be
negative, the estimated τ statistic will have a negative sign. Therefore, a large negative τ value is
generally an indication of stationarity.
31Higher-order lagged differences were considered but they were insignificant.
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�̂LGDPt = 0.2677 + 0.0003t − 0.0352LGDPt−1 + 0.2990�LGDPt−1 + 0.1451�LGDPt−2 − 0.0621�LGDPt−3 − 0.0876�LGDPt

t = (2.4130) (2.2561) (−2.3443) (4.6255) (2.1575) (−0.9205) (−1.3438)

R2 = 0.1617 d = 2.0075

(21.9.10)

The t ( = τ) value of the lagged LGDPt−1 coefficient ( = δ) is −2.3443, which in absolute
terms is much less than even the 10 percent critical τ value of −3.1378, again suggesting that
even after taking care of possible autocorrelation in the error term, the LGDP series is non-
stationary. (Note: The @trend command in EViews automatically generates the time or trend
variable.)

Could this be the result of our choosing only four lagged values of �LGDP? We used
the Schwarz criterion using 14 lagged values of �LGDP, which gave the tau value δ of
−1.8102. Even then, this tau value was not significant at the 10 percent level (the critical
tau value at this level was −3.1376). It seems logged GDP is nonstationary.

Testing the Significance of More than One Coefficient: 
The F Test
Suppose we estimate model (21.9.5) and test the hypothesis that β1 = β2 = 0, that is, the
model is RWM without drift and trend. To test this joint hypothesis, we can use the re-
stricted F test discussed in Chapter 8. That is, we estimate Eq. (21.9.5) (the unrestricted re-
gression) and then estimate Eq. (21.9.5) again, dropping the intercept and trend. Then we
use the restricted F test as shown in Eq. (8.6.9), except that we cannot use the conventional
F table to get the critical F values. As they did with the τ statistic, Dickey and Fuller have
developed critical F values for this situation, a sample of which is given in Appendix D,
Table D.7. An example is presented in Exercise 21.27.

The Phillips–Perron (PP) Unit Root Tests32

An important assumption of the DF test is that the error terms ut are independently and
identically distributed. The ADF test adjusts the DF test to take care of possible serial cor-
relation in the error terms by adding the lagged difference terms of the regressand. Phillips
and Perron use nonparametric statistical methods to take care of the serial correlation in
the error terms without adding lagged difference terms. Since the asymptotic distribution
of the PP test is the same as the ADF test statistic, we will not pursue this topic here.

Testing for Structural Changes
The macroeconomic data introduced in Section 21.1 (see the book’s website for the actual
data) are for the period 1947–2007, a period of 61 years. In this period the U.S. economy ex-
perienced several business cycles of varying durations. Business cycles are marked by periods
of recessions and periods of expansions. It is quite likely that one business cycle is different
from another, which may reflect structural breaks or structural changes in the economy.

For instance, take the first oil embargo in 1973. It quadrupled oil prices. Prices again
increased substantially after the second oil embargo in 1979. Naturally, these shocks will
affect economic behavior. Therefore, if we were to regress personal consumption expendi-
ture (PCE) on disposable personal income (DPI), the intercept, the slope, or both are likely
to change from one business cycle to another (recall the Chow test of structural breaks).
This is what is meant by structural changes.

32P. C. B. Phillips and P. Perron, “Testing for a Unit Root in Time Series Regression,” Biometrika,
vol. 75, 1988, pp. 335–346. The PP test is now included in several software packages.
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Perron, for instance, has argued that the standard tests of the unit root hypothesis may
not be reliable in the presence of structural changes.33 There are ways to test for structural
changes and to account for them, the simplest involving the use of dummy variables. But a
discussion of the various tests of structural breaks will take us far afield and is best left for
the references.34 However, see Exercise 21.28.

A Critique of the Unit Root Tests3535

We have discussed several unit root tests and there are several more. The question is: Why are
there so many unit root tests? The answer lies in the size and power of these tests. By size of a
test we mean the level of significance (i.e., the probability of committing a Type I error) and by
power of a test we mean the probability of rejecting the null hypothesis when it is false. The
power of a test is calculated by subtracting the probability of aType II error from 1;Type II error
is the probability of accepting a false null hypothesis. The maximum power is 1. Most unit root
tests are based on the null hypothesis that the time series under consideration has a unit root;
that is, it is nonstationary. The alternative hypothesis is that the time series is stationary.

Size of Test
You will recall from Chapter 13 the distinction we made between the nominal and the true
levels of significance. The DF test is sensitive to the way it is conducted. Remember that we
discussed three varieties of the DF test: (1) a pure random walk, (2) a random walk with
drift, and (3) a random walk with drift and trend. If, for example, the true model is (1) but
we estimate (2), and conclude that, say, on the 5 percent level that the time series is sta-
tionary, this conclusion may be wrong because the true level of significance in this case is
much larger than 5 percent.36 The size distortion could also result from excluding moving
average (MA) components from the model (on moving average, see Chapter 22).

Power of Test
Most tests of the DF type have low power; that is, they tend to accept the null of unit root
more frequently than is warranted. That is, these tests may find a unit root even when none
exists. There are several reasons for this. First, the power depends on the (time) span of the
data more than the mere size of the sample. For a given sample size n, the power is greater
when the span is large. Thus, a unit root test(s) based on 30 observations over a span of
30 years may have more power than one based on, say, 100 observations over a span
of 100 days. Second, if ρ ≈ 1 but not exactly 1, the unit root test may declare such a time
series nonstationary. Third, these types of tests assume a single unit root; that is, they assume
that the given time series is I(1). But if a time series is integrated of order higher than 1, say,
I(2), there will be more than one unit root. In the latter case one may use the Dickey–Pantula
test.37 Fourth, if there are structural breaks in a time series (see the chapter on dummy vari-
ables) due to, say, the OPEC oil embargoes, the unit root tests may not catch them.

In applying the unit root tests one should therefore keep in mind the limitations of the
tests. Of course, there have been modifications of these tests by Perron and Ng, Elliot,

33P. Perron, “The Great Crash, the Oil Price Shock and the Unit Root Hypothesis,” Econometrica,
vol. 57, 1989, pp. 1361–1401.
34For an accessible discussion, see James H. Stock and Mark W. Watson, Introduction to Econometrics,
2d ed., Pearson/Addison-Wesley, Boston, 2007, pp. 565–571. For a more thorough discussion, see 
G. S. Maddala and In-Moo Kim, Unit Roots, Cointegration, and Structural Change, Cambridge 
University Press, New York, 1998.
35For detailed discussion, see Terrence C. Mills, op. cit., pp. 87–88.
36For a Monte Carlo experiment about this, see Charemza et al., op. cit., p. 114.
37D. A. Dickey and S. Pantula, “Determining the Order of Differencing in Autoregressive Processes,”
Journal of Business and Economic Statistics, vol. 5, 1987, pp. 455–461.
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Rothenberg and Stock, Fuller, and Leybounre.38 Because of this, Maddala and Kim advo-
cate that the traditional DF, ADF, and PP tests should be discarded. As econometric soft-
ware packages incorporate the new tests, that may very well happen. But it should be added
that as yet there is no uniformly powerful test of the unit root hypothesis.

21.10 Transforming Nonstationary Time Series

Now that we know the problems associated with nonstationary time series, the practical
question is what to do. To avoid the spurious regression problem that may arise from re-
gressing a nonstationary time series on one or more nonstationary time series, we have to
transform nonstationary time series to make them stationary. The transformation method
depends on whether the time series are difference stationary (DSP) or trend stationary
(TSP). We consider each of these methods in turn.

Difference-Stationary Processes
If a time series has a unit root, the first differences of such time series are stationary.39

Therefore, the solution here is to take the first differences of the time series.
Returning to our U.S. LGDP time series, we have already seen that it has a unit root. Let

us now see what happens if we take the first differences of the LGDP series.
Let �LGDPt = (LGDPt − LGDPt−1). For convenience, let Dt = �LGDPt. Now con-

sider the following regression:

�̂Dt = 0.00557 − 0.6711Dt−1

t = (7.1407) (−11.0204) (21.10.1)

R2 = 0.3360 d = 2.0542

The 1 percent critical DF τ value is −3.4574. Since the computed τ ( = t) of −11.0204
is more negative than the critical value, we conclude that the first-differenced LGDP is
stationary; that is, it is I(0). It is as shown in Figure 21.9. If you compare Figure 21.9 with
Figure 21.1, you will see the obvious difference between the two.

38A discussion of these tests can be found in Maddala et al., op. cit., Chapter 4.
39If a time series is I(2), it will contain two unit roots, in which case we will have to difference it twice.
If it is I(d), it has to be differenced d times, where d is any integer.
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Trend-Stationary Processes
As we have seen in Figure 21.5, a TSP is stationary around the trend line. Hence, the
simplest way to make such a time series stationary is to regress it on time and the resid-
uals from this regression will then be stationary. In other words, run the following
regression:

Yt = β1 + β2t + ut (21.10.2)

where Yt is the time series under study and where t is the trend variable measured
chronologically.

Now

û t = (Yt − β̂1 − β̂2t) (21.10.3)

will be stationary. û t is known as a (linearly) detrended time series.
It is important to note that the trend may be nonlinear. For example, it could be

Yt = β1 + β2t + β3t2 + ut (21.10.4)

which is a quadratic trend series. If that is the case, the residuals from Eq. (21.10.4) will
now be (quadratically) detrended time series.

It should be pointed out that if a time series is DSP but we treat it as TSP, this is called
underdifferencing. On the other hand, if a time series is TSP but we treat it as DSP, this is
called overdifferencing. The consequences of these types of specification errors can be se-
rious, depending on how one handles the serial correlation properties of the resulting error
terms.40

To see what happens if we confuse a TSP series with a DSP series or vice versa, Fig-
ure 21.10 shows the first-differenced LGDP and the residuals of LGDP estimated from the
TSP regression (21.10.2):

40For a detailed discussion of this, see Maddala et al., op. cit., Section 2.7.
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A look at this figure tells us that the first differences of real logged DGP are stationary (as
confirmed by regression (21.10.1) but the residuals from the trend line (RESI1) are not.

In summary, “. . . it is very important to apply the right sort of stationarity transform to
the data, if they are not already stationary. Most financial markets generate price, rate or
yield data that are non-stationary because of stochastic rather than a deterministic trend. It
is hardly ever appropriate to detrend the data by fitting a trend line and taking deviations.
Instead the data should be detrended by taking first differences, usually of the log price or
rates, because then the transformed stationary data will correspond to market returns.”41

21.11 Cointegration: Regression of a Unit Root Time Series 
on Another Unit Root Time Series

We have warned that the regression of a nonstationary time series on another nonstationary
time series may produce a spurious regression. Let us suppose that we consider the LPCE and
LDPI time series data introduced in Section 21.1 (see the book’s website for the actual data).
Subjecting these time series individually to unit root analysis, you will find that they both are
I(1); that is, they contain a stochastic trend. It is quite possible that the two series share the
same common trend so that the regression of one on the other will not be necessarily spurious.

To be specific, we use the U.S. economic time series data (see Section 21.1 and the
book’s website) and run the following regression of LPCE on LDPI:

LPCEt = β1 + β2LDPIt + ut (21.11.1)

where L denotes logarithm. β2 is the elasticity of real personal consumption expenditure
with respect to real disposable personal income. For illustrative purposes, we will call it
consumption elasticity. Let us write this as:

ut = LPCEt − β1 − β2LDPIt (21.11.2)

Suppose we now subject ut to unit root analysis and find that it is stationary; that is, it is I(0).
This is an interesting situation, for although LPCEt and LDPIt are individually I(1), that is, they
have stochastic trends, their linear combination (21.11.2) is I(0). So to speak, the linear com-
bination cancels out the stochastic trends in the two series. If you take consumption and income
as two I(1) variables, savings defined as (income − consumption) could be I(0). As a result, a
regression of consumption on income as in Eq. (21.11.1) would be meaningful (i.e., not spuri-
ous). In this case we say that the two variables are cointegrated. Economically speaking, two
variables will be cointegrated if they have a long-term, or equilibrium, relationship between
them. Economic theory is often expressed in equilibrium terms, such as Fisher’s quantity the-
ory of money or the theory of purchasing power parity (PPP), just to name a few.

In short, provided we check that the residuals from regressions like (21.11.1) are I(0) or
stationary, the traditional regression methodology (including the t and F tests) that we have
considered extensively is applicable to data involving (nonstationary) time series. The valu-
able contribution of the concepts of unit root, cointegration, etc. is to force us to find out if
the regression residuals are stationary. As Granger notes, “A test for cointegration can be
thought of as a pre-test to avoid ‘spurious regression’ situations.”42

In the language of cointegration theory, a regression such as Eq. (21.11.1) is known as
a cointegrating regression and the slope parameter β2 is known as the cointegrating
parameter. The concept of cointegration can be extended to a regression model containing
k regressors. In this case we will have k cointegrating parameters.

41Carol Alexander, op. cit., p. 324.
42C. W. J. Granger, “Developments in the Study of Co-Integrated Economic Variables,” Oxford Bulletin
of Economics and Statistics, vol. 48, 1986, p. 226.
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Testing for Cointegration
A number of methods for testing cointegration have been proposed in the literature. We
consider here a comparatively simple method, namely the DF or ADF unit root test on the
residuals estimated from the cointegrating regression.43

Engle–Granger (EG) or Augmented Engle–Granger (AEG) Test
We already know how to apply the DF or ADF unit root tests. All we have to do is estimate
a regression like Eq. (21.11.1), obtain the residuals, and use the DF or ADF tests.44 There is
one precaution to exercise, however. Since the estimated ut are based on the estimated coin-
tegrating parameter β2, the DF and ADF critical significance values are not quite appropri-
ate. Engle and Granger have calculated these values, which can be found in the references.45

Therefore, the DF and ADF tests in the present context are known as Engle–Granger (EG)
and augmented Engle–Granger (AEG) tests. However, several software packages now
present these critical values along with other outputs.

Let us illustrate these tests. Using the data introduced in Section 21.1 and found on the
book’s website, we first regressed LPCEC on LDPIC and obtained the following regression:

L̂PCEt = −0.1942  + 1.0114LDPIt

t = (−8.2328) (348.5429) (21.11.3)

R2 = 0.9980 d = 0.1558

Since LPCE and LDPI are individually nonstationary, there is the possibility that this
regression is spurious. But when we performed a unit root test on the residuals obtained
from Eq. (21.11.3), we obtained the following results:

�̂ût = −0.0764ût−1

t = (−3.0458) (21.11.4)

R2 = 0.0369 d = 2.5389

The Engle–Granger asymptotic 5 percent and 10 percent critical values are about −3.34
and −3.04, respectively. Therefore, the residuals from the regression are not stationary at
the 5 percent level. It would be difficult to accept this reason, for economic theory suggests
that there should be a stable relationship between PCE and DPI.

Let us reestimate Eq. (21.11.3) including the trend variable and then see if the residuals
from this equation are stationary. We present the results first and then discuss what may be
going on.

L̂PCEt = 2.8130 + 0.0037t +  0.5844LDPIt

t = (21.3491)   (22.9394)     (31.2754) (21.11.3a)

R2 = 0.9994 d = 0.2956

43There is this difference between tests for unit roots and tests for cointegration. As David A. Dickey,
Dennis W. Jansen, and Daniel I. Thornton observe, “Tests for unit roots are performed on univariate [i.e.,
single] time series. In contrast, cointegration deals with the relationship among a group of variables,
where (unconditionally) each has a unit root.” See their article, “A Primer on Cointegration with an
Application to Money and Income,” Economic Review, Federal Reserve Bank of St. Louis, March–April
1991, p. 59. As the name suggests, this article is an excellent introduction to cointegration testing.
44If PCE and DPI are not cointegrated, any linear combination of them will be nonstationary and,
therefore, the ut will also be nonstationary.
45R. F. Engle and C. W. Granger, “Co-integration and Error Correction: Representation, Estimation and
Testing,” Econometrica, vol. 55, 1987, pp. 251–276.
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To see if the residuals from this regression are stationary, we obtained the following results
(compare with Eq. [21.11.4]):

�̂ut = −0.1498ût−1

t = (−4.4545) (21.11.4a)

R2 = 0.0758 d = 2.3931

Note: ût is the residual from Eq. (21.11.3a).
The DF test now shows that these residuals are stationary. Even if we use ADF with sev-

eral lags, the residuals are still stationary.
What is going on here? Although the residuals from regression (21.11.4a) are stationary,

that is, they are I(0), they are stationary around a deterministic time trend, the trend here
being linear. That is, the residuals are I(0) plus a linear trend. As noted earlier, a time series
may contain both a deterministic and a stochastic trend.

Before we proceed further, it should be noted that our time series data cover a long
period of time (61 years). It is quite possible that because of structural changes in the U.S.
economy over this period, our results and conclusions are likely to differ. In Exercise 21.28
you are asked to check for this possibility.

Cointegration and Error Correction Mechanism (ECM) 
We just showed that, allowing for the (linear) trend, LPCE and LDPI seem to be cointegrated,
that is, there is a long-term, or equilibrium, relationship between the two. Of course, in the
short-run there may be disequilibrium. Therefore, we can treat the error term in the following
equation as the “equilibrium error.” And we can use this error term to tie the short-run
behavior of PCE to its long-run value:

ut = LPCEt − β1 − β2LDPI − β3t (21.11.5)

The error correction mechanism (ECM) first used by Sargan46 and later popularized
by Engle and Granger corrects for disequilibrium. An important theorem, known as the
Granger representation theorem, states that if two variables Y and X are cointegrated, the
relationship between the two can be expressed as ECM. To see what this means, let us re-
vert to our PCE–DPI example. Now consider the following model:

�LPCEt = α0 + α1�LDPIt + α2ut−1 + εt (21.11.6)

where εt is a white noise error term and ut−1 is the lagged value of the error term in 
Eq. (21.11.5).

ECM equation (21.11.5) states that �LPCE depends on �LDPI and also on the equilib-
rium error term.47 If the latter is nonzero, then the model is out of equilibrium. Suppose
�LDPI is zero and ut−1 is positive. This means LPCEt−1 is too high to be in equilibrium, that
is, LPCEt−1 is above its equilibrium value of (α0 + α1LDPIt−1). Since α2 is expected to be
negative, the term α2ut−1 is negative and, therefore, �LPCEt will be negative to restore the
equilibrium. That is, if LPCEt is above its equilibrium value, it will start falling in the next
period to correct the equilibrium error; hence the name ECM. By the same token, if ut−1 is
negative (i.e., LPCE is below its equilibrium value), α2ut−1 will be positive, which will
cause �LPCEt to be positive, leading LPCEt to rise in period t. Thus, the absolute value of
α2 decides how quickly the equilibrium is restored. In practice, we estimate ut−1 by

46J. D. Sargan, “Wages and Prices in the United Kingdom: A Study in Econometric Methodology,” in
K. F. Wallis and D. F. Hendry, eds., Quantitative Economics and Econometric Analysis, Basil Blackwell,
Oxford, U.K., 1984.
47The following discussion is based on Gary Koop, op. cit., pp. 159–160 and Kerry Peterson, op. cit.,
Section 8.5.
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ût−1 = (LPCEt − β̂1 − β̂2LDPI − β̂3t ). Keep in mind that the error correction coefficient
α2 is expected to be negative (why?).

Returning to our illustrative example, the empirical counterpart of Eq. (21.11.6) is:

�̂LPCEt = 0.0061 + 0.2967�LDPIt − 0.1223ût−1

t = (9.6753)   (6.2282) (−3.8461) (21.11.7)

R2 = 0.1658 d = 2.1496

Statistically, the ECM term is significant, suggesting that PCE adjusts to DPI with a lag;
only about 12 percent of the discrepancy between long-term and short-term PCE is cor-
rected within a quarter.

From regression (21.11.7) we see that the short-run consumption elasticity is about
0.29. The long-run elasticity is about 0.58, which can be seen from Eq. (21.11.3a).

Before we conclude this section, the caution sounded by S. G. Hall is worth remembering:

While the concept of cointegration is clearly an important theoretical underpinning of the error
correction model there are still a number of problems surrounding its practical application; the
critical values and small sample performance of many of these tests are unknown for a wide
range of models; informed inspection of the correlogram may still be an important tool.48

21.12 Some Economic Applications

We conclude this chapter by considering some concrete examples.

EXAMPLE 21.1
M1 Monthly
Money Supply in
the United States,
January 1959 to 
March 1, 2008

Figure 21.11 shows the M1 money supply for the United States from January 1959 to
March 1, 2008. From our knowledge of stationarity, it seems that the M1 money supply
time series is nonstationary, which can be confirmed by unit root analysis. (Note: To save
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FIGURE 21.11 U.S. money supply over 1959:01 to 2008:03.

48S. G. Hall, “An Application of the Granger and Engle Two-Step Estimation Procedure to the United
Kingdom Aggregate Wage Data,” Oxford Bulletin of Economics and Statistics, vol. 48, no. 3, August
1986, p. 238. See also John Y. Campbell and Pierre Perron, “Pitfalls and Opportunities: What
Macroeconomists Should Know about Unit Roots,” NBER (National Bureau of Economic Research)
Macroeconomics Annual 1991, pp. 141–219.

(Continued)
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space, we have not given the actual data, which can be obtained from the Federal Reserve
Board or the Federal Reserve Bank of St. Louis.)

�M̂t = −0.1347 + 0.0293t − 0.0102Mt−1

t = (−0.14) (2.62)        (−2.30) (21.12.1)
R2 = 0.0130 d = 2.2325

The 1, 5, and 10 percent critical τ values are −3.9811, −3.4210, and −3.1329. Since the
t value of −2.30 is less negative than any of these critical values, the conclusion is that the
M1 time series is nonstationary; that is, it contains a unit root or it is I(1). Even when sev-
eral lagged values of �Mt (à la ADF) were introduced, the conclusion did not change. On
the other hand, the first differences of the M1 money supply were found to be stationary
(check this out).

EXAMPLE 21.1
(Continued)

EXAMPLE 21.2
The U.S./U.K.
Exchange Rate:
January 1971 to
April 2008

Figure 21.12 gives the graph of the ($/£) exchange rate from January 1971 to April 2008,
for a total of 286 observations. By now you should be able to spot this time series as non-
stationary. Carrying out the unit root tests, we obtained the following τ statistics: −0.82
(no intercept, no trend), −1.96 (intercept), and −1.33 (intercept and trend). Each of these
statistics, in absolute value, was less than its critical τ value from the appropriate DF tables,
thus confirming the graphical impression that the U.S./U.K. exchange rate time series is
nonstationary.
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FIGURE 21.12
U.S./U.K. exchange
rate: January 1971 to
April 2008.

EXAMPLE 21.3
U.S. Consumer
Price Index
(CPI), January
1947 to March
2008

Figure 21.13 shows the U.S. CPI from January 1947 to March 2008 for a total of 733
observations. The CPI series, like the M1 series considered previously, shows a sustained
upward trend. The unit root exercise gave the following results:

�̂CPIt = −0.01082 + 0.00068t − 0.00096CPIt−1 + 0.40669�CPIt−1

t = (−0.54) (4.27)     (−1.77) (12.03) (21.12.2)
R2 = 0.3570 d = 1.9295
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The t ( = τ) value of CPIt−1 is −1.77. The 10 percent critical value is −3.1317. Since, in
absolute terms, the computed τ is less than the critical τ, the conclusion is that CPI is not
a stationary time series. We can characterize it as having a stochastic trend (why?).
However, if you take the first differences of the CPI series, you will find them to be
stationary. Hence CPI is a difference-stationary (DS) time series.
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FIGURE 21.13 U.S. CPI, January 1947 to March 2008.EXAMPLE 21.3
(Continued)

EXAMPLE 21.4
Are 3-Month and
6-Month Treasury
Bill Rates
Cointegrated?

Figure 21.14 plots (constant maturity) 3-month and 6-month U.S. Treasury bill (T-bill)
rates from January 1982 to March 2008, for a total of 315 observations. Does the graph
show that the two rates are cointegrated; that is, is there an equilibrium relationship
between the two? From financial theory, we would expect that to be the case, otherwise
arbitrageurs will exploit any discrepancy between the short and the long rates. First of all,
let us see if the two time series are stationary.
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six-month Treasury
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(Continued)
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On the basis of the pure random walk model (i.e., no intercept, no trend), both the
rates were stationary. Including intercept, trend, and one lagged difference, the results
suggested that the two rates might be trend stationary; the trend coefficient in both
cases was negative and significant at about the 7 percent level. So, depending on which
results we accept, the two rates are either stationary or trend stationary.

Regressing the 6-month T-bill rate (TB6) on the 3-month T-bill rate, we obtained the
following regression.

T̂B6t = 0.0842 + 1.0078TB3t

t = (3.65) (252.39) (21.12.3)

R2 = 0.995 d = 0.4035

Applying the unit root test to the residuals from the preceding regression, we found that
the residuals were stationary, suggesting that the 3- and 6-month T-bill rates were cointe-
grated. Using this knowledge, we obtained the following error correction model (ECM):

�T̂B6t = −0.0047 + 0.8992�TB3t − 0.1855ût−1

t = (−0.82) (47.77)     (−5.69) (21.12.4)
R2 = 0.880 d = 1.5376

where ût−1 is the lagged value of the error correction term from the preceding period.
As these results show, 0.19 of the discrepancy in the two rates in the previous month is
eliminated this month.49 Besides, short-run changes in the 3-month T-bill rate are quickly
reflected in the 6-month T-bill rate, as the slope coefficient between the two is 0.8992.
This should not be a surprising finding in view of the efficiency of the U.S. money markets.

49Since both T-bill rates are in percent form, this would suggest that if the 6-month TB rate was
higher than the 3-month TB rate more than expected a priori in the last month, this month it will be
reduced by 0.19 percentage points to restore the long-run relationship between the two interest
rates. For the underlying theory about the relationship between short- and long-run interest rates,
see any money and banking textbook and read up on the term structure of interest rates.

1. Regression analysis based on time series data implicitly assumes that the underlying
time series are stationary. The classical t tests, F tests, etc., are based on this assumption.

2. In practice most economic time series are nonstationary.

3. A stochastic process is said to be weakly stationary if its mean, variance, and auto-
covariances are constant over time (i.e., they are time-invariant).

4. At the informal level, weak stationarity can be tested by the correlogram of a time
series, which is a graph of autocorrelation at various lags. For stationary time series, the
correlogram tapers off quickly, whereas for nonstationary time series it dies off gradu-
ally. For a purely random series, the autocorrelations at all lags 1 and greater are zero.

5. At the formal level, stationarity can be checked by finding out if the time series contains
a unit root. The Dickey–Fuller (DF) and augmented Dickey–Fuller (ADF) tests can be
used for this purpose.

6. An economic time series can be trend stationary (TS) or difference stationary (DS).
A TS time series has a deterministic trend, whereas a DS time series has a variable, or
stochastic, trend. The common practice of including the time or trend variable in a
regression model to detrend the data is justifiable only for TS time series. The DF and
ADF tests can be applied to determine whether a time series is TS or DS.

Summary and 
Conclusions

EXAMPLE 21.4
(Continued)
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7. Regression of one time series variable on one or more time series variables often can
give nonsensical or spurious results. This phenomenon is known as spurious regression.
One way to guard against it is to find out if the time series are cointegrated.

8. Cointegration means that despite being individually nonstationary, a linear combina-
tion of two or more time series can be stationary. The Engle–Granger (EG) and the
augmented Engle–Granger (AEG) tests can be used to find out if two or more time
series are cointegrated.

9. Cointegration of two (or more) time series suggests that there is a long-run, or
equilibrium, relationship between them. 

10. The error correction mechanism (ECM) developed by Engle and Granger is a means
of reconciling the short-run behavior of an economic variable with its long-run behavior. 

11. The field of time series econometrics is evolving. The established results and tests are in
some cases tentative and a lot more work remains. An important question that needs an
answer is why some economic time series are stationary and others are nonstationary.

Questions
21.1. What is meant by weak stationarity?

21.2. What is meant by an integrated time series?

21.3. What is the meaning of a unit root? 

21.4. If a time series is I(3), how many times would you have to difference it to make it
stationary? 

21.5. What are Dickey–Fuller (DF) and augmented DF tests? 

21.6. What are Engle–Granger (EG) and augmented EG tests?

21.7. What is the meaning of cointegration? 

21.8. What is the difference, if any, between tests of unit roots and tests of cointegration? 

21.9. What is spurious regression? 

21.10. What is the connection between cointegration and spurious regression? 

21.11. What is the difference between a deterministic trend and a stochastic trend? 

21.12. What is meant by a trend-stationary process (TSP) and a difference-stationary
process (DSP)? 

21.13. What is a random walk (model)? 

21.14. “For a random walk stochastic process, the variance is infinite.” Do you agree?
Why? 

21.15. What is the error correction mechanism (ECM)? What is its relationship with
cointegration?

Empirical Exercises
21.16. Using the U.S. economic time series data posted on the book’s website, obtain

sample correlograms up to 36 lags for the time series LPCE, LDPI, LCP(profits),
and LDIVIDENDS. What general pattern do you see? Intuitively, which one(s) of
these time series seems to be stationary?

21.17. For each of the time series of Exercise 21.16, use the DF test to find out if these
series contain a unit root. If a unit root exists, how would you characterize such a
time series? 

EXERCISES
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21.18. Continue with Exercise 21.17. How would you decide if the ADF test is more
appropriate than the DF test? 

21.19. Consider the dividends and profits time series given in the U.S. economic time
series data posted on the book’s website. Since dividends depend on profits, con-
sider the following simple model:

LDIVIDENDSt = β1 + β2LCP + ut

a. Would you expect this regression to suffer from the spurious regression
phenomenon? Why? 

b. Are the logged Dividends and logged Profits time series cointegrated? How do
you test for this explicitly? If, after testing, you find that they are cointegrated,
would your answer in (a) change? 

c. Employ the error correction mechanism (ECM) to study the short- and long-run
behavior of dividends in relation to profits. 

d. If you examine the LDIVIDENDS and LCP series individually, do they exhibit
stochastic or deterministic trends? What tests do you use? 

*e. Assume LDIVIDENDS and LCP are cointegrated. Then, instead of regressing
dividends on profits, you regress profits on dividends. Is such a regression valid?

21.20. Take the first differences of the time series given in the U.S. economic time series
data posted on the book’s website and plot them. Also obtain a correlogram of each
time series up to 36 lags. What strikes you about these correlograms? 

21.21. Instead of regressing LDIVIDENDS on LCP in level form, suppose you regress the
first difference of LDIVIDENDS on the first difference of LCP. Would you include the
intercept in this regression? Why or why not? Show the calculations.

21.22. Continue with the previous exercise. How would you test the first-difference re-
gression for stationarity? In the present example, what would you expect a priori
and why? Show all the calculations. 

21.23. From the U.K. private sector housing starts (X) for the period 1948 to 1984, Terence
Mills obtained the following regression results:†

�̂Xt = 31.03 − 0.188Xt−1

se = (12.50) (0.080)

(t = )τ (−2.35)

Note: The 5 percent critical τ value is −2.95 and the 10 percent critical τ value 
is −2.60. 
a. On the basis of these results, is the housing starts time series stationary or nonsta-

tionary? Alternatively, is there a unit root in this time series? How do you know?
b. If you were to use the usual t test, is the observed t value statistically significant?

On this basis, would you have concluded that this time series is stationary? 
c. Now consider the following regression results:

�̂2 Xt = 4.76 − 1.39�Xt−1 + 0.313�2Xt−1

se = (5.06) (0.236) (0.163)

(t = )τ (−5.89)

*Optional.
†Terence C. Mills, op. cit., p. 127. Notation slightly altered.
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where �2 is the second difference operator, that is, the first difference of the first
difference. The estimated τ value is now statistically significant. What can you say
now about the stationarity of the time series in question? 

Note: The purpose of the preceding regression is to find out if there is a second
unit root in the time series.

21.24. Generate two random walk series as indicated in Eqs. (21.7.1) and (21.7.2) and
regress one on the other. Repeat this exercise but now use their first differences and
verify that in this regression the R2 value is about zero and the Durbin–Watson d is
close to 2.

21.25. To show that two variables, each with deterministic trend, can lead to spurious
regression, Charemza et al. obtained the following regression based on 30
observations:*

Ŷt = 5.92 + 0.030Xt

t = (9.9)  (21.2)

R2 = 0.92 d = 0.06

where Y1 = 1, Y2 = 2, . . . , Yn = n and X1 = 1, X2 = 4, . . . , Xn = n2.

a. What kind of trend does Y exhibit? and X?

b. Plot the two variables and plot the regression line. What general conclusion do
you draw from this plot?

21.26. From the data for the period 1971–I to 1988–IV for Canada, the following regres-
sion results were obtained:

1. l̂n M1t = −10.2571 + 1.5975 ln GDPt

t = (−12.9422)   (25.8865)

R2 = 0.9463 d = 0.3254

2. �̂ ln M1t = 0.0095 + 0.5833� ln GDPt

t = (2.4957) (1.8958)

R2 = 0.0885 d = 1.7399

3. �ût = −0.1958ût−1

(t = τ) (−2.2521)

R2 = 0.1118 d = 1.4767

where M1 = M1 money supply, GDP = gross domestic product, both measured in
billions of Canadian dollars, ln is natural log, and ût represent the estimated resid-
uals from regression (1).

a. Interpret regressions (1) and (2).

b. Do you suspect that regression (1) is spurious? Why?

c. Is regression (2) spurious? How do you know?

d. From the results of regression (3), would you change your conclusion in (b)?
Why?

*Charemza et al., op. cit., p. 93.
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e. Now consider the following regression:

�̂ ln M1t = 0.0084 + 0.7340� ln GDPt − 0.0811ût−1

t = (2.0496) (2.0636) (−0.8537)

R2 = 0.1066 d = 1.6697

What does this regression tell you? Does this help you decide if regression (1) is
spurious or not? 

21.27. The following regressions are based on the CPI data for the United States for the
period 1960–2007, for a total of 48 annual observations:

1. �̂CPIt = 0.0334CPIt−1

t = (12.37)

R2 = 0.0703 d = 0.3663 RSS = 206.65

2. �̂CPIt = 1.8662 + 0.0192CPIt−1

t = (3.27) (3.86)

R2 = 0.249 d = 0.4462 RSS = 166.921

3. �̂CPIt = 1.1611 + 0.5344t − 0.1077CPIt−1

t = (2.37) (4.80) (−4.02)

R2 = 0.507 d = 0.6071 RSS = 109.608

where RSS = residual sum of squares.

a. Examining the preceding regressions, what can you say about stationarity of the
CPI time series? 

b. How would you choose among the three models? 

c. Equation (1) is Eq. (3) minus the intercept and trend. Which test would you use
to decide if the implied restrictions of model (1) are valid? (Hint: Use the
Dickey–Fuller t and F tests. Use the approximate values given in Appendix D,
Table D.7.)

21.28. As noted in the text, there may be several structural breaks in the U.S. economic
time series dataset introduced in Section 21.1. Dummy variables are a good way of
incorporating these shifts in the data.

a. Using dummy variables to designate three different periods related to the oil
embargoes in 1973 and 1979, regress the log of personal consumption expendi-
tures (LPCE) on the log of disposable personal income (LDPI). Has there been a
change in the results? What is your decision about the unit root hypothesis now?

b. Several websites list the official economic cycles that may have affected the
U.S. economic time series data discussed in Section 21.1. See, for example,
http://www.nber.org/cycles/cyclesmain.html. Using the information here, create
dummy variables indicating some of the major cycles and check the results of
regressing LPCE on LDPI. Has there been a change?
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We noted in the Introduction that forecasting is an important part of econometric analysis,
for some people probably the most important. How do we forecast economic variables, such
as GDP, inflation, exchange rates, stock prices, unemployment rates, and myriad other eco-
nomic variables? In this chapter we discuss two methods of forecasting that have become
quite popular: (1) autoregressive integrated moving average (ARIMA), popularly known
as the Box–Jenkins methodology,1 and (2) vector autoregression (VAR).

In this chapter we also discuss the special problems involved in forecasting prices of
financial assets, such as stock prices and exchange rates. These asset prices are characterized
by the phenomenon known as volatility clustering, that is, periods in which they exhibit
wide swings for an extended time period followed by a period of comparative tranquility.
One only has to look at the Dow Jones Index in the recent past. The so-called autoregressive
conditional heteroscedasticity (ARCH) or generalized autoregressive conditional
heteroscedasticity (GARCH) models can capture such volatility clustering.

The topic of economic forecasting is vast, and specialized books have been written on
this subject. Our objective in this chapter is to give the reader just a glimpse of this subject.
The interested reader may consult the references for further study. Fortunately, most mod-
ern econometric packages have user-friendly introductions to several techniques discussed
in this chapter.

The linkage between this chapter and the previous chapter is that the forecasting
methods discussed below assume that the underlying time series are stationary or they can
be made stationary with appropriate transformations. As we progress through this chapter,
you will see the use of the several concepts that we introduced in the last chapter.

22.1 Approaches to Economic Forecasting

Broadly speaking, there are five approaches to economic forecasting based on time
series data: (1) exponential smoothing methods, (2) single-equation regression models,
(3) simultaneous-equation regression models, (4) autoregressive integrated moving
average (ARIMA) models, and (5) vector autoregression (VAR) models.

Chapter 22
Time Series
Econometrics: 
Forecasting

1G. P. E. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control, revised ed., Holden Day,
San Francisco, 1978.
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Exponential Smoothing Methods2

These are essentially methods of fitting a suitable curve to historical data of a given time
series. There are a variety of these methods, such as single exponential smoothing, Holt’s
linear method, Holt–Winters’ method, and their variations. Although still used in several
areas of business and economic forecasting, these are now supplemented (supplanted?) by
the other four methods that follow. We will not discuss exponential smoothing methods in
this chapter, for that would take us far afield.

Single-Equation Regression Models
The bulk of this book has been devoted to single-equation regression models. As an example
of a single-equation model, consider the demand function for automobiles. On the basis of
economic theory, we postulate that the demand for automobiles is a function of automobile
prices, advertising expenditure, income of the consumer, interest rate (as a measure of the cost
of borrowing), and other relevant variables (e.g., family size, travel distance to work). From
time series data, we estimate an appropriate model of auto demand (either linear, log–linear,
or nonlinear), which can be used for forecasting demand for autos in the future. Of course, as
noted in Chapter 5, forecasting errors increase rapidly if we go too far out in the future.

Simultaneous-Equation Regression Models3

In Chapters 18, 19, and 20 we considered simultaneous-equation models. In their heyday
during the 1960s and 1970s, elaborate models of the U.S. economy based on simultaneous
equations dominated economic forecasting. But since then the glamor of such forecasting
models has subsided because of their poor forecasting performance, especially since the
1973 and 1979 oil price shocks (due to OPEC oil embargoes) and also because of the so-
called Lucas critique.4 The thrust of this critique, as you may recall, is that the parameters
estimated from an econometric model are dependent on the policy prevailing at the time the
model was estimated and will change if there is a policy change. In short, the estimated
parameters are not invariant in the presence of policy changes.

For example, in October 1979 the Fed changed its monetary policy dramatically. Instead
of targeting interest rates, it announced it would henceforth monitor the rate of growth of
the money supply. With such a pronounced change, an econometric model estimated from
past data will have little forecasting value in the new regime. These days the Fed’s empha-
sis has changed from controlling the money supply to controlling the short-term interest
rate (the federal funds rate).

ARIMA Models
The publication by Box and Jenkins of Time Series Analysis: Forecasting and Control
(op. cit.) ushered in a new generation of forecasting tools. Popularly known as the
Box–Jenkins (BJ) methodology, but technically known as the ARIMA methodology, the em-
phasis of these methods is not on constructing single-equation or simultaneous-equation
models but on analyzing the probabilistic, or stochastic, properties of economic time series

2For a comparatively simple exposition of these methods, see Spyros Makridakis, Steven C.
Wheelwright, and Rob J. Hyndman, Forecasting Methods and Applications, 3d ed., John Wiley &
Sons, New York, 1998.
3For a textbook treatment of the use of simultaneous-equation models in forecasting, see Robert S.
Pindyck and Daniel L. Rubinfeld, Econometric Models & Economic Forecasts, 4th ed., McGraw-HiIl,
New York, 1998, Part III.
4Robert E. Lucas, “Econometric Policy Evaluation: A Critique,” in Carnegie–Rochester Conference
Series, The Phillips Curve, North-Holland, Amsterdam, 1976, pp. 19–46. This article, among others,
earned Lucas a Nobel Prize in economics.
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on their own under the philosophy let the data speak for themselves. Unlike the regres-
sion models, in which Yt is explained by k regressors X1, X2, X3, . . . , Xk , the BJ-type time
series models allow Yt to be explained by past, or lagged, values of Y itself and stochastic
error terms. For this reason, ARIMA models are sometimes called atheoretic models
because they are not derived from any economic theory—and economic theories are often
the basis of simultaneous-equation models.

In passing, note that our emphasis in this chapter is on univariate ARIMA models, that
is, ARIMA models pertaining to a single time series. But the analysis can be extended to
multivariate ARIMA models.

VAR Models
VAR methodology superficially resembles simultaneous-equation modeling in that we con-
sider several endogenous variables together. But each endogenous variable is explained by
its lagged, or past, values and the lagged values of all other endogenous variables in the
model; usually, there are no exogenous variables in the model.

In the rest of this chapter we discuss the fundamentals of Box–Jenkins and VAR
approaches to economic forecasting. Our discussion is elementary and heuristic. The
reader wishing to pursue this subject further is advised to consult the references.5

22.2 AR, MA, and ARIMA Modeling of Time Series Data

To introduce several ideas, some old and some new, let us work with the GDP time series
data for the United States introduced in Section 21.1 (see the book’s website for the actual
data). A plot of this time series is already given in Figures 21.1 (undifferenced logged GDP)
and 21.9 (first-differenced LGDP); recall that LGDP in level form is nonstationary but in
the (first) differenced form it is stationary.

If a time series is stationary, we can model it in a variety of ways.

An Autoregressive (AR) Process
Let Yt represent the logged GDP at time t. If we model Yt as

(Yt − δ) = α1(Yt−1 − δ) + ut (22.2.1)

where δ is the mean of Y and where ut is an uncorrelated random error term with zero mean
and constant variance σ 2 (i.e., it is white noise), then we say that Yt follows a first-order
autoregressive, or AR(1), stochastic process, which we have already encountered in
Chapter 12. Here the value of Y at time t depends on its value in the previous time period
and a random term; the Y values are expressed as deviations from their mean value. In other
words, this model says that the forecast value of Y at time t is simply some proportion
( = α1) of its value at time (t − 1) plus a random shock or disturbance at time t; again the
Y values are expressed around their mean values.

But if we consider this model,

(Yt − δ) = α1(Yt−1 − δ) + α3(Yt−2 − δ) + ut (22.2.2)

5See Pindyck and Rubinfeld, op. cit., Part 3; Alan Pankratz, Forecasting with Dynamic Regression
Models, John Wiley & Sons, New York, 1991 (this is an applied book); and Andrew Harvey, 
The Econometric Analysis of Time Series, The MIT Press, 2d ed., Cambridge, Mass., 1990 (this is a rather
advanced book). A thorough but accessible discussion can also be found in Terence C. Mills, Time
Series Techniques for Economists, Cambridge University Press, New York, 1990.
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then we say that Yt follows a second-order autoregressive, or AR(2), process. That is, the
value of Y at time t depends on its value in the previous two time periods, the Y values being
expressed around their mean value δ.

In general, we can have

(Yt − δ) = α1(Yt−1 − δ) + α2(Yt−2 − δ) + · · · + αp(Yt−p − δ) + ut (22.2.3)

in which case Yt is a pth-order autoregressive, or AR(p), process.
Notice that in all the preceding models only the current and previous Y values are

involved; there are no other regressors. In this sense, we say that the “data speak for them-
selves.” They are a kind of reduced form model that we encountered in our discussion of the
simultaneous-equation models.

A Moving Average (MA) Process
The AR process just discussed is not the only mechanism that may have generated Y.
Suppose we model Y as follows:

Yt = µ + β0ut + β1ut−1 (22.2.4)

where µ is a constant and u, as before, is the white noise stochastic error term. Here Y at time
t is equal to a constant plus a moving average of the current and past error terms. Thus, in
the present case, we say that Y follows a first-order moving average, or an MA(1), process.

But if Y follows the expression

Yt = µ + β0ut + β1ut−1 + β2ut−2 (22.2.5)

then it is an MA(2) process. More generally,

Yt = µ + β0ut + β1ut−1 + β2ut−2 + · · · + βqut−q (22.2.6)

is an MA(q) process. In short, a moving average process is simply a linear combination of
white noise error terms.

An Autoregressive and Moving Average (ARMA) Process
Of course, it is quite likely that Y has characteristics of both AR and MA and is therefore
ARMA. Thus, Yt follows an ARMA(1, 1) process if it can be written as

Yt = θ + α1Yt−1 + β0ut + β1ut−1 (22.2.7)

because there is one autoregressive and one moving average term. In Eq. (22.2.7) θ repre-
sents a constant term.

In general, in an ARMA( p, q) process, there will be p autoregressive and q moving
average terms.

An Autoregressive Integrated Moving Average (ARIMA) Process
The time series models we have already discussed are based on the assumption that the
time series involved are (weakly) stationary in the sense defined in Chapter 21. Briefly, the
mean and variance for a weakly stationary time series are constant and its covariance is
time-invariant. But we know that many economic time series are nonstationary, that is, they
are integrated; for example, the economic time series introduced in Section 21.1 of Chap-
ter 21 are integrated.

But we also saw in Chapter 21 that if a time series is integrated of order 1 (i.e., it is I[1]),
its first differences are I(0), that is, stationary. Similarly, if a time series is I(2), its second
difference is I(0). In general, if a time series is I(d), after differencing it d times we obtain
an I(0) series.
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Therefore, if we have to difference a time series d times to make it stationary and then
apply the ARMA( p, q) model to it, we say that the original time series is ARIMA( p, d, q),
that is, it is an autoregressive integrated moving average time series, where p denotes the
number of autoregressive terms, d the number of times the series has to be differenced
before it becomes stationary, and q the number of moving average terms. Thus, an
ARIMA(2, 1, 2) time series has to be differenced once (d = 1) before it becomes stationary
and the (first-differenced) stationary time series can be modeled as an ARMA(2, 2) process,
that is, it has two AR and two MA terms. Of course, if d = 0 (i.e., a series is stationary to
begin with), ARIMA(p, d = 0, q) = ARMA(p, q). Note that an ARIMA(p, 0, 0) process
means a purely AR(p) stationary process; an ARIMA(0, 0, q) means a purely MA(q) sta-
tionary process. Given the values of p, d, and q, one can tell what process is being modeled.

The important point to note is that to use the Box–Jenkins methodology, we must have
either a stationary time series or a time series that is stationary after one or more differenc-
ings. The reason for assuming stationarity can be explained as follows:

The objective of B–J [Box–Jenkins] is to identify and estimate a statistical model which can be
interpreted as having generated the sample data. If this estimated model is then to be used for
forecasting we must assume that the features of this model are constant through time, and par-
ticularly over future time periods. Thus the simple reason for requiring stationary data is that
any model which is inferred from these data can itself be interpreted as stationary or stable,
therefore providing [a] valid basis for forecasting.6

22.3 The Box–Jenkins (BJ) Methodology

The million-dollar question obviously is: Looking at a time series, such as the U.S. LGDP
series in Figure 21.1, how does one know whether it follows a purely AR process (and if so,
what is the value of p) or a purely MA process (and if so, what is the value of q) or an
ARMA process (and if so, what are the values of p and q) or an ARIMA process, in which
case we must know the values of p, d, and q. The BJ methodology comes in handy in
answering the preceding question. The method consists of four steps:

Step 1. Identification. That is, find out the appropriate values of p, d, and q. We will
show shortly how the correlogram and partial correlogram aid in this task.

Step 2. Estimation. Having identified the appropriate p and q values, the next stage is
to estimate the parameters of the autoregressive and moving average terms included
in the model. Sometimes this calculation can be done by simple least squares but
sometimes we will have to resort to nonlinear (in parameter) estimation methods.
Since this task is now routinely handled by several statistical packages, we do not have
to worry about the actual mathematics of estimation; the enterprising student may
consult the references on that.

Step 3. Diagnostic checking. Having chosen a particular ARIMA model, and having
estimated its parameters, we next see whether the chosen model fits the data reason-
ably well, for it is possible that another ARIMA model might do the job as well. This is
why Box–Jenkins ARIMA modeling is more an art than a science; considerable skill is
required to choose the right ARIMA model. One simple test of the chosen model is to
see if the residuals estimated from this model are white noise; if they are, we can
accept the particular fit; if not, we must start over. Thus, the BJ methodology is an
iterative process (see Figure 22.1).

6Michael Pokorny, An Introduction to Econometrics, Basil Blackwell, New York, 1987, p. 343.
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Step 4. Forecasting. One of the reasons for the popularity of the ARIMA modeling
is its success in forecasting. In many cases, the forecasts obtained by this method are
more reliable than those obtained from the traditional econometric modeling,
particularly for short-term forecasts. Of course, each case must be checked.

With this general discussion, let us look at these four steps in some detail. Throughout,
we will use the GDP data introduced in Section 21.1 (see the book’s website for the actual
data) to illustrate the various points.

22.4 Identification

The chief tools in identification are the autocorrelation function (ACF), the partial
autocorrelation function (PACF), and the resulting correlograms, which are simply the
plots of ACFs and PACFs against the lag length.

In the previous chapter we defined the (population) ACF (ρk ) and the sample ACF (ρ̂k ).
The concept of partial autocorrelation is analogous to the concept of partial regression
coefficient. In the k-variable multiple regression model, the kth regression coefficient βk

measures the rate of change in the mean value of the regressand for a unit change in the kth
regressor Xk , holding the influence of all other regressors constant.

In similar fashion, the partial autocorrelation ρkk measures correlation between (time
series) observations that are k time periods apart after controlling for correlations at inter-
mediate lags (i.e., lags less than k). In other words, partial autocorrelation is the correlation
between Yt and Yt−k after removing the effect of the intermediate Y ’s.7 In Section 7.11 we
already introduced the concept of partial correlation in the regression context and showed
its relation to simple correlations. Such partial correlations are now routinely computed by
most statistical packages.

In Figure 22.2 we show the correlogram (panel a) and partial correlogram (panel b) of
the LGDP series. From this figure, two facts stand out: First, the ACF declines very slowly;
as shown in Figure 21.8, ACF up to about 22 lags are individually statistically significantly
different from zero, for they all are outside the 95 percent confidence bounds. Second, after
the second lag, the PACF drops dramatically, and most PACFs after lag 2 are statistically
insignificant, save for maybe lag 13.

1. Identification of the model
    (Choosing tentative p, d, q)

2. Parameter estimation of
    the chosen model

3. Diagnostic checking:
    Are the estimated residuals white noise?

4. Forecasting

Yes
(Go to Step 4)

No
(Return to Step 1)

FIGURE 22.1
The Box–Jenkins
methodology.

7In time series data a large proportion of correlation between Yt and Yt−k may be due to the
correlations they have with the intervening lags Yt−1, Yt−2, . . . , Yt−k+1 . The partial correlation ρkk
removes the influence of these intervening variables.
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Since the U.S. LGDP time series is not stationary, we have to make it stationary before we
can apply the Box–Jenkins methodology. In Figure 21.9 we plotted the first differences of
LGDP. Unlike Figure 21.1, we do not observe any trend in this series, perhaps suggesting
that the first-differenced LGDP time series is stationary.8 A formal application of the
Dickey–Fuller unit root test shows that that is indeed the case. We can also see this visually
from the estimated ACF and PACF correlograms given in panels (a) and (b) of Figure 22.3.
Now we have a much different pattern of ACF and PACF. The ACFs at lags 1, 2, and 5 seem
statistically different from zero; recall from Chapter 21 that the approximate 95 percent con-
fidence limits for ρk are −0.1254 and +0.1254. (Note: As discussed in Chapter 21, these

FIGURE 22.2
(a) Correlogram and
(b) partial
correlogram, for
LGDP, United States,
1947–I to 2007–IV.
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8It is hard to tell whether the variance of this series is stationary, especially around 1979–1980. The oil
embargo of 1979 and a significant change in the Fed’s monetary policy in 1979 may have something
to do with our difficulty.
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confidence limits are asymptotic and so can be considered approximate.) But at all other
lags, they are not statistically different from zero. For the partial autocorrelations, only lags 1
and 12 seem to be statistically different from zero.

Now how do the correlograms given in Figure 22.3 enable us to find the ARMA pattern
of the LGDP time series? (Note: We will consider only the first-differenced LGDP series be-
cause it is stationary.) One way of accomplishing this is to consider the ACF and PACF and
the associated correlograms of a selected number of ARMA processes, such as AR(1),
AR(2), MA(1), MA(2), ARMA(1, 1), ARIMA(2, 2), and so on. Since each of these stochas-
tic processes exhibits typical patterns ofACF and PACF, if the time series under study fits one
of these patterns we can identify the time series with that process. Of course, we will have to
apply diagnostic tests to find out if the chosen ARMA model is reasonably accurate.

To study the properties of the various standard ARIMA processes would consume a lot
of space. What we plan to do is to give general guidelines (see Table 22.1); the references
can give the details of the various stochastic processes.

FIGURE 22.3
(a) Correlogram and
(b) partial correlogram
for first differences of
LGDP, United States,
1947–I to 2007–IV.
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Notice that the ACFs and PACFs of AR(p) and MA(q) processes have opposite patterns;
in the AR(p) case the AC declines geometrically or exponentially but the PACF cuts off
after a certain number of lags, whereas the opposite happens to an MA(q) process.

Geometrically, these patterns are shown in Figure 22.4.

A Warning
Since in practice we do not observe the theoretical ACFs and PACFs and rely on their sam-
ple counterparts, the estimated ACFs and PACFs will not match exactly their theoretical
counterparts. What we are looking for is the resemblance between theoretical and sample
ACFs and PACFs so that they can point us in the right direction in constructing ARIMA
models. And that is why ARIMA modeling requires a great deal of skill, which of course
comes from practice.

ARIMA Identification of U.S. GDP
Returning to the correlogram and partial correlogram of the stationary (after first-
differencing) U.S. LGDP for 1947–I to 2007–IV given in Figure 22.3, what do we see?

Remembering that the ACF and PACF are sample quantities, we do not have a nice pat-
tern as suggested in Table 22.1. The autocorrelations (panel a) decline for the first two lags
and then, with the exception of lag 5, the rest of them are not statistically different from

TABLE 22.1
Theoretical Patterns
of ACF and PACF

Type of Model Typical Pattern of ACF Typical Pattern of PACF

AR(p) Decays exponentially or with Significant spikes through 
damped sine wave pattern or both lags p

MA(q) Significant spikes through lags q Declines exponentially
ARMA(p, q) Exponential decay Exponential decay

Note: The terms exponential and geometric decay mean the same things (recall our discussion of the Koyck distributed lag).

(b)

kk

0

ρk

0

ρ

(c)
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ρ

FIGURE 22.4 ACF and PACF of selected stochastic processes: (a) AR(2): α1 = 0.5, α2 = 0.3; (b) MA(2): β1 = 0.5,
β2 = 0.3; (c) ARMA(1, 1): α1 = 0.5, β1 = 0.5.
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zero (the gray area shown in the figures gives the approximate 95 percent confidence lim-
its). The partial autocorrelations (panel b) with spikes at lags 1 and 12 seem statistically
significant but the rest are not; if the partial correlation coefficient were significant only at
lag 1, we could have identified this as an AR(1) model. Let us therefore assume that the
process that generated the (first-differenced) LGDP series is an MA(2) process. Keep
in mind that unless the ACF and PACF are not well-defined, it is hard to choose a model
without trial and error. The reader is encouraged to try other ARIMA models on the first-
differenced LGDP series.

22.5 Estimation of the ARIMA Model

Let Y ∗
t denote the first differences of U.S. logged GDP. Then our tentatively identified MA

model is

Y ∗
t = µ + β1ut−1 + β2ut−2 (22.5.1)

Using MINITAB, we obtained the following estimates:

Ŷ ∗
t = 0.00822 + 0.2918ut−1 + 0.2024ut−2

se = (0.00088) (0.0633) (0.0634)
(22.5.2)

t = (9.32) (4.61) (3.20)

R2 = 0.1217 d = 1.9705

We leave it as an exercise for the reader to estimate other ARIMA models for the first-
differenced LGDP series.

22.6 Diagnostic Checking

How do we know that the model in Eq. (22.5.2) is a reasonable fit to the data? One simple
diagnostic is to obtain residuals from Eq. (22.5.2) and obtain theACF and PACF of these resid-
uals, say, up to lag 25. The estimated AC and PACF are shown in Figure 22.5. As this figure
shows, none of the autocorrelations (panel a) and partial autocorrelations (panel b) are indi-
vidually statistically significant. Nor is the sum of the 25 squared autocorrelations, as shown
by the Box–Pierce Q and Ljung–Box (LB) statistics (see Chapter 21), statistically signifi-
cant. In other words, the correlograms of both autocorrelation and partial autocorrelation
give the impression that the residuals estimated from Eq. (22.5.2) are purely random. Hence,
there may not be any need to look for another ARIMA model.

22.7 Forecasting

Remember that the GDP data are for the period 1974–I to 2007–IV. Suppose, on the basis of
model (22.5.2), we want to forecast LGDP for the first four quarters of 2008. But in
Eq. (22.5.2) the dependent variable is change in the LGDP over the previous quarter. There-
fore, if we use Eq. (22.5.2), what we can obtain are the forecasts of LGDP changes between
the first quarter of 2008 and the fourth quarter of 2007, the second quarter of 2008 over the
first quarter of 2008, etc.

To obtain the forecast of LGDP level rather than its changes, we can “undo” the first-
difference transformation that we had used to obtain the changes. (More technically, we
integrate the first-differenced series.) Thus, to obtain the forecast value of LGDP (not
∆LGDP) for 2008–I, we rewrite model (22.5.1) as

Y2008−I − Y2007−IV = µ + β1u2007−IV + β2u2007−III + u2008−I (22.7.1)
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That is,

Y2008−I = µ + β1u2007−IV + β2u2007−III + u2008−I + Y2007−IV (22.7.2)

The values of µ, β1, and β2 are already known from the estimated regression (22.5.2). The
value of u2008−I is assumed to be zero (why?). Therefore, we can easily obtain the forecast
value of Y2008−I. The numerical estimate of this forecast value is:9

Y2008−I = 0.00822 + (0.2918)u2007−IV + (0.2024)(u2007−III) + Y2007−IV

= 0.00822 + (0.2918)(0.00853) + (0.2024)(−0.00399) + 9.3653

= 9.3741(approx.)

FIGURE 22.5
(a) Correlogram and
(b) partial correlogram
for residuals of MA(2)
model for the first
differences of LGDP,
United States, 1947–I
to 2007–IV. 
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9Although standard computer packages do this computation routinely, we show the detailed
calculations to illustrate the mechanics involved.
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784 Part Four Simultaneous-Equation Models and Time Series Econometrics

Thus the forecast value of LGDP for 2008–I is about 9.3741, which is about $11,779 billion
(2000 dollars). Incidentally, the actual value of real GDP for 2008–I was $11,693.09 billion;
the forecast error was an overestimate of $86 billion.

22.8 Further Aspects of the BJ Methodology

In the preceding paragraphs we have provided but a sketchy introduction to the BJ model-
ing. There are many aspects of this methodology that we have not considered for lack of
space, for example, seasonality. Many time series exhibit seasonal behavior. Examples are
sales by department stores in conjunction with major holidays, seasonal consumption of ice
cream, travels during public holidays, etc. If, for example, we had data on department
stores sales by quarters, the sales figures would show spikes in the fourth quarter. In such
situations, one can remove the seasonal influence by taking fourth-quarter differences of
the sales figures and then decide what kind of ARIMA model to fit.

We have analyzed only a single time series at a time. But nothing prevents the BJ
methodology from being extended to the simultaneous study of two or more time series.
A foray into that topic would take us far afield. The interested reader may want to consult
the references.10 In the following section, however, we discuss this topic in the context of
what is known as vector autoregression.

22.9 Vector Autoregression (VAR)

In Chapters 18 to 20 we considered simultaneous, or structural, equation models. In such
models some variables are treated as endogenous and some as exogenous or predetermined
(exogenous plus lagged endogenous). Before we estimate such models, we have to make
sure that the equations in the system are identified (either exactly or over-). This identifica-
tion is often achieved by assuming that some of the predetermined variables are present
only in some equations. This decision is often subjective and has been severely criticized
by Christopher Sims.11

According to Sims, if there is true simultaneity among a set of variables, they should all be
treated on an equal footing; there should not be any a priori distinction between endogenous
and exogenous variables. It is in this spirit that Sims developed his VAR model.

The seeds of this model were already sown in the Granger causality test discussed in
Chapter 17. In Eqs. (17.14.1) and (17.14.2), which explain current LGDP in terms of
lagged money supply and lagged LGDP and current money supply in terms of lagged
money supply and lagged LGDP, respectively, we are essentially treating LGDP and money
supply as a pair of endogenous variables. There are no exogenous variables in this system.

Similarly, in Example 17.13 we examined the nature of causality between money and
interest rate in Canada. In the money equation, only the lagged values of money and inter-
est rate appear, and in the interest rate equation only the lagged values of interest rate and
money appear.

Both these examples are illustrations of vector autoregressive models; the term
autoregressive is due to the appearance of the lagged value of the dependent variable on the
right-hand side and the term vector is due to the fact that we are dealing with a vector of
two (or more) variables.

10For an accessible treatment of this subject, see Terence C. Mills, op. cit., Part III.
11C. A. Sims, “Macroeconomics and Reality,” Econometrica, vol. 48, 1980, pp. 1–48.
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Estimation or VAR
Returning to the Canadian money–interest rate example, we saw that when we introduced
six lags of each variable as regressors, we could not reject the hypothesis that there was
bilateral causality between money (M1) and interest rate, R (90-day corporate interest rate).
That is, M1 affects R and R affects M1. These kinds of situations are ideally suited for the
application of VAR.

To explain how a VAR is estimated, we will continue with the preceding example. For
now we assume that each equation contains k lag values of M (as measured by M1) and R.
In this case, one can estimate each of the following equations by OLS.12

M1t = α +
k∑

j=1

βj Mt− j +
k∑

j=1

γj Rt− j + u1t (22.9.1)

Rt = α′ +
k∑

j=1

θj Mt− j +
k∑

j=1

γj R t− j + u2t (22.9.2)

where the u’s are the stochastic error terms, called impulses or innovations or shocks in
the language of VAR.

Before we estimate Eqs. (22.9.1) and (22.9.2) we have to decide on the maximum lag
length, k. This is an empirical question. We have 40 observations in all. Including too many
lagged terms will consume degrees of freedom, not to mention introducing the possibility
of multicollinearity. Including too few lags will lead to specification errors. One way of
deciding this question is to use a criterion like the Akaike or Schwarz and choose that
model that gives the lowest values of these criteria. There is no question that some trial and
error is inevitable.

To illustrate the mechanics, we initially used four lags (k = 4) of each variable and using
EViews 6 we obtained the estimates of the parameters of the preceding two equations, which
are given in Table 22.2. Note that although our sample runs from 1979–I to 1988–IV, we
used the sample for the period 1980–I to 1987–IV and saved the last four observations to
check the forecasting accuracy of the fitted VAR.

Since the preceding equations are OLS regressions, the output of the regression given in
Table 22.2 is to be interpreted in the usual fashion. Of course, with several lags of the same
variables, each estimated coefficient will not be statistically significant, possibly because
of multicollinearity. But collectively, they may be significant on the basis of the standard
F test.

Let us examine the results presented in Table 22.2. First consider the M1 regression. Indi-
vidually, only M1 at lag 1 and R at lags 1 and 2 are statistically significant. But the F value is
so high that we cannot reject the hypothesis that collectively all the lagged terms are statisti-
cally significant. Turning to the interest rate regression, we see that all of the four lagged
money terms are individually statistically significant (at the 10 percent or better level),
whereas only the 1-period lagged interest rate variable is significant.

For comparative purposes, we present in Table 22.3 the VAR results based on only 2 lags
of each endogenous variable. Here you will see that in the money regression the 1-period-
lagged money variable and both lagged interest rate terms are individually statistically sig-
nificant. In the interest rate regression, both lagged money terms (at about the 5 percent
level) and one lagged interest term are individually significant.

12One can use the SURE (seemingly unrelated regression) technique to estimate the two equations
together. However, since each regression contains the same number of lagged endogenous variables,
the OLS estimation of each equation separately produces identical (and efficient) estimates.
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If we have to make a choice between the model given in Table 22.2 and that given in
Table 22.3, which would we choose? The Akaike and Schwarz information values for the
model in Table 22.2 are, respectively, 15.32 and 15.73, whereas the corresponding values for
Table 22.3 are 15.10 and 15.33. Since the lower the values of Akaike and Schwarz statistics,
the better the model, on that basis it seems the more parsimonious model given in Table 22.3
is preferable. We also considered 6 lags of each of the endogenous variables and found that
the values of Akaike and Schwarz statistics were 15.37 and 15.98, respectively. Again, the
choice seems to be the model with two lagged terms of each endogenous variable, that is, the
model in Table 22.3.

Forecasting with VAR
Suppose we choose the model given in Table 22.3. We can use it for the purpose of fore-
casting the values of M1 and R. Remember that our data covers the period 1979–I to
1988–IV, but we have not used the values for 1988 in estimating the VAR models. Now sup-
pose we want to forecast the value of M1 for 1988–I, that is, the first quarter of 1988. The
forecast value for 1988–I can be obtained as follows:

M̂1988−I = 1451.977 + 1.0375M1987−IV − 0.0446M1987−III

− 234.8850R1987−IV + 160.1560R1987−III

TABLE 22.2
Vector Autoregression
Estimates Based on 
4 Lags

Sample (adjusted): 1980–I to 1987–IV
Included observations: 32 after adjusting endpoints
Standard errors in ( ) and t statistics in [ ]

M1 R

M1 (−1) 1.076737 (0.20174) [5.33733] 0.001282 (0.00067) [1.90083]

M1 (−2) 0.173433 (0.31444) [0.55157] −0.002140 (0.00105) [−2.03584]

M1 (−3) −0.366465 (0.34687) [−1.05648] 0.002176 (0.00116) [1.87699]

M1 (−4) 0.077602 (0.20789) [0.37329] −0.001479 (0.00069) [−2.12855]

R (−1) −275.0293 (57.2174) [−4.80675] 1.139310 (0.19127) [5.95670]

R (−2) 227.1750 (95.3947) [2.38142] −0.309053 (0.31888) [−0.96917]

R (−3) 8.511851 (96.9176) [0.08783] 0.052361 (0.32397) [0.16162]

R (−4) −50.19926 (64.7554) [−0.77521] 0.001076 (0.21646) [0.00497]

C 2413.827 (1622.65) [1.48759] 4.919000 (5.42416) [0.90687]

R2 0.988154 0.852890
Adj. R2 0.984034 0.801721
Sum square residuals 4820241. 53.86233
SE equation 457.7944 1.530307
F statistic 239.8315 16.66815
Log likelihood −236.1676 −53.73716
Akaike A/C 15.32298 3.921073
Schwarz SC 15.73521 4.333311
Mean dependent 28514.53 11.67292
SD dependent 3623.058 3.436688

Determinant residual covariance 490782.3
Log likelihood (df adjusted) −300.4722
Akaike information criterion 19.90451
Schwarz criterion 20.72899
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where the coefficient values are obtained from Table 22.3. Now using the appropriate val-
ues of M1 and R from Table 17.5, the forecast value of money for the first quarter of 1988
can be seen to be 36,996 (millions of Canadian dollars). The actual value of M1 for 1988–I
was 36,480, which means that our model overpredicted the actual value by about 516
(millions of dollars), which is about 1.4 percent of the actual M1 for 1988–I. Of course,
these estimates will change, depending on how many lagged values we consider in the VAR
model. It is left as an exercise for the reader to forecast the value of R for the first quarter
of 1988 and compare it with its actual value for that quarter. 

VAR and Causality
You may recall that we discussed the topic of causality in Chapter 17. There we considered
the Granger and Sims tests of causality. Is there any connection between VAR and causal-
ity? In Chapter 17 (Section 17.14) we saw that up to 2, 4, and 6 lags there was bilateral
causality between M1 and R, but at lag 8 there was no causality between the two variables.
Thus, the results are mixed. Now you may recall from Chapter 21 the Granger representa-
tion theorem. One of the implications of this theorem is that if two variables, say, Xt and
Yt are cointegrated and each is individually I(1), that is, integrated of order 1 (i.e., each
is individually nonstationary), then either Xt must Granger-cause Yt or Yt must Granger-
cause Xt .

In our illustrative example this means if M1 and R are individually I(1), but are cointe-
grated, then either M1 must Granger-cause R or R must Granger-cause M1. This means we
must first find out if the two variables are I(1) individually and then find out if they are

TABLE 22.3
Vector Autoregression
Estimates Based on 
2 Lags

Sample (adjusted): 1979–III to 1987–IV
Included observations: 34 after adjusting endpoints
Standard errors in ( ) and t statistics in [ ]

M1 R

M1 (−1) 1.037537 (0.16048) [6.46509] 0.001091 (0.00059) [1.85825]
M1 (−2) −0.044661 (0.15591) [−0.28646] −0.001255 (0.00057) [−2.19871]
R (−1) −234.8850 (45.5224) [−5.15977] 1.069081 (0.16660) [6.41708]
R (−2) 160.1560 (48.5283) [3.30026] −0.223364 (0.17760) [−1.25768]
C 1451.977 (1185.59) [1.22468] 5.796434 (4.33894) [1.33591]

R2 0.988198 0.806660
Adj. R2 0.986571 0.779993
Sum square residuals 5373510. 71.97054
SE equation 430.4573 1.575355
F statistic 607.0720 30.24878
Log likelihood −251.7446 −60.99215
Akaike A/C 15.10263 3.881891
Schwarz SC 15.32709 4.106356
Mean dependent 28216.26 11.75049
SD dependent 3714.506 3.358613

Determinant residual covariance 458485.4
Log likelihood (df adjusted) −318.0944
Akaike information criterion 19.29967
Schwarz criterion 19.74860
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cointegrated. If this is not the case, then the whole question of causality may become
moot. In Exercise 22.22, the reader is asked to find out if the two variables are nonsta-
tionary but are cointegrated. If you do the exercise, you will find that there is some weak
evidence of cointegration between M1 and R, which is why the causality tests discussed in
Section 17.14 were equivocal.

Some Problems with VAR Modeling
The advocates of VAR emphasize these virtues of the method: (1) The method is simple;
one does not have to worry about determining which variables are endogenous and which
ones are exogenous. All variables in VAR are endogenous.13 (2) Estimation is simple; that
is, the usual OLS method can be applied to each equation separately. (3) The forecasts
obtained by this method are in many cases better than those obtained from the more com-
plex simultaneous-equation models.14

But the critics of VAR modeling point out the following problems:

1. Unlike simultaneous-equation models, a VAR model is a-theoretic because it uses
less prior information. Recall that in simultaneous-equation models exclusion or inclusion
of certain variables plays a crucial role in the identification of the model.

2. Because of its emphasis on forecasting, VAR models are less suited for policy
analysis.

3. The biggest practical challenge in VAR modeling is to choose the appropriate lag
length. Suppose you have a three-variable VAR model and you decide to include eight lags
of each variable in each equation. You will have 24 lagged parameters in each equation plus
the constant term, for a total of 25 parameters. Unless the sample size is large, estimating
that many parameters will consume a lot of degrees of freedom with all the problems asso-
ciated with that.15

4. Strictly speaking, in an m-variable VAR model, all the m variables should be (jointly)
stationary. If that is not the case, we will have to transform the data appropriately (e.g., by
first-differencing). As Harvey notes, the results from the transformed data may be unsatis-
factory. He further notes that “The usual approach adopted by VAR aficionados is therefore
to work in levels, even if some of these series are nonstationary. In this case, it is important to
recognize the effect of unit roots on the distribution of estimators.”16 Worse yet, if the model
contains a mix of I(0) and I(1) variables, that is, a mix of stationary and nonstationary
variables, transforming the data will not be easy.

However, Cuthbertson argues that, “. . . cointegration analysis indicates that a VAR solely
in first differences is misspecified, if there are some cointegrating vectors present among the
I(1) series. Put another way, a VAR solely in first differences omits potentially important

13Sometimes purely exogenous variables are included to allow for trend and seasonal factors.
14See, for example, T. Kinal and J. B. Ratner, “Regional Forecasting Models with Vector Autoregres-
sion: The Case of New York State,” Discussion Paper #155, Department of Economics, State
University of New York at Albany, 1982.
15If we have an m-equation VAR model with p lagged values of the m variables, in all we have to
estimate (m + pm2) parameters.
16Andrew Harvey, The Econometric Analysis of Time Series, The MIT Press, 2d ed., Cambridge, Mass.,
1990, p. 83.
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stationary variables (i.e., the error-correction, cointegrating vectors) and hence parameter
estimates may suffer from omitted variables bias.”17

5. Since the individual coefficients in the estimated VAR models are often difficult to
interpret, the practitioners of this technique often estimate the so-called impulse
response function (IRF). The IRF traces out the response of the dependent variable in the
VAR system to shocks in the error terms, such as u1 and u2 in Eqs. (22.9.1) and (22.9.2).
Suppose u1 in the M1 equation increases by a value of one standard deviation. Such a
shock or change will change M1 in the current as well as future periods. But since M1

appears in the R regression, the change in u1 will also have an impact on R. Similarly, a
change of one standard deviation in u2 of the R equation will have an impact on M1. The
IRF traces out the impact of such shocks for several periods in the future. Although the
utility of such IRF analysis has been questioned by researchers, it is the centerpiece of
VAR analysis.18

For a comparison of the performance of VAR with other forecasting techniques, the
reader may consult the references.19

An Application of VAR: A VAR Model of the Texas Economy
To test the conventional wisdom, “As the oil patch goes, so goes the Texas economy,”
Thomas Fomby and Joseph Hirschberg developed a three-variable VAR model of the Texas
economy for the period 1974–I to 1988–I.20 The three variables considered were (1) per-
centage change in real price of oil, (2) percentage change in Texas nonagricultural employ-
ment, and (3) percentage change in nonagricultural employment in the rest of the United
States. The authors introduced the constant term and two lagged values of each variable in
each equation. Therefore, the number of parameters estimated in each equation was seven.
The results of the OLS estimation of the VAR model are given in Table 22.4. The F tests
given in this table are to test the hypothesis that collectively the various lagged coefficients
are zero. Thus, the F test for the x variable (percentage change in real price of oil) shows that
both the lagged terms of x are statistically different from zero; the probability of obtaining
an F value of 12.5536 under the null hypothesis that they are both simultaneously equal
to zero is very low, about 0.00004. On the other hand, collectively, the two lagged y values
(percentage change in Texas nonagricultural employment) are not significantly different
from zero to explain x; the F value is only 1.36. All other F statistics are to be interpreted
similarly.

On the basis of these and other results presented in their paper, Fomby and Hirschberg
conclude that the conventional wisdom about the Texas economy is not quite accurate, for
after the initial instability resulting from OPEC oil shocks, the Texas economy is now less
dependent on fluctuations in the price of oil.

17Keith Cuthbertson, Quantitative Financial Economics: Stocks, Bonds and Foreign Exchange,
John Wiley & Sons, New York, 2002, p.436.
18D. E. Runkle, “Vector Autoregression and Reality,” Journal of Business and Economic Statistics, vol. 5,
1987, pp. 437–454.
19S. McNees, “Forecasting Accuracy of Alternative Techniques: A Comparison of U.S. Macroeconomic
Forecasts,” Journal of Business and Economic Statistics, vol. 4, 1986, pp. 5–15; and E. Mahmoud,
“Accuracy in Forecasting: A Survey,” Journal of Forecasting, vol. 3, 1984, pp. 139–159.
20Thomas B. Fomby and Joseph G. Hirschberg, “Texas in Transition: Dependence on Oil and the
National Economy,” Economic Review, Federal Reserve Bank of Dallas, January 1989, pp. 11–28.
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TABLE 22.4
Estimation Results
for Second-Order*
Texas VAR System:
1974–I to 1988–I

Source: Economic Review,
Federal Reserve Bank of Dallas,
January 1989, p. 21.

Dependent variable: x (percentage change in real price of oil)

Variable Lag Coefficient Standard error Significance level

x 1 0.7054 0.1409 0.8305E−5
x 2 −0.3351 0.1500 0.3027E−1
y 1 −1.3525 2.7013 0.6189
y 2 3.4371 2.4344 0.1645
z 1 3.4566 2.8048 0.2239
z 2 −4.8703 2.7500 0.8304E−1

Constant 0 −0.9983E−2 0.1696E−1 0.5589
R̄ 2 = 0.2982; Q(21) = 8.2618 (P = 0.9939)
Tests for joint significance, dependent variable = x

Variable F-statistic Significance level

x 12.5536 0.4283E−4
y 1.3646 0.2654
z 1.5693 0.2188

Dependent variable: y (percentage change in Texas nonagricultural employment)

Variable Lag Coefficient Standard error Significance level

x 1 0.2228E−1 0.8759E−2 0.1430E−1
x 2 −0.1883E−2 0.9322E−2 0.8407
y 1 0.6462 0.1678 0.3554E−3
y 2 0.4234E−1 0.1512 0.7807
z 1 0.2655 0.1742 0.1342
z 2 −0.1715 0.1708 0.3205

Constant 0 −0.1602E−2 0.1053E−1 0.1351
R̄ 2 = 0.6316; Q(21) = 21.5900 (P = 0.4234)
Tests for joint significance, dependent variable = y

Variable F-statistic Significance level

x 3.6283 0.3424E−4
y 19.1440 0.8287E−6
z 1.1684 0.3197

Dependent variable: z (percentage change in nonagricultural employment in rest of
United States)

Variable Lag Coefficient Standard error Significance level

x 1 −0.8330E−2 0.6849E−2 0.2299
x 2 0.3635E−2 0.7289E−2 0.6202
y 1 0.3849 0.1312 0.5170E−2
y 2 −0.4805 0.1182 0.1828E−2
z 1 0.7226 0.1362 0.3004E−5
z 2 −0.1366E−1 0.1336 0.9190

Constant 0 −0.2387E−2 0.8241E−3 0.5701E−2
R̄ 2 = 0.6503; Q(21) = 15.6182 (P = 0.7907)
Tests for joint significance, dependent variable = z

Variable F-statistic Significance level

x 0.7396 0.4827
y 8.2714 0.8360E−3
z 27.9609 0.1000E−7

*Two-lagged terms of each variable.
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22.10 Measuring Volatility in Financial Time Series: 
The ARCH and GARCH Models

As noted in the introduction to this chapter, financial time series, such as stock prices,
exchange rates, inflation rates, etc., often exhibit the phenomenon of volatility clustering,
that is, periods in which their prices show wide swings for an extended time period
followed by periods in which there is relative calm. As Philip Franses notes:

Since such [financial time series] data reflect the result of trading among buyers and sellers at,
for example, stock markets, various sources of news and other exogenous economic events
may have an impact on the time series pattern of asset prices. Given that news can lead to
various interpretations, and also given that specific economic events like an oil crisis can last
for some time, we often observe that large positive and large negative observations in financial
time series tend to appear in clusters.

21

Knowledge of volatility is of crucial importance in many areas. For example, consider-
able macroeconometric work has been done in studying the variability of inflation over
time. For some decision makers, inflation in itself may not be bad, but its variability is bad
because it makes financial planning difficult.

The same is true of importers, exporters, and traders in foreign exchange markets, for
variability in the exchange rates means huge losses or profits. Investors in the stock market
are obviously interested in the volatility of stock prices, for high volatility could mean huge
losses or gains and hence greater uncertainty. In volatile markets it is difficult for compa-
nies to raise capital in the capital markets.

How do we model financial time series that may experience such volatility? For exam-
ple, how do we model times series of stock prices, exchange rates, inflation, etc.? A char-
acteristic of most of these financial time series is that in their level form they are random
walks; that is, they are nonstationary. On the other hand, in the first difference form, they
are generally stationary, as we saw in the case of GDP series in the previous chapter, even
though GDP is not strictly a financial time series.

Therefore, instead of modeling the levels of financial time series, why not model their first
differences? But these first differences often exhibit wide swings, or volatility, suggesting
that the variance of financial time series varies over time. How can we model such “varying
variance”? This is where the so-called autoregressive conditional heteroscedasticity
(ARCH) model originally developed by Engle comes in handy.22

As the name suggests, heteroscedasticity, or unequal variance, may have  an autoregres-
sive structure in that heteroscedasticity observed over different periods may be autocorre-
lated. To see what all this means, let us consider a concrete example.

21Philip Hans Franses, Time Series Models for Business and Economic Forecasting, Cambridge University
Press, New York, 1998, p. 155.
22R. Engle, “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United
Kingdom Inflation,” Econometrica, vol. 50. no. 1, 1982, pp. 987–1007. See also A. Bera and M.
Higgins, “ARCH Models: Properties, Estimation and Testing,” Journal of Economic Surveys, vol. 7, 1993,
pp. 305–366.

EXAMPLE 22.1
U.S./U.K.
Exchange Rate:
An Example

Figure 22.6 gives logs of the monthly U.S./U.K. exchange rate (dollars per pound) for the
period 1971–2007, for a total of 444 monthly observations. As you can see from this
figure, there are considerable ups and downs in the exchange rate over the sample period.
To see this more vividly, in Figure 22.7 we plot the changes in the logs of the exchange

(Continued)
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792 Part Four Simultaneous-Equation Models and Time Series Econometrics

rate; note that changes in the log of a variable denote relative changes, which, if multi-
plied by 100, give percentage changes. As you can observe, the relative changes in the
U.S./U.K. exchange rate show periods of wide swings for some time periods and periods
of rather moderate swings in other time periods, thus exemplifying the phenomenon of
volatility clustering.

Now the practical question is: How do we statistically measure volatility? Let us
illustrate this with our exchange rate example.

Let Yt = U.S./U.K. exchange rate
Yt* = log of Yt

dYt* = Yt* − Yt*−1 = relative change in the exchange rate
d Ȳ t* = mean of dYt*

Xt = dYt* − d Ȳ t*

EXAMPLE 22.1
(Continued)
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FIGURE 22.6 Log of U.S./U.K. exchange rate, 1971–2007 (monthly)
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FIGURE 22.7 Change in the log of U.S./U.K. exchange rate.
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23You might wonder why we do not use the variance of Xt = ∑
X2

t /n as a measure of volatility. This
is because we want to take into account changing volatility of asset prices over time. If we use the
variance of Xt , it will only be a single value for a given data set.

Thus, Xt is the mean-adjusted relative change in the exchange rate. Now we can use X 2
t

as a measure of volatility. Being a squared quantity, its value will be high in periods when
there are big changes in the prices of financial assets and its value will be comparatively
small when there are modest changes in the prices of financial assets.23

Accepting X 2
t as a measure of volatility, how do we know if it changes over time?

Suppose we consider the following AR(1), or ARIMA (1, 0, 0), model:

X 2
t = β0 + β1 X 2

t−1 + ut (22.10.1)

This model postulates that volatility in the current period is related to its value in the pre-
vious period plus a white noise error term. If β1 is positive, it suggests that if volatility was
high in the previous period, it will continue to be high in the current period, indicating
volatility clustering. If β1 is zero, then there is no volatility clustering. The statistical signif-
icance of the estimated β2 can be judged by the usual t test.

There is nothing to prevent us from considering an AR(p) model of volatility such that

X 2
t = β0 + β1 X 2

t−1 + β2 X 2
t−2 + · · · + βp X 2

t−p + ut (22.10.2)

This model suggests that volatility in the current period is related to volatility in the past p
periods, the value of p being an empirical question. This empirical question can be resolved
by one or more of the model selection criteria that we discussed in Chapter 13 (e.g., the
Akaike information measure). We can test the significance of any individual β coefficient by
the t test and the collective significance of two or more coefficients by the usual F test.

Model (22.10.1) is an example of an ARCH(1) model and Eq. (22.10.2) is called an
ARCH(p) model, where p represents the number of autoregressive terms in the model.

Before proceeding further, let us illustrate the ARCH model with the U.S./U.K.
exchange rate data. The results of the ARCH(1) model were as follows.

X 2
t = 0.00043 + 0.23036X 2

t−1

t = (7.71) (4.97) (22.10.3)

R2 = 0.0531 d = 1.9933

where X2
t is as defined before.

Since the coefficient of the lagged term is highly significant (p value of about 0.000), it
seems volatility clustering is present in the present instance. We tried higher-order ARCH
models, but only the AR(1) model turned out to be significant.

How would we test for the ARCH effect in a regression model in general that is based
on time series data? To be more specific, let us consider the k-variable linear regression
model:

Yt = β1 + β2 X2t + · · · + βk Xkt + ut (22.10.4)

and assume that conditional on the information available at time (t − 1), the disturbance
term is distributed as

ut ∼ N
[
0,

(
α0 + α1u2

t−1

)]
(22.10.5)

EXAMPLE 22.1
(Continued)

(Continued)
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794 Part Four Simultaneous-Equation Models and Time Series Econometrics

that is, ut is normally distributed with zero mean and

var (ut) =
(
α0 + α1u2

t−1

)
(22.10.6)

that is, the variance of ut follows an ARCH(1) process.
The normality of ut is not new to us. What is new is that the variance of u at time t is

dependent on the squared disturbance at time (t − 1), thus giving the appearance of serial
correlation.24 Of course, the error variance may depend not only on one lagged term of
the squared error term but also on several lagged squared terms as follows:

var (ut) = σ 2
t = α0 + α1u2

t−1 + α2u2
t−2 + · · · + αpu2

t−p (22.10.7)

If there is no autocorrelation in the error variance, we have

H0: α1 = α2 = · · · = αp = 0 (22.10.8)

in which case var(ut) = α0, and we do not have the ARCH effect.
Since we do not directly observe σ 2

t , Engle has shown that running the following
regression can easily test the preceding null hypothesis:

û2
t = α̂0 + α̂1û2

t−1 + α̂2û2
t−2 + · · · + α̂pû2

t−p (22.10.9)

where ût , as usual, denotes the OLS residuals obtained from the original regression model
(22.10.4).

One can test the null hypothesis H0 by the usual F test, or alternatively, by computing
nR2, where R2 is the coefficient of determination from the auxiliary regression (22.10.9).
It can be shown that

nR2
asy ∼ χ2

p (22.10.10)

that is, in large samples nR2 follows the chi-square distribution with df equal to the
number of autoregressive terms in the auxiliary regression.

Before we proceed to illustrate, make sure that you do not confuse autocorrelation of
the error term as discussed in Chapter 12 and the ARCH model. In the ARCH model it is
the (conditional) variance of ut that depends on the (squared) previous error terms, thus
giving the impression of autocorrelation.

EXAMPLE 22.1
(Continued)

24A technical note: Remember that for our classical linear model the variance of ut was assumed to be
σ2, which in the present context becomes unconditional variance. If α1 < 1, the stability condition,
we can write σ2 = α0 + α1σ2; that is, σ2 = α0/(1 − α1). This shows that the unconditional variance
of u does not depend on t, but does depend on the ARCH parameter α1.

25This graph and the regression results presented in this example are based on the data collected by
Gary Koop, Analysis of Economic Data, John Wiley & Sons, New York, 2000 (data from the data disk). The
monthly percentage change in the stock price index can be regarded as a rate of return on the index.

EXAMPLE 22.2
New York Stock
Exchange Price
Changes

As a further illustration of the ARCH effect, Figure 22.8 presents monthly percentage
change in the NYSE (New York Stock Exchange) Index for the period 1966–2002.25 It is
evident from this graph that the percent price changes in the NYSE Index exhibit consid-
erable volatility. Notice especially the wide swing around the 1987 crash in stock prices.

To capture the volatility in the stock return seen in the figure, let us consider a very
simple model:

Yt = β1 + ut (22.10.11)

where Yt = percent change in the NYSE stock index and ut = random error term.
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What to Do If ARCH Is Present
Recall that we have discussed several methods of correcting for heteroscedasticity, which
basically involved applying OLS to transformed data. Remember that OLS applied to trans-
formed data is generalized least  squares (GLS). If the ARCH effect is found, we will have
to use GLS. We will not pursue the technical details, for they are beyond the scope of
this book.26 Fortunately, software packages such as EViews, SHAZAM, MICROFIT, and
PC-GIVE now have user-friendly routines to estimate such models.

Notice that besides the intercept, there is no other explanatory variable in the model.
From the data, we obtained the following OLS regression:

Ŷ t = 0.00574

t = (3.36) (22.10.12)
d = 1.4915

What does this intercept denote? It is simply the average percent rate of return on the
NYSE index, or the mean value of Yt (can you verify this?). Thus over the sample period
the average monthly return on the NYSE index was about 0.00574 percent.

Now we obtain the residuals from the preceding regression and estimate the ARCH(1)
model, which gave the following results:

̂̂u2
t = 0.000007 + 0.25406û2

t−1

t = (0.000) (5.52) (22.10.13)
R2 = 0.0645 d = 1.9464

where ût is the estimated residual from regression (22.10.12).
Since the lagged squared disturbance term is statistically significant (p value of about

0.000), it seems the error variances are correlated; that is, there is an ARCH effect. We tried
higher-order ARCH models but only ARCH(1) was statistically significant.

EXAMPLE 22.2
(Continued)
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FIGURE 22.8 Monthly percent change in the NYSE Price Index, 1966–2002.

26Consult Russell Davidson and James G. MacKinnon, Estimation and Inference in Econometrics, Oxford
University Press, New York, 1993, Section 16.4 and William H. Greene, Econometric Analysis, 4th ed.,
Prentice Hall, Englewood Cliffs, NJ, 2000, Section 18.5.
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796 Part Four Simultaneous-Equation Models and Time Series Econometrics

A Word on the Durbin–Watson d and the ARCH Effect
We have reminded the reader several times that a significant d statistic may not always
mean that there is significant autocorrelation in the data at hand. Very often a significant d
value is an indication of the model specification errors that we discussed in Chapter 13.
Now we have an additional specification error, due to the ARCH effect. Therefore, in a time
series regression, if a significant d value is obtained, we should test for the ARCH effect
before accepting the d statistic at its face value. An example is given in Exercise 22.23.

A Note on the GARCH Model
Since its “discovery” in 1982, ARCH modeling has become a growth industry, with all
kinds of variations on the original model. One that has become popular is the generalized
autoregressive conditional heteroscedasticity (GARCH) model, originally proposed
by Bollerslev.27 The simplest GARCH model is the GARCH(1, 1) model, which can be
written as:

σ 2
t = α0 + α1u2

t−1 + α2σ
2
t−1 (22.10.14)

which says that the conditional variance of u at time t depends not only on the squared error
term in the previous time period (as in ARCH[1]) but also on its conditional variance in the
previous time period.This model can be generalized to a GARCH(p, q) model in which there
are p lagged terms of the squared error term and q terms of the lagged conditional variances.

We will not pursue the technical details of these models, as they are involved, except
to point out that a GARCH(1, 1) model is equivalent to an ARCH(2) model and a
GARCH(p, q) model is equivalent to an ARCH(p + q) model.28

For our U.S./U.K. exchange rate and NYSE stock return examples, we have already
stated that an ARCH(2) model was not significant, suggesting that perhaps a GARCH(1, 1)
model is not appropriate in these cases.

22.11 Concluding Examples

We conclude this chapter by considering a few additional examples that illustrate some of
the points we have made in this chapter.

EXAMPLE 22.3
The Relationship
between the
Help-Wanted
Index (HWI) and
the Unemploy-
ment Rate (UN)
from January
1969 to January
2000

To study causality between HWI and UN, two indicators of labor market conditions in the
United States, Marc A. Giammatteo considered the following regression model:29

HWIt = α0 +
25∑

i=1

αi UNt−i +
25∑
j

βj HWIt− j (22.11.1)

UNt = α0 +
25∑

i=1

λi UNt−i +
25∑
j=1

δj HWIt− j (22.11.2)

To save space we will not present the actual regression results, but the main conclusion
that emerges from this study is that there is bilateral causality between the two labor
market indicators and this conclusion did not change when the lag length was varied. The
data on HWI and UN are given on the textbook website as Table 22.5.

27T. Bollerslev, “Generalized Autoregressive Conditional Heteroscedasticity,” Journal of Econometrics,
vol. 31, 1986, pp. 307–326.
28For details, see Davidson and MacKinnon, op. cit., pp. 558–560.
29Marc A. Giammatteo (West Point, Class of 2000), “The Relationship between the Help Wanted Index
and the Unemployment Rate,” unpublished term paper. (Notations altered to conform to our notation.)
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EXAMPLE 22.4
ARIMA Modeling
of the Yen/Dollar
Exchange Rate: 
January 1971 to
April 2008

The yen/dollar exchange rate (¥/$) is a key exchange rate. From the logarithms of the
monthly ¥/$, it was found that in the level form this exchange rate showed the typical pat-
tern of a nonstationary time series. But examining the first differences, it was found that
they were stationary; the graph here pretty much resembles Figure 22.8.

Unit root analysis confirmed that the first differences of the logs of ¥/$ were stationary.
After examining the correlogram of the log first differences, we estimated the following
MA(1) model:

Ŷ t = −0.0028 − 0.3300ut−1

t = (−1.71) (−7.32) (22.11.3)
R2 = 0.1012 d = 1.9808

where Yt = first differences of the logs of ¥/$ and u = a white noise error term.
To save space, we have provided the data underlying the preceding analysis on the

textbook website in Table 22.6. Using these data, the reader is urged to try other models
and compare their forecasting performances.

EXAMPLE 22.5
ARCH Model of
the U.S. Inflation
Rate: January
1947 to March
2008

To see if the ARCH effect is present in the U.S. inflation rate as measured by the CPI, we
obtained CPI data from January 1947 to March 2008. The plot of the logarithms of the CPI
showed that the time series was nonstationary. But the plot of the first differences of the
logs of the CPI, as shown in Figure 22.9, shows considerable volatility even though the
first differences are stationary.

Following the procedure outlined in regressions (22.10.12) and (22.10.13), we first
regressed the logged first differences of CPI on a constant and obtained residuals from this
equation. Squaring these residuals, we obtained the following ARCH(2) model: 

̂̂u2
t = 0.000028 + 0.12125û2

t−1 + 0.08718û2
t−2

t = (5.42) (3.34) (2.41) (22.11.4)
R2 = 0.026 d = 2.0214
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FIGURE 22.9
First differences of
the logs of CPI.

(Continued)
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798 Part Four Simultaneous-Equation Models and Time Series Econometrics

Summary and
Conclusions

1. Box–Jenkins and VAR approaches to economic forecasting are alternatives to tradi-
tional single- and simultaneous-equation models.

2. To forecast the values of a time series, the basic Box–Jenkins strategy is as follows:

a. First examine the series for stationarity. This step can be done by computing the
autocorrelation function (ACF) and the partial autocorrelation function (PACF) or by
a formal unit root analysis. The correlograms associated with ACF and PACF are
often good visual diagnostic tools.

b. If the time series is not stationary, difference it one or more times to achieve stationarity.

c. TheACF and PACF of the stationary time series are then computed to find out if the series
is purely autoregressive or purely of the moving average type or a mixture of the two.
From broad guidelines given inTable 22.1 one can then determine the values of p and q in
the ARMA process to be fitted. At this stage the chosen ARMA(p, q) model is tentative.

d. The tentative model is then estimated.

e. The residuals from this tentative model are examined to find out if they are white
noise. If they are, the tentative model is probably a good approximation to the under-
lying stochastic process. If they are not, the process is started all over again. There-
fore, the Box–Jenkins method is iterative.

f. The model finally selected can be used for forecasting.

3. The VAR approach to forecasting considers several time series at a time. The distin-
guishing features of VAR are as follows:

a. It is a truly simultaneous system in that all variables are regarded as endogenous.
b. In VAR modeling the value of a variable is expressed as a linear function of the past,

or lagged, values of that variable and all other variables included in the model.
c. If each equation contains the same number of lagged variables in the system, it can

be estimated by OLS without resorting to any systems method, such as two-stage
least squares (2SLS) or seemingly unrelated regressions (SURE).

d. This simplicity of VAR modeling may be its drawback. In view of the limited num-
ber of observations that are generally available in most economic analyses, introduc-
tion of several lags of each variable can consume a lot of degrees of freedom.30

e. If there are several lags in each equation, it is not always easy to interpret each coeffi-
cient, especially if the signs of the coefficients alternate. For this reason one examines
the impulse response function (IRF) in VAR modeling to find out how the dependent
variable responds to a shock administered to one or more equations in the system.

f. There is considerable debate and controversy about the superiority of the various fore-
casting methods. Single-equation, simultaneous-equation, Box–Jenkins, and VAR
methods of forecasting have their admirers as well as their detractors. All one can
say is that there is no single method that will suit all situations. If that were the case,
there would be no need for discussing the various alternatives. One thing is sure:
The Box–Jenkins and VAR methodologies have now become an integral part of
econometrics.

30Followers of Bayesian statistics believe that this problem can be minimized. See R. Litterman,
“A Statistical Approach to Economic Forecasting,” Journal of Business and Economic Statistics,
vol. 4, 1986, pp. 1–4.

As you can see, there is quite a bit of persistence in the volatility, as volatility in the current
month depends on volatility in the preceding 2 months. The reader is advised to obtain
CPI data from government sources and try to see if another model, preferably a GARCH
model, does a better job.

EXAMPLE 22.5
(Continued)
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4. We also considered in this chapter a special class of models, ARCH and GARCH,
which are especially useful in analyzing financial time series, such as stock prices,
inflation rates, and exchange rates. A distinguishing feature of these models is that the
error variance may be correlated over time because of the phenomenon of volatility
clustering. In this connection we also pointed out that in many cases a significant
Durbin–Watson d may in fact be due to the ARCH or GARCH effect.

5. There are variants of ARCH and GARCH models, but we have not considered them in
this chapter due to space constraints. Some of these other models are: GARCH-M
(GARCH in mean), TGARCH (threshold GARCH), and EGARCH (exponential
GARCH). A discussion of these models can be found in the references.31

31See Walter Enders, Applied Econometric Time Series, 2d ed., John Wiley & Sons, New York, 2004. For
an application-oriented discussion, see Dimitrios Asteriou and Stephen Hall, Applied Econometrics: A
Modern Approach, revised edition, Palgrave/Macmillan, New York, 2007, Chapter 14.

EXERCISES Questions
22.1. What are the major methods of economic forecasting?

22.2. What are the major differences between simultaneous-equation and Box–Jenkins
approaches to economic forecasting?

22.3. Outline the major steps involved in the application of the Box–Jenkins approach to
forecasting.

22.4. What happens if Box–Jenkins techniques are applied to time series that are
nonstationary?

22.5. What are the differences between Box–Jenkins and VAR approaches to economic
forecasting?

22.6. In what sense is VAR atheoretic?

22.7. “If the primary object is forecasting, VAR will do the job.” Critically evaluate this
statement.

22.8. Since the number of lags to be introduced in a VAR model can be a subjective ques-
tion, how does one decide how many lags to introduce in a concrete application?

22.9. Comment on this statement: “Box–Jenkins and VAR are prime examples of
measurement without theory.”

22.10. What is the connection, if any, between Granger causality tests and VAR modeling?

Empirical Exercises
22.11. Consider the data on log DPI (personal disposable income) introduced in Section 21.1

(see the book’s website for the actual data). Suppose you want to fit a suitable ARIMA
model to these data. Outline the steps involved in carrying out this task.

22.12. Repeat Exercise 22.11 for the LPCE (personal consumption expenditure) data
introduced in Section 21.1 (again, see the  book’s website for the actual data).

22.13. Repeat Exercise 22.11 for the LCP.

22.14. Repeat Exercise 22.11 for the LDNIDENDS.

22.15. In Section 13.9 you were introduced to the Schwarz Information criterion (SIC) to
determine lag length. How would you use this criterion to determine the appropri-
ate lag length in a VAR model?

22.16. Using the data on LPCE and LDPI introduced in Section 21.1 (see the book’s web-
site for the actual data), develop a bivariate VAR model for the period 1970–I to
2006–IV. Use this model to forecast the values of these variables for the four quarters
of 2007 and compare the forecast values with the actual values given in the dataset.

guj75772_ch22.qxd  01/09/2008  06:09 PM  Page 799
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22.17. Repeat Exercise 22.16, using the data on LDIVIDENDS and LCP.
*22.18. Refer to any statistical package and estimate the impulse response function for a

period of up to 8 lags for the VAR model that you developed in Exercise 22.16.

22.19. Repeat Exercise 22.18 for the VAR model that you developed in Exercise 22.17.

22.20. Refer to the VAR regression results given in Table 22.4. From the various F tests
reported in the three regressions given there, what can you say about the nature of
causality in the three variables?

22.21. Continuing with Exercise 20.20, can you guess why the authors chose to express the
three variables in the model in percentage change form rather than using the levels
of these variables? (Hint: Stationarity.)

22.22. Using the Canadian data given in Table 17.5, find out if M1 and R are stationary
random variables. If not, are they cointegrated? Show the necessary calculations.

22.23. Continue with the data given in Table 17.5. Now consider the following simple
model of money demand in Canada:

ln M1t = β1 + β2 ln GDPt + β3 ln Rt + ut

a. How would you interpret the parameters of this model?
b. Obtain the residuals from this model and find out if there is any ARCH effect.

22.24. Refer to the ARCH(2) model given in Eq. (22.11.4). Using the same data we
estimated the following ARCH(1) model:

̂̂u2
t = 0.00000078 + 0.3737û2

t−1

t = (7.5843) (10.2351)

R2 = 0.1397 d = 1.9896

How would you choose between the two models? Show the necessary calculations.

22.25. Table 22.7 gives data on three-month (TB3M) and six-month (TB6M) Treasury bill
rates from January 1, 1982, to March 2008, for a total of 315 monthly observations.
The data can be found on the textbook’s website.

a. Plot the two time series in the same diagram. What do you see?
b. Do a formal unit root analysis to find out if these time series are stationary.
c. Are the two time series cointegrated? How do you know? Show the necessary

calculations.
d. What is the economic meaning of cointegration in the present context? If the two

series are not cointegrated, what are the economic implications?
e. If you want to estimate a VAR model, say, with four lags of each variable, do you

have to use the first differences of the two series or can you do the analysis in
levels of the two series? Justify your answer.

22.26. Class Exercise: Pick a stock market index of your choosing and obtain daily data
on the value of the chosen index for five years to find out if the stock index is char-
acterized by ARCH effects.

22.27. Class Exercise: Collect data on inflation and unemployment rates in the U.S. for the
quarterly periods in 1980–2007 and develop and estimate a VAR model for the two
variables. To compute the inflation rate, use CPI (consumer price index) and use the
civilian unemployment rate for the unemployment rate. Pay careful attention to
the stationarity of these variables. Also, find out if one variable Granger-causes the
other variable. Present all your calculations.

*Optional. 
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This appendix provides a very sketchy introduction to some of the statistical concepts
encountered in the text. The discussion is nonrigorous, and no proofs are given because
several excellent books on statistics do that job very well. Some of these books are listed at
the end of this appendix.

A.1 Summation and Product Operators

The Greek capital letter 
∑

(sigma) is used to indicate summation. Thus,
n∑

i=1

xi = x1 + x2 + · · · + xn

Some of the important properties of the summation operator 
∑

are

1.
n∑

i=1

k = nk , where k is constant. Thus, 
∑4

i=1 3 = 4 · 3 = 12.

2.
∑n

i=1 kxi = k
∑n

i=1 xi , where k is a constant.

3.
∑n

i=1(a + bxi ) = na + b
∑n

i=1 xi , where a and b are constants and where use is made of
properties 1 and 2 above.

4.
∑n

i=1(xi + yi ) = ∑n
i=1 xi + ∑n

i=1 yi .

The summation operator can also be extended to multiple sums. Thus, 
∑∑

, the double
summation operator, is defined as

n∑
i=1

m∑
j=1

xi j =
n∑

i=1

(xi1 + xi2 + · · · + xim)

= (x11 + x21 + · · · + xn1) + (x12 + x22 + · · · + xn2)

+ · · · + (x1m + x2m + · · · + xnm)

Some of the properties of 
∑∑

are

1.
∑n

i=1

∑m
j=1 xi j = ∑m

j=1

∑n
i=1 xi j ; that is, the order in which the double summation is

performed is interchangeable.

2.
∑n

i=1

∑m
j=1 xi yj = ∑n

i=1 xi
∑m

j=1 yj .

AppendixA
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Statistical Concepts
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3.
∑n

i=1

∑m
j=1(xi j + yi j ) = ∑n

i=1

∑m
j=1 xi j + ∑n

i=1

∑m
j=1 yi j .

4.
[∑n

i=1 xi

]2 = ∑n
i=1 x2

i + 2
∑n−1

i=1

∑n
j=i+1 xi xj = ∑n

i=1 x2
i + 2

∑
i< j xi xj .

The product operator � is defined as
n∏

i=1

xi = x1 · x2 · · · xn

Thus,
3∏

i=1

xi = x1 · x2 · x3

A.2 Sample Space, Sample Points, and Events

The set of all possible outcomes of a random, or chance, experiment is called the population,
or sample space, and each member of this sample space is called a sample point. Thus, in
the experiment of tossing two coins, the sample space consists of these four possible out-
comes: HH, HT, TH, and TT, where HH means a head on the first toss and also a head on the
second toss, HT means a head on the first toss and a tail on the second toss, and so on. Each
of the preceding occurrences constitutes a sample point.

An event is a subset of the sample space. Thus, if we let A denote the occurrence of one
head and one tail, then, of the preceding possible outcomes, only two belong to A, namely
HT and TH. In this case A constitutes an event. Similarly, the occurrence of two heads in a
toss of two coins is an event. Events are said to be mutually exclusive if the occurrence of
one event precludes the occurrence of another event. If in the preceding example HH
occurs, the occurrence of the event HT at the same time is not possible. Events are said to
be (collectively) exhaustive if they exhaust all the possible outcomes of an experiment.
Thus, in the example, the events (a) two heads, (b) two tails, and (c) one tail, one head
exhaust all the outcomes; hence they are (collectively) exhaustive events.

A.3 Probability and Random Variables

Probability
Let A be an event in a sample space. By P(A), the probability of the event A, we mean the
proportion of times the event A will occur in repeated trials of an experiment. Alternatively,
in a total of n possible equally likely outcomes of an experiment, if m of them are favorable
to the occurrence of the event A, we define the ratio m/n as the relative frequency of A. For
large values of n, this relative frequency will provide a very good approximation of the
probability of A.

Properties of Probability
P(A) is a real-valued function1 and has these properties:

1. 0 ≤ P( A) ≤ 1 for every A.

2. If A, B, C, . . . constitute an exhaustive set of events, then P( A + B + C + · · ·) = 1,
where A + B + C means A or B or C, and so forth.

3. If A, B, C, . . . are mutually exclusive events, then

P( A + B + C + · · ·) = P( A) + P(B) + P(C) + · · ·
1A function whose domain and range are subsets of real numbers is commonly referred to as a real-
valued function. For details, see Alpha C. Chiang, Fundamental Methods of Mathematical Economics,
3d ed., McGraw-Hill, 1984, Chapter 2.
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Random Variables
A variable whose value is determined by the outcome of a chance experiment is called a
random variable (rv). Random variables are usually denoted by the capital letters X, Y, Z,
and so on, and the values taken by them are denoted by small letters x, y, z, and so on.

A random variable may be either discrete or continuous. A discrete rv takes on only a
finite (or countably infinite) number of values.2 For example, in throwing two dice, each
numbered 1 to 6, if we define the random variable X as the sum of the numbers showing
on the dice, then X will take one of these values: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12. Hence
it is a discrete random variable. A continuous rv, on the other hand, is one that can take
on any value in some interval of values. Thus, the height of an individual is a continuous
variable—in the range, say, 60 to 65 inches it can take any value, depending on the preci-
sion of measurement.

A.4 Probability Density Function (PDF)

Probability Density Function of a Discrete Random Variable
Let X be a discrete rv taking distinct values x1, x2, . . . , xn , . . . . Then the function

f (x) = P(X = xi ) for i = 1, 2, . . . , n, . . .

= 0 for x �= xi

is called the discrete probability density function (PDF) of X, where P(X = xi ) means
the probability that the discrete rv X takes the value of xi .

EXAMPLE 1 Consider the experiment of throwing a die numbered 1 through 6. The sample space con-
sists of the outcomes 1, 2, 3, 4, 5, and 6. These six events therefore exhaust the entire
sample space. The probability of any one of these numbers showing up is 1/6 since there
are six equally likely outcomes and any one of them has an equal chance of showing up.
Since 1, 2, 3, 4, 5, and 6 form an exhaustive set of events, P (1 + 2 + 3 + 4 + 5 + 6) = 1
where 1, 2, 3, . . . means the probability of number 1 or number 2 or number 3, etc. And
since 1, 2, . . . , 6 are mutually exclusive events in that two numbers cannot occur simulta-
neously, P (1 + 2 + 3 + 4 + 5 + 6) = P (1) + P (2) + · · · + P (6) = 1.

2For a simple discussion of the notion of countably infinite sets, see R. G. D. Allen, Basic Mathematics,
Macmillan, London, 1964, p. 104.

EXAMPLE 2 In a throw of two dice, the random variable X, the sum of the numbers shown on two
dice, can take one of the 11 values shown. The PDF of this variable can be shown to be as
follows (see also Figure A.1):

x = 2 3 4 5 6 7 8 9 10 11 12

f(x) =
(

1
36

)(
2
36

)(
3
36

)(
4
36

)(
5
36

)(
6
36

)(
5
36

)(
4
36

)(
3
36

)(
2
36

)(
1
36

)

These probabilities can be easily verified. In all there are 36 possible outcomes, of which
one is favorable to number 2, two are favorable to number 3 (since the sum 3 can occur
either as 1 on the first die and 2 on the second die or 2 on the first die and 1 on the second
die), and so on.

(Continued)
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Probability Density Function of a Continuous Random Variable
Let X be a continuous rv. Then f(x) is said to be the PDF of X if the following conditions
are satisfied:

f (x) ≥ 0∫ ∞

−∞
f (x) dx = 1

∫ b

a
f (x) dx = P(a ≤ x ≤ b)

where f (x) dx is known as the probability element (the probability associated with a small
interval of a continuous variable) and where P(a ≤ x ≤ b) means the probability that X
lies in the interval a to b. Geometrically, we have Figure A.2.

For a continuous rv, in contrast with a discrete rv, the probability that X takes a specific
value is zero;3 probability for such a variable is measurable only over a given range or in-
terval, such as (a, b) shown in Figure A.2.

EXAMPLE 2
(Continued)

36
6

36
5

36
4

36
3

36
2

36
1

2 3 4 5 6 7 8 9 10 11 12

f (x)

FIGURE A.1 Density function of the discrete random variable of Example 2.

EXAMPLE 3 Consider the following density function:

f (x) = 1
9

x 2 0 ≤ x ≤ 3

It can be readily verified that f (x) ≥ 0 for all x in the range 0 to 3 and that 
∫ 3

0
1
9 x2dx = 1.

(Note: The integral is ( 1
27 x 3 |30) = 1.) If we want to evaluate the above PDF between, say, 0 

and 1, we obtain 
∫ 1

0
1
9 x 2dx = ( 1

27 x 3 |10) = 1
27 ; that is, the probability that x lies between 0

and 1 is 1/27.

0 a b

P(a < X ≤  b)

FIGURE A.2
Density function of a
continuous random
variable.

3Note:
∫ a

a f (x) dx = 0.
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Joint Probability Density Functions
Discrete Joint PDF
Let X and Y be two discrete random variables. Then the function

f (x , y) = P(X = x and Y = y)

= 0 when X �= x and Y �= y

is known as the discrete joint probability density function and gives the ( joint) probabil-
ity that X takes the value of x and Y takes the value of y.

Marginal Probability Density Function
In relation to f (x , y), f (x) and f (y) are called individual, or marginal, probability den-
sity functions. These marginal PDFs are derived as follows:

f (x) =
∑

y

f (x , y) marginal PDF of X

f (y) =
∑

x

f (x , y) marginal PDF of Y

where, for example, 
∑

y means the sum over all values of Y and 
∑

x means the sum over all
values of X.

EXAMPLE 4 The following table gives the joint PDF of the discrete variables X and Y.

X

−2 0 2 3

3 0.27 0.08 0.16 0
Y

6 0 0.04 0.10 0.35

This table tells us that the probability that X takes the value of −2 while Y simultaneously
takes the value of 3 is 0.27 and that the probability that X takes the value of 3 while Y takes
the value of 6 is 0.35, and so on.

EXAMPLE 5 Consider the data given in Example 4. The marginal PDF of X is obtained as follows:

f (x = −2) =
∑

y
f (x, y) = 0.27 + 0 = 0.27

f (x = 0) =
∑

y
f (x, y) = 0.08 + 0.04 = 0.12

f (x = 2) =
∑

y
f (x, y) = 0.16 + 0.10 = 0.26

f (x = 3) =
∑

y
f (x, y) = 0 + 0.35 = 0.35

Likewise, the marginal PDF of Y is obtained as

f (y = 3) =
∑

x
f (x, y) = 0.27 + 0.08 + 0.16 + 0 = 0.51

f (y = 6) =
∑

x
f (x, y) = 0 + 0.04 + 0.10 + 0.35 = 0.49

As this example shows, to obtain the marginal PDF of X we add the column numbers, and
to obtain the marginal PDF of Y we add the row numbers. Notice that 

∑
x f (x) over all

values of X is 1, as is 
∑

y f (y) over all values of Y (why?).
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Conditional PDF
As noted in Chapter 2, in regression analysis we are often interested in studying the behav-
ior of one variable conditional upon the value(s) of another variable(s). This can be done by
considering the conditional PDF. The function

f (x | y) = P(X = x | Y = y)

is known as the conditional PDF of X; it gives the probability that X takes on the value of
x given that Y has assumed the value y. Similarly,

f (y | x) = P(Y = y | X = x)

which gives the conditional PDF of Y.
The conditional PDFs may be obtained as follows:

f (x | y) = f (x , y)

f (y)
conditional PDF of X

f (y | x) = f (x , y)

f (x)
conditional PDF of Y

As the preceding expressions show, the conditional PDF of one variable can be expressed
as the ratio of the joint PDF to the marginal PDF of another (conditioning) variable.

EXAMPLE 6 Continuing with Examples 4 and 5, let us compute the following conditional probabilities:

f (X = −2 | Y = 3) = f (X = −2, Y = 3)
f (Y = 3)

= 0.27/0.51 = 0.53

Notice that the unconditional probability f (X = −2) is 0.27, but if Y has assumed the
value of 3, the probability that X takes the value of −2 is 0.53.

f (X = 2 | Y = 6) = f (X = 2, Y = 6)
f (Y = 6)

= 0.10/0.49 = 0.20

Again note that the unconditional probability that X takes the value of 2 is 0.26, which is
different from 0.20, which is its value if Y assumes the value of 6.

Statistical Independence
Two random variables X and Y are statistically independent if and only if

f (x , y) = f (x) f (y)

that is, if the joint PDF can be expressed as the product of the marginal PDFs.

EXAMPLE 7 A bag contains three balls numbered 1, 2, and 3. Two balls are drawn at random, with
replacement, from the bag (i.e., the first ball drawn is replaced before the second is
drawn). Let X denote the number of the first ball drawn and Y the number of the second
ball drawn. The following table gives the joint PDF of X and Y.
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Continuous Joint PDF

The PDF f (x , y) of two continuous variables X and Y is such that

f (x , y) ≥ 0∫ ∞

−∞

∫ ∞

−∞
f (x , y) dx dy = 1

∫ d

c

∫ b

a
f (x , y) dx dy = P(a ≤ x ≤ b, c ≤ y ≤ d)

X
1 2 3

1 1
9

1
9

1
9

Y 2 1
9

1
9

1
9

3 1
9

1
9

1
9

Now f (X = 1, Y = 1) = 1
9 , f (X = 1) = 1

3 (obtained by summing the first column), and
f(y = 1) = 1

3 (obtained by summing the first row). Since f (X, Y ) = f (X )f (Y ) in this
example we can say that the two variables are statistically independent. It can be easily
checked that for any other combination of X and Y values given in the above table the
joint PDF factors into individual PDFs.

It can be shown that the X and Y variables given in Example 4 are not statistically
independent since the product of the two marginal PDFs is not equal to the joint PDF.
(Note: f (X, Y ) = f (X )f (Y ) must be true for all combinations of X and Y if the two
variables are to be statistically independent.)

EXAMPLE 7
(Continued)

EXAMPLE 8 Consider the following PDF

f (x, y) = 2 − x − y 0 ≤ x ≤ 1; 0 ≤ y ≤ 1

It is obvious that f (x, y) ≥ 0. Moreover4

∫ 1

0

∫ 1

0
(2 − x − y) dx dy = 1

The marginal PDF of X and Y can be obtained as

f (x) =
∫ ∞

−∞
f (x, y) dy marginal PDF of X

f (y) =
∫ ∞

−∞
f (x, y) dx marginal PDF of Y

4 ∫ 1

0

[∫ 1

0
(2 − x − y) dx

]
dy =

∫ 1

0

[(
2x − x2

2
− xy

)∣∣∣∣
1

0

]
dy

=
∫ 1

0

(
3
2

− y

)
dy

=
(

3
2

y − y2

2

)∣∣∣∣∣
1

0

= 1

Note: The expression ( 3
2 y − y2/2)|10 means the expression in the parentheses is to be evaluated at the

upper limit value of 1 and the lower limit value of 0; the latter value is subtracted from the former to
obtain the value of the integral. Thus, in the preceding example the limits are ( 3

2 − 1
2 ) at y = 1 and 0

at y = 0, giving the value of the integral as 1.
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A.5 Characteristics of Probability Distributions

A probability distribution can often be summarized in terms of a few of its characteristics,
known as the moments of the distribution. Two of the most widely used moments are the
mean, or expected value, and the variance.

Expected Value
The expected value of a discrete rv X, denoted by E(X ), is defined as follows:

E(X ) =
∑

x

x f (x)

where 
∑

x means the sum over all values of X and where f (x) is the (discrete) PDF of X.

EXAMPLE 9 The two marginal PDFs of the joint PDF given in Example 8 are as follows:

f (x) =
∫ 1

0
f (x, y)dy =

∫ 1

0
(2 − x − y)dy

(
2y − xy − y 2

2

)∣∣∣∣∣
1

0

= 3
2

− x 0 ≤ x ≤ 1

f (y) =
∫ 1

0
(2 − x − y)dx

(
2x − xy − x 2

2

)∣∣∣∣∣
1

0

= 3
2

− y 0 ≤ y ≤ 1

To see if the two variables of Example 8 are statistically independent, we need to find out
if f (x, y) = f (x)f (y). Since (2 − x − y) �= ( 3

2 − x)( 3
2 − y), we can say that the two vari-

ables are not statistically independent.

EXAMPLE 10 Consider the probability distribution of the sum of two numbers in the throw of two dice
given in Example 2. (See Figure A.1.) Multiplying the various X values given there by their
probabilities and summing over all the observations, we obtain:

E (X) = 2
(

1
36

)
+ 3

(
2
26

)
+ 4

(
3
36

)
+ · · · + 12

(
1
36

)

= 7

which is the average value of the sum of numbers observed in a throw of two dice.

EXAMPLE 11 Estimate E(X) and E(Y) for the data given in Example 4. We have seen that
x −2 0 2 3

f (x) 0.27 0.12 0.26 0.35

Therefore,

E (X) =
∑

x
x f (x)

= (−2)(0.27) + (0)(0.12) + (2)(0.26) + (3)(0.35)

= 1.03
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Properties of Expected Values
1. The expected value of a constant is the constant itself. Thus, if b is a constant, E(b) = b.

2. If a and b are constants,

E(aX + b) = aE(X) + b

This can be generalized. If X1, X2, . . . , X N are N random variables and a1, a2, . . . , aN

and b are constants, then

E(a1 X1 + a2 X2 + · · · + aN X N + b) = a1 E(X1) + a2 E(X2) + · · · + aN E(X N ) + b

3. If X and Y are independent random variables, then

E(XY ) = E(X)E(Y )

That is, the expectation of the product XY is the product of the (individual) expectations
of X and Y.

However, note that

E

(
X

Y

)
�= E(X)

E(Y )

even if X and Y are independent.

Similarly,

y 3 6

f (y) 0.51 0.49

E(Y ) =
∑

y
y f (y)

= (3)(0.51) + (6)(0.49)

= 4.47

The expected value of a continuous rv is defined as

E(X ) =
∫ ∞

−∞
x f (x)dx

The only difference between this case and the expected value of a discrete rv is that we
replace the summation symbol by the integral symbol.

EXAMPLE 11
(Continued)

EXAMPLE 12 Let us find out the expected value of the continuous PDF given in Example 3.

E (X ) =
∫ 3

0
x

(
x 2

9

)
dx

= 1
9

[(
x 4

4

)]3

0

= 9
4

= 2.25
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4. If X is a random variable with PDF f (x) and if g (X ) is any function of X, then

E[g(X)] =
∑

x

g(X) f (x) if X is discrete

=
∫ ∞

−∞
g(X) f (x) dx if X is continuous

Thus, if g(X) = X2,

E(X2) =
∑

x

x2 f (X) if X is discrete

=
∫ ∞

−∞
x2 f (X) dx if X is continuous

EXAMPLE 13 Consider the following PDF:

x −2 1 2

f (x) 5
8

1
8

2
8

Then

E (X ) = −2
(

5
8

)
+ 1

(
1
8

)
+ 2

(
2
8

)

= − 5
8

and

E (X2) = 4
(

5
8

)
+ 1

(
1
8

)
+ 4

(
2
8

)

= 29
8

Variance
Let X be a random variable and let E(X) = µ. The distribution, or spread, of the X values
around the expected value can be measured by the variance, which is defined as

var (X) = σ 2
X = E(X − µ)2

The positive square root of σ 2
X , σX , is defined as the standard deviation of X. The variance

or standard deviation gives an indication of how closely or widely the individual X values
are spread around their mean value.

The variance defined previously is computed as follows:

var (X) =
∑

x

(X − µ)2 f (x) if X is a discrete rv

=
∫ ∞

−∞
(X − µ)2 f (x) dx if X is a continuous rv

For computational convenience, the variance formula given above can also be expressed as

var (X) = σ 2
x = E(X − µ)2

= E(X2) − µ2

= E(X2) − [E(X)]2

Applying this formula, it can be seen that the variance of the random variable given in
Example 13 is 29

8 − (− 5
8 )2 = 207

64 = 3.23.
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Properties of Variance
1. E(X − µ)2 = E(X2) − µ2, as noted before.

2. The variance of a constant is zero.

3. If a and b are constants, then

var (aX + b) = a2 var (X)

4. If X and Y are independent random variables, then

var (X + Y ) = var (X) + var (Y )

var (X − Y ) = var (X) + var (Y )

This can be generalized to more than two independent variables.

5. If X and Y are independent rv’s and a and b are constants, then

var (aX + bY ) = a2 var (X) + b2 var (Y )

Covariance
Let X and Y be two rv’s with means µx and µy , respectively. Then the covariance between
the two variables is defined as

cov (X, Y ) = E{(X − µx )(Y − µy)} = E(XY ) − µxµy

It can be readily seen that the variance of a variable is the covariance of that variable with
itself.

The covariance is computed as follows:

cov (X, Y ) =
∑

y

∑
x

(X − µx )(Y − µy) f (x , y)

=
∑

y

∑
x

XY f (x , y) − µxµy

EXAMPLE 14 Let us find the variance of the random variable given in Example 3.

var (X ) = E (X 2) − [E (X )]2

Now

E (X 2) =
∫ 3

0
x 2

(
x 2

9

)
dx

=
∫ 3

0

x 4

9
dx

= 1
9

[
x 5

5

]3

0

= 243/45

= 27/5

Since E (X ) = 9
4 (see Example 12), we finally have

var (X ) = 243/45 −
(

9
4

)2

= 243/720 = 0.34
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if X and Y are discrete random variables, and

cov (X, Y ) =
∫ ∞

−∞

∫ ∞

−∞
(X − µx )(Y − µy) f (x , y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
XY f (x , y) dx dy − µx µy

if X and Y are continuous random variables.

Properties of Covariance
1. If X and Y are independent, their covariance is zero, for

cov (X, Y ) = E(XY ) − µxµy

= µxµy − µxµy since E(XY ) = E(X)E(Y ) = µxµy

= 0
2.

cov (a + bX, c + dY ) = bd cov (X, Y )

where a, b, c, and d are constants.

EXAMPLE 15 Let us find out the covariance between discrete random variables X and Y whose joint PDF
is as shown in Example 4. From Example 11 we already know that µx = E (X ) = 1.03 and
µy = E (Y ) = 4.47.

E (XY ) =
∑

y

∑
x

XY f (x, y)

= (−2)(3)(0.27) + (0)(3)(0.08) + (2)(3)(0.16) + (3)(3)(0)

+ (−2)(6)(0) + (0)(6)(0.04) + (2)(6)(0.10) + (3)(6)(0.35)

= 6.84

Therefore,

cov (X, Y ) = E (XY ) − µxµy

= 6.84 − (1.03)(4.47)

= 2.24

Correlation Coefficient
The (population) correlation coefficient ρ (rho) is defined as

ρ = cov (X, Y )√
{var (X) var (Y )}

= cov (X, Y )

σxσy

Thus defined, ρ is a measure of linear association between two variables and lies between
−1 and +1, −1 indicating perfect negative association and +1 indicating perfect positive
association.

From the preceding formula, it can be seen that

cov (X, Y ) = ρσxσy

when X and Y are independent
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Variances of Correlated Variables
Let X and Y be two rv’s. Then

var (X + Y ) = var (X) + var (Y ) + 2 cov (X, Y )

= var (X) + var (Y ) + 2ρσxσy

var (X − Y ) = var (X) + var (Y ) − 2 cov (X, Y )

= var (X) + var (Y ) − 2ρσxσy

If, however, X and Y are independent, cov (X, Y ) is zero, in which case the var (X + Y ) and
var (X − Y ) are both equal to var (X ) + var (Y ), as noted previously.

The preceding results can be generalized as follows. Let 
∑n

i=1 Xi = X1 +
X2 + · · · + Xn , then the variance of the linear combination 

∑
Xi is

var

(
n∑

i=1

xi

)
=

n∑
i=1

var Xi + 2
∑

i< j

∑
cov (Xi , X j )

=
n∑

i=1

var Xi + 2
∑

i< j

∑
ρi jσiσj

where ρi j is the correlation coefficient between Xi and X j and where σi and σj are the stan-
dard deviations of Xi and X j .

Thus,

var (X1 + X2 + X3) = var X1 + var X2 + var X3 + 2 cov (X1, X2)

+ 2 cov (X1, X3) + 2 cov (X2, X3)

= var X1 + var X2 + var X3 + 2ρ12σ1σ2

+ 2ρ13σ1σ3 + 2ρ23σ2σ3

where σ1, σ2, and σ3 are, respectively, the standard deviations of X1, X2, and X3 and where
ρ12 is the correlation coefficient between X1 and X2, ρ13 that between X1 and X3, and ρ23

that between X2 and X3.

Conditional Expectation and Conditional Variance
Let f(x, y) be the joint PDF of random variables X and Y. The conditional expectation of X,
given Y = y, is defined as

E(X | Y = y) =
∑

x

x f (x | Y = y) if X is discrete

=
∫ ∞

−∞
x f (x | Y = y) dx if X is continuous

EXAMPLE 16 Estimate the coefficient of correlation for the data of Example 4.
From the PDFs given in Example 11 it can be easily shown that σx = 2.05 and

σy = 1.50. We have already shown that cov (X, Y ) = 2.24. Therefore, applying the pre-
ceding formula we estimate ρ as 2.24/(2.05)(1.50) = 0.73.
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where E(X | Y = y) means the conditional expectation of X given Y = y and where
f (x | Y = y) is the conditional PDF of X. The conditional expectation of Y, E(Y | X = x),
is defined similarly.

Conditional Expectation
Note that E(X | Y ) is a random variable because it is a function of the conditioning variable
Y. However, E(X

∣∣ Y = y), where y is a specific value of Y, is a constant.

Conditional Variance
The conditional variance of X given Y = y is defined as

var (X | Y = y) = E{[X − E(X | Y = y)]2 | Y = y}

=
∑

x

[X − E(X | Y = y)]2 f (x | Y = y) if X is discrete

=
∫ ∞

−∞
[X − E(X | Y = y)]2 f (x | Y = y) dx if X is continuous

EXAMPLE 17 Compute E (Y | X = 2) and var (Y | X = 2) for the data given in Example 4.

E (Y | X = 2) =
∑

y
y f (Y = y | X = 2)

= 3f (Y = 3 | X = 2) + 6f (Y = 6 | X = 2)

= 3(0.16/0.26) + 6(0.10/0.26)

= 4.15

Note: f (Y = 3 |X = 2) = f (Y = 3, X = 2)/ f (X = 2) = 0.16/0.26, and 
f (Y = 6 | X = 2) = f (Y = 6, X = 2)/ f (X = 2) = 0.10/0.26, so

var (Y | X = 2) =
∑

y
[Y − E (Y | X = 2)]2 f (Y | X = 2)

= (3 − 4.15)2(0.16/0.26) + (6 − 4.15)2(0.10/0.26)

= 2.13

Properties of Conditional Expectation and Conditional Variance
1. If f (X) is a function of X, then E( f (X) | X) = f (X), that is, the function of X be-

haves as a constant in computation of its expectation conditional on X. Thus,
[E(X3 | X)] = E(X3); this is because, if X is known, X3 is also known.

2. If f (X) and g(X) are functions of X, then

E[ f (X)Y + g(X) | X] = f (X)E(Y | X) + g(X)

For example, E[XY + cX2 | X] = X E(Y | X) + cX2, where c is a constant.

3. If X and Y are independent, E(Y | X) = E(Y ). That is, if X and Y are independent
random variables, then the conditional expectation of Y, given X, is the same as the
unconditional expectation of Y.
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4. The law of iterated expectations. It is interesting to note the following relation between
the unconditional expectation of a random variable Y, E(Y ), and its conditional expecta-
tion based on another random variable X, E(Y | X):

E(Y ) = EX [E(Y | X)]

This is known as the law of iterated expectations, which in the present context states that
the marginal, or unconditional, expectation of Y is equal to the expectation of its condi-
tional expectation, the symbol EX denoting that the expectation is taken over the values
of X. Put simply, this law states that if we first obtain E(Y | X) as a function of X and take
its expected value over the distribution of X values, you wind up with E(Y), the uncondi-
tional expectation of Y. The reader can verify this using the data given in Example 4.

An implication of the law of iterated expectations is that if the conditional mean of Y
given X (i.e., E[Y |X]) is zero, then the (unconditional) mean of Y is also zero. This
follows immediately because in that case

E[E(Y |X)] = E[0] = 0

5. If X and Y are independent, then var (Y | X) = var (Y ).

6. var (Y ) = E[var (Y | X)] + var [E(Y | X)]; that is, the (unconditional) variance of Y is
equal to expectation of the conditional variance of Y plus the variance of the conditional
expectation of Y.

Higher Moments of Probability Distributions
Although mean, variance, and covariance are the most frequently used summary measures
of univariate and multivariate PDFs, we occasionally need to consider higher moments of
the PDFs, such as the third and the fourth moments. The third and fourth moments of a
univariate PDF f (x) around its mean value (µ) are defined as

Third moment: E(X − µ)3

Fourth moment: E(X − µ)4

In general, the rth moment about the mean is defined as

rth moment: E(X − µ)r

The third and fourth moments of a distribution are often used in studying the “shape”
of a probability distribution, in particular, its skewness, S (i.e., lack of symmetry) and
kurtosis, K (i.e., tallness or flatness), as shown in Figure A.3.

One measure of skewness is defined as

S = E(X − µ)3

σ 3

= third moment about the mean

cube of the standard deviation

A commonly used measure of kurtosis is given by

K = E(X − µ)4

[E(X − µ)2]2

= fourth moment about the mean

square of the second moment
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PDFs with values of K less than 3 are called platykurtic (fat or short-tailed), and those
with values greater than 3 are called leptokurtic (slim or long-tailed). See Figure A.3. A
PDF with a kurtosis value of 3 is known as mesokurtic, of which the normal distribution
is the prime example. (See the discussion of the normal distribution in Section A.6.)

We will show shortly how the measures of skewness and kurtosis can be combined
to determine whether a random variable follows a normal distribution. Recall that our
hypothesis-testing procedure, as in the t and F tests, is based on the assumption (at least in
small or finite samples) that the underlying distribution of the variable (or sample statistic)
is normal. It is therefore very important to find out in concrete applications whether this
assumption is fulfilled.

A.6 Some Important Theoretical Probability Distributions

In the text extensive use is made of the following probability distributions.

Normal Distribution
The best known of all the theoretical probability distributions is the normal distribution,
whose bell-shaped picture is familiar to anyone with a modicum of statistical knowledge.

A (continuous) random variable X is said to be normally distributed if its PDF has the
following form:

f (x) = 1

σ
√

2π
exp

(
−1

2

(x − µ)2

σ 2

)
− ∞ < x < ∞

0.5

0.4

0.3

0.2

0.1

0.0

0.5

0.4

0.3

0.2

0.1

0.0
–4 –3 –2 –1 0 1 2 3 4

–3 –2 –1 0 1 2 3 4–4

Right skewed

Symmetrical

Left skewed

Mesokurtic

Leptokurtic

Platykurtic

(a)

(b)

FIGURE A.3
(a) Skewness; 
(b) kurtosis. 
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where µ and σ2, known as the parameters of the distribution, are, respectively, the mean
and the variance of the distribution. The properties of this distribution are as follows:

1. It is symmetrical around its mean value.

2. Approximately 68 percent of the area under the normal curve lies between the values of
µ ± σ , about 95 percent of the area lies between µ ± 2σ , and about 99.7 percent of the
area lies between µ ± 3σ , as shown in Figure A.4.

3. The normal distribution depends on the two parameters µ and σ2, so once these are
specified, one can find the probability that X will lie within a certain interval by using the
PDF of the normal distribution. But this task can be lightened considerably by referring
to Table D.1 of Appendix D. To use this table, we convert the given normally distributed
variable X with mean µ and σ2 into a standardized normal variable Z by the following
transformation:

Z = x − µ

σ

An important property of any standardized variable is that its mean value is zero and its
variance is unity. Thus Z has zero mean and unit variance. Substituting z into the normal
PDF given previously, we obtain

f (Z ) = 1√
2π

exp

(
−1

2
Z2

)

which is the PDF of the standardized normal variable. The probabilities given in
Appendix D, Table D.1, are based on this standardized normal variable.

By convention, we denote a normally distributed variable as

X ∼ N (µ, σ 2)

where ∼ means “distributed as,” N stands for the normal distribution, and the quantities
in the parentheses are the two parameters of the normal distribution, namely, the mean
and the variance. Following this convention,

X ∼ N (0, 1)

means X is a normally distributed variable with zero mean and unit variance. In other
words, it is a standardized normal variable Z.

–3 –2 –σ µ σ 2 3 

68% (approx.)

95% (approx.)

99.7% (approx.)

 

σσ σ σ

FIGURE A.4
Areas under the
normal curve. 
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4. Let X1 ∼ N (µ1, σ 2
1 ) and X2 ∼ N (µ2, σ 2

2 ) and assume that they are independent. Now
consider the linear combination

Y = aX1 + bX2

where a and b are constants. Then it can be shown that

Y ∼ N
[
(aµ1 + bµ2),

(
a2σ 2

1 + b2σ 2
2

)]
This result, which states that a linear combination of normally distributed variables is
itself normally distributed, can be easily generalized to a linear combination of more
than two normally distributed variables.

5. Central limit theorem. Let X1, X2, . . . , Xn denote n independent random variables, all
of which have the same PDF with mean = µ and variance = σ 2. Let X̄ = ∑

Xi/n (i.e.,
the sample mean). Then as n increases indefinitely (i.e., n → ∞),

X̄
n→∞ ∼ N

(
µ,

σ 2

n

)

That is, X̄ approaches the normal distribution with mean µ and variance σ 2/n. Notice
that this result holds true regardless of the form of the PDF. As a result, it follows that

z = X̄ − µ

σ/
√

n
=

√
n(X̄ − u)

σ
∼ N (0, 1)

That is, Z is a standardized normal variable.

6. The third and fourth moments of the normal distribution around the mean value are as
follows:

Third moment: E(X − µ)3 = 0

Fourth moment: E(X − µ)4 = 3σ 4

Note: All odd-powered moments about the mean value of a normally distributed variable
are zero.

7. As a result, and following the measures of skewness and kurtosis discussed earlier, for a
normal PDF skewness = 0 and kurtosis = 3; that is, a normal distribution is symmetric

EXAMPLE 18 Assume that X ∼ N(8, 4). What is the probability that X will assume a value between
X1 = 4 and X2 = 12? To compute the required probability, we compute the Z values as

Z1 = X1 − µ

σ
= 4 − 8

2
= −2

Z2 = X2 − µ

σ
= 12 − 8

2
= +2

Now from Table D.1 we observe that Pr(0 ≤ Z ≤ 2) = 0.4772. Then, by symmetry,
we have Pr(−2 ≤ Z ≤ 0) = 0.4772. Therefore, the required probability is 0.4772 +
0.4772 = 0.9544. (See Figure A.4.)

EXAMPLE 19 What is the probability that in the preceding example X exceeds 12?
The probability that X exceeds 12 is the same as the probability that Z exceeds 2. From

Table D.1 it is obvious that this probability is (0.5 − 0.4772) or 0.0228.
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and mesokurtic. Therefore, a simple test of normality is to find out whether the com-
puted values of skewness and kurtosis depart from the norms of 0 and 3. This is in fact
the logic underlying the Jarque–Bera (JB) test of normality discussed in the text:

JB = n

[
S2

6
+ (K − 3)2

24

]
(5.12.1)

where S stands for skewness and K for kurtosis. Under the null hypothesis of normality,
JB is distributed as a chi-square statistic with 2df.

8. The mean and the variance of a normally distributed random variable are independent in
that one is not a function of the other.

9. If X and Y are jointly normally distributed, then they are independent if, and only if, the
covariance between them [i.e., cov (X, Y)] is zero. (See Exercise 4.1.)

The χ2 (Chi-Square) Distribution
Let Z1, Z2, . . . , Zk be independent standardized normal variables (i.e., normal variables
with zero mean and unit variance). Then the quantity

Z =
k∑

i=1

Z2
i

is said to possess the χ2 distribution with k degrees of freedom (df), where the term df means
the number of independent quantities in the previous sum. A chi-square-distributed variable
is denoted by χ2

k , where the subscript k indicates the df. Geometrically, the chi-square distri-
bution appears in Figure A.5.

Properties of the χ2 distribution are as follows:

1. As Figure A.5 shows, the χ2 distribution is a skewed distribution, the degree of the
skewness depending on the df. For comparatively few df, the distribution is highly
skewed to the right; but as the number of df increases, the distribution becomes increas-
ingly symmetrical. As a matter of fact, for df in excess of 100, the variable√

2χ2 −
√

(2k − 1)

can be treated as a standardized normal variable, where k is the df.

2

f ( 2) 

0

D
en

si
ty

 k = 2  

k = 5

k = 10

χ

χ

FIGURE A.5
Density function of the
χ2 variable.
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2. The mean of the chi-square distribution is k, and its variance is 2k, where k is the df.

3. If Z1 and Z2 are two independent chi-square variables with k1 and k2 df, then the sum
Z1 + Z2 is also a chi-square variable with df = k1 + k2.

EXAMPLE 20 What is the probability of obtaining a χ2 value of 40 or greater, given the df of 20?
As Table D.4 shows, the probability of obtaining a χ2 value of 39.9968 or greater

(20 df) is 0.005. Therefore, the probability of obtaining a χ2 value of 40 or greater is less
than 0.005, a rather small probability.

Student’s t Distribution
If Z1 is a standardized normal variable [that is, Z1 ∼ N (0, 1)] and another variable Z2 fol-
lows the chi-square distribution with k df and is distributed independently of Z1, then the
variable defined as

t = Z1√
(Z2/k)

= Z1

√
k√

Z2

follows Student’s t distribution with k df. A t-distributed variable is often designated as tk,
where the subscript k denotes the df. Geometrically, the t distribution is shown in Fig-
ure A.6.

Properties of the Student’s t distribution are as follows:

1. As Figure A.6 shows, the t distribution, like the normal distribution, is symmetrical, but
it is flatter than the normal distribution. But as the df increase, the t distribution approx-
imates the normal distribution.

2. The mean of the t distribution is zero, and its variance is k/(k − 2).

The t distribution is tabulated in Table D.2.

EXAMPLE 21 Given df = 13, what is the probability of obtaining a t value (a) of about 3 or greater, (b) of
about −3 or smaller, and (c) of | t | of about 3 or greater, where | t | means the absolute
value (i.e., disregarding the sign) of t?

From Table D.2, the answers are (a) about 0.005, (b) about 0.005 because of the
symmetry of the t distribution, and (c) about 0.01 = 2(0.005).

0
t

k = 120 (normal)

k = 20

k = 5

FIGURE A.6
Student’s t distribution
for selected degrees of
freedom.

guj75772_appA.qxd  05/09/2008  10:57 AM  Page 820



Appendix A A Review of Some Statistical Concepts 821

The F Distribution
If Z1 and Z2 are independently distributed chi-square variables with k1 and k2 df, respec-
tively, the variable

F = Z1/k1

Z2/k2

follows (Fisher’s) F distribution with k1 and k2 df. An F-distributed variable is denoted by
Fk1,k2 where the subscripts indicate the df associated with the two Z variables, k1 being
called the numerator df and k2 the denominator df. Geometrically, the F distribution is
shown in Figure A.7.

The F distribution has the following properties:

1. Like the chi-square distribution, the F distribution is skewed to the right. But it can
be shown that as k1 and k2 become large, the F distribution approaches the normal
distribution.

2. The mean value of an F-distributed variable is k2/(k2 − 2), which is defined for k2 > 2,
and its variance is

2k2
2(k1 + k2 − 2)

k1(k2 − 2)2(k2 − 4)

which is defined for k2 > 4.

3. The square of a t-distributed random variable with k df has an F distribution with 1 and
k df. Symbolically,

t2
k = F1,k

F

f (F)

0

D
en

si
ty

F50,50

F10,2

F2,2

FIGURE A.7
F distribution for
various degrees of
freedom. 

EXAMPLE 22 Given k1 = 10 and k2 = 8, what is the probability of obtaining an F value (a) of 3.4 or
greater and (b) of 5.8 or greater?

As Table D.3 shows, these probabilities are (a) approximately 0.05 and (b) approxi-
mately 0.01.
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4. If the denominator df, k2, is fairly large, the following relationship holds between the F
and the chi-square distributions:

k1 F ∼ χ2
k1

That is, for fairly large denominator df, the numerator df times the F value is approxi-
mately the same as a chi-square value with numerator df.

EXAMPLE 23 Let k1 = 20 and k2 = 120. The 5 percent critical F value for these df is 1.48. Therefore,
k1 F = (20)(1.48) = 29.6. From the chi-square distribution for 20 df, the 5 percent critical
chi-square value is about 31.41.

In passing, note that since for large df the t, chi-square, and F distributions approach the
normal distribution, these three distributions are known as the distributions related to the
normal distribution.

The Bernoulli Binomial Distribution
A random variable X is said to follow a distribution named after Bernoulli (a Swiss mathe-
matician) if its probability density (or mass) function (PDF) is:

P(X = 0) = 1 − p

P(X = 1) = p

where p, 0 ≤ p ≤ 1, is the probability that some event is a “success,” such as the probabil-
ity of obtaining a head in a toss of a coin. For such a variable,

E(X) = [1 × p(X = 1) + 0 × p(X = 0)] = p

var (X) = pq

where q = (1 − p), that is, the probability of a “failure.”

Binomial Distribution
The binomial distribution is the generalization of the Bernoulli distribution. Let n denote
the number of independent trials, each of which results in a “success” with probability p
and a “failure” with a probability q = (1 − p). If X represents the number of successes in
the n trials, then X is said to follow the binomial distribution whose PDF is:

f (X) =
(

n
x

)
px (1 − p)n−x

where x represents the number of successes in n trials and where(
n
x

)
= n!

x!(n − x)!

where n!, read as n factorial, means n(n − 1)(n − 2) · · · 1. 
The binomial is a two-parameter distribution, n and p. For this distribution,

E(X) = np

var (X) = np(1 − p) = npq
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For example, if you toss a coin 100 times and want to find out the probability of obtaining
60 heads, you put p = 0.5, n = 100 and x = 60 in the above formula. Computer routines
exist to evaluate such probabilities.

You can see how the binomial distribution is a generalization of the Bernoulli
distribution.

The Poisson Distribution
A random X variable is said to have the Poisson distribution if its PDF is:

f (X) = e−λλx

x!
for x = 0, 1, 2, . . . , λ > 0

The Poisson distribution depends on a single parameter, λ. A distinguishing feature of the
Poisson distribution is that its variance is equal to its expected value, which is λ. That is,

E(X) = var (X) = λ

The Poisson model, as we saw in the chapter on nonlinear regression models, is used to
model rare or infrequent phenomena, such as the number of phone calls received in a span
of, say, 5 minutes, or the number of speeding tickets received in a span of an hour, or the
number of patents received by a firm, say, in a year.

A.7 Statistical Inference: Estimation

In Section A.6 we considered several theoretical probability distributions. Very often we
know or are willing to assume that a random variable X follows a particular probability dis-
tribution but do not know the value(s) of the parameter(s) of the distribution. For example,
if X follows the normal distribution, we may want to know the value of its two parameters,
namely, the mean and the variance. To estimate the unknowns, the usual procedure is to
assume that we have a random sample of size n from the known probability distribution and
use the sample data to estimate the unknown parameters.5 This is known as the problem of
estimation. In this section, we take a closer look at this problem. The problem of estima-
tion can be broken down into two categories: point estimation and interval estimation.

Point Estimation
To fix the ideas, let X be a random variable with PDF f (x; θ), where θ is the parameter of
the distribution (for simplicity of discussion only, we are assuming that there is only one
unknown parameter; our discussion can be readily generalized). Assume that we know the
functional form—that is, we know the theoretical PDF, such as the t distribution—but do
not know the value of θ . Therefore, we draw a random sample of size n from this known
PDF and then develop a function of the sample values such that

θ̂ = f (x1, x2, . . . , xn)

provides us an estimate of the true θ. θ̂ is known as a statistic, or an estimator, and a par-
ticular numerical value taken by the estimator is known as an estimate. Note that θ̂ can be

5Let X1, X2, . . . , Xn be n random variables with joint PDF f (x1, x2, . . . , xn). If we can write

f (x1, x2, . . . , xn) = f (x1) f (x2) · · · f (xn)

where f (x) is the common PDF of each X, then x1, x2, . . . , xn are said to constitute a random sample
of size n from a population with PDF f (xn).
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treated as a random variable because it is a function of the sample data. θ̂ provides us with
a rule, or formula, that tells us how we may estimate the true θ. Thus, if we let

θ̂ = 1

n
(x1 + x2 + · · · + xn) = X̄

where X̄ is the sample mean, then X̄ is an estimator of the true mean value, say, µ. If in a
specific case X̄ = 50, this provides an estimate of µ. The estimator θ̂ obtained previously is
known as a point estimator because it provides only a single (point) estimate of θ.

Interval Estimation
Instead of obtaining only a single estimate of θ, suppose we obtain two estimates of θ by
constructing two estimators θ̂1(x1, x2, . . . , xn) and θ̂2(x1, x2, . . . , xn), and say with some
confidence (i.e., probability) that the interval between θ̂1 and θ̂2 includes the true θ. Thus,
in interval estimation, in contrast with point estimation, we provide a range of possible
values within which the true θ may lie.

The key concept underlying interval estimation is the notion of the sampling, or
probability distribution, of an estimator. For example, it can be shown that if a variable
X is normally distributed, then the sample mean X̄ is also normally distributed with
mean = µ (the true mean) and variance = σ 2/n, where n is the sample size. In other words,
the sampling, or probability, distribution of the estimator X̄ is X̄ ∼ N (µ, σ 2/n). As a
result, if we construct the interval

X̄ ± 2
σ√
n

and say that the probability is approximately 0.95, or 95 percent, that intervals like it will in-
clude the true µ, we are in fact constructing an interval estimator for µ. Note that the interval
given previously is random since it is based on X̄ , which will vary from sample to sample.

More generally, in interval estimation we construct two estimators θ̂1 and θ̂2, both
functions of the sample X values, such that

Pr (θ̂1 ≤ θ ≤ θ̂2) = 1 − α 0 < α < 1

That is, we can state that the probability is 1 − α that the interval from θ̂1 to θ̂2 contains the
true θ. This interval is known as a confidence interval of size 1 − α for θ , 1 − α being
known as the confidence coefficient. If α = 0.05, then 1 − α = 0.95, meaning that if we
construct a confidence interval with a confidence coefficient of 0.95, then in repeated such
constructions resulting from repeated sampling we shall be right in 95 out of 100 cases if
we maintain that the interval contains the true θ. When the confidence coefficient is 0.95,
we often say that we have a 95 percent confidence interval. In general, if the confidence
coefficient is 1 − α, we say that we have a 100(1 − α)% confidence interval. Note that α is
known as the level of significance, or the probability of committing a Type I error. This
topic is discussed in Section A.8.

EXAMPLE 24 Suppose that the distribution of height of men in a population is normally distributed with
mean = µ inches and σ = 2.5 inches. A sample of 100 men drawn randomly from this
population had an average height of 67 inches. Establish a 95 percent confidence interval
for the mean height ( = µ) in the population as a whole.

As noted, X̄ ∼ N(µ, σ 2/n), which in this case becomes X̄ ∼ N(µ, 2.52/100). From
Table D.1 one can see that

X̄ − 1.96
(

σ√
n

)
≤ µ ≤ X̄ + 1.96

σ√
n
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Methods of Estimation
Broadly speaking, there are three methods of parameter estimation: (1) least squares (LS),
(2) maximum likelihood (ML), and (3) method of moments (MOM) and its extension, the
generalized method of moments (GMM). We have devoted considerable time to illustrate
the LS method. In Chapter 4 we introduced the ML method in the regression context. But
the method is of much broader application.

The key idea behind the ML is the likelihood function. To illustrate this, suppose the
random variable X has PDF f(X,θ) which depends on a single parameter θ. We know the
PDF (e.g., Bernoulli or binomial) but do not know the parameter value. Suppose we obtain
a random sample of nX values. The joint PDF of these n values is:

g(x1, x2, . . . , xn; θ)

Because it is a random sample, we can write the preceding joint PDF as a product of the
individual PDF as

g(x1, x2, . . . , xn; θ) = f (x1; θ) f (x2; θ) · · · f (xn; θ)

The joint PDF has a dual interpretation. If θ is known, we interpret it as the joint probability
of observing the given sample values. On the other hand, we can treat it as a function of θ

for given values of x1, x2, . . . , xn . On the latter interpretation, we call the joint PDF the
likelihood function (LF) and write it as

L(θ; x1, x2, . . . , xn) = f (x1; θ) f (x2; θ) · · · f (xn; θ)

Observe the role reversal of θ in the joint probability density function and the likelihood
function.

The ML estimator of θ is that value of θ that maximizes the (sample) likelihood func-
tion, L. For mathematical convenience, we often take the log of the likelihood, called
the log-likelihood function (log L). Following the calculus rules of maximization, we
differentiate the log-likelihood function with respect to the unknown and equate the
resulting derivative to zero. The resulting value of the estimator is called the maximum-
likelihood estimator. One can apply the second-order condition of maximization to
assure that the value we have obtained is in fact the maximum value.

In case there is more than one unknown parameter, we differentiate the log-likelihood
function with respect to each unknown, set the resulting expressions to zero, and solve
them simultaneously to obtain the values of the unknown parameters. We have already
shown this for the multiple regression model (see Chapter 4, Appendix 4A.1).

covers 95 percent of the area under the normal curve. Therefore, the preceding interval
provides a 95 percent confidence interval for µ. Plugging in the given values of X̄ , σ , and
n, we obtain the 95 percent confidence interval as

66.51 ≤ µ ≤ 67.49

In repeated such measurements, intervals thus established will include the true µ with
95 percent confidence. A technical point may be noted here. Although we can say that the
probability that the random interval [ X̄ ± 1.96(σ/

√
n)] includes µ is 95 percent, we cannot

say that the probability is 95 percent that the particular interval (66.51, 67.49) includes µ.
Once this interval is fixed, the probability that it will include µ is either 0 or 1. What we can
say is that if we construct 100 such intervals, 95 out of the 100 intervals will include the
true µ; we cannot guarantee that one particular interval will necessarily include µ.

EXAMPLE 24
(Continued)
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The Method of Moments
We have given a glimpse of MOM in Exercise 3.4 in the so-called analogy principle in
which the sample moments try to duplicate the properties of their population counterparts.
The generalized method of moments (GMM), which is a generalization of MOM, is now
becoming more popular, but not at the introductory level. Hence we will not pursue it here.

The desirable statistical properties fall into two categories: small-sample, or finite-
sample, properties and large-sample, or asymptotic, properties. Underlying both of these
sets of properties is the notion that an estimator has a sampling, or probability, distribution.

Small-Sample Properties
Unbiasedness
An estimator θ̂ is said to be an unbiased estimator of θ if the expected value of θ̂ is equal to
the true θ; that is,

E(θ̂) = θ

or

E(θ̂) − θ = 0

If this equality does not hold, then the estimator is said to be biased, and the bias is
calculated as

bias(θ̂) = E(θ̂) − θ

Of course, if E(θ̂) = θ—that is, θ̂ is an unbiased estimator—the bias is zero.
Geometrically, the situation is as depicted in Figure A.8. In passing, note that unbiased-

ness is a property of repeated sampling, not of any given sample: Keeping the sample size
fixed, we draw several samples, each time obtaining an estimate of the unknown parameter.
The average value of these estimates is expected to be equal to the true value if the estima-
tor is unbiased.

Minimum Variance
θ̂1 is said to be a minimum-variance estimator of θ if the variance of θ̂1 is smaller than or at
most equal to the variance of θ̂2, which is any other estimator of θ. Geometrically, we have

EXAMPLE 25 Assume that the random variable X follows the Poisson distribution with the mean value
of λ. Suppose x1, x2, . . . , xn are independent Poisson random variables each with mean λ.
Suppose we want to find out the ML estimator of λ. The likelihood function here is:

L (x1, x2, . . . , xn; λ) = e−λλx1

x1!
e−λλx2

x2!
· · · e−λλxn

xn!

= e−nλλ	xi

x1!x2! · · · xn!

This is a rather unwieldy expression, but if we take its log, it becomes

log (x1, x2, . . . , xn; λ) = −nλ +
∑

xi log λ − log c

where log c = ∏
xi !. Differentiating the preceding expression with respect to λ, we obtain

(−n + (
∑

xi )/λ). By setting this last expression to zero, we obtain λml = (
∑

xi )/n = X̄ ,
which is the ML estimator of the unknown λ.
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Figure A.9, which shows three estimators of θ, namely θ̂1, θ̂2, and θ̂3, and their probability
distributions. As shown, the variance of θ̂3 is smaller than that of either θ̂1 or θ̂2. Hence,
assuming only the three possible estimators, in this case θ̂3 is a minimum-variance
estimator. But note that θ̂3 is a biased estimator (why?).

Best Unbiased, or Efficient, Estimator
If θ̂1 and θ̂2 are two unbiased estimators of θ, and the variance of θ̂1 is smaller than or
at most equal to the variance of θ̂2, then θ̂1 is a minimum-variance unbiased, or best
unbiased, or efficient, estimator. Thus, in Figure A.9, of the two unbiased estimators θ̂1

and θ̂2, θ̂1 is best unbiased, or efficient.

Linearity
An estimator θ̂ is said to be a linear estimator of θ if it is a linear function of the sample
observations. Thus, the sample mean defined as

X̄ = 1

n

∑
Xi = 1

n
(x1 + x2 + · · · + xn)

is a linear estimator because it is a linear function of the X values.

Best Linear Unbiased Estimator (BLUE)
If θ̂ is linear, is unbiased, and has minimum variance in the class of all linear unbiased
estimators of θ, then it is called a best linear unbiased estimator, or BLUE for short.

Minimum Mean-Square-Error (MSE) Estimator
The MSE of an estimator θ̂ is defined as

MSE(θ̂) = E(θ̂ − θ)2

E(  2) ≠

f (  1) f (  2)θ

E( 1) =  θ θ θ

θ

θ

FIGURE A.8
Biased and unbiased
estimators. 

f (  1)

f (  2)

f (  3)

E(  3)θ

θ

θ

θ 

θ

FIGURE A.9
Distribution of three
estimators of θ.
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This is in contrast with the variance of θ̂ , which is defined as

var (θ̂) = E[θ̂ − E(θ̂)]2

The difference between the two is that var (θ̂) measures the dispersion of the distribution of
θ̂ around its mean or expected value, whereas MSE(θ̂ ) measures dispersion around the true
value of the parameter. The relationship between the two is as follows:

MSE(θ̂) = E(θ̂ − θ)2

= E[θ̂ − E(θ̂) + E(θ̂) − θ]2

= E[θ̂ − E(θ̂)]2 + E[E(θ̂) − θ]2 + 2E[θ̂ − E(θ̂)][E(θ̂) − θ]

= E[θ̂ − E(θ̂)]2 + E[E(θ̂) − θ]2 since the last term is zero6

= var (θ̂) + bias(θ̂)2

= variance of θ̂ plus square bias

Of course, if the bias is zero, MSE(θ̂) = var (θ̂).
The minimum MSE criterion consists in choosing an estimator whose MSE is the least

in a competing set of estimators. But notice that even if such an estimator is found, there is
a tradeoff involved—to obtain minimum variance you may have to accept some bias. Geo-
metrically, the situation is as shown in Figure A.10. In this figure, θ̂2 is slightly biased, but
its variance is smaller than that of the unbiased estimator θ̂1. In practice, however, the min-
imum MSE criterion is used when the best unbiased criterion is incapable of producing
estimators with smaller variances.

Large-Sample Properties
It often happens that an estimator does not satisfy one or more of the desirable statistical
properties in small samples. But as the sample size increases indefinitely, the estimator
possesses several desirable statistical properties. These properties are known as the large-
sample, or asymptotic, properties.

6The last term can be written as 2{[E (θ̂)]2 − [E (θ̂)]2 − θ E (θ̂) + θ E (θ̂)} = 0. Also note that
E [E (θ̂) − θ]2 = [E (θ̂) − θ]2 , since the expected value of a constant is simply the constant itself.

Estimators of 
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E( 2)

f ( 1)

θθ
E( 1)θ

θ
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θ

FIGURE A.10
Tradeoff between bias
and variance.
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Asymptotic Unbiasedness
An estimator θ̂ is said to be an asymptotically unbiased estimator of θ if

lim
n→∞ E(θ̂n) = θ

where θ̂n means that the estimator is based on a sample size of n and where lim means limit
and n → ∞ means that n increases indefinitely. In words, θ̂ is an asymptotically unbiased
estimator of θ if its expected, or mean, value approaches the true value as the sample size
gets larger and larger. As an example, consider the following measure of the sample
variance of a random variable X:

S2 =
∑

(Xi − X̄)2

n

It can be shown that

E(S2) = σ 2

(
1 − 1

n

)

where σ 2 is the true variance. It is obvious that in a small sample S2 is biased, but as n
increases indefinitely, E(S2) approaches true σ 2; hence it is asymptotically unbiased.

Consistency
θ̂ is said to be a consistent estimator if it approaches the true value θ as the sample size gets
larger and larger. Figure A.11 illustrates this property.

In this figure we have the distribution of θ̂ based on sample sizes of 25, 50, 80, and 100.
As the figure shows, θ̂ based on n = 25 is biased since its sampling distribution is not
centered on the true θ. But as n increases, the distribution of θ̂ not only tends to be more
closely centered on θ (i.e., θ̂ becomes less biased) but its variance also becomes smaller.
If in the limit (i.e., when n increases indefinitely) the distribution of θ̂ collapses to the single
point θ, that is, if the distribution of θ̂ has zero spread, or variance, we say that θ̂ is a
consistent estimator of θ.

f( ) n=100

P
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b
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y 
d
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θ

f( ) n = 80θ 

f( ) n = 50θ 

f( ) n = 25θ

θ
θ

FIGURE A.11
The distribution of θ̂

as sample size
increases.
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More formally, an estimator θ̂ is said to be a consistent estimator of θ if the probability that
the absolute value of the difference between θ̂ and θ is less than δ (an arbitrarily small posi-
tive quantity) approaches unity. Symbolically,

lim
n→∞ P{|θ̂ − θ | < δ} = 1 δ > 0

where P stands for probability. This is often expressed as

plim
n→∞

θ̂ = θ

where plim means probability limit.
Note that the properties of unbiasedness and consistency are conceptually very differ-

ent. The property of unbiasedness can hold for any sample size, whereas consistency is
strictly a large-sample property.

A sufficient condition for consistency is that the bias and variance both tend to zero as
the sample size increases indefinitely.7 Alternatively, a sufficient condition for consistency
is that the MSE(θ̂) tends to zero as n increases indefinitely. (For MSE[θ̂], see the discussion
presented previously.)

EXAMPLE 26 Let X1, X2, . . . , Xn be a random sample from a distribution with mean µ and variance σ 2.
Show that the sample mean X̄ is a consistent estimator of µ.

From elementary statistics it is known that E ( X̄ ) = µ and var ( X̄ ) = σ 2/n. Since
E ( X̄ ) = µ regardless of the sample size, it is unbiased. Moreover, as n increases indefinitely,
var ( X̄ ) tends toward zero. Hence, X̄ is a consistent estimator of µ.

The following rules about probability limits are noteworthy.

1. Invariance (Slutsky property). If θ̂ is a consistent estimator of θ and if h(θ̂) is any con-
tinuous function of θ̂ , then

plim
n→∞

h(θ̂) = h(θ)

What this means is that if θ̂ is a consistent estimator of θ, then 1/θ̂ is also a consistent
estimator of 1/θ and that log (θ̂) is also a consistent estimator of log (θ). Note that this
property does not hold true of the expectation operator E; that is, if θ̂ is an unbiased
estimator of θ (that is, E[θ̂] = θ), it is not true that 1/θ̂ is an unbiased estimator of 1/θ ;
that is, E(1/θ̂) �= 1/E(θ̂) �= 1/θ .

2. If b is a constant, then

plim
n→∞

b = b

That is, the probability limit of a constant is the same constant.

3. If θ̂1 and θ̂2 are consistent estimators, then

plim (θ̂1 + θ̂2) = plim θ̂1 + plim θ̂2

plim (θ̂1θ̂2) = plim θ̂1 plim θ̂2

plim

(
θ̂1

θ̂2

)
= plim θ̂1

plim θ̂2

7More technically, limn→∞ E (θ̂n) = θ and limn→∞ var (θ̂n) = 0.
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The last two properties, in general, do not hold true of the expectation operator E. Thus,
E(θ̂1/θ̂2) �= E(θ̂1)/E(θ̂2). Similarly, E(θ̂1θ̂2) �= E(θ̂1)E(θ̂2). If, however, θ̂1 and θ̂2 are
independently distributed, E(θ̂1θ̂2) = E(θ̂1)E(θ̂2), as noted previously.

Asymptotic Efficiency
Let θ̂ be an estimator of θ. The variance of the asymptotic distribution of θ̂ is called the
asymptotic variance of θ̂ . If θ̂ is consistent and its asymptotic variance is smaller than
the asymptotic variance of all other consistent estimators of θ , θ̂ is called asymptotically
efficient.

Asymptotic Normality
An estimator θ̂ is said to be asymptotically normally distributed if its sampling distribution
tends to approach the normal distribution as the sample size n increases indefinitely. For
example, statistical theory shows that if X1, X2, . . . , Xn are independent normally distrib-
uted variables with the same mean µ and the same variance σ 2, the sample mean X̄ is also
normally distributed with mean µ and variance σ 2/n in small as well as large samples. But
if the Xi are independent with mean µ and variance σ 2 but are not necessarily from the
normal distribution, then the sample mean X̄ is asymptotically normally distributed with
mean µ and variance σ 2/n; that is, as the sample size n increases indefinitely, the sample
mean tends to be normally distributed with mean µ and variance σ 2/n. That is in fact the
central limit theorem discussed previously.

A.8 Statistical Inference: Hypothesis Testing

Estimation and hypothesis testing constitute the twin branches of classical statistical infer-
ence. Having examined the problem of estimation, we briefly look at the problem of testing
statistical hypotheses.

The problem of hypothesis testing may be stated as follows. Assume that we have an rv X
with a known PDF f(x; θ), where θ is the parameter of the distribution. Having obtained a
random sample of size n, we obtain the point estimator θ̂ . Since the true θ is rarely known,
we raise the question: Is the estimator θ̂ “compatible” with some hypothesized value of θ,
say, θ = θ∗, where θ∗ is a specific numerical value of θ? In other words, could our sample
have come from the PDF f (x; θ) = θ∗? In the language of hypothesis testing θ = θ∗ is
called the null (or maintained) hypothesis and is generally denoted by H0. The null
hypothesis is tested against an alternative hypothesis, denoted by H1, which, for example,
may state that θ �= θ∗. (Note: In some textbooks, H0 and H1 are designated by H1 and H2,
respectively.)

The null hypothesis and the alternative hypothesis can be simple or composite. A
hypothesis is called simple if it specifies the value(s) of the parameter(s) of the distribution;
otherwise it is called a composite hypothesis. Thus, if X ∼ N (µ, σ 2) and we state that

H0: µ = 15 and σ = 2

it is a simple hypothesis, whereas

H0: µ = 15 and σ > 2

is a composite hypothesis because here the value of σ is not specified.
To test the null hypothesis (i.e., to test its validity), we use the sample information to

obtain what is known as the test statistic. Very often this test statistic turns out to be
the point estimator of the unknown parameter. Then we try to find out the sampling, or
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probability, distribution of the test statistic and use the confidence interval or test of
significance approach to test the null hypothesis. The mechanics are illustrated below.

To fix the ideas, let us revert to Example 24, which was concerned with the height (X) of
men in a population. We are told that

Xi ∼ N (µ, σ 2) = N (µ, 2.52)

X̄ = 67 n = 100

Let us assume that

H0: µ = µ∗ = 69

H1: µ �= 69

The question is: Could the sample with X̄ = 67, the test statistic, have come from the pop-
ulation with the mean value of 69? Intuitively, we may not reject the null hypothesis if X̄ is
“sufficiently close” to µ∗; otherwise we may reject it in favor of the alternative hypothesis.
But how do we decide that X̄ is “sufficiently close” to µ∗? We can adopt two approaches,
(1) confidence interval and (2) test of significance, both leading to identical conclusions in
any specific application.

The Confidence Interval Approach
Since Xi ∼ N (µ, σ 2), we know that the test statistic X̄ is distributed as

X̄ ∼ N (µ, σ 2/n)

Since we know the probability distribution of X̄ , why not establish, say, a 100(1 − α)
confidence interval for µ based on X̄ and see whether this confidence interval includes
µ = µ∗? If it does, we may not reject the null hypothesis; if it does not, we may reject the
null hypothesis. Thus, if α = 0.05, we will have a 95 percent confidence interval and if this
confidence interval includes µ∗, we may not reject the null hypothesis—95 out of 100
intervals thus established are likely to include µ∗.

The actual mechanics are as follows: since X̄ ∼ N (µ, σ 2/n), it follows that

Zi = X̄ − µ

σ/
√

n
∼ N (0, 1)

that is, a standard normal variable. Then from the normal distribution table we know that

Pr (−1.96 ≤ Zi ≤ 1.96) = 0.95

That is,

Pr

(
−1.96 ≤ X̄ − µ

σ/
√

n
≤ 1.96

)
= 0.95

which, on rearrangement, gives

Pr

[
X̄ − 1.96

σ√
n

≤ µ ≤ X̄ + 1.96
σ√
n

]
= 0.95

This is a 95 percent confidence interval for µ. Once this interval has been established, the
test of the null hypothesis is simple. All that we have to do is to see whether µ = µ∗ lies in
this interval. If it does, we may not reject the null hypothesis; if it does not, we may reject it.
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Returning to Example 24, we have already established a 95 percent confidence interval
for µ, which is

66.51 ≤ µ ≤ 67.49

This interval obviously does not include µ = 69.Therefore, we can reject the null hypothesis
that the true µ is 69 with a 95 percent confidence coefficient. Geometrically, the situation is as
depicted in Figure A.12.

In the language of hypothesis testing, the confidence interval that we have established is
called the acceptance region and the area(s) outside the acceptance region is (are) called
the critical region(s), or region(s) of rejection of the null hypothesis. The lower and upper
limits of the acceptance region (which demarcate it from the rejection regions) are called
the critical values. In this language of hypothesis testing, if the hypothesized value falls
inside the acceptance region, one may not reject the null hypothesis; otherwise one may
reject it.

It is important to note that in deciding to reject or not reject H0, we are likely to commit
two types of errors: (1) we may reject H0 when it is, in fact, true; this is called a type I
error (thus, in the preceding example X̄ = 67 could have come from the population with a
mean value of 69), or (2) we may not reject H0 when it is, in fact, false; this is called a
type II error. Therefore, a hypothesis test does not establish the value of true µ. It merely
provides a means of deciding whether we may act as if µ = µ∗.

Type I and Type II Errors
Schematically, we have

Critical region Critical region

= 69 lies in this regionµ

95%
acceptance region

2.5
10

2.5
10X +1.96    X – 1.96

67.4966.51

FIGURE A.12
95 percent confidence
interval for µ.

State of Nature

Decision H0 Is True H0 Is False

Reject Type I error No error
Do not reject No error Type II error

Ideally, we would like to minimize both type I and type II errors. But unfortunately, for
any given sample size, it is not possible to minimize both the errors simultaneously. The
classical approach to this problem, embodied in the work of Neyman and Pearson, is to
assume that a type I error is likely to be more serious in practice than a type II error. There-
fore, one should try to keep the probability of committing a type I error at a fairly low level,
such as 0.01 or 0.05, and then try to minimize the probability of having a type II error as
much as possible.

guj75772_appA.qxd  05/09/2008  10:57 AM  Page 833



834 Appendix A A Review of Some Statistical Concepts

In the literature, the probability of a type I error is designated as α and is called the level
of significance, and the probability of a type II error is designated as β . The probability of
not committing a type II error is called the power of the test. Put differently, the power of
a test is its ability to reject a false null hypothesis. The classical approach to hypothesis test-
ing is to fix α at levels such as 0.01 (or 1 percent) or 0.05 (5 percent) and then try to maxi-
mize the power of the test; that is to minimize β .

It is important that the reader understand the concept of the power of a test, which is best
explained with an example.8

Let X ∼ N (µ, 100); that is, X is normally distributed with mean µ and variance 100.
Assume that α = 0.05. Suppose we have a sample of 25 observations, which gives a sam-
ple mean value of X̄ . Suppose further we entertain the hypothesis H0: µ = 50. Since X is
normally distributed, we know that the sample mean is also normally distributed as:
X̄ ∼ N (µ, 100/25). Hence under the stated null hypothesis that µ = 50, the 95 percent
confidence interval for X̄ is (µ ± 1.96(

√
100/25) = µ ± 3.92, that is, (46.08 to 53.92).

Therefore, the critical region consists of all values of X̄ less than 46.08 or greater than
53.92. That is, we will reject the null hypothesis that the true mean is 50 if a sample mean
value is found below 46.08 or greater than 53.92.

But what is the probability that X̄ will lie in the preceding critical region(s) if the
true µ has a value different from 50? Suppose there are three alternative hypotheses:
µ = 48, µ = 52, and µ = 56. If any of these alternatives is true, it will be the actual mean
of the distribution of X̄ . The standard error is unchanged for the three alternatives since σ 2

is still assumed to be 100.
The shaded areas in Figure A.13 show the probabilities that X̄ will fall in the critical

region if each of the alternative hypotheses is true. As you can check, these probabilities

6260585652504844
µ = 48

6260585652504844
µ = 50H:

6260585652504844
µ = 52

62605856545250484644
µ = 56

5446

5446

5446

Distribution of X when N = 25, σ = 10, and µ = 48, 50, 52, or 56. Under H : µ = 50, the critical
region with α = 0.05 is X̄ < 46.1 and X̄ > 53.9. The shaded area indicates the probability that X̄
will fall into the critical region. This probability is:

0.17 if µ = 48 0.17 if µ = 52
0.05 if µ = 50 0.85 if µ = 56

8The following discussion and the figures are based on Helen M. Walker and Joseph Lev, Statistical
Inference, Holt, Rinehart and Winston, New York, 1953, pp. 161–162.

FIGURE A.13
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are 0.17 (for µ = 48), 0.05 (for µ = 50), 0.17 (for µ = 52) and 0.85 (for µ = 56). As you
can see from this figure, whenever the true value of µ differs substantially from the
hypothesis under consideration (which here is µ = 50), the probability of rejecting the
hypothesis is high but when the true value is not very different from the value given under
the null hypothesis, the probability of rejection is small. Intuitively, this should make sense
if the null and alternative hypotheses are very closely bunched.

This can be seen further if you consider Figure A.14, which is called the power function
graph; the curve shown there is called the power curve.

The reader will by now realize that the confidence coefficient (1 − α) discussed earlier
is simply 1 minus the probability of committing a type I error. Thus a 95 percent confidence
coefficient means that we are prepared to accept at the most a 5 percent probability of com-
mitting a type I error—we do not want to reject the true hypothesis by more than 5 out of
100 times.

The p Value, or Exact Level of Significance
Instead of preselecting α at arbitrary levels, such as 1, 5, or 10 percent, one can obtain the
p (probability) value, or exact level of significance of a test statistic. The p value is
defined as the lowest significance level at which a null hypothesis can be rejected.

Suppose that in an application involving 20 df we obtain a t value of 3.552. Now the p
value, or the exact probability, of obtaining a t value of 3.552 or greater can be seen from
Table D.2 as 0.001 (one-tailed) or 0.002 (two-tailed). We can say that the observed t value
of 3.552 is statistically significant at the 0.001 or 0.002 level, depending on whether we are
using a one-tail or two-tail test.

Several statistical packages now routinely print out the p value of the estimated test
statistics. Therefore, the reader is advised to give the p value wherever possible.

Sample Size and Hypothesis Tests
In survey-type data involving hundreds of observations, the null hypothesis seems to be
rejected more frequently than in small samples. It is worth quoting Angus Deaton here:

As the sample size increases, and provided we are using a consistent estimation procedure, our
estimates will be closer to the truth, and less dispersed around it, so that discrepancies that are
undetectable with small sample size will lead to rejection in large samples. Large sample sizes
are like greater resolving power on a telescope; features that are not visible from a distance
become more and more sharply delineated as the magnification is turned up.9

40 42 44 46 48 H

Probability of rejecting H

Scale of

52 54 56 58 60

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

µ

0.1

FIGURE A.14
Power function of test
of hypothesis µ = 50
when N = 25, σ = 10,
and α = 0.05 .

9Angus Deaton, The Analysis of Household Surveys: A Microeconometric Approach to Development Policy,
The Johns Hopkins University Press, Baltimore, 2000, p. 130.
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Following Leamer and Schwarz, Deaton suggests adjusting the standard critical values of
the F and χ2 tests as follows: Reject the null hypothesis when the computed F value exceeds
the logarithm of the sample size, that is, ln, and when the computed χ2 statistic for q
restriction exceeds qln, where l is the natural logarithm and where n is the sample size.
These critical values are known as Leamer–Schwarz critical values.

Using Deaton’s example, if n = 100, the null hypothesis would be rejected only if the
computed F value were greater than 4.6, but if n = 10,000, the null hypothesis would be
rejected when the computed F value exceeded 9.2.

The Test of Significance Approach
Recall that

Zi = X̄ − µ

σ/
√

n
∼ N (0, 1)

In any given application, X̄ and n are known (or can be estimated), but the true µ and σ are
not known. But if σ is specified and we assume (under H0) that µ = µ∗, a specific numer-
ical value, then Zi can be directly computed and we can easily look at the normal distribu-
tion table to find the probability of obtaining the computed Z value. If this probability is
small, say, less than 5 percent or 1 percent, we can reject the null hypothesis—if the
hypothesis were true, the chances of obtaining the particular Z value should be very high.
This is the general idea behind the test of significance approach to hypothesis testing. The
key idea here is the test statistic (here the Z statistic) and its probability distribution under
the assumed value µ = µ∗. Appropriately, in the present case, the test is known as the
Z test, since we use the Z (standardized normal) value.

Returning to our example, if µ = µ∗ = 69, the Z statistic becomes

Z = X̄ − µ∗

σ/
√

n

= 67 − 69

2.5/
√

100

= −2/0.25 = −8

If we look at the normal distribution table (Table D.1), we see that the probability of
obtaining such a Z value is extremely small. (Note: The probability of a Z value exceeding 3
or −3 is about 0.001. Therefore, the probability of Z exceeding 8 is even smaller.) Therefore,
we can reject the null hypothesis that µ = 69; given this value, our chance of obtaining X̄
of 67 is extremely small. We therefore doubt that our sample came from the population with
a mean value of 69. Diagrammatically, the situation is depicted in Figure A.15.

–1.96

2.5%

Z = –8 lies in
this region

2.5%

Z
1.960

FIGURE A.15
The distribution of
the Z statistic.
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In the language of test of significance, when we say that a test (statistic) is significant,
we generally mean that we can reject the null hypothesis. And the test statistic is regarded
as significant if the probability of our obtaining it is equal to or less than α, the probability
of committing a type I error. Thus if α = 0.05, we know that the probability of obtaining a
Z value of −1.96 or 1.96 is 5 percent (or 2.5 percent in each tail of the standardized normal
distribution). In our illustrative example Z was −8. Hence the probability of obtaining such
a Z value is much smaller than 2.5 percent, well below our prespecified probability of com-
mitting a type I error. That is why the computed value of Z = −8 is statistically significant;
that is, we reject the null hypothesis that the true µ∗ is 69. Of course, we reached the same
conclusion using the confidence interval approach to hypothesis testing.

We now summarize the steps involved in testing a statistical hypothesis:

Step 1. State the null hypothesis H0 and the alternative hypothesis H1

(e.g., H0: µ = 69 and H1: µ �= 69).

Step 2. Select the test statistic (e.g., X̄ ).

Step 3. Determine the probability distribution of the test statistic 
(e.g., X̄ ∼ N (µ, σ 2/n).

Step 4. Choose the level of significance (i.e., the probability of committing a 
type I error) α.

Step 5. Using the probability distribution of the test statistic, establish a 100(1 − α)%
confidence interval. If the value of the parameter under the null hypothesis (e.g.,
µ = µ∗ = 69) lies in this confidence region, the region of acceptance, do not reject
the null hypothesis. But if it falls outside this interval (i.e., it falls into the region of
rejection), you may reject the null hypothesis. Keep in mind that in not rejecting or
rejecting a null hypothesis you are taking a chance of being wrong α percent of
the time.

References

For the details of the material covered in this appendix, the reader may consult the follow-
ing references:

Hoel, Paul G., Introduction to Mathematical Statistics, 4th ed., John Wiley & Sons, New
York, 1974. This book provides a fairly simple introduction to various aspects of math-
ematical statistics.

Freund, John E., and Ronald E. Walpole, Mathematical Statistics, 3d ed., Prentice Hall,
Englewood Cliffs, NJ, 1980. Another introductory textbook in mathematical statistics.

Mood, Alexander M., Franklin A. Graybill, and Duane C. Boes, Introduction to the Theory
of Statistics, 3d ed., McGraw-Hill, New York, 1974. This is a comprehensive introduc-
tion to the theory of statistics but is somewhat more difficult than the preceding two text-
books.

Newbold, Paul, Statistics for Business and Economics, Prentice Hall, Englewood Cliffs, NJ,
1984. A comprehensive nonmathematical introduction to statistics with lots of worked-
out problems.
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This appendix offers the essentials of matrix algebra required to understand Appendix C
and some of the material in Chapter 18. The discussion is nonrigorous, and no proofs are
given. For proofs and further details, the reader may consult the references.

B.1 Definitions

Matrix
A matrix is a rectangular array of numbers or elements arranged in rows and columns. More
precisely, a matrix of order, or dimension, M by N (written as M × N ) is a set of M × N
elements arranged in M rows and N columns. Thus, letting boldface letters denote matrices,
an (M × N ) matrix A may be expressed as

A = [ai j ] =




a11 a12 a13 · · · a1N

a21 a22 a23 · · · a2N

aM1 aM2 aM3 · · · aM N

. . . . . . . . . . . . . . . . . . . . . . . . . . .




where ai j is the element appearing in the ith row and the jth column of A and where [ai j ] is
a shorthand expression for the matrix A whose typical element is ai j . The order, or dimen-
sion, of a matrix—that is, the number of rows and columns—is often written underneath
the matrix for easy reference.

A
2×3

=
[

2 3 5
6 1 3

]
B

3×3
=


 1 5 7

−1 0 4
8 9 11




Scalar
A scalar is a single (real) number. Alternatively, a scalar is a 1×1 matrix.

Column Vector
A matrix consisting of M rows and only one column is called a column vector. Letting the
boldface lowercase letters denote vectors, an example of a column vector is

x
4×1

=




3
4
5
9




AppendixB
Rudiments of
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Row Vector
A matrix consisting of only one row and N columns is called a row vector.

x
1×4

= [1 2 5 − 4] y
1×5

= [0 5 −9 6 10]

Transposition
The transpose of an M × N matrix A, denoted by A′ (read as A prime or A transpose) is an
N × M matrix obtained by interchanging the rows and columns of A; that is, the ith row of
A becomes the ith column of A′. For example,

A
3×2

=

 4 5

3 1
5 0


 A′

2×3
=

[
4 3 5
5 1 0

]

Since a vector is a special type of matrix, the transpose of a row vector is a column vector
and the transpose of a column vector is a row vector. Thus

x =

 4

5
6


 and x′ = [4 5 6]

We shall follow the convention of indicating the row vectors by primes.

Submatrix
Given any M × N matrix A, if all but r rows and s columns of A are deleted, the resulting
matrix of order r × s is called a submatrix of A. Thus, if

A
3×3

=

 3 5 7

8 2 1
3 2 1




and we delete the third row and the third column of A, we obtain

B
2×2

=
[

3 5
8 2

]

which is a submatrix of A whose order is 2 × 2.

B.2 Types of Matrices

Square Matrix
A matrix that has the same number of rows as columns is called a square matrix.

A =
[

3 4
5 6

]
B =


 3 5 8

7 3 1
4 5 0




Diagonal Matrix
A square matrix with at least one nonzero element on the main diagonal (running from the
upper-left-hand corner to the lower-right-hand corner) and zeros elsewhere is called a
diagonal matrix.

A
2×2

=
[

2 0
0 3

]
B

3×3
=


−2 0 0

0 5 0
0 0 1



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Scalar Matrix
A diagonal matrix whose diagonal elements are all equal is called a scalar matrix. An ex-
ample is the variance-covariance matrix of the population disturbance of the classical lin-
ear regression model given in Equation (C.2.3), namely,

var-cov (u) =




σ 2 0 0 0 0
0 σ 2 0 0 0
0 0 σ 2 0 0
0 0 0 σ 2 0
0 0 0 0 σ 2




Identity, or Unit, Matrix
A diagonal matrix whose diagonal elements are all 1 is called an identity, or unit, matrix
and is denoted by I. It is a special kind of scalar matrix.

I
3×3

=

 1 0 0

0 1 0
0 0 1


 I

4×4
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




Symmetric Matrix
A square matrix whose elements above the main diagonal are mirror images of the ele-
ments below the main diagonal is called a symmetric matrix. Alternatively, a symmetric
matrix is such that its transpose is equal to itself; that is, A = A′. That is, the element ai j of
A is equal to the element aji of A′. An example is the variance-covariance matrix given in
Equation (C.2.2). Another example is the correlation matrix given in (C.5.1).

Null Matrix
A matrix whose elements are all zero is called a null matrix and is denoted by 0.

Null Vector
A row or column vector whose elements are all zero is called a null vector and is also
denoted by 0.

Equal Matrices
Two matrices A and B are said to be equal if they are of the same order and their corre-
sponding elements are equal; that is, ai j = bi j for all i and j. For example, the matrices

A
3×3

=

 3 4 5

0 −1 2
5 1 3


 and B

3×3
=


 3 4 5

0 −1 2
5 1 3




are equal; that is A = B.

B.3 Matrix Operations

Matrix Addition
Let A = [ai j ] and B = [bi j ]. If A and B are of the same order, we define matrix addition as

A + B = C
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where C is of the same order as A and B and is obtained as ci j = ai j + bi j for all i and j;
that is, C is obtained by adding the corresponding elements of A and B. If such addition can
be effected, A and B are said to be conformable for addition. For example, if

A =
[

2 3 4 5
6 7 8 9

]
and B =

[
1 0 −1 3

−2 0 1 5

]

and C = A + B, then

C =
[

3 3 3 8
4 7 9 14

]

Matrix Subtraction
Matrix subtraction follows the same principle as matrix addition except that C = A − B;
that is, we subtract the elements of B from the corresponding elements of A to obtain C,
provided A and B are of the same order.

Scalar Multiplication
To multiply a matrix A by a scalar λ (a real number), we multiply each element of the ma-
trix by λ:

λA = [λai j ]

For example, if λ = 2 and

A =
[−3 5

8 7

]

then

λA =
[−6 10

16 14

]

Matrix Multiplication
Let A be M × N and B be N × P . Then the product AB (in that order) is defined to be a
new matrix C of order M × P such that

ci j =
N∑

k=1

aikbk j
i = 1, 2, . . . , M
j = 1, 2, . . . , P

That is, the element in the ith row and the jth column of C is obtained by multiplying the ele-
ments of the ith row of A by the corresponding elements of the jth column of B and summing
over all terms; this is known as the row by column rule of multiplication. Thus, to obtain c11,
the element in the first row and the first column of C, we multiply the elements in the first row
of A by the corresponding elements in the first column of B and sum over all terms. Similarly,
to obtain c12, we multiply the elements in the first row of A by the corresponding elements in
the second column of B and sum over all terms, and so on.

Note that for multiplication to exist, matrices A and B must be conformable with respect
to multiplication; that is, the number of columns in A must be equal to the number of rows
in B. If, for example,

A
2×3

=
[

3 4 7
5 6 1

]
and B

3×2
=


 2 1

3 5
6 2




AB = C
2×2

=
[

(3 × 2) + (4 × 3) + (7 × 6) (3 × 1) + (4 × 5) + (7 × 2)
(5 × 2) + (6 × 3) + (1 × 6) (5 × 1) + (6 × 5) + (1 × 2)

]

=
[

60 37
34 37

]
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But if

A
2×3

=
[

3 4 7
5 6 1

]
and B

2×2
=

[
2 3
5 6

]

the product AB is not defined since A and B are not conformable with respect to multiplication.

Properties of Matrix Multiplication
1. Matrix multiplication is not necessarily commutative; that is, in general, AB �= BA.

Therefore, the order in which the matrices are multiplied is very important. AB means
that A is postmultiplied by B or B is premultiplied by A.

2. Even if AB and BA exist, the resulting matrices may not be of the same order. Thus, if
A is M × N and B is N × M , AB is M × M whereas BA is N × N , hence of different
order.

3. Even if A and B are both square matrices, so that AB and BA are both defined, the
resulting matrices will not be necessarily equal. For example, if

A =
[

4 7
3 2

]
and B =

[
1 5
6 8

]

then

AB =
[

46 76
15 31

]
and BA =

[
19 17
48 58

]

and AB �= BA. An example of AB = BA is when both A and B are identity matrices.

4. A row vector postmultiplied by a column vector is a scalar. Thus, consider the ordinary
least-squares residuals û1, û2, . . . , ûn . Letting u be a column vector and u′ be a row vec-
tor, we have

û′û = [û1 û2 û3 · · · ûn]




û1

û2

û3
...

ûn




= û2
1 + û2

2 + û2
3 + · · · + û ′2

n

=
∑

û2
i a scalar [see Eq. (C.3.5)]

5. A column vector postmultiplied by a row vector is a matrix. As an example, consider the
population disturbances of the classical linear regression model, namely, u1, u2, . . . , un .
Letting u be a column vector and u′ a row vector, we obtain

uu′ =




u1

u2

u3
...

un




[u1 u2 u3 · · · un]

=




u2
1 u1u2 u1u3 · · · u1un

u2u1 u2
2 u2u3 · · · u2un

unu1 unu2 unu3 · · · u2
n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



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which is a matrix of order n × n. Note that the preceding matrix is symmetrical.

6. A matrix postmultiplied by a column vector is a column vector.

7. A row vector postmultiplied by a matrix is a row vector.

8. Matrix multiplication is associative; that is, (AB)C = A(BC), where A is M × N , B is
N × P , and C is P × K .

9. Matrix multiplication is distributive with respect to addition; that is, A(B + C) = AB +
AC and (B + C)A = BA + CA.

Matrix Transposition
We have already defined the process of matrix transposition as interchanging the rows and
the columns of a matrix (or a vector). We now state some of the properties of transposition.

1. The transpose of a transposed matrix is the original matrix itself. Thus, (A′)′ = A.

2. If A and B are conformable for addition, then C = A + B and C′ =
(A + B)′ = A′ + B′. That is, the transpose of the sum of two matrices is the sum of their
transposes.

3. If AB is defined, then (AB)′ = B′A′. That is, the transpose of the product of two matri-
ces is the product of their transposes in the reverse order. This can be generalized:
(ABCD)′ = D′C′B′A′.

4. The transpose of an identity matrix I is the identity matrix itself; that is I′ = I.

5. The transpose of a scalar is the scalar itself. Thus, if λ is a scalar, λ′ = λ.

6. The transpose of (λA)′ is λA′ where λ is a scalar. [Note: (λA)′ = A′λ′ = A′λ = λA′.]
7. If A is a square matrix such that A = A′, then A is a symmetric matrix. (See the defini-

tion of symmetric matrix given in Section B.2.)

Matrix Inversion
An inverse of a square matrix A, denoted by A−1 (read A inverse), if it exists, is a unique
square matrix such that

AA−1 = A−1A = I

where I is an identity matrix whose order is the same as that of A. For example

A =
[

2 4
6 8

]
A−1 =

[
−1 1

2
6
8 − 1

4

]
AA−1 =

[
1 0
0 1

]
= I

We shall see how A−1 is computed after we study the topic of determinants. In the mean-
time, note these properties of the inverse.

1. (AB)−1 = B−1A−1; that is, the inverse of the product of two matrices is the product of
their inverses in the reverse order.

2. (A−1)′ = (A′)−1; that is, the transpose of A inverse is the inverse of A transpose.

B.4 Determinants

Toeverysquarematrix,A, therecorrespondsanumber (scalar)knownas thedeterminantof the
matrix, which is denoted by det A or by the symbol | A |, where | |means “the determinant of.”
Note that a matrix per se has no numerical value, but the determinant of a matrix is a number.

A =

 1 3 −7

2 5 0
3 8 6


 | A | =

∣∣∣∣∣∣
1 3 −7
2 5 0
3 8 6

∣∣∣∣∣∣
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The | A | in this example is called a determinant of order 3 because it is associated with a
matrix of order 3 × 3.

Evaluation of a Determinant
The process of finding the value of a determinant is known as the evaluation, expansion, or
reduction of the determinant. This is done by manipulating the entries of the matrix in a
well-defined manner.

Evaluation of a 2 × 2 Determinant
If

A =
[

a11 a12

a21 a22

]

its determinant is evaluated as follows:

| A | =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21

which is obtained by cross-multiplying the elements on the main diagonal and subtracting
from it the cross-multiplication of the elements on the other diagonal of matrix A, as indi-
cated by the arrows.

Evaluation of a 3 × 3 Determinant
If

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33




then

| A | = a11a22a33 − a11a23a32 + a12a23a31 − a12a21a33 + a13a21a32 − a13a22a31

A careful examination of the evaluation of a 3 × 3 determinant shows:

1. Each term in the expansion of the determinant contains one and only one element from
each row and each column.

2. The number of elements in each term is the same as the number of rows (or columns) in
the matrix. Thus, a 2 × 2 determinant has two elements in each term of its expansion, a
3 × 3 determinant has three elements in each term of its expansion, and so on.

3. The terms in the expansion alternate in sign from + to −.

4. A 2 × 2 determinant has two terms in its expansion, and a 3 × 3 determinant has six
terms in its expansion. The general rule is: The determinant of order N × N has
N ! = N (N − 1)(N − 2) · · · 3 · 2 · 1 terms in its expansion, where N! is read “N factor-
ial.” Following this rule, a determinant of order 5 × 5 will have 5 · 4 · 3 · 2 · 1 = 120
terms in its expansion.1

Properties of Determinants
1. A matrix whose determinantal value is zero is called a singular matrix, whereas a

matrix with a nonzero determinant is called a nonsingular matrix. The inverse of
a matrix as defined before does not exist for a singular matrix.

←→←→

1To evaluate the determinant of an N × N matrix, A, see the references
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2. If all the elements of any row of A are zero, its determinant is zero. Thus,

| A | =
∣∣∣∣∣∣
0 0 0
3 4 5
6 7 8

∣∣∣∣∣∣ = 0

3. | A′ | = | A |; that is, the determinants of A and A transpose are the same.

4. Interchanging any two rows or any two columns of a matrix A changes the sign of | A |.

EXAMPLE 1 If

A =
[

6 9
−1 4

]
and B =

[−1 4
6 9

]

where B is obtained by interchanging the rows of A, then

|A| = 24 − (−9) and |B| = −9 − (24)

= 33 = −33

EXAMPLE 2 If

λ = 5 and A =
[

5 −8
2 4

]

and we multiply the first row of A by 5 to obtain

B =
[

25 −40
2 4

]

it can be seen that |A| = 36 and |B| = 180, which is 5 |A|.

5. If every element of a row or a column of A is multiplied by a scalar λ, then | A | is
multiplied by λ.

6. If two rows or columns of a matrix are identical, its determinant is zero.

7. If one row or a column of a matrix is a multiple of another row or column of that matrix,
its determinant is zero. Thus, if

A =
[

4 8
2 4

]

where the first row of A is twice its second row, | A | = 0. More generally, if any row
(column) of a matrix is a linear combination of other rows (columns), its determinant is
zero.

8. | AB | = | A || B |; that is, the determinant of the product of two matrices is the product
of their (individual) determinants.

Rank of a Matrix
The rank of a matrix is the order of the largest square submatrix whose determinant is not
zero.

guj75772_appB.qxd  05/09/2008  11:46 AM  Page 845



846 Appendix B Rudiments of Matrix Algebra

Minor
If the ith row and jth column of an N × N matrix A are deleted, the determinant of the re-
sulting submatrix is called the minor of the element aij (the element at the intersection of
the ith row and the jth column) and is denoted by | Mi j |.

EXAMPLE 3
A =


 3 6 6

0 4 5
3 2 1




It can be seen that |A | = 0. In other words, A is a singular matrix. Hence although its order
is 3 × 3, its rank is less than 3. Actually, it is 2, because we can find a 2 × 2 submatrix
whose determinant is not zero. For example, if we delete the first row and the first column
of A, we obtain

B =
[

4 5
2 1

]

whose determinant is −6, which is nonzero. Hence the rank of A is 2. As noted previously,
the inverse of a singular matrix does not exist. Therefore, for an N × N matrix A, its rank
must be N for its inverse to exist; if it is less than N, A is singular.

EXAMPLE 4
A =


 a11 a12 a13

a21 a22 a23

a31 a32 a33




The minor of a11 is

|M11| =
∣∣∣∣ a22 a23

a32 a33

]
= a22a33 − a23a32

Similarly, the minor of a21 is 

|M21| =
∣∣∣∣ a12 a13

a32 a33

]
= a12a33 − a13a32

The minors of other elements of A can be found similarly.

Cofactor
The cofactor of the element aij of an N × N matrix A, denoted by ci j , is defined as

ci j = ( −1)i+ j | Mij |
In other words, a cofactor is a signed minor, the sign being positive if i + j is even and
being negative if i + j is odd. Thus, the cofactor of the element a11 of the 3 × 3 matrix A
given previously is a22a33 − a23a32, whereas the cofactor of the element a21 is
−(a12a33 − a13a32) since the sum of the subscripts 2 and 1 is 3, which is an odd number.

Cofactor Matrix
Replacing the elements aij of a matrix A by their cofactors, we obtain a matrix known as
the cofactor matrix of A, denoted by (cof A).

Adjoint Matrix
The adjoint matrix, written as (adj A), is the transpose of the cofactor matrix; that is,
(adj A) = (cof A)′.
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B.5 Finding the Inverse of a Square Matrix

If A is square and nonsingular (that is, |A| �= 0), its inverse A−1 can be found as follows: 

A−1 = 1

| A | (adj A)

The steps involved in the computation are as follows:

1. Find the determinant of A. If it is nonzero, proceed to step 2.

2. Replace each element aij of A by its cofactor to obtain the cofactor matrix.

3. Transpose the cofactor matrix to obtain the adjoint matrix.

4. Divide each element of the adjoint matrix by | A |.

EXAMPLE 5 Find the inverse of the matrix

A =

 1 2 3

5 7 4
2 1 3




Step 1. We first find the determinant of the matrix. Applying the rules of expanding
a 3 × 3 determinant given previously, we obtain |A | = −24.
Step 2. We now obtain the cofactor matrix, say, C:

C =




∣∣∣ 7 4
1 3

∣∣∣ −
∣∣∣ 5 4
2 3

∣∣∣ ∣∣∣ 5 7
2 1

∣∣∣
−

∣∣∣ 2 3
1 3

∣∣∣ ∣∣∣ 1 3
2 3

∣∣∣ −
∣∣∣ 1 2
2 1

∣∣∣∣∣∣ 2 3
7 4

∣∣∣ −
∣∣∣ 1 3
5 4

∣∣∣ ∣∣∣ 1 2
5 7

∣∣∣




=

 17 −7 −9

−3 −3 3
−13 11 −3




Step 3. Transposing the preceding cofactor matrix, we obtain the following adjoint
matrix:

(adj A) =

 17 −3 −13

−7 −3 11
−9 3 −3




Step 4. We now divide the elements of (adj A) by the determinantal value of −24 to
obtain

A−1 = − 1
24


 17 −3 −13

−7 −3 11
−9 3 −3




=




− 17
24

3
24

13
24

7
24

3
24 − 11

24
9
24 − 3

24
3
24




It can be readily verified that

AA−1 =

 1 0 0

0 1 0
0 0 1




which is an identity matrix. The reader should verify that for the illustrative example given
in Appendix C (see Section C.10) the inverse of the X′X matrix is as shown in Eq. (C.10.5).
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B.6 Matrix Differentiation

To follow the material in Appendix CA, Section CA.2, we need some rules regarding
matrix differentiation.

RULE 1 If a′ = [a1 a2 · · · an] is a row vector of numbers, and

x =




x1

x2
...

xn




is a column vector of the variables x1, x2, . . . , xn, then

∂(a′x)_____
∂x   = a =




a1

a2
...

an




RULE 2 Consider the matrix x′Ax such that

x′Ax = [x1 x2 · · · xn]




a11 a12 · · · a1n

a21 a22 · · · a2n

an1 an2 ann


· · · · · · · · · · · · · · · · · · · · ·




x1

x2
...

xn




Then

∂(x′Ax)
∂x   = 2Ax 

which is a column vector of n elements, or

∂(x′Ax)
∂x   = 2x′A 

which is a row vector of n elements.

References

Chiang, Alpha C., Fundamental Methods of Mathematical Economics, 3d ed., McGraw-
Hill, New York, 1984, chapters 4 and 5. This is an elementary discussion.

Hadley, G., Linear Algebra, Addison-Wesley, Reading, Mass., 1961. This is an advanced
discussion.
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This appendix presents the classical linear regression model involving k variables (Y and
X2, X3, . . . , Xk) in matrix algebra notation. Conceptually, the k-variable model is a logical
extension of the two- and three-variable models considered thus far in this text. Therefore,
this appendix presents very few new concepts save for the matrix notation.1

A great advantage of matrix algebra over scalar algebra (elementary algebra dealing
with scalars or real numbers) is that it provides a compact method of handling regression
models involving any number of variables; once the k-variable model is formulated
and solved in matrix notation, the solution applies to one, two, three, or any number of
variables.

C.1 The k-Variable Linear Regression Model

If we generalize the two- and three-variable linear regression models, the k-variable
population regression function (PRF) model involving the dependent variable Y and k − 1
explanatory variables X2, X3, . . . , Xk may be written as

PRF: Yi = β1 + β2 X2i + β3 X3i + · · · + βk Xki + ui i = 1, 2, 3, . . . , n
(C.1.1)

where β1 = the intercept, β2 to βk = partial slope coefficients, u = stochastic distur-
bance term, and i = i th observation, n being the size of the population. The PRF (C.1.1) is
to be interpreted in the usual manner: It gives the mean or expected value of Y condi-
tional upon the fixed (in repeated sampling) values of X2, X3, . . . , Xk , that is,
E(Y | X2i , X3i , . . . , Xki ).

AppendixC
The Matrix Approach
to Linear Regression
Model

849

1Readers not familiar with matrix algebra should review Appendix B before proceeding any further.
Appendix B provides the essentials of matrix algebra needed to follow this appendix.
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850 Appendix C The Matrix Approach to Linear Regression Model

Equation (C.1.1) is a shorthand expression for the following set of n simultaneous
equations:

Y1 = β1 + β2 X2 1 + β3 X3 1 + · · · + βk Xk1 + u1

Y2 = β1 + β2 X2 2 + β3 X3 2 + · · · + βk Xk2 + u2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(C.1.2)

Yn = β1 + β2 X2n + β3 X3n + · · · + βk Xkn + un

Let us write the system of equations (C.1.2) in an alternative but more illuminating way as
follows:2




Y1

Y2
...

Yn


 =




1 X2 1 X3 1 · · · Xk1

1 X2 2 X3 2 · · · Xk2
...

...
...

. . .
...

1 X2n X3n · · · Xkn







β1

β2
...

βk


 +




u1

u2
...

un


 (C.1.3)

y = X β + u

n × 1 n × k k × 1 n × 1

where y = n × 1 column vector of observations on the dependent variable Y
X = n × k matrix giving n observations on k − 1 variables X2 to Xk , 

the first column of 1’s representing the intercept term (this matrix is also
known as the data matrix)

β = k × 1 column vector of the unknown parameters β1, β2, . . . , βk

u = n × 1 column vector of n disturbances ui

Using the rules of matrix multiplication and addition, the reader should verify that systems
(C.1.2) and (C.1.3) are equivalent.

System (C.1.3) is known as the matrix representation of the general (k-variable) linear
regression model. It can be written more compactly as

(C.1.4)

Where there is no confusion about the dimensions or orders of the matrix X and the vectors
y, β, and u, Eq. (C.1.4) may be written simply as

y = Xβ + u (C.1.5)

As an illustration of the matrix representation, consider the two-variable consumption–
income model considered in Chapter 3, namely, Yi = β1 + β2 Xi + ui , where Y is con-
sumption expenditure and X is income. Using the data given in Table 3.2, we may write the

y = X β + u
n × 1 n × k k × 1 n × 1

2Following the notation introduced in Appendix B, we shall represent vectors by lowercase
boldfaced letters and matrices by uppercase boldfaced letters.

guj75772_appC.qxd  05/09/2008  11:07 AM  Page 850



Appendix C The Matrix Approach to Linear Regression Model 851

matrix formulation as




70
65
90
95

110
115
120
140
155
150




=




1 80
1 100
1 120
1 140
1 160
1 180
1 200
1 220
1 240
1 260




[
β1

β2

]
+




u1

u2

u3

u4

u5

u6

u7

u8

u9

u10




(C.1.6)

y = X β + u
10 × 1 10 × 2 2 × 1 10 × 1

As in the two- and three-variable cases, our objective is to estimate the parameters of the
multiple regression (C.1.1) and to draw inferences about them from the data at hand. In ma-
trix notation this amounts to estimating β and drawing inferences about this β. For the pur-
pose of estimation, we may use the method of ordinary least squares (OLS) or the method
of maximum likelihood (ML). But as noted before, these two methods yield identical esti-
mates of the regression coefficients.3 Therefore, we shall confine our attention to the
method of OLS.

C.2 Assumptions of the Classical Linear Regression Model
in Matrix Notation

The assumptions underlying the classical linear regression model are given in Table C.1;
they are presented both in scalar notation and in matrix notation. Assumption 1 given in
Eq. (C.2.1) means that the expected value of the disturbance vector u, that is, of each of its
elements, is zero. More explicitly, E(u) = 0 means

E




u1

u2
...

un


 =




E(u1)

E(u2)
...

E(un)


 =




0

0
...

0


 (C.2.1)

Assumption 2 (Eq. [C.2.2]) is a compact way of expressing the two assumptions given
in Eqs. (3.2.5) and (3.2.2) by the scalar notation. To see this, we can write

E(uu′) = E




u1

u2
...

un


 [u1 u2 · · · un]

3The proof that this is so in the k-variable case can be found in the footnote reference given in
Chapter 4.
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where u′ is the transpose of the column vector u, or a row vector. Performing the multipli-
cation, we obtain

E(uu′) = E




u2
1 u1u2 · · · u1un

u2u1 u2
2 · · · u2un

unu1 unu2 · · · u2
n

· · · · · · · · · · · · · · · · · · · · · · · ·




Applying the expectations operator E to each element of the preceding matrix, we obtain

E(uu′) =




E
(
u2

1

)
E(u1u2) · · · E(u1un)

E(u2u1) E
(
u2

2

) · · · E(u2un)

E(unu1) E(unu2) · · · E
(
u2

n

)· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·


 (C.2.2)

Because of the assumptions of homoscedasticity and no serial correlation, matrix (C.2.2)
reduces to

E(uu′) =




σ 2 0 0 · · · 0
0 σ 2 0 · · · 0

0 0 0 · · · σ 2
· · · · · · · · · · · · · · · · · · · · ·




= σ 2




1 0 0 · · · 0
0 1 0 · · · 0

0 0 0 · · · 1
· · · · · · · · · · · · · · · · ·


 (C.2.3)

= σ 2I

where I is an n × n identity matrix.
Matrix (C.2.2) (and its representation given in Eq. [C.2.3]) is called the variance-

covariance matrix of the disturbances ui ; the elements on the main diagonal of this ma-
trix (running from the upper left corner to the lower right corner) give the variances, and the

TABLE C.1
Assumptions of the
Classical Linear
Regression Model

Scalar Notation Matrix Notation

1. E (ui ) = 0, for each i (3.2.1) 1. E(u) = 0
where u and 0 are n × 1 column vectors,
0 being a null vector

2. E (ui u j ) = 0 i �= j (3.2.5) 2. E(uu′) = σ 2I 
= σ2 i = j (3.2.2) where I is an n × n identity matrix

3. X2, X3, . . . , Xk are 3. The n × k matrix X is nonstochastic, that is,
nonstochastic or fixed it consists of a set of fixed numbers

4. There is no exact linear (7.1.9) 4. The rank of X is p(X) = k, where k is the 
relationship among the number of columns in X and k is less than 
X variables, that is, no the number of observations, n
multicollinearity

5. For hypothesis testing, (4.2.4) 5. The u vector has a multivariate normal 
ui ∼ N(0, σ 2) distribution, i.e., u ∼ N(0, σ2I)
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elements off the main diagonal give the covariances.4 Note that the variance–covariance
matrix is symmetric: The elements above and below the main diagonal are reflections of
one another.

Assumption 3 in Table C.1 states that the n × k matrix X is nonstochastic; that is, it con-
sists of fixed numbers. As noted previously, our regression analysis is conditional regres-
sion analysis, conditional upon the fixed values of the X variables.

Assumption 4 states that the X matrix has full column rank equal to k, the number of
columns in the matrix. This means that the columns of the X matrix are linearly indepen-
dent; that is, there is no exact linear relationship among the X variables. In other words
there is no multicollinearity. In scalar notation this is equivalent to saying that there exists
no set of numbers λ1, λ2, . . . , λk not all zero such that (cf. Eq. [7.1.8])

λ1 X1i + λ2 X2i + · · · + λk Xki = 0 (C.2.4)

where X1i = 1 for all i (to allow for the column of 1’s in the X matrix). In matrix notation,
Eq. (C.2.4) can be represented as

λ′x = 0 (C.2.5)

where λ′ is a 1 × k row vector and x is a k × 1 column vector.
If an exact linear relationship such as Eq. (C.2.4) exists, the variables are said to be collinear.

If, on the other hand, Eq. (C.2.4) holds true only if λ1 = λ2 = λ3 = · · · = 0, then the X vari-
ables are said to be linearly independent. An intuitive reason for the no multicollinearity
assumption was given in Chapter 7, and we explored this assumption further in Chapter 10.

C.3 OLS Estimation

To obtain the OLS estimate of β, let us first write the k-variable sample regression function
(SRF):

Yi = β̂1 + β̂2 X2i + β̂3 X3i + · · · + β̂k Xki + ûi (C.3.1)

which can be written more compactly in matrix notation as

y = X β̂ + û (C.3.2)

and in matrix form as



Y1

Y2
...

Yn


 =




1 X2 1 X3 1 · · · Xk1

1 X2 2 X3 2 · · · Xk2

1 X2n X3n · · · Xkn

· · · · · · · · · · · · · · · · · · · · · · · ·







β̂1

β̂2
...

β̂k


 +




û1

û2
...

ûn


 (C.3.3)

y = X β̂ + û
n × 1 n × k k × 1 n × 1

where β̂ is a k-element column vector of the OLS estimators of the regression coefficients
and where û is an n × 1 column vector of n residuals.

4By definition, the variance of ui = E [ui − E(ui)]2 and the covariance between ui and uj = E[ui − E(ui)]
[uj − E(uj)]. But because of the assumption E(ui) = 0 for each i, we have the variance-covariance
matrix (C.2.3).
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As in the two- and three-variable models, in the k-variable case the OLS estimators are
obtained by minimizing∑

û2
i =

∑
(Yi − β̂1 − β̂2 X2i − · · · − β̂k Xki )

2 (C.3.4)

where 
∑

û2
i is the residual sum of squares (RSS). In matrix notation, this amounts to min-

imizing û′û since

û′û = [û1 û2 · · · ûn]




û1

û2
...

ûn


 = û2

1 + û2
2 + · · · + û2

n =
∑

û2
i (C.3.5)

Now from Eq. (C.3.2) we obtain

û = y − X β̂ (C.3.6)

Therefore,

û′û = (y − X β̂)′(y − X β̂)

= y′y − 2 β̂′X′y + β̂′X′X β̂
(C.3.7)

where use is made of the properties of the transpose of a matrix, namely, (X β̂)′ = β̂′X′; and
since β̂′X′y is a scalar (a real number), it is equal to its transpose y′X β̂.

Equation (C.3.7) is the matrix representation of (C.3.4). In scalar notation, the method
of OLS consists in so estimating β1, β2, . . . , βk that 

∑
û2

i is as small as possible. This is
done by differentiating Eq. (C.3.4) partially with respect to β̂1, β̂2, . . . , β̂k and setting the
resulting expressions to zero. This process yields k simultaneous equations in k unknowns,
the normal equations of the least-squares theory. As shown in Appendix CA, Section CA.1,
these equations are as follows:

nβ̂1 + β̂2

∑
X2i + β̂3

∑
X3i + · · · + β̂k

∑
Xki =

∑
Yi

β̂1

∑
X2i + β̂2

∑
X2

2i + β̂3

∑
X2i X3i + · · · + β̂k

∑
X2i Xki =

∑
X2i Yi

β̂1

∑
X3i + β̂2

∑
X3i X2i + β̂3

∑
X2

3i + · · · + β̂k

∑
X3i Xki =

∑
X3i Yi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β̂1

∑
Xki + β̂2

∑
Xki X2i + β̂3

∑
Xki X3i + · · · + β̂k

∑
X2

ki =
∑

Xki Yi

(C.3.8)5

In matrix form, Eq. (C.3.8) can be represented as


n
∑

X2i
∑

X3i · · · ∑
Xki∑

X2i
∑

X2
2i

∑
X2i X3i · · · ∑

X2i Xki∑
X3i

∑
X3i X2i

∑
X2

3i · · · ∑
X3i Xki

∑
Xki

∑
Xki X2i

∑
Xki X3i · · · ∑

X2
ki

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·







β̂1

β̂2

β̂3
...

β̂k




=




1 1 · · · 1
X2 1 X2 2 · · · X2n

X3 1 X3 2 · · · X3n

Xk1 Xk2 · · · Xkn

· · · · · · · · · · · · · · · · · · · ·







Y1

Y2

Y3
...

Yn




(X′X) β̂ X′ y
(C.3.9)

5These equations can be remembered easily. Start with the equation Yi = β̂1 + β̂2 X2i +
β̂3 X3i + · · · + β̂k Xki . Summing this equation over the n values gives the first equation in (C.3.8); mul-
tiplying it by X2 on both sides and summing over n gives the second equation; multiplying it by X3

on both sides and summing over n gives the third equation; and so on. In passing, note that the first
equation in (C.3.8) gives at once β̂1 = Ȳ − β̂2 X̄2 − · · · − β̂k X̄k (cf. [7.4.6]).
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or, more compactly, as

(X′X)β̂ = X′y (C.3.10)

Note these features of the (X′X) matrix: (1) It gives the raw sums of squares and cross
products of the X variables, one of which is the intercept term taking the value of 1 for each
observation. The elements on the main diagonal give the raw sums of squares, and those off
the main diagonal give the raw sums of cross products (by raw we mean in original units of
measurement). (2) It is symmetrical since the cross product between X2i and X3i is the same
as that between X3i and X2i. (3) It is of order (k × k), that is, k rows and k columns.

In Eq. (C.3.10) the known quantities are (X′X) and (X′y) (the cross product between the
X variables and y) and the unknown is β̂. Now using matrix algebra, if the inverse of (X′X)
exists, say, (X′X)−1, then premultiplying both sides of Eq. (C.3.10) by this inverse, we
obtain

(X′X)−1(X′X)β̂ = (X′X)−1X′y

But since (X′X)−1(X′X) = I, an identity matrix of order k × k, we get

I β̂ = (X′X)−1X′y

or

(C.3.11)

Equation (C.3.11) is a fundamental result of the OLS theory in matrix notation. It
shows how the β̂ vector can be estimated from the given data. Although Eq. (C.3.11) was
obtained from Eq. (C.3.9), it can be obtained directly from Eq. (C.3.7) by differentiating û′û
with respect to β̂. The proof is given in Appendix CA, Section CA.2.

An Illustration
As an illustration of the matrix methods developed so far, let us work a consumption–
income example using the data in Eq. (C.1.6). For the two-variable case we have

β̂ =
[

β̂1

β̂2

]

(X′X) =
[

1 1 1 · · · 1
X1 X2 X3 · · · Xn

]



1 X1

1 X2

1 X3

· · ·
1 X N


 =


 n

∑
Xi∑

Xi
∑

X2
i




and

X′y =
[

1 1 1 · · · 1
X1 X2 X3 · · · Xn

]



Y1

Y2

Y3
...

Yn




=
[ ∑

Yi∑
Xi Yi

]

β̂ = (X′X)−1 X′ y

k × 1 k × k (k × n) (n × 1)
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Using the data given in Eq. (C.1.6), we obtain

X′X =
[

10 1700
1700 322000

]

and

X′y =
[

1110
205500

]

Using the rules of matrix inversion given in Appendix B, Section B.3, we can see that the
inverse of the preceding (X′X) matrix is

X′X−1 =
[

0.97576 −0.005152
−0.005152 0.0000303

]

Therefore,

β̂ =
[

β̂1

β̂2

]
=

[
0.97576 −0.005152

−0.005152 0.0000303

] [
1110

205500

]

=
[

24.4545
0.5079

]

Using the computer, we obtained β̂1 = 24.4545 and β̂2 = 0.5091. The difference be-
tween the two estimates is due to the rounding errors. In passing, note that in working on a
desk calculator it is essential to obtain results to several significant digits to minimize the
rounding errors.

Variance-Covariance Matrix of β
Matrix methods enable us to develop formulas not only for the variance of β̂i , any given
element of β̂, but also for the covariance between any two elements of β̂, say, β̂i and β̂j . We
need these variances and covariances for the purpose of statistical inference.

By definition, the variance-covariance matrix of β̂ is (compare Eq. [C.2.2])

var-cov (β̂) = E{[β̂ − E(β̂)][β̂ − E(β̂)]′}
which can be written explicitly as

(C.3.12)

It is shown in Appendix CA, Section CA.3, that the preceding variance-covariance matrix
can be obtained from the following formula:

var-cov (β̂) = σ 2(X′X)−1 (C.3.13)

where σ2 is the homoscedastic variance of ui and (X′X)−1 is the inverse matrix appearing
in Eq. (C.3.11), which gives the OLS estimator β̂.

var-cov (β̂) =




var (β̂1) cov (β̂1, β̂2) · · · cov (β̂1, β̂k)

cov (β̂2, β̂1) var (β̂2) · · · cov (β̂2, β̂k)

cov (β̂k , β̂1) cov (β̂k , β̂2) · · · var (β̂k)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·




ˆ

guj75772_appC.qxd  05/09/2008  08:51 PM  Page 856



Appendix C The Matrix Approach to Linear Regression Model 857

In the two- and three-variable linear regression models an unbiased estimator of σ2 was
given by σ̂ 2 = ∑

û2
i /(n − 2) and σ̂ 2 = ∑

û2
i /(n − 3), respectively. In the k-variable case,

the corresponding formula is

(C.3.14)

where there are now n − k df. (Why?)
Although in principle û′û can be computed from the estimated residuals, in practice it

can be obtained directly as follows. Recalling that 
∑

û2
i ( = RSS) = TSS − ESS, in the

two-variable case we may write
∑

û2
i =

∑
y2

i − β̂2
2

∑
x2

i (3.3.6)

and in the three-variable case
∑

û2
i =

∑
y2

i − β̂2

∑
yi x2i − β̂3

∑
yi x3i (7.4.19)

By extending this principle, it can be seen that for the k-variable model
∑

û2
i =

∑
y2

i − β̂2

∑
yi x2i − · · · − β̂k

∑
yi xki (C.3.15)

In matrix notation,

where the term nȲ 2 is known as the correction for mean.6 Therefore,

(C.3.18)

Once û′û is obtained, σ̂ 2 can be easily computed from Eq. (C.3.14), which, in turn, will
enable us to estimate the variance-covariance matrix (C.3.13).

For our illustrative example,

û′û = 132100 − [24.4545 0.5091]

[
1110

205500

]

= 337.373

Hence, σ̂ 2 = (337.273/8) = 42.1591, which is approximately the value obtained previ-
ously in Chapter 3.

û′û = y′y − β̂′X′y

(C.3.16)

(C.3.17)

TSS:
∑

y2
i = y′y − nȲ 2

ESS: β̂2

∑
yi x2i + · · · + β̂k

∑
yi xki = β̂′X′y − nȲ 2

σ̂ 2 =
∑

û2
i

n − k

= û′û
n − k

6Note: 
∑

y2
i = ∑

(Yi − Ȳ )2 = ∑
Y 2

i − nȲ 2 = y′y − nȲ 2 . Therefore, without the correction term, y′y
will give simply the raw sum of squares, not the sum of squared deviations.
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Properties of OLS Vector β
In the two- and three-variable cases we know that the OLS estimators are linear and unbi-
ased, and in the class of all linear unbiased estimators they have minimum variance (the
Gauss–Markov property). In short, the OLS estimators are best linear unbiased estimators
(BLUE). This property extends to the entire β̂ vector; that is, β̂ is linear (each of its elements
is a linear function of Y, the dependent variable). E(β̂) = β̂, that is, the expected value of
each element of β̂ is equal to the corresponding element of the true β, and in the class of all
linear unbiased estimators of β, the OLS estimator β̂ has minimum variance.

The proof is given in Appendix CA, Section CA.4. As stated in the introduction, the k-
variable case is in most cases a straight extension of the two- and three-variable cases.

C.4 The Coefficient of Determination R2 in Matrix Notation

The coefficient of determination R2 has been defined as

R2 = ESS

TSS
In the two-variable case,

R2 = β̂2
2

∑
x2

i∑
y2

i

(3.5.6)

and in the three-variable case

R2 = β̂2
∑

yi x2i + β̂3
∑

yi x3i∑
y2

i

(7.5.5)

Generalizing, we obtain for the k-variable case

R2 = β̂2
∑

yi x2i + β̂3
∑

yi x3i + · · · + β̂k
∑

yi xki∑
y2

i

(C.4.1)

By using Eqs. (C.3.16) and (C.3.17), Eq. (C.4.1) can be written as

(C.4.2)

which gives the matrix representation of R2.
For our illustrative example,

β̂′X′y = [24.3571 0.5079]

[
1,110

205,500

]

= 131,409.831

y′y = 132,100

and

nȲ 2 = 123,210

Plugging these values into Eq. (C.4.2), we see that R2 = 0.9224, which is about the same as
obtained before, save for the rounding errors.

R2 = β̂′X′y − nȲ 2

y′y − nȲ 2

ˆ
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C.5 The Correlation Matrix

In the previous chapters we came across the zero-order, or simple, correlation coefficients
r1 2, r1 3, r2 3, and the partial, or first-order, correlations r12.3, r1 3.2, r2 3.1, and their interrela-
tionships. In the k-variable case, we shall have in all k(k − 1)/2 zero-order correlation
coefficients. (Why?) These k(k − 1)/2 correlations can be put into a matrix, called the
correlation matrix R as follows:

where the subscript 1, as before, denotes the dependent variable Y (r1 2 means correla-
tion coefficient between Y and X2, and so on) and where use is made of the fact that 
the coefficient of correlation of a variable with respect to itself is always 1 (r1 1 =
r2 2 = · · · = rk k = 1).

From the correlation matrix R one can obtain correlation coefficients of first order (see
Chapter 7) and of higher order such as r1 2.3 4... k . (See Exercise C.4.) Many computer pro-
grams routinely compute the R matrix. We have used the correlation matrix in Chapter 10.

C.6 Hypothesis Testing about Individual Regression 
Coefficients in Matrix Notation

For reasons spelled out in the previous chapters, if our objective is inference as well as
estimation, we shall have to assume that the disturbances ui follow some probability distri-
bution. Also for reasons given previously, in regression analysis we usually assume that
each ui follows the normal distribution with zero mean and constant variance σ 2. In matrix
notation, we have

u ∼ N (0, σ 2I) (C.6.1)

where u and 0 are n × 1 column vectors and I is an n × n identity matrix, 0 being the null
vector.

Given the normality assumption, we know that in two- and three-variable linear regres-
sion models (1) the OLS estimators β̂i and the ML estimators β̃i are identical, but the ML
estimator σ̃ 2 is biased, although this bias can be removed by using the unbiased OLS esti-
mator σ̂ 2; and (2) the OLS estimators β̂i are also normally distributed. Generalizing, in the
k-variable case we can show that

(C.6.2)

that is, each element of β̂ is normally distributed with mean equal to the corresponding
element of true β and the variance given by σ 2 times the appropriate diagonal element of
the inverse matrix (X′X)−1.

β̂ ∼ N [β, σ 2(X′X)−1]

(C.5.1)

R =




r1 1 r1 2 r1 3 · · · r1k

r2 1 r2 2 r2 3 · · · r2k

rk1 rk2 rk3 · · · rkk

· · · · · · · · · · · · · · · · · · · · · ·




=




1 r1 2 r1 3 · · · r1k

r2 1 1 r2 3 · · · r2k

rk1 rk2 rk3 · · · 1
· · · · · · · · · · · · · · · · · · · · · ·



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Since in practice σ 2 is unknown, it is estimated by σ̂ 2. Then by the usual shift to the t
distribution, it follows that each element of β̂ follows the t distribution with n − k df.
Symbolically,

t = β̂i − βi

se (β̂i )
(C.6.3)

with n − k df, where β̂i is any element of β̂.
The t distribution can therefore be used to test hypotheses about the true βi as well as to

establish confidence intervals about it. The actual mechanics have already been illustrated
in Chapters 5 and 8. For a fully worked example, see Section C.10.

C.7 Testing the Overall Significance of Regression:
Analysis of Variance in Matrix Notation

In Chapter 8 we developed the ANOVA technique (1) to test the overall significance of the
estimated regression, that is, to test the null hypothesis that the true (partial) slope coeffi-
cients are simultaneously equal to zero, and (2) to assess the incremental contribution of an
explanatory variable. The ANOVA technique can be easily extended to the k-variable case.
Recall that the ANOVA technique consists of decomposing the TSS into two components:
the ESS and the RSS. The matrix expressions for these three sums of squares are already
given in Eqs. (C.3.16), (C.3.17), and (C.3.18), respectively. The degrees of freedom asso-
ciated with these sums of squares are n − 1, k − 1, and n − k, respectively. (Why?) Then,
following Chapter 8, Table 8.1, we can set up Table C.2.

Assuming that the disturbances ui are normally distributed and the null hypothesis is
β2 = β3 = · · · = βk = 0, and following Chapter 8, one can show that

(C.7.1)

follows the F distribution with k − 1 and n − k df.
In Chapter 8 we saw that, under the assumptions stated previously, there is a close rela-

tionship between F and R2, namely,

F = R2/(k − 1)

(1 − R2)/(n − k)
(8.4.11)

Therefore, the ANOVA Table C.2 can be expressed as Table C.3. One advantage of
Table C.3 over Table C.2 is that the entire analysis can be done in terms of R2; one need not
consider the term (y′y − nȲ 2), for it drops out in the F ratio.

F = (β̂′X′y − nȲ 2)/(k − 1)

(y′y − β̂′X′y)/(n − k)

TABLE C.2
Matrix Formulation
of the ANOVA Table
for k-Variable Linear
Regression Model

Source of Variation SS df MSS

Due to regression β̂′X′y − nȲ 2 k − 1
(that is, due to X2, X3, . . . , Xk)

Due to residuals y′y − β̂′X′y n − k

Total y′y − nȲ 2
n − 1

β̂X′y − nȲ 2

k − 1
y′y − β̂′X′y

n − k

guj75772_appC.qxd  05/09/2008  11:07 AM  Page 860



Appendix C The Matrix Approach to Linear Regression Model 861

C.8 Testing Linear Restrictions: General F Testing 
Using Matrix Notation

In Section 8.6 we introduced the general F test to test the validity of linear restrictions
imposed on one or more parameters of the k-variable linear regression model. The appro-
priate test was given in (8.6.9) (or its equivalent, Eq. [8.6.10]). The matrix counterpart of
(8.6.9) can be easily derived.

Let
ûR = the residual vector from the restricted least-squares regression

ûUR = the residual vector from the unrestricted least-squares regression

Then

û′
RûR = ∑

û2
R = RSS from the restricted regression

û′
UR

ûUR = ∑
û2

UR = RSS from the unrestricted regression
m = number of linear restrictions
k = number of parameters (including the intercept) in the unrestricted regression
n = number of observations

The matrix counterpart of Eq. (8.6.9) is then

F = (û′
RûR − û′

URûUR)/m

(û′
URûUR)/(n − k)

(C.8.1)

which follows the F distribution with (m, n − k) df. As usual, if the computed F value from
Eq. (C.8.1) exceeds the critical F value, we can reject the restricted regression; otherwise,
we do not reject it.

C.9 Prediction Using Multiple Regression: Matrix Formulation

In Section 8.8 we discussed, using scalar notation, how the estimated multiple regression
can be used for predicting (1) the mean and (2) individual values of Y, given the values of
the X regressors. In this section we show how to express these predictions in matrix form.
We also present the formulas to estimate the variances and standard errors of the predicted
values; in Chapter 8 we noted that these formulas are better handled in matrix notation, for
the scalar or algebraic expressions of these formulas become rather unwieldy.

Mean Prediction
Let

X0 =




1
X02

X03
...

X0k




(C.9.1)

TABLE C.3
k-Variable ANOVA
Table in Matrix Form
in Terms of R2

Source of Variation SS df MSS

Due to regression R2(y′y − nȲ 2) k − 1
(that is, due to X2, X3, . . . , Xk)

Due to residuals n − k

Total n − 1

R2(y′y − nȲ 2
)

k − 1
(1 − R2)(y′y − nȲ 2)

n − k(1 − R2)(y′y − nȲ 2)

y′y − nȲ 2
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be the vector of values of the X variables for which we wish to predict Ŷ0, the mean predic-
tion of Y.

Now the estimated multiple regression, in scalar form, is

Ŷi = β̂1 + β̂2 X2i + β̂3 X3i + · · · + β̂k Xki + ui (C.9.2)

which in matrix notation can be written compactly as

Ŷi = x′
i β̂ (C.9.3)

where x′
i = [1 X2i X3i · · · Xki ] and

β̂ =




β̂1

β̂2
...

β̂k




Equation (C.9.2) or (C.9.3) is of course the mean prediction of Yi corresponding to
given x′

i .
If x′

i is as given in Eq. (C.9.1), Eq. (C.9.3) becomes

(Ŷi | x′
0) = x′

0β̂ (C.9.4)

where, of course, the values of x0 are specified. Note that Eq. (C.9.4) gives an unbiased
prediction of E(Yi | x′

0), since E(x ′
0β̂) = x′

0 β̂. (Why?)

Variance of Mean Prediction
The formula to estimate the variance of (Ŷ0 | x′

0) is as follows:7

var (Ŷ0 | x′
0) = σ 2x′

0(X′X)−1x0 (C.9.5)

where σ 2 is the variance of ui, x′
0 are the given values of the X variables for which we wish

to predict, and (X′X) is the matrix given in Eq. (C.3.9). In practice, we replace σ 2 by its
unbiased estimator σ̂ 2.

We will illustrate mean prediction and its variance in the next section.

Individual Prediction
As pointed out in Chapters 5 and 8, the individual prediction of Y ( = Y0) is also given by
Eq. (C.9.3) or more specifically by Eq. (C.9.4). The difference between mean and individ-
ual predictions lies in their variances.

Variance of Individual Prediction
The formula for the variance of an individual prediction is as follows:8

var (Y0 | x0) = σ 2[1 + x′
0(X′X)−1x0] (C.9.6)

where var (Y0 | x0) stands for E[Y0 − Ŷ0 | X]2. In practice we replace σ 2 by its unbiased
estimator σ̂ 2. We illustrate this formula in the next section.

7For derivation, see J. Johnston, Econometrics Methods, McGraw-Hill, 3d ed., New York, 1984, 
pp. 195–196.
8Ibid.
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C.10 Summary of the Matrix Approach: An Illustrative Example

Consider the data given in Table C.4. These data pertain to per capita personal consumption
expenditure (PPCE) and per capital personal disposable income (PPDI) and time or the
trend variable. By including the trend variable in the model, we are trying to find out the
relationship of PPCE to PPDI net of the trend variable (which may represent a host of other
factors, such as technology, change in tastes, etc.).

For empirical purposes, therefore, the regression model is

Yi = β̂1 + β̂2 X2i + β̂3 X3i + ûi (C.10.1)

where Y = per capita consumption expenditure, X2 = per capita disposable income, and
X3 = time. The data required to run the regression (C.10.1) are given in Table C.4.

In matrix notation, our problem may be shown as follows:




1673
1688
1666
1735
1749
1756
1815
1867
1948
2048
2128
2165
2257
2316
2324




=




1 1839 1
1 1844 2
1 1831 3
1 1881 4
1 1883 5
1 1910 6
1 1969 7
1 2016 8
1 2126 9
1 2239 10
1 2336 11
1 2404 12
1 2487 13
1 2535 14
1 2595 15







β̂1

β̂2

β̂3


 +




û1

û2

û3

û4

û5

û6

û7

û8

û9

û10

û11

û12

û13

û14

û15




(C.10.2)

y = X β̂ + û
15 × 1 15 × 3 3 × 1 15 × 1

TABLE C.4
Per Capita Personal
Consumption
Expenditure (PPCE)
and Per Capita
Personal Disposable
Income (PPDI) in the
United States,
1956–1970, in 1958
Dollars

Source: Economic Report of
the President, January 1972,
Table B-16.

PPCE, Y PPDI, X2 Time, X3 PPCE, Y PPDI, X2 Time, X3

1673 1839 1 ( = 1956) 1948 2126 9
1688 1844 2 2048 2239 10
1666 1831 3 2128 2336 11
1735 1881 4 2165 2404 12
1749 1883 5 2257 2487 13
1756 1910 6 2316 2535 14
1815 1969 7 2324 2595 15 ( = 1970)
1867 2016 8
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From the preceding data we obtain the following quantities:

Ȳ = 1942.333 X̄2 = 2126.333 X̄3 = 8.0∑
(Yi − Ȳ )2 = 830,121.333∑

(X2i − X̄2)2 = 1,103,111.333
∑

(X3i − X̄3)2 = 280.0

X′X =

 1 1 1 · · · 1

X2 1 X2 2 X2 3 · · · X2n

X3 1 X3 2 X3 3 · · · X3n







1 X2 1 X3 1

1 X2 2 X3 2

1 X2 3 X3 3
...

...
...

1 X2n X3n




=




n
∑

X2i
∑

X3i∑
X2i

∑
X2

2i

∑
X2i X3i∑

X3i
∑

X2i X3i
∑

X2
3i




=

 15 31,895 120

31,895 68,922.513 272,144
120 272,144 1240


 (C.10.3)

X′y =

 29,135

62,905,821
247,934


 (C.10.4)

Using the rules of matrix inversion given in Appendix B, one can see that

(X′X)−1 =

 37.232491 −0.0225082 1.336707

−0.0225082 0.0000137 −0.0008319
1.336707 −0.0008319 0.054034


 (C.10.5)

Therefore,

β̂ = (X′X)−1X′y =

 300.28625

0.74198
8.04356


 (C.10.6)

The residual sum of squares can now be computed as∑
û2

i = û′û

= y′y − β̂′X′y

= 57,420,003 − [300.28625 0.74198 8.04356]


 29,135

62,905,821
247,934




= 1976.85574
(C.10.7)

whence we obtain

σ̂ 2 = û′û
12

= 164.73797 (C.10.8)

The variance-covariance matrix for β̂ can therefore be shown as

var-cov (β̂) = σ̂ 2(X′X)−1 =

 6133.650 −3.70794 220.20634

−3.70794 0.00226 −0.13705
220.20634 −0.13705 8.90155




(C.10.9)
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The diagonal elements of this matrix give the variances of β̂1, β̂2, and β̂3, respectively, and
their positive square roots give the corresponding standard errors.

From the previous data, it can be readily verified that

ESS: β̂′X′y − nȲ 2 = 828,144.47786 (C.10.10)

TSS: y′y − nȲ 2 = 830,121.333 (C.10.11)

Therefore,

R2 = β̂′X′y − nȲ 2

y′y − nȲ 2

= 828,144.47786

830,121.333
(C.10.12)

= 0.99761

Applying Eq. (7.8.4) the adjusted coefficient of determination can be seen to be

R̄2 = 0.99722 (C.10.13)

Collecting our results thus far, we have

The interpretation of Eq. (C.10.14) is this: If both X2 and X3 are fixed at zero value, the
average value of per capita personal consumption expenditure is estimated at about $300.
As usual, this mechanical interpretation of the intercept should be taken with a grain of salt.
The partial regression coefficient of 0.74198 means that, holding all other variables con-
stant, an increase in per capita income of, say, a dollar is accompanied by an increase in the
mean per capita personal consumption expenditure of about 74 cents. In short, the marginal
propensity to consume is estimated to be about 0.74, or 74 percent. Similarly, holding all
other variables constant, the mean per capita personal consumption expenditure increased
at the rate of about $8 per year during the period of the study, 1956–1970. The R2 value of
0.9976 shows that the two explanatory variables accounted for over 99 percent of the
variation in per capita consumption expenditure in the United States over the period
1956–1970. Although R̄2 dips slightly, it is still very high.

Turning to the statistical significance of the estimated coefficients, we see from
Eq. (C.10.14) that each of the estimated coefficients is individually statistically significant
at, say, the 5 percent level of significance: The ratios of the estimated coefficients to their
standard errors (that is, t ratios) are 3.83421, 15.61077, and 2.69598, respectively. Using a
two-tail t test at the 5 percent level of significance, we see that the critical t value for 12 df
is 2.179. Each of the computed t values exceeds this critical value. Hence, individually
we may reject the null hypothesis that the true population value of the relevant coefficient
is zero.

As noted previously, we cannot apply the usual t test to test the hypothesis that
β2 = β3 = 0 simultaneously because the t-test procedure assumes that an independent sam-
ple is drawn every time the t test is applied. If the same sample is used to test hypotheses
about β2 and β3 simultaneously, it is likely that the estimators β̂2 and β̂3 are correlated, thus

(C.10.14)

Ŷi = 300.28625 + 0.74198X2i + 8.04356X3i

(78.31763) (0.04753) (2.98354)

t = (3.83421) (15.60956) (2.69598)

R2 = 0.99761 R̄2 = 0.99722 df = 12

guj75772_appC.qxd  05/09/2008  11:07 AM  Page 865



866 Appendix C The Matrix Approach to Linear Regression Model

violating the assumption underlying the t-test procedure.9 As a matter of fact, a look at the
variance-covariance matrix of β̂ given in Eq. (C.10.9) shows that the estimators β̂2 and β̂3 are
negatively correlated (the covariance between the two is −0.13705). Hence we cannot use
the t test to test the null hypothesis that β2 = β3 = 0.

But recall that a null hypothesis like β2 = β3 = 0, simultaneously, can be tested by the
analysis of variance technique and the attendant F test, which were introduced in Chapter 8.
For our problem, the analysis of variance table is Table C.5. Under the usual assumptions,
we obtain

F = 414,072.3893

164.73797
= 2513.52 (C.10.15)

which is distributed as the F distribution with 2 and 12 df. The computed F value is obvi-
ously highly significant; we can reject the null hypothesis that β2 = β3 = 0, that is, that per
capita personal consumption expenditure is not linearly related to per capita disposable
income and trend.

In Section C.9 we discussed the mechanics of forecasting, mean as well as individual.
Assume that for 1971 the PPDI figure is $2,610 and we wish to forecast the PPCE corre-
sponding to this figure. Then, the mean as well as individual forecast of PPCE for 1971 is
the same and is given as

(PPCE1971 | PPDI1971, X3 = 16) = x′
1971β̂

= [1 2610 16]


 300.28625

0.74198
8.04356


 (C.10.16)

= 2365.55

where use is made of Eq. (C.9.3).
The variances of Ŷ1971 and Y1971, as we know from Section C.9, are different and are as

follows:

var (Ŷ1971 | x′
1971) = σ̂ 2[x′

1971(X′X)−1x1971]

= 164.73797[1 2610 16](X′X)−1


 1

2610
16


 (C.10.17)

where (X′X)−1 is as shown in Eq. (C.10.5). Substituting this into Eq. (C.10.17), the reader
should verify that

var (Ŷ1971 | x′
1971) = 48.6426 (C.10.18)

9See Section 8.4 for details.

TABLE C.5
The ANOVA Table
for the Data of
Table C.4

Source of Variation SS df MSS

Due to X2, X3 828,144.47786 2 414,072.3893
Due to residuals 1,976.85574 12 164.73797

Total 830,121.33360 14
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and therefore

se (Ŷ1971 | x′
1971) = 6.9744

We leave it to the reader to verify, using Eq. (C.9.6), that

var (Y1971 | x′
1971) = 213.3806 (C.10.19)

and

se (Y1971 | x′
1971) = 14.6076

Note: var (Y1971 | x′
1971) = E[Y1971 − Ŷ1971 | x′

1971]2.

In Section C.5 we introduced the correlation matrix R. For our data, the correlation
matrix is as follows:

R =



Y X2 X3

Y 1 0.9980 0.9743
X2 0.9980 1 0.9664
X3 0.9743 0.9664 1


 (C.10.20)

Note that in Eq. (C.10.20) we have bordered the correlation matrix by the variables of the
model so that we can readily identify which variables are involved in the computation of the
correlation coefficient. Thus, the coefficient 0.9980 in the first row of matrix (C.10.20) tells
us that it is the correlation coefficient between Y and X2 (that is, r12). From the zero-order
correlations given in the correlation matrix (C.10.20) one can easily derive the first-order
correlation coefficients. (See Exercise C.7.)

C.11 Generalized Least Squares (GLS)

On several occasions we have mentioned that OLS is a special case of GLS. To see this,
return to Eq. (C.2.2). To take into account heteroscedastic variances (the elements on the
main diagonal of Eq. [C.2.2]) and autocorrelations in the error terms (the elements off
the main diagonal of Eq. [C.2.2]), assume that

E(uu′) = σ 2V (C.11.1)

where V is a known n × n matrix.
Therefore, if our model is:

y = Xβ + u

where E(u) = 0 and var-cov (u) = σ 2V. In case σ 2 is unknown, which is typically the case,
V then represents the assumed structure of variances and covariances among the random
errors ut.

Under the stated condition of the variance-covariance of the error terms, it can be shown
that

βgls = (X′V−1X)−1X′V−1y (C.11.2)

βgls is known as the generalized least-squares (GLS) estimator of β.
It can also be shown that

var-cov(βgls) = σ2(X′V−1X)−1 (C.11.3)

It can be proved that βgls is the best linear unbiased estimator of β.
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If it is assumed that the variance of each error term is the same constant σ2 and the error
terms are mutually uncorrelated, then the V matrix reduces to the identity matrix, as shown
in Eq. (C.2.3). If the error terms are mutually uncorrelated but they have different (i.e., het-
eroscedastic) variances, then the V matrix will be diagonal with the unequal variances
along the main diagonal. Of course, if there is heteroscedasticity as well as autocorrelation,
then the V matrix will have entries on the main diagonal as well as on the off diagonal.

The real problem in practice is that we do not know σ2 as well as the true variances and
covariances (i.e., the structure of the V matrix). As a solution, we can use the method of
estimated (or feasible) generalized least squares (EGLS). Here we first estimate our
model by OLS, disregarding the problems of heteroscedasticity and/or autocorrelation. We
obtain the residuals from this model and form the (estimated) variance-covariance matrix
of the error term by replacing the entries in the expression just before Eq. (C.2.2) by the
estimated u, namely, û. It can be shown that EGLS estimators are consistent estimators of
GLS. Symbolically,

βegls = (X′V̂−1X)−1(X′V̂−1y) (C.11.4)

var-cov (βegls) = σ 2(X′V̂−1X)−1 (C.11.5)

where V̂ is an estimate of V.

C.12 Summary and Conclusions

The primary purpose of this appendix was to introduce the matrix approach to the classical
linear regression model. Although very few new concepts of regression analysis were
introduced, the matrix notation provides a compact method of dealing with linear regres-
sion models involving any number of variables.

In concluding this appendix, note that if the Y and X variables are measured in the devia-
tion form, that is, as deviations from their sample means, there are a few changes in the for-
mulas presented previously. These changes are listed in Table C.6.10 As this table shows, in

10In these days of high-speed computers there may not be need for the deviation form. But it simpli-
fies formulas and therefore calculations if one is working with a desk calculator and dealing with large
numbers.

TABLE C.6
k-Variable Regression
Model in Original
Units and in the
Deviation Form*

Original Units Deviation Form

y = X β̂ + û (C.3.2) y = X β̂ + û
The column of 1’s in the X matrix
drops out. (Why?)

β̂ = (X′X)−1X′y (C.3.11) Same

var-cov (β̂) = σ 2(X′X)−1 (C.3.13) Same

û′û= y′y − β̂′X′y (C.3.18) Same∑
y 2

i = y′y − nȲ 2 (C.3.16)
∑

y 2
i = y′y (C.12.1)

ESS = β̂′X′y − nȲ 2 (C.3.17) ESS = β′X′y (C.12.2)

R2 = (C.4.2) R2 = (C.12.3)

*Note that although in both cases the symbols for the matrices and vectors are the same, in the deviation form the elements of
the matrices and vectors are assumed to be deviations rather than the raw data. Note also that in the deviation form β is of order
k − 1 and the var-cov (β) is of order (k − 1)(k − 1).

β̂′X′y

y′y
β̂′X′y − nȲ 2

y′y − nȲ 2

ˆ
ˆ
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the deviation form the correction for mean nȲ 2 drops out from the TSS and ESS. (Why?)
This loss results in a change for the formula for R2. Otherwise, most of the formulas devel-
oped in the original units of measurement hold true for the deviation form.

EXERCISES C.1. For the illustrative example discussed in Section C.10 the X′X and X′y using the data
in the deviation form are as follows:

X′X =
[

1,103,111.333 16,984
16,984 280

]

X′y =
[

955,099.333
14,854.000

]

a. Estimate β2 and β3.

b. How would you estimate β1?

c. Obtain the variance of β̂2 and β̂3 and their covariances.

d. Obtain R2 and R̄2.

e. Comparing your results with those given in Section C.10, what do you find are the
advantages of the deviation form?

C.2. Refer to Exercise 22.23. Using the data given therein, set up the appropriate (X′X)
matrix and the X′y vector and estimate the parameter vector β and its variance-
covariance matrix. Also obtain R2. How would you test the hypothesis that the elas-
ticities of M1 with respect to GDP and interest rate R are numerically the same?

C.3. Testing the equality of two regression coefficients. Suppose that you are given the
following regression model:

Yi = β1 + β2 X2i + β3 X3i + ui

and you want to test the hypothesis that β2 = β3. If we assume that the ui are nor-
mally distributed, it can be shown that

t = β̂2 − β̂3√
var (β̂2) + var (β̂3) − 2 cov (β̂2, β̂3)

follows the t distribution with n − 3 df (see Section 8.5). (In general, for the k-
variable case the df are n − k.) Therefore, the preceding t test can be used to test the
null hypothesis β2 = β3.

Apply the preceding t test to test the hypothesis that the true values of β2 and
β3 in the regression (C.10.14) are identical.

Hint: Use the var-cov matrix of β given in Eq. (C.10.9).

C.4. Expressing higher-order correlations in terms of lower-order correlations. Correla-
tion coefficients of order p can be expressed in terms of correlation coefficients of
order p − 1 by the following reduction formula:

r1 2.3 4 5...p = r1 2.3 4 5...( p−1) − [r1p.3 4 5...( p−1)r2p.3 4 5...( p−1)]√[
1 − r2

1p.3 4 5...( p−1)

]√[
1 − r2

2p.3 4 5...( p−1)

]
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Thus,

r1 2.3 = r1 2 − r1 3r2 3√
1 − r2

1 3

√
1 − r2

2 3

as found in Chapter 7.

You are given the following correlation matrix:

R =




Y X2 X3 X4 X5

Y 1 0.44 −0.34 −0.31 −0.14
X2 1 0.25 −0.19 −0.35
X3 1 0.44 0.33
X4 1 0.85
X5 1




Find the following:

a. r1 2.3 4 5 b. r1 2.3 4 c. r1 2.3

d. r1 3.2 4 5 e. r1 3.2 4 f. r1 3.2

C.5. Expressing higher-order regression coefficients in terms of lower-order regression
coefficients.A regression coefficient of order p can be expressed in terms of a regression
coefficient of order p − 1 by the following reduction formula:

β̂1 2.3 4 5...p = β̂1 2.3 4 5...( p−1) − [
β̂1p.3 4 5...( p−1)β̂p2.3 4 5...( p−1)

]
1 − β̂2p.3 4 5...( p−1)β̂p2.3 4 5...( p−1)

Thus,

β̂1 2.3 = β̂1 2 − β̂1 3β̂3 2

1 − β̂2 3β̂3 2

where β1 2.3 is the slope coefficient in the regression of y on X2 holding X3 constant.
Similarly, β1 2.3 4 is the slope coefficient in the regression of Y on X2 holding X3 and X4

constant, and so on.
Using the preceding formula, find expressions for the following regression

coefficients in terms of lower-order regression coefficients: β̂1 2.3 4 5 6, β̂1 2.3 4 5, and
β̂1 2.3 4.

C.6. Establish the following identity:

β̂1 2.3β̂2 3.1β̂3 1.2 = r1 2.3r2 3.1r3 1.2

C.7. For the correlation matrix R given in Eq. (C.10.20) find all the first-order partial cor-
relation coefficients.

C.8. In studying the variation in crime rates in certain large cities in the United States, Og-
burn obtained the following data:*

Ȳ = 19.9 S1 = 7.9
X̄2 = 49.2 S2 = 1.3
X̄3 = 10.2 S3 = 4.6 R =




Y X2 X3 X4 X5

Y 1 0.44 −0.34 −0.31 −0.14
X2 1 0.25 −0.19 −0.35
X3 1 0.44 0.33
X4 1 0.85
X5 1


X̄4 = 481.4 S4 = 74.4

X̄5 = 41.6 S5 = 10.8

*W. F. Ogburn, “Factors in the Variation of Crime among Cities,’’ Journal of American Statistical
Association, vol. 30, 1935, p. 12.
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where Y = crime rate, number of known offenses per thousand of population

X2 = percentage of male inhabitants

X3 = percentage of total inhabitants who are foreign-born males

X4 = number of children under 5 years of age per thousand married women
between ages 15 and 44 years

X5 = church membership, number of church members 13 years of age and
over per 100 of total population 13 years of age and over; S1 to S5 are the
sample standard deviations of variables Y through X5 and R is the corre-
lation matrix

a. Treating Y as the dependent variable, obtain the regression of Y on the four X vari-
ables and interpret the estimated regression.

b. Obtain r1 2.3, r1 4.3 5, and r1 5.3 4.

c. Obtain R2 and test the hypothesis that all partial slope coefficients are simultane-
ously equal to zero.

C.9. The following table gives data on output and total cost of production of a commodity
in the short run. (See Example 7.4.)

Output Total Cost, $

1 193
2 226
3 240
4 244
5 257
6 260
7 274
8 297
9 350

10 420

To test whether the preceding data suggest the U-shaped average and marginal cost
curves typically encountered in the short run, one can use the following model:

Yi = β1 + β2 Xi + β3 X2
i + β4 X3

i + ui

where Y = total cost and X = output. The additional explanatory variables X2
i and X3

i
are derived from X.
a. Express the data in the deviation form and obtain (X′X), (X′y), and (X′X)−1.

b. Estimate β2, β3, and β4.

c. Estimate the var-cov matrix of β̂.

d. Estimate β1. Interpret β̂1 in the context of the problem.

e. Obtain R2 and R̄2.

f. A priori, what are the signs of β2, β3, and β4? Why?

g. From the total cost function given previously obtain expressions for the marginal
and average cost functions.

h. Fit the average and marginal cost functions to the data and comment on the fit.

i. If β3 = β4 = 0, what is the nature of the marginal cost function? How would you
test the hypothesis that β3 = β4 = 0?

j. How would you derive the total variable cost and average variable cost functions
from the given data?
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C.10. In order to study the labor force participation of urban poor families (families earn-
ing less than $3,943 in 1969), the data in Table C.7 were obtained from the 1970
Census of Population.

a. Using the regression model Yi = β1 + β2 X2i + β3 X3i + β4 X4i + ui , obtain the
estimates of the regression coefficients and interpret your results.

b. A priori, what are the expected signs of the regression coefficients in the preced-
ing model and why?

c. How would you test the hypothesis that the overall unemployment rate has no
effect on the labor force participation of the urban poor in the census tracts given
in the accompanying table?

d. Should any variables be dropped from the preceding model? Why?

e. What other variables would you consider for inclusion in the model?

C.11. In an application of the Cobb–Douglas production function the following results
were obtained:

l̂nY i = 2.3542 + 0.9576 ln X2i + 0.8242 ln X3i

(0.3022) (0.3571)

R2 = 0.8432 df = 12

where Y = output, X2 = labor input, and X3 = capital input, and where the figures in
parentheses are the estimated standard errors.

a. As noted in Chapter 7, the coefficients of the labor and capital inputs in the pre-
ceding equation give the elasticities of output with respect to labor and capital.
Test the hypothesis that these elasticities are individually equal to unity.

b. Test the hypothesis that the labor and capital elasticities are equal, assuming
(i) the covariance between the estimated labor and capital coefficients is zero, and
(ii) it is −0.0972.

c. How would you test the overall significance of the preceding regression equation?

TABLE C.7
Labor Force
Participation
Experience of the
Urban Poor: Census
Tracts, New York
City, 1970

Source: Census Tracts: New
York, Bureau of the Census,
U.S. Department of
Commerce, 1970.

% in Labor Mean Family Mean Family Unemployment
Tract No. Force, Y* Income, X2

† Size, X3 Rate, X4
‡

137 64.3 1,998 2.95 4.4
139 45.4 1,114 3.40 3.4
141 26.6 1,942 3.72 1.1
142 87.5 1,998 4.43 3.1
143 71.3 2,026 3.82 7.7
145 82.4 1,853 3.90 5.0
147 26.3 1,666 3.32 6.2
149 61.6 1,434 3.80 5.4
151 52.9 1,513 3.49 12.2
153 64.7 2,008 3.85 4.8
155 64.9 1,704 4.69 2.9
157 70.5 1,525 3.89 4.8
159 87.2 1,842 3.53 3.9
161 81.2 1,735 4.96 7.2
163 67.9 1,639 3.68 3.6

*Y = family heads under 65 years old.
†X2 = dollars.
‡X4 = percent of civilian labor force unemployed.
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*C.12. Express the likelihood function for the k-variable regression model in matrix nota-
tion and show that β̃, the vector of maximum likelihood estimators, is identical to β̂,
the vector of OLS estimators of the k-variable regression model.

C.13. Regression using standardized variables. Consider the following sample regression
functions (SRFs):

Yi = β̂1 + β̂2 X2i + β̂3 X3i + ûi (1)

Y ∗
i = b1 + b2 X∗

2i + b3 X∗
3i + û∗

i (2)

where

Y ∗
i = Yi − Ȳ

sY

X∗
2i = X2i − X̄2

s2

X∗
3i = X3i − X̄3

s3

where the s’s denote the sample standard deviations. As noted in Chapter 6, Sec-
tion 6.3, the starred variables above are known as the standardized variables. These
variables have zero means and unit ( = 1) standard deviations. Expressing all the
variables in the deviation form, show the following for model (2):

a. X′X =
[

1 r2 3

r2 3 1

]
n

b. X′y =
[

r1 2

r1 3

]
n

c. X′X−1 = 1

n
(
1 − r2

2 3

)
[

1 −r2 3

−r2 3 1

]

d. β̂ =
[

b2

b3

]
= 1

1 − r 2
2 3

[
r1 2 − r2 3r1 3

r1 3 − r2 3r1 2

]

e. b1 = 0

Also establish the relationship between the b’s and the β̂’s.
(Note that in the preceding relations n denotes the sample size; r1 2, r1 3, and r2 3

denote the correlations between Y and X2, between Y and X3, and between X2 and X3,
respectively.)

C.14. Verify Eqs. (C.10.18) and (C.10.19).
*C.15. Constrained least-squares. Assume

y = Xβ + u (1)

which we want to estimate subject to a set of equality restrictions or constraints:

Rβ = r (2)

where R is a known matrix of order qxk (q ≤ k) and r is a known vector of q ele-
ments. To illustrate, suppose our model is

Yi = β1 + β2 X2i + β3 X3i + β4 X4i + β5 X5i + ui (3)

*Optional.
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*See J. Johnston, op. cit., p. 205.

and suppose we want to estimate this model subject to these restrictions:

β2 − β3 = 0
(4)

β4 + β5 = 1

We can use some of the techniques discussed in Chapter 8 to incorporate these
restrictions (e.g., β2 = β3 and β4 = 1 − β5, thus removing β2 and β4 from the model)
and test for the validity of these restrictions by the F test discussed there. But a more
direct way of estimating Eq. (3) incorporating the restrictions (4) directly in the esti-
mating procedure is first to express the restrictions in the form of Eq. (2), which in the
present case becomes

R =
[

0 1 −1 0 0
0 0 0 1 1

]
r =

[
0
1

]
(5)

Letting β* denote the restricted least-squares or constrained least-squares estimator,
one can show that β* can be estimated by the following formula:*

β̂* = β̂ + (X′X)−1R′[R(X′X)−1R′]−1(r − R) (6)

where β̂ is the usual (unconstrained) estimator estimated from the usual formula
(X′X)−1X′y.

a. What is the β vector in Eq. (3)?

b. Given this β vector, verify that the R matrix and r vector given in Eq. (5) do in fact
incorporate the restrictions in Eq. (4).

c. Write down the R and r in the following cases:

(i) β2 = β3 = β4 = 2
(ii) β2 = β3 and β4 = β5

(iii) β2 − 3β3 = 5β4

(iv) β2 + 3β3 = 0

d. When will β̂* = β̂?

Appendix CA

CA.1 Derivation of k Normal or Simultaneous Equations

Differentiating ∑
û2

i =
∑

(Yi − β̂1 − β̂2 X2i − · · · − β̂k Xki )
2

partially with respect to β̂1, β̂2, . . . , β̂k , we obtain

∂
∑

û2
i

∂β̂1

= 2
∑

(Yi − β̂1 − β̂2 X2i − · · · − β̂k Xki )(−1)

∂
∑

û2
i

∂β̂2

= 2
∑

(Yi − β̂1 − β̂2 X2i − · · · − β̂k Xki )(−X2i )

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂
∑

û2
i

∂β̂k

= 2
∑

(Yi − β̂1 − β̂2 Xki − · · · − β̂k Xki )(−Xki )

Setting the preceding partial derivatives equal to zero and rearranging the terms, we obtain the k nor-
mal equations given in Eq. (C.3.8).
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CA.2 Matrix Derivation of Normal Equations

From Eq. (C.3.7) we obtain

û′û = y′y − 2β̂′X′y + β̂′X′Xβ̂

Using the rules of matrix differentiation given in Appendix B, Section B.6, we obtain

∂(û′û)

∂β̂
= −2X′y + 2X′Xβ̂

Setting the preceding equation to zero gives

(X′X)β̂ = X′y

whence β̂ = (X′X)−1X′y, provided the inverse exists.

CA.3 Variance–Covariance Matrix of β̂

From Eq. (C.3.11) we obtain

β̂ = (X′X)−1X′y

Substituting y = Xβ + u into the preceding expression gives

β̂ = (X′X)−1X′(Xβ + u)

= (X′X)−1X′Xβ + (X′X)−1X′u (1)

= β + (X′X)−1X′u

Therefore,

β̂ − β = (X′X)−1X′u (2)

By definition

var-cov (β̂) = E[(β̂ − β)(β̂ − β)′]

= E{[(X′X)−1X′u][(X′X)−1X′u]′} (3)

= E[(X′X)−1X′uu′X(X′X)−1]

where in the last step use is made of the fact that (AB)′ = B′A′.
Noting that the X ’s are nonstochastic, on taking expectation of Eq. (3) we obtain

var-cov (β̂) = (X′X)−1X′E(uu′)X(X′X)−1

= (X′X)−1X′σ 2IX(X′X)−1

= σ 2(X′X)−1

which is the result given in Eq. (C.3.13). Note that in deriving the preceding result use is made of the
assumption that E(uu′) = σ 2I.

CA.4 BLUE Property of OLS Estimators

From Eq. (C.3.11) we have

β̂ = (X′X)−1X′y (1)

Since (X′X)−1X′ is a matrix of fixed numbers, β̂ is a linear function of Y. Hence, by definition it is a
linear estimator.
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Recall that the PRF is

y = Xβ + u (2)

Substituting this into Eq. (1), we obtain

β̂ = (X′X)−1X′(Xβ + u) (3)

= β + (X′X)−1X′u (4)

since (X′X)−1X′X = I.
Taking expectation of Eq. (4) gives

E(β̂) = E(β) + (X′X)−1X′ E(u)

= β (5)

since E(β) = β (why?) and E(u) = 0 by assumption, which shows that β̂ is an unbiased estimator
of β.

Let β̂∗ be any other linear estimator of β, which can be written as

β∗ = [(X′X)−1X′ + C]y (6)

where C is a matrix of constants.
Substituting for y from Eq. (2) into Eq. (6), we get

β̂∗ = [(X′X)−1X′ + C](Xβ + u)

= β + CXβ + (X′X)−1X′u + Cu (7)

Now if β̂∗ is to be an unbiased estimator of β, we must have

CX = 0 (Why?) (8)
Using Eq. (8), Eq. (7) can be written as

β̂∗ − β = (X′X)−1X′u + Cu (9)

By definition, the var-cov (β̂∗) is

E(β̂∗ − β)(β̂∗ − β)′ = E[(X′X)−1X′u + Cu][(X′X)−1X′u + Cu]′ (10)

Making use of the properties of matrix inversion and transposition and after algebraic simplification,
we obtain

var-cov (β̂∗) = σ 2(X′X)−1 + σ 2CC′

= var-cov (β̂) + σ 2CC′ (11)

which shows that the variance-covariance matrix of the alternative unbiased linear estimator β̂∗ is
equal to the variance-covariance matrix of the OLS estimator β̂ plus σ 2 times CC′, which is a posi-
tive semidefinite* matrix. Hence the variances of a given element of β̂∗ must necessarily be equal to
or greater than the corresponding element of β̂, which shows that β̂ is BLUE. Of course, if C is a null
matrix, i.e., C = 0, then β̂∗ = β̂, which is another way of saying that if we have found a BLUE esti-
mator, it must be the least-squares estimator β̂.

*See references in Appendix B.
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TABLE D.1
Areas Under the
Standardized Normal
Distribution

Example

Pr (0 ≤ Z ≤ 1.96) = 0.4750

Pr (Z ≥ 1.96) = 0.5 − 0.4750 = 0.025

Z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753
0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141
0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517
0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879
0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224

0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549
0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852
0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133
0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389
1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621

1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319
1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441

1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545
1.7 .4454 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767
2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817

2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936
2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981
2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986
3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990

Note: This table gives the area in the right-hand tail of the distribution (i.e., Z ≥ 0). But since the normal distribution is
symmetrical about Z = 0, the area in the left-hand tail is the same as the area in the corresponding right-hand tail. For example,
P(−1.96 ≤ Z ≤ 0) = 0.4750. Therefore, P(−1.96 ≤ Z ≤ 1.96) = 2(0.4750) = 0.95.

0 1.96

0.4750

Z
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TABLE D.2
Percentage Points of
the t Distribution

Source: From E. S. Pearson and
H. O. Hartley, eds., Biometrika
Tables for Statisticians, vol. 1,
3d ed., table 12, Cambridge
University Press, New York,
1966. Reproduced by
permission of the editors and
trustees of Biometrika.

Example

Pr (t > 2.086) = 0.025

Pr (t > 1.725) = 0.05 for df = 20

Pr (|t| > 1.725) = 0.10

Pr 0.25 0.10 0.05 0.025 0.01 0.005 0.001
df 0.50 0.20 0.10 0.05 0.02 0.010 0.002

1 1.000 3.078 6.314 12.706 31.821 63.657 318.31
2 0.816 1.886 2.920 4.303 6.965 9.925 22.327
3 0.765 1.638 2.353 3.182 4.541 5.841 10.214
4 0.741 1.533 2.132 2.776 3.747 4.604 7.173

5 0.727 1.476 2.015 2.571 3.365 4.032 5.893
6 0.718 1.440 1.943 2.447 3.143 3.707 5.208
7 0.711 1.415 1.895 2.365 2.998 3.499 4.785
8 0.706 1.397 1.860 2.306 2.896 3.355 4.501
9 0.703 1.383 1.833 2.262 2.821 3.250 4.297

10 0.700 1.372 1.812 2.228 2.764 3.169 4.144
11 0.697 1.363 1.796 2.201 2.718 3.106 4.025
12 0.695 1.356 1.782 2.179 2.681 3.055 3.930
13 0.694 1.350 1.771 2.160 2.650 3.012 3.852
14 0.692 1.345 1.761 2.145 2.624 2.977 3.787

15 0.691 1.341 1.753 2.131 2.602 2.947 3.733
16 0.690 1.337 1.746 2.120 2.583 2.921 3.686
17 0.689 1.333 1.740 2.110 2.567 2.898 3.646
18 0.688 1.330 1.734 2.101 2.552 2.878 3.610
19 0.688 1.328 1.729 2.093 2.539 2.861 3.579

20 0.687 1.325 1.725 2.086 2.528 2.845 3.552
21 0.686 1.323 1.721 2.080 2.518 2.831 3.527
22 0.686 1.321 1.717 2.074 2.508 2.819 3.505
23 0.685 1.319 1.714 2.069 2.500 2.807 3.485
24 0.685 1.318 1.711 2.064 2.492 2.797 3.467

25 0.684 1.316 1.708 2.060 2.485 2.787 3.450
26 0.684 1.315 1.706 2.056 2.479 2.779 3.435
27 0.684 1.314 1.703 2.052 2.473 2.771 3.421
28 0.683 1.313 1.701 2.048 2.467 2.763 3.408
29 0.683 1.311 1.699 2.045 2.462 2.756 3.396

30 0.683 1.310 1.697 2.042 2.457 2.750 3.385
40 0.681 1.303 1.684 2.021 2.423 2.704 3.307
60 0.679 1.296 1.671 2.000 2.390 2.660 3.232

120 0.677 1.289 1.658 1.980 2.358 2.617 3.160
∞ 0.674 1.282 1.645 1.960 2.326 2.576 3.090

Note: The smaller probability shown at the head of each column is the area in one tail; the larger probability is the area in
both tails.

0 1.725

0.05

t
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TABLE D.3 Upper Percentage Points of the F Distribution

Example

Pr (F > 1.59) = 0.25

Pr (F > 2.42) = 0.10 for df N1 = 10

Pr (F > 3.14) = 0.05 and N2 = 9

Pr (F > 5.26) = 0.01

df for
denom- df for numerator N1
inator

N2 Pr 1 2 3 4 5 6 7 8 9 10 11 12

.25 5.83 7.50 8.20 8.58 8.82 8.98 9.10 9.19 9.26 9.32 9.36 9.41
1 .10 39.9 49.5 53.6 55.8 57.2 58.2 58.9 59.4 59.9 60.2 60.5 60.7

.05 161 200 216 225 230 234 237 239 241 242 243 244

.25 2.57 3.00 3.15 3.23 3.28 3.31 3.34 3.35 3.37 3.38 3.39 3.39
2 .10 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.40 9.41

.05 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4

.01 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4

.25 2.02 2.28 2.36 2.39 2.41 2.42 2.43 2.44 2.44 2.44 2.45 2.45
3 .10 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.22

.05 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.76 8.74

.01 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1 27.1

.25 1.81 2.00 2.05 2.06 2.07 2.08 2.08 2.08 2.08 2.08 2.08 2.08
4 .10 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.91 3.90

.05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.94 5.91

.01 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.4 14.4

.25 1.69 1.85 1.88 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89
5 .10 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.28 3.27

.05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.71 4.68

.01 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.96 9.89

.25 1.62 1.76 1.78 1.79 1.79 1.78 1.78 1.78 1.77 1.77 1.77 1.77
6 .10 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.92 2.90

.05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00

.01 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79 7.72

.25 1.57 1.70 1.72 1.72 1.71 1.71 1.70 1.70 1.69 1.69 1.69 1.68
7 .10 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.68 2.67

.05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.60 3.57

.01 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.54 6.47

.25 1.54 1.66 1.67 1.66 1.66 1.65 1.64 1.64 1.63 1.63 1.63 1.62
8 .10 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.52 2.50

.05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.31 3.28

.01 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.73 5.67

.25 1.51 1.62 1.63 1.63 1.62 1.61 1.60 1.60 1.59 1.59 1.58 1.58

9
.10 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.40 2.38
.05 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.10 3.07
.01 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.18 5.11

Source: From E. S. Pearson and H. O. Hartley, eds., Biometrika Tables for Statisticians, vol. 1, 3d ed., table 18, Cambridge University Press, New York, 1966.
Reproduced by permission of the editors and trustees of Biometrika.

5% area

1% area

3.14 5.26
F

0
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df for

df for numerator N1
denom-
inator

15 20 24 30 40 50 60 100 120 200 500 ∞ Pr N2

9.49 9.58 9.63 9.67 9.71 9.74 9.76 9.78 9.80 9.82 9.84 9.85 .25
61.2 61.7 62.0 62.3 62.5 62.7 62.8 63.0 63.1 63.2 63.3 63.3 .10 1

246 248 249 250 251 252 252 253 253 254 254 254 .05

3.41 3.43 3.43 3.44 3.45 3.45 3.46 3.47 3.47 3.48 3.48 3.48 .25
9.42 9.44 9.45 9.46 9.47 9.47 9.47 9.48 9.48 9.49 9.49 9.49 .10

219.4 19.4 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 .05
99.4 99.4 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 .01

2.46 2.46 2.46 2.47 2.47 2.47 2.47 2.47 2.47 2.47 2.47 2.47 .25
5.20 5.18 5.18 5.17 5.16 5.15 5.15 5.14 5.14 5.14 5.14 5.13 .10

38.70 8.66 8.64 8.62 8.59 8.58 8.57 8.55 8.55 8.54 8.53 8.53 .05
26.9 26.7 26.6 26.5 26.4 26.4 26.3 26.2 26.2 26.2 26.1 26.1 .01

2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 .25
3.87 3.84 3.83 3.82 3.80 3.80 3.79 3.78 3.78 3.77 3.76 3.76 .10

45.86 5.80 5.77 5.75 5.72 5.70 5.69 5.66 5.66 5.65 5.64 5.63 .05
14.2 14.0 13.9 13.8 13.7 13.7 13.7 13.6 13.6 13.5 13.5 13.5 .01

1.89 1.88 1.88 1.88 1.88 1.88 1.87 1.87 1.87 1.87 1.87 1.87 .25
3.24 3.21 3.19 3.17 3.16 3.15 3.14 3.13 3.12 3.12 3.11 3.10 .10

54.62 4.56 4.53 4.50 4.46 4.44 4.43 4.41 4.40 4.39 4.37 4.36 .05
9.72 9.55 9.47 9.38 9.29 9.24 9.20 9.13 9.11 9.08 9.04 9.02 .01

1.76 1.76 1.75 1.75 1.75 1.75 1.74 1.74 1.74 1.74 1.74 1.74 .25
2.87 2.84 2.82 2.80 2.78 2.77 2.76 2.75 2.74 2.73 2.73 2.72 .10

63.94 3.87 3.84 3.81 3.77 3.75 3.74 3.71 3.70 3.69 3.68 3.67 .05
7.56 7.40 7.31 7.23 7.14 7.09 7.06 6.99 6.97 6.93 6.90 6.88 .01

1.68 1.67 1.67 1.66 1.66 1.66 1.65 1.65 1.65 1.65 1.65 1.65 .25
2.63 2.59 2.58 2.56 2.54 2.52 2.51 2.50 2.49 2.48 2.48 2.47 .10

73.51 3.44 3.41 3.38 3.34 3.32 3.30 3.27 3.27 3.25 3.24 3.23 .05
6.31 6.16 6.07 5.99 5.91 5.86 5.82 5.75 5.74 5.70 5.67 5.65 .01

1.62 1.61 1.60 1.60 1.59 1.59 1.59 1.58 1.58 1.58 1.58 1.58 .25
2.46 2.42 2.40 2.38 2.36 2.35 2.34 2.32 2.32 2.31 2.30 2.29 .10

83.22 3.15 3.12 3.08 3.04 2.02 3.01 2.97 2.97 2.95 2.94 2.93 .05
5.52 5.36 5.28 5.20 5.12 5.07 5.03 4.96 4.95 4.91 4.88 4.86 .01

1.57 1.56 1.56 1.55 1.55 1.54 1.54 1.53 1.53 1.53 1.53 1.53 .25
2.34 2.30 2.28 2.25 2.23 2.22 2.21 2.19 2.18 2.17 2.17 2.16 .10

93.01 2.94 2.90 2.86 2.83 2.80 2.79 2.76 2.75 2.73 2.72 2.71 .05
4.96 4.81 4.73 4.65 4.57 4.52 4.48 4.42 4.40 4.36 4.33 4.31 .01

(Continued)
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TABLE D.3 Upper Percentage Points of the F Distribution (Continued )

df for
denom- df for numerator N1
inator

N2 Pr 1 2 3 4 5 6 7 8 9 10 11 12

.25 1.49 1.60 1.60 1.59 1.59 1.58 1.57 1.56 1.56 1.55 1.55 1.54

10
.10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.30 2.28
.05 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.94 2.91
.01 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.77 4.71

.25 1.47 1.58 1.58 1.57 1.56 1.55 1.54 1.53 1.53 1.52 1.52 1.51

11
.10 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.23 2.21
.05 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.82 2.79
.01 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.46 4.40

.25 1.46 1.56 1.56 1.55 1.54 1.53 1.52 1.51 1.51 1.50 1.50 1.49

12
.10 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.17 2.15
.05 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.72 2.69
.01 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.22 4.16

.25 1.45 1.55 1.55 1.53 1.52 1.51 1.50 1.49 1.49 1.48 1.47 1.47

13
.10 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.12 2.10
.05 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.63 2.60
.01 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96

.25 1.44 1.53 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.46 1.46 1.45

14
.10 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.08 2.05
.05 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.57 2.53
.01 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.86 3.80

.25 1.43 1.52 1.52 1.51 1.49 1.48 1.47 1.46 1.46 1.45 1.44 1.44

15
.10 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.04 2.02
.05 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.51 2.48
.01 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67

.25 1.42 1.51 1.51 1.50 1.48 1.47 1.46 1.45 1.44 1.44 1.44 1.43

16
.10 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 2.01 1.99
.05 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.46 2.42
.01 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.62 3.55

.25 1.42 1.51 1.50 1.49 1.47 1.46 1.45 1.44 1.43 1.43 1.42 1.41

17
.10 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.98 1.96
.05 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.41 2.38
.01 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52 3.46

.25 1.41 1.50 1.49 1.48 1.46 1.45 1.44 1.43 1.42 1.42 1.41 1.40

18
.10 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.96 1.93
.05 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34
.01 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.43 3.37

.25 1.41 1.49 1.49 1.47 1.46 1.44 1.43 1.42 1.41 1.41 1.40 1.40

19
.10 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.94 1.91
.05 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.34 2.31
.01 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36 3.30

.25 1.40 1.49 1.48 1.46 1.45 1.44 1.43 1.42 1.41 1.40 1.39 1.39

20
.10 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.92 1.89
.05 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.31 2.28
.01 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.29 3.23
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df for

df for numerator N1
denom-
inator

15 20 24 30 40 50 60 100 120 200 500 ∞ Pr N2

1.53 1.52 1.52 1.51 1.51 1.50 1.50 1.49 1.49 1.49 1.48 1.48 .25
2.24 2.20 2.18 2.16 2.13 2.12 2.11 2.09 2.08 2.07 2.06 2.06 .10

102.85 2.77 2.74 2.70 2.66 2.64 2.62 2.59 2.58 2.56 2.55 2.54 .05
4.56 4.41 4.33 4.25 4.17 4.12 4.08 4.01 4.00 3.96 3.93 3.91 .01

1.50 1.49 1.49 1.48 1.47 1.47 1.47 1.46 1.46 1.46 1.45 1.45 .25
2.17 2.12 2.10 2.08 2.05 2.04 2.03 2.00 2.00 1.99 1.98 1.97 .10

112.72 2.65 2.61 2.57 2.53 2.51 2.49 2.46 2.45 2.43 2.42 2.40 .05
4.25 4.10 4.02 3.94 3.86 3.81 3.78 3.71 3.69 3.66 3.62 3.60 .01

1.48 1.47 1.46 1.45 1.45 1.44 1.44 1.43 1.43 1.43 1.42 1.42 .25
2.10 2.06 2.04 2.01 1.99 1.97 1.96 1.94 1.93 1.92 1.91 1.90 .10

122.62 2.54 2.51 2.47 2.43 2.40 2.38 2.35 2.34 2.32 2.31 2.30 .05
4.01 3.86 3.78 3.70 3.62 3.57 3.54 3.47 3.45 3.41 3.38 3.36 .01

1.46 1.45 1.44 1.43 1.42 1.42 1.42 1.41 1.41 1.40 1.40 1.40 .25
2.05 2.01 1.98 1.96 1.93 1.92 1.90 1.88 1.88 1.86 1.85 1.85 .10

132.53 2.46 2.42 2.38 2.34 2.31 2.30 2.26 2.25 2.23 2.22 2.21 .05
3.82 3.66 3.59 3.51 3.43 3.38 3.34 3.27 3.25 3.22 3.19 3.17 .01

1.44 1.43 1.42 1.41 1.41 1.40 1.40 1.39 1.39 1.39 1.38 1.38 .25
2.01 1.96 1.94 1.91 1.89 1.87 1.86 1.83 1.83 1.82 1.80 1.80 .10

142.46 2.39 2.35 2.31 2.27 2.24 2.22 2.19 2.18 2.16 2.14 2.13 .05
3.66 3.51 3.43 3.35 3.27 3.22 3.18 3.11 3.09 3.06 3.03 3.00 .01

1.43 1.41 1.41 1.40 1.39 1.39 1.38 1.38 1.37 1.37 1.36 1.36 .25
1.97 1.92 1.90 1.87 1.85 1.83 1.82 1.79 1.79 1.77 1.76 1.76 .10

152.40 2.33 2.29 2.25 2.20 2.18 2.16 2.12 2.11 2.10 2.08 2.07 .05
3.52 3.37 3.29 3.21 3.13 3.08 3.05 2.98 2.96 2.92 2.89 2.87 .01

1.41 1.40 1.39 1.38 1.37 1.37 1.36 1.36 1.35 1.35 1.34 1.34 .25
1.94 1.89 1.87 1.84 1.81 1.79 1.78 1.76 1.75 1.74 1.73 1.72 .10

162.35 2.28 2.24 2.19 2.15 2.12 2.11 2.07 2.06 2.04 2.02 2.01 .05
3.41 3.26 3.18 3.10 3.02 2.97 2.93 2.86 2.84 2.81 2.78 2.75 .01

1.40 1.39 1.38 1.37 1.36 1.35 1.35 1.34 1.34 1.34 1.33 1.33 .25
1.91 1.86 1.84 1.81 1.78 1.76 1.75 1.73 1.72 1.71 1.69 1.69 .10

172.31 2.23 2.19 2.15 2.10 2.08 2.06 2.02 2.01 1.99 1.97 1.96 .05
3.31 3.16 3.08 3.00 2.92 2.87 2.83 2.76 2.75 2.71 2.68 2.65 .01

1.39 1.38 1.37 1.36 1.35 1.34 1.34 1.33 1.33 1.32 1.32 1.32 .25
1.89 1.84 1.81 1.78 1.75 1.74 1.72 1.70 1.69 1.68 1.67 1.66 .10

182.27 2.19 2.15 2.11 2.06 2.04 2.02 1.98 1.97 1.95 1.93 1.92 .05
3.23 3.08 3.00 2.92 2.84 2.78 2.75 2.68 2.66 2.62 2.59 2.57 .01

1.38 1.37 1.36 1.35 1.34 1.33 1.33 1.32 1.32 1.31 1.31 1.30 .25
1.86 1.81 1.79 1.76 1.73 1.71 1.70 1.67 1.67 1.65 1.64 1.63 .10

192.23 2.16 2.11 2.07 2.03 2.00 1.98 1.94 1.93 1.91 1.89 1.88 .05
3.15 3.00 2.92 2.84 2.76 2.71 2.67 2.60 2.58 2.55 2.51 2.49 .01

1.37 1.36 1.35 1.34 1.33 1.33 1.32 1.31 1.31 1.30 1.30 1.29 .25
1.84 1.79 1.77 1.74 1.71 1.69 1.68 1.65 1.64 1.63 1.62 1.61 .10

202.20 2.12 2.08 2.04 1.99 1.97 1.95 1.91 1.90 1.88 1.86 1.84 .05
3.09 2.94 2.86 2.78 2.69 2.64 2.61 2.54 2.52 2.48 2.44 2.42 .01

(Continued)
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TABLE D.3 Upper Percentage Points of the F Distribution (Continued )

df for
denom- df for numerator N1
inator
N2 Pr 1 2 3 4 5 6 7 8 9 10 11 12

.25 1.40 1.48 1.47 1.45 1.44 1.42 1.41 1.40 1.39 1.39 1.38 1.37

22
.10 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.88 1.86
.05 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.26 2.23
.01 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18 3.12

.25 1.39 1.47 1.46 1.44 1.43 1.41 1.40 1.39 1.38 1.38 1.37 1.36

24
.10 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.85 1.83
.05 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.21 2.18
.01 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.09 3.03

.25 1.38 1.46 1.45 1.44 1.42 1.41 1.39 1.38 1.37 1.37 1.36 1.35

26
.10 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.84 1.81
.05 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15
.01 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 3.02 2.96

.25 1.38 1.46 1.45 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.35 1.34

28
.10 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 1.81 1.79
.05 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.15 2.12
.01 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.96 2.90

.25 1.38 1.45 1.44 1.42 1.41 1.39 1.38 1.37 1.36 1.35 1.35 1.34

30
.10 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.79 1.77
.05 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.13 2.09
.01 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.91 2.84

.25 1.36 1.44 1.42 1.40 1.39 1.37 1.36 1.35 1.34 1.33 1.32 1.31

40
.10 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.73 1.71
.05 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.04 2.00
.01 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.73 2.66

.25 1.35 1.42 1.41 1.38 1.37 1.35 1.33 1.32 1.31 1.30 1.29 1.29

60
.10 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.68 1.66
.05 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92
.01 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50

.25 1.34 1.40 1.39 1.37 1.35 1.33 1.31 1.30 1.29 1.28 1.27 1.26

120
.10 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.62 1.60
.05 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91 1.87 1.83
.01 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.40 2.34

.25 1.33 1.39 1.38 1.36 1.34 1.32 1.31 1.29 1.28 1.27 1.26 1.25

200
.10 2.73 2.33 2.11 1.97 1.88 1.80 1.75 1.70 1.66 1.63 1.60 1.57
.05 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.84 1.80
.01 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41 2.34 2.27

.25 1.32 1.39 1.37 1.35 1.33 1.31 1.29 1.28 1.27 1.25 1.24 1.24

∞ .10 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.57 1.55
.05 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.79 1.75
.01 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.25 2.18

guj75772_appD.qxd  05/09/2008  11:09 AM  Page 884



Appendix D Statistical Tables 885

df for

df for numerator N1
denom-
inator

15 20 24 30 40 50 60 100 120 200 500 ∞ Pr N2

1.36 1.34 1.33 1.32 1.31 1.31 1.30 1.30 1.30 1.29 1.29 1.28 .25
1.81 1.76 1.73 1.70 1.67 1.65 1.64 1.61 1.60 1.59 1.58 1.57 .10

222.15 2.07 2.03 1.98 1.94 1.91 1.89 1.85 1.84 1.82 1.80 1.78 .05
2.98 2.83 2.75 2.67 2.58 2.53 2.50 2.42 2.40 2.36 2.33 2.31 .01

1.35 1.33 1.32 1.31 1.30 1.29 1.29 1.28 1.28 1.27 1.27 1.26 .25
1.78 1.73 1.70 1.67 1.64 1.62 1.61 1.58 1.57 1.56 1.54 1.53 .10

242.11 2.03 1.98 1.94 1.89 1.86 1.84 1.80 1.79 1.77 1.75 1.73 .05
2.89 2.74 2.66 2.58 2.49 2.44 2.40 2.33 2.31 2.27 2.24 2.21 .01

1.34 1.32 1.31 1.30 1.29 1.28 1.28 1.26 1.26 1.26 1.25 1.25 .25
1.76 1.71 1.68 1.65 1.61 1.59 1.58 1.55 1.54 1.53 1.51 1.50 .10

262.07 1.99 1.95 1.90 1.85 1.82 1.80 1.76 1.75 1.73 1.71 1.69 .05
2.81 2.66 2.58 2.50 2.42 2.36 2.33 2.25 2.23 2.19 2.16 2.13 .01

1.33 1.31 1.30 1.29 1.28 1.27 1.27 1.26 1.25 1.25 1.24 1.24 .25
1.74 1.69 1.66 1.63 1.59 1.57 1.56 1.53 1.52 1.50 1.49 1.48 .10

282.04 1.96 1.91 1.87 1.82 1.79 1.77 1.73 1.71 1.69 1.67 1.65 .05
2.75 2.60 2.52 2.44 2.35 2.30 2.26 2.19 2.17 2.13 2.09 2.06 .01

1.32 1.30 1.29 1.28 1.27 1.26 1.26 1.25 1.24 1.24 1.23 1.23 .25
1.72 1.67 1.64 1.61 1.57 1.55 1.54 1.51 1.50 1.48 1.47 1.46 .10

302.01 1.93 1.89 1.84 1.79 1.76 1.74 1.70 1.68 1.66 1.64 1.62 .05
2.70 2.55 2.47 2.39 2.30 2.25 2.21 2.13 2.11 2.07 2.03 2.01 .01

1.30 1.28 1.26 1.25 1.24 1.23 1.22 1.21 1.21 1.20 1.19 1.19 .25
1.66 1.61 1.57 1.54 1.51 1.48 1.47 1.43 1.42 1.41 1.39 1.38 .10

401.92 1.84 1.79 1.74 1.69 1.66 1.64 1.59 1.58 1.55 1.53 1.51 .05
2.52 2.37 2.29 2.20 2.11 2.06 2.02 1.94 1.92 1.87 1.83 1.80 .01

1.27 1.25 1.24 1.22 1.21 1.20 1.19 1.17 1.17 1.16 1.15 1.15 .25
1.60 1.54 1.51 1.48 1.44 1.41 1.40 1.36 1.35 1.33 1.31 1.29 .10

601.84 1.75 1.70 1.65 1.59 1.56 1.53 1.48 1.47 1.44 1.41 1.39 .05
2.35 2.20 2.12 2.03 1.94 1.88 1.84 1.75 1.73 1.68 1.63 1.60 .01

1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.14 1.13 1.12 1.11 1.10 .25
1.55 1.48 1.45 1.41 1.37 1.34 1.32 1.27 1.26 1.24 1.21 1.19 .10

1201.75 1.66 1.61 1.55 1.50 1.46 1.43 1.37 1.35 1.32 1.28 1.25 .05
2.19 2.03 1.95 1.86 1.76 1.70 1.66 1.56 1.53 1.48 1.42 1.38 .01

1.23 1.21 1.20 1.18 1.16 1.14 1.12 1.11 1.10 1.09 1.08 1.06 .25
1.52 1.46 1.42 1.38 1.34 1.31 1.28 1.24 1.22 1.20 1.17 1.14 .10

2001.72 1.62 1.57 1.52 1.46 1.41 1.39 1.32 1.29 1.26 1.22 1.19 .05
2.13 1.97 1.89 1.79 1.69 1.63 1.58 1.48 1.44 1.39 1.33 1.28 .01

1.22 1.19 1.18 1.16 1.14 1.13 1.12 1.09 1.08 1.07 1.04 1.00 .25
1.49 1.42 1.38 1.34 1.30 1.26 1.24 1.18 1.17 1.13 1.08 1.00 .10 ∞1.67 1.57 1.52 1.46 1.39 1.35 1.32 1.24 1.22 1.17 1.11 1.00 .05
2.04 1.88 1.79 1.70 1.59 1.52 1.47 1.36 1.32 1.25 1.15 1.00 .01
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TABLE D.4
Upper Percentage
Points of the χ2

Distribution

Example

Pr (χ2 > 10.85) = 0.95

Pr (χ2 > 23.83) = 0.25 for df = 20

Pr (χ2 > 31.41) = 0.05

Degrees Pr
of freedom .995 .990 .975 .950 .900

1 392704 × 10−10 157088 × 10−9 982069 × 10−9 393214 × 10−8 .0157908
2 .0100251 .0201007 .0506356 .102587 .210720
3 .0717212 .114832 .215795 .351846 .584375
4 .206990 .297110 .484419 .710721 1.063623

5 .411740 .554300 .831211 1.145476 1.61031
6 .675727 .872085 1.237347 1.63539 2.20413
7 .989265 1.239043 1.68987 2.16735 2.83311
8 1.344419 1.646482 2.17973 2.73264 3.48954
9 1.734926 2.087912 2.70039 3.32511 4.16816

10 2.15585 2.55821 3.24697 3.94030 4.86518
11 2.60321 3.05347 3.81575 4.57481 5.57779
12 3.07382 3.57056 4.40379 5.22603 6.30380
13 3.56503 4.10691 5.00874 5.89186 7.04150
14 4.07468 4.66043 5.62872 6.57063 7.78953

15 4.60094 5.22935 6.26214 7.26094 8.54675
16 5.14224 5.81221 6.90766 7.96164 9.31223
17 5.69724 6.40776 7.56418 8.67176 10.0852
18 6.26481 7.01491 8.23075 9.39046 10.8649
19 6.84398 7.63273 8.90655 10.1170 11.6509

20 7.43386 8.26040 9.59083 10.8508 12.4426
21 8.03366 8.89720 10.28293 11.5913 13.2396
22 8.64272 9.54249 10.9823 12.3380 14.0415
23 9.26042 10.19567 11.6885 13.0905 14.8479
24 9.88623 10.8564 12.4011 13.8484 15.6587

25 10.5197 11.5240 13.1197 14.6114 16.4734
26 11.1603 12.1981 13.8439 15.3791 17.2919
27 11.8076 12.8786 14.5733 16.1513 18.1138
28 12.4613 13.5648 15.3079 16.9279 18.9392
29 13.1211 14.2565 16.0471 17.7083 19.7677

30 13.7867 14.9535 16.7908 18.4926 20.5992
40 20.7065 22.1643 24.4331 26.5093 29.0505
50 27.9907 29.7067 32.3574 34.7642 37.6886
60 35.5346 37.4848 40.4817 43.1879 46.4589

70 43.2752 45.4418 48.7576 51.7393 55.3290
80 51.1720 53.5400 57.1532 60.3915 64.2778
90 59.1963 61.7541 65.6466 69.1260 73.2912

100* 67.3276 70.0648 74.2219 77.9295 82.3581

*For df greater than 100 the expression 
√

−
√

= Z follows the standardized normal distribution, where k represents
the degrees of freedom.

5% area

25% area

31.4110.850 23.83

95% area

2χ 

2χ2 (2k−1)
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.750 .500 .250 .100 .050 .025 .010 .005

.1015308 .454937 1.32330 2.70554 3.84146 5.02389 6.63490 7.87944

.575364 1.38629 2.77259 4.60517 5.99147 7.37776 9.21034 10.5966
1.212534 2.36597 4.10835 6.25139 7.81473 9.34840 11.3449 12.8381
1.92255 3.35670 5.38527 7.77944 9.48773 11.1433 13.2767 14.8602

2.67460 4.35146 6.62568 9.23635 11.0705 12.8325 15.0863 16.7496
3.45460 5.34812 7.84080 10.6446 12.5916 14.4494 16.8119 18.5476
4.25485 6.34581 9.03715 12.0170 14.0671 16.0128 18.4753 20.2777
5.07064 7.34412 10.2188 13.3616 15.5073 17.5346 20.0902 21.9550
5.89883 8.34283 11.3887 14.6837 16.9190 19.0228 21.6660 23.5893

6.73720 9.34182 12.5489 15.9871 18.3070 20.4831 23.2093 25.1882
7.58412 10.3410 13.7007 17.2750 19.6751 21.9200 24.7250 26.7569
8.43842 11.3403 14.8454 18.5494 21.0261 23.3367 26.2170 28.2995
9.29906 12.3398 15.9839 19.8119 22.3621 24.7356 27.6883 29.8194

10.1653 13.3393 17.1170 21.0642 23.6848 26.1190 29.1413 31.3193

11.0365 14.3389 18.2451 22.3072 24.9958 27.4884 30.5779 32.8013
11.9122 15.3385 19.3688 23.5418 26.2962 28.8454 31.9999 34.2672
12.7919 16.3381 20.4887 24.7690 27.5871 30.1910 33.4087 35.7185
13.6753 17.3379 21.6049 25.9894 28.8693 31.5264 34.8053 37.1564
14.5620 18.3376 22.7178 27.2036 30.1435 32.8523 36.1908 38.5822

15.4518 19.3374 23.8277 28.4120 31.4104 34.1696 37.5662 39.9968
16.3444 20.3372 24.9348 29.6151 32.6705 35.4789 38.9321 41.4010
17.2396 21.3370 26.0393 30.8133 33.9244 36.7807 40.2894 42.7956
18.1373 22.3369 27.1413 32.0069 35.1725 38.0757 41.6384 44.1813
19.0372 23.3367 28.2412 33.1963 36.4151 39.3641 42.9798 45.5585

19.9393 24.3366 29.3389 34.3816 37.6525 40.6465 44.3141 46.9278
20.8434 25.3364 30.4345 35.5631 38.8852 41.9232 45.6417 48.2899
21.7494 26.3363 31.5284 36.7412 40.1133 43.1944 46.9630 49.6449
22.6572 27.3363 32.6205 37.9159 41.3372 44.4607 48.2782 50.9933
23.5666 28.3362 33.7109 39.0875 42.5569 45.7222 49.5879 52.3356

24.4776 29.3360 34.7998 40.2560 43.7729 46.9792 50.8922 53.6720
33.6603 39.3354 45.6160 51.8050 55.7585 59.3417 63.6907 66.7659
42.9421 49.3349 56.3336 63.1671 67.5048 71.4202 76.1539 79.4900
52.2938 59.3347 66.9814 74.3970 79.0819 83.2976 88.3794 91.9517

61.6983 69.3344 77.5766 85.5271 90.5312 95.0231 100.425 104.215
71.1445 79.3343 88.1303 96.5782 101.879 106.629 112.329 116.321
80.6247 89.3342 98.6499 107.565 113.145 118.136 124.116 128.299
90.1332 99.3341 109.141 118.498 124.342 129.561 135.807 140.169

Source: Abridged from E. S. Pearson and H. O. Hartley, eds., Biometrika Tables for Statisticians, vol. 1, 3d ed., table 8, Cambridge University Press, New York, 1966.
Reproduced by permission of the editors and trustees of Biometrika.
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TABLE D.5A Durbin–Watson d Statistic: Significance Points of dL and dU at 0.05 Level of Significance

k′ = 1 k′ = 2 k′ = 3 k′ = 4 k′ = 5 k′ = 6 k′ = 7 k′ = 8 k′ = 9 k′ = 10

n dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU

6 0.610 1.400 — — — — — — — — — — — — — — — — — —

7 0.700 1.356 0.467 1.896 — — — — — — — — — — — — — — — —

8 0.763 1.332 0.559 1.777 0.368 2.287 — — — — — — — — — — — — — —

9 0.824 1.320 0.629 1.699 0.455 2.128 0.296 2.588 — — — — — — — — — — — —

10 0.879 1.320 0.697 1.641 0.525 2.016 0.376 2.414 0.243 2.822 — — — — — — — — — —

11 0.927 1.324 0.658 1.604 0.595 1.928 0.444 2.283 0.316 2.645 0.203 3.005 — — — — — — — —

12 0.971 1.331 0.812 1.579 0.658 1.864 0.512 2.177 0.379 2.506 0.268 2.832 0.171 3.149 — — — — — —

13 1.010 1.340 0.861 1.562 0.715 1.816 0.574 2.094 0.445 2.390 0.328 2.692 0.230 2.985 0.147 3.266 — — — —

14 1.045 1.350 0.905 1.551 0.767 1.779 0.632 2.030 0.505 2.296 0.389 2.572 0.286 2.848 0.200 3.111 0.127 3.360 — —

15 1.077 1.361 0.946 1.543 0.814 1.750 0.685 1.977 0.562 2.220 0.447 2.472 0.343 2.727 0.251 2.979 0.175 3.216 0.111 3.438

16 1.106 1.371 0.982 1.539 0.857 1.728 0.734 1.935 0.615 2.157 0.502 2.388 0.398 2.624 0.304 2.860 0.222 3.090 0.155 3.304

17 1.133 1.381 1.015 1.536 0.897 1.710 0.779 1.900 0.664 2.104 0.554 2.318 0.451 2.537 0.356 2.757 0.272 2.975 0.198 3.184

18 1.158 1.391 1.046 1.535 0.933 1.696 0.820 1.872 0.710 2.060 0.603 2.257 0.502 2.461 0.407 2.667 0.321 2.873 0.244 3.073

19 1.180 1.401 1.074 1.536 0.967 1.685 0.859 1.848 0.752 2.023 0.649 2.206 0.549 2.396 0.456 2.589 0.369 2.783 0.290 2.974

20 1.201 1.411 1.100 1.537 0.998 1.676 0.894 1.828 0.792 1.991 0.692 2.162 0.595 2.339 0.502 2.521 0.416 2.704 0.336 2.885

21 1.221 1.420 1.125 1.538 1.026 1.669 0.927 1.812 0.829 1.964 0.732 2.124 0.637 2.290 0.547 2.460 0.461 2.633 0.380 2.806

22 1.239 1.429 1.147 1.541 1.053 1.664 0.958 1.797 0.863 1.940 0.769 2.090 0.677 2.246 0.588 2.407 0.504 2.571 0.424 2.734

23 1.257 1.437 1.168 1.543 1.078 1.660 0.986 1.785 0.895 1.920 0.804 2.061 0.715 2.208 0.628 2.360 0.545 2.514 0.465 2.670

24 1.273 1.446 1.188 1.546 1.101 1.656 1.013 1.775 0.925 1.902 0.837 2.035 0.751 2.174 0.666 2.318 0.584 2.464 0.506 2.613

25 1.288 1.454 1.206 1.550 1.123 1.654 1.038 1.767 0.953 1.886 0.868 2.012 0.784 2.144 0.702 2.280 0.621 2.419 0.544 2.560

26 1.302 1.461 1.224 1.553 1.143 1.652 1.062 1.759 0.979 1.873 0.897 1.992 0.816 2.117 0.735 2.246 0.657 2.379 0.581 2.513

27 1.316 1.469 1.240 1.556 1.162 1.651 1.084 1.753 1.004 1.861 0.925 1.974 0.845 2.093 0.767 2.216 0.691 2.342 0.616 2.470

28 1.328 1.476 1.255 1.560 1.181 1.650 1.104 1.747 1.028 1.850 0.951 1.958 0.874 2.071 0.798 2.188 0.723 2.309 0.650 2.431

29 1.341 1.483 1.270 1.563 1.198 1.650 1.124 1.743 1.050 1.841 0.975 1.944 0.900 2.052 0.826 2.164 0.753 2.278 0.682 2.396

30 1.352 1.489 1.284 1.567 1.214 1.650 1.143 1.739 1.071 1.833 0.998 1.931 0.926 2.034 0.854 2.141 0.782 2.251 0.712 2.363

31 1.363 1.496 1.297 1.570 1.229 1.650 1.160 1.735 1.090 1.825 1.020 1.920 0.950 2.018 0.879 2.120 0.810 2.226 0.741 2.333

32 1.373 1.502 1.309 1.574 1.244 1.650 1.177 1.732 1.109 1.819 1.041 1.909 0.972 2.004 0.904 2.102 0.836 2.203 0.769 2.306

33 1.383 1.508 1.321 1.577 1.258 1.651 1.193 1.730 1.127 1.813 1.061 1.900 0.994 1.991 0.927 2.085 0.861 2.181 0.795 2.281

34 1.393 1.514 1.333 1.580 1.271 1.652 1.208 1.728 1.144 1.808 1.080 1.891 1.015 1.979 0.950 2.069 0.885 2.162 0.821 2.257

35 1.402 1.519 1.343 1.584 1.283 1.653 1.222 1.726 1.160 1.803 1.097 1.884 1.034 1.967 0.971 2.054 0.908 2.144 0.845 2.236

36 1.411 1.525 1.354 1.587 1.295 1.654 1.236 1.724 1.175 1.799 1.114 1.877 1.053 1.957 0.991 2.041 0.930 2.127 0.868 2.216

37 1.419 1.530 1.364 1.590 1.307 1.655 1.249 1.723 1.190 1.795 1.131 1.870 1.071 1.948 1.011 2.029 0.951 2.112 0.891 2.198

38 1.427 1.535 1.373 1.594 1.318 1.656 1.261 1.722 1.204 1.792 1.146 1.864 1.088 1.939 1.029 2.017 0.970 2.098 0.912 2.180

39 1.435 1.540 1.382 1.597 1.328 1.658 1.273 1.722 1.218 1.789 1.161 1.859 1.104 1.932 1.047 2.007 0.990 2.085 0.932 2.164

40 1.442 1.544 1.391 1.600 1.338 1.659 1.285 1.721 1.230 1.786 1.175 1.854 1.120 1.924 1.064 1.997 1.008 2.072 0.952 2.149

45 1.475 1.566 1.430 1.615 1.383 1.666 1.336 1.720 1.287 1.776 1.238 1.835 1.189 1.895 1.139 1.958 1.089 2.022 1.038 2.088

50 1.503 1.585 1.462 1.628 1.421 1.674 1.378 1.721 1.335 1.771 1.291 1.822 1.246 1.875 1.201 1.930 1.156 1.986 1.110 2.044

55 1.528 1.601 1.490 1.641 1.452 1.681 1.414 1.724 1.374 1.768 1.334 1.814 1.294 1.861 1.253 1.909 1.212 1.959 1.170 2.010

60 1.549 1.616 1.514 1.652 1.480 1.689 1.444 1.727 1.408 1.767 1.372 1.808 1.335 1.850 1.298 1.894 1.260 1.939 1.222 1.984

65 1.567 1.629 1.536 1.662 1.503 1.696 1.471 1.731 1.438 1.767 1.404 1.805 1.370 1.843 1.336 1.882 1.301 1.923 1.266 1.964

70 1.583 1.641 1.554 1.672 1.525 1.703 1.494 1.735 1.464 1.768 1.433 1.802 1.401 1.837 1.369 1.873 1.337 1.910 1.305 1.948

75 1.598 1.652 1.571 1.680 1.543 1.709 1.515 1.739 1.487 1.770 1.458 1.801 1.428 1.834 1.399 1.867 1.369 1.901 1.339 1.935

80 1.611 1.662 1.586 1.688 1.560 1.715 1.534 1.743 1.507 1.772 1.480 1.801 1.453 1.831 1.425 1.861 1.397 1.893 1.369 1.925

85 1.624 1.671 1.600 1.696 1.575 1.721 1.550 1.747 1.525 1.774 1.500 1.801 1.474 1.829 1.448 1.857 1.422 1.886 1.396 1.916

90 1.635 1.679 1.612 1.703 1.589 1.726 1.566 1.751 1.542 1.776 1.518 1.801 1.494 1.827 1.469 1.854 1.445 1.881 1.420 1.909

95 1.645 1.687 1.623 1.709 1.602 1.732 1.579 1.755 1.557 1.778 1.535 1.802 1.512 1.827 1.489 1.852 1.465 1.877 1.442 1.903

100 1.654 1.694 1.634 1.715 1.613 1.736 1.592 1.758 1.571 1.780 1.550 1.803 1.528 1.826 1.506 1.850 1.484 1.874 1.462 1.898

150 1.720 1.746 1.706 1.760 1.693 1.774 1.679 1.788 1.665 1.802 1.651 1.817 1.637 1.832 1.622 1.847 1.608 1.862 1.594 1.877

200 1.758 1.778 1.748 1.789 1.738 1.799 1.728 1.810 1.718 1.820 1.707 1.831 1.697 1.841 1.686 1.852 1.675 1.863 1.665 1.874
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k′ = 11 k′ = 12 k′ = 13 k′ = 14 k′ = 15 k′ = 16 k′ = 17 k′ = 18 k′ = 19 k′ = 20

n dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU

16 0.098 3.503 — — — — — — — — — — — — — — — — — —

17 0.138 3.378 0.087 3.557 — — — — — — — — — — — — — — — —

18 0.177 3.265 0.123 3.441 0.078 3.603 — — — — — — — — — — — — — —

19 0.220 3.159 0.160 3.335 0.111 3.496 0.070 3.642 — — — — — — — — — — — —

20 0.263 3.063 0.200 3.234 0.145 3.395 0.100 3.542 0.063 3.676 — — — — — — — — — —

21 0.307 2.976 0.240 3.141 0.182 3.300 0.132 3.448 0.091 3.583 0.058 3.705 — — — — — — — —

22 0.349 2.897 0.281 3.057 0.220 3.211 0.166 3.358 0.120 3.495 0.083 3.619 0.052 3.731 — — — — — —

23 0.391 2.826 0.322 2.979 0.259 3.128 0.202 3.272 0.153 3.409 0.110 3.535 0.076 3.650 0.048 3.753 — — — —

24 0.431 2.761 0.362 2.908 0.297 3.053 0.239 3.193 0.186 3.327 0.141 3.454 0.101 3.572 0.070 3.678 0.044 3.773 — —

25 0.470 2.702 0.400 2.844 0.335 2.983 0.275 3.119 0.221 3.251 0.172 3.376 0.130 3.494 0.094 3.604 0.065 3.702 0.041 3.790

26 0.508 2.649 0.438 2.784 0.373 2.919 0.312 3.051 0.256 3.179 0.205 3.303 0.160 3.420 0.120 3.531 0.087 3.632 0.060 3.724

27 0.544 2.600 0.475 2.730 0.409 2.859 0.348 2.987 0.291 3.112 0.238 3.233 0.191 3.349 0.149 3.460 0.112 3.563 0.081 3.658

28 0.578 2.555 0.510 2.680 0.445 2.805 0.383 2.928 0.325 3.050 0.271 3.168 0.222 3.283 0.178 3.392 0.138 3.495 0.104 3.592

29 0.612 2.515 0.544 2.634 0.479 2.755 0.418 2.874 0.359 2.992 0.305 3.107 0.254 3.219 0.208 3.327 0.166 3.431 0.129 3.528

30 0.643 2.477 0.577 2.592 0.512 2.708 0.451 2.823 0.392 2.937 0.337 3.050 0.286 3.160 0.238 3.266 0.195 3.368 0.156 3.465

31 0.674 2.443 0.608 2.553 0.545 2.665 0.484 2.776 0.425 2.887 0.370 2.996 0.317 3.103 0.269 3.208 0.224 3.309 0.183 3.406

32 0.703 2.411 0.638 2.517 0.576 2.625 0.515 2.733 0.457 2.840 0.401 2.946 0.349 3.050 0.299 3.153 0.253 3.252 0.211 3.348

33 0.731 2.382 0.668 2.484 0.606 2.588 0.546 2.692 0.488 2.796 0.432 2.899 0.379 3.000 0.329 3.100 0.283 3.198 0.239 3.293

34 0.758 2.355 0.695 2.454 0.634 2.554 0.575 2.654 0.518 2.754 0.462 2.854 0.409 2.954 0.359 3.051 0.312 3.147 0.267 3.240

35 0.783 2.330 0.722 2.425 0.662 2.521 0.604 2.619 0.547 2.716 0.492 2.813 0.439 2.910 0.388 3.005 0.340 3.099 0.295 3.190

36 0.808 2.306 0.748 2.398 0.689 2.492 0.631 2.586 0.575 2.680 0.520 2.774 0.467 2.868 0.417 2.961 0.369 3.053 0.323 3.142

37 0.831 2.285 0.772 2.374 0.714 2.464 0.657 2.555 0.602 2.646 0.548 2.738 0.495 2.829 0.445 2.920 0.397 3.009 0.351 3.097

38 0.854 2.265 0.796 2.351 0.739 2.438 0.683 2.526 0.628 2.614 0.575 2.703 0.522 2.792 0.472 2.880 0.424 2.968 0.378 3.054

39 0.875 2.246 0.819 2.329 0.763 2.413 0.707 2.499 0.653 2.585 0.600 2.671 0.549 2.757 0.499 2.843 0.451 2.929 0.404 3.013

40 0.896 2.228 0.840 2.309 0.785 2.391 0.731 2.473 0.678 2.557 0.626 2.641 0.575 2.724 0.525 2.808 0.477 2.892 0.430 2.974

45 0.988 2.156 0.938 2.225 0.887 2.296 0.838 2.367 0.788 2.439 0.740 2.512 0.692 2.586 0.644 2.659 0.598 2.733 0.553 2.807

50 1.064 2.103 1.019 2.163 0.973 2.225 0.927 2.287 0.882 2.350 0.836 2.414 0.792 2.479 0.747 2.544 0.703 2.610 0.660 2.675

55 1.129 2.062 1.087 2.116 1.045 2.170 1.003 2.225 0.961 2.281 0.919 2.338 0.877 2.396 0.836 2.454 0.795 2.512 0.754 2.571

60 1.184 2.031 1.145 2.079 1.106 2.127 1.068 2.177 1.029 2.227 0.990 2.278 0.951 2.330 0.913 2.382 0.874 2.434 0.836 2.487

65 1.231 2.006 1.195 2.049 1.160 2.093 1.124 2.138 1.088 2.183 1.052 2.229 1.016 2.276 0.980 2.323 0.944 2.371 0.908 2.419

70 1.272 1.986 1.239 2.026 1.206 2.066 1.172 2.106 1.139 2.148 1.105 2.189 1.072 2.232 1.038 2.275 1.005 2.318 0.971 2.362

75 1.308 1.970 1.277 2.006 1.247 2.043 1.215 2.080 1.184 2.118 1.153 2.156 1.121 2.195 1.090 2.235 1.058 2.275 1.027 2.315

80 1.340 1.957 1.311 1.991 1.283 2.024 1.253 2.059 1.224 2.093 1.195 2.129 1.165 2.165 1.136 2.201 1.106 2.238 1.076 2.275

85 1.369 1.946 1.342 1.977 1.315 2.009 1.287 2.040 1.260 2.073 1.232 2.105 1.205 2.139 1.177 2.172 1.149 2.206 1.121 2.241

90 1.395 1.937 1.369 1.966 1.344 1.995 1.318 2.025 1.292 2.055 1.266 2.085 1.240 2.116 1.213 2.148 1.187 2.179 1.160 2.211

95 1.418 1.929 1.394 1.956 1.370 1.984 1.345 2.012 1.321 2.040 1.296 2.068 1.271 2.097 1.247 2.126 1.222 2.156 1.197 2.186

100 1.439 1.923 1.416 1.948 1.393 1.974 1.371 2.000 1.347 2.026 1.324 2.053 1.301 2.080 1.277 2.108 1.253 2.135 1.229 2.164

150 1.579 1.892 1.564 1.908 1.550 1.924 1.535 1.940 1.519 1.956 1.504 1.972 1.489 1.989 1.474 2.006 1.458 2.023 1.443 2.040

200 1.654 1.885 1.643 1.896 1.632 1.908 1.621 1.919 1.610 1.931 1.599 1.943 1.588 1.955 1.576 1.967 1.565 1.979 1.554 1.991

Note: n = number of observations, k′ = number of explanatory variables excluding the constant term.

Source: This table is an extension of the original Durbin–Watson table and is reproduced from N. E. Savin and K. J. White, “The Durbin-Watson Test for Serial Correlation
with Extreme Small Samples or Many Regressors,” Econometrica, vol. 45, November 1977, pp. 1989–96 and as corrected by R. W. Farebrother, Econometrica, vol. 48,
September 1980, p. 1554. Reprinted by permission of the Econometric Society.

EXAMPLE 1 If n = 40 and k ′ = 4, dL = 1.285 and dU = 1.721. If a computed d value is less than 1.285,
there is evidence of positive first-order serial correlation; if it is greater than 1.721, there is
no evidence of positive first-order serial correlation; but if d lies between the lower and the
upper limit, there is inconclusive evidence regarding the presence or absence of positive
first-order serial correlation.
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TABLE D.5B Durbin–Watson d Statistic: Significance Points of dL and dU at 0.01 Level of Significance

k′ = 1 k′ = 2 k′ = 3 k′ = 4 k′ = 5 k′ = 6 k′ = 7 k′ = 8 k′ = 9 k′ = 10

n dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU

6 0.390 1.142 — — — — — — — — — — — — — — — — — —

7 0.435 1.036 0.294 1.676 — — — — — — — — — — — — — — — —

8 0.497 1.003 0.345 1.489 0.229 2.102 — — — — — — — — — — — — — —

9 0.554 0.998 0.408 1.389 0.279 1.875 0.183 2.433 — — — — — — — — — — — —

10 0.604 1.001 0.466 1.333 0.340 1.733 0.230 2.193 0.150 2.690 — — — — — — — — — —

11 0.653 1.010 0.519 1.297 0.396 1.640 0.286 2.030 0.193 2.453 0.124 2.892 — — — — — — — —

12 0.697 1.023 0.569 1.274 0.449 1.575 0.339 1.913 0.244 2.280 0.164 2.665 0.105 3.053 — — — — — —

13 0.738 1.038 0.616 1.261 0.499 1.526 0.391 1.826 0.294 2.150 0.211 2.490 0.140 2.838 0.090 3.182 — — — —

14 0.776 1.054 0.660 1.254 0.547 1.490 0.441 1.757 0.343 2.049 0.257 2.354 0.183 2.667 0.122 2.981 0.078 3.287 — —

15 0.811 1.070 0.700 1.252 0.591 1.464 0.488 1.704 0.391 1.967 0.303 2.244 0.226 2.530 0.161 2.817 0.107 3.101 0.068 3.374

16 0.844 1.086 0.737 1.252 0.633 1.446 0.532 1.663 0.437 1.900 0.349 2.153 0.269 2.416 0.200 2.681 0.142 2.944 0.094 3.201

17 0.874 1.102 0.772 1.255 0.672 1.432 0.574 1.630 0.480 1.847 0.393 2.078 0.313 2.319 0.241 2.566 0.179 2.811 0.127 3.053

18 0.902 1.118 0.805 1.259 0.708 1.422 0.613 1.604 0.522 1.803 0.435 2.015 0.355 2.238 0.282 2.467 0.216 2.697 0.160 2.925

19 0.928 1.132 0.835 1.265 0.742 1.415 0.650 1.584 0.561 1.767 0.476 1.963 0.396 2.169 0.322 2.381 0.255 2.597 0.196 2.813

20 0.952 1.147 0.863 1.271 0.773 1.411 0.685 1.567 0.598 1.737 0.515 1.918 0.436 2.110 0.362 2.308 0.294 2.510 0.232 2.714

21 0.975 1.161 0.890 1.277 0.803 1.408 0.718 1.554 0.633 1.712 0.552 1.881 0.474 2.059 0.400 2.244 0.331 2.434 0.268 2.625

22 0.997 1.174 0.914 1.284 0.831 1.407 0.748 1.543 0.667 1.691 0.587 1.849 0.510 2.015 0.437 2.188 0.368 2.367 0.304 2.548

23 1.018 1.187 0.938 1.291 0.858 1.407 0.777 1.534 0.698 1.673 0.620 1.821 0.545 1.977 0.473 2.140 0.404 2.308 0.340 2.479

24 1.037 1.199 0.960 1.298 0.882 1.407 0.805 1.528 0.728 1.658 0.652 1.797 0.578 1.944 0.507 2.097 0.439 2.255 0.375 2.417

25 1.055 1.211 0.981 1.305 0.906 1.409 0.831 1.523 0.756 1.645 0.682 1.776 0.610 1.915 0.540 2.059 0.473 2.209 0.409 2.362

26 1.072 1.222 1.001 1.312 0.928 1.411 0.855 1.518 0.783 1.635 0.711 1.759 0.640 1.889 0.572 2.026 0.505 2.168 0.441 2.313

27 1.089 1.233 1.019 1.319 0.949 1.413 0.878 1.515 0.808 1.626 0.738 1.743 0.669 1.867 0.602 1.997 0.536 2.131 0.473 2.269

28 1.104 1.244 1.037 1.325 0.969 1.415 0.900 1.513 0.832 1.618 0.764 1.729 0.696 1.847 0.630 1.970 0.566 2.098 0.504 2.229

29 1.119 1.254 1.054 1.332 0.988 1.418 0.921 1.512 0.855 1.611 0.788 1.718 0.723 1.830 0.658 1.947 0.595 2.068 0.533 2.193

30 1.133 1.263 1.070 1.339 1.006 1.421 0.941 1.511 0.877 1.606 0.812 1.707 0.748 1.814 0.684 1.925 0.622 2.041 0.562 2.160

31 1.147 1.273 1.085 1.345 1.023 1.425 0.960 1.510 0.897 1.601 0.834 1.698 0.772 1.800 0.710 1.906 0.649 2.017 0.589 2.131

32 1.160 1.282 1.100 1.352 1.040 1.428 0.979 1.510 0.917 1.597 0.856 1.690 0.794 1.788 0.734 1.889 0.674 1.995 0.615 2.104

33 1.172 1.291 1.114 1.358 1.055 1.432 0.996 1.510 0.936 1.594 0.876 1.683 0.816 1.776 0.757 1.874 0.698 1.975 0.641 2.080

34 1.184 1.299 1.128 1.364 1.070 1.435 1.012 1.511 0.954 1.591 0.896 1.677 0.837 1.766 0.779 1.860 0.722 1.957 0.665 2.057

35 1.195 1.307 1.140 1.370 1.085 1.439 1.028 1.512 0.971 1.589 0.914 1.671 0.857 1.757 0.800 1.847 0.744 1.940 0.689 2.037

36 1.206 1.315 1.153 1.376 1.098 1.442 1.043 1.513 0.988 1.588 0.932 1.666 0.877 1.749 0.821 1.836 0.766 1.925 0.711 2.018

37 1.217 1.323 1.165 1.382 1.112 1.446 1.058 1.514 1.004 1.586 0.950 1.662 0.895 1.742 0.841 1.825 0.787 1.911 0.733 2.001

38 1.227 1.330 1.176 1.388 1.124 1.449 1.072 1.515 1.019 1.585 0.966 1.658 0.913 1.735 0.860 1.816 0.807 1.899 0.754 1.985

39 1.237 1.337 1.187 1.393 1.137 1.453 1.085 1.517 1.034 1.584 0.982 1.655 0.930 1.729 0.878 1.807 0.826 1.887 0.774 1.970

40 1.246 1.344 1.198 1.398 1.148 1.457 1.098 1.518 1.048 1.584 0.997 1.652 0.946 1.724 0.895 1.799 0.844 1.876 0.749 1.956

45 1.288 1.376 1.245 1.423 1.201 1.474 1.156 1.528 1.111 1.584 1.065 1.643 1.019 1.704 0.974 1.768 0.927 1.834 0.881 1.902

50 1.324 1.403 1.285 1.446 1.245 1.491 1.205 1.538 1.164 1.587 1.123 1.639 1.081 1.692 1.039 1.748 0.997 1.805 0.955 1.864

55 1.356 1.427 1.320 1.466 1.284 1.506 1.247 1.548 1.209 1.592 1.172 1.638 1.134 1.685 1.095 1.734 1.057 1.785 1.018 1.837

60 1.383 1.449 1.350 1.484 1.317 1.520 1.283 1.558 1.249 1.598 1.214 1.639 1.179 1.682 1.144 1.726 1.108 1.771 1.072 1.817

65 1.407 1.468 1.377 1.500 1.346 1.534 1.315 1.568 1.283 1.604 1.251 1.642 1.218 1.680 1.186 1.720 1.153 1.761 1.120 1.802

70 1.429 1.485 1.400 1.515 1.372 1.546 1.343 1.578 1.313 1.611 1.283 1.645 1.253 1.680 1.223 1.716 1.192 1.754 1.162 1.792

75 1.448 1.501 1.422 1.529 1.395 1.557 1.368 1.587 1.340 1.617 1.313 1.649 1.284 1.682 1.256 1.714 1.227 1.748 1.199 1.783

80 1.466 1.515 1.441 1.541 1.416 1.568 1.390 1.595 1.364 1.624 1.338 1.653 1.312 1.683 1.285 1.714 1.259 1.745 1.232 1.777

85 1.482 1.528 1.458 1.553 1.435 1.578 1.411 1.603 1.386 1.630 1.362 1.657 1.337 1.685 1.312 1.714 1.287 1.743 1.262 1.773

90 1.496 1.540 1.474 1.563 1.452 1.587 1.429 1.611 1.406 1.636 1.383 1.661 1.360 1.687 1.336 1.714 1.312 1.741 1.288 1.769

95 1.510 1.552 1.489 1.573 1.468 1.596 1.446 1.618 1.425 1.642 1.403 1.666 1.381 1.690 1.358 1.715 1.336 1.741 1.313 1.767

100 1.522 1.562 1.503 1.583 1.482 1.604 1.462 1.625 1.441 1.647 1.421 1.670 1.400 1.693 1.378 1.717 1.357 1.741 1.335 1.765

150 1.611 1.637 1.598 1.651 1.584 1.665 1.571 1.679 1.557 1.693 1.543 1.708 1.530 1.722 1.515 1.737 1.501 1.752 1.486 1.767

200 1.664 1.684 1.653 1.693 1.643 1.704 1.633 1.715 1.623 1.725 1.613 1.735 1.603 1.746 1.592 1.757 1.582 1.768 1.571 1.779
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k′ = 11 k′ = 12 k′ = 13 k′ = 14 k′ = 15 k′ = 16 k′ = 17 k′ = 18 k′ = 19 k′ = 20

n dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU

16 0.060 3.446 — — — — — — — — — — — — — — — — — —

17 0.084 3.286 0.053 3.506 — — — — — — — — — — — — — — — —

18 0.113 3.146 0.075 3.358 0.047 3.357 — — — — — — — — — — — — — —

19 0.145 3.023 0.102 3.227 0.067 3.420 0.043 3.601 — — — — — — — — — — — —

20 0.178 2.914 0.131 3.109 0.092 3.297 0.061 3.474 0.038 3.639 — — — — — — — — — —

21 0.212 2.817 0.162 3.004 0.119 3.185 0.084 3.358 0.055 3.521 0.035 3.671 — — — — — — — —

22 0.246 2.729 0.194 2.909 0.148 3.084 0.109 3.252 0.077 3.412 0.050 3.562 0.032 3.700 — — — — — —

23 0.281 2.651 0.227 2.822 0.178 2.991 0.136 3.155 0.100 3.311 0.070 3.459 0.046 3.597 0.029 3.725 — — — —

24 0.315 2.580 0.260 2.744 0.209 2.906 0.165 3.065 0.125 3.218 0.092 3.363 0.065 3.501 0.043 3.629 0.027 3.747 — —

25 0.348 2.517 0.292 2.674 0.240 2.829 0.194 2.982 0.152 3.131 0.116 3.274 0.085 3.410 0.060 3.538 0.039 3.657 0.025 3.766

26 0.381 2.460 0.324 2.610 0.272 2.758 0.224 2.906 0.180 3.050 0.141 3.191 0.107 3.325 0.079 3.452 0.055 3.572 0.036 3.682

27 0.413 2.409 0.356 2.552 0.303 2.694 0.253 2.836 0.208 2.976 0.167 3.113 0.131 3.245 0.100 3.371 0.073 3.490 0.051 3.602

28 0.444 2.363 0.387 2.499 0.333 2.635 0.283 2.772 0.237 2.907 0.194 3.040 0.156 3.169 0.122 3.294 0.093 3.412 0.068 3.524

29 0.474 2.321 0.417 2.451 0.363 2.582 0.313 2.713 0.266 2.843 0.222 2.972 0.182 3.098 0.146 3.220 0.114 3.338 0.087 3.450

30 0.503 2.283 0.447 2.407 0.393 2.533 0.342 2.659 0.294 2.785 0.249 2.909 0.208 3.032 0.171 3.152 0.137 3.267 0.107 3.379

31 0.531 2.248 0.475 2.367 0.422 2.487 0.371 2.609 0.322 2.730 0.277 2.851 0.234 2.970 0.196 3.087 0.160 3.201 0.128 3.311

32 0.558 2.216 0.503 2.330 0.450 2.446 0.399 2.563 0.350 2.680 0.304 2.797 0.261 2.912 0.221 3.026 0.184 3.137 0.151 3.246

33 0.585 2.187 0.530 2.296 0.477 2.408 0.426 2.520 0.377 2.633 0.331 2.746 0.287 2.858 0.246 2.969 0.209 3.078 0.174 3.184

34 0.610 2.160 0.556 2.266 0.503 2.373 0.452 2.481 0.404 2.590 0.357 2.699 0.313 2.808 0.272 2.915 0.233 3.022 0.197 3.126

35 0.634 2.136 0.581 2.237 0.529 2.340 0.478 2.444 0.430 2.550 0.383 2.655 0.339 2.761 0.297 2.865 0.257 2.969 0.221 3.071

36 0.658 2.113 0.605 2.210 0.554 2.310 0.504 2.410 0.455 2.512 0.409 2.614 0.364 2.717 0.322 2.818 0.282 2.919 0.244 3.019

37 0.680 2.092 0.628 2.186 0.578 2.282 0.528 2.379 0.480 2.477 0.434 2.576 0.389 2.675 0.347 2.774 0.306 2.872 0.268 2.969

38 0.702 2.073 0.651 2.164 0.601 2.256 0.552 2.350 0.504 2.445 0.458 2.540 0.414 2.637 0.371 2.733 0.330 2.828 0.291 2.923

39 0.723 2.055 0.673 2.143 0.623 2.232 0.575 2.323 0.528 2.414 0.482 2.507 0.438 2.600 0.395 2.694 0.354 2.787 0.315 2.879

40 0.744 2.039 0.694 2.123 0.645 2.210 0.597 2.297 0.551 2.386 0.505 2.476 0.461 2.566 0.418 2.657 0.377 2.748 0.338 2.838

45 0.835 1.972 0.790 2.044 0.744 2.118 0.700 2.193 0.655 2.269 0.612 2.346 0.570 2.424 0.528 2.503 0.488 2.582 0.448 2.661

50 0.913 1.925 0.871 1.987 0.829 2.051 0.787 2.116 0.746 2.182 0.705 2.250 0.665 2.318 0.625 2.387 0.586 2.456 0.548 2.526

55 0.979 1.891 0.940 1.945 0.902 2.002 0.863 2.059 0.825 2.117 0.786 2.176 0.748 2.237 0.711 2.298 0.674 2.359 0.637 2.421

60 1.037 1.865 1.001 1.914 0.965 1.964 0.929 2.015 0.893 2.067 0.857 2.120 0.822 2.173 0.786 2.227 0.751 2.283 0.716 2.338

65 1.087 1.845 1.053 1.889 1.020 1.934 0.986 1.980 0.953 2.027 0.919 2.075 0.886 2.123 0.852 2.172 0.819 2.221 0.786 2.272

70 1.131 1.831 1.099 1.870 1.068 1.911 1.037 1.953 1.005 1.995 0.974 2.038 0.943 2.082 0.911 2.127 0.880 2.172 0.849 2.217

75 1.170 1.819 1.141 1.856 1.111 1.893 1.082 1.931 1.052 1.970 1.023 2.009 0.993 2.049 0.964 2.090 0.934 2.131 0.905 2.172

80 1.205 1.810 1.177 1.844 1.150 1.878 1.122 1.913 1.094 1.949 1.066 1.984 1.039 2.022 1.011 2.059 0.983 2.097 0.955 2.135

85 1.236 1.803 1.210 1.834 1.184 1.866 1.158 1.898 1.132 1.931 1.106 1.965 1.080 1.999 1.053 2.033 1.027 2.068 1.000 2.104

90 1.264 1.798 1.240 1.827 1.215 1.856 1.191 1.886 1.166 1.917 1.141 1.948 1.116 1.979 1.091 2.012 1.066 2.044 1.041 2.077

95 1.290 1.793 1.267 1.821 1.244 1.848 1.221 1.876 1.197 1.905 1.174 1.934 1.150 1.963 1.126 1.993 1.102 2.023 1.079 2.054

100 1.314 1.790 1.292 1.816 1.270 1.841 1.248 1.868 1.225 1.895 1.203 1.922 1.181 1.949 1.158 1.977 1.136 2.006 1.113 2.034

150 1.473 1.783 1.458 1.799 1.444 1.814 1.429 1.830 1.414 1.847 1.400 1.863 1.385 1.880 1.370 1.897 1.355 1.913 1.340 1.931

200 1.561 1.791 1.550 1.801 1.539 1.813 1.528 1.824 1.518 1.836 1.507 1.847 1.495 1.860 1.484 1.871 1.474 1.883 1.462 1.896

Note: n = number of observations.
k′ = number of explanatory variables excluding the constant term.

Source: Savin and White, op. cit., by permission of the Econometric Society.
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TABLE D.6A Critical Values of Runs in the Runs Test

N2

N1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 2 2 2 2 2 2 2 2 2
3 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
4 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4
5 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5
6 2 2 3 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6
7 2 2 3 3 3 4 4 5 5 5 5 5 6 6 6 6 6 6
8 2 3 3 3 4 4 5 5 5 6 6 6 6 6 7 7 7 7
9 2 3 3 4 4 5 5 5 6 6 6 7 7 7 7 8 8 8

10 2 3 3 4 5 5 5 6 6 7 7 7 7 8 8 8 8 9
11 2 3 4 4 5 5 6 6 7 7 7 8 8 8 9 9 9 9
12 2 2 3 4 4 5 6 6 7 7 7 8 8 8 9 9 9 10 10
13 2 2 3 4 5 5 6 6 7 7 8 8 9 9 9 10 10 10 10
14 2 2 3 4 5 5 6 7 7 8 8 9 9 9 10 10 10 11 11
15 2 3 3 4 5 6 6 7 7 8 8 9 9 10 10 11 11 11 12
16 2 3 4 4 5 6 6 7 8 8 9 9 10 10 11 11 11 12 12
17 2 3 4 4 5 6 7 7 8 9 9 10 10 11 11 11 12 12 13
18 2 3 4 5 5 6 7 8 8 9 9 10 10 11 11 12 12 13 13
19 2 3 4 5 6 6 7 8 8 9 10 10 11 11 12 12 13 13 13
20 2 3 4 5 6 6 7 8 9 9 10 10 11 12 12 13 13 13 14

Note: Tables D.6A and D.6B give the critical values of runs n for various values of N1 (+ symbol) and N2 (− symbol). For the one-sample runs test, any value 
of n that is equal to or smaller than that shown in Table D.6A or equal to or larger than that shown in Table D.6B is significant at the 0.05 level.

Source: Sidney Siegel, Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill Book Company, New York, 1956, table F, pp. 252–253. The tables have been
adapted by Siegel from the original source: Frieda S. Swed and C. Eisenhart, “Tables for Testing Randomness of Grouping in a Sequence of Alternatives,” Annals of
Mathematical Statistics, vol. 14, 1943. Used by permission of McGraw-Hill Book Company and Annals of Mathematical Statistics.

TABLE D.6B Critical Values of Runs in the Runs Test

N2

N1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2
3
4 9 9
5 9 10 10 11 11
6 9 10 11 12 12 13 13 13 13
7 11 12 13 13 14 14 14 14 15 15 15
8 11 12 13 14 14 15 15 16 16 16 16 17 17 17 17 17
9 13 14 14 15 16 16 16 17 17 18 18 18 18 18 18

10 13 14 15 16 16 17 17 18 18 18 19 19 19 20 20
11 13 14 15 16 17 17 18 19 19 19 20 20 20 21 21
12 13 14 16 16 17 18 19 19 20 20 21 21 21 22 22
13 15 16 17 18 19 19 20 20 21 21 22 22 23 23
14 15 16 17 18 19 20 20 21 22 22 23 23 23 24
15 15 16 18 18 19 20 21 22 22 23 23 24 24 25
16 17 18 19 20 21 21 22 23 23 24 25 25 25
17 17 18 19 20 21 22 23 23 24 25 25 26 26
18 17 18 19 20 21 22 23 24 25 25 26 26 27
19 17 18 20 21 22 23 23 24 25 26 26 27 27
20 17 18 20 21 22 23 24 25 25 26 27 27 28
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EXAMPLE 2 In a sequence of 30 observations consisting of 20 + signs ( = N1) and 10 − signs ( = N2),
the critical values of runs at the 0.05 level of significance are 9 and 20, as shown by
Tables D.6A and D.6B, respectively. Therefore, if in an application it is found that the
number of runs is equal to or less than 9 or equal to or greater than 20, one can reject
(at the 0.05 level of significance) the hypothesis that the observed sequence is random.

TABLE D.7 1% and 5% Critical Dickey–Fuller t (= τ) and F Values for Unit Root Tests

Sample
tnc

* tc
* tct

* F† F‡

Size 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

25 −2.66 −1.95 −3.75 −3.00 −4.38 −3.60 10.61 7.24 8.21 5.68
50 −2.62 −1.95 −3.58 −2.93 −4.15 −3.50 9.31 6.73 7.02 5.13

100 −2.60 −1.95 −3.51 −2.89 −4.04 −3.45 8.73 6.49 6.50 4.88
250 −2.58 −1.95 −3.46 −2.88 −3.99 −3.43 8.43 6.34 6.22 4.75
500 −2.58 −1.95 −3.44 −2.87 −3.98 −3.42 8.34 6.30 6.15 4.71
∞ −2.58 −1.95 −3.43 −2.86 −3.96 −3.41 8.27 6.25 6.09 4.68

*Subscripts nc, c, and ct denote, respectively, that there is no constant, a constant, and a constant and trend term in the regression Eq. (21.9.5).
†The critical F values are for the joint hypothesis that the constant and δ terms in Eq. (21.9.5) are simultaneously equal to zero.
‡The critical F values are for the joint hypothesis that the constant, trend, and δ terms in Eq. (21.9.5) are simultaneously equal to zero.

Source: Adapted from W. A. Fuller, Introduction to Statistical Time Series, John Wiley & Sons, New York, 1976, p. 373 (for the τ test), and D. A. Dickey and W. A. Fuller,
“Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root,” Econometrica, vol. 49, 1981, p. 1063.
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In this appendix we show the computer output of EViews, MINITAB, Excel, and STATA,
which are some of the popularly used statistical packages for regression and related statis-
tical routines. We use the data given in Table E.1 from the textbook website to illustrate the
output of these packages. Table E.1 gives data on the civilian labor force participation rate
(CLFPR), the civilian unemployment rate (CUNR), and real average hourly earnings in
1982 dollars (AHE82) for the U.S. economy for the period 1980 to 2002.

Although in many respects the basic regression output is similar in all these packages,
there are differences in how they present their results. Some packages give results to sev-
eral digits, whereas some others approximate them to four or five digits. Some packages
give analysis of variance (ANOVA) tables directly, whereas for some other packages they
need to be derived. There are also differences in some of the summary statistics presented
by the various packages. It is beyond the scope of this appendix to enumerate all the dif-
ferences in these statistical packages. You can consult the websites of these packages for
further information.

E.1 EViews

Using Version 6 of EViews, we regressed CLFPR on CUNR and AHE82 and obtained the
results shown in Figure E.1.

This is the standard format in which EViews results are presented. The first part of this
figure gives the regression coefficients, their estimated standard errors, the t values under
the null hypothesis that the corresponding population values of these coefficients are
zero, and the p values of these t values. This is followed by R2 and adjusted R2. The other
summary output in the first part relates to the standard error of the regression, residual
sum of squares (RSS), and the F value to test the hypothesis that the (true) values of all
the slope coefficients are simultaneously equal to zero. Akaike information and Schwartz
criteria are often used to choose between competing models. The lower the value of these
criteria, the better the model is. The method of maximum likelihood (ML) is an alterna-
tive to the method of least squares. Just as in OLS we find those estimators that minimize

AppendixE
Computer Output 
of EViews, MINITAB,
Excel, and STATA

894
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ResidualActual Residual Plot

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002

63.8000 
63.9000 
64.0000
64.0000 
64.4000
64.8000 
65.3000 
65.6000 
65.9000 
66.5000 
66.5000 
66.2000 
66.4000 
66.3000 
66.6000 
66.6000 
66.8000 
67.1000 
67.1000 
67.1000 
67.2000 
56.9000 
66.6000

65.2097 
65.0004
63.6047 
63.5173 
64.9131 
65.1566 
65.2347 
65.8842 
66.4103 
66.6148 
66.5819 
65.8745 
65.4608 
65.8917 
66.4147 
66.7644 
66.8425 
67.0097 
66.9974 
67.0443 
67.1364 
66.4589 
65.5770

�1.40974 
�1.10044 

0.39535 
0.48268 

�0.51311 
�0.35664 

0.06526 
�0.28416 
�0.51027 
�0.11476 
�0.08186 

0.32546 
0.93923 
0.40834 
0.18530 

�0.16441 
�0.04251 

0.09032 
0.10263 
0.05569 
0.06355 
0.44105 
1.02304

Dependent Variable: CLFPR
Method: Least Squares

Variable Coefficient t-Statistic Prob.

C
CUNR
AHE82

80.90133
�0.671348
�1.404244

Std. Error

4.756195
0.082720
0.608615

17.00967
�8.115928
�2.307278

R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin–Watson stat

0.772765
0.750042
0.584308
6.828312

�18.66979
0.787625

Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)

65.89565
1.168713
1.884330
2.032438
34.00731
0.000000

Sample: 1980–2002
Included observations: 23

0.0000
0.0000
0.0319

Obs Fitted

�1.0 �0.5 0.0 0.5 1.0�1.5

7

6

5

4

3

2

1

0

Series: Residuals
Sample 1980–2002
Observations 23

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

�1.39e-14
0.063552 
1.023040 

�1.409735 
0.557116 

�0.593013 
3.752631

Jarque–Bera
Probability

1.890898
0.388505

FIGURE E.1
EViews output of
civilian labor force
participation
regression.
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the error sum of squares, in ML we try to find those estimators that maximize the possi-
bility of observing the sample at hand. Under the normality assumption of the error term,
OLS and ML give identical estimates of the regression coefficients. The Durbin–Watson
statistic is used to find out if there is first-order serial correlation in the error terms.

The second part of the EViews output gives the actual and fitted values of the dependent
variable and the difference between the two, which represent the residuals. These residuals
are plotted alongside this output with a vertical line denoting zero. Points to the right of the
vertical line are positive residuals and those to the left represent negative residuals.

The third part of the output gives the histogram of the residuals along with their sum-
mary statistics. It gives the Jarque–Bera (JB) statistic to test for the normality of the error
terms and also gives the probability of obtaining the stated statistics. The higher the prob-
ability of obtaining the observed JB statistic, the greater is the evidence in favor of the null
hypothesis that the error terms are normally distributed.

Note that EViews does not give directly the analysis-of-variance (ANOVA) table, but it
can be constructed easily from the data on the residual sum of squares, the total sum of
squares (which will have to be derived from the standard deviation of the dependent
variable), and their associated degrees of freedom. The F value given from this exercise
should be equal to the F value reported in the first part of the table.

E.2 MINITAB

Using Version 15 of MINITAB, and using the same data, we obtained the regression results
shown in Figure E.2.

MINITAB first reports the estimated multiple regression. This is followed by a list of
predictor (i.e., explanatory) variables, the estimated regression coefficients, their standard
errors, the T (= t) values, and the p values. In this output S represents the standard error of
the estimate, and R2 and adjusted R2 values are given in percent form.

This is followed by the usual ANOVA table. One characteristic feature of the ANOVA
table is that it breaks down the regression, or explained, sum of squares among predictors.
Thus of the total regression, sum of squares of 23.226, the share of CUNR is 21.404
and that of AHE82 is 1.822, suggesting that relatively, CUNR has more impact on CLFPR
than AHE82.

A unique feature of the MINITAB regression output is that it reports “unusual” obser-
vations; that is, observations that are somehow different from the rest of the observations in
the sample. We have a hint of this in the residual graph given in the EViews output, for it
shows that the observations 1 and 23 are substantially away from the zero line shown there.
MINITAB also produces a residual graph similar to the EViews residual graph. The
St Resid in this output is the standardized residuals; that is, residuals divided by S, the
standard error of the estimate.

Like EViews, MINITAB also reports the Durbin–Watson statistic and gives the his-
togram of residuals. The histogram is a visual picture. If its shape resembles the normal dis-
tribution, the residuals are perhaps normally distributed. The normal probability plot
accomplishes the same purpose. If the estimated residuals lie approximately on a straight
line, we can say that they are normally distributed. The Anderson–Darling (AD) statistic,
an adjunct of the normal probability plot, tests the hypothesis that the variable under con-
sideration (here residuals) is normally distributed. If the p value of the calculated AD sta-
tistic is reasonably high, say in excess of 0.10, we can conclude that the variable is normally
distributed. In our example the AD statistic has a value of 0.481 with a p value of about
0.21 or 21 percent. So we can conclude that the residuals obtained from the regression
model are normally distributed.
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E.3 Excel

Using Microsoft Excel we obtained the regression output shown in Table E.2.
Excel first presents summary statistics, such as R2, multiple R, which is the (positive)

square root of R, adjusted R2, and the standard error of the estimate. Then it presents the
ANOVA table. After that it presents the estimated coefficients, their standard errors, the t
values of the estimated coefficients and their p values. It also gives the actual and estimated
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Regression Analysis: CLFPR versus CUNR, AHE82

The regression equation is
CLFPR � 81.0 � 0.672 CUNR � 1.41 AHE82

Source
Regression
Residual Error
Total

Source
CUNR
AHE82

S � 0.584117         R-Sq � 77.3%         R-Sq(adj) � 75.0%

Analysis of Variance

T
16.97

�8.12
�2.31

MS

SE Fit
0.155
0.307

Obs
1

23
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7.10
5.80

Coef
80.951

�0.67163
�1.4104

DF
2

20
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CLFPR
63.800 
66.600

SE Coef
4.770

0.08270
0.6103

SS

Seq SS
21.404
1.822

Fit
65.209
65.575

R denotes an observation with a large standardized residual.

Durbin–Watson statistic � 0.787065

Unusual Observations

P
0.000

P
0.000
0.000
0.032

St Resid
�2.50R

2.06R

F
34.04

Residual
�1.409

1.025

11.613
0.341

1
1

23.226
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FIGURE E.2 MINITAB output of civilian labor force participation rate.
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values of the dependent variable and the residual graph as well as the normal probability
plot.

A unique feature of Excel is that it gives the 95 percent (or any specified percent) confi-
dence interval for the true values of the estimated coefficients. Thus, the estimated value of
the coefficient of CUNR is −0.671631 and the confidence interval for the true value
of CUNR coefficient is (−0.84415 to −0.499112). This information is very valuable for
hypothesis testing.

E.4 STATA

Using STATA we obtained the regression results shown in Table E.3.
Stata first presents the analysis of variance table along with the summary statistics such

as R2, adjusted R2, and the root mean-squared-error (MSE), which is just the standard error
of the regression.

Then it gives the values of the estimated coefficients, their standard errors, their t values,
the p values of the t statistics, and the 95 percent confidence interval for each of the re-
gression coefficients, which is similar to the Excel output.

E.5 Concluding Comments

We have given just the basic output of these packages for our example. But it may be noted
that packages such as EViews and STATA are very comprehensive and contain many of the
econometric techniques discussed in this text. Once you know how to access these pack-
ages, running various subroutines is a matter of practice. If you wish to pursue economet-
rics further, you may want to buy one or more of these packages.

TABLE E.2
Excel Output of
Civilian Labor Force
Participation Rate

Summary Output

Regression Statistics

Multiple R 0.879155
R Square 0.772914
Adjusted R 0.750205
Standard E 0.584117
Observation 23

ANOVA

df SS MS F Significance F

Regression 2 23.22572 11.61286 34.03611 3.65E-07
Residual 20 6.823846 0.341192
Total 22 30.04957

Coefficient Standard Err t Stat p-value Lower 95% Upper 95%

Intercept 80.95122 4.770337 16.96971 2.42E-13 71.00047 90.90196
CUNR −0.671631 0.082705 −8.120845 9.24E-08 −0.84415 −0.499112
AHE82 −1.410432 0.610348 −2.310867 0.031626 −2.683594 −0.13727
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References

www.eviews.com
www.stata.com
www.minitab.com
Microsoft Excel

R. Carter Hill, William E. Griffiths, George G. Judge, Using Excel for Undergraduate
Econometrics, John Wiley & Sons, New York, 2001.

TABLE E.3
STATA Output of
Civilian Labor Force
Participation Rate

clfpr Coef. Std. Err. t p > |t| [95% Conf. Interval]

cunr −.6716305 .0827045 −8.12 0.000 −.8441491 −.4991119
ahe82 −1.410433 .6103473 −2.31 0.032 −2.683595 −.1372707
_cons 80.95122 4.770334 16.97 0.000 71.00048 90.90197

Statistics/Data Analysis

Project: Data of Table E.1

8.0 Copyright 1984–2003
Statistics/Data Analysis Stata Corporation

4905 Lakeway Drive
College Station, Texas 77845 USA
800-STATA-PC http://www.stata.com
979-696-4600 stata@stata.com
979-696-4601 (fax)

gress clfpr cunr ahe82

Source SS df MS

Model 23.2256929 2 11.6128465
Residual 6.82384072 20 .341192036

Total 30.0495337 22 1.36588789

Number of obs = 23
F(2, 20) = 34.04
Prob � F = 0.0000
R-squared = 0.7729
Adj R-squared = 0.7502
Root MSE = .58412
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Economic Statistics Briefing Room: An excellent source of data on output, income,
employment, unemployment, earnings, production and business activity, prices and
money, credits and security markets, and international statistics. 
http://www.whitehouse.gov/fsbr/esbr.html

Federal Reserve System Beige Book: Gives a summary of current economic
conditions by Federal Reserve District. There are 12 Federal Reserve Districts.
http://www.federalreserve.gov/FOMC/BEIGEBOOK

National Bureau of Economic Research (NBER) Home Page: This highly regarded
private economic research institute has extensive data on asset prices, labor,
productivity, money supply, business cycle indicators, etc. NBER has many links to
other Web sites. 
http://www.nber.org

Panel Study: Provides data on longitudinal survey of representative sample of U.S.
individuals and families. These data have been collected annually since 1968. 
http://psidonline.isr.umich.edu/

Resources for Economists on the Internet: Very comprehensive source of informa-
tion and data on many economic activities with links to many Web sites. A very
valuable source for academic and nonacademic economists.
http://rfe.org/

American Stock Exchange: Information on some 700 companies listed on the second
largest stock market.
http://www.amex.com/

Bureau of Economic Analysis (BEA) Home Page: This agency of the U.S. Depart-
ment of Commerce, which publishes the Survey of Current Business, is an excellent
source of data on all kinds of economic activities. 
http://www.bea.gov/

AppendixF
Economic Data 
on the World Wide
Web*

900

*Adapted from Annual Editions: Microeconomics 98/99, ed. Don Cole, Dushkin/McGraw-Hill,
Connecticut, 1998. It should be noted that this list is by no means exhaustive. The sources listed here
are updated continually.
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CIA Publications: This source includes the World Fact Book (annual) and Handbook
of International Statistics.
http://www.cia.gov/library/publications

Energy Information Administration (DOE): Economic information and data on each
fuel category.
http://www.eia.doe.gov/

FRED Database: Federal Reserve Bank of St. Louis publishes historical economic
and social data, which include interest rates, monetary and business indicators,
exchange rates, etc. 
http://research.stlouisfed.org/fred2/

International Trade Administration: Offers many Web links to trade statistics, cross-
country programs, etc. 
http://trade.gov/index.asp

STAT-USA Databases: The National Trade Data Bank provides the most comprehen-
sive source of international trade data and export promotion information. There is also
extensive data on demographic, political, and socioeconomic conditions for several
countries. 
http://www.stat-usa.gov/

Statistical Resources on the Web/Economics: An excellent source of statistics
collated from various federal bureaus, economic indicators, the Federal Reserve Board,
data on consumer price, and Web links to other sources.
http://www.lib.umich.edu/govdocs/stats.html

Bureau of Labor Statistics: The home page provides data related to various aspects
of employment, unemployment, and earnings, as well as links to other statistical Web
sites. 
http://www.stats.bls.gov/

U.S. Census Bureau Home Page: Prime source of social, demographic, and
economic data on income, employment, income distribution, and poverty.
http://www.census.gov/

General Social Survey: Annual personal interview survey data on U.S. households
that began in 1972. More than 35,000 have responded to some 2,500 different
questions covering a variety of data. 
http://www.norc.org/GSS+website/

Institute for Research on Poverty: Data collected by nonpartisan and nonprofit
university-based research center on a variety of questions relating to poverty and social
inequality.
http://www.irp.wisc.edu/

Social Security Administration: The official Web site of the Social Security Adminis-
tration with a variety of data.
http://www.ssa.gov/
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and F test, 241–242
in matrix notation, 858
multiple, 196–197
in multiple regression, 201–207
testing overall significance in terms of,

242–243
two-variable regression model estimation

problem, 73–78
Coefficient of expectation, 630
Coefficient of partial determination, 215
Cofactor, 846
Cofactor matrix, 846
Cohen–Rea–Lerman study, 549–551
Coherency, data, 468
Cohort analysis, 591
Coincident regressions, 285, 286
Cointegrated time series, 762–765
Cointegrated variables, 762
Cointegrating parameter, 762
Cointegrating regression, 762
Cointegration, testing for, 763–764
Collinearity, 189, 190, 321n, 346 

(See also Multicollinearity)
Column vector, 838
Common logarithms, 184
Commutative property, 842
Comparison category, 281
Compatibility, 113
Composite hypothesis, 113, 831
Compound rate of growth, 164
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Computer output, 894–899
EViews, 894–896
Excel, 897–898
MINITAB, 896–897
STATA, 898, 899

Computers, 11–12
Concurrent regressions, 285, 286
Condition index, 339–340
Conditional expectation, of probability

distribution, 813–815
Conditional expectation function (CEF), 37
Conditional expected value, 35
Conditional probability density 

function, 806
Conditional variance, of probability

distribution, 813–815
Confidence band, 128
Confidence coefficient, 108, 824
Confidence interval(s), 128, 824

for β1 and β2 simultaneously, 111
for β2, 109–111
defined, 108
and multicollinearity, 330
for σ2, 111–112

Confidence-interval hypothesis testing,
113–115, 124, 831–836

Confidence limits, 108
Confidentiality, 27
Consistency, 96, 100, 468, 829–830
Constancy, parameter, 468
Constant coefficients model 

(see Pooled OLS regression model)
Constant elasticity model, 160
Constant elasticity of substitution (CES)

production, 10, 526
Constant variance of ui (assumption 4),

64–66
Constrained least squares, 873–874
Consumer Price Index (CPI), 22, 23, 29
Consumption function, 3–4, 618
Continuous joint probability density

function, 807–808
Continuous probability density 

function, 804
Continuous random variables, 803
Control category, 281
Control purposes, model used for, 9
Control variables, 9, 284
Corporate profits (CP), 738, 739
Correlation(s):

assumption of no serial, 66–67
auto- (see Autocorrelation)
pair-wise, 338
partial, 338–339
regression vs., 20

Correlation analysis, 20
Correlation coefficient(s), 20

of probability distribution, 812–813
of zero order, 213

Correlation matrix, 348, 859
Correlogram, 749–753
Cost analysis theory, 148, 149
Count data, 542
Count data modeling, 576–579
Count R2, 563
Count type, 576
Covariance, 93, 811–812
Covariance stationary, 740, 741
Covariates, 284
CP (see Corporate profits)
CPI (see Consumer Price Index)
CPS (Current Population Survey), 500
Critical χ2 values, 112
Critical Dickey–Fuller t and F values for

unit root tests, 893
Critical level, 566
Critical regions, 116, 833
Critical t values, 115
Critical values, 108, 116, 833
Critical values of runs in runs test table,

892–893
Cross-section regression, 270
Cross-section studies, 412
Cross-sectional data, 21, 22–24, 343
Cumulative distribution function (CDF),

553, 566–568
CUNR (civilian unemployment rate), 894
Current Population Survey (CPS), 500

D

Daily data, 22
Data:

coherency of, 468
manipulation of, 417
observational vs. experimental, 2
obtaining, 5–7
unavailability of, 41

Data for economic analysis, 22–27
accuracy of, 27
cross-section, 22–24
panel/longitudinal/micropanel, 23, 25, 26
pooled, 23
sources of, 25
time-series, 22
types of, 22
on World Wide Web, 900–901

Data generating process (DGP), 738
Data grubbing, 475
Data matrix, 850
Data mining, 475–476, 624
Data snooping, 475
Data transformation, 417
Davidson–MacKinnon J test, 490–492
Debit cards, 552, 565–566
Decennial data, 22
Degrees of freedom (df), 70

Demand-and-supply model, 674–675
Denominator degrees of freedom, 144
Dependent variable, 3, 13, 21, 299
Deposit account ownership, 587
Depreciation, 30
Derivative-free method, 529
Deseasonalization, 290
Determinants, 843–846
Deterministic component, 40
Deterministic relationship, 4, 19
Deterministic time series, 745
Deterministic trend, 745
Deterministic trend with stationary AR(1)

component, 746
Detrended time series, 761
Detrending, 745
Deviation form, 61
Df (degrees of freedom), 70
DF test (see Dickey–Fuller test)
DGP (data generating process), 738
Diagnostic checking, 782
Diagonal matrix, 839
Dichotomous dependent variable 

models, 299
Dichotomous variable, 541
Dickey–Fuller (DF) test, 755–757, 

759, 893
Dickey–Pantula test, 759
Difference form, 418, 442
Difference stationary process (DSP), 

745, 760
Difference stationary (DS) stochastic

processes, 745–746
Differential intercept coefficients, 281, 

287, 293
Differential intercept dummy 

technique, 597
Differential slope coefficients, 287
Differential slope dummy 

coefficients, 598
Differentiation, matrix, 848
Dimension, 838
Direct optimization, 529
Direct search method, 529
Discerning approach, to non-nested

hypotheses tests, 488–492
Discrete joint probability density 

function, 805
Discrete probability density function,

803–804
Discrete random variables, 803
Discrimination approach, to non-nested

hypotheses tests, 488
Disequilibrium models, 300
Disposable personal income (DPI), 

738, 739
Dissimilar regressions, 285, 286
Distributed-lag models, 489, 491, 617,

623–629, 645–652
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Distributed-lag multiplier, 619
Disturbance term, 4
Disturbances:

assumption of no autocorrelation
between, 66–67

heteroscedastic variances of, 544–545
non-normality of, 544
probability distribution of, 97–98

Dividends, 738, 739
“Doing nothing,” 342
Double summation operator (∑∑), 801
Double-log model, 159
Downward trend, 164
DPI (see Disposable personal income)
Drift parameter, 743
DS stochastic processes (see Difference

stationary stochastic processes)
DSP (see Difference stationary process)
Dummy variables:

in ANCOVA models, 283–285
in ANOVA models, 278–283
and autocorrelation, 299, 449
Chow-test alternative, 285–288
defined, 278
as dependent variables, 299
example of, 300–304
guidelines for using, 281–282
and heteroscedasticity, 298–299
interaction effects using, 288–290
nature of, 277–278
in panel data models, 297
in piecewise linear regression, 295–297
for seasonal analysis, 290–295
semilogarithmic regressions, 

297–298, 314
topics for study, 300

Dummy variables method, 291, 293n,
297–299

Dummy-variable trap, 281, 597
Duration models, 580–581
Durbin h test, 637–639
Durbin’s h statistic, 465
Durbin’s M test, 440
Durbin’s two-step method, 456–457
Durbin–Watson d statistic, 434, 477–479

and ARCH effect, 796
p based on, 445
table of, 888–891

Durbin–Watson d test, 434–438
Dynamic regression models, 418, 617

E

ECM (see Error correction mechanism)
Econometric model(s):

applications of, 9
of consumption, 4–5
estimation of, 5, 7
example of, 4

Klein’s, 679
selection of, 9, 10

Econometric modeling, 467–513
Chow’s prediction failure test in,

498–499
examples of, 500–509
guidelines for, 511
measurement errors, 482–486

in dependent variable Y, 482–483
example, 485–486
in explanatory variable X, 483–485

missing data in, 499–500
model selection criteria, 468, 493–496

adjusted R2, 493
Akaike’s information criterion, 494
caution about criteria, 495–496
forecast chi-square, 496
Mallows’s Cp criterion, 494–495
R2 criterion, 493
Schwarz’s information criterion, 494

nested vs. non-nested models, 487
non-normal error distribution in, 509–510
outliers/leverage/influence in, 496–498
recursive least squares in, 498
specification errors

consequences of, 470–474
tests of, 474–482
types of, 468–470

stochastic error term specification,
486–487

stochastic explanatory variables in,
510–511

tests of non-nested hypotheses, 488–492
Davidson–MacKinnon J test, 

490–492
discerning approach, 488–492
discrimination approach, 488
non-nested F test, 488–489

tests of specification errors, 474–482
and unbiasedness property, 520–521

Econometrics:
computer’s role in, 11–12
definitions, 1
as empirical verification of economic

theory, 2
mathematical prerequisites, 11
methodology of, 2–10

data gathering, 5–7
econometric model specification, 4–5
forecasting, 8
hypothesis statement, 3
hypothesis testing, 7–8
mathematical model specification, 3–4
model applications, 9
model estimation, 5, 7

reading resources about, 12
statistical prerequisites, 11
types of, 10–11

Economic forecasting, 773–775
Economic Statistics Briefing Room, 900

Economic theory, 2
Economics, causality in, 652–658
Efficient capital market hypothesis, 742
Efficient estimators, 72, 100, 827
EG test (see Engle–Granger test)
EGARCH (exponential GARCH), 799
EGLS (estimated generalized least

squares), 868
Eigenvalues, 339–340
Elasticity measurement, 159–162
Elasticity of demand, 17
Encompassing F test, 488–489
Encompassing model, 468
Encompassing principle, 490
Endogenous variables, 657, 673
Endpoint restrictions, 652
Energy Information Administration, 901
Engel expenditure models, 165
Engle–Granger (EG) test, 763–764
Equal matrices, 840
Equality testing, of two regression

coefficients, 246–248
Equation error term, 483
Error components model (see Random

effects model)
Error correction mechanism (ECM),

764–765
Error sum of squares, 528n
Error term, 4, 62–63
Error-learning models, 366
Errors of measurement, 27, 482–486
Errors of measurement bias, 469
ESS (see Explained sum of squares)
Estimable function, 325n, 649
Estimate, 44, 823
Estimated generalized least squares

(EGLS), 447, 868
Estimated value, 5n
Estimation, 823–831

of ARIMA model, 782
in classical theory of statistical

inference, 97
of econometric model, 5, 7
interval estimation, 824–825
large-sample properties, 828–831
maximum likelihood method, 102–106
methods, 825–826
point estimation, 823–824
problem of, 823
simultaneous-equation methods, 711–712

bias in indirect least-squares
estimators, 735

examples, 724–729
indirect least squares, 715–718
recursive models and OLS, 712–714
standard errors of 2SLS 

estimators, 736
two-stage least squares, 718–724

small-sample properties, 826–828
in VAR model, 785–786
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Estimators, 44, 605–606, 823
Evaluation, of determinant, 844
Event history analysis, 591
Events, 802
EViews, 894–896
Exact (just) identification, 694–697
Exact level of significance (p value),

122–123, 835
Exact linear relationship, 853
Exact micronumerosity, 326
Exact relationship, 4
Example of, 863–867
Excel, 897–898
Exhaustive events, 802
Exogeneity, 657–658
Exogeneity tests, 705
Exogenous variables, 673n
Expansion, of determinant, 844
Expectations-augmented Phillips curve, 170
Expected value, 34n, 35, 36, 808–810
Experimental data, 2, 25, 27
Explained sum of squares (ESS), 74–75
Explanatory variable, 3, 13, 20n, 21,

243–246
Exponential distribution, 106
Exponential functions, 184
Exponential GARCH (EGARCH), 799
Exponential regression model, 159, 527
Exponential smoothing methods, 774
Exports and human capital endowment, 50
Extrapolation, 417

F

F distribution, 821–822, 880–885
F test:

adding group of variables to, 246
adding new variable to, 246
of linear equality restrictions, 249–254
with matrix notation, 861
of overall significance testing, 238–241
unit root tests of time series data, 758

Factor analysis, 346
Feasible GLS (FGLS) method, 447, 448
Federal Reserve Bank of St. Louis, 738, 901
Federal Reserve System Beige Book, 900
FEM (see Fixed effects model)
FGLS (see Feasible GLS method)
FIML (full information maximum

likelihood) method, 712
Finite (lag) distributed-lag model, 623
Finite sample properties, 73
First difference form, 345
First difference operator, 417
First-difference equation, 443
First-difference method, 443–445, 601
First-order autoregressive (AR(1)), 419, 775
First-order coefficient of autocorrelation, 420
First-order correlation coefficients, 214

First-order moving average (MA(1)), 776
Fixed effect estimators, 597, 606
Fixed effect LSDV model, 596–599
Fixed effect WG estimator, 599–602
Fixed effects model (FEM), 596, 606–607
Fixed regressors, 63, 316–317, 510, 511
Fixed values (assumption 2), 62–63,

316–317
Flexible accelerator model, 632
Forecast chi-square, 496
Forecast error, 8
Forecast variable, 8
Forecasting:

ARIMA, 774–775
in BJ methodology, 782–784
as econometric modeling step, 8
economic, 773–775
exponential-smoothing, 774
in-sample vs. out-of-sample, 491
simultaneous-equation-regression, 774
single-equation-regression, 774
VAR, 775, 786–787

FRED database, 738, 901
Friedman’s permanent income 

hypothesis, 148
Frisch–Waugh theorem, 295
Full information maximum likelihood

(FIML) method, 712
Full information methods, 711
Functional form:

tests for incorrect, 477–482
wrong, 469

G

G statistic, 445
Gallup polls, 22
“Game” of maximizing adjusted coefficient

of determination, 206–207
GARCH model (see Generalized

autoregressive conditional
heteroscedasticity model)

GARCH-M (GARCH in mean) model, 799
Gaussian linear regression model 

(see Classical linear regression
model)

Gaussian white noise process, 741
Gauss–Markov theorem, 71–73
Gauss–Newton iterative method, 530
GDP (see Gross domestic product)
Geary test (see Runs test)
General F testing, 252–254, 861
General Social Survey, 901
Generalized autoregressive conditional

heteroscedasticity (GARCH)
model, 449–450, 773, 796

Generalized (quasi) difference equation, 442
Generalized least squares (GLS), 371–374,

441–447, 867–868

Generalized method of moments 
(GMM), 826

Geriatric falls, 578–579
German Socio-Economic Panel

(GESOEP), 592
Glejser test, 379–380, 396, 398
Glogit model (see Grouped logit model)
GLS (see Generalized least squares)
GLS estimators, 372
GMM (generalized method 

of moments), 826
GNP (gross national product), 2
Gold prices, 90
Goldfeld–Quandt test, 382–384, 389
Goodness of fit, 73–78, 546–547
Goods market equilibrium schedule, 677
Gprobit model (see Grouped probit model)
Graduation rate prediction, 584–585
Granger causality test, 653–658
Granger representation theorem, 764
Graphical analysis, 749
Gravity, law of, 19
Gross domestic product (GDP), 5–7, 91,

738, 739
Gross national product (GNP), 2
Grouped data, 556–561, 567–570
Grouped logit (glogit) model, 558–561
Grouped probit (gprobit) model, 567–570
Growth rate, instantaneous vs. 

compound, 164
Growth rate formulas, 186–187
Growth rate measurement, 162–164

H

H statistic, 465, 637
HAC standard errors 

(see Heteroscedasticity- and
autocorrelation-consistent 
standard errors)

Hamburger standard, 140
Handbook of International Statistics, 901
Hat (^), 5n
Hausman test, 603, 683, 703–704
Hazard rate, 575
Heterogeneity, 594
Heterogeneity effect, 595
Heterogeneity problem, 23
Heteroscedastic variances, 544–545
Heteroscedasticity, 365–401

and autocorrelation, 450
defined, 65
detection of, 376–389

Breusch–Pagan–Godfrey test,
385–386

formal methods, 378
Glejser test, 379–380
Goldfeld–Quandt test, 382–384
graphical method, 377–378
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Heteroscedasticity (Cont.)
informal methods, 376–378
Koenker–Basset test, 388–389
nature of problem, 376–377
Park test, 378–379
selection of test, 389
Spearman’s rank correlation test,

380–382
White’s general test, 386–388

and dummy variables, 298–299
examples of, 395–399
GLS method of correcting for, 371–374
nature of, 365–370
OLS estimation in presence of, 370–371,

374–376
overreacting to, 400
patterns of, 391–395
remedial measures for, 389–395

assumptions about pattern of
heteroscedasticity, 391–395

White’s heteroscedasticity-consistent
variances/standard errors, 391

WLS, 389–390
White’s standard errors corrected for, 411

Heteroscedasticity- and autocorrelation-
consistent (HAC) standard errors,
447–448

Heteroscedasticity-consistent covariance
matrix estimators, 391n

Higher moments of probability
distributions, 815–816

Histogram of residuals, 130–131
Historical regression, 126
Holt’s linear method, 774
Holt–Winters’ method, 774
Homoscedasticity (assumption 4), 

64–66, 365
Hypothesis statement, 3
Hypothesis testing, 113–124, 831–837

about individual regression coefficients
in matrix notation, 859–860

accepting or rejecting hypothesis, 119
choosing approach to, 124
choosing level of significance, 121–122
in classical theory of statistical

inference, 97
confidence-interval approach, 831–836
confidence-interval approach to, 113–115
as econometric modeling step, 7–8
exact level of significance, 122–123
forming null/alternative hypotheses, 121
in multiple regression, 234–237,

259–260
statistical vs. practical significance,

123–124
test-of-significance approach, 115–119,

836–837
zero null hypothesis and 2-t rule of

thumb, 120

I

i (subscript), 21
Identification:

in BJ methodology, 778–782
order condition, 699–700
rank condition, 700–703
rules for, 699–703

Identification problem, 671–672, 689–703
defined, 692
exact identification, 694–697
notations/definitions used in, 689–692
overidentification, 697–698
underidentification, 692–694

Identity matrix, 840
Idiosyncratic term, 603
“Ignorable case,” 499, 500
ILS (see Indirect least squares)
Impact multipliers, 619, 691
Impulse response function (IRF), 789
Impulses, 785
Imputing values, 499
Inclusion, of irrelevant variables, 469,

473–474, 520–521
Income multiplier (M), 8
Incremental contribution of explanatory

variable, 243–246
Independent variable, 3
Indifference curves, 28
Indirect least squares (ILS), 691, 

715–718, 735
Individual prediction, 128–129, 146, 862
Individual probability density function, 805
Individual regression coefficients, 235–237
Individual-level data, 556, 561–566,

570–571, 589–590
Inertia, 414
Infinite (lag) model, 623
Influential point, 497
Innovations, 785
In-sample forecasting, 491
Instantaneous rate of growth, 164
Institute for Research on Poverty, 901
Institutions, 622
Instrument validity, 669–670
Instrumental variables, 485, 718
Instrumental variables (IV) method,

636–637
Integrated of order 1, 746
Integrated of order 2, 746
Integrated of order d, 747
Integrated processes, 746–747
Integrated stochastic processes, 746–747
Integrated time series, 747
Interaction among regressors, 470
Interaction dummy, 289–290
Interaction term, 263, 549
Interactive form, 287
Intercept, 3

Intercept coefficient, 37
Intercorrelation, measurement of, 321n
Interest rates:

and Federal Reserve, 642–643
and investments/sales, 666
and money, 655–656
and money/GDP/CPI, 709

Internal Revenue Service (IRS), 27
International Trade Administration, 901
Internet, 25
Interpolation, 417
Interval estimation, 108–112, 824–825

confidence interval for σ2, 111–112
confidence intervals for regression

coefficients β1 and β2, 109–111
defined, 108

Interval estimators, 59, 108
Interval scale, 28
Intrinsically nonlinear regression models,

525–526
Invariance property, 830
Inverse Mills ratio, 575
Inverse of square matrix, 847
Inversion, matrix, 843
Inverted V distributed-lag model, 664
Investment data, 25, 26
IRF (impulse response function), 789
Irrelevant variables:

inclusion of, 469, 473–474
tests for, 475–476
and unbiasedness property, 520–521

IRS (Internal Revenue Service), 27
IS model of macroeconomics, 677–678
Iterated expectations, law of, 815
Iterative linearization method, 530
Iterative methods, 446–447
Iterative process, 529
IV method (see Instrumental 

variables method)

J

J curve of international economics, 621
J test, 490–492
Jarque–Bera (JB) test, 131, 132, 819
Joint confidence interval, 111
Joint probability density functions, 805
Just identification (see Exact identification)

K

K normal equations, 874
KB test (see Koenker–Basset test)
Keynesian consumption function, 3–5, 7
Keynesian model of income determination,

675–676
KISS principle, 511
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Klein’s model I, 679, 725–726
Klien’s rule of thumb, 339
Knot (known in advance threshold), 296
Koenker–Basset (KB) test, 388–389
Koyck model, 624–629

and adaptive expectations model,
629–631

combining adaptive expectations and
partial adjustment models, 634

example using, 627–629, 631
mean lag in, 627
median lag in, 627
and partial adjustment model, 632–633

Koyck transformation, 626
Kruskal’s theorem, 376n, 422
Kurtosis, 131, 132, 815, 816
K-variable linear regression model, 849–851

L

Labor economics, 17, 18
Labor force participation (LFP), 51, 541,

549–551, 872
Lag(s):

and autocorrelation, 416–417
in economics, 618–622
length of, 753
reasons for, 622–623

Lag operator, 744n
Lagged endogenous variables, 690
Lagged values, 417
Lagrange multiplier (LM) model, 678
Lagrange multiplier (LM) test, 259–260,

481–482 (See also Breusch–
Godfrey test)

Lag-weighted average of time, 627
Large sample theory, 510
Large-sample properties, 96, 828–831
Latent variable, 566, 603
Law of gravity, 19
Law of iterated expectations, 815
Law of universal regression, 15
LB (Ljung–Box) statistic, 754
Lead terms, 667
Leamer–Schwarz critical values, 836
Least-squares criterion, 56
Least-squares dummy variable (LSDV)

model, 596–599
Least-squares estimates:

derivation of, 92
precision/standard errors of, 69–71
two-stage (see Two-stage least squares)

Least-squares estimator(s), 59
consistency of, 96
linearity/unbiasedness of, 92–93
minimum variance of, 95–96
ordinary (see Ordinary least squares)
properties of, 71–73

for regression through the origin,
182–183

of σ2, 93–94
variances/standard errors of, 93

Leptokurtic, 816
Level form, 418
Level of significance, 108, 824, 834

choosing, 121–122
exact, 122–123
in presence of data mining, 475–476

Leverage, 497, 498
LF (see Likelihood function)
LFP (See Labor force participation)
LGDP time series, 751–752
Life-cycle permanent income hypothesis, 10
Likelihood function (LF), 103, 590, 825
Likelihood ratio (LR) statistic, 563
Likelihood ratio (LR) test, 259–260,

274–276
Limited dependent variable regression

models, 574
Limited information methods, 711
Linear equality restrictions testing,

248–254
F-test approach, 249–254
t-test approach, 249

Linear function, 38n
Linear in parameter (assumption 1), 62
Linear population regression function, 37
Linear PRF, 37
Linear probability model (LPM), 543–549

alternatives to, 552–553
applications of, 549–552
defined, 543
effect of unit change on regressor 

value in, 571
example, 547–549
goodness of fit, 546–547
heteroscedastic variances of

disturbances, 544–545
nonfulfillment of E between 0 and 1, 545
non-normality of disturbances, 544

Linear regression model(s), 38, 39
estimation of, 527
example of, 4
log–linear vs., 260–261
nonlinear vs., 525–526

Linear trend model, 164
Linearity, 38–39

of BLUE, 71
of least-squares estimators, 92–93
in parameters, 38–39
in variables, 38

Linearization method, 537–538
Lin–log model, 162, 164–166
Ljung–Box (LB) statistic, 754
LLF (See Log-likelihood function)
LM (Lagrange multiplier) model, 678
LM test (see Lagrange multiplier test)

Log hyperbola model, 172
Logarithmic reciprocal model, 172
Logarithms, 184–186
Logistic distribution function, 526, 554
Logistic growth model, 532
Logit model, 553–555

effect of unit change on regressor 
value in, 571

estimation of, 555–558
grouped, 558–561
ML estimation, 589–590
multinomial, 580
ordinal, 580
probit vs., 571–573
ungrouped data, 561–566

Log-likelihood function (LLF), 590, 825
Log-lin model, 162–164
Log-linear model, 159–162, 260–261
Log-log model, 159
Log-normal distribution, 174
Long panel, 593
Longitudinal data (see Panel data)
Longley data, 347–350
Long-run multiplier, 619
Lower confidence limit, 108
LPM (see Linear probability model)
LR (likelihood ratio) statistic, 563
LR test (see Likelihood ratio test)
LSDV model (see Least-squares dummy

variable model)
Lucas technique, 774
Lurking variables, 598

M

MA (see Moving average)
Maintained hypothesis, 113, 475
Mallows’s Cp criterion, 488, 494–495
Manipulation of data, 417
Manufacturing wages and exports, 49
Marginal contribution of explanatory

variable, 243–246
Marginal probability density function,

805–806
Marginal propensity to consume (MPC), 3,

7, 17, 81
Marginal propensity to save (MPS), 256
Market Model of portfolio theory, 148, 149
Markov first-order autoregressive 

scheme, 419
Marquard method, 530n
Mathematical economics, 2
Mathematical model of consumption, 3–4
Matrix(-ces):

adjoint, 846
cofactor, 846
defined, 838
diagonal, 839
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Matrix(-ces) (Cont.)
equal, 840
identity/unit, 840
null, 840
null vector, 840
rank of, 845–846
scalar, 840
square, 839
symmetric, 840

Matrix addition, 840–841
Matrix algebra, 838–848

definitions, 838–839
determinants, 843–846
differentiation, matrix, 848
inverse of square matrix, finding, 847
operations, 840–843
types of matrices, 839–840

Matrix approach to linear regression
model, 849–869

ANOVA in matrix notation, 860–861
assumptions of CLRM in matrix

notation, 851–853
coefficient of determination in matrix

notation, 858
correlation matrix, 859
example of, 863–867
general F testing using matrix 

notation, 861
generalized least squares, 867–868
hypothesis testing about individual

regression coefficients in matrix
notation, 859–860

k-variable linear regression model,
851–853

OLS estimation, 853–858
prediction using multiple

regression/matrix formulation,
861–862

Matrix differentiation, 848
Matrix inversion, 843
Matrix multiplication, 841–843
Matrix operations, 840–843

addition, 840–841
inversion, 843
multiplication, 841–843
scalar multiplication, 841
subtraction, 841
transposition, 843

Matrix subtraction, 841
Matrix transposition, 843
Maximum likelihood (ML), 230, 556

example of, 105
method of, 102
of two-variable regression model,

103–105
Mean prediction, 127–128, 145–146,

861–862
Mean reversion, 741
Mean value, 34n
Mean-square-error (MSE) estimator, 827–828

Measurement, errors of, 27, 482–486
Measurement scales, 27–28
Mesokurtic, 816
Method of moments (MOM), 86, 826
Mexican economy, 532, 537
Micronumerosity, 326, 332
Micropanel data (see Panel data)
Minimum variance, 95–96, 826, 827
Minimum-variance unbiased estimators,

100, 827
MINITAB, 896–897
Minor determinant, 846
Missing data, 499–500
ML (see Maximum likelihood)
ML estimators, 196, 825–826
Model (term), 3
Model mis-specification errors, 470
Model selection criteria, 468, 493–496

adjusted R2, 493
Akaike’s information criterion, 494
caution about criteria, 495–496
forecast chi-square, 496
Mallows’s Cp criterion, 494–495
R2 criterion, 493
Schwarz’s information criterion, 494

Model specification bias, 467
Model specification errors, 467

consequences of, 470–474
tests of, 474–482

Durbin–Watson d statistic, 477–479
Lagrange multiplier test for adding

variables, 481–482
nominal vs. true level of significance,

475–476
omitted variables detection, 477–482
Ramsey’s RESET test, 479–481
residuals examination, 477
unnecessary variables detection,

475–476
types of, 468–470

Modified d test, 437
Modified Phillips curve, 170
MOM (see Method of moments)
Moment, 86
Monetary economics, 17, 18
Money market equilibrium, 678
Money stock measures, 139
Money supply function, 718
Monte Carlo experiments, 12, 83–84,

682–683
Monthly data, 22
Moving average (MA), 438, 439, 776
MPC (see Marginal propensity to consume)
MPS (marginal propensity to save), 256
MSE estimator 

(see Mean-square-error estimator)
Multicollinearity, 320–351

assumption of no, 189
defined, 321
detection of, 337–341

effects of, 347
example, 332–337
factors in, 323
high but imperfect, 325–326
Longley data example, 347–350
nature of, 321–323
perfect, 324–325
practical consequences of, 327–332

confidence intervals, 330
micronumerosity, 332
OLS-estimator variance, 328–330
sensitivity to small changes in data,

331–332
t ratios, 330, 331

remedial measures, 342–346
doing nothing, 342
rule-of-thumb procedures, 342–346

theoretical consequences of, 326–327
Multinomial models, 580
Multiple coefficient of correlation, 198
Multiple coefficient of determination,

196–197
Multiple regression:

estimation problem, 188–215
hypothesis testing

about individual regression
coefficients, 235–237

forms of, 234–235
with LR/W/LM tests, 259–260

inference problem, 233–262
likelihood ratio test, 274–276
linear equality restrictions testing,

248–254
F-test approach, 249–254
t-test approach, 249

linear vs. log–linear models, 260–261
maximum likelihood estimation, 230
normality assumption, 233–234
overall significance testing, 237–246

ANOVA, 238–240
F test, 238–241
incremental contribution of

explanatory variable, 243–246
R2 and F relationship, 241–242
in terms of R2, 242–243

partial correlation coefficients, 213–215
polynomial regression models, 210–213
prediction with, 259
specification bias in, 200–201
structural/parameter stability testing,

254–259
testing equality of two regression

coefficients, 246–248
three-variable model

adjusted R2, 201–207
Cobb–Douglas production function,

207–209
estimation of partial regression

coefficients, 192–196
example, 198–200
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interpretation of regression 
equation, 191

multiple coefficient of correlation, 198
multiple coefficient of determination,

196–197
notation/assumptions, 188–190
partial regression coefficients, 191–192
standardized variables, regression on,

199–200
Multiple regression analysis, 21
Multiple regression model, 14
Multiple-equation model, 3
Multiplication, matrix, 841–843
Multiplicative effect, 470
Multiplicative form, 287
Mutual fund advisory feeds, 530–531
Mutually exclusive events, 802
MWD test, 260–261

N

N (number of observations), 21
National Bureau of Economic Research

(NBER), 900
National Trade Data Bank, 901
Natural logarithms, 184, 185
Nature of X variables (assumption 7), 68
NBER (National Bureau of Economic

Research), 900
N.e.d. (normal equivalent deviate), 568
Negative correlation, 66
Neo-classical linear regression model

(NLRM), 63
Nested models, 487
Newey–West method, 441, 447–448
Newton–Raphson iterative method, 530
Newton’s law of gravity, 19
NID (normally and independently

distributed), 98
NLLS (nonlinear least squares), 527
NLRM (see Nonlinear regression models)
NLRM (neo-classical linear regression

model), 63
No autocorrelation between disturbances

(assumption 5), 66–67
Nominal level of significance, 475–476
Nominal regressand, 542
Nominal scale, 28
Nonexperimental data, 25, 27
Nonlinear least squares (NLLS), 527
Nonlinear regression models (NLRM), 38,

39, 525–535
direct optimization, 529
direct search method, 529
estimation of, 527
examples, 530–534
iterative linearization method, 530
linear vs., 525–526
trial-and-error method, 527–529

Non-nested F test, 488–489
Non-nested hypotheses tests, 488–492

Davidson–MacKinnon J test, 490–492
discerning approach, 488–492
discrimination approach, 488
non-nested F test, 488–489

Non-nested models, 487
Non-normal error distribution, 509–510
Non-normality, of disturbances, 544
Nonparametric statistical methods, 758
Nonparametric tests, 432n
Nonresponse, 27
Nonsense regression, 737
Nonsingular matrix, 844
Nonstationary stochastic processes, 741–744
Nonstationary time series, 741, 760–762
Nonsystematic component, 40
Normal distribution, 143–144, 816–819
Normal equations, 58, 527, 875
Normal equivalent deviate (N.e.d.), 568
Normal probability plot (NPP), 131, 132
Normality (assumption 10), 233–234

for disturbances, 98
properties of OLS estimators under,

100–101
reasons for using, 99–100
of stochastic distribution, 315, 318

Normality tests, 130–132
histogram of residuals, 130–131
Jarque–Bera test, 131, 132
normal probability plot, 131, 132

Normally and independently distributed
(NID), 98

Normit, 568
Normit model (see Probit model)
Not statistically significant, 114
NPP (see Normal probability plot)
Nuisance parameters, 596
Nuisance variables, 598
Null hypothesis, 113, 120, 121, 235n, 831
Null matrix, 840
Null vector, 840
Number crunching, 475
Numerator degrees of freedom, 144
Numerical properties, of estimators, 59
NYSE price changes example, 794–795

O

Observational data:
assumption about, 67–68
experimental vs., 2
quantity of, 67–68

Occam’s razor, 42
Odds ratio, 554
Ohm’s law, 19
OLS (see Ordinary least squares)
OLS estimation, 853–858

and autocorrelation, 418–427

and heteroscedasticity, 370–371,
374–376

illustration, 855–856
properties of OLS vector β, 858
variance-covariance matrix of β,

856–857
OLS estimators, 192–196

derivation of, 227–228
inconsistency of, 679–682
multicollinearity and variance of,

328–330
properties, 100–101
properties of, 195–196
sensitivity of, 331–332
variances and standard errors of,

194–195
OLS standard-error correction, 447–448
OLS vector, 858
Omission, of relevant variable, 469, 471–473
Omitted category, 281
Omitted variables, 477–482
One-sided hypothesis, 115
One-tail hypothesis test, 115
One-tail test of significance, 117, 118
One-way fixed effects, 598
Order, 838
Order condition of identifiability, 699–700
Ordinal models, 580
Ordinal regressand, 542
Ordinal scale, 28
Ordinary least squares (OLS), 55–85

(See also OLS estimation; OLS
estimators)

assumptions, 61–69
BLUE property of, 875–876
examples of, 81–83
Gauss–Markov theorem, 71–73
GLS vs., 373–374
goodness of fit, 73–78
method of, 55–61
and Monte Carlo experiments, 83–84
precision/standard errors, 69–71
and recursive models, 712–714

Orthogonal polynomials, 346
Orthogonal variables, 355
Outliers, 367, 496–498
Out-of-sample forecasting, 491
Overall significance testing:

ANOVA, 238–240
F test, 240–241
incremental contribution of explanatory

variable, 243–246
individual vs. joint, 241
in multiple regression, 237–246
R2 and F relationship, 241–242
in terms of R2, 242–243

Overdifferencing, 761
Overfitting, of model, 473–474
Overidentification, 697–698
Overidentified equation, 718–721
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P

� (product operator), 802
p value, 835
Pair-wise correlations, 338
PAM (see Partial adjustment model)
Panel data, 23, 25, 26, 591
Panel data models, 591–613

advantages of, 592–593
dummy variables in, 297
estimators, properties of, 605–606
examples of, 593–594, 607–612
fixed effect LSDV model, 596–599
fixed effect within-group estimator,

599–602
pooled OLS regression model, 594–596
random effects model, 602–605
selection guidelines, 606–607

Panel Study, 900
Panel Study of Income Dynamics 

(PSID), 591
Panel-corrected standard errors, 606
Parallel regressions, 285, 286
Parameter constancy, 468
Parameters, 3
Park test, 378–379, 396–398
Parsimony, 42
Partial adjustment model (PAM), 632–634
Partial correlation coefficients, 213–215
Partial correlations, 338–339
Partial regression coefficients, 189, 191–198
PCE (see Personal consumption

expenditure)
PDF (see Probability density function)
PDL (see Polynomial distributed lag)
Percent growth rate, 160n
Percentage change, 160n
Percentages, logarithms and, 185–186
Perfect collinearity, 281
Perfect multicollinearity, 324–325
Permanent consumption, 42
Permanent income hypothesis, 9–10, 42,

148, 468
Personal computers, 82–83
Personal consumption expenditure (PCE),

5, 6, 738, 739
Phenomenon of spurious regression,

747–748
Phillips curve, 17, 18, 169–170
Phillips–Perron (PP) unit root tests, 758
Piecewise linear regression, 295–297
Pindyck–Rubinfeld model of public

spending, 704–705
Platykurtic, 816
Plim (probability limit), 681
Point estimation, 107, 823–824
Point estimators, 4, 59, 108
Poisson distribution, 823
Poisson process, 542
Poisson regression model, 576–579

Policy purposes, model used for, 9
Polychotomous variable, 542
Polynomial distributed lag (PDL), 645–652
Polynomial regression, 210–213, 346
Polytomous dependent variable, 299
Pooled data, 23, 591
Pooled estimators, 606
Pooled OLS regression model, 594–596
Pooled regression, 256
Population, 34, 802
Population correlogram, 749
Population growth, 532–533
Population regression (PR), 37
Population regression curve, 36
Population regression function 

(PRF), 37–41
Population regression line (PRL), 36, 37
Population transformation, 534
Positive economists, 7
Postmultiplied, 842
Power:

of statistical test, 440n
of the test, 122, 383n, 834, 835
of unit root tests, 759

Power curve, 835
Power function graph, 835
PP (Phillips–Perron) unit root tests, 758
PPP (purchasing power parity), 139
PR (population regression), 37
Practical significance, statistical vs., 123–124
Prais–Winsten transformation, 443
Precedence, 653
Precision, 69–71
Predetermined variables, 690
Prediction (See also Forecasting)

individual, 128–129, 146, 862
matrix formulation, 861–862
mean, 127–128, 145–146, 861–862
with multiple regression, 259
variance of, 862

Predictive causality, 653
Predictor variable, 8
Premultiplied, 842
Pretest bias, 206n
Pretesting, 476
PRF (see Population regression function)
Price elasticity, 17
Principal components technique, 346
PRL (see Population regression line)
Probability, 802–803
Probability density function (PDF), 804–808

conditional PDF, 806
of continuous random variable, 804
of discrete random variable, 803–804
joint PDFs, 805
marginal PDF, 805
statistical independence, 806–808

Probability distribution(s), 100, 101, 109
Bernoulli binomial distribution, 822
binomial distribution, 822–823

chi-square distribution, 819–820
conditional expectation and conditional

variance, 813–815
correlation coefficient, 812–813
covariance, 811–812
of disturbances, 97–98
of estimator, 824
expected value, 808–810
F distribution, 821–822
higher moments of, 815–816
normal distribution, 816–819
normal distribution related to, 143–144
Poisson distribution, 823
Student’s t distribution, 820
variance, 810–811

Probability element, 804
Probability limit (plim), 681
Probability of committing Type I error,

108n, 121
Probit model, 566–571

effect of unit change on regressor 
value in, 571

with grouped data, 567–570
logit vs., 571–573
ML estimation, 589–590
multinomial, 580
ordinal, 580
with ungrouped data, 570–571

Problem of estimation, 823
Product operator (�), 802
Productivity, 89, 607–609, 621, 667
Proxy variables, 41–42, 485
PSID (Panel Study of Income 

Dynamics), 591
Psychology, 622
Pth-order autoregressive (AR(p)), 776
Purchasing power parity (PPP), 139
Pure autocorrelation, 440–442
Pure random walk, 745
Purely random process, 741

Q

Q statistic, 753–754
Qth-order moving average (MA(q)), 776
Quadratic function, 210
Qualitative response models, 541–581

duration models, 580–581
linear probability model, 543–553
logit model, 553–566, 589–590
multinomial models, 580
nature of, 541–543
ordinal models, 580
Poisson regression model, 576–579
probit model, 566–571, 589–590
selection of model, 571–573
tobit model, 574–577
unit change in value of regressor in, 571

Qualitative variables, 14
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Quality, of data, 27
Quarterly data, 22
Quasi-difference equation, 442
Quinquennial data, 22

R

R2 criterion, 493
Ramsey’s RESET test, 479–481
Random (term), 21
Random effects estimators, 606
Random effects model (REM), 602–607
Random interval, 108
Random regressor case, 510, 511
Random sample, 823
Random (stochastic) variable, 4, 19
Random variables, 803
Random walk model (RWM), 741–746
Random walk phenomenon, 737
Random walk time series, 751
Randomness, 41
Rank condition of identifiability, 700–703
Rank of matrix, 845–846
Rare event data, 542
Ratio scale, 28
Ratio transformation, 345
Rational expectations (RE) hypothesis, 631
Raw r2, 150
RE (rational expectations) hypothesis, 631
Real consumption function, 505–509
Realization of possibilities, 740
Real-time quote, 22
Real-valued function, 802n
Reciprocal models, 166–172
Recursive least squares (RELS), 498
Recursive models, 712–714
Recursive residual test, 259
Recursive residuals, 498
Reduced-form coefficients, 690, 691
Reduced-form equations, 690, 691
Reduction, of determinant, 844
Reduction formula, 869
Reference category, 281
Region of acceptance, 116
Region of rejection, 116, 833
Regressand, 21
Regression:

historical origin of term, 15
through the origin, 147–153
on standardized variables, 157–159

Regression analysis, 15–21, 124–136
and analysis of variance, 124–126
and causation, 19–20
and correlation, 20
data for, 22–28
defined, 15
for estimation, 5
evaluating results of, 130–134
examples of, 16–18

measurement scales of variables, 27–28
prediction problem, 126–129
reporting results of, 129–130
statistical vs. deterministic relationships

in, 19
terminology/notation used in, 21

Regression coefficients, 37, 246–248
Regression fishing, 475
Regression line, 16
Regression model(s), 159

Box–Cox, 187
elasticity measurement, 159–162
growth measurement, 162–166
log-linear model, 159–162
reciprocal models, 166–172
selection, 172–173
semilog models, 162–166
and stochastic error, 174–175

Regression software, 11–12
“Regression to mediocrity,” 15
Regression using standardized variables, 873
Regressor, 21
Rejecting hypothesis, 119
Relative (proportional) change, 160n
Relative frequency, 557, 802
Relevant variable, omission of, 469, 

471–473
RELS (recursive least squares), 498
REM (see Random effects model)
Repeated sampling, 84
Replicated data, 556–558
Reproductive property, 143
Residual sum of squares (RSS), 70, 75
Residuals, 44, 445–446, 477
Resources for Economists on the 

Internet, 900
Restricted F test, 598, 758
Restricted least squares (RLS), 

249–252, 481
Restricted residual sum of squares (RSSR),

256–258
Ridge regression, 346
RLS (see Restricted least squares)
Robust estimation, 318n
Robust standard errors, 391, 411
Row by column rule of multiplication, 841
Row vector, 839
RSS (see Residual sum of squares)
RSSR (see Restricted residual sum

of squares)
RSSUR (see Unrestricted residual sum

of squares)
Runs test, 431–434, 892–893
RWM (see Random walk model)

S

∑ (summation operator), 801
∑∑ (double summation operator), 801

Sample autocorrelation function 
(SAFC), 114, 749

Sample correlation coefficient, 77
Sample correlogram, 749
Sample covariance, 749
Sample points, 802
Sample regression function (SRF), 42–45
Sample regression line, 44
Sample size, 835
Sample space, 802
Sample variance, 749
Sampling, 27, 824
Sampling distribution, 69n, 73, 109, 509
Sargan test, 669–670
Scalar, 838
Scalar matrix, 840
Scalar multiplication, 841
Scale effect, 23
Scale factors, 154–156
Scaling, 154–157
Scatter diagram (scattergram), 16
Scatterplot, 340–341
Schwarz’s information criterion (SIC), 

488, 494
Seasonal analysis, 290–295
Seasonality, 784
Second-order autoregressive (AR(2)), 776
Second-order moving average (MA(2)), 776
Second-order stationary, 740
Security market line (SML), 148
Seemingly unrelated regression (SURE)

model, 599n, 714n, 785n
Self-selection bias, 499
Semielasticity, 163
Semilog models, 162–166
Semilogarithmic regressions, 297–298, 314
Serial correlation, 412–414
Serial correlation model, 660
Shocks, 785
Short panel, 593
Short-run multiplier, 619
SIC (see Schwarz’s information criterion)
Signed minor, 846
Simple correlation coefficients, 213–215
Simple hypothesis, 113, 831
Simple regression analysis (see Two-

variable regression analysis)
Sims test of causality, 652n
Simultaneity test, 703–705
Simultaneous equations, 874
Simultaneous-equation bias, 679–683
Simultaneous-equation methods, 711–730

estimation approaches, 711–712
bias in indirect least-squares 

estimators, 735
examples, 724–729
indirect least squares, 715–718
recursive models and OLS, 712–714
standard errors of 2SLS estimators, 736
two-stage least squares, 718–724
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Simultaneous-equation models, 673–684
examples of, 674–679
nature of, 673–674

Simultaneous-equation regression 
models, 774

Single exponential smoothing, 774
Single-equation methods, 712
Single-equation model, 3
Single-equation regression models, 13, 774
Singular matrix, 844
Size:

of the statistical test, 108n
of unit root tests, 759

Size effect, 23
Skewness, 131, 132, 368, 815, 816
Slope, 3, 37
Slope drifter (see Differential slope

coefficients)
Slutsky property, 830
Small-sample properties, 826–828
SML (security market line), 148
Social Security Administration, 901
Spatial autocorrelation, 412
Spearman’s rank correlation coefficient, 86
Spearman’s rank correlation test, 380–382
Specification bias, 64

assumption regarding, 189, 367
excluded variable, 414–415
incorrect function form, 416
and multicollinearity, 344
in multiple regression, 200–201

Specification error, 64, 150
Spline functions, 296
Spurious correlation, 395
Spurious regression, 737, 747–748
Square matrix, 839, 847
Square root transformation, 393
SRF (see Sample regression function)
SRM (see Switching regression models)
St. Louis revised model, 728–729
Stability condition, 755n
Standard deviation, 810
Standard error(s):

defined, 69n
of estimate, 70
of least-squares estimates, 69–71
of least-squares estimators, 93
of OLS estimators, 194–195
of regression, 70
in 2SLS estimators, 736

Standard linear regression model 
(see Classical linear regression model)

Standard normal distribution, 100
Standardized normal distribution, 878
Standardized normal variable, 817
Standardized residuals, 430, 431
Standardized variables, 157–159, 183–184,

199–200
STATA, 898, 899
Statement of theory or hypothesis, 3

Stationarity, 22
Stationarity, tests of, 748–754

autocorrelation function/correlogram,
749–753

graphical analysis, 749
statistical significance of autocorrelation

coefficients, 753–754
Stationary stochastic processes, 740–741
Stationary time series, 737
Statistic (term), 44, 823
Statistical independence, 806–808
Statistical inference, 8
Statistical properties, 59, 69
Statistical relationships, 19, 20
Statistical Resources on the

Web/Economics, 901
Statistical significance:

of autocorrelation coefficients, 753–754
practical vs., 123–124

Statistical tables, 878–893
areas under standardized normal

distribution, 878
critical values of runs in runs test,

892–893
Durbin–Watson d statistic, 888–891
1% and 5% critical Dickey–Fuller t and

F values for unit root tests, 893
percentage points of t distribution, 879
upper percentage points of χ2

distribution, 886–887
upper percentage points of F

distribution, 880–885
Statistically significant, 114
STAT-USA databases, 901
Steepest descent method, 529
Stepwise backward regression, 354
Stepwise forward regression, 354
Stochastic (term), 19n, 21
Stochastic disturbance, 40–42
Stochastic error term, 40, 174–175,

486–487
Stochastic explanatory variables, 510–511
Stochastic PRF, 48
Stochastic processes, 740–744

integrated, 746–747
nonstationary, 741–744
stationary, 740–741
trend stationary/difference stationary,

745–746
unit-root, 744

Stochastic regressor model, 63, 316–317
Stochastic time series, 745
Stochastic trend, 742, 745
Stock adjustment model, 632
Strictly exogenous regressors, 468
Strictly exogenous variables, 594, 602
Strictly white noise, 741n
Structural breaks, 758
Structural changes, testing for, 254–259,

758–759

Structural coefficients, 690
Structural equations, 690
Studentized residuals, 430n
Student’s t distribution, 820
Student’s t test, 755
Submatrix, 839
Subtraction, matrix, 841
Summation operator (�), 801
SURE model (see Seemingly unrelated

regression model)
Survival analysis, 580
Switching regression models (SRM), 

296n, 300
Symmetric matrix, 840
Symmetric variance–covariance 

matrix, 853
Systematic component, 40

T

T (subscript), 21
T (total number of observations), 21
T distribution, 879
T ratios, 330, 331, 337
τ (tau) statistic, 755–757
T test, 115–118, 249
Target variable, 9
Taylor’s series expansion, 530, 538
Taylor’s theorem, 537–538
Technology, 622
“Ten Commandments of Applied

Econometrics” (Peter Kennedy),
511

Test of significance, 115–119, 836–837
ANOVA in matrix notation, 860–861
χ2 test, 118–119
confidence interval vs., 124
overall (see Overall significance testing)
t test, 115–118

Test statistic, 115, 831
Tests of non-nested hypotheses, 488–492

Davidson–MacKinnon J test, 490–492
discerning approach, 488–492
discrimination approach, 488
non-nested F test, 488–489

Tests of specification errors, 474–482
Texas economy application, 789–790
TGARCH (threshold GARCH), 799
Theoretical econometrics, 10, 11
Theoretical probability distributions:

Bernoulli binomial distribution, 822
binomial distribution, 822–823
chi-square distribution, 819–820
F distribution, 821–822
normal distribution, 816–819
Poisson distribution, 823
Student’s t distribution, 820

Three-variable regression model:
adjusted R2, 201–207
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Cobb–Douglas production function,
207–209

estimation of partial regression
coefficients, 192–198

example, 198–200
interpretation of regression equation, 191
multiple coefficient of correlation, 198
multiple coefficient of determination,

196–197
notation/assumptions, 188–190
partial regression coefficients, 

191–192
specification bias, 200–201
standardized variables, regression on,

199–200
Threshold GARCH (TGARCH), 799
Threshold level, 566
Time derivative, 714n
Time effect, 598
Time sequence plot, 430
Time series, 290
Time series data, 737–769, 773–799

approaches to, 773–775
Box–Jenkins methodology, 777–784
cointegration, 762–765
and cross-section data, 591
and cross-sectional data, 343
defined, 21–23
economic applications, 765–768
examples of, 796–798
key concepts with, 739
modeling, 775–777
spurious regression phenomenon with,

747–748
stationarity, tests of, 748–754
stochastic processes, 740–747
transforming nonstationary time series

to, 760–762
unit root tests, 754–760
U.S. economy, 738–739
vector autoregression, 784–790
volatility measurement in, 791–796

Time series econometrics, 22, 345
Time-invariant variable, 595, 596
Time-series regression, 270
Time-to-event data analysis, 580
Time-variant variable, 596
Tobit model, 574–577
Tolerance, 340
Total sum of squares (TSS), 74
Toxicity study, 586
TPF (transcendental production 

function), 267
Traditional econometric methodology, 2–3
Transcendental production function 

(TPF), 267
Transformation of variables, 344–345
Transposition, 839
Transposition, matrix, 843
Trend stationary, 745

Trend stationary process (TSP), 745
Trend stationary (TS) stochastic processes,

745–746
Trends, 22
Trend-stationary processes, 761–762
Trial-and-error method, 527–529
Triangular (arithmetic) distributed-lag

model, 661
Triangular models, 712, 713n
Trichotomous variable, 542
True level of significance, 475–476
Truncated sample, 574n
TS stochastic processes (see Trend

stationary stochastic processes)
TSP (trend stationary process), 745
TSS (total sum of squares), 74
2SLS (see Two-stage least squares)
2-t rule of thumb, 120
Two-sided hypothesis, 113–114
Two-stage least squares (2SLS), 

718–724, 736
Two-tail hypothesis test, 113–114
Two-tail test of significance, 117
Two-variable linear regression model, 13
Two-variable regression analysis, 21, 34–48

examples of, 45–47
linearity in, 38–39
population regression function, 37–38
sample regression function, 42–45
stochastic disturbance in, 41–42
stochastic specification of PRF, 39–41

Two-variable regression model, 147–175
elasticity measurement, 159–162
estimation problem, 55–85

classical linear regression model, 61–69
coefficient of determination r2, 73–78
examples, 78–83
Gauss–Markov theorem, 71–73
Monte Carlo experiments, 83–84
ordinary least squares method, 55–61
precision/standard errors, 69–71

functional models of, 159
log-linear model, 159–162
reciprocal models, 166–172
selection, 172–173
semilog models, 162–166

growth measurement, 162–166
hypothesis testing, 113–124

accepting/rejecting hypothesis, 119
choosing level of significance,

121–122
confidence-interval approach, 113–115
exact level of significance, 122–123
forming null/alternative hypotheses, 121
selection of method, 124
statistical vs. practical significance,

123–124
test-of-significance approach,

115–119
zero null hypothesis/2-t rule, 120

hypothetical example of, 34–37
interval estimation, 107–112

confidence intervals, 109–112
statistical prerequisites, 107

regression through the origin, 147–153
and scaling/units of measurement,

154–157
on standardized variables, 157–159
and stochastic error, 174–175

Two-way fixed effects model, 598
Type I error, 108n, 114n, 121, 122, 833, 834
Type II error, 121, 122, 833

U

Unbalanced panel, 25, 593
Unbiasedness, 520–521, 826, 827

assumption regarding, 189, 367
of BLUE, 72
of least-squares estimators, 92–93

Unconditional expected value, 35
Underdifferencing, 761
Underfitting, of model, 471–473
Underidentification, 692–694
Underprediction, 8
Ungrouped data, 561–566, 570–571,

589–590
Unit change in value of regressor in,

199–200, 571
Unit matrix, 840
Unit root problem, 744
Unit root stochastic processes, 744
Unit root tests:

augmented Dickey–Fuller test, 
757–758

critique, 759–760
F test, 758
1% and 5% critical Dickey–Fuller t and

F values for, 893
Phillips–Perron, 758
structural changes testing, 758–759
time series data, 754–760

Units of measurement, 157
Universal regression, law of, 15
University of Michigan, 22
Unobservable variable, 603
Unobserved effect, 595
Unrestricted residual sum of squares

(RSSUR), 257–258
Upper confidence limit, 108
Upward trend, 164
U.S. Census Bureau, 22, 901
U.S. Department of Commerce, 

23, 27
U.S. economic time series, 738–739
U.S. inflation rate, 797–798
U.S. Treasury bills examples, 

767–768
Utility index, 566

guj75772_index.qxd  05/09/2008  11:14 AM  Page 921



922 Subject Index

V

Vagueness, of theory, 41
Validity, of instruments, 669–670
VAR model (see Vector autoregression

model)
Variables:

dropping, 343–344
measurement scales of, 27–28
orthogonal, 355
standardized, 183–184
transformation of, 344–345

Variance:
of individual prediction, 146, 862
of least-squares estimators, 93
of mean prediction, 145–146, 862
of OLS estimators, 194–195
of probability distribution, 810–811
variation vs., 74n

Variance-covariance matrix, 852–853,
856–857, 875

Variance-inflating factor (VIF), 328, 340
Variation, variance vs., 74n
Vector autoregression (VAR) model, 653,

655, 773, 775
causality, 787–788
estimation, 785–786
forecasting, 786–787
problems with, 788–789
Texas economy application, 789–790
time series data, 784–790

Venn diagram, 73, 74
VIF (see Variance-inflating factor)
Volatility, 791
Volatility clustering, 773
Volatility measurement:

ARCH presence, 795
Durbin–Watson d and ARCH effect, 796
in financial time series, 791–796
GARCH model, 796
NYSE price changes example, 794–795
U.S./U.K. exchange rate example, 791–794

Von Neumann ratio, 454

W

Wage equations, 614
Wald test, 259–260, 299n
Weakly exogenous regressors, 468
Weakly stationary, 740
Weekly data, 22
Weierstrass’ theorem, 645
Weighted least squares (WLS), 373,

389–390, 409–410
WG estimator (see Within-group estimator)
White noise error, 419, 750
White noise process, 741
White’s general heteroscedasticity test,

386–389, 396, 398–399
White’s heteroscedasticity-consistent

standard errors, 391, 411, 503

Wide sense, stochastic process, 740
Wiener–Granger causality test, 653n
Within-group (WG) estimator, 599–602
WLS (see Weighted least squares)
WLS estimators, 373
World Fact Book, 901
World Wide Web resources, 900–901

X

X (explanatory variable), 21
assumption on nature of, 68
independence of, 62–63, 316–317

Y

Y (dependent variable), 21

Z

Z test, 836–837
Zellner SURE estimation technique, 714n
Zero contemporaneous correlation, 713
Zero correlation, 77
Zero mean value of ui (assumption 3),

63–64, 317
Zero null hypothesis, 120
Zero-intercept model, 148–150

guj75772_index.qxd  05/09/2008  11:14 AM  Page 922



guj75772_index.qxd  05/09/2008  11:14 AM  Page 923



guj75772_index.qxd  05/09/2008  11:14 AM  Page 924


	Cover Page
	Other Books By
	Title Page
	Copyright Page
	About the Author
	Dedication
	Brief Contents
	Contents
	Preface
	Acknowledgments
	Introduction
	I.1 What Is Econometrics?
	I.2 Why a Separate Discipline?
	I.3 Methodology of Econometrics
	1. Statement of Theory or Hypothesis 
	2. Specification of the Mathematical Model of Consumption
	3. Specification of the Econometric Model of Consumption
	4. Obtaining Data
	5. Estimation of the Econometric Model
	6. Hypothesis Testing
	7. Forecasting or Prediction
	8. Use of the Model for Control or Policy Purposes
	Choosing among Competing Models

	I.4 Types of Econometrics
	I.5 Mathematical and Statistical Prerequisites
	I.6 The Role of the Computer
	I.7 Suggestions for Further Reading

	PART ONE SINGLE-EQUATION REGRESSION MODELS
	CHAPTER 1 The Nature of Regression Analysis
	1.1 Historical Origin of the Term Regression
	1.2 The Modern Interpretation of Regression
	Examples 

	1.3 Statistical versus Deterministic Relationships
	1.4 Regression versus Causation
	1.5 Regression versus Correlation
	1.6 Terminology and Notation
	1.7 The Nature and Sources of Data for Economic Analysis
	Types of Data
	The Sources of Data
	The Accuracy of Data
	A Note on the Measurement Scales of Variables

	Summary and Conclusions
	Exercises

	CHAPTER 2 Two-Variable Regression Analysis: Some Basic Ideas
	2.1 A Hypothetical Example
	2.2 The Concept of Population Regression Function (PRF)
	2.3 The Meaning of the Term Linear
	Linearity in the Variables
	Linearity in the Parameters

	2.4 Stochastic Specification of PRF
	2.5 The Significance of the Stochastic Disturbance Term
	2.6 The Sample Regression Function (SRF)
	2.7 Illustrative Examples
	Summary and Conclusions
	Exercises

	CHAPTER 3 Two-Variable Regression Model: The Problem of Estimation
	3.1 The Method of Ordinary Least Squares
	3.2 The Classical Linear Regression Model: The Assumptions Underlying the Method of Least Squares
	A Word about These Assumptions

	3.3 Precision or Standard Errors of Least-Squares Estimates
	3.4 Properties of Least-Squares Estimators: The Gauss–Markov Theorem
	3.5 The Coefficient of Determination r2: A Measure of “Goodness of Fit”
	3.6 A Numerical Example
	3.7 Illustrative Examples
	3.8 A Note on Monte Carlo Experiments
	Summary and Conclusions
	Exercises
	Appendix 3A 
	3A.1 Derivation of Least-Squares Estimates
	3A.2 Linearity and Unbiasedness Properties of Least-Squares Estimators
	3A.3 Variances and Standard Errors of Least-Squares Estimators
	3A.4 Covariance Between β1 and β2
	3A.5 The Least-Squares Estimator of σ2
	3A.6 Minimum-Variance Property of Least-Squares Estimators
	3A.7 Consistency of Least-Squares Estimators


	CHAPTER 4 Classical Normal Linear Regression Model (CNLRM)
	4.1 The Probability Distribution of Disturbances ui
	4.2 The Normality Assumption for ui
	Why the Normality Assumption?

	4.3 Properties of OLS Estimators under the Normality Assumption
	4.4 The Method of Maximum Likelihood (ML)
	Summary and Conclusions
	Appendix 4A
	4A.1 Maximum Likelihood Estimation of Two-Variable Regression Model
	4A.2 Maximum Likelihood Estimation of Food Expenditure in India
	Appendix 4A Exercises


	CHAPTER 5 Two-Variable Regression: Interval Estimation and Hypothesis Testing
	5.1 Statistical Prerequisites
	5.2 Interval Estimation: Some Basic Ideas
	5.3 Confidence Intervals for Regression Coefficients β1 and β2
	Confidence Interval for β2 
	Confidence Interval for β1 and β2 Simultaneously

	5.4 Confidence Interval for σ2
	5.5 Hypothesis Testing: General Comments
	5.6 Hypothesis Testing: The Confidence-Interval Approach
	Two-Sided or Two-Tail Test
	One-Sided or One-Tail Test

	5.7 Hypothesis Testing: The Test-of-Significance Approach
	Testing the Significance of Regression Coefficients: The t Test
	Testing the Significance of σ2: The χ2 Test

	5.8 Hypothesis Testing: Some Practical Aspects
	The Meaning of “Accepting” or “Rejecting” a Hypothesis
	The “Zero” Null Hypothesis and the “2-t” Rule of Thumb
	Forming the Null and Alternative Hypotheses
	Choosing α, the Level of Significance
	The Exact Level of Significance: The p Value
	Statistical Significance versus Practical Significance
	The Choice between Confidence-Interval and Test-of-Significance Approaches to Hypothesis Testing

	5.9 Regression Analysis and Analysis of Variance
	5.10 Application of Regression Analysis: The Problem of Prediction
	Mean Prediction
	Individual Prediction

	5.11 Reporting the Results of Regression Analysis
	5.12 Evaluating the Results of Regression Analysis
	Normality Tests
	Other Tests of Model Adequacy

	Summary and Conclusions
	Exercises
	Appendix 5A
	5A.1 Probability Distributions Related to the Normal Distribution
	5A.2 Derivation of Equation (5.3.2) 
	5A.3 Derivation of Equation (5.9.1)
	5A.4 Derivations of Equations (5.10.2) and (5.10.6)
	Variance of Mean Prediction
	Variance of Individual Prediction



	CHAPTER 6 Extensions of the Two-Variable Linear Regression Model
	6.1 Regression through the Origin
	r2 for Regression-through-Origin Model

	6.2 Scaling and Units of Measurement
	A Word about Interpretation

	6.3 Regression on Standardized Variables
	6.4 Functional Forms of Regression Models 
	6.5 How to Measure Elasticity: The Log-Linear Model
	6.6 Semilog Models: Log–Lin and Lin–Log Models
	How to Measure the Growth Rate: The Log–Lin Model
	The Lin–Log Model

	6.7 Reciprocal Models
	Log Hyperbola or Logarithmic Reciprocal Model

	6.8 Choice of Functional Form
	6.9 A Note on the Nature of the Stochastic Error Term: Additive versus Multiplicative Stochastic Error Term
	Summary and Conclusions
	Exercises
	Appendix 6A
	6A.1 Derivation of Least-Squares Estimators for Regression through the Origin
	6A.2 Proof that a Standardized Variable Has Zero Mean and Unit Variance
	6A.3 Logarithms
	6A.4 Growth Rate Formulas
	6A.5 Box-Cox Regression Model


	CHAPTER 7 Multiple Regression Analysis: The Problem of Estimation
	7.1 The Three-Variable Model: Notation and Assumptions
	7.2 Interpretation of Multiple Regression Equation
	7.3 The Meaning of Partial Regression Coefficients
	7.4 OLS and ML Estimation of the Partial Regression Coefficients
	OLS Estimators
	Variances and Standard Errors of OLS Estimators
	Properties of OLS Estimators
	Maximum Likelihood Estimators

	7.5 The Multiple Coefficient of Determination R2 and the Multiple Coefficient of Correlation R 
	7.6 An Illustrative Example
	Regression on Standardized Variables
	Impact on the Dependent Variable of a Unit Change in More than One Regressor

	7.7 Simple Regression in the Context of Multiple Regression: Introduction to Specification Bias
	7.8 R2 and the Adjusted R2
	Comparing Two R2 Values
	Allocating R2 among Regressors
	The “Game’’ of Maximizing R–2

	7.9 The Cobb–Douglas Production Function: More on Functional Form 
	7.10 Polynomial Regression Models
	7.11 Partial Correlation Coefficients
	Explanation of Simple and Partial Correlation Coefficients
	Interpretation of Simple and Partial Correlation Coefficients 

	Summary and Conclusions
	Exercises
	Appendix 7A
	7A.1 Derivation of OLS Estimators Given in Equations (7.4.3) to (7.4.5)
	7A.2 Equality between the Coefficients of PGNP in Equations (7.3.5) and (7.6.2)
	7A.3 Derivation of Equation (7.4.19)
	7A.4 Maximum Likelihood Estimation of the Multiple Regression Model
	7A.5 EViews Output of the Cobb–Douglas Production Function in Equation (7.9.4)


	CHAPTER 8 Multiple Regression Analysis: The Problem of Inference
	8.1 The Normality Assumption Once Again
	8.2 Hypothesis Testing in Multiple Regression: General Comments 
	8.3 Hypothesis Testing about Individual Regression Coefficients
	8.4 Testing the Overall Significance of the Sample Regression
	The Analysis of Variance Approach to Testing the Overall Significance of an Observed Multiple Regression: The F Test 
	Testing the Overall Significance of a Multiple Regression: The F Test
	An Important Relationship between R2 and F
	Testing the Overall Significance of a Multiple Regression in Terms of R2 
	The “Incremental” or “Marginal” Contribution of an Explanatory Variable

	8.5 Testing the Equality of Two Regression Coefficients
	8.6 Restricted Least Squares: Testing Linear Equality Restrictions
	The t-Test Approach
	The F-Test Approach: Restricted Least Squares
	General F Testing

	8.7 Testing for Structural or Parameter Stability of Regression Models: The Chow Test
	8.8 Prediction with Multiple Regression
	8.9 The Troika of Hypothesis Tests: The Likelihood Ratio (LR), Wald (W), and Lagrange Multiplier (LM) Tests
	8.10 Testing the Functional Form of Regression: Choosing between Linear and Log–Linear Regression Models
	Summary and Conclusions
	Exercises
	Appendix 8A: Likelihood Ratio (LR) Test

	CHAPTER 9 Dummy Variable Regression Models
	9.1 The Nature of Dummy Variables
	9.2 ANOVA Models
	Caution in the Use of Dummy Variables

	9.3 ANOVA Models with Two Qualitative Variables
	9.4 Regression with a Mixture of Quantitative and Qualitative Regressors: The ANCOVA Models 
	9.5 The Dummy Variable Alternative to the Chow Test
	9.6 Interaction Effects Using Dummy Variables
	9.7 The Use of Dummy Variables in Seasonal Analysis
	9.8 Piecewise Linear Regression
	9.9 Panel Data Regression Models
	9.10 Some Technical Aspects of the Dummy Variable Technique
	The Interpretation of Dummy Variables in Semilogarithmic Regressions
	Dummy Variables and Heteroscedasticity
	Dummy Variables and Autocorrelation
	What Happens If the Dependent Variable Is a Dummy Variable?

	9.11 Topics for Further Study
	9.12 A Concluding Example
	Summary and Conclusions
	Exercises
	Appendix 9A: Semilogarithmic Regression with Dummy Regressor


	PART TWO RELAXING THE ASSUMPTIONS OF THE CLASSICAL MODEL
	CHAPTER 10 Multicollinearity: What Happens If the Regressors Are Correlated?
	10.1 The Nature of Multicollinearity
	10.2 Estimation in the Presence of Perfect Multicollinearity
	10.3 Estimation in the Presence of “High” but “Imperfect” Multicollinearity
	10.4 Multicollinearity: Much Ado about Nothing? Theoretical Consequences of Multicollinearity
	10.5 Practical Consequences of Multicollinearity
	Large Variances and Covariances of OLS Estimators
	Wider Confidence Intervals
	“Insignificant” t Ratios
	A High R2 but Few Significant t Ratios
	Sensitivity of OLS Estimators and Their Standard Errors to Small Changes in Data
	Consequences of Micronumerosity

	10.6 An Illustrative Example 
	10.7 Detection of Multicollinearity
	10.8 Remedial Measures
	Do Nothing
	Rule-of-Thumb Procedures

	10.9 Is Multicollinearity Necessarily Bad? Maybe Not, If the Objective Is Prediction Only
	10.10 An Extended Example: The Longley Data
	Summary and Conclusions
	Exercises

	CHAPTER 11 Heteroscedasticity: What Happens If the Error Variance Is Nonconstant? 
	11.1 The Nature of Heteroscedasticity
	11.2 OLS Estimation in the Presence of Heteroscedasticity
	11.3 The Method of Generalized Least Squares (GLS)
	Difference between OLS and GLS

	11.4 Consequences of Using OLS in the Presence of Heteroscedasticity
	OLS Estimation Allowing for Heteroscedasticity
	OLS Estimation Disregarding Heteroscedasticity
	A Technical Note

	11.5 Detection of Heteroscedasticity
	Informal Methods
	Formal Methods

	11.6 Remedial Measures
	When σ2i Is Known: The Method of Weighted Least Squares
	When σ2i Is Not Known

	11.7 Concluding Examples
	11.8 A Caution about Overreacting to Heteroscedasticity
	Summary and Conclusions
	Exercises
	Appendix 11A
	11A.1 Proof of Equation (11.2.2)
	11A.2 The Method of Weighted Least Squares
	11A.3 Proof that E( ˆσ2) ≠ σ2 in the Presence of Heteroscedasticity
	11A.4 White’s Robust Standard Errors


	CHAPTER 12 Autocorrelation: What Happens If the Error Terms Are Correlated? 
	12.1 The Nature of the Problem
	12.2 OLS Estimation in the Presence of Autocorrelation
	12.3 The BLUE Estimator in the Presence of Autocorrelation
	12.4 Consequences of Using OLS in the Presence of Autocorrelation
	OLS Estimation Allowing for Autocorrelation
	OLS Estimation Disregarding Autocorrelation

	12.5 Relationship between Wages and Productivity in the Business Sector of the United States, 1960–2005 
	12.6 Detecting Autocorrelation
	I. Graphical Method
	II. The Runs Test
	III. Durbin–Watson d Test
	IV. A General Test of Autocorrelation: The Breusch–Godfrey (BG) Test
	Why So Many Tests of Autocorrelation?

	12.7 What to Do When You Find Autocorrelation: Remedial Measures
	12.8 Model Mis-Specification versus Pure Autocorrelation
	12.9 Correcting for (Pure) Autocorrelation: The Method of Generalized Least Squares (GLS)
	When ρ Is Known
	When ρ Is Not Known

	12.10 The Newey–West Method of Correcting the OLS Standard Errors
	12.11 OLS versus FGLS and HAC
	12.12 Additional Aspects of Autocorrelation
	Dummy Variables and Autocorrelation
	ARCH and GARCH Models
	Coexistence of Autocorrelation and Heteroscedasticity

	12.13 A Concluding Example
	Summary and Conclusions
	Exercises
	Appendix 12A
	12A.1 Proof that the Error Term vt in Equation (12.1.11) Is Autocorrelated
	12A.2 Proof of Equations (12.2.3), (12.2.4), and (12.2.5)


	CHAPTER 13 Econometric Modeling: Model Specification and Diagnostic Testing
	13.1 Model Selection Criteria
	13.2 Types of Specification Errors
	13.3 Consequences of Model Specification Errors
	Underfitting a Model (Omitting a Relevant Variable)
	Inclusion of an Irrelevant Variable (Overfitting a Model)

	13.4 Tests of Specification Errors
	Detecting the Presence of Unnecessary Variables (Overfitting a Model)
	Tests for Omitted Variables and Incorrect Functional Form

	13.5 Errors of Measurement
	Errors of Measurement in the Dependent Variable Y
	Errors of Measurement in the Explanatory Variable X

	13.6 Incorrect Specification of the Stochastic Error Term
	13.7 Nested versus Non-Nested Models
	13.8 Tests of Non-Nested Hypotheses
	The Discrimination Approach
	The Discerning Approach

	13.9 Model Selection Criteria
	The R2 Criterion
	Adjusted R2 
	Akaike’s Information Criterion (AIC)
	Schwarz’s Information Criterion (SIC) 
	Mallows’s Cp Criterion
	A Word of Caution about Model Selection Criteria
	Forecast Chi-Square (χ2)

	13.10 Additional Topics in Econometric Modeling
	Outliers, Leverage, and Influence
	Recursive Least Squares
	Chow’s Prediction Failure Test
	Missing Data

	13.11 Concluding Examples
	1. A Model of Hourly Wage Determination 
	2. Real Consumption Function for the United States, 1947–2000

	13.12 Non-Normal Errors and Stochastic Regressors
	1. What Happens If the Error Term Is Not Normally Distributed?
	2. Stochastic Explanatory Variables

	13.13 A Word to the Practitioner
	Summary and Conclusions
	Exercises
	Appendix 13A
	13A.1 The Proof that E(b12) = β2 + β3b32 [Equation (13.3.3)] 
	13A.2 The Consequences of Including an Irrelevant Variable: The Unbiasedness Property
	13A.3 The Proof of Equation (13.5.10)
	13A.4 The Proof of Equation (13.6.2)



	PART THREE TOPICS IN ECONOMETRICS
	CHAPTER 14 Nonlinear Regression Models
	14.1 Intrinsically Linear and Intrinsically Nonlinear Regression Models
	14.2 Estimation of Linear and Nonlinear Regression Models
	14.3 Estimating Nonlinear Regression Models: The Trial-and-Error Method
	14.4 Approaches to Estimating Nonlinear Regression Models
	Direct Search or Trial-and-Error or Derivative-Free Method
	Direct Optimization 
	Iterative Linearization Method

	14.5 Illustrative Examples
	Summary and Conclusions
	Exercises
	Appendix 14A
	14A.1 Derivation of Equations (14.2.4) and (14.2.5)
	14A.2 The Linearization Method
	14A.3 Linear Approximation of the Exponential Function Given in Equation (14.2.2)


	CHAPTER 15 Qualitative Response Regression Models
	15.1 The Nature of Qualitative Response Models
	15.2 The Linear Probability Model (LPM) 
	Non-Normality of the Disturbances ui
	Heteroscedastic Variances of the Disturbances
	Nonfulfillment of 0 ≤ E(Yi | Xi) ≤ 1
	Questionable Value of R2 as a Measure of Goodness of Fit

	15.3 Applications of LPM
	15.4 Alternatives to LPM
	15.5 The Logit Model
	15.6 Estimation of the Logit Model
	Data at the Individual Level
	Grouped or Replicated Data

	15.7 The Grouped Logit (Glogit) Model: A Numerical Example
	Interpretation of the Estimated Logit Model

	15.8 The Logit Model for Ungrouped or Individual Data
	15.9 The Probit Model 
	Probit Estimation with Grouped Data: gprobit 
	The Probit Model for Ungrouped or Individual Data
	The Marginal Effect of a Unit Change in the Value of a Regressor in the Various Regression Models

	15.10 Logit and Probit Models
	15.11 The Tobit Model
	Illustration of the Tobit Model: Ray Fair’s Model of Extramarital Affairs

	15.12 Modeling Count Data: The Poisson Regression Model
	15.13 Further Topics in Qualitative Response Regression Models
	Ordinal Logit and Probit Models
	Multinomial Logit and Probit Models 
	Duration Models

	Summary and Conclusions
	Exercises
	Appendix 15A
	15A.1 Maximum Likelihood Estimation of the Logit and Probit Models for Individual (Ungrouped) Data


	CHAPTER 16 Panel Data Regression Models
	16.1 Why Panel Data?
	16.2 Panel Data: An Illustrative Example
	16.3 Pooled OLS Regression or Constant Coefficients Model
	16.4 The Fixed Effect Least-Squares Dummy Variable (LSDV) Model
	A Caution in the Use of the Fixed Effect LSDV Model

	16.5 The Fixed-Effect Within-Group (WG) Estimator
	16.6 The Random Effects Model (REM)
	Breusch and Pagan Lagrange Multiplier Test

	16.7 Properties of Various Estimators 
	16.8 Fixed Effects versus Random Effects Model: Some Guidelines
	16.9 Panel Data Regressions: Some Concluding Comments
	16.10 Some Illustrative Examples
	Summary and Conclusions
	Exercises

	CHAPTER 17 Dynamic Econometric Models:Autoregressive and Distributed-Lag Models
	17.1 The Role of “Time,’’ or “Lag,’’ in Economics
	17.2 The Reasons for Lags
	17.3 Estimation of Distributed-Lag Models
	Ad Hoc Estimation of Distributed-Lag Models

	17.4 The Koyck Approach to Distributed-Lag Models
	The Median Lag
	The Mean Lag

	17.5 Rationalization of the Koyck Model: The Adaptive Expectations Model 
	17.6 Another Rationalization of the Koyck Model: The Stock Adjustment, or Partial Adjustment, Model
	17.7 Combination of Adaptive Expectations and Partial Adjustment Models
	17.8 Estimation of Autoregressive Models
	17.9 The Method of Instrumental Variables (IV) 
	17.10 Detecting Autocorrelation in Autoregressive Models: Durbin h Test
	17.11 A Numerical Example: The Demand for Money in Canada, 1979–I to 1988–IV
	17.12 Illustrative Examples
	17.13 The Almon Approach to Distributed-Lag Models: The Almon or Polynomial Distributed Lag (PDL)
	17.14 Causality in Economics: The Granger Causality Test
	The Granger Test 
	A Note on Causality and Exogeneity

	Summary and Conclusions
	Exercises
	Appendix 17A
	17A.1 The Sargan Test for the Validity of Instruments 



	PART FOUR SIMULTANEOUS-EQUATION MODELS AND TIME SERIES ECONOMETRICS
	CHAPTER 18 Simultaneous-Equation Models 
	18.1 The Nature of Simultaneous-Equation Models
	18.2 Examples of Simultaneous-Equation Models
	18.3 The Simultaneous-Equation Bias: Inconsistency of OLS Estimators
	18.4 The Simultaneous-Equation Bias: A Numerical Example 
	Summary and Conclusions
	Exercises

	CHAPTER 19 The Identification Problem
	19.1 Notations and Definitions
	19.2 The Identification Problem
	Underidentification
	Just, or Exact, Identification
	Overidentification

	19.3 Rules for Identification
	The Order Condition of Identifiability
	The Rank Condition of Identifiability

	19.4 A Test of Simultaneity
	Hausman Specification Test

	19.5 Tests for Exogeneity
	Summary and Conclusions
	Exercises

	CHAPTER 20 Simultaneous-Equation Methods
	20.1 Approaches to Estimation
	20.2 Recursive Models and Ordinary Least Squares
	20.3 Estimation of a Just Identified Equation: The Method of Indirect Least Squares (ILS)
	An Illustrative Example
	Properties of ILS Estimators

	20.4 Estimation of an Overidentified Equation: The Method of Two-Stage Least Squares (2SLS)
	20.5 2SLS: A Numerical Example
	20.6 Illustrative Examples
	Summary and Conclusions
	Exercises
	Appendix 20A
	20A.1 Bias in the Indirect Least-Squares Estimators
	20A.2 Estimation of Standard Errors of 2SLS Estimators


	CHAPTER 21 Time Series Econometrics: Some Basic Concepts
	21.1 A Look at Selected U.S. Economic Time Series
	21.2 Key Concepts
	21.3 Stochastic Processes
	Stationary Stochastic Processes
	Nonstationary Stochastic Processes

	21.4 Unit Root Stochastic Process
	21.5 Trend Stationary (TS) and Difference Stationary (DS) Stochastic Processes
	21.6 Integrated Stochastic Processes
	Properties of Integrated Series

	21.7 The Phenomenon of Spurious Regression
	21.8 Tests of Stationarity
	1. Graphical Analysis
	2. Autocorrelation Function (ACF) and Correlogram
	Statistical Significance of Autocorrelation Coefficients

	21.9 The Unit Root Test
	The Augmented Dickey–Fuller (ADF) Test
	Testing the Significance of More than One Coefficient: The F Test
	The Phillips–Perron (PP) Unit Root Tests
	Testing for Structural Changes
	A Critique of the Unit Root Tests

	21.10 Transforming Nonstationary Time Series
	Difference-Stationary Processes
	Trend-Stationary Processes

	21.11 Cointegration: Regression of a Unit Root Time Series on Another Unit Root Time Series
	Testing for Cointegration
	Cointegration and Error Correction Mechanism (ECM)

	21.12 Some Economic Applications
	Summary and Conclusions
	Exercises

	CHAPTER 22 Time Series Econometrics: Forecasting
	22.1 Approaches to Economic Forecasting
	Exponential Smoothing Methods
	Single-Equation Regression Models
	Simultaneous-Equation Regression Models
	ARIMA Models
	VAR Models

	22.2 AR, MA, and ARIMA Modeling of Time Series Data
	An Autoregressive (AR) Process
	A Moving Average (MA) Process
	An Autoregressive and Moving Average (ARMA) Process
	An Autoregressive Integrated Moving Average (ARIMA) Process

	22.3 The Box–Jenkins (BJ) Methodology
	22.4 Identification
	22.5 Estimation of the ARIMA Model
	22.6 Diagnostic Checking
	22.7 Forecasting
	22.8 Further Aspects of the BJ Methodology
	22.9 Vector Autoregression (VAR)
	Estimation or VAR
	Forecasting with VAR
	VAR and Causality
	Some Problems with VAR Modeling
	An Application of VAR: A VAR Model of the Texas Economy

	22.10 Measuring Volatility in Financial Time Series: The ARCH and GARCH Models
	What to Do If ARCH Is Present
	A Word on the Durbin–Watson d and the ARCH Effect
	A Note on the GARCH Model

	22.11 Concluding Examples
	Summary and Conclusions
	Exercises


	APPENDIX A A Review of Some Statistical Concepts
	A.1 Summation and Product Operators
	A.2 Sample Space, Sample Points, and Events
	A.3 Probability and Random Variables
	Probability
	Random Variables

	A.4 Probability Density Function (PDF)
	Probability Density Function of a Discrete Random Variable
	Probability Density Function of a Continuous Random Variable
	Joint Probability Density Functions
	Marginal Probability Density Function
	Statistical Independence

	A.5 Characteristics of Probability Distributions
	Expected Value
	Properties of Expected Values
	Variance
	Properties of Variance
	Covariance
	Properties of Covariance
	Correlation Coefficient
	Conditional Expectation and Conditional Variance
	Properties of Conditional Expectation and Conditional Variance
	Higher Moments of Probability Distributions

	A.6 Some Important Theoretical Probability Distributions
	Normal Distribution
	The χ2 (Chi-Square) Distribution
	Student’s t Distribution
	The F Distribution
	The Bernoulli Binomial Distribution
	Binomial Distribution
	The Poisson Distribution

	A.7 Statistical Inference: Estimation
	Point Estimation
	Interval Estimation
	Methods of Estimation
	Small-Sample Properties
	Large-Sample Properties

	A.8 Statistical Inference: Hypothesis Testing
	The Confidence Interval Approach
	The Test of Significance Approach

	References

	APPENDIX B Rudiments of Matrix Algebra
	B.1 Definitions
	Matrix
	Column Vector
	Row Vector
	Transposition
	Submatrix

	B.2 Types of Matrices
	Square Matrix
	Diagonal Matrix
	Scalar Matrix
	Identity, or Unit, Matrix
	Symmetric Matrix
	Null Matrix
	Null Vector
	Equal Matrices

	B.3 Matrix Operations
	Matrix Addition
	Matrix Subtraction
	Scalar Multiplication
	Matrix Multiplication
	Properties of Matrix Multiplication
	Matrix Transposition
	Matrix Inversion

	B.4 Determinants
	Evaluation of a Determinant
	Properties of Determinants
	Rank of a Matrix
	Minor
	Cofactor

	B.5 Finding the Inverse of a Square Matrix
	B.6 Matrix Differentiation
	References 

	APPENDIX C The Matrix Approach to Linear Regression Model
	C.1 The k-Variable Linear Regression Model
	C.2 Assumptions of the Classical Linear Regression Model in Matrix Notation
	C.3 OLS Estimation
	An Illustration
	Variance-Covariance Matrix of βˆ
	Properties of OLS Vector βˆ

	C.4 The Coefficient of Determination R2 in Matrix Notation
	C.5 The Correlation Matrix
	C.6 Hypothesis Testing about Individual Regression Coefficients in Matrix Notation
	C.7 Testing the Overall Significance of Regression: Analysis of Variance in Matrix Notation
	C.8 Testing Linear Restrictions: General F Testing Using Matrix Notation
	C.9 Prediction Using Multiple Regression: Matrix Formulation
	Mean Prediction
	Variance of Mean Prediction
	Individual Prediction
	Variance of Individual Prediction

	C.10 Summary of the Matrix Approach: An Illustrative Example
	C.11 Generalized Least Squares (GLS) 
	C.12 Summary and Conclusions
	Exercises
	Appendix CA
	CA.1 Derivation of k Normal or Simultaneous Equations
	CA.2 Matrix Derivation of Normal Equations
	CA.3 Variance–Covariance Matrix of βˆ
	CA.4 BLUE Property of OLS Estimators


	APPENDIX D Statistical Tables
	APPENDIX E Computer Output of EViews, MINITAB, Excel, and STATA
	E.1 EViews
	E.2 MINITAB
	E.3 Excel
	E.4 STATA
	E.5 Concluding Comments
	References

	APPENDIX F Economic Data on the World Wide Web
	Selected Bibliography
	Name Index
	Subject Index



