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Preface

In this volume I present some examples of Taylor’s formula and Limit Processes, cf. also Ventus:
Calculus 1a, Functions of One Variable. Since my aim also has been to demonstrate some solution
strategy I have as far as possible structured the examples according to the following form

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.

I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

One is used to from high school immediately to proceed to I. Implementation. However, examples
and problems at university level are often so complicated that it in general will be a good investment
also to spend some time on the first two points above in order to be absolutely certain of what to do
in a particular case. Note that the first three points, ADI, can always be performed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of ∧ I shall either write
“and”, or a comma, and instead of ∨ I shall write “or”. The arrows ⇒ and ⇔ are in particular
misunderstood by the students, so they should be totally avoided. Instead, write in a plain language
what you mean or want to do.

It is my hope that these examples, of which many are treated in more ways to show that the solutions
procedures are not unique, may be of some inspiration for the students who have just started their
studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
5th August 2007

Preface
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1 Taylor’s formula for simple functions

Example 1.1 Find the two first derivatives of the function

f(x) =
√

1 + x, x > −1.

A. Simple differentiations.

D. Just differentiate.

I. If f(x) =
√

1 + x, x > −1, then

f ′(x) =
1
2

1√
1 + x

and f ′′(x) = −1
4

1
(1 + x)

√
1 + x

, x > −1.

Example 1.2 Set up Taylor’s formula for n = 2 with the point of expansion x0 = 0 for the function

f(x)
√

1 + x.

A. Taylor’s formula for n = 2.

D. Perform the differentiations, or use the results from Example 1.1.

I. From

f(x) =
√

1 + x, f ′(x) =
1
2

1√
1 + x

, f ′′(x) = −1
4

1
(x + 1)

√
1 + x

,

we get for x0 = 0,

f(0) = 1, f ′(0) =
1
2
, f ′′(0) = −1

4
.

Then by insertion into Taylor’s formula for n = 2,

√
1 + x = f(0) + f ′(0) (x − 0) +

1
2

f ′′(ξ) (x − 0)2

= 1 +
1
2

x − 1
8

1
(1 + ξ)3/2

x2,

where ξ lies somewhere between 0 and x.

Example 1.3 Find the first two derivatives of the function

f(x) = Arctan 2x.

A. Simple differentiations.

D. Just differentiate.

I. When f(x) = Arctan 2x, then

f ′(x) =
2

1 + 4x2
and f ′′(x) = − 16x

(1 + 4x2)2
.

4

Taylor’s formula for simple functions
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Example 1.4 Set up Taylor’s formula for n = 2 with the point of expansion x0 = 0 for the function

f(x) = Arctan 2x.

A. Taylor’s formula for n = 2.

D. Differentiate or use the results from Example 1.3.

I. When

f(x) = Arctan 2x, f ′(x) =
2

1 + 4x2
, f ′′(x) = − 16x

(1 + 4x2)2
,

we get at the point of expansion x0 = 0,

f(0) = 0, f ′(0) = 2, f ′′(0) = 0.

Then by Taylor’s formula,

Arctan 2x = 0 + 2 (x − 0) − 1
2

16ξ
(1 + 4ξ2)2

(x − 0)2

= 2x − 8ξ
(1 + 4ξ2)2

x2,

where ξ = ξ(x) lies somewhere between 0 and x.

Taylor’s formula for simple functions
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Example 1.5 The mean value theorem (or Taylor’s formula for n = 1) states that for any continuous
function f(x) there exists a point ξ between x0 and x such that

f(x) − f(x0) = (x − x0)f ′(ξ).

Find such a point ξ for

1) f(x) = sinx, x0 = 0, x = π,

2) f(x) = xn (n > 1), x0 = 0, x = 1.

A. Applications of the mean value theorem.

D. Set up the mean value theorem in the two given cases, and then find ξ.

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3

Figure 1: The graph of f(x) = sinx, and the tangent parallel to the x-axis, corresponding to ξ =
π

2
.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Figure 2: The graph of f(x) = x2, and the tangent parallel to the line through the end point,

corresponding to ξ =
1
2
.

Taylor’s formula for simple functions
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I. 1) From f ′(x) = cos x we get

sinx − sinx0 = (x − x0) · cos ξ.

When x0 = 0 or x = π we get the equation

0 − 0 = 0 = π · cos ξ,

thus ξ =
π

2
.

2) From f ′(x) = nxn−1 we get

xn − xn
0 = nξn−1 · (x − x0).

For x0 = 0 and x = 1 we get the equation

1 − 0 = 1 = nξn−1 · (1 − 0) = nξn−1,

thus

ξn = n−1

√
1
n

(→ 1 for n → +∞).

Example 1.6 Assume that the function f(x) is three times continuously differentiable, which means
that the third derivative exists and is continuous, in a neighbourhood of the point x0 ∈ R, and assume
that f ′(x0) = 0.

1) Prove that if f ′′(x0) < 0, then f(x) has a maximum at the point x0.

2) Now, we further assume that f ′′(x0) = 0 and f ′′′(x0) 
= 0. Apply Taylor’s formula to decide
whether f(x) has a maximum or a minimum or none of the kind at the point x0.

A. Maximum/minimum.

D. Taylor expansion of order 2.

I. 1) It follows immediately from

f(x) = f(x0) +
1
2

f ′′(x0) · (x − x0)2 + (x − x0)2 ε(x − x0),

that if f ′′(x0) < 0, then f(x) < f(x0) in a neighbourhood of x0 (excl. x0 itself), such that f(x)
has a maximum at the point x0.

2) If we assume that f ′′(x0) = 0 and f ′′′(x0) 
= 0, then

f(x) = f(x0) +
1
6

f ′′(x0) · (x − x0)3 + (x − x0)3 ε(x − x0),

and f(x) − f(x0) is of the same sign as f ′′′(x0) for x > 0 and of the opposite sign of f ′′′(x0)
for x < 0. Hence f(x) has neither a maximum nor a minimum at x0.

Taylor’s formula for simple functions
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Example 1.7 Assume that the function f(x) is four times continuously differentiable, which means
that the fourth derivative exists and is continuous, in a neighbourhood of the point x0 ∈ R, and assume
that

f ′(x0) = f ′′(x0) = f ′′′(x0) = 0,

while f (4)(x0) 
= 0.

1) Prove by means of Taylor’s formula that if f (4)(x0) > 0, then f(x) has a minimum at the point
x0.

2) What is the conclusion, if instead f (4)(x0) < 0?

A. Maximum/minimum.

D. Use Taylor’s formula.

I. 1) It follows from Taylor’s formula, that in a neighbourhood of x0,

f(x) = f(x0) +
1
4!

f (4)(x0) · (x − x0)4 + (x − x0)4 ε(x − x0),

because the first three derivatives of f(x) are 0 at x0.

It follows immediately, when f (4)(x0) > 0 that f(x) > f(x0) in a neighbourhood of x0, x 
= x0,
so f(x) must have a (local) minimum at x0.

2) If instead f (4)(x0) < 0, then f(x) < f(x0) in a neighbourhood of x0, x 
= x0, hence f(x) has a
local maximum at x0.

Example 1.8 Assume that the function f(x) is of class C∞ in a neighbourhood of the point x0 ∈ R,
and that f ′(x0) = 0. Let p denote the first number of 2, 3, 4, . . . , for which f (p)(x0) 
= 0. This means
that

f ′(x0) = f ′′(x0) = · · · = f (p−1)(x0) = 0, f (p)(x0) 
= 0.

1) Set up Taylor’s formula for f(x) i x0 with p as point of expansion.

2) Formulate and prove a theorem which states that f(x) has a maximum or a minimum or none of
the kind at the point x0.

A. Maximum/minimum.

D. Apply Taylor’s formula.

I. 1) This is trivial,

f(x) = f(x0) +
1
p!

f (p)(x0) · (x − x0)p + (x − x0)p ε(x − x0).

2) Here we shall split into the cases, whether p is odd or even.

a) If p is odd, then (x − x0)p changes its sign in a neighbourhood of x0, so we have neither a
maximum nor a minimum.

b) If p = 2n is even, we must split according to whether f (2n)(x0) > 0 or f (2n)(x0) < 0.

Taylor’s formula for simple functions
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i) If f (2nm)(x0) > 0, then f(x) > f(x0) in a neighbourhood of x0, x 
= x0, so f(x) has a
local minimum at x0.

ii) If f (2n)(x0) < 0, then f(x) < f(x0) in a neighbourhood of x0, x 
= x0, so f(x) has a
local maximum at x0.

Example 1.9 Find all values of the constant a, for which there exists a δ > 0, such that the parabola
y = 1 + a x2 lies above the chain curve y = coshx for 0 < |x| < δ.

A. Local comparison of graphs.

D. Find the Taylor expansion of y = cosh x with the expansion point x0 = 0 and then analyze.

Taylor’s formula for simple functions
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1.1

1.2

1.3

1.4

1.5

–1 –0.5 0 0.5 1

Figure 3: The graphs of y = cosh x and the limit case y = 1 +
1
2

x2. When x 
= 0, then the graph of
the polynomial is always lying below the graph of the chain curve.

I. We conclude from

y = cosh x = 1 +
1
2

x2 + x2ε(x),

that if a >
1
2
, then there always exists a δ > 0, such that the parabola y = 1 + a x2 lies above the

chain curve y = cosh x for 0 < |x| < δ. The figure indicates for a =
1
2

the biggest value of a, for
which this is not possible.

Example 1.10 Find the Taylor expansion of degree n = 6 for the functions

(1) f(x) = sinx2, (2) f(x) = e2x, (3) f(x) = ln
(
1 + x3

)
.

A. Taylor expansions.

D. Substitute in known Taylor expansions.

I. 1) From

sin y = y − 1
3!

y3 + y3ε(y3),

we get by the substitution y = x2,

f(x) = sin x2 = x2 − 1
6

x6 + x6ε(x).

2) From

ey = 1 +
1
1!

y +
1
2!

y2 +
1
3!

y3 +
1
4!

y4 +
1
5!

y5 +
1
6!

y6 + y6ε(y),

we get by the substitution y = 2x,

e2x = 1 + 2x + 2x2 +
4
3

x3 +
2
3

x4 +
4
15

x5 +
4
45

x6 + x6ε(x).

Taylor’s formula for simple functions
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3) From

ln(1 + y) = y − 1
2

y2 + y2ε(y),

we get by the substitution y = x3,

f(x) = ln
(
1 + x3

)
= x3 − 1

2
x6 + x6ε(x).

Example 1.11 Find the Taylor expansion for n = 4 and x0 = 0 for the function

f(x) =
1

(1 + x)2
, x > −1.

A. Taylor expansion.

D. Differentiate five times.

I. When f(x) = (1 + x)−2, we get by differentiation

f ′(x) = −2(1 + x)−3, f ′′(x) = 3!(1 + x)−4, f (3)(x) = −4!(1 + x)−5,

f (4)(x) = 5!(1 + x)−6, f (5)(x) = −6!(1 + x)−7.

Thus,

f(x) = f(0) +
1
1!

f ′(0)x +
1
2!

f ′′(0)x2 +
1
3!

f (3)(0)x3

+
1
4!

f (4)(0)x4 +
1
5!

f (5)(ξ)x5

= 1 − 2!
1!

x +
3!
2!

x2 − 4!
3!

x3 +
5!
4!

x4 − 6!
5!

1
(1 + ξ)7

x6

= 1 − 2x + 3x2 − 4x3 + 5x4 − 6
(1 + ξ)7

x6,

where x > −1, and ξ is some number between 0 and x.

Example 1.12 Find the Taylor polynomial P2(x) of second order at the point x0 = 0 for the function

f(x) = ln(1 + ex), x ∈ R.

A. Taylor expansion, cf. Example 2.15.

D. Differentiate two times and find the coefficients.

I. From

f(x) = ln(1 + ex), f(0) = ln 2,

f ′(x) =
ex

1 + ex
= 1 − 1

1 + ex
, f ′(0) =

1
2
,

f ′′(x) =
ex

(1 + ex)2
, f ′′(0) =

1
4
,

we obtain the Taylor polynomial expanded from x0 = 0,

P2(x) = ln 2 +
1
2
· 1
4

x2 = ln 2 +
1
2

x +
1
8

x2.

Taylor’s formula for simple functions
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Example 1.13 Indicate on a figure the domain of the function

f(x, y) = ln(4 + x − y2).

Find the approximating Taylor polynomial of first order, when (x, y) = (1,−2) is used as the point of
expansion.

A. Domain of a function at an approximating polynomial (in two variables).

D. Apply the usual procedure of solution.

–4

–2

0

2

4

–4 –2 2 4 6 8 10 12

Figure 4: The domain is the open set inside the parabola of the equation x = y2 − 4.

I. The domain is the open set inside the parabola on the figure. By differentiation we get

f(x, y) = ln(4 + x − y2), f(1,−2) = 0,

f ′
x(x, y) =

1
4 + x − y2

, f ′
x(1, 2) = 1,

f ′
y(x, y) = − 2y

4 + x − y2
, f ′

y(1,−2) = 4,

hence

P1(x, y) = 0 + 1 · (x − 1) + 4 · (y + 2) = x − 1 + 2(y + 2).

Taylor’s formula for simple functions
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2 Estimates of remainder terms

Example 2.1 Give an estimate of the expression

U =
∣∣∣∣ 1
(1 + ξ)

3
2

∣∣∣∣ x2,

where ξ lies between 0 and x, in the cases of

(1) |x| ≤ 1
10

, (2) |x| ≤ 1
2
.

A. A latent estimate of a remainder term.

D. Estimate by making the (positive) denominator as small as possible, and the (positive) numerator
as big as possible.

I. 1) When x ∈
[
− 1

10
,− 1

10

]
, and ξ lies between 0 and x, then the expression becomes largest when

− 1
10

= x = ξ, thus

∣∣∣∣ 1
(1 + ξ)

3
2

∣∣∣∣ x2 ≤ 1(
1 − 1

10

) 3
2
·
(

1
10

)2

=
(

10
9

) 3
2

·
(

1
10

)2

=
1√
10

· 1
27

≈ 0.0117.

2) We use the same method for |x| ≤ 1
2
. Here, the expression is largest when −1

2
= x = ξ, thus

∣∣∣∣ 1
(1 + ξ)

3
22

∣∣∣∣ x2 ≤ 1(
1 − 1

2

) 3
2
·
(

1
2

)2

= 2
3
2 · 1

22
=

1√
2
≈ 0.7071.

Example 2.2 Give an estimate of the expression∣∣∣∣ ξ

1 + ξ2

∣∣∣∣ x2,

where ξ lies between 0 and x, and when

(1) |x| ≤ 1
2
, (2) |x| ≤ 2.

A. A latent estimate of a remainder term.

D. Find the maximum of
∣∣∣∣ ξ

1 + ξ2

∣∣∣∣ in the two intervals and estimate.

I. The function ϕ(ξ) =
ξ

1 + ξ2
is odd, hence it is sufficient only to consider x > 0 and 0 ≤ ξ ≤ x. We

conclude from

ϕ′(ξ) =
1 − ξ2

(1 + ξ2)2
,

that ϕ(ξ) is increasing for ξ ∈ [0, 1[, and decreasing for ξ ∈ ]1,+∞[. Maximum is ϕ(1) =
1
2
.

Estimates of remainder terms
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1) When 0 ≤ ξ ≤ x ≤ 1
2
, the maximum is obtained for ξ = x =

1
2
. Therefore, if |x| ≤ 1

2
, then

∣∣∣∣ ξ

1 + ξ2

∣∣∣∣ x2 ≤
1
2

1 +
(

1
2

)2 ·
(

1
2

)2

=
1
10

.

2) If 0 ≤ ξ ≤ x ≤ 2, then ϕ(ξ) is largest for ξ = 1, and x2 is largest for x = 2. Since |ϕ(ξ)| is even,
we get for general |x| ≤ 2 the estimate∣∣∣∣ ξ

1 + ξ2

∣∣∣∣ x2 ≤ 1
1 + 12

· 22 = 2.

Estimates of remainder terms
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Example 2.3 Let P1(x) denote the Taylor polynomial of order 1 with the point of expansion x0 = 0
for the function f(x) = Arctan 2x. Give an estimate of the remainder term R1(x), when

(1) |x| ≤ 1
10

, (2) |x| ≤ 1
2
.

A. Taylor expansion and an estimate of the remainder term.

D. Differentiate two times or apply Example 1.3 and Example 1.4, and apply Taylor’s formula. Es-
timate the remainder term.

I. Let f(x) = Arctan 2x. Then

f ′(x) =
2

1 + 4x2
and f ′′(x) = − 16x

(1 + 4x2)2
.

When x0 = 0 is the point of expansion, we get

Arctan 2x = f(x0)0f ′(x0) · (x − x0) +
1
2

f ′′(ξ) (x − x0)2 = 2x − 8ξ
(1 + 4ξ2)2

x2,

where ξ lies somewhere between 0 and x.

It follows that P1(x) = 2x and that

|f(x) − P1(x)| =
∣∣∣∣ 8ξ
(1 + 4ξ2)2

∣∣∣∣ x2 = |R1(x)|.

Now Arctan 2x is an odd function, so we can assume in the estimation of the remainder term that
x > 0, thus 0 ≤ ξ ≤ x.

The function

ϕ(ξ) =
8ξ

(1 + 4ξ2)2
, ξ ∈ [0, x],

has the derivative

ϕ′(ξ) =
8

(1 + 4ξ2)3
(1 − 12ξ2).

Hence ϕ(ξ) is increasing for ξ ∈
[
0,

1
2
√

3

[
and decreasing for ξ >

1
2
√

3
. In particular, ϕ(ξ), ξ > 0,

has its maximum for ξ =
1

2
√

3
.

1) If |x| ≤ 1
10

<
1

2
√

3
, then ϕ(ξ), ξ ≥ 0, is maximum for ξ =

1
10

. This is also the case of x2, hence

we get the estimate of the remainder term

|R1(x)| =
∣∣∣∣ 8ξ
(1 + 4ξ2)2

∣∣∣∣ x2 ≤
8 · 1

10(
1 +

4
100

)2 ·
(

1
10

)2

≈ 0, 0074.

Estimates of remainder terms
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2) If |x| ≤ 1
2
, then

1
2
√

3
<

1
2
, so ϕ(ξ), ξ > 0, attains its maximum at ξ =

1
2
√

3
, and x2 its

maximum at x =
1
2
. Thus we get the estimate of the remainder term

|R1(x)| =
∣∣∣∣ 8ξ
(1 + 4ξ2)2

∣∣∣∣ x2 ≤
8 · 1

2
√

3(
1 +

4
12

)2 ·
(

1
2

)2

=
1√
3
· 9
16

≈ 0, 3248.

Example 2.4 Given the function

f(x) = x cos x, x ∈ R.

1) Set up Taylor’s formula for n = 2 with the point of expansion x0 = 0 for f(x).

2) Estimate the remainder term R1(x), when |x| ≤ 1.

3) Prove that

|x cos x − x| ≤ x2 for |x| ≤ 1.

A. Taylor expansion and estimate of a remainder term.

D. Differentiate two times and apply Taylor’s formula. Estimate the remainder term. We get some
problems in (3).

I. 1) When f(x) = x cos x we get

f ′(x) = cos x − x sinx, f ′′(x) = −2 sin x − x cos x,

thus with the point of extension x0 = 0,

f(x) = x cos x

= f(x0) + f ′(x0) (x − x0) +
1
2

f ′′(ξ) · (x − x0)2

= x − 1
2
{2 sin ξ + ξ cos ξ} · x2,

for some ξ between 0 and x.

2) The function 2 sin ξ + ξ cos ξ is odd with the derivative

3 cos ξ − ξ sin ξ ≥ 3 cos
π

3
− π

3
· sin π

3
=

3
2
− π

3
·
√

3
2

> 0 for ξ ∈ [0, 1].

The maximum is attained for |2 sin ξ + ξ cos ξ| in the interval [−1, 1] for ξ = 1. Hence

|2 sin ξ + ξ cos ξ| ≤ 2 · sin 1 + cos 1 ≈ 2 · 1, 1116,

and we get the estimate of the remainder term

|R1(x)| ≤ 1
2
{2 sin 1 + cos 1}x2 ≈ 1, 1116 · x2 ≤ 1, 1116.

Estimates of remainder terms
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3) By the estimate from (2) we get

|x cos x − x| ≤ 1
2
|2 sin 1 + 1 · cos 1| · x2 ≈ 1, 1116x2,

which is not sufficient.

Instead we estimate directly, where we use that sin2 x ≤ x2 for every x,

|x cos x − x| = |x|(1 − cos x) = 2 sin2
(x

2

)
· |x|

≤ 2 ·
(x

2

)2

· |x| =
1
2
|x|3 ≤ 1

2
|x|2,

for |x| ≤ 1.

Estimates of remainder terms
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Example 2.5 Given the function

f(x) = ln(1 + sinx), x ∈
]
−π

2
,

π

2

[
.

1) Set up Taylor’s formula for n = 2 with the point of expansion x0 = 0 for f(x).

2) Prove that

|f(x) − x| ≤ 1
2
· 10−2 for x ∈

[
0 ,

1
10

]
.

A. Taylor expansion of second order from x0 = 0. Cf. also Example 2.6.

D. Differentiate two times: then estimate the remainder term.

I. 1) First calculate

f ′(x) =
cos x

1 + sin x
, f ′′(x) =

− sinx · (1 + sin x) − cos2 x

(1 + sin x)2
= − 1

1 + sinx
,

hence

ln(1 + sinx) = f(0) + f ′(0)x +
1
2

f ′′(ξ) · x2 = x − 1
2
· 1
1 + sin ξ

· x2

for some ξ between 0 and x.

2) If 0 ≤ ξ ≤ x ≤ 1
10

, then

|f(x) − x| =
1
2

∣∣∣∣ 1
1 + sin ξ

∣∣∣∣ x2 ≤ 1
2
· 1
1 + 0

x2 ≤ 1
2
· 10−2.

Example 2.6 Given the function

f(x) = ln(1 + sinx), x ∈
]
−π

2
,

π

2

[
.

1) Find the Taylor polynomial P2(x) of order 2 with the point of expansion x0 = 0 for f(x).

2) Prove that

|f(x) − P2(x)| ≤ 2 · 10−4 for x ∈
[
0,

1
10

]
.

A. Same function as in Example 2.5; we shall only develop one further step. Taylor polynomial,
estimate of remainder term.

D. Differentiate three times. Set up the Taylor polynomial and then continue with the estimate of
the remainder term.

I. When f(x) = ln(1 + sinx) we get

f ′(x) =
cos x

1 + sinx
, f ′′(x) = − 1

1 + sin x
, f (3)(x) =

cos x

(1 + sin x)2
,

where f (3)(x) > 0 for x ∈
[
0,

1
10

]
.

Estimates of remainder terms
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1) The Taylor polynomial P2(x) with point of expansion x0 = 0 is

P2(x) = f(0) + f ′(0) · x +
1
2

f ′′(0)x2 = x − 1
2

x2.

2) Then by Taylor’s formula,

f(x) = P2(x) +
1
3!

f (3)(ξ) · x3

for some ξ between 0 and x. If x ∈
[
0,

1
10

]
then f (3)(ξ)x3 > 0, hence

|f(x) − P2(x)| = f(x) − P2(x) =
1
6

f (3)(ξ)x3 =
1
6

cos ξ

(1 + sin ξ)2
x3.

The numerator cos ξ decreases and the denominator (1 + sin ξ)2 increases when ξ runs through[
0,

1
10

]
, hence f (3)(ξ) is largest for ξ = 0. Then we get the estimate

|f(x) − P2(x)| ≤ 1
6
· cos 0
(1 + 0)2

· 10−3 =
2
12

· 10−3 < 2 · 10−4

for x ∈
[
0,

1
10

]
.

Example 2.7 Find The Taylor polynomial Pn(x) for each of the following functions with the given
point of expansion x0 and for the given n. Give an estimate of the remainder term for |x| < 0.2:

1) f(x) = tan x, x0 = 0, n = 2.

2) f(x) = ln cos x, x0 = 0, n = 3.

3) f(x) = sinhx, x0 = 0, n = 4.

A. Taylor polynomials and estimates of remainder terms. In all three cases the point of expansion is
x0 = 0.

D. Differentiate in each case n + 1 times with due respect to following the estimate of the remainder
term. Find the polynomials.

I. 1) If f(x) = tanx and n = 2, then

f ′(x) =
1

cos2 x
, f ′′(x) =

2 sin x

cos3 x
, f (3)(x) =

6 sin2 x

cos4 x
+

2
cos2 x

.

Thus

P2(x) = f(0) + f ′(0) · x +
1
2

f ′′(0) · x2 = x,

Estimates of remainder terms
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and

R2(x) =
1
3!

f (3)(ξ) · x3 =
1
3
· 3 sin2 ξ + cos2 ξ

cos4 ξ
· x3

=

⎧⎪⎨
⎪⎩

1
cos4 ξ

−
2
3

cos2 ξ

⎫⎪⎬
⎪⎭x3.

When |x| < 0.2 and ξ lies somewhere between 0 and x we get the estimate of the remainder
term

|R2(x)| ≤
∣∣∣∣ 1
cos2 ξ

− 2
3

∣∣∣∣ · 1
cos2 ξ

· x3

≤

⎧⎪⎨
⎪⎩

1

cos2
1
5

− 2
3

⎫⎪⎬
⎪⎭ · 1

cos2
1
5

· (0, 2)3 ≈ 0, 003118.

2) If f(x) = ln cosx and n = 3, then

f ′(x) = − tan x, f ′′(x) = − 1
cos2 x

,

f (3)(x) = −2 sin x

cos3 x
, f (4)(x) = −

{
6

cos2 x
− 4

}
1

cos2 x
,

Thus,

P3(x) = f(0) + f ′(0)x +
1
2

f ′′(0)x2 +
1
6

f (3)(0)x3 = −1
2

x2,

and

R3(x) =
1
4!

f (4)(ξ) · x4 =
1
4

{
1

cos2 ξ
− 2

3

}
1

cos2 ξ
· x4.

If we notice that this remainder term is
x

4
times the remainder term in (1), we end up with

the estimate of the remainder term

|R3(x(| ≤ 1
4

{
1

cos2 ξ
− 2

3

}
1

cos2 ξ
x4 ≤ 0, 003118 · 0, 05 = 0.000156.

3) If f(x) = sinhx and n = 4, then

f(x) = f (2)(x) = f (4)(x) = sinhx,

and

f ′(x) = f (3)(x) = f (5)(x) = cosh x,

thus

P4(x) = x +
1
3!

x3 = x +
1
6

x3,

Estimates of remainder terms
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and

R4(x) =
1
5!

cosh ξ · x5.

For |x| ≤ 0, 2 =
1
5

we get the estimate of the remainder term

|R4(x)| ≤ 1
120

cosh
(

1
5

)
·
(

1
5

)5

≈ 2, 72 · 10−6.

Estimates of remainder terms
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Example 2.8 1) Find the Taylor polynomial P2(x) with the point of expansion x0 = 0 of the function

f(x) = 3
√

1 + x.

2) Give an estimate of the remainder term R2(x) when x ∈ [0 ; 0.02].

3) What are the bounds for this estimate for 3
√

1.02?

A. Taylor expansion.

D. Differentiate three times. Find P2(x) and estimate R2(x).

I. 1) We obtain from f(x) = 3
√

1 + x = (1 + x)
1
3 that

f ′(x) =
1
3

(1 + x)−
2
3 , f ′′(x) = −2

9
(1 + x)−

5
3 ,

f (3)(x) =
10
27

(1 + x)−
8
3 .

Hence,

f(x) = f(0) + f ′(0) · x +
1
2

f ′′(0) · x2 +
1
3!

f (3)(ξ) · x3

for some ξ lying between 0 and x, i.e.

P2(x) = 1 +
1
3

x − 1
9

x2

with the remainder term

R2(x) =
5
81

· 1
(1 + ξ)

8
3

x3.

2) When 0 ≤ ξ ≤ x ≤ 0, 02, we get (1 + ξ)
8
3 ≥ 1, so

|R2(x)| ≤ 5
81

· x3.

3) Putting x = 0, 02 we get

|R2(0, 02)| ≤ 5
81

·
(

2
100

)3

=
40
81

· 10−6 <
1
2
· 10−6,

corresponding to

3
√

1, 02 − P2(0, 02)| <
1
2
· 10−6.

Here,

P2(0, 02) = 1 +
1
3
· 0, 02 − 1

9
· 0.022 ≈ 1, 006622.

Estimates of remainder terms
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Example 2.9 What is the smallest order of the Taylor expansion of the function

f(x) = 3
√

1 + x, x ≥ −1,

if we want the Taylor polynomial only to deviate from f(x) by at most 10−2 on the interval [0, 1]?

A. Estimate of a remainder term.

D. Differentiate f(x) n times, until∣∣∣∣ 1
(n + 1)!

f (n+1)(ξ)
∣∣∣∣

is < 10−2, whenever 0 ≤ ξ ≤ x ≤ 1.

I. If f(x) = (1 + x)
1
3 , then

f (n)(x) = kn (1 + x)
1
3−n,

where kn is some constant, which is calculated below.

Let n ≥ 1. Then (1 + ξ)
1
3−n is largest for ξ = 0, corresponding to the value 1, so we shall “only”

find n such that

1
(n + 1)!

|kn+1| < 10−2.

First note that

1
n!

|kn| =
1
n!

∣∣∣∣
(

1
3
− n + 1

)
kn−1

∣∣∣∣ =
|3n − 4|

3n
· 1
(n − 1)!

|kn−1| .

If we put

an =
1
n!

|kn| , n ≥ 1,

then

a1 =
1
3

og an =
3n − 4

3n
· an−1 for n ≥ 2,

and we continue successively

a2 =
2
6

a1 =
1
9
, a3 =

5
9
· a2 =

5
81

, a4 =
8
12

· a3 =
10
243

,

a5 =
11
15

· a4 =
22
729

, a6 =
14
18

· a5 =
154
6561

, a7 =
17
21

· a6 =
374

19683
,

a8
20
24

· a7 =
935

59049
, a9 =

23
27

· a8 =
21505

1594329
, a10 =

26
30

· a9 =
55913

4782969
,

a11 =
29
33

· a10 =
1621 577

157 837 977
, a12 =

32
36

a11 =
12 972 616

1 420 541 793
<

1
100

.

Since we first obtain |R(n)(x)| <
1

100
for n+1 = 12, we must approximate f(x) by P11(x) in order

to obtain the given estimate over the interval [0, 1].

Estimates of remainder terms
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Example 2.10 Calculate sin 1 by using the first five terms different from 0 of the Taylor polynomial.
Estimate the remainder term.

A. Taylor expansion and estimate of the remainder term.

D. Differentiate f(x) = sinx 10–11 times. Then set up the Taylor polynomial and find the value for
x = 1. Finally, estimate the remainder term.

I. It may seem insurmountable to differentiate 10–11 times. However, the periodicity of the functions
reduces this task to

f(x) = f (4)(x) = f (8)(x) = sinx,

f ′(x) = f (5)(x) = f (9)(x) = cos x,

f ′′(x) = f (6)(x) = f (10)(x) = − sinx,

f3(x) = f (7)(x) = f (11)(x) = − cos x.

Estimates of remainder terms
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By an expansion from x0 = 0 we get

P9(x) = x − 1
3!

x3 +
1
5!

x5 − 1
7!

x7 +
1
9!

x9,

thus sin 1 is approximated by

P (1) = 1 − 1
3!

+
1
5!

− 1
7!

+
1
9!

= 1 − 1
3!

+
1
5!

− 71
9!

=
5
6

+
2953
9!

≈ 0, 84146.

We get for the remainder term,

|R9(x)| =
1

10!
| sin ξ| · x10 1

10!
=

1
3 628 800

≤ 1
3
· 10−6;

but since f10(0) = 0, we even get the better estimate

|R10(x)| =
1

11!
| cos ξ| · x11 ≤ 1

11!
=

1
39 916 800

≤ 1
3
· 10−7.

Example 2.11 Consider the function

f(x) = cos
(x

2

)
and the corresponding approximating polynomials Pn(x) with the same point of expansion x0 = 0 of
this function.

1) Find Pn(x), such that

|f(x) − Pn(x)| < 10−4 for all x ∈
[
− 1

10
,

1
10

]
.

2) Find Pn(x), such that

|f(x) − Pn(x)| < 10−2 for all x ∈ [−π, π].

A. Taylor polynomial and estimate of the remainder term.

D. Find n, such that Rn(x) satisfies the given estimates.

I. We have

Rn(x) =
1

(n + 1)!
f (n+1)(ξ) · xn+1,

where ξ lies somewhere between 0 and x, and

f (n+1)(ξ) =
1

2n+1
· cos

(
ξ

2
+ (n + 1) · π

2

)
,

where
∣∣∣∣cos

(
ξ

2
+ (n + 1) · π

2

)∣∣∣∣ ≤ 1 for every ξ. In general,

|Rn(x)| ≤ 1
(n + 1)!

(x

2

)n+1

.

Estimates of remainder terms
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1) We shall first find n, such that

|Rn(x)| ≤ 1
(n + 1)!

·
(

1
20

)
< 10−4

for every |x| ≤ 1
10

. Use the method of trial and error:

For n = 1 we get
1
2
·
(

1
20

)2

=
1

800
> 10−4.

For n = 2 we get
1
6
·
(

1
20

)3

=
1

48 000
< 10−4.

This shows that if x ∈
[
− 1

10
,

1
10

]
then we can use n = 2, and we find that

P2(x) = 1 − 1
2!

(x

2

)2

= 1 − x2

8

is a good approximation of cos
(x

2

)
in the interval

[
− 1

10
,

1
10

]
. If we use MAPLE to sketch

the graphs, it is not possible on the figure to distinguish between the graphs.

–0.2

0

0.2

0.4

0.6

0.8

1

–3 –2 –1 1 2 3

Figure 5: The graphs of cos
(x

2

)
and 1 − 1

8
x2 for x ∈ [−π, π]. We cannot distinguish between the

two graphs in the interval
[
− 1

10
,

1
10

]
.

2) Then we shall find n, such that

|Rn(x)| ≤ 1
(n + 1)!

(π

2

)n+1

< 10−2

for every x ∈ [−π, π]. Since
π

2
>

3
2

> 0, we must at least require that (n + 1)! > 100, i.e.

n ≥ 4. Now,
(

3
2

)4

> 22 = 4, so even (n + 1)! > 400, i.e. n ≥ 5. Since cos
(x

2

)
is an even

function, n = 6 is the first realistic candidate. When n = 6 we get the following estimate of

Estimates of remainder terms
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the remainder term,

1
7!

(π

2

)7

≈ 0, 004682 < 10−2,

hence n = 6 can indeed be chosen, where

P6(x) = 1 − 1
2!

(x

2

)2

+
1
4!

(x

2

)4

− 1
6!

(x

2

)6

= 1 − 1
8

x2 +
1

384
x4 − 1

46 080
x6.
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Example 2.12 Let x ∈ [0, 1[. Use Taylor’s formula to prove that

(1) (1 − x)−
1
2 = 1 +

1
2

x +
3
8

(1 − ξ)−
5
2 x2

for some ξ lying between 0 and x.
According to Albert Einstein, the kinetic energy of a particle is given by

Ekin(v) = m0c
2

⎧⎪⎪⎨
⎪⎪⎩

1√
1 −

(v

c

)2
− 1

⎫⎪⎪⎬
⎪⎪⎭ , 0 ≤ v < c,

where m0 is the mass of the particle at rest, c is the speed of light (= 3 · 105 km/s), and v is the speed
of the particle. It is well-known that the classical kinetic energy is

T (v) =
1
2

m0v
2.

The relative error by replacing Ekin(v) by T (v) is defined by

F =
Ekin(v) − T (v)

E kin(v)
.

2. Prove by means of (1) that

F <
3
(v

c

)2

4
{

1 −
(v

c

)2
} 5

2
.

3. Prove by means of the result in (2) and a pocket calculator that if v ≤ 3 ·104 km/s, then F < 10−2.
Hence, up to these velocities the relative error is at most 1 %.

A. Applications of Taylor expansions.

D. Differentiate (1 − x)−
1
2 two times.

I. 1) When f(x) = (1 − x)−
1
2 , x ∈ [0, 1[, then f(0) = 1, and

f ′(x) =
1
2

(1 − x)−
3
2 , f ′′(x) =

3
4

(1 − x)−
5
2 .

By Taylor’s formula there exists a ξ ∈ [0, x], such that

f(x) = (1 − x)−
1
2 = f(0) +

1
1!

f ′(0)x +
1
2!

f ′′(ξ)x2

= 1 +
1
2

x +
3
8

(1 − ξ)−
5
2 x2.
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2) Then by insertion we get for some ξ ∈
[
0,
(v

c

)2
]

that

F =
Ekin(v) − T (v)

E kin(v)

=

m0c
2

{(
1 −

[v

c

]2)− 1
2

− 1

}
− 1

2
m0v

2

m0c2

{(
1 −

[v

c

]2)− 1
2

− 1

}

=

(
1 −

[v

c

]2)− 1
2

− 1 − 1
2

[v

c

]
(

1 −
[v

c

]2)− 1
2

− 1

=

{
1 +

1
2

(v

c

)2

+
3
8
(1 − ξ)−

5
2 ·
(v

c

)4
}
− 1 − 1

2

(v

c

)2

{
1 +

1
2

(v

c

)2

+
3
8
(1 − ξ)−

5
2

(v

c

)4
}
− 1

=

3
8
(1 − ξ)−

5
2

(v

c

)2

1
2

{
1 +

3
4
(1 − ξ)−

5
2

(v

c

)2
} ,

which is clearly positive. Then

F =
3
4
·

(1 − ξ)−
5
2

(v

c

)2

1 +
3
4

(1 − ξ)−
5
2

(v

c

)2 =
3
4
·

(v

c

)2

(1 − ξ)
5
2 +

3
4

(v

c

)2

≤ 3
4
·

(v

c

)2

(1 − ξ)
5
2
≤ 3

4
·

(v

c

)2

{
1 −

(v

c

)2
} 5

2
,

because we increase a positive fraction by decreasing the denominator. In fact, we first delete
3
4
, and then replace ξ by its maximum

(v

c

)2

.

3) If
v

c
≤ 1

10
, then

F <

3 ·
(

1
10

)2

4
{

1 − 1
100

} 5
2

=
3
4
·
(

100
99

) 5
2

· 10−2

<
3
4
·
(

100
99

)3

· 10−2 =
3
4
·
(

1 +
3
99

+
3

992
+

1
993

)
· 10−2

<
3
4
· 104
100

· 10−2 < 10−2.
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Example 2.13 Consider the function f(x) = ex and Taylor’s formula with the point of expansion
x0 = 0,

(2) ex = 1 +
x

1!
+

x2

2!
+ · · · + xn

n!
+ Rn+1(x),

where Rn+1(x) denotes the remainder term. We shall in the following only consider the case x > 0.

1. Prove that Rn+1(x) > 0, and then show that

(3) ex >
xp

p!
, x ≥ 0, every p ∈ N.

2. Prove from (1) that for every α ∈ R+,

xα

ex
→ 0 for x → +∞.

In the final question we shall prove how we from (2) can prove that e is an irrational number. We
shall take for granted that e ∈ ]2, 3[. Then we apply a proof by contraposition, so we assume that

(4) e =
m

n
, m ∈ N, n ∈ N, n ≥ 2.

we shall then prove that this assumption will lead to a contradiction, hence that the assumption is
false.

3. Assume that (4). Then by (2) for x = 1,

m

n
= 1 +

1
1!

+
1
2!

+ · · · + 1
n!

+ Rn+1(1).

First prove that 0 < n!Rn+1(1) < 1. Multiply the equation by n! and then derive the contradiction.

A. Taylor expansion. There are given some guidelines.

D. Follow the guidelines.

I. 1) Since f (n)(x) = ex > 0, we get

Rn+1(x) =
eξ

(n + 1)!
xn+1 > 0, for x > 0,

hence

ex = 1 +
x

1!
+

x2

2!
+ · · · + xn

n!
+ Rn+1(x) >

xn

n!
,

and we derive (3), i.e.

ex >
xp

p!
, x ≥ 0, every p ∈ N.

2) When p > α it follows from (3) for x > 0 that

0 <
xα

ex
=

xp

ex
· 1
xp−α

<
p!

xp−α
→ 0 for x → +∞.

Estimates of remainder terms
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3) Assume that

e =
m

n
= 1 +

1
1!

+
1
2!

+ · · · + 1
n!

+
eξ

(n + 1)!
, ξ ∈ [0, 1].

Then

0 < n!Rn+1(1) =
eξ

n + 1
≤ e

n + 1
< 1 for n ≥ 2,

because e < 3.

When we multiply the equation by n! we get

m(n − 1)! = n!
{

1 +
1
1!

+
1
2!

+ · · · + 1
n!

}
+

eξ

n + 1
,

where

m(n − 1)! and n!
{

1 +
1
1!

+
1
2!

+ · · · + 1
n!

}

are both integers. Since
eξ

n + 1
is not an integer, we have reached our contradiction.
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Example 2.14 (Cf. Example 4.23) Given the function

f(x) = cos
(

1
2

x2 + x

)
, x ∈ R.

1) Find the Taylor polynomial P2(x) with the point of expansion x0 = 0 for f(x).

2) Prove by Taylor’s formula that

|f(x) − P2(x)| < 8 · 10−3 for |x| <
1
5
.

A. Taylor expansion and estimates of remainder term. The example is the same as the first two
bullets in Example 4.23.

D. Differentiate and then find the coefficients.

I. 1) We get successively by differentiation

f ′(x) = −(x + 1) sin
(

1
2

x2 + x

)
,

f ′′(x) = −(x + 1)2 cos
(

1
2

x2 + x

)
− sin

(
1
2

x2 + x

)
,

f (3)(x) = (x + 1)3 sin
(

1
2

x2 + x

)
− 3(x + 1) cos

(
1
2

x2 + x

)
.

This gives

P2(x) = f(0) + f ′(0) · x +
1
2!

f ′′(0) · x2 = 1 + 0 − 1
2

x2 = 1 − 1
2

x2.

2) According to Taylor’s formula there exists a ξ lying between 0 and x, such that

f(x) = P2(x) =
1
3!

f (3)(ξ) · x3.

From this we derive the estimate

|f(x) − P2(x)| =
1
6

∣∣∣f (3)(ξ)
∣∣∣ · |x|3

=
|x|3
6

∣∣∣∣(ξ + 1)3 sin
(

1
2

ξ2 + ξ

)
− 3(ξ + 1) cos

(
1
2

ξ2 + ξ

)∣∣∣∣ .
Now∣∣∣∣12 x2 + x

∣∣∣∣ <
1
50

+
1
5

=
11
50

for |x| <
1
5
,

and |ξ| ≤ |x| <
1
5
, so we get the estimate

|f(x) − P2(x)| <
1
6
· 1
53

{(
1
5

+ 1
)3

sin
11
50

+ 3
(

1
5

+ 1
)

cos 0

}

<
8

1000
· 1
6

{
63

53
· 11
50

+ 3 · 6
5
· 1
}

=
8

1000

{
62 · 11
125 · 50

+
3
5

}
< 8 · 10−3 · 2

3

< 8 · 10−3.
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Example 2.15 Find the Taylor polynomial P1(x) of first order at the point x0 = 0 for the function

f(x) = ln(1 + ex), x ∈ R.

Then prove that

|f(x) − P1(x)| ≤ 1
16

for x ∈
[
0,

1
2

]
.

A. Taylor polynomial and estimate of the remainder term. Cf. Example 1.12.

D. Since we later shall estimate the remainder term, we differentiate twice.

I. From

f(x) = ln(1 + ex), f(0) = ln 2,

f ′(x) =
ex

1 + ex
= 1 − 1

1 + ex
, f ′(0) =

1
2
,

we get

P1(x) = ln 2 +
1
2

x.

Since

f ′′(x) =
ex

(1 + ex)2
=

1
(1 + ex)(1 + e−x)

=
1

1 + ex + e−x + 1
=

1
2(1 + coshx)

,

it follows for x ∈
[
0,

1
2

] (
and even for x ∈

[
−1

2
,
1
2

])
, that

|f(x) − P1(x)| ≤ 1
2!

· 1
22

· max
|x|≤ 1

2

1
2(1 + coshx)

=
1
2
· 1
22

· 1
2 · 2 =

1
32

,

hence we get a better estimate than wanted.

Estimates of remainder terms
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Example 2.16 1) Find the Taylor polynomial P2(x) of order 2 at the point x0 = 0 for the function
ex sinx, x ∈ R.

2) Prove that

|ex sinx − P2(x)| < 0, 02, for x ∈
[
0,

1
3

]
.

A. Taylor polynomial. Cf. Example 2.17.

D. The Taylor coefficients are found by differentiation.

I. 1) First variant. By successive differentiation we get

f(x) = ex sinx, f(0) = 0,
f ′(x) = ex{sinx + cos x}, f ′(0) = 1,
f ′′(x) = 2ex cos x, f ′′(0) = 2,
f (3)(x) = 2ex{cos x − sinx},

where we shall use the third derivative in the estimate of the remainder term.

It follows that

P2(x) = x +
1
2
· 2x2 = x + x2.
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Second variant. From

ex = 1 + x +
1
2

x2 + · · · og sinx = x − 1
6

x3 + · · · ,

it follows by simple multiplying the two expressions that

f(x) = x + x2 +
1
3

x3 + · · · ,

hence

P2(x) = x + x2.

2) If x ∈
[
0,

1
3

]
, then

|ex sinx − P2(x)| ≤ 1
3!

∑
x∈[0, 1

3 ]

∣∣∣f (3)(x)
∣∣∣ · (1

3

)3

≤ 1
6
· 1
27

· 2 3
√

e =
3
√

e

81
<

1
50

= 0, 02.

Example 2.17 1) Find the Taylor polynomial P2(x) of order 2 at the point x0 = 0 for the function
ex sinx, x ∈ R.

2) Prove that

|ex sinx − P2(x)| < 0, 02, if x ∈
[
0,

1
3

]
.

3) Prove also that we even have

|ex sinx − P2(x)| < 0, 0125, if x ∈
[
0,

1
3

]
.

A. Taylor polynomial. The first two bullets are the same as the first two bullets in Example 2.16.

D. The Taylor coefficients are found by differentiation. We can reuse Example 2.16 in the first two
questions.

I. 1) First variant. By successive differentiation we get

f(x) = ex sinx, f(0) = 0,
f ′(x) = ex{sinx + cos x}, f ′(0) = 1,
f ′′(x) = 2ex cos x, f ′′(0) = 2,
f (3)(x) = 2ex{cos x − sinx},

where we save the third derivative for the estimate of the remainder term.

We see that

P2(x) = x +
1
2
· 2x2 = x + x2.

Estimates of remainder terms
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Second variant. From

ex = 1 + x +
1
2

x2 + · · · and sinx = x − 1
6

x3 + · · · ,

we get by simply multiplying the two expressions that

f(x) = x + x2 +
1
3

x3 + · · · ,

hence

P2(x) = x + x2.

2) If x ∈
[
0,

1
3

]
, then

|ex sinx − P2(x)| ≤ 1
3!

∑
x∈[0, 1

3 ]

∣∣∣f (3)(x)
∣∣∣ · (1

3

)3

≤ 1
6
· 1
27

· 2 3
√

e =
3
√

e

81
<

1
50

= 0, 02.

3) From

f (4)(x) = −4ex sinx,

follows that f (3)(x) is decreasing in
[
0,

1
3

]
, and since we already know that f (3)(x) > 0, we get

sup
x∈[0, 1

3 ]

∣∣∣f (3)(x)
∣∣∣ = f (3)(0) = 2.

Hence we obtained the improved estimate

|ex sinx − P2(x)| ≤ 1
3!

sup
x∈[0, 1

3 ]

∣∣∣f (3)(x)
∣∣∣ · (1

3

)3

≤ 1
6
· 2 · 1

27
=

1
81

<
1
80

= 0, 0125.

Estimates of remainder terms
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Example 2.18 1) Let x0 = 0 be the chosen expansion point. Find the Taylor polynomial P3(x) of
third order for the function

f(x) = (1 + x)2 ln(1 + x).

2) Prove by an estimate of the remainder term that we have the inequality

−10−5 ≤ f(x) − P3(x) ≤ 0

for 0 ≤ x ≤ 1
10

.

A. Taylor expansion and estimate of the remainder term.

D. Differentiate and find the Taylor coefficients.

–0.2

0

0.2

0.4

0.6

–0.4 –0.2 0.2 0.4

Figure 6: The graphs of f(x) = (1 + x)2 ln(1 + x) and P3(x), −0, 4 ≤ x ≤ 0, 4 with an indication of
the interval [−0, 1; 0, 1].

I. 1) We obtain by differentiation,

f(x) = (1 + x)2 ln(1 + x), f(0) = 0,
f ′(x) = 2(1 + x) ln(1 + x) + (1 + x), f ′(0) = 1,
f ′′(x) = 2 ln(1 + x) + 3, f ′′(0) = 3,

f (3)(x) =
2

1 + x
, f (3)(0) = 2,

f (4)(x) = − 2
(1 + x)2

.

Thus the Taylor polynomial at x0 = 0 is given by

P3(x) = x +
3
2

x2 +
1
3

x3.

2) If x ∈
[
0,

1
10

]
, then f (4) < 0, hence f(x) − P3(x) ≤ 0 in the same interval, and we get the

estimate

|f(x) − P3(x)| ≤ 1
4!

·
(

1
10

)4

· sup
x∈[0, 1

10 ]

∣∣∣f (4)(x)
∣∣∣ = 10−5 · 5

12
· 2
(1 + 0)2

< 10−5,

Estimates of remainder terms
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thus

−10−5 ≤ f(x) − P3(x) ≤ 0 for x ∈
[
0,

1
10

]
.

Example 2.19 Given the function

f(x) =
1

cos x
, x ∈

[
−π

6
,

π

6

]
.

1) Prove that the Taylor polynomial of order 2 with the point of expansion x0 = 0 is P2(x) = 1+
1
2

x2.

2) Prove that the remainder term R2(x) satisfies the following estimate in the given interval

|R2(x)| ≤ 0, 3.

A. Taylor polynomial and estimate of the remainder term

D. Differentiate three times

0

0.2

0.4

0.6

0.8

1

1.2

–0.4 –0.2 0.2 0.4

Figure 7: The graphs of f(x) =
1

cos x
(above) and the approximation P2(x) = 1+

1
2

x2 (below) in the

interval
[
−π

6
,
π

6

]
.

I. By differentiation we get for x ∈
[
−π

6
,
π

6

)
,

f(x) =
1

cos x
, f(0) = 1,

f ′(x) =
sinx

cos2 x
, f ′(0) = 0,

f ′′(x) =
1

cos x
+ 2 · sin2 x

cos3 x
=

1 + sin2 x

cos3 x
, f ′′(0) = 1,

and

f (3)(x) =
2 sin x

cos2 x
+ 3 · sinx · 1 + sin2 x

cos4 x

=
sinx

cos4 x

{
2 cos2 x + 3 + 3 sin2 x

}
=

sinx

cos4 x
{5 + sin2 x}.
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1) It follows from the above that

P2(x) = f(0) +
1
1!

f ′(0) · x +
1
2!

f ′′(0) · x2 = 1 +
1
2

x2.

2) Also, we get the remainder term from the above

R2(x) =
1
3!

f (3)(ξ) · x3 =
1
6
· sin ξ

cos4 ξ
· (5 + sin2 ξ) · x3,

where ξ is some point lying between 0 and x. Since sin ξ is increasing and cos ξ is decreasing
for ξ ∈

[
0,

π

6

]
, and since R2(x) is even because f(x) is even, we find that |R2(x)| is largest for

(ξ, x) = ±
(π

6
,

π

6

)
, thus

|R2(x)| ≤ 1
6
· sin π

6

cos4 π
6

·
{

5 + sin2 π

6

}
·
(π

6

)3

=
1
6
·

1
2(√
3

2

)4 ·
{

5 +
(

1
2

)2
}

·
(π

6

)3

=
1
12

· 16
9

· 21
4

·
(π

6

)3

=
7
9
·
(π

6

)3

≈ 0, 112 < 0, 3.
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3 Approximating polynomials

Example 3.1 Find the Taylor polynomial P3(x) for the function f(x) =
x

x2 + 1
with the point of

expansion x0 = 0. Sketch the graphs of P3 and f .

A. Comparison between a function and one of its Taylor polynomials.

D. Find the Taylor polynomial and sketch the graphs.

–1.5

–1

–0.5

0

0.5

1

1.5

–1.5 –1 –0.5 0.5 1 1.5

Figure 8: The graphs of P3(x) and f(x) ∈
[
−1

2
,
1
2

]
.

I. We get by differentiation

f(x) =
x

x2 + 1

f ′(x) =
1 − x2

(1 + x2)2
=

2
(1 + x2)2

− 1
1 + x2

,

f ′′(x) = − 8x
(1 + x2)3

+
2x

(1 + x2)2
,

f (3) =
48x2

(1 + x2)4
− 8

(1 + x2)3
− 8x2

(1 + x2)3
+

2
(1 + x2)2

.

Here it is no need to further reduce these expressions because we shall only put x0 = 0. This gives

P3(x) = x +
1
3!

(−8 + 2)x3 = x − x3.

For P3(x) = x−x3 we get P ′
3(x) = 1−3x2, corresponding to P ′

3(x) = 0 for x = ± 1√
3
≈ ±0, 57735,

where

P3

(
± 1√

3

)
= ±2

3
1√
3
≈ ±0, 3849.
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Example 3.2 1) Find the Taylor polynomial P8(x) with the point of expansion x0 = 0 for the poly-
nomial

Q(x) = (x + a)8,

where a is a real number.

2) Prove that we for all x get P8(x) = Q(x).

3) Use the method to se up a formula for (x + a)n.

A. Taylor polynomial for the polynomial (x + a)n.

D. The Taylor polynomial is found in the usual way.

I. 1) We get

P8(x) = Q(0) +
Q′(0)

1!
x +

Q′′(0)
2!

x2 +
Q(3)(0)

3!
x3 +

Q(4)(0)
4!

x4

+
Q(5)(0)

5!
x5 +

Q(6)(0)
6!

x6 +
Q(7)(0)

7!
x7 +

Q(8)(0)
8!

x8.

We see that we by differentiation get

Q(j)(x) = 8 · 7 · · · (8 − j + 1) (x + a)8−j , j = 1, . . . , 8,

thus

Q(j)(0) = 8 · 7 · · · (9 − j)a8−j =
8!

(8 − j)!
a8−j , j = 1, . . . , 8,

which is also true for j = 0,

Q(0) = Q(0)(0) = a8.

From these results follows that a general term of the Taylor expansion is

Q(j)(0)
j!

xj =
8!

j!(8 − j)!
a8−j xj =

(
8
j

)
a8−j xj , j = 0, 1, . . . , 8.

Then we find the Taylor polynomial

P8(x) =
8∑

j=0

(
8
j

)
a8−j xj .

2) Since Q(9)(x) ≡ 0, it follows from Taylor’s formula that

Q(x) = (x + a)8 = P8(x) +
1
9!

Q(9)(ξ)x9 = P8(x).

3) When we use the same method as above we obtain the general binomial formula

(x + a)n =
n∑

j=0

(
n
j

)
an−j xj .

Approximating polynomials
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Example 3.3 Prove that for positive x,

1 +
1
2

x3 − 1
8

x6 <
√

1 + x3 < 1 +
1
2

x3 − 1
8

x6 +
1
16

x9,

and find the corresponding bounds for

∫ 1
2

0

√
1 + x3 dx.

A. Taylor expansions with hidden estimate of the remainder term.

D. Put y = x3, and then find the Taylor expansion with respect to y.

I. If we put f(y) =
√

1 + y = (1 + y)
1
2 , then

f ′(y) =
1
2

(1 + y)−
1
2 , f ′′(y) = −1

4
(1 + y)−

3
2 ,

f (3)(y) =
3
8

(1 + y)−
5
2 , f (4)(y) = −15

16
(1 + y)−

7
2 .
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Thus f(0) = 1 and

f (2n−1)(y) > 0 and f (2n)(y) < 0, for n ∈ N,

so

P2(y) = 1 +
1
2

y − 1
2!

· 1
4

y2, R2(y) > 0,

P3(y) = 1 +
1
2

y − 1
2!

· 1
4

y2 +
1
3!

· 3
8

y3, R3(y) < 0,

and we conclude that

P2(y) = 1 +
y

2
− y2

8
< f(y) =

√
1 + y < 1 +

y

2
− y2

8
+

y3

16
, y > 0.

If we put y = x3, then

1 +
x3

2
− x6

8
<
√

1 + x3 < 1 +
x3

2
− x6

8
+

x9

16
.

From

∫ 1
2

0

{
1 +

x3

2
− x6

8

}
dx =

[
x +

x4

8
− x7

56

] 1
2

0

=
1
2

+
1

128
− 1

56
· 1
128

≈ 0, 507673,

and∫ 1
2

0

{
1 +

x3

2
− x6

8
+

x9

x9
16
}

dx =
1
2

+
55
56

· 1
128

+
1

160
· 1
210

≈ 0, 507679,

we conclude that

0, 507673 ≈
∫ 1

2

0

{
1 +

x3

2
− x6

8

}
dx <

∫ 1
2

0

√
1 + x3 dx

<

∫ 1
2

0

{
1 +

x3

2
− x6

8
9 +

x9

16

}
dx ≈ 0, 507679,

and we have found a good approximation of the integral of
√

1 + x3,

0, 507673 <

∫ 1
2

0

√
1 + x3 dx < 0, 507679.
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Example 3.4 Find the Taylor polynomial of order 3 with any point of expansion x0 for the function

f(x) = (1 + x)3.

A. Taylor polynomial; any point of expansion. Obviously, the function is always equal to its Taylor
polynomial of order 3, because f(x) itself is a polynomial of third degree.

D. We have here two possibilities:

1) the binomial formula,

2) the method of differentiation.

I. 1) We get by the binomial formula

f(x) = (1 + x)3 = ({1 + x0} + {x − x0})3
= (1 + x0)3 + 3(1 + x0)2(x − x0) + 3(1 + x0)(x − x0)2 + (x − x0)3.

2) By successive differentiation we get

f(x) = (1 + x)3, f(x0) = (1 + x0)3,
f ′(x) = 3(1 + x)2, f ′(x0) = 3(1 + x0)2,
f ′′(x0) = 6(1 + x), f ′′(x0) = 6(1 + x0),
f (3)(x) = 6, f (3)(x0) = 6.

The Taylor polynomial is

P3(x) = f(x) = f(x0) + f ′(x0) (x − x0) +
1
2!

f ′′(x0) (x − x0)2 +
1
3!

f (3)(x0) (x − x0)3

= (1 + x0)3 + 3(1 + x0)2(x − x0) + 3(1 + x0)(x − x0)2 + (x − x0)3.

Example 3.5 Find the Taylor polynomial P8(x) with the point of expansion x0 = 0 for the functions

(1) f(x) = sin 2x, (2) f(x) = cos 2x, (3) f(x) = (1 + x2)2.

A. Taylor expansions.

D. Perform a simple calculation in (3). In (1) and (2) we differentiate.

I. 1) If we put g(y) = sin y, then

g(y) = g(4)(y) = g(8)(y) = sin y, g′(y) = g(5)(y) = cos y,
g′′(y) = g(6)(y) = − sin y, g(3)(y) = g(7)(y) = − cos y,

hence

Pg,8(y) = y − 1
3!

y3 +
1
5!

y5 − 1
7!

y7.

Now, f(x) = g(2x), so we get

P8(x) = Pg,8(2x) = 2x − 4
3

x3 +
4
15

x5 − 8
315

x7.
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2) Analogously for g(y) = cos y,

g(y) = g(4)(y) = g(8)(y) = cos y, g′(y) = g(5)(y) = − sin y,
g′′(y) = g(6)(y) = − cos y, g(3)(y) = g(7)(y) = sin y,

thus

Pg,8(y) = 1 − 1
2!

y2 +
1
4!

y4 − 1
6!

y6 +
1
8!

y8.

Then by putting f(x) = g(2x),

P8(x) = Pg,8(2x) = 1 − 2x2 +
2
3

x4 − 4
45

x6 +
2

315
x8.

3) We simply get by a squaring

P8(x) = (1 + x2)2 = 1 + 2x2 + x4.

Example 3.6 Prove that a Taylor polynomial with the point of expansion x0 = 0 of an odd (an even,
resp.) function only contains odd (even, resp.) powers of x.

A function f(x) is called odd, if f/ − x) = −f(x), and it is called even, if f(−x) = f(x).

A. Taylor expansion of an odd (even, resp.) function.

D. Differentiate the definitions of an odd, (an even, resp.)function.

I. When f(−x) = −f(x) is odd we get by differentiation,

dn

dxn
f(−x) = (−1)nf (n)(x) = −f (n)(x).

By a rearrangement followed by putting x = 0 we get

{(−1)n + 1}f (n)(0) = 0.

If n = 2m is even, then (−1)2m + 1 = 2 
= 0, and f (2m)(0) = 0. We conclude that the Taylor
polynomial only contains powers of x of odd exponents.

If instead f(−x) = f(x) is even, then we get by differentiation,

dn

dxn
f(−x) = (−1)nf (n)(−x) = f (n)(x).

If we put x = 0, we get by a rearrangement,

{(−1)n − 1}f (n)(0) = 0.

When n = 2m + 1 is odd, then (−1)2m+1 − 1 = −2 
= 0, so f (2m+1)(0) = 0. We conclude that the
Taylor polynomial only contain powers of x of even exponents.
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Example 3.7 Find the Taylor polynomial different from 0 of lowest degree for the functions

(1) f(x) = 6 sinx − 6x + x3, (2) f(x) = ln(1 + x) − x.

A. The meaning is that one shall find the smallest n, for which

1
n!

f (n)(0) 
= 0.

The simplest method is of course to insert known series, but this is not the purpose, so we shall
here choose the most difficult method, which also will indicate the order of the zero at x = 0 for
the function.

D. Differentiate and put x = 0.
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I. 1) We get by successive differentiation

f(x) = 6 sinx − 6x + x3, f(0) = 0,
f ′(x) = 6 cos x − 6 + 3x2, f ′(0) = 6 − 6 + 0 = 0,
f ′′(x) = −6 sin x + 6x, f ′′(0) = 0,
f (3)(x) = −6 cos x + 6, f (3)(0) = 0,
f (4)(x) = 6 sin x, f (4)(0) = 0,
f (5)(x) = 6 cos x, f (5)(0) = 6.

The searched Taylor polynomial is

P5(x) =
1
5!

f (5)(0)x5 =
6

120
x5 =

1
20

x5.

2) We get by successive differentiation

f(x) = ln(1 + x) − x, f(0) = 0,

f ′(x) =
1

1 + x
− 1, f ′(0) = 0,

f ′′(x) = − 1
(1 + x)2

, f ′′(0) = −1.

The searched Taylor polynomial is

P2(x) =
1
2!

f (2)(0)x2 = −1
2

x2.

Example 3.8 Find the Taylor expansion of order n = 3 for the functions

(1) f(x) = 22x − ln(1 + x2), (2) f(x) = sin 2x +
√

1 + x2.

A. Taylor expansions.

D. Differentiate three times.

I. 1) We get by successive differentiation

f(x) = e2x − ln(1 + x2), f(0) = 1,

f ′(x) = 2e2x − 2x
1 + x2

, f ′(0) = 2,

f ′′(x) = 4e2x − 2
1 + x2

+
4x2

(1 + x2)2
, f ′′(0) = 4 − 2 = 2,

f (3)(x) = 8e2x + x{· · · }, f (3)(0) = 8,

hence

e2x − ln(1 + x2) = 1 + 2x +
2
2!

x2 +
8
3!

x3 + x3ε(x)

= 1 + 2x + x2 +
4
3

x3 + x3 ε(x).
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2) We get by successive differentiation

f(x) = sin 2x +
√

1 + x2, f(0) = 1,
f ′(x) = 2 cos 2x +

x√
1 − x2

, f ′(0) = 2,

f ′′(x) = −4 sin 2x +
1√

1 + x2
− x2

(1 + x2)
3
2
, f (3)(0) = −8,

hence

f(x) = 1 + 2x +
1
2

x2 − 4
3

x3 + x3ε(x).

Remark. Since we later always instead ought to use the method of direct insertion of known
series, we add this variant, though this was not the purpose of the example.
a) In the first case we get

f(x) = e2x − ln(1 + x2)

=
{

1 + 2x +
4x2

2
+

8x3

6
+ x3ε(x)

}
−
{

x2 − x4

2
+ x4ε(x)

}

= 1 + 2x + x2 +
4
3

x3 + x3ε(x).

b) In the second case we get
f(x) = sin 2x +

√
1 + x2

=
{

2x − 8x3

6
+ x3ε(x)

}
+
{

10
(

1
2
1

)
x2 + x3ε(x)

}

= 1 + 2x +
1
2

x2 − 4
3

x3 + x3ε(x).

Example 3.9 Find the Taylor expansion of order n = 6 for the functions

(1) f(x) = cos 3x − ln(1 − x2), (2) f(x) =
√

1 − x + sin(x2).

A. Taylor expansions.

D. Either differentiate six times (this is not done here), or insert known series. We shall here use the
latter method.

I. 1) Since

cos y = 1 − 1
2!

y2 +
1
4!

y4 − 1
6!

y6 + y6ε(y),

and

− ln(1 − z) = z +
1
2

z2 +
1
3

x3 + z3ε(z),

we get by the substitutions y = 3x and z = x2 that

f(x) = cos 3x − ln(1 − x2)

= 1 − 1
2

32x2 +
1
4!

34x4 − 1
6!

36x6 + x6ε(x)

+x2 +
1
2

x4 +
1
3

x6 + x6ε(x)

= 1 − 7
2

x2 +
31
8

x4 − 163
240

x6 + x6ε(x).
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2) Since
√

1 − x = 1 +
(

1
2
1

)
(−x) +

(
1
2
2

)
(−x)2 +

(
1
2
3

)
(−x)3

+
(

1
2
4

)
(−x)4 +

(
1
2
5

)
(−x)5 +

(
1
2
6

)
(−x)6 + x6ε(x)

= 1 − 1
2

x − 1
8

x2 − 1
16

x3 − 5
128

x4 − 7
256

x5 − 21
1024

x6 + x6ε(x),

and

sin(x2) =
1
1!

(x2) − 1
3!

(x2)3 + x6ε(x) = x2 − 1
6

x6 + x2ε(x),

we get

f(x) =
√

1 − x + sin(x2)

= 1 − 1
2

x +
7
8

x2 − 1
16

x3 − 5
128

x4 − 7
256

x5 − 575
3072

x6 + x6ε(x).

Example 3.10 Find the Taylor expansion of order n = 8 for the functions

(1) f(x) = e−x2 − cos x, (2) f(x) = sinx − 2xe−x2
.

A. Taylor expansions.

D. When the order is as big as n = 8, one should probably avoid the method of successive differenti-
ations. Instead we insert known series development.

I. 1) From the series of the exponential we get

e−x2
= 1 − x2 +

1
2

x4 − 1
6

x6 +
1
24

x8 + x8ε(x).

Furthermore,

cos x = 1 − 1
2

x2 +
1
24

x4 − 1
720

x6 +
1

40 320
x8 + x8ε(x),

hence

f(x) = e−x2 − cos x

= −1
2

x2 +
(

1
2
− 1

24

)
x4 −

(
1
6
− 1

6!

)
x6 +

(
1
24

− 1
8!

)
x8 + x8ε(x)

= −1
2

x2 +
11
24

x4 − 119
720

x6 +
1679

40 320
x8 + x8ε(x).

2) Since

f(x) = sin x − 2xe−x2
=

d

dx

{
e−x2 − cos x

}
,

one may wrongly conclude that by differentiation of the result of (1) should obtain

f(x) = sinx − 2xe−x2

= −x +
11
6

x3 − 119
120

x5 +
1679
5040

x7 + x7ε(x).
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This method is in general wrong, because we do not know how to differentiate

the unspecified ε(x)-term! These derivatives may in some cases be very large, indeed. The
annoying thing of this example is that it can here be proved (with some more theory!) that in
this present case this method is legal, but this theory is not in general known to to the students
at this stage!

We use instead that

sinx =
1
1!

x − 1
3!

x3 +
1
5!

x5 − 1
7!

x+x8ε(x),

and that if follows from (5) that

−2xe−x2
= −2x + 2x3 − x5 +

1
3

x7 + x8ε(x),

hence

f(x) = sinx − 2xe−x2

= −x +
(

2 − 1
6

)
x3 −

(
1 − 1

5!

)
x5 +

(
1
3
− 1

7!

)
x7 + x8ε(x)

= −x +
11
6

x3 − 119
120

x5 +
1179
5040

x7 + x8ε(x).

We see that apart from the order of the ε(x)-term we obtain the same result as if we formally
had differentiated the result of (1).
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Example 3.11 Find the Taylors expansion with the point of expansion x0 = 0 and any order n of
the functions

(1) f(x) = 2x, (2) f(x) =
1

2 + x
.

A. Taylor expansion.

D. Find a general expression for f (n)(x).

I. 1) If f(x) = 2x = ex ln 2, then f (k)(x) = (ln 2)k · 2x, so

f (k)(0)
k!

=
(ln 2)k

k!
,

and the Taylor expansion is

f(x) = 2x =
n∑

k=0

1
k!

(ln 2)k xk + xnε(x).

2) If

f(x) =
1

2 + x
= (x + 2)−1

⎡
⎣=

1
2
· 1

1 +
x

2

⎤
⎦ ,

then

f (k)(x) = (−1)k k!(x + 2)−k−1,

so

f (k)(0)
k!

=
(−1)k

2k+1
,

and the Taylor expansion is

f(x) =
1

2 + x
=

1
2

n∑
k=0

(−1)k
(x

2

)k

+ xnε(x),

which we of course also could have obtained directly by putting y =
x

2
into the development

of
1
2
· 1
1 + y

.
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Example 3.12 Find the Taylor expansion with the point of expansion x0 = 0 and of any order n for
the functions

(1) f(x) = sinx + cos x, (2) f(x) =
√

1 + x2 −
√

1 − x2.

A. Taylor expansion for any n.

D. Substitute into known developments.

I. 1) Strictly speaking we should here consider the two cases of even and odd order. We shall here
lazily restrict ourselves to the case of odd order, so we develop up to order 2n + 1. From

sinx =
n∑

k=0

(−1)k

(2k + 1)!
x2k+1 + x2n+1ε(x),

and

cos x =
n∑

k=0

(−1)k

(2k)!
x2k + x2n+1ε(x),

we get

f(x) = sinx + cos x

=
n∑

k=0

(−1)k

(2k)!
x2k +

n∑
k=0

(−1)k

(2k + 1)!
x2k+1 + x2n+1ε(x).

2) If we expand to order 2n, then

f(x) = (1 + x2)
1
2 − (1 − x2)

1
2

=
n∑

k=0

(
1
2
k

)
x2k +

n∑
k=0

(−1)k+1

(
1
2
k

)
x2k + x2n

=
n∑

k=0

(
1
2
k

){
1 + (−1)k+1

}
x2k + x2nε(x)

= 2
[n−1

2 ]∑
k=0

(
1
2

2k + 1

)
x4k+2 + x2nε(x),

where
[
n − 1

2

]
denotes the integer part of

n − 1
2

, i.e. the biggest integer ≤ n − 1
2

. We obtain

the latter result by putting n odd or even into the second last equation.
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Example 3.13 1) Find the Taylor polynomial Pn(x) of order n with the point of expansion x0 = 0
for the function f(x) = cos2 x.

2) Find the Taylor polynomial Qn(x) of order n with the point of expansion x0 = 0 for the function
g(x) = sin2 x.

3) Prove that Pn(x) + Qn(x) = 1 for every x ∈ R.

A. Taylor polynomials. The fundamental trigonometric relation.

D. Express cos2 x and sin2 x by cos 2x before the Taylor expansion.

I. 1) We get from cos2 x =
1
2

+
1
2

cos 2x that

cos2 x =
1
2

+
1
2

{
1 − 1

2!
(2x)2 +

1
4!

(2x)4 + · · · + (−1)n

(2n)!
(2x)2n

}
+x2nε(x)

= 1 − 2
2!

x2 +
23

4!
x4 + · · · + (−1)n 22n−1

(2n)!
x2n + x2nε(x)

= 1 − x2 +
1
3

x4 + · · · + (−1)n · 4n

2(2n)!
x2n + x2nε(x).

Notice that P2n+1(x) = P2n(x).

2) Analogously, we get from sin2 x =
1
2
− 1

2
cos 2x that

sin2 =
2
2!

x2 − 23

4!
x4 + · · · + (−1)n · 22n−1

(2n)!
x2n + x2nε(x).

Here

Q2n+1(x) = Q2n(x)

=
2
2!

x2 − 23

4!
x4 + · · · + (−1) · 22n−1

(2n)!
x2n

= 1 − P2n(x) = 1 − P2n+1(x).

3) It follows clearly from the remark in (2) that

Pn(x) + Qn(x) = 1 for every n ∈ N.

We could not expect this result even if we know that cos2 x + sin2 x = 1.
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Example 3.14 1) Find the approximating polynomial P3(x) of at most third degree with the point of
expansion x0 = 0 for the function

f(x) = ln(1 + 2x), x ∈
]
−1

2
,+∞

[
.

2) Prove that

ln(1 + 2x) < P3(x) for every x > −1
2
, x 
= 0.

A. Approximating polynomial.

D. Differentiate four times.

–4

–2

0

2

4

y

0.5 1 1.5 2

x

Figure 9: The graph of y = ln(1+2x) and its approximating polynomial y = 2x−2x2 +
8
3

x3 (dotted).

I. 1) We get by successive differentiations

f(x) = ln(1 + 2x), f(0),

f ′(x) =
2

1 + 2x
=

1
x + 1

2

, f ′(0) = 2,

f ′′(x) = − 1(
x + 1

2

)2 , f ′′(0) = −4,

f (3)(x) =
2(

x + 1
2

)3 , f ′′(0) = −4,

f (3)(x) =
2(

x + 1
2

)3 , f (3)(0) = 16,

f (4)(x) = − 6(
x + 1

2

)4 .

Hence

P3(x) = 2x − 2x2 +
8
3

x3,
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with the remainder term

R3(x) = − 1
4!

6(
ξ + 1

2

)4 x4 = − 4
(1 + 2ξ)4

x4,

for some ξ between 0 and x.

2) From

ln(1 + 2x) = P3(x) + R3(x)

and

R3(x) = − 4x4

(1 + 2ξ)4
< 0

for every x > −1
2

and every ξ between 0 and x, we conclude that

ln(1 + 2x) < P3(x) for every x > −1
2
.
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Example 3.15 Write a MAPLE programme, which sketches the graph of the Taylor polynomial of
order 6 with the point x0 = 0 as extension point in the interval [−3, 3] for the function

f(x) = ln(1 +
√

1 + sinx), x ∈ R.

A. MAPLE programme.

D. This example, found in some textbook, is rather strange because one would usually instead directly
sketch the graph of the function itself. One will almost always lose some information by considering
the Taylor polynomial instead. An exception is of course when the function is itself a polynomial
and we want the Taylor polynomial of at least the same order as the degree of the polynomial.

D. The first command is

taylor(ln(1+sqrt(1+sin(x))),x=0,6);

We get the result

ln(2) +
1
4

x − 3
32

x2 +
1
96

x3 − 3
1024

x4 +
1

1536
x5 + O

(
x6
)

Then we remove the term O
(
x6
)
, and e.g. continue by

–1.5

–1

–0.5

0.5

–3 –2 –1 1 2 3

Figure 10: The graphs of P6(x) and f(x) = ln(1 +
√

1 + sinx), (dotted), x ∈ [−3, 3].

plot([[t,ln(2)+t/4-3*t^2/32+t^3/96-3*t^4/1024+t^5/1536,t=-3..3],

[t,ln(1+sqrt(1+sin(t))),t=-3..3]],linestyle=[1,2],color=black);

Hereby we get the figure where we for comparison also have sketched the graph of the function itself
(here dotted line): It is seen that the graph of the function has a kink for x = −π

2
, a phenomenon

which is never possible for any Taylor polynomial.
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Example 3.16 Find for every one of the following functions f(x) an expression for f (n)(0), and then
find the approximating polynomial of at most degree n at the point x0 = 0 for f(x).

(1) f(x) = ax, (2) f(x) =
1

1 − x
, (3) f(x) =

1
2 + x

.

A. Approximating polynomials. Note that (1) is almost the same as Example 3.11 (1).

D. Just differentiate.

I. 1) It follows immediately from f(x) = ax = ex ln a that

f (n)(x) = (ln a)nex ln a, f (n)(0) = (ln a)n,

hence

Pn(x) = 1 +
1
1!

ln a · x +
1
2!

(ln a)2x2 + · · · + 1
n!

(ln a)2 xn.

2) When f(x) =
1

1 − x
we get

f ′(x) =
1!

(1 − x)2
and f ′′(x) =

2!
(1 − x)3

.

Assume that

f (n) =
n!

(1 − x)n+1
.

We see that this is true for n = 0, n = 1 and n = 2. Then by a differentiation of the assumption
we get

f (n+1)(x) =
(n + 1)!

(1 − x)n+2
=

(n + 1)!
(1 − x)(n+1)+1

,

i.e. a formula of the same structure, only with n replaced by n + 1. Hence we conclude by
induction that

f (n)(x) =
n!

(1 − x)n+1
and f (n)(0) = n!,

f (n)(0)
n!

= 1.

Hence

Pn(x) = 1 + x + x2 + · · · + xn.

3) When

f(x) =
1

2 + x
=

1
2
· 1

1 +
x

2

we get (cf. (2))

f (n)(x) =
1
2

(−1)n · n!(
1 +

x

2

)n+1 · 1
2n

,
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so

f (n)(0) = (−1)n · n!
2n+1

,

and we have

Pn(x) =
1
2
− 1

22
x +

1
23

x2 + · · · + (−1)n · 1
2n+1

xn.

Example 3.17 One often applies Taylor expansions in physics and technical sciences to approximate
functions which cannot be calculated directly. The procedure is often that one expands up to some
given order and neglect the remainder term. One example is

(5) T (A) =
∫ π

2

0

1√
1 − A2 sin2 t

dt.

One cannot calculate the integral directly. The task is now to give a procedure which shows how T (A)
depends on A for small values of A (this integral occurs e.g. in the formula of the oscillation time for
a mathematical pendulum).

1) Find the Taylor expansion of order n = 4 for the function

f(x) =
1√

1 − x2k2
.

2) Find the Taylor expansion of order n = 4 for the integrand in (5), where A is the variable while t
in this connection is kept fixed.

3) Replace the integrand in (5) by the found approximation and then find a corresponding approxi-
mation of T (A).

[There will occur some integrals which the student must find in a table, because they are not known
at this stage.]

A. Approximation of an elliptic integral.

D. Find the Taylor expansion of the integrand.

I. 1) We get by a Taylor expansion

f(x) =
1√

1 − x2k2
= (1 − k2x2)−

1
2

= 1 +
( −1

2
1

)
(−k2x2) +

( −1
2
2

)(−k2x2
)2

+ x4ε(x)

= 1 +
k2

2
x2 +

3
8

k4x4 + x4ε(x).

2) Replace kx by A sin t. Then it follows directly from (1) that

1√
1 − A2 sin2 t

= 1 +
1
2

A2 sin2 t +
3
8

A4 sin4 t + A4ε(A).
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3) Finally, we shall calculate

∫ π
2

0

{
1 +

1
2

A2 sin2 t +
3
8

A4 sin4 t

}
dt.

Now sin2 t =
1
2
{1 − cos 2t}, so

sin4 t =
1
4
{
1 − 2 cos 2t + cos2 2t

}
=

1
4

{
1 − 2 cos 2t +

1 + cos 4t

2

}

=
1
4
− 1

2
cos 2t +

1
8

+
1
8

cos 4t

=
3
8
− 1

2
cos 2t +

1
8

cos 4t.

Then by insertion,∫ π
2

0

{
1 +

1
2

A2 sin2 t +
3
8

A4 sin4 t

}
dt

=
π

2
+

1
2

A2 · 1
2

∫ π
2

0

(1 − cos 2t) dt +
3
8

A4 · 1
8

∫ π
2

0

{3 − 4 cos 2t + cos 4t} dt

=
π

2
+

A2

4

[
t − 1

2
sin 2t

]π
2

0

+
3
64

A4

[
3t − 2 sin 2t +

1
4

sin 4t
]π

2

0

=
π

2
+

A2

4
· π

2
+

9
64

A4 · π

2

=
π

2

{
1 +

1
4

A2 +
9
64

A4

}
.
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Example 3.18 In this example we shall derive a formula which approximates the length of a circular
arc. This formula is due to Huygens (1629–1695). We shall use the figure and the notation given in
the text. We shall assume that the angle ϕ satisfies ϕ ∈

[
0,

π

2

]
.

Figure 11: Circle of radius r, centre angle ϕ, thus periphery angle
ϕ

2
below. The arc is denoted by �,

and the corresponding cord is denoted by d. Finally, we let s denote the height on the dotted vertical
diagonal.

The approximating expression �̃ of the length � is given in the form

�̃ = ad + bs,

where a and b are constants which will be found below.

1) First prove that

�̃ = 2ar sin
ϕ

2
+ br sinϕ.

2) We consider �̃ as a function of ϕ. Find the approximating polynomial P3(ϕ) and the corresponding
remainder term R3(ϕ) with the point of expansion ϕ = 0.

3) Find the constants a and b, such that P3(ϕ) = � = 2rϕ, and set up the corresponding approximation
�̃ expressed by d and s.

4) Prove that

|� − �̃| ≤ r

180
· ϕ5.

A. An approximation with given guidelines.

D. Follow the guidelines.

I. 1) It follows from some simple geometric considerations (look at some rectangular triangles) that

d = 2r sin
ϕ

2
and s = r sinϕ,

thus

�̃ = ad + bs = 2ar sin
ϕ

2
+ br sinϕ.
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2) Then by some differentiations,

d�̃

dϕ
= ar cos

ϕ

2
+ br cos ϕ, �̃′(0) = ar + br,

d2�̃

dϕ2
= −ar

2
sin

ϕ

2
− br sinϕ, �̃′′(0) = 0,

d3�̃

dϕ3
= −ar

4
cos

ϕ

2
− br cos ϕ, �̃(3)(0) = −ar

4
− br,

d4�̃

dϕ4
=

ar

8
sin

ϕ

2
+ br sinϕ, �̃(4)(0) = 0,

d5�̃

dϕ5
=

ar

16
cos

ϕ

2
+ br cos ϕ,
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and we get by insertion into Taylor’s formula that

�̃(ϕ) =
�′(0)
1!

ϕ +
�′′(0)

3!
ϕ3 +

�(5)(ξ)
5!

ϕ5

= (a + b)rϕ − 1
24

(a + 4b)rϕ3 +
1

120

{
a

16
cos

ξ

2
+ b cos ξ

}
rϕ5,

where ξ lies somewhere between 0 and ϕ. Then

P3(ϕ) = P4(ϕ) = (a + b)rϕ − 1
24

(a + 4b)rϕ3,

and the remainder term is

R4(ϕ) =
1

120

{
a

16
cos

ξ

2
+ b cos ξ

}
rϕ5.

3) Thus, if we put P3(ϕ) = � = 2rϕ, then

P3(ϕ) = (a + b)rϕ − 1
24

(a + 4b)rϕ3 = 2rϕ,

and we obtain the conditions

a + b = 2 og a + 4b = 0.

Hence, a = −4b and 2 = −3b, i.e. b = −2
3
, so finally a =

8
3
. Then we get by insertion

�̃ = ad + bs =
8
3

d − 2
3

s.

4) Putting a =
8
3

and b = −2
3

the expression of the remainder term becomes

R4(ϕ) =
1

120

{
8
3
· 1
16

cos
ξ

2
− 2

3
cos ξ

}
rϕ5

=
1

120

{
1
6

cos
ξ

2
− 2

3
cos ξ

}
rϕ5.

When ϕ ∈
[
0,

π

2

]
, then both cos

ξ

2
and cos ξ are positive, so

|R4(ϕ)| ≤ 1
120

max
{

1
6

cos
ξ

2
,

2
3

cos ξ

}
· rϕ5

≤ 1
120

· 2
3
· rϕ5 =

r

180
ϕ5.

Remark. Since the function
1
6

cos
ξ

2
− 2

3
cos ξ is increasing in

[
0,

π

2

]
, one can actually prove

that

|R4(ϕ)| ≤ r

240
ϕ5, ϕ ∈

[
0,

π

2

]
. ♦
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4 Limit processes

Example 4.1 Find the following limits by means of a Taylor expansion:

(1) lim
x→0

ln(1 + x) − x

x2
, (2) lim

x→0

6 sin x − 6x + x3

x3
.

A. A Taylor expansion.

D. Find the order of the zero in the denominator. Then expand the numerator to the same order,
and then finally take the limit.

I. 1) Since x2 is 0 of order 2, we expand the numerator f(x) = ln(1 + x) − x to the order 2. Then
f(0) = 0 and

f ′(x) =
1

1 + x
− 1, f ′′(x) = − 1

(1 + x)2
,

so f ′(0) = 0 and f ′′(0) = −1. Then

f(x) = ln(10x) − x = −1
2

x2 + x2ε(x), where ε(x) → 0 for x → 0.

Finally, we get by insertion and a limit process that

lim
x→0

ln(1 + x) − x

x2
= lim

x→0

−1
2

x2 + x2ε(x)

x2
= −1

2
.

2) Since the denominator x3 is 0 of order 3, we expand the numerator

f(x) = 6 sin x − 6x + x3, f(0) = 0,

to the order 3. Then by differentiation,

f ′(x) = 6 cos x − 6 + 3x2, f ′(0) = 0,
f ′′(x) = −6 sin x + 6x, f ′′(0) = 0,
f (3)(x) = −6 cos x + 6, f (3)(0) = 0,

hence

f(x) = 0 + x3ε(x), hvor ε(x) → 0 for x → 0.

Finally, we get by insertion and a limit process,

lim
xε0

6 sin x − 6x + x3

x3
= lim

x→0

x3ε(x)
x3

= 0.

Remark. The method above is the one which should be used when one is learning the technique.
Later on one should instead use that the Taylor expansions taken from x0 = 0 are known for most
of the important functions. I shall in the following also demonstrate how one uses such tables.

Limit processes
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1) By using a table we get

ln(1 + x) − x =
{

x − x2

2
+ x2ε(x)

}
− x = −x2

2
+ x2ε(x),

thus

ln(1 + x) − x

x2
=

−x2

2
+ x2ε(x)

x2
= −1

2
+ ε(x) → −1

2
for x → 0.

2) By using a table we get

6 sin x − 6x + x3 = 6
{

x − x3

3!
+

x5

5!
+ x5ε(x)

}
− 6x + x3

=
1
20

x5 + x5ε(x),

thus

6 sin x − 6x + x3

x3
=

1
20

x5 + x5ε(x)

x3
=

1
20

x2 + x2ε(x) → 0 for x → 0.
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Example 4.2 Find the following limits by means of a Taylor expansion,

(1) lim
x→0

x(ex + 1) − 2(ex − 1)
x3

, (1) lim
x→0

sinx − x

x3
.

A. Limits by a Taylor expansion.

D. Then denominator is in both cases 0 of order 3 at x0 = 0. We therefore expand the numerator to
the order 3. We shall here use the direct method, where we assume the series expansions known.

I. 1) From

ex = 1 + x +
1
2

x2 +
1
6

x3 + x3ε(x),

we get by insertion

lim
x→0

x(e1 + 1) − 2(ex − 1)
x3

lim
x→0

x

{
2 + x +

1
2

x2 + x2ε(x)
}
− 2

{
x +

1
2

x2 +
1
6

x3 + x3ε(x)
}

x3

= lim
x→0

1
2

x3 − 1
3

x3 + x3ε(x)

x3
=

1
6
.

2) From sinx = x − 1
6

x3 + x3ε(x) we get by insertion,

lim
x→0

sinx − x

x3
= lim

x→0

−1
6

x3 + x3ε(x)

x3
= −1

6
.

Example 4.3 Find by means of a Taylor expansion the following limits,

(1) lim
x→0

ln(1 + x)
e2x − 1

, (2) lim
x→0

1 − cos2 x

x tan x
.

A. Limits found by means of a Taylor expansion.

D. The order of the zero at 0 of the denominator is 1 in (1), and 2 in (2), so the numerators should
be expanded similarly.

I. 1) From ln(1 + x) = x + xε(x) and e2x − 1 = 2x + xε(x), we get by insertion that

lim
x→0

ln(1 + x)
e2x − 1

= lim
x→0

x + xε(x)
2x + xε(x)

= lim
x→0

1 + εx

2 + ε(x)
=

1
2
.

2) Since 1 − cos2 x = sin2 x, we can actually here make a shortcut, because

1 − cos2 x

x tanx
=

sin2 x

x · sinx

cos x

=
sinx

x
· cos x.
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Then we either get directly (known from high school) that

lim
x→0

1 − cos2 x

x tan x
= lim

x→0

sinx

x
· cos x = 1 · 1 = 1,

or more elaborated,

lim
x→0

1 − cos2 x

x tan x
= lim

x→0

sinx

x
· cos x

= lim
x→0

x + xε(x)
x

· {1 + xε(x)}
= lim

x→0
{1 + ε(x)}{1 + ε(x)} = 1.

Example 4.4 Prove that the limits

(1) lim
x→0+

lnx

x2 + x + 1
, (2) lim

x→0

sin(x + x3) − x

x5
,

do not exist.

A. Both limits should be divergent.

D. Clearly, the denominator is 
= 0 for x = 0 in (1), thus since the numerator tends to −∞, it follows
by inspection that (1) is divergent. We shall use a little more in (2) to get to the same conclusion.

I. 1) Since the numerator tends to −∞, and the denominator tends to 1 for x → 0, we see that

lim
x→0+

lnx

x2 + x + 1
= −∞

is divergent.

2) Put f(x) = sin(x + x3) − x. Then f(0) = 0, and

f ′(x) = (1 + 3x2) cos x − 1, f ′(0) = 0,
f ′′(x) = −(1 + 3x2) sin x + 6x cos x, f ′′(0) = 0,
f (3)(x) = (5 − 3x2) cos x − 6x sinx, f (3)(0) = 5,

hence

f(x) = sin(x + x3) − x =
5
3!

x3 + x3ε(x).

Then by insertion,

sin(x + x3) − x

x5
=

5
6

x3 + x3ε(x)

x5
=

5
6

+ εx

x2
→ +∞ for x → 0,

and

lim
x→0

sin(x + x3) − x

x5
= +∞

is divergent.
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Example 4.5 Find the limits

(1) lim
x→π

2

cos x√
1 − sinx

, (2) lim
x→0

(lnx)2

(x2 − 1)2
, (3) lim

x→π
2

1 − cos x

x
,

if they exist.

A. Limit processes. In all three cases one should use common sense instead of some standard method.
The two first cases are divergent, and indeed it does not in (1) give sense to write lim without any
specification of the limit process, because one may obtain different possible limit values according
to whether one approaches

π

2
from above or from below.

D. In all three cases we either inspect, or rearrange in a convenient way.

–1

–0.5

0

0.5

1

0.5 1 1.5 2 2.5 3

Figure 12: The graph of f(x) =
cos x√

1 − sinx
, x ∈ [0, π] \

{
pi

2

}
.

I. 1) If x <
π

2
during the limit process, then

cos x = +
√

(1 + sin x)(1 − sinx),

hence

lim
x→ pi

2 −
cos x√

1 − sinx
= lim

x→π
2 −

(
+
√

1 + sinx
)

=
√

2.

If x >
π

2
during the limit process, then

cos x = −
√

(1 + sin x)(1 − sinx),

hence

lim
x→π

2 +

cos x√
1 − sinx

= lim
x→π

2 +

(
−√

1 + sin x
)

= −
√

2.

We conclude that the limit does not exist.
It is illustrated on the figure what happens in a neighbourhood of x =

π

2
.
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2) If x → 0+, then the numerator tends to +∞ while the denominator tends to 1, so

lim
x→0+

(ln x)2

(x2 − 1)2
= +∞.

Remark. In the case x → 1, we put

g(x) = lnx, g(1) = 0,

g′(x) =
1
x

, g′(1) = 1,

and g(x) = lnx = (x − 1) + (x − 1)ε(x − 1). Then by insertion

lim
x→1

(lnx)2

(x2 − 1)2
= lim

x→1

(
lnx

x − 1

)2

· 1
(x + 1)2

=
1
4

lim
x→1

{
x − 1 + (x − 1)ε(x − 1)

x − 1

}2

=
1
4
.

3) The denominator is 
= 0 for x =
π

2
, hence

lim
x→π

2

1 − cos x

x
=

2
π

.
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Example 4.6 Consider the functions below for x → 0 by first putting all the terms on the same
fraction line:

(1) f(x) =
1

ln(1 + x)
− 1

x2
, (2) f(x) =

1
sinx

− 1
ex − 1

.

A. A limit process. A reasonable guess is that (1) is divergent, because ln(1 + x) = x + xε(x) is of
lower degree than x2.

D. Put all the terms on the same fraction line and the find the Taylor expansions of the numerator
and the denominator.

I. 1) We get by some Taylor expansions,

f(x) =
1

ln(1 + x)
− 1

x2
=

x2 − ln(1 + x)
x2 ln(1 + x)

=
x2 − x + xε(x)
x2{x + xε(x)}

=
x

x3
· −1 + x + ε(x)

1 + ε(x)
= − 1

x2
· 1 + ε(x)
1 + ε(x)

.

The last factor tends to 1, so f(x) → −∞ for x → 0.

Remark. Suppose now that the example contains an error, so that we should have had
1
x

instead of
1
x2

. Then we get the following expansions

f(x) =
1

ln(1 + x)
− 1

x
=

x − ln(1 + x)
x ln(1 + x)

=
x − x +

1
2

x2 + x2ε(x)

x{x + xε(x)}

=

1
2

+ ε(x)

1 + ε
→ 1

2
for x → 0. ♦

2) Analogously,

f(x) =
1

sinx
− 1

ex − 1
=

ex − 1 − sinx

{ex − 1} sin x

=
x +

1
2!

x2 + x2ε(x) − x +
1
3!

x3 + x3ε(x)

{x + xε(x)}{x + xε(x)}

=

1
2

x2 + x2ε(x)

x2{1 + ε(x)} → 1
2

for x → 0.

Limit processes
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Example 4.7 1) What is the sign for a term of the form x2 + ε(x) · x2, when x is close to 0?

2) Find the sign of a term of the form xn + ε(x) · xn, n ∈ N, when x is close to 0.

3) Find

(a) lim
x→0

ln(1 + x) − x

x4
, (b) lim

x→0

( −1
sinx

+
1
x2

)
.

A. Limit processes.

D. Use common sense.

I. 1) Since x2 > 0 is dominating for x 
= 0 close to zero, the sign must be positive.

2) If n is even, then xn + ε(x) · xn is positive in a neighbourhood of zero.
If n is odd, then xn + ε(x) · xn is positive for x positive, and negative for x negative.

3) a) We get by a Taylor expansion,

ln(1 + x) − x

x4
=

x − 1
2

x2 + x2ε(x) − x

x4

=
1
x2

{
−1

2
+ ε(x)

}
→ −∞ for x → 0.

b) We get by a Taylor expansion,

− 1
sinx

+
1
x2

=
−x2 + sinx

x2 sinx
=

x + xε(x)
x2{x + xε(x)}

=
1
x2

· 1 + ε(x)
1 + ε(x)

→ +∞ for x → 0.

Example 4.8 Let

f(x) =
3
√

lnx

x − 1
, x ∈ ]1,+∞[.

What happens to f(x) under each of the limit processes x → 1+ and x → +∞?
Consider each of the following functions under the given limit process by putting the dominating term
outside as a factor:

1) f(x) = ex − x2 for x → +∞.

2) f(x) = ln(1 + x2) + x for x → −∞.

3) f(x) = lnx +
1
x

for x → 0+.

A. Limit processes.

D. Apply the rules of magnitude.

Limit processes
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I. We get from ln x = ln{1 + (x − 1)} = (x − 1) + (x − 1)ε(x − 1),

f(x) =
3
√

lnx

x − 1
=

3
√

(x − 1) + (x − 1)ε(x − 1)
x − 1

=
1

(x − 1)
2
3

3
√

1 + ε(x) → +∞ for x → 1 + .

Since ln x < x − 1, we also have

0 < f(x) =
3
√

lnx

x − 1
<

3
√

x − 1
x − 1

=
1

(x − 1)
2
3
→ 0 for x → +∞,

thus

lim
x→+∞

3
√

lnx

x − 1
= 0.

Limit processes
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1) From

f(x) = ex − x2 = ex

{
1 − x2

ex

}

and the rules of magnitude follows that f(x) → +∞ for x → +∞.

2) From

f(x) = ln(1 + x2) + x = x

{
1 +

ln(1 + x2)
x

}
,

and the rules of magnitude follows that f(x) → −∞ for x → −∞.

3) It follows from

f(x) = lnx +
1
x

=
1 + x · x

x
,

where x · lnx → 0 for x → 0+ that at f(x) → +∞ for x → 0+.

Example 4.9 Let f , g : ]0,∞[→ R be two differentiable functions where g ′(x) 
= 0 for every
x ∈ ]0,∞[. Check in each of the following cases whether the claim is correct or wrong:

1) Assume that f(x) → ∞ for x → 0, and g(x) → −∞ for x → 0.

If
f ′(x)
g′(x)

→ c for x → 0, where c ∈ R, then
f(x)
g(x)

→ c for x → 0.

2) Assume that f(x) → 0 for x → 0, and g(x) → 0 for x → 0.

If
f(x)
g(x)

→ c for x → 0, where c ∈ R, then
f ′(x)
g′(x)

→ c for x → 0.

3) Assume that f(x) → 0 for x → ∞, and g(x) → ∞ for x → ∞.

If f ′(x)g′(x) → c (∈ R) for x → ∞, then f(x)g(x) → c for x → ∞.

A. General limit processes and l’Hospital’s rules.

D. Analyze each of the cases. Give counterexamples, if possible.

I. 1) If we put h(x) = −g(x), then

f(x) → +∞ and h(x) → +∞ for x → 0+,

and h′(x) = −g′(x) 
= 0. It follows from l’Hospital’s second rule that

f ′(x)
h′(x)

=
f ′(x)
−g′(x)

→ −c for x → 0+,

implies

f(x)
g(x)

= −f(x)
h(x)

→ −(−c) = c for x → 0 + .

Limit processes
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2) This claim is wrong. Let e.g.

f(x) = x sin
1
x

og g(x) =
√

x.

Then f(x) → 0 and g(x) → 0 for x → 0+, because e.g.

|f(x)| =
∣∣∣∣x · sin 1

x

∣∣∣∣ ≤ x → x → 0 for x → 0 + .

Furthermore,∣∣∣∣f(x)
g(x)

∣∣∣∣ =
√

x

∣∣∣∣sin 1
x

∣∣∣∣ ≤ √
x → 0 for x → 0+,

so
f(x)
g(x)

→ 0 for x → 0+.

Finally,

f ′(x) = sin
1
x

+ x

{
− cos

1
x

}
·
{
− 1

x2

}
= sin

1
x

+
1
x

cos
1
x

,

and g′(x) =
1
2

1√
x

, thus

f ′(x)
g′(x)

= 2
√

x sin
1
x

+
2√
x

cos
1
x

,

where∣∣∣∣2√x sin
1
x

∣∣∣∣ ≤ 2
√

x → 0 for x → 0+,

while
2√
x
→ +∞ and cos

1
x

oscillates “wildly” between −1 and 1.

Hence the limit does not exist.

3) This claim is also wrong.

Let e.g. f(x) =
1
x

and g(x) = x lnx. Then f(x) → 0 and g(x) → +∞ for x → +∞.

Furthermore, f ′(x) = − 1
x2

and g′(x) = 1 + lnx, thus

f ′(x)g′(x) = −1 + lnx

x2
→ 0 for x → +∞

due the the rules of magnitude. Clearly,

f(x)g(x) = lnx → +∞ for x → +∞.

Limit processes
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Example 4.10 It is well-known that the function h given by

h(x) =
{

e, for x = 0,
(1 + x)

1
x , for x > 0,

is continuous.

1) Find h′(x) for x > 0.

2) Then find the limit limx→0+ h′(x).

A. Differentiation and a limit process.

D. Differentiate.

I. 1) For x > 0 we get

h(x) = (1 + x)
1
x = exp

(
ln(1 + x)

x

)
.

Limit processes
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Hence,

h′(x) = exp
(

ln(1 + x)
x

)
·
{

1
x(1 + x)

− ln(1 + x)
x2

}

= (1 + x)
1
x · 1

1 + x
· x − (1 + x) ln(1 + x)

x2
for x > 0.

0

0.5

1

1.5

2

2.5

3

y

0.5 1 1.5 2 2.5 3

x

Figure 13: The graph of y = (1 + x)
1
x , x > 0.

2) For x → 0+ it is well-known that

(1 + x)
1
x → e and

1
1 + x

→ 1,

and

x − (1 + x) ln(1 + x)
x2

=
x − (1 + x)

{
x − 1

2 x2 + x2ε(x)
}

x2

=
1
x2

{
x − x +

1
2

x2 + x2ε(x) − x2 + x2ε(x)
}

=
1
x2

{
−1

2
x2 + x2ε(x)

}
→ −1

2
.

Finally we get

lim
x→0+

h′(x) = e · 1 ·
(
−1

2

)
= −e

2
.

 Limit processes NL
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Example 4.11 1) Find the approximating polynomial of at most second degree with the point of
expansion x0 = 0 for the function

f(x)
√

cos x, x ∈
]
−π

2
,
π

2

[
.

2) Find

lim
x→0

{√
cos x

x2
− sinx

x3

}
.

3) Prove that
√

cos x ≥ 1 − 3
10

x2 for alle x ∈
[
−π

6
,
π

6

]
.

A. Taylor expansion; limit process; estimate of remainder term.

D. Differentiate f(x).

I. 1) We get by successive differentiation

f(x) =
√

cos x, f(0) = 1,

f ′(x) = −1
2

sinx√
cos x

= −1
2

tan x · f(x), f ′(0) = 0,

f ′′(x) = −1
2

(1 + tan2 x)f(x)0
1
4

tan2 x · f(x)

= −1
4

(2 + tan2 x)f(x), f ′′(0) = −1
2
,

f (3)(x) = −1
4
· 1 tanx · (1 + tan2 x)f(x)

+
1
8

tan x · (2 + tan2 x)f(x)

=
1
8

tan x · f(x) · {−4 − 4 tan2 x + 2 + tan2 x
}

= −1
8

(2 + 3 tan2 x) · tan x · √cos x.

Hence

f(x) = 1 − 1
4

x2 − 1
48

(2 + 3 tan2 ξ) tan ξ
√

cos ξ · x3

for some ξ between 0 and x.
2) We get from

f(x) = 1 − 1
4

x2 + x2ε
(
x2
)

og sinx = x − 1
6

x6 + x3ε(x)

that

lim
x→0

{√
cos x

x2
− sinx

x3

}

= lim
x→0

x
√

cos x − sinx

x3

= lim
x→0

1
x3

{
x − 1

4
x3 + x3 ε(x) − x +

1
6

x3 + x3ε(x)
}

= lim
x→0

− 1
12

x3 + x3ε(x)

x3
= − 1

12
.

Limit processes
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0.92

0.94

0.96

0.98

1

–0.4 –0.2 0 0.2 0.4

Figure 14: The graphs of
√

cos x and 1 − 3
10

x2 for x ∈
[
−π

6
,
π

6

)
.

3) We get from the expansion of f(x) with a remainder term,
√

cos x = 1 − 1
4

x2 − 1
48

x2 − 1
48

(2 + 3 tan2 ξ) tan ξ
√

cos ξ · x3

=
{

1 − 3
10

x2

}
+
{

1
20

x2 − 1
48

(2 + 3 tan2 ξ) tan ξ
√

cos ξ · x3

}
.

Thus, the claim will be proved, if we can prove that

1
20

x2 − 1
48

(2 + 3 tan2 ξ) tan ξ
√

cos ξ · x3 ≥ 0 for |x| ≤ π

6
,

where ξ lies somewhere between 0 and x. When we divide by x2 (for x 
= 0) and rearrange, we
see that it is sufficient to prove that

(2 + 3 tan2 ξ) tan ξ
√

cos ξ · x ≤ 48
20

=
12
5

for |ξ| ≤ |x| ≤ π

6
.

Here, we can estimate upwards by replacing both ξ and x by
π

6
, because tan ξ

√
cos ξ =

sin ξ√
cos ξ

is increasing in the given interval. Hence

(2 + 3 tan2 ξ) tan ξ
√

cos ξ · x ≤
(

2 +
3
3

)
· 1√

3
·
√√

3
2

· π

6

= 3 · 1√
2
√

3
· π

6
< 2 <

12
5

,

and the claim is proved.

 Limit processes NL
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Example 4.12 Let the function f be given by

f(x) = ln(1 + sinh 2x).

1) Find the approximating polynomial of at most second degree for f with the point of expansion
x0 = 0.

2) Find the limit for x → 0 of

f(x) − 2 sin x

1 − cos x
.

A. Approximating polynomial; limit process. The example is very similar to Example 5.6.

D. Differentiate f(x).

I. 1) We get by successive differentiations,

f(x) = ln(1 + sinh 2x), f(0) = 0,

f ′(x) =
2 cosh 2x

1 + sinh 2x
, f ′(x) = 2,

f ′′(x) =
−4 cosh2 2x

(1 + sinh 2x)2
+ sinh 2x · {· · · }, f ′′(0) = −4,

Limit processes
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hence,

P2(x) = f(0) +
f ′(0)

1!
x +

f ′′(0)
2!

x2 = 2x − 2x2.

2) From

f(x) = 2x − 2x2 + x2ε, sinx = x + x2ε(x),

cos x = 1 − 1
2

x2 + x2ε(x),

follows that
f(x) − 1 sin x

1 − cos x
=

2x − 2x2 + x2ε(x) − 2x + x2ε(x)

1 −
(

1 − 1
2

x2

)
+ x2ε(x)

=
−2x2 + x2ε(x)
1
2

x2 + x2ε(x)
= −4 · 1 + ε(x)

1 + ε(x)
,

hence

lim
x→0

f(x) − 2 sin x

1 − cos x
= −4.

Example 4.13 Find every solution x(t) of the differential equation

dxx

dt2
− x = 0,

which also satisfies

d

dt

(
x(t)

t

)
→ 0 for t → 0.

A. Differential equation of second order and of constant coefficients. Limit process.

D. First find the complete solution of the differential equation, and then apply the condition.

I. The complete solution of the differential equation is

x(t) = c1 cosh t + c2 sinh t, t ∈ R, c1, c2 ∈ R arbitrære.

Clearly,
∣∣∣∣cosh t

t

∣∣∣∣→ +∞ for t → 0, so the only possibility of a solution is when

x(t)
t

= c · sinh t

t
.

When this equation is differentiated we get

d

dt

(
x(t)

t

)
= c · t cosh t − sinh t

t2

= c ·
t

{
1 +

1
2

t2 + t2ε(t)
}
− t − 1

6
t3 + t3ε(t)

t2

= c ·
1
3

t3 + t3ε(t)

t2
= c

{
1
3

t + tε(t)
}

→ 0 for t → 0.

Limit processes
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Example 3.18 In this example we shall derive a formula which approximates the length of a circular
arc. This formula is due to Huygens (1629–1695). We shall use the figure and the notation given in
the text. We shall assume that the angle ϕ satisfies ϕ ∈

[
0,

π

2

]
.

Figure 11: Circle of radius r, centre angle ϕ, thus periphery angle
ϕ

2
below. The arc is denoted by �,

and the corresponding cord is denoted by d. Finally, we let s denote the height on the dotted vertical
diagonal.

The approximating expression �̃ of the length � is given in the form

�̃ = ad + bs,

where a and b are constants which will be found below.

1) First prove that

�̃ = 2ar sin
ϕ

2
+ br sinϕ.

2) We consider �̃ as a function of ϕ. Find the approximating polynomial P3(ϕ) and the corresponding
remainder term R3(ϕ) with the point of expansion ϕ = 0.

3) Find the constants a and b, such that P3(ϕ) = � = 2rϕ, and set up the corresponding approximation
�̃ expressed by d and s.

4) Prove that

|� − �̃| ≤ r

180
· ϕ5.

A. An approximation with given guidelines.

D. Follow the guidelines.

I. 1) It follows from some simple geometric considerations (look at some rectangular triangles) that

d = 2r sin
ϕ

2
and s = r sinϕ,

thus

�̃ = ad + bs = 2ar sin
ϕ

2
+ br sinϕ.

Limit processes
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Example 4.15 Apply l’Hospital’s rule to find the following limits

(1) lim
x→0

ln(1 + x)
e2x − 1

, (2) lim
x→0

1 − cos2 x

x tan x
.

A. Limits found by an application of l’Hospital’s rule.

D. Always start by checking the numerator and the denominator separately.

I. 1) Let T (x) = ln(1 + x) and N(x) = e2x − 1. Then T (0) = 0 and N(0) = 0, thus

lim
x→0

ln(1 + x)
e2x − 1

= lim
x→0

T ′(x)
N ′(x)

= lim
x→0

1
1 + x
2e2x

=
1
2
.

Alternatively we get by using the Taylor expansions,

ln(1 + x)
e2x − 1

=
x + xε(x)

1 + 2x + xε(x) − 1
=

1 + ε(x)
2 + ε(x)

→ 1
2

for x → 0.

2) We get by a reduction

1 − cos2 x

x tanx
=

sin2 x

x · sinx

cos x

=
cos x · sinx

x

= cos x · sinx

x
→ 1 · 1 for x → 0,

because we know from the textbook that

lim x → 0
sinx

x
= 1.

Alternatively we put T (x) = 1− cos2 x and N(x) = x · tan x. Then T (0) = 0 and N(0) = 0,
hence

lim
x→0

1 − cos2 x

x · tanx
= lim

x→0

T ′(x)
N ′(x)

= lim
x→0

2 sin x · cos x

x(1 + tan2 x) + tan x
.

Now T ′(0) = 0 and N ′(0) = 0, so we proceed by

= lim
x→0

T ′′(x)
N ′′(x)

= lim
x→0

2 cos2 x − 2 sin2 x

2(1 + tan2 x) + x · 2 tan x · (1 + tan2 x)
=

2
2

= 1.

Limit processes

Download free eBooks at bookboon.com



Calculus Analyse 1c-6

 

84  

Example 4.16 Calculate the integral

I(α) =
∫ 1

0

1√
1 + αx2

dx

for every α > 0, and then find limα→∞ I(α).

A. Integral containing a parameter. Limit with respect to the parameter.

D. First find an indefinite integral.

I. An indefinite integral is e.g. given by∫
1√

1 + αx2
dx =

1√
α

∫
y=

√
α x

1√
1 + y2

dy

=
1√
α

Arsinh(
√

α · x)

=
1√
α

ln
(√

α · x +
√

1 + αx2
)

.

Limit processes
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Then we get for the definite integral,

I(α) =
∫ 1

0

1√
1 + αx2

dx =
1√
α

ln
(√

α +
√

1 + α
)
.

Now, a power function dominates a logarithm, so

lim
α→+∞ I(α) = lim

α→+∞
ln(

√
α +

√
1 + α)√

α
= 0.

Example 4.17 1) Find the Taylor expansion of degree n = 2 for the function

f(x) =
√

1 + x + x2.

2) Find the Taylor expansion of degree n = 2 for the function

f(x) =
√

1 + x + x2 − 1 − 1
2

x.

3) Finally, find the limit

lim
x→0

√
1 + x + x2 − 1 − 1

2 x

x2
.

A. A limit found by means of Taylor expansions.

D. Find the Taylor expansions.

I. 1) We have

f(x) =
√

1 + x + x2

= 1 +
(

1
2
1

)
(x + x2) +

(
1
2
2

)
(x + x2)2 + x2ε(x)

= 1 +
1
2
(
x + x2

)− 1
8
(
x2 + 2x3 + x4

)
+ x2ε(x)

= 1 +
1
2

x +
3
8

x2 + x2ε(x).

2) We now get from (1),

f(x) =
√

1 + x + x2 − 1 − 1
2

x =
3
8

x2 + x2ε(x).

3) Finally, if follows from (2) that

lim
x→0

√
1 + x + x2 − 1 − 1

2 x

x2
= lim

x→0

3
8 x2 + x2ε(x)

x2
=

3
8
.

Limit processes
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Example 4.18 Find the following limits

(1) lim
x→0

ln(1 + x)
e2x − 1

, (2) lim
x→0

1 − cos2 x

x · tanx
,

(3) lim
x→+∞

lnx

e
√

ln x
, (4) lim

x→+∞

{
2x − x2 ln

[(
1 +

1
x

)2
]}

.

A. Limits.

D. We use a Taylor expansion in (1) and (4). In (2) and (3) other methods are easier to apply.

I. 1) We immediately get

lim
x→0

ln(1 + x)
e2x − 1

= lim
x→0

x + xε(x)
1 + 2x + xε(x) − 1

= lim
x→0

x + xε(x)
2x + xε(x)

=
1
2
.

2) By a small rearrangement we get

lim
x→0

1 − cos2 x

x · tanx
= lim

x→0

sin2 x

x · sinx

cos x

= lim
x→0

sinx

x
· cos x = 1.

3) If we put y =
√

lnx, it follows that y → +∞ for x → +∞, and then it follows from the rules
of magnitude that

lim
x→+∞

lnx

exp(
√

lnx)
= lim

y→+∞
y2

ey
= 0.

4) Since
1
x
→ 0 for x → +∞, we get

lim
x→+∞

{
2x − x2 ln

[(
1 +

1
x

)2
]}

= lim
x→+∞

{
2x − 2x2 ln

(
1 +

1
x

)}

= 2 lim
x→+∞

{
x − x2

(
1
x
− 1

2
· 1
x2

+
1
x2

ε

(
1
x

))}

= lim
x→+∞ 2

{
x − x +

1
2

+ ε(x)
}

= 1.

Limit processes
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Example 4.19 When one shall calculate the bending of a beam one often applies the so-called Berry
functions Bβ(λ), which are defined by

Bβ(λ) =
6{√λ cosh(β

√
λ) − sinh(

√
λ)}

λ sinh(
√

λ)
, for λ > 0.

Here, β is a fixed real constant. We shall find a value of the function Bβ(λ) for λ = 0, such that the
function becomes continuous at λ = 0.

Which value should one choose?

A. A limit process in λ.

D. Use Taylor expansions.

I. From

cosh x = 1 +
1
2

x2 + x2ε(x) and sinhx = x +
1
6

x3 + x3ε(x),

we get by insertion that

Bβ(λ) = 6 ·
√

λ · cosh(β
√

λ) − sinh(
√

λ)
λ · sinh(

√
λ)

= 6 ·
√

λ
{
1 + β2λ + λε(λ)

}−√
λ − 1

6
λ
√

λ + λ
√

λε(λ)

λ{√λ + λε(λ)}

= 6 ·
1 + β2λ + λε(λ) − 1 − 1

6
λ + λε(λ)

λ{1 + ε(λ)}
= 6 ·

(
β2 − 1

6

)
· 1 + ε(λ)
1 + ε(λ)

→ 6β2 − 1 for λ → 0 + .

Hence we shall put

Bβ(0) = 6β2 − 1.

Limit processes
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Example 4.20 (Cf. Example 4.21). Let ϕ(t) = t − te−t2 , t ∈ R.

1) Find the Taylor expansion of order 3 (i.e. the approximating polynomial of at most third degree)
for the function ϕ(t) with the point of expansion t0 = 0.

2) Find the limit

lim
t→∞

ϕ(t)
sinh t − sin t cos t

.

A. Approximating polynomial and limit.

D. We shall give two solutions of the first bullet.

I. Let ϕ(t) = t − te−t2 . Then ϕ(t) is of class C∞. We consider the two variants:

First variant. From eu = 1 + u + u ε(u) for u → 0, we get by the substitution u = −t2 that

ϕ(t) = t
{

1 − e−t2
}

= t
{
1 − (

1 − t2 + t2 ε(t)
)}

= t3 + t3 ε(t),

thus P3(t) = t3.

Limit processes
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Second variant. By successive differentiations we get with the point of expansion t0 = 0,

ϕ(t) = t − te−t2 , ϕ(0) = 0,
ϕ′(t) = 1 − e−t2 + 2t2e−t2 , ϕ′(0) = 0,
ϕ′′(t) = 6 t e−t2 − 4 t3 e−t2 , ϕ′′(t) = 0,
ϕ(3)(t) = 6 e−t2 − 24 t2 e−t2 + 8 t4 e−t2 , ϕ(3)(0) = 6.

Hence,

P3(t) = ϕ(0) + ϕ′(0) t +
ϕ′′(t)

2!
t2 +

ϕ(3)(0)
3!

t3 =
6
3!

t3 = t3.

This bullet can be solved in at least four ways:

First variant. Using a simple rearrangement we get by some ε-functions that

sinh t − sin t · cos t = sinh t − 1
2

sin 2t

=
{

t +
1
3!

t3 + t3 ε(t)
}
− 1

2

{
2t − 1

3!
(2t)3 + t3 ε(t)

}

=
1 + 4

6
t3 + t3 ε(t) =

5
6

t3 + t3 ε(t).

Then apply the result from (1),

ϕ(t)
sinh t − sin t · cos t

=
t3 + t3 ε(t)
5
6

t3 + t3 ε(t)
=

1 + ε(t)
5
6

+ ε(t)
→ 6

5
for t → 0.

Second variant. Even if one does not use the trick of applying the result of the First variant,
it is still possible to solve the problem by using ε-functions:

sinh t − sin t · cos t

=
{

t +
1
3!

t3 + t3 ε(t)
}
−
{

t − 1
3!

t3 + t3 ε(t)
}{

1 − 1
2!

t2 + t3 ε(t)
}

= t+
1
6

t3+t3 ε(t)−t+
1
2

t3+t3 ε(t)+
1
6

t3+t3ε(t)+t3ε(t)

=
5
6

t3 + t3 ε(t),

and then continue as in the First variant.
3. variant. The approximating polynomial by the method of differentiation. If we put

ψ(t) = sinh t − sin t · cos t,

then

ψ(t) = sinh t − sin t · cos t, ψ(0) = 0,
ψ′(t) = cosh t − cos2 t + sin2 t, ψ′(0) = 0,
ψ′′(t) = sinh t + 4 sin t · cos t, ψ′′(0) = 0,
ψ(3)(t) = cosh t + 4 cos2 t − 4 sin2 t, ψ(3)(0) = 5,

hence

ψ = ψ(0) + ψ′(0) t +
ψ′′(0)

2!
t2 +

ψ(3)(0)
3!

t3 + t3 ε(t) =
5
6

t3 + t3 ε(t),

and then proceed like in the First variant.

Limit processes
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4. variant. Application of l’Hospital’s rule where we forget that some of the calculations already
have been made in (1):

T (t) = ϕ(t) = t − t e−t2 , T (0) = 0,
N(t) = sinh t − sin t · cos t, N(0) = 0.

T ′(t) = 1 − e−t2 + 2t2 e−t2 , T ′(0) = 0,
N ′(t) = cosh t − cos2 t + sin2 t, N ′(0) = 0,

T ′′(t) = 6 t e−t2 − 4 t3 e−t2 , T ′′(0) = 0,
N ′′(t) = sinh t + 4 sin t · cos t, N ′′(0) = 0,

T (3)(t) = 6 e−t2 − 24 t2 e−t2 + 8 t4 e−t2 , T (3)(0) = 6,
N (3)(t) = cosh t + 4 cos2 t − 4 sin2 t, N (3)(0) = 5.

From

T (0) = T ′(0) = T ′′(0) = 0, N(0) = N ′(0) = N ′′(0) = 0,

we conclude by successively applying l’Hospital’s rule that

lim
t→0

ϕ(t)
sinh t − sin t · cos t

= lim
t→0

T (t)
N(t)

= lim
t→0

T ′(t)
N ′(t)

= lim
t→0

T ′′(t)
N ′′(t)

= lim
t→0

T (3)(t)
N (3)(t)

=
T (3)(t)
N (3)(0)

=
6
5
.

Example 4.21 (Cf. Example 4.20). Let the function ϕ(x) be given by

ϕ(x) = x − x e−x2
, x ∈ R.

1) Find the Taylor polynomial of order 3 for ϕ(x) with the expansion point x0 = 0.

2) Let ψ(x) denote the indefinite integral of ϕ(x), for which ψ(0) = 0. Find by applying the result of
(1) the Taylor polynomial of order 4 for ψ(x) with the point of expansion x0 = 0, and then find
the limit

lim
x→0

cos x − exp
(
−1

2
x2

)
ψ(x)

.

A. The first bullet is the same as the first bullet of Example 4.20. The purpose of the present example
is partly to find the Taylor expansion, and partly to apply this in a limit process-

D. 1) Use the exponential series.

2) Integrate this series and find the Taylor expansion of

cos x − exp
(
−1

2
x2

)
.

Finally, go to the limit.

Limit processes
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I. 1) From

ϕ(x) = x − x e−x2
= x − x

{
1 − 1

1!
x2 +

1
2!

x4 + · · ·
}

= x3 − 1
2

x5 + · · · ,

we get the Taylor polynomial

P3(x) = x3.

2) Clearly, ψ(x) =
1
4

x4 + x4 ε(x). Since

cos x − exp
(
−1

2
x2

)

= 1 − 1
2!

x2 +
1
4!

x4 + · · · −
{

1 − 1
1!

x2

2
+

1
2!

(
x2

2

)2

+ · · ·
}

=
1
24

x4 − 1
8

x4 + · · · = − 1
12

x4 + · · · ,

we get by insertion,

lim
x→0

cos x − exp
(
−1

2
x2

)
ψ(x)

= lim
x→0

− 1
12

x4 + x4 ε(x)

1
4

x4 + x4 ε(x)
=

− 1
12
1
4

= −1
3
.

Example 4.22 Find the limit

lim
x→0

sinx2 − 2
√

1 + x2 + 2
x4

.

A. Limit process.

D. Find the Taylor expansion of fourth order for the numerator.

I. From the expansions

sin
(
x2
)

=
1
1!

x2 − 1
3!
(
x2
)3

+ · · · = x2 + x4 ε(x),

and

√
1 + x2 =

(
1 + x2

) 1
2 = 1 +

(
1
2
1

)
x2 +

(
1
2
2

)(
x2
)2

+ x4 ε(x)

= 1 +
1
2

x2 − 1
8

x4 + x4 ε(x),

we get by insertion,

lim
x→0

sin
(
x2
)− 2

√
1 + x2 + 2

x4
= lim

x→0

x2 − 2 − x2 +
1
4

x4 + 2 + x4ε(x)

x4
= lim

x→0

1
4

x4 + x4 ε(x)

x4
=

1
4
.

Limit processes
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Remark. The expression can also be considered as a function in u = x2 → 0+ for x → 0. One
may therefore instead change the variable to

lim
x→0

sin
(
x2
)− 2

√
1 + x2 + 2

x4
= lim

u→0+

sinu − 2
√

1 + u + 2
u2

= lim
u→0+

u + u2 ε(u) − 2
{

1 +
1
2

u − 1
8

u2 + u2 ε(u)
}
− 2

u2
=

1
4
. ♦

Limit processes
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Example 4.23 (Cf. Example 2.14). Given the function

f(x) = cos
(

1
2

x2 + x

)
, x ∈ R.

1) Find the Taylor polynomial P2(x) with the point of expansion x0 = 0 for f(x).

2) Prove that

|f(x) − P − 2(x)| < 8 · 10−3 for |x| <
1
5
.

3) Find the limit

lim
x→0

cos
(

1
2

x2 + x

)
− 1 +

1
2

x2

x3
.

A. Taylor expansion, error estimate, limit.

D. 1) Use one of the standard methods by the calculation of the Taylor expansion.

2) Estimate the remainder term of the Taylor expansion.

3) Use (1) and (2) in the limit process.

I. 1) The simplest method is to use the series expansion. (An alternative solution is given in the
next bullet.) We find

f(x) = 1 − 1
2!

(
1
2

x2 + x

)2

+
1
4!

(
1
2

x2 + x

)4

+ · · ·

= 1 − 1
2

{
1
4

x4 + x3 + x2

}
+

1
24

x4

{
1 +

1
2

x

}4

+ · · ·

= 1 − 1
2

x2 − 1
2

x3 + x3ε(x).

Hence,

P2(x) = 1 − 1
2

x2 og P3(x) = 1 − 1
2

x2 − 1
2

x3,

where we shall use P3(x) in (3).

2) By successive differentiations we get

f ′(x) = −(x + 1) sin
(

1
2

x2 + x

)
,

f ′′(x) = −(x + 1)2 cos
(

1
2

x2 + x

)
− sin

(
1
2

x2 + x

)
,

f (3)(x) = (x + 1)3 sin
(

1
2

x2 + x

)
− 3(x + 1) cos

(
1
2

x2 + x

)
.

Thus again

P2(x) = f(0) + f ′(0) · x +
1
2!

f ′′(0) · x2 = 1 + 0 − 1
2

x2 = 1 − 1
2

x2.

Limit processes
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By Taylor’s formula there exists a ξ somewhere between 0 and x, such that

f(x) = P2(x) =
1
3!

f (3)(ξ) · x3.

Then we have the estimate

|f(x) − P2(x)| =
1
6

∣∣∣f (3)(ξ)
∣∣∣ · |x|3

=
|x|3
6

∣∣∣∣(ξ + 1)3 sin
(

1
2

ξ2 + ξ

)
− 3(ξ + 1) cos

(
1
2

ξ2 + ξ

)∣∣∣∣ .
Now,∣∣∣∣12 x2 + x

∣∣∣∣ <
1
50

+
1
5

=
11
50

for |x| <
1
5
,

and |ξ| ≤ |x| <
1
5
, so we get the estimate

|f(x) − P2(x)| <
1
6
· 1
53

{(
1
5

+ 1
)3

sin
11
50

+ 3
(

1
5

+ 1
)

cos 0

}

<
8

1000
· 1
6

{
63

53
· 11
50

+ 3 · 6
5
· 1
}

=
8

1000

{
62 · 11
125 · 50

+
3
5

}
< 8 · 10−3 · 2

3

< 8 · 10−3.

3) From

cos
(

1
2

x2 + x

)
= P3(x) + x3ε(x),

we get

lim
x→0

cos
(

1
2

x2 + x

)
− 1 +

1
2

x2

x3
= lim

x→0

1 − 1
2

x2 − 1
2

x3 + x3 ε(x) − 1 +
1
2

x2

x3

= lim
x→0

−1
2

x3 + x3 ε(x)

x3
= lim

x→0

{
−1

2
+ ε(x)

}
= −1

2
.

Limit processes
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Example 4.24 Find the limit

lim
x→0

ln coshx − 1
2

x2

x4
.

A. Limit by an application of a Taylor expansion.

D. Set up Taylor’s formula for n = 4 and point of expansion x0 = 0, and then insert.

I. When f(x) = ln coshx, we have

f ′(x) =
sinx

cosh x
= tanh x, f ′′(x) = 1 − tanh2 x,

f (3)(x) = −2 tanh x(1 − tanh2 x) = 2 tanh3 x − 2 tanhx,

f (4)(x) = (6 tanh2 x − 2)(1 − tanh2 x),

thus

ln cosh x = f(0) +
1
1!

f ′(0)x +
1
2!

f ′′(0)x2 +
1
3!

f (3)(0)x3

+
1
4!

f (4)(0)x4 + x4 ε(x)

= 0 + 0 +
1
2!

· 1 · x2 +
1
3!

· 0 · x3 +
1
4!

(−2)x4 + x4ε(x)

=
1
2

x2 − 1
12

x4 + x4ε(x),

hence by insertion,

lim
x→0

ln coshx − 1
2

x2

x4
= lim

x→0

− 1
12

x4 + x4ε(x)

x4
= − 1

12
.

Example 4.25 1) Set up Taylor’s formula for x0 = 0 and n = 3 for the function

f(x) = ln cosx, −π

2
< x <

π

2
.

2) Find the limit

lim
x→0

ln cos x +
1
2

x2

x2
.

A. Taylor’s formula and a limit.

D. Differentiate three times.

Limit processes
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I. Clearly, f(x) is defined for −π

2
< x <

π

2
, because cos x > 0 in this interval. Then by differentiation,

f(x) = ln cosx,

f ′(x) = − sinx

cos x
= − tan x,

f ′′(x) = − tan2 x − 1,

f (3)(x) = −2 tan x(1 + tan2 x) = −2 sin x

cos3 x
.

If x0 = 0, then

ln cos x = f(0) +
1
1!

f ′(0)x +
1
2!

f ′′(0)x2 +
1
3!

f (3)(ξ)x3

= 0 + 0 +
1
2!

(−1)x2 +
1
3!

(−2) · sin ξ

cos3 ξ
x3

= −1
2

x2 − 1
3

sin ξ

cos3 ξ
x3.

Finally we get for the limit process,

lim
x→0

ln cos x +
1
2

x2

x2
= lim

x→0

−1
2

x2 + x2ε(x) +
1
2

x2

x2
= 0.

Limit processes
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Example 4.26 1) Find the Taylor expansion of order 4 at the point x0 = 0 for the function

f(x) =
√

1 + 2x2, x ∈ R.

2) Find

lim
x→0

√
1 + 2x2 − (1 + x2)

x4
.

A. Taylor expansion and a limit.

D. Put u = x2, and consider instead the Taylor expansion of
√

1 + u of second order.

I. 1) From

√
1 + u = 1 +

(
1
2
1

)
u +

(
1
2
2

)
u2 + · · ·

= 1 +
1
2

u − 1
8

u2 + · · · ,

we get by the substitution u = 2x2,

f(x) =
√

1 + 2x2 = 1 +
1
2
· 2x2 − 1

8
· · (2x2

)2
+ · · ·

= 1 + x2 − 1
2

x4 + · · · ,

hence,

P4(x) = 1 + x2 − 1
2

x4 og
√

1 + 2x2 = P4(x) + x4 ε(x).

2) When we insert the result above we get

√
1 + 2x2 − (1 + x2)

x4
=

1 + x2 − 1
2

x4 + x4ε(x) − (1 + x2)

x4
= −1

2
+ ε(x),

and we conclude that

lim
x→0

√
1 + 2x2 − (1 + x2)

x4
= −1

2
.

Limit processes
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Example 4.27 1) Find the Taylor expansion of order 2 at the point x0 = 0 for the function

f(x) =

√
1 +

1
2

sinx, x ∈ R.

2) Then find the limit (e.g. by applying (1))

lim
x→0

√
1 +

1
2

sinx − exp
(x

4

)
sin2 x

.

A. Taylor expansion and a limit.

D. Even if I can find an alternative method of solution, I shall only apply the method of finding the
coefficients by calculating the first two derivatives of f(x).

I. 1) We have

f(x) =
√

1 +
1
2

sinx, f(0) = 1,

f ′(x) =
1
4

cos x√
1 +

1
2

sinx

, f ′(0) =
1
4
,

f ′′(x) = sinx · {· · · }
+
(cos x

4

)2
(
−1

2

)
1(√

1 +
1
2

sinx

)3 , f ′′(0) = − 1
32

,

thus

P2(x) = 1 +
1
4

x − 1
64

x2.

2) Since

exp
(x

4

)
= 1 +

x

4
+

x2

32
+ · · · ,

and

sin2 x = x2 + · · · ,

we have√
1 +

1
2

sinx − exp
(x

4

)
sin2 x

=
1 +

x

4
− 1

64
x2 − 1 − x

4
− 1

32
x2 + x2ε(x)

x2 + x2ε(x)

= −
(

1
64

+
1
32

)
+ ε(x),

hence

lim
x→0

√
1 +

1
2

sinx − exp
(x

4

)
sin2 x

= − 3
64

.

Limit processes
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Example 4.28 1) Find the Taylor polynomial of order 3 at the point x0 = 0 for the function

f(x) = − ln cos x, x ∈
]
−π

2
,
π

2

[
.

2) Find the limit

lim
x→0

cos x − ln cos x − 1
x3

.

A. Taylor polynomial and a limit.

Either insert known Taylor series, or differentiate. Clearly, (1) must be applied in (2).

0

0.5

1

1.5

2

2.5

y

–1.5 –1 –0.5 0.5 1 1.5

x

Figure 15: The graphs of y = − ln cos x (above) and its approximating polynomial P2(x) =
1
2

x2.

I. 1) First variant. We see that
f(x) = − ln cos x = − ln{1 − (1 − cos x)}

= 1 − cos x + · · · =
1
2

x2 + · · · ,

where the dots indicate terms of degree ≥ 4, thus

P3(x) =
1
2

x2.

Second variant. From

f(x) = − ln cosx, f(0) = 0,
f ′(x) = tanx, f ′(0) = 0,
f ′′(x) = 1 + tan2 x, f ′′(0) = 1,
f (3)(x) = 2 tan x(1 + tan2 x), f (3)(0) = 0,

we get

P3(x) =
1
2

x2.

Limit processes
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2) First variant. If we use the setup of (1) First variant, we get
cosx − ln cosx − 1

x3
=

1 − cos x + x3ε(x) − (1 − cos x)
x3

= ε(x) → 0 for x → 0,
thus

lim
x→0

cos x − ln cos x − 1
x3

= 0.

Second variant. A more traditional procedure is the following,

lim
x→0

cos x − ln cos x − 1
x3

= lim
x→0

1 − 1
2

x2 +
1
2

x2 − 1 + x3ε(x)

x3
= lim

x→0
ε(x) = 0.

Limit processes
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Example 4.29 1) Find the Taylor polynomial P3(x) of order 2 at the point x0 = 0 for the function

f(x) = ln(1 − x) + ex, x < 1.

2) Prove that if |x| <
1
4
, then

|R3(x)| = |f(x) − P3(x)| <
1

250
.

3) Find the limit

lim
x→0

f(x) − 1
x3

.

A. Taylor polynomial, estimate of a remainder term and a limit process.

D. Either insert known series expansions, or differentiate.

–1.5

–1

–0.5

0

0.5

1

1.5

y

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

x

Figure 16: The graphs of y = ln(1 − x) + ex and its approximating polynomial P3(x) from x0 = 0.

I. 1) First variant. By using well-known Taylor series we get for x ∈ ] − 1, 1[,
f(x) = ln(1 − x) + ex

= −x − 1
2

x2 − 1
3

x3 − 1
4

x4 + · · ·

+1 + x +
1
2

x2 +
1
6

x3 +
1
24

x4 + · · ·

= 1 − 1
6

x3 − 5
24

x4 + · · · ,

hence,

P3(x) = 1 − 1
6

x3.

Limit processes
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Second variant. It follows from

f(x) = ln(1 − x) + ex, f(0) = 1,

f ′(x) = − 1
1 − x

+ ex, f ′(0) = 0,

f ′′(x) = − 1
(1 − x)2

+ ex, f ′′(0) = 0,

f (3)(x) = − 2
(1 − x)3

+ ex, f (3)(0) = −1,

f (4)(x) = − 6
(1 − x)4

+ ex,

that

P3(x) = 1 − 1
3!

x3 = 1 − 1
6

x3.

2) If |x| <
1
4
, then

|f(x) − P3(x)| = |R3(x)| <
1
4!

·
(

1
4

)4

· sup
|x|≤ 1

4

∣∣∣∣ −6
(1 − x)4

+ ex

∣∣∣∣

≤ 1
24

· 1
44

·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

6(
3
4

)4 + 4
√

e

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

<
1
24

·
{

2
27

+
2
44

}

≈ 0, 00341 < 0, 004 =
1

250
.

3) Finally,

lim
x→0+

f(x) − 1
x3

= lim
x→0+

−1
6

x3 + x3ε(x)

x3

= − lim
x→0+

{
−1

6
+ ε(x)

}
= −1

6
.

Example 4.30 Find

lim
x→0

x sinx − ln(1 + x2)
2 cosh x − 2 − x2

.

(Hint: Use Taylor’s formula.)

A. Limit process.

D. Start by expanding the denominator in order to find the order of the expansion.

I. The denominator has the expansion

2 cosh x − 2 − x2 = 2
{

1 +
1
2

x2 +
1
24

x4 + x4ε(x)
}
− 2 − x2

=
1
12

x4 + x4ε(x) = x4

{
1
12

+ ε(x)
}

.

Limit processes
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This shows that the order of expansion is 4. Then we expand the numerator up to order 4,

x sinx − ln
(
1 + x2

)
= x

{
x − 1

6
x3 + x3ε(x)

}
−
{

x2 − 1
2

x4 + x4ε(x)
}

= x2 − 1
6

x4 − x2 +
1
2

x4 + x4ε(x)

=
1
3

x4 + x4ε(x).

Finally, by insertion,

lim
x→0

x sinx − ln(1 + x2)
2 cosh x − 2 − x2

= lim
x→0

x4

{
1
12

+ ε(x)
}

x4

{
1
3

+ ε(x)
} =

1
4
.

Example 4.31 Find

lim
x→0

(
1 − e3x2

x · sin(2x)

)
.

A. A limit process.

D. The denominator has a zero of order 2 at x0 = 0. Therefore, we shall find the Taylor expansions
of the numerator and the denominator of order 2.

Alternatively and more troublesome we can also apply l’Hospital’s rule.

I. First variant. From

1 − e3x2
= 1 − {

1 + 3x2 + x2ε(x)
}

= −3x2 + x2ε(x),

and

x · sin(2x) = x · {2x + x · ε(x)} = 2x2 + x2ε(x),

we get

lim
x→0

(
1 − e3x2

x · sin(2x)

)
= lim

x→0

−3x2 + x2ε(x)
2x2 + x2ε(x)

= lim
x→0

−3 + ε(x)
2 + ε(x)

= −3
2
.

Second variant. If we put

T (x) = 1 − e3x2
and N(x) = x · sin(2x),

then both T (x) and N(x) are of class C∞ and T (0) = 0 and N(0) = 0. Then by a couple of
differentiations

T ′(x) = −6x · e3x2
, T ′(0) = 0,

N ′(x) = sin(2x) + 2x · cos(2x), N ′(0) = 0,
og

T ′′(x) = −6 · e3x2 − 36x2, T ′′(0) = −6,
N ′′(x) = 4 cos(2x) − 4x2 sin(2x), N ′′(0) = 4.

Limit processes
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By repeating l’Hospital’s rule we get

lim
x→0

1 − e3x2

x · sin(2x)
= lim

x→0

T (x)
N(x)

= lim
x→0

T ′(x)
N ′(x)

= lim
x→0

T ′′(x)
N ′′(x)

=
T ′′(0)
N ′′(0)

=
−6
4

= −3
2
.

Limit processes
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5 Asymptotes

Example 5.1 Find the possible asymptotes for the functions

(1) f(x) = x2 1 − ex

1 + ex
, (2) f(x) = ln

(
e2x + e−2x

)
.

A. Asymptotes.

D. The functions are defined for every x. Therefore, we shall only consider what happens for x → +∞
and for x → −∞.

I. 1) It follows from

1 − ex

1 + ex
=

2
1 + ex

− 1,

that this expression tends towards -1 for x → +∞ (cf. the latter expression), and towards
+1 for x → −∞ (cf. the former expression). This means that f(x) ∼ −x2 for x → +∞ and
f(x) ∼ x2 for x → −∞, and we do not have any asymptote.

–1

1

2

3

–1.5 –1 –0.5 0.5 1 1.5

Figure 17: The function f(x) = ln(e2x + e−2x) and its two asymptotes.

2) We conclude from

f(x) = ln(e2x + e−2x) =
(
e2x

{
1 + e−4x

})
= 2x + ln

(
1 + e−4x

)
= 2x + e−4x + e−4xε

(
e−4x

)
,

that f(x) has the asymptote y = 2x for x → +∞.

3) From

f(x) = ln(e−2x{e4x + 1}) = −2x + ln(1 + e4x)
= −2x + e4x + e4xε

(
e4x

)
,

follows that f(x) has the asymptote y = −2x for x → −∞.

Asymptotes
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Example 5.2 Find the possible asymptotes for the function

f(x) =
√

x2 − 5x + 6.

A. Asymptotes.

D Remove the “squared term” from the expression inside the square root, and find the Taylor expan-
sion of the rest.

0

0.5

1

1.5

2

2.5

1 2 3 4 5

Figure 18: The function f(x) =
√

x2 − 5x + 6 and its two asymptotes.

I. It follows from

f(x) =
√

x2 − 5x + 6 =
√

(x − 2)(x − 3) =

√(
x − 5

2

)2

− 1
4

that the function is defined in the two intervals ] − ∞, 2] and [3,+∞[. Since the function is
continuously defined in the end points x = 2 and x = 3, we do not have asymptotes at these
points, though we of course have vertical half tangents.

1) If x ∈ [3,+∞[, then in particular x − 5
2

> 0, thus

f(x) =

√(
x − 5

2

)2

− 1
4

=
(

x − 5
2

)√
1 − 1

(2x − 5)2

=
(

x − 5
2

){
1 − 1

2
· 1
(2x − 5)2

+
1
x2

ε

(
1
x

)}

= x − 5
2
− 1

4
· 1
2x − 5

+
1
x

ε

(
1
x

)
,

and we conclude that y = x − 5
2

is an asymptote for x → +∞.

Asymptotes
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2) If x ∈ ] −∞, 2[, then
∣∣∣∣x − 5

2

∣∣∣∣ =
5
2
− x, hence

f(x) =

√(
x − 5

2

)2

− 1
4

= −
(

x − 5
2

)√
1 − 1

(2x − 5)2

= −x +
5
2

+
1
4
· 1
2x − 5

+
1
x

ε

(
1
x

)
,

and we conclude that y = −x +
5
2

is an asymptote for x → −∞.

Example 5.3 Find the possible asymptotes for the function

f(x) =
x2 + x + 1
ln(1 + ex)

.

A. Asymptotes.

D. The function is defined for all x ∈ R. Investigate what happens for x → +∞ and x → −∞,
separately.

–0.5

0

0.5

1

1.5

2

2.5

3

–1.5 –1 –0.5 0.5 1 1.5 2

Figure 19: The function f(x) =
x+x + 1

ln(1 + ex)
and its asymptote y = x + 1.

I. 1) When x → +∞, we use that

ln(1 + ex) = ln
(
ex
{
1 + e−x

})
= x + ln

(
1 + e−x

)
= x + e−x + e−x ε

(
e−x

)
,

Asymptotes
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so

f(x) =
x2 + x + 1
ln(1 + ex)

=
x2 + x + 1

x + e−x + e−x ε (e−x)

=
x + 1 +

1
x

1 +
1
x

e−x +
1
x

e−x ε (e−x)

=
{

x + 1 +
1
x

}{
1 − 1

x
e−x +

1
x

e−x ε
(
e−x

)}

= x + 1 +
1
x
− e−x − 1

x
e−x +

1
x

e−x ε
(
e−x

)
,

and thus,

f(x) − (x + 1) → 0 for x → +∞,

and we see that y = x + 1 is an asymptote for x → +∞.

Asymptotes
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2) If x → −∞, then ln(1 + ex) = ex + ex ε (ex), where ex → 0, hence

f(x) =
x2 + x + 1
ln(1 + ex)

=
x2 + x + 1

ex + ex ε (ex)

=
(x2 + x + 1)e−x

1 + ε(ex)
=

(x2 + x + 1)e|x|

1 + ε(ex)
.

Clearly, f(x) does not have an asymptote for x → −∞.

Example 5.4 Find the possible asymptotes for the function

f(x) =
(
x3 − 3x2 + 2

)
sinh

2
x
− 2x2.

A. Asymptotes.

D. The function is not defined at x = 0, so there is a possibility of asymptotes for x → 0, for x → +∞,
and for x → −∞.

–10

–5

0

5

10

y

–2 –1 1 2

x

Figure 20: The graphs of the function f(x) = (x3 − 3x2 + 2) sinh
(

2
x

)
− 2x2 and its asymptote

y = −6x +
4
3
. Different scales on the axes.

I. 1) If x → 0, the factor x3 − 3x2 + 2 tends towards 2, and sinh
(

2
x

)
→ ±∞ for x → 0±. Thus we

have a vertical asymptote x = 0.

2) If x → ±∞, then

sinh
(

2
x

)
=

2
x

+
1
3!

(
2
x

)3

+
(

1
x

)2

ε

(
1
x

)
=

2
x

+
4
3
· 1
x3

+
1
x

3

ε

(
1
x

)
,

Asymptotes
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hence

f(x) =
(
x3 − 3x2 + 2

)
sinh

(
2
x

)
− 2x2

=
(
x3 − 3x2 + 2

){ 2
x

+
4
3
· 1
x3

+
1
x3

ε

(
1
x

)}
− 2x2

= 2x2 − 6x +
4
x

+
4
3
− 4 · 1

x
+

8
3
· 1
x3

+ ε(x) − 2x2

= −6x +
4
3

+ ε,

and we conclude again that the function has the asymptote y = −6x +
4
3

for x → ±∞.

Example 5.5 Check whether the function

f(x) = xArctan x, x ∈ R,

has asymptotes for x → −∞ and x → ∞, resp..

A. Asymptotes; the example is almost the same as Example 5.7 (b).

D. Re-write the terms containing Arctan x etc., and then take the Taylor expansion.

I. If we put g(x) = Arctan x+ Arctan
1
x

, x 
= 0, then

g′(x) =
1

1 + x2
+

1

1 +
(

1
x

)2 ·
(
− 1

x2

)
= 0,

thus g(x) is a constant in each of the intervals x > 0 and x < 0. From g(1) =
π

4
+

π

4
=

π

2
and

g(−1) = −π

4
− π

4
= −π

2
, we get

Arctan x =

⎧⎪⎪⎨
⎪⎪⎩

π

2
− Arctan

1
x

, for x > 0,

−π

2
− Arctan

1
x

, for x < 0.

Furthermore,

Arctan y = y − 1
3

y3 + y3ε(y), y → 0.

1) If x → +∞, then
1
x
→ 0+, hence

f(x) = x · Arctan x = x

{
π

2
− Arctan

1
x

}

= x

{
π

2
− 1

x
+

1
3

1
x3

+
1
x3

ε

(
1
x

)}

=
π

2
x − 1 +

1
x

ε

(
1
x

)
,

Asymptotes
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–1

0

1

2

3

–3 –2 –1 1 2 3

Figure 21: The graphs of y = xArctan x and its two asymptotes.

and we conclude that y =
π

2
x − 1 is an asymptote for x → +∞.

2) If x → −∞, then
1
x
→ 0−, hence

f(x) = x · Arctan x = x

{
−π

2
− Arctan

1
x

}

= −π

2
x − 1 +

1
x

ε

(
1
x

)
,

and we conclude that y = −π

2
x − 1 is an asymptote for x → −∞.

Example 5.6 Given the function

f(x) = ln(1 + sinh 2x).

1) Find the approximating polynomial of at most second degree for f with the point of expansion
x0 = 0.

2) Find the limit

lim
x→0

ln(1 + sinh 2x) + 2e−x − 2
x + ln(1 − x)

.

3) Prove that the graph of f has two asymptotes, and find an equation for each of these.

A. Approximating polynomial; limit; asymptotes. The example is very similar to Example 4.12.

D. Use some Taylor expansions.

I. 1) The function f(x) is defined, if and only if 1+sinh 2x > 0, i.e. if and only if x > − 1
2

ln(
√

2+1),

(cf. the calculation below). It follows from

f(x) = ln(1 + sinh 2x), f(0) = 0,

f ′(x) =
2 cosh 2x

1 + sinh 2x
, f ′(0) = 2,

f ′′(x) = − 4 cosh2 2x
(1 + sinh 2x)2

+ sinh(2x) · {· · · }, f ′′(0) = −4,

Asymptotes
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that the approximating polynomial is

P2(x) =
2
1!

x − 4
2!

x2 = 2x − 2x2,

and since f(x) is of class C∞ in its domain, we get

f(x) = 2x − 2x2 + x2ε(x).

2) From

f(x) = 2x − 2x2 + x2ε(x),

2e−x = 2 − 2x + x2 + x2ε(x),

ln(1 − x) = −x − 1
2

x2 + x2ε(x),

Asymptotes
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we get by insertion,

lim
x→0

ln(1 + sinh 2x) + 2e−x − 2
x + ln(1 − x)

= lim
x→0

2x − 2x2 + 2 − 2x + x2 − 2 + x2ε(x)

x − x − 1
2!

d2 + x2ε(x)

= lim
x→0

−x2 + x2ε(x)

−1
2

x2 + x2ε(x)
= 2.

–4

–2

0

2

4

y

–1 1 2 3

x

Figure 22: The graphs of y = ln(1 + sinh 2x) and its approximating polynomial y = 2x− 2x2 and the
two asymptote (both dotted).

3) First notice that 1 + sinh 2x = 0, when

0 = e2x + 2 − e−2x = e−2x
{
e4x + 2e2x + 1 − 2

}
= e−2x

{(
e2x + 1

)2 − 2
}

,

i.e. when e2x = −1 +
√

2 (> 0), thus ln(1 + sinh 2x) is defined if and only if

x >
1
2

ln(
√

2 − 1) = −1
2

ln(
√

2 + 1).

Now,

f(x) = ln(1 + sinh 2x) → −∞ for x → −1
2

ln(
√

2 + 1)+,

so the vertical line x = −1
2

ln(
√

2 + 1) is an asymptote for f(x).

If instead x → +∞, then we get by the definition the following calculations,

f(x) = ln(1 + sinh 2x) = ln
(

1 +
1
2
{
e2x − e−2x

})
= ln

(
e2x + 2 − e−2x

)− ln 2

= ln
(
e2x

)− ln 2 + ln
(

1 +
2 − e−2x

e2x

)

= 2x − ln 2 + ln
(

1 +
2 − e−2x

e2x

)
.

Asymptotes
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Since

ln
(

1 +
2 − e−2x

e2x

)
→ 0 for x → +∞,

it follows that y = 2x − ln 2 is also an asymptote.

The two asymptotes of f(x) are

y = 2x − ln 2 and x = −1
2

ln(
√

2 + 1).

Example 5.7 1) Check in the following two cases whether the graph of f has an asymptote for
x → +∞, and in case of an asymptote, an equation of it.

(a) f(x) = x tanh x, (b) f(x) = xArctan x.

2) Prove that(
1
x2

+
2
x

)
ln(1 + x) =

1
x

+
3
2

+ ε

(
1
x

)
, for x → 0,

and then show that the graph of

f(t) =
(
t2 + 2t

)
ln
(

1 +
1
t

)

has an asymptote for both t → +∞ and t → −∞.

Find the equation of the asymptote.

A. Asymptotes.

D. Use Taylor expansions.

0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3

Figure 23: The graphs of y = x tanhx and its asymptote y = x.
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I. 1) a) It follows from

f(x) = x tanh x = x · ex − e−x

ex
+ e−x

= x · 1 − e−2x

1 + e−2x
= x

{
1 − 2 · e−2x

1 + e−2x

}
that

|f(x) − x| =
2

1 + e−2x
· x

e2x
→ 0 for x → +∞,

and we conclude that y = x is an asymptote for f(x) = x · tanhx, when x → +∞.

–1

0

1

2

3

0.5 1 1.5 2 2.5 3

Figure 24: The graphs of y = xArctan x and its asymptote y =
π

2
x − 1.

b) The function

ϕ(x) = Arctan x + Arctan
1
x

, x > 0,

has the derivative

ϕ′(x) =
1

1 + x2
+

1

1 +
(

1
x

)2 ·
(
− 1

x2

)
= 0,

thus ϕ is a constant. If we put x = 1, we obtain the constant
π

4
+

π

4
=

π

2
, i.e.

Arctan x + Arctan
1
x

=
π

2
,

hence

Arctan x =
π

2
− Arctan

1
x

.

Finally,

f(x) = x · Arctan x)x
{

π

2
− Arctan

1
x

}

= x

{
π

2
− 1

x
+

1
x

ε

(
1
x

)}
=

π

2
x − 1 + ε

(
1
x

)
,

and the asymptote has the equation y =
π

2
x − 1.

Asymptotes
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Figure 25: The graphs of y = (x2 + 2x) ln
(

1 +
1
x

)
and its asymptote y = x +

3
2
.

2) From

ln(1 + x) = x − 1
2

x2 + x2ε(x),

follows that(
1
x2

+
2
x

)
ln(1 + x) =

(
1
x2

+
2
x

){
x − 1

2
x2 + x2ε(x)

}

=
1
x
− 1

2
+ ε(x) + 2 − x + xε(x)

=
1
x

+
3
2

+ ε(x) for x → 0.

Thus by the substitution t =
1
x

f(t) =
(
t2 + 2t

)
ln
(

1 +
1
t

)
=
(

1
x2

+
2
x

)
ln(1 + x)

=
1
x

+
3
2

+ ε(x) = t +
3
2

+ ε

(
1
t

)
,

and we conclude that y = t +
3
2

is an asymptote for f(t) for both t → +∞ (i.e. for x → 0+),

and t → −∞ (i.e. for x → 0−).

Asymptotes
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6 Improper integrals

Example 6.1 One shall in the following integrals

1) find the domain of the integrand,

2) sketch the graph of the integrand in the interval of integration,

3) check whether the integral is convergent or divergent,

4) in case of convergence, find the value of the integral,

(a)
∫ +∞

0

x e−x dx, (b)
∫ 1

0

2x + 1
x2 + x − 2

dx.

A. Improper integrals.

D. Find the indefinite integral.

Improper integrals
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Figure 26: The graph of the integrand x e−x.

I. (a) We see that f(x) = x e−x is defined for every x ∈ R. We conclude from

f ′(x) = (1 − x)e−x,

that f(x) has at maximum for x = 1, and that clearly f(x) → 0 for x → +∞, and that the
integrand is ≥ 0 everywhere.

We find an indefinite integral by partial integration,∫
x e−x dx = x

(−e−x
)− ∫

1 · (−e−x
)

dx = −x e−x +
∫

e−x dx = −(x + 1)e−x.

This function converges towards 0 for x → +∞, hence the integral is convergent, and we get
the value∫ +∞

0

x e−x dx = lim
x→+∞

{−(x + 1)e−x
}

+ 1 = 0 + 1 = 1.

–30

–25

–20

–15

–10

–5

0

y

0.2 0.4 0.6 0.8 1
x

Figure 27: The graph of the integrand f(x) =
2x + 1

x2 + x − 2
.
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(b) The function f(x) =
2x + 1

x2 + x − 2
is defined for x 
= 1 and x 
= 2. It follows by a decomposition

that

f(x) =
1

x + 2
+

1
x − 1

< 0 for x ∈ [0, 1[,

so an integral is∫
1

x + 2
dx +

∫
1

x − 1
dx = ln(x + 2) + ln(1 − x),

where alternatively one could have noticed directly that the numerator is the derivative of
the dominator, thus∫

2x + 1
x2 + x − 2

dx = ln
∣∣x2 + x − 2

∣∣ .
Now, ln(1 − x) → −∞ for x → 1−, so the integral is divergent.

Example 6.2 One shall in each of the following cases

1) find the range of the integrand,

2) sketch the graph of the integrand in the interval of integration,

3) check whether the integral is convergent or divergent,

4) in case of convergence, one shall find the value of the integral,

(a)
∫ +∞

0

sinx dx, (b)
∫ 1

−1

1√
1 − x2

dx.

A. Improper integrals.

D. First find an indefinite integral.

–1

–0.5
0

0.5

1

2 4 6 8 10 12

x

Figure 28: The graph of f(x) = sinx.
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I. (a) The function f(x) = sin x is defined for every x ∈ R with the indefinite integral − cos x, so∫ x

0

sinx dx = 1 − cos x.

Since 1 − cos x does not have a limit for x → +∞, the improper integral is divergent.
Remark. The correct procedure of dealing with improper integrals is always first to split the
integrand into a positive part f+ ≥ 0 and a “negative part” f− ≥ 0, such that

f(x) = f+(x) − f−(x),

where more precisely

f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0}.

Improper integrals
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The improper integral is convergent, if and only if∫
f+(x) dx og

∫
f−(x) dx

are both convergent, and if so, then∫
f(x) dx =

∫
f+(x) dx −

∫
f−(x) dx.

I am often missing this clarification in elementary textbooks. In the case above we may of
course make a shortcut, because it is obvious that the limit does not exist. One can, however,
construct cases, in which the limit exists for the indefinite integral, and where the improper
integral does not exist in the strict sense given above. ♦

0
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6

8
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y

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

x

Figure 29: The graph of the integrand
1√

1 − x2
for x ∈ ] − 1, 1[.

(b) The function f(x) =
1√

1 − x2
is defined and positive for x ∈ ]− 1, 1[. An integral is Arcsin x,

thus the improper integral is convergent, and we find∫ 1

−1

1√
1 − x2

dx = [Arcsin x]1−1 =
π

2
−
(
−π

2

)
= π.
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Example 6.3 One shall in each of the following integrals

1) find the domain of the integrand,

2) sketch the graph of the integrand in the interval of integration,

3) check whether the integral is convergent or divergent,

4) in case of convergence find the value of the integral,

(a)
∫ +∞

0

1
x2 + 4

dx, (b)
∫ 3

1

1
x2 − 1

dx.

A. Improper integrals.

D. Check the indefinite integral.

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5

x

Figure 30: The graph of f(x) =
1

x2 + 4
.

I. (a) The integrand f(x) =
1

x2 + 4
is defined and positive in R. An indefinite integral is

∫ x

0

1
t2 + 4

dt =
[
1
2

Arctan
t

2

]x

0

=
1
2

Arctan
z

2
,

which is clearly convergent for x → +∞, so its value is∫ +∞

0

1
x2 + 4

dx = lim
x→+∞

1
2

Arctan
x

2
=

1
2
· π

2
=

π

4
.

(b) The integrand

f(x) =
1

x2 − 1
=

1
2

1
x − 1

− 1
2

1
x + 1

is defined for x ∈ R \ {−1, 1}, and it is positive for x ∈ ]1, 3]. An indefinite integral is∫
1

x2 − 1
dx =

1
2

∫
1

x − 1
dx − 1

2

∫
1

x + 1
dx =

1
2

ln
∣∣∣∣x − 1
x + 1

∣∣∣∣ ,
which clearly is divergent for x → 1+.
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Figure 31: The graph of
1

x2 − 1
for x ∈ ]1, 3].

Example 6.4 We shall for the following integrals

1) find the domain of the integrand,

2) sketch the graph of the integrand in the interval of integration,

3) check whether the integral is convergent or divergent,

4) in case of convergence, find the value of the integral,

(a)
∫ 1

0

1
x lnx

dx, (b)
∫ +∞

0

x√
x2

dx.

A. Improper integrals.

D. Follow the guidelines of the example.

–10

–8

–6

–4

–2

0

y

0.2 0.4 0.6 0.8 1
x

Figure 32: The graph of
1

x lnx
, x ∈ ]0, 1[.
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I. (a) Put f(x) =
1

x lnx
. From

d

dx
{x lnx} = ln x + 1 follows that the function has a maximum

for x =
1
e
, corresponding to f

(
1
e

)
= −e. Furthermore, x lnx → 0− for x → 0+, and for

x → 1−. We therefore conclude that f(x) → −∞ by these limit processes, and f(x) is negative
everywhere in ]0, 1[.

An integral of f(x) is∫
1

x lnx
dx = ln | ln x|.

We conclude from ln | ln x| → −∞ for x → 1−, and ln | ln x| → +∞ for x → 0+, that the
improper integral is divergent.

Improper integrals
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Figure 33: The graph of
x√

1 + x2
.

(b) Let f(x) =
x√

1 + x2
. Then f(0) = 0, and

f(x) =
1√

1 +
1
x2

→ 1 
= 0 for x → +∞,

and we see that the improper integral is divergent.

Example 6.5 One shall in each of the following cases

1) find the domain of the integrand,

2) sketch the graph of the integrand in the interval of integration,

3) check whether the integral is convergent or divergent,

4) in case of convergence, find the value of the integral,

(a)
∫ +∞

0

e−
√

x

√
x

dx, (b)
∫ +∞

−∞

2x
1 + x2

dx.

A. Improper integrals.

D. Find an integral.

I. (a) The function f(x) =
e−

√
x

√
x

is defined and positive for x > 0. We get by the monotone

substitution y =
√

x, i.e. x = y2, dx = 2y dy, the integral∫
e−

√
x

√
x

dx =
∫

u=
√

x

e−y

y
· 2y dy = −2e−

√
x,

which has the limits −2 for x → 0+ and 0 for x → +∞, hence the improper integral is
convergent, and its value is∫ +∞

0

e−
√

x

√
x

dx = 0 − (−2) = 2.

Improper integrals
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Figure 34: The graph of
e−

√
x

√
x

, x > 0.
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Figure 35: The graph of f(x) =
2x

1 + x2
.

(b) The function f(x) =
2x

1 + x2
is defined for every x ∈ R, and

f ′(x) = 2
1 − x2

(1 + x2)2
,

thus we have a maximum for x = 1, corresponding to f(1) = 1.

The integrand is positive for x > 0 and negative for x < 0. An integral is∫
2x

1 + x2
dx = ln(1 + x2).

Let us only consider the positive part. Here,∫ x

0

2t
1 + t2

dt = ln(1 + x2) → +∞, for x

∫
+∞,

and we conclude that the improper integral is divergent.

Improper integrals
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Remark. There is a nasty trap here. One was actually guided towards the following fallacy:
When we integrate over the symmetric interval [−x, x], x > 0, then∫ x

−x

2t
1 + t2

dt =
[
ln(1+t2)

]x
−x

= 0 → 0 for x → +∞,

and we would wrongly conclude that we got “convergence” and the “value” 0. ♦

Example 6.6 One shall in each of the following cases

1) find the domain of the integrand,

2) sketch the graph of the integrand in the interval of integration,

3) check whether the integral is convergent or divergent,

4) in case of convergence, find the value of the integral.

(1)
∫ +∞

1

lnx

x2
dx, (2)

∫ π
2

0

cot x dx.

A. Improper integrals.

D. Find an integral.

0
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0.25
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Figure 36: The graph of y =
lnx

x2
, x ≥ 1.

I. 1) The function f(x) =
lnx

x2
is define and differentiable for x > 0, and f(x) ≥ 0 for x ≥ 1, i.e. in

the interval of integration. We conclude from

f ′(x) =
1 − 2 ln x

x3
= 0 for x =

√
e,

and f(1) = 0 and f(x) → 0 for x → +∞, that x =
√

e corresponds to a global maximum. The

value is here f(
√

e) =
1
2e

.
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By a partial integration,∫
lnx

x2
dx = − lnx

x
+
∫

1
x2

dx = −1 + lnx

x
.

The integrand is ≥ 0 everywhere in the interval of integration, and the integral − 1 + lnx

x
→ 0

for x → +∞. Thus, we conclude that the improper integral is convergent, and its value is∫ +∞

1

lnx

x2
dx = lim

x→+∞

{
−1 + lnx

x

}
+

1 + ln 1
1

= 1.

Improper integrals
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Figure 37: The graph of y = cot x, x ∈
]
0,

π

2

]
.

2) The function f(x) = cot x is defined and differentiable for x 
= pπ, p ∈ Z. It is ≥ 0 in the
interval

]
0,

π

2

]
, hence we shall only find an integral and then consider the limit process.

Now sin x > 0 for 0 < x <
π

2
, thus an integral is given by

∫
cot x dx =

∫
cos x

sinx
dx = ln | sinx| = ln sinx, x ∈

]
0,

π

2

]
.

Since ln sinx → −∞ for x → 0+, the improper integral is divergent.

Example 6.7 Consider the improper integral

∫ +∞

−∞

e
1
3 x

1 + ex
dx.

1) Find the domain of the integrand.

2) Sketch the graph of the integrand in the interval of integration.

3) Is the improper integral convergent or divergent?

4) In case of convergence, find the value of the integral.

A. Improper integral.

D. Check the sign and find an integral.

I. The function f(x) =
e

1
3 x

1 + ex
is defined and differentiable and strictly positive for every x ∈ R. It

follows from

f ′(x) =
1
3

e
1
3 x

(1 + ex)2
{1 − 2ex},

Improper integrals
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0
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0.4

0.5

–10 –5 5 10

Figure 38: The graph of y =
e

1
3 x

1 + ex
.

that the function has a global maximum for x = − ln 2, since the function clearly tends to 0 for
x → ±∞, and because x = − ln 2 is the only point for which f ′(x) = 0. The value of the function
at this point is

f(− ln 2) =
2
3

3

√
1
2
.

We get the integral by using the substitution y = e
1
3 x,

∫
e

1
3 x

1 + ex
dx = 3

∫
y=exp( 1

3 x)

dy

1 + y3
.

Now, y3 + 1 = (y + 1)(y2 − y + 1), so by a decomposition,

1
y2 + 1

=
a

y + 1
+

by + c

y2 − y + 1
,

where

a =
1

1 + 1 + 1
=

1
3
,

hence

by + c

y2 − y + 1
=

1 − 1
3 y2 + 1

3 y − 1
3

(y + 1)(y2 − y + 1)
= −1

3
· y2 − y − 2
(y + 1)(y2 − y + 1)

= −1
3
· y − 2
y2 − y + 1

= −1
6
· 2y − 1
y2 − y + 1

+
1
2
· 1
y2 − y + 1

.
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Then by insertion,

∫
e

1
3 x

1 + ex
dx =

∫
y=e

1
3 x

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
y + 1

− 1
2

2y − 1
y2 − y + 1

+
3
2

1(
y − 1

2

)2

+
3
4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dy

=

[
ln(y + 1) − 1

2
ln(y2 − y + 1) +

3
2
· 2√

3
Arctan

(
y − 1

2√
3

2

)]
y=e

1
3 x

=
1
2

ln

{
(1 + e

1
3 x)2

e
2
3 x − e

1
3 x + 1

}
+
√

3 Arctan
{

1√
3

(
2e

1
3 x − 1

)}

=
1
2

ln

{
e

2
3 x + 2e

1
3 x + 1

e
2
3 x − e

1
3 x + 1

}
+
√

3 Arctan

{
2e

1
3 x − 1√

3

}

=
1
2

ln
{

1 + 3 · 1
e

1
3 x − 1 + e−

1
3 x

}
+
√

3 Arctan

{
2e

1
3 x − 1√

3

}

=
1
2

ln

⎧⎨
⎩1 +

3

2 cosh
(x

3

)
− 1

⎫⎬
⎭+

√
3 Arctan

{
2e

1
3 x − 1√

3

}
.

It follows clearly from the latter rearrangement that the logarithmic term tends to 0 for x → ±∞,
and that the Arctan term also has limit values for x → ±∞. We therefore conclude that the
improper integral is convergent, and its value is

∫ +∞

−∞

e
1
3 x

1 + ex
dx =

√
3 · π

2
−
√

3 · Arctan
(
− 1√

3

)
=

√
3 ·
(π

2
+

π

6

)
=

2√
3

π.

Example 6.8 One shall in the following cases

1) find the domain of the integrand,

2) sketch the graph of the integrand in the interval of integration,

3) check whether the integral is convergent or divergent,

4) in case of convergence, find the value of the integral.

(1)
∫ +∞

0

1
x2 + 2x + 1

dx, (2)
∫ +∞

0

x

x2 − 2x + 2
dx.

A. Improper integrals.

D. Check the sign and find an integral; then take the limit.

I. 1) Clearly,

f(x) =
1

x2 + 2x + 2
=

1
(x + 1)2 + 1

.
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Figure 39: The graph of y =
1

x2 + 2x + 2
.

is defined and positive and differentiable for every x ∈ R, and f(x) → 0 for x → ±∞, and f(x)
has a global maximum for x = −1, where the denominator is smallest.

The integral is∫
1

x2 + 2x + 2
dx =

∫
1

(x + 1)2 + 1
dx = Arctan(x + 1),

and we conclude that the improper integral is convergent, and its value is∫ +∞

0

1
x2 + 2x + 2

dx = [Arctan(x + 1)]x→+∞
0 =

π

2
− π

4
=

π

4
.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7

x

Figure 40: The graph of y =
x

x2 − 2x + 2
, x > geq0.

2) The function

f(x) =
x

x2 − 2x + 2
=

x

(x − 1)2 + 1
,

Improper integrals

Download free eBooks at bookboon.com



Calculus Analyse 1c-6

 

133  

is defined and differentiable for every x ∈ R, and f(x) ≥ 0 for x ≥ 0 where f(0) = 0, and
f(x) → 0+ for x → +∞. Now,

f ′(x) =
−x2 + 2

(x2 − 2x + x)2

is 0 for x =
√

2 > 0, so this corresponds to a maximum,

f(
√

2) =
1 +

√
2

2
.

We get from the decomposition

f(x) =
x − 1

(x − 1)2 + 1
+

1
(x − 1)2 + 1

the integral∫
x

x2 − 2x + 2
dx =

1
2

ln
{
(x − 1)2 + 1

}
+ Arctan(x + 1),

where the logarithmic term tends to +∞ for x → +∞, while the Arctan term is bounded. It
follows that the improper integral is divergent.
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Example 6.9 Prove that the improper integral below is convergent, and find its value.∫ +∞

2

4x + 4
x4 + 4x2

dx.

A. Improper integral.

D. Decompose and find an integral.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5

x

Figure 41: The graph of y =
4x + 4

x4 + 4x2
, x ≥ 2.

I. It follows from the factorization x4+4x2 = x2(x2+4) that the integrand is defined and differentiable
for x 
= 0. It is positive for x ≥ 2. We shall only find an integral and then go to the limit.

We get by decomposition,

4x + 4
x4 + 4x2

= (x + 1) · 4
x2(x2 + 4)

= (x + 1)
{

1
x2

− 1
x2 + 4

}

=
1
x

+
1
x2

− x

x2 + 4
− 1

x2 + 4
.

When x ≥ 2, an integral is given by∫
4x + 4

x4 + 4x2
dx =

∫
1
x

dx +
∫

1
x2

dx −
∫

x

x2 + 4
dx −

∫
1

x2 + 4
dx

= lnx − 1
x
− 1

2
ln(x2 + 4) − 1

2
Arctan

(x

2

)
= − 1

x
− 1

2
Arctan

(x

2

)
− 1

2
ln
(

x2 + 4
x2

)

= − 1
x
− 1

2
Arctan

(x

2

)
− 1

2
ln
(

1 +
4
x2

)
.

If x → +∞ this expression converges towards −π

4
, and the improper integral is convergent, and
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its value is∫ +∞

2

4x + 4
x4 + 4x2

dx = −π

4
+

1
2

+
1
2

Arctan 1 +
1
2

ln 2

= −π

4
+

1
2

+
π

8
+

1
2

ln 2

=
1
2

(1 + ln 2) − π

8
.

Example 6.10 1) Decompose the fraction

8x2 + 24
(x − 1)2(x2 + 2x + 5)

.

2) Prove that the integral∫ +∞

2

8x2 + 24
(x − 1)2(x2 + 2x + 5)

dx

is convergent, and find its value.

A. Decomposition, where the degree of the denominator is 2 + the degree of the numerator. Improper
integral.

D. Decompose.

0

1

2

3

4

1 2 3 4 5 6 7

x

Figure 42: The graph of y =
8x2 + 24

(x − 1)2(x2 + 2x + 5)
, x ≥ 2.

I. 1) We get by decomposition,

8x2 + 24
(x − 1)2(x2 + 2x + 5)

=
4

(x − 1)2
+

8x2 + 24 − 4x2 − 8x − 20
(x − 1)2(x2 + 2x + 5)

=
4

(x − 1)2
+

4x2 − 8x + 4
(x − 1)2(x2 + 2x + 5)

=
4

(x − 1)2
+

4
(x + 1)2 + 4

.
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2) An integral is∫
8x2 + 24

(x − 1)2(x2 + 2x + 5)
dx = − 4

x − 1
+ 2Arctan

(
x + 1

2

)
.

The singular point x = 1 does not belong to the interval [2,+∞[, thus the improper integral is
convergent, and its value is∫ +∞

2

8x2 + 24
(x − 1)2(x2 + 2x + 5)

dx = 4 + π − 1Arctan
3
2
.

Improper integrals
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Example 6.11 Prove that the improper integral∫ ∞

ln 4

1
ex − 3

dx

is convergent, and find its value.

A. Improper integral.

D. The integrand is defined and positive in the interval of integration. Use the substitution t = ex

to find an integral.

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3

x

Figure 43: The graph of for y =
1

ex − 3
, x ≥ ln 4.

I. If we substitute t = ex, t ≥ eln 4 = 4, we get the integral

∫
1

ex − 3
dx =

∫
t=ex

1
t(t − 3)

dt =
∫

t=ex

{
−1

3
· 1
y

+
1
3
· 1
t − 3

}
dt

=
[
1
3

ln
(

t − 3
t

)]
t=ex

=
1
3

ln
(

1 − 3
ex

)
.

The integrand is positive in the interval of integration, and the indefinite integral∫
1

ex − 3
dx =

1
3

ln
(

1 − 3
ex

)

is defined for x ≥ ln 4, and it tends to 0 for x → +∞. Hence we conclude that the improper
integral is convergent, and its value is

∫ +∞

ln 4

1
ex − 3

dx =
[
1
3

ln
(

1 − 3
ex

)]+∞

ln 4

= 0 − 1
3

ln
(

1 − 3
4

)
= −1

3
ln

1
4

=
2
3

ln 2.
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Example 6.12 1) Decompose the rational function

F (x) =
11x2 − 30x + 9
x(x − 1)(x2 + 9)

.

2) Prove that the improper integral∫ +∞

3

F (x) dx

is convergent, and find its value.

A. Decomposition and improper integral.

D. Use the standard procedures.

I. 1) We get by decomposition,

F (x) =
11x2 − 30x + 9
x(x − 1)(x2 + 9)

= − 1
x
− 1

x−1
+

11x2−30x+9+(x−1)(x2+9)+x(x2+9)
x(x − 1)(x2 + 9)

= − 1
x
− 1

x−1
+

11x2−30x+99x−9+(x−1)x2+x3+9x
x(x − 1)(x2 + 9)

= − 1
x
− 1

x−1
+

x3+11x2−12x+x2(x−1)
x(x − 1)(x2 + 9)

= − 1
x
− 1

x − 1
+

x(x − 1)(x + 12) + x(x − 1)x
x(x − 1)(x2 + 9)

= − 1
x
− 1

x − 1
+

2x + 12
x2 + 9

.

C. Test:

− 1
x
− 1

x − 1
+

2x + 12
x2 + 9

=
1

x(x−1)(x2+9)
{−(x−1)(x2+9)−x(x2+9)+(2x+12)(x2−x)

}
=

1
x(x−1)(x2+9)

{−x3−9x+x2+9−x3−9x+2x3−2x2+12x2−12x
}

=
11x2 − 30x + 9
x(x − 1)(x2 + 9)

. Q.E.D.

2) If x > 1, then an integral is∫
F (x) dx =

∫ {
− 1

x
− 1

x − 1
+

2x
x2 + 9

+
12

x2 + 9

}
dx

= − ln x − ln(x − 1) + ln(x2 + 9) +
12
3

Arctan
(x

3

)
= ln

{
x2 + 9

x(x − 1)

}
+ 4Arctan

(x

3

)

= ln
{

1 +
x + 9

x(x − 1)

}
+ 4Arctan

(x

3

)
.
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The latter expression of the integral clearly converges towards 4 · π

2
+ 0 = 2π for x → +∞. We

conclude that the improper integral is convergent, and its value is∫ +∞

3

F (x) dx = 2π − ln
(

32 + 9
3 · 2

)
− 4Arctan

(
3
3

)

= 2π − ln 3 − 4 · π

4
= π − ln 3,

where we have used that the integrand is positive, and that the integral has a limit for x → +∞.

Example 6.13 Prove that the integral∫ 1

0

x + 3√
1 − x2

dx

is convergent, and find its value.

A. Improper integral.

D. The integrand is positive in [0, 1[, but it is not defined for x = 1. Find an integral and take the
limit x → 1−.

I. An integral is∫
x + 3√
1 − x2

dx =
∫

x√
1 − x2

dx + 3
∫

1√
1 − x2

dx

= 3Arcsin x −
√

1 − x2.

This shows clearly that the improper integral is convergent, and its value is∫ 1

0

x + 3√
1 − x2

dx =
3π
2

+ 1.

Example 6.14 Prove that the improper integral∫ +∞

1

1
x {(lnx)3 + (lnx)2 + lnx + 1} dx

is convergent, and find its value.

A. Improper integral.

D. Use the substitution y = lnx, and then find an integral.

I. The integrand is clearly positive in the interval of integration, so it suffices to apply the substitution,
followed by a limit process.

By the substitution y = lnx (≥ 0), dy =
1
x

dx, the integral is written

∫
2

x {(lnx)3 + (lnx)2 + lnx + 1} dx =
∫

y=ln x

2
y3 + y2 + y + 1

dy.
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Then by a decomposition,

2
y3 + y2 + y + 1

=
2

(y + 1) (y2 + 1)
=

1
y + 1

+
2 − (

y2 + 1
)

(y + 1) (y2 + 1)

=
1

y + 1
− y

y2 + 1
+

1
y2 + 1

,

Improper integrals
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hence,∫
2

x {(lnx)3 + (lnx)2 + lnx + 1} dx

=
∫

y=ln x

{
1

y + 1
− y

y2 + 1
+

1
y2 + 1

}
dy

=
[
ln(y + 1) − 1

2
ln
(
y2 + 1

)
+ Arctan y

]
y=ln x

=
[
1
2

ln
{

(y + 1)2

y2 + 1

}
+ Arctan y

]
y=ln x

=
[
1
2

ln
{

1 +
2y

y2 + 1

}
+ Arctan y

]
y=ln x

=
1
2

ln
{

1 +
2 ln x

(lnx)2 + 1

}
+ Arctan(ln x).

This expression is clearly convergent for x → +∞, and when x = 1 the integrand is continuous,
thus the improper integral is convergent, and its value is∫ +∞

1

2
x {(ln x)3 + (lnx)2 + lnx + 1} dx = 0 +

π

2
− 0 − 0 =

π

2
.

Example 6.15 Let n ∈ N be a natural number. Prove that the integral∫ +∞

0

x3e−nx dx

is convergent, and find its value.

A. Improper integral.

D. Find an integral, either by partial integration or by guessing.

I. The integrand is defined and non-negative for all x ≥ 0, so it suffices to find an integral and then
perform the limit process.

First variant. We guess the integral of the form

F (x) =
(
αx3 + βx2 + γx + δ

)
e−nx.

Then

f(x) = F ′(x)
= −n

(
αx3 + βx2 + γx + δ

)
e−nx +

(
3αx2 + 2βx + γ

)
e−nx

= −nαx3e−nx + (3α − nβ)x2e−nx + (2β − nγ)xe−nx + (γ − nδ)e−nx,

which is equal to x3e−nx for

−nα = 1, 3α − nβ = 0, 2β − nγ = 0 og γ − nδ = 0,
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thus

α = − 1
n

, β =
3α
n

= − 3
n2

, γ =
2β
n

= − 6
n3

, δ =
γ

n
= − 6

n4
.

An integral is∫
x3e−nx dx = − 1

n4

(
n3x3 + 3n2x2 + 6nx + 6

)
e−nx.

Second variant. By successive partial integrations we get∫
x3e−nx dx = − 1

n
x3e−nx +

3
n

∫
x2e−nx dx

= − 1
n

x3e−nx − 3
n2

x2e−nx +
6
n2

∫
x e−nx dx

= − 1
n

x3e−nx − 3
n2

x2e−nx − 6
n3

xe−nx +
6
n3

∫
e−nx dx

= − 1
n

x3e−nx − 3
n2

x2e−nx − 6
n3

xe−nx − 6
n4

e−nx

= − 1
n4

(
n3x3 + 3n2x2 + 6nx + 6

)
e−nx.

An exponential dominates every polynomial, so the integral above converges towards 0 for
x → +∞, and the improper integral is convergent with the value∫ +∞

0

x3e−nx dx = 0 −
(
− 6

n4

)
=

6
n4

.

Example 6.16 1) Find the approximating polynomial of at most third degree with the point of ex-
pansion t0 = 0 of the solution of the solution of differential equation

d3x

dt3
− d2x

dt2
+ 2x = cos 2t, t ∈ R,

which satisfies the initial conditions

x(0) = 0, x′(0) = 1, x′′(0) = 1.

2) Prove that the improper integral

∫ +∞

0

2x + 2
x3 − x2 + 2

dx

is convergent, and find its value.

A. Approximating polynomial of a solution of a differential equation, and an improper integral.

D. Rearrange the differential equation and put x = 0. The improper integral is treated in the usual
way.
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I. 1) By a rearrangement of the differential equation and insertion of x = 0 we get

x(3)(0) = cos(2 · 0) + x′′(0) − 2x(0) = 1 + 1 − 0 = 2,

so

P3(t) = x(0) +
x′(0)

1!
t +

x′′(0)
2!

t2 +
x(3)(0)

3!
t3 = t +

1
2

t2 +
1
3

t3.

2) The denominator

x3 − x2 + 2 = (x + 1){(x − 1)2 + 1}

is only 0 for x = −1 /∈ [0,+∞[, thus the integrand is defined and positive in i [0,+∞[. By
reduction

2x + 2
x3 − x2 + 2

=
2x + 2

(x + 1){(x − 1)2 + 1} =
2

(x − 1)2 + 1
,

hence∫ n

0

2x + 2
x3 − x2 + 2

dx = 2
∫ n

0

dx

(x − 1)2 + 1
= [2Arctan(x − 1)]n0

= 2Arctan(n − 1) + 2Arctan 1

→ 2 · π

2
+ 2 · π

4
=

3π
2

, for n → +∞,

and the improper integral is convergent with the value∫ +∞

0

2x + 2
x3 − x2 + 2

dx =
3π
2

.

Example 6.17 (Cf. Example 6.18)

1) Prove that

∫ 1

0

√
1 − x2 dx =

π

4
.

2) Prove that the integral

∫ +∞

1

1
x2

√
1 − 1

x2
dx

is convergent, and find its value.

Hint. Use some substitution to prove that

∫ k

1

1
x2

√
1 − 1

x2
dx =

∫ 1

1
k

√
1 − u2 du.
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3) Prove that the integral

Ik =
∫ +∞

1

1
x

√
1

x2k
− 1

x4k
dx

is convergent for every k ∈ N, and find its value.

A. Improper integrals.

D. Either use an area consideration, or some substitution.

I. 1) First variant. A graphical consideration shows that the integral can be interpreted as the area
of one quarter of the unit disc, hence∫ 1

0

√
1 − x2 dx =

π

4
.
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Figure 44: The graph of for y =
√

1 − x2, x ∈ [0, 1].

Second variant. If we instead apply the monotonous substitution

x = sin t, t ∈
[
0,

π

2

]
,

then∫ 1

0

√
1 − x2 dx =

∫ π
2

0

√
1 − sin2 t · cos t dt

=
∫ π

2

0

+cos t · cos t dt

=
∫ π

2

0

cos2 t dt =
∫ π

2

0

cos 2t + 1
2

dt

=
1
2
· π

2
+
[
sin 2t

4

]π
2

0

=
π

4
+ 0 =

π

4
.

2) Choosing the substitution u =
1
x

, du = − 1
x2

dx, u ∈ ]0, 1], we get

∫ k

1

1
x2

√
1 − 1

x2
dx = −

∫ 1
k

1

√
1 − u2 du =

∫ 1

1
k

√
1 − u2 du.

The integrand is positive, so by taking the limit k → +∞,∫ +∞

1

1
x2

√
1 − 1

x2
dx = lim

x→+∞

∫ k

1

1
x2

√
1 − 1

x2
dx

= lim
k→+∞

∫ 1

1
k

√
1 − u2 du =

∫ 1

0

√
1 − u2 du =

π

4
.

3) Since

0 ≤ 1
x

√
1

x2k
− 1

x4k
<

1
xk+1

for x ∈ [1,+∞[, k ∈ N,

the improper integral is convergent, because the improper integral of 1/xk+1 is convergent.
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We find by the substitution

u =
1
xk

, du = − k

xk+1
dx, u ∈ ]0, 1[,

that

Ik =
∫ +∞

1

1
x

√
1

x2k
− 1

x4k
dx =

∫ +∞

1

1
xk+1

√
1 − 1

x2k
dx

= −1
k

∫ 0

1

√
1 − u2 du =

π

4k
.

Example 6.18 (Cf. Example 6.17)

1) Calculate the integral∫ 1

0

√
1 − x2 dx.

2) Prove that the integral∫ +∞

1

1
x2

√
1 − 1

x2
dx

is convergent, and find its value.

Hint. Use a substitution to prove that∫ k

1

1
x2

√
1 − 1

x2
dx =

∫ 1

1
k

√
1 − u2 du.

3) Find the Taylor polynomial P6(t) of order 6 and point of expansion t0 = 0 for the function

ϕ(t) = t2
√

1 − t2, t ∈ [−1, 1].

Replace the integrand in∫ +∞

1

1
x2

√
1 − 1

x2
dx

by the function P6

(
1
x

)
, and calculate this approximation of the integral from (2).

A. Improper integrals, and a Taylor expansion and an approximation of an integral.

The first two bullets are the same as the first two bullets of Example 6.17.

D. Either use an area consideration, or some substitution. Then a Taylor expansion, followed by a
partial integration.

I. 1) First variant. A graphical consideration shows that the integral can be interpreted as the area
of a quarter of the unit disc, so∫ 1

0

√
1 − x2 dx =

π

4
.
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Figure 45: The graph of y =
√

1 − x2, x ∈ [0, 1].

Second variant. If we instead use the monotonous substitution

x = sin t, t ∈
[
0,

π

2

]
,

then∫ 1

0

√
1 − x2 dx =

∫ π
2

0

√
1 − sin2 t · cos t dt

=
∫ π

2

0

+cos t · cos t dt

=
∫ π

2

0

cos2 t dt =
∫ π

2

0

cos 2t + 1
2

dt

=
1
2
· π

2
+
[
sin 2t

4

]π
2

0

=
π

4
+ 0 =

π

4
.

2) If we choose the substitution u =
1
x

, du = − 1
x2

dx, u ∈ ]0, 1], then

∫ k

1

1
x2

√
1 − 1

x2
dx = −

∫ 1
k

1

√
1 − u2 du =

∫ 1

1
k

√
1 − u2 du.

The integrand is positive, and we get by taking the limit k → +∞ that∫ +∞

1

1
x2

√
1 − 1

x2
dx = lim

x→+∞

∫ k

1

1
x2

√
1 − 1

x2
dx

= lim
k→+∞

∫ 1

1
k

√
1 − u2 du =

∫ 1

0

√
1 − u2 du =

π

4
.

3) From

ϕ(t) = t2
√

1 − t2 = t2
{

1 − 1
2

t2 − 1
8

t4 + t4 ε(t)
}

,

follows that

P6(t) = t2 − 1
2

t4 − 1
8

t6.
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Then by insertion,∫ +∞

1

1
x2

√
1 − 1

x2
dx ≈

∫ +∞

1

P6

(
1
x

)
dx

=
∫ +∞

1

{
1
x2

− 1
2

1
x4

− 1
8

1
x6

}
dx

=
[
− 1

x
+

1
6

1
x3

+
1
40

1
x5

]+∞

1

= 1 − 1
6
− 1

40

=
1

120
(120 − 20 − 3) =

97
120

≈ 0, 808 333.

For comparison it was shown in Example 6.17 that the true value is
π

4
≈ 0, 785 398, so the

error is < 3%.
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Example 6.19 1) Decompose the fraction

P (x)
Q(x)

=
x2 − 10x − 10

(x − 1)2(x2 + 6x + 12)
, x ∈ R \ {1}.

2) Prove that the integral

∫ +∞

2

P (x)
Q(x)

dx

is convergent, and find its value.

A. Decomposition followed by an improper integral.

D. Decompose successively. Then consider the difference in degrees and apply the decomposition
from (1).

I. 1) We first see that

x2 + 6x + 12 = (x + 3)2 + 3 ≥ 3,

and the fraction is already written in its canonical form.

Then by decomposition,

P (x)
Q(x)

=
1 − 10 − 10
1 + 6 + 12

· 1
(x − 1)2

+
x2 − 1 + x − 10

(x − 1)2(x2 + 6x + 12)
+

1
(x − 1)2

= − 1
(x − 1)2

+
x2 − 10x − 10 + x2 + 6x + 12

(x − 1)2(x2 + 6x + 12)

= − 1
(x − 1)2

+
2x2 − 4x + 2

(x − 1)2(x2 + 6x + 12)

= − 1
(x − 1)2

+
2(x − 1)2

(x − 1)2(x2 + 6x + 12)

= − 1
(x − 1)2

+
2

x2 + 6x + 12
.

C. Test:

− 1
(x − 1)2

+
2

x2 + 6x + 12
=

−x2 − 6x − 12 + 2x2 − 4x + 2
(x − 1)2(x2 + 6x + 12)

=
x2 − 10x − 10

(x − 1)2(x2 + 6x + 12)
. Q.E.D.

2) We now make the following very practical rearrangement of the fraction,

P (x)
Q(x)

= − 1
(x − 1)2

+
2

x2 + 6x + 12
= − 1

(x − 1)2
+

2
(x + 3)2 + 3

= − 1
(x − 1)2

+
2√
3
· 1

1 +
(

x + 3√
3

)2 · 1√
3
.
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Clearly, both terms can be integrated to infinity, and the singularity x = 1 does not lie in the
interval [2,+∞[. We conclude that the improper integral is convergent. Finally, its value is
calculated in the following way,∫ +∞

2

P (x)
Q(x)

dx = −
∫ +∞

2

1
(x − 1)2

dx +
2√
3

∫ +∞

2

1

1 +
(

x + 3√
3

)2 · 1√
3

dx

=
[

1
x − 1

]+∞

2

+
2√
3

[
Arctan

(
x + 3√

3

)]+∞

2

= −1 +
2√
3

{
π

2
− Arctan

(
5√
3

)}

=
π√
3
− 2√

3
Arctan

(
5√
3

)
− 1.

Example 6.20 Check for each of the following four integrals, whether it is convergent or divergent:

1)
∫ π

2
0

1√
x

dx,

2)
∫ π

2
0

tanx dx,

3)
∫ π

2
0

1
cos x

dx,

4)
∫ π

2
0

(
1√
x

+ tanx − 1
cos x

)
dx.

A. Convergence/divergence of improper integrals.

D. Find the indefinite integrals and then take the limits.

I. 1) The integrand is here always positive, and an integral is∫
1√
x

dx = 2
√

x for x > 0.

It follows that∫ π
2

0

1√
x

dx = lim
a→0+

∫ π
2

a

1√
x

dx = lim
a→0+

[
2
√

x
]π

2

a
= lim

a→0+

{
2
√

π

2
− 2

√
a

}
=

√
2π,

and we have convergence.

2) If x ∈
[
0,

π

2

[
, then tanx is positive, and an integral is

∫
tanx dx =

∫
sinx

cos x
dx = − ln cos x.

If follows from

lim
x→π

2

{− ln cos x} = +∞,

that the integral is divergent.
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3) Since

1
cos x

>
sinx

cos x
= tan x > 0 for 0 < x <

π

2
,

and since
∫ π

2
0

tanx dx is divergent according to (2), the larger integral
∫ π

2
0

1
cos x

dx is also
divergent.

Alternatively an integral is∫
1

cos x
dx =

∫
cos x

cos2 x
dx =

∫
cos x

1 − sin2 x
dx

=
1
2

∫ (
1

1 + sin x
+

1
1 − sinx

)
d sinx

=
1
2
{ln |1 + sinx| − ln |1 − sinx|}

=
1
2

ln
(

1 + sin x

1 − sinx

)
,

Improper integrals

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/elearningforkids


Calculus Analyse 1c-6

 

152  

where

1
2

ln
(

1 + sinx

1 − sinx

)
→ +∞ for x → π

2
−,

and the integral is divergent.

4) Based on the results of (2) and (3) one might be misled to conclude that the present integral
is divergent. This is not true. Let x ∈

]
0,

π

2

[
. Then an integral is∫ (

1√
x

+ tanx − 1
cos x

)
dx

= 2
√

x − ln cos x − 1
2

ln
(

1 + sinx

1 − sinx

)

= 2
√

x − 1
2

ln cos2 x − 1
2

ln
(

1 + sin x

1 − sinx

)

= 2
√

x − 1
2

ln
(

1 + sinx

1 − sinx
· (1 − sin2 x)

)

= 2
√

x − 1
2

ln
{
(1 + sin x)2

}
= 2

√
x − ln(1 + sinx),

hence∫ π
2

0

{
1√
x

+ tanx − 1
cos x

}
dx

= lim
a→π

2 −
lim

b→0+

∫ a

b

{
1√
x

+ tan x − 1
cos x

}
dx

= lim
a→π

2 −
lim

b→0+

[
2
√

x − ln(1 + sinx)
]a
b

= 2
√

π

2
− ln 2 − 0 =

√
2π − ln 2,

and the integral is convergent.

Remark. One shall strictly speaking also check the variation of the sign of the integrand before
we go to the limit. This will here be left to the reader. ♦

Example 6.21 Check if the improper integrals∫ 1

0

1
tan x

dx,

∫ 1

0

(
1

tanx
− 1

x

)
dx,

are convergent. If so, find the value.

A. Improper integrals.

D. What is “wrong” in the integral? Check the sign of the integrand. Truncate the interval of
integration and integrate. Finally, take the limit.
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I. 1) Clearly, tan x > 0 for x ∈ ]0, 1], and the questionable point is x = 0. If we truncate by ε > 0,
we get∫ 1

ε

1
tan x

dx =
∫ 1

ε

cos x

sin x
dx = [ln sinx]1ε = ln ∈ 1 − ln sin ε.

Since ln sin ε → −(−∞) = +∞ for ε → 0+, this improper integral is divergent.

2) Since tanx > x for x ∈ ]0, 1[, we get
1

tan x
− 1

x
< 0 in the same interval. The questionable

point is x = 0. If we truncate by ε > 0, we get∫ 1

ε

(
1

tan x
− 1

x

)
= [ln sinx − lnx]1ε =

[
ln

sinx

x

]1

ε

= ln sin 1 − ln
sin ε

ε
→ ln sin 1 for ε → 0+,

where we have used the well-known result

lim
ε→0+

sin ε

ε
= 1.
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Example 6.22 Check if the improper integral

∫ +∞

1

sin
1
x

x2
dx

is convergent or divergent.

A. Improper integral.

D. If x >
1
π

, then the integrand is positive. By a finite truncation and the substitution t =
1
x

we get

∫ n

1

sin
1
x

x2
dx =

∫ 1

1
n

sin t dt = [− cos t]11
n

= cos
1
n
− cos 1 → 1 − cos 1 for n → +∞,

thus the improper integral is convergent, and its value is

∫ +∞

1

sin
1
x

x2
dx = 1 − cos 1.

Remark. Strictly speaking one is only asked about the convergence or the divergence. Therefore,
the following is sufficient:

The integrand is continuous in the closed and bounded interval
[
1,

1
π

]
, hence the integral exists

in this interval.

For x ∈
[

1
π

,+∞
[

we get the estimate

0 ≤
sin

1
x

x2
≤ 1

x2
.

Since
1
x2

can be integrated to infinity, the same holds for the smaller integrand, and the improper
integral is convergent. ♦
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