ОПТИКА

2

Г.С. ЛАНДСБЕРГ

МОРЕНИЙ КАРС ФИЗИКИ

Г. С. ЛАНДСБЕРГ.

ОПТИКА

Издание пятое, переработанное и дополненное

Допущено Министерством высшего и среднего специального образования СССР в качестве учебного пособия для студентов физических специальностей высших учебных заведений

-86883

ИЗДАТЕЛЬСТВО «НАУКА» ГЛАВНАЯ РЕДАКЦИЯ ФИЗНКО-МАТЕМАТИЧЕСКОЙ ЛИТЕРАТУРЫ МОСКВА 1076 ИБЛИОГЕНА

M/w Chanyan

читальный алт Дік Флохад

π 20405-148 053(02)-76 101-76

С Главпая редакция физико-математической литературы издательства «Наука», 1976 г., с изменениями

оглавление

От	издательства						 									Ŧ			0	
Из	предисловия	к третьему	изданию	÷		Ì	-			 •	•	•	•	•	•	۰.	•	5.1	11	
Из	предисловия	ко второму	изданию	÷					į.	 •		•	•	Č,	1	•	•	•	10	
Пре	едисловие к п	ервому изд	анию	•	•		 	•					:	:	:	:	:	-	12	

введение

Глава I. Краткое историческое введение	13
1. Основные законы оптики (13). § 2. Главнейшие этапы развития оптических	
300µm (10).	
Глава II. Волны	25
§ 3. Образование волны. Волновое уравнение (25). § 4. Монохроматические коле- бания и волны. Понятие о разложении Фурье (29). § 5. Энергия, переносимая электромагнитной волной (37). § 6. Классификация волн. Понятие о поляри- зации волн (40).	-
and the second se	
Глава III. Фотометрические понятия и единицы	43
§ 7. Основные понятия (43). § 8. Переход от энергетических величив к свето- вым (51). § 9. Единицы для световых измерений (52). § 10. Световые измерения (ботометрия) (55).	

ИНТЕРФЕРЕНЦИЯ СВЕТА

Глава IV. Когерентность

§ 11. Ввсдение (62). § 12. Понятие о когерентности.¹. Интерференция колебаний (62). § 13. Интерференция волн (65). § 14. Осуществление когерентных волн в оптике (69). § 15. Основные характеристики интерференционных схем (71). § 16. Различные интерференционные схемы (76). § 17. Значение размеров источника света. Пространственная когерентность (80). § 18. Роль поляризации при интерференции поперечных воли (86). § 19. Кажущиеся парадоксы в явлениях интерференции волн (88). § 20. Оптическая длина пути. Таутохронизм оптических систем (89). § 21. Интерференция немонохроматических световых пучков (91). § 22. Частично когерентный свет (94).

Г	л	ав	a '	VI.	Лон	кализ	ация	пол	0 C	нте	рфере	нцяи				•••		120
ş	25.	Ці	вета	тон	ких	плас	гннок	(120). §	26.	Колы	ta Н	ыютона	1 (12	5).	§ 27.	Интер-	
¢	epe	нця	я р	пл	оско	парал	ілелы	ных	плас	тин	ках, Г	Іолос	ы равн	1010	нак	лона	(128).	

1*

62

оглавление

Глава VII. Интерференционные приборы и применения интерференции § 28. Интерферометр Жамена (131). § 29. Интерферометр Майкельсона (134). § 30. Интерференционные приборы с многократно разделенными световыми пуч-ками (136). § 31. Интерференция при большой разности хода (142). § 32. Неко-ками (136). § 31. Интерференция именых методов исследования (145). торые применения интерференционных методов исследования (145).

ДИФРАКЦИЯ СВЕТА

Глава VIII. Принцип Гюйгенса и его применения . . . 150

33) Принцип Гюйгенса — Френеля (150). § 34. Зонная пластинка (155). § 35. Графическое вычисление результирующей амплитуды (158). § 36. Простейшие янфракционные проблемы (160). § 37. Спираль Корню и применение ее для гра-фического решения Пфракционных задач (166). § 38. Замечания относительно принципа Гюйгенса — Френеля (168).

Глава IX. Дифракция в параллельных лучах (дифракция Фраунгофера) 172

 Каракция Фраувгофера от щели (172). \$ (40) Влияние ширины щели на дифракционную картину (179). \$ 41. Влияние размеров источника света (179).
 Картину (179). В 41. Влияние размеров источника света (179).
 Картину (179). В 41. Влияние размеров источника света (179).
 Картину (179). В 41. Влияние размеров источника света (179).
 Картину (179). В 41. Влияние размеров источника света (179).
 Картину (179). В 41. Влияние размеров источника света (179).
 Картину (179). В 41. Влияние размеров источника света (179).
 Картину (179). В 41. Влияние размеров источника света (179).
 Картину (179). В 41. Влияние размеров источника света (179).
 Картину (179). В 41. Влияние размеров источника света (179).
 Картину (179). В 41. В 4 § 42. Дифракция от прямоугольного и круглого отверстии (182). 9 43. Гауссовы пучки (184). § 44. Дифракция на двух щелях (191). § 45. Интерферометр Рэлея. Измерение углового диамстра звезд (193). §(46). Дифракционная решетка (198). §(47). Наклонное падение лучей на решетку (204). § 48: Фазовые решетки (206). § 47. Эмелон Майкельсона (209). § 50. Характеристики спектральных аппаратов и сравнение их между собой (211). § 51. Роль спектрального аппарата при анализе светсвого импульса (219).

Глава Х. Дифракция на многомерных структурах

§ 52, Дифракционная решетка как одномерная структура (224). § 53. Дифракция на двумерных структурах (225). § 54.)Дифракционные явления на трехмерных структурах (227). § 55. Дифракция рентгеновских лучей (231). § 56. Дифракция световых волн на ультраакустических волнах (232).

Глава XI. Голография..... 235

§ 57. Введенке (235). § 58. Голографирование плоской волны (237). § 59. Голографирование сферической волны (239). § 60. Голограммы Френеля трехмерных объектов (241). § 61. Голограмма как элемент идеальной оптической системы. Получепов услучения изображения (248). § 62. Голограммы Фурье (254). § 63. Разре-шающая способность голографических систем (256). § 64. Качество голографических изобряжения (259). § 65. Объемные голограммы (метод Денисюка) (262). § 66. Пветные голографические изображения (265). § 67. Применсние голография. Голографическая интерферометрия (266).

ГЕОМЕТРИЧЕСКАЯ (ЛУЧЕВАЯ) ОПТИКА

Глава XII. Основные положения лучевой оптики

§ 68. Введение (272). § 69. Принцип Ферма (274). § 70. Основные определения. Закон преломления и стражения. Принцип взаимиости (277). § 71. Преломле-ние (и отражение) на сферической поверхности (280). § 72. Фокусы сферической поверхности (262). § 73. Изобланов поверхности (280). § 72. Фокусы сферической ине (в огражение) на сферической поверхности (200). 9 /2. Сокусы сферической поверхности (282). § 73. Изображение малых предметов при преломлении на сфе-рической поверхности (284). § 74. Увеличение. Теорема Лагранжа — Гельмгольца. (285). § 75. Центрированная оптическая система (287). § 76. Преломление в линзе. Общая формула лицы (266). § 77. Сощая формула линзы (268), § 77. Фокуспые расстояния топкой линзы (290). § 78. Изображение в тонкой линзе. Увеличение (292). § 79. Идеальные оптические

Глава XIII. Аберрации оптических систем § 80. Весдение (301). § 81. Каустическая поверхность. Характер ее симметрии (302). § 82. Аберрация, сбусловленные широкими пучками лучей (303). § 83. Аберрация, обусловленные тонкими внеосевыми наклонными пучками лучей (300). § 84. Астигматизм, обусловленный асимметрией системы (309). § 85. Апла-натизм. Условие свиусов (310). § 86. Аберрации, обусловленные зависимостью показателя преломления от длины волны (хроматические аберрации) (313). 272

301

224

(113

Глава XIV. Оптические инструменты . 318

§ 87. Роль днафрагм (318). § 88. Апертурная днафрагма, входной и выходной зрачки (319). § 89. Днафрагма поля эрення. Люки (322). § 90. Фотографический аппарат (324). § 91. Глаз как оптическая система (325). § 92. Оптические инстру-менты, вооружающие глаз (329). § 93. Проекционные устройства (336). § 94. Спектральные аппараты (337). § 95. Восприятие света. «Ночезрительная труба» М. В. Ломоносова (340).

Глава XV. Дифракционная теория оптических инструментов.

§ 96. Разрешающая сила объектива (346). § 97. Разрешающая сила микроскопа (348). § 98. Электронный микроскоп (357). § 99. Метод темного поля (ультра-микроскопия). Метод фазового контраста (361). § 100. Дифракционные явления в спектрографах (хроматическая разрешающая сила) (366).

ПОЛЯРИЗАЦИЯ СВЕТА

Глава XVI. Естественный и поляризованный свет.

§ 101. Поперечность световых волн (370). § 102. Распространение света через тур-малин (372). § 103. Поляризация при отражении и преломлении света на границе двух диэлектриков (374). § 104. Ориентация электрического вектора в полярв-зованном свете (377). § 105. Закон Малюса (378). § 106. Естественный свет (379).

Глава XVII. Поляризация при двойном лучепреломлении . .

§ 107. Двойное лучепреломление и поляризация света при прохождении через кристалл исландского шпата (380). \$ 108. Поляризационные приспособления (384).

Глава XVIII. Интерференция поляризованных лучей

§ 109. Опыты Френеля и Араго и их значение для упругой теории света (383). § 110. Эллишическая и круговая поляризация света (390). § 111. Внутренняя структура естественного света (393). § 112. Обнаружение и анализ эллиптическии циркулярно-поляризованного света (396).

ШКАЛА ЭЛЕКТРОМАГНИТНЫХ ВОЛН

Глава XIX. Инфракрасные, ультрафиолетовые и рентгеновские лучи 400

§ 113. Инфракрасные и ультрафнолетовые лучи (400). § 114. Открытие рентгеновских лучей и методы их получения и наблюдения (403). § 115. Поглощение рентгеновского излучения (404). § 116. Природа рентгеновских лучей (407). § 117. Дифракция рентгеновских лучей и а кристаллической решетке (408). § 118. Сиектрография рентгеновских лучей (409). § 119. Сплошной рентгеновских лучей (409). § 119. Оплика рентгеновских лучей (413). В сарактеристических лучах (412). § 120. Оптика рентгеновских лучах (415). лучей (413). § 121. Шкала электромагнитных воли (415).

СКОРОСТЬ СВЕТА

Глава ХХ. Скорость света и методы ее определения

§ 122. Значение опытов по определению скорости света и первая попытка Галилея (417). § 123. Астрономические методы определения скорости света (418). § 124. Лабораторные методы определения скорости света (422). § 125. Фазовая и групповая скорости света (427).

Глава XXI, Явление Допплера. § 126. Введение (432), § 127. Явление Допплера в акустике (433). § 123. Явление

Допплера в онтике (436).

Глава XXII. Оптика дзяжущихся сред

§ 129. Принцип относительности в механике и формулы преобразования Галилен (441). § 130. Электродинамика даижущихся сред (443). § 131. Основы специ-альной теории относительности (453). § 132. Формулы преобразования теории относительности (455). § 133. Выводы из формул преобразования теории отно-сительности (459). § 134. Общие выводы (405).

388

350

370

417

432

441

5

346

OI JIADellar

пространение света через границу двух сред

распростити предомление света на границе двух ди-	
Глава XXIII. Отражение и пречени	470
§ 135. Отражение и преломление на границе двух диэлектриков. Формулы Фре- § 135. Отражение и преломление на границе двух диэлектриков. Формулы Фре- исле (470). § 136. Поляризация света при прохождении через границу двух излектриков. Наглядная интерпретация закона Брюстера (479).	1.4
Глава XXIV. Полное внутреннее отражение	482
Глава XXV. Основы металлооптики	489

оптика анизотропных сред

Глава XXVI. Основы кристаллооптики 495

§ 142. Анизотропные среды (495). § 143. Оптические свойства анизотропной среды (500). § 144. Поверхность волны (лучевая) и поверхность нормалей (503). § 145. Одноосные и двуосные кристаллы (506). § 146. Построение Гюйгенса для анизотропных сред (509). § 147. Экспериментальные данные о распространении света в одноосных кристаллах (512). § 148. Цвета кристаллических пластинок и интерференция поляризованных лучей (516). § 149. Эффекты пространственной дисперсии. Оптическая анизотропия кубических кристаллов (521).

525

§ 150. Введение (525). § 151. Анизотропия, возникающая при деформациях (525). § 152. Двойное лучепреломление в электрическом поле (явление Керра) (527). § 153. Двойное лучепреломление в магнитном поле (явление Коттоп — Мутона) (536).

МОЛЕКУЛЯРНАЯ ОПТИКА

лава XXVIII. Дисперсия и абсорбция света	538
§ 154. Трудности электромагнитной теории Максвелла. (538). § 1557 Дисперсия света. Методы наблюдения и результаты (540). § 156. Основы теории дисперсии (547). § 157. Поглощение (абсорбция) света (563). § 158. Ширина спектральных линий и затухание излучения (571).	
Глава XXIX. Рассеяние света	575
5 169., Прохождение света через оптически неоднородную среду (575). \$ 160. Молекулярное рассеяние света (582). \$ 161. Слектры молекулярного рас- сеяния света (592). \$ 162. Комбинационное рассеяние света (600). r	
Глава ХХХ. Вращение плоскости	007
§ 163. Введение (607). § 164. Вращение поляризации	607
Вращение плоскости поляризации в кристаллах (608) метрия (614). § 168. Теория вращательной способности (610). § 166. § 169. Магинтнос вращение власти вращения плоскости (612). § 167. Сахари-	
Глава Хууг - (614).	
б. 170 с.	
у 170. Сущность явления Зсемана (621). § 171. Элементарная теория явления Зсемана (623). § 172. Аномальный (сложный) эффект Зеемана теория явления Штарка (630).	621
Фарадея (628). § 173. Об-	

оглавление

ДЕЙСТВИЯ СВЕТА

Corossey manus and the

VVII

т и ава Алати, чогозлектрический зффект	533
§ 175. Введение (633). § 176. Законы фотоэффекта (635). § 177. Уравиение Эйн- штейна. Гипотеза световых квантов (035). § 178. Обоснование гипотезы световых квантов в явлениях фотоэффекта (640). § 179. Зависимость силы фототока от длины световой волны (644). § 180. Внутренний фотоэффект (643). § 181. Фото- элементы и их применения (649).	
Глава XXXIII. Явление Комптона	652
V§ 182. Сущность явления Комптона и его законы (652). § 183. Теория явления Комптона (654). § 184. Эффект Допплера и гипотеза световых квантов (656).	1
Глава XXXIV. Давление света	660
§ 185. Экспериментальное изучение давления света (660). § 186. Давление света в рамках теории фотонов (663). § 187. Роль светового давления в некоторых кос- мических явлениях (664).	2
Глара ХХХУ Химиноские вейстеня свота	605
тлава лллу, лимические деиствия света	000
\$ 188. Введение (665). \$ 189. Основные законы фотохиман (666). \$ 199. Сенся- билизированные фотохимические реакции (669). \$ 191. Основы фотографии (670). \$ 192. Сенсибилизация фотографических пластинок (673). \$ 193. Восприятие света глазом (674).	
тепловое излучение	
Deces VXXVII O	600

т лава лллут. Закопы теплового излучения	00.0
§ 194. Тепловое излучение (682). § 195. Тепловое излучение и правило Прево	
(063). § 196. Закон Кирхгофа (687). § 197. Применение закона Кирхгофа. Ассо- лютно черное тело (690). § 198. Излучение нечерных тел (693). § 199. Закон Стефана — Больцмана (694). § 200. Закон смещения Вива (696). § 201. Формула излучения Планка (698).	
Глава XXXVII. Применения законов теплового излучения	701
· · · · · · · · · · · · · · · · · · ·	

§ 202. Оптическая пирометрия (701). § 203. Источники света (706).

люминесценция

§ 204. Линейчатые спектры (711). § 205. Спектрадьные закономерности (713). § 206. Модели атома Дж. Дж. Томсона и Резерфорда (718). § 207. Постулаты Борз (720). § 208. Атом водорода (722). § 209. Резонансное Палучение (726). § 210. Длительность возбужденного состояния (729). § 211. Радиационные процессы в кваитовой теории атома. Вывод формулы Планка по Эйиштейну (730). § 212. Возбуждение свечения иагреванием (742). § 213. Полосатые спектры молекул в видимой и ультрафиолетовой областях (744). § 214. Инфракрасные спектры молекул (748).

Глава XXXIX, Фотолюминесценция..... 743

\$ 215. Флуоресценция молекул (749). \$ 216. Фотолюминесценцяя жидкостей и твердых тел. Спектральный состав люминесценции. Правило Стокса (752). \$ 217. Длительность фотолюминесценции (756). \$ 218. Определение люминесценции и критерий длительности. (760). \$ 219. Излучение Вавилова — Черенкова (761). \$ 220. Кристаллические фосфоры (765). \$ 221. Люминесцентный анализ (766).

ЛАЗЕРЫ, НЕЛИНЕЙНАЯ ОПТИКА

Глава XL. Оптические квантовые генераторы § 222. Излучение электромагнитных волн совокупностью когерентных источников § 223. Поглощение и усиление излучения, распространяющегося в среде (771). § 224. Эффект насыщения (776). § 225. Принцип действия оптического (774). § 224. Эффект насыщения (776). § 225. Принцип действия оптического (774). § 224. Эффект насыщения (776). § 225. Принцип действия оптического иквитового генератора (779). § 226. Описание устройства и работы рубинового оптического квантового генератора (784). § 227. Гелий-неоновый лазер непре- рывного действия (791). § 228. Спектр излучения оптических квантовых гене- раторов (794). § 229. Конфигурация поля, создаваемого оптическими кванто- выми генераторами (801). § 230. Генерация сверхкоротких импульсов света (811). § 231. Лазеры на красителях (816).	769
Глава XLI. Ислинейная оптика	820
Упражнения	860
Именной указатель	917
Предметный указатель.	921
	ar a

от издательства

Общий курс оптики академика Г. С. Ландсберга (1890 — 1957) вышел в свет впервые в 1940 году. Основным материалом, определившим содержание книги, послужили лекции автора на физическом факультете Московского государственного университета, литографированные еще в 1935 году.

При подготовке последующих изданий Г. С. Ландсберг использовал дальнейшее развитие своего курса в Московском физико-техническом институте. Со времени выхода первого издания книга неоднократно перерабатывалась и дополиялась, и последнее подготовленное автором (четвертое) издание книги вышло в свет в 1957 году.

Несмотря на свое давнее для современного учебника физики происхождение, книга Г. С. Ландсберга сохранила до наших дней ведущее место в учебной литературе по основам оптики. Однако последние 15—20 лет ознаменовались крупнейшими научными достижениями в физической и прикладной оптике, уже вошедшими в систему ее преподавания. Поэтому перед выпуском в свет пового, пятого, издания «Оптики» потребовалось дополнить книгу новым фактическим материалом и частично изменить изложение некоторых ее глав, сохраняя общую структуру и стиль учебника по возможности неизменными.

Настоящее издание книги, пересмотренное и дополненное группой учеников и бывших сотрудников Г. С. Ландсберга, наряду с частично модернизированной трактовкой прежнего материала, содержит изложение физических основ новых направлений оптики, сложившихся за последние годы. Подавляющая часть материала, введенного в книгу, непосредственно или косвенно связана с созданием оптических квантовых генераторов (лазеров).

Не отмечая здесь некоторых изменений в прежнем тексте учебника, укажем лишь (следуя содержанию книги) нанболее сущестеснные дополнения и их авторов. В главу IV введен параграф, посвященный развитию учения о когерентности света (§ 22, написан Г. П. Мотулевич при участии Т. И. Кузнецовой). В главу IX добавлен параграф о свойствах гауссовых пучков (§ 43, С. Г. Раутиан). Включена новая глава XI, в которой изложены физические принципы голографии (§§ 57-62 и 64-67 написафизические принципы толографии (33 с. с. с. написа-иы Т. С. Величкиной, И. А. Яковлевым, Т. Г. Черневич и ны 1. С. Dеличкинон, С. Г. Раутианом). В главу «Основы кри-О. А. Шустиным, § 63 — С. Г. Раутианом). В главу «Основы кри-О. А. шустиным, у обавлен параграф о пространственной дисперсии сталлооптики» добавлен параграф о сталлооптики» дооавлен пари рау с простренениет дисперсии света (§ 149, В. М. Агранович). Значительно переработан матесвета (у эффекте Керра и о молекулярном рассеянии света (§ 152 и глава XXIX, И. Л. Фабелинский). Заново написаны параграфы, посвященные внутреннему фотоэффекту и приемникам излучения (§§ 180 и 181, И. С. Абрамсон). Существенно модернизирован параграф о восприятии света глазом (§ 193, составлен С. Г. Раутнаном по материалам Н. Д. Нюберга). Наконец, в настоящее издание включены новые главы XL и XLI. В главе XL рассмотрены оптические квантовые генераторы, принцип их устройства и главные особенности их излучения (§§ 223, 225-227 написаны Т. С. Величкиной и И. А. Яковлевым, остальные параграфы — С. Г. Раутианом). Последняя глава посвящена описанию основных нелинейных оптических явлений (глава XLI, С. Г. Раутнан).

Рецензирование рукописи выполнено В. А. Фабрикантом.

ИЗ ПРЕДИСЛОВИЯ К ТРЕТЬЕМУ ИЗДАНИЮ

Сохранив в основном общий характер книги и расположение материала, я внес в это новое издание некоторые изменения и исправления.

Я перенес главу, посвященную основным фотометрическим понятиям, во введение, желая использовать правильную терминологию уже при описании явлений интерференции и оставив в отделе лучевой оптики лишь вопросы, связанные с ролью оптических инструментов при преобразовании светового потока. Заново написаны многие страницы, посвященные интерференции, в изложении которой и во втором переработанном издании осталось много неудовлетворительного. Я постарался сгруппировать вопросы кристаллооптики в отделе VIII, хотя и не счел возможным полностью отказаться от изложения некоторых вопросов поляризации при двойном лучепреломлении в отделе VI, ибо основные фактические сведения по поляризации мне были необходимы при изложении вопросов прохождения света через границу двух сред, с которых мне казалось естественным начать ту часть курса, где проблема взанмодействия света и вещества начинает выдвигаться на первый план. Я переработал изложение астрономических методов определения скорости света и добавил некоторые новые сведения о последних лабораторных определениях этой величины. Гораздо больше внимания уделено аберрации света. Рассмотрены рефлекторы и менисковые системы Д. Д. Максутова. Значительным изменениям подверглось изложение вопроса о разрешающей способности микроскопа: я постарался отчетливее представить проблему о самосветящихся и освещенных объектах. Точно так же значительно подробнее разъяснен вопрос о фазовой микроскопни, приобретший значительную актуальность за последние годы.

Акад. Г. С. Ландсберг

Луцино, сентябрь 1951 г.

из предисловия ко второму изданию

Переработан или написан еновь ряд параграфов, относящихся к интерференции; сильно переработано изложение принципа Ферма; гобавлены проблемы электронной оптики.

Гр. Ландсберг

Москва, 21. VI. 1946 г.

предисловие к первому изданию

В основу пастоящей книги положен курс лекций по общей физике, который я читал в течение ряда лет в Московском государственном университете.

Как и многие другие основные курсы, сложившиеся в Московском университете, этот курс находился под сильным влиянием гкад. Л. И. Мандельштама, советами и указаниями которого я широко пользовался на протяжении многих лет, в течение которых нас связывает совместная работа и искренняя дружба. Я с особым удобольствием хочу отметить это обстоятельство и выразить Л. И. Мандельштаму мою глубокую признательность.

Университетское преподавание физики располагает мощным вспомогательным средством в виде физических демонстраций. При чтении курса я обращал большое внимание на эту сторону дела. В настоящей книге я старался конкретным описанием реальных экспериментов возместить невозможность иллюстрировать обсужлаемое демонстрационным опытом. Многочисленные демонстрации, при постановке которых я опирался на помощь коллектива физического кабинета МГУ, руководимого М. В. Колбановым, дали мне ценный матернал для соответствующих описаний в тексте настоящей книги.

Наконец, я считаю своей обязанностью отметить работу ряда моих ассистентов, помогших мне превратить лекционные записи в книгу. Среди них я с особенной благодарностью вспоминаю покойного А. Г. Райского, оказавшего мне большую помощь при составлении первого наброска этой книги, изданного в свое время на правах рукописи.

Москев, октябрь 1940 г.

Гр. Ландсберг

ВВЕДЕНИЕ

Глава I

КРАТКОЕ ИСТОРИЧЕСКОЕ ВВЕДЕНИЕ

§ 1. Основные законы оптики

Уже в первые периоды оптических исследований были на опыте установлены следующие четыре основных закона оптических явлений:

1. Закон прямолинейного распространения света.

2. Закон независимости световых пучков.

3. Закон отражения света от зеркальной поверхности.

4. Закон преломления света на границе двух прозрачных сред. Дальнейшее изучение этих законов показало, во-первых, что они имеют гораздо более глубокий смысл, чем может казаться с первого взгляда, и, во-вторых, что их применение ограничено, и они являются лишь приближенными законами. Установление условий и границ применимости основных оптических законов означало важный прогресс в исследовании природы света.

Сущность этих законов сводится к следующему.

1. Закон прямолинейного распространения света. В однородной среде свет распространяется по прямым линиям.

Закон этот встречается в сочинении по оптике, приписываемом Евклиду (300 лет до нашей эры) и, вероятно, был известен и применялся гораздо раньше.

Опытным доказательством этого закона могут служить наблюдения над резкими тенями, даваемыми точечными источниками света, или получение изображений при помощи малых отверстий. Соотношение между контуром предмета и его тенью при освещении точечным источником' (т. е. источником, размеры которого очень малы по сравнению с расстоянием до предмета) соответствует геометрическому проектированию при помощи прямых линий (рис. 1.1). Аналогично рис. 1.2 иллюстрирует получение изображения при помощи малого отверстия, причем форма и размер изображения показывают, что проектирование происходит при помощи прямолинейных лучей.

введение

Закон прямолинейного распространения может считаться прочно установленным на опыте. Он имеет весьма глубокий смысл, ибо само понятие о прямой линии, по-видимому, возникло из оптиче-само понятие о прямой линии, по-видимому, возникло из оптичепредставляющей кратчайшее рас-

Рис. 1.1. Прямолинейное распространение света: образование тени при освещении точечным источником.

стояние между двумя точками. есть понятие о линни, по которой распространяется свет в однородной среде. Отсюда берет начало практикуемый с незапамятных времен контроль прямолинейности лекала или изделия по лучу зрения.

Более детальное исследование описываемых явлений показывает, что закон прямолинейного распространения света теряет силу, если мы переходим к очень малым отверстиям. Так, в опыте, изображенном на рис. 1.2, мы получим хорошее изо-

бражение при размере отверстия около 0,5 мм; изображение будет очень несовершенным при отверстии 0,02—0,03 мм. Изображения совсем не получится и экран будет освещен практически равномерно при размерах отверстия около 0,5—1 мкм. Отступления от закона прямолинейного распространения света рассматриваются в учении о дифракции.

2. Закон независимости световых пучков. Световой поток можно разбить на отдельные световые пучки, выделяя их, например, при помощи диафрагм: Действие этих выделенных световых пучков оказывается независимым, т. е. эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно другие пучки или они устранены. Так, если на объектив фотоанпарата падает свет от обширного ландшафта, то, загораживая доступ части световых пучков, мы не изменяем изображения, даваемого остальными.

Более глубокое содержание этого закона выясняется в явлениях

волее глубокое содержание этого закона выясняется в явлениях нитерференции света (принцип суперпозиции, см. §§ 4 и 12). 3. Закон отражения света. Луч падающий, нор-маль к отражающей поверхности и луч отраженный лежат в одной плоскости (рис. 1.3), причем углы между лучами и нормалью равны между собой: угол падения *i* равен углу отражения *i*. Этот закон также упоминается в сочинении Евклида. Установление его связано с употреблением полированных металлических поверхностей (зеркал), известных уже в очень отдаленную эпоху.

Рис. 1.3. К закону отражения.

Рис. 1.4. К закону преломления.

4. Закон преломления света. Луч падающий и луч преломленный лежат в одной плоскости с нормалью к границе раздела. Угол падения *i* и угол преломления *r* (рис. 1.4) связаны соотношением

$$\frac{\sin l}{\sin r} = n, \tag{1.1}$$

где *n* — постоянная, не зависящая от углов *i* и *r*. Величина *n* — показатель преломления, определяется свойствами обеих сред, через границу раздела которых проходит свет, и зависит также от цвета лучей.

Явление преломления света было известно уже Аристотелю (350 лет до нашей эры). Попытка установить количественный закон принадлежит знаменитому астроному Птолемею (120 г. нашей эры), который предпринял измерение углов падения и преломления. Приводимые им данные измерений весьма точны. Птолемей учиты-1 приводимые им данные измерений весьма точны. Птолемей учиты-вал влияние преломления в атмосфере на видимое положение светил (атмосферная рефракция) и даже составил таблицы рефракции. Однако измерения Птолемея относились к сравнительно небольшим углам, и поэтому он пришел к неправильному заключению о про-порциональности угла преломления углу падения. Значительно позже (около 1000 г.) арабский оптик Альгазен (Альхайтам) обна-ружил, что отношение углов падения и преломления не остается постоянным, но правильного выражения закона дать не смог. Пра-

введение

вильная формулировка закона преломления принадлежит Спелвильная формулированиему в сочинении, оставшемся неопублилию (1991-1920), уличение косекансов углов падения и преломления кованным, что отношение косекансов углов падения и преломления кованным, что отполнения пенарту, давшему в своей «Диоптрике» остается постоянным, и доперя, деления с сесси «днонтрике» (1637 г.) современную формулировку закона преломления. Декарт установил свой закон около 1630 г.; были ли ему известны исследования Снеллия — неясно.

Закон отражения и закон преломления также справедливы лишь при соблюдении известных условий. В том случае, когда размер отражающего зеркала или поверхности, разделяющей две среды, мал, мы наблюдаем заметные отступления от указанных выше законов (см. главы, посвященные дифракции).

Помимо дифракционных явлений, основные законы, обсуждавшиеся выше, могут нарушаться и в случае нелинейных явлений, наблюдаемых при достаточно больших значениях интенсивности световых пучков (см. гл. XL и XLI).

Однако для обширной области явлений, наблюдаемых в обычных оптических приборах, все перечисленные законы соблюдаются достаточно строго. Поэтому в весьма важном практически разделе оптики — учении об оптических инструментах — эти законы могут считаться вполне применимыми. Весь первый этап учения о свете состоял в исследованиях, относящихся к установлению этих законов, и в их применении, т. е. закладывал основы геометрической, или личевой, оптики.

§ 2. Главнейшие этапы развития оптических теорий

Основные законы оптики были установлены, как мы видели, давно. Однако точка зрения на них менялась на протяжении последующих эпох.

Сосновное свойство света — прямолинейное распространение, по-видимому, заставило Ньютона (конец XVII века) держаться теории истечения световых частиц, летящих прямолинейно, согласно законам механики (закон инерции). Громадные успехи, достигнутые Ньютоном в механике, оказали коренное влияние на его взгляды на оптические явления. Отражение света понималось аналогично отражению упругого шарика при ударе о плоскость, где соблюдается закон: $\angle i = \angle i'$. Преломление Ньютон объяснял, так же как и Декарт, притяжением световых частиц преломляющей средой, благодаря чему меняется скорость световых частиц при переходе из первой среды во вторую.

Разложим скорость частицы в первой среде v_1 на составляющие vir и vir (см. рис. 1.4); тогда скорость частиц, переходящих из первой среды во вторую, меняется под влиянием притяжений между световыми частицами и частицами среды. Притяжения эти направлены по пормали к границе раздела двух сред и поэтому нзменяют соответственно нормальные составляющие скорости ($v_{1x} \neq v_{2x}$), оставляя пеизменными тангенциальные с оставляющие ($v_{1x} = v_{2x}$). Если вторая среда является оптически более плотной, то $v_{2x} > v_{1x}$ и, следовательно, $v_2 > v_1$. Так как $v_{1x} = v_1 \sin i$ и $v_{2x} = v_2 \sin r$, то из равенства $v_{1x} = v_{2x}$ следует, что отношение

$$\frac{\sin i}{\sin r} = \frac{v_2}{v_1} = n$$

есть постоянная, не зависящая от угла падения, поскольку скорости v_1 и v_2 не зависят от направления распространения света (изотропные среды), но зависящая от его цвета.

Указанная теория вкладывает определенный физический смысл в показатель преломления: *n* есть отношение скоростей световых частиц во второй и первой средах, причем скорость света в оптически более плотной среде оказывается большей, чем в менее плотной.

Во времена Ньютона еще не были сделаны прямые измерения скорости света в разных средах. Поэтому полученный вывод не мог быть проверен непосредственно. Впоследствни такие измерения были выполнены (Фуко, 1850 г.) и показали, что скорость света в плотных средах (вода, например) меньше, чем скорость света в воздухе, тогда как показатель преломления при переходе света из воздуха в воду равен 1,33, т. е. больше единицы. Таким образом, ньютоново толкование показателя преломления оказывается неправильным. Однако более углубленный анализ механизма распространения света в веществе показывает, что этот вопрос не столь прост.

В эпоху Ньютона было выполнено определение скорости, с которой свет распространяется в межпланетном пространстве (Рёмер, 1676 г.). Это определение дало величину около 300 000 км/с. Такое огромное значение скорости распространения света делало для многих современников Ньютона неприемлемым его представление о свете, ибо казалось затруднительным допустить наличие частиц, несущихся с такой скоростью.

Нелишне, может быть, заметить, что в наше время это возражение потеряло силу: мы знаем корпускулы (β-лучи и космические частицы), скорость полета которых весьма близка к скорости света.

Точно так же не имеет для нас убедительности и другое возражение, которое было несколько позже (1746 г.) выдвинуто Эйлером. Согласно Эйлеру ньютоново представление теории истечения «должно представляться и смелым и страиным, потому что, если Солнце испускает непрерывно и во все стороны потоки светового вещества, и притом с такой огромной скоростью, то следовало бы ожидать, что оно должно скоро истещиться или, по крайней мерс, претерпеть заметные изменения в течение стольких столетий».

CMENHOLESIA

Современные представления о взаимосвязи между массой и энер-Современные представления с росписсов и и нергией заставляют признать многие черты ньютоновых воззрений на в процессе излучения. Многие черты котоновых воззрений на в процессе излучения в современных представлениях, являюприроду света встретение, по существу, совершенно новыми и покоящихся на совершенно иной экспериментальной базе.

Современник Ньютона Гюйгенс выступил с другой теорией света («Трактат о свете», написан в 1678 г., издан в 1690 г.). Он исходил из аналогии между многими акустическими и оптическими явлениями и полагал, что световое возбуждение следует рассматривать как упругие импульсы, распространяющиеся в особой среде в эфире, заполняющем все пространство как внутри материальных тел, так и между ними. Огромная скорость распространения света обусловливается свойствами эфира (его упругостью и плотностью) и не предполагает быстрых перемещений частиц эфира. Из наблюдений над распространением волн по поверхности воды было известно, что сравнительно медленные движения частиц вверх и вниз могут давать начало волнам, быстро распространяющимся по поверхности воды.

Следует отметить, что хотя Гюйгенс говорил о световых волнах, он не вкладывал в это понятие того содержания, которое оно получило позже и которое мы принимаем и теперь. Он говорил, что свет распространяется сферическими поверхностями, и добавлял: «Я называю эти поверхности волнами по сходству с волнами, которые можно наблюдать на воде, в которую брошен камень». Гюйгенс не только не предполагал периодичности в световых явлениях, но даже прямо указывал: «...не нужно представлять себе, что сами эти волны следуют друг за другом на одинаковых расстояниях». В соответствии с этим он нигде не пользуется понятием длины волны и полагает, что свет распространяется прямолинейно, сколь бы малым ни было отверстие, через которое он проходит, ибо «отверстие это всегда достаточно велико, чтобы заключить большое количество непостижимо малых частиц эфирной материи». Таким образом, он не обращает внимания на явления дифракции, отмеченные Гримальди (см. посмертное сочинение Гримальди, опубликованное в 1665 г.) и Гуком (в период между 1672-1675 гг.). Точно так же он не упоминает в своем трактате о кольцах Ньютона --явлении, в котором сам Ньютон усматривал доказательство периодичности световых процессов.

Таким образом, широко распространенное мнение, что Гюйгенс является создателем разработанной волновой теории света, которая может быть противопоставлена корпускулярной теорни Ньютона, представляется неточным. Во времена Гюйгенса — Ньютона солновая теория была намечена лишь очень схематично. При этом наиболее важный элемент ее представлений — периодичность световых явлений — гораздо отчетливее сознавал именно Ньютон,

который, экспериментируя с так называемыми кольцами Ньютона (см. § 26), выполнил даже измерения, на основании которых мы можем достаточно точно вычислить длины волн излучения различного цвета.

Из идей Гюйгенса наибольшую ценность представляет общий принцип, носящий его имя и выдвинутый им как прием для отыскания направления распространения световых импульсов. При помощи этого принципа Гюйгенс объяснял не только обычные законы отражения и преломления, но даже явления двойного лучепреломления в исландском шпате, от-

крытые в 1670 г. Бартолинусом. Принцип Гюйгенса можно сформулировать следующим образом:

Каждая точка, до которой доходит световое возбуждение, является в свою очередь центром вторичных волн; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны.

В такой первоначальной форме принцип Гюйгенса говорит лишь о направлении распространения волнового фронта, который формально отождествля-

Рис. 1.5. Построение преломленной волны по Гюйгенсу.

ется с геометрической поверхностью, огибающей вторичные волны. Таким образом, речь идет собственно о распространении этой поверхности, а не о распространении волн, и выводы Гюйгенса относятся лишь к вопросу о направлении распростраиения света. В таком виде принцип Гюйгенса является, по существу, принципом *геометрической оптики* и, строго говоря, может применяться лишь в условнях пригодности геометрической оптики, т. е. когда длина световой волны бесконечно мала по сравиению с протяженностью волнового фронта. В этих условиях он позволяет вывести основные законы геометрической оптики (закопы преломления и отражения). Рассмотрим для примера преломление плоской волны на границе двух сред, причем скорость волны в первой среде обозначим через v_1 , во второй — через v_2 .

Пусть *i* (рис. 1.5) — угол между *CO*, перпендикуляром к фронту волны, и *OD*, перпендикуляром к поверхности преломляющей среды. Пусть в момент t = 0 точка *C* фронта волны достигла преломляющей среды и совпала с точкой *O*; тогда за время т, потребное для того, чтобы точка *A'* фронта волны достигла (в точке *B*) второй среды, из точки O, как из центра, вторичная волна распространяется на некоторое расстояние Of. Вторичные волны, имеюстраняется на некоторое расстояние Of. Вторичные волны, имеющие центрами точки O_1 , O_2 и т. д., распространяются к указанному моменту на соответствующие расстояния, давая во второй среде элементарные сферические волны $f_1, f_2,...$ По принципу Гюйгенса действительное положение волнового фронта указывается огибающей элементарных волн, т. е. плоскостью Bf_2f_1f . Очевидно, что

$$OB = \frac{Of}{\sin r} = \frac{A'B}{\sin i};$$

подставляя сюда значения $A'B = v_1 \tau$ и $Of = v_2 \tau$, получим:

 $v_1 \tau \sin r = v_2 \tau \sin i$,

или

 $\sin i / \sin r = v_1 / v_2 = n.$

Мы видим, что теория Гюйгенса дает объяснение закона преломления, причем оказалось, что значение показателя преломления легко привести в согласие с результатами опыта Фуко, произведенного более полутораста лет спустя (см. § 125).

Так же естественно объясняется с точки зрения принципа Гюйгенса закон отражения волн (см. Упражнение 1).

Таким образом, принцип Гюйгенса сводится к *геометрическому* методу построения. В нем не находит себе употребления понятие длины волны, вследствие чего остаются пеистолкованными явления при малых размерах отверстия, ограничивающего световую волну; нет также объяснения тому факту, что звуковые волны пе следуют, вообще говоря; закону прямолинейного распространения. Принцип Гюйгенса в этом первоначальном виде применим, следовательно, лишь в области геометрической оптики.

В течение всего XVIII века корпускулярная теория света (теория истечения) занимала господствующее положение в науке, однако острая борьба между этой и волновой теориями света не прекращалась. Убежденными противниками теории истечения были Эйлер («Новая теория света и цветов», 1746 г.) и Ломоносов («Слово о происхождении света, повую теорию о цветах представляющее», 1756 г.): они оба отстаивали и развивали представляющее», как о волнообразных колебаниях эфира

В начале XIX века стала складываться последовательно разентая система волновой оптики. Главную роль при этом сыграли труды Юнга и Френеля. Френель (1815 г.) уточнил принцип Гюйгенса, дополнив его принципом интерференции Юнга, с помощью которого этот последний дал в 1801 г. удовлетворительное толкование окраски топких пластинок, наблюдаемых в отраженном свете Принцип Гюйгенса — Френеля не только вполне удовлетвонозволил разрешить вопрос о распределении интенсивности света при прохождении света мимо препятствий, т. е. рассмотреть явления дифракции.

ГВ дальнейшем изучение явлений поляризации света и интерференции поляризованных лучей (Френель и Араго) позволило установить особенности световых волн, которые были объяснены Юнгом и Френелем при помощи допущения, что световые волны полгречны, т. е. что паправления колебаний в них перпендикулярны к направлению распространения.

Однако поперечные упругие волны возможны только в твердом теле, поэтому эфиру пришлось приписать свойства упругого твердого тела. Скорость распространения поперечных упругих волн в безграничном твердом теле определяется ссотношением

$$c = \sqrt{N/\rho}, \qquad (2.1)$$

где N — модуль сдвига, а ρ — плотность. Так как по астрономическим наблюдениям эфир не препятствует движению твердых тел планет, то ρ должно быть чрезвычайно мало; для получения нужных значений *с* необходимо в то же время приписать N очень большие значения. Для объяснения разной скорости света в различных средах приходилось считать, что свойства эфира различны в различных веществах, а для анизотропных веществ делать еще более сложные допущения.

Наконец, упругий эфир приходилось наделять оссбыми свойствами, чтобы объяснить полное отсутствие продольных колебаний в световых волнах, установленное упомянутыми выше опытами Френеля и Араго. Сопоставление всех этих особенностей упругого твердого эфира обнаруживает существенные затруднения упругой теории света, которая, к тому же, не указывала никаких связей оптики с другими физическими явлениями и не позволяла связать оптические константы, характеризующие вещество, с какими-либо другими параметрами его.

Между тем Фарадею удалось показать, что оптические явлеимя не представляют собой изолированного класса процессов и что, в частности, существует связь между оптическими и магнитными явлениями; в 1846 г. Фарадеем было открыто явление вращения плоскости поляризации в магнитном поле. С другой стороны, был обнаружен и другой замечательный факт: оказалось, что отношение электромагнитной единицы силы тока к электростатической равно 3.10⁸ м/с, т. е. равно скорости света (Вебер и Кольрауш, 1856 г.). Наконец, теоретические исследования Максвелла показали, что изменения электромагнитного поля не остаются локализованными в пространстве, а распространяются в вакууме со скоростью, равной отношению электромагнитной и электростатической единиц тока, т. е. со скоростью света. Заключение это было подтверждено позднее опытами Герца (1888 г.). На основании своих

введение

исследований Максвелл (1865 г.) сформулировал заключение, что свет есть электромагнитное явление.

Согласно Максвеллу

$$c/v = V \varepsilon \mu, \qquad (2.2)$$

где с — скорость света в вакууме, а v — скорость в среде, имею-щей диэлектрическую проницаемость є и магнитную проницаемость µ. Так как с/v = n (показатель преломления), то

$$n = \sqrt{\varepsilon \mu}.$$
 (2.3)

Это соотношение дает связь между оптическими, электрическими и магнитными константами вещества.

Но из (2.3) не видно, что *п* должно зависеть от длины волны света λ , тогда как из опыта известно, что существует дисперсия света, т. е. *п* меняется с изменением длины волны света: $n = f(\lambda)$ *). Объяснения этого факта теория Максвелла, ограничивающаяся для характеристики электромагнитных свойств вещества лишь макроскопическими параметрами (є, µ), дать не могла. Необходимо было более детальное рассмотрение процессов взаимодействия вещества и света, покоящееся на углубленном представлении о структуре вещества. Это и было сделано Лорентцом, создавшим электронную теорию (1896 г.). Представление об электронах, входящих в состав атомов и могущих совершать в них колебания с определенным периодом, позволило объяснить явления испускания и поглощения света веществом, равно как и особенности распространения света в веществе. В частности, сделались понятными и явления дисперсни света, ибо диэлектрическая проницаемость є оказывается в рамках электронной теории зависящей от частоты электромагнитного поля, т. е. от длины волны λ.

Параллельно с развитием волновой теории света эволюционирует и понятие эфира. В представлениях Гюйгенса это понятие еще довольно расплывчато и неопределенно; Ломоносов уже пытается уточнить и углубить его, рассматривая различные типы возможных движений эфира («текущее, коловратное и зыблющееся»), причем свет он связывает с «зыблющимся» движением эфира (колебания). Чрезвычайно интересно отметить, что Ломоносов считал возможным связать с эфиром и объяснение электрических явлений. В «Теорни электричества» — книге, начатой в 1756 г., но не оконченной, он писал: «Так как эти явления (электрические) имеют место в пространстве, лишенном воздуха, а свет и огонь происходят в пустоте и зависят от эфира, то кажется правдоподобным, что эта электрическая материя тождественна с эфиром». И далее: «Чтобы это выяснить, необходимо изучить природу эфира; если она вполне

*) Объяснение дисперсии в рамках теории упругого эфира было дано путем специальных допущений (Коши, 1836 г.; Зелльмейер, 1871 г.).

пригодна для объяснения электрических явлений, то будет достаточно большая вероятность, что они происходят от движения эфира. Наконец, если не найдется никакой другой материи, то достовернейшая причина электричества будет движущийся эфир». В качестве одного из опытов, памеченных в «Теории электричества», значится: «Будет ли луч иначе преломляться в наэлектризованной воде или наэлектризованном стекле», т. е. один из основных электрооптических опытов, который был осуществлен лишь в конце XIX века.

Наибольшего развития волновые представления о свете в XVIII веке достигли у Эйлера. Согласно Эйлеру свет представляет собой колебания эфира, подобно тому как звук есть колебания воздуха, причем различным его цветам соответствуют колебания различной частоты. Сравнение скорости света со скоростью звука позволило Эйлеру утверждать, что эфир есть субстанция, «значительно более тонкая и упругая, чем обыкновенный воздух». Эйлер, подобно Ломоносову, высказывает мысль, что источником всех электрических явлений служит тот же светоносный эфир. Согласно Эйлеру электричество есть не что иное, как нарушение равнозесия эфира: тела, в которых плотность эфира становится больше, чем в телах окружающих, оказываются наэлектризованными положительно; отрицательная электризация связана с уменьшением плотности эфира. Эйлер не распространял свою теорию на магнитные явления, поскольку электрическая природа магнетизма не была еще известна. Эти соображения были развиты Эйлером в его знаменитых «Письмах к немецкой принцессе», написанных в 1760-1761 гг. и изданных в Петербурге (1768—1772 гг.) во время второго пребывания Эйлера в России, куда он прибыл уже после смерти Ломоносова, с которым он состоял в постоянной дружеской научной переписке. Поэтому не исключено, что указанные представления сложились у Эйлера под влиянием идей Ломоносова.

Эфир Френеля — Юнга (начало XIX века), в отличие от эфира Ломоносова — Эйлера, был связан с истолкованием только оптических явлений. Несколько позже Фарадей для истолкования электрических и магнитных взаимодействий ввел также понятие гипотетической вещественной среды, состояние которой (упругие натяжения) должно было объяснить наблюдаемые на опыте эффекты взанмодействия между зарядами и между токами. Иден Максвелла об электромагнитной природе света позволили объединить светоносный и электромагнитный эфир, сделав его носителем всех электромагнитных явлений. Возникновение электромагнитного поля, равно как и распространение его, представлялось как изменение состояния эфира, могущее распространяться от точки к точке с определенной скоростью.

Дальнейшее развитие электродинамики движущихся сред привело к представлению, что эфир, прошикая во все тела, остается

введение

неподвижным при движении этих тел (Лорентц, см. § 130). Таким неподвижным при движении этих составлять, сил у 1007. Гаким образом, физические характеристики эфира становятся все менее образом, физические характернетных офира становится все менее реальными. В представлении Лорентца (последние годы XIX века) реальными. В представления порешии (постедине годы ліл века) зфир есть безграничная неподвижная среда, единственной харакэфир есть оезграничная полодишь определенная скорость распротеристикой которон лактромагнитных возмущений и, в частности, странения в ней электромагнитных света (c = 2,998-10⁸ м/с).

Однако представление об эфире как о неподвижной среде, которая могла, следовательно, быть избранной в качестве системы отсчета, позволяя, таким образом, выделить абсолютное движение, пришло в противоречие с опытами (например, опыт Майкельсона, см. § 131) и его нельзя было сохранить. Релятивистская электродинамика, пришедшая на смену электродинамике Лорентца (см. § 131), вообще отказалась от представления об эфире, играющем голь материального носителя электромагнитных процессов. То обстоятельство, что свет (электромагнитное поле) и вещество представляют собой две различные формы материи, с особенной отчетливостью проявляется в превращениях кванта света в пару электгон - позитрон и обратно, в образовании светового кванта за счет объединения позитрона и электрона.

Наряду с теми трудностями, к которым приводила электронная теория Лорентца, опиравшаяся на представление о неподвижном эфире, выяснились и другие затруднения этой теории. Она оставляла неразъясненными многие особенности явлений, касающихся взаимодействия света и вещества. В частности, не получил удовлетворительного разрешения вопрос о распределении энергии по длинам волн в излучении накаленного черного тела. Накопившиеся затруднения вынудили Планка сформулировать теорию квантов (1900 г.), которая переносит идею прерывности (дискретности), заимствованную из учения о молекулярном строении вещества, на электромагнитные процессы, в том числе и на процесс испускания света. Теория квантов устранила затруднения в вопросах излучения света нагретыми телами; она по-новому поставила всю проблему взаимодействия света и вещества, понимание которой невозможно без квантовой интерпретации. Целый ряд оптических явлений, в частности фотоэлектрический эффект и вопросы рассеяния света, выдвинул на первый план корпускулярные особенности света. Процесс развития теории квантов, ставшей основой современного учения о строении атомов и молекул, продолжается и ныне.

Кратко очерченная нами картина развития руководящих оптических теорий показывает, как отразилась в истории оптики борьба двух (на первый взгляд взаимоисключающих) представлений на природу света — волновых и корпускулярных.

В первый период (Ньютон — Гюйгенс, до начала XIX века) противоположение этих представлений имело характер взаимного исключения, и научный прогресс состоял в поисках той экспериментальной базы и создании такой развитой теории, которая позволила бы, углубляя эти противопоставления, яснее понять их природу. Второй период — от Френеля — Юнга до возникновения представления о световых квантах (1905 г.) — явился периодом всестороннего развития волновых представлений, одержавших, казалось бы, окончательную победу над корпускулярными.

Последующий период состоит в накоплении новых, тонких экспериментальных фактов, открываемых благодаря прогрессу экспериментальных методов; одновременно идет и развитие более углубленных теоретических представлений, связанных с созданием теории квантов. В этот период не только обосновываются корпускулярные воззрения наряду с установленными уже волновыми, но и возникают успешные попытки синтеза тех и других представлений.

Современный этап развития оптики, начало которого можно датировать 1960 г., характеризуется новыми, весьма своеобразными чертами. Фундаментальные свойства света — волновые, квантовые, его электромагнитная природа — находят все более разнооб-разные и глубокие подтверждения и применения, продолжая служить основой для понимания всей совокупности оптических явлений. Однако круг этих явлений неизмеримо расширился. В начале 60-х годов были созданы источники с высокой степенью монохроматичности и направленности излучаемого ими света - так называемые оптические квантовые генераторы или лазеры. Распространение лазерного излучения и его взаимодействие с веществом во многих случаях протекает в существенно иных условиях, чем в случае излучения обычных, нелазерных источников, и конкретные явления приобретают совершенно новые, неизвестные ранее черты. Сказанное относится к отражению, преломлению, дифракции, рассеянию, поглощению и к другим основным оптическим явлениям (см. гл. XL, XLI).

Глав.а II

волны

§ 3. Образование волны. Волновое уравнение

Волновые процессы представляют собой весьма общий класс явлений. Образование волны обусловливается наличием связей между отдельными частями системы, в силу которых понятие изолированного процесса является, конечно, далеко идущей абстракцией. Сравнительно редки случаи, когда процесс, протекающий в какойлибо части пространства, можно рассматривать как изолированный. Обычно он вызывает соответствующие изменения в соседних

точках системы, передавая им некоторое количество энергии. От точках системы, передавал или и смежным с ними и т. д., рас-этих точек возмущение переходит к смежным с ними и т. д., расэтих точек возмущение переке, т. е. создавая волну. В зависимости пространяясь от точки к точке, т. е. создавая волну. пространяясь от точки к тоторые обусловливают указанное взаимодейот природы связен, той или иной природы. Упругие силы, ствие, мы имеем волну той или иной природы. ствие, мы имести всем всементами любого твердого, жидкого или газообразного тела, приводят к возникновению упругих (акустических) волн в телах. Возмущение горизонтальной поверхности воды становится источником поверхностных волн вследствие связей между соседними участками воды, обусловленных силой тяжести и подвижностью частиц жидкости. Небольшая деформация поверхности жидкости может дать начало капиллярным волнам, вызванным действием молекулярных сил, обусловливающих явления в поверхностном слое. Электромагнитное возмущение, возникшее в каком-либо месте пространства, в силу электромагнитных связей, выражающихся в законах электромагнетизма и электромагнитной индукции, становится источником таких же возмущений в соседних участках пространства, от которых оно передается все далее и далее: возникает электромагнитная волна, которая (по Максвеллу) должна распространяться со скоростью света.

Несмотря на бесконечное разнообразие физических процессов, вызывающих волны, образование волн происходит по одному общему типу. Возмущение, происшедшее в какой-нибудь точке в известный момент времени, проявляется спустя некоторое время на некотором расстоянии от начальной точки, т.е. передается с определенной скоростью. Рассмотрим для простоты распространепне возмущения по какому-либо одному направлению х; мы можем изобразить возмущение s как функцию координаты x и времени t: s = f(x, t). Легко видеть, что распространение возмущения со скоростью и вдоль направления х изобразится той же функцией, в аргумент которой t и x входят в виде комбинации (vt — x) или (t - x/v). Действительно, это строение аргумента показывает, что значение функции, которое она имеет в точке x в момент t, повторится в несколько более отдаленной точке x + dx в более поздний момент t + dt, если только

$$vt - x = v(t + dt) - (x + dx).$$
 (3.1)

Таким образом, возмущение за время dt переместится на расстояние dx, распространяясь со скоростью $\frac{dx}{dt}$. Из соотношения (3.1) следует, что $\frac{dx}{dt} = v$, т. е. эта скорость равна v.

Итак, любая функция от аргумента vt — x выражает распространение возмущения вдоль х в сторону возрастающих значений х с постоянной скоростью υ. Аналогично, любая функция от аргумента vl + x описывает распространение импульса со скоростью v,

но в противоположную сторону. Вид функции *f* позволяет определить форму возмущения для любого момента *t* и зависит от условий, вызвавших его возникновение.

Нетрудно показать, что дифференциальное уравнение, описывающее волновое движение, т. е. уравнение, решением которого будет любая функция от аргумента (vt - x) или (vt + x), будет иметь вид

$$\frac{\partial^2 s}{\partial t^2} = v^2 \frac{\partial^2 s}{\partial x^2}.$$
 (3.2)

Действительно, простой подстановкой легко убедиться, что возмущение s, определенное соотношением

$$s = f_1 (vt + x) + f_2 (vt - x), \tag{3.3}$$

где f_1 и f_2 — произвольные функции, является решением (3.2). Так как это уравнение есть дифференциальное уравнение второго порядка, то найденное решение, как содержащее *две* произвольные функции, является общим его решением. Это решение представляет совокупность двух волн, распространяющихся со скоростью *v* навстречу друг другу. Само собой разумеется, что из самого дифференциального уравнения никогда нельзя сделать заключения о специальной форме функций f_1 и f_2 . Поэтому дифференциальное уравнение типа (3.2) математически описывает всевозможные процессы распространения волн (вдоль осн *x*). Рассмотрим в качестве примера образование и распространение электромагнитной волны, изучаемые в курсах электричества.

Как известно, возникновение в каком-либо месте среды переменного электрического тока сопровождается появлением в окружающем пространстве переменного магнитного поля (электромагнетизм); это последнее ведет к образованию переменного электрического поля (электромагнитная индукция), обусловливающего переменные токи смещения в окружающем пространстве. Токи смещения обусловливают возникновение магнитного поля, так же как обычные токи проводимости в проводнике создают вокруг себя магнитное поле. Таким образом, все новые и новые области пространства становятся областью действия электромагнитных полей: возникшее где-либо электрическое колебание не остается локализоваиным, а постепенно захватывает все новые и новые участки пространства, распространяясь в виде электромагнитной болны.

Явления электромагнетизма и электромагнитной индукции, обусловливающие этот процесс, находят свое краткое математическое выражение в уравнениях Максвелла, устанавливающих связь между изменениями напряженностей электрического (Е) и магнитного (Н) полей. Рассуждения Максвелла в соответствии с опытными данными показывают, что направления электрического и магнитного векторов оказываются взаимно перпендикулярными и пер-

BBEAEHHE

пендикулярными к направлению распространения электромагнитпендикулярными к направление плоской волны, когда направленой волны. В простейшем случае плоской волны, когда направленой нои волны. В простеплено, что электрическое поле Е направлено ние осей координат таково, что электрическое поле Е ние осеи координат напово, не H — вдоль оси y, уравнения Мак-вдоль оси z, а магнитное поле H — вдоль оси y, уравнения Максвелла имеют вид

$$\frac{\mu}{c}\frac{\partial H}{\partial t} = -\frac{\partial E}{\partial x}, \qquad (3.4)$$

$$\frac{e}{c}\frac{\partial E}{\partial t} = -\frac{\partial H}{\partial x}, \qquad (3.5)$$

где µ и є — ссответственно магнитная и диэлектрическая проницаемости среды, а с — отношение электромагнитной и электростатической единиц силы тока, которое, как показали измерения. равно скорости света, т. е. 3.10⁸ м/с.

Из этих уравнений с необходимостью следует, что возникшее в каком-либо месте электромагнитное поле распространяется в пространстве со скоростью $v = c/V \epsilon \mu$. Действительно, дифференцируя уравнение (3.4) по x, а уравнение (3.5) по t и исключая из них Н. найдем:

$$\frac{\partial^2 E}{\partial t^2} = \frac{c^2}{\varepsilon \mu} \frac{\partial^2 E}{\partial x^2},\tag{3.6}$$

т. е. дифференциальное уравнение волны, показывающее, что электрическое поле Е распространяется в пространстве вдоль сси x со скоростью $v = c/\sqrt{\epsilon\mu}$. Таким образом, решением этого уравнения может быть выражение E = f(x - vt), где f – произвольная функция.

Аналогичное заключение может быть получено и для величины магнитного поля Н.

Между Е и Н легко установить связь; например, полагая Е = = f (x - vt), найдем из уравнения (3.4)

$$\frac{\mu}{c}\frac{\partial H}{\partial t} = -f'(x-vf) = \frac{1}{v}\frac{\partial E}{\partial t} = \frac{\sqrt{\varepsilon\mu}}{c}\frac{\partial E}{\partial t},$$

нли

$$\mathcal{V}_{\mu}\frac{\partial H}{\partial t}=\mathcal{V}_{\varepsilon}\frac{\partial E}{\partial t},$$

нли

$$V \mu H = V \varepsilon E + \text{const.}$$

Так как во всех электродинамических (а следовательно, и оптических) процессах постоянное поле роли не играет, то постоянную в последнем соотношении можно без ограничения общности поло-

 $V \mu H = V \epsilon E.$

(3.8)

(3.7)

Соотношение (3.8) показывает, что *E* и *H* связаны линейной зависимостью; *E* и *H* изменяются так, что они одновременно проходят через максимум и минимум. Таким образом, для электромагнитной волны (так же, как и для воли упругих) мы имеем

Рис. 2.1. Взаимное расположение векторов напряженности электрического *Е* и магнитного *Н* полей и вектора скорости *v* в электромагнитной волне.

совокупность двух связанных векторов, распространяющихся волнообразно с общей скоростью $v = c/\sqrt{\epsilon\mu}$. Взаимное расположение трех векторов E, H и v соответствует правовинтовому расположению, показанному на рис. 2.1.

§ 4. Монохроматические колебания и волны. Понятие о разложении Фурье

Итак, волну, распространяющуюся со скоростью *v* вдоль *x*, можно описать соотношением

$$s = f\left(t - \frac{x}{v}\right). \tag{4.1}$$

Зафиксировав значение x, найдем, что вид функции f показывает, по какому закону изменяется с течением времени величина s, характеризующая возмущение, например напряженность электрического или магнитного поля. Вид функции f может быть, как уже сказано, произвольным. Особое значение имеет, как мы сейчас увидим, случай, когда f есть синусоидальная (или косинусоидальная) функция. В таком случае

$$s = a \sin \frac{2\pi}{T} \left(t - \frac{x}{v} \right), \tag{4.2}$$

где a = aмплитуда и T = nериод волны, а аргумент синусондальной функции $\frac{2\pi}{T} \left(t - \frac{x}{v}\right)$ носит название фазы. Значение s зависит, очевидно, от выбора начала отсчета времени t и координаты x.

введение

Поэтому для нескольких волн, имеющих одну и ту же амплитуду Поэтому для нескольких воли, именания один, и у ле амплитуду и период, значение s в данной точке x и в данный момент t может и период, значение у в данном это обстоятельство, удобно запиоыть различно. поов , честа волны в более общем виде сать выражение для синусондальной волны в более общем виде

$$s = a \sin\left[\frac{2\pi}{T}\left(t - \frac{x}{v}\right) + \varphi\right]. \tag{4.3}$$

ф носит название начальной фазы. Если начальные фазы всех воли совпадают или мы имеем дело с одной волной, то можно положить $\varphi = 0$ и сохранить для синусондальной волны выражение (4.2). Вид функции (4.2) показывает, что она периодична по времени

с периодом *T*. Она обладает, кроме того, периодичностью и по аргу-менту *x*. Если дать *x* приращение $\lambda = vT$, то значение функции не изменится: действительно,

$$s = a \sin \frac{2\pi}{T} \left(t - \frac{x+\lambda}{v} \right) = a \sin 2\pi \left(\frac{t}{T} - \frac{x}{vT} - 1 \right) = a \sin \frac{2\pi}{T} \left(t - \frac{x}{v} \right),$$

следовательно, расстояние по x, равное $\lambda = vT$, отделяет точки, в которых колебания совершаются в данный момент времени в одной и той же фазе. Величина $\lambda = vT$ называется длиной волны.

Выражение (4.2) можно переписать так:

$$s = a \sin 2\pi \left(\frac{t}{T} - \frac{x}{\lambda}\right). \tag{4.4}$$

Введем сбозначения: $2\pi/T = \omega - \kappa py cobas$ частота, $2\pi/\lambda = k - k$ волновое число. Тогда (4.4) примет следующий вид:

$$s = a \sin \left(\omega t - kx\right). \tag{4.5}$$

Если вместо круговой частоты ввести число колебаний в секунду (частота) $v = 1/T = \omega/2\pi$, то

$$s = a \sin\left(2\pi v t - kx\right). \tag{4.6}$$

Наконец, вместо тригонометрических функций можно ввести экспоненциальные, что часто облегчает математическую трактовку многих вопросов теории колебаний и волн. В основе этого лежит формула Эйлера

$$\exp(i\psi) = \cos\psi + i\sin\psi,$$

Действительная Re (exp $i\psi$) и мнимая Im (exp $i\psi$) части этого выражения представляют собой тригонометрические функции соз ф и sin ψ соответственно. Так как большинство математических операций легче производить с показательными функциями, чем с тригонометрическими, то вычисления рационально вести следующим образом: введя вместо косинуса или синуса показательную функцию, произвести с ней все необходимые вычисления и в конце верпуться, если это желательно, к тригонометрическим функциям, взяв соответственно действительную или мнимую часть.

ГЛ. П. ВОЛНЫ

Если $\psi = \omega t$, то $a \exp(i\omega t)$ описывает гармоническое колебание с амплитудой a и круговой частотой ω (с периодом $T = 2\pi/\omega$). Если начальная фаза колебания равна δ , то выражение для колебания будет $a \exp[i(\omega t + \delta)] = a \exp(i\delta) \cdot \exp(i\omega t)$. Обозначая $a \exp(i\delta) = C$, мы вводим комплексную амплитуду C, причем в это выражение входит как обычная амплитуда a, так и начальная фаза колебаний δ . Таким образом,

$$C = a \exp(i \delta) = a \exp \delta + ia \sin \delta$$
.

Для того чтобы найти амплитуду колебаний, точнее, ее квадрат а², надо помножить амплитуду С на сопряженную ей величину С*:

$$a^2 = CC^* = a \exp(i\delta) a \exp(-i\delta).$$

Пользуясь показательной функцией, мы можем записать выражение (4.5) в виде

$$s = a \exp\left[i\left(\omega t - kx\right)\right] = a \exp\left(-ikx\right) \cdot \exp\left(i\omega t\right), \quad (4.7)$$

а (4.6) - в виде

 $s = a \exp\left[i \left(2\pi v t - kx\right)\right] = a \exp\left(-ikx\right) \cdot \exp\left(i2\pi v t\right). \tag{4.8}$

Волну, выраженную в одной из форм (4.2) — (4.8), будем называть монохроматической волной.

Применительно к введенной терминологии можно сказать, что скорость распространения монохроматической волны есть скорость, с которой передается от точки к точке фаза монохроматического колебания. Действительно, скорость распространения фазы определяется при помощи того соотношения между x и t, при котором фаза остается неизменной, т. е. из требования $\frac{2\pi}{T} \left(t - \frac{x}{v} \right) = \text{const.}$ Дифференцируя это соотношение, мы найдем, что скорость распространения фазы $\frac{dx}{dt} = v$. Поэтому v носит название фазовой скорости монохроматической волны. Пользуясь иным выражением для монохроматической волны, можно найти другое выражение для фазовой скорости. Так, из соотношения (4.5) мы найдем условне для определения фазовой скорости: $\omega t - kx = \text{const}$, т. е. $\frac{dx}{dt} = \frac{\omega}{k}$, конечно, совпадающее с данным выше.

Действительно,

$$\frac{\omega}{k}=\frac{\lambda}{T}=\frac{Tv}{T}=v.$$

Опыт показывает, что, по-видимому, только для вакуума фазовая скорость распространения световых воли является одной и

той же для волн любого периода *). Во всех же остальных средах той же для волн любого периода). Во всех же остальных средах фазовая скорость распространения монохроматической световой волны зависит от ее длины, т. е. $v = \Phi(\lambda)$. Такие среды принято называть диспергирующими. Это обстоятельство имеет очень большое называть диспергирующими импульса, сложного рисс. называть очеперепредостранении импульса сложного вида. Такой значение при распространении импульса сложного вида. Такой значение при распространенией произвольного вида f (t). Во многих импульс выражается функции проблемах f (l) есть периодическая функция времени, хотя еще чаще она может и не быть периодической. Рассмотрение общей задачи о распространении импульса произвольного вида очень упрощается тем, что любую функцию можно представить в виде суммы (вообще говоря, с бесконечным числом членов) некоторых определенных функций. Физически это означает. что произвольный импульс может быть представлен как сумма (бесконечно большого числа) импульсов определенного вида. Подавляющее большинство приемных устройств подчиняется принципи суперпозиции, который означает, что результат нескольких одно-временных воздействий представляет собой просто-сумму резуль-

татов, вызванных каждым воздействием в отдельности. Принцип суперпозиции применим в том случае, когда свойства принимаю-щей системы не зависят от того, находится ли она уже под действием принимаемого возбуждения или нет, а эта независимость всегда имеет место, если воздействие не становится слишком сильным **). Поскольку принцип суперпозиции применим, мы можем заменить произвольный импульс суммой его слагающих и рассматривать действие каждой слагающей отдельно. Рациональный выбор этих слагающих, т. е. рациональный выбор метода разложения сложного импульса, позволяет чрезвычайно упростить рассмотрение задачи. Таким рациональным разложением является разложение на монохроматические волны, т. е. представление произбольной функции в виде совокупностей косинусов и синусов, введенное Фурье. Согласно теореме Фурье любая функция ***) может быть представлена с какой угодно точностью в виде суммы синусоидальных и коспнусоидальных функций с соответственно подобранными амплитудами, периодами и начальными фазами. При этом, если исходная функция периодична (с периодом Т), то периоды слагающих синусов и косинусов находятся в простом кратном отношении T, ¹/₂T, ¹/₃T, ¹/₄T, ... (представление в виде ряда Фурье). Если же функция не периодична, то в разложении содержатся не только кратные, но и все возможные периоды (представление в виде интег-

*) См. подробнее гл. XXVIII.

^{**)} Явления, имеющие место при распространении в веществе световых волн с большой напряженностью электрического поля, описаны ниже. (см. гл.

XL, XLL) ***) Математические условия, которым должна удовлетворять функция для того, чтобы ее можно было аппроксимировать по методу Фурье, выполняются

рала Фурье). Практически весьма хорошее приближение получается обычно, если ограничиться небольшим числом членов ряда Фурье.

Пользуясь разложением Фурье, мы можем представить импульс в виде совокупности монохроматических волн.

Если среда не обладает дисперсией, т. е. все монохроматические волны распространяются с одной и той же фазовой скоростью, то совокупность колебаний в любой точке среды, складыааясь, дает импульс первоначальной формы. В такой среде любой импульс распространяется без изменения формы, как целое, так что фазовая

скорость является в то же время и скоростью импульса. Если же среда обладает дисперсией, то отдельные синусоидальные колебания приходят в какуюлибо точку x_1 к данному моменту t_1 с различным изменением в фазах и, складываясь, дают импульс измененной формы. Импульс, распространяясь в дис-

пергирующей среде, деформируется, и понятие о скорости его распространения становится гораздо более сложным. К этому вопросу мы вернемся в гл. XX.

Таким образом, в диспергирующих средах, к числу которых принадлежат все среды (кроме вакуума), только бесконечная синусоидальная (монохроматическая) волна распространяется без искажения и с определенной скоростью. В этом кроется причина исключительного значения, которое имеет для оптики разложение Фурье в отличие от иных математически возможных разложений.

Следует подчеркнуть, что волна называется монохроматической, если не только *период* T, но и амплитуда a и начальная фаза φ суть величины, не зависящие от времени t. Волна, описываемая одним из выражений (4.2) — (4.6), при a непостоянной не будет монохроматической. Волны, возникающие при распространении импульсов, изображенных на рис. 2.2, 2.3, 2.4, амплитуда которых меняется с течением времени, являются примерами немонохроматических волн. Любая из соответствующих рис. 2.2—2.4 волн не отвечает формуле $s = a \sin (\omega t - kx)$ с a = const и может быть представлена по методу Фурье в виде суммы бесконечно длящихся синусоид и косинусоид. Другими словами, рассматриваемые волны представляют собой совокупность многих монохроматических волн различных периодов, a не просто монохроматическую волну.

Особый интерес представляет первый пример (рис. 2.2). В нем предполагается, что амплитуда сначала равна нулю, потом к моменту времени t_1 делается равной a_1 , остается постоянной все время от t_1 до t_2 и затем вновь становится равной нулю.

2 Ландсберг Г. С.;

введение

Понятно, что всякая реальная волна, как бы тщательно ни поддерживалось постоянство амплитуды, в лучшем случае соответстдерживалось постояление вуст рассматриваемому примеру, ибо ни одна реальная волна не вует рассматрина долго, а начинается и кончается в определенные моменты времени. Значит, такая волна не является строго монохроматической, ибо ее амплитуда есть функция времени.

Чем длиннее интервал $t_2 - t_1$ по сравнению с периодом T, т. е. чем большее число волн данного периода испускается за время работы источника, тем более монохроматическим может считаться его излучение. Вообще, чем медленнее меняется амплитуда с течением времени, тем более монохроматична волна.

Рис. 2.3. Пример немонохроматической волны: затухающая синусоида.

Рис. 2.4. Пример немонохроматической волны: наложение двух синусоид близкого периода (биения).

Рассмотрим следующий пример, показывающий, что синусоидальная волна с переменной амплитудой эквивалентна совокупности нескольких монохроматических волн.

Пусть дана волна, описываемая соотношением

$$s = a \cos\left(2\pi nt - kx\right),\tag{4.9}$$

где а — величина, изменяющаяся с течением времени по закону

 $a = A (1 + \cos 2\pi mt),$

т. е. т раз в течение секунды достигающая значения 2А и столько же раз обращающаяся в нуль, пробегая по указанному закону все промежуточные значения. При этом А есть некоторая постоянная величина. В таком случае имеем

$$s = A (1 + \cos 2\pi mt) \cos (2\pi nt - kx) =$$

= $A \cos (2\pi nt - kx) + A \cos 2\pi mt \cos (2\pi nt - kx) = A \cos (2\pi nt - kx) +$
+ $\frac{1}{2}A \cos \{2\pi (n + m) t - kx\} + \frac{1}{2}A \cos \{2\pi (n - m) t - kx\}.$

Таким образом, наша волна есть не что иное, как совокупность трех строго монохроматических волн с амплитудами А, 1/2А и $1/_2 A$ и с частогами n, n + m и n - m. Совокупность этих трех монохроматических воли и составляет заданную немонохроматическую волну, описываемую (4.9).

ГЛ. П. ВОЛНЫ

Пользуясь показательными функциями для выражения волны, можно упростить вычисления. Действительно, волна

$$s = a \exp [i (2\pi nt - kx)] =$$

= $A \{1 + \frac{1}{2} \exp (i2\pi nt) + \frac{1}{2} \exp (-i2\pi nt)\} \exp [i (2\pi nt - kx)] =$
 $\cdot = A \exp [i (2\pi nt - kx)] + \frac{1}{2}A \exp \{i [2\pi (n + m) t - kx]\} + \frac{1}{2}A \exp \{i [2\pi (n - m) t - kx]\} + \frac{1}{2}A \exp \{i [2\pi (n - m) t - kx]\}$

представляет собой совокупность трех монохроматических волн с частотами n, (n + m) и (n - m).

Мы рассмотрели до конца приведенный выше пример ввиду крайней простоты математического разбора задачи. В случае иного, более сложного закона изменения амплитуды во времени (периодического или непериодического) физическая сущность явления остается той же, но математический анализ разыскания отдельных монохроматических волн, из которых можно сложить данную немонохроматическую, гораздо сложнее и требует, вообще говоря, применения теоремы Фурье.

Разобранный пример ясно показывает, что изменение амплитуды во времени влечет за собой нарушение монохроматичности волны и появление новых частот.

Изменение амплитуды во времени означает вариацию интенсивности и носит название *модуляции*. Модулировать можно не только амплитуду, но и фазу волны. Модуляция фазы также означает нарушение монохроматичности.

В приведенном примере модуляция амплитуды происходила по простому синусоидальному закону. В реальных явлениях обычно модуляция происходит более сложным образом, вообще говоря, нерегулярно (хаотическая модуляция). Так, в любом источнике света излучение отдельных атомов, составляющих источник, нерегулярно меняется как по амплитуде, так и по фазе, испытывая хаотическую модуляцию *).

В том случае, когда модуляция происходит по закону, выбранному в нашем примере, она означает превращение монохроматической волны частоты n в три монохроматические волны с частотами n, n + m, n - m и с соответствующими амплитудами. Такого рода воздействие на интенсивность волны, т. е. модуляция волны, сопровождающаяся расщеплением частоты монохроматической волны, играет большую роль во многих оптических явлениях. Следует отметить трудность непосредственного наблюдения в оптических опытах воздействия, подобного описанному выше, ибо частота оптических волн очень велика ($n \sim 10^{14}$ Гц), поэтому требуются очень быстрые изменения интенсивности, происходящие

^{*)} Подробный разбор явлений модуляции можно найти в книге: Г. С. Горелик, «Колебания и волны», Физматгиз, 1959.
сгромное число раз в секунду, для того чтобы можно было получить сгромное число раз в сступа, т.е. чтобы n + m н n - m заметно заметное изменение частоты, т. е. чтобы n + m н n - m заметно

Столь частую модуляцию произвести технически очень трудноотличались от п. вследствие чего и явления подобного рода наблюдать в оптике трудно. Тем не менее они осуществляются как в искусственных опытах, так и в целом ряде естественных явлений (об этом см., например, в главе XXIX).

Указанное явление очень легко осуществить в акустическом опыте, где мы имеем дело с небольшими частотами. Если взять камертон с частотой 100 Гц, то достаточно модулировать по ука-

Рис. 2.5. Модуляция волны, испускаемой камертоном.

занному закону силу его звука два раза в секунду, для того чтобы получить сложную волну, эквивалентную трем волнам с частотами 98, 100 и 102 Гц. В этом легко убедиться простым опытом. Поставим друг против друга два камертона (рис. 2.5), имеющих частоты 100-и 98 Гц (или 102 Гц). Они не настроены в унисон, и волны, испускаемые одним камертоном, не вызовут

резонанса в другом. Но если, заставив звучать первый камертон, мы будем два раза в секунду вносить и убирать заслонку М, прикрывающую его резонансный ящик, т. е. будем модулировать дважды в секунду силу его звука, то модулированная волна будет эквивалентна (приблизительно) совокупности трех волн с частотами 100, 53 и 102 Гц и второй камертон будет отзываться на одну из них. Опыт этого рода удается без всяких затруднений.

Аналогичный опыт модуляции переменного тока легко осуществить при использовании для регистрации частоты язычкового частотомера. Когда синусоидальный ток с постоянной амплитудой действует на частотомер, то вибрирует язычок, отвечающий частоте тока (обычно $\omega = 50$ Гц). Но если ток прерывается периодически Ω раз в секунду или, еще лучше, если сила тока модулируется по синусондальному закону с частотой Ω, то, кроме язычка ω, вибрируют и язычки, соответствующие частотам ($\omega + \Omega$) и ($\omega - \Omega$).

Следует отметить, что мы ввели понятие монохроматической волны на примере плоской волны, для которой амплитуда а не зависит от координат. Однако это ограничение несущественно, а волна остается монохроматической при любом а, если только а не зависит от еремени: a = f(x, y, z). Так, например, в § 6 мы будем иметь дело с монохроматической сферической волной, амплитуда которой убывает по мере удаления от точки излучения.

§ 5. Энергия, переносимая электромагнитной волной

Электромагнитная волна представляет собой электромагнитное возмущение, распространяющееся, как упоминалось в § 3, в вакууме со скоростью *c*, а в среде — со скоростью $v = c/\sqrt{\epsilon\mu}$, где $\epsilon - \mu$ иэлектрическая проницаемость вещества, а μ — его магнитная проницаемость. С этим электромагнитным возмущением связана энергия, плотность которой (т. е. энергия, заключенная в единице объема) выражается для электрического поля через $\frac{\epsilon}{8\pi} E^2$, а для магнитного —

через $\frac{\mu}{8\pi}$ H^2 . В случае монохроматической волны $E = E_0 \sin(\omega t - kx)$ и $H = H_0 \sin(\omega t - kx)$, так что энергия волны пропорциональна квадрату ее амплитуды. Это соотношение между энергией и амплитудой сохраняет свое значение и для лобой другой волны, например, для упругих волн, рассматриваемых в механике и, в частности, в акустике.

При распространении электромагнитной волны происходит перенос (течение) энергии, подобно тому как это имеет место при распространении упругой волны. Вопрос о течении энергии в упругой волне был впервые (1874 г.) рассмотрен Н. А. Умовым *), который доказал общую теорему о потоке энергии в любой среде. Поток энергии в упругой волне может быть вычислен через величины, характеризующие потенциальную энергию упругой деформации и кинетическую энергию движения частиц упругой среды. Плотность потока энергии выражается с помощью специального вектора (вектор Умова). Аналогичное рассмотрение плодотворно и для электромагнитных волн. До известной степени можно уподобить энергию электрического поля потенциальной энергии упругой деформации, а энергию магнитного поля - кинетической энергии движения частей деформированного тела. Так же как и в случае упругой деформации, передача энергии от точки к точке в электромагнитной волне связана с тем обстоятельством, что волны электрической и магнитной напряженностей находятся в одной фазе. Такая волна называется бегущей. Движение энергии в бегущей упругой или электромагнитной волне удобно изображается при помощи вектора S, который можно назвать вектором потока энергии и который показывает, какое количество энергии протекает в волне за 1 с через 1 м². Для электромагнитных волн вектор этот был введен Пойнтингом (1884 г.). Его уместно называть вектором Умова — Пойнтинга.

Нетрудно найти выражение этого вектора для простого случая, рассмотренного нами в § 3 и выражающего распространение плоской электромагнитной волны вдоль оси х. Умножив (3.4) на Н и (3.5)

^{*)} Н. А. У мов, Уравнения движения энергии в телах, Одесса, 1874; Избранные сочинения, Гостехиздат, 1950, стр. 151-200.

на Е и сложив, получим

$$\frac{\partial u}{\partial t} = -\frac{c}{4\pi} \frac{\partial (EH)}{\partial x},$$

где $u = \frac{1}{8\pi} (\varepsilon E^2 + \mu H^2)$ есть плотность энергин. Рассматривая же поток энергин S, входящий и выходящий из элементарного объема, найдем выражение для изменения плотности энергии по времени

Отсюда

$$\frac{\partial u}{\partial t} = -\frac{\partial s}{\partial x}.$$

$$S = \frac{c}{4\pi} (EH),$$
(5.1)

что представляет собой численное выражение вектора Умова — Пойнтинга для электромагнитной волны *). Что касается направления вектора Умова — Пойнтинга, то он перпендикулярен к плоскости, проходящей через векторы электрической и магнитной напряженностей, т. е. в векторной форме запишется в общем виде

$$S = \frac{c}{4\pi} [EH]. \tag{5.2}$$

Своим направлением вектор Умова — Пойнтинга определяет направление переноса энергии волны и может быть во многих случаях принят за направление светового луча. Не следует, однако, забывать, что понятие луча есть понятие геометрической оптики и не имеет вполне соответствующего образа в области волновых представлений, для которых введен вектор Умова — Пойнтинга.

Монохроматическая электромагнитная волна, распространяющаяся вдоль x, представляет собой электромагнитное поле вида

$$E = \frac{a}{\sqrt{e}} \sin \frac{2\pi}{T} \left(t - \frac{x}{v} \right) \quad H \quad H = \frac{a}{\sqrt{\mu}} \sin \frac{2\pi}{T} \left(t - \frac{x}{v} \right)$$
(5.3)

в соответствии с (3.8). Волны (5.3) изображаются (рис. 2.6) так, что вектор E и вектор H одновременно достигают максимума и минимума, т. е. находятся в фазе, и энергия течет вдоль x (вектор v).

38

^{•)} Приведенный вывод неприменим к диспергирующим средам, ферромагнетикам и сегнетоэлектрикам. Однако окончательное выражение (5.2) для вектора Умова — Пойнтинга верно и в этих случаях, а выражение для плотности электромагнитной энергии должно быть изменено.

магнитной энергии должно быть изменено. Существенно заметить, что теорема Умова — Пойнтинга дает правильное выражение для потока эпергии сквозь замкнутую поверхность. Поэтому формулировать ее как утверждение, что S_ndo дает количество энергии, проходящее в единицу времени через площадку do, вообще говоря, иельзя. Такое толкование имеет смысл лишь тогда, когда размеры do вслики по сравнению с длиной волны

Из изложенной кратко теории Максвелла следует, что электромагнитное возмущение должно распространяться в диэлектрике со скоростью $v = c/V \varepsilon \mu$. Для вакуума $\varepsilon = \mu = 1$, т. е. скорость распространения в нем электромагнитной волны $c = 3 \cdot 10^8$ м/с, другими словами, она совпадает со скоростью света. Это основное заключение привело Максвелла к мысли, что свет представляет собой электромагнитное явление. Написанное выше соотношение Максвелла $v = c/V \varepsilon \mu$ позволяет определить также фазовую скорость света (электромагнитного возмущения) для любого диэлектрика. Так как c/v = n — показатель преломления среды, то, согласно Максвеллу, $n = V \varepsilon \mu$, т. е. показатель преломления среды оказывается связанным с другими константами, характеризующимы

Рис. 2.6. Векторы Е и Н в бегущей волне находятся в фазе.

среду, именно, с диэлектрической проницаемостью є (магнитная проницаемость для большинства тел близка к единице; кроме того, для процессов столь большой частоты, какими являются световые волны, мы можем, как показывает исследование, величину магнитной проницаемости считать равной единице для любой среды).

Дальнейшее исследование показало, однако, что показатель преломления зависит от частоты (дисперсия) и, значит, теория Максвелла нуждается в усовершенствовании: нельзя пользоваться непосредствению значением диэлектрической проницаемости, заимствованной из опытов с постоянным электрическим полем (статическая диэлектрическая проницаемость), а надо принять в расчет значение диэлектрической проницаемости, характеризующей среду под действием быстропеременного электрического поля (о динамической диэлектрической проницаемости см. ниже).

В настоящее время мы располагаем общирными данными, доказывающими тесную связь между оптическими и электромагнитными явлениями (электрооптика и магнитооптика), так что электромагнитная теория света является твердо обоснованной как с теоретической, так и с экспериментальной стороны.

введение

§ 6. Классификация волн. Понятие о поляризации волн

При распространении монохроматической волны мы всегда можем найти геометрическое место точек, находящихся в одной фазе. Эта нанти теометрические представляет собой поверхность, называемую фронтом волны. В частности, поверхностью общей фазы, т. е. фронтом волны, явится также и поверхность, все точки которой одновременно испытывают возмущение, вышедшее из источника в некоторый момент t. Это последнее определение фронта волны удобно применять и в том случае, когда мы имеем дело с совокупностью монохроматических волн, выходящих из источника с разными фазами (папример, монохроматическое излучение многих независимых атомов), или когда источник посылает немонохроматическую волну (импульс).

Если источник возмущения очень мал (точка) и скорость распространения возмущения во все стороны одинакова (изотропная среда), то, очевидно, фронт волны должен иметь вид сферической поверхности с центром в источнике. В таком случае волна называется сферической. Уравнение такой монохроматической сферической волны имеет вид

$$s = \frac{a_0}{r} \sin \omega \left(t - \frac{r}{v} \right) = \frac{a_0}{r} \sin \left(\omega t - kr \right), \tag{6.1}$$

где a₀ — амплитуда на единичном расстоянии r от источника. Выражение это показывает, что амплитуда сферической волны уменьшается пропорционально расстоянию от источника, а следовательно, интенсивность волны, пропорциональная квадрату амплитуды, уменьшается как квадрат расстояния от источника, ибо энергия, переносимая волной, распределяется по все возрастающей площади.

Строго говоря, сферическая волна соответствует источнику точечного размера, т. е. представляет абстракцию. Однако даже при источнике конечного размера фронт волны на достаточно большом расстоянии г будет сферической поверхностью с достаточным приближением.

В практической оптике для многих задач можно считать фронт сферическим, если расстояние г превосходит линейные размеры источника в десять раз или более. В этом случае закон убывания интенсивности с квадратом расстояния выполняется практически с достаточной точностью (см. § 7).

Фронт волны перемещается вдоль направления нормали к фронту. В случае сферической волны нормали эти совпадают с проведенными из источника раднусами-векторами, вдоль которых передается возмущение из источника, пазываемыми лучами. Таким образом, распространение фронта сферической волны происходит едоль лучей. Совпадение направления распространения фронта волны

и лучей, всегда имеющее место в изотропной среде, не соблюдается, вообще говоря, в случае анизотропных сред (см. § 144) *).

Если г достаточно велико, т. е. источник находится очень далеко от области наблюдения, то фронт волны представляется частью сферической поверхности очень большого радиуса. Ее можно с достаточным приближением считать плоскостью. Волна, фронт которой представляется плоскостью, называется плоской волной. Если оси координат выбраны так, что плоскость фронта параллельна плоскости ZY, то уравнение такой плоской монохроматической волны имеет вид

$$\mathbf{s} = a \sin \omega \ (t - x/v). \tag{6.2}$$

Действительно, из (6.2) следует, что поверхность одинаковой фазы определяется условием x = const, т. е. все точки плоскости, параллельной ZY, находятся в одинаковой фазе.

Фронт плоской волны перемещается параллельно самому себе, так что пути отдельных участков плоской волны параллельны между собой: плоская волна характеризует параллельный пучок лучей.

В соответствии с этим интенсивность волны, т. е. энергия, проходящая за 1 с через 1 м² поверхности, остается неизменной для всех значений координаты x, а следовательно, и амплитуда волны a не зависит от x. Необходимо отметить, что плоская волна также является идеализацией. Действительно, для того чтобы источник излучал плоскую волну, необходимо, чтобы он был удален бесконечно далеко. Так как всякий реальный источник излучает за 1 с конечную энергию, то при таком бесконечно удаленном источнике на ограниченный участок волны придется бесконечно малая энергия.

Возможны и другие методы образования плоской волны (параллельного пучка). Для этого можно, например, поместить источник в фокусе какой-либо оптической системы (коллиматор). Однако и в этом случае невозможно строго осуществить плоскую волну, передающую конечное количество энергии. Для того чтобы коллиматорное устройство давало строго параллельный пучок, необходимо, чтобы источник света был строго совмещен с фокусом системы, т. е. источник должен быть точечным в математическом смысле этого слова. Реальные источники, излучающие конечное количество

41

^{*)} Под направлением распространения мы понимаем направление, вдоль которого распространяется фронт волны, т. е. направление, перпендикулярное к поверхности постоянной фазы. Направление это обычно совпадает с направлением распространения энергии (лучом или вектором Умова — Пойнтинга). Поэтому часто не делают различия между этими двумя направлениями. Однако в ряде случаев (например, в кристаллооптике, при полном внутреннем отражении) эти два направления не совпадают. Так как векторы напряженности Е и Н всегда перпендикулярны к вектору Умова — Пойнтинга, то в упомянутых случаях по крайней мере один из этих векторов напряженности не перпендикулярен к направлению распространения, так что электромагнитная волна в данном случае не является строго поперечной. Исследование показывает, что заключение это относится к вектору *E*.

энергии, протяженны и их нельзя точно совместить с фокусом оптиэнергии, протяженны и их нельзя точно совместние с фокусом опти-ческой системы. Наконец, сама оптическая система, не обладающая чикакими погрешностями, не осуществима. В частности, наличие никакими погрешностями, не останости, наличие дифракции, которая принципиально неустранима, исключает воздифракции, которая принципланов порегранных, пенлючает воз-можность создания строго параллельных пучков. Получаемый при можность создания строго паралиства пучок не будет, следовательно, помощи коллиматорного устройства пучок не будет, следовательно, помощи контиматориот устребото параллельным, а волна будет отличаться от плоской. Таким образом, строго плоская волна не имеет

Рис. 2.7. – Направления колебаний в естественной поперечной волне.

реального смысла. Практически световая волна, посылаемая звездами, может считаться плоской; Солнце, видимый угловой диаметр которого около 1/2°, дает болну, заметно отличную от плоской; выделив часть этой волны при помощи диафрагмы. размеры которой сколь угодно малы по сравнению с ее расстоянием до Солнца, мы вырежем пучок, крайние лучи которого составят между собой угол около 30' (дифракция во внимание не принимается). Хорошее коллиматорное устройство может обеспечить пучки, отступление которых от параллельных не превышает доли

минуты, если источником служит маленькое ярко освещенное отверстие, с диаметром меньше 0,1 мм. Такое коллиматорное устройство дает, конечно, сравнительно мало света.

Общие законы волнового движения относятся в одинаковой степени как к продольным, так и к поперечным волнам. Поэтому очень многие явления имеют место для тех и других волн. В одном отношении, однако, поперечные волны отличаются важной особенностью. Продольные колебания симметричны относительно линии распространения, т. е. действие их на любой воспринимающий прибор не изменяется, если сам прибор будет поворачиваться вокруг направления распространения. При поперечных же волнах действия еолн на прибор различны и зависят от того, в какой плоскости, проходящей через линию распространения, происходит поперечное колебание. На рис. 2.7 показаны некоторые из возможных направлений колебаний для поперечной волны, идущей от чертежа к наблю-

Указанная особенность поперечных волн носит название поляризации. Если направление поперечного колебания сохраняется в одной плоскости, то волну называют плоско или линейно поляризованной. Возможны и другие, более сложные типы поляризации поперечной волны, при которых колебание вектора, оставаясь в плоскости, перпендикулярной к направлению распространения, имсет более сложный характер (конец вектора описывает эллипс или окружность — эллиптическая или круговая поляризация).

Глава III

ФОТОМЕТРИЧЕСКИЕ ПОНЯТИЯ И ЕДИНИЦЫ

§ 7. Основные понятия

Воздействие света на глаз или какой-либо другой приемный аппарат состоит прежде всего в передаче этому регистрирующему аппарату энергии, переносимой световой волной. Поэтому, прежде чем рассматривать законы оптических явлений, мы должны составить себе представление об измерении света — фотометрии, которая сводится к измерению энергии, приносимой световой волной, или

Рис. 3.1. К определению понятия «поток лучистой энергии».

к измерению величин, так или иначе связанных с этой энергетической характеристикой. Прежде всего необходимо дать определения тем величинам, которые фигурируют в измерительной практике. Их выбор обусловлен особенностями приемных аппаратов, непосредственно реагирующих на ту или иную из этих величин, а также возможностью осуществления эталонов для воспроизведения этих величин. При формулировке теоретических законов или практических выводов в разнообразных областях (теория излучения, светотехника, оптотехника, физиологическая оптика и т. д.) сказывается нередко удобным пользование то одними, то другими из введенных величин.

Этим объясняется многообразие фотометрических понятий, к рассмотрению которых мы переходим.

а. Поток лучистой энергии Ф. Представим себе источник света настолько малых размеров, что на некотором расстоянии от него можно считать поверхность распространяющейся волны сферической. Такой источник обычно называют *точечным*.

Расположим на пути лучистой энергии, идущей от нашего источника L (рис. 3.1), какую-нибудь малую площадку о и измерим количество энергии Q, протекающее через эту площадку за время т. Для этой цели можно покрыть площадку веществом, поглощающим всю падающую энергию (сажа), и измерить поглощениую энергию,

введение

например, по изменению температуры. Отношение

$$\frac{Q}{\tau} = d\Phi, \tag{7.1}$$

показывающее количество лучистой энергии, протекающей через показывающее количество из истой операни, протекцющей через площадку о за единицу времени, т. е. мощность сквозь поверхность о, называется потоком лучистой энергии через поверхность о.

называется тергия в однородной среде распространяется прямолинейно, то, проведя из точки L совокупность лучей, опираюпрямолиненно, то, проведя по те по до селену посто пу тел, отпраю-щихся на контур площадки о, мы получим конус, ограничивающий часть потока, протекающую через о. Если внутри среды поглощения энергии нет, то через любое сечение этого конуса протекает один и тот же поток. Сечение конуса сферической поверхностью с центром в L и с радиусом, равным единице, дает меру телесного угла конуса $d\Omega$. Если нормаль n к поверхности σ составляет угол i с осью конуса, а расстояние от L до площадки есть R, то

$$d\Omega = \frac{\sigma \cos l}{R^2}.$$
 (7.2)

Таким образом, выделенная нами часть потока приходится на телесный угол dΩ. При этом мы предполагаем, что линейные размеры площадки σ малы по сравнению с R, так что dΩ — небольшая величина и внутри dΩ поток можно считать равномерным. Полный поток, идущий от L по всем направлениям, будет

$$\Phi = \int d\Phi.$$

Поток есть основное понятие, необходимое для оценки количества энергии, проникающей в наши приборы. Знание потока существенно необходимо при расчете многих оптических устройств. Такой приемник, как, например, фотоэлемент, непосредственно реагирует на поток (см. § 95).

б. Сила света Ј. Величину потока, приходящегося на единкцу телесного угла, называют силой света. Если поток Ф посылается нашим источником равномерно по всем направлениям, то

$$J = \frac{\Phi}{4\pi} \tag{7.3}$$

есть сила света, одинаковая для любого направления. В случас неравномерного потока величина Ф/4л представляет лишь среднюю силу света и называется средней сферической силой света. Для определения истинной силы света по какому-либо направлению надо выделить вдоль него достаточно малый элементарный телесный угол dΩ и измерить световой поток dΦ, приходящийся на этот

гл. III. Фотометрические понятия и единицы

Сила света по данному направлению определится соотношением

$$J = \frac{d\Phi}{d\Omega}.$$
 (7.4)

Охарактеризовав выбранное направление углами широты 9 и долготы ф в некоторой полярной системе координат (рис. 3.2), можно обозначить силу света по дан-

ному направлению через $J_{\theta,\phi}$. Величина эта есть функция ϕ и θ . Из рис. 3.2 явствует, что

$$d\Omega = \sin \theta \, d\theta \, d\varphi$$

н, следовательно,

$$d\Phi = J_{\theta, \varphi} \sin \theta \, d\theta \, d\varphi,$$

а полный поток

$$\Phi = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} J_{\theta, \varphi} \sin \theta \, d\theta.$$

Рис. 3.2. К выводу выражения для телесного угла в полярных координатах.

Если J не зависит от φ и θ (равномерный поток), то из этого общего соотношения следует, что

(7.5)

$$\Phi = 4\pi J \tag{7.6}$$

в согласни с соотношением (7.3).

Величина полного светового потока характеризует излучающий источник, и ее нельзя увеличить никакими оптическими системами. Действие этих систем может лишь сводиться к *перераспределению* светового потока, например, большей концентрации его по некоторым избранным направлениям. Таким способом достигается увеличение силы света по данным направлениям при соответствующем уменьшении ее по другим направлениям. Таково, например; действие сигнальных аппаратов или прожекторов, позволяющих при помощи источников, обладающих средней сферической силой света в несколько сот кандел, создавать на оси прожектора силу света в миллионы кандел (см. упражнение 134).

Основной светотехнический эталон есть эталон силы света (см. § 9).

в. О с в е щ е н н о с т ь *Е. Освещенностью Е* называется величина потока, приходящегося на единицу поверхности. Освещенность площадки о (обозначения те же, что и на рис. 3.1) есть

 $E = \frac{d\Phi}{\sigma} = \frac{Jd\Omega}{\sigma} = \frac{J\cos i}{R^2},$

(7.7)

введение

причем в последних двух равенствах введена сила света J по (7.4)

учтено (1.2). Полученное выражение показывает, что освещенность, создаваеи учтено (7.2). мая точечным источником *), обратно пропорциональна квадрату мая почечности и прямо пропорциональна расстояния от источника до поверхности и прямо пропорциональна расстояния от исто или в направлением светового потока косинусу угла, составляемого направлением светового потока косинусу угла, составляется паприлания средовско потока (осью узкого конуса, внутри которого распространяется поток) с нормалью к освещаемой поверхности. Это есть основной закон освещенности, создаваемой точечным источником (закон обратных квадратов).

Для прстяженных источников мы можем разбить поверхность источников на элементарные участки (достаточно малые по сравнению с R) и, определив освещенность, создаваемую каждым из них по закону обратных квадратов, проинтегрировать затем по всей площади источника, приняв, конечно, во внимание зависимость силы света от направления. Зависимость освещенности от R окажется при этом более сложной. Однако при достаточно больших (по отношению к величине источника) расстояниях можно пользоваться и законом обратных квадратов, т. е. считать источник точечным. Этот упрощенный расчет дает практически хорошие результаты, если линейные размеры источника не превышают 1/10 расстояния от источника до освещаемой поверхности. Так, если источником служит равномерно освещенный диск диаметром 50 см, то в точке, лежащей на нормали -к центру диска, ошибка в расчете по упрощенной формуле для расстояния 50 см достигает приблизительно 25%, для расстояния 2 м не превышает 1,5%, а для расстояния 5 м составляет всего лишь 0,25%.

Изменяя при помощи липз и зеркал распределение светового потока, мы получаем возможность сконцентрировать его на определенных участках поверхности и, таким образом, повысить их освещенность, уменьшив одновременно освещенность других. В частности, именно такое назначение имеют всевозможные арматуры (светильники), которыми обычно снабжаются источники света, предназначенные, для освещения помещений, рабочих столов, улиц и т. д.

Так как в большинстве случаев мы воспринимаем несамосветящиеся предметы, то понятие освещенности приобретает очень важное значение. Большинство проблем светотехники сводится к созданию благоприятной освещенности. В «Нормах освещенности» даются требования, предъявляемые к рациональному освещению рабочих

г. Яркость источника В. Для многих светотехнических расчетов можно, как мы видели, считать некоторые источники

*) То есть источником, размеры которого малы по сравнению с расстоянием до освещенной поверхности и поток от которого равномерен по всем направточечными, т. е. пренебрегать их размерами по отношению к расстояниям, на которых наблюдается их действие. Однако многие из этих источников настолько велики, что мы можем при обычных расстояниях наблюдения глазом различить их форму; другими словами, размеры поверхности источника лежат в пределах способности глаза или инструмента отличать протяженный предмет от точки. По отношению к таким источникам, составляющим громадное большинство, имеет смысл определение понятия поверхностной яркости (или просто яркости), неприменимого к источникам, лежащим за пределами разрешающей способности (например к звездам). Поверхностная яркость *B* есть величина, характеризующая излучение светящейся поверхности по данному направле-

нию, определяемому углом *i* с нормалью к светящейся поверхности и из данной области поверхности.

Выделим пучок, опирающийся на элемент поверхности σ и образующий телесный угол $d\Omega$; ось пучка составляет угол *i* с нормалью *n* к σ (рис. 3.3). Видимая поверхность элемента в направлении оси есть σ соз *i*. Пусть поток, посылаемый ею в телесный

Рис. 3.3. К определению понятия яркости протяженного источника.

угол $d\Omega$, равен $d\Phi$. Посылаемый поток пропорционален видимой поверхности излучателя $\sigma \cos i$ и величине телесного угла $d\Omega$. Коэффициент пропорциональности зависит от свойств излучающей поверхности и может быть различным для различных направлений углов *i* относительно нормали. Обозначив этот коэффициент через B_i , найдем

 $d\Phi = B_i \sigma \cos i \, d\Omega$

или

$$B_i = \frac{d\Phi}{\sigma \cos i \, d\Omega}.\tag{7.8}$$

Коэффициент B₁ носит название яркости источника по направлению, определяемому углом *i*. Итак, яркостью в данном направлении называется поток, посылаемый в данном направлении единицей видимой поверхности внутрь единичного телесного угла.

Яркость B_i есть величина, зависящая от направления; однако для некоторых источников она может от направления не зависеть. Такие источники называются источниками, подчиняющимися закону Ламберта. Строго говоря, таким источником является только абсолютно черное тело; матированная поверхность или мутная среда, каждый участок которых рассенвает свет равномерно во все стороны, служат более или менее хорошими подобиями ламбертова источника. Такие среды можно назвать идеально рассеивающими, если они подчиняются закону Ламберта.

введение.

Освещенная поверхность, покрытая окисью магния, или колпак Освещенная поверлиоста, освещенный изнутри, — вот примеры из хорошего молочного стекла, освещенный изнутри, — вот примеры из хорошего молочного стекли, освещения примеры вот примеры источников, достаточно хорошо приближающихся к ламбертовым. источников, достаточно корошо приотилист и намосртовым. Поверхность Солнца излучает по закону, довольно близкому к зако-Поверхность Солнца излучает по закону, довольно олизкому к зако-ну Ламберта, хотя еще Бугер экспериментально установил, что яркость Солнца несколько падает от центра к периферии, составляя на расстоянии ³/₄ раднуса около 80% яркости в центре диска. Рассмотрим светящийся плоский диск S (рис. 3.4) и светящуюся полусферу S'. Предположим, что обе поверхности подчиняются

Рис. 3.4. Плоский диск и полусфера, подчиняющиеся закону Ламберта, ка-· жутся одинаково яркими.

так как

закону Ламберта и имеют оди-наковую яркость В. Тогда световые потоки, посылаемые соответствующими участками диска и сферы по любому направлению, будут одинаковы, ибо видимые поверхности их равны, а яркости по условию не зависят от направления. Таким образом, светящийся диск неотличим от светящейся полусфеподчиняются pы, если ОНИ закону Ламберта. Например. Солнце при не очень тщательных наблюдениях кажется нам

плоским диском равномерной яркости; это доказывает, что Солнце является источником, довольно хорошо подчиняющимся закону Ламберта.

Знание яркости существенно необходимо при исследовании самосветящихся предметов, в частности, источников света. Наш глаз реагирует непосредственно на яркость источника (см. § 10). Понятие яркости используется и в теории излучения (см. гл. XXXVI).

д. Светимость S. C понятием яркости тесно связано понятие светимости S, представляющей собой интегральную величину, т. е. суммарный поток, посылаемый единицей поверхности наружу по всем направлениям (внутрь телесного угла 2л). Таким образом,

$$S = \frac{\Phi}{\sigma}, \qquad (7.9)$$

если Ф есть полный поток, посылаемый светящейся площадкой о наружу по всем направлениям.

Светимость и яркость связаны между собой простым соотношением. Поток внутри телесного угла dΩ по направлению i будет

$$a \phi = B_1 \sigma \cos i d\Omega = B_1 \sigma \sin i \cos i di dm$$

$$d\Omega = \sin i \, di \, d\sigma$$

где φ — азимутальный угол. Чтобы получить поток, испускаемый площадкой σ , надо это выражение проинтегрировать по всем значениям *i* н φ , определяющим направление внутрь полусферы, т. е. по *i* от нуля до $1/2\pi$ и по φ от нуля до 2π . Итак, полный поток (предполагается независимость B_i от φ)

$$\Phi = \int d\Phi = \sigma \int_{0}^{2\pi} d\varphi \int_{0}^{1/2\pi} B_{l} \sin l \cos i \, di = 2\pi\sigma \int_{0}^{1/2\pi} B_{l} \sin i \cos i \, di.$$

Вместе с тем, тот же поток можно выразить через светимость S:

 $\Phi = \sigma S$.

Таким образом, связь между светимостью и яркостью выражается соотношением

$$S = 2\pi \int_{0}^{1/2\pi} B_{i} \cos i \sin i \, di.$$
 (7.10)

Для источников, повинующихся закону Ламберта, $B_i = B$, т. е. не зависит от *i*. В этом случае имеем

$$S = 2\pi B \int_{0}^{t_{s}\pi} \cos i \sin i \, di = \pi B.$$
 (7.11)

Светимость — очень удобное для многих расчетов понятие. Мы с ним встретимся также в теорни излучения.

Соотношение $\Phi = \sigma S$ показывает, что светимость S имеет ту же размерность, что и освещенность E, и представляет собой поток, отнесенный к единице поверхности. Светимость характеризует сеечение поверхности, т. е. поток, стходящий от единицы поверхиссти; освещенность же характеризует освещение поверхности, т. е. поток, приходящий на единицу поверхности.

е. И нтенсивность светового потока *R*. Для характеристики светового поля можно ввести еще понятие *интенсивности светового пстока*. Под интенсивностью понимают величину светового потока, протексющего через единицу видимого сечения по направлению, определяемому углом *і* между направлением потока и нормалью к этому сечению, внутрь единичного телесного угла:

$$R = \frac{d\Phi}{\sigma \cos i \, d\Omega}.\tag{7.12}$$

Таким образом, интенсивность светового потока играет для характеристики светового поля ту же роль, что и яркость для характеристики светящейся поверхности. Поэтому ее нередко называют также яркостью светового потока.

49

введение

Из сказанного выше должно быть ясным, что большое количество Из сказанного выше должно онго ленено, не сополное количество понятий, связанных с переносимой светом энергией, обусловлено, понятий, связанных с перепоставление сверенени, осусловлено, в конечном итоге, законом прямолинейного распространения света, в конечном игоге, законом прегия может переноситься по-разному в силу которого световая энергия может переноситься по-разному в силу коюрого светения оперед элементы поверхности, находяв различных паправиси. Наиболее дифференцированной характерисщнеся в разпых толках тактеристикой светового поля служит яркость (или интенсивность), определяющая мощность, распространяющуюся в заданном направлении вблизи заданной точки пространства. Сила света описывает мощность, также распространяющуюся в заданном направлении, но от всей поверхности протяженного источника. Освещенность и светимость характеризуют мощность, которая распространяется вблизи какой-либо определенной точки пространства во всех направлениях. Наконец, наиболее интегральной характеристикой является поток, — мощность, переносимая во всех направлениях через всю заданную поверхность. Приведенные соображения наглядно иллюстрируются соотношениями между введенными величинами и яркостью:

 $J = \int B_i \cos i \, d\sigma, \quad E = \int B_i \cos i \, d\Omega, \quad \Phi = \iint B_i \cos i \, d\sigma \, d\Omega.$

В зависимости от назначения и устройства регистрирующей аппаратуры результаты измерений наиболее естественно выражаются через ту или иную фотометрическую величину.

При наблюдении, например, звезд глаз реагирует на свет, испущенный в направлении наблюдателя всей поверхностью звезды; следовательно, в данном случае удобно говорить о силе света звезды. В фотографических приборах неважно, в каком направлении пришел свет в данную точку фотопленки и вызвал ее почернение, т. е. пленка осуществляет интегрирование энергии по углам; поэтому здесь регистрируется освещенность. В приборах с фотоэлектрическими или тепловыми приемниками излучения измеряется, как правило, полный поток, попадающий на всю поверхность приемника по всем направлениям.

Единицы измерения введенных фотометрических величии зависят, естественно, от выбора системы единиц. В системе СИ поток измеряется в ваттах, освещенность и светимость — в Вт/м², сила света — в Вт/ср, яркость и интенсивность — в Вт/(м² · ср). Отметим, однако, что в оптических экспериментах сравнительно редко возникает необходимость подсчета потока, проходящего через поверхности с лицейными размерами порядка метра. Как правило, речь идет о поверхностях с размерами порядка сантиметра (линзы, зеркала и другие элементы приборов) либо миллиметра (изображение). Поэтому отнесение мощности к м² неудобно, и в научной литературе часто используются единицы Вт/см² = 10⁴ Вт/м² и Вт/мм² =

§ 8. Переход от энергетических величин к световым

Мы пользовались до сих пор для определения величины потока и всех связанных с ним величин обычными единицами энергии и мощности, например, джоулями и ваттами. Такого рода энергетические измерения и выполняются, когда приемником для света является универсальный приемник, например, термоэлемент, действие которого основано на превращении поглощенной световой энергии в тепловую. Необходимо, однако, иметь в виду, что гораздо чаще мы используем в качестве приемников специальные аппараты, реакция которых зависит не только от энергии, приносимой светом, но также

и от его спектрального состава. Такими весьма распространенными селективными приемниками являются фотопластинка, фотоэлемент особенно человеческий глаз. играющий исключительно важную роль и при повседневном восприятии света, и как приемник излучения во многих оптических приборах. В соответствии с этим при многочисленных световых измерениях необходимо принимать во внимание особенности глаза, заставляющие вы-

делять определенный узкий участок длин волн из всего многообразия электромагнитных колебаний. Нередко термином «свет» называют именно узкий интервал, заключенный примерно между 400 и 800 нм. С этой точки зрения интерес представляет не просто восприятие энергии, а *световое восприятие* ее. Поэтому следует установить переход от энергетических величин к величинам, характеризующим световое восприятие, и целесообразно ввести специальную систему единиц, приспособленную к свойствам глаза человека.

Чувствительность глаза к свету различной длины волны можно охарактеризовать кривой видности. Абсциссами этой кривой служат длины волн λ , а ординатами — относительные чувствительности глаза v_{λ} , т. е. величины, обратно пропорциональные мощностям монохроматического излучения, дающим одинаковые зрительные ощущения. Несмотря на субъективность таких оценок, воспроизводимость их достаточно хороша, и кривая видности, как показывают измерения, не сильно меняется при переходе от одного наблюдателя к другому. Лишь у немногих людей глаза заметно отклоияются от нормы.

введение

На основании многочисленных измерений установлен вид кривой На основании многочиси средний нормальный глаз. Кривой видности, характеризующей средний то устоянов след. видности, характеризующени $\lambda = 555$ нм, условно принимаемый видности имеет максимум при $\lambda = 500$ можни совется в совется и видности имеет максими, в вержденная Международной осветительной за единицу. Кривая, утвержденная Международной осветительной за единицу. Привал, лючи в рис. 3.5. Численные значения ординат комиссией, изображена на рис. 3.5. комиссиен, изооралены ниже в табл. 3.1. Из этой таблицы этой кривой приведены ниже в табл. 3.1. Из этои кривои пример, для $\lambda = 760$ нм требуется мощность, приивствует, что, паприлар, чем для $\lambda = 550$ нм, чтобы вызвать одинаковое по силе зрительное ощущение.

Таблица 3.1

λ, ем	σλ	λ, ΗΜ	υλ	λ, нм	ΰλ
400 410 420 430 440 450 460 470 480 490 500 510	0,0004 0,0012 0,0040 0,0116 0,023 0,038 0,060 0,091 0,139 0,208 0,323 0,503	520 530 540 550 560 570 580 590 600 610 620 630	0,710 0,862 0,954 0,995 0,995 0,952 0,870 0,757 0,631 0,503 0,381 0,265	640 650 660 670 680 690 700 710 720 730 740 750 760	$\begin{array}{c} 0,175\\ 0,107\\ 0,061\\ 0,032\\ 0,017\\ 0,0082\\ 0,0041\\ 0,0021\\ 0,00105\\ 0,00052\\ 0,00052\\ 0,00052\\ 0,00012\\ 0,00006\\ \end{array}$

Значения видности их

§ 9. Единицы для световых измерений

Принимая в качестве приемника световой энергии глаз, Международная осветительная комиссия (МОК) определила световой поток как поток лучистой энергии, оцениваемой по зрительному ощущению.

Таким образом, несмотря на введение понятия среднего глаза, существующий метод оценки сохраняет еще некоторую связь с психофизиологическими понятиями, ибо для измерения привлекается зрительное ощущение. Замена среднего глаза эквивалентным физическим приемником, например, фотоэлементом с соответственно подобранной кривой чувствительности, позволила бы осуществить эти измерения вполне объективно по силе возникающего

Для реализации определенного светового потока и других светотехнических величин служит условный световой эталон. Международным соглашением с 1 января 1948 г. введен новый воспроизводимый световой эталон, осуществляемый в виде абсолютно черного.

тела (см. § 197), применлемого при температуре затвердевания

чистой платины (2046,6 К). Эталон должен быть осуществлен по определенной схеме с соблюдением определенных требований к чистоте платины. У нас в СССР такой эталон осуществлен фотометри-

ческой лабораторией Всесоюзного научно-исследовательского института метрологии.

Устройство и размеры излучателя, являющегося световым эталоном, показаны на рис. З.6. Нагрев и расплавление платипы производятся путем обогревания ее токами высокой частоты. Излучателем света является трубочка 2, стенки которой имеют по всей длине одинаковую температуру благодаря соприкосновению с разогретой платиной *).

Единица *силы света* — кандела (кд), равная ¹/₆₀ силы света, излучаемого в направлении нормали с ¹/₆₀ см² указанного светового эталона.

До введения нового эталона основной единицей силы света служила международная свеча (м. св), осуществляемая электрическими лампами специальной конструкции и равная 1,005 кд **).

Единицей *светового потока* является *люмен* (лм) — поток, посылаемый источинком света в 1 кд внутрь телесного угла в 1 стерадиан. Если источник обладает

силой света в 1 кд по любому направлению, то он излучает полный световой поток, равный 4π лм = 12,5 лм. Новый световой эталон по нормальному направлению излучает с 1 см² поток, равный 60 лм/ср.

Единица освещенности, люкс (лк), есть освещенность, соответствующая потоку в 1 люмен, равномерно распределенному по площадке в 1 м²:

$$l \pi K = I \pi M / I M^2$$
.

*) Этот же эталон положен в основу световых единиц, принятых в международной системе единиц (СИ), которая введена в действие с 1 января 1963 года.

**) Применяемая иногда в лабораторных измерениях фитильная лампа определенной конструкции, в которой горит чистый амилацетат, не может служить эталоном силы света. Эта так называемая свеча Гефнера составляет около 0,90 кд. Распределение энергии свечи Гефнера по длинам волн хорошо изучено; именно поэтому она представляет интерес для лабораторных целей как сравнительно легко осуществляемый источник света с хорошо известными характеристиками.

Рис. 3.6. Государственный световой эталон СССР.

1 — платина; 2 — трубочка вз плавленой окиси тория; 3 сосуд из плавленой окиси тория; 4 — засыпка из окиси тория; 5 — сосуд из кварца. Таким образом, 1 лк есть освещенность, создаваемая на поверхности Таким ооразом, т лк сель остолорого расположен излучающий шара раднусом в 1 м, в центре которого расположен излучающий равномерно во все стороны источник силой в 1 кд.

вномерно во все сторила освещенность, выражается в лм/м², но Светимость, так же как освещенность, выражается в лм/м², но светимость, так ли но сится к испускаемому потоку, а не к полу-

Единицей яркости служит яркость площадки, дающая силу ченноми. света в 1 кд с каждого квадратного метра в направлении, перпендикулярном к площадке. Таким образом, единица яркости есть «кандела на квадратный метр».

Помимо единицы кд/м² в научной литературе применяют ряд других единиц, перечисленных ниже.

Название	Обозначение	Значение в кд/м [*]
нит	нт	1
стильб	сб	104
апостильб	асб	1/π
ламберт	лб	$10^{4}/\pi$

Нит есть, очевидно, просто иное название для кд/м². Стильб отвечает яркости площадки, дающей силу света 1 кд с каждого квадратного сантиметра. Физический смысл величин апостильб и ламберт связан с яркостью идеального рассеивателя, на котором создана определенная освещенность.

Идеальным рассеивателем называется поверхность, полностью рассенвающая весь падающий на нее поток, и притом равномерно по всем направлениям, так что яркость ее не зависит от направления (соблюдается закон Ламберта). Идеальный рассеиватель, освещенность которого доведена до одного люкса, рассеивает с каждого квадратного метра во все стороны весь падающий на него поток, т. е. 1 люмен с каждого квадратного метра. Таким образом, на основанни соотношения $S = \pi B$ (см. § 7) он имеет яркость в $1/\pi =$ = 0,318 кд/м². Итак, 1 апостильб = 0,318 кд/м² — это яркость идеального рассенвателя, на котором создана освещенность в один люкс.

Ламберт отвечает, очевидно, яркости идеального рассеивателя, на котором создана освещенность 10⁴ лк = 1 лм/см².

Яркости различных светящихся тел очень сильно разнятся между собой. Табл. 3.2 дает представление об этом разнообразии.

Интенсивность, так же как яркость, выражается в кд/м².

Располагая эталоном, дающим определенный световой поток, выражаемый в люменах, можно было бы определить этот поток в ваттах и установить связь между световыми и энергетическими единицами. Однако следует иметь в виду, что вследствие весьма различной чувствительности глаза к разным длинам волн сравнение характеризовало бы лишь экономичность примененного эталона и инчего не говорило бы об энергетической чувствительности глаза.

гл. н. фотометрические понятия и единицы

Яркости различных светящихся тел

Таблица 3.2

	Источник	Яркость, кд/м³
Ночное безлун	ное небо	около 1.10-4
Неоновая лами		1 • 163
Полная луна,	видимая сквозь атмосферу	$2,5 \cdot 10^{3}$
Пламя обычной	а стеариновои свечи	5 • 103
ясное дневное	Heoo	1,5 • 104
Газосветная ла	мпа	5.104
металлическии	волосок лампы накаливания	1,5-2.10*
Спираль газон	аполненной лампы накаливания	5 - 105
Кратер обычно	й угольной дуги	1,5 - 108
Солнце		1,5 • 109
Капиллярная р	отутная дуга сверхвысокого давления	4 · 1C ^a
Шаровая ртутн	ая лампа сверхвысокого давления (СВДШ)	1,2 • 1(9
Импульсная ст	робоскопическая лампа (ИСШ)	I • 1011

Поэтому принято переходный множитель, определяющий в ваттах мощность, необходимую для получения светового ощущения, вызываемого потоком в 1 люмен, измерять для определенного узкого интервала длин волн, соответствующего максимуму чувствительности глаза, а именно, $\lambda = 555$ нм. Этот фактор A носит название механического эквивалента света. По новым измерениям он равен

A = 0,00160 Вт/лм.

Ввиду трудности измерения этой величины и необходимости усреднять результаты многих наблюдателей точность определения *А* не превышает 2—3%.

Для удобства мы сопоставляем все световые и энергетические единицы в табл. 3.3.

Таблица 3.3

Величины	Обозначе- ния	Единица световая	Символ	Единица энергетическая
Световой поток	Ф	люмен	ЯМ	ватт
Сила света	Ј	кандела	КД	ватт/стерадиан
Яркость	В	кандела/м ^а	КД/М ³	ватт/(стерадиан · м ³)
Светимость	Ѕ	люмен/м ^а	ЛМ/М ²	ватт/м ²
Освещенность	Е	люкс	ЛК	ватт/м ³

Световые и энергетические единицы

Совокупность фотометрических понятий и величии, установленных в качестве единиц для соответствующих измерений, даст возможность охарактеризовать действие света на наши приборы и установки,

введение

§ 10. Световые измерения (фотометрия)

Фотометрические измерения разделяют на объективные (производимые с помощью приборов, не требующих участия глаза, например, с помощью фотоэлементов) и субъективные, или визуальные, в которых измерения основаны на показаниях глаза.

в которых полорение сфотоэлектрические) фотометры за последние годы Объективные (фотоэлектрические) фотометры за последние годы получают все большее и большее развитие, постепенно вытесняя приборы, основанные на визуальных методах измерения. Мы познапоиборы, основанные на визуальных методах измерения. Мы познакомимся более подробно с этими приборами в главе о фотоэффекте. Укажем только, что все они основаны на зависимости, в силу которой фотоэлектрический ток прямо пропорционален поглощенному фотоэлементом световому потоку. Поэтому шкалу электроизмерительного прибора, соединенного с фотоэлементом, можно градуировать непосредственно в тех или иных фотометрических единицах, например в люксах.

Визуальные измерения производятся непосредственно глазом. При этом надо иметь в виду, что глаз очень хорошо устанавливает равснство освещенностей двух каких-либо соприкасающихся поверхпостей, но очень плохо непосредственно оценивает, во сколько раз освещенность одной поверхности больше освещенности второй. Поэтому все приборы, служащие для сравнения двух источников (так называемые фотометры), устроены так, что роль глаза сводится к установлению равенства освещенностей двух соприкасающихся полей, освещаемых сравниваемыми источниками. Для достижения равенства освещенностей применяются разнообразные приемы, ведушие к ослаблению освещенности, создаваемой более сильным источником. Принципиально наиболее простым является изменеине расстояния от источника до фотометра и применение соотношения

$$J_1/J_2 = r_1^2/r_2^2. \tag{10.1}$$

Невозможность в очень широких пределах варьировать отношение расстояний заставляет прибегать к другим способам ослабления потока. К ним относятся поглощение света фильтром переменной толщины (клином) (рис. 3.7) или сетками с большим или меньшим отношением площади ячеек и проволок, введение в пучок вращающегося круга с секториальным вырезом большей или меньшей площади (рис. 3.8), а также ослабление света системой поляризационных призм (рис. 3.9).

Применение всех этих приспособлений требует тех или иных предосторожностей. Закон обратных квадратов справедлив лишь для точечных источников (см. § 7); фильтры должны в одинаковой степени поглощать свет различной длины волны (нейтральные фильтры); сетки не должны отбрасывать теней и поэтому употребляются предпочтительно в соединении с линзами, вблизи которых они располагаются. Наконец, вращающиеся секторы меняют, по существу, не поток, а время его действия и, следовательно, пригодны лишь тогда, когда уменьшение среднего по времени значения потока эквивалентно уменьшению величины потока; это имеет место, как показали

Рис. 3.7. Фотометрический ослабитель: поглощающий клин.

психофизиологические исследования, лишь при достаточной частоте прерывания (закон Тальбота).

Уравнивая тем или иным способом освещенности, создаваемые сравниваемыми источниками, мы находим отношение сил света источников

 $J_1/J_2 = k.$

Если сила одного из источников известна (эталонный источник), то таким образом можно измерить силу второго источника в выбранном направлении. Измерив силу источника по разным направлениям, можно вычислить световой поток, освещенность и т. д. Установление равенства освещенностей делается глазом достаточно точно, если оба поля имеют одинаковый цвет. В просравнение не тивном случае только затруднено, но иногда и вообще не имеет смысла. Для

Яркость прошедшего света зависит от угла поворота призм вокруг горизонтальной оси.

сравнения источников разного цвета (гетерохромная фотометрия) исходят из определения равенства освещенностей, основываясь на различных психофизиологических наблюдениях, которые и клалутся в основу измерений (например, исчезновение явления мигалутся в основу измерений (например, исчезновение явления мигания при освещении прерывистым светом разной интенсивности и разного цвета). Существуют также фотометры, позволяющие непосредственно определять суммарный световой поток, а следовательно, и среднюю сферическую силу света источника (шаровой фотометр или интеграсферическую силу света источника (люксметр), яркость источника тор), освещенность поверхности (люксметр), яркость источника и т. д.

Во всяком фотометре рассматривается некоторое поле, одна часть которого освещена только одним источником, а другая — только другим. При этом надо позаботиться о том, чтобы обе сравниваемые части поля фотометра освещались соответственными источниками под одним и тем же углом; глаз наблюдателя также должен рассмат-

Рис. 3.10. Схема простейшего фотометра.

ривать оба поля под одинаковыми углами. Рис. 3.10 показывает, как осуществляется этот принцип в одной из простейших моделей фотометров.

Устройство этого фотометра крайне просто: глаз наблюдателя A рассматривает белую трехгранную призму MPN, помещенную внутри зачерненной трубки и освещаемую источниками L_1 и L_2 . Варьируя расстояния от источников до призмы, можно урав-

нять освещенности поверхностей MP и PN. Для удобного измерения расстояний L_1P и L_2P приборы располагают на оптической скамье.

Более совершенно устроен фотометр Люммера — Бродхуна. Существенную часть фотометра составляет кубик Люммера, входящий как составная часть и во многие другие фотометрические аппараты. Кубик Люммера (рис. 3.11) состоит из двух прямоугольных призм, у одной из которых грань, соответствующая гипотенузе, оставлена плоской только в центре, края же сошлифованы. Призмы тщательно приполированы и плотно прижаты друг к другу, так что в месте соприкосновения представляют как бы один кусок и ведут себя подобно прозрачному телу (оптический контакт).

Схема фотометра с применением кубика Люммера показана на рис. 3.12. Здесь L_1 и L_2 — два сравниваемых источника света; S — белый диффузно разбрасывающий свет экран, вполне идентичный с обенх сторон; S_1 и S_2 — два вспомогательных зеркала; P_1P_2 — кубик Люммера; A — глаз наблюдателя и V — лупа, позволяющая визировать плоскость раздела кубика. При наблюдении мы видим центр кубика освещенным лучами, идущими от источника L_1 , а внешняя часть поля освещается лучами от L_2 , испытавшими полное внутреннее отражение на грани P_1P_2 . Если освещенность экрана Определяя соответственные расстояния L_1S и L_2S , мы найдем отноВ осветительной технике очень важным является вопрос, как велика должна быть освещенность на данной плоскости или в данном месте рабочего помещения для разных видов работы: чтения, черчения, шитья и т. д.

Освещенность, как упоминалось выше, измеряется числом люксов. Инструкциями инспекции по охране труда устанавливается определенное число люксов освещенности рабочего помещения.

Наименьшая освещенность рабочей поверхности (стола) ни для какого вида работы не должна быть ниже 10 лк. Освещенность, при которой так же удобно шить, как при рассеялном дневном свете,

Рис. 3.11. Фотометрический кубик Люммера.

Рис. 3.12. Схема фотометра Люммера — Бродхуна.

составляет 60 лк. При освещенности порядка одного люкса можно с напряжением читать. Освещенность в одну-две десятых люкса создает при ясном небе полная луна. Этой освещенности достаточно летчику для прицельного бомбометания; такую освещенность, следовательно, нельзя допускать при светомаскировке. Освещенность в сотые доли люкса (молодая луна) позволяет производить некоторые виды работ ночью, например земляные работы. Освещенность в тысячные доли люкса (звездное небо), по-видимому, допустима при светомаскировке. Освещенность в десятитысячные доли люкса позволяет с трудом ориентироваться иочью.

Существуют специальные модели фотометров, которые приспособлены для непосредственного определения освещенности (люксметры). В последнее время в качестве люксметров с успехом применяются фотоэлементы, шкала которых проградуирована соответствующим образом.

Только точечный источник дает по любому направлению одну и ту же силу света, и, следовательно, для характеристики его

введение

достаточно произвести одно измерение на оптической скамье. Для достаточно произвести одно номорета по различным направлениям реальных же источников сила света по различным направлениям реальных же источников сли характеристики распределения света различна, так что для полной характеристики распределения света различна, так что для пороизводить измерения в различных азимуог источника преојется проповодинатах) чрезвычайно тах. Такого рода диаграммы (в полярных координатах) чрезвычайно тах. такого рода днатралия (тех случаях, когда источником света показательны (рис. 3.13). В тех случаях, когда источником света показательна (рис. ответствующую арматуру (светиль-

ник), диаграммы могут приобретать весьма несимметрический вид (например для автомобильных фар).

Рис. 3.13. Полярная диаграмма силы света лампы накаливания в арматуре. (Цифры выражают силу света по данному направлению в условных единицах).

Рис. 3.14. Фотометрический шар, схематическое изображение разреза.

Во многих случаях достаточно знать среднюю сферическую силу света, т. е. значение полного потока, посылаемого источником, а не его распределение по различным направлениям. Такое измерение может быть произведено в так называемых интегральных фотометрах. Одним из таких фотометров служит шаровой фотометр Ульбрехта. Исследуемый источник подвешивается внутри полого шара К (рис. 3.14), внутренняя поверхность которого покрыта белой матовой краской. Белый матовый экран S защищает отверстие О на поверхности шара от действия прямых лучей источника. Если отражение света от внутренней поверхности шара К следует закону Ламберта, то освещенность Е отверстия О пропорциональна полному световому потоку Ф лампы:

$$E = c\Phi, \tag{10.2}$$

где с — множитель пропорциональности, зависящий от размеров шара и его окраски. Этот множитель определяется экспериментально путем замены испытуемой лампы нормальной. Отверстие О покрыто пластинкой из молочного стекла.

Для измерения Е определяют яркость этой пластинки обычным фотометром на оптической скамье или каким-либо иным. Обычно употребляют шары Ульбрехта не менее 1 м диаметром. Нередко применяются и большие шары.

Своеобразной разновидностью визуального метода, пригодного для измерения самых малых яркостей, является метод, разработанный акад. С. И. Вавиловым и известный под названием «метода гашения». Основоположником этого метода С. И. Вавилов считал Франсуа Мари (1700 г.), но следует отметить, что лишь после тщательных исследований С. И. Вавилова метод этот приобрел характер важного способа оценки слабых интенсивностей. Метод поконтся на способности глаза довольно хорошо оценивать пороговое значение яркости, т. е. минимальную, еще воспринимаемую отдохнувшим глазом яркость. Это пороговое значение оказывается для каждого наблюдателя довольно устойчивым. Метод гашения заключается в том, что каким-либо способом ослабляют наблюдаемую яркость до порогового значения. Зная, во сколько раз пришлось произвести ослабление, наблюдатель может определить исходную яркость. Таким путем удается оценивать яркости в десятитысячные кд/м² и ниже, что почти недоступно никаким другим методам.

ИНТЕРФЕРЕНЦИЯ СВЕТА

Глава IV :

когерентность

§ 11. Введение

Закон независимости световых пучков, упомянутый в § 1, означает, что световые пучки, встречаясь, не воздействуют друг на друга. Это положение было ясно сформулировано Гюйгенсом, который писал в своем «Трактате»: «Одно из чудеснейших свойств света состоит в том, что, когда он приходит из разных и даже противоположных сторон, лучи его производят свое действие, проходя один сквозь другой без всякой помехи. Этим вызывается то, что несколько зрителей могут одновременно видеть через одно и то же отверстие различные предметы ...». Сам Гюйгенс прибавляет, что этот вывод иструдно понять с точки зрения волновых представлений. Он является следствием принципа суперпозиции (см. § 4), в силу которого световой вектор одной световой волны просто складывается с вектором другой волны, не испытывая никакого искажения. При этом, однако, возникает следующий вопрос. В силу принципа суперпозиции при сложении векторов отдельных воли может получиться волна, амплитуда которой равна, например, сумме амплитуд складывающихся воли. А так как интенсивность волны пропорциональна квадрату амплитуды, то интенсивность результирующей волны не будет, вообще говоря, равна сумме интенсивностей складывающихся воли, ибо квадрат суммы нескольких величин не равен сумме их квадратов. Обычный же опыт показывает, что освещенность, создаваемая двумя или несколькими световыми пучками, представляется простой суммой освещенностей, создаваемых отдельными пучками. Таким образом, обычные экспериментальные факты кажутся на первый взгляд противоречащими волновым представлениям.

§ 12. Понятие о когерентности. Интерференция колебаний

Для выяснения этой фундаментальной проблемы напомним сведения, относящиеся к сложению колебаний и волн.

При сложении двух гармонических колебаний одного периода

 $s_1 = a_1 \sin(\omega t + \varphi_1)$ is $s_2 = a_2 \sin(\omega t + \varphi_2)$, (12.1)

происходящих по одному направлению, получится вновь гармоническое колебание того же периода

$$s = s_1 + s_2 = A \sin(\omega t + \theta), \qquad (12.2)$$

амплитуда A и фаза в которого определяются из следующих соотношений:

$$A^{2} = a_{1}^{2} + a_{2}^{2} + 2a_{1}a_{2}\cos(\varphi_{1} - \varphi_{2}), \qquad (12.3)$$

$$\operatorname{tg} \theta = \frac{a_1 \sin \varphi_1 + a_2 \sin \varphi_2}{a_1 \cos \varphi_1 + a_2 \cos \varphi_2}$$
(12.4)

(см. упражнения 13 и 14).

Выражение (12.3) показывает, что квадрат амплитуды результирующего колебания не равняется сумме квадратов амплитуд складывающихся колебаний, т. е. энергия результирующего колебания не равна сумме энергий складывающихся колебаний. Результат сложения зависит от *разности фаз* ($\varphi_1 - \varphi_2$) исходных колебаний и может иметь любое значение в пределах от $A^2 = (a_1 - a_2)^2$ (при $\varphi_1 - \varphi_2 = \pi$) до $A^2 = (a_1 + a_2)^2$ (при $\varphi_1 - \varphi_2 = 0$). Однако практически мы никогда не имеем дела со строго гармо-

Однако практически мы никогда не имеем дела со строго гармоническими колебаниями, описываемыми (12.1), т. е. колебаниями, длящимися бесконечно долго с неизменной амплитудой. Обычно колебания время от времени обрываются и возникают вновь уже с иной, нерегулярно измененной фазой, т. е. не являются строго гармоническими. В таком случае и результирующая интенсивность $(I \propto A^2)$ также меняется с течением времени *).

Наблюдая эту интенсивность, мы могли бы получить изменяющиеся значения; однако для этого необходимо применить для наблюдения прибор, который реагировал бы достаточно быстро, чтобы отмечать изменения *I*. В противном случае мы не сможем следить за всеми изменениями *I* и будем регистрировать только некоторое среднее во времени значение интенсивности *I*, обозначаемое *I*, подобно тому как глаз не в состоянии следить за колебаниями яркости лампочки накаливания, питаемой переменным током, и отмечает некоторую постоянную среднюю яркость.

Вводя обозначение $\psi = \phi_1 - \phi_2$, вычислим средний квадрат амплитуды результирующего колебания за промежуток времени τ , длительный по сравнению с временем нерегулярных изменений

63

^{*)} Особенности интерференционных явлений, излагаемые здесь и ниже, в равной мере относятся к любой фотометрической величине (потоку, яркости, освещенности). Поэтому не имеет смысла конкретизировать, о какой именно фотометрической величине идет речь в том или ином случае, и термин «интенсивность» будет применяться для любой энергетической величины, пропорциональной квадрату амплитуды колебаний напряженности поля.

фазы ψ:

$$I \propto \hat{A}^{2} = \frac{1}{\tau} \int_{0}^{\tau} A^{2} d\tau = \frac{1}{\tau} \int_{0}^{\tau} (a_{1}^{*} + a_{2}^{*} + 2a_{1}a_{2}\cos\psi) d\tau =$$
$$= a_{1}^{*} + a_{2}^{*} + 2a_{1}a_{2}\frac{1}{\tau} \int_{0}^{\tau} \cos\psi d\tau. \quad (12.5)$$

Если ф остается неизменным в течение времени наблюдения т, то

$$\frac{1}{\tau}\int_{0}^{\tau}\cos\psi\,d\tau=\cos\psi;$$

следовательно,

$$\bar{A}^2 = a_1^2 + a_2^2 + 2a_1a_2\cos\psi$$
, r. e. $I \neq I_1 + I_2$.

При случайном же обрыве и возобновлении колебаний разность фаз изменяется совершению беспорядочно, многократно пробегая за время т все значения от нуля до 2π . Поэтому $\frac{1}{\tau} \int_{0}^{\tau} \cos \psi \, d\tau$ стремится к нулю, и мы имеем

 $\bar{A}^2 = a_1^2 + a_2^2$, r. e. $l = l_1 + l_2$.

Итак, при сложении двух колебаний одного периода надо различать два случая.

1. Разность фаз колебаний сохраняется неизменной за время т, достаточное для наблюдений. Средняя энергия результирующего колебания отличается от суммы средних энергий исходных колебаний и может быть больше или меньше нее в зависимости от разности фаз. В этом случае колебания называются когерентными. Сложение колебаний, при котором не имеет места суммирование интенсивностей, мы будем называть интерференцией колебаний.

2. Разность фаз колебаний беспорядочно меняется за время наблюдения. Средняя энергия результирующего колебания равна сумме средних энергий исходных колебаний. Колебания в этом случае называются некогерентными. При их сложении всегда наблюлается суммирование интенсивностей, т. е. интерференция не имеет места.

Как указывалось выше, строго гармонические колебания одинаковой частоты всегда вполне когерентны между собой, ибо, поскольку они длятся, не обрываясь, имеющаяся у них разность фаз сохраияется без изменения сколь угодно долгое время. Поэтому при сложении таких гармонических колебаний всегда проявляется интерференция.

64

Итак, результат сложения двух гармонических колебаний одинаковой частоты зависит от соотношения между их фазами. При сложенин большого числа N колебаний одинаковой частоты с произвольными фазами результат будет, конечно, зависеть от закона распределения фаз. Предполагая для простоты, что все колебания имеют одинаковые амплитуды, равные а, найдем, что результирующая интенсивность может заключаться между N²a² и нулем. Как показал Рэлей *), при распределении фаз, которые подвергаются вполне случайным изменениям, средняя энергия суммы таких колебаний за время, охватывающее достаточно большое число изменений фаз. равна Na², т. е. в данном общем случае имеет место сложение интенсивностей. Этот вывод имеет самое непосредственное отношение к реальным источникам света. Результирующее колебание от отдельных испускающих центров (атомов), составляющих источник. создает освещенность, величина которой в данный момент и в данной точке зависит от соотношения фаз между колебаниями отдельных центров. Но наш глаз воспринимает лишь среднюю освещенность за некоторый достаточный для восприятия интервал времени и на некоторой достаточной по величине освещенной площадке. Это обстоятельство приводит к полному усреднению фазовых соотношений, в результате чего воспринимаемая освещенность окажется просто суммой освещенностей, создаваемых каждым светящимся центром нашего источника. Поэтому мы вправе сказать, что две одинаковые свечи дают освещенность вдвое большую, чем одна.

§ 13. Интерференция волн -

В соответствии с определением предыдущего параграфа мы говорим об интерференции волн, когда при их совместном действии не происходит суммирования интенсивностей. Условием интерференции волн одной и той же частоты является их когерентность, т. е. сохранение неизменной разности фаз за время, достаточное для наблюдения. В частности, монохроматические волны, т. е. волны, порождаемые гармоническими колебаниями, когерентны и могут интерферировать (если, конечно, они имеют одинаковый период). Способность когерентных волн к интерференции означает, что в любой точке, которой достигнут эти волны, имеют место когерентные колебания, которые будут интерферировать. Мы будем для простоты предполагать, что обе волны одинаково линейно поляризованы. Результат интерференции определяется разностью фаз интерферирующих волн в месте наблюдения, а эта последняя зависит от начальной разности фаз волн, а также от разности расстояний, отделяющих точку наблюдения от источников каждой из волн.

*) Дж. В. Стрэтт (Рэлей), Волновая теория света, Гостехиздат, 1940, § 4. Изложение рассуждений Рэлея можно найти в книге: Г. С. Горелик, Колебания и волны, Физматгиз, 1959, гл. Х. § 2.

З Ландсберг Г. С.

Пусть две когерентные волны исходят из источников S₁ и S₂ Пусть две когерентные выла вланы перпендикулярно к плос-(рис. 4.1); колебания в них направлены перпендикулярно к плос-(рис. 4.1); колеодния в них поразводится в точке М. Допуская кости чертежа, и наблюдение производится в точке М. Допуская кости чертежа, и паолюдение провезованы имеют одинаковые ампли-для простоты расчета, что в ней обе волны имеют одинаковые амплидля простоты расчета, что в маке в М, вызываемые первой и второй туды, найдем, что колебания в М, вызываемые первой и второй болнами, выразятся в виде

$$s_1 = a \cos 2\pi \left(t/T - d_1/\lambda \right),$$

$$s_2 = a \cos \left[2\pi \left(t/T - d_2/\lambda \right) - \varphi \right],$$

где $d_1 = S_1 M$ и $d_2 = S_2 M$, λ — длина волны, а φ — начальная разность фаз.

Рис. 4.1. К расчету разности фаз волн, идущих от двух когерентных источников.

Складываясь в точке М, колебания дадут

$$s = s_1 + s_2 =$$

$$= 2a \cos \left(\pi \left(d_2 - d_1 \right) / \lambda + \frac{1}{2} \varphi \right) \cos \left[2\pi \left(t / T - \left(d_2 + d_1 \right) / 2\lambda \right) - \frac{1}{2} \varphi \right].$$
(13.1)

Таким образом, колебание в точке М имеет амплитуду, равную $2a \cos (\pi (d_2 - d_1)/\lambda + 1/2\phi)$, и интенсивность, пропорциональную

$$4a^2\cos^2(\pi (d_2 - d_1) / \lambda + 1/2\phi).$$

Для когерентных волн ф постоянна, и следовательно, различие интенсивности света в разных точках зависит только от различия разностей расстояний d₂ и d₁. Благодаря этой разности расстояний, или, как принято говорить, разности хода двух волн, колебания, вызванные этими волнами в точке их встречи, будут обладать разностью фаз даже в том случае, когда начальные фазы обенх волн были одинаковы. Разность фаз ф, возникшая вследствие разности хода воли, равна

$$\psi = 2\pi \left(d_2 - d_1 \right) / \lambda.$$

Выразим разность хода через длину волны $\Delta = d_2 - d_1 = m\lambda$, где m — любое число (целое или дробное). Соответствующая разкость фаз $\psi = 2\pi m$. Если начальные фазы одинаковы ($\phi = 0$), то интенсивность двух интерферирующих воли с одинаковыми

ГЛ. IV. КОГЕРЕНТНОСТЬ-

амплитудами запишется в виде

$$I \propto A^2 = 4a^2 \cos^2(\pi (d_2 - d_1)/\lambda) = 4a^2 \cos^2 m\pi.$$
 (13.2)

Целым значениям m соответствуют различие по фазе на $2\pi m$ и интенсивность, пропорциональная $4a^2$. При m полуцелом фазы складывающихся колебаний противоположны и интенсивность равна нулю. В общем случае m — дробное число. При неравных амплитудах интенсивность выражается соотношением

$$I \propto A^2 = a_1^2 + a_2^2 + 2a_1a_2 \cos 2\pi m = (a_1 - a_2)^2 + 4a_1a_2 \cos^2 \pi m. \quad (13.3)$$

При целом *m* имеем максимумы $A^2 = (a_1 + a_2)^2$, при полуцелом m — минимумы $A^2 = (a_1 - a_2)^2$.

Таким образом, геометрическое место точек пространства, характеризующихся одинаковыми амплитудами (и интенсивностями), удовлетворяет условню $(d_2 - d_1)/\lambda = \text{const}$, т. е. представляет собой поверхность гиперболоида вращения с осью S_1S_2 , фокусами которого служат точки S_1 и S_2 (на рис. 4.1 сечение одного из таких гиперболоидов плоскостью чертежа изображено пунктиром). В частности, средняя плоскость, показанная на чертеже линией OO', соответствует плоскости максимальной интенсивности.

Описанное распределение интенсивностей представляет собой интерференционную картину, соответствующую интерференции двух когерентных волн с начальной разностью фаз, равной нулю. Если бы начальная разность фаз отличалась от нуля, то мы имели бы такую же картину, в которой, однако, темные и светлые полосы принимают некое промежуточное положение, зависящее от ф. Действительно, в этом общем случае условие, например, максимума интенсивности в интерференционной картине имеет вид

$$(d_2 - d_1)/\lambda + \varphi/2\pi = m.$$

Следовательно, отличие φ от нуля эквивалентно тому, что $(d_2 - d_1)/\lambda$ не равно целому числу, как было бы при $\varphi = 0$.

В случае некогерентных волн каждому значению ф будет соответствовать своя интерференционная картина, которая с течением времени будет сменяться другой. Если их смена происходит достаточно быстро, то мы не в состоянии наблюдать эти *меновенные* интерференционные картины и воспринимаем некоторое среднее состояние, которое соответствует монотонному распределению интенсивности.

Как видно из рассмотренных примеров суперпозиции воли с расными и неравными амплитудами, соотношение между их амплитудами существенно сказывается на качестве интерференционной картины. В первом случае максимумы освещенности в интерференционной картине чередуются с областями, в которых освещенность падает до нуля, во втором случае интерференционная картина накладывается на равномерно освещенный фон. Его освещенность пропорциональна величине $(a_1 - a_2)^3$ (ср. (13.3)).

интерференция света

Возможность наблюдения чередующегося распределения светлых возможность наолюдения теренционном поле существенно зависит от и темных полос в интерференционном поле существенно зависит от и темных полос в интерференционной полос существенно зависит от освещенности этого фона. Поэтому для оценки видимости, или контосвещенности этого фона. Поэтом, али оделии видимости, или конт-растности, интерференционной картины в некоторой точке интер-ференционного поля Майкельсон ввел параметр видимости V, определяемый следующим образом:

$$V = \frac{E_{\max} - E_{\min}}{E_{\max} + E_{\min}},$$

где E_{\max} и E_{\min} — максимальная и минимальная освещенности интерференционных полос вблизи выбранной точки поля. Параметр V может изменяться в пределах от 1 до 0. Первое его значение соответствует наиболее контрастной интерференционной картине, второе — полному ее исчезновению.

Для того чтобы человеческий глаз мог уверенно различать чередование светлых и темных полос на интерференционной картине, значение V должно быть не менее 0,1 или $E_{\min} \approx 0.82 E_{\max}$.

В рассмотренном нами элементарном примере значение параметра V определяется только соотношением между амплитудами интерферирующих волн

$$V = \frac{2a_1a_2}{a_1^2 + a_2^2} = \frac{2a_2/a_1}{1 + (a_2/a_1)^2}.$$
 (13.4)

Однако значение V может зависеть и от различия в состояниях поляризации интерферирующих волн, и от наличия некогерентного света в составе интерферирующих световых пучков и т. д. Вопрос о влиянии состояния поляризации интерферирующих волн на значения параметра видимости интерференционной картины обсуждается подробнее в § 18.

Часто встречаются случаи, когда осуществляется интерференция световых пучков, в состав которых входит некогерентный свет. В месте наложения таких световых пучков некогерентные части световых колебаний, по самому своему определению, создают равномерно освещенный фон, и это ведет к снижению видимости (контрастности) интерференционной картины.

Рассмотрим случай интерференции двух таких пучков одинаковой суммарной интенсивности, в состав которых входит доля когерентного света у. Тогда интенсивность каждого светового пучка можно записать в виде $I_1 = \gamma I_1 + (1 - \gamma) I_1$. Здесь первое слагаемое в правой части выражает интенсивность когерентного света, входящего в состав этих пучков, второе — интенсивность некогерентного света. Переменную составляющую освещенности интерференционной картины создает только когерентная часть колебаний, и поэтому вместо (13.3) получим

В соответствии со сказанным ранее, некогерентная часть света $(1 - \gamma)$ создает равномерно освещенный фон, аналогично тому, как было в случае полностью когерентных пучков при разных их амплитудах (ср. (13.3)). Видимость интерференционной картины согласно (13.5) принимает значение

$$V = \frac{E_{\max} - E_{\min}}{E_{\max} + E_{\min}} = \gamma.$$
(13.6)

Таким образом, параметр видимости интерференционной картины оказывается непосредственно равным доле когерентного света, присутствующего в интерферирующих световых пучках. Следовательно, измерение видимости картины позволяет в таких случаях определить долю интенсивности когерентных составляющих этих световых пучков. В более общем виде вопрос о частично когерентном свете специально рассматривается в § 22.

§ 14. Осуществление когерентных волн в оптике

Опыт показывает, что когда два независимых источника света, например две свечи, или даже два различных участка одного и того же светящегося тела посылают световые волны в одну область пространства, то мы не наблюдаем интерференции и констатируем сложение интенсивностей. После изложенного в предыдущих параграфах мы не можем, конечно, считать результаты такого опыта доказательством несостоятельности волновых представлений о свете. Отсутствие устойчивой (наблюдаемой) интерференционной картины может обозначать только, что наши источники не посылают когерентных волн. Это означает, следовательно, что посылаемые источниками волны — немонохроматические (см. § 12). То обстоятельство, что даже с наилучшими в смысле монохроматичности источниками (свечение разреженных газов) мы не можем получить интерференции от независимых источников, есть доказательство того, что ни один источник не излучает строго монохроматического света. Сказанное относится ко всем нелазерным источникам света.

Однако высокая монохроматичность лазерного излучения допускает наблюдение интерференции световых пучков, излучаемых *двумя разными* лазерами. На рис. 4.2 приведена микрофотограмма интерференционной картины, созданной лазерными пучками от двух разных лазеров; отчетливо видно периодическое распределение максимумов и минимумов интенсивности света.

Нетрудно понять физическую причину немонохроматичности реального нелазерного излучения, а следовательно, и некогерентности волн, испускаемых двумя независимыми источниками света. Действительно, испускание света происходит вследствие атомных процессов, и в двух самостоятельных источниках света мы будем

интерференция света

иметь дело с излучением атомов, не связанных друг с другом. В кажнметь дело с излучением птолов, не селония длится очень короткое дом из таких атомов процесс излучения длится очень короткое дом из таких атомов процесс нолу сони степь короткое время, обрываясь вследствие потери энергии в результате излучения время, оорываясь вследствие потери оператор и ресультате излучения нли помех и взаимодействий с окружающими атомами. Даже в наибоили помел и взаниоденечиях, когда мешающее действие окружающих атомов сведено к минимуму (свечение сильно разреженных гащих атолюв сведство к правильного» излучения не превышает стозов, длисти долей секунды. После прекращения свечения атом может вновь начать испускать световые волны, но, конечно, уже с номожет вновы на населения вой волого фаз между излученнями двух таких независимых атомов будет изменяться при начале всякого

Рис. 4.2. Интерференционная картина, полученная с двумя световыми пучками от двух разных лазеров.

нового акта испускания, т. е. через чрезвычайно короткие промежутки времени: такие источники излучают некогерентные волны, и мгновенные интерференционные картины, ими даваемые, сменяются настолько быстро и беспорядочно, что мы можем наблюдать только среднюю картину, т. е. равномерное распределение освещенности.

Итак, для получения двух когерентных волн излучение различных независимых атомов непригодно. Френель (1816 г.) показал, однако, что можно достигнуть цели, использовав излучение лишь одного атома (или тесно расположенной группы) *) для получения двух систем волн, которые, конечно, вследствие общности проискождения будут когерентными. Для этого необходимо испускаемое излучение расчленить на два потока (путем отражения или преломлення) и заставить их встретиться после того, как они пройдут различные пути d₁ и d₂. Таким образом, мы заставим встретиться волны, вышедшие из одного и того же источника (атома), но в раз-

•) Если два светящихся атома находятся очень близко (на расстоянии, малом по сравнению с длиной волны) друг от друга, то они не являются независимыми: излучение одного может воздействовать на другой, и их излучение в известной степени может оказаться когерентным, но в таком случае атомы пракное время и притом с таким малым запозданием одной относительно другой, что когерентность будет иметь место (обе группы волн принадлежат к одному акту испускаиня атома).

. Френель практически осуществил этот прием, заставив свет от источника отражаться OT **ДВVX** зеркал, расположенных под углом, близким к 180° (бизеркала Френеля). Путь лучей показан на рис. 4.3. Прямые лучи от S не доходят до экрана АА, ибо их задерживает ширма КК. От каждого атома источника S к экрану АА приходят волны, идущие по двум путям разной длины и поэтому запаздывающие одна относительно другой. Волны, идущие от S и отражающиеся зеркалами I и II, представляют две системы когерентных волн, как бы исходящих из источников S₁ и S₂, являющихся мнимыми изображениями S в зеркалах I и II. В различные точки экрана АА эти волны приходят с некоторой разностью фаз, определяемой различием в длине пути от

Рис. 4.3. Бизеркала Френеля.

 S_1 и S_2 до соответствующей точки экрана. Поэтому освещенность экрана в разных точках различна, как это условно показано на рис. 4.3.

§ 15. Основные характеристики интерференционных схем

Не только в описанном опыте, но и во многих других интерференционных схемах дело сводится к получению двух источников когерентных волн с помощью приспособлений, дающих два изображения единого излучающего центра. Мы рассмотрим подробнее одну схему, на которой очень отчетливо выступают все наиболее существенные детали.

Эта схема, известная под названием билинзы Бийе, осуществляется с помощью линзы, разрезанной по диаметру; обе половины слегка разводятся, благодаря чему получаются два действительных изображения S_1 и S_2 светящейся точки S. Прорезь между полулинзами закрывается экраном K^*) (рис. 4.4).

*) Билинзу Бийс можно использовать и так, что S₁ и S₃ окажутся мнимыми изображениями S. Для того чтобы пучки от мнимых изображений перекрыва-
Интерференция наблюдается в области, где перекрываются оба Интерференция наолюдается в области, нас переприваются оба световых потока, идущих от S₁ и S₂. Точка М интерференционсветовых потока, наущих от сталисти хода двух ного поля имеет освещенность, зависящую от разности хода двух ного поля имеет освещенность, силистичение освещение на двух интерферирующих лучей. На этой схеме ясно видно, что интерфеинтерферирующих лучени на оден слава воло и посторие, но интерферирующих углов Ω, рирующие световые потоки задаются размерами телесных углов Ω, рирующие световые потоки общаются разлерия световых утнов S_2 , величина которых зависит от угла $2\phi = \angle Q_1 S_1 R_1 = \angle Q_2 S_2 R_2$ между лучами, определяющими перекрывающиеся части пучков.

Рис. 4.4. Билинза Бийе.

∠ R₁S₁Q₁ = ∠ R₁S₄Q₂ = 2φ — апертура перекрывающихся пучков для бесконечно удаленного экрана; ∠ PSP = 2ω — апертура интерференции для центральной точки М экрана EE.

Этот угол 2ф мы назовем апертурой перекрывающихся пучков. Максимальное значение угла 2 ϕ соответствует условию $S_1Q_1 \parallel S_2Q_2$ и S₁R₁ || S₂R₂; при этом экран расположен в бесконечности. Обычно угол 2ф несколько меньше, ибо экран располагается на конечном расстоянии D, хотя и большом по сравнению с S₁S₂. Величина апертуры 2ф определяет собой угловые размеры поля интерференции, средняя освещенность которого зависит от яркости и угловых размеров изображений источника S1, S2. Полный поток, проходящий через поле интерференции, пропорционален площади этого поля и, следовательно, углу 2ф. В интерференционном поле благодаря интерференции происходит перераспределение освещенности - образуются интерференционные полосы.

Угол 20 между соответствующими лучами, идущими от S через каждую из двух ветвей интерферометра к М, представляет собой угол раскрытия лучей, определяющий интерференционный эффект лись, необходимо из середины линзы вырезать кусок и обе оставшиеся части

в точке *M*. Практически то же значение имеет этот угол и для любой другой точки интерференционного поля. Этот угол мы будем называть апертурой интерференции. Ему соответствует в поле интерференции угол схсждения лучей 2w, величина которого связана с углом 2w правилами построения изображений. При неизменном расстоянии до экрана 2w тем больше, чем больше 2w.

Величина апертуры интерференции 2ю тесно связана с допустимыми размерами источника. Теория и опыт (см. § 17) показывают. что с увеличением апертуры интерференции уменьшаются допустимые размеры ширины источника, при которых еще имеет место отчетливая интерференционная картина. Поскольку освещенность пропорциональна ширине источника, увеличение апертуры интерференции приводит к уменьшению освещенности интерференционной картины. Вместе с тем, величина интерферирующих световых потоков, связанная с размерами интерференционного поля, определяется, согласно § 7, выражением $\Phi = B\sigma\Omega$ (принимаем, что источник излучает по направлению, нормальному к своей поверхности). При заданной яркости источника В величина потока зависит от произведения σΩ, причем σ согласно сказанному тем больше, чем меньше апертура интерференции, а Ω тем больше, чем больше апертура перекрывающихся пучков. При обсуждении вопроса, может ли данная интерференционная схема обеспечить большие размеры и хорошую освещенность интерференционной картины, надо учитывать, возможно ли осуществить одновременно большую апертуру перекрывающихся пучков (2ф) и малую апертуру интерференции (2ω).

Основные черты интерферометра Бийе повторяются в любой интерференционной схеме, которую в общем виде можно изобразить рис. 4.5.

Точки S_1 и S_2 — изображения излучающего центра S, получаемые с помощью оптической системы интерферометра, не показанной на чертеже *). Эти точки могут быть как действительными, так и мнимыми изображениями точки S. В частности, S может совпадать с одной из этих точек (схема Ллойда, см. ниже рис. 4.8). Апертура интерференции 2ω и связанный с нею угол 2ω определяют допустимый размер источника света, ширина которого обозначена через 2b (см. рис. 4.5). Для расчета интерференционной картины в любом интерферометре достаточно знать взаимное расположение S_1 и S_2 и их положение относительно экрана *EE*. Если экран *EE* расположен перпендикулярно к линии S_1S_2 , то, как явствует из § 13, интерференционные полосы будут представлять собой концент-

*) Метод рассмотрения интерференционных схем с помощью правил построения изображений очень полезен при расчете сложных интерферометров. Последовательное развитие его принадлежит проф. А. Н. Захарьевскому и изложено им в книге: А. Н. Захарьевский, Интерферометры, 1952.

рические окружности (сечения гиперболоидов вращения с фокурические окружности (солония и перпендикулярной к оси). При располо-сами S₁ и S₂ плоскостью, перпендикулярной к оси). При располосами S_1 и S_2 плоскостью, перисидинульный к осну. При располо-жении экрана *EE* параллельно линин S_1S_2 полосы имеют вид гижении экрапа се порчае точечного источника (сферическая волна) периол, которые в спунка и словню $OM \gg S_1S_2$ от параллельных ирямых. Обычно в качестве источника применяют ярко освещенную узкую щель, параллельную плоскости симметрии системы (разрезу билинзы Бийе, ребру бизеркал Френеля и т. д.). При таком линейном источнике (цилиндрические волны) интерференционные картины от разных его точек будут сдвинуты друг относительно друга перпендикулярно плоскости чертежа (вдоль источника), давая на экране ЕЕ интерференционные полосы, параллельные щели, так что для решения задачи о распределении максимумов и минимумов можно ограничиться рассмотрением плоскости чертежа. Рассчитаем этот последний случай (см. рис. 4.5).

Рис. 4.5. Общая интерференционная схема.

 $\angle PSP = 2\omega$ — впертура интерференции; $\angle S_1MS_2 = 2\omega$ — угол схождения лучей SP; $S_1S_2 = 2l; MN = h; OM = D$. Для точки N разность хода $\Delta = d_2 - d_1 = 2h2l/(d_1 + d_2)$

Пусть расстояние $S_1S_2 = 2l$, расстояние от S_1S_2 до экрана OM = D, а расстояния от S_1 и S_2 до какой-либо точки экрана N = 0соответственно d_1 и d_2 . Если S_1 и S_2 синфазны ($\phi = 0$), то центральный максимум лежит на средней линии в точке M ($S_1M - S_2M = 0$).

Из рис. 4.5 нетрудно определить разность хода $\Delta = d_2 - d_1$ до любой точки экрана N, лежащей на расстоянии h от M:

$$d_2^2 = D^2 + (h+l)^2, \quad d_1^2 = D^2 + (h-l)^2,$$

$$d_2^3 - d_1^3 = (d_2 + d_1) (d_2 - d_1) = 2h2l$$

$$\Delta \equiv d_2 - d_1 = \frac{2h2l}{d_1 + d_2}.$$

ИЛИ

Разность хода Δ составляет несколько длин воли и всегда значительно меньше d_1 и d_2 . Поэтому можно положить $d_1 + d_2 \approx 2d$, гле $d = расстояние ON. С той же точностью <math>d = d_1 + 1/2\Delta =$ $\Delta = h2l/d$

В большинстве случаев расстояние до экрана D гораздо больше, чем 2l; поэтому $d \approx D$, т с.

$$\Delta = h2l/D. \tag{15.2}$$

В дальнейших рассуждениях предположим, что свет, которым мы пользуемся, монохроматичен. Теперь, когда главное затруднение, связанное с немонохроматичностью волн (отсутствие когерентности), обойдено благодаря приему Френеля, мы не делаем принципиальной ошибки, считая наши волны монохроматическими, и лишь упрощаем расчеты. В дальнейшем будет показано, какие

изменения вносит в действительно наблюдаемую картину то обстоятельство, что волны не строго монохроматичны.

Пусть источник посылает волны длины λ . Разность хода, выраженная в длинах волн, есть $\Delta = h2l/D = m\lambda$, где m — любое число (целое или дробное), определяющее порядок интерференции. Согласно расчетам, приведенным в § 13, изменение освещенности в зависимости от h (или $m = 2hl/\lambda D$) описывается формулой (при равных амплитудах a интерферирующих волн)

$$A^{2} = 4a^{2}\cos^{2}\pi \frac{2t}{\lambda D}h = 4a^{2}\cos^{2}\pi m. (15.3)$$

Эта формула дает максимумы при целых значениях m (0, 1, 2, ...) и минимумы — при полуцелых m (1/2, 3/2, ...).

Рис. 4.6. Распределение освещенности экрана при интерференции двух лучей.

а — график освещенности в функции координаты h; 6 схематическое изображение освещенности экрана.

Рис. 4.6 передает ход освещенности, выражаемый формулой (15.3). Расстояние между соседними максимумами или минимумами, соответствующее изменению *m* на единицу, т. е. равное

$$\mathscr{B} = \frac{D}{2l}\lambda,\qquad(15.4)$$

носит название *ширины полосы*. Эта формула показывает, что полосы будут тем шире, чем меньше расстояние 2l между источниками при заданных D и λ . Ширину полосы нетрудно выразить через угол схождения лучей 2w, связанный с апертурой интерференции. Так как обычно угол 2w мал, то из рис. 4.5 видно, что 2l = 2wD, т. е.

$$\mathcal{B} = \lambda/2\omega. \tag{15.5}$$

Ширина полосы зависит от расстояния D до экрана, увеличиваясь безгранично по мере удаления экрана. Поэтому рационально ввести понятие об угловой ширине полос интерференции, понимая под

ИНТЕРФЕРЕНЦИЯ СВЕТА

ней угловое расстояние между соседними максимумами, наблюней угловое расстояние ненечу отности угловая ширина полосы даемое с места расположения источников. Угловая ширина полосы

$$\beta = \mathcal{B}/D = \lambda/2l. \tag{10.0}$$

Она тем больше (интерференционная картина крупнее), чем меньше расстояние между источниками 21.

Осуществив интерференционный опыт, мы можем, измерив расстояния *В*, D и *l*, найти длину световой волны λ. Такого рода измерения явились одним из первых определений длины световых нэмерения лыниев одных из нерена определении динны световых солн. показавших, что крайние красные лучи приблизительно соответствуют длине волны $\lambda_{\kappa} = 8000$ Å = 800 нм, а крайние фиолетовые — $\lambda_{\phi} = 4000$ Å = 400 нм.

Как ясно из описания, картина будет представлять чередование резких черных полос, разделенных более светлыми промежутками, только в том случае, когда мы имеем дело с монохроматическим светом (λ имеет вполне определенное значение). Практически для интерференционного опыта достаточно покрыть источник цветным стеклом (светофильтром), выделяющим совокупность волн, незначительно отличающихся друг от друга по своей длине. Если же источник посылает белый свет, то интерференционная картина представит собой чередование цветных полос, причем полной темноты не будет нигде, нбо места минимумов для одной длины волны совпадают с местами максимумов для другой. Измеряя расстояния 38 между соседними максимумами для данного цвета, можно определить (приблизительно) длину волны, соответствующую этому цвету.

В других, более тонких, интерференционных опытах (см. ниже) монохроматизация света при помощи светофильтров недостаточна, и надо прибегать к иным способам получения монохроматического излучения.

§ 16. Различные интерференционные схемы

Существенные черты общей интерференционной схемы (см. рис. 4.5) имеются во всех предложенных расположениях. Рассмотрим некоторые из них.

а. Бизеркала Френеля (см. рис. 4.3). Источниками когерентных волн S₁ и S₂ служат два мнимых изображения S. Расстояние $S_1S_2 = 2l$ тем меньше и, следовательно, интерференционная картина тем крупнее, чем меньше угол между зеркалами а (см. упражнение 17). Максимальный телесный угол, в пределах которого могут еще перекрываться интерферирующие пучки, определяется углом $2\phi = \angle C_1 S_1 C_1 = \angle C_2 S_2 C_2$, находимым из условий $S_1 B_1 C_1 \parallel S_2 O C_2 \parallel S_1 O C_1 \parallel S_2 B_2 C_2$ (см. рис. 4.3). При этом экран должен быть расположен достаточно далеко (теоретически — бес-

На основании законов отражения угол $2\varphi = 2\alpha$, где α — угол между зеркалами. Таким образом, апертура перекрывающихся пучков не может быть больше, чем 2α . Для экрана, расположенного на конечном расстоянии, $2\varphi < 2\alpha$. Значение 2α имеет и апертура интерференции $2\omega = \angle PSP$, т. е. угол между парой интерферирующих лучей, сходящихся после отражения в какой-либо точке весьма удаленного экрана. На рис. 4.3 апертура интерференции показана для центральной точки поля M экрана, расположенного на конечном расстоянии от S_1S_2 .

Таким образом, в бизеркалах Френеля и апертура перекрывающихся пучков (определяющая телесный угол интерферирующих

Рис. 4.7. Бипризма Френеля.

 $\angle PSP = 2\omega$ — апертура интерференции для центральной точки поля M экрана *EE*: $\angle R_1S_1Q_1 = \angle R_2S_2Q_3 = 2\phi$ — апертура перекрывающихся пучков для бесконечно удаленного экрана.

потоков), и апертура интерференции имеют одинаковое значение и зависят от величины угла между зеркалами α. На основании сказанного в § 15 отсюда следует, что бизеркала Френеля не могут обеспечить большие размеры интерференционной картины, что делает эту установку малопригодной для демонстрации. К тому же для получения достаточно широких полос интерференции надо работать при малых значениях угла между зеркалами, следя в то же время за тем, чтобы зеркала в месте соединения не образовывали ступеньку, которая становится источником дополнительной разности хода.

б. Бипризма Френеля (рис. 4.7). Максимальная апертура перекрывающихся пучков 2φ соответствует бесконечно удаленному экрану и определяется условнем $S_1B_1R_1 \parallel S_2OR_2$ и $S_1OQ_1 \parallel S_2B_2Q_2$.

При экране, расположенном на конечном расстоянии, эта апертура несколько меньше. Апертура интерференции $2\omega = \angle PSP$. несколько меньше апертуры перекрывающихся пучков (2ω показано для центральной точки поля M для экрана, расположенного

ИНТЕРФЕРЕНЦИЯ СВЕТА

на конечном расстоянии от S_1S_2 ; для других точек поля 2 ω практина конечном расстояния от отода, как преломляющие углы бипризмы чески имеет то же значение). Так как преломляющие углы бипризмы чески имеет то же значение, того чтобы обеспечить малое расстоя-делаются очень малыми, для того чтобы обеспечить малое расстояделаются очень малими, дол. широкие полосы интерференции, то ние S_1S_2 и, следовательно, широкие полосы интерференции, то ние Зазан, следовательно, шеренции не отличается от апертуры практически апертура интерференции не практически ансриура инсручатов, так же, как и при бизеркалах, перекрывающихся пучков. Поэтому, так же, как и при бизеркалах, расположение с бипризмой дает малое поле интерференции.

в. Зеркало Ллойда (рис. 4.8). Прямой пучок от источника интерферирует с пучком, отраженным от зеркала под углом, близким к прямому. Таким образом, источниками когерентных волн являются источник S и его мнимое изображение в зеркале S₁.

Рис. 4.8. Зеркало Ллойда.

В отличие от схем Френеля в схеме Ллойда апертура интерференции 2ω сильно зависит от того, для какого места на экране исследуется интерференция. Она тем меньше, чем ближе это место к центру поля (к плоскости зеркала) (см. рис. 4.8). Поэтому для точек экрана, близких к плоскости зеркала, можно пользоваться сравнительно широкими источниками, и установка получается достаточно светосильной *); однако при этом на некотором расстоянии от плоскости зеркала полосы размываются.

г. Светосильное расположение (P. Поль) (рис. 4.9). Свет от источника S отражается от двух поверхностей тонкой плоскопараллельной пластинки (тонкий листок слюды), толщина которой і не превышает 0,03-0,05 мм. Таким образом, источниками когерентных волн являются S₁ и S₂ — мнимые изображения S. Расстояние $S_1S_2 = 2l$ (если пренебречь преломлением в слюде). Апертура интерференции 2ω = ∠PSQ зависит от точки интерференционного поля, т. е. от угла 0. Из чертежа (см. рис. 4.9)

$$2\omega = \angle PSQ = \frac{l}{A+K} \sin 2\theta$$
,

*) См. также § 17.

где A = SO — расстояние от источника до слюды, а K = MN — расстояние от слюды до экрана.

Так как $l \approx 0,05$ мм) гораздо меньше $A + K \approx 500$ см), то даже при $\theta = 45^{\circ}$ апертура интерференции будет очень мала. В соответствии с этим размер источника можно выбрать большим (например, ртутная лампа), дающим, следовательно, большой световой поток. Поэтому данное расположение отличается большой светосилой и может быть легко продемонстрировано. Угловой размер интерференционного поля очень велик. Располагая листком

слюды площадью в несколько квадратных сантиметров, можно получить от небольшой ртутной лампы яркую интерференционную картину, покрывающую потолок и стены аудитории.

Так как расстояние A + Kвесьма значительно (несколько метров), то на экране получаются очень широкие полосы интерференции. Действительно (см. (15.5)),

$$\mathscr{B} = \frac{\lambda}{2\omega} = \frac{\lambda (A+K)}{l \sin 2\theta},$$

нбо угол схождения

$$2\omega = \frac{l\sin 2\theta}{A+K},$$

что легко увидеть из чертежа. Полагая A + K = 5 м, для $\theta = 45^{\circ}$ и $\lambda = 5 \cdot 10^{-5}$ см найдем \mathcal{B} , равное нне. ∠ PSQ = 2ω — апертура внтерференции для точки М удаленного экрана. Так как *l* очень мало, то Q расположено почти под *P*.

Рис. 4.9. Светосильное расположе-

5 см. Размер источника (≈ 10 мм) гораздо больше расстояния S_1S_2 ($\approx 0,1$ мм), так что изображения источника почти полностью перекрываются, но это, конечно, не мешает делу.

д. Расположение Юнга. Принципиально иным образом осуществляется образование налагающихся когерентных волн в методе Юнга (рис. 4.10).

Источником света служит ярко освещенная щель S, от которой световая волна падает на две узкие щели S_1 и S_2 , освещаемые, таким образом, различными участками одного и того же волнового фронта. Световые пучки, проходящие через малые отверстия S_1 и S_2 , расширяются в результате дифракции и частично перекрываются, создавая интерференцию, как и в других интерференционных схемах. При расположении Юнга апертура интерференции $2\omega = \angle S_1SS_2$ определяется отношением расстояния между щелями S_1 и S_2 к расстоянию от S до S_1S_2 .

интерференция света

Юнг первый наблюдал осуществленные таким образом явления интерференции (1802 г.) *) и первый в ясной форме установил интерференции (1002 г.,) и перели установил установил принцип сложения амплитуд, объяснив явления интерференции. принцип сложения аминитуя, основа очень велико. Он, однако, Историческое значение этого опыта очень велико. Он, однако,

Рис. 4.10. Расположение Юнга.

 $\angle R_1S_1Q_1 =$ $2S_1SS_2 = 20$ — апертура интерференции для любой точки поля; $2R_1S_1Q_1 = 2Q$ — апертура перекрывающихся пучков для бесконечно удаленного экрана.

несколько труднее для толкования, ибо в этом случае встреча двух участков волны делсется возможной не благодаря явлениям отражения (бизеркало) или преломления (бипризма), а благодаря явлению дифракции. Этот опыт будет подробнее рассмотрен в разделе, посвященном дифракции.

§ 17. Значение размеров источника света. Пространственная когерентность

Мы уже неоднократно отмечали, что во всех практических интерференционных схемах большое значение имеют размеры источника света. Если размеры источника значительно меньше длины световой волны, то, конечно, всегда получается резкая интерференционная картина, ибо разность хода от любой точки источника до какой-нибудь точки М интерференционного поля всегда будет одна и та же. Однако на практике мы обычно имеем источники, размеры которых значительно превосходят длину световой волны. Согласно изложенному выше, интерферируют между

*) Сходный по расположению опыт был выполнен еще в 1665 г. Гримальди, который, однако, работал без щели S, пользуясь в качестве источника света непосредственно Солнцем. Расчет показывает, что в этих условиях при тех расстояниях между щелями, которыми пользовался Гримальди, явление интерферендии не могло наблюдаться ввиду значительного углового размера источника света — Солния (около 1/с) поду значительного углового размера источника света — Солнца (около 1/2). Полосы света и тени, наблюдавшиеся Гримальди, объясняются, по-видимому, явлениями контраста (см. упражиение 93).

ГЛ. IV. КОГЕРЕНТНОСТЬ

собой волны, исходящие из соответствующих точек, являющихся изображениями одной и той же точки источника. Поэтому в случае источника, размеры которого сравнимы с расстоянием между соответствующими точками, мы получаем, по существу, наложение многих интерференционных картин, создаваемых многими парами когерентных источников. Эти картины сдвинуты одна относительно другой так, что результирующая картина окажется более или менее размытой и при значительной ширине источников практически перестанет наблюдаться.

Рис. 4.11. К выводу условия 2b sin $\omega = 1/4\lambda$.

Влияние размеров источника на резкость интерференционной картины можно выразить количественно, исходя из общей интерференционной схемы, показанной рис. 4.11, и используя соотношения между шириной источника 2b и апертурой интерференции 2ω.

Пусть AB — протяженный источник ширины 2b. Интерференционные максимумы, получаемые от точки S (середины источника) на удаленном экране, расположатся в точках S_0 , S_1 , S_1' и т. д., образуя полосы шириной \mathcal{B} . Интерференционные максимумы от края источника (точка A, например) расположатся в точках A_0 , A_1, A_1' и т. д., смещенных на величину S_0A_0 , зависящую от размеров источника и параметров схемы. Смещение это равно $S_0A_0 = SA\frac{PM}{SP}$. Вводя те же обозначения, что и раньше, а именно, SA = b, PQ = 2l, PM = d, найдем $S_0A_0 = b\frac{d}{l/\sin\omega} = b\frac{d}{l}\sin\omega$. Так как расстояние 2l может быть довольно значительным, то при вычислении ширины полосы \mathcal{B} надо использовать формулу (15.1), а не (15.2). Хотя ширина полосы несколько меняется по мере удаления от центра картины, ибо несколько меняется d, однако это изменение невелико, и мы можем не принимать его в расчет. Итак, ширина полосы $\mathcal{B} = = \frac{d}{2l}\lambda$.

Если смещение одной системы полос (от S) относительно другой Если смещение одной спотемы полосы ($S_0A_0 = 1/2B$), то интер-(от A) достигает половины ширины полосы ($S_0A_0 = 1/2B$), то интер-(от А) достигает нелованой половины источника полностью ференционная картина от одной половины источника полностью ференционных и интерференция не наблюсмазывает картину от влечении смещения ($S_0A_0 > 1/2\mathfrak{B}$) максимумы дается. При большем значении смещения ($S_0A_0 > 1/2\mathfrak{B}$) максимумы дается, при солоди При $S_0A_0 = \mathscr{B}$ (совмещение максимумов) они вновь выявляются. При $S_0A_0 = \mathscr{B}$ становятся вновь отчетливыми, но при этом общий светлый фон усиливается, картина становится менее контрастной и при дальнейшем увеличении ширины источника постепенно исчезает.

Штриковым и точечным пунктиром показаны кривые, соответствующие первой и второй интерференционным картинам; сплошная кривая соответствует результирующей картине; а — сдвиг на ¹/₄ полосы, отчетливые максимумы и минимумы еще наблюдаются; б — сдвиг на ³/₈ полосы, равномерная освещенность.

Пользуясь формулой (15.3), можно количественно рассчитать изменение контрастности интерференционной картины по мере увеличения ширины источника (см. упражнение 43).

Интерференционная картина остается достаточно резкой, если S_0A_0 не превышает примерно 1/4 ширины полосы ($S_0A_0 \ll 1/4 \mathcal{B}$) (рис. 4.12, *a*, б). Итак, условне хорошего наблюдения интерференции от протяженного источника можно записать в виде $b \frac{d}{l} \sin \omega \leq$ ≤ 1/4 21 2 или

$$2b\sin\omega \ll \frac{1}{4}\lambda. \tag{17.1}$$

Это условие, несмотря на его приближенный характер, можно положить в основу расчетов допустимых размеров источника.

Ввиду важности соотношения (17.1) покажем возможность его приближенного обоснования еще одним, несколько более общим способом. Будем наблюдать интерференцию от протяженного (2b) источника (рис. 4.13) с помощью какого-нибудь интерферометра,

не показанного на чертеже. Лучн I и II, проходящие через два плеча нашего интерферометра, определяют апертуру интерференции, равную 2 ω . Пусть, например, лучи, исходящие из точки S (середина источника), приводят в какой-либо точке экрана к образованию максимума. Лучи, идущие из точки A на краю источника к той же точке экрана, будут иметь добавочную разность хода, равную (AM + SN), ибо длина пути для луча AII на AM больше длины пути для луча SII, а для луча AI на SN меньше, чем для SI. $AM = SN = b \sin \omega$. Таким образом, добавочная разность хода от точки A до рассматриваемой точки экрана составляет 2b sin ω . Если 2b sin $\omega \leq 1/4\lambda$, то еще не наблюдается значительной порчи

интерференционной картины. Сказанное относительно *A* и *S* справедливо и для любой пары точек левой и правой половин источника, расстояние между которыми равно *b*.

Таким образом, условие $2b \sin \omega \ll 1/4 \lambda$ является условием, связывающим апертуру интерференции и размеры протяженного источника, при которых еще возможно наблюдение отчетливой интерференционной картины. В ча-

стности, если апертура интерференции достигает 180° ($\omega = 90^{\circ}$), т. е. лучи, которые мы заставляем интерферировать, идут приблизительно в противоположных направлениях, то размер источника должен быть меньше 1/4 длины волны.

Этот случай, изображенный на рис. 4.14, легко рассчитать непосредственно. Лучи, исходящие из середины источника (точка S) и от какого-либо его края (точка A, например), придут в некоторую точку удаленного экрана с разностью хода $A_1S_1 + A_2S_2 = 2b$. Если $2b = 1/2\lambda$, то максимумы от точки S совпадут с минимумами от точки A; то же будет справедливо и для любой пары соответственных точек левой и правой половин источника AB. Таким образом, при $2b = 1/2\lambda$ интерференционная картина от одной половины источника смажется картиной от второй его половины. Для сохранения хорошей видимости 2b не должно превышать $1/4\lambda$, т. е. $2b = 1/4\lambda$ в согласии с условнем (17.1) при $\omega = 90^{\circ}$.

Возможность формирования интерференционных картии с высокой степенью видимости различными источниками света можно рассмотреть и в иной постановке, чем это было сделано выше.

Для того чтобы придать новой постановке вопроса сразу конкретный характер, обратимся к схеме интерференционного опыта Юнга (см. рис. 4.10). Предположим, что опыт осуществляется без

83

Рис. 4.13. К выводу условия $2b \sin \omega = \frac{1}{4}\lambda$.

первого экрана со щелью S, а источник света испосредственно освещает экран с двумя щелями S₁ и S₂.

ещает экран с двули источник света, расположенный Если применяется точечный источник света, расположенный если примениета со щелями, то, очевидно, видимость интерферендалеко от экрана со уменьшится из-за отсутствия входной щели. ционной картании установки. В самом деле, в данном случае интерферсиционного случае обенх щелей S₁ и S₂ будет достигать плоский волновой фронт свеовых волн, излучаемых точечным источником света. Это обеспечит и равенство амплитуд колебаний на участках волнового фронта, достигающих щелей S₁ и S₂, и когерентность колебаний на этих

Рис. 4.14. Интерференция под углом, близким к 180°, возможна, если ширина источника $2b \leq 1/_{a}\lambda$. участках волнового фронта. Не понадобится также помещать точечный источник света обязательнормали к поверхности но на экрана со щелями, восставленной на середине отрезка S₁S₂. Если точечный источник лаже света будет расположен несимметрично относительно щелей, то это не нарушит когерентности их освещения. Световые колебания вблизи щелей S₁ и S₂ будут происходить не в одинаковой фазе, но с постоянной разностью фаз, что отнюдь не противоречит условию когерентности освещения обеих щелей.

Единственным результатом несимметричного расположения то-

чечного источника света по отношению к щелям S1 и S2 будет соответствующий сдвиг интерференционной картины на экране, где ведется ее наблюдение. Видимость интерференционной картины не уменьшится, но сама она расположится несимметрично относительно середины отрезка S₁S₂, что легко заметить при наблюдении интерференции в белом свете, когда центральная интерференционная полоса нулевого порядка тоже не окрашена.

Точно так же на видимость интерференционной картины не повлияет изменение расстояния между щелями, хотя пространственный ее период (расстояние между интерференционными полосами) будет, конечно, изменяться обратно пропорционально расстоянию между щелями. Пусть теперь на экран со щелями S₁ и S₂ падает пучок не от точечного источника, а пучок, в котором колебания в разных его точках не вполне когерентны между собой. Такое частично когерентное освещение можно реализовать, например, если использовать протяженный источник света. Световые пучки, распространяющиеся через щели S₁ и S₂, также не будут полностью когерентными, что уменьшит видимость интерференционной картины, наблюдаемой на экране, расположенном за щелями.

Дело здесь обстоит так же, как и в рассмотренном выше случае интерференции световых пучков равной интенсивности, в состав которых входит доля некогерентного света. В § 13 было показано, что видимость интерференционной картины V равна доле когерентного света γ , входящей в состав интерферирующих световых пучков (см. (13.6)).

Таким образом, оказывается, что интерференционный опыт, поставленный по схеме Юнга, может позволить выяснить, насколько когерентны между собой колебания в сечении светового пучка, достигающего щелей S_1 и S_2 . Варьируя расстояние между щелями S_1 и S_2 и одновременно измеряя видимость интерференционной картины на расположенном за ними экране, можно «обследовать» когерентность колебаний на всей площади сечения светового пучка, освещающего экран со щелями. Для количественной характеристики результатов такого обследования в сечении светового пучка, *перпендикулярном к направлению его распространения*, вводится понятие пространственной когерентности.

Количественные результаты определения видимости интерференционной картины в схеме Юнга в зависимости от расстояния между щелями S_1 и S_2 позволят определить пространственную когерентность вдоль одного из диаметров поперечного сечения освещающего их светового пучка. Производя подобные же измерения при другой орнентации щелей S_1 и S_2 и раздвигая их вдоль другого диаметра светового пучка, можно выяснить пространственние ную когерентность вдоль другого диаметра при другов другого диаметра пучка и т. д.

Если применяемый световой пучок излучается точечным источником света, то пространственная когерентность по всему сечению светового пучка окажется одинаковой и равной единице, что соответствует максимальной видимости интерференционной картины, конечно, при условии использования монохроматического света.

Если световой пучок излучается протяженным светящимся телом, например диском, расположенным симметрично относительно щелей S_1 и S_2 , то нетрудно предсказать качественный результат обследования пространственной когерентности по сечению этого светового пучка. Очевидно, что пространственная когерентность будет максимальна вблизи центра сечения пучка. Кроме того, по мере удаления диска от плоскости экрана со щелями S_1 и S_2 пространственная когерентность светового пучка будет возрастать.

В рамках изложенных представлений и при использовании понятия пространственной когерентности роль входной щели S в традиционной постановке интерференционного опыта Юнга состоит в следующем. В отсутствие такой щели или при слишком большой ее ширице не обеспечивается пространственная когерент-

ИНТЕРФЕРЕНЦИЯ СВЕТА

ность световых лучков, освещающих щели S₁ и S₂, что ведет к обращению в нуль видимости интерференционной картины.

нию в пунь рассуждения, основанные на понятии частичной Проведенные рассуждения, проведенные рассия волн, проходящих через щели S₁, S₂, когерентности световых волн, проходящих через щели S₁, S₂, когерентности световал сели, с которых шла речь в начале параграфа, — уменьшение видимости интерференционных полос при увеличении угловых размеров источника света. Различие состоит лишь в способе рассуждений. В начале параграфа находилась интерференционная картина, обусловленная светом, испускаемым малым элементом протяженного источника света, и суммировались интенсивности в интерференционных картинах. вызванных светом от разных участков этого источника; уменьшение видимости полос в результирующей картине возникало при этом способе анализа как следствие различного положения полос для разных участков источника. Во втором подходе предварительно рассматриваются световые колебания, происходящие в щелях S₁, S₂ и обусловленные излучением всего протяженного источника света. Эти колебания оказываются не полностью когерентными, и уменьшение видимости полос интерпретируются как проявление этой частичной когерентности колебаний в S1, S2. Из сказанного ясно, что исходной причиной уменьшения видимости интерференционных полос служит конечный угловой размер источника света, и два сравниваемых способа рассуждений отличаются лишь тем, на каком этапе производится суммирование действий различных участков источника: в первом способе это суммирование проводится на последнем этапе, т. е. в интерференционной картине, а во втором способе — на промежуточном этапе, в плоскости, где расположены щели S₁, S₂.

Одна из особенностей лазерных источников света заключается в высокой пространственной когерентности световых колебаний в сечении излучаемых ими световых пучков. Как мы увидим ниже, опыт Юнга с лазерным пучком света можно осуществить без входной щели в интерференционной схеме. Оказывается, что при специальном режиме работы лазера щели S1 и S2 можно раздвинуть до краев сечения лазерного пучка без снижения видимости интерференционной картины, но, разумеется, с уменьшением ее пространственного периода.

§ 18. Роль поляризации при интерференции поперечных волн

Как было указано в § 13, мы предполагали, что оба интерферирующих колебания имеют одно и тоже направление. В том случае, когда мы имеем дело с продольными волнами (например, звуковые волны в воздухе), при совпадении направлений распространения воли совпадают и направления колебаний. В том же случае, когда волны поперечны (например, световые волны), возможно, что при совпадении направлений распространения двух волн направления колебаний в них не совпадают. Действительно, в поперечной волне возможно колебание по любому направлению, перпендикулярному к направлению распространения волны.

Поперечность световых волн можно принять во внимание, если возмущения, которые фигурировали в предыдущем рассмотрении, представить в виде векторов s_1 , s_2 , перпендикулярных к направлению распространения интерферирующих волн. Результирующее возмущение s в точке наблюдения запишется как

$$S = S_1 + S_{2_1}$$

и тогда для интенсивности в точке наблюдения получим

$$I \sim s^2 = s_1 + s_2 + 2s_1s_2$$
.

Интерференционные явления описываются, очевидно, членом $2s_1s_2$ в этом соотношении. Для осуществления интерференции поляризованных световых колебаний необходимо, следовательно, обеспечить встречу двух световых лучей, в которых направления колебаний s_1 и s_2 должны быть не перпендикулярными. Если же s_1 и s^2 взаимно перпендикулярны, то интерференция не наблюдается н область перекрытия световых пучков освещена равномерно. Максимальное значение видимости полос достигается в том случае, когда интерферирующие волны поляризованы одинаково, т. е. s_1 и s_2 параллельны. Таким образом, интерференция поляризованных световых волн зависит не только от их амплитуд и фаз, но и ст состояния поляризации.

Наблюдение интерференции в естественном свете, для которого имеют место поперечные колебания всех направлений, также возможно, и, как правило, на опыте реализуется интерференция именно когерентных пучков естественного света. Для выяснения этого вопроса каждый из интерферирующих пучков естественного света представим в виде суперпозиции двух воли, ортогонально поляризованных и не связанных друг с другом никакими определенными фазовыми соотношениями. Условие когерентности пучков означает, что одинаково поляризованные волны имеют равные начальные фазы. Поэтому при наложении двух когерентных пучков естественного света формируются две независимые, но пространственно совпадающие интерференционные картины, отвечающие двум парам одинаково поляризованных воли.

Мы можем прийти к только что полученному выводу и с помощью элементарных соображений о процессе испускания света атомэми среды, аналогичных изложенным в § 14. Свет, посылаемый какимлибо атомом, представляет собой поляризованный свет, однако излучение разных атомов поляризовано по-разному. Поэтому наблюдаемое нами излучение очень большого числа атомов содержит в себе колебания со всеми возможными направлениями, т. е. является естественным светом. Кроме того, каждый атом, начав испускать свет, прекращает это действие через короткий промежуток времени и вновь начинает испускать свет уже с новым направлением колебаний и с новой начальной фазой. Однако прием Фрелением колебаний и с новой начальной фазой. Однако прием Френеля, состоящий в расчленении одной волны на две, и здесь приисля, состоящий в расчленении одной волны на две, и здесь прикодит на помощь. В интерференционных опытах мы заставляем встретиться волны, посланные почти одновременно одним и тем же атомом, т. е. сохраняющие одну и ту же начальную фазу и одно и то же направление колебаний. Таким образом, оказывается возможным наблюдение интерференции в естественном свете, представляющем смесь различно ориентированных поляризованных волн, ибо интерференция происходит между частями одной и той же поляризованной волны.

К вопросу об интерференции поляризованных лучей мы вернемся в гл. XVIII.

§ 19. Кажущиеся парадоксы в явлениях интерференции волн

В случае двух когерентных источников света, например источника и его изображения в зеркале, в окружающем пространстве будет иметь место распределение амплитуд различных значений от $a_1 + a_2$ до $a_1 - a_2$. В частности, когда амплитуды, обусловливаемые обоими источниками, равны ($a_1 = a_2 = a$), то амплитуда результирующего колебания лежит между крайними значениями — нулем и 2a, а соответствующие интенсивности — между нулем и $4a^2$.

Максимумы и минимумы освещенности, наблюдаемые в интерференционных картинах, не связаны, вообще говоря, с какимилибо превращениями лучистой энергии, т. е. в местах минимумов световая энергия отнюдь не переходит в другие формы, например в тепло. Дело сводится лишь к *перераспределению* светового потока, так что максимумы освещенности в одних местах компенсируются минимумами в других. Если подсчитать энергию, проходящую через замкнутую поверхность, окружающую источник и зеркало, а затем энергию, протекающую через ту же поверхность в отсутствие зеркала, то энергии в обоих случаях оказываются равными. Таким образом, конечно, никакого противоречия с законом сохранения энергии нет.

Однако можно представить себе более сложные случаи. Предположим, что расстояние между двумя когерентными источниками меньше $1/_2\lambda$, т. е. $S_1S_2 = 2l < 1/_2\lambda$. В таком случае, как легко видеть из рис. 4.1, мы нигде не найдем точек, в которых интенсивность равна нулю; действительно, $d_1 - d_2$ всегда меньше 2l. и, следовательно, меньше $1/_2\lambda$, т. е. нигде не выполняется условие гой стороны, для всех точек линии ОО' реализуется условие макси-

ГЛ. IV. КОГЕРЕНТНОСТЬ

мума, т. е. во всех точках этой линии интенсивность достигает 4a². Уже из такого простого рассуждения видно, что вопрос о компенсации минимумов и максимумов в этом случае не так прост. И действительно, подсчет подтверждает, что в данном случае общая энергия, протекающая за единицу времени через замкнутую поверхность, окружающую оба когерентных источника, больше, чем было бы в случае некогерентных источников. Здесь, конечно, иет никакого нарушения закона сохранения энергии. Мы имеем дело с действительным увеличением энергии, испускаемой за единицу времени парой когерентных источников благодаря воздействию их друг на друга. Энергия эта доставляется из тех запасов, которые питают наши источники. Если же ее запасы ограничены, то, очевидно, они вследствие указанного взаимодействия израсходуются за более короткий срок и источники раньше прекратят свое действие (затухание увеличится).

Подобные случаи особенно легко осуществить с радиоволнами, длина которых значительна, так что нетрудно расположить два источника таких волн (антенны) на расстоянии, меньшем половины длины волны. Установки подобного типа позволяют улучшить излучающее действие антенны и, кроме того, направить максимум излучения в определенном направлении (направленное действие). Ими часто пользуются на практике.

§ 20. Оптическая длина пути. Таутохронизм оптических систем

Разобранные в настоящей главе случаи интерференции света дают возможность наблюдать это явление на специально осуществляемых опытах. Однако явление встречи двух или нескольких когерентных волн, между которыми наблюдается интерференция, имеет место, по существу, во всяком оптическом процессе. Распространение света через любое вещество, преломление света на границе двух сред, его отражение и т. д. суть процессы такого рода. Распространение света в веществе сопровождается воздействием световой электромагнитной волны на электроны (и ноны), из которых построено вещество. Под действием световой волны эти заряженные частицы приходят в колебание и начинают излучать вторичные электромагнитные волны с тем же периодом, что и у падающей волны. Так как движение соседних зарядов обусловливается дей-Ствием одной и той же световой волны, то вторичные волны определенным образом связаны между собой по фазе, т. е. являются когерентными. Они интерферируют между собой, и эта интерференция позволяет объяснить явления отражения, преломления, дисперсии, рассеяния света и т. д. Мы познакомимся в дальнейшем С области с объяснением перечисленных явлений с указанной точки зрения. В насте В настоящем же параграфе мы остановимся на одном частном случае из описанного ряда явлений.

интерференция света

Прежде всего заметим, что если в вакууме скорость волны с и длина ее λ_0 , то для среды с показателем преломления *п* имеем и длина ее Λ_0 , ю дели и $\lambda = \lambda_0/n$. В соответствии с этим, если соответственно v = c/n и $\lambda = \lambda_0/n$. В соответственно d_1 в одной среде (n_1) и путь d_2 во второй среде волна проходит путь d_1 в одной среде (n₂), то возникающая разность фаз ф выразится так:

$$\eta_{2} = 2\pi \left(\frac{d_{2}}{\lambda_{2}} - \frac{d_{1}}{\lambda_{1}} \right) = 2\pi \left(\frac{n_{2}d_{2}}{n_{1}d_{1}} \right) / \lambda_{0}.$$

Произведение показателя преломления на длину пути называется опіпической длиной пути; вводя обозначение $n_1d_1 = (d_1)$, мы можем записать выражение для разности фаз в виде

$$\psi = 2\pi \frac{(d_2) - (d_1)}{\lambda_0}.$$
 (20.1)

Если $(d_1) = (d_2)$, то $\psi = 0$; таким образом, два пути световых лучей оптически эквивалентны друг другу, т. е. не внесут никакой

какую-либо оптическую систему, например линзу, и дающих изображение S' источника S. Действительно, если бы отдельные лучи не были таутохронными, то части световой волны, распространяющнеся по разным путям, обладали бы некоторой разностью фаз и взаимно ослабляли бы друг друга при встрече в S'. Возможность получения интенсивного максимума в S', который и есть изображение источника S, обусловливается взаимным усилением отдельных частей волны, пришедших в точку S' без разности фаз (по таутохронным путям). Пути, ведущие от S ко всякой другой точке пространства, не будут оптически равными, и во всех иных точках, кроме S', взаимная интерференция поведет к ослаблению света. Таким образом, получение изображения в линзе есть интерференционный эффект. Мы видим, следовательно, что линза не вносит разности хода между отдельными лучами, образующими изображение. Это относится и к любой оптической системе, дающей изображение источника.

Рис. 4.15 поясняет, каким образом пути лучей, идущих через середину и край линзы, могут быть таутохронными. Хотя геометрически путь SABS' короче пути SMNS', но часть, приходя-

гл. IV. КОГЕРЕНТНОСТЬ

щаяся на путь внутри линзы, соответственно больше (AB > MN). Так как скорость света в материале линзы меньше, чем в воздухе, то запаздывание на участке AB компенсирует опережение на участках SA и BS' по сравнению с соответствующими участками пути SM и NS'. Условие таутохронизма есть

$$SA + nAB + BS' = SM + nMN + NS'$$

где $n = n_2/n_1$ — относительный показатель преломления материала линзы.

§ 21. Интерференция немонохроматических световых пучков

Как уже упоминалось в § 15, интерференция немонохроматического света приводит к сложной картине, состоящей из совокупности максимумов и минимумов, соответствующих разным λ . Если λ имеет все возможные значения, то согласно формуле $h = mD\lambda/2l$ любой точке экрана (h) соответствует большая или меньшая интенсивность света данной длины волны. Следовательно, в любой части экрана имеется значительная освещенность. Если бы в нашем источнике различные длины волн были представлены с одинаковой интенсивностью и приемное устройство было одинаково чувствительно ко всем длинам волн (например, идеально панхроматическая фотопластинка), то мы не могли бы обнаружить никаких следов интерференционной картины.

Для того чтобы такое обнаружение было возможно, необходимо, чтобы разнообразие длин волн было ограничено и не превышало некоторого спектрального интервала, заключенного между λ и $\lambda + \Delta \lambda$. Пользуясь формулой $h = mD\lambda/21$, легко найти $\Delta \lambda$. Действительно, интерференция не будет наблюдаться, если максимум *m*-го порядка для ($\lambda + \Delta \lambda$) совпадет с максимумом (m + 1)-го порядка для λ . В этих условиях весь провал между соседними максимумами будет заполнен максимумами неразличимых длин волн нашего интервала (рис. 4.16). Условие неразличимости интерференционной картины: (m + 1) $\lambda = m (\lambda + \Delta \lambda)$, т. е. $\Delta \lambda = \lambda/m$, где m — целое число. Для того чтобы интерференционная картина при данных значениях $\Delta \lambda$ и λ обладала высокой видимостью, приходится ограничиваться наблюдением интерференционных полос,

порядок которых много меньше значения $m = \lambda/\Delta \lambda^*$). Другими словами, чем выше порядок интерференции (m), который нужно наблюдать, тем *уже* должен быть спектральный интервал, еще допускающий наблюдение интерференции. Наоборот, чем

91

^{*)} Однако надо иметь в виду, что видимость интерференционной картины существенно зависит от закона распределения энергии в используемом световом спектральном интервале. Приведенный расчет справедлив для случая уширенной спектральной линии.

менее монохроматичен свет, тем ниже порядки интерференции. доступные наблюдению.

Монохроматизацию света можно осуществить с помощью светофильтра или спектрального аппарата. При этом, конечно, безразичны стоит ли монохроматизирующее приспособление перед интерферометром или после него. В первом случае мы уменьшаем спектральный интервал Δλ интерферирующего света. Во втором мы с помощью монохроматора устраняем из полученной интерференциснной картины мешающие волны, так что на приемник (глаз, фотопластинка) падает уже упрощенная и различимая интерферен-

Рис. 4.16. Распределение максимумов интерференции немонохроматических лучей.

Сплошная кривая — распределение освещенности для длины волны λ , причем A — максимум *m*-го порядка, G — максимум (*m* + 1)-го порядка, B, C, D, \dots — максимумы *m*-го порядка для длин волн в интервале $\lambda < \lambda_1 \leq \lambda + \Delta \lambda$.

ционная картина. Роль такого «монохроматора» может играть и непосредственно наш глаз благодаря его способности к различению цветов: при наблюдении глазом мы легко отличаем максимум одного цвета от максимумов другого. Однако эта способность к различению у нашего глаза также ограничена, хотя и превосходит избирательную способность большинства физических приемни-

ков (фотоэлемент, фотопластинку и тем более вполне нейтральный термоэлемент). Особенно затруднительно для глаза различение оттенков при налични непрерывного перехода. При этих условиях глаз вряд ли способен обнаружить различие, если λ меняется менее чем на несколько десятков (сто) ангстрем *). Восружив глаз светофильтром с узкой полосой пропускания или спектроскопом, мы получаем возможность наблюдать интерференцию при большей разности хода.

Порядок интерференции т связан с разностью хода интерферирующих световых пучков $d_2 - d_1$ и длиной волны λ соотношением $m = (d_2 - d_1)/\lambda$. Из проведенного выше обсуждения интерференции немонохроматического света следует, что разность хода, при которой исчезает интерференционная картина, определяется соот-HOWEHHEM $L \equiv d_2 - d_1 = \lambda^2 / \Delta \lambda$.

Эта величина называется длиной когерентности. Она определяется свойствами источника света либо применяемого монохро-

*) Рэлей утверждал, что он способен различать оттенки, соответствующие двум компонентам желтой линии натрия, отличающимся на 6 Å. Это, по-видимому, предельная чувствитальности по стисков предельная чувствительность глаза к оттенкам, проявляющаяся при одновременном наблюдении двух близких, но дискретных спектральных участков. Пра наблюдении сплошной совокупности различение цветов гораздо труднее.

матора. Для того чтобы наблюдать интерференционную картину с достаточной видимостью (например, с $V \approx 0,1$), необходимо обеспечить в интерференционной схеме условия, при которых максимальная разность хода интерферирующих световых пучков *много меньше* длины когерентности для применяемого источника света.

Опыт показывает, что при использовании в качестве источника света свечения разреженного газа длина когерентности для стдельных спектральных линий этого газа не превышает нескольких десятков сантиметров. Лазерные источники света (см. гл. XL) позволяют наблюдать интерференцию при разности хода в несколько километров. Однако практический предел разности хода, при которой возможно наблюдение интерференции, ограничивается уже не длиной когерентности лазерных источников света, но трудностями создания стабильной интерференционной схемы подобных размеров и неоднородностью земной атмосферы.

В § 14 указывалось, что волны, испускаемые атомами, сохраняют регулярность лишь в течение ограниченного интервала времени. Другими словами, в течение этого интервала времени амплитуда и фаза колебаний приблизительно постоянны, тогда как за больший промежуток времени и фаза, и амплитуда существенно изменяются. Часть последовательности колебаний, на протяжении которой сохраняется их регулярность, называется цугом волн или волновым цугом. Время испускания цуга волн называется длительностью цуга или временем когерентности. Пространственная протяженность цуга L (длина цуга волн) и время когерентности T связаны очевидным соотношением L = Tc, где c — скорость света. Если, например, средняя длина цугов волн, излучаемых некоторым источником света, равна по порядку величины 1 см, то время когерентности для этого источника света составляет величину порядка 0,3.10-10 с. Следовательно, в среднем через такие промежутки времени прекращается излучение одной регулярной последовательности волн, испускаемой источником света, и начинается излучение нового цуга волн с амплитудами, фазами и поляризацией, не связанными закономерно с соответствующими параметрами предшествующего волнового цуга.

Нетрудно понять, что длина когерентности и длина цуга воли совпадают. Действительно, если разность хода интерферирующих пучков становится больше длины цуга волн, то в данной точке интерференционного поля складываются волны, испущенные атоинтерференционного поля складываются волны, испущенные атомом в моменты времени, отличающиеся более чем на время когерентности. Но такие колебания не могут интерферировать. Следорентности. Но такие колебания не могут интерферировать. Следовательно, интерференция не может наблюдаться, если разность хода больше длины цуга, а максимальная разность хода, при которой интерференция еще наблюдается, т. е. *длина когерентности*, равна длине цуга.

интерференция света

Используя связь между длиной когерентности и шириной спектиспользуя связь нему можно найти соотношение между Δλ и рального интервала Δλ, можно найти соотношение между Δλ и временем когерентности Т

ыременски ноги
$$|\Delta\lambda| = \lambda^2/L = \lambda^2/cT$$
,
откуда, учитывая, что $|\Delta\lambda| = c\Delta\nu/\nu^2$, получаем
 $\Delta\nu T = 1$, (21.1)

где Δv — ширина спектрального интервала в шкале частот.

Обратная пропорциональность между временем когерентности Т и отвечающей ему шириной спектрального интервала имеет весьма общий характер. Более строгая теория, учитывающая особенности случайных изменений фаз и амплитуд волны, приводит лишь к изменению числового значения в правой части соотношения (21.1) (подробнее см. § 22).

§ 22. Частично когерентный свет

В предшествующих параграфах, посвященных явлению интерференции световых пучков, резко противопоставлялись когерентные и некогерентные пучки. В то же время при интерференции немонохроматических пучков увеличение разности хода приводит, разумеется, к постепенному ухудшению контрастности интерференционных полос. Поэтому представления о полностью когерентных и полностью пекогерентных пучках соответствуют некоторым крайним, предельным условням. В действительности же реализуются и все промежуточные случаи, и тогда говорят о частичной когерентности.

Из сбсуждения процесса испускания волн атомами источника света (см. §§ 14, 21) должно быть ясно, что причиной нарушения когерентности служат случайные (статистические) изменения амплитуды и фазы волны, вызванные, в свою очередь, случайными воздействиями окружающей среды на излучгющие атомы. Поэтому анализ интерференции частично когерентных световых пучков требует учета статистических свойств волн, испускаемых атомами. В данном курсе нет возможности останавливаться на этой стороне вопроса сколько-нибудь подробно *), однако ряд важных физических выводов можно получить, опираясь на сравнительно простые, по общие статистические соображения.

Пусть две волны из точечных источников S₁, S₂ приходят в точку наблюдения M (рис. 4.17). Обозначим через $a_1(t)$, $a_2(t + \tau)$ н $\varphi_1(t), \varphi_2(t+\tau)$ амплитуды и фазы интерферирующих волн в точке М. В аргументах амплитуд и фаз отражен тот факт, что волны

*) Более детальное изложение статистических явлений в оптике см. в книге: Г. С. Горелик, Колсбания и волны, Физматгиз, 1959, гл. Х.

94

испущены в разные моменты времени t и $t + \tau$, отличающиеся на $\tau = (d_2 - d_1)/c$. В соответствии со сказанным ранее будем считать амплитуды и фазы случайными величинами и вычислим квадрат амплитуды результирующего колебания, усредненный за боль-

шой промежуток времени *):

$$\overline{A^{2}} = \overline{a_{1}^{*} + \overline{a_{2}^{*}}} + \frac{1}{2a_{1}(t)a_{2}(t+\tau)\cos[\overline{\omega}\tau + \varphi(\tau)]},$$
(22.1)
$$\varphi(\tau) = \varphi_{2}(t+\tau) - \varphi_{1}(\tau),$$

Рис. 4.17. К расчету степени когерентности.

где черта сверху означает усреднение, аналогичное тому, кото-

рое проводилось в § 12. Частота $\overline{\omega}$ — средняя частота регулярных колебаний. Первые два члена соответствуют средним квадратам амплитуд интерферирующих колебаний. Простые преобразования показывают, что $\overline{A^2}$ можно представить в следующем виде (см. упражнение 20):

$$\overline{A^2} = \overline{a_1^3} + \overline{a_2^3} + 2V \overline{a_1^3} \cdot \overline{a_2^3} [c(\tau) \cos \overline{\omega}\tau - s(\tau) \sin \overline{\omega}\tau] =$$

$$= \overline{a_1^3} + \overline{a_2^3} + 2V \overline{a_1^3} \overline{a_2^3} \gamma(\tau) \cos [\overline{\omega}\tau + \psi(\tau)], \quad (22.2)$$

где величины $c(\tau)$, $s(\tau)$, $\gamma(\tau)$, $\psi(\tau)$ определяются соотношениями

$$c(\tau) = \overline{a_1(t) a_2(t+\tau) \cos \varphi(\tau)} / \sqrt{\overline{a_1^* \cdot \overline{a_2^*}}},$$

$$s(\tau) = \overline{a_1(t) a_2(t+\tau) \sin \varphi(\tau)} / \sqrt{\overline{a_1^* \cdot \overline{a_2^*}}},$$

$$\gamma(\tau) = \sqrt{c^2(\tau) + s^2(\tau)}, \quad \operatorname{tg} \psi(\tau) = s(\tau) / c(\tau).$$
(22.3)

Если ввести интенсивности I, I_1 , I_2 , пропорциональные усредненным квадратам амплитуд $\overline{A^2}$, $\overline{a_1^3}$, $\overline{a_2^3}$, то формулу (22.2) можно переписать в виде

$$I = I_{1} + I_{2} + 2 \sqrt{I_{1}I_{2}} [c(\tau) \cos \omega \tau - s(\tau) \sin \omega \tau] =$$

= $I_{1} + I_{2} + 2 \sqrt{I_{1}I_{2}} \gamma(\tau) \cos [\omega \tau + \psi(\tau)], \quad (22.4)$
 $\omega \tau = 2\pi (d_{2} - d_{1})/\lambda.$

Выражение (22.4) отличается от (13.3), полученного для интенсивности результирующего колебания при полностью когерентных пучках, дополнительным множителем γ (τ) в интерференционном члене и дополнительным сдвигом фазы ψ (τ). Вполне очевидно,

^{*)} Предполагается, что период регулярных колебаний 2π/ω значительно меньше интервала времени, в течение которого амплитуды и фазы меняются за-метным образом.

что у (т) не может быть больше единицы, т. е. у (т) < 1. В прочто у (т) не может овни солима суммарного колебания могла бы быть тнвном случае амплитуда суммарного колебания могла бы быть тивном случае амплитуд интерферирующих колебаний, либо обраоольше суммы при неравных амплитудах. И то, и другое физически титься в нуль при переопал. множитель γ (τ) уменьшает вели-бессмысленно. Таким образом, множитель γ (τ) уменьшает вели-чину интерференционного члена по сравнению со случаем полностью когерентных пучков, т. е. характеризует ухудшение контностью консредстве и и полос. Если $\gamma(\tau) = 0$, то интерферастности интерференционных поста сответствует интерференции полностью когерентных пучков. Все промежуточные значения γ (τ). отвечают частично когерентным пучкам. Величина у (т) называется степенью когерентности пучков.

При любом значении у (т) интенсивность І можно записать так:

$$I = \gamma(\tau) \{ I_1 + I_2 + 2 \sqrt{I_1 I_2} \cos [\omega \tau + \psi(\tau)] \} + [1 - \gamma(\tau)] [I_1 + I_2].$$

Первое слагаемое в правой части этого соотношения отвечает когерентному сложению колебаний с интенсивностями у (т) I1, у (т)I2 и разностью фаз ψ (т), второе слагаемое — полностью некогерентному сложению колебаний с интенсивностями [1 — γ (т)]/1, $[1 - \gamma(\tau)]I_2$. Можно считать поэтому, что свет в точке *M* интерференционной картины как бы состоит из когерентной и некогерентной частей, причем доля когерентного света равна у (т). Обсуждаемое соотношение уже было получено в § 13 с помощью элементарных соображений, основанных на представлении о разделении света интерферирующих пучков на когерентную и некогерентную части (ср. (13.5)). Анализ, проведенный в данном параграфе, устанавливает точный смысл такого разделения.

Экспериментальное определение степени когерентности у (т) и фазы ф (т) может быть основано на измерении видимости и положения интерференционных полос. Из формулы (22.4) следует, что параметр видимости V (см. § 13) и у (т) связаны соотношением

$$V = \frac{E_{\max} - E_{\min}}{E_{\max} + E_{\min}} = \frac{2\sqrt{I_1 I_2}}{I_1 + I_2} \gamma(\tau).$$
(22.5)

Таким образом, измеренные значения интенсивностей I₁, I₂ интерферирующих пучков и освещенностей в максимумах и минимумах интерференционной картины E_{\max} , E_{\min} позволяют вычислить γ (τ). При одинаковых I_1 и I_2 степень когерентности γ (τ) совпадает с видимостью полос V.

Положение максимумов освещенностей определяется условием

$$(d_2 - d_1)/\lambda + \psi(\tau)/2\pi = m.$$
 (22.6)

Измеряя разность хода $d_2 - d_1$, длину волны λ и порядок интерференции т. можно найти с помощью (22.6) фазу ф (т). Измерение разности хода удобно (с экспериментальной точки зрения) заменить

измерением положения интерференционных полос, как следует из вычислений, проведенных в § 15. Наконец, можно иметь дело не с максимумами, а с минимумами освещенности, и тогда *m* в формуле (22.6) будет не целым, а полуцелым числом.

(22.0) буде пор степень когерентности γ (т) и фаза ψ (т) рассматри-Вались как экспериментальные характеристики интерференционной картины. Поставим теперь вопрос о теоретическом вычислении γ (т) и ψ (т), которое должно основываться на соотношениях (22.3). Если среда между источниками света и местом наблюдения интерференции однородна и неизменна во времени, то статистические характеристики случайных амп-

литуд $a_1(t)$, $a_2(t)$ и фаз $\phi_1(t)$, т. (t) определяются свойствами источников S₁, S₂ и для теоретического расчета необходимы определенные предположения о процессе испускания света. Примем следующую простую схему для этого процесса: точечный источник испускает последовательность волновых цугов с равными длительностями Т и равными амплитудами а, а фазы различных цугов принимают совершенно случайные, независимые друг от друга значения. Данная схематизация соответ-

Рис. 4.18. Графики зависимости степени когерентности ү (т) от времени запаздывания для пучков, состоящих из волновых цугов;

I — цуги равной длительности T, 2 длительность цугов подчинена распределению Пуассона (22.8).

ствует тому, что излучающий атом в течение очень короткого времени, значительно меньшего длительности цуга T, испытывает резкое возмущение со стороны окружающих его частиц (атомов, электронов и др.), в результате чего и изменяется фаза излучаемой им волны. Вычисления показывают, что для указанной схемы степень когерентности γ (т) и фаза ψ (т) определяются выражениями (см. упражнение 21)

$$\gamma(\tau) = \left\{ \begin{array}{cc} 1 - |\tau|/T, & |\tau| \leq T, \\ 0, & |\tau| > T, \end{array} \psi(\tau) = 0. \right\}$$
(22.7)

Степень когерентности уменьшается при увеличении $|\tau|$ по линейному закону до тех пор, пока не станет равной нулю, а при еще больших значениях $|\tau|$ остается нулевой (рис. 4.18). Такое поведение γ (τ) имеет простое объяснение. Если разность хода $d_3 - d_1$ больше длины цуга или, что то же самое, время запаздывания τ больше длительности цуга T, то в точке M складываются колебания заведомо разных цугов, фазы которых, по предположению, никак не связаны между собой. Поэтому интерференция не может наблю-

4 Ландсберг Г. С.

даться при $|\tau| > T$, чему и отвечает $\gamma(\tau) = 0$. Если же $|\tau| \le T$, то в точке наблюдения частично перекрываются разные участки одного и того же цуга и в меру этого перекрытия будет более или менее значительной контрастность интерференционных полос. Поменее значитсявлой перекрытия линейно уменьшается с увеличением скольку степень перекрытия линенно уменьшается с увеличением запаздывания цуга от S₂ относительно цуга от S₁, степень когерент-ности уменьшается по линейному закону с изменением |т|. Очевидным недостатком рассмотренной схемы следует считать

предположение о равенстве длительностей всех цугов. Этот недостаток легко устранить. Пусть атом испускает волновые цуги разной длины и время наблюдения достаточно велико, чтобы реали-зовались практически все возможные значения Т. Результирующая степень когерентности будет зависеть от того, как часто испуска-ются цуги с той или иной длительностью. Предположим, что отно-сительное число цугов с длительностью T дается выражением (распределение Пуассона)

$$(T/\bar{T}) \exp(-T/\bar{T}),$$
 (22.8)

где T — некоторая средняя длительность. Тогда для ү (т) получим (см. упражнение 21)

$$\gamma(\tau) = \exp\left(-\frac{|\tau|}{\overline{T}}\right). \tag{22.9}$$

В данном случае степень когерентности не равна нулю при любых значениях |т| (см. рис. 4.18), чему отвечает возможность испускания цугов, длительность которых по случайным обстоятельствам превышает среднюю длительность T. Однако относительное число таких длинных цугов мало, и γ (τ) быстро убывает при $|\tau| > T$.

В обсужденной выше схеме процесса испускания случайным воздействиям подвергалась лишь фаза колебаний. Такие колебания называют колебаниями со случайной фазовой модуляцией. При фазовой модуляции интенсивность, пропорциональная квадрату амплитуды колебаний, не изменяется во времени. Можно предполагать, что взаимодействие излучающего атома с окружающими частицами приводит не только к фазовой модуляции испускаемых им волн, но и к изменению амплитуды. В последнем случае говорят о случайной амплитудной модуляции колебаний.

Пусть испускаемое атомом излучение представляет собой последовательность волновых цугов, амплитуды которых изменяются по случайным причинам, но фаза не модулируется. Расчет показывает, что в этом случае степень когерентности имеет вид (см. упражнение 21)

$$\gamma(\tau) = \begin{cases} (\bar{a})^2/a^2 + [1 - |\tau|/T] [\overline{a - \bar{a}}]^2/\bar{a}^2, & |\tau| \le T, \\ (\bar{a})^2/\bar{a}^2, & |\tau| > T. \end{cases}$$

где T — длительность, одинаковая для всех цугов, a — средняя амплитуда, a^2 — средний квадрат амплитуды. Как и в случае фазовой модуляции, график функции γ (т) имеет треугольную форму при $|\tau| < T$, однако при $|\tau| > T$ степень когерентности не обращается в нуль, а остается постоянной величиной, равной $(\bar{a})^2/\bar{a}^2$. Опыт показывает, однако, что γ (τ) \rightarrow 0 при достаточно больших $|\tau|$. Поэтому следует считать $\bar{a} = 0$, что эквивалентно изменению знака амплитуды при смене одного цуга другим или, иными словами, скачкам фазы на π . Следовательно, на основе опыта мы приходим к выводу, что фазовая модуляция в той или иной форме обязательно существует при взаимодействии излучающих атомов с окружающей средой.

Измерение ү (т) при разных т и сопоставление с теоретически вычисленной функцией позволяет, таким образом, сделать определенные заключения об особенностях процесса испускания волн атомами.

Уменьшение видимости полос при интерференции немонохроматических пучков объяснялось в § 21 иным способом, а именно, предполагалось, что они являются суперпозицией монохроматических пучков с различными частотами (или длинами волн). Естественно возникает вопрос о взаимоотношении спектрального подхода, изложенного в § 21, и временного подхода, использующегося в данном параграфе. Для выяснения этого вопроса напомним, что строго гармоническое (монохроматическое) колебание, по самому своему определению, должно происходить бесконечно долго. Если колебание следует гармоническому закону в течение ограниченного промежутка времени, по истечении которого изменяются его амплитуда, частота или фаза (волновой цуг), то это модулированное колебание можно представить в виде суммы монохроматических колебаний с различными частотами, амплитудами и фазами. Но такое разложение волновых цугов на монохроматические составляющие и дает основу для представления об интерференции немонохроматических пучков. Итак, спектральный и временной подходы к анализу интерференции оказываются разными способами рассуждений об одном и том же явлении, -нарушении когерентности колебаний *).

Приведем количественные соотношения, отвечающие представлению об интерференции немонохроматических пучков. Будем считать, что частоты монохроматических компонент, входящих в состав интерферирующих пучков, сосредоточены вблизи некоторой средней частоты $\overline{\omega}$. Обозначим $I_1(\omega - \overline{\omega})d\omega$, $I_2(\omega - \overline{\omega})d\omega$ интенсивности колебаний в интерферирующих пучках, происходящих с частотой ω . Величины $I_1(\omega - \overline{\omega})$, $I_2(\omega - \overline{\omega})$ носят название спектральных плотностей интенсивности. Колебаний. Полные

^{*)} Более подробно о соотношении между спектральным и временным способами рассуждений см.: Г. С. Горелик, Колебания и волны, Физматгиз, 1959, гл. XI.

очевилно.

100

интенсивнос

$$I_{1} = \int I_{1}(\omega - \overline{\omega}) d\omega, \quad I_{2} = \int I_{2}(\omega - \overline{\omega}) d\omega \qquad (22.10)$$

и совпадают с интенсивностями I_1 , I_2 , встречавшимися ранее (например, в (22.4)). Поскольку источниками интерферирующих пучков служат два изображения одного и того же точечного источника света, спектральные плотности $I_1 (\omega - \omega)$, $I_2 (\omega - \omega)$ одинаковым образом зависят от частоты и отличаются только постоянными множителями, пропорциональными I_1 и I_2 . С помощью введенных обозначений интенсивность в какой-либо точке интерференционной картины можно записать в виде соотношения, полностью совпадающего с (22.4), причем степень когерентности γ (т), фаза ψ (т) и величины c (т), s (т) связаны с $I_1 (\omega - \omega)/I_1 = I_2 (\omega - \omega)/I_2$ следующим образом (см. упражнение 22):

$$c(\tau) = \frac{1}{I_1} \int I_1(\Omega) \cos \Omega \tau \, d\Omega,$$

$$s(\tau) = \frac{1}{I_1} \int I_1(\Omega) \sin \Omega \tau \, d\Omega, \quad \Omega = \omega - \overline{\omega},$$

$$\gamma(\tau) = \sqrt{c^2(\tau) + s^2(\tau)}, \quad \mathrm{tg} \, \psi(\tau) = s(\tau)/c(\tau).$$
(22.11)

Таким образом, представления об интерференции немонохроматических пучков и об интерференции пучков в виде волновых цугов приводят к идентичным выводам о распределении интенсивности в интерференционной картине. Приведенные выше соображения о разложении волновых цугов на монохроматические колебания нашли свое количественное выражение в том, что функции $c(\tau)$, $s(\tau)$ оказываются суперпозицией гармонических составляющих с амплитудами, пропорциональными спектральной плотности интенсивности колебаний.

Соотношения (22.11), (22.5) и (22.6) позволяют вычислить степень когерентности γ (т), фазу ψ (т), видимость V и положение интерференционных полос, если известна относительная спектральная плотность $I_1 (\omega - \omega)/I_1$. Справедливо и обратное утверждение *) — если известны γ (т) н ψ (т), то можно вычислить $I_1 (\Omega)/I_1$ по формуле

$$I_{1}(\Omega)/I_{1} = \frac{1}{\pi} \int_{0}^{\infty} \gamma(\tau) \cos \left[\Omega \tau - \psi(\tau)\right] d\tau. \qquad (22.12)$$

Следовательно, исследование интерференционной картины позволяет определить спектральный состав излучения. Этот метод полу-

•) Доказательство формулы (22.12), представляющей собой частный случай преобразования Фурье, см., например, в книге: В. А. Ильин, Э. Г. Позняк, Основы математического анализа, ч. П, «Наука», 1973. чил название фурье-спектроскопии и нашел по ряду причин особо широкое применение при работе в инфракрасной области спектра. Разберем несколько примеров. Непосредственным расчетом легко убедиться в том, что спектральной плотности

$$I_1(\omega - \overline{\omega}) = I_1 \frac{\Gamma/\pi}{\Gamma^2 + (\omega - \overline{\omega})^2}$$
(22.13)

соответствует степень когерентности

$$\gamma(\tau) = \exp\left(-\Gamma|\tau|\right). \tag{22.14}$$

Итак, степени когерентности волновых цугов с различными длительностями (ср. (22.9)) отвечает спектральная плотность, определяемая формулой (22.13) с $\Gamma = 1/\overline{T}$. Величина Γ равна тому интервалу

Рис. 4.19. Спектральные плотности и степени когерентности для случаев, описываемых соотношениями (22.13), (22.14) (а) и (22.15.), (22.16) (б).

частот, на протяжении которого $I_1(\omega - \overline{\omega})$ уменьшается в два раза по сравнению со своим максимальным значением, достигаемым при $\omega = \overline{\omega}$ (рис. 4.19, *a*). Следует обратить внимание на обратную пропорциональность Г и \overline{T} , что представляет собой частный случай общего соотношения между длительностью волнового цуга и величиной спектрального интервала, на которую приходится существенная часть интенсивности немонохроматического пучка света (см. копец § 21).

Если спектральная плотность состоит из двух компонент, обладающих одинаковой формой вида (22.13), достигающих максимальных значений при частотах ω_1 и ω_2 и имеющих одинаковые интенсивности и полуширины Г:

$$I_{1}(\omega - \overline{\omega}) = \frac{1}{2} I_{1} \left[\frac{\Gamma/\pi}{\Gamma^{2} + (\omega - \omega_{1})^{2}} + \frac{\Gamma/\pi}{\Gamma^{2} + (\omega - \omega_{2})^{2}} \right], \quad (22.15)$$

$$\omega = \frac{1}{2} (\omega_{1} + \omega_{2}),$$

то степень когерентности оказывается равной $\gamma(\tau) = \exp(-\Gamma|\tau|) |\cos(\Delta\omega\tau/2)|,$ $\Delta \omega = \omega_2 - \omega_1 \quad (22.16)$

и, помимо уменьшения с ростом |τ |, испытывает осцилляции с периодом, равным 2π/| Δω |, т. е. обратно пропорциональным с периодом, различи слектральной плотности (см. рис. 4.19, б). Огибающая же этих осцилляций определяется полушириной компонент Г.

Рассмотрим теперь иную модель процесса излучения. Примем во внимание движение излучающего атома и не будем учитывать разбиение его излучения на волновые цуги. Вследствие эффекта Допплера (см. главу XXI) частота света света в месте наблюдения отличается от частоты света Ф, испускаемого неподвижным атомом. на величину

$$\omega-\bar{\omega}=\frac{v}{c}\,\bar{\omega},$$

где v — проекция скорости атома на направление наблюдения. Пусть источником света служит газ; излучающие атомы этого газа имеют различные скорости и, следовательно, газ в целом испускает немонохроматическое излучение. Пусть имеет место максвелловское распределение атомов по проекциям скоростей на направление наблюдения

$$(\sqrt{\pi \bar{v}})^{-1} \exp\left[-(v/\bar{v})^2\right], \quad \bar{v}^2 = 2kT/m,$$

где k — константа Больцмана, m — масса атома и T — абсолютная температура *). Тогда для спектральной плотности интенсивности излучения газа получим

$$I_1(\omega - \overline{\omega}) = I_1 \left[\sqrt{\pi \,\overline{\omega} \overline{v}/c} \right]^{-1} \exp\left[- (\omega - \overline{\omega})^2 / (\overline{\omega} \overline{v}/c)^2 \right]; \quad (22.17)$$

в данном случае она оказывается гауссовой функцией с полушириной

$$\overline{\omega}\overline{v}/c.$$
 (22.18)

Вычисление степени когерентности в этом случае приводит к соотношению (см. упражнение 23)

$$\gamma(\tau) = \exp\left[-(\tau/\tau)^2\right], \quad \tau = 2c/\bar{\upsilon}\varpi. \quad (22.19)$$

Степень когерентности монотонно уменьшается с ростом т и при

$$\tau = \bar{\tau} = 2c/\bar{v}\bar{\omega} = \lambda/\pi\bar{v} \tag{22.20}$$

оказывается в е раз меньше своего максимального значения. Величина т играет, следовательно, роль, аналогичную средней дли-

•) Здесь время когерентности и абсолютная температура обозначены одной и той же буквой Т, но это не может привести к недоразумению, так как из контекста ясно, о чем идет речь.

102

тельности цуга. Как и в предыдущей схеме процесса испускания, время когерентности обратно пропорционально полуширине спектральной плотности интенсивности, но коэффициент пропорциональности оказывается иным (в 2 раза больше).

Замечательная особенность рассмотренного (так называемого допплеровского) механизма возникновения немонохроматичности и частичной когерентности состоит в том, что время когерентности определяется только температурой газа, средней частотой излучения и атомным весом. Для газа с атомным весом ≈ 100 и $T \approx 300$ К находим значение длины когерентности

 $L = c\overline{\tau} = \frac{1}{\pi} \lambda \frac{c}{v} \approx 21$ cm ($\lambda = 0.5 \cdot 10^{-3}$ mm).

Разобранные примеры наглядно показывают, насколько чувствителен общий вид функции γ (τ) к особенностям спектральной плотности. Это делает ясным возможность использования кривой видимости для анализа спектрального состава излучения. Впервые такой способ был применен Майкельсоном, и ему удалось установить, что почти все спектральные линии в излучении разреженных газов состоят из нескольких, тесно расположенных компонент, которые не разрешались обычными спектральными приборами.

До сих пор степень когерентности γ (т) и фаза ψ (т) рассматривались как характеристики интерференционной картины, позволяющие, в частности, определять контрастность и положение полос. Можно понимать эти величины в несколько более общем смысле. Дело в том, что световые колебания, складывающиеся в какойлибо точке интерференционной картины, однозначно определяются световыми колебаниями в источники света: амплитуды колебаний в точках M и S_1 , S_2 пропорциональны друг другу, а фазы отличаются на величины $2\pi d_1/\lambda$, $2\pi d_2/\lambda$. Можно сказать поэтому, что γ (т) и ψ (т) представляют собой характеристики световых колебаний, происходящих в источнике в разные моменты времени t и $t + \tau$. В отличие от напряженности поля, которая характеризует состояние световых колебаний в какой-то один момент времени, степень когерентности γ (т) и фаза ψ (т) описывают состояние световых колебаний в два различных момента времени t и $t + \tau$.

В развитие этой точки зрения рассмотрим еще более общую характеристику светового поля, которая описывает состояние световых колебаний в два разных момента времени и в двух разных точках пространства. Выберем две произвольные точки P_1 , P_2 , в которых совершаются световые колебания

$$s_{1}(P_{1}, t) = a_{1}(P_{1}, t) \cos [\varpi t + \varphi_{1}(P_{1}, t)],$$

$$s_{2}(P_{2}, t) = a_{2}(P_{2}, t) \cos [\varpi t + \varphi_{3}(P_{2}, t)].$$
(22.21)

Как и ранее, будем полагать амплитуды a_1 (P_1 , t), a_2 (P_2 , t) и фазы φ_1 (P_1 , t), φ_2 (P_2 , t) случайными функциями времени. Введем, пока

ИНТЕРФЕРЕНЦИЯ СВЕТА

совершенно формально, величины, аналогичные с (т), s (т): $c_{12}(\tau) = [\overline{a_1^2(P_1)} \, \overline{a_2^2(P_2)}]^{-1/2} \times$ $\times \overline{a_1(P_1, t) a_2(P_2, t+\tau) \cos [\varphi_2(P_2, t+\tau) - \varphi_1(P_1, t)]};$ $s_{12}(\tau) = \left[\overline{a_1^2(P_1)} \ \overline{a_2^2(P_2)}\right]^{-1/2} \times$ $\times \overline{a_1(P_1, t) a_2(P_2, t+\tau)} \sin [\varphi_2(P_2, t+\tau) - \varphi_1(P_1, t)]$

и составим из них комбинации, аналогичные у (т), ψ (т):

$$\gamma_{12}(\tau) = \sqrt{c_{12}^{2}(\tau) + s_{12}^{2}(\tau)}, \quad \text{tg} \psi_{12}(\tau) = s_{12}(\tau)/c_{12}(\tau). \quad (22.23)$$

Величина γ12 (τ) служит, очевидно, мерой способности колебаний s₁ (P₁, t) и s₂ (P₂, t) к интерференции. Действительно, установим

Рис. 4.20. К интерпретации степени когерентности у12 (т) световых колебаний в 10чках P₁ и P₂.

экран с двумя маленькими отверстиями, выделяющими световые волны из точек Р., Р₂ (рис. 4.20). Волны от остальных точек светового поля задерживаются экраном. В результате дифракционных явлений за экраном будут распространяться волны почти во всех направлениях. отверстия Следовательно, вблизи точек P₁, P₂ играют роль источников света, за экраном образуется интерфе-

ренционная картина, а положение и контрастность интерференционных полос будут определяться величинами у12 (т), ψ12 (т), если под т понимать время $(d_2 - d_1)/c$, на которое волна от первого отверстия запаздывает по сравнению с волной от второго. Таким образом, у12 (т) характеризует способность к интерференции колебаний в точках P_1 , P_2 при разности хода $d_2 - d_1 = c \tau$ или, другнми словами, когерентность световых колебаний в точках P1, P2 в разные моменты времени, отличающиеся на т. Для у12 (т) принято названне степень когерентности световых колебаний в точках P1, P2 или, просто, степень когерентности.

Точки P₁, P₂ были выбраны произвольно; в частности, они могут совпадать. В этом случае колебания s_1 (P_1 , t), s_2 (P_1 , $t + \tau$) отличаются только моментом времени, когда они совершаются, и говорят о временной когерентности колебаний. В разобранных выше интерференционных опытах, где в качестве источников света S1, S2 выступали два изображения одного точечного источника света, существенна именно временная когерентность, поскольку складываются колебания, происходившие в разные моменты времени, но в одном и том же реальном точечном источнике света.

104

Если считать моменты времени t и $t + \tau$ совпадающими ($\tau = 0$), но точки P_1 , P_2 — различными, то γ_{12} (0) характеризует когерентность колебаний, совершающихся в точках P_1 , P_2 одновременно. В этом случае говорят о пространственной когерентности колебаний в точках P_1 , P_2 или, сокращенно, — о пространственной когерентности.

Пространственная когерентность играет важную роль в образовании изображения в оптических системах (приборах). Вследствие таутохронизма оптических систем (см. § 20) световые колебания в изображениях различных точек соответствуют одновременным колебаниям в источнике света, т. е. в изображаемом предмете. Вместе с тем, в результате дифракционных явлений и аберраций в каждую точку плоскости изображения приходят волны, испущенные разными точками предмета. Если предмет самосветящийся, то колебания в разных его точках некогерентны и в изображении можно складывать интенсивности от разных точек предмета, приходящие в данную точку плоскости изображения. Если же предмет несамосветящийся, то разные его точки, вообще говоря, частично когерентны и складывать интенсивности нельзя. Действительно, несамосветящиеся предметы наблюдаются в результате рассеяния воли, падающих на предмет от постороннего источника света. Если им служит точечный источник света, то световые колебания во всех точках освещаемого предмета находятся в строго определенных фазовых соотношениях, т. е. полностью когерентны, и в изображении следует складывать не интенсивности, а амплитуды колебаний, приходящих от разных точек предмета в данную точку плоскости изображений.

Несамосветящимся предметом является, например, препарат, наблюдаемый с помощью микроскопа и освещаемый посторонним источником света (см. § 97), либо щель спектрального аппарата, также освещаемая источником, спектр излучения которого подлежит наблюдению (см. § 100). Наконец, все предметы, наблюдаемые визуально при дневном или искусственном освещении, относятся к разряду несамосветящихся объектов.

В интерференционном опыте Юнга (см. § 16) источниками света служат две щели, освещаемые некоторым источником света, т. е. схема опыта в существенных своих чертах совпадает со схемой рис. 4.20. Если разность хода сравнительно невелика, так что наблюдаются полосы низкого порядка, то контрастность интерференционных полос будет определяться главным образом степенью пространственной когерентности освещения щелей. Аналогично положение и в случае звездного интерферометра Маикельсона (см. § 45), где частичная пространственная когерентность освещения щелей интерферометра служит средством для измерения угловых размеров звезд.

Роль частичной пространственной когерентности во всех перечисленных, выше случаях можно понять, рассмотрев следующую

интерференция света

упрощенную схему. Пусть различные точки линейного источника упрощенную слему. Пусть различи разами. Будем интересвета испускают волны с вногие стучитере-соваться пространственной когерентностью светового поля, создасоваться пространственным источником света в точках P_1 , P_2 . ваемого эгим прогластиния примем совокупность В качестве модели протяженного источника примем совокупность в качестве модели прогластиченных эквидистантно на отрезке прясветящился точек, расположи и испускающих волны с равными амплимои длиноп 20 среденно произвольными фазами (под светящимися тудами, но с совершенно произвольными фазами (под светящимися точками можно понимать, ради наглядности, отдельные атомы

Рис. 4.21. К расчету степени пространственной когерентности у12 (0).

Рис. 4.22. График зависимости степени пространственной когерентности от $\alpha = 4\pi b l/\lambda d$ в случае протяженного самосветящегося источника света.

источника света). Расчет показывает (см. упражнение 24), что степень когерентности колебаний в двух точках P1, P2, лежащих на прямой, параллельной источнику света и отстоящих друг от друга на расстояние 21. равна

$$\gamma_{12}(0) = \left| \frac{\sin \alpha}{\alpha} \right|, \qquad \alpha = 4\pi b l/\lambda d, \qquad (22.24)$$

где d — расстояние между источником и точками наблюдения. На рис. 4.22 приведен график зависимости степени когерентности от величины $\alpha = 4\pi b l/\lambda d$. При возрастании α степень когерентности $\gamma_{12}(0)$ сначала уменьшается, обращается в нуль при $\alpha = \pi$ и при еще больших значениях а испытывает осцилляции, но не превышает примерно 0,2. Таким образом, неравенство α < π можно принять в качестве критерия существования пространственной когерентности.

Если зафиксировать расстояние 21 между точками Р1, Р2, то из требования существования когерентности следует ограничение, налагаемое на размеры источника

$$\theta = 2b/d < \lambda/2l$$
.

Следовательно, угловые размеры* в источника света не должны превышать отношения длины волны к расстоянию 21 между точками P₁, P₂. Таким образом, для создания практически когерентного

освещения нет необходимости применять строго точечный источник света. Если, например, $\alpha = \pi/4$, то γ_{12} (0) = 0,90, т. е. степень когерентности всего на 10% хуже, чем при строго точечном источнике света.

Пусть теперь зафиксированы угловые размеры источника света. Тогда условие $\alpha < \pi$ определит расстояния $2l_{\text{ког}}$, при которых и следует принимать во внимание частичную когерентность колебаний в точках P_1 , P_2 . Совокупность точек, отстоящих друг от друга не далее чем на $2l_{\text{ког}}$, называют областью когерентности. Учитывая соотношение (22.24), из условия $\alpha < \pi$ находим

$$2l < 2l_{\text{KOP}} = \lambda/\theta$$
.

Если освещение происходит прямым светом от Солнца, угловые размеры которого $\theta = 30' = 0.9 \cdot 10^{-2}$ рад, то размеры области когерентности составят $1.1 \cdot 10^2 \lambda = 0.06$ мм (для $\lambda = 0.55 \cdot 10^{-3}$ мм). В отношении опыта Юнга (при использовании Солнца в качестве источника света) из приведенного расчета следует, что щели S_1 , S_2 (см. рис. 4.10) следует располагать на расстоянии, меньшем 0.06 мм, а для наблюдения отчетливых интерференционных полос с видимостью, например 0.90, нужно брать 2l = 0.015 мм.

Если освещение объекта наблюдения происходит не за счет прямого солнечного света, а за счет света, рассеянного на окружающих предметах или на облаках, то отдельные точки этих предметов можно считать источниками некогерентных волн (так как область когерентности для них имеет размеры 0,06 мм) и использовать модель некогерентного протяженного источника и в данном случае. При всестороннем освещении объекта следует считать $\theta \approx 1$, и для размеров области когерентности имеем $2l_{\rm kor} \approx \lambda$.

Разрешающая способность глаза человека при наблюдении на расстоянии 250 мм (так называемое расстояние наилучшего зрения) составляет приблизительно 0,1 мм. Два маленьких предмета, находящиеся на таком расстоянии и освещаемые даже прямым солнечным светом, можно считать практически некогерентными источниками. Тем более это относится к всестороннему освещению. Таким образом, при наблюдении невооруженным глазом в естественных условиях можно не принимать во внимание частичной когерентности волн, попадающих в глаз от различных точек предметов. Напротив, при наблюдении с помощью микроскопа, обладающего разрешением порядка длины волны, учет частичной когерентности освещения объекта, как правило, необходим.

Обсуждаемый критерий пространственной когерентности был выведен для идеализированного простого случая линейного источника света, состоящего из эквидистантно расположенных светящихся точек. Нетрудно увидеть, однако, что в качественной форме этот критерий останется в силе и для любого протяженного источника света, состоящего из произвольно расположенных светящихся
интерференция света

точек. Для того чтобы убедиться в справедливости сказанного, точек. для того пост точки индексом ј и запишем колебание перенумеруем светящиеся точки индексом у и запишем колебание s₁, создаваемое *j*-м источником в точке наблюдения:

$$s_{ij} = a_i \cos \left(\omega t - 2\pi d_{1j}/\lambda + \varphi_j\right),$$

где а, и ф, — амплитуды и фазы, характеризующие j-й точечный источник света, и d₁ – расстояние от него до точки P₁. Колебание s₁, создаваемое в точке P₁ всем протяженным источником, есть сумма всех колебаний s1/:

$$s_1 = \sum_{i} s_{1i}.$$

Амплитуды а, и фазы ф, представляют собой случайные величины. но для каждой конкретной совокупности а, ф, d, суммарное колебание имеет какое-то определенное значение амплитуды и фазы. Если сместиться из точки P1 в точку P2, то фазы суммируемых колебаний изменятся в результате того, что расстояние $d_{2/}$ до точки P2 отличается от d1/ и суммарное колебание будет иметь амплитуду, отличную от амплитуды в точке P1. Амплитуды суммарного колебания в точках P1 и P2 будут различаться заметным образом лишь при достаточно больших расстояниях 21 между P1 и P2, когда разности $d_{2J} - d_{1J}$ длин путей, вычисленные для разных точечных источников, будут различаться по меньшей мере на величину порядка длины волны. В противном случае фазы всех парциальных колебаний изменятся практически на одинаковую величену и амплитуда результирующего колебания останется прежней. С помощью простых выкладок, аналогичных сделанным в § 15, находим, что расстояние 21 между точками Р1, Р2 должно удовлетворять неравенству

$$2l2b/d > \lambda$$
.

Но это условие совпадает с условием практической некогерентности колебаний в точках P₁ и P₂. Обратный знак неравенства

$$2l < \lambda d/2b = 2l_{\text{KOF}} \tag{22.25}$$

будет означать практическую когерентность колебаний в точках P1, P2, т. е. определяет размеры области когерентности. Таким образом, неравенство (22.25) есть универсальный критерий пространственной когерентности, применимый к произвольным протяженным источникам света. Тем самым можно оправдать проведенное выше обсуждение конкретных примеров освещения (солнеч-

Следует иметь в виду, что степень когерентности и размер области когерентности суть усредненные характеристики случайного светового поля. В каждой конкретной реализации случайных фаз и амплитуд на поверхности протяженного источника света мы будем

108

ГЛ. IV. КОГЕРЕНТНОСТЬ

иметь вполне конкретное распределение освещенности по экрану, где проводится наблюдение, но это распределение будет нерегулярно. На рис. 4.23 приведены фотографии (позитивы) освещенности, созданной на фотопленке протяженным источником света.

Рис. 4.23. Фотография случайного распределения освещенности, создаваемой протяженным источником света (матовое стекло), при расстояниях от источника до фотопленки *d*, равных 10 см (*a*), 30 см (*b*), 100 см (*b*).

Случай г соответствует вытянутому источнику, показанному прямоугольником.

в качестве которого служило хорошо матированное стекло, освещенное излучением гелий-неонового лазера, причем для рис. 4.23, a-s освещенная область представляла собой кружок с днаметром около 2b = 0,3 мм. Освещенность фотопленки имеет характерную нерегулярную «зернистую» структуру, причем размер пятен или «зерен» увеличивается пропорционально расстоянию d.

Вследствие нерегулярных неоднородностей матового стекла пространственно когерентная лазерная волна приобретает приращения фазы, случайным образом изменяющиеся от точки к точке источника. Поэтому рассеянный свет хорошо моделирует излучение

протяженного самосветящегося источника, и результаты опыта протяженного сопоставлять с проведенным выше рас-

участки фотографий с повышенным значением освещенности четом. участки фотография, что волны, приходящие в них из разотвечают, отсыдало, от стекла, оказываются, по случайным обстоятельствам, преимущественно синфазными. Наоборот, в участках с пониженной освещенностью происходит взаимное гашение волн, приходящих из разных точек матового стекла. Для того чтобы степень синфазности этих волн существенно изменилась, нужно сместиться в плоскости фотопленки на некоторое расстояние; его среднее значение и будет определять размер области когерентности. Таким образом, «среднее зерно» есть область когерентности, и средний его размер есть размер области когерентности. Изменение размера зерен с изменением расстояния d между матовым стеклом и фотопленкой согласуется с расчетом, ибо размер области когерентности l_{ког} пропорционален d.

фотография, приведенная на рис. 4.23, г, получена при d = = 100 см, но на матовом стекле был освещен участок примерно прямоугольной формы с размерами 0,2 × 1 мм², ориентированный так, как показано на фотографии (излучение лазера фокусировалось цилиндрической линзой). Как мы видим, размеры области когерентности в вертикальном и горизонтальном направлениях сильно различаются и находятся в обратной пропорции с соответствующими размерами источника излучения. Этот факт согласуется с результатами расчета, согласно которым $2l_{\text{ког}} \approx \lambda/\theta =$ $= \lambda d/2b$.

Важное отличие матового стекла от самосветящегося источника света состоит в следующем: фазовые соотношения между световыми колебаниями в разных точках матового стекла нерегулярны, но неизменны во времени. Поэтому зернистая структура освещенности экрана также постоянна во времени. В случае же самосветящегося источника разность фаз колебаний в двух каких-либо точках его поверхности будет быстро изменяться, что приведет, очевидно, к хаотическому движению зерен и исчезновению зернистой структуры при экспонировании в течение достаточно большого интервала времени. Поэтому при использовании самосветящихся объектов в обычных условиях, с инерционными приемниками излучения, мы не наблюдаем зернистой структуры. Можно сказать, что фотографии, полученные с помощью матового стекла, отвечают мгновенному распределению освещенности, возникающей в случае самосветящихся источников.

'n

До сих пор мы рассматривали интерференционные опыты, в которых измеряется интенсивность света в зависимости от разности хода (или времени задержки) между двумя интерферирующими пучками. Результаты этих опытов, как было выяснено, можно описать

степенью когерентности γ_{12} (т), которая характеризует степень согласованности, или корреляции, существующую между колебаниями s_1 и s_2 . Поэтому γ_{12} (т) называют и функцией корреляции.

Возможны опыты несколько иного типа, в которых, однако, также проявляются корреляционные свойства световых пучков Сущность дела можно понять из схемы опыта, изображениой на рис. 4.24 (Браун и Твисс, 1956 г.). Свет от источника S проходил через малое отверстие b (размером меньше размера области когерентности), разделялся на два пучка полупрозрачным зеркалом M и

Рис. 4.24. Схема опыта для измерения корреляции интенсивностей.

Рис. 4.25. График функции G (т).

попадал на приемники света D_1 и D_2 . Фототоки, возникающие в D_1 , D_2 , перемножались радиотехническими методами в корреляторе C, и их произведение усреднялось. Передвигая один из приемников и вводя тем самым задержку между двумя пучками, можно измерить величину

$$G(\tau) = \frac{1}{I^{*}} \frac{1}{t} \int_{0}^{t} I(t') I(t' + \tau) dt' \qquad (22.26)$$

как функцию т. Задержку т можно вводить и радиотехническим способом.

Результаты измерений $G(\tau)$ в такого рода опыте схематически представлены на рис. 4.25. Главные особенности графика функции $G(\tau)$ заключаются в существовании более или менее резко выраженного максимума при малых значениях τ и в примерном постоянстве при больших τ .

Отмеченные черты функции $G(\tau)$ можно легко понять, если принять во внимание непостоянство интенсивности пучков I(t) во времени. В противном случае, очевидно, будем иметь $G(\tau) = 1$. В действительности I(t) случайно модулировано во времени, т. е. представляет собой случайную последовательность максимумов и минимумов. При $\tau = 0$ все максимумы одного сомножителя подынтегральной функции в (22.26) совпадают с максимумами другого, и в результате G(0) имеет повышенное значение. Если время за-

держки т достаточно велико, то корреляция между положениями держки с достаточно исчезает и величина G (т) уменьшается максимумов сомножителей исчезает и величина G (т) уменьшается максимумов сомпольтовани образом, функция G (т) характеризует в сравнении с G (0). Таким образом, функция G (т) в сравнении с о со. значений интенсивности в моменты времени t и t + т в зависимости от времени задержки т. Так как интенсивности квадратично зависят от амплитуд поля, функция G (т) получила название корреляционной функции второго порядка.

Для теоретического вычисления функции G (т) воспользуемся моделью амплитудно модулированных волновых цугов, т. е. будем считать, что в течение интервалов времени с длительностью Т интенснвность I (1) сохраняет постоянное значение, а по истечении времени Т скачком изменяется на случайную величину. Выполняя выкладки по схеме упражнения 21, относящейся к модели амплитудно модулированных цугов, можно получить

$$G(\tau) = \begin{cases} (\bar{I})^2 / \bar{I}^2 + [1 - |\tau| / T] [1 - (\bar{I})^2 / \bar{I}^2], & |\tau| \leq T, \\ (\bar{I})^2 / \bar{I}^2, & |\tau| \geq T. \end{cases}$$
(22.27)

Таким образом, главные качественные особенности функции G (т) максимум при малых | т | и постоянство при больших | т | - правильно передаются выбранной моделью. Как и в случае интерференционных опытов, время корреляции определяется, естественно, длительностью цуга волн Т.

Особый интерес представляет относительная величина максимума, расположенного при $\tau = 0$, т. е. отношение

$$g = \frac{G(0)}{G(\infty)} = \frac{\overline{I^2}}{(\overline{I})^2}.$$

Предположим, что относительное число цугов с интенсивностью І определялось распределением Рэлея

Тогда простые вычисления (см. упражнение 25) приведут к g = 2. Для распределения Рэлея характерны относительно небольшие флуктуации интенсивности. Например, значения интенсивности, превышающие среднее значение более чем в два раза, встречаются всего в 14% случаев. Такое положение, как показывает более глубокий анализ, закономерно для источников, в которых атомы излучают волны независимо друг от друга.

Большие значения величины g означают, что максимальное мгновенное значение интенсивности излучения намного превосходит ее среднюю величину. Например, в некоторых лазерах излучение имеет вид сильных «вспышек», разделенных интервалами времени, существенно превышающими продолжительность самих «вспышек» (см. § 230), и в таком случае g > 1.

112

гл. v. стоячие световые волны

Глава V

стоячие световые волны

§ 23. Образование стоячих волн. Опыты Винера

Как было указано выше, необходимым условием получения устойчивой интерференционной картины является наличие по крайней мере двух накладывающихся друг на друга когерентных волн. Метод получения двух когерентных волн, указанный Френелем, состоит в расщеплении каким-либо приемом падающей волны на две. Простой прием наложения двух когерентных волн, ведущий к весьма интересному и важному случаю интерференции, состоит в отражении волны, падающей нормально на стенку; отраженная волна при этом распространяется через те же участки среды, двигаясь в обратном направлении. Получающаяся при этом интерференционная картина зависит от соотношения фаз обеих волн (падающей и отраженной). Условия интерференции между падающей и отраженной волнами сходны для волн любых типов. Они подробно рассматриваются в курсах механики и акустики. Существенным является то обстоятельство, что в процессе отражения может иметь место изменение фазы волны. Поэтому, если уравнение падающей волны есть

$$s_1 = a\sin\left(\omega t - kx\right),\tag{23.1}$$

то для волны, отраженной в точке x = 0, имеем

$$s_2 = a\sin\left(\omega t + kx + \delta\right),\tag{23.2}$$

где, как обычно, $\omega = 2\pi/T$ и $k = 2\pi/\lambda$. Перемена знака при x соответствует изменению направления распространения, а δ означает изменение фазы при отражении. Результирующая волна записывается в виде

$$s = s_1 + s_2 = 2a\cos(kx + \frac{1}{2}\delta)\sin(\omega t + \frac{1}{2}\delta).$$
(23.3)

Формула (23.3) показывает, что амплитуда колебаний равна $2a \cos (kx + 1/2\delta)$, т. е. различна для различных точек среды, меняясь от точки к точке по простому гармоническому закону. Множитель же, выражающий периодическое изменение во времени, sin ($\omega t + 1/2\delta$), не зависит от координаты.

То обстоятельство, что амплитуда выражается гармонической функцией

$$2a\cos(kx + \frac{1}{2}\delta) = 2a\cos(2\pi x/\lambda + \frac{1}{2}\delta),$$

показывает, что знак амплитуды остается неизменным в пределах полуволны и меняется на противоположный при изменении x на $1/2 \lambda$, т. е. при переходе от одной полуволны к другой. Другими словами, когда в пределах одной полуволны все s положительны,

то в пределах соседней они отрицательны. Если считать амплитуду то в пределах соседнен они отраненой, как это обычно делается, существенно положительной величию было бы выросния существенно положительство можно было бы выразить утверждето указанное обстояния остается постоянной в пределах полунием, что цаза консолни переходе от одной полуволны к другой. волны и менистики можно рассматривать как определение стоячей волны.

Из формулы (23.3) следует, что в стоячей волне имеется ряд точек, которым соответствует амплитуда, равная нулю. Эти точки определяются из условия $kx + 1/2\delta = 1/2n\pi$, где n = 1, 3, 5, ... нечетные числа. Точки эти расположены, очевидно, на расстоянии полуволны одна от другой и называются узловыми точками или излами стоячей волны. Посредине между ними расположены места. соответствующие максимальным значениям амплитуды, а именно, значениям 2а. Эти точки называются пучностями. Они определяются из условия $kx + \frac{1}{2}\delta = \frac{1}{2}n\pi$, где n = 0, 2, 4, ... четные числа. Что же касается величины δ, определяющей изменение фазы при отражении, то необходимо иметь в виду следующее обстоятельство. Бегущая волна (электромагнитная, упругая и т.д.) представляет собой совокупность двух волн, соответствующих двум частям, из которых складывается энергия распространяющейся волны (энергия электрическая и магнитная, потенциальная и кинетическая). В бегущей электромагнитной волне направления обонх векторов (Е и Н) для каждого момента связаны определенным образом с направлением распространения (v), образуя правовинтовую систему (см. рис. 5.1). Необходимым условием отражения, т. е. изменения направления распространения на противоположное, является изменение направления одного из векторов Е или Н на противоположное. Действительно, ведь в бегущей волне, образовавшейся в результате отражения, векторы Е, Н и v вновь должны образовывать правовинтовую систему, а так как при отражении изменилось направление v, то один из векторов E или H также должен скачком переменить свое направление, т. е. получить добавочное изменение фазы на л, или, как говорят, испытать потерю полуволны. В зависимости от условий на границе, где происходит отражение, эта потеря будет иметь место для того или другого вектора. Мы подробнее рассмотрим этот вопрос для электромагнитных (световых) волн в гл. XXIII, пока же ограничимся лишь указанием, что для электромагнитных волн δ = 0 для магнитного вектора и δ = π для электрического вектора, если диэлектрическая проницаемость второй среды є больше, чем диэлектрическая проницаемость первой ε_1 , т.е. если $\varepsilon_2 > \varepsilon_1$. Наоборот, при $\varepsilon_2 < < \varepsilon_2$ < є, отражение сопровождается потерей полуволны для магнитного вектора, а электрический сохраняет свою фазу неизменной (рис. 5.1). Это различие в б ведет к тому, что узлы одного из векторов совпадают с пучностями другого, что показано на рис. 5.2.

Из рассмотрения члена sin ($\omega t + 1/2\delta$) нетрудно видеть, что *моменты* прохождения через максимум вектора E и вектора H также отличаются друг от друга на четверть периода.

Эти особенности стоячей волны приводят к тому, что в ней мы не имеем непрерывного движения энергии в направлении распространения волны, как в волнах бегущих; энергия стоячей волны

Рис. 5.1. Расположение векторов *E*, *H* и *v* в падающей (а) и в отраженной (б) волнах.

локализована и переходит от области пучности *E* (где она имеет форму электрической) к области пучности *H* (т. е. обращается в магнитную) и обратно. Таким образом, вместо течения энергии мы имеем дело с колебаниями ее, сопровождающими переход энергии из одной формы в другую. Это обстоятельство и повело к появлению термина «стоячая волна».

Рис. 5.2. Стоячая электромагнитная волна.

Стоячие волны можно, конечно, наблюдать не только при отражении волн, но и всякий раз, когда навстречу друг другу идут две когерентные волны одинаковой амплитуды. Простейший практический прием реализации этого условия есть отражение волны.

Из изложенного выше следует, что в зависимости от условий опыта можно заранее предвидеть, где расположатся узлы электрического и магнитного векторов. Этим обстоятельством можно воспользоваться, чтобы на опыте решить вопрос о том, какой из двух векторов, составляющих световую волну, электрический или магнитный, производит непосредственное действие на большинство приборов, предназначенных для обнаружения света (глаз, фотографическая пластинка, флуоресцирующий экран, фотоэлемент и т. д.).

^н 1. А.У. Соответствующий опыт для исследования действия света на фотографическую эмульсию был выполнен Винером (1890 г.). Идею Винера легко понять, вообразив следующий опыт. Представим себе слой фотографической эмульсии, налитой на зеркальную металлическую поверхность. Падающий нормально на зеркало сквозь эмульсию монохроматический (приблизительно) свет отражается от металлического зеркала и дает систему стоячих волн, причем ближайший к зеркалу (первый) узел электрического вектора расположится на поверхности зеркала, ибо в случае отражения от металла меняет фазу именно электрический вектор; первый узел магнитного вектора расположится на расстоянии в четверть световой волны от нее. В толще фотографической эмульсии поле световой волны будет представлено системой узлов. и пучностей напряженностей электрического и магнитного полей с соответствующими переходами от узлов к пучностям.

Фотографическое действие связано с воздействием электромагнитных сил на бромистое серебро, представляющее собой светочувствительную компоненту фотографической эмульсии. В соответствии со слоистым распределением в пространстве амплитуд напряженностей электрического и магнитного полей и разложение бромнстого серебра должно произойти слоями: максимум разложения (почернения пластинки) должен приходиться на слои, соответствующие максимальным значениям этих амплитуд. Если фотографическое действие вызывается электрическим вектором, то, очевидно, на поверхности зеркала разложения бромистого серебра не должно быть и первый черный слой должен образоваться на расстоянии четверти волны от поверхности зеркала и далее через каждые полволны. Если же определяющую роль играет магнитный вектор, то первый слой выделившегося серебра должен лежать в области первой его пучности, т. е. на поверхности зеркала.

Опыт должен состоять в установлении распределения слоев выделившегося серебра в толще эмульсии. Трудность этого наблюдения, связанную с малыми расстояниями между пучностями и узлами, Винер обошел, применив прием «малого наклона», впервые указанный Ньютоном (см. § 26). Система стоячих волн получалась Винером в воздухе при отражении монохроматического света от металлического зеркала. На рис. 5.3, представляющем схему подобного опыта, показано положение очень тонкого (около $1/20\lambda$) июстью зеркала ММ. Стеклянная пластинка, на которую нанесен

гл. v. стоячие световые волны

светочувствительный слой, не показана на чертеже. Светочувствительный слой пересекается с плоскостями пучностей той или иной силы по параллельным прямым, след от которых изображен на нашем рисунке в виде черных пятен. Расстояние *АВ* между этими прямыми по поверхности пластинки равно, очевидно.

$AB = AC/\sin \varphi = \frac{1}{2}\lambda/\sin \varphi$.

Если φ достаточно мало, то расстояние между местами почернения становится достаточно большим. В опытах Винера φ делалось около *1*, так что $AB \approx 1-2$ мм. При этих условиях можно заметить, что первая темная полоса не сов-

падает с зеркалом, а отстоит от него на четверть волны *).

Опыт Винера, позволивший впервые получить стоячие световые волны, показал также. что фотографическое действие световой волны связано с ее электрическим вектором. Позднее Друде и Нернст (1892 г.) повторили опыт Винера, заменив фотографический слой тонкой пленкой флуоресцирующего вещества, также обнаружили, что максимум И действия лежит в областях пучностей электрического вектора. Аналогичный опыт с фотоэлектрическим слоем был осуществлен Айвсом (1933 г.); и в этом следовало ожидать, случае. как н эффект вызывался электрическим вектором.

Результаты всех описанных и аналогичных опытов легко понять, исходя из электронных представлений. Большинство процессов, наблюдаемых в веществе под действием света, связано с его

воздействием на электроны: при фотоэффекте происходит вырывание электронов из освещаемого металла; при флуоресценции или фотохимических процессах (фотография, зрительное восприятие) возбуждение атомов и молекул или их ионизация, т. е. также Боздействие на электроны, входящие в состав этих атомов и молекул. Так как электроны представляют собой электрические заряды, то сила, действующая на них, определяется в первую очередь электрическим полем, т. е. электрическим вектором электромагнитной

*) Точные определения положения темных полос выполнялись методом колец Ньютона (см. § 26).

волны. Магнитный вектор играет лишь второстепенную роль, и действие его непосредственно почти не сказывается.

В соответствии с изложенным электрический вектор электромагнитной волны нередко называют световым вектором. Когда гомагнитном волна потеряла при отражении полволны, то новот в виду именно потерю полуволны световым (электрическим) вектором. Такая потеря имеет, например, место при отражении света, падающего нормально на границу воздух - стекло. Наоборот, на границе стекло — воздух световой (электрический) вектор не испытывает потери полуволны, и стоячие волны образуются вследствие потери полуволны магнитным вектором.

§ 24. Цветная фотография по методу Липпмана

Пользуясь явлением образования стоячих волн внутри фотографической эмульсии, Липпман (1891 г.) предложил следующий метод цветной фотографии. Пластинка с толстым слоем эмульсии располагается так, что эмульсия касается поверхности ртутного

Рис. 5.4. Схема, поясняющая метод цветной фотографии Липпмана.

зеркала. Изображение спектра проектируется нормально на пластинку, и отразившийся свет, интерферирующий с падающим, образует стоячие волны, причем в пучностях электрического вектора происходит максимальное разложение бромистого серебра (рис. 5.4 — схема опыта, рис. 5.5 — фотография разреза мокрой, сильно набухшей эмульсии). Вся толща эмульсии после обработки оказывается разбитой на ряд слоев тончайшими прослойками из металлического серебра, расстояние между которыми равно полуеолне излучения того цвета, который дейстеовал на данное место пластинки.

Будем теперь рассматривать обработанную таким образом пластинку, направив на нее белый свет под тем же углом, под которым велось освещение. От первой тонкой прослойки серебра отразится небольшое количество света; большая же часть его проникнет дальше, отразится частично от второй, третьей и т. д. прослоек. Разность хода между всеми отраженными от разных прослоек пучками будет равна двойному расстоянию между прослойками; она равна λ_1 для той области, где прослойки разделены расстояниями

1/2λ1, т. е. где при обработке действовал свет длины волны λ₁. Интерферируя между собой, пучки, отраженные от этой области, дадут максимум для света с длиной волны λ₁. Наоборот, для всякой другой длины волны (λ) найдется такое число слоев т, которое даст разность хода, равную нечетному кратному полуволны 1/22. Соответствующее m определится из условия $m\lambda_1 = (2p +$ + 1)¹/₂λ. Таким образом, луч с длиной волны λ, отраженный от первого слоя, будет ослаблен лучом, отраженным от (т + 1)-го слоя; луч, отраженный от второго слоя, нейтрализуется лучом, отраженным от (m + 2)-го слоя, и т. д.

Рис. 5.5. Разрез эмульсин, обработанной по методу Липпмана.

Следовательно, в отраженном свете этот цвет с длиной волны λ будет более или менее исключен. Итак, препарированная по указанному методу пластинка приобретает способность избирательного отражения световых лучей и в отраженном свете будет давать то распределение цветов, которое было применено при ее приготовлении; пластинка дает возможность видеть в отраженном свете изображение в натуральных цветах. Механизм действия пластинки становится особенно ясным, если рассмотреть процесс отражения по методу, изложенному в § 51.

Современное техническое развитие цветной фотографии пошло по иному пути. В нем используется принцип светофильтров, для чего в эмульсию фотопластинки вводятся соответствующие красящие пигменты.

Описанные выше явления получили интересные применения для голографической регистрации изображения (см. § 65).

интерференция света

Глава VI

локализация полос интерференции

§ 25. Цвета тонких пластинок

Как было выяснено в § 17, при точечных источниках света будут наблюдаться резкие интерференционные картины. В таком случае при любом положении экрана, пересекающего систему поверхностей максимумов и минимумов, мы получим отчетливую картину интерференционных полос, которые, следовательно, не имеют определенной области локализации и могут считаться нелокализо-

Рис. 6.1. К вопросу об интерференции в тонкой пленке при протяженном источнике сиета.

ванными. Однако необходимое для этого условне точечности источника осуществляется лишь приближенно, а во многих случаях и совсем не выполняется. Особенно часто нам приходится иметь дело с протяженным источником при явлениях интерференции, наблюдаемых в естественных условиях, света источником когда служит участок неба, т. е. рассеянный дневной свет. Наиболее часто встречающийся и весьма важный случай подобного рода

имеет место при освещении тонких прозрачных пленок, когда необходимое для возникновения двух когерентных пучков расщепление световой волны происходит вследствие отражения света передней и задней поверхностями пленки (рис. 6.1).

Явление это, известное под названием цветов тонких пластинок, легко наблюдается на мыльных пленках (мыльных пузырях), на тончайших пленках масла (нефти), плавающих на поверхности воды (например, около судов), на пленках прозрачных окислов, нередко присутствующих на поверхности старых стекол или на металлах (при закалке полированных стальных изделий — так называемые цвета побежалости), и т. д.

Опыт показывает, что в этих случаях видимость интерференционной картины максимальна в определенной и часто весьма ограниченной области пространства вблизи пленок и быстро убывает с увеличением расстояния от их поверхности. В перечисленных выше случаях оказывается, что высокая видимость интерференцион-

гл. vi. локализация полос интерференции

ной картины, наблюдаемой в отраженном от пленок свете, имеет место лишь в тонком слое, практически совпадающем с поверхностью пленок, хотя отраженные от них световые пучки перекрываются в значительном объеме пространства. Такие интерференционные картины принято называть локализованными.

Рис. 6.2. Интерференционная картина, полученная в свете, отраженном от двух поверхностей неоднородной по толщине пластины стекла.

В зависимости от толщины и геометрической формы пленок, а также от условий их освещения область локализации интерференционной картины оказывается более или менее ограниченной и более или менее близкой к поверхности пленок.

Рис. 6.3. Интерференционные полосы, получающиеся при отражении света от поверхностей клина.

На рис. 6.1 была показана принципиальная схема опыта для наблюдения описываемых явлений. Буквой *P* обозначена фотопластинка или экран, на который проектируется изображение пленки и где наблюдается интерференционная картина. На фотографиях (рис. 6.2 и 6.3) приведены примеры таких картин. На первой фотографии снята интерференционная картина, полученная в свете, отраженном от двух поверхностей неоднородной по толщине плаотраженном от двух повериной широким источником света. Вторая стины стекла, освещенной широким источником света. Вторая стины стекла, освещениет, отраженном от двух стеклянных пло-фотография сделана в свете, отраженном от двух стеклянных плофотография сделана, ограничивающих тонкий воздушный клин. клин этот реализован путем наложения друг на друга двух толстых хорошо отполированных плоскопараллельных стеклянных пластинок. С одной стороны между краями этих пластинок проложена полоска тонкой бумаги. В обоих случаях освещение пленки и

Рис. 6.4. К расчету разности хода при интерференции световых пучков на тонком прозрачном клине.

клина ведется световыми пучками от протяженных источников света. Эти световые пучки падают на поверхности освещаемых объектов почти нормально.

При визуальном наблюдении таких интерференционных картин роль линзы исполняет хрусталик глаза, а роль экрана --его сетчатка.

Для того чтобы выяснить условия формирования интерференционной картины вблизи поверхности тонких пленок и причину ее ярко выраженной пространственной локализации, рассмотрим схему подобного опыта в предельно простом варианте.

Пусть на поверхность тонкого прозрачного клина, изготовлен-

ного из вещества с показателем преломления n, падают почти нормально световые пучки от протяженного источника света. На рис. 6.4 для наглядности угол падения одного из таких световых пучков увеличен в десятки раз, по сравнению с его действительным значением.

Как было выяснено раньше, когерентными являются световые волны, излучаемые одной точкой источника света. Волны, излучаемые соседними его точками, уже не будут когерентными. Поэтому начнем с расчета интерференции световых пучков, излучаемых одной точкой протяженного источника света. Вычислим в соответствии с установленной на опыте локализацией интерференционной картины разность хода ∆ когерентных световых пучков 1' и 2' в точке А на поверхности клина (см. рис. 6.4). Линза, проектирующая интерференционную картину на экран, этой разности хода уже не изменит, и для световых пучков, сводимых воедино линзой в точке экрана А', она будет та же, что и в точке А. В ходе расчета, помимо непосредственной геометрической разности хода интерферирующих воли, надо учесть скачок фазы на л, испытываемый волной,

гл. VI. ЛОКАЛИЗАЦИЯ ПОЛОС ИНТЕРФЕРЕНЦИИ

характеризуемой лучом 2', при отражении от поверхности клина с показателем преломления, большим показателя преломления окружающего клин воздуха. Имеем

$$\Delta = (BD + DA) n - (AC - \frac{1}{2}\lambda); \quad n (BD + DA) = \frac{2hn}{\cos r};$$

$$AC = 2h \operatorname{tg} r \sin i; \quad \sin i / \sin r = n.$$

гле h = ED — толщина клина; отсюда

$$\Delta = 2hn\cos r + \frac{1}{2}\lambda. \tag{25.1}$$

Полученное значение разности хода Δ является функцией hи r. Относительно угла i, а следовательно и r, уже было сказано при описании постановки опыта, что они малы и изменяются в малых пределах. Здесь следует добавить, что если это не так, то, уменьшая апертуру линзы, проектирующей интерференционную картину на экран, можно уменьшить диапазон вариаций угла r. Если же интерференционная картина наблюдается непосредственно глазом, то такое уменьшение апертуры наблюдения осуществляется, естественно, за счет малых размеров отверстия — зрачка глаза.

Поэтому можно считать, что разность хода Δ оказывается, фактически, функцией только h, т. е. толщины клина в точке A.

Полученный результат заслуживает обсуждения.

Из соотношения (25.1) следует, что при малых вариациях значений углов *i* (и соответственно *r*) разность хода Δ световых пучков, излучаемых и другими точками протяженного источника света, будет в точке А приблизительно такой же, как и для рассмотренных пучков 1' и 2'. Следовательно, в точке А на поверхности клина (или вблизи нее) интерференционные картины, создаваемые различными парами световых пучков, приходящими от разных точек светящейся поверхности протяженного источника света, будут приблизительно совпадать между собой. Отсюда вытекает высокая видимость интерференционной картины на поверхности клина (или вблизи нее). В других областях пространства над клином будет иметь место беспорядочное наложение различных интерференционных картин и, следовательно, однородная освещенность этих областей пространства. Другими словами, получает объяснение локализация интерференционной картины вблизи поверхности клина.

Если освещать клин точечным источником света, т. е. использовать исключительно когерентное излучение, то легко понять, что схема рассматриваемого опыта будет аналогична схемам интерференционных опытов Френеля и интерференционная картина будет *нелокализованной*. Таким образом, локализация интерференционной картины в рассматриваемых случаях есть следствие использования протяженных источников света. Можно получить локализованную интерференционную картину от пленок, используя и точечный источник света, но тогда он должен быть либо отнесен очень далеко от пленки, либо его излучение должно быть коллимировано объективом.

ровано совективом. Строгая постановка вопроса о локализации интерференционной картины в этих случаях и ее общее математическое решение принадлежат Майкельсону. Майкельсон показал, что по мере уменьшения клинообразности пленки область локализации интерференционной картины удаляется от пленки.

Из формулы (25.1) для ∆ вытекает также разъяснение геометрической конфигурации наблюдаемых интерференционных полос. Именно, из нее следует, что значения ∆ одинаковы для всех участков пленки (в нашем случае — клина), где ее толщина *h* одинакова, если пленка освещена пучком параллельных лучей.

Поскольку разность хода интерферирующих волн определяет амплитуду результирующего колебания и, следовательно, интенсивность в точке пространства, где происходит суперпозиция этих воли, освещенность всех точек интерференционной картины, соответствующих одинаковым толщинам *h* пленки (клина), будет одинаковой.

Поэтому интерференционные полосы на поверхности пленки (клина) имеют равную освещенность на всех точках поверхности, соответствующих одинаковым толщинам пленки. В случае клина конфигурация интерференционных полос особенно проста. Очевидно, интерференционные полосы параллельны ребру клина, и картина будет периодической (см. рис. 6.3). В общем случае конфигурация интерференционных полос на поверхности пленки будет соответствовать геометрическим местам пленки, в которых она имеет одинаковую толщину.

В случае, изображенном на рис. 6.2, эта конфигурация оказалась весьма прихотливой.

Отсюда происходит название, приписываемое интерференционным полосам подобных картин. Их называют интерференционными полосами равной толщины или, короче, полосами равной толщины. Нетрудно наблюдать подобную картину, если осуществить тонкую пластинку в виде мыльной пленки, натянутой на вертикально расположенный каркас: под действием силы тяжести пленка принимает вид клина, и полосы равной толщины вырисовываются на поверхности пленки в виде горизонтальных прямых, слегка искаженных местными дефектами пленки.

Изложенное относительно способа наблюдения интерференции в тонкой пластинке при помощи линзы верно и при наблюдении при помощи другой оптической системы, например трубы, или просто невооруженным глазом. Следует только иметь в виду, что при наблюдении глазом мы используем обычно гораздо более узкие пучки, чем при проектировании линзой (диаметр человеческого зрачка около 3—5 мм). Это означает, что работает небольшой участок источника, поэтому локализация полос на поверхности пластинки не так отчетливо выражена: мы паблюдаем интерференционную картину и при не очень строгой аккомодации глаза на пленку.

В хороших лабораторных условиях при освещении тонких пленок белым светом удается еще наблюдать интерференционные полосы 4—5-го порядка за счет избирательной спектральной чувствительности человеческого глаза. Следовательно, толщина пленок из веществ с показателем преломления около 1,3 должна составлять приблизительно 1,5—2 длины световой волны.

§ 26. Кольца Ньютона

Особый исторический интерес представляет случай интерференции в тонком воздушном слое, известный под именем колец Ньютона. Эта картина наблюдается, когда выпуклая поверхность линзы малой кривизны соприкасается в некоторой точке с плоской поверхностью хорошо отполированной пластинки, так что остающаяся между ними воздушная прослойка постепенно утолщается от точки соприкосновения к краям. Если на систему (приблизительно нормально к поверхности пластинки) падает пучок монохроматического света, то световые волны, отраженные от верхней и нижней границ воздушной прослойки, будут интерферировать между собой. При этом получается следующая картина: в точке соприкосновения наблюдается черное пятно, окруженное рядом концентрических светлых и черных колец убывающей ширины *).

Нетрудно рассчитать размеры и положение колец Ньютона, предполагая, что свет падает нормально к поверхности пластинки, так что разность хода, обусловленная толщиной прослойки δ , равна $2\delta n$, где n — показатель преломления вещества прослойки. В случае воздуха n можно считать равным единице. Толщина δ_m , соответствующая m-му кольцу, связана с раднусом этого кольца r_m

 *) Объяснение образования колец во времена Ньютона представляло большие трудности. Гук видел причину образования колец в наличии двух отраженных пучков разной интенсивности. Ньютон подробно исследовал образование колец и установил зависимость размеров колец от кривизны линзы. Ньютону было ясно, что в указанном эффекте проявляются свойства периодичности света. В связи с этим он ввел понятие «о приступах легкого отражения и легкого прохождения», испытываемых световыми частицами. В этом понятии заключается попытка компромисса между волновыми и корпускулярными представлениями, характерная для воззрений Ньютона. Лишь много позднее (1802 г.) Юнг, введя понятие интерференции, дал объяснение кольцам Ньютона. Юнг объяснил также наличие черного центрального пятна с помощью представления «о потере полуволны» вследствие различия условий отражения (исходя, конечно, из представления об упругих волнах) (1804 г.). Юнг подкрепил свое объяснение опытом, заполнив пространство между пластинкой из флинта (n3) и линзой из крона (n1) маслом с показателем преломления n2, так что n3 > n2 > n1, и получив вместо темного пятна светлое.

интерференция света

и раднусом кривизны линзы R соотношением

 $\delta_m = r_m^*/2R$

(см. упражнение 53).

Принимая во внимание различия в условиях отражения от верхней и нижней поверхностей прослойки (потеря полуволны). найдем условие образования т-го темного кольца

$$\Delta_m = 2\delta_m + \frac{1}{2}\lambda = (2m+1)\frac{1}{2}\lambda, \qquad (26.1)$$

илн

$$\delta_m = \frac{1}{2}m\lambda, \qquad (26.2)$$

откуда

$$r_m = \sqrt{m\lambda R}, \qquad (26.3)$$

где m — целое число. В частности, m = 0 и $r_m = 0$ соответствуют темноте (объяснение центрального темного пятна). Чем больше т, тем меньше различне между радиусами соседних колец, (гт+1 н r_m), т. е. тем ближе друг к другу кольца. Измерив r_m и зная m и R, можно из описанного опыта найти длину волны λ. Определения эти довольно точны и легко выполнимы.

Интерференционная картина будет отчетливой при малом б (тонкая прослойка). Это не препятствует, однако, получению колец заметного радиуса, нбо $r_m = \sqrt{2R\delta}$, а R — радиус кривизны линзы — может быть взят значительным (обычно 100-200 см).

Нетрудно видеть, что условие, облегчающее наблюдение колец Ньютона, состоит в очень малом наклоне поверхности линзы к поверхности пластинки. Подобный прием был много лет спустя применен в опытах Винера. Как уже упоминалось в § 23, в одном из опытов, особенно отчетливо определяющих положение пучностей и узлов по отношению к поверхности пластинки, Винер, пользуясь расположением, данным Ньютоном, получил стоячие волны в пространстве между линзой и пластинкой и наблюдал следы пучностей в виде концентрических колец, подобных кольцам Ньютона.

Если падающий свет — немонохроматический, то разным λ соответствуют разные г, т. е. вместо черных и светлых колец мы получим систему цветных колец. Полагая в формуле (26.3) m = 1, найдем область, занимаемую кольцами первого порядка, m=2 кольцами второго порядка и т. д. Нетрудно видеть, что фиолетовый (λ = 400 нм) максимум второго порядка совпадает с темнокрасным ($\lambda = 800$ нм) максимумом первого порядка; на красный максимум второго порядка накладывается фиолетовый максимум четвертого порядка и зеленый (λ = 530 нм) максимум третьего порядка и т. д. Так как, кроме того, каждое кольцо имеет заметную ширину и в нем осуществляется плавный переход от максимума к минимуму, то даже в пределах первого порядка происходит значительное наложение одних цветов на другие; в еще большей сте-

126

гл. VI. ЛОКАЛИЗАЦИЯ ПОЛОС ИНТЕРФЕРЕНЦИИ

пени это имеет место у высших порядков. В результате такого наложения возникает своеобразное чередование оттенков, совершенно не напоминающее последовательности «радужных цветов».

Понятно, что в проходящем свете наблюдаются оттенки, дополнительные к оттенкам отраженной картины. Однако в проходящем свете видимость интерференционной картины значительно ниже вследствие неравенства амплитуд интерферирующих волн.

Приводим сокращенную таблицу цветов колец Ньютона, наблюдаемых при нормальном падении.

В отраженном свете	В проходящем свете
І-й г	порядок
Черный Серо-синий Зелено-белый Соломенно-желтый Ярко-желтый Коричнево-желтый Красновато-оранжевый Темно-красный Чирпуровый Небесно-голубой Светло-зеленый Чисто-желтый Темно-фиолетово-красный	Белый Коричневый Темно-фиолетовый Голубой Серовато-голубой Голубовато-зеленый Желтовато-зеленый Светло-зеленый Оранжевый Пурпуровый Цвета индиго Зеленый
3-й	порядок
Светло-синевато-фиолетовый Зеленовато-голубой Блестяще-зеленый Карминово-красный Фиолетово-серый	Желтовато-зеленый Мясного цвета Фиолетовый Чисто-зеленый Желтовато-зеленый
	н т. д.

Последовательность цветов в кольцах Ньютона

При достаточно больших значениях *m* наложение цветных картин настолько сложно, что для глаза вся картина становится однообразно белой в соответствии с изложенным в § 21. Рассматривая кольца Ньютона через хороший светофильтр, можно наблюдать картину и для сравнительно больших порядков интерференции, т. е. различать кольца при большом значении *m*.

127

интерференция света

§ 27. Интерференция в плоскопараллельных пластинках. Полосы равного наклона

Из соотношения $\Delta = 2hn \cos r$ следует, что для плоскопараллельной однородной пластинки (h и n всюду одни и те же) разность хода может меняться только при изменении угла наклона лучей. Если эту пластинку осветить монохроматическим пучком лучей, падающих пластинку осветить монохроматическим пучком лучей, падающих на нее под разными углами (например, сходящимся пучком), то каждому значению r будет соответствовать своя разность хода. Очевидно, что все лучи, соответствующие одному и тому же зна-

Рис. 6.5. К вопросу о локализации полос интерференции.

На экран, расположенный в главной фокальной плоскости ликзы L, проектируются полосы равного наклона. чению *r*, т. е. имеющие одинаковый наклон, будут давать одну и ту же разность фаз. Таким образом, интерференционные максимумы или минимумы будут располагаться по направлениям, соответствующим одинаковому наклону лучей.

Рис. 6.5 показывает, что лучи 1 и 2, отразившиеся от верхней и нижней граней пластинки, будут параллельны друг другу, ибо пластинка плоскопараллельна. В соответствии с этим явления интерференции будут наблюдаться только на достаточно

большом расстоянии от пластинки (теоретически для идеальной пластинки — в бесконечности). Для их наблюдения необходимо аккомсдировать глаз на бесконечность или же собрать интерферирующие лучи при помощи линзы.

Параллельные пучки 1 и 2 соединятся в фокусе О линзы L; в то же место придут и всякие другие лучи, параллельные SA. Поэтому интерференционные полосы будут локализованы в бесконечности. Лучи S'A', наклоненные под иным углом, соберутся в другой точке в фокальной плоскости линзы.

Конфигурация интерференционных полос в фокальной плоскости линзы определяется в этом случае набором углов в световых пластинку падает световой конус с осью, нормальной к пластинку. Если на равномерно заполненный светом (таким будет световой пучок от интерференционные полосы будут иметь форму колец. Каждое ления r и, следовательно, определенному значению угла преломлучей на стеклянную пластину. Кольцеобразная форма интерференционных полос в фокальной плоскости сбъектива будет определяться тем, что каждому значению угла раствора *i* светового конуса будет соответствовать набор разных *азимутов* (от 0 до 2л) световых лучей, формирующих боковую поверхность этого светового конуса. Описанные интерференционные полосы получили название *интерференционных полос равного наклона*.

Удобный способ наблюдать кольца равного паклона в отраженном свете изображен на рис. 6.6, где ММ — стеклянная пластинка,

Рис. 6.6. Способ наблюдения колец равного наклона.

пропускающая значительную часть лучей источника S на плоскопараллельную пластинку PP и отражающая часть лучей, идущих обратно от PP в направлении к линзе LL, сводящей отраженные пучки на экран EE, расположенный в фокальной плоскости линзы. Каждая полоса равного наклона есть результат интерференции лучей, идущих от источника практически параллельными пучками. Таким образом, апертура интерференции в этом случае близка к нулю, а следовательно, размер источника может быть весьма большим (см. § 17). Этот вывод также легко уяснить из рис. 6.6.

Лучи, выходящие из разных точек источника S_1 , S_2 , S_3 , ..., не когерентны между собой, и пучок лучей, исходящий из каждой из этих точек, испытав многократные отражения от границ пластинки *PP*, будет давать на экране свои собственные интерференционные кольца. Однако положение этих колец зависит не от положения светящейся точки на источнике, а только от наклона лучей; накладываясь друг на друга, интерференционные картины усиливаются. Так, например, центром всех колец будет точка *O*, в которой сходятся лучи, упавшие нормально на пластинку *PP*. Лучи эти, из какой бы точки источника они ин исходили, дают после

5 Ландсберг Г. С.

отражения от пластинки пучок параллельных лучей 1, 2, ... и затем собираются линзой в точке О экрана. В фокальной плоскости линзы LL образуется система интерференционных колец с центром О. Увеличение размеров источника позволяет увеличить общую

Увеличение размеров источника позвениет увеличнив общую интенсивность интерференционной картины, сохраняя прежнюю отчетливость и резкость максимумов и минимумов. Конечно, если пластинка *PP* имеет значительную толщину, то систему колец

Рис. 6.7. Схема установки для интерференционного метода контроля плоскопараллельности пластины.

S — ртутная лампа; F — светофильтр; М М стеклянная пластинка; РР — испытуемая пластинка; G — глаз наблюдателя. можно наблюдать только при монохроматизадостаточной источника, нии света ЧТО разъяснено в § 21.-При увеличении толщины пластинки расстояние между соседними максимумами, т.е. ширина интерференционных полос. становится меньше. To же будет наблюдаться при переходе к пластинке той же голщины, но с меньшим показателем преломления, например при замене стеклянной пластинки воздушным слоем той же толщины (см. упражнения 26 и 27).

Все эти выводы особенно легко получить, рассматривая точечный источник и определяя расстояние S_1S_2 между изображениями источ-

ника в верхней и нижней поверхностях пластинки. Если пластинка не строго плоскопараллельна, и имеет в разных местах не вполне одинаковую толщину, то при отражении от разных мест пластинки мы получим несколько различные расстояния S_1S_2 . Следовательно, интерференционные полосы, образовавшиеся благодаря отражению от разных мест пластинки, будут иметь несколько различную ширину и, следовательно, вся картина станет менее контрастной, чем при строго плоскопараллельной пластинке.

Если полосы равного наклона рассматривать глазом, аккомодированным на бесконечность, то благодаря малому размеру зрачка (3-5 мм) в центре поля зрения будет видна система колец, обусловленная действием небольшого участка пластинки AOB (рис. 6.7). При перемещении пластинки будет работать другой ее участок. Если пластинка строго плоскопараллельна, то толщина различных исремещении пластинки. В противном случае они меняются, увеличиваясь при переходе к более тонким участкам. Этот прием является одним из наилучших методов контроля плоскопараллельности пластинок. Источником света служит ртутная лампа; выделяя с помощью светофильтра одну из линий спектра этой лампы, обычно зеленую, получаем монохроматический источник ($\Delta\lambda \approx 0,01$ нм), позволяющий исследовать пластинки значительной толщины.

Глава VII

ИНТЕРФЕРЕНЦИОННЫЕ ПРИБОРЫ И ПРИМЕНЕНИЯ ИНТЕРФЕРЕНЦИИ

§ 28. Интерферометр Жамена

Рассмотрим теперь прибор, существенная часть которого состоит из двух идентичных плоскопараллельных пластинок толщины *h* с показателем преломления *n* (рис. 7.1).

При падении пучка света на первую пластинку часть лучей отразится от передней грани пластинки, а часть, преломившись, отразится от задней грани; таким образом, из первой пластинки

выйдут два пучка, идущих на некотором расстоянии друг от друга; каждый пучок, попадая на вторую пластинку, опять раздвоится, и из второй пластинки выйдут уже четыре пучка, но так, что второй и третий наложатся друг на друга. Разность хода в них равна (см. § 25)

 $\Delta = 2hn \cos r_1 - 2hn \cos r_2 = r$ $= 2hn (\cos r_1 - \cos r_2). \quad (28.1)$

Если пластинки установлены параллельно друг другу, т. е. $r_1 = r_2$, то

$$\Delta = 0. \tag{28.2}$$

Рис. 7.1. Схема интерферометра Жамена.

Если же пластинки составляют некоторый угол, то $\Delta \neq 0$.

Так как r_1 мало отличается от r_2 , то, обозначая $r_1 \approx r_3$ через r н $(r_2 - r_1)$ через δr , получим

$$\Delta = 2hn\sin r\,\delta r. \tag{28.3}$$

Вводя вместо угла преломления r и разности $\delta r = r_2 - r_1$ соответствующие величины, выраженные через угол падения i и раз-

5*

ность $\delta i = i_2 - i_1 = \varepsilon$, где ε — угол между пластинками, найдем на основании закона преломления ($n \sin r = \sin i$) $\delta r = \frac{\cos i}{n \cos r} \delta i$. При обычных условиях, когда $i \approx 45^{\circ}$ и n = 1,5, $\delta r \approx 1/2 \delta i = 1/2 \epsilon$.

Таким образом, для световых пучков, падающих в плоскости. перпендикулярной к обеим пластинам,

$$\Delta = 2hn\sin r\,\delta r \approx h\varepsilon\sin i, \qquad (28.4)$$

где є — угол между пластинками.

При освещении первой пластинки параллельным пучком лучей одной длины волны мы получим более или менее интенсивный свет в зависимости от разности хода Δ выходящих лучей. При освецении белым светом пластинка будет казаться нам равномерно окрашенной. При освещении же расходящимся пучком лучей мы увидим в фокальной плоскости объектива, помещенного на пути лучей 2 и 3, систему интерференционных полос, соответствующих данному r, т. е. полосы равного наклона. Лучи 1 и 4 не попадают в оправу объектива. Мы получим максимум для лучей тех направлений, для которых $\Delta = h\epsilon \sin i = m^{1}/2 \lambda$, где m — четные числа. Для направлений, соответствующих нечетным значениям *m*, будет наблюдаться минимум. Угловое расстояние между полосами определяется изменением угла *i* на величину Δi , при котором разность хода меняется на λ, т. е.

$$he\cos i\Delta i = \lambda$$
 или $\Delta i = \lambda/he\cos i$. (28.5)

Отсюда следует, что расстояние между полосами возрастает при увеличении длины волны и при уменьшении угла между пластинками *). Разность расстояний между полосами для различных длин волн очень мала для первых порядков интерференции, т. е. для интерференции, соответствующей разности хода в 1,-2, 3, ... полуволны; с увеличением же порядка интерференции эта разница становится уже значительной. Поэтому центральная полоса, соответствующая разности хода 0, кажется нам белой, а соседние места минимумов — черными, т. е. места первых минимумов для всех длин волн (цветов) практически совпадают; полосы же, соответствующие большим разностям хода, представляются цветными, ибо для них минимум для одних длин волн совпадает с максимумом для других. Белую полосу можно наблюдать, когда ребро двугранного угла между пластинками горизонтально.

Прибор, основанный на описанном принципе, носит название интерферометра Жамена и осуществляется в виде двух хороших плоскопараллельных пластинок толстого весьма однородного стекла,

132

^{*)} Если при вычислении Δι вместо соотношения (28.4) использовать болез точное (28.3), то Δ/ оказывается примерно в 4 раза больше, чем в (28.5), однако ванисимость от h и е остается прежней.

ГЛ. VII. ИНТЕРФЕРЕНЦИОННЫЕ ПРИБОРЫ

смонтированных на массивной плите. Для установки пластинок на параллельность прибор снабжен специальными установочными винтами. Наблюдение интерференционной картины ведется в зрительную трубу, сфокусированную на бесконечность. Пластинки интерферометра Жамена обычно располагают почти параллельно. так что наблюдаются широкие интерференционные полосы. Сами пластинки делаются толстыми (20 мм и более) с тем, чтобы по возможности далеко разделить пучки 1 и 2 и тем обеспечить возможность изменять условия на пути одного из лучей, не задевая другого (см. ниже). Можно заменить каждую из толстых пластинок двумя тонкими пластинками, отражающие поверхности которых металлизированы. Пластинки эти располагаются на местах передней и задней поверхностей толстой пластины. Передпластинка покрывается полупрозрачным слоем металла, няя задняя — плотным, хорошо отражающим слоем. Другими словами, получается «толстая пластина воздуха». Такая схема была применена Д. С. Рождественским с целью раздвинуть интерферирующие световые пучки. Другим преимуществом подобной схемы является уменьшение поглощения ультрафиолетового излучения.

Изготовляя тонкие пластинки из кварца или флюорита, можно получить интерферометр, пригодный для измерений в далекой ультрафиолетовой области.

Для того чтобы иметь возможность скомпенсировать значительную разность хода, которая может получиться вследствие различий в трубках, помещаемых на пути двух лучей, в приборе Жамена применяют компенсатор, состоящий из двух одинаковых стеклянных пластинок, причем наклон одной из них можно плавно изменять. Его изменение позволяет очень тонко и плавно компенсировать разность хода обоих пучков в толще пластинок.

Поместим на пути одного из лучей интерферометра Жамена слой какого-либо вещества с показателем преломления иным, чем у окружающего воздуха, например тонкую пластинку стекла или слюды или столб какого-либо газа. Пусть толщина внесенного слоя равна l и показатель преломления n_2 , а показатель преломления воздуха равен n_1 . Тогда разность хода между интерферирующими лучами в приборе изменится на $n_2l - n_1l = l (n_2 - n_1)$.

Если внесенная разность хода, выраженная в длинах волн λ исследуемого монохроматического света, равна $m\lambda$, то вся интерференционная картина сместится на *m* полос, где *m* может быть и дробным числом *). Измерив это смещение, мы определим значеиие *m*. Опыт показывает, что смещение на 1/10 полосы (m = 1/10) наблюдается вполне уверенно и без труда.

*) Число *m* определяют, наблюдая интерференционные картины в белом свете до и после виесения в интерферометр пластинок слюды или стекла.

Пользуясь соотношением $l(n_2 - n_1) = m\lambda$ и определив m, можно вычислить $\Delta n = n_2 - n_1 - изменение показателя прелом$ ления вещества при сделанной замене. Толщину слоя <math>l можно сделать довольно значительной (например, 10 см), так что при $\lambda = 5 \cdot 10^{-5}$ см = 5000 Å наблюдаемое изменение Δn удается довести до одной полумиллионной. В специальных установках наблюдались гораздо меньшие_изменения показателя преломления. Таким образом, интерферометр Жамена можно использовать

Таким образом, интерферометр Жамена можно использовать для определения ничтожного изменения показателя преломления, например при изменении температуры газа или прибавлении посторонних примесей. В соответствии с этим его нередко называют интерференционным рефрактсметром. Как показано выше, он крайне чувствителен к незначительным изменениям показателя преломления. Однако определение абсолютного значения самого показателя преломления при помощи этого прибора довольно затруднительно. Обычно его применяют таким образом, что сравнивают интересующий нас газ с каким-либо хорошо изученным газом, например, воздухом.

§ 29. Интерферометр Майкельсона

Существуют весьма многочисленные устройства, осуществляющие расположения, необходимые для получения интерференционных картин. Одним из приборов такого рода является интерферометр Майкельсона, сыгравший громадную роль в истории науки.

Основная схема интерферометра Майкельсона изображена на рис. 7.2. Пучок от источника L падает на пластинку P_1 , покрытую тонким слоем серебра или алюминия. Луч AB, прошедший через пластинку P_1 , отражается от зеркала S_1 и, попадая опять на пластинку P_1 , частично проходит через нее, а частично отражается по направлению AO. Луч AC отражается от зеркала S_2 и, попадая на пластинку P_1 , частично проходит также по направлению AO. Так как обе еолны 1 и 2, распространяющнеся по направлению AO, представляют собой расчлененную волну, исходящую из источника L, то они когерентны между собой и могут интерферировать друг с другом. Так как луч 2 пересекает пластинку P_1 три раза, а луч 1 один раз, то на его пути поставлена пластинка P_2 , идентичная P_1 , чтобы скомпенсировать добавочную разность хода, существенную при работе с белым светом.

Наблюдаемая интерференционная картина будет, очевидно, соответствовать интерференции в воздушном слое, образованном зеркалом S_2 и мнимым изображением S'_1 зеркала S_1 в пластинке P_1 . Если S_1 и S_2 расположены так, что упомянутый воздушный слой плоскопараллелен, то получающаяся интерференционная картина иредставится полосами равного наклона (круговыми кольцами), локализованшыми в бесконечности, и следовательно, наблюдение

гл. VII. ИНТЕРФЕРЕНЦИОННЫЕ ПРИБОРЫ

их возможно глазом, аккомодированным на бесконечность (или трубой, установленной на бесконечность, или на экране, расположенном в фокальной плоскости линзы).

Конечно, можно пользоваться и протяженным источником света (см. § 17). При малой толщине воздушного слоя в поле зрения зрительной трубы наблюдаются редкие интерференционные кольца большого диаметра. При большой толщине воздушного слоя, т. е. большой разности длин плеч интерферометра, наблюдаются частые

Рис. 7.2. Схема интерферометра Майкельсона.

S1 и S2 — зеркала; P1 — разделительная пластинка; P2 — компенсационная пластинка.

интерференционные кольца малого диаметра уже около центра картины. Угловой диаметр колец в зависимости от разности длин плеч интерферометра и порядка интерференции определяется из соотношения $2d \cos r = m \lambda$. Очевидно, что перемещение зеркала на четверть длины волны будет соответствовать при малых значениях угла r переходу в поле зрения светлого кольца на место темного, и наоборот, темного на место светлого.

Передвижение зеркала осуществляется при помощи микрометрического винта, перемещающего зеркало на специальных салазках. Так как в больших интерферометрах Майкельсона перемещение зеркала параллельно самому себе должно происходить на несколько десятков сантиметров, то понятно, что механические качества этого прибора должны быть исключительно высоки.

Для придания зеркалам правильного положения они снабжены установочными винтами. Нередко зеркала устанавливают таким образом, что эквивалентный воздушный слой имеет вид клина. В таком случае наблюдаются интерференционные полосы равной толщины, располагающиеся параллельно ребру воздушного клина*).

*) В этом случае интерференционные полосы локализуются, конечно, не в бесконечности, см. § 25.

При больших расстояниях между зеркалами разность хода между При сольших расстояния может достигать огромных значений интерферирующими лучами может достигать огромных значений интерферирующими чуто будут наблюдаться полосы миллионного (свыше 10⁶ λ), так что будут наблюдаться полосы миллионного

Понятно, что в этом случае необходимы источники света очень порядка. высокой степени монохроматичности. В. П. Линник сконструировал «микроинтерферометр», представляющий собой маленький интерферометр Майкельсона, надевающийся на обычный микроскоп. Этот прибор позволяет наблюдать и измерять мельчайшие неровности поверхности и может служить для исследования качества поверхности.

§ 30. Интерференционные приборы с многократно разделенными световыми пучками

До сих пор мы имели дело только с двумя интерферирующими лучами, когда встречались только две волны с некоторой разностью фаз.

Однако в случае плоскопараллельной пластинки следует принять во внимание многократное отражение света от ее поверхности, ибо и все вторичные когерентные пучки окажутся параллельными друг другу и будут интерферировать, давая полосы равного наклона, локализованные в бесконечности.

Разность хода двух соседних вышедших из пластинки пучков равна 2dn cosr, где d — толщина пластинки, n — показатель преломления вещества пластинки и r -- угол преломления.

Так как d н n — постоянные, то, очевидно, наблюдаемые полосы соответствуют заданному значению r, а следовательно, и l, т. е. являются полосами равного наклона.

Конечно, следует принять во внимание, что интенсивности пучков 1, 2, 3, ... неодинаковы. Действительно, пусть, например, коэффициент отражения равен 0,05, т. е. только 5% падающего света отражается, а 95% проходит. В таком случае интенсивность пучка 1 будет составлять 5% от интенсивности падающего, интенсивность пучка 2-4,5%, а интенсивность пучка 3 - всего лишь около 0,01%. Другими словами, третий и следующие пучки практически отсутствуют. В зависимости от значения коэффициента отражения число лучей, интенсивность которых еще достаточно велика (число эффективных лучей), возрастает и, следовательно, в образовании интерференционной картины активное участие принимает тем большее число лучей, чем больше коэффициент отра-

Интенсивность результирующего пучка зависит от разности фаз между соседними пучками, равной

 $\psi = \frac{2\pi}{\lambda} 2dn \cos r.$

ГЛ. VII. ИНТЕРФЕРЕНЦИОННЫЕ ПРИБОРЫ

Если *R* обозначает коэффициент отражения, т. е. долю интенсивности отраженного пучка от интенсивности падающего, а *T* — коэффициент пропускания, то распределение интенсивности в полосах выразится в зависимости от ψ формулой

$$I = \frac{T^2}{(1-R)^2} \frac{I_0}{1 + [4R/(1-R)^2] \sin^2 1/2^{\frac{1}{2}}}$$
(30.1)

(см. упражнение 47), причем интенсивность падающего на интерферометр света равна I_0 . Так как $\sin^2 \frac{1}{2}\psi$ меняется от 0 до 1, то интенсивность меняется непрерывно от $I_{\max} = \frac{T^2 I_0}{(1-R)^2}$ до $I_{\min} = \frac{T^2 I_0}{(1+R)^3}$. Минимум нигде не достигает нуля, и численное его значение зависит от величины T и R. Если считать отражающий слой непоглощающим, т. е. T + R = 1 (в общем случае T + R ++ A = 1, где A — коэффициент поглощения), то $I_{\max} = I_0$, т. е. интенсивность в максимуме равна интенсивности света, падающего на интерферометр, а $I_{\min} = \frac{(1-R)^2}{(1+R)^2} I_0$, т. е. интенсивность в минимуме тем ближе к нулю, чем коэффициент отражения ближе к 1.

Выразив разность хода в длинах волн ($\Delta = 2dn \cos r = m\lambda$) или разность фаз в долях 2π ($\psi = 2\pi m$, где целая часть от m порядок интерференционной полосы), найдем, что максимумы интенсивности соответствуют целым значениям m, а минимумы — полуцелым значениям $m (\sin^2 1/2\psi = \sin^2 \pi m \text{ обращается в 0 прн } m$ целом и в 1 при m полуцелом); промежуточные значения m соответствуют направлениям на участки между максимумами и минимумами. Таким образом, минимум лежит посредине между двумя максимумами.

Рис. 7.3 показывает графически распределение интенсиености для разных порядков интерференции. Из формулы (30.1) и рис. 7.3 видно, что чем больше *R*, тем интенсивность в минимумах ближе к нулю и тем резче падение интенсивности вблизи максимумов.

Условия, обеспечивающие интерференцию многих близких по интенсивности пучков, осуществлены в двух приборах. а. Эталон Фабри-Перо. Этот прибор представляет

а. Эталон Фабри-Перо. Этот прибор представляет собой плоскопараллельную пластинку, обычно воздушную. Она образуется между двумя плоскими поверхностями тщательно отшлифованных и отполированных стеклянных или кварцевых пластинок, установленных так, чтобы поверхности, обращенные друг к другу, были строго параллельны (рис. 7.4) *). Наружные поверхности обычно составляют небольшой угол с внутренними, с тем

137

^{*)} Подробный расчет показывает, что наличие стеклянных пластинок не влияет на разность хода между соседними лучами, которая оказывается равной $\Delta = 2dn \cos r$ (см. (25.1)), причем обычно можно с достаточным приближением считать показатель преломления воздуха n = 1.

чтобы световой блик, отраженный от наружных поверхностей, наблюдению основной картины. Параллельность устане мещал наблюдению расстоянии достигается путем поисо не мешал наолюдению селетоянии достигается путем помещения новки на определенном расстоянии достигается путем помещения

Рис. 7.3. Кривые распределения интенсивности в проходящем свете в зависимости от порядка интерференции т при разных коэффициентах отражения R.

Коэффициент поглощения А принят равным нулю.

Рис. 7.4. Схематическое представление интерференционного эталона Фабри Перо.

между пластинками инварного *) кольца. Кольцо это снабжено тремя выступами с каждой стороны, к которым пластинки прижи-

*) Инвар — специальная сталь (содержащая 36,4% Ni), имеющая при комнатной температуре крайне ничтожный коэффициент термического расширения (1,5·10° С-1). Иногда вместо инвара пользуются кольцами из плавленого квар-ца с коэффициентом расширения около 5·10° С-1. маются при помощи трех пружин. Выступы подшлифованы так, что зеркала устанавливаются параллельно друг другу. Небольшие отступления от параллельности устраняются нажимом соответствующей пружины.

В хороших приборах поверхность пластинок делают плоской с точностью до 1/200 длины волны. Внутренние поверхности пластинок (между которыми заключается слой воздуха) серебрят или покрывают каким-либо другим металлом с целью обеспечить достаточно высокий коэффициент отражения лучей. Интерференционная картина получается в виде колец равного наклона (рис. 7.5), ибо на эталон направляют расходящийся пучок света от широкого источника (на рис. 7.4 представлен ход одного из лучей этого пучка). Порядок интерференции определяется расстоянием между пластинками (от 1 до 100 мм, в специальных эталонах — значительно больше, до 1 м). В соответствии с этим наблюдаемые порядки интерференции очень высоки. При d = 5 мм $m \approx 20000$.

Резкость интерференционной картины будет тем значительнее, чем больше коэффициент отражения от металлического слоя (рис. 7.6). Значение R = 0,04 соответствует поверхности стекла, не покрытой металлом. При

не покрытой металлом. При современных способах металлического покрытия коэффициент отражения удается довести до R = 0,90 - - 0,95. В последнее время осуществляют покрытия, состоящие из нескольких слоев материалов, обеспечивающие коэффициент отражения до 0,99. Обычно значения R несколько зависят от длины волны.

В прежних моделях интерферометр , Фабри — Перо снабжался приспособлением, позволяющим менять расстояние между зеркалами. Это осуществляется примерно так же, как и в интерферометре Майкельсона. Само собой разумеется, что в раздвижном интерферометре не удается осуществить той высокой точ-

Рис. 7.5. Интерференционная картина (линии равного наклона), наблюдаемая в эталоне Фабри — Перо.

ности, которая возможна с эталонами. Поэтому для точных измерений предпочитают пользоваться набором эталонов с кольцами разной толщины между зеркалами.

Иногда эталон Фабри-Перо осуществляют в виде плоскопарал. Иногда эталон Фаори таки, наружные поверхности которой лельной стеклянной пластинки, наружные поверхности которой лельной стеклянной имаети. Такие приборы дешевле и проще покрыты отражающим слови не могут обеспечить такого высокого в употреблении. Однако они не могут обеспечить такого высокого в употреолении. Однако они с воздушной прослойкой. При исполькачества работы, как отсятот работать в проходящем свете, где зовании эталона проделение на темном фоне; в отраженном наблюдаются резкие максимумы на темном фоне; в отраженном

Рис. 7.6. Зависимость интенсивности в полосах интерференции от разности хода при разных значениях $R(I_0 = 1)$.

свете получаются резкие минимумы, разделенные широкими расплывчатыми максимумами (СМ. упражнение 48), из-за чего возрастает вредное действие неизбежного рассеянного света *).

Важное значение имеет вопрос об интенсивности проходящего через эталон света. По мере роста коэффициента отражения R ннтенсивность максимумов остается в отсутствие поглощения постоянной и равной интенсивности падающего пучка при любом значении R. Увеличение R крайне важно в том отношении, что оно увеличивает контрастность интерференционной картины, т. е. снижает минимумы при неизменных максимумах. При наличии погло-

щения интенсивность в максимуме снижается. Формула (30.1) сохраняет свою силу, но при этом $T \neq (1 - R)$ и имеет место равенство Т + R + A = 1. Выражение для интенсивности в максимуме принимает вид

$$I_{\max} = \frac{T^2 I_0}{(1-R)^2} = \frac{T^2 I_0}{(T+A)^2}.$$

При хорошем и свежем металлическом покрытии можно иметь А не больше 1%. В таком случае при R = 90%, $T = 9\% I_{\text{max}}$ составляет 80% от интенсивности падающего света; при R = 95%, T = 4%I max ≈ 65%. На практике при металлических покрытиях обычно I тах имеет меньшее значение. При многослойных диэлектрических покрытнях удается получить лучшие значения для / тах, чем при металлических покрытиях.

•) Специальным подбором отражающих (частично поглощающих) покрытий можно добиться такого положения, когда максимумы в отраженном свете почти столь же резки, как и в общиных приборах в проходящем (Ю. В. Тро-

гл. VII, ИНТЕРФЕРЕНЦИОННЫЕ ПРИБОРЫ

Возможность варьировать в. эталоне Фабри-Перо значения R Возможность варьировать в эталоне Фабри—Перо значения *R* и *A*, а также толщину воздушной прослойки делает этот прибор крайне гибким инструментом, представляющим большие преиму-щества по сравнению, например, с пластинкой Люммера—Герке. б. П л а с т и н к а Л ю м м е р а—Г е р к е представляет собой пластинку из очень однородного стекла, сделанную плоскопарал-лельной с очень высокой степенью точности. Один конец пластинки срезан или снабжен добавочной призмочкой (рис. 7.7), чтобы обес-

печить нормальное падение света на входную грань и, следовательно. уменьшить потери на отражение. Направление падающих лучей подобрано так, чтобы на границе стекло — воздух угол падения

Рис. 7.7. Схема пластинки Люммера — Герке. Разница в углах сильно преувеличена.

был близок к углу полного внутреннего отражения, но несколько меньше него. При этих условиях свет почти полностью отражается от поверхности стекло - воздух и лишь малая часть его выходит из пластинки (через верхнюю или нижнюю стороны ее) по направлению, составляющему очень малый угол с поверхностью пластинки. Благодаря тому, что при каждом отражении свет почти полностью остается внутри пластинки и лишь малые части его выходят из нее, интенсивности последовательных лучей мало отличаются друг от друга. Таким образом, с пластинкой Люммера—Герке можно получить до 10—15 близких по интенсивности лучей; при этом, конечно, длина пластинки должна быть довольно значительной

(от 10 до 30 см, в зависимости от толщины пластинки). Если на пластинку Люммера—Герке падает свет от широкого источника, то падающие, а следовательно, и преломленные лучи соответствуют различным значениям r. Поэтому мы получим в фокальной плоскости собирающей линзы (или в трубе, установлен-ной на бесконечность) систему полос разного порядка m, m + 1, m + 2, ..., соответствующих разным углам $r_m, r_{m+1}, r_{m+2}, ...,$ определенным по формуле 2 $dn \cos r = m\lambda$. Распределение интенсивности изображается на рис. 7.8. На рис. 7.9 показана фотография интерференционной картины (линии равного наклона), полученной с пластинкой Люммера—Герке и представляющей ряд узких ярких максимумов на темном фоне.

Рис. 7.8. График распределения интенсивности при интерференции многих лучей для пластинки Люммера — Герке.

Рис. 7.9. Фотография интерференционной картины, полученной с пластинкой Люммера — Герке.

Обычно пластинка Люммера—Герке имеет толщину от 3 до 10 мм, и угол r не очень сильно отличается от 45°. Таким образом, m есть число, выражаемое десятками тысяч: в пластинке Люммера— Герке наблюдаются интерференционные полосы весьма высокого порядка.

§ 31. Интерференция при большой разности хода

В приборе, подобном интерферометру Майкельсона или эталону Фабри-Перо, мы имеем дело с интерференцией лучей, обладающих огромной разностью хода (около миллиона длин волн). Поэтому для наблюдения интерференции требуется очень большая монохроматичность света. Физическая причина, в силу которой немонохроматический свет не может давать интерференционных картин вольшой разности хода, лежит в следующем. Как мы видели при большой разности хода, лежит в следующем. Как мы видели в § 4, степень монохроматичности определяется длительностью правильного синусоидального колебания, имеющего место при излудальных колебаний с неизменной амплитудой н фазой свершится хроматичен испускаемый им свет. Всякий обрыв правильного синусондального излучения, т. е. обрыв цуга правильных синусондальных волн, излучаемых атомами, есть уменьшение монохроматичности. Понятно, конечно, что если атом посылает совокупность нескольких десятков тысяч правильных синусондальных колебаний, а затем излучение его обрывается (другими словами, если излучение это не очень близко к монохроматическому), то интерференция при разности хода в сто тысяч длин волн, очевидно, невозможна: когда подойдет начало (голова) цуга волн, идущих по более длинному оптическому пути, то цуг, следующий по более короткому пути, успеет уже полностью пройти и заменится цугом, посланным другими атомами или при другом акте испускания. Таким образом, когерентность встречающихся цугов не имеет места, и интерференция не происходит.

Очевидно, что чем длиннее цуг, испускаемый атомом, т. е. чем монохроматичнее свет, тем при большей разности хода возможна интерференция. В случае газоразрядных источников света в приборе Майкельсона удавалось наблюдать интерференцию при разности хода около полумиллиона длин волн. Опыты этого рода могут служить для характеристики процессов при излучении атома (см. § 22). Обратно, располагая источником монохроматических волн, можно осуществить интерференцию при огромной разности хода и таким образом определить длину волны с очень большой точностью. Для некоторых лазерных источников света (гелийнеоновый лазер, например) ширина спектра излучения составляет 10⁶—10⁴ с⁻¹, что позволяет наблюдать интерференцию при разности хода в 10⁸—10¹⁰ длин волн.

Создав источник света, в котором монохроматическое излучение можно весьма хорошо воспроизвести, мы получаем возможность получать воспроизводимый эталон длины. Выразив нормальный метр в длинах волн какой-либо линии такого источника, мы можем заменить эталон нормального метра подобным эталонным источником света.

Для того чтобы источник испускал достаточно монохроматическое излучение с хорошо воспроизводимой средней длиной волны, нужно по возможности устранить все причины, возмущающие излучение. Свечение должно вызываться в парах низкого давления во избежание возмущений вследствие соударений атомов и при небольшом разрядном токе для ослабления возмущающего действия электрических полей (эффект Штарка), обусловленных электронами и ионами пара при значительной их концентрации. Наиболее трудно устранить влияние эффекта Допплера (см. § 128), вызванного тепловым движением излучающих атомов, и осложнения, связанные со структурой излучающих атомов. Для ослабления эффекта Допплера желательно иметь в качестве излучателя вещество с атомами возможно большей массы, обладающее необходимой упругостью пара при возможно низкой температуре (см. § 22). Сложность излучаемых
линий (так называемая сверхтонкая структура спектральных линий) обусловлена влиянием момента ядра атома на его электронную оболочку. Наличие ядерного момента (спина) связано с четностью или нечетностью атомпого веса. Однако природные атомы почти или нечетностью атомпого веса. Однако природные атомы почти всегда представляют собой смесь изотопов, в связи с чем большинство спектральных линий является совокупностью тесно расположен. им компонент.

иых компонени. Успехи ядерной физики сделали возможным искусственное получение отдельных изотопов. Так, при облучении золота нейтронами можно получить стабильный изотоп ртути с четной массой ₆₀ Hg¹⁹⁸, который не должен давать сверхтонкой структуры.

Изучение большого числа линий в спектрах излучения ряда веществ привело к выявлению нескольких спектральных линий, имеющих при определенных условиях очень высокую степень монохроматичности и воспроизводимости средней длины волны. В 1960 г. Генеральная конференция по мерам и весам приняла решение о замене метра новым эталоном длины. За основу была выбрана оранжевая линия одного из изотопов криптона (Кг⁶⁶); после тщательного сравнения длины волны этого излучения с длиной метра по определению принято 1 м = 1650763,73 $\lambda_{\scriptscriptstyle BBK}$ Кг⁸⁶. Длина еолны этого излучения в вакууме $\lambda_{\text{вак}} = 6057,8021 \cdot 10^{-10}$ м. Для так называемого стандартного воздуха (давление 760 мм рт. ст., температура 15° С, содержание СО₂ 0,03%) длина волны этой линии л возд = 6056,12525 · 10-10 м. Строго определены условия возбуждения эталонного излучения, при которых должен находиться источник света: газоразрядная лампа с горячим катодом, наполненная изотопом криптона Кг⁸⁶ (чистотой более 99%) и охлаждаемая до температуры 63 К (тройная точка азота). Оговорены диаметр разрядной трубки, плотность разрядного тока и т. п. Практика показала, что относительная точность воспроизведения эталонной длины волны составляет 1 · 10⁻⁸.

В таблице даны значения длин волн некоторых особенно хорошо исследованных линий, принятых в качестве вторичных нормалей.

Вторичные нормали получаются путем интерферометрического сравнения с длиной волны эталонной оранжевой линии Кг⁸⁶. Такое сравнение было выполнено в ряде лабораторий различных стран (СССР, США, Канада и др.), и последняя колонка таблицы дает представление о расхождении результатов проведенных измерений.

Монохроматичность излучения некоторых газовых лазеров составляет (в относительной мере) 10⁻¹⁰ и даже 10⁻¹¹, что существенно лучше монохроматичности эталонного излучения (приблизительно 10⁻⁷). Однако воспроизводимость длины волны излучения этих лазеров (т. е. степень совпадения длин волн у лазеров, построенных в различных лабораториях) в настоящее время, по-видимому, думать, что усовершенствование лазерной техники и углубленное

ГЛ. VII. ИНТЕРФЕРЕНЦИОННЫЕ ПРИБОРЫ

исследование причин, влияющих на абсолютную величину длины волны их излучения, приведет к переходу на новый, лазерный эталон длины.

Таблица 7.1

Элемент	-	Длина волны	ы, 10 ⁻¹⁰ м ((вак.)	Воспроизводимость длины волны
Kr ⁸⁰	1. 12	645 642 565 450	58,0720 22,8006 51,1286 33,6162	•	1 • 10-8
Hg198		579 577 546 435	2,2683 1,1983 2,2705 59,5624		(2-3) · 10-8
Cd114		- 644 508 480 467	0,2480 7,2379 1,2521 9,4581		(3-4) · 10-9

Длины волн вторичных нормалей

§ 32. Некоторые применения интерференционных методов исследования --

В настоящее время не только научные, но и технические измерения требуют определения длин с очень большой точностью. В качестве образцов (эталонов) для измерения длин с большой точностью применяются так называемые концевые меры, или плитки Иогансона, представляющие собой стальные пластинки различной толщины, противоположные поверхности которых превосходно отполированы и сделаны строго плоскими и параллельными друг другу. Имея набор таких плиток, можно, плотно прижимая (притирая) их друг к другу, составлять комбинации различной длины, определенные с очень большой точностью, о которой дают представление следующие цифры:

> Длина концевой меры в мм 1, 10 50 100 1000 Допустимые отклонения в мкм 0,1 0,1 0,2 0,3 2

Для достижения такой точности при изготовлении концевых мер и проверки их применяют интерференционные методы. Существует много разновидностей этих методов, сущность которых сводится к осуществлению интерферометра типа Майкельсона или

145

Фабри—Перо, одной из отражающих поверхностей которого является поверхность исследуемой концевой меры, а толщина концевой меры определяет расстояние до второй отражающей поверхности (иногда вводятся еще дополнительные зеркала). Существуют разнообразные интерференционные компараторы этого рода, приспособленные для сравнения длин двух концевых мер или для абсолютного определения их. Компараторы такого рода, применяемые в лучших государственных метрологических лабораториях, позволяют определять меры до 100 мм с ошибкой от 0,010 до 0,005 мкм и меры до 1000 мм с ошибкой от 0,1 до 0,05 мкм.

1 Интерференционная методика позволяет наряду с точными измерениями расстояний определять также с большей точностью качество полированной поверхности. Чрезвычайно большая точность в изготовлении поверхностей зеркал, линз и призм является необходимым условием создания современных высокосортных оптических инструментов. В лучших оптических системах отклонение этих поверхностей от заданных не должно превышать десятых и даже сотых долей длины волны. Наиболее подходящими методами для испытания качества подобных поверхностей служат интерференционные методы, уже давно получившие широкое распространение в оптико-механической промышленности. }

Обычно применение интерференционных методов основано на употреблении образцового эталона, сделанного с большой тщательностью. Накладывая со всеми необходимыми предосторожностями (устранение пылинок, выравнивание температуры) на заданную эталонную поверхность испытуемую (рис. 7.10), мы получаем между этими поверхностями тонкую воздушную прослойку, дающую в отраженном свете отчетливую интерференционную картину. По форме интерференционных полос и их ширине можно судить о недостатках изготовленной поверхности и видеть, какие участки отступают от заданной формы, в какую сторону (выпуклость или вогнутость), и приблизительно оценить величину отступлений. Если несовершенство испытуемой. поверхности очень невелико, то интерференционные кольца будут широкими, а в отсутствие отступлений вся поверхность будет иметь равномерную окраску.

При проверке плоских поверхностей очень удобно сложить эталонную и испытуемую поверхности так, чтобы между ними осталась клипообразная воздушная прослойка с очень малым углом (для этого достаточно с одной стороны несколько прижать друг к другу сложенные поверхности). Полосы равной толщины между идеальными плоскостями должны иметь вид прямых, параллель-

Малейшие отступления от плоскости ведут к искривлению этих прямых, очень заметному и характерному: по его виду легко отличить «впадину» от «бугра» и измерить отступление от плоскости с точностью от 0,01 мкм. Меняя положение ребра клина (нажимая то с одной, то с другой стороны), можно быстро исследовать качество поверхности по всем направлениям.

Поверли очень тщательных исследованиях поверхности следует применять почти нормальные пучки и пользоваться монохроматическим светом, для того чтобы повысить резкость интерференционных картин.

Если посеребрить поверхность испытуемой пластины и пробного стекла, то благодаря многократному отражению будут наблюдаться

еще более узкие и резкие полосы, что позволяет повысить точность контроля до 0,003 мкм (М. Ф. Романова, 1932 г.; Толанский, 1944 г.). Проверяемые поверхности отделяются при этом тонкой воздушной прослойкой.

- Существуют интерферометры (В. П. Линник, Твайман), предназначенные для контроля качества готовых оптических систем (объективов), причем контролируется не только качество обработки поверхности, но и однородность стекла, из которого изготовлена система.

При испытании поверхностей большого размера (до нескольких метров) пробное стекло, конечно, не применимо. В. П. Линник построил интерферометр, в котором свет падает очень наклонно на большую поверхность, благодаря чему сильно уменьшается сечение отраженного пучка и становится возможным осуществлять интерференционные наблюдения. Интерферометр Линника позволяет контролировать с точностью до 1 мкм прямолинейность поверхностей длиной до 5 м.

интерференция света

Интерференционные методы широко применяются также для интерференционные истолы металлических поверхностей К приконтроля чистоты обрасотил металини повериностени к при-борам такого рода принадлежит микроннтерферометр В. П. Линника, упомянутый в § 29.

ка, уполитичет в тонких пленках используется в ряде приборов как чувствительнейший метод, позволяющий судить о ничтожном изменении толщины какой-либо воздушной прослойки.)

Рис. 7.11. Схема интерференционного дилатометра.

Так, в дилатометре Физо-Аббе незначительное тепловое расширение влечет за собой изменение толщины воздушной прослойки между испытуемым телом и эталонным стеклом.

Дилатометр в наиболее совершенной форме содержит кольцо К из плавленого кварца (его термические свойства хорошо известны), на котором лежит стеклянная пластинка Ρ эталонная (рис. 7.11). -Внутри кольца помещается испытуемое вещество R. в виде столбика с правильно отполированными

плоскостями. Тонкий воздушный зазор М (обычно клинообразный) между поверхностями освещается монохроматическим светом и дгет интерференционную картину.

При нагревании вследствие - различия в коэффициентах расширення К и R толщина зазора М меняется, благодаря чему происходит смещение интерференционных полос, отмечаемое при помощи метки т. Смещение полос на одну означает изменение разности хода на λ , т. е. изменение воздушного зазора на $\lambda/2$. Таким образом, наблюдая за интерференционной картиной, можно точно измерить изменение толщины зазора и отсюда вычислить коэффициент расширения. При точных измерениях этого рода приходится учитывать зависимость показателя преломления воздуха от температуры.

Метод контроля плоскопараллельных пластинок был описан в § 27.

Как уже упоминалось выше (см. § 28), интерференционные методы дают возможность с большой точностью определять ничтожные изменения показателя преломления, влекущие за собой изменение оптической длины пути, и, следовательно, смещение интерференционной картины.

Кроме упомянутого уже рефрактометра Жамена, для этой цели служат многочисленные интерференционные рефрактометры, имеющие технический характер и приспособленные для измерения небольших варнаций показателя преломления газов и жидкостей, вызванных примесями (например, технический интерферометр для определения состава газов в шахтах или анализа ничтожных количеств солей, растворенных в воде). В последнее время интерферен-

148

циопная рефрактометрия начинает находить применение даже в клинических лабораториях для исследования изменений в составе крови, связанных с заболеваниями. Наконец, существует немало интерференционных рефрактометров, применяемых для определения показателей преломления твердых тел. Определение показателей преломления этими методами при введении всех необходимых поправок удалось выполнить в последнее время с точностью до восьмого десятичного знака.

Интерференционные явления используются также для очень точного определения углов. Здесь также оказывается возможным применение весьма разнообразных приемов. Так, для контроля правильности углов в стеклянных призмах используют явления в тонких пластинках (воздушный клин). Изготовив стандартный стеклянный угольник и накладывая его на грани призмы, можно по интерференционным картинам «контролировать правильность угла призмы с точностью, соответствующей воздушному клину, катет которого не превышает 0,03 мкм.

Майкельсон применил интерферометрическое наблюдение для оценки малых угловых расстояний между двойными звездами, а также для оценки углового диаметра звезд. Метод Майкельсона, равно как и применение его к определению размеров субмикроскспических частичек, будет изложен ниже (см. §45). Наконец, понятно, что интерференционные методы, позволяющие с огромной точностью определять длину волны, могут служить для самых тонких спектроскопических исследований (тонкая структура спектральных линий, исследование формы и ширины, спектральных линий, ничтожные изменения в строении спектральных линий). Интерференционные спектроскопы, их достоинства и недостатки будут обсуждены вместе с другими спектральными приборами (дифракционная решетка, призма) в § 50.

ДИФРАКЦИЯ СВЕТА

Глава VIII

принцип гюйгенса и его применения

§ 33. Принцип Гюйгенса — Френеля

Явления интерференции света во всем их многообразии служат убедительнейшим доказательством волновой природы световых процессов. Однако окончательная победа волновых представлений была невозможна без истолкования с волновой точки зрения фунда-

Рис. 8.1. К принципу Гюйгенса. L — источник: SS — вспомогательная покерхность: ОО — огибающая вторичных воли, исходящих из SS. ментального и хорошо подтвержденного опытом закона прямолинейного распространения света.

Волновые представления в той первоначальной форме, в которой их развивал Гюйгенс («Трактат о свете», 1690), не могли дать удовлетворительного ответа на поставленный вопрос. В основу учения о распространении света Гюйгенсом положен прищип, носящий его имя. Согласно представлениям Гюйгенса, свет, по анало-

гии со звуком, представляет собой волны, распространяющиеся в особой среде — эфире, занимающем все пространство, в частности заполняющем собой промежутки между частицами любого вещества, которые как бы погружены в океан эфира. С этой точки эрения естественно было считать, что колебательное движение частиц эфира передается не только той частице, которая лежит на «пути» светового луча, т. е. на прямой, соединяющей источник света L (рис. 8.1) с рассматриваемой точкой A, но всем частицам, примыкающим к A, т. е. световая волиа распространяется из A во все стороны, как если бы точка A служила источником света. Поверхность, огибающая эти вторичные волны, и представляет на рис. 8.1, эта огибающая (жирная дуга) представится частью шаровой поверхности с центром в L, ограниченной конусом, веду-

ГЛ. VIII. ПРИНЦИП ГЮЯГЕНСА И ЕГО ПРИМЕНЕНИЯ

щим к краям круглого отверстия в экране MN. Как уже указывалось во Введении, принцип Гюйгенса позволил разъяснить вопросы отражения и преломления света, включая и сложную проблему о двойном лучепреломлении; но задача о прямолинейном распространении света по существу решена не была, ибо она не была поставлена в связъ с явлениями отступления от прямолинейности, т. е. с явлениями дифракции.

Причина лежит в том, что принцип Гюйгенса в его первоначальной форме был принципом, областью применения которого являлась область геометрической оптики. Выражаясь языком волновой оптики, он относился к случаям, когда длину волны можно было считать

бесконечно малой по сравнению с размерами волнового фронта. Поэтому он позволял решать лишь задачи о направлении распространения светового фронта и не затрагивал по существу вопроса об интенсивности волн, идущих по разным направлениям. Этот недостаток восполнил Френель, который вложил в принцип Гюйгенса физический смысл, дополнив его идеей ин-

терференции волн. Благодаря этому огибающая поверхность элементарных волн, введенная Гюйгенсом чисто формально, приобрела ясное физическое содержание как поверхность, где благодаря взаимной интерференции элементарных волн результирующая волна имеет заметную интенсивность.

Модифицированный таким образом принцип Гюйгенса—Френеля становится основным принципом волновой оптики и позволяет исследовать вопросы, относящиеся к интенсивности результирующей волны в разных направлениях, т. е. решать задачи о *дифракции* света (см. ниже). В соответствии с этим был решен вопрос о границах применимости закона прямолинейного распространения света, и принцип Гюйгенса—Френеля оказался применимым к выяснению закона распространения воли любой длины.

Для отыскания интенсивности (амплитуды) результирующей волны иужно, согласно Френелю, следующим образом формулировать принцип Гюйгенса.

Окружим источник L воображаемой замкнутой поверхностью S любой формы (рис. 8.2). Правильное значение интенсивности (амплитуды) возмущения в любой тсчке B за пределами S может быть получено так: устраним L, а поверхность S будем рассматривать как светящуюся поверхность, излучение отдельных элементов которой, приходя в B, определяет своей совокупностью действне в этой точке. Излучение каждого элемента ds поверхности S

Френеля.

ДНФРАКЦИЯ СВЕТА

надо представлять себе как сферическую волну (вторичная волна), которая приносит в точку В колебание (ср. (6.1))

$$sin(\omega t - kr - \varphi),$$
 (33.1)

где a, определяется амплитудой, а φ — фазой действительного где a, определяется стали в элемента ds, находящегося на расстоянии г от точки В. При этом размеры элемента ds предполагаются настолько малыми, что ф и г для любой части его можно считать имеющими одни и те же значения. Другими словами, каждый элемент ds рассматривается как некоторый вспомогательный источник, так что амплитуда a, пропорциональна площади ds.

Постулат Френеля, позволяющий определить а, и ф через амплитуду и фазу дошедшего до ds колебания, представляет собой некую гипотезу, пригодность которой может быть установлена сравнением делаемых с ее помощью заключений с результатами опыта. К этому вопросу мы еще вернемся в § 38.

Так как фазы всех вспомогательных источников определяются возмущением, идущим из L, то они строго согласованы между собой, и, следовательно, вспомогательные источники когерентны. Поэтому вторичные волны, исходящие из них, будут интерферировать между собой. Их совокупное действие в каждой точке может быть определено как интерференционный эффект, и следовательно, идея Гюйгенса о специальной роли огибающей перестает быть допущением, а должна явиться лишь следствием законов интерференции. Согласно приведенному выше постулату Френеля вопрос о вспомогательных источниках, заменяющих L, решается однозначно, как только выбрана вспомогательная поверхность S. Выбор же этой поверхности вполне произволен; поэтому для каждой конкретной задачи ее следует выбрать наивыгоднейшим для решения способом. Если еспомогательная поверхность S совпадает с фронтом волны, илущей из L (представляет собой сферу с центром в L), то все вспомогательные источники будут иметь одинаковую фазу. Если же выбор S сделан иначе, то фазы вспомогательных источников не одинаковы, но источники, конечно, остаются когерентными.

В том случае, когда между источниками L и точкой наблюдения имеются непрозрачные экраны с отверстнями, действие этих экранов может быть учтено следующим образом. Мы выбираем поверхность S так, чтобы она всюду совпадала с поверхностью экранов, а отверстия в них затягивала произвольным образом, выбранным в зависимости от разбираемой проблемы. На поверхности непрозрачных экранов амплитуды вспомогательных источников должны считаться равными нулю; на поверхности же, проходящей через отверстия экранов, амплитуды выбираются в согласии с постулатом Френеля, т. е. так, как если бы экран отсутствовал. Таким образом, предполагается, что материал экрана не играет роли, если только экран не прозрачен *).

роли, если сони предультаты интерференции элементарных волн, посылаемых вспомогательными источниками, мы приходим к значению амплитуды (интенсивности) в любой точке *B*, т. е. определяем закономерность распространения света. Результаты этих вычислений подтверждаются данными опыта. Таким образом, по методу Гюйгенса— Френеля удается получить правильное решение вопроса о распределении интенсивности света как в случае свободного распрост-

ранения световых волн (прямолинейное распространение), так и в случае наличия задерживающих экранов (дифракция).

Первой задачей, которую должен был рассмотреть Френель, выдвинув новую формулировку принципа Гюйгенса, явилась задача о прямолинейном распространении света. Френель решил ее пу-

Рис. 8.3. Построение зон Френеля.

тем рассмотрения взаимной интерференции вторичных воли, применив чрезвычайно наглядный прием, заменяющий сложные вычисления и имеющий общее значение при разборе задач о распространении воли. Метод этот получил название метода зон Френеля.

Рассмотрим действие световой волны, испущенной из точки A, в какой-либо точке наблюдения B. Согласно принципу Гюйгенса— Френеля заменим действие источника A действием воображаемых источников, расположенных на вспомогательной поверхности S.

В качестве такой вспомогательной поверхности S выберем поверхность фронта волны, идущей из A (поверхность сферы с центром A, рис. 8.3). Вычисление результата интерференции вторичных воли очень упрощается, если применить следующий указанный Френелем прием: для вычисления действия в точке B соединяем A с B и разбиваем поверхность S на зоны такого размера, чтсбы расстояния от краев зоны до B отличались на $1/2\lambda$, т. е.

 $M_1B - M_0B = M_2B - M_1B = M_3B - M_2B = \dots = \frac{1}{3}\lambda$

(см. рис. 8.3). Нетрудно вычислить размеры полученных таким

^{*)} Опыты самого Френеля подтвердили независимость результатов наблюдения от вещества непрозрачного экрана. Однако более тщательные опыты и детальная теория показывают, что материал экрана оказывает влияние из характер светового поля в непосредственной близости к краю экрана, т. е. на расстоянии, сравнимом с длиной волны.

образом зон. Из рис. 8.4 получаем для первой зоны

$$a^{2}-a^{2}-(a-x)^{2}=(b+1/2\lambda)^{2}-(b+x)^{2}.$$

Так как λ очень мало по сравнению с а или b, то

$$x=\frac{b}{a+b}\frac{\lambda}{2},$$

и, следовательно, площадь сферического сегмента, представляющего первую, или центральную, зону, есть

$$2\pi a x = 2\pi a \frac{b}{a+b} \frac{\lambda}{2} = \frac{\pi a b}{a+b} \lambda.$$

Для площади сегмента, представляющего две первые зоны, $2 \frac{\pi ab}{a+b} \lambda$, т. е. площадь второй зоны также равна найдем значение $\frac{nab}{a+b}\lambda$. Практически ту же площадь будет иметь и каждая из последующих зон. Таким образом, построение Френеля BCEX разбивает поверхность сферической волны на равновеликие зоны, каждая из которых имеет пло-

щадь

Рис. 8.4. Вычисление площади центральной зоны Френеля.

$$\pi \frac{ab}{a+b} \lambda.$$

Для дальнейшего вычисления надо только принять во вни-. мание, что действие отдельных зон на точку В тем меньше, чем

больше угол ф между нормалью к поверхности зоны и направлением на В. Таким образом, действие зон постепенно убывает от центральной зоны (около Мо) к периферическим. Произвольное введение этого вспомогательного ослабляющего множителя есть один из недостатков метода Френеля.

Для получения окончательного результата можно рассуждать следующим образом: пусть действие центральной зоны в точке В выражается возбуждением колебания с амплитудой s1, действие соседней зоны — колебанием с амплитудой s2, следующей — с амплитудой s3 и т. д. Как указано, действие зон постепенно (хотя и медленио) убывает от центра к периферии, так что $s_1 > s_2 > s_3 > s_4$ н т. д.; действие n-й зоны s, может быть очень малым, если n достаточно велико. Кроме того, благодаря выбранному способу разбивки на зоны легко видеть, что действия соседних зон ослабляют друг друга. Действительно, так как

 $M_1B - M_0B = \lambda/2$ II $M_2B - M_1B = \lambda/2$,

то воображаемые источники зоны $M_0 M_1$ расположены на $1/2 \lambda$ ближе

154

к В. чем соответственные источники зоны M_1M_2 , так что посылаемые колебания дойдут до В в противоположных фазах. Таким образом, для точки В действие центральной зоны ослабится действием соседней зоны н т. д. Продолжая эти рассуждения, найдем, что окончательное значение амплитуды колебания, возбужденного в точке В всей совокупностью зон, т. е. всей световой волной, будет равно $s = s_1 - s_2 + s_3 - s_4 + s_5 - s_6 + \ldots =$

$$= s_1 - (s_2 - s_3) - (s_4 - s_5) - (s_6 - s_7) - \dots$$
(33.2)

Из условия $s_1 > s_2 > s_3 > s_4...$ следует, что все выражения в скобках положительны, так что $s < s_1$. Освещенность E в точке наблюдения B пропорциональна квадрату результирующей амплитуды колебаний. Следовательно, $E \propto s^2 < s_1^3$.

Итак, амплитуда *s* результирующего колебания, получающегося вследствие взаимной интерференции света, идущего к точке *B* от различных участков нашей сферической волны, меньше амплитуды, создаваемой действием одной центральной зоны. Таким образом, действие всей волны на точку *B* сводится к действию ее малого участка, меньшего, чем центральная зона с площадью $\frac{nab}{a+b}\lambda$. Длина световой волны λ весьма мала (для зеленого света $\lambda = 5 \cdot 10^{-4}$ мм). Поэтому даже для расстояний *a* и *b* порядка 1 м площадь действующей части волны меньше 1 мм³. Следовательно, распространение света от *A* к *B* действительно происходит так, *как если бы* световой поток шел внутри очень узкого канала вдоль *AB*, т. е. *прямолинейно*.

Это не значит, однако, что если мы поместим на линии AB любой небольшой непрозрачный экран, то до точки B свет не дойдет; ведь внесение такого экрана, который прикроет, например, первую зону, нарушит правильность наших рассуждений. В этом случае выпадет первый член знакопеременного ряда (33.2), и теперь окажется, что $s < |s_2|$ и т. д., т. е. s меньше модуля s_m, где m — номер первой открытой у края экрана зоны. Если m не велико, например, m < 10, то освещенность в точке наблюдения B на оси экрана останется почти такой же, как и в его отсутствие (см. § 36). Но если маленький экранчик имеет неровные края с зазубринами, сравнимыми с шириной зоны Френеля, по которой проходит этот край, то он существенно уменьшает интенсивность в точке наблюдения B.

§ 34. Зонная пластинка

Хорошей иллюстрацией, подтверждающей приведенный метод рассуждения Френеля, может служить опыт с зонной пластинкой. Как следует из сказанного выше, раднус *m*-й зоны Френеля равен

 $r_m = \sqrt{m \frac{ab}{a+b} \lambda}.$

(34.1)

ДИФРАКЦИЯ СВЕТА

Приготовим экран, состоящий из последовательно чередующихся Приготовим экрап, состояния, раднусы которых удовлетворяют прозрачных и непрозрачных колец, раднусы которых удовлетворяют прозрачных и непрозрачных для каких-либо значений а, b и λ. Для написанному соотношению для каких-либо значений а, b и λ. Для написанному соотполетие, вычертить в крупном масштабе соот-этой цели можно, например, вычертить в крупном масштабе соотэтой цели можно, нак и уменьшить его в виде фотографической сетствующий рисунок и уменьшить то в виде фотографической ветствующин рисунов и ули *). Приготовленный таким образом копии до желаемого размера *). Приготовленный таким образом копин до менастисти развание зонной пластинки (Соре, 1875 г.).

Изображения таких пластинок приведены на рис. 8.5. Если изоораления, показанную на рис. 8.5, а, в соответствующем месте сферической волны, т. е. расположить на расстоянии а от

Рис. 8.5. Зонные пластинки. а - открыты нечетные зоны; 6 - открыты четные зоны.

точечного источника и на расстоянии b от точки наблюдения на линии, соединяющей эти две точки, то для света длины волны λ наша пластинка прикроет все четные зоны и оставит свободными все нечетные, начиная с центральной.

Волновой фронт, профильтрованный через зонную пластинку, расположенную таким образом, должен давать в точке В результирующую амплитуду, выражаемую соотношением $s = s_1 + s_3 + s_3$ + s_s + s₇ + ..., т. е. значительно большую, чем при полностью открытом фронте. До точки В должно дойти больше света, чем без зонной пластинки. Опыт полностью подтверждает это заключение: зонная пластинка увеличивает освещенность в точке В, действуя подобно собирательной линзе (см. упражнение 88). Следует иметь в виду, что зонная пластинка имеет и мнимые фокусы, а потому работает одновременно как комбинация собирательных и рассенвающих линз (см. рис. 8.6).

•) Последовательность раднусов зонной пластинки подчиняется такому же закону, как и последовательность раднусов колец Ньютона в монохроматическом свете длины волны λ (см. § 26). Поэтому вместо вычерчивания таких колец их можно описаторы λ (см. § 26). Поэтому вместо вычерчивания таких колец их можно осуществить при помощи расположения Ньютона и в подходящем масштабе сфотографировать эту витерференционную картину.

гл. VIII. ПРИНЦИП ГЮЙГЕНСА И ЕГО ПРИМЕНЕНИЯ

Аналогию между зонной пластинкой и линзой можно проследить более полно, если несколько видоизменить постановку вопроса. Будем считать, что величина $f = r_m^*/m\lambda$, характеризующая зонную пластинку и излучение, является заданной, и найдем значения *а* и *b*, для которых волны, проходящие через прозрачные кольца пластинки, оказываются синфазными. С помощью соотношения (34.1) получаем

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{f},$$
 (34.2)

т. е. а и b связаны формулой линзы, а величина f играет роль фокусного расстояния. Следовательно, при заданном положении источника всегда можно найти точку, где находится его изображение. В частности, если на пластинку падает плоская волна ($a = \infty$), то изображение будет находиться в точке, удаленной от зонной пластинки на расстояние b = f. Возможны и мнимые изображения, если a < f; этот случай отвечает повышенному значению амплитуды расходящейся волны, как бы выходящей из точки, лежащей слева от зонной пластинки.

В отличие от линзы, зонная пластинка дает не одно, а много изображений источника. В самом деле, сместим точку наблюдения в такое положение B_1 , чтобы в пределах каждого прозрачного кольца зонной пластинки укладывалась не одна, а три зоны Френеля. Действие двух из них будет взаимно скомпенсировано, и амплитуда колебаний в точке B_1 определяется лишь третьей зоной. Вместе с тем, волны, приходящие в B от нескомпенсированных зон всех колец пластинки, остаются синфазными, т. е. амплитуда колебаний в выбранной точке B_1 также имеет повышенное значение. Разность фаз между волнами от нескомпенсированных зон соседних колец увеличивается в три раза (в сравнении с точкой B),

положение b_1 точки B_1 определится соотношением $\frac{1}{a} + \frac{1}{b_1} = \frac{3}{f}$.

Проведенные рассуждения останутся в силе и для других точек наблюдения, если в пределах каждого кольца пластинки укладывается любое нечетное число 2n + 1 зон Френеля. Положение этих точек задается, соотношением

$$\frac{1}{a} + \frac{1}{b_n} = \frac{2n+1}{f} = \frac{1}{f_n}; \quad f_n = \frac{f}{2n+1}; \qquad n = 0, \ 1, \ 2, \ \dots, \qquad (34.3)$$

которое можно толковать, как наличие у зонной пластинки многих фокусных расстояний f_n . Целым числам в (34.3) можно придавать и отрицательные значения n = -1, -2, ... Этим значениям соответствуют расходящиеся волны, ибо именно для расходящихся воли разность фаз между возмущением от более удаленных и от менее удаленных зон Френеля отрицательна.

157

Итак, за зонной пластинкой создается сложное волновое поле Итак, за зоннов и В. В., В., В., В., В., В., Повышенной освещенности с множеством точек В, В., В., В., В., В., В., Возникновение с множеством почек с. с. на рис. 8.6. Возникновение многих на оси пластинки, показанных на рис. 8.6. Возникновение многих на оси пластини, полено дифракцией падающей волны на сложном изображений обусловлено дифракцией годиная пластины на сложном изооражении обусловить собой зонная пластинка (упражнение 88).

Фокусирующие свойства зонных пластинок позволяют применять их в качестве линз. При этом следует иметь в ВИДУ

Рис. 8.6. Совокупность фокусов амплитудной зонной пластинки.

Масштаб в поперечном направлении сильно увеличен.

значительные хроматические аберрации, так как f обратно пропорционально длине волны.

Можно достичь еще боль-. шей яркости изображений, если не задерживать колебания, приходящие в точку В от четных зон, а сообщить им изменение фазы на л. Такую фазовую зонную плавпервые изготовил стинку Р. Вуд, покрыв стекло тон-

ким слоем лака и выгравировав на нем зонную пластинку так, что оптическая толщина нечетных зон отличалась от толщины четных на величину $1/_{2}\lambda$.

Прохождение света сквозь амплитудную зонную пластинку с иным распределением прозрачности рассматривается в § 59 гл. XI.

§ 35. Графическое вычисление результирующей амплитуды

Рассмотрение вопроса о действии световой волны в точке В (см. рис. 8.4), равно как и многих других аналогичных вопросов, чрезвычайно удобно производить, пользуясь графическим методом сложения колебаний, обладающих некоторой разностью фаз. Для того чтобы графически изобразить действие целой зоны, следует разбить ее на равные участки, столь малые, чтобы фаза колебаний, вызываемых в точке В различными воображаемыми источниками такого участка, практически могла считаться постоянной. Тогда действие всего участка можно выразить вектором, длина которого дает суммарную амплитуду, а направление определяет фазу, обусловливаемую этим участком. Действие соседнего участка можно выразнть вторым вектором, несколько повернутым относительно первого, так как фаза, определяемая совокупностью источников второго участка, будет немного отличаться от фазы, задаваемой первым участком. По длине же этот вектор практически не будет отличаться от первого, так как амплитуда колебания, вызываемого равновеликими участками фронта волны, отличается только вследствие изменения наклона фронта волны к линии, проведенной к точке *B*, а для двух соседних участков это изменение ничтожно мало. Даже при переходе от одной зоны к следующей действие изменения наклона, как мы видели, весьма незначительно. Таким образом, векторная диаграмма, определяющая действие ряда участков, составляющих целую зону, изобразится ломаной, представленной на рис. 8.7.

на рис. от Здесь для определенности мы предполагали, что зона разбита на 8 элементарных участков. Если разбить зону на бесконечно большое число бесконечно малых участков, то ломаная линия

.

Рис. 8.7. Векторная диаграмма суммирования действия отдельных участков зоны. обратится в дугу, которая лишь очень мало будет отличаться от полуокружности. При этом вектор, касательный к дуге в точке М,

Рис. 8.8. Векторная диаграмма действия центральной (первой) зоны. ОМ₁ — результирующий вектор.

будет иметь направление, прямо противоположное направлению соответствующего вектора вблизи точки O, так как фаза колебания в B, обусловленного действием последнего участка зоны, очевидно, противоположна фазе колебаний, излучаемых начальным участком зоны; таким образом, векторную диаграмму действия центральной зоны можно представить рис. 8.8, и результирующую, характеризующую колебание в B, вызванное действием одной центральной зоны, — вектором OM₁.

Для того чтобы учесть действие второй зоны, надо продолжить нашу векторную днаграмму. Тогда мы получим рис. 8.9, причем хорда дуги M_1M_2 несколько меньше, чем у дуги OM_1 , вследствие возрастающего наклона зоны. Продолжая наше построение, получим диаграмму действия всей волны, изображенную на рис. 8.10. Резилет

Результирующая, характеризующая действие всего волнового фронта, выражается вектором ON = s. Из рис. 8.10 легко видеть, что этот вектор равен примерио половине вектора $OM_1 = s_1$, представляющего действие центральной зоны, и совпадает с ним по направлению. Другими словами, колебание в точке *B*, обуслов-

ДИФРАКЦИЯ СВЕТА

ленное всем волновым фронтом, совпадает по фазе с колебанием, которое могла бы создать центральная зона, а по амплитуде составляет примерно половину этого колебания. Приведенные рассуждения показывают, что действие (амплитуда), вызванное всем волновым фронтом, примерно равное *половине* действия центральной зоны, а не действию половины

центральной зоны, как нередко утверждают. В самом деле,

Рис. 8.9. Векторная диаграмма действия первой и второй зон.

ОМ_я — результирующий вектор.

Рис. 8.10. Векторная диаграмма действия всей волны.

Результирующий вектор ОN равняется половине вектора, выражающего действие первой зоны. Вектор ОК выражает действие половины первой зоны.

действие половины центральной зоны выразилось бы вектором ОК, отличающимся от правильно найденного вектора ON.

§ 36. Простейшие дифракционные проблемы

Применение метода Френеля позволяет предвидеть и объяснить особенности. в распространении световых волн, наблюдающиеся тогда, когда часть фронта идущей волны перестает действовать вследствие того, что свет распространяется между препятствиями, прикрывающими часть фронта волны. Эти явления огибания прелятствий (экранов и краев днафрагм) носят название явлений оифракции.

Рассмотрим несколько простых случаев. Мы будем пользоваться гипотезой, положенной Френелем в основу его рассуждений, предполагая, что часть фронта световой волны, прикрытая непрозрачным экраном, не действует совсем, а неприкрытые участки фронта действуют так, как если бы экрана совсем не было. Гипотеза стий не вполне верна (см. примечание на стр. 153). Однако для верстия значительно больше длицы волны λ , метод Френеля достаточно хорошо описывает явления дифракции. Причина успеха метода Френеля лежит в том, что влияние материала экрана сказы-

вается лишь в непосредственной близости к краю его, т. е. на расвается лишь в лени и волны. При достаточно его, т. е. на рас-стояниях порядка длины волны. При достаточно больших отверстояниях порядка и краевой зоны незначительно и практически стиях влияние стеля. В таких условиях методом Френеля можно

а. Дифракция на круглом отверстии. Пусть а. Дифрания А, встречает на пути экран MN с круглым отверстием (рис. 8.11). Исследуем явле-

ние в точке В, лежащей на линии. соединяющей А. с центром круглого отверстия.

Вспомогательная поверхность Френеля Σ будет касаться экрана MN. Разбивка на зоны Френеля, произведенная, как описано в § 33, покажет, что в зависимости от размера отверстия в нем уложится большее или меньшее зон. При небольшом размере число отверстия и соответственных расстояниях до точек А и В можно учитывать лишь ограниченное число действующих зон. Легко видеть, что если отверстие открывает всего лишь одну зону или небольшое нечетное число зон, то действне в точке В будет больше, чем в отсутствие экрана *). Максимум действия соответствует размеру отверстия в одну зону. Если же отверстие открывает четное число зон, то световое возбуждение

в точке В будет меньше, чем при свободной волне. Наименьшая освещенность соответствует двум открытым зонам (рис. 8.12).

Применяя графический метод, описанный в § 35, мы получим диаграммы, подобные изображенным на рис. 8.8. — 8.10 и определяющие световое возбуждение в точке В в зависимости от числа зон, укладывающихся в отверстии.

Аналогичная картина будет наблюдаться для любой точки, лежащей на линии АВ. Расчет картины для точек, лежащих в плоскости, перпендикулярной к АВ, в стороне от этой линии, несколько сложнее. Но легко видеть, что вследствие симметрии всего расположения вокруг линии АВ распределение света в указанной плоскости должно быть симметрично, т. е. области одинаковой осве-

^{*)} При этом, однако, размер отверстия еще гораздо больше λ, так что усло-примении в примении при например, при вия применимости метода Френсля соблюдены. Действительно, например, при а ≈ b = 100 µ сти метода Френсля соблюдены. Действительно, например, при $a \approx b = 100 \text{ см и } \lambda = 5 \cdot 10^{-5} \text{ см}$ имеем $r = \sqrt{1/2} a \lambda = \sqrt{25 \cdot 10^{-4}} \text{ см} = 5 \cdot 10^{-2} \text{ см} = 1000 \lambda$ $= 1000 \lambda$

дифракция света

щенности должны располагаться кольцеобразно около точки В. щенности должны располата почки В. почки В. При подходящих условиях опыта можно наблюдать несколько При подходящих условиях максимумов и минимумов освоинся. При подходящих условних опласти иминимумов освещенности, концентрических областей максимумов и минимумов освещенности, концентрических областой в друга (см. рис. 8.12).

авно переходлиция на круглом экране. Для точки В. о. Дифранци, соединяющей источник А с центром экрана лежащен на липин, со Френеля дает первую зону от края экрана (рис. 8.13), построение Френеля дает первую зону от края экрана срис. о.137, построения поверхности волны с конусом, образующая до линии пересечения поверхности волны с до линии пересоди $b + 1/2\lambda$, вторую зону — до конуса с образующей которого равна $b + 1/2\lambda$, вторую зону — до конуса с образующей которого радии в рассуждения § 33, получим, что амплитуда b + λ, и т. д. Повторяя рассуждения § 33, получим, что амплитуда световых колебаний в В равна половине амплитуды, обусловленной

Рис. 8.12. Картины дифракции на круглом отверстии.

а — отверстие открывает нечетное число зон; в центральной точке поля (В на ряс. 8.11) — свет; 6 — отверстие открывает четное число зон; в центральной точке поля — темнота.

первой открытой зоной. Если размер экрана невелик (охватывает малое количество зон), то действие первой открытой зоны практически не отличается от действия центральной зоны волнового фронта. Таким образом, освещенность в точке В (равно как и в других точках на линии АВ, достаточно удаленных от экрана) будет такой же, как и в отсутствии экрана. Вследствие симметрии всей картины относительно прямой АВ светлая точка в В окружена кольцевыми зонами чередующихся тени и света (вне границ геометрической тени). По мере удаления от В в направлении, перпендикулярном линии АВ, кольца становятся все менее и менее резкими, пока вдали от В не получится равномерная освещенность. Фотография, приведенная на рис. 8.14, передает результаты соответствующего опыта.

Парадоксальное на первый взгляд заключение, в силу которого в самом центре геометрической тени должна находиться светлая точка, было выдвинуто Пуассоном в 1818 г. при рассмотрении мемуара Френеля в Парижской академии, в качестве доказательства несостоятельности рассуждений Френеля. Однако Араго произвел соответствующий опыт и показал, что выводы Пуассона соот-

гл. VIII. ПРИНЦИП ГЮЙГЕНСА И ЕГО ПРИМЕНЕНИЯ

ветствуют действительности и, следовательно, лишь подтверждают теорию Френеля *). Светлое пятно в центре геометрической тени, предсказанное Пуассоном в качестве мнимого опровержения волновой природы света, получило наименование пятна Пуассона.

Для успеха опыта необходимо, чтобы край экрана хорошо совмещался с границами зоны, т. е. экран должен быть точным кругом. Удобными для этой цели являются, например, стальные шарики от шарикоподшипников. В том случае, когда края экрана имеют неровности, сравнимые с размерами первой открытой френелевой

Рис. 8.13. Схема дифракции на круглом диске. Зоны построены для центральной точки поля В. зоны, расчет и опыт показывают, что экранчик нарушит однозначные предсказания теории Френеля о наличии пятна Пуассона.

Рис. 8.14. Картина дифракции на круглом диске.

в. Дифракция на краю экрана, на узкой щели, на узком длинном экране. Мы рассматривали до сих пор препятствия такой формы, для которых построение кольцевых зон Френеля являлось удобным методом решения задачи. Практически большое значение имеют также иные случаи, например прохождение света через узкую щель или мимо экрана с резким прямолинейным краем, прикрывающим часть фронта световой волны (полуплоскость). В этих случаях количественный расчет наблюдаемой картины по методу кольцевых зон Френеля неудобен, так

*) Светлое пятнышко в центре геометрической тени, отбрасываемой шариками разного размера, наблюдал Маральди (1723 г.) и, по-видимому, еще раньше Делиль (1715 г.), хотя указания Делиля недостаточно ясны; однако этот опыт остался незамеченным и был забыт, ибо явление дифракции не было тогда понято. как прямолинейный край экрана не выделяет целых зон, а перекак прямолиненным кран. Сличителен действия частично открытых секает их (рис. 8.15). Поэтому учет действия частично открытых или закрытых зон затруднителен.

и закрытых зон эмериса значительно упростить, если разбить Решение задачи можно значительно упростить, если разбить говерхность волны на зоны несколько иным образом (рис. 8.16). поверхность волим почка, В — точка наблюдения, Σ — по-Пусть А — светящаяся точка, В — точка наблюдения, Σ — по-Пусть А — светлицился волны и D — бесконечный экран, край верхность сферической волны и D которого перпендикулярен к плоскости чертежа. Из точки В проведем в плоскости черте-

жа линии ВМ₀, ВМ₁, ВМ₂, ...-.... ОТЛИ-BM1, BM2, И чающиеся по длине на $\lambda/2$. Через центр. А и точки М1,

Рис. 8.15. Пересечение зон Френеля экраном с прямолинейным краем.

Разбиение фронта волны Рис. 8.16. аналогичные зонам Френа лунки, неля.

М'1, М2, М'2 и т. д. проведем плоскости, параллельные ребру экрана D, и разобьем таким образом поверхность волны дугами больших окружностей на лунки, подобно тому как поверхность Земли делится меридианами на пояса. В отличие от меридианной сетки поверхность волны разбивается на лунки дугами, расположенными на неравном расстоянии друг от друга, и в соответствии -е этим площади лунок не будут одинаковыми (рис. 8.17). Рассуждения, аналогичные приведенным в § 33, покажут, что расстояния MoM1, M1M2, ..., а следовательно, и площади соответствующих лунок, относятся между собой приблизительно как

1:0,41:0,32:0,27:0,23:0,22:0,20:0,18:0,17

и т. д.*). Как видим, площади лунок по мере удаления от M_{0}

^{*)} Для простоты расчет выполнен для плоского фронта, что допустимо, коо во многих случаях кривизна Σ невелика,

убывают сначала очень быстро, а затем медленнее. Световое возбуждение из соответственных точек, лежащих в плоскости рис. 8.6 для

противоположных фазах. В как и при зонах, разбитых построению обычному по Френеля; однако амплитуды. обусловленные действием первой, второй и т. д. лунок. убывают значительно быстрее, чем в случае, разобранном в § 33, ибо, кроме увеличения наклона фронта волны к линии МВ, площади лунок заметно уменьшаются по мере удаления от полюса Мо.

Пользуясь указанным разделением поверхности волны на зоны, мы с большим удобством можем выполнить решение задачи по плану, разобранному в пп. а и б.

г. Принцип подопри формиробия

вании дифракционных картин. Нетрудно сообразить, что две системы объектов (отверстий и экранов) дадут вполне сходные дифракционные картины, если расположение источника

Рис. 8.17. К разбиению волнового фронта на лунки.

Эллиптические кривые — проекции грзниц лунок на плоскость экрана D.

Рис. 8.18. Моделирование картины дифракции на экране.

а – тень от руки, держащей тарелку, отбрасывается на близко расположенный экран; тень и объект геометрически подобны; 6 – тень от руки, держащей тарелку, отбрасы-вается на экран, расположенный на большом расстоянии (11 км); тень искажена дифрак-цией, (Фотография В. К. Аркадьева, выполненная на модели, рассчитанной по принципу полобия.) подобия.)

света, глаза наблюдателя и размеры отверстий и экранов таково, что обонм объектам соответствует одинаковое число зон Френеля и их частей. Действительно, характер дифракционной картины

165

определяется именно числом зон Френеля, а не абсолютными размерами экранов и отверстий.

оами экранов и опосредние (бесконечно удаленный источник) пло-В случае плоской волны (бесконечно удаленный источник) плов случае плосили равняется πfλ, где f — расстояние до глаза щадь зоны Френеля равняется πfλ, щадь зоны френени развини $r = \sqrt{f\lambda}$. Таким образом, для ра-наблюдателя, а радиус зоны $r = \sqrt{f\lambda}$. Таким образом, для ра-венства числа зон Френеля надо выбрать расстояние f таким, чтобы $x/r = x/\sqrt{f\lambda}$, где x — размер отверстия, имело одно и то же значение. Таково условие подобия дифракционных картин. же значение такого у лобных объектах размером x_1 и x_2 можно наблюдать подобные дифракционные картины, выбрав расстояние насто наблюдения f_1 и f_2 таким образом, чтобы $f_1/f_2 = x_1^2/x_2^2$. Так, в опытах В. К. Аркадьева на моделях (рис. 8.18) можно было моделировать картину дифракции от руки, держащей тарелку, на экране, расположенном на расстоянии 11 км, с легко осуществимого расстояния 40 м, заменив руку и тарелку вырезанной из жести моделью в масштабе, уменьшенном в $\sqrt{11000/40} \approx 16.5$ раз.

§ 37. Спираль Корню и применение ее для графического решения дифракционных задач

Подобно тому как мы построили векторную диаграмму для учета действия различных кольцевых зон (см. § 35), можно построить графически диаграмму действия различных лунок. Очевидно, получится также кривая в форме спирали, однако вследствие

Рис. 8.19. Спираль Корию.

различия в площадях лунок действие их по мере удаления центральной точки волны ОТ (точка Мо) быстро убывает, особенно вблизи Мо. В соответствни с этим векторы, изображающие действия последующих участков каждой лунки, быстрее убывают по длине, чем в случае построения § 35, соответствующего разбиению на зоны Френеля, и спираль получается более пологой. Аналитически задача была решена Френелем с помощью интегралов специального вида, получивших название интегралов Френеля.

График, соответствующий этому решению дифракционной задачи, был построен Корню и носит название спирали Корню. Она изображена на рис. 8.19, причем точки F- и F+ представляют полюсы, к которым спираль приближается асимптотически. Ветвь

спирали $OB_1B_2, ..., F_-$, выражающая действие левой половины волнового фронта, состоит из участков, параллельных соответствуюнового фронта, естен OA_1A_2 ... F_+ , изображающим действие правой щим участные соответствующие части фронта волны расположены симметрично относительно точки В (см. рис. 8.16), для которой ведется вычисление. Таким образом, обе

ветви кривой симметричны, О является точкой перегиба, и прямая F_OF+, соединяющая полюсы спирали, образует угол 45° с касательной в точке 0 *).

Пользуясь спиралью Корню, можно количественно решать задачи, подобные упомянутым выше, т. е. задачи о дифракции на препятствиях, ограниченных прямолинейными краями. Амплитуда колебания, обусловленная какой-либо частью фронта световой волны, выражается вектором, замыкающим участок спирали, соответствующий данной части фронта волны. Действие всего фронта волны, т. е. фронта, не закрытого никакими препятствиями, изобразится вектором F+F-, соединяющим концы спирали.

Рассмотрим в качестве примера применение спирали Корню к разбору вопроса о дифракции на краю экрана. Освещенность в точке В (рис. 8.20), лежащей на границе геометрической тени, определяется действием половины поверхности фронта волны, ибо вторая

Рис. 8.20. Дифракция на краю экрана.

его половина прикрыта экраном; этому соответствует на иа-шей диаграмме вектор OF_+ , соединяющий центр спирали с ее полюсом F_+ (см. рис. 8.19). Так как $OF_+ = \frac{1}{2}F_+F_-$, то амплитуда в тошка P_+ (см. рис. 8.19). в точке В равна половине, а интенсивность — четверти интенсив-ности, наблюдаемой в отсутствии экрана D. При переходе к области ВК полюс **) волны смещается вправо, так что для точки Ва открыта вся правая половина фронта волны и какая-то часть левой половины. Поэтому амплитуда будет определяться вектором, соединяющим F₊ со все более и более отдаленными точками спирали,

^{*)} Описание геометрических свойств спирали Корню, метода ее построения и связи с интегралами Френеля можно найти в любом курсе теоретической оптики. Изран с интегралами Френеля можно найти в любом курсе теоретической оптики, например: П. Друде, Оптика, ОНТИ, 1935, или Р. Дитчберн, Физическая Физическая оптика, «Наука», 1965.

^{**)} Полюсом волны называется точка пересечения волнового, фронта с пря-соелинато волны называется точка пересечения волнового, фронта с прямой, соединяющей источник А и точку наблюдения (В, В2,....).

т. е. вектором F₊B₁, F₊B₂, F₊B₃ и т. д. Рис. 8.19 показывает, что т. е. вектором F_+B_1 , F_+D_2 , F_+D_3 и т. д. т. н.с. отто показывает, что векторы эти проходят через ряд максимумов больших, чем F_+F_- , н ряд минимумов меньших, чем F_+F_- , что соответствует смене мак-симумов и минимумов в освещенной части экрана. Наибольшая симумов и минимумов в освещенной части экрана. Наибольшая симумов и минимала 1,37, достигается в первом максимуме, коинтенсивность, разлис, который возникает при следения и на рис. 8.19 и 8.20). Падение ин-первой зоны Френеля (точка B₂ на рис. 8.19 и 8.20). Падение ин-тенсивности в области геометрической тени BL, где экран D закрывает все большую и большую часть волны, происходит плавно, как вает все облавную и солошую иссла донны, происходит плавно, как видно из рис. 8.19, где изображены последовательные значения амплитуды: F₊A₁, F₊A₂, F₊A₃ и т. д.

Имея в своем распоряжении правильно вычерченную спираль Корню в достаточно большом масштабе, можно найти количественное распределение интенсивности с достаточной точностью.

Схема и фотография рис. 8.20 передают наблюдаемую дифракционную картину, под которой вычерчено теоретическое распределение интенсивности. Аналогично можно исследовать действие узкой бесконечной щели или узкого экрана и т. д.

§ 38. Замечания относительно принципа Гюйгенса — Френеля

Рассмотренные выше примеры показывают с достаточной убедительностью, что вычисления (аналитические и графические), выполненные на основе постулата Френеля, дают правильное значение распределения интенсивности при явлениях дифракции, т. е. позволяют правильно отыскать амплитуду результирующей волны, если размеры препятствий или отверстий значительно больше длины волны.

При-этом, однако, необходимо сделать следующие замечания. Во-первых, при вычислении результатов интерференции элементарных волн приходится предполагать, что амплитуда, обусловливаемая вспомогательными источниками, зависит от угла наклона ф между нормалью к соответствующему участку вспомогательной поверхности и направлением на точку В, для которой ведется вычисление.

Поверхность S подобна светящейся поверхности, так что амплитуда излучаемых волн тем меньше, чем больше угол между нормалью к поверхности и направлением на точку наблюдения В. Она имеет наибольшее значение на раднусе, совпадающем с нор-

малью ($\phi = 0$), и обращается в нуль при $\phi = \pi/2$ (рис. 8.21). Во-вторых, следует отметить, что во всех предшествующих рассужденнях мы стремились определить амплитуду результирующей волны, не затрагивая вопроса о ее фазе. Для большинства задач вопрос о фазе не имеет значения, ибо нас интересует интенсивность результирующей волны, которая пропорциональна квадрату амплитуды. Если же произвести и вычисление результирующей фазы, то оказывается, что она отличается на л/2 от наблюдаемой. фазы, то видеть, например, из рис. 8.10. Направление касательной к кривой в начальной точке О, выбранной за начало отсчета, дает в точке наблюдения фазу колебания, создаваемого действием центрального элемента первой зоны, т. е. значение фазы, которое обусловливается распространением света по прямой LB (см. рис. 8.2). Это н есть то значение фазы, которое соответствует действительности. График же наш показывает, что результирующий вектор ОЛ повернут на 90°, т. е. результирующая фаза отстает на л/2. Таким образом, постулат Френеля, правильно задавая амплитуды вспо-

могательных источников, неудачно определяет фазы их колебаний. Для того чтобы получить верный результат и для фазы, мы должны были бы в этой части изменить постулат Френеля и приписать вспомогательным источникам фазы, увеличенные на π/2.

Наконец, формулировка Френеля не устраняет трудности, характерной для принципа Гюйгенса в его первоначальной форме и состоящей в том, что из него следует наличие двух воли: одной, идущей вперед, от источника света, другой, построенной так же, как огибающая элементарных

волн, но направленной обратно, к источнику. Отрицание наличия обратной волны заключается до известной степени в допущении Френеля о зависимости амплитуды вторичных волн от угла ф между нормалью к вспомогательной поверхности и направлением на точку наблюдения. Согласно этому допущению амплитуда убывает по мере возрастания угла ф и становится равной нулю, когда абсолютная величина ф равна или больше 90°. Рис. 8.21 поясняет это допущение, причем убывание амплитуды представлено убыванием толщины кривой. Так как при ф > 90° амплитуда излучения вспомогательных источников обращается в нуль, то обратная волна невозможна. Однако, как уже указывалось, допущение относительно распределения амплитуд есть дополнительная гипотеза принципа Френеля. Можно сделать понятным отсутствие обратной волны следующими рассуждениями. Дейст-вительно, из каждой точки поверхности S возмущение распростра-няется возмущение распространяется и вперед и назад. Но перед поверхностью S возмущения еще нет, и действие сводится к образованию такого возмущения, кото-Рое мы и наблюдаем. Сзади же S возмущение уже пришло, и действие от S сводится к тому, чтобы это пришедшее возмущение компенсировать. В результате обоих действий — прямого и обратного -

возмущение *проходит* через S и распространяется дальше в направ.

лении В. Аналогией, поясняющей это рассуждение, может служить раслении В. Аналогиси, полетное по ряду соприкасающихся шаров. Шар, пространение импульса по ряду соприкасающихся шаров. Шар, пространение импульса на разви другой шар, деформируется на который налетел с одной стороны другой шар, деформируется на которыи налочен с одавиться, сам становится источником им-и затем, стремясь расправиться, сам становится источником им-пульса, направленного как вперед, так и назад. Но «импульс назад» пульса, паприменно и побы остановить налетевший сзади шар, а чимпульс вперед» сдвигает передний шар в направлении первоначального импульса. В результате импульс передается от шара к шару в одну сторону — вперед.

В § 33 мы уже упоминали, что постулат Френеля, служащий для характеристики вторичных волн, интерференция которых объясняет все процессы распространения волн, являлся некоторой гипотезой, догадкой Френеля. Проведение расчетов по методу Френеля и сравнение их с опытом показывают, что гипотезу эту надо несколько изменить: ввести дополнительный фактор, учитывающий наклон вспомогательной поверхности к направлению действия, обосновать добавочными рассуждениями отсутствие обратной волны и изменить начальную фазу вторичных волн на 1/2п. Если первые два дополнения привлекаются из соображений более или менее наглядных, то опережение фазы «считается иногда чем-то таинственным», как выразился Рэлей в своей «Волновой теории света». Конечно, поскольку постулат Френеля является не чем иным, как некоторым рецептом, дающим общий метод решения задач волновой оптики, то очевидно, что и видоизменение этого постулата не представляет ничего особенного; просто более тщательный анализ показывает, что надо пользоваться несколько иным рецептом решения волновых задач, обеспечивающим лучшее согласие с опытом.

По существу работами Френеля была поставлена на твердую почву волновая оптика, разъяснены в основных чертах все существеннейшие трудности, представляемые явлениями дифракции, и выяснено значение длины световой волны для этих явлений.

Впоследствии (1882 г.) Кирхгоф показал, что принцип Гюйгенса-Френеля может быть получен из дифференциальных уравнений оптики (из волновых уравнений); при этом все отмеченные нами поправки входят автоматически.

В теории Кирхгофа фактор, определяющий зависимость амплитуды от угла ф, вычисляется из общих положений теории, причем он оказывается равным (1 + созф)/22, т. е. обращается в нуль лишь при $\varphi = 180^\circ$, а не при $\varphi = 90^\circ$, как предполагал Френель. То обстоятельство, что Френель получил правильный результат при неправильном допущении, объясняется неточностью его метода вычисления. Однако и теория Кирхгофа не свободна от некоторых математических и физических допущений. В частности, и в методе

гл. VIII, принцип гюягенса и его применения

Кирхгофа не принимается во внимание влияние вещества экрана на световое поле вблизи него, что, как мы уже упоминали, не соответствует действительности, хотя и ведет лишь к незначительным ошибкам в тех случаях, когда размеры отверстий велики по сравнению с длиной волны. Однако, несмотря на это ограничение, метод френеля—Кирхгофа имеет огромное значение для большого круга задач, являясь практическим путем их решения.

Строгое решение дифракционных задач как задач о распространении электромагнитных волн вблизи препятствий удалось получить лишь для сравнительно немногочисленных (4 — 5) случаев. Так, Зоммерфельд (1894 г.) решил задачу о дифракции на краю идеально проводящего прямого экрана. Расхождения между результатами теории Зоммерфельда и точными измерениями можно. по-видимому, отнести за счет невозможности точно осуществить на опыте условия теории (реальный экран нельзя сделать идеально проводящим и бесконечно тонким, а его края нельзя сделать идеально острыми, как предполагается при теоретическом рассмотрении). Сопоставление этого и некоторых других случаев, разобранных по методу, аналогичному методу Зоммерфельда, показывает, что приближенная трактовка на основе принципа Гюйгенса — Френеля и метода Юнга дает достаточно хорошее приближение для не очень больших углов дифракции. В соответствии с этим мы и в дальнейшем будем широко пользоваться методом Френеля, помня, конечно, об указанном ограничении.

Исторически первая волновая трактовка дифракции была дана Т. Юнгом (1800 г.), который исходил из представлений, внешне сильно отличающихся от френелевских. Помимо закона распространения волнового фронта в направлении лучей, выводимого из построения огибающей вторичных волн Гюйгенса, Юнг ввел принцип передачи или диффузии амплитуды колебаний вдоль волнового фронта (поперек лучей). Скорость такой передачи пропорциональна, по Юнгу, длине волны и растет с увеличением различия амплитуд в соседних точках волнового фронта. Кроме того, диффузия амплитуды сопровождается изменением фазы колебаний. Таким образом, по мере распространения волнового фронта происходит сглаживание, «расплывание» неоднородного распределения амплитуды на волновом фронте. Полосы, наблюдающиеся при дифракции на экране с отверстиями (см. рис. 9.13, 9.14 и 9.18), возникают, по Юнгу, в результате сдвига фазы между колебаниями в падающей волне и колебаниями, диффундирующими в данную точку из соседних областей волнового фронта. В области геометрической тени падающая волна отсутствует, наблюдается чистый эффект диффузии, и полост и полосы появиться не могут, что находится в соответствии с наблюдениями.

Поскольку Юнг избегал пользоваться анализом бесконечно малых, то принятая им форма изложения закона поперечной диффузии амплитуды (по существу своему дифференциального) представляла прудности для понимания и практического применения. По-види-трудности для понимания и практического применения. По-види-мому, по этой причине представления Юнга со времен Френеля мому, по этой причине представления Юнга со времен Френеля считались неверными. Дальнейшее развитие теории показало, од-считались неверными. Дальнейшее методом Френеля, приводятся нако, что результаты, получаемые методом Френеля, приводятся с помощью математических преобразований' к форме, отвечающей идеям Юнга *).

Юнговская трактовка дифракционных явлений особенно плоконговская трактовка дарранциенных избесние пло-дотворна в тех случаях, когда заранее не ясно распределение ам-плитуд вторичных источников Гюйгенса — Френеля на граничных поверхностях. Это относится, например, к распространению волповерхностях. Это относится, например, к распространению вол-ны вдоль поглощающей поверхности или к огибанию волной вы-пуклого препятствия. Такова, в частности, постановка вопроса при изучении распространения радноволн над поверхностью Земли. Эта практически важная задача обстоятельно разобрана с помощью метода Юнга (М. А. Леонтович, В. А. Фок), который име-нуется в современной литературе диффузионной теорией дифракции. Метод Юнга широко применяется при исследовании распространения волн в неоднородных средах, в нелинейной оптике и в других областях.

Глава IX

ДИФРАКЦИЯ В ПАРАЛЛЕЛЬНЫХ ЛУЧАХ (ДИФРАКЦИЯ ФРАУНГОФЕРА)

§ 39. Дифракция Фраунгофера от щели

До сих пор мы рассматривали дифракцию сферических или плоских воли, изучая дифракционную картину в точке наблюдения, лежащей на конечном расстоянии от препятствия. Именно этот круг вопросов был исследован Френелем, и поэтому дифракционные

явления-такого рода называют обычно дифракцией Френеля. Фраунгофер (1821—1822 гг.) рассмотрел несколько иной тип явлений. В расположении Фраунгофера труба наводилась на отдаленный источник света (например, на освещенную щель) и на-блюдалось изображение его вблизи фокальной плоскости трубы через ее окуляр.

. Перед объективом трубы помещался экран с отверстиями, в большей или меньшей степени прикрывающими объектив. Оказалось, что вид изображения наблюдаемого объекта зависит от размеров и формы этих отверстий. Только тогда, когда открыта до-

*) Подробнее о методе Т. Юнга см.: Г. Д. Малюжинец, Физический энциклопедический словарь, «Советская энциклопедия», 1960, т. 1, стр. 606.

статочная часть объектива, изображение имеет вид, точно воспроизводящий форму объекта. При уменьшении же работающей части объектива наблюдаемая картина в большей или меньшей степени искажается и может даже совсем не напоминать формы источника.

Так, например, при рассматривании удаленной светящейся нити через объектив, прикрытый экраном с узкой щелью, в фокальной плоскости объектива видна светлая размытая полоса с несколькими максимумами и минимумами.

Таким образом, изображение, даваемое объективом, есть всегда дифракционная картина, возникающая вследствие ограничения сечения светового пучка.

Это ограничение осуществляется так называемой апертурной диафрагмой объектива (см. § 88), роль которой в простейшем случае играет оправа какой-либо линзы объектива или специальная диафрагма. При значительной работающей части объектива (широкая апертурная диафрагма) наблюдаемая дифракционная картина хорошо воспроизводит вид объекта; при малых ее размерах изображение_ может сильно (до неузнаваемости) отличаться от объекта.

Так как наблюдение по описанному методу ведется в плоскости, сопряженной с плоскостью источника, т. е. в том месте, где свет собирается линзой трубы, то дифракционная картина значительно выигрывает в яркости, и ее наблюдение облегчается. Тип дифракции, при котором рассматривается дифракционная картина, образованная параллельными лучами, получил название дифракции Фраунгофера.

Хотя принципиально фраунгоферова дифракция не отличается от рассмотренной выше дифракции Френеля, тем не менее подробное рассмотрение этого случая весьма существенно. Математический разбор многих важных примеров дифракции Фраунгофера не труден и позволяет до конца рассмотреть поставленную задачу. Практически же этот случай весьма важен, ибо он находит применение при рассмотрении многих вопросов, касающихся действия оптических приборов (дифракционной решетки, оптических инструментов и т. д.).

Условия, близкие к условням Фраунгофера, можно осуществить, поместив малый источник света в фокусе линзы и собрав свет при помощи второй линзы в некоторой точке экрана, расположенного в ее фокальной плоскости. Эта точка служит изображением источника. Помещая между линзами экраны с отверстиями различной величины и формы, мы меняем характер дифракционной картины, являющейся изображением источника; в зависимости от размеров и формы отверстий часть света пойдет по тем или иным направлениям и будет собираться в различных точках приемного экрана. В результате изображение будет иметь вид пятна, освещенность которого меняется от места к месту. Решить задачу

дифракции — значит найти это распределение освещенности на экдифракции — значит наши от размеров и формы препятствий, вызывающих ране в зависимости от размеров и формы прелятствий, вызывающих ране в зависимости от размеров и торие простых, вызывающих дифракцию света. Мы ограничимся разбором наиболее простых дифракцию света. дифракцию света. простых случаев, когда отверстие имеет и в то же время наиболее важных случаев, когда отверстие имеет и в то же время сланика или круга в непрозрачных экранах.

ну прямоутольное отверстие имеет незначительную ширину и бесконечную длину, т. е. является щелью. Практически, конечно, достаточно, чтобы ее длина была значительно больше ширины. Так, при ширине в 0,01-0,02 мм длина щели в несколько миллиметров может считаться бесконечной. В этом случае изображение точки растянется в полоску с максимумами и минимумами в направлении, перпендикулярном к щели. ибо свет дифрагирует вправо и влево от щели. При повороте щели около оси трубы вся картина также повернется. Если в качестве источника взять светящуюся нить, параллельную щели, то различные точки нити будут некогерентными между собой источниками и общая картина будет простым наложением картин от точечных источников. Мы будем наблюдать изображение нити, растянутое в направлении, перпендикулярном к направлению щели, т. е. опять-таки можем ограничиться рассмотрением картины в одном измерении.

Пусть волна падает нормально к плоскости щели. Разобьем площадь щели на ряд узких параллельных полосок равной ширины. Каждая из этих полосок может рассматриваться как источник волн, причем фазы всех этих волн одинаковы, ибо при нормальном падении плоскость щели совпадает с фронтом волны; кроме того, и амплитуды наших элементарных волн будут одинаковы, ибо выбранные элементы имеют равные площади и одинаково наклонены к направлению наблюдения..

Эти два обстоятельства — равенство фаз *) и равенство амплитуд — чрезвычайно упрощают как графическое, так и аналитическое решение рассматриваемой задачи.

Графически результат сложения амплитуд для любой точки экрана можно представить векторными диаграммами рис. 9.1.

Диаграмма рис. 9.1, а соответствует совпадению направления наблюдения и первоначального направления волны ($\phi = 0$), при котором элементарные волны не приобретают никакой разности фаз. Результирующая амплитуда s = A₀. Диаграмма рис. 9.1, б соответствует направлению, при котором крайние элементы волнового фронта в пределах щели дают разность фаз, равную л, т. е. разность хода, равную λ/2. Из рис. 9.2 видно, что это направление соответствует условию $ED = b \sin \phi = 1/2\lambda$, где b — ширина щели FE. Результирующая амплитуда выражается вектором $s = 2A_0/\pi$,

*) При носом падении фазы в разных точках поверхности щели не были бы наковыми, а началении фазы в разных точках поверхности щели не были бы одинаковыми, а изменялись бы по простому закону. Вычисление в этом случае

ГЛ. IX. ДИФРАКЦИЯ В ПАРАЛЛЕЛЬНЫХ ЛУЧАХ

нбо s равно диаметру полуокружности, длина когорой равна A₀. нбо s равно для 9.1, в соответствует разности хода лучей от крайних Диаграмма рис. 9.1, в соответствует разности хода лучей от крайних Диаграмма рисс обронта, равной λ , т. е. соответствует направэлементов волисствует и решен $b\sin \varphi = \lambda$. Результирующая амллению, определять, в указанном направлении света не будет. нетрудно видеть, что нулевая амплитуда будет соответствовать

Рис. 9.1. Дифракция на щели. Графическое вычисление результирующей амплитуды для разных направ-лений.

Рис. 9.2. Дифракция на щели. К аналитическому вычислению результирующей амплитуды.

также направлению, при котором разность хода от крайних элементов будет равна 2λ; следующий минимум соответствует разности хода 3λ и т. д., т. е. минимумы соответствуют направлениям

$$\sin \varphi = \lambda/b$$
, $2\lambda/b$, ..., $n\lambda/b$,

где n — целое число.

Для аналитического расчета интенсивности света, распространяющегося по разным направлениям за щелью, напишем выражение для волны, посылаемой каждым элементом волнового фронта, и просименто волнового фронта, и просуммируем действие всех элементов. Амплитуда волны, обусловленной одним таким элементом, пропорциональна его ширине dx, Т. е. различи таким элементом, пропорциональна его ширине dx, т. е. равна Cdx. Множитель С определится из условия, что по нап-равлении равлению $\varphi = 0$ амплитуда волны, посылаемой всей щелью, равна A_0 . Световое A_0 , т. е. $Cb = A_0$ или $C = A_0/b$. Таким образом, световое

ДИФРАКЦИЯ СВЕТА

возмущение в соответствующем участке щели выразится соотношением

$$ds = \frac{\dot{A}_0}{b} dx \cos \omega t.$$

Для отыскания действия всей щели в направлении, определяемом углом ф с первоначальным направлением, необходимо учесть мом углом у с перьоне изующую волны, доходящие от различных разность фаз, каралирина до пункта наблюдения B_{ϕ} (см. рис. 9.2).

Проведем плоскость FD, перпендикулярную к направлению нормалей дифрагировавших волн. Распределение фаз, которое будет иметь место на этой плоскости, определяет соотношение фаз элементарных волн, собирающихся в точке B_{φ} , ибо линза не вносит дополнительной разности фаз (таутохронизм, см. § 20). Таким образом, достаточно определить разность хода, возникающую на пути от плоскости FE до плоскости FD. Из рис. 9.2 видно, что разность хода между волнами, идущими от элементарной зоны при точке F (край щели) и от какой-либо точки N (лежащей на расстоянии x от края щели), есть $NP = x \sin \varphi$. Световое возмущение в точке P плоскости FD запишется следующим образом:

$$ds = \frac{A_0}{b} dx \cos{(\omega t - kx \sin{\varphi})}, \qquad (39.1)$$

где $k = 2\pi/\lambda$ — волновое число. Результирующее возмущение в зочке Во определится как сумма этих выражений, т. е. выразится интегралом по всей ширине щели (по всем значениям х от нуля до в). Итак.

$$s = \int ds = \int_{0}^{s} \frac{A_{0}}{b} \cos(\omega t - kx \sin \varphi) dx =$$
$$= A_{0} \frac{\sin(\frac{1}{2}bk \sin \varphi)}{\frac{1}{2}bk \sin \varphi} \cos(\omega t - \frac{1}{2}kb \sin \varphi). \quad (39.2)$$

Таким образом, результирующая волна, идущая в направлении ф, имеет амплитуду

$$A_{\varphi} = A_0 \frac{\sin\left(\frac{1}{2}bk\sin\varphi\right)}{\frac{1}{2}bk\sin\varphi} = A_0 \frac{\sin\left[(b\pi/\lambda)\sin\varphi\right]}{(b\pi/\lambda)\sin\varphi},$$
 (39.3)

так как $k = 2\pi/\lambda$. Во многих практических случаях, в частности при наблюдении в трубу, угол ф настолько мал, что можно положить $\sin \phi \approx \phi$, и тогда получим

$$A_{\varphi} = \frac{A_0 \sin (b\pi \varphi/\lambda)}{b\pi \varphi/\lambda}.$$
 (39.3')

Выражение (39.3') показывает, что вдоль экрана (с изменением ф) освещенность меняется, проходя через максимумы и минимумы.

176

Исследуем выражение (39.3). A_{φ} обращается в нуль для углов φ , удовлетворяющих условию ($b\pi/\lambda$) sin $\varphi = n\pi$, где n = 1, 2; 3, ... (целые числа), т. е. для

$$\sin \varphi = n\lambda/b. \tag{39.4}$$

Условие (39.4) определяет направления на точки экрана (и соответственно их положения), в которых амплитуда равна нулю и, следовательно, интенсивность минимальна. Оно совпадает с условием, выведенным выше графическим путем.

Рис. 9.3. Зависимость интенсивности (сплошная кривая) и амплитуды (пунктирная кривая) от направления при дифракции на щели.

При определенных промежуточных значениях угла ф амплитуда достигает максимальных и минимальных значений. Наибольший максимум имеет место, когда

 $\frac{b\pi}{\lambda}\sin\phi=0$, t. e. $\phi=0$; при этом $A_{\phi}=A_{0}$.

Следующие максимумы, значительно уступающие по абсолютной величине главному, соответствуют значениям ф, определенным из условий

$$\frac{b\pi}{\lambda}\sin\varphi = 1,43\pi, \quad \frac{b\pi}{\lambda}\sin\varphi = 2,46\pi, \quad \frac{b\pi}{\lambda}\sin\varphi = 3,47\pi, \\ \frac{b\pi}{\lambda}\sin\varphi = 4,47\pi \text{ H T. } \mathcal{A}. \quad (39.5)$$

(см. упражнение 68). На рис. 9.3 показана кривая распределения интенсивности (сплошная кривая)

$$I_{\varphi} = I_0 \frac{\sin^2 \left[(b\pi/\lambda) \sin \varphi \right]}{\left[(b\pi/\lambda) \sin \varphi \right]^2}, \qquad (39.6)$$

где $I_0 = A_0^*$ есть интенсивность света, идущего от щели шириной *b* в направлении первичного пучка.

Как видно из рис. 9.3, величина вторичных максимумов быстро убывает. Численные значения интенсивностей главного и

ЛИФРАКЦИЯ СВЕТА

следующего максимумов относятся как

1:0,045: 0,016 и т. д.;

приближенно эти отношения можно выразить в виде

$$1: \frac{4}{9\pi^2}: \frac{4}{25\pi^2}: \dots$$

Из установленных в настоящем параграфе формул ясно, что положение минимумов и максимумов зависит от длины волны λ . Поэтому дифракционная картина имеет описанный вид лишь для вполне монохроматического света. В случае белого света мы имеем совокупность соответствующих картин для разных цветов (сдвинутых одна относительно другой в соответствии с различием в λ).

Центральный максимум ($\varphi = 0$) будет, конечно, общим для всех длин волн, так что центр дифракционной картины представится в виде белой полоски, переходящей в цветную каемку. Вторичные максимумы для разных длин волн уже не совпадают между собой; ближе к центру располагаются максимумы, соответствующие более коротким волнам. Длинноволновые максимумы отстоят друг от друга дальше, чем коротковолновые. Однако максимумы эти настолько расплывчаты, что никакого сколько-нибудь отчетливого разделения различных длин волн (спектрального разложения) при помощи дифракции на одной щели получить нельзя. Все подробности картины можно выяснить, пользуясь формулой (39.6) или рис. 9.3.

При разборе задачи о дифракции на щели мы допускали, что по всей ширине щели амплитуда и фаза вторичных волн одинаковы. Другими словами, мы пренебрегали искажающим влиянием краев щели, что допустимо, если ширина щели b значительно больше длины еолны (b ≫ λ). Таким образом, мы оставались в области применимости принципа Френеля — Кирхгофа, и наше решение имеет силу именно при этих условиях. Однако на практике нередко приходится иметь дело с дифракцией на щелях, ширина которых сравнима с длиной волны. В частности, современные дифракционные решетки (см. § 45) представляют совокупность щелей шириной в 1-2 мкм, т. е. сравнимых с длиной волны. Возникает вопрос, в какой мере метод Френеля-Кирхгофа пригоден в этих случаях? Для предельного случая ширины щели, малой по сравнению с длиной волны ($b \ll \lambda$), удалось дать строгое решение задачи, не пользуясь гипотезой Френеля — Кирхгофа (Рэлей, 1897 г.). В этом случае для амплитуды вместо фактора $\sin \frac{b\pi\phi}{\lambda} / \frac{b\pi\phi}{\lambda}$ получается иное выражение (через функции Бесселя), имеющее в общем ход, подобный изображенному на рис. 9.3, но несколько круче спадающий по мере роста φ и отличающийся в максимуме в $b\pi^2/4\lambda$ раз от значения, даваемого формулой (39.3). Так, при b = 1/10 максимальная

178

амплитуда оказывается в 4 раза меньше, чем по теории Кирхгофа. Для промежуточных случаев, когда ширина щели сравнима с длиной волны, общий ход решения, очевидно, будет еще больше приближаться к решению по теории Кирхгофа. Действительно, выполненный Морзе и Рубинштейном (1938 г.) расчет показывает, что при щелях шириной около λ и больше приближение Кирхгофа может считаться достаточно удовлетворительным. Таким образом, даже для наиболее тонких современных дифракционных решеток пользование методом Кирхгофа не ведет к заметным ошибкам.

§ 40. Влияние ширины щели на дифракционную картину

Как показывает формула (39.4), расстояние минимумов от центра картины возрастает с уменьшением b. Таким образом, с уменьшением ширины щели центральная светлая полоса расширяется, захватывая все большую и большую

область экрана.

Если $b = \lambda$, то $\varphi_1 = 90^\circ$, т. е. первый минимум соответствует углу 90°; следовательно, он сдвинут на бесконечно удаленный край экрана. Освещенность экрана падает от центра к краям постепенно, асимптотически приближаясь к нулю; ширина центральной светлой полосы возрастает беспредельно. Таким образом, с уменьшением *b* освещенность стремится стать равномерной по всему экрану (рис. 9.4).

Наоборот, при увеличении ширины щели положение первых минимумов придвигается все ближе и ближе к центру картины, так что

Рис. 9.4. Дифракция на щели; влияние ширины щели на распределение интенсивности.

Кривая 1 — узкая щель: кривая 2 — широкая щель.

центральный максимум становится все резче и резче. При этом, как следует из (39.6), относительная интенсивность максимума остается неизменной; абсолютная же величина его возрастает, ибо возрастает энергия, проходящая через уширенную щель. При очень широкой щели (по сравнению с λ) мы получаем в центре резкое изображение линейного источника.

§ 41. Влияние размеров источника света

Во всяком реальном опыте источник имеет конечные размеры. Допустим, что угловой размер источника равен 2α. Это значит, что если мы производим опыт с удаленным источником (звезда, Солнце), то 2α есть угловой размер его, наблюдаемый из точки,
расположенной в центре щели S (рис. 9.5, a); если наблюдение верасположеннои в центре щога, то 2α есть угловой размер источника, дется с помощью коллиматора, то 2α есть угловой размер источника, дется с помощью коллиматорной линзы L (рис. 9.5, б). наблюдаемого из центра коллиматорной линзы L (рис. 9.5, б). наблюдаемого из центра сочиние можно рассматривать как И в том, и в другом случае источник можно рассматривать как И в том, и в другом и практически точечных источников, совокупность некогерентных и практически точечных источников,

Рис. 9.5. Дифракция на шели; влияние размеров источника.

 $2\alpha - угловая ширина источника;$ $<math>2\phi \approx 2\lambda/b - ширина центрального ди$ фракционного максимума: а - источник АВ расположен в бесконечности; 6 — источник расположен в главной фокальной плоскости коллиматорной линзы L.

фронты которых наклонены в пределах угла 2а. Эти источники да. дут ряд одинаковых дифракционкартин; смещенных Друг ных относительно друга 8 пределах угла 2α (для простоты считаем отдельные источники одинаково яркими).

На рис. 9.5 показаны положения главных максимумов от краев источника, которые располагаются по обе стороны главного максимума от центральной С точки нашего источника на угловых рас-Промежуточные стояниях ± α. точки источника дают максимумы, располагающиеся между А и В. Если щель широкая, так что $\phi =$ $=\lambda/b$ значительно меньше α , то изображение источника геометрически почти подобно источнику и лишь по краям окаймлено слабыми дифракционными полосами (вторичные максимумы). По мере

уменьшения ширины щели ф увеличивается, приближаясь к а. Изображение источника становится более расплывчатым, и дифракционное уширение составляет все большую и большую часть геометрической ширины изображения. При очень узкой щели, т. е. при φ, значительно большем α, дифракционное уширение становится значительно больше, чем геометрическая ширина изображения, так что наблюдаемая картина мало отличается от картины, даваемой точечным источником.

Дифракционные картины, наблюдаемые в этих случаях, показаны на рис. 9.6. При φ>α пунктирная кривая, представляющая картину точечного источника, будет практически сливаться со сплошной кривой, дающей картину от источника шириной 2а.

Влияние размеров источника света на дифракционную картину можно выяснить иным способом, основанным на представлении о частичной пространственной когерентности излучения (см. § 22).

ГЛ. ІХ. ДИФРАКЦИЯ В ПАРАЛЛЕЛЬНЫХ ЛУЧАХ

Рассмотрим когерентность света в плоскости щели S (см. рис. 9.5), обусловленную действием всего протяженного источника. Согласно сказанному в § 22 область когерентности в указанной плоскости имеет размер $2l_{\text{ког}} = \lambda/2\alpha$, где 2α — угловые размеры источника. Если $2l_{\text{ког}} \gg b$, то все точки щели почти полностью когерентны, и картина в плоскости экрана *EE* будет практически совпадать

Рис. 9.6. Дифракция при угловой ширине источника 2α на щели шириной b. Сплошная линия — изображение источника, пунктириая линия — изображение точки, расположенной в центре источника, a — широкая щель, $\phi = \lambda/b < \alpha$; δ — более узкая щель, $\phi = \lambda/b = \alpha$; θ — узкая щель, $\phi = \lambda/b > \alpha$.

с картиной, наблюдаемой при дифракции света от точечного источника (см. рис. 9.6, в). В противоположном предельном случае $2l_{kor} \ll b$ когерентными оказываются точки щели, удаленные другот друга на расстояние, малое в сравнении с ее шириной b. Поэтому ширина изображения будет определяться дифракцией света как бы на щели с шириной $2l_{kor}$ и в угловой мере окажется равной

ДИФРАКЦИЯ СВЕТА

 $\lambda/2!_{\rm kor} = 2\alpha$, т. е. будет совпадать с угловыми размерами источника (см. рис. 9.6, *a*). Таким образом, применение понятия частичной пространственной когерентности света приводит нас к уже полученным выводам, что было, разумеется, заранее очевидно.

§ 42. Дифракция от прямоугольного. и круглого отверстий

Если щель имеет ограниченную длину *l*, т. е. представляет собой прямоугольник со сторонами *b* и *l*, то, очевидно, и в направ-

Рис. 9.7. Картина дифракции от прямоугольного (а) и круглого (б) отвер тий. Стороны прямоугольника относятся как 4 к 5. лении длины щели будет надифракционная блюдаться картина. Общий вид, получаемый в этом случае, изображен на рис. 9.7, а. Форма отверстия показана маленьким белым прямоугольником в правом углу фотографии; источником света служит маленькая ярко освещенная дырочка (точечный источник), расположенная В фокусе большой линзы. Согласно изложенному в § 40, дифракционная картина шире в том направлении, которое соответствует более короткой стороне прямоугольника. В слуотверстия чае квадратного картина в обоих направлениях будет симметричной.

При графическом решении этой задачи волновой фронт разделяется на элементы в виде маленьких прямоугольинков, получающихся от разбивки поверхности отверстия рядом линий, параллельных той и другой стороне прямоугольника. Направление дифрагировавшего луча опре-

фрагировавшего луча распространения луча проведем две плоскости, параллельные сторонам прямоугольника *l* и *b* соответственно. Тогда направление лифрагировавшего луча будет характеризоваться углами ф и ф первоначального распространения. Направления, удовлетворяю-

ГЛ. IX. ДИФРАКЦИЯ В ПАРАЛЛЕЛЬНЫХ ЛУЧАХ

шие условиям $l \sin \psi = n\lambda$ или $b \sin \phi = m\lambda$, где m и n, целые числа, соответствуют, очевидно, минимумам интенсивности, т. е. черным полосам на фотографии. Аналитическое рассмотрение задачи о прямоугольном отверстии не представляет трудностей и может быть выполнено по схеме § 39.

Результаты вычисления интенсивности выразятся формулой

$$I_{\varphi, \psi} = I_0 \frac{\sin^2 (\pi b \sin \varphi/\lambda)}{(\pi b \sin \varphi/\lambda)^2} \frac{\sin^2 (\pi l \sin \psi/\lambda)}{(\pi l \sin \psi/\lambda)^2}, \qquad (42.1)$$

где I_0 — интенсивность света, идущего по первоначальному направлению $\varphi = 0$, $\psi = 0$. Так как обычно φ и ψ невелики, то можно положить $\sin \varphi = \varphi$ и $\sin \psi = \psi$, и тогда получим

$$I_{\varphi, \psi} = I_0 \frac{\sin^2 (\pi b \varphi/\lambda)}{(\pi b \varphi/\lambda)^2} \frac{\sin^2 (\pi l \psi/\lambda)}{(\pi l \psi/\lambda)^2}.$$
 (42.2)

Случай круглого отверстия представляет большие трудности для вычисления. При графическом решении задачи, разбив круглое отверстие на полоски параллельными линиями, заметим, что крайние полоски играют меньшую роль, чем в случае прямоугольного отверстия, где длина их такая же, как и центральной полоски. Поэтому в отличие от случая прямоугольника диаграмма будет составлена при помощи векторов неодинаковой длины.

В соответствии с этим и численные результаты расчета амплитуды получаются несколько иными *). Общий ход распределения интенсивности в дифракционной картине подобен случаю прямоугольного отверстия, но максимумы и минимумы располагаются в фокальной плоскости объектива, конечно, в виде концентрических колец (см. рис. 9.7, б), и угловой радиус темных колец определяется *приближенно* соотношением

$$\sin \varphi_m = \frac{0.61 + (m-1)/2}{R} \lambda,$$

где R — радиус отверстия и m = 1, 2, Таким образом, чем больше радиус отверстия, тем мельче дифракционная картина. Более точные значения угловых радиусов темных и светлых (макси-мумов) колец даны в табл. 9.1.

Последний столбец показывает относительную интенсивность в максимумах разного порядка. Из него видно, что уже в ближайшем максимуме интенсивность составляет менее 2% от интенсивности центрального.

Случай дифракции на круглом отверстии очень важен практически, ибо все оправы линз и объективов имеют обычно круг-

*) При выполнении расчета задача приводится к бесселевым функциям.

ДИФРАКЦИЯ СВЕТА

Таблица

Угловые радиусы темных и светлых колец

Минимумы	Максимумы	Интенсив- ность
 $\sin \varphi_1 = \frac{0,61}{R} \lambda$	$\sin \phi_1' = 0$	1
$\sin \varphi_2 = \frac{1,12}{R} \lambda^{-1}$	 $\sin \varphi_2' = \frac{0.81}{R} \lambda$	0,0175
$\sin q_3 = \frac{1,62}{R} \lambda$	$\sin \varphi_3' = \frac{1,33}{R} \lambda$	0,0042
$\sin \varphi_4 = \frac{2,12}{R} \lambda$	$\sin \varphi_4' = \frac{1,85}{R} \lambda$	0,0016

лую форму, так что при рассмотрении явлений в оптических виструментах всегда приходится считаться с дифракцией на круглом стверстии (см. гл. XV).

§ 43. Гауссовы пучки

В предыдущих §§ 40—42 и гл. VIII распределение освещенности, возникающее в результате дифракционных явлений, вычислялось для таких условий, когда амплитуда волнового фронта остается постоянной на протяжении всего отверстия, ограничивающего размеры волнового фронта. Во многих случаях это условие не выполняется. Например, можно получить изменение амплитуды вдоль волнового фронта, если на пути волны поместить пластинку с переменным коэффициентом пропускания. Разумеется, общие свойства дифракционных явлений (такие, как порядок величины угла дифракции) останутся прежними. Однако целый ряд важных деталей испытывает существенные изменения.

Пусть плоскость *EE* (рис. 9.8, *a*) представляет собой поверхность волнового фронта, и амплитуда колебаний в точке x', y'определяется функцией $a_0(x', y')$. Согласно постулату Френеля, возмущение в точке наблюдения M(x, y, z) с координатами x, y, zвыразится в виде интеграла по волновому фронту (см. § 33 и формулу (33.1))

$$s = \int \int \frac{a_0(x', y')}{r} \cos(\omega t - kr) \, dx' \, dy',$$

$$r = \sqrt{z^2 + (x - x')^2 + (y - y')^2},$$
(43.1)

где r — расстояние от точки (x', y', 0) до точки M(x, y, z). Подынтегральное выражение в (43.1) описывает колебание в точке M, обусловленное вторичной волной Гюйгенса—Френеля, испущенной

9.1

элементом dx'dy' волнового фронта в плоскости *EE*. Если $a_0(x', y')$ отлично от нуля в области $0 \le x' \le b$, $0 \le y' \le l$ и сохраняет в ней постоянное значение, то соотношение (43.1) будет, очевидно, описывать дифракцию на прямоугольном отверстии со сторонами b, l, разобранную в § 42.

Часто приходится иметь дело с распределением амплитуды в плоскости волнового фронта, описываемым функцией Гаусса, т. е.

$$a(x', y') = a_0 \exp\left[-({x'}^2 + {y'}^2)/2w_0^2\right].$$
(43.2)

Величина w_0 определяет, очевидно, область изменения x', y', где интенсивность колебаний, пропорциональная $a^2(x', y')$, уменьшается в е раз по сравнению с максимальным значением a_0 , достигаемым при x' = 0, y' = 0. Таким образом, величина w_0 характеризует размеры области, в которой сосредоточена энергия волны в плоскости *EE*, и в дальнейшем будет называться *шириной распределения интенсивностии*. Дифракционные явления в случае изменения амплитуды по закону (43.2) обладают рядом замечательных особенностей, позволяющих сравнительно просто анализировать многие дифракционные задачи. Реально распределения амплитуд вида (43.2) возникают при излучении электромагнитных волн лазерами.

Рассмотрим сначала дифракционные явления Фраунгофера. В этом случае множитель 1/r в (43.1) можно считать постоянным, равным 1/z, и вынести его из-под знака интеграла, полагая $r \approx z$. Величину r в аргументе косинуса можно заменить приближенным выражением

$$r \approx r_0 - (xx' + yy')/z; \qquad z \gg w_0^2/\lambda,$$

где $r_0 = OM$. Тогда интегрирование в (43.1) приводит к результату

$$s = 2\pi \frac{a_0 w_0^2}{z} \exp\left\{-\frac{(kw_0)^2}{2z^2} (x^2 + y^2)\right\} \cos\left(\omega t - kr_0\right).$$
(43.3)

Соотношение (43.3) гласит, что дфирагировавшая волна является сферической волной (фаза постоянна на поверхности $r_0 = \text{const}$), а распределение амплитуды по волновому фронту обладает осевой симметрией и также определяется гауссовой функцией

$$\exp\left[-(x^2+y^2)/2\omega^2\right],$$
 (43.4)

причем ее ширина w оказывается равной

$$w=\frac{z}{kw_0}=\frac{1}{\pi}\frac{\lambda}{2w_0}z,$$

или в угловой мере

$$\varphi \approx \frac{\omega}{z} = \frac{1}{k\omega_0} = \frac{1}{\pi} \frac{\lambda}{2\omega_0}.$$
(43.5)

Таким образом, главная часть энергии дифрагировавшей волны сосредоточена в интервале углов, определяемом отношением длины

волны λ к ширине распределения w_0 в плоскости *EE*. Следовательно, основной закон дифракционных явлений Фраунгофера, установленный в §§ 41, 42 на примере дифракции на щели и прямоугольном отверстии, выполняется и в данном случае. При количественном сопоставлении соотношения (43.5) с его аналогом в случае дифракции на квадратном отверстии

$$\varphi = \frac{1}{2}\lambda/b$$

ширину щели b следует сопоставлять с $2w_0$, т. е. угловая ширина дифракционного максимума при гауссовом распределении амплитуд оказывается в $\pi/2$ раз меньше, чем в случае прямоугольного распределения.

Дифракционная картина, описываемая формулой (43.4), характеризуется монотонным уменьшением интенсивности при увеличении угла дифракции от нулевого значения, т. е. отсутствием осцилляций и линий нулевой интенсивности (окружности при круглом отверстии и прямых линий при квадратном), а также быстрым спаданием интенсивности в «крыльях». Все эти качества очень полезны в оптических приборах, и иногда специально вводят на периферийных участках плоскости *EE* искусственное ослабление волны (так называемая *anodusaция*).

Замечательная особенность рассматриваемого случая состоит в том, что гауссово распределение амплитуды имеет место не только в плоскости *EE* (z = 0) и в зоне Фраунгофера ($z \gg w_0^3/\lambda$), но и при всех промежуточных расстояниях между *EE* и точкой наблюдения *M*, Именно, расчет показывает, что при произвольных *z* выполняется соотношение (см. упражнение 72)

$$s = \frac{2\pi}{k} a_0 \frac{w_0^3}{\sqrt{w_0^3 + (z/k)^3}} \exp\left[-\frac{x^2 + y^2}{2w^2}\right] \cos\left[\omega t - k\left(z + \frac{x^2 + y^2}{2R}\right) - \alpha\right], (43.6)$$

$$w^2 = w_0^3 + (z/kw_0)^2, \quad R = z + (kw_0^2)^2/z, \quad \text{tg} \, \alpha = kw_0^e/z.$$

Величина ω есть, очевидно, ширина гауссова распределения интенсивности поля на расстоянии z от экрана *EE*. Согласно соотношению (43.6) квадрат ширины распределения на расстоянии z равен сумме квадрата исходной ширины (ω_0^*) и квадрата ширины $z/k\omega_0$, подсчитываемой по формуле для дифракции Фраунгофера (ср. (43.5)). При $z \to \infty$ (практически при $z \gg k\omega_0^* = 2\pi\omega_0^*/\lambda$) величина ω стремится к значению $z/k\omega_0$, характерному для фраунгоферовой дифракции. При малых $z/(\tau. e. z \ll k\omega_0^*)$ ширина ω переходит в ω_0 . Изменение ширины распределения интенсивности при удалении от плоскости *EE* показано на рис. 9.8, *a*, где пунктирные личиеское приближение к фраунгоферовскому значению $z/k\omega_0$ (штрихпунктирные линий); расстояние $z = k\omega_0^* = 2\pi\omega_0^*/\lambda$ условно можно принять за границу между областями френелевой и фраунгоферо-

дифракция света

вой дифракционных картин. При $z = k \omega_{\theta}^{2}$ ширина ω отличается

от № в 1/2 раз. Фаза волны, определяемая соотношением (43.6), сохраняет Фаза волны, определяетия, которая описывается уравнением

$$z + (x^2 + y^2)/2R = \text{const.}$$

При малых значениях $x^2 + y^2$ это уравнение задает сферу, и велипри малых значениях и раст роль радиуса кривизны сфериче-чина R, следовательно, играет роль радиуса кривизны сфериче-ского волнового фронта. Если $z \gg kw^3$, то $R \approx z$, что соответствует ского волнового фронция Дифракция Френеля), то соответствует дифракции Фраунгофера. Если z ≪ kw³ (дифракция Френеля), то $R \approx (kw_{v}^{*})^{2}/z$ и при $z \to 0$ волновой фронт переходит в плоский. Минимальное значение радиуса кривизны Rmin = 2kws достигается при z = kwi, т. е. на границе между областями френелевой и фраунгоферовой картин.

Зафиксируем расстояние г и в соответствии с правилами, изложенными в §§ 33, 34, построим зоны Френеля в плоскости EE. Ралнус т-й зоны Френеля дается выражением

$$r_m = \sqrt{2\pi z m/k} = \sqrt{\lambda z m}, \qquad m = 1, 2, \ldots$$

Если положить здесь $z = kw_{n}^{s}$, то для этого расстояния

 $r_m = \sqrt{\pi m} \sqrt{2} w_0$

т. е. первая зона Френеля имеет радиус, в / п раз больший ширины распределения амплитуды в плоскости EE, равной $\sqrt{2} w_0$. При еще большем удалении от плоскости ЕЕ область концентрации поля также будет иметь размеры, значительно меньшие радиуса первой зоны Френеля. Указанное соотношение между r_1 и w_0 и составляет основной признак дифракции Фраунгофера. Наоборот, приближение точки г к плоскости ЕЕ приводит к уменьшению раднусов зоны Френеля заданного порядка m, т. е. при $z \ll kw_0^*$ на ширине распределения амплитуд $\sqrt{2}\omega_0$ укладывается много зон Френеля (примерно kwo/лг), и распространение волны вправо от плоскости ЕЕ можно рассматривать по методу Френеля (см. § 33).

Как и в предельном случае дифракции Фраунгофера, в области малых значений z, отвечающих дифракции Френеля, при гауссовом распределении амплитуд не наблюдается осцилляций интенсивности, характерных для дифракции на отверстиях, выделяющих из волнового фронта участок с приблизительно равными амплитудами (см. §§ 36, 37). Это различие связано, конечно, с постепенностью уменьшения амплитуды поля при удалении от точки О, а отнюдь не с конкретным (гауссовым) законом этого уменьшения, который использовался в вычислениях. Действительно, рассмотрим

ГЛ. IX. ДИФРАКЦИЯ В ПАРАЛЛЕЛЬНЫХ ЛУЧАХ

случай очень малых г, когда раднус отверстия в экране значительно случай очень и первой зоны Френеля, и расположим точку М вблизи границы геометрической тени. Тогда можно, очевидно, расвблизи тренно, очевидно, рас-считывать возмущение в точке *M*, не учитывая вторичных волн, приходящих от противоположного края отверстия, т. е. пользоприходлисти праводания инализа дифракции на экране с прямолиней. ваться ресулствения интенсивности в дифракционным красника, изображенной на рис. 8.20, возникали в результате того, что по мере удаления точки наблюдения от края экрана в игру последовательно вступали четные и нечетные зоны (точнее, лунки) Френеля, приходящие от них волны отличаются по фазе на величину (m — 1) л от фазы волны первой зоны Френеля, т. е. четные зоны приводят к уменьшению освещенности в точке наблюления, а нечетные — к ее увеличению (минимумы и максимумы на рис. 8.20). При этом существенно, что амплитуды волн от последовательных зон, хотя и изменяются с возрастанием номера т, но очень медленно. Если же экран с отверстием отсутствует, а поле в плоскости EE (см. рис. 9.8, a) изменяется вдоль оси Ox, то смещение точки M, например, к оси Oz, сопровождается не только приходом в нее волны от новой зоны Френеля, но и увеличением амплитуд волн от зон Френеля меньших номеров и прежде всего от первой зоны Френеля, расположенной против точки М. В результате влияние второго фактора оказывается сильнее влияния первого, и освещенность в точке М изменяется монотонно.

Таким образом, возникновение дифракционных полос вблизи границы геометрической тени характерно только в случае ограничения сечения волнового фронта непрозрачным экраном с отверстием. В случае же постепенного уменьшения амплитуды колебаний, что тоже эквивалентно некоторому эффективному ограничению волнового фронта, дифракционные явления приводят только к расширению поперечного сечения пучка, а чередования областей с большими и меньшими значениями освещенности не наблюдается. Это хорошо видно на фотографиях (рис. 9.8, б, в, г), полученных с помощью гелий-неонного лазера при последовательном смещении плоскости наблюдения. Фотография рис. 9.8, ∂ получена после ограничения пучка в плоскости EE щелью из лезвий бритв, в результате чего появились характерные дифракционные полосы (ср. 9.7, a).

Пример гауссова пучка служит прекрасной иллюстрацией к диффузионной интерпретации дифракционных явлений, изложенной в § 38. Согласно этой интерпретации, дифракцию можно рассматривать как результат диффузии амплитуды поля вдоль волнового фронта по мере его распространения в среде. Картина дифракционного расширения гауссова пучка, изображенная на рис. 9.8, действительно копирует пространственное распределение плотности диффундирующих частиц, если последовательным положениям

ДИФРАКЦИЯ СВЕТА

волнового фронта сопоставить последовательные моменты времени после начала диффузии.

после начала диффузии. Точное решение дифракционной задачи, изложенное выше, можно использовать для уточнения постулата Френеля (см. § 38). Положим в формуле (43.6) z = 0; тогда будем иметь

$$s = \frac{2\pi}{k} a_0 \exp\left[-(x^2 + y^2)/2w_0^2\right] \cos\left(\omega t - \frac{1}{2\pi}\right). \tag{43.7}$$

Вместе с тем, при z = 0 возмущение *s* должно принимать значение, отвечающее волне, приходящей слева на плоскость *EE*, т. е.

$$s = s_0 \exp\left[-(x^2 + y^2)/2w_0^2\right] \cos \omega t.$$
(43.8)

Из сопоставления последних двух выражений видно, что амплитуда a_0 вторичных волн, испускаемых элементом dx'dy' плоскости *EE*, связана с амплитудой s_0 световых колебаний в этой плоскости соотношением

$$a_0 = \frac{k}{2\pi} s_0 = \frac{1}{\lambda} s_0. \tag{43.9}$$

Кроме того, наличие фазового сдвига, равного $\pi/2$, указывает на сдвиг фазы между колебаниями в реальной световой волне и во вторичных волнах Френеля. Поэтому в соответствии с выводом, полученным в § 38 с помощью рассмотрения векторной диаграммы, источникам вторичных волн следует приписывать фазу, увеличенную на $1/2\pi$ по сравнению с фазой световых колебаний, т. е. ввести член $1/2\pi$ в аргумент косинуса в выражении (43.1).

При расчете дифракционной картины в качестве исходного распределения поля использовалось распределение в плоскости *EE*, где волновой фронт плоский, а ширина распределения минимальная. Разумеется, за исходное или заданное можно принять распределение поля в любой плоскости, и вычисления световых колебаний во всем пространстве должны привести к прежним результатам. Из сказанного вытекает важный вывод: если в каком-либо месте волновой фронт сферический и распределение амплитуды поля имеет вид гауссовой кривой, то эти свойства сохраняются во всем пространстве, а изменяются лишь радиус кривизны волнового фронта *сауссовой волной* или *сауссовым пучком*. В частности, поле в плоскости за счет гауссовой волны, приходящей на *EE* слева.

Для пояснения высказанного соображения рассмотрим преобразование гауссова пучка, осуществляемое идеальной тонкой линзой. Если поперечные размеры линзы достаточно велики, так что можно пренебречь диафрагмированием гауссова пучка на ней, то действие линзы сводится к изменению кривизны волнового фронта

ГЛ. IX. ДИФРАКЦИЯ В ПАРАЛЛЕЛЬНЫХ ЛУЧАХ

на величину 1/f, где f — фокусное расстояние линзы (рис. 9.9). на велични и поскости z = Z. Тогда, до прохождения фаза гауссова пучка в плоскости z = Z. Пусть линза, до прохождения через линзу, фаза гауссова пучка в плоскости линзы будет равна

$$\omega t - k \left[Z + \frac{x^2 + y^2}{2R} \right] - \alpha,$$

а после прохождения.

$$\omega t - k \left[Z + \frac{x^2 + y^2}{2} \left(\frac{1}{R} - \frac{1}{f} \right) \right] - \alpha.$$

При этом распределение амплитуды не изменяется. Следовательно,

после линзы пучок останется гауссовым, но радиус кривизны R' его волнового фронта будет определяться соотношением

$$\frac{1}{R'} = \frac{1}{R} - \frac{1}{f}.$$

Если линза достаточно короткофокусная и f < R, то R' < 0, т. е. кривизна волнового фронта после линзы имеет иной знак, чем до нее, и гауссов пучок будет иметь вид сходящейся волны (см. рис. 9.9).

§ 44. Дифракция на двух щелях

Рассмотрим опять явление дифракции на щели по схеме, изображенной на рис. 9.2. Положение дифракционных максимумов и минимателя и положение минимумов не будет зависеть от положения щели, ибо положение максимить максимумов не будет зависеть от положения щели, но часть колорому идет большая часть испытавшего дифракцию света. Поэтому при перемещении щели парат щели параллельно самой себе никаких изменений дифракционной картины картины не должно наблюдаться. Если в непрозрачной перегородке проделание то они дадут одипроделаны две идентичные параллельные щели, то они дадут одинаковые накладывающиеся друг на друга дифракционные картины,

лифракция света

вследствие чего максимумы соответственным образом усилятся. вследствие чего максантина картина окажется сложнее, ибо надо Однако в действительности картина окажется сложнее, ибо надо Однако в денствительности интерференцию соли, идущих от персой и второй щелей.

и и второи щелен. Предположим, что мы прорезали в перегородке КК (рис. 9.10) преднология в разделенные непрозрачным промежутком а,

так что a + b = d. Очевидно, что минимумы будут на прежних местах, вбо те направления. по которым ни одна из щелей не посылает света, не получат его и при двух щелях. Кроме того, однако, возможны направления, в которых колебання, посылаещелями. мые двумя взанмно уничтожаются. Это будут, очевидно, направления, которым COOTBETCTBYET разность X0.13

от соответственных точек обенх 1/22, 3/22, ... для воли, идущих щелей. Такие направления определяются, как легко видеть из рис. 9.10, условнем

$$MP = MN \sin \varphi = \frac{1}{2}\lambda, \quad \frac{3}{2}\lambda, \quad \dots,$$

т. е.

$$d\sin\varphi = \frac{1}{2}\lambda, \quad \frac{3}{2}\lambda, \quad \frac{5}{2}\lambda, \quad \dots \qquad (44.1)$$

Наоборот, в направлениях, определяемых из условий

$$d\sin\varphi = \lambda, \quad 2\lambda, \quad \dots, \quad (44.2)$$

действие одной щели усиливает действие другой, так что этим направлениям соответствуют еласные максимимы. Таким образом, полная картина определяется из условий:

прежние минимумы	b sin φ 🛥		λ.		2).,		32,	
добавочные минимумы	$d \sin \varphi =$	1/22		3/.).		5/.2.		:
главные максимумы	$d \sin \varphi = 0$,	••	λ,		2λ,		3λ,	,

т. е. между двумя главными максимумами располагается один добавочема менимум. Расстояние между первичными минимумами (от одной шели) зависит от ширины щели b. Если b значительно меньше d (далекие и узкие щели), то между двумя первоначальными минимумами может расположиться значительное число новых минимумов и максимумов.

Кривая рис. 9.11 показывает распределение интенсивностей. Пунктирная кривая соответствовала бы сложению интенсивностей обенх щелей, например, в том случае, если бы обе щели освещались некогереваными между собой световыми пучками. Сплошная кривая дест действительное распределение интенсивностей. Общие свето-

главных максимумов и добавочных

минимумов при дифракции на двух

параллельных щелях.

вые потоки сквозь щели, определяемые площадями, заключающивые потоки стими кривыми и осью абсцисс, должны, конечно, оставаться одинаковыми в обонх случаях.

При увеличении расстояния между щелями отдельные максимумы станут уже и чаще, но указанная площадь останется неизменной. Так как для одной щели центральный максимум гораздо интеннон. гак пораздо интен-

Рис. 9.11. Распределение интенсивности при дифракции на двух параллельных щелях шириной b, расположенных на расстоянии d.

Пунктирная кривая относится к случаю освещения щелей некогерентным светом, сплошная кривая — к освещению когерентным светом. 01 = 2 0В,

весь свет сосредоточен в области центрального максимума, т.е. в пределах, определяемых условием $\sin \varphi = \pm \lambda/b$ (см. рис. 9.11). Таким образом, угловая ширина основной дифракционной картины равна 22/6.

§ 45. Интерферометр Рэлея. Измерение углового диаметра звезд

Дифракция от двух щелей, облегчающая переход к рассмотрению дифракционной решетки, имеет и непосредственный интерес по тем применениям, которые она получила в разных физических измерениях.

Известный интерференционный опыт Юнга, имеющий большое историческое значение (см. § 16), соответствует случаю дифракции на дочка построения на двух щелях. Рэлей использовал этот случай для построения простого интерференционного (или дифракционного) рефрактометра, в котором два интерферирующих луча получаются в результате дифракции плоской волны на двух щелях. Схема расположения Рэдея нооб волны на двух щелях. Схема расположения Рэлея изображена на рис. 9.12. Ярко освещенная щель S служит источникой плоской волны на двух щелях. Слема расположит источником света, расположенным в фокальной плоскости объек-тива / в расположенным в фокальной плоскости объектива L₁, прикрытого экраном AB с двумя щелями, за которым рас-полагаюта. полагаются трубки рефрактометра R₁ и R₂. В фокальной плоскости

7 Ландсберг Г. С.

١

l

второго объектива L₂ получается дифракционная картина, расвторого объектива L2 иму и. При изменении показателя прелом-сматриваемая в сильную лупу. При изменении показателя преломсматриваемая в силоную из трубок картина смещается. ления вещества в одной из трубок состоит в

ния вещества в однон из сула состоит в том, что при довольно Главный недостаток прибора состоит в экране AR Главный недостатов призори щелями в экране AB, необходи-значительном расстоянии между щелями в экране AB, необходизначительном расстояния техно расположенных полос так картина мом для помещения двух трубок R₁, R₂, дифракционная картина мом для помещения доратесно расположенных полос, для наблюполучается в виде очень сель респистение и специальные придения которых преоучется сливное узети смещения полос. Впрочем, способления для точного измерения смещения полос. Впрочем, способления для почного померектометр Рэлея является удобным выполнении рефрактометр Рэлея является удобным

техническим прибором. Особенный интерес представляет применение дифракции на двух щелях к решению важнейшей астрономической задачи об

Рис. 9.12. Схема интерферометра Рэлея.

определенни углового расстояния двойных звезд или углового диаметра отдаленных звезд. Принцип такого измерения был выдвинут еще Физо в 1868 г. Майкельсон в 1890 г. указал на возможные принципиальные усовершенствования предложенного приема, но только в 1920 г. тому же Майкельсону удалось осуществить предполагаемое расположение и измерить диаметры некоторых звезд. Рис. 9.13 поясняет идею метода.

Пусть имеются две звезды на угловом расстоянии в друг от друга, столь малом, что в фокальной плоскости телескопа изображения этих звезд различить невозможно. Если объектив телескопа прикрыт щитом с двумя щелями на расстоянии D друг от друга, то от каждой звезды будет получена дифракционная картина в виде мелких ярких полосок.

Система полос от каждого из двух источников сдвинута друг относительно друга на угловое расстояние в. Центральная полоса Ро сдвинута относительно ближайшей полосы своей системы Р на угловое расстояние φ , определяемое из условий $D\sin \varphi = \lambda$ или $\varphi = \lambda/D$. Меняя расстояние между щелями D, можно изменять угол ф. Легко видеть, что когда $\phi = 20$, т. е. когда максимумы одной системы интерференционных полос приходятся на минимумы другой, видимость этих полос наихудшая: полосы исчезают. При дальнейшем изменении расстояния видимость вновь улучша-ется. Таким образования расстояния видимость вновь улучшается. Таким образом, измерение сводится к определению расстояния D_{0} , которому соответствует первое ухудшение видимости. Для данной длины волны λ искомое угловое расстояние $\theta = \lambda/2D_{0}$. я данной длины волос и повос уновос расстояние $\theta = \lambda/2D_0$. Если вместо двух источников (двойная звезда) мы имеем источник

с угловым диаметром в, то он дает интерференционную картину, с угловым для на рис. 9.14, где заштрихована наблюдающаяся полоса. сплошными линиями намечены полосы, обусловленные краями источника в отдельности; заштрихованная область дает ориентировочное представление о виде полос. Полосы будут иметь тот же период, но видимость их будет уменьшаться по мере увеличения углового размера источника. Исчезновение видимости должно иметь место при таком расстоянии D, при ко-TOPOM $\varphi = \theta$. T. e. $\theta = \lambda/D$.

Рис. 9.13. Схема метода Физо — Майкельсона для определения углового расстояния между звездами или углового диаметра звезд.

Итак, метод позволяет определить также и угловой диаметр источника света (ср. также § 41).

Последнее заключение непосредственно вытекает и из расчетов степени пространственной когерентности, выполненных в § 22. Виличественной когерентности, выполненных в § 22. Видимость интерференционных полос в опыте Юнга, модификацией которолого которого является метод Майкельсона, равна степени когерентности Колебания. колебаний в плоскости щелей, расположенных на расстоянии D. Согласно соотношению (22.24), степень когерентности обращается в нуль, если $\theta = \lambda/D$ (принято во внимание изменение обозначений), что совпадает с предыдущим выводом.

7.

дифракция света

Указанным методом Майкельсон в начале 1920 г. измерил угло-Указанным методом планконский двойной звезды Капеллы, ока-вое расстояние между компонентами двойной звезды Капеллы, окавое расстояние между компонентально, ока-завшееся равным 0,042". При помощи этого прибора можно было завшееся равным о,онд. при положение звезд друг относительно даже проследить орбитальное движения звезд друг относительно даже проследить оронтально положения звезд должны быть соотдруга, нос в завление ориентированы и щели на объективе.

ствующим обраст. Майкельсон впервые измерил диаметр Бетельв декаоре то ринадлежащей к типу так называемых гигантов. геизе — эрсэда, претельгейзе оказался равным 0,047". Зная расугловон днанстр (звездный параллакс ее не превосходит 0,03), стояние до звезды (звездный параллакс ее не превосходит 0,03),

Рис. 9.14. К методу определения диаметра звезд-

Схематическое изображение интерференционной картины для источника с угловым диа-метром 6. Угол $\phi = \lambda/D$ определяется расстоянием между щелями.

можно было вычислить линейный диаметр Бетельгейзе; он оказался равным 3,9 · 108 км, т. е. превосходящим диаметр орбиты Земли (3-104 км). Для сравнения напомним, что диаметр Солнца равен 1,4.10 км. Как видно из теории метода Майкельсона, чувствительность метода тем больше, чем больше расстояние между щелями на объективе. Самый большой из существовавших тогда рефлекторов имел диаметр всего около 5 м, и поэтому Майкельсон придумал способ увеличить расстояние между двумя пучками, заменив щели системой зеркал S₁S₃S₄S₂, действие которых понятно из рис. 9.15, а.

Вполне очевидно, что видимость полос определяется степенью когерентности колебаний на зеркалах S1 и S2, хотя период интерференционной картины зависит от расстояния между зеркалами

Расстояние S₁S₂, играющее роль расстояния D в аппарате Майкельсона, можно было довести до 6 м. Несмотря на крайнюю простоту иден такого увеличения D, техническое выполнение ее крайне трудно, ибо расстояние между зеркалами S₁S₂ должно быть переменным, а во время измерения положение их должно быть

гл. іх. дифракция в параллельных лучах

строго неизменным с точностью до длины волны. В настоящее время построен прибор Майкельсона, позволяющий доводить

Рис. 9.15. Схемы опытов по измерению диаметра звезд, предложенных Майкельсоном (а) и Брауном и Твиссом (б).

расстояние до 18 м и, следовательно, измерять углы до тысячной доли секунды. Интерференционная картина, даваемая одиночной звездой в приборе Майкельсона, изображена на рис. 9.16.

Указанные обстоятельства, затрудняющие получение стабильной интерференционной картины, оказываются несущественными в близком по схеме методе Брауна и Твисса (1958 г.).

Идея метода поясняется схемой рис. 9.15, б. Два фотоумножителя Р1 и Р2 регистрируют излучение в двух изображениях одной и той же звезды, разнесенных на расстояние D. Усиленные фототоки перемножаются и усредняются за большой промежуток времени в устройстве С (коррелятор). Поскольку фототоки пропорциональны интенсивностям, измеряемая величина, обозначаемая G12, характеризует степень корреляции флуктуаций интенсивности в двух изображениях звезды (ср. § 22). Более детальный анализ показывает, что

Параллельные черные линии представляют собой результат интерференции световых пучков, отраженных от двух зеркал; они пересекают дифракционное изображение звезды в объективе телескопа, прикрытом экраном D (см. рис, 0.13). При соответствующем раздвижеим зеркал S' и S' интерференционные им зеркал S' и S' интерференционные онное изображение звезды.

 $G_{12} \propto 1 + \gamma_{12}^2$, т. е. величина G_{12} , как и степень когерентности γ_{12} , зависит от комбинации $D\theta/\lambda$ и уменьшается с увеличением расстоя-

ния D. Таким образом, измерения G₁₂ при различных расстояниях D ния D. Таким образом, измерения от расстояниях D между изображениями звезды позволяют определять их угловые

меры в. Важной чертой метода Брауна и Твисса является значительно размеры в. Важной чертон менода ручули и к небольшим неточностям меньшая чувствительность измерений к небольшим неточностям меньшая чувствительность понтрана, равно как и к нестабильности в перемещении присынное селинонном методе Майкельсона. Это атмосферы, чем в интерференционном прибор в исторования. атмосферы, чем в плеррорать прибор, в котором расстояние D обстоятельство позволить со 180 м и который позволяет измерять угловые днаметры звезд вплоть до 0,0005'.

Принцип измерения днаметра звезд был применен (Зигмонди) также для измерения субмикроскопических частиц, размер которых не позволяет непосредственно различать их в микроскоп. И в этом случае днафрагма с двумя щелями, вырезающая пучки лучей, поступающие от наблюдаемой частицы в объектив микроскопа, создает в поле зрения дифракционную картину, так что частицы представляются в виде светлых полосок, параллельных линии, соединяющей щели, и испещренных максимумами. Раздвигая щели, добиваемся исчезновения дифракционных максимумов и таким образом определяем поперечник частицы, параллельный линии D. Поворачивая днафрагму, можно найти размеры частицы во всех направлениях.

§ 46. Дифракционная решетка

Рассмотрение дифракции на двух щелях показывает, что в этом случае дифракционные максимумы становятся более узкими, чем в случае одной щели. Увеличение числа щелей делает это явление еще более отчетливым.

Повторяя рассуждение § 44, найдем, что между каждыми двумя главными максимумами ($d \sin \varphi = 0, \lambda, 2\lambda, ...$) при трех щелях располагаются два добавочных минимума ($d \sin \varphi = \frac{1}{3}\lambda$ и $\frac{2}{3}\lambda$, $\frac{4}{3}\lambda$ и ⁶/₃хит.д.), при четырех щелях — три добавочных минимума

В общем случае N щелей ширины b с промежутками a (период решетки d = a + b) имеем:

прежние минимумы	b sin m ==			
главные максимумы	d also	λ,	2λ,	
добавочные мини	$a\sin \varphi = 0,$	λ,	2λ.	;
але алгимумы	$d \sin \varphi = \lambda/N, 2\lambda/N,$	\dots $(N-1)\lambda/N$	$(N+1)\lambda/N$	
T. C. Meskins		• • • • • • • • • • • • • • • • • • • •	(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	

между двумя главными максимумами располагается (N — 1)

добавочных минимумов, разделенных вторичными максимумами. Конечно с уколость Конечно, с увеличением числа щелей растет интенсивность вных максимимов то числа щелей растет интенсивность главных максимумов, ибо возрастает количество пропускаемого решеткой света Описиса возрастает количество пропускаемого решеткой света. Однако самое существенное изменение, вносимое

Doom

большим числом щелей, состоит в превращении расплывчатых большим презкие узкие максимумы, разделенные практически максимумов в рекутками, ибо вторичные максимумы очень слабы: темными преный из наблюденных вторичных максимумы очень слабы: самый сильный из наблюденных вторичных максимумов составляет не более 5% от (см. упражнение 75). Резкость не област из резкость надежно отличать близкие длины волн, для которых главные максимумы не будут перекрывать друг друга, что имеет место при расплывчатых максимумах, получающихся с одной щелью или малым числом их.

То обстоятельство, что в результате интерференции большого числа лучей мы получаем резкий переход (малое изменение направлення φ) от максимума к соседнему минимуму, наглядно объясняется диаграммами рис. 9.1. Когда все складывающиеся N лучей находятся в одной фазе, мы получаем максимум, соответствующий амплитуде s = Na результирующего колебания, где N - числоинтерферирующих лучей и а — амплитуда каждого из них. Для получения минимума (см. рис. 9.1, в) необходимо, чтобы фаза последнего луча отличалась от фазы первого на 2л. Следовательно, при наличии N лучей различие в фазе двух соседних лучей должно равняться $2\pi/N$ (различие в разности хода λ/N), т. е. быть тем меньше, чем больше N.

Таким образом, между каждыми двумя главными максимумами, соответствующими разности хода $d \sin \varphi = m\lambda$, где $m = 0, \pm 1, \pm 2, ...,$ лежат по (N — 1) добавочных минимумов, определяемых разностью хода $d \sin \varphi = m\lambda + p\lambda/N$, где p пробегает целые значения от 1 до (N — 1) (см. также упражнение 75). Угловое расстояние между главным максимумом и соседним минимумом определяется требованием, чтобы разность хода возросла на λ/N , т. е. Δ ($d \sin \varphi$) = $= \lambda/N$, или $d \cos \varphi \Delta \varphi = \lambda/N$, откуда $\Delta \varphi = \lambda/N d \cos \varphi$. При не очень больших углах дифракции (соs φ ≈ 1), что соответствует обычно не очень большим порядкам дифракции (небольшим т), резкость главных максимумов не зависит от порядка спектра и равна $\Delta \phi =$ = λ/Nd. Из этой формулы следует, что резкость главных максимумов тем больше, чем больше Nd, т. е. чем больше общая ширина решетки. При заданном периоде решетки d резкость главных максимумов возрастает (Дф уменьшается) с ростом числа штрихов N.

Рис. 9.17 наглядно показывает уменьшение ширины главных максимумов (увеличение их резкости) по мере роста N. В хороших решотисти изображаемый решетках N достигает 10⁵, благодаря чему спектр, изображаемый Такой такой решеткой, состоит из очень резких линий, если источник испускает достаточно монохроматическое излучение.

Расстояние между главными максимумами для определенной длины волны λ определяется периодом решетки d, а распределение интенсионны λ определяется периодом решетки зависит от соотинтенсивности между отдельными максимумами зависит от соот-ношения между b и d. В том случае, когда b и d соизмеримы, не-которые расси которые главные максимумы будут отсутствовать. Так, при d = 2b

дифракция света

пропадают все четные максимумы, причем, конечно, соответствуюпропадают все четные малененые. При d = 3b нсчезает каждый третий максимум и т. д.

общая формула, передающая распределение амплитуд дифрагировавших волн в зависимости от угла ф, гласит *):

$$A = A_0 \frac{\sin \alpha \sin N\beta}{\alpha \sin \beta}, \qquad (46.1)$$

где $\alpha = (\pi b/\lambda) \sin \varphi$, $\beta = (\pi d/\lambda) \sin \varphi$, N — число щелей и A_0 амплитуда, задаваемая одной щелью в направлении первичного

Рис. 9.17. Изменение характера дифракционного спектра в зависимости от числа щелей N (негатив). пучка φ = 0. Формула (46.1) получается без труда, если суммировать действия отдельных щелей. принимая во внимание возникающую разность фаз (см. упражнеине 74). Множитель $A_0 \frac{\sin \alpha}{\alpha}$ выражает действие одной щели, а множитель sinN_β/sin_β — интерференцию волн, распространяющихся через N щелей. Положение главных максимумов, определяемое из условия $d \sin \phi = m\lambda$, соответствует максимальным значениям мноsin β, который при этом sin NB жителя обращается в N (см. упражнение 75).

Таким образом, в главных максимумах амплитуда в N раз, а интенсивность в N² раз больше, чем дает в соответствующем направлении одна щель. Если бы интерферировали волны, прошед-

шие через N некогерентно освещенных щелей, то интенсивность еозросла бы только в N раз, т. е. была бы в N раз меньше, чем при интерференции когерентных пучков, обусловленных решеткой. Кроме того, в случае решетки отдельные яркие главные максимумы разделены темными областями, а при N некогерентно освещенных щелях мы имели бы N-кратное наложение сравнительно широкой дифракционной картины от одной щели (ср. с пунктирной кривой рис. 9.11, где N = 2). Формула (46.1) показывает, что в выражение для распределения амплитуды входит множитель $A_0 \frac{\sin \alpha}{\alpha}$, дающий *) В предположении, что а. b >)., т. е. соблюдены условия применимости метода Френсла — Кирхгофа (см. § 39).

гл. іх. дифракция в параллельных лучах

распределение, обусловленное одной щелью. Следовательно, при 201 распределение, так же как и при дифракции от двух щелей, при дифракции от двух щелей, дифракции на россоредоточен в области центрального максимума, почти весь свет сосредоточен в области центрального максимума, почти весь сыст сограния и согласти центрального максимума, обусловленного одной щелью. Так как ширина щели в обычно обусловленного этот центральный максимум с изгольные в обычно обусловленного систеральный максимум с угловой шириной, очень мала, то этот центральный максимум с угловой шириной, очень мала, довольно широк, и на его протяжении укладывается равной слис, аных максимумов решетки, соответствующих нескольким порядкам (рис. 9.18).

Рис. 9.18. К теории дифракционной решетки. Положение главных максимумов и распределение энергии по различным порядкам в щелевой решетке.

Пунктирная кривал передает ход множителя $f(\alpha)$, выражающего распределение, сбуслов-ленное дифракцией на отдельной щели. Если $b > \lambda$, то $f(\alpha) = \sin \alpha \alpha$. В противном случае $f(\alpha)$ оказывается несколько иной функцией (см. конец § 39). При большом числе щелей N высоты главных максимумов значительно больше, чем указывает пунктирная кривая.

На рис. 9.18 по оси абсцисс отложен угол дифракции ф, и отчетливо видна неэквидистантность главных максимумов. Иногда, Папример, при теоретическом анализе удобнее в качестве незави- $l(\sin N \beta)/N \sin \beta$ ² (puc. 9.19, *a*), $[(\sin \alpha)/\alpha]^2$ (puc. 9.19,*b*) и их произведения (рис. 9.19, в).

Из формулы (46.1) нетрудно определить распределение интенсивности по главным максимумам. Действительно, находя из соот-ношения по главным максимумам. Действительно, находя из соотношения $d \sin \varphi = m\lambda$ значение $\sin \varphi$, соответствующее направлению на m_{μ} соответствующее направлению на m-й (главный) максимум, подставляем эту величину в формулу (46.1) (46.1) и возводим в квадрат; тогда

$$I_m \approx A^2 = \frac{A_0^2 N^2 d^2 \sin^2\left(\pi b m/d\right)}{\pi^2 m^2 b^3} = \frac{A_0^3 N^2 d^3}{\pi^2 m^2 b^2} \sin^2\frac{\pi b m}{d}, \qquad (46.2)$$

дифракция света

причем b < d. При соизмеримых b и d величина sin ($\pi bm/d$) проходит через нуль при некоторых значениях m. Спектры соответ, ствующих порядков отсутствуют.

Рис. 9.19. К теории дифракционной решетки.

Ниже приводятся данные о распределении интенсивности по максимумам разных порядков для разных соотношений между *b* и *d*, причем интенсивность нулевого порядка принята за 100.

	Нулевоћ	Первый	Второй	Третий	Четвертый
	порядок	порядок	порядок	порядок	порядок
d = 2b $d = 3b$	100	40	0	4,5	0
	100	67,5	17	0 ·	4,2

Положение главных максимумов можно определить путем элементарного рассмотрения явлений на дифракционной решетке, аналогично тому, как это сделано для одной щели (см. § 39). m = 0, 1, 2, ..., можно вывести из рис. 9.18.

ГЛ. ІХ. ДИФРАКЦИЯ В ПАРАЛЛЕЛЬНЫХ ЛУЧАХ

Это элементарное рассмотрение не дает, однако, необходимых Это элеменний относительно распределения энергии в дифракционной сведений в настности, оставляет без ответа важний сведении в дифракционной картине, в частности, оставляет без ответа важный вопрос о роли картине, в частности. Для некоторых вопросов картине, в жов решетки. Для некоторых вопросов, впросо роли числа штрихов решетки. Для некоторых вопросов, впрочем, такое числа штриние вполне достаточно. Так, например, из условия рассмотрение вполне достаточно. Так, например, из условия рассмотрети следует, что спектры порядка, большего, чем d/λ , d sin ф иметь места (о физическом смысле этого см. в упражненин 77).

Рис. 9.20. Разложение белого света дифракционной решеткой. Красный конец спектра второго порядка перекрывается фнолетовым концом спектра третьего порядка.

Рассмотрение действия дифракционной решетки показывает, что при большом числе щелей свет, прошедший через решетку, собирается в отдельных, резко очерченных участках экрана. Положение максимумов на этих участках, определяемое формулой $d \sin \varphi =$ = тл, зависит от длины волны л. Другими словами, дифракционная решетка представляет собой спектральный прибор.

Чем меньше длина волны λ, тем меньшему значению угла φ соответствует положение максимума. Таким образом, белый свет растягивается в спектр так, что внутренний край его окрашен в фиолоти в фиолетовый цвет, а наружный — в красный (рис. 9.20). Значение m = 0 от боло в красный срис. 9.20). m = 0 определяет максимум по направлению $\varphi = 0$ для всех значений λ чений λ. Следовательно, в этом направлении (направление первичного пушко) ного пучка) собирается излучение всех длин воли, т. е. нулевой спектр всех длин воли, т. е. нулевой

спектр представляет собой белое изображение источника. Спектры первого, второго и т. д. порядков располагаются метрично то второго и т. д. порядков располагаются симметрично по обе стороны пулевого. Расстояние между соответствующими линиями спектров возрастает по мере увеличения порядка спектров. В зависимости от спектральной однородности анализируемого света, т. е. различия крайних длин волн, его составляющих, спектры высших порядков начинают накладываться ставляющих, спектры высших порядков начинают накладываться друг на друга. Так, для солнечного света, даже если ограничиться лишь видимой частью его излучения, спектры второго и третьего порядков частично перекрывают друг друга (см. упражнение 82). Применяя решетки с малым периодом и пользуясь спектрами высших порядков, мы можем получить значительные углы дифракции и таким образом очень точно измерить длины волн. Измерения Ангстрема (1868 г.) и, особенно, Роулэнда (1888 г.) привели к составлению превосходных атласов солнечного спектра, положения фраунгоферовых линий которого измерены с точностью до шестого десятичного знака.

Несмотря на высокое совершенство изготовления современных решеток, в них нередко наблюдаются некоторые незначительные искажения единого строго выраженного на всем протяжении решетки периода, существование которого мы предполагали при нашем рассмотрении. Это влечет за собой отступление от того распределения интенсивности по главным максимумам, которое приведено в формуле (46.2).

Сверх того, указанные нарушения влекут за собой появление добавочных максимумов, обычно не сильных (так называемых «духов»). Появление «духов» нередко приводит к ошибкам при анализе спектра дифракционной решеткой, ибо максимум, соответствующий «духу», можно принять за присутствие какой-то добавочной спектральной линии, в анализируемом спектре в действительности не имеющейся.

§ 47. Наклонное падение лучей на решетку

Если плоская волна падает на решетку под углом в (рис. 9.21), то для вычисления направления на главные максимумы можно поступать так же, как и выше.

Полная разность хода для двух соответственных волн равна

$$AC - DB = d\sin\theta - d\sin\varphi$$
.

Условия образования главных максимумов имеют вид

$$d\left(\sin\theta - \sin\varphi_{m}\right) = m\lambda, \qquad (47,1)$$

где φ_m — направления на главный максимум порядка *m*, а $m = 0, \pm 1, \pm 2, \ldots$ Преобразовывая, имеем

 $2d\cos^{1}/_{2}(\varphi_{m}+\theta)\sin^{1}/_{2}(\theta-\varphi_{m})=m\lambda.$

Если решетка довольно груба, т. е. период ее d значительно больше λ, то углы дифракции малы и угол фm мало отличается

ГЛ, IX. ДИФРАКЦИЯ В ПАРАЛЛЕЛЬНЫХ ЛУЧАХ

от в. В таком случае можем положить:

$$1/2 (\varphi_m + \theta) \approx \theta$$
 и $\sin 1/2 (\theta - \varphi_m) \approx 1/2 (\theta - \varphi_m)$

Итак, имеем

$$d\cos\theta \left(\theta - \varphi_m\right) = m\lambda. \tag{47.2}$$

Сравним эту формулу с формулой для нормального падения волнового фронта на решетку $d \sin \varphi_m = m\lambda$ или $d\varphi_m = m\lambda$ (если угол φ_т мал). Это сравне-

ние показывает, что угол между направлениями на нулевой максимум и на непулевые максимумы (0- ϕ_m) вычисляется так же, как если бы падение было нормальным, но решетка имела бы уменьшенный период, а именно $d \cos \theta$.

Если в близко к $\pi/2$. то мы имеем весьма заметное уменьшение периода. Таким образом, направляя на грубую решетку свет под углом, близким к 90°, мы можем наблюдать отчетливую дифракционную картину. Например, гравированная миллиметровая линейка при очень

Рис. 9.21. Наклонное падение параллельного пучка на дифракционную решетку.

косом падении света на нее позволяет наблюдать дифракционные спектры для видимого света.

Указанное обстоятельство нашло важное применение при исследовании дифракции рентгеновских лучей. Так как длины волн рентгеновских лучей обычно в тысячи раз меньше, чем волн видимого света, то все искусственно построенные решетки оказы-ваются ваются для рентгеновских лучей слишком грубыми, а именно $d/\lambda \sim 1000.$

Используя очень косое падение излучения, удалось получить ясно выраженную дифракцию рентгеновских лучей со сравнительно грубой року 1925 г.). Впоследгрубой решеткой ($d \approx 0,02$ мм, Комптон и Дьюэн, 1925 г.). Впослед-ствии по этого ($d \approx 0,02$ мм, Комптон и Дьюэн, 1945 г.). спектры и с большой точностью были измерены длины воли рептеновского излучения. Этот метод измерения является в настоящее еремя наиболее совершенным (ср. § 118).

§ 48. Фазовые решетки

Распределение энергии по спектрам разных порядков, приводимое в § 46. показывает, что значительная часть энергии сосредоточена в спектре нулевого порядка; по мере перехода к высшим почена в спектре нулевого порядка; по мере перехода к высшим порядкам энергия быстро убывает. Спектральные приборы, снабженные такими дифракционными решетками были бы мало светосильны. Важным практическим усовершенствованием решеток явилось указанное Рэлеем и осуществленное Вудом изменение распределения по спектрам, основанное на введении дополнительной разности хода в пределах каждого штриха решетки. С этой целью решетку гравируют так, что каждая борозда имеет определенный профиль,

Рис. 9.22. Фазовые решетки со специальным профилем для концентрации энергии в отдельных спектрах различных порядков.

а — отражательная решетка; б — пропускающая решетка.

благодаря чему при отражении (или прохождении) возникает добавочная разность хода от одного края борозды до другого (рис. 9.22). Подбирая профиль борозды, удается сконцентрировать энергию в спектре того или иного порядка, ослабляя остальные, в том числе и самый яркий спектр иулевого порядка. Решетки подобного типа позволили сделать дифракционные спектрографы инструментом, превосходящим по светосиле обычные призматические спектрографы.

Решетки, изображенные на рис. 9.22, представляют собой, по существу, фазовые решетки, отдельные элементы которых отличаются не различием в отражающей или пропускающей способности, влияющей на амплитуду волны, а своей способностью изменять фазу волны. В данном случае изменение фазы происходит вследствие геометрической формы пластинки, отражающей или пропускающей волну. Можно воздействовать на фазу волны, осуществляя различие в показателе преломления пропускающего слоя при его вать, вызывая в прозрачном теле ультраакустическую волну. Была исини фазы волны при отражении от стекла и металла (С. М. Рытов и И. Л. Фабелинский). Для этой цели на гипотенузную грань стекляни И. Л. Фассилие поворотной призмы были нанесены полоски се-ной 90-градусной поворотной несеребренного стоите полоски сеной 90-градуствые полосками несеребренного стекла. При падении ребра, разделенные полосками несеребренного стекла. При падении ребра, разделенные стекла (рис. 9.23) интенсивность света. При падении света со стороны стекла (рис. 9.23) интенсивность света, отраженсвета со сторони иных полосок, практически одинакова (полное ного от тех или иных полосок, практически одинакова (полное внутреннее отражение), но возни-

кает различие в фазах, приводящее к образованию дифракционной картины.

Возможны, конечно, решетки амплитудно-фазовые, т.е. воздействующие одновременно и на амплитуду, и на фазу. Общая теория таких решеток представляет повторение теории, рассмотренной в § 45. Только вместо множителя $\frac{\sin[(\pi b/\lambda) \sin \varphi]}{(\pi b/\lambda) \sin \varphi} = \frac{\sin \alpha}{\alpha}$, представляю-

 $(\pi b/\lambda) \sin \varphi$ щего распределение амплитуды при дифракции на одной достаточно широкой шели. войлет множитель более обшего вила $F(b, \lambda, \varphi)$, также зависящий от ширины штриха b, длины волны λ и угла дифракции ф, но передаю-

Рис. 9.23. Фазовая отражательная решетка, использующая различие изменении фазы при полном B внутреннем отражении от стекла и серебра.

щий и особенности штриха (его профиль, отражающую или пропускающую способность и т. д.). Таким образом, формула (46.1) заменится на

$$A_{\varphi} = A_0 F(b, \lambda, \varphi) \frac{\sin N\beta}{\sin \beta}.$$

Специальный выбор особенностей штриха, определяющий вид функции F, и дает возможность концентрации энергии в спектрах отдельных порядков. Например, для решеток, изображенных на рис. 9.22, б, расчет по схеме § 39 приводит к выражению

$$F(b, \lambda, \varphi) = \frac{\sin (\alpha - \alpha_b)}{\alpha - \alpha_0}, \quad \alpha - \alpha_0 = \frac{\pi b}{\lambda} (\sin \varphi - \sin b).$$

Поскольку функция $F(b, \lambda, \varphi)$ максимальна при $\alpha = \alpha_0$, наиболь-шую нически функция $F(b, \lambda, \varphi)$ максимальна при $\alpha = \alpha_0$, наибольшую интенсивность будут иметь те главные максимумы, для кото-рых угли: рых углы ф близки к углу в геометрического преломления лучей на грани на грани штриха.

Техника изготовления дифракционных решеток совершенствовалась довольно медления дифракционных решеток совершетка была построена построена, по-видимому, в 1785 г. американским астрономом Риттен-гаузом, но видимому, в 1785 г. американским астрономом Риттенгаузом, но не была использована ни им самим, ни кем-либо другим. Решетка была вновь открыта в 1821 г. Фраунгофером, который дал основы теории дифракции в параллельных лучах и осуществил при помощи дифракционного спектроскопа важнейшие открытия (в частности, открыл темные линии в сплошном спектре Солнца – фраунгоферовы линии).

фраунгоферовы или Фраунгофер изготовлял из проволоки, намо-Первые решетки Фраунгофер изготовлял из проволоки, намотанной на два параллельно расположенных винта. Таким образом он мог получить решетки с числом штрихов от 40 до 340 на дюйм *). Для изготовления более совершенных решеток Фраунгофер перешел к нанесению штрихов на тонком золотом слое, покрывавшем стекло, а затем непосредственно на стекле (алмазом). Лучшая решетка Фраунгофера была шириной в 1/2 дюйма и имела период около 3 мкм (8000 штрихов на дюйм).

Фраунгофер указал на принципиальную возможность изготовления отражательных решеток, хотя все его решетки работали как пропускающие.

Переход от примитивных решеток Фраунгофера к современным дифракционным решеткам явился сложной технической задачей, в решении которой принимали участие многие исследователи.

Важнейший шаг был сделан Роулэндом, построившим специальные машины для изготовления тончайших решеток большого протяжения. Кроме того, Роулэнд первый стал делать вогнутые отражательные решетки, выполняющие одновременно роль решетки и собирающей линзы. Решетки Роулэнда имели до 20 000 штрихов на дюйм при большой ширине (до 10 см) и превосходном качестве.

Дальнейшие улучшения в машинах Роулэнда ввели Андерсон, Вуд и др. В настоящее время высококачественные решетки изготовляются во многих странах, в том числе и в СССР. Как правило, это отражательные решетки с почти треугольным профилем штриха (см. рис. 9.22, а, так называемые эшеллеты), концентрирующие до 70-80% падающего на решетку света в спектр какого-либо одного, ненулевого порядка. Изготавливаются гравированные решетки для различных областей спектра, от далекой инфракрасной $(\lambda \approx 1 \text{ мм})$ до ультрафиолетовой ($\lambda \approx 100 \text{ нм}$) и ближней рентгеновской ($\lambda \approx 1$ нм), с размерами до 400 × 400 мм² и с числом штрихов (в зависимости от области спектра) от 4 до 3600 на мм. Широкое распространение и сталики. распространение нашли копин с гравированных решеток (реплики), которые получилости которые получаются путем изготовления отпечатков на специальных пластмассах с последующим нанесением на них металлического отражающего слоз. П отражающего слоя. По качеству реплики почти не отличаются от оригиналов. оригиналов.

*) Уже с этими решетками Фраунгофер определил длину волны *D*-линил Na (5886 Å). Общая ширина решеток Фраунгофера была невелика, так что разрешающая сила их не превосходила 500. Естественно, что с такой решет кой нельзя было разделить дублет натрия, состоящий из линий 5890 и 5896 Å.

в 70-х гг. разработана новая технология изготовления решеток. В 70-х 11. рести периодического распределения решеток, основанная на создании периодического распределения интенсивоснованная на специальных фоточувствительных материалах в результате ности на специального излучения. Такого роза ности на специала в результате излучения. Такого рода решетки, назыинтерференции имеют высокое качество и изготавлива-ваемые голографическими, имеют высокое качество и изготавливаваемые голосриции и ультрафиолетовой областей спектра с числом ются для видимой и ультрафиолетовой областей спектра с числом ются для видимост обнато и с размерами вплоть до 600 × 400 мм².

§ 49. Эшелон Майкельсона

Важной разновидностью фазовой решетки является ступенчатый эшелон Майкельсона, представляющий собой решетку со сравнительно небольшим числом отдельных «щелей» (число интерферирующих пучков не превосходит 30). Так как при этом разность

Рис. 9.24. Схема эшелона Майкельсона.

хода между отдельными пучками весьма велика (10 000 λ и более), то в таком приборе мы получаем спектры весьма высоких порядков.

Эшелон представляет собой «лестницу», сложенную из плоскопараллельных толстых (от 1 до 2 см) стеклянных пластинок, совершенно однородных, строго одинаковой толщины и с выступами одинаковой ширины (рис. 9.24).

Для обеспечения хорошего качества эшелона существенно необходима чрезвычайная тщательность обработки пластинок, которые должны быть строго плоскопараллельными и однородными, так что, наложив их

Рис. 9.25. Ход лучей в эшелоне Майкельсона. $A0 = QB = h; \quad OB = s; \quad AD = h \cos \varphi, \\ BC = s \sin \varphi.$

одну на другую и сжав, мы получим как бы «лестницу» с одинако-выми ступентия и сжав, мы получим как бы «лестницу» с одинаковыми ступеньками из сплошного куска однородного стекла. Параллости из сплошного куска однородного стекла.

Параллельный пучок, пронизывая всю толщину эшелона, испы-зает на красси тывает на краях ступеней дифракцию. Разность хода, возникающая между отдельными волнами, зависит от толщины h и ширины s ступенек, от показателя преломления стекла n и угла дифракции φ . Как нетрудно видеть из рис. 9.25, разность хода между лучами

Рис. 9.26. Два возможных положения главных максимумов в эшелоне Майкельсона.

 $a - в пределах угла <math>\Delta \phi = 2\lambda/s$ укладываются два дифракционных максимума заметной интенсивности (*m*-го и (*m*+1)-го порядка), разделенные расстоянием $\delta \phi = \lambda s; \ \delta - в$ пределах угла $\Delta \phi$ укладывается один дифракционный максимум заметной интенсивности. (Расчет дан для эшелона из 10 пластинок).

AM и BN, исходящими из соответственных точек ступенек, равна $\Delta = (QB) + BC - AD = nh + s \sin \varphi - h \cos \varphi = s \sin \varphi + h (n - \cos \varphi),$ где φ — угол дифракции. Ввиду малости φ можно считать $\sin \varphi = \varphi$ и $\cos \varphi = 1$. Следовательно,

$$\Delta = s\phi + h(n-1).$$

Так же как и для решетки, условия нахождения главных мак-симумов имеют вид $\Delta = m\lambda$, где m - целые числа. Итак, $s\phi + h(n-1) = m\lambda$,

т. е.

$$\varphi = \frac{m\lambda - h\left(n - 1\right)}{s}.$$
(49.1)

Резкость максимумов, так же как и в решетке, определяется числом интерферирующих световых пучков, т. е. числом ступенек числом интерференрующий светерых пучков, т. е. числом ступенек эшелона, которое не превосходит 30. Зато разность хода (по-рядок интерференции) между двумя соседними лучами весьма верядок интерферетая членом sq ввиду его малости, найдем для h = 1 см n n = 1.5

$$m = h (n-1)/\lambda \sim 10\,000$$
.

Таким образом, эшелон может работать только при очень монохроматическом излучении. Расстояние между главными дифракционными максимумами соседних порядков, т. е. изменение ф при изменении *m* на единицу, очень невелико. Из формулы (49.1) имеем $\delta \phi = \lambda/s$. Все эти дифракционные максимумы имеют заметную интенсивность только в пределах центрального максимума, обуслов-ленного одной щелью (ср. §§ 44 и 46). Угловая ширина этого максимума есть $\Delta \phi = 2\lambda/s$, ибо ширина «щели» равна s. Таким образом, в пределах поля заметной яркости шириной $\Delta \phi$ может укладываться только один или два максимума соседних порядков, ибо расстояние между ними $\delta \phi = 1/2 \Delta \phi$ (рис. 9.26).

§ 50. Характеристики спектральных аппаратов и сравнение их между собой

В настоящей главе рассмотрено действие некоторых спектральных аппаратов (дифракционная решетка, эшелон Майкельсона), позволяющих определять с очень большой точностью длины волн или разницу в длинах волн двух близких спектральных линий. Аналогичную задачу можно решить и при помощи интерференционных спектроскопов (пластинка Люммера—Герке, интерферометр Майкельсона, интерферометр или эталон Фабри—Перо), описан-ных в га ных в гл. VII.

Для того чтобы иметь возможность сравнить между собой дей-ствие этих различных аппаратов и выбрать, какой из них наиболее пригоден при различных аппаратов и выбрать, какой из них наиболее пригоден при решении той или иной физической задачи, необходимо установить установить определенные характеристики спектральной аппаратуры. а. Листористики спектральной аппарата D.

а. Дисперсия спектрального аппарата D. Основное назначение спектральных аппаратов состоит в установле-нии длины востоит спектральных аппаратов состоит в установлении длины волны исследуемого света — задача, которая в боль-шинстве от волны исследуемого света — задача, которая в больщинстве случаев сводится к измерению различия в длинах воли

двух близких спектральных линий. Обычно положение спектральдвух близких спектраль-ной линии в аппарате задается углом, определяемым направлением ной линии в аппарате обранту после дисперсионного элемента. Поэто-кормали к волновому фронту как угловое расстояние межни. кормали к волноволя тт му дисперсию определяют как угловое расстояние между направле му дисперсию определентральных линий, отличающихся по длине ниями для друх систерум линиям, отличающимся по длине волны волны на 1 А. Если двум линиям, отличающимся по длине волны волны на г А. Если долны в углах, равная δφ, то мерой дисперсии на δλ, соответствует разница в углах, равная δφ, то мерой дисперсии служит величина

 $D = \delta \varphi / \delta \lambda.$

выражаемая, например, в угловых единицах на ангстрем (угловая дисперсия).

Так как мы часто наблюдаем положение линии на экране или фотопластинке, то удобно заменить угловое расстояние между линиями линейным расстоянием бз, выраженным, например, в миллиметрах. Если фокусное расстояние линзы, проектирующей спектр на экран, равно f, то, очевидно, $\delta s = f \delta \phi$, так что линейная дисперсия равна

$$D^* = \delta s / \delta \lambda = f D$$

и выражается обычно в миллиметрах на ангстрем. На практике нередко указывают обратную величину, характеризуя дисперсию аппарата числом ангстремов, укладывающимся на 1 мм фотопластинки.

Пусть мы имеем две близкие длины волны λ_1 и λ_2 , точнее, два спектральных участка, настолько узких, что их можно охарактеризовать значениями λ1 и λ2; таковы, например, две линии, испускаемые ртутной лампой. Расстояние между максимумами бо для λ, и λ2 найдется из условия, определяющего положение максимумов: $d \sin \varphi = m\lambda$. Действительно, дифференцируя, получаем:

т. е.

 $d\cos\varphi\,\delta\varphi = m\,\delta\lambda$,

 $D = \frac{\delta \varphi}{\delta \lambda} = \frac{m}{d \cos \varphi}.$ (50.1)

Таким образом, дисперсия тем больше, чем меньше период решетки а и чем выше порядок т наблюдаемого спектра.

Нетрудно также определить угловую дисперсию интерференционных приборов, которая, как показывает вычисление, обычно - очень велика (см. упражнение 81).

б. Разрешающая способность спектрального аппарата. Наличие значительной дисперсии еще не обеспечивает возможности раздельного наблюдения двух близких спектральных писти раздельного наблюдения двух близких спектральных линий λ_1 и λ_2 , как бы близки к монохроматическим они ни были. Пейстеским они ни были. Действительно, дисперсия определяет угловое или линейное расстояние тельно, дисперсия определяет угловое или линейное расстояние между максимумами интенсивности для двух длин воли λ, и λ. но в жду максимумами интенсивности для двух длин волн λ_1 и λ_2 , но в любом аппарате переход от максимума дан-

ной длины волны к минимуму происходит более или менее постеной длины вости от устройства аппарата. Поэтому распределепенно, в зависилие на экране или фотопластинке имеет вид, изобра-ние освещенности на экране или фотопластинке имеет вид, изображенный на рис. 9.27.

ный на рисс Наблюдаемое распределение освещенности есть сумма освещенностей, создаваемых близкими спектральными линиями λ₁ и λ₂ ностей, интенсивности; оно и изображено и и λ₁ одинаковой и изображено одинаковон кривой С. Таким образом, даже при большой дисперсии (большое расстояние

Рис. 9.27. Распределение освещенности при наложении двух близких спектральных линий одинаковой интенсивности.

АВ) нет возможности обнаружить наличие двух длин волн λ₁ и λ₂, если спадание освещенности происходит так полого, как изображено на рис. 9.27.

Рис. 9.28. Распределение освещенности для двух еще разрешимых спектральных линий (критерий Рэлея).

Для того чтобы аппарат позволил установить наличие спектральных линий двух длин волн (разрешить две длины волны), необходимо, чтобы при заданном расстоянии между максимумами очертания обеих линий были достаточно резкими (рис. 9.28). В этом случае наличие двух максимумов (двух длин болн) выступает достаточно отчетливо, несмотря на то, что горбы от каждой из них в значительной степени перекрываются. Само собой разумеется, что возможность различения двух максимумов в этом случае зависит до известной степени от чувствительности к контрасту того метода (визуального или фотометрического), которым исследуется распревольного или фотометрического). распределение интенсивности вдоль спектра, от возможности надежно установить небольшое различие в интенсивности.

Таким образом, возможность разрешения двух линий является колько празом, возможность разрешения двух линий является несколько неопределенной. Согласно предложению Рэлея условно принято считать разрешение полным, когда два горба расположены, как показова порба совпакак показано на рис. 9.28, т. е. когда максимум первого горба совпадает с минимумом второго. То наименьшее различие в длинах воли ба инимумом второго. То наименьшее различие в опреволн ба, которое удовлетворяет поставленному условию, и опре-делит собот и удовлетворяет поставленному условию, и определит собой способность спектрального аппарата к различению

близких длин волн квазимонохроматических спектральных линий одинаковой интенсивности.

одинаковой интенсивиотальной форме неприменим к интерферев-Критерий Рэлея в указанной форме неприменим к интерферевционным спектральным аппаратам, в которых, как мы видели, переход от максимума к минимуму имеет иную угловую зависимость, нежели в дифракционной решетке *). Поэтому удобнее придать критерию Рэлея несколько иной вид. Если две смежные спектральные линии имеют одинаковую интенсивность и форму, то критерий Рэлея означает, что минимум между линиями составляет около 80% от соседних максимумов. Такой контраст устанавливается вполне уверенно как при визуальных, так и при объективных (фотографических и электрических) методах регистрации. Исходя из этого, нередко предел разрешения определяют требованием, чтобы глубина седловины на интегральной кривой интенсивности двух близких и одинаково интенсивных линий составляла не менее 20% высоты соседних максимумов.

Условность критерия разрешения в этой формулировке выступает с еще большей отчетливостью. При суждении о возможности разрешения двух линий с сильно различающимися интенсивностями приходится исходить из ряда факторов, характеризующих каждый конкретный случай. Тем не менее, несмотря на условность критерия Рэлея, он оказывается весьма полезным для сравнения разрешающей способности различных приборов. Так, непосредственно ясно, что способность спектрального аппарата к различению близких длин волн тем больше, чем дальше максимумы, т. е. чем выше порядок *m* и чем резче максимумы (круче переход от максимума к минимуму).

Мерой разрешающей способности спектрального аппарата прииято считать отношение длины волны λ , около которой выполняется измерение, к указанному минимальному интервалу $\delta\lambda$, т. е. $\mathcal{A} = \lambda/\delta\lambda$. Для определения \mathcal{A} составим (например, для дифракционной решетки) условия, дающие положения максимумов *m*-го порядка для волн λ_1 и λ_2 :

$$d\sin\varphi'_m = m\lambda_1, \qquad d\sin\varphi'_m = m\lambda_2. \tag{50.2}$$

Для перехода от *m*-го максимума для длины волны λ_2 к соответствующему минимуму необходимо изменить направление падающего света так, чтобы разность хода изменилась на λ_2/N , где N число интерферирующих световых пучков (штрихов решетки) (см. § 46). Таким образом, минимум λ_2 наблюдается в направлении φ_{\min} , удовлетворяющем условию

$$d\sin\varphi_{\min} = m\lambda_2 + \lambda_2/N. \tag{50.3}$$

^{•)} Различие обусловливается тем, что в дифракционных решетках (включая и эшелон Майкельсона) суммируются N пучков равной интенсивности, тогда как в интерференционных спектроскопах суммируется бесконечное число постепенно ослабевающих пучков.

Условие Рэлея гласит

$$\varphi_m = \varphi_{\min}$$

откуда

$$m\lambda_1 = m\lambda_2 + \frac{\lambda_2}{N}$$
 или $\frac{\lambda_2}{\lambda_1 - \lambda_2} = mN.$

Так как λ_1 и λ_2 близки между собой, т. е. $\delta \lambda = \lambda_1 - \lambda_2 - \lambda_3$ малая величина, то разрешающая сила равна

$$\mathcal{A} = \lambda/\delta\lambda = mN. \tag{50.4}$$

Таким образом, разрешающая способность решетки при заданном числе штрихов увеличивается при переходе к спектрам высших порядков. Максимальное значение \mathscr{A} соответствует максимальному *m*, определяемому из условия, согласно которому синус угла дифракции не может превышать 1. Таким образом, из основной формулы решетки $d \sin \varphi = m\lambda$ находим, что $m_{\text{max}} = d/\lambda$ и, следовательно, максимальная разрешающая способность решетки есть

$$\mathscr{A}_{\max} = \frac{\lambda}{\delta\lambda} = \frac{Nd}{\lambda}.$$
 (50.5)

Но произведение Nd есть общая ширина решетки. Следовательно, максимальная разрешающая способность решетки определяется ее общей шириной или, точнее, максимальной разностью хода, выраженной в длинах волн, Nd/λ , между световыми пучками, распространяющимися от первого и последнего штриха решетки.

Итак, максимальная разрешающая способность решетки не зависит от того, образована ли она большим числом штрихов (N1) малого периода (d₁) или малым числом штрихов (N₂) большого периода (d_2) , если только $N_1d_1 = N_2d_2$. Однако мелко нарезанная решетка (малое d_1 и большое N_1), обладая той же максимальной разрешающей способностью, что и грубая решетка (большое d_2 и малое N_2) при условии $N_1d_1 = N_2d_2$, имеет громадное преимущество, нбо малому d соответствует большая угловая дисперсия при сравнительно невысоком порядке. Грубая решетка будет иметь такую же дисперсию и разрешающую силу лишь при соответственно значительно и разрешающую силу лишь при соответственно значительно больших порядках (см. (50.1) и (50.4)). Интенсивность же спектор же спектров этих порядков очень мала вследствие быстрого спадания огнбающей (пунктирная кривая на рис. 9.18). Попытка «рас-ширить» ширить» огибающую путем уменьшения ширины прозрачной части периода но периода не приведет к результату, так как ее уменьшение умень-щит светоте в щит световой поток, пропускаемый решеткой. Поэтому в высоких порядках порядках могут быть использованы только фазовые решетки (см. §§ 48, 49) § 48, 49), способные обеспечить высокую концентрацию энергин при большентрацию обеспечить высокую концентрацию обольше при больших т. Наконец, при малых d и т значительно больше дисперсионнаят. Наконец, при малых d и токтическую ценность дисперсионная область (см. ниже). Поэтому практическую ценность представляно область (см. ниже). представляют решетки малого периода с большим числом штрихов
и большой общей шириной. Как уже указывалось, хорошие решетки для видимой области спектра имеют общую ширину 150 мм и содержат около 100 000 штрихов при периоде 1/600 мм.

держат около 100 осо для что разрешающая способность спект. Формула (50.4) показывает, что разрешающая способность спект. рального аппарата равна произведению порядка спектра *m* на число световых пучков, интерферирующих в приборе. Число это для дисветовых пучков, интерферирующих в приборе. Число это для дифракционной решетки равно числу штрихов; для пластинки Люмфракционной решетки равно числу штрихов; для пластинки Люммера—Герке или Фабри—Перо можно условно считать число N равным числу отраженных световых пучков значительной интенсивности (число эффективных лучей), которое тем больше, чем больше коэффициент отражения R (см. § 30). Для интерферометра Майкельсона N = 2; для эшелона Майкельсона N равно числу пластин и т. д.

Легко видеть, что большая разрешающая способность хорошей дифракционной решетки достигается за счет огромных значений N (общего числа штрихов решетки) при незначительном m (2 или 3), тогда как в интерференционных спектроскопах N невелико (не более 20—30), но m очень велико (десятки тысяч). Произведение mN есть число длин волн, представляющее разность хода между крайними световыми пучками, выходящими из прибора. Оно-то и определяет разрешающую способность любого прибора.

В основу рассмотренного выше понятия разрешающей способности положен критерий Рэлея. Наиболее важная черта этого критерия состоит в требовании, чтобы в суммарном распределении интенсивности, создаваемой двумя спектральными линиями, был минимум, составляющий определенную долю (например, 80% от соседних максимумов, см. рис. 9.28). Таким образом, согласно критерию Рэлея должно быть качественное различие между распределениями освещенности в случае одиночной и двойной линии (соответственно максимум и минимум в центре), т. е. такое различие, которое заметно без детальных количественных измерений. Иными словами, критерий Рэлея по существу предполагает только визуальные наблюдения.

При количественных измерениях постановка вопроса о разрешении должна быть изменена (Г. С. Горелик). Пусть две линии расположены настолько близко, что в середине суммарного распределения располагается не минимум, а максимум освещенности (рис. 9.27), т. е. кривая С имеет качественно такой же вид, как и кривые А и В в отдельности. Тем не менее это суммарное распределение интенсивности количественно отличается от распределения при одиночной линии. В частности, суммарное распределения имеет бо́льшую ширину, чем одиночная линия. Это отличие можно чаем возможность установить, что в спектре излучения имеются венных измерениях критерий разрешения можно сформулировать так: две линии считаются разрешенными, если суммарное распретак: две линии отличается от распределения для одиночной деление, чем на ошибку измерения. Следовата деление освещение на ошноку измерения. Следовательно, согласно линии сольше, чем на ошноку измерения. Следовательно, согласно линии оольше, спри заданных свойствах дифракционной решетки этому критерино спектрального аппарата) разрешающая способность (или другого спектрального аппарата) разрешающая способность (нли другого слособность измерений распределения интентем выше, в контуре спектральной линии. В пределения интен-сивности в контуре спектральной линии. В предельном случае сивности в предельном случае абсолютно точных измерений разрешение неограниченно возрастает. олютно терсионная область G. В реальных условиях

в. д. п. с. в. реальных условиях опыта мы имеем дело не с монохроматическими волнами длиной λ, опыта мы длиной к, а с некоторым спектральным участком, охватывающим длины волн а с пенено $\lambda \to \Delta \lambda$. Наличие такого набора длин волн вносит значи-

тельное осложнение в работу спектральных аппаратов, особенно тех. в которых наблюдаются спектры высоких порядков, могущих перекрывать друг друга, если приходится работать с довольно широким спектральным интервалом. Таким образом, для каждого аппарата существует предельная ширина спектрального интервала $\Delta\lambda$, при которой еще возможно получение дискретных (неперекрывающихся) максиму-

т. е.

или

Рис. 9.29. Распределение интенсивности в спектральном интервале от λ до $\lambda + \Delta \lambda$.

IEO CI

(50 7)

мов и минимумов. Этот интервал носит название дисперсионной области G спектрального аппарата. Предположим для простоты, что исследуемый свет имеет спектральный состав, изображенный на рис. 9.29, и найдем G для дифракционной решетки.

Место максимума т-го порядка для правого края интервала (длина волны λ + Δλ). определится из условия

$$d\sin\varphi_m^* = m \left(\lambda + \Delta\lambda\right). \tag{50.0}$$

Место максимума (т + 1)-го порядка для левого края интервала (длина волны λ) дается выражением

$$d\sin\varphi_{m+1} = (m+1)\lambda. \tag{50.17}$$

Максимумы соседних порядков начинают накладываться друг на друга друга, т. е. интерференционная картина становится неясной, при условии условни

$$\varphi_m^* = \varphi_{m+1},$$

$$m(\lambda + \Delta \lambda) = (m+1)\lambda$$

$$G = \Lambda \lambda = \lambda/m$$
.

Таким образом, дисперсионная область прибора зависит от опдка интерсио. дисперсионная область приборе (ср. § 21). порядка интерференции, наблюдаемой в данном приборе (ср. § 21).

Для интерференционных спектроскопов и для эшелона Майкель. Для интерференционными всегда соответствуют огромной раз. сона наблюдаемые максимумы всегда соответствуют огромной раз. сона наблюдаемые максимумы сысокого порядка (m — несколько ности хода, т. е. суть максимумы сысокого порядка (m — несколько ности хода, т. е. суть максимумы сысокого лорядка (m — несколько ности хода, т. е. суть максимумы сысокого порядка (m — несколько ности хода, т. е. суть максимумы сысокого порядка (m — несколько ности хода, т. е. суть максимумы сысокого порядка (m — несколько ности хода, т. е. суть максимумы сысокого порядка (m — несколько ности хода, т. е. суть максимумы сысокого порядка (m — несколько ности хода, т. е. суть максимумы сысокого порядка (m — несколько ности хода, т. е. суть максимумы сысокого порядка (m — несколько ности хода, т. е. суть максимумы сысокого порядка (m — несколько ности хода, т. е. суть максимумы сысокого порядка (m — несколько ности хода, т. е. суть максимумы сысокого порядка (m — несколько ности хода, т. е. суть ности хода, т. е. суть ности хода (m — несколько ности хода, т. е. суть ности хода (m — несколько ности хода (m — несколько ности хода) ности хода (m — несколько ности хода (m — несколько ности хода) ности хода (m — несколько ности хода (m — несколько ности хода) ности хода (m — несколько ности хода (m — несколько ности хода) ности хода (m — несколько ности хода) ности хода (m — несколько ности хода (mности хода, т. е. суть манен. так что $\Delta \lambda \sim \lambda/10000$, т. е. для этих тысяч и десятков тысяч), так что $\Delta \lambda \sim \lambda/10000$, т. е. для этих тысяч и десятков наслая така у этих приборов характерна очень малая дисперсионная область, измеря. емая долями ангстрема.

Для дифракционной решетки обычно наблюдают спектры второго или третьего порядков, т. е. m = 2 или 3. В соответствии рого или трепессо пересонать $\Delta \lambda = \lambda/2$ или $\lambda/3$ очень велика. В этом — огромное преимущество дифракционной решетки, которая позволяет анализировать даже белый свет, т. е. очень общир. ный спектральный интервал (в тысячи ангстремов), тогда как пластинка Люммера-Герке, например, не дает уже отчетливых максимумов, если падающий на нее свет представляет спектральный интервал, превышающий один ангстрем. Поэтому интерференционные спектроскопы пригодны только для анализа очень однородного света, например для спектральных линий, испускаемых разреженными газами. Они оказывают неоценимые услуги при анализе таких линий, позволяя устанавливать наличие нескольких компонент в этой линии (тонкая структура), оценивать ширину линии, наличие изменений (расщеплений) под действием внешних причин (например, эффект Зеемана) и т. д.

Следующий простой опыт делает очень наглядным значение дисперсионной области. Ртутная лампа в момент зажигания содержит ртутные пары при низком давлении и испускает сравнительно узкие линии, дающие в спектроскопе с эталоном Фабри-Перо (расстояние между зеркалами около 1 см) резкие максимумы и минимумы. Через некоторое время лампа разогревается, плотность пара возрастает и линии становятся настолько широкими, что Δλ превышает G прибора: максимумы сливаются и интерферен-ционная картина исчезает. Если, однако, начать энергично обдувать лампу вентилятором, то она охлаждается и максимумы вновь разделяются.

г. Сопоставление свойств спектральных приборов. Сопоставление свойств различных спектральных аппаратов иллюстрируется табл. 9.2; $G = \Delta \lambda$ обозначает область дисперсии различных спектранию дисперсии, равную λ/m , $\mathscr{A} = \lambda/\delta\lambda$ — разрешающую силу, равную MN. Таблица состав *mN*. Таблица составлена для зеленой области спектра ($\lambda = 5000$ Å = 500 нм) = 500 HM).

Приведенные в табл. 9.2 данные характеризуют хорошие инструменты указанного рода, хотя и не самые лучшие.

Из сопоставления видно, что хорошая дифракционная решетка имеет разрешающую способность, близкую к разрешающей способности хороших интерференционных спектроскопов, но обладает преимуществом неспание области преимуществом несравнению большей области применения (области дисперсии). Ее непостаточ дисперсии). Ее недостаток — большая сложность в обращении,

если желают получать рекордные, достижимые с решеткой реесли желают полу приборах среднего класса с решеткой ре-зультаты. Однако в приборах среднего класса с разрешающей зультаты. ≈ 3.10⁴ — 10⁵ решетка является наилучшим дисперги-силой ж элементом, причем она превосходит и призиония. силой от согла причем она превосходит и призменные системы рующим элементом, причем она превосходит и призменные системы (см. § 94). Поэтому наиболее широкое применение нашли именно дифракционные спектральные приборы.

Таблица 9.2

	т	N	G, Á	А	Прибли- женно дл, А
Эталон Фабри — Перо, d=25 мм, R=0,9	105	30	0,05	3 • 106	0,0017
Интерферометр Майкельсона	106	2	0,005	2.106	0.0025
Пластинка Люммера — Герке	$5 \cdot 10^{4}$	10	0,10	5 • 165	0,01
Эшелон Майкельсона	$1 \cdot 10^{4}$	30	0,50	3 • 105	~ 0,017
Дифракционная решетка	3	105	~ 1700	3 • 105	~ 0,017

Характеристики различных спектральных аппаратов

Комбинируя действие различных спектральных аппаратов, иногда удается повысить область дисперсии аппаратуры, не снижая разрешающей способности. На этих специальных случаях мы останавливаться не будем.

§ 51. Роль спектрального аппарата при анализе светового импульса

При помощи спектрального аппарата мы разлагаем сложный волновой импульс в спектр, т.е. устанавливаем распределение энергии, сосредоточенной в этом импульсе, по различным частотам. Однако, как явствует из предыдущего параграфа, характер распределения энергии по частотам для спектральных приборов различной разрешающей силы оказывается различным. Таким образом, результат изучения импульса спектральным прибором зависить зависит и от свойств импульса (от закона его изменения во времени, т. е. от формы и продолжительности импульса) и от свойств спект-Рального аппарата (его разрешающей способности).

Чем выше разрешающая способность прибора, тем меньше искажений он вносит в картину спектрального разложения энергии; наоборот наоборот, при малой разрешающей силе картина может в сильной степени от степени определяться свойствами прибора и не передавать особен-костей исте

сстей наблюдаемого импульса. Следует, однако, помнить, что хотя при наличии прибора бесконечно большой разрешающей силы вид спектрограммы одно-значно определялся бы формой импульса, обратное заключение

ДИФРАКЦИЯ СВЕТА

несправедливо: располагая такой спектрограммой, мы не могли бы еще сделать заключения о форме волнового импульса.

е сделать заключенные о распределении энергии импульса по Действительно, данные о распределении энергии импульса по Действительно, данные такой идеальной спектрограммой, позво-частотам, доставленные только коэффициенты отлельных частотам, доставленные только коэффициенты отдельных элементов лили бы воспроизвести только коэффициенты отдельных элементов лили об воспроизвестнотов согласно теореме Фурье можно разряда (интеграна), но интенсивность отдельной спектральной линии ложить импульс, нбо интенсивность отдельной спектральной линии определяется соответствующим коэффициентом разложения. Однако определяется составляется составл но также и от соотношения фаз отдельных его компонент. Поэтому но также и от ссотпошение по также и от соответствовать одниму импульсы самой разнообразной формы могут соответствовать одним и тем же значениям коэффициентов Фурье и, следовательно, давать одно и то же спектральное разложение. Таким образом, задача о разложении данного волнового импульса в спектр при помощи заданного аппарата решается однозначно. Воспроизведение же исходного импульса по его спектру, даже полученному с помощью прибора бесконечной разрешающей силы, остается неопределенной задачей.

Дифракционная решетка или другой спектральный аппарат является прибором, решающим по отношению к импульсу физическим путем ту самую задачу разложения его на синусоидальные компоненты, которую можно выполнить чисто математическим путем, если известно математическое выражение формы исходного импульса.

С этой точки зрения утверждение, что немонохроматический, в частности, белый свет, представляемый волновыми импульсами, состоит из совокупности монохроматических световых волн, имеет не больше смысла, чем утверждение, что шум есть совокупность правильных музыкальных тонов. Как из светового, так и из звукового импульса можно при помощи подходящего анализирующего инструмента выделить тот или иной простой тон (монохроматический свет). Однако степень монохроматизации тех составляющих, в которые наш прибор преобразует изучаемый импульс, зависит от свойств прибора и от его разрешающей силы. Поэтому-то анализ с помощью спектрального прибора может быть более или менее совершенным в зависимости от того, какой инструмент был использован для преобразования импульса. Механизм такого преобразования особенно ясно выступает при рассмотрении действия решетки на импульс. Этот пример в то же время ясно показывает, насколько сильно вид спектра зависит от разрешающей способности спектрального аппарата.

Пусть короткий *) импульс произвольной формы падает нормально на дифракционную решетку; рассмотрим действие на восприни-

*) Импульс мы называли «коротким» в том смысле, что продолжительность его мала по сравнению с любым T (см. ниже).

мающий аппарат, расположенный по направлению, задаваемому углом φ с нормалью (рис. 9.30). Все прозрачные элементы (щели) углом φ с нормалью станут источниками возмущения, направрешетки одновременно станут источниками возмущения, направляемого в точку *P* под углом дифракции φ . Однако, как легко ляемого в точку *P* под углом дифракции φ . Однако, как легко видеть из рисунка, эти отдельные возмущения придут в *P* не одновидеть из рисунка, а с — скорость света. Таким образом, где *d* — период решетки, а *с* — скорость света. Таким образом, точка *P* будет получать возмущения, следующие друг за другом

периодически через промежутки времени $T = d \sin \varphi/c$, причем для кажмени направления ф будет свой пе-риод воздействия T. Таким образом, в любой точке P воздействие имеет периодический характер, хотя импульс, упавший на решетку, был одиночным. Чем больше щелей имеет решетка, тем длительнее периодическое воздействие. В случае идеальной решетки, обладающей бесконечным числом щелей (бесконечной разрешающей силой), периодическое воздействие тяпется неограниченно долго. Такое бесконечное периодическое воздействие может быть по теореме Фурье представлено как

Рис. 9.30. Преобразование импульса в совокупность монохроматических воли при прохождении через дифракционную решетку.

совокупность синусоидальных колебаний с периодами T, $1/{_2}T$, $1/{_3}T$, ... и с амплитудами, зависящими от характера этих периодических воздействий, определяемого формой и длительностью импульса и соотношением размеров прозрачных и непрозрачных мест решетки. Такое разложение периодических толчков на синусоидальные колебания означает, что явления в точке Pпроисходят так, как если бы в эту точку приходили монохроматические волны, длины которых равны соответственно $\lambda = -T$

$$\lambda_2 = c^{1}/_2 T = \frac{1}{_2} d \sin\varphi;$$

 $\lambda_3 = c^{1}/_3 T = \frac{1}{_3} d \sin\varphi, \dots$
Лат. $\lambda_3 = c^{1}/_3 T = \frac{1}{_3} d \sin\varphi, \dots$

даться монохроматические световые волны, длины которых удовлетворяют условию $d \sin \varphi = m\lambda$, где m — целое число, т. е. условию, определяющему положение главных максимумов дифракционного спектра.

По направлению $\varphi = 0$ импульсы от всех щелей приходят одновременно: периодические воздействия не возникают, и нулевой максимум остается «белым». Все эти выводы находятся в соответствии с обычной теорией дифракционных решеток (см. § 46). Приведенное рассуждение показывает механизм воздействия дифракционной решетки на импульс, выдвигая на первый план физическую картину преобразования импульса в периодический процесс вместо мате матической операции разложения непериодической функции, описывающей импульс, на гармонические составляющие.

сывающей импулюс, перение оставляет, может быть, то обстоя-Некоторое неудовлетворения получившегося периодического возтельство, что для рассмотрения получившегося периодического воздействия мы все же прибегали к математической операции разложения периодической функции на синусоиды. Можно, однако, и здесь пойти более физическим путем. Мы имели дело с обычной (щелевой) решеткой, т. е. решеткой, состоящей из периодически

Рис. 9.31. Зависимость коэффициента пропускания т решетки от координаты x. а — щелевая решетка периода d; b — синусондальная решетка периода d. чередующихся прозрачных и непрозрачных мест. Другисловами, коэффициент ΜИ пропискания решетки т меняется вдоль решетки периодическими скачками от 0 до (рис. 9.31, а). 1 Предположим теперь, что мы имеем решетку, прозрачность которой вдоль координаты х мепо синусоидальному няется $\tau = \sin\left(2\pi/d\right)x,$ где закону d — пространственный период решетки, т. е. т меняется от +1 до —1 (см. рис. 9.31, *б*). что τ То обстоятельство, отрицательные принимает отрицательт. е. значения. ными становятся амплитуды имеет света, проходящего

очень простой смысл: это значит, что фазы волн с положительными и отрицательными амплитудами противоположны. Следовательно, наша решетка имеет амплитудно-фазовый характер: амплитуда на половине пространственного периода меняется от единицы до нуля, на второй половине амплитуда нарастает от нуля до единицы, но фаза изменена на обратную.

Повторяя вышеприведенные рассуждения (см. рис. 9.30) для такой решетки, получим, что до точки *P* (в направлении ф) будет доходить световое возбуждение, меняющееся во времени по закону

$$\sin\frac{2\pi}{T}t,$$

где $T = \frac{d \sin \varphi}{d \sin \varphi}$

Действительно, до точки P с течением времени доходят возбуждения от участков, коэффициенты пропускания которых меняются по закону sin $\frac{2\pi}{d}x$, причем x нарастает пропорционально времени так, что за время T значение x изменяется на d, т. е. $x = \frac{d}{T}t$. Таким образом, возбуждение в P меняется по закону

$$\sin\frac{2\pi}{d}x = \sin\frac{2\pi}{d}\frac{d}{T}t = \sin\frac{2\pi}{T}t.$$

Если наша решетка бесконечна по протяжению (т. е. имеет бесконечно большую разрешающую способность), то это синусондальное возбуждение не ограничено во времени и представляет строго монохроматический свет периода T или длины волны $\lambda = cT = d \sin \varphi$.

Итак, условие образования максимума в случае синусоидальной решетки имеет вид

$$d\sin\varphi = \lambda \tag{51.1}$$

вместо условия $d\sin \phi = m\lambda$, характеризующего обычную дифракинонную решетку. Основное различие состоит в том, что дифракция на синисоидальной решетке приводит к образованию максимимов только первого порядка ($m = \pm 1$), в отличие от обычных решеток, где образуются нулевой максимум и максимумы различных порядков (Рэлей). Поэтому монохроматическая волна длиной λ будет на такой решетке дифрагировать только под углами ± ф, определяемыми из (51.1). Импульс произвольной формы, падая на синусондальную решетку периода d с бесконечной разрешающей силой, преобразовывается в совокупность монохроматических волн, каждая из которых распространяется по своему направлению с, определяемому условием (51.1). Соотношение интенсивностей (амплитуд) этих отдельных монохроматических волн зависит от вида импульса. Если решетка содержит не бесконечно большое число штрихов, то длительность отдельных цугов, идущих по разным направлениям ф, сокращается и выделенные из импульса волны перестисти по сокращается и выделенные из импульса волны перестают быть строго монохроматическими. Эти приблизительно монохроматические цуги, в которые ограничениая решетка преобразует импульс, определяются как видом импульса, так и размером точков определяются как видом импульса, так и размером решетки, т. е. при заданном периоде числом ее штри-хов. Эти полособность хов. Эти параметры характеризуют разрешающую способность решетки

Для других спектральных аппаратов рассуждения несколько усложняются, но сущность дела остается той же *) (см. также упражнение 92).

*) Вопросы спектрального разложения и преобразующей роли спектральв волицы», Физматгиз, 1959.

Глава Х

ДИФРАКЦИЯ НА МНОГОМЕРНЫХ СТРУКТУРАХ

§ 52. Дифракционная решетка как одномерная структура

Изложенное в § 50 (и, в частности, установленная Рэлеем особенность дифракции на синусоидальных решетках, дающих спектры только первого порядка) позволяет весьма общим и практически важным способом рассмотреть вопрос о дифракции на структурах любого вида. Какова бы ни была структура (в частности, даже если она не периодична), явления дифракции имеют место. Расчет дифракционной картины в таком практически очень распространенном случае, однако, гораздо труднее. Рэлей указал чрезвычайно общий прием решения подобных задач.

В § 4 мы видели, что любая функция времени может быть представлена как совокупность синусоидальных функций времени с различными периодами, амплитудами и фазами. Аналогично, любую пространственную структуру, свойства которой, например коэффициент пропускания, есть функция пространственных координат, можно представить как совокупность синусоидальных структур (теорема Фурье). В частности, если коэффициент пропускания структуры зависит только от одной координаты, например x, то коэффициент пропускания отдельных синусоидальных структур представится в виде $a\sin\left(\frac{2\pi}{d}x+\psi\right)$, где a — амплитуда, d — пространственный период и у — фаза. Непериодическая структура представляется совокупностью синусондальных структур с непрерывно меняющимся периодом (представление в виде интеграла Фурье). Периодическая структура с периодом d представится в виде суммы членов ряда, один из которых в общем случае может быть постоянной величиной, а остальные — синусондальными функциями x с периодом, равным d, 1/2 d, 1/3 d, ..., т. е. остальные членыбудут иметь вид $a_n \sin\left(\frac{2\pi n}{d}x + \psi_n\right)$, где n = 1, 2, 3, ... (представление в виде ряда Фурье). Характер рассматриваемой структуры определяет значения определяет значения структуры определяет значения амплитуд и фаз отдельных синусоидальных членов ряда. Таким образом, дифракцию на сложной структуре можно рассчитать путем рассмотрения дифракции на каждой отдельной компоненте разложения Фурье этой структуры. Постоян-ный член разложения Фурье этой структуры. Постоянный член разложения Фурье этой структуры. Пост синусонлальных из фурье дает нулевой максимум, каждый из синусондальных членов — по два максимума первых порядков (m = ±1). Так как порядков — по два максимума первых порядков (m = ±1). Так как периоды синусоидальных структур различны, то и углы лифраниции синусоидальных структур различны. то и углы дифракции соответствующих максимумов первого по-рядка будут различни соответствующих максимумов первого порядка будут различны, и в совокупности получится полная дифрак-ционная картина всей оточности получится полная дифракционная картина всей структуры. С этой точки зрения максимумы

высших порядков обычной дифракционной решетки суть максимумы высших порядков соответствующей ей синусоидальной слагающей. первого порядка соответствующей ей синусоидальной слагающей. $m^{\rm epBoro}$ порядка соот третьего порядка ($m = \pm 3$) суть максимумы Например, максимумы ($m = \pm 1$) на третьей синусоидальной слагающей. первого порядка ($m = \pm 1$) на третьей синусоидальной структуре, первого порядка ($m = \pm 1$) на третьей синусоидальной структуре, первого порядка ($m = \pm 1/_3 d$. Таким образом, для изученной нами период которой равен $1/_3 d$. Таким образом, для изученной нами одномерной решетки (решетка с коэффициентом пропускания, одномерной только вдоль одной координаты) мы с помощью этого меняющимся только вдоль одной координаты) мы с помощью этого меняющимся топособа рассмотрения получаем согласный с опытом более общего способа рассмотрения получаем согласный с опытом результат.

§ 53. Дифракция на двумерных структурах

Гораздо шире распространен случай, когда коэффициент пропускания пластинки, располагаемой в световом пучке, меняется не вдоль одного направления, а по всей поверхности нашей пластинки. Примером может служить пластинка беспорядочно запыленного стекла или окно, покрытое узорами мороза. Ясно, что такое изменение коэффициента пропускания можно охарактеризовать как изменение по двум координатам нашей поверхности, так что рассматриваемая структура будет двумерной. В простейшем случае это будет двумерная периодическая структура (двумерная решетка), в общем - совокупность многих двумерных решеток.

Рассмотрим двумерную решетку, представляющую собой скрещенные перпендикулярные решетки с периодами d₁ и d₂. Подобный случай легко осуществить, поставив непосредственно одну за другой две обыкновенные нарезанные на стеклянных пластинках дифракционные решетки, штрихи которых направлены перпендикулярно друг к другу.

Узкий пучок монохроматического света, пройдя через первую решетку с вертикальными штрихами, должен дать совокупность максимумов (нулевой и максимумы высших порядков) вдоль горизонтальной линии.

Световой пучок, соответствующий каждому максимуму, проходя через вторую решетку, распадается на новую совокупность световых пучков пучков, дающих максимумы вдоль вертикальной линии. Полная картина стор 10.1 Цифры 0.0; картина спектра подобна изображенной на рис. 10.1. Цифры 0,0; 0,1; 1 1. 1. 1. Политика изображенной на рис. 10.1. Цифры 0,0; в первой и второй решетках; интенсивность их убывает по закону распредотование от решетках. распределения интенсивности в дифракционных спектрах решетки. Нетрулно то по такой ре-Нетрудно дать элементарную теорию дифракции на такой решетке.

Пусть свет падает на подобную решетку нормально. Выберем направление света за ось Z, направления вдоль решеток — за осн X и Y. Оката за ось Z, направления вдоль решеток — за осн X и Y, охарактеризуем направления падающего пучка углами со, во, ум. пись в совета за ось Z, направления падающего пучка углами совета за ось Z, направления падающего пучка углами совета за ось Z, направления падающего пучка углами совета за ось Z, направления вдоль решеток совета за ось Z, направления вдоль в совета за ось Z, направления вдоль вдоль в совета за ось Z, на совет α₀, β₀, γ₀, αυάρακτερизуем направления падающего пучка угла α₀ = $\pi/2$, β₀ = $\pi/2$, γ₀ = 0, т. е. $\cos \alpha_0 = \cos \beta_0 = 0$, $\cos \gamma_0 = 1$. 8 Ландсберг Г. С.

Отклонение дифрагировавшего луча вдоль Х приведет к образо. Отклонение дифратирование света в зависимости от величины ванию минимумов и максимумов света в зависимости от величины ванию минимумов и максими теорию одномерной решетки, мы най. угла дифракции. Применяя теорию одномерной решетки, мы най. что положения

-	Т	-	Γ		Γ		r		Γ	5			
-	-	-		-		3,	0	5.	1	3.	2	3,	3
-	-	2,	-2	-	1	2,	0	2,	1	2	3	Ê,	3
-	T			1,	-1	1,	0	1,	1	1,	2	ĺ,	3
0,	-3	0,	-2	0,	7	0,	0	0,	1	0,	2	0,	3
	-	-		-1,	-1	+	-	-1,	1	-			
-	e	-2,	-2		-	-	[-			-2,	2		
Ĵ.	-3	-	-		ľ		t				1-	-3,	3

Рис. 10.1. Схематическое изображение. распределения интенсивности при дифракции на двумерной решетке.

главных максимумов должны удовлетеорять условиям

$$d_1 \cos \alpha = \lambda, 2\lambda, 3\lambda, \dots, m_1\lambda.$$
(53.1)

Аналогично дифракция в направлении оси У дает главные максимумы в направлениях, определяемых условиями

 $d_2 \cos \beta = \lambda$, 2λ , 3λ , ..., $m_2\lambda$. (53.2)

Таким образом, главные максимумы возможны только в направлениях, удовлетворяющих двум из написанных выше совокупностей условий, причем каждой паре значений целых

чисел m1 и m2 соответствует максимум того или иного порядка. По найденным таким образом значениям а и в определим значения угла у на основании геометрического соотношения

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1.$$
 (53.3)

Таким образом, из трех условий:

 $\left. \begin{array}{l} d_1 \cos \alpha = m_1 \lambda, \\ d_2 \cos \beta = m_2 \lambda, \end{array} \right\}$ (53.4) $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1,$

где m₁ и m₂ — целые числа, мы определяем для заданной структуры (d_1, d_2) и для данной длины волны λ значения углов α , β , γ , под которыми булугания и структика. рыми будут наблюдаться главные максимумы света. Если предположить, что наша решетка содержит большое число элементов (штрихов), то главные максимумы будут очень резки и в них сосредоточится почти вся световая энергия дифрагировавших волн. Таким образом. практивости вся световая энергия дифрагировавших волн. образом, практически свет будет наблюдаться только по указанным дискретным направление будет наблюдаться только по указанным дискретным направлениям, точнее, в небольшом телесном угле около указанных направлений.

Если решетки d₁ и d₂ не взаимно перпендикулярны, а составляют кой-либо угол можта и в взаимно перпендикулярны, а составляют какой-либо угол между собой, то принципиально рассуждения наши останутся в сило собой, то принципиально рассуждения наши останутся в силе, только геометрические соотношения изменятся. Положение максимумов (пятнышек) будет, конечно, зависеть и от угла между штрихами решеток. Таким образом, по расположению пятнышек можно судить о *структуре штрихованной* поверхности: о величине периодов d_1 и d_2 и взаимной ориентации решеток.

решеток. Если поверхностная структура не периодична, то следует применить для разбора задачи метод Рэлея. Картина получится более сложной. В частности, если структура состоит из частиц, близких по размерам и форме, но всевозможно ориентированных (запыленная пластинка, морозные узоры на стекле), то такая структура эквивалентна совокупности простых решеток всех возможных ориентировок, а соответствующая дифракционная картина представится в виде ряда концентрических кругов. Явление легко наблюдать, рассматривая небольшой яркий источник света сквозь такую пластинку.

§ 54. Дифракционные явления на трехмерных структурах

Наибольший интерес и практическое значение имеет дифракция на пространственных неоднородностях. В этом случае волна распространяется не в однородной среде, а в среде, в которую включены участки, где скорость волны отличается от скорости в остальных частях среды, т. е. участки с иным показателем преломления.

Если среда вполне оптически однородна, т. е. показатель преломления любой небольшой *) области равняется показателю преломления другой области, то световая волна будет распространяться в среде без изменения направления.

В частности, плоская волна, распространяясь в такой среде, останется плоской. Это заключение можно подтвердить рассуждениями, подобными тем, которые служат (по Френелю) для объяснения прямолинейного распространения света. Если же однородность среды нарушена какими-либо включениями или вследствие какихлибо процессов, т. е. если в среде встречаются области, показатель преломления которых отличается от показателя преломления остальной части, то на таких неоднородностях должны возникнуть от своего первоначального направления.

Действительно, части волнового фронта, идущие по областям различного показателя преломления, распространяются с разной скоростью, так что фронт волны, т. е. поверхность одинаковой фазы, перестает быть плоским, и свет будет распространяться по различным направлениям.

) Небольшой считается область, линейные размеры которой малы по сравиению с длиной световой волны. Я

Такого рода явления наблюдаются в большом масштабе в при-Такого рода явления посте всего, распространение света в при-роде. Сюда относится, прежде всего, распространение света в туроде. Сюда относится, прошое значение для ориентировки судов мане, имеющее очень большое значение для ориентировки судов мане, имеющее очень сопрактическая задача и дала первый судов в тумане. Именно такая практическая задача и дала первый повод в тумане. Именно такая прели явления (Тиндаль, 1868 г.). Явление для детального изучения этого явления (Тиндаль, 1868 г.). Явление для детального изучение в неоднородностях играет большую дифракции на простринской оптике, обусловливая появление кругов роль в метеорологической слични, так называемое гало и венцы). и колец вокруг солластия преломлением и дифракцией солпроисхождение и сочина на мелких частицах, взвешенных в воздухе *).

Явление дифракции на пространственных препятствиях или неоднородностях очень легко наблюдать в тех случаях, когда число таких неоднородностей очень велико, а размеры их незначительны. В таком случае среду принято называть мутной, и явление дифракции носит обычно название рассеяния света. В дальнейшем мы подробнее рассмотрим это явление, особенно для того случая, когла опо не связано с засорением среды посторонними частицами, а является следствием молекулярной структуры среды. Отметим. что для воли обычного света молекулярное строение среды само по себе еще не обусловливает неоднородности, ибо размер молекул в тысячи раз меньше длины световой волны. «Молекулярная мутность» есть результат случайного скопления значительного числа молекул, образующегося при беспорядочном тепловом движении их. Наоборот, для воли очень коротких, например для рентгеновских, уже само наличие молекул обусловливает неоднородность среды и ведет к дифракции (рассеянию).

Рассмотрение дифракции на пространственных неоднородностях любой формы представляет собой очень сложную задачу. Мы ограничимся поэтому простейшим случаем, когда неоднородности имеют правильный периодический характер, т. е. представляют собой то, что мы называем решеткой. Однако в этом случае периодическая структура среды имеет пространственный характер, т. е. решетка тянется по всем направлениям в среде. Мы можем представить ее как совокупность периодических структур по трем координатным направлениям и рассматривать дифракцию плоских волн на такой пространственной трехмерной решетке.

Пользуясь методом Рэлея (см. § 52), можно рассмотреть дифракцию на любых пространственных структурах, в том числе и непериодических (рассеяние света).

Допустим, что наша среда вдоль оси Х представляет собой периодическую структуру с периодом d_1 , вдоль оси Y — решетку

^{*)} Следует отличать венцы малого радиуса, которые образуются в резуль-дифракции на капельках тате дифракции на капельках, от больших круговых гало (с угловыми размерами 22 и 46°), обусловленных по больших круговых гало (с угловыми размерами 22 и 46°), обусловленных преломлением в гексагональных кристалликах льда, езвешенных в воздухе взвешенных в воздухе.

с периодом d_2 и вдоль оси Z — решетку с периодом d_3 , причем с периодом d_3 , причем с периодом d_2 . Ограничимся случаем ромбических *) кристаллов, $d_1, d_2, d_3 > \lambda$. Ограничимся случаем ромбических *) кристаллов, d₁, d₂, d₃ > м. отребра элементарной ячейки (d₁, d₂ и d₃) кристаллов, которых ребра элементарной ячейки (d₁, d₂ и d₃) взаимно пердля которых ресри к другу. Сюда, конечно, относятся как частные пер-пендикулярны друг к другу. Сюда, конечно, относятся как частные пендикулярны други други соран, консено, относятся как частные пендикулярны тетрагональная ($d_1 = d_2, d_3$) и кубическая ($d_1 = d_2 = d_3$) случаи тетрагональние распространения света задается тремя углами решетки. Направление распространения координат которые решетки. Паприлистри и осями координат, которые обозна-между волновой нормалью и осями координат, которые обознамежду волновом падающего и α , β , γ — для дифрагировавшего и α , β , γ — для дифрагировавшего света.

та. Пусть свет падает вдоль оси Z, т. е. $\alpha_0 = \beta_0 = \pi/2$ и $\gamma_0 = 0$. пусть свет икой-нибудь слой, параллельный плоскости XY, рассмотрина и которого z = const. Этот слой представляет собой т. е. слой, для которого z = const. Этот слой представляет собой т. е. слон, дешетку, и свет, проходя через него, испытает дифракдвумерную рассмотренную в предыдущем параграфе. Для каждой длины волны λ получим максимумы по направлениям, заданным значениями углов α, β, γ, определяемыми из условий (53.4).

Однако в нашем случае среда представляет собой совокупность таких двумерных решеток, расположенных периодически вдоль Z с периодом d3. Если каждый слой решетки достаточно прозрачен. то часть света испытает дифракцию на первом слое, а часть проникнет до следующего слоя и частично испытает дифракцию на этом втором слое, остаток проникнет дальше и т. д. Таким образом, по найденному выше направлению (α, β, γ) будет распространяться несколько когерентных воли с известной разностью хода, и мы должны для окончательного результата учесть их взаимную интерференцию.

Результат легко получить из схематического рис. 10.2, где 02 — направление падающей волны; АМ, BN, CQ, DS, ... направления волн, дифрагировавших на отдельных слоях, схематически изображенных маленькими площадками $p_1, p_2, p_3, ...;$ направления AM, BN, ... составляют угол у с направлением OZ. Расстояние $AB = BC = CD = ... = d_3$ есть третий период нашей структуры. Между каждой парой лучей имеется разность хода, равная

$$(AB - AM) = (BC - BN) = (CD - CQ) = \cdots$$

Чтобы волны, отклоненные по указанному направлению каждым слоем, взаимно усиливали друг друга, необходимо, чтобы эта разность хода была равна целому числу волн.

Это добавочное условие выразится в виде

$$d_3 - d_3 \cos \gamma = m_3 \lambda.$$

*) В общем случае триклинных кристаллов, когда ребра ячейки пересе-тся под углами каются под углами, отличными от прямого, рассмотрение задачи потребовало бы применения кого отличными от прямого, рассмотрение задачи потребовало бы применения косоугольной системы координаг.

Таким образом, в случае дифракции на пространственной Такны образом, в случа, d₃ мы получим максимумы света структуре с периодами d₁, d₂, d₃ мы получим максимумы света структуре с периодами и, четь воряющих следующим четырем условням:

где m1, m2, m3 — целые числа, и

 $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ (геометрическое условие). (54.4)

Нетрудно видеть, что нельзя, вообще говоря, для любой длины волны получить направление (α, β, γ), для которого выполняются

все эти условия. Действительно, исключая из этих уравнений α, β, γ, найдем соотношение

$$\frac{m_1^2 \lambda^2}{d_1^2} + \frac{m_2^2 \lambda^2}{d_2^2} + \frac{(d_3 - m_3 \lambda)^2}{d_3^2} = 1, \quad (54.5)$$

которое показывает, какие значения должна иметь длина волны λ для того, чтобы в данной структуре при заданном первоначальном направлении распространения образовались отчетливые дифраксвета ционные максимумы.

Итак, в отличие от дифракции на линейной и поверхностной решетках, дифракция на заданной пространственной решетке дает максимум не для всех длин волн, а только для тех, которые удовлетворяют указанному условию (54.5).

Таким образом, если параллельный пучок всех длин волн (белый свет) направить на линейную решетку, то получим максимумы для каждой длины волны, располагающиеся вдоль линии, перпендикулярной к штрихам решетки (спектр). Если параллельный пучок белого света падает на двумерную решетку, то получим максимумы для всех длин волн, располагаю щиеся в определенном порядке в плоско-

сти, параллельной плоскости решетки (цветные пятна). Если же направить на простости решетки (цветные пятна). же направить на пространственную решетки (цветные пятна). то получатся лифрантично решетку свет всех длин волн, то получатся дифракционные максимумы только для некото-

Рис. 10.2. Схема дифракции на трехмерной структуре.

рых длин волн, удовлетворяющих выведенному выше условию. рых длин выше условию. Волны других длин формируют дифракционный максимум нулевого порядка.

порядка. По расположению максимумов и значению длин волн λ, кото-они соответствуют, оказывается возможным однозначно восрым они соответственную решетку, которая обусловила дифракцию.

§ 55. Дифракция рентгеновских лучей

Рассмотренный случай дифракции на трехмерной решетке имеет исключительно важное значение. Он осуществляется практически при дифракции рентгеновских лучей на естественных кристаллах. при дифринения представляют собой электромагнитные волны, длина которых в тысячи раз меньше длин волн обычного света. Поэтому устройство для рентгеновских лучей искусственных дифракционных решеток сопряжено с огромными трудностями. Мы видели, что трудность эта может быть обойдена путем применения лучей, падающих на решетку под углом, близким к 90°. Однако дифракция рентгеновских лучей была осуществлена задолго до опытов с наклонными лучами на штрихованных отражательных решетках. По мысли Лауэ (1913 г.), в качестве дифракционной решетки для рентгеновских лучей была использована естественная пространственная решетка, которую представляют собой кристаллы. Атомы и молекулы в кристалле расположены в виде правильной трехмерной решетки, причем периоды таких решеток сравнимы с длиной волны рентгеновских лучей. Если на такой кристалл направить пучок рентгеновских лучей, то каждый атом или молекулярная группа, из которых состоит кристаллическая решетка, вызывает дифракцию рентгеновских лучей. Мы имеем случай дифракции на трехмерной решетке, рассмотренный выше. Действительно, наблюдаемые дифракционные картины соответствуют характерным особенностям дифракции на пространственной решетке.

Благодаря методу Лауэ решаются две задачи огромной важности. Во-первых, открывается возможность определения длины волны рентгеновских лучей, если известна структура той кристаллической решетки, которая служит в качестве дифракционной. Таким образом образом создалась спектроскопия рентгеновских лучей, послужившая для установления важнейших особенностей строения атома (ор для установления важнейших особенностей строения атома (ср. § 118). Во-вторых, наблюдая дифракцию рентгеновских лучей израния. Во-вторых, наблюдая дифракцию структуре лучей известной длины волны на кристаллической структуре неизвестной длины волны на кристаллической структуре неизвестной длины волны на кристаллической струми туру, то строения, мы получаем возможность найти эту структуру, т. е. взаимное расстояние и положение ионов, атомов и мо-лекул, состаеми расстояние и положение ионов, атомов и молекул, составляющих кристалл. Таким путем был создан структурный анализ кристаллических образований, легший в основу важ-нейщих заключений молекулярной физики.

дифракция света

§ 56. Дифракция световых волн на ультраакустических волнах

Пространственную решетку, на которой удобно наблюдать явле-Пространственную световых волн, также удается осуществить. ния дифракции видилая всего, дифракционные явления на ультразвуковых волнах.

ковых волнал. Как известно, в пластинке кварца или турмалина можно возбу. как известно, в колебания очень большой частоты (до 10° Гц). пластинка излучает упругие Такая колеблющаяся (ультратакал колселны, которые со скоростью звука распространяются в окружающей среде. Поместив колеблющийся кварц в какуюв окружающиеть, например ксилол, мы получим ультраакустические волны в этой жидкости. Упругая волна в жидкости есть волна

Рис. 10.3. Распределение плотности в бегущей (а) и стоячей (б) ультраакустических волнах.

Как в бегущей, так и в стоячей волне длины периодически повторяющихся областей сжатия и разрежения равны длине ультраакустической волны в среде.

сжатия и разрежения, которая распространяется с определенной скоростью. Таким образом, жидкость, в которой распространяется ультраакустическая волна, представляет собой периодическую последовательность областей сжатия и разрежения, т. е. областей, характеризующихся также и различием в показателе преломления света. Поэтому для света жидкость, в которой распространяется ультраакустическая волна, представляет собой фазовую решетку (см. § 48), ибо при прохождении света через столб такой жидкости происходит изменение не амплитуды, а фазы световой волны. Если заставить ультраакустическую волну отражаться от дна сосуда, то наложение проходящей и отраженной волн поведет к образованию к образованию стоячей ультраакустической волны, которая также представляет собой периодическую структуру переменной плотности и, следовательно пориодическую структуру переменной плотности и, следовательно, периодическую структуру переменной плога. Как в случае проходящей водных показателя преломления света. Как в случае проходящей, так и стоячей ультраакустической волны получающаяся фазорос получающаяся фазовая решетка будет иметь период, равный длине ультраакустической разнетка будет иметь период, равный длине ультраакустической волны, что легко видеть из рис. 10.3. В ксилоле

гл. х. дифракция на многомерных структурах

скорость распространения ультраакустических волн равна примерно 1000 м/с, так что при частоте 10⁸ Гц длина ультраакустической волны $\lambda = .10^{-3}$ см = 10 мкм. Мы получаем, следовательно, фазовую волны $\lambda = .10^{-3}$ см = 10 мкм, вполне удобную для наблюдения дирешетку с периодом 10 мкм, вполне удобную для наблюдения дифракции световых волн. В самом кристалле, служащем для возбужфракции световых волн. В самом кристалле, служащем для возбужцения волн, также устанавливается стоячая ультраакустическая волна, и, следовательно, колеблющийся кристалл также может служнть фазовой дифракционной решеткой *).

служны фися пучок белого света через сосуд с жидкостью, в кото-Пропуская пучок белого света через сосуд с жидкостью, в которой возбуждена ультраакустическая волна (рис. 10.4), мы получим на экране спектр с дисперсией, соответствующей периоду дифракционной решетки, вычисленному по частоте колебаний кварца и скорости ультразвуковой волны в жидкости (рис. 10.5).

Рис. 10.4. Схема наблюдения дифракции на ультраакустических волнах.

Если пустить ультраакустические волны по трем направлениям, по мы получим пространственную решетку для световых лучей. Впрочем, даже при наличии расположения, указанного на рис. 10.4, когда ультраакустические волны идут в направлении оси Z, мы, по существу, имеем пространственную решетку, но по двум направлениям X и Y период решетки есть нуль, т. е. имеются сплошные отражающие плоскости — зеркала. Закон отражения от этих зеркал (луч падающий и луч отраженный лежат в одной плоскости с нормалью к зеркалу и угол падения равен углу отражения) определит значения углов α и β в соотношениях (54.1)—(54.4), а взаимная интерференция лучей, отраженных от системы зеркал, даст гретье дифракционное условие для угла γ . Таким образом, и в этом случае мы имеем для трех углов три дифракционных условия и четвертое геометрическое. Явление пространственной дифракции (дис-

^{*)} Для большинства жидкостей скорость ультразвуковых воли, не отличающаяся от скорости обычных звуковых воли, составляет около 1000—1500 м/с. Для прозрачных твердых тел (стекло, кварц) скорости составляют 5000— 6000 м/с. Поэтому во всех этих веществах можно удобно осуществляют 5000 лифракции на ультраакустических волнах с частотами колебаний до 107 Ги и выше. При работе со стоячими волнами важно, чтобы интенсивность отраженной волны была близка к интенсивности проходящей. Поэтому лучше работать с веществами, где ультраакустические волны слабо поглощаются. Из жидкостей такими слабопоглощающими являются ксилол и вода. Следует иметь в вилу, ческой волны.

кретные максимумы для определенных длин волн) выступает здесь кретные максимумы для опростерентреновских лучей, ибо размеры не так отчетливо, как в случае рентгеновских лучей, ибо размеры не так отчетливо, как в случае происходит дифракция, в данном случае всего столба, на котором происходит дифракция, в данном случае всего столоа, на котором прению с периодом решетки, так что мы, не особенно велики по сравнению с периодом решетки, так что мы, не особенно велики по сравноехода от плоской решетки к объемной, по сути дела, имеем случай перехода от плоской решетка собымной.

сути дела, имест си учито фазовая решетка, осуществляемая Интересно отметить, что фазовая решетка, осуществляемая интереско опистических волн, отличается еще одной осос помощью ультраст, преломления не только имеет пространствен-

	0.07			distantia
	.2. 9	11	1976	14
12	1.9		12	
643	3	1		100
100	24		1.2	
100	14	11	3. 3	
10	19.3	11	14	
3	74.8	11	14	
380		11		1111
		1	1	

Рис. 10.5. Спектры. полученные при дифракции на ультраакустической волне.

ную периодичность, но и меняется периодически во времени, с периодом ультраакустической вол. ны, т. е. примерно 10⁷ — 10⁸ раз в секунду. Это приводит к тому, что интенсивность дифрагировавшего света испытывает периодическое изменение с той же частотой, т. е. модуляцию. Согласно изложенному в § 4, это означает, что если на ультраакустическую волну падает монохроматический свет частоты v ≈ 5·10¹⁴ Гц. то дифрагировавший свет имеет измененную частоту, равную v ± N, где N — частота примененной ультраакустической волны. Если N ~ 10⁸ Гц, то это изменение частоты незначительно и составляет несколько десятимиллион-

ных от первоначальной. Такое изменение наблюдалось на опыте. С подобным явлением, имеющим чрезвычайно большое научное и практическое значение, мы встретимся в вопросе о рассеянии света (см. § 162).

Изложенное рассмотрение применимо к стоячей ультраакустической волне, где показатель преломления в каждой точке меняется со временем. Для бегущей ультраакустической волны изменение частоты легче всего представить как результат отражения света от движущихся поверхностей, которыми являются поверхности фронта бегущей волны, т. е. как результат явления Допплера (см. § 127). В волне, бегущей в одну сторону, изменение частоты дифрагировав шего света будет соответствовать увеличению частоты (v + N). а в волне, бегущей навстречу, — уменьшению (v — N). Стоячая волна, как совокупность двух бегущих навстречу, обусловливает изменение частоты, выражаемое формулой v ± N. Несложный расчет показывает, что как по методу стоячих волн (модуляция), так и по методу бегущих волн (явление Допплера) мы получаем, конечно, одно и то же значение (N) изменения частоты падающего

Изучение дифракции света на ультраакустических волнах стало кным методом иссловается на ультраакустических волнах стало важным методом исследования законов распространения этих волной в веществе и слижит таконов распространения этих волной в веществе и служит для исследования вопространения этих в физики; для некоторы и служит для исследования вопросов молекулярной физики; для некоторых технических применений используется ультраакустическая дефектоскопия.

гл. хі. голография

Глава XI

голография

§ 57. Введение

Период электромагнитных колебаний, относящихся к оптической области спектра, чрезвычайно мал, вследствие чего приемники излучения, обладающие большей или меньшей инерционностью, способны регистрировать лишь величину световой энергии, среднюю за период колебаний, но не мгновенное ее значение. В результате такого усреднения мы имеем возможность судить об амплитудах

колебаний, но полностью теряем сведения об их фазах. Вместе с тем, именно фазы волн содержат в себе информацию о взаимном расположении частей источника света, о его удалении от приемника и т. д. Таким образом, результаты измерений, из которых выпали сведения о фазах колебаний, несомых волнами, не позволяют, вообще говоря, составить полное представление о свойствах источника этих волн.

Пусть, например, на поверхность фотопластинки *H* (рис. 11.1) падает сферическая волна, испущенная точечным источником *S*₁. Падающий свет вызовет равномерное почернение открытой части светочувствительного слоя. К тому же результату приведет и волна, пришедшая от любого другого точечного источника, например, от *S*₂. Разумеется, распределение фаз колебаний на поверхности приемника, определяемое изменяющимся расстоянием от волнового почто

фронта до плоскости пластинки *H* (см. рис. 11.1), однозначно связано с положением источника. Однако незнание фазы, обусловленное указанными выше фундаментальными причинами, лишает нас возможности делать какие-либо заключения о локализации источника волн.

Мы можем использовать линзу или какой-либо более сложный оптический прибор и совместить фотопластинку с изображением S₁ источника S₁ (рис. 11.2). Благодаря таутохронизму оптических систем (см. § 20) все части световой волны, проходящие через различные части линзы, приходят в изображение S₁ с равными фазовыми сдвигами, и сведения о положении источника света определяются локализацией его изображения; измерив положение изображения и зная свойства оптического прибора, можно вычислением определить координаты источника. Сказанное относится, очевидно,

Рис. 11.1. К вопросу о регистрации фазы волны.

к любой точке поверхности, которая отображается на плоскость к любой точке поверхности, история по плоскость па плоскость приемника Н. Изложенный принцип лежит в основе большого числа приемника Н. Изложенный принцип лежит в основе будут летаниеских приборов, которые будут летаниеских приемника Н. Изложенным приборов, которые будут детально рас-разнообразных оптических приборов, которые будут детально рассмотрены в главах XII—XV.

применение указанного принципа не может, однако, обеспечить Применение указанного примения сведений об источнике света сохранение всех интересующих нас сведений об источнике света сохранение всел интеретример, изображение S, источника S, на одной фотографии. Например, изображение S, источника S, на однои фотография. С поверхности приемника Н, вызовет (см. рис. 11.2), находящееся вне поверхности приемника Н, вызовет (см. рис. 11.2), налодищесси вис С', т. е. приведет к такому же почернение участка пластинки С', т. е. Приведет к такому же почернение участка пласти с , с с рассматривая S' как ис-рис. 11.1, легко заключить, что как при использовании оптической системы, так и без нее мы имеем дело с общей физической причиной неполноты знания свойств источников — утратой данных о фазах колебаний при их регистрации приемником.

Рис. 11.2. К вопросу о регистрации воли в оптических системах.

Таким образом, и разобранные простые примеры, и общие соображения приводят к выводу, что для получения полного представления о локализации источников волн нужно уметь измерять и распределение амплитуд, и распределение фаз волн.

Измерение распределения фаз можно осуществить с помощью интерференционных явлений (см. гл. IV-VII). Сущность интерференции заключается в том, что при сложении когерентных колебаний разность их фаз обусловливает изменение амплитуды суммарного колебания, иными словами, происходит преобразование фазовых соотношений волн в амплитудную структуру интерференционной картины. Следовательно, если на приемник излучения, «пробную» помимо интересующей нас волны, послать другую, волну с относительно простой формой фронта, например, плоскую или сферическую, то возникшая интерференционная картина полностью охарактеризует закон изменения разности фаз этих двух волн на поверхности приемника. Таким способом мы получим возможность составить представление о фазовой структуре изучаемой волны.

Разумсется, следует выполнить необходимые условия когерентности интерферирующих колебаний и принять ряд других мер

ГЛ. XI, ГОЛОГРАФИЯ

технического характера, о чем будет сказано в своем месте. Сейчас технического кар высказанный общий принцип рассмотрением же мы иллюстрируем высказанный общий принцип рассмотрением простейших примеров.

§ 58) Голографирование плоской волны

Пусть на экран Н падает плоская волна 1 (рис. 11.3, а). В качестве пробной или, как ее называют, опорной волны выберем также честве проопон выоерем также плоскую волно выоерем также плоскую волну 0. Схема рис. 11.3, а обеспечивает, очевидно, когеплоскую волну 1 и 0, если исходная плоская волна, падающая на

бипризму, в достаточной степени когерентна. На экране Н образуется интерференционная картина, имеющая вид параллельных периоди-ческих портина, имеющая вид параллельных периодических полос (см. § 15); расстояние между полосами В равно отно-шенню в полос (см. § 15); расстояние между полосами в равно отношению длины волны к углу 2 φ между направлениями распространения волн 1 и 0 (см. (15.5)), т. е. $\mathcal{B} = \lambda/2\varphi$. Пусть экран H представляет собой н измерив ляет собой фотопластинку; сфотографировав полосы и измерив расстояние может и измерив расстояние может и измерия сфотографирован полосы и измерив расстояние может стоя и измерия сфотографирован полосы и измерив расстояние может стоя и измерия собот стоя и измерия собот собо расстояние между ними, мы можем вычислить угол 2¢:

$$2\omega = \lambda/\mathcal{B}.$$

 Таким образом, мы определили ориентацию волны 1 относительно

 опорной, т.о.
 то пределили ориентацию волны 1 относительно
 опорной, т. е. извлекли информацию о волне, которая содержалась в распределении информацию о волне, которая содержалась в распределении фаз по поверхности приемпика.

Мы можем и не ограничиться измерениями распределения почер. Мы можем и не ограничиться почер-мы можем и не ограничиться почер-нений на фотопластинке, но с ее помощью вновь воспроизвести интер-нений на фотопластинке, в самом деле, поместим фотопластинки нений на фотопластинке, по селе, поместим фотопластинку в то же ферировавшие волны. В самом деле, поместим фотопластинку в то же ферировавшие волны. В самон дену, кона экспонировалась, и напра-место и в той же ориентации, в каких она экспонировалась, и напраместо и в той же ориентации, в место и в той со порной 0, прикрыв вим на нее просвечивающую волну, идентичную опорной 0, прикрыв вим на нее просвечивающую воли, и прикрыв волну 1 диафрагмой F (см. рис. 11.3, б). Поскольку почернение волну 1 диафрагмой Г периотически, она представляет собс волну / диафратмов / сом рически, она представляет собой дипластинки изменяется периодом В. Справа от пластинки мы обна-фракционную решетку с периодом В. Справа от пластинки мы обнафракционную решетку с порагировавших волн; направления их расружим насор плостия дифракции) определяются соотношением (см. § 47)

 $\theta = \varphi + m\lambda/\mathscr{B} = \varphi + m2\varphi, \qquad m = 0, \pm 1, \pm 2, \ldots,$

причем, ради простоты, угол падения ф и угол дифракции в пред. полагаются малыми. Нулевой порядок (m = 0), как обычно, соот. ветствует распространению падающей волны (см. рис. 11.3, б). Для m = -1 имеем $\theta = -\phi$, т. е. эта волна распространяется точно в том же направлении, как и волна 1 во время образования интерференционной картины, полученной по схеме рис. 11.3, а. Последнее обстоятельство отражено на рис. 11.3, б пунктирными линиями, которые являются продолжением лучей 1 в направлении. противоположном их распространению.

Остальные значения $m = 1, \pm 2, ...$ отвечают дополнительным волнам, которых не было среди исходных волн (см. рис. 11.3, а). Как известно, отношение интенсивности дифрагировавших волн, порядка т. определяетотвечающих различным значениям ся законом, по которому изменяется коэффициент пропускания решетки на протяжении ее периода (см. § 46, 48). Если пропускание подчиняется синусондальному закону, то образуются волны m = 0, ± 1 (решетка Рэлея; см. § 51). В нашем случае распределение осве щенности фотопластинки было синусоидальным, однако пропускание проявленной пластинки не вполне синусоидальное, и дополнительные волны поэтому существуют, хотя, как правило, они сравнительно мало интенсивны. Исключение составляет волна m=1, у которой интенсивность такая же как у волны m = -1.

Итак, описанный опыт показывает, что можно не только регистрировать сведения о распределении фаз волны на поверхности приемника, что само по себе более или менее очевидно заранее, но при желании и восстановить волну, участвовавшую в образовании интерференционной картины.

Метод регистрации фазы волны и ее восстановления, разобранный выше на примере плоской волны, называется голографией. В переводе с преческого воде с греческого «голография» означает «полная запись», т.е. в названия полная и полная в в названии подчеркнута возможность регистрации исчерпывающих сведений о волновом посто регистрации исчерпывающих сведений о волновом поле на поберхности приемника света. Фото-пластинка, на которой сели пластинка, на которой зафиксирована интерференционная картина (в виде почернений), называется голограммой. Разумеется, с этой же целью применяются и иные приемники света, однако фотографический способ технически наиболее разработан и поэтому используется чаще других.

§ 59. Голографирование сферической волны

На рис. 11.4 изображена схема опыта по голографированию сферической волны, испускаемой точечным источником S. В качестве опорной служит когерентная сферической плоская волна, отклоняемая пластинкой P так, что она падает на экран H перпендикулярно к его поверхности.

дикулярно и *Н* можно наблюдать интерференционную кар-В плоскости *Н* можно наблюдать интерференционную картину, имеющую вид концентрических колец, центр которых находится в точке *О* пересечения плоскости *H* с перпендикуляром, опущенным на нее из *S*. Аналогичная картина описана в § 26, где также

Рис. 11.4. Схема голографирования сферической волны. ^а — регистрация интерференционной картины; 6 — просвечивание голограммы; в — формирование изображений S', S" частью голограммы, показанной справа.

обсуждалась интерференция плоской и сферической воли (кольца Ньютона). Расстояние между соседними кольцами убывает по мере роста их радиуса. Последнее легко объяснить с помощью простого расчета разности хода между сферическим и плоским фронтами и соответствующей разности фаз ψ, определяемой соотношением

$$\psi = \frac{2\pi}{\lambda} \frac{r^3}{2R} + \psi_0,$$

где ψ₀ — некоторая постоянная величина, R = SO, r -радиус где ψ_0 — некоторая постоянная воличина, $\kappa = SO$, r — радиус кольца. Положение светлых колец определяется из условия $\psi = 2\pi n_1$ (n_1 — целое число), так что

$$r_n = \sqrt{2\lambda Rn}, \qquad n = n_1 - \psi_0/2\pi.$$

Перемещением источника можно добиться максимальной интенсив. Перемещением исто ины, что эквивалентно целочисленности величины ности в центре картины, что эквивалентно целочисленности величины ности в центре картина, изность $n = n_1 - \psi_0/2\pi$ совпадает с номером $\psi_0/2\pi$; в этих условиях разность $n = n_1 - \psi_0/2\pi$ совпадает с номером ψ₀/2π, в этих условник располно кольца, мы может вычислить кольца. Измерив радиус какого-лнбо кольца, мы может вычислить раднус кривизны волнового фронта в точке О.

$$R = r^2/2\lambda n_s$$

и определить тем самым положение источника.

Таким образом, и в даниом случае «запись» фазы волны достаточна для выяснения ее геометрических свойств.

Заменим экран Н фотопластинкой и сфотографируем интерференционную картину. В результате мы получим голограмму с чередующимися прозрачными и непрозначными кольцами, причем закон изменения радиуса колец такой же, как и в случае зонной пластинки. Свойства зонной пластинки, изложенные в § 34, позволяют легко понять результаты следующего опыта по восстановлению волнового фронта. Просветив полученную голограмму плоской волной (см. рис. 11.4, б), обнаружим справа от голограммы несколько волн. Одна из них (плоская) распространяется в направлении волны, падающей на голограмму; вторая сходится в точку S"; третья расходится и имеет своим центром точку S'. Точка S' находится на таком же расстоянии от голограммы, как и источник S во время экспонирования (см. рис. 11.4, а), т. е. точку S' можно рассматривать как восстановленный источник S.

Объяснение описанных явлений непосредственно вытекает из фокусирующих свойств зонной пластинки (см. § 34). Если пропускание голограммы следует закону sin $(\pi r^2/\lambda R)$, то никакие волны, кроме указанных трех, не образуются. Это свойство зонных пластинок аналогично способности решеток Рэлея образовывать дифракционные максимумы порядков m = 0 и ± 1 (см. упражнение 88). Поэтому иногда зонную пластинку именуют зонной решеткой.

Если пропускание голограммы отличается от указанного выше, наблюдается несколько более слабых сходящихся и расходящихся волн, не показанных на рис. 11.4, б (см. § 34 и рис. 8.6) *).

Голограммы обладают важным свойством восстанавливать волновой фронт небольшой своей частью. Видоизменим схему спыта,

^{*)} Следует иметь в виду, что величина г в § 34 характеризует раднус т. и Френеля. В ланиом что по величина г в § 34 характеризует раднус свет. зоны френеля. В данном же параграфе мы оперировали с радиусом л-го свет-лого кольца, а в прагра лого кольца, а в пределах каждого кольцевого периода укладываются две зоны

закрыв часть голограммы диафрагмой, как показано на рис. 11.4, е. закрыв часть голограммы по-прежнему открытая часть голограммы по-прежнему Опыт мнимое (S') и действительное (S') «изображему образует мнимое (S') и действительное (S'') «изображения» несу-образует мнимое (S') и действительное (S'') «изображения» несу-ществующего источника S. Разумеется, интенсивность волн всех ществующего источно в соответствии с меньшей величиной светопорядков уменьшится в соответствии с меньшей величиной свето-вого потока. И в том, и в другом отношении поведение зонной пластинки подобно действию линзы. В случае голограммы плопластинки подобранном в предыдущем параграфе, отмеченное ской волны, разобранном в предыдущем параграфе, отмеченное ской волны, рассор очевидно: если прикрыть часть дифракци-свойство голограммы очевидно: если прикрыть часть дифракцисвойство полограние направление дифрагировавших волн останется онной решения волн останется их интенсивность и увеличится ширина прежных максимумов (см. § 46). Таким образом, и в данном главных плограммы плоской и сферической волн вполне подобны друг другу.

Опыт, выполненный по схеме рис. 11.4, в, позволяет сделать два интересных вывода. Во-первых, можно было вообще не экспонировать участок голограммы, закрытый впоследствии диафрагмой. Но это означает, что голограмму можно изготавливать и при наклонном падении сферической волны на экран Н и фотопластинку, т. е. на первом этапе голографирования работать по схеме, аналогичной рис. 11.4, в. Восстановленная волна порядка m = -1 все равно будет иметь центром схождения точку S', совпадающую с положением источника S во время экспонирования. Во-вторых, в схеме с наклонным падением (в отличие от рис. 11.4, a, b) происходит пространственное разделение пучков, образующих действительное и мнимое изображения источника. Это обстоятельство представляет несомненное практическое преимущество, вследствие чего в большинстве голографических приборов осуществляется наклонное падение опорных световых пучков.

§ 69. Голограммы Френеля трехмерных объектов

Опорная и освещающая объект волны могут формироваться в результате разделения расширенного волнового фронта лазерного излучения Σ на две части (рис. 11.5, a). Одна часть фронта отража отражается от зеркала З, а другая — рассеивается объектом наблюдения О. Оба волновых поля достигают фотопластинки П, на которой которой регистрируется результирующая интерференционная кар-тина — голограмма объекта О. На рис. 11.6 приведена обычная фотография некоторых объектов, на рис. 11.7, а — их голограм-ма в натура в натура в собъектов, на рис. 11.7, б — участок той же ма в натуральную величину, на рис 11.7, 6 — участок той же голограмы голограммы при увеличении. Интерференционные кольца на голо-грамме граммы при увеличении. Интерференционные кольца на толе грамме — результат побочного эффекта, вызванного дифракцией света на пылинках, случайно оказавшихся на пути опорной волны, волны.

дифракция света

Изображения объекта формируются в результате просвечивания Изображения объекта формирусти (рис. 11.5, 6) и дифракголограммы лазерным световых су нен скло, ој и дифрак-ини света на неоднородностях ее почернения. В направлении 1-1 ини света на неоднородностик со поле, формирующее без помощи объек-распространяется волновое поле, формирующее без помощи объекраспространяется волновое исле, т. (ДИ) объекта. В направлении тива действительное изображение поле рассеянное объекта. тива деиствительное посериное поле, рассеянное объектом наблю-2-2 восстанавлявается розположи на рис. 11.5, а. Это волновое дения, как это было показано на рис. 11.5, а. Это волновое дения, как это области использование (МИ) объекта. Такое

Рис. 11.5. Схема опыта по голографированию трехмерных рассеивающих объектов и восстановлению их изображений.

поле можно использовать, перемещая в нем объектив или глаз, для формирования различных изображений объекта, видимых под разными углами из различных точек пространства, как при непосредственных наблюдениях объекта. Достигаемое при этом взаимное параллактическое смещение деталей изображения показано на рис. 11.8. То же можно наблюдать и для действительных изображений, просвечивая различные участки голограммы.

Кроме рассмотренных волновых полей за голограммой распространяются также ослабленный исходный световой пучок 3-3 и немного расходящийся световой пучок 4-4. Эти пучки не несут информации об объекте наблюдения.

В обсуждаемом опыте рассеянное объектом излучение можно рассматривать как результат дифракции на нем освещающего лазерного пучка. В схеме рис. 11.5 голограмма не слишком удалена от объекта, так что указанную дифрагировавшую волну следует отнести к френелевскому типу (см. гл. VIII). Поэтому голограммы,

гл. хі. голография

Рис. 11.6. Фотография объектов исследования.

получаемые в такого рода расположениях, называют голограммами

енеля. Для объяснения описанного, очень эффектного эксперимента Френеля. Для объяснения образом. На первом этапе гологра-

Рис. 11.8. Голографические изображения, полученные для разных направлений наблюдения.

фирования фотопластинка воспринимает более или менее сложное поле, фазовые свойства которого зависят от геометрических особенностей объекта и опорной волны, поскольку использованное лазерное излучение пространственно когерентно. Каково бы ни было это поле, его можно представить в виде набора плоских волн (теорема Фурье). Каждая из них в результате интерференции с опорной волной создает периодическую снстему интерференционных полос с характерными для нее орнентацией и периодом. Каждая элементарная интерференционная картина приводит к образованию на голограмме некоторой дифракционной решетки. В соответствии с изложенным в § 58 каждая из этих решеток на втором этапе голографирования восстановит исходную плоскую волну. Более детальный BOCCTaчто анализ показывает, волны элементарные повленные находятся в таких же амплитудных и фазовых отношениях, как н набор исходных плоских волн. Поэтому совокупность восстановплоских элементарных ленных волн воссоздаст согласно теореме

Фурье полное рассеянное объектами поле, которое мы и наблюдаем визуально или регистрируем фотографически.

Сказанное относится к элементарной плоской волне, которая на рис. 11.3, б обозначена как волна порядка m = -1. Помимо нее, элементарная дифракционная решетка формирует по крайней мере еще две совокупности волн — нулевого и первого порядков. Волны m = 0 распространяются в направлении опорной волны и не попадают в глаз при надлежащем его расположении (см. рис. 11.5, б). Волны порядка m = 1 образуют, как будет видно, второе, действительное изображение объекта.

Для выяснения последнего обстоятельства целесообразно рас-Для выясной способом, опираясь на рассмотрение гологразно рас-суждать другим способом, опираясь на рассмотрение голограммы суждать другим волны. Каждая точка предмета представляет собой сферической волны; ее интерференция с опоставляет собой сферической волны; ее интерференция с опорной волной источник сферической волны; ее интерференция с опорной волной источник сфериограмме элементарную зонную решетку, которая на солографирования восстанавливает чолографирования восстанавливает чологории волной на советствии восстанавливает чологории волной волной на советствии восстанавливает чологории восстанавливает чоло создает на голографирования восстанавливает исходную сфери-втором этапе голографирования восстанавливает исходную сферивтором этапе исходную сфери-ческую волну и формирует изображение выделенной точки предмета ческую волгу и станов. 11.4). Совокупность элементарных зонных реше-(точка создает, очевидно, мнимое изображение всего объекта.

кроме мнимого изображения S', элементарная зонная решетка образует действительное изображение S" (см. рис. 11.4, б, в), совообразует допорых и обусловливает возникновение действительного купность которых и обусловливает возникновение действительного изображения объекта в целом.

Помимо элементарных решеток, обусловленных интерференцией опорной волны с каждой из элементарных волн, голограмма содержит дополнительную структуру, возникающую в результате интерференции элементарных волн между собой. Эта дополнительная структура приводит к некоторому рассеянию опорной волны или. что то же, к образованию дополнительных дифрагировавших волн. концентрирующихся вблизи направления распространения просвечивающей волны. Подобное рассеяние опорной волны может мешать наблюдению регулярных (мнимого и действительного) изображений объекта. Если, однако, угол падения опорной волны на голограмму в достаточной мере отличается от углов падения предметных волн, то дополнительные волны не накладываются на изображения (см. упражнение 236).

При количественном описании голографирования удобно применять комплексную запись колебаний (см. § 4), которой мы и воспользуемся. Поле, создаваемое в плоскости голограммы в результате рассеяния лазерного излучения объектом, можно записать в виде

$$E(\rho) = A(\rho) \exp[i\varphi(\rho)], \qquad (60.1)$$

где р — радиус-вектор, лежащий в плоскости голограммы, A (р) и φ (ρ) — амплитуда и фаза световых колебаний в точке с раднусомвектором р. Плоская опорная волна описывается выражением *) (60.9)

$$A_0 \exp\left(ik_0 r\right), \tag{00.17}$$

где k₀ — волновой вектор, r — радиус-вектор произвольной точки пространование значение пространства, A_0 — амплитуда, сохраняющая постоянное значение в пределение координат в пределах поперечного сечения пучка. Если начало координат поместить поместить на поверхности голограммы, то в ее плоскости поле

*) Поскольку условие постоянства фазы
$$k_0 r = \text{const}$$
 определяет плоскость, перпендикулярную к k_0 , выражение (60.2) действительно соответствует плоской волне, распространяющейся вдоль k_0 .

опорной волны принимает вид

$$E_0(\rho) = A_0 \exp(ik_0\rho). \tag{60.3}$$

Итак, суммарное поле на поверхности голограммы записывается следующим образом:

$$E_{0}(\rho) + E(\rho) = A_{0} \exp(ik_{0}\rho) + A(\rho) \exp[i\varphi(\rho)]. \quad (60.4)$$

Согласно правилам пользования комплексной записью колебаний согласно правнисти ненности I (р) в интерференционной картине распределение осредение и у становной пропорционально квадрату модуля выражения (60.4), т. е.

$$Y(\rho) = |E_0(\rho)|^2 + |E(\rho)|^2 + E_0^*(\rho) E(\rho) + E_0(\rho) E^*(\rho), \quad (60.5)$$

причем мы опустили несущественный в данном расчете коэффициент пропорциональности.

Допустим, что мы изготовили позитивную фотографию интерференционной картины, а фотоматериал и режим проявления выбрали таким образом, что коэффициент пропускания голограммы $T(\rho)$ пропорционален освещенности $I(\rho)$, т. е. $T(\rho) = T_0 I(\rho)$. В этих условиях описание второго этапа голографирования сводится к следующему. Просвечивающая волна, идентичная опорной, проходит голограмму и оказывается промодулированной в соответствии с распределением освещенности в интерференционной картине. Обозначая через 6 (р) освещающее поле на выходе из голограммы, т. е. на ее «выходной» поверхности, находим

$$\mathscr{O}(\rho) = T(\rho) E_0(\rho) = T_0 I(\rho) E_0(\rho).$$
(60.6)

С помощью соотношений (60.5), (60.1) и (60.3) выражению для & (р) можно придать следующую форму:

$$\begin{array}{c} \mathscr{E}(\rho) = \mathscr{E}_{1}(\rho) + \mathscr{E}_{2}(\rho) + \mathscr{E}_{3}(\rho), \\ \mathscr{E}_{1}(\rho) = T_{0} [|A_{0}|^{2} + |A(\rho)|^{2}] E_{0}(\rho), \\ \mathscr{E}_{2}(\rho) = T_{0} |A_{0}|^{2} E(\rho), \\ \mathscr{E}_{3}(\rho) = T_{0} A_{0}^{2} E^{*}(\rho) \exp(2ik_{0}\rho). \end{array}$$

$$(60.7)$$

Уравнения (60.6) и (60.7) были впервые получены Д. Габо-

ром (1948) и носят название уравнений Габора. Таким образом, поле б (р) оказывается возможным представить в виде суммы трех членов. В силу принципа суперпозиции мы можем по отдельности рассматривать дифрагировавшие волны, обусловленные каждым из этих членов.

Согласно принципу Гюйгенса — Френеля дифрагировавшее поле за голограммой однозначно определяется фазами и амплитудами фиктивных источности. фиктивных источников на некоторой произвольной поверхности. Такой поверхности. Такой поверхностью может служить выходная плоскость голограм-мы, для которой мы вычислили поле (& (р)) и, таким образом, узнали характеристики фиктирии и насе (в (р)) и таким образом, узнали характеристики фиктивных источников Гюйгенса — Френеля. На-

помним, что существенное значение в любой дифракционной задаче имеет только закон распределения фаз и амплитуд фиктивных источников. Уменьшение или увеличение амплитуд, одинаковое источников. о мень источников, обусловит лишь пропорциональное аля всех фиктивных источников, обусловит лишь пропорциональное для всех фиктиристи дифрагировавших воли, но не повлияет на их изменение амплитуд дифрагировавших воли, но не повлияет на их изменение амплитуд дифратировавших воли, но не повлияет на их карактерные особенности. Последнее обстоятельство позволяет характерные осостоятельство позволяет не проводить решения дифракционной задачи в полном объеме и. не проводния в полном об тем не менее, выяснить структуру восстановленной волны. цасть поля на границе голограммы, описываемая членом $\mathscr{E}_1(\rho)$,

Часть поля на границе голограммы, описываемая членом $\mathscr{E}_1(\rho)$, с точностью до множителя T_0 [$|A_0|^2 + |A(\rho)|^2$] совпадает с тем, которое создала бы опорная волна в отсутствие голограммы, т. е. которое создание он распространении. Опорная волна обычно значительно при своюсянени расти предметная, так что членом $|A(p)|^2$ можно пренебречь и коэффициент пропорциональности между $\mathscr{E}_1(\rho)$ пренеоречь и посучити пропорциональности между $\mathcal{E}_1(\rho)$ и $E_0(\rho)$ оказывается постоянным. В этом случае, следовательно. и Со (р) опражает тот факт, что за голограммой будет распространяться плоская волна, совпадающая по направлению с опорной *).

Член С (р) в (60.7) пропорционален полю Е (р), созданному в плоскости голограммы волнами от исследуемого объекта. Ясно поэтому, что поле, формируемое соответствующими вторичными источниками Гюйгенса — Френеля, идентично тому полю, которое создается самим объектом в отсутствие голограммы. Таким образом, эта часть поля отвечает мнимому изображению объекта. Можно сказать поэтому, что наблюдение мнимого изображения эквивалентно рассматриванию самого предмета через отверстие, совпадающее с рабочей частью голограммы. В свете сказанного способность голограммы восстанавливать изображение с помощью небольшой части своей поверхности получает почти тривиальное объяснение: указанная способность эквивалентна тому, что при непосредственном рассматривании какой-либо точки предмета используется только та часть ее излучения, которая ограничена действующим конусом лучей, попадающих в глаз.

Нетрудно показать, что член С₃ (р) описывает образование действительного изображения объекта. В этом мы убедились на примере точечного источника света (см. § 59). Последовательно помещая экран в разные сечения области локализации действитель-ного изображения ного изображения, можно получать четкие изображения трехмерного объекта и его деталей, не применяя никаких дополнительных оптических систем. При таких наблюдениях легко обнаружить,

^{*)} В рамках представлений, основанных на разложении поля $E(\rho)$ на эле-ментарные волны, член $|A(\rho)|^2$ описывает, очевидно, дополнительную струк-туру голограммы, общество в составление между этими элементарными водно туру голограммы, член | A (р) |² описывает, очевидно, дополнительную от волнами, Как бо обусловленную интерференцией между этими элементарными волнами. Как было выяснено выше, указанная структура приводит к некоторому рассеянию проссеяния можно рассеянию просвечивающей волны, но вредное влияние такого рассеяния можно устранить размистивающей волны, но вредное влияние такого рассеяния можно устранить рациональным выбором углов падения опорной и просвечивающей волн.

что подобне между объектом и действительным изображением имеет что подобие между объектом и денего породиснием имеет место только при условии, что опорный и просвечивающий пучок место только при условии, что опорный к просвечивающий пучок место только при условии, перпендикулярно к ее поверхности. В пропадают на голограмму периоданов изображение оказывается искажентивном случае денствительных может даже исчезнуть (см. упражнение 263).

ние 203). До сих пор мы считали опорную волну плоской. Из элементарной До сих пор мы считали операно усмотреть, что в качестве теории, изложенной выше, нетрудно усмотреть, что в качестве опорной может служить и сферическая волна. В самом деле, заменим выражение (бо.3) на

$$E_0(\rho) = A_0 \exp\left[ik_0 | \boldsymbol{r}_0 - \rho|\right],$$

где r_0 — радиус-вектор центра сферической волны. Поскольку и в данном случае $|E_0(\rho)|^2 = |A_0|^2$, по-прежнему получим $\mathcal{E}_2(\rho) \propto E(\rho),$ и, следовательно, мнимое изображение остается таким же, как и при плоской опорной волне.

§ 61. Голограмма как элемент идеальной оптической системы. Получение увеличенных изображений

В предыдущих параграфах мы предполагали, что опорная и просвечивающая волны идентичны. В этом случае мнимое изображение полностью копирует сам объект. Однако выполнение указанного условия отнюдь не обязательно, и голографирование успешно осуществляется и в том случае, когда на первом и втором этапах применяется излучение с разными длинами волн и разными кривизнами волновых фронтов. Такие изменения условий опыта позволяют получать увеличенные изображения голографируемых предметов.

Рассмотрим голограмму сферической волны, получаемую с применением также сферических волн в качестве опорной и просвечивающей. Световые колебания, соответствующие этим трем волнам, в точке с раднусом-вектором о голограммы можно записать в виде

$$E(\rho) = A \exp [ik | r_{s} + \rho_{s} - \rho |];$$

$$E_{0}(\rho) = A_{0} \exp [ik | r_{0} + \rho_{0} - \rho |];$$

$$E_{0}'(\rho) = A_{0}' \exp [ik' | r_{0}' + \rho_{0}' - \rho |].$$
(61.1)

Векторы ра, ро, ро задают положение оснований перпендикуляров rs, ro, ro, направленных из плоскости голограммы в центры предметной, опорной и просвечивающей волн соответственно (рис. 11.9). Волновые числа $k = 2\pi/\lambda$ и $k' = 2\pi/\lambda'$, вообще говоря, не равны друг другу.

Будем интересоваться сначала мнимым изображением предмета. Повторяя рассуждения, проведенные при обосновании соотношения (60.6), нетрудно убедиться, что интересующая нас часть поля $\mathcal{E}_2(p)$ на «выходной» границе голограммы после ее

просвечивания выражается соотношением

$$\mathscr{E}_{2}(\rho) = T_{0}E_{0}^{*}(\rho) E_{0}(\rho) E(\rho) = T_{0}A_{0}^{*}A_{0}^{\prime}A \exp[i\psi(\rho)],$$
 (61.2)

где $\psi(\rho) - \phi$ аза колебания в точке с радиусом-вектором ρ $\psi(\rho) = k | \mathbf{r}_s + \rho_s - \rho | - k | \mathbf{r}_0 + \rho_0 - \rho | + k' | \mathbf{r}'_0 + \rho'_0 - \rho |.$ (61.3)

Предположим, что длины перпендикуляров значительно превышают разности | $\rho_s - \rho$ | и т. д., т. е. углы падения лучей на голограмму малы для всех ее точек и для всех трех волн. В этом случае простые, но громоздкие преобразования, которые полезно проделать читателю в качестве упражнения, позволя-

ют представить $\psi(\rho)$ следующим сбразом:

$$\psi(\rho) = \frac{k'}{2r'_s} (\rho - \rho'_s)^2 + \psi_0, \quad (61.4)$$

где ψ_0 не зависит от ρ , а r_s , ρ_s определяются соотношениями

$$\frac{k'}{r'_s} = \frac{k}{r_s} + \frac{k'}{r'_0} - \frac{k}{r_0}; \qquad (61.5)$$

$$k' \frac{\rho_s'}{r_s'} = k \frac{\rho_s}{r_s} + k' \frac{\rho_0'}{r_0'} - k \frac{\rho_0}{r_0}.$$
 (61.6)

Рис. 11.9. К теории голографических систем.

Распределение фаз, описываемое формулой (61.4), могла бы создать сферическая волна с длиной $\lambda' = 2\pi/k'$, причем центр ее должен находиться на перпендикуляре длиной r'_{s} , восставленном из точки ρ'_{s} . В таком случае построение Френеля, сбсужденное в § 33 и относящееся к свободному распространению сферической волны, позволяет заключить, что за голограммой будет распространяться сферическая волна с указанным положением ее центра. Другими словами, формулы (61.5) и (61.6) для r'_{s} , ρ'_{s} определяют положение изображения точечного объекта, находившегося при экспонировании голограммы в точке, задаваемой величинами r_{s} , ρ_{s} .

Таким же путем можно вывести аналогичные соотношения, описывающие положение (r_s^* , ρ_s^*) второго изображения точечного источника, которое формируется при просвечивании голограммы:

$$\frac{k'}{r_0''} = -\frac{k}{r_0} + \frac{k'}{r_0'} + \frac{k}{r_0}; \tag{61.7}$$

$$k' \frac{\rho_s''}{r_s''} = -k \frac{\rho_s}{r_s} + k' \frac{\rho_0'}{r_0'} + k \frac{\rho_0}{r_0}.$$
 (61.8)

Подчеркнем, что величины rs, rs могут быть как положительными, так и отрицательными. Физически это означает, что центры кривизны каждой из восстановленных воли могут располагаться по обе стороны голограммы. В дальнейшем условимся считать расстояния от голограммы до точек S, O, O' (см. рис. 11.9) и до точек изображений S', S" положительными, если указанные точки находятся за голограммой (по ходу света), и отрицательными, если они располагаются до голограммы.

лагаются до толограммы. Таким образом, в рассматриваемом общем случае обе восстановленные волны могут образовывать и мнимые ($r'_s < 0$, $r''_s < 0$), и действительные ($r'_s > 0$; $r'_s > 0$) изображения. Поэтому в дальнейшем будем называть S' (часть поля $\mathscr{C}_2(\rho)$) главным изображением, а S" (часть поля $\mathscr{C}_3(\rho)$) — дополнительным.

а S (часть поля с з су) Если просвечивающая волна плоская, то независимо от кривизны опорной волны изображения S' и S" лежат на равных расстояниях от голограммы, но по разные ее стороны,

$$k'/r'_{s} = -k'/r''_{s} = k(1/r_{s} - 1/r_{0}).$$

В этом случае, следовательно, одно изображение действительное, а другое — мнимое, причем главное изображение будет мнимым если кривизна $1/r_0$ опорной волны меньше (в алгебраическом смысле), чем кривизна $1/r_s$ волны, испускаемой источниками. Пусть теперь предмет и центр опорной волны находятся в одной плоскости, параллельной голограмме ($r_s = r_0$). Тогда из (61.5) и (61.7) получаем $r_s^* = r_s' = r_0'$, т. е. оба изображения располагаются по одну сторону голограммы и на равных расстояниях от нее. Этот случай более подробно рассматривается в следующем параграфе.

Обратимся к вопросу об увеличении голографического изображения. Сместим точечный предмет параллельно плоскости голограммы на величину $\Delta \rho_s$. Изображения S' и S" также сместятся, причем смещения эти, согласно формулам (61.6) и (61.8), равны

$$\Delta \rho'_s = \frac{k}{k'} \frac{r'_s}{r_s} \Delta \rho_s; \quad \Delta \rho''_s = -\frac{k}{k'} \frac{r''_s}{r_s} \Delta \rho_s. \tag{61.9}$$

К такому же результату мы придем и в том случае, если под $\Delta \rho_s$, $\Delta \rho_s$, $\Delta \rho_s$ будем понимать векторы, соединяющие соответственно две точки предмета и их изображений. Коэффициенты пропорциональности в соотношениях (61.9) называются поперечными увеличениями V и V" голографической системы:

$$V' = \frac{k}{k'} \frac{r'_s}{r_s} = \frac{1}{1 - (r_s/r_0) + (k'/k) (r_s/r'_0)},$$

$$V'' = -\frac{k}{k'} \frac{r''_s}{r_s} = \frac{1}{1 - r_s/r_0 - (k'/k) (r_s/r'_0)},$$
(61.10)

и равны, очевидно, отношениям размеров изображений и объекта в направлениях, параллельных плоскости голограммы.

ГЛ. XI. ГОЛОГРАФИЯ

Продольные увеличения U' и U" определяются как отношения смещений изображений к смещению точки предмета в направлении, смещений к голограмме. Из соотношений (615) (615) смещений изооралкении и следению гочки предмета в направлении, кормальном к голограмме. Из соотношений (61.5), (61.7) найдем

$$U' = \frac{dr'_{s}}{dr_{s}} = \frac{k}{k'} \left(\frac{r'_{s}}{r_{s}}\right)^{2} = \frac{k'}{k} V'^{2}; \quad U'' = \frac{dr''_{s}}{dr_{s}} = -\frac{k}{k'} \left(\frac{r''_{s}}{r_{s}}\right)^{2} = -\frac{k'}{k} V'^{2}.$$
(61.11)

Из сравнения (61.11) и (61.10) можно увидеть, что продольное и поперечное увеличения различны. Это означает искажение формы поперечнос у в сравнении с объектом (трехмерным): изображение изооражение сплюснуто или растянуто в направлении к голограмме в зависимости сплюсную ими развисимости от того, какое из увеличений больше |V'| и |V''| или |U'| и |U''|. от того, какое на уземне подобно объекту только при выполнении условия $r_s = r'_s$, чему отвечает единственное положение предмета

$$\frac{1}{r_s} = \frac{1}{k'-k} \left(\frac{k'}{r_0'} - \frac{k}{r_0} \right).$$

Поперечное, и продольное увеличения при этом условии равны отношению длин волн, т. е.

$$V' = U' = k/k' = \lambda'/\lambda.$$

Таким образом, можно получить увеличенное голографическое изображение, подобное объекту; в этом случае длина просвечивающей волны должна быть больше, чем предметной и опорной. Для плоских объектов выполнение условия V' = U' не необхо-

димо, и можно получить неискаженное увеличенное изображение не только за счет различия в длинах волн λ и λ', но и путем выбора геометрических условий опыта. Например, при плоской опорной волне $(r_0 \rightarrow \infty)$

$$V' = \frac{1}{1 + (k'/k) (r_s/r_0')}$$

и увеличенное главное изображение получается при разных знаках 's и r₀, т. е. просвечивающая волна должна быть сходященся *) (rs всегда отрицательно).

Мы не будем более конкретизировать общие соотношения (61.5)-(61.8), связывающие положение объекта и его изображений, поскольку они в формальном отношении полностью совпадают с законами, справедливыми для любой оптической системы. Последние будут вос будут детально анализироваться в главах XII—XIV, а здесь мы ограниции ограничимся констатацией указанной аналогии. Для удобства

*) Аналогичный анализ дополнительного изображения см. в упражне-
ДИФРАКЦИЯ СВЕТА

сопоставления выпишем рядом основные соотношения, описывающие

сопоставления выпация рических и линзовых системах (см. § 79): изображение в голографических и Линзовых системах (см. § 79): Главное голографическое

изображение

Изображение в идеальной линзе

u b k'	n_2 n_1 n_2 n_1
$\frac{k}{r_c'} - \frac{k}{r_s} = \frac{1}{f'};$	$\frac{\overline{a_2}}{a_2} - \frac{\overline{a_1}}{a_1} = \frac{\overline{f_2}}{f_2} = -\frac{\overline{f_1}}{f_1};$
$V' = \frac{k}{k'} \frac{r'_s}{r_s};$	$V=\frac{n_1}{n_2}\frac{a_2}{a_1};$
$U' = \frac{k}{k'} \left(\frac{r'_{s}}{r_{s}}\right)^{2} = \frac{k'}{k} {V'}^{2};$	$U = \frac{n_1}{n_2} \left(\frac{a_2}{a_1}\right)^2 = \frac{n_2}{n_1} V^2.$

Здесь а2, а1 (расстояния от изображения и объекта до линзы, точнее, до ее главных плоскостей) аналогичны r's, rs. Показатели преломлений n₂, n₁ пространства предметов и пространства изображений следует соотнести с волновыми числами k', k. Роль фокусных расстояний голографической системы играют величины f', f, определяемые соотношениями

$$\frac{k'}{f'} = \frac{k'}{r'_0} - \frac{k}{r_0}; \quad \frac{k}{f} = -\frac{k'}{r'_0} + \frac{k}{r_0} = -\frac{k'}{f'};$$

они так же связаны между собой, как и фокусные расстояния f., f. (заднее и переднее) линзовой системы.

Обсуждаемую аналогию можно продолжить, сравнивая f' и f с фокусными расстояниями тонкой линзы *) (см. § 76, 77)

$$\frac{n_2}{f_2} = \frac{n_2 - n}{R_2} - \frac{n_1 - n}{R_1}; \quad \frac{n_1}{f_1} = \frac{n_1 - n}{R_1} - \frac{n_2 - n}{R_2} = -\frac{n_2}{f_2},$$

где n — показатель преломления материала линзы, R₁ и R₂ раднусы кривизны ее поверхностей, подчиненные тому же правилу знаков, что и г, и т. д. Таким образом, голограмма по отношению к главному изображению эквивалентна тонкой линзе, у которой раднусы кривизны поверхностей связаны с го, го следующим обра-30M:

$$\frac{1}{r_0} = \frac{n_1 - n}{n_1} \frac{1}{R_1}; \quad \frac{1}{r'_0} = \frac{n_2 - n}{n_2} \frac{1}{R_2}.$$
 (62.12)

Главное и дополнительное голографическое изображения преобразуются друг в друга так же, как при отражении в сферическом зеркале. Действительно, из соотношений (61.5) и (61.7), (61.9), (61.11) легко получаем

$$\frac{1}{r_s^{*}} + \frac{1}{r_s^{*}} = \frac{2}{r_0^{*}}; \quad \Delta \rho_s^{*} = -\frac{r_s^{*}}{r_s^{*}} \Delta \rho_s^{*}; \quad \frac{dr_s^{*}}{dr_s^{*}} = -\left(\frac{r_s^{*}}{r_s^{*}}\right)^2, \quad (61.13)$$

^{*)} Приседены более общие выражения, чем в § 76, верные и при n3 ≠ n1.

что формально описывает отражение в сферическом зеркале (см. (72.4)), если раднус кривизны последнего равен расстоянию г

(72.4)), если риклу и центром просвечивающей сферической волны. между голограммой и центром просвечивающей сферической волны. Поэтому дополнительное изображение иногда называют сопряженным.

женным. Итак, геометрические свойства главного и дополнительного изображений, формируемых голограммой, такие как положение, ориентация *), размеры и т. п., совершенно идентичны свойствам изображений, образуемых линзой и зеркалом с соответственно попобранными характеристиками.

установленная формальная аналогия, разумеется, не случайна. Как при голографировании, так и при отображении в линзовой либо зеркальной оптической системе речь идет о преобразовании одной сферической волны (предмета) в другую, также сферическую волну (изображения). Формальный вид закона такого преобразования (линейное преобразование кривизны волновых фронтов) предопределен самой постановкой задачи и никак не связан с конкретным способом его реализации. Любой способ, голографический или линзовый, может только изменить кривизну исходного волновсго фронта в определенное число раз и добавить к ней новое слагаемое **), но не более того. Анализ физического явления, призванного осуществить эту процедуру, конкретизирует физический смысл соответствующего множителя и слагаемого и их зависимость от характеристик явления и конструктивных особенностей системы. Последнее оказывается очень существенным при сравнительном рассмотрении разных способов. Как уже упоминалось, применение разных длин волн на первом и втором этапе предоставляет голографии неизмеримо более широкие возможности, чем аналогичный фактор в линзовых и зеркальных системах (различие показателен преломления в пространстве изображений и предметов, иммерсионные объективы микроскопов, см. § 97), ибо можно использовать излучение с очень сильно различающимися длинами волн, например, рентгеновское и видимое (когда будет создан рентгеновский лазер).

В заключение подчеркнем, что голограмма и просвечивающая ее волна позволяют получить информацию о трехмерном объекте

^{*)} Линзовые и зеркальные изображения отличаются в следующем важном пункте: фиксируем на объекте правую тройку ортов; на линзовом изображении эта тройка всегда преобразуется в правую, а на зеркальном — всегда в левую тройку. Это свойство, многократно наблюдавшееся каждым при использовании бытовых зеркал, означает невозможность совмещения предмета и его изо-

бражения с помощью перемещений и вращений. **) Такое же положение дел и в так называемых нелинейных оптических приборах, где изображение формируется излучением, возникающим в приборе в результате генерации суммарных, кратных и других гармоник (см. § 236).

наблюдения без помощи каких-либо оптических систем. И если при наблюдения без помощи каждый негатив может дать лишь Одно изообычной фотографии каждон иссле определенным углом зрения, бражение объекта, наблюдаемого под определенным углом зрения, то в каждой голограмме записан целый комплекс изображений, то в каждой голограмме записан ценин полниске изооражений, позволяющий наблюдать трехмерный объект под разными углами позволяющии наолюдать треамерных совени под разными углами зрения. Кроме того, голография позволяет наблюдать интерфе. зрения. Кроме того, токог радные моменты времени (см. § 67).

8 62. Голограммы Фурье

Полезными свойствами обладают голографические системы определенного рода, в которых каждая точка предмета порождает на голограмме элементарную решетку Рэлея. Один из способов осуществления таких голограмм иллюстрируется схемой, изображенной на рис. 11.10. Плоский прозрачный объект, показанный пунктиром, просвечивается параллельным пучком лазерного излу-

Рис. 11.10. Схема получения голограмм Фурье.

чения; часть того же пучка фокусируется линзой L на малое отверстие О, которое служит источником опорной сферической волны. Схема обеспечивает, очевидно. когерентность опорной волны и волн, идущих от предмета.

Рассмотрим картину в пло-скости голограммы *H*, возникающую в результате интерференции опорной волны и волны от какой-либо точки S объекта.

Интерференционные картины такого рода, подробно обсужденные в гл. IV, имеют вид последовательности периодических полос; ширина (период) полос равна отношению длины волны к углу, под которым виден участок OS из точки голограммы H, для которой вычисляется период. Таким образом, в схеме рис. 11.10 каждой точке объекта соответствует гармоническое распределение интенсивности в плоскости Н*). Амплитуда ее изменения пропорциональна коэффициенту пропускания объекта в точке S. а период тем меньше, чем дальше точка S от источника опорной волны О.

Опираясь на сказанное выше, легко показать, что распределение интенсивности света в плоскости Н, обусловленное действием всего объекта, представляет собой преобразование Фурье для распределения амплитуды поля в плоскости объекта (см. упражнение

^{*)} Угловые размеры отрезка OS должны быть, конечно, примерно одинаковыми для всех точек действующей части голограммы.

265). Иными словами, устройство, схематически изображенное на рис. 11.10, физически осуществляет преобразование Фурье над указанным распределением амплитуд. Поэтому голограммы, получаемые в расположениях указанного типа, называют голограммами Фурье.

фурьс. Если голограмму Фурье просветить плоской волной, то каждая элементарная решетка образует три плоские волны с порядками $m = 0, \pm 1$ (см. § 58). Можно сказать, следовательно, что каждая точка предмета порождает плоские волны (главное и дополнительное изображения), причем направление их распространения определяется координатой этой точки. Таким образом, в данном случае голографирование эквивалентно размещению предмета в фокальной плоскости некоторой оптической системы. Этот же вывод вытекает и из общих формул, полученных в предыдущем параграфе. Для

Рис. 11.11. Восстановленные изображения плоского объекта, полученные с помощью голограммы Фурье.

рассматриваемого случая в обозначениях § 61 имеем $r_s = r_0, r'_0 \rightarrow \infty$ и из соотношений (61.5) и (61.7) следует

$$1/r'_{s} = 1/r''_{s} = 0$$
,

что означает физически бесконечное удаление и главного, и дополнительного изображений.

Осветим теперь голограмму сферической волной. В этом случае оба изображения и центр просвечивающей волны оказываются в одной плоскости (рис. 11.11). Центральное пятнышко соответствует центру схождения просвечивающей волны, левое и правое изображения суть главное и дополнительное. Взаимная «перевернутость» изображений обусловлена противоположными знаками их поперечного увеличения (см. § 61).

Отмеченные особенности находятся в полном согласни с выводами, которые можно извлечь из общей теории, изложенной в § 61. Полагая в соотношениях (61.5), (61.7) и (61.10) $r_s = r_0$, находим

$$r'_{s} = r''_{s} = r'_{0}; \quad V' = -V'' = \frac{k}{k'} \frac{r'_{0}}{r_{s}} = \frac{\lambda'}{\lambda} \frac{r'_{0}}{r_{s}}.$$

Если просвечивающая волна расходящаяся, то оба изображения Если просвечивающая волис и необходима дополнительная опты-мнимые, и для их регистрации необходима дополнительная оптымнимые, и для их регистрации может выступать и глаз. Просве-ческая система, в качестве которой может выступать и глаз. Просвеческая система, в качестве котороло позволяет получать действи-чивание сходящейся волной (ro > 0) позволяет получать действичивание сходященся волнон (с с применения линз (так называемое безлинзовое изображение).

е оезлинзовое изсораше выражения для увеличения видно, что Из приведенного выше выражения изображения можно Из приведенного выше выренное изображение можно получить в голографии Фурье увеличенное изображение можно получить как за счет различия длин волн λ и λ, так и путем приближения как за счет различие (уменьшение rs), которая действует, следовательно, как объектив микроскопа.

Другой прием осуществления увеличенного изображения заключается в изготовлении репродукции голограммы в уменьшенном масштабе. Поскольку масштаб интерференционной структуры при этом уменьшился (скажем, в М раз), то углы дифракции для просвечивающего света соответственно увеличились (также в М раз). Следовательно, должен увеличиться и размер изображения. И действительно, простой расчет приводит к соотношению

V' = Mk/k'

(см. упражнение 266). Указанный прием используется, разумеется, не только в голографии Фурье (в частности, в голографической микроскопии), но и в ряде других случаев.

способность голографических § 63. Разрешающая систем

Полученные в § 61 соотношения, позволяющие вычислить положение изображений, не следует понимать в том смысле, что каждой точке объекта будет соответствовать точка (в математическом смысле этого слова) в изображении. Как и в любой другой оптической системе, ограничение размеров волнового фронта приводит к тому, что изображение точечного источника имеет вид дифракционного пятна большего или меньшего размера, пропорционального длине волны (см. гл. IX, XV). Упомянутые соотношения описывают только положения центров дифракционных пятен. Что касается их формы, размеров, распределения в них энергии и т. д., то все эти важные свойства изображения определяются формой голограммы и ее размерами, если, разумеется, при наблюдении изображения полностью используется весь свет от голограммы. Если же система, регистрирующая изображение (фотоаппарат или глаз), пропускает часть восстановленной волны, то свойства дифракционного пятна определяются регистрирующей системой. В результато питна определяются регистрирующей системой. В результате дифракционного расширения изображения точки голографическая система не сможет отличить друг от друга две точки, если расстояние между ними меньше диаметра дифракционного пятна, т. е. они будут восприниматься в изображении как

одна точка. В таком случае говорят, что система не разрешает данные точки.

данные точки. Рассмотрим условия разрешения двух точечных источников света S_1 и S_2 (рис. 11.12), опираясь на представления, изложенные в предыдущих параграфах. Точки S_1 и S_2 будут разрешаться, если соответствующие им интерференционные картины в плоскости голограммы будут достаточно явно отличаться друг от друга. Последнее в свою очередь зависит от того, насколько различаются разности фаз ψ_1 и ψ_2 между опорной волной и волнами от S_1 и S_2 . Нетрудно видеть, что $\psi_1 - \psi_2$ просто равна разности фаз $\delta\psi$ между

волнами от S_1 и S_2 . Итак, если $\delta \psi$ достаточно велика, например, больше π , то интерференционные картины, соответствующие S_1 и S_2 , сдвинуты друг относительно друга в должной мере и точки S_1 и S_2 разрешаются.

Из рис. 11.12 можно увидеть, что бф имеет максимальное значение на краю диафрагмы, ограничивающей голограмму, причем соответствующая разность хода равна

Рис. 11.12. К определению разрешающей способности голографических систем.

 $\Delta = l \sin u,$

где l — расстояние между точками S_1 , S_2 , u — угол, который стягивает половина диафрагмы. Поскольку $\delta \psi = 2\pi \Delta/\lambda$, то критерий разрешения $\delta \psi \ge \pi$ эквивалентен $\Delta \ge \lambda/2$, так что точки S_1 , S_2 разрешаются при выполнении условия

$$l \ge l_{\min} = \lambda/2 \sin u. \tag{63.1}$$

Если угол u невелик, то sin $u \approx u \approx D/2r_s$ и условие (63.1) принимает вид

$$l \ge l_{\min} = \frac{\lambda}{D} r_s \tag{63.2}$$

(D — днаметр днафрагмы, r_s — расстояние от S_1 до голограммы). Условие (63.1), полученное с помощью качественных соображений, мало отличается от результатов строгого рассмотрения разрешающей способности микроскопа (см. § 97). Этого и следовало ожидать, так как специфические черты голографирования, такие, как наличие опорной волны, ее геометрия, просвечивание и т. п., совершенно не существенны в вопросе о дифракционном пределе разрешения.

В предыдущих рассуждениях неявно предполагалось, что фоточувствительный слой, регистрирующий интерференционную

9 Ландсберг Г. С.

картину, полностью передает.все самые тонкие ее детали. Однако картину, полностью передахи обладает не беспредельной разре-в действительности фотослой сам обладает не беспредельной разрев действительности фотослоги сели линейные размеры структуры интер-шающей способностью, и если линейные размеры структуры интершающей спосооностью, и енеме некоторого предельного значення с, ференционной картины меньше некоторого предельного значения с, ференционной картина истинное распределение освещенности, фотослой перестает передавать истинное распределение освещенности, фотослои перестасти сля голографических эмульсий) размерами Величина є определяется (для голографических эмульсий) размерами зерна фоточувствительного вещества.

на фоточувствителя указанного свойства фотослоя на голограмму Проследим влияние указанного свойства фотослоя на голограмму проследны волны, получаемую при плоской опорной волне (см. сферическом случае голограмма имеет вид зонной решетки, изобракенной на рис. 8.5. Начиная с некоторого номера расстояние между кольцами окажется меньше разрешающей способности фотослоя е кольца сливаются друг с другом *). Просвечивающая волна, проходя через такие периферийные участки голограммы, не будет испытывать регулярную дифракцию и не примет участие в образовании изображения источника. Другими словами, действующий размер голограммы оказывается ограниченным свойствами фотослоя. Определим величину этого размера.

Согласно § 59 радиус n-го кольца зонной решетки дается соотношеннем

$$r_n^2 = 2\lambda r_s n.$$

Расстояние между соседними кольцами приближенно выражается следующим образом:

$$r_{n+1}-r_n=\frac{2\lambda r_s}{r_{n+1}+r_n}\approx\frac{\lambda r_s}{r_n}.$$

расстоянию Приравнивая $r_{n+1} - r_n$ минимально разрешаемому є, находим днаметр действующей части голограммы

$$D = 2\lambda r_s/\varepsilon$$
,

и с помощью полученного значения диаметра определяем предел разрешения в голографическом изображении

$$l \ge l_{\min} = \frac{1}{2}\varepsilon$$
.

Таким образом, в данном случае разрешаемое расстояние межлу точками объекта равно половине разрешаемого расстояния на фотослое.

^{*)} Наглядное представление об искажении, вносимом в голограмму за указанного эффекта можно по искажении, вносимом в голограмму за счет указанного эффекта, можно получить из рис. 7.5, на котором изображены аналогичные интерферекта, можно получить из рис. 7.5, на котором изображены разреаналогичные интерференционные кольца. Вдали от центра кольца не разре-шаются вследствие того получить из рис. 7.5, на котором изобрания не разрешаются вследствие того, что полиграфическая репродукция составляется из ячеек, размеры которых в логиграфическая репродукция составляется увиячеек, размеры которых в данном случае равны 0,5 мм и которые легко увидеть с помощью лупы. Каждая ячейка репродукции и играет роль зерна фотоэмульсни голограммы.

Обычно фотоматериалы характеризуют величиной, обратной в. т. е. $N = 1/\varepsilon$ (число разрешаемых линий на мм). Для голографических систем специально разработаны фотоэмульсии с большим значением числа N (порядка 1000—8000 мм⁻¹), позволяющие добиваться большой разрешающей силы прибора. Если, например, $N = 10^3$ мм⁻¹, то величина $1/2\varepsilon = 1/2N = 0.5 \cdot 10^{-3}$ мм оказывается сравнимой с длиной волны, и фотопластинка не очень сильно ухудшает разрешение прибора.

Следует иметь в виду, однако, что проделанный расчет относился к схемам, где пучки, образующие главное и дополнительное изображение, не разделены (см. рис. 11. 4,6). В более употребительных расположениях с наклонным падением пучков, необходимым для разделения двух изображений, используются только кольца высокого порядка (см. рис. 11. 4,8) и роль фотослоя увеличивается. Поэтому в голографии Френеля с наклонным падением разрешающая сила, как правило, определяется фотоматериалом.

§ 64. Качество голографических изображений

До сих-пор мы предполагали, что излучение, применяемое в качестве опорной и просвечивающей волны, равно как и для освещения объектов, вполне когерентно. Однако абсолютно когерентного света не существует, и естественно возникает вопрос о выяснении необходимых требований, которым должен удовлетворять источник излучения.

Согласно изложенному в §§ 21, 22, для наблюдения контрастной интерференционной картины ширина спектра излучения, выраженная в длинах волн. должна подчиняться условию

 $\Delta\lambda < \lambda/m$,

где m — порядок интерференции, т. е. отношение разности хода L интерферирующих волн к λ . Более удобной, чем длина волны, оказывается обратная переменная, равная частоте, деленной на $2\pi c$ ($\omega/2\pi c = 1/\lambda$), выражаемая в см⁻¹ и обычно обозначаемая v, как и число колебаний в секунду. Если ширину спектра излучения выразить в см⁻¹, $\Delta v = \Delta \lambda/\lambda^2$, а вместо порядка интерференции ввести разность хода в соответствии с определением $m = L/\lambda$, то критерию монохроматичности излучения можно придать простую форму:

 $\Delta v < 1/L. \tag{64.1}$

Итак, ширина спектра излучения, выраженная в см⁻¹, должна быть меньше (желательно, значительно меньше) обратной разности хода 1/L. Физическое содержание этого условия очевидно: длина когерентности излучения или длина цугов, из которых состоит квазимонохроматическое излучение, равная 1/Δν (см. § 21), должна

быть больше разности хода L, чтобы в плоскости голограммы иноыть оольше разлебания, принадлежащие одному цугу.

ферировали колсовния, присти хода имеют место при гологра-Наибольшие значения разности хода имеют место при гологра-Наибольшие значения респолов, когда L практически совпадает фировании трехмерных объектов, когда L практически совпадает фировании премисти Совпадает совпадает совпадает совпадает с размерами объекта. Если, следовательно, последние составляют с размерами объекти до Ау не может превышать 0,01 см⁻¹. Для несколько десятков см, со ширины спектральных линий в газоразсравнения укалени, но правило, находятся в пределах рядных источника. Слочи и применение в голографии предполагает дополнительную монохроматизацию с помощью спектральных приборов с высокой разрешающей силой типа интерферометра Фабри — Перо (см. § 30, 50).

Требования, касающиеся пространственной когерентности излучения, легко сформулировать с помощью понятия области когерентности, введенного в § 22: размеры области когерентности 21 должны быть больше размеров голограммы D. Если угловые размеры источника равны θ , то $2l_{\text{ког}} = \lambda/\theta$ и из сформулированного критерия необходимой пространственной когерентности $2l_{\text{ког}} > D$ следует

$$\theta < \lambda/D.$$
 (64.2)

Полученное условие можно истолковать иным способом: угловые размеры источника должны быть меньше разрешаемого системой расстояния, выраженного в угловой мере (см. (63.2)). К тому же результату можно прийти с помощью общего условия (17.1), ограпичивающего допустимые в интерференционных опытах размеры протяженного источника света, если принять во внимание совпадеше апертуры интерференции и угла и на рис. 11. 9 и в соотношении (63.1).

Каждое из условий (64.1) и (64.2), будучи взятым вне связи с другим, можно выполнить сравнительно просто. Например, четкая интерференционная картина с небольшим значением порядка т легко возникает на сравнительно больших площадях, в чем мы убедились в § 16, обсуждая разнообразные схемы интерференционных опытов. Однако одновременное выполнение обоих условий вынуждает работать со столь малыми потоками, что эксперименты по голографии с нелазерными источниками света оказались чрезвычайно трудными и сложными.

Основные физические иден голографии были сформулированы Д. Габором в 1948 г. в связи с проблемой повышения разрешающей способности электронных микроскопов. Габор подтвердил свои теоретические соображения экспериментами в оптической области спектра. Однако в силу указанных трудностей голография развивалась очень медленно вплоть до создания оптических квантовых генераторов генераторов, излучение которых, по самому принципу их работы, исключительно то происключительно монохроматично и обладает высокой степенью пространственной когерентности (см. § 228, 229). В начале шестиде-сятых годов Э. Лейт и Ю. Упатниекс получили первые голограммы с помощью лазерного излучения. Начиная с этого времени голос помощно прогрессировала и превратилась в разветвленную графия область прикладной оптики. Можно поэтому с полным основанием область примым основанием сказать, что успехи голографии целиком определены изобретением оптических квантовых генераторов*).

Длина когерентности излучения лазеров может достигать сотен метров, и по крайней мере в принципиальном отношении лазеры решают проблему источников света для голографии. Применяются лазеры разных типов, но наиболее широкое распространение получили гелий-неоновые лазеры ($\lambda = 632,8$ нм, см. § 227).

В предыдущих разделах основное внимание концентрировалось на физической стороне процесса голографирования, и мы сознательно не обсуждали некоторые детали, не имеющие значения с этой точки зрения, но очень важные для получения высококачественных голографических изображений. Отметим теперь ряд таких деталей.

В § 60 было показано, что при идентичности опорной и просвечивающей волн изображение вполне подобно объекту и может отличаться от него только в результате дифракционного расширения изображения каждой точки (см. § 63). Попытка получить увеличенное изображение (см. § 61) неизбежно сопряжена, как оказывается, с дополнительным ухудшением качества изображения (так называемые аберрации изображения; см. гл. XIII). Это обстоятельство требует к себе особого внимания, поскольку аберрации быстро растут по мере увеличения размеров голограммы и углов падения света.

Для голографии характерна возможность появления многих дополнительных изображений. Причина их возникновения, по существу, была выяснена в § 58. Интерференционную картину можно рассматривать как наложение элементарных систем полос, обусловленных интерференцией опорной плоской волны и пространственных фурье-составляющих поля объекта (см. также § 52). Соответствующая элементарная дифракционная решетка будет периодической, но если фотографический процесс должным образом не отрегулирован, коэффициент ее пропускания не будет гармонически зависеть от координаты. При просвечивании такой решетки образуются волны не только с порядком $m = 0, \pm 1$, но н с $m = \pm 2$

^{*)} В этой связи создатель голографии Д. Габор в 1971 г. писал: «Пути науки 9 неисполости под и не извлекла часто неисповедимы. Электронная микроскопия так до сих пор и не извлекла существенной оптические опыты существенной пользы из восстановления волн, тогда как мон оптические опыты (которые сологоафии. Хотя (которые были задуманы как модельные) положили начало голографии. Хотя многие исследующие годы, намногие исследователи ... достигли некоторых успехов в последующие годы, на-стоящее воследователи ... достигли некоторых успехов в последующие годы, настоящее второе рождение голография пережила в 1962 г., когда Э. Лейт и Ю. Упатниекс применили лазеры...».

нт. д. Каждому порядку дифракции соответствует свое изображение, нт. д. Каждому порядку дифракани состать уст слос поображение, т. е. образуется много изображений, наложение которых друг на т. е. образуется много изображений, наложение которых друг на друга обычно нежелательно и даже вредно.

га ооычно политих, существует много других тонкостей голо-Помимо упомянутия, так, впрочем, и во всякой иной обграфического экспериственное значение могут иметь отношение ласти). В частности, существенное значение могут иметь отношение ласти). В частности, существо поррафируемой волн, вибрации принитенсивностся спортания в слое желатина и т. д. и т. п. Мы не будем углубтяться в анализ такого рода факторов, играющих важную роль, но представляющих специальный интерес.

18 65. Объемные голограммы (метод Денисюка)

Интерференционное поле, образующееся в области перекрытия опорной и предметной волн, конечно, не локализовано на поверхности фотопластинки. Как и в любом опыте с когерентными волнами, места повышенных и пониженных значений амплитуды суммарного колебания распределены во всем пространстве по тому или иному закону, зависящему от вида волновых фронтов. Поэтому в слое фоточувствительной эмульсии, всегда обладающем некоторой толщиной, образуется трехмерная структура почернений, а не двумерная, как приближенно предполагалось нами ранее. Вместе с тем, законы дифракции света на трехмерных структурах имеют свои особенности (см. гл. Х), которые, как сейчас выяснится, находят интересные применения в голографии.

Рассмотрим сначала простейший случай голограммы плоской волны, когда опорная волна также плоская (ср. § 58). В этих условиях слои почернения фотоэмульсии, отвечающие точкам синфазного сложения световых колебаний, располагаются параллельно биссектрисе угла между волновыми векторами ко и к опорной и предметной волн, причем расстояние между соседними слоями равно $d = \lambda/2 \sin^{1}/29$ (см. упражнение 267). На рис. 11.13, а слои почернений условно обозначены сплошными линиями и изображены в сильно увеличенном масштабе.

Для просвечивающей волны такая голограмма служит периодической трехмерной структурой, и, в соответствии с законом Вульфа-Брэгга, должна наблюдаться дифрагировавшая волна в направлении, соответствующем зеркальному отражению от слоев почернения (см. рис. 11.13,6). Но именно в этом направлении распространялась предметная волна. Таким образом, объемность структуры голограммы не препятствует восстановлению волнового

Опыт показывает, что при достаточно большой толщине голограммы при се просвечивании наблюдаются только волны порядков m = 0 и -1 (волновые векторы k_0 и k), а волна первого порядка не образиется — Х). не образуется, что согласуется с изложенным выше (см. гл. Х).

Так обстоит дело только при условии, что толщина слоя h значи. Так оостоит доло териод структуры d. В противном слоя h значи-тельно превосходит период структуры d. В противном случае трехтельно превосладит при в противном случае трех-мерная структура оказывается эквивалентной решетке Рэлея и в ней формируется и волна первого порядка, показаниая на рис. 11.13,6

Пусть, например, вектор ko перпендикулярен к плоскости голограммы. При этом условии, как вытекает из вычислений, волны

Рис. 11.13. Объемная голограмма плоской волны.

первого порядка, зарождающиеся в последовательных слоях фотоэмульсии, взаимно гасят друг друга, если выполняется неравенство (см. упражнение 268)

$$h > \lambda / [2 \sin^{1}/_{2}\theta]^{3}. \tag{55.1}$$

Если $\lambda = 0,63$ мкм, $\theta = 10^{\circ}$, то $\lambda / [2 \sin \frac{1}{2} \theta]^2 = 21$ мкм, что превышает толщины обычно применяемых фотоматериалов (6 – 15 мкм) и неравенство (65.1) не выполняется. Поэтому в расположениях, характеризующихся сравнительно небольшими углами между опорной и предметной волнами, объемность голограммы оказывается несущественной и наблюдается как главное, так и дополнительное изображение (§ 58 — 64).

Обратная картина имеет место при интерференции встречных или почти встречных волн ($\theta \approx 180^\circ$), когда $\lambda/[2 \sin \frac{1}{2}9]^2 \approx \lambda/4$ и условие (65.1) выполняется с большим запасом. В таких расположениях дифрагировавшая волна соответствует брэгговскому отражению и следует ожидать образования только одного голографического изображения.

На рис. 11.14, а показана схема голографического опыта такого рода. Объект S освещается лазерным излучением через фотоплос-тинку тинку, и отраженные волны распространяются назад к слою спениов прозрачной до специальной фотоэмульсии ФЭ, практически прозрачной до проявления.

Буквой С обозначено стекло фотопластинки. Лазерная волна играет также роль опорной, образуя вместе с предметной волной интерференционное поле, передающее все особенности волнового интерференционное от объекта и имеющее поэтому весьма от интерференционное поле, передилощее поэтому весьма сложную фронта, идущего от объекта, и имеющее поэтому весьма сложную

Рис. 11.14. Схема получения объемных голограмм с помощью встречных пучков.

структуру. Как показывает опыт, при просвечивании полученной таким способом голограммы восстанавливается. только мнимое (главное) изображение объекта (см. рис. 11.14, б), что и должно быть согласно приведенным выше соображениям.

Рис. 11.15. Восстановление главного (а) и дополнительного (б) изображений при просвечивании объемной голограммы некогерентным светом.

Описанный метод голографии, в котором используется брэтговское отражение просвечивающей волны от трехмерной структуры голограммы, был предложен и осуществлен Ю. Н. Денисюком (1962 г.) и носит его имя.

Замечательная особенность метода Деннсюка заключается в том, что в качестве просвечивающего излучения можно использовать

гл. XI. голография

расходящийся пучок белого света и, тем не менее, изображение предмета восстанавливается (рис. 11. 15, а). Это обусловлено особенпредмета восстании света на трехмерной структуре: эффективное отражение света происходит лишь для тех длин волн и для тех отражение своего пространения, которые связаны соотношением направлении сто распистири и образованы соотношением Вульфа-Брэгга. Вся остальная часть излучения проходит голограмму и не принимает участия в образовании изображения.

мму н по примения. Если осветить голограмму с обратной стороны (рис. 11.15,6), то главное изображение отсутствует, но образуется дополнительное. Как и в расположениях, рассмотренных в§59-64, дополнительное изображение, получаемое методом Денисюка, является зеркальным по отношению к объекту.

§ 66. Цветные голографические изображения

Описанный выше способ объемной голографии позволяет осушествить цветные изображения с вполне удовлетворительным качеством цветопередачи. Для уяснения принципа цветной голографин следует иметь в виду, что цветное зрение связано с существованием в сетчатке глаза трех типов приемников света, реагирующих на красное, зеленое и синее излучение (см. § 193). Можно сказать, что изображение предмета на сетчатке глаза представляет собой как бы три совмещенные изображения, рассматриваемые в трех указанных интервалах длин волн. Подобный принцип совмещения изображений применяется и в цветной репродукции, где в зависимости от требуемого качества цветопередачи совмещают от трех до 10-15 изображений в различных красках.

Аналогичные соображения лежат в основе цветной голографии. Для осуществления цветного изображения по методу Денисюка можно зарегистрировать голограмму, используя освещение объекта (одновременно или последовательно) излучением, имеющим в своем спектре три линин (красную, зеленую и синюю). Тогда в толще фотоэмульсии образуются три системы стоячих волн и соответственно три системы пространственных структур. При восстановлении изображения с помощью белого света каждая из указанных систем будет формировать свое изображение объекта в свете соответствующего спектрального участка, примененного во время экспонирования. Поскольку положение изображения не зависит, согласно изложенному в предыдущем параграфе, от длины волны, мы получаем три совмещенные изображения в трех участках спектра, а этого уже достаточно для восстановления цветного изображения.

Объемная дифракционная решетка, образованная несколькими десятками слоев почернений, обладает сравнительно небольшой спектроли слоев почернений, обладает сравнительно на составных спектральной разрешающей силой. Поэтому каждое из составных изображений отнюдь не столь «монохроматично», как дазерное из-лучение лучение, примененное на первом этапе голографирования. Это

ДПФРАКЦИЯ СВЕТА

обстоятельство до известной степени способствует «мягкости» цве-

передачи. Одна из трудностей цветной голографии связана с изменением топередачи. Одна из трудностен, происходящим при ее фотообработке (протолщины фотозмулисни, промывка и сушка). Практика показывает, явление, фиксирование, промывка и сушка). явление, фиксирование, и «усадке» фотоэмульсии, вследствие чего что обработка приводит к «усадке» фотоэмульсии, вследствие чего что обращита приод трехмерной структуры. В результате условие уменьшается и период условие коротковолнового излучения, Вульфа-Брэгга выполняется для более коротковолнового излучения, чемопорное. Этим объясняется некоторое искажение окраски цветных голографических изображений.

§ 67. Применение голографии. Голографическая интерферометрия

Заканчивая изложение физических принципов голографии. сформулируем еще раз соображения, лежащие в основе этого способа регистрации информации об объекте наблюдения, переносимой электромагнитным полем. Нас интересует информация, заключающаяся в распределении амплитуд и фаз в этом поле. Фотографирование распределения интенсивности в специально созданной интерференционной картине, возникшей при суперпозиции волнового поля объекта и когерентной ему опорной волны, дает возможность регистрации полной информации, переносимой изучаемым волновым полем. Последующая дифракция света на распределении почернений в фотослое голограммы восстанавливает волновое поле объекта и допускает изучение этого поля в отсутствие объекта наблюдения. Рассмотрим теперь некоторые практические применения голографии.

Число независимых сведений о предмете, фиксируемых на голограмме, можно грубо оценнть с помощью следующих соображений. Независимым элементом объекта, его «элементарной ячейкой» следует признать площадку с размерами, равными разрешаемому интервалу lmin. В самом деле, если свойства тела изменяются на протяжении указанной площадки, голограмма не сможет передать изменения и зарегистрирует лишь некоторое среднее значение параметров, описывающих такие свойства. Наоборот, для расстояний, превышающих разрешаемый интервал, мы имеем возможность установить то или иное различие свойств объекта. Сказанное можно рассматривать, по существу, как общее определение понятия разрешения, а условия разрешения, выведенные в § 63, как количественную меру разрешающей способности.

Обозначим через Ω телесный угол, который стягивает предмет из плоскости голограммы. Телесный угол, соответствующий независимому элементу предмета, равен, очевидно, / min/rs. Поэтому число независится предмета, равен, очевидно, / min/rs. Поэтому число независимых элементов, содержащихся в телесном угле Ω, дается выражением $N = \Omega r_s^* / l_{\min}^*$. С другой стороны, значение l_{\min} связано с размерами голограммы D соотношением (63.1), и с его l_{\min} связано с рискерство $\Omega D^2/\lambda^2$. В дальнейших оценках будем по-помощью находим $N = \Omega D^2/\lambda^2$. В дальнейших оценках будем попомощью напосная будем по-лагать $\Omega = 1$, что отвечает угловым размерам объекта около 60°. В этом случае

$$N = D^2 / \lambda^2. \tag{67.1}$$

Таким образом, число независимых сведений о предмете, регистрируемых на голограмме, обратно пропорционально квадрату длины волны и пропорционально площади голограммы (D²). Следовательно, можно сказать, что на 1 см² голограммы регистрируется

$$N_1 = 1/\lambda^2 \tag{67.2}$$

независимых сведений о предмете.

К выражениям (67.1) и (67.2) для N и N₁ можно прийти с помощью несколько иных соображений. Можно считать, например, что N равно квадрату отношения линейных размеров голограммы к минимальному периоду интерференционной картины, $N = (D/d)^2$. Поскольку $d^2 = (\lambda/2\varphi)^2 = \lambda^2/\Omega$ (2 φ — угловые размеры предмета). мы вновь получаем (67.1).

Пусть $\lambda = 0,63 \cdot 10^{-4}$ см (гелий-неоновый лазер); в этом случае на 1 см² поверхности голограммы может содержаться $N = 2,5 \cdot 10^8$ независимых сведений, а на сравнительно небольшой голограмме 5×8 см² примерно $N = 10^{10}$ сведений.

Разумеется, не все сведения из этого фантастического числа имеют одинаковую ценность и отнюдь не всегда возникает необходимость в таких значениях числа N. Если, например, нужно зафиксировать положение тридцати двух фигур на шахматной доске, то с десятикратным запасом достаточна площадь голограммы 32·10 × ×l^amin. Шахматная партия в 40 ходов требует для своей регистрации 10.32.40.21° min = 2,56.104/2,5.108 = 10-4 см². Если же мы хотим получить детальные сведения о вырезанных шахматных фигурах *), то необходимый объем сведений сильно возрастает. В этом случае площадь голограммы, требуемая при одностороннем наблюдении, приблизительно равна площади проекции фигур на плоскость, перпендикулярную к направлению наблюдения, т. е. составляет около сотни см², а при круговом осмотре и того больше.

Большое число независимых сведений, регистрируемых голограммой, находит свое внешнее проявление в чрезвычайной сложности ее структуры, производящей впечатление хаотического, совершенно случайного набора пятнышек почернения всевозможной формы и ориентации, как это видно на рис. 11.7,6. Однако суждение о случайности структуры голограммы, разумеется, субъективно, и обусловлено неспособностью аппарата зрения извлечь

^{*)} Такое впечатление нельзя составить по рис. 11.6 и 11.8 именно вследствие недостаточной разрешающей способности репродукции.

из голограммы сосредоточенных в ней вполне регулярных и законоиз голограммы сосредоточение сложной формы. В противополож-мерных сведений о, предмете сложной формы. В противоположмерных сведении о предлего спограммы сферической волны ность этому, в кольцевой структуре голограммы сферической волны ность этому, в кольцевон серунарие общую закономерность, и такая глаз с первого взгляда улавливает общую Закономерность, и такая глаз с первого выталя тся регулярной. Если, однако, речь идет голограмма представляется регулярной. голограмма представляет волны в первом приближении, но о не о констатации сферичности волны в первом приближении, но о не о констатации се раднуса кривизны или об изучении малых точном измерении ее раднуса точном измерения волны от сферической формы, то и здесь ситуотступления фронте сложный характер и потребовать для своего описания большого числа сведений и соответственно большой площади голограммы.

В примере сферической волны сведения об источнике, зарегистрированные голограммой, можно извлечь непосредственной обработкой самой голограммы, т. е. с помощью измерения раднусов колец (см. § 59). В более сложных случаях, например, голограммы шахматных фигур, попытка такого рода обработки обречена на неудачу. С этой точки зрения восстановление изображения можнорассматривать как автоматическое преобразование сведений из одной формы в другую, более удобную для восприятия и для формулировки того или иного заключения на основе усвоенных сведений. В то же время, именно такое преобразование и составляет содержание многочисленных методов оптической обработки информации.

Следует подчеркнуть, что указанное преобразование зарегистрированных сведений осуществляется чрезвычайно быстро. Минимальное время, необходимое для восстановления изображения, можно оценить с помощью следующих рассуждений. Пусть просвечивающая волна представляет собой световой импульс с длительностью т. Импульс ограниченной длительности можно рассматривать как набор монохроматических воли, причем спектральная ширина импульса бу, согласно изложенному в § 21, связана с т универсальным соотношепием бу т = 1. Голограмма, будучи, по существу, дифракционной решеткой, произведет спектральное разложение импульса, и изображение каждой точки предмета будет соответствующим образом расширено. Для того чтобы такое уширение практически не было заметным, спектральная ширина импульса должна быть меньше интервала частот, разрешаемого голограммой-решеткой (см. § 50). На основе высказанных соображений легко показать, что длительность импульса должна удовлетворять условню:

$$\tau > \frac{D}{c} (\sin \varphi_0 - \sin \varphi), \qquad (67.3)$$

где D — размер голограммы, фо и ф — углы падения опорной и предметной воли на голограмму. Полученное условие можно интерпретировать по-иному: длина импульса ст должна быть больше разности хода $D(\sin \varphi_0 - \sin \varphi)$ между волнами, ндущими от крайних штрихов решетки; в противном случае указанные волны не могут штрихов решенть в точке изображения, будет работать не могут интерферировать в точке изображения, будет работать не вся голограмма и изображение окажется уширенным.

мма в пострания D = 9 см, $\sin \varphi_0 - \sin \varphi = 1/3$ в (67.3), находим чрезвычайно малое значение необходимой длительности импульса чрезвычание мане требований к качеству изображения минимальную длительность импульса можно еще более уменьшить.

Конечно, не всегда быстрота процесса восстановления голографического изображения гарантирует малое время работы системы, включающей в себя и регистрацию восстановленного изображения. Время инерции глаза, например, составляет приблизительно 0,1 с, и при визуальной регистрации изображения инерционность системы в целом определяется глазом. Однако существуют приемники света с временем инерции 10-8 с и еще меньше (например фотоумножители, см. § 181) и, следовательно, быстродействие голографии может быть реализовано.

Таким образом, с прикладной точки зрения голография характеризуется способностью к регистрации (записи), хранению и к чрезвычайно быстрому преобразованию огромного массива данных. Именно эти стороны голографии, заложенные в ее физических принципах, обусловили широкую область ее применений для решения самых различных технических и научных задач. 🔅

Рассмотрим один из методов прикладной голографии, именуемый голографической интерферометрией и нашедший очень широкое распространение. Сущность этого метода в простейшем варианте заключается в следующем. На одну фотопластинку последовательно регистрируются две интерференционные картины, соответствующие двум разным, но мало отличающимся состояниям объекта, например, в процессе деформации. При просвечивании такой «деойной» голограммы образуются, очевидно, два изображения объекта, измененные относительно друг друга в той же мере, как и объект в двух его состояннях. Восстановленные волны, формирующие эти два изображения, когерентны, интерферируют, и на поверхности изображения наблюдаются полосы, которые и характеризуют изменение состояния объекта.

В другом варианте голограмма изготавливается для какого-то определенного состояния объекта; при ее просвечивании объект не удаляется и производится его освещение, как на первом этапе голографирования. Тогда опять получаем две волны, одна формирует голографическое изображение, а другая распространяется от самого объекта. Если теперь происходят какие-либо изменения в состоянии объекта (в сравнении с тем, что было во время экспонирования голограммы), то между указанными волнами возникает разность хода и изображение покрывается интерференционными полосами.

• Описанный способ применяется для исследования деформаций Описанный спосос примаций поступательного движения и вращений, предметов, их вибращий, поступательного движения и вращений, предметов, их внорации, и объектов и т. п. На рис. 11.16 привенеоднородности прозрамения шарикового подшипника, сжатого дена фотография изображения Инторфороницион изображения дена фотография постанка. Интерференционная картина наглядно в патроне токарно сволични деформаций при двух значениях силы свидетельствует сворят два положения стрелки тензометра (левая часть рисунка), зарегистрированные во время двух последовательных экспозиций.

Замечательной особенностью голографической интерферометрии является отсутствие жестких требований к обработке отражающих поверхностей или оптической однородности исследуемых объектов. В самом деле, в результате деформаций, вибраций и других изменений состояния объекта возникают разности хода, изменяющиеся вдоль поверхности тела. Поэтому картина полос аналогична картине, наблюдаемой в случае интерференции в тонкой пленке (см.

Рис. 11.16. Деформации объекта, зарегистрированные методом голографической интерферометрии.

гл. VI), роль которой (с известными оговорками) выполняет пространство между средними поверхностями тела в двух его последовательных состояниях. Другими словами, фронты интерферирующих воли могут иметь очень сложную форму, но часто интерференционная картина относительно груба и легко наблюдаема. Применяя голографическую терминологию, можно сказать, что одна из волн служит опорной для другой, причем в каждом конкретном случае опорная волна вполне подобна голографируемой. В противоположность этому, в интерференционных приборах (интерферометры Жамена, Майкельсона и др., см. гл. VII) волной сравнения, т. е. опорной волной, служит вполне определенная, стандартная волна, плоская или сферическая, и исследуемые волны должны об-

ладать столь же простым волновым фронтом. В противном случае интерференция дает мелкомасштабную картину типа показанной на рис. 11.7,6 что, конечно, менее удобно. Следовательно, и отражающие тела должны иметь поверхности высокого оптического качества. Голографическая интерферометрия свободна от этого жесткого ограничения.

Благодаря указанной особенности можно осуществлять голографическую интерференцию при отражении света от шероховатых поверхностей рассеивающих тел (например, автомобильных шин, балок, корродирующих поверхностей и т. п.), для объектов, заключенных в сосуд с очень неоднородными стенками и т. д. Поэтому голографическая интерферометрия и получила обширные применения.

ГЕОМЕТРИЧЕСКАЯ (ЛУЧЕВАЯ) ОПТИКА

Глава XII

основные положения лучевой оптики

§ 68. Введение

Явления интерференции и дифракции света показывают, что распространение света представляет собой волновой процесс. С помощью волновой теории мы можем решать задачи о распространении света как в однородной среде, так и через любую оптическую систему, т. е. через совокупность различных сред, ограниченных теми или иными поверхностями и диафрагмами. Однако в очень многих областях, имеющих важное практическое значение, в частности, в вопросе о формировании светового пучка (светотехника) и в вопросах об образовании изображения (оптотехника), решение можно получить гораздо более простым путем, с помощью представлений *геометрической оптики*.

Геометрическая оптика оперирует понятием отдельных световых *лучей*, подчиняющихся известным законам преломления и отражения и независимых друг от друга (см. «Введение», § 1).

Понятие светового луча можно получить из рассмотрения реального светового пучка в однородной среде, из которого при помощи одной или последовательности диафрагм с отверстиями выделяется узкий параллельный пучок. Чем меньше диаметр этих отверстий, тем уже выделяемый пучок, и в пределе, переходя к отверстиям сколь угодно малым, можно казалось бы получить световой луч как прямую линию. Мы знаем, однако, что подобный процесс выделения сколь угодно узкого пучка (луча) невозможен вследствие явления дифракции. Неизбежное угловое расширение реального светового пучка, пропущенного через диафрагму диаметра D. определяется углом дифракции $\phi \sim \lambda/D$ (направление на 1-й минимум, см. § 39). Только в предельном случае, когда $\lambda = 0$, подобное расширение не имело бы места, и можно было бы говорить о луче как о геометрической линии, направление которой определяет направление распространения световой энергии. Таким образом, световой луч есть абстрактное математическое понятие, а не физический образ, и геометрическая оптика есть лишь предельный случай реальной волновой оптики, соответствующий исчезающе малой длине световой волны.

Соотношение $\varphi \approx \lambda/D$ показывает, что угловое отклонение, нарушающее прямолинейность распространения света в однородной среде, может быть весьма мало, если размеры отверстия или экрана велики по сравнению с длиной волны λ . Поэтому в реальной оптике, где λ — конечная величина, отступления от законов геометрической оптики должны быть тем меньше, чем больше размеры D.

Размеры объектов очень важны и в вопросе образования резких теней, существование которых является одним из основных аргументов в пользу лучевых представлений оптики (см. § 1). Как ясно из § 37, при относительно небольших расстояниях от объекта до точки наблюдения (дифракция Френеля) ширина области вблизи геометрической тени, где наблюдаются дифракционные полосы, примерно равна радиусу первой зоны Френеля; в случае плоской волны (бесконечно удаленный источник) радиус этой зоны $r = \sqrt{f\lambda}$ (j— расстояние от объекта, вызвавшего дифракцию света, до точки наблюдения). За меру резкости тени естественно принять отношение линейного размера объекта x к радиусу зоны, т. е. x/r. Лишь при $x/r \approx 1$ область полутени будет относительно очень широкой, и подобие объекта и тени нарушится. Из этого соотношения следует, что отсутствие тени будет лишь при расстояниях $f > x^2/\lambda$. Уже при x = 1 см, $\lambda = 500$ нм имеем f = 200 м.

Приведенный выше рис. 8.18 показывает, как выглядела бы тень от руки, держащей тарелку, при освещении параллельным пучком лучей. При относительно малом расстоянии (см. рис. 8.18,*a*) тень вполне резка и подобна объекту, при большем же расстоянии (f = 11 км, см. рис. 8.18,*b*) о геометрическом подобии тени и объекта не может быть и речи. Однако в обычных условиях наблюдения подобные искажения не дают себя знать, и применение законов геометрической оптики приводит к построениям, которые, как показывает опыт, вполне удовлетворительно решают бопрос о распространении света и образовании изображения.

Таким образом, для обширного круга важных задач светотехники и оптотехники мы имеем возможность пользоваться геометрической оптикой лучей. Однако при пользовании законами лучевой оптики нельзя забывать, что они — лишь первое приближение к действительности и что без дифракционных явлений не обходится ни один случай распространения света. Необходимо, следовательно, понимать волновой (дифракционный) смысл этих лучевых (геометрических) построений. Отсюда ясно, что законы лучевой оптики имеют ограниченное применение, и надо уметь ориентироваться, при каких условиях применение этих законов допустимо и будет практически находиться в соответствии с опытом. Оказывается, однако, что даже в практической оптике наиболее тонкие вопросы (например, вопрос о разрешающей силе оптических инструментов) решаются при помощи теории дифракции.

§ 69. Принцип Ферма

В том предельном случае, когда справедлив переход к геометрической оптике, т. е. в случае исчезающе малой длины волны, распространение волнового фронта может быть найдено простым построением. Пусть поверхность F (рис. 12.1) изображает- поверхность равной фазы (волновой фронт) к некоторому моменту t. В каждой точке M этой поверхности построим сферу с радиусом $dn = v\tau$, где v есть скорость распространения волны в данном месте, а τ бесконечно малый промежуток времени. Поверхность F', огибающая эти маленькие сферы, есть также поверхность равной фазы, ибо все точки ее будут иметь к моменту $(t + \tau)$ те же фазы, что и точки поверхности F к моменту t. Отрезки прямых dn, соединяющие точки

М с точкой касания соответствующей сферы и огибающей, представляют собой элементы луча, перпендикуляриые к поверхности фронта *).

Рис. 12.1. К принципу Ферма: последовательное построение волнового фронта.

Рис. 12.2. К принципу Ферма: действительный путь света *АВ* соответствует минимальному времени распространения.

Продолжая это построение, мы можем шаг за шагом определить поверхности равной фазы и в то же время найти направление лучей, представляющих собой кривые, в которые переходят ломаные, составленные из отрезков dn, если т выбрано бесконечно малым.

С помощью указанного построения можно доказать следующее важное положение: действительный путь распространения света (луч) есть путь, для прохождения которого свету требуется минимальное время по сраснению с любым другим мыслимым путем между теми же точками, Действительно, выполнив построение, описанное выше (рис. 12.2), мы увидим, что от точки A до точки B вдоль луча свет проходит за время $\tau = \tau_1 + \tau_2 + ... + \tau_n$, где $\tau_i = dn_i/v_i$, т. е.

$$\tau = \sum_{i=1}^{\infty} \frac{dn_i}{v_i} = \int_A^B \frac{dn}{v}.$$

*) Мы ограннчиваемся для простоты рассуждений случаем изотропной среды, когда луч и нормаль к фронту совпадают (см. § 142).

Всякий же другой мыслимый путь будет состоять из отрезков, для прохождения которых потребуется время τ_i , если этот отрезок совпадает с нормалью к фронту, или время, большее τ_i , если отрезок отличается от нормали. Таким образом, действительный путь распространения света (луч) соответствует минимальному времени распространения.

Эта теорема, доказанная нами для волновой теории в том приближении, когда справедлива геометрическая оптика (λ → 0), представляет в геометриче-

ской оптике аксиому, именуемую принципом кратчайшего оптического пути (или минимального времени распространения). Она была сформулирована Ферма как общий закон распространения света (принцип Ферма. около 1660 г.). Действительно, нетрудно видеть, что для однородной среды этот принцип приводит к закону прямолинейного распространения согласно геометрической аксиоме о том, что прямая есть

Рис. 12.3. Вывод закона преломления из принципа Ферма.

кратчайшее расстояние междудвумя точками; для случая же перехода через границу различных сред этот принцип дает законы отражения и преломления света.

Пусть свет, исходя из точки P, приходит в точку Q, преломляясь на плоской границе раздела двух сред (рис. 12.3). Проведем через P и Q плоскость нормально к границе раздела (плоскость падения). Любой путь PO_1Q , лежащий вне плоскости падения, проходится светом за большее время, чем путь POQ, проведенный в плоскости падения так, чтобы O явилось следом перпендикуляра, опущенного из O_1 на плоскость падения. Действительно, как в первой, так и во второй среде длины путей, проходящих через O_1 , соответственно больше, чем через $O(PO_1 > PO)$ и $QO_1 > QO$.

Итак, в согласни с принципом Ферма путь, требующий минимального времени, должен лежать в плоскости падения (первый закон преломления). Для того чтобы из всех путей от *P* до *Q*, лежащих в плоскости падения, выбрать путь, требующий минимального времени, исследуем, как меняется это время в зависимости от положения точки *O* на линии пересечения плоскости падения и плоскости раздела.

Положение точки О определено длиной отрезка AO = x, где A — след перпендикуляра, опущенного из P на плоскость раздела.

Время распространения света по пути POQ есть

$$t = \frac{PO}{v_1} + \frac{OQ}{v_2},$$

где v_1 и v_2 — скорости света в первой и во второй средах. Обозначив $PA = h_1$, $QB = h_2$ и AB = p, найдем, что

$$t = \frac{\sqrt{h_1^2 + x^2}}{v_1} + \frac{\sqrt{h_2^2 + (p - x)^2}}{v_2}.$$

Условие, определяющее, при каком значении х это время будет минимально, есть равенство нулю $\frac{dt}{dx}$. Из него следует

$$\frac{1}{v_1} \frac{x}{\sqrt{h_1^2 + x^2}} - \frac{1}{v_2} \frac{p - x}{\sqrt{h_2^2 + (p - x)^2}} = 0,$$
$$\frac{\sin i}{\sqrt{h_1^2 + (p - x)^2}} = 0,$$

или

т. е.

$$\frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \operatorname{const}\left(=\frac{n_2}{n_1}\right).$$

Таким образом, из принципа Ферма вытекает закон преломления световых лучей. Аналогично можно рассмотреть задачу об отражении (см. упражнение 34).

Интересно отметить, что принцип Ферма приводит к утверждению, что в среде с большим показателем преломления (n2 > n1)

принцип Для того чтобы Ферма выражал действительное положение дела, ему надо дать формулировку, более общую было сделано самим чем ЭТО Ферма; именно, условие $\frac{dt}{dx} = 0$,

выделяющее действительный путь, есть условие экстремума, т. е. может быть не только условием минимума, но и условием максимума или стацконарности, т. е. действительный путь может быть минималь-

276

Рис. 12.4. К принципу Ферма: действительный путь света соответствует стационарному времени распространения.

ным, максимальным или равным всем остальным возможным путям, проведенным от P к Q через границу раздела двух сред. Примером минимального пути являются разобранные выше случаи прохождения лучей через плоскую границу. Примером стационарного значения времени служит случай отражения лучей от внутренней поверхности эллипсоида вращения, в одном из фокусов которого расположена светящаяся точка P (рис. 12.4). Изображение Q получается в другом фокусе, причем согласно свойству эллипсоида (PO + + OQ) есть постоянная для всех положений O. Отражение от поверхности меньшей кривизны (MM), например от плоскости, касательной к эллипсоиду, соответствует минимуму, а отражение от поверхности большей кривизны (NN) — максимуму длины пути (или времени) (ср. упражнение 35).

§ 70. Основные определения. Закон преломления и отражения. Принцип взаимности

Пользуясь представлениями лучевой оптики, мы рассматриваем каждую светящуюся точку источника как вершину расходящегося пучка лучей, именуемого гомоцентрическим, т. е. имеющим общий центр. Если после отражения и преломления этот пучок превращается в пучок, сходящийся также в одну точку, то и последний представляет собой гомоцентрический пучок и центр его является изображением светящейся точки. При сохранении гомоцентричности каждая точка источника дает одну точку изображения. Такие изображения называются точечными или стигматическими (рис. 12.5). В силу обратимости (взаимности) световых лучей (см. ниже) изображение можно рассматривать как источник, а источник — как изображение. Поэтому при стигматическом изображении центры наших пучков называются сопряженными точками той оптической системы, в которой происходит преобразование расходящегося гомоцентрического пучка в сходящийся. Соответственные лучи и пучки также называются сопряженными. Поверхность, нормальная к лучам, называется волновой поверхностью *). В указанном смысле волновая поверхность имеет чисто геометрический смысл и не имеет того глубокого содержания, которое мы вкладывали в нее раньше. Волновая поверхность гомоцентрического пучка в однородной и изотропной среде есть, очевидно, сферическая поверхность.

Если в результате отражения и преломления пучок перестает быть гомоцентрическим, то волновая поверхность перестает быть сферой. Стигматичность изображения теряется, и точка уже не изображается точкой (рис. 12.6). Так как в практической оптике обычно ставится задача получения изображений, точно передающих

*) См. § 6.

форму источника, то важнейшим вопросом лучевой оптики является форму источника, то вилисти гомоцентричности пучков. выяснение условий сохранения гомоцентричности пучков.

яснение условии сохранения толоцентри пости пучков. В основе всех построений лучевой оптики лежат законы прелом-В основе всех постросний на техно систе основа области преломления и огражения свое высладывает в них волновая теория.

жание и показали, пеория, за математическую формулировку здесь мы воспроизведем лишь математическую формулировку

При прохождении через оптическую систему гомоцентричность пучка сохраняется,

Рис. 12.6. Астигматическое изображение точки . L.

При прохождении через оптическую гомоцентричность пучка снстему нарушается.

этих законов, придав ей такое выражение, которое позволяет рассматривать вопросы преломления и отражения совместно, так что из формул, касающихся преломляющих систем (линз), могут быть сразу получены заключения и для отражающих систем (зеркал).

Однако предварительно покажем, что при явлениях преломлення и отраження соблюдается закон взаимности, или обратимости световых лучей.

Пусть среда 1 отделена от вакуума тонкой плоскопараллельной пластинкой среды 2 (рис. 12.7); n_1 , n_2 и N_{21} — абсолютные и относительный показатели преломления соответствующих сред. Из рис. 12.7 ясно, что

$$\frac{\sin t}{\sin \alpha} = n_2; \qquad \frac{\sin \alpha}{\sin t} = N_{21}.$$

Отсюда

 $\frac{\sin i}{\sin r} = n_2 N_{21}.$

Последняя формула справедлива при любой толщине среды 2. Перейдем к предельному случаю, когда среда 2 становится ис-

чезающе тонкой, т. е. к случаю непосредственного преломления из вакуума в среду 1. Тогда имеем $\sin i/\sin r = n_1$. Сопоставляя эти две формулы, найдем $N_{21} = n_1/n_2$. Повторяя те же рассуждения для случая, когда тонкий слой среды 1 отделяет среду 2 от вакуума, найдем $N_{12} = n_2/n_1$ или $N_{12} = 1/N_{21}$, т. е. показатель преломления первой среды относительно второй (N12) равен обратноми значению показателя преломления второй среды относительно первой (N₂₁).

Отсюда непосредственно следует, что при преломлении на границе двух сред лучи остаются взаимными, т. е. при из-

Рис. 12.7. К выводу закона взаимности при преломлении.

объяснений.

менении направления лучей на обратное их взаимное расположение не меняется (рис. 12.8). В законе отражения этот принцип обратимости светового пути также действителен, как легко видеть из рис.

Рис. при 12.8. Ход лучей преломлении света.

Рис. 12.9. Ход лучей вац отражении света.

числе преломлений и отражений, поскольку он соблюдается при каждом из них. Таким образом, принцип взаимности справедлив для всех задач, связанных с построением изображений.

Закон преломления при переходе из первой среды во вторую (см. рис. 12.8) гласит:

$$\frac{\sin l}{\sin r} = N_{12} = \frac{n_3}{n_1} \tag{70.1}$$

иЛИ

280

$$n_1 \sin i = n_2 \sin r$$
.

Закон отражения (см. рис. 12.9) выражается соотношением *)

$$i = -i'. \tag{70.2}$$

Его можно получить из предыдущей формулы, положив $n_1 = -n_2$, откуда $\sin i = -\sin r$, i = -r.

Итак, закон отражения получается из закона преломления, если положить $n_2 = -n_1$ и под r подразумевать угол отражения. Таким образом, любую формулу, выведенную для преломляющих систем, можно использовать для описания явлений в отражающих системах.

§ 71. Преломление (и отражение) на сферической поверхности

Предположим, что две среды с показателями преломления n и n_2 разделяются сферической поверхностью Σ (рис. 12.10). На линии LL', проходящей через центр нашей сферы O, поместим

Рис. 12.10. Преломление параксиальных лучей на сферической границе двух сред. точечный источник света L. Рассмотрим узкий гомоцентрический конус лучей, падающий из L на поверхность раздела двух сред.

Мы предполагаем пучок настолько узким, т. е. угол ψ настолько малым, что практически можно считать отрезок LS равным LA, L'S равным L'A и т. д. Такой узкий пучок

будем называть параксиальным **). Итак, условне параксиальности пучка есть

$$LS \approx LA$$
 II $L'S \approx L'A$.

Возьмем какой-либо луч из этого пучка, например LA, падающий на Σ под углом *i*, построим сопряженный ему преломленный луч AL' (угол преломления *r*) и найдем положение точки, в которой преломленный луч пересечет ось системы.

^{**)} Лания LL' называется обычно осью (axis) данной системы. Отсюда название — параксиальный (приосевой).

гл. хи. основные положения лучевой оптики

Из треугольника ALO имеем

$$\frac{LO}{LA} = \frac{\sin i}{\sin \varphi},$$

из треугольника OAL'

$$\frac{AL'}{OL'} = \frac{\sin \varphi}{\sin r}.$$

Отсюда

$$\frac{LO}{LA}\frac{AL'}{OL'} = \frac{\sin i}{\sin r} = \frac{n_2}{n_1}.$$
(71.1)

В дальнейшем все отрезки вдоль оси будем отсчитывать от точки S, считая положительными отрезки, откладываемые от S вправо (в направлении распространяющегося света), и отрицательными отрезки, откладывгемые влево. Таким образом, $AL \approx SL = -a_1$, $-AL' \approx SL' = a_2$, AO = SO = R (раднус нашей сферы). В таком случае $LO = -a_1 + R$, $OL' = a_2 - R$. Из формулы (70.1) получим

$$\frac{-a_1+R}{-a_1}\frac{a_2}{a_2-R}=\frac{n_2}{n_1},$$

т. е.

$$n_1\left(\frac{1}{a_1}-\frac{1}{R}\right) = n_2\left(\frac{1}{a_2}-\frac{1}{R}\right) = Q.$$
 (71.2)

Последняя формула показывает, что произведение $n\left(\frac{1}{a}-\frac{1}{R}\right)$ при преломлении сохраняет свою величину Q. Его называют нулевым инвариантом Аббе. Для многих целей этой формуле удобно придать вид

 $\frac{n_1}{a_1} - \frac{n_2}{a_2} = \frac{n_1 - n_2}{R}.$ (71.3)

Соотношение (71.3) позволяет найти длину $a_2 = SL'$, если задано $a_1 = LS$, т. е. позволяет отыскать положение точки L^{ℓ} по заданному L. При выводе его мы, кроме закона преломления, пользовались еще допущением, что луч LA принадлежит к параксиальному пучку. Следовательно, соотношение справедливо для любого луча параксиального пучка. Из формулы (71.3) видно, что аз при заданных параметрах задачи (n1, n2, R) зависит только от а1. Таким образом, все лучи параксиального гомоцентрического пучка, выходящего из L, пересекают ось в одной и той же точке L', которая является, следовательно, стигматическим изображением источника L. Итак, гомоцентрический пучок при преломлении на сферической поверхности остается гомоцентрическим, если он удовлетворяет условию параксиальности. Основное уравнение (71.3) охватывает все случаи преломления лучей на сферической поверхности. Пользуясь установленным выше правилом знаков, мы можем разобрать случай выпуклой (R > 0) или вогнутой (R < 0) поверхности.

ГЕОМЕТРИЧЕСКАЯ (ЛУЧЕВАЯ) ОПТИКА

Точно так же в зависимости от того, будут ли а1 и а2 иметь разные 282 Точно так же в зависимо будем иметь случан, когда изображение знаки или одинаковые, мы будем иметь случан, когда изображение знаки или одинаковые, на одиной по сравнению с источником сторасполагается с прогловерхности или лежит по одну сторону с ним. роны преломалющен повер точка, именуемая изображением, есть В первом случае (a₂ > 0) точка, именуемая изображением, есть в первом случае (ча сеть преломленных лучей. Такое изодействительно точка пересе изо-бражение называется действительным. Во втором случае (a₂ < 0), расходящимися и реально не пересекаются. В этом случае название расходящимися и редение воображаемой точке, которая представляет собой место пересечения предполагаемого продолжения преломленных лучей. Такое изображение называется мнимым. Ъ Наши рассуждения и формула (71.3) показывают, что гомоцентрический пучок после преломления направлен так, что его лучи или пересекаются в одной точке (действительное изображение), или могут быть представлены как пересекающиеся в одной точке (мнимое изображение). Именно в этом смысле он и остается гомоцентрическим. Так как для всех наших рассуждений нам важно знать направление световых лучей, то при всех построениях мы одинаково можем пользоваться как действительным, так и мнимым изображением.

Формула (71.3) показывает также, что если бы источник был в L', то изображение расположилось бы в L (взаимность).

§ 72. Фокусы сферической поверхности

Из основного уравнения (71.3)

аует, что
при
$$a_1 = -\infty$$

 $a_2 = \frac{n_1 - n_2}{R}$
 $a_2 = \frac{n_2 R}{n_2 - n_1} = f_2$, (72.1)

при $a_1 = \infty$

следует, что

$$a_1 = -\frac{n_1 R}{n_2 - n_1} = f_1, \qquad (72.2)$$

т. е. f1, f2 зависят только от радиуса кривизны поверхности R и показателей преломления n1, n2 обенх сред.

Величины f. и f. суть постоянные длины, характеризующие преломляющую поверхность. Они называются ее фокусными расстояниями: f_1 — переднее фокусное расстояние (точка F_1 — передний фокус); f2 — заднее фокусное расстояние (точка F2 — задний фокус) (рис. 12.11).

Таким образом, фокусом сферической поверхности называется точка, в которой сходятся после преломления параллельные лучи (т. е. лучи, идущие из бесконечно удаленной точки). Понятно, что фокусы, так же как и изображения, могут быть действительными и мнимыми, т. е. представлять точку пересечения преломленных лучей (бывших до преломления параллельными) или их предполагаемых продолжений. Так, если вогнутая сторона поверхности раздела обращена к среде, имеющей меньший показатель преломления, то оба фокуса будут мнимыми. В этом легко убедиться как из анализа формул (72.1) и (72.2), так и из построения.

Параллельные лучи, идущие справа налево вдоль NO (см. рис. 12.11), сойдутся в фокусе F_1 , расположенном на линии NO и лежащем также на расстоянии $|f_1|$ от преломляющей поверхности. Геометрическое место точек F_1 F_1 ... образует сферическую поверхность с радиусом $|R - f_1|$ (для случая, показанного на рис. 12.11, $f_1 < 0$), концентрическую с преломляющей сферой (с центром в точке O).

Рис. 12.11. Фокусы сферической поверхности.

Эта поверхность носит название передней фокальной поверхности. Аналогично построим заднюю фокальную поверхность радиуса $|f_2 - R|$. Малые участки этих поверхностей (для параксиальной области) могут быть приняты за плоскости (фокальные плоскости).

Фокусные расстояния сферической поверхности различны по знаку и не равны между собой по абсолютной величине (см. рис. 12.11), нбо $n_1 \neq n_2$. Рассматриваемый случай легко осуществить на опыте, взяв широкую стеклянную трубку и заклеив один ее конец часовым стеклом, имеющим сферическую форму. Если налить в трубку воду или, еще лучше, бензол, показатель преломления которого практически совпадает с показателем преломления часового стекла, то получим сферическую границу раздела между воздухом ($n_1 = 1,00$) и бензолом ($n_2 = 1,49$). На этом простом аппарате легко убедиться, в согласии с (72.1) и (72.2), что

$$f_2/f_1 = -n_2/n_1. \tag{12.3}$$

Важным практическим примером одной преломляющей сферической поверхности является система, эквивалентная глазу и носящая название «приведенный глаз» (см. § 91). В качестве второго примера рассмотрим сферическое зеркало. Согласно сказанному в § 70, формулу (71.3) можно применить и к случаю отражения, если

ГЕОМЕТРИЧЕСКАЯ (ЛУЧЕВАЯ) ОПТИКА

положнть
$$n_2 = -n_1$$
. Тогда имеем
 $1/a_1 + 1/a_2 = 2/R$, (72.4)

т. е. известную формулу сферического зеркала. Фокусное расстояние такого зеркала определится по формуле (72.1). Найдем f= R/2, и, следовательно, формуле зеркала можно придать вид

$$1/a_1 + 1/a_2 = 1/t.$$
 (72.5)

В случае зеркала изображение действительное, если оно лежит по одну сторону с источником, и мнимое, если расположено за зеркалом.

Случан вогнутого и выпуклого зеркала отличаются лишь знаком *R.* Легко видеть, что фокус вогнутого зеркала — действительный, а фокус выпуклого зеркала—мнимый.

Чтобы получить законы плоского зеркала, достаточно положить $R = \infty$. В этом случае найдем $a_1 = -a_2$, т.е. изображение точки в плоском зеркале мнимое и симметрично расположенное.

§ 73. Изображение малых предметов при преломлении на сферической поверхности

Пользуясь свойствами параксиальных гомоцентрических пучков, можно построить изображение небольших площадей при преломлении на сферической поверхности. Представим себе сферическую поверхность, около центра которой расположена небольшая диафрагма DD, выделяющая узкие пучки, имеющие характер параксиальных по отношению к соответствующим осям. Параксиальный

гомоцентрический пучок после преломления остается гомоцентрическим, т. е. дает изображение своей вершины. Соответствующим образом изобразится любая точка светящейся дуги ACB (или части сферы) (рис. 12.12) с центром в О. Для отыскания изображения всех точек ACB применим формулу

$$\frac{n_1}{a_1} - \frac{n_2}{a_2} = \frac{n_1 - n_2}{R}.$$

, ГЛ. ХИ. ОСНОВНЫЕ ПОЛОЖЕНИЯ ЛУЧЕВОЙ ОПТИКИ

Так как для всех точек ACB все a_1 имеют одно и то же значение, то и все a_2 одинаковы; элемент сферы с радиусом $R - a_1$ отобразится в виде элемента сферы с радиусом $a_2 - R$ с общим центром O. Для графического отыскания точки B', например, можно провести луч BM||CO; тогда преломленный луч должен пройти через фокус F_2 ; луч же BO проходит без преломления. Пересечение продолжений MF_2 и BO и определит положение B'.

Ввиду того, что AB и A'B' очень малы, вместо дуг (элементов сферы) можно брать хорды (элементы плоскости). Таким образом, в сферической системе малая площадка, перпендикулярная к оси, изобразится при помощи параксиальных лучей в виде площадки, также перпендикулярной к той же оси.

Плоскость предмета *AB* и плоскость его изображения *A'B'* называются плоскостями, *сопряженными* по отношению к данной оптической системе.

§ 74. Увеличение. Теорема Лагранжа — Гельмгольца

Выберем в качестве светящегося предмета линию A_1B_1 , перпендикулярную к оси, и построим ее изображение A_2B_2 (рис. 12.13). Отношение линейных размеров изображения ($y_2 = A_2B_2$) и предмета ($y_1 = A_1B_1$) носит название линейного или поперечного убеличения

Рис. 12.13. К выводу уравнения Лагранжа — Гельмгольца для параксиальных лучей: $y_1 n_1 \sin u_1 = y_2 n_2 \sin u_3$.

 $V = y_2/y_1 = A_2B_2/A_1B_1$. Приписывая A_1B_1 и A_2B_2 знаки (как обычно в геометрии), получим, что увеличение положительно, если изображение прямое, и отрицательно, если изображение перевернутое.

Из треугольников A_1B_1S и A_2B_2S имеем

$$y_1/a_1 = tg i, \quad y_2/a_2 = tg r.$$

При малых размерах A_1B_1 и A_2B_2

т. е.

 $\frac{\operatorname{tg} i}{\operatorname{tg} r} = \frac{\sin i}{\sin r} = \frac{n_3}{n_1},$

 $\frac{n_1 y_1}{a_1} = \frac{n_2 y_2}{a_2} \quad \text{HAH} \quad \frac{y_2}{y_1} = V = \frac{n_1}{n_3} \frac{a_2}{a_1}. \tag{74.1}$

Для преломляющей системы n₁ и n₂ всегда положительны, так что Для преломляющен система отношения a_2/a_1 . Для расположений, знак V определится знаком отношения a_2/a_1 . Для расположений, знак V определится знаком отношения изображению (см. рис. 12,13), соответствующих действительному изображению (см. рис. 12,13), а1 и а2 имеют разные знаки, т. е. V отрицательно, и изображение аї н аз пистої разпистої и наоборажений — наоборот. перевернутое; для мнимых изображений — наоборот.

ревернуюс, для андинальнос, для зеркал $n_1/n_2 = -1$, т. е. $V = -a_2/a_1$. В случае действительдля зсрими и a_1 и a_2 имеют одинаковые знаки, т. е. V < 0ного изображение перевернутое; в случае мнимого изображения знаки и изооражение перевернутес, в случе прямое. Для плоского зер-а1 и a_2 различны, V > 0, изображение прямое. Для плоского зер-кала ($a_1 = -a_2$) V = 1, т. е. изображение прямое и натуральной величины.

Сопряженные плоскости называются главными, если для них V = 1, т. е. изображение получается прямым и в натуральную величину объекта. Нетрудно видеть, что для сферической поверхности главные плоскости совпадают между собой и представлены плоскостью, касательной к сфере в точке S, т. е. $a_1 = a_2 = 0$ (см. упражнение 100). В соответствии с этим и фокусные расстояния сферической поверхности следует считать расстояниями от главных плоскостей до фокусов. На рис. 12.13 изображены также углы и и и2, определяющие максимальное раскрытие (апертуру) пучков, падающих на поверхность Σ (угол 2u₁), и сопряженных им изображающих пучков (угол 2и2). Предельное значение этих углов определяется требованием соблюдения условий параксиальности.

Так как при всех значениях углов и, лежащих в пределах апертуры параксиальных лучей, отношение a_2/a_1 остается постоянным, то соотношение (74,2) показывает, что увеличение небольшого предмета А1В1 сохраняется неизменным, какой бы частью параксиального пучка ни было образовано изображение. Другими словами, не только изображение точки на оси (см. § 71), но и изображение небольшого предмета, расположенного около оси, передается параксиальным пучком без искажения.

Для параксиальных лучей $A_1P \approx A_1S = a_1$ и $PA_2 \approx SA_2 = a_2$, так что

$$u_1 = \operatorname{tg} u_1 = \frac{SP}{a_1}, \quad u_2 = \operatorname{tg} u_2 = \frac{SP}{a_2}, \quad \frac{u_1}{u_2} = \frac{a_2}{a_1}.$$

На основании (74.1) имеем

$$\frac{n_1 a_2}{n_2 a_1} = \frac{n_1 u_1}{n_2 u_2} = V = \frac{y_2}{u_1},$$

 $y_1 n_1 u_1 = y_2 n_2 u_2.$

(74.2)

Соотношение (74.2) носит название теоремы Лагранжа — Гельм-

Это соотношение справедливо для области параксиальных лучей. При употреблении пучков со значительной апертурой получение

ИЛИ

гл. хн. основные положения лучевой оптики

четких изображений возможно лишь при выполнении условия

$$y_1 n_1 \sin u_1 = y_2 n_2 \sin u_2 \tag{74.3}$$

(условие синусов Аббе, см. § 85). Условие Лагранжа — Гельмгольца или условие синусов налагает ограничение на свободу преобразовання световых пучков при помощи оптических систем, связывая апертуру и размер предмета с апертурой и размером изображения. Из него вытекает, что преобразование данного оптического пучка при помощи оптической системы в другой пучок любого наперед заданного строения невозможно. Строение преобразованного пучка может быть только таким, какое допускает условие Лагранжа— Гельмгольца. Это важное принципиальное ограничение приобретает особое значение в вопросах фотометрии и концентрирования лучистой энергии при помощи оптических систем.

2

§ 75. Центрированная оптическая система

Случай преломления на одной сферической поверхности сравнительно редок. Большинство -реальных преломляющих систем содержит по крайней мере две преломляющие поверхности (линза) или большее их число.

Рис. 12.14. Центрированная оптическая система.

Система сферических поверхностей называется центрированной, если центры всех поверхностей лежат на одной прямой (рис. 12.14), которая называется главной оптической осью системы.

Для всех рассуждений, изложенных в § 71, было существенно, что из точки L (см. рис. 12.10) выходит гомоцентрический пучок лучей, и отнюдь не важно, каким способом он получен. В частности, в L может находиться не точечный источник света, а его стигматическое изображение, полученное с помощью какой-либо иной оптической системы. Следовательно, соотношение (71.3) можно последовательно применить к каждой преломляющей поверхности сложной оптической системы, понимая под L изображение точечного источника, образованное всеми предыдущими поверхностями. Очевидно, что при этом a_1 может быть и положительным, если на рассматри-
ваемую поверхность падает сходящийся пучок лучей (см. рис. 12.14,

верхность 23). Для точки L1, лежащей на оси, пучок параксиальных лучей поверхность Σ_3). Для точки L1, личей т. е. он соберется в точке L2, 113 ко-сохраняет гомоцентричность, т. е. он соберется в точке L2, 113 косохраняет помоцентри посед, из ко-торой также пойдет паракснально и, следовательно, сохранит гомоцентричность, и т. д.

Итак, гомоцентрический параксиальный пучок остается гомоцентрическим при произвольном числе преломлений (и отражений) центрическия при прополения системе; таким образом, точка L₁ в центрированной системе стигматическое изображение (действительное или мнимое).

Подобным же образом, повторяя рассуждения §§ 73, 74, можно показать, что небольшой участок плоскости, расположенный в первой среде перпендикулярно к оптической оси центрированной системы, изобразится в последней преломляющей среде сопряженной плоскостью, также перпендикулярной к оптической оси, причем изображение остается геометрически подобным объекту. Наличие двух фокусов и двух фокальных поверхностей, установленное для одной сферической поверхности, сохраняется также и для всякой центрированной системы поверхностей. Точно так же для центрированной системы поверхностей сохраняет силу и теорема Лагранжа — Гельмгольца, т. е.

$$y_1n_1u_1 = y_2n_2u_2 = y_3n_3u_3 = \dots$$

Для центрированной системы сохраняет смысл и понятие главных плоскостей как таких сопряженных плоскостей, в которых объект и изображение имеют одинаковые величину и направление. Но в то время как для одной преломляющей сферической поверхности обе главные плоскости сливались в одну, касающуюся сферической поверхности в ее вершине S, для центрированных поверхностей эти две плоскости, вообще говоря, не совпадают. Фокусные расстояния системы, так же как и в случае одной сферической поверхность; есть расстояния от соответствующей главной плоскости до фокуса.

§ 76. Преломление в линзе. Общая формула линзы

(Большое значение имеет простейший случай центрированной системы, состоящей всего из двух сферических поверхностей, ограничивающих какой-либо прозрачный хорошо преломляющий материал (обычно стекло) от окружающего воздуха. Такая система представляет, очевидно, обычную линзу.

Линза называется тонкой, если обе ее вершины можно считать совпадающими, т. е. если толщина линзы d мала по сравнению с R₁ и R₂, раднусами кривизны ограничивающих поверхностей. На рис 1915 На рис. 12.15 для ясности линза изображена толстой. В дальней-

гл. хн. основные положения лучевоя оптики

ших расчетах будем полагать, что точки S_1 и S_2 сливаются, и обозначим их буквой S. Все расстояния будем отсчитывать от этой точки S, которая практически совпадает с S_1 и S_2 . Точка S носит название *оптического центра* линзы. Любой параксиальный луч, проходящий через S, практически не испытывает преломления. Действительно, для таких лучей участки обеих поверхностей линзы можно считать параллельными, так что луч, проходя через них, не меняет направления, но лишь смещается параллельно самому себе (преломление в плоскопараллельной пластинке), а так как толщиной линзы мы пренебрегаем, то смещение это ничтожно и луч практически проходит без преломления. Луч, проходящий через оптический центр, мы назовем осью линзы. Та из осей, которая проходит через центры обеих поверхностей, называется главной, остальные — побочными.

Рис. 12.15. Преломление в тонкой линзе.

Преломление на первой сферической поверхности создало бы без второй сферической поверхности в сплошном стекле с показателем преломления n изображение C на расстоянии SC = a (см. рис. 12.15) от вершины, так что

$$\frac{n_1}{a_1}-\frac{n}{a}=\frac{n_1-n}{R_1},$$

где $a_1 = SA_1$, R_1 — радиус кривизны первой поверхности линзы. Для второй поверхности С является как бы мнимым источни-

ком света. Построение изображения этого источника после преломления на второй поверхности линзы даст точку B на расстоянии $a_2 = SB$ от линзы. Здесь опять применима формула

 $\frac{n}{a} - \frac{n_2}{a_2} = \frac{n - n_3}{R_2},$

где R_2 — раднус второй поверхности. Так как $n_1 = n_2$ (воздух с двух сторон линзы), то имеем:

$$\frac{n_1}{a_1} - \frac{n}{a} = \frac{n_1 - n}{R_1}, \quad \frac{n}{a} - \frac{n_1}{a_2} = \frac{n - n_1}{R_2}.$$

Складывая второе уравнение с первым, получим:

$$n_1\left(\frac{1}{a_2} - \frac{1}{a_1}\right) = (n - n_1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

10 Ландсберг Г. С. -

или, вводя относительный показатель преломления $N = n/n_1$,

$$\frac{1}{a_2} - \frac{1}{a_1} = (N-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right). \tag{76.1}$$

Эта общая формула линзы годна для линз выпуклых и вогнутых при любом расположении источника и соответствующем расположении фокуса. Нужно только принять во внимание знаки a_1 , a_2 , R_1 , R_2 , считая их положительными, если они отложены вправо от линзы, и отрицательными, если они отложены влево от линзы (как было сделано при выводе формулы (71.2)). Если знаки a_1 и a_2 одинаковы, то одна из сопряженных точек — мнимая, т. е. в ней пересекаются не сами лучи, а их воображаемые продолжения.

§ 77. Фокусные расстояния тонкой линзы

Если светящаяся точка, лежащая на главной оси, удаляется от линзы (a₁ возрастает по абсолютной величине), то изображение перемещается. Положение изображения, соответствующее предельному случаю, когда источник удален в бесконечность.

Рис. 12.16. Положение фокусов, рас раположенных на главной и побочной оптических осях тонкой лицзы.

AF — фокальная плоскость линзы.

Таким образом, фокус есть точка, сопряженная бесконечно удаленной точке главной оси, или, что то же, — место схождения лучей, параллельных главной оптической оси. Расстояние от линзы до фокуса есть фокусное расстояние тон-

носит название фокуса линзы.

кой линзы. Плоскость, проходящая через фокус перпендикулярно к главной оси, называется фокальной плоскостью.

Если лучи ндут из бесконечности параллельным пучком, но под углом к главной оси (вдоль побочной оси), то они пересекаются в соответствующей точке A фокальной плоскости (рис. 12.16). Таким образом, фокальная плоскость есть плоскость, сопряженная бесконечно удаленной плоскости.

Для определения фокусных расстояний имеем следующие соотношения:

 $\operatorname{при} a_1 = -\infty$

$$a_2 = f_2 = \frac{1}{(N-1)(1/R_1 - 1/R_2)},$$
(77.1)

при $a_2 = \infty$

$$a_1 = f_1 = -\frac{1}{(N-1)(1/R_1 - 1/R_2)}, \qquad (77.2)$$

т. е.

$$f_1 = -f_2.$$
 (77.3)

Итак, фокусные расстояния линзы равны по величине *) и противоположны по знаку, т. е. фокусы лежат по разные стороны от линзы.

В зависимости от знака и величины R_1 и R_2 , а также от знака (N-1), величина f_1 может быть положительной либо отрицательной, т. е. фокус может быть мнимым или действительным. То же относится и к f_2 , причем нетрудно видеть, что если гервый фокус — мнимый, то и второй будет I^{q_2}

Если фокусы действительны, т. е. параллельные лучи после преломления в линзе сходятся, то линза называется собирательной или положительной. При мнимых фокусах параллельные лучи после преломления в

Рис. 12.17. Различные типы тонких линз. а — собирательные: б — рассеивающие.

Рис. 12.18. Графическая зависимость между a₁ и a₂ при данном f для идеальной тонкой линзы.

линзе становятся расходящимися. Поэтому такие линзы называются рассеивающими или отрицательными.

Если материал тонкой линзы преломляет сильнее, чем окружающая среда (например, стеклянная линза в воздухе), то собирательными будут линзы двояковыпуклые, плоско-выпуклые и вогнуто-выпуклые (положительный мениск), т. е. линзы, утолщающиеся к середине (рис. 12.17, *a*); к рассенвающим линзам принадлежат двояковогнутые, плоско-вогнутые и выпукло-вогнутые (отрицательный мениск), т. е. линзы, утончающиеся к середине (см. рис. 12.17, *б*). Если материал тонкой линзы преломляет меньше, чем окружающая среда (например, воздушная полость в воде), то линзы вида рис. 12.17, *a* будут рассенвающими, а вида рис. 12.17, *б* — собирательными.

^{*)} Если линза помещена так, что по обе стороны ее располагаются разные среды $(n_1 \neq n_2)$, то формула усложняется. В этом случае фокусные расстояния f_1 и f_2 относятся между собой, как $-n_1/n_2$ (см. упражнение 115). Примером может служить хрусталик глаза человека.

Вводя фокусное расстояние линзы, придадим формуле линзы вид

$$\frac{1}{a_1} - \frac{1}{a_1} = \frac{1}{f}, \quad f = f_2 = -f_1.$$

Зависимость между a_1 и a_2 графически изображена на рис. 12.18. Легко видеть, что изменение величны a_1 приводит к измене-

Легко видеть, что изменение всилина и приводит к изменению a_2 того же знака. Другими словами, изображение сдвигается вдоль осн в том же направлении, что и объект. Исключение составляет лишь точка $a_1 = f_1$, при прохождении которой изображение переходит из $a_2 = +\infty$ в $a_2 = -\infty$.

§ 78. Изображение в тонкой линзе. Увеличение

Пусть малый объект вблизи оси изображается системой центрированных сферических поверхностей. Построение можно выполнить при помощи параксиальных пучков (см. § 73). Поскольку доказано, что для параксиальных лучей изображение точки стигматично (т. е. гомоцентричность пучка сохраняется), то для построения ее изобра-

Рис. 12.19. Построение изображения в тонкой линзе.

жения достаточно найти точку пересечения каких-либо *двух* лучей.

Наиболее простое построение выполняется при помощи лучей, указанных на рис. 12.19. Один из них — луч CF_2B_2 , сопряженный с лучом B_1C , параллельным главной оптической оси; этот луч проходит

через задний фокус F2; другой — луч DB2, параллельный главной оптической оси и сопряженный с лучом В₁F₁D, проведенным через передний фокус F1. Третий луч вдоль побочной оптической осн B₁SB₂ проходит через_оптический центр линзы (точку S), он идет, не преломляясь. Построение этих лучей выполняется без затруднений. Всякий другой луч, идущий из В₁, нужно было бы строить при помощи закона преломления, что гораздо сложнее. Но из свойства гомоцентричности следует, что после выполнения построения любой преломленный луч пройдет через точку В2. Так как построение изображения точки В1 сводится к геометрической задаче отыскания точки В2, то нет надобности, чтобы выбранные простейшие пары лучей имели реальный характер. В частности, когда А, В, больше размеров линзы (например, фотографирование), лучи B₁C, B₁D (рис. 12.20) не проходят через линзу, но могут быть использованы для построения изображения. Реальные лучи, участвующие в построении изображения, ограничены оправой линзы MN, но сходятся, конечно, в той же точке В₂, нбо линза предполагается достаточно хорошей, так что проходящие через нее пучки остаются гомоцентрическими.

Определив поперечное увеличение, как и в § 74, при помощи соотношения $V = \frac{A_2B_3}{A_1B_1} = \frac{y_3}{y_1}$, найдем из рис. 12.19

$$V = \frac{SA_2}{SA_1} = \frac{a_2}{a_1}.$$
 (78.1)

Аналогично изложенному в § 74 найдем, что для действительных изображений V < 0, т. е. изображение обратное, а для мнимых V > 0, т. е. изображение прямое.

Главными плоскостями линзы, как и всякой системы, являются те сопряженные плоскости, для которых V = 1. Для тонкой линзы эти плоскости сливаются в одну, проходящую через оптический центр перпендикулярно к оптической оси (т. е. $a_1 = a_2 = 0$) (см. упражнение 100). Таким образом, фокусные расстояния линзы, которые должны отсчитываться от главных плоскостей, в случае тонкой линзы могут отсчитываться от ее поверхности.

Рис. 12.20. Ограничение пучков в тонкой линзе.

Тонкая линза как система двух центрированных поверхностей представляет простейшую оптическую систему, дающую довольно несовершенное изображение. В большинстве случаев мы прибегаем к построению более сложных систем, характеризующихся наличием большого числа преломляющих поверхностей и не ограниченных требованием близости этих поверхностей (тонкости линзы). Однако даже простые тонкие линзы имеют очень большое значение на практике, главным образом в качестве очковых стекол. В громадном большинстве случаев очки представляют собой просто тонкие линзы.

Для классификации очковых стекол обычно применяется понятие оптической силы линзы. Оптической силой называется величина, обратная заднему фокусному расстоянию линзы. Если фокусное расстояние измерять в метрах, то оптическую силу принято выражать в диоптриях, считая ее положительной или отрицательной в зависимости от того, собирательная линза или рассеивающая. Так, например, рассеивающая линза с фокусным расстоянием 20 см (f = -1/5 м) имеет оптическую силу в - 5 диоптрий.

§ 79. Идеальные оптические системы

Гаусс (1841 г.) дал общую теорию оптических систем, получив-Гаусс (1841 г.) дал общую теорию оптической системы, т. е. шую дальнейшее развитие в трудах многих математиков и физиков. Теория Гаусса есть теория идеальной оптической системы, т. е. Теория Гаусса есть теория идеальной оптической системы, т. е. ражение геометрически подобно предмету. Согласно этому опредеражение геометрически подобно предмету. Согласно этому опредеражение геометрически подобно предмету. Согласно этому опредеражение сонстаки пространства изображений; эти точки носят назной системе точка пространства изображений; эти точки носят назной системе точка должна соответствовать сопряженная пряпостранства объектов должна соответствовать сопряженная прямая или плоскость пространства изображений. Таким образом, теория идеальной оптической системы есть чисто геометрическая теория, устанавливающая соотношение между точками, линиями, плоскостями.

Рис. 12.21. Главные плоскости H_1R_1 и H_2R_2 и фокусы F_1 и F_2 оптической системы.

Изложенное в § 75 показывает, что идеальная оптическая система может быть осуществлена с достаточным приближением в виде центрированной оптической системы, если ограничиться областью вблизи оси симметрии, т. е. параксиальными пучками. В теории Гаусса требование «тонкости» системы отпадает, но лучи по-прежнему предполагаются параксиальными. Разыскание физической системы, которая приближалась бы к идеальной даже при пучках значительного раскрытия, есть задача прикладной геометрической оптики.

УЛиния, соединяющая центры сферических поверхностей, представляет собой ось симметрии центрированной системы и называется главной оптической осыо системы. Теория Гаусса устанавливает ряд так называемых кардинальных точек и плоскостей, задание которых полностью описывает все свойства оптической системы и позволяет пользоваться ею, не рассматривая реального хода Пуст. ист.

Пусть *MM* и *NN* — крайние сферические поверхности, ограничивающие нашу систему, и O_1O_2 — ее главная ось (рис. 12.21). Проведем луч A_1B_1 , параллельный O_1O_2 ; точка B_1 есть место входа этого луча в систему. Согласно свойству идеальной системы лучу

 A_1B_1 соответствует в пространстве изображений сопряженный луч G_2F_2 , выходящий из системы в точке G_2 . Как идет луч внутри системы, нас не интересует. Второй луч P_1Q_1 выберем вдоль главной оси. Сопряженный ему луч Q_2P_2 будет также идти вдоль главной оси. Точка F_2 как пересечение двух лучей G_2F_2 и Q_2P_2 есть изображение точки, в которой пересекаются лучи A_1B_1 и P_1Q_1 , сопряженные с G_2F_2 и Q_2P_2 . Но так как $A_1B_1 \parallel P_1Q_1$, то точка, сопряженная с F_2 , лежит в бесконечности. Таким образом, F_2 есть фокус (второй, или задний) нашей системы. Плоскость, проходящая через фокус перпендикулярно к оси, носит название фокальной.

Повторяя те же рассуждения для луча A_2B_2 и осевого луча P_2Q_2 , найдем точку F_1 , являющуюся передним фокусом нашей системы, причем точка G_1 есть точка выхода луча, сопряженного с

Рис. 12.22. К доказательству существования главных плоскостей. Лучи 1, 2, 3 и 1', 2', 3' сопряжены.

 A_2B_2 . Продолжим теперь F_1G_1 и F_2G_2 до пересечения с продолжениями A_1B_1 и A_2B_2 и отметим точки пересечения R_1 и R_2 . Легко видеть, что R_1 и R_2 — сопряженные точки. Действительно, R_1 есть точка пересечения лучей $A_1B_1R_1$ и $F_1G_1R_1$, которым сопряжены соответственно лучи $R_2G_2F_2$ и $R_2B_2A_2$, пересекающиеся в R_2 . Из построения ясно также, что R_1 и R_2 лежат на одинаковом расстоянии от главной оси, т. е. $H_1R_1 = H_2R_2$, или линейное поперечное увеличение равно

$$V = \frac{H_2 R_2}{H_1 R_1} = +1.$$

Специальными рассуждениями можно показать, что и любая точка линии H_1R_1 сопряжена с точкой линии H_2R_2 , лежащей на такой же высоте от O_1O_2 , как и выбранная. То же относится и к плоскостям, проведенным через H_1R_1 и H_2R_2 перпендикулярно к главной оси, ибо вся система симметрична относительно оси.

Итак, мы отыскали две плоскости H_1R_1 и H_2R_2 , точки которых сопряжены и изображаются с увеличением, равным +1, т. е. плоскость H_1R_1 изображается на H_2R_2 прямо и в натуральную величину (рис. 12.22). Такие плоскости называются главными плоскостями (см. § 74). Таким образом, мы показали, что идеальная система обладает главными плоскостями, и указали метод их отыскания.

Точки Н₁ и Н₂ пересечения главных плоскостей с осью носят наз-Точки H₁ и H₂ пересечения ... Расстояния от главных точек до фо-вание главных точек системы. Расстояниями системы f. — и с вание главных точек системы. Гасстояниями системы $f_1 = H_1 F_1$ и кусов называются фокусными расстояниями системы $f_1 = H_1 F_1$ и

= H_F₂*). Определяя положение сопряженных точек их расстояниями $I_2 = H_2 F_2^*).$ Определяя положение сопряных плоскостей и сохраняя пра-(a1 и a2) от соответствующих главных плоскостей и сохраняя пра-

(a1 II a2) от соответствующих сланным постостен и сохраняя пра-вило знаков, установленное в § 71, мы легко найдем ряд соотно-

Рис. 12.23. Расположение главных плоскостей в собирающей (а) и рассенвающей (б) линзах-менясках.

сопряженных точек в данной системе и играющих роль формул системы. Важнейшие из них (см. упражнение 106) имеют вид

$$f_1/a_1 + f_2/a_2 = 1; \quad x_1x_2 = f_1f_2; \\f_1/f_2 = -n_1/n_2; \\V = -x_2/f_2 = -f_1/x_1, \quad (79.1)$$

где $x_1 = a_1 - f_1$ и $x_2 = a_2 - f_2 - f_2$ — расстояния сопряженных точек

от соответствующих фокусов. Для распространенного случая, когда $n_1 = n_2$ (источник и его изображение лежат в одной среде, например, в воздухе), имеем:

$$1/a_2 - 1/a_1 = 1/f; \quad x_1x_2 = -f^2; \quad f_2 = -f_1 = f.$$
 (79.2)

Пользуясь правилом знаков, мы можем описать все свойства как собирательных, так и рассеивающих систем, ввести понятие мнимых точек и мнимых изображений и т.д.

Главные плоскости и главные точки могут лежать как внутри, так и вне системы совершенно несимметрично относительно поверхностей, ограничивающих систему, например даже по одну сторону от нее (рис. 12.23). Напоминаем еще раз, что фокусные расстояния отсчитываются от главных плоскостей; поэтому даже когда $|f_1| =$ = И21, расстояния от фокусов до поверхностей, ограничивающих систему, могут быть весьма различны (пример: линзы-мениски, изображенные на рис. 12.23).

Кроме линейного увеличения, систему можно также охарактеризовать угловым увеличением. Под угловым увеличением W понимают отношение тангенсов углов u_2 и u_1 , составляемых сопряженпыми лучами A_2M_2 и A_1M_1 с оптической осью (рис. 12.24), т. е.

$$W = \frac{\operatorname{tg} u_2}{\operatorname{tg} u_1}.$$

*) Выше предполагалось, что луч R₂F₂ (см. рис. 12.21), сопряженный с лу-A₁B₁, параллельным осн. пососо R₂F₂ (см. рис. 12.21), сопряженный с лучом A₁B₁, параллельным оси, пересекает ось. Возможен, однако, случай, когда после прохождения системы в соста исключительпосле прохождения системы луч остается параллельным оси. Этот исключитель-ный случай соответствует так иссостается параллельным оси. Этот исключительный случай соответствует так называемым телескопическим системам (см. § 92). Для них фокусы и главные токумы телескопическим системам (см. § 92). Для них фокусы и главные точки находятся в бесконечности.

гл. хи. основные положения лучевой оптики

Из рис. 12.24 видно, что $W = a_1/a_2$ (ибо $H_1M_1 = H_2M_2$), тогда как линейное увеличение $V = \frac{n_1a_2}{n_2a_1}$ (см. § 74), т. е.

$$WV = n_1/n_2$$

Для обычно встречающегося случая, когда предмет и изображение расположены в одной среде ($n_1 = n_2$), имеем

WV = 1.

Как угловое, так и линейное увеличение системы различно для разных точек оси; причем чем больше линейное увеличение, тем меньше угловое, т. е. при увеличении размеров изображения лучи,

Рис. 12.24. К определению углового увеличения системы.

его образующие, составляют меньший угол. Это обстоятельство имеет важное значение при рассмотрении роли оптических инструментов в световом восприятии (см. § 95).

Подобно тому, как сопряженные плоскости, для которых линейное увеличение V = 1, имеют особое значение, сопряженные точки, в которых угловое увеличение W = 1, также представляют собой особенные точки системы. Точки эти называются узлами (или узловыми точками) и характеризуются тем, что сопряженные лучи, проходящие через узлы, параллельны друг другу, ибо $u_1 =$ $= u_2$. Нетрудно показать; что в каждой системе такой парой точек будут точки N_1 и N_2 , отстоящие от первого и второго фокусов соответственно на расстояния, равные второму и первому фокусным расстояниям (рис. 12.25), т. е. $x_1 = F_1N_1 = f_2$ и $x_2 = F_2N_2 = f_1$. Легко видеть, что точки N_1 и N_2 — сопряженные, ибо их координаты удовлетворяют уравнению (79.1) системы $x_1x_2 = f_1f_2$. Кроме того, из рис. 12.25 видно, что их расстояния относительно главных плоскостей равны соответственно $H_1N_1 = a_1 = f_2 + f_1$ и $H_2N_2 =$ $= a_2 = f_2 + f_1$, т. е. $a_1 = a_2$ и. следовательно, для этих точек $W = a_1/a_2 = 1$. Итак, указанные нами точки N_1 и N_3 являются

сопряженными и удовлетворяют требованию W = 1, т. е. служат

повыми точками системы. повыми точками системы. Плоскости, проходящие через узлы перпендикулярно к опти-Плоскости, проходящие через узлы перпендикулярно к оптиузловыми точками системы. У Плоскости, проходящие чере усла плоскостями. Шесть плоскостей ческой оси, называются узловыми плоскостями. Шесть плоскостей

ческой оси, называются узлование узловые) и шесть плоскостей (две фокальные, две главные и две узловые) и шесть точек главной (две фокальные, ставные точки, узлы) называются колиетствующие (фокусы, главные точки, узлы) называются и праводать на правода (две фокальные, две главные и макальные точки, узлы), называются оси, им соответствующие (фокусы, главные точки, узлы), называются оси, им соответствующие цолу си, почками. Общее расположение карди-кардинальными плоскостями и точками. Общее расположение кардикардинальными плоскостили. F2, N2, H2 показано на рис. 12.26. нальных точек F1, N1, H1, F2, N2, H2 показано на рис. 12.26.

Рис. 12.25. Положение узловых точек N1 и N2.

Когда по обе стороны системы располагается одна и та же среда. мы получим, как сказано выше, равные по абсолютной величине мы получим, ная сказына $f_1 = -f_2$. Узловые точки теперь сливаются с главными, нбо $F_1N_1 = F_1H_1 = f_2$, и система характеризуется положением всего лишь четырех точек и плоскостей.

Рис. 12.26. Кардинальные точки и плоскости системы. F₁н F₁ — главные фокусы; N₁ и N₂ — узлы; H₁ и H₃ — главные точки (главные плоскости)

Зная свойства кардинальных плоскостей и точек, можно без труда построить изображение в любой системе, пользуясь двумя, лучами, исходящими из одной точки. В частности, для линз отпадает требование тонкости. Рис. 12.27 показывает, как можно построить изображение в толстой линзе, если дано расположение ее главных плоскостой и толстой линзе, если дано расположение и лучи. главных плоскостей и фокусов. На рис. 12.27 проведены лучи, построение которых сооб построение которых особенно просто определяет положение точки В', сопряженной с точкой в просто определяет положение точки В', сопряженной с точкой В. В силу гомоцентричности пучка любой

другой луч из В пройдет через В'. Луч I, проведенный параллельно главной оси, имеет в качестве пряженного луч I'

сопряженного луч I', пересекающий вторую главную плоскость на высоте $H_2D_2 = H_1D_1$ и проходящий через фокус F_2 . Луч 2,

гл. хн. основные положения лучевой оптики

идущий через узел N_1 , имеет сопряженный луч 2', проходящий через второй узел параллельно лучу 2. Луч 3, проходящий через фокус F_1 и пересекающий главную плоскость на высоте H_1C_1 , пройдет на той же высоте ($H_2C_2 = H_1C_1$) через вторую главную плоскость и пойдет параллельно главной оси. Для построения изображения можно ограничиться двумя лучами из трех.

Легко видеть, что разобранная выше тонкая линза может рассматриваться как частный случай толстой линзы, в которой точки H_1 и H_2 совпадают и главные плоскости сливаются. Узловые точки, совмещенные с H_1 и H_2 , также совпадут, образуя оптический центр линзы. Построение изображения произойдет, как и раньше, при помощи каких-либо двух простейших лучей (ср. также рис. 12.19).

Рис. 12.27. Построение изображения в системе с использованием кардинальных точек.

Вводя понятие главных и узловых плоскостей оптической системы, мы ввели одновременно и представления о линейном поперечном увеличении V и угловом увеличении W. Обычно приходится иметь дело с изображением пространственных предметов, отдельные точки которых лежат на разных расстояниях от главной плоскости. Поэтому рационально ввести еще и продольное увеличение (U), показывающее отношение длины изображения Δx_2 к длине изображаемого малого отрезка Δx_1 , если последний расположен вдоль оси. Понятно, что приходится говорить об увеличении малых по длине отрезков, ибо продольное увеличение для разных точек оси различается очень значительно. Итак,

$$U = \frac{\Delta x_2}{\Delta x_1}$$
.

Выражение для *U* легко найти, пользуясь формулами (79.1). Имеем

$$x_1 \Delta x_2 + x_2 \Delta x_1 = 0,$$

или

$$U = \frac{\Delta x_2}{\Delta x_1} = -\frac{x_2}{x_1} = -\frac{f_1 f_2}{x_1^3} = -\frac{x_2^3}{f_1 f_3} = -V^3 \frac{f_2}{f_1} = \frac{\pi_2}{\pi_1} V^3,$$

так как

$$V = -x_2/f_2 = -f_1/x_1 \quad \text{H} \quad f_2/f_1 = -n_2/n_1.$$

Сопоставляя значения U, V и W, находим

$$U = \frac{n_2}{n_1} V^2, \quad V W = \frac{n_1}{n_2}$$

(79.3)

300

и, следовательно,

UW = V.

Полеречное увеличение важно для характеристики систем, про-Поперечное увеличение на экран или фотопластинку (проек-ектирующих изображение на экран или фотопластинку (проекектирующих изооражение на окрен. фотоплистинку (проек-ционные и фотографические объективы). Угловое увеличение важно ционные и фотографические объектов, когда стремятся увели-при рассматривании удаленных объектов, когда стремятся увелипри рассматривании удаление рассматриваемых объектов (телескопиче-чить угловые размеры рассматриваемых объектов (телескопичечить угловые размеры р. Продольное увеличение характеризует ские системы, см. § 92). Продольное увеличение характеризует ские системы, см. у пространственного объекта на экран (так резкость изображения пространственного объекта на экран (так резкость изооралении простемы»). Оно всегда положи-называемую «глубину оптической системы»). Оно всегда положиназывает, е. Δx_1 и Δx_2 совпадают по направлению.

изно, т. с. с. на посит идеальной оптической системы носит совершенно общий характер, т. е. применима к аксиально симметричным системам произвольной конструкции. Система оказывается полностью заданной, если известно взаимное расположение четырех кардинальных точек. Положение этих точек в каждой конкретной системе, разумеется, зависит от ее конструкции (от кривизны предомляющих и отражающих поверхностей, их расположения, показателя преломления и т. п.). Существует несколько методов нахождения кардинальных точек. Один из них состоит в последовательном расчете хода лучей, падающих на систему слева и справа параллельно оси. При этом к каждой преломляющей поверхности применяется формула (71.2) или (71.3). Сущность другого, более употребительного метода, ясна из следующего. Пусть даны две оптические системы и для них известны фокусные расстояния и положения главных точек, причем обе системы расположены на общей оси на некотором известном расстоянии друг от друга; тогда можно вычислить фокусные расстояния и положения кардинальных точек сложной системы, состоящей из этих систем. Таким образом, если сложная система состоит из двух или большего числа подсистем с известными кардинальными точками, то производя описанный процесс сложения несколько раз, можно определить параметры системы в целом.

Снабдим индексами 1 и 2 величины, относящиеся к двум подсистемам, причем штрихованные величины соответствуют пространству изображений, а нештрихованные — пространству объектов. В обозначениях, ясных из рис. 12.28, положение переднего бокуса Е оточности Казанные Станка Ста фокуса F сложной системы относительно переднего фокуса F 107) первой подсистемы определяется формулой (см. упражнение 107)

$$x_F = f_1 f_1' / \Delta.$$
 (79.4)

ВИД

 $x'_{F'} = -f_2 f'_2 / \Delta;$ здесь отсчет ведется от заднего фокуса F' второй подсистемы (см.

гл. хип. аберрации оптических систем

рнс. 12.28). Для фокусных расстояний сложной системы получим $f' = -f'_1 f'_2 / \Delta$, $f = f_1 f_2 / \Delta$. (79.6)

В последних трех формулах расстояние Δ между F'_1 и F_2 отсчитывается от F'_1 , т. е. для расположения, показанного на рис. 12.28, $\Delta > 0$.

Если в качестве подсистем рассматривать преломляющие поверхности, то расчет произвольной оптической системы можно свести

Рис. 12.28. К определению параметров сложной оптической системы.

к последовательному применению формул сложения (79.4) — (79.6), включая на каждом этапе одну из преломляющих поверхностей. Применим эти соображения к линзе — системе, состоящей из двух преломляющих поверхностей, отстоящих на расстояние d друг от друга и обладающих радиусами кривизны R_1 и R_2 . Из (79.6) и формул § 72 легко находим ее фокусное расстояние

$$\frac{1}{f'} = (N-1) \left[\frac{1}{R_1} - \frac{1}{R_2} + \frac{N-1}{N} \frac{d}{R_1 R_2} \right].$$

Когда толщина линзы d мала в сравнении с R_1 , R_2 , последний член в этом выражении можно отбросить, и мы приходим к формуле для тонкой линзы (см. § 77). Если же d достаточно велика, фокусное расстояние линзы существенно зависит от ее толщины. В частности, можно, очевидно, подобрать условия, когда 1/f' = 0, т. е. толстая линза оказывается телескопической системой, увеличение которой определяется отношением R_1/R_2 .

Глава XIII

АБЕРРАЦИИ ОПТИЧЕСКИХ СИСТЕМ

§ 80. Введение

В предыдущей главе были изложены основы построения изображения в центрированных системах, справедливые при выполнении следующих условий:

свет поступает в систему в виде параксиальных пучков;
 пучки составляют небольшие углы с главной осью системы;

постоянен для BCex 302 преломления Лучей, .3) показатель предансперсии или свет достаточно т. е. среда не имеет дисперсии или свет достаточно монохро-

ичен. Все три условия не соблюдаются в практической оптике. Мы

Все три условия не соотодого спектрального состава и обычно имеем дело со светом сложного спектрального состава и обычно имеем дело со светом показателя преломления ст обычно имеем дело со состоя показателя преломления от длины должны учитывать зависимость показателя преломления от длины должны учитывать зависличение пучками, слабо наклоненными волкы (дисперсия). Ограничение пучками, слабо наклоненными волны (дисперсия). Отрановучения изображения точек, лежащих коси, означало бы отказ от получения а применение лише воскольствой осностемы. к оси, означало об отказ от ногу ставина применение лишь параксиаль-в стороне от главной оси системы, а применение лишь параксиальв стороне от главной сиспользованию лишь незначительных световых потоков.

х потоков. Устранение всех этих крайне стеснительных для практики ограничений приводит, однако, к тому, что появляются многочисленные недостатки изображения.

Тщательное их изучение привело к чрезвычайному усовершенствованию современных оптических систем, в которых нередко почти полностью устранены многие из возможных погрешностей, или аберраций.

Главная задача оптической системы состоит в образовании правильного изображения объекта, который в простейшем случае представляет собой плоскую картину, расположенную перпендикулярно к оптической оси системы. Правильное изображение требует соблюдения следующих условий:

1) каждая точка плоскости должна изображаться стигматически:

2) все точки изображения должны лежать в плоскости, перпендикулярной к оси системы;

3) масштаб изображения (увеличение) должен быть постоянен на всем изображении.

Нарушение первого и второго из этих условий ведет к уменьшению резкости изображения, нарушение второго и третьего деформирует изображение.

Наконец, своеобразная трудность возникает в связи с тем, что изображаемые объекты обычно бывают пространственными, а не плоскими; получаемое же изображение (на фотопластинке, в глазу или в трубе) практически плоское (см. § 87).

§ 81. Каустическая поверхность. Характер ее симметрии

Поверхность, огибающая совокупность лучей преломленного пучка, носит название каустической поверхности (каустики), а ее сечение любой поверхности (каустики), а ее сечение любой плоскостью, проходящей через луч, — каустиче-ской криеой. Боли скостью, проходящей через луч, — каустической криеой. Если пучок при проходящей через луч, — каусили стему сохрания гоноскостью, прохождении через оптическую систему сохрания гомоцентричность, то каустика вырождается в точку, представляется в Наруточку, представляющую вершину гомоцентрического пучка. Нару-шение гомоцентричность вершину гомоцентрического пучка. Нарушение гомоцентричности означает большее или меньшее искажение

каустической поверхности по сравнению с этим простейшим вырожденным случаем. Можно классифицировать различные аберрации по характеру понижения симметрии каустической поверхности. Так, при сферической аберрации (см. § 82) каустика приобретает вил поверхности, обладающей осью симметрии, но не имеюшей центра симметрии. Рис. 13.1 изображает одну из таких форм, где жирные линии представляют каустическую кривую в плоскости рисунка. а сама каустика получается вращением рисунка относительно оси PQ. Аберрация астигматизма (см. §§ 82, 83) соответствует дальнейшему понижению симметрии каустической поверхности, кото-

Рис. 13.1. Сечение каустической поверхности. SS - волновой фронт.

рая не имеет больше оси симметрии, а обладает лишь двумя взаимно перпендикулярными плоскостями симметрии.

Аберрация комы (см. § 82) означает, что каустическая поверхность обладает лишь одной плоскостью симметрии, проходящей через светящуюся точку и оптическую ось.

§ 82. Аберрации, обусловленные широкими пучками лучей

а. Сферическая аберрация. Предположим, что на оси оптической системы расположена светящаяся точка L, посылающая широкий пучок лучей на оптическую систему (линзу). Для того чтобы яснее проследить за действием различных зон линзы, прикроем ее картонным диском, снабженным небольшими отверстиями, расположенными по диаметру диска, как показано на рис. 13.2.

Параксиальный пучок 1 через центральное отверстие дает изображение точки в L'; пучки, проходящие через более удаленные зоны (пучки 2, 3 и т. д.), дадут изображения в точках L", L", ... Явление можно хорошо наблюдать в запыленном воздухе. Если картон с отверстиями устранить, то пучки, проходящие через промежуточные зоны, дадут изображения в промежуточных точках, так что точка L изобразится на оси линией L' ... L"", а на любом экране, перпендикулярном к оси, получится изображение в виде диска с неоднородным распределением освещенности. Таким образом, при значительной ширине пучка стигматичность изображения

не имеет места даже для точки на оси. Этот вид ошибки носит нане имеет места даже для точки он характерен не только для сфе-звание сферической аберрации, хотя он характерен не только для сфе-

ческих поверхностен. За меру сферической аберрации принимают расстояние между рических поверхностей. За меру сферической восружиих зон (продольная аберрация). Удоб-L' и L' для соответствующих зон (продольная аберрация). Удоб-

1

L' и L' для соответствующих сферической аберрация). Удоб-ное графическое изображение сферической аберрации дано на рис. ное графическое изооралсные сусре в сосружить дано на рис. 13.2, где положительные бо откладываются вправо от линни АА. 2, где положитсявные аберрации зависит от кривизны поверх-

Величина сферической ворратомления, а также от того, какой ностей линзы и показателя преломления, а обращена и ностен линзы и показителичная линза обращена к источнику.

Рис. 13.2. Сферическая аберрация и ее графическое изображение.

Так, двояковыпуклая линза из крона (n = 1,5) с отношением радиусов кривизны 1:6, обращенная более выпуклой стороной к параллельным лучам, имеет минимальные аберрации. Почти так же хороша плоско-выпуклая линза. Вследствие сферической аберрации светящаяся точка дает на экране изображение в виде небольшого кружка (кружок рассеяния), освещенного, вообще говоря, неравномерно. При перемещении экрана вдоль оптической оси размеры кружка рассеяния и распределение освещенности в нем меняются. Если экран совпадает с плоскостью АА (см. рис. 13.2), т. е. проходит через фокус L' параксиальных лучей, то кружок рассеяния имеет вид светлой точки со сравнительно большим и слабым ореолом; при перемещении экрана от L' к L" размеры ореола уменьша-, ются, но освещениют экрана от L' к L" размеры ореола уменьшаются, но освещенность его растет, а диаметр светлой точки увеличивается; при некотором положении экрана кружок рассеяния имеет наименьшие размеры (примерно в четыре раза меньше, чем в плоскости L') при почти равномерной освещенности; при дальней-шем перементенти шем перемещении экрана наблюдается быстрое расплывание

Отличительной особенностью сферической аберрации является то, что она сохраняется даже при положении светящейся точки на оси системы, когда все сахатическом оси системы, когда все остальные аберрации (в монохроматическом свете) исчезают.

Положительные (собирательные) линзы создают аберрацию, изображенную на рис. 13.2, т. е. $\delta s < 0$ для всех зон; отрицательные (рассеивающие) линзы имеют аберрацию противоположного знака. Поэтому, комбинируя такие простые линзы, можно значительно

исправить сферическую аберрацию. Соответствующий пример изображен на рис. 13.3. Строго говоря, сферическая аберрация может быть вполне исправлена только для какой-нибудь пары узких зон, и притом лишь для определенных двух сопряженных точек. Однако практически исправление может быть

Рис. 13.3. Сферическая аберрация исправленной системы.

весьма удовлетворительным даже для двухлинзовых систем, упомянутых выше. Подобные двухлинзовые системы могут быть очень хорошо исправлены в отношении сферической аберрации. Так, небольшой астрономический объектив с диаметром 80 мм и фокусным расстоянием 720 мм дал максимальное значение δs = - 0.011 мм.

Рис. 13.4. Кома.

Для исправления сферической аберрации зеркал (например, прожекторов) им обычно придают не сферическую форму, а вид параболоида вращения, располагая источник в фокусе; в таких зеркалах при тщательном их выполнении сферическую аберрацию можно сделать очень малой. Хорошо исправленными могут быть отражатели; обе поверхности которых сферические, но разной кривизны; задняя, посеребренная, имеет меньшую кривизну. Отраженный свет испытывает дополнительное преломление в стекле отражателя, который играет роль рассеивающей линзы (тоньше в середине), рассчитанной так, чтобы исправить аберрацию задней поверхности. Такие зеркала употребляются в настоящее время только в небольших сигнальных аппаратах (диаметром не свыше 100 мм).

306

6. Кома. Если светящаяся точка, посылающая широкий пу-6. Кома. Если светлициять то каустика принимает более чок, находится не на оси системы, то каустика принимает более чок, находится не на оси следенами, в котором прорезана узкая сложный выд. Покроем линзу экраном, в котором прорезана узкая сложный вид. покроем лино, сложные с центром на оси. Светя-щель в виде кольца большого диаметра с центром на оси. Светящель в виде кольца облащего для перекий пучок, проходя через щаяся точка L помещена вне оси. Широкий пучок, проходя через шаяся точка L помещена изображение L в виде довольно сложной систему, дает на экране изображение L в виде довольно сложной асимметричной фигуры (рис. 13.4).

мметричной чилура от ваставив работать всю линзу, мы в качестве Устранив экран и заставив работать всю линзу, мы в качестве

устранки экран и осучим неравномерно освещенное пятнышко, изображения точки насти с хвостом. Отсюда произошло несколько напоминающее комету с хвостом. Отсюда произошло несколько ваномни во кона кона — прядь волос; комета волосатая звезда).

Нередко кома имеет и более сложный вид. Соответствующим подбором совокупности частей системы кома может быть значительно ослаблена.

§ 83. Аберрации, обусловленные тонкими внеосевыми наклонными пучками лучей

а. Астигматизм наклонных пучков. Если пучок лучей, исходящий из точки, падает на систему, составляя угол с осью, то он теряет гомоцентричность. Для того чтобы яснее представить себе характер искажения, наблюдающегося в этом случае, введем некоторые дополнительные обозначения. Плоскости, проходящие через ось системы, носят название меридиональных плоскостей. Предположим, что центральный луч элементарного пучка (ось пучка) находится в меридиональной плоскости. Тогда из такого пучка можно мысленно выделить плоскую ленточку лучей, лежащих в меридиональной плоскости и называемых меридиональными, или плоскую ленточку лучей, расположенных в перпендикулярной плоскости и называемых сагиттальными (рис. 13.5).

Пучки при достаточном наклоне к оси не дают стигматического изображения точки L. Пучок после преломления имеет вид, подобный показанному на рис. 12.6. Изображением точки L служат две фокальные линии. Одна из них (LsLs, см. рис. 13.5) образуется в результате преломления сагиттальных лучей и ориентирована в меридиснальной плоскости; другая (LmLn), получающаяся при преломлении мериднональных лучей, ориентирована в перпендикулярной плоскости. Фокальные плоскости (/ и ///), в которых лежат эти два прямолинейных изображения, расположены на разных расстояниях от главной плоскости системы. Таким образом, в в этом сличениях от главной плоскости системы. н в этом случае точка L изображается кружком рассеяния, форма которого зависит от каки с изображается кружком рассеяния, форма которого зависит от положения экрана. В плоскости / фигура рассеяния имеет вид отрезка прямой, лежащей перпендикулярно к меридиональной плоскости; в плоскости /// фигура рассеяния вырождается в плоскости; в плоскости /// фигура рассеяния вырождается в прямую, расположенную в меридиональной плоскости; в плоскости II, лежащей посредине между I и III, фигура рассеяния имеет вид круга; в промежуточных плоскостях — вид эллипсов различного эксцентриситета.

Если источником служит не точка, а отрезок линии, то изображение ее может быть вполне удовлетворительным в одной из плоскостей I или III в зависимости от ориентировки изображаемого отрезка. Изображения отрезков, расположенных в меридиональных плоскостях, будут резкими в плоскости III, где изображения каждой точки ориентированы в меридиональной плоскости, и следовательно, сольются в удовлетворительное изображение всей линии;

Рис. 13.5. Астигматизм наклонных пучков.

LMM — меридиональное сечение; $L_m L_m$ — меридиональная фокальная ляняя; LSS — сагиттальное сечение; $L_s L_s$ — сагиттальная фокальная линия.

отрезки в виде дуг (колец), лежащие в плоскости, перпендикулярной к оси (и следовательно, пересекающие все меридиональные плоскости под прямым углом), дадут по той же причине удовлетворительное изображение в плоскости *I*. Сетка, удобная для демонстрации описанных явлений, изображена в левом углу рис. 13.5. Расположив сетку так, чтобы точка *O* лежала на оси, мы получим в плоскости *I* более или менее удовлетворительное изображение концентрических окружностей, а в плоскости *III* — радиальных линий. Радиальные и круговые линии центральной части сетки изображаются одинаково резко в одной плоскости.

б. Искривление рыко в одной инослование Изображение сетки, показанное на рис. 13.5, позволяет наблюдать одновременно с потерей стигматичности еще одну особенность, связанную с наклонными пучками. При определенном положении экрана резкость изображения разных колец (или резкость радиусов вдоль своей длины) может быть различна. Перемещая экран, мы можем улучшить изображение одних участков, ухудшая изображение других. Этот опыт показывает, что изображение представляет

собой не плоскость, перпендикулярную к оптической осн, а изогнусобой не плоскость, першендикульрино и отпольствой осн, а изогну-тую поверхность, причем степень изгиба для меридиональных тую поверхность, причем степень различна. Рис. 13 6 посттую поверхность, причем степсию излична. Рис. 13.6 показывает лучков и для пучков сагиттальных различна. Рис. 13.6 показывает лучков и для пучков сагиттальных состоять МНпучков и для пучков сагаттальных расси и неи того показывает характер этого искривления: QO — ось системы, MH₁ — оси наклонхарактер этого искривления. Со со следения, или — оси наклон-ных пучков, ОS — плоскость неискривленного изображения, соотных пучков, 05 — плоскость использить областримсния, соот-ветствующая параксиальному пучку, OS_m и OS_s — искривленные

Рис. 13.6. Искривление плоскости изображения.

поверхности изображения, обусловленные меридиональными и сагиттальными наклонными пучками соответственно. OS_m и OS_s, конечно, касаются линии OS в точке O, т. е. в параксиальной области.

Астигматизм системы исправляется путем специального подбора конструктивных элементов системы, т. е. радиусов поверхностей, показателей преломления и расстояний между поверхностями.

Рис. 13.7. Дисторсия изображения. а – ненскаженное изображение; б – подушкообразная дисторсия; в – бочкообразная дисторсия.

Одновременно с уничтожением астигматизма обычно стремятся устранить и искривление плоскости изображения, что особенно важно вля фотогости изображения, что особенно важно для фотографии, где требуется получение резкого изображения на плоской светочувствительной поверхности. Хорошие фотографические объективы этого типа — анастигматы — имеют зна-

чительное поле зрения (свыше 50°) и дают плоское изображение. в. Дисторония (свыше 50°) и дают плоское изображение. в. Дисторсия изображений. Когда лучи, посыла-не предметом в систорсия изображений. емые предметом в систему, составляют большие углы с ее оптиче-

гл. хин. аберрации оптических систем

ской осью, то изображение, даваемое даже узкими пучками лучей, может обнаруживать еще один вид искажения. Оно обусловлено тем, что увеличение V такой системы при больших углах зависит от угла между осями пучка и системы и, следовательно, меняется от центра изображения к периферии. Этот вид аберрации носит название дисторсии и ведет к тому, что изображения оказываются не подобными предмету. Типичные виды дисторсии (подушкообразная и бочкообразная) приведены на рис. 13.7.

Дисторсия обычно не очень вредит наблюдению, но становится очень опасной, если при помощи оптической системы производятся съемки, предназначенные для промеров (например, в геодезии или, особенно, в аэрофотограмметрни). Поэтому объективы для таких работ очень тщательно исправляются на дисторсию. Так, например, хороший объектив, рассчитанный М. М. Русиновым, предназначенный для картографических аэросъемок, при поле зрения в 120° дает ошибку в определении направления на объект, не превышающую 10".

§ 84. Астигматизм, обусловленный асимметрией системы

Очень важный для практики случай астигматизма наблюдается, когда симметрия системы по отношению к пучку нарушена в силу устройства самой системы. Представим себе пучок лучей, исходящий из L и собираемый линзой. На пути сходящегося пучка поместим *цилиндрическую линзу*, т. е. линзу, одно из сечений которой (например, вертикальное) прямоугольное, а второе — круговое. Таким образом, цилиндрическая линза имеет лишь две плоскости симметрии — вертикальную и горизонтальную, но лишена оси симметрии, которой обладает падающий световой пучок. При прохождении через такую систему осевая симметрия преломленного пучка также нарушится, и мы получим астигматическое изображение.

Характер астигматического пучка виден из рис. 13.8. Астигматический пучок при пересечении плоскостями, перпендикулярными к оси, дает ряд прямоугольных сечений. В точках P_s и P_m эти прямоугольники переходят в прямые (фокальные линии), параллельные плоскостям симметрии системы.

Астигматизмом такого происхождения нередко обладает человеческий глаз, что проявляется в его неспособности видеть одинаково резко систему взаимно перпендикулярных полос на испытательных таблицах. Для исправления этого недостатка служат цилиндрические очки, компенсирующие природный астигматизм глаз.

Весьма отчетливо проявляется астигматизм при преломлении расходящегося пучка, падающего на плоскую границу (см. упражнение 108). Астигматизм проявляется также, когда на пути лучей помещена призма, которая тоже является оптической системой, не имеющей осевой симметрии. Таким образом, призма может нару-

шать гомоцентричность пучка. Это обстоятельство имеет большое шать гомоцентричность по така. значение при построении спектральных аппаратов. Теория показы-значение при построении астигматизма, если она расползначение при построения сискаритизма, если она расположена вает, что призма не вносит астигматизма, если она расположена вает, что призма не вноси, при таком расположении исчезает в параллельном пучке лучей; при таком расположении исчезает

Рис. 13.8. Астигматизм цилиндрической линзы.

Р - сагитталькая фокальная линия; Р — меридиональная фокальная линия. Если цилиндрическую линзу снабдить днафрагмой с круглым сечением, то прямоугольные сечения пучка заменяются соответствующими эллиптическими.

и кома, вносимая призмой, если на нее падают сходящиеся или расходящиеся лучи. Когда лучи, падающие на призму, не параллельны, то астигматнам можно свести к минимуму, установив призму в положении минимального отклонения, хотя кома при этом не устраняется.

§ 85. Апланатизм. Условие синусов

Пусть для какон-нибудь точки S (рис. 13.9), лежащей на оптической оси, устранена сферическая аберрация, так что S отобра-

Рис. 13.9. Апланатические точки системы.

жается в S' резко, несмотря на применение широких пучков. Отсюда еще не следует, что небольшой σ, поверхности участок через S И проходящий перпендикулярный к оси,

и без искажений. Для такого правильного изображения необходимо, чтобы различные зоны системы давали одно и то же увели-чение. В противности системы давали одно и то же увеличение. В противном случае точки участка, не лежащие на оси, будут изображаться случае точки участка, не лежащие на оси, будут изображаться различными частями нашего широкого пучка на различных расстоятия точек на различных расстояниях от оси, т. е. для этих внеосевых точек нашего элемента не бито от оси, т. е. для этих внеосевых точек нашего элемента не будет сохраняться стигматичность изображения. Аббе нашел, что тробот сохраняться стигматичность изображения. Аббе нашел, что требование постоянства увеличения различными зонами системы риполисти постоянства увеличения различными зонами системы выполняется, если удовлетворено следующее ус-

$$\frac{n_1 \sin u_1}{n_2 \sin u_2} = \frac{y_2}{u_1} = V$$

(85.1)

где n_1 и n_2 — показатели преломления среды со стороны объекта и изображения, $V = y_2/y_1$ — увеличение, которое должно, следовательно, оставаться постоянным для любой пары сопряженных лучей, исходящих из точки, лежащей на оси, и ограниченных углами u_1 и u_2 с осью системы.

На рис. 13.10 показано, что условие синусов Аббе есть следствие физического требования, согласно которому для получения резкого изображения волны, идущие от объекта к изображению, должны проходить через разные зоны системы без разности фаз.

Рис. 13.10. К выводу условия синусов.

Для простоты рассуждений выберем в качестве объекта небольшое отверстие диафрагмы радиуса $S_1A_1 = y_1$, освещаемое слева параллельными пучками. На рис. 13.10 представлены два таких пучка, дающих изображения диафрагмы через две различные зоны оптической системы: через центральную ее часть (пучок *I*, сплошные линии) и через периферийную область (пучок *II*, пунктир). Если пучки *I* и *II* отображают A_1B_1 с одинаковым увеличением, то изображение A_2B_2 будет резким; следовательно, A_2 и B_2 представляют собой точки, куда световые волны доходят через разные зоны системы в одной фазе. Точки A_1 и B_1 , равно как и A_2 и B_2 , лежат соответственно на поверхности волны, распространяющенся по направлению *I*, т. е. колебания в них находятся в одной фазе. Путь волны *II* от B_1 к B_2 имеет по сравнению с путем от A_1 к A_2 оптическую разность хода, равную

$$(B_1C_1) - (C_2A_2) = 2y_1 \sin u_1 \cdot n_1 - 2y_2 \sin u_2 \cdot n_2.$$

Для того чтобы и в пучке II колебания в точках A₂ и B₂ находились в одной фазе, необходимо выполнение условия

 $(B_1C_1) - (C_2A_2) = 0,$

т. е.

$$2u_1 \sin u_1 \cdot n_1 = 2y_2 \sin u_2 \cdot n_2$$

ИЛИ

$$\frac{n_1 \sin u_1}{n_2 \sin u_2} = \frac{y_2}{y_1} = V$$

(условие синусов).

Из изложенного ясно, что при соблюдении условия синусов Из изложенного ясно, изображаются широкими пучками резко, точки, лежащие вблизи оси, изображаются широкими пучками резко, точки, лежащие вблизи оси, изобрация комы (§ 82). При этом следует т. е. у системы устранена аберрация комы (§ 82). При этом следует т. е. у системы устранена астричит принимать большие значения, подчеркнуть, что угол и может принимать большие значения, подчеркнуть, что угол и поличена, но величина у1 предполага-т. е. апертура пучка не ограничена, но величина у1 предполага-

я малой. Если среда по обе стороны системы одна и та же, например ется малой. если среда по сос стороне синусов принимает вид воздух, то $n_1 = n_2$, и условие синусов принимает вид

$$\frac{\sin u_1}{\sin u_2} = \frac{y_2}{y_1}.$$
 (85.2)

Две точки S и S', для которых устранена сферическая абердве точки в и соблюдено условие синусов, называются апланатичеchumu.

на оси системы возможны не более трех пар апланатических точек *). Поэтому соблюдение апланатизма имеет особое значение для систем, где объект располагается всегда приблизительно около определенной точки. Такой системой является объектив микро-

Рис. 13.11. Испытательный объект для проверки выполнения условия синусов.

скопа. Действительно, в микроскопе рассматриваемый объект малого размера всегда помещается вблизи фокальной плоскости объектива и посылает в объектив очень широкие пучки. Условие синусов и было сформулировано Аббе при исследовании путей улучшения объективов микроскопов.

Аббе указал также простой способ, позволяющий выяснить,

в какой мере выполнено условие синусов. Для этой цели пробный рисунок (испытательный объект), изображенный на рис. 13.11, рассматривают сквозь систему глазом (или отображают на экран), расположенным в одной из апланатических точек системы А2. Если условие синусов выполнено, то удается найти такое положение испытательного объекта за вто-, рой апланатической точкой A₁, при котором наблюдатель видит его изображение в виде прямоугольной сетки.

Испытав много микрообъективов, сделанных «наугад» старыми стерами Аббо объективов, сделанных «наугад» старыми мастерами, Аббе обнаружил, что у всех хороших объективов условие синусов выполнено. Для малых углов и, когда можно положить sin u = u, условие Асс sin u = u, условне Аббе совпадает с теоремой Лагранжа—Гель-

*) Исключение составляют лишь некоторые системы с угловым увеличенисы 1 (например, плоское зеркало), для которых все точки апланатические.

мгольца (см. § 74) и, следовательно, всегда осуществляется. В случае же широких пучков для соблюдения условия синусов необходимо специальное осуществление оптической системы, причем условие это будет выполнено только для определенных пар точек.

§ 86. Аберрации, обусловленные зависимостью показателя преломления от длины волны (хроматические аберрации)

а. Зависимость показателя преломления от цвета. При всех предшествующих построениях лучевой оптики мы считали показатель преломления величиной постоянной, тогда как в действительно-

сти он зависит от цвета, т. е., от длины волны света.

Первые экспериментальные исследования этой зависимости принадлежат Ньютоиу, который произвел (1672 г.) знаменитый опыт с разложением белого света на цвета (спектр) при преломлении в призме. Наблюдение прелом-

Рис. 13.12. Преломление в призме. Угол отклонения $D = \alpha_1 + \alpha_2 - \epsilon$.

ления в призме и доныне остается одним из удобных способов определения показателя преломления вещества призмы и изучения зависимости показателя преломления от цвета (дисперсия).

1. Преломление в призме. Пусть преломляющий угол призмы равен ε (рис. 13.12); угол отклонения луча ∠ КВС = D. Из треугольника MBN имеем

$$D = \alpha_1 - \beta_1 + \alpha_2 - \beta_2 = (\alpha_1 + \alpha_2) - (\beta_1 + \beta_2);$$

из треугольника МNP находим

$$\varepsilon = \beta_1 + \beta_2$$
.

Поэтому

$$D=\alpha_1+\alpha_2-\varepsilon.$$

При симметричном ходе лучей ($\alpha_1 = \alpha_2$) угол *D* принимает минимальное значение (см. упражнение 112). В этом случае

$$n = \frac{\sin \frac{1}{2} \left(D_{\min} + \epsilon \right)}{\sin \frac{1}{2} \epsilon}.$$
 (S6.1)

Последнее соотношение обычно применяется для определения п по измеренным с помощью гоннометра углам є и Dmin.

Мы рассматривали ход лучей, плоскость падения которых перпендикулярна к ребрам призмы; эта плоскость носит название главного сечения призмы. Если лучи падают под углом к главному

сечению, то они преломляются тем сильнее, чем больший угол

составляет плоскость падения с главным сечением. тавляет плоскость наделии с ниселения. В прозрачных средах пока-2. Зависимость п от λ (дисперсия). В прозрачных средах пока-2. Зависимость п от в тристерия. С программи средах пока-затель преломления п растет с уменьшением длины волны λ. Для затель преломления и растег с уменной части спектра) имеет вид прозрачных тел зависимость (в видимой части спектра) имеет вид

$$n_1 = a + b/\lambda^2 + c/\lambda^* + \dots$$
 (00.2)

Для многих тел можно ограничиться соотношением

$$n_{\lambda} = a + b/\lambda^2 \tag{85.3}$$

1

(формула Коши); a, b, c, ... - постоянные, характеризующие вецеормула Коши, ч. н. тел формула Коши теряет силу, нарушается даже ход зависимости n от λ (см. гл. XXVIII).

Мерой дисперсии служит разность показателей преломления $(n_{\lambda_1} - n_{\lambda_2})$ для различных значений λ_1 и λ_2 . Преломление характеризуют обычно значением показателя преломления для $\lambda = 589,3$ нм (среднее из длин волн двух близких желтых линий натрия), обозначая его символом пр. Мерой дисперсии служит средняя дисперсия. определяемая как разность

$$n_F - n_C$$

где n_F относится к $\lambda = 486,1$ нм (синяя линия водорода, F), а $n_{C} - \kappa \ \lambda = 656,3$ нм (красная линия водорода, C).

Нередко преломляющее вещество характеризуют величиной относительной дисперсии, под которой понимают отношение

$$\frac{n_F - n_C}{n_D - 1},$$

где n_D относится к $\lambda = 589,3$ нм. В практических каталогах обычно фигурирует величина, обратная относительной дисперсии, т.е.

$$v = \frac{n_D - 1}{n_F - n_C}$$

- так называемый коэффициент дисперсии или число Аббе. Вещества с малой дисперсией характеризуются большим значением v (например, для флюорита v = 95); вещества с большой дисперсией имеют малое v (для тяжелых сортов стекла v = 20). Обычно (но не асегда) дисперсия растет вместе со средним значением показателя

Для стекол возрастание дисперсии идет обычно параллельно величением изозрастание дисперсии идет обычно параллельно с увеличением удельного веса стекла. Тяжелые сорта стекол (флин-ты) характериациото больного веса стекла. ты) характеризуются большой дисперсией, легкие (кроны) — малой. В настоящее время откошой дисперсией, легкие (кроны) — малой. В настоящее время имеется очень много разных сортов стекол (см. упражнение 114)

б. Ахроматические призмы и призмы прямого скомпенсировать хроматизм, не уничтожая преломления (ахроматические призмы), и уменьшить или полностью скомпенсировать для одного из лучей отклонение, не уничтожая дисперсии (сложные призмы и призмы зрения). прямого Устройство таких призм показано на рис. 13.13 - 13.15.

У ахроматической призмы дисперсия компенсирована, отклонение, хотя и уменьшенное. ф₂— ф₁, осталось (см. рис. 13.13).

зрения. Пользуясь различием в дисперсии, можно

Ахроматическая пара призм.

У сложной спектральной призмы, изображенной на рис. 13.14. дисперсия остается очень значительной благодаря большому преломляющему углу внутренней призмы из флинта; стклонение же

Рис. 13.14. Сложная спектральная призма,

вследствие сравнительно небольшого угла между внешними гранями уменьшено по сравнению с простыми трехгранными призмами. Наличие накладок из крона позволяет увеличивать преломляющий угол внутренней призмы, который лимитируется явлением полного внутреннего отражения.

Рис. 13.15. Спектральная призма прямого зрения.

Призма прямого зрения показана на рис. 13.15. Соответствующим подбором углов а1 и а2 и показателей преломления n1 и n2 можно добиться, чтобы какой-либо луч, соответствующий определенной длине волны, проходил без преломления (см. упражнение 113), а дисперсия осталась значительной.

в. Хроматическая аберрация и ахромати. в. Хроматическая ассерриния и ахромати-зация линз. Фокусное расстояние линзы определяется соот-

ношением

$$\frac{1}{f} = (N-1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right), \tag{86.4}$$

где N — относительный показатель преломления. N — относительный показателя и разва (т. е. для определенных Таким образом, f для данной линзы (т. е. для определенных

Таким образом, / для данной минов (п. с. для определенных R₁ и R₂) тем меньше, чем больше N; отсюда возникает хроматичес-R₁ и R₂) тем меньше, чем солише и обланая хроматичес-кая аберрация положения, или продольная хроматическая аберкая аберрация положения, или просто даже для параксиальных рация, т. е. искажение, в силу которого даже для параксиальных рация, т. е. искажение, в спиту исторого дила нараксиальных лучей немонохроматический пучок имеет целую совокупность фолучей немонохроматический и рос. 13.16, сильно утрирован). В со-кусов вдоль отрезка оси 0102 (рис. 13.16, сильно утрирован). В сокусов вдоль отрезка оси изображается цветными кружками. относительные размеры которых зависят относительные рисперсия стекла, тем меньше продольная экрана. Чем меньше дисперсия стекла, хроматическая аберрация 0₁0₂.

Рис. 13.16. Хроматическая аберрация простой линзы.

Ньютон на основанни своих опытов ошибочно полагал, что величина относительной дисперсии, входящая в расчет ахроматизированной системы, не зависит от материала линз, и пришел отсюда к выводу о невозможности построения ахроматических линз. В соответствии с этим Ньютон считал, что для астрономической практики большое значение должны иметь рефлекторы, т. е. телескопы с отражательной оптикой. Однако Эйлер, основываясь на отсутствин заметной хроматической аберрации для глаза *), высказал мысль о существовании необходимого разнообразия преломляющих сред и рассчитал, каким образом можно было бы коррегировать хроматическую аберрацию линзы. Доллон построил (1757 г.) первую ахроматическую трубу. В настоящее время имеются десятки сортов стекол с разными показателями преломления и разной дисперсней, что дает очень широкий простор расчету ахроматических систем. Труднее обстоит дело с ахроматизацией систем, предназначении то дает очень широкий простор расчету ахроматизацией систем, предназначенных для ультрафиолетового света, нбо разнообразие веществ. прозранити ультрафиолетового света, нбо разнообразие удается веществ, прозрачных для ультрафиолетового света, ибо разносори все же строить ауроссия для ультрафиолета, ограничено. Удается все же строить ахроматические линзы, комбинируя кварц и флюорит или кварц и каменную соль.

•) Впрочем, хроматическая абсррация глаза не так мала (ср. § 91).

Обычное устройство простой ахроматической линзы показано на рис. 13.17. К двояковыпуклой линзе из крона присоединяется (прикленвается) соответствующим образом рассчитанная рассеивающая линза из флинта (см. упражнение 114). Добавочная линза удлиняет фокусные расстояния первой линзы. При этом больше увеличивается фокусное расстояние лучей, сильнее преломляемых (короткой длины волны), так что фокус O_{ϕ} отодвигается больше, чем фокус $O_{\kappa p}$. Выбирая соответствующим образом параметры, мы заставляем совпадать фокусы двух (или даже трех) длин волн. Однако при современных сортах стекол не удается добиться совпадения фокусов для всех видимых лучей, в результате чего возникает остаточный хроматизм, называемый вторичным спектром. Для тонких линз совпадение положения фокуса для разных длин волн означает также уравнивание фокусных расстояний, т.е. полную ахроматизацию. Для толстых же линз (систем) совпадение

Рис. 13.17. Ахроматическая линза.

фокусов еще не означает совпадения фокусных расстояний, ибо последние отсчитываются от главных плоскостей, положения которых для разных длин волн могут быть различными. А различия в величине фокусных расстояний означают различие в увеличении для разных длин волн, вследствие чего предметы конечных размеров дают изображения с цветной каймой. Эта вторая хроматическая ошибка носит название хроматической разности увеличений, и для ее устранения необходим специальный расчет. Системы, у которых исправлены обе хроматические погрешности для всех расстояний. Объекта, носят название стабильно ахроматизированных.

Ахроматизация для визуальных наблюдений (труба) выполняется так, что совпадают фокусы красного и синего лучей ($\lambda_c = 656,3$ нм, и $\lambda_F = 486,1$ нм); ахроматизация систем, предназначенных для фотографирования (фотографические объективы), выполняется с расчетом соединения фокусов для длин волн $\lambda_{G'} = 434,1$ и $\lambda_D = 589,3$ нм, сильно действующих на сенсибилизированную фотографическую пластинку.

Аббе (1886 г.) ввел для микроскопии апохроматы, т. е. объективы, где соединены фокусы для трех сортов лучей и вместе с тем устранена сферическая аберрация для разных цветов (уничтожена хроматическая разность сферической аберрации, называемая обычно сферохроматической аберрацией). Апохроматы Аббе имеют большие

преимущества перед ахроматами, где коррегированы два сорта преимущества перед ахроматах хроматическая разность увели-лучей. Остающаяся в апохроматах применения специал. лучей. Остающаяся в апохронален путем применения специальных чений устраняется в микроскопе путем применения специальных

чения устраниенсационные окуляры). уляров (компенсационные от устранение многочисленных абер. Из изложенного ясно, что устрайства специально рассиист

Из изложенного ясно, что устройства специально рассчитанных абер-раций возможно лишь путем устройства специально рассчитанных раций возможно лишь путем. Однако одновременное исправление сложных оптических систем. Однако одновременное исправление сложных оптических система сложной и даже нераз-всех недостатков может оказаться крайне сложной и даже неразвсех недостатков может оказаться правило и на даже нераз-всех недостатков может оказаться правило и даже нераз-решимой задачей. Поэтому нередко идут на компромисс, рассчи-решимой задачей. Поэтому нередко идут на компромисс, рассчи-тывая оптику, предназначенную для определенной цели. При этом тывая оптику, предназначенную для особенно опасны для пост тывая оптику, предназна которые особенно опасны для поставленустраняют с исполным устранением других.

а задачи, и выритие астрономических труб, где источником Так, для объективов астрономических труб, где источником гак, для объектные вблизи оси, важно соблюдение услослужат точки, располение сферической и хроматически аберраций вии спиусов и устранения, для микрообъективов и фотообъективов, предназначенных для фотографирования широкого поля зрения, необходимо, кроме соблюдения условия синусов, устранение аберраций, искажающих поле (дисторсия, искривление поля и т. д.), а также хроматической аберрации. Объективы, предназначенные для наблюдения объектов малой яркости, должны иметь возможно большее относительное отверстие, и это вынуждает мириться с некоторыми аберрациями, неизбежными при работе с очень широкими пучками. Исправление хроматизма в приборах, предназначенных для визуальных наблюдений и для фотографии, рассчитано на разные спектральные области применительно к тому обстоятельству, что максимум чувствительности глаза лежит в желто-зеленой части спектра, а чувствительность фотопластинок обычно сдвинута в более коротковолновую область. Объектив коллиматора спектрального аппарата должен быть очень хорошо исправлен на хроматическую аберрацию, тогда как объектив камеры может быть совсем не ахроматизован, но в нем весьма вредны астигматизм наклонных пучков и кома; впрочем обычно оптика спектрографа рассчитывается как целое, так что недостаток одной ее части в большей или меньшей степени компенсируется за счет другой части.

Глава XIV

оптические инструменты

§ 87. Роль диафрагм

Реальные оптические системы дают удовлетворительное изображение только при известном ограничении ширины действующих пучков лучей. Но тажа пучков лучей. Но даже и для идеальных систем, которые могли бы давать правильние и для идеальных систем, которые могли бы давать правильные изображения плоского предмета при любом угле раскрытия пучков, их ограничение имеет существенное зна-

Любая оптическая система — глаз вооруженный и невооруженный, фотографический аппарат, проекционный аппарат — в конечном счете рисует изображение практически на плоскости (экран, фотопластинка, сетчатка глаза); объекты же в большинстве случаев трехмерны. Однако даже идеальная система, не будучи ограниченной, не давала бы изображений трехмерного объекта на плоскости. Действительно, отдельные точки трехмерного объекта находятся на различных расстояниях от оптической системы, и

Рис. 14.1. Влияние диафрагмы на глубину резкого изображения.

им соответствуют различные сопряженные плоскости. Светящаяся точка O (рис. 14.1) дает резкое изображение O' в плоскости MM, сопряженной с EE. Но точки A и B дают резкие изображения в A' и B', а в плоскости MM проектируются светлыми кружками, размер которых зависит от *ограничения* ширины пучков. Если бы система не была ничем ограничена, то пучки от A и B освещали бы плоскость MM равномерно, т. е. не получилось бы никакого изображения предмета, а лишь изображение отдельных точек его, лежащих в плоскости EE.

Чем уже пучки, тем отчетливее изображение пространственного предмета на плоскости. Точнее, на плоскости изображается не сам пространственный предмет, а та плоская картина, которая является проекцией предмета на некоторую плоскость *EE* (плоскость установки), сопряженную относительно системы с плоскостью изображения *MM*. Центром проекции служит одна из точек системы (центр входного зрачка оптического инструмента).

§ 88. Апертурная диафрагма, входной и выходной зрачки

Таким образом, наличие ограничивающих диафрагм, роль которых может играть край (оправа) линзы, существенно для всякого оптического инструмента: от величины и положения диафрагм зависят отчетливость изображения, правильность рисунка и свето-

а инструмента. Ограничение пучков в оптинеских системах, вообще говоря, сила инструмента. Ограничение пучков и от разных точек предмета. Рассмотрим различно для лучей, идущих от разных точек предмета. Посто им

различно для лучен, идущие от респыт точек предмета. Диафрагма, сначала ограничение пучков от осевых точек предмета. Диафрагма, сначала ограничение пучков с сействующих лучей, исходящих из которая ограничивает пучк действующих лучей, исходящих из которая ограничные и приста денеру и системы, посит название точки объекта, расположенной на оси системы, посит название точки обрати, растив. Как уже указывалось, ее роль может выаперитурнов сила какой-либо линзы или специальная диафрагма

Рис. 14.2. ВВ — апертуриая диафрагма, B_1B_1 — входной зрачок и B_2B_2 — выходной зрачок системы.

ВВ, если эта днафрагма сильнее ограничивает пучки света, чем оправы линз. Апертурная диафрагма ВВ нередко располагается между отдельными компонентами (линзами) сложной оптической системы (рис. 14.2), но ее можно поместить и перед системой или после нее.

Если ВВ — действительная апертурная диафрагма (см. рис. 14.2), а B₁B₁ и B₂B₂ — ее изображения в передней и задней частях системы, то все лучи, прошедшие через ВВ, пройдут через В1В1 и B2B2 и наоборот, т. е. любая из диафрагм BB, B1B1, B2B2 ограничивает активные пучки. Действительно, луч, прошедший через край В1, обязательно пройдет через соответствующий край В, ибо эти точки сопряжены.

Входным зрачком называется то из действительных отверстий или их изображений, которое сильнее всего ограничивает входящий пучок, т. е. видно под наименьшим углом из точки пересечения оптической осн с плоскостью предмета. Выходным зрачком называется отверстие или его изображение, ограничивающее выходящий из системы пучок. Очевидно, входной и выходной зрачки являются сопряженными по отношению ко всей системе.

Рис. 14.3. Граница источника света играет роль входного зрачка системы.

Рыс. 14.4. Граница изображения источника света играет роль входного и выходного зрачков системы.

Рис. 14.5. Граница конденсорной линзы играет роль входного зрачка системы. 11 Ландсберг Г. С.

Роль входного зрачка может играть то или иное отверстие (оп-Роль входного зрачка может пграть то или иное отверстие (оп-рава оптики, специальная диафрагма) или его изображение (дейст-вительное или мнимое). В некоторых важных случаях изображаевительное или мнимое). В некоторых ванных случаях изображае-вительное или мнимое). В некоторых ванных случаях изображае-мый предмет есть освещение отверстие (например, щель спектро-мый предмет есть освещение обеспечивается непосредственно ис-графа), причем освещение обеспечивается непосредственно исграфа), причем освещение осселенивается испосредственно ис-точником света, расположенным недалеко от отверстия, или при помощи вспомогательного конденсора. В таком случае в зависимости помощи вспомогательного конденсори. 2 читон си учас в зависимости от расположения роль входного зрачка может играть граница от расположения роль рассило средни прать граница источника (рис. 14.3) или его изображения (рис. 14.4), или граница конденсора (рис. 14.5) и т. д.

сли апертурная днафрагма лежит перед системой, то она совпадает со входным зрачком, а выходным зрачком явится ее изображение в этой системе (рис. 14.5). Если она лежит сзади системы, то она совпадает с выходным зрачком, а входным зрачком явится ее изображение в системе. Если апертурная диафрагма ВВ лежит внутри системы (см. рис. 14.2), то ее изображение B_1B_1 в передней части системы служит входным зрачком, а изображение B_2B_2 в задней части системы — выходным. Угол; под которым виден радиус входного зрачка из точки пересечения оси с плоскостью предмета, называется «апертурным углом», а угол, под которым виден раднус выходного зрачка из точки пересечения оси с плоскостью изображения, есть угол проекции или выходной апертирный игол.

§ 89. Диафрагма поля зрения. Люки

Апертурная диафрагма, а следовательно, и выходной и входной зрачки определяют ширину (отверстие) активных пучков, т. е. влияют на резкость изображения и светосилу инструмента. Однако не от всякой точки предмета лучи, прошедшие через входной зрачок, пройдут через оптическую систему и, следовательно, изобразятся ею. Действительно, пучок от точки М (рис. 14.6) целиксм минует переднюю линзу системы, и точка М не будет ею изображена. Пучок от точки N частично пройдет через систему и даст изображение, но освещенность его будет уменьшена, ибо часть пучка задержится оправой линзы L₁ (виньетирование). От точки же Q через

систему пройдет пучок такой же ширины, как и от осевой точки О. В рассиотельной же ширины, как и от осевой точки О. В рассмотренном случае поле зрения системы было ограничено оправой передней линзы L₁; в других случаях ограничение поля зрения создатель дизрення создается другими частями системы или специальной диафрагмой поля зрения. Поле зрения определится контуром передней линзы или контуром передной линзы или контуром изображения какой-либо из диафрагм в зави-симости от того изображения какой-либо из диафрагм в зависимости от того, какой из них виден из центра входного зрачка под наименьшим углом Этого, какой из них виден из центра входного зрачка под наименьшим углом. Этот контур, реальный или изображенный, носит название оходиото контур, реальный или изображенный, носит название входного окна или люка (S₁S₁ на рис. 14.7), а диафрагма, изображение и коло окна или люка (S₁S₁ на рис. 14.7), а диафрагма рагма, изображением которой он является, и будет служить диафрагмой поля зрения (SS на рис. 14.7).

3.

Изображение входного люка в оптической системе называют выходным люком (S₂S₂ на рис. 14.7).

Лучи, проходящие через центр апертурной диафрагмы, носят название главных лучей. Главный луч проходит и через центры

Рис. 14.6. Ограничение пучков лучей от внеосевых точек предмета.

входного и выходного зрачков, ибо эти точки сопряжены с центром апертурной диафрагмы.

Главный луч является осью конуса лучей, опирающегося на входной зрачок и имеющего вершину в точке предмета (заштрихованная область на рис. 14.6). Если главный луч от внеосевой

Рис. 14.7. Диафрагма поля зрения SS, входной S₁S₁ и выходной S₂S₃ люки системы.

точки предмета касается края входного люка, то через систему пройдет примерно половина лучей в сравнении с пучком от осевой
точки. Из рис. 14.7 видно, что входной люк S₁S₁ задержит все лучи точки. Из рис. 14.1 видно, по сутствие прошли бы через верхнюю от точки Р, которые в его отсутствие прошли бы через верхнюю от точки P, которые в сто в B. Поэтому освещенность изобра-половину входного зрачка B₁B₁. Поэтому освещенность изобраполовину входного зрание с в два раза меньше освещенности жения точки Р будет примерно в два раза меньше освещенности жения точки г оудет примерии. Следовательно, главные лучи, вблизи изображения осевой точки. Следовательно, главные лучи, вблизи изображения оссьой то на (на рис. 14.7 они изображены касающиеся краев входного люка (на рис. 14.7 они изображены касающиеся крась споеделяют величину поля зрения (PQ на рис. 14.7).

Для резкого ограничения поля необходимо, чтобы S₁S₁ совпадля резного странента, т. е. SS лежало в плоскости, сопряженной с объектом относительно L₁; в частности, для труб, предназначенных для рассмотрения далеких объектов, SS должно лежать в главной фокальной плоскости объектива L.

Перейдем теперь к рассмотрению важнейших оптических инструментов. Оптическим инструментом называется сочетание линз, зеркал, диафрагм и других вспомогательных частей, предназначенное для решения той или иной задачи.

§ 90. Фотографический аппарат

Фотообъектив и камера аппарата конструируются так, чтобы можко было получить резкое изображение предметов, находящихся на том или ином расстоянии от объектива, в плоскости светочувствительной пластинки или пленки. Для наводки применяются разные приспособления (перемещение объектива или его отдельных частей, перемещение пластинки). Уменьшение апертурной диафрагмы позволяет улучшить «глубину» фокусировки, т. е. резко отобразить на плоскость различно удаленные части объекта (см. § 87). Изменение апертурной диафрагмы служит в то же время для изменения количества света, поступающего в аппарат (светосила). Обычно в фотоаппарате получается уменьшенное изображение объекта; в современных аппаратах стремятся к получению хорошей резкости с тем, чтобы иметь возможность последующего увеличе-

Объективы непрерывно совершенствуются в смысле сочетания хороших качеств изображения со светосилой, т. е. возможно большей освещенностью изображения со светосилои, т. е. возможно световому потоно изображения. Освещенность изображения равна световому потоку, деленному на площадь изображения, т. е. для удаленных объектов на площадь изображения, т. е. для удаленных объектов пропорциональна площады изображения, т. диаф-рагмы. деленной из пропорциональна площади апертурной диафрагмы, деленной на квадрат фокусного расстояния объектива. Это отношение и на квадрат фокусного расстояния объектива. Это отношение и называется светосилой объектива. Нередко светосилой называется светосилой объектива. Нередко си к фокусному расстояние диаметра максимальной днафрагмы к фокусному расстоянию и считают освещенность пропорциональ-ной квадрату светоянию и считают освещенность пропорциональной квадрату светосилы. Правильнее называть это отношение относительным отверотить Правильнее называть это отношение относительным отверстием. Правильнее называть это отноше квадратом относительного Таким образом, светосила измеряется квадратом относительного отверстия.

§ 91. Глаз как оптическая система

Глаз по своему устройству (рис. 14.8) является в известном смысле аналогом фотоаппарата. Роль объектива играет совокупность преломляющих сред, состоящих из водянистой влаги *A*, хрусталика *L* и стекловидного тела *Q*.

Наводка на различно удаленные предметы, носящая название аккомодации, достигается путем мышечного усилия, изменяющего

хрусталика. Пределы кривизну расстояний, на которые возможна аккомодация, носят название дальней и ближней точек. Для нордальняя мального глаза точка. фиксируемая без усилий, лежит в бесконечности, а ближняя --на расстоянии, зависящем от возраста (от 10 см для двадцатилетних до 22 см к сорока годам). В более пожилом возрасте пределы аккомодации сужаются еще более (старческая дальнозоркость). Нередко встречаются глаза с ненормальными пределами аккомодации уже в молодом возрасте: близорукие, для которых дальняя точка лежит на конечном расстоянии, иногда на очень небольшом, дальнозоркие, с увеличенным рас-

Рис. 14.8. Схематический разрез глаза.

стоянием до ближней точки. Эти недостатки могут быть исправлены применением дополнительных линз, рассеивающих или собирательных (очки).

На рис. 14.9 заштрихованные места показывают, как расположены области, ясно различаемые глазом в пределах доступной ему аккомодации, т. е. области от ближней точки A_p до дальней точки A_r . Нормальный глаз в состоянии аккомодировать область от $A_p =$ = 10-22 см до бесконечности. Для близорукого глаза область аккомодации приближена и ограничена на своей дальней границе, Для дальнозоркого глаза начало области аккомодации отодыннуто, а дальняя точка лежит на отрицательном расстоянии, т. е. за глазом. Это значит, что дальнозоркий глаз способен рассматривать мнимые точки, т. е. сводить на сетчатую оболочку не только параллельные, но и сходящиеся пучки. Таким образом, оптическая сила близорукого глаза больше, а дальнозоркого меньше, чем нормального.

Апертурная диафрагма осуществляется в глазу радужной оболочкой і (ирис) (см. рис. 14.8), определяющей «цвет глаза» и обладающей отверстием переменной величины (зрачок глаза). Изобра. жение зрачка в передней оптической части глаза (камера с водя. нистой влагой) определяет собой входной зрачок; он почти совпадает с реальным зрачком. Изменение диаметра зрачка играет ту же роль, что изменение апертурной диафрагмы в фотообъективе: регулирует доступ света в глаз и изменяет глубину фокусировки. Фотографической пластинке аппарата соответствует сетчатая оболочка глаза R, сложное устройство и функции которой описаны ниже (см. § 193).

Рис. 14.9. Ближние (A_p) и дальние (A_r) точки аккомодации для глаза нормального (a), близорукого (б) и дальнозоркого (в).

Для многих чисто оптических задач преломляющая система глаза может быть заменена *приведенным глазом*, построенным из однородного прозрачного вещества и имеющим следующие постоянные (по Гульстранду):

Преломляющая сила в диоптриях	58,48
Длина глаза	22 мм
Раднус кривизны преломляющей поверхности	5,7 MM
Показатель преломления среды	1,33
Раднус кривизны сетчатки	9,7 MM

Так как изображение в глазу получается внутри среды, отличной от воздуха, то переднее и заднее фокусные расстояния глаза не равны между собой (17,1 и 22,8 мм) и, следовательно, узловые точки глаза не совпадают с главными. Впрочем, ввиду близости всех этих точек их можно практически объединить в оптический центр

Здоровый глаз в общем можно рассматривать как центрированную систему поверхностей вращения. Строго говоря, это не очень совершенная система, ибо в ней ясно выражены и сферическая аберрация, и астигматизм наклонных пучков, и значительная хроматическая аберрация. Однако все эти недостатки очень мало аберрация не очень заметна, потому что распределение освещенважная для зрительного ощущения часть пятна очень мала; при сильном же освещении, когда боковые части кружка рассеяния могли бы дать себя знать, сильно уменьшается диаметр зрачка, что улучшает дело. Астигматизм наклонных пучков почти незаметен, ибо способность сетчатки к хорошему распознаванию быстро

Рис. 14.10. Действие оптической системы на видимый угловой размер изображения.

О — оптический центр глаза; h — глубина глаза; AB — предмет; ab — его изображение в невооруженном глазу; ф — угол эрения невооруженного глаза; a'b' — изображение предмета в глазу, вооруженном оптической системой Σ; ф' — угол эрения вооруженного глаза.

понижается от центра к краям; поэтому изображение каждой фиксируемой точки бессознательно приводится на ось глаза, проходящую через самую выгодную часть сетчатки («центральная ямка», см. § 193). Недостаточность поля зрения этой малой рабочей части превосходно компенсируется подвижностью глаза. Хромати-

ческая аберрация практически незаметна, потому что глаз очень чувствителен лишь к сравнительно узкой части спектра.

Комбинация указанных факторов приводит к тому, что нормальный глаз позволяет очень хорошо судить о внешнем виде предметов. Однако вследствие характера структуры сетчатой оболочки, состоящей из отдельных элементов, глаз воспринимает как единую две точки объекта, если они пастолько близки, что обе изображаются на одном элементе сетчатки (колбочке). Таким образом, участок предмета, изображение которого лежит внутри границ, определяемых структурой сетчатки, воспринимается как точка (так называемая

Рис. 14.11. Тест-объекты для исследования остроты зренпя.

а — кружок Ландольта; б объект для испытания повышенной разрешающей силы глаза.

физиологическая точка), и никакое распознавание деталей в пределах этого участка невозможно. Величина такого участка зависит, конечно, от расстояния объекта до глаз и может быть определена углом зрения. обусловливающим соответственный размер изображения (рис. 14.10), ибо днаметр изображения $ab = \varphi h$, где φ — угол зрения, h — глубина глаза (от оптического центра O до сетчатки), равная для среднего глаза 15 мм. Минимальный угол

зрения, необходимый для различения деталей, носит название зрения, необходимый для различения детення, посит название физиологического предельного угла и равен для невооруженного физиологического предельного угла и равен для невооруженного глаза приблизительно одной минуте. Однако такое значение угла глаза приблизительно и воруженным глазом имеет место при глаза приблизительно облактичным глазом имеет место при усло-разрешения деталей невооруженным глазом имеет место при услоразрешения наблюдаемый объект хорошо освещен.

Обычно испытание разрешающей способности глаза произ-Обычно испытатите раска, имеющего вид, показанный на рис. водится с помощью источности в рис. 14.11, а (кружок Ландольта). Углом разрешения считается тот угол, 14.11, а (кружов виден разрыв, еще отчетливо устанавливаемый испыпод которым виден расрасти зрения принимают остроту зрения, туемым. За санина, острота разрешения в 1'. Острота зрения равна когорои соответствует ула разрешаемый угол равен 2', и т. д. Зависимость угла разрешения от освещенности тест-объекта для нормального глаза приведена в нижеследующей таблице. Из нее видно, что при хорошей освещенности (свыше 100 лк) острота зрения нормалького глаза несколько больше единицы.

Таблица

Освешенность	Угол разрешения,	Освещенность	Угол разрешения,
фона, лк	мин	фона, лк	мин
0,0001	50	0,5	2
0,0005	30	1	1,5
0,001	17	5	1,2
0,005	11	10	0,9
0,01	9	100	0,8
0,05	4	500	0,7
0,1	3	1000	0,7

Зависимость угла разрешения от освещенности для нормального глаза

Таким образом при малых освещенностях разрешающая способность глаза может быть гораздо хуже 1' и доходить до 1°.

Приближая предмет к глазу, мы уменьшаем ту часть предмета которая вырезается предельным физиологическим углом, и, следовательно, получаем возможность различать более мелкие детали. Однако приближение объекта ограничено способностью к аккомодации, и для нормального глаза наиболее удобным оказывается расстояние 25 см (расстояние наилучшего эрения). Делая усилие, нормальный истояние наилучшего эрения). Делая усилие, стояния до 10 см. Близорукий глаз допускает уменьшение этого расстояния и поэтого Дальрасстояния и поэтому может различать более мелкие детали. Даль-нозоркий глаз нозоркий глаз, в частности глаз пожилых людей, затрудняется

в различении деталей (например, чтение). Дальнейшее улучшение распознавания деталей возможно с помо-ю оптических прибород

щью оптических приборов, дающих совместно с глазом изображе-

ние на сетчатке. Отношение длин этого изображения на сетчатке в случае вооруженного и невооруженного глаза и называется видимым увеличением оптического инструмента. Согласно рис. 14.10 оно равно отношению tg φ' /tg φ , где φ' и φ — соответственно углы зрения, под которыми предмет виден через инструмент и без него.

§ 92. Оптические инструменты, вооружающие глаз

а. Л у п а — простая система (одна или несколько линз) с небольшим фокусным расстоянием (примерно от 100 до 10 мм), располагаемая между рассматриваемым предметом и глазом. Мнимое увеличенное изображение предмета получается на расстоянии наилучшего зрения (250 мм для нормального глаза) или в бесконечности, т. е. рассматривается глазом без усилия аккомодации. При обоих способах применения лупы видимое увеличение, ею даваемое, практически одно и то же и равно

$$\mathscr{N} = \operatorname{tg} \varphi'/\operatorname{tg} \varphi = D/f \tag{92.1}$$

(см. упражнение 115), где D — расстояние наилучшего зрения и f — фокусное расстояние лупы. Так как D = 250 мм, то обычно применяемые лупы дают увеличение от 2,5 до 25 раз. Для близорукого глаза D меньше и, следовательно, лупа оказывает меньшую помощь в распознавании деталей.

б. Микроскоп, Представляющий в принципе комбинацию двух оптических систем — объектива и окуляра, — разделенных значительным расстоянием. Если фокусные расстояния объектива и окуляра соответственно f_1 и f_2 , то фокусное расстояние всей системы есть $f = f_1 f_2 / \Delta$, где Δ — расстояние между фокусами обенх систем (см. упражнение 107). Увеличение, даваемое микроскопом

$$\mathcal{N} = D/f = D\Delta/f_1 f_2, \tag{92.2}$$

может быть сделано очень значительным. Так, например, при $f_1 = 2$ мм, $f_2 = 15$ мм, $\Delta = 160$ мм имеем f = 0,19 мм и $\bullet f = 1330$. Впрочем, полезному увеличению, даваемому микроскопом, кладут предел дифракционные явления (см. гл. XV), и поэтому приведенный расчет имеет лишь ориентировочное значение.

Схема оптической системы микроскопа показана на рис. 14.12. Малый объект AB помещается вблизи главного фокуса F_1 объектива S_1 , дающего его увеличенное действительное изображение A'B', которое рассматривают через окуляр S_2 так, чтобы увеличенное мнимое изображение A'B'' получалось на расстоянии наилучшего зрения от глаза или в бесконечности (наблюдение спокойным глазом). Оба способа наблюдения одинаково пригодны.

От предмета к объективу свет поступает широкими пучками, что важно для использования больших световых потоков и улуч-

шения разрешающей способности микроскопа (см. гл. XV). Так шения разрешающен спосот наблюдаются несветящиеся объекты, как обычно в микроскопе наблюдаются несветящиеся объекты, как обеспечения широких пучков важно иметь специальное освето для обстаство и стройство (конденсор). Объектив микроскопа, работающий с широкими пучками, должен удовлетворять условию тающии с широклан и вблизи фокуса; требуется также высокая апланатизма для точки вблизи фокуса; требуется также высокая ахроматизация (ахроматы и апохроматы). Хороший объектив состоит из многих линз (иногда свыше 10).

Рис. 14.13 показывает разрез конденсора и сравнительно простого объектива микроскопа. Свет от препарата достигает объектива, проходя через покровное стекло. Благодаря явлению полного внутреннего отражения до объектива могут дойти лишь те

Рис. 14.12. Схематическое изображение хода лучей в микроскопе. S₁ — объектив; S₂ — окуляр; АВ — предмет; А'В' — действительное изображение, даваемое объективом; А"В" — мнимое изображение, видимое в окуляр.

лучи, которые составляют внутри стекла конус с апертурой около 42°. Этот угол может быть увеличен, а следовательно, увеличен и световой поток, поступающий в объектив, если вместо сухих объективов применять иммерсионные, при которых просвет между покровным стеклом и объективом заполняется жидкостью — водой или маслом. При сухих системах наличие покровного стекла имеет существенное значение и в другом отношении, ибо толщина стекла влияет на величину сферической аберрации. Поэтому все расчеты объективов делаются в предположении, что толщина покровного стекла равна 0,17 мм (0,15-0,20 мм). Во всех сильных сухих объективах применяют в настоящее время коррекционную оправу, позволяющую несколько изменять расстояние между верхними и нижними линзами объектива, что дает возможность уничтожить сферическую аберрацию при покровном стекле несоответствующей толщины. В случае гомогенной иммерсии, когда покровное стекло, иммерсионная жидкость и фронтальная линза объектива имеют одинаковый показатель преломления, толщина покровного стекла не имеет никакого значения, так как ее можно компенсировать

изменением толщины иммерсионного слоя между покровным стеклом и объективом. Иммерсионные системы имеют важное значение также для повышения разре-

шающей способности микроскопа (см. § 97).

Окуляр работает с узкими пучками, но при этом приходится иметь дело и с наклонными пучками. Поэтому в окуляре стремятся к исправлению астигматизма, кривизны поля и хроматической аберрации (см. § 86). Объектив и окуляр микроскопа делаются сменными, так что можно применять различные их комбинации в зависимости от задачи. Массивный штатив и тщательно выполненные приспособления для передвижения подвижных частей микроскопа составляют существенную часть хороших аппаратов.

Рис. 14.13. Разрез конденсора и несложного объектива микроскопа.

в. З рительные трубы. Зрительные трубы (телескопы) вооружают глаз для рассматривания деталей удаленного предмета. Они также состоят (рис. 14.14) из объектива L₁ и окуляра L₂; действительное (уменьшенное и перевернутое) изображение отдаленного

Рис. 14.14. Схематическое изображение хода лучей в зрительной трубе.

Сплощная линия — лучи, идущие от верхнего края (точка A) удаленного объекта; пунктирная — лучи от нижнего его края (точка B); $Oc = f_1 - \phi$ окусное расстояние объектива L_1 ; $cO' = f_3 - \phi$ окусное расстояние окуляра L_2 ; MN - зрачок глаза, аккомодированного на бесконечность.

предмета, даваемое объективом, рассматривается в окуляр, как в лупу. В зависимости от расстояния предмета до объектива изображение получается в задней фокальной плоскости объектива или несколько дальше. В соответствии с этим нужно несколько передвигать окуляр (фокусировка).

На рис. 14.14 φ есть угол зрения, под которым виден отдаленный предмет; φ'- угол зрения, под которым видно изображение.

Действительно, в глаз попадают параллельные пучки, И ОСИ Действительно, в глаз изображения, составляют угол $\varphi' = bO'a$, пучков, идущих от краев изображения, составляют угол $\varphi' = bO'a$, пучков, паущих от проскости окуляра. 1560 а и в лежат в фокальной плоскости окуляра. Увеличение системы, как видно из рис. 14.14, есть

 $\mathscr{N} = tg^{1/2}\varphi'/tg^{1/2}\varphi = f_1/f_2,$ (92.3)

т. е. равно отношению фокусных расстояний объектива и окуляра. Нормальный глаз в спокойном состоянии воспринимает парал-

лельные лучи (визирует бесконечно удаленную точку); поэтому передняя фокальная плоскость окуляра должна быть совмещена с кзображением объекта. В частности, если объект бесконечно далек, то задний фокус объектива приводится в совпадение с передним фокусом окуляра (телескопическая система) (рис. 14.15). Рисунок показывает, что увеличение телескопической системы можно выразить также как отношение диаметров сечения пучков, входящих в объектив и выходящих из окуляра, т. е. как отношение

Рис. 14.15. Ход лучей в телескопической системе.

Увеличение системы л = ф'/ф = $= f_1/f_2 = D_1/D_2.$

диаметров входного и выходного зрачков системы D_1/D_2 (см. также упражнение 110).

Изображение, даваемое объективом, перевернутое. Окуляр в некоторых случаях оставляет изображение перевернутым (астрономические трубы), в иных переворачивает еще раз, давая в конечном счете прямое прямого изображение. Получение земных изображения, важное для

наблюдений, достигается разными способами (устройство окуляра, дополнительно переворачивающие призмы - призматические бинокли). Для каждой реальной трубы важно установить расположение днафрагм и оправ, определяющих апертурную днафрагму (входной и выходной зрачки) и диафрагму поля зрения.

Так как зрительные трубы любого типа предназначены, прежде всего, для вооружения глаза, то их выходной зрачок не должен превосходить размеров зрачка глаза. В противном случае часть светового потока, выходящего из трубы, будет задержана радужной оболочкой и не будет участвовать в построении изображения. Это значит, что внешние зоны объектива будут выключены из работы, причем действующей апертурной диафрагмой явится зрачок глаза наблюдателя. Таким образом, для правильного использования всей поверхности объектива необходимо так согласовать подбираемый к нему окуляр, а следовательно, и увеличение трубы, чтобы выходной зрачок имел нужные размеры. При ночных наблюдениях зрачок глаза не превосходит 6-8 мм; при хорошем дневном освещении он равняется примерно 2-3 мм.

Так как увеличение равно « = D1/D2, то минимальное увеличение, которое рационально применять для полного использования диаметра трубы, определится в зависимости от назначения трубы (дневные или ночные наблюдения) и размеров объектива. Так, для трубы с объективом D = 50 мм увеличение при ночных наблюдениях должно быть не меньше 7-8-кратного (2/ = 50/7), а при дневных — не меньше 20-кратного (№ = 50/2,5). Для большого же телескопа (D = 500 мм) минимальные увеличения должны лежать в пределах от 75 (звездные наблюдения) до 200 (солнечные наблюдения). Вредным оказывается также и применение слишком больших увеличений, ибо когда выходной зрачок инструмента становится меньше зрачка глаза, резко уменьшается освещенность изображения на сетчатке. Различение же деталей не улучшится, поскольку с увеличением размеров изображения на сетчатке растет и ширина дифракционного распределения в изображении каждой точки предмета (ср. § 96).

Нижним пределом диаметра выходного зрачка можно считать значение около 1 мм. В соответствии с этим максимальное полезное увеличение трубы с объективом 50 мм будет около 50, а для трубы с полуметровым объективом — около 500. Таким образом, для каждого диаметра объектива трубы можно указать сравнительно ограниченный диапазон рациональных увеличений, которые должны быть обеспечены подходящим выбором окуляров.

Зрительные трубы имеют очень широкое распространение и существуют в виде разнообразных вариантов, начиная от биноклей разного типа и кончая астрономическими телескопами. Главное внимание при коррекции объективов этих инструментов направляется на исправление сферической и хроматической аберраций и выполнение условия синусов, чего можно добиться применением двулинзовых систем (см. § 82). Впрочем, современные трубы нередко делаются с более сложными объективами, позволяющими отчетливо видеть общирные участки горизонта. Окуляры труб должны обладать значительным углом зрения (от 40 до 70°) и, следовательно, в них надлежит устранять астигматизм наклонных пучков, кривизну поля и хроматизм. Поэтому окуляры изготовляют всегда сложными, по крайней мере из двух линз.

Наиболее высокие требования предъявляются к зрительным трубам, предназначенным для астрономических наблюдений (телескопы). Для того чтобы обеспечить возможно большее увеличение при допустимом размере выходного зрачка и, следовательно, хорошем различении деталей, необходимо, как мы увидим, применение телескопов с возможно большими диаметрами объективов (ср. § 96). То же требование возникает и в связи с задачей наблюдения очень слабых звезд (см. § 95). Наиболее сильными трубами являются в настоящее время рефлекторы, т. е. телескопы с отражательным объективом. Первый отражательный телескоп был построен Ньюто-

ном (1672 г.), обратившимся к зеркалам в предположении, что лин. ном (1672 г.), обратившимся к зеркалам в предположении, что лин. зовые объективы неизбежно страдают хроматической аберрацией. зовые объективы неизбежно страдают хроматической аберрацией. Известно, что заключение Ньютона было ошибочно (см. § 86), и известно, что заключение Ньютона было ошибочно (см. § 86), и построение ахроматических объективов возможно. В настоящее построение ахроматических объективов возможно. В настоящее время имеются первоклассные рефракторы; однако технически время имеются первоклассные рефракторы; однако технически легче изготовить зеркало большого диаметра, чем однородный стеклянный диск, пригодный для изготовления большого линзостеклянный диск, пригодных для требования к точности изготовлевого объектива. повтому, логи примерно в четыре раза выше, чем ния огражающей поверхности примерно в четыре раза выше, чем для преломляющей, изготовление очень больших зеркальных объекдля преломляющей, изготовление очень ослыших зеркальных объек-тивов оказалось более легкой задачей. Так, в настоящее время сущест-вует рефлектор с диаметром зеркала около 5 м (обсерватория Маунт-Паломар) и вступает в строй рефлектор диаметром 6 м (СССР), тогда как диаметр объектива наибольшего из существующих рефракторов достигает всего 1 м.

Рис. 14.16. Схема рефлектора Нью-TOHA.

Рис. 14.17. Схема рефлектора Ломоносова — Гершеля.

Схема рефрактора в принципе такая же, как на рис. 14.14. Схема рефлектора простейшего типа в том виде, в каком она была предложена Ньютоном, изображена на рис. 14.16. В — отражательное заристе. жательное зеркало. Плоское отклоняющее зеркало S служит для того, чтобы иметь возможность помещать окуляр и голову наблюдателя вне основного пучка и не вносить слишком большого диафрагмирования. Для огромных современных рефлекторов помещение наблюдателя целиком внутри трубы привело бы к относительно небольшому и небольшому и вполне допустимому экранированию. Однако тепловые токи от тела наблюдателя в области основного хода световых лучей приволят и лучей приводят к сильному понижению качества изображения. Поэтому сохраняют отклоняющее зеркало.

На рис. 14.17 изображена схема отражательного телескопа (рефлектора), изобретенного Ломоносовым, а позднее осуществлен-ного также и Гершелем. Характерной особенностью этой схемы бение осуществие вепомолого особенностью этой схемы является отсутствие вспомогательного зеркала S (что было осо-бенно важным, так как в спомогательного зеркала S (что было особенно важным, так как в то время еще не умели делать хорошне зеркала) и наклон отражательного зеркала В, позволяющий устра-нить экранирующие препятствия на пути главного хода лучей. Необходимость работать с пучками, наклоненными к оси, ведет к ухудшению качества изображений в этих рефлекторах.

к укудистино в свободны от хроматической аберрации, однако при сферической форме зеркал весьма значительной помехой является сферическая аберрация. Поэтому в хороших рефлекторах приходится пользоваться асферическими зеркалами, например, в виде параболонда вращения, которые технически значительно сложнее изготовлять. Обычно применяют сложные системы из двух неплоских асферических зеркал (главного и вторичного), подобные изображенной на рис. 14.18 (система Кассегрена). Дальнейшее усовершенствование подобных рефлекторов может быть получено за счет взаимной компенсации аберраций, вносимых каждым из зеркал.

Рис. 14.18. Схема рефлектора Кассегрена.

Рис. 14.19. Схема одного из менисковых телескопов Д. Д. Максутова.

Таким образом, удается создать, применяя эллиптические и гиперболические зеркала, системы, в которых исправлена не только сферическая аберрация, но и кома. На этом пути, по-видимому, можно будет получить наиболее совершенные гигантские телескопы.

Весьма удачным решением задачи получения превосходных в оптическом отношении и сравнительно недорогих систем являются смешанные системы, где зеркальная оптика сочетается с линзовой, приводя к весьма полному устранению ряда вредных аберраций. Наиболее совершенной системой этого рода являются менисковые системы Д. Д. Максутова (рис. 14.19), где отражательное сферическое зеркало В сочетается с мениском М (см. §77), также ограниченным сферическими поверхностями. Применяя соответственно рассчитанный мениск так, чтобы его аберрации компенсировали аберрации зеркала, удается получить систему, главные аберрации которой во много раз меньше соответствующих аберраций линзовой системы того же относительного отверстия. Так, по данным Д. Д. Максутова, при относительного отверстии 1:5 у менисковой систомы при относительном отверстии 1:5 у менисковой систомы в 11 раз. системы сферическая аберрация меньше в 11 раз, кома — в 11 раз, сферохроматическая аберрация меньше в 11 раз, коли в 640 раз и хроматизм увеличения — в 124 раза, вторичный спектр — ного лическая и хроматизм увеличения — в 3,8 раза, чем у эквивалентного линзового объектива. Эти огромные преимущества в соединении с относительной простотой расчета и изготовления (сферические поверущественной простотой расчета и изготовления достиповерхности!) делают менисковые системы замечательным дости-

жением оптотехники. На этом принципе можно постронть любой жением оптотехники. На этом принципе можно построить любой тип рефлектора и притом с большим совершенством. Например, рис. 14.19 иллюстрирует осуществление по принципу Максутова телескопа типа Кассегрена. По тому же принципу строятся в настоя-телескопа типа Кассегрена. телескопа типа кассегрена. По тому же прилами строятся в настоя-щее время как превосходные астрономические инструменты, так и скромные бытовые приборы (очки-бинокли, фотообъективы н т. д.).

§ 93. Проекционные устройства

Олтические инструменты, рассмотренные в предыдущем параграфе, предназначены в помощь глазу и дают мнимые изображения, которые может воспринимать лишь один наблюдатель, смотряший в окуляр (субъективное наблюдение). Другой тип приборов дает действительные изображения, которые отбрасываются на экран и могут поэтому одновременно рассматриваться целой аудиторией (объективное наблюдение). Эти инструменты носят название проскционных; они получили ссобое распространение в последнее время (проекционный фонарь, киноаппарат).

Назначение проекционной системы — давать убеличенное действительное изображение светящегося или освещенного предмета. Для этого его располагают около главной фокальной плоскости проекционного объектива, могущего перемещаться для резкой наводки. Наиболее распространена проекция диапозитива или чертежа, размеры которых обычно больше размеров проекционного объектива. Последний должен быть исправлен на сферическую и хроматическую аберрации, на астигматизм и кривизну поля. Хороший проекционный объектив приближается по своим данным к фотографическому.

При больших увеличениях очень важной задачей является хорошее использование идущего от объекта светового потока, ибо он должен распределяться по большой поверхности увеличенного изображения. Так как размеры объекта значительны, то необхо-Анмо специальное осветительное устройство, позволяющее направить весь идуший от объекта свет в сравнительно небольшой проекционный объектив. Это достигается при помощи короткофскусного конденсора С значительного размера, расположенного, как показано на рис. 14.20, с таким расчетом, чтобы свет от него сходился на входном зрачке проекционного объектива О. Так как, с другой стороны расстоеми проекционного объектива О. Так как, с другой стороны, расстояние от объектива О. Так как, с аго ствовать резкой иссответные до предмета D должно соответствовать резкой наводке, то конденсор и объектив должны быть согласованы друг с токонденсор и объектив должны быть согласованы друг с другом.

Современные светосильные объективы сделали возможным удобное проектирование и непрозрачных объектов (эпипроекция). В этом случае объект (чертем) случае объект случае объект (чертем) случае объект случае объект (чертем) случае объект случае случае объект случае случа случае объект (чертеж) сильно освещается сбоку при помощи ламп и зеркал, и светосильной объектов (элипроекция). В с и зеркал, и светосильный объектив проектирует освещенный пред-

мет на экраи. Во многих приборах скомбинировано устройство для проектирования прозрачных (диа) и непрозрачных (эпи) объектов. Приборы этого типа носят название эпидиаскопов.

Для проектирования микроскопических объектов применяют микроскоп, окуляр которого заменяют специальным проекционным устройством; впрочем, можно получить действительное изображение на экране и с обычным окуляром, смещенным соответствующим образом, или даже совсем без окуляра.

Рис. 14.20. Схематическое изображение хода лучей в проекционном устройстве. Конденсор С проектирует источник света на входной зрачок объектива О. Объектива О проектирует диапозитив D на удаленный экран.

Основная трудность при микропроектировании с большим увеличением состоит в недостатке освещенности изображения. Несмотря на ряд усовершенствований в осветительных устройствах, применение микропроекции в больших аудиториях до сих пор удается плохо.

§ 94. Спектральные аппараты

Несколько особое место среди оптических инструментов занимают спектральные аппараты, предназначенные не для получения изображения светящегося объекта, а для исследования спектрального состава посылаемого им света. В соответствии с этим существенную часть спектрального аппарата составляет приспособление для разложения света по длинам волн. Такую роль исполняет призма, выполненная из материала со значительной дисперсией, дифракционная решетка или какой-либо интерференционный прибор. Последние служат для детального анализа света, довольно близкого к монохроматическому, ибо дисперсионная сбласть этих приборов весьма ограничена. Поэтому их нередко употребляют в соедиистии с призматическим или дифракционными спектральными аппаратами, которые являются наиболее распространенными инструментами этого вола.

Схематическое устройство призменного спектрографа показано на рис. 14.21. Получение чистого спектра возможно, если аппарат обеспечивает изображение в спектральных цветах очень узкого светящегося объекта, так что даже близкие по длине волны изооражения не налагаются друг на друга. Поэтому существенной частью прибора является щель S, состоящая из двух ножей, когорые можно сближать и раздвигать при помощи винта. Рабочая ширина можно сближать и раздолися тысячных до нескольких десятых щели меняется от нескольких целей применяют и более щели меняется от неспольных целей применяют и более широкие миллиметра; для специальных целей применяют и более широкие щели.

ли. Система объективов и призм обеспечивает резкое изображение Система объективов и призна сетех фотографическая пластинка, щели в плоскости ЕЕ, где помещается фотографическая пластинка, шели в плоскости де, час и проходить через призму, то для устра-Так как свет от щели дочок падающих на нее лучей делается паралнения астигматизма и лой цели служит передняя труба (колли. лельным (см. 9 оч). Для отоя дени стредник пруса (колли. матор), где щель S располагается в фокальной плоскости линзы L₁. Так как щель имеет малые размеры (несколько сотых миллиметра по ширине и 3-4 мм по высоте) и помещается на оси объектива L₁,

Рис. 14.21. Схематическое изображение хода лучей в спектрографе. S — щель: L₁ — объектив коллиматора; Р — призма; L₂ — объектив камеры; ЕЕ — фотопластинка.

то последний должен быть исправлен главным образом на сферическую и хроматическую аберрации, чтобы обеспечить параллель-ность пучков для разных длин волн. Поэтому обычно объектив коллиматора изготовляется в виде склеенной ахроматической линзы.

Параллельные пучки, выходящие из призмы, имеют для разных длин волн различное направление, составляя несколько градусов между собой в зависимости от материала призм и их числа. Однако даже при значительной дисперсии различие направлений не пре-требуются объективы с большими относительными отверстиями *). Они должны быт Они должны быть исправлены на сферическую аберрацию и кому. Коррекция на уроспольными отверстития, ибо Коррекция на хроматическую аберрацию не обязательна, ибо лучи разных ваки стравлены на сферическую аберрацию не обязательна, ибо лучи разных длин волн дают изображение в разных точках пла-стинки. Поэтому размот изображение в разных точках пластинки. Поэтому резкость изображение в разных точках гается соответствующих изображения для разных длин воли достигается соответствующим наклоном пластинки. Желательно, однако, рассчитать систему так рассчитать систему так, чтобы получить спектр, лежащий в одной плоскости. В противност соотплоскости. В противном случае фотопластинку приходится соотиндун Сушествуют спектрографы, объектив которых имеет относительное отвер-Щ да наметре около 15 см.

ветствующим образом выгибать, что достигается при помощи кассеты специальной формы.

Размеры объективов выбираются в соответствии с размерами призмы так, чтобы не диафрагмировались пучки разных направлений, соответствующие разным длинам волн. При увеличении размеров призмы не только увеличивается количество света, поступающего в прибор (светосила аппарата), но увеличивается и разрешающая способность его, т. е. возможность различения близких длин волн (см. § 100).

Параллельный пучок, исходящий из центра щели, лежащей на оптической оси коллиматора, имеет плоскостью падения главное сечение призмы; пучки, исходящие от других точек щели, падают под углом к главному сечению и преломляются тем сильнее, чем дальше от центра отстоит соответствующая точка щели. Поэтому прямолинейная щель изображается в виде дуги, обращенной выпуклостью к красному концу спектра. Это искривление спектральных линий тем значительнее, чем выше щель и короче фокус объектива коллиматора.

Материалом призм (и линз) в приборах, предназначенных для работы с видимым светом, служит стекло с большой дисперсией (флинт), в приборах для ультрафиолета — кварц или сильвин (для $\lambda > 200$ нм) и флюорит (для $\lambda < 200$ нм). Инфракрасные спектрографы снабжаются оптикой из каменной соли или сильвина, а также из кварца, флюорита и других специальных материалов.

Угол между направлением лучей различных длин волн (угловая дисперсия Δφ/Δλ) определяется числом призм, их материалом и величиной преломляющих углов. Некоторые из призм описаны в § 86. Дисперсия в призме зависит также от ее положения в параллельном пучке лучей. Дисперсия сильно возрастает, если угол падения лучей становится меньше угла, соответствующего поло-жению минимального отклонения (см. § 86). Однако при таком положении ширина выходящего пучка становится значительно меньше ширины падающего, и призма действует как телескопическая система, дающая увеличение (см. упражнение 111). Это обстосветосиле спектрального ятельство невыгодно отзывается на аппарата. Впрочем, благодаря значительному увеличению угловой дисперсии при такой установке призм можно применять более короткофокусные и, следовательно, более светосильные камерные объективы. Поэтому такие системы иногда применяются (В. М. Чулановский), хотя в большинстве спектрографов призму располагают В минимуме отклонения. Расстояние на пластинке между линиями Разной длины волны (линейная дисперсия $\Delta l/\Delta \lambda$) зависит от фокусного расстояния f' объектива камеры:

Величина изображения щели на фотопластинке зависит от фокус-Величина изооражения щели в коллиматора f и камеры f'. Пусть ных расстояний объективов коллиматора f и камеры f'. Пусть ных расстоянии ообективов констретити и имперении и Пусть щель имеет ширину в и высоту h, а ее изображение соответственно в' щель имеет ширипу с и что при положении призм в минимуме откло-и h'. Нетрудно видеть, что при положении призм в минимуме откло-

нения

$$b' = bf'/f \quad H \quad h' = hf'/f.$$

Отношение площадей щели S и ее изображения S' при установке на минимум отклопения и для монохроматического света равно

$$S/S' = f^2/f'^*$$
 (94.2)

Это отношение имеет значение при расчете светосилы спектрографа, которая оказывается тем меньше, чем больше /2 (см. упражнение 135).

Таким образом, увеличение фокусного расстояния камерного объектива (f'), понижая светосилу спектрографа, увеличивает его линейную дисперсию. Последнее обстоятельство может быть весьма полезным, ибо вследствие зернистой структуры фотоэмульсий блязкое положение изображений двух линий на фотопластинке затрудняет их различение.

Для наилучшего использования света прибором нередко между щелью и источником света располагают вспомогательную линзу (конденсор), с тем чтобы свет заполнил весь объектив коллиматора. Увеличение размера конденсора, при котором апертура выходящего из него пучка превысит апертуру коллиматора, бесполезно с точки зрения использования светового потока, однако некоторое перезаполнение коллиматора представляет известные преимущества, так как позволяет получить условия освещения, легче поддающиеся теоретическому анализу (уменьшение степени когерентности освещения, см. § 22). При больших линейных размерах источника света, расположенного на соответствующем расстоянии от щели, необходимое заполнение коллиматора осуществляется чисто геометрически, без помощи конденсора. Однако и в этих случаях, равно как и при малых размерах источника, нередко применяют конденсоры даже более сложного устройства, с тем чтобы выделить ту или иную часть источника света и обеспечить равномерность освещения щели и равномерность освещенности изображения (устранение виньетирования, см. § 89).

§ 95. Восприятие света. «Ночезрительная труба» М. В. Ломоносова

Рассмотрим теперь, как реагируют на свет наши приемные аппараты и какова роль оптических инструментов при восприятии света.

Световое восприятие глаза обусловлено раздражением зрительного нерва, которое вызывается освещением сетчатой оболочки

340

ГЛ. XIV. ОПТИЧЕСКИЕ ИНСТРУМЕНТЫ

глаза. Так как отдельные элементы сетчатки реагируют на раздражение независимо, то увеличение освещенной поверхности сетчатки не усиливает светового раздражения отдельных элементов, а осознается как увеличение освещенного поля. Поэтому световое ощущение будет определяться освещенностью сетчатки, т. е. величиной светового потока, приходящегося на единицу поверхности сетчатки. В этом отношении глаз подобен фотоаппарату, где также почернение пластинки в каждом данном месте зависит от ее освещенности, а увеличение размеров освещенной части только увеличивает поле изображения *).

Однако в отличие от глаза фотопластинка интегрирует световой поток по времени, так что удлинение времени освещения приводит к увеличению почернения в каждом участке пластинки; благодаря этому фотопластинка может быть использована для регистрации крайне слабых потоков, если заставить их действовать достаточное время. Наоборот, продолжительность светового действия не увеличивает, вообще говоря, светового восприятия глаза, и если освещенность сетчатки столь мала, что мы не ощущаем света (ниже порога раздражения), то удлинение раздражения не улучшает дела. Впрочем, элемент времени играет известную роль в зрительном восприятии в связи со способностью глаза приспособляться к изменениям условия освещения (адаптация) и другими физиологическими процессами (см. § 193).

Фотоэлемент, в отличие от глаза и фотопластинки, реагирует не на освещенность чувствительной поверхности, а на световой поток, ибо фототок, т. е. число электронов, освобождаемых в единицу времени действием света, пропорционален количеству световой энергии, поглощаемой за секунду всей освещенной поверхностью. Поэтому чувствительность фотоэлемента сбычно выражают в микроамперах на люмен. Фотоэлемент может работать и как прибор, интегрирующий световое действие по времени, если измеряется количество выделившихся зарядов (электрометр с емкостью); если же измеряется сила возникающего тока (гальванометр), то интегрирование по времени не имеет места.

В соответствии с указанным различием перечисленные приборы по-разному отзываются на приближение светящегося объекта. В случае фотоэлемента приближение светящейся поверхности увеличивает световой поток и, следовательно, усиливает действие. Для глаза же и фотокамеры дело обстоит иначе, ибо при этом меняется не только поток, но и размер изображения.

^{*)} Впрочем, существуют наблюдения, показывающие, что при неизменной освещенности сетчатки световое ощущение зависит в известных пределах от размера изображения, достигая максимума при угловом размере изображения примерно в 5—7°. Это явление еще не получила своего объясшения и, вероятно, связано с физиологическими особенностями глаза.

Пусть PQ (рис. 14.22) есть светящаяся поверхность, восприни. О — оптический центр Пусть PQ (рис. 14.22) соль состание посериность, восприни-маемая камерой или глазом, О — оптический центр системы, маемая камерой или глазом, $OP \approx OQ$ — расстояние до пред-P'Q' — изображение, $r = OM \approx OP \approx OQ$ — расстояние до пред-P'Q' — изображение, r — от — от — расстояние до пред-мета, ON = h — расстояние до изображения (глубина камеры или

Рис. 14.22. К выводу зависимости освещенности изображения от яркости предмета и параметров оптической системы.

глаза). Обозначим через S площадь входного зрачка системы (диафрагмы объектива или зрачка глаза), через о — площадь PQ и через б' — площадь P'Q'. Нетрудно видеть, что

$$\sigma' = \sigma \cos \varphi \frac{h^2}{r^2}.$$

Если яркость светящейся поверхности есть В (для простоты расчета предположим, что поверхность удовлетворяет закону Ламберта, т. е. В не зависит от направления), то поток, поступающий в систему, (05 1) равен

$$\Phi = B\sigma \cos \varphi \cdot \Omega = B\sigma \cos \varphi \frac{3}{r^2}, \qquad (95.1)$$

так как телесный угол потока, направляемого в систему, есть

 $\Omega = S/r^2.$

Итак, освещенность фотопластинки (сетчатки) равна (95.2) $E = \Phi/\sigma' = BS/h^2.$

Как мы видим, при заданном S/h² освещенность пропорциональна яркости источника. Для глаза, таким образом, зрительное восприятие не зависит от расстояния, ибо h практически не меняется с изменением г. Так, например, рассматривая ряд фонарей вдоль длинной улицы, мы по зрительному ощущению правильно оцениваем их одинаково яркими, несмотря на различие в их удаленности (конечно, в случае вполне прозрачной атмосферы) (см. упражнение 10). Для фотокамеры это также справедливо, если только предмет не приближается настолько близко, что приходится увеличивать h. Для удаленных предметов h практически равно фокусному расстоянию объектива f. Таким образом, освещенность в фотокамере пропорциональна светосиле объектива $(D/f)^2$. Соотношение $E = BS/h^2$ показивает = BS/h² показывает, почему при рассматривании (фотографиро-

342

вании) предметов малой яркости мы расширяем зрачок глаза (или увеличиваем апертурную диафрагму объектива).

увеличные слишком ярких объектов может вызывать та, то рассматривание слишком ярких объектов может вызывать болезненные явления. Исследования показывают, что верхний предел яркости, безболезненно переносимый глазом, — около 16 · 10⁴ кд/м². Следовательно, рассматривание спирали лампы накаливания уже непосильно для глаза. Если же эта спираль заключена в матовую колбу, то тот же (практически) поток посылается гораздо большей поверхностью и яркость сильно падает. Таким образом, одна из задач, преследуемая разносбразными арматурами освещения (см. также § 7), состоит в уменьшении яркости источников света без заметного ослабления светового потока и, следовательно, освещенности предметов.

При рассматриванни очень удаленных предметов размер их изображения падает до предельного значения, обусловливаемого разрешающей способностью глаза. В таком случае средняя освещенность уже не будет определяться яркостью объекта. Так как размер изображения постоянен, то освещенность пропорциональна потоку, поступающему в глаз, а этот последний зависит от силы света источника и его расстояния до глаза. Поэтому, например, звезды, угловой диаметр которых меньше секунды, не производят слепящего действия, хотя их истинная яркость нередко больше яркости Солнца, слепящее действие которого огромно благодаря заметному угловому диаметру (32'), значительно превосходящему предел разрешения глаза (около 1').

Применяя оптический инструмент, мы заменяем предмет его изображением, которое в конечном счете и рассматривается глазом или действует на какой-либо иной приемник. Для определения яркости этого изображения надо рассчитать идущий от него световой поток, площадь изображения и величину телесного угла, ограничивающего поток.

Пусть источник, яркость которого *B* не зависит от направления, отображается без искажения (апланатически, ср. § 85) с помощью какой-либо оптической системы (рис. 14.23). Найдем яркость изображения *B*'.

Обозначим через y, σ и u_0 линейные размеры, площадь и апертуру источника, а через y', σ' , u'_0 — размеры, площадь и апертуру изображения; σ пропорционально y^2 , а σ' пропорционально y'^2 . Для вычисления полного потока, идущего от источника, вычислим поток через элементарный телесный угол $d\Omega$ и проинтегрируем его по всей апертуре. Нетрудно видеть (ср. §7), что $d\Omega$ = sin u du d6, где u — угол между осью элементарного пучка и осью системы, а θ — азимутальный угол (вокруг оси системы). Так как u в то же время есть угол элементарного пучка с нормалью к площадке σ , то элементарный поток от σ есть $d\Phi$ = $B\sigma \cos u d\Omega$ =

= Bσ cos u sin u du dθ (cp. § 7), а полный поток в пределах апертуры ио-

$$\Phi = \int_{0}^{2\pi} d\theta \int_{0}^{u} B\sigma \cos u \sin u \, du = \pi B\sigma \sin^{2} u_{0}.$$

Аналогично, поток от изображения равен $\Phi' = \pi B' \sigma' \sin^2 u_n.$

Условне апланатизма (условие синусов) есть

 $ny\sin u_0 = n'y'\sin u'_0$

или

$$n^2 \sigma \sin^2 u_0 = n'^2 \sigma' \sin^2 u_0$$

где n н n' — показатели преломления сред, в которых лежат источник и изображение. Пренебрегая потерями в системе, имеем

$$\Phi = \Phi'$$
.

Таким образом, окончательно получим:

$$B'=Bn'^{*}/n^{2}.$$

Если n = n', т. е. источник и изображение находятся-в одной среде, например в воздухе, то

$$B'=B.$$

Таким образом, при образовании изображения в любой системе яркость изображения равняется яркости источника, если пренебречь потерями на отражение и поглощение в системе и если

Рис. 14.23. К расчету яркости изображения в оптической системе,

изображение получается в той же среде, в которой расположен

Указанный результат есть следствие того обстоятельства, что оптическая система, уменьшая размеры изображения, в то же время. уесличивает телесный угол, в который направляется световой поток (см. § 79). Таким образом, при наблюдении объекта через оптическую систему мы ничего не выигрываем в яркости. Однако это справедливо лишь при наблюдении объектов, превышающих по раз-

344

мерам предел разрешения инструмента. В противном случае изобрамерам пречатенной величины, образуемое на сетчатке глаза, вооружение иструментом, будет получать тем больший световой поток, женного пле своема поток, чем больше диаметр объектива. Таким образом, в большой телескоп чем польшой телескоп можно наблюдать звезды, недоступные невооруженному глазу, можно не видны на фоне небесного свода. При наблюдении в телескоп яркость небесного свода как объекта протяженного остается неизменной (если отвлечься от потерь в инструменте), яркость же нображения звезды (освещенность соответствующего места на сетчатке) возрастает в отношении площади объектива к площади зрачка, т. е. в несколько тысяч раз. Хотя оптическая система не повышает яркости изображения, она может значительно изменить оссещенность его, сосредоточивая поток, поступающий в систему, на большей или меньшей площади изображения. Отсюда видно значение фотообъективов большой светосилы при фотографирсваныи предметов малой яркости (см. упражнение 135).

Следует также заметить, что опасность ослепления при рассматривании яркого источника (Солнца) в трубу сильно возрастает, хотя яркость изображения может только уменьшаться. Причина лежит в том, что чем больше площадь сетчатки, подвергающаяся слепящему действию, тем значительное ее разрушение, ибо организм не успевает нейтрализовать это разрушающее действие.

Таким образом, оптическая система не может увеличить яркости протяженного объекта и практически всегда несколько уменьшает се вследствие неизбежных потерь на отражение света от поверхностей линз и поглощение в стекле. Тем не менее, оптическая система может оказаться полезной для улучшения видимости объектов при слабой освещенности. Причина лежит в возможности лучшего различения деталей. Как указывалось в § 91, разрешающая способность глаза ухудшается при малых освещенностях. В ночных условиях, когда освещенность падает до десятитысячных долей люкса, разрешающая способность глаза изменяется примерно от величины в 1' до 1°, даже если освещенность предмета будет раз в десять больше освещенности фона. В таких условиях увеличение угла зрения, обеспечиваемое трубой, представляет очень большие пренмущества для различения контура и крупных деталей объекта, практически неразличимых невооруженным глазом. В этом именно смысле оптические трубы и бинокли оказываются полезными в ночных условиях, что впервые было учтено М. В. Ломоносовым, который в 1756 г. построил первую «ночезрительную трубу».

Трубы, предназначенные для ночных наблюдений, должны обладать возможно большим увеличением при условии использования всего поступающего в них светового потока. Поэтому в них должны быть максимально снижены потери на отражение (малсе число отражающих поверхностей или просветленная оптика, см. § 135). Для того чтобы весь световой поток поступал в глаз, выход-

ной зрачок трубы не должен превышать зрачка глаза (6-8 мм). ной зрачок трубы не должен пределение ставие (0-0 мм). Максимальное увеличение можно обеспечить возможно большими максимальное увеличение которых выходной зрачок еще соответствует зрачку глаза (см. § 92).

Глава XV

дифракционная теория оптических инструментов

Изображение, даваемое любой оптической системой, есть результат интерференции, ибо все законы лучевой оптики (прямолинейное распространение, преломление, отражение) суть, в конечном счете. законы, вытекающие из взаимной интерференции различных частей световой волны. Мы использовали это соображение, например, при выводе условия синусов (см. § 85). Поэтому полная теория оптического изображения, а следовательно, и теория оптических инструментов любого типа, должна быть интерференционной теорией. В частности, дифракция световой волны, связаниая с ограничением конуса лучей, вырезаемого входным зрачком (краями линз, зеркал и диафрагм, составляющих оптическую систему), принципиально ведет к нарушению стигматичности изображений. В силу указанных дифракционных явлений идеальной стигматичности быть не может: точка изображается дифракционным кружком, и это обстоятельство ограничивает возможность различения тончайших деталей изображения. Таким образом, вопрос о пределе различимости деталей изображения (разрешающая сила оптического инструмента) есть вопрос, для решения которого необходимо рассмотреть дифракционные процессы в оптической системе.

§ 96. Разрешающая сила объектива

Пусть на объектив трубы или фотоаппарата падает плоская волна от бесконечно удаленного источника света, например от звезды. Дифракция на краях круглой оправы, ограничивающей отверстие трубы, приведет к тому, что в фокальной плоскости объектива получится не просто стигматическое изображение точки, а более сложное распределение освещенности: центральный максимум, интенсивность которого быстро спадает, переходя в темное кольцо; второй, более слабый кольцевой максимум и т. д. (см. § 42, рис. 9.7, б). Раднус первого темного кольца стягивает угол ф (с вершиной в центре объектива). Величина этого угла определяется из условня

$$D\sin\varphi = 1,22\,\lambda,\tag{96.1}$$

если падающий свет монохроматичен и имеет длину волны λ, а D — дламетр объектива. В случае белого света картина будет

346

представлять собой наложение таких монохроматических изображений.

раднус первого темного кольца г в фокальной плоскости есть $r = f \text{ tg } \varphi$, где $f - \varphi$ окусное расстояние объектива. Так как угол ϕ мал, то $r = 1,22 f\lambda/D$, т. е. тем меньше, чем больше диаметр объектива *).

Если объектив направлен на две удаленные звезды S₁ и S₂, разделенные угловым расстоянием ψ, то каждая из них даст в фокальной плоскости дифракционные кружки с центрами в точках, соответствующих изображениям S1 и S2 (рис. 15.1a).

Так как источники S1 и S2 испускают некогерентное излучение. то картина, видимая наблюдателем, представляет собой просто наложение светлых и темных колец обоих кружков. Если центры

Рис. 15.1. a) Общий вид дифракционной картины при наблюдении двух удаленных звезд, находящихся на небольшом угловом расстоянии. б) Предел разрешения при изображении двух точек (критерии Рэлея).

кружков близки, а радиусы кружков значительны, то система перекрывающихся колец может не дать впечатления двух раздельных изображений: объектив не в состоянии различить (разрешить) две светящиеся точки. Степень взаимного наложения, препятствующего различению деталей, зависит от чувствительности глаза или фотопластинки к контрастам, т. е. является несколько неопределенной величиной. По Рэлею для определенности принимают за предел разрешения такое положение, при котором первое темное кольцо одного кружка проходит через светлый центр второго (см. также § 50). В этом случае ординаты кривых, дающих распределение освещенности (рис. 15.1, б), в точке их пересечения составляют меньше 0,4 от ординаты в максимумах, так что в результирующей кривой ордината места провала составляет 75% от ординаты максимумов **). Нормальный глаз или фотопластинка в состоянии, вообще говоря, обнаружить провал, даже если он отличается от максимума меньше чем на 25%.

^{*)} Изложенное относится к тонкому объективу. В общем случае следует говорить не об объективе, а об его выходном зрачке.

⁾ При равной интенсивности источников S₁ и S₂ и круглой оправе объектива.

При расположении, соответствующем критерию Рэлея, угловой При расположении, соответствующем при растоя, угловой радиус первого темного кольца ф равен угловому расстоянию радиус первого темного кольца ф равен угловое расстояние опредемежду звездами ф. Итак, разрешаемое угловое расстояние опредемежду звездами ф. ляется условием

$$\sin \psi = \sin \varphi = 1,22\lambda/D = 0,61\lambda/R,$$
 (96.2)

т. е. тем меньше, чем больше диаметр (или раднус) объектива. Так как сбычно угол ф (и ф) мал, то можно написать

$$\psi = \varphi = 0.61\lambda/R. \tag{96.3}$$

Величина, обратная предельному углу, носит название разрешающей силы 100 1

$$\mathcal{A} = 1/\psi = R/0.61\lambda.$$
 (90.4)

Аналогично, небольшой источник, угловой размер которого равен (или меньше) у, определяемого последним соотношением, представляется наблюдателю точкой, т. е. дает при наблюдении в трубу картину, практически не зависящую от формы источника и близкую к картине, вызываемой светящейся точкой. Таким образом, разрешающая сила объектива тем больше, чем больше его диаметр.

Разрешающая сила глаза также ограничена дифракционными явлениями и связана с размерами зрачка. При хорошей освещенности диаметр зрачка равняется примерно 2 мм, чему соответствует согласно (96.3) предельный угол разрешения около 1'. Это согласуется с той величниой разрешения, которая обусловлена структурой сетчатой оболочки (см. § 91). При пониженной освещенности зрачок глаза увеличивается (до 8 мм), однако при этом сильнее сказываются недостатки глаза как оптической системы, так что улучшение условий разрешения, связанное с увеличением диаметра системы, не проявляется. Более того, как уже упоминалось в § 91, разрешающая способность глаза при пониженной освещенности падает вследствие физиологических причин.

§ 97. Разрешающая сила микроскопа

Дифракция, возникающая вследствие ограничения пучка лучей, имеет место и в микроскопе и также приводит к ограничению его разрешающей силы. Для микроскопа обычно выражают его способность к разрешению деталей не величиной угла, а линейными размерами мельчайшей разрешимой детали или минимальным расстоянием между двумя точками, различимыми с помощью микроскопа. В том случае, когда две такие точки испускают некогерентные волны (самосветящиеся точки), задача вполне аналогична рассмотренной в предыдущем параграфе.

318

Как и в случае трубы (телескопа), нас интересует дифракцион-Как и в случае трупи изображения предмета. Легко видеть, ная картина в ток всегда применимы формулы фраунгоферовой что в этой иностеплод углом дифракции понимать угол, под которым дифракции, ссили изображений из центра апертурной диафрагмы видна точка плоскости изосражении из центра апертурной диафрагмы (см. § 39 и упражнение 119). Кроме того, следует принять во вни-мание, что плоскость изображения *EE* объекта (рис. 15.2) лежит на расстоянии (около 160 мм), гораздо большем диаметра объектива (или апертурной диафрагмы), и поэтому угол и можно считать малым.

Минимальное разрешаемое микроскопом расстояние между двумя самосветящимися (испускающими некогерентное излучение) точками М и N будет найдено из условия, что центры двух независимых дифракционных картин, получаемых в плоскости изображения EE, окажутся на расстоянии, иолучаемых в плоскости поорилсили =, $\varepsilon' = M'N'$ равно радиусу первого темного дифракционного кольца, окружающего изображение M' или N'. Соответствующие дифракционные картины получаются в результате фраунгоферовой дифрак-ции на круглой апертурной диафрагме АА'. Поэтому угловой раднус ф первого темного кольца определится из условия

$$AA'\sin \varphi = 1,22 \lambda$$
, или $\varphi = \frac{1,22 \lambda}{AA'}$

(ибо угол φ мал), причем AA' есть диаметр апертурной диафрагмы. *Линейный* радиус первого темного кольца равен $\varphi BM'$, где BM' — расстоянию расстояние от диафрагмы до плоскости *EE*. Итак, условие разрешения будет иметь вид

 $\varepsilon' = \varphi BM' = 1,22\lambda BM'/AA'.$

Из рис. 15.2 видно, что

$$\frac{AA'}{BM'} = 2u',$$

нбо угол и' мал. Таким образом, $\varepsilon' = 0,61 \lambda/u'$, т. е.

$$\varepsilon' u' = 0,01\lambda. \tag{97.1}$$

Для нахождения связи между є и є вспомним, что для правильного отображения элемента с помощью микроскопа должно быть соблюдено условне синусов (см. § 85). Итак.

$$\varepsilon n \sin u = \varepsilon' n' \sin u'. \tag{97.2}$$

Показатель преломления среды в пространстве изображений п' равен единице, ибо изображение расположено в воздухе; п может быть и больше единицы, ибо пространство между предметом и объективом нередко заполнено каким-либо веществом (иммерсия). Хотя угол и может быть значительным, угол u' очень мал, нбо $OM' \ge OL$, так что $u' \approx \sin u'$. Из (97.1) и (97.2) имеем:

$$\varepsilon = \varepsilon' u'/n \sin u = 0.61 \lambda/n \sin u$$
.

Таким образом, разрешающая сила микроскопа тем больше, чем больше значение n sin u. Эта последняя величина получила название числовой апертиры объектива и обычно обозначается через А.

Мы нашли выражение для разрешающей силы микроскопа, исходя из предположения, что точки объекта посылают некогерентные волны (объект самосветящийся), так что дифракционные картины просто накладываются одна на другую. Однако обычно в микроскоп рассматривают объекты освещенные, а не самосветящиеся. Это значит, что отдельные точки объекта рассеивают падающие на них волны, исходящие из одной и той же точки источника, и, следовательно, свет, идущий из разных точек объекта, оказывается когерентным. К такому случаю, гораздо более распространен-ному, наш вывод разрешающей силы микроскопа непосредственно неприложим (см. упражнение 120). Аббе указал весьма интересный прием определения разрешающей силы для случая освещенных объектов и нашел, что и в данном случае разрешающая сила также определяется числовой апертурой объектива. Метод рассмотрения Аббе состоит в следующем.

Сеет, освещающий объект, попадает на линзу микроскопа, претерпев рассеяние (дифракцию) на деталях объекта, так что структура светового пучка зависит от этого объекта. Рассмотрим для простоты случай, когда освещение производится параллельным пучком (дифракция Фраунгофера), а объект имеет простую форму *),

*) Все выводы, полученные с такими простыми объектами, можно перенести

и на объекты любого вида, пользуясь соображениями, изложенными в §§ 52, 53.

350

например, представляет собой правильную решетку, т. е. посленапример, продрачных полосок, разделенных непрозрачными. довательность просредственных непрозрачными. Период решетки d и является в этом случае характеристикой детали, а разрешающи микроскопа более или менее мелкую решетку,

Дифракция параллельного пучка структуре дает в фокальной плоскости FF объектива (рис. 15.3) ряд главных максимумов, угловые расстояния между которыми

Рис. 15.3. К дифракционной теории микроскопа Аббе. Масштаб рисунка искажен — расстояние от FF до P3P3 значительно больше фокусного расстояния объектива.

определяются периодом решетки. Если падающие пучки нормальны к поверхности объекта и направлены вдоль оси системы, то положение этих максимумов задается условием $d\sin \varphi = m\lambda_0$, где т целое число, определяющее порядок максимумов. На оси микроскопа лежит нулевой максимум A_0 (m = 0), максимумы первого порядка A₁ и A₁ лежат по направлениям, определяемым из соотношения sin $\varphi_1 = \pm \lambda_0/d$, максимумы второго порядка A_3 и Δ' и $A_2 = по$ направлениям, определяемым из соотношения sin $\varphi_2 = \varphi_2$ $=\pm 2\lambda_0/d$, и т. д. Так как все эти дифракционные максимумы соответствуют когерентным лучам, то за фокальной плоскостью объектися между собой, объектива эти лучи, встречаясь, интерферируют между собой, давая раз лучи, встречаясь, интерферируют между собой, давая в плоскости P_2P_2 , сопряженной с плоскостью предмета P_1P_1 относители страниции с плоскостью предмета. Таким относительно объектива OO, изображение самого предмета. Таким образов образом, и совокупность дифракционных максимумов в плоскости FF. и оконт FF, и окончательная картина в плоскости P₂P₂, даваемая объекти-вом. Завист вом, зависят от предмета и служат его изображением.

Аббе называет картину в фокальной плоскости объектива первичным изображением, а картину в плоскости P₂P₃ — вторичным изображением предмета. Иногда картину в FF называют спектром изооражением променением решеток или структур), а картину в P2P2 — просто изображением объекта:

Нетрудно видеть, что для получения правильного изображения предмета надо, чтобы изображение в плоскости P_2P_2 образовывалось в результате взаимодействия лучей, идущих от всех максимуков А1, А1, А2, А2 и т. д. Действительно, предположим, что какое-либо препятствие задержало все лучи, идущие от А1, А1, А, А, И т. д., оставив лишь свет от А. В таком случае изображение на экране P_2P_2 должно было бы передавать такой объект, дифракционный спектр которого (первичное изображение) сведется к одному центральному максимуму. Но такой случай может иметь место. лишь если параллельный пучок не претерпел никакой дифракции на предмете, т. е. если предмет отсутствует, и в плоскости Р.Р. получится равномерная освещенность без всякого изображения. Если бы мы задержали все дифракционные максимумы нечетных порядков (например, A1, A1, A3, А3 и т. д.), то вторичное изсбражение соответствовало бы тому первичному, которое состоит из Ао, A2, A2, A4, A4 и т. д., т. е. совокупности максимумов, которые были бы обусловлены наличием в P_1P_1 решетки с периодом, в два раза меньшим; мы увидели бы на экране Р.Р. изображение более частой решетки, чем имеющаяся в действительности.

Только полная совокупность дифракционных максимумов определит вторичное изображение в соответствии с объектом. Впрочем, совокупность максимумов, расположенных по одну сторону от центра (например соответствующих положительным m), достаточна для передачи всех деталей, ибо остальные лишь усиливают яркость, не меняя подробностей картины. Особое значение имеют максимумы первых порядков, расположенные под малыми углами и обусловленные более крупными и обычно более важными деталями строения, определяющими в основном вид реального объекта. Максимумы, лежащие под большими углами, определяются главным образом более мелкими деталями предмета, могущими, впрочем, быть очень характерными. Так, например, в случае объекта в виде бесконечной решетки спектры первого порядка достаточны для образования изображения в виде периодической структуры правильного периода, но с плавным переходом от светлых мест к темным *). Для правильной передачи не только периодичности структуры, но и характерного для нашей решетки резкого перехода от света к темноте, необходимо, чтобы в образовании изображения участвовали и спектры высших порядков. Очень мелкие детали (элементы структуры

^{•)} Так как спектры только первого порядка получаются в случае дифракции на решетке Рэлея (см. § 51 и упражнение 76). При наблюдении соответствуюшего объекта глазом мы можем судить только о плавном изменении коэффи-инента пропистание и можем судить только о плавном изменении коэффициента пропускания; эффект же, связанный с обращением фазы, ускользает

меньше длины волны) вообще не могут быть наблюдаемы, нбо волны, дифрагировавшие на таких деталях, не доходят до экрана $P_{2}P_{3}$ даже при максимально возможной апертуре объектива $u = 90^{\circ}$. Этим соображением можно воспользоваться, чтобы установить предел разрешения деталей $d \ge \lambda = \lambda_0/n$, где $\lambda_0 - длина волны$ в вакууме, а <math>n — показатель преломления среды, в которую погружен объект.

Помещая в плоскости *FF* экраны с соответственно расположенными отверстиями, т. е. пропуская только *A*₀ или только четные максимумы и т. д., мы можем без труда наблюдать в плоскости *P*₂*P*₂ описанные искажения изображения или даже равномерное освещение без изображения. Эти опыты, осуществленные Аббе, очень помогают уяснению его способа рассуждения.

Из изложенного ясно, что для получения правильного изображения надо, чтобы через объектив микроскопа и далее проникали дифракционные пучки всех направлений. Обычно внутри микроскопа не ставится препятствий, так что опасность представляет лишь входной зрачок, которым служит оправа объектиба, ограничивающая его рабочее отверстие *). Чем меньше предмет или его деталь d, тем большие углы дифракции он обусловливает и тем шире должно быть отверстие объектива. Отверстие объектива определяется углом 2и между крайними лучами, идущими от объекта (расположенного у фокуса) к краям объектива. Половина этого угла носит название апертуры. Если апертура меньше φ_1 — угла дифракции, соответствующего спектрам первого порядка, т. е. $\sin u < \sin \varphi_1 =$ $= \lambda_0/d$, то в микроскоп проникнут только лучи от центрального максимума и мы не увидим изображения, соответствующего деталям, определяемым величиной d, т. е. в случае нашей решетки будем иметь равномерное освещение. Таким образом, условие sin $u \geqslant$ ≥ λ₀/d есть условие, необходимое для разрешения деталей d. В крайнем случае (sin $u = \lambda_0/d$) мы жертвуем максимумами высших порядков, т. е. как сказано, несколько ухудшаем качество изображения. Чем больше sin u по сравнению с λ_0/d , тем больше спектров высших порядков участвует в построении изображения, т. е. тем точнее передается наблюдаемый сбъект.

Если между предметом и объективом находится среда с показателем преломления n, то вместо λ_0 войдет $\lambda = \lambda_0/n$ и условие разрешения будет

$$d \geqslant \frac{\lambda_0}{n \sin u}.$$
 (97.3)

Обычно при освещении объекта используются не только пучки, идущие вдоль оси, но и пучки, наклонные к ней. Это обстоятельство улучшает условие разрешения.

*) Впрочем, у сильных объективов нередко применяется специальная апертурная днафрагма, которая и определяет размер зрачка.

12 Ландсберг Г. С.

Если освещающий пучок идет под углом а к оси микроскопа и Если освещающими α, (рис. 15.4), то условие максимумов дифрагирует под углом α, (рис. 15.4), (см. § 47) есть

$$\sin \alpha_0 - \sin \alpha = m\lambda/d. \tag{97.4}$$

Условие, при котором хотя бы первый спектр попадает в объектив, имеет вид

$$\alpha = -u, \quad \alpha_0 = u, \quad m = +1.$$
 (97.5)

Условие разрешения записывается в виде

$$2\sin u \geqslant \frac{\lambda}{d} = \frac{\lambda_0}{nd}, \qquad (97.6)$$

нли

$$d \gg \frac{\lambda_0}{2n\sin u} = \frac{0.5\lambda_0}{n\sin u}.$$
 (97.7)

Итак.

$$d \ge \frac{0.5\lambda_0}{n\sin u} = \frac{0.5\lambda_0}{A}, \qquad (97.8)$$

где $A = n \sin u$ означает, как и выше, числовую апертуру объектива.

Таким образом, как для освещенных, так и для самосветящихся объектов разрешающая сила микроскопа зависит от числовой апертуры А.

Для повышения разрешающей способности микроскопа выгодно применение более коротких болн (ультрафиолет) и увеличение

Рис. 15.4. Значение косых пучков для повышения разрешающей способности микроскопа.

числовой апертуры. Для последней цели служит применение иммерсионных систем, в которых пространство между предметом и объективом заполняется средой с показателем n > 1.преломления Подбирая п около 1,5 (кедровое масло), мы не только увеличиваем числовую апертуру, но и получаем ряд других преимуществ (см. § 92).

В объективах современных микроскопов числовая апертура

достигает значительных величин. Для «сухих» систем n = 1 и sin и практически доходит до 0,95, так что возможно разрешение деталей, имеющих размеры около половины длины световой волны. С иммерсионными системами достигается разрешение в полтора раза большее.

Метод Аббе не только позволяет вывести значение разрешающей способности для освещенных объектов, но и показывает, что результаты наблюдения в микроскоп могут сильно зависеть от условий

354

наблюдения. Выводы Аббе получают особое практическое значение, так как Л. И. Мандельштаму удалось показать, что они сохраняют свою силу не только для освещенных (когерентность), но и для самосветящихся объектов. Рассматривая дифракцию на выходном зрачке объектива, Мандельштам показал, что от размеров и формы зрачка или от внесения каких-либо новых ограничительных диафрагм зависят те искажения, которые иногда обнаруживает изображение по сравнению с очертаниями объекта, совершенно так же, как это имеет место в теории Аббе для освещенных объектов. Мандельштам установил, что при грубых по сравнению с длиной волны структурах *самосветящиеся* объекты вполне эквивалентны освещенными равномерно со всех сторон. Опыты с накаленными и освещенными сетками в качестве объектов, выполненные Л. И. Мандельштамом, подтверждают эти заключения.

Распространение указанных выводов на самосветящиеся объекты (отсутствие когерентности) особенно важно потому, что и при освешенном объекте далеко не всегда имеет место полная когерентность. Точки освещенного объекта посылают вполне когерентный свет только в том случае, если угловые размеры источника настолько малы, что угол, под которым он виден из места расположения предмета, мал по сравнению с λ/d , где λ — длина световой волны, а d — расстояние между освещаемыми точками объекта. Действительно, в этом случае волны, доходящие от разных точек источника до освещаемых точек, имеют различие в фазах, малое по сравнению с 2л (см. упражнение 129), так что интерференция волн, рассеиваемых нашими точками, даст практически один и тот же эффект, от какой бы точки источника ни пришла освещающая волна (когерентность). Наоборот, когда угловые размеры источника велики по сравнению с λ/d , то свет, приходящий к освещаемым точкам от разных точек источника, будет иметь всевозможные разности фаз от нуля до 2л, и, следовательно, рассеянные нашими точками волны могут давать самые разнообразные интерференционные картины (некогерентность). При промежуточных размерах источника когерентность будет осуществляться в большей или меньшей мере. В реальных условиях освещение объекта в микроскопе производится широкими пучками лучей, и полная когерентность, как правило, не имеет места.

Сказанное подтверждается расчетами, проведенными в § 22, согласно которым размер области когерентности в плоскости освещаемого объекта есть $2l_{\text{ког}} = \lambda/\theta$, где θ — угловые размеры источника. Если $2l_{\text{ког}}$ меньше минимально разрешаемого интервала d, то мы имеем дело с некогерентным освещением; в противоположном случае $2l_{\text{ког}} = \lambda/\theta \gg d$ разрешаемое расстояние находится внутри области когерентности, и освещение следует считать когерентным. Следовательно, и при таком способе рассуждений мы приходим к сделанным выше заключениям.

Вопрос о роли частичной когерентности освещения объектов Вопрос о роли частично исследован Д. С. Рождественским *), в микроскопе был обстоятельно исследован Д. С. Рождественским *), в микроскопе оыл остоянся вление явлений с помощью фактора, который дал количественное описание явлений с помощью фактора, которыи дая комплести пространственной когерентности у12 (см. называемого степения которого — нуль и единица. Рассмотрев § 22), крайние значения которого у 22), кранине они зрения вопрос о рациональном освещении при с указанной точки зрения вопрос о рациональном освещении при с указанной соли наблюдениях, Рождественский разъяснил этот микроскопических наблюдениях,

Рис. 15.5. Влияние характера освещения на изображение в микроскопе.

важный вопрос и даже осуществил осветитель, дающий при малой мощности источника наивыгоднейшие условия ярко освещенного поля зрения при самых сильных объективах.

Прекрасный пример значения правильного истолкования результатов микроскопического наблюдения приводит Я. Е. Элленгорн **). На рис. 15.5 изображены четыре микрозарисовки одного н того же препарата (панцирь днатомовой водоросли) при различных способах освещения.

Над каждой зарисовкой показано, какой вид имеет световой пучок, проходящий через фокальную плоскость объектива. Зари-

) Д. С. Рождественский, Избранные труды, «Наука», 1964.) Я. Е. Элленгори, Ботанический журнал, 1940.

совка 1 — проходит только центральный максимум 0, панцирь кажется гладким, без деталей; 2 — центральный 0 и один боковой дифракционный максимум а — панцирь имеет продольную структуру; 3 — центральный 0 и один верхний дифракционный максимум б — панцирь имеет поперечную структуру; 4 — центральный 0 и по одному максимуму а и б — панцирь имеет структуру в виде сетки.

Таким образом, очевидно, что структура панциря напоминает сетку, но в зависимости от метода наблюдения может казаться гладкой или снабженной продольными или поперечными полосами. Между тем раньше ботаники полагали, что они имеют дело с различными разновидностями диатомовой водоросли.

§ 98. Электронный микроскоп

Так как числовую апертуру нельзя значительно повысить, то единственный способ увеличения разрешающей способности микроскопа состоит в переходе к более коротким волнам.

Применение ультрафиолетовых лучей, требующее изготовления оптики микроскопа из соответствующих материалов (кварц, флюорит) или использования отражательной оптики, ограничено длинами волн 250—200 нм, ибо большинство объектов, подлежащих наблюдению, сильно поглощает короткий ультрафиолет. Таким образом, на этом пути возможно увеличение разрешающей силы примерно в два раза, что и осуществлено в современных ультрафиолетовых микроскопах, причем, конечно, необходимо применять фотографический метод наблюдения.

Использование ультрафиолета дает еще одно важное преимущество. Многие объекты, особенио биологические, во всех своих частях одинаково прозрачны для видимого света, вследствие чего их наблюдение в видимом свете затруднено. Но для ультрафиолетового света обнаруживается значительное различие в показателе поглощения разных частей объекта, так что соответствующие микрофотографии оказываются достаточно контрастными. Е. М. Брумберг разработал весьма остроумную систему, позволяющую превосходно использовать различие в поглощении разных длин воли. Снимая препарат в трех группах длин воли и рассматривая все три фотографии одновременно в специальном приборе, снабженном тремя светофильтрами, соответственно передающими различие в этих трех группах длин воли, мы получаем по методу Брумберга очень богатое деталями изображение с разрешением, соответствующим короткой длине волны, примененной при фотографировании.

Для дальнейшего увеличения разрешающей способности микроскопа следовало бы перейти к рентгеновским лучам. Но изготовление соответствующей оптики для получения изображения в рентгеновских лучах встречает весьма большие затруднения.

Однако развитие современной теоретической физики привело Однако развитие созрение потока любых материальных частиц к мысли, что распространение потока любых материальных частиц к мысли, что распротрания законами, так же как и в случае светового управляется волновыми законами, так же как и в случае светового управляется волист, что строгое решение задачи о движении частиц под действием сил может быть получено лишь путем рассмотрения распространения соответствующих волн. Не останавливаясь на природе таких волн, укажем лишь, что длина их связана с массой т природе таких доили, у ихся частиц формулой $\lambda = h/mv$ (де Бройль, 1923 г.), где h = 6,624 · 10⁻³⁴ Дж · с — постоянная Планка. Отсюда видно, что чем больше масса частицы и чем больше ее скорость, тем меньше длина волны. Но даже для частиц с наименьшей известной массой, для электронов ($m \approx 0,9 \cdot 10^{-27}$ г), движущихся с умеренной скоростью, соответствующая длина волны осень мала. Так. например, для электронов, ускоряемых разностью потенциалов в 150 В, $\lambda = 1$ Å *). Для более быстрых электронов, а также для атомов, молекул или же тел еще большей массы длина волны будет гораздо более короткой. Таким образом, законы распространения даже наиболее легких частиц (электронов) соответствуют законам распространения очень коротких волн.

В этом случае строгое решение задачи, основанное на волновой теории, практически не отличается от решения, найденного методом геометрической (лучевой) оптики. Установив, как зависит показатель преломления от свойств среды, т. е. от силовых полей, в которых движется электрон, мы можем рассчитать его движение по правилам геометрической оптики. С другой стороны, можно рассчитать движение электрона по обычным законам механики, зная силы, действующие на электрон. На возможность рассмотрения механической задачи с оптической точки зрения указывалось уже давно. Более 100 лет назад Гамильтон (около 1830 г.) показал, что уравнениям механики можно придать вид, вполне аналогичный уравнениям геометрической оптики. Первые можно представить в виде соотношения, выражающего принцип наименьшего действия (принцип Мопертюи, из которого можно получить уравнения ньютоновой механики), а вторые — в виде соотношения, выражающего принцип наименьшего оптического пути (принцип Ферма, из которого следуют законы геометрической оптики, см. § 69). Оба эти принципа имеют вполне тождественное выражение, если подходящим образом ввести понятие показателя преломления. Блестящим результатом современной теории является то обстоятельство, что устанавливаемый ею показатель преломления связан с параметрами, характеризующими силовые поля, в которых движется частица, именно так, как требуется для отождествления принципа

*) Для численных расчетов длины волны, связанной с электроном, формуле де Бройля удобно придать вид $\lambda = 12,24/\sqrt{V}$ ангстремов, где разность

наименьшего действия с принципом Ферма. Так, например, для частицы, движущейся в силовом поле, характеризуемом потенциалом *W*, показатель преломления среды согласно современной теории имеет вид

$$n = \sqrt{2(E - W)/mc^2},$$

где E — энергия движущейся частицы, m — ее масса и c — скорость света; именно при такой связи траектория частицы, по Гамильтону, идентична световому лучу.

Способы расчета электронных путей в электромагнитных полях (независимо от того, применяются ли методы механики или геометрической оптики) позволяют установить условия, при котсрых электроны, вышедшие из какой-либо точки (источник), соберутся вновь в какой-то точке (стигматическое изображение). Совокупность электрических или магнитных полей, в которых должен двигаться электрон для получения такого изображения, представляет собой «электронные линзы» (магнитные или электростатические), играющие в электронной оптике такую же роль, как обычные линзы в геометрической оптике *). При подходящих условиях (параксиальные пучки или соответствующим образом рассчитанные «исправленные» электронные линзы) источник электронов может дать достаточно хорошее изображение.

Изображение это можно сфотографировать (если электроны попадают на фотопластинку) или наблюдать непосредственно глазом (если электроны падают на флуоресцирующий экран, светящийся под действием их ударов). На этом принципе построены многочисленные электронно-оптические системы, играющие важную роль в современной технике. Одной из таких систем является электронный микроскоп, схематически изображенный на рис. 15.6. Как мы видим, электронный микроскоп состоит из элементов, вполне эквивалентных элементам, составляющим обычный оптический микроскоп. Объект может быть «самосветящимся» — сам служить источником электронов (накаленный катод или освещаемый фотокатод), или «освещенным», представляя собой препарат, на который падает поток электронов (обычно от накаленного катода); конечно, препарат должен быть достаточно тонким, а электроны достаточно быстрыми, чтобы они проходили сквозь препарат и проникали в «оптическую» систему. Впрочем, подобное же требование «прозрачности» мы предъявляем и к препаратам, рассматриваемым в обычном оптическом микроскопе.

Расчет электронного микроскопа по правилам геометрической оптики является вполне естественным, ибо, как мы видели, длина

^{*)} Влияние электрических и магнитных полей на путь электронов (фокусирующее действие) рассматривается в курсах электричества (см., например, С. Г. Калашников, Электричество, «Наука», 1964, § 208—210).
волны, соответствующая электронам, очень мала. Она имеет поряволны, соответствущими нанометра, ибо сбычно применяются док нескольких тысячных нанометра, ибо сбычно применяются нок нескольки с довольно большими скоростями (соответствующими электропы с довости потенциалов 40-60 кВ). Тем не менее, как мы видели в § 97, для рассмотрения основного вопроса о разрешающей силе микроскопа надо принять во внимание, что длина волны

Рис. 15.6. Схема устройства электронного микроскопа.

Для сравнения рядом изображена схема оп-тического микроскопа.

не бесконечно мала. Применяя формулу $d \ge \lambda_0/A$, найдем, что разрешающая сила электронного микроскопа может быть сделана несравненно большей, чем у обычного микроскопа. Действительно. длина волны в случае электронного 🐂 микроскопа B $10\ 000 - 100\ 000$ pa3 меньше, чем для обычного; поэтому, хотя числовая апертура для электронных «объективов» пока еще невелика (А≈ $\approx 0.01-0.1$), все же теоретическая разрешающая сила электронного микроскопа превосходит разрешающую силу оптического микроскопа в несколько тысяч раз. Другими словами, если в опти-... ческом микроскопе мы в состоянии различать детали порядка 200—300 им, TO C помощью электронного мик-.. роскопа можно надеяться. иметь изображения объектов. порядка 0,1 нм, т. е. увидеть атомы и молекулы.

Лучшие из существующих в настоящее время электрон-

ных микроскопов обладают разрешающей способностью OKOло 0,1 нм.

В СССР первые весьма совершенные электронные микроскопы сыли построены под руководством акад. А. А. Лебедева.

Принципиальное ограничение разрешающей силы электронного. микроскопа лежит, конечно, так же как и в случае обычного оптического микроскопа, в дифракционных явлениях, обусловливаемых волновой природой электронов. Такую дифракцию электронов можно наблюдать непосредственно, если подобрать условия опыта.

гл. хv. дифракционная теория инструментов

в соответствии с изложенным выше, т. е. так, чтобы линейные размеры пространственных неоднородностей среды, сквозь которую проходит пучок электронов, были сравнимы с длиной волны этих электронов. Последняя близка к длине волны рентгеновских лучей, и поэтому условия наблюдения дифракции электронов и рентгеновских лучей сходны друг с другом. Действительно, Девиссон и

Рис. 15.7. Дифракционные кольца, получаемые при прохождении через металляческую фольгу рентгеновских лучей (а) и электронного пучка (б).

Джермер (1927 г.) и Г. П. Томсон (1928 г.) осуществили опыты по дифракции электронов, вполне аналогичные опытам по дифракции рентгеновских лучей.

На рис. 15.7 приведены изображения дифракционной картины, возникающей при прохождении рептгеновских лучей (а) и электронного пучка (б) через тонкую золотую фольгу (кольца Дебая — Шерера, см. § 118). Подобные дифракционные опыты были осуществлены также с пучками молекул и с пучками нейтронов.

§ 99. Метод темного поля (ультрамикроскопия). Метод фазового контраста

Формула, определяющая разредающую способность микроскопа, показывает предельный размер частицы, которую можно увидеть или сфотографировать при помощи микроскопа, т. е. частицу, изображение которой передает без искажения ее действительные очертания. Правильные изображения частиц меньших размеров получить нельзя. Однако само существование таких малых, ультрамикроскопических частиц, их положение и движение можно установить при помощи микроскопа при специальном способе наблюдення. Способ этот основан на явлении рассеяния света на малых

Стицах. Схема расположения приборов изображена на рис. 15.8. Интенчастицах. сивный пучок света концентрируется при помощи объектива O₁ на

камере, где подозревают наличие ультрамикроскопических объектов. Если таких объектов или более крупных частиц в камере нет, то свет от объектива О1 проходит по горизонтальному направле-

Рис. 15.8. Схема простейшего ультрамикроскопа.

Рис. 15.9. Разрез специального конденсора для осущеметода темного ствления поля.

нию, не попадая в верхний объектив *). Если же на пути лучей имеются частицы, то свет рассеивается ими, попадает в объектив О2 и дает в вертикальном микроскопе дифракционную картину, позволяющую определить положение и перемещение ультрамикроскопической частицы, но дающую лишь весьма несовершенное представление о ее форме. Очень малые частицы (например, коллондальные частицы металлов размером около 5.10-6 мм) наблюдаются в виде блестящих звездочек на черном фоне.

В ультрамикроскопе осуществляется принцип темного поля, состоящий в том, что мы устраняем из поля зрения прямые лучи и наблюдаем лишь лучи дифрагировавшие. Этот принцип реализуется в целом ряде приспособлений. В частности, на нем основано применение специальных конденсоров (рис. 15.9), создающих такое освещение препарата на микроскопическом столике, при котором на него падает интенсивный пучок косо направленных лучей, непосредственно в объектив не попадающих. Центральные лучи задерживаются специальной непрозрачной ширмой, а боковые лучи

*) Молекулярное рассеяние света, имеющее место даже и во вполне чистой, лишенной посторонних частиц однородной среде настолько слабо, что мы его

претерпевают полное внутреннее отражение, отражаются от зеркальной поверхности и концентрируются на объекте. Направление их таково, что в объектив они не попадают; только лучи, претерпевшие дифракцию на объекте (рассеянные объектом), могут попасть в объектив. Если объекты довольно значительны (больше $1/_2\lambda$), то в объектив попадают одновременно дифракционные спектры разных порядков и мы увидим изображение, имеющее форму объекта. Если же значительная часть дифрагировавших пучков не попадает в объектив, то может наблюдаться изображение, заметно отличное по форме от объекта, или даже просто светлая точка на черном фоне, не дающая никакого представления о форме объекта. Подобные конденсоры разных систем (параболоид-конденсор, кардиоид-конденсор) находят широкое применение в микроскопии. Об усовершенствовании ультрамикроскопического метода наблюдения говорилось в § 45.

Описанные микроскопические методы могут быть весьма полезными для таких объектов, которые выделяются на фоне всего поля зрения вследствие своей способности иначе поглощать свет, чем окружающая среда (абсорбционные структуры). В микроскопической же практике (например, в биологии) очень распространено наблюдение объектов, отличающихся от окружающей среды главным образом по своему показателю преломления (рефракционные структуры). Этот метод заслуживает специального рассмотрения.

Как уже указывалось в § 48, рефракционные структуры, вносящие изменение не в амплитуду, а в фазу проходящей волны, дают прекрасно выраженную дифракцию (например, фазовые дифракционные решетки). Однако такие структуры нельзя непосредственно рассматривать или сфотографировать, ибо наши приемники реагируют не на фазу, а на амплитуду (интенсивность), которая остается неизменной при прохождении через разные участки рефракционной структуры. Может показаться, что этот результат опровергает пригодность метода рассмотрения Аббе: при одинаковых первичных изображениях (спектрах) мы получаем совершенно различные вторичные изображения. Затруднение объясняется просто: дифракционные спектры тех и других структур могут не отличаться по амплитудам, но фаза нулевого спектра в случае рефракционных структур отличается на 1/2 п от фазы спектров остальных порядков. Это и приводит к различию во вторичных изображениях, где происходит суммирование всех спектров. Если, однако, изменить фазу нулевого спектра на ¹/₂л, то мы устраним различие между тем, что дают абсорбционные и рефракционные структуры, и сможем увидеть эти последние. Те места структуры, которые дают большее Изменение в фазе, можно сделать темными или светлыми в зависимости от того, будет ли добавочная разность фазы в нулевом спектре равна +1/2п или -1/2п.

Следующие элементарные рассуждения позволяют понять раз-Следующие элементоримым светом (нулевой максимум) и рассеян-

Рис. 15.10. Схема наблюдения рефракционной структуры.

порядков).

Представим себе объект в виде однородной прозрачной среды. отдельные участки которой, будучи также прозрачными, слегка отличаются по показателю преломления (рефракционная структура). Объект освещен с помощью конденсора параллельным пучком света (рис. 15.10). Если бы различия в показателе преломления участка объекта и окружающей среды не было, то свет сквозь препарат прошел бы без отклонения, давая неотклоненную волну (*P*). При

Рис. 15.11. Образование дифрагировавшей волны D при наблюдении рефракционной структуры.

наличии указанного различия в показателе преломления часть света испытает рассеяние (дифракцию), давая отклонешную волну D, а большая часть S пройдет по первоначальному направлению (спектр нулевого порядка), но испытает по сравнению с волной Р некоторое смещение по фазе, например запаздывание, если показатель преломления этого участка больше, чем показатель преломления окружающей среды.

График на рис. 15.11 показывает этот небольшой сдвиг фазы между неотклоненной волной Р и «запоздавшей» волной S. Разность обенх воли и представляет собой дифрагировавшую волну D. Так как Р и S близки по амплитуде и немного отличаются по фазе, то, как легко видеть из графика или убедиться расчетом (см. упражнение 123), волна D будет иметь небольшую амплитуду и смещена

гл. ху. дифракционная теория инструментов

по фазе на $1/2\pi$ (на четверть волны) по отношению к S (а следовательно, и к P).

Рис. 15.12. Принцип метода фазового контраста. а — волны S и D в фазе; 6 — волны S и D противоположны по фазе.

Задержав S, мы получим микроскоп с темным полем, в котором структура уже может наблюдаться благодаря наличию дифрагировавшей волны D. Изменив же фазу S на $\pm^{1}/_{2\pi}$, мы заставим S и D складываться так, чтобы дать усиление по сравнению с P (если фазы S и D уравниваются) или ослабление по сравнению с P (если фазы S и D делаются противоположными), т. е. получаем более контрастное изображение, светлое или темное на окружающем поле (рис. 15, 12, a, б).

Так как S и D сильно отличаются по амплитуде, то для получения наибольшего контраста полезно с помощью поглощающего фильтра ослабить интенсивность S (а вместе с тем и P) до интенсивности D. Тогда интерференционный эффект даст заметное усилености D. Тогда интерференционный эффект даст заметное усилекие или почти полное ослабление в изображении объекта на фоне, ине или почти полное ослабление в изображении объекта на фоне, им пластинка, предназначенная для изменения фазы S на $+1/_{2}\pi$ или $-1/_{2}\pi$, обычно одновременно используется и для соответствующего ослабления S. Имея набор таких пластинок с разными коэффициентами ослабления, можно подобрать наивыгоднейшие практические условия наблюдения. Место расположения такой ослабляющей и изменяющей фазу пластинки нетрудно видеть из рис. 15.10. Если препарат освещен параллельным пучком, то неотклоненная волна

ГЕОМЕТРИЧЕСКАЯ (ЛУЧЕВАЯ) ОПТИКА

(S или P) собирается в фокальной плоскости объектива AA и далее (S или P) соонрастся в фости изображения ЕЕ. Дифрагировавшая расходится по всей плоскости изображения в Плонисти БР расходится по всен плоскости поста по в плоскости EE, которая (отклоненная) волна D дает изображение в плоскости EE, которая (отклоненная) волна с плоскостью объекта по отношению к объективу микроскопа.

в фокальной плоскости объектива АА и должна быть расположена фазовая пластинка, ослабляющая S (н P) и сообщающая добавочную разность фаз.

Фазовая пластинка представляет собой пластинку из прозрачного материала, имеющую соответствующее утолщение или утоньшение на месте нулевого максимума. Эта же часть пластинки покрывается поглощающим слоем с той или иной абсорбционной способностью.

Нулевой максимум есть изображение источника света, образуемое конденсором и объективом. Обычно источником служит днафрагма, расположенная в фокальной плоскости конденсора. Форма выреза этой диафрагмы и определяет форму нулевого максимума, а следовательно, и форму утолщения (утоньшения) фазовой пластинки. Из ряда соображений она делается обычно в виде небольшого кольца.

Описанный метод улучшения контрастности изображения прозрачных объектов получил название метода фазового контраста (Цернике, 1935 г.). Микроскопы, использующие метод фазового контраста, выпускаются промышленностью и широко применяются в биологических исследованиях.

§ 100. Дифракционные явления в спектрографах (хроматическая разрешающая сила)

Очень большое значение имеют дифракционные явления в спектрографах. Если узкая щель аппарата освещена небольшим удаленным источником света (т. е. почти параллельным пучком), то на объектив коллиматора падает очень узкий пучок света. В таком случае работала бы очень небольшая часть объектива, что соответствовало бы очень малой разрешающей способности его и, следовательно, могло бы повести к нерезкому изображению щели на фотопластинке. Однако на щели происходит дифракция света, ведущая к тому, что коллиматор заполняется светом в соответствии с размерами щели.

При узкой щели апертура коллиматорного объектива должна быть достаточно велика для того, чтобы объектив пропускал как центральный максимум дифракционной картины, так и достаточное число побочных максимумов; вследствие неизбежного дифрагмирования высших дифракционных максимумов изображение щели окажется более или менее расширенным, и притом тем больше, чем меньше апертура коллиматорного объектива. Обычно, однако,

гл. хv. дифракционная теория инструментов

объективы спектрографа (и коллиматорный, и камерный) делаются большего размера, чем поперечное сечение призменной системы. Поэтому главную роль в дифракционном расширении изображения щели играет ограничение, обусловливаемое призмой. С другой стороны, призменная система благодаря значительной дисперсии

приводит к тому, что фронт немонохроматической падаюшей плоской волны после прохождения призмы поворачивается для разных длин волн на разный угол, приводя к образованию призматического спектра (Ньютон). Угловое расстояние между близкими длинами лвумя волн, обусловленное дисперразличить сией, позволяет их, пока дифракционное расширение изображения линий вызовет их достаточно не

Рис. 15.13. Распределение интенсивности при наложении двух близких спектральных линий.

полного перекрытия. Таким образом, дифракция и в этом случае накладывает ограничения на способность спектрального аппарата различать близкие длины волн, т. е. кладет предел *хроматиче*ской разрешающей способности аппарата.

Распределение интенсивности при наложении двух близких монохроматических линий одинаковой интенсивности изображено схематически на рис. 15.13 сплошной линией.

Возможность различения в этой картине двух дискретных длия волн до известной степени условна (ср. §§ 50, 96). Согласно Рэлею

Рис. 15.14. К расчету разрешающей силы спектрографа.

две линни считаются разрешенными, если расстояние между их максимумами A_1A_2 , выражаемое в угловой мере через *i*, больше или равно расстоянию от максимума до ближайшего минимума (угловое расстояние φ), т. е. $l \ge \varphi$. Разрешающей способностью аппарата называют величину $\mathscr{A} = \lambda/\delta\lambda$, где $\delta\lambda$ — различие в длинах

ГЕОМЕТРИЧЕСКАЯ (ЛУЧЕВАЯ) ОПТИКА

волн двух ближайших линий, удовлетворяющих приведенному

ше условию. Для простоты расчетов ограничимся наиболее употребительным выше условню. для простоты расслова призма стоит в положении минимального расположением, когда призма стоит в положении минимального расположением, почак света внутри призмы идет параллельно отклонения, т. е. пучок света внутри призмы идет параллельно отклонения, На рис. 15.14 АоВо означает положение волнового фронта для обенх длин волн до падения на призму, стоящую в полофронта для осена для воли до наделина на привачу, стоящую в поло-жении минимального отклонения, а A_1B_1 и A_2B_2 — положения вол-новых фронтов для λ_1 и λ_2 после преломления. Угол *i* есть угол между А1В1 и А2В2.

Из рис. 15.14 следует, что

$$i \approx \operatorname{tg} i = \frac{B_1 B_2 - A_1 A_2}{A_2 B_2},$$

IIO .

$$A_1 A_2 = l_2 (n_1 - n_2) = l_2 0 n,$$

$$B_1 B_2 = l_1 (n_1 - n_2) = l_1 \delta n,$$

где l₁ и l₂ — длины пути в верхней и инжней частях призмы и $\delta n = n_1 - n_2$ — разность показателей преломления для λ_1 и λ_2 , ибо фронт волны λ1 отстает от фронта λ2 вследствие запаздывания в веществе призмы, обусловленного различием в показателях преломления n1 и n2 и толщиной проходимого слоя призмы.

Таким образом, $(l_1 - l_2)$ бл есть разность хода между волнами λ_1 и λ₂, возникающая вследствие дисперсии в толще призмы на длине $(l_1 - l_2)$. Обозначив ширину светового пучка $A_0B_0 = A_2B_2$ через h, найдем

$$i=\frac{l_1-l_2}{h}\,\delta n.$$

Ширина пучка h определяет дифракционное расширение линии. Так как λ₁ и λ₂ близки между собой, то это расширение для обеих линий можно считать одинаковым и определяемым из условия $h \sin \varphi = \lambda (\varphi - yroл дифракции) или$

$$\varphi = \lambda/h$$
.

Итак, условне разрешения двух линий, близких к λ, гласит:

или

$$\lambda = \delta n (l_1 - l_2)$$

 $i = \varphi$

Наиболее благоприятен случай, когда пучок света захватывает есю призму. При этом $l_2 = 0$ и $l_1 = b$, где b — ширина основания,

(100.1)

гл. ху. дифракционная теория инструментов

вдоль которого идет свет при минимуме отклонения. Для этого случая

$$\lambda = b \delta n \quad \text{H} \quad \mathscr{A} = \frac{\lambda}{\delta \lambda} = b \frac{\delta n}{\delta \lambda}. \tag{100.2}$$

Таким образом, хроматическая разрешающая способность призмы равна произведению ее основания на относительную дисперсию показателя преломления.

В случае спектрографов с несколькими призмами из одного материала ($\delta n/\delta \lambda$ одинаково) *b* равно сумме оснований всех призм. Так, небольшой трехпризменный спектрограф ИСП-51, каждая из призм которого имеет основание около 7 см, в фиолетовой части спектра, где дисперсия $\delta n/\delta \lambda = 0,0001$ нм⁻¹, имеет теоретическую разрешающую силу $\mathscr{A} = 20000$, т. е. на приборе нельзя разрешить две фиолетовые линии, различающиеся меньше чем на 0,02 нм. Реальная разрешающая сила несколько ниже из-за блияния кокечной ширины щели, а также вследствие несовершенства оптики спектрографа и зернистой структуры фотоэмульсий.

ПОЛЯРИЗАЦИЯ СВЕТА

Глава XVI

ЕСТЕСТВЕННЫЙ И ПОЛЯРИЗОВАННЫЙ СВЕТ

§ 101. Поперечность световых волн

При изучении явлений интерференции и дифракции вопрос о том, являются ли световые волны продольными или поперечными. имел второстепенное значение (см. § 18).

Из электромагнитной теории света вытекает непосредственно. что световые волны поперечны. Действительно, вся совокупность законов электромагнетизма и электромагнитной индукции, краткое математическое выражение которой заключено в уравнениях теории Максвелла, приводит к выводу, что изменение во времени электрической напряженности Е сопровождается появлением переменного магнитного поля Н, направленного перпендикулярно к вектору Е, и обратно. Такое переменное электромагнитное поле не остается неподвижным в пространстве, а распространяется со скоростью света вдоль линии, перпендикулярной к векторам Е и Н, образуя электромагнитные, в частности световые, волны. Таким образом, три вектора: Е, Н и скорость распространения волнового фронта о взаимно перпендикулярны и составляют правовинтовую систему; т. е. электромагнитная волна поперечна *).

Если заданы направление распространения и направление одного из векторов, например E, то направление другого (H) определяется однозначно. Однако крест векторов Е и Н может быть произвольно ориентирован относительно направления распространения волнового фронта (или луча).

В каждом отдельном случае имеется та или иная ориентация векторов Е и Н по отношению к волновой нормали и она (или луч) не является осью симметрии электромагнитных волн. Такая асим-

•) См. сноску на стр. 41. Направление распространения потока энергии (вектора Умова – Пойнтинга) совпадает с направлением волновой нормали в средах оптически изотропици. В слово с направлением волновой нормали в средах оптически изотропных. В средах анизотропных, несовпадение между волновой нормалью и лучом имеет принципиально важное значение. В дан-ной главе нет различия между направлениями волновой нормали и луча.

метрия характерна для поперечных еоли, продольные же волны всегда симметричны по отношению к направлению распространения. Таким образом, асимметрия относительно луча и является одним из признаков, который отличает поперечную волну от продольной. Этот признак и был использован для экспериментального доказательства поперечности световых волн задолго до того, как была установлена их электромагнитная природа, делающая эту поперечность самоочевидной.

Орудием опытного исследования асимметрии может, очезидно, служить только система, которая в свою очередь обладает свойством асимметрии. Такой системой, пригодной для исследования свойств светового луча, может служить кристалл, атомы которого располагаются в виде пространственной решетки так, что свойства кристалла по различным направлениям оказываются различными (анизотропия). И действительно, прохождение света через кристаллы и было первым явлением, послужившим к установлению полеречности световых волн.

Еще Гюйгенс (1690 г.), изучая открытое Бартолином (1670 г.) свойство исландского шпата раздваивать проходящие через него световые лучи (двойное лучепреломление), нашел, что каждый из полученных таким образом лучей ведет себя при прохождении через второй кристалл исландского шпата иначе, чем обычные лучи; а именно, в зависимости от ориентации кристаллов друг относительно друга каждый из лучей, раздваиваясь во втором кристалле, дает два луча различной интенсиености, а при некоторых оркентировках — только один луч (интенсивность другого падает до нуля). Гюйгенс не нашел озъяснения открытому им явлению. Ньютон (1704 г.), обсуждая открытие Гюйгенса, обратил внимание на то, что здесь проявляются основные свойства света («изначальные», как называет их Ньютон), в силу которых луч имеет как бы четыре стороны, так что направление, соединяющее одну пару сторон, неравноправно с перпендикулярным направлением. В силу этсго Ньютон видел в световых корпускулах некоторое внешнее сходство с магнитиками, обладающими полюсами, благодаря чему напразление вдоль магнитика неравноправно с перпендикулярным направлением.

Много лет спустя Малюс (1808 г.), открывший сходные особенности в свете, отраженном от стекла, ввел для обозначения их термин поляризация, по-видимому, под влиянием ньютонова представления.

После установления волновой природы света явление поляризации света подверглось дальнейшему тщательному изучению. Опыты Френеля и Араго по интерференции поляризованных лучей (1816 г.) побудили Юнга высказать догадку о поперечности световых волн. Френель, независимо от Юнга, также выдвинул концепцию поперечности световых воли, всестороние обосновал се мисгочис-

поляризация света

ленными важными опытами и положил в основу объяснения явления поляризации света и двойного лучепреломления в кристаллах.

поляризации связанные с этим, состояли в том, что поперечные Трудности, связанные с этим, состояли в том, что поперечные колебания и волны не могут иметь места в жидкостях и газах. Упругие же колебания в твердых телах еще не были исследованы к тому времени. Учение Френеля о поперечных световых волнах к тому времени. Учение Френеля о поперечных световых волнах пало толчок к исследованию свойств упругих твердых тел. Применение полученных знаний к оптике повело к ряду принципиальных затруднений, связанных с несовместимостью механических законов колебаний упругой среды и наблюдаемых на опыте законов оптических явлений. Эти затруднения были устранены только с появлеинем электромагнитной теории света. Однако для интересующего нас вопроса о поперечности световых волн механические теории света дали очень много, и плодотворность их для того времени стоит вне сомнения.

§ 102. Распространение света через турмалии

Произведем следующий опыт. Вырежем из кристалла турмалина пластинку T₁ (рис. 16.1), плоскость которой будет параллельна одному из определенных направлений кристаллической решетки,

Рис. 16.1. Прохождение света через две пластинки турмалина.

называемому осью, и направим сквозь пластинку свет перпендикулярно к поверхности-пластинки.

Вращая кристалл вокруг направления светового луча, мы не заметим никаких изменений в интенсивности света, прошедшего через турма-

лии, хотя последний ослабит исходный световой пучок в два раза. Таким образом, световая волна, падающая на турмалин от общиного источника света (например, от электрической дуги L), не обнаруживает асимметрии по отношению к направлению своего распространения. Однако, если поставить на пути луча еще вторую аналогичную пластинку турмалина T_2 , расположенную параллельно первой (см. рис. 16.1), то картина осложняется.

В зависимости от того, как ориентированы друг относительно друга обе пластинки, меняется интенсивность проходящего через них света. Интенсивность оказывается наибольшей, если оси обенх пластинок параллельны; она равна нулю (свет полностью задерживается), если оси пластинок перпендикулярны, и имеет промежуточное значение при промежуточных положениях пластинок. Опыт показывает, что интенсивность пропорциональна cos² α, где α угол между осями обеих пластинок.

Полное объяснение наблюдаемым явлениям можно дать, если слелать следующие гипотезы. Во-первых, предположим, что светосделать следания поперечны, но в свете, исходящем из источника, нет вые возметвенного направления колебаний, т. е. есе направления преимущество перпендикулярные к направлению волны, представлены в падающем свете. Этим объясняется первый опыт, несмотря на допущение поперечности световых волн. Во-вторых, примем, что турмалин пропускает лишь волны, один из поперечных векторов которых, например, электрический, имеет слагающую, параллельную оси кристалла. Именно поэтому первая пластинка турмалина ослабляет исходный световой пучок в два раза. При прохождении световой волны через такой кристалл будет пропущена только часть световой энергии, соответствующая этой слагающей. Когда на кристалл падают электромагнитные световые волны со всевозможными ориентациями электрического вектора, то сквозь него пройдет лишь часть света (половина), так что за кристаллом окажутся волны. направление электрического вектора которых параллельно оси кристалла. Кристалл, таким образом, еыделяет из света со всевозможными ориентациями Е ту часть, которая соответствует одному определенному направлению Е. Мы будем в дальнейшем называть свет со всевозможными ориентациями вектора Е (и, следовательно, Н) естественным светом, а свет, в котором Е (а, следовательно, и Н) имеет одно-единственное направление, - плоскополяризсванным, или линейно-поляризованным. Таким образом, турмалин превращает естественный свет в линейно-поляризованный, задерживая половину его, ссответствующую той слагающей электрического вектора, которая перпендикулярна к осн кристалла.

Теперь становятся понятными второй опыт и роль второго кристалла турмалина. До него доходит уже полярнзованный свет. В зависимости от ориентации второго турмалина из этого поляризованного света пропускается большая или меньшая часть, а именко та часть, которая соответствует компоненте электрического вектора, параллельной оси второго кристалла. Так как электрический вектор волны, прошедшей первый турмалин, имеет по предположению направление, параллельное оси первого кристалла, то амплитуда света, пропущенного вторым турмалином, будет пропорциональна $\cos \alpha$ (α — угол между осями обенх пластинок), а интенсивность пропорциональна $\cos^2 \alpha$, что и наблюдается на опыте.

В рамках этих гипотез естественный свет является или линейнополяризованным светом, направление колебаний которого быстро в совершенно хаотически меняется с течением времени, или же смесью линейно-поляризованных лучей со всевозможными направлениями колебаний.

Мы до сих пор говорили о направлении электрического вектора, параллельного оси турмалина, только для определенности. Рассуждения сохранили бы свою силу, если бы оси турмалина был параллелен магнитный вектор. Впоследствии мы опишем опыты, параллелен магнитным вситор отановлено, что в проходящем через при помощи которых обла у осн ориентирован именно электрический вектор (см. ниже § 104).

и вектор (См. поле з расположен электрический вектор, назы. Плоскость, в которой расположен электрический вектор, назы. Плоскость, в колебания поляризованного света, а плоскость, вазывают плоскостью колебания натичный вектор, иногла называют вают плоскостью полеконтный вектор, иногда называют плоскость, в которой расположен магнитный вектор, иногда называют плосков которои расположи. Эта двойная терминология — плоскость коле-стью поляризации. Эта двойная спожилась историисть стью поляризации — сложилась исторически при раз. оания и плоскосто попрета и, несмотря на ее неудобства, до сих пор сохранилась во многих книгах. Описание явлений выигрывает в простоте и ясности, если ограничиться указанием лишь одного направления, например направления колебания электрического вектора, т. е. плоскости колебания — по старой терминологии. В дальнейшем везде, где не будет специальных оговорок, мы под направлением колебания будем всегда подразумевать направление электрического вектора.

Описанный опыт с двумя кристаллами турмалина, по существу дела, не отличается от опыта, впервые выполненного Гюйгенсом с двумя кристаллами исландского шпата. Основное отличие турмалина, выгодное для описанного опыта, состоит в том, что турмалин, будучи также двоякопреломляющим кристаллом, весьма сильно поглощает один из двух преломленных лучей, так что практически тонкая пластинка турмалина пропускает только один из двух преломленных лучей.

Таким образом, явление для наблюдателя кажется проще, ибо внимание не отвлекается вторым лучом, как это имеет место при использовании исландского шпата.

§ 103. Поляризация при отражении и преломлении света на границе двух диэлектриков

Явление поляризации света, т. е. выделение световых воли с определенной ориентацией электрического (и магнитного) вектора, имеет место и при отражении или преломлении света на границе двух изотропных диэлектриков. Этот способ поляризации был открыт Малюсом, который случайно заметил, что при поворачивании кристалла вокрыт случайно заметил, что при поворачивания кристалла вокруг луча, отраженного от стекла, интенсивность света периодически возрати страженного от стекла, интенсивность света периодически возрастает и уменьшается, т. е. отражение от стекла действует на свет полоби действует на свет подобно прохождению через турмалин. Правда, при этом не происходите и рокождению через турмалин. при этом не происходило полного погасания света при некоторых определенных полото полного погасания света при некоторых его определенных положениях кристалла, а наблюдались лишь его усиление и ослаблениях усиление и ослабление.

Явление поляризации при отражении и его законы можно изучить следующим образом. Пусть параллельный пучок естественного света (рис. 16.2) палает из света (рис. 16.2) падает на стеклянное зеркало S₁S₁, укрепленное

на оси O при помощи шарнира. Благодаря такому устройству мы можем при любом угле падения направить ось O вдоль отраженного луча и обеспечить таким образом возможность вращения вокруг него зеркала. Отраженный свет исследуется при помощи пластинки турмалина T_2 , также способной поворачиваться вокруг отражен-

ного луча. Глаз наблюдателя при поворачивании T₂ видит ослабление и усиление света.

Понятно, можно обратить опыт, т. е. обменять местами источник света и глаз наблюдателя и использовать стеклянное зеркало в качестве анализатора.

Можно, коћечно, обойтись и без турмалина, а использовать два стеклянных зеркала, из которых одно, S₁S₁, s, s, s,

S₁S₁ — стеклянное зеркало, поляризующее лучи света; Т₂ — пластинка турмалина, служащая анализатором.

ла, из которых одно, S₁S₁, служит поляризатором, а второе, S₂S₂, — анализатором. На рис. 16.3 показана схема такого прибора. Зеркало представляет собой просто пластинку стекла, не по-

крытую тонким слоем металла, в противоположность зеркалам, применяемым в быту. Наличие металлического слоя испортило

Рис. 16.3. Схема прибора для исследования поляризации при отражении, в котором в качестве поляризатора и анализатора служат стеклянные зеркала S₁S₁ и S₂S₂.

бы опыт, так как отражение от металла происходит иначе, чем здесь описано (см. гл. XXV). В обычном стекле наблюдается отражение света как от передней, так и от задней поверхности; для удобства применяют нередко стекло, закрашенное с одной стороны черной краской, или непрозрачное (черное) стекло. Можно применять также какой-либо другой полированный диэлектрик, например мрамор.

В опытах, схемы которых изображены на рис. 16.2 и 16.3, интенсивность света доходит до *минимума*, когда плоскость, проходящая через ось кристалла турмалина T_2 , параллельна плоскости падения на зеркало S₁S₁ или когда плоскости падения на зеркала S₁S₁ на зеркало S₁S₁ или когда посслови интенсивность зеркала S₁S₁ и S₂S₂ перпендикулярны друг к другу. Интенсивность достигает и S₂S₂ перпендикулярны друг к другу. Интенсивность достигает максимума при повороте T₂ или S₂S₂ на 90°. Таким образом, поля. максимума при поворото и при отражении от диэлектрика, поля-ризация света, наблюдаемая при отражении от диэлектрика, ока, ризация света, насплодаетиенной, т. е. отраженный луч предста. зывается неполной, или частичной, т. е. отраженный луч предста. зывается неполнои, или сенного света с некоторой частью поляривляет собон смесь сстепления угол наклона зеркала S₁S₁ к лучу, мы зованного света. поляризованного света зависит от величины убеждаемся, что доля поляризованного света зависит от величины убеждаемся, что доля поляризованугла падения у, при спределениюм его значении отраженный ного света растел, и при поляризованным. Величина этого угла полной поляризации забисит от относительного показателя преломления п и определяется, как установил Брюстер (1815 г.), соотношением

$$\operatorname{tg} \varphi_0 = n \tag{103.1}$$

(закон Брюстера). При дальнейшем увеличении угла падения доля поляризованного света вновь уменьшается. Нетрудно показать, что при падении под углом полной поляризации луч отраженный и луч преломленный составляют прямой игол друг с другом (см. упражнение 141).

Что же касается направления колебания в свете, поляризованном при отражении, то исследование (см. § 104) показывает, что электрический вектор в отраженном свете в случае полной поляризации колеблется перпендикулярно к плоскости падения. При частичной поляризации это направление колебаний является преимущественным, хотя в частично поляризованном свете представлены колебания и других направлений.

Проанализировав преломленный свет, мы убедимся, что он также частично поляризован, и притом так, что колебания происходят преимущественно в плоскости падения. Соединяя свет отраженный и преломленный, мы вновь получаем первичный неполяризованный пучок. Таким образом, пластинка прозрачного диэлектрика сортирует лучи естественного света, отражая по преимуществу лучи с одним направлением колебания и пропуская перпендикулярные колебания. Доля поляризоганного света в преломленном пучке зависит от угла падения и от показателя преломления ве-

При падении под углом Брюстера поляризация преломленных лучей максимальная, но далеко не полная (для обычного стекла она составляет очого не далеко не полная (для обычного стекла). она составляет около 15%). Если преломленные и, следовательно, частично поляризовательно, третьему частично поляризованные лучи подвергнуть второму, третьему и т. д. предомленные лучи подвергнуть второму, ит. д. преломлениям, то, конечно, степень поляризации преломленных лучей возрастает.

Если имеется 8—10 пластинок (стопа Столетова), то при падении углом Брюстера под углом Брюстера и прошедший, и отраженный пучки практи-

гл. XVI. ЕСТЕСТВЕННЫЙ И ПОЛЯРИЗОВАННЫЙ СВЕТ

чески окажутся вполне поляризованными. Интенсивности отраженного и прошедшего пучков будут равны между собой и составят каждая половину интенсивности падающего (если можно пренебречь поглощением в стекле). Направления же колебания электрических векторов в отраженном и прошедшем пучках будут взаимно перпендикулярны. Такая группа пластинок, именуемая столой, может, следовательно, служить в качестве поляризатора или анализатора как в отраженном; так и в проходящем свете.

Полное решение вопроса о *доле* поляризованного света, наблюдаемого при отражении и преломлении на границе двух диэлектриков, в зависимости от угла падения изложено ниже, в гл. ХХИИ, где даются так называемые формулы Френеля, из которых следует, в частности, и закон Брюстера.

§ 104. Ориентация электрического вектора в поляризованном свете

Мы до сих пор говорили о направлении электрического вектора, приняв без доказательств, что направление его при поляризации отражением перпендикулярно к плоскости падения, а при поляризации турмалином совпадает с осью турмалина. Винеру удалось осуществить опыты, дающие доказательство этого утверждения.

Рис. 16.4. Модификация опыта Винера.

Раньше (см. § 23) были описаны опыты того же автора, показавшие, что фотографическое действие оказывает электрический вектор световой волны (поэтому его называют световым вектором). Специальная модификация опыта со стоячими волнами позволила решить вопрос о направлении электрического вектора в поляризованном свете.

Заставим линейно-поляризованный свет падать под углом, точно равным 45°, на металлическое зеркало *M* (рис. 16.4, *a*), поверх которого налит слой светочувствительной эмульсии *P*. Таким образом, оно представляет собой фотографическую пластинку с зеркальной подслойкой *). Легко видеть, что нужно ждать различных резуль-

•) При рассмотрении этих опытов можно считать, что отражение от металла существенно не влияет на характер поляризации света. Более тонкие эффекты при отражении от металла будут рассмотрены позже.

татов в зависимости от того, будет ли световой (электрический) татов в зависимости от когс, сулярно к плоскости падения или вектор орнентирован перпендикулярно к плоскости падения или вектор орнентирован перпендикулярно к плоскости падения или вектор орнентирован перисидикунирно и плоскости падения или будет лежать в этой плоскости. В первом случае (см. рис. 16.4, о будет лежать в этон иноскости. В перети случае (см. рис. 16.4, б) при отражении света электрический вектор сохранит направление, при отражении света электри следовательно, падающая и отражение, параллельное самому себе, и, следовательно, падающая и отражен. параллельное самому ссос, и, опражен. начало стоячим волны могут интерферировать, давая начало стоячим волнам ная волны могут интерферировать, давая начало стоячим волнам ная волны могут интерферировением узлов и пучностей и с соотс пространственным распределением выделившегося серебра (cp. § 23).

. § 25). Если же электрический вектор лежит в плоскости падения, то при отражении он поворачивается вместе с фронтом волны на 90° при огражении он недеренские векторы в падающей и отраженной еолнах составляют между собой прямой угол (рис. 16.4, в), так что интерференция между ними невозможна. Результирующая электон. ческого вектора во всей толще эмульсии сохраняет неизменное значение. и слоистого отложения серебра не наблюдается. Таким образом. можно решить, как ориентирован электрический вектор в направленном на зеркало М поляризованном свете, и, следовательно, установить направление электрического вектора для различных конкретных случаев поляризации. Эти опыты показали, что в случае поляризации турмалином электрический вектор имеет направление, параллельное оси турмалина; в случае поляризации при отражении от диэлектрика он лежит в плоскости, перпендикулярной к плоскости отражения (падения): в случае преломления диэлектриком - в плоскости преломления (падения) и т.д.

§ 105. Закон Малюса

Действие различных поляризующих или анализирующих приборов, рассмотренных выше (турмалин, стеклянное зеркало, стопа и т. д.), типично для всех приспособлений этого рода. Направления ния колебаний электрического (магнитного) вектора естественного света всегда «сортируются» этими приборами так, что в один пучок отбирается преимущественно (или сполна) излучение с одним направлением оточно (или сполна) излучение с одним направлением электрических колебаний, а в другой — излучение с перпентики в с перпентики с перипики с с перпендикулярным направлением электрических колебаний. Смешение обонх пучков вновь дает естественный свет. Иногда явление исколько ословить Ков претерлевает бол обстоятельством, что один из этих пучков претерпевает более или менее полное поглощение (турмалин, непрозрачный виссолее или менее полное поглощение (турмалин, непрозрачный диэлектрик). Два взаимно перпендикулярных напраеления колебаний в двух пучках, образующихся при поляризации, спределяются физиках, образующихся при поляризации, спределяются физическими особенностями примененного поляри-затора; в случае типескими особенностями примененного поляризатора; в случае турмалина (и других кристаллов) они определены строением кристалла. строением кристалла, в случае зеркала — направлением плоскости падения и т. д. Эти изблагие зеркала — направлением плоскости падения и т. д. Эти избранные направления можно назвать глав. ными плоскостями P_1 и P_2 , причем $P_1 \perp P_2$.

гл. XVI. ЕСТЕСТВЕННЫЙ И ПОЛЯРИЗОВАННЫЙ СВЕТ

Если естественный свет проходит через деа поляризующих прибора, соответствующие плоскости которых образуют между присора, со ф, то интенсивность света, пропущенного такой систесоюй угот чу пропорциональна соз² ф. Закон этот был сформулирован мой, будет противности и подтвержден тщательными фотометрическими малюсом расо, который построил на этом принципе фотометрическими измереннями Араго, который построил на этом принципе фотометр. измеренили и ринципе фотометр. Небезынтересно заметить, что Малюс вывел свой закон, основываясь на корпускулярных представлениях о свете. С волновой точки зрения закон Малюса представляет собой следствие теоремы разложения векторов и утверждения, что интенсивность света пропорциональна квадрату амплитуды световой волны. Таким образом. закон Малюса может рассматриваться как непосредственное экспериментальное доказательство данного утверждения. Закон Малюса лежит в основе расчета интенсивности света, прошедшего через поляризатор и анализатор во всевозможных поляризационных приборах.

§ 106. Естественный свет

В заключение еще раз сопоставим определения естественного и поляризованного света. Естественный свет есть совокупность световых волн со всеми возможными направлениями колебаний, быстро и беспорядочно сменяющими друг друга; совокупность эта статистически симметрична относительно волновой нормали, т. е. характеризуется неупорядоченностью направлений колебаний.

Линейно- или плоскополяризованный свет представляет собой световые волны с одним-единственным направлением колебаний (единственный крест *E* и *H*), т. е. волны с вполне упорядоченным направлением колебаний. Существуют и более сложные виды упорядоченных колебаний, которым соответствуют иные типы поляризации, например круговая или эллиптическая поляризации, при которых конец электрического (и магнитного) вектора описывает круг или эллипс с тем или иным эксцентриситетом (см. ниже гл. XVIII).

Частично поляризованный свет характеризуется тем, что одно из направлений колебаний оказывается преимущественным, но не исключительным. Волновая нормаль уже не является прямой, по отношению к которой направления колебаний электрического (магшитного) вектора статистически равновероятны в плоскости, нормальной к этой прямой. Частично поляризованный свет можно рассматривать как смесь естественного и поляризованного.

Большинство источников (раскаленные тела, светящиеся газы) испускает свет, близкий к естественному, хотя некоторые следы поляризации почти всегда наблюдаются, что объясняется излучением более глубоких слоев вещества. Это излучение проходит через некоторый слой и испытывает частичную поляризацию, подобную возникающей при прохождении через слой диэлектрика.

поляризация света

Есть все основания полагать, что свет, испускаемый какимлибо атомом, сохраняет характер поляризации неизменным на протяжении времени, довольно длительного по сравнению с периодом колебания. Действительно, интерференция световых пучков (даже излучаемых не лазерами) может происходить при очень большой разности хода (до миллиона длин еолн), когда, следовательно, интерферируют мєжду ссбой еолны, испущенные в начале и в конце временного интервала, охватывающего миллион колебаний. Возможность возникновения при этом интерференции доказывает, что состояние поляризации сохраняется на протяжении большого числа колебаний. Таким сбразом, излучение *отдельных* атомов может при благоприятных обстоятельствах (разреженный газ) сохранить неизменной не только начальную фазу, но и ориентацию колебаний в течение довольно длительного времени (~10⁻⁸ с).

Однако нам одновременно приходится наблюдать излучение огромного числа атомов, посылающих различно поляризованный свет. Кроме того, и каждый атом после нескольких сотен тысяч колебаний начинает испускать свет с новым состоянием поляризации. Таким образом, обычно наблюдаются множество всех возможных ориентаций *E* и *H* и быстрая смена этих ориентаций, что и представляет собой естественный свет. Пока свет дойдет от излучающих атомов до наблюдателя, он может претерпеть ряд воздействий, вносящих некоторую поляризацию, которой мы обычно почти не замечаем. Только при специальных условиях наблюдения (свет, рассеянный атмосферой; свет, отраженный водной поверхностью, и т. д.) доля поляризованного света может заметно возрасти.

Глава XVII

поляризация при двойном лучепреломлении *)

§ 107. Двойное лучепреломление и поляризация света при прохождении через кристалл исландского шпата

Исландский шпат представляет собой разновидность углекислого кальция (CaCO₃), кристаллизующуюся в виде кристаллов гексагональной системы. Он обладает чрезвычайно ярко выраженным двойным лучепреломлением. Так как кристаллы исландского шпата встречаются в природе в виде довольно больших и оптически чистых образцов, то неудивительно, что именно на этом объекте было впервые наблюдено явление двойного лучепреломления и открыта свя-

•) В настоящей главе излагаются лишь предварительные сведения о прохождении света через кристалл исландского шпата, необходимые для понимания поляризации спета. Полробнее вопрос о прохождении свега через кристаллы рассматривается в гл. XXVI. заиная с ним поляризация света. И до настоящего времени исландский шпат является наилучшим материалом для изучения и демонстрации этих явлений, а также для изготовления оптических приборов, использующих поляризацию света, хотя в настоящее время известно очень большое количество естественных и искусственных кристаллов с подобными

свойствами.

Кристалл исландского шпата легко выкалывается в виде ромбоэдра, причем ромбы, его ограничивающне, имеют углы 101°52' и 78°08' (рис. 17.1). Если на такой кристалл падает узкий пучок света, то, преломляясь, он дает два

Рис. 17.1. Прохождение света через кристаля исландского шпата (деойное лучепреломление).

пучка несколько различного направления. Если падающий пучок достаточно узок, а кристалл достаточно толст, то из него выходят два пучка, параллельных первоначальному (как при всяком прохождении через плоскопараллельную пластинку), вполне разделенных пространственно.

Рис. 17.2. Двойное лучепреломление света, падающего нормально к естественной грани кристалла исландского шпата.

Даже в том случае, когда первичный пучок нормален к естественной грани кристалла, т. е. угол падения равен пулю, преломленный пучок разделяется на два, причем один из них представляет продолжение первичного, а второй уклоняется (рис. 17.2) так, что угол преломления отличен от нуля.

Это обстоятельство, равно как и ряд других отступлений от обычных законов преломления, о которых речь пойдет ниже, дали повод назвать второй из этих лучей необыкновенным (е), сохраняя за первым название обыкновенного (э). Различие в отклонении обоих лучей показывает, что по отношению к ним кристалл обладает разными показателями преломления. Исследуя явление при различных направлениях преломленных лучей внутри кристалла,

поляризация света

можно обнаружить, что в кристалле исландского шпата один из лучей (обыкновенный) имеет для всех направлений одно и то же значение показателя преломления, показатель же преломления другого луча (необыкновенного) зависит от направления.

В кристалле исландского шпата существует одно определенное направление, вдоль которого оба преломленных луча распространяются, не раздванваясь и с одной скоростью, как в обычной изотропной среде. Направление это составляет определенные углы с ребрами естественного кристалла; в случае куска кристалла, имеющего вид ромбоэдра, оно параллельно диагонали, соединяющей тупые углы ромбоэдра. Направление это принято называть оптической осью кристалла. Существование оптической оси у исландского

Рис. 17.3. а) Двойное лучепреломление не наблюдается при прохождении света вдоль оптической оси исландского шпата. б) Естественный кристалл исландского шпата, у которого сошлифованы две площадки, перпендикулярные к оптической оси.

шпата легко продемонстрировать на куске кристалла, на котором сошлифованы с двух сторон две плоскости, перпендикулярные к указанной диагонали (рис. 17.3, а и б). Пучок света, направленный перпендикулярно к этим сошлифованным плоскостям, пройдет сквозь кристалл, не раздваиваясь. Если сошлифованные плоскости достаточно велики, то можно убедиться, что направление, перпендостаточно велики, то можно убедиться, что направление, перпеноси. Другими словами, любая прямая, параллельная найденному направлению, служит оптической осью кристалла.

Таким образом, оптической осью кристалла. направление в кристалле, а не какую-то избранную линию, что вполне понятно, ибо отдельные участки кристалла должны облаского шпата можно провести Оптическую ось. Плоскость, проходящая через оптическую ось и волновую нормаль распространяюглавной плоскости.

гл. XVII. ПОЛЯРИЗАЦИЯ ПРИ ДВОЯНОМ ЛУЧЕПРЕЛОМЛЕНИИ 383

Рассмотрим несколько детальнее опыт, при котором световой пучок падает нормально на естественную грань кристалла. Главную плоскость проведем через падающий луч (через нормаль к крнсталлу). Опыт показывает, что внутри кристалла идут два луча, из которых один (обыкновенный) есть продолжение падающего, а второй (необыкновенный) отклонен и лежит вместе с первым в главной плоскости. Из кристалла выходят два луча, лежащих в главной плоскости и параллельных падающему, но смещенных друг относительно друга. При вращении кристалла вохруг направления падающего луча один из преломленных лучей будет неподвижным, второй будет обходить вокруг первого.

Если исследовать оба выходящих пучка при помощи турмалина или стеклянного зеркала, то обнаруживается, что оба они вполне поляризованы, и притом во взаимно перпендикулярных плоскостях. Колебания вектора **D** обыкновенной волны происходят перпендакулярно к главной плоскости, а необыкновенной — в главной плоскости. Свойства обоих лучей по выходе из кристалла, за исключением направления поляризации, конечно, ничем друг от друга не отличаются, так что название «необыкновенный» имеет смысл только внутри кристалла. Интенсивности обоих лучей одинаковы *), если на кристалл падал естественный свет.

Если один из пучков по выходе из первого кристалла заставить упасть нормально на грань второго кристалла, то мы опять получим два пучка, лежащих в главной плоскости еторого кристалла и поляризованных так же, как и раньше, по отношению к главной плоскости второго кристалла. Таким образом, направление поляризации зависит только от ориентации кристалла и не зависит от того, поляризован ли падающий на него свет или же он является естественным. Интенсивности обоих пучков будут, однако, в случае поляризованного падающего луча зависеть от угла α между направлением колебаний в падающем поляризованном луче и главной плоскостью второго кристалла. Действительно, во втором кристалле направление колебаний в необыкновенном луче, лежащих в главной плоскости второго кристалла, составит угол α с направлением колебаний в падающем поляризованном свете, а направление колебаний в обыкновенном луче образует с ним угол л/2 – а. Если амплитуда падающей на второй кристалл волны разна А, то амплитуды обенх волн, выходящих из кристалла, будут равны

^{*)} Напоминаем, что мы описываем явления, происходящие в кристалле исландского шпата. Они типичны для большой группы кристаллов, обладающих одной оптической осью и носящих название одноосных. Сложнее обстоит дело в так называемых двуосных кристаллах, где ни один из лучей нельзя назвать обыкновенным. Во многих одноосных и двуосных кристаллах поглощение сбеих распространяющихся в кристалле световых воли различно. Типичным представителем такого кристалла является турмалин, в котором обыкновенный луч практически полностью поглощается уже при толщине около 1 мм (см. § 108).

соответственно

 $a = A \sin \alpha$ (для обыкновенной волны), $b = A \cos \alpha$ (для необыкновенной волны),

а их интенсивности относятся как

$$\frac{I_o}{I_c} = \frac{a^2}{b^2} = \frac{\sin^2 \alpha}{\cos^2 \alpha} = \operatorname{tg}^2 \alpha.$$
(107.1)

Опыт полностью подтверждает эти расчеты. Если, например, расположить два кристалла один за другим и, задержав один из лучей, рассматривать на экране следы двух пучков I_o и I_e , на которые разобьется второй, то относительные интенсивности их будут зависеть от взаимной ориентации кристаллов. Поворачивая кристалл относительно обыкновенного луча на 360°, мы заставим обойти вокруг него пятнышко от необыкновенного луча, причем отношение их интенсивностей будет меняться в соответствии с формулой $I_o/I_e = tg^2 \alpha$ (см. упражнение 146).

§ 108. Поляризационные приспособления

В предыдущем параграфе мы упоминали, что показатели преломления кристаллов для обыкновенного и необыкновенного лучей неодинаковы. Так, для исландского шпата $n_o = 1,658$, а n_e может принимать в зависимости от направления луча в кристалле все значения между 1,486 и 1,658. Кристаллы, для которых, как и для исландского шпата, $n_e \leq n_o$, называют отрицательными. Кристаллы, для которых $n_e \geq n_o$ (например, кварц), носят название положительных.

На большом различии n_o и n_e основано применение исландского шпата для разделения лучей, поляризованных во взаимно перпендикулярных направлениях. Для этой цели можно воспользоваться кристаллом исландского шпата, поместив перед его гранью нсбольшую диафрагму (см. рис. 17.2). Задержав один из пучков, получим пучок, поляризованный по некоторому определенному направлению.

Однако гораздо удобнее применять не простые кристаллы, а ссответствующие комбинации их, носящие название поляризационных призм. Используются призмы двух типов: призмы, из которых выходит один пучок, поляризованный в какой-либо плоскости (поляризационные призмы), и призмы, дающие два пучка, поляризованных в двух взаимно перпендикулярных плоскостях (двоякопреломляющие призмы). Первые построены обычно по принципу ницы раздела, тогда как другой луч, с иным показателем преломленкя, проходит через границу (Николь, 1828 г.). Во-вторых, используется различие в показателях преломления обыкновенного и не-

гл. XVII. ПОЛЯРИЗАЦИЯ ПРИ ДВОЙНОМ ЛУЧЕПРЕЛОМЛЕНИИ 385

обыкновенного лучей, что позволяет развести их как можно дальше друг от друга. Наиболее употребительны следующие типы призм.

друг от друга изационные призмы. Призма николя представляет собой призму из исландского шпата, вырезанную, как указано на рис. 17.4. По линии АА' призма разрезается и склеивается канадским бальзамом, показатель преломления кото-

рого n = 1,550 лежит между значениями n_o и n_e для обыкновенного и необыкновенного лучей.

Оптическая ось составляет угол 48° со входной гранью. При подходящем угле падения на грань призмы обыкновенный луч претерпевает

Ряс. 17.4. Поляризационная призма Николя.

полное внутреннее отражение на прослойке канадского бальзама и поглощается зачерненной нижней гранью (в больших призмах во избежание нагревания призмы луч выводится из кристалла при помощи призмочки, приклеенной к кристаллу и показанной на рис. 17.4 пунктиром). Необыкновенный луч выходит из кристалла параллельно грани A'C. Наибольшая апертура светового пучка, при которой еще обеспечивается линейная поляризация выходящего из призмы света, равна 29°.

Рис. 17.5. Укороченная поляризационная призма с воздушной прослойкой.

Рис. 17.6. Поляризационная призма с лобовой гранью, перпендикулярной к ребрам.

Другие типы поляризационных призм, показанные на рис. 17.5 и 17.6, также изготовляются из исландского шпата. Пунктирная линия на рис. 17.5 указывает направление оптической оси. Обе половинки соединены воздушной прослойкой AA'; отношение ребер AC'/AC = 0.9. При подходящем угле падения света на призму луч обыкновенный претерпевает полное внутреннее отражение от воздушной прослойки, луч необыкновенный проходит через нее. Апертура падающего светового пучка, при которой свет, проходяций через призму, еще полностью поляризован, составляет всего 8°, что значительно менее выгодно, чем в случае призмы Николя; зато эта призма гораздо короче и, следовательно, дешевле (при задан-

13 - Ландсберг Г. С.

поляризация света

ком сечении). Кроме того, она может применяться для ультрафио. лета, так как не имеет склейки из канадского бальзама, поглощаю. щего ультрафиолетовый свет.

щего ультрафионстован сист на рис. 17.6, входная и выходная В призме, изображенной на рис. 17.6, входная и выходная грани срезаны перпендикулярно к ребрам, что обеспечивает большие удсбства в ее использовании. Оптическая ось параллельна AB. Склейка производится канадским бальзамом или глицерином. Существует довольно много подобных призм разного устройства.

При склейке глицерином (n = 1,474), который прозрачен для ближнего ультрафиолета, данные призмы следующие:

$$\alpha = 17^{\circ}20', AC'/AC = 3,2, a \pi p Typa 32^{\circ}6'.$$

Призма указанного типа делается и с воздушной прослойкой (Глан); ее данные: $\alpha = 50^{\circ}$, AC'/AC = 0,85, апертура 8°6'; она пригодна для ультрафиолета.

6. Д воякопреломляющие призмы. 1. Призма из исландского шпата и стекла (рис. 17.7). Оптическая ось перпендикулярна к плоскости чертежа, $n_o = 1,66$, $n_{\text{стекла}} = 1,49$, $n_e =$

= 1,486. Луч обыкновенный преломляется в шпате и стекле два раза и сильно отклоняется. Луч необыкновенный выходит почти без отклонения, так как показатель преломления стекла выбран близким к n_e.

2. Призмы из двух кусков исландского шпата с различным направлением оптических осей.

Устройство и действие их понятны из рис. 17.8. Различие в орнентировке оптических осей влияет на

угол расхождения между лучами. Допустимая апертура падающего пучка во всех этих призмах весьма невелика. Иногда двоякопреломляющие призмы делают из кварца; тогда, конечно, из-за меньшего различия между n_o и n_e углы разведения световых пучков o и e получаются значительно меньше.

в. Дихрончные пласти и ки. На ином принципе основаны поляризационные приспособления, простейшим представителем которых является турмалии. Турмалии представляет собой двоякопреломляющий кристалл, в котором один из лучей (обыкноиз пластинки турмалина оба луча, поляризованных во взаимно из пластинки турмалина оба луча, поляризованных во взаимно сивностью, и прошедший через нее свет оказывается частично полятурмалина, то в случае видимого света обыкновенный луч практи-

гл. XVII. ПОЛЯРИЗАЦИЯ ПРИ ДВОЙНОМ ЛУЧЕПРЕЛОМЛЕНИИ 387

чески целиком поглощается и вышедший свет будет плоскополяривованным.

Для некоторых участков видимого спектра и необыкновенный луч обнаруживает заметное поглощение, и поэтому турмалин при выбранной толщине оказывается окрашенным; турмалин является не только поляризатором, но и светофильтром, практически пропускающим зелено-желтую область видимого спектра. Это обстоятельство является, конечно, крупным недостатком турмалина как поляризующего приспособления, но, с другой стороны, допустимая апертура пучка падающих на него лучей весьма значительна. что иногда играет важную роль.

Рис. 17.8. Различные двоякопреломляющие призмы из исландского штата. а -- призма Рошона: угол между лучами о и е зависит от преломляющего угла призмы, луч о -- ахроматичен; б -- призма Сенармона: угол АСВ близок к 45°, что позволяет экономно использовать исходный кристалл, разрезав его вдоль оси СВ и склеивая вдоль естественной грани АС; в -- призма Волластона; она обеспечивает симметричное разведение лучей; угол между о и с примерно в два раза больше, чем в призме Рошона, но оба луча обнаруживают хроматизм.

Различие в поглощении лучей разной поляризации влечет за собой различие в поглощении естественного света в зависимости от направления его распространения, ибо от этого последнего зависит, ориентация электрического вектора волны относительно кристаллографических направлений. Такое различие в поглощенин, зависящее, кроме того, от длины волны, приводит к тому, что кристалл по разным направлениям оказывается различно окрашенным. Это явление носит название дихроизма (или, лучше, плеохроизма — многоцветности) и в большей или меньшей степени характеризует, по-видимому, все двоякопреломляющие кристаллы. Оно было открыто Кордье (1809 г.) на минерале, названном кордиеритом. Дихроизм турмалина был обнаружен Био и Зеебеком (1816 r.).

Особое значение приобрели дихрончные вещества в последнее время благодаря изобретению поляроидов. Поляронд представляет собой во ставляет собо собой пленку очень сильно дихрончного кристалла – герапатита (периодат в 1852 г. (периодат бисульфата хинина), полученного Герапатом в 1852 г. Чешуйка герапатита толщиной около 0,1 мм практически пацело поглошие поглощает один из лучей, являясь уже в таком тонком слое совершенным линейным поляризатором.

Было предложено несколько способов получения довольно больвыло предложено покрытых мелкими, одинаково ориентированших поверлюстен, попратита и представляющих, таким обраными кристалликами горинатися и прессольшой площадью. Листы зом, поляризационное приспоссоление с сондает имонцидно. листы целлулоида, обработанные по такому методу, были выпущены в продажу в 1935 г. под названием поляроидов. В настоящее время в продаму в 1900 г. под пасевидностей дихрончных пластии, изготовленных по типу поляроидов, с использованием как герапатита, так и других соединений, а также в виде больших (с линейным размером до 60 мм) кристаллических пластинок герапатита и т. д. Недостатком дихроичных пластин является меньшая по сравнению с призмами из исландского шпата прозрачность и некоторая ее селективность, т. е. зависимость поглощения от длины волны, так что современные поляроиды пропускают фиолетовую, а также красную области спектра поляризованными лишь частично. Эти недостатки, однако, для многих практических целей искупаются возможностью пользоваться в качестве поляронда дешевым поляризационным приспособлением не только с апертурой, близкой к 180°, но и с очень большой поверхностью (в несколько квадратных дециметров). Одно из применений поляроиды нашли в автодорожном деле для защиты шофера от слепящего действия фар встречных машин (см. упражнение 150).

Глава XVIII

интерференция поляризованных лучей

§ 109. Опыты Френеля и Араго и их значение для упругой теории света

Как уже упоминалось в § 18, интерференция двух когерентных волн осуществляется наиболее эффективно в том случае, когда направления колебаний во взаимодействующих пучках *совпадают*. Мы видели также, что метод Френеля получения двух когерентных пучков обеспечивает в обычных интерференционных опытах сохраиение состояния поляризации интерферирующих волн.

Возможность получения световых волн, поляризованных в любой плоскости, позволяет поставить вопрос о взаимодействии ьоли, колебания которых взаимно перпендикулярны. Основные опыты в этом направлении были выполнены Араго и Френелем (1816 г.). Они показали, что если в обычном интерференционном опыте на пути двух интерферирующих пучков поставить поляризаинонные устройства, обеспечивающие их взаимно перпендикулярссли повернуть одно из этих поляризационных устройств на 90°, в результате чего направления колебаний в обоих пучках совпадут, то интерференционная картина будет хорошо выявляться и мы увидим обычное распределение максимумов и минимумов. Интерференционные полосы видны и при промежуточных ориентациях поляризаторов, но с меньшей видимостью.

полярные и Араго, можно Опыт, аналогичный проделанному Френелем и Араго, можно осуществить следующим образом. В интерферирующие, одинаково поляризованные пучки введем дополнительные поляронды N_1 и N_2 *). Если N_1 и N_2 ориентированы так, что выделенные ими направления колебаний в обоих пучках совпадают, то наблюдается обычная интерференционная картина. Если же один из полярондов повернуть на 90°, то поле зрения станет однородным и никаких следов, чередования интенсивностей наблюдаться не будет. Интерференционная картина восстановится, если второй поляронд также повернуть на 90° (более сложные случаи см. § 148).

Историческое значение опытов такого типа весьма велико. Они показали, что при наложении двух когерентных волн, поляризованных во взаимно перпендикулярных направлениях, результирующая интенсивность равна сумме интенсивностей налагающихся волн. Но при сложении колебаний это имеет место, только если колебания строго перпендикулярны. Действительно, только тогда $A^2 = a^2 + b^2 (A - aмплитуда результирующего, а а н b - aмпли$ туды налагающихся колебаний). Таким образом, из опытов Френеля и Араго следует, что в случае световых волн, поляризованных во взаимно перпендикулярных направлениях, световые колебания строго перпендикулярны друг к другу. Это означает, что в световой волне полностью отсутствует продольная компонента. Такой сывод, естественный в рамках электромагнитной теории света, был сделан в свое время Юнгом и Френелем еще в рамках упругой теории света, но приводил тогда к очень серьезным трудностям. Предположения о существовании материальной среды, в которой возможно распространение строго поперечных колебаний и невозможно распространение продольных колебаний, несовместимы с представлением об обычной упругой среде (даже твердой), что заставило для понимания законов отражения и преломления света сделать допущения относительно граничных условий, несовместимые с механикой обычных сред.

Несмотря на указанную трудность, эти опыты и многочисленные экспериментально подтвержденные следствия, которые из них извлек Френель, заставили признать поперечность световых воли.

^{*)} Мы допускаем, что поляронды достаточно идентичны, чтобы не сообщать интерферирующим лучам добавочной разности хода. В противном случае необходимо ввести в ход лучей еще компенсирующие пластинки. Френель и Араго применяли в качестве поляризаторов тонкие стопы, сложенные из 15 листков слюды; пригодны также некоторые образцы агата, обладающие явно выраженным слоистым строением при достаточной прозрачности.

поляризация света

§ 110. Эллиптическая и круговая поляризация света

Отсутствие интерференционного чередования интенсивностей в опытах, аналогичных опытам Френеля и Араго, не означает, однако, что взаимодействие двух взаимно перпендикулярных световых колебаний не может приводить к доступным наблюдению на опыте изменениям в световом пучке.

Рассмотрим результат сложения двух когерентных световых волн, поляризованных в двух взаимно перпендикулярных направлениях, имеющих разную амплитуду и обладающих некоторой разисстью фаз. Мы легко можем осуществить подобный случай на

Рис. 18.1. Схема получения эллиптически-поляризованного света. L — всточник света; К — кристаллическая пластинка; справа — разложение светового всктора по главным направлениям пластинки.

опыте следующим образом. Свет определенной длины волны *), прошедший через поляризатор N, т. е. ставший линейно-поляризованным, пропустим через кристаллическую пластинку K толщины d, еырезанную из одноосного кристалла параллельно его оптической оси (рис. 18.1), причем допустим, что направление пучка перпендикулярно к боковой поверхности K. Сквозь пластинку будут распространяться в одном направлении, но с разной скоростью две волны, поляризованные в двух взаимно перпендикулярных направлениях, которые принято называть главными направлениями кристаллической пластинки. У одной из волн электрические колебания направлены вдоль оптической оси кристалла, например по CC (необыкновенный луч, показатель преломления n_e), у другой перпендикулярно к оси, т. е. по BB (обыкновенный луч, показа-

Если направление колебаний электрического вектора в падающем поляризованном свете составляет угол а с одним из главных направлений пластинки, то амплитуды колебаний в необыкновенной

*) То есть принадлежащий к ограниченному спектральному интервалу. При значительном отступлении от монохроматичности следует принять во внимание замечание, сделанное в конце настоящего параграфа.

и в обыкновенной волнах будут соответственно равны $a = A \cos \alpha$, $b = A \sin \alpha$.

где A = OM — амплитуда падающей волны. Пройдя через толщу пластинки d, эти две волны приобретут разность хода, равную $(n_o - n_e) d$. Следовательно, обыкновениая волна отстанет по фазе от необыкновенной на величину

$$\varphi = \frac{2\pi}{\lambda} \left(n_o - n_e \right) d. \tag{110.1}$$

Сложение двух взаимно перпендикулярных колебаний с разными амплитудами и разностью фаз приведет к формированию эллиптического колебания, т. е. колебания, при котором конец результирующего вектора описывает эллипс в плоскости волнового фронта с той же угловой частотой ω, с которой совершаются исходпые колебания.

Действительно, колебания в волнах, прошедших пластинку, описываются соотношениями

$$x = A \cos \alpha \cos \omega t = a \cos \omega t,$$

$$y = A \sin \alpha \cos (\omega t - \varphi) = b \cos (\omega t - \varphi).$$
(110.2)

Чтобы получить траекторию результирующего колебания, надо из этих уравнений исключить время t. Имеем

 $\cos \omega t = x/a$, $y = b (\cos \omega t \cos \varphi + \sin \omega t \sin \varphi)$,

или

$$\sin \omega t \sin \varphi = \frac{y}{b} - \frac{x}{a} \cos \varphi.$$

Возводя это выражение в квадрат и складывая с

$$(\cos \omega t \sin \varphi)^2 = \frac{x^2}{a^2} \sin^2 \varphi,$$

получим -

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{2xy}{ab}\cos\varphi = \sin^2\varphi,$$
 (110.3)

т. е. уравнение эллипса. Форма эллипса и ориентация его отно-сительно осей x и y зависят от значений α и φ. Таких об давнованного

Таким образом, после прохождения линейно-поляризованного та черое на после прохождения линейно-поляризованного света через кристаллическую пластинку получаем, вообще говоря, свето через кристаллическую пластинку получаем, вообще говоря, световую волну, концы векторов Е и И которой описывают эллипсы. Такой свет называется эллиптически-поляризованным.

Рассмотрим несколько частных случаев. а) Толщина пластинки такова, что разность хода двух волн составляет четверть длины световой волны (пластинка в 1/4 волны):

$$(n_0 - n_e) d = \frac{1}{4}\lambda$$

поляризация света

или

$$(n_2 - n_c) d = (m + 1/4) \lambda, \qquad m = 0, 1, 2, \dots$$
 (110.4)

В таком случае $\varphi = \pi/2$ и уравнение эллипса примет вид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$

т. е. мы получим эллипс, орпентированный относительно главных осей пластинки. Соотношение длин его полуосей *a* и *b* зависит от величины угла α.

В частности, при $\alpha = 45^{\circ}$ находим a = b, так что эллипс обращается в круг, описываемый уравнением

$$x^2 + y^2 = a^2. (110.5)$$

В данном случае имеем, следовательно, свет, поляризованный по кругу (круговая, или циркулярная, поляризация). Таким образом, для получения света, поляризованного по кругу, необходимо сложение двух когерентных болн с равными амплитудами, обладающих разностью фаз $\pi/2$ и поляризованных в двух взаимно перпендикулярных плоскостях. Этого можно достичь, в частности, заставив линейно-поляризованный свет пройти через пластинку в четверть волны так, чтобы плоскость поляризации первоначальной волны составляла угол 45° с главными направлениями в пластинке.

Чтобы осуществить разность хода в четверть волны, можно применить слюдяную *) пластинку толщиной 0,027 мм = 27 мкм (для желтого света, испускаемого натриевым пламенем).

Хотя изготовление таких пластинок и не представляет особого труда, все же предпочитают пользоваться более толстыми пластинками, дающими разность хода, равную $(m + 1/4)\lambda$, где m — некоторое целое число (см. упражнение 153).

В зависимости от ориентации пластинки в четверть волны приобретаемая разность фаз равна $+\pi/2$ или $-\pi/2$, т. е. компонента вдоль оси Ox опережает или отстает на $\pi/2$ по фазе от компоненты по оси Oy. В соответствии с этим результирующий вектор вращается против часовой стрелки (влево) или по часовой стрелке (вправо). Поэтому принято различать левую и правую эллиптическую или круговую поляризации.

б) Пластинка такова, что разность хода двух лучей составляет половину длины световой волны (пластинка в 1/2 волны):

$$(n_o - n_e) d = \frac{1}{2\lambda}$$

•) Слюда представляет собой кристалл двуосный (см. § 145), в котором понятие обыкновенного луча теряет смысл. Но так как явление двойного лучепреломления имеет место в слюде, то при помощи слюдяной пластинки также можно сообщить определенную разность хода двум взаимно перпендикулярным

ГЛ. XVIII. ИНТЕРФЕРЕНЦИЯ ПОЛЯРИЗОВАННЫХ ЛУЧЕЙ

или

т. е.

$$(n_o - n_e) d = (m + 1/2) \lambda,$$

 $\varphi = \pi$ или $\varphi = 2\pi m$
(110.6)

В этом случае эллипс вырождается в прямую

$$\frac{x}{a} + \frac{y}{b} = 0, \qquad (110.7)$$

т. е. свет остается линейно-поляризованным, но направление колебаний переходит, например, из 1—3 квадрантов в 2—4 квадранты, повернувшись на угол 180° — 2α и квадранты, (рис. 18.2).

в) Пластинка в целую длину све товой волны (пластинка в 1λ);

$$(n_o - n_e) d = \lambda$$
 или $m\lambda$.

т. е.
$$\phi = 2\pi$$
 или $\phi = 2\pi m$. (110.8)

Эллипс вырождается в прямую

$$\frac{x}{a} - \frac{y}{b} = 0, \qquad (110.9)$$

т. е. луч остается линейно-поляризованным без изменения направления колебаний.

Все предшествующие рассуждения относились к свету определенной длины волны, т. е. к небольшому спектральному интервалу. При значительном разнообразии в длинах волн следует почиса

393

Рис. 18.2. Действие пластинки в ¹/₂ волны.

После прохождения пластинки направление колебаний ММ переходит из 1-3 квадрантов в 2-4 квадранты (NN), повернувшись на угол 180° - 22.

Волн следует принять во внимание, что показатели преломлений для обенх волн зависят от длины волны (дисперсия), причем их разность также меняется с длиной волны. Благодаря этому обстоятельству можно использовать прохождение поляризованного света через кристалл для разделения двух близких длин волн (поляризационный монохроматор Вуда) (см. упражнение 166).

§ 111. Внутренняя структура естественного света

Во всех рассуждениях предшествующего параграфа предполагалось, что свет, падающий на кристаллическую пластинку, линейнополяризован. Если бы падающий свет был естественным (т. е. его можно было бы представить как совокупность многочисленных воли, поляризованных по всем возможным направлениям), то выходящий из пластинки свет представлял бы совокупность эллиптически-поляризованных волн без какой-либо преимущественной ориентации

поляризация света

эллипсов, т. е.-остался бы естественным. Поэтому для получения с помощью кристаллической пластинки эллиптически-поляризованного света необходимо падающий на нее свет предварительно линейно поляризовать. Однако и прохождение естественного света через кристаллическую пластинку вносит известные изменения во внутреннюю его структуру, превращая, например, естественный свет, состоящий из совокупности всевозможно ориентированных

а — общая скема: S — источник естественного света; S₁ и S₂ — два его когерентных изображения; К — пластинка в полволны; Р — компенсирующая пластинка; ЕЕ — плоскость наблюдения; N — поляризатор; б — направления световых векторов в волнах, всходящих от S₁ и S₂, до прохождения пластинок К и P; в — направления световых векторов после прохождения светом пластинок К и P.

плоско-поляризованных волн, также в свет естественный, но представляющий совокупность всевозможно ориентированных эллиптически-поляризованных волн. Это изменение можно обнаружить на опыте, как показал С. И. Вавилов.

Разобьем какой-нибудь пучок естественного света на два когерентных пучка, прибегнув к одной из общензвестных интерферометрических схем. Встречаясь, пучки дают обычную интерференционную картину, например с максимумом в центре поля. Теперь поместим на пути одного из интерферирующих пучков естественного света полуволновую кристаллическую пластинку K и введем стинку P, обеспечивающую компенсацию образовавшейся разности оставаясь когерентными, не дают ожидаемой интерферирующие пучки, картины; поле оказывается однородно освещенным. В этом проявикартины, ного внутренней структуры естественного света, о котором речь шла выше.

Чтобы уяснить себе происходящее, представим естественный свет в первичном пучке как совокупность линейно-поляризованных волн с всевозможными направлениями поляризации. В той части воли с востания. В том части света, которая проходит через полуволновую пластинку, произойдет поворот направления поляризации (переход из 1-3 квадрантов во поворот направления сето-2-4 квадранты) (см. § 110, б)). Таким образом, направления световых векторов в когерентных пучках, которые в отсутствие пластинки были одинаковы (см. рис. 18.3, б), теперь благодаря действию пластинки на один из пучков окажутся не совпадающими (см. рис. 18.3, в). Результаты интерференции будут различными в зависимости от угла между векторами ОМ1 и ОМ2, так что в среднем не будет ни максимумов, ни минимумов; однако нельзя сказать, что мы получим такую же беспорядочную картину, как при наложении некогерентных лучей.

Разложим каждый из световых векторов на две составляющие по АА и ВВ, направленные по биссектрисам между векторами. Каждая пара составляющих, как когерентные и имеющие одно направление, интерферируют между собой. Однако действие полуволновой пластинки сказалось в том, что составляющие по АА сохранили прежнюю разность фаз, тогда как составляющие по ВВ оказались сдвинутыми дополнительно по фазе на л (ибо их проекции на ВВ направлены в разные стороны). Поэтому первые дают интерференционную картину с максимумом, как и прежде, в центре поля, а вторые — интерференционную картину с минимумом в центре поля, т. е. сдвинутую на 1/2 полосы относительно первой картины. А так как интенсивности той и другой компоненты в среднем одинаковы (в естественном свете нет преимущественного направления колебания), то обе одинаково яркие и сдвинутые на 1/2 полосы интерференционные картины не дадут видимой интерференции.

Однако эту «скрытую» интерференцию можно «проявить»: если смотреть на экран через поляризационную призму, ориентированную параллельно АА, то она погасит все компоненты, направленные по ВВ, и позволит видеть интерференционную картину с максимумом в центре поля. Повернув поляризатор параллельно BB, мы задержим все колебания, направленные по АА, и увидим вторую, дополнительную интерференционную картину с минимумом в центро в центре поля. Очевидно, при поляризаторе, расположенном под углом в 45° к АА и к ВВ, интерференция по-прежнему не будет заметна.

Этот интересный опыт, осуществленный С. И. Вавиловым, позволяет, так сказать, обнаружить «эллиптическую поляризацию естествоиная на первый взгляд естественного света» — результат, кажущийся на первый взгляд парадоксальным.
поляризация света

§ 112. Обнаружение и анализ эллиптически- и циркулярно-поляризованного света

Обнаружение особенностей эллиптически-поляризованного света связано с известными трудностями.

Применив для анализа света какое-нибудь поляризационное устройство *), мы получим следующие результаты. Сквозь поляризатор пройдет только часть света, соответствующая компоненте колебаний, пропускаемых им; нетрудно видеть, что амплитуда прошедшего света зависит от орнентации главной плоскости поляризатора NN по отношению к осям эллипса.

Амплитуда А равна половине длины стороны прямоугольника. параллельной NN, в который вписан эллипс (рис. 18.4). При пово-

роте николя поворачивается и прямоугольник.

Амплитуда будет максимальной (A = b), когда плоскость NN совпадает с большой осью эллипса, и минимальной (A = a), если она параллельна малой осн. Поэтому при вращении поляризатора мы получим частичное затемнение или просветление поля, т. е. будет наблюдаться та же картина, как и при исследовании поляризатором частично поляризованного света. В частности, если свет поляризован по кругу, т. е. a = b, то вращение поляризатора совсем не будет влиять на интенсив-

ность проходящего света, т. е. мы увидим ту же картину, как и при исследовании поляризатором естественного света. Таким образом, анализ при помощи поляризатора не позволяет отличить эллиптически-поляризованный свет от частично поляризованного, а циркулярно-поляризованный — от естественного.

Для полного анализа необходимо превратить эллиптическиили циркулярно-поляризованный свет в плоскополяризованный, анализ которого легко выполняется при помощи поляризационной призмы.

Способ получения плоскополяризованного света из излучения с эллиптической или круговой поляризацией ясен из рассмотрения соотношений, приведенных в § 110. Достаточно компенсировать разность фаз ф между перпендикулярными компонентами, доведя ее до л или 2л (или до нуля). Для этой цели можно заставить изу-

 Поляризационное устройство, применяемое для анализа характера по-нализи соота со соота соот соота соот соота ляризации света, передко называют анализатором.

Рис. 18.4. Зависимость интенсивности эллиптическиполяризованного света, проходящего через николь, от

оркентации николя.

396

чаемый свет пройти через вспомогательную кристаллическую плачаемын подходящей толщины или ориентации.

стинку подходящен толщини или ориентации. а. Применение пластинки в ¹/₄ волны для компенсации разности фаз. В эллиптически-поля-ризованном световом пучке между компонентами, направленными ризованном срей эллипса (а в циркулярно-поляризованном вдоль типрионентами, направленными вдоль двух произвольно между компонительно, перпендикулярных диаметров), существует выбранных взаимно перпендикулярных диаметров), существует разность фаз л/2. Заставляя исследуемый свет пройти через пларазноств фаз, мы добавим к этой разности $\pm \pi/2$, т. е. скомпенсируем имеющуюся разность фаз, обращая ее в нуль или в π . Таким образом, исследуемый свет превращается в плоскополяризованный. в чем можно убедиться при помощи обычного поляризатора. Для указанной цели в случае циркулярно-поляризованного пучка можно ориентировать пластинку в 1/12 как угодно; в случае эллиптическиполяризованного пучка надо ориентировать ее так, чтобы главные направления пластинки совпадали с главными осями эллипса. определенными предварительно при помощи поляризатора. Таким образом, анализ выполняется при помощи пластинки в 1/1 и поляризатора. Указанным приемом можно также определить направление вращения (правая и левая поляризации), для чего необходимо лишь предварительно знать, какое из двух колебаний в использованной пластинке в 1/42 распространяется с большей скоростью.

б. Применение компенсаторов для анализа эллиптически поляризованного света. Для полного количественного анализа эллиптически-поляризованного света надо знать форму и расположение эллипса по отношению к любым направленням, т. е. разность фаз двух взашмно перпендикулярных компонент любого направления.

Для этой цели служат приборы, способные скомпенсировать до нуля (или дополнить до л) любую разность фаз. Такие приборы называются компенсаторами. В качестве примера рассмотрим компенсатор Бабине. Он состоит из двух клиньев, обычно из кварца, вырезанных так, что оси их ориентированы под прямым углом друг к другу (рис. 18.5).

Свет, проходящий в разных местах через компенсатор, получает ту или иную добавочную разность хода между двумя компонентами колебаний светового вектора в зависимости от разности толщин клиньев в данном месте. Обозначив толщину в первой половине клина через d₁, а во второй — через d₂, найдем, что добавочная разности разность хода между компонентами (одной — лежащей в плоскости чертежа чертежа и другой — перпендикулярной к нему) равна

$$(n d_1) = nephending (m + 1) = (n - n_2)(d_1 - d_2).$$
 (112.1)

$$(n_e d_1 + n_o d_2) - (n_o d_1 + n_e d_2) = (n_e - n_o) (n_e - n$$

Таким образом, в компенсаторе из положительного кристалла $(n_e > n_o)$ свет, проходящий по линии, где $d_1 > d_2$, приобретает добавочную разность хода; по линии, где $d_1 = d_2$, первоначальная добавочную разность хода, не изменной; по линии, где $d_1 < d_2$, разность разность хода остается неизменной; по линии, где $d_1 < d_2$, разность хода уменьшается.

да уменьшается. Эллиптически-поляризованный свет, проходя через определен. ные места компенсатора, дополняющие разность фаз компонент,

Рис. 18.5. Анализ эллиптически-поляризованного света с помощью компенсатора и поляризатора.

В — компенсатор Бабине. Свет, проходящий через разные участки компенсатора, имсет различное состояние поляризации.

параллельных главным плоскостям компенсатора, до 0, 2л, 4л и т. д., обращается в линейно-поляризованный свет одного направления. Легко видеть, что такие участки компенсатора расположены на равных расстояниях друг от друга. Если за компенсатором В поста-

вить поляризатор N, ориентированный соответствующим образом, то все эти места окажутся темными (ряд темных равноотстоящих полос, параллельных ребру компенсатора; см. рис. 18.6, на котором изображен вид показанного на рис. 18.5 компенсатора при рассматривании его поверхности через поляризатор). При другой орнентации поляризатора можно получить ряд темных равноотстоящих полос, соответствующих местам компенсатора, где дополняющая разность фаз доводит начальную разность фаз до л, Зл, 5л н т.д.

Рис. 18.6.

Зная толщину клиньев и материал, из которого они сделаны, можно рассчитать (или предварительно проградуировать) добавляемую разность фаз и таким образом определить ту разность фаз, которая характеризовала данный эллиптический свет. На рис. 18.5 схематически показано изменение этой разности фаз для света, прошедшего через компенсатор в разных его местах. Она равна (снизу вверх) -45, 0, 45, 90, 135, 180, 225, 270, 315°. Часто клинья делают подвижными друг относительно друга и тогда вычисление ведется по сдвигу клиньев,

398

приводящему к определенному расположению полос, например, к появлению темной полосы в центре поля (на кресте окуляра). Для практической работы удобнее компенсаторы, вся поверхность поля зрения которых представляет область одной н той же добавочной фазы, причем последнюю можно по желанию изменять. Один из компенсаторов такого типа описан в упражнениях (см. упражнение 164).

нение точу. Так как при всех методах количественного исследования поляризованного света требуется определение угла поворота (поляризатора, пластинки в ¹/₄λ или компенсатора), то обычно поляризационные приборы снабжаются оправами с хорошими угловыми делениями.

В настоящей главе описан метод получения эллиптическиполяризованного и циркулярно-поляризованного света при прохождении линейно-поляризованного света через кристаллическую пластинку. Однако это далеко не единственный способ создания указанных типов поляризации. Эллиптическая поляризация наблюдается при отражении линейно-поляризованного света от металла и при полном внутреннем отражении; круговая поляризация возникает иногда при этих процессах, а также при воздействии магнитного поля на излучающие атомы (см. эффект Зеемана) и при других явлениях. Само собой разумеется, что каким бы процессом ни было вызвано появление эллиптически- или циркулярно-поляризованного света, методы анализа его остаются теми же, как и описанные в настоящем параграфе.

ШКАЛА ЭЛЕКТРОМАГНИТНЫХ ВОЛН

Глава XIX

ИНФРАКРАСНЫЕ, УЛЬТРАФИОЛЕТОВЫЕ И РЕНТГЕНОВСКИЕ ЛУЧИ

В предшествующих главах были подробно обсуждены многообразные свойства света, указывающие на волновую природу его (интерференция, дифракция) и позволяющие установить поперечный характер световых волн (поляризация). Попутно не раз отмечалось, что световые волны представляют собой электромагнитные волны. В дальнейшем мы встретим многочисленные и разнообразные доказательства электромагнитной природы световых волн.

Рассмотрим теперь особенности электромагнитных волн, связанные с их длиной.

§ 113. Инфракрасные и ультрафиолетовые лучи

Та совокупность электромагнитных волн, которая называется светом (иногда видимым светом), представляет собой узкий интервал длин волн, заключенных примерно между 400 и 800 нм. Они действуют непосредственно на человеческий глаз, производя специфическое раздражение его сетчатой оболочки, ведущее к световому восприятию. Вследствие этого указанный интервал длин волн играет особую роль для человека, хотя по своим физическим свойствам он принципиально не отличается от примыкающих к нему более длинных и более коротких электромагнитных волн. Несмотря на то, что резкое падение чувствительности глаза субъективны, тем не менее интервала (ср. § 8) оправдывает установление специальных назвав

В самом начале XIX в. было введено понятие об инфракрасных и ультрафиолетовых лучах. Наличие инфракрасных волн было устаного термометра, на который падало излучение Солнца с длинами волн, лежащими за красным концом спектра. Гершель обнаружил преломления, как и видимый свет.

ГЛ. XIX. ИНФРАКРАСНЫЕ, УЛЬТРАФИОЛЕТОВЫЕ ЛУЧИ

В 1801 г. Риттер и одновременно Волластон открыли, что в солнечном спектре за фиолетовым его концом имеется невидимое излучение, действующее химически на хлористое серебро (ультрафиолетовое излучение). Впоследствии были установлены и другие метолы исследования как ультрафиолетового, так и инфракрасного излучения.

открытие фотографии и ее успехи сыграли решающую роль в нсследовании ультрафиолетовых лучей, исо фотографическая пластинка оказывается к ним весьма чувствительной. Исследозание ультрафиолетового излучения удобно также произволить по его способности возбуждать свечение многих тел (флуоресценция и фосфоресценция) и вызывать фотоэлектрический эффект. Фотографирозать можно также и инфракрасное излучение, применяя особым способом обработанные фотопластинки (сенсибилизация, см. гл. ХХХУ). Таким путем удается, однако, дойти лишь до $\lambda = 1,2-1,3$ мкм. Значительно дальше простирается чувствительность к инфракрасным лучам у современных фотоэлементоз и фотосопротивлений, с помощью которых можно регистрировать инфракрасное излучение примерно до 100 мкм. Используя влияние инфракрасных лучей на яркость фосфоресценции (см. гл. XXXVIII), удалось исследовать область спектра до 1,7 мкм. Однако тепловой метод, применимый для любой длины волны, является и допыне весьма распространенным при работе с инфракрасным излучением, особенио для длия волн больше 2 мкм. Конечно, при этом применяются весьма чувствительные термометры, особенно электрические (сверхпроводящие и обычные болометры и термопары), позволяющие констатировать подъем температуры на миллнонную долю градуса (10-4 К).

Используя приемники, полностью поглощающие всю падающую на них тепловую энергию (абсолютно черное тело, см. гл. XXXVI), зная теплоемкость приемника и учитывая потери тепла, можно по повышению температуры оценить в абсолютных единицах энергию, приносимую лучами, что также является принципиальным преимуществом теплового метода. Им пользуются для измерений лучистой энергии всех длин волн, включая и ультрафиолетовыз, особенно В тех случаях, когда желают получить количественные данные о распределении энергии по спектру излучающего тела. На рис. 19.1 показано схематически такое распределение для спектра Солида. Для иных источников (например, лампа накаливания или ртугизя лампа) лампа) распределение энергии по длинам воли может существению отличать со тределение энергии по длинам воли может существению отличать со тределение энергии по длинам воли может существению отличать со тределение энергии по длинам воли может существению отличать со тределение энергии по длинам воли может существению отличать со тределение энергии по длинам воли может существению отличать воли может существению отличать со тределение энергии по длинам воли может существению отличать со тределение энергии по длинам воли может существению отличать со тределение энергии по длинам воли может существению от наказать со тределение энергии по длинам воли может существению от наказать со тределение энергии по длинам воли может существению от наказать существению от наказать со тределение энергии по длинам воли может существению от наказать со тределение энергии по длинам воли может существению от наказать со тределение энергии по длинам воли может существению от наказать со тределение энергии по длинам воли может существению от наказать со тределение энергии по длинам воли может существению от наказать со тределение энергии по длинам воли может существению от наказать со тределение энергии по длинам воли может существению от наказать со тределение энергии по длинам воли и наказать со тределение энергии наказать со треде отличаться от приведенного. Несмотря на универсальность теплового метода и возможность получения сравнимых между собой количественных показаний, обычно удобнее использовать для разных интерратов интервалов длин воли специальные приемы исследования, упомя-нутые рим нутые выше.

При изучении инфракрасного излучения с большой длиной волны главное затруднение состоит в подыскании достаточно мощ-

ного источника их. Обычным источником инфракрасного излучения ного источника на. Соблати небольшой температуре интенсивность является нагретое тело. При небольшой температуре интенсивность является нагрегостело, три повышении же температуры излучения всеми незиченой энергии быстро растет, но максимум сощая мощность наку на все более и более короткие волны, так что излучения приходится на все более и более короткие волны, так что излучения приходински и возрастает не очень значительно, энергия длинноволновых лучей возрастает не очень значительно, энергия длинновонновоннов инфракрасные волны длиной приблизительно 1 мм. Создание более длинных электромагнитных волн оказывается более удобным по методу возбуждения электромагнит-

Рис. 19.1. Распределение энергии в спектре Солнца.

ных колебаний, примененному впервые Герцом и рассматриваемому в учении об электричестве. Этим методом, как известно, получаются и сравнительно длинные. электромагнитные волны. в радиотехнике используемые (волны длиной в несколько десятков сантиметров, метров и километров). В последние годы были получены по методу электрических колебаний электромагнитные волны, также очень короткие, длиной в несколько десятых миллиметра. Таким образом, волны длиной в несколько десятых миллиметра можно получить и по методу испуска-

ния раскаленными телами (как инфракрасные), и по методу электрических колебаний (подобно герцовым). Другими словами, область инфракрасных и герцовых волн перекрывается, и мы имеем непрерывный переход от видимого света к сколь угодно длинным электромагнитным волнам.

В работах по заполнению промежутка между инфракрасными и герцовыми волнами важную роль сыграли работы русских исследователей (П. Н. Лебедев, М. А. Левитская, А. А. Аркадьева-Глаголева).

Распространение наших сведений на область ультрафиолетовых волн также шло довольно медленно. Основная трудность их исследования состоит в том, что короткие ультрафиолетовые волны сильно задерживаются различными веществами. Обычное стекло мало пригодно для исследований ультрафиолетового излучения. Применяют специальные сорта стекла (прозрачные приблизительно до 300-230 нм) или кварц (прозрачный примерно до 180 нм). Для более коротких волн приходится применять оптику из флюорита (приблизительно до 120 нм). Получили распространение и искусственно пригодование и иск венно приготовленные кристаллы. Лучшие образцы таких кристаллов фтористого лития прозрачны до 180 нм. Для еще более коротких пов фтористо по прозрачности материала для призм и лина, воли нет подходящего по прозрачности материала для призм и лина, воли нет подледние применять отражательную оптику: вогнутые зеркала и приходится применять отражательную оптику: вогнутые зеркала и приходности вогнутые зеркала и отражательные дифракционные решетки. Однако для столь короти отражаточно и непрозрачны и газы при обычном давлении. кого ультрани давление в кислороде (и воздухе) наблюдается уже при Заметное поглощение в кислороде (и воздухе) наблюдается уже при Заметнос поэтому для исследовании с более короткими волнами приини. Поектральные установки, из которых выкачан воздух (вакуменяют спографы). Второе затруднение состоит в том, что желатин, умспектрография основу фотографических пластинок, заметно поглощает ультрафиолет, начиная примерно с 240-230 нм, так что для более короткого ультрафиолета применяют обычно безжелатинные пластинки. Вводя все эти усовершенствования, удалось продвинуть фотографическое изучение ультрафиолетового света приблизительно до 2,0 нм. При этом, конечно, приходится прибегать к падению света на решетку под скользящим углом. При угле падения 89° удалось наблюдать линию шестнадцатикратно ионизованного железа (атом железа, от которого оторвано 16 электронов) при $\lambda = 1.21$ нм.

Применение кристаллов в качестве дифракционных решеток позволяет продвигаться в еще более коротковолновую область спектра. Таким способом был изучен, например, спектр излучения водородоподобного железа (кратность ионизации 25). Длины волн его резонансных линий оказались равными 0,17767 и 0,17819 нм.

Исследование ультрафиолетовых волн, в частности коротких и очень коротких, может также производиться и при помощи фотоэлектрического эффекта.

§ 114. Открытие рентгеновских лучей и методы их получения и наблюдения

Продвижение в область еще более коротких волн со стороны ультрафиолетового излучения встречает огромные трудности. Однако оказалось возможным подойти к исследованию этой области спектра с другой стороны, опираясь на открытие, сделанное в 1895 г. Рентгеном.

Рентген обнаружил, что при электрическом разряде в эвакупрованной трубке (например, в трубке, применяемой для исследовання катодных частиц) с ее анода испускаются лучи, способные проникать через тела, непрозрачные для обычного света (черная бумага, картон, тонкие слои металла и т. д.). Эти лучи, названные Рентгеном *Х-лучами*, но больше известные под именем рентгеновских лучей, были обнаружены им благодаря их способности вызывать свечение флуоресцирующего экрана. Рентген скоро нашел также, что они способны вызывать почернение фотографической эмульсии и потерю заряда на электроскопе вследствие ионизации воздуха. Таким образом, для исследования рентгеновских лучей можно применять и

шкала электромагнитных волн

флуоресцирующий экран, и фотопластинку, и ионизационную камеру с электроскопом. Установлено также, что они способны вызывать фотоэффект и, конечно, могут быть исследованы по их тепловым действиям, хотя последний способ исследования затруднен слабым поглощением рентгеновских лучей, настолько слабым, что для полного их задержания требуются сравнительно толстые слои металла между тем обнаружить небольшое приращение количества тепла в массивном слое металла очень затруднительно. Следует отметить, что Рентген не только впервые обнаружил новое излучение, но и сумел в своих первых работах всесторонне исследовать его, установив весьма многие его существенные особенности. Рентген нашел, что мес-

Рис. 19.2. Схема рентгеновской трубки. *А* – внод (охлаждается водоя); *К* – катод. том, откуда исходят лучи, является участок трубки, который бомбардируется электронами, и осуществил такое ее устройство, которое наиболее благоприятным образом обеспечивает получение и использование рентгеновских лучей (рис. 19.2). Для того чтобы сконцентрировать пучок электронов в одно место,

катод делается вогнутым и в его полость помещается нагреваемая проволочная спираль. Таким образом осуществляется фокусировка пучка электронов. Между катодом и анодом накладывается напряжение в несколько десятков киловольт.

Так как большая часть энергии ударяющихся об анод электронов превращается в тепло и лишь малая ее доля (около 0,1%) излучается в виде рентгеновских лучей или сохраняется в виде энергии отразившихся электронных пучков, то анод в мощных трубках сильно нагревается и может расплавиться. Косой срез анода обеспечивает излучение рентгеновских лучей в сторону через стенку стеклянного баллона трубки.

§ 115. Поглощение рентгеновского излучения

Самой замечательной особенностью рентгеновского излучения является, как уже упоминалось, его способность проникать через непрозрачные для обычного света вещества. Уже сам Рентген широко исследовал эту способность рентгеновских лучей, наблюдая свечение флуоресцирующего экрана, помещенного на пути лучей за слоем исследуемого вещества. Рентген обнаружил, что поглощение рентеноского излучения в каком-либо веществе не связано с его прозрачпот поглощают ренгеновские лучи значительно слабее, чем стекло такой же толщины, особенно если оно содержит свинцовые соли.

ГЛ. XIX. ИНФРАКРАСНЫЕ, УЛЬТРАФИОЛЕТОВЫЕ ЛУЧИ

Рентген установил, что способность вещества поглощать рентгеновские лучи тем больше, чем больше его плотность, так что свинцовые пластинки ослабляют поток рентгеновского излучения гораздо сильнее, чем пластинки той же толщины, сделанные из алюминия. Существенно для поглощения наличие в поглощающем веществе атомов тяжелых элементов, независимо от того, в какие соедишения они входят. Так, например, тонкий слой свинцовых белил или стекло со свинцовыми солями сильно поглощают рентгеновские лучи именно благодаря наличию в их составе тяжелых атомов свинца.

В тех же исследованиях Рентген установил и другой крайне важный факт, использованный им для характеристики применяемых в том или ином случае лучей. Было обнаружено, что поглощение рентгеновских лучей одним и тем же веществом различно в зависимости от условий их получения. Лучи, сильно поглощаемые, были названы мягкими, лучи, слабо поглощаемые, — жесткими. Таким образом, способность лучей проникать сквозь вещество характеризует степень их жесткости.

Сравнение жесткости лучей производится обычно путем определения их способности поглощаться в каком-либо определенном веществе (например, в алюминии). Но и во всех других веществах более жесткие лучи поглощаются слабее (исключение составляют некоторые явления избирательного поглощения, о которых речь будет ниже).

Дальнейшие исследования поглощения рентгеновских лучей позволили установить количественную меру их жесткости. Измеряя интенсивность *) рентгеновских лучей до и после поглощающего вещества, можно установить закон их поглощения в виде соотношения

 $I=I_0e^{-\mu d},$

где I — интенсивность излучения после поглощения, I₀ — интенсивность излучения, падающего на поглощающее вещество, d толщина поглощающего слоя в сантиметрах, µ — коэффициент поглощения, характеризующий жесткость.

^{*)} Как уже упоминалось выше, определение интенсивности рентеновских лучей по количеству тепла, выделяемого ими при поглощении в металлах, являясь принципиально наиболее прямым способом, связано с большими практическими затруднениями. Интенсивность рентеновских лучей может измеряться также и по наблюдению других действий рентеновских лучей по нитенсивности вызываемой ими флуоресценции, по скорости происходящей под их влиянием фотохимической реакции, в частности, по почернению фотографической пластинки, и по силе ионизационного тока, получаемого при их действии. Наиболее разработан ионизационный метод, при котором стараются добиться камере (толстый слой газа, применение тяжелого газа). Теперь в стандартных рентгеновских установках для структурного анализа обычно применяются счетчики Гейгера.

Легко видеть, что $\mu = 1/d_0$, где d_0 — толщина слоя, уменышаю, щего интенсивность лучей в e = 2,718 раз. Иногда жесткость лучей характеризуют толщиной поглощающего слоя определенного веще, ства (обычно алюминия), способной ослабить интенсивность рентге. новского излучения в два раза. Эта толщина D связана с d_0 и μ простыми соотношениями

$$D = 0,69d_0 = 0,69/\mu. \tag{115}$$

Жесткость рентгеновских лучей может быть самой различной. Применяются лучи, для которых D в алюминии варьирует от 0,0006 до 6 см, т. е. изменяется в 10 000 раз.

Все оценки способности рентгеновских лучей поглощаться и их жесткости очень затрудняются тем, что из трубки выходят очень неоднородные рентгеновские лучи, т. е. «смесь» лучей различной жесткости. Пропуская их через поглощающее вещество, мы задерживаем более мягкие лучи, получая таким образом более однородный пучок. Этот метод фильтрования довольно груб и не обеспечивает получения строго однородных монохроматических лучей. В настоящее время мы располагаем приемами монохроматизации, подобными применяемым в оптике обычных длин волн, т. е. методами, при использовании которых испускается почти монохроматическое рентгеновское излучение, подвергающееся дальнейшей монохроматизации при помощи дифракции. Таким образом получаются лучи, не уступающие по монохроматичности световым лучам, и для них коэффициент поглощения имеет совершенно определенный физический смысл. Для таких монохроматических лучей он зависит от плотности р поглощающего вещества и грубо приближенно может считаться пропорциональным плотности. Более точно поглощение определяется числом атомов поглощающего вещества на единице толщины слоя. При переходе же от одних атомов к другим поглощение быстро растет с увеличением атомного веса, правильнее, атомного номера Z, будучи пропорционально кубу атомного номера.

Уже сам Рентген, установивший понятие жесткости рентгеновских лучей, показал, что она определяется режимом рентгеновской трубки: чем больше разность потенциалов между анодом и катодом, ускоряющая электроны, т. е. чем больше скорость электронов, бомбардирующих анод, тем жестче рентгеновские лучи.

Таким образом, одна и та же трубка с накаливаемым катодом может служить для получения рентгеновских лучей любой жесткости, определяемой наложенным ускоряющим полем (управляемые трубки). В трубках этого типа жесткость быстро растет с увеличением разности потенциалов. Опыт показывает, что средний коэффициент поглощения и лучей такой трубки приблизительно обратно пропорционален кубу разности потенциалов между анодом и катодом V,

$$\mu \sim 1/V^3$$

(115.2)

§ 116. Природа рентгеновских лучей

Хотя уже первые исследователи рентгеновских лучей (Стокс, (Хотя уле и отчасти сам Рентген *)) высказывали мысль, Д. А. ТОЛИСКИЕ ЛУЧИ СУТЬ ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ, ВОЗНИКАЮЩИЕ что рентгеновские лучи суть электронов ударяющие что рентислования быстрых электронов, ударяющихся об анод, однако при тормольств рентгеновского излучения трудно было примирить с его ряд своисть риродой. Вообще исследование большинства его свойств волновой прирадели трудом. Долго не удавалось наблюдать отражедавалось с преломление рентгеновских лучей при переходе из одной среды ние и протов Рентген смог только обнаружить слабые следы рассеяв другую. Совских лучей, что, конечно, легко было объяснить и исходя из предположения о корпускулярной их природе.

Особенным затруднением для гипотезы волновой природы рентгеновских лучей служили неудачи опытов, проделанных Рентгеном и рядом других исследователей с целью обнаружить интерференцию и дифракцию рентгеновских лучей. Лишь значительно позже (около 1910 г.) выяснилось, что длина волны рентгеновского излучения значительно меньше, чем у видимого света и ультрафиолетовых лучей, и поэтому первые опыты по осуществлению интерференции были заранее обречены на неудачу.)

Надо отметить, что уже после опубликования первых работ Рентгена, а именно в 1897 г., Стокс высказал в общем правильные в рамках современных представлений взгляды на природу рентгеновских лучей. Стокс считал, что это - короткие электромагнитные импульсы, возникающие при резком изменении скорости электронов, ударяющихся об анод. Такое изменение скорости движущегося заряда можно рассматривать как ослабление электрического тока, каковым является летящий электрон; оно сопровождается ослаблением связанного с движущимся электроном магнитного поля. Изменение магнитного поля индуцирует в окружающем пространстве переменное электрическое поле, которое в свою очередь вызывает переменный ток смещения, и т. д. Возникает, согласно представлениям Максвелла, электромагнитный импульс, который распространяется в пространстве со скоростью света.

Недостаток ясности в этих представлениях и, главное, недостаток опытных данных привели к возникновению и другого взгляда на рентгеновские лучи, к которому вскоре примкнул и сам Рентген.

Окончательное выяснение природы рентгеновских лучей произошло в 1912 г., когда по идее М. Лауэ удалось осуществить с несом-ненность и ненностью явление дифракции рентгеновских лучей.

•) Рентген полагал, что открытые им лучи представляют собой продоль-световые волица Слада, что открытые им лучи представляют собой продольные световые волны. Однако он не отстаивал этого взгляда и считал возможным и другие толконо. Однако он не отстаивал этого взгляда и считал возможным и другие толкования.

шкала электромагнитных волн

§ 117. Дифракция рентгеновских лучей на кристаллической решетке

Опыт, осуществленный Лауэ и его сотрудниками, состоит в следую. щем. Узкий пучок рентгеновских лучей (рис. 19.3), выделенный рядом свинцовых диафрагм D_1 , D_2 , падает на кристалл K и, проходя сквозь него, достигает фотографической пластинки *PP*. На пластинке после ее проявления обнаруж ивается, кроме центрального пятна, после ее проявления обнаруж ивается, кроме центрального пятна, соответствующего первоначальному направлению рентгеновских лучей, ряд правильно расположенных пятнышек (рис. 19.4). Их положение вполне определено для данного кристалла и меняется, если

Рис. 19.3. Схема опыта Лауэ.

Рис. 19.4. Лауэграмма кристалла ZnS.

кристалл одного вещества заменить кристаллом другого. Явлению этому можно дать полное количественное истолкование, если допустить, что рентгеновские лучи суть волны, испытывающие дифракцию на пространственной решетке, каковой является кристалл. Действительно, кристалл представляет собой совокупность атомов, расположенных в виде правильной пространственной решетки. Расстояние между атомами составляет доли нанометров (для кристалла каменной соли, например, расстояние от Na до Cl равно 0,2814 нм). Каждый атом решетки становится центром рассеяния рентгеновских волн, когерентных между собой, ибо они возбуждаются одной и той же приходящей волной. Интерферируя между собой, эти волны дают по известным направлениям максимумы, которые вызывают образование отдельных дифракционных пятнышек на фотографической эмульсии. По положению и относительной интенсивности этих пятнышек можно составить представление о расположении рассеи-вающих центров в изменять представление о расположении рассеивающих центров в кристаллической решетке и об их природе (атомы, атомиые, группи, кулучи атомные группы или ионы). Поэтому явление дифракции, будучи важнейшим и напознатомы. важнейшим и непосредственным доказательством волновой при-

роды рентгеновских лучей, стало основой экспериментального изучероды рентгеновения решеток. Благодаря открытию Лауэ оказания кристалии совется в совется открытию Лауэ оказа-лось возможным плодотворно исследовать вопрос о структуре крислось возмолителение время метод Лауэ применяют к исследованию таллов. В последнее время метод Лауэ применяют к исследованию таллов. В посиската кидкостей и даже газов, наблюдая дифракцию строения молекул и жидкостей и даже газов, наблюдая дифракцию строения молекул и иницесстен и доже газов, наолюдая дифракцию на составных частях молекулы. Несмотря на то, что при этом дифрак-ционная картина менее отчетлива, и в данком случае получаются крайне важные результаты.

Открытие Лауэ рассматривалось в свое время как явное доказа-Открытие влау рассистривение в свое время как явное доказа-тельство волновой, а не корпускулярной природы рентгеновских лучей. В настоящее время мы знаем, что дифракционные явления могут наблюдаться и с корпускулами. К вопросу о волновой и корпускулярной природе излучения мы вернемся ниже (ср. § 178).

§ 118. Спектрография рентгеновских лучей

Картина, описанная в предыдущем параграфе, соответствует дифракции на пространственной решетке, рассмотренной в гл. Х. Характерная особенность ее заключается в том, что при данном периоде решетки при заданном направлении первичного пучка наблюдаются максимумы лишь определенных длин волн. Поэтому если на наш кристалл падает «белый» рентгеновский свет, т. е. рентгеновский импульс, эквивалентный совокупности волн самых разных длин, то кристалл выделит лишь некоторые определенные длины голн (монохроматизирует их). Наоборот, если падающий рентгеновский импульс близок к монохроматическому, то при неподходящем соотношении угла падения, длины волны и постоянной решетки мы не сможем наблюдать максимумов, а обнаружим лишь равномерное рассеяние.

Если параллельный пучок рентгеновского излучения падает на кристалл, то на каждой атомной плоскости будет происходить дифракция. Максимум интенсивности дифрагировавших рентгеновских волн соответствует направлению, определяемому законами правильного отражения. Условие же взаимного усиления воли, отражения. отраженных от разных плоскостей, запишется, очевидно, в виде

$$2d\sin\theta = n\lambda$$
,

где d — расстояние между слоями, θ — угол скольжения (допол-нение угла падения до $1/2\pi$), λ — длина волны дифрагировавшего излучения (см. § 53).

Это соотношение Брэгга, выведенное также Ю. В. Вульфом, указывает, какие длины воли могут интенсивно отражаться от кристалла при данном при данном угле падения. Волны другой длины рассенваются более или менео разволи могут интенсивно отражаться от при при данном угле падения. нли менее равномерно по всем направлениям, давая лишь общий фон на пластиние на пластинке и не приводя к образованию на фотоэмульсии макси-

(118.1)

шкала электромагнитных волн

мумов почернения. Если мы желаем использовать дифракцию на мумов почернения. Если алектрографа для рентгеновских лучей, кристалле для построения спектрографа для рентгеновских лучей, кристалле для постросани споли и упомянутую особенность дей, то необходимо принять во внимание упомянутую особенность дей. то необходимо приника решетки. Существует несколько приемов, ствия пространственной решетки. ствия пространственной решетки установить позволяющих с помощью пространственной решетки установить позволлющих максимумов для любой длины волны. та дифракционного пучка (Мозли, 1913 г.). Он со. а. Метод широкого пучка (Мозли, 1913 г.). Он со.

стоит в том, что лучи направляют на кристалл широким расходя. щимся пучком, образующим всевозможные углы скольжения. В таком

Рис. 19.5. Схема спектрографии рентгеновских лучей методом широкого пучка.

От анода А рентгеновской трубки лучи падают на кристалл К широко рас-ходящимся пучком. Лучи разной дли-ны волны отражаются на фотопластин-ку PP под разными углами.

19.6. Схема спектрографии Рис. методу рентгеновских лучей по качающегося кристалла.

Узкий пучок рентгеновских лучей, вы-резанный диафрагмами D₁ и D₃, падает на кристалл K, покачиваемый с помощью часового механизма.

случае, согласно соотношению Брэгга, лучи разной длины волны отразятся под разными углами, и мы получим на пластинке дифракционные пятна от разных длин волн, т. е. спектр рентгеновского импульса (рис. 19.5).

Метод этот был использован в первых весьма важных работах по спектрографии рентгеновских лучей. В настоящее время он имеет лишь исторический интерес.

(качающегося) б. Метод вращающегося кристалла. В этом методе лучи падают на кристалл параллель ным пучком, но кристалл К во время съемки покачивается при помощи часового механизма (поворачивается то в одну, то в другую сторону) области сторону), образуя с направлением первичного пучка рентгеновского излучения всевозможные углы скольжения. Поэтому мы также полу-

чим спектр рентгеновского импульса (рис. 19.6).

Этот метод лежит в основе построения современных рентгеновских спектральных приборов.

ГЛ. XIX. ИНФРАКРАСНЫЕ, УЛЬТРАФИОЛЕТОВЫЕ ЛУЧИ Указанные приемы служат для выделения определенных длин Указанные при лучей (монохроматоры) или для определенных длин волн рентгеновских лучей (спектрометоры) определения волн репленно длин волн монохроматических лучей (спектрометры). ин воли монси. Важнейшее применение рентгеновской спектрографии – иссле-

дования с помощью рентгеновских лучей структуры кристаллов дования с поледнее время и молекул) и определение параметров кристаллов (а в последнее время и молекул) и определение параметров кристалов кристал. (а в последное времетки. В тех случаях, когда мы располагаем монокристал. постаточных размеров. можно применить такам монокрис. лической решетных размеров, можно применить для таких ренте-таллами достаточных исследований метод Лауэ (см. \$ 117) таллами достато из исследований метод Лауэ (см. § 117), используя ренте-

Рис. 19.7. Схема спектрографии рентгеновских лучей по методу различных

В случае кристаллических порошков или поликристаллических

тел структурное исследование можно выполнить по методу, предложенному в 1916 г. Дебаем и Шерером, а также Хеллом. Монохроматический пучок рентгеновских лучей направляется на столбик прессовати и поликоиспрессованного кристаллического порошка или палочку из поликристаллического материала (рис. 19.7); различные кристаллики пре-парата имогот материала (рис. 19.7); различные кристаллики препарата имеют всевозможные орнентации, так что падающий пучок образует образует с атомными плоскостями самые разнообразные углы. Лучи запачися Лучи заданной длины волны λ отразятся под разными углами от различных атом собласти волны за стразятся под разными углами от различных атомных плоскостей, соответствующих различным зна-чениям θ (см. (110)). чениям в (см. (118.1)), создавая на фотопленке, окружающей пре-парат, соответствующих различией препарат, соответствующую дифракционную картину. Рис. 19.8 воспро-изводит политетствующую дифракционную картину. Рис. 19.8 воспроизводит полученную рентгенограмму; в центре виден след прямого пучка; вправо рентгенограмму; в центре виден след прямого лучка; вправо и влево расположены следы отраженных лучей, причем каждая пара симметричных следы следы отраженного направ-от кристал догост сположены следов соответствует отражению от кристаллографических плоскостей одного определенного направ-ления. Зная ления. Зная длину волны λ и измеряя углы скольжения θ, мы можем

ШКАЛА ЭЛЕКТРОМАГНИТНЫХ ВОЛН

с помощью такой рентгенограммы установить структуру монокристаллических объектов, какими являются большинство металлов и других технических материалов.

и других толикованиях рентгеновских лучей в качестве дифрак-Если при исследованиях рентгеновских лучей в качестве дифракционной решетки использовать искусственную плоскую решетку с относительно грубым периодом и направить на нее рентгеновские лучи под углом, близким к 90°, то возможно наблюдение дифракции от плоской решетки, т. е. с максимумами, соответствующими всем длинам волн (ср. § 47).

Рис. 19.8. Рентгенограмма, полученная по схеме, изображенной на рис. 19.7.

Использование наклонного падения на плоские решетки позволило определить длину волны рентгеновских лучей с большой точностью. Повторяя те же измерения с пространственной решеткой каменной соли, можно было по известной длине рентгеновского излучения точно определить период решетки каменной соли, т. е. расстояние между составляющими эту решетку ионами. Отсюда удалось найти точное значение числа молекул в одном моле, т. е. число Авогадро. Эти определения числа Авогадро считаются самыми надежными. Согласно им значение числа Авогадро рекомендовано (в 1974 г.) считать равным 6,022045 · 10²³ моль⁻¹ вместо прежнего 6,0247 · 10²³ моль⁻¹ (1955 г.).

§ 119. Сплошной рентгеновский спектр. Понятие о характеристических лучах

Методы, указанные в предыдущем параграфе, позволяют исследовать характер спектра рентгеновского импульса даже в том случае, когда импульс является «белым», т. е. дает сплошной спектр. Такой характер имеет спектр рентгеновских лучей, получающихся в обычных условиях в рентгеновской трубке при торможении электронов ударами об анод. Изменение скорости электрона происходит при этом случайным путем, и образующееся излучение представляет совершенно «неправильный» импульс, эквивалентный совокупности разнообразных длин волн. Однако наряду с такими импульсами появляется и гораздо более монохроматическое излучение. При бомследующее явление: при пекоторой их скорости, величина которой определяется веществом анода, последний становится источником

412

ГЛ. XIX. ИНФРАКРАСНЫЕ, УЛЬТРАФИОЛЕТОВЫЕ ЛУЧИ

почти монохроматических лучей с длиной волны, характерной для почти монохронали анода. Такие лучи обязаны своим происхождением вещества данного анода. Такие лучи обязаны своим происхождением вещества даннотри атомов этого вещества. Для того чтобы вызвать процессам внуте процессы, требуется известная минимальная энергия, подобные процессы вызвать подобные процессы. подооные праля вещества анода. Получающиеся монохроматические характериая для вещество анода и носат характеризуют вещество анода и носят поэтому название характеристических.

В настоящее время после установления методов рентгеновской в пастолии понятие жесткости рентгеновского излучения может спектросленно более определенным понятием длины волны. в соответствии с этим характеристическое излучение данного вещества мы определяем как излучение, имеющее определенную длину волны.

Рентгеновский «белый свет», испускаемый обычной трубкой, представляет собой совокупность лучей различных длин волн и, следовательно, различных жесткостей. Когда мы говорим о жесткости таких лучей, то имеем в виду некоторую среднюю величину, характеризующую главную часть рассматриваемого импульса. В этом смысле можно говорить и о какой-то средней длине волны, характеризующей данный импульс. Можно установить связь между этой средней длиной волны λ_m и ускоряющим напряжением V. наложенным на трубку. Опыт показывает, что

$$\lambda_m \sim \frac{1}{V}$$
 HM,

где V выражено в киловольтах.

В соответствии с последней формулой и формулой (115.2), можно написать соотношение между коэффициентом поглощения и длиной волны

$$1 \infty \lambda^3$$
, (119.2)

т. е. коэффициент поглощения приблизительно пропорционален кубу длины волны. Как явствует из этого соотношения, выведенного из опыта, коэффициент поглощения излучения быстро уменьшается при уменьшении длины волны. Однако для каждого вещества существуют области длин волны. Однако для каждого везко возрастает (в 8 10 -(в 8-10 раз) против нормального хода (селективное поглощение). Такие образ) против нормального хода (селективное поглощение). Такие области соответствуют областям характеристического излучения данного вещества.

§ 120. Оптика рентгеновских лучей

Трудности обнаружения волновых свойств рентгеновского излучения связаны с чрезвычайной малостью его длин волн. Действитель-но, измералы с чрезвычайной малостью его длин воли. Действительно, измерения с чрезвычайной малостью его длин воли. Денетони обычных рентрои последних показывают, что при использовании обычных рентрои. ных рентген овских трубок мы имеем дело с волнами, длина которых

(119.1)

измеряется десятыми нанометров, т. е. в тысячу раз меньше длин волн видимого света.

и видимого свети разных химических элементов перио. Характеристические лучи разных химических элементов перио. Азрактерноги техже имеют длины волн того же порядка. Каждый лической системи налискать несколько групп характеристических лучей, причем жесткость последних возрастает по мере перехода к элементам с большим атомным номером. Если сравнить между собой жесткие характеристические лучи, то мы получим следующие длины волн: для Mg 0,95, для Fe 0,17, для Ag 0,05, для W 0,018 нм и для самого тяжелого элемента — урана 0,01 нм. Столь короткая длина волны и соответственно огромная частота приводят к тому. что на первый план выступает корпускулярный (квантовый) харак. тер рентгеновского излучения. Поэтому требуются специальные, трудно осуществимые условия опыта, при которых волновой характер рентгеновских лучей проявляется отчетливо. Тем не менее, за последние годы здесь были достигнуты большие успехи. Познакомимся с несколькими основными фактами из этой области — оптики рентгеновских лучей.

а. Правильное отражение. Обычная зеркальная поверхность грубо шероховата для рентгеновских лучей и только при падении под очень скользящим углом может дать правильное отражение. Такое отражение было достигнуто на опыте; кроме того, на том же принципе основана отражательная дифракционная решетка (см. § 47).

Другой способ получения правильного отражения осуществляется в опыте Лауэ, где отражающей поверхностью являются кристаллографические плоскости, в которых атомы образуют несравненно более совершенную плоскость (расположены строго периодически), чем всякая искусственно отполированная плоская поверхность.

б. Преломление. Первые указания на наличие преломления рентгеновских лучей обнаружились в отступлении от условия Брэгга, определяющего положение максимумов при дифракции в кристалле. Эти отступления нашли себе объяснение в допущении преломления лучей при выходе из кристалла. Отсюда можно было оценить показатель преломления для рентгеновских лучей. Он оказался меньше единицы. В соответствии с этим удалось осуществить явление полного внутреннего отражения на границе воздух среда. Так, например, на границе воздух - стекло предельный угол скольжения получился равным 11'; отсюда можно было точно определить показатель преломления стекла для рентгеновского излучения.

Наблюдалось также преломление в стеклянной призме, на которую падал расходящийся пучок рентгеновских лучей. Некоторые лучи пучка падали под углом, большим предельного, и испытывали полное внутрениес от влизиественного и испытывали полное внутреннее отражение, другие преломлялись в призме

ГЛ. XIX. ИНФРАКРАСНЫЕ, УЛЬТРАФНОЛЕТОВЫЕ ЛУЧИ-

и разлагались в спектр. Таким образом удалось наблюдать и измеи разлагались в силитеновских лучей, т. е. зависимость показателя рять дисперсию рентгеновских лучей, т. е. зависимость показателя рять дисперсию ранны волны. Отличие показателя преломления от длины волны. Отличие показателя преломления от преломления от десятичном весьма мало (в шестом десятичном акситателя) преломления от долгов Сонтаки показателя преломления от единицы весьма мало (в шестом десятичном знаке), различие показателей преломления для разных длин волн еще меньше; показателен пролответствующие измерения выполнены довольно грубо.

5 121. Шкала электромагнитных волн

Все предыдущее показывает, что рентгеновское излучение представляет собой электромагнитные волны, отличающиеся от обычного ставляет сооси система длиной. Однако разнообразие длин волн света лише сли пучей чрезвычайно велико. Если обычно длины волн рентгеновского излучения в сотни и тысячи раз меньше длин волн света, то возможны и гораздо более мягкие рентгеновские лучи, соответствующие большей длине волны. Трудность их наблюдения заключается в том, что они очень легко поглощаются всеми телами. приближаясь в этом отношении к короткому ультрафиолетовому излучению. Действительно, принимая меры предосторожности, необходимые при работе с такими легко поглощающимися лучами, удалось наблюдать рентгеновские лучи, по длине волны заходящие в область, которую мы обозначали как область ультрафиолета. Понятно, что в таком случае нет никакого различия между рентгеновскими и ультрафиолетовыми лучами. То или иное название для них зависит от способа их возбуждения. Если возбуждение лучей соответствует методам возбуждения рентгеновского излучения, т. е. мы подходим к этим мягким лучам со стороны более жестких, рентгеновских, то мы назовем их рентгеновскими. Если, наоборот, возникшие лучи вызваны по способу, принятому для возбуждения ультрафиолета, т. е. мы подходим к ним со стороны еще более длинных ультрафиолетовых лучей, то их естественно отнести к ультрафиолету. Область между рентгеновскими и ультрафиолетовыми лучами в настоящее время заполнена (Хольвег), подобно то-му как му как заполнена область между герцовыми и инфракрасными лучами.

В сторону наиболее коротких волн шкала не обрывается на жестких рентгеновских лучах. Мы имеем в природе гораздо более короткие волны, чем обычные рентгеновские. Это у-лучи, испускаемые радноактивности совпадают радноактивными веществами, которые по своей природе совпадают С рентгенования веществами, которые по своей природе совпадают с рентгеновскими веществами, которые по своен природ сткостью. Разнообразии волнами, но отличаются еще большей жесткостью. Разнообразные радиоактивные вещества испускают у-лучи различ-ной длини, по отличаются еще большен жестика. ной длины волны: от таких, которые мягче некоторых рентгеновских. лучей (у-лучи, испускаемые полонием), до лучей, длина волны кото-рых в сотни сотускаемые полонием), до лучей, длина волны которых в сотни раз короче самых жестких из обычных рентгеновских лучей (ү-лучи, испускаемые торием С).

шкала электромагнитных волн

Таким образом, шкала электромагнитных волн представляет собой непрерывно заполненную градацию от весьма длинных электромагнитных радноволн до волн, длина которых измеряется тысячными долями ангстрема. Конечно, не исключена возможность существования еще более коротких волн. Так, при прохождении

Рис, 19.9. Шкала электромагнитных волн.

космических лучей, представляющих собой поток корпускул, несущихся со скоростью, близкой к скорости света, образуются у-лучи очень короткой длины волны.

Следующая диаграмма дает представление о всей шкале электромагнитных волн (рис. 19.9). Вверху диаграммы указаны длины волн, выраженные в ангстремах (1 Å = 0,1 нм = 10^{-8} см), на нижней ее части — наименование волн. Перекрывание областей, показанное на рисунке, указывает, сколь условно это деление на области. Ввиду огромного диапазона нанесенных на шкалу длин волн она представлена в логарифмическом масштабе.

СКОРОСТЬ СВЕТА

Глава ХХ

СКОРОСТЬ СВЕТА И МЕТОДЫ ЕЕ ОПРЕДЕЛЕНИЯ

§ 122. Значение опытов по определению скорости света и первая попытка Галилея

Задача определения скорости света принадлежит к числу важнейших проблем оптики и физики вообще. Решение этой задачи имело огромное принципиальное и практическое значение. Установление того, что скорость распространения света конечна, и измерение этой скорости сделали более конкретными и ясными трудности, стоящие перед различными оптическими теориями. Первые методы определения скорости света, опиравшиеся на астрономические наблюдения, способствовали со своей стороны ясному пониманию чисто астрономических вопросов о затмениях отдаленных светил и о годичном параллаксе звезд. Точные лабораторные методы определения скорости света, выработанные впоследствии, используются при геодезической съемке. Теоретическое обоснование и экспериментальное исследование принципа Допплера в оптике сделали возможным решение задачи о лучевых скоростях светил или движущихся светящихся масс (протуберанцы, каналовые лучи) и привели к весьма широким астрономическим обобщениям. Сравнительное измерение скорости света в вакууме и различных средах послужило в свое время в качестве experimentum crucis для выбора между волновой и корпускулярной теориями света, а впоследствии привело к понятию групповой скорости, имеющему большое значение и в современной квантовой физике. Сравнение скорости распространения света с исто квантовой физике. света с константой с максвелловской теории, обозначающей, с одной сторони. стороны, отношение между электромагнитными и электростатическими единицами заряда, а с другой — скорость распространения электроность при обосноваэлектромагнитного поля, сыграло важнейшую роль при обоснова-нии электромагнитного поля, сыграло важнейшую роль при обосновании электромагнитной теории света. Наконец, вопрос о влиянии движения движения системы на скорость распространения света и вся обшир-ная сороние на скорость распространения света и теоретиная совокупность связанных с ним экспериментальных и теорети-ческих ческих проблем привели к формулировке эйнштейновского принчипа относительности — одного из самых значительных обобщений

14

Ландсберг Г. С.

теоретической физики, играющего исключительно важную роль и в физике, и в философии.

основная трудность, на которую наталкивается экспериментатор Основная трудность, на которую наталкивается экспериментатор Основная трудносто, на постранения света, связана с огромпри определении скорости ристребующим совсем иных масштабов ным значением этой величины, требующим совсем иных масштабов ным значением этом всего в классических физических опыта, чем те, которые плета себя знать в первых научных попыт. измерениях. Ота грудности света, предпринятых еще Галилеем (1607 г.). Опыт Галилея состоял в следующем: два наблюдателя на большом расстоянии друг от друга снабжены закрывающимися фонарями. Наблюдатель A открывает фонарь; через известный промежуток времени свет дойдет до наблюдателя B, который в тот же момент открывает свой фонарь; спустя определенное время этог сигнал дойдет до А, и последний может, таким образом, отметить время т, протекшее от момента подачи им сигнала до момента его возвращения. Предполагая, что наблюдатели реагируют на сигнал мгновенно и что свет обладает одной и той же скоростью в направленин AB и BA, получим, что путь AB + BA = 2D свет проходит за время т, т. е. скорость света $c = 2D/\tau$. Второе из сделанных допущений может считаться весьма правдоподобным. Современная теория относительности возводит даже это допущение в принцип. Но предположение о возможности мгновенно реагировать на сигнал не соответствует действительности, и поэтому при огромной скорости света попытка Галилея не привела ни к каким результатам; по существу, измерялось не время распространения светового сигнала, а время, потраченное наблюдателем на реакцию. Положение можно улучшить, если наблюдателя В заменить зеркалом, отражающим свет, освободившись таким образом от ошибки, вносимой одним из наблюдателей. Эта схема измерений осталась, по существу, почти во всех современных лабораторных приемах определения скорости света; однако впоследствии были найдены превосходные приемы регистрации сигналов и измерения промежутков времени, что и позволило определить скорость света с достаточной точностью даже на сравнительно небольших расстояниях.

§ 123. Астрономические методы определения скорости света

а. Определение скорости света по наблюдениям с Земли затмений спутников Юпитера. Метод Рёмера. Юпитер имеет несколько спутников, которые либо видны с Земли вблизи Юпитера, либо скрываются в его тени. Астрономические наблюдения над спутниками Юпитера показывают, что средний промежуток времени между двумя последовательными затмениями какого-нибудь определенного спутника Юпитера зависит от того, на каком расстоянии друг от друга находятся Земля и Юпитер во время наблюдений. Метод Рёмера (1676 г.), основанный на этих наблюдениях, можно пояснить с помощью рис. 20.1. Пусть в определенный момент времени Земля З₁ и Юпитер Ю₁ находятся в противостоянии и в этот момент времени один из спутников Юпитера, наблюдаемый с Земли, исчезает в тени Юпитера (спутник на рисунке не показан). Тогда, если обозначить через R и r радиусы орбит Юпитера и Земли и

через с — скорость света в системе координат, связанной с Солнцем С, на Земле уход спутника в тень Юпитера будет зарегистрирован на (R—r)/с секунд позже, чем он совершается во временной системе отсчета, связанной с Юпитером. По истечении 0,545 года Земля З,

По истечении 0,040 года Земля S_2 и Юпитер M_2 находятся в соединении. Если в это время происходит *n*-е затмение того же спутника Юпитера, то на Земле оно будет зарегистрировано с опозданием на (R+r)/c секунд. Поэтому, если период обращения спутника вокруг Юпитера *t*, то промежуток времени T_1 , про-

Рис. 20.1. К определению скорости света, по методу Рёмера.

текший между первым и *n*-м затмениями, наблюдавшимися с Земли, равен

$$T_1 = (n-1)t + \frac{R+r}{c} - \frac{R-r}{c} = (n-1)t + \frac{2r}{c}.$$

По истечении еще 0,545 года Земля 3_3 и Юпитер IO_3 будут вновь находиться в противостоянии. За это время совершились (n-1)оборотов спутника вокруг Юпитера и (n-1) затмений, из которых первое имело место, когда Земля и Юпитер занимали положения 3_2 и IO_2 , а последнее — когда они занимали положения 3_3 и IO_3 . Первое затмение наблюдалось на Земле с запозданием (R+r)/c, а последнее с запозданием (R-r)/c по отношению к моментам ухода спутника в тень планеты Юпитера. Следовательно, в этом случае имеем

$$T_2 = (n-1)t - \frac{R+r}{c} + \frac{R-r}{c} = (n-1)t - \frac{2r}{c}.$$

Рёмер измерил промежутки времени T_1 и T_3 и нашел, что $T_1 - T_2 = 1980$ с. Но из написанных выше формул следует, что $T_1 - T_2 = 4r/c$, поэтому c = 4r/1980 м/с. Принимая r, среднее расстояние от Земли до Солнца, равным 150.10⁶ км, находим для скорости света значение:

$$c = 301 \cdot 10^{6} \text{ M/C}$$

СКОРОСТЬ СВЕТА .

420

Этот результат был исторически первым измерением скорости

та. 6. Определение скорости света по наблю. света. б. Определения. В 1725-1728 гг. Брадлей предпринял

дению ассррания, существует ли годичный параллакс наолюдения с цению смещение звезд на небесном своде, отобра-звезд, т. е. кажущееся смещение звезд на небесном своде, отобразвезд, 1. с. конушество орбите и связанное с конечностью расжающее двили по звезды. Как легко видеть из рис. 20.2, а, звезда

Рис. 20.2. Кажущееся смещение звезд, обусловленное годичным движением Земли:

а — вследствие годичного параллакса; б — вследствие аберрации света. Кажущиеся положения звезды A', B', C', D' сопоставлены соответствующим точкам траектория

в своем параллактическом движении должна описывать эллипс, угловые размеры которого тем больше, чем меньше расстояние до звезды.

Для звезд, лежащих в плоскости эклиптики, этот эллипс вырождается в прямую, а для звезд у полюса — в окружность. Брадлей действительно обнаружил подобное смещение. Но большая ось эллипса оказалась для всех звезд имеющей одни и те же угловые размеры, а именно $2\alpha = 40'', 9,$ что значительно больше ожидаемого параллактического смещения даже для ближайшей к Солнцу звезды; наконец, направление наблюденного смещения оказалось перпенднкулярным к ожидаемому вследствие параллакса (см. рис. 20.2, б). Бразлей области (1700) Брадлей объясния (1728 г.) наблюденное явление, названное им и использовал его для определения этой скорости. Годичный парал-лакс, гораздо манос станания до лакс, гораздо менее значительный и зависящий от расстояния до звезды, был установлен более ста лет спустя В. Я. Струве и Бесселем (1837, 1838 гг.).

лем (1837, 1000 г. . Для простоты будем вместо телескопа пользоваться визирным приспособлением, состоящим из двух небольших отверстий, расположенных по оси трубы. Когда скорость Земли совпадает по направлению с SE, ось трубы указывает на звезду. Когда же скорость Земли (н трубы) составляет угол

Земли (н трубы) составлиет уюл с направлением на звезду, то для того, чтобы луч света оставался на оси трубы, трубу надо повернуть на угола (рис. 20.3), ибо за время т, пока свет проходит путь SE, сама труба переме-

Рис. 20.3. К вычислению аберрационного смещения.

Рис. 20.4. Схематический чертеж, поясняющий, как меняется направление скорости Земли относительно прямой, соединяющей Землю со звездой S, лежащей в плоскости эклиптики.

щается на расстояние $E'E = v_0 \tau$. Из рис. 20.3 можно определить поворот α . Здесь ES определяет направление оси трубы без учета аберрации, SE' — смещенное направление оси, обеспечивающее прохождение света вдоль оси трубы в течение всего времени т. Пользуясь тем, что угол α очень мал, так как $v_0 \ll c$ (пренебрегая членами порядка v_0^a/c^2), можно считать, что

$$\angle SE'P \approx \angle SEP = \varphi$$
.

Тогда из треугольника E'SE получаем

$$\frac{\sin \alpha}{\sin \varphi} = \frac{v_0 \tau}{c \tau}$$
 или $\sin \alpha \approx \alpha = \frac{v_0}{c} \sin \varphi$.

Если звезда лежит в плоскости эклиптики (рис. 20.4), то направление вектора скорости Земли vo меняется по отношению к направлению на звезду (ES) в течение года по закону $\varphi = 2\pi t/T$, где T период обращения Земли, и зависимость угла аберрации от времени выражается периодической функцией $\alpha = (v_0/c) \sin (2\pi t/T)$. Таким образом, направление на звезду меняется периодически в течение года: звезда совершает кажущиеся колебания с угловой амплитудой $\alpha_0 = v_0/c$ около среднего положения, соответствующего значению $\varphi = 0$ или π .

 $\varphi = 0$ или л. Если звезда находится в полюсе эклиптики (рис. 20.2, б), то $\varphi = 90^{\circ}$ в течение всего года, т. е. угловое отклонение звезды от направления *OE* (см. рис. 20.2, б) сохраняется неизменным по величине ($\alpha_0 = v_0/c$); но так как направление вектора v_0 изменяется в течение года на угол 2π , то и угловое смещение звезды меняется по направлению: звезда описывает кажущуюся круговую орбиту *A'B'C'D'* с угловым раднусом $\alpha_0 = v_0/c$.

В общем случае, когда звезда расположена на угловом расстоянии δ от плоскости эклиптики, аберрационная траектория звезды представляет собой эллипс, большая полуось которого имеет угловые размеры α_0 , а малая — $\alpha_0 \sin \delta$. Именно такой характер и носило кажущееся смещение звезд по наблюдению Брадлея. Определив из наблюдений α_0 и зная v_0 , можно найти *с*. Брадлей нашел *с* = 308 000 км/с. В. Я. Струве (1845 г.) значительно улучшил точность наблюдений и получил $\alpha_0 = 20^{"}$,445. Самые последние определения дают $\alpha_0 = 20^{"}$,470, чему соответствует *с* = 299 900 км/с.

Существенно отметить, что аберрация света связана с изменением направления скорости Земли в течение года. Постоянную скорость, как бы велика она ни была, нельзя обнаружить с помощью аберрации, ибо при таком движении направление на звезду остается нензменным и нет возможности судить о наличии этой скорости и о том, какой угол с направлением на звезду она составляет. Аберрация света позволяет судить лишь об изменении скорости Земли.

Изложенное простое объяснение аберрации света легко понять в рамках корпускулярных представлений о свете, которые принимал и сам Брадлей. С этой точки зрения свет представляет собой поток летящих частиц, скорость которых не зависит, конечно, от скорости трубы. Рассмотрение аберрации света в рамках волновой теории более сложно и связано с вопросом о влиянии движения Земли на распространение света. Мы вернемся к этому вопросу в § 130.

§ 124. Лабораторные методы определения скорости света

Как уже упоминалось, лабораторные методы определения скорости света представляют собой, по существу, усовершенствования автоматизирующий моменты пуска и регистрации возвращающегося сигнала (прерывания), и метод Араго — Фуко, основанный на точном измерении времени пробега светового сигнала (вращающееся

гл. хх. скорость света и методы ее определения

зеркало). Оба эти способа подвергались неоднократным усовершенствованиям вплоть до последнего времени, причем использовались достижения современной экспериментальной техники. Благодаря им удавалось или значительно повысить точность первоначальных измерений, или значительно сократить длину базиса, вдоль которого исследуют распространение света.

рого исследуют разработан ряд методов, основанных Помимо указанных, был разработан ряд методов, основанных на иных принципах. О некоторых из них будет сказано ниже.

на иных приод прерываний. Физо (1849 г.) выполнил впервые определение скорости света в лабораторных условиях. Характерной особенностью его метода является автоматическая регистрация моментов пуска и возвращения сигнала, осуществляемая путем

Рис. 20.5. Схема опыта по определению скорости света методом зубчатого колеса.

регулярного прерывания светового потока (зубчатое колесо). Схема опыта Физо изображена на рис. 20.5. Свет от источника S идет между зубьями вращающегося колеса W к зеркалу М и, отразившись обратно, должен вновь пройти между зубьями к наблюдателю. Для удобства окуляр Е, служащий для наблюдения, помещается против a, а свет поворачивается от S к W при помощи полупрозрачного зеркала N. Если колесо вращается, и притом с такой угловой скоростью, что за время движения света от а к М и обратно на месте зубьев окажутся прорези, и наоборот, то вернувшийся свет не будет пропущен к окуляру и наблюдатель не увидит света (первое затемнение). При возрастании угловой скорости свет частично дойдет до наблюдателя. Если ширина зубьев и просветов одинакова, то при двойной скорости будет максимум света, при тройной второе затемнение и т. д. Зная расстояние aM = D, число зубьер зубьев г, угловую скорость вращения (число оборотов в секунду), угловую скорость вращения (число сосревом затем-нении своем вычислить скорость света. Так, при первом затемнении свет, прошедший в просвет между зубцами, при своем возвра-щении и свет, прошедший в просвет между зубцами, при своем возвращении натолкнется на ближайший зубец. Для этого необходимо, чтобы за чтобы за время t = 2D/c колесо повернулось на угол π/z , т. е. на угол π/z , т. е. на угол, отделяющий центр просвета от центра соседнего зубца. Если порто у в секунду, Если первое затемиение появится при числе оборотов у в секунду,

423

то изложенное условие выразится в виде

$$\frac{2D}{c}=\frac{1}{2zv}$$
, или $c=4Dzv$.

Второе затемнение будет иметь место при тройной угловой скорости, т. е. когда возвращающийся свет будет задержан следующим зубцом, и т. д. Главная трудность определения лежит в точном установлении момента затемнения. Точность повышается при увеличении расстояния D, и при скоростях прерываний, позволяющих наблюдать затемнения высших порядков. Так, Перротен вел свои наблюдения при D = 46 км и наблюдал затемнение 32-го порядка. При этих условиях требуются светосильные установки, чистый воздух (наблюдения в горах), хорошая оптика, сильный источник света.

Ниже приводятся результаты по методу прерываний (с дальнейшими усовершенствованиями):

Физо (1849 г.)	D = 8,63 км	c = 315000 км/с
Корню (1876 r.)	D = 23 км,	$c = 300\ 000 \pm 300$ km/c
Перротен (1902 г.)	D = 46 km,	′ с = 299 870 ± 50 км/с ′
Бергштранд (1950 г.)		$c = 299793,1 \pm 0,25$ км/с

В последнее время вместо вращающегося колеса с успехом применяют другие, более совершенные методы прерывания света. Наилучшие результаты получены с помощью конденсатора Керра (см. § 152), в котором наложение быстропеременного поля дает возможность производить до 10⁷ прерываний в секунду. Это позволяет значительно улучшить точность результатов или сильно сократить длину базиса D. Так, в опытах Андерсона (1937 г.) длина базиса D составляла всего лишь 3 м, т. е. вся установка помещалась на лабораторном столе. Многочисленные усовершенствования в методах регистрации, использовавшие современные достижения радиотехцики и электроники, позволили чрезвычайно сильно повысить точность измерений.

6. Метод вращающегося зеркала. Фуко (1862 г.) успешно осуществил второй метод, принцип которого еще раньше (1838 г.) был предложен Араго с целью сравнения скорости света в воздухе со скоростью его в других средах (вода). Метод основан на очень тщательных измерениях малых промежутков времени при помощи вращающегося зеркала. Схема опыта ясна из рис. 20.6. Свет от источника S направляется при помощи объектива L на вращающееся зеркало R, отражается от него в направлении второго зеркала C и идет обратно, проходя путь 2CR = 2D за время т. Время это оценивается по углу поворота зеркала R, скорость вращения которого точно известна; угол же поворота определяется из Измерения смещения зайчика, даваемого возвратившимся светом.

424

гл. хх. СКОРОСТЬ СВЕТА И МЕТОДЫ ЕЕ ОПРЕДЕЛЕНИЯ

пластинки M, играющей ту же роль, что и в предыдущем методе; S_1 положение зайчика при неподвижном зеркале R, S_1' при вращении зеркала. Важной особенностью установки Фуко явилось вращении зеркала. Важной особенностью установки Фуко явилось применение в качестве зеркала C вогнутого сферического зеркала, применение в качестве зеркала C вогнутого сферического зеркала, с центром кривизны, лежащим на оси вращения R. Благодаря этому с центром кривизны, лежащим на оси вращения R. Благодаря этому свет, отраженный от $R \kappa C$, всегда попадал обратно на R; в случае же применения плоского зеркала C это происходило бы лишь при определенной взаимной ориентации R и C, когда ось отраженного конуса лучей располагается нормально к C.

Рис. 20.6. Определение скорости света методом вращающегося зеркала.

Фуко в соответствии с первоначальным замыслом Араго осуществил при помощи своего прибора также и определение скорости света в воде, ибо ему удалось уменьшить расстояние RC до 4 м, сообщив зеркалу 800 оборотов в секунду. Измерения Фуко показали, что скорость света в воде *меньше*, чем в воздухе, в соответствии с представлениями волновой теории света.

Дальнейшие усовершенствования метода Фуко, при которых улучшалась техника работы с вращающимся зеркалом и увеличивался путь RC, привели к очень значительному повышению точности, дав в руках Майкельсона весьма хорошие результаты по определению скорости света.

Результаты измерений по методу вращающегося зеркала таковы:

Фуко (1862 г.)	$c = 293\ 000 \pm 500 \ \text{KM/c}$
Ньюкомб (1891 г.)	$c = 299810 \pm 50$ km/c
Майкельсон (1902 г.)	c = 299 890 ± 60 км/с
Майкельсон (1926 г.)	$c = 299796 \pm 4 \mathrm{KM/C}$

Последняя (1926 г.) установка Майкельсона был выполнена между двумя горными вершинами, так что в результате получено расстояние $D \approx 35,4$ км (точнее, $35\,373,21$ м). Зеркалом служила восьмиграниая стальная призма, вращавшаяся со скоростью 528 об/с. Схема установки Майкельсона изображена на рис. 20.7. Время, за которое свет совершал полный путь, равнялось 0,00023 с, так что зеркало успевало повернуться на 1/8 оборота и свет

СКОРОСТЬ СВЕТА

падал на следующую грань призмы. Таким образом, смещение зайчика было сравнительно незначительным, и определение его положения играло роль поправки, а не основной измеряемой величины как в первых опытах Фуко, где все смещение достигало лишь 0,7 мм.

как в первых опытах суме, же весьма точные измерения скорости Были произведены также весьма точные измерения скорости распространения радиоволн. При этом были использованы радио. геодезические измерения, т. е. определение расстояния между двумя пунктами с помощью радиосигналов параллельно с точными триан.

Рис. 20.7. Схема установки Майкельсона для определения скорости света.

гуляционными измерениями. Лучшая полученная таким методом величина, приведенная к вакууму, $c = 299\ 792 \pm 2,4$ км/с. Наконец, скорость радиоволн была определена по методу стоячих волн, образованных в цилиндрическом резонаторе. Теория позволяет связать данные о размерах резонатора и резонансной частоте его со скоростью волн. Опыты делались с эвакуированным резонатором, так что приведения к вакууму не требовалось. Лучшее значение, полученное по этому методу, $c = 299\ 792,5 \pm 3,4\$ км/с.

В 1972 г. значение скорости света было определено на основе независимых измерений длины волны и частоты света. В качестве источника был выбран, по ряду причин, гелий-неоновый лазер, генерирующий излучение с длиной волны 3,39 мкм. Длина волны этого излучения измерялась с помощью интерферометрического сравнения с эталоном длины, т. е. с длиной волны оранжевого излучения криптона (см. § 31). Методами нелинейной оптики (генерации излучения с суммарными и разностными гармониками, см. § 236) частоту лазерного излучения удалось сравнить с эталоном времени *). Таким образом было получено значение скорости света

•) Секунда определяется как 9 192 631 770 периодов колебаний в излучения. соответствующем переходу между двумя уровнями сверхтонкого расщепления основного состояния атома цезия 133.

гл. хх. скорость света и методы ее определения

 $c = \lambda v$, превосходящее по точности все ранее известные значения более чем на два порядка: $c = 299792456.2 \pm 1.1$ м/с.

Сопоставим лучшие данные, полученные разными методами: метод вращающегося зеркала . c = 299 796 ± 4 км/а (Майкельсон, 1926 г.) метод прерываний (усовершенствованс = 299793,1 ± 0,25 км/с (Бергштранд, 1950 г.) c = 299 792 ± 2,4 км/с (Аслаксон, ный) Радногеодезия 1949 г.) c = 299 792,5 ± 3,4 км/с Полый резонатор (Эссен, 1950 r.) Микроволновая интерферометрия c = 299 792,2 ± 0,2 км/с (Фрум, 1958 г.) Измерение частоты и длины волны с = 299 792,4562 ± 0,0011 км/с (Ивенсон, 1972 г.)

Это сопоставление показывает превосходное согласие, оправдывающее ту точность измерения, на которую указывают авторы. Прекрасное совпадение скорости световых волн и скорости радноволн вновь подтверждает справедливость электромагнитной теории света, напоминая, что первым аргументом Максвелла в пользу этой теорни было тогда еще грубо установленное равенство скорости света и электродинамической постоянной, определяющей скорость распространения электромагнитных волн.

§ 125. Фазовая и групповая скорости света

Лабораторные методы определения скорости света, позволяющие производить эти измерения на коротком базисе, дают возможность определять скорость света в различных средах и, следовательно, проверять соотношения теории преломления света. Как уже неоднократно упоминалось, показатель преломления света в теории Ньютона равен $n = \sin i/\sin r = v_0/v_1$, а в волновой теорин $n = \sin i/\sin r = v_1/v_2$, где $v_1 - скорость света в первой среде,$ $а <math>n = \sin i/\sin r = v_1/v_2$, где $v_1 - скорость света в первой среде,$ а v_2 — скорость света во второй. Еще Араго видел в этом различии возмочно света во второй. Еще Араго видел в этом различии возможность света во второн. Еще Араго видел в отон и в вологи и вологи в отон в сториения скорый был выполнен позднее Фуко, нашедшим для отношения скоростей света в воздухе и воде значение, близкое к ⁴/₃, как следует по теории Гюйгенса, а не ³/₄, как вытекает из теории Ньютона. Правла Правда, к моменту выполнения этих опытов (1862 г.) волновая теория опытов (1862 г.) волновая теория света уже не нуждалась в подобных дополнительных аргу-ментах. Тол ментах. Тем не менее, по мере усовершенствования методов определения скорости света вопрос этот подвергался дальнейшему эксперимента скорости света вопрос этот подвергался дальнейшему экспериментальному исследованию, причем оказалось, что дело обстоит годинальному исследованию, причем майкельсон получил обстоит гораздо сложнее. Так, для воды Майкельсон получил с/v = 1.33 с/и = 1,33 в соответствии со значением показателя преломления

427

воды. Но для сероуглерода он нашел c/v = 1,75, тогда как общ. ное определение показателя преломления дает n = 1,64. Объяснение было найдено Рэлеем, выяснившим сложный характер понятия скорости волны.

Тия скорости вопили Обычное определение показателя преломления $n = \sin i / \sin r = v_1 / v_2$ из изменения направления волновой нормали на границе двух сред дает отношение фазовых скоростей волны в этих двух средах. Однако понятие фазовой скорости применимо только к строго монохроматическим волнам, которые реально не осуществимы так как они должны были бы существовать неограниченно долго во времени и быть бесконечно протяженными в пространстве.

В действительности мы всегда имеем более или менее сложный импульс, ограниченный во времени и в пространстве. При наблюдении такого импульса мы можем выделять какое-нибудь опреде. ленное его место, например, место максимальной напряженности того электрического или магнитного поля, которое представляет собой электромагнитный импульс. Скорость импульса можно отождествить со скоростью распространения какой-либо его точки, например, точки максимальной напряженности поля. При этом, однако, надо предполагать, что импульс наш сохраняет при распространении свою форму или во всяком случае деформируется достаточно медленно или периодически восстанавливается. Для выяснения этого обстоятельства мы можем представить импульс как наложение бесконечно большого числа близких по частоте монохроматических волн (представление импульса в виде интеграла Фурье). Если, например, все эти монохроматические волны разной длины распространяются с одной и той же фазовой скоростью (среда не имеет дисперсии), то с той же скоростью перемещается и импульс как целое, сохраняя неизменной свою форму.

Однако среда (за исключением вакуума) обычно характеризуется дисперсией, т. е. монохроматические волны распространяются с различными фазовыми скоростями, зависящими от их длины, и импульс начинает деформироваться. В таком случае вопрос о скорости импульса становится более сложным. Если дисперсия не очень велика, то деформация импульса происходит медленно и мы можем следить за перемещением определенной амплитуды поля в волновом импульсе, например, максимальной амплитуды поля. Однако скорость перемещения импульса, названная Рэлеем *групповой скоростыю*, будет отличаться от фазовой скорости любой из составляющих его монохроматических волн и должна быть предметом специального расчета.

Для простоты вычисления мы будем представлять себе импульс как совокупность двух близких по частоте синусоид одинаковой амплитуды, а не как совокупность бесконечного числа близких синусоид. При этом упрощении основные черты явления сохраняются. Наложение таких близких по частоте синусоид дает импульс, форма которого изображена на рис. 20.8 (биения близких по частоте форма которого изстрании импульс, или, как принято говорить, группа колебаний). Итак, наш импульс, или, как принято говорить, группа колеоания волн *), составлен из двух волн

$$y_1 = a \sin(\omega_1 t - k_1 x)$$
 и $y_2 = a \sin(\omega_2 t - k_2 x),$

где амплитуды приняты равными, а частоты и длины волн мало отличаются друг от друга, т. е.

$$\omega_1 = \omega_0 + \delta \omega$$
, $\omega_2 = \omega_0 - \delta \omega$, $k_1 = k_0 + \delta k$, $k_2 = k_0 - \delta k$,

где δω и δk — малые величины. Импульс (группа волн) у есть сумма и и у2, т. е.

$$y = y_1 + y_2 = a \sin(\omega_1 t - k_1 x) + a \sin(\omega_2 t - k_2 x) =$$

= $2a \cos\left[\frac{1}{2}(\omega_1 - \omega_2) t - \frac{1}{2}(k_1 - k_2) x\right] \sin\left[\frac{1}{2}(\omega_1 + \omega_2) t - \frac{1}{2}(k_1 + k_2) x\right] =$
= $2a \cos(t\delta\omega - x\delta k) \sin(\omega_0 t - k_0 x).$

Вводя обозначения $A = 2a \cos(t\delta\omega - x\delta k)$, представим наш импульс в виде $y = A \sin (\omega_0 t - k_0 x)$, где A не постоянно, но

Рис. 20.8. Группа волн, представляющая суперпозицию двух близких по частоте монохроматических волн.

меняется во времени и пространстве, однако меняется медленно, ибо $\delta \omega$ и δk — малые (по сравнению с ω_0 и k_0) величины. Поэтому, допуское допуская известную небрежность речи, мы можем считать наш им-пульс пульс синусоидой с медленно изменяющейся амплитудой (ср.

Выделив на импульсе какую-нибудь точку с определенным значением А, например точку, где А максимально, мы определим скорость скорость перемещения этой точки, которая и характеризует

•) Группой волн называют импульс, который можно представить в виде купности басили называют импульс, которых мало отличаются совокупности боли называют импульс, который можно представить с сов аруг от друга.

СКОРОСТЬ СВЕТА

скорость распространения импульса. Таким образом, скорость импульса (группы), которую, согласно Рэлею, называют групповой скоростью, есть скорость перемещения амплитуды, а, следовательно, и энергии, переносимой движущимся импульсом.

для нахождения групповой скорости и надо написать условие постоянства амплитуды, т. е.

$$t\delta\omega - x\delta k = \text{const.}$$

Дифференцируя, находим $\delta \omega dt - \delta k dx = 0$, или

$$u = \frac{dx}{dt} = \frac{\delta\omega}{\delta k} = \frac{d\omega}{dk}.$$

Итак, монохроматическая волна характеризуется фазовой скоростью $v = \omega/k$, означающей скорость перемещения фазы, а импульс характеризуется групповой скоростью $u = d\omega/dk$, соответствующей скорости распространения энергии поля этого импульса.

Нетрудно найти связь между и и v. В самом деле,

$$u = \frac{d\omega}{dk} = \frac{d(vk)}{dk} = v + k \frac{dv}{dk},$$

или, так как $k = 2\pi/\lambda$ и, следовательно, $dk = -(2\pi/\lambda^2)d\lambda$,

$$k \frac{dv}{dk} = -\frac{2\pi}{\lambda} \frac{\lambda^2}{2\pi} \frac{dv}{d\lambda} = -\lambda \frac{dv}{d\lambda},$$

т. е. окончательно

$$u = v - \lambda \frac{dv}{d\lambda}$$
 (формула Рэлея). (125.1)

Если $\frac{dv}{d\lambda} > 0$ (нормальная дисперсия), то u < v; если $\frac{dv}{d\lambda} < 0$ (аномальная дисперсия), то u > v. Соотношение (125.1) можно представить в иной форме, если рассматривать показатель преломления как функцию частоты ω , а не длины волны λ . Имея в виду связь $n\lambda = 2\pi c/\omega$, из (125.1) находим

$$u = \frac{c}{n + \omega dn/d\omega}.$$
 (125.2)

Выражение (125.2) в явном виде показывает зависимость групповой скорости от характеристик среды — показателя преломления и dn/dw.

Различие между u и v тем значительнее, чем больше дисперсия *) $dv/d\lambda$. В отсутствие дисперсии ($dv/d\lambda = 0$) имеем u = v. Этот

^{•)} При введении понятия групповой скорости мы ограничились случаем не очень большой дисперсии, ибо в противном случае импульс быстро деформируется и понятие групповой скорости теряет смысл. Так, например, вблизи полосы поглощения вещества, где фазовая скорость очень сильно меняется с частотой, формула (125.1) могла бы дать для и значение, большее скорости света,

случай, как уже сказано, имеет место лишь для вакуума

(см. § 154). § 154). Рэлей показал, что в известных методах определения скорости

Рэлен показан, сущности методики, имеем дело не с непрерывно света мы, по самой сущности методики, имеем дело не с непрерывно света мы, по самон, а разбиваем ее на малые отрезки. Зубчатое кодлященся волноги в методе прерываний дают ослабляю-лесо и другие прерыватели в методе прерываний дают ослабляюлесо и другие прорае световое возбуждение (см. рис. 1.9), т. е. щееся и парастающее световое возбуждение (см. рис. 1.9), т. е. щееся и нарастающее происходит дело и в методе Рёмера, группу воли. Инсклате периодическими затемнениями. В методе Рёмера, где свет прерывается периодическими затемнениями. В методе врагде свет прерывается свет также перестает достигать наблюдателя щающегося зеркала свет также перестает достигать наблюдателя щающегося вернала свет стренана достатать наолюдателя при достаточном повороте зеркала. Во всех этих случаях мы в при достаточном среде измеряем групповую скорость, а не фа-30BYIO.

ую. Рэлей полагал, что в методе аберрации света мы измеряем непосредственно фазовую скорость, ибо там свет не прерывается искусственно. Однако Эренфест (1910 г.) показал, что наблюдение аберрации света в принципе не отличимо от метода Физо, т. е. тоже дает групповую скорость. Действительно, аберрационный опыт можно свести к следующему. На общей оси жестко закреплены два лиска с отверстиями. Свет посылается по линии, соединяющей эти отверстия, и достигает наблюдателя. Приведем весь аппарат в быстрое вращение. Так как скорость света конечна, то свет не будет проходить через второе отверстие. Чтобы пропустить свет, необходимо повернуть один диск относительно другого на угол, определяемый отношением скоростей дисков и света. Это - типичный аберрационный опыт; однако он ничем не отличается ст опыта Физо, в котором вместо двух вращающихся дисков с отверстиями фигурирует один диск и зеркало для поворота лучей, т. е. по существу два диска: реальный и его отражение в неподелжном зеркале. Итак, метод аберрации дает то же, что и метод прерываний, т. е. групповую скорость.

Таким образом, в опытах Майкельсона и с водой, и с сероуглеродом измерялось отношение групповых, а не фазовых скоростей, но для воды $dv/d\lambda$ настолько мало, что практически u = v, поэточу $c/u \sim a/c$ $c/u \approx c/v = n;$ для сероуглерода же $dv/d\lambda$ значительно, так что u < nu < v н c/u > c/v, это и обнаружил опыт Майкельсона (c'u = 1,76, c/v = 1.60) – c/v, это и обнаружил опыт Майкельсона (c'u = 1,76, c/v = 1.60) c/v = 1,64). Тщательное измерение дисперсии сероуглерода пока-зало ито и слательное измерение дисперсии сероуглерода показало, что измеренное Майкельсоном отношение действительно соответствует отношению групповых скоростей, даваемому формулой Ралея Рэлея.

в вакууме, или отрицательное значение. В этой области формула наша непри-ложима. Эноприцательное значение. В этой области формула наша неприложима. Энергия импульса распространяется со скоростью, которую можно назвать скоростью сигнала; она, как показывает специальное исследование, вне указанной области оса сиснала; она, как показывает специальное исследование, вне указанной области совпадает с группорой скоростью, а внутри нее остается меньше Скорости меньше скорости света в вакууме.

431
СКОРОСТЬ СВЕТА

Глава XXI

явление допплера

§ 126. Введение

В предыдущей главе были описаны различные методы определения скорости света. Вместе с тем, многочисленные интерференционные и дифракционные явления, о которых говорилось выше, дают нам методы непосредственного измерения длины волны света в среде λ и в вакууме $\lambda_0 = n\lambda$. По этим двум величинам можно определить также частоту испускаемого излучения $v = v/\lambda = c/\lambda_0$ или его период $T = 1/v = \lambda_0/c$.

Частота или период испускаемого почти монохроматического излучения представляет собой характеристику тех внутриатомных процессов, которые обусловливают испускание. В нашем распоряжении нет методов непосредственного измерения этих частот *). Они определяются нами на основании измерений c и λ_0 . Следует, однако, иметь в виду, что длина волны или частота наблюдаемого света может не совпадать с соответствующими длинами волн или частотами света, излучаемого атомом. Точнее, воспринимаемая частота или длина волны зависит не только от внутриатомных процессов, их обусловливающих, но также и от той системы координат, с которой связаны наблюдающие аппараты. Частота волнового процесса будет различной, если ее оценивать с помощью аппаратов, неподвижных относительно источника или движущихся по отношению к нему.

Это замечание впервые было сделано Допплером (1842 г.), который указал, что воспринимаемая частота становится больше при сближении источника и приемного прибора и меньше при их удалении друг от друга.

Рассуждения Допплера применимы ко всем волновым явлениям — оптическим, акустическим и иным. Допплер наблюдал (качественно) предсказанное им явление в акустических процессах и высказал предположение, что различие в окраске некоторых звезд обусловлено их движением относительно Земли. Последнее заключение неверно. Для подавляющего большинства звезд влияние их движения сказывается лишь в незначительных изменениях положения спектральных линий в спектре звезд. Тем не менее применимость принципа Допплера к оптическим явлениям не возбуждает сомнений. Впервые надежное экспериментальное установление

^{•)} В отличие от акустики и радиотехники, где существуют методы прямого определения частот. О современных квантовых стандартах частоты см., например, Жаботинский М. Е. и Золин В. Ф., Квантовые стандарты

оппического явления Допплера и наиболее плодотворные его применения были сделаны действительно при наблюдении астрономических явлений.

ческих явлении. Трактовка проблемы существенно зависит от того, можем ли мы говорить лишь об относительном движении источника и приемника по отношению друг к другу или имеет смысл говорить о сконика по отношению относительно среды, т. е. принимать в расчет рости возмущения относительно среды, т. е. принимать в расчет движение источника и приемника в этой среде.

§ 127. Явление Допплера в акустике

Для звуковых волн, несомненно, имеет место второй случай: акустические волны распространяются в среде (газ), внутри которой могут двигаться источник и приемник, так что имеет смысл вопрос не только об их движении друг по отношению к другу (отно-

сительное движение), но и о движении их по отношению к среде.

Рассмотрим поэтому отдельно-оба случая: а) движение источника и б) движение приемного прибора.

а) Источник движется относительно среды со скоростью v.

Q

Скорость волны в среде с — постоянная, не зависящая от движения источника.

Пусть приемник находится в точке B и источник S_1 движется со скоростью v вдоль линии S_1B , соединяющей источник с приемным прибором (рис. 21.1). Волна, испущенная в момент t_1 , когда источник находится на расстоянии $S_1B = a$ от прибора, достигнет последнего к моменту

$$\theta_1 = t_1 + a/c;$$

волна, испущенная в момент $t_2 = t_1 + \tau$, достигнет приемника в момент

$$\theta_2 = t_2 + \frac{a \pm v\tau}{c},$$

нбо к моменту t_2 расстояние между источником и прибором сделается равным $(a + \upsilon \tau)$ или $(a - \upsilon \tau)$ в зависимости от направления движения. Итак, волны, испущенные источником за время $\tau = t_2 - t_1$, действуют на приборы в течение времени

$$\theta = \theta_2 - \theta_1 = \tau (1 \pm v/c).$$

 $E_{CЛH}$ v_0 — частота источника, то за время т им будет испущено $N = v_0 \tau$ воли и, следовательно, частота, воспринимаемая

Рис. 21.1. К выводу формулы Допплера в случае движения источника относительно среды.

прибором, есть v = N/6. Она равна -

$$v' = \frac{v_0}{1+v/c}$$
 в случае удаления источника,
 $v'' = \frac{v_0}{1-v/c}$ в случае приближения источника. (127.1)

Так как скорость волны в среде определяется свойствами последней, т. е. не зависит от движения источника и остается равной с, то в рассмотренном случае обязательно должно иметь место изменение длины волны.

Ние олины болны. Если обозначить через λ_0 длину волны, наблюдаемую в отсут. ствие движения источника, а через λ — длину волны, воспринимаемую в случае движения источника, то найдем

$$\lambda_0 = \frac{c}{v_0}, \quad \lambda = \frac{c}{v} = \frac{c}{v_0} \left(1 \pm \frac{v}{c} \right) = \lambda_0 \left(1 \pm \frac{v}{c} \right). \tag{127.2}$$

Итак, при движении источника в среде скорость волны относительно прибора, находящегося в этой среде, остается постоянной,

Рис. 21.2. К выводу формулы Допплера в случае движения приемника относительно среды.

а частота и длина волны, воспринимаемые приемником, изменяются. Иными словами, опыт типа опыта Физо дает для скорости акустической волны то же значение, что и при неподвижном источнике звука, а интерференционный опыт — изме-

(127.3)

ненную длину волны; то же относится и к частоте, которая в случае акустических волн может наблюдаться непосредственно, например, путем сравнения с сиреной, звучащей в унисон.

б) Приемник движется относительно среды со скоростью v, скорость волны в среде равна c (рис. 21.2). Повторяя рассуждения, приведенные выше, мы должны были бы для θ_1 и θ_2 написать соответственно:

$$\theta_1 = t_1 + \frac{a}{c \mp v}, \quad \theta_2 = t_2 + \frac{a \pm v\tau}{c \mp v},$$

ибо сближение между волной и прибором происходит со скоростью $c \mp v$ (скорость волны относительно прибора) (см. рис. 21.2). Таким образом,

$$\theta = \tau \left(1 \pm \frac{v}{c \mp v} \right),$$

и частота, воспринимаемая приемником, будет равна

$$=\frac{v_0}{1+v/(c-v)} = v_0 (1-v/c)$$
 в случае удаления прибора.

 $v'' = \frac{v_0}{1 - v/(c+v)} = v_0 (1 + v/c)$ в случае приближения прибора,

При движении приемника скорость волны относительно него При движении пристипна скорость волны относительно него складывается из скорости волны относительно среды и скорости складывается относительно среды, т. е. равна складывается не спорости волны относи прибора относительно среды, т. е. равна

$$(c \pm v) = c (1 \pm v/c).$$

Длина волны, воспринимаемая приемником, остается, таким обрадлина изменной. Действительно,

$$\lambda = \frac{c \mp v}{v} = \frac{c (1 \mp v/c)}{v_0 (1 \mp v/c)} = \frac{c}{v_0} = \lambda_0.$$
(127.4)

Итак, в случае движения приемника частота и скорость волны отно-Итак, в случае долны отно-сительно прибора меняются, но длина волны, воспринимаемая им. остается неизменной.

Рис. 21.3. К выводу формулы Допплера.

- скорость движения прибора составляет угол ф с линией источник — прябор, б — скорость движения источника составляет угол ф с линией источник — прябор.

Опыты по определению скорости звука, его частоты и длины звуковой волны могли бы подтвердить сказанное.

Выведенные формулы относятся к случаю, когда наблюдение производится вдоль линии BS, по которой происходит движение источника или прибора. Если направление наблюдения составляет угол ф с направлением движения, то в наших рассуждениях нужно сделать небольшие изменения. Во-первых, при движении приемника вместо ($c \mp v$) следует подставить ($c \mp v \cos \varphi$), нбо именно эта величина дает в рассматриваемом случае скорость сближения волны и прибора (рис. 21.3); во-вторых, в выражение для θ_3 вместо $(a \pm v_T)$ войдет $(a \pm v_T \cos \varphi)$, ибо $BS_2 = BS_1 \pm S_1S_2 \cos \varphi$. При этом то войдет $(a \pm v_T \cos \varphi)$, ибо $BS_2 = BS_1 \pm S_1S_2 \cos \varphi$. При этом предполагается, что ит мало по сравнению с $S_1B = a$. Таким образов образом, окончательные результаты соответствуют замене и на и соз φ, т. е. введению слагающей скорости вдоль линии SB (лучевая скорость). Окончательно получим:

$$v = \frac{v_0}{1 \mp v \cos \varphi/c} = \frac{v_0 (1 \mp v \cos \varphi/c)}{1 - (v \cos \varphi/c)^2}$$
 в случае движения источника, (127.5)

 $v = v_0 (1 \mp v \cos \varphi/c)$ в случае движения прибора. (127.6)Итак, для случая движения в среде мы имеем две различные формулы, которые отличаются друг от друга множителем

 $1 - (v \cos \phi/c)^2$

т. е. множителем, отличающимся от единицы на величину $e_{mop_{020}}$ порядка малости (относительно v/c) *).

для большинства случаев, рассматриваемых в акустике, раз. Для большинства спучася, г пренебрегают. Но оно имеет прин-личие это невелико, и им часто пренебрегают. Но оно имеет принличие это невелико, и ная соме того, при современных технических ципиальное значение, и, кроме того, при современных технических ципиальное значение, и, проти практически вполне заметных вели-средствах достигает нередко и практически вполне заметных велисредствах достигает пересия могут развивать скорость величин. Так, современные сило v/c достигает 80% и различие в двух 1000 км/час и более, так что v/c достигает 80% и различие в двух приведенных выше формулах становится значительным.

приведенных выше формулах становлися опастисивным. Если прибор движется относительно среды со скоростью v, а источник — со скоростью u, то нетрудно установить формулу, описывающую положение вещей для этого случая. Предполагая, что оба они движутся в одну сторону, догоняя друг друга, получим, последовательно применяя выведенные выше формулы,

$$\mathbf{v} = \mathbf{v}_0 \frac{1 + v/c}{1 + u/c}.$$
 (127.7)

При u = v найдем $v = v_0$ вполне строго.

Таким образом, если источник и прибор движутся совместно (т. е. неподвижны друг относительно друга), то явление Допплера не имеет места. Но если $v \neq u$, то явление Допплера происходит, причем наблюдаемое изменение частоты зависит не от разности и — v, но от самих величин и и v. Поэтому в данном случае это явление позволяет определить не только скорость источника относительно прибора, но и скорость источника и прибора относительно среды.

В 1845 г. явление было изучено экспериментально (Бэйс -Баллот), и теоретические формулы проверены количественно путем наблюдения изменения высоты звука музыкального инструмента, звучащего на платформе поезда, проносящегося мимо станции. Изменение высоты звука наблюдатели, музыканты, оценивали на слух. Опыты были повторены позже при скорости поезда до 120 км/час.

§ 128. Явление Допплера в оптике

В оптике вопрос о распространении воли в среде гораздо сложнее. Известно, что световые волны могут распространяться в про-странстве. не запоствые волны могут распространяться в пространстве, не заполненном никаким известным нам веществом (в вакууме).

Если исходить из представления о вакууме как о среде, в которой распространяются электромагнитные волны и относительно

*) К сверхзвуковым скоростям наши формулы не относятся.

которой можно измерять скорость источника и приемника (неподвижный эфир теории Лорентца, см. гл. XXII), то эффект Допплера должен был бы трактоваться так же, как и выше.

мы пришли бы к двум различным формулам, отличающимся Мы пришили од и доуж различие формулам, отличающимся на величину второго порядка относительно v/c. Так как даже для движения Земли по ее орбите v/c не превосходит 10⁻⁴, то, следля движения оснати не се ороние ото не превосходит 10⁻⁴, то, сле-довательно, различие в обеих формулах составляет лишь 10⁻⁸. Для большинства же реализуемых на опыте случаев различие еще Для облытите нельзя констатировать непосредственным наблюдеменьше. Гло наплой допплеровского смещения. Однако удалось, нием над регистрить и другие оптические опыты (например, как известно, осуществить и другие оптические опыты (например, как известно, осущество и другие опыты снапример, опыт Майкельсона, см. § 130), которые были достаточно точны для опыт изапистисти у сост, пострые один достаточно точны для того, чтобы констатировать указанные малые различия, если бы они существовали. Этими опытами было показано, что малое различие, ожидаемое в рамках представления о распространении световых волн в неподвижном эфире, не имеет места. Все без исключения процессы протекают таким образом, что играет роль только относительное движение источников и приборов по отношению друг к другу, и понятие абсолютного движения в вакууме не имеет смысла (принцип относительности, см. гл. ХХІІ). Поэтому и формулы, описывающие явление Допплера, не должны отличаться друг от друга для двух разобранных выше случаев, потому что иначе мы имели бы и в этом явлении принципиальную возможность констатировать абсолютное движение системы в вакууме, что противоречит принципу относительности. И действительно, если при выводе формул для расчета явления Допплера принять во внимание основные постулаты и следствия теории относительности, то мы получим для обоих случаев (движение источника и движение прибора) один и тот же результат, а именно:

$$v = v_0 \sqrt{\frac{1 \pm v/c}{1 \mp v/c}}.$$
 (128.1)

Мы несколько подробнее рассмотрим этот вопрос в следующей главе, посвященной изложению основ оптики движущихся систем.

Экспериментальное подтверждение принципа Допплера было получено прежде всего в астрономических измерениях. После того как было установлено, что следует ожидать сравнительно небольших изменений в частоте спектральных линий звеза, были предприняты многочисленные наблюдения такого рода. Впервые удалось надежно констатировать смещение водородных линий в спектрах Веги и Сириуса по сравнению с соответствующими линиями в спектре гейслеровой трубки, приписав это смещение движешю звеза, относительно Земли. В дальнейшем такого рода измерения делались и делаются весьма часто. При их помощи, строго говоря, нельзя

СКОРОСТЬ СВЕТА

провернть явление Допплера, ибо мы не имеем возможности непопроверить явление скорость звезды. Наоборот, эти наблюдения средственно измерить скорость звезды. Корости это определения средственно измерите слагающей скорости звезды вдоль используются для определения слагающей скорости звезды вдоль используются для определяния и Землю (лучевая скорость звезд), линии, соединяющей звезду и Землю (лучевая скорость звезд), линии, состанилования правильности принципа Допплера. В настояв предположение измерения доведены до большой степени точности (с точностью до 1 км/с) и служат почти единственным методом исследования лучевых скоростей космических тел. Благодаря явлению Допплера были открыты двойные звезды, столь удаленные, что разрешение их посредством телескопов оказывается невозможным. Спектральные линии таких звезд периодически становятся двойными. Это может быть объяснено предположением, что источником являются два тела, попеременно приближающиеся и удаляющиеся, т. е. обращающиеся вокруг общего центра тяжести. Из подобных наблюдений нетрудно вычислить также период обращения удаленных двойных звезд и их лучевые скорости, т. е. скорости вдоль линии наблюдения.

В астрофизике нередко пользуются также принципом Допплера для оценки скорости извержения водородных масс, наблюдаемых на Солнце (протуберанцы). Измерение наблюдаемых изменений частоты водородных линий дает для скорости водородного облака значения свыше 100 км/с (и даже до 1000 км/с).

Спектроскопический метод определения скорости небесных тел был применен Фогелем (1861 г.), а впоследствии Ланглеем и Корню

Рис. 21.4. Схема опытов А. А. Белопольского.

S - источник съета: А и В - движущиеся зеркала: S', S", S''', S''' - движущиеся изображения S.

для измерения скорости вращения солнечного диска. С этой целью сравнивался сдвиг спектральных линий от восточного и западного краев Солнца. Линейная скорость на диаметре оказалась равной 2,3 км/с, тогда как непосредственные наблюдения перемещения солнечных пятен дают около 2 км/с. В таких наблюдениях можно видеть количественное подтверждение явления Допплера.

Первые лабораторные исследования оптического явления Допплера принадлежат А. А. Белопольскому (1900 г.); его опыты были позже повторены Б. Б. Голицыным (1907 г.). Белопольский увеличил скорость движения источника, использовав многократное

ГЛ. XXI. ЯВЛЕНИЕ ДОППЛЕРА

отражение от движущихся зеркал. На рис. 21.4 изображена схема, поясняющая идею Белопольского. Два зеркала A и B смещаются друг относительно друга. Посредине между зеркалами на расстояним x от каждого из них помещается источник S, так что SN = x. Гогда SS' = 2x; SS'' = 4x и т. д.; вообще n-е изображение окажется на расстоянии от источника 2nx. Если расстояние x от Sдо зеркала меняется со скоростью v = dx/dt (движутся зеркала), то движутся и все изображения, так что скорость n-го изображения будет равна

$$\omega = \frac{d(2nx)}{dt} = 2nv.$$

Таким образом, прибор Белопольского позволяет значительно повышать скорость наблюдаемого источника, которым является *n*-е изображение действительного источника.

Рис. 21.5. Схема прибора А. А. Белопольского.

В приборе Белопольского (рис. 21.5) зеркала представляют собой радиальные лопасти двух колес (подобных пароходным), приводимых во вращение моторами. Окончательная скорость ш была около 500 м/с (в опытах Белопольского 0,67 км/с; у Голицына от 0,25 до 0,35 км/с). Спектральным прибором для наблюдения смещения служил у Белопольского трехпризменный спектрограф, у Голицына — эшелон. Майкельсона. Расхождение опытных данных с теорией составляло 5%, что следует признать чрезвычайно хорошим результатом для таких трудных опытов.

Впоследствии Фабри и Бюнссон (1919 г.) произвели подобные измерения более простым способом, использовав большую разрешающую силу интерференционного спектроскопа. Источником света служила охлаждаемая ртутиая лампа, излучение которой отражалось от краев бумажного диска, вращающегося на центрифуге, причем линейная скорость края диска достигала 100 м/с: спектральная линия, отраженная от двух противоположных краев вращающегося диска, давала двойную линию, надежно разрешаемую интерференционным прибором.

Штерк наблюдал смещение спектральных линий, пользуясь Штарк наолюдая сисцение систро несущимися светящимися атов качестве источника соста этих опытов можно, пользуясь принмами в каналовых пу наят и скорость каналовых лучей. Наблюципом Допилера, определи с оценкой этих скоростей по данным дения оказались в согласии с оценкой этих скоростей по данным дения оказались в слическом и магнитном полях. В случае водоотклонения в элемеристи столь значительны (порядка 10⁸ см/с), рода получающие смещения можно без труда выполнить при помощи призменного спектрографа умеренной разрешающей силы.

Рис. 21.6. Наблюдение явления Допплера на каналовых лучах.

Рис. 21.7. Спектр водорода, излучаемый движущимися и неподвижными атомами.

В трубке с каналовыми лучами (рис. 21.6) светятся как неподвижные атомы, так и быстро несущиеся каналовые частицы. Первые дают резкие линии. Движущиеся же (с различными скоростями) каналовые частицы дают линии, сливающиеся в расширенную полоску, смещенную относительно первых. На рис. 21.7 хорошо видны как резкие линии Ну и Но покоящихся атомов водорода, так и смещенные влево уширенные линии водородных каналовых лучей.

Наконец, следует упомянуть, что во всех газовых источниках света мы всегда имеем дело со светящимися атомами газа, летящеми с довольно большими скоростями по всем направлениям (скорости от 100 м/с до 2 км/с в зависимости от молекулярного веса газа и его температуры). Вследствие допплеровского смещения спектральные линии оказываются расширенными. При значительном разрежении газа, когда столкновения между светящимися атомами и окружающими частицами сравнительно редки, явление Допплера служит главной причиной, определяющей ширину спектральной линии. Наблюдение уширения спектральных линий в указанных условиях также является подтверждением эффекта Допплера. Удалось установить, например, что при охлаждении такого источника жидким возлухом ширина линий уменышалась соответственно уменьшению уменьшению средних молекулярных скоростей.

Глава XXII

оптика движущихся сред

Уже при изучении явления-Допплера мы встретились с вопросом о том, как протекает оптическое явление в случае движения системы, в которой оно происходит. При рассмотрении этой проблемы существенное значение имеет ответ на следующий вопрос: возможно ли установить движение источника света и воспринимакших свет приборов относительно среды, в которой свет распростраияется, или возможно лишь установление относительного движения источника и приемника света друг относительно друга. Мы подходим, таким образом, к общей задаче оптики (и электродинамики) движущихся сред, имеющей большое принципиальное значение, ибо огромное большинство наших опытов протекает в земных лабораториях, т. е. в системе, движущейся относительно других небесных тел. Представляется важным знать, отражается ли этот факт на протекании наблюдаемых явлений и как именно.

§ 129. Принцип относительности в механике и формулы преобразования Галилея

Физические законы, в том числе и законы механики Ньютона, и в частности закон инерции, имеют определенный смысл лишь тогда, когда точно определены реальные условия протекания рассматриваемых явлений и, следовательно, указана система отсчета, к которой они отнесены.

Представим себе несколько систем отсчета, одна из которых связана с берегом, а другие — с различными движущимися относительно него кораблями. Пусть по берегу перемещается какоенибудь тело, на которое в береговой системе отсчета не действуют никакие силы, например, по вполне горизонтальному столу катится без трения шар. Движение это в береговой системе отсчета булот на пример. будет происходить равномерно и прямолинейно, т. е. явится движением по инерции в ньютоновом смысле. Предположим, что совершенно такие же опыты (шар, катящийся без трения по горизонталь-ному стория и по катящийся без трения по горизонтальному столу) производятся и на каждом из кораблей. Для всех систем отсчета, связанных с кораблями, перемещающимися равномерно и прямолинейно относительно берега, движение шаров также булет по прямолинейно по будет равномерным и прямолинейным, т. е. будет движением по инерини инерции в ньютоновском смысле. Но в системе отсчета, связанной с кораблат с кораблем, который проходит мимо берега с ускорением, движение шаров проходит мимо берега с ускорением, движение шаров является ускоренным, а не прямолинейным и равномерным. Следоватоль ускоренным, а не прямолинейным и равномерным. Следовательно, в этой системе оно не является движением по инерции, и в ней действуют некоторые силы (силы иперции), сообщающие телам ускорение.

СКОРОСТЬ СВЕТА

Таким образом, закон движения формулируется одинаково только для тех систем отсчета, которые движутся равномерно и прямолинейно друг относительно друга; эти системы составляют совокупность так называемых инерциальных систем.

купность так население одинаково формулируются для всех Итак, законы механики одинаково формулируются для всех инерциальных систем, и формулировка их изменяется для системы отсчета, движущейся с ускорением относительно инерциальных систем. Это видно из того, что в основной закон ньютоновой механики входит выражение для ускорения тела, а не его скорости: $m \frac{d^2x}{dt^2} = F$. Таким образом, добавление любой постоянной скоро-

Рис. 22.1. Две инерциальные системы координат.

сти, т. е. переход к любой иной инерциальной системе, не отразится на формулировке законов механики. Необходимость определить систему отсчета, для которой сформулированы законы механики, заставила Ньютона ввести понятие абсолютного пространства как такой исходной системы. Однако все системы, движущиеся равномерно и прямолинейно относительно этого абсолютного пространства, т. е. являющиеся инер-

цнальными по отношению к нему, допускают ту же формулировку законов механических процессов и с точки зрения механики эквивалентны друг другу.

Таким образом, наблюдения над механическими процессами не дают возможности выделить абсолютное пространство из целой бесконечной совокупности инерциальных, систем. Это обстоятельство получило название принципа относительности классической механики, и, следовательно, ньютонова механика сред построена в согласни с принципом относительности.

При переходе от одной инерциальной системы к другой ускорения остаются неизменными, но координаты и скорости меняются. Для установления соответствия между ними служат формулы, или уравнения преобразования, связывающие координаты и время x, y, z, t одной системы с координатами и временем другой x', y', z'. t'. Формулы перехода, которыми пользуется ньютонова механика, казались самоочевидными. Для случая, когда вторая система движется вдоль оси x со скоростью +v относительно первой (или первая со скоростью -v относительно второй), оси систем параллельны друг другу и в момент t = 0 начала координат совпадают (рис. 22.1); эти формулы, известные под именем формул Галилея, имеют вид

$$x' = x - vt, \quad y' = y, \quad z' = z, \quad t' = t.$$
 (129.1)

Инвариантность уравнений механики по отношению к этим преобразованиям, которую нетрудно проверить, и есть математическое выражение принципа относительности механики, экспериментальным обоснованием которого служит согласие законов механики Ньютона с опытом *).

8 130. Электродинамика движущихся сред

Подобным же образом строится и электродинамика (оптика) движущихся сред. Исходя из определенных физических предпосылок, подсказанных опытом, устанавливают систему электродинамических законов, приложимых к явлениям в движущихся средах, указав одновременно формулы преобразования, позволяющие переходить от одной инерциальной системы к другой. Сравнивая с опытом выводы полученной таким образом теории, мы имеем еозможность контролировать правильность наших положений.

Что касается формул преобразования координат, то формулы Галилея считались вполне очевидными и оправданными опытом. Поэтому их без критнки использовали и при построении электродинамики движущихся сред. Различие же в исходных предположениях относительно того, является ли эфир неподвижным или движущимся, привело к многообразным попыткам создания электродинамики движущихся сред. Крайнее и наиболее полное выражение различных точек зрения находит себе место в двух важнейших, резко расходящихся теориях: электродинамике Герца и электродинамике Лорентца. Как та, так и другая электродинамика рассматривает все электромагнитные и оптические процессы как протекающие в заполняющем все пространство мировом эфире. Поэтому основным вопросом электродинамики движущихся сред являлся вопрос о влиянии движения тел на эфир. Ответ на этот вопрос мог дать только опыт. Точнее, исходя из определенных представлений о взаимоотношении движущегося вещества и эфира, следовало построить определенную теорию явления в движущихся средах и подвергнуть ее опытной проверке.

а. Теория увлекаемого эфира. Герц создал теорию, основанную на утверждении, что эфир полностью увлекается материальными телами при их движении. Таким образом, оптические явления в движущейся среде разыгрываются в эфире, движущемся без отставания вместе с этой средой, и, следовательно, наблюдения над явлениями в движущихся средах не дают возможности установить это движение. Другими словами, теория Герца переносит механический принцип относительности в электродинамику (и оптику). Используя уравнения преобразования Галилея, Герц

*) Речь идет о механических и астрономических явлениях, при которых скорости невелики сравнительно со скоростью света.

СКОРОСТЬ СВЕТА

создал уравнения электродинамики, которые, конечно, инварианты по отношению к таким преобразованиям. Не входя в обсуждени многочисленных трудностей, связанных с последовательным развитием электродинамики Герца, можно указать на прямое противоречие выводов этой теории с рядом опытов, в том числе с одним важным оптическим опытом, выполненным Физо (1851 г.).

оптическим опытол, Опыт Физо; коэффициент увлечения. Схема опыта Физо *) показана на рис. 22.2. Это — интерференционный опыт, где интерферирующие пучки проходят по заполненным водой сообщающимся

Рис. 22.2. Схема опыта Физо.

S — источник света; / и // — интерферирующие пучки, из которых / распространяется по течению воды, а // — против течения.

трубам A и B, длина каждой из которых равна l. В случае неподвижной воды наблюдается определенная интерференционная картина. Добавочную разность хода луча II, дважды проходящего через стеклянную пластинку, можно скомпенсировать или учесть. Если вода приведена в движение со скоростью v, втекая в A н вытекая из B, то луч I будет внутри воды распространяться в направлении ее движения, а луч II — навстречу движению. Если эфир, в котором распространяются световые волны, увлекается движущейся водой, как предполагает теория Герца, то скорость как луча I, так и луча II будет по отношению κ воде одной и той же, равной скорости света в покоящейся воде, т. е. $c_1 = c/n$, где c скорость света в свободном эфире и n— показатель преломления соды. По отношению же к зеркалам прибора скорость света на отрезке пути, проходящем в движущейся воде, будет зависеть от направления течения воды, а именно: она будет равна $(c_1 + v)$ для луча I

⁾ В том виде, в каком он был впоследствии вновь осуществлен Майкельсоном (1886 г.) и Зесманом (1914 г.).

гл. ххн. оптика движущихся сред

н (c1 — v) для луча 11. Ожидаемое изменение интерференционной попределнится добавочной разностью времении и (c1 — 0) для елится добавочной разностью времени распространения двух лучей:

 $\tau = \frac{2l}{c/n - v} - \frac{2l}{c/n + v} = \frac{4lv}{c^2/n^2 - v^2} = \frac{4lvn^2}{c^2 - n^2v^2},$

которой соответствует разность хода, выраженная в длинах волн,

$$\Delta = \tau c/\lambda = \frac{4lvn^2c}{\lambda(c^2 - n^2v^2)} \approx \frac{4lvn^2}{\lambda c},$$

если пренебречь величиной (nv/c)² по сравнению с единицей.

В одном из таких опытов трубы имели длину l = 1,5 м и скорость. течения достигала v = 700 см/с. Действительно, наблюдалось смещение интерференционных полос, соответствующее, однако, разности хода, примерно в два раза меньшей, чем следует из теории эфира, вполне увлекаемого движущейся средой. Таким образом, наблюдаемое смещение не может быть согласовано с теорней Герца. Но оно находится в превосходном согласии с теорией Френеля, сформулированной им еще в 1818 г. по поводу одного опыта Араго, пытавшегося обнаружить влияние движения Земли на преломление света, посылаемого звездами. Араго показал (хотя и с умеренной точностью), что такого влияния не наблюдается. Для объяснения этого результата Френель выдвинул теорию, согласно которой эфир не увлекается движущимися телами, в частности Землей, а проходит через них. Но по общим представлениям Френеля плотность эфира в веществе р1 больше, чем плотность р вне его (при одинаковой упругости), так что для показателя преломления получим

$$n = c/c_1 = \sqrt{\rho_1/\rho}.$$

Поэтому при движении вещества эфир, входя в него, должен уплотняться. Вообразим цилиндр с сечением в 1 см², движущийся вдоль своей оси со скоростью и по отношению к эфиру. Через основание цилиндра внутрь его за 1 с проникает объем и с массой ир. Так как внутри вещества плотность эфира становится равной р₁, то вошедшая масса эфира внутри вещества должна перемещаться со скоростью v₁, определяемой из условия

$$v_1 \rho_1 = v \rho$$
, r. e. $v_1 = v \rho / \rho_1 = v / n^2$,

при движении тел, однако происходит его перемещение по отношению к движущимся телам, но не с полной скоростью и, а с меньшей и. Если свет распространяется в направлении движения тела, то скорости то скорость его внутри тела по отношению к данному телу есть с₁ – v₁, а по отношению к приборам, находящимся вне тела,

 $c_1 - v_1 + v = c_1 + v (1 - v_1/v) = c_1 + v (1 - 1/n^2).$

СКОРОСТЬ СВЕТА

Если свет распространяется навстречу направлению движения, то наблюдаемая скорость будет равна

$$c_1 - v (1 - 1/n^2).$$

Следовательно, явление протекает так, как если бы имело место частичное увлечение эфира, причем коэффициент увлечения равен

$$\kappa = (1 - 1/n^2)$$

Для воды $\kappa = 0,438$; Физо нашел из своих измерений смещение полос интерференции, соответствующее $\kappa = 0,46$, а более точное измерение Майкельсона и Морлея, повторивших опыт Физо в 1886 г., дало $\kappa = 0,434 \pm 0,020$, тогда как теория Герца дает $\kappa = 1$, т. е. резко противоречит опыту.

Следует добавить, что были выполнены также разнообразные электродинамические опыты, относящиеся к вопросу об увлечении эфира при движении весомых тел. Среди них большое значение имеют опыты А. А. Эйхенвальда (1904 г.). Все они дали результаты, не совместимые с теорией Герца.

Таким образом, теория Герца, основанная на представлении о полном увлечении эфира движущимися телами, не согласуется с оптическими и электродинамическими опытами.

Аберрация света; опыт Эри. Вопрос о влиянии движения Земли на оптические явления возникает и при последовательном волновом рассмотрении аберрации света.

Если, как допускает Герц, эфир полностью увлекается Землей при ее движении, то аберрацию нельзя объяснить *), ибо световые волны перемещаются вместе с движущимся эфиром одновременно с перемещением трубы, так что направление S_0 на звезду в случае неподвижной трубы совпадает с направлением S при движущейся трубе. Рис. 22.3, *a*, на котором для ясности вместо трубы нарисовано визирное приспособление, иллюстрирует сказанное: волновой фронт, войдя в трубу при MN, вовлекается в движение вместе с трубы н распространяется вдоль ее оси OA независимо от скорости трубы.

Если же принять, что эфир остается неподвижным при движении Земли, увлекающей трубу, то световые волны, продолжая свой путь в неподвижном эфире, отстанут от передвинувшейся трубы (см. рис. 22.3, б). Наклон, необходимый для удержания звезды на осн трубы, зависит от скорости v трубы и угла ψ между v и направлением на звезду. При изменении скорости на v наклон трубы должен быть изменен на угол $\alpha_0 = \angle SOS_0$, так что угол аберрации $\alpha_0 = \frac{AB}{OA} = \frac{v}{c} \sin \psi$, где c — скорость света вдоль трубы (в ваку-

^{•)} Попытки истолковать аберрацию света в рамках представления об увлекаемом эфире привели к выводу, что плотность эфира у поверхности Земли должна быть в e^{it} раз больше, чем вдали от нее, хотя скорость света остается неизменной.

уме или воздухе) *). При $\psi = 1/2\pi$ угол аберрации принимает зна $v_{\text{vehule } \alpha_0}^{\text{MC}} = v/c = 20'', 45.$

ине α₀ = 0,0 Однако этот простой способ рассуждения приводит к парадоксу. Однако этот пруба (пространство между визирными отверстиями) Допустим, что труба (пространство между визирными отверстиями)

Допустим, на ими нибудь преломляющим веществом, например кус-заполнена каким-нибудь показателем преломления с заполнена кании водой с показателем преломления n. Скорость све-ком стекла или водой с показателем преломления n. Скорость свеком стекла или водотве есть $c_1 = c/n$. Направление оси трубы на товых волн в веществе есть $c_1 = c/n$.

Рис. 22.3. Аберрация света и вопрос об увлечении эфира при движении Земля. а — эфир, увлекаемый Землей, аберрации нет; б — эфир неподвижен, аберрация имеет MECTO: $\operatorname{tg} \alpha_0 = (v/c) \sin \psi$.

видимое положение звезды S определяется углом аберрации а, величина которого должна, казалось бы, определяться из следующих рассуждений (рис. 22.4). Световые волны, падая на вещество под углом α , преломятся и пойдут внутри трубы под углом $\gamma = \alpha/n$ р = α/n. В случае неподвижного эфира отставание световых волн вызывает необходимость наклона осн трубы на угол у, определяемый из условия

$$\gamma = \frac{AB}{OA} = \frac{v}{c} \sin \psi = n \frac{v}{c_1} \sin \psi = n \alpha_0,$$

где $\alpha_0 = \frac{v}{c} \sin \psi$ — угол аберрации, найденный для пустой трубы. Так как $\gamma = \alpha/n$, то угол аберрации α для трубы, наполненной

*) Угол аберрации α₀ всегда очень мал, так что tg α₀ ≈ α₀.

CKOPOCTЬ CBETA

448

веществом с показателем преломления п, должен равняться

$$\alpha = n\gamma = n^{c}\alpha_{0}$$
.

Однако, когда был произведен этот опыт (Эри, 1871 г.), $G_{\rm ЫЛО}$ обнаружено, что $\alpha = \alpha_0$.

Объяснение и здесь получается, если принять во внимание коэффициент увлечения. Труба, наполненная водой, увлекает

Рис. 22.4. К опыту Эри.

световые волны в направлении световые волны в направлении своего движения со скоростью $vx = v (1 - 1/n^2)$. Таким образом, за время **т**, в течение которого свет идет вдоль трубы со скоростью $c_1 = c/n$ и проходит путь, равный c_1 **т**, световые волны отстанут не на величину $v \sin \psi \cdot \tau$, как было бы в отсутствие увлечения, а на величину $[v-v (1-1/n^2)] \sin \psi \cdot \tau =$ = $(v \sin \psi/n^2)\tau$. Таким образом,

$$\gamma = \frac{\upsilon \sin \psi \cdot \tau}{n^2} : c_1 \tau = \frac{\upsilon \sin \psi}{c_1 n^2};$$

отсюда угол аберрации

$$\alpha = n\gamma = \frac{v\sin\psi}{c_1n} = \frac{v\sin\psi}{c} = \alpha_0$$

в соответствии с наблюдениями. Интересно отметить, что Фре-

нель, сформулировав свое представление о коэффициенте увлече-

ния, рассмотрел также и этот опыт с аберрацией и писал в письме к Араго (в 1818 г.): «Хотя этот опыт еще не был сделан, но я не сомневаюсь, что он подтвердит это заключение...».

ружено на опыте. В частности, явление Допплера должно приводить к различиям (второго порядка относительно *v/c*) между случаями движения источника или прибора сквозь эфир (как в акустике) и могло бы принципиально быть использовано для установстике) и могло бы принципиально быть использовано для установления абсолютного движения (движения относительно эфира) источника или приемника.

очника полина (и оптика) движущихся сред, развитая Лоолектродницая у развитая Ло-рентцом, есть часть его общей электронной теории, в силу которой ренцом, соло констрои все электромагнитные свойства вещества обусловливаются распревсе электронеских зарядов и их движением внутри неподвижного эфира. В качестве формул преобразования координат при переходе от одной инерциальной системы к другой сохраняются преобразования Галилея, и, поскольку отрицается принцип относительности, уравнения электродинамики Лорентца не являются инвариантными по отношению к этим преобразованиям. Теория Лорентца означала очень крупный шаг вперед и разрешала большой круг вопросов, представлявших значительные теоретические трузности. В случае оптических явлений она совпадает с теорией Френеля и также приводит к представлению о частичном увлечении световых волн. По теории Лорентца движение вещества есть движение молекул и связанных с ними зарядов в неподвижном эфире, и учет этого движения показывает, что в среде, движущейся со скоростью v, свет распространяется со скоростью $c_1 + (1 - 1/n^2)v_1$ где c₁ — скорость света в неподвижной среде. Таким образом, теория Лорентца приводит к формуле частичного увлечения Френеля, хорошо подтвержденной тщательными измерениями.

Принимая во внимание коэффициент увлечения, Лорентц мог доказать общую теорему, согласно которой движение системы не влияет с погрешностью до величин порядка $\beta^2 = v^2/c^2$ на результаты оптических опытов с замкнутым путем света, т. е. опытов, к которым принадлежат все интерференционные явления. Таким образом, с помощью подобных опытов можно, согласно теории Лорентца — Френеля, обнаружить движение Земли относительно эфира эфира, предполагаемого неподвижным, но лишь при условии, что точность опытов позволяет учитывать величины второго порядка (В² по средство позволяет учитывать величины второго порядка (^{β2} по сравнению с единицей), т. е. если погрешности при их выпол-нении и нении не превышают примерно 10-8. Все эффекты первого порядка в таких опытах с замкнутым оптическим путем компенсируются благодаря явлению частичного увлечения. Поэтому особый принципиальный интерес приобретают опыты, обеспечивающие погрешности не более β². Как мы уже упоминали, явление Допплера могло бы, в ромее β². Как мы уже упоминали, явление Допплера могло бы, в рамках теории Лорентца, служить для обнаружения абсолютного движения систем в эфире, если бы соответствующие измерения можно бы соответствующие взерения. можно было бы произвести с ошибкой, меньшей вз.

Опыт Майкельсона. Реальным опытом, выполняемым с такой точностью, является интерференционный опыт Майкельсона, пред-

15 Ландсберг Г. С.

ставляющий, по существу, определение скорости распространения света в направлении, совпадающем с направлением движения Земли, и в направлении, к нему перпендикулярном. Опыт выполняется по схеме рис. 22.5, причем интерферометр Майкельсона располагается таким образом, чтобы одно плечо его совпадало с направлением движения Земли, а другое было к нему перпендикулярно. При повороте всего прибора на 90° следует ожидать изменения интерференционной картины, по которому и можно судить о влиянии движения Земли на интерференционный опыт и вычислить абсолютную скорость этого движения в эфире. Действительно, в рамках теории

Лорентца время на прохождение пути MB и обратно есть $T_1 + T_2$, где T_1 определится из условия

$$T_1 c = l + v T_1,$$

а T_2 — из условия

$$T_2 c = l - v T_2;$$

здесь l = MA = MB - длина плеча интерферометра.

Итак,

$$T_1 + T_2 = \frac{2lc}{c^2 - v^2} = \frac{2l}{c} \frac{1}{1 - v^2/c^2} = \frac{2l}{c} \frac{1}{1 - v^2/c^2} = \frac{2l}{c} \frac{1}{1 - \beta^2} \approx \frac{2l}{c} (1 + \beta^2)$$
(130.1)

Рис. 22.5. Схема опыта Майкельсона.

откуда

(с погрешностью, меньшей β^4). В перпендикулярном направлении, с учетом движения прибора, время прохождения от M до A' и обратно к M' (рис. 22.6) будет равно 2T, где T определится из следующего условия:

 $Tc = MA' = \sqrt{l^2 + v^2 T^2},$

$$2T = \frac{2l}{c} \frac{1}{\sqrt{1 - v^2/c^2}} = \frac{2l}{c} \left(1 + \frac{1}{2}\beta^2\right)$$

(также с погрешностью, меньшей β4).

Таким образом, разность времен, обусловленная движением прибора вместе с Землей, равна

$$T_1+T_2-2T=\frac{l}{c}\beta^2.$$

При повороте прибора на 90° разность эта меняет знак, так что интерференционная картина меняется, смещаясь на число полос (точнее, долей полосы), зависящее от величины плеча *l*.

Опыт был впервые выполнен Майкельсоном в 1881 г. с точностью, лежащей на границе необходимой. Он повторялся многократно со все большими и большими усовершенствованиями, причем удлинялся путь *l* и совершенствовались методы наблюдения. Рис. 22.7 дает представление об одной из установок (Майкельсон — Морлей, 1887 г.). Приводимая ниже таблица показывает, что по мере совершенствования опыта все с большей уверенностью констати-

руется отсутствие того смещения полос, которого следует ожидать по теории Лорентца, допускающей «эфирный ветер», возникающий вследствие движения Земли со скоростью 30 км/с в неподвижном эфире.

Отрицательный результат опыта Майкельсона, не возбуждающий сомнения, имеет огромное принципиальное значение. Он является одним из наиболее надежных опытов, подвергающих проверке вопрос об увлечении эфира движущимися телами и, следовательно, исходные положения теории Лорентца.

Рис. 22.6. К расчету разности хода в опыте Майкельсона.

Отрицательный результат его противоречит гипотезе неподвижного эфира и мог бы быть истолкован как доказательство полного увлечения эфира телами, т. е. вступил бы в кажущееся противоречие и с результатами опыта Физо. Было сделано поэтому немало попыток разрешить это противоречие.

Таблица

Данные опыта	Длияа плеча, в см	Ожидае- мое сме- щение	Наблюденное смещение	Эфирный ветер, км/с
		(в долях полосы)		
Майкельсон (1881 г.); прибор на металлическом штативе враща-	120	0,04	< 0,015	<18
Майкельсон — Морлей (1887 г.); прибор монтирован на каменной плите, плавающей в ртути; путь луча 1 удлинен благодаря систе-	1 100	0,37	< 0,01	<7
ме отражений (см. рис. 22.7). Морлей — Миллер (1905 г.).	3 224	1,1	< 0,01	< 3,5
Кеннеди (1926 г.) Иллингворт (1927 г.)	800 —	0,27	<0,001 <0,0005	<2 <1

Результаты опытов по проверке теории увлечения эфира

Одна из них принадлежит Ритцу и состоит в допущении, что скорость света, испускаемого движущимся источником, слагается геометрически из скорости источника и скорости света ог

СКОРОСТЬ СВЕТА

неподвижного источника, подобно скорости ядра, выстреливаемого быстро перемещающимся орудием (баллистическая гипотеза). Нетрудно видеть, что если бы баллистическая гипотеза была справедлива, то опыт Майкельсона должен был бы дать отрицательный результат, ибо $T_1 + T_2 = 2T = 2l/c$. Однако астрофизические

Рис. 22.7. Общий вид установки Майкельсона — Морлея.

наблюдения над двойными звездами решительно говорят против баллистической гипотезы. Действительно, представим себе двойную звезду (рис. 22.8) на расстоянии L от наблюдателя, одна из компонент которой S' имеет период обращения 2T и линейную скорость движения v. Если баллистическая гипотеза справедлива, то свет

Рис. 22.8. Наблюдения над двойными звездами опровергают баллистическую гипотезу Ритца. от компоненты S' в положении I дойдет до наблюдателя к моменту $t_1 = L/(c - v)$, а в положенин II к моменту $t_2 = T + L/(c + v)$, где T — полупериод обращения.

Таким образом, наблюдаемое движение звезды может заметно отступать от законов Кеплера. В частности, при очень большом L возможно, что даже при $v \ll c$

получится $t_2 < t_1$, т. е. видимое движение приобретает весьма прихотливый характер. Рассмотрение достаточного числа двойных звезд показывает, что такое следствие баллистической гипотезы противоречит наблюдению и, следовательно, гипотеза Ритца должна быть оставлена.

А. М. Бонч-Бруевич (1956 г.), применив для определения скорости света современные уточненные методы, сравнил скорости света, идущего от правого и левого краев Солнца, т. е. от источников, один из которых приближается, а другой отдаляется от нас со скоростью 2,3 км/с. Опыты с достаточной степенью точности показали, что различие в скорости света, предполагаемое по баллистической гипотезе, не имеет места.

стической степени кардинальное допущение, предложен-Другое в высшей степени кардинальное допущение, предложенное для объяснения результатов опыта Майкельсона, было сделано, с одной стороны, Фицджеральдом, с другой — самим Лорентцом (1892 г.). Было высказано предположение, что в результате движения линейные размеры всех тел вдоль направления скорости сокращаются в отношении $\sqrt{1-\beta^2}$ (контракционная гипотеза); такое о пущение объясняет отрицательный результат опыта Майкельсона, ибо при этих условиях, используя формулу (130.1), получаем

 $T_1 + T_2 = \frac{2l \sqrt{1-\beta^2}}{c (1-\beta^2)} = \frac{2l}{c} \frac{1}{\sqrt{1-\beta^2}} = 2T.$

§ 131. Основы специальной теории относительности

Мы уже отмечали значение теории Лорентца, объяснившей с единой точки зрения весьма разнообразные оптические и электродинамические явления первого порядка. Однако после тщательной проверки опыта Майкельсона и некоторых других опытов *), также — с точностью до β^2 — не обнаруживших эфирного ветра, положение теории Лорентца стало менее прочным. Теория эта отрицала в своем основном положении принцип относительности и исходила из утверждения возможности установления абсолютной системы отсчета. В дальнейшем же она вынуждена была прибегнуть к гипотезе контракции, которая объясняла неудачу попытки обнаружения абсолютного характера движения Земли наличием случайно компенсирующихся эффектов (интерференционный эффект и эффект контракции). Это обстоятельство явилось слабым пунктом теории, тем более, что и контракционная гипотеза не объясняла результатов всех «опытов второго порядка».

А. Эйнштейн (1905 г.) пересмотрел всю проблему, поставив ее совершенно по-новому.

Многочисленными опытами (в первую очередь опытом Майкельсона) была установлена невозможность рассматривать движение Земли как движение относительно абсолютной системы координат, каковой является неподвижный эфир. Эйнштейн обобщил этог основной экспериментальный факт и сформулировал его в виде постулата. Таким образом, первый постулат теории Эйнштейна есть принцип относительности электродинамики и оптики, покоящийся на экспериментальной базе. Согласно принципу

^{*)} Прекрасное изложение этих многочисленных опытов можно найти у С. И. Вавилова, Экспериментальные основы теории относительности, Собрание сочинений, т. IV, Изд. АН СССР, 1956 г.

относительности явления ео есех инерциальных системах отсчета протекают одинаково.

протекают одинаково. Вторым постулатом своей теории Эйнштейн выбирает принцип постоянства скорости сеета в вакууме, согласно которому скорость света в вакууме не зависит от движения источников или приемников и есть универсальная постоянная с. Этот принцип также является экспериментальным положением, отрицающим опровергаемую опытом баллистическую гипотезу.

Два основных постулата Эйнштейна — принцип относительности и принцип постоянства скорости света — составляют базу теории относительности.

Эти постулаты находятся в кажущемся противоречии между собой. Действительно, вообразим себе следующий опыт. Две си-

Рис. 22.9. Схема, иллюстрирующая кажущееся противоречие между постулатами теории относительности.

стемы К и К' движутся друг относительно друга (вдоль оси х) со скоростью v (рис. 22.9). Пусть в момент t = 0, ксгда начала координат О и О' совпадают, возникает световая вспышка и световая волна распространяется в пространстве. Согласно второму постулату скорость света как в первой, так и во второй системе координат одна и та же (с). С другой стороны, вид световой волны должен быть идентичен как в первой, так и во второй системе (первый постулат). Другими словами, к моменту t световая волна должна быть представлена сферой с раднусом cl, имеющей центр как в точке

О, так и в точке О', что явно невозможно, так как эти точки разойдутся к этому моменту на расстояние vt.

Причина возникшего недоразумения лежит, однако, не в противоречии между двумя заимствованными из опыта положениями (принцип относительности и принцип постоянства скорости света), а в допущении, что положение фронтов сферических волн для обеих систем относится к одному и тому же моменту, т. е. что от момента вспышки до момента, в который рассматривается положение волновых фронтов для обеих систем отсчета, протекли одинаковые промежутки времени. Это допущение заключено в формулах преобразования Галилея, согласно которым t = t' и, следовательно, доказана.

Разобранный пример показывает, что постулаты Эйнштейна находятся в противоречии не друг с другом, а с формулами преобразования Галилея. Действительно, возмущение, которое в системе

К записывается в виде

$$x^2 + y^2 + z^2 = c^2 l^2$$

(сфера с центром x = 0, y = 0, z = 0, т. е. в точке O), в системе K'должно иметь, если применимы преобразования Галилея, вид

$$(x^{2} + 0t^{2})^{2} + y^{2} + z^{2} = c^{2}t^{2}$$

(сфера с центром x' = -vt', y' = 0, z' = 0, т. е. в той же точке 0); этот вывод противоречит принципу относительности, в силу которого возмущение в системе K' должно иметь вид

$$x'^{2} + y'^{2} + z'^{2} = c^{2}t'^{2}$$

(сфера с центром x' = 0, y' = 0, z' = 0, т. е. в точке O').

§ 132. Формулы преобразования теории относительности

Установив противоречие между уравнениями преобразования Галилея и экспериментальными постулатами, Эйнштейн проанализировал представление о способах измерения пространства и времени. По отношению к измерению пространства классическая механика пользовалась вполне реальными приемами сравнения измеряемых величин с образцовым эталоном (например, сравнение с эталонным метром или с длиной световой волны), причем возможность однозначных измерений обеспечивалась существованием жестких тел (не изменяемых при определенных условиях температуры и т. д.).

Суждения же, в которых играет роль время, покоятся, как показал Эйнштейн, на представлении об одновременности: момент (например, начало какого-то события) устанавливается по показанию эталонных часов, одновременному с этим моментом; следовательно, длительность какого-либо процесса определяется путем сравнения с промежутком времени, отделяющим показание часов, одновременное с концом процесса, от показания тех же часов, одновременного с началом процесса. Само собой разумеется, что в качестве «часов» можно использовать любой периодический процесс, например, вращение Земли, качание маятника, колебание атома или молекулы и т. д.

Установление одновременности имеет ясный смысл в том случае, когда речь идет об одновременности событий, происходящих в одном месте (одной координатной точке). В этом случае можно определить события как одновременные, если они совпадают друг с другом. Так, утверждение, что поезд пришел на станцию в 7 часов, означает, что приход поезда совпадает с определенным расположением стрелок станционных часов. Однако такой прием неприменим, когда речь идет о событиях, разделенных пространственно. Снабдив различные точки A, B и т. д. часами, мы можем по «методу совпадения» определять время только в каждой из этих точек.

Для сопоставления же времен событий в разных точках необходимо согласовать между собой ход часов в различных точках, т. е. синхронизировать часы.

синхронизировани иссти Это совершенно общее положение осуществляется, конечно, и в классической механике, опирающейся на преобразования Галилея. Преобразования Галилея, устанавливающие связь между координатами и временами в разных системах отсчета, двигающихся друг относительно друга, исходят из допущения, что времена в различных системах отсчета совпадают между собой, т. е. что t = t'. Это означает, что синхронизация часов в теории Галилея предполагается осуществленной путем установления связи между пунктами, где расположены синхронизируемые часы, с помощью сигналов, распространяющихся с бесконечной скоростью. Если такой сигнал выходит из A в момент t_A (по часам A) и часы в B в момент прихода туда бесконечно быстрого сигнала показывают t_B , то синхронизация часов обеспечена, если $t_B = t_A$.

Привычность преобразований Галилея, которыми в физике и механике пользовались в течение нескольких столетий, привела к тому, что преобразования эти казались вполне естественными и свободными от каких-либо допущений. В действительности же, как мы видим, эти преобразования покоятся на вполне определенном допущении относительно приема синхронизации часов, а именно, на допущении о возможности осуществить такую синхронизацию с помощью бесконечно быстрых сигналов. Именно с бесконечной скоростью синхронизирующего сигнала и связано то обстоятельство, что попятие одновременности в классической механике имеет абсолютный смысл, т. е. события, одновременные в какой-либо одной системе отсчета, оказываются одновременными и во всех остальных.

Если бы последнее положение было правильным, то, как мы видели в предыдущем параграфе, постулат относительности и постулат постоянства скорости света, представляющие собой обобщение опыта, оказались бы в противоречин друг с другом. Однако эти экспериментальные постулаты могут быть согласованы, если отказаться от формул преобразования Галилея и заменить их другими, получаемыми путем математического анализа постулатов теории относительности. Не останавливаясь на этом несложном выводе, приведем окончательный результат.

Для систем отсчета К и К', выбранных, как указано в § 131 (см. рис. 22.9), формулы эти имеют вид

$$\begin{aligned} x' &= \frac{x - vt}{\sqrt{1 - \beta^2}}, \quad x = \frac{x' + vt'}{\sqrt{1 - \beta^2}}, \\ y' &= y, \quad y = y', \\ z' &= z, \quad z = z', \\ t' &= \frac{t - (v/c^2)x}{\sqrt{1 - \beta^2}}, \quad t = \frac{t' + (v/c^2)x'}{\sqrt{1 - \beta^2}}, \end{aligned}$$
(132.1)

где $\beta = v/c, v$ — скорость системы K' относительно K и c — скорость света.

рость сысы. Так как новые формулы преобразования выводятся из требования совместимости указанных выше постулатов, то, конечно, они, в отличие от формул Галилея, оказываются в согласии с этими постулатами. Действительно, сферическая световая волна, которая в системе К имеет вид

$$x^2 + y^2 + z^2 = c^2 t^2$$

приобретает в системе К', если применить формулы (132.1), вид

$$x'^{2} + {y'}^{2} + {z'}^{2} = c^{2}t'^{2},$$

т. е. удовлетворяет принципу относительности.

Хотя формулы (132.1) на первый взгляд радикально отличаются от формул Галилея, однако последние можно получить из них, если положить $c = \infty$. Но, как мы видели, в основе формул Галилея лежит допущение, что синхронизация часов делается с помощью сигналов, имеющих бесконечно большую скорость. Отсюда вытекает, что величина *с* в формулах (132.1) играет роль скорости тех сигналов, которые использованы для синхронизации часов. Если она бесконечно велика, то получаются преобразования Галилея. Если же эта скорость есть скорость света, то получаются формулы преобразования теории относительности.

Таким образом, в основе формул преобразования теории относительности лежит допущение о синхронизации часов с помощью световых сигналов.

Какое же из этих допущений — допущение теории относительности или допущение механики Галилея — соответствует физическому опыту? То обстоятельство, что весь опыт классической механики находился в полном согласии с формулами преобразования Галилея, отнюдь не означает, что формулы (132.1), выдвигаемые теорией относительности, непригодны. Классическая механика (в том числе и небесная механика) имеет дело со столь малыми скоростями v, что величины v^2/c^2 очень малы по сравнению с единицей (так же как vx/c^2 мало́ по сравнению с t). Поэтому с точностью, далеко превышающей точность механических (и астрономических) измерений, формулы (132.1) дают тот же результат, что и формулы Галилея. Действительно, пренебрегая членами vx/c^2 и β^3 , получим вместо (132.1)

$$x' = x - vt; \quad y' = y; \quad z' = z; \quad t' = t,$$
 (132.2)

т. е. соотношения, совпадающие с формулами Галилея. Различие сказывается лишь при v, сравнимых со скоростью света. А в этой области формулы Галилея приходят в противоречие с опытными данными, как мы видели уже на примере с экспериментальными постулатами (см. § 131). В дальнейшем мы покажем, что ряд

СКОРОСТЬ СВЕТА

выводов, следующих из формул преобразования (132.1), несмотря на их кажущуюся парадоксальность, находится в прекрасном согласни с опытными фактами.

сии с опытными средение признать, что формулы Галилея явля-Таким образом, следует признать, что формулы Галилея являются лишь первым приближением к действительности, пригодным для области скоростей, малых по сравнению со скоростью света, и должны быть заменены формулами преобразования теории относительности, пригодными также и для областей, где v сравнимо с с.

Ясно, что формулы (132.1) сохраняют смысл лишь при условии, что $\beta < 1$, т. е. v < c. Другими словами, скорости систем друг относительно друга не могут превосходить скорость света в вакууме с. То обстоятельство, что скорость света с есть предельная скорость движения, характерно для теории относительности и лежит в основе всего построения.

Интересно отметить, что полученные Эйнштейном формулы преобразования совпадают с формулами, ранее указанными Лорентцом. Лорентц в своих исследованиях по электродинамике движущихся сред обратил вишмание на то, что вычисления упрощаются и в ряде случаев формулы приобретают инвариантный характер, если при переходе от одной системы к другой вместо переменной t перемениую $t' = \frac{t - (v/c^2) x}{v}$ представляет собой ввести которая V1-B3 ' время, зависящее от места наблюдения (координаты х), и поэтому была названа местным временем (в отличие от универсального времени 1). Впоследствии, когда необходимость истолкования опыта Майкельсона заставила Лорентца ввести контракционную гипотезу, он пришел к вызоду, что формулы преобразования, совпадающие с (132.1), оставляют уравнения электродинамики

для вакуума инвариантными. Поэтому формулы (132.1) нередко называют формулами Лорентца. Однако для Лорентца уравнения преобразования были лишь вспомогательными формулами облегнающими вычисление. Физи-

вспомогательными формулами, облегчающими вычисление. Физический смысл времени оставался за величиной t, а не t'. Сам Лорентц *) писал по этому поводу: «... теория (Эйнштейна) электромагнитных явлений в движущихся системах приобрела простоту, которой я не был в состоянии достигнуть. Главной причиной моей неудачи была моя приверженность к идее, что только переменная t может считаться истинным временем и что мое местное время t' должно рассматриваться не более чем вспомогательная математическая величина. Наоборот, в теории Эйнштейна t' играет ту же самую роль, как и t; если мы желаем описывать явления в терминах x', y', z', t', мы должны поступать с этими переменными совершенно

^{•)} Г. А. Лорентц, Теория электронов и се применение к явлениям света и теплового излучения, изд. второс, Гостехиздат, 1956, Примечание 72 •, написанное в 1915 г. (стр. 438).

так же, как мы поступаем с x, y, z, t. Если, например, точка движется, то ее координаты x, y, z испытывают некоторые изменения dx, dy, dz в течение промежутка времени dt и составляющие скорости будут:

$$v_x = \frac{dx}{dt}, v_y = \frac{dy}{dt}, v_z = \frac{dz}{dt}.$$

Четыре изменения dx, dy, dz, dt вызовут соответствующие изменения dx', dy', dz', dt' новых переменных x', y', z', t', и в системе этих переменных скорость v' будет определена как вектор, имеющий компоненты

$$v'_x = \frac{dx'}{dt'}, \quad v'_y = \frac{dy'}{dt'}, \quad v'_z = \frac{dz'}{dt'}.$$

§ 133. Выводы из формул преобразования теории относительности

Из формул преобразования Эйнштейна—Лорентца, составлякщих существенную часть теории относительности, вытекает ряд следствий, придакщих такое сеособразие выводам этой теории.

а. Понятие одновременности. Прежде всего формулы эти показывают, что для событий, относящихся к пространственно разобщенным точкам, одновременность зависит от системы отсчета, а события, пространственно совпадающие, будут одновременны во всех инерциальных системах отсчета, если они одновременны в какой-нибудь из иих.

Действительно, пусть в системе K два события относятся к моментам t_1 и t_2 и к координатам x_1 и x_2 . В системе K' им соответствуют моменты t'_1 и t'_2 и координаты x'_1 и x'_2 . Пусть события в системе Kпроисходят в сдной точке ($x_1 = x_2$) и являются одновременными, т. е. $t_1 = t_2$. Из формул (132.1) следует, что

 $x_1' = x_2'$ is $t_1' = t_2'$,

т. е. эти события будут также одковременными и пространственно совпадающими в любой инерциальной системе отсчета (при любом v). Но если $x_1 \neq x_2$, а $t_1 = t_2$, т. е. события, пространствению разобщенные, являются в системе отсчета K одновременными, то из формул (132.1) следует, что

$$\begin{aligned} x_1' &= \frac{x_1 - vt}{\sqrt{1 - \beta^3}}, \quad x_2' &= \frac{x_2 - vt}{\sqrt{1 - \beta^3}}, \\ t_1' &= \frac{t - (v/c^2) x_1}{\sqrt{1 - \beta^2}}, \quad t_2' &= \frac{t - (v/c^2) x_2}{\sqrt{1 - \beta^2}}; \end{aligned}$$

таким образом,

 $x_1' \neq x_2' \quad \text{if } t_1' \neq t_2'.$

Другими словами, в системе К' эти события оказываются неодновременными, оставаясь также и пространственно разобщенными. 6. Сравнение масштабов. Пусть, например, мы име-

6. Сравнение и истичение вдоль оси x', неподвижный относием масштаб, расположенный вдоль оси x', неподвижный относительно системы K'; следовательно, относительно системы K этот масштаб движется со скоростью v. Сравним его длину в системах Kи K'. В системе K', в которой масштаб покоится, определение длины его не представляет никаких затруднении. Нужно лишь отметить координаты концов масштаба $(x_1' u x_2)$; расстояние между ними $l' = x_2' - x_1'$ и представляет длину масштаба в системе K'. В системе K, относительно которой масштаб движется, дело несколько сложнее: нужно отметить сдновременно координаты концов $(x_1 u x_2)$ движущегося масштаба. Длина масштаба в системе Kбудет равна $l = x_2 - x_1$, где координаты x_2 $u x_1$ установлены, как сказано, для одного и того же момента времени t (по часам K).

Согласно формулам пресбразования (132.1)

$$x_{2}^{\prime} = \frac{x_{2} - vt}{\sqrt{1 - \beta^{2}}}, \quad x_{1}^{\prime} = \frac{x_{1} - vt}{\sqrt{1 - \beta^{3}}},$$
$$t = t^{\prime}\sqrt{1 - \beta^{2}}.$$
(133.1)

Другими словами, в системе K, относительно которой движется масштаб, длина его окажется меньше, чем в системе K', относительно которой масштаб неподвижен. Этот вывод аналогичен допущению Лорентца—Фицджеральда, но получается как следствие общих формул, а не является специальной гипотезой.

Вывод о сокращении масштабов находит, таким образом, свое непосредственное подтверждение в опыте Майкельсона.

в. Сравнение часов. Определим также длительность какого-либо процесса, происходящего в точке, неподвижной относительно системы K'. Если длительность этого процесса в системе K равняется τ , а в системе K' равна τ' , то

$$\tau = \frac{\tau'}{\sqrt{1-\beta^2}}.$$

Действительно, для определения длительности процесса надо найти разность показаний часов в конце и начале процесса. Для системы K' это делается без труда, ибо конец и начало процесса происходят в одной и той же точке (x') данной системы и, следовательно, могут отмечаться по одним и тем же часам, так что $\tau' =$ $= t'_2 - t'_1$, где t'_2 — показания часов K' в точке x' в момент окончания процесса, а t'_1 — в момент его начала. Для системы K начало процесса происходит в точке x_1 , а конец — в точке x_2 , причем x_2 — $- x_1 = \upsilon$, ибо за время τ (по часам K) механизм, в котором протекает наблюдаемый процесс, двигаясь со скоростью υ , переме

т. е.

стился в системе K на vт. Связь между t'_2 и t_2 , а также между t'_1 и t_1 найдем с помощью (132.1):

$$t_2' = \frac{t_2 - (v/c^2) x_2}{\sqrt{1 - \beta^2}} \quad \text{H} \quad t_1' = \frac{t_1 - (v/c^2) x_1}{\sqrt{1 - \beta^2}}.$$

Отсюда

$$\tau' = t'_2 - t'_1 = \frac{(t_2 - t_1) - (v/c^2)(x_2 - x_1)}{\sqrt{1 - \beta^2}} = \frac{\tau - (v/c^2)v\tau}{\sqrt{1 - \beta^2}} = \tau \sqrt{1 - \beta^2},$$

или

$$\tau = \frac{\tau'}{\sqrt{1-\beta^2}}$$

как и сказано выше.

Найденное соотношение между т и т' показывает, что процессы в системе отсчета, относительно которой перемещается изменяюшийся механизм, протекают медленнее, чем в той, относительно которой этот механизм покоится. В частности, такой механизм можно использовать в качестве часов, и, следовательно, наш вывод гласит, что ход часов замедляется в системе отсчета, относительно которой часы движутся. И этот вывод теории относительности находит непосредственное опытное подтверждение. Исследования космических лучей установили наличие в их составе так называемых и-мезонов --- элементарных частиц с массой, примерно в 200 раз превышающей массу электрона. Частицы эти нестабильны, они самопроизвольно распадаются подобно атомам радноактивных веществ. Измерения дают для среднего времени жизни и-мезонов значение $\tau_0 = 2,15\cdot 10^{-6}$ с. Но мезоны движутся со скоростью, близкой к скорости света. Поэтому за время своей жизни они проходили бы в среднем путь υт₀, равный примерно 3·10¹⁰·2,15·10⁻⁶ ≈ ≈ 600 м. Между тем опыт показывает, что мезоны успевают пройти без распада в среднем гораздо большие пути. Противоречие разрешается с помощью формул теории относительности. Время то = = 2,15.10-6 с относится к покоящемуся (или медленно движущемуся) мезону, заторможенному каким-либо плотным веществом, составляющим часть установки, применяемой для измерения продолжительности среднего времени жизни мезона. Наблюдение же над летящим мезоном производится с помощью приборов, относительно которых мезон движется с большой скоростью. По отношению к системе отсчета, связанной с этими приборами, среднее вре-Мя жизни мезона есть $\tau = \tau_0 / \sqrt{1 - \beta^2}$. Так как для мезона β близко к елини к единице, то т значительно превосходит τ_0 . Поэтому средний путь ит, проходимый мезоном в нашей системе отсчета, должен быть значительно больше 600 м, что находится в согласии с данными прямого опыта.

Формулы преобразования как масштабов, так и времен указывают, что β не может быть больше единицы, т. е. скорость системы не может превосходить скорость света с.

г. Теорема сложения скоростей и коэф. фициент увлечения. Установление соотношений между длительностью процессов и размерами масштабов, указанное выше, ведет к радикальному пересмотру всей кинематики. В частности, задача о сложении скоростей в кинематике теории относительности принимает совсем иной вид, чем в галилеевой кинематике.

сти принимает совеся имен и ими ими какова К' движется относительно си-Действительно, пусть система К' движется относительно системы К со скоростью v вдоль оси x. Предположим теперь, что какое-нибудь тело движется со скоростью u' в системе K' тоже вдоль оси x, и определим, какова будет скорость этого тела относительно системы К. Пусть координата нашего тела в системе K' в момент t' есть x'. В таком случае $u' = \frac{dx'}{dt'}$. По отношению к системе К скорость данного тела будет равна $u = \frac{dx}{dt}$, где x -соответствующая координата, а t -соответствующее время в системе отсчета K. Итак,

$$u' = \frac{dx'}{dt'} = \frac{dx'}{dt} \frac{dt}{dt'}.$$

Если бы были справедливы уравнения Галилея (129.1) x' = x - vt; t' = t, то имело бы место равенство

$$u' = \frac{dx}{dt} - v = u - v$$
, или $u = u' + v$,

как легко было предвидеть и без вычисления. Но в случае справедливости уравнений Лорентца-Эйнштейна (132.1) найдем

$$u' = \frac{dx'}{dt'} = \frac{dx'}{dt} \frac{dt}{dt'} = \frac{(u-v)}{\sqrt{1-\beta^2}} \frac{(1+vu'/c^2)}{\sqrt{1-\beta^2}},$$

откуда

$$u' = u - v + v u u'/c^2$$
, r. e. $u' = \frac{u - v}{1 - v u/c^2}$, $u = \frac{u' + v}{1 + v u'/c^2}$.
(133.2)

Таким образом, скорость результирующего движения u отличается от простой алгебраической суммы скоростей u' и v. В частности, если складывающиеся скорости u' и v сколь угодно близки к скорости света c, по, конечно, не превосходят ее, то результирующая скорость также будет меньше c. Если u' = c, то, как легко видеть, u = c, т. е. скорость света в вакууме не зависит от скорости движения системы в согласии со вторым постулатом теории относитель

Теорема сложения скоростей без всяких затруднений объясняет все те явления, в которых играет роль коэффициент увлечения Френеля. Рассмотрим, например, опыт Физо. Если вода неподвижна, то интерференционная картина определяется скоростью света в воде u' = c/n. Если вода движется со скоростью v, то интерференционная картина будет определяться той скоростью света в движущейся воде, которая констатируется приборами, расположенными вне воды. Эта скорость равна

$$u = \frac{c/n + v}{1 + (v/c^2) c/n} = \frac{(c/n + v)(1 - v/cn)}{1 - v^2/c^2n^2} \approx \frac{c}{n} + v\left(1 - \frac{1}{n^2}\right)$$

(множитель при v берется с точностью до нескольких стомиллионных). Итак, наблюдаемое изменение интерференционной картины будет таким, как если бы движение воды изменило скорость распространения света в ней, сделав ее вместо c/n равной c/n + xv, где $x = 1 - 1/n^2$ — коэффициент увлечения.

д. Я в ление Допплера. Как уже указывалось в гл. XXI, рассмотрение движения источника и прибора относительно среды приводит к двум различным выражениям для допплерсвского смещения, отличающимся на величину второго порядка относительно v/c. Понятно, что с точки зрения теории относительности оба эти случая должны приводить к тождественным формулам, ибо иначе измерения допплеровского смещения с точностью до v^2/c^2 открывали бы возможность установления абсолютной скорости прибора или источника.

И действительно, принимая во внимание формулы преобразования теории относительности (132.1), мы получим две идентичные формулы, независимо от того, будем ли мы рассматривать движение источника относительно прибора или наоборот. Предположим, например, что прибор В расположен в системе K, а источник S сеязан с движущейся относительно прибора вдоль оси x системой K', причем прибор и источник расположены на линни движения.

Пусть частота источника (в системе К') есть vo. Требуется определить частоту v, воспринимаемую прибором В в системе К.

Наблюдатель отмечает в координатной системе, связанней с прибором, два момента процесса испускания сигнала t_1 и t_2 и две координаты x_1 и x_2 , которые соотеетствуют положению источника в эти моменты. Длительность выделенной части сигнала (по часам K) равна $\tau = t_2 - t_1$, а координата $x_2 = x_1 + v\tau$, где v — скорость источника (системы K').

Так как источник удален от прибора, то моменты θ_1 и θ_2 начала и конца действия выделенной части сигнала на прибор будут отличаться от t_1 и t_2 , а именно, будут равны

$$\theta_1 = t_1 + a/c, \quad \theta_2 = t_2 + (a + v\tau)/c,$$

где а — расстояние между прибором и источником в момент t₁. Таким образом, длительность воздействия на прибор в системе К есть

$$\theta = \theta_2 - \theta_1 = \tau \left(1 + v/c \right).$$

Каково же число колебаний, дошедших за это время до прибора? Так как источник испускает за 1 с v_0 колебаний (в системе K'), то для оценки полного числа колебаний в выделенной части сигнала надо знать длительность ее в системе K'. Величина эта есть $\tau' = l'_2 - t'_1$, где l'_2 и l'_1 (моменты конца и начала выделенной части сигнала в системе K') можно найти при помощи преобразования координат

$$t_2' = \frac{t_2 - (v/c^2) x_2}{\sqrt{1 - \beta^2}}$$
 H $t_1' = \frac{t_1 - (v/c^2) x_1}{\sqrt{1 - \beta^2}}$.

Отсюда

$$\tau' = t'_2 - t'_1 = \frac{\tau (1 - v^2/c^2)}{\sqrt{1 - \beta^2}} = \tau \sqrt{1 - \beta^2},$$

что можно было бы непосредственно заимствовать из пункта «в» настоящего параграфа.

Итак, число дошедших до прибора за время θ колебаний равно $N = v_0 \tau' = v_0 \tau \sqrt{1 - \beta^2}$, и для воспринимаемой им частоты имеем

$$v = \frac{N}{\theta} = \frac{v_0 \tau \sqrt{1 - \beta^2}}{\tau (1 + v/c)} = v_0 \sqrt{\frac{1 - v/c}{1 + v/c}}.$$
 (133.3)

Совершенно такая же формула получается, если с системой K'связан прибор, а с системой K — источник. Как уже упоминалось, эти формулы отличаются на величины второго порядка относительно β от формул, выведенных в гл. XXI без учета соображений теории относительности. Если линия, соединяющая источник и прибор, составляет угол φ с направлением скорости перемещения, то аналогичное рассмотрение приведет к соотношению *)

$$v = v_0 \frac{\sqrt{1-\beta^2}}{1+(v/c)\cos\phi}.$$
 (133.4)

*) Нередко эту формулу пишут в виде

$$v = v_0 \frac{1 - (v/c) \cos \psi}{\sqrt{1 - \beta^2}},$$

где ψ — угол между направлением наблюдения и направлением скорости, измеренный в системе координат, связанной с источником, тогда как угол ф, приведенный в тексте, измерен в системе координат, связанной с прибором. Обе формулы, конечно, вполне эквивалентны друг другу, ибо углы ф и ψ связаны соотношением

$$\cos \varphi = \frac{\cos \psi - (v/c)}{1 - (v/c) \cos \psi}.$$

При сравнении с опытом, когда угол наблюдения устанавливается для прибора, удобнее формула, приведенная в тексте.

При $\varphi = 0$ получим соотношение (133.3.) При $\varphi = \pi/2$ найдем $v = v_0 \sqrt{1 - \beta^2}$. Таким образом, согласно теории относительности эффект Допплера должен иметь место и в том случае, когда направление распространения света перпендикулярно к направлению движения (поперечный эффект Допплера).

правленню долиципиальное отличие, характерное для теории отно-Это принципиальное отличие, характерное для теории относительности, может служить для новой экспериментальной проверки ее положений. Трудность опыта лежит в том, что ожидаемое смещение мало по сравнению с обычным (продольным) эффектом

Допплера, так что даже небольшое отклонение от строгой перпендикулярности между направлением наблюдения и скоростью замаскирует ожидаемый эффект. Айвсу (1938 г.) удалось, однако, преодолеть это затруднение. В его опытах источником света служил пучок каналовых лучей водорода, несущихся со значительной скоростью (v~10⁸ см/с), причем специальная конструкция трубки обеспечивала высокую однородность каналовых лучей по скоростям. Наблюдая свет, посылаемый каналовыми частицами непосредственно, и свет, отраженный зеркалом, Айвс мог выделить изменение частоты, связанное с поперечным явлением Допплера.

Идея опыта Айвса понятна из следующей схемы (рис. 22.10). Если ка-,

It

2

наловый луч H направлен под некоторым углом к зеркалу, перпендикулярно к которому расположена ось спектрографа, то имеет место обычный эффект Допплера, соответствующий компоненте скорости вдоль направления наблюдения. Пусть угол между направлением скорости частицы и направлением света, идущего непосредственно от частицы к спектрографу, равен φ (см. рис. 22.10). В таком случае свет, направляющийся от частицы к зеркалу (и от него отраженный в спектрограф), будет составлять с направлением скорости угол $\pi - \varphi$. Поэтому эффект Допплера, соответствующий лучевой компоненте скорости, дает смещения

$$\Delta v = \frac{v}{c} \cos \varphi$$

$$\Delta v' = \frac{v}{2} \cos \left(\pi - \varphi \right) = -\Delta v,$$

симметричные относительно несмещенной линии. Поперечный же эффект Допплера, накладываясь на описанный выше, дает для обенх этих компонент смещение в одну и ту же сторону, а именно в красную ($-\delta v$).

ную в результате обоих эффектов получится картина, асим. метричная относительно несмещенной линии. Измерив наблюденные результирующие смещения $a = -(\Delta v + \delta v)$ и $b = \Delta v - - \delta v$, можно вычислить смещение $\delta v = -1/2 (a + b)$, характеризующее поперечный эффект Допплера и соответствующее изменению длины еолны в сторону красного конца спектра на величину $\delta \lambda$. Измерения Айвса действительно обнаружили такой эффект и дали для величины $\delta \lambda$ значение, весьма близкое к предсказанному тсорией относительности, а именно

ожидаемое $\delta \lambda = 0.0472 \text{ Å}$; наблюденное $\delta \lambda = 0.0468 \text{ Å}$.

Заключение. Мы привели ряд отдельных фактов, являющихся экспериментальным подтверждением различных выводов теории относительности. Факты были выбраны так, чтобы возможно изгляднее проиллюстрировать справедливость того или иного положения. Но, конечно, все эти отдельные положения связаны в единое целое. Поэтому совокупность указанных фактов, равно как и огромное количество других, является тем арсеналом экспериментальных аргументов, который заставляет нас признать справедливость и плодотворность теории относительности.

Отметим, наконец, что разнообразные выводы теории относительности приводят к заключению о невозможности распространения какого-либо воздействия или сигнала со скоростью, большей скорости света в вакууме с. В кажущемся противоречии с этим заключением стоит тот факт, что в диспергирующей среде показатель преломления *n* может быть меньше единицы, так что фазовая скорость с₁ будет больше скорости с. Однако надо иметь в виду, что фазовая скорость не может определять скорость передачи сигнала или действия, ибо она характеризует бесконечную синусоиду, все части которой идентичны. Вызвав какое-либо искажение на сипусонде, мы могли бы сигнализировать, но тем самым будет нарушена монохроматичность, и сигнал будет распространяться не со скоростью фазы, а с так называемой скоростью сигнала, которая меньше с (ср. § 125).

§ 134. Общие выводы

Изложенное показывает, что тєория относительности представляет собой стройную систему, которая не только устраняет кажущиеся противоречия между отдельными экспериментальными наблюленьями, но и приводит к очень углубленному пересмотру наших понятий об измерениях пространства и времени. Сверх того, теория относительности установила ряд новых общих положений, в частности положения, выражающие зависимость массы тела от скорости

гл. ххи, оптика движущихся сред

и связь между энергией и массой:

$$m = \frac{m_0}{\sqrt{1-\beta^3}} \quad \mu \quad E = mc^2, \tag{134.1}$$

где то соответствует массе покоя, т. е. массе при v, малом по сравнению с c. Обширные применения этих соотношений особенно плодотворны в ядерной физике, где мы имеем дело с огромными скоростями и огромными элементарными порциями энергии hv (для жестких у-квантов).

Поверхностное знакомство с теорией относительности может привести к представлению, что все наши физические понятия теряют реальность, ибо, будучи относительными, они могут по-разному оцениваться в разных системах отсчета без возможности выбора из этих разных суждений. Такое заключение совершенно неправильно, подобно тому как, например, неправильно было бы суждение о нереальности пространственных величин на том основании, что в зависимости от выбора системы декартовых координат (например, направления осей) меняется численное значение координат x, y, z. Относительный характер каждого из этих координатных отрезков не лишает реальности понятия длины как расстояния между двумя точками, ибо длина эта, равная

$$V(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2 = V(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^3,$$

не зависит от выбора координат, а инвариантна по отношению к ним. Относительны же лишь компоненты этой реальной длины по осям координат. Совершенно так же в теории относительности относительный характер времени и длины означает относительность лишь отдельных компонент некоторой физической величины, которая как целое имеет вполне определенный реальный смысл, не зависящий от выбора координатной системы. Пользуясь нашей геометрической аналогией, мы можем уяснить себе смысл этой физической величины следующим образом. Точка в геометрии есть совокупность трех координат х, у, г, и расстояние между двумя точками есть вполне определенная длина, величина которой не зависить сторой не зависнт от выбора системы координат. В физике реальность имеет событие, для определения которого должно быть задано место и время время, т. е. четыре координаты x, y, z, t (мировая точка). Реальный Физические событиями. Физический смысл имеет «расстояние» между двумя событиями, т. е. «длина»

$$\Delta s = \sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2 - c^2 (\Delta t)^2}.$$

Эта величина, именуемая интервалом, имеет определенное значение, ибо она не зависит от выбора системы координат и является инвариантной.

Совершенно так же формула (134.1) приводит к выводу, что масса частицы зависит от системы отсчета; то же относится к
импульсу частицы (количеству движения) p = mv и ее энергии $E = mc^2$. Таким образом, все эти величины — «относительные» подобно рассмотренным выше пространственным и временным координатам. Величиной же инвариантной, не зависящей от системы отсчета и, следовательно, имеющей вполне реальный физический смысл, является длина четырехмерного вектора, так называемого вектора энергии-импульса, равная

$$\sqrt{E^2 - c^2 \left(p_x^* + p_y^* + p_z^* \right)} = \sqrt{m^2 c^4 - c^2 m^2 v^2} = mc^2 \sqrt{1 - \beta^2} = m_0 c^2,$$

т. е. величина, действительно сохраняющаяся неизменной в любой системе отсчета. Компоненты этого четырехмерного вектора равны

$$iE = imc^2$$
, cp_x , cp_y , cp_z ,

т. е. связаны с энергией и импульсом частицы, значения которых зависят от выбора инерциальной системы отсчета.

Таким образом, правильное истолкование следствий теории относительности не дает решительно никаких оснований для выводов субъективистского или идеалистического характера. Взаимосвязь массы и энергии с особенной убедительностью показывает, что масса и энергия представляют собой неотъемлемые атрибуты материи, независимо от того, имеем ли мы эту последнюю в форме вещества или в форме электромагнитного поля (свет).

Пространственно-временные соотношения между событиями реального мира определяются *интервалом*, величина которого не зависит от прсизвольного выбора системы отсчета и не является, следовательно, относительной.

Теория относительности делает значительный шаг вперед по сравнению с классической физикой, для которой пространство и время были самостоятельными, не связанными друг с другом категориями. Рассматривая время и пространство в их неразрывной связи, теория относительности дает более глубокие представления о пространстве и времени, являющиеся по сравнению с представлениями классической физики дальнейшим приближением к соотношениям объективного мира. Развитие этих представлений мы имеем в так называемой общей теории относительности, которая рассматривает не только равномерное, но и ускоренное движение систем отсчета. Общая теория относительности приходит к выводу о зависимости свойств пространства и времени от распределения материальных масс. Таким образом, метафизическое представление сб абсолютном времени и абсолютном пространстве, существующих независимо от материи и наряду с нею («вместилище тел» и «чистая ллительность», как утверждал Ньютон), заменяется представлениями, рассматривающими пространство и время как формы существования материи, в соответствии с концепцией диалектического материализма.

Успехи теории относительности в уточнении наших представлений о пространстве и времени являются ценным этапом на пути лений о пространстве и времени являются ценным этапом на пути познания, конкретизируя в известном отношении общую постапознания, конкретизируя в известном отношении общую постаполасно В. И. Ленину, «человеческие представления о пространстве и времени относительны, но из этих относительных представстве и времени относительны, но из этих относительные предлений складывается абсолютная истина, эти относительные предлижаются к ней. Изменчивость человеческих представлений о пространстве и времени так же мало опровергает объективную реальность того и другого, как изменчивость научных знаний о строении и формах движения материи не опровергает объективной реальности внешнего мира». («Матернализм и эмпириокритицизм», Госполитиздат, 1951, стр. 158—159.)

РАСПРОСТРАНЕНИЕ СВЕТА ЧЕРЕЗ ГРАНИЦУ ДВУХ СРЕД

Глава XXIII

ОТРАЖЕНИЕ И ПРЕЛОМЛЕНИЕ СВЕТА НА ГРАНИЦЕ ДВУХ ДИЭЛЕКТРИКОВ

§ 135. Отражение и преломление на границе двух диэлектриков. Формулы Френеля

В предшествующем изложении мы неоднократно использовали законы отражения и преломления света, установленные на основе опытных данных.

В настоящей главе мы рассмотрим вопрос о распространении света скеозь границу двух сред в рамках электромагнитной теории света. При этом мы должны, очевидно, не только обосновать упомянутые выше законы геометрической оптики, но и продвинуть исследование задачи об отражении и преломлении дальше, а именно, рассчитать амплитуды и фазы отраженных от границы раздела световых воли и воли, прошедших через границу раздела.

К решению поставленной задачи (как и большинства физических задач) еозможны два разных подхода.

Можно детально рассмотреть воздействие световой волны на электрические заряды атомов среды (электроны, ноны): электромагнитные волны возбуждают колебания зарядов, происходящие с частотой колебаний электрического вектора; вследствие этих колебаний атомы среды излучают вторичные электромагнитные волны, интерференция всех вторичных волн с волной, падающей на среду, приводит к возникновению отраженной и преломленной воли.

В такой постановке сформулированная общая задача успешно разрешена, однако требуемые вычисления очень громоздки из-за несбходимости учитывать действие на каждый атом не только падающей волны, но и вторичных волн от всех остальных атомов. Притой пист

Другой путь решения поставленной задачи опирается на феноменологическую электродинамику, т. е. на систему ургвнений Максвелла и на вытекающие из них граничные условия для электромагнитного поля. Сеойства среды при этом задаются ее показателем прелемления или диэлектрической проинцаемостью.

гл. ххип. отражение и преломление света на границе 471

Мы воспользуемся последним методом, поскольку он позволяет просто найти направление распространения, амплитуды и фазы отраженной и преломленной воли, т. е. теоретически вывести закоотражения и преломления световых волн. При этом способе, ны отражения и преломления световых волн. При этом способе, однако, вопрос о связи между показателем преломления и свойствами атомов, составляющих среду, остается открытым.

ствами аколост на границу раздела двух изотропных однородных Итак, пусть на границу раздела двух изотропных однородных диэлектриков падает плоская электромагнитная волна. В таком случае, как показывает опыт, от границы раздела диэлектриков будут распространяться две плоские болны — отраженная и преломленная.

Граничные условия для электромагнитного поля состоят в том, что в любой момент времени и в любой точке границы раздела выполняются следующие соотношения для тангенциальных компонент векторов напряженности электрического и магнитного полей:

$$E_{\tau 1} = E_{\tau 2}; \quad H_{\tau 1} = H_{\tau 2}, \quad (135.1)$$

где индекс т служит для обозначения тангенциальных компонент векторов *E* и *H*, т. е. проекций векторов *E* и *H* на границу раздела между средами. Очевидно, в первой среде результирующее значение напряженности поля вблизи границы раздела определится суммой полей падающей и отраженной волн, а внутри второй среды — лишь полем проходящей волны. Падающая волна может быть поляризована любым образом.

Из уравнений Максвелла, как показано в § 3, для плоских волн получается соотношение $V \varepsilon E = V \mu H$, которое в оптической части спектра для прозрачных диэлектриков можно записать в виде

$$V \varepsilon E = H$$
,

так как в этом случае $\mu \approx 1$. Векторы *E*, *H* и единичный вектор *s*, определяющий направление распространения волны, взаимно перпендикулярны и составляют правовинтовую систему (см. рис. 2.6, где направление распространения волны задается вектором v). Убедимся, прежде всего, в том, что *геометрические законы отражения и преломления*, определяющие направления распространения отраженной и преломленной волн, одни и те же при любой поляризации падающей волны. При теоретическом анализе проблемы отражения волн удобно пользоваться комплексной записью колебаний. В соответствии с этим запишем выражения для падающей, отраженной и преломленной волн следующим образом:

$$E_{l} \exp \left[i(\omega_{l}t - k_{l}rs_{l})\right], \quad k_{l} = \frac{\omega_{l}}{v_{l}} = \frac{\omega_{l}}{c}n_{1};$$

$$E_{r} \exp \left[i(\omega_{r}t - k_{r}rs_{r})\right], \quad k_{r} = \frac{\omega_{r}}{v_{r}} = \frac{\omega_{r}}{c}n_{1};$$

$$E_{d} \exp \left[i(\omega_{d}t - k_{d}rs_{d})\right], \quad k_{d} = \frac{\omega_{d}}{v_{d}} = \frac{\omega_{d}}{c}n_{2}.$$
(135.2)

472 РАСПРОСТРАНЕНИЕ СВЕТА ЧЕРЕЗ ГРАНИЦУ ДВУХ СРЕД

Здесь r — раднус-вектор, ω_j , v_j — частоты и скорости волн (j = i, r, d), E_j — амплитуды волн, n_1, n_2 — показатели преломления граничащих сред, s_j — единичные векторы. Поскольку условие $s_i r = \text{const}$ определяет плоскость, перпендикулярную к s_j , то выражения (135.2) описывают плоские волны, распространяющиеся вдоль векторов $s_j = s_i$, s_r , s_d . Согласно сказанному в § 4 о комплексной записи колебаний, физическое содержание связано с вещественной частью этих выражений. Аргументы декартовых слагающих комплексных векторов E_i , E_r , E_d суть начальные фазы соответствующих колебаний. Как разъяснено в § 110, разность начальных фаз составляющих вектора E_j влияет на состояние поляризации волны.

Если ввести выражения (135.2) в граничные условия для электрического вектора, то они принимают вид

 $E_{i\tau} \exp \left[i(\omega_i t - k_i s_i r)\right] + E_{r\tau} \exp \left[i(\omega_r t - k_r s_r r)\right] = E_{d\tau} \exp \left[i(\omega_d t - k_d s_d r)\right].$

Для выполнения этого равенства в любой момент времени tв любой точке границы раздела необходимо и достаточно, чтобы со всех трех показателях экспонент были одинаковы коэффициенты при t и при проекции r_{τ} радиус-вектора r на границу раздела, т. е. чтобы выполнялись равенства

$$\omega_l = \omega_r = \omega_d; \tag{135.3}$$

$$k_i \mathbf{S}_{l\tau} = k_r \mathbf{S}_{r\tau} = k_d \mathbf{S}_{d\tau}. \tag{135.4}$$

Согласно (135.3), частоты всех трех волн должны быть равны между собой. В рамках молекулярных представлений, изложенных в начале параграфа, этот результат очевиден, так как частоты колебаний зарядов, вынуждаемых электрическим вектором световой волны, совпадают с частотой вынуждающей силы, т. е. ω_i . В дальнейшем индексы при ω_i , ω_r , ω_d будут опущены и частота будет сбозначаться просто через ω .

Из равенства (135.4) следует, что единичные векторы s_i , s_r и s_d находятся в одной плоскости, проходящей через нормаль к плоскости раздела и s_i (плоскость падения), что соответствует опыту (см. § 1).

Выберем систему координат таким образом, чтобы плоскость xOy совпадала с плоскостью раздела сред, а плоскость zOx - c плоскостью падения, причем ось Oz направим из среды / в среду // (рис. 23.1). Углы между s_i , s_d и осью z обозначим φ , ψ (углы падения и преломления), а угол между Oz и s_r обозначим $\pi - \varphi' (\varphi' - угол отражения, см. рис. 23.1).$

В указанной системе координат у-компоненты векторов уг равны нулю, а х-компоненты можно выразить через углы φ , ψ следующим образом:

 $s_{lx} = \sin \varphi$, $s_{rx} = \sin \varphi'$, $s_{dx} = \sin \psi$.

ГЛ. ХХИИ. ОТРАЖЕНИЕ И ПРЕЛОМЛЕНИЕ СВЕТА НА ГРАНИЦЕ

Таким образом, равенствам (135.4) можно придать вид

$$\frac{\sin \varphi}{v_1} = \frac{\sin \varphi'}{v_1} = \frac{\sin \psi}{v_2}.$$
(135.5)

Первое равенство означает, что $\varphi = \varphi'$, т. е. мы приходим к закону отражения. Для преломленной волны имеем цепочку равенств

$$\frac{\sin\psi}{\sin\varphi} = \frac{n_1}{n_2} = \sqrt{\frac{e_1}{e_2}} = \frac{1}{n} = \frac{v_2}{v_1},$$
(135.6)

что совпадает с законом преломления, установленным экспериментально. Кроме того, соотношения (135.6) существенно дополняют

Рис. 23.1. Схемы расположения волновых векторов и напряженностей в падающей, отраженной и преломленной волнах.

 сограженном и прелодилению, селона в плоскости падения,
 компоненты напряженности электрического вектора Е₁₁ лежат в плоскости падения,
 компоненты напряженности электрического вектора Е₁₁ перпендикулярны к плоскости падения

содержание эмпирического закона преломления, а именно, относительный показатель преломления *n* двух сред равен отношению скоростей распространения волн *v*₁ и *v*₂. Итак, геометрические законы отражения и преломления непосредственно вытекают из электромагнитной теории света.

. В рассуждениях, приведших к геометрическим законам, мы не делали никаких предположений, ограничивающих значения составляющих векторных амплитуд и их начальных фаз. Поскольку именно эти величины определяют поляризацию воли, то можно

РАСПРОСТРАНЕНИЕ СВЕТА ЧЕРЕЗ ГРАНИЦУ ДВУХ СРЕД

утверждать, что геометрические законы отражения и преломления справедливы при любых состояниях поляризации падающей волны.

справедливы при люсят и полны. В отличие от геометрических законов, амплитуды отраженной и преломленной воли зависят от поляризации падающей волны. Из дальнейшего будет видно, что целесообразно раздельно рассматривать два случая, когда электрический вектор либо лежит в плоскости падения, либо перпендикулярен к ней. Другими словами, разложим амплитуды E_i , E_r , E_d на компоненты E_{\parallel} и E_{\perp} , лежащие соответственно в плоскости падения и перпендикулярные к ней:

$$E_{j} = E_{j\parallel} + E_{j\perp}; \quad j = i, r, d.$$

Результаты вычисления $E_{j,|}$ и $E_{j\perp}$ позволяют, очевидно, решить задачу об отражении и преломлении света произвольной поляризации. Взаимные ориентации векторов s_j , $E_{j,|}$, $E_{j\perp}$ и соответствующих им напряженностей $H_{j,|}$, $H_{j\perp}$ магнитного поля приведены на рис. 23.1, a и b.

Начнем с рассмотрения случая, когда компоненты напряженности электрического вектора E_{Λ} лежат в плоскости падения (см. рис. 23.1, *a*). Граничные условия для такой поляризации принимают вид

$$E_{l\parallel}\cos\varphi + E_{r\parallel}\cos\varphi = E_{d\parallel}\cos\psi; \ n_1 E_{l\parallel} - n_1 E_{r\parallel} = n_2 E_{d\parallel}. \ (135.7)$$

Решая эту систему уравнений и используя закон преломления, найдем

$$r_{\parallel} = \frac{E_{r\parallel}}{E_{\perp\parallel}} = -\frac{\sin 2\varphi - \sin 2\psi}{\sin 2\varphi + \sin 2\varphi} = -\frac{\operatorname{tg}(\varphi - \psi)}{\operatorname{tg}(\varphi + \psi)},$$
(135.8)

$$t_{\parallel} = \frac{E_{d\parallel}}{E_{l\parallel}} = \frac{2\sin\psi\cos\varphi}{\sin(\varphi+\psi)\cos(\varphi-\psi)},$$
(135.9)

Величины r_{\parallel} и t_{\parallel} носят названия амплитудных коэффициентов отражения и пропускания для волны, линейно-поляризованной в плоскости падения.

Для компонент напряженностей электрического вектора, перпендикулярных к плоскости падения (рис. 23.1, б), граничные условия (135.1) принимают вид

 $E_{l\perp} + E_{r\perp} = E_{d\perp};$ $n_1 (E_{l\perp} - E_{r\perp}) \cos \varphi = n_2 E_{d\perp} \cos \psi,$ и амплитудные коэффициенты отражения и пропускания r_1, t_1 даются выражениями

$$r_{\perp} = \frac{E_{r\perp}}{E_{r\perp}} = -\frac{\sin(\varphi - \psi)}{\sin(\varphi + \psi)}; \qquad (135.10)$$

$$E_{\perp} = \frac{E_{d \perp}}{E_{L \perp}} = \frac{2 \sin \psi \cos \varphi}{\sin (\varphi + \psi)}.$$
 (135.11)

Соотношения (135.8) — (135.11) между амплитудами падающей, отраженной и преломленной воли известны под названием формул Френеля.

ГЛ. ХХИИ. ОТРАЖЕНИЕ И ПРЕЛОМЛЕНИЕ СВЕТА НА ГРАНИЦЕ

Нетрудно получить аналогичные соотношения для магнитных векторов (см. упражнение 185).

векторов (см. с помощью формул Френеля ссотношения между установим с помощью формул Френеля ссотношения между фазами падающей, преломленной и отражению волн. Амплитудные коэффициенты отражения — величины вещественные (случай полного внутреннего отражения, когда это не так, рассматривается в гл. XXIV). Поэтому фазы отраженной, преломленной и падающей волн либо совпадают, либо отличаются на л. Заметим, что направления, выбранные для наших векторов в качестве положительных, конечно, условны (так же как во всякой геометрическсй задаче). Но поскольку мы придерживаемся их на всем протяжении нашего рассмотрения, то найденные таким путем соотношения имсют общии смысл. Наш выбор положительных направлений означает, в частности, что волны *i*, *r*, *d* совпадают по фазе, если амплитуды E_i , E_r , E_d имеют одинаковые знаки, и противоположны по фазе, если знаки различны.

Из формул (135.9) и (135.11) следует, что при любом значении углов ψ и φ знаки E_{d_1} и E_{l_1} и знаки E_{d_1} и E_{l_1} совпадают между собой. Это означает, что на поверхности раздела и фазы их совпадают, т. е. преломленная волна во всех случаях сохраняет без изменения фазу падающей. Для компонент отраженной волны (E_{r_1} и E_{r_1}) дело обстоит сложнее. Как показывают формулы (135.8) и (135.10), в зависимости от угла падения и значения показателя преломления граничных сред будут иметь место различные ссотношения, сведенные в таблицу.

Таблица

	$\phi + \psi < \frac{3}{a} \pi$	$\phi + \psi > i_{12} \pi$
$\phi > \psi$, т. е. $n_2 > n_1$, или n > 1	$E_{r\perp}$ и $E_{i\perp}$ противоположны по фазе (противоположны по энаку) $E_{r\parallel}$ и $E_{i\parallel}$ противоположны по фазе (противоположны по энаку)	E_{r1} и E_{i1} противелоложны по фазе (противелоложны по знаку) $E_{r }$ и $E_{i }$ совладают по фазе (совпадают по знаку)
Ф < ψ, т. е. л₂ < л₁, или n < 1	$E_{r\perp}$ и $E_{i\perp}$ совпадают по фа- зе (совпадают по знаку) $E_{r\parallel}$ и $E_{i\parallel}$ совпадают по фазе (совпадают по знаку)	$E_{r\perp}$ и $E_{i\perp}$ совпадают по фа- зе (совпадают по знаку) $E_{r\perp}$ и $E_{i\parallel}$ противоположны по фазе (противоположны по знаку)

Таким образом, при малых углах падения ($\phi + \psi < \pi/2$) фаза сбеих компонент электрического вектора отраженной волны протиеоположна фазе падающей для случая, когда $n_2 > n_1$, и совпа-

дает с фазой падающей волны при $n_2 < n_1$. В частности, это имеет место и при нормальном падении. Это явление потери полуволны при отражении от оптически более плотной среды (n > 1) многократно упоминалось нами при изучении различных случаев интерференции. В приведенных формулах содержится полный разбор всех возможных случаев для электрического вектора. Аналогично может быть разобрано поведение фаз магнитного вектора.

Энергия света I₁, падающего на единицу площади поверхности границы раздела в единицу времени, есть проекция вектора Умова — Пойнтинга на нормаль к границе раздела. Усредняя энергию за период колебаний 2л/ω, найдем

$$I_{l} = \frac{cn_{1}}{8\pi} \left(E_{l\perp}^{2} + E_{l\parallel}^{2} \right) \cos \varphi.$$

Соответственно для отраженной и преломленной волн энергия, покидающая единицу площади поверхности в единицу времени, выразится соотношениями

$$I_{r} = \frac{cn_{1}}{8\pi} [E_{r}^{a} + E_{r}^{a}] \cos \varphi; \qquad I_{d} = \frac{cn_{2}}{8\pi} [E_{d}^{a} + E_{d}^{a}] \cos \psi.$$

Отношение отраженного потока к пада:ощему определяется, таким образом, квадратами амплитудных коэффициентов отражения r_{\perp}^{a} и r_{l}^{i} :

$$r_{\perp}^{*} = \left[\frac{\sin\left(\varphi - \psi\right)}{\sin\left(\varphi + \psi\right)}\right]^{2}; \quad r_{\parallel}^{*} = \left[\frac{\operatorname{tg}\left(\varphi - \psi\right)}{\operatorname{tg}\left(\varphi + \psi\right)}\right]^{2}.$$
(135.12)

В случае нормального падения (φ = ψ = 0) из формул (135.8) и (135.10), раскрывая неопределенность, находим

$$r_{\perp} = r_{\parallel} = -\frac{n-1}{n+1} = -\frac{n_2 - n_1}{n_2 + n_1}.$$
 (135.13)

Равенство коэффициентов отражения r_{\perp} и r_{\parallel} при нормальном падении вполне понятио, так как в этом случае и $E_{l\perp}$, и $E_{n\parallel}$ параллельны границе раздела и физически равноправны. Знаки r_{\perp} и r_{\parallel} по-прежнему выражают соотношение фаз отраженной и падающей волн.

Для n = 1,5 (стекло — воздух) находим

$$r_{\perp}^{3} = r_{\parallel}^{3} = 1/25 = 4^{0}/_{0}.$$

Отражение света от многих поверхностей даже при падении, близком к нормальному, может заметно ослабить интенсивность света, с чем приходится считаться при построении сложных оптических систем. Одним из способов борьбы с этими потерями является скленвание отдельных поверхностей канадским бальзамом; относительный показатель преломления границы канадский бальзам — стекло близок к единице, так что отражения на поверхности склейки практически не наблюдается.

ГЛ. XXIII. ОТРАЖЕНИЕ И ПРЕЛОМЛЕНИЕ СВЕТА НА ГРАНИЦЕ 477 ·

Был разработан метод, позволяющий чрезвычайно сильно уменьшать отражение света на свободной поверхности стекла (просеетмение оптики). Путем химической обработки или осаждением постороннего вещества на стекле образуют поверхностный слой, показатель преломления и толщину которого стремятся подобрать так, чтобы лучи, отраженные от верхней и нижней границ этого слоя, благодаря интерференции взаимно погашались (см. упражнение 192). При хорошем подборе констант слоя удается весьма значительно ослабить отражение. Это крайне важно при конструировании приборов, состоящих из многих оптических частей, т. е. сбладающих большим числом отражающих поверхностей. Так, в некоторых приборах, например, в перископах, подобная обработка ведет к уменьшению потерь на отражение в несколько раз.

Особого внимания заслуживает случай, когда выполняется условие $\varphi + \psi = \pi/2$ и $tg(\varphi + \psi) \rightarrow \infty$. Нетрудно показать, что это условие удовлетворяется при угле падения

$$\varphi_{\mathsf{b}} = \arctan \frac{n_2}{n_1} = \arctan n. \tag{135.14}$$

Такому условню всегда можно удовлетворить на опыте. Для стекла, например, с n = 1,5 находим $\varphi_5 = 56^{\circ}19'$, а для воды (n = 1,33) имеем $\varphi_5 = 53^{\circ}4'$ (в обонх случаях первой средой служил воздух, $n_1 = 1$). При угле падения $\varphi = \varphi_5$ коэффициент отражения r_1 для E_{r_1} равен нулю, а r_1 дается формулой (см. упражнение 186)

$$r_{\perp} = -\frac{n^2 - 1}{n^2 + 1}.$$

Таким образом, при $\varphi = \varphi_{\rm b}$ отраженный свет линейно поляризован в плоскости, перпендикулярной плоскости падения. Обращение в нуль коэффициента отражения r_{\parallel} при $\varphi = \varphi_{\rm b}$ называют законом Брюстера, а угол $\varphi_{\rm b}$ — углом Брюстера. Более детально закон Брюстера и его использование для получения поляризованного света обсуждается в § 136.

Если φ → π/2 (скользящее падение), то

$$r_{\parallel}^{2} = r_{\perp}^{2} = 1,$$

т. е. происходит полное отражение света. С этим связаны, в частности, яркие изображения предметов в спокойной воде (берега рек, фонари, заходящее солнце и т. п.).

На рис. 23.2 изображены графики зависимости r_{\perp}^{*} и r_{\parallel}^{*} (кривые и 111) от угла падения φ для n = 1,52, в соответствии с чем угол Брюстера равен 56°40'. Кривая 11 отвечает коэффициенту отражеиня для неполяризованного света. В этом случае $E_{I\parallel}^{*} = E_{I\perp}^{*}$ и

$$I_r = \frac{1}{2} (r_{\parallel}^s + r_{\perp}^s) I_l,$$

т. е. коэффициент отражения равен среднему арифметическому из

Если направить луч в противоположном направлении (из стекла В воздух), то углы φ и ψ поменяются местами и, как видно из соотношений (135.12), значения r_{\parallel}^* и r_{\perp}^* останутся неизменными. Поэтому графики рис. 23.2 относятся и к отражению при n = 1/1.52

Рис. 23.2. Коэффициент отражения света в функции угла падения ф (n = 1,52). I – для r^s1: II – для естественного света: III – для r^e.

(соответствующие углы падения указаны наверху диаграммы).

Отметим качественные изменения, которые претерпели бы графики 23.2рис. При увеличении относительного показателя преломления. Начальная точка графиков, отвечающая $\varphi = 0$ согласно (135.13) сместится вверх; график для r octaнется монотонным, угол Брюстера увеличится, график для г приобретет все более глубокий минимум и еще резче приблизится к единице при $\phi \rightarrow \pi/2$. При достаточно больших значениях показателя преломления и $r^2 = \frac{1}{2}(r_{\parallel}^3 + r_{\perp}^3)$ будет немонотонно, изменяться уменьшаясь при малых углах падения и увеличиваясь лрн φ>φб∙

Соотношения, изображенные на указанных кривых (или

в соответствующих формулах), подвергались многократно опытной проверке и хорошо подтверждены опытом. Опытную их проверку можно выполнить на любой установке, дающей возможность исследования интенсивности света, направленного под разными углами (фотометр, соединенный с гониометром). При этом обычно исследуются отдельно <u>1</u>-и ||-компоненты, так что либо применяется поляризационный фотометр, либо прибор снабжается дополнительно поляризационной призмой.

Экспериментальное подтверждение формул Френеля служит веским аргументом в пользу электромагнитной теории света. Не вдаваясь в суть дела, подчеркнем, что строгое решение задачи об отражении света в рамках теории упругого эфира встречает непреодолимые трудности. Хотя Френель и получил свои формулы при рассмотрении прохождения упругой волны через границу двух

ГЛ. ХХНІ. ОТРАЖЕНИЕ. И ПРЕЛОМЛЕНИЕ СВЕТА НА ГРАНИЦЕ 479

сред, его вывод внутренне противоречив и неубедителен. Электромагнитная же теория, как было показано выше, дает простой и изящный вывод, основанный на анализе граничных условий для напряженностей электрического и магнитного векторов. В противоположность формулам Френеля, геометрические законы отражения справедливы для волн любой природы и не могут поэтому служить для выбора между упругой и электромагнитной теориями света.

§ 136. Поляризация света при прохождении через границу двух диэлектриков. Наглядная интерпретация закона Брюстера

Как мы видим, формулы Френеля дают возможность рассчитать амплитуду каждой из компонент E_{\perp} и E_{\parallel} в отраженном и проходящем свете, и поэтому они содержат полное решение задачи о степени поляризации отраженного и преломленного света. В них заключаются все законы, уже известные нам из опыта и описанные в гл. XVI. Таким образом, электромагнитная теория света объясняет великое открытие Малюса.

Если свет естественный, то $\overline{E}_{\parallel}^{s} = \overline{E}_{\perp}^{s}$, т. е. за промежуток времени, короткий по сравнению с временем наблюдения, но длинный по отношению к продолжительности внутриатомных процессов, квадраты компонент вектора напряженности электрического поля, лежащие в плоскости падения и перпендикулярные к ней, в среднем равны между собой.

Для отраженного света, однако,

$$\overline{E_{a\parallel}^{*}} \neq \overline{E_{r\perp}^{*}}.$$
(136.1)

Поэтому отраженный свет оказывается более или менеее поляризованным. Так как $\vec{E}_{r\perp} \gg \vec{E}_{r\parallel}$, то электрический вектор, перпендикулярный к плоскости падения, имеет большую амплитуду.

За меру степени поляризации естественно принять отношение

$$\Delta = \frac{I_{\perp} - I_{\parallel}}{I_{\perp} + I_{\parallel}} 100^{\circ}/_{0},$$

где I_{\perp} и I_{\parallel} — интенсивности, соответствующие компонентам E_{\perp} и E_{\parallel} . Величину Δ называют степенью поляризации. Множитель 100 введен для того, чтобы выразить Δ в процептах. Таким образом, степень поляризации равна нулю, если $I_{\perp} = I_{\parallel}$ (свет естественный); поляризация достигает 100%, если одна из компонент электрического вектора обращается в нуль. При выбранном определении Δ равенство $\Delta = 100\%$ означает полную поляризацию при направлении колебаний электрического вектора, перпендикулярном к плоскости падения; $\Delta = -100\%$ означает полную поляризацию с колебаниями электрического вектора в плоскости падения.

РАСПРОСТРАНЕНИЕ СВЕТА ЧЕРЕЗ ГРАНИЦУ ДВУХ СРЕЛ

Если $\varphi + \psi = \pi/2$, то $I_{r\perp} = 0$, $I_{r\parallel} \neq 0$ и $\Delta = 100\%$, т.е. отраженный свет полностью поляризован, причем электрический вектор перпендикулярен к плоскости падения (закон Брюстера). Коэффициенты пропускания t_{\perp} , t_{\parallel} не обращаются в нуль ни при каком значении угла падения φ , т. е. полная поляризация проходящего света невозможна. Однако всегда $E_{d\parallel}^* \ge E_{d\perp}^*$, т. е. $I_{d\parallel} \ge I_{d\perp}$ и $\Delta \ll 0$. Это означает, что имеет место частичная поляризация, и притом такая, что преимущественное направление колебаний дежит в плоскости падения.

Рис. 23.3. Отступления от формул Френеля вблизи угла Брюстера ф.

При падении света под углом Брюстера получаем, как легко убедиться (см. упражнение 187),

$$\frac{E_{d}}{E_{d}} = \frac{2n}{1+n^2}, \quad \frac{f_{d}}{I_{d}} = \frac{4n^2}{(1+n^2)^2},$$
$$\Delta = \frac{4n^2 - (n^2 + 1)^2}{4n^2 + (n^2 + 1)^2} = -\frac{(n^2 - 1)^2}{4n^2 + (n^2 + 1)^2}.$$
(136.2)

При n = 1,5 (воздух — стекло) имеем приблизительно $\Delta = -8\%$, т. е. проходящий свет частично (на 8%) поляризован. Если свет проходит внутрь плоскопараллельной пластинки, то на второй поверхности вновь происходит преломление под углом Брюстера и степень поляризации прошедшего через пластинку света увеличивается еще приблизительно на 8%. Если сложить последовательно несколько пластинок (*cmona Cmoлеmosa*), то поляризация проходящего света будет быстро возрастать при увеличении числа пластинок в стопе и ее можно вычислить при помощи формул Френеля (см. упражнение 189).

Из формул Френеля следует (см. таблицу на стр. 475), что компоненты $E_{r\parallel}$ и $E_{r\perp}$ совпадают по фазе, пока угол падения меньше угла Брюстера ($\varphi + \psi < \pi/2$), и становятся противоположными по фазе, когда $\varphi + \psi > \pi/2$. При угле Брюстера должно иметь место изменение фазы $E_{r\parallel}$ скачком на 180° (рис. 23.3). Кроме того, при падении под углом Брюстера в отраженном свете колебания должны быть перпендикулярны к плоскости падения (ибо $E_{r\parallel} = 0$).

Однако наблюдения показали, что сказанное выполняется не вполне строго.

строго. Как показали специальные опыты, закон Брюстера выполняется неточно, а именно, при отражении поляризованного света под углом, близким к углу Брюстера, наблюдается не плоскополяризованный, а эллиптически-поляризованный свет. Это значит, что между компонентами E_{All} и E_{rl} имеется некоторая разность фаз, отличная от 0 и 180°, т. е. что изменение фазы E_{All} при прохождении через угол Брюстера происходит не скачком, а постепенно, хотя и очень быстро. На рис. 23.3 скачко-

образное изменение фазы показано пунктиром; сплошная линия дает фактически наблюдаемое изменение. Указанные результаты можно объяснить существованием переходного слоя на поверхности раздела двух сред, где ε_1 (а значит, и n_1) переходит в ε_2 (в n_2) быстрым, но непрерывным изменением, а не скачком.

Физический смыслзакона Брюстера. При выводе формул Френеля и их интерпретации мы пользовались Рис. 23.4. К пояснению физического смысла закона Брюстера.

граничными условиями для электромагнитного поля, не прибегая к представлениям о вторичных волнах, испускаемых атомами или молекулами вещества. Привлекая эти рассуждения, мы могли бы внести большую физическую ясность в наши формулы. Покажем это на примере истолкования физического смысла закона Брюстера.

Падающая волна возбуждает в среде *II* (рис. 23.4) колебания электронов, которые становятся источником вторичных волн; эти волны и дают отраженный свет. Направление колебаний совпадает с направлением электрического вектора световой волны *), т. е. для среды *II* оно перпендикулярно к *OC*. Мы можем представить себе это колебание как сумму двух колебаний, одно из которых (α) лежит в плоскости *AOC* и другое (β) — к ней перпендикулярно. Другими словами, мы изображаем колебание электронов в молекуле как суперпозицию колебаний двух элементарных излучателей, оси которых направлены соответственно по α и β .

Представим себе теперь, что свет падает под углом Брюстера, т. е. $\phi + \psi = \frac{1}{2\pi}$. При этом, очевидно, $OB \perp OC$. Следовательно, $OB \parallel \alpha$. Известно, однако, что колеблющийся электрический заряд не излучает электромагнитных волн вдоль направления своего движения. Поэтому излучатель типа α вдоль OB не излучает. Таким образом, по направлению OB идет свет, посылаемый излучателями типа β , направление колебаний которых перпендикулярно к OB, т. е. перпендикулярно к плоскости чертежа. Другими словами,

16 Ландсберг Г. С.

^{*)} Ради простоты мы считаем молекулы изотропными.

отраженный свет вполне поляризован, и колебание вектора напряженности электрического поля в нем перпендикулярно к плоскости падения (закон Брюстера).

падсния (закон эристер) Если угол падения отличается от угла Брюстера, то вдоль ОВ межет распространяться волна, содержащая наряду с компонентой β и компоненту α, доля которой будет тем больше, чем больше угол между направлением α и направлением страженной волны. Таким образом, отраженный свет будет частично поляризован, и степень поляризации возрастает по мере приближения к углу Брюстера.

Как мы говорили, опыт показывает, что закон Брюстера не соблюдается вполне строго. Может быть, одна из причин отступлений лежит в том, что мы считали молекулы изотропными, а это далеко не всегда имеет место. Впрочем, причины отступления от закона Брюстера до сих пор не вполне выяснены.

Глава XXIV

полное внутреннее отражение *)

§ 137. Явление полного внутрениего отражения

Закон преломления, найденный на опыте и вытекающий из теорин, гласит, что $\sin\psi = \sin\varphi/n$. Легко видеть, что если n < 1, то согласно этому соотношению возможно такое значение угла падения φ , при котором $\sin\psi > 1$, что не имеет смысла, ибо подобная формула не определяет инкакого реального угла преломления. Подобный случай имеет место для всех значений угла φ , удовлетворяющих условню $\sin\varphi > n$, что возможно, когда n < 1, т. е. когда свет идет из более преломляющей среды в среду менее преломляющую (например, из стекла в воздух). Угол φ , соответствующий условию $\sin\varphi = n$, принято называть критическим или предельным. Как известно, при этих условиях мы не наблюдаем преломленной волны, а весь свет полностью отражается обратно в первую среду, в соответствии с чем явление носит название полного внутреннего отражсния.

Поскольку при этом условии угол ф не имеет смысла, мы не можем интерпретировать для данного случая и формулы Френеля в приведенном выше виде, ибо в них непосредственно входит угол ф. Мы можем, однако, преобразовать эти формулы, введя в них п.

Изложение в настоящей главе приводится без доказательств большинства положений, ибо относящийся сюда материал выходит за рамки общего курса. Цель изложения — дать лишь общее представление о рассматриваемых вопросах.

гл. ХХІУ. ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ

Раскрывая выражения $\sin(\varphi + \psi)$, $\sin(\varphi - \psi)$ и т. д., заменим $\sin\psi$ на $\sin\varphi/n$ и $\cos\psi$ на $\pm \sqrt{1 - \sin^2 \varphi/n^2}$. Для рассматриваемого случая величина $\sin\varphi/n > 1$, а значит, и $\sin^2\varphi/n^2 > 1$, т. е. $\cos\psi$ становится мнимым:

$$\cos \psi = \pm i \sqrt{\frac{\sin^2 \varphi}{n^2} - 1}.$$
 (137.1)

Как показывает анализ, знаку плюс соответствует бесконечное возрастание амплитуды по мере удаления от отражающей поверхности во вторую среду, что физически невозможно; поэтому в дальнейшем сохраним

$$\cos \psi = -i \sqrt{\frac{\sin^2 \varphi}{n^2} - 1}.$$
 (137.2)

Выполняя соответственные вычисления, мы получим E, и E_d выраженными через E_l , φ и n, но при этом найденные выражения будут не действительными, а комплексными. Комплексное выражение для амплитуд отраженной и преломленной волн имеет весьма простой смысл: аргумент комплексной амплитуды определяет сдвиг фазы колебания (см. упражнение 193 и § 4). Таким образом, появление комплексных величин в выражениях для амплитуд отраженной и преломленной волн означает, что эти волны отличаются от падающей волны не только по амплитудам, но и по фазам. Рассмотрим отраженную и преломленную волны отдельно.

§ 138. Исследование отраженной волны. Эллиптическая поляризация

Исследование получающихся для отраженной волны соотношений приводит к следующим выводам.

а. $|E_{r\perp}|^2 = |E_{l\perp}|^2$ и $|E_{l\parallel}|^2 = |E_{r\parallel}|^2$ (см. упражнение 196), а следовательно, $|E_{l\perp}|^2 + |E_{l\parallel}|^2 = |E_{r\perp}|^2 + |E_{r\parallel}|^2$, т. е. интенсивность *) отраженного света равна интенсивности падающего. Так как согласно закону отражения сечения падающего и отраженного пучков равны между собой, то найденное соотношение означает, что вся падающая энергия сполна отражается. Явление получило поэтому, как сказано выше, название полного внутреннего отражения. Оно легко наблюдается и демонстрируется множеством способов. Примером может служить часто применяемая в многочисленных оптических установках призма полного внутреннего отражения (рис. 24.1, *a*), поворачивающая лучи под прямым углом, или оборотная призма (рис. 24.1, *б*), перевертывающая изображение.

*) При комплексной записи полей интенсивность пропорциональна квадрату модуля амплитуды (см. § 4).

Явлением полного внутреннего отражения объясняется эффект. ный демонстрационный опыт, изображенный на рис. 24.2. Свет ный демонстрационным параллельным пучком вдоль струи волы, свободно вытекающей из отверстия в боковой стенке сосуда. Благодаря явлению полного внутреннего отражения свет не может выйти через боковую поверхность и следует вдоль струи, которая

Рис. 24.1. Призмы полного внут-

а — поворачивающая призма; б — оборотная призма.

реннего отражения.

Рис. 24.2. Явление полного отражения в струе жидкости.

уподобляется, таким образом, изогнутому светопроводу. Фактически вследствие рассеяния на случайных пылинках и пузырьках часть света проходит через боковые стенки, и поэтому струя видна в затемненной аудитории. Свечение струи становится еще более заметным, если вместо воды вытекает флуоресцирующий раствор (свет флуоресценции распространяется по всем направлениям и, не испытывая полного внутреннего отражения для углов падения, меньших предельного, частично выходит из струи).

Рис. 24.3. Схема рефрактометра Аббе.

РР — призмы из стекла с большим показателем преломления, между которыми поме-нают каплю исследуемой жиндкости; пучок света от источника S проходит через свето-фильтр F и испытывает полное внутрениее отражение на границе капля — призма спризма вместе с рычагом R поворачивается около трубы T; положение трубы по отношению к призме отсчитывается по дуге D, проградуированной в значениях по-казателя преломления.

На явлении полного внутреннего отражения основано устройство прибора, позволяющего быстро и просто определять показатель преломления (рефрактометр Аббе-Пульфриха), схема которого показана на рис. 24.3. Полное внутреннее отражение происходит на границе между стеклом (с известным и по возможности высоким показателем преломления) и тонким слоем жидкости, наносимым на поверхность стекла. На шкале прибора, определяющей положение трубы по отношению к призме при визировании светлой границы (указывающей начало полного внутреннего отражения), обычно наносят непосредственно значения показателя преломления. Такой рефрактометр обеспечивает определение показателя преломления с погрешностью, не превышающей 0,1%.

б. Компоненты $E_{r\perp}$ и $E_{r\parallel}$ испытывают изменения фазы по отношению к $E_{l\perp}$ и $E_{l\parallel}$, обозначаемые соответственно δ_{\perp} и δ_{\parallel} , причем δ_{\perp} отлично от δ_{\parallel} , так что $t_{g} \frac{1}{2} (\delta_{\parallel} - \delta_{\perp}) = L$

 $=\frac{\cos\varphi\sqrt{\sin^2\varphi-n^2}}{\sin^2\varphi} \qquad (138.1)$

(см. упражнение 197).

Таким образом, если в падающей волне E_{11} и E_{11} находятся в одной фазе, то в отраженном свете между взаимно перпендикулярными компонентами E_{r1} и E_{r1} появится сдвиг фазы, зависящий от φ и *п*. Следовательно, явление полного внутреннего отражения позволяет получить эллиптически-поляризованный свет, как и пропускание света через кристаллическую пластинку. Разумеет-

Рис. 24.4. Наблюдение эллиптической поляризации света при явлении полного внутреннего отражения.

S — источник света; L — линза, обеспечивающая параллельность падающего на систему пучка; N_1 — поляризатор; P — призма полного внутрениего отражсиня; B — компенсатор Бабине; N_2 — анализатор.

ся, для осуществления эллиптической поляризации при полном внутреннем отражении надо, чтобы падающий пучок не был естественным, но обладал поляризацией, например, линейной (см. § 109).

Из формулы (138.1) следует, что если $sin \varphi = n$, т. е. если параллельный пучок испытывает полное внутреннее отражение точно при предельном угле, то

$$\operatorname{tg}^{1}_{2}(\delta_{\parallel}-\delta_{\perp})=0,$$

т. е. сдвиг фаз равен нулю, и плоскополяризованный свет остается плоскополяризованным, не переходя в эллиптически-поляризованный.

Эллиптическую поляризацию, возникающую при полном внутреннем отражении плоскополяризованной волны, можно исследовать обычными методами. Рис. 24.4 иллюстрирует схему подобного опыта. Плоскость поляризатора N₁ должна, конечно, составлять некоторый угол с плоскостью падения на грань PP.

некоторын уюл с имено подобрать такие значения φ , чтобы Для стекла (n = 1,5) можно подобрать такие значения φ , чтобы сдвиг фазы был равен 45°, а именно, при $\varphi = 48°37'$ или $\varphi = 54°37'$ имеем

$$\delta_{\downarrow} - \delta_{\perp} = 45^{\circ}$$
.

Двукратное полное внутреннее отражение под указанным углом в стекле дает изменение фазы на ¹/₂л, т. е. действует как пластинка в четверть волны.

Френель изготовил параллелепипед из стекла с подходящим показателем преломления, действующий указанным образом (рис. 24.5).

Если $E_{l|l} = E_{l\perp}$, то при полном внутреннем отражении $|E_{r\perp}| = |E_{r\perp}|$, и так как $\delta_{\parallel} - \delta_{\perp} = \frac{1}{2}\pi$, то свет получится поляризо-

ванным по кругу. Легко видеть, что для этой цели надо на параллеленипед Френеля направить плоскополяризованный свет так, чтобы плоскость поляризации составила угол 45° с плоскостью падения.

Рис. 24.5. Параллелепипед Френеля. Щ

Пластинка в четверть волны, осуществленная в виде параллелепипеда Френеля, конечно, менее удобна

в обращении, чем соответствующие кристаллические пластинки. Она может, однако, иметь преимущество в том отношении, что сообщаемая ею разность фаз меньше зависит от длины волны, чем в случае обычных пластинок в четверть волны из слюды. Для этого нужно только в качестве материала выбрать стекло с малой дисперсией (легкий крон), где n мало зависит от λ .

§ 139. Исследование преломленной волны

Для преломленной волны дело обстоит значительно сложнее. Как мы видели, закон преломления не дает в данном случае ответа на вопрос о направлении распространения преломленной волны, и поэтому нельзя говорить о преломленной волне в обычном смысле слова. Однако электрическое и магнитное поля волны не обрываются на границе раздела, а существуют и во второй среде.

Исследование этих полей показывает, что по мере углубления во вторую среду они быстро убывают по экспоненциальному закону, и на глубине, сравнимой с длиной волны, амплитуды полей уменьшаются в несколько раз. Такое их ослабление происходит не вследспвие поглощения света, нбо мы предполагаем обе среды вполне прозрачными, в соответствии с чем вся падающая энергия полностью отражается, возвращаясь в первую среду.

ГЛ. XXIV. ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ

Подробное теоретическое исследование этого вопроса, выполненное А. А. Эйхенвальдом на основе электромагнитной теории света, дало ясную картину движения энергии при явлении полного внутреннего отражения.

внутренного Как показали эти исследования, движение энергии на границе двух сред происходит таким образом, что в среднем поток энергии, проникающий из первой среды во вторую, разен обратному потоку, причем места входа и выхода прямого и обратного потоков несколько смещены друг относительно друга вдоль границы раздела. В результате имеется движение энергии вдоль границы раздела с выходом обратно в первую среду *). Во второй среде сколько-нибудь заметное поле захватывает лишь тонкий слой с толщиной, сравнимой с длиной световой волны и зависящей от угла падения ф и показателя преломления *n*.

Процесс захода волны во вторую среду можно наблюдать экспериментально. Толщина такого «освещенного» слоя тем больше. чем больше длина волны, и поэтому изучение его легче удается с длинными электромагнитными волнами. Так, Шеффер и Гросс, применяя электромагнитные волны с $\lambda = 15$ см. наблюдали их полное внутреннее отражение при помощи парафиновой призмы. Они могли убедиться в существовании волнового поля и во второй среде (воздух), помещая воспринимающий прибор (детектор) достаточно близко к поверхности парафина. Квинке осуществил опыт со световыми волнами, основанный на описанном явления, пользуясь следующим приемом. Так как световое поле во второй среде может достигать заметных размеров на расстояниях, меньших длины световой волны, то, делая прослойку этой второй среды (воздух) тоньше λ, мы заставим световое поле проникнуть при значительных еще амплитудах во второй слой стекла, где оно будет распространяться дальше по обычным законам и может быть исследовано, как обычно.

Схема расположения опыта Квинке дана на рис. 24.6. Чем меньше зазор d, тем больше света проникает во вторую стекляниую пластинку MN и из нее выходит наружу. Меняя толщину d, можно варьировать количество проходящего через всю систему света, т. е. модулировать его интенсивность. На этом принципе построен один из световых модуляторов. Изменение толщины зазора d делается под действием звуковых волн (речь). Таким образом, моду-

^{*)} В данном случае фронт волны во второй среде перпендикулярен к поверхности раздела двух сред, так что направление распространения фазы волны параллельно этой поверхности. Вектор же Пойнтинга — Умова, вдоль которого движется энергия, последовательно изменяет свое направление, входя во вторую среду и вновь выходя из нее. Поэтому напряженности Е и Н, перпендикулярные к этому вектору, не всюду строго перпендикулярны к направлению распространения волны, т. е. волна во второй среде не поперечна (ср. сноску на стр. 370).

ляция интенсивности света происходит в темпе этих звуковых воли. Воспринимая модулированный свет на фотоэлемент, мы получаем переменный электрический ток, который можно усилить и использовать для воспроизведения звука (световой телефон).

зовать для воспроизодии и интересный метод исследования волны другой, более простой и интересный метод исследования волны во второй среде был предложен Л. И. Мандельштамом и Зелени. Явление наблюдается на границе между стеклом и жидкостью, в которой растворено некоторое количество флуоресцирующего вещества. Волна, заходящая во вторую среду, в тонком слое (меньше λ) будет иметь еще значительную интенсивность и вызовет в нем заметную флуоресценцию. Наблюдение флуоресцирующего слоя и является методом исследования интересующего нас явления.

Рис. 24.6. Проникновение волны во вторую среду. Схема опыта Квинке.

Рис. 24.7. Проникновение волны во вторую среду.

Схема опыта Мандельштама — Зелени. F₁, F₁ — скрещенные светофильтры.

Схема опыта ясна из рис. 24.7. Пучок параллельных лучей падает на границу раздела стекло — флуоресценн под углом, большим предельного, и испытывает полное внутреннее отражение. Весь отраженный свет концентрируется в направлении MC, ND. Однако зеленоватый свет флуоресценции в слое жидкости, прилегающем к участку призмы МN, виден и по иным направлениям, что служит доказательством флуоресценции тонкого слоя жидкости под действием зашедшей туда волны. Явление выступает еще отчетливее, если использовать два «скрещенных» фильтра F_1 и F_2 , выбранных так, что через их последовательность свет от источника не проходит. Но свет, прошедший через F₁, способен вызвать флуоресценцию с другим спектральным составом, чем возбудивший ее свет (закон Стокса, см. § 216). Этот измененный свет пропускается вторым фильтром F2. Таким образом, скрещенные фильтры задерживают полностью свет от источника, но свет флуоресценции, возбужденный волной, зашедшей во вторую среду, явственно виден.

гл. хху, основы металлооптики

Глава XXV

ОСНОВЫ МЕТАЛЛООПТИКИ

§ 140. Характеристика оптических свойств металла

Особенности отражения света от металлической поверхности обусловлены наличием в металлах большого числа электронов, настолько слабо связанных с атомами металла, что для многих явлений эти электроны можно считать свободными. Вторичные волны вызванные вынужденными колебаниями свободных электронов, порождают сильную отраженную волну, интенсивность которой может достигать 95% (и даже больше) интенсивности падающей, и сравнительно слабую волну, идущую внутрь металла. Так как плотность свободных электронов весьма значительна (порядка 1023 в 1 см³), то даже очень тонкие слои металла отражают большую часть падающего на них света и являются, как правило, практически непрозрачными. Та часть световой энергии, которая проникает внутрь металла, испытывает в нем поглощение. Сеободные электроны, приходя в колебание под действием светсвой волны, взаимодействуют с ионами металла, в результате чего энергия, заимствованная от электромагнитной волны, превращается в тепло.

Таким образом, электромагнитная волна быстро затухает внутри металла, и обычно лишь очень тонкие слои металла играют роль во всем описанном процессе.

Какая доля света не пропускается металлом вследствие отражения и какая задерживается в нем благодаря поглощению, зависит от его проводимости. В идеальном проводнике, где потери на джоулево тепло вообще отсутствуют, поглощение равно нулю, так что падающий свет полностью отражается. Очень чистые серебряные пленки, применяемые в интерферометрах Фабри-Перо, приближаются к этому идеалу. Удавалось изготовить пленки, у которых отражение достигало 98—99%, а поглощение составляло около 0,5%. Особенно высока отражательная способность (до 99,8%) такого хорошо проводящего металла, как натрий, и поглощение в нем соответственно незначительно. В металлах, хуже проводящих, например в железе, отражение может составлять всего лишь 30— 40%, так что непрозрачная пленка железа толщиной не более доли микрона поглощает около 60% падающего на нее света.

Таким образом, характерная особенность металла, состоящая в его высокой отражательной способности и проявляющаяся в наличии особого «металлического» блеска чистой (не покрытой окислами) поверхности металлов, связана с электропроводностью металла. Чем больше коэффициент электропроводности, тем, вообще говоря, выше отражательная способность металлов.

'489

РАСПРОСТРАНЕНИЕ СВЕТА ЧЕРЕЗ ГРАНИЦУ ДВУХ СРЕЛ

При сравнительно небольших частотах (инфракрасные лучи) При сравнительно исталла обусловливаются главным образом оптические свойства металла обусловливаются главным образом оптические своиства метнетронов. Но при переходе к видимому поведением свободных электронов. Но при переходе к видимому поведением свооодиму свету начинают играть заметную роль свяи ультрафионстовом, характеризующиеся собственной частотой, ле. занные электроны, ле-жащей в области более коротких длин волн. Участие этих электро. нов обусловливает, так сказать, неметаллические оптические свойства металла. Так, например, серебро, которое в видимой области характеризуется очень большим коэффициентом отражения (свыше 95%) и заметным поглощением, т. е. типичными оптическими особенностями металла, в области ультрафиолета обладает резко выраженной областью плохого отражения и большой прозрачности; вблизи λ = 316 нм отражательная способность серебра падает до 4.2%. т. е. соответствует отражению от стекла. Ниже приведены коэффициенты отражения серебра (в процентах) для разных длиц волн при нормальном падении:

λ (в нм) 251	288	305	316	326	333	
r2 (B %) 34	21,2	9,1	4,2	14,6	55,5	
λ (B HM) 357	385	420	450	500	700	1000
r2 (B %) 74,4	81,4	86,6	90,5	91,3	96,0	97,5

В соответствии с этими данными серебро в тонких слоях представляется на просвет фиолетовым. Точно так же тонкие слои щелочных металлов, совершенно непрозрачные для видимого света, прозрачны для ультрафиолета (заметная прозрачность начинается у цезия при $\lambda = 440$ нм, у рубидия при $\lambda = 360$ нм, у калия при $\lambda = 315$ им, у натрия при $\lambda = 210$ нм, у лития при $\lambda = 205$ нм). Вуду удалось даже обнаружить у этих металлов в ультрафиолетоьой области угол Брюстера и вызывать при отражении от металла поляризацию естественного света.

Полная теория прохождения света через металлы и отражения от них должна учитывать указанные особенности. Это тем более трудно, что электронная теория металлов требует применения квантовой механики.

§ 141. Оптические постоянные металлов и их определение

При упрощенной трактовке вопроса, основанной на электромагнитной теории Максвелла, задача сводится к учету проводимости металла, т. е. формально к введению в уравнения Максвелла членов, зависящих от коэффициента электропроводности о. Для световой волны, распространяющейся внутри металла, мы получаем в таком случае выражение, означающее, что амплитуда волны уменьшается по мере проникновения в глубь металла. Другими словами, из наших формул в согласни с данными опыта следует, что в металле происходит поглощение света. В слое малой толщины

(dz) поглощается определенная часть падающего света, пропор-(dz) поглощается, страние слоя, т. е. $dI = -\alpha I dz$. В соответствии с этим цнональная толщине слоя, т. е. $dI = -\alpha I dz$. В соответствии с этим цнональная тольки с этим с то мере проникновения в глубь меинтенсивности $I = I_0 \exp(-\alpha z)$, где α — коэффициент поглощения, талла по закон, что на глубине $z = 1/\alpha$ интенсивность света падает показывающим, ческие формулы принимают более простой вид, в е раз. теорого коэффициента поглощения α величину », свяесли воссти соотношением $\varkappa = \alpha \lambda/4\pi$, где λ — длина волны света веществе. Если показатель преломления нашего вещества есть n. то длина волны в вакууме $\lambda_0 = n\lambda$, так что

$$\alpha = \frac{4\pi}{\lambda_0} n\varkappa$$
, τ . e. $I = I_0 \exp\left(-\frac{4\pi}{\lambda_0} n\varkappa z\right)$.

Если пя равно единице, то в слое толщиной в одну длину волны $(z = \lambda_0)$ интенсивность света уменьшается в $e^{i\pi}$, т. е. приблизительно в 10⁵ раз. Планк предложил считать поглощение «металлическим». если пи > 1. Действительно, при измерениях в видимой области спектра для большинства металлов значение пи лежит между 1,5 и 5. При переходе в более длинноволновую область значения ля еще больше возрастают; так, для серебра при $\lambda = 6$ мкм *п* достигает значения 40 и при увеличении λ растет еще более.

Так как интенсивность света пропорциональна квадрату амплитуды световой волны, то в результате поглощения амплитуда изменяется по закону

$$A = A_0 \exp(-\frac{1}{2}\alpha z) = A_0 \exp[-(2\pi/\lambda_0) nz],$$

и, следовательно, световая болна в металле имеет вид

$$s = A \cos\left(\omega t - \frac{2\pi}{\lambda}z\right) = A_0 \exp\left(-\frac{2\pi}{\lambda_0}n\varkappa z\right) \cos\left(\omega t - \frac{2\pi}{\lambda_0}nz\right).$$

Введение комплексной записи колебания после простого преобразования дает

$$s = A_0 \exp\left(-\frac{2\pi}{\lambda_0} n \varkappa z\right) \operatorname{Re}\left\{\exp\left[i\left(\omega t - \frac{2\pi}{\lambda_0} n z\right)\right]\right\} = A_0 \operatorname{Re}\exp\left\{i\left[\omega t - \frac{2\pi}{\lambda_0} n\left(1 - i\varkappa\right)z\right]\right\}.$$
 (141.1)

Таким образом, при использовании комплексной формы волну в металле можно записать в обычном виде, но вместо обычного показателя преломления и в формулу входит комплексный показатель преломления n' = n(1 - ix), причем мнимая часть его (nx) определяет поглощение волны.

Два параметра *n* и х являются константами, характеризующими оптические свойства металла. Выводя волновое уравнение из уравнений Максвелла для металла, мы получим соотношения

между оптическими постоянными металла и его электрически_{ми} характеристиками е и о:

$$n^{2}\left(1-\varkappa^{2}\right)=\varepsilon, \quad n^{2}\varkappa=\sigma/\nu, \quad (141.2)$$

где v — частота света, є — диэлектрическая проницаемость, о лектропроводность. Для металлов измерение электропроводности о выполняется просто лишь для постоянного поля или для полей не очень большой частоты. Непосредственные же измерения в вообще невозможны. Поэтому вычисление оптических постоянных п и х для обычного или ультрафиолетового света (высокая частота) на основании этих формул выполнить нельзя. Однако оказывается возможным экспериментальное определение п и х и притом двумя способами. Первый способ принадлежит Кундту (1888 г.), который непосредственно промерил эти постоянные для некоторых металлов, приготовляя из них очень тонкие призмочки с малым преломляющим углом, дающие возможность определить п и ж. Второй, более совершенный и более общий способ был указан Друде (1889 г.). Он основан на изучении свойств света, отраженного от металлов. Как указано выше, оптические особенности металла по сравнению с диэлектриком учитываются тем, что вместо обычного показателя преломления п вводится комплексный показатель преломления $n' = n(1 - i\kappa)$. В соответствии с этим в формулах Френеля для металла амплитуды отраженной (и преломленной) волны становятся комплексными, т. е. возникает разность фаз между компонентами отраженной (и преломленной) и падающей волн. Это различие в фазах не одинаково для компонент электрического вектора, лежащих в плоскости падения и перпендикулярно к ней. Поэтому между двумя взаимно перпендикулярными компонентами в отраженном (и преломленном) свете Erl и Erl возникает разность фаз, и, следовательно, если на поверхность металла падает плоскополяризованный свет, то отраженный свет будет эллиптически-поляризованным. Характер поляризации (эксцентриситет и положение эллипса) зависит от оптических свойств металла (п и х). Теория Друде связывает эти величины с экспериментально находимыми данными об эллиптической поляризации и позволяет таким образом определять оптические постоянные металла. В тех случаях, когда возможно было сопоставление результатов, полученных по методу Друде, с данными Кундта, наблюдалось удовлетворительное согласие.

Для простого случая нормального падения на металл нетрудно вычислить как разность фаз между E_r и E_i , так и коэффициент отражения. Для этого в выражении $r_{\perp} = r_{\parallel} = -(n-1)/(n+1)$ надо заменить n на n' = n(1 - ix), т. е.

$$-r_{\perp} = -r_{\parallel} = \frac{n(1-i\kappa)-1}{n(1-i\kappa)+1} = \frac{(n-1)-i\kappa n}{(n+1)-i\kappa n} = |r| \exp(i\delta_r), \ (141.3)$$

гл. XXV. ОСНОВЫ МЕТАЛЛООПТИКИ

откуда (см. упражнение 198)

$$\operatorname{tg} \delta_r = \frac{2 (n \varkappa)}{1 - n^2 - (n \varkappa)^2}$$

Для отыскания коэффициента отражения по интенсивности $|r|^2$ надо умножить выражение (141.3) на сопряженную ему величину |r|ехр(— $i\delta_r$) (см. упражнение 193 б), и в итоге найдем

 $|r|^{2} = \frac{(n-1)^{2} + \kappa^{2}n^{2}}{(n+1)^{2} + \kappa^{2}n^{2}}.$ (141.4)

Согласно (141.4) измерение коэффициента отражения по интенсивности металла также можно использовать для определения оптических постоянных металла.

Приведенная ниже таблица, дающая значения $n\varkappa$, n и $|r|^2$ для ряда металлов при $\lambda = 589,3$ нм, позволяет проверить, в какой стелени выполняется соотношение (141.4).

Таблица

Металл	лж	n	F.2. 0/
Натрий Серебро Магний Золото Золото электролитическое Ртуть Медь цельная Никель цельный Никель электролитический Никель распыленный Железо распыленное	2,61 3,64 4,42 2,82 2,83 4,41 2,62 3,32 3,48 1,97 1,63	0,05 0,18 0,37 0,47 1,62 0,64 1,79 2,01 1,30 1,51	99.8 95.0 92.9 85.1 81.5 73.3 70,1 62,0 62.1 43,3 32,6

Оптические постоянные некоторых металлов для $\lambda = 589,3$ нм

Непосредственное сопоставление данных этой таблицы с обычными значениями электропроводности (см. (141.2)) не дает удовлетворительного результата, что, впрочем, не является неожиданным. Формулы (141.2) исходят из представления о металле как о системе, электроны которой могут считаться свободными (электроны проводимости); оптические же явления, относящиеся к области сравнительно высоких частот (видимый и ультрафиолетовый свет), зависят заметным образом от влияния связанных электронов (электронов поляризуемости), как об этом несколько подробнее будет сказано

РАСПРОСТРАНЕНИЕ СВЕТА ЧЕРЕЗ ГРАНИЦУ ДВУХ СРЕД

в главе о дисперсии. Действительно, взяв для меди, например, став главе о дисперсии. Дсигороводности $\sigma = 5,14 \cdot 10^{17} \text{ с}^{-1}$, найдем тическое значение электропроводности $\sigma = 5,14 \cdot 10^{17} \text{ с}^{-1}$, найдем тическое значение электропроводности с – о, ит 10° с , найдем для желтого света, т. е. для $v = 5 \cdot 10^{14}$ с⁻¹, что $\sigma/v = 1000$, тогда для желтого света т. е. для $v = 5 \cdot 10^{14}$ с⁻¹, что $\sigma/v = 1000$, тогда как л ж = 1,01. точно таприя, тогда как обычная электропровод. тельно больше, чем для натрия, тогда как обычная электропровод. тельно облаше, чем для ртути. Однако проверка ность натрия песраелений возможна, если определять п и х для более указанных соотношений возможна, если определять п и х для более указанных соотполесных), где и для оптических свойств металлов главную роль играют свободные электроны. Так, например. для $\lambda = 12$ мкм требуемая теорией связь между оптическими константами и коэффициентом электропроводности металла хорошо оправдывается на опыте.

Современная квантовая теория явлений металлооптики приводит к более сложным соотношениям, которые хорошо согласуются

с опытными данными.

ОПТИКА АНИЗОТРОПНЫХ СРЕД

Глава XXVI

ОСНОВЫ КРИСТАЛЛООПТИКИ

§ 142. Анизотропные среды

Мы уже ознакомились с важнейшими фактами, характеризуюшими распространение света в кристаллах. Основное отличие кристаллической среды от сред, подобных стеклу или воде, состоит в явлении двойного лучепреломления, обусловленном, как мы видели, различием скорости распространения света в кристалле для двух световых волн, поляризованных во взаимно перпендикулярных плоскостях. С этой особенностью связано и различие в скорости распространения света по разным направлениям в кристалле, т. е. оптическая анизотропия кристаллической среды. Обычно, если среда анизотропна по отношению к одному какому-либо ее свойству, то она анизотропна и по другим сеойствам. Однако можно указать случан, когда среда может рассматриваться как изотропная в одном классе явлений и оказывается анизотропной в другом. Так, кристалл каменной соли сбнаруживает изотропию оптических свойств, но механические свойства его вдоль ребра и диагонали различны.

Анизотропия реальной среды обусловлена особенностями составляющих ее атомов или молекул, которые сами по себе могут представлять анизотропные системы, т. е. их свойства могут зависеть от направления внутри атома или молекулы. При этом, однако, надо помнить, что свойства изолированного атома еще далеко не определяют свойств среды. Во-первых, надо иметь в виду, что, соедияясь в некоторое целое, например образуя кристалл, атомы (или молекулы) могут превратиться в соответствующие ионы (или молекулярные группы), которые и располагаются в узлах кристаллической решетки. Так, исследование при помощи дифракции рентгеновских лучей с несомненностью показало, что кристаллы щелочно-галоидных солей, например каменная соль NaCl или сильвии КСl, представляют собой кубическую решетку, в узлах которой помещаются ионы галоида Cl⁻ и ионы щелочного металла Na⁺ (или K⁺), причем их свойства сильно отличаются от свойств нейтральных

оптика анизотропных сред

атомов. Кроме того, каждая такая частица (атом, ион и т. д.) находится в поле окружающих ее частиц, которое зависит от расположения последних и может быть различно по разным направлениям. Поэтому свойства кристалла могут существенно зависеть от его структуры. Так, углекислый кальций СаСО₃ известен в виде двух различных кристаллических форм — исландского шпата и арагонита, — отличающихся взанмным расположением своих элементов и в связи с этим обладающих различными свойствамн. Исландский шпат обладает плотностью 2,72 и представляет собой в оптическом смысле одноосный кристалл, тогда как арагонит имеет плотность 2,93 и является оптически двуосным кристаллом.

Анизотропия среды может обусловливаться как анизотропией составляющих ее частиц, так и характером их взаимного расположения. При этом изотропная среда может быть построена из анизотропных частиц, а анизотропная среда - из частиц изотропных; равным образом возможны и иные комбинации. Так, нетрудно видеть, что, например, молекула водорода Н2 анизотропна, т. е. свойства ее вдоль линии, соединяющей оба атома водорода, отличны от свойств в направлении, перпендикулярном к осевой линии: поляризуемость молекулы, т. е. смещение электрона под влиянием заданной электрической силы, вдоль оси иная, чем перпендикулярно к ней. Тем не менее, водородный газ не обнаруживает анизотропных свойств: вследствие беспорядочности ориентаций водородных молекул усредненные свойства газа оказываются идентичными по всем направлениям. Если же подобные анизотропные молекулы ориентируются определенным образом, то и вещество в целом обнаруживает анизотропию.

Подобная ориентация нередко наблюдается в веществе под действнем междумолекулярных сил (кристаллы); иногда же она может возникать под влиянием внешних воздействий (искусственная анисотропия). Конечно, возможно также сохранение изотропных свойств и у кристаллических тел, т. е. при некотором регулярном расположении атомных групп. Так, например, кристаллы каменной соли или сильвина, представляющие собой, как уже упоминалось, кубическую решетку, построенную из ионов Na+ (или K+) и Cl-, являются в первом приближении оптически изотропной средой *). Причина состоит в том, что ноны, из которых построена решетка, сами по себе обладают изотропными свойствами, а благодаря их симметричному расположению в узлах кубической решетки воздействие окружающих частиц также оказывается не зависящим от направления. Если деформировать кристалл каменной соли или сильвина, например сжимая его в одном направлении, то нарушается симметрия в расположении ионов и кристаллы становятся двоякопреломляющими.

^{•)} Мы здесь не принимаем во внимание так называемые эффекты пространственной дисперсии. О пих см. ниже § 149.

ГЛ. XXVI. ОСНОВЫ КРИСТАЛЛООПТИКИ

Замечательно, что каменная соль и сильвин дают двойнсе лучепреломление противоположных знаков. Учет связанного с деформацией кристалла изменения междумолекулярных сил позволяет качественно объяснить это различие; однако для количественного истолкования наблюдающихся явлений приходится допустить в данном случае возникновение некоторой анизотропии и в самих ионах под действием внешнего сжатия.

С другой стороны, известно много случаев, когда анизотропию кристалла можно полностью объяснить различием по разным направлениям междумолекулярных сил, обусловленных анизотропным расположением ионов в кристаллической решетке, причем сами ионы могут считаться вполне изотропными. Так, было показано, что значительная часть двойного преломления тетраэдрических кристаллов зависит от их структуры, а не от анизотропии входящих в их состав атомов.

Оптически анизотропия среды характеризуется различной по разным направлениям способностью среды реагировать на действие падающего света. Реакция эта состоит в смещении электрических зарядов под действием поля световой волны. Для оптически анизотропных сред величина смещения в поле данной напряженности зависит от направления, т. е. диэлектрическая проницаемссть, а следовательно, и показатель преломления среды различны для разных направлений электрического вектора световой волны. Другими словами, показатель преломления, а следовательно, и скорость света зависят от направления распространения световой волны и плоскости ее поляризации. Поэтому для анизотропной среды волновая поверхность, т. е. поверхность, до которой распространяется за время *t* световое возбуждение, исходящее из точки *L*, отлична от сферической, характерной для изотропной среды, где скорость распространения *v* не зависит от направления.

В связи с этим отметим одно крайне важное обстоятельство. Волновой фронт характеризуется в каждой точке плоскостью, касательной к поверхности волны, а направление распространения волны — нормалью к этой поверхности. В случае изотропной среды, когда волновая поверхность имеет форму сферы, нормаль к волне совпадает с лучом, т. е. линией, вдоль которой распространяется световое возбуждение и которая представлена радиусом-вектором, проверхности Σ (рис. 26.1). Но для анизотропной среды волновая поверхность отлична от сферической (рис. 26.2), и направление распространения поверхности постоянной фазы (нормаль N к волновой поверхности Σ) не совпадает с лучом S, указывающим направление распространения энергии (радиус-вектор LP).

Таким образом, для анизотропной среды надо различать направление распространения фазы (пормаль N) и направление распространения энергии (луч S).

8.7

Полное решение задачи о распространении волны в кристалической решетке можно получить, как указывалось в § 135, путем учета интерференции вторичных волн, посылаемых центрами, составляющими решетку. Но вместо решения этой задачи проще ограничиться формальным приемом максвелловой теории, разрешая уравнения Максвелла с учетом тех особенностей для диэлектрической проницаемости є и, следовательно, показателя преломления ($n^2 = \varepsilon$) среды, которые накладываются ее кристаллической структурой. Вследствие анизотропии диэлектрической проницаемости связь между векторами электрической напряженности E и электрической индукции D оказывается более сложной, чем для изотропных сред-

Рис. 26.1. Луч S и нормаль N волны в изотропной среде совпадают.

Рис. 26.2. Луч S и нормаль N волны в анизотропной среде.

Для изотропного тела связь эта дается соотношением $D = \varepsilon E$, где ε — постояниая, не зависящая от направления скалярная ееличина *). Поэтому вектор D совпадает по направлению с вектогсм E. В случае анизотропной среды это, вообще говоря, не имеет места.

Общие закономерности, касающиеся диэлектрической проницаемости анизотропной среды, сводятся к возможности представить есю совокупность ее значений при помощи трехосного эллипсоида с главными осями α , β , γ . Величины диэлектрической проницаемости для любого направления выражаются длиной радиус-вектора нашего эллипсоида, проведенного из его центра по выделенному направлению **). Три значения диэлектрической проницаемости α , β , γ , соответствующие осям нашего эллипсоида, выделяют три взаимно перпендикулярных главных направления в кристалле, характери-

^{•)} є может зависеть от частоты электрического поля. Мы будем пока рассматривать лишь монохроматический свет, отложив изучение зависимости в от частоты до гл. XXVIII.

^{••)} Величины этого рода, совокупность значений которых можно представить в виде эллипсоида, посят название *тензоров второго ранга*. Таким образом, оптическая анизотропия среды характеризуется тензором диэлектрической произдаемости или эллипсоидом диэлектрической проницаемости.

зующиеся тем, что для них направления векторов электрической индукции D и электрической напряженности E совпадают. Выберем эти главные направления в качестве осей координат x, y, z; соответствующие значения диэлектрической проницаемости удобно обозначить через ε_x , ε_y , ε_z вместо написанных выше α , β , γ . Мы будем называть их главными значениями диэлектрической проницаемости. Обозначая соответствующие компоненты векторов D и E через D_x , D_y , D_z и E_x , E_y , E_z , мы можем изобразить упомянутое выше свойство главных направлений (совпадение направлений векторов Eи D) в виде соотношений

$$D_x = \varepsilon_x E_x, \quad D_y = \varepsilon_y E_y, \quad D_z = \varepsilon_z E_z.$$

Так как ε_{x} , ε_{y} и ε_{z} не равны между собой, то для всех направлений в кристалле, кроме главных, **D** и **E** не совпадают между собой

по направлению *). Действительно, если по некоторому направлению действует электрическое поле напряженности Е, соответствующее значение индукции можно получить следующим образом. Разложим поле E на компоненты E_x, E_y , Е, вдоль главных осей. Каждая из этих компонент обусловит вдоль осей слагающие индукции $D_x = \varepsilon_x E_x$, $D_y = \varepsilon_y E_y$, $D_z = \epsilon_z E_z$. Результирующий вектор **D** получится простым построением. Рис. 26.3 показывает, что Е и D не совпадают по направлению, если ех, еу и ех не равны между собой. Наоборот, если $\varepsilon_x = \varepsilon_y = \varepsilon_z = \varepsilon$, то направления *E* и **D**

Рис. 26.3. В анизотропной среде направления векторов *Е* и *D* не совпадают.

всегда совпадают между собой и для любого направления $D = \varepsilon E$, т. е. среда изотропна. Ось наименьшей диэлектрической проницаемости принято называть осью x, ось наибольшей — осью z, а ось промежуточной — осью y. Таким образом, оси координат выбраны в соответствии с условием

$$\varepsilon_{x} \leq \varepsilon_{y} \leq \varepsilon_{z}. \tag{142.1}$$

Полная молекулярная теория должна, исходя из особенностей поляризации молекул среды, обусловленных их строением и специальным расположением, дать возможность вычислить значения трех главных диэлектрических проницаемостей ε_x , ε_y , ε_z и найти расположение осей эллипсоида диэлектрической проницаемости относительно кристаллографических осей.

•) Несовпадение направлений Е и D имеет для кристаллооптики чрезвычайно важное значение, выясияемое дальше.

§ 143. Оптические свойства анизотропной среды

Используя связь между **D** и **E**, характеризующую анизотропную среду, можно применить в дальнейшем формальную теорию Максвелла, составив соответствующие уравнения, причем в качестве осей координат удобно выбрать главные направления диэлектрической проницаемости. Не производя соответствующего исследования, ограничимся сообщением результатов. Решение уравнений Максвелла для анизотропной среды, в отличие от решения для изотропной среды, характеризуется следующими особенностями.

1. По данному направлению N могут распространяться две плоскополяризованные волны с двумя различными фазовыми скоростями, соответствующими двум различным направлениям вектора индукции D.

Эти два особенных направления колебания определяются свойствами среды (кристалла) и взаимно перпендикулярны между собой. Поляризованная волна с колебаниями, параллельными какомулибо из этих двух направлений, распространяется через кристалл со своей скоростью, оставаясь плоскополяризованной. Если направление первоначального колебания составляет угол с указанными особенными направлениями, то можно разложить его на два, распространяющихся с разными скоростями и, следовательно, приобретающих разность фаз. Наличие двух особенных, или главных *), направлений колебания, соответствующих двум разным скоростям, обусловливает явление *двойного лучепреломления* (см. гл. XVI— XVIII).

2. В плоскости волнового фронта, т. е. в плоскости, перпендикулярной к N, расположены вектор D (электрической индукции) и вектор H (напряженности магнитного поля), который совпадает с вектором магнитной индукции $B = \mu H$, ибо μ в оптике для большинства сред равно 1. Вектор же E (напряженность электрического поля), не совпадающий с D, образует с N угол, отличный от прямого **). Оба вектора E и D всегда перпендикулярны к H, так что общее расположение векторов соответствует рис. 26.4. Сказанное и построение рис. 26.4 относится к каждой из указанных выше линейно-поляризованных воли в отдельности.

Если нормаль N располагается в главном сечении эллипсоида диэлектрической проницаемости (например, xOy), то одно особое направление вектора D лежит в том же сечении, а другое — перпендикулярно ему, т. е. параллельно третьей оси (Oz). Для последнего

^{*)} Эти «главные» направления колебания или поляризации волны в кристалле не следует смешивать с главными направлениями кристалла, определяемыми осями эллипсоида диэлектрической проницаемости.

^{•••)} Таким образом, вектор E не перпендикулярен к направлению распространения волны N, т. е. нолна не строго поперечиа в том смысле, какой придан этому понятию (см. примечание на стр. 370).

гл. XXVI. ОСНОВЫ КРИСТАЛЛООПТИКИ

векторы **D** и **E** параллельны, для первого — непараллельны. Если нормаль **N** направлена вдоль одной из осей эллипса, то особые направления колебаний вектора **D** соответствуют двум другим осям и в обеих волнах **D** и **E** параллельны. Следовательно, в отличие от изотропных сред, совпадение направлений **D** и **E** и их перпендикулярность к **N** имеют место лишь в перечисленных исключительных случаях.

ных олу служим образом, плоскость фронта волны, распространяющейся вдоль N, есть плоскость DH. Однако и плоскость EH, повернутая

на угол α относительно плоскости фронта **DH**, имеет существенное значение, ибо нормаль к ней определяет направление потока лучистой энергии, несомой волной (вектор Умова — Пойнтинга **S**), т. е. направление светового луча. Для изотропной среды *луч и нормаль* к фронту волны совпадали, ибо **E** и **D** имели одинаковые направления. В анизотропной среде это имеет место только в указанных выше частных случаях.

Итак, направление распространения фазы волны (вдоль нормали N) и направление распространения энергни волны (вдоль

Рис. 26.4. Взаимное расположение векторов *E*, *D*, *H*, *S* и *N*.

Вектор Н нормален к плоскости, в которой лежат остальные векторы.

луча S) не совпадают между собой. К этому выводу, полученному путем исследования законов электромагнитного поля в анизотропной среде, мы пришли раньше из простого рассмотрения формы поверхности волны для анизотропной среды (см. § 142). Скорость фазы q, измеренная вдоль нормали, будет отличаться от скорости световой энергин v, измеренной вдоль луча (лучевой скорости), так что $q = v \cos \alpha$ (см. упражнение 201). Двум значениям скорости фронта по нормали q' и q", обусловливающим двойное лучепреломление, соответствуют и два значения скорости распространения энергии, v' н v".

3. Две скорости (q' н q" или v' и v"), характеризующие распространение света по какому-либо направлению в кристалле, равно как и направления колебаний соответствующих векторов (D или E), можно найти при помощи простых правил. Правила эти, так же как и все решение задачи о распространении света в кристаллах, были впервые указаны Френелем, и применительно к электромагнитной теории света их можно сформулировать следующим образом.

Для определения лучевых скоростей v' и v" в кристалле воспользуемся вспомогательной поверхностью, носящей название

оптика анизотропных сред

эллипсоида Френеля и описываемой уравнением

$$\varepsilon_x x^2 + \varepsilon_y y^2 + \varepsilon_z z^2 = 1. \tag{143.1}$$

Здесь ε_x , ε_y , ε_z — главные значения диэлектрической проницаемости, и уравнение эллипсоида отнесено к главным осям.

Эллипсонд Френеля и служит, как показал Френель, для определения с помощью следующего построения лучевых скоростей и и и по любому направлению в кристалле. Проведем сечение эллип-

хх. уу. 22 — главные осн эллнпсонда: ОS — направление распространсния лучей; S'S"S'S" бллиптическое сечение, перпендикулярное к ОS и опредсляющее своими главными осями S'S' и S"S" направление колебания вектора Е и значение лучевых скоростей распространения сеста и' и и". соида, перпендикулярноекнаправлению S, вдоль котогого распространяется свет (рис. 26.5). Сечение это, вообще говоря, будет иметь форму эллипса, главные оси которого S'S' и S"S" взаимно перпен-Направления дикулярны. этих осей дают направление колебания вектора Е двух еолн, поляризованных взаимно перпендикулярно и распространяющихся вдоль OS, а длины полуосей (OS' = v'; OS" = v") — лучевые скорости этих двух волн, отнесенные к скорости света в вакууме с.

Подобным же образом можно составить представление и о скоростях распростране-

ния фазы (вдоль пормали N). Для этого удобнее использовать связапную с эллипсоидом Френеля вспомогательную поверхность, также имеющую вид эллипсоида, носящего название эллипсоида индсксов (или эллипсоида нормалей) и описываемого уравнением

$$\frac{x^2}{\varepsilon_x} + \frac{y^2}{\varepsilon_y} + \frac{z^2}{\varepsilon_z} = 1.$$
 (143.2)

Повторяя по отношению к эллипсонду индексов построение, описанное выше, мы найдем, что эллиптическое сечение его, перпендикулярное к любому направлению распространения ON, укажет два взаимно перпендикулярных колебания вектора D, совпадающих с ссями эллипса. Значения соответствующих скоростей q' н q, называемых нормальными скоростями, обратно пропорциональны длинам полуосей этого эллипса.

§ 144. Поверхность волны (лучевая) и поверхность нормалей

Если вычислить по данным о свойствах кристалла или измерить экспериментально значения лучевых скоростей по всем направлениям, то можно построить поверхность, до которой дойдет к моменту *t* световое возбуждение, распространяющееся из точки О кристалла. Для этой цели надо по любому направлению отложить отрезки, пропорциональные v't и v"t, где v' и v" — лучевые скорости. Получится поверхность с двумя полостями, вообще говоря, довольно сложного вида.

Некоторое представление о виде лучевой поверхности можно составить по трем главным ее разрезам, нормальным к главным

Рис. 26.6. Поверхность волны в двуосном кристалле. Сечения волны, перпендикулярные к главным осям эллипсонда Френеля.

осям эллипсоида Френеля, используя построение предыдущего параграфа. Полуоси эллипсоида Френеля обозначим через a, b и c, т. е.

$$a = 1/\sqrt{\varepsilon_x}; \quad b = 1/\sqrt{\varepsilon_y}; \quad c = 1/\sqrt{\varepsilon_z},$$

и в соответствии с условием (142.1) имеем

$$a \ge b \ge c. \tag{144.1}$$

Начнем с разреза лучевой поверхности, нормального к оси XX, т. е. лежащего в плоскости YOZ. С помощью построения Френеля найдем, что вдоль OZ лучи распространяются со скоростями, определяемыми длиной a и b (рис. 26.6, a). Вдоль OY соответствующие скорости будут равны a и c. Поворачивая сечение эллипсоида Френеля около оси OX, мы заставим нормаль этого сечения пройти все положения между OZ и OY, и таким образом получим значения всех пар лучевых скоростей рассматриваемого разреза; поскольку одна из осей френелева сечения все время есть OX, то, следовательно, одна из этих лучевых скоростей во всем разрезе YOZ есть a, другая же пробегает все значения между b и c. Так получается разрез,
оптика анизотропных сред

состоящий из окружности радиуса *а* и эллипса с полуосями *b* и *с* (см. рис. 26.6, *a*), причем направления колебаний в каждой паре лучей, будучи взаимно перпендикулярными, обозначены точками и штрихами.

и штрихами. Совершенно аналогично найдем разрез лучевой поверхности, перпендикулярный к наименьшей оси *OZ* эллипсоида Френеля (плоскость *XOY*): заставляя вращаться сечение Френеля около *OZ*, получим разрез (см. рис. 26.6, б), состоящий из окружности радиуса *с*, лежащей внутри эллипса с полуосями *a* и *b*.

Рис. 26.7. Трехмерная модель поверхности волны в двуосном кристалле (a) и перспективное изображение трех главных ее сечений (б).

Разрез, перпендикулярный к средней оси *OY* (плоскость XOZ), получаемый вращением сечения около *OY*, дает окружность радиуса b н эллипс с полуосями a и c, которые, очевидно, пересекаются (исо a > b > c), как показано на рис. 26.6, b.

Еще яснее представление о поверхности болны можно составить из рис. 26.7, а и б, где изображены трехмерная модель и перспективное изображение трех главных сечений лучевой поверхности. Внешияя поверхность отдаленно напоминает эллипсоид, но обладает четырьмя воронкообразными углублениями в точках, соответствующих M и M' на рис. 26.6, в, и похожих на углубления в яблоке. Точки пересечения M и M' на рис. 26.6, в соответствуют точкам рис. 26.7, где внешияя и внутренняя полости встречаются, так что по направлениям MM и M'M' обе скорости распространения светового возбуждения одинаковы (v' = v''). Эти направления называются оптическими осями *) кристалла; они располагаются симметрично относительно главных направлений кристалла.

•) Их иногда называют оптическими осями первого рода или бирадиалями, чтобы отметить, что они соответствуют равенству лучевых скоростей

Величина угла между осями у разных кристаллов различна. Величина угла меналу ослин у разных кристаллов различна. Так, для KNO₃ она равна 7°12′, а для FeSO, 85°27′. В предельном Так, для истори становится равным нулю, обе оси сливаютслучае угол присталлы называются одноосными (квари, исландский ся. Такие кристаллы называются одноосными (квари, исландский ипат и др.). У одноосных кристаллов точки М и М' совпадают, шпат и друголостная поверхность переходит в совпадают, и наша двухполостная поверхность переходит в совокупность

с сбщим днаметром a (или b). т. е. мы получаем поверхность Болны одноосного кристалла с осыо а (или b).

Описанная поверхность есть поверхность световой волны, или лучевая поверхность. Радиус-вектор, проведенный из О (рис. 26.8, верхняя часть) к любой точке поверхности волны, представляет собой направление луча. Плоскости же F1 и F2. касательные к поверхностям в точках их пересечения с лучом, суть плоскости волновых фронтов. Двум лучам (со скоростями о' и о"), идущим по одному и тому же направлению $\tilde{S}_{1,2}$, соответствуют две не параллельные между собой плоскости фронтов (с нормалями N₁ и N₂),

Рис. 26.8. Соотношение лучей S и нормалей N в анизотропной среде.

Для упрощения чертежа нормаль N₁ к вол-новому фронту F₁ и нормальная скорость q' смещены влево относительно точки пересече-шия S₁ с поверхностью Σ₁.

распространяющиеся со скоростями q' и q". Наоборот, по любому направлению N_{1,2} (см. рис. 26.8, нижняя часть) идут два параллельных фронта волн (с разными скоростями q' и q''), которым соответствуют два луча S_1 и S_2 со скоростями v' и v'', образующие некоторый угол друг с другом.

Наряду с лучесой позерхностью (геометрическое место концов отрезков, пропорциональных лучевым скоростям) можно построить и поверхность нормалей (геометрическое место концов отрезков, пропорциональных нормальным скоростям). Так как, вообще говоря, угол между S и N невелик, то различие между формами этих поверхностей незначительно. Для двуосного кристалла опять получается сложная двухполостная поверхность с четырьмя точками встречи обему с с о Направления. обеих полостей (аналогичных *M* и *M'* на рис. 26,6, в). Направления, соелице соединяющие попарно эти точки (аналогичные ММ, М'М'), являются направлениями совпадающих нормальных скоростей и на-зываются или бинормадами. зываются оптическими осями второго рода или бинормалями.

Направления их, вообще говоря, мало отличаются от направлений осей первого рода.

осеи первого рода. Конечно, вместо того чтобы строить поверхность нормалей путем преобразования лучевой поверхности, можно было бы начать с построения поверхности нормалей, исходя из эллипсоида индексов и пользуясь построением Френеля для отыскания пар значений q' и q". Построив поверхность нормалей, т. е. геометрическое место концов нормальных скоростей, мы путем соответствующего преобразования могли бы перейти к лучевой поверхности (геометрическое место концов лучевых скоростей).

§ 145. Одноосные и двуосные кристаллы

Изложенное в предыдущих параграфах показывает, что решение задач кристаллооптики можно свести к построению некоторых вспомогательных поверхностей. Мы рассмотрели две из них: эллипсоид Френеля (для лучей) и эллипсоид индексов (для нормалей). Разумеется, все вспомогательные поверхности связаны между собой, так что знание одной из них позволяет более или менее сложным путем найти и остальные. Тем не менее применение различных поверхностей может оказаться полезным при разборе отдельных конкретных задач, решения которых особенно просто удается найти путем обсуждения свойств подходящей вспомогательной поверхности.

При помощи эллипсоида Френеля нетрудно геометрически определить в кристалле направления оптических осей первого рода. Оптические оси первого рода представляют собой те направления в кристалле, вдоль которых обе лучевые скорости равны друг другу (v' = v''). Поэтому согласно правилу Френеля (см. § 143) сечение эллипсоида, перпендикулярное к оптической оси первого рода, должно характеризоваться равенством своих полуосей. Другими словами, это сечение имеет форму круга. Таким образом, направление оптической оси первого рода соответствует линии, перпендикулярной к *круговому* сечению эллипсоида Френеля. Так как эллипсоид имеет не больше *двух* круговых сечений, расположенных симметрично относительно его главных осей, то кристалл в самом общем случае имеет *две* оптические оси, угол между которыми зависит от формы эллипсоида, т. е. от свойств кристалла (рис. 26.9).

Существование двуосных кристаллов было установлено в 1815 г. Брюстером, который использовал для обнаружения слабого двойного лучепреломления открытое в 1811 г. Араго явление окрашивания двоякопреломляющих веществ, помещённых между скрещенными поляризаторами (см. § 148). Брюстер, изучив свыше 150 различных кристаллов, обнаружил, что наряду с кристаллами, подобпыми кварцу или исландскому шпату, к которым применимо построение Гюйгенса, существует другой тип кристаллов, харак-

гл. XXVI. ОСНОВЫ КРИСТАЛЛООПТИКИ

теризующихся двумя направлениями, вдоль которых не наблютеризующился дучепреломления, и названных поэтому деносными, дается двойного лучепреломления, и названных поэтому деносными. дается двоиного ну Брюстер чисто эмпирически смог установить, Замечательно, что Брюстер чисто эмпирически смог установить, Замечательно, по прической симметрии относятся к двуосным кристаллам, в полном соответся к двуосным какие — к одноосным кристаллам, в полном ссответствии с совре-

Открытие двуосных кристаллов имело очень большое теоретическое значение и вначале послужило сильным аргументом против зарождающейся волновой теории. Для двуосных кристаллов оказызарождающие построение Гюйгенса, с помощью которого он

Рис. 26.9. Определение направленый оптических осей с помощью эллипсонда Френеля или эллипсоида индексов. Оптические оси перпендикулярны к круговым сечениям эллилсонда.

истолковал на волновом языке явление двойного лучепреломления в одноосных кристаллах, и, таким образом, один из главных аргументов волновой теории потерял свою убедительность. Лишь позднее, когда Френель развил свою кристаллооптику, открытие Брюстера стало, наоборот, одним из блестящих подтверждений волновой системы взглядов.

Если оба круговых сечения эллипсоида совпадают друг с другом, то обе оси сливаются и мы имеем одноосный кристалл. В этом случае эллипсонд будет эллипсондом вращения, причем ось вращения, определяющая направление оптической оси кристалла, совпадает с одним из главных направлений кристалла. Два возможных случая с <u>b</u> c < b = a и c = b < a соответствуют положительных (например, квари) кварц) и отрицательным (например, исландский шпат) одноосным Кристо Френеля кристаллам *). Наконец, если a = b = c, то эллипсонд Френеля

*) Плогда, в отличие от договорешности (142.1), (144.1), одтическую ось Вают осника в отличие от договорешности (142.1), (144.1), одтическую ось называют осью г и для положительных, и для отрицательных кристаллов.

оптика анизотропных сред

обращается в сферу; все его сечения круговые, т. е. по любому направлению обе лучевые скорости совпадают между собой (v' = v'') среда оптически изотропна и двойное лучепреломление отсутствует. Аналогичным образом можно рассмотреть вопрос о направлении и числе осей второго порядка, для чего надо исходить из эллипсоида индексов.

В случае одноосного кристалла угол между оптическими осями обращается в нуль, и две слившиеся оси определяют направление,

Рис. 26.10. Сечение волновой понерхности одноосного положительного (а) и отрицательного (б) кристалла. вдоль которого распростраволна в няется кристалле только с одной скоростью. В соответствии с этим волновая поверхность имеет для одноосных кристаллов более простой вид, чем для двуосных, и представляет собой две соприкасающиеся поверхности: сферу (для обыкновенного луча) и эллипсонд вращения (для необыкновенного

луча). Точки соприкосновения этих поверхностей лежат на оптической оси. Волновая поверхность для положительных кристаллов c < a = b представляет собой эллипсонд вращения, вписанный в сферу (рис. 26.10, *a*); для отрицательных кристаллов c = b < a она представляет собой эллипсонд вращения, описанный около сферы (рис. 26.10, *б*).

Показатель преломления, соответствующий направлению малой полуоси эллипсоида в случае положительных кристаллов и большой — в случае отрицательных кристаллов, называется показателем преломления необыкновенного луча *).

Значения показателей преломления (для $\lambda = 589,3$ нм): для исландского шпата $n_o = 1,658$ для обыкновенного луча и $n_e =$ = 1,486 для необыкновенного луча; для кварца $n_o = 1,543$, $n_e =$ = 1,552.

Существуют кристаллы с еще более резко выраженным различием в показателях преломления. Так, для натронной селитры NaNO₃ $n_0 = 1,585$, $n_e = 1,337$. К сожалению, недостаточная устойчивость селитры к влаге и механическим повреждениям затрудняет применение ее для оптических приборов.

Различне между поведением обыкновенного и необыкновенного лучей внутри кристалла соответствует различию направления электрического вектора в этих лучах по отношению к оптической оси. Для обыкновенного луча этот вектор всегда расположен перпенди-

^{•)} Точнее, необыкновенные лучи в зависимости от направления распространения имеют различные показатели преломления от no до ne.

гл. ххуг. основы кристаллооптики

кулярно к оптической оси, ибо он направлен перпендикулярно к главной плоскости, в которой лежит оптическая ось. Поэтому при любом направлении обыкновенного луча электрический вектор его ориентирован одинаково по отношению к оптической оси и скорость его не зависит от направления. Электрический вектор необыкновенного луча лежит в главной плоскости, т. е. в той же плоскости, что и оптическая ось. Поэтому, вообще говоря, его направление составляет тот или иной угол с осью (от нуля до 90°), в зависимости от направления луча.

§ 146. Построение Гюйгенса для анизотропных сред

Обычно в учебниках встречается утверждение, что законы преломления не приложимы к необыкновенному лучу в односном кристалле и к обоим лучам в двуосном. Это — правильное утверждение, но оно имеет чисто отрицательный характер, показывая, что простое построение, предписываемое законом преломления, не приложимо к решению задачи о направлении распространения светового луча. Если взамен не дается никаких правил, то решение даже весьма простых вопросов кристаллооптики оказывается затруднительным. Между тем существует гораздо более общий прием отыскания направления распространения преломленной световой волны, а именно, построение, основанное на принципе Гюйгенса, следствием которого для изотропной среды является закон преломления Декарта - Снеллия. Напомним, что сам Гюйгенс рассматривал при помощи этого приема вопрос о распространении света в двоякопреломляющих телах (исландский шпат) и получил крайне важные результаты. Применение построения Гюйгенса является простым и действенным средством для разбора вопроса о распространении света в анизотропных средах. Поверхность, фигурирующая в построении Гюйгенса, есть, очевидно, лучевая поверхность, а не поверхность нормалей. Действительно, по правилу Гюйгенса для получения Фронта (плоской) волны проводят плоскость, касательную к поверхности Гюйгенса. А фронт волны касателен именно к лучевой поверхности (рис. 26.11, а) и пересекает поверхность нормалей (piic. 26.11, 6).

Нетрудно показать, что построение Гюйгенса дает непосредственно положение волнового фронта и, следовательно, направление нормалей, а не лучей. При этом по отношению к нормалям законы преломления в обычной формулировке сохраняются и для анизотропных сред, а именно: 1) нормали к обеим волновым поверхностям лежат в плоскости падения; 2) отношение синусов углов, образованных нормалями к волновым фронтам с перпендикуляром к поверхности раздела. равно отношению нормальных скоростей для сред по обе стороны границы раздела. Действительно, пусть плоская волна, фронт которой в первой среде есть MQ (рис. 26.12), падает

оптика анизотропных сред

на плоскость раздела. Оба фронта преломленных волн во второй среде представляют собой плоскости, касательные к лучевым поверх. ностям во второй среде и проходящие через линию пересечения фронта падающей волны с поверхностью раздела, т. е. линию, след

Рис. 26.11. Фронт волны касается лучевой поверхности (а) и пересекает поверхность нормалей (б).

которой показан на рис. 26.12 точкой *P*. Линия эта перпендикулярна к плоскости падения; поэтому оба фронта преломленных волн как плоскости, проходящие через эту линию, также перпендикулярны к плоскости падения. Следовательно, нормали к ним обе лежат

Рис. 26.12. Нахождение направления нормалей в анизотропной среде с помощью построения Гюйгенса. в плоскости падения, какой бы вид ни имели лучевые поверхности. первый закон Таким образом, преломления для нормалей всегда справедлив. На рис. 26.12 точки А и В являются местами пересечения нормалей, проведенных из М, с плоскостями фронтов. Согласно доказанному выше они лежат в плоскости чертежа (плоскость падения). Точки же касания фронта с лучевыми поверхностями могут, вообще говоря, не находиться в плоскости падения, и потому они на чертеже не показаны.

Обозначив через т время, в течение которого волновые фронты

во второй среде проходят до положений РА и РВ (см. рис. 26.12), через со — скорость света в первой среде (вакуум), а через q' и q' нормальные скорости обеих преломленных воли, найдем, как обычно,

> $QP = c_0 \tau = MP \sin \varphi,$ $MA = q' \tau = MP \sin \psi_1,$ $MB = q'' \tau = MP \sin \psi_2,$

гл. XXVI. ОСНОВЫ КРИСТАЛЛООПТИКИ

11.711

$$\frac{\sin\varphi}{\sin\psi_1} = \frac{c_0}{q'}, \quad \frac{\sin\varphi}{\sin\psi_2} = \frac{c_0}{o''},$$

т. е. для нормалей соблюдается и второй закон преломления. Наши рассуждения в одинаковой степени относятся как к одноосным, так и к двуосным кристаллам. Если бы мы желали путем построения Гюйгенса отыскать направление лучей, то необходимо было бы выполнить его при помощи пространственных моделей, ибо точки касания волнового фронта и лучевой поверхности не лежат, вообще

Рис. 26.13. В отрицательном одноосном кристалле нормаль необыкновенной волны преломляется всегда меньше нормали обыкновенной, но необыкновенный луч может преломляться и сильнее обыхновенного.

говоря, в плоскости падения. Построив таким образом направления лучей, мы убедились бы, что по отношению к ним законы преломлеиия Декарта — Снеллия, вообще говоря, не имеют силы. Хотя непосредственно на опыте мы наблюдаем направление лучей, представляющих пути распространения световой энергии, действующей на наши приборы, тем не менее легко выполнимое построение Гюйгенса для нормалей чрезвычайно облегчает в ряде случаев правильное решение задачи. Так, например, в отрицательном одноосном кристалле скорость необыкновенной волны больше, чем обыкновенной, и, значит, необыкновенная волна должна преломляться меньше обыкновенной. Но это справедливо именно для нормалей; направление же лучей иное, и возможны случаи, когда необыкновенный луч будет преломляться сильнее сбыкновенного в одноосном отрицательном кристалле.

Рис. 26.13 иллюстрирует этот случай. Пусть кристалл вырезан так, что оптическая ось расположена в плоскости грани кристалла, а *МК* — одно из главных направлений эллипсонда Френеля.

а *МК* — одно из главник стрете обеих преломленных воли лежат В таком случае лучи и нормали обеих преломленных воли лежат в плоскости падения и нормаль преломленной необыкновенной волны *N_e* преломлена *меньше*, чем нормаль обыкновенной *N_o*, а необыкновенный луч *S_e* преломлен *больше*, чем луч обыкновенный *S_o*. Рассмотрев подобным образом несколько случаев, приведенных в упражнениях 202а, б, в, можно убедиться в плодотворности этого приема.

§ 147. Экспериментальные данные о распространении света в одноосных кристаллах

После общих соображений, изложенных в предыдущих параграфах, рассмотрим более детально характер распространения света в одноосном кристалле, опираясь на данные наблюдения. Так как мы наблюдаем непосредственно за поведением луча (а не нормали к волне), то выводы наши относятся к лучевой поверхности. Для целей такого рассмотрения заставим свет проходить не через естественный кристалл, а через пластинки исландского шпата, вырезанные определенным образом относительно оси.

Случай І. Пластинка вырезана перпендикулярно к оптической оси. Рассмотрим преломление света в такой пластинке при разном его падении относительно оптической оси.

а. Луч естествен пого света направлен вдоль оптической оси. В этом случае двойного лучепреломления нет и луч выходит из пластинки, не меняя своего направления. Нетрудно видеть, что свет при этом должен остаться естественным. Действительно, в данном случае положение главной плоскости, проходящей через оптическую ось и волновую нормаль, остается неопределенным, а следовательно, неопределенным остается и направление колебания в обоих лучах, и они неотличимы друг от друга.

6. Лучестественного света падает наклонистичных другах лонностичных другах лонностичных другах лонностичных достаточно коптической оси (рис. 26.14 и 26.15). В этом случае происходит явление двойного лучепреломления, и если падающий пучок достаточно узок, а кристаллическая пластинка достаточно толста, из нее выйдут два раздельных пучка, параллельных падающему и поляризованных в двух взаимно перпендикулярных направлениях. Если менять угол падения φ, то меняются и углы преломления ψ₀ и ψ_e. Исследование с помощью николя или поляроида показывает, что луч с колебаниями, перпендикулярными к главной плоскости, которая в нашем случае совпадает с плоскостью падения. Преломляется под углом ψ₀ так, что отношение sin φ/sin ψ₀ не завилаправление колебания в котором лежит в главной плоскости, ме

ияется в зависимости от угла падения. Как уже указывалось, первый из этих двух лучей носит название обыкновенного, второй — необыкновенного. Таким образом, для обыкновенного луча показатель преломления no остается одним и тем же для любого направления внутри

Рис. 26.14. Прохождение света через пластинку одноосного кристалла, вырезанную перпендикулярно к оптической осн.

Рис. 26.15. Построение Гюнгенса для случая, изображенного на рис. 26.14.

кристалла, а для необыжновенного луча n, зависнт от напривления распространения света внутри кристалла. В связи с этим и скорость его зависит от направления лу-

ча в кристалле.

Случай II. Пластинка вырезана параллельно главной оси. Опыт с преломлением света в такой пластинке показывает следующее.

. а. Плоскость падения Р совпадает с главной плоскостью (рис. 26.16 и 26.17).

Оба луча о и е лежат в одной плоскости с падающим лучом (плоскость падения и преломления). Колебания в обыкновенном луче перпендикулярны к главной плоскости (плоскости падения), т. е. при лю-

Рис. 26.16. Прохождение света через пластинку одноосного кристалла, вырезанную параллельно оптической оси; плоскость падения совпадает с главной плоскостью кристалла.

бом направлении луча перпендикулярны к оптической оси. Поверхность волны о пересекается с плоскостью падения по окружности. Колеба: иля в необыкновенном луче лежат в главной плоскости, т. е. в плоскости падения, и составляют с осью различный угол в зависимости от направления луча. В соответствии с этим показатель преломления для необыкновенного луча по разным

17 Ландсберг Г. С.

оптика анизотропных сред

направлениям различен, так что поверхность волны е имеет в сечении плоскостью падения вид эллипса. Вдоль оси аа эллипс и кругимеют общий диаметр, т. е. оба луча распространяются вдоль оси с одинаковой скоростью. Соотношения между кругом и эллипсом для наглядности утрированы: $n_o = 1,658$, n_e лежит между 1,658 и 1,486 в зависимости от угла падения.

И 1,400 в зависимости от ути-Построение преломленных лучей показывает, что в этом случае в отрицательном кристалле необыкновенный луч преломляется сильнсе, чем обыкновенный (в положительном — наоборот).

Рис. 26.17. Построение Гюйгенса для случая, изображенного на рьс. 26.16.

Рис. 26.18. То же, что и на рис. 26.16, но плоскость падения лежит под углом к главной плоскости кристалла.

б. Плоскость падения Р составляет угол сглавной плоскостью.

Луч о (рис. 26.18) после преломления остается в плоскости падения, но луч е из нее выходит. Скорость луча о не зависит от направления, скорость луча е зависит от него. Изобразить направления колебаний и направление оси в этом случае на плоском чертеже затруднительно.

в. Плоскость падения *Р* перпендикулярна к главной плоскости.

Оба луча о и е (рис. 26.19 и 26.20) остаются в плоскости падения. Колебания в обыкновенном луче о перпендикулярны к главной плоскости, т. е. лежат в плоскости падения и, как всегда, при любом направлении луча оказываются перпендикулярными к оси. Колебания в необыкновенном луче е лежат в главной плоскости, т. е. перпендикулярны к плоскости падения. Как видно из чертежа, в этом случае колебания в необыкновенном луче при любом его направлении оказываются парал. ельными оси, т. е. в данном случае показаления и равен 1,486. Обе поверхности волны рассекаются плоскостыю падения по окружности.

гл. ххуг. основы кристаллооптики

После рассмотрения частных случаев (а, б, в) легко проследить, как будут протекать явления при поворачивании пластинки, вырезанной параллельно оптической оси, около линии, нормальной к ее поверхности. Если N — след нормали к пластинке на экране,

Рис. 26.19. То же, что и на рис. 26.16, но плоскость падения перпендикулярна к главной плоскости.

Рис. 26.20. Построение Гюйгенса для случая, изображенного на рис. 26.19.

то в случае, показанном на рис. 26.16, расположение необыкновенного и обыкновенного лучей изобразится точками еа и о (рис. 26.21). При вращении пластинки вокруг нормали N положение обыкновенного луча о остается неизменным, как и для изотропной пластинки. Положение же следа необыкновенного лу-

ча е меняется. При повороте пластинки в положение, соответствующее рис. 26.18, конец е выходит из плоскости No, и его расположение изобразится точкой e_b (см. рис. 26.21). При дальнейшем повороте до положения, показанного на рис. 26.19, луч е окажется вновь в плоскости No, но по другую сторону o, в положении, отмеченном точкой e_c ; дальнейшее вращение вновь выводит e из плоскости No, и при повороте на 180°, когда восстанавливается расположение рис. 26.16, луч е вновь приходит в положение e_a , описав около о полный круг. При дальнейшем вращении яв-

Рис. 26.21. При полном повороте кристаллической пластинки, выреззниой параллельно оптической осн, вокруг нормали необыкновенный луч дважды обходит вокруг обыкновенного.

ления повторяются. Таким образом, при полном повороте пластинки вокруг нормали луч *е дважды* описывает окружность вокруг точки о, четыре раза проходя через плоскость падения (два раза по одну сторону от точки о и два раза по другую сторону от нее).

17+

оптика анизотропных сред

§ 148. Цвета кристаллических пластинок и интерференция поляризованных лучей

а. Явления в параллельных лучах. Поместив кристаллическую пластинку К между двумя поляризаторами N_1 и N_2 (рис. 26.22), можно наблюдать следующие интерференционные явления.

При наблюдениях со светофильтрами на поверхности пластинки неравномерной толщины обнаруживается распределение светлых и темных пятен. При поворачивании одного из поляризаторов на 90° светлые места становятся темными, и обратно. В случае белого света пластинка испещрена цветными пятнами; при повороте одного из

Рис. 26.22. Схема расположения для наблюдения цветов кристаллической пластинки в параллельных лучах (а) и диаграмма разложения колебаний по главным направлениям пластинки (б).

поляризаторов на 90° цвета сменяются на дополнительные. Если убрать один из поляризаторов, то исчезают всякие следы интерференционной картины и поверхность пластинки оказывается освещенной равномерно.

Нетрудно понять смысл наблюдаемых явлений. Плоскополяризованный свет, выходящий из поляризатора N_1 , падая на кристаллическую пластинку, дает начало двум когерентным волнам, идущим с различной скоростью и приобретающим известную разность фаз, зависящую от толщины пластинки и различия в показателях преломления для обонх пучков. Так как колебания в этих волнах взаимно перпендикулярны, то они ведут к образованию эллиптически-поляризованного света. В точках, соответствующих различным толщинам кристаллической пластинки, форма и ориентация эллипсов могут быть различны, но интенсивность результирующего света везде после кристаллической пластинки второй поляризатор N_2 , мы от каждой волиы можем пропустить лишь ту слагающую колебаний, сбразом, в обешх волиах остаются лишь колебания, лежащие в одной плоскости. Итак, поляризатор N_1 создает поляризованный свет, обусловливая когерентность волн, взаимодействие которых мы хотим наблюдать; кристаллическая пластинка K обеспечивает приобретение некой разности фаз двумя компонентами, на которые разлагается пришедшая волна; поляризатор N_2 пропускает волны лишь с колебаниями, лежащими в определенной плоскости. Очевидно, что эта разность фаз зависит от длины волны распространяющегося света и различна для волн, принадлежащих к разным участкам спектра.

Обозначим через I и II направления, по которым совершаются колебания в двух волнах в кристаллической пластинке; тогда рис. 26.22, G ясно показывает значение поворота одного из поляризаторов. Если $N_2 \parallel N_1$, то из второго поляризатора оба луча выходят с той же разностью фаз, какую они приобрели в пластинке K. Если же $N_2 \perp N_1$, то при проектировании колебаний I и II на главную плоскость N_1 сообщается дополнительная разность фаз, равная π . Поэтому при $N_2 \parallel N_1$ и $N_2 \perp N_1$ распределения освещенностей в наблюдаемых картинах получаются взаимно дополнительными, т. е. максимумы освещенности сменяются минимумами и т. д.

Нетрудно также видеть, что если I и II совпад: ют с главной плоскостью N_1 или N_2 , то из аппарата выходит только одна волна и интерференция не имеет места. Действительно, наблюдение показывает, что если при неизменных ориентациях N_1 и N_2 вращать пластинку, то интерференционная картина исчезает всякий раз, когда I или IIстановится параллельным одной из главных плоскостей N_1 или N_2 . Таким путем можно очень просто определить главные направления I и II в кристаллической пластинке.

Описанные явления позволяют создать очень чувствительный метод определения различия в показателях преломления вещества. Они были открыты Араго в 1811 г. и получили исторически установившееся, но физически не вполне удачное название «хроматической поляризации».

Если между скрещенными поляризаторами N_1 и N_2 введен слой вещества хотя бы со слабыми признаками оптической анизотропии, то поле становится несколько светлее в случае монохроматического света или дает более или менее прихотливое окрашивание в случае белого света. Поворот объекта приводит к изменению интерференционной картины. В частности, таким методом можно обнаружить слабую анизотропию в кусках стекла и других материалах, обычно изотропных, но подвергнувшихся каким-либо деформациям вследствие сжатия или неравномерного нагрева (см. гл. XXVII).

6. Я в л е н и я в с х о д я щ и х с я п у ч к а х. Более сложные интерференционные картины получаются в сходящихся светоцых пучках. В этом случае разность фаз между обыкновенной и необыкновенной волнами, приобретаемая при прохождении через

оптика анизотропных сред

пластинку, приближенно может быть записана в виде

$$\delta = \frac{2\pi}{\lambda} \frac{h}{\cos\psi} (n_1 - n_2), \qquad (148.1)$$

где h — толщина пластинки, ψ — угол между волновой нормалью и нормалью к поверхности пластинки (т. е. $h/\cos \psi$ — геометрическая длина пути света внутри пластинки), n_1 и n_2 — показатели преломления для обеих волн в данном направлении. Даже когда пластинка плоскопараллельна (h постоянно), δ будет различно для волн с разным наклоном волновых нормалей и будет определяться ориентацией пластинки относительно проходящих сквозь нее световых пучков, ибо от ориентации зависит разность n_1 и n_2 . Схема, осуще-

Рис. 26.23. Схема расположения для наблюдения цветов кристаллической пластинки в сходящихся лучах. ствляющая необходимое расположение, изображена на рис. 26.23.

Рассмотрим простейший случай, когда конус сходящихся световых пучков от протяженного источника света падает на глоскопараллельную пластинку одноосного кристалла, вырезанную перпендикулярно к оптической оси, причем ось конуса совпадает с оптической осью кристалла. Тогда при постоянном ф разность фаз δ будет

также постоянной, так как вследствие симметрии ориентации световых пучков относительно оси кристалла разность $n_1 - n_2$ зависит только от значения ψ . Таким образом, разность фаз для сбыкновенной и необыкновенной волн будет определяться, как указано выше, значением угла ψ при фиксированном h.

Следовательно, мы будем иметь дело со случаем интерференции, до известной степени аналогичным тому, при котором получаются полосы равного наклона. Интерференционную картину можно наблюдать в фокальной плоскости F объектива L на расположенном в ней экране.

Однако, поскольку явление происходит в поляризованном свете, у него будет своя специфика. Нетрудно предсказать, что интерференционная картина должна обладать акснальной симметрией и в фокальной плоскости объектива она должна иметь вид концентрических светлых и темпых окружностей. Первые будут соответствовать выходу из пластинки воли, поляризованных так, что они создают результирующее колебание (см. рис. 26.22, б) с поляргзацией, совпадающей с главным направлением анализатора. Вторые — вол-

гл. ххvi, основы кристаллооптики

нам, результирующий вектор которых нормален к направлению колебаний, пропускаемых анализатором.

Колесания, интерференционная картина, видимая на экране, не псчерпывается концентрическими окружностями. Как показывает опыт, если поляризатор и анализатор ориентированы одинаково, то система концентрических интерференционных полос перерезана светлым «мальтийским крестом»; если же они скрещены, то интерференционные кольца перерезаны темным «мальтийским крестом»

(рис. 26.24). Крест представляет собой область, где интерференция отсутствует. В этих направлениях распространяется только одна поляризованная волна (обыкновенная или необыкновенная).

Рис. 26.24. Вид изохромат для пластинки одноосного кристалла, вырезанного перпендикулярно к оптической оси.

Рис. 26.25. Изохроматические поверхности и их сечения для одноосного (а) и двуосного (б) кристаллов.

Если пластинка вырезана под углом к оптической оси, то разность $n_1 - n_2$ была бы различной при данном ψ для лучей, лежащих в разных азимутах, так как они составляли бы различные углы с оптической осью. Интерференционная картина имела бы иной вид, чем рассмотренный выше, поскольку совокупность точек поверхности, для которых $\delta = \text{const}$, не представляла бы в этом случае концентрических окружностей.

Геометрическое место точек на поверхности кристалла, для которых $\delta = \text{const}$, принято называть *изохроматической* кривой (кривая постоянного цвета). Если через точку *O*, представляющую вершину конуса лучей (внутри кристалла), провести все возможные направления (лучи) и пайти на них точки, соответствующие заданной раз-

ности фаз б, то геометрическое место точек составит изохроматическую поверхность. Поверхность эта для одноосного кристалла представляет собой (приблизительно) гиперболонд вращения, ось которого совпадает с осыо кристалла (рис. 26.25, *a*). Сечения таких поверхностей плоскостью пластинки и представляют собой изохроматы. Для случая, когда пластинка вырезана перпендикулярно к опти-

ческой оси, они имеют вид окружностей; для пластинки, вырезанной параллельно оси, это (приблизительно) гиперболы.

Рис. 26.26. Вид изохромат для пластинки одноосного кристалла, вырезанной параллельно оптической оси.

Рис. 26.27. Вид изохромат для пластинки двуосного кристалла, вырезанной перпендикулярно к биссектрисе угла между осями.

Картина на экране F (рис. 26.23) не является изображением плоскости кристалла: освещенность в какой-либо точке экрана характеризует волны, вышедшие из пластинки в каком-то определенном направлении. В качестве же точки O, которая фигурировала при построении изохроматической поверхности, можно выбрать любую точку на первой плоскости кристалла. Однако интерференционные полосы на экране F имеют тот же общий вид, что н сечения изохроматической поверхности второй плоскостью пластинки, и эти полосы часто также называют изохроматическими линиями или изохроматами.

Рис. 26.24 и 26.26 относятся к одноосному кристаллу, вырезанному перпендикулярно и параллельно оптической оси. В соответствии со сказанным относительно свойств изохроматической поверхности полосы имеют вид колец или гипербол.

В случае двуосного кристалла, характеризующегося наличием двух направлений, вдоль которых скорости обоих световых лучей совпадают, изохроматическая поверхность подобна двум сросшимся цилиндрам, оси которых совпадают с оптическими осями кристалла

ГЛ. XXVI. ОСНОВЫ КРИСТАЛЛООПТИКИ

(см. рис. 26.25, б). Для пластики, вырезанной параллельно осям, изохроматы имеют вид гипербол; для пластинки, вырезанной перпендикулярно к биссектрисе угла между осями, изохроматы имеют вид лемнискат *), полюсами которых служат места кажущегося (вследствие преломления) выхода оптических осей. Вместо темного (светлого) креста, характеризующего одноосную пластинку, вырезанную перпендикулярно к биссектрисе угла между осями, получим две гиперболы, проходящие через полюсы лемнискаты (рис. 26.27). При повороте пластинок они изменяются и в двух положениях сливаются в черный (светлый) крест. По положению полюсов лемнискат можно судить о кажущемся направлении оптических осей двуосного кристалла, а введя соответствующую поправку на преломление, найти истинный угол между осями.

§ 149. Эффекты пространственной дисперсии. Оптическая анизотропия кубических кристаллов

В § 142 отмечалось, что кубические кристаллы, в силу высокой степени их симметрии, должны быть оптически изотропными. Сравнительно недавно была обнаружена, однако, зависимость поглощения от поляризации света в кубическом кристалле закиси меди Cu_2O (Е. Ф. Гросс и А. А. Каплянский, 1960 г.) и анизотропия показателя преломления в кубическом кристалле кремния (Пастернак и Ведам, 1971 г.). Известны и другие явления, для описания которых обычная связь между электрической индукцией D и электрической напряженностью E, введенная в § 142, оказывается недостаточной. Наиболее важным примером этих эффектов может служить естественная оптическая активность (гиротропия) кристаллов, сравнительно легко наблюдаемая и описанная в гл. XXX.

Формальную причину перечисленных выше явлений можно пояснить следующим образом. В § 142 иеявно предполагалось, что индукция D(r) в какой-либо точке r кристалла однозначно определяется значением напряженности электрического поля E(r) в той же точке:

$$D_{i}(\mathbf{r}) = \sum_{j} \varepsilon_{ij}(\omega) E_{j}(\mathbf{r}), \qquad (149.1)$$

где $D_i(r)$, $E_i(r)$ — декартовы составляющие векторов D(r), E(r), $e_{ij}(\omega)$ — компоненты тензора диэлектрической проницаемости: индексы i, j нумеруют координатные оси x, y, z. В действительности такая локальная связь между D(r) и E(r) не всегда достаточна, так как D(r) зависит также от значений E(r') в иных точках кристалла r', расположенных вблизи точки r.

^{*)} Лемниската — кривая, каждая точка М которой отстоиг от точек Р (полюсы лемнискаты) на расстоянии, удовлетворяющем условию МР-МР' = const.

Возможность нелокальной связи между D(r) и E(r) ясна из качественного рассмотрения, основанного на самой простой модели кристалла, согласно которой частицы, составляющие кристаллическую решетку (атомы, молекулы, ионы), совершают колебания около своих положений равновесия и, что особенно важно для нашей цели, взаимодействуют друг с другом. Электрическое поле смещает заряды из положения равновесия. В результате взаимодействия между частицами, расположенными в различных ячейках кристаллической решетки, смещение зарядов в какой-либо частице вызывает дополнительное смещение зарядов в соседних и более удаленных частицах. Поэтому поляризация среды P(r), а, следовательно, и индукция

$$D(\mathbf{r}) = E(\mathbf{r}) + 4\pi P(\mathbf{r})$$

зависят от значений напряженности не только в выделенной точке, но и в ее окрестности. Аналогичные соображения применимы и к изотропным средам, состоящим из асимметричных молекул (см. §§ 163, 164).

Размер а области взаимного влияния оказывается сравнительно небольшим и составляет обычно величину порядка постоянной решетки кристалла ($a \sim 10^{-8}$ — 10^{-7} см). Длина волны λ в оптической области спектра значительно больше, чем a, и на протяжении области влияния поле не может измениться сколько-нибудь существенно. Поэтому для описания взаимного влияния частиц достаточно представить электрическое поле в соседних точках r' в виде разложения в ряд Тейлора по степеням декартовых смещений относительно точки r и ограничиться первыми членами разложения. В связи со сказанным приходим к заключению, что соотношение между индукцией и напряженностью можно записать в виде

$$D_{i}(\mathbf{r}) = \sum_{I} \varepsilon_{iI}(\omega) E_{I}(\mathbf{r}) + \sum_{I,I} \gamma_{III}(\omega) \frac{\partial E_{I}}{\partial x_{I}} + \sum_{I,I,m} \alpha_{IIIm}(\omega) \frac{\partial^{2} E_{I}}{\partial x_{I} \partial x_{m}}, \quad (149.2)$$

где x_j , x_i , x_m — декартовы компоненты вектора r, а производные вычисляются в точке r. Первая сумма в выражении (149.2) соответствует локальной связи (см. (149.1)) между D(r) и E(r), и все явлеиня, рассмотренные ранее в гл. XXVI, XXVII, описываются этой суммой. Вторая и третья суммы в (149.2) учитывают эффекты взаимного влияния, причем тензоры γ_{iji} (ω) и α_{ijim} (ω) третьего и четвертого рангов не зависят от координаты r вследствие однородности кристалла.

При исследовании оптических свойств кристаллов, как правило, применяются плоские световые волны. В этом случае соотношеиме (149.2) существению упрощается. Удобно воспользоваться комплексной записью колебаний, согласно которой плоские

гл. XXVI, основы кристаллооптики

монохроматические волны представляются в форме $D(r, t) = D_0 \exp \left[-i(\omega t - kr)\right]; \quad E(r, t) = E_0 \exp \left[-i(\omega t - kr)\right],$ (149.3)

где k — волновой вектор, D_0 и E_0 — постоянные комплексные векторы. Поскольку из (149.3) следует, что

$$\frac{\partial E_i}{\partial x_i} = ik_i E_{j_1}$$

формула (149.2) приводится к виду

$$D_{i}(\boldsymbol{r}, t) = \sum_{j} \varepsilon_{ij}(\omega, k) E_{j}(\boldsymbol{r}, t), \qquad (149.4)$$

где тензор $\varepsilon_{ii}(\omega, k)$ дается соотношением

$$\varepsilon_{ij}(\omega, k) = \varepsilon_{ij}(\omega) + i \sum_{l} \gamma_{ijl}(\omega) k_l - \sum_{l, m} \alpha_{ijlm}(\omega) k_l k_m. \quad (149.5)$$

Таким образом, в случае плоских монохроматических воли связь между D(r, t) и E(r, t) осуществляется тензором второго ранга, как и в классической кристаллооптике (ср. (149.1)). Однако нетскальность, поясненная выше, приводит к зависимости тензора диэлектрической проницаемости $\varepsilon_{ij}(\omega, k)$ не только от частоты света, но и от волнового вектора k, т. е. от длины волны ($k = 2\pi/\lambda$), и от направления распространения света. Зависимость $\varepsilon_{ij}(\omega, k)$ от k называют пространственной дисперсией среды *). Этим же термином обозначают и факт нелокальности связи между индукцией и напряженностью поля, поскольку нелокальность представляет собой лишь иное словесное описание зависимости $\varepsilon_{ij}(\omega, k)$ от k.

В соответствии с обсужденной выше причиной пространственной дисперсии значения тензоров $\gamma_{ijl}(\omega)$ и $\alpha_{ijlm}(\omega)$ по порядку величины равны a и a^2 соответственно (a — размер области влияния). Если принять $a = 10^{-7}$ см, $\lambda = 300$ нм, то $a/\lambda \approx 3 \cdot 10^{-3}$, $(a'\lambda)^2 \approx \approx 10^{-5}$. Напомним, что двойному лучепреломлению, связанному с первым членом в выражении (149.5), отвечает различие показателей преломления обыкновенной и необыкновенной воли порядка . 10^{-1} . Таким образом, эффекты пространственной дисперсии сравнительно слабы, и при рассмотрении многих вопросов ими можно пре-

^{*)} Происхождение термина «пространственная дисперсия» собъясняется следующим образом. Обычная, или временная, дисперсия сводится к зависимости оптических характеристик среды от частоты света. Легко показать, что на временном языке частотная зависимость $\varepsilon(\omega)$ означает существовсние инерционности частиц среды по отношению к взаимодействию со светом, вследствие по поляризация среды в данный момент времени t зависи то от высимость е поляризация среды в данный момент времени t зависи телемальная во времени связь между D(r, t) и E(r, t). С этой точки зрения пространственный дисперсия.

небречь, чем и объясняется возможность описания ряда оптических явлений в кристаллах с помощью упрощенных соотношений (149.1). Тем не менее, существуют явления, определяющиеся исключительно пространственной дисперсией и представляющие интерес с различных точек зрения.

Для кубических кристаллов и изотропных сред тензор $\varepsilon_{ij}(\omega)$ сводится к скаляру, т. е.

$$\varepsilon_{ij}(\omega) = \varepsilon(\omega) \,\delta_{ij},$$

где δ_{ij} — символ Кронекера ($\delta_{ij} = 1$, если i = j; $\delta_{ij} = 0$, если $i \neq j$). Тензор $\gamma_{ijl}(\omega)$ в этом случае равен

$$\gamma_{i/l}(\omega) = \gamma(\omega) e_{i/l},$$

где $\gamma(\omega)$ — скаляр, а e_{ijl} — полностью антисимметричный тензор третьего ранга (e_{ijl} равен 0, если среди индексов *i*, *j*, *l* имеются одинаковые, и равен +1 или —1 в зависимости от того, получены ли эти индексы из 1, 2, 3 четным или нечетным числом перестановок).

Если принимать в расчет только первые два слагаемых в выражении (149.5) для e_{ii} (ω , k), то, как легко убедиться,

$$D(r, t) = \varepsilon(\omega) E(r, t) + i\gamma(\omega) [E(r, t), k].$$
(149.6)

Вектор [E, k], как известно, перпендикулярен к E и k. Кроме того, множитель i говорит о сдвиге фазы второго члена в (149.6) относительно первого на $1/2\pi$. Поэтому оказывается, что второй член в (149.6) приводит к различию фазовых скоростей (или показателей преломления) для волн с правой и левой круговой поляризациями, т. е. к естественной оптической активности (см. гл. XXX).

Можно показать, что в средах, обладающих центром симметрии, величина $\gamma(\omega)$ тождественно обращается в нуль. В таком случае пространственная дисперсия проявляется лишь благодаря тем членам в выражении (149.6) для $\varepsilon_{ij}(\omega, k)$, которые квадратично зависят от составляющих волнового вектора k. Эти слагаемые и обусловливают слабую анизотропию кубических кристаллов. Действительно, в кубических кристаллах, как уже говорилось ранее, тензор $\varepsilon_{ij}(\omega)$ сводится к скаляру, т. е. его главные значения одинаковы. Если же принять во внимание третью сумму в выражении (149.5), то главные значения полного тензора диэлектрической проницаемости $\varepsilon_{ij}(\omega, k)$ оказываются различными, и среду следует считать анизотропной.

Сложность наблюдения анизотропии кубических кристаллов обусловлена чрезвычайной малостью эффекта. Согласно приведенным выше оценкам, анизотропия в этом случае определяется квадратом отношения постоянной решетки к длине волны и по порядку величины равна 10⁻⁶—10⁻⁵. Поэтому обсуждаемый эффект был обнаружен лишь в 1960 г., о чем говорилось в начале параграфа, хотя Лоренти обратил внимание на возможность его существования еще в 1878 г.

гл. ххvи. искусственная анизотропия

Помимо упомянутых выше явлений, пространственная дисперсия вызывает и ряд других. Оказывается, в частности, что в кристалле с пространственной дисперсией в заданном направлении распространяются не две, а три или четыре волны с различными фазовыми скоростями (три волны в гиротропных средах и четыре в средах с центром инверсии). Новые волны, как показывают расчеты, могут быть существенными при частотах ω , близких к частотам полос поглощения кристалла.

Глава XXVII

ИСКУССТВЕННАЯ АНИЗОТРОПИЯ

§ 150. Введение

Громадное большинство оптически изотропных тел обладает «статистической» изотропией: изотропия таких тел есть результат усреднения, обусловленного хаотическим расположением составляющих молекул. Отдельные молекулы или их группы молекул могут быть анизотропны, но эта микроскопическая анизотропия в среднем сглаживается случайным взаимным расположением отдельных групп, и макроскопически среда остается изотролной. Но если какое-либо внешнее воздействие дает достаточно ясно выраженное преимущественное направление, то возможна перегруппировка анизотропных элементов, приводящая к макроскопическому проявлению анизотропии. Не исключена возможность и того, что достаточно сильные внешние воздействия могут деформиговать даже вначале изотропные элементы, создавая и микроскопическую анизотропию, первоначально отсутствующую. По-видимому, подобный случай имеет место при одностороннем сжатии каменной соли или сильвина (см. § 142.) Достаточные внешние воздействия могут проявляться и при механических деформациях, вызываемых обычным давлением или возникающих при неравномерном нагревании (тепловое расширение и закалка), или осуществляться электрическими и магнитными полями, налагаемыми извне. Известны даже случаи, когда очень слабые воздействия, проявляющиеся при течении жидкостей или пластических тел с сильно анизотропными элементами, оказываются достаточными для создания искусственной анизотропни.

§ 151. Анизстропия, возникающая при деформациях

Явление двойного лучепреломления при механической деформации было открыто Зеебеком (1813 г.) и Брюстером (1815 г.). В случае одностороннего сжатия или растяжения, например вдоль

MN (рис. 27.1), это направление становится выделенным и играет МN (рис. 21.1), ото патические свойства деформированного таким роль оптической оси. Оптические свойства деформированного таким образом тела соответствуют свойствам одноосного кристалла. Показатели преломления ne и no, соответствующие колебаниям, совер. шаемым вдоль направления MN и перпендикулярно к нему, макси-

Рис. 27.1. Схема расположения приборов для наблюдения двойного лучепреломления при деформациях.

мально отличаются друг от друга.

Схема опыта для изучения искусственной анизотропии одинакова со схемой, применяемой при наблюдении двойного лучепреломления в кристаллах (см. рис. 27.1); конечно, главные плоскости поляризаторов N₁ и N₂ составлять должны угол (лучше всего в 45°) с «осыо» тела.

Опыт показывает, что разность $n_o - n_e$, являющаяся

-1 01

мерой анизотропии, пропорциональна величине напряжения Р = = F/S = F/lh, т. е. величине силы, приходящейся на единицу плошали:

$$n_o - n_e = \kappa P, \qquad (151.1)$$

где к — константа вещества.

Разность хода, приобретаемая лучами при прохождении слоя вещества толщины 1, равна

$$\delta = l \left(n_0 - n_e \right) = \kappa P l; \tag{151.2}$$

выражая, как часто делают, разность хода в длинах волн, пайдем

$$\delta_1 = \frac{\delta}{\lambda} = \frac{\kappa}{\lambda} Pl = CPl, \qquad (151.3)$$

где $C = \kappa / \lambda$ — величина, характеризующая вещество.

Разность показателей преломления $n_o - n_e$ может быть положительной и отрицательной в зависимости от материала. Кроме того, no н ne зависят от длины волны (дисперсия двойного лучепреломле ния), вследствие чего при наблюдении в белом свете искусственно анизотропное тело при скрещенных поляризаторах оказывается пестро окрашенным. Распределение окраски может служить хорошим качественным признаком распределения напряжений; кроме того, возникновение окрашенных полей оказывается более чувствительным признаком проявления анизотропии, чем простое просветление, имеющее место при монохроматическом свете.

гл. ххун. искусственная анизотропия

Регистрация искусственной анизотропии является очень чувствительным методом наблюдения напряжений, возникающих в прозрачных телах. Его с успехом применяют для наблюдения за напрярачных изделиях (паянных изделиях (паянных и прессованных), охлаждение которых производилось недостаточно медленно. К сожалению, громадное большинство технически важных материалов непрозрачно (металлы), вследствие чего этот прием к ним непосредственно не приложим. Однако в последнее время получил довольно широкое распространение оптический метод исследования напряжений на искусственных моделях из прозрачных материалов (целлулоид, ксилонит и т. д.). Приготовляя из такого материала модель (обыкновенно уменьшенную) подлежащей исследованию детали, осуществляют нагрузку, имитирующую с соблюдением принципа подобия ту, которая имеет место в действительности, и по картине между скрещенными поляризаторами изучают возникающие напряжения, их распределение, зависимость от соотношения частей модели и т. д. Хотя приводимые выше эмпирические закономерности, связывающие измеренную величину $n_o - n_e$ и величину напряжения Р, позволяют в принципе по оптической картине заключить о числениом распределении нагрузки по модели, однако практическое осуществление таких численных расчетов крайне затруднительно. Несмотря на ряд усовершенствований и в методике расчета, и в технике эксперимента, настоящий метод имеет главным образом качественное значение. Однако и в таком виде он дает в опытных руках довольно много, сильно сокращая предварительную работу по расчету новых конструкций. В настоящее время имеется уже общирная литература, посвященная применениям этого метода.

§ 152. Двойное лучепреломление в электрическом поле (явление Керра)

а. Общие сведения. Возникновение анизотропии под действием внешнего электрического поля представляет собой явле ние, с теоретической стороны значительно глубже разработанное, чем явления, изученные в предыдущем параграфе и имеющее поэтому гораздо большее значение как для понимания механизма анизотропии вообще, так и для вопросов, связанных с исследованием молекулярной структуры. Причина этого лежит прежде всего в том, что явление Керра удалось наблюдать в гораздо более простых для теоретической трактовки условиях, а именно в газах, хотя первые изблюдения относились к твердым телам и жидкостям, в которых этот эффект выражен значительно сильнее. Кроме того, механизм воздействия внешнего однородного электрического поля на молекулы гораздо проще и понятиее, чем эффекты механических деформаций, трактовка которых требует исследования воздействия на

молекулы междумолекулярных электромагнитных полей, изменяющихся вследствие деформаций, т. е. исследования влияния очень сложного и плохо изученного фактора.

Вместе с тем явление Керра нашло за последние годы ряд чрезвычайно важных научных и научно-технических применений, основанных на способности его протекать практически безынерционно, т. е. следовать за очень быстрыми переменами внешнего поля. Таким образом, и по теоретической, и по практической ценности явление двойного лучепреломления в электрическом поле принадлежит к числу крайне интересных и важных. Как уже упоминалось (см. § 2), о желательности постановки подобных опытов писал еще Ломоносов (1756 г.); о неудаче попытки обнаружить, влияет ли электризация на преломляющую способность жидкости, сообщает Юнг (1800 г.); и лишь в 1875 г. были выполнены опыты Керра. надежно установившие явление. Керр показал, что многие жидкие диэлектрики становятся анизотропными под действием электрического поля. Опыты с жидкими диэлектриками имеют решающее значение, ибо для жидких веществ деформация, могущая возникнуть под действием электрического поля (электрострикция), не вызывает двойного лучепрелемления *), так что в опытах с жидкостью мы имеем электрооптические явления в чистом виде. Описанный Кергом эффект стал первым доказательством того, что оптические свойства вещества могут изменяться под влиянием электрического поля.

Наряду со знаменитым явлением Фарадея (вращение плоскости поляризации в магнитном поле, 1846 г.), которое было первым исследованным магнитооптическим эффектом, явление Керра сыграло важную роль в обосновании электромагнитной теории света. В более поздние годы (1930 г. и позже) удалось наблюдать двоїное лучепреломление под действием электрического поля в парах и газах. Измерения эти гораздо труднее измерений в жидкостях вследствие малости эффекта, зато теория явления приложима к ним с меньшими оговорками.

б. Методы наблюдения и экспериментальные данные. Под влиянием электрического поля вещество становится в оптическом отношении подобным одноосному кристаллу с оптической осью вдоль направления электрической напряженности, являющегося осью симметрии.

Схема наблюдения явления изображена на рис. 27.2. Главные плоскости поляризаторов N₁ и N₂ составляют с направлением поля угол, отличный от нуля (лучше всего 45°).

Если поляризаторы скрещены и электрическое поле не наложено, то свет не проходит через нашу систему. При наложении электрического поля жидкость между обкладками конденсатора

^{*)} Исключения составляют очень вязкие жидкости (например, желатин, пропитанный водой), в которых наблюдались подобные явления.

гл. ХХVИ. ИСКУССТВЕННАЯ АНИЗОТРОПИЯ

становится двоякопреломляющей, так что свет, выходящий из К, оказывается эллиптически-поляризованным и может быть исследован при помощи компенсатора В.

ван при показывает, что для монохроматического света данной длины волны λ разность показателей преломления $n_e - n_o$ пропорциональна квадрату напряженности поля E:

$$n_{e} - n_{o} = \kappa E^{2},$$
 (152.1)

и, следовательно, разность хода, приобретаемая лучами на пути *l*, равна

$$\delta = l (n_{e} - n_{o}) = \kappa l E^{2} \qquad (152.2)$$

Рис. 27.2. Схема расположеняя приборов для наблюдения двойного лучепреломления в электрическом поле.

(здесь и дальше предполагается, что поле однородно, а луч перпендикулярен к направлению поля).

$$\varphi = 2\pi\delta/\lambda = 2\pi B l E^2, \qquad (152.3)$$

где $B = \kappa / \lambda$ — постояниая Керра.

Как видно из квадратичной зависимости в ог E, сдвиг фазы не зависит от направления поля.

Для большинства жидкостей $n_e > n_o$, т. е. B > 0: их анизотропия соответствует анизотропин положительного кристалла. Есть, однако, жидкости, для которых B < 0 (например, этиловый эфир, многие масла и спирты). Численные значения постояшной Керра для разных веществ весьма различны. Максимальным значением В среди всех известных веществ обладает нитробензол, для которого приблизительно $B = 2 \cdot 10^{-5}$ СГСЭ *). Таким образом, если, например, на обкладки конденсатора длиной l = 5 см с расстоянием между ними d = 1 мм наложена разность потенциалов в 1500 В, т. е. напряженность поля равна 15 000 В/см = 50 СГСЭ, то разность фаз в нитробензоле достигает 1/2, пными словами, такой конденсатор Керра действует, как пластинка в четверть волны. Понятно, что нетрудно обнаружить гораздо меньшую разность фаз, и, следовательно, опыты с интробензолом не наталкиваются на какие-либо Трудности, связанные с чувствительностью. Поэтому интробензол натолистью, находит себе широкое применение во всех технических устрействах.

Для других жидкостей постоянная Керра значительно меныше; например, для хлорбензола она равна 10·10⁻⁷, для волы 5·10⁻⁷, для сероуглерода 3,5·10⁻⁷, для бензола 0,5·10⁻⁷ СГСЭ. Еще меныше постоянная Керра для газов. Так, для парообразного сероуглерода

^{•)} Мы оставляем в стороне некоторые материалы (папример, коллондный раствор одного сорта глицы, так называемого бентолита), для которых постоянная Керра может достигать значений, в 10° раз больших. Эти материалы представляют некоторый интерес для техники.

(при давлении 900 мм рт. ст. и температуре 57 °C) $B = 3,6\cdot10^{-10}$, для парообразного нитробензола $27\cdot10^{-10}$, а для такого газа, как азот, всего лишь $0,4\cdot10^{-10}$ СГСЭ.

Из приведенных данных, относящихся к длине волны $\lambda = 546,0$ нм (зеленая линия), видно, насколько трудно исследование явления Керра в газах. В первых измерениях этого рода применялся конденсатор с длиной пластин 50 см и с расстоянием между ними около 4 мм, на которые накладывалась разность потенциалов

Рис. 27.3. Схом интерференционного метода чаблюдения разности (n_c — n) или (n_o — n) пра двойном лучепреломлении. 15 000 — 20 000 В, так что напряженность поля достигала 40 000—50 000 В/см и получающаяся разность хода измерялась с помощью специальных анализаторов с точностью до 5 · 10⁻⁶ длины волны.

Постоянная Керра увеличивается при уменьшении длины волны (дисперсия) и сильно уменьшается при повышении температуры.

В обычной схеме наблюдения определяется только

разность $n_e - n_o$; можно, однако, определить и значения n_e и n_o в отдельности. Для этой цели измеряют разность $n_e - n$ или $n_o - n$, т. е. разность между показателем преломления необыкновенного (или обыкновенного) луча и показателем преломления вещества ече электрического поля.

Такие определения можно выполнить интерференционным методом по схеме рис. 27.3. Сущность этого метода, принадлежащего Л. И. Мандельштаму, состоит в том, что один из лучей в интерферометре Жамена пропускают через жидкость, помещаемую в электрическое поле (между пластинками конденсатора, расположенного в кювете K), а другой луч направляют через жидкость, находящуюся вне электрического поля. Измеряя смещение полос интерференционной картины при включении электрического поля, определяем $n_e - n$ или $n_o - n$ в зависимости от первоначальной установки поляризатора N. Если поляризатор установлен так, что колебания вектора электрического поля света происходят параллельно внешнему полю (вдоль «оптической оси»), то наблюдаемое смещение полос определяет величину $n_e - n$; при повороте поляризатора на 90° — величину $n_o - n$.

Результаты тщательных измерений величии $n_e - n$ и $n_o - n$ дают (для большинства веществ)

$$\frac{(n_e-n)}{(n_o-n)}=-2.$$

(152.4)

гл. ХХУП. ИСКУССТВЕННАЯ АНИЗОТРОПИЯ

в. Я вление Керра, вызванное электрическим полем мощного импульса света. Выше речь шла о возникновении двойного лучепреломления в изотропной среде под действием постоянного электрического поля. Такое же явление наблюдается и в переменном электрическом и даже в поле

световой волны. Развитие лазерной техники позволило генерировать импульсы света с напряженностью электрического поля, достигающей очень больших значений (см. ниже гл. XL), и экспериментально доказано,

Рис. 27.4. Принципиальная схема опыта по созданию двойного лучепреломления под действием мощного импульса света.

что под действием поля мощного импульса света в жидкостях возникает двойное лучепреломление. В первом опыте такого рода (Майер и)Кирэ, 1964 г.) длительность импульса света составляла $5,5 \cdot 10^{-8}$ с, энергия 0,14 Дж, а среднеквадратичная напряженность $\sqrt{E^2} = 39$ кВ/см. Принципиальная схема опыта показана на рис. 27.4. После светофильтра F голубой свет ($\lambda \approx 500$ нм) справа налево проходит через ячейку, наполненную изучаемой жидкостью, налево проходит через ячейку, наполненную изучаемой жидкостью, но отразившись от пластинки S, попадает на фотоумножитель ϕ ЭУ. п, отразившись от пластинки S, попадает на фотоумножитель ϕ ЭУ.

Волкет попасть в $\Phi \partial Y$. Если в такую установку слева направо входит мощный импульс света, то он вызывает в жидкости двойное лучепреломление и голубой свет будет попадать на $\Phi \partial Y$, пока импульс проходит через ячейку с жидкостью. Для определения постоянной Керра В измеряется с жидкость хода δ (см. (152.2)), создаваемая под действием поля лазерразность хода δ (см. (152.2)), создаваемая под действием поля лазериого импульса, а затем в ячейке такой же длины и с тем же веществом

добнваются той же разности хода, накладывая постоянное поле. Оказалось, что равные разности хода в случае бездипольных молекул жидкости создаются практически равными напряженностями поля, что означает равенство постоянных Керра в статическом поле и при световой частоте.

Однако для дипольных молекул результат оказывается существенно иным. Например, для нитробензола постоянная Керра в поле световой частоты приблизительно в 100 раз меньше, чем в статическом или квазистатическом поле.

г. Основы теорни явления. С молекулярной точки зрения объяснение явления Керра лежит в оптической анизотропии молекул жидкости или газа, в которых наблюдается этот эффект. Такие анизотропные молекулы в поле световой волны обнаруживают большую или меньшую поляризуемость в зависимости от ориентанки их по отношению к электрическому вектору световой волны. Однако в обычных условиях молекулы, составляющие среду, расположены вполне хаотически, так что при распространении световой волны с любым направлением электрического вектора и по любому паправлению она будет встречать в среднем одинаковые условия: среда ведет себя как макроскопически изотропная. Но если наложение достаточно сильного электрического поля вызовет преимущественную ориентацию молекул, то некоторое направление в среде окажется направлением большей поляризуемости, чем другие. Поэтому и скорость распространения световых воли будет зависеть от расположения электрического вектора волны внутри среды, т. е. от направления распространения световых волн и характера их поляризации: среда приобретает анизотропный характер.

Так как внешнее электрическое поле является осью симметрин, то диэлектрические проницаемости вдоль поля и в перпендикулярном направлении будут различны; но все направления, перпендикулярные к направлению поля, равноправны. Выбрав оси координат вдоль поля (г) и в двух взаимно перпендикулярных направлениях, например вдоль луча (у) и перпендикулярно к нему (х), получим три главных направления со значениями диэлектрической проницаемости ε_x и $\varepsilon_x = \varepsilon_y$. Таким образом, эллипсоид диэлектрической проницаемости есть эллипсоид вращения, и среда подобна одноосному кристаллу, причем направление электрического поля представляет собой оптическую ось.

Орнентация анизотропных молекул под действием внешнего электрического поля может происходить двояким образом. Первоначальная теория (Ланжевен, 1910 г.) рассматривала молекулы, которые не имеют собственного электрического момента, но приобретают его под действием внешнего поля. В первом приближении величину приобретенного молекулой момента µ можно считать пропорциональной напряженности внешнего поля E, т. е. µ = кE. Для анизотропных молекул к зависит от направления внутри молекулы, и µ не совпадает с направлением действующего поля. Поэтому возникает пара сил, момент которой стремится ориентировать молекулы осью наибольшей поляризуемости вдоль поля. Таким образом, среда становится анизотропной. Направление этого момента остается неизменным при изменении направления поля на противоположное, и поэтому даже при световых частотах поля происходит ориентация молекул.

проискод на среду падает свет, то наибольший показатель преломскли на среду падает свет, то наибольший показатель преломления будут иметь волны, электрический вектор которых направлен вдоль линии максимальной поляризуемости, т. е. вдоль внешнего поля. Так как направление внешнего поля играет по отношению к среде роль оптической оси, то, следовательно, волна с наибольшим показателем преломления есть волна необыкновенная (колебание вдоль оси), т. е. $n_e > n_o$ и B > 0.

Таким образом, теория Ланжевена объясняет явление Керра, но оставляет непонятным существование (хотя и в меньшем количестве) веществ, для которых $n_e < n_o$, т. е. B < 0.

Борн (1916 г.) дополнил теорию Ланжевена, приняв во внимание возможность существования молекул со значительным постоячным электрическим моментом, направление которого может не совпадать с направлением наибольшей поляризуемости. В таком случае нолекула ориентпруется внешним полем так, что по направлению внешнего поля стремится установиться ее постоянный момент, а направление наибольшей поляризуемости (т. е. наибольшей диэлектрической проницаемости) может составить заметный угол с направлением внешнего поля (играющим роль оптической оси). В зависимости от взаимного расположения этих двух направлений вещество может характеризоваться положительным или отрицательным значением постоянной Керра В. В частности, если направление максимальной поляризуемости совпадает с направлением постоянного момента, то B > 0; если они взаимно перпендикулярны, то В < 0. При некотором промежуточном положении В может равняться нулю, т.е. вещество не обнаруживает явления Керра. Отсюда понятно, почему вещества с близкими электрическими моментами и не сильно различающимися поляризуемостями (показателями преломления) могут очень сильно отличаться по отношению к эффекту Керра. Так, метилбромид имеет постоянную Керра, в сотни раз большую, чем метиловый спирт, хотя электрические моменты их и поляризуемости отличаются незначительно.

При световых частотах внешнего поля дипольная молекула, вследствие своей инерциозности, не успевает орнентироваться в такт с изменениями направления напряженности поля; следовательно постоянный дипольный момент молекулы перестает вносить свой вклад в постоянную Керра. Поэтому при световых частотах внешнего поля постоянная Керра нитробензола, например, в 100 раз меньше, чем в статическом поле. Молекулярно-кинетическое вычисление анизотропии, возникающей под действием электрического поля, требует статистического учета всех возможных ориентаций молекул под действием внешнего поля *E* и теплового движения. Оно приводит к результатам, согласным с опытом, а именно: постоянная Керра должна быть пропорциональна квадрату напряженности внешнего поля и уменьшается с увеличением температуры, ибо под действием тепловых столкновений расстраивается ориентация молекул, определяющая возникновение анизотропии.

Как уже упоминалось, ориентационная теория может претендовать на количественное совпадение с опытом только в случае газов, когда можно не учитывать взаимодействия между молекулами, характерные для жидкостей. Приводимая таблица для парообраз-

Таблица Температурная зависимость постоянной Керра Лдля этилхлорида

Абсолютная температу- ра, К	В-1010 при 760 мм рт. ст.		
	илблюденная	вычисленная	
291 328,7 377 452,5	9,55 7,25 4,42 2,56	9,55 7,30 4,40 2,61	

ного этилхлорида показывает, насколько хорошо температурная зависимость согласуется с опытом.

Исходя из общих соображений, можно также до известной степени сделять понятным, почему разность $n_e - n_o$ в явлении Керра пролорциональна квадрату напряженности электрического поля. Действительно, изменение знака поля соответствует изменению на 180° положения кристалла, которому

уподобляется вещество в электрическом поле, т. е. переворачнванию кристалла. Но такое переворачивание не меняет оптических свойств кристалла. Следовательно, и оптические свойства вещества не должны зависеть от направления электрического поля, т. е. разность $n_e - n_o$ должна быть пропорциональна четной степени напряженности поля, и именно второй, ибо члены высшего порядка играют меньшую роль. Теория также приводит к отношению $(n_e - n)/(n_o - n) = -2$, установленному на опыте.

д. В ремя существования явленному на опытона существования явления Керра. Некоторые применения ячейки Керра. Для исследования природы явления Керра немаловажно решение вопроса о длительности процессов, прибодящих к возникновению или исчезновению двойного лучепреломления в электрическом поле.

Измерение времени существования в электрическом поле-Измерение времени существования явления Керра было начато Абрагамом и Лемуаном (1899 г.) и несколько раз повторялось вплоть до 1939 г. Во всех этих работах не удавалось измерить искомое время с удовлетворительной точностью, но можно было только сказать, что оно меньше 10⁻⁸ с, а в некоторых случаях даже меньше 10⁻⁶ с.

гл. ххvи. искусственная анизотропия

Количественное определение времени существования явления Керра удалось произвести только с применением мощных и коротких керра удалось при коротких и кор импульсов импульс света с длиной волны $\lambda = 1,06$ мкм и длительмощнын порядка 10⁻¹² с проходит через кристалл дигидрофосфата ностью пореда (КDР), в котором небольшая его часть превращается калия и се удвоенной частотой, т. е. его длина волны $\lambda = 0,53$ мкм (подробно об этом явлении см. § 236). Зеркало S₁ пропускает инфракрасный свет и отражает зеленый, а зеркало S2 пропускает зеленый и отражает инфракрасный. За зеркалом S₂ расположена

Рис. 27.5. Схема для определения времени исчезновения двойного лучепреломления.

ячейка с изучаемым веществом между скрещенными поляризаторами Р₁ и Р₂. После Р₂ помещается светофильтр F, отсекающий инфракрасный и пропускающий на фотоумножитель ФЭУ только зеленый свет. Можно так расположить детали установки, чтобы оптические пути зеленого и инфракрасного лучей были одинаковыми. С помощью пластинок стекла D различной толщины можно задерживать прибытие зеленого луча в ячейку на различные промежутки времени. Устройства различной конструкции, позволяющие соз-Давать задержку в прибытии одного сигнала относительно дру-Гого, носят название линий задержки. Мощный импульс инфракрасного излучения создает в ячейке двойное лучепреломление, в результате которого зеленый свет также проходит через всю систему и достигает фотоумножителя.

Если зеленый свет дойдет до ячейки раньше мощного импульса или много позже его, то он, разумеется, не сможет достигнуть фотоумножителя.

Во всех промежуточных случаях, которые можно осуществлять, меняя величину задержки, на фотоумножитель будет попадать нарастающее количество света, которое достигнет мак-симумо симума и затем начнет уменьшаться. Как показывают расчеты,

время существования явления Керра, или, что то же самое, время релаксации анизотропки, может быть определено из хода убывания интенсивности света зеленого импульса в зависимости от разности времен прихода обоих импульсов.

Такие измерения показали, что время релаксации анизотропин в сероуглероде равно 2.10⁻¹² с, а в нитробензоле 50.10⁻¹² с. Полученные таким способом данные находятся в хорошем согласии с косвенными методами измерения этих величин (см. § 161 г).

Ячейка Керра, работающая в электрическом поле короткого мощного светового импульса, может служить фотографическим затвором, который позволяет делать время экспозиции порядка 10⁻¹² с. Она с успехом применяется для изучения длительности люминесценции и других молекулярных процессов. Ячейка Керра, подобная изображенной на рис. 27.2, может служить для модуляции интенсивности света; необходимо только питать конденсатор напряжением высокой частоты.

Если к обкладкам конденсатора Керра подавать импульс напряжения, то ячейка играет роль затвора, длительность действия которого определяется длительностью электрического импульса.

Ячейки Керра как модулятор и затвор применяются для управления режимом работы оптических квантовых генераторов (см. § 226).

Благодаря чрезвычайной быстроте установления и исчезновения эффекта Керра оказалось возможным использовать его для многих научных и технических целей.

§ 153. Двойное лучепреломление в магнитном поле (явление Коттон — Мутона)

Аналогично возникновению двойного лучепреломления в электрическом поле возможно также и создание искусственной анизотролни под действием магнитного поля. Если анизотропные молекулы обладают дополнительно постоянным магнитным моментом (парамагнитное тело), подобно тому, как молекулы, будучи анизотропными, обладают постоянным электрическим моментом, то их поведение под действием магнитного поля должно представлять аналогню с явлением, наблюдаемым в электрическом поле. В отсутствие внешнего магнитиого поля хаотическое расположение молекул обеспечивает макроскопическую изотропию среды, несмотря на анизотропню отдельных молекул. Наложение достаточно сильного магнитного поля, воздействующего на магнитные моменты молекул, орнентирует их определенным образом относительно этого внешнего поля. Ориентация анизотропных молекул сообщает всей среде свойства анизотропни, которые можно наблюдать обычным способом. Денствители ис Действительно, удалось обнаружить возникисвение двойного лучапреломления под действием сильного магнитного поля, направлен-

гл. ХХVИ. ИСКУССТВЕННАЯ АНИЗОТРОПИЯ

ного поперечно к линии распространения света. Схема расположения опыта аналогична схеме, применяемой для наблюдения явления Керра. Закон двойного лучепреломления в магнитном поле, который можно вывести на основании этих опытов, аналогичен находимому для явления Керра, а именно, он имеет вид

$$n_e - n_o = DH^2$$
 или $\frac{\delta}{\lambda} = \frac{I(n_e - n_o)}{\lambda} = ClH^2$, (153.1)

где H — напряженность магнитного поля, $C = D/\lambda$ — постоянкая, зависящая от свойств среды. Величина этой постоянной очекь мала, так что результат удалось получить лишь благодаря применению мощного магнита, позволявшего создавать сильные поля в больших объемах. Так, для нитробензола найдено $C = 2,53 \cdot 10^{-12}$ СГСМ. Это значит, что, например, в поле 20 000 Э при длине световсго пути, равной 8 см, разность хода двух компонент равнялась 0,008 λ , что соответствует разности фаз всего около 3°. Закономерности и теория описываемого явления представляют полную аналогию с закономерностями и теорией явления Керра.

молекулярная оптика

Глава XXVIII

ЛИСПЕРСИЯ И АБСОРБЦИЯ СВЕТА

§ 154. Трудности электромагнитной теории Максвелла

Световая волна в вакууме представляет собой переменное электромагнитное поле высокой частоты, распространяющееся с постоянной скоростью (c = 2,9979 · 10¹⁰ см/с), не зависящей от частоты. Последнее обстоятельство может считаться установленным с большой степенью достоверности наблюдениями над астрономическими явлениями. Так, исследование затмения удаленных двойных звезд не обнаруживает никаких аномалий в спектральном составе света, доходящего до нас в начале и конце затмений. Между тем затмение звезды или выход ее из тени своего спутника означает обрыв или начало распространения светового импульса, далеко не монохроматического и могущего рассматриваться как результат наложения многих монохроматических излучений. Если бы скорость этих Излучений в межпланетном пространстве была различна, то импульс должен был бы дойти до нас значительно деформированным. Например, предположим для простоты, что этот импульс можно уподобить двум почти монохроматическим группам, «синей» и «красной», и примем, что скорость распространения «красной» группы больше, чем «синей»; мы должны были бы наблюдать при начале затмения изменение цвета звезды от нормального к синему, а при окончания его — от красного к нормальному. При огромных расстояннях, отделяющих от нормальному. При огромных расстояннях, отделяющих от нас двойные звезды, даже ничтожная разница в скоростях лоличие с в скоростях должна была бы дать заметный эффект. В действитель-ности же такой онности же такой эффект не имеет места. Так, наблюдения Араго над всременной зволлов. всременной звездой Алголь привели его к заключению, что разность между скоростию воста между скоростью распространения красного и фиолетового излучения во всяком отчетового налучения красного и фиолетового излучения во всяком отчетового налучения красного и фиолетового налучения самой ния во всяком случае меньше одной стотысячной величны самой скорости. Эти и посто скорости. Эти и подобные наблюдения заставляют признать, что дисперсия света в может признать, при дисперсия света в межпланетном пространстве *) отсутствует. При

^{•)} Межпланетное пространство может рассматриваться как нанболее пол-приближение к вакууму. Цо ополно рассматриваться как нанболее полность вое приближение к вакууму. По астрофизическим данным средняя плотность

вступлении же в обычные среды свет испытывает изменение скорости (рефракция или преломление), и притом для разных частот скорость в средах оказывается различной, т. е. показатель преломления nзависит от частоты или длины волны: $n = f(\lambda)$ (дисперсия света).

зависит от исперсии света является одним из фундаментальных Наличие дисперсии света является одним из фундаментальных затруднений первоначальной электромагнитной теории света Максвелла. Эта теория, связавшая воедино электромагнитные и оптические явления, представляла громадный шаг вперед и стала научным обобщением крупнейшего масштаба. Теория Максвелла позволила раскрыть смысл явления Фарадея (вращение плоскости поляризации в магнитном поле), открытого почти за четверть века до того; она, несомненно, стимулировала дальнейшие изыскания в области магнето- и электрооптики, приведшие к двум важным открытиям Керра: двойного лучепреломления в электрическом поле и поворота плоскости поляризации при отражении от намагниченного ферромагнетика. Наконец, теория Максвелла устранила ряд неясностей и противоречий «упругой» оптики.

Важнейшим выводом теории Максвелла явилось положение, согласно которому скорость распространения электромагнитного поля в вакууме равняется отношечию электромагнитных и электростатических единиц силы тока; второй, не менее взжиый внвод гласил, что показатель преломления электромагнитиых воли равняется V єµ, где є — диэлектрическая, а µ — магнитная проницаемости среды. Таким образом, скорость распространения электромагнитной волны, в частности света, оказалась связанной с константами вещества, в котором распространяется свет. Эти константы первоначально вводились в уравнения Максвелла формально и имели чисто феноменологический характер. Напомним, что в механической (упругой) теорин никакой связи между оптическими характеристиками среды (скорость света) и ее механическими свойствами (упругость, плотность) установлено не было. Известно, что для целого ряда газообразных и жидких диэлектриков соотношение Максвелла $n = V \epsilon \mu \approx V \epsilon$ (ибо µ близко к 1) выполняется достаточно хорошо; об этом свидетельствуют следующие данные для различных веществ:

	n	VE
Азот	1,000299	1,000307
Водород	1,000139	1,000139
Углекислота	1,000449	1,000485
Гелий	1,000035	1,000037
Закись азота	1,000507	1,000547
Толуол жидкий	1,499	1,549
Бензол	1,501	1,511

вещества в межпланетном пространстве — около одного атома на 1 см³, тогда как в лучших вакуумных приборах она не меньше 10⁴ атомов на 1 см³ (а обычно гораздо больше).
Однако для многих других тел, например для стекла и таких жидкостей, как вода и спирты, є гораздо больше n^2 . Так, для воды $n^2 = 1,75$, тогда как $\varepsilon = 81$. Кроме того, как уже сказано, показатель преломления зависит от длины волны (дисперсия). Таким образом, выяснилась необходимость дополнения уравнений Максвелла какой-либо моделью среды, описывающей явление дисперсия. Трудности объяснения дисперсии света в рамках представлений электромагнитной теории полностью устраняются электронной теорией, позволившей дать молекулярное истолкование феноменологическим параметрам є и μ и объяснившей одновременно влияние частоты электромагнитного поля на є и, следовательно, на n.

§ 155. Дисперсия света. Методы наблюдения и результаты

Любой метод, который применяется для определения показателя преломления, — преломление в призмах, полное внутреннее отражение, интерференционные приборы — может служить для обнаружения дисперсии.

Первые экспериментальные исследования дисперсии света, принадлежащие Ньютону (1672 г.) *), были выполнены по способу предотления в призыс, представляющему и поныне хороший метса для демонстраций и исследований. Паправляя пучок белого света от линейного источника (щель), параллельного ребру призмы, и проектируя изображение щели на экран, мы не только наблюдаем отклонение изображения (преломление в призме), но вследствие зависимости угла преломления от длины болны получаем изображе ние щели растянутым в виде цветной полосы (спектр). При сравнения спектров, полученных с помощью призм с равными преломляющими углами, по из разных веществ, можно заметить, что спектры не только отклонены на разные углы, что обусловлено разными значениями п для одной и той же длины волны λ, но и растянуты на большую или меньшую длину вследствие различия в величине дисперсии для разных веществ. Так, при сравнении одинаковых призм из роли и случае призм из воды и сероуглерода мы увидим, что во втором случае спектр (от урасника сручае чем спектр (от красных до фиолетовых лучей) в 5-6 раз длиннее, чем в первом.

Измеряя показатель преломления для разных длин волн, можно исследовать дисперсионную способность вещества призмы, т.е. функцию $n = f(\lambda)$. Очень наглядный метод, обрисовывающий

^{*)} Разложение солнечного света в спектр в естественных условиях пронехолит в радуге, известной, конечно, с незапамятных времен. Декарт дал элементарную теорию радуги, основанную, по существу, на долущении зависимости показателя преломления от длины волны, но посвящению главным образом вычислению углов, под которыми видиы радуги разных порядков. Ньютон в своей «Оптике» воспроизводит рассуждения Декарта с указанием, что происхождение цветов ост.:залось Декарту неясным.

гл. XXVIII. ДИСПЕРСИЯ И АБСОРБЦИЯ СВЕТА

характер дисперсии материала призмы, был применен еще Ньютоном в его первых исследованиях. Это — Метод скрещенных призм, состоящий в том, что свет проходит последовательно через две призмы, преломляющие ребра которых расположены перпендикулярно друг к другу (рис. 28.1). Цветная полоска, получающаяся в результате действия одной призмы, отклоняется второй призмой в разных своих частях различно в зависимости от величины показателя преломления, так что окончательная форма и расположение спектра определяются величиной дисперсии обеих призм.

На основанни своих сравнительно немногочисленных опытов Ньютон пришел к ошибочному заключению, что относительная дисперсия (см. § 86) раз-

дисперсия (см. 3 00) раз личных прозрачных веществ одинакова.

В настоящее время нам известно, что зависимость между показателем преломления и дисперсией может быть весьма сложной, причем возрастание дисперсии не всегда идет рука об руку с увеличением преломления, хотя обычно подобный параллелизм на-

блюдается. Даже общий ход дисперсии — увеличение показателя преломления при уменьшении длины волны — не всегда имеет место. Леру (1862 г.), наблюдая преломление в призме, наполненной парами йода, обнаружил, что синие лучи преломляются меньше, чем красные (другие лучи поглощаются йодом и от наблюдения ускользают). Эту особенность Леру назвал аномальной дисперсией — название, удержавшееся и до нашего времени. Аномальный ход дисперсии наблюдается и в жидкостях: исследуя спектр при помощи призмы, наполненной раствором фуксина, об наружим, что фиолетовые лучи отклоняются меньше, чем красные,

Систематические исследования Кундта, который использовал аля своих опытов метод скрещенных призм, установили важный закон, согласно которому явление аномальной дисперсии тесно связано с поглощением света: все тела, обладающие аномальной исперсией в какой-либо области (рис. 28.2), сильно поглощают свет в этой области. Показатель преломления вблизи полосы поглощения меняется настолько быстро, что значение его со стороны более длинных волн (точка-M) больше, чем со стороны коротких (точка-N). Аномальный ход показателя преломления, т. е. его уменьшение при уменьшении длины волны, имеет место внутри полосы от точки M к N, где наблюдения очень трудны вследствие поглощения света.

Рис. 28.1. Метод скрещенных призм Ньютона.

Рис. 28.3 воспроизводит в форме кривой результаты наблюдения над дисперсией раствора цианина в области полосы поглощения: от *A* до *B* показатель преломления уменьшается, т. е. имеет ано. мальный ход. Общий ход показателя преломления на некотором расстоянии от полос поглощения соответствует обычному нормальному ходу дисперсии: медленное увеличение показателя преломления по мере уменьшения длины волны. Такой же ход имеет показатель преломления для прозрачных тел (стекло или кварц, например) на всем протяжении видимого спектра. Однако по мере продвижения в ультрафиолетовую или инфракрасную части спектра показатель

Рис. 28.2. Вид спектра, получаемого по методу скрещенных призм.

Рис. 28.3. Ход показателя преломления в цианине в области полосы поглощения.

преломления этих веществ начинает меняться довольно быстро, что указывает на приближение к полосам поглощения, которые действительно расположены в соответствующих участках спектра.

Таким образом, детальное исследование показывает, что всякое вещество имеет свои полосы поглощения, и общий ход показателя преломления обусловлен распределением этих полос по спектру. Поэтому противопоставление понятий нормальной и аномальной дисперсии теряет смысл. Полная дисперсионная картина для любого вещества состоит из областей аномальной дисперсии, соответствую щих областям внутри полос или линий поглощения, и областей нормальной дисперсии, расположенных между полосами поглощения.

(Связь между аномальной дисперсией и поглощением позволила Кундту высказать соображение, что сильно поглощением позволила пары должны также обладать аномальной дисперсией. Несколько лет спустя Кундту удалось наблюдать ожидаемое явление при лекционной демонстрации поглощения света парами натрия. Свет от источника разлагается в спектр при помощи вертикально поставленной призмы, дававшей спектр в виде горизонтальной полоски.

гл. ххvні. дисперсия и абсорбция света

На пути лучей была расположена горелка, в пламя которой вводились пары натрия. На экране обнаружилось не только появление темной полосы в желтой части спектра, характерной для поглощения света в парах натрия, но и загиб спектральной полоски в разные стороны по бокам области поглощения. В этой случайно наблюденной картине Кундт сразу узнал явление аномальной дисперсии. Конусообразный столб паров натрия, поднимавшийся над горелкой, играл роль призмы с горизонтальным преломляющим ребром (основание внизу), скрещенной с первой стеклянной призмой, стояв-

шей вертикально. Как видно из рис. 28.4, более длинноволновая часть а преломляется сильнее, чем более коротковолновая область б, для которой показатель преломления даже меньше единицы.

Рис. 28.4. Аномальная дисперсия в парах натрия (демонстрационный опыт).

Рис.	28.5.	Аномальная дисперсия	В
		парах натрия.	

а — при значятельной плотности пара обе линия поглощения натрия (дублет катрия) сливаются в полоску: б — при небольшой плотности пара обе линии дублета разделены.

Пары натрия имеют в желтой части спектра не одну линию поглощения, а две очень резкие и тонкие линии, расположенные на расстоянии 0,6 нм друг от друга. В описанном выше демонстрационном опыте плотность паров натрия была настолько велика, что обе линии поглощения D_1 и D_2 сливались в одну потоску Dи детали явления не были различимы. Улучшенные условия опыта позволяют наблюдать картину гораздо отчетливее: при значительной плотности пара видны широкая полоса поглощения и загибы на краях (рис. 28.5, *a*), при уменьшенной плотности пара — две области аномальной дисперсии, соответствующие двум линиям поглощения (рис. 28.5, *b*).

Так как наиболее отчетливая картина явления наблюдается в газах (парах), характеризующихся резкими линиями поглощения, то и проверку теоретических представлений лучше всего выполнять на газах, для которых, впрочем, и построение теории значительно проще. Поэтому большое значение приобрели методы исследования зависимости показателя преломления от длины волны, позволяющие

производить точные измерения в газах. Ввиду малого отличия их производить точные полер и (особенно при малой плотности, на показателя преломления от 1 (особенно при малой плотности, необ. показателя предоле вблизи линии поглощения) приходится приме нять интерференционные рефрактометры.

Наилучшие результаты получаются по методу «скрещения» спектральных аппаратов, причем одним из них служит, например, интерферометр Жамена, а вторым — обычный спектрограф с призкитероного лиционной решеткой, обладающей большой дисперсией (Вуд, Д. С. Рождественский). Их надо расположить таким

Рис. 28.6. Расположение полос интерференции при скрещении интерферометра Жамена и спектрографа.

образом, чтобы полосы интерференции шли горизонтально, а щель спектрографа — вертикально. Если на щель спектрографа отобразить картину, даваемую интерферометром от источника белого света, т. е. совокупность цветных полос, то в фокальной плосхости камерного объектива спектрографа ΜЫ увидии сплошной спектр, про-

черченный в продольном направлении рядом темных линий, состветствующих тем местам щели спектрографа, на которые приходятся изображения темных полос интерференционной картины.

Период интерференционной картины пропорционален длине волны. Поэтому расстояние между темными полосами тем больше, чем больше длина волны, и система темных полос в спектрографе будет сужаться от красного конца спектра к фиолетовому, как показано на рис. 28.6. Отрегулируем приборы таким образом, чтобы нулевая полоса была прямолинейной и перпендикулярной к направлению щели, и примем ее за ось абсцисс. Ось ординат у направим вдоль щели спектрографа. Разность хода Δ (у) между лучами в двух плечах интерферометра зависит от у, как правило, линейно, т. е. $\Delta(y) = by$, где коэффициент b задается параметрами применяемых приборов. Ордината т-й полосы определится из условия

$$\Delta(y_m) = by_m = m\lambda.$$

 $(dy/d\lambda = m/b)$ интерференционных полос по мере роста m (см. рис. 28.6).

Если на пути одного из лучей интерферометра ввести слой вещества толщины h с показателем преломления $n = f(\lambda)$, то будет сообщена дополнитот сообщена дополнительная разность хода, равная h (n-1), и условне, определяющае остания разность хода, равная h (n-1), и условне, определяющее ординату т-й полосы, примет вид

$$by_m \pm h(n-1) = m\lambda$$
,

причем знак зависит от того, в какое из плеч интерферометра вве-

ГЛ. ХХVIII. ДИСПЕРСИЯ И АБСОРБЦИЯ СВЕТА

ден слой вещества. В результате интерференционные полосы испыден слои всидетиенное смещение вдоль щели спектрографа, и нулетают соответство в соответство в состротрафа, и нуле-вая полоса m = 0, ранее удовлетворявшая условию y = 0 (ось вая полоса ... y = 0 (ось абсцисс), теперь примет форму, соответствующую $y = \mp (n - 1)h/b$.

Рис. 28.7. Аномальная дисперсия в парах натрия (снимок Д. С. Рождественского).

Таким образом, нулевая полоса вычерчивает в определенном масштабе зависимость (n — 1) от λ, т. е. дает непосредственно кривую дисперсии. Полосы ненулевого порядка имеют дополнательныя наклон, увеличивающийся с ростом т.]

Если в качестве дополнительного слоя вещества ввести трубку, наполненную, например, парами натрия, то можно точно исследовать ход показателя преломления даже волизи линий поглощения, и притом тем ближе к ним, чем меньше поглощение в парах натрия. Фотография наблюдаемой картины, заимствованная из работы Д. С. Рождественского, приведена на рис. 28.7.

ГРождественскому важный метод, позволивший значительно попринадлежит высить точность измерения дисперсии в непосредственной близости к полосе поглощепня. Пользуясь возможностью менять наклон интерференционной полосы, вводя в какое-

Рис. 28.8. Аномальная дисперсия в парах натрия («метод крюков» Д. С. Рождественского).

нибудь плечо слой вещества, Д. С. Рождественский поместил в озном плече слой исследуемого вещества, а в другом — стеклянную пластинку. Так как в исследуемом веществе вблизи полосы поглощения дисперсия меняется очень сильно, то найдется такая длина Волны, для которой действие исследуемого вещества будет точно скомпольности в этом скомпенсировано действием стеклянной пластинки, так что в этом месте наклон интерференционной кривой пройдет через нуль; слева от этого значения длины волны кривые опускаются, а справа — поднимаются (или наоборот), образуя крюк, положение вершины которого в шкале длин воли можно точно измерить (рис. 28.8).

Ход интерференционных полос задается в этом случае условнем

 $by_m - h(n-1) + h'(n'-1) = m\lambda.$

18 Ландсберг Г. С.

молекулярная оптика

Второй и третий члены в левой части этого соотношения суть разности хода, вносимые слоем исследуемого вещества и стеклянной пластинкой, а h, h' и n, n' — их толщины и показатели преломления. Вдали от полос поглощения показатель преломления паров практически равен единице, и вид полос определяется действием одной стеклянной пластички: нулевая полоса уходит из поля зрения

интерферометра, а наблюдаются сильно наклоненные полосы высокого порядка (см. рнс. 28.9). Например, при h = 1 см, $n' - 1 \approx 0.5$, $\lambda = 0.5 \cdot 10^{-4}$ см находим

$$m \approx h' (n'-1)/\lambda \approx 10^4$$
.

Длина волны, отвечающая вершине крюка, определяется условнем $dy_m/d\lambda = 0$, которое приводит к соотношению

$$m-h'\frac{dn'}{d\lambda}=-h\frac{dn}{d\lambda},$$

означающему равенство абсолютных величин наклонов полос, даваемых по отдельности стеклянной пластинкой и слоем исследуемого вещества. Вследствие малой дисперсии стекла величина $|h'dn'/d\lambda|$ составляет всего несколько процентов от *m*, т. е. компенсация наклона полос из-за сильной дисперсии исследуемого вещества происходит, главным образом, за счет большого значения порядка интерференции *m*. Д. С. Рождественский указал изящный прием, с помощью которого комбинацию $m - h'dn'/d\lambda$ можно определить непосредственно по интерференционной картине.

Таким образом, по положению вершины крюка можно определить $dn/d\lambda$, т. е. дисперсию изучаемого вещества при том значении λ , которое соответствует точке излома интерференционной полосы. Меняя толщину h' стеклянной пластинки, можно смещать положение вершины крюка вдоль шкалы длин воли, переходя к местам различных значений $dn/d\lambda$, исследуя таким образом дисперсию в желаемом интервале длин воли.

«Метод крюков» Рождественского широко используется в точных исследованнях по дисперсии для измерения ряда атомных характеристик и с другими целями. В настоящее время он настолько разработан, что может служить демонстрационным опытом.

гл. ххvііі. дисперсия и абсорбция света

§ 156. Основы теории дисперсии

Плодотворная попытка истолкования богатого материала, полученного экспериментальным путем, была сделана еще в «упругой» теории света. Хотя эта теория не могла связать значение показателя преломления среды ни с каким из известных параметров последней, тем не менее истолкование явлений рефракции и дисперсии в веществе предпринято было уже давно.

Согласно представлениям Френеля свет распространяется в особой среде, светоносном эфире, обладающем свойствами упругого твердого тела, крайне разреженного и проникающего во все обычные среды. Скорость световой волны определяется в основном свойствами эфира, но в вещественных средах молекулы изменяют свойства эфира, в них заключенного, и, таким образом, влияют на скорость распространения света. Развивая идею Френеля об учете влияния молекул вещества на частички эфира, Коши (1829—1835 гг.) пришел к формуле, выражающей зависимость показателя преломления от длины волны

$$n = a + b/\lambda_0^2 + c/\lambda_0^4 + \dots, \tag{156.1}$$

где λ_0 — длина волны в вакууме, *a*, *b*, *c*, … — постоянные, значения которых для каждого вещества должны быть определены на опыте. В большинстве случаев можно ограничиться двумя первыми членами формулы (156.1). Формула Коши хорошо передает нормальный ход дисперсии. Так, очень тщательные измерения показателя преломления водорода можно при помощи соответственно подобранных коэффициентов *a*, *b*, и *c* передать формулой Коши очень хорошо, как показывает табл. 28.1.

Таблица 28.1

λ, Α	(п — 1) · 10' набл.	(<i>n</i> — 1)-10 ⁷ выч.	λ, Α	(n — 1)-10' набл.	(n-1)-10 ⁷ выч.
5462,260 4078,991 3342,439 2894,452	1396,50 1426,32 1461,33 1498,59	1396,50 1426,33 1461,18 1498,63	2535,560 2302,870 1935,846 1854,637	1546,90 1594,18 1718,24 1759,26	1547,01 1594,18 1718,37 1759,96

Сравнения экспериментальных результатов с данными, полученными по формуле Коши

Теория Коши была создана задолго до открытия аномальной дисперсни. Ее историческое значение очень велико, ибо это была первая работа, показавшая, что волновая теория в состоянии объяснить дисперсию света.

18+

После открытия аномальной дисперсии и установления ее связи с абсорбцией Зельмейер (1871 г.) *) дал полную теорию явления. с абсороциен основнения о взаимодействии молекул весомой среды и эфира. Особенностью теорни Зельмейера явилось допущение, что молекулы обладают собственными частотами колебаний, характерными для данного вещества, благодаря чему получило объяснение наличие определенных полос (линий) поглощения. Из рассуждений Зельмейера вытекало, что наличие таких собственных периодов приводит к зависимости показателя преломления от частоты, весьма хорошо передающей весь ход дисперсии как вблизи, так и вдали от полос поглощения. Основы теории Зельмейера сохранились и в дальнейших теориях дисперсии, в том числе и в современной электронной теории. Очень точные измерения зависимости п от λ . выполненные значительно позже (1912 г.) Д. С. Рождественским для паров натрия, показали, что расхождение между теорией Зельмейера и опытом не превышает 2-3%. При этом удалось осуществить измерения вплоть до областей, отличающихся не более чем на 0,5 А от длины волиы, соответствующей собственным колебаниям атома. В 1945 г. ученикам Д. С. Рождественского удалось усовершенствовать его методы и еще больше приблизиться к центру линии поглощения, повысив в то же время точность измерений.

В теорни Зельмейера оказалось возможным связать оптическую константу (скорость света в веществе) с другими параметрами вещества, с собственными периодами колебаний его молекул, определение которых, правда, должно было выполняться также оптическими методами. Электронное истолкование дисперсии с использованием понятия собственных колебаний атомов установило природу колеблющихся частиц (электроны и ионы) и позеолило значительно углубить наши представления о веществе и свете.

В настоящее время в связи с радикальным изменением наших представлений о законах, управляющих поведением атомов и молекул, — изменением, внесенным квантовой теорией, — мы вынуждены пересмотреть и теорию дисперсии. Однако, несмотря на коренную переработку этих представлений, основные существенные черты теории дисперсии сохранились и в квантовой ее трактовке **). При этом, однако, не только изменилась точка зрения на явление дисперсии, но и были открыты новые стороны его, ие предусмотренные

^{•)} Рэлей пишет: «Я установил позже, что Максвелл (до Зельмейера) рассмотрел проблему аномальной дисперсии. Его результаты содержатся в математических экзаменационных вопросах от 21. I. 1869 г. (Cambridge Calendar, 1869 г.). В этом экзаменационном вопросе уже имеются члены, учитывающие вязкость, введенные позже Гельмгольцем» (Rayleigh, Sci. Papers, v IV, р. 413). •) Это следано с так

^{••)} Это связано с тем, что взаимодействие между атомом и световой волной можно учесть в хорошем согласни с опытом, если рассматривать атом как совокупность гармонических осцилляторов, а для гармонического осциллятора классическая и квантовая трактовки задачи приводят к одинаковым результатам.

простейшими вариантами классической теории и нашедшие себе простепнити опытное подтверждение (отрицательная абсорбция, некогерентное рассеяние света).

Познакомимся несколько детальнее с основами электронной теории дисперсии. О квантовой теории несколько слов будет сказано позднее.

Как уже отмечалось, сущность взаимодействия света и вещества сводится к интерференции падающей (первичной) волны со вторичными волнами, возникающими вследствие колебаний электронов (и ионов) вещества, обусловленных действием поля первичной волны.

В настоящем разделе мы рассмотрим задачу более формально. исследуя зависимость диэлектрической проницаемости среды от частоты световых волн, вызывающих смещение электрических зарядов вещества. Как показывает явление Зеемана (см. гл. XXXI), главную роль в оптической жизни атома играет электрон; поэтому в дальнейшем мы для удобства будем говорить именно об электроне: однако все наши рассуждения остаются в силе и для иных заряженных частиц, входящих в состав атома. В частности, при исследовании показателя преломления в области длинных воли необходимо учитывать влияние ионов, способных к сравнительно медленным (инфракрасным) колебаниям.

Итак, для вывода зависимости показателя преломления от длины волны найдем, как зависит диэлектрическая проницаемость от частоты переменного электрического поля, и затем перейдем к показателю преломления n на основании соотношения $n = \frac{1}{\epsilon}$. В соответствии с теорией электронов будем рассматривать молекулы или атомы диэлектрика как системы, в состав которых входят электроны, находящиеся внутри молекул в положении равновесия. Под влиянием внешнего поля эти заряды смещаются из положения равновесия на расстояние r, превращая таким образом атом в элехтрическую систему с моментом величиной p = re, направленным вдоль поля (диполь). Если в единице объема нашей среды находится N атомов, которые испытывают поляризацию, то электрический момент единицы объема, или поляризация среды, будет равняться P = Np = Ner. При этом мы для простоты полагали, что в среде имеется лишь один сорт атомов и в каждом из них способен смещать ся только один электрон. В противном случае поляризация среды записывалась бы в виде (156.2)

$$P = \sum N_i e_i r_i, \tag{100.2}$$

где индекс і относится к і-му сорту зарядов. Зная электрическую поляризацию среды, нетрудно вычислить ее диэлектрическую проницеские среды, нетрудно вычислить страническая проницаемость є, нбо $D = eE = E + 4\pi P$, где D - электрическаяиндукция среды. Итак,

$$D = \varepsilon E = E + 4\pi Ner,$$

где r определяется полем E.

Задача сводится, таким образом, к определению смещения электрона r под действием внешнего, периодически меняющегося поля при учете сил, действующих на электрон, входящий в состав атома, со стороны частей этого атома и окружающих атомов, т. е. представляет собой задачу о вынужденных колебаниях электронов. При этом следует иметь в виду, что речь идет об электронах, частоты движения которых в атоме имеют тот же порядок величины, что и частота световой волны. Только такие электроны, как будет показано ниже, испытывают достаточно большое смещение и поэтому участвуют в рассматриваемых здесь процессах. Мы будем их называть оптическими электронами.

а. С и л ы, д е й с т в у ю щ и е и а электроны. 1) Удерживающая сила. Чтобы составить представление о характере сил, удерживающих оптический электрон около положения равновесия, иадо обратиться к изучению оптических свойств атома. Опыт показывает, что изолированные атомы всех веществ способны испускать практически монохроматические волны с характерными для каждого вещества частотами. Эти частоты не меняются при нагревании вещества, т. е. при увеличении средней энергии, приходящейся на один атом. Следовательно, сила, удерживающая электрон в положении равновесия, должна иметь характер упругой силы (ее называют поэтому квазиупругой), и зависимость ее от смещения электрона определяется законом

$$F = -br, \tag{156.3}$$

где *b* — соответствующая константа упругой связи. Такой закон для силы осуществлялся бы, например, если бы отрицательный электрон находился в центре шара, равномерно заполненного положительными зарядами, взаимодействующими по закону Кулона. При смещении электрона сила, стремящаяся вернуть его к центру, была бы равна — *br*, где *r* — расстояние от центра.

Опытное исследование строения атома показало, однако, что указанная модель не верна и атом состонт из положительного заряда (ядра) очень малого днаметра (меньше 10⁻¹² см), вне которого движется соответствующее число электронов. Сила, удерживающая каждый электрон, конечно, не будет иметь вид — br и окажется гораздо сложнее. Вопрос о том, каким образом при таком расположе нии зарядов возможно почти монохроматическое излучение, мы оставляем пока в стороне. Причина лежит очень глубоко и заклочается в том, что ни излучение атомов, ни поведение зарядов внутри атомной системы не подчиняются законам классической механики и электродинамики, установленным при изучении макроскопических объектов. Для правильного описания таких внутриатомных, микроскопических процессов надо обратиться к законам, установленным квантовой теорией, по отношению к которым макроскопические законы являются лишь первым приближением, достаточным при изучении макроскопических процессов и нуждающимся в уточнении при изучении процессов атомных.

$$m\vec{r} = -br. \tag{155.4}$$

Отсюда

$$r = r_0 \cos \omega_0 t, \qquad (156.5)$$

где r_0 — амплитуда, а $\omega_0 = \sqrt{b'm}$ — круговая частота собственных колебаний электрона, причем ω_0 зависит от природы атома, определяющей величину константы b. Представление удерживающей силы в виде квазиупругой (см. (156.3)) справедливо, как и в других механических задачах, лишь при достаточно малых отклонениях зарядов от их равновесных положений, т. е. при достаточно малых значениях r. Величина смещения r определяется силой, действующей на оптический электрон со стороны электрического поля, и при больших значениях напряженности последнего выражение (156.3) может оказаться неверным. Известно, например, что как статическое, так и переменное электромагнитное поле может «оторвать» электрон от атома (ионизация), и в этом предельном случае неприменимость соотношения (156.3) вполне очевидна.

Отличие удерживающей силы от квазнупругой фактически оказывается существенным для очень мощного света, который можно получить с помощью оптических квантовых генераторов; это отличие обусловливает особенности так называемых нелинейных оптических явлений, которые рассматриваются в гл. XLI. В тех же явлениях, с которыми мы имели дело до сих пор, и во многих других соотношение (156.3) выполняется с очень хорошим приближением.

2) Тормозящая сила. Предположение о гармоническом колебании электрона в атоме имеет лишь приближенный характер. В действительности же электрон, приведенный в колебание, постепенно отдает свою энергию, и, следовательно, амплитуда колебания с течением времени уменьшается. Таким образом, колебание не имеет строго гармонического характера и должно рассматриваться как затухаюцее. Даже в случае изолированного атома будут совершаться затухающие колебания, ибо энергия будет постепенно покидать атом, излучаясь во все стороны. Кроме такого затухания, неизбежно связанного с излучением, могут иметь место и другие причины

растраты колебательной энергии, связанные с взаимодействием атомов между собой, причем в этих случаях энергия колебания может переходить и в другие формы, например в тепло, увеличивая среднюю кинетическую энергию атомов среды.

Мы вернемся ниже к обсуждению различных физических причин, сбусловливающих затухание колебаний в атоме. Во всяком случае все они ведут к уменьшению амплитуды колебания и, следовательно, влияют на движение электрона как некая тормозящая (диссипативная) сила. Сила эта, как показывает опыт, во многих случаях сравнительно мало искажает собственные колебания атома, так что растраченная за один период энергия составляет лишь ничтожную часть (порядка одной стомиллионной) колебательной энергии атома. При таких условиях можно учесть эту силу, положив ее пропорциональной скорости движения электрона dr , подобно тому как во многих задачах механики сила трения может считаться пропорциональной скорости движения частицы. Исследование различных физических причин затухания показывает, что они согласуются с подобным выражением для тормозящей силы. Итак, в качестве второй силы, действующей на электрон, мы вводим силу сопротивления, или торможения

$$G=-g\frac{dr}{dt}=-g\dot{r},$$

где коэффициент д зависит от природы среды.

электрона 3) Вынуждающая сила. Вынужденные колебания возникают под действием световой волны, распространяющейся в среде. Магнитная составляющая этого поля оказывает лишь малое действие, нбо магнитное поле действует только на движущийся заряд (см. упражнение 211). Поэтому во всех практических задачах можно ограничиться учетом действия лишь электрического поля солны *). Мы принимаем, таким образом, что действие световой волны определяется напряженностью электрического поля, т. е. на злектрон действует сила eE, где $E = E_0 \cos \omega t$ — поле волны. Это справедливо только тогда, когда можно пренебречь действием окружающих молекул, также поляризованных приходящей световой волной. Такое допущение справедливо для разреженных газов, где расстояние между молекулами среды велико. Для газов, находящихся под значительным давлением, для жидкостей или твердых тел необходимо учитывать это влияние, что поведет к изменению выражения для силы, действующей на электрон (см. ниже).

б. У равненне дисперсии. Сделав вышеуказанные допущения относительно действующих сил, мы можем написать

^{•)} Исключение составляют лишь явления вращения плоскости поляризания света в естественно-активных веществах (ср. гл. XXX).

ГЛ. ХХVIII. ДИСПЕРСИЯ И АБСОРБШИЯ СВЕТА

для электрона ньютоново уравнение движения

$$m\vec{r} = eE - br - g\vec{r}, \qquad (156.6)$$

которое представляет собой уравнение движения при вынужденных колебаниях. Решив это уравнение, определим r, a, следовательно, и P = Np = Ner, и найдем таким образом $e = n^2$ в зависимости от констант атома (e, m, ω_0 , g) и частоты ω внешнего поля, т. е. решим задачу дисперсии. Решение уравнения (156.6) не представляет затруднений, хотя несколько длинно (см. упражнение 208). Основные особенности движения электронов под действием вынуждающей силы нетрудно получить значительно проще, если предположить, что силой сопротивления можно пренебречь, т, е. что g = 0.

Поле световой волны E можно считать простой синусондальной функцией частоты ω , т. е. $E = E_0 \sin \omega t$, ибо по теореме Фурье поле иного вида всегда можно представить в виде суперпозиции таких функций, и решение более общей задачи сводится к решениям более простых задач такого типа. Положив g = 0 и разделив сбе части уравнения (156.6) на m, придадим ему вид

$$\vec{r} + \omega_0^2 r = -\frac{e}{m} E_0 \sin \omega t, \qquad (156.7)$$

где $\omega_0 = \sqrt{b/m}$ — частота собственного колебания электрона. Решение уравнения (156.7) можно записать следующим образом:

$$r = A\sin\omega t, \tag{156.8}$$

где $A = \frac{eE_0}{m(\omega_0^2 - \omega^2)}$, в чем легко убедиться подстановкой (см. упражнение 207). Определив *г*, найдем

$$P = Ner = N \frac{e^2}{m} E_0 \frac{\sin \omega t}{\omega_0^2 - \omega^2}$$

и отсюда на основании соотношения $D = \epsilon E = E + 4\pi P$ как окончательное решение нашей упрощенной задачи получим

$$\varepsilon = n^2 = 1 + \frac{4\pi N e^2}{m \left(\omega_u^2 - \omega^2\right)}.$$
 (156.9)

Согласно этой формуле показатель преломления зависит от частоты ω внешнего поля, т. е. найденная формула передает явление дисперсии света, правда, при несколько упрощенных допущениву исперсии света, правда, при несколько упрощенных допущени-

ях, которые в дальнейшем надо устранить. Как видно из (156.9), в области от $\omega = 0$ до $\omega = \omega_0$ показатель преломления *n* больше единицы и возрастает при возрастании ω (нормальная дисперсия); при $\omega = \omega_0$ имеем $n^2 = \pm \infty$; в области от $\omega = \omega_0$ до $\omega = \infty n^2$ меньше единицы и также возрастает от $-\infty$ до 1 (нормальная дисперсия).

Обращение показателя преломления в бесконечность не имеет физического смысла и получилось в результате упрощенного предположения об отсутствии сопротивления движению (g = 0), обусловливающего затухание. Если принять это сопротивление в расчет, то ход кривой будет иным (рис. 28.10, сплошная кривая) (см. упражнение 208). Область MN — область аномальной дисперсии, где n убывает при возрастании частоты ω .

Формулу (156.9) можно преобразовать. Перенеся 1 в левую часть, запншем ее в виде $n^2 - 1 = (n + 1) (n - 1)$. Поскольку *n* обычно

Рис. 28.10. Кривые дисперсии и абсорбции вблизи одиночной полосы поглощения.

1) (n - 1). Поскольку n обычно не очень сильно отличается от единицы, множитель (n - 1), вообще говоря, изменяется в зависимости от n значительно сильнее, чем (n + 1). Опыт показывает, что величину (n - 1)можно с хорошим приближением считать пропорциональной плотности вещества. Следовательно, N в формуле (156.9) также допустимо считать пропорциональным плотности или числу атомов N_0 в единице объема. Итак, положим $N = f N_0$; безразмерный коэффициент f

обычно называют силой осциллятора, желая подчеркнуть долю участия этих осцилляторов или их эффективность в явлениях дисперсии. Таким образом, формула (156.9) принимает вид

$$n^{2} = 1 + 4\pi N_{0} \frac{e^{2}}{m} \frac{f}{(\omega_{0}^{3} - \omega^{2})}.$$
 (156.10)

Если принять во внимание, что в веществе может быть несколько сортов зарядов, способных к колебаниям с различными собственными частотами ω₀₁ и, может быть, с различными зарядами e₁ и массами m_i, то формула (156.9) заменится выражением

$$n^{2} = 1 + 4\pi N_{0} \sum \frac{f_{i}e_{i}^{2}}{m_{i}} \frac{1}{(\omega_{0i}^{2} - \omega^{2})}, \qquad (156.11)$$

где f_i — силы, или эффективности, отдельных сортов осцилляторов, соответствующих различным частотам ω_{0i} .

В таком случае дисперсионная кривая распадается на ряд ветвей, причем в отсутствие затухания значения n^2 , соответствующие каждому $\omega = \omega_{0l}$, равны $\pm \infty$. Если учесть затухание, то кривая будет иметь вид, показанный на рис. 28.11.

Нетрудно видеть, что наибольший вклад в (156.11) вносят именно оптические электроны, для которых частоты ω_{01} примерно такие же, как и частоты видимого света ω. Те члены суммы, для которых ω

значится вис и развитие в развитие и полученной по методу Рис. 28.12 передает ход кривой дисперсии, полученной по методу рождественского, для паров титана в области видимого и ультрафиолетового света. На снимке заметно несколько сбластей собственного поглощения титана, с соответствующим числом собственных частот ω₀₁ и сортов осцил-

ляторов разной силы f_l.

Зная по ходу дисперсионной кривой значения n вблизи разных ω_{0i} , можно оценить, какие заряды e_i и массы m_i фигурируют в нашей формуле, т. е. определить, какие электрические элементы атома участвуют в явлении дисперсии. Однако точное определение отношения e_i/m_i невозможно, поскольку остаются

Рис. 28.11. Кривая дисперсия при наличии нескольких полос поглощеная.

неопределенными величины f_i . Правда, если сделать несколько произвольное предположение, что f_i , имея для разных осцилляторов различные значения, меняется не в тысячи раз, а значительно меньше, то можно прийти к весьма важным выводам. Окажется, что значения e_i/m_i распадаются на две большие группы: в области высоких частот (видимая и ультрафиолет) величины e_i/m_i соответствуют данным для электронов ($\approx 1.77 \cdot 10^7$ СГСМ), а в области низких

Рис. 28.12. Дисперсия в парах титана в видимой и ультрафиолетовой областях. На снимке видно несколько областей поглощения титана.

частот (инфракрасное излучение) оно в тысячу раз меньше и соответствует скорее ионам вещества (для ионов водорода 0,965 · 10⁴ СГСМ, для более тяжелых ионов — еще меньше). Как уже упоминалось, явление Зеемана с несомненностью показало, что с испусканием видимого и ультрафиолетового света связаны колебания электронов. В таком случае предыдущее замечание, несмотря на известную произвольность допущения относительно *f*₁, приобретает глубокнй смысл и перестает казаться случайным совпадением: некоторые осцилляторы, несомненно, представляют колебания электронов. Естественно поэтому признать, что другие осцилляторы низкой частоты, играющие роль в инфракрасной части спектра, представляют колебания заряженных понов вещества.

представляют испосебных и значения e_l/m_l установленными для Считая, таким образом, значения e_l/m_l установленными для разных осцилляторов, можно из формулы (156.10) определить силы осцилляторов. Такие оценки показывают, что и для осцилляторов электроиного типа значения f_l могут быть довольно различными, т. е. не все электронные осцилляторы участвуют в явлении дисперсии с одинаковой эффективностью.

До сих пор мы ограничивались упрощенной теорией, не учитывающей затухание осцилляторов. Так как в теории дисперсии одни и те же осцилляторы определяют не только ход показателя преломления, но и абсорбцию вблизи каждой собственной частоты, то следует ожидать, что величина силы осциллятора f_i должна быть сеязана и с величиной поглощения излучения соответствующей частоты. Это мы увидим в следующем разделе, когда выведем формулы с учетом затухания.

в. Учет затухания. Уравнение (156.6) обеспечивает полное решение задачи и дает как зависимость показателя преломления от длины волны (дисперсия), так и абсорбцию вблизи собственных частот поглощения, вводимую, правда, чисто формально при помощи коэффициента g.

Не останавливаясь на решении этого уравнения (см. упражнеине 208), укажем лишь, что, так же, как и в случае распространения света в металлах, здесь следует ввести комплексную диэлектрическую проницаемость и комплексный показатель преломления $\tilde{n} = n$ (1 — *ix*). Здесь n — действительная часть показателя преломления, определяющая фазовую скорость волны, а \varkappa (или $n\varkappa$) показатель поглощения, характернзующий убывание амплитуды плоской солны, распространяющейся вдоль *z*:

$$s' = A_0 \exp\left(-\frac{2\pi}{\lambda_0} n \varkappa z\right) \cos\left(\omega t - 2\pi z \frac{n}{\lambda_0}\right). \quad (156.12)$$

Разделяя действительную и мнимую части в выражении для показателя преломления (см. упражнения 209 и 210), найдем:

$$n^{2} (1 - x^{2}) = 1 + 4\pi \frac{e}{m} N_{0} \frac{f(\omega_{0}^{2} - \omega^{2})}{(\omega_{0}^{2} - \omega^{2})^{2} + \omega^{2} (g/m)^{2}}, \quad (156.13)$$

$$2n^{2}\varkappa = 4\pi \frac{e}{m} N_{0} \frac{f(g/m)\omega}{(\omega_{s}^{2} - \omega^{2})^{2} + \omega^{3}(g/m)^{2}}.$$
 (156.14)

Здесь для простоты мы ограничились формулами, относящимися к одной полосе поглощения, характеризующейся затуханием g и силой осциллятора f. Для всей кривой дисперсии надо было бы вновь писать суммы по разным осцилляторам, соответствующим разным собственным частотам вещества.

Из формулы (156.14) мы видим, что показатель поглощения каждой полосы х действительно пропорционален силе соответ-

ствующего осциллятора f, как указывалось в предыдущем разделе.

При g = 0 находим из этих формул $n^2 \varkappa = 0$, т. е. отсутствие затухания, и

 $n^2 = 1 + \frac{4\pi N e^2 f}{m} \frac{1}{\omega_u^2 - \omega^2};$

иными словами, мы получили частный случай, разобранный выше. На рис. 28.10 представлены одновременно кривые, выражающие

на рис. 20.10 представлены одновременно кривые, выражающие зависимость *n* и *n* от ω вблизи линии поглощения в газе при низком давлении. В соответствии с наблюдениями Кундта область абсорбции и область аномальной дисперсии совпадают друг с другом.

г. Учет действия окружающих молекул среды. Нам осталось устранить допущенное в предылущем изложении отождествление внешнего поля E (поля волны) и deйcmвующего поля E', смещающего электрон. Для жидкостей, сжатых газов и твердых тел такое отождествление заведомо неверно, и необходимо принять во внимание влияние окружающих молекул, поляризованных действием света. Учет этого влияния, вообще говоря, очень труден. Для простейшего случая изотропной среды *) Лорентц показал, что такой учет дает для связи между действующим полем E', внешним полем E и поляризацией P следующую зависимость:

$$E' = E + \frac{4\pi}{3} P. \tag{156.15}$$

Таким образом, вместо уравнения

$$m\vec{r} + br = eE \tag{156.16}$$

получим

$$m\bar{r} + br = eE' = eE + \frac{43te}{3}P.$$
 (156.16)

Умножая последнее уравнение на eN и заменяя eNr через P, находим

$$m\ddot{P} + bP = Ne^{2}E + \frac{4\pi Ne^{2}}{3}P \qquad (156.17)$$

или, так как $b = m\omega_{u}^{q}$.

$$m\ddot{P} + \left(m\omega_0^3 - \frac{4\pi Ne^2}{3}\right)P = Ne^3E.$$
 (155.18)

Определив, как и раньше, отсюда P, найдем n² = є из формулы

 $\varepsilon E = E + 4\pi P.$

•) Гочнее, для изотропного кубического кристалла.

Вычисления, вполне аналогичные приведенным выше (без учета поглощения и для одной частоты собственных колебаний), дают

$$n^{2} - 1 = \frac{(4\pi N_{0}e^{2}/m) f}{(\omega_{0}^{*} - \omega^{*}) - (4\pi N_{0}e^{2}f)/3m}.$$

Преобразовывая это выражение, имеем

$$(n^{2}-1)(\omega_{0}^{2}-\omega^{2})=\frac{4\pi N_{0}e^{2}f}{3m}(n^{3}-1+3),$$

или

$$\frac{n^2 - 1}{n^2 + 2} = N_0 \frac{4\pi e^2 f}{3m(\omega_0^2 - \omega^2)}.$$
 (156.19)

Эта формула была получена одновременно (1880 г.) Г. А. Лоренцом на основе электромагнитных представлений о свете и Л. Лоренцом, который развивал теорию света, в известной степени являющуюся предшественницей теории Максвелла. Выражение (156.19) и поныне известно под названием формулы Лоренц—Лорентца. Принимая во внимание, что для данного вещества и данной длины волны величины e, m, ω_0, ω постоянны, можно придать формуле Лоренц—Лорентца следующий вид:

$$\frac{n^2 - 1}{n^2 + 1} \frac{1}{N_0} = \text{const},$$

$$\frac{n^2 - 1}{n^2 + 2} \frac{1}{0} = \text{const},$$
(156.20)

ибо N_0 означает число атомов в 1 см³ и, следовательно, пропорционально плотности р. Приведенная здесь табл. 28.2, заимствованная из измерений Магри и относящаяся к воздуху, показывает, насколько хорошо в некоторых случаях выполняется формула Лоренц—Лорентца. Имеется, однако, и очень много случаев, когда иаблюдаются значительные отступления от нее. Это тем более естественно, что теоретические основы формулы далеко не безупречиш *). Тем не менее она имеет важное применение.

Выражение

$$\frac{n^2 - 1}{n^2 + 2} \frac{1}{\rho} = r$$

называется удельной рефракцией вещества. Согласно формуле Лоренц—Лорентца удельная рефракция не должна зависеть от плоткости. Действительно, нередко удельная рефракция остается прак-

нлн

^{*)} В частности, выражение (156.15), выведенное для изотропного кубического кристалла, переносится на газ и па жидкость (в предположения, что указанные среды в силу статистического беспорядка в ориентации молекул также изотропны). Конечно, эти соображения далеко не убедительны, и справедливость в ряде случаев формулы Лоренц — Лорентца вызывает большее удивление, чем то, что нередко обнаруживаются значительные отступления от нее.

ГЛ. XXVIII. ДИСПЕРСИЯ И АБСОРБЦИЯ СВЕТА

тически постоянной даже при переходе вещества из парообразного состояния в жидкое, т. е. при изменении плотности в несколько сотен раз. Например, при переходе от газообразного кислорода к жидкому (изменение плотности в 800 раз) или от паров волы к жидкой воде (изменение плотности в 1200 раз) рефракция с точностью до 2—3% остается постоянной.

Г	a	б	л	и	11	a	28	2
	_							

Данные, подтверждающие пригодность формулы Лоренц-Лорентиа

Плот- ность ρ	n	$\frac{n^2-1}{n^2+2} \frac{1}{\rho}$	Плот- ность р	n	$\frac{n^2-1}{n^2+2}\frac{1}{p}$
1	1,00029	1953 • 10-7	96,2	1,0284	1961 - 1077
14,8	1,00434	1947 • 10-7	112,0	1,0363	1956 - 1077
42,1	1,0124	1959 • 10-7	149,5	1,0442	1956 - 1077
69,2	1,0204	1961 • 10-2	176,3	1,052	1953 - 1077

Опыт показывает также, что рефракцию смеси веществ R можно вычислить, если известны рефракции r_1, r_2, \ldots ее отдельных компонент и их процентное содержание c_1, c_2, \ldots в смеси:

$100R = c_1r_1 + c_2r_2 + \dots$

Этот результат означает, что оптическое поведение молекул каждой компоненты остается тем же независимо от того, взята ли данная компонента отдельно или в смеси с другими. Еще большее значение имеет правило, согласно которому рефракцию сложного химического соединения можно вычислить, складывая рефракция элементов, его составляющих. Для каждого элемента удобно ввести понятие атюмной рефракции, представляющей произведение атомного веса элемента a_1 на его удельную рефракцию r_1 . Если моле кулярный вес соединения есть M, а его удельная рефракция равна R, то MR называется молекулярной рефракцией. Опыт показывает, что молекулярную рефракцию часто можно вычислять аддитивно из атомных рефракций, пользуясь химической формулой *). Другими словами. (156 21)

$$MR = q_1 q_1 r_1 + q_2 a_2 r_2 + q_3 a_3 r_3 + \dots$$
 (100.21)

где q₁, q₂, ...— числа атомов, входящих в состав молекулы. Это крайне важное правило нередко соблюдается очень хорошо. Например, для воды (H₂O) измеренная молекулярная рефракция равна 3,71, а вычисленная 3,73; для CHCl₃ измерено 21,36, вычислено 21,42 и т. д. Это правило означает, что влияние отдельных атомов на преломление света не нарушается влиянием других

^{*)} При этом надо учитывать наличие кратных химических связей и других особенностей строения молекулы, от которых зависят отдельные слагаемые, входящие в сумму, определяющую молекулярную рефракцию.

молекулярная оптика

атомов, входящих в состав той же молекулы. Наоборот, нарушение правила аддитивности позволяет судить о взаимном влиянии атомов друг на друга и может быть использовано для заключения о строении молекулы.

о строении молскулы. Таким образом, изучение рефракции (показателя преломления) может служить ценным приемом для исследования химической природы молекул и для аналитических целей. Впервые обратил на это внимание М. В. Ломоносов, который еще около 1750 г. высказал мысль о возможности определения химического состава прозрачного жидкого вещества по его показателю преломления и построил рефрактометр для такого рода исследований. В настоящее время рефрактометрические методы находят в химии широкое применение.

Нередко в практической рефрактометрии вместо удельной рефракции Лоренц—Лорентца предпочитают пользоваться иными чисто эмпирическими выражениями, не имеющими теоретического обоснования, но лучше удовлетворяющими требованию аддитивности. Таково, например, эмпирическое выражение рефракции, предложенное Эйкманом (1895 г.), $r = \frac{n^2 - 1}{n + 0.4} \frac{1}{\rho}$.

Для разреженных газов *п* близко к 1, т. е. $n^2 + 2 \approx 3$. Формула Лоренц—Лорентца превращается в формулу

$$n^2 - 1 = \frac{4\pi N e^3}{m \left(\omega_0^3 - \omega^2\right)},$$
 (156.22)

т. с. совпадает с формулой, выведенной ранее без учета лорентцовской поправки на различие E и E', что и должно быть, ибо для разреженных газов E = E'.

д. Понятне о квантовой теории дисперсии. В квантовой теории мы не можем пользоваться модельными представлениями, подобными представлениям об атомных осцилляторах, колеблющихся с частотой, характерной для входящих в их состав зарядов. Вместо частоты колсбания атомного осциллятора квантовая теория вводит частоту атомных переходов, т. е. частоту, определяемую требованием

$$\omega_{nm}=\frac{E_n-E_m}{h},$$

где E_m — энергия атома в некотором *m*-м состоянии, E_n — энергия атома в *n*-м состоянии, а \hbar — квантовая постоянная Планка. Это так называемое условие для частоты означает, что энергия, освобождающаяся при переходе атома из *n*-го состояния в *m*-е, испускается в виде кванта излучения частоты ω_{nm} , энергия которого согласно основному положению теории квантов есть $\hbar\omega_{nm}$. Для каждого атома существуют строго определенные значения энергия E_m, E_n, \ldots , так называемые уровни энергии. Поэтому атом способен излучать и поглощать лишь строго определенные кванты. Конечно,

ГЛ. XXVIII. ДИСПЕРСИЯ И АБСОРБЦИЯ СВЕТА

испускание кванта частоты ω_{nm} соответствует случаю, когда $E_n > E_m$. Наоборот, при переходе из *m*-го состояния в *n*-е энергия атома не уменьшается, а увеличивается, т. е. свет не испускается, а *поглощается* атомом.

Понятие «сила осциллятора» в квантовой теории приобретает ясный физический смысл: сила осциллятора оказывается пропорциональной вероятности перехода из *n*-го в *m*-е состояние. Чем больше эта вероятность, тем большая часть из имеющихся в *n*-м состоянии атомов перейдет за единицу времени в *m*-е состояние, т. е. тем эффективнее данный переход участвует в явлении.

Кривая дисперсии и абсорбции, задаваемая в классической теории всей совокупностью свойственных данной группе атомов осцилляторов, в квантовой теории определяется всей совокупностью возможных для данного атома значений энергии Е1, Е2, ..., Е, ..., Е, и т. д., которые в силу основного положения теории квантов принимают не любые мыслимые, а лишь определенные дискретные значения. Исходное состояние, в котором находятся атомы (вернее, в котором находится значительное большинство атохоз), обычно является состоянием, соответствующим минимальному из возможных значений энергии атома Е1. Если через газ пропускают ток или каким-нибудь другим способом к газу непрерызно подводится энергия, то часть атомов может перейти в более высокие энергетические состояния. Так, например, свечение газоразрядных источников обусловлено атомами, возбужденными в высокие энергетические состояния; покидая эти состояния, атомы и испускают свет.

Таким образом, в общем случае в дисперсию дают вклад как иевозбужденные атомы (на уровне энергии E_1), так и возбужденные (на уровнях энергии $E_n > E_1$). Невозбужденные атомы могут участвовать лишь в переходах с уровня E_1 на выше расположенные уровни $E_n > E_1$, т. е. в переходах, сопровождающихся поглощением света. Для таких переходов силы осцилляторов принято считать положительными. Возбужденные атомы могут участвовать в переходах двух типов: возможны переходы с уровня E_m на выше расположенные уровни E_n ($E_n > E_m$) и переходы на ниже расположенные уровни E_m' ($E_m' < E_n$).

Переходы последнего типа сопровождаются, как уже отмечалось, испусканием света, и они изменяют показатель преломления в противоположном направлении по сравнению с поглощением. Это обстоятельство найдет отражение в формулах, если силам осцилляторов, связанным с излучательными переходами, приписать противоположный, т. е. отрицательный знак.

Таким образом, в отличие от классической теории, где силы осцилляторов f всегда положительны, в квантовой теории прихоантся принимать во внимание как положительные, так и отрицательные значения величии f. Этим последним соответствуют отрицательные члены (отрицательная дисперсия) в сумме, определяющей дисперсию в целом. Соответствующие члены во многих случаях играют малую роль в явлении; тем не менее Ладенбургу, изучавшему дисперсию в газе, через который проходил сильный электрический разряд, удалось наблюдать (1930 г.) влияние отрицательных членов, хотя дисперсия в целом в его опытах оставалась положительной. Можно, однако, создать такие условия, когда возбуждено достаточно большое число атомов и в широкой области спектра преобладают отрицательные члены. Таково, в частности, положение в оптических квантовых генераторах (лазерах).

Явление отрицательной дисперсии тесно связано с излучением света (точнее, с явлением вынужденного испускания, см. §§ 222 и 223) и было детально исследовано в связи с изучением свойств лазеров, в которых оно играет важную роль.

е. Дисперсия в металлах. Характерным свойством металлов является наличие в них свободных электронов, т.е. электронов, собственную частоту которых следует считать равной нулю. Полагая $\omega_0 = 0$ в формулах (156.13) и (156.14), найдем *)

$$n^{2}(1-\varkappa^{2}) = 1 - \frac{4\pi Ne^{2}}{m} \frac{1}{\omega^{2} + (g_{0}/m)^{2}},$$

$$2n^{2}\varkappa = \frac{4\pi Ne^{2}}{m} \frac{(g_{0}/m)}{\omega [\omega^{2} + (g_{0}/m)^{2}]}.$$
(156.23)

Опыт показывает, что эти формулы правильно передают зависимость от длины волны только в области малых частот (инфракрасные лучи). В видимой же и ультрафиолетовой областях для всех металлов (за исключением ртути) обнаруживаются заметные отступления. Таким образом, для более высоких частот оптические свойства металлов иельзя объяснить только свойствами свободных электронов, и необходимо учесть также влияние связанных электроктронов поляризуемости), роль которых становится особенно заметной для частот, близких к собственным частотам атомов. Учет электронов поляризуемости дает добавочные члены, соответствующие собственным частотам $\omega_{\bf b}$. Окончательно получим

$$u^{2}(1-\varkappa^{2}) = 1 - \frac{4\pi Ne^{2}}{m} \frac{1}{\omega^{2} + (g_{0}/m)^{3}} + \sum_{k} \frac{4\pi N_{k}e^{a}}{m} \frac{\omega_{k}^{3} - \omega^{a}}{(\omega_{k}^{3} - \omega^{2})^{2} + (g_{k}/m)^{2}\omega^{a}},$$
(156.24)
$$2n^{2}\varkappa = \frac{4\pi Ne^{2}}{m} \frac{(g_{0}/m)}{(\omega_{k}^{2} - \omega^{2})^{2} + (g_{k}/m)^{2}\omega^{a}} +$$

$$+ \sum_{k} \frac{4\pi N_{k}e^{2}}{m} \frac{\omega (g_{k}/m)}{(\omega_{k}^{2} - \omega^{2})^{2} + (g_{k}/m)^{2} \omega^{2}} .$$

несто N.f.

ГЛ. ХХVIII. ДИСПЕРСИЯ И АБСОРБЦИЯ СВЕТА

Эти формулы находятся в удовлетворительном согласии с опытом в широком диапазоне частот.

ж. Дисперсия рентгеновских лучей. В случае рентгеновского излучения его частота обычно значительно больше частоты собственных колебаний атома. Поэтому можно пренебречь величиной оо по сравнению с оо, и формула дисперсии примет вид (без учета затухания)

$$n^2 = 1 - \frac{4\pi N e^2}{m\omega^2}.$$
 (156.25)

Таким образом, показатель преломления n для рентгеновских лучей оказывается меньше единицы, хотя и отличается от единицы очень незначительно, ибо оч очень велико. Удалось измерить показатель преломления, наблюдая отклонение рентгеновских лучей в призме из различных материалов: Для стекла при длине волны около 0.1 нм получено $n = 0,999999 = 1 - 1 \cdot 10^{-6}$.

То обстоятельство, что n < 1, позволило осуществить в рентгеновской области явление полного внутреннего отражения на границе воздух — стекло. Впоследствии наблюдения были распространены и на другие материалы, и этот метод был даже использован для надежных измерений величины показателя преломления рентгеновских лучей.

Варьируя длину волны рентгеновского излучения, можно наблюдать также и аномальную дисперсию рентгеновских лучей вблизи характеристических частот вещества, которые интерпретируются, следовательно, как собственные частоты электронов, связанных с атомом более жестко, чем оптические электроны.

§ 157. Поглощение (абсорбция) света

Прохождение света через вещество ведет к возникновению колебаний электронов среды под действием электромагнитного поля волны и сопровождается потерей энергии последней, затрачиваемой на возбуждение колебаний электронов. Частично эта энергия вновь возвращается излучению в виде вторичных волн, посылаемых электронами, частично же она может переходить и в другие формы энергии. Если на поверхность вещества падает параллельный пучок (плоская волна) с интенсивностью І, то описываемые процессы должны вести к уменьшению I по мере проникновения волны в вещество. Действительно, опыт показывает, что интенсивность плоской волны обнаруживает такое систематическое уменьшение согласно закону (157.1)

$$I = I_0 e^{-\alpha d}$$

где I₀ — интенсивность волны, вступающей в вещество, d — толщина слоя и а — коэффициент поглощения, зависящий, вообще говоря, от длины волны (ср. § 141).

При измерении α надо, конечно, учитывать, что часть света отражается на границе исследуемого вещества. И вносить соответ. ствующие поправки, например, при помощи формул Френеля. Еще удобнее измерять интенсивности света I_1 и I_2 , прошедшего соответ. ственно сквозь слои толщины d_1 и d_2 . Вычисляя коэффициент поглощения из соотношения $I_1/I_2 = \exp [\alpha (d_2 - d_1)]$, найдем истинное значение α , свободное от поправок на отражение.)

Численное значение этого коэффициента α показывает толщину слоя *d*, равную 1/ α , после прохождения которого интенсивность плоской волны падает в e = 2,72 раза. Так как α есть функция длины волны, то обычно значения его дают

Рис. 28.13. Схематическое изображение широкой полосы поглощения.

В виде таблицы или графика, имеющего вид, подобный изображенному на рис. 28.13. / Иногда зависимость α от λ имеет прихотливый вид, обнаруживая существование довольно узких областей сильного поглощения (большие значения α), в то время как близко расположенные длины волн проходят без заметного ослабления.

Особенно замечательно поглощение, обнаруживаемое при невысоком давлении в парах большинства металлов, представляющих

собой собрание атомов, расположенных на значительном расстоянии друг от друга, т. е. практически изолированных. Коэффициент поглощения таких паров везде очень мал (близок к нулю) и лишь для очень узких спектральных областей (шириной в несколько сотых ангстрема) обнаруживает резкие максимумы. (Гак, для паров натрия коэффициент поглощения может быть изображен в виде кривой, показанной на рис. 28.14. При тщательно контролируемых условиях опыта удавалось наблюдать в спектре поглощения паров Na до 50 таких пар (дублетов), которые расположены тем ближе, чем короче длина волны.

Указанные области резкой абсорбции атомов соответствуют частотам собственных колебаний электронов внутри атомов. В случае газов, молекулы которых построены из нескольких атомов, обнаруживаются также собственные частоты, соответствующие колебаниям атомов внутри молекулы. Так как массы атомов в десятки тысяч раз больше массы электрона, то эти молекулярные собственные частоты обладают гораздо большими периодами, т. е. соответ ствуют инфракрасной области спектра.

Качественное представление о зависимости коэффициента поглещения от длины волны можно получить, сфотографировав сплошной спектр какого-нибудь источника через слой поглощающего

ГЛ. ХХVІН. ДИСПЕРСИЯ И АБСОРБЦИЯ СВЕТА

вещества. Чем больше коэффициент поглощения для данной длины вещества. тем отчетливее обнаружится ослабление соответствующих волны, тем ответствующих участков спектра. На рис. 28.15 приведено несколько таких харакучастков спектров поглощения. Как правило, спектры поглощения

Рис. 28.14. Схематическое изображение нескольких дублетов поглощения в парах натрия.

Ванду того, что максимумы поглощения чрезвычайно узки, масштаб грубо вскажея.

твердых тел и жидкостей (включая и растворы красок) дают широкие полосы поглощения (плавный ход коэффициента а), хотя встречаются вещества со сравнительно узкими полосами поглощения (соли редких земель), которые, тем не менее, в сотни и тысячи раз шире линий поглощения атомарных газов. Спектр поглощения

Рис. 28.15. Спектры поглощения растворов различных веществ (негатив). сплощной спектр источника; 6 — спектр поглощения азотнокислого неодима;
 спектр поглощения родамина В; г — спектр поглощения марганцевокислого калия.

многоатомных газов представляет ряд более или менее сложных полос, а одноатомные газы (пары металлов) характеризуются резкими линиями поглощения, ширина которых нередко измеряется соты сотыми долями ангстрема. По мере повышения давления газов спекто спектры поглощения их становятся все более и более расплывчатыми и при высоких давлениях приближаются к спектрам поглощения жидкостей. Эти наблюдения с очевидностью показывают, что возмакостей. Эти наблюдения с очевидностью показывают, что расширение узких полос поглощения есть результат взаимодействия атомов друг с другом. Ј

Собщая закономерность $I = I_0 \exp(-\alpha d)$, вводящая понятие коэффициента поглощения α и показывающая, что интенсивность света падает в геометрической прогрессии, когда толщина слоя нарастает в арифметической прогрессии, была установлена экспериментально и обоснована теоретически Бугером (1729 г.). Она называется законом Бугера., Физический смысл этого закона состонт в том, что показатель поглощения не зависит от интенсивности света, а следовательно, и от толщины поглощающего слоя (см. упракнение 212). С. И. Вавилов установил, что закон Бугера выполняется в крайне широких пределах изменения интенсивности света (примерно 10²⁰ раз).

Однако следует принять во внимание, что при поглощении свста молекула переходит в новое, возбужденное состояние, запасая поглощенную энергию. Пока она находится в таком состоянии, ее способность поглощать свет изменена. То обстоятельство, что в опытах Вавилова закон Бугера соблюдался при самых больших интенсивностях, доказывает, что число таких возбужденных молекул в каждый момент остается незначительным, т. е. они очень короткое время находятся в возбужденном состояний Действительно, для веществ, с которыми были выполнены указанные опыты, его длительность не превышает 10⁻⁸ с. К этому типу относится огромное большинство веществ, для которых, следовательно, справедлив закон Бугера. Выбрав специально вещества со значительно большим временем возбужденного состояния, Вавилов мог наблюдать, что при достаточно большой интенсивности света коэффициент поглощения уменьшается, нбо заметная часть молекул пребывает в возбужденном состоянии. Эти отступления от закона Бугера представляют особый интерес, так как они представляют собой исторически первые указания на существование нелинейных оптических явлений, т. е. явлений, для которых несправедлив принцип суперпозиции. Последующие исследования привели к открытию большого класса родственных явлений, содержание которых излагается в гл. XL и XLI. Таким образом, закон Бугера имеет ограниченную область применимости. Однако в огромном числе случаев, когда интенсивность света не слишком велика и продолжительность пребывания атомов и молекул в возбужденном состоянии достаточно мала, закон Бугера выполняется с высокой степенью точности.

Бугер рассмотрел вопрос о поглощении света средой, плотность которой не везде одинакова, и высказал убеждение, что «свет может претерпевать равные изменения, лишь встречая равное число частиц, способных задерживать лучи или рассеивать их», и что, следовательно, для поглощения имеют значение «не толщины, а массы вещества, содержащиеся в этих толщинах». Этот еторой закон Бугера приобретает большое практическое значение, ибо опыт действительно показал, что во миогих случаях, когда имеет место поглощение света молекулами газов или молекулами вещества,

гл. ххvии. дисперсия и абсорбция света

растворенного в практически непоглощающем растворителе, коэффициент поглощения оказывается пропорциональным числу поглощающих молекул на единицу длины пути световой волны или, что то же, на единицу объема, т. е. пропорционален концентрации с. Другими словами, коэффициент абсорбции а выражается соотношением

 $\alpha = Ac$,

и обобщенный закон Бугера принимает вид

$$I = I_0 \exp(-Acd),$$
 (157.2)

где A — новый коэффициент, не зависящий от концентрации и характерный для молекулы поглощающего вещества

Сутверждение, что A есть постоянная величина, не зависящая от концентрации, нередко именуется законом Бера, который на основании своих измерений поглощения света окрашенными жидкостями также пришел к этому выводу (1852 г.). Его физический смысл состоит в том, что поглощающая способность молекулы не зависит от влияния окружающих молекул. Закон этот надо рассматривать скорее как правило, пбо наблюдаются многочисленные отступления от него, особенно при значительном увеличении концентрации, т. е. значительном уменьшении взанмного расстояния между молекулами поглощающего вещества Точно так же нередко можно обнаружить зависимость A для растворенных веществ от природы растворителя, что также указывает на влияние окружающих молекуна поглощательную способность изучаемой молекулы.

В тех случаях, когда A можно считать не зависящим от концентрации, обобщенный закон Бугера (157.2) оказывается очень полезным для определения концентрации поглощающего вещества путем измерения поглощения, которое может быть выполнено очень точно при помощи фотометров более или менее сложной конструкции. Этим приемом нередко пользуются в лабораторной и промышленной практике для быстрого определения концентрации веществ, химический анализ которых оказывается очень сложным (колориметрия и спектрофотометрия, абсорбционный спектральный анализ).

За последние годы особое развитие получил анализ молекулярного состава сложных смесей, основанный на измерении поглоще ния в ультрафиолетовой и особенно в инфракрасной областях спектра. Спектры поглощения многих органических молекул оказываются очень характерными, благодаря чему удается надежно устанавливать как молекулярный состав, так и количественное содержание отдельных компонент в смеси.

Метод этот отличается большой чувствительностью, ибо при малых концентрациях исследуемого вещества с можно увеличить поглощение за счет увеличения толщины слоя d. При исследоваими смесей очень сложного состава возникают затруднения вслед-

ствие наложения полос поглощения разных веществ. Эти затруднения в большей степени проявляются в ультрафиолетовой области, чем в инфракрасной, ибо, как правило, полосы поглощения в ультрафиолетовой (и видимой) части спектра шире, чем в инфракрасной. Существенную помощь при анализе оказывает предварительная подготовка пробы (разгонка и некоторые другие физико-химические операции), которые позволяют разделить сложную смесь на ряд фракций более простого состава. Нередко очень полезным оказывается переход от жидкостей к парам, а также изучение абсорбщии при возможно низких температурах.

Изложенные выше закономерности, установленные на опыте, показывают, что законы абсорбции света в основном определяются свойствами атома или молекулы, поглощающей свет, хотя действие окружающих молекул может значительно исказить результат. Особенно в случае жидких и твердых тел влияние окружения иногда радикально меняет абсорбирующую способность атома вследствие того, что под действием полей окружающих молекул поведение электронов, определяющих оптические свойства атомов, изменяется до неузнаваемости. Особенно разительно в этом отношении поведение металлов. Действительно, хорошо известно, что пары металлов, даже таких, как, например, серебро или натрий, представляют собой столь же хорошие изоляторы, как и пары (газы) других веществ, тогда как металлическое серебро или натрий являются наилучшими проводниками электричества. Таким образом, поведение нанболее слабо связанных с атомами электронов в изолированных атомах металлов и в конденсированном металле резко различно. В ссответствии с этим металлический натрий не обнаруживает никаких признаков спектра поглощения, характерного для паров натрия и изображенного на рис. 28.14.

Для атомов некоторых веществ, например редких земель, к числу которых относится неодим (Nd) и празеодим (Pr), можно считать установленным, что оптический электрон принадлежит не к группе, расположенной в самой периферической части атома, как для большинства веществ, в частности для щелочных металлов, а к одной из внутренних групп. Такое «защищенное» положение оптического электрона редких земель объясняет, по-видимому, то обстоятельство, что соли этих веществ, даже введенные внутрь твердого вещества (стекло), обнаруживают очень узкие положни поглощения, приближающиеся к полосам в спектре поглощения изолированных атомов. Из приведенных фактов и рассуждений явствует, что вопрос о природе поглощения света легче выяснить при исследовании поглощения изолированными атомами, т. е. разреженными газами.

Введенный нами в § 156 коэффициент g, характеризующий затухание электронного колебания в атоме, объясняет явление абсорбции Действительно, мы получили (см. (156.12)), что амплитуда

гл. ХХVIII. ДИСПЕРСИЯ И АБСОРБЦИЯ СВЕТА

плоской волны, распространяющейся в поглощающей среде на глубину 2, выражается соотношением

$$A = A_0 \exp\left[-\frac{2\pi}{\lambda_0} n \varkappa z\right]. \tag{157.3}$$

Ясно, что этот закон эквивалентен закону Бугера, ибо в данном случае z = d, а коэффициент поглощения α выразится через $\frac{4\pi}{\lambda_0} n \varkappa$, так как интенсивность волны пропорциональна *квадрату* амплитуды. Как мы видели, при g = 0 коэффициент $n \varkappa$ (а следовательно, н α) обращается в нуль, т. е. среда, для которой g = 0, не поглощает света.

Однако коэффициент g, введенный в наше рассмотрение, имел чисто формальный смысл и скрывал в себе целый ряд различных процессов, ведущих к растрате энергии, заимствованной электроном от падающей волны.

а) Один из процессов, связанных с растратой энергии, заимствованной осциллятором, есть процесс излучения вторичных волн. Излучение является причиной рассеяния накопленной осциллятором энергии, вследствие чего амплитуда его колебаний достигает определенного предела, а не стремится к бесконечным значениям, как следует из упрощенной теории (вынужденные колебания без затухания). Эта причина затухания указана Планком и называется *затуханием вследствие излучения*; она не вызывает превращения лучистой энергии первичной волны в другие формы энергии, а лишь обусловливает рассеяние этой лучистой энергии во все стороны. Таким образом, энергия плоской волны, распространяющейся по первоначальному направлению, убывает и, следовательно, описанные выше приемы исследования будут обнаруживать ослабление света.

Однако, как показал Л. И. Мандельштам, затухание вследствие рассеяния проявляется в полной мере лишь для изолированного осциллятора. Вследствие интерференции вторичных болн, рассеиваемых различными осцилляторами среды, ослабление падающей голны может быть в значительной мере скомпенсировано.

Это явление тесно связано с явлением рассеяния света и будет несколько подробнее рассмотрено ниже (см. гл. XXIX).

Указанная причина затухания может играть главную роль для очень разреженных газов и меньшую для жидких или кристаллических тел, особенно при низких температурах, когда осцилляторы этих тел расположены так, что образуют вполне однородную среду.

Затухание вследствие излучения тем больше, чем больше излучение, т. е. чем больше амплитуды вынужденного колебания. Так как в знаменателе выражения для этой амплитуды стоит ($\omega_8^* - \omega^2$), то она достигает максимума при $\omega = \omega_0$, т. е. максимальное погло-

щение соответствует той частоте ω₀, которая совпадает с частотой собственного колебания атома. Последний вывод вполне соответствует наблюдению Кундта, согласно которому область аномальной дисперсии совпадает с областью максимального поглощения.

б) Возможны и другие процессы, ведущие к «истинному» поглощению света, т. е. сопровождающиеся переходом лучистой энергия в иную форму, например, в тепло. Для газовой фазы Лоренти указал на такой процесс, состоящий в столкновении возбужденного, т. е. колеблющегося, атома с другим атомом. В данном случае колебательная энергия может переходить в энергию поступательного движения столкнувшихся атомов, т. е. в тепло. И этот процесс поглощает особенно много энергин в том случае, когда $\omega = \omega_0$. В случае конденсированных сред (жидкости, твердые тела) передача энергии от возбужденного атома или молекулы тем более облегчена в силу тесного расположения частиц среды и сильного их взаимодействия друг с другом. В случае, например, жидкостей энергия колебаний ядер передается соседним молекулам за время, равное по порядку величины 10^{-12} с.

В связи с обсуждением опытов Вавилова мы обращали внимание на изменение числа поглощающих частиц под влиянием мощного падающего излучения. Однако это не единственный эффект, имеющий место при больших интенсивностях света. В § 156 подчеркивалась тесная связь законов поглощения и дисперсии с представлением об атоме как о гармоническом осцилляторе, заряды которого возвращаются в положение равновесия квазнупругой силой. Если интенсивность света, а следовательно, и амплитуда колебаний зарядов достаточно велика, то возвращающая сила уже не будет иметь квазнупругий характер, и атом можно представить себе как ангармонический осциллятор. Из курса механики известно, что при раскачивании такого осциллятора синусоидальной внешней силой (частота ω) в его движении появляются составляющие, изменяющиеся с частотами, кратными ω , — двойными, тройными н т. д. Пусть теперь собственная частота осциллятора 00, подсчитанная в гармоническом приближении, совпадает, например, с частотой 20. Энергия колебаний зарядов в этом случае особенно велика, она передается окружающей среде, т. е. возникает селективное поглощение света с частотой, равной $\omega = 1/2\omega_0$. Таким образом сполте – образом, спектр поглощения вещества, помимо линии с частотой ω_0 , полжен совета с частотов, равнои с частотой ω_0 , полжен совета с частотов с частот должен содержать линии с частотами, равными 1/200, а также ¹/₈₀₀ и т. д. Коэффициент поглощения для этих линий, как легко понять, будет увеличиваться с ростом интенсивности света.

В рамках квантовых представлений собственной частоте колебаний ω_0 отвечает частота перехода $\omega_{mn} = (E_m - E_n)/\hbar$ между состояниями *m* и *n*, обладающими энергиями E_m и E_n (см. § 156). Следовательно, линии поглощения с $1/2\omega_0$ соответствует переход атома из состояния *n* в состояние *m* с одновременным поглощением

ГЛ. ХХVIII. ДИСПЕРСИЯ И АБСОРБЦИЯ СВЕТА

двух фотонов, ибо

$E_m - E_n = \hbar \omega_{mn} = 2\hbar \omega$

Линии же ¹/₃ω₀ соответствует переход, сопровождающийся поглощением трех фотонов и т. д. Из сказанного понятно название, которое получило описанное явление — многофотонное поглощение.

Многофотонное поглощение было теоретически предсказано М. Гепперт-Майер в 1931 г., но экспериментально было обнаружено лишь в 1962 г. (Кайзер и Гаррет) при облучении кристалла СаF₂, активированного европием, светом рубинового лазера. В последующих исследованиях многофотонное поглощение подробно изучалось в парах металлов, растворах органических красителей, полупроводниках, органических и неорганических кристаллах и в газах.

Многофотонное поглощение может проявляться весьма разнообразно. Если, например, вещество облучать светом, в составе которого есть спектральные компоненты с частотами ω_1 и ω_2 , то может произойти поглощение двух фотонов $\hbar\omega_1$ и $\hbar\omega_2$ при условии, что $\omega_1 + \omega_2 = \omega_{mn}$. Отметим также, что в результате поглощения многих фотонов оптический электрон может также оторваться от атома (*многофотонная ионизация*, Г. С. Воронов, Н. Б. Делоне, 1965 г.). Так, например, наблюдалась ионизация атома гелия (потенциал ионизации 24,58 эВ) в результате поглощения 21 фотона излучения неодимового лазера ($\lambda = 1,06$ мкм). В такого рода опытах применяется импульсное сфокусированное излучение мощных лазеров, освещенность достигает значений 10⁹ — 10¹³ Вт/см², а напряженность электрического поля составляет 10⁶ — 10⁸ В/см.

§ 158. Ширина спектральных линий и затухание излучения

Уже неоднократно указывалось, что идеальное монохроматическое излучение представляет собой фикцию и что в реальных случаях излучение всегда соответствует некоторому интервалу длин волн. Правда, излучение разреженных газов, поставленных в специально благоприятные условия, может довольно близко подходить к этому воображаемому случаю; так, наблюдаются спект-Ральные «линии», в излучении которых представлены со скольконибудь измеримой интенсивностью длины волн, заключенные в интервале, не превышающем нескольких тысячных ангстрема. Еще более монохроматично излучение оптических квантовых генерато-Ров, но и здесь энергия сосредоточена в конечном, хотя и очень малом спектральном интервале (см. § 228). В большинстве же случаев излучение атомов гораздо сильнее отличается от монохроматического и представляет собой набор излучений, длины волн которых варьируют в пределах нескольких сотых и даже десятых анготорых варьируют в пределах нескольких сотых и даже десятых ангстрема. При повышении давления пара линии излучения

расширяются все больше и больше и постепенно излучение теряет даже приблизительно монохроматический характер, переходя в сплошное излучение, подобное излучению накаленных твердых тел.

дых тел. Для характеристики степени монохроматичности спектральных линий, т. е. излучения практически изолированных атомов, надо исследовать распределение интенсивности излучения по частотам с помощью прибора высокой разрешающей способности, например интерферометра Майкельсона или Фабри—Перо. Результат такого исследования можно представить в виде диаграммы (рис. 28.16), где по оси абсцисс отложены длины волн, а по оси ординат — соот-

Рис. 28.16. Контур линии испускания, полученный с прибором большой разрешающей силы.

ветствующие интенсивности. Конечно, нижние части полученных кривых очень мало достоверны, и можно полагать, что в идеальных условиях кривые спадали бы к нулю асимптотически. В разных условиях опыта (различие в природе пара, различие в температуре и давлении его, в степени ионизации и т. д.) форма спектральной на рис. изображенная линии. 28.16, может быть различной. В качестве характеристики ширины линии условно принимают расстояние в ангстремах между двумя точ-

ками A, B, где ордината достигает половины максимальной. Эту условную характеристику принято называть *шириной* спектральной линии. Как сказано, она в очень благоприятных случаях может составлять 0,001 Å и менее, но сбычно бывает значительно шире; кроме того, и форма линии может сильно отступать от приведенной на рисунке, будучи инсгда заметно асимметричной.

Всякая причина, обусловливающая затухание электронных колебаний в атоме, влияет, конечно, на ширину спектральной линии, нбо вследствие затухания колебание перестает быть сннусопдальным, и соответствующее излучение будет более или менее отличаться от монохроматического. Поэтому и затухание вследствие излучения и затухание, обусловленное соударениями, ведут к тем большему уширению спектральной линии, чем больше значение этих факторов. Затухание вследствие излучения должно характеризовать атом, поставленный в наиболее благоприятные условия, т. е. вполне изолированный от воздействия каких-либо внешних агентов. Поэтому ширину, обусловленную этой причиной, называют естественной или радиационной шириной спектральной линии. Величина ее сбусловлена механизмом излучения атома. Рассмат

ГЛ. ХХVIII. ДИСПЕРСИЯ И АБСОРБЦИЯ СВЕТА

классической электродинамики, мы можем вычислить потерю энерклассической потерю энер-гии этого диполя с течением времени, т. е. отыскать предполагаети этого детественного затухания свечения. Расчет дает предполагае-мый закон естественного затухания свечения. Расчет дает простой экспоненциальный закон

$$I = I_0 \exp(-t/\tau),$$
 (158.1)

где т - величина, выражающаяся через заряд и массу электрона и показывающая, за какое время интенсивность излучения уменьшается в е раз. В т входит также и частота колебания электрона, так что т для различных линий должна быть различна. Для видимого света т имеет порядок величины 10-8 с.

В. Вину (1919 г.) удалось наблюдать на опыте такое естественное затухание свечения вследствие излучения, осуществив условия, при которых действие других причин, могущих влиять на ход

Рис. 28.17. Схема опыта Вина по наблюдению затухания свечения атомов.

излучения, было исключено. В его опытах источником света служили атомы, составляющие пучок каналовых лучей, летящих внутри хорошо эвакуированной трубки, что исключало соударения светящихся атомов с окружающими.

Схема опыта показана на рис. 28.17. При помощи мощных насосов в пространстве А поддерживается достаточное разрежение (<0,001 мм рт. ст.), несмотря на то, что в части В, соединенной с А узкой диафрагмой (0,1 × 3 мм²), имеется давление около 0 05 0,05 мм рт. ст., необходимое для создания каналового пучка. Светящиеся атомы, влетев в пространство А, движутся без столкновений, излучают свет, и колебания в них постепенно затухают. Поэтому интенсивность свечения падает по мере удаления от входного отверственного затуотверстия, и ее падение может служить мерой естественного затухания и, следовательно, естественной ширины линий.

Наблюденное Вином падение интенсивности приблизительно удовлетворяет показательному закону, так что по фотографиям Вина (рис. 28.18) можно непосредственно определить то расстояние, на котором интенсивность свечения падает в е раз. Для того

чтобы перейти к соответствующим временам, определялась скорость движения частицы (около $5 \cdot 10^7$ см/с) по допплеровскому изменению длины волны, испускаемой летящей частицей вдоль направления полета. Из своих опытов Вин получил для т величину около 10^{-8} с, несколько меняющуюся от одного вещества к другому и от одной спектральной линии к другой. Таким образом, за время около одной стомиллионной секунды интенсивность свечения вследствие излучения падает приблизительно в три раза. Полученное значение согласуется в общем с предвидением теории, упомянутой выше, хотя и не подтверждает всех ее заключений.

Столкновения между атомами обусловливают «ударное» уширение спектральной линии. При очень низких плотностях, когда соударения редки, или в потоке свободно несущихся каналовых частиц, которые практически не сталкиваются, влияние этой при-

The set of the provide statement of the set	_
Har and the second s	
Manager and an approximation of the second	100
	1.65
and a star a	15.6
The set of	5.35
	115.9
Constructed by the set of Valuety of Va	Sect
("Webby Lincost June 1971	623
	218
a second and the second s	2.15
	1000

чины уширения может быть сделано пастолько малым, что им можно пренебречь. Но при обычных условиях газового свечения, например в разрядной трубке или в ртутной лампе, она может являться одной на

Рис. 28.18. Затухание свечения атомов.

серьезнейших или даже самой серьезной причиной уширения линий. Так, в современных ртутных лампах сверхвысокого давления, где давление паров ртути достигает 20—30 атм, «линии» ртутного излучения настолько уширены, что само выражение «спектральные линии» теряет смысл. Наблюдалось также заметное уширение спектральных линий при добавлении к светящемуся газу значительных количеств постороннего газа.

Так как в обычных разрядных трубках светящиеся молекулы газа посятся вследствие теплового движения по всем направлениям, то для наблюдателя, измеряющего ширину спектральной линии, выступает еще одна причина уширения, уже отмечавшаяся в § 22: Свет посылается движущимися атомами, так что частота его изме нена эффектом Допплера (см. § 128). Поскольку движение атомов происхолит происходит по всевозможным направлениям, составляющим всевозможные углы с направлением наблюдения, то изменение частоты будет соответствовать выражению $\Delta v = v \frac{v}{c} \cos \theta$, где $v - c \kappa o p o c \tau b$ атома и в — угол между направлением полета и направлением наб-людения. в имеет все с полета и направлением наблюдения. С имеет все значения от нуля до 180°, а с распределено по закону Максрелла. по закону Максвелла. При температурах в несколько сотен и даже тысяч гратусов исто тысяч градусов, нередко соответствующих газовому разряду, это уширение, особение это уширение, особенно для легких атомов, может иметь весьма за-метную величину В част метную величину. В условнях опыта Вина все излучающие атомы имели практически сполости в вина все излучающие атомы имели практически скорость одного направления, а именно, направ-

ГЛ. ХХІХ. РАССЕЯНИЕ СВЕТА

ления каналового пучка; направление же наблюдения было выбрано перпендикулярно к линии полета. Поэтому в опытах Вина действие и этой причины было сведено к минимуму.

действие и следует считаться с тем обстоятельством, что светящиеся атомы могут оказаться под действием магнитных и электрических полей окружающих атомов, вызывающих изменение излучаемой частоты вследствие эффекта Зеемана и эффекта Штарка. Так как изменение частоты различных атомов различно, то эта причина также ведет к различному уширению спектральных линий. Действие ее (особенно эффекта Штарка) может быть весьма заметным при наличии сильной ионизации и, следовательно, сильных электрических полей. По-видимому, при свечении в разряде электрической искры действие этого фактора очень значительно и вызывает сильное уширение (десятые ангстрема и больше) некоторых линий.

Глава XXIX

РАССЕЯНИЕ СВЕТА

§ 159. Прохождение света через оптически неоднородную среду

Как уже упоминалось в § 157, вторичные волны, вызываемые вынужденными колебаниями электронов, рассеивают в стороны часть энергии, приносимой световой волной. Другими словами, распространение света в веществе должно сопровождаться рассеянием света. Достаточным условием для возникновения такого явления служило бы, по-видимому, наличие электронов, способных колебаться под действием переменного поля световой волны, а такие электроны есть в достаточном количестве во всякой материальной среде. Однако нужно помнить, что эти вторичные волны когерентны между собой и, следовательно, при расчете интенсивности света, рассеянного в стороны, надо принять во внимание их взаимную интерференцию.

Действительно, если среда оптически однородна или, другими словами, если ее показатель преломления не меняется от точки к точке, то в одинаковых малых объемах световая волна индуцирует одинаковые электрические моменты, изменение которых во времени и приводит к излучению когерентных вторичных волн одинаковой амплитуды. На рис. 29.1 представлен случай распространения плоской монохроматической волны в однородной среде. На волновом фронте AA' выделим объем V^{*} с линейными размерами, малыми по сравнению с длиной волны λ падающего света, но содержащий достаточно много молекул, чтобы среду можно было рассматривать как сплощиную. В направлении, характеризуемом углом 0,
объем V_1^* излучает вторичную волну определенной амплитуды и фазы. На волновом фронте AA' (см. рис. 29.1) всегда можно выделить другой объем V_*^* , который в том же направлении испускает вторичную волну той же амплитуды, приходящую в точку наблюдения в противофазе с волной от V_1^* вследствие разности хода. Такие волны полностью погасят друг друга. Из рис. 29.1 видно

Рис. 29.1. К вопросу о роли оптической неоднородности при светорасссянии.

что расстояние *l* между выделенными объемами должно разняться

$$l = \lambda/2 \sin \theta$$
.

Если среда вполне однородная, взаимное гашение будет иметь место для вторичных волн, испускаемых любой парой равновеликих объемов, расположенных на волновом фронте и отстоящих друг от друга на расстояние *l*. Этим доказывается сделанное утверждение, что в однородной среде свет будет распространяться только в пер-

воначальном направлении и рассеяние света будет отсутствовать. Полное гашение вторичных волн происходит для любого угла θ , кроме $\theta = 0$, ибо в этом направлении распространения падающей волны все вторичные волны складываются синфазно и образуют проходящую волну.

Таким образом, однородность среды и когерентность вторичных воли — условия, необходимые и достаточные для того, чтобы рассеянный свет не мог возникнуть. В действительности же идеально однородных сред не существует. В реальных средах оптические неоднородности различного происхождения всегда имеются, и это означает, что рассеянный свет всегда есть — очень интенсивный в одних случаях и предельно слабый в других.

Содних случаях и предельно слабый в других. Приведенные выше рассуждения об интерференции вторичных воли аналогичны использованным во френелевой теории прямолннейного распространения света. Если френелевы вторичные волны испускаются фиктивными источниками, то при рассеянии изим испускаются фиктивными источниками, то при рассеянии изпучатели реальны и представляют собой атомы и молекулы среды. Однако для однородности среды нужно, чтобы в малых, но равных объемах содержалось одинаковое число излучателей одного сорта. Но такую «застывшую» картину реально осуществить нельзя, и поэтому всегда возникают нарушения одноролности разной природы.

(Рассуждения Френеля (см. гл. VIII—Х) показывают, что нарушение однородности ведет к явлениям дифракции на этих про-

ГЛ. ХХІХ. РАССЕЯНИЕ СВЕТА

странственных неоднородностях. Если неоднородности невелики по размерам (малы по сравнению с длиной волны), то дифракционная картина будет характеризоваться довольно равномерным распределением света по всем направлениям. Как уже упоминалось, такую дифракцию на мелких неоднородностях нередко называют диффузией или рассеянием света.

Если неоднородности среды грубые, т. е. близкие между собой малые участки среды, равные по объему, являются источниками вторичных волн заметно различной интенсивности, то и рассеяние света проявляется очень отчетливо. При слабых нарушениях однородности свет, рассеянный в стороны, составляет лишь очень малую долю первичного пучка, и наблюдение его может потребовать специальных условий. Опыт показывает, что для явления рассеяния света существенно именно нарушение однородности среды а не сама способность среды давать вторичные волны.

Пусть пучок почти параллельных лучей от источника проходит через кювету с водой. Если вода очень тщательно очищена, то пучок почти не виден при наблюдении сбоку, т. е. в стороны от первоначального пучка свет практически не рассенвается; но если капнуть в кювету каплю одеколона, то возникает интенсивное рассеяние: пучок света явственно виден со всех сторон, и если толщина кюветы достаточна, то практически весь свет рассеивается в стороны и за кюветой мы уже не будем иметь ясно очерченного первичного пучка, а лишь диффузное поле рассеянного света. Конечно, введение капли одеколона не изменяет существенным образом свойств громадной массы молекул воды, находященся в кювете, но содержащиеся в одеколоне в растворенном виде вещества выпадают в водном растворе, образуя эмульсию - мелкие капельки, взвешенные в воде. Наличие таких неоднородностей создает совсем иные условия для взаимной интерференции вторичных волн. В результате первичный пучок дифрагирует на этих неоднородностях и дает картину рассеяния, характерную для мутной среды.

Вернемся еще раз к вопросу об оптической однородности среды, нарушение которой, как мы видели, является физической причиной явления рассеяния света. Как сказано, в случае оптически однородной среды близкие между собой малые участки ее, равные го объему, становятся под действием световой волны источниками вторичных излучений одинаковой интенсивности. Это означает, что соответствующие участки приобретают под действием переменного поля световой волны равные между собой электрические моменты, изменением которых со временем и вызывается вторичное излучение. Условие оптической однородности означает, что показатель преломления для разных участков нашей среды имеет одинаковое вначещие. Отсюда следует, что при постоянстве показателя преломлечия во всем объеме среды исльзя ждать явлений рассеяния света.

19 Ландсберг Г. С.

(Итак, для нарушения оптической однородности необходимо нарушение постоянства показателя преломления. Показатель преломления связан с диэлектрической проницаемостью среды є согласно соотношению (см. § 156)

$$n = \sqrt{\varepsilon}, \quad \varepsilon E = E + 4\pi P.$$

Наконец, поляризация среды, т. е. электрический момент, приобретаемый единицей объема среды под действием внешнего поля E, есть P = Np, где N — число молекул в единице объема, а p электрический момент, приобретаемый каждой из них под действием поля E^*). Величину этого момента можно представить в виде $p = \alpha E$, где коэффициент α носит название коэффициента поляризуемости и характеризует собой строение молекулы. Итак,

$$P = N\alpha E$$
.

т. е.

$$D = \varepsilon E = E + 4\pi N \alpha E, \qquad (159.1)$$

илн

$$\varepsilon = 1 + 4\pi N\alpha. \mathcal{T} \tag{159.2}$$

Таким образом, постоянство показателя преломления означает, что для равных объемов (не очень малых по линейным размерам сравнительно с длиной волны) произведение $N\alpha$ в разных местах среды одинаково. Это означает, что если оптически однородная среда построена из совершенно одинаковых молекул (α постоянно), то постоянным должно быть и N, т. е. плотность среды повсюду постоянна; если же среда состоит из разных молекул или групп, то постоянство показателя преломления может быть обеспечено соответствующим подбором N и α . Например, подобранная соответствующим образом смесь бензола и сероуглерода с погруженпыми в нее кусочками стекла может представлять однородную среду: граница раздела между стеклом и жидкостью перестает быть заметной.

Указанным явлением можно воспользоваться для определения показателя преломления небольших прозрачных кусочков неопределенной формы; подобрав смесь жидкостей, в которой граншы кусочка исчезают (при освещении по возможности монохроматическим светом), остается только определить показатель преломления смеси для соответствующей длины волны, что нетрудно сделать, поместив, например, каплю в рефрактометр Аббе. Таким приемом широко пользуются в минералогии; на основе этого принципа разработан также удобный технический метод быстрого определения не только показателя преломления стекла, но и дисперсии его, что

•) Мы не делаем для простоты различия между внешним и действующим полем, так что выноды наши имеют качественный характер, если не ограничиваться рассмотрением явлений в газах.

ГЛ ХХІХ. РАССЕЯНИЕ СВЕТА

очень помогает контролю технологического процесса варки стекла с определенными оптическими данными (И. В. Обренмов).

/ Если вместо одной крупинки стекла взять мелкий порошок однородного стекла (например, оптическое стекло определенного сорта, измельченное в порошок с крупинками размером около 1/, мм) и, поместив в кювету с плоскими стенками, залить его какойлибо жидкостью, то, вообще говоря, такая кювета представит собой тело, оптическая однородность которого очень несовершенна: пучок света, проходящий через кювету, будет сильно рассенваться в стороны, в направлении первичного пучка пройдет сравнительно мало света. Но если подобрать жидкость, как было указано выше, то, несмотря на сильную физическую неоднородность, наша кювета будет оптически однородным телом, сквозь которое пучок света пройдет, не ослабляясь / В действительности, осуществить опыт в таком простом виде невозможно, ибо стекло и жидкость обладают различной дисперсией, так что среда оказывается оптически однородной только для сравнительно узкого интервала длин-волн. Свет именно этой спектральной области будет проходить через кювету без ослабления, а другое излучение испытает значительное рассеяние в стороны. При достаточной толщине кюветы можно добиться того, что проходящий свет будет ограничен очень узким интервалом длин волн (около 3,0-5,0 нм), и такая кювета будет служить хорошим светофильтром. При незначительном нагревании кюветы можно наблюдать, как меняется окраска проходящего света, что обусловливается различной температурной зависимостью показателя преломления стекла и выбранной жидкости.

Тиндаль первый наблюдал в лабораторных условиях рассеяние света на частицах, малых по сравнению с длиной волны видимого света (1869 г.). Он обратил внимание на то, что рассеянный под различными углами свет отличается от первоначального белого цвета синим оттенком, а свет, рассеянный под углом л/2 относительно направления падающего света, полностью или почти полностью лицейно-поляризован.

Тиндаль высказал предположение, что голубой цвет неба, возможно, объясняется рассеянием солнечного света на пылкиках, взвешенных в атмосфере Земли.

Во многих случаях наблюдается интенсивное рассеяние света вследствие естественно возникшей оптической неоднородности. Среды с явно выраженной оптической неоднородностью носят название мутных сред. Мутные среды — это дым (твердые частицы в газе) или туман (капельки жидкости, например воды, в воздухе), взвеси или суспензии, представляющие собой совокупность твервзвеси или суспензии, представляющие собой совокупность тверных частичек, плавающих в жидкости, эмульсии, т. е. взвесь кадых частичек, плавающих в жидкости, их не растворяющей (например пель жидкости в другой жидкости, их не растворяющей (например опалов или молочных стекол и т. д. Во всех подобных случаях , наблюдается более или менее сильное рассеяние света мутной сре. дой, носящее обычно название явления Тиндаля.

дои, носящее содине и (Изучение рассеяния в мутных средах, где размеры частиц малы по сравнению с длиной волны, привело к установлению некоторых общих закономерностей, экспериментально открытых Тиндалем и рядом позднейших исследователей и теоретически объясненных Рэлеем. Представление об этих закономерностях можно получить на следующем простом опыте.

Пучок интенсивного света направляется на прямоугольную кювету, наполненную водой, которую сделали мутной, прибавив к ней несколько капель молока. След светового пучка будет ясно виден в воде.

При наблюдении сбоку (в направлении A, рис. 29.2) рассеянный свет имеет более голубой оттенок, чем свет источника S; наоборот, свет, прошедший сквозь кювету (в направлении B), обогащен длинноволновым излучением и при достаточной толщине кюветы имеет красноватый оттенок.

При наблюдении рассеянного света под прямым углом (θ = 90°) к первичному пучку через поляризатор N обнаруживается, что

рассеянный свет линейно поляризован, хотя первоначальный свет, идущий

Рис. 29.2. Схема наблюдения рассеяния света в мутных средах.

Рис. 29.3. Индикатриса рассеяния частицами, малыми по сравнению с λ.

от S, естественный. Направление электрического вектора в рассеянном свете перпендикулярно к плоскости, проходящей через направление первичного пучка и направление наблюдения.

Если оценить интенсивность света, рассеянного по разным направлениям, то она окажется симметричной относительно оси первичного пучка и относительно линии, к ней перпендикулярной (рис. 29.3). Кривая, графически показывающая распределение интенсивности рассеянного света по разным направлениям, носит название индикатрисы рассеяния. При естественном падающем свете индикатриса рассеяния имеет вид, показанный на рис. 29.3, и выражается формулой

680

 $1 \sim 1 + \cos^2 \theta$.

Пространственная индикатриса получается вращением кривой (см. рис. 29.3) относительно оси ВВ.

(см. рис. 2017) (Рэлей произвел расчет интенсивности света, рассеянного на сферических частицах, размеры которых малы по сравнению с длиной волны падающего света (1899 г.), и нашел, что для первоначального естественного света интенсивность рассеянного света равна

$$I = I_0 \frac{9\pi^2 \varepsilon_0^2 N (V')_-^2}{2\lambda^4 L^2} \left(\frac{\varepsilon - \varepsilon_0}{\varepsilon + \varepsilon_0}\right)^2 (1 + \cos^2 \theta).$$
(159.3)

Здесь N -число частиц в рассеивающем объеме, V' и є — объем и диэлектрическая проницаемость частицы, ε_0 — диэлектрическая проницаемость среды, в которой взвешены частицы, θ — угол рассеяния, I_0 — интенсивность падающего света, L — расстояние от рассеивающего объема до точки наблюдения.

Формула Рэлея (159.3) описывает перечисленные закономерности. Интенсивность рассеянного света оказывается обратно пропорциональной четвертой степени длины волны, что находится в соответствии с измерениями и может объяснить голубой цвет неба. Закон $I \sim 1/\lambda^4$ носит название закона Рэлея. Однако, как будет показано ниже, голубой цвет неба не связан с наличием пыли в атмосфере.

Из формулы (159.3) следует также, что интенсивность рассеянного света пропорциональна квадрату объема рассеивающей частицы или шестой степени радиуса сферической частицы.

Формула Рэлея содержит множитель ($\varepsilon - \varepsilon_0$)³/($\varepsilon + \varepsilon_0$)², который может служить мерой оптической неоднородности. Если $\varepsilon = \varepsilon_0$, то оптическая неоднородность исчезает и вместе с ней исчезает и рассеянный свет (I = 0). Такая мера оптической неоднородности относится не обязательно к малым частицам, но может служить для характеристики оптической неоднородности и в других случаях.

Выше уже приводился пример, когда кусок стекла, погруженный в жидкость с подходящим показателем преломления, практически переставал быть видимым.

Обсужденные закономерности рассеяния света перестают быть справедливыми, если размеры рассеивающих частиц становятся сравнимыми с длиной волны, что нередко наблюдается в коллондных растворах

Зависимость интенсивности рассеянного света от длины волны для таких более крупных частиц становится менее заметной, т. е. рассеянный свет оказывается менее голубоватым, чем в случае мелких частиц. Рассеянный свет оказывается поляризованным лишь частично, причем степень поляризации зависит от размеров и формы частиц. Распределение интенсивности рассеянного света по углам приюбретает также более сложный характер: диаграмма рассеяния несимметрична по отношению к линин AA (см. рис. 29.3) и в зависимости от размера, формы и природы частиц и окружающей среды может принимать очень сложный вид, сохраняя симметрию лишь относительно направления первичного пучка.

Эти более сложные закономерности очень затрудняют теоретическое истолкование рассеяния в мутных средах с крупными частицами. Тем не менее такие случаи представляют значительный интерес, ибо они обычно имеют место при исследовании коллоидных растворов и мутных сред, являющихся продуктами многих химических реакций. Поэтому подобные измерения находят применение в коллоидной химии, аналитической химии и биологии, составляя предмет нефелометрических методов исследования.

Казалось, что голубой цвет неба можно объяснить явлением рассеяния света на пылинках, однако опыты показали, что это не так, ибо и в чистой атмосфере, лишенной пыли (высокогорные обсерваторни), наблюдается еще более насыщенная голубизна неба и поляризация его света. Дальнейшие теоретические и экспериментальные исследования показали, что все эти эффекты объясняются молекулярным рассеянием света в воздухе.

§ 160. Молекулярное рассеяние света

(Особенный интерес представляют те случан, когда мы не можем говорить о мутной среде в упомянутом выше смысле слова, т. е. когда³ среда представляет собой жидкость (или газ), тщательно освобожденную от посторонних примесей или загрязнений.

В таких средах наблюдается рассеяние света и, следовательно, существует физическая причина, ведущая к возникновению оптической неоднородности (Л. И. Мандельштам, 1907 г.). Физическая причина, вызывающая появление оптической неоднородности в идеально чистых средах, была найдена не сразу.

Для одного (а. Критическая опалесценция. частного, но важного случая причина, ведущая к нарушению однородности, была указана М. Смолуховским (1908 г.) Давно было известно, что при критической температуре газа или жидкости наблюдается интенсивное рассеяние света (так называемая критическая опалесценция). Смолуховский обратил внимание на то, что при критической температуре сжимаемость среды очень велика $\left(\frac{\partial V}{\partial p}\right)_T$ стремится к бесконеч-(в критической точке теоретически ности). В этих условнях легко могут возникнуть в небольших объемах заметника объемах заметные отступления от средней плотности, ибо большая сжимаемость означить средней плотности, ибо большая образовання заметных вариаций плотности в малых объемах (флук-туации плотиости) С туации плотности). Связанное с этим нарушение ортической одно-родности и обусловлятия с образом, родности и обусловливает сильное рассеяние света. Паким образом,

ГЛ. ХХІХ. РАССЕЯНИЕ СВЕТА

Смолуховский объяснил явление критической опалесценции, дав тем самым указание, где надо искать причину нарушения однородности среды, приводящего к рассеянию света вообще.

ПДругой легко осуществимый случай молекулярного рассеяния света наблюдается при исследовании некоторых растворов. В растворах мы имеем дело со смесью двух (или более) сортов молекул, которые характеризуются своими значениями поляризуемости а. В обычных условиях распределение одного вещества в другом происходит настолько равномерно, что и растворы представляют собой среду, в оптическом отношении не менее однородную, чем обычные жидкости. Мы можем сказать, что концентрация растворенного вещества во всем объеме одинакова и отступления от среднего (флуктуации концентрации) крайне малы.) Однако известны многочисленные комбинации веществ, которые при обычной температуре лишь частично растворяются друг в друге, но при повышении температуры становятся способными смешиваться друг с другом в любых соотношениях. Температура, выше которой наблюдается такое смешивание, называется критической температурой смешения. При этой температуре две жидкости полностью смешиваются, если их весовые соотношения подобраны вполне определенным образом. Так, например, сероуглерод и метиловый спирт при 40 °С дают вполне однородную смесь, если взято 20 частей по весу сероуглерода и 80 частей метилового спирта. При более низкой температуре растворение происходит лишь частично, и мы имеем две ясно различимые жидкости: раствор сероуглерода в спирте и раствор спирта в сероуглероде. При температурах выше 40 °С можно получить однородную смесь при любом весовом соотношении компонент. С интересующей нас точки зрения критическая температура смешения характеризует такое состояние смеси, при котором особенно легко осуществляется местное отступление от равномерного распределения. Следовательно, при критической температуре смещения следует ожидать значительных флуктуаций концентрации и связанных с ними нарушений оптической однородности. Действительно, в таких смесях при критической температуре Смещения имеет место очень интенсивное рассеяние света, легко наблюдаемое на опыте.

6 Рассеяние света на поверхности жидкости. Явления, аналогичные объемному рассеянию, могут наблюдаться на поверхности жидкости. Спокойная поверхность жидкости представляет собой зеркало, и свет, падающий на нее, испытывает правильное отражение по определенному направлению. Но если поверхность жидкости стала шероховатой, например вследствие сотрясений, то большая или меньшая часть света испытает диффузное рассеяние в стороны.) Правильная поверхность жидкости должна, вообще говоря, непрерывно «портиться» вследствие молекулярного движения, и когда эти неровности становятся сравнимыми с длиной волны, то зеркальное отражение вообще перестает быть возможным и поверхность становится матовой.

матовои. В обычных условиях, однако, матовость свободной поверхности жидкости выражена крайне слабо, ибо искажающему действию теплового движения препятствуют силы молекулярного сцепления, стремящиеся сохранить свободную поверхность минимальной (поверхностное натяжение).

верхностное натяжение). На границе двух жидкостей эти капиллярные силы обычно меньше, чем на границе жидкость — газ. Они особенно малы вблизи критической температуры смешения. Действительно, в этом случае свет не только отражается от границы по законам Френеля, но интенсивно рассеивается во все стороны (Л. И. Мандельштам, 1913 г). В благоприятных случаях молекулярная шероховатость так велика, что правильное отражение не наблюдается даже при больших углах падения, причем исчезновение правильного отражения легче наблюдать для волн меньшей длины, как и должно быть для матовых поверхностей (ср. упражнение 55).

Значительно труднее наблюдать свет, рассеянный свободной поверхностью, однако и это удалось даже для жидкости с такой большой капиллярной постоянной, как ртуть (Раман, 1926 г.).

Законы поверхностного рассеяния отличны от законов объемного ного рассеяния. Так, интенсивность поверхностно рассеянного света обратно пропорциональна второй степени длины волны. (а не четвертой); своеобразны также и условия поляризации рассеянного света. Полная молекулярная теория этих явлений при молекулярпых шероховатостях, еще малых по сравнению с длиной волны, находится в согласии с наблюдаемыми на опыте закономерностями (Ф. С. Барышанская, 1936 г.).

в. Молекулярное рассеяние света в чистом веществе. Физическая причина, ведущая к светорассеянию в чистом веществе, указана Смолуховским, и, как сказано, состоит в том, что в силу статистической природы теплового движения молекул среды в ней возникают флуктуации плотности, особенно значительные в области критической точки. Флуктуации плотности $\Delta \rho$ в свою очередь ведут к флуктуации показателя преломления Δn или к флуктуации диэлектрической проницаемости $\Delta \varepsilon$ ($\varepsilon \equiv n^2$), а эти последние и представляют собой оптическую неоднородность.

Вдали от критической точки флуктуации не так велики, как в области критической точки, но они существуют и ими объясняется молекулярное расселние света в чистом веществе.

В 1910 г. Эйнштейн дал количественную теорию молекулярного рассеяния света вдали от критической точки, основанную на идее возникновения оптических неоднородностей среды вследствие флуктуаций диэлектрической проницаемости $\Delta \epsilon$.

ГЛ. ХХІХ. РАССЕЯНИЕ СВЕТА

Интенсивность рассеянного света в этом случае будет определяться оптической неоднородностью флуктуационного происхождения. Поскольку интенсивность рассеянного света не зависит от знака $\Delta \varepsilon$, она будет пропорциональна ($\Delta \varepsilon$)². Простой электродинамический расчет приводит к результату

$$I = I_0 \frac{\pi^2}{2\lambda^4 L^2} V^* V \overline{(\Delta \varepsilon)^2} (1 + \cos^2 \theta).$$
(160.1)

Здесь V* — объем флуктуации, малый по сравнению с длиной волны света, но содержащий много молекул. Другие обозначения те же, что и в формуле (159.3).

Теперь, в случае молекулярного рассеяния света, мерой оптической неоднородности служит величина $(\overline{\Delta \varepsilon})^2$. Если считать, что флуктуации $\Delta \varepsilon$ определяются только двумя независимыми термодинамическими переменными — плотностью и температурой или давлением p и энтропией S, то можно написать

$$\Delta \varepsilon = \left(\frac{\partial \varepsilon}{\partial p}\right)_{S} \Delta p + \left(\frac{\partial \varepsilon}{\partial S}\right)_{p} \Delta S; \quad \overline{(\Delta \varepsilon)^{2}} = \left(\frac{\partial \varepsilon}{\partial p}\right)_{S}^{q} \overline{(\Delta p)^{2}} + \left(\frac{\partial \varepsilon}{\partial S}\right)_{p}^{q} \overline{(\Delta S)^{2}},$$

где Δp , ΔS — флуктуационные изменения давления и энтропии, а индекс у производных указывает, какая величина при дифференцировании поддерживается постоянной. Здесь также учтено, что $\frac{\Delta p}{\Delta S} = 0$. Теория флуктуаций позволяет выразить величины $(\Delta p)^2$, $(\Delta S)^2$ через термодинамические характеристики вещества и представить соотношение (160.1) в виде (см. упражнение 206)

$$I = I_0 \frac{\pi^2}{2\lambda^4} \frac{V}{L^2} \left\{ \left(\rho \frac{\partial \varepsilon}{\partial \rho} \right)_s^a \beta_s kT + \left(\frac{1}{\sigma} \frac{\partial \varepsilon}{\partial T} \right)_p^a \frac{\sigma^2 kT^2}{c_p \rho} \right\} (1 + \cos^2 \theta).$$
(160.2)

Здесь ρ — плотность среды (г/см³), T — абсолютная температура, β_s — адиабатическая сжимаемость, σ — коэффициент теплового расширения, c_p — теплоемкость при постоянном давлении 1 г вещества, V — рассеивающий объем.

Первый член в фигурных скобках формулы (160.2) определяет интенсивность света, рассеянного вследствие аднабатических флуктуаций плотности (флуктуаций давления), а второй — вследствия изобарических флуктуаций плотности (флуктуаций энтропии). Приближенно можно считать, что

$$\left(\rho \frac{\partial \varepsilon}{\partial \rho}\right)_{S}^{q} \approx \left(\frac{1}{\sigma} \frac{\partial \varepsilon}{\partial T}\right)_{\rho}^{q} \approx \left(\rho \frac{\partial \varepsilon}{\partial \rho}\right)_{T}^{q}$$

Если воспользоваться известным термодинамическим соотношением $\beta_r = \beta_s + \frac{T\sigma^3}{\rho c_p}$ (здесь β_r — изотермическая сжимаемость),

молекулярная оптика

то формула (160.2) переходит в формулу, впервые полученную

$$I = I_0 \frac{\pi V}{2\lambda^4 L^2} \left(\rho \frac{\partial \varepsilon}{\partial \rho} \right)_T^9 \beta_T k T \left(1 + \cos^2 \theta \right). \tag{160.3}$$

Из формул (160.2) и (160.3) вытекает закон Рэлея / ~ 1/14 Таким образом, молекулярное рассеяние света способно объяснить голубой цвет неба и красный цвет Солнца на закате. Принимая в расчет уравнение состояния идеального газа и связь между в и р. из формулы (160.3) можно получить выражение для интенсивности света, рассеянного в газе, - первоначальную формулу Рэлея (см. упражнение 206).

Эйнштейн рассмотрел также случай, когда оптическая неоднородность вызывается флуктуациями концентрации растворенного вещества, если, разумеется, диэлектрическая проницаемость изменяется с концентрацией. В этом случае

$$\Delta \varepsilon = \left(\frac{\partial \varepsilon}{\partial c}\right)_{p, S} \Delta c; \quad \overline{(\Delta \varepsilon)^2} = \left(\frac{\partial \varepsilon}{\partial c}\right)_{p, S}^{q} \overline{(\Delta c)^2},$$

где c — концентрация, Δc — флуктуация концентрации.

Несложный расчет показывает, что интенсивность света, рассеянного вследствие флуктуаций концентрации, определяется выраженнем

$$I_{\text{ROHL}} = I_0 \frac{\pi^2 V}{2\lambda^4 L^2} \left(\frac{\partial \varepsilon}{\partial c}\right)_{p, s}^2 \frac{cM}{N_A} \left(1 + \cos^2\theta\right), \tag{160.3a}$$

где M — молекулярный вес растворенного вещества, N_A — число Аворалов Политичной Авогадро. Приведенная формула справедлива для небольших концентраций.

Развитие теории Эйиштейна на случай рассеяния в различных полимерах и белках (Дебай) дало один из лучших методов определения ния молекулярных весов и строения полимерных молекул с размерами порядка длины волны падающего света (или большими).

Свет, рассеянный вследствие флуктуаций плотности и флуктуации концентрации, полностью линейно-поляризован.

штейна входит постоянная Больцмана $k = R/N_A$, где R - газо-вая постояннаявая постояниая, а N_A — число Авогадро, то по интенсивности рассеящного света можно интенсивности. рассеящного света можно определить NA — число молекул в 1 моле, измерив все сотрановно определить NA — число молекул в 1 моле, просто это сделать для газа. Поэтому при экспериментальном ис-следовании света воссата. следовании света, рассеянного газом, критерием молекулярного

586

характера явления могла служить возможность вычисления этой важной постоянной.

важной ности интенсивности света, рассеянного атмосферой, про-Измерения интенсивности света, рассеянного атмосферой, проведенные в безоблачные дни в горных условиях, когда допустимо считать атмосферу свободной от случайных запылений, дали для числа Авогадро цифру, удовлетворительно согласующуюся с общепризнанным значением: по исправленным данным, полученным между 1938 и 1951 гг., эти измерения дают для числа Авогадро значение ($61,0 \pm 0.8$) $\cdot 10^{22}$ моль⁻¹ в прекрасном согласии с принятым значением ($60,2 \pm 0.3$) $\cdot 10^{23}$ моль⁻¹ *). Хорошие результаты получены также из опытов по рассеянию света в газах в лабораторных условиях (Кабанн и его сотрудники; по их последним данным $N_A = (61,0 \pm 0.8) \cdot 10^{22}$ моль⁻¹).

Молекулярный характер рассеяния в жидкости был надежно установлен рядом работ с 1913 по 1925 гг., причем были исследованы разные стороны явления. Новые тщательные исследования по рассеянию света в жидкости были продиктованы потребностью объяснить расхождения между теорией и экспериментами, которые приводили к неудовлетворительному значению для числа Авогадро. В настоящее время затруднения можно считать устраненными: экспериментальное определение всех величин, входящих в формулу для интенсивности рассеянного света, и в том числе величиы $\frac{\partial e}{\partial \rho}$, которая ранее заимствовалась из недостаточно обоснованных соображений, дает для числа Авогадро значение (59 \pm 2) ×

× 10^{22} моль⁻¹ (Г. П. Мотулевич, И. Л. Фабелинский, 1951 г.).

Измерения абсолютной интенсивности рассеянного света встречают серьезные экспериментальные трудности, которые, однако, удается преодолевать. Некоторое представление о результатах подобных измерений можно получить из следующих данных.

Boa	л	v	x
	-		~

рассеивает 2,7.10-7 части светового потока, вступающего в слой толщиной 1 см (при нормальном давлении и температуре).

водород	пассеивает	в	43	раз	а меньше	. 462	a bosty w
Apron	paccembaci		1.2	•		3	
Углекиското		ĺ.	26		больше,	чем	воздух
Bona (music	,	1	195	n 23			
Бенаот (жидкая)	2	2	100	Puo			
Клас (жидкий)	2	>	1700	÷.			
кристаллический	- >	>	1	,			
маменная соль (крист.)			5	,			

Молекулярное рассеяние в кристаллах также было надежно обнаружено (Г. С. Ландсберг с сотрудниками, 1927—1930 гг.).

*) По данным, опубликованным в 1974 г., N_A = 60,220943(61) · 10²² моль-1,

молекулярная оптика

Кристаллы невозможно очистить от случайных включений, позтому число изученных объектов здесь невелико. Метод, который позволил отличить молекулярно-рассеянный свет от света, рассеянного случайными включениями, состоял в исследовании зависимости интенсивности от температуры: интенсивность молекулярно-рассеянного света растет пропорционально абсолютной температуре, а интенсивность паразитного света от температуры не зависит.

На рис. 29.4 и 29.5 приведены фотографии рассеянного разными веществами света в условиях тождественного освещения для каждого из веществ. Они позволяют судить об относительной рассеивающей способности для разных веществ.

Рис. 29.4. Сравнительная интенсивность молекулярного рассеяния в водороде, воздухе и углекислом газе.

Рис. 29.5. Сравнительная интенсивность молекулярного рассеяния в четыреххлористом углероде (CCl₄) и бензоле (C₀H₀).

2) Поляризация света при рассеянии. Если естественный свет падает на молекулу в направлении OY (рис. 29.6), то колебания сго электрического вектора должны лежать в плоскости ZOX. Если наблюдать рассеянный свет в направлении OX, то в силу поперечности волн в этом направлении пойдут волны, обусловленные лишь той слагающей колебания электрического вектора, которая перпендикулярна к OX. Таким образом, в свете, рассеяном под прямым углом к падающему, должны наблюдаться только коле бания (электрического вектора), направленные вдоль OZ, т. е. свет должен быть полностью поляризован.

Однако дальнейшие наблюдения показали, что поляризация рассеянного света обычно не бывает полной. Если через I_y обозначить интенсивность света, электрические колебания которого совершаются вдоль оси *OY*, а через I_z — интенсивность света с колебаниями вдоль *OZ*, то степень поляризации П определится соот ношением (160.4)

$$\Pi = \frac{l_z - l_y}{l_z + l_y}.$$

588

Изложенные выше соображения приводят к выводу, что при $I_{\mu} = 0 \Pi = 1$ (поляризация света достигает 100%). Из опыта же I далеко не всегда равняется нулю: свет частично следует, что I далеко не всегда равняется нулю: свет частично деполяризован. За меру деполя-

ризации обычно принимают

$$\Delta = \frac{I_y}{I_z}.$$
 (160.5)

Для ряда газов Δ отлично от нуля (для водорода $\Delta = 1\%$, для азота $\Delta = 4\%$, для паров сероуглерода $\Delta = 14\%$, для углекислоты $\Delta = 7\%$).

Для жидкостей степень деполяризации еще больше, достигая для бензола 44%, для сероуглерода 68%, а для нитротолуола даже

Рис. 29.6. К вопросу о поляризации рассеянного света.

80%. Объяснение этому явлению также было дано Рэлеем, который указал, что оно должно быть связано с оптической анизотропией рассеивающих молекул. Действительно, для анизотропной молекулы направление возникающей в ней электрической поляризации не совпадает, вообще говоря, с направлением электрического поля волны.

Так, например, если молекула может поляризоваться вдоль одного лишь направления (модель молекулы в виде палочки АВ, рис. 29.7), то поле, направленное вдоль ОЕ, вызовет все же колебання вдоль ОА с амплитудой, пропорциональной слагающей поля ОМ, величина которой зависит от угла ЕОА. Если среда состоит Из таких молекул, то вторичная волна будет иметь электрические компоненты и вдоль ОZ, и вдоль ОУ (рис. 29.8), относительные величины которых зависят от степени анизотропни молекулы, т. е. свет, рассеянный в направлении, перпендикулярном к первичному пучку, будет поляризован только частично.

Таким образом, частичная деполяризация света объясняется анизотропией молекул, т. е. теми же свойствами среды, что и явление двойного лучепреломления в электрическом поле (эффект Керро Керра, см. § 152). Открывается возможность установить зависимость между постоянной-Керра и величиной деполяризации. Опыт

В то же время измерения поляризации позволяют делать заподтвердил эту зависимость. ключения относительно анизотропии молекул и используются, таким образом образом, для выводов, касающихся структуры молекул. Для этой цели особения цели особенно пригодны измерения в парах и газах, ибо в жидкой среде и разона и солокия. среде играют немалую роль взаимодействия молекул, учет которых до настоятиет до настоящего времени не может быть сделан достаточно полно. Именно отнов времени не может быть сделан достаточно большая Именно этими взаимодействиями обусловлена значительно большая

молекулярная оптика

деполяризация в жидкостях, чем в соответствующих парах. Таким образом, из сравнения деполяризации в парах и в жидкой фазе иельзя делать заключения, что в жидком состоянии молекулы более анизотропны, чем в паре.

Оолее анизотронны, чем в наре. Что же касается газов, то их исследование позволяет достаточно полно охарактеризовать основные оптические параметры,

Рис. 29.7. Модель сильно анизотропной молекулы.

Поляризуемость в направлении, перпендикулярном к АВ, равна нулю.

задаваемые эллипсоидом поляризуемости. Для полной характернстики анизотропной молекулы необходимо знать значения поляризуемости для трех главных направлений молекулы, т. е. в самом общем случае — три величины. Для этой цели мы располагаем тремя независимо измеряемыми величинами: показателем преломления, постоянной Керра и коэффициентом деполяризации рассеянного света.

Вследствие теплового движения анизотропных молекул среды кроме флуктуаций плотности возникают также и флуктуации ориентаций анизотропных молекул, или флуктуации анизотропии. Это означает, что статистический характер движения молекул приводит к тому, что в объемах, малых по сравнению с длиной волны света, в некотором направлении оказалось больше молекул, ориентированных одинаково, чем в любом другом направлении. Такая преимущественная ориентация анизотропных молекул или такие флуктуации анизотропии создадут оптическую неоднородность и, следовательно, вызовут рассеяния света.

Как было сказано, свет, рассеяния света. плотности, полностью линейно-поляризован. Вектор электрического поля этой световой волны лежит в плоскости, перпендикулярной к плоскости рассеяния. Свет, рассеянный вследствие флукту ации анизотропии, деполяризован, причем коэффициент деполяри-

590

защии этого света в соответствии с расчетами и опытом равен $\rho_n = {}^{6}/_{7}$ при освещении рассеивающей среды естественным светом и $\rho_V = {}^{8}/_{4}$ при освещении линейно-поляризованным светом с электрическим вектором, перпендикулярным к плоскости рассеяния при наблюдении рассеяния под углом $\theta = 90^{\circ}$.

Смесь света, рассеянного вследствие флуктуаций плотности и флуктуаций анизотропии, характеризуется некоторым коэффициентом деполяризации Δ (см. формулу (160.5)), который определяется относительными вкладами деполяризованного света и поляризованного света. Расчет интенсивности света, рассеянного вследствие флуктуаций анизотропии, встречает большие трудности, поскольку флуктуации анизотропии не могут быть вычислены таким же путем. как флуктуации плотности. Однако задача о расчете соответствующей интенсивности была решена феноменологически для определенной модели жидкости. Мы не будем воспроизводить здесь этот расчет, но учтем вклад света, рассеянного вследствие флуктуации анизотропии в общую интенсивность, пользуясь значениями коэффициентов деполяризации, как это сделано Кабанном (1927). Пусть суммарная интенсивность рассеянного света есть J = I + i, где Iвыражается формулой (160.2) для в = 90° (в дальнейшем будем обозначать ее І, а і есть интенсивность света, рассеянного вследствие флуктуаций анизотропии. Если принять, что падающий естественный свет распространяется вдоль оси У (рис. 29.8), наблюдение рассеянного света производится вдоль оси X, а ось Z перпендикулярна к плоскости рассеяния, то $I = I_z$ и $i = i_x + i_z$ и, следовательно,

$$J = I_z + i_x + i_z.$$

Как уже было указано выше,

П

$$\Delta = \frac{i_x}{I_z + i_z}$$

$$\omega_x = \frac{i_x}{I_z} = \frac{6}{7}.$$

Принимая в расчет написанные здесь определения интенсивности и коэффициентов деполяризации и исключая *i*, и *i*, получим

$$J_{00} = I_{00}f(\Delta).$$

Здесь J₉₀ — полная интенсивность для в = 90°, множитель

$$f(\Delta) = \frac{6+6\Delta}{6-7\Delta}$$

называется фактором Кабанна.

Из написанных выше формул легко получить отношение

$$i/I = \frac{13\Delta}{6-7\Delta};$$

отсюда следует, что для таких жидкостей, как глицерин ($\Delta \approx 0.30$) интенсивность поляризованного рассеянного света равна приблизительно интенсивности деполяризованного рассеянного света. Если $\Delta \approx 0,68$ (как в случае сероуглерода), интенсивность света, рассеянного вследствие флуктуаций анизотропии, в семь раз превосходит интенсивность света, рассеянного на флуктуациях плотности.

§ 161. Спектры молекулярного рассеяния света

Флуктуации давления, энтропии или температуры, концентрации и анизотропии возникают и «рассасываются» во времени. Разные флуктуации образуются и изменяются, следуя различным законам.

Возникшая флуктуация давления, которую можно рассматривать как локальное повышение или понижение давления, разумсется, не может «застыть» на месте в упругом теле, но «побежит» по объему вещества со скоростью распространения упругого возмущения. Флуктуации концентрации будут изменяться со скоростью, которая определяется коэффициентами диффузии, а флуктуации энтропии — со скоростью, определяемой коэффициентом температуропроводности вещества.

Все эти временные изменения оптических неоднородностей приведут к изменению амплитуды и фазы рассеянного света по закону, соответствующему характеру временного изменения оптической неоднородности.

Как было показано в §§ 4, 22, изменение (модуляция) амплитуды и фазы световой волны со временем ведет к изменению спектрального состава первоначально монохроматического светового излучения. Характер такого спектра будет зависеть от вида модулирующей функции или, другими словами, от вида зависимости амплитуды и фазы рассеянного света во времени.

а. Компоненты Мандельштама — Бриллоэна. Адиабатические флуктуации плотности или флуктуации давэна. Адиабатические флуктуации плотности или флуктуации давления можно рассматривать как совокупность упругих волн, распространяющихся в среде по всевозможным направлениям и обладающих всевозможными частотами (представление флуктуации в виде интеграла Фурье).

При расчете теплоемкости твердого тела (Дебай) энергия теплового движения рассматривается как энергия ЗN упругих нормальных колебаний (воли) данного тела. Эти дебаевские упругие волны и фурье-компоненты, на которые разлагаются адиабатиче

£92

ГЛ. ХХІХ. РАССЕЯНИЕ СВЕТА

ские флуктуации плотности, суть одни и те же волны (Л. И. Манские физи. С такой точки зрения свет, расселнный вследствие флуктуаций плотности. дельштам, с алуктуаций плотности, есть свет, дифрагироволнах.

Направив внутрь среды параллельный пучок света, например, лазерного, можно наблюдать свет, дифрагировавший практически на одной-единственной упругой или звуковой волне. Если в среду направлена плоская монохроматическая вол- $E = E_0 \cos \left[\omega_0 t - (kr) \right] c$ на волновым вектором k, которая встречает упругую волну А = $= A_0 \cos \left[\Omega t - (qr) \right]$ с волновым вектором q, то максимум дифрагировавшего света будет виден

Рис. 29.9. К дифракции света на флуктуационной упругой волне.

в направлении, отвечающем условию Брэгга (см. § 119), т. е.

$$k'-k=\pm a$$

 $(k' - волновой вектор рассеянного света); полагая <math>|k'| \approx |k| =$ и $|q| = 2\pi/\Lambda$, получим

$$2n\Lambda\sin^{1}/_{2}\theta = \lambda, \qquad (161.1)$$

где Лид — длины волн звука и падающего света соответственно. Амплитуда света, дифрагировавшего на стоячей упругой волне в направлении, определяемом углом рассеяния в, будет меняться по

закону соs Ωt, где Ω — частота упругой или звуковой волны. Поэтому поле рассеянного света можно записать следующим образом:

$$E(t) \propto E_0 \cos \Omega t \cos \omega_0 t \propto \frac{1}{2} E_0 [\cos (\omega_0 + \Omega) t + \cos (\omega_0 - \Omega) t].$$

Следовательно, в рассеянном свете должны наблюдаться два сателлита с частотами

$$\omega_0 + \Omega$$
 и $\omega_0 - \Omega$.

17

симметрично расположенными по обе стороны от частоты падающего света са стороны сателлиты). света ω_0 ($\omega_0 + \Omega$ — антистоксов и $\omega_0 - \Omega$ — стоксов сателлиты). Эти сотта ($\omega_0 + \Omega$ — антистоксов и $\omega_0 - \Omega$ — стоксов сателлиты). Эти сателлиты называются компонентами Мандельштама — Бриллюзна и образуют тонкую структуру линии Рэлея. Частота упругой тепловой волны, вызвавшей модуляцию световой волны,

может быть записана (с учетом (161.1) и соотношения $\omega_0 = 2\pi c/\lambda$)

$$\Omega = vq = v\left(\frac{2\pi}{\Lambda}\right) = \frac{4\pi nv}{\lambda} \sin \frac{1}{2}0 = 2\omega_0 n \frac{v}{c} \sin \frac{1}{2}0, \quad (161.2)$$

где v — скорость распространения упругой волны, соответствуюшая частоте Ω.

Таким образом, относительное изменение частоты сателлитов можно записать в виде

$$\pm \frac{\Delta \omega}{\omega_0} = \pm \frac{\Omega}{\omega_0} = 2n \frac{v}{c} \sin \frac{1}{2} \theta, \qquad (161.3)$$

где $\Delta \omega$ — смещение компоненты Мандельштама — Бриллюэна. Последняя формула была получена независимо друг от друга Мандельштамом и Бриллюэном и носит их имя.

К соотношению (161.3) можно прийти, рассматривая дифракцию света на бегущей волне. В направлении, определяемом углом в, приходит свет, зеркально отраженный от бегущих волн, движущихся со скоростями ± v. Принимая во внимание эффект Допплера, можно получить формулу Мандельштама — Бриллюэна (161.3).

Из этой формулы ясно, что частоты звука Ω, определяющие рассеяние света, лежат в диапазоне от нуля (для $\theta = 0$) до максимальной величины $\Omega = 2n\omega_0 v/c$ (для $\theta = 180^\circ$). Учитывая, что vдля газов порядка 10⁴, для жидкостей порядка 10⁵ и для кристаллов порядка 10° см/с, находим для максимальных частот величины порядка 10° ω_0 , 10° ω_0 н 10° ω_0 соответственно. Для зеленого

Рис. 29.10. Интерференционный спектр тонкой структуры линии рассеяния в бен-золе при комнатиой соссания в спектр тонкой структуры линии рассеяния в бензоле при комнатной температуре, возбужденный линией 632,8 им излучения а -- спектр возбуждающей линин; б -- спектр тонкой структуры линии рассеяния. гелий-неонового газа лазера.

света $\lambda = 500$ нм максимальные частоты лежат в интервале от 10^9 до 10^{11} с⁻¹ для разних полоные частоты лежат в интервале от 10^9 до 10¹¹ с⁻¹ для разных веществ.

Такие малые изменения частоты света $\Delta \omega$ удается зарегистри-вать только из отосного света $\Delta \omega$ ровать только на спектральных аппаратах высокой разрешающей силы, например на интерферометре Фабри — Перо или дифракционном спектрографе с решеткой, обладающей большим числом штрихов. Наличие тонкой структуры линии Рэлея было впервые обнаружено экспериментально (1930 г.) Ландсбергом, Мандельштамом и Гроссом в монокристалле кварца и Гроссом в жидкостях.

и Гроссом 2 29.10 представлен снимок спектра излучения, рассеянного в бензоле, сделанный с помощью интерферометра Фабри-Перо при освещении жидкости светом гелий-неонового лазера с λ = = 632,8 нм.

Измерение расстояния между компонентами Мандельштама — Бриллюэна 2∆ ω дает возможность (см. (161.3)) определить скорость звука весьма высокой частоты (вплоть до частот 10¹⁰—10¹¹ Гц). Сопоставление значения этой скорости с ее ееличиной при низких частотах, измеряемой в акустических и ультраакустических опытах, позволяет исследовать дисперсию скорости звука.

Затухание упругих волн обусловливает уширение компонент Мандельштама — Бриллюэна, причем полуширина компоненты равна

$$\delta\omega_{\rm ME} = 2\alpha v, \qquad (161.4)$$

где α — амплитудный коэффициент затухания звука. Измерение ширин δωмь позволяет определить коэффициент затухания звука высокой частоты (гиперзвук).

Интегральная интенсивность обеих компонент Мандельштама — Бриллюэна определяется первым слагаемым в фигурных скобках (160.2).

б. Центральная компонента. Спектр света, рассеянного вследствие изобарических флуктуаций плотности, отличается от только что рассмотренного спектра света, рассеянного вследствие адиабатических флуктуаций.

Действительно, временные изменения оптических неоднородностей, вызванных флуктуациями энтропии или температуры (см. (160.2)), подчиняются уравнению температуропроводности, решение которого в данном случае дает экспоненциальную зависимость от времени. Следовательно, в этом случае функция, модулирующая амплитуду световой волны, экспоненциально зависит от времени, и в рассеянном свете возникиет спектральная линия с максимумом на частоте первоначального света — центральная компонента с полушириной

$$\delta\omega_c = q^2 \chi; \quad q = \frac{4\pi n}{\lambda} \sin^{1/2\theta},$$

где х — коэффициент температуропроводности, равный х/с, р (здесь х — коэффициент теплопроводности). Вследствие

Интегральная интенсивность света, рассеянного вследствие изобарических флуктуаций плотности, определяется вторым слагаемым в фигурных скобках в (160.2). Временное изменение оптических неоднородностей, вызванных флуктуациями концентрации, подчиняется уравнению, формально совпадающему с уравнением температуропроводности, но с заменой χ на коэффициент диффузии *D*. Поэтому спектральная линия излучения, рассеянного вследствие флуктуаций концентрации, по положению совпадает с центральной компонентой, но имеет иную ширину, равную

$$\delta \omega_{\text{конц}} = q^2 D,$$

где D — коэффициент взаимной диффузин молекул раствора. Поскольку D в обычных растворах на несколько порядков меньше χ , соответствующая линия будет во столько же раз уже, а интегральная интенсивность линии оказывается больше интенсивности, обусловленной изобарическими флуктуациями (при одинаковых углах рассеяния). Это обстоятельство позволяет найти D по измерению ширины центральной компоненты в растворе. Грубая оценка ширин для $\theta = 90^{\circ}$ и $\lambda = 435,8$ нм иллюстрирует порядок величин $\delta\omega$ для жидкости ($n \approx 1.5$, $v = 1.5 \cdot 10^5$ см/с):

$$\begin{split} &\delta\omega_{\rm MB}\sim 7\cdot 10^9~{\rm c}^{-1}, \quad \delta\nu_{\rm MB}\sim 4\cdot 10^{-2}~{\rm cm}^{-1} \quad (\alpha\Lambda=0,5),\\ &\delta\omega_c\sim 10^8~{\rm c}^{-1}, \qquad \delta\nu_c\sim 5\cdot 10^{-4}~{\rm cm}^{-1} \quad (\chi\sim 10^{-3}~{\rm cm}^2/{\rm c}),\\ &\delta\omega_{\rm kohu}\sim 10^5~{\rm c}^{-1}, \qquad \delta\nu_{\rm kohu}\sim 5\cdot 10^7~{\rm cm}^{-1} \quad (D\sim 10^{-5}~{\rm cm}^2/{\rm c}). \end{split}$$

в. Соотношение интенсивностей компонент тонкой структуры линии Рэлея. Отношение интегральной интенсивности центральной компоненты *I*_c, или интенсивности света, рассеянного вследствие изобарических флуктуаций плотности, к суммарной интенсивности обеих компонент Мандельштама — Бриллюэна 2*I*_{МБ}, или к интенсивности света, рассеянного вследствие адиабатических флуктуаций плотности, просто найти из отношения второго слагаемого в фигурных скобках (160.2) к первому:

$$\frac{I_c}{2I_{\rm MB}} = \frac{\left(\frac{1}{\sigma}\frac{\partial e}{\partial T}\right)_p^2}{\left(\rho\frac{\partial e}{\partial \rho}\right)_S^2} \frac{\sigma^2 T}{c_p \rho \beta_S}.$$
(161.5)

Принимая во внимание, что

$$\gamma = c_p / c_V = \beta_T / \beta_S = 1 + \frac{7 \sigma^2}{\rho c_p \beta_S}$$

гле c_V — теплоемкость при постоянном объеме, и, полагая, $\frac{40}{10} \left(\rho \frac{\partial e}{\partial \rho} \right)_s^2 \approx \left(\frac{1}{\sigma} \frac{\partial e}{\partial T} \right)_p^2$, из формулы (160.2) находим (161.6)

$$\frac{I_e}{2I_{\rm MB}} = \gamma - 1.$$

Эта формула была впервые получена Л. Д. Ландау и Г. Плачеком (1934 г.) и носит название соотношения Ландау — Плачека. Она качественно согласуется с опытом.

качестволимер, для воды $\gamma \approx 1$, и в спектре рассеянного света центральная линия отсутствует. Это обстоятельство легко понять, если вспомнить, что коэффициент расширения воды при температуре около 4°С проходит через нуль и в выражении для у второе слагаемое обращается в нуль. Почти во всех остальных веществах $\gamma > 1$ и центральная компонента отчетливо видна (см. рис. 29.10).

Исследование спектров молекулярного рассеяния представляет собой мощный и довольно универсальный инструмент изучения различных характеристик и свойств веществ в различных агрегатных состояниях при различных внешних условиях. Измерение положения дискретных компонент Мандельштама — Бриллюэна дает возможность составить себе ясную картину поведения упругих постоянных для различных кристаллографических направлений в твердом теле, в том числе в области фазового перехода, что представляет особенно большой интерес.

Измерение полуширин компонент Мандельштама — Бриллюэна дает сведения о поглощении гиперзвука, что эффективно при исследовании жидкостей и растворов, включая и областъ фазовых превращений. Новая спектроскопическая техника позволяет не только определить полуширину этих линий, но и, пользуясь формулами (161.4) и выражением для $\delta \omega_{\text{конц}}$, найти коэффициенты температуропроводности и взаимной диффузии растворов, а также проследить их температурную кинетику и установить закон, по которому эти величины стремятся к нулю при приближении к критической точке жидкость — пар ц критической точке расслаивания растворов.

г. С пектр света, рассеянного вследствие флуктуаций анизотропии. Спектр света, рассеянного вследствие изменяющихся во времени флуктуаций анизотропии жидкости, представляет собой более или менее широкую полосу с максимумом, приходящимся на частоту возбуждающего света и простирающуюся в каждую сторону на 150 см⁻¹ и даже больше (сероуглерод, бензол, нитробензол и др.). Этот спектр называется крылом линии Рэлея, а описанная картина распределения интенсивности наблюдается при йспользовании для возбуждения естественного или линейно-поляризованного света.

Коэффициент деполяризованного света. при возбуждении естественным светом и ⁸/₄ при возбуждении липейно-поляризованным светом с электрическим вектором, перпендикулярным к плоскости рассеяния. При возбуждении таким линейнополяризованным светом и при наблюдении спектра рассеянного света с электрическим вектором, лежащим в плоскости рассеяния, было установлено, что на частоте возбуждающего света имеется «провал», иногда достигающий 30% от максимальной интенсивно. сти (И. Л. Фабелинский и сотрудники, 1967 г.).

сти (И. Л. Флостинения и и Рэлея наблюдается тонкая структура, которая объясняется модуляцией света, рассеянного вследствие флуктуаций анизотропии, поперечными волнами. Скорость таких волн в маловязких жидкостях лежит в пределах от 100 до 200 м/с.

Разработанная теория распределения интенсивности в крыле линии Рэлея (М. А. Леонтович, 1941 г., С. М. Рытов, 1957, 1970 гг.) вместе с результатами измерений позволяет определять времена релаксации анизотропии.

Полученные результаты имеют не только научное, но и практическое значение, потому что именно этими временами определяется время существования двойного лучепреломления в электрическом поле (явление Керра, см. § 152) и, следовательно, эти времена определяют минимальную экспозицию при использовании ячейки Керра в качестве «фотографического» затвора. Такой затвор теперь находит широкос применение при исследовании различных быстропротекающих процессов и имеет другие практические применения.

д. Вынужденное рассеяние Мандельштама — Бриллюэна. В рассмотренных выше случаях рассеяния света принималось во внимание влияние оптических неоднородностей среды различного происхождения на характер распространения света, но не учитывалось влияние света на оптические неоднородности. Пока интенсивность возбуждающего света настолько мала, что она не может заметно повлиять на характер неоднородности среды, пренебрежение влиянием света на среду допустимо. Но когда интенсивность возбуждающего света велика и заметно влияет на характер внутреннего движения среды, воздействие света на оптические неоднородности необходимо принять во внимание. При воздействии на среду интенсивного света гигантского импульса лазера (см. гл. XL) возникает ряд нелинейных оптических явлений. Один из классов таких явлений назван вынужденным рассеянием света.

Здесь будет качественно рассмотрен только один из типов вынужденного рассеяния — вынужденное рассеяние Мандельштама Бриллюэна (ВРМБ), начало которому дает рассеяние света, обусловленное тепловыми флуктуациями давления (см. выше).

Физическая причина вынужденного рассеяния Мандельштама — Бриллюэна состоит в том, что интенсивная световая волна возбуждающего света, первоначально слабая волна рассеянного света и тепловая упругая волна, которая, как указано выше, обусловливает дискретные компоненты Мандельштама — Бриллюэна, иелинейно взаимодействуют друг с другом. Такое нелинейное взаимодействие осуществляется посредством явления электрострикции.

Явление электрострикции состоит в том, что диэлектрик в электрическом поле меняет свой объем, и таким образом возникает электрострикционное давление, которое можно выразить соотношением

$$p = \left(\rho \frac{\partial e}{\partial \rho}\right) \frac{E^2}{8\pi}, \qquad (161.7)$$

где є ($\equiv n^2$) — диэлектрическая проницаемость среды. Величина ($\rho \frac{\partial \varepsilon}{\partial \rho}$) порядка единицы и, следовательно, давление определяется величиной напряженности электрического поля. Как будет показано в гл. XL, напряженность электрического поля световой волны в гигантском импульсе лазера может достигать значений, характерных для внутриатомных полей, и тогда электрострикционное давление может составлять сотни тысяч атмосфер.

Для грубого качественного пояснения природы ВРМБ будем считать, что в среде существуют поле возбуждающей световой волны $E_0 \cos (\omega t - kr)$ (гигантский импульс лазера) и — в результате рассеяния света — поле одного лишь стоксового сателлита $E_1 \cos [(\omega - \Omega)t - k_1 r]$. Поле этого сателлита, как показано выше, возникает в результате рассеяния света под углом Брэгга и модуляции рассеянного света тепловой волной с частотой Ω .

Для нахождения p (см. формулу (161.7)) нужно сумму обонх написанных выше полей возвести в квадрат. После такой операции и элементарных тригонометрических преобразований получим, что p складывается из высокочастотных членов со световыми частотами и составляющей со звуковой частотой Ω . Звук со световой частотой сильно затухает и распространяться не может, поэтому соответствующие члены следует отбросить и останется выражение

$$p = \frac{1}{8\pi} \left(\rho \frac{\partial \varepsilon}{\partial \rho} \right) E_0 E_1 \cos \left(\Omega t - q r \right). \tag{161.8}$$

Здесь правая часть совпадает с выражением для звуковой волны, ответственной за образование стоксовой компоненты Мандельштама — Бриллюэна. Амплитуда первоначально слабой волны, будучи умножена на E_0 , приведет к росту электрического поля световой волны стоксовой компоненты, что в свою очередь приведет к росту давления н т. д. Такой процесс параметрического усиления к росту давления н т. д. Такой процесс параметрического усиления будет происходить до тех пор; пока интенсивность «рассеянной» световой волны не окажется сравнимой с интенсивностью возбуждающего света.

599

молекулярная оптика

Явление вынужденного рассеяния Мандельштама — Бриллюэна было обнаружено в кристаллах кварца и сапфира (Чнао, Таунс, Стоичев, 1964 г.) и затем найдено в стеклах, жидкостях и газах. На рис. 29.11 приведен спектр ВРМБ в плавленом кварце, На

and the second sec	Start Marks	2.00
FI 47 23 5		NE 72 3
	· 条款:	300 Ser. 3
	A COLORADO	81 83
	Full this	AL AN
1 22 +4	A2.000	Sale 19
1. 1.1 (.3 h.u. 11)	CALL COLLEGE STREET	201 26
1 A 1 2 1	and the second s	Start 2-B.
and the state of the	n and hand a start of the	
is such and so	o, li S.	S. 1 .
Da Carline and contraction and and and and and and	and the second	

Рис. 29.11. Спектр вынужденного рассеяния Мандельштама — Бриллюзна в плавленом кварце.

L — линня возбуждающего света рубинового лазера; S₁ и S₈ — первая и вторая стоксовы компоненты ВРМБ.

спектре видны две стоксовы компоненты ВРМБ при наблюдении рассеянного света под углом 180°. Вторая компонента возникает в результате того, что первая стоксова компонента попадает в лазер, усиливается там и, возвратившись в образец, сама вызывает стоксовы компоненты ВРМБ. Таких последовательно возникших компонент может быть много. Существуют, однако, условия эксперимента, при которых могут наблюдаться антистоксовы компоненты при вынужденном рассеянии.

Каждый вид теплового или спонтанного рассеяния дает начало вынужденному рассеянию. Кроме ВРМБ были обнаружены выпужденное рассеяние крыла линии Рэлея (Маш, Морозов, Старунов, Фабелинский, 1965 г.), вынужденное температурное или энтропнёное рассеяние (Зайцев, Кызыласов, Старунов, Фабелинский, 1967 г.). Построена строгая теория этих явлений.

§ 162. Комбинационное рассеяние света

Согласно закону Рэлея распределение энергии в рассеянном свете отличается от распределения в первичном свете относительно большей ее величиной в коротковолновой части спектра. Качественное представление о характере явления дает рис. 29.12, на котором изображены фотографии спектра прямого света ртутной лампы и спектра той же лампы в свете, рассеянном в воздухе. Экспозиции подобраны так, чтобы были приблизительно равны интенсивности для линий большой длины волны. Тогда различие интенсивностей в более коротковолновой части спектра выступает отчетливо.

Согласно прежним исследованиям указанное различие считалось единственным отличием в спектрах прямого и рассеян-

ГЛ. ХХІХ. РАССЕЯНИЕ СВЕТА

ного света. Тщательное изучение показало; однако (Раман, ного света. и Л. И. Мандельштам, 1928 г.), что в спектре рассеянного света наблюдаются, кроме линий, характеризующих

Рис. 29.12. Спектр прямого света ртутной лампы и спектр той же лампы в расселнном свете.

Ясно заметно относительное возрастание интенсивности коротких воли в рассеянном свете

падающий свет, еще добавочные линии, спутники, сопровождающие каждую из линий первичного света (рис. 29.13, 29.14).

Рис. 29.13. Спектр комбинационного рассеяния четыреххлористого углерода. Внизу для сравнения приведен спектр ртутной лампы.

Так как спутники сопровождают любую спектральную линию первичного света, то ясно, что обнаружение их возможно лишь в том случае, когда падающий свет представляет собой совокупность отдельных (монохроматических) линий, а не сплошной спектр. Опыт позволил установить следующие законы этого явления.

1) Спутники сопровождают каждую линию первичного света.

2) Различие Ду в частотах возбуждающей первичной линии Vo и линий каждого из спутников, v', v", v", ..., характерно для Рассеивающего вещества и равно частотам собственных колебаний у ero молекул:

 $\Delta v_{1} = v_{0} - v' = v_{1}', \quad \Delta v_{2} = v_{0} - v'' = v_{2}', \quad \Delta v_{3} = v_{0} - v''' = v_{4}', \quad \dots$

молекулярная оптика

Примером может служить таблица.

Таблица

Сопоставление волновых чисел для толуола по данным инфракрасных спектров и комбинационного рассеяния

Комбинаци- онное рассея- ние	Инфракрас- ные спектры			
3067 3054** 3032 2981 2920 2870 1605 	2930* 2930* 1859 1608* 1494 1456* 1384 1311 1213 1158 1075* 1033* 911	Волновыя зывают чис салтиметре. ний в секун (скорость св Цифры, с ные линии, очень сильн	е числа, привед ло волн, укла Для получени ду) эти числа н чета). отмеченные звез а отмеченные ые линии.	денные в таблице, пока- адывающихся на одном я частот (числа колеба- надо умножить на 3. Си здочкой, означают силь- двумя звездочками —
521 217	892 841 729** 693**			ţ.
		~		

3) Спутники представляют собой две системы линий, лежащих симметрично по обе стороны возбуждающей линии, т. е.

$v_0 - v_r = v_v - v_0.$

Здесь v, обозначает частоты спутников, лежащих в сторону более длинных волн, чем возбуждающие, а v_v — частоты соответствующих спутников, лежащих с другой стороны. Первые спутники, расположенные ближе к красной части спектра и потому иногда называемые «красными» (α на рис. 29.14), значительно интенсивнее, чем соответствующие «фиолетовые» (β на рис. 29.14).

4) С повышением температуры интенсивность «фиолетовых» спутников быстро возрастает.

Можно себе представить сущность явления комбинационного рассеяния, пользуясь упрощенным представлением о световых квантах. В силу этих представлений свет частоты vo распространяется

ГЛ. ХХІХ. РАССЕЯНИЕ СВЕТА

в виде определенных порций (квантов), величина которых hv_0 , где $h = 6,62 \cdot 10^{-34}$ Дж · с — универсальная постоянная, введенная Планком *). В соответствии с этим атом или молекула, в которых совершаются колебания с частотой v_0 , содержат запас энергии hv_0 , который может быть испущен этим атомсм (молекулой) в виде света той же частоты. С этой точки зрения рассеяние света молекулами следует упрощенно рассматривать как столкновение световых квантов, т. е. фотонов, с молекулами, в результате которого фотоны изменяют направление своего полета, т. е. рассеиваются в стороны.

I — спектр ртутной лампы; 2 — спектр рассеяння кварца при температуре 20 ° С; 3 — спектр рассеяния кварца при температуре 210 ° С; α — «красные» спутники; β — «фиоле-товые» спутники.

Столкновения фотонов с молекулами могут быть как упругими, так и неупругими. В первом случае энергия молекулы и частота vo фотона не меняются, что соответствует рэлеевскому рассеянию. При неупругом столкновении энергия фотона узеличивается или уменьшается на величину колебательного кванта hvi. Если свет вступает во взаимодействие с молекулой, не находящейся в состоянии колебания, то он отдает молекуле соответствующую часть энергии и превращается в излучение меньшей частоты («красный спутник») в соответствии с уравнением

$$hv' = hv_0 - hv_0$$
, $HJH v' = v_0 - v_0$,

где v₀ — частота возбуждающего света, v₁ — частота колебаний молекулы.

Если же свет воздействует на молекулу, находящуюся в колебательном состоянии, т. е. обладающую энергией hvi, то он может отобрать от молекулы эту энергию и превратиться в излучение

*) Подробнее о световых квантах см. гл. ХХХШ.

молекулярная оптика

большей частоты («фиолетовый спутник») в соответствии с уравще, нием

$hv' = hv_0 + hv_i$, или $v' = v_0 + v_i$.

Число молекул, находящихся в состоянии колебания (с избыт, ком энергии), значительно меньше числа молекул невозбужденных, и поэтому интенсивность фиолетового спутника должна быть несравненно меньшей, что и наблюдается на опыте.

С повышением температуры число возбужденных молекул быстро растет, и в соответствии с этим должна быстро возрастать интенсивность фиолетовых спутников, что также подтверждается опытом. Увеличение интенсивности фиолетовых спутников легко видеть на рис. 29.14, где спектр 2 соответствует температуре рассеивающего вещества (кварца), равной 20 °C, а спектр 3 — температуре 210.°C.

Изложенная простая теория, передавая основные черты явления, оставляет неосвещенным целый ряд его важных особенностей. Прежде всего остается необъясненным очень серьезное различие, отмеченное в таблице на стр. 602. Некоторые интенсивные инфракрасные линии обнаруживаются в комбинационных спектрах как очень слабые, а иногда и совсем не обнаруживаются; наоборот, некоторые, и притом нередко самые интенсивные, линии комбинационного рассеяния не могут быть найдены среди инфракрасных абсорбционных спектров. Сверх того, упрощенная квантовая теория не позволяет усмотреть никакой связи с общей теорией рассеяния света, которой мы успешно пользовались до сих пор. Полное решение вопроса следует искать в более совершенной квантовой теории. Однако мы можем до известной степени уяснить вопрос, рассмотрев его в рамках классических представлений, которыми мы пользовались до сих пор. Надо только помнить, что полной картины мы не сможем получить, не внеся в наши классические представления «поправки», соответствующей квантовому характеру явления, отличающему, по существу, все явления взаимодействия света и вешества.

Нарушение оптической однородности может быть обусловлено, как показано выше, вариациями в значении произведения $N\alpha$, где N — число молекул в единице объема, а α — коэффициент поляризуемости молекулы. Флуктуации в значении N обусловливают изученное выше рассеяние света (рэлеевское рассеяние); флуктуации в значении α могут быть другой причиной, обусловливающей рассеяние.

Изменения в поляризуемости могут наступить, если меняется конфигурация отдельных частей (атомов), составляющих молекулу, что всегда имеет место при колебаниях атомов, входящих в состав молекулы. Перемещения атомов при таких колебаниях могут вести к изменению внутреннего поля молекулы, воздействующего на электроны, смещение которых под действием света и определяет

604

поляризацию молекулы. Если эти изменения облегчают или затрудняют смещения электронов, то мы имеем дело, следовательно, с изменением поляризуемости а.

Молекулы, поляризуемость которых отличается от средней поляризуемости, распределены по всему объему вещества по законам случая, и кроме того, колебания различных молекул характеризуются различными фазами. Это обстоятельство может вести к флуктуации показателя преломления, т. е. к нарушению оптической однородности, обусловливая, следовательно, рассеяние света.

Так как указанные изменения в поляризуемости, обусловленные колебаниями атомов в молекуле, имеют периодический характер, то, следовательно, и интенсивность рассеиваемого света меняется периодически с частотой этих внутримолекулярных колебаний v_i . Следовательно, рассеянный свет, частота которого должна быть равна частоте падающего света v_0 , является модулированным светом с частотой модуляции v_i , что соответствует свету с измененной частотой $v_0 \pm v_i$ (см. Введение). Таким образом, этот вид рассеяния света должен сопровождаться изменением частоты падающего света: наряду со светом начальной частоты должны появляться линии измененной частоты (спутники). Частота рассеянного света и частоты внутримолекулярного (обычно инфракрасного) колебания. Отсюда название — комбинационное рассеяние.

Такое классическое рассмотрение позволяет понять, что интенсивности комбинационных и инфракрасных линий данной частоты могут значительно отличаться друг от друга. Действительно, интенсивность комбинационной линии частоты у определяется тем, насколько значительно меняется поляризуемость молекулы а при колебании молекулы, соответствующем этой частоте. Интенсивность же инфракрасной линии абсорбции той же частоты будет зависеть от того, насколько хорошо способно возбуждаться это колебание под действием инфракрасного света подходящей частоты, т. е. насколько хорошо реагирует молекула на электромагнитное поле приходящей волны. Такая ее реакция определяется изменениями электрического момента молекулы при соответствующем колебании. Эти два изменения — изменение поляризуемости и изменение электрического момента — могут быть по-разному выражены при различных колебаниях. Поэтому одни из этих колебаний будут лучше представлены в инфракрасных спектрах, другие — в комбинационных.

Например, при колебании атомов в молекуле CO₃ (рис. 29.15, б) расположение атомов меняется так, что сильно изменяется се поляризуемость, но электрический момент молекулы остается неизменным (и в данном случае равным нулю), ибо два одноименно заряженных атома кислорода (О) неизменно остаются во время колебания симметрично расположенными по обе стороны заряда,

МОЛЕКУЛЯРНАЯ ОПТИКА

связанного с углеродом. При другом же колебанни (см. рис. 29.15, е) связанного с углеродом. при другоменной, так как приолижение поляризуемость сохраняется неизменной, так как приолижение поляризуемость сохраниется углероду сопровождается удаление одного из атомов кислорода к углероду сопровождается удалением одного из атомов кластерованиях электрический момент другого и наоборот; но при этих колебаниях электрический момент другого и наоборот, но не советь из рисунка, показывающего молекулы меняется, как легко видеть из рисунка, показывающего что величина и направление результирующего момента периодние. ски меняются во время колебания. Поэтому колебание первого типа (см. рис. 29.15, б) поведет к образованию линии комбинационного рассеяния, и его частоту можно определить из спектра комбинационного рассеяния; во втором же случае (см. рис. 29.15, в) частоту

a) 0 × 6) -0 × 0-B) -0x--0

PRC. 29.15. Различные типы колебаний атомов в молекуле СО₂.

а - нсходное положение втомов; б --- колебание, меняющее поляризуемость; в - колебание. меняющее электрический момент.

колебания можно найти по положению полосы инфракрасного поглощения.

Легко видеть, что эта классическая теория совершенно неправильно передает вопрос об относительной интенсивности фиолетовых и красных спутников, ибо она заставляет предполагать их равными, что противоречит опыту. В вопросе об интенсивности и ее задисимости от температуры нужно ввести поправку, даваемую представлением о световых квантах.

Метод комбинационного рассеяния дает важный способ исследования молекулярного строения. С его помощью легко и быстро определяются собственные частоты колебаний молекулы; он позволяет также судить о характере

симметрии молекулы, о величине внутримолекулярных сил и вообще об особенностях молекулярной динамики. Во многих случаях он удачно дополняется методом инфракрасного поглощения, представляя предмет важной главы молекулярной спектроскопии. Спектры комбинационного рассеяния настолько характерны для молекул, что с их помощью оказывается возможным проведение анализа сложных молекулярных смесей, особенно органических молекул, где химические методы анализа весьма за-трупнени или столкных молекулярных смесен, особенно г затруднены или даже невозможны. Так, с помощью комбинационного рассеяния успешно проводятся анализы состава бензинов, представляется в состава состава представляющих сложную смесь углеводородов.

Выше речь шла о комбинационном рассеянии света, возникаю-м при взаимолойоточки света, возникающем при взаимодействии первичного излучения с молекулами среды. Вполне аналогичного получения с молекулами среды. Вполне аналогичное явление наблюдается и при рассеянии света атомами и нонами. Постоят вспоматомами и ионами. Для выяснения сущности дела следует вспом-нить о результатах ионами. нить о результатах изучения абсорбции и дисперсии света в атом-ных газах.

Согласно изложенному в § 156, атом можно рассматривать к совокупность основно собственные частоты колебаний определяются разностью энергий двух каких-

гл. ХХХ. ВРАЩЕНИЕ ПЛОСКОСТИ ПОЛЯРИЗАЦИИ

либо квантовых состояний атома. В этой связи различие между атомами и молекулами состоит лишь в природе осцилляторов: в случае молекул они описывают движение ядер, а в атомах движение электронов. Имея в виду эту аналогию, можно повторить проведенное выше объяснение, но теперь уже по отношению к атомам, и в рамках классической модуляционной картины, и в упрощенной квантовой схеме.

Отметим, что неупругое рассеяние фотонов было предсказано теоретически (А. Смекаль, 1923 г.) для их взаимодействия именно с атомами. Однако экспериментально оно было обнаружено намного позднее комбинационного рассеяния молекулами. Комбинационное рассеяние ионами было обнаружено в 1963 г., а комбинационное рассеяние атомами — в 1967 г.

Помимо описанного выше спонтанного комбинационного рассеяния существует еще и вынужденное комбинационное рассеяние (см. § 239).

Глава ХХХ

ВРАЩЕНИЕ ПЛОСКОСТИ ПОЛЯРИЗАЦИИ

§ 163. Введение

Рассмотренные выше процессы дисперсии и рассеяния света не исчерпывают, конечно, явлений, возникающих при взаимодействии света и вещества. Среди них чрезвычайно важное место и в принципиальном, и в практическом отношении занимает явление вращения плоскости поляризации света. Было обнаружено, что явление это имеет место в весьма разнообразных телах, получивших название *естественно-активных*. К числу таких тел принадлежат, например, сахар и ряд других органических веществ; поэтому измерение вращения плоскости поляризации стало ходовым аналитическим методом в ряде промышленных областей. Исследования показали, что объяснение этого явления можно получить, рассматривая общую задачу взаимодействия поля световой волны с молекулами или атомами вещества, если только принять во внимание конечные размеры молекул и их структуру.

Отношение линейных размеров d молекул (атомов) к длине световых волн имеет порядок 10⁻³; для многих оптических проблем можно считать это отношение бесконечно малым, упрощая, таким образом, трактовку задачи и не затрагивая в то же время ее существенных черт. Таким приближением мы пользовались, например, в задаче о дисперсии, полагая, что поле, действующее на электрон в атоме, равно просто $E_0 \sin \omega t$, хотя поле волны, распространяющейся в направлении оси Z, есть $E_0 \sin (\omega t - kz)$ и, значит, строго говоря, для каждого момента t поле в разных точках моле-

кулы, соответствующих различным значениям г, различно. Но кулы, соответствующих различие z не превышает размера так как в пределах молекулы различие z не превышает размера так как в пределах молекулы различие z не превышает размера так как в пределах молскули размера указанное упрощение, молекулы d, то оказывается, что, делая указанное упрощение, мы не вносим существенных изменений в результаты. Наоборот, в проб не вносим существенных поляризации подобное упрощение озна. леме вращения плосисси. той стороны дела, которая существенно чает отказ от учета как раз той стороны дела, которая существенно определяет все явление.

Этот пример лишний раз показывает, что всякое упрощение (схематизация) задачи имеет относительный характер и должно быть строго обдумано применительно к рассматриваемой проблеме; в одних вопросах можно ограничиться первым приближением и дальнейшие уточнения не вносят существенно нового; в других необходимо более точно учитывать действующие факторы, переходя ко второму приближению, ибо только с его помощью могут быть выяснены существенные особенности задачи. С этой точки зрения проблема вращения плоскости поляризации имеет большой принципиальный интерес, заставляя нас принимать во внимание размеры молекул при взаимодействии с видимым светом, длины волн которого в тысячи раз больше этих размеров. Интересно также отметить, что для полного решения проблемы надо учитывать не только электрический момент, приобретаемый молекулой, но также и создаваемый световой волной магнитный момент молекулы, что также является излишним во множестве других оптических задач.

Сказанное о роли размеров молекул можно выразить иным, несколько более формальным, но общим образом. Дипольный момент, индуцируемый в молекуле, определяется значением напряженности поля Е не в одной точке, а в области с размерами, сопоставимыми с протяженностью молекулы. То же заключение относится, очевидно, и к связи между Е и вектором индукции D. Таким образом, вследствие конечности размеров молекул связь между Е и D оказывается нелокальной, т. е. значение **D** в какой-либо точке завнент от значений вектора Е в некоторой ее окрестности.

В § 149 было выяснено, что нелокальность связи между *D* и *E* обусловливает целый ряд явлений, получивших название эффектов пространственной дисперсии. Вращение плоскости поляризации представляет собой простейший и наиболее сильный из этих эффектов, его волиции с собой простейший и наиболее сильный из осталь. эффектов, его величина определяется отношением $d/\lambda \approx 10^{-3}$. Остальные име заменсят ные эффекты пространственной дисперсии слабее, так как зависят уже от $(d/\lambda)^2$ уже от $(d/\lambda)^2$.

§ 164. Вращение плоскости поляризации в кристаллах

Явление вращения плоскости поляризации было открыто Араго 11 г.) при изучении тоскости поляризации было открыто Араго (1811 г.) при изучении двойного преломления в кварце, в котором оно выражено вестие сливающие в карце. оно выражено весьма заметно. Хотя в настоящее время известны вещества, врашающая солот вещества, вращающая способность которых в несколько раз больше, чем у кварца (например, киноварь), тем не менее кварц и до настоящего времени остается классическим объектом для демонстрации явления и используется во многих приборах, предназначенных для исследования вращательной способности.

Кварц является одноосным кристаллом, так что при пропускании света вдоль оси он должен был бы вести себя как изотропное тело. Однако опыт показал следующую особенность. Пусть (рис. 30.1) параллельный пучок света от источника *S*, поляризованный при помощи поляризатора *N*, и сделанный приблизительно монохроматическим (светофильтр *F*), падает на пластинку кристаллического

кварца Q, вырезанную перпендикулярно к оптической оси, так что свет распространяется вдоль оси кварца. Если второй поляризатор N_2 , служащий анализатором, скрещен с первым $(N_2 \perp N_1)$, то все же свет- проходит через нашу систему. Однако, поворачивая поляризатор N_2 на некоторый угол, можно вновь добиться полного затемнения поля. Это показы-

Рис. 30.1. Схема наблюдения вращения плоскости поляризации в кристалле.

N₁, N₂ → поляризационные призмы; F → светофильтр; Q — пластинка кристаллического кварца, вырезанная перпендякулярно к оптической оси.

вает, что в описанном опыте поляризованный свет, прошедший через кварц, не приобрел эллиптической поляризации, а остался линейно-поляризованным; при прохождении через кварц плоскость поляризации лишь повернулась на некоторый угол, измеряемый поворотом анализатора N_2 , необходимым для затемнения поля в присутствии кварца. Меняя светофильтр, легко обнаружить, что угол поворота плоскости поляризации для разных длин волн различен, т. е. имеет место вращательная дисперсия.

 Грубые измерения, сделанные с фильтрами, показывают, что кварцевая пластинка толщиной 1 мм вращает плоскость поляризации на следующие углы:

Для	красного	света	15*
	желтого	->	21*
*	зеленого	>	27°
*	синего		33*
,	фнолетового) >	51°

Для данной длины волны угол поворота плоскости поляризации пропорционален толщине пластинки. Вращательную способность твердых веществ характеризуют величныой угла а, на которын поворачивает плоскость поляризации пластинка толщиной 1 мм. Таким образом, (154.1)

$$\varphi = \alpha d$$
,

20 Ландсберг Г. С.

где φ — угол поворота, d — толщина пластинки в миллиметрах, α — коэффициент, зависящий от длины волны, природы вещества и температуры. Точные измерения дают для кварца для желтой линии (свет паров Na, λ = 5893 Å) α = 21°,7. Само собой разумеется, что расположение, показанное на рис. 30.1, симметрично относительно оси кристалла и вся картина остается неизменной, если поворачивать кристалл вокруг его оси. Опыт показывает, что направление вращения (знак) меняется при изменении направления распространения света. Поэтому, если поляризованный свет, прошедший через кристалл, отражается от зеркала и вторично проходит через тот же кристалл, то направление плоскости поляризации восстанавливается.

В соответствии с этим принято направление вращения устанавливать для наблюдателя, смотрящего навстречу световому пучку.

Наблюдения вращення в кварце обнаружили, что существуют два сорта кварца: правовращающий, или положительный, дающий поворот плоскости поляризации вправо (по часовой стрелке), и левовращающий, или отрицательный (поворот против часовой стрелки). Величина вращения в обоих случаях одинакова ($\alpha_+ = \alpha_-$). То же относится и к другим кристаллам: все они, по-видимому, существуют в двух разновидностях, для которых $\alpha_+ = \alpha_-$, хотя не во всех случаях известны обе модификации.

Конечно, явление вращения плоскости поляризации имеет место и тогда, когда свет направлен не вдоль оси кристалла, а под углом к ней. Но изучение его в этих условиях значительно труднее, ибо явление частично маскируется обычным двойным лучепреломлением. Еще труднее наблюдать явление в двуосных кристаллах, так как вращение может быть различным вдоль каждой из осей. Наконец, известны также некоторые кристаллы кубической системы, не обнаруживающие обычно двойного лучепреломления, но обладающие свойством вращать плоскость поляризации (хлорноватистокислый натрий NaClO₃ и бромноватистокислый натрий NaBrO₃); в этом случае величина вращения не зависит от ориентации кристалла.

§ 165. Уточнение метоцов определения вращательной способности

В опытах, описанных в § 164, угол поворота плоскости поляризации определялся в результате двух ориентаций N_2 на темноту: в отсутствие и в присутствии активного вещества. Такая установка довольно груба и нередко заменяется более точными. Широкое применение находят полутеневые устройства, обеспечивающие значительно большую точность измерения. Такой прибор состоит из поляризатора и полутеневого анализатора, направления колебаний в двух половинах которого составляют между собой малый AND SERVICE

угол 2ф. Простейший полутеневой анализатор можно получить, если обычную поляризационную призму разрезать вдоль по главному сечению, сошлифовать у каждой из половин по клинообразному слою с углом около 2°30' и вновь скленть (рис. 30.2). Поперечное сечение такой призмы вместо первоначального правильного ромба будет иметь вид искаженного ромба.

Если плоскость колебаний *PP* света, выходящего из поляризатора, перпендикулярна биссектрисе угла между главными направлениями анализатора A_1 и A_2 , то обе половинки анализатора освещены одинаково: $I_1 = I_2 = I_0 \sin^2 \varphi$,

Рис. 30.2. Устройство простейшего полутеневого анализатора.

где I_0 — интенсивность света, выходящего из поляризатора, а I_1 и I_2 — интенсивности света, пропускаемого соответственно половинками анализатора (рис. 30.3). Если плоскость *PP* повернется на малый угол α в положение *P'P'*, то $I_1 = I_0 \sin^2(\varphi + \alpha)$ и $I_2 = I_0 \sin^2(\varphi - \alpha)$. При малом значении угла φ даже небольшой поворот α приводит к яз-

ственному нарушению равенства освещенности обоих полей (рис. 30.4).

Рис. 30.3. Принцип действия полутеневого анализатора.

Рис. 30.4. Поле зрения полутеневого анализатора при разных положениях плоскости поляризации.

Если после установки прибора на равенство освещенностей лвух половин анализатора поместить между поляризатором и анализатором исследуемое вещество, то обе половниы поля зрения ие будут освещены одинаково. Для восстановления равенства освещенностей анализатор надо повернуть на угол α , который и будет равен углу поворота плоскости поляризации в исследуемом веществе.

Измерения вращательной дисперсии должны производиться для монохроматического света (например линии ртутной лампы). В более грубых измерениях довольствуются цветными фильтрами. Было

20*
предложено остроумное приспособление, позволяющее работать с белым светом без специального светофильтра (бикварц, см. упражнение 214). При работе с бикварцем установка производится на совпадение оттенков обеих половин поля. Опыт показал, однако, что установление идентичности цветов выполняется менее надежно, чем установка на равенство освещенностей. Поэтому в практических установках в настоящее время бикварц не употребляется, и применяют исключительно полутеневые анализаторы. В хороших современных приборах удается измерить поворот плоскости поляризации на 0°,01.

§ 166. Вращение плоскости поляризации в аморфных веществах

Применение чувствительных методов исследования показало. что явление вращения плоскости поляризации весьма распространено и обнаруживается в большей или меньшей степени также весьма многими некристаллическими телами. К числу их принадлежат и чистые жидкости, например, скипидар, и растворы многих веществ в неактивных растворителях (например, водные растворы сахара). В настоящее время известны тысячи активных веществ, обладающих весьма различной вращательной способностью, от едва замет-- вой до очень большой (например, никотин в слое толщиной 10 см поворачивает плоскость поляризации желтого излучения на 164°). Чрезвычайно важным фактом, установленным впервые Пастером (1848 г.) на примере солей виннокаменной кислоты, является существование активных веществ в двух модификациях, правых и левых. В настоящее время известны обе модификации для большинства активных тел, и есть все основания полагать, что все активные вещества могут существовать в двух таких видах, причем численные значения вращательной способности для обеих модификаций всегда равны между собой и отличаются только знаком.

Для растворов Био (1831 г.) установил на опыте следующие количественные законы: угол поворота плоскости поляризации ф ирямо пропорционален толщине *d* слоя раствора и прямо пропорционален концентрации *c* активного вещества:

(166.1)

$$\varphi = [\alpha] dc.$$

Коэффициент пропорциональности $[\alpha]$ *), аналогично коэффициенту α для кристаллов, характеризует природу вещества и носит иазвание постоянной вращения. Постоянная вращения зависит от длины волны и температуры, она может также меняться при измеиении растворителя, и притом довольно сложным образом.

 в отличие от постоянной вращения α для кристаллов, этот коэффициент для растворов обозначают через [α].

ГЛ. XXX. ВРАЩЕНИЕ ПЛОСКОСТИ ПОЛЯРИЗАЦИИ

Зависимость постоянной вращения от температуры, вообще говоря, незначительна. Для большинства веществ она уменьшается примерно на одну тысячную своей величины при повышении температуры на один градус. Наблюдается изредка и обратный температурный ход.

Точно так же влияние длины волны на вращательную способность (вращательная дисперсия) может быть охарактеризовано лишь в общих чертах и для каждого случая должно быть изучено. Био установил, что вращательная способность примерно обратно пропорциональна квадрату длины волны, т. е.

$[\alpha] \propto 1/\lambda^2$.

Это правило передает зависимость не точно и может служить лишь в качестве грубо ориентировочного. Вообще говоря, [2] с увеличением λ убызает, но существуют вещества, для которых вращательная дисперсия аномальна. И экспериментальные исследования, и теоретические изыскания (Друде) показывают, что области аномалии соответствуют областям собственных колебаний (полосы поглощения) и устанавливают, таким образом, связь этого явления с явлением дисперсии показателя преломления.

Формула Друде, подтверждаемая опытом, имеет вид

$$[\alpha] = \frac{A}{\lambda^{2} - \lambda_{i}^{2}} \quad \text{или} \quad [\alpha] = \sum \frac{A_{i}}{\lambda^{2} - \lambda_{i}^{2}}, \quad (166.2)$$

где λ_i — длины волн полос поглощения вещества, i = 1, 2, 3, ...

Законы Био показывают, что для растворенных тел вращение есть молекулярное свойство, так что величина вращения возрастает пропорционально числу молекул на пути луча света (пропорционально длине слоя и концентрации); в соответствии с этим наблюдается вращение и в аморфных телах, состоящих из тех же молекул (сахарные леденцы, например), и в парах соответствующих жидкостей (например, в парах скипидара или камфары). Опыт показывает, что постоянная вращения не зависит от агрегатного состояния. Так, для жидкой камфары (при 204 °C) найдено $[\alpha] =$ = 70°,33, а для парообразной (при 220 °C) $[\alpha] = 70,°31$.

Влияние растворителя на удельную вращательную способность вещества следует рассматривать как вторичное влияние, несколько изменяющее свойства молекул. Вместе с тем, мы знаем, что вращательная способность характеризует и многие кристаллы, причем оказывается, что в некоторых случаях вращательная способность связана именно с кристаллической структурой и не является свойством самих молекул. Так, плавленный (аморфный) кварц не вращает плоскость поляризации, тогда как кристаллический кварц принадлежит к числу наиболее активных веществ. В настоящее время установлено, что все вещества, активные в аморфном состоянии (расплавленные или растворенные), активны и в виде кристаллов, хотя постоянная вращения для кристаллических форм может сильно отличаться от ее величины для аморфных; наоборот, существует ряд веществ, неактивных в аморфном виде и вращающих в кристаллическом состоянии. Таким образом, оптическая активность может определяться как строением молекулы, так и расположением молекул в кристаллической решетке. Действительно, исследование соответствующих кристаллов (кварц, хлорноватистокислый натрий) при помощи рентгеновских лучей показывает особенности структуры, позволяющие истолковать их оптическую активность.

§ 167. Сахариметрия

Определив значение [α] для данного растворителя, длины волны и температуры, можно использовать соотношение (166.1) для определения концентрации растворенного активного вещества. Принято выражать [α] в градусах, d — в дециметрах и c — в г/см³; тогда постоянную [α] называют удельным вращением. Так, для водных растворов тростникового сахара при t = 20 °C для желтых лучей (линня паров натрия, $\lambda = 589,3$ нм) [α] = 66°,46.

Быстрота и надежность этого метода определения концентраши активных веществ сделали его основным методом количественных определений, практикуемых при производстве таких веществ, как камфара, кокаин, никотин и, особенно, сахаристые вещества (в частности, в сахарной промышленности). Измерения, выполняемые по определенным международным инструкциям, являются общепризнанными официальными контрольными приемами. В соответствии с этим приборы, предназначенные для таких измерений и получившие название поляриметров или сахариметров, доведены до высокой степени совершенства.

§ 168. Теория вращения плоскости поляризации

а. Общие основы. Френель (1817 г.) показал, что явление вращения плоскости поляризации сводится к особому типу двойного лучепреломления. В основе рассуждений Френеля лежит гипотеза, согласно которой скорость распространения света в активных веществах различна для лучей, поляризованных по правому и левому кругу. При этом для правых веществ большее значение имеет скорость правокруговой волны, а для левых веществ — наоборот. Применяя индексы d (droit — правый) и g' (gauche — левый), запишем допущения Френеля в форме

Правые вещества (D) Левые вещества (G)

 $v_d > v_g, n_d < n_g$

 $v_d < v_g, n_d > n_{gu}$

где v — скорости циркулярно-поляризованного света, а n — соответствующие показатели преломления.

Френель проверил свои предположения при помощи опыта, специально придуманного для исследования различия в скорости распространения правого и левого циркулярно поляризованного света. Им была изготовлена сложная призма (рис. 30.5), состоящая

из трех призм: двух — из правовращающего кварца (D) и одной — из левовращающего G(оси направлены вдоль стрелок на чертеже). Если, действительно, для правовращающего кварца $n_g > n_d$, а для левовращающего $n_g < n_d$, то линейно-поляризованный пучок света, проходя через такую призму, раз-

двоится, как показано на чертеже (ср. действие призмы, изображенной на рис. 17.8; в). В результате из призмы выйдут два световых пучка: один — поляризованный по правому, другой — по левому кругу (на рис. 30.5 угол расхождения показан для ясности

чрезмерно большим). Опыт полностью подтвердил предположение Френеля.

Нетрудно показать, что доказанное Френелем двойное преломление активных веществ для циркулярно-поляризованного света объясняет явление вращения плоскости поляризации. Действительно, плоскополяризованный свет можно представить себе как совокупность двух циркулярно-поляризованных волн, правой и ле-

Рис. 30.5. Призма Френеля для иллюстрации сбщей теории вращения плоскости поляризации.

Рис. 30.6. К общей теории вращения плоскости поляризации.

вой, с одинаковыми периодами и амплитудами. Пусть в месте входа в слой вращающего вещества совокупность право- и левополяризованного света эквивалентна плоскополяризованному свету с колебаниями по AA (рис. 30.6, *a*), т. е. вращающиеся электрические векторы правой и левой волн симметричны по отношению к плоскости AA. Рассмотрим, какова будет взаимная ориентация этих векторов в любой точке среды (см. рис. 30.6, *б*). Предположим для определенности, что $v_d > v_g$. Так как левая волна распространяется с меньшей скоростью, то до какой-либо точки внутри среды она дойдет с некоторым отставанием по фазе по сравнению с правой. В рассматриваемой точке электрический вектор правой волны будет повернут вправо на больший угол, чем окажется повернутым влево вектор левой волны; следовательно, плоскостью, относительно которой симметрично расположены оба вектора, будет плоскость *BB*, повернутая вправо по отношению к *AA*. Итак, результирующее плоское колебание будет направлено по *BB*, т. е. плоскость поляризащии света повернулась вправо на угол ψ, так что

$$\varphi_d - \psi = \varphi_g + \psi$$
 или $\psi = \frac{1}{2} (\varphi_d - \varphi_g).$

Для аналитического решения той же задачи запишем выражение угла поворота светового вектора в функции времени t и глубины проникновения z для правого и левого лучей:

$$\varphi_d = \omega (t - z/v_d), \quad \varphi_g = \omega (t - z/v_g),$$

где $v_d = c/n_d$ и $v_g = c/n_g$ — соответственно фазовые скорости распространения правого и левого циркулярно-поляризованных лучей, а n_d и n_g — соответственные показатели преломления. Из этих выражений видно, что угол поворота плоскости поляризации ψ (см. рис. 30.6, δ) на глубине z = l равен

$$\psi = \frac{\varphi_d - \varphi_g}{2} = \frac{\omega l}{2c} (n_g - n_d) = \frac{\pi l}{\lambda_0} (n_g - n_d), \quad (168.1)$$

так как

$$\omega/c = 2\pi/Tc = 2\pi/\lambda_0$$

где λ_0 — длина волны в вакууме. Формула (168.1) показывает, что в веществах, для которых $n_g > n_d$, плоскость поляризации поворачивается вправо ($\varphi_d > \varphi_g$), а в веществах, для которых $n_g < n_d$, — влево ($\varphi_d < \varphi_g$) в соответствии с данными Френеля.

6. Понятие о молекулярио теории с данными среда и в ращения плоскости поляризации света. Таким образом, задача молеризации к более общей проблеме о зависимости показателя преломления от характера поляризации света. Таким образом, задача молекулярной теории вращения сводилась к выяснению причин различия в скоростях распространения правого и левого лучей в активных телах. То обстоятельство, что активные тела существуют в виде двух модификаций, правой и левой, привело Пастера к мысли, что в рамках молекулярных представлений активные тела должны быть дисимметричны: две разновидности активного вещества построены так, что одна является зеркальным изображением второй и, следовательно, никаким перемещением не может быть с ней совмещена. Для активных кристаллов это можно обнаружить непосредственным изучением их формы (см., например, изображенные на рис. 30.7

ГЛ XXX. ВРАЩЕНИЕ ПЛОСКОСТИ ПОЛЯРИЗАЦИИ

кристаллы правого и левого кварца *). Такие зеркально-симметричные кристаллические формы носят название энантиоморфных.

Для активных жидкостей наличие активности двух знаков должно обусловливаться дисимметричным строением молекулы. Представление об асимметричных молекулах нашло ссбе широкое применение в органической химии и было по-

нспис в организственой имяли и облостноложено в основу стереохимии, т. е. учения о пространственном распределении атомов в молекулах. Асимметрия органических молекул связывается со свойством атома углерода вступать в соединения с четырьмя атомами или атомными группами (радикалами), причем в получившейся молекуле эти группы расположены в вершинах четырехгранной пирамиды, в центре которой расположен атом углерода. Для простейших

Рис. 30.7. Кристаллы правого и левого кварца.

молекул, например метана CH₄ (рис. 30.8, *a*) или четыреххлористого углерода CCl₄, эта пирамида должна быть правильной (тетраэдр). Но если четыре вершины заняты *разными* радикалами X, Y, Z, T, то молекула имеет дисимметричный характер и возможны две разновидности, представляющие собой зеркальные изображения друг друга (см. рис. 30.8, δ и β).

Рис. 30.8. Симметричные и дисимметричные молекулы типа С (XY2T). *a* — симметричная молекула метана; *b* и *s* — зеркальные модификации молекулы С (XYZT).

Молекулы сахара и целого ряда других органических соединений содержат не один, а несколько асимметричных атомов углерода; различные группировки вокруг тех или иных асимметричных атомов могут приводить к разновидностям молекул, имеющих один и тот же молекулярный состав, но различное строение. Так, для сахара можно предусмотреть 16 различных форм, образующих

*) Известны, однако, немногочисленные исключения из этого «правила Пастера», когда активные кристаллы характеризуются не дисимметрией внешней формы, а лишь дисимметрией составляющих их молекул. восемь пар (правых и левых) оптических изомеров, действительно восемь пар (правых и лерия, откорониции, откорони, деиствительно обнаруженных на опыте. Как уже упоминалось, большая часть оп-обнаруженных молекул содержит асимметричный атом указа обнаруженных на опыте. Тол. усла всимметричный атом углерода, тически активных молекул содержит асимметричный атом углерода.

В настоящее время известны также активные соединения, со. В настоящее время полекулах другие асимметричные атомы (крем.

Первоначальные попытки молекулярного толкования оптиче. ской активности имели, по существу, формальный характер и сво дились к предположению, что связи, существующие в асимметричной молекуле, обусловливают винтообразные траектории электро нов, смещаемых под действием световой волны. Борн (1915 г.) показал, что, исходя из более общей модели молекулы, пригодной для истолкования явлений молекулярной анизотропии вообще, можно объяснить и вращение плоскости поляризации асимметричными молекулами, т. е. молекулами, не имеющими ни центра симметрии, ни плоскости симметрии. При этом оказалось, как мы уже упоминали в начале главы, что при решении задачи о взаимодействии световой волны и молекулы в данном случае нельзя пренебрегать эффектами, зависящими от отношения d/λ , где d — размер молекулы, а λ — длина волны. В. Р. Бурсиан и А. В. Тиморева существению дополнили теорию, показав, что необходимо принять во внимание не только электрический, но и магнитный момент, возбуждаемый в асиммстричной молекуле полем световой волны.

Из соотношения Френеля (168.1) можно усмотреть, почему задача о вращении плоскости поляризации требует более детального учета условий взаимодействия волны и молекулы. Явление вращения плоскости поляризации представляет гораздо более тонкий метод исследования, чем другие явления, зависящие от различий в показателях преломления. В самом деле, лишь самые тонкие интерференционные методы позволяют обнаружить различие в показателе преломления порядка одной миллионной доли (10-6). Между тем различие в одну миллионную между ng и na приводит к очень легко наблюдаемому вращению. Действительно, при слое толщиной 1 = 95 ок тодаемому вращению. l = 25 см н $\lambda = 5 \cdot 10^{-5}$ см найдем на основании (168.1) $\psi = 90^{\circ}$. Как умо масти слования (168.1) со сматрания Как уже упоминалось в § 165, современные способы исследования позволяют установить поворот плоскости поляризации даже в 0°.01 т. в общать 0°,01, т. е. обнаружить различие между n_g и n_d , приблизительно в 10,000 раз манить различие между n_g и n_d , приблизительно в 10 000 раз меньшее (различие в десятом десятичном знаке).

§ 169. Магнитное вращение плоскости поляризации

В 1846 г. Фарадею удалось обнаружить вращение плоскости оляризации в так изостать возполяризации в так называемых оптически неактивных телах, воз-никающее под действиется и поляризации в телах, возникающее под действием магнитного поля. Значение его открытия в истории физики исключития в истории физики исключительно велико. Это было первое явление, в котором обнаружитель в котором обнаружилась связь между оптическими и электромаг-

гл. ххх. вращение плоскости поляризации

интными процессами. Фарадей сам охарактеризовал значение своего открытия, написав: «Мне удалось намагнитить и наэлектризовать луч света и осветить магнитную силовую линию». Выражение это, впрочем, не должно давать повода к недоразумениям: наблюдаемое явление не есть результат непосредственного взаимодействия магнитного поля и поля световой волны; магнитное поле изменяет лишь свойства помещенного в него вещества, сообщая ему способность вращать плоскость поляризации.

Явление Фарадея можно осуществить следующим образом (рис. 30.9). Между полюсами электромагнита помещается исследуемое тело K, например кусок стекла. Линейно-поляризованный свет пропускается сквозь это тело так, чтобы направление света

Рис. 30.9 Схема наблюдения магнитного вращения плоскости поляризации.

совпало с направлением магнитного поля, для чего необходимо просверлить сердечник электромагнита. Установив поляризационную систему на темноту в отсутствие поля, можно обнаружить при включении поля поворот плоскости поляризации, наблюдаемый и измеряемый обычными методами.

Количественные законы явления были установлены еще Фарадеем и наиболее полно исследованы на ряде объектов Верде: угол поворота ф плоскости поляризации пропорционален длине пути света в веществе *l* и напряженности магнитного поля *H*,

$$\varphi = \rho l H, \tag{169.1}$$

где ρ — постоянная, характерная для вещества и носящая назва--ние постоянной Верде.

Значения ρ невелики. Сравнительно большие значения ρ имеет. CS₂ (сероуглерод) и некоторые сорта стекла; для CS₂ (в желтой *D*-лиции натрия) $\rho = 0',042$, для тяжелого флинта $\rho = 0',06 - 0',09$, если *l* выражено в сантиметрах, а *H* в эрстедах. Для большинства тел ρ еще меньше (от 0',01 до 0',02). Еще меньшее вращение обнаруживают газы.

Нет оснований сомневаться, что магнитное вращение обнаруживают все тела, хотя обычно в очень слабой степени. Чрезвычайно сильное вращение наблюдалось в очень топких прозрачных слоях ферромагнитных металлов (Fe, Ni, Co). В слоях толщиной 0,1 мкм ферромагнитных металлов и с, т., сода словая точщиной 0,1 мкм и в поле 10 000 Э вращение в железе составляет 2°. Из этих данных Ворте иля железа равнялась бы 20°, если бы мочто и в поле 10 000 э вращение в менето събы 20°, если бы можно было постоянная Верде для железа равнялась бы 20°, если бы можно было Ворде В лействительности же. однако постоянная Верде для женски распольности же, однако, вращение применять закон Верде. В действительности же, однако, вращение применять закон Берде. В делетолости пос, однако, вращение в ферромагнитных материалах растет пропорционально намагни.

ию, а не наприменности и наблюдателя, смотрящего Знак вращения условно считают для наблюдателя, смотрящего сдоль магнитного поля. Для громадного большинства веществ вра. щение происходит еправо, т. е. в ту же сторону, в какую навиты витки электромагнита. Такие вещества называются положитель ными. Встречаются, однако, и вещества, вращающие в противоположную сторону (отрицательные). Все отрицательные веще ства содержат парамагнитные атомы. Однако многие парамагнитные

Рис. 30.10. Удлинение пути света в веществе, вращающем плоскость поляризации в магнитном поле.

тела и, сверх того, все диамагнитные характеризуются положительным врашеннем.

Направление вращения для каждого тела связано с направлением магнитного поля и не зависит от направления распространения света в отличне от естественного вращения, имеющего разные направления в зависимости от того, смотрим ли мы вдоль или навстречу пучку света.

При естественном вращении основная причина, обусловливающая явление, состоит в действии поля световой волны; поэтому симметрия картины зависит от расположения ее векторов Е и Н, т. е. от направления света. В случае магнитного вращения плоскости поляризации основная причина лежит в действии магнитного поля, так что направление вращения задается направлением внешнего поля и не зависит от направления света.

Независимость направления вращения от направления света дала Фарадею возможность применить остроумный прием для усиления эффекта. При данном расстоянии между полюсами магнита увеличение длины пути d света в веществе достигается многократным отражением (рис. 30.10), для чего внутренние поверхности образца серебрятся (за исключением мест входа и выхода света).

Магнитное вращение, так же, как и естественное, зависит от длины волны и несколько изменяется с температурой. Зависимость постоянной Верле от техного с температурой. постоянной Верде от длины волны (дисперсия) можно приближенно определить законом. определить законом, аналогичным закону Био:

$$\mathbf{0} = A/\lambda^2 + B/\lambda^4.$$

(169.2)

$$\rho = A/\lambda^2 + B/\lambda^4$$
.
Явление Фарадея стоит в иепосредственной связи с эффектом
Зеемана. Поэтому мы откладываем его теоретическое истолкование
до следующей главы.

ГЛ. ХХХІ. ЯВЛЕНИЕ ЗЕЕМАНА

Глава ХХХЈ

ЯВЛЕНИЕ ЗЕЕМАНА

§ 170. Сущность явления Зеемана

Установив в опытах над магнитным вращением плоскости поляризации света связь между магнитными и оптическими явлениями, Фарадей предпринял также попытку воздействовать магнитным полем на спектральные линии. Один из последних его опытоз (1862 г.) состоял в наблюдении спектра паров натрия, помещенных между полюсами. электромагнита, при включении и выключении поля. Отсутствие какого бы то ни было эффекта объясняется, как мы уже знаем, недостаточностью технических средств, которыми располагал Фарадей (малая разрешающая способность спектрального аппарата при слабых магнитных полях, применявшихся им).

Рис. 31.1. Схема наблюдения явления Зеемана.

Лишь позже, ровно через полстолетия после первого магнитооптического открытия Фарадея, Зееману (1896 г.) удалось обнаружить слабое изменение частоты спектральных линий под действием енешнего магнитного поля. В принципе расположение Зеемана соответствовало последней установке Фарадея. В дальнейших опытах, однако, было осуществлено важное дополнение: Зееман, кроме наблюдения за изменением частоты спектральных линий, обратил также внимание на характер поляризации этих линий в соответствии с указаниями Лорентца, развивавшего одновременно электронную теорию оптических явлений.

- Схема расположения опытов Зеемана и основные результаты для простейшего случая, который удалось осуществить для очень узкой зелено-голубой линии кадмия, сводятся к следующему. Между полюсами сильного электромагнита (рис. 31.1), способного обеспечить однородное поле в 10 000—15 000 Э, располагается источник лииейчатого спектра, например гейслерова трубка или вакуумная дуга. Сердечник электромагнита просверлен, чтобы обеспечить набло дения не только поперек магнитного поля (поперечный эффекл), но и вдоль него (продольный эффекл). Свет посылается в спектральный аппарат Sp большой разрешающей силы (около 100 000), например дифракционную решетку или интерференционный спектро скоп. На пути луча помещаются приспособления, позволяющие

a)

анализировать характер поляризации излучаемого света (линза L, анализатор N н пластинка в ¹/₄ волны). Поляризатором света служит само магнитное поле. Для наблюдения более сложных типов спектральных линий приходится прибегать к более сильным магнитным полям (около 40 000 Э) и более мощным спектральным аппаратам (разрешающая сила OK0.10 300 000-400 000). Так как опыт продолжается иногда много часов, то магнит должен обеспечивать хорошее постоянство магнитного поля во времени и температура должна поддерживаться достаточно постоянной с тем, чтобы можно было испольспектральный аппарат большой зовать разрешающей силы.

Результаты, получаемые для простых спектральных линий, например некоторых линий H, Zn, Cd, сводятся к следующему. Линия, имеющая в отсутствие магнитного поля частоту v, в магнитном поле представляется при продольном наблюдении в виде дублета с частотами v — Δv и v + Δv , причем первая линия поляризована по ле вому кругу, вторая — по правому; пра поперечном наблюдении получается трип-

лет с частотами $v + \Delta v$, v и $v - \Delta v$, причем крайние линии поляризованы так, что колебания в них перпендикулярны направлению магнитного поля (о-компоненты), а поляризация средней линии соответствует колебаниям вдоль магнитного поля (π -компонента). Величина смещения Δv пропорциональна напря-(π -компонента). Величина смещения Δv пропорциональна напряиента в два раза сильнее, чем каждая из о-компонент, равных между собой; циркулярно-поляризованные компоненты при продольном эффекте по интенсивности совпадают с π -компонентой при поле речном,

Указанное распределение интенсивностей показывает, что при переходе к полю иулевой напряженности расщепление исчезает,

2-12

изображение

(нормального)

Рис. 31.2. Схематическое

Зеемана.

а — в отсутствие поля, линия не поляризована; б —

при наличии поля, попереч-

ный эффект; в -- при нали-

чни поля, продольный эффект.

простого

эффекта

а излучение атома по любому направлению одинаково по интенсивности, как и должно быть.

Схематическое изображение спектральной картины приведено на рис. 31.2, причем высота линий показывает в линейном масштабе интенсивность спектральных линий.

§ 171. Элементарная теория явления Зеемана

Основы теории явления Зеемана разработал Лорентц, Сывший в курсе исследований Зеемана и влиявший на их направление.

Теория дисперсии в том виде, в каком она следовала из электронных представлений Лорентца, позволяла предполагать, что оптические процессы в атоме обусловлены движением электронов. Излучение монохроматического света следует при этом рассматривать как результат движения электрона по простому гармоническому закону, т. е. под действием квазиупругой силы, а изменение излучения под влиянием магнитного поля — как следствие изменения движения электрона добавочной силой, с которой магнитное поле воздействует на движущийся заряд. Эта добавочная сила (лорентцова сила) выражается в виде

$F = evH\sin\left(v, H\right) \tag{171.1}$

(e — величина заряда, v — его скорость, H — напряженность магнитного поля) и направлена вдоль линии; перпендикулярной к плоскости (v, H), в ту или иную сторону в зависимости от знака e и соотношения направлений v и H (все величины даны в системе СГСМ).

Для простоты и наглядности расчета разложим колебательное движение электрона в отсутствие поля на следующие компоненты, на которые, как легко видеть, можно разложить гармоническое колебание любого направления. Одной из этих компонент пусть будет гармоническое колебание вдоль направления поля, а двумя другими - круговые равномерные движения, правое и левое, в плоскости, перпендикулярной к этому направлению. Действие магнитного поля на первую компоненту равно 0, ибо sin (v,H) == = 0. Действие же поля на круговые компоненты сведется к добавочной силе $\pm evH$, направленной вдоль раднуса (круговой траектории) к центру или в противоположную сторону, в зависимости от знака заряда и соотношения направления магнитного поля и скорости движения (рис. 31.3, отрицательный заряд). Таким образом, колебательное движение вдоль поля остается неизменным и продолжает происходить с первоначальной частотой у. Движение же по кругам под действием поля приобретает большую (v + Δv) или меньшую (v — Δv) частоту в зависимости от того, увеличивает ли поле центростремительную силу, действующую на заряд (см. рис. 31.3, a), или уменьшает ее (см. рис. 31.3, б).

and wall attended

В соответствии с этим и излучение заряда, выполняющего такое сложным: его такое В соответствии с этим и посу становится более сложным: его такое усложненное движение, становится более сложным: его можно усложненное движение, становится монохроматических изможно усложненное движение, от трех монохроматических излучений представить как совокупность трех монохроматических излучений исстоты ($v - \Delta v, v, v + \Delta v$), которые можно расс представить как совокуплость ($v - \Delta v$, v, $v + \Delta v$), которые можно разделить различной частоты ($v - \Delta v$, v, $v + \Delta v$), которые можно разделить различной частоты ($v - \Delta v$, v, $v + \Delta v$), которые можно разделить при помощи соответствующего спектрального аппарата.

В направлении, перпендикулярном к магнитному полю, спект. ральный аппарат обнаружит первоначальную частоту v, спект. ральный антара. Соларуние параллельно магнитному полю, т. е. излучение, представляющее собой л-компоненту; два других из. излучения с частотами $v + \Delta v$, $v - \Delta v$ ссответствуют колебанию зарядов перпендикулярно к магнитному полю (о-компоненты).

Рис. 31.3. К элементарной теории эффекта Зеемана.

Таково объяснение наблюденного Зееманом нормального триплета в поперечном эффекте.

В направлении вдоль магнитного поля компонента с у излучаться не будет вследствие поперечности световых волн, две другие компоненты с $v + \Delta v$ к $\mathbf{v} = \Delta \mathbf{v}$ представятся в виде циркулярно-поляризованного света правого и левого вращения. При этом в случае отрицательного знака заряда е левая поляризация обнаруживается у линии уменьшенной частоты (красная

ной частоты (*фиолетовая* компонента) (см. рис. 31.3, *a*). В случае положительного заряда с мототы (*фиолетовая* компонента) (см. рис. 31.3, *a*). В случае положительного заряда е направление круговой поляризации у красной и фиолетовой компонент должно быть обратным. Мы видели в § 170, что опыт дает соотношение, соответствующее от рицательному знаку заряда.

Для определения величины заряда найдем закон изменения того частоты круговых компонент движения. В отсутствие магнитного поля центростронных компонент движения. поля центростремительная сила, обеспечивающая круговое движение запяла, азполта углоние заряда, задается квазиупругим притяжением br, так что угло-вая частота вращение и вая частота вращения ($\omega = 2\pi/T$) определяется из условия (171.2)

$$br = m\omega^2 r, \qquad (171.3)$$

$$\omega = \sqrt{b/m} = \omega_0.$$

Действие поля сводится к добавочной силе, действующей вдоль иуса, т. е. к измонению к добавочной силе, действующей следовараднуса, т. е. к изменению центростремительной силы и, следова-тельно, частоты обращению тельно, частоты обращения: (171.4)

для левого круга $br - ev_g H = m\omega_g^2 r$,) для правого круга $br + ev_d H = m\omega_d r$.)

ГЛ. ХХХІ. ЯВЛЕНИЕ ЗЕЕМАНА

Так как $v_g = \omega_g r$ и $v_d = \omega_d r$, то уравнения примут вид

$$m\omega_d^{\mathbb{Z}} + e\omega_d H - b = 0,$$

$$m\omega_d^{\mathbb{Z}} - e\omega_d H - b = 0,$$
(171.5)

откуда

$$\omega_{g} = -\frac{1}{2} \frac{e}{m} H \pm \sqrt{\frac{b}{m} + \frac{1}{4} \frac{e^{2}H^{2}}{m^{2}}},$$

$$\omega_{d} = \frac{1}{2} \frac{e}{m} H \pm \sqrt{\frac{b}{m} + \frac{1}{4} \frac{e^{2}H^{2}}{m^{2}}}.$$
(171.6)

Так как $b/m = \omega_0^3$, где ω_0 — частота в отсутствие магнитного поля, то

$$\sqrt{\frac{b}{m} + \frac{1}{4} \frac{e^2 H^2}{m^2}} = \omega_0 \sqrt{1 + \frac{1}{4} \frac{e^2 H^2}{m^2 \omega_0^3}}.$$

Член 1/4 (e^2/m^2) (H^2/ω_0^*) очень мал по сравнению с единицей. Действительно, даже для наиболее легких зарядов (электрон, e/m == 1,76 · 10⁷ СГСМ = 1,759 · 10¹¹ Кл · кг⁻¹) и огромных полей порядка миллиона эрстедов мы для видимого излучения ($\omega_0 \approx 3 \cdot 10^{15}$) получим 1/4 (e^2/m^2) (H^2/ω_0^*) $\approx 10^{-5}$. Пренебрегая этой величиной и помня, что частота ω должна быть положительной, находим

$$\omega_g = \omega_0 - \frac{1}{2} \frac{e}{m} H, \quad \omega_d = \omega_0 + \frac{1}{2} \frac{e}{m} H.$$
 (171.7)

Таким образом, теория приводит к выводу, что величина расщепления равна

$$\Delta \omega = \omega - \omega_0 = 2\pi \, \Delta v = \pm \frac{1}{2} \frac{e}{m} H, \qquad (171.8)$$

т. е. пропорциональна напряженности магнитного поля *H*, как это и показывает опыт. Наибольшие магнитные поля, в которых измерялось расщепление магнитных линий, были получены в опытах Π. Л. Капицы (1938 г.). Он установил, что даже для полей около 320 000 Э соблюдается пропорциональность между Δν и *H*.-

Полученное выше соотношение $\Delta \omega = \pm \frac{1}{2} (e/m) H$ дает возможность на основании измерений $\Delta \omega$ и H вычислить отношение e/m для зарядов, движение которых обусловливает эффект Зеемана. Это вычисление дает:

e/m = 1,765 · 10⁷ СГСМ по измерениям 1914 г.,
 e/m = 1,761 · 10⁷ СГСМ по измерениям 1929 г.

При сравнении рассчитанных величии с результатами измерения е/т по отклонению катодных лучей в электрическом и магнитном полях (1,769.10⁻) не остается сомнений, что заряженная частица в атоме, определяющая его оптические свойства, есть электрон *). Однако расхождение в определении *e/m* по двум методам заставляю подозревать какие-то принципиальные недочеты в определении по тому или другому методу. В самые последние годы улучшение методики определения *e/m* по отклонению катодных лучей привело к согласию со спектральными данными.

И теория, и опыт показывают, что для наблюдения явления Зесмана в обычных условиях требуются спектральные аппараты большой разрешающей силы. Так, для λ = 300,0 нм в поле 10 000 Э

расщепление достигает всего лишь 0,003 нм. В полях, применявшихся Капицей, расщепление достигало 0,15 нм и могло наблюдаться при помощи призменного спектрографа. Рис. 31.4 воспроизводит фотографии явления Зеемана для линии кадмия $\lambda = 643,87$ нм (нормальный триплет; в верхней части рисунка изображена π -компонента, а в нижней — о-компоненты).

Рис. 31.4. Простой эффект Зеемана для синглетной линии кадмия $\lambda = 643.87$ нм.

Замечание. Более детальное исследование влияния магнитного поля на движение электрона показывает **), что изменение угловой скорости электрона не сопровождается изменением раднуса его орбнты *г*. Поскольку радиус

орбиты остается постоянным, то изменение угловой скорости на $\pm \Delta \omega$ сопровождается изменением *линейной* скорости на $\Delta v = \pm r\Delta \omega$, а следовательно, и изменением кинетической энергии электрона. При этом возникает вопрос: за счет работы каких сил происходит это изменение энергии? (Сила Лорентца перпендикулярна к направлению скорости и работы не совершает).

Дело сводится к явлениям электромагнитной индукции. Пусть в отсутствие магнитного поля скорость электрона на орбите была с. При включении магнитного поля за то время, пока напряженность поля меняется от нуля до *H*, действует электродвижущая сила индукции, т. е. вихревое электрическое поле, линии которого расположены, в плоскости, перпендикулярной к направлению изме избесто в ихревого характера совершает некоторую работу в силу своего вихревого характера совершает некоторую работу лаже при замкнутом пути электрона, изменяя кинетическую энергею его орбитального лвижения.

Может быть нелишне напомнить, что совершенно так же разрешаются и подобные кажущиеся энергетические парадоксы в электро-

*) Современное значение е/m = 1,7588047(49) · 10⁷ СГСМ. / *) См., например. Э. В. Ш польский, Атомная физика, т. 1, «Наука», 1974. динамике. Например, увеличение кинетической энергии магнита или катушки с током, приходящих в колебание *) при наложении постоянного магнитного поля, есть также результат электромагнитной индукции.

§ 172. Аномальный (сложный) эффект Зеемана

Описанный выше тип расщепления — появление триплета из двух σ-компонент и одной π-компоненты — наблюдается, как выяснили дальнейшие исследования, крайне редко. Он характеризует простые спектральные линии, так называемые синглетные линии. представляющие одну определенную, практически монохроматическую волну, и называется нормальным расщеплением. Громадное же большинство спектральных линий сложно; они представляют собой мультиплеты, т. е. состоят из двух или нескольких тесно расположенных спектральных линий. Простым мультиплетом -дублетом — является, например, желтая линия натрия, представляющая собой пару линий D1 и D2, длины волн которых различаются почти на 6 Å ($\lambda_{D_1} = 5895,930$ Å и $\lambda_{D_2} = 5889,963$ Å), причем интенсивность линии D₂ в два раза больше, чем линии D₁. Нередко встречаются значительно более сложные мультиплеты, состоящие из многих компонент. Воздействие магнитного поля на эти мультиплеты дает гораздо более сложную картину расщепления, чем описанная выше. Так, дублет натрия расщепляется таким образом, что линия D2 дает 6, а линия D1 — 4 компоненты. Часть из них является л-компонентами, часть о-компонентами, раздвинутыми так, что для одних расщепление больше, а для других меньше нормального расщепления в том же магнитном поле; интенсивность отдельных л- и о-компонент такова, что смесь всех линий дает пеполяризованный свет. На рис. 31.5 показана фотография описанного расщепления, а на рис. 31.6 изображен еще более сложный случай. На нем изображена одна из линий септета хрома, распадающаяся на 21 компоненту: в нижней части фигуры изображены 14 о-компонент, а в верхней — 7 л-компонент (на репродукции некоторые наиболее слабые компоненты видны плохо).

Сложность картины этого аномального эффекта Зеемана не случайным образом связана со сложным характером линии в отсутствие внешнего магнитного поля. Общая причина лежит в том, что электрон, кроме электрического заряда, обладает еще и определениым магнитным моментом. Взаимодействие этого магнитного момента с магнитным полем, господствующим внутри атома, приводит к сложиой структуре спектральных линий, а взаимодействие его с внеш-

^{•)} Окончательная ориентация катушки или магнита относительно поля есть вторичный эффект — результат трения в цодшинниках, причем кинстическая энергия колебаний переходит в тецью.

молекулярная оптика

ним магнитным полем — к сложному или аномальному расщепле. ним магнитным полем и следновая теория дала удовлетовая теория дала удовлетовая нию. Учет таких взаимоденствии всерия дала удовлетворительное товой теории. Лишь квантовая теория дала удовлетворительное товой теорин. Этины постеренту Зеемана, выяснив одновременное толкование аномальному эффекту Зеемана, выяснив одновременно и причину сложной структуры спектральных линий.

причину сложной структура. Простой, или нормальный, эффект Зеемана также, конечно, истолковывается квантовой теорией, причем полученный с ее помощью результат совпадает с результатами простой теории Лорентца. Тот

628

Рис. 31.5. Сложный эффект Зсемана для дублета натрия.

Виизу — дублет в отсутствие поля, вверху — расщепление в магнитном поле.

Рис. 31.6. Сложный эффект Зеемана для септета хрома.

О-КОМПОНЕНТ, Винзу — четырнадцать вверху - семь л-компонент.

факт, что в первоначальных опытах Зеемана наблюдался нормальный триплет, было удачным обстоятельством, но он сыграл чрезвычайно важную роль в развитии электронной теории. Блестящее объяснение простого эффекта Зеемана с помощью электронных представлений явилось одним из наиболее решительных успехов теории Лорентца, которые не были поколеблены и тогда, когда дальнейшие наблюдения показали, что явление очень часто имеет гораздо более сложный характер. Сохраняя объяснение, данное электронной теорией, эти более сложные случан отнесли к аномальным, тогда как в действительности они представляют более общее явление, а «пормальный» эффект есть лишь частный случай его.

§ 173. Обратный эффект Зеемана. Его связь с явлением Фарадея

Эффект Зеемана удалось наблюдать и на линиях поглощения ратный акадити Запалось наблюдать и на линиях поглощения (обратный эффект Зеемана). Если абсорбирующее вещество, на-пример пары методать со поглопример пары металла, дающие резкую спектральную линию погло-щения *). поместить то вид щения *), поместить между полюсами электромагнита, то вид

^{*)} Бекксрелю удалось наблюдать обратный эффект Зеемана и в некоторых сталлах (ксенотит, тизонит) и полокристаллах (ксенотит, тизонит), которые характеризуются крайне узкими полосами поглощения, особенно при низких температурах.

ГЛ. ХХХІ. ЯВЛЕНИЕ ЗЕЕМАНА

спектра поглощения будет меняться при включении магнитного поля. При продольном наблюдении в отсутствие поля наблюдается резкая линия поглощения; при включении магнитного поля она заменяется двумя линиями поглощения, сдвинутыма в область больших и меньших длин воли симметрично по сбе стороны от первоначальной линии; при этом величина сдвига Δv растет пропорционально напряженности магнитного поля H и определяется тем же соотношением (171.8):

$$\Delta \mathbf{v} = \pm \frac{1}{4\pi} \frac{e}{m} H \tag{173.1}$$

(в случае линии, соответствующей нормальному эффекту). При поперечном наблюдении первоначальная линия поглощения сопровождается двумя другими, расположенными по обе стогощь ее ва

Рис. 31.7. Ход кривой дисперсии в отсутствие магнитного поля (сплошная кризая) и в магнитном поле.

I — для луча, поляризованного по лепому кругу: II — для луча, поляризованного по правому кругу.

расстоянии $\Delta v = \pm \frac{1}{4\pi} \frac{e}{m} H$. Коэффициент поглощения будет зависеть от характера поляризации падающего света.

Теоретический смысл этих явлений легко понять. Под действием магнитного поля меняются собственные периоды колебания агомов и, следовательно, положение линий поглощения. Наблюдения в продольном направлении показывают, что собственные частоты, соответствующие правому и левому вращению, смещаются в разные стороны. Этим обстоятельством устанавливается связь между стороны. Этим обстоятельством устанавливается связь между явлением Зеемана и явлением Фарадея. Так как показатель преломявлением Зеемана и явлением Фарадея. Так как показатель преломления зависит от близости частоты исследуемой волны к собственления зависит от близости частоты исследуемой волны к собственпод действием магнитного поля изменяется и показатель преломлепод действием различно для воли данной частоты, поляризованных по правому и левому кругу. Итак, под действием магнитного поля возникает двойное (вращательное) преломление, т. е. согласно теории Френеля — вращение плоскости поляризации (явление Фарадея).

плоскости поляризации (рис. 31.7) соотношения представлены На кривой дисперсии (рис. 31.7) соотношения представлены в преувеличенном масштабе. Кривая / показывает ход показателя преломления в магнитном поле для луча, поляризованного по плавому вому кругу, а кривая // — для луча, поляризованного по правому кругу. Из чертежа ясно, что для какой-нибудь длины волны λ в магнитном поле появляется круговое двойное преломление. Эффект тем значительнее, чем ближе λ и λ₀. Действительно, вблизи собственных линий абсорбции эффект вращения особенно велик. Но даже и очень далеко от собственных частот явление легко наблюдается благодаря чрезвычайно большой чувствительности метода вращения плоскости поляризации (см. § 168).

§ 174. Явление Штарка

Явление Зеемана с полной ясностью показало, что основным электрическим элементом, определяющим оптические свойства атома, является электрон. Естественно ожидать, что и электрическое поле может воздействовать на частоту испускаемого света. Однако простая теория, основанная на этих соображениях, приводит к несколько неожиданным результатам, показывая, что гармоническое колебание не меняет своей частоты под действием электрического поля, в отличие от поведения гармонического осциллятора в магнитном поле (см. упражнение 219).

Судя по монохроматичности спектральных линий, колебания электрона в атоме очень близки к гармоническим, и большинство оптических явлений в первом приближении хорошо истолковывается на основе представления о гармоническом колебании. Если же принять во внимание отступление от гармоничности, то указанная теория дает небольшое расщепление спектральных линий, пропорциональное квадрату электрического поля, а именно $\Delta \omega \sim (e^2/2m^2\omega_0)E^2$, очень малое по сравнению с ω_0 даже для больших достижимых полей.

На возможность такого влияния электрического поля указал Фогг, которому не удалось, однако, наблюдать это явление ввиду трудности создания в разрядной трубке большого электрического поля, необходимого для успеха опыта.

Штарк (1913 г.) преодолел это затруднение и открыл явление, названное его именем и совсем не похожее на предсказанное Фогтом: явление в водороде было гораздо сильнее ожидаемого и, кроме того, оказалось зависящим от *переой степени* напряженности поля *E* (линейный эффект).

а. Особенность установки Штарка. Свечение газа в разрядной трубке сопровождается сильной ионизацией, вследствие чего нет возможности поддерживать внутри трубки сильные поля. Штарк нашел выход: сильная ионизация и свечение были сосредоточены в одной части трубки, а сильное поле создавалось в другой части, где нет ионов и где, следовательно, удается поддерживать высокое напряжение; разность давлений поддерживается откачкой, светящиеся же частицы вводились через отверстия

Рис. 31.8. Схема трубки для наблюдения эффекта Штарка.

(каналы, рис. 31.8). Зазор *ЕК* очень мал (около 1 мм), так что напряженность поля в конденсаторе *ЕК* достигает примерно 100 000 В/см.

В этсй трубке наблюдается поперечный эффект. Специальная установка дает продольный эффект (наблюдать вдоль направления движения каналовых лучей нельзя, ибо явление осложияется эффектом Допплера).

Рис. 31.9. Расщепление линий спектра водорода в электрическом поле.

б. Результаты для водорода. При поперечном наблюдении каждая линия распадается на ряд п- и о-компонент, расположенных (в первом приближении) симметрично к исходной линии на расстояниях, кратных некоторому минимальному расстоянию, пропорциональному первой степени напряженности поля. Число компонент для каждой линии водородного спектра различно н подчиняется определенной закономерности, связанной со спектральными закономерностями. Общая картина распределения интенсивности очень сложна (рис. 31.9).

тенсивности очень слояние уславные) не в состоянии объяснить эффект. Классическая теория (см. выше) не в состоянии объяснить эффект. Подобно аномальному эффекту Зеемана явление Штарка требует для своего объяснения учета законов строения атома, т. е. квантовых законов. Квантовая теория явления, разработанная впоследствии (Эпштейи — Шваришильд, 1916 г.), удовлетворительно объясняет все его особенности. Также удовлетворительно объяснено то обстоятельство, что другие элементы, обладающие более чем одним электроном, не обнаруживает линейного эффекта Штарка. Ионизовашный атом гелия с одним электроном, наоборот, дает линейный эффект, подобный эффекту в водороде.

Квадратичный эффект, предсказанный Фогтом, был открыт значительно позднее (1924 г.), и связан при помощи полной теории с линейным эффектом Штарка. Грубое наблюдение влияния электрических полей на спектральные линни водорода возможно в любой разрядной трубке вблизи катода, где господствуют сильные поля (метод Ло Сурдо).

Влияние междумолекулярных электрических полей проявляется в уширении линий в обычных условиях разряда.

ДЕИСТВИЯ СВЕТА

Воздействие света на вещество состоит в сообщении этому веществу энергии, приносимой световой волной, в результате чего могут возникать разнообразные эффекты. Таким образом, первичным процессом является поглощение света.

Поглощенная световая энергия в самом общем и наиболее распространенном случае переходит в тепло, несколько повышая температуру поглощающего тела. Но нередко лишь часть световой энергии переходит в тепло, другая же испытывает иные превращения, вызывая те или иные *действия* света. В настоящем разделе мы не будем рассматривать тех случаев, когда в результате воздействия света тело само становится источником и испускает излучение собственной или вынужденной частоты. Часть таких процессов (излучение вынужденных частот) была рассмотрена в гл. XXIX (рассеяние света). Другая их часть (излучение собственных частот) будет обсуждаться в гл. XXXVIII. Настоящий же раздел посвящен вопросам превращения световой энергии в механическую энергию электронов (фотоэффект и явление Комптона) или всей поглощающей системы (давление света), а также различным химическим действиям света (фотохимия, фотография, физиологическая оптика).

Глава XXXII

фотоэлектрический эффект

§ 175. Введение

Среди разнообразных явлений, в которых проявляется воздействие света на вещество, важное место занимает фотоэлектрический эффект, т. е. испускание электронов веществом под действием света. Анализ этого явления привел к представлению о световых квантах и сыграл чрезвычайно важную роль в развитии современных теоретических представлений. Вместе с тем фотоэлектрический эффект используется в фотоэлементах, получивших исключительно широкое применение в разнообразнейших областях науки и техники и обещающих еще более богатые перспективы.

ДЕПСТВИЯ СВЕТА

Открытие фотоэффекта следует отнести к 1887 г., когда Гери Открытие фотоэффекти слуга Сора Светом злектродов обнаружил, что освещение ультрафиолетовым светом электродов обнаружил, что освещение ультрафиолетовым светом электродов обнаружил, что освещение и под напряжением, облегчает ними.

явление, обнаруженное Герцом, можно наблюдать на следующем легко осуществимом опыте (рис. 32.1). Величина искрового проме

Рис. 32.1. Схема опыта Герца.

жутка F подбирается таким об. разом, что в схеме, состоящей из трансформатора Т и конденсатора С, искра проскакивает с трудом (один-два раза в минуту). Если осветить электроды F, сделанные из чистого цинка, светом ртутной лампы Hg, то разряд конденса. значительно . облегчается: тора искра начинает проскакивать до-

вольно часто, если, конечно, мощность трансформатора достаточна для быстрой зарядки конденсатора С. Поместив между лампой и электродами F стекло G, мы преграждаем доступ ультрафиолетовым лучам, и явление прекращается.

Систематические исследования Гальвакса, А. Г. Столетова и других (1888 г.) выяснили, что в опыте Герца дело сводится к осво-

Рис. 32.2. Схема опытов Столетова по наблюдению фотоэффекта.

Электрическая цепь состоит из батареи элементов и конденсатора С, положительно заряженная пластинка которого сдела-на в виде проволочной сетки. Свет проходит через ячейки проволочного электрода и падает на отрицательно заряженную пластинку. Фототок регистрируется галь-ваномстром G. бождению зарядов из электродов под действнем света; поэлектрическое поле падая В между электродами, заряды эти ускоряются, ионизуют окружающий газ и вызывают разряд. А. Г. Столетов осуществил

опыты по фотоэффекту, применяя впервые неболышие разности потенциалов между электроначале «Повторяя 1888 г., — пишет Столетов, интересные опыты Герца, Видемана и Эберта, Гальвакса относительно действия лучей на электрические разряды высокого напряжения, я вздумал испы-

го напряжения, я вздумал табых тать, получится ли подобное действие при электричестве слабых потенциалов... Мод постите в слабых *). потенциалов... Моя попытка имела успех выше ожидания» »). Схема опытов принисионные само выше ожидания» 32.2.

Схема опытов, примененная Столетовым, изображена на рис. 32.2. новными результатами иля Столетовым, изображена на рис. 32.4. Основными результатами исследований Столетова, сохранившими свое значение и до нашето селектиство сохрания. свое значение и до нашего времени, были следующие заключения.

) А. Г. Столетов, Избранные сочинения, Гостехиздат, 1950, стр. 191.

 Наиболее эффективно действуют ультрафиолетовые лучи, поглощаемые телом («чем спектр обильнее такими лучами, тем сильнее действие»).

 Сила фототока пропорциональна создаваемой освещенности тела («разряжающее действие при прочих равных условиях пропорционально энергии активных лучей, падающих на разряжаемую поверхность»).

3) Под действием света освобождаются отрицательные заряды («действие лучей есть строго униполярное, положительный заряд лучами не уносится; по всей вероятности, кажущееся заряжение нейтральных тел лучами объясняется той же причиной»).

Если, например, цинковую пластинку, соединенную с электроскопом и заряженную отрицательно, осветить ультрафиолетовым светом, то электроскоп быстро разряжается; но та же пластинка, заряженная положительно, сохраняет свой заряд, несмотря на освещение. При тщательном наблюдении (электроскоп большой чувствительности) можно заметить, что незаряженная пластинка под действием освещения заряжается положительно, т. е. теряет часть своих отрицательных зарядов, первоначально нейтрализовавших ее положительный заряд.

Несколько лет спустя (1898 г.) Ленардом и Томсоном были произведены определения *е/т* для освобождаемых зарядов по отклонению их в электрическом и магнитном полях. Эти измерения дали для *е/т* значение 1,76 · 10° СГСМ, доказав, таким образом, что освобождаемые светом отрицательные заряды суть электроны.

§ 176. Законы фотоэффекта

а. Ток, насыщения. Для исследования силы фототока применяется обычно схема, сходная со схемой Столетова (рис. 32.3).

Здесь P — освещаемая пластинка металла, N — вторая пластинка, присоединенная через гальванометр G к соответствующему полюсу батарен B. Электроны, освобождаемые светом из P, под действием батарен B несутся к N и далее следуют по проводам через гальванометр, замыкая ток батарен B. Уже первые исследователи обнаружили, что явление в высокой степени зависит от чистюты освещаемой поверхности. Поэтому точные опыты производятся со свежими поверхностями, тщательно очищенными механическим путем или,

Рис. 32.3. Схема для исследования зависимости фототока от напряжения и силы света.

еще лучше, образованными путем напыления металла в вакууме. Высокий вакуум поддерживается между электродами P и N во время измерения, ибо присутствие газов может сильно измешить свойства

поверхности и, кроме того, осложняет условия выхода и переноса поверхности и, кроме того, сели постоянным и изменяя и переноса зарядов. Поддерживая освещение постоянным и изменяя напряже зарядов. Поддерживал осветных пределах изменять силу напряже ние батареи В, мы будем в известных пределах изменять силу тока ние батарен В, мы оуден в польт производится в высоком вакууме в гальванометре. Но если опыт производится в высоком вакууме в гальванометре. По соли от у расси в высоком вакууме и электродам придана такая форма, что все заряды, вырванные и электродам придала тели, попадают на второй электрод даже без из освещенном поверлисси, *), то сила фототока не будет возрастать помощи ускоряющего поля *), то сила фототока не будет возрастать помощи ускоряющее слона у помозящее поле, направленное от советсять при увеличении поля. Наоборот, тормозящее поле, направленное при увеличения лению электронов от освещенной поверх. ности ко второму электроду, может ослабить фототок и даже свести его к нулю.

Действительно, опыт показывает что в соответствии с этими рассуждениями зависимость силы фототока І от приложенной к элек-

тродам разности потенциалов /так называемая характеристика фототока — имеет вид, изображенный на рис. 32.4 (сплошная кривая). При электродах, форма и взаимное расположение которых не удовлетворяют поставленным выше требованиям, характеристика фототока более или менее сильно искажается (см. рис. кривая). Однако Рис. 32.4. Характеристика фо-32.4, пунктирная сохраняются ее существенные черты: при некоторой не чрезмерно большой

ускоряющей разности потенциалов ток доходит до постоянной величины (ток насыщения); при определенной тормозящей разности потенциалов ток падает до нуля. На стремление фототока к насыщению также указал А. Г. Столетов.

Так как ток насыщения соответствует условиям, при которых все освобожденные светом электроны проходят через цепь галываном нометра, то сила тока насыщения и должна быть принята за меру фотоэлектрического действия света.

б. Зависимость тока насыщения от интенсивности падающего света. Тщательно выполненные измерения показовато света. Тщательно выполненные измерения показывают, что сила тока насыщения строго пропор-циональна спотокования строго пропорциональна световому потоку, поглощенному металлом. Так как интенсивность портаки интенсивность поглощенного в металлах света пропорциональна интенсивность поглощенного в металлах света пропорциональна интенсивности паразониемы в металлах света пропорциональна интенсивности падающенного в металлах света пропорционали сформулировать таки сто основной закон фотоэффекта можно сформулировать так: сила фототока насыщения прямо пропор-циональна подоющения стака в сама в сама насыщения прямо пропорциональна падающему световому потоку. .

Закон этот проверен в очень широком интервале интенсивностей та и выполняется указатементы света и выполняется крайне строго. Благодаря ему фотоэлементы

тотока.

^{*)} Наилучшая форма расположения электродов — это сферический конден-р; его внутренний шарик поверху паилучшая форма расположения электродов — это сферический кона-сатор; его внутренний шарик представляет собой светочувствительную повера-ность, а размеры малы по спанноские в техности светочувствительную повераность, а размеры малы по сравнению с размерами внешнего шара.

ГЛ. ХХХН. ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ

можно использовать в качестве превосходных объективных фотометров.

Закон, приведенный выше, выполняется с полной строгостью в том случае, когда измеряемый ток насыщения образован лишь электронами, освобожденными светом. Это имеет место, если чувствительная поверхность помещена в вакуум. В приборах, наполненных газом и обычно гораздо более чувствительных, так как в них к току электронной эмиссии прибавляется ток ионизации, могут уже возникать некоторые отступления от простой пропорциональности между силой тока насыщения и интенсивностью света; поэтому приборами описанного рода надо пользоваться для измерительных целей с известной осмотрительностью.

в. С к о р о с т и ф о т о э л е к т р о н о в. Снимая характеристику фототока (см. рис. 32.4), мы обнаруживаем, что наложение на электроды тормозящего электрического поля уменьшает силу тока. Отсюда следует, очевидно, что часть электронов обладает при вылете кинетической энергией $1/2 mw^2$, которая меньше работы, необходимой для преодоления приложенной разности потенциалов. Подобрав такую разность потенциалов V, при которой ток обращается в нуль, мы задерживаем все электроны, включая и самые быстрые. Таким образом, w_m — максимальная скорость электронов, освобожденных светом в описанном опыте, — определится из соотношения

$$1/_2 m w_m = eV.$$
 (176.1)

То обстоятельство, что даже при нанболее благоприятном расположении электродов характеристика фототока не обрывается сразу, а более или менее полого падает до нуля, указывает, что скорости вылетающих электронов различны: самые медленные электроны задерживаются очень слабым тормозящим полем; для задержания самых быстрых требуется встречная разность потенциалов, равная V. Изучив законы спадания характеристики, можно определить распределение электронов по скоростям. Причина такого разнообразия скоростей заключается в том, что свет может освобождать электроны не только с поверхности металла, но и из некоторой глубины; эти последние электроны теряют часть сообщенной им скорости раньше, чем они выйдут на поверхность, вследствие случайных столкновений внутри металла.

Поэтому физический интерес представляет *максимальная* скорость, определяемая при помощи соотношения (176.1), ибо она характеризует энергию, сообщаемую электрону при освобождении его светом.

Было бы, однако, ошибочным думать, что для освобождения электрона со скоростью *w* из поверхности металла достаточно сообщить ему энергию ¹/₂mw². Известно, что электрон при прохождении через поверхность металла должен преодолеть некоторое сопро-

637

ДЕПСТВИЯ СВЕТА

тивление своему выходу, затратив определенную работу р. Эта тивление' своему выходу, остребычных условиях свободным эла работа сыхода препятствует в обычных условиях свободным элек. работа сыхода пренятствуст с селини. Она различна для разных тронам металла покннуть последний. Она различна для разных тронам металла покннуть последний. Она различна для разных тронам металла покипуть между двумя соприкасающимися кус-металлов, вследствие чего между двумя соприкасающимися кусметаллов, вследствие чего металлов устанавливается контактноя кус-ками различных металлов устанавливается контактноя разность работи выхода можно также определить по ками различных метальнов услевное определить по явлению потенциалов. Работу выхода можно также определить по явлению исс количество электронов исслевание потенциалов. 1 асст, 2. Потенциалов. 1 асст, 2. По явлению термононной эмиссии, ибо количество электронов, испускаемых в течение секунды единицей поверхности накаленного металла, в течение сскупды одиницы работы выхода. сильно зависит от величины работы выхода. Таким образом, энергия С, которую нужно сообщить электрону

для того, чтобы он вырвался с максимальной скоростью ш из пластины, характеризуемой работой выхода Р, определяется состношением

$$\mathscr{E} = \frac{1}{2}m\omega_m^2 + P = eV + eV_0, \qquad (176.2)$$

где $V_0 = P/e$ — потенциал выхода.

При помощи соотношения (176.2) можно найти величину энергии в, получаемой электроном при фотоэффекте. Исследования Ленарда и ряда других позволили установить чрезвычайно важный закон: энергия Е, приобретаемая электроном, не зависит ни от интенсивности падающего света, ни от природы освещаемого вещества, ни от температуры его; эта энергия определяется лишь частотой падающего монохроматического света и растет с увеличением частоты.

§ 177. Уравнение Эйнштейна. Гипотеза световых квантов

Еще в тот период, когда указанный закон был экспериментально установлен в качественной форме, Эйнштейн (1905 г.) обосновал теоретически количественную связь между энергией, получаемой электроном при его освобождении светом, и частотой этого света. Согласно теории Эйнштейна закон фотоэффекта имеет следующий (177.1) вид:

$$\mathscr{O} = \frac{1}{2m} \mathscr{W}_m + P = eV + P = hv,$$

где $h = 6,6 \cdot 10^{-34}$ Дж · с — постоянная теории квантов, введенная Планком.

По мысли Эйнштейна вся энергия, полученная электроном, до-вляется ему сретои – ставляется ему светом в виде определенной порции hv, величная которой зависит от носта которой зависит от частоты света (световой квант), и «усванвается» им целиком. Таким обрани им целиком. Таким образом, электрон не заимствует энергию от атомов вещества католо от не заимствует энергию не атомов вещества катода, благодаря чему природа вещества не играет никакой годи в играет шикакой роли в определении С.

Энергия кванта очень велика по сравнению с тепловой энергией ктронов, и поэтому начество с тепловой знергией электронов, и поэтому изменение температуры должно лишь очень слабо сказываться из систоя слабо сказываться на скорости сылетающих электронов (действи-

ГЛ. ХХХИ, ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ

тельно, такое малое влияние было обнаружено в работах последнего времени). В рамках теории Эйнштейна пропорциональность силы фототока насыщения световому потоку также легко объяснима. Действительно, световой поток определяется числом квантов света, падающих на поверхность за единицу времени, а число освобожденных электронов должно быть пропорционально числу падающих квантов; при этом, как показывает опыт, лишь малая часть квантоз передает свою энергию отдельным электронам, остальные же расходуются на нагревание металла в целом.

Рис. 32.5. Зависимость энергии фотоэлектронов от частоты.

Теоретическая формула Эйнштейна была блестяще подтверждена десятилетие спустя опытами Милликена (1916 г.). Измерения Милликена, выполненные по схеме § 176, чрезвычайно усложненной вследствие применения ряда экспериментальных предосторожностей (свежеочищаемая поверхность металла в вакууме, учет контактных разностей потенциалов между различными частями аппаратуры и т. д.), дали строго линейную зависимость между V и v для нескольких металлов (рис. 32.5). По наклону этих прямых для ряда изученных металлов (Na, Mg, Al, Cu) было определено значение постоянной h. Среднее из этих измерений есть $h = 6,67 \cdot 10^{-34} \, \text{Дж} \cdot \text{с}$, что хорошо совпадает со значениями h, полученными из опытов иного рода.

Впоследствии данный метод был улучшен и привел к еще более точным определениям *) (h = 6,658 · 10⁻³⁴ Дж · с, П. И. Лукирский, 1928 г., метод сферического конденсатора, см. § 176).

Из измерений Милликена можно, пользуясь формулой Эйнштейна, определить также и работу выхода. Найдем то значение $v = v_0$, которому соответствует V = 0, т. е. точку пересечения прямой Милликена (см. рис. 32.5) с осью абсцисс; тогда $P = hv_0$.

*) Цифры Милликена и Лукирского пересчитаны, исходя из невого, более точного значения заряда электрона.

. Таким образом, если освещать металл светом частоты v_0 (или меньшей), то w = 0, т. е. электроны не выйдут из металла даже при наличии некоторого ускоряющего поля. Поэтому найдению таким образом частоту v_0 (или соответствующую длину волны $\lambda_0 = c/v_0$) называют граничной частотой (красная граница фотоэф фекта). Она лежит в области тем более длинных волн, чем электроположительнее металл, т. е. чем легче отдает он свои электроны. Так, например, для щелочных металлов граница лежит в области видимого света, тогда как для большинства других металлов она находится в ультрафиолете. Необходимо отметить также, что присутствие примесей, например, газов, растворенных в металле, нередко сильно облегчает выход электронов, перемещая границу в область длинных волн. Ниже приведены значения «красной границы» для нескольких по возможности чистых металлов:

Металл	қ	Na	Li	Hg	Fe	Ag	Au	Ta
λ ₀ , пм	550,0	540,0 、	500,0	273,5	262,0	-261,0	265,0	305,0

§ 178. Обоснование гипотезы световых квантов в явлениях фотоэффекта

Уравнение Эйнштейна (177.1) (его можно также записать в виде $1/_{2}mw_m^3 = h (v - v_0) = eV$), подтвержденное опытами Милликена, подвергалось и в дальнейшем разнообразным экспериментальных проверкам. В частности, частота падающего света варьировалась в очень широких пределах — от видимого света до рентгеновских лучей, и во всем интервале опыт оказался в превосходном согласии с теорией. В опытах с рентгеновскими лучами проверка упрощается благодаря тому, что v очень велико по сравнению с v_0 . Поэтому соотношение Эйнштейна принимает вид hv = eV и позволяет определения длины волны очень жестких γ -лучей, для которых метод дифракции на кристаллах невозможно осуществить с достаточной точностью из-за малости соответствующей длины волны.

Фотоэлектрические опыты с рентгеновскими лучами дают воможность исследовать, распространяется ли световая энергия ракномерно во все стороны, как следует из обычных волновых прел ставлений, или она летит то по одному, то по другому направлению в виде дискретных квантов. Действительно, кванты видимого света обладают малым запасом энергии (так, для желтого излучения $v = 5 \cdot 10^{14}$ с⁻¹, $hv = 3,31 \cdot 10^{-18}$ Дж); поэтому для регистрации их в болышинстве опытов приходится иметь дело с большим числом квантов в единицу времени. В соответствии с этим действие, произ-

гл. хххн. фотоэлектрическия эффект

водимое случайным распределением летящих по всем направлениям световых квантов, трудно отличить от действия волны, равномерно распространяющейся во все стороны. Чем больше величина кванта. тем легче наблюдать действие отдельного кванта и легче, следовательно, осуществить опыт наблюдения распространения световой энергии не во все стороны равномерно, а вспышками, то по одному, то по другому направлению. Рентгеновские кванты удовлетеоряют этому условию. Кроме того, с рентгеновскими лучами легче осуществить условия, необходимые для возбуждения небольшого числа актов испускания в секунду. Для получения рентгеновских лучей нужно бомбардировать электронами анод; всякая остановка (или торможение) электрона сопровождается испусканием рентгенозского импульса. В рамках теории световых квантов в самом благоприятном случае вся кинетическая энергия электрона после остановки перейдет полностью в один-единственный квант, частота которого у определится из условия $\mathscr{E}_{\text{кип}} = hv$. Если бомбардирующий электрон разгонялся разностью потенциалов V, то $\mathscr{E}_{KHH} = eV$.

Итак, условие максимальной частоты имеет вид

$$hv = eV$$
.

Действительно, опыт подтвердил, что при испускании рентгеиовских волн наблюдается максимальная частота (коротковолновая граница), определяемая из написанного условия, где V — ускоряющая разность потенциалов, e — заряд электрона, v — частота границы и h — постоянная Планка. Волны более короткие (большие v) никогда не наблюдаются, волны же более длинные соответствуют превращению лишь части кинетической энергии электрона в излучение. Определение коротковолновой границы рентгеновского спектра может быть выполнено весьма надежно. Поэтому такого рода опыты используются как один из наиболее совершенных методов определения значения постоянной Планка с помощью соотношения hv = eV. Наилучшие измерения, выполненные этим методом, дали $h = 6,624 \cdot 10^{-34}$ Дж с.

Регулируя число электронов, бомбардирующих анод, мы можем менять число излучаемых рентгеновских квантов. Если заставить такие рентгеновские лучи действовать на металлическую пластинку, вызывая фотоэффект, то, как показывает опыт, кинетическая энергия испускаемых электронов равняется энергии кванта. Таким образом, полная схема превращения имеет вид

$$eV = \frac{1}{2}mw^2 = hv = \frac{1}{2}mw^2$$

т. е. весь цикл превращений состоит из: 1) превращения работы электрического поля eV в кинетическую энергию ¹/2^{ntw²} электрона в рентгеновской трубке, 2) превращения кинетической энергии этого электрона в рентгеновский квашт hv, и, наконец, 3) превра-

21 Ландсберг Г. С.

щения энергии кванта полностью в кинетическую энергию ¹/₂mw¹ электрона, освобожденного этим квантом при фотоэффекте. Такой цикл гораздо больше походит на удар, чем на процесс постоянного накопления в освобождаемом электроне энергии, приносимой волнами.

Подобные опыты можно сильно разнообразить, пользуясь удоб. ством экспериментирования, предоставляемым величинами рентеновского кванта. Все они говорят в пользу передачи световой энергии концентрированными порциями, т. е. в пользу гипотезы световых квантов. Один из наиболее убедительных опытов этого рода принадлежит А. Ф. Иоффе.

Осуществлены также опыты, показывающие, что энергия рентгеновских лучей распространяется в разные стороны не одновременно, но что порции ее (кванты) летят то в ту, то в другую сторону.

Рис. 32.6. Схема опыта Боте.

Опыт был выполнен при помощи двух счетчиков *), достаточно чувствительных для того, чтобы зарегистрировать действие одного рентгеновского кванта, и достаточно быстро отмечающих его появление. Опыт этот осуществлен Боте по схеме, указанной на рис. 32.6.

Тоненькая пленка A, освещенная сбоку рентгеновскими лучами R,

сооку рептеновскими и просессии и преможними и преможни

*) Счетчак представляет собой небольшой цилиндр, внутри ксторого на изоляторе помещено острие или тонкая проволока. Между цилиндром и острием создается большая разность потенциалов. Получающееся электрическое поле резко неодпородно и вблизи острия (или нити) может достигать весьма большях вначений. Если в таком поле появляется несколько электронов или ионов они присбретают под действием поля очень большую скорость и могут ионног вать при столкновениях окружающие молекулы газа. Таким образом, челя ионов быстро возрастает, и через счетчик протекает кратковременный ток за электронов или ионои и является одник из наиболее чувствительных приборать в последнее время счетчики широко применяются для исследования космис ских лучей.

' ГЛ. XXXII. ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ

рядочность показаний электрометров, т. е. доказал, что из А летят кванты то в одну, то в другую сторону.

Аналогичные опыты с квантами видимого света затруднены тем. что кванты эти малы. Однако к световым квантам очень чуестентелен глаз; хотя глаз не реагирует на один отдельный квант, но опыты показывают, что необходимое для минимального светового ощущения число квантов в секунду не очень значительно. По измерениям С. И. Вавилова, в области максимальной чувствительности глаза (550 нм) для отдохнувшего глаза пороговая чувствительность в среднем составляет около 200 квантов, падающих за 1 с на зрачок наблюдателя. В этих условиях, как показали опыты Вавилова, удается наблюдать флуктуационные колебания светового потока, имеющие ясно выраженный статистический характер. Хотя в таких опытах и нельзя однозначно отделить квантовые флуктуации сеетового потока от флуктуаций, связанных с физиологическими процессами в глазу, тем не менее и они могут рассматриваться как подтверждающие квантовый характер явления; кроме того, эти опыты дают результаты, существенные для исследования свойств живого глаза. В частности, с их помощью удалось установить, что число квантов, которые должны поглощаться в сетчатке при пороговом раздражении, раз в 9-10 меньше числа квантов, падающих на зрачок, и составляет примерно 20 в секунду.

Итак, совокупность сведений о фотоэффекте, изложенных выше, настойчиво свидетельствует в пользу представления о световых квантах. Можно сказать, что свет частоты v не только покидает атом в виде порции энергии, равной hv, но и в дальнейшем распространяется в пространстве и вступает во взаимодействие с веществом в виде такой порции, локализованной и перемещающейся как целое со скоростью света. Для таких элементарных световых частиц принято специальное название — фотон.

Энергия фотона зависит от его частоты и равна hv. Выше, в гл. XXII, был приведен один из основных выводов теории относительности, согласно которому с энергией \mathcal{E} неразрывно связана масса m, причем численное соотношение между \mathcal{E} и m дается выражением $\mathcal{E} = mc^2$. На этом основании масса m фотона определяется выражением

$$m = hv/c^{2}$$
. (1/8.1)

Так как фотон движется со скоростью света, то он обладает импульсом с абсолютной величиной

$$p = mc = hv/c \tag{178.2}$$

170 01

и направлением, совпадающим с направлением распространения волны. Итак, энергия фотона равна hv, его масса равна hv/c², величина его импульса равна hv/c.

21.

ДЕЙСТВИЯ СВЕТА

Корпускулярные свойства фотона не должны заставить нас забыть о том, что для огромного круга явлений, с которыми мы ознакомились ранее, волновые представления оказались в высшей степени плодотворными. Отметим только, что и в явлении фотоэффекта есть черты, говорящие в пользу классических волновых представлений о свете. Эти черты особенно отчетливо выступают при исследовании зависимости силы фототока от длины волны.

§ 179. Зависимость силы фототока от длины световой волны

Для исследования зависимости силы фототока от длины волны необходимо определить силу тока насыщения, соответствующего определенной лучистой энергии монохроматического света. Результаты подобных измерений приведены на рис. 32.7, где по оси орди-

Рис. 32.7. Зависимость силы фототока от длины волны. Нермальный фотоэффект; Ло соотьетствует «красной границе». нат отложена сила тока насыщения *I*, отнесенная к поглощенной лучистой энергин, а по оси абсцисс длина волны λ . Рис. 32.7 показывает, что «красная граница» соответствует $\lambda = \lambda_0$ н с уменьшением длины волны сила тока на единицу поглощенной эмергин возрастает. Это значит, что свет с более короткой длиной волны более эффективен. Если принять во внимание, что чем короче длина волны падающего света, тем меньше квантов содержится в единице

пстлощенной энергни (ибо для коротких волн сами кванты, равные $hv = hc/\lambda$, больше), то из кривой рис. 32.7 ясно видно, как силыю растет способность фотонов выделять электроны по мере перехода к более «крупным» фотонам.

Опыт показал, однако, что ход зависимости, изображенный на рис. 32.7, не всегда имеет место. У ряда металлов, особенно щелочных, для которых красная граница лежит далеко в видимой и даже в инфракрасной области спектра и которые, следовательно, и даже в инфракрасной области спектра и которые, следовательно, чувствительны к широкому интервалу длин волн, наблюдается чувствительны к широкому интервалу длин волн, наблюдается следующая особенность: сила тока имеет резко выраженный максимум для определенного спектрального участка, быстро спадал по обе его стороны (селективный, или избирательный, фотоэффект, рис. 32.8). Селективность фотоэлектрических явлений очень напоминает резонансные эффекты. Дело происходит так, как булю электроны в металле обладают собственным периодом колебаний и по мере приближения частоты возбуждающего света к собственной частоте электронов амплитуда колебаний их возрастает и они преодолевают работу выхода.

гл. хххи. фотоэлектрический эффект

Подтверждение подобного взгляда можно было бы видеть в том обстоятельстве, что явление селективного фотоэффекта сильно зависит от направления поляризации света и угла падения. Если падающий свет (рис. 32.9) поляризован так, что электрический вектор параллелен плоскости падения (E_{\parallel}), то эффект резко усиливается. Наоборот, при повороте плоскости поляризации на SO² (E_{\perp}) селективный эффект исчезает. В первом случае электрический

вектор имеет слагающую, перпендикулярную к поверхности металла, во втором — нет. Легко видеть, что компонента E₀, перпен-

Рис. 32.8. Зависимость силы фототока от длины волны в области селективного фотоэффекта.

Рис. 32.9. Роль направления колебаний для величины селективного фотоэффекта.

дикулярная к поверхности металла, тем больше, чем ближе угот падения а к прямому (см. рис. 32.9). И действительно, величина селективного максимума резко возрастает по мере увеличения угла падения (рис. 32.10).

Если угол падения достаточно велик, то в области селективного эффекта изменение направления вектора E, т. е. ориентация электрического вектора, сказывается чрезвычайно отчетливо на величине фототока. Рис. 32.11 изображает силу тока насыщения в зависимости от длины волны для двух ориентаций электрического вектора — перпендикулярной (E_1) и параллельной (E_0) плоскости падения. Приведенные кривые соответствуют углу падения в 60° и относятся к сплаву калия и натрия, максимум чувствительности которого приходится на длину волны $\lambda = 390,0$ им. Ниже приводятся положения максимума для ряда чистых металлов:

Цезий	510,0 нм	Литий	2S0,0 HM
Рубидий	480,0 нм	Барий	400,0 им
Калий	435,0 нм	Магний	250,0 им
Натрий	340,0 нм	Алюминий	215,0 им

По всей вероятности, и другие металлы обнаруживают селективный эффект, однако максимумы для них лежат в очень коротковолновой области спектра и труднодоступны для наблюдения.

Следует заметить, что легко наблюдаемый большой селективный максимум щелочных металлов принадлежит не чистому металлу, а соединениям, обычно образующимся на поверхности вследствие присутствия следов газа. При очень больших предосторожностях удается получить чистые поверхности, для которых эффект выражен гораздо слабее Ток

Рис. 32.10, Зависимость величины селективного фотоэффекта от угла падения.

Числа у кривых указывают углы падения.

гораздо слабее. Тем не менее существование селективного фотоэффекта и его характер от. четливо указывают на плодотворность волновых представлений для понимания фотоэф. фекта. Однако ДЛЯ полной количественной трактовки этих включая и явление явлений, селективного фотоэффекта, треприменение углубленбуется ных представлений о металле, даваемых современной квантовой теорней.

Законы фотоэффекта, изложенные в данном и предыдущем параграфах, были установлены сравнительно небольших ДЛЯ интенсивностей света. Интерпретация фотоэффекта, основанная квантовых представлениях, на связывает освобождение электрона с передачей ему энергии одного фотона падающего света. Выше мы убедились в том, что в случае мощного света оптический электрон атомов и молекул может приобрести энер-

гию нескольких фотонов (многофотонные поглощение и ионизация, см. § 157). Аналогичное явление было обнаружено и по отношению к свободным электронам металлов (Фаркаш с сотр., 1967 г.).

Если при освещении поверхности металла электрон способен приобрести энергню N фотонов (т. е. энергию Nhv), то следует ожидать, очевидно, уменьшения граничной частоты в N раз (смеожидать, очевидно, уменьшения граничной частоты в N раз (смешения красной границы фотоэффекта в сторону длинных волн). Наблюдению фотоэффекта за красной границей, требующему, как мы увидим, огромной интенсивности света, длительное время препятствовало сильное нагревание металла, приводящее к термоэлектронной эмиссии *), для которой красная граница, разумеется,

Э Явление термоэлектронной эмиссии обусловлено тем, что наиболее быстрые электроны металла, обладающие энергией, превышающей работу выхода, преодолевают потенциальный барьер и выходят за пределы металла. Подробнеа см. С. Г. Калашников, Электричество, «Наука», 1970.

не существует. Маскирующее влияние термоэмиссии было почти полностью устранено применением сверхкоротких импульсов лазерного излучения (см. § 230) длительностью 10⁻¹¹—10⁻¹² с и скользящим освещением фотокатода (угол падения около 85°). И тот, и другой прием приводят к уменьшению нагревания и к подавлению термоэлектронной эмиссии. В этих условиях фотоэлектроны были надежно зарегистрированы далеко за красной границей (вплоть до пятикратного уменьшения частоты света в сравнении с граничной частотой, определяемой работой

Законы многофотонного, или нелинейного, фотоэффекта имеют много общего с законами линейного (однофотонного) фотоэффекта, рассмотренного выше. Пусть частота света лежит в пределах

 $P/N < h\nu < P/(N-1),$

так что для выхода фотоэлектрона необходимо поглощение им не менее N фотонов. При этом условин, как показывает исследование распределения фотоэлектронов по скоростям, выполняется соотношение

 $1/_2mw_m^3 + P = Nhv,$

Рис. 32.11. Зависимость фотоэффекта от длины волны для двух различных направлений колебания.

вполне аналогичное уравнению Эйнштейна (177.1) и означающее, что фотоэлектрон действительно приобрел энергию N фотонов. Число фотоэлектронов, характеризуемое величиной тока насыщения, оказалось пропорциональным интенсивности света, возведенной в степень N. Изменения поляризации света и угла падения (см. рис. 32.9) позволили выяснить, что нелинейный фотоэффект обусловливается исключительно слагающей напряженности электрического поля, перпендикулярной к поверхности катода.

Перечисленные свойства нелинейного фотоэффекта установлены при использовании фотокатодов из различных материалов (натрий, золото, серебро и др., а также полупроводники), для различных значений N = 2, 3, 4 и 5, в широком интервале изменения интенсивности света (от 0,1 до 10³ MBt/cm²). При значении потока, примерно равном 10⁴ MBt/cm², по-видимому, имеет место еще одно нелинейное явление, аналогичное автоэлектронной (или холодной) эмиссии: электрическое поле волны изменяет потенциальный барьер на поверхности металла, и электрон получает возможность «просочиться» через барьер, не приобретая энергии выхода. Такое «про-
ДЕИСТВИЯ СВЕТА

сачивание» легко понять, если вспомнить о волновых свойствах электрона и принять во внимание, что прохождение электрона через потенциальный барьер аналогично проникновению электромагнитной волны через тонкий слой оптически плотного вещества при угле падения, большем критического угла полного отражения (см. главу XXIV).

§ 180. Внутренний фотоэффект

В предыдущем параграфе говорилось об освобождении электронов из освещаемой поверхности вещества и переходе их в другую среду, в частности в вакуум. Такое испускание электронов называют фотоэлектронной эмиссией, а само явление внешним фотоэффектом, Наряду с ним известен также и широко используется в практических целях так называемый внутренний фотоэффект, при котором. в отличие от внешнего, оптически возбужденные электроны остаются внутри освещенного тела, не нарушая нейтральности последнего. При этом в веществе изменяется концентрация носителей заряда нли их подвижность, что приводит к изменению электрических свойств вещества под действием падающего на него света. Внутренний фотоэффект присущ только полупроводникам и диэлектрикам. Его можно обнаружить, в частности, по изменению проводимости однородных полупроводников при их освещении. На основе этого явления — фотопроводимости создана и постоянно совершенствуется большая группа приемников света — фоторезисторов. Для них используется в основном селенид и сульфид кадмия.

В неоднородных полупроводниках наряду с изменением проводимости наблюдается также образование разности потенциалов (фото- э. д. с.). Это явление (фотогальванический эффект) обусловлено тем, что в силу односторонней проводимости полупроводников происходит пространственное разделение внутри объема проводника оптически возбужденных электронов, несущих отрицательный заряд и микрозон (дырок), возникающих в непосредствен-ной близости стати ной близости от атомов, от которых оторвались электроны, и подобно частицам несущих положительный элементарный заряд. Электрония несущих положительный элементарный заряд. Электроны и дырки концентрируются на разных концах полупроводника, вследствие чего и возникает электродвижущая сила, благодаря которой благодаря которой и вырабатывается без приложения внешней э. д. с. электрицеский того э. д. с. электрический ток в нагрузке, подключенной параллельно освещенному получеские подключенной параллельно освещенному полупроводнику. Таким образом достигается прямое преобразование световой полупроводнику. преобразование световой энергии в электрическую. Именно по этой причине фотогольрания с нергии в электрическую. причине фотогальванические приемники света и используются не только для регистрации ских только для регистрации световых сигналов, но и в электрических ценях как источники следования сигналов, но и в электрических

ценях как источники электрической энергин. Основные промышленно выпускаемые типы таких приемников работают на основе селена и серинстого серебра. Весьма распрост-

ГЛ. ХХХИ. ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ

ранен также кремний, германий и ряд соединений — GaAs, InSb, CdTe и другие. Фотогальванические элементы, используемые для преобразования солнечной энергии в электрическую, приобрели особенно широкое применение в космических исследованиях как источники бортового питания. Они обладают относительно высоким коэффициентом полезного действия (до 20%), весьма удобны в условиях автономного полета космического корабля. В современных солнечных элементах в зависимости от полупроводникового материала фото-э. д. с. достигает 1—2 В, съем тока с 1 см² — нескольких десятков миллиампер, а на 1 кг массы выходная мощность достигает сотен ватт.

§ 181. Фотоэлементы и их применения

В настоящее время на основе внешнего и внутреннего фотоэффекта строится бесчисленное множество приемников излучения, преобразующих световой сигнал в электрический и объединенных общим названием — фотоэлементы. Они находят весьма широкое применение в технике и в научных исследованиях. Самые разные объективные оптические измерения немыслимы в наше время без применения того или иного типа фотоэлементов. Современная фотометрия, спектрометрия и спектрофотометрия в широчайшей области спектра, спектральный анализ вещества, объективное измерение весьма слабых световых потоков, наблюдаемых, например, при изучении спектров комбинационного рассеяния света, в астрофизике, биологии и т. д. трудно представить себе без применения фотоэлементов; регистрация инфракрасных спектров часто осуществляется специальными фотоэлементами для длинноволновой области спектра. Необычайно широко используются фотоэлементы в технике: контроль и управление производственными процессами, разнообразные системы связи от передачи изображения и телевидения до оптической связи на лазерах и космической техники представляют собой далеко не полный перечень областей применения фотоэлементов для решения разнообразнейших технических вопросов в современной промышленности и связи.

История создания фотоэлементов насчитывает уже более 100 лет. Первый фотоэлемент, основанный на внутреннем фотоэффекте и использующий явление фотопроводимости, был построен в 1875 г., первый же вакуумный фотоэлемент, основанный на внешнем фотоэффекте, был построен в 1889 г. Промышленное производство вакуумных фотоэлементов в Советском Союзе было организовано П. В. Тимофеевым в 1930 г. Интересно отметить, что фотоэлементы, использующие внешний фотоэффект, раньше приобрели широкое развитие, хотя внутренний фотоэффект был открыт по крайней мере на 50 лет раньше. Только в сороковых годах нашего столетия благодаря бурному развитию физики полупроводников и деталь-

in fice

ному изучению внутреннего фотоэффекта началось создание новых фотоэлементов на основе полупроводниковых материалов.

оэлементов на основе него и решаемых с помощью фотоэлемен. Огромное разнообразие задач, решаемых с помощью фотоэлемен. Огромное разноооризно сла и разнообразно чотоэлемен. тов, вызвало к жизни чрезвычайно большое разнообразие типов фотоэлементов с различными техническими характеристиками, фотоэлементов с расписация фотоэлементов для решения каждой выбор оптимального типа фотоэлементов для решения каждой конкретной задачи основывается на знании этих характеристик. Для фотоэлементов с внешним фотоэффектом (вакуумных фотоэле ментов) необходимо знание следующих характеристик: рабочая область спектра; относительная характеристика спектральной чув. ствительности (она строится как зависимость от длины волны падающего света безразмерной величины отношения спектральной чувствительности при монохроматическом освещении к чувствительности в максимуме этой характеристики); интегральная чувствительность (она определяется при освещении фотоэлемента стандартным источником света); величина квантового выхода (процентное отношение числа эмиттированных фотоэлектронов к числу падающих на фотокатод фотонов); инерционность (для вакуумных фотоэлементов она определяется обычно через время пролета электронов от фотокатода к аноду). Важным параметром служит также темновой ток фотоэлемента, который складывается из термоэмиссии фотокатода при комнатной температуре и тока утечки.

В зависимости от материала фотокатода и материала колбы фотоэлемента их можно применять в диапазоне 0,2—1,1 мкм. Их интегральная чувствительность лежит в пределах 20—100 мкА на 1 лм светового потока, а термоэмиссия — в пределах 10⁻¹¹ 10⁻¹⁶ А/см². Очень важным достоинством вакуумных фотоэлементов является их высокое постоянство и линейность связи светового потока с фототоком. Поэтому они длительное время преимущественно использовались в объективной фотометрии, спектрометрин, спектрофотометрии и спектральном анализе в вндимой и ультрафиолетовой областях спектра. Главным недостатком вакуумных отоэлементов при световых измерениях следует считать малость электрических сигналов, вырабатываемых этими приемниками света. Последний недостаток полностью устраняется в фотоэлектронвых умножителях (ФЭУ), представляющих как бы развитие фотоэлементов. ФЭУ были впервые построены в 1934 г.

Принцип действия ФЭУ можно проследить на рис. 32.12. Фотоэлектроны, эмиттируемые с фотокатода ФК под действием электрического поля, ускоряются и попадают на первый промежуточный электрод Э₁. Падая на него, фотоэлектроны вызывают эмиссию вторичных электронов, причем в определенных условиях эта вторич ная эмиссия может в несколько раз превышать первоначальный поток фотоэлектронов. Конфигурация электродов такова, что большинство фотоэлектронов попадает на электрод Э₁, а большинство вторичных электронов попадает на следующий электрод Э₂, где

ГЛ. ХХХИ. ФОТОЭЛЕКТРИЧЕСКИЯ ЭФФЕКТ

процесс умножения повторяется, и т. д. Вторичные электроны с последнего из электродов (динодов), а их бывает до 10—15, собираются на анод. Общий коэффициент усиления таких систем достигает 10⁷—10⁸, а интегральная чувствительность ФЭУ достигает тысяч ампер на люмен. Это, конечно, не означает возможности получения больших токов, а свидетельствует лишь о возможности измерения малых световых потоков.

Очевидно, те же технические характеристики, что и у вакуумных фотоэлементов, а также коэффициент усиления и его зависимость от питающего напряжения полностью характеризуют ФЭУ.

Рис. 32.12. Схема устройства фотоумножителя.

В настоящее время последние повсеместно вытесняют вакуумые фотоэлементы. К недостаткам ФЭУ следует отнести необходимость применения источника высоковольтного и стабилизированного питания, несколько худшую стабильность чувствительности и большие шумы. Однако путем применения охлаждения фотокатодов и измерения не выходного тока, а числа импульсов, из которых каждый соответствует одному фотоэлектрону, эти недостатки могут быть в значительной степени подавлены.

Большим преимуществом всех приемников света, использующих внешний фотоэффект, является то обстоятельство, что их фототок не изменяется при изменении нагрузки. Это означает, что при малых значениях фототока можно применить практически сколь угодно большое сопротивление нагрузки и тем самым достичь значения падения напряжения на нем, достаточно удобного для регистрации и усиления. С другой стороны, заменяя сопротивление на емкость, можно, измеряя напряжение на этой емкости, получать величину, пропорциональную усредненной величине светового потока за заданный интервал времени. Последнее чрезвычайно важно в тех случаях, когда необходимо измерить световой поток от нестабильного источника света — ситуация, типичная для спектроаналитических измерений.

Спектрометрия в инфракрасной области спектра не может прона. Спектрометрия в паурате с помощью вакуумных фотоэлементов и ФЭУ по той при-чине, что современные таках известны материалы, позволяющие про. по нм. Однако уже сси не про-двинуться до 3—4 мкм. Поэтому в инфракрасной области применяются фотоэлементы, работающие на основе внутреннего фотоэф. фекта. Сюда следует отнести неохлаждаемые фоторезисторы на основе InSb, PbSe и PbS, которые могут быть использованы до 6 мкм, и глубоко охлаждаемые фоторезисторы на основе германия, легированного золотом, цинком, медью и другими металлами, пригодные до 40 мкм.

Для измерения в более длинноволновой области спектра применяются тепловые приемники; последние либо изменяют свою проводимость, либо на них создается э. д. с. при нагревании палающим излучением.

Полупроводниковые фотоэлементы характеризуются не строгой линейностью зависимости величины электрического сигнала от освещения. Этот недостаток, равно как и непостоянство чувствительности фотоэлемента, нестабильность его питания, а также дрейф усилення измерительной схемы, устраняется применением двухлучевой системы, в которой измеряется не абсолютное значение интенсиености света, прошедшего через поглощающее вещество, а ее отношение к интенсивности света просвечивающего источника.

В чрезвычайно большом числе случаев применения фотоэлементов не предъявляются строгие требования к их измерительным свойствам. Поэтому фотоэлементы, работающие на основе внутреннего фотоэффекта, в силу их малых габаритов, низких напряжений питания и ряда конструктивных достоинств повсеместно применяются для автоматических систем, систем управления, преобразования солнечной энергии, контроля производства и т. д., за исключением тех случает. тех случаев, когда относительно невысокие инерционные свойства этих фотоэлементов препятствуют их использованию.

Глава XXXIII

явление комптона

§ 182. Сущность явления Комптона и его законы Исследование рассеяния рентгеновских лучей веществом при-ло в 1923 г. Комплона в Признительно вело в 1923 г. Комптона к открытию важного явления, значительно углубляющего начительно углубляющего наши представления о фотонах.

(Явление Комптона состоит в изменении длины волны рентгенов-их лучей. проистологом. ских лучей, происходящем при рассеянии их легкими атомами. Впоследствии это ввлочие и при рассеянии их легкими тяже-Впоследствии это явление было обнаружено и при рассеянии тяжелыми атомами, причем в последнем случае оно оказывается солсе сложным.

Рассеяние рентгеновских лучей с волновой точки зрения связано с вынужденными колебаниями электронов вещества, так что частота рассеянного света должна равняться частоте падающего. Тщательные измерения Комптона показали, однако, чю) наряду с излучением неизменной длины волны в рассеянном рентгеновском излучении появляется излучение несколько большей длины волны.

Схема опыта Комптона показана на рис. 33.1. Узкий пучок рентгеновских лучей, выделяемый диафрагмами D₁, D₂, рассеивается веществом с легкими атомами (уголь, парафин и т. д.). Рассеянный свет изучается на рентгеновском спектрографе фотографически или при помощи ионизационной камеры₁ Первичный пучок

Рис. 33.1. Схема опыта Комптона.

Рис. 33.2. Спектр рассеянных ревтгеновских лучей.

выбирается так, чтобы в нем содержалось монохроматическое рентгеновское излучение с длиной волны λ . Тогда в рассеянном излучении наряду с λ обнаруживается и большая длина волны $\lambda' > \lambda$. Рис. 33.2 дает представление о спектре рассеянных лучен.

Наблюдаемое изменение длины волны $\Delta \lambda = \lambda' - \lambda$ не зависит от длины волны рассеиваемых рентгеновских лучен и от материала рассеивающего тела, но зависит от направления рассеяния. Если мы обозначим через θ угол между направлением первичного пучка и направлением рассеянного света, то зависимость от угла можно представить в виде

$$\Delta \lambda = 2k \sin^2 \frac{1}{20}, \tag{182.1}$$

где k = 0,0241 Å — постоянная, найденная из опыта и показывающая величину изменения длины волны при рассеянии под прямым углом.

- Необходимо отметить, что указанные законы справедливы для не очень жестких лучей и для веществ с малым атомным весом (например, водород, углерод, бор, алюминий), имеющих в своем составе электроны, относительно слабо связанные с ядром атома.

ДЕПСТВИЯ СВЕТА

§ 183. Теория явления Комптона

Все перечисленные выше особенности явления Комптона можно Все перечисленные выше соскак процесс столкновения ренте-

То обстоятельство, что все легкие атомы ведут себя одинаково, позволяет предполагать, что процесс рассеяния сводится к столк. позволяет предполагаль, по при Действительно, в легких атолах повению фотонов с электронами. Действительно, в легких атомах связь электронов с ядром атома слаба, и под действием рентгеновских лучей электроны легко отделяются от атома. Поэтому можно

в первом приближении рассматри. вать рассеяние свободными электронами.

Допустим, что столкновение фотона со свободным электроном происходит по закону упругого удара, при котором должно иметь место сохранение энергии и импульса сталкивающихся частиц.

В результате столкновения электрон, который мы считаем покоящимся, приобретает известную скорость, и следовательно, соответствующую энергию и импульс; фотон же изменяет направление движения (рассеивается) и уменьшает свою энергию (уменьшается его частота, т. е. увеличивается длина волны).

Рис. 33.3 изображает соотношение импульсов падающего фотона **р**, рассеянного фотона **р'** и электрона после столкновения mo. Удар должен удовлетворять условию сохранения импульса и условню сохранения энергин.

При составлении уравнения сохранения энергии надо принять во внимание зависимость массы электрона от скорости, ибо скорость электрона после рассеяния может быть значительна. В соответствии с этим кишетическая энергия электрона выразится как разность знергин электрона после и до рассеяния, т. е.

$$\mathcal{E}_{\rm KHR} = mc^2 - m_0 c^2,$$

где m₀ — масса покоящегося электрона (нбо скорость электрона В рассенирающиет в рассенвающем теле мала), $m = m_0/\sqrt{1-\beta^2}$ — масса электрона, получившего в рассисть и, получившего в результате акта рассеяния значительную скорость v, а $\beta = v/c^{*}$ a $\beta = v/c^*$).

*)
$$\mathcal{E}_{\text{KBH}} = mc^2 - m_0 c^2 = \frac{m_0 c^2}{\sqrt{1 - \beta^2}} - m_0 c^2 = m_0 c^2 \left(\frac{1}{\sqrt{1 - \beta^2}} - 1\right) = m_0 c^2 \left(\frac{1}{\sqrt{1 - \beta^2}} - \frac{1}{2\beta^2}\right) = m_0 c^2 \left(\frac{1}{2\beta^2} + \frac{3}{8\beta^4} + \dots\right)$$

Если в достаточно мало по сравнению с единицей, так что можно пренсот . . . членами в⁴ и выше, то формула принимает вид Скин = 1/2moc²β² = 1/2mov², т. е. перекодит в общинся то формула принимает вид Скин = 1/2moc²β² = 1/2mov². перекодит в общиное выражение классической перелятивистской механики.

ГЛ. ХХХИИ, ЯВЛЕНИЕ КОМПТОНА

Итак, условие сохранения энергии имеет вид

$$v + m_0 c^2 = hv' + mc^2,$$
 (183.1)

а условие сохранения импульса, на основании формулы (178.2) и рис. 33.3 запишется в виде

$$(mv)^2 = \left(\frac{hv}{c}\right)^2 + \left(\frac{hv'}{c}\right)^2 - \frac{2h^2}{c^2}vv'\cos\theta.$$
 (183.2)

Переписывая (183.1) в виде

$$m^{2}c^{4} = h^{2}v^{2} + h^{2}v'^{2} - 2h^{2}vv' + m_{0}^{2}c^{4} + 2hm_{0}c^{2}(v - v')$$

и вычитая из него (183.2), предварительно приведя все члены этого равенства к общему знаменателю, получим

$$m^{2}c^{2}(c^{2}-v^{2}) = m_{0}^{2}c^{4} - 2h^{2}vv'(1-\cos\theta) + 2hm_{0}c^{2}(v-v')$$

Так как $m_0^2 c^4 = m^2 c^2 (c^2 - v^2)$, имеем

$$hvv'(1-\cos\theta) = m_0c^2(v-v').$$

Вводя вместо частоты длину волны, т. е. используя соотношения $v = c/\lambda$ и $v' = c/\lambda'$, а также обозначая $(v - v') = \Delta v$ н $(\lambda' - \lambda) = \Delta \lambda$, найдем

$$\frac{hc^2}{\lambda\lambda'}\left(1-\cos\theta\right)=m_0c^2\frac{c\,\Delta\lambda}{\lambda\lambda'},$$

или окончательно

$$\Delta \lambda = \frac{h}{m_0 c} (1 - \cos \theta) = \frac{2h}{m_0 c} \sin^2 \frac{1}{2} \theta.$$
 (183.3)

Формула (183.3) совпадает с экспериментальной формулой (182.1), определяющей закон явления. В самом деле, подставляя численные значения *h*, *m*₀ и *c*, найдем *h*/*m*₀*c* = 0,02426 Å в соответствии с наблюдениями. Приводимая ниже таблица показывает, насколько хорошо экспериментальные данные согласуются с теорией.

6	۵λ (выч.)	Δλ (изм.)	20, Å	Вещество
72° 90° 110° 160° 170°	0,0168 0,0243 0,0345 0,0469 0,0480	0,0170 0,0241 0,0350 0,0470 0,0482	0,703 0,708 0,708	Графит Графит Парэфин

В первоначальной теории предполагалось, что электроны в веществе свободны. В действительности же надо принять во внимание, что электрон связан с атомом, и в балансе энергии учитывать

работу, затраченную на отрыв электрона от атома, с одной стороны, и энергию, идущую на сообщение движения самому атому, с другой стороны. Учет этих обстоятельств объясняет ряд деталей в явлении Комптона, в первую очередь наличие несмещенной линии (если электрон не будет оторван от атома), а также соотношение интенсивностей смещенной и несмещенной линий. В таком более общем случае выступает уже и зависимость от длины первичной волны, равно как и влияние материала рассеивающего тела. Сравнение с опытом подтверждает эту более полную теорию.

Явление изменения длины волны при рассеянии света можно было бы объяснить с волновой точки зрения при помощи явления Допплера: электроны, рассеивающие рентгеновские лучи, под действием их выбрасываются из атомов по различным направлениям с разными скоростями. Таким образом, рассеянное излучение должно иметь измененную длину волны в зависимости от скорости и направления движения рассеивающих электронов. Вычислив, как должны были бы двигаться рассеивающие электроны, нетрудно получить классическую картину явления Комптона.

Движение электронов, получивших заметные скорости в результате рассеяния рентгеновских лучей, удается наблюдать непосредственно на опыте. Для этой цели были произведены исследования с помощью камеры Вильсона, которая позволяет судить и о направлении рассеянных лучей и о направлении движения электронов, выбитых при рассеянии рентгеновских лучей (электроны «отдачи»). И на пути электронов, и на пути рассеянного рентгеновского света появляются ионы, на которых конденсируется водяной пар, что делает видимым эти пути.

Как уже указано, можно рассчитать взаимные направления электронов и рассеянных лучей, необходимые для классического объяснения явления Комптона при помощи эффекта Допплера. С другой стороны, можно вычислить это распределение направлеини электронов и фотонов по теории упругих столкновений. Эти две точки зрения приводят к разным результатам. Упомянутые опыты свидетельствуют в пользу квантовой теории явления, так что объяснение его с помощью эффекта Допплера следует признать неудовлетворительным. Таким образом, явление Комптона, подобно основным законам фотоэффекта, говорит в пользу представления о фотонах.

§ 184. Эффект Допплера и гипотеза световых квантов

Совокупность сведений о фотоэффекте видимых и рентгеновских лучей, равно как и данные о явлении Комптона, убедительно свидетельствуют в пользу гипотезы фотонов. Для характеристики ее плодотворности представляется интересным рассмотреть некоторые явления, допускающие трактовку как с волновой точки зрения, так и с точки зрения теории фотонов.

К числу таких явлений можно отнести эффект Допплера, который был впервые объяснен на основе волновой теории и с этой точки зрения уже был рассмотрен в гл. ХХІ. Эффект Допплера типичное волновое явление, и истолкование его на основе теории фотонов представляется на первый взгляд затруднительным. Однаго удается показать возможность такой интерпретации путем рассуждений, очень близких к рассуждениям, служащим для объяснения явления Комптона. Для простоты ограничимся столь малыми скогостями движения источника v, при которых можно пренебречь

членами второго порядка относительно v/c. Тогда по принципу Допплера изменение частоты излучаемого источником света выразится формулой

7.

$$\frac{\Delta v}{v} = \frac{v}{c} \cos \theta, \qquad (184.1)$$

Рис. 33.4. К фотонной теории эффекта Допплера.

где в — угол между направлением движения и направлением, по которому ведется наблюдение света.

Пусть источник света массы M движется со скоростью v_1 , т. е. обладает импульсом Mv_1 . Испущенному фотону сообщается импульс p', причем |p'| = hv'/c. В соответствии с этим должны измениться скорость источника и его импульс, причем последний становится равным Mv_2 . Так как импульс фотона крайне мал по сравнению с импульсом источника, то изменение этого последнего будет также крайне незначительным. Рис. 33.4 показывает расположение этих векторов. Изменение скорости источника и, слеловательно, изменение его кинетической энергии $\Delta \mathcal{E}$ должно сопровождаться передачей этой энергии фотону или заимствованием ее от фотона, в зависимости от взаимного расположения направления излучения и направления движения, составляющих между собой угол θ . Таким образом, энергия фотона изменится на $\Delta \mathcal{E}$ и вместо hv, соответствующей излучению покоящегося источника, станет равной $hv' = hv + \Delta \mathcal{E}$. Вычисление $\Delta \mathcal{E}$ не составляет труда:

$$\Delta \mathscr{E} = \frac{1}{2} M (v_1)^2 - \frac{1}{2} M (v_2)^2 = \frac{1}{2} M (v_1 - v_2) (v_1 + v_2). \quad (181.2)$$

В соответствии с законом сохранения импульса имеем

$$Mv_1 - Mv_2 = p'; |p'| = hv'/c,$$
 (184.3)

где p' — импульс испущенного фотона. Подставив изменение скорости атома, определяемое соотношением (184.3), в выражение (184.2), получим

$$\Lambda \mathcal{E} = p' v_1 - p'^2 / 2M = hv' (v_1/c) \cos \theta - (hv')^2 / 2\Lambda lc^2. \quad (184.4)$$

ДЕПСТВИЯ СВЕТА

Таким образом, энергия фотона, излученного движущимся источ. ником, равна

$$hv' = hv + \Delta \mathcal{E} = hv + hv' \frac{v_1}{c} \cos \theta - \frac{(hv')^a}{2Mc^a}.$$
 (184.5)

Полученное соотношение представляет собой квадратное уравнение относительно v', которое можно легко решить. Однако второй и третий члены в правой части (184.5) оказываются малыми поправками к первому члену. Поэтому приближенно можно считать v = v' в указанных членах. Итак,

$$v' = v + v \frac{v_1}{c} \cos \theta - \frac{hv}{2Mc^2} v,$$

т. е. относительное изменение частоты, обусловленное движением атома, равно

$$\frac{\mathbf{v}'-\mathbf{v}}{\mathbf{v}} = \frac{\Delta \mathbf{v}}{\mathbf{v}} = \frac{v_{\mathrm{I}}}{c}\cos\theta - \frac{h\mathbf{v}}{2Mc^2}.$$
 (184.6)

Первый член в правой части равенства (184.6) совпадает с относительным изменением частоты, получаемым с помощью волновых представлений и принципа Допплера (ср. (184.1)). Второй член имеет сугубо квантовое происхождение (с формальной точки зрения об этом свидетельствует присутствие в нем постоянной Планка h). Этот член отражает тот факт, что атом, покоившийся до испускания фотона ($v_1 = 0$), с необходимостью придет в движение после того, как фотон будет излучен: фотон «уносит» импульс p', и атом должен приобрести импульс, обратный по знаку и равный по модулю (см. (184.3) при $v_1 = 0$). Это движение вполне аналогично движению, приобретаемому лодкой, из которой выпрыгнул пассажир. Поэтому сдвиг частоты, равный — $hv/2Mc^2$, получил название сдвига из-за эффекта отдачи.

Если рассматривать не процесс испускания, а процесс поглощения фотона атомом, то с помощью законов сохранения энергии и импульса можно получить, взамен (184.6), следующее соотношение:

$$\frac{\Delta v}{v} = -\frac{v_1}{c}\cos\theta + \frac{hv}{2Mc^2}, \qquad (184.7)$$

т. е. изменение частоты при поглощении имеет обратный знак в сравнении со случаем испускания.

До сих пор мы рассматривали элементарный акт излучения или поглощения фотона одиночным атомом. Если речь идет о спектре испускания или поглощения ансамблем атомов, например, атомшым газом, то собычный» допплеровский сдвиг (v_1/c) соз θ и сдвиг из-за эффекта отдачи $hv/2Mc^2$ приводят к разным явленням. В газе присутствуют атомы, обладающие различными скоростями и движущиеся в различных направлениях. Поэтому член (v_1/c) соз θ , зависящий от проекции скорости v_1 на направление наблюдения

(т. е. направление p'), приведет к уширению линии излучения (поглощения) газом в целом. В § 22 эта полуширина была вычислена, и она оказалась равной

$$\delta v = \frac{\bar{v}}{c} v = \frac{\bar{v}}{\lambda}, \ \bar{v} = \sqrt{2kT/M},$$
(184.8)

где T — температура газа, k — постоянная Больцмана. Сдвиг из-за эффекта отдачи не зависит от скорости атома, т. е. он одинаков для всех атомов; следовательно, он проявится в смещении положения максимума линии, уширенной вследствие теплового движения атомов, на величину $hv^2/2Mc^2$, равную

$$\frac{hv^3}{2Mc^2} = \frac{h}{2M} \frac{1}{\lambda^3}.$$
 (184.9)

Оценим отношение сдвига линий (184.9) к ее ширине (184.8). Подставив числовые значения универсальных постоянных, найдем

$$\frac{h}{2M\lambda^2} \Big/ \frac{\bar{v}}{\lambda} = \frac{h}{2M\lambda\bar{v}} = \frac{h}{2\lambda\sqrt{2kTM}} = 1,55 \cdot 10^{-8} \frac{1}{\lambda\sqrt{TA}},$$

где A — атомный вес, а длина волны λ выражена в см. Таким образом, даже для низких температур и легких атомов сдвиг линии из-за отдачи меньше ее ширины вплоть до длин волн порядка 10^{-9} см, т. е. во всей рентгеновской области спектра. В более корот-коволновой области ($\lambda < 10^{-2}$ нм, ү-лучи) положение обратное, — сдвиг линии оказывается больше ее ширины. Поскольку сдвиги линий испускания и поглощения имеют противоположные знаки, то возникла парадоксальная ситуация, — фотон, испущенный ка-ким-либо атомом, не может поглотиться в газе, состоящем из таких же атомов.

[†]По указанной причине длительное время экспериментально не обнаруживалось резонансное поглощение у-квантов в газах. Однако в кристаллах оно было открыто Мёссбауэром в 1958 г. Дело в том, что атом, входящий в состав кристалла, жестко связан со всеми атомами макроскопического объема вещества, и импульс поглощаемого фотона передается не одиночному атому, а всему кристаллу в целом. Вследствие огромной (в атомных масштабах) массы кристалла импульс отдачи пренебрежимо мал, и линии испускания и поглощения практически не смещены друг относительно друга.

В оптической области спектра эффект отдачи приводит к очень малому сдвигу линии. Тем не менее он может при определенных условиях проявляться в спектральных свойствах излучения оптических квантовых генераторов, и в 1975 г. эти проявления были обнаружены на опыте.

Таким образом, квантовая теория излучения не только приводит к выводам, следующим из волновой теории, но и дополняет их повым предсказанием, нашедшим блестящее экспериментальное подтверждение.

ДЕИСТВИЯ СВЕТА.

Глава XXXIV

ДАВЛЕНИЕ СВЕТА

§ 185. Экспериментальное изучение давления света

Среди различных действий света на вещество давление света играет весьма видную роль. Оно имело большое значение в развитии электромагнитной теории света, оно представляет значительный интерес с общефилософской точки зрения на природу света и имеет важные космические применения.

Идея, согласно которой свет должен давить на освещаемые им тела, была высказана еще Кеплером, который видел в ней объяснение формы кометных хвостов. Идея о световом давлении подсказывалась ньютоновой теорией истечения: световые частицы, ударяясь об отражающие или поглощающие их тела, должны были бы передавать им часть своего импульса, т. е. производить давление.

Теория и эксперимент в этом вопросе пережили длинную историю. В экспериментальном отношении имелись и совсем наивные попытки, и попытки серьезного характера, вроде тех, которые привели Крукса к открытию особого вида явлений (радиометрических), связанных с кипетикой разреженных газов. Франклин рассматривал неудачи всех известных к его времени попыток обнаружить давление света как один из аргументов против корпускулярной теорин света. Впоследствии Юнг также прибегал к этому аргументу, хотя ии Франклин, ни Юнг не имели возможности указать минимальную величину предполагаемого давления, поскольку относительно массы световых частиц нельзя было высказать никакого суждения и, следовательно, нельзя было судить, достаточна ли чувствительность крутильных весов, применявшихся для этих опытов.

Возражения Франклина, имевшие принципиальное значение, поскольку волновая теория света развивалась как теория упругая, потеряли свою силу в качестве аргумента против корпускулярных представлений, когда Максвелл вывел необходимость светового давления с точки зрения электромагнитной волновой теории и даже вычислил его величину.

Так как свет есть электромагнитная поперечная волна, то, падая на поверхность проводника (зеркального или поглощающего тела), он должен производить следующие действия: электрический вектор, лежащий в плоскости освещенной поверхности, вызывает ток в направлении этого вектора; магнитное поле световой волны действует на возникший ток по закону Ампера так, что направлении ние действующей силы совпадает с направлением распространения света. Таким образом, пондеромоторное взаимодействие между светом и отражающим или поглощающим его телом приводит к возникновснию давления на тело. Сила давления зависит от интенсив-

ГЛ. XXXIV. ДАВЛЕНИЕ СВЕТА

ности света. Для случая, когда световые лучи образуют параллелькый пучок, давление p по вычислению Максвелла равняется плотности световой энергии u, т. е. энергии в единице объема. При этом предполагается, что тело, на которое падает свет, абсолютно черное, т. е. сполна поглощает всю падающую на него световую энергию. Если же коэффициент отражения тела не равен нулю, а имеет значение R, то давление p = u (1 + R), так что для идеального зеркала (R = 1) имеем p = 2u. Если количество энергии, падающей нормально на 1 см² за 1 с (освещенность), обозначить через E, то плот-

ность лучистой энергии будет равна E/c, где c — скорость света. Таким образом, световое давление можно представить в виде

$$p = \frac{E}{c}(1+R).$$
 (185.1)

Для силы, с которой солнечные лучи в яркий день давят на 1 м³ черной поверхности, Максвелл вычислил величину 0,4 мГ. Если свет падает на стенку по всем направлениям внутри полости, то при плотности излучения и давление на черную поверхность будет $p = 1/_3 u$.

Световое давление было обнаружено на опыте и впервые измерено П. Н. Лебедевым в Москве *) при помощи опытов, представлявших для своего времени образец экспериментального искусства.

Прибор Лебедева состоял из легкого подвеса на тонкой нити,

Рис. 34.1. Схема опытов П. Н. Лебедева по измерению давления света.

по краям которого были прикреплены тонкие и легкие крылышки, одно из которых было зачернено, а другое оставлено блестящим. Подвес R помещался в откачанном сосуде G (рис. 34.1), образуя весьма чувствительные крутильные весы. Свет от дуговой лампы Bконцентрировался при помощи системы линз и зеркал на одном из крылышек и вызывал закручивание подвеса R, которое наблюдалось при помощи трубы и зеркальца, прикрепленного к нити (не показанных на рисунке). Передвигая двойное зеркало S_1S_4 , можно было направлять свет от дуги B на переднюю или на заднюю поверхность крылышка и таким образом менять направление закручи-

^{*)} Предварительное сообщение о своих работах П. Н. Лебедев сделал в 1899 г. на съезде в Швейцарии, подробный доклад — на конгрессе в Париже в 1900 г. (см. П. Н. Лебедев, Пабранные сочинения, Гостехиздаг, 1949, стр. 154-155).

ДЕИСТВИЯ СВЕТА

вания. Пластинка P_1 позволяла направлять определенную часть пучка на термоэлемент T, который служил для измерения величины падающей энергии. Опыты были проведены с подвесами различной формы (рис. 34.2).

формы (рис. 34.2). Главной трудностью в опытах Лебедева является действие конвекционных потоков газа и наличие радиометрического действия. Эти помехи могут быть в сотни тысяч раз больше светового давления.

Конвекционные потоки закручивают подвес при несколько наклонном положении крылышка. Так как действие это не зависит от

Рис. 34.2. Различные системы крепления крылышек в приборе П. Н. Лебедева.

направления падающего светового потока, то Лебедев изучал и исключал его с помощью изменения направления освещения (подвижное зеркало S₁S₁).

Радиометрические действия возникают в разреженном газе вследствие разности температур освещенной и неосвещенной сторон крылышка. Молекулы газа, остающиеся в баллоне, отражаются от более теплой стороны с большей скоростью, и вследствие отдачи крылышки стремятся повернуться в том же направлении, что и под действием светового давления. Радиометрическое действие умень шается, если применять очень тонкие металлические крылышки для уменьшения разности температур и увеличить разрежение газа в баллоне. Когда свет направлен на блестящее крылышко, то световое давление должно быть приблизительно в два раза больше, чем при воздействии света на зачерненное крылышко. Наоборот, радиометрическое действие больше при освещении черного крылышка, ибо при этом больше нагревание последнего. В опыте Лебе дева действительно наблюдалось примерно вдвое большее действие

ГЛ. XXXIV, ДАВЛЕНИЕ СВЕТА

на зеркальное крылышко, чем на черное, что доказывает практическое исключение радиометрического действия.

Измерения Лебедева дали величину, согласующуюся с теорией Максвелла (с точностью до 20%). Много лет спустя (1923 г.) Герлах повторил опыты Лебедева, пользуясь современными более совершенными методами получения вакуума. Благодаря этому не только значительно облегчилось выполнение опытов, но и удалось получить лучшее (до 2%) совпадение с теоретическими величинами.

Лебедев экспериментально решил также и другую несравненно более трудную задачу, обнаружив и измерив давление света на газы (1909 г.) *).

§ 186. Давление света в рамках теории фотонов

В рамках фотонной теории световое давление следует интерпретировать как результат передачи импульса фотонов поглошающей или отражающей стенке. Поток монохроматического света частоты v, падающий нормально на стенку и приносящий за 1 с на 1 см² энергию, равную Е, содержит N фотонов, где N определяется из условия

$$Nhv = E$$
,

т. е. N = E/hv. Так как каждый фотон обладает импульсом hv/c, то он сообщает поглощающей стенке импульс hv/c, а отражающей стенке импульс 2hv/c (ибо при отражении импульс фотона изменяется от +hv/c до -hv/c, т. е. на 2hv/c).

Итак, импульс, сообщаемый 1 см³ абсолютно поглощающей стенки за 1 с, равен

$$Nhv/c = E/c.$$

Но импульс, сообщаемый 1 см² поверхности за 1 с, и есть давление на эту поверхность. Итак, давление на поглощающую стенку равно p = E/c, а на полностью отражающую p = 2E/c. В общем случае, когда коэффициент отражения равен R, из полного числа N фотонов, падающих за 1 с, поглощается (1 — R) N и отражается RN фотонов. Сообщаемый ими единице поверхности импульс равен

$$(1-R) N \frac{hv}{c} + RN2 \frac{hv}{c} = N \frac{hv}{c} (1+R) = \frac{E}{c} (1+R)$$

в согласни с формулой Максвелла.

Как бы ни было истолковано явление светового давления в рамках корпускулярной или волновой теорий, сам факт его экспери-

^{•)} Хороший обзор работ П. Н. Лебедева по световому давлению составлен В. А. Фабрикантом (УФН, 42, вып. 2 (1950)).

ментально установленного существования имеет большое значение. Этот факт доказывает наличие у света не только энергии, но и импульса, с несомненностью свидетельствуя о материальноста света, о том, что свет наряду с веществом является одной из форм материи.

§ 187. Роль светового давления в некоторых космических явлениях

Как уже упоминалось, световое давление позволило объяснить ряд явлений, происходящих во Вселенной.

Образование кометных хвостов, развивающихся по мере приближения кометы к Солнцу и располагающихся в направлении от Солнца, заставило еще Кеплера высказать предположение, что кометные хвосты представляют собой поток частиц, отбрасываемых действием давления света прочь от Солнца, когда комета подходит к нему достаточно близко. Расчеты и особенно экспериментальные исследования Лебедева подкрепили такое предположение. По этим данным можно оценить, что частицы достаточно малых размероз будут испытывать более сильное отталкивание вследствие излучення Солица, чем притяжение массой Солнца, ибо с уменьшением раднуса частицы притяжение уменьшается пропорционально кубу раднуса (массе), а отталкивание падает как квадрат радиуса (поверхность). Для частиц подходящего размера преобладание отталкивания над притяжением (или наоборот) будет иметь место на любом расстоянии от Солнца, ибо как плотность излучения, так и гравитационное действие одинаково изменяются с расстоянием (1/г²). То обстоятельство, что кометные хвосты начинают развиваться только вблизи Солнца, можно было бы объяснить тем, что лишь вблизи Солнца образуются в результате испарения частицы достаточно малых размеров. Впрочем, в последнее время выяснилось, что образование кометных хвостов представляет весьма сложный процесс, и световое давление, по-видимому, не объясняет всего разнообразия явлений.

Сравнительно недавно было показано, что световое давление играет важную роль в вопросе о предельном размере звезд. Из астрономических данных известно, что звезды, массы которых пре восходят известный максимум, не наблюдаются. Эддингтон обратил внимание на то, что увеличению размеров звезды должно препятствовать следующее обстоятельство. С увеличением массы звезды и ростом тяготения ее наружных слоев к центру повышается работа сжатия внутренних слоев звезды и растет соответственно температура этих слоев, достигая миллионов градусов. Однако повышение температуры означает повышение плотности лучистой энергия внутри звезды, а следовательно, и величины светового давления. Согласно вычислениям равновесие между силой притяжения, с оле

ГЛ. ХХХУ. ХИМИЧЕСКИЕ ДЕЙСТВИЯ СВЕТА

ной стороны, и силами отталкивания, обусловленными световым давлением, — с другой, приводит к некоторому предельному значению для массы звезды: звезды большей массы неустойчивы и должны были бы распасться. Действительно, верхний предел массы звезд, вычисленный на основе этих соображений, согласуется, повидимому, с результатами астрофизических наблюдений.

Глава. XXXV

ХИМИЧЕСКИЕ ДЕЙСТВИЯ СВЕТА

§ 188. Введение

Химические превращения под действием света были замечены очень давно и уже с конца XVIII века сделались объектом систематического научного исследования.

Фотохимические превращения весьма разнообразны. Может происходить полимеризация вещества, т. е. образование молекул, представляющих комплекс молекул или атомов исходного продукта; таково, по-видимому, явление образования красного фосфора из желтого. Красная модификация фосфора сильно отличается от желтой по ряду химических и физических свойств и может быть получена из нее путем длительного освещения (лучше коротковолновым светом); полимеризации фосфора можно достичь и без действия света, например путем значительного нагревания или в результате некоторых химических реакций.

Под действием света наблюдается разложение сложных молекул на составные части, например, разложение аммиака NH₃ на гот и водород или бромистого серебра AgBr на серебро и бром. Происходит также и образование сложных молекул, например известная реакция образования хлористого водорода при освещении смеси хлора и водорода, протекающая настолько бурно, что сопровождается взрывом.

Многие из фотохимических реакций играют весьма важную роль в природе и технике. Наибольшую важность представляет, несомненно, фотохимическое разложение углекислоты, происходящее под действием света в зеленых частях растений. Эта реакция имеет огромное значение, ибо она обеспечивает круговорот углерода, без которого было бы невозможно длительное существование органической жизни на Земле. В результате жизнедеятельности животных и растений (дыхание) идет непрерывный процесс окисления углерода (образование CO₂). Обратные процессы восстановления углерода и превращения его в формы, усванваемые организмом, являются фотохимическими процессами. Под влиянием света в высших растениях и одноклеточных организмах осуществляется

ДЕИСТВИЯ СВЕТА

восстановление углекислоты по схеме

 $2H_2O + CO_2 + mhv \rightarrow CH_2O + H_2O + O_2$

с последующей полимеризацией муравьиного альдегида CH₂O, при с последующей полимеризованию молекул вида n (CH₂O) \rightarrow C_nH_{2n}O_n (угле водящей к образованию молекул вида n (CH₂O) \rightarrow C_nH_{2n}O_n (угле воды). К углеводам принадлежит ряд сахаров, которые при дальводы). К углеводам при дальнейших превращениях могут давать крахмал и другие важнейшие соединения, составляющие растительную ткань. Такого рода фотоснитез протекает в сложных молекулярных комплексах и состоит из нескольких последовательно происходящих процессов, пока еще не вполне выясненных. Первичным процессом, в котором принимает испосредственное участие свет (световая стадия фотосинтеза), служит поглощение фотона в пигментах (хлорофилл и др.). Энергия возбуждения мигрирует по молекулярной цепи (так называемые экситоны) и инициирует ряд химических реакций (темновая стадия фотоснитеза). Поскольку энергия восстановления СО2 составляет около 110 ккал/моль (или 5 эВ на молекулу), для фотосинтеза одной молекулы CH₂O требуется не менее трех квантов с длиной волны 700 им, отвечающей максимальному поглощению хлорофилла. Это обстоятельство с несомненностью свидетельствует о мно-гоступенчатости процесса фотосинтеза. В действительности число поглощаемых фотонов еще больше и в некоторых случаях достнгает восьми и более.

В ряде растений происходят иные фотохимические реакции. Например, для некоторых бактерий кислород является ядом, вместо воды используется сероводород по схеме

 $2H_2S + CO_2 + mhv \rightarrow CH_2O + H_2O + 2S$,

и в результате выделяется муравьиный альдегид и сера. Большую роль в природе играет также фотохимическое восстановление азота.

Упомянутая уже выше фотохимическая реакция разложения бромистого серебра (и других его галондных солей) лежит в основе фотографии и всех ее необозримых научных и технических приме нений. Явления выцветания красок, сводящнеся главным образом к их фотохимических причение к их фотохимическому окислению, имеют очень большое значение для понимания постативных и животдля понимания процессов, происходящих в глазу человека и живот-ных и лежания в составляется в стазу человека и животных и лежащих в основе зрительного восприятия. Многие фотохи-мические реакции в основе зрительного восприятия. Многие фотохимические реакции в наше время используются в химических произ-водствах и приоблости водствах и приобрели, таким образом, непосредственное промышленное значение.

§ 189. Основные законы фотохимии

Уже сравнительно давно фотохимическое действие света было юставлено с поглониониях фотосопоставлено с поглощением света, и было установлено, что фото-химически может лейотволого же и было установлено, что же химически может действовать только поглощенный свет. Что же

ГЛ. ХХХУ, ХИМИЧЕСКИЕ ДЕПСТВИЯ СВЕТА

касается количественной стороны, то здесь работа ряда ученых привела к утверждению, что количество фотохимически прореагировавшего вещества Q пропорционально поглощенному световому потоку Φ и времени освещения t, т. е. количеству поглощенной световой энергии. Первое высказывание этого рода, хотя и в довольно смутной форме, было сделано еще Сенабье в 1782 г. Впоследствии оно уточнялось и обосновывалось, пока, наконец, после тщательных исследований Бунзена и Роско (1855 г.) над реакцией образования хлористого водорода из хлора и водорода этот основной закон фотохимии не был окончательно установлен.

Согласно основному закону количество фотохимически прореагировавшего вещества равно

$$Q = \kappa \Phi t, \tag{189.1}$$

где величина множителя пропорциональности к зависит от природы происходящей фотохимической реакции. Таким образом, величина коэффициента к определяет, как велико количество прореагировавшего вещества, приходящееся на единицу (например на один джоуль) поглощенной энергии.

Количественное исследование фотохимических процессов чрезвычайно осложняется тем обстоятельством, что первичный процесс, вызванный светом, может сопровождаться многочисленными побочными (вторичными) реакциями чисто химического характера. Конечно, только первичный процесс идет за счет энергии поглощенного света; во всех же вторичных процессах мы имеем дело с превращениями, обусловленными химическими преобразованиями, т. е. изменением взаимной конфигурации атомов и, следовательно, изменением внутренней энергии системы.

Наличие вторичных процессов позволяет понять чрезвычайно большое разнообразие в скорости различных фотохимических процессов, т. е. различие в значении коэффициента к, меняющегося при переходе от одной реакции к другой в тысячи и даже сотни тысяч раз. Общие закономерности, отличающие действие света, нужно, конечно, искать в перзичных процессах, которые, собственно говоря, и должны были бы называться фотохимическими. Эйнштейн (1905 г.), высказав гипотезу световых квантов, указал крайне простой закон, справедливый для (первичных) фотохимических процессов: каждому поглощенному кванту hv соответствует превращение одной поглотившей свет молекулы (закон эксивалентности). Опытная проверка этого закона возможна лишь для таких реакций, в которых мы в состоянии разделить первичные и вторичные процессы, или где вторичные процессы вообще не имеют места. Естественно полагать, что роль вторичных явлений особенно велика в наиболее бурно протекающих процессах. Действительно, в идущем со взрывом процессе образования хлористого водорода первичным является лишь расщепление хлора. Бурное же протекание процесса

ДЕИСТВИЯ СВЕТА

есть результат цепи вторичных процессов, согласно уравнениям

$$Cl_2 + hv = Cl + Cl - первичный процесс,$$

 $Cl + H_2 = HCl + H$
 $H + Cl_2 = HCl + Cl$ вторичные процессы

И.Т.Д.

г. д. Цепь в таких цепных реакциях может быть очень длинной (свыше цень в таких цоллон р сакая-либо случайная примесь или стенка сосуда не перехватит освободившийся атом хлора и тем не оборвет цепи. Можно искусственно задержать развитие цепи, если ввести в смесь какое-либо вещество, жадно перехватывающее атомы хлора. Применение такого акцептора (захватчика) обрывает цепи и обеспечивает возможность проведения реакции медленным темпом, без взрыва. При подобном исключении вторичных процессов или, еще лучше, при изучении регкций, не осложненных вторичными процессами, удалось проверить закон Эйнштейна и установить его справедливость.

Первые надежные измерения этого рода, требующие измерения количества поглощенного монохроматического света (частоты v) и количества прореагировавшего вещества, были выполнены в 1916 г. Варбургом. Была изучена реакция разложения бромистого серебра AgBr под действием света. Измерения показали, что каждый квант поглощенного света разлагает одну молекулу бромистого водорода, т. е. реакция идет согласно уравнению $2HBr + 2hv = H_2 + Br_2$. В рамках теории фотонов понятно, что поглощение света может быть серьезным стимулом химического превращения. Действительно, поглощение фотона молекулой сообщает ей очень большое количество энергии, эквивалентное средней кинетической энергии теплового движения при температурах в десятки тысяч градусов, согласно соотношенню $hv = 3/_2 kT$, где $k = 1,38 \cdot 10^{-23}$ Дж/К, а $T - 1,38 \cdot 10^{-23}$ абсолютная температура.

Понятно также, что более короткие волны должны быть химически более активными. Так как поглощение одного фотона должно ко закону Эйнштейна вести к превращению одной молекулы, то активными могут быть лишь те волны, для которых hv больше энергии активации D, необходимой для первичного процесса (например, диссоциации поглотившей свет молекулы). Так как вероятность поглощения одной молекулой одновременно двух или большего числа квантов крайне мала, то условне, определяющее предельную частоту активного света, записывается в виде

(189.2)

$$h v \ge D$$
.

Этот вывод, равно как и закон эквивалентности Эйнштейна, упоминавшийся выше, имеет силу лишь для условий, когда интенсив-ность света сравнитет силу лишь для условий, когда интенсивность света сравнительно мала. Если же освещенность доста-

ГЛ. ХХХУ. ХИМИЧЕСКИЕ ДЕЙСТВИЯ СВЕТА

точно велика, то положение существенно изменяется. Как было разъяснено в § 157, в случае очень больших освещенностей может происходить одновременное поглощение двух, трех и большего числа квантов. В результате необходимая энергия активации D доставляется несколькими фотонами, и условие (189.2) не отвечает опыту.

К тому же исходу может привести и последовательное поглощение нескольких фотонов одной и той же молекулой. В самом деле, представим себе, что в результате поглощения одного фотона молекула переходит в некоторое возбужденное состояние, но его энергия еще меньше энергии активации, и значит, реакция произойти не может. Если поток фотонов достаточно велик, то за время пребывания в возбужденном состоянии молекула «успевает» поглотить еще один фотон и перейти в следующее, энергетически более высокое состояние, из последнего — в еще более высокое и т. д. Для многих молекул (например, CO_2 , SF₈, BCl₃, и др.) было прослежено последовательное поглощение нескольких десятков фотонов инфракрасного излучения ($\lambda = 10$ мкм) и даже их диссоциация.

Многофотонное возбуждение молекул требует очень мощного излучения (10 MBt/см² и более) и стало возможным только после создания лазеров. Монохроматичность лазерного света позволяет также до известной степени управлять фотохимическими реакциями. Дело в том, что для протекания многих реакций важно возбудить какую-то определенную степень свободы молекулы или небольшую их группу. При нагревании в силу закона равного распределения энергии возбуждаются все степени свободы. В противоположность этому, освещение монохроматическим светом позволяет воздействовать на ту степень свободы, которая активна в смысле интересующей нас химической реакции. Таким способом удается, например, осуществлять реакции, которые при общем нагревании не возникают из-за наличия других реакций, обладающих меньшей энергией активации. Изменением интенсивности облучения реагирующей смеси можно контролировать скорость протекания химических процессов и т. п.

С развитием лазерной техники и по мере накопления экспериментального материала в этой области управляемые химические реакции, несомненно, найдут широкое применение в химической технологии.

§ 190. Сенсибилизированные фотохимические реакции

Если $hv \ge D$, то согласно предыдущему первичная фотохимическая реакция возможна. Но для этого необходимо, чтобы молекула поглощала свет указанной частоты v. Если же v лежит вне полосы поглощения, то не будет происходить ни поглощение, ни фотохимическая реакция. Возможно, однако, осуществить процесс фотохимического разложения и в таком случае, добавив к исследуе-

ДЕИСТВИЯ СВЕТА

мому веществу другое, полоса поглощения которого включает v. Фотон hv поглощается молекулой этого второго вещества (сенсибилизатора), а полученный таким образом запас энергии может передаться при столкновении молекуле исследуемого вещества. Фотохимические реакции подобного типа называются *сенсибилизированными*. Для их осуществления необходимо, чтобы встреча молекулы разлагающегося вещества с возбужденной молекулой сенсибилизатора произошла раньше, чем последняя потеряет свою добавочную энергию в виде излучения (флуоресценция) или какимлибо иным образом. Поэтому необходимым условием действия сенсибилизатора является возможность достаточно частых столкновеинй между молекулами сенсибилизатора и изучаемого вещества, т. е. достаточное давление (если речь идет о реакции в газе).

Примером такого процесса может служить образование перекиси водорода H_2O_2 из водорода и кислорода под действием света длины волны $\lambda = 253,7$ им. Такой свет не поглощается ни водородом, ин кислородом и не может вызывать никаких превращений в их смеси. Если же в сосуд ввести пары ртути, которая чрезвычайно хорошо поглощает свет этой длины волны, то возникает реакция, по-видимому, по следующей схеме:

 $Hg + hv = Hg^*,$ $Hg^* + H_2 = HgH + H$

(Hg* означает возбужденный атом ртути), или

 $Hg^* + H_2 = Hg + 2H,$

н атомы водорода вступают в реакцию с кислородом, образуя H₂O₂. Сенсибилизированные реакции довольно распространены. Так, процесс ассимиляции углерода, по-видимому, является сенсибилизированной реакцией, в которой роль сенсибилизатора выполняет хлорофилл, входящий в состав всех зеленых частей растения. Сенсибилизация широко применяется в фотографической технике.

§ 191. Основы фотографии

Важное практическое применение фотохимического процесса представляет собой современная фотография. Здесь также имеет место первичный фотохимический процесс и последующие вторичные химические реакции. При этом в фотоэмульсии первичный и вторичные процессы разделены настолько отчетливо, что представляют собой две раздельные операции.

Процесс фотографирования состоит в освещении чувствительного слоя фотопластники и последующей химической обработке ее (проязлении). Результатом фотохимического процесса, происходя-

гл. ххху, химические деяствия света

цего в пластинке или фотопленке под действием света, является разложение бромистого серебра, причем металлическое серебро разложения в виде мельчайших частичек. Однако для получения заметного почернения фотопластинки требовалось бы исключительно сильное и длительное освещение. Действительно, если завернуть пластинку до половины в черную бумагу и оставить на длительное время на свету, то, сняв бумагу, можно заметить, что освещенная часть лишь немного темнее неосвещенной. При практически же осуществляемых кратковременных экспозициях на экспонированной таким образом половине пластинки нельзя заметить никаких следов освещения. Первичное фотографическое действие служит лишь началом процесса, подготовляя те места фотопластинки, на которые подействовал свет, к более или менее интенсивному выделению металлического серебра (образуя так называемое скрытсе, или латентное, изображение). Действуя далее на пластинку соответствующими химическими реактивами, можно вызвать восстановление металлического серебра (разложение AgBr) в тем большей степени, чем сильнее было освещено соответствующее место пластинки (проявление). Когда проявление закончено, то удаляют остаток неразложенного бромистого серебра (путем растворения его в растворе гипосульфита Na₂S₂O₃) и таким образом предохраняют сотопластинку от дальнейших изменений на свету (фиксирование). С полученного негатива можно приготовить позитивный отпечаток на другой пластинке или на фотобумаге.

Используя таким образом вторичные химические процессы, удается получить негатив после всемени экспозиции, составляющего малую часть секунды.

Первичный фотохимический процесс, приводящий к получению скрытого изображения, долгое время оставался совершенно неясным. Было известно, что это «изображение» может сохраняться неизменным в течение ряда лет и после проявления передавать все мельчайшие детали картины. Таким образом, скрытое изображение является чрезвычайно стойким, хотя и не поддается непосредственному наблюдению. В настоящее время можно, по-видимому, составить следующую картину этого процесса. Серебряные соли, составляющие светочувствительный слой, содержат ионы серебра. Под действием света происходит фотоэлектрический эффект, в результате которого освобожденные электроны нейтрализуют положительные ионы серебра, превращая их в атомы. Металлическое серебро в виде отдельных атомов или мелко раздробленных коллондов и составляет скрытое изображение. Так как концентрация вы-Делившегося серебра не превышает на основании сделанвых измерений и подсчетов 10-? г/см³, а светочувствительный слой имеет толщину около 2-20 мкм, то понятно, что непосредственное наблюдение скрытого изображения в этих условиях невозможно. При освещении толстых слоев удалось установить образование металлического серебра в количествах, достаточных для его обнаружения по поглощению света.

по поглощению света. Подобные процессы хорошо были изучены уже раньше на кристаллах каменной соли и других галондных солей щелочных металлов, которые в толстых слоях дают явное окрашивание под дейстцием света вследствие выделения металлов в виде атомов или коллоидных частиц. Указания на аналогию между этими процессами и образованием скрытого изображения делались уже давно. В 1926 г. это предположение было высказано в определенной форме; оно

Рис. 35.1. Микрофотографии последовательных стадий проявления кристалликов бромистого серебра.

Возникающие под действием света зародыши на поверхности кристаллов бромистого серебра делают возможным воздействие проявителя на эти кристаллики, в результате чего бромистое серебро восстанавливается в металлическое серебро химическим путем (проявление).

Наблюдая процесс проявления под микроскопом, можно видеть, что начавшееся проявление ведет к восстановлению серебра во всем кристалле, иногда даже серебро выбрасывается из кристаллика наподобие протуберанца (рис. 35.1). Таким образом выделяется значительное количество металлического серебра, могущее в десятки миллионов раз превосходить количества серебра скрытого изображения. Чем больше интенсивность падающего света, тем на большем числе кристалликов образуются зародыши и тем сильнее будет действие проявителя. С другой стороны, чем крупнее кристаллик, тем больший проявительный эффект дает образование зародыша. Отсюда понятно, что при прочих равных условиях уве

было окончательно доказано работами М. В. Савостьяновой, а также Поля и его учеников.

Интересно отметить, что, по-видимому, непосредствен. ное разложение на свету испытывают не кристаллы бромистого серебра, а менее стой. кие его соли, вероятно, сернистые соединения серебра. образующиеся на поверхности кристаллов во время процесса «созревания» светочувствительной эмульсии. Сера присутствует в качестве примесей в желатине эмульсии. Желатин, тщательно очищенный от серы, не пригоден чувствиизготовления для тельных фотоэмульсий.

ГЛ. ХХХУ, ХНМИЧЕСКИЕ ДЕЙСТВИЯ СВЕТА

личение размеров кристалликов должно увеличивать чувствительность пластинки, но зато уменьшать способность последней к передаче деталей (разрешающую способность пластинки).

Благодаря огромному прогрессу в изготовлении фотографических пластинок и пленок применение фотографии в науке и технике достигло крайне широкого распространения. Не говоря уже о возможности фотографической фиксации ультрафиолетовых и инфракрасных лучей, недоступных прямому наблюдению глазом, фотография оказывает незаменимые услуги при запечатлении очень кратковременных процессов (электрическая искра, например, при времени экспозиции 10⁻⁶—10⁻⁶ с, импульсы лазерного излучения длительностью 10⁻⁶—10⁻¹² с) или процессов крайне слабой интенсивности, требующих использования очень длительной экспозиции. Исключительно многообразны применения фотография в астрономии и астрофизике. В репродукционной технике фотография занимает важнейшее место (цинкография и т. д.). Наконец, вся кинематографическая техника основана на достижениях фотография.

§ 192. Сенсибилизация фотографических пластинок

Нормальная фотографическая эмульсия чувствительна к сравнительно коротким световым волнам, ибо заметное поглощение бромистым серебром начинается приблизительно около 500,0 нм. Поглощение возрастает для более коротких волн, так что максимум чувствительности в видимой части приходится на фиолетовый конец спектра. Таким образом, распределение светлых и темных мест в ландшафте, снятом на пластинке, подобно наблюдаемому через фиолетовое стекло. Со стороны коротких ультрафиолетовых волн чувствительность пластинок ограничена тем, что желатин начинает заметно поглощать свет близ $\lambda = 230,0$ нм и, следовательно, короткие волны практически не проникают в эмульсию и приходится прибегать к специальным пластинкам без желатина.

Применение сенсибилизаторов, действующих по принципу, описанному в § 190, значительно улучшает дело. Слой желатина прокрашивается соответствующим красителем, поглощающим те или иные волны. Очувствление к желто-зеленому цвету достигается обычно прибавлением эритрозина (ортохроматические пластинки), очувствление к желто-зеленому и красному — прибавлением пинахрома или пинацианола (панхроматические пластинки). Подбором подходящих красителей можно заметно увеличить чувствительность эмульсии к тому или другому спектральному участку.

Найдены сенсибилизаторы и к инфракрасному излучению. Фотографирование в инфракрасном свете представляет большие преимущества при съемке удаленных объектов сквозь атмосферу, затянутую тонкой дымкой, благодаря уменьшению рассеяния длинных

22 Ландсберг Г.С.

волн (см. § 159). Фотографирование в инфракрасном свете удалось продвинуть приблизительно до 1,2 мкм.

продвинуть приолизительно с Замечательные результаты были достигнуты советскими астрофизиками (Г. А. Шайн с сотрудниками), которые применили пластинки, чувствительные к инфракрасным лучам, для фотографиростинки, чувствительные к инфракрасным лучам, для фотографирования туманностей, причем удалось установить совершенно новые вания туманностей, причем удалось установить совершенно новые очертания в ранее известных туманностях и открыть новые. И здесь причина успеха лежит, по-видимому, в том что благодаря меньшему рассеянию длинных световых волн становится возможным фотографировать более глубокие слои туманностей или источники, скрытые туманностями, расположенными на луче зрения.

Фотографирование на обычных пластинках в области короткого ультрафиолета, поглощаемого желатином, легко достигается при помощи сенсибилизации, основанной на ином принципе. Чувствительная поверхность пластинки покрывается веществом, флуоресцирующим под действием коротких ультрафиолетовых лучей (например, тонким слоем машинного масла). Свет флуоресценции, имеющей большую длину волны, проникает скеозь желатин и хорошо фотографируется. Таким путем без труда удается использовать обычные пластинки для фотографирования в ультрафиолете при $\lambda = 180,0$ им и короче.

§ 193. Восприятие света глазом

Оптическую систему глаза образуют выпуклая роговая оболочка, служащая внешним слоем, зрачок, играющий роль диафрагмы, хрусталик и прозрачное стекловидное тело, заполняющее глазную камеру (см. рис. 14.8 § 91). Все свободное пространство заполняет так называемая водянистая влага. Эта оптическая система дает изображение рассматриваемых предметов на внутренней поверхности глазной камеры, которую выстилает семчатка. Сетчатка представляет собой сложную структуру, состоящую из нескольких слоев нервных клеток разного типа и разного назначения, и нграет роль приемника излучения.

Схематический разрез сетчатки приведен на рис. 35.2, а. Свет поступает со стороны, соответствующей верхией части рисунка. Непосредственно светочувствительными являются так называемые рецспторные клетки — колбочки и палочки, заложенные в последием слое сетчатки (см. рис. 35.2, б). Именно в палочках и колбочках свет вызывает первичное раздражение, которое превращается в электрические импульсы. Последние передаются через ряд промежуточных клеток и выходят из сетчатки по волокнам зрительного нерва. Эти волокна (число их порядка нескольких миллионов) передают сигналы в подкорковые центры, а оттуда — в кору головного мозга. Число рецепторных клеток весьма велико. В глазу человека число колбочек достигает 7 миллионов, а число пало-

ГЛ. ХХХУ, ХИМИЧЕСКИЕ ДЕЙСТВИЯ СВЕТА

675

чек — 130 миллионов. Распределены они очень неравномерно. Периферия глаза занята почти исключительно палочками; число колбочек на единицу площади возрастает по мере приближения к центру глаза. Несколько в стороне от оптической оси глаза, ближе к виску, расположена область, именуемая желпым пятном и имеющая в середине небольшое углубление («центральная ямка»), занятое нсключительно колбочками, число которых достигает здесь

13 000—15 000. Центральная ямка играет особо важную роль при различении деталей.

Опыт показывает, что мы ясно видим только те предметы, изображение которых проектируется на желтое пятно, и особенно хорошо различаем детали, проектирующиеся на центральную ямку. Когда же изображение падает на периферические части глаза, то, хотя ощущение света вполне отчетливо, различение деталей практически не имеет места. Такое различие в свойствах центральной и периферийных частей сетчатки обусловлено в основном двумя причинами. Глаз может различить лишь те детали объекта, угловые размеры которых не меньше углового расстояния между соседними колбочками или палочками. В центральной же ямке плотность колбочек наибольшая, и различение деталей оказывается наилуч-

22*

шим. С удалением от центральной ямки плотность рецепторов пашим. С удалением от центральной и способность различать дает, в соответствии с чем уменьшается и способность различать И воме того. число колбочек в центральной ямке дает, в соответствии с чем у молбочек в центральной ямке различать детали. Кроме того, число колбочек в центральной ямке разно детали. Кроме того, число нерва, т. е. каждая колбочка не детали. Кроме того, число нерва, т. е. каждая колбочка действи-числу волокон зрительного нерва, т. е. каждая колбочка действичислу волокон зритствного поределиником света. По мере перехода тельно является независимым приемником света. По мере перехода тельно является независимали присе число рецепторов перехода к периферии сетчатки все большее число рецепторов приходится к периферни сегчатки все сельное еще сильнее уменьшается, на одно отдельное волокно, и разрешаемое расстояние определята на одно отдельное вологию, пристределяется разменьшается, так как минимально разрешаемое расстояние определяется размения которые занимают «объединениемое размениемое вологию в собъединениемое вологию вологию в собъединениемое вологию вологию в собъединениемое вологию вологию в собъединениемое вологию в так как минимально ресредения занимают «объединенные» разметоры. По этим причинам при рассматривании предмета мы всегда фиксируем его изображение на желтое пятно и даже на централь. ную ямку.

Поле зрения этих участков глаза невелико. Так, на желтое пятно одновременно может проектироваться картина, занимающая по горизонтальному направлению около 8°, а по вертикальному около 6°. Поле зрения центральной ямки еще меньше и равно 1-11/2° по горизонтальному и вертикальному направлениям. Таким образом, из всей фигуры человека, стоящего на расстоянии 1 м, мы можем фиксировать на желтое пятно, например, только его лицо, а на центральную ямку - поверхность, немного большую глаза. Все остальные части фигуры проектируются на периферическую часть глаза и рисуются в виде смутных деталей. Живой глаз, однако, обладает способностью быстро перемещаться (поворачиваться) в своей орбите, так что за очень короткий промежуток времени мы можем последовательно фиксировать большую поверхность.

На рис. 35.3, а показана траектория, по которой глаз последовательно осматривает детали объекта, а на рис. 35.3, б – сам объект. Точки соответствуют тем местам, на которых глаз останавливается, черточки — перемещению глаза. Таким образом, глаз как приемник света сочетает в себе особенности, присущие фотографическому и фотоэлектрическому методу регистрации. Одновременно, с хорошим разрешением воспринимается конечная, но небольшая часть изображения. Все же изображение регистрируется за счет последовательного просматривания. Такое устройство позволяет концентрировать внимание на наиболее существенных деталях предметов и вместе с тем получать некоторое общее представление обо всем, что находится в поле зрения. Благодаря этой особенности глаза мы не замечаем ограниченности поля ясного зрения и оцениваем поле зрения глаза по вертикальному и горизонтальному направлениям примерно в 120—150°, т.е. значительно больше, чем у очень хороших оптических инструментов.

Светочувствительные элементы — палочки и колбочки — играют нествению воздание в станование в ста существенно различную роль в зрительном ощущении. Исследования с несомненностью показывают, что палочки гораздо более чувствительных состанием в сост чувствительны к свету, и в темноте (сумерках) зрительное ошущение получается за сист получается за счет раздражения именно палочек. Колбочки же,

ГЛ. ХХХУ, ХИМПЧЕСКИЕ ДЕРСТВИЯ СВЕТА

будучи менее чувствительными, обладают способностью к цветному зрению. Последнее требует пояснения.

Цветное зрение — это способность различать излучения разного спектрального состава независимо от их интенсивности. Вель и на черно-белой фотографии объекты разной окраски общино отличаются друг от друга. Однако при надлежащем соотношении

Рис 35.3. Траектория, по которой глаз осматривает детали объекта (а), в сам объект (б).

интенсивностей излучения, различные по цвету, могут дать одинаковое почернение на негативе. Соотношение интенсивностей, при котором излучения разного цвета дают одинаковые почернения, определяется спектральной чувствительностью слоя. При налични цветного зрения (как и при цветной фотографии) существуют излучения, действия которых остаются различными при любых соотношениях интенсивности. Например, красный свет любой яркости отличается от зеленого, синего, белого и т. п.

При слабом освещении, когда работают только палочки, способность цветоразличения теряется. Исследуя способность глаза различать излучения, удалось с большой достоверностью установить, что палочки работают наподобие фотоэлемента с вполне определенной кривой спектральной чувствительности с максимумом близ 510 им.

Цветоразличение колбочковым аппаратом такое же, как у сл. стемы, состоящен из трех свете устаными кривыми спектральнов с раз-иыми, но также вполне определенными кривыми спектральной выми, но также влоящее время трудно сказать. наче иыми, но также внояне спредвемя трудно сказать, находятся пувствительности. В настоящее время трудно сказать, находятся чувствительности. В настоящее средение слована, находятся ли все три типа приемников в каждой колбочке, или существуют ли все три типа в каждой колбочке, или существуют ли все три типа присминнов в настоя наст, наш существуют колбочки трех разных типов, но сам факт наличия в колбочках сетчатки человека приемников трех типов несомненен. Иногда сетчатки человека присманнов трек посомненен. Иногда встречаются люди (около 5% мужчин и очень мало женщин), зревстречаются люди (оконо от пормального отсутствием одного из приемников — так называемые «дихроматы». Все излучения, котоприсмников — так наслюдателей различаются только по возбужрые для порлалощего приемника, неразличимы для дихроматов. Еще реже встречаются среди людей «монохроматы», зрение которых и при ярком освещении подобно палочковому.

Весьма разнообразно цветное зрение животных, в частности изсекомых. Наиболее точные количественные данные об особенностях зрения животных дают электрофизиологические исследования. Оказывается, что электрические импульсы в волокнах зрительного перва идут не все время действия света на сетчатку, а только вслед за изменениями освещения. Если два излучения неразличимы для данного животного, то при замене одного из них другим импульсы в нервном волокне не возникают. Этот прием позволяет с хорошей точностью и достоверностью выяснить, сколько типов приемников имеется в сетчатке того или иного животного и каковы их кривые спектральной чувствительности.

Для возбуждения светочувствительного рецептора свет должен поглотиться им, причем чем больше поглощение для какой-либо длины волны, тем больше, как правило, и чувствительность к ней. Поэтому кривые спектральной чувствительности для светочубствительных веществ обычно имеют много общего (а часто и просто совпадают) с их спектральными кривыми поглощения. Это обстоятельство уже давно побудило искать светочувствительные пигменты сетчатки.

Первым был обнаружен родопсин (зрительный пурпур) — светочувствительное вещество палочек. Родопсин — вещество ро-зоватого цвета, разлагается (выцветает) под действием света и снова восстанавливается разликается (вы ветает) под действием света и снова восстанавливается в темноте. Его спектральная кривая поглощения очень хорошо соответствует спектральной чувствительности глаза при слабом освещении, когда работают только палочки. Особенно заметно это проявляется в явлении Пуркинье, которое заключается в следующем. Родопсин имеет максимум чувствительности в синезеленой части спектра и практически не чувствителен в оранжевокрасной. В соответствии с этим при слабом освещении оранжевые и красные пролитии с этим при слабом освещении оранжевые и красные предметы, кажущиеся очень яркими днем, при слабом освещении представляются очень темпыми по сравнению с голубыми и синими. и синими.

Родопсии находят сейчас в сетчатке очень многих животных, и у всех у них по электрофизиологическим данным имеется приемник с соответствующей кривой спектральной чувствительности. У других животных в палочках обнаружен другой пигмент - порфиропсин с несколько иной кривой поглощения и соответственно пной кривой спектральной чувствительности палочек.

В колбочках жиботных удалось выделить свои светочувствительные пигменты. У некоторых животных (черепахи, дневные птицы) различная спектральная чувствительность приемникоз, необходимая для цветоразличения, достигается за счет своеобразных светофильтров. У таких животных перед колбочками расположены жировые капельки, имеющие разную окраску. Это напоминает прием, применяемый в цветной фотографии (особенно в полиграфических репродукционных процессах). С цветного объекта делается три снимка через три разных светофильтра; они заменяют съемку на слоях с разной спектральной чувствительностью. Аналсгичную роль играют и «светофильтры», расположенные перед колбочками.

Важной особенностью глаза является его способность работать в необычайно широком диапазоне освещенностей. Прямые лучи Солнца создают на поверхности Земли освещенности порядка 100 000 лк, а в темноте глаз может отличить от темноты поверхность с освещенностью 10⁻⁶ лк. Работа в столь обширном днапазоне обеспечивается целым рядом различных механизмов. Почти мгновенно реагирует на резкое увеличение освещенности зрачок; диафрагмируя входное отверстие глаза, он уменьшает количество света, попадающего на сетчатку. При слабом освещении зрачок вновь расширяется. У некоторых животных, в особенности у насекомых, изменение чувствительности глаза к свету происходит за счет миграции в сетчатке темного пигмента, экранирующего рецепторы. Кроме того, оказывается, что при слабом освещении в одном нервном волокне суммируются сигналы от многих рецепторов и число последних тем больше, чем слабее освещение, причем увеличение чувствительности достигается во вред разрешающей способности. Этим, по-видимому, объясняется тот общеизвестный факт, что при недостаточно ярком освещении глаз перестает различать мелкие детали. Затем, как уже говорилось, для работы при слабом освещении существует специальный палочковый аппарат.

Кроме всех перечисленных средств глаз может еще изменять чувствительность рецепторов под действием света. Каждому известно по собственному опыту, что происходит при быстром переходе из светлого помещения в темное или наоборот. В первом случае сначала глаз ничего не различает, пока «не привыкнет к темпоте», при выходе же из темного помещения на свет освещение в первый момент, пока глаз «не привыкнет к сеет,», кажется слепящим. Эти явления называются адаптацией (т. е. приспособлением) глаза. Время, исобходимое для адаптации к темноте, дости. гает 20-30 мин.

т 20—30 мин. Еще сравнительно недавно механизм адаптации связывали с про-Еще сравнительно подали с пурпура на свету и его регенерацией цессом выцветания зрительного пурпура на свету и его регенерацией цессом выската объяснение считалось важной составной наст цессом выцветания зритствлист при важной составной частью в темноте. Это объяснение считалось важной составной частью так фотохимической теории зрения. Которая свотие в темноте. Это объясисние с иссории зрения, которая сводит при-называемой фотохимической теории зрения, которая сводит приназываемой фотолный ческом света Однако вопрос по сводит причину возникновения зрительного слудение вопрос, по-видимому разло-жению пурпура под действием света. Однако вопрос, по-видимому, жению пурпура под денетрися соста чувствительность глаза к значительно сложнее. Сложнее спорта изменение количества зритель. кого пурпура еще очень невелико, и наоборот, когда концентрация пурпура резко падает, чувствительность изменяется незначительно. У некоторых животных, например, у кальмаров электрофизиологическими методами констатируется изменение чувствительности к свету на несколько порядков, хотя светочувствительный пигмент почти не выцветает. Вместе с тем, фотохимическая теория зрения получила новые подтверждения. У многих животных найдены различные светочувствительные пигменты сетчатки, причем между кривыми поглощения этих пигментов и спектральной чувствительностью приемников наблюдается хорошее соответствне. Поэтому связь механизмов зрения с фоточувствительностью пигментов представляется более или менее достоверной.

Все перечисленные механизмы позволяют глазу работать в широком диапазоне освещенностей. В состоянии полной адаптации глаз представляет собой крайне чувствительный инструмент, способный реагировать на очень малые потоки энергии, равные $2 \cdot 10^{-17}$ — $3 \cdot 10^{-17}$ Вт. Таким образом, адаптированный глаз может воспринимать световой поток, состоящий из нескольких десятков квантов в секунду (при $\lambda = 550$ нм) (ср. § 178).

С другой стороны, в состоянии максимальной приспособленности к яркому освещению (адаптация к свету) глаз может без вреда для организма переносить сравнительно большие яркости. Благодаря этому вариации светового потока, лежащие еще в пределах способности восприятия, очень велики: от 2.10-17 Дж/с до 2.10- Дж/с. При больших яркостях источника необходимо защищать глаз искусственно. Так, наблюдение Солнца (солнечного затмения) можно вести только через дымчатые (закопченые) стекла или другие подходящие светофильтры. При пребывании на ледниках также необходимо применение дымчатых или цветных очков и т. д.; в этом случае, правда, очки необходимы и для поглощения ультрафиолетового света, который достигает на больших высотах значительной интенсивности и вреден для глаза. Сильное начительной интенсивности и вреден для глаза. Сильное изменение яркости, происходящее настолько быстро, что защитный опрост защитный аппарат глаза не успевает подействовать, привести к тяжелым расстройствам зрения и даже к полной его потере. потере.

Если «работа» палочек (сумеречное зрение) может считаться в какой-то мере разъясненной, то действие колбочек и вообще восприятие цветов (дневное зрение) продолжает оставаться еще не вполне ясным.

Из существующих теорий цветного зрения лучше других объясняет известные факты трехцветная теория Гельмгольца. В отношении первичного рецепторного механизма она является даже единственно возможной. Действительно, непосредственно экспериментально доказана возможность получения излучения любого цвета (с небольшими оговорками) смешением излучений красного. зеленого и сине-фиолетового цветов. Согласно трехцеетной теории это есть следствие существования в сетчатке глаза трех светочувствительных приемников, у которых различны области спектральной чувствительности. Поэтому сине-фиолетовый свет (коротковолновый) возбуждает по преимуществу только один из трех приемников, зеленый (средняя часть спектра) возбуждает главным образом второй, а красный свет - почти исключительно третий. Поэтому смешивая излучения трех цветов в разных количествах, мы можем получить практически любую комбинацию возбуждений трех приемников, а это и значит получать любые цвета. Приведенные соображения несколько схематичны, и в действительности все обстоит сложнее.

Дело в том, что области чувствительности приемников сильно перекрываются, и поэтому любые излучения возбуждают не один, а по крайней мере два или даже сразу все три приемника. Это усложняет приведенную выше упрощенную схему, но не лишает ее физического смысла. Детальный анализ обнаруживает идеальное количественное соответствие существующей трехцветной теории и эксперимента.

Электрофизиологические эксперименты на животных, о которых сказано выше, вместе с исследованиями зрительных пигментов дали новое подкрепление теории Гельмгольца. Следует, однако, заметить, что все, о чем говорилось до сих пор, касается способности глаза различать излучения, но совсем не затрагивает всех вопросов, связанных с цветовыми ощущениями, которые связаны в значительной мере с психологней и выходят за рамки физики. В частности, важно заметить, что цветовые ощущения не связаны однозначно со спектральным составом излучений. Они зависят от предварительных воздействий (адаптация, последовательные образы), от окружения (одновременный контраст) и даже от всей обстановки наблюдений. Например, пальто человека, освещенное солнцем, кажется черным, а стена дома в тени - белой, хотя пальто в этих условнях отражает больше света, чем стена. Приведенный пример показывает невозможность связать все сложные явления зрительных возбуждений с первичным механизмом фоторецепции в сетчатке.

тепловое излучение

Глава XXXVI

ЗАКОНЫ ТЕПЛОВОГО ИЗЛУЧЕНИЯ

§ 194. Тепловое излучение

Электромагнитное излучение всех длин волн обусловливается колебаниями электрических зарядов, входящих в состав вещества, т. е. электронов и нонов. При этом колебания ионов, составляющих вещество, соответствуют излучению низкой частоты (инфракрасному) вследствие значительной массы колеблющихся зарядов. Излучение, возникающее в результате движения электронов, может иметь высокую частоту (видимое и ультрафиолетовое излучение), если электроны эти входят в состав атомов или молекул и, следовательно, удерживаются около своего положения равновесия значительными силами. В металлах, где много свободных электронов, излучение последних соответствует иному типу движения; в таком случае нельзя говорить о колебаниях около положения равновесия; свободные электроны, приведенные в движение, испытывают нерегулярное торможение, и их излучение приобретает характер импульсов, т. е. характеризуется спектром различных длин волн, среди которых могут быть хорошо представлены и волны низкой частоты.

Излучение тела сопровождается потерей энергии. Для того чтобы обеспечить возможность длительного излучения энергии, необходимо пополнять убыль ее; в противном случае излучение будет сопровождаться какими-либо изменениями внутри тела, и состояние излучающей системы будет непрерывно изменяться. Указашные процессы могут быть весьма разнообразны, и следовательно, может быть различен и характер свечения.

Известны процессы излучения, сопровождающие химические превращения внутри тела, — так называемая хемилюминесценция. Сюда относится, например, свечение гниющего дерева или свечение фосфора, медленно окисляющегося на воздухе. В этом случае испускание лучистой энергии идет параллельно с изменением химического состава вещества и уменьшением запаса его внутренней энергии.

гл. ХХХУІ. ЗАКОНЫ ТЕПЛОВОГО ИЗЛУЧЕНИЯ

Процессы излучения, вызываемые освещением тела, одновременным или предварительным, объединяются под названием фотолюминесценции. В данном случае для поддержания свечения необходимо подводить к телу энергию в виде излучения, поступающего

Весьма распространен способ возбуждения свечения путем электрического воздействия на излучающую систему. Напболее распространенным свечением такого рода (электролюминесценция) является свечение газов или паров под действием проходящего через них электрического разряда, который может иметь разнообразные формы: тлеющий разряд, обычно наблюдаемый в гейслеровых трубках, лампы «дневного света», электрическая дуга. искра. Во всех таких случаях энергия, необходимая для излучения. сообщается атомам и молекулам газа путем бомбардировки электронами, разгоняемыми электрическим полем разряда. Бомбардировка электронами может вызвать также свечение твердых тел. например, минералов (катодолюминесценция).

Наконец, можно заставить тело светиться, сообщая ему необходимую энергию нагреванием. И в этом случае можно поддерживать излучение неизменным, если убыль энергии, уносимоя излучением, пополнять сообщением соответствующего количества телла. Последний вид свечения наиболее распространен и называется тепловым излучением. Собственно говоря, такое тепловое излучение имеет место и при низких температурах (например, при комнатной), но только в этих условиях излучение практически ограничивается лишь очень длинными инфракрасными волнами.

Тепловое излучение тел можно противопоставить всем кным видам излучения в силу особенностей, представление о которых дает следующее рассуждение.

Предположим, что излучающее тело окружено идеально отражающей, непроницаемой для излучения оболочкой. Тогда излучение, испускаемое телом, не рассенвается по всему пространству, а, отражаясь сполна стенками, сохраняется в пределах полости, падая вновь на излучающее тело и в большей или меньшей степени вновь им поглощаясь. В таких условнях никахой потери энергия наша система — излучающее тело и излучение — не испытывают. Однако это еще не значит, что испускающее тело и излучение находятся в равновесни между собой. Энергия нашей системы содержится частично в виде энергии излучения (электромагнитных воли), частично в виде внутренней энергии излучающего тела. Состояние системы будет равновесным, если с течением времени распределение энергии между телом и излучением не меняется. Поместим внутрь полости нагретое тело (твердое, жидкое или газообразное — безразлично). Если в единицу времени тело больше испускает, чем поглощает (или наоборот), то температура его будет понижаться (или повышаться). При этом будет ослабляться или
усиливаться испускание, пока, наконец, не установится равновесие. Такое равновесное состояние устойчиво. После всякого нарушения его, в силу описанного механизма, вновь восстановится равновес. ное состояние.

наоборот, излучение, возбуждаемое не нагреванием, а какими. Наоборот, излучение, вообущее равновесным. Пусть, а какими, либо другими процессами, не будет равновесным. Пусть, например, либо другими процессили, то суло и историции, т. е. сопровождает излучение имсст жиринстрание изменения вещества. Поглощение какой-то процесс химического изменения вещества. Поглощение Какон-то процесс или испущенной световой энергии не вернет вещество в его первоначальное состояние. Более того, повышение температуры, вызванное поглощением тепла, обычно ведет лишь к более энергичному протеканию химической реакции. Процесс непрерывного изменения излучающей системы будет продолжаться до тех пор, пока может идти химическая реакция, и, следовательно, система все больше и больше удаляется от первоначального состояния. Равновесие установится только тогда, когда закончится химический процесс, а с ним и хемилюминесценция, и характер установившегося излучения будет определяться температурой нашего тела, т. е. равновесное состояние будет соответствовать опять-таки тепловому излучению.

То же справедливо и при фотолюминесценции. Внесем в зеркальную полость какое-нибудь фосфоресцирующее вещество, предварительно возбужденное освещением. Свечение нашего тела будет постепенно ослабевать; действительно, свет фосфоресценции, отраженный зеркальными стенками, может частично поглощаться нашим веществом и нагревать его; однако он не сможет поддерживать длительной фосфоресценции, для возбуждения которой требуется освещение светом более короткой длины волны, чем испускаемый свет (закон Стокса). Значит, и в данном случае будут иметь место постепенное нагревание тела за счет света фосфоресценции и постепенная замена этого излучения тепловым излучением нагретого тела, т. е. излучением, интенсивность и спектральный состав которого определяются температурой тела. Аналогично будет затухать свечение, вызванное кратковременным электрическим разрядом, и заменяться тепловым излучением, соответствующим установившейся температуре системы.

Таким образом, равновесное излучение всегда имеет характер теплового излучения, причем такое равновесие между излучением и веществом может иметь место для любого тела (твердого, жидкого, газообразного). Это тепловое, или равновесное, излучение подчиняется определенным общим закономерностям, вытекающим из принципов термодинамики, в силу которых установившееся тепловое равновесие изолированной системы не может нарушиться вследствие излучения какими-либо частями данной системы или вследствие каких-либо других тепловых обменов. Тепловое излучение иногда называют температурным.

гл. хххvi. законы теплового излучения

§ 195. Тепловое излучение и правило Прево

Основная величина, характеризующая тепловое состояние тела, есть его температура. Эта величина является определяющей также и в явлениях теплового излучения, что можно сез труда усмотреть из следующего грубого опыта. Нагревая какое-либо тугоплавкое вещество (уголь, металл), мы замечаем, что видимое на глаз (темнокрасное) свечение появляется лишь при определенной температуре (около 500° С). По мере повышения температуры свечение становится ярче и обогащается более короткими волнами, переходя примерно при 1500° С в яркое белое каление. Контролируя свечение спектроскопом, мы можем видеть, как по мере повышения температуры постепенно развивается сплошной спектр свечения, начиная от узкой области красного излучения ($\lambda \approx$ ≈ 700,0 нм) и переходя постепенно в полный видимый спектр. Наблюдая свечение при помощи термоэлемента, можно сбнаружить и инфракрасное, и ультрафиолетовое излучение нагреваемого тела.

В этих опытах выясняется и другая важнейшая черта температурного излучения. Спектральный состав излучения, соответствующего данной температуре, для различных хорошо поглощающих веществ (например, окислов различных металлов, угля и т. д.) практически одинаков, но для прозрачных тел излучение может иметь заметно отличный состав. Так, нагревая кусок стали, мы при температуре около 800° С увидим яркое вицилево-красное каление, тогда как прозрачный стерженек плавленного кварца при той же температуре совсем не светится, не испускает видимых (в частности, красных) лучей. Таким образом, обнаруживается большая способность к излучению тел, хорошо поглощающих. Это обстоятельство определяет условия обмена лучистой энергией, ведущего к установлению теплового равновесия между телами.

Опыт показывает, что тела различной температуры, могущие передавать друг другу тепло, по истечении некоторого времени принимают одинаковую температуру, т. е. приходят в тепловое равновесие. Это происходит и в том случае, когда наши тела заключены в непроницаемую для тепла оболочку, в которой создан вакуум, т. е. исключена возможность теплового обмена в силу теплопроводности и конвекции, и имеет место лишь излучение и поглопроводности и конвекции, и имеет место лишь излучение и поглопроводности и конвекции, и имеет место лишь излучение и поглопроводности и конвекции, и имеет место лишь излучение и поглопроводности и конвекции, и имеет место лишь излучение и поглопроводности и конвекции, и имеет место лишь излучение и поглопроводности и конвекции, и имеет место лишь излучение и поглопроводности и конвекции, и имеет место лишь излучение и поглопроводности и конвекции, и имеет место лишь излучение и поглопроводности и конвекции, и имеет место лишь излучение и поглопроводности и конвекции, и имеет место лишь излучение и поглопроводности и конвекции, и имеет место лишь излучение и поглопроводности одинаковую температуру *Т*. Тепловое равновесие принимают одинаковую температуру *T*. Тепловое равновесие имеет динамический характер, т. е. и при одинаковых температурах имеет динамический характер, т. е. и при одинаковых температурах имеет динамический характер, т. е. и при одинаковых температурах имеет динамический характер, т. е. и при одинаковых температурах имеет динамический характер, т. е. и при одинаковых температурах имеет динамический характер, т. е. и при одинаковых температурах имеет динамический характер, т. е. и при одинаковых температурах имеет динамический характер, т. е. и при одинаковых температурах имеет динами сколо и со поглощает. Отсюда ясно, что если два тела тепла, сколько оно его поглощает. Отсюда ясно, что если два тела A_1 и A_2 обладают различной способностью к поглощению, то и

685

in the second star

тепловое излучение

их способность к испусканию не может быть одинаковой. Действи, тельно, раз установилось тепловое равновесие, то для каждого тела должно соблюдаться равенство между количеством испускае мой и поглощаемой им в единицу времени энергии. Если два тела поглощают разные количества энергии, то и испускание должно быть различно (Прево, 1809 г.).

Сыть различно (преде, тет. , Нетрудно подтвердить это заключение простыми опытами. В качестве излучателя возьмем наполненную горячей водой коробку (рис. 36.1), плоские стенки которой обладают различной способностью к поглощению: одна сделана из хорошо полированного металла и поглощает очень мало, а другая покрыта черным слоем окисла и почти нацело поглощает падающую на нее энергию. В качестве приемника удобно использовать воздушный термометр, резервуар которого Q также представляет собой металлическую

Рис. 36.1. Приборы для демонстрации правила Прево.

G — излучающий сосуд; Q — воздушный термометр.

Рис. 36.2. Опыт, показывающий пропорциональность между поглощательной и испускательной способностями поверхности.

G — излучающий сосуд: Q₁, Q₃ — дифференциальный воздушный термометр.

корсбку со стенками из различного материала. По расширению воздуха в Q можно судить о количестве поступающего за единицу времени тепла. Поворачивая сосуд G к термометру (или Q к излучателю) блестящей или черной стороной, можно убедиться, что блестящая поверхность меньше излучает и меньше поглощает, чем черная. Сделав термометр дифференциальным и придав всему расположению вид, изображенный на рис. 36.2 и понятный без поясиения, мы заметим, что капля в дифференциальном термометре остается на месте, т. е. оба резервуара Q_1 и Q_2 получают одинаковое количество тепла. В таком видоизменении этот опыт позволяет заключить, что поглощательная способность какой-либо поверхности пропорциональна ее испускательной способности.

Описанные опыты имеют важный принципиальный недостаток, ибо излучательная и поглощательная способности сравниваются при

686

гл. XXXVI. ЗАКОНЫ ТЕПЛОВОГО ИЗЛУЧЕНИЯ

различной температуре, а способность тела к излучению и поглощению зависит от его температуры. Впрочем, для выбранных объектов (полированный и черный металлы) и незначительной разности температур (меньше 100° С) это различие играет инчтожную роль.

§ 196. Закон Кирхгофа

Правило Прево, устанавливающее связь между способностью тела поглощать и излучать тепло, имело качественный характер. Полстолетия спустя Кирхгоф (1859 г.) придал ему вид строгого количественного закона, играюще-

E,

го основную роль во всех вопросах теплового излучения.

Для характеристики теплового излучения мы воспользуемся величиной потока энергии Ф, т. е. количества энергин, излучаемого в единицу времени (мощность излучения). Поток, испускаемый единицей поверхности излучающего тела по всем направлениям, будем называть испускательной способностью и обозначим через Е. Определенная таким образом испускательная способность соответствует светимости (см. Введение, фотометрические понятия) и иногда называется энергетической светимостью. Наряду с ней можно рассматривать и энергетическую яркость В, определяемую аналогично яркости при фотометрических измерениях. Для черного тела яркость не зависит от направления, так что $E = \pi B$ (cm. § 7).

воли ил. Тепловое излучение занимает более или менее широкую спектральную область, и так как испускательная способность тела зависит от длины волны (частоты), то для характеристики ее мы должны оговорить, к какому спектральному участку относится наше определение. Положим, что спектральный участок заключен между частотами v и v + dv. Чем меньше dv, тем детальнее будет охарактеризована испускательная способность тела (рис. 36.3, а). Вместе с тем, количество энергии, относящееся к узкому спектраль-

Рис. 36.3. Спектральная зависимость испускательной способности черного тела при T = 2900 K.

× 7,12

 $a \rightarrow$ зависимость E_{χ} от у, выраженная в равномерной шкале частот; $\delta \rightarrow$ зависимость E_{λ} от λ , выраженная в равломерной шкале длин воли. Площадь заштрихованного участка дает поток $d\Phi = E_{\lambda} d\lambda =$ = E, dv, приходящийся на интервал частот dv или соответствующий интервал длин

687

ному интервалу, пропорционально его ширине dv, что кладет прак. тический предел сужению спектрального интервала.

тический предел сужению сполерового потока $d\Phi$ данного спект. Таким образом, величина светового потока $d\Phi$ данного спект. рального интервала связана с шириной этого интервала dv соотношением $d\Phi = E_v dv$, где E_v — коэффициент, характеризующий ис пускательную способность нашего тела для частоты v.

Мы можем, конечно, представить испускательную способ. ность не в функции частоты v, а в функции длины волны λ , т.е. построить график не E_v , а E_λ (см. рис. 36.3, б). Поскольку площади как под той, так и под другой кривой определяют интегральную энергию излучения, то рационально выбрать масштабы так, чтобы площади эти были равны. Выделяя каждый раз площадку, дающую величину одного и того же светового потока $d\Phi$, приходящегося на интервал частот dv или интервал соответствующих длин LONH $d\lambda$, найдем

$$d\Phi = E_{\nu} d\nu = E_{\lambda} d\lambda$$
, r. e. $E_{\nu} = E_{\lambda} \frac{d\lambda}{d\nu}$.

Так как $\lambda v = c$ (c — скорость света), то

$$\frac{d\lambda}{dv}=-\frac{c}{v^2}=-\frac{\lambda^2}{c},$$

причем знак минус не имеет существенного значения, ибо он показывает только, что с возрастанием v убывает λ .

Итак, $E_v = E_\lambda \lambda^2/c$, т. е. при переходе от кривой E_v к кривой E_i вид кривой трансформируется (см. рис. 36.3). В частности, положение максимумов на той и другой кривой соответствует разным частотам (длинам воли). Поэтому всегда надлежит указывать, какая из кривых имеется в виду. В теоретических расчетах чаще встречается кривая E_v , в результатах экспериментальных измерений — чаще E_λ .

Опыт показывает далее, что E_v (равно как н E_λ) в сильной степени зависит от *температуры* испускающего тела, так что испускательная способность $E_{v,T}$ есть функция частоты и температуры. Тот факт, что $E_{v,T}$ зависит от температуры излучающего тела и не зависит от температуры окружающих тел, есть физическое выражение иден Прево о динамическом равновесии между телами, обменивающимися лучистой энергией. Нагретое до температуры Tтело излучает в единицу времени одинаковое количество энергия, независимо от того, окружено ли оно нагретыми или холодными телами, но тепловое равновесие установится на уровне, обусловленном балансом энергии между всеми этими излучателями.

Итак, испускательную способность тела $E_{v,r}$ можно определить по измерению потока энергии, посылаемого единицей поверхности тела во все стороны, согласно соотношению

$$d\Phi = E_{\mathbf{v}, \mathbf{T}} d\mathbf{v}.$$

гл. ХХХVІ, ЗАКОНЫ ТЕПЛОВОГО ИЗЛУЧЕНИЯ

Зная испускание тела в каждом спектральном участке, можно без труда вычислить суммарное излучение, проинтегрировав (196.1) по всем частотам:

$$E_T = \int d\Phi = \int_0^\infty E_{\mathbf{v}, T} \, d\mathbf{v}. \tag{196.2}$$

Вместе с тем, если на единицу поверхности тела падает световой поток $d\Phi$, то часть этого потока $d\Phi'$ будет поглощаться телом. Поглощательной способностью тела А называют отношение поглошенного потока $d\Phi'$ к падающему $d\Phi$, т. е.

$$A=\frac{d\Phi'}{d\Phi}.$$

Само собой разумеется, что и в этом случае имеется в виду поток в узком спектральном интервале dv (квазимонохроматический). ибо поглощательная способность тел также зависит от длины волны. Опыт показывает также, что А зависит и от температуры и, таким образом, поглощательная способность тела есть функция частоты и температуры тела. Ау, т по принятому определению есть всегда правильная дробь, и максимальное значение Аул - единица.

Кирхгоф назвал тела, для которых $A_{v,T} = 1$ для всех частот и температир, абсолютно черными или абсолютно поглощающими телами. Сажа, равно как и платиновая чернь, приближается по своим свойствам к абсолютно черному телу. /

Закон Кирхгофа касается соотношения между Еу.т и Ау.т и гласит: отношение испускательной и поглощательной способностей тела не зависит от природы тела, т. е. $\frac{E_{v, T}}{A_{v, T}}$ есть универсальная для всех тел функция частоты и температуры, тогда как Е. г. и Ау.т, взятые отдельно, могут меняться чрезвычайно сильно при переходе от одного тела к другому.

Обозначив для абсолютно черного тела испускательную способность через є, т, а поглощательную способность — через а, т, можно написать закон Кирхгофа в виде

$$\frac{E_{\mathbf{v}, T}}{A_{\mathbf{v}, T}} = \frac{\varepsilon_{\mathbf{v}, T}}{\alpha_{\mathbf{v}, T}} = \varepsilon_{\mathbf{v}, T}, \qquad (196.3)$$

Tak kak $\alpha_{v,T} = 1$.

Таким образом, универсальная функция Кирхгофа есть не что иное, как испускательная способность абсолютно черного тела. Рассуждения Кирхгофа, приведшие его к формулировке своего закона, имеют очень общий характер и покоятся на втором законе термодинамики, в силу которого тепловое равновесие, установившееся в изолированной системе, нельзя нарушить обменом тепла между частями системы.

689

Представим себе замкнутую оболочку, внутренияя часть ко-Представим сече замини, и представляют собой черное тело торой эвакуирована, а стенки представляют собой черное тело тело тело собой черное тело тело собой на стенки $E_{v,T} = \varepsilon_{v,T}$ и $\alpha_{v,T} = 1$ п. торой эвакуирована, а степки представитист сосон черное тело, характеризующееся коэффициентами $E_{v,T} = \varepsilon_{v,T} + \alpha_{v,T} = 1$. Пусть отвиск повсюду сделана одинаковой и разволить характеризующееся коздинаковой и равной т. Пусть температура стенок повсюду сделана одинаковой и равной Т. температура стенок повслоду специваются излучением, но этот обмениваются излучением, но этот обмениваются следовательные участки степловое равновесие. Следовательное обмение следовательное обмение следовательное обмение следовательное обмение следовательное степловое равновесие. Огдельные участки степол соловое равновесие. Следовательно, из этот обмен не способен нарушить тепловое равновесие. Следовательно, излуне способен нарушить течение единицы времени какой-то учас. чение, которое посылает в тетение селов, равняется излученню, то учас-ток степки do внутрь полости (т. е. єdo), равняется излученню, ток стенки аб внутры полости (т. с. сис), разпистся излученно, поглощаемому им за то же время. Но так как коэффициент погло. щения этого участка равен 1, то величина є о характеризует излуцения этого участка редение участка за единицу времени от всей остальной оболочки. Вообразим теперь, что наш участок стенки do заменен участком *) той же температуры, но отличным от чер. ного и имеющим испускательную и поглощательную способности Е и А. За единицу времени данный участок по-прежнему будет получать излучение, равное еdo, ибо это — излучение, илущее от всей остальной части оболочки, оставшейся неизменной. Из этого излучения наш участок поглотит энергию Aedo. За то же время участок излучит Edo. Так как тепловое равновесие (постоянство температуры степок всей оболочки) не должно нарушаться тепловым обменом, то, очевидно.

$Ed\sigma = A\varepsilon d\sigma$ или $E/A = \varepsilon$.

Закон Кнрхгофа доказан, таким образом, для любого тела. Из приведенных рассуждений ясно, что замененный нами внутри стенки полости участок $d\sigma$ для наблюдателя, следящего за посылаемым этим участком излучением, ничем не отличается от других «черных» участков стенки. Действительно, в единицу времени он испускает внутрь полости излучение в количестве $Ed\sigma$ и отражает из общего падающего на исго потока излучения $(1 - A)ed\sigma$. Общее количество посылаемого им излучения есть $d\sigma[E + (1 - A)e] = ed\sigma$ (в силу доказанного выше соотношения $E/A = \varepsilon$), т. е. равно излучению любого черного участка стенки того же размера.

§ 197. Применение закона Кирхгофа. Абсолютно черное тело

Закон Кирхгофа и многочисленные его следствия хорошо подтверждаются на опыте. Например, внося в горячее несветящееся водородное пламя кусок расписанного фарфора с темным рисунком на белом поле, можно видеть при накаливании фарфора яркий

^{*)} Само собой разумеется, что участок этот не должен ничего пропускать, ибо в противном случае часть излучения будет уходять наружу, и рассматриваемая система не будет изолированной. Так как пропускаемость нашего тела равна нулю, то коэффициент отражения его равняется (1 — A), т. е. на всей падающей на него энергии оно поглощает долю A и отражает долю 1 — A.

гл. ХХХVІ. ЗАКОНЫ ТЕПЛОВОГО ИЗЛУЧЕНИЯ

(сильно излучающий) рисунок на сравнительно темном поле (рис. (сильно несли внести такой кусок внутрь закрытой полости (печки), снабженной лишь небольшим отверстием для наблюдения, и сильно прогреть стенки печки, то мы не сможем различить рисунок на раскаленном черепке, излучающем практически равномерно: светлые места меньше излучают, но больше отражают, темные места — наоборот.

Необходимо, однако, отметить, что согласно закону Кирхгофа тело, сильшее поглощающее, должно и больше испускать только при условни, что сравнение производится при одинаковой температуре. Это условие соблюдено в описанном выше опыте с расписанным фарфором, отдельные части которого нагреты до одной температуры; то же имеет место и в ряде других аналогичных опытов: при нака-

ливании платиновой пластинки. до половины покрытой платиновой чернью, черные части светятся гораздо ярче; капля фосфорнокислого натрия на платиновой проволочке остается темной. хотя проволочка ярко раскалена, ибо капля даже при высокой температуре остается прозрачной для видимых лучей. и т. д. Поэтому лишь кажущимся парадоксом является известный опыт, в котором в во-

Рис. 36.4. Темные места разрисованного фарфора (а) при накаливании излучают сильнее (б).

дородное пламя вводятся рядом куски извести и угля и известь оказывается гораздо более ярко раскаленной, чем уголь. Конечно, поглощательная, а следовательно, и испускательная способность угля гораздо больше, чем у извести для всех длин волн, и поэтому при равной температуре уголь будет светиться во всем спектральном интервале ярче, чем известь. Но в описанных условиях опыта температура угля оказывается гораздо ниже температуры извести. Причина лежит отчасти в химических процессах, сопровождающихся поглощением тепла, отчасти в том, что уголь именно в силу своей большой испускательной способности излучает много энергии во всем спектре, в том числе очень много и в инфракрасной области. Этот огромный непрерывный расход энергин и приводит к тому, что температура, до которой раскаляется уголь, оказывается значительно ниже, чем температура самого пламени или извести, не несущей таких больших потерь энергии, ибо ее испускательная способность селективна и, в частности, в инфракрасной части очень мала.

Чрезвычайно поучительный случай применения закона Кирхгофа был описан Вудом. Как известно, плавленый кварц, т. е. стеклообразная масса, изготовленная из чистых расплавленных

кристаллов кварца, обладает хорошей прозрачностью в широком интервале длин волн. В соответствии с этим он плохо светится при накаливании. Вуду удалось приготовить тонкие столбики кварца, окрашенные ионами некоторых редких земель, например неодима, дающего ясные полосы поглощения; при нагревании такого кварца в пламени бунзеновской горелки можно было наблюдать прекрас, ный полосатый спектр, состоящий из красной, оранжевой и зеленой полос, разделенных темными промежутками. Области максимумов

Рис. 36.5. Щетка из полированных иголок вследствие многократных отражений обладает большой поглощательной и испускательной способностью. свечения соответствовали области максимумов свечения соответствовали областям поглощения окрашенного кварца при температу. ре, близкой к температуре свечения. При достаточно высокой температуре, впрочем, и чистый плавленый кварц начинает заметно поглощать и испускать свет, так чю при температуре около 1500° С кварц светится белым светом.

Закон Кирхгофа имеет совершенно общее значение, независимое от механизма, обусловливающего поглощение: всякая сильно поглощающая система будет и сильно излучать, независимо от того, обусловлено ли сильное поглощение свойствами поверхности или устройством системы как целого. Так, например, щетка из стальных расположенных. нголок, полированных как показано на рис. 36.5, будет сильно поглощать свет, ибо луч, попавший между иголками, претерпит многократное отражение от разных иголок, прежде чем смо-

жет выйти наружу. Таким образом, хотя поглощение поверхностью полированной иголки невелико, общее поглощение системы будет значительно, так как произойдет для каждого луча многократно. При нагревании такая система в согласии с законом Кирхгофа будет и сильно испускать, причем и здесь механизм значительного испускания связан с тем, что каждый участок поверхности иголки не только непосредственно излучает, но и отражает наружу многочисленные лучи, испускаемые другими участками.

На таком же принципе основано устройство тела, наиболее приближающегося по своим свойствам к абсолютно черному. Оно изготовляется в внде почти замкнутой полости (рис. 36.6), снабженной маленьким отверстием, днаметр которого не больше 1/10 женной маленьким отверстием, днаметр которого не больше 1/10 поперечника полости, так что отверстие видно из точек стенки под телесным углом, не большим 0,01 ср. Излучение, проникающее через отверстие, падает на стенки полости, частично поглощается ими, частично рассеивается или отражается и вновь попадает на стенки. Вследствие малых размеров отверстия луч должен

гл. XXXVI. ЗАКОНЫ ТЕПЛОВОГО ИЗЛУЧЕНИЯ

претерпеть много отражений и рассеяний, прежде чем он сможет выйти из отверстия обратно наружу. Повторные поглощения на стенках приводят к тому, что практически весь свет любой частоты поглощается такой полостью (см. упражнение 223).

Поглощающая способность хорошо выполненного черного тела описанного устройства практически не отличается от единицы для любой длины волны. Согласно за-

кону Кирхгофа и испускательная ее способность очень близка к е_{v,T}, где *T* означает температуру стенок полости. Во всех исследованиях с абсолютно черным телом пользуются именно описанным устройством, значительно превосходящим по своим характеристикам поверхность, покрытую платиновой чернью или сажей. Следует, впрочем, отметить, что высокие поглощающие свойства этих материалов отчасти объясняются их пористостью, особенно для сажи, благодаря чему свет, попавший на них, ис-

Рис. 36.6. Абсолютно черное тело.

пытывает несколько отражений, прежде чем получает возможность выйти из толщи материала. Таким образом, чернота сажи особенно повышается благодаря ее пористости. Этим же объясняется насыщенный цвет бархата или вообще тканей с длинным ворсом, в противоположность белесоватому тону гладких тканей, отражающих разные длины волн; насыщенный цвет реющих знамен, драпировок, ниспадающих глубокими складками, и т. д.

§ 198. Излучение нечерных тел

Нечерными телами в противоположность черным называют тела с поглощательной способностью $A_{v,r}$, меньшей единицы. К этой категории принадлежат практически все тела, начиная от сажи, коэффициент поглощения которой близок к 0,99, и кончая хорошо полированными металлами, для которых коэффициент поглощения не превосходит нескольких процентов.

Согласно основному соотношению Кирхгофа $E_{v,T} = \varepsilon_{v,T}A_{v,T}$. Следовательно, для нечерных тел $E_{v,T} < \varepsilon_{v,T}$, ибо $A_{v,T} < 1$. Это значит, что для любой длины волны испускательная способность нечерного тела не может быть больше испускательной способности черного тела при одинаковой температуре. Сам вид функции $E_{v,T}$ может отличаться от функции $\varepsilon_{v,T}$ вследствие того, что поглощательная способность $A_{v,T}$ зависит от v, т. е. обладает избирательным (селективным) ходом.

В соответствии с этим и излучение нечерного тела может иметь селективный характер.

Примером такого практически важного селективно излучающею вещества является вольфрам. Рис. 36.7 показывает зависимость испускательной способности вольфрама E_{λ} при T = 2450 К ог длины волны. Для сравнения там же приведена кривая зависимости ε_{λ} от λ при той же температуре для черного тела. Пунктирная кривая показывает отношение ординат обенх кривых $E_{\lambda}/\varepsilon_{\lambda}$. Из

Рис. 36.7. Испускательная способность черного тела и вольфрама при температуре 2450 К.

Пунктириая кривая, дающая отношение $a \Rightarrow E_{\lambda}/e_{\lambda}$, показывает, что относительное излучение ьольфрама растет по мере уменьшения длины волны (селективность излучения вольфрама). ение ординат оосих кривых $E_{\lambda}/\epsilon_{\lambda}$. Из хода пунктирной кривой видно, во-пер. вых, что испускание вольфрама для всех длин боли меньше, чем испускание чер. ного тела ($E_{\lambda} < \epsilon_{\lambda}$) и, во-вторых, что больфрам обладает заметным селективиым излучением в видимой части спектра (отношение $a = E_{\lambda}/\epsilon_{\lambda}$ быстро растег с уменьшением λ). Последнее обстоятельство делает вольфрам выгодным материалом для осветительных лами накаливания (см. гл. XXXVII).

Напомним еще раз, что закон Кирхгофа относится только к температуриому излучению, и в случае, когда свечение обусловлено другими причинами, оп не имеет силы. Так, например, при фото- или хемилюминесценции интенсивность свечения в целом ряде спектральных областей гораздо выше, чем у температурного излучения черного тела при температуре люминесцирующего тела. Закон Кирхгофа настолько харак-

терен для температурного излучения, что может служить самым надежным критернем для распознавания природы свечения: свечение, не подчиняющееся закону Кирхгофа, заведомо не является температурным.

§ 199. Закон Стефана — Больцмана

Закон Кирхгофа $E_{v,T}/A_{v,T} = \varepsilon_{v,T}^*$) ставит в центр внимания теории теплового излучения функцию $\varepsilon_{v,T} = f(v, T)$, представляющую собой испускательную способность черного тела. Опре деление вида этой функции явилось основной задачей учения о температурном излучении. Решение задачи было получено не сразу. Сначала был установлен теоретически и экспериментально закон, определяющий суммарное излучение черного тела (закон Стефана-

^{*)} Мы пишем все формулы теории излучения для испускательной способности $E_{v,T}$. Нередко их пишут для плотности излучения $u_{v,T}$. Нетрудно найти соотношение u = 4E/c, где с — скорость света (см. упражнения 222 и 224).

гл. хххуг. законы теплового излучения

Больцмана); затем были определены некоторые основные черты искомой функции (закон Вина), найден весьма точный экспериментальный ход ее в зависимости от у для разных Т и, наконец, после ряда неудачных попыток, имевших, однако, огромное значение для понимания вопроса (В. А. Михельсон, Рэлей—Джинс, Вин, Лорентц), удалось найти окончательное теоретическое решение задачи (Планк, 1900 г.) Необходимо упомянуть, что оно было найдено только путем решительного принципиального изменения основных положений физики, путем создания *meopuu кеантов*, заложившей принципиально новую базу физической науки. Эта новая теория оказалась столь важной и плодотворной, что далыейшее развитие ее составило главное содержание теоретической физики за все последующие годы и охватило почти все области нашей науки.

Первым этапом, как сказано, явилось нахождение закона, устанавливающего зависимость суммарного или интегрального излучения (т. е. общего излучения всех длин волн) от температуры. Стефан (1879 г.) на основании собственных измерений, а также анализируя данные измерений других исследователей, пришет к заключению, что суммарная энергия, испускаемая с 1 см² в течение 1 с, пропорциональна четвертой степени абсолютной температуры излучателя. Стефан формулировал свой закон для излучения любого тела, однако последующие измерения показали неправильность его выводов. В 1884 г. Больцман, основываясь на термодинамических соображениях и исходя из мысли о существовании давления лучистой энергии, пропорционального ее плотности, теоретически показал, что суммарное излучение абсолютно черного тела должно быть пропорционально четвертой степени температуры, т. е.

$$\varepsilon_T = \int_0^\infty \varepsilon_{v, T} \, dv = \sigma T^4, \tag{199.1}$$

где σ — постоянная. Таким образом, вывод Стефана справедлив, но лишь для абсолютно черных тел, с которыми Стефан не экспериментировал. Лишь позже, когда было построено абсолютно черное тело по принципу, описанному в § 197, оказалось возможным исследовать экспериментально выводы Больцмана. Тщательные измерения позволили подтвердить закон Больцмана и определить постоянную σ этого закона. По современным измерениям

$$\tau = 5.67 \cdot 10^{-12} \text{ Bt/cm}^3 \cdot \text{rpag}^3$$
.

По отношению к нечерным телам закон Стефана сохранить нельзя. Были попытки придать ему более общую форму $E = BT^n$, где коэффициент B и показатель n должны быть определены экспериментально для каждого тела. Так, вблизи T = 1000 К для платины

695

удовлетворительные результаты получаются из формулы

 $E_{\rm P1} = 3,56 \cdot 10^{-15} T^{4,77}$

а для вольфрама

$$E_{\rm W} = 5,9 \cdot 10^{-17} T^{5,35}$$

Однако наблюдения при разных температурах показывают, что Однако наолюдения при ресли и не остаются постоянными, T_{ak} , ни показатель *n* не остаются постоянными. T_{ak} , ни коэффициент *B*, ни показатель *n* не остаются постоянными. T_{ak} , ни коэффициент В, на показатели и постоянными. Так, для вольфрама около T = 2000 К имеем уже новые значения: B = 0.05

2,4.10 - и и — 1,00. Таким образом, закон Стефана—Больцмана имеет силу только для абсолютно черного тела.

§ 200. Закон смещения Вина

Закон Стефана-Больцмана касается лишь интенсивности интегрального излучения черного тела и ничего не говорит относительно спектрального распределения энергии. Первым исследователем, пытавшимся теоретически определить вид функции вил. был В. А. Михельсон (Москва, 1887 г.). Хотя формула Михельсона не вполне удовлетворяла опытным данным, тем не менее установление ее сыграло известную роль в истории этого вопроса.

Рис. 36.8. Схема опытов по исследованию распределения энергии в спектре черного тела.

S — черное тело; Sp — монохроматор; T — термоэлемент с гальванометром G.

В 1893 г. Вин теоретически обосновал второй закон черного излучения, дающий указание на характер функции $\varepsilon = f(v, T)$, хотя и не позволивший полностью определить ее. Вин рассматривал термодинамически процесс сжатия излучения, заключенного внутри идеально зеркального сосуда, при уменьшении объема последнего и, принимая во внимание изменение частоты излучения, отражающегося от движущегося зеркала (принцип Допплера), пришел к выводу, что испускательная способность черного тела имеет вид (200.1)

$$\varepsilon_{\mathbf{v}, T} = c \mathbf{v}^{3} f(\mathbf{v}/T),$$

где с — скорость света в окружающей среде (в вакууме), а 1 — функция, для опротото в окружающей среде (в вакууме), а 1 функция, для определения вида которой развитые Вином соображения оказались педостаточными.

Важный результат, достигнутый Вином, состоит в том, что температура входит в выражение для испускательной способности

гл. хххуг. законы теплового излучения

лишь в виде отношения v/T. Уже это обстоятельство позволяет предвидеть некоторые особенности интересующей нас функции. Тщательные измерения ряда исследователей привели к установлению эмпирического хода функции $\varepsilon_{v,T}$ и позволили проверить тео-

Метод исследования состоял в изучении распределения энергии по спектру излучения, посылаемого абсолютно черным телом различной температуры. Схема опытов при-

ведена на рис. 36.8. Здесь S — абсолютно черное тело заданной температуры, L — линза, концентрирующая излучение на щели монохроматора, снабженного дифракционной решеткой R. Приемником энергии служит чувствительный термоэлемент или болометр T.

Кривые, полученные в результате этих исследований, приведены на рис. 36.9. Они выражают $\varepsilon_{\lambda,T}$ в функции λ . Из рисунка видно, что $\varepsilon_{\lambda,T}$ для каждой температуры обладает максимумом. Для определения положения этого максимума в шкале λ перейдем в выражении закона Вина (200.1) от v к λ , пользуясь соотношением $\varepsilon_v = \varepsilon_{\lambda} \lambda^2 / c$ (см. § 196):

$$\varepsilon_{\lambda, T} = \frac{c^5}{\lambda^5} f\left(\frac{c}{\lambda T}\right).$$

Приравняв нулю производную $\frac{\partial \lambda_{r,T}}{\partial \lambda}$, нетрудно видеть, что положение максимума λ_{max} удовлетворяет условию

 $T\lambda_{\max} = b, \qquad (200.2)$

Рис. 36.9. Кривые распределення энергии в спектре черного тела для разных температур.

где *b* не зависит от температуры. Приведенные на рис. 36.9 экспериментальные кривые подтверждают это заключение и дают возможность определить *b*.

Современное значение b = 0,2898 см.град = 2,898.107 Å.град.

В указанной форме закон Вина носит название закона смещения, ибо он показывает, что положение максимума функции $\varepsilon_{\lambda,T}$ по мере возрастания температуры смещается в область коротких волн.

В соответствии со сказанным выше можно решить задачу о положении максимума на кривой спектрального распределения в координатах v/T, т. е. соответствующего формуле (200.1) Определяя положение максимума этой функции из условия $\frac{\partial e_{v,T}}{\partial v} = 0$, найдем, что оно соответствует соотношению

$$\frac{T_c}{v_{\max}} = T\lambda_{\max}^* = a,$$

где *а* не зависит от *T* и согласно измерениям a = 0,5100 см.град. а не зависит от т и согласти толожения на кривой сл. г соответствует Найденное положение максимума на кривой сл. г соответствует Найденное положение логожения максимума на кривой еуд длине волны, отличающейся от положения максимума на кривой еуд длине волны, отличающение 232). То сбстоятельство, что положение в 1,76 раза (см. упражнение 232). То сбстоятельство, что положение в 1,70 раза (см. управление деления энергии зависит от выбора максимума на кривой распределения энергии зависит от выбора координат этой кривой, разъяснено в § 198. Оно связано с тем, что в одном выражении мы делим кривую на полосы равной ширины в одном выражения по $\Delta \lambda$), а в другом — на полосы равной ширины по λ (ширина полосы $\Delta \lambda$), по v (ширина полосы Δv).

§ 201. Формула излучения Планка

Многочисленные попытки теоретически установить закон чер. ного излучения, приведшие, как мы видели, к установлению важных частных законов (Больцман, Вин), не могли дать общего решения задачи и приводили к заключениям, согласующимся с опытом, только в ограниченном интервале Т и v. Причина неудач оказалась лежащей чрезвычайно глубоко. Законы классической электродинамики, при помощи которых делались все эти исследования, оказались лишь приближенно правильными и давали неверный результат при рассмотрении элементарных процессов, обусловливающих тепловое излучение.

Если осуществить теоретическое черное тело при помощи бесконечной совокупности гармонических осцилляторов, каждый из которых дает отдельную монохроматическую линию, а все вместе сплошное черное излучение, то, пользуясь законами, управляющими поведением этих осцилляторов, можно прийти к закону черного излучения такой системы. Общие же соображения, лежащие в основе закона Кирхгофа, показывают, что закон излучения, найденный для одного черного тела, справедлив и для любого другого черного тела, т. е. все они дают один и тот же тип излучения — черное излучение.

Идя по этому пути, Планк не получил, однако, закона, согласного с опытом, и, анализируя положение, пришел к выводу, что причина неудачи лежит в неприменимости законов классической физики к таким атомным осцилляторам.

По классическим законам осциллятор частоты у может заключать в себе любое колнчество энергии, ибо энергия осциллятора пропорциональна квадрату амплитуды; в соответствии с этим и излучающий сонительной излучающий осциллятор может испустить за единицу времени любое количество очето 23клюлюбое количество энергин. Эти простые законы согласно заклю-чению Планка на имента и простые законы согласно заключению Планка не имеют места. Гармонический осциллятор частоты

гл. хххуі. законы теплового излучения

v может обладать только таким количеством энергии, в котором содержится целое число элементарных порций величиной hv каждая, где h — универсальная постоянная, равная 6,626 · 10⁻²¹ Дж с. Поэтому и излучение осциллятора идет порциями hv (или цельми кратными hv).

Эти новые квантовые закокы не стоят в противоречии с классическими в той области низких частот (например, радночастот), для которой, собственно говоря, и были установлены классические законы на основе электромагнитной теории Максвелла.

Действительно, если v не очень велико, то порция hv настолько мала, что в наших опытах мы не можем установить, содержит ли осциллятор целое или дробное число этих порций. Так, например, для $\lambda = 3$ мм величина hv составляет 6,626 · 10²³ Дж, и ни в одном опыте со сравнительно грубыми осцилляторами, настроекными на эту длину, мы не в состоянии оценить, является ли энергия осциллятора кратной этой малой величине *). Наоборот, для атомных осцилляторов частота, а значит, и элементарные порции энергия соответственно больше, а точность измерений атомных процесссв такова, что расхождение между классическими и квантовыми представлениями становится весьма ощутительным: выводы приближенных классических представлений оказываются в резком противоречии с опытом, тогда как рассуждения, учитывающие квантовую теорию, приводят к превосходному согласию с ним.

Так, при расчете совокупности гармонических осцилляторов, подчиняющихся классическим законам, Планк нашел для функции Кирхгофа выражение

$$\varepsilon_{v, T} = \frac{2\pi v^2}{c^2} kT,$$
 (201.1)

известное и ранее (формула Рэлея—Джинса). Учитывая же новые квантовые законы, управляющие осциллятором, он получил

$$\varepsilon_{\mathbf{v}, T} = \frac{2\pi h v^3}{c^2} \frac{1}{\exp{(hv/kT)} - 1}$$
 (201.2)

Объемная спектральная плотность $u_{v,T}$ энергии излучения с частотой v связана с испускательной способностью $\varepsilon_{v,T}$ соотношением

$$\varepsilon_{v,T} = \frac{1}{4} u_{v,T} C$$

(см. упражнение 222). Поэтому согласно Планку

$$u_{v, T} = \frac{8\pi h v^3}{c^3} \frac{1}{\exp(hv/kT) - 1}.$$
 (201.3)

C99-

^{*)} В современном развитии квантовой теории выяснилось, что осциллятор частоты у обладает энергией $\frac{1}{2}hv + nhv$, где n - целое число, но это не меняет дела.

В этих формулах $c = 3 \cdot 10^{10}$ см/с означает скорость света, $k = 1,38 \cdot 10^{-23}$ Дж/град — постоянная Больцмана (определяющая в классической теории среднюю энергию осциллятора kT при абсо. лютной температуре T) и $h = 6,626 \cdot 10^{-34}$ Дж с — постоянная Планка. Если v мало́ (или T велико), так что hv/kT мало́ сравни. тельно с единицей, то формулу (201.2) можно упростить. Действительно, разлагая exp(hv/kT) по степеням hv/kT и пренебрегая сысшими степенями, найдем формулу, совпадающую с (201.1).

Это совпадение показывает в согласии с основными допущениями теории квантов, что в области низких частот ее выводы не отли. чаются от выводов классической теории. Классическая теория приближением к действительности, приближением, вполне удовлетворительным для того круга явлений, с которыми имеет дело макроскопическая электродинамика, т. е. электродинамика систем, состоящая из многих атомов или молекул. По-видимому, даже движения ионов, т. е. элементарных зарядов с большой массой (по сравнению с электроном), еще довольно удов. летворительно описываются классическими электродинамикой и механикой, хотя точность современных измерений и здесь позволяет установить отступления (опыты по дифракции молекулярных пучков). Но поведение электронов внутри атомов и молекул должно описываться при помощи квантовых законов мехашики и электродинамики; применение же к ним законов, имеющих силу для макромира, приводит к резким противоречиям с опытом.

Формула (201.2), полученная Планком, дает превосходное согласие с результатами самых тщательных экспериментальных исследований зависимости излучательной способности черного тела от у и Т и является, таким образом, полным решением основной задачи, поставленной Кирхгофом.

Нетрудно убедиться в том, что формула Планка заключает в себе упоминавшиеся выше законы черного излучения, и именно закон Стефана—Больцмана и закон Вина. При этом из формулы Планка не только получается внешняя форма этих законов, но и входящие в них постоянные о и b могут быть вычислены из универсальных постоянных h, k, c (см. упражнения 230 и 232). Обратио, пользуясь экспериментально найденными значениями о и b, можно вычислить значения h и k. Именно таким путем и было получено первое численное значение постоянной Планка. Впоследствии был указан целый ряд путей определения h, покоящихся на совершенно иных физических явлениях (ср. гл. XXXII). Все они приводят к одинаковым значениям.

Изложенный путь вывода формулы Планка был исторически первым. Впоследствии задача неоднократно решалась разными способами как самим Планком, так и другими исследователями. При этом основные предположения были сформулированы не в таком резком противоречии с классическими законами, как это было

гл. ХХХVИ. ПРИМЕНЕНИЯ ЗАКОНОВ ТЕПЛОВОГО ИЗЛУЧЕНИЯ

сделано выше, хотя, конечно, принципиально новое допущение о квантовом характере процессов сохранялось. Простой и поучительный вывод формулы Планка, покоящийся на представлении о поглощении и испускании энергии атомом типа атома Бора, был дан Эйнштейном (см. § 211).

Глава XXXVII

ПРИМЕНЕНИЯ ЗАКОНОВ ТЕПЛОВОГО ИЗЛУЧЕНИЯ

§ 202. Оптическая пирометрия

Основываясь на законах температурного излучения, мы можем определять температуру раскаленных тел. Если испускающее тело является черным (или достаточно к нему приближается), то для определения его температуры можно воспользоваться законами черного излучения. По существу дела для сильно нагретых тел (выше 2000° С) измерения температуры при помощи термоэлементов, болометров и т. п. не особенно достоверны. Таким образом, в этой области температуры являются способы, основанные на законах черного излучения. Эти способы проверены не только сопоставлением с данными других термометрических методов в той области, где последние надежны, но и путем изучения относительного распределения энергии по спектру, что позволяет найти температуру излучателя путем сопоставления экспериментальных данных с теоретическими формулами.

а. Раднационные пирометры и раднационная температура. Считая постоянные законов Больцмана (σ) и Вина (b) надежно установленными, мы можем, пользуясь ими, измерять и более высокие температуры, чем те, для которых они были непосредственно измерены (экстраполяция к более высоким температурам). При использовании закона Больцмана надо со всеми предосторожностями измерить суммарное излучение, посылаемое к приемному аппарату, учитывая величину телесного угла действующего излучения, потери на отражение и поглощение в приборе и т. д. В настоящее время существуют и сравнительно простые переносные приборы, позволяющие выполнять подобные измерения с достаточной точностью. Устройство этих так называемых радиационных пирометров (рнс. 37.1) сводится к возможности проектировать изображение источника на приемник аппарата так, чтобы приемник в всегда был полностью покрыт изображением источника и излучение входило в прибор под постоянным телесным углом, определяемым размерами прибора.

701

При измерениях наводят прибор на более или менее отдаленный источник S достаточного размера при помощи объектива L, позволяющего получить резкое изображение источника на приемнике. Резкость изображения контролируется при помощи окуляра, не показанного на чертеже. При таких условнях энергия, получаемая пирометром, будет пропорциональна яркости источника независимо от расстояния между ними, подобно тому как это имеет место при рассматривании глазом удаленных светящихся источников (см. упражнение 234). Таким образом, показания пирометра булут зависеть от яркости, а следовательно, и от температуры наблюдае мого черного тела. Проградуировав предварительно пирометр по черному телу с известной температурой, можно использовать его показания для измерения исследуемой температуры.

Рис. 37.1. Схема радиационного пирометра для измерения радиационной тем. пературы.

В качестве приемника в радиационных пирометрах чаще всего применяют термопару или болометр, но существуют также пирометры с биметаллической спиралью, изгибающейся при нагреваини, с газовым термометром и т. д. Если исследуется не черное тело, то показания радиационного пирометра дают не истинную температуру его, а так называемую *радиационную* температуру T_r , под которой понимают температуру такого черного тела, суммарная радиация которого равна радиации изучаемого тела. Между истинной температурой тела T и его радиационной температурой T_r нетрудно установить связь, если известно отношение суммарной испускательной способности измеряемого тела к испускательной способности черного тела при той же температуре, т. е. отношение $Q_T = E_T/\varepsilon_T$. По самому определению величина Q_T меньше единшы. Она обычно несколько увеличивается с повышением температуры.

Значения Q_T хорошо известны для многих технически важных материалов. Для металлов они невелики (от 0,1 до 0,3), для окислов металлов и для угля Q_T значительны (доходя до 0,9). Некоторые из этих значений приведены в табл. 37.1.

Зная Q_T и раднационную температуру нагретого матернала, мы можем найти его истинную температуру при помощи очевидного соотношения $T = T_r/\sqrt[3]{Q_T}$ (см. упражнение 235). Так как Q_T всегда меньше единицы, то радиационная температура тела всегда меньше его истинной температуры.

гл. ХХХVИ. ПРИМЕНЕНИЯ ЗАКОНОВ ТЕПЛОВОГО ИЗЛУЧЕНИЯ

703

Вещество	Темпера- тура	а- Q _T Вещество		Темпера- тура	Q _T
Вольфрам Молиблен	1300 2300 3300 1300	0,15 0,29 0,34	Железо Окись железа Никель	1500 1560 1560	0.11 0,89 0,06
Тантал Уголь Серебро	2300 2300 1300 1300	0,23 0,25 0,52 0.04	Окись никеля Платина Медь расплавленная	1500 1500 1400	0,85 0,15 0,15

Значения Qr для ряда вешесте

Таблица 37.1

б. Ц ветовая температура и распределение энергии в спектре излучающего тела. Если найдено распределение энергии в спектре черного тела, то известно положение максимума на кривой энергии $\varepsilon_{\lambda,T}$ и температуру можно определить на основании закона смещения Вина при помощи соотношения $\lambda_{max} T = b$.

Так, для Солнца с учетом поправок на поглощение в земной атмосфере найдено $\lambda_{max} = 470$ нм, что соответствует температуре 6150 К, если считать Солнце черным телом. Полученные беличины имеют характер средних, ибо для центра солнечного диска получается λ_{max} несколько меньшее, чем для краев.

Если излучающее тело не является черным, применение формулы Вина не имеет смысла. Иногда, однако, распределение экергии в спектре таких тел можно практически отождествить с распределением энергии некоторого черного тела температуры T_c . В этом случае излучающее тело имеет такой же цвет, как черное тело темпсратуры T_c . Нередко называют определенную таким образом T_c *цветовой* температурой тела.

Отсюда ясно, что для тел, характер излучения которых сильно отличается от излучения черного тела (например, для тела с ясно выраженными областями селективного излучения), понятие цветовой температуры не имеет смысла, ибо цвет таких тел можно только очень грубо воспроизвести при помощи черного тела. В тех случаях, когда определение цветовой температуры возможно (так называемые «серые тела», например, уголь, окислы, некоторые металлы), для ее отыскания необходимо произвести исследование распределения энергии в спектре при помощи соответствующих спектральных приборов. Рис. 37.2 воспроизводит результаты такого исследования для солнца; одновременно на нем нанессны кривые распределения для черного тела при температурах 6000 и 6500 К. Рис. 37.2 показывает, что отождествление Солнца с черным телом может быть сделано только довольно приблизительно. С этим приближением в качестве оценки цветовой температуры Солнца полу. чаем примерно 6500 К.

чаем примерно бооб К. Для нахождения истинной температуры по цветовой температуре нечерного тела надо знать монохроматическую испускательную способность его для разных длин волн, т. е. отношение испускательной способности изучаемого тела и черного тела для данной ллины волны λ и температис

Рис. 37.2. Распределение энергии в спектре Солица и в спектрах черного тела при температурах 6000 и 6500 К.

Сравнение кривых позволяет считать цветовую температуру Солица равной 6500 К. длины волны λ и температуры 7. Обычно ограничиваются установ. лением ее для двух длин воли: $\lambda = 660$ нм и $\lambda = 470$ нм и пользуются упрощенным методом сравнения найденных отношений в обенх указанных областях спектра (см. упражнение 237).

в. Яркостная темпе. ратура пирометр с И исчезающей нитью. Нараспространенный способ иболее оптического определения температуры основывается на сравнении излучения нагретого тела в одном определенном спектральном участке λ с излучением черного тела с той же длиной волны. Сравнение это с нанбольшим удобством осуществляется при помощи пиронитью, устметра с исчезающей роенного следующим образом. В

l

фокусе объектива O (рис. 37.3) помещается электрическая лампа Lс баллоном из хорошего стекла (лучше всего в виде бочонка с плоскими донышками) и с нитью, изогнутой в форме полукруга. Окуляр $O\kappa$ позволяет наблюдать одновременно среднюю часть нити и изображение поверхности исследуемого источника, проектируемого при помощи O и зеркал M в плоскость нити. Красные стекла FF, помещенные между окуляром и глазом, пропускают более или менее монохроматическую часть света, испускаемого источником и нитью. Обычно пропускаемая область соответствует $\lambda = 660,0$ нм. Лампа питается током от батарен B, регулируемым реостатом R; ток отсчитывается по прецизионному амперметру A. При измерении температуры регулируют ток в инти до тех пор, пока последняя не исчезает на фоне изображения. При этой силе тока I яркости излучения нити и источника для $\lambda = 660,0$ нм совпадают и, следовательно, для данного λ совпадают и их испускательные способности.

Если предварительной градуировкой при помощи наблюдения черного тела различной температуры установлено, каким темпера-

гл. ХХХVII. ПРИМЕНЕНИЯ ЗАКОНОВ ТЕПЛОВОГО ИЗЛУЧЕНИЯ

705

турам черного тела соответствует исчезновение нити при разных силах тока /, то по показаниям амперметра мы получаем возможность судить, какой температуре черного тела S, соответствует излучение наблюдаемого источника. Если бы источник был также черным телом, то найденная температура S₂ была бы его истинной температурой. В противном случае найденная температура характеризует температуру S_{λ} черного тела, имеющего для $\lambda = 660,0$ нм ту же яркость, что и излучаемое тело при условиях наблюдения. Поэтому S_h носит название яркостной температуры источника.

Слева показано устройство лампы L.

Если известно отношение Q₆₆₀ яркости излучаемого тела для λ = 660 нм к яркости черного тела при той же температуре, то мы можем по яркостной температуре найти и истинную температуру.

Отношение Q_{вео} определено для многих технически важных материалов; оно несколько зависит от Т; некоторые из этих значений собраны в табл. 37.2.

Так как яркость нечерного тела может зависеть от направления, то значения Q000 приведены для направления, нормального к излучающей поверхности. Так же должна делаться и наводка пирометра. Связь между яркостной и истинной температурами дается при помощи соотношения (см. упражнение 238)

$$\ln Q_{\lambda, T} = \frac{c_2}{\lambda} \left(\frac{1}{T} - \frac{1}{S_{\lambda}} \right), \qquad (202.1)$$

где постоянная $c_2 = hc/k = 1,4387$ см. град.

Кроме пирометров с исчезающей нитью, существует ряд других приборов для определения яркостной температуры, а через ее посредство — и истинной температуры раскаленных тел.

Таким образом, в зависимости от метода наблюдения мы определяем оптически одну из трех условных температур: роднацион-. ную (T_r), цветовую (T_c) или яркостную S_λ. Переход к истинной

23 Ландсберг Г. С.

тепловое излучение

Значения Q660 для ряда веществ

температуре возможен лишь при знании некоторых дополнитель иых параметров излучающего тела. T_r и S_{λ} всегда меньше истиной ной температуры, T_c обычно несколько больше истинной и правило, меньше отличается от нее, чем T_r и S_{λ} .

Вещество	Температура в К	0
Молибден Тантал Уголь Серебро Железо Окись железа Никель Окись никеля	1300 2300 1320 3200 1500 2500 { при температуре плавления расплавленное при температуре плавления 1500 при температуре плавления 1500	Q.
Платина Медь расплавлениая Окись меди	твердая жидкая 1500 1300 1500	0 0 0 0

§ 203. Источники света

Из изложенного в предыдущих параграфах ясно, что использование раскаленного тела в качестве источника света тем более выгодно, чем выше температура этого тела. Действительно, с повышеннем температуры не только быстро увеличивается общая излучаемая мощность, но растет также относительная доля лучистой энергии, приходящейся на видимую часть спектра. По закону Стефана — Больцмана суммарная интенсивность возрастает для черного тела пропорционально четвертой степени температуры. Но интенсивность более коротковолновых участков спектра растет гораздо быстрее, особенно при не очень высоких температурах. Так, вблизи температуры красного каления общая энергия видимого спектра платины растет пропорционально тридцатой степени температуры и даже вблизи белого каления — все еще пропорцио-нально четноволист. нально четырнадцатой степени температуры. Интенсивность желтых лучей возрастает вдвое, когда температуры. Интенсивность измеияется от 1800 до 1875 К, т. е. всего на 4%.

Если бы излучателем служило черное тело, то, пользуясь формулой Планка, мы могли бы рассчитать для каждой температуры

Таблица 37.2

гл. ХХХVИ. ПРИМЕНЕНИЯ ЗАКОНОВ ТЕПЛОВОГО ИЗЛУЧЕНИЯ

707

эту часть полезной для освещения энергии и вычислить световую отдачу нашего светового источника. Если принять во внимание, что максимум чувствительности человеческого глаза лежит около 550 им в желто-зеленой части спектра, то черное тело окажется наивыгоднейшим источником при температуре около 5200 К. Принято называть условно «белым светом» (в светотехнике) излучение черного тела при этой температуре. Солнечное излучение вблизи поверхности Земли, т. е. несколько измененное вследствие поглощения в земной атмосфере, имеет цветовую температуру, близкую к этому числу, что и послужило основанием для такого условного

При дальнейшем повышении температуры черного тела излучение, приходящееся на полезную для освещения часть спектра, конечно, растет, но доля его в общей излучаемой энергии падает, так что дальнейшее повышение температуры неэкономно с точки зрения светотехники.

Излучение нечерных тел, например раскаленных металлов, всегда меньше излучения черных тел. Но *световая отдача*, т. е. отношение между энергией, полезной для освещения, и ее невидимой частью, для накаленного металла при данной температуре *T* может быть выше, чем для черного тела при той же температуре, как видно из кривых, приведенных на рис. 36.7.

Эти кривые дают распределение энергии по спектру для еольфрама и черного тела с одной и той же температурой, там же приведено отношение ординат обеих кривых (пунктирная линия), которое показывает отношение излучательной способности вольфрама для разных длин волн к излучательной способности черного тела. Из пунктирной кривой видно, что в области видимого света испускание вольфрама составляет около 40% испускания черного тела той же температуры, а в области инфракрасных лучей (около 3 мкм) всего лишь 20%. Такая «селективность» излучения выгодно отличает вольфрам и в связи с высокой температурой плавления вольфрама делает его наилучшим материалом для изготовления нитей ламп накаливания.

Из того же рис. 36.7 видно, что хотя вследствие селективности максимум излучения вольфрама смещен несколько в область коротких волн по сравнению с максимумом для черного тела, однако при температуре 2450 К, для которой составлен график, максимума этот лежит еще около 1100 нм, т. е. очень далек от максимума этот лежит еще около 1100 нм). Поэтому дальнейшее повышение чувствительности глаза (550,0 нм). Поэтому дальнейшее повышение температуры могло бы значительно повысить световую отдачу накаленного вольфрама.

Указанная температура соответствует нормальной температуре пустотной лампы накаливания с вольфрамовой нитью (на 50—60 Вт). Температура плавления вольфрама лежит выше (3655 К); однако Дальнейший накал опасен, ибо нагретая нить испаряется (распыляется (в пустоте настолько быстро, что повышение температуры 2500 К быстро ведет к ее разрушению).

ти сверх 2500 к оыстро всяте улучшения осветительной тех. Большим шагом вперед в деле улучшения осветительной тех. Большим шагом вперед в дене улу послетительной тех. ники явилось предложение Лэнгмюра (1913 г.) наполнять баллоны послетически газом. например азотом или, еще лучно ники явилось предложение толимер азотом или, еще лучше, арго-ламп нейтральным газом, например азотом или, еще лучше, арголамп нейтральным газом, напримерно 1/2 ат, и присутствие, арго-ном; давление газа достигает примерно 1/2 ат, и присутствие его позволяет что позволяет что ном; давление газа доститает присутствие его сильно замедляет распыление волоска, что позволяет увеличить то 2000 К и больше без заметного сочеличить сильно замедляет распыление волосии, но нозволяет увеличить температуру нити до 3000 К и больше без заметного сокращения соколо 1000 изс). При этом сильно технолого сокращения температуру нити до 5000 г и сопрате соз заметного сокращения срока службы лампы (около 1000 час). При этом сильно повышается световая отдача. Однако общий коэффициент полезного действия лампы равен отношению энергии полезной части спектра к общей лампы рався отполетное странение в оощей энергии, питающей лампу, т. е. приходится учитывать не только потери на невидимое излучение, но также на теплопроводность и конвекцию. Последние виды потерь сильно увеличиваются при заполнении колбы лампы газом, так что газонаполненные лампы в смысле увеличения к.п. д. не имели бы преимущества перед пустотными, хотя свет их был бы приятен для глаз, ибо он ближе подходит к составу дневного («белого») света. Уменьшения потерь на охлаждение можно достигнуть, заменив прямой волосок тонкой спиральной интью, отдельные витки которой обогревают друг друга. Именно так и осуществляются современные экономические лампы накаливания, к.п.д. которых значительно выше, чем у пустотных ламп.

Табл. 37.3 дает представление о световой отдаче ламп накаливання разного типа при пормальном режиме горения. За меру световой отдачи принимают отношение полного светового потока, посылаемого лампой (в люменах), к полной мощности, затрачиваемой на питание лампы (в ваттах). Срок службы ламп - 1000 час.

Таблица 37.3

Тип лампы	Световая отдача, лм/Вт	К. п. д.	Темпе- ратура истинная	Темпера- тура цветовая	Яркость, 104 кд/ма
50 Вт, пустотная угольная 50 Вт, пустотная вольфрамовая 50 Вт, газонаполненная вольфрамовая 500 Вт, то же 2000 Вг, э	2,5 10 10 17,5 21,2	1,6% 2% 3,5%	2095 2400 2685 2900 3020	2130 2505 2670 2880 3000	около 50 150—200 около 500 около 1000 1300—1500

Данные о световой отдаче ламп разного типа

Из таблицы видно, что световая отдача возрастает с увеличение пературы вологие (на температуры волоска (цветовой и истипной, с ней связанной). Эт

ГЛ. XXXVII, ПРИМЕНЕНИЯ ЗАКОНОВ ТЕПЛОВОГО ИЗЛУЧЕНИЯ

and accounts

повышение температуры достигается изменением типа лампы (газонаполпение), материала волоска и размеров лампы, ибо с ростом мощности лампы потери на охлаждение относительно сокращаются. Вместе с температурой растет, конечно, и яркость волоска лампы.

Значительно больше световая отдача электрических дуг, положительный кратер которых имеет температуру около 4000 К. В дугах интенсивного горения (сила тока до 300 А) температура кратера достигает 5000 К, а в дугах под давлением около 20 ат Люммеру удалось довести температуру кратера до 5900 К, т.е. получить источник, близкий по своим световым свойствам к Солнцу. В обычных дугах главная часть излучения (от 85 до 95%) излучается положительным кратером, около 10% — катодом и лишь 5% приходится на свечение облака газов между электродами. В дугах интенсивного горения, в которые вводятся тугоплавкие соли некоторых элементов с большой испускательной способностью (редкие земли), роль облака повышается и на долю кратера приходится всего 40-50% общего излучения. Хотя, по-видимому, в таких дугах излучение носит почти исключительно тепловой характер, все же в силу большой селективности излучения элементов, вводимых в состав облака, световая отдача подобных источников оказывается выше, чем для раскаленного угля и металлов.

Еще большей селективностью излучения отличаются, например, пары натрия, значительная часть излучения которого (около 1/3) сконцентрирована в видимой области (две интенсивные желтые линии 589,0 и 589,6 нм). В соответствии с этим световая отдача излучения натрия может достигать 200 лм/Вт в лампах соответствующего устройства. Вообще свечение газов в силу их селективности отличается наибольшей экономичностью, но эта селективность является в то же время практическим недостатком, нбо благодаря ей спектр газовых источников состонт из отдельных линий или полос и сильно отличается от привычного для человеческого глаза белого света.

В тех случаях, когда этот недостаток играет второстепенную роль, газосветные источники могут с успехом заменять менее экономичные лампы накаливания и электрические дуги. Так, для освещения дорог применяются иногда натриевые лампы, которые даже в эксплуатационных условиях с потерями на вспомогательных устройствах дают световую отдачу около 50 лм/Вт.

Применение газосветных ламп достигло большого развития благодаря важному техническому но вовведению. Внутренняя поверхность баллона в таких лампах, обычно ртутных, покрывается слоем вещества, способного флуоресцировать под действием коротковолнового излучения разряда. Предложение использовать ультраковолнового излучения разряда. Предложение использовать ультрафиолетовое свечение в газосветных лампах с помощью люминесфиолетовое свечение в газосветных лампах с помощью люминес-

703

тепловое излучение

двадцатых годах. В настоящее время лампы подобного типа нашли широкос техническое применение. Люминофор подбирают таким образом, чтобы его свечение восполняло недостаток спектрального состава газового свечения. В результате получается источник, цвет излучения которого приближается к солнечному (слампи дневного света»). Так как в таких лампах часть ультрафиолетового излучения трансформируется в видимое, то этим достигается дополнительное повышение их светотехнической экономичности.

Корошие лампы подобного типа имеют световую отдачу до 40—50 лм/Вт при спектральном составе излучения, близком к солнечному свету. Лампы этого типа еще обладают некоторыми техинческими недостатками, однако они уже успешно конкурируют с лампами накаливания и, несомненио, вытеснят их в дальнейшем.

люминесценция

Глава XXXVIII

ИЗЛУЧЕНИЕ АТОМОВ И МОЛЕКУЛ. СПЕКТРАЛЬНЫЕ ЗАКОНОМЕРНОСТИ

§ 204. Линейчатые спектры

Излучение изолированных атомов, например атомов разреженного одноатомного газа или пара металла (Na, Hg), отличается наибольшей простотой. Электроны, входящие в состав таких атомов, находятся под действием внутриатомных снл и не испытывают еозмущающего действия со стороны окружающих удаленных атомов. Спектры подобных газов состоят из ряда дискретных спектральных линий разной интенсивности, соответствующих различным длинам еолн. При исследовании газов, состоящих из многоатомных молекул, спектр получается более сложным. Так, например, в спектре бодорода (H₂) наряду с отдельными, довольно удаленными друг от друга линиями наблюдается большое число тесно расположенных линий (так называемый *многолинейчатый* или *полосатый* спектр водорода).

Исследование показывает, что последний характеризует молекулы водорода, тогда как первый, состоящий из дискретных линии, относится к *атомам* водорода, образовавшимся в разрядной трубке вследствие диссоциации молекулы под действием разряда. Спектры различных атомов отличаются чрезвычайным разнообразием, причем в некоторых из них, например в спектре железа, насчитывается несколько тысяч линий. Тем не менсе, мы без особого труда отличаем эти богатые линиями спектры атомов от полосатых спектров молекул с определенной группировкой многочисленных линий.

Правда, и линии атомного линейчатого спектра не представляют собой беспорядочного скопления. Внимательное изучение линейчатых спектров уже давно привело к установлению определенных закономерностей в их расположении. Лишь в начале XX века удалось установить физический смысл, заложенный в этих закономерностях, и вслед затем найти им объяснение в особенностях строения атома (Бор, 1913 г.). Таким образом, создание теории атома шло рука об руку с объяснением спектральных закономерностей. Многообразные и точные сведения, получаемые в результате спектроскопических исследований, явились важнейшими дакными, направлявшими теоретические исследования и позволившими проверить выводы теории. Вместе с тем теоретические заключения дали возможность предусмотреть многие новые стороны явлений и соответствующим образом ориентировать экспериментальные исследования.

е исследования. Линейчатый спектр газов можно возбудить весьма различными способами. Он появляется при различных видах электрического разряда через газ (гейслерова трубка, нскра, дуговой разряд), при бомбардировке атомов газа электронами, испускаемыми накаленным катодом (что также можно рассматривать как одну из форм электрического разряда), при нагревании паров и газов (в пламени горелки, например), при освещении паров светом подходящей длины волны и т. д. Во всех этих случаях получаются спектральные линии, длины волн которых характерны для изучаемого газа. Однако в зависимости от условий возбуждения относительная интенсивность различных линий может сильно различаться, так что некоторые линии могут отсутствовать при тех или иных способах возбуждения. Можно даже иногда возбудить одну-единственную линию из всего линейчатого спектра. Таким образом, внешний вид спектра данного газа сильно зависит от условий возбуждения; однако следует помнить, что, меняя условия возбуждения, мы можем заставить исчезнуть или появиться только определенные для каждого данного вещества линии, совокупность которых н составляет характерный для него линейчатый спектр.

Каждая такая спектральная линия не представляет собой, однако, излучения строго определенной длины волны, а является, как уже не раз упоминалось, излучением в очень узком спектральном участке, в котором энергия распределена так, что интенсивность быстро падает от центра к краям. Измерение ширины спектральной линии (см. § 158) показывает, что в излучении разреженного газа величина этого участка нередко ограничена сотыми и даже тысячными долями ангстрема. Однако условия возбуждения могут заметно влиять и на эту величину, равно как и на положение центра (максимума) спектральной линии. Внешнее электрическое (или магнитное) поле вызывает расширение (или даже расшепление) спектральной линии, а такие внешние поля (особенно электрические) могут в условиях газового разряда обусловливаться высокой концентрацией нонов в разряде и достигать заметной величины; столкновение светящегося атома с соседними во время процесса излучения также ведет к уширению линии; к тому же ведет и самый факт теплолого факт теплового движения атома вследствие эффекта Допплера. В специальные специальные вследствие эффекта Допплера. В специальных условиях, например при мощных разрядах, сопровождающихся сильной ионизацией, или при большой плотности газа эти исказование газа эти искажения могут достигать значительной величины. Однако

ГЛ. ХХХУШІ. ИЗЛУЧЕННЕ АТОМОВ И МОЛЕКУЛ

обычно действие всех перечисленных причии не особенно велико, обычно денее газа обладает спектром, характерным для атомов,

§ 205. Спектральные закономерности

Линейчатые спектры, как уже упоминалось, представляют собой совокупность спектральных линий, составляющих известные системы, а не разбросанных в беспорядке по длинам волн. Установление связи между частотами отдельных линий впервые было слелано Бальмером (1885 г.).

Открытая им закономерность относится к четырем водородным линиям. Именно, оказалось, что длины волн, соответствующих этим линиям, можно выразить общей формулой

$$\lambda = b \frac{m^2}{m^2 - 4},$$

где b = 364,57 нм и m — ряд последовательных целых чисел 3. 4, 5, 6.

Вводя вместо λ частоту $v = c/\lambda$, можно переписать формулу Бальмера в виде

$$\mathbf{v}=\frac{c}{\lambda}=\tilde{R}\left(\frac{1}{2^{2}}-\frac{1}{m^{2}}\right),$$

где *R*-постоянная. В практической спектроскопии у заменяют величиной $N = v/c = 1/\lambda$. Это так называемое волновое число показывает, сколько воли данной длины укладывается на протяжении 1 см. Таким образом, формула Бальмера приобретает вид

$$N = \frac{1}{\lambda} = \frac{\tilde{R}}{c} \left(\frac{1}{2^2} - \frac{1}{m^2} \right) = R \left(\frac{1}{2^2} - \frac{1}{m^2} \right), \qquad (205.1)$$

где m = 3, 4, 5, 6. Величина R связана с введенной выше постоянной b простым соотношением R = 4/b.

Во времена Бальмера были известны лишь 4 линии водерода, удовлетворяющие его формуле. В настоящее время известна около 30 линий Н в видимой части спектра, и частоты всех этих линий с поразительной точностью могут быть вычислены по формуле Бальмера, если придавать т целые значения 3, 4, 5... Постоякная R, получившая название постоянной Ридберга, согласно современным данным равняется 1,097677587 - 105 см-1. Число знаков, с которыми определена постоячная Ридберга, с одной стороны, показывает, какой степени точности достигла современиая спектроскопия, а с другой — иллюстрирует, насколько формула Бальмера удачно передает результаты наблюдений. Еще убедительнее демонстрирует точность формулы Бальмера табл. 33.1. сопоставляющая измеренные значения длин волн бальмеровской серви в спектре водорода и значения, вычисленные по формуле Бальмера.

m	λ (выч.), нм	λ (набл.), нм	m	λ (выч.), нм	е водорода 38.1 λ (набл.), нь
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	656,280 486,138 434,051 410,178 397,011 388,909 383,543 379,793 377,067 375,018 373,440 372,197 371,201 370,389 369,719	$\begin{array}{c} 656,280\\ 486,133\\ 434,047\\ 410,174\\ 397,007\\ 388,905\\ 383,539\\ 379,790\\ 377,063\\ 375,015\\ 373,437\\ 372,194\\ 371,197\\ 370,386\\ 369,715\\ \end{array}$	18 19 20 21 22 23 24 25 26 27 28 29 30 31	$\begin{array}{r} 369,159\\ 368,686\\ 368,284\\ 367,938\\ 367,639\\ 367,380\\ 367,380\\ 367,380\\ 367,151\\ 366,950\\ 366,950\\ 366,613\\ 366,613\\ 366,613\\ 366,441\\ 366,344\\ 366,229\\ 366,125\\ \end{array}$	369,156 368,683 368,683 367,936 367,636 367,376 367,148 366,947 366,768 366,610 366,468 366,468 366,341 366,226 366,122

Эта таблица ясно показывает, что мы имеем дело не просто с удачно подобранной эмпирической формулой, а с выражением какой-то внутриатомной закономерности. Это убеждение еще более укрепилось, когда обнаружилось, что открытые позже линии водорода, лежащие в ультрафиолетовой и инфракрасной частях спектра, также укладываются в аналогичные формулы, а именно: серия Лаймана (в далекой ультрафиолетовой области) — в формулу

$$N = R\left(\frac{1}{1^2} - \frac{1}{m^2}\right) \quad (m = 2, 3, 4); \tag{205.2}$$

серня Пашена (в близкой инфракрасной области) — в формулу

$$N = R\left(\frac{1}{3^2} - \frac{1}{m^2}\right) \quad (m = 4, 5, 6, 7, 8); \tag{205.3}$$

серия Брэккета (в более отдаленной инфракрасной области) — в формулу

$$N = R\left(\frac{1}{4^2} - \frac{1}{m^2}\right) \quad (m = 5, 6); \tag{205.4}$$

серня Пфунда (еще дальше в инфракрасной области) — в формулу

$$N = R\left(\frac{1}{5^2} - \frac{1}{m^2}\right) \quad (m = 6, 7).$$

Все линии водородного спектра можно, следовательно, разделить на ряд серий, объединяемых общей формулой:

$$N = R\left(\frac{1}{n^2} - \frac{1}{m^2}\right),$$
(205.3)

где n = 1, 2, 3, 4, 5, m — целые числа, причем m > n, а R - 0A

ГЛ. ХХХУИН. ИЗЛУЧЕНИЕ АТОМОВ И МОЛЕКУЛ

Рис. 38.1. Схематическое изображение спектра атома водорода: полный спектр и отдельные спектральные серин.

715

люминесценция

и та же постоянная, упоминавшаяся выше. Число n определяет серию, m — отдельную линию этой серии; при n = 1 получает серию Лаймана, при n = 2 — серию Бальмера, при n = 1 получает серию Пашена, при n = 4 — серию Брэккета, при n = 5 — серию Пфунда. На рис. 38.1 схематически изображен полный спектр волорода и отдельные серии, на которые его можно разложить. Каждая серия состоит из ряда линий, расстояния между которыми, как и следует из формулы, уменьшаются в сторону коротких длин воли.

следует из формулы, уменьшаются в сторону коротких длин вол. Постепенно увеличиваясь, частоты линий стремятся к определите ленному пределу, величину которого легко найти из сериальной формулы. Иногда наблюдается слабый сплошной спектр, примыкающий к границе серии со стороны больших частот. На рис. 38.2 приведена фотография линий серии Бальмера.

Рис. 38.2. Фотография линий серии Бальмера.

Успех Бальмера направил винмание исследователей на поиски сериальных зависимостей в спектрах других веществ. В первую очередь были исследованы спектры щелочных металлов, затем щелочноземельных и некоторых других элементов. Несмотря на трудность расшифровки, и здесь найдены были серии, и, что очень важно, полученные формулы очень напоминали сериальную формулу для водорода. Отличие сводится к поправочным членам а и ^р, имеющим для водорода значения, равные нулю:

$$N = R \left[\frac{1}{(n+\alpha)^2} - \frac{1}{(m+\beta)^2} \right].$$
 (205.6)

Каждому элементу соответствует несколько таких поправочных членов, с помощью которых можно выразить все характерные для данного элемента серин. Так, например, для натрия эти поправки имеют значения —1,35, —0,87, —0,01 и 0, так что все четыре известные серин натрия выражаются в внде

 $N = R \left\{ \frac{1}{(3-0.87)^2} - \frac{1}{(m-1.35)^2} \right\}, \quad m = 4, 5, 6, \dots \text{ (резкая серия);}$ $N = R \left\{ \frac{1}{(3-1.35)^2} - \frac{1}{(m-0.87)^2} \right\}, \quad m = 3, 4, 5, \dots \text{ (главная серия);}$ $N = R \left\{ \frac{1}{(3-0.87)^2} - \frac{1}{(m-0.01)^2} \right\}, \quad m = 3, 4, 5, \dots \text{ (диффузная серия);}$ $N = R \left\{ \frac{1}{(3-0.01)^2} - \frac{1}{m^2} \right\}, \quad m = 4, 5, 6, \dots \text{ (фундаментальная серия);}$

ГЛ. ХХХVIII. ИЗЛУЧЕНИЕ АТОМОВ И МОЛЕКУЛ

Как мы видим, *n* во всех сериях равно 3, а *m* принимает целые значения > 3. Поправочные члены входят в различных, хотя и не во всех мыслимых комбинациях (правила отбора). R имеет почти то же значение, что и в серии Бальмера.

Более тщательные измерения показывают, что R слегка увеличивается по.мере возрастания атомного веса, имея для водорода значение 109 678 см⁻¹, а для наиболее тяжелых атомов — 109 737 см⁻¹, причем, начиная примерно с хлора, нарастание R практически уже незаметно. В частности, для натрия R_{Na} = 109 735 см⁻¹.

Спектры щелочных и щелочноземельных металлов и других элементов гораздо сложнее спектра водорода. Одним из отличий, имеющих место и в других сложных элементах, является мультиплетный характер линий: линии состоят из нескольких (две, три и более) компонент с близкими значениями частот. Частоты отдельных компонент также подчинены определенным закономерностям. Разыскивать закономерности в таких сложных спектрах нелегко, и это явилось в значительной степени делом догадки и остроумия. Благодаря работам Ридберга и других выяснились некоторые правила, помогающие обнаруживать и выделять отдельные серии. В настоящее время теория атома позволила обосновать многие такие правила. В частности, принадлежность линии к той или другой серии можно установить по характеру аномального расщепления в магнитном поле (см. § 172).

Исследования Ридберга (1890 г.) выяснили универсальность постоянной R и возможность представления отдельных частот двучленными формулами приведенного выше типа, т.е. в виде разности двух членов (термов). Кроме того, оказалось, что различные термы (зависящие от α и β) могут комбинироваться попарно, давая начало новым сериям (комбинационный принцип Ритца. 1908 г.). Таким образом выясняется, что физический смысл имеет именно терм. Особенности атома проявляются в поправочных членах сериальных формул и в мультиплетности линий (точнее, термов).

Установление сериальных закономерностей, связь между сериями (принцип Ритца), универсальность постоянной Ридберга всё свидетельствовало о глубоком физическом смысле открытых законов. Тем не менее, попытки установить на основании этих законов внутренний атомный механизм, обусловливающий найденные закономерности, потерпели решительную неудачу. Было ясно, что каждая серия полностью вызвана одним и тем же механизмом. Между тем трудно представить себе возможность излучения целого ряда частот таким простым атомом, как, например, атом водорода. Известны, конечно, типы механических излучателей, дающих ряд колебаний, например струна. Однако спектр такого излучателя состоит из основной частоты и ее обертонов, представляющих целые кратные от основной, даже отдаленно не напоминая закономерностей, наблюдаемых в спектральных

сернях. Были попытки придумать такие типы излучателей, которые давали бы частоты, связанные формулами, аналогичными формулам спектральных серий (Ритц, закрепленные мембраны). Но попытки эти кончились неудачей. Ритц показал, что классическими законами колебательных систем нельзя объяснить законы спектральных серий.

спектральных ссрин. И действительно, решение задачи было найдено в 1913 г. Бором путем привлечения для объяснения атомных закономерностей *теории квантов*; таким образом, оказалось, что классические законы, установленные в макроскопических явлениях, недостаточны для объяснения строения атомов.

§ 206. Модели атома Дж. Дж. Томсона и Резерфорда

Вся совокупность наших сведений об оптических явлениях, и в первую очередь эффект Зеемана, свидетельствует, что излучение света обусловлено процессами, в которых принимают участие электроны, входящие в состав атома.

Для объяснения линейчатого спектра, испускаемого изолированным атомом, следовало предположить, что электрон в излучающем атоме совершает (почти) гармонические колебания, которые согласно классическим законам и обусловливают почти монохроматическое излучение. Поэтому на основании вида атомных спектров следовало предположить такое устройство атома, при котором электроны, входящие в его состав, способны совершать гармонические колебания, т. е. удерживаются около положения равновесня квазнупругой силой вида $f = -\kappa x$, где $\kappa -$ постоянная, а x - отклонение электрона от положения равновесия.

Исходя из закона взаимодействия точечных электрических зарядов (закон Кулона), можно было бы представить себе модель атома, удовлетворяющую такому требованию. Согласно этой модели, предложенной Дж. Дж. Томсоном (1903 г.), атом представляет собой равномерно заполненную положительным электричеством сферу, внутри которой находится электрон. Если заряд электрона равен положительному заряду сферы, то такой атом будет нейтральным, а сила, действующая на электрон при его смещении, подчиняется закону квазнупругой силы.

Попытки интерпретации сернальных закономерностей в спектрах испускания и поглощения атомов, а также анализ результатов исследования теплового излучения, фотоэффекта и ряда других явлений (см. гл. ХХХИ—ХХХVІ) привели к радикальному пересмотру представлений о законах, управляющих поведением микросистем — атомов, молекул и т. п., и имели чрезвычайно важное значение для физики в целом. В этой связи большой интерес представляет процесс становления квантовой теории, и в последующих параграфах (см. §§ 207—209) рассмат-

ГЛ. ХХХVIII. ИЗЛУЧЕНИЕ АТОМОВ И МОЛЕКУЛ

риваются основные этапы развития квантовых идей в спектрориваются. Однако для объяснения спектральных закономерностей скопни. Соста оказалась совершенно непригодной. Более того, модель толоважения Томсона относительно характера распределения положительных и отрицательных зарядов в атоме не покоятся на базе какого-либо прямого опыта. Поэтому следует признать важнейшим шагом вперед попытку непосредственного опытного зондирования внутренних областей атома с целью установления пространственного распределения зарядов в атоме.

Попытка подобного рода была предпринята еще Ленардом (1903 г.), который изучал прохождение быстрых электронов через материальные тела и пришел к выводу, что атом нельзя представлять себе состоящим из заряженного вещества, равномерно распределенного по всему его объему, а скорее следует приписать ему ажурное строение. К тем же заключениям, но гораздо более обоснованным и количественно уточненным, пришел позже (1913 г.) и Резерфорд, предпринявший исследование «внутренности» атома более мощными средствами.

В качестве зонда для прощупывания атома Резерфорд выбрал α-частицы, т. е. быстро летящие ионы гелия с атомным весом 4 и двойным элементарным зарядом, выделяющиеся при радноактивном распаде сложных атомов. Так как α-частицы представляют собой сравнительно тяжелые частицы (атомный вес их равен 4, т. е. масса 6,65 · 10⁻²⁴ г), летящие с большой скоростью (до ¹/₁₅ скорости света), то кинетическая энергия отдельных а-частиц весьма значительна. Это делает возможным непосредственное наблюдение на опыте отдельных α-частиц. Действительно, существует несколько методов таких наблюдений. Простейшим из них является метод сцинтилляций, основанный на способности α-частицы при ударе о фосфоресцирующий экран вызывать вспышку, достаточно яркую для наблюдения при помощи лупы. Можно также непосредственно наблюдать путь α-частицы в виде узкого пучка тумана в камере Вильсона.

Пользуясь возможностью наблюдения отдельных α-частиц, Резерфорд исследовал (по методу сцинтилляций), каким образом меняется направление полета α-частиц при прохождении их сквозь слой какого-либо вещества (рассеяние α-частиц).

При прохождении α-частицы через вещество происходит изменение направления ее полета в результате взаимодействия с зарядами, входящими в состав атома. При этом столкновение с электроном не должно сильно сказываться на траектории α-частицы, так как масса ее приблизительно в 7000 раз превосходит массу электрона; при встрече с а-частицей электрон значительно сместится без заметного изменения пути а-частицы. Напротив, столкновение с положительно заряженной частью атома может вызвать более или менее резкое изменение направления движения а-частицы.
Опыты Резерфорда показали, что наряду со случаями отклоиения а-частиц на малые углы довольно часто происходят столкновения, вызывающие крутой поворот траектории а-частицы в частности, даже ее отбрасывание назад. Точные и тщательные исследования законов рассеяния а-частиц, выполненные резерисследования законов рассеяния а-частиц, выполненные резерфордом и его сотрудниками, в первую очередь Чэдвиком, позволили прийти к выводу, что положительный заряд атома сконцентрирован в очень малой центральной его части, называемой ядром и имею.

щей размеры, не превышеловано, что нельзя пользоваться моделью Таким образом, доказано, что нельзя пользоваться моделью томсона (положительная сфера имеет размеры атома) и надо представлять себе атом, содержащий Z электронов, как систему зарядов, в центре которой находится положительно заряженное ядро с зарядом Ze, а вокруг ядра расположены электроны, распределенные по всему объему, занимаемому атомом. Лучше сказать, что размерами атома мы считаем размеры области, где расположены принадлежащие атому электроны. Такая система зарядов не может находиться в устойчивом равновесни, если заряды неподвижны (общее положение электростатики). Поэтому необходимо предположить, что электроны движутся вокруг центрального ядра наподобие планет Солнечной системы, описывая около него замкнутые траектории. Так возникла ядерная модель атома Резерфорда, сохранившая свое значение и до настоящего времени, хотя в рамках современных представлений мы не можем говорить столь опре деленно ни о локализации зарядов, ни об их траекториях.

§ 207. Постулаты Бора

Модель, предложенная Резерфордом, покоится на твердых экспериментальных данных, полученных из опытов с рассеянием α-частиц, и, по-видимому, необходима для объяснения этих опытов. Но, вместе с тем, она не только не объясняет спектральных закономерностей, но даже не в состоянии объяснить самого факта испускания атомом монохроматического излучения, если описывать процессы в такой системе, опираясь на классические законы механики и электродинамики.

Действительно, движение электронов по окружностям или еообще по криволинейным орбитам есть движение ускоренное и согласно законам электродинамики должно сопровождаться излучением света соответствующей частоты. В частности, при равномерном обращении по окружности частота излучения равна частоте обращения; при более сложных периодических движениях излучение можно представить как ряд монохроматических компонент, в соответствии с теоремой Фурье. Однако при таком движения, иапример круговом, в результате излучения будет уменьшаться энергия атомной системы и вместе с ней будет уменьшаться рас

ГЛ. ХХХVIII. ИЗЛУЧЕНИЕ АТОМОВ И МОЛЕКУЛ

стояние от электрона до центра ядра, а следовательно, будет уменьшаться и период обращения. Таким образом, частота обращения и, шаться и частота излучения непрерывно повышаются: атом будет излучать непрерывный спектр; в то же время электрон будет непрерывно приближаться к ядру и через короткую долю секунды должен упасть на него, после чего атом как таковой прекратит свое существование.

Итак, по законам классической электродинамики атом Резерфорда должен быть неустойчив и в течение всего времени своего существования должен излучать непрерывный спектр. Оба эти вывода стоят в резком противоречии с опытом.

Как уже упоминалось, выход из затруднения был предложен Бором, отказавшимся от применения к атому законов классической электродинамики. Опираясь на идеи квантовой теории Планка, Бор подошел к трактовке модели Резерфорда с точки зрения этих новых представлений. Нужно отметить, однако, что теория Планка, признав неприменимость классической электродинамики к элементарному осциллятору, еще не выдвинула на ее место разработанной квантовой теории. Поэтому и Бор не мог дать решения сложной задачи об атоме Резерфорда, которое представляло бы последовательное применение законов новой физики. Он вынужден был сформулировать в виде постулатов определенные утверждения в духе новой теории, не дав сколько-нибудь рационального обоснования рецепту применения этих постулатов. Однако на таком заведомо несовершенном пути были получены столь поразительные результаты, что правильность замысла Бора стала очевидной. Последующее развитие квантовой теории повело к разрасотке квантовой механики и квантовой электродинамики, при помещи которых удалось получить постулаты Бора как их следствия.

Бор обобщил идеи Планка, предположив, что и в случае атома Резерфорда непрерывное излучение, требуемое классической электродинамикой, не имеет места. Для истолкования линейчатых спектров подобного атома нужно предположить, что лученспускание атомной системой происходит не так, как по обычным макроскопическим представлениям, вследствие чего при помощи этих представлений нельзя определить частоту излучения. Бор предположил, что излучение обладает частотой у, определяемой следующим усло-(207.1) вием для частоты:

$$hv = E_m - E_n, \qquad (2011)$$

где E_m и E_n — энергии системы до и после излучения. Таким образом, частота излучения у не связана, вообще говоря, ни с какими

частотами движений атомной системы. Исходя из этого закона, можно заключить, что спектры не дают нам картины движения частиц в атоме, как принимается в классической теории излучения, и позволяют судить лишь об измене-

ниях энергии при различных возможных процессах в атоме. Со. ниях энергии при различных скретный характер спектральных гласно такому воззрению дискретный характер спектральных гласно такому возърснико длетровании определенных, дискретлиний свидетельствует о существовании определенных, дискретлиний свидетельствуст с существующих особым состояниям, дискрет-ных значений энергии, соответствующих особым состояниям атома, ных значении энергии, соответству стационарными, ибо предпола. Эти состояния уместно назвать стационарными, ибо предпола. Эти состояния уместно населет в каждом из них известное время гается, что атом может пребывать в каждом из них известное время гается, что атом может преоблать с поло или повестное время и, покидая его, снова попадает в другое стационарное состояние, и конечную величину изменяя свою энергию на конечную величину.

иняя свою элергию на полосили сформулированы Бором в виде двух постулатов.

1) Атом характеризуется известными состояниями, в которых излучение энергии не имеет места, даже если заряженные части атома находятся во взаимном движении, так что по законам обычной электродинамики следовало бы ожидать излучения. Эти состояния можно назвать стационарными состояниями рассматриваемой системы.

2) Всякое испускание или поглощение излучения должно соответствовать переходу из одного стационарного состояния в другое, При таких переходах испускается (или поглощается) монохроматическое излучение, частота которого у определяется соотношением

$$hv = E_m - E_n,$$

где E_m и E_n — энергия системы в первом и втором стационарном состояннях.

Постулаты Бора имели чрезвычайно большое значение, поскольку на их основе удалось систематизировать обширный спектроскопический материал, обсуждавшийся выше, и прежде всего спектр атома водорода.

§ 208. Атом водорода

Согласно Резерфорду атом водорода представляет собой ядро с атомным весом 1 и с зарядом + е (протон), около которого обращается один электрон, удерживаемый вблизи ядра кулоновской силой электростатического притяжения. Пользуясь законами механики, нетрудно вычислить, что электрон должен описывать эллиптическую орбиту, в фокусе которой находится протон. Энергия такой системы $E = -e^2/2a$ (см. упражнение 243), где a - большаяполуось эллипса; частота обращения электрона по орбите (*) определится из соотношения (208.1)

$$\omega^2 = \frac{2 |E|^3}{\pi^2 \mu e^4},$$

где и — масса электрона.

Эдесь собозначает общиную, а не угловую частоту. Мы ввели это обозна-ве вместо поненияте общиную, а не угловую частоту. Мы ввели это обозна-не вместо поненияте общиную, а не угловую частоту. чение вместо привычного v с тем, чтобы отличнть ее от частоты, вычисленной в рамках теории кранитор в рамках теории квантов.

ГЛ. ХХХVIII. ИЗЛУЧЕНИЕ АТОМОВ И МОЛЕКУЛ

Так как энергия данной системы не зависит от эксцентриситета зак как от те же формулы справедливы и для круговой орбиты эллинса, то круговой орбиты диаметра 2а. При расчетах предполагается, что массу протона диаметра 20. протона можно считать бесконечно большой по сравнению с массой электрона, можно с протон следует считать неподвижным. Кроме того, не принимается во внимание зависимость массы электрона от скорости. Спектр водородного атома по Бальмеру-Ридбергу описывается

$$v = cR(1/n^2 - 1/m^2) = cR/n^2 - cR/m^2$$

[ср. (205.5)], где с - скорость света. Сопоставляя это выражение с условием частот Бора (207.1)

$$v = E_m/h - E_n/h,$$

найдем, что энергии E_n и E_m стационарных состояний выражаются соотношениями

 $-E_n = hRc/n^2, \quad -E_m = hRc/m^2.$

Таким образом, термы сериальных формул приобретают определенный физический смысл, оказываясь связанными с энергией стационарных состояний атома, а комбинационный принцип Ритца становится естественным следствием второго постулата Бора.

Подчеркнем еще раз, что частота у света, испускаемого при переходе из т-го стационарного состояния в n-е, не равна частоте обращения электрона ни в том, ни в другом состоянии. Действительно,

$$\omega_n^{\mathfrak{s}} = \frac{2h^3 R^3 c^3}{\pi^2 \mu e^4 n^6}, \quad \omega_m^{\mathfrak{s}} = \frac{2h^3 R^3 c^3}{\pi^2 \mu e^4 m^6},$$

вообще говоря, сильно отличаются от утл - частоты перехода из т-го состояния в п-е.

Согласно постулату стационарных состояний энергия Е должна иметь дискретные значения, и задача состоит в их определения. Не зная, однако, законов, управляющих атомными процессами, нельзя установить эти стационарные состояния, ибо обычная механика приводит к любому значению энергии согласно формуле $E = -e^{3}/2a$, так как диаметр электронной орбиты может принимать любое значение. Можно было бы ввести некоторые специальные дополнительные квантовые условия, ограничивающие значения поперечника орбиты, как сделано в одной из первых работ Бора; можно, однако, пойти несколько более общим путем, также указанным Бором.

Обсуждая следствия теории Планка, мы упоминали, что в предельном случае для области длинных волн (малых частот) теория Планка приводит к выводам, соответствующим классической теории. Естественно установить подобное соответствие и в случае атомной системы. Переход из (n + 1)-го стационарного состояния в n-е

A REAL PROPERTY OF

для больших значений *п* должен соответствовать испусканию длиц. ных волн (малых частот), как видно из формулы

$$v_{n+1,n} = Rc \left[\frac{1}{n^2} - \frac{1}{(n+1)^2} \right].$$

Если *п* значительно больше единицы, то можно положить прибли. зительно

$$v_{n+1,n} = 2Rc/n^3.$$

В области этих длинных волн следует ожидать совпадения частоты испускаемого света, вычисленной по квантовой теории, с частотой, определяемой классическими методами, т. е. с частотой обрашения электрона. Эта последняя имеет для обоих стационарных состояний практически совпадающие значения (ибо $n \gg 1$), а именно:

$$\omega_n^{\sharp} \approx \omega_{n+1}^{\sharp} = \frac{2h^3 R^3 c^3}{\pi^2 \mu e^4 n^6}.$$
 (208.2)

Приравнивая согласно сказанному квантовое и классическое выражения для частоты, найдем

$$\frac{4R^2c^2}{n^6} = \frac{2h^3R^3c^3}{\pi^2\mu e^4n^6},$$
(208.3)

откуда

$$R = \frac{2\pi^2 \mu e^4}{ch^3}.$$
 (208.4)

Таким образом, допущение о совпадении для области низких частот результатов расчетов, основанных на постулатах Бора и на классической теорин, позволило выразить постоянную Ридберга через универсальные постоянные атома и, следовательно, установить спектральную формулу для водорода при помощи постулатов Бора в виде

$$N = \frac{E_m - E_n}{hc} = R\left(\frac{1}{n^2} - \frac{1}{m^2}\right) = \frac{2\pi^2 \mu e^4}{ch^3} \left(\frac{1}{n^2} - \frac{1}{m^2}\right).$$
 (208.5)

Подставив значения μ , *e*, *c* и *h*, найдем $R = 1,097 \cdot 10^5 \text{ см}^{-1}$, что превосходно совпадает с опытным значением $R = 109 678 \text{ см}^{-1}$.

Итак, подобные соображения привели Бора к спектральной формуле, которая численно прекрасно передает результаты наблюдений.

Примененный Бором прием установления соответствия между квантовой и классической теориями лег в основу так называемого принципа соответствия, сыгравшего важную роль на первом этапе развития квантовой теории атома.

Итак, метод Бора позволил детальным образом интерпретировать огромный спектроскопический материал и, в частности, спектр атома водорода. Частоты спектральных линий были связаны с энергиями стационарных состояний атома. На прилагаемой схеме рис. 38.3 совокупность таких энергетических уровней вычер-

ГЛ. ХХХУИИ. ИЗЛУЧЕНИЕ АТОМОВ И МОЛЕКУЛ

чена с соблюдением масштаба, так что вертикальное расстояние чена с соответствующими уровнями прямо дает частоту испускаемежду соответству указанные на схеме переходов, означают значения длин волн, выраженные в Å = 10-8 см.

Рис. 38.3. Схема энергетических уровней атома водорода.

На схеме легко также видеть, что серия Лаймана соответствует переходам с одного из высших уровней на основной уровень, т. е. уровень, соответствующий минимальному запасу энергии, серия Бальмера - переходам с верхних уровней на второй и т. д. Предельное (максимальное) значение v соответствует для каждой серии случаю, когда $m = \infty$ ($E_m = 0$), т. е. начальное состояние соответствует бесконечно большому удалению электрона от ядра или

люминесценция

полному отрыву электрона от атома. Это состояние есть состояние понизации. Таким образом, энергия нонизации должна равняться hvo и се можно вычислить, если известна частота границы серии, т. е. vo.

т. е. v_∞. Сравнение результатов таких вычислений с данными непосредст. венных измерений энергии ионизации приводит к весьма удовлет. сорительному совпадению. Так как электрон, отделенный от атома, может обладать произвольной кинетической энергией $\mathscr{E}_{\text{ким}}$. то при его захвате ионом должна освобождаться энергия $hv_{\infty} + \mathscr{E}_{\text{ким}}$. Следовательно, согласно второму постулату Бора будет излучаться частота

$$\mathbf{v} = \frac{h\mathbf{v}_{\infty} + \mathcal{E}_{\text{KHH}}}{h} = \mathbf{v}_{\infty} + \frac{\mathcal{E}_{\text{KHH}}}{h}.$$
 (208.6)

Другими словами, при этих условиях возможно излучение с частотой, большей, чем граница серии, на любую величину в ким/h. Таким образом, излучение должно образовать сплошной спектр, примыкающий к границе серии, как действительно и наблюдается на опыте.

§ 209. Резонансное излучение

Поглощение монохроматического света атомами пара или газа сообщает поглощающему атому определенный запас энергии. Исследуя, в каком состоянии оказывается атом в результате такого воздействия, Вуд (1904—1905 гг.) осуществил следующий опыт (рис. 38.4). В эвакуированный баллон G был помещен кусочек

Рис 38.4. Схема опытов по резонансному возбуждению паров натрия.

металлического натрия, и баллон был нагрет так, что он заполнялся парами натрия. Свет от горелки с введенной поваренной сольо, которая интенсивно испускает желтые линии D_1 и D_2 натрия, иаправлялся при помощи линзы L на сосуд G. На пути падающих лучей пары в сосуде начинали светиться желтым светом, спектроскопическое исследование которого показало, что он состоит также из желтых линий, характерных для спектра натрия ($\lambda_{D_1} = 589,6$ нм и $\lambda_{D_2} = 589,0$ им). При повышении температуры сосуда, т. е. при увеличении плотности пара, свечение стягивается к месту входа лучей, превращаясь в свечение тонкого поверхностного слоя.

726

ГЛ. ХХХVIII. ИЗЛУЧЕНИЕ АТОМОВ И МОЛЕКУЛ

Последнее явление обусловливается увеличением поглощения линий Последности по мере возрастания плотности пара натрия, в результате чего возбуждающий свет перестает проникать в глубь сосуда. При этом обе линии D1 и D2 сливаются.

Аналогичное явление Вуд наблюдал и в парах ртути, причем в данном случае возбуждающий свет представлял собой излучение ртути с $\lambda = 253,7$ нм. Конечно, сосуд с парами должен быть сделан из кварца и источником возбуждения должна служить ртутная линия, испускаемая, например, ртутной кварцевой лампой, горящей в таких условиях, при которых возбуждающая линия $\lambda =$ = 253,7 нм достаточно резка и интенсивна (исключено поглощение возбуждающей линии более холодными слоями паров ртути, могущими скопляться в периферической части разряда). Удается наблюдать испускание и второй линии ртути λ = 185,0 нм, которая гораздо сильнее поглощается и наблюдение которой поэтому значительно труднее.

Впоследствии эти наблюдения были распространены и на другие элементы; несомненно, что опыт возможен с любым веществом, хотя практически из-за трудности подбора подходящего источника возбуждения и вследствие сильного поглощения соответствующих линий осуществление опыта может оказаться затруднительным.

Истолкование опыта, приведшее к тому, что явление было названо резонансным излучением, покоилось на классических представлениях о резонансе (совпадение периодов) возбуждающего света и возбуждаемого атома, в результате которого последний приходит в сильное колебание и становится самостоятельным источником соответствующего излучения. Возможны, конечно, случан, когда поглощающий атом передаст свою энергию окружающим атомам ранее, чем амплитуда его колебания приобретет заметное значение, т. е. ранее, чем резонансное излучение его достигнет наблюдаемой величины. В таком случае оно ускользнет от наблюдения, и эффект поглощения света сведется к нагреванию всего газа. Очевидно, что такие явления будут происходить при наличии сильного взаимодействия между окружающими атомами, например, при большой плотности пара или при добавлении к нему постороннего газа достаточной плотности. Действительно, при этих условиях свечение значительно слабеет или даже совсем пропадает (тушение свечения). Так, если к парам ртути с давлением около 0,001 мм рт. ст., сбнаруживающим хорошо выраженное резонансное свечение, добавить водород под давлением 0,2 мм рт. ст., то интенсивность свечения упадет вдвое; при большем давлении водорода свечение ослабевает соответственно сильнее. Аналогично действуют и добавки других газов, хотя количество, необходимое для ослабления свечения вдвое, зависит от природы добавляемого газа, что показывают приводимые ниже данные.

Газ	H ₁	0,	co,	H ₂ O	Ar	
Давление примеси, необходимое для ослабления вдвое резонансного свечения ртути, в мм рт. ст.	0,2	0,35	2	4	240	~ 760

В рамках теории Бора резонансное свечение имеет иное истол. кование, чем по классическим представлениям. Поглощение света частоты v соответствует сообщению атому энергии в количестве hv, благодаря чему атом переходит в возбужденное состояние с энергией $E_2 = E_1 + hv$, где E_1 — энергия его первоначального состояния. Будучи предоставленным самому себе, он вернется в первоначальное состояние с меньшей энергией и потому более устойчи-

Рис. 38.5. Схема энергетических уровней атома натрия, поясияющая возникновение дублетов в испускании и поглощении. вое, отдав избыток энергии в виде излучения, которое согласно второму постулату Бора и будет иметь частоту v, т. е. будет иметь характер резонансного. То обстоятельство, что резонансное излучение натрия состоит из двух линий, доказывает, что атом натрия может существовать в двух дискретных, близких по энергии возбужденных состояниях (рис. 38.5).

Атом, поглотивший свет, остается в возбужденном состоянии в течение некоторого времени. При помощи различных методов исследования удалось определить это время. Оно различно для

каждого состояния данного атома и, конечно, различно для разных атомов. В общем, время это равно приблизительно 10⁻⁸ с (иногда иссколько больше). Отдельные состояния характеризуются столь большой устойчивостью, что атомы могут оставаться в них гораздо дольше, пока какое-инбудь висшнее воздействие не заставит их выйти из этого состояния. Такие состояния иосят название *метастабильных*; как правило, оши не имеют значения для излучения света, ибо выход из них, сопровождающийся излучением, совершается сравнительно редко. Однако косвенно они играют важную роль, способствуя накоплению атомов в таких промежуточных состояниях и делая возможным поглощение тех длин волн, которые отвечают переводу атома в состояния с еще большей энергией. Таким образом, удается наблюдать поглощение линий, соответствующих переходу между различными состояниями атома, более высокими, чем основное. Разнообразнейшие опыты показали, например,

ГЛ. ХХХVIII, ИЗЛУЧЕНИЕ АТОМОВ И МОЛЕКУЛ

возможность ступенчатого возбуждения атома, т. е. возможность возможность случиния в нем энергии путем последовательного постепенного накопления в нем энергии путем последовательного постепенного на воследовательного поглощения двух различных квантов. Был обнаружен также ряд поглощения нау явлений. Все эти опыты, проведенные различными других слодными, оказались в превосходном согласии с общей картиной процессов излучения, разработанной на основе постулатов Бора.

§ 210. Длительность возбужденного состояния

Выше в § 158 мы упоминали об опытах Вина, служивших для непосредственного измерения длительности т свечения атомов, поставленных в такие условия, когда свечение их не нарушается никакими возмущающими действиями.

Полученные этим методом значения т, показывающие, в течение какого времени интенсивность свечения падает в е раз, принимались за меру естественного затухания атома по экспоненциальному закону $I = I_0 \exp(-t/\tau)$. Кроме того, предполагалось, что все возбужденные атомы начинают свое излучение непосредственно после возбуждения и излучают непрерывно и, значит, наблюдаемое спадание общей интенсивности свечения есть результат постепенного спадания интенсивности излучения каждого атома.

В рамках представлений, лежащих в основе теории Бора, явление испускания света отдельным атомом происходит в результате перехода из одного стационарного состояния в другое, причем предполагается, что такой переход происходит практически мгновенно. С этой точки зрения постепенное ослабление свечения означает, что возбужденный атом может оставаться некоторое время в состоянии возбуждения, пока не произойдет акт перехода в другое стационарное состояние, сопровождающийся излучением. Сам переход происходит мгновенно, но время пребывания атома в возбужденном состоянии может быть более или менее длительным.

Явление испускания света имеет характер статистического процесса, подобно явлению радноактивного распада. Каждый возбужденный атом характеризуется определенной вероятностью испускания α, не зависящей от того, сколько времени он пробыл в возбужденном состоянии. В этом случае изменение числа возбужденных атомов с течением времени должно происходить по закону (210.1)

$$n = n_0 \exp\left(-\alpha t\right),$$

где n₀ — число возбужденных атомов в начальный момент, соответствующий t = 0. Продолжительность существования в возбужденном состоянии для различных атомов различна, но средняя Длительность возбужденного состояния имеет определенное зна-Чение, а именно 1/а. Эта статистическая величина и принимается за характеристику длительности возбужденного состояния и обоз-

729

начается через $\tau = 1/\alpha$ (см. упражнение 241). Так как интенсивность излучения системы пропорциональна числу имеющихся налию возбужденных атомов, то, следовательно, и интенсивность излучения должна убывать по такому же экспоненциальному закону т. е. по закону $I = I_0 \exp(-t/\tau)$. Таким образом, из представлений о скачкообразности испускания света мы приходим к такому же закону естественного затухания, как и из классических. Но если классический процесс затухания характеризовал каждый отдельный атом, то в квантовой теории он получает статистический смысл для целой совокупности атомов.

Итак, в зависимости от того, рассматриваем ли мы процесе излучения классически или в рамках квантовых представлений, одна и та же величина т служит для оценки длительности процесса излучения (затягивания излучения) атома или для оценки длительности его возбужденного состолния (запаздывания излучения).

Кроме метода Вина, существуют и другие способы непосредственкого определения величины т.

§ 211. Радиационные процессы в квантовой теории атома. Вывод формулы Планка по Эйнштейну

До сих пор мы не обсуждали квантовую интерпретацию закономерностей, касающихся интенсивностей спектральных линий. Совпадение частот некоторых линий испускания и поглощения имеет в квантовой теории простое объяснение — такие линии приписываются переходам между одной и той же парой уровней. Однако вопрос о том, существует ли какая-либо связь между величиной коэффициента поглощения и интенсивностью линии испускания той же частоты, не находил ответа. Опыт показывает, далее, что интенсивности линий в спектре излучения одного и того же атома могут отличаться в десятки и сотии раз, причем в разных источниках по-разному. Например, в спектре свечения натриевой газоразрядной лампы, кроме желтых D-линий ($\lambda = 589,0$ и 589,6 нм), присутствует большое число других линий, тогда как в пламени газовой горелки возбуждаются почти исключительно *D*-линии. И наоборот, существуют такие линии, для которых отношение их интенсивностей практически одинаково во всех источниках света.

В 1916 г. в связи с анализом проблемы равновесного теплового излучения Эйнштейн дополнил квантовую теорию Бора количественным описанием процессов поглощения и испускания света. Новые понятия и представления, введенные Эйнштейном, полно стью сохранили свое значение до наших дней и служат основой теоретического анализа большинства вопросов, касающихся интенсивности линий испускания и поглощения.

Будем рассматривать газ, состоящий из одинаковых атомов. Каждый из атомов, согласно постулатам Бора, может находиться

ГЛ. ХХХVIII. НЗЛУЧЕНИЕ АТОМОВ И МОЛЕКУЛ

в стационарных состояниях, которые перенумеруем (1, 2, ..., i, ...) в порядке возрастания внутренией энергии $(E_1, E_2, ..., E_{i,...})$, отвев порядке всего и отве-чающей этим состояниям. Атомарный газ охарактеризуем средним чающен этомов N_i, находящихся в состоянии і и обладающих энерчислова сладающих энер-гней Е₁. Это число атомов часто называют заселенностью уровня i.

Согласно изложенному выше, постулаты Бора позволяют вычислить частоты спектральных линий, если известны энергии стационарных состояний атома. Вместе с тем, постулаты Бора оставляют не выясненным вопрос о связи значений энергий стационарных состояний с особенностями внутреннего строения атомов числом его электронов, их взаимодействием между собой и с ядром и т. д. Этот вопрос нашел свое решение только в квантовой механике, утвердившейся в 20-х годах при последующем развитии квантовых представлений.

Значения энергий Е, как уже сказано, определяются внутренним строением атома и в дальнейшем будут считаться заданными. Что касается заселенностей, то они зависят от условий, внешних по отношению к атому. Если, например, газ находится в состоянии термодинамического равновесия при температуре Т, то заселенности определяются принципом Больцмана

$$N_i/N_j = (g_i/g_j) \exp[-(E_i - E_j)/kT],$$
 (211.1)

где g_i — статистический вес, или кратность состояния i*). В неравновесных, но неизменных во времени условиях заселенеости можно вычислить, если известны длительность т, состояния i (см. § 210) и число актов возбуждения W, атомов в состояние і за единицу времени (так называемая вероятность возбуждения в единицу времени), а именно

$$N_i = W_i \tau_i. \tag{211.2}$$

Соотношение (211.2) означает, очевидно, равенство числа актов возбуждения (W_i) и числа актов ухода из состояния i (N_i/τ_i) за единицу времени. Величина W, зависит от особенностей того способа, которым осуществляется возбуждение атома. Это может быть столкновение атома с электроном в газовом разряде, сопровождающееся передачей энергии поступательного движения внутренним степеням свободы атома, либо приобретение энергии атомом при диссоциации молекулы, либо химическая реакция, продукты которой оказываются в возбужденном состоянии, и т. д. С некоторыми способами возбуждения мы познакомимся позже (см. § 212 и гл. XXXIX и XL). В данном же параграфе заселенности также пред-

полагаются заданными известными величинами. Пусть атом по тем или иным причинам оказался в возбужденном состоянии т. Если его полностью изолировать от каких бы то

*) См. Д. В. Сивухин, Общий курс физики, т. П. «Наука», 1975г.

731

ни было дальнейших воздействий, он тем не менее будет испытывать переход в одно из состояний (*n*), обладающее меньшей энергией E_n , и при этом будет испущен фотон с частотой $\omega_{mn} = (E_m - E_n)/h$. Такой процесс называется самопроизвольным или спонтанным испусканием света, а соответствующие переходы атома — спонтанным ными переходами.

ными переходими. Причины спонтанного испускания выясняются квантовой элект. родинамикой, а в теории Бора его наличие является фактом, принимаемым для объяснения и описания опытных данных.

Пусть процессы возбуждения обеспечивают неизменную во времени заселенность возбужденных состояний. Это означает, что на смену атомам, испытавшим спонтанные переходы, приходят новые, и газ в целом создает излучение с некоторой постоянной средней мощностью. Для перехода между какими-нибудь определенными уровнями *m* и *n* средняя мощность спонтанного испускания Q_{min}^{cnohr} пропорциональна энергии соответствующего фотона $\hbar\omega_{mn}$ и заселенности N_m уровня *m*, верхнего для данного перехода, т. е. обладающего большей энергией:

$$Q_{mn}^{\text{chour}} = A_{mn} \hbar \omega_{mn} N_{m}. \tag{211.3}$$

Egy P

Коэффициент A_{mn} , имеющий размерность с⁻¹, является характеристикой рассматриваемого перехода $m \rightarrow n$ и называется первым коэффициентом Эйнштейна или коэффициентом Эйнштейна для спонтанного испускания. Величина

$$Z_{mn}^{\text{cnoht}} = Q_{mn}^{\text{cnoht}} / \hbar \omega_{mn} = A_{mn} N_m \qquad (211.4)$$

есть, счевидно, число переходов $m \rightarrow n$, происходящих в единицу времени в результате спонтанного испускания фотонов $\hbar\omega_{mn}$. Можно сказать, следовательно, что A_{mn} представляет собой число переходов в единицу времени в расчете на один.атом в верхнем для данного перехода уровне m. Поэтому A_{mn} часто называют скоростью или вероятностью спонтанного перехода $m \rightarrow n$.

нып веролиностью спонтанного перехода $m \to n$. Если из состояния *m* атом может переходить только в состояние *n*, мощность Q_{mn}^{cnout} равна, очевидно, энергин $\hbar\omega_{mn}N_m$, деленной на длительность τ_m состояния *m*. В этом случае, следовательно, $A_{mn} \equiv 1/\tau_m$. Если же из состояния *m* возможны переходы в несколько состояний *i* ($E_i < E_m$), то $\sum_i A_{mi} = 1/\tau_m$ и величина $A_{mi}\tau_m$ характеризует ту долю общего числа переходов из состояния *m*, которую составляют переходы $m \to i$.

Из соотношения (211.3) видно, что по отношению к мсщности спонтанного испускания можно провести четкое разделение роли внешних условий, в которых находятся атомы, выражающихся в.числе возбужденных атомов N_m , и роли внутренней структуры атома, определяющей величину коэффициента A_{mn} . Можно ска-

ГЛ. ХХХVIII. ИЗЛУЧЕНИЕ АТОМОВ И МОЛЕКУЛ

зать поэтому, что Ата служит атомной характеристикой спонтанзать поэтому, ного испускания фотона при переходе $m \to n$, аналогично тому, ного испускания F. характеризуют станионарти, аналогично тому, ного испусти E, характеризуют стационарные состояния атома

Вопрос о связи коэффициентов Ата с внутренним строением атома выходит за рамки теории Эйнштейна. Этот вопрос полностью разъяснен квантовой механикой, и разработанные в ней методы позволяют рассчитывать значения Атп практически для любого перехода, исходя из своиств уровней т, п. Ниже приводятся в качестве примера коэффициенты Алл для некоторых линий атомарного водорода (серии Лаймана L и Бальмера H):

Символ линии Длина волны λ, нм Коэффициент Эйнштейна А _{тл} , 10 ⁸ с ⁻¹	L _a 121,6 4,68	<i>L</i> _β 102,6 0,55	L _y 97,3 0,13	H _a 656,3 0,44	Н _р 486,1 0,084	Η _γ 434,0 0,025	H ₈ 410,2 0,0097
---	---------------------------------	--	--------------------------------	---------------------------------	----------------------------------	----------------------------------	-----------------------------------

В большинстве опытов, обсуждавшихся выше в связи с экспериментальным обоснованием теории Бора, мы имели дело именно со спонтанным испусканием света. Таково положение и во многих современных источниках — электрических дугах, пламенах, газоразрядных лампах и т. п. *). Направим свет от источника в спектральный аппарат и измерим интенсивность спектральной линии, отвечающей переходу $m \rightarrow n$. Из геометрических условий опыта легко рассчитать ту часть общей мощности Q спонт, которая попадает на приемник излучения, и по измеренному значению интенсивности линии определить Q спонт. Если из каких-либо соображений известна заселенность Nm, то с помощью (211.3) можно найти коэффициент Эйнштейна Атл. Существует и ряд других методов измерения этого коэффициента.

Соотношение (211.3) позволяет объяснить результаты наблюдений, о которых шла речь выше. Составим отношение интенсивностей двух спектральных линий, соответствующих переходам $m \rightarrow n$ H $k \rightarrow i$:

 $Q_{mn}^{\text{CHOHT}}/Q_{kj}^{\text{CHOHT}} = \frac{\omega_{mn}}{\omega_{kl}} \frac{A_{mn}}{A_{kl}} \frac{N_m}{N_k}.$

Отношение заселенностей N_m/N_k уровней m и k может изменяться в чрезвычайно широких пределах в зависимости от условий, реализующихся в источниках света. Можно сказать поэтому, что отличия в распределении интенсивности по спектральным линиям в раз-

*) Иногда важно и то обстоятельство, что свет, испущенный глубинными Слоями источника, частично поглощается внешними.

личных источниках света определяются различием распределений возбужденных атомов по уровням. Наоборот, если сравниваемые спектральные линии отвечают переходам с одного и того же верх. него уровня, отношение их интенсивностей будет одинаковым для всех условий и всех источников света (впрочем, см. предыдущее примечание).

примечание). В главе XXVIII подробно рассматривался другой радиацион. ный процесс — поглощение (абсорбция) света. При квантовом описании поглощение связывается с переходом атома из энергетически низшего состояния в высшие, и частоты поглощаемых фотонов равны $\omega_{mn} = (E_m - E_n)/\hbar$.

равны $\omega_{mn} - (\omega_m - \omega_{nm})$ Запишем мощность Q_{nm}^{norn} , поглощаемую в единице объема газа вследствие переходов $n \rightarrow m$, в виде, аналогичном (211.3): величина Q_{mn}^{norn} пропорциональна $\hbar\omega_{mn}$, заселенности исходного состояния N_n и спектральной плотности излучения u (ω_{mn}):

$$Q_{mn}^{norn} = B_{nm} \hbar \omega_{mn} N_n u \left(\omega_{mn} \right). \tag{211.5}$$

Коэффициент пропорциональности B_{nm} носит название второго коэффициента Эйнштейна или коэффициента Эйнштейна для поглощения. Поскольку $[N_n] = cm^{-3}$, $[u(\omega)] = Дж \cdot cm^{-3} \cdot c$, размерность коэффициента B_{nm} есть $[B_{nm}] = Дж^{-1} cm^3 c^{-2}$. Отношение

$$Z_{nm}^{\text{norn}} = Q_{nm}^{\text{norn}} / \hbar \omega_{mn} = B_{nm} u \left(\omega_{mn} \right) N_n \qquad (211.6)$$

представляет собой число переходов $n \rightarrow m$, совершающихся в едннице объема за единицу времени и сопровождающихся поглощением фотонов $\hbar\omega_{mn}$. Произведение $B_{nm}u(\omega_{mn})$, имеющее размерность с⁻¹, играет роль, аналогичную A_{mn} , т. е. определяет число указанных переходов в единицу времени в расчете на один атом в состоянии n. Поэтому $B_{nm}u(\omega_{mn})$ часто называют ееролтностью поглощения в единицу времени. Коэффициент B_{nm} , как и A_{mn} , является характеристикой данного перехода, зависящей только от свойств атома, но не от внешних условий. Более того, Эйнштейн показал, что A_{mn} и B_{nm} пропорциональны друг другу (см. ниже).

Кроме спонтанного испускания и поглощения, Эйнштейн ввел представление еще об одном раднационном процессе, — индуциросанном (или вынужденном, или стимулированном) испускании. Индуцированное испускание, в отличие от спонтанного, состоит в испускании фотона под действием внешнего электромагнитного поля: атом, находящийся в энергетически более высоком состояния (E_m) , переходит в состояние с меньшей энергией (E_n) , и излучается фотон с частотой $\omega_{mn} = (E_m - E_n)/\hbar$. Энергия, излучаемая в результате вынужденных переходов, и их число в единице объема за едиинцу времени записываются аналогично (211.5) и (211.6):

$$Q_{mn}^{\text{WM}} = B_{mn} \hbar \omega_{mn} N_m u (\omega_{mn}),$$

$$Z_{mn}^{\text{WM}} = Q_{mn}^{\text{WM}} \hbar \omega_{mn} = B_{mn} u (\omega_{mn}) N_m.$$
(211.8)

ГЛ. ХХХVIII. ИЗЛУЧЕНИЕ АТОМОВ И МОЛЕКУЛ

Величина Вта называется коэффициентом Эйнштейна для вынуж-Величника Для вынужленные пороходи оснитенна для вынуж-денного (индуцированного) испускания. Если поле отсутствует ∂c_{HH020} (ш. $(\omega_{mn}) = 0$), то вынужденные переходы не происходят. Таким ($(\omega_{mn}) = 0$), то вынужденные переходы не происходят. Таким (и (шал) сли вызывает переходы, сопровождающиеся как поглощением, так и испусканием фотонов.

Существование вынужденных переходов и вынужденного испускания непосредственно следует из целого ряда опытных фактов и теоретических соображений. Эйнштейн показал, что постулаты Бора не противоречат твердо установленным законам теплового излучения, только если принять в расчет вынужденные переходы. Понведем вывод формулы Планка по Эйнштейну.

Пусть атомарный газ находится в замкнутом объеме при изотермических условиях. В том же объеме присутствует, естественно, и электромагнитное поле, обусловленное тепловым излучением. Как было выяснено в главе XXXVI, рассматриваемая система, состоящая из газа и теплового излучения, будет находиться в термодинамическом равновесии, если газ и излучение обладают одной и той же температурой, атомы подчинены распределению Максвелла-Больцмана, а излучение - формуле Планка. Однако термодинамическое равновесие системы не означает, что энергия каждого атома газа сохраняется неизменной. Между атомами и полем осуществляется постоянный обмен энергией. Атомы излучают и поглощают фотоны, переходя из одних состояний в другие; происходит и обмен импульсами между атомом и полем - импульс изменяется в процессе испускания и поглощения фотона (см. § 184). Между атомами газа осуществляется также обмен импульсами и энергией при их столкновениях между собой. Однако ни один из этих процессов не нарушает термодинамического равновесия системы в целом и соответствующих ему законов распределения атомов по энергиям и скоростям, равно как и распределения энергии излучения по спектру.

Сказанное означает, что мощность излучения, поглощаемая газом при переходах $n \rightarrow m$, должна равняться мощности, излучаемой при обратных — вынужденных и спонтанных — переходах. Выполнение этого условия обеспечивает неизменность и спектральпой плотности энергии излучения (для частоты ω_{mn}), и среднего числа атомов в состояниях m, n. Итак, в состоянии термодицамического равновесия должно выполняться равенство

или $Z_{nm}^{norn} = Z_{mn}^{cnour} + Z_{mn}^{und}$. (211.9) $Q_{nm}^{\text{norm}} = Q_{mn}^{\text{cnoht}} + Q_{mn}^{\text{nhg}}$ Обозначим через $u_{\omega_{mn},T}$ спектральную плотность теплового излучения. В силу соотношений (211.4), (211.6), (211.8) из (211.9) следует $B_{nm}N_nu_{\omega_{mn},T} = A_{mn}N_m + B_{mn}N_mu_{\omega_{mn},T}.$

Наша задача состоит в том, чтобы в соответствии с теорней Эйнштейна вывести формулу Планка. Поэтому (211.10) нужно рассматривать как уравнение относительно и Должно иметь место такое распределение энергии излучения по спектру, чтобы еыпол. нялось условие равновесия между газом и излучением (211.10). Из этого условия находим

$$u_{\omega_{mn, T}} = \frac{A_{mn}/B_{mn}}{B_{nm}N_n/B_{mn}N_m - 1} \cdot (211.1)$$

В состоянии термодинамического равновесия заселенности уровней определяются распределением Больцмана (211.1), вследствие чего выражению (211.11) можно придать вид

$$u_{\omega_{nm, T}} = \frac{A_{mn}/B_{mn}}{(g_n B_{nm}/g_m B_{mn}) \exp(\hbar \omega_{mn}/kT) - 1}, \qquad (211.12)$$

причем разность $E_m - E_n$ заменена, в соответствии с формулой Бора, энергией фотона $\hbar\omega_{mn}$. Полученное соотношение удовлетворяет второму закону Вина (200.1), согласно которому температура может фигурировать только в комбинации ω/T .

Вспомним, что спектральная плотность равновесного излучения, как это подчеркивалось в § 196, должна представлять собой универсальную функцию частоты и температуры, т. е. не может зависеть от свойств конкретной излучающей и поглощающей системы. Поэтому A_{mn}/B_{mn} и B_{nm}/B_{mn} должны иметь определенные универсальные значения. Для нахождения последних воспользуемся законом Рэлея—Джинса (201.1), который подтверждается измерениями, если длины волн λ и температура T достаточно велики (т. е. $\lambda \gg \lambda_{max} = 0.51/T$, см. §§ 200, 201). Именно, для указанных условий ехр ($\hbar\omega_{mn}/kT \approx 1 + \hbar\omega_{mn}/kT$, и сопоставление соотношений (211.12) и (201.1) приводит нас к формулам *)

$$g_n B_{nm} = g_m B_{mn}; \quad A_{mn} = \frac{\hbar \omega_{mn}^3}{\pi^2 c^3} B_{mn};$$
 (211.13)

$$u_{\omega_{mn, T}} = \frac{\hbar \omega_{mn}^{3}}{\pi^{2} c^{3}} [\exp{(\hbar \omega_{mn}/kT)} - 1]^{-1}.$$
(211.14)

Поскольку, наконец, наши рассуждения применимы к любому переходу, то частоту ω_{mn} в (211.14) можно заменить на произвольное значение ω , после чего соотношение (211.14) оказывается совпадающим с формулой Планка.

Если в ходе выкладок не принять во внимание вынужденное испускание, то, как легко проверить, мы придем к формуле вида (211.14), но без единицы в знаменателе. Следовательно, теория Эйнштейна не противоречит законам теплового излучения, только если допустить существование вынужденного испускания. Если же принять постулат о вынужденном испускании, то можно

*) Следует принять во внимание равенства $cu_{v,T} = 4\varepsilon_{\omega,T}$, $2\pi u_{\omega,T} = u_{v,T}$.

посмотреть на (211.14) с иной точки зрения. Если to > kT, то посмотреть сдиницей в сравнении с ехр (hw/kT); физически можно прелег, что для сохранения термодинамического равновески это означает, практически достаточно спонтанного испускания, вынужденное же практичение значительно меньше поглощения и не играет заметной роли, так как высоко возбужденных атомов мало при указанном соотношении между температурой и частотой. Наоборот, в длинноволновой области спектра, где применим приближенный закон волновой стинса (ħω ≪ kT), числа переходов, происходящих с вынужденным излучением и поглощением фотонов, почти одинаковы.

Итак, опираясь на общие законы теплового излучения, надежно подтвержденные опытом, и на новые квантовые гредставления о процессах испускания и поглощения света, Эйнштейн вывел формулу Планка и тем самым показал, что зарождавшаяся в то время квантовая теория находится в соответствии с однам из фундаментальных законов физики.

Установленные Эйнштейном соотношения (211.13) между коэффициентами Amn, Bnm и Bmn имеют совершенно общий характер и применимы к любым квантовым системам (атомы, молекулы, ноны и т. п.). Хотя в ходе рассуждений мы говорили об атомах, но фактически подразумевалось только существование стационарных состояний с дискретными значениями энергий. Разумеется, представления о трех радиационных процессах применимы и к таким источникам, которые не находятся в состоянии термодинамического равновесия.

Из соотношений Эйнштейна (211.13) легко видеть, что при прочих равных условиях поглощение сильнее в тех спектральных линиях, для которых большее значение имеет коэффициент Атл. В случае, например, серии Бальмера в спектре атомарного водорода (рис. 38.1 и 38.3) поглощение должно быть слабее у старших членов серии, поскольку для них, согласно приведенным выше данным, коэффициенты А_{тл} меньше. Соотношения (211.13) подтверждаются измерениями без всяких исключений. Поэтому, измеряя коэффициенты поглощения и опираясь на (211.13), можно определять численные значения первых коэффициентов Эйнштейна Атл.

Ранее неоднократно отмечалось, что свет, излучаемый атомами, не является строго монохроматическим и состоит из спектральных составляющих, которые расположены в некотором интервале частот, имеющем определенную конечную ширину (см. § 158). Все изложенное в настоящем параграфе относилось к так называемой интегральной интенсивности спектральной линии, т. е. к сумме всех ее монохроматических составляющих. Если применяется спектральный аппарат достаточно высокой разрешающей силы, то можно измерить и спектральную плотность излучения внутри линии, или, как говорят, контур спектральной линии.

24 Ландсберг Г. С.

люминесценция

Для количественного описания контура линии спонтанного спонтанного описания контура линии спонтанного Для количественного описати спонтанного испускания следует составить выражение для мощности $q_{mn}^{cnout}(\omega) d\omega$, испускания следует составить выражение для мощности $q_{mn}^{cnout}(\omega) d\omega$, испускания следует составления при спонтанных переходах $n \to m$ испускаемой единицей объема при спонтанных переходах $n \to m$ атомов и приходящейся на спектральный интервал dw:

$$q_{mn}^{\text{cnoff}}(\omega) \, d\omega = \hbar \omega N_m a_{mn}(\omega) \, d\omega. \tag{211.15}$$

Величина а_{тп} (ω), называемая спектральной плотностью первого коэффициента Эйнштейна, описывает контур линии и связана

$$\int a_{mn}(\omega) \, d\omega = A_{mn}. \tag{211.16}$$

Перейдем к вопросу о контуре линии поглощения. Для ero измерения нужно осветить поглощающий газ монохроматическим светом, либо, что физически эквивалентно, провести спектральное разложение света, прошедшего через газ, и проследить за отдельными монохроматическими составляющими. Аналогичным образом исследуется и контур линии вынужденного испускания. В соответствии с этим рассматривают мощность, поглощаемую и инду-цированно испускаемую в единице объема и в интервале частот do при переходах $n \rightarrow m$ и $m \rightarrow n$ соответственно:

$$q_{nm}^{\text{norn}}(\omega) \, d\omega = \hbar \omega N_n b_{nm}(\omega) \, u(\omega) \, d\omega; \quad \int b_{nm}(\omega) \, d\omega = B_{nm}; \quad (211.17)$$

$$q_{mn}^{\text{WH}}(\omega) \, d\omega = \hbar \omega N_m b_{mn}(\omega) \, u(\omega) \, d\omega; \quad \int b_{mn}(\omega) \, d\omega = B_{mn}. \quad (211.18)$$

Здесь и (w) dw — энергия монохроматического излучения, в котором находятся атомы.

Болсе детальный анализ показывает, что функции $q_{mn}(\omega)$, $b_{mn}(\omega)$ и $b_{nm}(\omega)$ связаны между собой соотношениями, аналогичными (211.13):

$$q_n b_{nm}(\omega) = g_m b_{mn}(\omega); \quad a_{mn}(\omega) = \frac{\hbar \omega^3}{\pi^2 c^3} b_{mn}(\omega).$$
 (211.19)

Если средняя частота линии значительно превосходит ее ширину, то в пределах последней множитель ω³ можно считать практически постоянным. В этом случае, следовательно, линии поглощения, вынужденного и спонтанного испускания имеют подобные контуры.

Этот вывод теории подтверждается опытом только для сравнительно малых интенсивностей света. Оказывается, что при достаточно мощных полях выполняется лишь пропорциональность а_{ma} (ω) н b_{mn} (ω), тогда как a_{mn} (ω), вообще говоря, не пропорционально b_{nm} (ω). Объяснення этого важного явления лежат вне курса общей физики. физики, и мы отметим лишь, что степень нарушения равенства $g_n b_{nm}(\omega) = g_m b_{mn}(\omega)$ зависит от многих обстоятельств (спектрального состава излучения, его мощности, длительности состояний *п* и *m* и др.) и может оказать стальности состояние составания и может оказать составания с составания и может оказать с составания ний *п* и *m* и др.) и может оказаться значительной при сравнительно не очень больших мощностях, порядка 10⁻² Вт/см².

ГЛ. ХХХVIII. ИЗЛУЧЕНИЕ АТОМОВ И МОЛЕКУЛ

Волны, испущенные в результате вынужденных переходов, Волны, показал Эйнштейн, следующей важной особенностью: обладают, как показал Эйнштейн, следующей важной особенностью: обладают, нак иза, направление распространения и сосбенностью: их частота, фаза, направление распространения и состояние поллих частопия, флон, на развитения в состояние поля-ризации такие же, как у излучения, вызваешего переходы. Друризации головами, индуцированно испущенные фотоны неотличкымы гими слова, падающих на атомы, и роль индуцированного испуот фотолось, скання сводится только к увеличению амплитуды поля.

Указанное свойство вынужденного испускания существенно для понимания связи между коэффициентом поглощения и введенными выше вероятностями поглощения и испускания. Исследованые абсорбции света в каком-либо веществе состоит в сравнении интенсивности света, прошедшего вещество, с интенсивностью падающего на него излучения. Если в веществе находятся возбужденные атомы, то кроме переходов, связанных с поглощением фотонов, будут происходить и вынужденные переходы. Как было сказано, вынужденно испущенные фотоны неотличимы от фотонов падающего света, т. е. вынужденные переходы частично компенсируют убыль фотонов в прошедшем пучке, обусловленную поглошательными переходами.

Выразим высказанные соображения в виде количественного ссотношения. Пусть на вещество падает поток фотонов с приблизительно одинаковыми направлениями распространения (параллельный пучок лучей). В этом случае спектральные плотности энергин и ее поток связаны следующим образом:

$$I(\omega) = cu(\omega).$$

Выделим в среде слой толщиной dz, орнентированный перпендикулярно падающему потоку. В результате переходов $n \rightarrow m$, сопровождающихся поглощением света, поток уменьшится на протяжении слоя на величину

$$q_{nm}^{\text{norn}}(\omega) dz = \frac{1}{c} \hbar \omega N_n b_{nm}(\omega) I(\omega) dz.$$

В результате обратных переходов $m \rightarrow n$ вынужденное испускание увеличит поток на величину (в том же слое)

$$q_{mn}^{\text{HH}}(\omega) dz = \frac{1}{c} \hbar \omega N_{m} b_{mn}(\omega) I(\omega) dz.$$

Таким образом, суммарное изменение потока после прохождения слоя равно

$$dI(\omega) = -\frac{\hbar\omega}{c} [N_n b_{nm}(\omega) - N_m b_{mn}(\omega)] I(\omega) dz.$$

Вместе с тем, изменение потока можно выразить через коэффициент поглощения

$$dI(\omega) = -\alpha(\omega) I(\omega) dz.$$

24*

Сравнивая два последних соотношения, находим

$$\alpha (\omega) = \frac{\hbar \omega}{c} [N_n b_{nm} (\omega) - N_m b_{mn} (\omega)] =$$

= $\frac{1}{4}\lambda^2 a_{mn} (\omega) g_m [N_n/g_n - N_m/g_m].$

Выражения (211.20) устанавливают связь между непосредственно измеряемым коэффициентом поглощения и коэффициентами Эйнштейна. В выполненном расчете приняты во внимание переходы только между двумя состояниями *m* и *n*. Полный коэффициент поглощения, обусловленный переходами между всеми состояниями атома, равен сумме выражений типа (211.20).

атома, равен сумые выраленными соображениями о роли вынуж. В соответствии с качественными соображениями о роли вынуж. денных переходов возбужденные атомы уменьшают величину коэф фициента поглощения. С некоторыми экспериментальными проявлениями этого обстоятельства мы уже встречались ранее при обсуж. дении отрицательной дисперсии (см. § 156) и опытов Вавилова, посвященных зависимости коэффициента поглощения от интенсивности света (см. § 157).

Выше неоднократно обсуждались многообразные физические причины, обусловливающие немонохроматичность света, испускаемого атомами и молекулами (см. §§ 4, 14, 22, 158, 210). В результате нерегулярных, статистических возмущений, испытываемых излучающим атомом со стороны остальных частиц среды, излучение представляет собой последовательность волновых цугов, некогерентных между собой и отличающихся по амплитуде, фазе и частоте. Анализ волновых цугов, основанный на теореме Фурье, позволяет вычислить контур линии (см. § 22), т. е. выяснить в каждом конкретном случае вид зависимости спектральной плотности коэффициентов Эйнштейна от частоты.

Обсудим интерпретацию амплитудной, частотной и фазовой модуляции излучения в рамках квантовых представлений. Отметим, прежде всего, общую причину уширения спектральных линий, связанную со спонтанными переходами. Благодаря этим переходам длительность возбужденных состояний, а следовательно, и волновых цугов ограничена. В результате спонтанные переходы сами по себе приводят к уширению линии, причем a_{mn} (ω) имеет вид (ср. (22.13))

$$a_{mn}(\omega) = A_{mn} \frac{\Gamma/\pi}{(\omega - \omega_{mn})^2 + \Gamma^2}.$$
(211.21)

Подробный анализ функцин вида (211.21) проделан в § 22, и мы не будем его повторять. Укажем только, что полуширина Г согласно квантовой теории связана с длительностью состояний *m*, *n* соотношением (211.22)

$$\Gamma = \frac{1}{2} \left(\frac{1}{\tau_m} + \frac{1}{\tau_n} \right), \qquad (2.17)$$

т. е. определяется длительностью обоих состояний.

Уширение линий, обусловленное взаимодействием излучающих у ширенно сладой, в сильной степени зависит, естествием излучающих атомов со средой, в сильной степени зависит, естественно, от свойств атомов со сроды, со свойств за со сроды, со свойств этой среды и имеет совершенно различный характер в газах, жидкосэтой среды и имост согод разберем сравнительно в газах, жидкос-тях и в твердых телах. Мы разберем сравнительно простой случай тях и разреженных газов, где взаимодействие происходит в течение сравразрежение пратковременных столкновений, длительность которых значительно меньше времени свободного пробега. В таких условиях значится в таких условиях излучение будет, очевидно, иметь вид последовательности цугов, причем их длительность определяется процессами в момент столк-

Если в результате столкновений атом покидает уровни т, п (неупругие столкновения), то длительность цугов сокращается и будут справедливы формулы (211.21), (211.22), причем под т_т, т_п следует понимать длительности состояний т, п, уменьшенные вследствие столкновений. Для интерпретации фазовой модуляции излучения нужно принять во внимание то обстоятельство, что во время столкновений несколько изменяются энергии стационарных состояний и частота шта. Из-за этого изменения частоты происходит дополнительный набег фазы в течение столкновения, т. е. фазы излучения ло и после столкновения оказываются различными. В итоге излучение разбивается на цуги с длительностью, определяемой временем т, в течение которого указанный случайный «сбой» фазы достигает величины порядка л. Как было показано в § 22, фазовая модуляция излучения также приводит к выражению для контура линин вида (211.21), причем $\Gamma = 1/\tau$.

В рассматриваемом случае разреженного газа контур линии может быть сильно уширен вследствие эффекта Допплера, обусловленного тепловым движением атомов. Если принять в расчет только допплеровское уширение, то согласно соотношению (22.17)

$$a_{mn}(\omega) = A_{mn} \left(\sqrt{\pi} \Delta \omega_D \right)^{-1} \exp\left[- (\omega - \omega_{mn})^2 / (\Delta \omega_D)^2 \right];$$

$$\Delta \omega_D = \omega_{mn} \overline{\upsilon} / c; \quad \overline{\upsilon} = \sqrt{2kT/m_a}, \qquad (211.23)$$

где m_a — масса атома.

В зависимости от внешних условий и свойств излучающего атома преобладать может либо та, либо другая причина уширения. При достаточно низких давлениях основную роль игргег допплеровское уширение: в видимой области спектра $\Delta \omega_D \approx 10^{10} \text{ c}^{-1}$ (T = 500 K. атомный вес 20). Естественная ширина обычно значительно меньше (~10⁸ с⁻¹). Поэтому для ее изучения Вин и применял в качестве источника света атомный пучок (каналовые лучн, см. § 158). Понятно, что уширение из-за неупругих столкновений и фазовой модуляции увеличивается с ростом давления, так как при этом сокращается время свободного пробега. Обычно ушпрение из-за столкновений становится заметным при давлениях, превышающих 10 мм рт. ст., и начинает преобладать при давлениях порядка атмосферы.

Таким образом, изложенное в параграфах 207—211 убеждает нас, что вся совокупность спектроскопических данных о положении, интенсивности и контуре линий находит исчерпывающее объясне, ине в рамках квантовой теории.

§ 212. Возбуждение свечения нагреванием

Квантовая теория позволяет дать ясное истолкование многочисленным опытам по возбуждению свечения в парах, вводимых в пламя газовой горелки.

ламя газовон горолии. Введем в бесцветное пламя бунзеновской горелки пары какого. лнбо металла; пропитаем, например, кусочек асбеста раствором лноо метелла, произная, кака какой фитиль в пламя горелки. Пламя хлористого стронция и внесем такой фитиль в пламя горелки. Пламя окрасится в красный цвет, и наблюдение при помощи спектроскопа обнаружит присутствие линии стронция с $\lambda = 689,2$ нм. Ни линии хлора, ни другие линии стронция при этом не обнаруживаются. Вообще говоря, в пламени можно возбудить лишь сравнительно немногие линии некоторых металлов. Объяснение этого следует искать в тех количествах энергии, которые могут сообщаться атому при столкновении с частицами, составляющими пламя (атомами, молекулами, ионами, электронами). Пламя бунзеновской горелки характеризуется температурой около 2000 К. Средняя кинетическая энергия частиц в этих условиях невелика и составляет всего около 0,20 эВ. В пламени с температурой 2000 К присутствует некоторое количество частиц с кинетической энергией, значительно превышающей среднюю эпергию, ибо скорости распределены между частицами хаотически. Однако по закону распределения скоростей (закош Максвелла) число частиц, обладающих скоростями, значительно большими средней, быстро падает по мере удаления от средней величины. Поэтому число частиц, обладающих кинетической энергиен больше 2-3 эВ, настолько незначительно, что практически трудно ожидать свечения атомов, потенциал возбуждения которых превышает эти величины.

Табл. 38.2 содержит данные, относящиеся к легко возбудимым атомам, наблюдаемым в пламени.

Наоборот, такие вещества, как ртуть (потенциал возбуждения 4,9 В) или водород (потенциал возбуждения 10, 15 В), нельзя сколко-инбудь заметно возбудить в пламени горелки. В пламени, температура которого выше, можно наблюдать линии и с более высокими потенциалами возбуждения. Так, в столбе электрической дуги, горящей при достаточно высоком давлении (например при атмосферном), удары ионов и электронов, летящих под действием электрического поля, сообщают молекулам газов и паров, составляющих столб дуги, значительную кинетическую энергию, в результате чего в дуге устанавливается высокая температура (6000—7000 К), обеспечивающая в свою очередь иопизацию, достаточную для про-

ГЛ. ХХХVИИ. ИЗЛУЧЕНИЕ АТОМОВ И МОЛЕКУЛ

хождения электрического разряда между электродами. В столбе хождения о наблюдать несравненно больше линий, чем в пламени сопелки.

Таблица 38.2

Назпание	Длина волны λ, Å	Потенциал возбуждения, В	Название	Длина волны 2, А	Потенциал возбужления
Лнтий Натрий Калий	6707,8 5896—5890 7664—7699	1,84 2,1 1,6	Стронций Барий	6892 5535	1,8 2,24

Дляны волн и потенциалы возбуждения некоторых атолов

Представляет интерес отметить, что если между атомами, молекулами, ионами и электронами столкновения происходят остаточно часто, то между ними устанавливается тепловое равновесие, и распределение скоростей всех частиц можно найти по закону Максвелла, причем средние кинетические энергии частиц разных сортов будут одинаковы. Это, по-видимому, имеет место, когда дугсвой разряд происходит при атмосферном давлении или при несколько более низком. Но если давление в дуге достаточно мало, то, как показывает опыт, равновесие между атомами и электронами может и не наступить, хотя равновесие между атомами, равно как и разновесие между электронами, может установиться *). Такпм сбразом, можно говорить об атомной температуре (максвелловское распределение скоростей атомов, соответствующее температуре Та) и об электронной температуре (максвелловское распределение скоростей электронов, соответствующее температуре T_e), но T_e не равноT_a, а значительно выше ($T_e \gg T_o$).

В таких условиях возбуждение атомов может происходить за счет столкновений с электронами, т. е. условие возбуждения определяет температура электронов. В тех же случаях, когда тепловое равновесие имеет место (горелка, столб дуги при атмосферном давлении), возбуждение свечения можно определить по температуре газа.

^{*)} Выравнивание средней кинетической энергии электронов и атомов идет довольно сложным путем. При упругом столкновения электронов с атомами обмен кинетической энергией происходит в весьма слабой степени вследствие огромного различия в массах электронов и атомов. При неупругом столкновении кинетическая энергия передается атомам крупными порцнями (возбуждение, нонизация), но воспринимается ими не как кинетическая энергия, а как внутренняя энергия атома, перешедшего в иное состояние. Однако возбужденный атом Может не только испустить приобретенную им энергию в виде излучения; возможны и столкновения возбужденного атома с невозбужденным, при которых Энергия возбуждения распределяется между обоими атомами в виде кинетиче-Ской энергии. Такие столкновения, получившие название столкновений вто-рого рода, наблюдаются на опыте. Они-то и играют важную роль в явлениях электронов в книеэлектрического разряда при переходе кинетической энергии электронов в кинетическую энергию атомов.

люминьсценция

§ 213. Полосатые спектры молекул в видимой и ультрафиолетовой областих

При обсуждении спектра водорода упомпналось, что в нем наряду с дискретными спектральными линиями, составляющими серии, паблюдается ряд полос, которые при исследовании приборами с достаточней разрешающей способностью расчленяются на ряд тесно расположенных друг около друга линий, сбразуя так называемый многолинейчатый, или полосатый, спектр. Подобной особенностью отличаются и спектры других газов, молекулы которых состоят из двух или нескольких атомов. Наоборот, для одноатомных газов (благородные газы, пары металлов) характерны только линейчатые атомные спектры. Правда, при значительном давлении пары металлов (например Hg, Zn и др.), равно как и благородные газы, также излучают полосатые спектры, но, как показывают разнообразные исследования, при этих условиях в парах образуются нестойкие соединения типа Hg₂, He₂, HgH, Cs₂ и т. д., т. е. *молекулы*, с существованием которых и связано излучение полосатых спектров.

Для наблюдення молекулярных спектров, так же как и спектров атомов, следует по возможности защитить молекулы от сильных возмущающих воздействий окружающих частиц, т. е. наблюдать вещество в газообразном состоянии. Возбудить молекулярные спектры можно в пламени горелки или в различных видах электрического разряда: гейслерова трубка, дуга, искра. При этом, как правило, следует избегать слишком сильных возбуждений, ибо в противном случае может наступить распад молекул (диссоциация) и, следовательно, исчезнут носители молекулярных спектров. Такой процесс легко наблюдать при возбуждении спектров в электрической дуге. В наиболее горячих частях дуги с температурой 5000—7000 К испускается, главным образом, излучение атомов и наиболее прочных соединений (например CN); излучение же большинства соединений сосредоточено в основном в более холодных частях дуги.

Полосатые спектры можно возбуждать также, заставляя газ светиться под действием соответствующего освещения (флуоресценция). Наиболее хорошо исследованы спектры двухатомных молекул. Многоатомные молекулы представляют собой обычно гораздо менее прочные соединения, так как многообразие взаимных вращений и колебаний отдельных частей такой молекулы открывает большое число возможностей распада. Поэтому возбуждение интенсивного спектра многоатомных молекул затруднительно. Вместе с тем спектры многоатомных молекул значительно сложнее, и для различения важных деталей требуется применение спектральных приборов особенно большой разрешающей силы. Совокупность обоих обстоятельств — малая интенсивность и необходимость применения приборов большого разрешения — очень затрудняет исследование спектров испускания многоэтомных молекул. Приходится ограни-

ГЛ. УХХУПП, ИЗЛУЧЕНИЕ АТОМОВ И МОЛЕРУД

читься гланным образом изучением спектров поглощения; этог основанный на законе Кирхгофа, применяется и него этог читься главным на законе Кирхгофа, применяется в клаукатом-метод, основанный на законе Кирхгофа, применяется в клаукатом-метод, однако, поглемулы, однако, поглеми к лаукатомметод, основания. Многие молекулы, однако, поглощают в клеукатом-ным молекулам. Многие молекулы, однако, поглощают в далеком ным молекулам. В свою очередь затрудняет исслования в далеком ным молекульт, что в свою очередь затрудняет иследование далеком ультрафиолете, что в свою очередь затрудняет иследование. Так удьтрафионски, пектры не обладают значительной интенсивностью, как полосатые спектры не обладают значительной интенсивностью, как полосатые спорт их легче получить при использовании светосные, то общую картипу их легче получить при использовании светосные то оощую нарада с призмами из стекла или кварца. Однако у таких

Рис. 38.6. Схематическое изображение полосатого спектра молекулы.

приборов разрешающая сила не очень велика, и они передают только грубые черты молекулярных спектров. Для различения тонких деталей необходимо применение приборов большого разрешения --обычно применяются дифракционные решетки, что требует длительных экспозиций.

Трудности наблюдения полосатых спектров многозтомных молекул и сложность их теоретической трактовки привели к тому, что спектроскопическое исследование их еще не продвинулось достаточно далеко. В дальнейшем изложении мы ограничимся двухатомными молекулами. Схематический вид и фотография типичного молекулярного спектра испускания представлены на рис. 38.6 и 38.7. Как мы видим, он состоит из ряда линий, сгруппированных в тесные полосы. Эти полосы (a, b, c) расположены с определенной правильностью, образуя системы полос; в свою очередь системы А, В, ... полос, разбросанные нередко по всему спектру, составляют группу, или серию, систем полос *). Фотография изображает одну из систем полос в спектре йода. Совокупность таких систем и представляет

всю серию, образующую полный спектр йода. Нередко молекулярные спектры бывают осложнены еще рядом деталей, однако в основном типичные черты полосатых слектров Сволятая сводятся к перечисленным выше. Таким образом, спектры молекул

^{*)} На рис. 38.6 дана упрощенная схема. Нередко отдельные полосы или с системы полосы или и полосы или и по очень затрудняет расшила рис. 38.6 дана упрощенная схема. Нередко отдельные ими даже системы полос перекрываются друг с другом, что очень затрудняет расши-фровку. фровку,

значительно сложнее спектров атомов, что, конечно, стоит в связи с соответственно более сложной структурой молекул. Удается, однако, установить главные черты теории молекулярных спектров, пользуясь в основном теми же принципами, которые служат для истолкования атомных спектров. Кроме того, спектроскопия молекул оказывает столь же существенную помощь в разъяснении строения молекул, как атомная спектроскопия в вопросах строения атома.

молекул, как атомная спектросили с спектров также возможно в кван. Истолкование молекулярных спектров также возможно в кван. тосой теории. Необходимо только при расчете энергии стацю, нарного состояния молекулы принимать во внимание большую слож. ность ее структуры. В основном изменение энергии молекулы происходит, как и в атоме, в результате изменений в электронной конфигурации, образующей периферическую часть молекулы. Однако при заданной электронной конфигурации молекулы могут отличаться друг от друга еще и состоянием, в котором находятся их ядра, могущие колебаться и вращаться относительно общего центра тяжести. С этими возможными типами движения также связаны известные запасы энергии, которые должны быть учтены в общем балансе. Как по общим соображениям теории квантов, так и на основании более строгих квантовомеханических расчетов эти запасы энергии также пеобходимо считать дискретными и имеющими квантовый характер.

Обозначим через W_r энергию, обусловленную вращением ядер (ротационная энергия), через W_v — энергию, соответствующую колебаниям ядер (вибрационная энергия), и через W_e — энергию, обусловленную электронной конфигурацией (электронная энергия). Энергия взаимодействия отдельных типов молекулярных движений обычно бывает мала даже по сравнению с W_r . Поэтому мы можем ею пренебречь и с достаточным приближением выразить полную энергию какого-либо стационарного состояния молекулы в виде $W = W_e + W_v + W_r$. Пользуясь вторым постулатом Бора, найдем частоты излучения, испускаемые нашей молекулой, из соотношения

$$hv = (W_e - W'_e) + (W_v - W'_v) + (W_r - W'_r), \qquad (213.1)$$

где штрихами снабжены значения энергии, соответствующие измененному состоянию.

Сравнивая спектр, определяемый формулой (213.1), с наблюдаемым экспериментально, мы убеждаемся в следующем. Отдельные линин полосы соответствуют изменениям ($W_r - W'_r$) при неизменных ($W_v - W'_v$) и ($W_e - W'_e$). Совокупность всех возможных линий данной полосы обусловлена различными возможными изменениями ротационной энергин молекулы. Если при неизменном ($W_e - W'_e$) меняется также и ($W_v - W'_v$), то мы получим последовательность полос a, b, c, т. е. какую-либо из систем (например, A, см. рис. 38.6). Таким образом, каждая из систем полос обусловлена возможностью изменения вибрационной энергии молекулы. Наконец, если к воз-

можным изменениям энергии присоединяются вариации We--We, можным номенения электронной энергии, то мы получим различные т. е. изменения полос A, B, C, т. е. всю группу систех получим различные т. е. изменение полос А, В, С, т. е. всю группу систем получим системы полос. Соотношение между различными частями полос.

можно представить и несколько иначе. Вообразим, что в нашей молеможно представляться только электронные состояния, а вращения куле могут изменяться только электронные состояния, а вращения куле могут полеотствуют, т. е. что энергия стационарных состояний и колебания отсутствуют, т. е. что энергия стационарных состояний и колеоания определяется только величиной We. Спектр такой молекумолекулы опраконо спектру атомов, из линий, соответствующих лы состоям ода, переходам с частотой $v = (W_e - W_e)/h$ и расположенных по всему спектру примерно на местах, где наблюдаются в действительности системы полос. Эти линии и намечают распределение всей серин по спектру.

Учтем теперь, что в молекуле возможны различные колебательные состояния; в таком случае каждая из описанных выше линий распадается на систему линий, каждая из которых представляет отдельную полосу реальной системы полос. Наконец, если принять во внимание возможные изменения ротационной энергии, то каждая из только что упомянутых отдельных линий превратится в совокупность линий, представляющих наблюдаемые в лействительности полосы. Изложенное толкование наблюдаемых закономерностей позволяет заключить, что ($W_e - W_e$), т. е. разность энергий двух электронных состояний, гораздо больше, чем ($W_v - W_c$), а последняя в свою очередь много больше, чем (W,--W'), т. е.

$$(W_e - W'_e) \gg (W_v - W'_v) \gg (W_r - W'_r),$$
 (213.2)

ибо разница в частоте между отдельными линиями полосы очень мала по сравнению с разностью частот, определяющих положение отдельной полосы в системе, а эта последняя гораздо меньше разности частот, определяющей положение системы в серии.

Неравенство (213.2) вполне соответствует квантовым свойствам обсуждаемой модели. Действительно, ротационная энергия молекулы связана со сравнительно медленными вращениями тяжелых ядер и не превышает обычно $4 \cdot 10^{-22}$ Дж ($1/\lambda \approx 20$ см⁻¹). Колебания ядер, происходящие под действием межатомных сил, связывающих атомы в молекулу, происходят со значительно большей частотой; им соответствует энергия около 200 · 10⁻²² Дж (1/λ ≈ 1000 см⁻¹). Наконец, для возбуждения электронных переходов требуется энергия того же порядка, как и для аналогичного процесса в атоме, т. е.

Сколько-нибудь полная расшифровка полосатых спектров по 5000 · 10⁻²² Дж (1/ $\lambda \approx 25\ 000\ \text{см}^{-1}$). Описанной схеме удается для наиболее простых (главным образом двух аточного схеме удается для наиболее простых (главным молекулярных Авухатомных) молекул, где при помощи анализа молекулярных Спектров Спектров удается оценить момент инерции молекулы и, следова-тельно воственные тельно, взаимное расстояние составляющих се ядер, собственные периотичные и пользование составляющих се ядер, собственные периоды колебаний, теплоту диссоциации молекулы на атомы и т. д.

100-00

В частности, спектры He₂ и H₂ выделяются из большинства моле кулярных спектров благодаря малым моментам инерции испускаю щих спектры молекул и соответствуют большим частотам вращения v,. С этим связаны сравнительно большое расстояние между отдель ными линиями полос и относительная бедность спектра линиями затрудняющие распознавание описанной выше закономерности полосатых спектров и делающие спектры данных молекул нети.

§ 214. Инфракрасные спектры молекул

Наряду с полосатыми спектрами молекул, расположенными в видимой и ультрафиолетовой областях, наблюдаются также и в видимой и услаградитети инфракрас. Опыт показывает, что инфракрас. ные колебательные спектры газа или пара остаются в большинстве случаев практически неизменными и при исследовании соответствую. щей жидкости или даже твердого тела. Причину нечувствительности этих спектров к агрегатному состоянию надо, очевидно, искать в том, что силы взаимодействия между атомами (внутримолекулярные силы) значительно больше ван-дер-ваальсовых межмолекулярных сил, обусловливающих переход из газообразного в другие агрегатные состояния. Поэтому колебания атомов внутри молекулы происходят практически одинаково как в изолированных молекулах газа, так и в сближенных молекулах жидкости или твердого тела. Излучение же полосатых спектров в видимой и ультрафиолетовой областях в основном определяется изменением электронной конфигурации молекулы, а эта последняя испытывает в случае жидкости или твердого тела вполне ощутимые воздействия со стороны соседних молекул. Но все же и для инфракрасных спектров некоторые детали, связанные главным образом с вращением молекулы вокруг ее центра тяжести, лучше наблюдаются в газообразном состоянии, ибо свобода вращения молекул в жидкостях и твердых телах в значительной степени стеснена.

Наблюдение инфракрасных линий в спектре испускания, особенно для газообразных тел, затруднено относительной слабостью их. Тем не менее удалось наблюдать линии 218 и 343 мкм в излучения ртутной лампы высокого давления; линии эти, как показали позднейшие исследования, излучаются при вращении молекул ртути. В большинстве случаев, однако, инфракрасные спектры наблюдаются в виде спектров абсорбции или как максимумы избирательного отражения от соответствующего вещества; спектры колебаний хорошо наблюдаются также методом комбинационного рассеяния (см. § 162). В инфракрасных спектрах присутствуют очень низкие частоты, соответствующие линиям в несколько десятков и даже сотен микрометров; вместе с тем имеются и линии гораздо более коротковолновые (до нескольких микрометров). Пример полосы, характеризующей поглощение в парах HCl, приведен на рис. 38.8.

Естественно разделить наблюдаемые инфракрасные слектры на два типа — вращательные и колебательные (точнее, колебательно-два типа — приписывая их этим лауч прочисе, колебательнодва тина — реплисывая их этим двум процессам в молебательно-вращательно из рассуждений продылущиго поста в молекуле. вращательно, из рассуждений предыдущего параграфа следует, Действительно, из рассуждений предыдущего параграфа следует, Деиствителя часть изменения энергии молекули при переходе из что главная часть изменения энергии молекули при переходе из одного стационарного состояния в другое соответствует изженению электронной конфигурации молекулы. Связанное с ним изменению энергин мы обозначили через (We-We) и видели, что Слагодара

частота молекулярного излучесоответствовала видимой ния ультрафиолетовой или части спектра. Если же электронная конфигурация остается неизменной, т. е. $W_e = W'_e$, то часто а излучения будет определяться соотношением

$$hv = (W_v - W'_v) + (W_r - W'_r),$$
(214.1)

Рис. 38.8. Спектр поглошения паров хлористого водорода в близкой витракрасной области.

т. е. будет соответствовать инфракрасной области спектра. Повторяя рассуждения предыдущего параграфа, мы получим истолкование длинноволнового спектра как чисто ротационного, т. е. состветствующего условню W_v = W'v, означающему, что атомы в молекуле не совершают колебаний, а лишь вращаются около своего центра тяжести. Аналогично, приняв во внимание и колебания и вращения, мы получим объяснение структуры более коротковолновых полос. являющихся вибрационно-ротационными. Теория эта хорошо передает все наблюдаемые особенности инфракрасных спектров и позволяет оценивать различные параметры молекул (например, момент инерции и т. д.), находящиеся в согласни с оценками, вызодничии из наблюдений над полосатыми спектрами видимой области или при помощи других физических методов.

Глава XXXIX

фотолюминесценция

§ 215. Флуоресценция молекул

Выше мы уже рассматривали возбуждение атомов действием света. Наблюдающееся при этом резонансное свечение есть простейшая форма фотолюминесценции, имеющая ясное теоретическое истолкование. Подобное явление наблюдается и при освещения молекул, причем в соответствии с большей сложностью системы энергетичес-

ких уровней молекулы наблюдаемое излучение также имеет очещь сложный вид.

жный вид. Так, Вуд, освещая пары йода, состоящие из молекул J₂, моно. Так, Вуд, освещал нари порт, лампы, обнаружил, что испус-хроматическим излучением ртутной лампы, обнаружил, что испусхроматическим излучение, состоящий из очень большого числа кается крайне сложный спектр, состоящий из очень большого числа кается краине сложных слоче, пар линий, длины волн которых отлича. отдельных линий, точнее, пар линий, длины волн которых отлича. отдельных линии, точнос, пер Эти пары представляют правильную лись приблизительно на 2 А. Эти пары представляют правильную лись приотизительно и совокупность, и расстояния между ними соответствуют разности длин воли в несколько десятков ангстрем. Полученная таким образом структура имеет большое сходство с системой полос, характер. ных для полосатого спектра, причем каждая полоса представлена двумя линиями. Замечательно, что освещение монохроматическим светом другой длины волны привело к возбуждению сходного слож. ного спектра, все длины волн которого были несколько изменены. Если же освещение производилось не только монохроматическим излучением, а более широким участком спектра (в несколько деангстрема), то спектр испускания становился сятых гораздо сложнее.

Вся сложная совокупность наблюдаемых фактов получила крайне ясное истолкование, когда она была рассмотрена в рамках теории полосатого спектра.

Молекула йода характеризуется системой энергетических уговней, в соответствии с изложенным в § 212. Часть этих уровней схематически изображена на рис. 39.1.

Нижняя группа соответствует первому электронному состоянно молекулы и состоит из ряда уровней, отмеченных цифрами V" = 0, 1, 2, ..., соответствующих разным колебательным состояниям молекулы; около каждого из таких уровней нанесено несколько уровней, соответствующих различным состоянням вращения. Верхняя группа уровней относится к молекуле с измененной электроннол конфигурацией.

Число отдельных уровней настолько велико, что возможны весьма разнообразные переходы с одного из уровней нижней группы на один из уровней верхней. Это означает, что молекула йода может поглощать различные световые кванты, т. е. монохроматический свет различной частоты; другими словами, спектр абсорсции такой молекулы состоит из очень большого числа линий.

Два таких случая абсорбции изображены на рис. 39.1 в виде стрелок, идущих снизу вверх. Длина стрелок выражает величину энергии поглощенного кванта hv. Возбужденная таким образом молекула может возвращаться в одно из нижних состояний, излучая соответствующие кванты, как показано на чертеже стрелками, идущими сверху вниз. В каждой молекуле происходит один из изображенных переходов; все облако освещенных паров дает совокупность этих переходов, т. е. излучение целой системы линий. Каждая пара близких линий соответствует переходу на какие-либо два вращательных состояния. Отдельные пары соответствуют переходал щательных составленые состояния. То обстоятельствуют перехода: в разные колебательные состояния. То обстоятельство, что каждая в разные колставлена только двумя вращательными линиями, т. е. полоса происходят не все мыслимые переходы, находит свое объяскение что происходит свое объяснение в так называемых правилах опібора, вытекающих из кваштовых заков так называетиях место всегда при излучении сложных атомов и молекул.

Рис. 39.1. Схема энергетических уровней молекулы, поясняющая образоваяне сложного спектра испускания при монохроматическом возбуждении

Таким образом, прихотливый на первый взгляд спектр излучения молекулы, возбужденной монохроматическим светом, получает ясное истолкование и может быть использован для составления схемы молекулярных уровней. В настоящее время флуоресценция молекулярных уровней. молекул изучена для многих двухатомных молекул и приведена В соответствое полекул и приведена В соответствие с общей теорией молекулярных спектров. Исследова-ние опочити позволяет разоние спектров флуоресценции многоатомных молекул позволяет разо-браться то такимаются гораздо браться в строении последних, но эти спектры отличаются гораздо большой большей сложностью и, следовательно, их значительно труднее Интериростите интерпретировать.

§ 216. Фотолюминесценция жидкостей и твердых тел. Спектральный состав люминесценции. Правило Стокса

Явление флуоресценции паров, рассмотренное выше, начали изучать лишь в начале XX века. Оно получило свое истолкование посе создания теории Бора. Явления фотолюминесценции жидкостей и твердых тел, гораздо более яркие и легко наблюдаемые, известны более трехсот лет. Однако вследствие значительно большей сложности взаимодействия между молекулами в случае жидких и твердых веществ полной теоретической ясности в истолковании явлены люминесценции конденсированных систем мы не имеем и в настоящее время, несмотря на ряд полученных важных результатов, достигну.

Рис. 39.2. Схема наблюдения флуоресценции жидкостей.

F и F' — дополнительные (скрещенные) светофильтры. тых, в частности, и благодара работам советских физиков.

Наблюдение фотолюминесценции можно осуществить разнообразными способами. Для многих веществ (растворы красок, например, флуоресцениа) своеобразное свечение заметно уже на рассеянном дневном свету или в пучке солнечных лучей. Для других, менее ярко светящихся тел удобнее расположение, изображенное на

рис. 39.2. Свет от источника, например электрической дуги, концентрируется линзой на исследуемом веществе, например колбе с раствором краски, хинина, керосина и т. д. Глаз сбоку видит на темном фоне след пучка света не в виде белой полоски, но в виде пучка той или иной окраски в зависимости от исследуемого вещества: зеленой для флуоресценна, оранжевой для родамина, синеватой для хинина и т. д.

Цвет возникающего свечения является характерным признаком люминесценции; он отличен от цвета возбуждающего света, благодаря чему облегчается наблюдение люминесценции. При этом обычно соблюдается правило, установленное Стоксом (1852 г.), согласно которому свет люминесценции характеризуется большей длиной волны, чем поглощенный телом свет, вызывающий люминесценцию. Обычно расположение спектральных полос люминесценции и абсорбии соответствует изображенному на рис. 39.3, где видно, что полосы эти частично перекрываются. Таким образом, правило Стокса означает, что максимум полосы поглощения смещен в сторону коротких волн относительно максимума полосы люминесценции.

Пользуясь правилом Стокса, можно улучшить условия наблюдения люминесценции, поместив на пути возбуждающих лучей светофильтр F, поглощающий лучи, соответствующие длинам волн люми-

гл. ХХХІХ. ФОТОЛЮМИНЕСЦЕНЦИЯ

несценции, но пропускающий свет, абсорбируемый изучаемым вещенесценции, пород, между изучаемым объектом и глазом помещается ством. Пасстранительный к первому, т. е. поглощающий излучение полосы A, но пропускающий область L. Таким образом глаз ние полосы и поразом глаз будет защищен от случайно рассеянного света, и вместе с тем люминесценция будет возбуждена и достигнет наблюдателя без значительного ослабления. Этот метод — метод скрещенных фильтров оказывает значительные услуги при исследовании слабо люминесцирующих веществ.

Так как полосы абсорбции и люминесценции частично перекрываются, то часть света люминесценции, выходя из глубины освещенного вещества и проходя через все слои достаточной толщины, будет в большей или меньшей степени поглощаться. Вследствие этсго

может произойти искажение вида полосы люминесценции: необховведение соответствующих димо поправок, особенно в случае значительных концентраций люминесцирующего вещества.

Для некоторых классов органических молекул правило Стокса может быть заменено, как установил В. Л. Левшин, количественным

соотношением, получившим название правила зеркальной симметрии спектров поглощения и люминесценции. Согласно наблюдениям Левшина кривые поглощения и люминесценции для этого типа веществ, представленные в функции частот, при рациональном выборе ординат оказываются зеркально симметричными относительно прямен, проходящей перпендикулярно к оси частот через точку пересечения кривых, изображающих оба спектра. Хотя правило зеркальной симметрии соблюдается не во всех случаях люминесценции, однако для обширного класса сложных молекул оно позволяет делать важные заключения о структуре энергетических уровней молекулы.

Из общих соображений ясно, что свет, способный вызвать люминесценцию некоторого вещества, должен поглощаться этим веществом, т. е. длина волны возбуждающего света должна лежать внутри полосы абсорбции. Так как последняя довольно широка, что почти Всегда наблюдается для жидкостей и твердых тел, то в пределах полосы абсорбции можно довольно значительно варьировать длину Волны возбуждающего света. Исследования такого рода показали, что спектр люминесценции не меняется при изменении длины волны Созбуждающего света, пока эта последняя лежит в пределах данной

Если вещество имеет несколько полос поглощения, то возбуждеполосы поглощения (рис. 39.4). ние светом, относящимся к разным полосам поглощения, может вызавать на вызават вызвать изменение спектра люминесценции, хотя нередко последний

Рис. 39.3. Схема, ROSCESSOIL2.3 правило Стокса,

люминесценция

сохраняется и в данном случае. Эти важные наблюдения показывают, показывают, показывают, показывают, показывают, что спектр люминесцения. Прета имеет второстепенное вещество. Длина волны возбуждающего света имеет второстепенное значение может и от олной полосы поглощения к другой может и и лишь переход от одной нолосии полекулы, подобно тому как было роль, меняя характер возбуждении паров йода.

Рис. 39.4. При возбуждении светом любой частоты, лежащей в пределах одной полосы поглощения, спектр люминесценции остается неизменным

При возбуждении отдельными монохроматическими излучениями можно особенно отчетливо наблюдать случаи отступления от правила Стокса. На рис. 39.5 изображен такой случай. Заштрихованная область, соответствующая нарушению правила Стокса, называется

Рис. 39.5. Нарушение правила Стокса.

антистоксовой. Иногда эта область видна довольно хорошо.

Правило Стокса получило общее теоретическое истолкование при помощи представления о фотонах. Истолкование это сводится к предположению, что каждый ис-

пущенный при люминесценции фотон (hv) получается за счет какого-нибудь одного поглощенного фотона (hvo). Как правило, при каждом таком процессе часть энергии (А) поглощенного фотона растрачивается на какие-то внутримолекулярные процессы, так что согласно закону сохранения энергии имеем

$$h\mathbf{v} = h\mathbf{v}_0 - A.$$

Величина А положительна, что обусловливает стоксово смеще ние. Случай нарушения правила Стокса следует объяснять добавление. нием к энергии возбуждающего фотона тепловой энергии люминес цирующего вещество и тепловой энергии люминес цирующего вещества. Действительно, с повышением температуры антистоксовая область обычно выступает яснее.

Эти общие соображения, конечно, далеко не исчерпывают вопроса механизме возбликаетия, конечно, далеко не исчерпывают вопроса о механизме возбуждения, конечно, далеко не исчерпывают вопре энергия излучается в тоглощения. Не вся поглощения энергия излучается в виде энергии люминесценции. Не вся поглощения ским сыходом или козака. сыходом или коэффициентом полезного действия люминесценции

гл. хххіх, фотолюминесценция

принято называть отношение у излучаемой энергии к энергии, послопринято исслинесцирующим веществом. С. И. Вавилов, который сперщаемой извел определение выхода, нашел, что величина у чрезвывые проложно зависит от изучаемого вещества и от условий опытов. имеются случаи, когда η достигает почти 100% и, наоборот, нередко величина почень мала. Эта величина не только меняется от одесто вещества к другому, но и для данного вещества сильно зависит от температуры, растворителя, концентраций, внешних условий: посторонних примесей и т. д.

Явление ослабевания люминесценции вследствие введения посторонних веществ носит название тушения люминесценции. Механизм этого процесса ясен для случая резонансной флуоресценции газов. Атом находится в возбужденном состоянии в среднем 10-8-10-9 с. За это время может произойти столкновение возбужденного атома с каким-либо атомом или молекулой примеси. При этом может оказаться, что энергия возбужденного атома передается частице, которая с ним столкнулась, и расходуется на какие-либо процессы. происходящие в данной частице, или переходит в тепло (столкновения второго рода). Таким образом, часть возбужденных атомоз лишается возможности участвовать в излучении, и следовательно, происходит ослабление (тушение) первоначально наблюдаемой люминесценции. Взамен нее может произойти химическая реакция с молекулой, которая сама не поглощает света, но заимствует его от возбужденного атома (сенсибилизированная фотохимическая реакция, см. § 190). Поглощенная энергия, переданная при столкновения второй частице, может пойти на возбуждение последней и вызвать ее люминесценцию (сенсибилизированная люминесценция).

В случае люминесценции жидких (и твердых) веществ также наблюдается тушение; например, интенсивность люмпиесценции многих растворов сильно уменьшается при добавлении йодистого калия. По-видимому, и в этих случаях присутствие тушителя вызывает переход энергии возбуждения люминесцирующей молекулы к молекулам тушителя. В конечном счете энергия, отнятая у возбужденных молекул, обычно распределяется среди всего вещества, слегка нагревая его. Сходное явление тушения наблюдается и при повышении концентрации люминесцирующего вещества (так называемое концентрационное тушение). Опыт показывает, что значительное повышение концентрации вещества обычно сильно поникает выход флуоресценции, и при очень больших концентрациях он становится незначительным. В качестве примера приведем рис. 39.6, который показывает падение выхода флуоресценции водного раствора флуо-

ресцеина с повышением его концентрации. Не исключено, что присутствие тех или иных тушащих агентов И обусловливает пониженный выход флуоресценции, наблюдаемый во многих случаях. Наоборот, сильное увеличение яркости флуоресценции, обнаруженное, например, при добавлении щелочи к водным
люминесценция

растворам флуоресцеина, связано, по-видимому, с уменьшением кон. центрации водородных ионов, вызывающих заметное тушащее дей. ствие.

ствие. Механизм концентрационного тушения, равно как и тушения посторонними примесями в жидкостях, т. е. процесс перехода энергии возбуждения в тепло, можно выяснить только на основе детальных сведений о строении молекулы и среды. Таких детальных сведений в нашем распоряжении еще нет. Но общие законы явления тушения как

Рис. 39.6. Зависимость выхода люминесценции от концентрации для флуоресцеина (по данным С. И. Вавилова).

тушения, как эксперимен. тальные, так и теоретические, позволяющие связать это явление с другими особенностями люминесценции (например, с длительностью и характером поляризации), выяснены с достаточной полнотой благодаря работам С. И. Вавилова и его сотрудников.

Окружающая среда влияет не только на интенсивность, но и на спектральный состав люминесценции. Например, замена одного растворителя другим может переместить полосу флуоресцен-

ции на несколько сотен ангстрем. Причина лежит, по-видимому, чаще всего в том, что при этом меняется степень диссоциации растворенного вещества, а флуоресценции молекулы и иона часто сильно разнятся между собой. Например, молекула акридина флуоресцирует лиловым светом, а ее ион — сине-зеленым. В соответствии с этим акридин в органических растворителях или в щелочной среде светится фиолетовым светом, а в водном растворе или кислой среде — сине-зеленым. Указанные обстоятельства часто затрудняют применение метода люминесценции для целей количественного анализа. Однако нередко это удается обойти путем тщательного предварительного исследования.

§ 217. Длительность фотолюминесценции

Для многих веществ (главным образом жидкостей и газов) затухание идет настолько быстро, что свечение практически прекращается одновременно с прекращением освещения. Такой тип люмн несценции обычно носит название флуоресценции. Наблюдение флуоресценции требует, следовательно, непрерывного освещения. В друтих случаях (твердые тела) послесвечение происходит в течение большего или меньшего промежутка времени. Этот вид люминесцен

гл. хххіх. Фотолюминесценция

ции нередко называют фосфоресценцией. Разделение двух процессов ции нередно илительности послесвечения довольно искусственно, по признаку длительности послесвечения довольно искусственно, по признику на способов наблюдения позволяет установить большую искусственно, нбо улучшение плительность всех видов позволяет установить большую ной уму на повительность всех видов люминесценции. Для установления наличия послесвечения и определения его

длительности употребляют различные приемы. Простейший прибор, предназначенный для этой цели и носящий название фосфороскола Беккереля, устроен следующим образом. Исследуемое вещество помещается между двумя дисками, которые можно привести в быстрое вращение. Диски снабжены одинаковым числом секторообразных вырезов и насажены на общую ось так, что вырезы одного диска приходятся против сплошных мест другого (рис. 39.7). Источник,

Рис. 39.7. Схема простого фосфороскопа, обеспечивающего измерение длительности послесвечения до 10-4 с.

посылающий свет на объект, расположен по одну сторону дискоз, с другой помещается наблюдатель. Благодаря тому, что отверстыя дисков не совпадают, освещение и наблюдение объекта происходят раздельно во времени, причем можно регулировать промежуток времени между этими двумя процессами, изменяя быстроту вращения дисков и угол между отверстиями. Зная быстроту вращения дисков, при которой становится заметен свет фосфоресценции, и утол, на который смещены друг относительно друга отверстия в переднем и заднем дисках, можно определить продолжительность послесвечения. С помощью фосфороскопа Беккереля удзется измерять продолжительность последействий, длящихся до 10-4 с.

В фосфороскопе иного типа объект помещается на прозрачный быстро вращающийся диск. При вращении диска наблюдатель видит фосфоресцирующую полосу, постепенно ослабляющуюся к кенау (рис. 39.8). Зная скорость вращения, можно по длине полосы судить о времени послесвечения фосфоресценции. Этот фосфороской позво-

ляет измерять времена затягивания до 10-5-10-6 с. Еще более короткие последействия (до 10° с) можно измерять с помощью флуорометра Гавиола (рис. 39.9). Метод основан на применении эффекта Керра, который для времени 10* – 10° с практи-чески болого и Х. У. С. Вака Карра, который для времени 10* – 10° с практически безынерционен. Две установки Керра N₁Z₁N₂ и N₂Z₂N₄ управ-Ляются переменным напряжением высокой частоты (10¹⁰-10² Га) И. такина об и, таким образом, являются оптическими затворами, открывающими

люминесценция

и закрывающими доступ свету большое число раз в секунду. Дейст. вие их до известной степени подобно двум дискам фосфороскога Беккереля: свет от источника B, прошедший в какой-то момент через $N_1Z_1N_2$, доходит до флуоресцирующего вещества T и вызывает люминесценцию. В зависимости от длительности запаздывания процесса люминесценции этот вторичный свет дойдет до Z_2 в более или менее поздний момент. Так как пропускаемость установки $N_3Z_2N_4$ быстро меняется со временем, то интенсивность вышедшего из Z_2 света будет зависеть от момента прихода вспышки к Z_2 , и сле довательно, по ее интенсивности можно судить о времени послесвечения.

Рис. 39.8. Схема фосфороскопа, обеспечивающего измерения длительности возбужденного состояния до 10⁻⁶--10⁻⁶ с.

Рис. 39.9. Схема фосфороскопа с пряменением высокочастотной модуляции света, обеспечивающего измерения длительности возбужденного состояния до 10⁻⁸—10⁻⁹ с.

В данной установке измеряют не интенсивность света, прошелшего через Z_2 , а разность фаз, возникающую между двумя компонентами света в конденсаторе Керра. Эта величина, собственно говоря, и определяет интенсивность пропускаемого света; измерение же разности фаз может быть выполнено с бо́льшим удобством (при помощи компенсатора K), чем оценка интенсивности пропущенного света. Измеренное таким образом запаздывание *i* складывается из двух величии: τ_0 — времени прохождения светом пути Z_1TZ_2 и τ времени запаздывания процесса вторичного свечения. Если заменить сосуд с флуоресцирующим веществом зеркалом, от которого отражение происходит практически мгновенно, то мы найдем непосредственно τ_0 и получим возможность ввести соответствующую поправку и определить время запаздывания свечения τ .

До известной степени аналогичен флуорометру Гавиола флуорометр Физического института Академии наук, построенный Л. А. Тумерманом и М. Д. Галаниным, в котором модуляция светового пучка производится с помощью дифракции на ультраакустических волнах. Этот метод имеет преимущество перед методом Керра ввиду своей большой светосилы. В настоящее время строятся и другие еще более быстро работающие флуорометры, также использующие возможиость измерять малые запаздывания по фазе.

Как уже указывалось в § 210, определяемое значение т может как ули для характеристики времени запаздывания свечения служить как для характеристики времени запаздывания свечения служние полительность возбужденного состояния), так и для харак-(средняя датягивания свечения (продолжительность прецесса с какой теристики) в зависимости от того с какой телиность прецесса теристики, в зависимости от того, с какой точки зрения рассматривается процесс излучения. В настоящее время мы не имеем осноривается преваться в правильности квантовой трактовки, и следовательно, естественно рассматривать т как среднюю длительность еозбужденного состояния. Однако передко оказывается удобным сохранять классическое описание процесса излучения, в котором, как указано, т имеет иной смысл.

При помощи описанного метода было определено т для излучения изолированных атомов (резонансная флуоресценция атомов Na, т = 1,5·10^{-в} с), излучения изолированных молекул (молекулярная флуоресценция паров йода, т = 1.10⁻⁸ с) и люминесценции жизких и твердых тел. Для разнообразных веществ последнего типа было обнаружено, что т имеет порядок 10° с, меняясь при переходе от одного вещества к другому и даже при изменении растверителя. Так, для водных растворов эозина т = 1,9 · 10-9 с, а для растворов этой краски в метиловом спирте $\tau = 3.4 \cdot 10^{-9}$ с. Погрешность измерений составляет около 0,5.10-9 с и в современных флуорометрах может быть еще уменьшена. Для твердых люминесцирующих тел, например урановых стекол, т значительно больше (~ 10⁻⁴ с). Для многих других случаев люминесценции твердых тел средняя длительность возбужденного состояния настолько велика, что для се измерения применяются более грубые фосфороскопы, описанные в начале настоящего параграфа. Известны специальные виды фосфоров (кристаллофосфоры), свечение которых длится несколько часов и даже дней.

Несомненно, что длительная и кратковременная люминесценция обусловлена физическими процессами разного типа. Два типа люминесценции — флуоресценция и фосфоресценция — различались пер-ЕОНАЧАЛЬНО ИМЕННО ПО ЭТОМУ ПРИЗНАКУ, И ПРИТОМ ПОД ФЛУОРЕСЦЕНЦИЕЙ понималось свечение, прекращающееся мгновенно вместе с прекращением освещения. Данные, относящиеся к длительности возбуж-Денного состояния, показывают, что такое деление имеет условный характер, ибо различие в длительности возбужденных состояный весьма велико: мы с несомненностью относим в разряд флуоресценции, например, процессы, для которых т может отличаться в десятки раз (например, процессы, для которых с может стоков ртути и натрия).

Тем не менее, по-видимому, возможно разделение процессов фотолюминесценции на два типа. Один — в котором процессы воз-буж ление – буждения разыгрываются целиком внутри атома или молекулы, так что переход в возбужденное состояние не сопровождается отделением электрона от возбужденного атома или молекулы. Люминесценция такого типа соответствует возвращению молекулы (атома)

люминесценция

В первоначальное состояние; она определяется в основном свойст. вами этой молекулы (атома) и сравнительно мало зависит от внешних условий (температуры, окружающих молекул и т. д.). Сода относится в первую очередь люминесценция газов и жидкостей. Другой тип наиболее ясно представлен люминесцирующими кристаллами или кристаллическими порошками. При возбуждении крисвеществ электрон нередко совершенно удаляется от своего положе ния в кристаллической решетке, благодаря чему повышается элект ропроводность кристаллов и возникает фосфоресценция, сопровождающая возвращение на старое место отделившегося электрона или какого-либо другого.

Так как подвижность электрона в кристалле мала, то длительность таких возбужденных состояний может быть весьма значительна. Фосфоресценция этого типа характеризуется обычно очень значительным затягиванием, наблюдение которого легко осуществить без всякого фосфороскопа. Повышение температуры нередко значительно сокращает это время, что можно объяснить повышением подвижности электронов. Указанные чистые типы люминесценции представляют крайние случаи, между которыми возможны различные переходы. В частности, наблюдалось, что при повышении вязкости среды (например, путем прибавления к раствору желатина) можно удлинить процессы высвечивания, как бы переводя кратковременное свечение в длительное. Однако здесь нет места такому испрерывному переходу, и при повышении вязкости наряду с кратковременной люминесценцией развивается и вторая, более длительная.

§ 218. Определение люминесценции и критерий длительности

Несмотря на чрезвычайное разнообразие в значениях временит, показывающего длительность люминесценции (от $\tau \approx 10^{\circ}$ с до $\tau \approx 10^{\circ}$ с), для всех процессов люминесценции характерно, что оно значительно превосходит период собственного колебания светящейся молекулы ($T = 10^{-14} - 10^{-15}$ с). На это обратил особое внимание С. И. Вавилов, показавший, что данный критерий длительности является единственным характерным критерием, позволяющим отде лить люминесценцию от всех других видов свечения.

В § 194 мы определили тепловое или температурное излучение как равновесное излучение, подчиняющееся закону Кирхгофа. Этим мы противопоставили тепловое излучение другим, неравновесным видам свечения. Однако к числу таких неравновесных свечений, интенсивность которых может превышать при данной температуре тепловое излучение, принадлежат еще разнообразные типы свечения. Сюда относится, конечно, и люминесценция, но и рассеяный свет и свет отраженный точно так же отличаются от теплового излучения. Однако все эти виды свечения, кроме люминесценция,

гл. хххіх. Фотолюминесценция

можно охарактеризовать как вынужденные световые колебания, можно одерень постольку, поскольку есть вынужлающее свечения, длящиеся лишь практически за время, соизмеримов о технические свечение, длящиеся и практически за время, соизмеримое с периодом вынуж-и исчезающие практически за время, соизмеримое с периодом вынужнисчезающих световых колебаний, т. е. примерно за время т ≈ 10⁻¹¹ с. дающих соннесценции же в собственном смысле слова характерна Для люминесценция длительность послеопономи. несравненно большая длительность послесвечения. В соответствия с этим С. И. Вавилов предложил определять люминесценцию как свечение, представляющее избыток над температурным излучением при условии, что такое избыточное излучение обладает длительностью, значительно превышающей период световых колебсний.

Данное определение однозначно отличает люминесценцию от всех других видов свечения и дает возможность надежного экспериментального установления люминесцентного характера свечения. Для этой цели не требуется производить сложные определения времени свечения. Достаточно убедиться, что оно не слишком мало. А для этого можно провести опыты по тушению предполагаемой люминесценции подходящим тушителем. Для тушения необходимо, чтобы длительность возбужденного состояния была заведомо больше среднего времени между соударениями с молекулами тушителя. Время это при не слишком малых концентрациях возбужденных молочул и тушащего вещества не меньше 10⁻¹¹-10⁻¹² с. Поэтому нелюмилисцентные, т. е. чрезвычайно быстро прекращающиеся (т < 10¹⁴ с) виды свечения не успевают испытать тушение.

Этот критерий в руках самого Вавилова позволил ему в нескольких важных случаях решить вопрос о люминесцентном или нелюминесцентном характере свечения.

§ 219. Излучение Вавилова — Черенкова

Особенно важное значение имеет случай специального свечения, наблюдаемого под действнем радноактивных излучений (р- и ү-лучи). Как псказал П. А. Черенков (1934 г.), работавший под руксводством С. И. Вавилова, свечение такого рода возникает у весьма разнообразных веществ, в том числе и у чистых жидкостей. Обнаружив, что это свечение не испытывает тушения, Вавилов пришел к мысли, что оно не является люминесценцией, как считалось ранее, И СВязал его происхождение с движением электронов через вещество. Полное разъяснение явления было дано в теоретическом исследо-Вании И. Е. Тамма и И. М. Франка (1937 г.), которые показали, что Свечение должно иметь место, если скорость электрона превосходит

фазовую скорость света в данном веществе. Пусть электрон движется равномерно со скоростью и вдоль линин OL (рис. 39.10) сквозь какое-нибудь вещество, например

При движении электрона сквозь вещество имеется, конечно, Взаимодействие электрона с атомами вещества, в результате которого

люминесценция

часть энергии электрона может передаваться атомам, вызывая их ионизацию или возбуждение. Однако в данном вопросе нас интересуют не эти виды потерь энергии электроном. Как показывает детальное рассмотрение электрического поля, создаваемого движущимся электроном, могут иметь место и иные формы растраты энергии электроном. Наиболее ясно это выступает, если рассмотреть случай, который был указан Л. И. Мандельштамом. Пусть электрон со значительной скоростью движется по оси пустотелого канала, проделанного в веществе, так что он не испытывает непосредственных столкновений с атомами вещества. Оказывается, однако, что если

Рис. 39.10. К теории излучения Вавилова — Черенкова.

 $0A = AB = BC = ... = a = v\tau, M'A - положение фронта волим, излученной из <math>0$, к моменту τ , когда электрон достигает положения A.

диаметр канала значительно меньше длины волны света, то все же электрон теряет энергию в виде световой раднации сквозь поверхность, охватывающую ось цилиндрического канала. При этом мы можем для простоты считать среду вполне прозрачной, так что поток радиации беспрепятственно проходит через нее. Излучаемая энергия, конечно, заимствуется из энер-

гии движущегося электрона, скорость которого должна уменьшаться вследствие торможения электрона в его собственном поле. Именно это излучение и представляет собой в чистом виде излучеине Вавилова — Черенкова.

Расчет показывает, что рассматриваемое излучение и связанное с ним торможение возникают только в том случае, когда скорость электрона v больше фазовой скорости света в среде с, и прекращаются, когда скорость электрона уменьшается до этой скорости (т. е. v = c). Рассчитав электрическое и магнитное поля движущегося со «сверхсветовой» скоростью электрона и образовав вектор Пойнтинга, можно вычислить поток радиации, излучаемой электроном. При этом обнаруживается своеобразное распределение излучения в пространстве в виде узкого конического слоя, образующая которого составляет с осью движения угол θ , так что соз $\theta = c/v$, где $c = c_0/n$ — фазовая скорость света; излучение оказывается поляризованным так, что его электрический вектор лежит в плоскости, проходящей через направление движения электрона. Все эти выводы теории оказались в хорошем соответствии, не только качественном, но и количественном, с результатами наблюдения свечения Вавилова — Черенкова.

Наиболее своеобразную особенность рассматриваемого излучения — его угловое распределение и необходимость соблюдения условия $v > c_0/n = c$ можно получить из довольно общих соображений. Представим ссбе электрон, движущийся со скогостью v вдоль лини

гл. хххіх. Фотолюминесценция

OL (см. рис. 39.10), служащей осью узкого пустотного канала в одно-ОС (см. риссона веществе с показателем преломления л. Каждая родном протод ОС, последовательно занимаемая движущимся электро-точка линии ОС, последовательно занимаемая движущимся электроном, является центром испускания света, но с запозданием, опреном, политичиной $\tau = a/v$, где a — расстояние между двумя рассматриваемыми положениями электрона. Для того чтобы все волны, исходящие из этих последовательных положений, усиливались в результате взаимной интерференции, необходимо, усилиразность фаз между ними была равна нулю при любом значении а. Из рис. 39.10 нетрудно увидеть, что это будет иметь место для направления, составляющего угол в с направлением движения электрона, причем в определяется из условия

$$\frac{a\cos\theta}{c}-\frac{a}{v}=0,$$

откуда

$$\cos\theta = \frac{c}{v}$$
.

Действительно, фронт волны, исходящей из О, достигает положения AM', где A — новое положение электрона, через время OM'/c = $= a \cos \theta/c$; электрон же достигнет точки A через промежуток времени $\tau = a/v$. Если указанные промежутки времени совпадают, $a \cos \theta / c = a / v$, то волна из O и волна из A окажутся в одной фазе, каково бы ни было а.

Итак, мы видим, что направление максимальной интенсивности определится углом в образующей конуса с его осью OL, удовлетворяющим условню соз $\theta = c/v$. Если v < c, т. е. скорость электрона ниже фазовой скорости света, то соответствующее направление в невозможно. Наоборот, при v > с угол в имеет вполне определенное значение, зависящее от скорости электрона (v) и показателя преломления среды (n) в согласни с полной теорией и опытными данными.

Легко видеть также, что если условне $\cos \theta = c/v$ не соблюдается, то мы можем всегда разбить траекторию OL на такие отрезки а, чтобы разность хода между болнами, исходящими из соответствукщих двух соседних отрезков (т. е. из точек, разделенных расстоянием a), была равна ±1/22. Иными словами, должно выполняться условне

$$c\frac{a\cos\theta}{c}-c\frac{a}{v}=\pm \frac{1}{2}\lambda,$$

откуда

$$a = \pm \frac{\lambda v}{2(v\cos\theta - c)}$$

При соблюдении этого условия свет, исходящий из соответствующих точек соседних участков, будет гаситься вследствие интерферен-

люминесценция

ции, и по данному направлению излучение распространяться не будет.

будет. Таким образом, единственное направление, по которому в силу взаимной интерференции волн может распространяться излучение, есть направление, определяемое условием соз $\theta = c/v$, имеющим смысл только в случае движения со сверхсветовой скоростью (v > c). Конечно, в реальном опыте световой конус не будет бесконечно тонким, ибо поток летящих электронов имеет конечную апертуру и известный разброс скоростей v, равно как и показатель преломления n имеет несколько различные значения для разных длин воли видимого интервала. Все это дает более или менее узкий конический слой около направления, определяемого условием соз $\theta = c/v$.

Эффекты, сходные с излучением Вавилова — Черенкова, хорощо известны в области волновых явлений. Если, например, судно движется по поверхности спокойной воды (озера) со скоростью, превышающей скорость распространения воли на поверхности воды, то еозникающие под носом судна волны, отставая от него, образуют плоский конус воли, угол раскрытия которого зависит от соотноше. ния скорости судна и скорости поверхностных волн. При движении спаряда или самолета со сверхзвуковой скоростью возникает звуковое излучение («вой»), законы распространения которого также связаны с образованием так называемого «конуса Маха». Явления эти осложияются нелинейностью аэродинамических уравнений. В 1904 г. Зоммерфельд рассчитал электродинамическое (оптическое) излучение подобного рода, которое должно возникать при движении заряда со скоростью, превышающей скорость света. Однако через несколько месяцев после появления работы Зоммерфельда создаине теории относительности сделало бессмысленным рассмотрение движения заряда со скоростью, превышающей скорость света в пустоте, и расчеты Зоммерфельда казались лишенными интереса. Физическая возможность появления свечения Вавилова — Черенкова связана с движением электрона со скоростью, превышающей фазовую скорость световой волны в среде, что не стоит ни в каком противоречии с теорией относительности.

Таким образом, излучение Вавилова — Черенкова является совершенно новым и крайне интересным видом свечения, впервые открытым советскими исследователями.

Излучение Вавилова—Черенкова нашло разнообразные применения в экспериментальной ядерной физике и физике элементарных частиц. Несмотря на чрезвычайную слабость свечения, приемники света достаточно чувствительны, чтобы зарегистрировать излучение, порожденное единственной заряженной частицей. Созданы приборы, которые позволяют по излучению Вавилова—Черенкова определять заряд, скорость и направление движения частицы, ее полную энергию. Практически важно применение излучения Вавилова—Черенкова для контроля работы ядерного реактора.

гл. хххіх. Фотолюминесценция

§ 220. Кристаллические фосфоры

Хотя, согласно предыдущему, четкое деление между флуоресциующими и фосфоресцирующими веществами в настоящее время рующими в настоящее время невозможно, тем не менее существуют вещества, которые вполне целесообразно выделить в класс фосфоресцирующих. К ним принадделесовория частности, так называемые кристаллические фосфоры, лежат, в частности, так называемые кристаллические фосфоры, дающие нередко очень интенсивное свечение и имеющие благодаря этому практический интерес. Основой таких фосфоров являются неорганические вещества, не флуоресцирующие в чистом виде. Добавление к ним очень небольших количеств (10²-10⁻³%) некоторых примесей, так называемых «активаторов», делает их интенсивно фосфоресцирующими. Такими активаторами в большинстве случаев служат соединения металлов. Так, например, яркий фосфор нередко применяющийся для изготовления фосфоресцирующих экранов, представляет собой сернистый цинк, активированный небольшими примесями соединений, содержащих марганец, висмут пли медь.

Такие фосфоресцирующие вещества характеризуются длительным послесвечением и, как уже упоминалось, сильной зависимостью длительности от температуры. Повышение температуры значительно сокращает длительность свечения, причем одновременно очень сильно повышается яркость его. Явление можно наблюдать на следующем простом опыте. Возбудим фосфоресценцию экрана сернистого цинка, осветив его ярким светом электрической дуги. Перенесенный в темноту экран будет светиться в течение ряда минут, постепенно угасая. Если к светящемуся экрану с противоположной стороны прижать нагретое тело, например диск, то нагревшаяся область экрана ярко вспыхнет, отчетливо передавая контуры нагретой области. Однако через короткое время эта область окажется темнее окружающей, нбо более яркое свечение сопровождается более быстрым затуханием (высвечиванием). Измерения показывают, что световая сумма, т. е. интеграл по времени от интенсивности свечения, остается практически постоянной даже при ускорении высвечивания в тысячи раз (так, например, при нагревании до 1300 °С время свечения с нескольких часов сокращается до 0,1 с).

В явлениях фосфоресценции также соблюдается правило Стокса. Очень многие вещества фосфоресцируют видным светом под действием ультрафиолетовых и рентгеновских лучей. Этим пользуются для удобного исследования невидимой коротковолновой радиации, для удобного исследования невидимой коротковолновой радиации, и фосфоресцирующие экраны имеют очень широкое распространение. Вместе с тем явление фосфоресценции можно использовать ние. Вместе с тем явление фосфоресценции можно использовать и для изучения инфракрасной части спектра. Опыт показывает, что и для изучения гасится под действием инфракрасного излучения. фосфоресценция гасится под действием инфракрасного излучения. Спроектируем на фосфоресцирующий экран (предварительно возбужденный) сплошной спектр. Через некоторое время фосфоресцен-

люминесценция

ция мест экрана, лежащих под инфракрасной частью спектра, ока зывается погашенной, тогда как остальная его поверхность продол жает фосфоресцировать, так что след от инфракрасных лучей буде заметен на экране в виде темных полос. Этим можно воспользоваться для фотографирования в инфракрасной области (до $\lambda = 1.7$ мкм) или для получения фотографии предмета, испускающего невидимые инфракрасные лучи.

инфракрасные лучи. При действии инфракрасных лучей на фосфоресцирующий экран иногда наблюдается временное усиление фосфоресценции; в послед нее время удалось изготовить фосфоры, очень эффективные в этом отношении и имеющие ряд практических применений. Однако действие инфракрасных лучей не сводится к нагреванию. В частности, световая сумма может под действием инфракрасных лучей уменьшаться (тушение).

Коэффициент полезного действия фосфоров, т. е. отношение общего количества отдаваемой в виде света энергин к количеству световой энергии, поглощенной фосфором при возбуждении, может быть очень велик (иногда он близок к единице). Большое значение коэффициента полезного действия открывает перспективы для использования фосфоров в качестве источников света. Успешные попытки применения фосфоров для улучшения цветности и повышения экономичности газосветных ламп упомянуты в § 203.

§ 221. Люминесцентный анализ

Очень важной особенностью люминесценции является возможность наблюдения свечения при чрезвычайно малых концентрациях вещества. Концентрации порядка 10⁻⁹ г/см³ оказываются нередко вполне достаточными; так как для удобного наблюдения можно ограничиться объемом в несколько десятых кубического сантиметра, то достаточно располагать 10⁻¹⁰ г флуоресцирующего вещества, чтобы иметь возможность обнаружить его по характерному свечению. Особенно удобно наблюдение при концентрациях 10⁻⁴—10⁻⁷ г/см³. Эта чрезвычайная чувствительность люминесцентных наблюдений делает возможным применение люминесцентного анализа для решения миюгих важных практических задач.

В настоящее время передко применяют люминесцентный анализ. Флуоресценция пефти или содержащихся в ней примесей весьма значительна. Этим пользуются для быстрой разведки при закладке буровых скважии. Исследуя на флуоресценцию кусочки извлечениой при бурении породы, содержащие следы нефти, получают возможность судить о близости пефтеносных слоев и нередко о качестве нефти.

Методами люминесцентного анализа отличают друг от друга различные сорта стекол, сортируют шлаки, отделяя устойчивые и пригодные для мощения дорог; оценивают степень пористости

Рис. 39.13. Обнаружение с помощью моминесценции написанного цевидимымя чернилами.

а - общиный снимок, 6 - люминесцентный свимок.

каменных пород и строительных материалов, для чего смачь каменных пород и строитствором и наблюдают за картным вают их флуоресцирующим раствором и наблюдают за картным вают их флуоресцирующим расслерон и постах химических производ распространения флуоресценции. Во многих химических производ технической и биологической химической химическо распространения флуоресценции. До имологической кими производ-ствах, в органической, технической и биологической химии приме. ствах, в органической, телли селот и сполотнования тех или приме. няют люминесцентный анализ для распознавания тех или иных ком. Известны плолотворные таки понент в сложных смесях. Известны плодотворные применения понент в сложных смесях. Известны плодотворные применения тонент в сложных слосних производстве, где легко обнаружи. этого анализа в телетична на тканях, невидимые простым глазом; в палеонтологических исследованиях, ибо флуоресцентные снимки в налеонтологическими спраздо богаче подробностями, чем обычные снимки (рис. 39.11); в криминалистической практике люминесцент. ный анализ позволяет легко установить следы крови (рис. 39.12) открыть написанное невидимыми чернилами (рис. 39.13) и т. д. Фотолюминесценция и катодолюминесценция многих минералов облегчают геологическую разведку, причем употребляются переносные осветители, позволяющие вести разведку непосредственно в породе. С помощью микроскопа можно наблюдать небольшие флуересцирующие включения.

Эти и многие другие качественные определения не исчерпывают всех возможностей люминесцентного анализа. Возможно применение его и для количественных исследований. Для этой цели подыскивают реактив, вступающий в характерную реакцию с изучаемым веществом, дающую флуоресцирующие продукты, и обнаруживают последние при помощи люминесцентного анализа. Благодаря чрезвычайной чувствительности люминесцентного метода можно ограничиться ничтожными количествами исходного вещества. Подобным методом удалось, например, исследовать содержание озона в воздухе даже на больших высотах, причем пробы воздуха объемом в 10—20 л забирались при пролетах стратостатов на большой высоте, где давление не превышало 15—20 мм рт. ст. Таким образом, в распоряжении исследователя было всего около 0,5 г воздуха. Содержащийся в этом количестве озон был надежно измерен, хотя его содержание было меньше 0,00001%.

ЛАЗЕРЫ, НЕЛИНЕЙНАЯ ОПТИКА

лава XI.

ОПТИЧЕСКИЕ КВАНТОВЫЕ ГЕНЕРАТОРЫ

Для источников света, традиционных в оптической области спектра, характерна некогерентность излучения, а именно, излучение источника в целом слагается из некогерентных между собой потоков, испускаемых микроскопическими элементами источника, -атомами, молекулами, ионами, свободными электронами. Примерами некогерентного излучения могут служить свечение газового разряда, тепловое излучение искусственных и естественных источников, люминесценция при различных способах ее возбуждения И.Т. Д.

В начале 60-х годов были созданы источники света иного типа, подучившие название оптических квантсзых генераторов или лазеров. В противоположность некогерентным источникам, электромагнитные волны, зарождающиеся в различных частях оптического квантового генератора, удаленных друг от друга на макроскопические расстояния, оказываются когерентными между собой. В этом отношении квантовые генераторы вполне аналогичны

Когерентность излучения проявляется практически во всех свойисточникам когерентных радноволн. Ствах оптических квантовых генераторов. Исключение составляет, Разумеется, полная энергия излучения, которая, как и в случае неконости и пользанной некогерентных источников, прежде всего зависит от подродимой с коге энергии. Замечательной чертой лазеров, тесно связанной с когерентностью их издучения, является способность к концентрации Эдергии Эчергин — концентрации во времени, в спектре, в пространстве, ИО Напролати ио направлениям распространения. Для некоторых квантовых гене-раторов монохроматичраторов характерна чрезвычайно высокая степень монохроматичности их излучения. В других лазерах испускаются очень короткие импульсти импульсы, продолжительностью 10⁻¹² с; поэтому мгновенная мощ-ность такова Ность такого излучения может быть очень большой. Световой пучок, выхолящий на страния может быть очень большой, обладает высокой выходящий из оптического квантового генератора, обладает высокой направлении состатического квантового генератора, обладает высокой направленностью, которая во многих случаях определяется дифрак-ционными чионными явлениями. Такое излучение можно, как известно,

Ландсберг Г. С 25

сфокуспровать на ничтожно малой площади и создать, следова. тельно, огромную освещенность.

тельно, огромную освещенности В данной главе излагаются основные сведения о физических принципах, лежащих в основе работы оптических квантовых гене, раторов, и о свойствах излучения последних.

Оптические квантовые генераторы оказали и, несомненно, будут сказывать в дальнейшем значительное влияние на развитие оптики. Изучение свойств самих лазеров существенно обогатили наши сведения о дифракционных и интерференционных явлениях (см. §§ 228—230). Распространение мощного излучения, испущенного оптическим квантовым генератором, сопровождается так называемыми нелинейными явлениями. Некоторые из них — выпужден. ное рассеяние Мандельштама — Бриллюэна, вынужденное рассеяние крыла линни Рэлея и вынужденное температурное рассеяние — описаны в главе XXIX; выше упоминались также многофотонное поглощение и многофотонная ионизация (см. § 157), зависимость коэффициента поглощения от интенсивности света (см. § 157), нелинейный или многофотонный фотоэффект (см. § 179), многофотонное возбуждение и диссоциация молекул (см. § 189), эффект Керра, обусловленный электрическим полем света (см. § 152); сведения о других будут изложены в § 224 и в гл. XLI. Совокупность нелинейных явлений составляет содержание нелинейной оптики и нелинейной спектроскопии, которые сформировались в 60-е годы и продолжают быстро развиваться.

Оптические приборы и оптические методы исследования широко применяются в самых разнообразных областях естествознания и техники. Напомним, например, об изучении структуры молекул с помощью их спектров излучения, поглощения и рассеяния света, а также о применении микроскопа в биологии, об использовании спектрального анализа в металлургии и геологии. Оптические квантобые генсраторы неизмеримо расширяют возможности олтических методов исследования. Приведем несколько примеров, иллюстрирующих положение дела. Один из новых методов — голография подробно описан в главе XI. Изучение атомно-молекулярных процессов, протекающих в излучающей среде лазеров, а также рассеяния света и фотолюминесценции с применением лазеров позволило получить большой объем сведений в атомной и молекулярной физике полис то физике, равно как и в физике твердого тела. Оптические квантоене генераторы заметно изменили облик фотохимии; с помощью мощного дазерного исти мощного лазерного излучения могут производиться разделение изотопов и осуществляет. изотовов и осуществляться направленные химические реакции. Благоларя моночто Благодаря монохроматичности излучения оптических квантовых генераторов оказульство генераторов оказывается сравнительно простыми измерения сдвига частоты, возникающего ставнительно простыми измерения сдвига частоты, возникающего при рассеянии света вследствие эффекта Допплера: этот метот митор Допплера; этот метод широко используется в аэро- и гидродина-мике для излучения истомике для излучения поля скоростей в потоках газов и жидкостей.

ГЛ. XL. ОПТИЧЕСКИЕ КВАНТОВЫЕ ГЕНЕРАТОРЫ

в области индустрии отметим применения лазеров для сварки, в обработки и разрезания металлических и диэлектрических матеобработки и разлектрических материалов и деталейтрических материалов и деталей в приборостроении, машиностроении и в текстильной промышленности. Очень интересны и важны применения лазеров в биологии, медицине, геодезии и картографии, в системах локации спутников и во многих других областях. Следует подчеркнуть, что постоянно расширяется сфера применений оптических квантовых генераторов.

Перечисленные примеры наглядно иллюстрируют установившееся мнение о подлинной революции в оптике и оптических методах исследования, произошедшей благодаря изобретению олтических квантовых генераторов.

§ 222. Излучение электромагнитных волн совокупностью когерентных источников

Рассмотрим поле, создаваемое источником света, который представляет собой газ излучающих атомов. Не будем принимать во внимание отражение и преломление на границе и поглощение света при его распространении внутри объема источника. Атом, наподящийся в точке, определяемой радиусом-вектором r_j(x_j, u_j, z_j), посылает в точку наблюдения r(x, y, z) (рнс. 40.1) монохрематическую волну, которую можно записать следующим образом:

$$s_{j}(r, t) = \frac{A_{j}}{|r-r_{j}|} \cos \left[\omega t - k |r-r_{j}| + \varphi_{j}\right], \quad k = 2\pi \lambda. \quad (222.1)$$

Полное поле, создаваемое всеми атомами источника, будет разно сумме еолн вида (222.1):

$$s(r, t) = \sum_{j=1}^{N} s_j(r, t),$$
 (222.2)

где N — число излучающих атомоз источника. Пусть атомы излучающих совершенно независимым образом, разности фаз ф н ф , относящихся к атомам ј и ј, принимают вполне

произвольные значения, и следовательно, интерференция волн Sj отсутствует. Без дальнейших вычислений ясно, что на больших расстояниях, значительно превосходящих линейные размеры светящегося объема, его излучение будет практически изотропным. Что касается меньших расстояний, сра-

то яркость излучения будет, разумеется, неравномерной и неизо-тропной билость тропной, будет зависеть от формы источника, от соотношения его размеров в различных направлениях. и т. д. Однако изменения яркости будут сравнительно плавными. Эти заключения и соот. ветствуют свойствам некогерентных источников света (лампы нака ливания, газоразрядные источники света и т. д.).

ливания, газоразрядные него можному предельному случаю полной Обратимся к противоположному предельному случаю полной когерентности волн, испускаемых различными атомами. Результат интерференции N волн существенно зависит от взаимного располо.

Рис. 40.2. К расчету интерференции воли, испускаемых атомами протяженного источника света. жения излучающих атомов и от того конкретного закона, кото. рому подчинены фазы ф, Рас. смотрим простой случай, имеющий непосредственное отноше. сбойствам оптических ние К квантовых генераторов. Пусть источник имеет форму прямо-**УГОЛЬНОГО** параллелепипеда (рис. 40.2) с длинами ребер а, b и L, светящнеся атомы заполняют его вполне равномерно, и амплитуды волн (точнее, коэффициенты А, в выражении

(222.1)) одинаковы. Пусть, далее, расстояние между соседними атомами значительно меньше длины волны, и поэтому суммирование по j в (222.2) можно заменить интегрированием по объему источника. Будем писать поэтому r'(x', y', z') вместо r_j .

Предположим, наконец, что все атомы, находящиеся в плоскости, перпендикулярной к оси Oz, испускают волны с одинаковыми фазами $\varphi(r')$; иными словами, $\varphi(r')$ зависит только от z', а от x' и y'не зависит. При выполнении перечисленных условий поле, создаваемое атомами, расположенными в какой-либо плоскости z' == const, подобно полю в случае дифракции монохроматической волны, падающей параллельно оси Oz на экран с отверстием в виде прямоугольника со сторонами a и b: роль вторичных боли Френеля в дифракционной задаче играют теперь реальные волны, испускасмые атомами, которые расположены в пределах этого «отверстия», поперечного сечения источника плоскостью z' = const. На рис. 40.2 показано одно из таких сечений.

Ради простоты будем рассматривать поле на больших расстояниях от источника, соответствующих дифракционным явленням Фраунгофера. Используя результаты вычислений, прозеденных в § 42, можем написать

$$s(r, t) = \frac{AN}{rL} \frac{\sin w}{w} \frac{\sin v}{v} \int_{0}^{L} \cos \left[\omega t - kr + kz' + \varphi(z')\right] dz$$

где $w = \pi a x / \lambda r$; $v = \pi b y / \lambda r$. Множитель перед интегралом в (222.3),

772

ГЛ. XL. ОПТИЧЕСКИЕ КВАНТОВЫЕ ГЕНЕРАТОРЫ

умноженный на dz', представляет собой амплитуду суммарной волим, умноженный всеми атомами, расположенными в пределах слоя тодиспущение вблизи плоскости z = z'. Интеграл выражает суммирощины не волн, идущих от всех таких слоев, находящихся в пределах источника. Аргумент косинуса под интегралом содержит начальную фазу $\varphi(z')$ и часть фазы, пабегающую за счет разности хода ную фабу z = z' между точкой наблюдения и слоем вблизи z = z'. Зависимость амплитуды волны от углов х/г, у/г определяется обычнымя дифракционными множителями w⁻¹sin w, v⁻¹sin v, и излучение источника сосредоточено в малом телесном угле, примерно разнои 2 ab. Ввиду указанной аналогии с дифракционными явлениями Фраунгофера такой результат очевиден. Из этой же аналогия можно заключить также, что если бы фаза ф(r') сохраняла постоянное значение не в плоскости z' = const, а в плоскости, перлендикулярной к какому-либо единичному вектору п, то излучение источника было бы сконцентрировано в соответствующем дифракционном угле вблизи направления п. Таким образом, когерентность воли, испускаемых различными атомами, обусловливает острую направленность излучения источника в целом.

Суммирование волн, приходящих в точку наблюдения от всех поперечных сечений светящегося объема, выражено интегралом по г' в формуле (222.3). Результат этого суммирования определяется соотношением между фазой ф(z') и фазой kz', отражающей различие расстояний между точкой наблюдения и положениями разных атомов. Если $\varphi(z')$ не зависит от z', то волны, приходящие в точку наблюдения от слоев источника, отстоящих на расстояние половины длины волны, будут гасить друг друга; в этом случае максимальное значение интеграла в (222.3) оказывается равным λ/π, причем достигается оно, очевидно, тогда, когда на длине исукладывается нечетное число полуволи. точника

Амплитуда поля s(r, l) приобретает максимальное значение если волны, излучаемые различными сечениями источника, приходят в точку наблюдения с одинаковыми фазами. Другими словами, ф(z') н kz' должны быть связакы соотношением

$$\varphi(z') + kz' = \varphi_0,$$

(222.4)

где ϕ_0 — постоянная величина. При выполнении этого равенство

интеграл в (222.3) пропорционален всей длине источника L и (222.5)

$$\mathbf{s}(\mathbf{r}, t) = \frac{AN}{r} \frac{\sin \omega}{\omega} \frac{\sin \omega}{\upsilon} \cos \left[\omega t - kr + q \right]$$

источником в целом, равна сумме амплитуд воли, исходящих от всех аточет У всех атомов. Условие, выражаемое равенством (222.4), называется условием пространственной синфазности *). Часто используется также термии спространственный синхронизме.

Итак, если излучение атомов, составляющих макроскопический источник света, когерентно и, кроме того, выполняется условне пространственной синфазности, то излучение источника в целом сосредоточено в малом дифракционном угле и амплитуда вблизи сси пучка в N раз больше амплитуды волны, испускаемой отдельным атомом. Отмечснные особенности характерны для оптических квантовых генераторов, т. е. рассмотренная схема представляет собой модель квантового генератора.

Естественно возникает вопрос, существует ли способ, с помощью которого можно добиться предполагавшейся выше синфазности излучения атомов, находящихся на макроскопических расстояниях друг от друга, и если можно, то в чем этот способ состоит?

Из условия пространственной синфазности (222.4) видно, что фазы φ_i волн s_i должны изменяться в зависимости от положения излучающегося атома по такому же закону, по которому изменяется фаза в световой волне. Это означает, что агентом, фазирующим излучение атомов, должна быть световая же волна. Вместе с тем, в гл. XXXIII указывалось, что для микроскопического описания спектральных свойств теплового излучения А. Эйнштейн ввел представление о вынужденном испускании. Одно из основных свойств вынужденного испускания состоит в том, что волны, излучаемые атомом в этом процессе, имеет такую же частоту и такую же фазу, что и действующая на атом волна. Благодаря указанному свойству, как будет показано в § 223, фазировка излучения удаленных атомов может обеспечиваться вынужденным испусканием.

§ 223. Поглощение и усиление излучения, распространяющегося в среде

Пусть плоская волна частоты ω , соответствующей разности энергий $E_m - E_n$ каких-либо двух состояний атомов (или молекул) среды, распространяется сквозь эту среду. Поток излучения изменяется в соответствии с законом Бугера, причем коэффициент поглощения определяется соотношением (211.20)

$$\alpha_{a}(\omega) = \frac{1}{4}\lambda^{2}a_{mn}(\omega)g_{m}[N_{n}/g_{n} - N_{m}/g_{m}], \qquad (220.7)$$

где $a_{mn}(\omega)$ — спектральная плотность коэффициента Эйнштейна; $g_m, g_n \in N_m, N_n$ — статистические веса и заселенности состояний m, n. Напомним, что члены N_n/g_n и N_m/g_m в (223.1) описывают вклады соответственно переходов $n \to m$ и $m \to n$, которые сопровождаются поглощением и индуцированным испусканием фотонов. Мощность, поглощаемая в единице объема среды, выражается следующим образом:

$$q_{\alpha}(\omega) d\omega = \alpha_{\alpha}(\omega) I(\omega) d\omega = \alpha_{\alpha}(\omega) cu(\omega) d\omega, \qquad (22017)$$

где u(ω) и I(ω) — спектральные плотности энергин (в_1 см³), потока.

ГЛ. XL. ОПТИЧЕСКИЕ КВАНТОВЫЕ ГЕНЕРАТОРЫ

В условнях термодинамического равновесия среды, скозь которую распространяется излучение, Nm/gm < Na/ga, что вытекает торую распространяется излучение, Nm/gm < Na/ga, что вытекает торую распра Больцмана, и следовательно, $\alpha_a(\omega) > 0.$ Это соотиз принато поглощению излучения. Однако, если тем или иным способом осуществить условия, при которых $N_m/g_m > N_m/g_n$, то козфициент α_a (ω) изменит свой знак и станет величиной отрицательной. В этом случае плотность потока энергии, распространяющегося в среде, будет возрастать, а не убывать, как при термозинамическом равновесии. Другими словами, за счет индуцированного излученкя в световой пучок будет добавляться больше фотонов, чем он теряет на возбуждение атомов при обратных переходах $(n \rightarrow m)$.

Соотношение между концентрациями атомов, соответствующее неравенству $N_m/g_m > N_n/g_n$, называют инверсной заселенностью энергетических уровней т, п.

В данной главе будет идти речь главным образом о средах с инверсной заселенностью. Поэтому вместо поглощаемой мощности $q_a(\omega)$ и коэффициента поглощения $\alpha_a(\omega)$ целесообразно ввести новые обозначения для излучаемой мощности или мощности испускания $q(\omega)$ и коэффициента усиления $\alpha(\omega)$, отличающиеся знаком от $q_a(\omega)$ и $\alpha_a(\omega)$:

$$\begin{array}{l} q(\omega) = \alpha(\omega) u(\omega) c, \\ \alpha(\omega) = \frac{1}{4} \lambda^2 g_m a_{mn}(\omega) [N_m/g_m - N_n/g_n]. \end{array} \right\}$$
(223.3)

Среду с инверсной заселенностью энергетических уровней, сбеспечивающую усиление распространяющегося в ней излучения. принято называть активной средой.

Инверсную заселенность уровней можно образовать в газовом разряде при помощи некоторых химических реакций, оптического возбуждения и т. д. О нескольких способах создания активной среды будет сказано ниже *).

До сих пор речь шла об энергетической стороне вопроса. Как подчеркивалось в § 211, электромагнитные волны, возникающие В результате вынужденных переходов, когерентны с волной, вызы-Вающей эти переходы. В частности, если поле, взаимодействующее с. атомами, представляет собой плоскую монохроматическую волну. то и вынужденно испущенные фотоны образуют также плоскую моноческие плоскую возой мопохрематическую болну с той же частогой, поляризацией, фазой и с ток же частогой. и с тем же направлением распространения. В результате вынужденного источносто в положите вынужденного источносто источносто в положите вынужденного источносто в положите вынужденносто в положите вынуще в положите вынуще в положите вы вынуще вынуще в положите вынуще в положите вы вы вынуще вы вынуще вы вынуще вынуще вы вынуще вы вынуще вынуще вынуще вы вы вынуще вы вы вынуще вы вы вынуще вы вы вы вынуще вы вынуще вы вынуще вы вы вы вынуще вы вынуще вы вы вы вынуще вы вы вынуще вы вынуще вы вы вы вы вы вы в ного испускания (равно как и поглощения) изменяется только ам-

Сказанное можно рассматривать как иную форму утвержде-

ния, что вынужденное испускание усиливает, а поглощение ослаб-*) В 1951 г. В. А. Фабрикантом, М. М. Вудынским и Ф. А. Бутаевой Зарегистрикования излучения

5) В 1951 г. В. А. Фабрикантом, М. М. Вудынским и Ф. А. Булачия было зарегистрировано авторское свидетельство на способ усиления излученая за счет иниминистрировано предложенный В. А. Фабрикантом в за счет индуцированного испускания, предложенный В. А. Фабрикангом в 1940 г.

ляет излучение без изменения всех остальных его характеристик. ляет излучение осз поменения свойств излучения оптических квантовых Однако для понимания свойств излучения оптических квантовых Однако для понимания составлении о когерентности вантовых генераторов оказывается из представлении о когерентности воставлении о когерентности в составлении о когерентности воставлении о когерентности воставлении о когерентности воставлении о когерентности в составлении о когерении окоерении окоерении окоерени описание, основанное на представлении о когерентности падающей описание, основаниет на прискаемых в результате вынужден. ных переходов. В частности, из приведенных рассуждений видно, что условие пространственной синфазности, обсуждавшееся в § 222 и необходимое для получения мощного направленного излучения от макроскопического источника, может осуществиться благодаря процессу вынужденного испускания. Действительно, волны, испускаемые атомами, находящимися в различных точках пространства, будут синфазно складываться в точке наблюдения, если разность начальных фаз этих волн компенсирует соответствующую разность хода (см. (222.4)). Но именно таким и будет положение, если вторичные волны s₁, рассмотренные в § 222 (см. рис. 40.2), возникают в результате вынужденного испускания под влиянием внешней световой волны: значения фазы этой волны в г1, г2 (точках расположения различных атомов) различаются на величину $k(z_1-z_2)$, и вторичные волны оказываются сдвинутыми по начальной фазе относительно друг друга на ту же величину, взятую с обратным знаком, что и необходимо для их синфазного сложения в точке наблюдения.

Следует помнить, что помимо когерентного испускания, обсуждавшегося выше и связанного с вынужденными переходами, атомы среды совершают и спонтанные переходы, в результате которых испускаются волны, некогерентные между собой, равно как и с внешним полем. Таким образом, излучение активной среды всегда представляет собой смесь когерентной и некогерентной частей, соотношение между которыми зависит, в частности, от интенсивности внешнего поля. Последнее вполне ясно, так как атомы, принявшие участие в процессе вынужденного испускания, лишились энергии возбуждения, и, следовательно, не могут излучать спонтанно. Более детальный анализ показывает, что под влиянием вынужденных переходов изменяется не только полная интенсивность цекогерентного спонтанного излучения, но и его спектральный состав.

§ 224. Эффект насыщения

Согласно соотношению (223.2) выражение для поглощаемой (или излучаемой) мощности $q_a(\omega)$ содержит в качестве множителя произведение $u(\omega)c$, равноз потоку излучения. Однако этим не исчерпывается зависимость $q_a(\omega)$ от $u(\omega)$: как уже упоминалось в § 157, опыт указывает на уменьшение коэффициента поглощения по мере возрастания $u(\omega)$. Это явление легко понять, если принять во внимание, что поглощение света сопровождается переходом атома в возбужденное состояние и число атомов, способных погло

ГЛ. XL. ОПТИЧЕСКИЕ КВАНТОВЫЕ ГЕНЕРАТОРЫ

щать, уменьшается. В свою очерель в результате вынужденного щать, уменьшается число возбужденных атомов. Следовательиспускания у вынужденное испускание влияют на разность но, поглошения уровней и на коэффициент поглощения.

Описанное явление имеет принципиальное значение для оптических квантовых генераторов, и мы рассмотрим его подробнее. Пусть в среде создана инверсная заселенность уровней т, п. Ради упрощения формул статистические веса состояний т, п. гали полагать одинаковыми $(g_m = g_n)$. В противном случае разность Nm — Nn в последующих выражениях следует заменить на $N_m/g_m - N_n/g_n$ (см. (223.3)).

В качестве меры мощности процесса возбуждения, приводящего к инверсной заселеннссти и пока неконкретизируемого, можно принять величину разности заселенности N_{m0} - N_{n0}, которая возникает в отсутствие излучения. Энергия, запасенная в среде и способная перейти в энергию излучения в результате вынужденных переходов, пропорциональна, очевидно, величине twin-- N_{no}l. При достаточно больших значениях $\mu(\omega)$ вся указанизя энергия превратится в энергию излучения, и взамен соотношений (223.3) будет выполняться равенство

$$q_{\max}(\omega) = \sigma \hbar \omega [N_{m0} - N_{n0}], \qquad (224.1)$$

где сде о — коэффициент пропорциональности. Общее выражение для q(ω), которое переходит в (223.3) и (224.1) для предельных случаев $u(\omega) \rightarrow 0$ и $u(\omega) \rightarrow \infty$, можно представить в следующем виде (см. упражнение 247)

$$q(\omega) = \hbar\omega \left[N_{m0} - N_{n0} \right] \frac{b_{mn}(\omega) u(\omega)}{1 + b_{mn}(\omega) u(\omega)/\sigma}.$$
 (224.2)

Коэффициент σ связан с временами жизни атомов на уровнях m, n. Из сравнения (224.2) и (223.3) можно найти зависимость разности заселенностей и коэффициента усиления α(ω) от и(ω): ----

$$N_{mn}(\omega) u(\omega)/\sigma], \qquad (224.3)$$

$$V_m - N_n = [N_{m0} - N_{m0}]^{-1}$$
(224.4)

$$\alpha(\omega) = \frac{1}{4}\lambda^2 a_{mn}(\omega) \frac{1}{1+b_{mn}(\omega) u(\omega)/\sigma}$$

На рис. 40.3 изображены графики зависимости величии з $[N_m - N_n]/[N_{m0} - N_{n0}]$ и $q(\omega)/q_{max}(\omega)$ от переменной $b_{mn}(\omega)u(\omega)/\sigma$. Формула (200 в) Формуле (223.3) отвечает кривая 1, которая по гиперболическому закону – N_{n0} и $q(\omega)/q_{max}(\omega)$ от неременной отверболическому соответстзакону приближается к асимптотическому значению, соответст-Нелинейная зависимость испускаемой мощности q(w) от плот-ти излическаемой мощности постация источния. иости излучения μ(ω) получила название эффекта насыщения.

Этот же термин применяется и к явлению уменьшения разности заселенностей под влиянием вынужденного излучения и погло. щения.

щення. Согласно вычислениям (см. упражнение 247) величина 1/ σ определяется временами жизни атома на уровнях *m*, *n*, обусловленными спонтанными переходами и тушащими столкновениями. С другой стороны, произведение $b_{mn}(\omega)u(\omega)$ равно числу переходов, индуцированных излучением в единицу времени и в расчете на один атом в единице объема. Поэтому зависимость $N_m - N_n$ от комбинации $b_{mn}(\omega)u(\omega)/\sigma$ имеет простое физическое толкование:

Рис. 40.3. Графики зависимости (N_m — N_n)/(N_{m0} — N_{n0}) (кривая 2) и q (ω)/q_{max} (ω) (кривая 1) от плотности энергии излучения. чем больше время 1/о, в течение которого атом находится на уровнях *ти п., в* тем большей степени электромагнитное поле «успевает выровнять заселенности этих уровней и перевести энергию возбуждения в энергию излучения.

При анализе эффекта насыщения подразумевалась инверсная заселенность уровней, т. е. $N_m > N_n$. Если $N_m < N_n$, то соотношения (224.2) — (224.4) остаются в силе, но число переходов с поглощением превышает чис-

ло переходов с вынужденным испусканием, и в итоге среда не отдает эпергию в поле, а получает ее из поля.

Следует иметь в виду, что зависимость коэффициента усиления $\alpha(\omega)$ от плотности излучения $u(\omega)$ по гиперболическому закону (224.4) справедлива лишь для сравнительно простой модели среды. Из (224.4) видно, в частности, что спектральная плотность коэффициента Эйнштейна $a_{mn}(\omega)$ для всех атомов предполагается одниковой. Если принять во внимание столкновения, движение атомов и связанный с ним эффект Допплера, немонохроматичность излучения и другие обстоятельства, то вид зависимости $\alpha(\omega)$ от $u(\omega)$ будет иной. Однако уменьшение $\alpha(\omega)$ с ростом $u(\omega)$ является общей закономерностью.

Экспериментальное обнаружение эффекта насыщения принадлежит С. И. Вавилову, о чем уже упоминалось в § 157. Впоследствии эффект насыщения был подробно изучен для кристаллофосфоров, характеризующихся относительно большой длительностью возбужденных состояний, а также для переходов между атомными и молекулярными уровнями с частотами, относящимися к радио-

ГЛ. XL. ОПТИЧЕСКИЕ КВАНТОВЫЕ ГЕНЕРАТОРЫ

диапазону и к оптической области спектра. Эффект насыщения преддиапазону и к основных явлений ислицения през-ставляет собой одно из основных явлений ислицения презставляет ссочиненной онтики, и он будет играть существенную роль во всем дальнейшем изложении.

§ 225. Принцип действия оптического квантового генератора

Когерентное усиление света средой с инверсной заселенностью энергетических уровней определило возможность использовать такую среду для генерации направленного потока монохроматического излучения.

Прежде чем переходить к описанию работы оптического квантового генератора, сделаем замечание о смысле принятого для

него названия. Для формиропотока вания направленного излучения в активной среде используются процессы излучения атомов или молекул, квантовых систем, обладающих дискретным набором возможных значений энергии и испускающих кванты энергии — фотоны. Это определяет целесообразность применяемого термина «оптический квантовый генератор», нли,

Рис. 40.4. Принципнальная схема оптического квантового генератора.

сокращенно, — ОКГ *). В радиотехнических ламповых генераторах, в которых используется движение электронов проводимости и частоты излучения низки, квантовые эффекты существенной роли не играют, и возможно классическое описание большинства происходящих в них явлений.

Рассмотрим, как будет излучать свет активная среда, помещенная между двумя зеркалами типа используемых в интерферометрах Фабри — Перо (рис. 40.4). Такую систему принято называть актевным оптическим резонатором. Пусть возбужденный атом, расположенный в точке А, испускает волну в результате спонтанного перехода между уровнями с инверсной заселенностью.

Чем больше путь, проходимый волной в активной среде, тем больше путь, проходимый волной в активной страных косн вольше усиление волны. Для направлений, перпендикулярных косн резоналости ленням соответствует несколько больший путь, и, следовательно, несколько больший путь, и, следовательно, несколько большее усиление. На рис. 40.4 это схематически пока-зано учество Зано увеличением числа стрелок в усиливающихся световых пото-ках. Поста ках. После отражения от зеркала волна вновь распространяется в *) Второе сокращенное название ОКГ – лазер – составлено из первих английской фолосон название окг – лазер – составлено из первих

букв английской фразы: ligth amplification by stimulated emission of radiation (усиление соого way to a stimulated emission). (усиление света индуцированным испусканием излучения).

активной среде, и ее амплитуда продолжает увеличиваться. Затем она достигает противоположного зеркала, отражается от иего и испытывает дальнейшее усиление в активной среде, после чего все стадии описанного цикла повторяются, и энергия волны в резонаторе нарастает.

Зонаторе парастаст. Помимо усиления активной средой, существует ряд факторов, которые уменьшают амплитуду волны внутри резонатора. Козф фициенты отражения зеркал резонатора не равны единице. Более того, для вывода излучения из резонатора по крайней мере одно из зеркал делается частично прозрачным. Кроме того, при распространении излучения вдоль оси резонатора будут и другие потери энергии потока излучения, вызванные его дифракцией, расссянием в среде, заполняющей резонатор и т. д. Все эти потери энергии можно учесть, введя для зеркал некоторый эффективный коэффициент отражения $r_{эфф}$, который меньше значения истинного коэффициента отражения зеркал r.

Если усиление волны на длине L больше суммарных потерь, испытываемых волной при отражении от зеркал, то с каждым пробегом амплитуда волны будет увеличиваться все больше и больше. Усиление будет продолжаться до тех пор, пока плотность энергии $u(\omega)$ в этой волне не достигнет такого значения, при котором величина коэффициента усиления существенно уменьшится вследствие эффекта насыщения. Стационарное состояние соответствует, очевидно, условиям точной компенсации усиления в среде суммарными потерями энергии. Таким образом, эффект насыщения имеет принципиальное значение в вопросе о генерации излучения в лазерах.

Количественное соотношение, определяющее возможность генерации направленного потока излучения, можно найти из следующих соображений. Поток излучения со спектральной плоткостью I₀, бозникший в какой-либо точке А активной среды (см. рис. 40.4) и направленный вдоль оси резонатора, усиливается на пути к правому зеркалу, отражается от него и после отражения от левого зеркала опять пройдет через точку А, распространяясь в своем исходном направлении. Таким образом, за один цикл распространения в резонаторе излучение пройдет путь 2L. В отсутствие всяких потерь энергии это должно привести к увеличению потока до величниы $I_0 \exp [2\alpha(\omega)L]$, где $\alpha(\omega) - коэффициент$ Усиленияусиления. Однако в результате потерь, которые учтены эффек-тивным козтания плоттивным коэффициентом отражения зеркал r_{эфф}, фактическая плот-ность потока значения ность потока энергии после одного цикла его распространения в резонаторо от Поэт в резонаторе определится выражением $I_0 r_{sph} \exp[2\alpha(\omega)L]$. Поэтому решение ровресствия выражением $I_0 r_{sph} \exp[2\alpha(\omega)L]$. тому решение вопроса о возможности возбуждения генерации в резонаторе сводится к условию

780

 $I_0 r^*_{s \neq \psi} \exp (2\alpha_0(\omega) L) > I_0$

ГЛ. XL. ОПТИЧЕСКИЕ КВАНТОВЫЕ ГЕНЕРАТОРЫ

или

 $r_{s\phi\phi}^2 \exp\left[2\alpha_0(\omega)L\right] > 1.$

(225.1) Здесь под α₀(ω) понимается значение коэффициента усиления при малых интенсивностях, т. е. без учета эффекта насыщения при называемый ненасыщенный коэффициент усиления). В том случае, называетношение (225.1) превращается в равенство, говорят о дсстижении пороговых условий генерации.

В соответствии со сказанным выше, стационариая мощность генерации определяется условием

$$r_{\phi\phi} \exp \left[2\alpha\left(\omega\right)L\right] = 1;$$
 (225.2)

потенцируя последнее соотношение, получим

$$\alpha(\omega) L = t, \quad f = \ln(1/r_{spp}).$$
 (225.3)

Условия (225.2) или (225.3) называются условиями стационарной генерации. Ему можно придать несколько иной вид, если с помещью соотношения (223.3) перейти от коэффициента усиления к мощности испускания в 1 см³. Предполагая, кроме того, что гор маго отличается от 1 (и, значит, $f = \ln(1/r_{sobb}) \approx 1 - r_{sobb}$), и умножая левую и правую части (225.3) на площадь Ѕ поперечного сечения пучка лазера и на си(ω), получим

(225.4) $q(\omega) SL = cu(\omega) (1 - r_{sbb}) S.$

Можно сказать, следовательно, что условие стационарной генерации эквивалентно равенству мощности qSL, излучаемой в объеме SL активной среды, и потока сиS(1 — гофф), выходящего из резонатора.

Величина f называется относительными потерями энергии или, сокращенно, потерями. Вместо величины / иногда оперируют с добротностью резонатора Q. Под добротностью колебательной Системы понимают отношение энергии, запасенной в системе, к энер-Гин, выходящей из системы за один период колебаний одо-Легко показать, что для оптических резонаторов добротность, опре-Деленная таким образом, связана с потерями / соотношением

$$Q_r = 2L/M = q/I,$$

где q — число полуволн, укладывающихся на длине резонато Вычислим стационарную мощность генерации. С этой целью полиставим в виде

воспользуемся соотношением (224.4), которое представим в виде

$$\alpha(\omega) = \frac{\alpha_0(\omega)}{1 + u(\omega)/u_0},$$

$$\alpha_0(\omega) = \frac{1}{4\lambda^2 a_{mn}(\omega) [N_{m0} - N_{n0}]} \qquad (225.6)$$

где введены обозначения

$$u_0 = \sigma/b_{mn}, \quad \alpha_0(\omega)$$

781

лазеры, нелинейная оптика

и $\alpha_0(\omega)$ — ненасыщенный коэффициент усиления, а величина и равиа такой плотности излучения, при которой $\alpha(\omega)$ уменьшается в 2 раза в сравнении с $\alpha_0(\omega)$. Подставляя выражение (225.5) для $\alpha(\omega)$ в равенство (225.3), можно найти стационарное значение $u(\omega)$ внутри резонатора:

$$u(\omega) = u_0 \left[\frac{\alpha_0(\omega)L}{f} - 1 \right], \quad f = \ln \frac{1}{r_{o \phi \phi}}. \quad (225.7)$$

Таким образом, плотность генерируемого излучения пропорци. ональна превышению ненасыщенного коэффициента усиления на его пороговым значением f/L; если $\alpha_0(\omega) \leq f/L$, то генерация не возникает, что согласуется с условнем (225.1).

Используя понятие добротности резонатора, можно придать формуле (225.7) следующий бид:

$$u(\omega) = u_0 \left[\frac{1}{2} \alpha_0(\omega) \lambda Q_r - 1 \right].$$

Пороговое условие генерации в этих терминах означает, что уснление света на протяжении полуволны должно быть больше величины, обратной добротности резонатора:

$$1/2\alpha_0(\omega)\lambda > Q_r^{-1}$$
.

С помощью соотношения (225.7) можно вычислить поток Ф, выходящий из резонатора:

$$\Phi = cu(\omega)(1 - r_{\mathfrak{spp}})S = cu(\omega)fS.$$
^(220.8)

Простые преобразования позволяют записать выражение для потока Ф в виде (см. упражнение 248)

$$\Phi = q_{\max}SL - cu_0/fS, \qquad (220.5)$$

где q_{max} — максимальное значение мощности испускания единишь объема активной среды, которое определяется энергией, запасасмой в среде за счет процессов возбуждения (см. § 224 и формулу (224.1)). Таким образом, если условия возникновения генерации (см. (225.1) выполнены, то мощность потока когерентного излучения, ыходящего из лазера, линейно зависит от мощности процессов созбуждения, поддерживающих в активной среде инверсную заселенность.

Напомним, что в эффективном коэффициенте отражения учтены потери энергии любой природы, в том числе потери из-за выхода излучения через боковые стенки резонатора. Вполне ясно, что для пучков, распространяющихся наклопно по отношению к оси резонатора, потери будут больше, чем для осевых пучков. Поэтому порог генерации для наклонных пучков выше, чем для осевых. Кроме того, следует помнить об ограниченности запаса энергии активной среды, способного перейти в вынужденное излучение. Поскольку для осецых пучков потери меньше, чем для наклонных, их интенсивность нарастает быстрее, для них стационарные условия достисивность лагие, чем для наклонных. Поэтому осевые пучки дости-гаются раньше, чем для наклонных. Поэтому осевые пучки могут гаются ранениятных обстоятельствах использовать указанный запри онатони целиком, не оставив практически ничего на долю наклонных пучков.

Из сказанного должно быть ясно, что световые пучки, выходящие из квантового генератора, могут обладать очень малой расходимостью. Минимальный телесный угол, в котором сосредоточен поток, не может, конечно, быть меньше величины, определяемой дифракцией на зеркале, т. е. (λ/D)², где D — диаметр пучка. Это минимальное значение реализуется во многих случаях и оно действительно очень мало. Например, для $\lambda = 500$ нм и D = 5 мм имеем $(\lambda/D)^2 = 10^{-8}$, тогда как для некогерентных источников света телесный угол порядка 2л - 4л. Эта сторона вопроса более подробно рассматривается в § 229.

Усиление спонтанного излучения в активном резонаторе и в конечном счете его превращение в генератор когерентного излучения имеет глубокую аналогию с процессами, развивающимися в автоколебательных системах, при самовозбуждении в них генерации. В таких системах важнейшую роль играет положительная обратная связь колебательной системы с источником энергии, поддерживающим в ней колебания. Сравнительно простой механизм индуктивной положительной обратной связи можно проследить на примере генератора колебаний с электронной лампой.

В случае оптического квантового генератора зеркальный резонатор создает положительную обратную связь между полем излучения и источником его энергни — активной средой *). Зеркала резонатора обеспечивают многократное распространение (и тем самым усиление) светового потока в активной среде. Это необходимо и для самовозбуждения генерации, и для ее поддержания. Однако роль резонатора в работе лазера не исчерлывается повышением плотности энергии поля в активной среде. Ссгласно ука-Занной выше аналогии, для возникновения автоколебательного режима обратная связь должна быть положительной. Другнын Словами, должна иметь место строгая синфазность колебаний, уже Существующих в системе и «приходящих» по каналу обратной кван-Связи. Подобные соображения применимы и к оптическим кван-

товым генераторам, о чем будет идти речь в § 228, 229. Из приведенного выше описания прилципа работы лазеров Видно, что оптические квантовые генераторы основаны на трех Фундалостих фифундаментальных идеях, родившихся в различных областях физики Поластики идеях, родившихся в различных который постузики. Первая идея сформулирована Эйнштейном, который посту-лирована Эйнштейном, который постулировал возможность процесса вынуждевного испускания в рам-

^{*)} Применение зеркал — не единственный способ осуществления обратной И В дазовах - Исконскаят на рассмотрых в § 233. / Применение зеркал — не единственным способ сумство в \$ 233. Связи в дазерах. Некоторые другие методы мы рассмотрим в \$ 233.

ках теорин теплового некогерентного излучения. Вторая фуна. ментальная идея — применение термодинамически неравновес. ных систем, в которых возможно усиление, а не поглощение эле ктромагнитных воли (В. А. Фабрикант, 1940 г.). Наконец, треты идея, имеющая радиофизические корпи, — использование положительной обратной связи для превращения усиливающей системы в автоколебательную, т. е. в генератор когерентных электромагнитных волн. За разработку нового принципа усиления и генерации электромагнитных волн и создание молекулярных генерато ров и усилителей советским физикам Н. Г. Басову и А. М. Прохорову в 1959 г. была присуждена Ленинская премия, а в 1964 г. Н. Г. Басову, А. М. Прохорову и американскому физику Ч. Таунсу была присуждена Нобелевская премия (по физике).

§ 226. Описание устройства и работы рубинового оптического квантозого генератора

Для создания активной среды необходимо селективное возбуждение ее атомов, обеспечивающее инверсную заселенность хотя бы одной пары их энергетических уровней. Возможны различные способы создания инверсной заселенности. Поскольку в предшествующем изложении подробно обсуждались процессы излучения и поглощения света, начнем с описания оптического метода селективного возбуждения атомов среды *). Примером оптического квантового генератора, в котором используется оптический метод возбуждения, может служить рубиновый лазер. Отметим, что этог генератор был исторически первым квантовым генератором, излучающим в видимой области спектра (Мейман, 1960 г.).

Рубин представляет собой кристалл окиси алюминия Al₂O₃ (корунд), в который при его выращивании введена окись хрома Cr₂O₃ обычно в количестве нескольких сотых долей процента. Окись хрома изоморфно входит в кристаллическую решетку корунда. В результате введения примеси ионов хрома прозрачный кристала корунда приобретает розовую окраску. В спектре белого света, прошедшего через кристалл рубина, легко заметить две широкие полосы поглощения, расположенные в зеленой и фиолетовой областях спектра. Поглощение в этих участках спектра и определя ст розовую окраску рубина.

Если кристалл рубина. он светится красным светом, отсутствующим в первичном световом лучке и представляющим собой фотолюминесценцию ионов хрома. При наблюдении свечения рубина через спектроскоп можно уви-

784

^{*)} Вместо термина «оптический мезод возбуждения» иногда используется термии «оптическая накачка», заимствованный из американской научной литературы.

деть в красной области спектра линию с длиной волны $\lambda =$

Изучение люминесценции рубина позволило составить следующее схематическое представление о механизме ее возникновения и об энергетических уровнях ионов'хрома, введенных в кристаллическую решетку кристаллов корунда. На рис. 40.5 широкими полосами показаны энергетические уровни ионов хрома Ез и Ез. Переходы на них из основного состояния Е1 соответствуют упомянутым выше широким полосам поглощения кристалла рубина

в вндимой области спектра. Процессы поглощения энергии света Е ионами хрома символически представлены стрелками, направленными от нормального нижнего энергетического уровня ионов Е, к верхним уровням E₃, E₂. В результате поглощения света ионы хрома переходят с нижнего уровня на верхние. Длительность существования т этих возбужденных состояний нонов хрома мала и составляет примерно 10-8 с.

Однако только незначительная Е, часть нонов хрома возвращает Рис. 40.5. Схема энергетических ся обратно в основное состояние Е₁, непосредственно излучая

поглощенные ими фотоны. Опыт показывает, что большая часть возбужденных иснов хрома сначала отдает часть своей энергия кристаллической решетке корунда без излучения света. В результате такой передачи энергии кристаллу ноны переходят в состояние с энергией E₂. Этому безызлучательному переходу соответствуют волнистые стрелки на рис. 40.5 между уровнями E_3 , E_4' и E_2 . Длительность возбужденного состояния E_2 понов хрома состо-Тавляет 3.10-3 с **), т. е. она во много раз больше, чем для состояний E_3 или E_3 . Возвращение понов хрома с уровня E_2 на основности ной половия и с уровня и с уровня с уровна С ной уровень E₁ совершается путем излучательных переходов, и созденения совершается путем излучательных переходов, и создающих ту красную люминесценцию кристаллов рубниа, о которой было сказано выше.

*) В спектроскоп с большой дисперсией можно наблюдать две близко рас-Кенные коссили 694,3 и 692,9 пм. 1. В спектроскоп е большой дисперсией можно наолюдать две оннае 9 им. положенные красные спектральные линии с длинами воли 694,3 и 692,9 им. Интенсивности спектральные линии город. Пон нашем ехематическом Интенсивность второй линии меньше, чем первой. При нашем ехематическом описании наблютаетическом обсуждать ин эту подробность, ни описании наблюдаемых явлений мы не будем обсуждать ни эту подробность, ни Сверхтонкую странения явлений мы не будем обсуждать ни эту подробность, ни Сверхтонкую структуру каждой линии в отдельности и зависимость их длии воли ОТ температуры **) Возбужденные состояния со столь большой длительностью существо-Я называются известояния со столь большой длительностью существо-

- вания называются метастабильными.

уровней исна хроча.

Описаниая схематически структура энергетических уровней ионов хрома в кристаллах рубина и длительное существование возбужденного состояния с энергией E_2 благоприятствовали соз. данию первого оптического квантового генератора.

данию переого оптического и при принципиально эту задачу межно разрешить следующим образом. Мощное освещение рубина белым светом возбуждает ионы, хрома, которые приобретают энергию E_3 , E'_3 , а затем без излучения быстро переходят на метастабильный уровень E_2 . Благодаря большой длительности его существевания, на уровне E_2 происходит «накопление» ионов хрома. При достаточно большой освещенности рубина их концентрация на уровне E_2 будет больше, чем на уровне

Рис. 40.6. Схема рубинового лазера-

 E_1 , т. е. возникиет среда с инверсной заселенностью энергетических уровней E_2 и E_1 . Для возникновения генерации когерентного излучения при переходах $E_2 \rightarrow E_1$ необходимо поместить рубин в резонатор и удовлетворить тому условию самовозбуждения генерации $\alpha_0(\omega)L > f$, которое было выведено выше (см. § 225). Поэтому рубиновый лазер устроен следующим образом (рис. 40.6). Изготовляют цилиндрический рубиновый стержень *I* днаметроя в несколько миллиметров и длиной в несколько сантиметров с плоскими торцами, тщательно полированными и строго перпендикулярными оси цилиндра. Один из торцов покрывают плотным слоем металла с высоким коэффициентом отражения, например, серебра. Другой торец рубинового стержия покрывают полупрозрачных слоем того же серебра. В результате стержень и два параллельных друг другу зеркала на его торцах образуют оптический резонатор *).

Необходимая освещенность рубинового стержня осуществляется лампой 2 (см. рис. 40.6), помещенной вместе со стержнем в специальный зеркальный осветитель (на рис. 40.6 осветитель не показан), концентрирующий свет лампы на рубине. Этот осветитель 3, имеющий форму эллиптического цилиндра с зеркальной поверх

*) Можно ограничиться полировкой торцов рубинового стержня и установить два внешних зеркала. ностью, изображен вместе с рубиновым стержнем и ламбой, но в другой проекции, на рис. 40.7.

Для возбуждения генерации обычно пользуются импульсными газоразрядными лампами, дающими яркую световую вспышку газоразристью порядка одной миллисекунды. Для возникновения длительности световая мощность, непосредственно используемая для возбуждения понов хрома в 1 см³ рубина, должна составить около 2 кВт. Если лампа обеспечивает такую мощность возбуждения, то рубиновый лазер генерирует световой импульс с длительностью, несколько меньшей длительности свечения лампы. На экране, расположенном параллельно полупрозрачному зеркалу на торце рубинового стержня, можно увидеть ослепительно яркую

Рис. 40.7. Поперечное сечение осветителя лазера с оптическим возбуждением.

Рис. 40.8. Осциало граммы свечения возбуждающей лампы-вспышки и излучения рубинового лазера.

красную световую вспышку. Площадь поперечного сечения светового пятна на экране при этом практически не зависит от расстояния (в пределах десятка метров) между рубином и экраном.

Для освещения рубинового стержня применяются ксенонозые газоразрядные лампы, через которые разряжается батарея высоковольтных конденсаторов. Емкость такой батарен конденсаторов порядка 1000 мкФ, и заряжается она до напряжения в 2-3 кВ. На рис. 40.6 показана батарея конденсаторов С, включениая параллельно лампе 2, но блок зарядки конденсаторов и устройство для быствота. быстрого их включения параллельно лампе не изображены.

На рис. 40.8 показаны осциллограммы интенсивности световых вспыщек рубинового лазера и возбуждавшей его генерацию ксено-новой посталера и возбуждавшей его генерацию ксеноновой лампы. Для того чтобы эти две осциялограммы не накла-дывались Дывались друг на друга, ординаты одной из них (лазерной) отечн-тываются друг на друга, ординаты одной из них (лазерной) азвертки, а друтываются вверх от горизонтальной осн временной развертки, а дру-гой — римски странальной осн временной развертки, а другой — вниз. Из сравнения осциллограмм видно, что генерация в рубина в рубине начинается не одновременно с началом световой вспышки Ксеноновой ксеноновой лапмы, а только после обеспечения достаточной ин-версной соссаетия понов хрома. Излучение версной заселенности рабочих уровней нонов хрома. Излучение

возбуждающего света лазера заканчивается, не порога, необходимого света ксенонсвой лампы падает ниже порога, необходимого для подлазера заканчивается, когда мощность

Спектры светового импульса ксеноновой лампы и рубннового Спектры светового импульса ксеноновая лампа излучает на Спектры светового лип, Ксеноновая лампа излучает импульс лазера совершенно различны. Ксеноновая лампа излучает импульс лазера совершенно разли по рубиновый лазер генерирует красси импульс с плиной волны 694 3 ни рубинование красси света со силошным систерси, го волны 694,3 нм и шириной волны 694,3 нм и шириной Энергия светового импилист ную спектральную шириной около 0,025 нм (и меньше). Энергия светового импульса рубино. вого лазера сравнительно невелика и составляет несколько джо улей. Но, так как длительность импульса порядка миллисекуны. мощность лазерного импульса достигает нескольких киловатт *). О способах значительного ее повышения будет сказано ниже.

Как уже отмечалось в § 225, оптический резонатор лазера обеспечивает коллимацию (направленность) излучения, выходящею из лазера. Хотя при использовании рубиновых стержней трудно достичь дифракционного предела углового раскрытия λ/D излу. чаемого светового конуса, но, тем не менее, можно получить расходимость светового пучка, не превышающую нескольких угловых минут. Это значит, что на экране, расположенном на расстоянии километра от лазера, диаметр поперечного сечения светового пучка составит примерно метр без применения каких-либо фокусирующих оптических систем.

Необходимо подчеркнуть пространственную когерентность излучения в сечении лазерного светового пучка, тесно связанную с его расходимостью (см. § 22). Если на пути лазерного светового пучка расположить две узкие параллельные щели, прорезанные в непрозрачном экране, т. е. осуществить схему интерференционного опыта Юнга (см. § 16), но без первой входной щели, то на экране, поставленном за этими щелями, можно наблюдать интерференционную картину с высокой видимостью (контрастностью) ее полос. Это значит, что излучение лазера пространственно когерентно.

Рубниовый лазер может давать линейно-поляризованное излучение без помощи какого-либо поляризатора. Если рубиновый стер-жень дазора от токого-либо поляризатора. Если рубиновый стержень лазера вырезан из кристалла рубина таким образом, что оптическая ост измень из присталла рубина таким образом, что оптическая ось кристалла перпендикулярна к оси стержня или со-ставляет с ней угост соо ставляет с ней угол 60°, то излучение линейно-поляризовано, при-чем вектор иниципальной сечем вектор индукции **D** перпендикулярен плоскости главного сечения кристалла.

Если сопоставить характеристики импульсного рубниового вера, обычно примение праклазера, обычно применяемого в современной дабораторной прак-тике (мощность средовать тике (мощность светового импульса, ширину спектра излучения, пространствонника ния, пространственную когерентность светового пучка, его кол-лимацию), с аналогичность светового пучка, его источников лимацию), с аналогичными характеристиками других источников

ГЛ. XL. ОПТИЧЕСКИЕ КВАНТОВЫЕ ГЕНТРАТОРЫ

света, то становится ясно, что оптический кнантовий генеразор света, ю сталобой источник излучения принцизиство кисторатор представляет собой источник излучения принцизистью кисто Из теско осуществимого расчета вытесята представитис. типа. Из легко осуществимого расчета вытекает, что для излучения типа, из лочителным телом «лазерной мощности» в пределах указакабсолютие трального интервала (0,025 им.) оно должно иметь технературу порядка 108 К. Но даже при этом условии поток разновесного излучения не был бы пространственно когеренте:. Сравновесспектральные мощности излучения единицы посерхности Солная и лазера, получим, что лазер излучает в 104 раз сольше, чем Солнце. Если найти амплитуду напряженности электрического поля в несфокусированном лазерном светогом пучке указанной выше мощности, то окажется, что она составляет величину порядка 10⁴ В/см. Для сравнения укажем, что напряженность года в солнечном свете на экваторе у поверхности Земли в изный солнечный день порядка 10 В/см. Как мы увидим в дальнейшем, изгряженность поля в лазерном световом пучке можно повысить еще на несколько порядков.

Рассмотрим некоторые способы повышения мощности излучения импульсного рубинового лазера. Так, можно упеличесть длину и повышать качество рубинового кристалла, а также мощность его оптического возбуждения. Это дает несомленные положительные результаты и позволяет повысить мощность излучаемого импульса примерно на один порядок при неизменной сго длительности.

Другая возможность повышения мощности лазерного импульса основана на совершенно иных соображениях. Мощность имлулься пропорциональна его энергин 8, деленной на длительность импульса Ат. Поэтому, если при данном значении энергии импульса сократить его длительность, то мощность импульса повысится. Излежим один из методов сокращения длительности импульса излучения, получивший название мстода модулированной добротности.

Выше неоднократно подчеркивалось значение резонатора 111 самовозбуждения генерации лазера. Генерация начинает развиваться, как только инверсная заселенность примет пороговое значение, определяемое потерями энергии в резонаторе. Поэтому целесообразно иметь большие потери на первом этапе осгещеная кристалла с тем, чтобы задержать начало развития генерации и Накопить в освещенном кристалле более высокую кондентрацию возбужденных нонов хрома. Можно расположить пераенликулярно пучку только одно зеркало, а другое зеркало или призму полного отражения (рис. 40.9) вводить в рабочее положение линь восле того, как будет достигнута высокая ниверсная заселенность.

В момент правильной орнентации зеркала или призмы лазниообразно нарастает амплитуда импульса индуцированного излучения. получающего почти всю энергию, запасенную в активной среде, и имеющего длительность порядка 10⁻⁷ – 10⁻⁸ с.

Существует несколько способов импульсного уменьшения во Существует несколько спортнего отражения вращают вокруг терь. Призму полного внутреннего отражения вращают вокруг вокруг терь. Призму полного влутрение и лежащей в плоскости чертежа оси, перпендикулярной к ребру А и лежащей в плоскости чертежа оси, перпендикулярнов к ресу с коростью скоростью около (на рис. 40.9 она показана пунктиром), с угловой скоростью около (на рис. 40.9 она показана пунктиром), с угловой скоростью около (на рис. 40.9 она показана пулитерия, подбирают таким образов, 500 об/с. Начальную фазу вращения подбирают таким образов, что призма занимает рабочее положение через заданный промежучто призма запимает расстве иссеноновых ламп, когда инверсная населенность уровней иснов хрома велика.

Срезы торцов рубинового стержия, используемого в данном случае, делаются косыми и, разумеется, неметаллизированными для того, чтобы при высокой инверсной заселенности уровней, т. е. при высоких значениях коэффициента усиления, сам кристалл не стал оптическим резонатором.

Рис. 40.9. Схема лазера с модулированной добротностью.

Таким образом, повышение мощности лазерного импульса достигается сокращением его длительности за счет специального приема «включения» в работу оптического резонатора. Описанный метод сокращения длительности импульса до 10-7 с (правда, при некоторой потере его энергии) дает возможность получить импульсы с мощностью 107 Вт.

Как нетрудно понять, изменение орнентации призмы изменяет добротность оптического резонатора. Поэтому описанный метод формирования коротких мощных импульсов получил наименование модуляции добротности оптического резонатора. Лазеры, рабо-тающие в таком режиме, называются лазерами с модулированной добротностию. добротностью. Соответственно условия работы лазера с неизменной во времени добротностью называют режимом свободной генерации.

Значительно более быструю модуляцию добротности резонатора можно осуществлять, используя электрооптические затворы (см. § 152). Пойстрика (см. § 152). Действие этих затворов основано на практически безы-иериновном изистема. иерционном изменении или возникновении оптической анизотропии некоторых экивисовании некоторых жидкостей и кристаллов под действием электрического поля. Относящийся к явлениям этого типа эффект Керра описан в § 152. С этой же изактика в § 152. С этой же целью применяется и другое электрооптическое явление. так неаттехно применяется и другое электрооптическое явление, так называемый эффект Поккельса, возникающий в кристаллах и столь же возникающий вофект Керра. кристаллах и столь же малонперционный, как и эффект Керра. Модуляция добротивства

Модуляция добротности резонатора с помощью эффекта Керра щестеляется следующих образоватора с помощью эффекта. осущестеляется следующим образом. В резонатор, кроме кристал-

ГЛ. XL. ОПТИЧЕСКИЕ КВАНТОВЫЕ ГЕНЕРАТОРЫ

ла рубина, введен затвор, состоящий из ячейки Керра и призмала рубника, инейного поляризатора, ориентирозанного таким образом, чтобы он полностью пропускал линейно-поляризование разом, что в рубинового стержня, когда он начиет генерировать. излучение ра Керра изображена на рис. 27.2. Перед включением ламп возбуждения рубина на ячейку Керра подается такое напряжение, чтобы она была эквивалентна полуволновой пластинке, напрялежащим образом ориентированной по отношению к плоскости поляризации излучения рубина. При этих условиях свет, излучаемый рубином, не может распространяться вдоль оси резонатора. Если после включения ламп возбуждения, когда уже создана большая инверсная заселенность уровней рубина, быстро снать напряжение с конденсатора Керра, то линейно-поляризованное излучение рубина сможет свободно распространяться между зеркалами оптического резонатора и возникнет короткий импульс лазерного излучения длительностью порядка 10-6 с. Лазер с элементом Поккельса для модуляции добротности работает аналогично описанному выше.

Заканчивая описание лазеров с оптическим возбуждением кристалла, сделаем некоторые замечания общего характера относительно применения этого метода создания активной среды.

Отметим, что в качестве рабочего элемента в лазерах описанного типа с оптическим возбуждением используется не только рубин, но и целый ряд других кристаллов, а также вещества в других состояниях (стекла, газы).

Для метода оптического возбуждения существенно использование не менее трех энергетических уровнений атома (см. рис. 40.5). Важно также, чтобы уровень Е, был долгоживущим (в трех-Уровневой системе), а уровни E₃ — широкими. В самом деле, при Использовании только двух энергетических уровней невозможно создать их стационарную инверсную заселенность за счет оптического возбуждения. Нарастание плотности потока возбуждающего излучения будет увеличивать и число актов поглощения фотонов, и число актов их индуцированного излучения. В результате даже при бесконечной мощности излучения заселенности Энергетических уровней станут всего лишь одинаковыми, и их инверсная заселенность не будет достигнута. В том, что разность заселенность не оудег достипута. В колуко убедиться заселенностей $N_1 - N_2$ не может изменить знак, легко убедиться при помото $N_1 - N_2$ не может изменить знак, легко убедиться при помото $N_1 - N_2$ не может изменить знак, легко убедиться при помото $N_1 - N_2$ не может изменить знак, легко убедиться величины. при помощи общего выражения (224.3) для этой величины.

§ 227. Гелий-неоизвый лазер непрерывного действия

Гелий-неоновые лазеры излучают монохроматический, хорошо Коллимированный пучок мощностью до нескольких десятков мил-инвата вобото в полостью до нескольких десятков милливатт, работают и в импульсном, и в непрерывном режимах, прости просты и сравнительно безопасны в эксплуатации. Эти лазеры
лазеры, нелинепная оптика

генерируют излучение и в видимой, и в инфракрасной областях спектра. В видимой области спектра длина волны их излучения приходится на красную часть спектра ($\lambda = 632,8$ нм), в инфракрасной области спектра они генерируют излучение на длинах волн 1150 и 3390 нм. Приборы такого типа стали наиболее распространенным видом лабораторного лазера, когда требования к параметрам излучения сграничиваются указанными выше условиями.

Принципиальная схема гелий-неонового лазера изображена на рис. 40.10. Здесь 1 — газоразрядная стеклянная трубка, диаметром несколько миллиметров и длиной от нескольких десятков сантиметров до 1,5 м и более. Торцы трубки замкнуты плоскопараллельными стеклянными или кварцевыми пластинками, ориентированными под углом Брюстера к оси трубки. Для излучения,

Рис. 40.10. Принципиальная схема гелий-неонового лазера.

распространяющегося вдоль оси трубки и поляризованного в плоскости падения света на пластинки, коэффициент отражания от них равен нулю.

Давление гелия в трубке примерно равно 1 мм рт. ст., давление неона — 0,1 мм рт. ст. Трубка имеет катод 2, накаливаемый низковольтным источником питания, и цилиндрический пустотелый анод 3. Между катодом и анодом на трубку накладывается напяжение 1—2,5 кВ. Разрядный ток в ней равен нескольким десяткам миллиампер. Разрядная трубка гелий-неонового лазера помещается между зеркалами 4, 5. Зеркала, обычно сферические, делаются с многослойными диэлектрическими покрытиями, имеющими высокие значения коэффициента отражения и почти не обладающими поглощением света. Пропускание одного зеркала составляет обычно около 2%, другого — менее 1%.

При нагретом катоде трубки и включенном анодном напряже ини трубка светится, и в ней отчетливо виден газоразрядный столб розового цвета. По внешнему виду включенная трубка вполне аналогична газоразрядным неоновым рекламным трубкам. Если через спектроскоп наблюдать ненаправленное свечение этой трубки, через спектроскоп наблюдать ненаправленное свечение этой трубки, неона, расположенных в различных областях видимого спектра, и желтые линии свечения гелия.

При правильной ориептации через оба зеркала (но в особенности через зеркало с бо́льшим значением коэффициента про-

ГЛ. XL. ОПТИЧЕСКИЕ КВАНТОВЫЕ ГЕНЕРАТОРЫ

пускания) распространяются хорошо коллимированные интексивпусканны, ронохроматического (красного) света с длиной волны ные пучки тучки возникают в результате генерации излучения 632,6 ния сталучения гелий-неонового лазера. В его спектре присутствует только линия с длиной волны 632,8 нм.

Для генерации и наблюдения инфракрасного излучения того же лазера необходимо иметь прозрачные для него торцовые окна казоразрядной трубки, зеркала резонатора с высокими значениями коэффициента отражения в инфракрасной области спектра и, разумеется, приемник, чувствитель-

ный к инфракрасному излучению. например, болометр или фотодиод.

Кратко обсудим процессы, обеспечиваюткоторые инверсную заселенность уровней неона. На рис. 40.11 приведена упрощенная схема уровней энергии атома неона (справа). Излучению с длинами волн 632,8 и 1150 нм соответствуют переходы $E_3 \rightarrow E_1$ н $E_2 \rightarrow E_1$. Помимо уровней E_4 , E_3, E_2, E_1 , атом неона имеет еще 28 состояний с энергиями, меньшими Е3, но они для нас несущественны и на рис. 40.11 не указаны. В результате столкновений с электронами газоразрядной плаз-МЫ часть атомов возбуждается,

le le E Eg E' E2 3 nek

волн в нанометрах.

что отмечено на рис. 40.11 вертикальными пунктирными стрелками. При определенных режимах разряда этот процесс оказывается достаточным для образования инверсной заселенности уровней E_2 и E_1 . Однако уровни E_3 , E_1 и E_3 , E_4 , переходы между которыми отвечают $\lambda = 632,8$ и $\lambda = 3390$ нм, заселены не инверско.

Положение изменяется, если в разрядную трубку ввести гелий. Гелий обладает двумя долгоживущими (метастабильными) состояинями E₂, E₃, показанными на левой части рис. 40. 11; эти состоя-ния росби ния возбуждаются при столкновениях с электронами, и выду боль-цой щой длительности их существования, концентрация метастабиль-ных алектронеми, концентрация метастабильных атомов гелия в разряде очень велика. Энергии E₃, E₂ мета-стабите и в разряде очень велика. Энергии E₃, E₄ неона, стабильных состояний гелия очень близки к энергиям E₃, E₃ неона, что бловост что благоприятно для передачи энергии возбуждения от гелия к неону при их столкновениях. Эти процессы символизируются горизонате конгоризонтальными пунктирными стрелками. В результате кон-чентрация от в стрелками. В результате концентрация атомов неона, находящихся на уровнях E₃, E₂, резко увеличивается на уровнях E₃, E₂, резко увеличивается, и возникает инверсная заселенность уровней E₃ и E. а пости и E_1 , а разпость заселенностей уровней E_3 и E_1 , увеличивается

в несколько раз. Таким образом, добавление гелия к неону (примерно в пропорции 5:1 — 10:1) весьма существенно для геще рации в гелий-неоновом газовом лазере.

рации в гелии-пеоновом селе Высокая степень оптической однородности активной среды гелий-нсонового лазера позволяет сравнительно легко приблизиться к дифракционному пределу для коллимации излучения и его пространственной когерентности. Последнее можно легко продемонстрировать, если раздвигать щели в схеме опыта Юнга до самых краев сечения лазерного светового пучка. Видимость (контрастность) интерференционной картины при этом сохраняется.

Точные количественные исследования показали, что степень пространственной когерентности γ_{12} (см. § 22) излучения гелийнеонового лазера ($\lambda = 632, 8 \cdot$ нм) почти равна единице. Например, некогерентная часть потока 1 — γ_{12} оказалась порядка 10⁻³ для тех точек поперечного сечения пучка, где интенсивность составляет всего 0,1% от максимальной интенсивности на оси, а для точек на оси — порядка 10⁻⁵. Согласно расчетам указанные значения некогерентной части излучения лазера можно объяснить спонтанным испусканием его активной среды.

Благодаря высокой когерентности гелий-неоновый лазер служит превосходным источником непрерывного монохроматического излучения для исследования всякого рода интерференционных и дифракционных явлений, осуществление которых с обычными источниками света требует применения специальной аппаратуры. Многочисленные варианты гелий-неонового лазера нашли весьма разнообразные применения в биологических исследованиях, в снстемах лазерной связи, в голографии, машиностроении и многих других областях естествознания и техники.

§ 228. Спектр излучения оптических квантовых генераторов

В предыдущих параграфах, посвященных описанию принципа действия и конкрстных схем лазеров, основное внимание концентрировалось на энергетической стороне дела, а именно, на методах образования достаточно большой инверсной заселенности и на усилении поля в активной среде. Существенную роль при этом играл резонатор, зеркала которого отражали падающий на иих свет в активную среду и тем самым способствовали достижению порога генерации. Однако, помимо указанной функции, ре зонатор выполняет и другую — формирует пространственно коге рентное и монохроматическое излучение.

Для выяснения этой стороны вопроса вернемся к рнс. 40.4. Фиксируем какой-либо волновой фронт волны, распространяю щейся в пространстве между зеркалами, и проследим его судьбу за время, необходимое для достижения им правого зеркала, отражения от него, распространения до левого зеркала и возвращения

гл. хг. оптические квантовые генераторы

в исходную точку. На протяжении описанного цикла изменяются, в исходную то на водаметры волны: так, к фазе добавляется, вообще говоря, все параметры волны: так, к фазе добавляется вообще товори, где k — волновое число; в результате усиления величина 2kL, где k — волновое число; в результате усиления величина слов, то отражения от зеркал амплитуда изменяется в активной ог раз; дифракционные явления и днафрагмирование в rexp[α(ω)L] раз; дифракционные явления и днафрагмирование в техримски и вызвать изменения в распредслении амплитование зеркалами могут вызвать изменения в распредслении амплитуды во волновому фронту; если среда резонатора или зеркала анизотропны, то может измениться и поляризация поля. Однако для формирования в лазере строго монохроматического излучения необходимо, чтобы к концу цикла любой параметр волкы принимал то же самое значение, которое он имел в начале цикла. Действительно, предположим обратное и выберем в качестве исходного положение волнового фронта непосредственно перед его отражением от одного из зеркал, например, правого. Частично колна отразится от зеркала, а частично выйдет из резонатора. По прохождении цикла фиксированный нами волновой фронт также частично пройдет через правое зеркало, и по предположению вышедший свет будет иметь иные характеристики, чем свет, прошедший зеркало в начале цикла. Следовательно, если по истечении цякла происходят какие бы то ни было изменения в световой еолне, выходящее из резонатора излучение будет иметь вид последсеательности цугов, не вполне «согласованных» друг с другом. Другими словами, выходящая волна будет модулирована по одному или нескольким параметрам (амплитуде, фазе и т. д.), т. е. не будет монохроматической. Таким образом, для генерации строго менохроматического излучения несбходимо, чтобы возможные изменения любой характеристики волны компенсировались на протяжении цикла и к его концу принимали исходные значения. Исключение составляет фаза, которая может, разумеется, измениться на величину, кратную 2л. Сформулированное утверждение пменуется в дальнейшем принципом цикличности *).

Рассмотрим некоторые следствия, вытекающие из принципа и актив-цикличности. Амплитуда волны за счет усиления в активной среде за один цикл изменяется в exp[a(w)L] раз, что должно компенсироваться выходом излучення из резонатора вследствие частичной и потерями любого частичной прозрачности зеркал, дифракцией и потерями любого другово другого происхождения. Следовательно, применительно к ампли-туле поле туде поля принцип цикличности требует выполнения равенства $\alpha(\omega) L = f.$

$$\exp\left(-f\right)\exp\left[\alpha\left(\omega\right)L\right]=1,$$

*) Аналогично тому, как принцип Гюйгенса-Френеля находиг обоснование ектромагничной тому, как принцип Гюйгенса-Френеля находиг обоснование ектромагничной *) Аналогично тому, как принцип Гюйгенса—Френеля находит осслевание в электромагнитной теории света, принцип «цикличности также является след Ствием более общих соображений. Однако в принятом здесь элементариом способе изложения принцип числе вполне постаточен для интерпретации совокупизложения принцип цикличности вполне достаточен для интерпретации совокуп-ности свойств дазовов работочения станионарном режиме. ности свойств лазеров, работающих в стационарном режиме.

Полученный результат совпадает с соотношением (225.3). Напомним, что коэффициент усиления зависит от амплитуды поля. Поэтому (228.1) следует рассматривать как уравнение для амплитуды. Таким образом, принцип цикличности может служить основой для вычисления стационарной мощности генерации.

новой для вычасновали степения на поляризованность светового пучка, создаваемого лазером. В зависимости от конкретного устройства лазера поляризация может быть линейной, круговой или эллиптической, но в любом случае испускается поляризованный, а не естественный свет. В рамках принципа цикличности это свойство излучения лазера самоочевидно. Впрочем, строго менохроматический свет всегда поляризован, и поэтому ценность принципа цикличности в данном случае состоит не в утверждении факта поляризованности излучения лазера, а в возможности с его помощью установить состояние поляризации в том или ином лазере. Мы не будем останавливаться более на этом тонком вопросе, решение которого требует-привлечения многих сведений о конструкции резонатора и о свойствах активной среды.

В отношении фазы волны трсбование принципа цикличности означает, что суммарное изменение фазы, возникающее за один цикл, должно быть кратным 2л, т. е.

$$2kL + \delta_1 + \delta_2 = 2\pi q, \qquad (228.2)$$

00 21

где k — волновое число, q — целое число, а δ_1 и δ_2 — скачки фаз при отражении от зеркал резонатора. Соотношение (228.2) представляет собой уравнение относительно тех длин волн (или частот), которые только и могут возникать в стационарном режиме генерации при заданной конструкции лазера. Полагая, ради простоты, что скачки фаз при отражении отсутствуют ($\delta_1 = \delta_2 = 0$), кз (228.2) находим

$$k_q = \frac{\pi}{L} q$$
, $\lambda_q = \frac{2\pi}{k_q} = \frac{2L}{q}$, $\omega_q = k_q \frac{c}{n_{zp}} = \frac{\pi c}{Ln_{zp}} q$, $q = 1, 2, \dots$ (228.5)

Волновое число, длина волны и частота снабжены индексом *q*, чтобы подчеркнуть очень важное обстоятельство, а именно: оптический квантовый генератор может создавать монохроматическое поле не с произвольной частотой, но лишь с дискретным набором частот *) (если, разумеется, фиксированы его длина *L* и показатель преломления *n*_{ср} среды).

^{*)} Строго говоря, и показатель преломления, и коэффициент усиления зависят от амплитуды поля и от частоты. Поэтому соотношения (228.1) и (228.2) представляют собой систему уравноний относительно амплитуды и частоты, и их следует решать совместно. Эго обстоятельство в некоторых случаях может привести к поправкам к полученным выше решениям. Однако утверждение о дискретности спектра генерации останется, очевидно, в силе.

ГЛ. XL. ОПТИЧЕСКИЕ КВАНТОВЫЕ ГЕНЕРАТОРЫ

Согласно (228.3) на длине L укладывается целое число полусогласно (228.3) совпадает с условием максимума инволн, т. с. ра интерференционной картине, создаваемой в интерферометре Фабри-Перо. Такое совпадение пеудивительно, поферомстро по-скольку условие цикличности для фазы сзначает синфазность волн, прошедших любое число циклов, а это же условие определяет и максимумы интерференционной картины (см. § 30).

Разность частот, для которых числа q отличаются на единицу, равна

$$\Delta \omega = \omega_{q+1} - \omega_q = \frac{\pi c}{Ln_{\rm ep}},$$

т. е. совпадает с областью дисперсии эталона Фабри-Перо, экривалентного резонатору по L и n_{co}.

Аналогия с интерферометром Фабри-Перо позволяет взглянуть на процесс генерации с иной точки зрения. Представим себе, что излучающий атом помещен между зеркалами интерферометра, и вычислим образующееся при этом поле. Суммировачие вторичных волн, возникающих в результате многократного отражения от зеркал первичной волны, приводит к следующему выражению для интенсивности света, вышедшего из интерферометра:

$$I = I_0 \frac{(1+r)t}{(1-r)^2 + 4r \sin^2 [\pi \omega/\Delta \omega]}, \quad \Delta \omega = \pi c/L n_{cp}, \quad (228.4)$$

где I_0 — интенсивность света в отсутствие зеркал, r и t — коэффициенты отражения и пропускания зеркал. Максимальное значение интенсивности достигается при выполнении обычного интерференционного условия

$$\omega = \Delta \omega q = \frac{\pi c}{L \pi_{\rm cp}} q, \quad q = 1, 2, \dots,$$

совпадающего с (228.3). Физическое содержание этого условия В данном случае очевидно — все вторичные волны когерентны между собой и при выполнении (228.3) складываются по ампли-Туде, а в противном случае в большей или меньшей степени гасят друг друга. Неполное гашение обусловлено тем, что вторичные волици тел. волны имеют неодинаковые амплитуды, убывающие по закону гео-

Пусть теперь между зеркалами находится активная среда с кометрической прогрессии (см. § 30). эффициентом усиления α(ω). В этом случае амплитуды вторичных воричных вори волн изменяются не только в результате неполного отражения от зерист Зеркал, но и в результате усиления в среде. Поэтому ТО коасться величиной вместо коэффициента отражения г надо пользоваться Беличиной Сехр [стаки] $\frac{1}{(228.5)} = \frac{1}{(228.5)}$ rexp [α(ω)L], и (228.4) примет вид $(1+r\exp[\alpha(\omega)L])t$

$$I = I_0 \frac{1}{(1 - r \exp[\alpha(\omega)L])^3 + 4}$$

707

Если усиление в среде компенсирует потери при отражениях, т. е. $r \exp [\alpha(\omega)L] = 1$, то при выполнении интерференционного условия интенсивность обращается в бесконечность. Последнее означает бесконечную спектральную плотность излучения для частот, задаваемых (228.3), т. е. генерацию монохроматических излучений с указанными частотами. Полная же интенсивность определяется эффектом насыщения и находится из условия $\alpha(\omega)L =$ = — In r, что было уже выяснено в § 225.

Таким образом, разобранный пример позволяет следующим образом интерпретировать необходимость выполнения фазовых условий. Если условия (228.2) не выполняется, то вторичные волны, будучи одинаковыми по амплитуде, но не синфазными, полностью гасят друг друга. Только строгая синфазность бесконечного числа вторичных волн с равными амплитудами обеспечиваст их сложение по амплитуде и отсутствие взаимного гашения.

Ввиду большой важности фазового условия (228.2), определяющего спектр генерируємого излучения, кратко остановимся на еще одной его интерпретации. Как известно, основной характеристикой колебательных систем (маятника, пружины, колебательного контура и т. д.) служат частоты их собственных колебаний. При некоторых условиях в таких системах можно возбудить незатухающие колебания (автоколебания), происходящие с собственными частотами исходной колебательной системы. Сказанное относится, например, к маятнику часов, ламповому генератору и т. п. Оптический резонатор также можно рассматривать как колебательную систему, и частоты, определяемые соотношением (228.3), оказываются его собственными частотами (см. упражнение 249). Важное отличие состоит в том, что резонатор как колебательная система обладает бесконечным числом степеней свободы и, следовательно, бесконечным набором собственных частот (см. (228.3)). Поэтому даже в сграниченном участке спектра число собствешных частот резонатора может быть значительным. В случае, например, гелий-неонового лазера ($\lambda = 632,8$ нм) число собственных частот, расположенных в пределах ширины линии усиления, равно примерно 5—10, в рубиновом лазере оно достигает сотен, а в некоторых лазерах — десятков и сотен тысяч (лазеры на красителях, см. § 230).

Генерация может возникать, разумеется, лишь для тех частот из бесконечного набора (228.3), которые принадлежат спектральному интервалу, где выполняется условие достижения порога генерации (228.1). Сказанное иллюстрируется рис. 40.12, где сплошная кривал изображает зависимость непасыщенного коэффиинента усиления $\alpha_0(\omega)$ от частоты, а пунктирная линия отсекает на оси ординат отрезок, равный пороговому значению коэффилента усиления $\alpha_{nopor} = f/L$. Генерация, следовательно, возможна лишь для тех частот ω_q , которые расположены внутри интервала

частот об, об. Разность об — об увеличивается с ростом мощности процесса возбуждения активной среды при фиксированной велипроцесса востак как увеличивается α₀(ω) и сплошная кривая на рис. 40.12 поднимается при неизменном положении пунктирной прямой. «« Если $\omega'' - \omega' < \Delta \omega$, то возможна генерация только для одной частоты. Если же $\omega'' - \omega' > \Delta \omega$, то в завиf/L симости от степени выполнения этого неравенства возможны бихроматический, трихроматический и т. д. режимы генерации. Для случая, изображенного на рис. 40.12, возникает W=1 генерация с единственной частотой ω_a. Картина, приведенная на рис. 40.13. схематически показывает спектр излучения лазера, полученный с помощью интерферометра Фабри—Перо, в монохроматическом (a) и трихроматическом (б) режимах. Переход от одного режима к другому достигается изменением величины инверсной заселенности уровней. Очень широкий спектр генерации лазера на красителе изображен на рис. 40.23, а (см. § 230). Этот спектр получен на приборе с малой разрешающей силой, и его монохроматические компоненты не разрешаются (светлые линии на спектре соответствуют полосам поглощения возa) духа). Однако при достаточном разрешении они наблюдаются, и их число составляет около 104.

Таким образом, структура спектго лазера (λ = 632,8 нм). ра излучения лазеров зависит как от положения участков спектра, где удается получить достаточно больсперсия эталона. шое усиление световых волн, так и (внутри этих участков) от положерезонаторов. К 1975 г. уже были разработаны дазеры разных Типов типов, которые во всей своей совокупности позволяли получать Когерентисти вознали возн около 100 нм) до далекой инфракрасной области (длины воли в не-Сколько посото инфракрасной области (длины воли в несколько десятых миллиметра).

Рис. 40.12. К вопросу о спектре излучения лазера

Рис. 40.13. Интерференционные кольца, полученные с эталоном Фабри - Перо при его освещении излучением гелий-неоново-

а — монохроматический режим, б — трихроматический режим. Эк-видистантность дилий в шкале частот искажена непостоянствоя ди-

800

До сих пор предполагалось, что излучение кваитового генератора, отвечающее какому-либо собственному колебанию резонатора, монохроматично. В действительности же каждая такая спектральная компонента излучения лазера имеет малую, но конечную ширину. На протяжении курса неоднократно подчеркивалось что строго монохроматическое колебание возможно лишь при бесконечной его продолжительности. Существует общее соотношение между длительностью T волнового цуга и шириной его спектра бы (см. § 21)

$T\delta\omega \gg 2\pi$.

Из сказанного следует, что в случае импульсных лазеров спектральная ширина компонент в спектре их излучения никак не меньше величины, обратной длительности импульса. Для лазеров с модулированной добротностью, например, $T \approx 10^{-8}$ с, и б ω не менее 10⁹ с⁻¹.

В случае квантовых генераторов непрерывного действия миинмальная возможная спектральная ширина отвечала бы времени T между моментами включения и выключения лазера (при T == 1 час мы имели бы $\delta \omega \approx 2 \cdot 10^{-3} \text{ c}^{-1}$). Однако есть много причин, обусловливающих значительно большие значения спектралыых ширин. Одна из этих причин состоит в следующем. Согласно соотношению (228.3) частоты ω_{o} зависят от длины резонатора L и показателя преломления среды $n_{\rm cp}$. Это обстоятельство находит много полезных применений. Например, плавно передвигая одно из зеркал, можно непрерывно изменять частоту генерируемого излучения. Но изменения длины L могут происходить и случанным, неконтролируемым образом в результате вибраций, тепло вого расширения станины, на которой укреплены зеркала, и т. п. Если, например, L изменится на величину $\delta L = \lambda/100 \sim 10^{-6}$ мм. то частота изменится на

$$\delta \omega = \omega \delta L/L \sim 2 \cdot 10^7 \text{ c}^{-1}$$
, $(L = 1 \text{ M})$.

Аналогично варнация давления воздуха на 10⁻³ мм рт. ст. *) вызовет изменение частоты излучения (в предложении, что десятая часть длины резонатора заполнена воздухом), равное

$$\delta\omega = \omega \frac{\delta n_{\rm CP}}{10 n_{\rm CP}} = 10^5 \ {\rm c}^{-1}.$$

Перечисленные причины уширения спектра излучения генератора, а также аналогичные им носят название *технических*. Их влияние, по крайней мере принципиально, устранимо и дей-

*) Такие изменения давления соответствуют силе звука при обычной разговоре.

ствительно было устранено во многих приборах, но ценой значи-

Помимо технических, существуют так называемые естественные причины уширения линий излучения квантовых генераторов, ные причиных учетовское движение зеркал и спонтанное испускание а именно среды. Как показывают опыты и расчеты, спектральная ширина, определяемая естественными причинами, составляет 10³ — 10⁻¹ с⁻¹, т. е. фантастически малую величани,

Итак, общую картину спектра излучения оптических квантовых генераторов можно представить следующим образом. В интервале длин волн, простирающемся от вакуумного-ультрафислета до далекой инфракрасной области, с помощью разпообразных активных сред удается получать усиление излучения в участках спектра с относительной шириной ($\omega^* - \omega'$)/ ω , составляющей в разных случаях от 10⁻¹ (лазеры на красителях) до 10⁻⁷ (атомные и молекулярные газы). Положение этих участкоз спектра опредаляется частотами переходов между энергетическими усовнями, характерными для используемой активной среды (атомы, ноны, молекулы в газовой, жидкой и кристаллической фазе). В пределах каждого из упомянутых участков спектр генерируемого излучения имеет вид дискретных квазимонохроматических эквидистантных компонент, расстояние между которыми задается резонатором и составляет в относительной мере величину $\Delta \omega' \omega = \lambda' 2L =$ = 10-6 - 10-4. Наконец, каждая из компонент представляет собой квазимонохроматическое излучение с ничтожно малой естественной спектральной шириной бо ≈ 10² - 10⁻¹ с⁻¹, так что бо 'о ≈ ≈ 10⁻¹³ — 10⁻¹⁶. Средняя частота компонент быстро изменяется по техническим причинам, и за время порядка 104 с «пробегает» заметную долю (от 10-3 до 10-1) от расстояния между компонентами Дю.

§ 229. Конфигурация поля, создаваемого оптическими квантовыми генераторами

Вследствие ограниченности поперечных размеров зеркал и ахтивной среды лазера распространение волн в резонаторе сопровождается дифракционными явлениями. Поэтому применение принципа цикличности к распределению амплитуды поля по волновому фронесси фронту сводится к решению дифракционной задачи: квантовый Генератор фи генератор формирует когерентный световой пучок с таким полеречным распределением амплитуды, которое с учетом дифракционных явлений должно воспроизводить себя на протяжении од-

Опыт показывает, что закон изменения амплитуды на волновом Фронте зависит от конструктивных особенностей резонатора. Если резонатора то в сталами, резонатор образован двумя плоскими параллельными зеркалами,

Ландсберг Г. С. 26

то структура пучка, выходящего из лазера, оказывается такой же, как и при дифракции нескольких когерентных плоских воли, падающих на экран с отверстием под небольшими углами, при условии, что форма эквивалентного отверстия совпадает с формой зеркал. В случае, например, прямоугольных зеркал угловое распределение амплитуды выражается функциями типа приведенных в § 42. Если же резонатор состоит из соосных сферических зеркал, то генерируемое излучение часто имеет вид гауссова пучка (см. § 43). Фотографии, показанные на рис. 9.8 (см. стр. 185), получены для различных поперечных сечений пучка, выходящего из гелий-неонового лазера ($\lambda = 632,8$ нм). Как мы видим, интен-

Рис. 40.14. Циклический гауссов пучок.

сивность достигает максимального значения на оси пучка и плавно уменьшается, стремясь к нулю, в периферийной части сечения. Специальные измерения показали, что распределение интенсивности с высокой степеныо точности описываются гауссовой функцией.

Покажем, что гауссов пучок может удовлетворить требованиям принципа цикличности.

Предварительно напомним основные свойства гауссова пучка. Радиус кривизны волнового фронта в точке z дается соотношением

$$R = z - z_0 + \frac{(a_v^* k)^2}{z - z_0}, \qquad k = 2\pi/\lambda, \qquad (229.1)$$

где z_0 — координата на оси Oz того сечения пучка, где его диаметр минимален, $2a_0$ — величина этого минимального диаметра (рис. 40.14). Пунктирные дуги на рис. 40.14 изображают сечения плоскостью чертежа волновых фронтов, соответствующих точкам z_1, z_2 . Центры кривизны этих волновых фронтов находятся в точках O_1 и O_2 . Амплитуда волны в сечении, отвечающем точке z, описывается функцией

$$A = \frac{a_0}{a} \exp\left[-\frac{x^2 + y^2}{2a^2}\right], \qquad a^2 = a_0^2 + \left(\frac{z - z_0}{ka_0}\right)^2. \tag{229.2}$$

Здесь x, y — координаты в плоскости, перпендикулярной к оси 0z; a — расстояние от оси, на котором амплитуда уменьшается в Veраз, а интенсивность — в e раз по сравнению со своим значением на оси пучка. Гиперболические кривые, изображенные на рис. 40.14, показывают геометрическое место точек, удаленных от оси 0zна расстояние a (зависящее согласно (229.2) от z).

Расположим в сечениях z_1 и z_2 два сферических зеркала с такими фокусными расстояниями f_1 и f_2 , чтобы поверхности зеркал

ГЛ. XL. ОПТИЧЕСКИЕ КВАНТОВЫЕ ГЕНЕРАТОРЫ

совпали с волновыми фронтами в сечениях га и га. После отражения совпали с волисти подобранных и установленных указанных об-от одного из зеркал, подобранных и установленных указанных обот одного не страника гауссов пучок будет преобразован в гауссов же разом, ислован в гауссов же пучок (см. § 43), распространяющийся в противоположном направпучок (см. у сл. в любом сечении те же характеристики (а, и z,), лении и имеющий. Применяя такие же рассичение (а, и z,), что и исходный. Применяя такие же рассуждения к отражению от второго зеркала, приходим к выводу, что после одного цикла гауссов пучок останется неизменным, как и диктуется принципом цикличности. Таким образом, в полном соответствии с опытом, из принципа цикличности и свойств гауссовых лучков следует, что в случае применения резонаторов, образованных сферическими зеркалами, излучение лазеров может иметь геометрическую конфигурацию гауссовых пучков.

приведенных рассуждениях неявно предполагалось, что B диаметр пучка 2а в месте расположения зеркал значительно меньше их диаметров, - только при выполнении этого условия гауссоз пучок преобразуется в гауссов же. Однако амплитуда пучка, согласно (229.2), уменьшается очень быстро при $x^2 + y^2 > a^2$, и практически диаметр зеркала d должен быть больше диаметра 2а пучка в два-три раза. Расчет показывает, например, что при d = 3.2a мимо зеркала проходит лишь 0,01% от общего потока. Эта величина и соответствует в данном случае вкладу в общие потери от дифракционных явлений. Как правило, потери иного происхождения (например, из-за прозрачности зеркал) существенно больше.

Итак, для заданного гауссова пучка всегда можно так подобрать зеркала и их расположение, чтобы он преобразовался «сам в себя». При рассмотрении квантовых генераторов практический интерес представляет обратная постановка вопроса: каковы параметры гауссова пучка, удовлетворяющего принципу цикличности, при заданных расположении и фокусных расстояниях зеркал? Вычисления (см. упражнение 250), основанные на формуле (229.1), приводят к следующему результату для зеркал с одинаковыми сокус-(229.3)

ными расстояниями f^*):

 $z_0 = z_1 + \frac{1}{2}L,$ (229.4)

$$u_0^* = \frac{\lambda L}{4\pi} \sqrt{\frac{4I}{L} - 1}$$

Сечение пучка с минимальным раднусом а равноудалено ЧТО естественно для симметричного резонатора. Поскольку подкоренное выражение должно быть положительным

вовать лишь при достаточно длиннофокусных зеркалах. Физически то интересующий нас циклический гауссов пучк *) К сожалению, фокусные расстояния и относительные потери общепринято начать одной и той усо бытой из это на полжно привести к недоразумению.

-) К сожалению, фокусные расстояния и относительные потера общения обозначать одной и той же буквой, що это не должно привести к недоразумению. 265

26*

это вполне понятно: предельное значение 4f = L отвечает случаю, когда центры кривизн зеркал совпадают; более короткофокусные зеркала слишком сильно фокусируют пучок, и при последо. вательных отражениях он диафрагмируется зеркалами.

вательных опражения он дистрании и минимальная площадь попе-Из соотношения (229.4) видно, что минимальная площадь поперечного сечения пучка πα³ пропорциональна площади первой зоны Френеля λL (см. § 33), соответствующей расстоянию L. Это явно указывает на дифракционный характер рассматриваемой задачи.

С помощью соотношений (229.2)—(229.4) можно вычислить радиусы a₁ и a₂ гауссова пучка в плоскостях зеркал, что позволит судить об осуществимости различных схем резонатора. В самом деле,

$$a_{1}^{2} = a_{2}^{2} = \frac{\lambda L}{4\pi} \left[\sqrt{\frac{4f}{L} - 1} + 1 / \sqrt{\frac{4f}{L} - 1} \right].$$
(229.6)

Отсюда следует, что и в концентрическом резонаторе $(4f \rightarrow L)$, и в резонаторе с плоскими зеркалами $(f/L \rightarrow \infty)$ пучок на зеркалах имеет очень большое сечение и значительная часть потока проходит мимо зеркал при их разумных размерах, а это означает фактически невозможность формирования в таких случаях гауссовых пучков. Радиусы пучков в плоскости зеркал и, следовательно, размеры самих зеркал минимальны, как легко показать, при 2f = L, и тогда

$$a_{1\min}^{s} = a_{2\min}^{2} = \lambda L/2\pi.$$
 (229.7)

Фокусы зеркал в этом случае совпадают, а центр кривизны каждого зеркала находится на противоположном зеркале. Такие резонаторы называются софокусными, или конфокальными, или телескопическими (два одинаковых зеркала с совпадающими фокусами образуют телескопическую систему с увеличением —1).

Если $\lambda = 0,63 \cdot 10^{-3}$ мм (гелий-неоновый лазер) и L = 1 м, то $a_{1\min} = 0,32$ мм и необходимые размеры зеркал варьируют от 1,5 до 2 мм. Благодаря малой величине длины волны практически сриемлемыми оказываются зеркала, очень длиннофокусные с точки зрения обычных представлений. Например, $a_1 = 1$ мм реализуется при f = 100 м (если по-прежнему $\lambda = 0,63 \cdot 10^{-3}$ мм, L = 1 м).

Невозможность формирования гауссовых пучков в резонаторе с плоскими зеркалами отнюдь не означает, что не могут образовы ваться вообще никакие стационарные пучки. В этом случае стацио нарные пучки также существуют, но распределение амплитуды по волновому фронту. будет описываться для них не гауссовой, а иной функцией. И опыт, и расчеты показывают, что в резонаторах с пло скими зеркалами поле представляет собой стоячую волну с почти плоским волновым фронтом, а зависимость амплитуды от поперечвых координат хорошо описывается произведением гармонических

ГЛ. XL. ОПТИЧЕСКИЕ КВАНТОВЫЕ ГЕНЕРАТОРЫ

функций, которые обращаются в нуль на краях зеркал:

 $\sin \omega t \sin \left(\frac{\pi}{L} qz\right) \sin \left(\frac{\pi}{a} mx\right) \sin \left(\frac{\pi}{b} ny\right).$ (229.8)

Здесь т, п, q — целые положительные числа, а и b — длины сторон. прямоугольных зеркал, а начало координат совмещено с одной из прямоутопристи (рис. 40.15). На рис. 40.16, а приведены фотографии поперечного сечения пучка на зеркале. Число полос нулевой амплитуды, параллельных осям Ох и Оу, равно, очевнию, т-1 n - 1.

Как известно, стоячая волна эквивалентна набору бегущих волн. В данном случае мы имеем дело с восемью бегущими волнами: четыре падают на левое зеркало, а четыре — на правое. Составляющие волновых векторов по осям Ох, Оу и Ог равны соответственно

 $\pm \frac{\pi}{a}m, \pm \frac{\pi}{b}n$ и $\pm \frac{\pi}{l}q$. Соотношения

$$\begin{aligned} \varphi_{m} &\approx \frac{k_{x}}{k_{z}} = \frac{m/a}{q/L}, \quad \psi_{n} \approx \frac{k_{y}}{k_{z}} = \frac{n/b}{q/L}, \\ \theta_{m,n} &= \frac{\sqrt{k_{x}^{2} + k_{y}^{2}}}{k_{z}} = \frac{\sqrt{(m/a)^{2} + (n/b)^{2}}}{q/L} \end{aligned}$$
(229.9)

определяют углы, смысл которых ясен из рис. 40.15. Угол в_{л.е.} Напримот например, образуется волновым вектором и осью Ог. Чем больше числа числа *m*, *n*, тем больше этот угол. Поэтому волны с *m* ≥ 2, *n* ≥ 2 Называются с мн Называются боковыми волнами, в противоположность волне с ми-нимальностя боковыми волнами, в противоположность волне с миимальными значениями m = n = 1, называемой остоой или акси-Напомним, что между модулем волнового вектора и частотой су-

ществует общая связь $\omega = kc/n_{ep}$, где n_{ep} – показатель предомления.

505

лазеры, нелинейная оптика

Поэтому волне (229.8) отвечает частота

$$\omega_{m,n,q} = \pi \frac{c}{n_{\rm cp}} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2 + \left(\frac{q}{L}\right)^2}.$$
(229.10)

Соотношение (229.10), которое можно получить и из принципа цик. Соотношение (223.10), поторос ть набора частот в спектре излуче. личности, означает дискретность постре излучения лазера с плоским резонатором. Однако, как легко показать,

Рис. 40.16. Распределение освещенности на волновом фронте в оптическом квантовом генераторе. а — плоские квадратные зеркала (числа указывают значения m и n); б — круглые сфе-

интервал частот, соответствующий изменению *m* и *n* на единицу, гораздо меньше пот ветствующий изменению *m* и *n* на единицу, гораздо меньше, чем при переходе от $q \times q + 1$, если на зеркалах укладывается много при переходе от $q \times q + 1$, если на зеркалах укладывается много зон Френеля, отвечающих расстоянию L (см. упражнение 251) (см. упражнение 251).

806

ГЛ. XL. ОПТИЧЕСКИЕ КВАНТОВЫЕ ГЕНЕРАТОРЫ

А теперь кратко обсудим вопрос об относительной величине А теперь при объем резонатора, образованного плоскихи энергии, покидающей объем резонатора, образованного плоскихи энергии, ноледствие дифракции за время одного плоскими зеркалами, вследствие дифракции за время одного цикла. Для зеркалании, дифракционные потери были малыми, дифракционное того чтобы дифракционные потери были малыми, дифракционное уширение пучка должно составлять небольшую часть от поперечуширение ну варкал. В этом случае, как известно, мы кмеем дело с дифракцией Френеля, и пучок расширяется на величину, примерно равную радиусу первой зоны Френеля VIL. Если бы вблизи одного из зеркал амплитуда сохраняла постоянное значение вдоль волнового фронта, то относительные потери за счет дифракции при достижении второго зеркала были бы, очевидно, пропорциональны $\sqrt{\lambda L/a} + \sqrt{\lambda L/b}$. Однако амплитуда поля на краю зеркал обращается в нуль, в результате чего потери оказываются пропорциональными кубам отношений $\sqrt{\lambda L}/a$, $\sqrt{\lambda L}/b$ (см. упражнение 252). Кроме того, потери увеличиваются с ростом т и п, т. е. потери минимальны для аксиальных волн и увеличиваются по мере возрастания угла между осью резонатора и волновым вектором.

Если $\lambda = 0,63$ мкм, L = 1 м, a = b = 1 см, то дифракционные потери составляют около 0,1 %.

Отметим, что боковые волны, характеризующиеся линиями нулевых значений амплитуды на волновом фронте, существуют и в резонаторах со сферическими зеркалами. В частности, фотографии на рис. 40.16, б получены с резонатором, составленным из сфери ских зеркал круглой формы.

До сих пор мы интересовались конфигурацией поля внутра резонатора. Характеристики пучка, вышедшего из лазера, можно найти, решая дифракционную задачу и принимая в качестве исходного распределение поля на внешней стороне зеркала, отличающееся на коэффициент пропускания зеркала от поля на внутренней его поверхности.

В случае резонатора со сферическими зеркалами амплитуда поля описывается гауссовой функцией (229.2), и согласно общим выводам § 43 выходящий пучок будет гауссовым, а его параметры 20 И 20 МОГУТ ОТЛИЧАТЬСЯ ОТ Параметров, определяемых (290.3) и (229.4), только за счет фокуспрующего действия подложки зеркала. Последнее легко установить по законам преобразовання

В случае резонатора, образованного плоскими зеркалами, амгауссовых пучков линзами (см. § 43). плитуда поля на волновом фронте описывается функцией

 $\sin\left(\frac{\pi}{a}\,mx\right)\sin\left(\frac{\pi}{b}\,ny\right),$

что соответствует, как было пояснено выше, падению на зеркало четырат соответствует четырех плоских воли. Поэтому поле вне резонатора соответствует Дифракции отверстии со сторонами Дифракции этих воли на прямоугольном отверстии со сторонами

а и в вдоль осей Ох и Оу. Амплитуда в дифракционной картине на больших расстояниях (случай Фраунгофера) определяется выражением, которое можно написать по аналогии с результатами § 42.

женнем, которое можно написать по аналогии с результатами § 42. Графики интенсивности в функции угла дифракции φ (соответ. ствующего отклонению в направлении оси Ox) представлены на рис. 40.17, а для m = 4. Наибольшие значения интенсивности достигаются вблизи углов $\varphi = \pm \varphi_m = \pm m\lambda/2a$, отвечающих направлению распространения упомянутых «падающих» волн. При возрастании *m* расстояние между этими максимумами увеличивается.

Рис. 40.17. Угловое распределение интенсивности в лазерном пучке. Резонатор образован плоскими зеркалами; поперечные индексы волн m = 4 (a) п m = 1 (б).

На рис. 40.18 схематически показана освещенность удаленного экрана для m = 4, n = 4, причем заштрихованные кружки обозначают области наибольшей освещенности, а пунктирные линни — линии нулевых значений амплитуды. Если в генерации принимают участие все боковые волны, начиная с m = 1, n = 1еплоть до $m = m_{\text{max}}$, $n = n_{\text{max}}$, то полная расходимость пучка определяется углами $\frac{\lambda}{2a}m_{\text{max}}$ и $\frac{\lambda}{2b}n_{\text{max}}$.

Если m = 1, то максимумы сливаются, как видно из рис. 40.17, б, где пунктирные кривые соответствуют дифракционным картинам от двух плоских воли, падающих на отверстие под углами φ_1 и — φ_1 (см. также рис. 40.18, б, освещенность удаленного экрана). Волна с m = 1, n = 1 создает пучок с расходимостью, минимальной при заданных длине волны и поперечном размере зеркала и спределяемой, как много раз подчеркивалось, отношением λ/a . Ширина углового распределения интенсивности на уровне, соотьстствующем половние максимальной интенсивности, равна 1, 19 λ/a ,

803

т. е. сравнительно немного больше ширины в случае дифракции т. е. сравни в случае дифракции волны с постоянным значением амплитуды на отверстви (0,89 λ/а).

расходимость гауссова пучка задается аналогичным отношением, в котором роль размера зеркала играет диаметр минимального деляется величиной (2/π)(λ/2a₀).

Таким образом, формировапучка с дифракционной ние расходимостью представляет собой общее свойство оптических квантовых генераторов.

Оснобным понятием. КОТОрым мы оперировали на протяжении всего курса, служила плоская (или сферическая) волна. В данной главе выяснилось, что применительно к оптическим квантовым генераторам более адекватным физическим образом является совокупность когерентных между собою волн, удовлетворяющая требованиям принципа цикличности. Такая совокупность, характеризующаяся определенными частотой, поляризацией и стационарной геометрической конфигурацией, носит название типа колебаний резонатора *). В резонаторе, образованном плоскими зеркалами, типом колебаний служит стоячая волна (229.8), в случае сферическими резонатора со зеркалами, — стоячая волна, со-

ков, распространяющихся навстречу друг другу, волновые фронты которые которых совпадают с поверхностями зеркал. В других случаях конконфигурация поля будет иной, характерной для каждой кон-

Разумеется, тип колебаний всегда можно представить в виде суперпозиции бегущих плоских волн. Тип колебаний плоского резонного суперпозиции бегущих плоских волн. Тип колебаний когерентных плоских зонаторо кретной геометрии резонатора. зонатора, например, является суммой восьми когерентных плоских

*) Для обозначения того же понятия применяется и термин мода, предляющий собой изполнаского в русский язык английского Ставляющий собой непосредственный перенос в русский язык английского слова mode.

Рис. 40.18. Освещенность удаленного экрана, создаваемая лазерным пучком Резонатор образован плоскным зеркалани (a = b); поперечные ищексы воля m = = n = t (a) и m = n = t (c).

волн; гауссов пучок можно представить в виде бесконечного набора плоских волн (с помощью теоремы Фурье). Однако каждая из парциальных плоских волн не может существовать в резонаторе независимо, ибо в результате отражений и преломления, а также вследствие дифракционных явлений плоская волна преобразуется в совокупность волн, которые и образуют тип колебаний. Поэтому целесообразно рассматривать свойства указанной совокупности в целом.

В целом. Одно из замечательных свойств типов колебаний состоит в том, что они не преобразуются друг в друга. В этом отношении они аналогичны нормальным колебаниям механической системы, с помощью которых любое движение связанной системы точечных масс можно рассматривать как наложение одномерных колебаний, происходящих независимо друг от друга *). Аналогичным образом и общая задача об определении поля в резонаторе разбивается на более простые задачи об изучении парциальных полей с неизменной во времени геометрической конфигурацией (т. е. типов колебаний), а полное поле «конструируется» затем как суперпозиция типов колебаний. Такой подход характерен для физики вообще, и простейшим примером его применения может служить разложение движения материальной точки на три парциальных движения в адекватных системах координат (декартова система в случае инерциального движения или однородного поля сил, цилиндрическая система координат для кругового движения и т.п.).

При обсуждении принципа цикличности в начале § 228 было выяснено, что изменение того или иного параметра волны на протяжении цикла означает периодическую модуляцию излучения, выходящего из резонатора. Пользуясь представлением о типах колебаний, этот факт можно интерпретировать следующим образом: в резонаторе возбуждается не один тип колебаний, а несколько (два, три и т. д.) с различными собственными частотами, и модуляция поля в целом происходит с периодами, определяемыми разностями собственных частот возбужденных типов колебаний. Периодичность модуляции полного поля означает, что его спектр содержит дискретный набор частот. Поэтому собственные частоты резонаторов не могут принимать непрерывный ряд значений и должны быть дискретны, в чем мы убедились на примерах резонаторов с плоскими и сферическими зеркалами. Интересный и практически важный случай одновременного возбуждения многих типов колебаний будет рассмотрен в § 230.

При анализе нелинейных явлений принцип суперпозиции, разумеется, не выполняется, и упомянутый выше подход, основанный на описании поля с помощью линейной комбинации парциальных

*) См. С. Э. Хайкин, Физические основы механики, «Наука», 1971, тл. XVIII.

гл. xl. оптические квантовые генераторы

полей, теряет свою общность и эффективность. Тем не менее, во полеи, терлет сленениейной оптики и спектросколии оказывается многих вопросколии оказывается целесообразным оперировать с типами колебаний в качестве элементарных структурных элементов поля.

§ 230. Генерация сверхкоротких импульсов света

Существуют режимы работы оптических квантовых генераторов, в которых выходящее из них излучение имеет вид последовательности эквидистантных, относительно коротких импульсов света. На рис. 40.19 приведена зависимость от времени мощности излучения лазера *), введенного в такой режим. Продолжительность каждого импульса составляет примерно 5.10-12 с **), а интереал времени между последовательными импульсами точно равен длительности одного цикла T = 2L/c (в данном случае 6,8-10° с). Полное число импульсов определяется временем существования инверсной заселенности уровней иона неодима.

Рис. 40.19. Временная зависимость мощности излучения лазера, работающего в режиме сверхкоротких импульсов.

Описанный режим, получивший название режима генерации сверхкоротких импульсов, реализуется во многих лазерах. Пяогда он возникает самопроизвольно, но в этом случае расстояние между соседними импульсами всего в несколько раз больше их ширины. Для получения особо «контрастных» импульсов применяются специальные методы. Некоторые из них заключаются в периодической модуляции добротности резонатора (с периодом 2L/c). В других метолости резонатора (с периодом 2L/c). В других методах генерация сверхкоротких импульсов достигается за счет введения внутрь резонатора специальных фильтров, коэффициент поглощения которых резко уменьшается при больших интенсивно-

стях излучения (эффект насыщения, см. § 224). Из сказанного в § 229 должно быть ясно, что глубокая модуляция излучения лазера означает одновременное возбуждение мно-ГИХ ТИКОТ гих типов колебаний резонатора, частоты которых отличаются на

*) Активной средой служило стекло с введенным в него неодимом. Исполь-ись переходы использования уровнями нона неодима Nd³⁺.) Активной средой служило стекло с введенным в него неодимом, исторатись переходы между энергетическими уровнями иона неодима Nd³⁺.
) Вилимая исторации она составление силимансов гораздо больше, но она от чись переходы между энергетическими уровнями иона неодима (vor-) Видимая на рисунке ширина импульсов гораздо больше, но она опре-ется инерическиот супке ширина импульсов системы. деляется инерционностью регистрирующей системы,

величину, кратную $\Delta \omega = 2\pi/T$, где T — продолжительность цикла. Кроме того, необходимо строгое согласование фаз возбужденных типов колебаний. В противном случае излучение лазера представляло бы, очевидно, хаотически, а не регулярно модулированную болну.

Болну. Для выяснения связи между столь своєобразной временной структурой светового пучка и свойствами возбужденных типов колебаний рассмотрим следующую схематизированную ситуацию. Пусть в лазере возбуждено N осевых типов колебаний с собственными частотами $\omega_j = \omega_0 + j2\pi/T$, j = 0, 1, 2, ..., N - 1, а начальные фазы $\varphi_j = \varphi$ и амплитуды $A_j = A$ типов колебаний одинаковы. Тогда поле в какой-либо точке резонатора определяется суммой

$$s = A \sum_{j=0}^{N-1} \cos\left[\left(\omega_0 + j\Delta\omega\right)t + \varphi\right], \quad \Delta\omega = 2\pi/T. \quad (230.1)$$

В момент времени t = 0 фазы всех колебаний равны между собой, и амплитуда поля равна NA. В последующие моменты времени благодаря различию частот будет происходить расфазировка членов суммы (230.1), типы колебаний будут гасить друг друга, и по истечении некоторого времени ΔT произойдет полное погашение, т. е. амплитуда поля обратится в нуль. Действительно, пусть ради простоты рассуждений число типов колебаний N четно; тогда за время ΔT , определяемое из равенства

$$\left[\omega_{f+N/2}-\omega_{f}\right]\Delta T=N\Delta\omega\Delta T/2=\pi,$$

между *j*-м и (*j* + *N*/2)-м типами колебаний возникает разность фаз, равная π , и произойдет взаимное гашение первого и (*N*/2 + + 1)-го, второго и (*N*/2 + 2)-го, ..., (*N*/2)-го и *N*-го типов колебаний. Полное гашение будет иметь место, очевидно, и через интерсалы времени, кратные ΔT , но лишь до тех пор, пока разность фаз соседних колебаний (*j*-го и (*j* + 1) -го) не станет равной 2π , ябо в этот момент все типы колебаний вновь синфазны и амплитуда поля по-прежнему равна *AN*. Момент восстановления синфазности колебаний есть *t* = *T*, поскольку [$\omega_{j+1} - \omega_j$]*T* = 2 π . С дальнейцим течением времени описанная картина будет воспроизводиться с периодом *T*.

Количественное описание явления достигается суммированием N колебаний в (230.1), а итог вычислений можно представить в виде (см. упражнение 253)

$$s = AN \frac{\sin(\pi Nt/T)}{N \sin(\pi t/T)} \cos[(\omega_0 + \frac{1}{2}(N-1)\Delta\omega)t + \phi]. \quad (230.2)$$

Зависимость амплитуды от времени описывается множителем такого же типа, который фигурировал в теории дифракционной решетки (см. § 46), что вполие понятно, так как в сбоих случаях дело сводится к сложению N колебаний, фазы которых образуют арифметическую прогрессию. Различие состоит в физической причине набега фазы: в случае дифракционной решетки фаза колебаний, приходящих от различных штрихов, изменяется с углом дифракции, а в данном случае она. изменяется с течением времени. Поскольку функция [sin ($N\beta$)]/N sin β детально изучалась в § 46, мы не будем повторять ее анализ и обратим внимание лишь на качественное совпадение графика, приведенного на рис. 40.19, и графика, изображенного на рис. 9.19, a.

Таким образом, в согласни с приведенными рассуждениями и в соответствии с опытом интервал *Т* между последовательными импульсами равен продолжительности цикла, т. е.

$$T = 2\pi/\Delta\omega = 2L/c$$
;

длительность каждого импульса обратно пропорциональна ширине участка спектра, отвечающего возбужденным типам колебаний, т. е.

$$\Delta T = 2\pi/N\Delta\omega = T/N.$$

Выписанное соотношение между T и ΔT также находит экспериментальное подтверждение.

Численное значение произведения $N\Delta\omega$ пропорционально шерине спектральной линии, соответствующей переходу между урериями с инверсной заселенностью, поскольку именно в этом участке спектра коэффициент усиления имеет большое значение. Если, папример, $N\Delta\omega = 10^{12}$ с⁻¹, чему соответствует 5,3 см⁻¹, то $\Delta T = 2\pi \cdot 10^{-12}$ с. Именно такие численные значения величин и имеет вселяют надежду на сокращение величины ΔT еще в 10–102 раз. вселяют надежду на сокращение величины ΔT еще в 10–102 раз. Иными словами, можно, по-видимому, создать волновой цуг, содер-Иными словами, можно, колебаний с периодом $2\pi/\omega = 3 \cdot 10^{-15}$ с

(λ = 1 мкм). До сбнаружения обсуждаемого явления (1966 г.) нанболее короткие световые импульсы, получающиеся нелазерными методами, короткие световые импульсы, получающиеся нелазерными методами, формировались из непрерывного излучения с помощью электрсопформировались из непрерывного излучения с помощью электрсопформировались из непрерывного излучения с помощью электрсоптических затворов, основанных на эффекте Керра. Наименьшая длительность импульсов составляла примерно 10⁻⁹ с. т. е. была на длительность импульсов составляла примерно 10⁻⁹ с. т. е. была на несколько порядков больше, чем у лазерных импульсов, описаных выше.

Утверждения о существовании сверхкоротких импульсов и о строгой синфазности многих типов колебаний представляются, согласно изложенным соображениям, физически эквивалентными: одно соответствует описанию явления на временном языке, другое одно соответствует описанию явления на временном языке, другое на спектральном. В связи с этим для обозначения режима генерации на спектральном. В связи с этим для обозначения режима генерации сверхкоротких импульсов используется термин изличение мазера сверхкоротких импульсов используется термин изличение с синхронизованными типами колебаний. Электромагнитное поле, генерируемое лазером, зарождается из спонтанного излучения активной среды. Поэтому, хотя при возбуждении одного типа колебаний и формируется монохроматическое поле, его начальная фаза совершенно произвольна. Если возбуждается много типов колебаний, то их начальные фазы, как кажется на первый взгляд, не могут быть согласованными, так как они должны определяться различными спектральными компонец-

Рис. 40.20. Эволюция распределения амплитуды поля в лазере с просветляющимся фильтром. тами случайного спонтанного излучения. Высказанная точка зрения предполагает, однако, независимость различных типов колебаний, т.е. основана на принципе суперпозиции, который несправед. лив в области нелинейных явлений. В лазерах же нелинейные явиграют принципиальную ления роль (см. § 225), вследствие чего колебаний в большей или типы меньшей степени должны влиять друг на друга, и может осуществиться их синхронизация. Специальные меры, способствующие реализации режима генерации сверхкоротких импульсов и упомянутые начале параграфа, предназначены для усиления нелинейного «взаимодействия» типов колебаний.

Кратко обсудим нелинейные явления, приводящие к возникновению сверхкоротких импульсов в лазерах с поглощающим элементом внутри резонатора. Пусть создана инверсная заселенность

уровней в активном элементе лазера и происходит усиление спонтанного излучения. Ввиду случайного характера актов спонтанного испускания амплитуда поля хаотически изменяется во времени и от точки к точке *) (рис. 40.20, *a*). Амплитуда поля имеет вид набора случайных по величине и случайно расположенных «выбросов». На первом этапе развития генерации, когда мощность излучения еще иевелика, фильтр ослабляет все «выбросы» в равной мере. С течеинем времени все большее число атомов возбуждается, и энергия

•) Подобную картину случайного распределения поля мы моделировали в § 22, наблюдая свет, рассеянный на матовом стекле (см. рис. 4.23). Схематически рис. 40.20, а аналогичен изменению освещенности на рис. 4.23 вдоль какого-либо направления. поля в резонаторе увеличивается. Как было выяснено в § 224, по мере роста мощности излучения коэффициент поглощения фильтра и доля поглощенной в нем энергии уменьшается, а доля энергии, прошедшей фильтр, увеличивается, или, как говорят, фильтр просветляется излучением. Если среда фильтра достаточно малоинерцнонна (для фильтров специально подбираются такие среды), то сказанное относится к мгновенному значению потока, падающего на фильтр: чем больше мгновенное значение мощности, тем сильнее просветляется фильтр. В итоге самый сильный «выброс» будет ослабляться фильтром в меньшей степени, чем все остальные, и в каждом последующем цикле его «преимущественно малое» ослабление будет все более усугубляться. Процесс выделения нанболее мощного «выброса» иллюстрируется рис. 40.20, а—в, на которсм изображено лишь относительное распределение амплитуды поля и совсем не нашло отражения огромное увеличение общей энергия.

В итоге описанных процессов поле внутри резонатора может приобрести вид одиночного импульса (см. рис. 40.20, г). Поле же вне резонатора будет представлять собой совокупность импульсов, возникающих в результате частичного прохождения «внутреннегс» импульса через зеркало резонатора на протяжении следующих друг за другом циклов.

Разобранный пример наглядно показывает решающую роль нелинейных явлений в образовании сверхкоротких импульсов. В проведенном рассмотрении использовался временной подход, а типы колебаний в явном виде не фигурировали. Легко видеть, однако, что наличие «самого сильного выброса» отражает не что однако, что наличие «самого сильного выброса» отражает не что однако, что наличие «самого сильного выброса» отражает не что иное, как случайное согласование фаз различных типов колебаний иное, как случайное согласование фаз различных типов колебаний иное, как случайной ситуации. В последующих нелинейных пров данной случайной ситуации. В последующих нелинейных пров данной случайной ситуации. В последующих нелинейных происссах согласование фаз постепенно улучшается, и в конечном истоге устанавливаются полностью согласованные фазы. Поэтому итоге устанавливаются полностью согласованные фазы. Поэтому и с помощью спектрального подхода мы пришли бы к полученному в результату, но временной язык оказался более адекватным во-

Просу. Мгновенная мощность излучения в режиме генерации сверхкоротких импульсов примерно в *T/AT* раз больше средней мощности и может достигать значений 10¹¹—10¹² Вг. Поэтому сверхкороткие импульсы нашли широкое поле применения при исслекороткие импульсы нашли широкое поле применения при исследовании самых разнообразных явлений — многофотонной нонизадовании самых разнообразных явлений — многофотонной нонизации атомов и молекул, вынужденного рассеяния, мгновенного чагрева вещества до очень высоких температур и т. п. Рекордно нагрева длительность импульса позволила использовать сверхкороткие импульсы для изучения очень быстрых процессов, наприкороткие импульсы для изучения очень быстрых процессов, наприкороткие импульсы для изучения очень быстрых происходящего короткие импульсы для изучения очень быстрых происходящего (§ 152), инерционности нелинейного фотоэфекта (см. § 179) и т. д.

815

§ 231. Лазеры на красителях

Как было показано в § 228, спектральный интервал, в пределах которого могут располагаться квазимонохроматические компоненты излучения лазера, несколько меньше ширины линии, отвечающей переходу между уровнями с инверсной заселенностью, но пропорционален ей. В гелий-неоновом и рубиновом лазерах ширины линий составляют соответственно 0,03 см⁻¹ и 20 см⁻¹, а ука-

Рис. 40.21. Схема энергетических уровней сложной органической молекулы.

занные спектральные интервалы 0,01 см-1 и 1 см-1. Значительно большие значения обсуждаемых параметров в оптических квантовых генеактивной средой которых раторах. служат растворы красителей. Химически красители представляют собой сравнительно сложные органические молекулы, и их спектр фотолюминесценции простирается на тысячи см-1. В соответствии с этим и ширины участков спектра, в которых можно осуществить генерацию с использованием красителей, составляют сотни, а иногда и тысячи см⁻¹.

На рис. 40.21 схематически изображены энергетические уровни сложной молекулы *). Верхняя группа уровней относится к одному из возбужденных состояний электронов молекулы, нижняя — к основному состоянию электронов. Каждая из указанных групп содержит уровни, от-

ядер молекулы. колебаний вечающие состояниям различным свободы степеней Вследствие большого колебательных числа структуры верхней и нижней групп уровней чрезвычайно сложны, однако для достижения наших целей нет необходимости в обстоятельство, их конкретизации. Существенно то спектр люминесценции состоит из большого числа линий, соответлишь ствующих переходам молекулы с уровней верхней группы на уровни и инжией ни нижней, причем отдельные линни не разрешаются и в своей Совокупности области области совокупности образуют непрерывный спектр люминесценции. Схематически это показано на нижней части рис. 40.21, где вертикальные отрезки отвечают боровским частотам переходов между инди-видуальными узастота видуальными уровнями, пунктирная кривая изображает контур

•) Основные сведения о спектрах и об энергегических уровнях молекул изложены в гл. XXXVIII и XXXIX.

гл. хг. оптические квлнтовые генераторы

отдельной спектральной линии, а сплошная кривая — суммарный контур полосы люминесценции.

Общую картину процессов, происходящих при оптическом возбуждении молекул красителя, можно представить следующим образом. В результате поглощения фотона hopos молекула из ссновного состояния переходит на один или несколько (в зазискмости от ширины спектра возбуждающего света) колебательных уровней возбужденного электронного состояния. На рис. 40.21 уровней 202 обозначен левой стрелкой, направленной вверх. Вследствие внутримолекулярных процессов и взаимодействия с растаррителем молекула безызлучательно переходит на самые нижине уровни верхней группы, причем этот переход (верхняя волнистая стрелка) происходит за чрезвычайно короткие интервалы времени (10-11-10-12 с). Последующее спонтанное или вынужденное испускание фотонов ћо сопровождается переходами с нижних колебательных уровней верхней группы на все колебательные уровни основного электронного состояния (прямые стрелки, направленные вниз). Как отмечалось ранее, совокупность перекрывающихся линий. связанных с этими электронно-колебательными переходами, и образует широкий сплошной спектр люминесценции и усиления. По тем же причинам, которые указывались по отношению к верхней группе уровней, в основном электронном состояния происходит быстрое затухание (за времена 10-11-10-12 с) возбужденных колебательных состояний, вследствие чего их заселенность оказывается малой (нижние солнистые стрелки). Таким сбразом, возникает инверсная заселенность уровней, соединенных прямыми стралками, направленными вниз.

Изложенная схема процессов сильно упрощена, и существует целый ряд факторов, в той или пной мере затрудняющих развитие генерации. К числу мешающих факторов относится, например. фотохимическое разложение молекул красителя при высоких значениях освещенности, нагревание раствора, приводящее к безызлучательному затуханию возбужденного электрокного состояния, и многие многие другие. Однако все эти препятствия устраняются специальиыми методами *), и генерацию удается осуществить с большим числом числом разных красителей (их насчитывается сейчас около 100) В импули сона (от 350,0 до 1000,0 нм) и с применением в качестве источников возбужителения Возбуждающего излучения ксеноновых газоразрядных ламп и ла-зеров На рис. 40.22 прибедена одна из оптических схем дазера на воз-

красителе, функционирующего в непрерывном режиме. Пучак воз-

*) Применяется, например, прокачка раствора через кювету со скоростью, игающей десятков м/с достигающей десятков м/с.

617

буждающего света (сплошные линии) фокусируется зеркалом M_1 на кювету с раствором красителя K. Источником возбуждающего света служит аргоновый лазер непрерывного действия (на рисунке не показан). Частично прошедший возбуждающий свет возвращается в кювету зеркалом M_2 . Зеркала M_1 , M_2 , M_3 образуют опти-

Рис. 40.22. Оптическая схема лазера на красителе.

ческий резонатор лазера; пунктирные линии изображают генерируемый пучок; кювету К следует ориентировать под углом Брюстера к оси резонатора для уменьшения потерь, связанных с отражением света от ее границ.

Спектр излучения лазера, в котором использовался раствор красителя родамина 6-G, приведен на рис. 40.23, а. Ширина

Рис. 40.23. Спектр излучения лазера на красителе. а — сез призмы Р; б, в. г. – с призмой Р при различных ее ориентациях.

спектра в данном случае составляла около двух нанометров. Применение других красителей и увеличение мощности возбуждения позволяет еще больше увеличить ширину спектра лазерного излучения. Структура спектра, обусловленная дискретностью собственных частот резонатора, на рис. 40.23, а не разрешается. Светлые полосы, которые видны в спектре, вызваны поглощением света нарами воды, всегда присутствующими в воздухе.

гл. XL. ОПТИЧЕСКИЕ КВАНТОВЫЕ ГЕНЕРАТОРЫ

Если вместо зеркала М₃ установить призму Р (аналогичную тем, которые применяются в спектральных приборах) и расположить которые притак, как показано пунктиром на рис. 40.22, то спектр зеркало на пазера резко сужается (рис. 40.23, 6-г). Причина его излучения кроется, очевидно, в зависимости отклонения пучка призмой от длины волны. При заданной ориентации зеркала М₄ и при отражении света от определенной части его поверхности, ограниченной диафрагмой D, возврат в активную часть объема кюветы будет обеспечен лишь для света с какой-то определенной длиной волны.

Для излучения с другими длинами волн потери будут больше. так как для них условие цикличности выполняется, очевидно. при отражении от участков зеркала, частично или полностью закрытых диафрагмой D. Если теперь вращать призму вокруг осн. перпендикулярной к плоскости чертежа, то указанные благоприятные условия будут реализовываться для различных длин волн. Таким способом можно в широком интервале плавно изменять частоту лазерного излучения. Фотографии рис. 40.23, б-г и получены при трех различных ориентациях призмы Р.

Оптические квантовые генераторы с плавной перестройкой частоты служат основой для спектральных приборов с исключительно высокой разрешающей силой. Пусть, например, требуется исследовать спектр поглощения какого-либо вещества. Измериз величину лазерного потока, падающего на изучаемый объект и прошедшего через него, можно вычислить значение коэффициента поглощения. Перестраивая частоту лазерного излучения, можно, следовательно, определить коэффициент поглощения как функцию длины волны. Разрешающая способность этого метода совпадает, очевидно, с шириной линии лазерного излучения, которую можно Сделать очень малой. Ширина линии, равная, например, 10-3 см-1, обеспечивает такую же разрешающую способность, как дифракционная решетка с рабочей поверхностью длиной 5 м, а изготовление Таких больших решеток представляет почти неразрешимую задачу.

В данной главе мы изложили физические принципы, положенные В основу устройства оптических квантовых генераторов, разобраля некоторых новый, гелий-неоновый и лазер на красителях. Помимо указанных, Существителях Существует большое число других лазеров, отличающихся по тем или инструствольшое число других лазеров, отличающихся по тем или иным свойствам, а именно способами возбуждения активной Среды ополноствам, а именно способами возбуждения излучение, Среды, спектральной областью, в которой находится излучение, МОШНОСТИЮ ПОЛИТИИ Областью, в которой полития пременными харакмощностью, коэффициентом полезного действия, временными харак-теристикоги В зависимости от задачи, решаемой с помощью лазеров, вы-овот тот или по задачи, решаемой с помощью лазеров, вы-

Бирают тот или иной тип лазера, с оптимальным набором харак-теристик

теристик.

819

Глава XLI

НЕЛИНЕЙНАЯ ОПТИКА

Выше уже отмечались исследования С. И. Вавилова зависимо. сти коэффициента поглощения от интенсивности поглощаемого света (см. гл. XXVIII, XL). В книге «Микроструктура света», света (см. тл. далюдения, относящиеся к 20 гг., и последующие опыты, Вавилов писал: «Нелинейность в поглощающей среде должна наблюдаться не только в отношении абсорбции. Последняя связана с дисперсией, поэтому скорость распространения света в среде, вообще говоря, также должна зависеть от световой мощности. По той же причине в общем случае должна наблюдаться зависимость от световой мощности, т. е. нарушение принципа суперпозиции, и в других оптических свойствах среды — в двойном лучепреломлении, дихроизме, вращательной способности и т. д.». Последующее развитие нелинейной оптики, обусловленное экспериментальным исследованием распространения лазерного излучения, не только подтвердило общие соображения Вавилова о многообразии возможных нелинейных явлений, но и привело к обнаружению всех перечисленных им конкретных эффектов. Поэтому Вавилов по праву признан основоположником нелинейной оптики.

Напомним, что причину нелинейных явлений Вавилов усматривал в изменении числа молекул или атомов, способных поглощать свет, т. е. изменений, обусловленных переходом атомов и молекул в возбужденное состояние и конечной длительностью пребывания в этих состояниях. Помимо указанной, к нелинейным явлениям приводит и ряд других причин; часть из них будет рассмотрена инже. В соответствии с этим и совокупность нелинейных явлений, обнаруженных при исследовании распространения лазеркого излучения, оказалась еще более многообразной. Некоторые из них — вынужденное рассеяние Мандельштама — Бриллюэна, миогофотонное поглощение и ионизация (см. § 157), нелинейный фотоэффект (§ 179) — описаны выше. В данной главе рассмотрены явления, сводящиеся, в общих чертах, к изменению направления распространения и спектрального состава излучения.

§ 232. Самофокусировка

Одним из основных законов оптики является закон прямолинейного распространения света в однородной среде, выполняющийся в тех случаях корке то в тех случаях, когда по тем или иным причинам дифракционные эффекты несуществоится. эффекты несущественны. В нелинейной оптике указанный закон, вообще говоря инсот вообще говоря, имеет дополнительные ограничения применимости. Пусть показатель посото света Пусть показатель преломления зависит от интенсивности света при достаточно больших сления зависит от интенсивность в поле при достаточно больших ее значениях. Если освещенность в поле-

речном сечении пучка неравномерна, то и показатель преломлеречном сечения постоянной величиной, что эквивалентво преломления не будет постоянной величиной, что эквивалентво пеоднородния не оуде. В неоднородной же среде лучи не прямолицейны и ности среда. В ту сторону, где показатель преломления больше.

На рис. 41.1 приведена схема опыта, в котором наблюдается указанное явление. Параллельный пучок света падает на слой К рещества, показатель преломления которого зависит от освещенпости. Пунктирная дуга слева от К изображает распределение освещенности в поперечном

сеченни FF пучка. Справа ст слоя, на экране ЕЕ, регистрируется (визуально или сотографически) изменение размеров светового пятна. Кружки, показанные на нижней части рис. 41.1, соответствуют сечениям пучка, получающимся при фиксированной мощности света и различных положениях экрапа ЕЕ. Если экран неподвижен и изменяется мощность

Рис. 41.1. Самофокусировка нитенспоного пучка в нелинейной среде.

пучка, то размер поперечного сечения последнего также изменяется. Таким образом, параллельный пучок света превращается в сходящийся. Описанное явление получило название самофокусировки.

В опыте, иллюстрируемом рис. 41.1, показатель преломления увеличивается с ростом освещенности: лучи отклоняются к оси пучка, где освещенность больше. Если бы показатель преломления Уменьшался с увеличением освещенности (существуют и такие среды), то лучи отклонялись бы от оси и происходила бы саморесфокусироска пучка.

Опыт и теория приводят к выводу, что подобного рода явления МОЖНО Объяснить, если принять зависимость показателя грелом-

ления п от амплитуды поля А в следующей форме:

$$n = n_0 + n_3 A^2$$
.

(232.1)

Здесь n₀ — «обычный» показатель преломления, характеризующий Оптинеские Оптические свойства среды при малых значениях интенсивности Света. U почто и стала среды при малых значениях интенсивности Света. Член n_2A^3 описывает изменение *n* под влиянием мощного излучения с излучения. Существуют несколько причин такого изменения л; Они булите то состаточно воспринимать они будут рассмотрены в § 235, а пока достаточно воспринимать Беличники в величину n₂ как характеристику нелинейно-оптических свойств Среды Оценим толщину слоя вещества Іср, необходимую для пересе-ия крабника среды.

ченим толщину слоя вещества I необходимую для перед. чения крайних лучей с осью пучка внутри нелицейной среды.

Благодаря нелинейной добавке к показателю преломления n₂A³ Благодаря нелиненном дочети и поля на оси пучка и на оси пучка и на оси пучка и на появляется разность фаз меня, оси пучка обозначим через А его краях. Амплитуду поля на оси пучка обозначим через А битот синтать ее нулевой. На искомой длине (толя его краях. Амплитуду поста на ост. На искомой длине через А, а на краях будем считать ее нулевой. На искомой длине (толщине) а на краях будем считать ее нулевой. На искомой длине (толщине) Ісф указанная разпость фо прина, необходимое для фокусировки Искривление волнового фронта, необходимое для фокусировки Искривление волнового фронца, по дает стрелку прогиба, рав. пучка в пелипенном среде в радиус пучка; этой стрелка, рав. ную $a^2/2l_{c\phi}$, где a — начальный радиус пучка; этой стрелке отве. ную $u^{-1/2}l_{c\phi}$, гдс u исследие отве-чает разность фаз (ω/c) $n_0 a^2/2l_{c\phi}$, которая должна обеспечиваться разностью фаз из-за нелинейности среды:

$$\frac{\omega}{c} n_0 a^2 / 2l_{c\phi} = \frac{\omega}{c} n_2 A_0^2 l_{c\phi}$$

Следовательно, искомая толщина слоя дается соотношением

$$l_{c\phi} = a \sqrt{\frac{n_0}{2\Delta n}} = a \sqrt{\frac{n_0}{2n_2 A_0^2}}; \qquad \Delta n = n_2 A_0^3.$$
(232.2)

Величниа lcb, определяемая этим соотношением, носит название длины самофокусировки. Она пропорциональна начальному раднусу пучка и обратно пропорциональна амплитуде поля на его оси. Поскольку освещенность пропорциональна А², то можно сказать, что lct обратно пропорциональна квадратному корню из максимальной освещенности в сечении пучка. Кроме того, l_{сф} уменьшается с ростом коэффициента нелинейности n2. Все перечисленные закономерности физически вполне прозрачны: чем меньше а^а и чем больше $\Delta n = n_2 A_0^2$, тем резче изменяется показатель преломления в пределах сечения пучка и тем сильнее отклонение от прямолинейного распространения света.

Явление самофокусировки наблюдалось для многих веществ газов, жидкостей и твердых тел. Экспериментальные исследования подтверждают прямую пропорциональность между длиной самофокусировки l_{cb} и $\sqrt{a^2/A_0^2}$.

Если задаться значеннями $l_{c\phi} = 10$ см, a = 0,5 мм, то согласно соотношению (232.2) получим

$$\Delta n/n_0 = \frac{1}{2} (a/l_{ch})^2 = 1,25 \cdot 10^{-5},$$

т. е. относительные изменения показателя преломления могут быть сравнительно новостичения показателя преломления могут быть сравнительно невелики. На опыте обычно непосредственно измеряется полный поток (мощность) излучения. В случае параболи-ческого изменения ческого изменения освещенность излучения. В случае паработ изменения освещенности в поперечном сечении пучка из (232.2) нетрупис то (232.2) нетрудно получить следующее соотношение для необхолимой мощности излучения (см. упражнение 254):

$$P = \frac{n_0^* ca^4}{32n_2 l_{\rm CO}^4}.$$

Для сероуглерода CS_2 ($n_0 = 1,62$), например, обладающего срав-Для сероуперени значением $n_2 = 2 \cdot 10^{-11}$ СГСЭ, получаем $P = 10^{-11}$ СГСЭ, получаем $P = 10^{-11}$ нительно сольши a = 0,5 мм, $l_{c\phi} = 10$ сп.С., получаем $P = 0,77 \cdot 10^6$ Вт при a = 0,5 мм, $l_{c\phi} = 10$ см. Таким образом, для опытов по самофокусировке требуются сравнительно высокие мощности пучков, которые, однако, вполне доступны при испольмощности на при использовании лазеров. Средняя освещенность в рассмотренном числовом примере составляет $P/\pi a^2 = 10^8 \text{ Вт/см}^2$. С помощью закона Стефана-Больцмана легко подсчитать, что для достижения такой же освещенности при использовании излучения абсолютно черного тела необходима температура $T = 2,7 \cdot 10^3 \Omega^{-1/4} K$, где $\Omega - те$ лесный угол пучка. Из произведенного сопоставления понятно, почему явление самофокусировки было открыто лишь после соз-дания мощных лазеров (Н. Ф. Пилипецкий, А. Р. Рустамов, 1965 г.; теоретическое предсказание Г. А. Аскарьян, 1962 г.).

Согласно сказанному выше самофокусировке благоприятствуют малые радиусы поперечного сечения пучков. Опыт показывает, однако, что существует некоторое оптимальное значение $a = a_0$, н дальнейшее уменьшение а требует не уменьшения, а увеличения мощности Р. Причина состоит в том, что при достаточно малых значениях а вступают в игру дифракционные явления, которые не принимались во внимание в предыдущих рассуждениях. Дифракция, очевидно, расширяет пучок и тем самым препятствует его самофокусировке, причем роль дифракции тем больше, чем меньше радиус пучка а.

Оптимальное значение радиуса пучка можно оценить на основании следующих соображений. Нелинейность среды (если не принимать во внимание дифракцию) уменьшает раднус пучка от а 20 0 на протяжении длины lcф. Вместе с тем, в отсутствие самофокусировки дифракционное расширение пучка на длине lop примерно равно радиусу первой зоны Френеля $\sqrt{\lambda l_{c\phi}/n_0}$. Поэтому, если

 $a = \sqrt{l_{c\phi} \lambda/n_0} = a_0,$

то самофокусировка компенсирует дифракционное уширение и пучок будет оставаться параллельным. Подставив полученное значение $a = a_0$ в выражение для *P*, получим величину пороговой моничество (232.4)мощности пучка

$$P_{nopor} = \frac{n^2}{32n_3}$$

Если $P > P_{ворог}$, то самофокусировка возможна, хо шей длине, чем говорилось выше. Если же $P < P_{uoport}$ пучок будет расширование, чем говорилось выше. Если же $P < P_{uoport}$ пучок будет обратить внимание на то, что Р порог не зависит ог а, уменьшается В коротисовскити на то, что Р порог не зависит ог а, уменьшается в коротковолновой области спектра, где роль дифракции меньше, и падает то и падает по мере возрастания нелинейности среды. Все отмечен-ные законоссия среды в случае сероугленые закономерности подтверждаются опытом. В случае сероуглерода и $\lambda = 694,3$ нм (рубиновый лазер) из соотношения (232.4) иаходим $P_{nopor} = 2,3 \cdot 10^4$ Вт, что соответствует наблюдениям. Выше предполагалось симметричное распределение освещенно.

Выше предполагалось симметричное распределение освещенно. сти в поперечном сечении пучка и плавное ее уменьшение от оси к периферии, благодаря чему нелинейность среды проявлялась в виде регулярного сужения пучка. Разумеется, при иных законах изменения освещенности возникнут эффекты, которые внешне

Рис. 41.2. Самоотклонение пучка с постоянным градиентом интенсивности.

могут ничем не напоминать само. фокусировку. Введем, например, в пучок поглощающий клин, пропускание которого линейно зависит от координаты (рис. 41.2). В этом случае освещенность в пучке, прошедшем клин, и показатель преломления среды в кювете К будут линейно изменяться по поперечному сечению. Неоднорол-

ность среды, создаваемая таким пучком, по своему действию эквивалентна отклоняющей призме. Поэтому нелинейность среды проявится в виде *самоискривления*, или *самоотклонения* пучка, а поперечное сечение и распределение освещенности на нем сохранятся неизменными при распространении пучка в нелинейной среде (см. упражнение 255).

Если освещенность в сечении пучка изменяется немонотонно, то достаточно мощный пучок, как показывают опыты, «расслаивается» на более узкие пучки, оси которых проходят через точки с повышенными значениями освещенности. Это явление часто наблюдается при распространении лазерного излучения, не отличающегося высокой степенью пространственной когерентности.

§ 233. Самодифракция

Зависимость показателя преломления от освещенности обусловливает своеобразные и эффектные явления в условиях, типичных для двухлучевых интерференционных опытов. Пусть в толстой плоскопараллельной пластинке (рис. 41.3) лазерный пучок разделястся на два пучка, которые сводятся затем бипризмой Френеля в нелицейной среде K, например, в кювете с сероуглеродом. В области пересечения пучков можно наблюдать интерференционные полосы, однако непосредственно они нас не будут сейчас интересовать. Будем следить за освещенностью экрана EE, установленного на таком расстоянии, что на нем пучки уже не перекрываются болятна, показанные на правой части рис. 41.3 в виде заштрихованных кружков. При достаточно больших значениях интенсивности, на экране появляются два новых пятна, смещенные в направления

перпендикулярном к ребру бипризмы. На рис. 41.3 им отвечают перпендикулирные кружки, ближайшие к заштрихованным. Яркость пунктирные прастет с увеличением интенсивности такжи. Яркость пунктирные прутие увеличением интенсивности лазерного пучка, новых пятен растет с увеличением интенсивности лазерного пучка, новых пятен рашей его мощности появляются еще более удаленные а при сще оснее удаленные пятна. Замечательно, что расстояния между любыми соседними пятнами практически такие же, как между исходными. Если установить другую бипризму, с большим (или меньшим) преломляюцим углом, то эквидистантность пятен сохраняется, а расстояние между соседними пятнами пропорционально увеличизается (или уменьшается).

Введем на пути одного из пучков полуволновую пластичку, в результате чего пучки станут поляризованы взанмно ортогонально. В этом случае никаких дополнительных пятен не наблюдается. Отрицательный результат получается и при смещении кюветы с нелинейной средой из области перекрытия пучков.

Описанная система пятен напоминает совокупность главных Анфракционных максимумов, возникающих при прохождении исходных пучков через дифракционную решетку. Такой решеткой могла бы, например, служить ультраакустическая волна, представляющая собой периодическую последовательность областей уплотиения и разрежения в жидкости и создающая тем самым лериодическое изменение показателя преломления, т. е. объемную фазовую решетку. Пон решетку. Дифракционные явления, протекающие в таких условиях, описания создается самым описаны в § 56. В нашем случае фазовая решетка создается самым светом светом.

Действительно, в области перекрытия пучков квадрат амплитуды поля можно записать следующим образом (см. § 13): $A^{2} = a_{1}^{2} + a_{2}^{2} + 2a_{1}a_{2}\cos\left[\frac{4\pi}{\lambda} n_{0}x\sin\theta_{0}^{2}\right],$

где a_1 , a_2 — амплитуды поля интерферирующих пучков, $26'_{1}$ угол между пучками внутри кюветы, x — координата, перпендикулярная ребру бипризмы. Благодаря зависимости показателя преломления от освещенности в кювете создается периодическая оптическая неоднородность, эквивалентная объемной фазовой решетке,

$$n = n_0 + n_2 (a_1^2 + a_2^2) + \Delta n(x)$$

где введено обозначение

$$\Delta n(x) = 2n_2 a_1 a_2 \cos\left[\left(\frac{4\pi}{\lambda} n_0 \sin \theta_0'\right) x\right]. \tag{233.1}$$

Период решетки равен

$$d = \lambda \frac{1}{2n_0 \sin \theta_0'}.$$
 (233.2)

Далее можно рассуждать так: каждый из пучков дифрагирует на указанной решетке, в результате чего возникают новые пучки, и направления их распространения совпадают с направлениями на главные максимумы. Простые вычисления, в ходе которых следует применить формулы из § 46 и принять во внимание преломление на границе кюветы K, приводят к соотношениям для углов между осью г и направлениями распространения пучков, вышедших из кюветы (см. упражнение 256):

$$\sin \theta_{Im} = (2m+1) \sin \theta_0; \quad \sin \theta_{IIm} = (2m-1) \sin \theta_0;$$

 $m = 0, \pm 1, \pm 2.$ (233.3)

Здесь углы θ_{Im} , θ_{IIm} соответствуют пучкам, дочерним по отношению к исходным пучкам I и II, $2\theta_0$ — угол между исходными пучками вне кюветы. Значение m = 0 отвечает исходным пучкам ($\theta_{I_0} = \theta_0$, $\theta_{II_0} = -\theta_0$). Из соотношений (233.3) следует, что угол θ_{Im} совпадает с углом θ_{I0m+1} , т. е. дифракционные картины, получающиеся из-за дифракции двух начальных пучков I и II, сдвинуты друг относительно друга на расстояние, равное расстоянию между соседними максимумами, и перекрываются. Колонки цифр на рис. 41.3 дают значения порядков для пучков I и II. Если угол θ_0 достаточно мал, то сипусы можно заменить их аргументами, и упомянутая выше эквидистантность пятен получает объяснение.

В случае ортогональной поляризации пучков интерференция между ними и периодическая неоднородность среды отсутствуют, и дополнительные пучки не могут образовываться, что и согласуется с опытом. Столь же понятен и отрицательный результат при смещении кюветы из области, в которой существуют интерференцкопные полосы.

Обсужденное явление получило название самодифракции, поскольку интерферирующие пучки сами создают дифракционную решетку в нелинейной среде.

ГЛ. XLI. НЕЛИНЕЙНАЯ ОПТИКА

Интересное и важное видоизменение самодифракции имеет место Интересное и дитовых генераторах. Как было выяснено в § 228, в оптических квантовых генераторах. Как было выяснено в § 228, в оптических истичное поле внутри резонатора имеет вид бегущих 229, электромагнитное поле внутри резонатора имеет вид бегущих 229, электроная пругу волн. Если коэффициенты отражения зеркал навстречу друго бегущие волны обладают почти одинаковыми амплиолизки и образуют, следовательно, стоячую волну. Квадрат ее амплитуды описывается функцией

$$A^{2} = 4a^{2}\cos^{2}k_{g}z = 2a^{2}[1 + \cos 2k_{q}z]; \quad k_{q} = \frac{\pi}{L}q, \quad (233.4)$$

где q — целое число. Благодаря нелинейности, среда становится неоднородной, а именно,

$$n = n_0 + 2n_2 a^2 + 2n_2 a^2 \cos 2k_0 z, \qquad (233.5)$$

причем период неоднородности равен половине длины волны 1/22. Нижний и верхний графики рис. 41.4 изображают функции (233.4)

и (233.5) соответственно. Коэффициент нелинейности n2 принят отрицательным, поскольку показависит от затель преломления мощности вследствие эффекта насыщения (см. § 224). Воспользуемся теперь аналогией с отражением от решетки при скользящем падении. Рассмотрим одну из бегущих волн, образующих стоячую, например, волну, бегущую впра-

родности аналогичен периоду решетки; поскольку период равен половине длины волны, то при дифракции бегущей волны появятся лишь главные максимумы нулевого и первого порядков, отвечающие прямо прошедшей волне и дифрагировавшей волне с противоположным направлением распространения. Последняя складывается С приход толученные С другой компонентой, образующей стоячую волну. Полученные Выволы фоль выводы формально следуют из соотношений (233.3), если интер-ферирулогия и соотношений (233.4), если интерферирующие пучки полагать встречными, т. е. 200 = л; тогда физи-ческий отности полагать встречными, т. е. 200 = л; тогда физи-ческий отности ческий смысл имеют лишь m = 0 и +1, -1 для θ_{IIm} , θ_{Im} соот-Таким образом, в данном случае интерференции двух встреч-

ных воли нелинейность среды не приводит к образованию новых воли, но политические среды не приводит к образованию новых Влияние периодической неоднородности можно уяснить, не юстая к откольства и поракционной решетки. воли, но лишь к перераспределению их амплитуд.

прибегая к аналогни с отражением от днфракционной решетки. Каждый на полни с отражением от днфракционной решетки. Каждый из периодов неоднородности можно уподобить тонкому Слою, на траниции с отражением от днфракционной решениему слою, на траниции с отражение света, внало-Слою, на границах которого происходит отражение света, знало-гичное фремолого происходит отражение света, зналогичное френелевскому отражению от плоскопараллельной пластин-

Рис. 41.4. Изменение квадрата амплитуды поля и показателя преломления вдоль оси лазера.
ки; волны, отраженные от двух соседних слоев, сдвинуты по фазе ки: волны, отраженные от всех периодов неоднородии /2. относительно друг друга на складываются по амплитуле С Поэтому все волны, отрански складываются по амплитуде. С изло-оказываются синфазными и складываются по амплитуде. С излооказываются сипфазиции с самое отражение естественно назвать женной точки зрения обсуждаемое отражение естественно назвать

соотражением. Подход, основанный на аналогии с френелевским отражением. поучителен кот в каком отношении. Напомним, что отражение от границы раздела двух сред возникает вследствие различия как показателей преломления, так и коэффициентов псглощения (усиления). В частности, отражение от металлов объясняется, главным образом, второй причиной. Из сказанного легко сделать вывод, что самоотражение в активное среде лазера может обусловливаться модуляцией и показателя преломления, и коэффициента усилсния. Как показывают более детальные исследования вопроса, самоотражение играет существенную роль в оптических квантовых генераторах.

Отражение света, происходящее из-за нелинейности среды и пространственного периодического изменения амплитуды поля, позволяет расширить наши представления о возможных способах реализации положительной обратной связи в квантовых генераторах. До сих пор мы полагали, что положительная обратная связь между полем излучения и активной средой, необходимая для превращения усиливающей системы в автоколебательную (см. § 225), осуществляется с помощью зеркал, отражающих волны обратно в резонатор. Рассмотренное выше нелинейное отражение света служит физической основой для иного способа реализации положительной обратной связи, применяющегося в некоторых лазерах. Пусть кювета К представляет собой активную среду (см. рис. 41.3). В направлении осн х имеет место периодическая неоднородность среды за счет нелинейных эффектов. Интерферирующими пучками I н 11, создающими оптическую неоднородность, могут быть пучки созбуждающего излучения. Следовательно, в данном случае отражение будет происходить в результате модуляции коэффициента усиления активной среды. Спонтанное излучение среды, испущен-ное в направления стали и стали и стали и стали и стали и на ное в направлении оси x, будет отражаться от неоднородности и возвращаться в сполатной возвращаться в активную среду, что и соответствует обратной, связи. Лля некоторы в связи. связи. Для некоторых частот обратная связь будет положительной, и при выполнении воздет и при выполнении воздет налуи при выполнении пороговых условий возбудится генерация излу учения в направлонии чения в направлении оси'х.

§ 234. Распространение группы воли в нелинейной среде

В отличие от строго монохроматической волны, распространение тового импульса (или постранение косветового импульса (или группы волн) характеризуется двумя ско-ростями — фазоной и рестипы волн) характеризуется согласно теоростями — фазовой и групповой. Светобой импульс, согласно тео-

ГЛ. XLI. НЕЛИНЕЙНАЯ ОПТИКА

реме Фурье, можно представить в виде суперлозиции монохроматиреме чурьс, и составляющих с несколько различающимися частотами. ческих составлять описывает распространение фазы одной из этих отвечающей средней изстота. фазовая спорестовечающей средней частоте. Групповая же скорость определяет перемещение какой-либо характерной точки профиля волны, например, точки с максимальным значением амлитуды. Общие представления о фазовой и группогой скорости были обсуждены в § 125. Сейчас мы разберем вопрос о распространении группы волн в непоглощающей среде, принимая во внимание нелинейные эффекты.

Поле светового импульса можно записать в следующей форме:

$$E(z, t) = A(z-ut)\cos\left[\frac{\omega_0}{v}(vt-z)\right].$$
(234.1)

Волновой фронт, отвечающий какому-либо значению фазы с, определяется условием

$$\frac{\omega_0}{v}\left(vt-z\right)=\varphi,\tag{234.2}$$

т. е. он перемещается в пространстве со скоростью v. Аналогичным образом можно рассуждать относительно амплитуды A (z - ut). Зафиксируем какое-нибудь значение ее аргумента z - ut, например 0; амплитуда будет иметь при этом вполне определенное значение. Следовательно, соотношение

$$z = ut$$
 (204.0)

описывает перемещение в пространстве выбранной нами части профиля импульса. Нетрудно сообразить, что запись (234.1) означает смещение импульса с сохранением формы его профиля, как показано на рис. 41.5 для двух моментоз времени. Величина и, называе мая групповой скоростью, связана с фазобой скоростью формулой Рэлея (см. (125.2). (125.3))

$$u = v - \lambda \frac{dv}{d\lambda} = \frac{v}{1 + \frac{\omega}{\alpha} \frac{dn}{d\alpha}}; \quad \lambda = \frac{2\pi c}{\omega n (\omega)}.$$
 (234.4)

Ранее неоднократно подчеркивалось, что изменение амплитулы импульса со временем в какой-либо точке пространства с необхо-димости-ДИМОСТЬЮ ОЗНАЧАЕТ КОНЕЧНОСТЬ ШИРИНЫ его спектра: если импульс Направите направить в спектральный аппарат с подходящей разрешающей способиесть способностью, то на спектрограмме мы обнаружим налучение, сконцентоть спектрограмме мы обнаружим налучение, Сконцентрированное в некотором интервале частот До около сред-ней изотостью ней частоты ω_0 , входящей в аргумент косинуса в выражения (234.1). В стем спектральная (234.1). Величина интервала частот (так называемая спектральная ширина интервала частот (так называемая спектральная цирина импульса) связана с длительностью импульса T соотноше-нием (см. 5.01) $\Delta \omega T \stackrel{.}{>} 2\pi.$ нием (см. § 21)

Из вывода, проделанного в § 125, следует, что представление о группе воли или о световом импульсе, профиль которого не изменяется со временем, имеет физический смысл лишь при выполнении условия $\Delta \omega \ll \omega_0$. Этому неравенству с помощью соотношения (234.5) можно придать вид $T \gg 2\pi/\omega_0$. Другими словами, амплитуда A (z - ut) должна изменяться значительно медленнее, чем соз ω_0 (t - z/v).

Соз об (т – 2007. Согласно принципу суперпозиции, выполняющемуся при малых значениях амплитуды поля, спектр группы волн не может измеияться при ее распространении в среде. Действительно, группу

Рис. 41.5. Распространение группы волн.

воли можно представить в виде суперпозиции монохроматических слагаемых, амплитуды которых остаются неизменными во времени и в пространстве.

Выводы о неизменности профиля импульса и его спектра нарушаются, если мощность излучения достаточно велика. В самом деле, напомним записанную выше зависимость показателя преломления среды от амплитуды поля (см. (232.1)): (234.6)

$$n = n_0 + n_2 A^2 (z - ut).$$

Таким образом, в той части среды, где находится мощный импульс, показатель преломления оказывается зависящим от времени. Вместе с тем на примерах рассеяния света, дифракции на ультраакустической волне, отражения от движущегося зеркала и т. п. мы видели, что изменение оптических свойств во времени обязательно приводит к изменению спектрального состава излучения, распростраияющегося в такой нестационарной среде. В случае рассеяния света была существенна цестационарной среде. В случае рассеяния пательным движением молекул или внутримолекулярными колебаизлучения, входящего в среду (дублет Мандельштама—Брилло

эна, комбинационное рассеяние света, см. §§ 160, 162). Разумеется, эна, комонтивни модификации спектра определяется, точ, точ). Разумеется, конкретный вид модификации спектра определяется законом модуконкретным вызвано только ее предстиется законом моду-ляции свойств среды, но само изменение спектра вызвано только ее пестационарностью.

Главные особенности спектра импульса, прошедшего нелиней. ную среду, можно выяснить, анализируя его фазу

$$\varphi(t, z) = \omega_0 t - \frac{\omega_0}{c} zn = \omega_0 \left(t - \frac{z}{c} n_0 \right) - \Delta \varphi(t, z),$$

$$\Delta \varphi(t, z) = \frac{\omega_0}{c} zn_2 A^2 \left(z - u_0 t \right).$$
(234.7)

Предполагая $n_2 A^2 \ll 1$ (см. § 232), в аргументе амплитуды можно принять для групповой скорости ее значение и при слабых полях. Согласно (234.7) зависимость фазы от времени обусловлена не только членом wot, но и квадратом амплитуды поля. Как и в других вопросах, связанных с анализом колебаний, добавка До к фазе будет существенна, если на длине l в направлении распространения в среде она достигнет или превысит величину порядка 2л, т. е. если

$$l > l_{\text{dag}} \equiv \lambda/n_2 A_0^2, \qquad (234.8)$$

где A₀ — максимальное значение амплитуды и, по аналогии с длиной самофокусировки, введено обозначение los для длины, на которой нелинейная часть фазы становится равной 2л. Если, например, $\Delta n = n_2 A_0^2 = 10^{-5}$, то при $\lambda = 0.7 \cdot 10^{-4}$ см (рубиновый лазер) $l_{\phi a_3} = 7$ см. В случае сероуглерода ($n_2 = 2 \cdot 10^{-11}$ СГСЭ) указанные значения достигаются при освещенностях 10⁸ Вт/см⁴.

Величина

$$\frac{\partial \varphi(t, z)}{\partial t} = \omega_0 - \frac{\omega_0}{c} z n_2 \frac{\partial}{\partial t} [A^2(z - u_0 t)] \equiv \omega(t)$$
(234.9)

имеет смысл мгновенного значения средней частоты импульса. Если с помощью спектрального прибора регистрировать спектр импульса, прошедшего нелинейную среду, то его положение на спектрограмме будет изменяться во времени на величину, равную второнии и политичину, разную в времени на величину, разную в времени на величину, разную в величину, второму члену в соотношении (234.9). Пусть А³ (z – u₀t) – симметричная функция относительно точки, где она принимает максимальное значение; тогда ее производная будет антисизметричной (на рис. 41 Г (на рис. 41.5 производная $\partial A^2/\partial t$ изображена пунктирной кривой), и спекто на стана и спекто на станика и спекто на станика и спекто на спекто и спектр испытывает уширение в коротко-и длинноволновую сто-роны в равной мере. В противном случае спектр импульса приобре тет несически Для оценки по порядку величины численного значения нелиней-о уширование по порядку величины численного значения нелиней-

для оценки по порядку величины численного значения истики ного уширения спектра $\Delta \omega_{\rm HA}$ можно заменить производную $\partial \phi / \partial t$ отношениют Ал отношением Δφ к длительности импульса Т:

$$\Delta \omega_{\mu h} \approx \frac{\Delta \varphi}{T} \approx \Delta \omega_{2\pi}^{-1}$$

причем мы воспользовались соотношением (234.5) и ввели ширину спектра $\Delta \omega$ импульса до его входа в нелинейную среду. В соответ ствии с (234.10) нелинейное уширение $\Delta \omega_{\rm HA}$ значительно превос. ходит исходную ширину $\Delta \omega$, если $\Delta \phi \gg 2\pi$.

До сих пор не принималась во внимание ограниченность поле. речных размеров реальных пучков, и тем самым предполагалось, что на интересующих нас толщинах среды $l > l_{\phi a 3}$ ни самофокуси. ровка, ни дифракция еще не проявляются. Если самофокусии дифракция точно компенсируют друг друга, то поперечное распределение амплитуды импульса не изменяется по мере его распространения в среде, т. е. собственно к этому случаю и относятся сделан. ные выше выводы. Если значение мощности превышает пороговое, даваемое соотношением (232.4), то поперечное сечение пучка уменьшается благодаря самофокусировке, и уширение спектра будет протекать более сложным образом. Качественно ясно, что увеличение амплитуды поля, сопровождающее самофокусировку, вызовет еще большее уширение спектра. Следует иметь в виду, однако. что при огромной концентрации энергии, имеющей место в случае сильно развитой самофокусировки, эффективно протекает и ряд других нелинейных процессов — вынужденное рассеяние Мандельштама-Бриллюэна, вынужденное комбинационное рассеяние и др.

§ 235. Основы теории нелинейной дисперсии

Анализируя самофокусировку, самодифракцию, уширение спехтра импульса, мы пользовались выражением для показателя преломления (235.1)

 $n = n_0 + n_2 A^2, (200.1)$

не конкретизируя микроскопических причин его зависимости от амплитуды световых колебаний, т. е. рассматривая коэффициент иелинейности n_2 в качестве феноменологической характеристики среды. Такой подход вполне правомерен и аналогичен описанию среды в линейной оптике показателем преломления n_0 . Однако интерпретация эмпирических данных о n_2 и n_0 с молекулярной точки зрения чрезвычайно плодотворна и интересна, поскольку именно такого рода интерпретация и позволяет получать сведения о строении атомов, молекул, об их взаимодействии в тех или иных агрегатных состояниях вещества и т. п.

Согласно квантовой теории дисперсии (см. § 156) показатели преломления и затухания *n*, к можно представить в виде

$$n^{2}(1-\varkappa^{2}) = 1 + 4\pi \sum (N_{i} - N_{j}) \alpha_{ij}(\omega);$$

$$n^{2}\varkappa = \sum (N_{i} - N_{j}) \chi_{ij}(\omega).$$

Здесь N .; N, — заселенности энергетических уровней і, ј; вели-Здесь N_{i} , χ_{ij} (ω), χ_{ij} (ω) определяют вклад в n^2 ($1 - \varkappa^2$) и $n^2 \varkappa$ от уровней i, j при единичной разности заселенности N₁ - N₁, а суминрование производится по всем парам уровней. Из структуры соотрования (235.2), выведенных в предположении о малых значениях ношения сости поля, легко усмотреть два типа возможных причин, обусловливающих появление добавки n₂A² к показателю преточлення, а именно, влияние поля на разность заселенностей $N_i - N_i$ н на свойства каждого атома (т. е. на $\alpha_{ij}(\omega), \chi_{ij}(\omega))$.

В §§ 157, 224 мы познакомились с причиной первого типа с изменением разности заселенностей уровней, обусловленных поглощением, вынужденным испусканием и конечной продолжительностью возбужденных состояний. Если изменения заселенностей сравнительно невелики, то из соотношения (224.3) видно, что

$$N_1 - N_1 \propto 1 - u/u_0$$

н (235.2) превращается в (235.1) (нбо и ∞A^2). Как правило, данная причина особенно существенна, если частота излучения близка к частотам полос поглощения.

Другая причина изменения концентрации частиц связана с электрострикцией. Из курса электричества известно, что на дизлектрик, помещенный в электрическое поле Е, действует всестороннее дзаление, величина которого дается соотношением *)

$$p = \frac{1}{8\pi} \rho \frac{\partial \varepsilon}{\partial \rho} E^2,$$

$$E^2 = A^2 \cos^2 (\omega t + \varphi) = \frac{1}{2} A^2 [1 + \cos 2 (\omega t + \varphi)],$$

где є и р — диэлектрическая проницаемость и плотность среды. В результате действия стрикционного давления изменяется плотность и, значит, показатель преломления среды на величину Ал = = р дп/др. Отбрасывая в E² член, колеблющийся со световой часто-(235.3) той, находим

$$n_2 = \frac{1}{8\pi} n_0 \rho \frac{\partial \rho}{\partial \rho} \left(\frac{\partial n_0}{\partial \rho} \right)^2.$$

Значения n_2 , вычисленные по этой формуле для некоторых жилко-Помимо стрикции, плотность может измениться в результате Эта пристей, приведены в первом столбце таблицы.

нагревания среды, вызванного поглощением излучения. Эта при-чина токуще чина также приводит к зависимости показателя преломления от интенсивиости Поляризуемость $\alpha_{ij}(\omega)$, входящая в выражение для показа-Я предомление (от от от от от от от величину, усреднен-

теля преломления (235.2), представляет собой величину, усреднен-*) См., например, И. Е. Тамм, Основы теории электричества, «Наука»,

1976.

Ландсберг Г. С. 27

ную по всем возможным ориентациям молекул. Если молекулы анизотропны, но различные ориентации молекул в отсутствие внешнего поля равновероятны, то среда в целом изотропна (газ, жидкость) и при малых значениях интенсивности свет не нарушает изотропности среды. В случае же большой мощности излучения электрическое поле волны оказывает ориентирующее действие на анизотропные молекулы, среда оказывается двоякопреломляющей и в показателях преломления для обыкновенной и необыкновенной волн появляются добавки, пропорциональные в первом приближении квадрату амплитуды поля. Данное явление подобно эффекту Керра и более детально описано в § 152. Здесь мы ограничимся тем, что приведем вычисленные значения соответствующих коэффициентов нелинейности n₂ (см. второй столбец таблицы).

Таблица

Вещество	n ₁ .10 ¹¹ СГСЭ			па-1011 СГСЭ	
	стрикция	ориента- ция	Вещество	стрикция	ориента- ция
Сероуглерод СS ₂ Нитробензол	0,44 0,16	0,76 0,60	Четыреххлори- стый углерод	0,21	0,016
С6H5NO2 Бензол С6H6	0,23	0,13	ССІ4 Гексан С ₆ Н ₁₄ Этиловый спирт С2Н ₅ ОН	0,18 0,11	0,010 0,005

Значение коэффициента нелинейности n₂ для различных соединений

Следует иметь в виду, что перечисленные причины, обусловливающие зависимость показателя преломления от мощности излучения, обладают разной степенью инерционности. В случае, например, стрикционного механизма нелинейности световое поле задает собственно силу, действующую на среду, и для возникновения неод-нородности, т. е. смещения частиц, необходимо определенное конечное время. В конденсированной среде, следовательно, стрикция вызывает уплотнение в результате распространения упругой волны, и время, за которое устанавливается стационарное распределение плотности по востании в распределение плотности по востании в стание в стан плотности, по порядку величины определяется отношением радиуса а поперечного сопосительного сопосите поперечного сечения пучка к скорости звука v_{3B} . Если принять a = 0.25 мм. a = 0.25 мм, $v_{38} = 1.5$ км/с, то $a/v_{38} \sim 10^{-7}$ с. Инерционность ориентационного (често страна) ориентационного (керровского) механизма нелинейности опреде-ляется временен польского) механизма нелинейности определяется временем поворота молекулы, которое по порядку величины равно 10⁻¹² с (си 45 150 голо кулы, которое по порядку коротких равно 10⁻¹² с (см. §§ 152, 161). Таким образом, в случае коротких лазерных импульсов (ст. лазерных импульсов (длительностью менее 10⁻⁷ с) основную роль будет играть керрование будет играть керровский механизм. В случае импульсов с большой длительностью (более 10-7 с) длительностью (более 10^{-?} с) относительную роль стрикционного

и керровского механизма легко уяснить из сопоставления двух столбцов таблицы.

Перечисленные выше причины изменения показателя преломления связаны с воздействием поля световой волны на концентрацию ния связание молекул, т. е. на ее внешние степени свободы. Раси орисплания влияние поля на поляризуемость молекулы. При смотрим тенер вопроса будем исходить из простой классической выяснения этой обсужденной в § 156. Согласно этой модели, поляризация среды определяется смещением х электронов из их положений равновесия, причем

$$mx = eE(t) + F,$$
 (235.4)

где E (t) — напряженность электрического поля волны. F — сила. возвращающая электрон в положение равновесия (удерживающая сила). При малых значениях интенсивности света и, следовательно, при малых амплитудах колебаний электрона около положения равновесия можно считать, что F имеет в первом приближении характер квазиупругой силы, т. е.

$$F = -bx$$
.

- Данное приближение, использованное в § 156, оказывается недостаточным, если речь идет о больших амплитудах колебания, возникающих в интересующем нас случае мощного излучения. В самом деле, квазиупругий характер возвращающей силы означает, что потенциальная энергия электрона параболически зависит от его смещения из положения равновесия (235.5)

 $U(x) = \frac{1}{2}bx^2$,

причем такой закон должен выполняться для любых значений х. Отсюда следовало бы, однако, что оторвать электрон от молекулы невозможно, тогда как опыт убеждает нас в конечности энергии ионизации молекул и атомов. Поэтому при достаточно больших значения полекул и атомов. значениях смещений х относительно положения равновесия должны

существовать отклонения от закона (235.5). Поскольку нас интересуют мощности излучения, не нарушающие целостность молекул, поправки к потенциальной энергия (235.5) ности (235.5) можно считать сравнительно небольшими. Об этом говорит и доугих язлений, и тот факта и тот факт, что для наблюдения самофокусировки и других явлений, описания самофокусировки и других явлений, описанных в §§ 232—234, достаточно, чтобы $\Delta n = n_3 A^3 \sim 10^{-5}$, а отношения отношение нелинейной и линейной частей смещения электрона имеет такой же порядок величины. Следовательно, соотношение ние (235.5) новительно как первое приближение, и ние (235.5) можно рассматривать как первое приближение, и для анализа для анализа нелинейных оптических явлений нужно дополнить его слагаемитических явлений нужно дополнить его слагаемыми с более высокими степенями смещения х: 1Bx3 - 1/4myx4 -...

$$U(x) = \frac{1}{2}bx^2 - \frac{1}{3}m$$

Поскольку $F = -\partial U/\partial x$, уравнение движения электрона можно

$$\ddot{x} + \omega_0^s x - \beta x^2 - \gamma x^3 - \ldots = -\frac{e}{m} E(t); \quad \omega_0^s = b/m.$$
 (235.6)

Коэффициенты β, γ, ... конкретизироваться не будут, так как коэффициенты р, г, к и значения ω₀, определяются внутренным строением молекулы и могут быть вычислены только в рамках квантовой теории *).

Колебательная система, в которой удерживающая сила отличается от квазиупругой, называется ангармонической. Поэтому говорят, что эффекты, обусловленные членами βx^2 , γx^3 , ... в уравнении (235.6), связаны с ангармонизмом электронов молекулы.

Поскольку ангармонические члены βx^2 , γx^3 , ... имеют характер небольших поправок, уравнение (235.6) можно решать методом последовательных приближений: вначале это уравнение решается без ангармонических членов, и получаемое таким способом выражение для $x = x_0$ (*l*) подставляется в βx^2 , γx^3 , ..., после чего ищется решение уравнения

$$\ddot{x} + \omega_0^2 x = -\frac{e}{m} E(t) + \beta x_0^2(t) + \gamma x_0^3(t) + \dots$$

В случае монохроматического поля $E(t) = A \cos(\omega t + \varphi)$ указанные вычисления приводят к следующему результату (см. упражнение 257):

$$x = \frac{e/m}{\omega_0^2 - \omega^2} A \cos(\omega t + \varphi) + \frac{1}{2} \beta \left(\frac{e}{m}\right)^2 \left(\frac{A}{\omega_0^2 - \omega^2}\right)^2 \left[\frac{1}{\omega_0^3} + \frac{\cos 2(\omega t + \varphi)}{\omega_0^2 - (2\omega)^2}\right] + \frac{3}{4} \gamma \left(\frac{e}{m} \frac{A}{\omega_0^2 - \omega^2}\right)^3 \left[\frac{\cos(\omega t + \varphi)}{\omega_0^2 - \omega^2} + \frac{1}{3} \frac{\cos 3(\omega t + \varphi)}{\omega_0^2 - (3\omega)^2}\right] + \dots (235.7)$$

Отметим, прежде всего, что выпужденные колебания электрона описываются набором гармонических функций с частотами jo (j= = 0, 1, 2, 3, ...), кратными частоте вынуждающей силы, т. е. частоте поля. Оптические явления, обусловленные кратными гармониками в смещении электрона, будут рассмотрены в следующих параграфах. Здесь же следует обратить внимание на изменение поляризуемости молекулы по отношению к колебаниям с частотой из выражения (235.7) можно увидеть, что эта поляризуемость равна равна

$$\alpha = \alpha_0 + \alpha_2 A^2, \quad \alpha_0 = \frac{e^2/m}{\omega_0^3 - \omega^2},$$

$$\alpha_2 = \frac{3}{4} \alpha_0 \gamma \left(\frac{e}{m}\right)^2 \frac{1}{(\omega_\nu^2 - \omega^2)^3}.$$
(235.8)

*) В отличие от § 156, здесь не принимаются во внимание тормозящие сил как в канестроическая в канестроическая в канестроитекающих так как в качественном отношении они не изменяют выводов, вытекающих из (235.6).

Таким образов, 26)) световое поле оказывает влияние на поляри-в уравнении (235.6)) причем ее изменение пропорииона на полярив уравнении (или интенсивности) световой воличи на поляри-зуемость молекулы, причем ее изменение пропорционально квадрату зуемость монет, или интенсивности) световой волны, что и обусловли-амплитуды (или интенсивности) световой волны, что и обусловливает дополнительный вклад в величину п. Аз вает дополной электронной части коэффициента нелинейности па

сильно различаются в различных средах. В жидкостях, например. главную роль играют стрикционный и керровский механизы нелинейности, а электронная часть сравнительно невелика. В твердых телах ангармонизм может быть очень существен, в особенности в случае коротких лазерных импульсов, когда стрикционный механизм не проявляется вследствие инерционности.

Итак, мощное световое поле воздействует и на внешние, и на внутренние степени свободы молекул, изменяя характер соответствующих движений и обусловливая зависимость показателя преломления от интенсивности. Вообще говоря, электромагнитное поле влияет и на межмолекулярное взаимодействие. Последнее обстостельство особо важно для металлов, нонных кристаллов, полупроводников, где взаимодействие между частицами среды очень велико и играет определяющую роль по отношению ко многим, не только нелинейным оптическим свойствам тела.

§ 236. Генерация кратных, суммарных и разностных гармоник

Явления преломления и отражения света с молекулярной точки зрения рассматриваются как результат интерференции падающей волны и вторичных волн, испускаемых молекулами среды благодаря вынужденным колебаниям зарядов, индуцированных падающей волной (§ 135). В линейной оптике вынужденные колебания совершаются с частотой внешнего поля, вследствие чего падающая, отраженная и преломленная волны имеют одну и ту же частоту. Если принимать во внимание ангармоничность колебаний зарядов в молекулах среды, то, как было выяснено в § 235, индуцированный ПОЛЕМ ДИПОЛЬНЫЙ МОМЕНТ ИМЕЕТ СЛАГАЕМЫЕ, ОТВЕЧАЮЩИЕ КОЛЕБАНИЯМ с частотами, кратными частоте падающей на среду волны. Поэтому молекулы среды испускают волны и с кратными частотами, и не-линей линейная среды испускают волны и с кратными частотами 20, 30 И т. в. Эт. И т. д. Это явление получило название сенерации кратных гармоних Светс

Генерация кратных гармоник впервые наблюдалась в 1961 г. (Франкен с сотр.) при распространении излучения рубинового лазера В Кристо сотр.) при распространении излучения рубинового лазера В кристаллическом кварце, дигидрофосфате калия и триглицин-Сульфато Сило сульфате. Схема эксперимента, показанная на рис. 41.6, в прин-ципиальности и эксперимента, показанная на рис. 41.6, в принципиальном отношении очень проста. На плоскопараллельный Слой / опосо слой 1 слева падает коллимированный или сходящийся пучок ла-Зерного историят во слева падает коллимированный или сходящийся пучок лазерного излучения. Из пластинки выходит излучение второй гар-

моники, показанное на рис. 41.6 сплошной линией. Это излучение отделяется от исходного фильтрами 2 или спектральными приборами и регистрируется подходящим приемником излучения 3 (фотографическая пленка, фотоумножитель). Особенно эффектен опыт с применением квантового генератора инфракрасного излучения, например, на неодимовом стекле ($\lambda = 1,06$ мкм). В этом слу-

Рис. 41.6. Схема опыта по генерации второй гармоники лазерного излучения. чае из пластинки 1 выходит пучок ярко-зеленого света $(1/2\lambda = 0.53 \text{ мкм}).$ Измерения показывают

измерения показывают, что интенсивность второй гармоники резко зависит от угла падения лазерного пучка на пластинку. На рис. 41.7 точками показаны изме-

ренные значения мощности $P_{2\omega}$ второй гармоники излучения рубинового лазера ($\lambda = 0,6943$ мкм, $1/_2\lambda = 0,3472$ мкм) при использовании в качестве нелинейной среды пластинки из кристаллического кварца (толщина 0,75 мм). На оси абсцисс отложен угол

Рис. 41.7. Зависимость мощности Р₂₀ (произвольные единицы) второй гармоники излучения рубинового лазера от угла падения ф на пластинку кристаллического кварца.

падения ф. Резкие колебания интенсивности излучения с длиной волны $1/{_2}\lambda = 0,3472$ мкм свидетельствуют о существенной роли интерференционных явлений.

Для анизотропных явлений. важной ориентация оптических осей относительно граней пластинки, угол падения исходного пучка и состояние поляризации последнего. На рис. 41.8 показан график мощности второй гармоники излу-

ГЛ. XLI. НЕЛИНЕЙНАЯ ОПТИКА

чения гелий-неонового лазера ($\lambda = 1,15$ мкм) при использовании чения телин монитейной среды пластинки одноосного кристалла диги-в качестве нелинейной среды пластинки одноосного кристалла дигив качестве полити (KDP). Аргументом служит угол между волно-дрофосфата калия (KDP). и оптической согла между волнодрофосция и между волны и оптической осью кристалла. Маквым вектором слование мощности второй гармоники достигается в том

Рис. 41.8. Зависимость мощности Р₂₀₀ второй гармоники излучения геляй-неонового лазера от наклона кристалла KDP (0, = 41°,5).

случае, когда угол в между волновым вектором преломленней исходной волны и оптической осью кристалла равен в = 41,5°. Оказывается, что зависимость $P_{2\omega}$ от угла $\theta - \theta_0 = \Delta \theta$ хорошо аппроксимируется функцией [sin (САв)/(САв)]², где С - посто-

янный коэффициент (сплошная кривая на рис. 41.8). В отличие от рис. 41.7, в данном случае мощность резко уменьшается в сравнительно малом интервале углов порядка (0°,05).

Отмеченные особенности генерации второй гармоники находят простое объяснение, основанное на представлении о сложении волн, испускаемых диполями, индуцированными преломленной Волной исходного излучения. Примем при генерация вгорой гарза ось Ог направление распространения 41.9). Для диполей, расположенных в плоскости z', колебания с улвовищей

Рис. 41.9. К расчету интерференции вторичных волн

с удвоенной частотой 2ω описываются, согласно соотношению (235 7) $A^{2}\cos 2\left[\omega t + \varphi(z')\right] = A^{2}\cos 2\omega \left[t - \frac{n(\omega)}{c}z'\right], \quad \varphi(z') = -\frac{2\pi}{\lambda} \frac{n(\omega)}{(236.1)}z',$ (236.1)

*) Фазу ф (z') не следует смешивать с углом падения ф на рис. 41.7.

где A — амплитуда исходной волны, $n(\omega)$ — показатель преломления для частоты ω . Диполь, колеблющийся по закону (236.1), излучает вторичную волну с частотой 2ω ; фаза вторичной волны в какой-либо точке z внутри пластинки отличается от фазы колебания (236.1) на величину, соответствующую разности хода z - z':

$$2\omega \left[t - \frac{n(\omega)}{c} z' \right] - 2\omega n (2\omega) (z - z')/c =$$
$$= 2\omega \left\{ t - \frac{n(2\omega)}{c} z + \left[n(2\omega) - n(\omega) \right] \frac{z'}{c} \right\}, (236.2)$$

где $n(2\omega)$ — показатель преломления для частоты 2ω . Полиое поле с частотой 2ω в точке *z* есть сумма вторичных волн, испущениых ансамблем диполей, которые расположены между входной гранью пластинки и плоскостью *z*. Если показатели преломления для частот ω и 2ω одинаковы, т. е.

$$\Delta n \equiv n (2\omega) - n (\omega) = 0, \qquad (236.3)$$

то фаза (236.2) не зависит от расположения диполя, все вторичные волны синфазны и амплитуда поля второй гармоники проперциональна расстоянию z от входной грани, а интенсивность — квадрату z. Равенство (236.3), называемое условием пространственной синфазности *), соответствует, очерыдно, максимально большой интенсивности второй гармоники, генерируемой в данной нелинейной среде при заданной мощности ис:.одного излучения.

Показатель преломления зависнт, однако, от частоты, и при переходе от ω к 2ω изменения *n* могут быть значительными. В общем случае $\Delta n \neq 0$, и амплитуда волны с удвоенной частотой дается выражением

$$E_{2\omega} = gA^{2} \int_{0}^{z} \cos\left\{2\omega \left[t - n\left(2\omega\right)\frac{z}{c}\right] - 2\omega\Delta n\frac{z'}{c}\right\} dz' = = A_{2\omega} \cos 2\omega \left\{t - \left[n\left(2\omega\right) + n\left(\omega\right)\right]\frac{z}{2c}\right\}; A_{2\omega} = gA^{2}z\frac{\sin \omega}{\omega}; \quad \omega = \frac{2\pi}{\lambda}z\Delta n = \frac{\Delta kz}{2}; \Delta k = k\left(2\omega\right) - 2k\left(\omega\right),$$

$$(236.4)$$

гле g — коэффициент пропорциональности. Амплитуда второй гармоники $A_{2\omega}$ содержит стандартный интерференционный множитель $w^{-1} \sin w$, отображающий частичное или полное гашение вторичных воли, испущенных различными точками среды. Величина w представляет собой разность фаз между вторичными волиами, которые испущены сечениями пластинки, отстоящими друг

•) Условие (236.3) называют также условием волнового синхронизма или условием проспранспивенного синхронизма.

от друга на расстояние $1/2^2$. Если $w = \pi$, то волны от первой полоот друга на расстины г полностью гасятся волны от первой поло-вины слоя толщины г полностью гасятся волнами от второй его вины слоя колиции воли происходит и пои сонами от второй его половины, и амплитуда второй гармоники равна нулю. Полное половины, половиных волн происходит и при ш, кратном л.

На рис. 41.10 приведен график зависимости (А2ω) от координаты z. При z > d амплитуда поля определится ее значением на динаты 2. терите и динаты z = d. Максимальные значения амплитуды A_{29} лостигаются при

$$z_m = l_{\text{kor}} (1+2m); \quad l_{\text{kor}} = \lambda/4\Delta n; \quad m = 0, 1, 2, \dots (236.5)$$

и равны

$$|A_{2\omega}|_{\max} = gA^2 \frac{\lambda}{2\pi \Delta n}.$$
 (235.6)

Толщина слоя $l_{\text{ког}}$, для которого разность фаз $w = 1/\pi$, называется длиной когерентности. Согласно (236.6), максимально возможная амплитуда второй

гармоники при $z = l_{kor}$ имеет такое же значение, как при выполнении условия пространственной синфазности и толщине пластинки, равной $\lambda/(2\pi\Delta n) = 2l_{\rm kor}/\pi$.

Значение разности показателей преломления Δn несколько варьирует для раз-

с частотой. Для кристаллического кварца, например, $\Delta n = 0,025$ В случае $\lambda = 0,6943$ мкм и увеличивается в более коротковолновой части спектра. Если принять $\Delta n = 0,025$, то $I_{xor} = 10\lambda = 0.025$, то $I_{xor} = 10\lambda = 0.025$ = 0,69.10⁻² мм, т. е. «эффективная» толщина оказывается чрез-Вычайно малой — порядка нескольких длин волн исходного излучения.

В случае наклонного падения на нелинейную пластинку соотношения (236.4) сохраняют силу, но толщину пластинки d в выра-кении прастинки d сохраняют силу, но толщину пластинки d сох ф. жении для разности фаз следует заменить на длину пути d' cos ¢, проходится в следует заменить на длину пути d' cos ¢, проходимого волной вдоль направления ее распространения (ф угол преломления исходной волны). В свете сказанного легко объ-ясными яснимы колебания мощности второй гармоники, изображенные на рис. 41 7 на рис. 41.7: изменение угла падения ф приводит к изменению угла Предокласть фаз &. Распреломления, что, в свою очередь, изменяет разность фаз w. Рас-Стоянию темпение изменение w Стоянию между двумя соседними минимумами отвечает изменение на л: с помочить соседними соседними минимумами отвечает изменение на л: с помочить соседними соседними соседними со на л: с помочить соседними соседними соседними соседними соседними со на л: с помочить соседними соседними соседними соседними со на л: с помочить соседними соседними соседними соседними со на л: с помочить соседними соседними соседними соседними со на л: с помочить соседними соседними соседними соседними со на л: с помочить соседними сосе на л; с помощью графика рис. 41.7 можно вычислить разность Дл, которая окранита рафика рис. 41.7 можно согласуется с хорошо которая оказывается равной $\Delta n = 0.025$, что согласуется с хорошо известными слить разной согласуется с хорошо известными значениями дисперсии показателя преломления.

Рис. 41.10. Зависимость модуля амплитуды второй гармоннки (Азы) от расстоя-HHS 2

Несмотря на дисперсию показателя преломления, можно добиться выполнения условия пространственной синфазности, если применить в качестве нелинейной среды анизотропные кристалы. В анизотропной среде плоская волна с заданным направлением волнового вектора распадается на две волны, ортогонально поляризованные и распространяющиеся с различными, вообще говоря, фазовыми скоростями. Каждая линейно-поляризованная первичная волна индуцирует в среде совокупность диполей с характерным для данной волны пространственным распределением фаз. Вторичные волны, испускаемые этими диполями, в свою очередь разлагаются на ортогонально поляризованные волны с различными фазовыми скоростями, и удается так подобрать материал пластинки и направление распространения первичной волны, что для вторичных воли с одной из поляризаций выполняется условие пространственной синфазности.

Пусть, например, мы имеем дело с одноосным отрицательным кристаллом (см. гл. XXVI), т. е. показатель преломления обыкновенной волны n_o превышает показатель преломления необыкновенной волны n_e , причем различие между n_o и n_e больше изменения n_e при удвоении частоты, т. е. n_o (ω) > n_e (2 ω). При этом условин могут быть синфазными необыкновенные вторичные волны, возбуждаемые обыкновенной первичной волной. Действительно, поскольку показатель преломления увеличивается с ростом частоты, мы имеем неравенства

 $n_o(2\omega) > n_o(\omega) > n_e(2\omega)$.

Известно (см. гл. XXVI), что при изменении направления распространения показатель преломления необыкновенной волны изменяется в пределах от n_e (2 ω) (перпендикулярно оптической оси) до n_o (2 ω) (вдоль оптической оси). Следовательно, при каком-то промежуточном направлении осуществится равенство между показателями преломления обыкновенной первичной волны и необыкновенной вторичной волны. Для указанного направления выполняется условие пространственной синфазности и само оно называется *направлением синфазности* (или *синхронизма*). Согласно сказанному ранее, в этом направлении амплитуда второй гармоники принимает максимальное значение.

Для кристалла KDP и $\lambda = 1,15$ мкм направление синфазности образует с оптической осью кристалла угол θ_0 , равный согласно расчету 41°35', что совпадает с результатами наблюдений (см. рис. 41.8). Отклонение от направления синфазности должно уменьшать интенсивность второй гармоннки в соответствии с множителем $[\omega^{-1} \sin \omega]^2$, причем физический смысл величины ω по-прежнему отвечает разности фаз между волнами, испущенными слоями, отстоящими на половину толщины пластинки. Поскольку эта разность фаз в первом приближении линейно зависит от $\Delta \theta = \theta - \theta_0$.

соотношение (236.4) объясняет ход графика, изображенного на

Согласно соотношению (236.4) амплитуда А₂₀ волны с удвоенной частотой пропорциональна квадрату амплитулы падающей ной частотой падающей волны А и, следовательно, мощность излучения Р₂₀ с частотой 20 пропорциональна квадрату мощности Р исходного пучка. Специальные измерения показали, что указанная закономерность имеет место, но только в том случае, когда P₂₀ составляет небольшую часть от Р. Такое положение вполне естественно, так как энергия второй гармоники черпается из первичной волны и мощность последней уменьшается по мере углубления в среду. Теория вопроса приводит к выводу, что в идеальных условиях (исходный пучок строго параллельный, точно выполнено условие пространственной синфазности) практически всю мощность падающего излучения можно преобразовать в пучок с удвоенной частотой. Однако по ряду причин (неоднородность кристалла, его нагревание, конечная расходимость пучка и др.) этого достичь не удается, и на опыте получают отношение $P_{2\omega}/P$ порядка нескольких десятков процентов.

До сих пор речь шла о второй гармонике. Аналогичным образом происходит и генерация третьей гармоники: первичное излучение с частотой создает в нелинейной среде ансамбль диполей, колеблющихся и излучающих вторичные волны с частотой За. Мощность третьей гармоники пропорциональна кубу мощности падающего света и фактору

 $d^{2}\left[\frac{\sin \omega'}{\omega'}\right]^{2}; \quad \omega' = \frac{3\pi}{\lambda} d[n(3\omega) - n(\omega)] = \frac{1}{2} d[k(3\omega) - 3k(\omega)],$

описывающему интерференцию вторичных волн. Дисперсия показателя преломления n (3w) — n (w) в интервале частот w, 3w сще больше, чем в случае второй гармоники (ω , 2 ω), что затрудняет генерацию третьей гармоники в изотропных средах и ограничи-Вает выбор кристаллов, для которых можно выполнить условие пространственной синфазности. Главная трудность экспериментярования связана с малым значением поляризуемости на тройной частоте Остана с малым значением поляризуемости на тройной Частоте. Это обстоятельство вынуждает применять очень большие ОСвещения материала. Не освещенности, часто приводящие к разрушению материала. Не-Смотря на перечисленные трудности, генерация третьей гармоники с выполнением условия синфазности наблюдается в исланд-СКОМ Шикис (О СОС) ском шпате (CaCO₃), обладающем значительным двойным лучепре-ломлениют (ломлением ($n_o - n_e = 0,172$ для *D*-линин натрия), а также в неко-торых изотрети торых изотропных кристаллах (LiF, NaCl) и жидкостях. Генерация Третьей гармания

Родственные нелинейные явления возникают и при распро-анении нелос Третьей гармоники наблюдалась и в газах. странении через нелинейные явления возникают и при растранении через нелинейную среду немонохроматического излу-чения. В этих чения. В этих условиях, помимо кратных гармоник, генерируется

излучение, спектр которого содержит суммы и разности частот исходного светового пучка. Для выяснения причины указанных явлений обратимся к уравнению движения (235.6) ангармонического осциллятора и предположим, что падающий свет представляет собой две плоские монохроматические волны с частотами ω_1, ω_2 , волновыми векторами k_1, k_2 и амплитудами A_1, A_2 . Если принять в расчет только квадратичную ангармоничность (т. е. член βx^2 в (235.6)), то дипольный момент, индуцируемый в данном случае, имеет составляющие, пропорциональные выражениям (см. упражнение 257)

$$A_{1}A_{2}\cos[(\omega_{1}+\omega_{2})t-(k_{1}+k_{2})r]; \quad A_{1}A_{2}\cos[(\omega_{1}-\omega_{2})t-(k_{1}-k_{2})r].$$
(236.7)

Иными словами, в среде создается ансамбль диполей, колеблищихся с частотами $\omega_1 \pm \omega_2$ и имеющих постоянную фазу в плосксстях, перпендикулярных векторам $k_1 \pm k_2$. В направлениях $k_1 + k_2$, $k_1 - k_2$ среда должна генерировать, следовательно, излучение с частотами $\omega_1 + \omega_2$, $\omega_1 - \omega_2$ соответственно. Заметим, что скорость v пространственного изменения фазы диполей, например, с частотой $\omega_1 + \omega_2$, равная

$$v = (\omega_1 + \omega_2)/|k_1 + k_2| = (\omega_1 + \omega_2)/\sqrt{k_1^2 + k_2^2 + 2k_1k_2\cos\vartheta},$$

зависит от угла ϑ между векторами k_1 , k_2 , увеличиваясь с ростом ϑ . Поэтому условие синфазности для генерации суммарной гармоники не выполняется, если даже оно выполнено для кратных гармоник. Если же, применяя кристаллы, добиться синфазности для $k_1 + k_2$, то для $2k_1$ и $2k_2$ синфазность будет отсутствовать. Подчеркнем, что несовпадение условий синфазности для различных процессов оказывается типичным, и это позволяет усиливать тот или иной процесс и подавлять остальные.

В среде с кубической ангармоничностью (член үх³ в уравнении (235.6)) две указанные волны создают слагаемые дипольных моментов вида (см. упражнение 257)

 $A_1^{s}A_2\cos[(2\omega_1 \pm \omega_2)t - (2k_1 \pm k_2)r]; \quad A_1A_2^{s}\cos[2\omega_2 \pm \omega_1)t - (2k_2 \pm k_1)r], \quad (236.8)$

и будет происходить генерация излучения с частотами $2\omega_1 \pm \omega_2$, $2\omega_2 \pm \omega_1$, распространяющегося в направлениях $2k_1 \pm k_2$, $2k_2 \pm \pm k_1$ соответственно. Синфазность интерферирующих вторичных волн легче всего получить для гармоник $2\omega_1 - \omega_2$, $2\omega_2 - \omega_1$. Если частоты ω_1 , ω_2 различаются мало, то и разностные частоты $2\omega_1 - \omega_2$, $2\omega_2 - \omega_1$ близки к ω_1 , ω_2 и соответствующие когерентные длины будут значительными даже в изотропных средах. Пусть, например, ω_1 соответствует рубиновому лазеру (14 400 см⁻¹), а излучение с частотой ω_2 получено в результате вынужденного комбинационного рассеяния в бензоле, причем ω_2 отличается от ω_1 на 990 см⁻¹. Если теперь направить обе указанные волны в кювету на 990 см. Болны в ковету с жидкостью, то возникает излучение на частоте 15 390 см⁻¹ (длина с б. мкм). В этом случае длина котороши с жидкостью, в этом случае длина когерентности $l_{\text{kor}} = \pi \left[k \left(2\omega_1 - \omega_2 \right) - 2k_1 + k_2 \right]^{-1}$

приблизительно равна 0,7 мм (в качестве нелинейной среды также использовался бензол).

Явления генерации кратных, разностных и суммарных гармоник нашли многочисленные научно-технические применения. Ценность этих явлений для лазерной техники обусловлена тем, что удвоение частоты лазерного излучения или «смешивание» излучений двух лазеров в нелинейной среде позволяет получать мощный поток когерентного света в области спектра, отличной от исходной. Например, удвоение частоты излучения лазеров на красителях, генерирующих в видимой области спектра (см. § 231), обеспечивает когерентное излучение с плавной перестройкой частоты в ультрафиолетовой области. Особый интерес представляет смешивание инфракрасного излучения со светом мощных лазеров (рубинового или неодимового). Дело в том, что приемники инфракрасного излучения значительно уступают по чувствительности и инерционности приемникам, применяемым в видимой и ультрафиолетовой областях. В инфракрасной области очень плохо разработана фотография. Смешивание же излучения, например, с $\lambda = 4$ мкм и 0,694 мкм (рубиновый лазер) дает желтый свет с длиной волны 0,591 мкм, который можно регистрировать и визуально, и фотографически, и с помощью фотоумножителя. Таким способом удается регистрировать даже слабое тепловое излучение.

§ 237. Отражение волн в нелинейной оптике

При падении интенсивного излучения на границу раздела двух Сред в отраженном свете наблюдаются волны не только с частотой палагония и сумарпадающего излучения, но и с кратными, разностными и суммарными частотами. Будем говорить о случае падения монохроматической плоской волны с частотой ω. Опыт показывает, что направле-ния расто-Ния распространения отраженных волн с частотами и 12 немного, но все участотами и 12 немного, но все участи и станице зависит но все же отличаются друг от друга, причем это отличие зависит ОТ лиспорати от дисперсии показателя преломления среды, в которой распро-странцетото показателя преломления среды, в которой гармоники страняется падающая волна. Интенсивность второй гармоники В отражение чем в преломв отраженном свете на несколько порядков меньше, чем в прелом-ленной полиса ленной волне, и практически не зависит от степени выполнения Условия простоя и практически не зависит от степени выполнения условия пространственной синфазности. Как и в случае френелев-СКОГО отволисти Ского отражения, амплитуды отраженных воли с частотой 2. Зависят от изака, амплитуды отраженных воли с частотой синование воли синование воли с частотой синование воли с частотой синование воли синов Зависят от угла падения и ориентации электрического вектора отно-СИТЕЛЬНО В БОЛИ С ИЗАНИЯ ВОЛИ С ИЗАНОВИИ В БРЮ-Сительно плоскости падения. Наблюдается и аналог явления Брю-Сительно плоскости падения. Наблюдается и аналог явления брю-Стера: при стера: при некотором угле падения для пучка с поляризацией,

параллельной плоскости падення, коэффициент отражения равен

лю. Сам факт существования волны с удвоенной частотой вне нелинейной среды легко объяснить с помощью соображений, уже испольнеиной среды иста состанования диполей, индуцированных первичной которых индуцированных первичной волной, испускает волны, «сумма» которых имеет конечное значение как в нелинейной среде, так и вне ее. Аналогичные соображения привлекаются в рамках молекулярной теории и для объяснения обычного отражения (см. гл. XXIII).

В свете сказанного легко понять малую величину интенсивности второй гармоники в отраженном свете. Вторичные волны, испущенные в направлении, противоположном направлению первичной волны (случай нормального падения), максимально рассогласованы по фазе, и эффективная толщина слоя, создающего отраженную волну, равна по порядку величины $\frac{1}{4}\lambda/[n(2\omega) + n(\omega)]$, вместо $\frac{1}{4}\lambda/[n(2\omega) - n(\omega)]$ для проходящей волны. Поэтому для отношения интенсивностей отраженной и преломленной волн второй гармоники имеем

 $\left[\frac{n(2\omega) - n(\omega)}{n(2\omega) + n(\omega)}\right]^2 \sim 10^{-4} - 10^{-5},$

что соответствует опытным данным. Высказанные соображения качественно объясняют, очевидно, и независимость интенсивности отраженного света с частотой 2ω от степени синфазности вторичных преломленных волн.

Остальные из упомянутых выше свойств второй гармоники в отраженном свете требуют более детального анализа. Количественное их описание основано на теории, аналогичной изложенной в гл. XXIII для френелевского отражения в линейной оптике. Согласно объясненному там общему методу, свойства отраженных и преломленных волн устанавливаются с помощью граничных условий, сводящихся к требованию непрерывности тангенциальпых составляющих напряженности электрического и магнитного полей. Сами же напряженности записываются как суперпозиции волн, удовлетворяющих уравнениям Максвелла.

Пусть из линейной среды, обозначаемой в дальнейшем 1, на границу раздела с нелинейной средой 2 падает монохроматическая плоская волис (постанов собратися) и постанов собратическая плоская волна (частота ω), порождающая обычные отраженную и предомленнию средон 2 падает монохроматические и предомленнию стражены и преломленную волны. Волновые векторы этих волн изображены жирными стролистии и жирными стрелками на рис. 41.11, из которого ясна и выбранная система координате Така система координат. Тонкие стрелки соответствуют волновым векторам волн с частотой 2ω, н их смысл будет пояснен ниже.

В среде 1 поле с частотой 200 представлено отраженной волной же используется констатой 200 представлено отраженной волной (шиже используется комплексная запись полей)

 $A^{r} \exp \{-i [2\omega t - k_{12}r]\}$ $k_{12}^{*} = \left[\frac{2\omega}{a} n_{12}\right]^{2}$.

(237.1)

ГЛ. XLI, НЕЛИНЕЙНАЯ ОПТИКА

В среде 2 поле будем искать в виде суперпозиции двух волн ÷ $A^{d} \exp \left[-i \left(2\omega t - k_{22}r\right)\right] + B \exp \left[-i \left(2\omega t - 2k_{21}r\right)\right];$ $k_{22}^{2} = \left[\frac{2\omega}{c} n_{22}\right]^{2}; \quad k_{21}^{2} = \left[\frac{\omega}{c} n_{21}\right]^{2}; \quad n_{22} = n_{2}(2\omega); \quad n_{21} = n_{2}(\omega).$ (237.2)

Первые индексы у k и n соответствуют среде 1 или 2, вторые кратности частоты (например, $n_{12} \equiv n_1 (2\omega)$, k_{21} — волновой вектор преломленной в среде 2 волны с частотой ω). Основание к такому выбору вида поля состоит в следующем. Уравнения Максвелла для поля с частотой 2ω представляют собой неоднородную систему уравнений, причем источником поля служит нелинейная часть поляризации

среды, изменяющаяся по закону

$$\exp\{-2i(\omega t - k_{21}r)\}.$$
 (237.3)

Согласно теории линейных уравнений, общее решение неоднородной системы можно представить в виде суммы общего решения соответствующей однородной системы и частного решения неоднородной системы. Второй член в выражении (237.2), зависящий от времени и координат так же, как нелинейная поляризация среды, и содержащий показатель преломления n21 для частоты ю, служит решением неоднородной системы уравнений; поэтому известен — он выражается вектор В

Рис. 41.11. Отражение в преломление воля на границе раздела между линейной (1) н нелинейной (2) средами.

через нелинейную поляризацию среды и пропорционален квадрату амплитуды преломленной волны исходного излучения с частотой ю (см. упражнение 258). Первый же. член в (237.2) — решение однородной системы, в него входит нечалости. неизвестная пока амплитуда A^d, подлежащая вычислению, и пока-затель пока амплитуда A^d, подлежащая вычислению, и пока-Затель преломления n₂₂ среды 2 для частоты 2. Аналогичные Выражения магнитного голя. Выражения можно написать и для напряженности магнитного голя. Векторые и пожно написать и для напряженности магнитного голя. Векторы k_{12} , $2k_{21}$, k_{22} изображены на рис. 41.11 тонкими стрел-ками Смысл дальнейших рассуждений состоит в установлении связи

чысл дальнейших рассуждений состоит в установлении сснове неизвестных величин A^r, A^a, k₂₂, k₁₃ с известными B, k₂₁ на основе Граничных иссловение и в линейной оптике (см. гл. XXIII), но в ней заданными величимами служнан амплитула и политика (см. гл. ХХІІІ), но в ней заданными величимами /. В нелиамплитуда и волновой вектор волны, падающей из среды *I*. В нели-нейной же составляющие волны порожнейной же оптике отраженная и преломлениая волны перож-даются нелические страженная и преломления волны перож-Даются нелинейной поляризацией, и поэтому заланная величина Входит в римский страженная и поэтому заланная величина ВХОДИТ В ВЫРАЖение для поля внутри преломляющей среды.

Любое из граничных условий сводится, очевидно, к обращению в нуль некоторых линейных комбинаций экспоненциальных функций, входящих в выражения (237.1), (237.2) и вычисляемых на границе раздела z = 0:

$$C_1 \exp(ik_{12x}x) + C_2 \exp(ik_{22x}x) + C_3 \exp(2ik_{21x}x) = 0$$

В силу линейной независимости экспоненциальных функций, такое равенство выполняется тождественно для произвольных значений *x* в том и только в том случае, когда показатели всех трех экспонент одинаковы, т. е.

$$k_{22x} = k_{12x} = 2k_{21x}, \tag{237.4}$$

иными словами, должно выполняться равенство тангенциальных составляющих волновых векторов. Вертикальная пунктирная прямая на рис. 41.11, соединяющая концы векторов k_{22} , $2k_{21}$, k_{12} , отсекает на оси Ox общую тангенциальную составляющую. Напомним, что аналогичные соотношения справедливы и для волновых векторов волн с частотой ω . Равенства (237.4) выражают геометрические законы отражения и преломления; их можно переписать с помощью углов, показанных на рис. 41.11:

$$n_{22}\sin\psi_2 = n_{12}\sin\varphi_2 = n_{21}\sin\psi = n_{11}\sin\varphi_2$$
 (237.5)

Последнее равенство в (237.5) — закон преломления для волны с частотой ω , $n_{11} \equiv n_1 (\omega)$.

Если среда 1 обладает дисперсией (n₁₂ ≠ n₁₁), то угол отражения φ₂ для второй гармоники не равен углу падения φ:

$$\sin \varphi_2 = \frac{n_{11}}{n_{12}} \sin \varphi \tag{237.6}$$

и в случае нормальной дисперсии $(n_{12} > n_{11})$ имеем $\varphi_2 < \varphi$, как изображено на рис. 41.11. Таким образом, излагаемая теория объясняет один из фактов, отмеченных в начале параграфа. Точные измерения подтверждают закон отражения (237.6) и в количественном отношении. Поскольку разность $n_{12} - n_{11} = \Delta n_1$ относительно невелика, равенство (237.6) можно приближенно переписать в виде

 $\varphi_2 - \varphi \approx -\frac{\Delta n_1}{n_{11}} \operatorname{tg} \varphi. \tag{231.1}$

Для воздуха $\Delta n_1 \sim 10^{-5}$, и различием между φ_2 и φ можно пренебречь. Если же поместить нелинейную среду в жидкость с большой лисперсией (бензол, сероуглерод), то $\Delta n_1 \sim 10^{-1}$ и при $\varphi = 45^{\circ}$ разность $\varphi_2 - \varphi$ составляет несколько градусов, т. е. вполне заметную величину.

Углы преломления ф и ф₂ первичной и вторичной волн также отличаются друг от друга вследствие дисперсии показателя

ГЛ. XLI. НЕЛИНЕЛНАЯ ОПТИВА

преломления преломляющей среды:

$$\sin \psi_2 = \frac{n_{21}}{n_{22}} \sin \psi = \frac{n_{11}}{n_{22}} \sin \varphi.$$

В случае нормальной дисперсии (n₂₂ > n₂₁) имеем t < t, чему (237.8) и соответствует расположение векторов на рис. 41.11.

Несовпадение векторов k22, 2k21 означает, что в среде 2 существуют осцилляции амплитуды поля, вызванные ватерфоренией двух воли, распространяющихся в среде 2. Принимая во внимание равенства (237.4), выражение (237.2) можно представить в виде $[(A^d + B) \exp \left[\frac{1}{2i\Delta kz}\right] - 2iB \sin \left(\frac{1}{2\Delta kz}\right] \times$

$$\langle \exp \{-i [2\omega l - \frac{1}{2} (k_{22} + 2k_{21}) r]^2, (237.9) \}$$

где для разности г-компонент волновых векторов ввелено обозначение $\Delta k = k_{22z} - 2k_{21z}$. Принимая во внимание малость величины $\Delta n_2 = n_{22} - n_{21}$ и выражая k_{222} , k_{212} через угол ψ , находич

$$\Delta k = \frac{2\omega}{c} \left[\sqrt{n_{22}^2 - n_{21}^2 \sin^2 \psi} - n_{21} \cos \psi \right] \approx \frac{4\pi}{\lambda} \frac{\Delta \pi}{\cos \psi}.$$
 (237.13)

Подстановка выражения (237.10) для Δk в sin (1/2 Δkz) приводит к результату, полученному в \$ 236 с помощью интунтивных соссажений. Таким образом, существование двух воли в среде 2 эквивалентно интерференции вторичных воли, испускаемых, согласно представлениям, изложенным в § 236, различными слоями нелижейной среды.

Применение граничных условий в полном объеме позволяет вычислить А', А'. Расчет показывает, что амплитуда отраженной волны второй гармоники примерно в $(n_{22} + n_{21})(n_{22} - n_{21})$ раз меньше, чем | В |, что соответствует результатам памере ний и качественным соображениям, приведенным в начале параграфа. Кроме того, |B| во столько же раз превышает |A' + B|, Так что в выражении (237.9) член с sin (1/3 Δkz) оказывается главным. Следовательно, по отношению к преломленной волые строгое Рассмотрение, основанное на решении граничной залаяя, одрав-Дывает элементарный подход, примененный в § 236.

Наблюдения второй гармоники в отраженном свете представляют Особый интерес в случае сильно поглощающих сред, например, металлометаллов, так как позволяют исследовать их взаимодействие с мощ-ным отности как позволяют исследовать их взаимодействие с мощ-НЫМ ЭЛЕКТРОМАГНИТНЫМ ПОЛЕМ И В ЭТИХ УСЛОВИЯХ, КОГДЭ ТРУДНС Работоти

работать с проходящей волной.

§ 238. Параметрические нелинейные явления

В § 236 было выяснено, что две плоские монохроматические Ны с настоя в среде с квадратич-ВОЛНЫ С ЧАСТОТАМИ ω_3 , ω_3 , распространяющиеся в среде с квадратич-ной нелицойности ω_3 , ω_3 , распространяющиеся в среде (236.7) ной нелинейностью, возбуждают поляризацию вида (236.7) $A_2 A_3 \cos [(\omega_3 - \omega_2) t - (k_3 - k_3) r],$

изменяющуюся с частотой $\omega_3 - \omega_2$ (предполагаем, что $\omega_3 > \omega_2$). Направим в среду еще одну волну, обладающую именно такой частотой $\omega_1 = \omega_3 - \omega_2$,

$$A_1 \cos(\omega_1 t - k_1 r); \quad \omega_1 = \omega_3 - \omega_2.$$
 (238.2)

Тогда нелинейная поляризация (238.1) будет усиливать или ослаблять поле на частоте ω₁. С другой стороны, возбудятся составляющие нелинейной поляризации вида

$$A_{1}A_{3}\cos\left[\left(\omega_{3}-\omega_{1}\right)t-\left(k_{3}-k_{1}\right)r\right]; \quad A_{1}A_{2}\cos\left[\left(\omega_{1}+\omega_{2}\right)t-\left(k_{1}+k_{2}\right)r\right], (238.3)$$

которые вызовут усиление или ослабление волн с частотами ω_2, ω_3 соответственно. Таким образом, распространение в нелинейной среде трех волн, частоты которых связаны соотношением

$$\omega_1 + \omega_2 = \omega_3, \tag{238.4}$$

сопровождается обменом энергией между нимн, причем направление обмена определяется отношениями амплитуд и разностями пространственных частей фаз. Максимальный эффект возникает, очевидно, при выполнении равенства

$$k_1 + k_2 = k_3,$$
 (238.5)

которое обеспечивает сохранение соотношения между пространственными частями фаз во всем объеме среды и пространственное накопление эффекта обмена энергией между волнами. Соотношение (238.5) называют векторным условием пространственной синфазности.

Рассмотрим случай, когда одна из волн, наиболее высокочастотная (ω_3), имеет значительно бо́льшую амплитуду, чем две остальные. Тогда, очевидно, энергия волны 3 будет передаваться волнам 1 и 2, т. е. будет происходить их усиление за счет энергии волны 3. Это явление, открытое в 1965 г. (С. А. Ахманов, Р. В. Хохлов с сотр., Джердмейн, Миллер), называется параметрическим усилением сзета *).

Условие (238.5) нельзя выполнить в изотропных средах с нормальной дисперсией показателя преломления даже для случая однонаправленных воли. Тем более оно невыполнимо при различных направленнях векторов k_1 , k_2 , k_3 . Сказанное вытекает из неравенств $|k_3| > |k_2| + |k_1| > |k_2 + k_1|$, первое из которых легко доказать (см. упражнение 259), а второе самоочевидно. Однако в анизотропных кристаллах условию синфазности можно

^{•)} Происхождение названия связано с тем, что явление можно рассматривать как результат модуляции оптических параметров среды (показателя преломления, диэлектрической проницаемости) с частотой ω₃ вследствие нелинейного взаимодействия с мощной волной 3.

ГЛ. XLI. НЕЛИНЕЙНАЯ ОПТИКА

удовлетворить аналогично тому, как это было выяснено по отноудовлетвор.... шению к генерации второй и третьей гармоник (см. § 235), если шению к телерия, 2, 3 использовать обыкновенные и необыкновен-в качестве волн 1, 2, 3 использовать обыкновенные и необыкновенв качество волны. В случае, например, одноосного кристала дигидрофос-ные волны. В случае, например, одноосного кристала дигидрофосфата калия (КН₂PO₄) можно выполнить условия

$$k_{1}^{o} + k_{2}^{o} = k_{s}^{e}, \quad k_{1}^{o} + k_{s}^{e} = k_{s}^{e}, \tag{238.6}$$

где индексы о и е отмечают обыкновенные и необыкновенные волны. Для одноосного кристалла LiNbO3, обладающего очень большой нелинейностью, можно удовлетворить только первому из этих условий.

Отметим, что эффективность параметрического усиления пропорциональна амплитуде возбуждающей волны, как это видно из выражений (238.1), (238.3), в которых фигурирует первая стелень

Рис. 41.12. Схема опыта по наблюдению параметрической люминесценсия. Преломление на граны кристалла не принято во внимание.

Аз. При мощности волны 3, равной 5.10° Вт/см³, коэффициенты Усиления для КН₂РО₄ и LiNbO₃ имеют значения 0,05 см⁻¹ и 0,5 см⁻¹ соответственно.

В рамках квантовых представлений процесс передачи энергия Волны З волнам 1, 2 интерпретируется как сраспар фотона Аш, на два фотона $\hbar\omega_1$, $\hbar\omega_2$, причем соотношение (238.4) выражает закон соотношение (238.4) выражает Закон сохранения энергии $\hbar\omega_3 = \hbar\omega_1 + \hbar\omega_2$, выполняющийся в каж-

Опыт показывает, что распад фотона мощной волны происходит дом элементарном акте распада. И В ОТСУТСТВИЕ ВОЛН 1, 2, т. е. самопроизвольно, спонтанно. Схема ЭКСПЕРИИССТВИЕ ВОЛН 1, 2, т. е. самопроизвольной пучок дазер-Эксперимента показана на рис. 41.12. Параллельный пучок лазер-иого сред. ного света, например от аргонового лазера ($\lambda = 0.5$ мкм), падает на криста излучение наблюна кристалл ниобата лития. Выходящее из него излучение наблю-Дается на экране *EE*, расположенном в фокальной плоскости динзы L, так ито отвечает угол L, так что окружности раднуса R в плоскости экрана отвечает угол $\theta = \arctan(D/D)$ $\theta = \arctan 4 \text{ то окружности раднуса } R в плоскости экрана онискат распостране-$ ния света (<math>R/f) между осью системы и направлением распостране-ния света ния света, выходящего из кристалла. В отсутствие кристалла на экране полития соответствующая фокусиэкране видна только одна яркая точка, соответствующая фокусн-ровке дазование одна яркая точка, соответствующая фокуснровке лазерного пучка. В присутствии кристалла освещенной ока-зывается объести порядка зывается область экрана в виде круга с угловыми размерами порядка 10°, как околость экрана в виде круга с угловыми размерами порядка 10°, как схематически показано в правой части рис. 41.12. Центр

круга освещен красным светом, а по мере удаления от оси длина волны уменьшается и окраска постепенно переходит в желтую и зеленую. Измерение вариации длин волн вдоль раднуса круга показывает, что частота света как функция угла между осью и направлением распространения точно совпадает с теми значениями, которые диктуются векторным условием синфазности $k_1^o + k_2^o = k_2^o$. Поскольку именно в этих направлениях должно происходить синфазное сложение вторичных волн, рождающихся при распаде фотона $\hbar\omega_3$, указанное совпадение служит убедительным доказательством параметрического происхождения выходящего из кристалла света. Частота другой слабой волны находится в инфракрасной области спектра, и она в данной установке, естественно, не регистрируется.

Рис. 41.13. Схема параметрического генератора света.

Описанное явление, обнаруженное в 1967 г., называется параметрической люминесценцией или спонтанным трехфотонным параметрическим рассеянием света.

В рамках квантовых представлений параметрическое усиление есть стимулированный аналог параметрической люминесценции присутствие волн 1, 2 увеличивает вероятность распада фотона ħоз в тем большей степени, чем больше интенсивность этих волн. Другими словами, параметрическое усиление и параметрическая люминесценция находятся в такой же связи, как вынужденное и спонтанное испускание фотона возбужденными квантовыми системами. Следует подчеркнуть, что существование спонтанного аналога у вынужденного радиационного процесса отнюдь не специфично для рассмотренных выше процессов, но представляет собой общий тезис квантовой теории излучения.

Параметрическое усиления. Параметрическое усиление служит физической основой для создания параметрических генераторов света. Принципиальная схема такого генератора показана на рис. 41.13. В резонатор, образованный плоскими зеркалами M_1 и M_2 , помещается нелинейный кристалл K, вырезанный таким образом, что для волн, распространяющихся перпендикулярно зеркалам, выполняются векторные условия синфазности $k_1^o + k_2^o = k_3^e$, либо $k_1^o + k_4^e = k_3^e$. Для возбуждения параметрической генерации применяется излучение второй (или третьей) гармоннки рубинового или неодимового

ГЛ. XLI. НЕЛИНЕПНАЯ ОПТИКА

лазера, проходящее в направлении синфазности через зеркало M₁. лазера, проколи имеют высокие коэффициенты стражения для воли Зеркала M₁, M₂ имеют высокие коэффициенты стражения для воли Зеркала ин, ... 2 с тем зеркало M₁ должно сыть прозрачных для волн от, ог, и вместе с тем зеркало M₁ должно сыть прозрачных для от, от прозрачных при достаточно высоконского собранию и волни с от прозрачных с тем зеркало M₁ должно сыть прозрачных для от прозрачных с тем зеркало м с техности с тражения для волни от прозрачных с тем зеркало м с техности с тражения для волни от прозрачных с техности с техности с тражения для волни от прозрачных с техности с тражения для волни от прозрачных с техности с техности с тражения для волни от прозрачных с техности с техности с тражения для волни от прозрачных с техности с техности с тражения для волни от прозрачных с техности с техности с тражения для волни от прозрачных с техности с техности с тражения для волни от прозрачных с техности с техности с техности с тражения для волни от прозрачных с техности с техности с тражения для волни от прозрачных с техности с техности с тражения для волни от прозрачных с техности с техности с техности с техности с тражения для волни от прозрачных с техности с те ω1, ω2, и высоче излучения. При достаточно высоком уровне воз-возбуждающего излучения. При достаточно высоком уровне возвозбуждения параметрическое усиление превысит потери из-за неполного отражения от зеркал, поглощения в кристалле и других причин, и возникнет когерентное излучение с частотами ω_1, ω_2 . Пороговые мощности возбуждающего излучения равны примерно

Изменение ориентации кристалла (или его температуры, или наложение на кристалл постоянного электрического пола) приводит к смещению частот, для которых выполняется условие синфазности в направлении максимальной добротности, перпендикулярном зеркалам, и в результате частоты генерируемого излучения ω_1, ω_2 изменятся. Таким образом, параметрические генераторы света позволяют получать мощное когерентное излучение с плавной перестройкой его частоты.

В описанных выше параметрических явлениях люминесценции, усиления и генерации света принимали участие фотоны трех частот ω1, ω2, ω3. Известны и более сложные многофотонные параметрические процессы (четырех-, пяти-, шестифотонные и т. д.).

§ 239. Вынужденное комбинационное рассеяние света

В § 162 было выяснено, что в спектре рассеянного света сущест-ВУЮТ ЛИНИИ, ОТЛИЧАЮЩИЕСЯ ПО частоте от падающего излучения на величины, равные частотам ωι внутримолекулярных колебаний. В случае сравнительно небольших освещенностей, характерных для ИСТОЧНИКОВ НЕКОГЕРЕНТНОГО ИЗЛУЧЕНИЯ, ИНТЕНСИВНОСТЬ КОМБИЛЭЩНОПного рассеяния чрезвычайно мала: поток света, рассеянного з 1 см³, составляет 10⁻⁶—10⁻⁷ часть возбуждающего потока даже для в самых сильных линий ($\Delta v = \omega_l/2\pi c = 992$ см⁻¹ для бензола н 1345 см⁻¹ 1345 см⁻¹ для нитробензола). Если же возбуждение осуществляется при особити для нитробензола). Если же возбуждение осуществляется при особити и возбуждение существляется при сообити и возбуждение сущест при освещенностях порядка 10⁸—10⁹ Вт/см², что вполне достижныю с помочить С помощью мощных импульсных лазеров, доля рассеянного потока Сильно мощных импульсных лазеров, доля рассеянного потока Сильно увеличивается и достигает десятков процентов. Такое увеличение интенсивности касается не всех, но только нанболее ин-Тенсивности касается не всех, но только нанболее интенсивных линий комбинационного рассеяния. Помимо линий Первого первого порядка с частотами $\omega \pm \omega_i$, появляются и линии солее высоких высоких порядка с частотами $\omega \pm \omega_i$, появляются и анили сселе высоких порядков (частоты $\omega \pm 2\omega_i$, $\omega \pm 3\omega_i$). Наконец, рассея-ние приобласти и направленный характер. ние приобретает отчетливо выраженный направленный характер. Схема отчетливо выраженный направленный дазерного излуча Схема опыта показана на рис. 41.14. Пучок дазерного излуче-в проходите на показана на рис. 41.14. Пучок дазерного излуче-

Слема опыта показана на рис. 41.14. Пучок назерного вывается ния проходит через рассенвающее вещество К и отфильтровывается Светофильтости общество С наблюдается только рас-Светофильтром C, так что на экране ЕЕ наблюдается только рас-сеянный орост Сеянный свет с измененной частотой. Распределение освещенности экрана с с измененной частотой правой части ркс. 41.14. Вбл. эл Экрана схематически изображено в правой части ргс. 41.14. Вбл. эл

осевой точки, соответствующей направлению возбуждающего пучка, сосредоточено стоксово излучение ($\omega - n\omega_i$, n = 1, 2, ...). Антистоксовы компоненты ($\omega + n\omega_i$) располагаются в виде концентрических колец, раднус которых увеличивается с ростом смещения частоты. Антистоксовы компоненты наблюдаются только по ходу возбуждающего пучка, тогда как стоксовы компоненты распространяются и в противоположном направлении.

Отмеченные особенности комбинационного рассеяния при высоких уровнях возбуждения имеют место и в жидкостях, и в кристаллах. В случае газов отличие состоит лишь в угловом распределении, — антистоксово рассеяние происходит практически в направлении лазерного пучка, т. е. кольца не наблюдаются. Следует

Рис. 41.14. Схема опыта по наблюдению за ВКР.

подчеркнуть, что при мощном возбуждении комбинационное рассеяние сопровождается, как правило, другими нелинейными явлениями, — самофокусировкой, вынужденным рассеянием Мандельштама — Бриллюэна, искажением спектра световых импульсов и др. Поэтому результаты наблюдений сильно зависят от экспериментальных условий (от длительности импульса возбуждения, степени и места его фокусировки, от распределения освещенности в сечении пучка и т. п.), и обрисованная выше картина охватывает лишь главные черты явления.

Основной опытный факт — увеличение доли рассеянного света на несколько порядков величины — получает объяснение, если принять во внимание общее положение квантовой теории излучения о существовании стимулированного аналога у любого радиационного процесса *). Комбинационное рассеяние, наблюдаемое при малых интенсивностях возбуждения, представляет собой спонтанное испускание фотона $\hbar\omega_s$ ($\omega_s = \omega - \omega_l$) при исчезновении фотона $\hbar\omega$ возбуждающего света. Поток Φ_s спонтанного комбинационного рассеяния, отнесенный к единице объема и суммированный по всем иаправлениям, пропорционален освещенности / вещества,

*) Это утверждение уже упоминалось в связи с параметрической люминесиснцией и параметрическим усилением (§ 238).

ГЛ. XLI. НЕЛИНЕЙНАЯ ОПТИКА

создаваемой возбуждающим излучением

 $\Phi_s = CI$.

где С — коэффициент пропорциональности, характеризующий рас-(239.1) где С — коздернособность вещества и имеющий размерность см⁻¹, синвающую способность вещества и имеющий размерность см⁻¹, сенвающую стак как [Ф_s] = Вт/см³, [I] = Вт/см². Согласно экспериментальным данным для наиболее интенсивных линий комбинационного рассеяния $C \approx 10^{-6} - 10^{-7}$ см⁻¹.

Стимулированный аналог спонтанного комбинационного рассеяния, называемый вынужденным комбинационным рассеянием (или, сокращенно, ВКР), также заключается в исчезновении фотона ћω и испускании фотона ħω_s, но вероятность этого процесса пропорциональна плотности потока и бозбуждающего (1) и рассеянного (Is) излучения. Благодаря этому процессу, рассеянное излучение с частотой о, усиливается в рассеивающей среде по экспоненциальному закону, подобно усилению света в среде с инверсной заселенностью уровней в результате эйнштейновского вынужденного испускания (см. § 223).

Как и в последнем случае, ВКР удобно характеризовать коэффициентом усиления а, рассеянного света на единище длины. Рассуждая по аналогии со случаем вынужденного испускания, коэффициент усиления можно выразить через спектральную плотность спонтанного комбинационного рассеяния света. Несложные вычисления приводят к следующему выражению (см. упражнение 250):

 $\alpha_s = \frac{3}{4\pi} \frac{\lambda_s^2 CI}{\Gamma \hbar \omega_s},$ (239.2)

где λ_s и Г — длина волны и спектральная ширина линии комбилационного рассеяния. В случае рассеяния излучения рубинового лазера в бензоле ($\lambda = 694$ нм, $\lambda_s = 750$ нм, $\Gamma = 0.25 \cdot 10^{13}$ с¹, $C = 10^{-6}$ см⁻¹, $I = 10^{9}$ Вт/см²) оценка значения коэффициента УСИЛЕНИИ ТОСТ, I = 0.00 г. Социанает, ито при указанных усло-Усиления дает $\alpha_s = 20 \text{ см}^{-1}$. Это означает, что при указанных усло-в ехр ($\alpha_s d$) = ехр (20) = 10⁸⁻⁶ раз, т. е. может стать сравнимым по интологи по интенсивности с возбуждающим излучением. Таким образом, в результате вынужденного испускания фото-

нов $\hbar\omega_s$ интенсивность рассеянного излучения может возрасти на много получения может возрасти на много порядков величины, что объясняет аномально большую интенсивность Подчеркнем, что значения интенсивности возбуждающего из-

лучения, исобходимые для отчетлиеого проявления успления, Достножных собходимые для отчетлиеого проявления успления, достнжимы лишь с мощными квантовыми генераторами. Поэтому ВКР экспертиона с мощными квантовыми в 1962 г. (Вудбёри, ВКР экспериментально было обнаружено лишь в 1962 г. (Вудбёри, Нг) посте соот Нг) после создання лазеров с модулированной добротностью, хотя теоретически теоретически возможность усиления рассеянного излучения, ясна в 30-х ролох. Основно излучения, поретически возможность усиления рассеянного излучения, ясна в 30-х годах. Однако ей не придавали серьезного значения,

лазеры, нелинейная оптика

поскольку требуемые интенсивности возбуждения казались нере-

альными. Все сказанное об усилении рассеянного света относилось к стоксовой компоненте. Антистоксово рассеяние есть процесс, обратный стоксовому, и для него имеет место не усиление, а ослабление интенсивности. Причина появления мощного антистоксова излучения иная, и для ее выяснения целесообразно исходить из классических представлений о природе комбинационного рассеяния, изложенных в § 162. Согласно последним комбинационное рассеяние возникает в результате модуляции поляризуемости молекул колебаннями их ядер. Рассмотрим, ради простоты, случай двухатомной молекулы и обозначим через § изменение расстояния между ядрами в сравнении с его равновесным значением. Дипольный момент молекулы, индуцированный полем световой волны, записывается в виде

$$p = (\alpha_0 + \mu\xi) E,$$
 (239.3)

где α_0 — поляризуемость молекулы при равновесном положении ядер ($\xi = 0$), а член $\mu\xi$ отражает влияние смещений ядер на состояние электронной оболочки, на ее способность к поляризации. Если E — монохроматическое поле с частотой ω , то колебания ядер но гармоническому закону ($\xi \infty \cos \omega_i t$) приводят к возникновению составляющих дипольного момента, колеблющихся с частотами $\omega \pm \omega_i$, что и вызывает излучение с частотами $\omega \pm \omega_i$, т. е. комбинационное рассеяние света.

Из общих законов механики известно, что взаимодействие двух систем (в данном случае электронной оболочки и ядер) всегда обоюдно, и, следовательно, изменение состояний ядер должно приводить к изменению колебаний электронной оболочки. Действительно, потенциальная энергия индуцированного диполя есть $U(\xi) = -\frac{1}{2} (\alpha_0 + \mu\xi) E^2$, и со стороны поляризованной полем электронной оболочки на ядра действует сила $F = -\frac{\partial U}{\partial \xi} = \frac{1}{2} \mu E^2$. Поэтому уравнение Ньютона, описывающее колебание ядер, имест вид

 $\ddot{\xi} + \Gamma \dot{\xi} + \omega_i^2 \xi = \frac{\mu}{2m} E^2,$ (239.4)

где *m* — приведенная масса ядер, а величина Г характеризует затухание колебаний и равна спектральной ширине линии комбинационного рассеяния. Таким образом, электронная оболочка молекулы не только испытывает модуляцию в результате колебаний ядер, но и сама, будучи полярнзована полем световой волны, воздействует на ядра, вызывая увеличение амплитуды их колебаний. Поле *F* в расссия

Поле Е в рассеивающей среде можно записать в виде (939.5)

 $E = A\cos(\omega t + \varphi) + A_s\cos(\omega_s t + \varphi_s),$

ТЛ. XLI. НЕЛИНЕЙНАЯ ОПТИКА

где первый член описывает возбуждающее, а второй — рассеянное излучение. Вынуждающая сила в уравнении (239.4), пропорциоизлучение. Былучение суравлении (239.4), пропорцио-нальная E^2 , содержит составляющую, которая изменяется с частональная $\omega - \omega_s = \omega_i$ (резонансную по отношению к колебаниям ядер и играющую поэтому основную роль). Нетрудно рассчитать ядер и приосу в рассчитать вынужденные колебания ядер, обусловленные резонанской частью силы (см. упражнение 261):

$$\xi = \xi_0 \sin \left[\omega_l + \varphi - \varphi_s \right], \quad \xi_0 = \frac{\mu A A_s}{2m \Gamma \omega_i}. \tag{239.6}$$

Из этого выражения следует, что амплитуда колебаний 🛵 пропорциональна AA_s, т. е. поля возбуждающего излучения и стоксового рассеяния приводят к резонансной раскачке ядер молекулы. Индуцированные колебания ядер, в свою очередь, приводят к еще большей модуляции поляризуемости молекулы, к усилению стоксова излучения и возникновению у дипольного момента новых спектральных компонент. В самом деле, подставляя 5 из (239.6) в выражение (239.3), находим

$$p = (\alpha_0 + \mu\xi) E = \alpha_0 E + p_s + p_{\omega} + p_{as} + p_{ss}, \qquad (239.7)$$

где введены обозначения

$$p_{s} = -\frac{1}{2}\mu\xi_{0}A\sin(\omega_{s}t + \varphi_{s}); \quad p_{\omega} = \frac{1}{2}\mu\xi_{0}A\sin(\omega^{2} + \varphi);$$

$$p_{as} = \frac{1}{2}\mu\xi_{0}A\sin[(2\omega - \omega_{s})t + 2\varphi - \varphi_{s}];$$

$$p_{ss} = -\frac{1}{2}\mu\xi_{0}A\sin[(2\omega_{s} - \omega)t + 2\varphi_{s} - \varphi].$$

Каждая из пяти составляющих дипольного момента р имеет простой физический смысл. Член ао Е соответствует «линейной» поля-ние стоксового излучения: работа поля $E_s = A_s \cos (\omega_s t + q_s)$ в елиничи в единицу времени есть $W_s = p_s E_s$, и ее среднее значение за период Колебоника.

колебаний 2л/о, равно

$$\overline{W}_s = -\frac{\mu^2 A^2 A^2 s}{8in \, \Gamma h \omega_i} \, \hbar \, \omega_s.$$

Отрицательность значения W, означает, очевидно, увеличение Энергии — пропорционально энергии поля E_s или его усиление, причем W_s пропорционально A^{*}_s и A² Илен А^{*} и А². Итак, член *p*^s описывает, в рамках классической теории, Вынужлениюся, и лен *p*^s описывает, в рамках классической теории, вынужденное комбинационное рассеяние, обсуждавшееся выше на квантовом состать в рамках классической состать на Работа поля возбуждающей волны определяется членом ра Казывается т квантовом языке.

и оказывается равной · 12 As tra).

$$\overline{W}_{\omega} = \frac{\mu^{2}A^{2}M}{8m\Gamma\hbar\omega_{1}}h$$

Следовательно, возбуждающее излучение совершает положитель. Следовательно, возоулисточно и затрачивается на усиление стоксо-ную работу, которая частично и затрачивается на усиление стоксоную работу, которал часть паботы, равная $W_{\omega} + W_{s} \sim$ ва рассемния. Остановни $\infty \hbar (\omega - \omega_s) = \hbar \omega_i$, расходуется на возбуждение молекулы, т. е. на переход молекулы в возбужденное колебательное состояние.

Особенность составляющих дипольного момента *p*_{as} и *p*_{ss} состоит в том, что частоты их колебаний

> $2\omega - \omega_s = \omega + \omega_l = \omega_{as}$ $2\omega_s - \omega = \omega_s - \omega_i = \omega_{ss}$

отличаются от частот поля, описываемого выражением (239.5): ωas и ωss суть частоты антистоксова рассеяния и стоксова рассеяння второго порядка. Следовательно, возбуждающий свет и стоксово рассеяние (испытавшее чрезвычайно большое усиление), индуцируя колебания ядер, образуют в среде ансамбль диполей, которые должны излучать волны с частотами ω_{as} , ω_{ss} . Этим и объясняется большая мощность первой антистоксовой и второй стоксовой компонент рассеянного света.

Помимо указанной, существует и другая причина появления второй стоксовой компоненты: первая стоксова компонента сама достигает большой мощности и начинает играть роль возбуждающего излучения, испытывая рассеяние с уменьшенной на ω частотой, т. е. с частотой $\omega_s - \omega_i = \omega - 2\omega_i = \omega_{ss}$. Этот процесс каскадного рассеяния особенно важен потому, что сопровождается усилением, аналогичным усилению первой стоксовой компоненты.

Нетрудно сообразить, что вынужденные колебания ядер, модулируя излучение второй стоксовой и первой антистоксовой компонент, порождают третью стоксову и вторую антистоксову компоненты и т. д. Процесс увеличения числа спектральных компонент рассеянного света ограничивается вследствие конечности запаса источника энергии, т. е. исходного лазерного пучка.

Направленность антистоксова рассеяния (см. рис. 41.14) объясняется фазовыми соотношениями между волнами, испускаемыми диполями pas, расположенными в различных точках рассеивающей среды, т. е. представляет собой интерференционный эффект, аналогичный эффектам, рассмотренным на примерах излучения лазера (см. § 222), генерации гармоник (см. § 236) и параметрической люминесценции и усиления (см. § 238). Как и любой интерферещионный эффект, результат сложения вторичных антистоксовых волн зависить от т волн зависит от геометрических условий опыта. Примем, что усиление на толщине *d* рассенвающего слоя велико ($\alpha_s d \gg 1$, это необ-ходимо для нобходимо для наблюдения ВКР). Пусть, кроме того, раднус возбуж-дающего пунка с монитика в составляет в составляет в составным дающего пучка а меньше радиуса зоны Френеля с номером, равным asd, т. е. a² < hdr d. П- $\alpha_s d$, т. е. $a^2 < \lambda d\alpha_s d$. При указанных условиях анализ фазы $2\varphi - \varphi_s$ диполя раз Показите (диполя pas показывает (см. упражнение 262), что вторичные анти-

ГЛ. XLI. НЕЛИНЕЯНАЯ ОПТИКА

стоксовы волны синфазны для направлений излучения, образую. стоксовы волновым вектором возбуждающей волны угол, равный

$$\vartheta = \sqrt{2 \left(k_s + k_{as} - 2k\right)/k_{as}}$$

Благодаря дисперсии показателя преломления угол в не равен нулю, и антистоксовы компоненты рассеяния имеют максимальную интенсивность вдоль образующих конуса с углом при вершине 20. В конденсированных средах угол в равен нескольким градусам В конденсированный средах угол с равен нескольким градусам (для бензола $\vartheta = 2,0^\circ$, для нитробензола $\vartheta = 3,0^\circ$ при использовании рубинового лазера). В газовых средах показатель преломления мало отличается от единицы, дисперсия ничтожна, и наподеление синфазности для антистоксова рассеяния в ссответствии с опытом практически совпадает с направлением распростравения возбуждающего света.

Итак, основные результаты наблюдения вынужденного комбинационного рассеяния, перечисленные в начале параграфа, сбъясняются с помощью представлений об усилении стоксова рассеяния и об интерференции вторичных антистоксовых воля, возвакающих в результате «раскачки» ядер молекул под действием всзбуждающего и первого стоксова излучений.

упражнения

1. Вывести закон отражения света по Ньютону и по Гюйгенсу.

2. Если свет от Солнца падает на экран через малое отверстие, то на экране получается изображение Солнца (светлый диск, а во время затмения — светлый серп) независимо от формы отверстия. Если же отверстие велико, то мы получаем изображение отверстия. Объяснить это и рассчитать соотношение между размером отверстия D и расстоянием h отверстия до экрана, при котором осуществляются первый и второй случан (угловой диаметр Солнца 31',5≈0,01 радиана).

Ответ: $D \ge h/100$ — изображение отверстия, $D \ll h/100$ — изображение источника; при очень малых отверстиях необходимо участь влияние дифракции.

3. Определить предельный угол, при котором нас: упает полное внутреннее отражение при переходе света а) из стекла в воздух; б) из стекла в воду (показатель преломления стекла 1,51, воды 1,33, воздуха 1,00).

Omsem: a) $r = \arcsin 0.66$; $r \approx 42^{\circ}$; 6) $r = \arcsin 0.88$; $r \approx 62^{\circ}$.

4. Составить уравнение плоской волны, фронт которой распространяется вдоль линии, составляющей углы α, β, γ с осями координат.

Omeem:
$$s = a \cos \frac{2\pi}{T} \left(t - \frac{x \cos \alpha + y \cos \beta + z \cos \gamma}{y} \right).$$

5. Составить уравнение волны, излучаемой бесконечной нитью (цилиндрическая волна).

Omsem:
$$s = \frac{a}{\sqrt{r}} \cos \frac{2\pi}{T} \left(t - \frac{r}{v} \right).$$

6. Написать выражение для монохроматической волны в виде показательной функции (в комплексном виде) и выяснить физический смысл комплексной амплитуды.

7. Написать выражение простой периодической функции, изображенной на рис. 1, и разложить ее в ряд Фурье.

8. Почему в опыте с двумя камертонами мы говорим, что модулированное колебание приблизительно эквивалентно трем колебаниям, а в разобранном теоретическом примере говорим точно

Piic. 1.

теоретическом примере товорил о трех монохроматических колебаниях, эквивалентных модулированному? (Обратить внимание на закон изменения силы звука первого камертона.) *Ответ*: В опыте закон модуляции

отличен от $a = A (1 + \cos 2\pi m t)$. 9. Опыт, аналогичный опыту с

камертоном, можно осуществить с

тота Нормально голок. ОЗ вере заный ток имеет 50 периодов Поэтому, и укая ток через зак и частоно ср. мы будем наблюдать отклонение язычка, зетствующее 50 п.-риодам. г) Узгола реакция частотомера, если ток прегчвается регулярно три раза в секунду? б) Какова реакция при нерегулярном сериста за бли измелении силы тока? Проверить сделанные заключения на опыте.

Отнет: а) Вибрируют язычки 47, 50, 53; 6) приходят в колебание и вновь замирают многие язычки.

10. Доказать, что яркость источника в данном направлении В_і численно почиснию освещенности Е площадки (расположенной почисленно равна отношению селению) к телесному углу Ω, под которым виден с этой перпендикулярно к данному направлению) к телесному углу Ω, под которым виден с этой площадки к данному и участок нашего источника, т. е. $B_i = E/\Omega_i$ Следствие. Яркость источника не зависит от расстояния.

Следствие. Пределить освещенность площадки S, лежащей на расстояния R от 11. Определить светящейся плоскости и пастолого в расстояния R от 11. Определией светящейся плоскости и расположенной параглельно этой сесконечно большой светящейся плоскости и расположенной параглельно этой бесконечно основни просто плоскости по нормальному направлению есть В и она плоскости, если яркость плоскости по нормальному направлению есть В и она подчиняется закону Ламберта.

Omsem: $E = \pi B$.

Указание. Решить задачу обычным расчетом и на основании упражиения 10. Объяснить физически, почему в разбираемом случае освещенность не зависит от расстояния.

12. Пусть яркость Солнца B = 1,2.10° кд/м². Определить освещенность, даваемую Солнцем на поверхности Земли (поглощением в атмосфере пренебречь). Omsem: E = 94 000 лк.

13. Вывести формулы (12.3) и (12.4) при сложении гармонических колебаний

$$s = s_1 + s_2 = a_1 \sin(\omega t + \varphi_1) + a_2 \sin(\omega t + \varphi_2).$$

Указание. Использовать комплексную форму запяси гармонического колебания

 $s = \operatorname{Im} \{a_1 \exp [i (\omega t + \varphi_1)] + a_2 \exp [i (\omega t + \varphi_2)]\} = \operatorname{Im} A \exp [i (\omega t + \beta)].$

14. Графичгский метод изображения гармонических колевсний (рыс. 2). Если вектор а1 вращается с угловой скоростью ш, начиная с положения, отсян тываемого углом φ_1 от оси Ox, то его проекция на ось Ox есть $s_1 = a_1 \cos (\omega t + \varphi_1)$.

т. е. изображает гармоническое колебание с амплитудой али начальной фазой фило Показать, ито опроблении может быть найдена путем показать, что сумма двух гармонических колебаний может быть найдена пути построения листома двух гармонических колебаний может быть найдена пути построения листома двух гармонических колебаний может быть найдена пути на векторах a1 н a2, т. е. амилитуда построения диагонали параллелограмма на векторах $a_1 \mu a_2$, т. е. амілнтула результирующего колебания A = OP, а его начальная фаза $\theta = -pOx$. Найтя графически сумму неокольких гармонических колебаний, имеющих соответ гозультирующего колебания A = OP, а его начальная фаза $\theta = POI.$ папа графически сумму нескольких гармонических колебаний, имеющих соответ Ственно амплитути и кольких колебаний стругований соответ соответственно амплитути. • Рафически сумму нескольких гармонических колебаний, имеющих соотает Ственно амплитуды и начальные фазы a_1 , ϕ_1 ; a_2 , ϕ_2 : a_3 , q_3 нт. а. (рис. 3). 15. Могут ли колебания разного периода быть когерентными между собой? *Ответ*: Нет исо разного соотает между ними непрерывно меняется. Ответ: Нет, ибо разность фаз между ними непрерывно меняется. 16. При какой

ишет: Нет, ибо разность фаз между ними непрерывно меняется. 16. При какой начальной разности фаз средняя лиция (см. рнс. 4.1, стр. 66) Т линией нулевой питеисписати? линией нулевой интенсивности? Ответ: При $\phi = \pi$. Как осуществить на опыте такое расположение? 17. Показать ито так бизовила фоемеля источник S и для его минимы. отпает: При $\phi = \pi$. Как осуществить на опыте такое расположение? 17. Показать, что для бизеркая Френеля источник S и для его мпилых изо кения S₁ и S₈ дежат на окружиюти, центр которой O совлажи робих в 17. Показать, что для бизеркал френеля источник S и два его минима изображения S₁ и S₂ лежат на окружности, центр которой O совпалает с точкой пересечения ребра бизеркал с плоскостью, перпендикулярной к этому ребру и проке

чражения S₁ и S₂ лежат на окружности, центр которой О совпадеет с точкой пересечения ребра бизеркал с плоскостью, перпендикулярной к этому ребру и проходящей через S

УПРАЖНЕНИЯ

Пользуясь этим построением, показать, что (рис. 4):

1) $\angle S_1 O S_2 = 2\alpha$, если α — угол между зеркалами:

1) $\angle S_1 O S_2 = 2\alpha$, если $\alpha - угол мола, осредници,$ $2) <math>2\omega = 2\alpha R/(r+R)$, где 2ω — апертура интерференции для централь. 2) $2\omega = 2\alpha R/(r + R)$, где $2\omega - апертура интерференции для централь.$ ной точки поля <math>M, r - расстояние OS, R - расстояние OM; если $R \gg r$, то

3) $2\omega = 2\alpha \frac{r}{r+R}$, где 2ω — угол схождения интерферирующих лучей лля центральной точки поля М;

4) $S_1S_2 = 2l = 2r\alpha$;

5) ширина полосы
$$\mathcal{B} = \lambda \frac{r+R}{r^{2}\alpha}$$
.

Указание. Углы а, ю, ш малы.

указание. отны с., о, о мана. 18. Бизеркала Френеля образуют угол, равный 1'. Источник находится на расстоянии 10 см, а экран — на расстоянии 1 м от ребра бизеркал. Какова предельная ширина источника (щель, освещенная зеленым светом)?

Ответ: Около 0.4 мм.

Рис. 4.

19. Какова последовательность чередования цветов в опыте с бизеркалами Френеля, если источник посылает белый свет?

Ответ: Центральная полоса белая, цветные полосы — от фиолетового к красному; полосы высших порядков накладываются друг на друга.

20. Вывести формулы (22.2), (22.3).

Указание. Воспользоваться тождеством

$$\cos\left[\omega\tau + \varphi(\tau)\right] = \cos \omega\tau \cos \varphi(\tau) - \sin \omega\tau \sin \varphi(\tau).$$

Замечание. Произведение γ (т) cos [$\overline{\omega}$ т + ψ (т)] можно представить в виде

$$\gamma(\tau)\cos\left[\omega\tau+\psi(\tau)\right] = \operatorname{Re}\left\{\left[c(\tau)+is(\tau)\right]\exp\left(i\omega\tau\right)\right\}.$$

Комбинация [$c(\tau) + is(\tau)$] exp ($i\omega\tau$) называется комплексной степенью когерентности: ее модуль совпадает с γ (т). а аргумент — с $\overline{\omega}\tau + \psi$ (т).

21. Вычислить степень когерентности для пучков, состоящих из последо-льности водновали в последовательности волновых цугов.

Комплексная степень когерентности (см. упражнение 20) определяется ношением соотношением

$$[c(\tau) + is(\tau)] \exp(i\omega\tau) = \exp(i\omega\tau)\frac{1}{a^2t}\int_{0}^{t}a(t)a(t+\tau)\exp\{i[\varphi(t+\tau)-\varphi(t)]\}^{dt}$$

упражнения

Пусть амплитуда постоянна, а цуги имеют одинаковые длительности. В этом фазу $\varphi(t)$ можно представить следующим образом:

 $\varphi(t) = \varphi_j; \quad jT \leq t \leq (j+1)T; \quad j=0, 1, 2, ..., N-1,$

где Фі — случайные числа. Область интегрирования 0, t = NT разбиваем на N где φ_{i} — Случанные тисна. Соласто интерирования 0, t = NT разбиваем на N интервалов длиной T каждый. В пределах *i*-го интервала фаза фаза $\varphi(t)$ имеет поинтервалов даление, равное φ_{t} , а фаза $\varphi(t+\tau)$ привимает два значения, зави-стоянное значение, равное φ_{t} , а фаза $\varphi(t+\tau)$ привимает два значения, завистоянное эна использования между т и T. Если $\tau < T$, принимает два значения, зави-сящие от соотношения между т и T. Если $\tau < T$, то в витервале iT < i < (j + 1) $T - \tau$ будем иметь $\varphi(t + \tau) = \varphi_{j,}$ а в интервале (j + 1) $T - \tau < t < (j + 1)$ T получим $\varphi(t + \tau) = \varphi_{j+1}$. Поэтому

$$c(\tau) + is(\tau) = \frac{1}{NT} \sum_{j=0}^{N-1} \left\{ \int_{jT}^{(j+1)T-\tau} dt + \int_{(j+1)T-\tau}^{(j+1)T} \exp\left[i\left(\varphi_{j+1} - \varphi_{j}\right)\right] dt \right\} = \frac{1}{N} \sum_{j=1}^{N-1} \left\{ 1 - \frac{\tau}{T} + \frac{\tau}{T} \exp\left[i\left(\varphi_{j+1} - \varphi_{j}\right)\right] \right\}.$$

Если разность фаз $\phi_{l+1} - \phi_l$ принимает произвольные случанные значения и если N > 1, то суммой членов ехр {i ($\phi_{i+1} - \phi_i$)] можно пренебречь. Следовательно.

$$s(\tau) = 0$$
, $c(\tau) = 1 - \tau/T$; $\tau < T$.

Если $\tau > T$, то на всем интервале $jT < t < (j + 1) T \phi a 3 \omega \varphi(l) \# \varphi(l + \tau)$ принимают различные значения (ϕ_{j} н ϕ_{j+1} прн $T < \tau < 2T$; ϕ_{j} н ϕ_{j+2} прн $2T < \tau < 3T$ и т. д.). Поэтому при $N \to \infty$ имеем $c(\tau) \to 0$, $s(\tau) = 0$.

Изменение знака т приведет к уже полученным результатам, но т нужно заменить на -т. Итак

$$s(\tau) = 0; \quad c(\tau) = \begin{cases} 1 - |\tau|/T; & |\tau| < T; \\ 0 & ; & |\tau| > T. \end{cases}$$

Пусть теперь N₁ цугов имеет длительность T₁, N₅ цугов — длительность T₉ н т. д. Тогда, при выполнении условия $N_k > 1$ получаем

$$c(\tau) = \frac{1}{N} \sum_{k} N_k [1 - |\tau|/T_k], \quad N = \sum_{k} N_k,$$

причем в сумме по k следует учитывать лишь те члены, для которых T_k>т. Результат очина Результат суммирования зависит от доли цугов N_k/N с длительностью T_k Переходя от дискретного изменения T_k к непрерывному и полагая относительное число имост число цугов с длительностью T в интервале T, T + dT равным

$$\frac{T}{T}\exp\left(-T/T\right)\frac{dT}{T}$$

(распределение Пуассона), получим

$$C(\tau) = \int_{|\tau|}^{\infty} \left[1 - \frac{|\tau|}{T} \right] \frac{T}{T} \exp\left(-T/T\right) \frac{dT}{T} = \exp\left(-T/T\right) \frac{dT}{T} = \exp\left(-T/T\right) \frac{dT}{T}$$

Пусть теперь фаза ф постояниа,

тогла

$$c(\tau) = \frac{1}{a^2} \frac{1}{t} \int_{0}^{t} a(t) a(t+\tau) dt$$
Для последовательности цугов одинаковой длительности T амплитуду a (l)

jT < t < (j+1)T, $a(t) = a_{t}$ $i = 0, 1, \dots, N - 1$ Разобьем область интегрирования на интервалы с длительностью Т и рассмо.

Разобьем область интерпровили на прерассуждений, аналогичных испольтрим сначала случай $|\tau| < T$. С помощью рассуждений, аналогичных исполь-AT 1

$$c(\tau) = \frac{1}{N} \sum_{j=0} \left[\left(1 - \frac{|\tau|}{T} \right) a_j^2 + \frac{|\tau|}{T} a_j a_{j+1} \right] / \overline{a^2}, \quad |\tau| < T.$$

При большом значении N суммирование по ј практически эквивалентно усреднению

$$\frac{1}{N} \sum_{i} a_{j}^{2} = \overline{a^{2}};$$

$$\frac{1}{N} \sum_{i} a_{i} a_{i+1} = \frac{1}{N} \sum_{i} (a_{i} - \overline{a} + \overline{a}) (a_{i+1} - \overline{a} + \overline{a}) = (\overline{a})^{3}.$$

В случае $|\tau| > T$ в подынтегральной функции будут только члены $a_j a_{j+k}$, $k \neq 0$ H

$$\overline{a_i a_{i+k}} = (\bar{a})^2.$$

Итак,

$$c(\tau) = \begin{cases} \frac{(\bar{a})^2}{\bar{a}^2} + \left[1 - \frac{|\tau|}{T}\right] \left(1 - \frac{(\bar{a})^2}{\bar{a}^2}\right), & |\tau| < T, \\ \frac{(\bar{a})^2}{\bar{a}^2}, & |\tau| > T. \end{cases}$$

Если изменения амплитуды и фазы происходят одновременно, то вместо ајаја и будет фигурировать

$$\overline{a_i a_{i+k} \exp\left[i \left(\varphi_i - \varphi_{i+k}\right)\right]} = 0.$$

22. Вывести формулу (22.11).

Указание. Исходить из выражения

$$I = \int_{-\infty}^{\infty} \left\{ I_1(\omega - \bar{\omega}) + I_2(\omega - \bar{\omega}) + 2\frac{I_1(\omega - \bar{\omega})}{I_1}\sqrt{I_1I_2}\cos(\omega\tau) \right\} d\omega,$$

используя формулы (22.10) и тождество

$$\cos \omega \tau = \cos \left[(\omega - \omega) \tau + \omega \tau \right] = \cos \omega \tau \cos (\omega - \omega) \tau - \sin \omega \tau \sin (\omega - \omega) \tau.$$

23. Вычислить степень когерентности у (т) при допплеровском механизме возникновения немонохроматичности и максвелловском распределении атомов по скоростям.

Указание. Воспользоваться формулой Эйлера

$$\cos y = \frac{1}{2} (e^{iy} + e^{-iy})$$

и интегралом Пуассона

$$\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}.$$

Omcem:

$$\gamma(\tau) = \frac{1}{\sqrt{\pi}\Gamma} \int_{-\infty}^{\infty} \exp\left[-(\omega - \overline{\omega})^2/\Gamma^2\right] \cos\left(\omega - \overline{\omega}\right) \tau \, d\omega = \exp\left[-(\Gamma\tau/2)^2\right].$$

24. Вычислить степень когерентности колебаний в двух точках, освещаемых некогерентным линейным источником света. протяженным некогерентным линейным источником света.

яженным неконоронии света состоит из света. Будем считать, что источник света состоит из светашихся точек, экакии-Будем считет, в отрезке длиной 2b (см. рис 4.21). Каждая соета-стантно расположенных на отрезке длиной 2b (см. рис 4.21). Каждая соетастантно распользоват волну, которую в точке P1 можно записать в виде

$$\frac{A}{d_{/1}}\cos\left(\omega t - kd_{/1} + \varphi_{/}\right), \quad k = \frac{2\pi}{\lambda}, \quad \omega = \frac{2\pi c}{\lambda},$$

где А - постоянный множитель, di - расстояние от j-il светащейся точка за где А постоянная фаза. Суммарное колебание в точке P₁, создазатися точка во источником, равно

$$\mathscr{E}_{1}(P_{1}, t) = A \sum_{j=1}^{N} \frac{1}{d_{j_{1}}} \cos \left[\omega t - k d_{j_{1}} + \varphi_{j}\right],$$

гле N - число светящихся точек. Выражение для колебания C. (P., f) получается из \mathcal{E}_1 (P_1 , t) заменой d_{j1} на d_{j2} — расстояние от j-h светящейся точки 20 P_1 Дальнейшие вычисления удобно проводить, пользуясь комплексной формой записи колебаний (см. упражнение 23), а именно с помощью сормулы

$$\cos x = \operatorname{Re} e^{rx}$$
.

Тогда &1 (P1, f) принимает вид

$$\mathcal{E}_{1}(P_{1}, t) = A \operatorname{Re} \exp(i\omega t) \sum_{i=1}^{N} \frac{1}{d_{i1}} \exp\left[-i\left(kd_{i1} - \varphi_{i}\right)\right] = \operatorname{Re}a_{1}(P_{1}) \exp\left[i\left(\omega t + \varphi_{1}\right)\right],$$
$$a_{1}(P_{1}) \exp\left[i\psi_{1}(P_{1})\right] = A \sum_{i=1}^{N} \frac{1}{d_{i1}} \exp\left[-i\left(kd_{i1} - \varphi_{1}\right)\right].$$

По определению (22.22) имеем

$$c_{12}(\tau) + is_{1,2}(\tau) = \frac{1}{\sqrt{I_1 I_2}} \overline{a_1(P_1) a_2(P_2) \exp(i[\psi_2(P_2) - \psi_1(P_1)])} = \frac{1}{\sqrt{I_1 I_2}} A^2 \sum_{i=1}^N \sum_{l=1}^N \frac{1}{d_{ll} d_{l2}} \exp(i[k(d_{l2} - d_{l1}) + \psi_l - \psi_i]).$$

Поскольку разности фаз $\varphi_l - \varphi_l$ при $l \neq l$ принимают произвольные заченые то члены с $l \neq j$ дают пренебрежимо малый вклад и ими можно пренебреть. Бу-дем считать, далее, что $d_{l1} \gg b$, $d_{l1} \gg b$, так что в значенателе для все lможно положить $d_{l1} = d_{l8} = d$. Накопец, l_{f} и l_{g} получаются из выражения для c_{13} (Г) при тоние P совпалающей с P_{g} , и оказывоются равныма c_{12} (т) при точке P_1 , совпадающей с P_8 , и оказываются разнымя $l_1 = l_2 = N A^{2/d^2}$.

*(*1)

Вследствие сказанног

HHOPO ИМЕЕМ

$$c_{12}(\tau) + is_{13}(\tau) = \frac{1}{N} \sum_{i=1}^{N} \exp [ik (d_{i3} - d_{i3})].$$

Если d_{j3} и d_{j1} значительно больше, чем размеры нет $d_{j_2} - d_{j_1} = 2l \Delta b_j/d_s$ между точками Р1 и Р, то

> Ландсберг г. С. 28

где $\Delta b = 2b/N$ — расстояние между соседними излучающими атомами. Поскольку $\Delta b \ll \lambda$, сумму по *j* можно заменить интегралом, вычисление которого дает

$$c_{12}(\tau) = \frac{\sin(2kbl/d)}{2kbl/d}; \quad s_{12}(\tau) = 0.$$

Отметим, что при получении соотношения (1) не использовались предположения о расположении точечных источников света и точек P_1, P_2 , кроме большой

Рис. 5.

величины d_{j_2} , d_{j_1} . Поэтому (1) имеет силу при произвольном неравномерном распределении источников, при расположении их на отрезке линии, участке какой-либо поверхности или в ограниченном объеме.

25. Вычислить отношение $\tilde{I}^2/(\tilde{I})^2$ для распределения Рэлея. Опивени

$$\overline{I^2} = \int_0^\infty I^2 \exp(-I/I) \, dI/I = 2 \, (I)^2.$$

26. Как изменяется размер интерференционных колец при замене воздушной прослойки в эталоне Фабри — Перо на стеклянную (n = 1,5)?

Указание. При аналитическом методе решения следует принять во внимание преломление при выходе света из стекла.

Угловое расстояние между полосами в случае воздушной прослойки

$$\delta i = \frac{\lambda}{2d \sin i}.$$

Угловое расстояние между полосами в случае стеклянной прослойки

$$\delta i' = n \frac{\cos r}{\cos i} \, \delta r = n \frac{\cos r}{\cos i} \frac{\lambda}{2d \sin i}.$$

Опиет: Раднусы колец увеличиваются в отношении tg i/tg r. 27. Решить задачу 26 геометрически, паходя изменение расстояния между мнимыми источниками (рис. 5).

Для воздуха
$$S_1S_2 = 2d$$
. Для стекла $S_1S'_2 = 2d \frac{\lg r}{\lg i} < 2d$.
Описети: Раднусы колец увеличиваются в отношении $\frac{\lg i}{\lg r}$.

28. Лучи, падающие под углом $i = 49^{\circ}$ на пластинку интерферометра Жа-28. Лучи, подающи и показателем преломления n = 1,51, дают максямум мена с толщиной h = 2 см и показателем преломления n = 1,51, дают максямум порядка для $\lambda = 500$ нм. Определить угол между платимаксямум мена с толщинов $\lambda = 500$ нм. Определить угол между пластинками.

Опивет: $\psi \sim 0.0.$ 29. Как изменится интерференционная картина, создаваемая пластинкой Герке из коона (n = 1.50). если опна поверулет 29. Как полостиния (n = 1,50), если одна поверхность ее будет по-Люммера – Герке из крона (n = 1,75)? Ответ: Картина сместится на 1/4 полосы.

30. Показать, что поток энергии в стоячей волне равен нулю. Указание. Использовать теорему Умова - Пойнтикга.

31. Рассмотреть детально, почему в проходящем и отраженном свете картины интерференции в тонких пленках дополняют друг друга (проследить разности фаз, например, для колец Ньютона, принимая во вивмание потерю фазы на границе).

32. Две немонохроматические волны от независимых источников не дают интерференции. Однако каждую из них можно представить как совокупность монохроматических волн (метод Фурье). Каждая пара таких монохроматических

волн одного периода способна дать интерференционную устойчивую картину. Объяснить, почему наши волны не дают интерференции, хотя все их компоненты попарно интерферируют. (Обратить внимание на результат интерференции двух пар компонент, близких по частоте.)

33. Опыт Шрёдингера. Для наблюдения интерференции пучков, расходящихся под большими угла-

ми, Шредингер пользовался расположением, указанным на рис. 6. Источником Служила накаленная волластонова нить *MM* днаметром 2d = 1 мкм. Кахов предельный угол и, при котором еще возможно наблюдение интерференции?

Ответ: Полосы смазываются при условии 2d sin и > λ, т. е. и ≈ 30°. 34. Вывести из принципа Ферма закон отражения света от плоского зеркала

и показать, что в данном случае время минямально. 35. Поверхность, представляющая геометрическое место точек А, для коге-

рых сумма оптических путей до двух сопряженных точек P и P' есть постоян-ная ная, носит название апланапической. Такой отражающей поверхностью явля-ется эличноских путей до двух сопряженных точек г и г согла является эллипсоид вращения по отношению к своим фокусам. Апланатическая преломлятической по отношению к своим фокусам. Апланатическая преломляющая поверхность была указана Декартом (1637 г.): это — поверхность Вращения осность была указана Декартом (1637 г.): это — поверхность о проходящей через вращения, сечение которой (картезианский овал) плоскостью, проходящей через ось, определяются в соторой (картезианский овал) плоскостью, проходящей через

ось, определяется условием

$$nAP + n'AP' = collst$$

Найти уравнение картезианского овала (параметрами задач являются рас-ния PO = 1 со OP стояния $PO = l_0$ и $OP' = l'_0$ и показатели преломления сред *п* и *n*). Указать на чертеже поверх чости в состати преломления сред *п* и *n*). Указать на чертеже поверхности, для которых применимо требование минимума и максимума при формулировию

формулировке теоремы Ферма. 36. Постронть диаграмму расположения векторов Е, Н и о при отражения раницы стекло. 36. Постронть диаграмму расположения векторов Е, И и у при чето.
 от границы стекло — вода, стекло — воздух и воздух – стекло.
 37. При интерференции на клине с малым углом ф (рис. 8) можно достичь гораздо большей яркости, чем с бизеркалами Френеля. Почему?
 Ответ: А пертура, посекрывающихся пучков 20 определяется размерания Ответ.

Осльшей яркости, чем с бизеркалами Френеля. Почему Ответ: Апертура перекрывающихся пучков 22 определяется размерами на и се можио споле в стала апертура витерференции определяется Ответ: Апертура перекрывающихся пучков 2а определяется размерами клина и ее можно сделать большой; апертура интерференция определяется УГЛОМ КЛИНА И ДАВНА 200 Т. В. С. МОЖНО сделать малой, а следовательно, ширину Углом клина и равна 2ф, т. е. ее можно сделать малой, а следовательно, ширину источника большой. тника большой. 38. При изготовлении бипризмы Френсая довольно трудно выполнить из ла бипризму с углом пои вершине, почти равным 180°; поэтому цередко 38. При изготовлении бипризмы Френсая довольно трудно выполнить из стекла бипризму с углом при вершинс, почти равным 180°; поэтому исредко 28*

обходят затруднение следующим образом: приготовляют бипризму из стекла обходят затруднение сиса и тичающимся от 180° (например, 170°), из стекла (n = 1,52) с углом, заметно склеенным вместе с билризмой так (n = 1,52) с углом, заметно сискованным вместе с бипризмой так, что образу-няют прибор плоским стеклом, склеенным вместе с бипризмой так, что образуниют присср (рис. 9). Эту полость заполняют бензолом (n = 1,50). Рассчитать эквивалентную бипризму из стекла.

Omsem: $\alpha = 179^{\circ} 44'$.

Ответ: с. — 115 л. 39. Поместим линзу, сделанную из стекла, в жидкость, обладающую таким же показателем преломления и налитую в плоскую кюсету (рис. 10). Пусть на

Рис. 7.

кювету падает плоская волна. Нарисовать, пользуясь принципом таутохронизма, вид фронта волны по другую сторону кюветы.

40. Нарисовать приблизительный вид фронта волны (характер фронта — плоский, выпуклый, вогнутый) для предыдущего упражнения в том случае, когда налитая жидкость обладает показателем преломления большим, меньшим и равным показателю преломления вещества линзы.

 Линза из крона (n = 1,50) лежит на пластинке, одна половина ко-

торой сделана из того же крона, а другая — из флинта с показателем преломления 1,70. Прослойки между линзой и пластинкой заполнены анилином (n = 1,58). Описать характер ньютоновых колец в данном расположении.

42. Осуществить опыт с тонкой пленкой (нефть на воде или мыльный пузырь) и проследить на опыте локализацию полос на поверхности пленки и изменение окраски при изменении угла наблюдения.

43. Рассчитать изменение видимости интерференционных полос в установке Френеля по мере увеличения ширины источника.

Указание. Изображение источника шириной 2b разбиваем на узкие полоски dx ($\ll\lambda$), каждая из которых может дать максимальную освещенность 1/dx Пла $x \ll \lambda$). I.dx. Для точки N на расстоянии h от центрального максимума M (рис. 11, a) освещенность, создаваемая участком dx у середины источника, определяется впражением

$$dE = I_0 dx \left(1 + \cos \frac{4\pi lh}{\lambda D} \right) = I_0 dx \left(1 + \cos \frac{2\pi h}{\mathcal{B}} \right),$$

гле для краткости через 🕫 обозначено отношение $\lambda D/2l$ (ширина интерферен-иконной полосы). Остоятся обозначено отношение $\lambda D/2l$ (ширина интерферениконной полосы). Освещенность, создаваемая в N участком dx, расположенным

Рис. 8.

_{влево} от S₀ на расстоянии x, равна d

$$lE = I_0 dx \left(1 + \cos \frac{2\pi (h-x)}{\Im b} \right)$$

Для полной освещенности в точке N получам

$$E = \int_{-b}^{+a} I_0 \left(1 + \cos \frac{2\pi (h-x)}{\mathcal{B}} \right) dx = I_0 2b + I_0 \frac{\mathcal{B}}{\pi} \sin \frac{2\pi b}{\mathcal{B}} \cos \frac{2\pi h}{\mathcal{B}}$$

освещенность (фон), а второй — периодически меняющуюся в зависилств от ћ (максимумы и минимумы). С ростом Перени член этой суммы дает для всего экрана (для любого и) постоянате ширины источника 26 фон непрерывно

растет, а величина максимумов не может превосходить 10 2/л. Таким

образом, с увеличением ширины источника контрастность непрерывно вызлет. Отношение

$$V = \frac{E_{\max} - E_{\min}}{E_{\max} + E_{\min}}$$

По мере увеличения величниы 26 видимость стречноя к нулю, проходя через 201 год и стречное видимости в заяленкости от 201 год и стречности в заяленкости от 201 год и стречности в заяленкости от 201 год и стречности в заяленкости в заяленко 10 мере увеличения величны 26 видимость стремится к нулю, проходя 257.3 ряд максимумов и минимумов. Цзменение видимости в заненжение от показано схематически на рис. 11, 6. 44. Схема получения колец Ньютопа изображена на рис. 12. Каз вещенте радиусы колец при заполнении пространства 1-2 вместо водуха вещетов 44. Схема получения колец Ньютопа изображена на рис. 12. Каз наменатея раднусы колец при заполнении вространства 1-2 вместо воздуха веществоя

с большим коэффициентом преломления, например, водой (n = 1,33)? (Опыт Ньютона.)

Ньютона.) Ответ. Раднусы соответствующих колец уменьшатся, так как уменьшается λ. Как согласовать этот ответ с ответами к задачам 26 и 27?

Как согласовань этог слост - У к а з а н и е. В случае воздушной прослойки кольца получаются при наложении волны, отраженной от 1 (параллельный пучок), и волны, отраженной от 2 (расходящийся пучок, исходящий из мнимого фокуса F выпуклого зеркала 2). Линза L₂ дает два мнимых изображения источника S₁ (параллельный пучок, отраженный от 1, собран в фокусе линзы L₂) и S₂ (изображение F). Размер колец определяется расстоянием S₁S₂. При заполнении пространства 1—2 водой лучи, отраженные от 2, преломляясь в слое воды

(рассенвающая линза), станут более расходящимися, и линза L_2 соберет их в точке S'_2 , так что $S'_2S_1 > S_2S_1$, следовательно, кольца станут мельче.

Рис. 13.

Рис. 14.

45. Какой вид будут иметь ньютоновы кольца, если пластина сделана из двух частей (крон n = 1,50 и флинт n = 1,75), линза — из крона (n = 1,50), а пространство между ними заполнено сероуглеродом (n = 1,62) (рис. 13).

Ответ: Темные полукольца над кроном сойдутся со светлыми полукольцами над флинтом, и наоборот.

46. Установить с помощью принципа взаимности, как меняются условия отражения и преломления при изменении порядка расположения сред (задача Стокса). Среды предполагаются непоглощающими.

Принцип взаимности: при обращении всех лучей, выходящих из системы, на обратные, падающий луч также обращается.

Указание (см. рис. 14). Пусть на границе /—// амплитудный коэффициент отражения равен р, коэффициент пропускания т (для амплитуд), а на границе //-/ — соответственно р'ит'.

Прямой ход: амплитуда падающего луча (ЕО) равна А, амплитуда отраженного (ОВ) равна А р, амплитуда преломленного (ОС) равна Ат.

Обращение: при падении света вдоль СО луч преломленный (вдоль ОЕ) имеет амплитуду Атт', луч отраженный (вдоль ОD) — амплитуду Атр', при падении света вдоль ВО луч отраженный (вдоль ОЕ) — амплитуду Ар², луч преломленный (вдоль ОD) — амплитуду Арт. По принципу взаимности

 $A\tau\tau' + A\rho^2 = A, \quad A\tau\rho' + A\rho\tau = 0,$

т. е.

$$\rho = -\rho'$$
 и $\tau \tau' = 1 - \rho^2$.

Ответ: При изменении порядка расположения сред коэффициент отражения остается неизменным по величине и меняется по знаку, $\rho' = -\rho$ (фаза изменяется на л). Коэффициент пропускания изменяется: $\tau' = (1 - \rho^2)/\tau$. То обстоятельство, что порядок расположения сред меняет τ при неизменном ρ , есть результат изменения сечения пучка при преломлении. Из закона сохранения епергии нетрудно показать, что при $|\rho| = 1 \rho' |$ должно быть $\tau\tau' = (1 - \rho^2)/\tau$ (ср. также упражнение 191).

УПРАЖНЕНИЯ

отражения для амплитуды равным ρ, а ко-эффициент пропускания — τ (коэффициент поглощения предполагается равным нулю, $\alpha = 0$, так что $R = \rho^2$ и $T = \tau^2$ и R ++ T = 1, найдем амплитуды проходящих

Puc. 15.

(0, 1, 2, 3, ...) и отраженных (0', 1', 2', 3', ...) лучей (рис. 15). В соответствии с этим световое колебание в проходящем пучке дается выражением $T^2 \rho^{2k} \exp [i (\omega t - k2\pi m)]$, где k — номер пучка (k=0, 1, 2, ...), а m — порядок интерференции. Для отраженных пучков имеем $T^2 \rho^{2k-1} \exp [i (\omega t - 2\pi m)]$, где k — номер пучка (k=0) нучка (k=0) ну где k = 1, 2, 3, ... Для нулевого отраженного пучка (k = 0) нием $\rho \exp [i (\omega t + \pi)] = -\rho \exp (i\omega t)$ (учет потери полуваны по сравнению с проходящим пучком вследствие разницы в условиях отражения).

Итак, результирующее колебание: для проходящего пучка

$$A = \sum_{k=0}^{n} \tau^2 \rho^{2k} \exp\left[i\left(\omega t - k2nm\right)\right] = \frac{T}{1 - R\exp\left(-i2\pi un\right)} \exp\left[i\omega t\right],$$

для отраженного пучка

$$B = -\exp(i\omega t) \left\{ \rho - \tau^2 \sum_{k=1}^{k=\infty} \rho^{2k-1} \exp[-ik2\pi m] \right\} =$$

= $-\exp(i\omega t) \rho \frac{1 - (T+R)\exp(-i2\pi m)}{1 - R\exp(-i2\pi m)} = -\exp(i\omega t) \rho \frac{1 - \exp(-i2\pi m)}{1 - R\exp(-i2\pi m)} =$
= $AA^* + I_{orp} = BB^*$, Hallew:

Переходя к интенсивностям, т. е. образуя Іпрох

$$I_{n\text{pox}} = \frac{T^2}{1 + R^2 - 2R\cos 2\pi i n} = \frac{T^3}{(1 - R)^3} \frac{1}{1 + (1 - R)^4} \sin^3(\frac{1}{2}\sqrt{\psi})} = \frac{1}{1 + \frac{4R}{(1 - R)^4}} \sin^2(\frac{1}{2}\sqrt{\psi})}$$

$$I_{\text{orp}} = R \frac{2 \left[1 - \cos 2\pi m\right]}{1 - 2R \cos 2\pi m + R^2} = \frac{\frac{4R}{(1 - R)^2} \sin^2\left(\frac{1}{2}\psi\right)}{1 + \frac{4R}{(1 - R)^2} \sin^2\left(\frac{1}{2}\psi\right)},$$

гле $\psi = 2\pi m$. Отсюда $I_{npox} + I_{otp} = 1$ для любого направления (любого ψ или m), т. е. сумма интенсивностей проходящего и отраженного пучков равна интенсивности падающего в соответствии с принципом сохранения энергии, вбо мы пренебрегаем поглощением (A = 0).

Примечание. При выводе мы производили суммирование от 0 до со, т. е. принимали число интерферирующих пучков бесконечно большим. Это соответствует предположению о неограниченных размерах интерференционного

прибора или допущению, что падение интенсивности складываемых пучков (зависящее от *R*) идет достаточно быстро, чтобы можно было считать пучки высоких порядков исчезающе слабыми.

48. Изобразить графически взаимное расположение $I_{прох}$ и $I_{отр}$ в зависимости от R при многократной интерференции (см. упражнение 47). С увеличенисм R общая доля отраженного света возрастает по сравнению с прошедшим, но так, что сумма $I_{отр} + I_{прох}$ остается постоянной и равной интексивности падающего пучка (рис. 16).

49. Полосы разного порядка в пластинке Люммера — Герке располагаются по сбе стороны пластинки. 1) Где лежат полосы высших порядков? 2) Как завнсит ширина полосы от порядка интерференции, от длины волны, от толщины пластинки?

Ответ: 1) $m\lambda = 2h\sqrt{n^2 - \cos^2 \varepsilon}$, где m — порядок интерференции, а ε - угел, составляемый выходящим лучом с поверхностью пластинки; таким образом, с увеличением порядка полосы удаляются от пластинки (є растет).

2) $\Delta e = \frac{\lambda \sqrt{n^2 - 1}}{2/le}$, т. е. ширина полос увеличивается с длиной волны и уменьшается при увеличении толщины пластипки и порядка интерференции.

872

50. Полосы разного порядка в эталоне Фабри — Перо имеют вид концентри. 1) Где лежат полосы высших порядков — блико и 50. Полосы распен акат полосы высших порядков – ближе к иситри-песких колец. 1) Где лежат полосы высших порядков – ближе к иситри-песких от него? 2) Как зависит ширина полосы от порядка чиситру или песких колсы. 2) Как зависит ширина полосы от порядков – ближе к центру кли дальше от него? 2) Как зависит ширина полосы от порядка интерференции, дляны волны, толщины эталона /?

ны волны, толиции $m\lambda = 2h \cos \varphi$, где φ — угол между выходящим лучом и нер-малью к пластинке. Таким образом, с увеличением порядка ($+\Delta m$) полосы приближаются к центру (фубывает).

т. е. ширина полос увеличивается с дляной волны в Δφ = $\frac{2h\sin \phi}{2}$

увеличением порядка интерференции и уменьшается при уселичении толшины эталона.

51. Интерференционная картина наблюдается и при пролождения света сквозь тонкую пленку. При этом картина имеет вид, дополнительный к картике в отраженном свете (максимумы в местах минимумов и нассорст), цета (в случае белого света) гораздо менее насышенные (белесоватые). Показать ход интерферирующих лучей в проходящем свете и объяснить указанные особенности.

Указание. Учесть многократное отражение; принцип сохранения энергии или потерю полуволны при каждом отражении; соотношение интенсивностей проходящего и отраженного света.

52. На мыльных пленках и пузырях появление темного пятна служит обычно предвестником того, что пленка сейчас лопнет. Объяснить это явление.

Указание. Найти интерференционное ус-ловие образования темного пятна.

53. Рассчитать раднус т-го темного кольца Ньютона (рис. 17).

Omsem: $r_m^* = (2R - \delta_m) \, \delta_m \approx 2R \delta_m$ при $\delta_m =$ $= 1/2m\lambda$, T. e. $r_m^2 = mR\lambda$.

54. Если смотреть на поверхность зеркала, терференционные кольца в результате интерференции между лучами, рассеян-ными ными пылинкой, и ее отражением в зеркале. Каким образом возныкает необходимися и не отражением в зеркале. Каким образом возныкает необходимая незначительная разность хода, несмотря на большую толщину необходимая незначительная разность хода, несмотря на большую толщину

ко с очень тонкой пылью. Ответ: См. рнс. 13; обратить внимание на величину апертуры интерферен-

ции (BSO) в этом случае.

211011

Рис. 19.

55. Отражение света оп шерохованой поверхности (рис. 19). При паления а на шероховатию поверхности непровильное и дибрузное отра-55. Отражение света от шероховалюй поверхности (рис. 19). При начетия Света на шероховатую поверхность получается неправильное и злістувное отра-жение. Однако если угол полоча Клизок к 90°, то можно изблюдаться отгенжение. Однако если угол падения близок к 90°, то можно изблюдать зогказыко отражение (изображение) в матовой поверхности и притом в красноватых оттен осние. Однако если угол падения близок к 90°, то можно изблюдать зеркатынос отражение (изображение) в матовой поверхности и притом в красноватых отген-ках. Объяснить явление ООЪЯСНИТЬ ЯВЛЕНИЕ. У казание. Разность хода при правильном отражении от вершины и Вания неровностой разви 20 сов 1 где h — высота неровности, i — угст У казание явление. У казание Разность хода при правильном отражении от вершины и основания неровностей равна $2h \cos i$, где h - высота исровности, i - угса $падения. Если <math>2h \cos i = mt^{1/2}\lambda$, где m - исчетию, то в иаправления правитьюте

1494947 У

отражения света не будет, а он пойдет по другому направлению *i*. При разно-образных *h* свет отражается по разнообразным направлениям *i* (диффузно). образных h свет отражается по регистири и применения i (диффузно). Если h cos i $\ll \lambda$, то условие 2h cos i $= m^{1}/_{2}\lambda$ невозможно, и будет наблюдаться Если h cos i $\ll \lambda$, то условие 2h соs i = m^{1}/_{2}\lambda невозможно, и будет наблюдаться Если h соз $i \ll \lambda$, то условие 2n соз i, тем большее h и меньшее i достаточно даться правильное отражение. Чем больше λ , тем большее h и меньшее i достаточно для правильное отражение. Чем соверхность зеркальна, когда h мало по сравненно для этого. Отсюда следует, что поверхность зеркальна, когда h мало по сравненню этого. Отсюда следует, но порядка атомных расстояний, и зеркальная с λ ; для рентгеновских лучей λ — порядка атомных расстояний, и зеркальная с λ ; для рентгеновских и, са с падении под очень малым скользящим углом полировка невозможна. Лишь при падении под очень малым скользящим углом полировка невозможна. тако пражение рентгеновских лучей (Комптон, 1923 г, удалось наблюдать зеркальное отражение рентгеновских лучей (Комптон, 1923 г,

скольжения расси то до матовую поверхность (рис. 20). Плоская волна, 56. Прохождение света через матовую поверхность (рис. 20). Плоская волна, проходя через матовую поверхность, становится диффузной (матовое стекло проходя через матовула матовое стекло водой или, лучше, бензолом или гли-«непрозрачно»). Покрывая матовое стекло водой или, лучше, бензолом или глицерином ($n \approx 1,50$), просветляем его. Объяснить явление. При каких размерах (h) неровностей стекло будет матовым?

Указание. Рассмотреть разность хода при прохождении через неровности матового стекла.

Omsem: $h(n-1) > 1/_{2}\lambda$.

57. Вычислить радиус центральной зоны Френеля для случая, изображен-HORO HA PHC. 21, FIGE AP = a, PB = b, $MB = b + \frac{1}{2}\lambda$, MO = r.

 $\frac{av}{a+b}\lambda$. (Пренебречь членами с λ^2 по сравнению с λ .) Omsem: r = 1

58. Вычислить радиус центральной зоны Френеля для случая плоской волны геометрически и как частное решение задачи 57.

Omeem: $r = V b\lambda$.

59. Разобрать задачу о зеркальном отражении и преломлении плоской волны на плоской границе по методу зон Френеля.

Указание. Разбить границу на плоские зоны шириной а, перпендикулярные к плоскости падения.

Если волна падает под углом ф, отражается в первую среду под углом ф и проходит во вторую под углом х, то для лучей, отраженных от границы зон, разность хода

 $\Delta_r = a (\sin \varphi - \sin \psi),$

а для преломленных

$$\Delta_d = a (n_1 \sin \varphi - n_2 \sin \chi).$$

Можно всегда выбрать *а* так, чтобы $\Delta_r = \lambda$, т. е. чтобы волны, отраженные ле-вой и правой половинами каждой зоны, взаимно уничтожались. Только для на-правления sin α — sin the second правления sin $\phi = \sin \psi$, т. е. $\phi = \psi$, такой выбор ширины зоны невозможен. По этому издательных По этому направлению свет будет отражаться. Аналогично для преломленных водн единственных поверх. волн единственное направление, по которому свет при любом разбиении поверх-ности на зоны на билости и билости на сопу это свет при любом разбиении сопу это с ности на зоны не будет уничтожен, удовлетворяет условию $n_1 \sin \varphi - n_2 \sin \chi = 0$, т. е. закони по уличтожен, удовлетворяет условию $n_1 \sin \varphi - n_2 \sin \chi =$ = 0, т. е. закону преломления.

60. Рассчитать амплитуду колебания в точке В (см. рис. 21), обусловленную ствием первой асми. Аста действием первой зоны Френеля,

Указание. Результирующая амплитуда пропорциональна площали которая согласно упражнению 58 равна лод. Но так как площали У казанис. первой зоны, которая согласно упражнению 58 равна льд. Но так как вторичые первой зоны доходят до точки В с извести с вторичые первой зоны, котория состаено рис. 8.8 уменьшается в отношении 2/2 водатью то их действие согласно рис. 8.8 уменьшается в отношении 2/2 волны от разных у несто согласно рис. 8.8 уменьшается в сизвестной р фаз, ответ: Амплитуда пропорциональна 262.

Опвет: Амплитуду элементарной вторичной волны Френеда -

Гюйгенса. reнca. Указание. а, пропорционально амплитуде А колебания, дошедшего

до элемента ds, и площади этого элемента, т. е.

 $a_0 = cA ds.$

Для определения коэффициента с сравним непосредственное действие слоской волны $A \sin (\omega t - \varphi)$ в точке B (см. рис. 21) и действие деяствие ской волны $A \sin (\omega t - \varphi)$ в качестве вспоногательной ской волим и вла в качестве вспомогательной поверхности выбрая фронт плоской волны. Расстояние от Р до В есть b.

1. Непосредственный расчет для точки В: A sin (wt - q - bb), т. е. англатуда в точке В должна равняться А и фаза $-(\phi + kb)$.

2. Расчет по методу Френеля. Согласно (33. 1) амплитуда в В примерно равла a₀/b (нбо MB ≈ b), т. е. cAds/b. Согласно упражненню 60 действие пераой зоны с учетом ее площади и разности фаз от разных ее участков есть сА25). b = 2:А). Так как действие в точке В равно половине действия первой зоны, то издочая амплитуда в точке В есть сАл.

Сравнение с непосредственным расчетом дает $cA\lambda = A$, т. е.

 $c = 1/\lambda$.

Итак, от каждого элемента ds идет сферическая волна

$$\frac{a_0}{r}\sin(\omega t - \varphi - kr) = \frac{A \, ds}{r\lambda}\sin(\omega t - \varphi - kr).$$

62. Определить разность хода параллельных лучей, отрежающихся ст плоского зеркала.

63. Если круглое отверстие (например, ирисовая диафрагма) узеллчивается Таким образом, что размер его, ранее равнявшийся одной зоне, доходит 20 даух ЗОН, ТО В СООТВЕТСТВУЮЩЕЙ ТОЧКЕ В ОСВЕЩЕННОСТЬ ЗНАЧИТЕЛЬНО УМЕНЬШИЕТСЯ, ЕА-Дая почти до нуля, хотя поток световой энергии через увелячащееся отверстве Возрастоот в факта? Возрастает почти в два раза. Каким образом согласного эти два факта? Указание. Принять во внимание распределение энергиа со всей дат-

64. Пусть в опыте Араго — Пуассона источником света служит не точка, Менькое саматра в праго — Пуассона источником света служит не точка,

а маленькое светящееся тело, например, крестик. Будет ли в центре геометри-ческой тени исстинество, например, крестик, вудет ли в центре геометрической тени наблюдаться изображение источника или светлая точка? Отверти Источника или светлая точка? 65. При разделении поверхности волны на кольцевые зоны и пришли ИВОДУ, ито формации поверхности волны на кольцевые зоны и пришли

к выводу, что фаза, определенная по методу Френеля, отличается от истинной на л/2. а разбитота на пометоду приними мы сделали заклюна π/2, а разбивая поверхность волны на меридианые лувки, мы сделали заключение. Что россия от количается и поверхность волны на меридианные лувки, мы сделали заключение. Что россия поверхность волны на меридианые поверхность волны на меридианые поверхность волны на меридианые лувки, мы сделали заключение. чение, что различие в фазе между вычисленной и действительной волнами раз-инатораличие в фазе между вычисленной и действительной волнами раз-ияется л/4. Объесние в фазе между вычисленной и действительной волнами раз-Указание. При сравнении надо исходить из одного и того же началь-направления во при сравнении надо исходить из одного и того же начальняется л/4. Объяснить причину кажущегося расхождения. У кака собъяснить причину кажущегося расхождения.

У казание. При сравнении надо исходить из одного и того же начали ного направления вектора, обусловленного элементарным участком у полюса волны. В методе же виссе исторации направлением считают направление вести соот. тора, обусловленного действием меридиональной полоски. Нужно ввести сост ветствующую полоски направление меридиональных аналогичные меридиональных Ора, обусловленного действием меридиональной лолоски. Нужно ввести соответствующую поправку, разбив полоску на зоны, аналогичные меридиональных, бб. Теорема Бабине. Экраны и отверстия называются дополние дифракесли они совпадают по форме размерам и расположению. Опоказать, отверстиями, об. Теорема Бабине. Экраны и отверстия называются дополнительными если они совпадают по форме, размерам и расположению. Показать, что дафрак-ционная картина. Общется по полнительными экранами и отверстиями, чи они совпадают по форме, размерам и расположению. Показать, что дитетах, ционная картина, обусловленная дополнительными экранами и отверстиями,

совпадает для всех точек фокальной плоскости, кроме области А, соответствую-

изображению источных внимание, что во всех областях, кроме А, господ-У казание. Обратить внимание, что во всех областях, кроме А, господ-Указание. Сорина ничем не ограничена, т. е. нет ни экранов, ни отвер-ствует темнота, если волна ничем не ограничена, т. е. нет ни экранов, ни отверствует темнога, ссли в соло точке амплитуда при наличии экрана есть а, а при нали-стий. Если в какой-либо точке амплитуда при наличии экрана есть а, а при нали-

ig a

чии дополнительного отверстия есть в, то $\alpha + \beta = 0.$ 67. Найти графически и аналитически амплитуду результирующего колебания при фраунгоферовой дифракции на щели при косом па-

68. Определить значения угла ф, соответствующего максимумам амплитуд при дифракции Фраунгофера на одной щели.

Указание. Условие максимума приводит к трансцендентному уравнению tg $\alpha = \alpha$, где $\alpha = (b\pi/\lambda) \sin \phi$, решаемому графически (рис. 22) и имеющему корни при

$$\alpha_1 = 0, \quad \alpha_2 = 1,43\pi, \quad \alpha_3 = 2,46\pi, \\ \alpha_4 = 3,47\pi, \quad \alpha_5 = 4,47\pi...$$

69. Вычислить значения амплитуды и интенсивности при дифракции Фраунгофера на одной щели для значений $\alpha = (b\pi/\lambda) \sin \phi$ через каждые 30° и построить соответствующие графики.

Рис. 22.

70. Найти углы ф, определяющие положения минимумов, если плоская волна падает

на щель ширины b по направлению, составляющему угол ψ с нормалью к плоскости шели.

Omsem: $\sin \phi = \sin \psi + m\lambda/b$, где m - целые числа.

71. При увеличении щели вдвое проходящий световой поток увеличится вдвое. С другой стороны, амплитуда при этом возрастает вдвое, так что интенсивность должна возрасти вчетверо. Как разрешается этот кажущийся паралокс?

Ответ: См. упражнение 63.

72. Рассчитать дифрагировавшую волну при гауссовом распределении амплитуды на плоском волновом фронте (см. рис. 9,8, а)

 $a(x, y) = a_0 \exp \left[-(x^2 + y^2)/2w_0^2\right].$

Указание. Искомое поле определяется интегралом Френеля-Кирхгофа

$$s(x, y) = \int_{-\infty}^{\infty} \frac{a(x', y')}{r} \cos(\omega t - kr) dx' dy',$$

$$r = \sqrt{z^2 + (x - x')^2 + (y - y')^3}.$$

Множитель 1/r следует заменить на 1/z, а в аргументе косинуса положить приближенно

 $r \approx z + [(x - x')^2 + (y - y')^2]/2z_{i}$

представить косинус по формуле Эйлера

$$\cos \alpha = \frac{1}{2} (e^{i\alpha} + e^{-i\alpha})$$

и воспользоваться интегралом

$$\int_{-\infty}^{\infty} \exp\left[-\frac{{\xi'}^2}{2\omega_1^2} - \frac{(\xi - {\xi'})^2}{2\omega_2^3}\right] d\xi' = \sqrt{2\pi} \frac{w_1 w_2}{\sqrt{w_1^2 + w_2^3}} \exp\left[-{\xi^2/2} \left(w_1^2 + w_2^2\right)\right].$$

Omsein:

$$s = \frac{2\pi}{k} a_0 \frac{w_0^2}{\sqrt{w_0^4 + (z/k)^2}} \exp\left[-\frac{x^2 + y^2}{2w^2}\right] \cos\left\{\omega - k\left[z + \frac{x^2 + y^2}{2R}\right] - \alpha\right\},\$$

$$R = z + (kw_0^2)^2/z; \quad w^2 = w_0^2 + (z/kw_0)^2, \quad \log z = w_0^2,$$

73. Показать, что если период решетки с соизмерим с шериной шела в, 73. Показано, то в спектре решетки исчезают все максимумы, исмера которых так что d = nb, то в спектре решетки исчезают все максимумы, исмера которых

74. Вывести формулу (46.1)

$$A = A_0 \frac{\sin \alpha}{\alpha} \frac{\sin N\beta}{\sin \beta}.$$

Указание. При выводе надо иметь в виду, что распределение амалитуз. определяемое действием одной щели (ширина шели $b > \lambda$), есть $A_0 \frac{\sin x}{x} = f(x)$. где $\alpha = \frac{\pi b}{\lambda} \sin \varphi$, $f(\alpha)$ — медленно меняющаяся функция от φ , в при взжежения

о в не очень широких пределах ее можно считать постоянной.

Для получения действия всей решетки надо суминровать действая отдельных щелей, принимая во внимание, что разность фаз от двух соседзия шелей есть

$$\Phi = \frac{2\pi}{\lambda} d \sin \varphi = 2\beta.$$

Таким образом, действие п-й щели в точке с координатами х, г (ось у расположена вдоль штрихов решетки) выразится фактором

$$u_n = f(\alpha) \exp \left[i \left\{ k \left(x \sin \varphi + z \cos \varphi \right) + n \Theta \right\} \right],$$

$$u = \sum_{0}^{N-1} u_n = f(\alpha) \exp \left[i k \left(x \sin \varphi + z \cos \varphi \right) \right] S,$$

гле

$$S = \sum_{0}^{N-1} \exp(in\Phi) = \frac{1 - \exp(iN\Phi)}{1 - \exp(i\Phi)} = \frac{\exp\left(\frac{1}{2}iN\Phi\right)}{\exp\left(\frac{1}{2}j\Phi\right)} \frac{\sin\left(\frac{1}{2}N\Phi\right)}{\sin\left(\frac{1}{2}\Phi\right)},$$

12900-

Множители, содержащие мнимые показатели, определяют фазу р щей волны, а остальные — ее амплитуду, которая равна, таким образом,

$$f(\alpha) \frac{\sin \left(\frac{1}{2}N\Phi\right)}{\sin \left(\frac{1}{2}\Phi\right)} = A_0 \frac{\sin \alpha}{\alpha} \frac{\sin n \beta}{\sin \beta},$$

Переходя к интенсивности, т. е. образуя и.и., солучны

$$I = u \cdot u^* = A_u^* \frac{\sin^2 \alpha}{\alpha^2} \frac{\sin^2 \alpha}{\sin^3 \beta}$$

в спектре дифракционной решетки $A = A_{ab} (\alpha) \frac{\sin \beta \beta}{\sin \beta}$, гле $f(\alpha) - \infty$ меняющаяся функция от φ и $\beta = \frac{\pi}{\lambda} d \sin \varphi$, найти расположение славных мак-Симумов в слектре решетки; Симумов; добавочных минимумов; добавочных максимумов в слектре решетки; определить активных минимумов; добавочных максимумов; полушириму определить амплитуду и интенсивность добавочных максимумов, полуширину Главного максимума: опроделить интенсивности добавочных максимумов, полуширину пределить амплитуду и интенсивность добавочных максимумов, полущири Главного максимума; относительные интенсивности добавочных максимумез.

Ответ: Положение главных максимумов определяется из условий: $\sin \beta = 0$; $\sin N\beta = 0$, $\operatorname{otkyda} \beta = m\pi$, $a m = 0, 1, 2, ..., \tau$. е. $d \sin \varphi = m\lambda$. Положе. ние добавочных минимумов определяется из условий: $\sin \beta \neq 0$, $\sin N\beta = 0$, $\operatorname{otkyda} \beta = \pi (m + p/N)$, где $m - \pi$ юбое целое число, a p пробегает значения 1, 2, ... (N - 1), т. е. $d \sin \varphi = \lambda (m + p/N)$. Положение добавочных максимумов определяется из условия $\sin N\beta \approx 1$ (ибо $\sin \beta$ относительно медленно меняется с β). Отсюда $\beta \approx \pi (m + \mu/2N)$, где m - номер главного максимума (m = 0, 1, 2, ..., N - 1) и $\mu -$ целое нечетное число от 3 до (2N - 3). Добавочные максимума (m = 0, 1, 2, ..., N - 1) и $\mu = 2N - 1$ не существуют, так как при этом $\sin \beta$ меняется относительно быстро (см. ниже).

Амплитуда добавочных максимумов пропорциональна $\frac{1}{\sin(\mu\pi/2N)}$, их интенсивность пропорциональная $\frac{1}{\sin^2(\mu\pi/2N)} \approx \frac{4N^2}{\pi^2\mu^2}$, ибо $\frac{\mu\pi}{2N}$ мало для небольших μ , т. е. вблизи главного максимума. Значение β^* , соответствующее половине интенсивности главного максимума ($\infty^{1/2}N^2$), определяется условнем $\frac{\sin^2 N\beta^*}{\sin^2 \beta^*} = N^2$

 $=\frac{N^2}{2}$. Так как β^* мало́, то sin² $N\beta^* = \frac{1}{2}$ ($N\beta^*$)². Численное решение этого трансцендентного уравнения дает $N\beta^* = 80^\circ = 1,38$ рад. Величина $2\beta^{\circ}$ опре-

деляет ширину главного максимума на уровне половины интенсивности 2β* = 2,76/N (рис. 23). Так как N очень велико, то главные максимумы весьма резки. Расстояние между точками, где функция sin NB/sin B принимает максимальное значение и значение, равное половине максимального, есть $\beta^* = 1,38/N$, а расстояние между этой первой точкой и точкой, где данная функция первый раз обращается в нуль, есть $\pi N > 2\beta^* =$ = 2,76/N. Положению первого добавочного максимума (µ = 1) соответст-1,5 π Byer $\beta = \frac{n}{2N} = \frac{n}{N}$. Таким образом, первый добавочный максимум (µ = 1) накрывается соседним главным максимумом, а последний добавочный мак- $(\mu = 2N - 1)$ накрывается симум

главным максимумом следующего порядка, т. е. 1-й и (2N - 1)-й добавочные максимумы не наблюдаются и остается (N - 2) добавочных максимумов, расположенных между (N - 1) добавочными минимумами.

Первый наблюдаемый добавочный максимум соответствует $\mu = 3$ и отстоит от вершины главного максимума на расстояние, соответствующее $\beta = \frac{3\pi}{2N} = \frac{4.7}{N}$. Его интенсивность составляет $4N^2/\pi^2\mu^2$, т. е. $4/9\pi^2$ от главного максимума ($\approx 1/22 = 5\%$); относительная интенсивность следующего добавочного макси-

мума (µ = 5) есть 4/25л² = 1/62 = 1,6% от главного максимума и т. д. 76. Рассмотреть дифракцию плоской волны, падающей нормально на синусондальную решетку (Рэлей).

Указание. Если решетка расположена в плоскости ху и волна приходит по направлению z, то дифференциальное уравнение для волны Е имеет вид

$$\frac{\partial^2 E}{\partial x^2} + \frac{\partial^2 E}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 E}{\partial t^2}.$$

Для синусоидальной волны частоты w получим

$$\frac{\partial^2 E}{\partial x^2} + \frac{\partial^2 E}{\partial z^2} + k^2 E = 0,$$

где $k = \omega/v = 2\pi/\lambda$ — волновое число. k = 0/0 = 2000 Решение линейного дифференциального уравнения (I) имеет вид

$$E = A \exp\left[i\left(ux - z\sqrt{k^2 - u^2}\right)\right]_{k}$$

где А и и - произвольные функции. Решение это представляет собой совокуст. где А и и — представляет собой совохуд. ность плоских волн с амплитудами А, распространяющихся по направлением, ность илестичим углы ϕ с осью *г*, причем sin $\phi = \pm u/k$ (ср. упражнение 4). Госоставляющими упражнение 4). Го-скольку и — произвольная функция, то дифракционные волен когут, воссее скольку и говоря, распространяться по разным направлениям (единственное огранитение $u \leq k$).

к). Общая задача о дифракции плоской волны на плоской границе (решетка) конкретизируется свойствами этой решетки. На поверхности z = 0 значение (решетка) в силу принципа Кирхгофа — Френеля имеет вид

E(x, 0) = f(x),

где f (x) характеризует свойства решетки, т. е. ее воздействие на амплитит и фазу проходящей волны. В случае синусондальной решеткя Рэлея с переодом d (вдоль х) и максимальным коэффициентом пропускания С вмеем:

$$f(x) = C \exp\left(i\frac{2\pi}{d}x\right).$$

Для выбранной нами решетки Рэлея мы можем определить А и и из условия $E(x, 0) = f(x), \text{ t. e. } Ae^{iux} = C \exp\left(i\frac{2\pi}{d}x\right), \text{ otherway } A = C = u = 2\pi/d, \text{ for a second second$ и d заданы свойствами решетки Рэлея. Подставляя найденное значение и в выражение sin $\varphi = u/k$, определяющее направление распространения дифрагировазших плоских волн. найдем:

$$\sin \varphi = \frac{2\pi}{d} \frac{1}{k} = \frac{\lambda}{d} \quad \text{вли} \quad d\sin \varphi = \lambda.$$

Таким образом, дифракция плоской монохроматической волны на санусоидальной решетке Рэлея дает спектр лишь 1-го порядка. Нулевой спектр, составляется и разволи в составляется и порядка. ветствующий $\phi = 0$, и спектры высших порядка. Нулевоя спектр, системать нои решетке Рэлея дает спектр лишь 1-го порядка. Нулевоя спектр, системать ветствующий $\phi = 0$, и спектры высших порядков, для которых $\sin q_m = \pm \pi d$. (m = 2, 3, ...), отсутствуют. Если $f(x) = C \sin \frac{2\pi}{d} x = \frac{C}{2i} \left[\exp \left(i \frac{2\pi}{d} x \right) - \frac{2\pi}{d} x \right]$ $-\exp\left(-i\frac{2\pi}{d}x\right)$, то граничные условия E(x, 0) = f(x) удовлетворяются, сче-ВИДНО, ДВУМЯ ВОЛНАМИ С $u = \frac{2\pi}{d} \frac{1}{k} = \frac{\lambda}{d}$ и $u = -\frac{\lambda}{d}$, т. е. такая решегка дает Спектры 1-ро 77. Показать, пользуясь результатами упражнения 76, что при d < лактрах-аные спектры из общество физический смысл этого факта спектры 1-го и —1-го порядков (см. упражнение 78). 11. Показать, пользуясь результатами упражнения 76, ето при с канк, на ционные спектры не образуются, и выяснить физический смысл этого факта. У казания чые спектры не образуются, и выяснять физический смысл этого факта. У казание. При $d < \lambda$ имеем sin $\varphi > 1$, т. е. вет направления, по ко-му могла бы разпросточние учеровления волна. Из выражения Указание. При $d < \lambda$ имеем sin $\varphi > 1$, т. е. нет направления, но воторому могла бы распространяться дифрагировавшая волна. Из вытаження $E = A \exp \left[i f d + k \right]$ $E = A \exp \left[i \left(ux + z \sqrt{k^2 - u^2}\right)\right]$ следует, что при $\lambda > d$, т. е. при u > k, E имеет вид $E = A \exp \left[-z \sqrt{u^2 - k^2}\right] \exp (\mu x),$ то захону Т. е. получается волна, амплитуда которой убывает вдоль : стансвится $A \exp \left[-z \sqrt{u^2 - k^2}\right]$ С. получается волна, амплитуда которой убывает вдоль : со заколу $A \exp \left[-z \sqrt{u^2 - k^2}\right]$ и, следовательно, на досгаточном Расстоания : становатся

879

(1)

сколь угодно малой (затухает вдоль г). Волна с конечной амплитудой распросколь угодно малон (загужет одено статочно тесно примыкающем к решетке, страняется лишь вдоль х в слое, достаточно тесно примыкающем к решетке,

яняется лишь вдоль х с слоч, упражнения 76, рассмотреть дифракцию на произвольной одномерной периодической структуре.

Указание. Для периодической структуры с периодом а имеем

$$f(x) = \sum_{m} C_{m} \exp\left(im \frac{2\pi}{d} x\right),$$

где $m = 0, m = \pm 1, m = \pm 2$ и т. д. (теорема Фурье). Для дифрагированных волн можно написать

$$E = \sum_{-\infty}^{+\infty} C_m \exp\left\{i\left[xm\frac{2\pi}{d} + z\sqrt{k^2 - m^2\left(\frac{2\pi}{d}\right)^2}\right]\right\}.$$

Члены этого ряда для больших m (m 2n/d > 2n/h) убывают экспоненциально в зависимости от г и при больших г не играют роли. Остаются только члены ряда с $m 2\pi/d \leq 2\pi/\lambda$. Это — плоские волны по направлениям ϕ_m , для которых sin $\varphi_m = m \lambda/d$. Последнее соотношение — известная формула дифракции на периодической решетке. Ст дает амплитуду спектра т-го порядка и определяется характером периодической структуры (решетки).

79. Рассчитать условие наложения спектров высших порядков друг на друга. а) Зависит ли это от периода решетки? В каком порядке произойдет наложение спектров в случае видимых лучей (от $\lambda = 400$ нм до $\lambda = 800$ нм)? В каком порядке возможно перекрытие спектра ртутной лампы (яркие линии от $\lambda =$ = 579 HM do $\lambda = 253$ HM)?

Onuscrn: $k\lambda_1 = (k+1)\lambda_2$.

б) Каков максимальный порядок спектра для длины волны λ, если период решетки равен d?

Ответ: т равно целой части дроби d/λ.

80. Определить угловую дисперсию дифракционной решетки с периодом d=2 мкм для второго порядка для $\lambda=5000$ Å.

Опьвет: $\delta \phi / \delta \lambda = 0.4$ мин/A.

81. Вычислить угловую дисперсию эталона Фабри — Перо, пластинки Люммера - Герке, эшелона Майкельсона, выразив ее через длину волны, толшину пластинки, показатель преломления материала пластинки. Зависит ли дисперсия эталона Фабри - Перо от расстояния между пластинками?

Ответ: Для пластинки Люммера — Герке $\frac{\delta r}{\delta \lambda} = \frac{m}{\sqrt{4d^2n^2 - m^2\lambda^2}}$.

82. Вывести выражение для разрешающей способности пластинки Люммера — Герке и других интерференционных спектральных аппаратов.

Omsem: A = Nm.

Для пластинки Люммера — Герке $A \approx \frac{L(n^2-1)}{\lambda}$, если пренебречь диспер-

сией стекла (L - длина пластинки, п - показатель преломления стекла). 83. Вывести выражение для области дисперсии пластинки Люммера -

Герке и других интерференционных аппаратов. 84. Какими данными должна обладать дифракционная решетка, чтобы во втором порядке разрешить дублет натрия $D_1 = 589$ нм, $D_2 = 589,6$ нм?

Ответ: N ≥ 500 штрихов.

85. Какую минимальную длину должна иметь пластинка Люммера — Герке, сделанная из стекла с показателем преломления n = 1,5, чтобы разрешить линию водорода $\lambda = 656,3$ нм, представляющую узкий дублет с расстоянием между компонения. между компонентами 1,4.10- см?

Ответ: Около 2,5 см.

УПРАЖНЕНИЯ

ев. Дифракционная решетка шириной в 3 см имеет период 3 мкж. Какова отающая сила во втором порядке? Какова разность разлити Какова ее разрешающая сила во втором порядке? Какова разность различимых длин ее разрешающая сила во втором порядке? Какова разность различимых длин

Оплает: А - 20000, 87. В опытах по дифракции рентгеновских лучей пучок падает на решетку 9. 9 мкм под углом скольжения в 30' (угол скольжения 87. В опытах по углом скольжения в 30' (угол скольжения – угол, состав-с периодом 2 мкм под углом скольжения в 30' (угол скольжения – угол, составс периодом 2 мкм нод учнок споновстви в оч (угол скольжения — угол, составляетый направлением луча с плоскостью решетки). Угол дифракция для стектра третьего порядка получился равным 11/2. Определить длину волны рентеков-

Omoem: 1.78 Å.

Опшени. чуст в статист в зонной решетке (пластинке).

указание. Следует рассмотреть дифракционную карткау дервого, аторого и т. д. порядков от различных элементов решетка и показать, что дарагаровавшие в данном порядке лучи от всех участков решеткя переселант нормать в одной точке.

Фокусное расстояние *m*-го порядка $f_m = C/22.m$, где C - востоянная величина, характеризующая решетку ($C = r_n^2/n$, где n – нохер кольца в r_n – его радиус).

Обладает ли зонная решетка хроматической аберрацией?

6) Проследить аналогию между решеткой Рэлея в зоявой пластанкой.

пропускание которой изменяется вдоль ее раднуса по зекону sin 27 г.

Указание. Вычислить амплитуду поля на оси зояной плоствики (андает плоская волна) с помощью принципа Гюйгенса — Френеля:

$$\int_{0}^{2\pi} d\varphi \int_{0}^{r_{\max}} \sin\left(\frac{2\pi}{a}r^{2}\right) \cos\left[k\left(R+\frac{r^{2}}{2R}\right)\right]r dr.$$

Интеграл вычисляется после замены переменной / на /

89. Стеклянная пластинка, на которой нанесена дифракционная рашетка, сделана одной из стенок длинного ящика, наполненного водой. Состазать фор-

мулу, определяющую направление на максимумы внутри воды Если часть решетки выступает из воды, то за решеткой можно получить дая спектра, расположенных один под другим, один в воде, другой в воздуле. Как

будут различаться эти спектры?

90. Проделать опыт с дифракцией лучей света, падающих под углом. Сляз-к 90° по пом которых удется ким к 90°, на миллиметровую линейку, и описать условия, при которых удется наблюдать составляются в составляются в ставите повыми деленнями, важе наблюдать явление (удобно пользоваться миллиметровыми деленяхи, важе сенными на пользоваться миллиметровыми деленяхи, важе сенными на логарифмическую линейку, а в качестве источника света выбрать спираль разонного пользоваться миллиметровыми делениями. 91. Импульс I слагается из двух синусона: $y' = \sin \omega t + y'' = 2 \sin 3\omega t$. Ульс II слагается из двух синусона: $y' = \sin \omega t + \pi/4$. спираль газонаполнённой лампы накаливания).

Импульс I слагается из двух синусона: $y = \sin (3\omega t + \pi/4)$. Импульс II слагается из $y' = \sin \omega t + y' = 2\sin (3\omega t + \pi/4)$. Показат

Показать, что эти импульсы соответствуют одинаковому спектралькому ределению видуться выпулься соответствуют одинаковому выпулься ПОКАЗАТЬ, ЧТО ЭТИ ИМПУЛЬСЫ СООТВЕТСТВУЮТ ОДИНАКОВОМУ СВЕКТРАЛЬНИК распределению энергии, но имеют разные формы. (Для простоты випулься представлены силист и но имеют разные бесконечной совокупностью близках представлены суммой двух синусонд, а не бесконечной совокупностью блазкат по периоду синусона. 92. Полосы Тальбота. Если при наблюдении в трубу спектра, получаемого ифракционной

92. Полосы Тальбота. Если при наблюдении в трубу спектра, получаеми о от дифракционной решетки, закрыть часть объектива грубы тонкой стекливания или слюдяной пластичной и дифракционной решетки, закрыть часть объектива грубы тонбой стеманали или слюдяной пластинкой, то получается спектр, пересеченных темпьия поло сами. Явление изблютовского конца спектр, пересеченных вые чи Слюдяной пластинкой, то получается спектр, пересеченный темными начи Сами. Явление наблюдается, если пластинка вдвинута с красного конца спектр, и отсутствует, если пластинка вланнута с фиолетового конца ликованть услочина. Я вление наблюдается, то получается сискир, че скрасного конца слекиеми и отсутствует, если пластинка вдвинута с фиолетового конца. Объеснить васе ние, исходя из рассумстриит 5 51 о роли решетки. Как нужно високучения возы вид ОТСУТСТВУЕТ, если пластинка вдено, с биолегового конда. Объяснить якте ние, исходя из рассуждений § 51 о роли решетки. Как нужно видоизменить усло вия опыта, чтобы внесение пополнительного слоя с фиссесовой стороны вызы-вало. ите, исходя из рассуждений § 51 о роли решетки. Как нужно видениемить усло-вича опыта, чтобы внесение дополнительного слоя с фисле (ово) стороны вызы-вало явление, а с красной стороны не вызывало? вало явление, а с красной стороны не вызывало?

Указание. Внесение слоя толщиной h с показателем преломления n у казание. Бисселия замедляет распространение света от прикрытой части решетки, внося дополнитель-h(n-n') ную разность фаз пропорциональную 2π , где n' — показатель преломления среды. Эта разность фаз зависит от ф, и в спектре могут возникнуть интерференционные полосы. Замедление импульсов, идущих от нижней части

Рис. 24.

решетки, или ускорение импульсов, идущих от верхней части решетки (см. рис. 9.30), позволяет отстающим импульсам догнать ушедшие вперед и ведет к образованию интерференционных полос. Обратные воздействия исключают встречу и интерференцию. Таким образом. результат зависит OT знака *n — n'* и положения вводимого слоя.

93. Дифракционный опыт Гримальди (1665 г.). Гримальди

описал наблюденное им явление чередования света и тени при освещении двух рядом расположенных щелей светом Солнца (угловой диаметр Солнца равен 31' ≈ 0,01 рад. Каково должно быть расстояние р между щелями при этом

расположении, чтобы могла возникнуть интерференция? (Рис. 24; R — расстояние до Солнца.)

Omsem: р≤25 мкм (расчет для зеленого цвета, $\lambda = 0,5$ мкм). Этот результат заставляет сомневаться в том, что Гримальди наблюдал в данном опыте дифракционные явления. Вероятно, наблюдавшиеся полосы имели субъективное происхождение (контраст).

Юнга. опыт 94. Пифракционный В отличие от расположения Гримальди, Юнг использовал в качестве источника

не Солнце, а сильно освещенную щель (см. § 16). Рассчитать допустимое расстояние между щелями В и С в опыте Юнга, считая, что расстояние от А до ВС равно 1 м и отверстие А представляет собой изображение Солнца, причем солнечные лучи сконцентрированы линзой с фокусным расстоянием 10 мм (рис. 25), т. е. А имеет размеры 0,1 мм.

95. Какова будет разность хода между соответственными лучами от двух соседних щелей, дающих добавочные минимумы в случае трех щелей? четырех щелей? Какой вид имеет диаграмма амплитуд для этих случаев?

Отеет: Для трех щелей λ/3 и 2λ/3; 4λ/3 и 5λ/3 и т. д.; треугольники; для четырех шелей: λ/4, 2λ/4 и 3λ/4; 5λ/4, 6λ/4 и 7λ/4 и т. д.; квадраты.

96. Определить положение добавочных максимумов дифракционной решетки (период d, число штрихов N).

Omeem: $d \sin \varphi = (m + 1/2) \lambda/N$.

97. Вывести формулу

$$\frac{n_1}{a_1} - \frac{n_2}{a_2} = \frac{n_1 - n_2}{R}$$

для случая преломления на выпуклой поверхности.

Рассмотреть случай преломления на вогнутой поверхности, при котором изображение получается мнимым (выполнить построение и вывести формулу).

УПРАЖНЕНИЯ

98. Получить из формулы

$$\frac{n_1}{a_1} - \frac{n_2}{a_2} = \frac{n_1 - n_2}{R}$$

формулу выпуклого и вогнутого сферических зеркал,

тикально под ним под водой на глубине 1 м?

мулу выпуклого и доли и воличие в воздухе, монету, расположенную веруказание. Применить формулу преломления на границе раздела двух сред.

Omsem: На глубине h = 3/4 м.

100. Найти главные плоскости для сферической поверхности. Ответ: Из условий (см. (74.1))

$$V = \frac{n_1 a_2}{n_2 a_1} = 1 \quad \text{H} \quad \frac{n_1}{a_1} - \frac{n_2}{a_2} = \frac{n_1 - n_2}{R}$$

найдем $a_1 = a_2 = 0$.

101. Исследовать формулу тонкой линзы

$$\frac{1}{a_2} - \frac{1}{a_1} = (N-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

для случая выпуклых и вогнутых поверхностей линзы, воздушной динзы (лузырь) внутри воды, стеклянной линзы в воздухе и т. д., указав, в каких случаях линза. собирательная и в каких - рассенвающая.

102. Исследовать формулу тонкой линзы

 $\frac{1}{a_2} - \frac{1}{a_1} - \frac{1}{f},$

выяснив взаимное расположение предмета и изображения и V, т. е. знак и велачину поперечного увеличения (при V = 1, $a_1 = a_3 = 0$, т. е. главные плоско-сти тонкой линзы сливаются в плоскость, проходящую через линзу).

103. Обозначив расстояние источника от переднего фокуса через к в рас-Стояние изображения от заднего фокуса через х2, вынести формулу тонкой линзы в форме, данной Ньютоном:

 $x_1x_2 = -j^2$. 104. Согнем проволоку под углом

 $\pi - \varphi$. Точку сгиба О поместим на расстоянии OK = 1 от линии AB (рис. 26). Показать, что точки пересечений концов проволоки с АВ суть сопряженные точки линзы с фокусным расстоянием f = 1/ф. Если вращать происточника и изображения относительно линзы, расположенной в ОК. (Модель справеллива и изображения относительно линзы, расположенной в ОК. (Модель справеллива и изображения относительно линзы, мо = MK. т. е. Мо может изо-

105. Показать, что для линзы, по обе стороны которой среды различена ≠ п₂), нисери (15

 $(n_1 \neq n_2)$, имеем $f_1/f_2 = -n_1/n_2$. 106. Вывести соотношения, определяющие сопряженные точки оптической системы (рис. 97) и со тоссоонное унеличение: =1; $f_1/f_2 = -n_1/n_2; \quad V = -x_2/f_2 = -f_1/x_1.$ системы (рис. 27) и ее поперечное увеличение: $A_1B_1 = y_1; F_1H_1 = -h_1;$

$$x_1x_2 = f_1f_2; \quad f_1/a_1 + f_2/a_2 = 1; \quad f_1 = -x_1; \quad f_1 = -x_1; \quad f_2 = -x_1; \quad f_1 = -x_1; \quad f_2 = -x_2; \quad f_2 = -x_2;$$

 $F_{2}H_{2}M_{2}$ и $F_{2}A_{2}Q_{3} = +u_{2}$ Выводы: 1) из подобия треугольников $F_{1}A_{1}B_{1}$ и $F_{1}H_{1}M_{1}$ и треугольников $F_{2}H_{2}M_{2}$ и $F_{2}A_{2}B_{3}$ имеем $-V = -y_{3}/y_{1} = x_{3}/s = f_{1}/x_{1}$; отсюда $x_{1}x_{3} = f_{1}/s$ ил $f_{1}/a_{1} + f_{2}/a_{2} = 1$, нбо $x_{1} = a_{1} - f_{1}$ и $x_{3} = a_{3} - f_{3}$.

883

2) Из треугольников $Q_1H_1A_1$ и $Q_2H_2A_2$ получим $a_1u_1 = a_2u_2$ (для параксиальных пучков); далее, учитывая соотношения $(1 - V) = a_2/f_2$ и $(1 - 1/V) = a_1/f_1$, находим $f_1y_1u_1 = -f_2y_2u_2$. Воспользовавшись соотношением Лагранжа $n_1u_1y_1 = n_2u_2y_2$ (см. § 74), находим $-f_1/f_2 = n_1/n_2$, т. е. отношение фокусных расстояний равно отношению соответственных показателей преломления крайних сред, взятому с обратным знаком.

Рис. 27.

107. Две толстые линзы $(f_1 \ u \ f_2)$ расположены так, что оси их совпадают и расстояние между фокусами равно Δ . Определить фокусное расстояние f полученной сложной системы (рис. 28). Ответ: $f = f_1 f_2 / \Delta$.

У казание. Луч SD, параллельный оси системы, выходит из нее по GF. Таким образом, точка F есть передний фокус системы; плоскость MM, пересекающая луч GF на высоте луча SD, есть передняя главная плоскость и H — главная точка. Для построения луча GF используем свойства главных точек составляющих систем (F_1 , H_1 , H_1' , F_2' , H_2' , H_2' , F_2'); в частности, лучи из точки C, лежащей в фокальной плоскости первой системы, должны выходить из этой системы параллельно длуг длуг R BF. парадлельно GFA.

стемы параллельно друг другу, т. е. *ВF*₁ параллельно *GFA*. Итак, фокусное расстояние системы *I* = *HF*. Из чертежа найдем:

$$l = AH \frac{f_1}{BH_1} = AH \frac{f_1}{CF_1'} = \frac{AH}{DH_2} \frac{f_1f_2}{\Delta} = \frac{f_1f_2}{\Delta}.$$

УПРАЖНЕНИЯ

Аналогично для второго фокусного расстояния

$$f' = -\frac{f_1'f_2'}{\Delta} = -\frac{f_1f_2}{\Delta} = -f.$$

При $\Delta = 0$ получим $f = \infty$, т. е. телескопическую систему: параллельные порадов через эту систему, выходят вновь параллельные парааллельные парааллельные парааллельные парааллельные парааллельные парааллельные парааллельные парааллельные параалрельные парааррельн При С — через эту систему, выходят вновь параллельным прака. лучи, проходя через эту систему, выходят вновь параллельным приком. и, проходя через эту систему, откодат вновь параллельным пучком. При совпадении главных плоскостей H'_1 и H_2 , т. е. при $f'_1 + \Delta - f_2 = 0$ и при $f'_1 + \Delta - f_2 = 0$ и при

условии, что $f'_2 = -f_2$ (ср. упражнение 105), имеем $1/f' = 1/f'_1 + 1/f'_2$

т. е. оптическая сила соприкасающихся линз равна сумме оптических сил составляющих.

передний фокус F сложной системы сопряжен относительно сервой линзы с точкой F₂ (луч F₂EGF). Расстояние x_F от F₁ до F находим с помощью формулы (79.1)

$$x_F = f_1 f_1 / \Delta$$
.

Аналогично для расстояния х от F' до F' имеем

$$x'_{F'} = -f_2 f'_2 / \Delta.$$

Положения главных плоскостей Н и Н' относительно фокусов F₁ в F' соотгатственно определяются очевидными равенствами: $x_H = x_F - f_i x'_{H'} = x'_F - f'$.

Простейшим примером сложной системы является линза. Если принять эз составляющие системы две преломляющие поверхности и воспользоваться формулами (72.1), то легко найти

$$f' = -\frac{f'_1 f'_2}{\Delta} = \frac{1}{(n-1)(1/R_1 - 1/R_3) + [(n-1)^2/n] d/R_1 R_3},$$

где d — толщина линзы на оси. В отличие от формулы (77.1) для тонкой линзы, В Знаменателе появился член, описывающий влияние толщины линзы. Выбрав d

таким образом, чтобы $f' = \infty$, получаем из толстой линзы зрительную трубу (см. § 93).

108. Преломление на плоской границе вызывает астигматизм пучка.

а) Показать, что лучи, исходящие из одной точки (S), после преломления на плоской границе не имеют общей точки пересечения (рис. 29).

Указание. Найти расстояние точки пересечения двух симметричных лучей до границы и убедиться, что оно зависит от угла падения.

б) Убедиться в появлении астиг-Рис. 29. матизма при преломлении на плоской Ау лучами, лежащими в плоскости, определяемой осью пучка и норидью к поверхности (морчитись плоскости, определяемой осью пучка и норидью к границе, рассмотрев пучок, падающий му Лучами, лежащими в плоскости, определяемой осью пучка и нормалов и поверхности (меридиональное сечение), изменяется сильнее, чеч для лучей, лежащих в перпеняти сагитальное сечение). 109. Пользуясь тем, что для сферической поверхности есть пара апланати их точек, построити сталиционно дня указать для нее япланати лежащих в перпендикулярной плоскости (сагиттальное сечение). 109. Полгонисти есть г 109. Пользуясь тем, что для сферической поверхности есть пара анчалати ческих точек, построить апланатическую линзу и указать для не япланатические точки.

оточки. Ответ: Если Р и Q — апланатическую точки сферической поверхносн то они же булут апланатические точками линаы, ограниченной поверх-

Ответ: Если Р и Q — апланатические точки сферической повержели КL, то они же будут апланатическими точками линам, ограниченной розерх-ностью КL и сферой MN имоющей центром точку P. ностью KL и сферой MN, имеющей центром точку P.

885

УПРАЖНЕНИЯ

110. Ширина пучка D', выходящего из трубы (телескопическая система), 110. Ширина пучка , система), уже, чем у поступающего в объектив D (рис. 30). Показать, что увеличение трубы

авно $e^{\chi^*} = \frac{\varphi'}{\varphi} = \frac{g}{g}$ диаметр пучка до трубы $= \frac{D}{D'} = \frac{g}{g}$ диаметр входного зрачка диаметр выходного зрачка.

Указание. Использовать рис. 30 и рассмотреть условие того, что лучи от ценгра и от края бесконечно удаленного предмета не дают разности хода, т. е. от центра и от края оссловено уденение и разности хода, т. е. (PM) = (N'P'). Но $PM = D \sin \varphi$; $N'P' = D' \sin \varphi'$. Благодаря малости φ

$$\varphi' D' = \varphi D,$$

111. Если параллельный пучок лучей падает на призму, стоящую не в положении мпнимального отклонения, то он по выходе имеет иную ширину. Таким образом, призма может явиться телескопической системой, дающей увеличение или уменьшение изображения. Рассмотреть, когда имеет место первый и когда — второй случай.

Рис. 30.

112 Преломление в призме. При обозначениях, принятых в § 86, для отклонения луча при преломлении в призме имеем

$$D = (\alpha_1 + \alpha_2) - (\beta_1 + \beta_2) = (\alpha_1 + \alpha_2) - \varepsilon.$$

Найти условие минимального отклонения $\frac{\delta D}{\delta \alpha_*} = 0$, т. е. $|\alpha_1| = |\alpha_2|$ входной и выходной лучи симметричны; следовательно, луч в призме параллелен основанию.

Показать, что при симметричном ходе лучей $n = \frac{\sin \frac{1}{2} (D + \varepsilon)}{\sin \frac{1}{2\varepsilon}}$.

Если преломляющий угол є мал и лучи падают на призму под малым углом $(\alpha - MAIO)$, to D = e(n - 1).

Указание. При малых α_1 и е угол α_2 тоже мал. Следовательно: $\alpha_1 = n\beta_1$, $\alpha_2 = n\beta_2$. Отсюда D = (n-1) ($\beta_1 + \beta_2$) = ε (n - 1). 113. Показать, что в призме Амичи (рис. 31) луч не будет отклоняться при соблютении сталини соблютении сталиться при

соблюдении следующих условий:

$$\alpha_1 = 90^\circ;$$
 ig $1/2\alpha_2 = \sqrt{(n_1^2 - 1)/(n_2^2 - n_1^2)}.$

Указание. Луч, проходящий без отклонения, входит и выходит из призмы параллельно основанию и идет симметрично относительно внутренней призмы.

Тройная призма Амичи построена из флинта (С-18) и крона (С-20) (см. таб-Тройная призисти 114), так что луч F ($\lambda = 4861$ Å) не отклонается. Рассчлать угол расхождения (дисперсию) между между досудать дницу в упражистить угол расхождения (дисперсию) не отклоняется. Рассчитать эту призму и G ($\lambda = 4341$ Å).

563 А) и О Солованическая аберрация и акроматизм. а) Хроматическую аберра-114. Хроматическая аберрация и акроматизм. а) Хроматическую аберра-114. Аролиние определить как вариацию фокусного расстоящия для развих цию линзы можно определить как вариацию фокусного расстоящия для развих показателе преломления: б $\delta n = 1$

=0, то линза ахроматична. Если

Показать, что условие ахроматизации сложной линзы, составленной из двух склеенных линз, есть

$$\frac{1/\nu_1 f_1 + 1/\nu_2 f_2 = 0}{r_{\text{A}} e \ \nu_1 = (n_1 - 1)/\delta n_1, \ \nu_2 = (n_2 - 1)/\delta n_2}$$

(практически можно взять п1 и п2 для Д-линии натрия, т. е. считать, что ч, в v₂ — коэффициенты дисперсии наших стекол). У казание. Использовать результаты упражнения 107.

Таблида І

Ti,

PHC. 31.

Название	Обо- значе- ния	ⁿ D	٧	n _F - n _C	nF-nD	ng-nj
Боросиликатный крон Силикатный крон Крон флинт Баритовый легкий крон Баритовый крон Баритовый крон Легкий флинт Тяжелый крон Флинт Флинт Тяжелый флинт	C-20 C-7 C-12 C-49 C-21 C-17 C-6 C-16 C-24 C-8 C-3 C-18	1,5100 1,5147 1,5181 1,5262 1,5302 1,5726 1,5783 1,6126 1,6129 1,6242 1,7550	63,4 60,6 58,9 51,0 60,5 59,7 57,6 41,7 58,6 36,9 35,9 27,5 563A, 2	$\begin{array}{l} 0,00505\\ 0,00549\\ 0,00879\\ 0,00879\\ 0,00955\\ 0,00955\\ 0,01387\\ 0,01046\\ 0,01660\\ 0,01738\\ 0,02743\\ 0,02743\\ F=4561A \end{array}$	0,00555 0,00533 0,00619 0,00730 0,00517 0,00637 0,00637 0,00702 0,00937 0,00937 0,00937 0,01134 0,01242 0,01975	0,05451 0,0451 0,05598 0,05598 0,05515 0,05535 0,0553 0,0553 0,0553 0,0553 0,0553 0,0553 0,0553 0,0553 0,0553 0,0513 0,0513 0,0513 0,0513 0,0513 0,0550000000000
Примечание. Лр	== 5893	A, ^C			and ath	ora kpos

Характеристики оптических стекол

б) Дана симметричная двояковыпуклая линза на боросиликатного крона С-20 с фокусным расстоянием (для *D*-линни) *f*₁ = 100 мм. Рассчитать аннау из флинта (т. е. выбрать сорт стекла и указать радиусы поверхностей), которуз можно наклачать из поличие с тем чтобы получить собщательную акроматиче в дожно наклачать из поличие с тем чтобы получить собщательную акроматиче в дожно наклачать из поличие с тем чтобы получить собщательную акроматиче в дожно наклачать из поличие с тем чтобы получить собщательную акроматиче в дожно наклачать из поличие с тем чтобы получить собщательную акроматиче в дожно наклачать из поличие с тем чтобы получить собщательную в дожет для *f* = 100 мм. можно наклеить на данную с текла и указать раднусы поверхностен, консул можно наклеить на данную с тем, чтобы получить собирательную ахроматиче СКУЮ ЛИНЗУ с формализации близким к 300 мм (вести расчет для и

можно наклеить на данную с тем, чтобы получить собирательную ахроматиче Скую линзу с фокусным расстоянием, близким к 300 мм (вести расчет дая / = 300 мм. выбрать по притагасной таблице наклучшим образом подходация скую линзу с фокусным расстоянием, близким к 300 мм (вести расст для / = = 300 мм, выбрать по прилагаемой таблице нанлучшим образом подходачия сорт стекла и полонителя составляли какое получится р. соо и сла а и подсчитать окончательно, какое получится f. С.20 и С-lä. : $r_1 = -102$ мм, $r_2 = 635$ мм, f = 292 мм. Стекло: найдем: $t_2 \varphi$. Величение лупы. Применяя формулу простой липзы, найдем: сорт стекла и подсунтать окончательно, какое получится Л. Ответ стекла и подсунтать окончательно, какое получится Л. а = 635 мм, f = 292 мм. стекло: сло в сто, именяя формулу простой липзы, вайдем: ig с ения изображения; ig q = 1.D, гле

115. Увеличение лупы. Прим
$$l' l(f-a')$$
, где φ' -угол зр

$$= \frac{1}{-a'+d} = \frac{1}{f(d-a')}$$

-

ф — угол зрения предмета, помещенного на расстоянии D от невооруженного

Увеличение ом равно

$$\mathscr{N} = \frac{\lg \varphi'}{\lg \varphi} = \frac{D(f-a')}{f(d-a')};$$

Рис. 32.

т. е. унеличение несколько зависит от положения глаза (d). Когда глаз помещен вблизи главного фокуса (d = f), что практически имеет место, то $\mathcal{D} V = D/f.$

116. Рассчитать угловую и линейную дисперсию спектрографа, снабженного тремя шестидесятиградусными призмами из стекла С-З и имеющего камерную линзу с фокусным расстоянием f = 250 мм. Призмы поставлены на минимум отклонения для луча F. Дать расчег

для нескольких длип волн. Построить расчетный график, откладывая по оси абсинсе расстояние между линиями, а по оси ординат — дли ну волны.

117. Диаметр коллиматорного объектива d = 50 мм. Каковы должны быть размеры шестидесятиградусной призмы из С-18 и диаметр камерного объектива для полного использования светового потока, поступающого в прибор, если

призма поставлена на минимум отклонения для луча F?

118. Вывести выражение для разрешающей силы объектива трубы по способу Аббе.

Указание. $\sin u = u, n = 1$. Условие разрешения $d = \lambda_0/u$ или $\varphi = \lambda_0 / R.$

119. Показать, что в плоскости, сопряженной с предметом, дифракционная картина совпадает с фраунгоферовой.

Указание. Идеальную оптическую систему представить в виде

двух подсистем, между которыми от каждой точки предмета идет параллельный пучок лучей (рис. 33). Располагая апертурную днафрагму в параллельных пучках, получаем схему наблюдения дифракции Фраунгофера.

120. Показать, что дифракционная картина в изображении двух когерентных точечных источников не имеет в центре минимума, если источники расположены на расстоянии, определяемом формулой (97.1).

121. Как выглядит изображение мелкой сетки (скрещенные решетки), если в фокальной плоскости объектива микроскопа поместить диафрагму в виде шели, проходящей параллельно вертикальным штрихам сетки? параллельно горизонтальным штрихам сетки? наклонно к тем и другим штрихам?

122. Какова разрешающая сила человеческого глаза при размере зрачка R = 2 мм (для зеленых лучей, $\lambda = 5500$ Å)? (Показатель преломления среды глаза n = 1.4). глаза n = 1,4.) Определить предельный угол и сравнить его с пределом разрешения, обусловленным строением сетчатки глаза.

123. Определить разрешающую силу метрового объектива.

124. Почему применение окуляра трубы не может повысить ее разрешающую и несмотра на солосить со разрешающую силу, несмотря на значительное увеличение, даваемое окуляром?

125. Как влияет увеличение диаметра объектива на размер либоакционного и кружка рассеяния, обусловленного сферической абебратиско и 125. Как влижет у величение диаметра объектива на размер лафоакционного кружка и кружка рассеяния, обусловленного сферической асеррацей (В совре-кружка и короших объективах отверстная ошибка исправлена настоя и В соврекружка и кружка расселния, обусловленного сферической астравлениюного кружка и кружка расселния, обусловленного сферической астравления менных хороших объективах отверстная ошибка исправлена кастолько (В совре-менных хороших объективах отверстная ошибка исправлена кастолько исправления мачество изображения определяется явлениями дифракции.) менных хороших составляется залениями дифракции, что качество изображения быть призмы спектоограф. Каковы должны быть призмы спектоограф.

качество изооражения определяется явлениями дифракции.) 126. Каковы должны быть призмы спектрографа, способно обларужить эффект Зеемана в водороде в магистном поле 10 соо ср 126. Какова должна быть призма из крона С-12 (полого сла в магнитися поле 10 000 это какова должна быть призма из крона С-12 (полого сла 10 000 это сла 10 0000 это сла 10 000 это сла 10

альный эффект. Состана призма из крона С-12 (флинта С-18) для разрешения 127. Какова должна быть призма из крона С-12 (флинта С-18) для разрешения желтого дублета натрия (5890 А и 5895 А) гого дуолега ватрин соводущее упражнение для близких желтых лингя ртута 128. Рассмотреть предыдущее упражнение для близких желтых лингя ртута

5770 Å H 5791 Å.

А и отот с. 129. Вывести условие когерентности освещения отдельных тотек структури 129. Бывести условая источником (угловой размер источника, спределения с периодом d протяженным источником (угловой размер источника, спределения

Omeem: Если $\psi \ll \lambda/d$, то освещение когерентно.

Указание. Освещение когерентно, если различие в разности саз световых волн, распространяющихся из разных точек источника и освещающих элементы структуры, мало по сравнению с 2л. Освещение структуры разлачными участками протяженного источника можно рассматривать как освещение системой плоских волн *), падающих на структуру по разные напразеные в заенсимости от того, от какой точки источника они исходят. Все разносбразие ва-правлений определяется угловыми размерами источника ф. Какдая глоххая содиа ЕОЛНА СОЗДАЕТ В ПРЕДЕЛАХ ЭЛЕМЕНТА СТРУКТУРЫ КОЛЕбанна, различающиеза во фазе на 2л.doi/A, где фi — угол, определяющий направление соответся уздей плоской волны. Различия в разности хода, обусловленные разыерана всточныха,

Составляют $\sum d\phi_i = d \sum \phi_i = d\psi$, а различие в разности фаз есть (21 2.4). 130. Показать аналитически, что разность двух синусова санизховой ча-

СТОТЫ И АМПЛИТУДЫ, НО НЕМНОГО СДВИНУТЫХ ДРУГ ОТНОСИТЕЛЬНО ХРУГА ГО САСС. Представляет и собщение и собщении собщени собщение и собщение и собщение и собщение и собщ представляет собой синусоиду той же частоты, но с малой амплитулся; эта ре-зультирующие Зультирующая синусоида сдвинута по фазе почти на 1/27 по отношению к исходивым

131. Вычислить разрешающую силу призмы Резерфорда (рнс. 34) 118 D-ли-т. е. д. — Бооо исходным.

нии, т. е. $\lambda = 5890 A$. 132. Сравнить разрешающую силу и дисперсню нескольких призи из одного риала (С-3) установания с плу и дисперсню нескольких призи из одного с 35): Vказание. $A = b' \frac{dn'}{dt}$ *) Волны, излучаемые отдельными точками источника и доходящие до струк-и, можно считет. *) Волны, излучаемые отдельными точками источника и доходящие до структуры Туры, можно считать плоскими, нбо $d \leq R$, где R - расстояние от структурыДо любой точки источника

133. Определить максимальный преломляющий угол трехгранных призм 133. Определять маненали могут существовать минимумы отклонения. кз С-3 и из С-18, для которых могут существовать минимумы отклонения.

Указание. Принять во внимание полное внутреннее отражение.

Указание. примые се слоя (вполне исправленным на сферическую 134. Прожектор снабжен зеркалом (вполне исправленным на сферическую 134. Прожектор сплоние странескую аберрацию), имеющим фокусное расстояние f = 100 см и днаметр отверстия оберрацию), имеющим фокусное расстояние f = 100 см и днаметр отверстия аберрацию), имсточником света служит кратер электрической дуги, который D = 100 см. Источником света служит кратер электрической дуги, который D = 100 см. источником свого смунтром 4 мм, центр которого совмещен с фоможно рассматрлыци или датера 10³ кд/м², излучение его подчиняется закону Ламберта.

оерта. Определить среднюю сферическую силу света источника и силу света на оси прожектора (экранирующим действием углей дуги можно пренебречь).

135. Объективы коллиматора и камеры спектрографа имеют однаковые диаметры, а их фокусные расстояния равны соответственно f_1 и f_2 . При помощи конденсора достигнуто освещение щели, при котором объектив коллиматора полностью заполнен светом. Доказать, что светосила прибора зависит только от объектива камеры.

Доказательство. Яркость щели B, поток в приборе $\Phi = \pi B\sigma \sin^2 u = \pi B\sigma R^2/f_1^2$, площадь изображения щели $\sigma' = \sigma f_{*}^{2}/f_{*}^{2}$, освещенность $E = \pi B R^{2}/f_{*}^{2}$, т. е. зависит только от светосилы камерного объектива.

136. Во сколько раз возрастет освещенность, если свет от Солнца концентрируется линзой с относительным отверстием d/f = 1/5?

Ответ: Приблизительно в 400 раз.

137. Вывести выражение для освещенности, даваемой любой оптической системой на расстоянии I, в форме $E' = KBS/l^2$ (формула Манжена), где K -коэффициент пропускания оптической системы, S -площадь выходного зрачка системы, В - яркость источника.

Указание. (рис. 36). Поток, падающий на изображение, равен Ф' = $= K\Phi = KB\sigma\pi \sin^2 u;$ площадь изображения $\sigma' = \sigma \sin^2 u / \sin^2 u'$ (условие синусов). Для освещенности имеем

$$E' = KB\pi \sin^2 u',$$

где $\sin u' = D/2l$, т. е.

$$E' = K \frac{B}{l^2} \frac{\pi D^2}{4} = K \frac{BS}{l^2},$$

где $S = \pi D^2/4$ — площадь выходного зрачка.

138. Определить освещенность, создаваемую прожектором с зеркалом диаметром D = 2 м, дуга которого имеет яркость $B = 10^9$ кд/м², на расстояник l = 1 км при идеальной прозрачности (K = 1). (Использовать формулу Манжена, см. упражнение 137.)

Omeein:

$$E = \frac{\pi \cdot 10^9 \cdot 2^2}{4 \cdot 10^6} \approx 3 \cdot 10^3$$
лк.

пускает не более половины естественного света?

139. Почему турмалин, как и любое поляризационное приспособление, про-те более половины естественного света? ает не более половины сотехного света. 140. Описать явления, которые будут наблюдаться при вращения Та на рис. 140. Описать явления, которые будут наолюдаться при вращения Т₁ на рас. 16.1. Описать явления, которые будут наблюдаться при вращения Т₁ на рас. 16.3.

16.3. 141. Показать, что из закона Брюстера следует перпендикуляристь лута, и луча преломлениого. 141. Политор углом Брюстера, и луча преломленного, отраженного под углом Брюстера, и луча преломленного,

указание. Использовать закон Брюстера и закон предомлениого. Указание угол Брюстера при отражении от ана предомления.

Указанис. Полотовостера при отражения и закон прелоздения. 142. Определить угол Брюстера при отражения от дла стехляния сосуда. 142. Определить сосуд сделан из крона с показателем предокления от дла стекляеного сосуда, наполненного водой (сосуд сделан из крона с показателем предокления n = 1,50). каз. Как определить показатель предокления непосарящися n = 1,50).

лненного водол (сталя показатель преломления непрозрачного диздектрика 143. Как определить показатель преломления непрозрачного диздектрика (например эмали)? Воспользоваться законом Ерюстера.

Указания, стопу из фотографических пластинок, произвести с ней простые опыты по поляризации и описать их.

145. Попытаться определить поляризацию лучей Солнца, опреженных от поверхности воды. В какое время дня поляризация будет максимальной?

Рис. 37.

146. Описать, как меняются интенсивности Io и Ie в опыте, описанном ва стр. 383. Указать, в частности, положения, при которых $I_0 = 0$, или $I_z = 0$, или $I_0 = I_e$.

147. Рассчитать апертуру призм, изображенных на рвс. 17.4 в 17.5 (см. \$ 108).

148. Рассчитать двоякопреломляющие призмы из исландского штата (си рис. 17.8), дающие угол между лучами в 5.

149. Какой угол между лучами в ... нзображенная на рыс 17.3, а,

если каждая из половин призмы имеет преломляющий угол 30? 150. Встровое стекло и фары автомашин сделаны из поляронда. Ках должны

быть расположены эти поляроиды, чтобы шофер мог вдать дорогу, освещенную Светом его форма светом его фары, и не страдал от ослепляющего действия фар встреных машан? Отворт Р Ответ: В стекле и в фарах всех машин ставят поляроны тах, чтобы глаз-

151. Простейший поляризационный фотометр устроен следжещая образом (рис. 37). Свет через малое квадратное отверстие, стороны которого ориентиро-ваны по главным поляризационные отверстие, стороны которого ориентированы по главным плоскостям призмы, показанной на рис. 17.8, е, падает на это призму и затем разовления призмы, показанной на рис. 17.8, е, падает на это призму и затем разовления призмы, показанной на рис. 17.8, е падает на это призму и затем разовления призмы, показанной на рис. 17.8, е падает на это призму и затем разовления призмы, показанной на рис. 17.8, е падает на это призму и затем разовления призмы, показанной на рис. 17.8, е падает на это призму и затем разовления призма призма призма показанной на рис. 17.8, е падает на это призму и затем разовления призма призма показанной на рис. 17.8, е падает на это призму и затем разовления показания показанной на рис. 17.8, е падает на это показания показ Показания показания показания показания показания показания показания показания призму и затем рассматривается через николь. При подходящих размерах отвер-Стия и полярии соприкатальной видны два соприкатанских тризму и затем рассматривается через николь. При подходящих размерах отвер стия и поляризационной призмы через няколь видны два соприказающихся квадрата. При постоя призмы через сотримение освещенностей этих кватра-

квадрата. При поворачивании николя соотношение освещенностей этих кватра-тов меняется

а) При какой ориентации N относительно в⁷ оба квалрата одинаково осве-ы, если палающий свет поляриловая а) При какой ориентации N относительно в? оба квалрата одинамов свет щены, если падающий свет естественный? если падающий свет подаризован Вдоль одной из сторот и свет стерстия? вдоль диагонали стерстия вдоль одной из Вдоль одной из сторон квадратного отверстия? вдоль диагонали отверстия? 6) Свет. частника отверстия? вдоль диагонали отверстия? б) Свет, частично поляризованный, с направлением поляризации вдоть И из главных плоскостей поляри и правает на прибор. Кахова степень поля O) Свет, частично поляризованный, с направлением поляризации вализа Одной из главных плоскостей призмы И падает на прибор. Какова стелень поля Ризации (Δ). если разволство полеб соответствует повороту никола на угод п Относ. -чной из главных плоскостей призмы W падает на прибор. Какова стелень нама ризации (Δ), если равенство полей соответствует повороту николя на угез а относительно указанной плоскости призмы W7

относительно указанной плоскости призмы #7

Указание. Степень поляризации определяется как отношение разности указание. Степентиков, поляризованных в двух взаимно перпендикуляр-интенсивностей (/' и /'') пучков, поляризованных в двух взаимно перпендикулярных направлениях, к полной интенсивности (1), т. е. $\Delta = (l' - l'')/l$.

Omsem: $\Delta = -\cos 2\alpha$.

Определить α, если степень поляризации равна 20%.

Определить с, ссли столения для различных длин волн в исландском шпате я кварце приведены в табл. 2.

Таблица 2

T	Исландск	Кварц		
Длина волны л. нм	n _e	- ⁿ o	n _e	no
687 (красный) 656 (орэнжевый) 589 (желтый) 527 (зеленый) 486 (голубой) 431 (сине-фиолетовый) 400 (фиолетовый)	1,484 1,485 1,486 1,489 1,491 1,495 1,498	1,653 1,655 1,658 1,664 1,668 1,676 1,683	1,550 1,551 1,553 -1,556 1,559 1,564 1,568	1,541 1,542 1,544 1,547 1,550 1,554 1,558

Показатели преломления в исландском шпате и стекле для разных длин волн

Вычислить, какой толщины должны быть пластинки из кварца и из исландского шпата, для того чтобы они для разных длин волн служили четвертьволновой пластинкой.

153. Ввиду трудности изготовления столь тонких пластинок (см. упражнение 152) рационально применять пластинки, дающие разность хода, равную $(m + 1/_{4})\lambda$. Рассчитать такую пластинку из кварца для $\lambda = 589,3$ нм (желтый цвет), с тем чтобы ее толщина была около 1 мм. Как будет действовать такая пластинка на фиолетовые лучи ($\lambda = 400,0$ нм)?

154. Объяснить, в чем невыгодность применения толстых кристаллических пластинок в 1/1 (обратить внимание на дисперсию разности показателей преломления, т. е. на зависимость разности показателей преломления от длины волны).

155. Рассмотреть подробно вопрос о получении левой и правой круговой поляризации. Какого характера получится поляризация, если толщина кристаллической пластинки такова, что она сообщает разность хода, равную 3/22? 156. Подробно рассмотреть, что получится, если естиественный свет падает

на кристаллическую пластинку, в частности на пластинку в 1/, волны; на пластинку в 1/2 волны?

157. Если при производстве опыта Юнга свет, проходящий через две шели, поляризуется во взанино перпендикулярных плоскостях (например, с помощью соответствующим образом расположенных поляроидов), то интерференция не наблюдается. Этот известный опыт Араго — Френеля названные авторы видоизменили, расположив после обеих щелей кристаллическую пластинку, главные направления которой составляли угол в 45° с каждым из направлений поляризации обонх интерферирующих пучков. В результате образовались четыре волны одинаковой амплитуды, у которых попарно плоскости колебания совпадали (две волны — с колебаниями в первой главной плоскости кристаллической пластинки, две волны — с колебаниями во второй главной плоскости). Тем не менее интерференции не наблюдалось. Интерференционная картина не появляется и при рассматривании ее через николь любой ориентации. Это доказывает, что дело не сводится к образованию двух интерференционных картин с максиму-

УПРАЖНЕНИЯ

мами, смещенными на полполосы и поляризованными во взеизно порпенениях. направлениях. чаблюдение Араго — Френеля. Цто на ии, служеваниях. х направлениях. Объяснить наблюдение Араго — Френеля. Что неубходиму сделать из тония интерференции?

подения интерференция наблюдается, если свет, вадаклана ва коли. Ответ: Интерференция наблюдается, если свет, вадаклана ва коли, продварительно сделать плоскополиризованных, ес.

тельно сделать наченования. 158. Френель обнаружил, что слабо преломляющая пластинка сереокалой и обнаруживает интерференционных цветов, хотя ва има сереокалой

извести не обнаруживает интерференционных цветов, хога из все выходат с разностью хода около 2-3 длин волн. Объеснить явлеети извести не сонтруктова около 2-3 длин воли. Объеснить из из ва волны с разностью хода около 2-3 длин воли. Объеснить из из ва по и мечание. Наблюдение Френеля стало историять явление ы с разностью ис. Наблюдение Френеля стало исходных для посталсыха. Примечание. Наблюдение Френеля стало исходных для посталсыха

знаменитых опытов Френеля и Араго (см. § 109). ренитых опытов с условние и на чертеже характер поляризации света, 159. Изобразить схематически на чертеже характер поляризации света, 159. Изооризние вышедшего из компенсатора Бабине, при помощи стрелок, кружков и элисов, обозначено направление колебания.

Объяснить, в чем будет различие для крас-

ного и фиолетового света.

160. Какая картина наблюдается при прохожденни белого эллиптически поляризованного света через компенсатор Бабине и николь?

161. Пользуясь таблицей, приведенной в упражнении 152, описать картину, наблюдаемую при прохождении плоскополяризованного света через кварцевый клин с углом при вершине α = 5'.

Направление оси совпадает с ребром АА, расположенным вертикально. Плоскость полярнаации падающего света составляет угол 45° с направлением оси кварца. Свет монохромагический, λ = 589,0 нм.

Дать схематический чертеж направлений колебаний в пучке, выходящем из клина, в рассчитать, на каком расстоянии будут лежать места правой круговой поляризации.

162. Описать различие в интерференционной

картине, наблюдаемой в случае помещения между ДВУМЯ СКрещенными поляризаторами пластинки слюзы в кучки случено собранных тонких листков слюды, выеющих в совокупности ту же тостеву, Ответ: Во втором случае («кучка пластиною) нет главных ваправления что и пластинка.

163. Описать картину, которая должна наблюдаться в парадлельных дусл при помещении между скрещенными николями пластинки, вырезанеой из сажосного кристалла параллельно оптической оси. Что произойдет, есля врадать пластинку? если вращать анализатор?

164. Компенсатор Бабине-Солейля устроен в виде влоскопаралаельной ТИНКИ и волити Бабине-Солейля устроен в виде влоскопаралаельной пластинки и двух клиньев, вырезанкых из кварца параллельно осв. Таких оста ЗОМ, Клиньев, образованных из кварца параллельно праставку сете-ЗОМ, КЛИНЪЯ ОБРАЗУЮТ В СОВОКУПНОСТИ ПЛОСКОПАРАЛЛЕЛЬНО ОК ТИКУ БЕЗС-МЕННОЙ ТОЛИТИКА ОБРАЗУЮТ В СОВОКУПНОСТИ ПЛОСКОПАРАЛЛЕЛЬНО ОК ТИКУ БЕЗСменной толщины, причем в постоянной и переменных пластиных областиемые оси направлении, причем в постоянной и переменных пластиных областинах областинах Рассмотреть действие такого компенсатора. Какой вид будет иметь поле Расположение риствие такого компенсатора. Какой вид будет иметь поле расположение риствие такого компенсатора. оси направлены перпендикулярно друг к другу (рис. 38). Рассилатованы перпендикулярно друг к другу (рис. 38).

при расположении компенсатора Бабине-Солевля по схеме рис. 18.5? Ответ: Сторона Бабине-Солевля по всему поло. Ответ: Степень эллиптичности будет одинакова по всему поло. 165. Возмочние 165. Возможно ли получение в белом свете интерференционной картных хеме рис. 26 22 пол получение в белом свете интерференционной картных

165. Возможно ли получение в белом свете интерференционной картисть по схеме рис. 26.22 при любой толщине исланаского шпата? Быркснить разисть хода для пластичных побой толщине исланаского шпата? Выркснить разисть хода для пластинки исландского шпата, вырезанной паратлельно осн, ора толщине 5 мм. При просто шпата, вырезанной паратлельно осн, ора тоди для пластинки исландского шпата, вырезанной паратлельно осв, ога толщине 5 мм. При каких толщинах возможно наблюдение интереренции с ртутной линией 166. Поляризационный монохроматор Була, основанный на явления дистер-показателей предомления монохроматор Була, основанный на явления дистер-166. Поляризационный монохроматор Вуда, основанный на явления анклу-сии показателей предомления, может быть осуществлен по схеме рас. 39. Поля-

PEC. 33.

ризатор N_1 повернут на угол 45° относительно главных плоскостей кристалла K. При подходящей толщине кристалла две близкие линии выйдут из него поляризованными линейно и притом почти во взаимно перпендикулярных плоскостях. При соответствующем расположении N_2 одна из них будет почти полностью задержана, другая — пропущена (монохроматор). (В действительности монохроматор имеет более сложное устройство.)

тор имеет более сложное устрется через монохроматор Вуда на щель спектроа) Белый свет направляется через монохроматор Вуда на щель спектрографа. Как выглядит спектр? Какие изменения произойдут в спектре при повороте N₂ на 90°?

Рис. 39.

Ответ: Спектр состоит из чередующихся темных и светлых полосок; при повороте N_2 темные и светлые полоски обмениваются местами.

6) Рассчитать толщину кристалла K кварца или исландского шпата, позволяющего разделить две близкие желтые линии натрия $D_1 = 589,6$ нм и $D_2 = 589,0$ им; показатели преломления приведены в табл. 3.

Таблица З

Показатели преломления исла	ндского шпата	И	кварца
-----------------------------	---------------	---	--------

_	Исландский шпат		Кварц		
Лниня	n _e	n _o	ne	n _o	
D_1 D_2	1,48654 1,48652	1,65846 1,65843	1,55338 1,55335	1,54423 1,54420	

167. Какова будет последовательность цветных колец при наблюдении интерференции поляризованных лучей в сходящихся лучах (см. рис. 26.23)? Где теснее расположены кольца — в центре картины или ближе к периферии?

163. В предшествующем опыте между N_1 и N_2 помещена пластинка из исландского шпата толщиной d = 1 мм. Определить радиусы первого, третьего и десятого светлых колец для красного цвета ($\lambda = 687,0$ нм) и фиолетового ($\lambda = 400,0$ нм).

Что будет наблюдаться в том месте пластинки, где проходят лучи, пересекающиеся с осью под углом 30°? 45°? в случае монохроматического желтого света ($\lambda = 589,0$ нм) и в случае белого света?

169. Вычислить величину аберрации, вызываемой суточным движением Земли, для мест, широта которых ф равна 0°, 45° и 90°. Возможно ли наблюдение явления, если определение угла при установлении положения звезды можно выполнить с точностью до 0°.05?

Ответ: $\lg \alpha = v/c$, где $v = 2\pi R \cos \phi/T$; R = 6400 км — раднус Земли, T = 24 час — период вращения Земли.

170. Вычислить величину угла аберрации, если направление на звезду составляет угол ф с направлением движения Земли.

Omeen: $\lg \alpha = \frac{v}{c} \frac{\sin \psi}{1 + (v/c) \cos \psi} \approx \frac{v \sin \psi}{c}$, Hoo $v/c \ll 1$.

171. Вывести формулы для определения скорости света по мстоду преры-1/1. Блассети света по методу преры-ваний и по методу вращающегося зеркала, указав, какие данные необходимо применения метода. валини из опыта для применения метода.

ь из опыта из опытов Физо расстояние от колеса до зеркала было 10 км; колесо имело 720 зубцов и угловые скорости составляли при четырех последоколесо имсяю четырех последо-вательных исчезновениях соответственно 326, 457, 588 и 719 рад/с. Вычислить скорость света.

173. Вывести формулу Рэлея аналитически, исходя из рассмотрения импульса как суперпозиции двух близких по длине монохроматических волн с одинаковой амплитудой

$$J_1 = a \cos(\omega_1 t - k_1 x), \quad \frac{1}{2} (\omega_1 + \omega_2) = \omega, \\ J_2 = a \cos(\omega_2 t - k_2 x), \quad \frac{1}{2} (k_1 + k_2) = k,$$

Указание. Фазовая скорость может быть определена как скорость наблюдателя, идущего вровень с неизменной фазой, т. е. из условия постоянства $\psi_{a3bl}(v = \omega/k);$ групповая скорость есть скорость наблюдателя, идущего вровень с неизменной амплитудой, т. е. определяется из условия постоянства амплитуды $(u=d\omega/dk).$

174. Вычислить групповую скорость для различных законов дисперсии: 1. v = k (const) (недиспертирующая среда, например звуковые волны в воздухе);

2. $v = k\lambda$:

3. $v = k \sqrt{\lambda}$ (волны, вызываемые на поверхности воды силой тяжести); 4. $v = k/\sqrt{\lambda}$ (капиллярные волны на поверхности воды);

V = k/λ (волны при изгибании упругой пластинки).

175. Измерение дисперсии для сероуглерода дает

при $\lambda = 589,0$ нм n = 1,629;

при $\lambda = 527, 0$ нм n = 1,642;

при $\lambda = 656, 0$ нм n = 1,620.

Найти соотношение фазовой и групповой скоростей.

.176. Показать, что касательная в точке A с абсинссой λ_0 к кривой $v = f(\lambda)$ (v - фазовая скорость) отсекает на оси ординат отрезок, равный групповой скорости для $\lambda = \lambda_0$ (графический метод Эренфеста) (рис. 40).

177. С какой скоростью должен ехать автомобилист, чтобы спутать красный светофор с зеленым (анекдот о Вуде)?

178. Возможно ли наблюдение явления Допплера, если источник испускает сплошной спектр?

179. а) Возможно ли наблюдение явления Допплера на каналовых лучах, если имеется спектроскоп с призмой из тяжелого флинта (С-18) с длиной основания 5 см? Скорость каналовых частиц v = 5.10⁷ см/с.

б) Какую решетку надо иметь, чтобы наблюдать эффект Допплера на каналовых лучах указанной скорости?

180. Показать, что из (132.1) следуют формулы преобразования для системы К:

$$x = \frac{x' + vt'}{\sqrt{1 - \beta^2}}; \quad y = y'; \quad z = z; \quad t = \frac{t' + (v/c^2)x'}{\sqrt{1 - \beta^3}}.$$

181. Опыт Саньяка: Источник света А и наблюдающий прибор В расположены на диске, могущем вращаться (рис. 41). Свет от А, распространяясь по двум направлениям 1 и 2 и встречаясь в В, дает интерференционную картину. Если Диск заставить вращаться с угловой скоростью w, то возникает добавочная разность фаз и интерференционные полосы сместятся.

а) Вывести формулу, позволяющую определить смещение интерференциона) Бывести формулу, поселения обеспечивающую смещение на 1/4 полосы; ных полос; б) рассчитать установку, обеспечивающую смещение на 1/4 полосы; ных полос; о) рассчитать устаные размеры (2S) источника A в описанном опытер в) каковы должны быть предельные размеры (2S) источника A в описанном опытер

аковы должны оныть представляет хода $\Delta = 2R2\pi\pi\tau$, где R — радиус свето-Ответ: а) розликися распостов диска в секунду, $\tau = \pi R/c$ — время распростра-вой орбиты, n — число оборотов диска в секунду, $\tau = \pi R/c$ — время распространения света от А до В.

Игак,
$$\Delta = \frac{4\pi n}{c} \pi R^2 = \frac{4\pi nF}{c}$$
, где $F = \pi R^2$ есть площадь, обегаемая светом.

6)
$$\Delta = \frac{1}{4}\lambda$$
; $nF = \frac{3}{16\pi} = 3$ м²/с для $\lambda = 500,0$ нм, т. е. при скорости 1 обо-

рот в секунду диаметр диска должен быть около 2 м; при скорости 10 об/сек -60 см.

B) 2S < 0.15 MKM.

182. Огимт Майкельсона—Гэля. Майкельсон осуществил опыт Саньяка. использовав в качестве вращающегося диска Землю. Для устранения зависимости

от температурных колебаний показателя преломления (рис. 42) свет распространялся в расположенном под землей четырехугольнике из эвакуированных труб.

а) Вычислить размер периметра труб, предполагая контур квадратным и принимая во внимание, что опыт производится на широте 40°.

б) Каким образом можно обойти затруднение, связанное с невозможностью изменять скорость вращения Земли?

Ответ: 6) Используя обход по малому и большому контуру.

183. Определить напряженность магнитного поля световой волны, пренебрегая поглощением в агмосфере (например, на границе земной атмосферы, где солнечная постоянная равна 2 кал; солнечная постоянная определяет количество энергии за 1 мин на 1 см²).

Omeem: $H_0 = 0.024$ \Im_0

184. Какова амплитуда напряженности магнигного поля световой волны в месте изображения Солнца при помощи объектива от аппарата ФЭД (с относительным отверстием D: F = 1:2)? (Угловой днаметр Солнца $\approx 1/100$ рад; поглощением в атмосфере можно пренебречь.)

Ommem: $H_0 = 0,024 \cdot 50 = 1,20$ Э.

185. Вывести формулы. Френеля для магнитного вектора и исследовать вопрос о соотношении фаз падающей, ограженной и преломленной волн в зависимости от показателя преломления и угла падения.

186. Вычислить г. для угла Брюстера.

 $Omsem: r_{\perp} = \frac{1}{n^2 + 1}.$

187. Вывести выражение для степени поляризации проходящего света при падении под углом Брюстера.

Onigem:
$$\Delta = \frac{4n^2 - (1+n^2)^2}{4n^2 + (1+n^2)^2}.$$

Вычислить степень поляризации при прохождении света под углом Брюстера в воду.

ера в воду. 189. Угол между плоскостью колебания поляризованного света и плоскостью падения называется азимутом колебания.

Пусть на диэлектрик падает под углом ф плоскополяризованный свет с азипусть на для и свет с ази-мутом а так, что $E_{i\perp}/E_{i||} = tg a.$ При отражении и преломлении света произойдет поворот плоскости поляризации.

Объяснить явление и вычислить, пользуясь формулами Френеля, азимут преломленной волны в и азимут отраженной волны а. Omsem:

 $\operatorname{tg} \alpha' = \frac{\cos{(\phi - \psi)}}{\cos{(\phi + \psi)}} \operatorname{tg} \alpha, \quad \operatorname{tg} \beta = \cos{(\phi - \psi)} \operatorname{tg} \alpha.$

189. Определить степень поляризации света при прохождения под углом Брюстера через стопу из пяти стеклянных пластинок с показателем преломаения 1.5.

190. Показать с помощью формул Френеля, что плогность лучистой энергия и (энергия единицы объема) пропорциональна квадрату показателя преломления среды.

Указание. Среда принимается недиспергирующей, так что групповая скорость (скорость энергии) совпадает с фазовой. Поток энергия сквозь площадку F, составляющую угол α с направлением скорости распространения энергии c, есть W = Fcu cos a. Плотность энергии пропорциональна квадрату амплитуды, так что $W_i = FckE_i^2 \cos \alpha$ и $W_r = FckE_r^2 \cos \alpha$.

При прохождении через границу имеем поток во второй среде

$$W_d = W_i - W_r$$

Расчет особенно прост для нормального падения, а именно

$$W_d = W_i - W_r = FckE_i^3 - FckE_r^3 = FckE_i (1 - E_r^3/E_i).$$

Применяя формулы Френеля для нормального падения, найдем

$$W_d = FckD^2n = F\frac{c}{n}u_d$$
, r. e. $u_d = kD^2n^2$.

191. Показать с помощью формул Френеля, что поток падающей эпергии равен сумме потоков отраженной и преломленной (закон сохранения энергин).

Указание. Пользуясь результатами упражнения 190, рассмотреть наклонное падение отдельно для __-компоненты и для ||-компоненты, приняв во внимание соотношение сечений падающего, отраженного и преломленного потоков.

192. Рассчитать толщину и показатель преломления поверхностного слоя на стекле (n = 1,5), сильно снижающего отражение для лучей с $\lambda = 600,0$ нм при нормальном падении.

Указание. Интенсивности лучей, отраженных от верхней и кижней границ, должны быть близки между собой; разность хода должна составлять 1/2/.

193. Введение комплексных величин часто облегчает математическую трактовку вопросов, связанных с колебаниями и волнами. В основе лежит формула Эйлера

$$\rho^{i}\varphi = \cos \varphi + i \sin \varphi$$
.

Действительная и мнимая части этого выражения в отдельности представляют собой тригонометрические функции, имеющие широкое применение в во-

29 Ландсберг Г. С.

PHETHERATES

тосях консоний. Тах ках солонанское максианических операций легие произ. BOLATE C FOR ALTER DATE & BATT BOLATE SALTA FURTH MURANTA HAN CHINYA HORATATONG весси выследия таких с возлания и конце концов се действительную че функцие выся в этох соказательной сункцией пропарости исобходимые (зая мнахуст часть С этох соказательной сункцией пропарости исобходимые (зая мнахуст часть со этох сохизае несохостимсти) к тригонимски (зая мнамуют часть с соручеся (з случае нехотолимсти) к тригономстрическим вычисления и з коже верхурься (з случае нехотолимсти) к тригономстрическим WUNKLARN, BUSS JOSCIBSTRUESTRUESTR MURUVAN WATTA

Функциях, заяз денет в $e^{i\varphi} = e^{i\varphi}$ кожет взюбражать гармоническое колебание Если $\varphi = \varphi t$, то $e^{i\varphi} = e^{i\varphi}$ кожет взюбражать гармоническое колебание с перводом $T(\varphi = 2\pi/T)$, з ехр [$t(\varphi t - kv)$] — гармоническую полну, наущую с перводом $T(\varphi = 2\pi/T)$, з ехр [$t(\varphi t - kv)$] — гармоническую полну, наущую вдоль сен х и сбладающую дляной волны λ ($t == 2\pi \lambda$).

воражение $z = Ce^{i\omega t} = C \cos \omega t + iC \sin \omega t$ наображает «колебание» с амала. тудой С. .

а) Белачена С может сыть комплексной. В таком случае введение се учитыа) реличные с ваниего колебания. Действительно, если C = a + bi, то можно валисать $C = re^{i\delta}$, т. е. $z = r \exp[i(\omega t + \delta)]$, где r - обычная (дейст- $вительная) амплитуда, а <math>\delta$ - начальная фаза. При этом

$$a = r \cos \delta, \quad b = r \sin \delta,$$

т. е.

$$r=1/a^2+b^2$$
, $tg\delta=b/a$.

6) Если C = a + ib — комплексное число, то сопряженное ему число $C^* = a - ib$. Показать, что квадрат действительной амплитуды r^2 (интенсивность) равьяется произведению комплексной амплитуды (С) на сопряженную с ней (С*):

$$CC^* = (a+ib)(a-ib) = a^2 + b^2 = r^2$$
.

е) Пусть «комплексная» амплитуда С имеет вид

$$C = \frac{a + ib}{A + iB}.$$

Показать, что действительная амплитуда $r = \sqrt{\frac{a^2 + b^2}{A^2 + B^2}}$, а фаза δ определяется соотношением

 $tg\,\delta = \frac{bA-aB}{aA+bB}.$

г) Показать, что если
$$C = \frac{a+ib}{a-ib}$$
, то $r = 1$; $tg^{1}/2\delta = b/a$.

194. Показатель преломления алмаза равен 2,42, анатаса — 2,535 (для обыкновенного луча). Можно ли при однократном полном внутреннем отражении на этих материалах осуществить круговую поляризацию света? Рассчитать необходимую форму куска и дать полную схему опыта (пренебрегая двойным лучепреломлением).

Ответ: Для анатаса $q_1 = 27^\circ, 5$ и $q_2 = 35^\circ, 0, для$ алмаза $q_1 = q_2 = 32^\circ, 7.$ 195. Если опыт Манатаса $q_1 = 27^\circ, 5$ и $q_2 = 35^\circ, 0, для$ алмаза $q_1 = q_2 = 32^\circ, 7.$ 195. Если опыт Мандельштама—Зелени производить с широко расходящимся пучком, так что углы падения будут больше или меньше предельного, то свет флуоресценции будет иметь различную интенсивность в разных участках пучка. Какие участки билого на тол-Какие участки будут более внтенсивными и почему? (Обратить винманые на тол-щину флуореспируются внтенсивными и почему? (Обратить винманые на толщину флуоресцирующего слоя.) Каков предельный угол в случае водного раствора флуоресцеина? флуоресценна?

196. Показать, что в случае полного внутреннего отражения $|E_{r\perp}|^2 = |F_{l\perp}|^2$ $\mu |E_{r_{1}}|^{2} = |E_{I_{1}}|^{2},$

Указание. Использовать указания § 137 и упражнение 193, 6).

VIIPANIITINA

197. Horanath, no 141/26, - Ventry of Altrick, - Ventry 270 ponarentario, $12^{1/2} (b_1 - b_2) = \frac{104}{24} V \frac{10}{24} \frac{1}{2}$ Указание. Прилая рорудая ороная хог $\frac{E_{el}}{E_{ij}} = \frac{\sin \varphi \cos \psi - \sin \psi \cos \psi}{\sin \varphi \cos \psi} = \frac{E_{el}}{E_{ij}} = \frac{\sin \varphi \cos \psi - \sin \psi \cos \psi}{E_{el}} = \frac{1}{2} \frac{\cos \psi - \sin \psi \cos \psi}{\cos \psi - \sin \psi \cos \psi}$ использовать указания 5 137 и учалиният 133, т. ользовань указания з на и пользования на катала к отракования вода в торая. 198. Найти разность фат б, падаления на катала к отракования вода в торая.

нормального падения.

мального паделал. Указание. Придая выражению (111.3) виз 4 + 3, когозя

$$t_{g}\delta_{r} = \frac{b}{a} = \frac{2(m_{r})}{1 - n^{2} - (m_{r})}$$

199. Найти отношение интенсивностей 37 - (Ед Е. 3 и разметь Сля 13 т. дающей на металл и проходящей волн в случае ворешения служен

Рис. 43.

Указание. Использовав формулу (135.7), кайт $\mathcal{E}_{4} \mathcal{E}_{5} = \Delta \exp(3\beta)$. Ornsem: $\Delta^2 = \frac{4}{(n+1)^2 + n^2 \kappa^2}; \ \lg \delta_d = \frac{n \kappa}{n-1}.$

200. Составить графики падающей, отраженной и предомленной вызы разни фаз и соотношения амплитуд при нормальном падееля 214 з = 2. (22) = 5 и A.1.9 n = 2, $(n \times) = 0, 1$).

Ответ: Для n = 2 и (nx) = 0,1 см рис 43

201. Показать, что скорость фазы валь ворчата ; а скорость разы вала луча и в анизотропной среде связаны соотношенным у = р сля 1, где 2 - угы межлу направлением нормали N и направлением луча S.

Указание. Построить два положаная воложа поверлаюти, соответ-Ствующих двум бесконечно близким моженая времена, и нала из чертал выражение лля q и с.

202. Выполнить построение Гюйгенса для различных случаев дадения сло-Ской волны на одноосный красталя; найта напраженая лучей в воймалей и волно волновых фронгов обыкновенного и необыкновенного дучей для следования Cayyages:

 Волна падзет нормально на естественную грань с) Вална падът порядляна и под углом из пластику, вырезнанию перпендакулярно к оптенсказа оси. в) В. в) Волиа полоет нормально и под услоя на пластваку, вырезаную парасслыко оптрими полоет нормально и под услоя на пластваку, вырезаную парасслыко овтической оси и расположенную так, что ось делят в плостояти даления в рер-пенаноской оси и расположенную так, что ось делят в плостояти даления в рерпенцикулярно к нел.

29.
указание. При построении рационально преувеличивать различие указание. указание. При постранения обыкновенной и необыкновенной волн. в скоростях распространения обыкновенной волн. коростях распространения соыкносси осуществляемых установкой волн. 203. Определить число прерываний, осуществляемых установкой Керра, 203. Определить число импульсы с керра,

в скоределить число прерыдаты $v = 10^7 \Gamma \mu$, дающего импульсы с ампли-если она питается от генератора частоты $v = 10^7 \Gamma \mu$, дающего импульсы с ампли-если она питается бооо В. Конденсатор Керра имеет длину $l = 5 \, \text{см. рассал.}$ если она питается от генератора частото Керра имеет длину l = 5 см, расстояние тудой напряжения 6000 В. Конденсатор Керра имеет длину l = 5 см, расстояние тудой напряжения 1 мм. В качестве жидкости взят нитробензол (B = 2.10 в стояние тудой напряжения 6000 В. Конденские взят нитробензол ($B = 2 \cdot 10^{-5}$ см; расстояние между пластинами 1 мм. В качестве жидкости взят нитробензол ($B = 2 \cdot 10^{-5}$ СГСЭ).

ду пластинами I мм. В качество модатить внимание на то, что система Керра У казание. При расчете обратить внимание на то, что система Керра Указание. При растенского разность хода лучей в конденсаторе достигает целого числа длин волн.

Omsem: 1,6.108.

Ответ: 1,6.10°. 204. Каков будет вид интерференционной картины, наблюдаемой в спектро-204. Каков судет вид интерферометром Жамена, если в одно из плеч интерферо-графе, скрешенном с интерферометром Жамена, если в одно из плеч интерферо-

метра введена тонкая стеклянная пластинка? а введена тонкол степличении толщины пластинки? Как изменится Как изменится

Как изменится картина при ус большей дисперсией? при переносе пластинки картина при употреблении стекла с большей дисперсией? при переносе пластинки картина при употрессисити с при помещении одинаковых пластинок в разных плечах?

их? Указание. Уравнение k-й полосы при введении в одно плечо пластинки толщиной d с показателем преломления n, а в другое — толщиной d' с показателем преломления n' имеет вид $y = a \{k\lambda + (n-1)d - (n'-1)d'\}$, причем n и $n' = функции \lambda$.

205. Какой вид будет иметь витерференционная картина (см. упражнение 204). если в одно плечо введена стеклянная пластина, а в другое - слой паров натрия?

Указание. Обратить внимание на очень быстрое изменение показателя преломления паров натрия вблизи полосы поглошения.

206. а) Вывести формулу Эйнштейна (160.2) для интенсивности рассеянного света.

6) Исходя из формулы Эйнштейна, вывести соответствующую формулу для газов, совпадающую с первоначальной формулой Рэлея:

$$I = I_0 \frac{\pi^2 V^2}{2\lambda^4 L^2} \left(\frac{\partial e}{\partial N}\right)^2 N \left(1 + \cos^2 \theta\right) = I_0 \frac{\pi^2}{2\lambda^4} \frac{(e-1)^2}{N} \left(1 + \cos^2 \theta\right).$$

в) Вывести формулу Рэлея для газов, рассматривая непосредственно флуктуацию числа частиц.

г) Отношения интенсивностей анизотропного, суммарного и изотропного рассеяния выразить через деполяризацию суммарного рассеяния (наблюдение под прямым углом к падающему пучку).

Указания. а) Исходить из формулы (160.1) и выражений, полученных в теории термодинамических флуктуаций:

$$\overline{(\Delta p)^2} = \frac{kT}{V^*\beta_S}; \quad \overline{(\Delta S)^2} = kc_L \rho V^*.$$

Воспользоваться термодинамическими соотношениями

$$\begin{pmatrix} \frac{\partial e}{\partial \rho} \end{pmatrix}_{S} = \left(\rho \frac{\partial e}{\partial \rho} \right)_{S} \beta_{S}; \qquad \left(\frac{\partial e}{\partial S} \right)_{\rho} = \left(\frac{\partial e}{\partial T} \right)_{\rho} \frac{c_{\rho} \rho V^{*}}{T}; \qquad \beta_{S} = \left(\frac{1}{\rho} \frac{\partial \rho}{\partial \rho} \right)_{S}$$

в приближенными равенствами

$$\left(\frac{1}{\rho}\frac{\partial e}{\partial \rho}\right)_{S} \approx \left(\frac{1}{\sigma}\frac{\partial e}{\partial T}\right)_{\rho} \approx \left(\rho\frac{\partial e}{\partial \rho}\right)_{T}; \quad \sigma = \left(\frac{1}{V}\frac{\partial V}{\partial T}\right)_{\rho}$$

(более подробно см. И. Л. Фабелинский, Молекулярное рассеяние света, «Наука», 1965 г.). с) Воспользоваться уравнением состояния идеального газа и соотношением

 $\varepsilon - 1 = \text{const} \cdot N$.

в) Записать Δe в виде $\Delta e = \begin{pmatrix} \partial e \\ \partial N \end{pmatrix}$) ΔN и воспользоваться соотношением $(\Delta N)^2 = N$, где N — среднее число частиц в том объеме, для которого вычисляется. Обратить внимание на совпаление формал и в том объеме. (ΔN) — И, КОТО ВИЧИСЛЯЕТСЯ В ТОВ ОТ БЕМЕ, ДЛЯ КОТОРОГО ВЫЧИСЛЯЕТСЯ рлуктуация. Обратить вниманке на совпадение формул для идеального газа

г) Принять во внимание, что изотропное рассеяние полностью поляризовано, а деполяризация анизотропной части расселния равна %/2.

207. Показать, что полное решение уравнения (156.7) с двумя произвольными постоянными имеет вид

$$r = c_1 \sin \omega_0 t + c_2 \cos \omega_0 t + \frac{e}{m} \frac{E_0 \sin \omega t}{\omega_1^2 - \omega^2}.$$

Первые два члена представляют собственные колебания электрона, третиз вынужденные. Во всех реальных задачах имеется некоторое, хотя бы слабое затухание, и поэтому первые два члена по истечении некоторого времени не будут играть роли (ср. упражнение 208, из которого ясно, что $\tilde{c} = Ce^{-kt}$). Поэтому решение задачи можно записать в виде

$$r = \frac{e}{m} E_0 \frac{\sin \omega t}{\omega^3 - \omega^2}.$$

208. Найти решение уравнения дисперсии при наличии затухалия

$$mF + gr + fr = eE_0 \sin \omega t$$
.

(Ввести обозначения $g = m\gamma$ и $f = m\omega_{ij}^3$) Общее решение пмеет вал

$$r = \exp\left(-\frac{1}{2\gamma t}\right) \left\{c_1 \exp\left(i\omega_1 t\right) + c_2 \exp\left(-i\omega_1 t\right)\right\} + \frac{e}{m} \frac{E_0 \exp\left(i\omega t\right)}{\omega_0^2 - \omega^2 + i\omega\gamma}$$

где $\omega_1 = \sqrt{\omega_0^2 - \frac{1}{4\gamma^2}}$ – «частота» собственного колебания затухающего электрона (практически $\omega_1 \approx \omega_0$, ибо $1/4\gamma^2 \ll \omega_0^2$; так, например, для разреженного пара натрия $\omega_0 \approx 3 \cdot 10^{15} c^{-1}$, $\gamma \approx 10^8 c^{-1}$).

а) По истечении какого времени t амплитуда собственных колебанил для Na уменьшится в 100 раз?

Начиная с того времени, когда можно пренебречь собственными колебаниями, решению можно придать вид

$$r = \frac{e}{m} \frac{E_0 \exp(i\omega t)}{\omega_0^3 - \omega^2 + i\omega\gamma}.$$

6) Комплексное выражение для r означает, что r сдвинуто по фазе относнтельно Е.

Выразить r в виде $r = R \exp [i (\omega t + \delta)]$ и определить действительное значение амплитуды R и сдвиг фазы о.

Ommern:
$$R = \frac{e}{m} \frac{E_0}{\sqrt{(\omega_0^3 - \omega^2)^2 + \omega^2 \gamma^3}}, \quad \operatorname{tg} \delta = \frac{\omega \gamma}{\omega_0^2 - \omega^3}.$$

Таким образом, сдвиг фазы зависит от затухания у и частоты ю; кроме того, наблюдается изменение фазы (скачком на л) при прохождении частоты выпуж-

дающей волны через собственную частоту вибратора ($\omega = \omega_0$). 209. Найти выражение для комплексной диэлектрической проницаемости в,

исходя из комплексного значения для г. $A = N \left(e^{2}/m \right)$

Omeen:
$$\varepsilon = 1 + \frac{4\pi i \sqrt{\varepsilon + i\omega\gamma}}{\omega_{\perp}^2 - \omega^2 + i\omega\gamma}$$

Соответствующий комплексный показатель преломления равен

$$n' = \sqrt{\varepsilon} = n (1 - i \varkappa),$$

причем мнимая часть его (пж) определяет затухание волны, так что

$$s = A_0 \exp\left(-\frac{2\pi}{\lambda_0} n \varkappa z\right) \exp\left[i2n\left(\frac{t}{T}-\frac{2n}{\lambda_0}\right)\right],$$

т. е. свет распространяется в виде плоской затухающей волны (ср. § 141). свет распространиется и поределения п и ж, исходя из данных упражне-

ния 209.

209. Указание. Разделить действительную и мнимую части в выражении $\varepsilon = n^2 (1 - i \varkappa)^2.$ Omeem:

$$n^{2}(1-\chi^{2}) = 1 + \frac{4\pi N (e^{2}/m) (\omega_{0}^{2}-\omega^{2})}{(\omega_{0}^{2}-\omega^{2})^{2}+\omega^{2}\gamma^{2}}, \qquad 2n^{2}\varkappa = \frac{4\pi N (e^{2}/m) \omega\gamma}{(\omega_{0}^{2}-\omega^{2})^{2}+\omega^{2}\gamma^{2}},$$

rge $\gamma = g/m$.

211. Сравнить силы F_E и F_H, действующие на электрон со стороны электрической и магнитной составляющей световой волны обычной частоты и интенсивности (примем $v = 5 \cdot 10^{14}$ с⁻¹, $E = H \approx 1$ абс. ед.).

Указание. Уравнение движения электрона в первом приближении можно записать, не учитывая действия магнитной слагающей поля волны; действительно, расчет, проведенный в этом приближении, покажет, что действие магнитной составляющей ничтожно мало.

Omeem:
$$\frac{F_H}{F_P} \approx \frac{e}{m} \frac{H}{\omega} \approx 10^{-8}$$
.

212. Вывести закон поглощения плоской волны (закон Бугера), исходя из предположения, что в слое данной толщины dx поглощается определенная часть падающего света, т. е. что коэффициент поглощения k не зависит от интен-

Рис. 44.

сивности света (это допущение проверено на опыте в очень широком интервале интенсивностей С. И. Вавиловым).

Omeem: $dI/I = -k \, dx$, r. e. $I = I_0 e^{-kx}$.

213. Найти зависимость от расстояния г силы, действующей на электрон внутри положительно заряженной сферы (модель Дж. Дж. Томсона), исходя из закона Кулона.

Omeem: F = -fr.

214. Если задержать в белом свете область близ λ = 550,0 нм, то оставшийся свет приобретет фиолетовый оттенок, легко переходящий в красный или синий и потому именуемый чувствительным оттенком.

Бикварц Солейля представляет собой две пластинки правого и левого кварца определенной толщины, сложенные, как показано на рис. 44. Толщина их такова, что в парадлети и их такова,

что в параллельных николях они сообщают белому свету чувствительный оттенок. а) Рассчитать то чиколях они сообщают белому свету чувствительный оттенок. а) Рассчитать толщину бикварца и объяснить его действие (при $\lambda = 555,0$ нм, 244). $\alpha = 24^{\circ}).$

6) Какая половина бикварца (D или G) сделается синей при введении правого ества? вещества?

Ответ: a) 3,75 мм; б) D синеет, G краснеет.

215. Параллельный пучок плоскополяризованных лучей проходит через окую трубку, наполноми плоскополяризованных лучей проходит через высокую трубку, наполненную слегка замутненным раствором сахара. В случае белого соста в случае в случае белого соста в случае в случае белого соста в случае в случа

В случае белого света сбоку наблюдается ряд винтовых линий различной окраски.

Объяснить их происхождение. Как зависит величина шага винта от цвета? онцентрации раствора? Опрессо Как зависит величина шага винта от цвета? от концентрации раствора? Определить длину шага для желтых лучей (линия D1) при концентрации раствора тосстить длину шага для желтых лучей (линия D1). при концентрации раствора Определить длину шага для желтых лу $([\alpha_D] = 67^\circ)$.

Указание. Возможность наблюдать эту поляризацию без анализируюдего николя связана с тем, что в направлении колебания электрического вектора

не рассельстватии, наблюдаемую в основном опыте Араго в белом свете. Как она меняется при вращении поляризатора? анализатора? кварца?

217. В кварцевых спектрографах призма вырезается так, чтобы свет в призме шел вдоль оптической оси (рис. 45, а). При этом все же наблюдается небольшое

применяют призму Корню, составленную из двух половин, из правого и левого кварца (рис. 45, б). Объяснить явление и действие призмы Корню.

218. Указать данные для спектрального аппарата (решетка, пластинка Люммера-Герке), необходимого для наблюления эффекта Зеемана в водороде в поле, равном 10 000 Э.

219. Рассмотреть действие электрического поля Е на гармонически колеблю-

Рис. 45.

щийся электрон. (Для простоты рассмотреть случай, когда направление поля совпадает с направлением колебания.)

Omsem: В отсутствие поля $r = a \cos \omega_0 t$, где $\omega_0^* = f/m (m - масса электрона,$ f — постоянная квазиупругой силы).

При наличии поля $r = \frac{eE}{m\omega_0^3} + b \cos \omega_0 t$, т. е. гармоническое колебание происходит с прежней частотой, но относительно нового положения разнозесия, сме-

щенного на величину, зависящую от величины наложенного поля.

220. Явление испускания света возбужденным атомом есть статистический процесс. Эго значит, что число атомов, излучающих за время dt, пропорционально этому времени (dt) и числу наличных возбужденных атомов п. Коэффициент пропорциональности а называется вероятностью процесса.

а) Определить число возбужденных атомов как функцию времени, полагая, что в начальный момент (t = 0) число их равно n₀.

Omeem: $n = n_0 e^{-\alpha t}$.

6) Определить среднюю продолжительность возбужденного состояния т.

Указание. Число атомов, имеющих продолжительность возбужденного состояния от t до t+dt, равно $n_0 \exp(-\alpha t) \alpha dt$; общая продолжительность жизни этой группы есть atno exp (-at)dt. Средняя продолжительность возбужденного состояния

 $=\frac{\alpha \int_{0}^{\infty} t n_0 \exp\left(-\alpha t\right) dt}{\frac{1}{\alpha + \alpha}} = \frac{1}{\alpha}$

221. Зеленое стекло при комнатной температуре сильно поглощает красные лучи, но не испускает их в заметном количестве. Стоит ли это в противоречин

Ответ: Стекло должно излучать не больше, чем черное тело при той же темс законом Кирхгофа?

222. Суммарное излучение (без разложения по спектру) определяет испускапературе.

тельную способность тела
$$E_T = \int E_{v,T} dv.$$

а) Выразить полный поток энергии, испускаемый поверхностью do во все

стороны паружу. Omoem: Erdo.

6) Интенсивность излучения (обозначим ее здесь черсз К) определяется 6) Интенсивность излучили связь между Е_Т и К. Показать, что для случая так же, как в гл. III. Найти связь между Е_Т и К. Показать, что для случая так же, как в гл. тип случая к не зависит от направления, от φ) имеем $\varepsilon_T = \pi K$.

в) Плотность лучистой энергии u есть энергия, заключенная в единице в) Плотность лучистой и K в вакууме (скорость распространения в) Плотность лучистой оле К в вакууме (скорость распространения в единице сбъема. Найти связь между и и К в вакууме (Скорость распространения энергии сбъема. Найти связь между и и К в вакууме (К не зависит от направле сбъема. Найти связь исла черного излучения (К не зависит от направления энергі в вакууме равна с) для черного излучения (К не зависит от направления). указание. Интегрирование производить по всем направлениям.

Omeen: $u = \frac{K \, d\sigma \cos \varphi \, d\Omega}{d\sigma \cos \varphi \cdot c} = \frac{4\pi K}{c} = \frac{4\epsilon r}{c}.$

223. Стенки шаровой полости диаметра D отражают диффузно по закону 223. Стенки шаровен информатого отражения р. Каков должен быть диаметр Ламсерта с коэффициентом диффузиого отражения р. Каков должен быть диаметр Ламсерта с коэффилистика и на было считать черным телом с точностью до 0,1%?

указание. Падающий поток, равный 1, при диффузном отражении с коэффициентом р превращается в поток р, равномерно распределенный по поверхности сферы диаметра D.

Ответ: Коэффициент поглощения стенок полости $A \approx 1 - \rho \frac{\pi d^2}{4\pi D^2} = 0,999;$ при $\rho = 0,4$ получим $d \approx D/10$; при $\rho = 1$ (белая диффузно рассеивающая стенка) $d \approx D/16$.

224. Закон Стефана—Больцмана пишут в виде $\varepsilon_T = \sigma T^4$ или $u = a T^4$, где и - плотность энергии. Определить постоянную а (численное значение и размеркость), зная о.

Omeem: $a = 4\sigma/c$.

225. Объяснить, исходя из закона Кирхгофа, тот факт, что при испускании имеет место частичная поляризация, зависящая от угла испускания.

Указание. При косом падении отражательная способность зависит от характера поляризации; следовательно, и поглощательная способность завесит от угла падения и характера поляризации.

220. Показать, что любое вещество (в том числе и газ), имеющее на единицу толщины слоя испускательную способность Еу, т и поглощательную способность А, т, в бесконечно толстом слое излучает как абсолютно черное тело.

Ответ: Полное излучение = $\int E \exp(-Ax) dx = \frac{E}{A} = e_{v,T}$.

227. При изучении закона Стефана-Больцмана измеряется поток, направляемый из отверстия черного тела при помощи линзы L на термоэлемент. Нагревая термоэлемент вместо излучения током так, чтобы достичь того же стационарного состояния, оценивают количество энергии, приносимой за 1 с потоком излучения, 💷 :

Рассчитать мощность, поглощаемую термоэлементом, если отверстие черного тела есть квадрат со стороной 4 мм, расположенной перпендикулярно к оси линзы. Линза (днаметр 40 мм, фокусное расстояние 40 см) отображает отверстие на термоэлемент в натуральную величину; потери на отражение и поглощение в линзе равны 9% равны 9%, потери на отражение от термоэлемента — 1%. Температура черного тела Т. – 10%. тела Т = 1000 К.

Omecin: 16,2.10-4 Br.

228. Из опыта найден вид функции $\varepsilon_{v, T}$ для температуры T = 1000 К. Построить график для T' = 2000 K.

Ответ: Каждая точка первого графика (v, $\varepsilon_{v, T}$) пресбразуется в точку нового рика (v' $\varepsilon_{v, T}$) пресбразуется в точку нового графика (v' є_{v',T'}) при помощи соотношений

$$\mathbf{v}' = \mathbf{v} \frac{T'}{T} \quad \mathbf{H} \quad \mathbf{e}_{\mathbf{v}', T'} = \mathbf{e}_{\mathbf{v}, T} \left(\frac{T'}{T}\right)^3.$$

229. Показать, что из закона Вина следует закон Стефана-Больцмана.
Omsem:
$$e_{v,T} = cv^3 f\left(\frac{v}{T}\right), e = \int_0^\infty e_{v,T} dv = cT^4 \int_0^\infty F(\xi) d\xi = \sigma T^4$$
, где $\sigma = \infty$

= с \ F (ξ) dξ - постоянная величина.

230. Вывести из формулы Планка закон Стефана-Больцмана и вычислить постоянную о. . Указание.

$$e = \int_{0}^{\infty} e_{v, T} dv = 1,0823 \frac{12h\pi}{c^2} \left(\frac{kT}{h}\right)^4 = \sigma T^4,$$

где $\sigma = 1,0823 \frac{12\pi k^4}{c^2 h^3}$.

00

При интегрировании использовать соотношение

$$\int_{0}^{\infty} v^{3} \exp\left[-n \frac{hv}{kT}\right] dv = 6 \frac{k^{4}T^{4}}{h^{4}} \frac{1}{n^{4}}; \qquad \sum_{n=1}^{\infty} \frac{1}{n^{4}} = \frac{\pi^{4}}{50}$$

Omeem: $\sigma = 5,67 \cdot 10^{-12} \text{ Br} \cdot \text{cm}^{-2} \cdot \text{K}^{-4}$. 231. Записать закон излучения Планка для ва т

Omsem:
$$\epsilon_{\lambda, T} = 2\pi h c^2 \lambda^{-5} \frac{1}{\exp(hc/kT\lambda) - 1} = c_1 \lambda^{-5} \frac{1}{\exp(c_2/\lambda T) - 1},$$

 $c_1 = 2\pi h c^2 = 3,740 \cdot 10^{-12} \Pi \text{ m} \cdot \text{cm}^2 \cdot \text{c}^{-1},$

где

$$c_1 = 2\pi h c^2 = 3,740 \cdot 10^{-12} \Pi \text{ w} \cdot \text{cm}^2 \cdot \text{c}^{-12}$$
$$c_2 = \frac{h c}{b} = 1,4387 \text{ cm} \cdot \text{K}.$$

232. Вывести из формулы Планка закон смещения Вина Thmake = h и вычислить постоянную b.

Указание. Задача сводится к решению трансцендентного уравнения

$$\frac{\xi \cdot e^{\xi}}{e^{\xi} - 1} = 5,$$

корень которого $\xi_0 = 4,965$. *Ответи:* $b = T\lambda_{\text{макс}} = ch/k_{50}^c = 0,2898 см·К.$ Исходя из формулы Планка, найти λ^* , соответствующее $v_{\text{макс}}$, и сравнить его с $\lambda_{\text{макс}}$ закона Вина. Произвести сравнение для T = 5000 К. У казание. Задача сводится к решению трансцендентного уравнения

 $\xi_0 = 2,821.$

Ответ: $\frac{\lambda^*}{\lambda_{\text{макс}}} = \frac{4,965}{2,821} = 1,759.$ При T = 5000 К

$$\lambda_{max} = 579.0$$
 HM; $\lambda^* = 1019.0$ HM = 1.019 MKM.

233. Вин для черного излучения нашел формулу

$$e_{\lambda,T} = c_1 \lambda^{-\delta} \exp\left(-\frac{c_2}{\lambda T}\right).$$

a) Показать, что для малых длин воли или низких температур (малое λT) формулы Вина и Планка совпадают.

 Определять, для какого значения \u03c47 расхождение формул не превосходит 1%.

значени г= Епланк Указание. Вычислить таблицу для разных λΤ.

Ответ: $\lambda T = 2000$ 2500 3000 3500 4000 5000 мкм град r = 1,0008 1,003 1,008 1,017 1,028 1,056

234. Доказать, что показания радиационного термометра не зависят от расстояния до источника, если соблюдены условия, указанные в тексте.

тояния до источника, соли поток, падающий на приемник, и показать, что у казание. Билияние видериника, S — площадь приемника, Ω — телесный угол, определяемый параметрами аппарата.

ныя угол, опредсиления неренистри истинной температурой T и радиационной 235. Найти соотношение между истинной температурой T и радиационной температурой Т.

Omsem:
$$Q_T = \frac{\sigma T_r^2}{\sigma T^4}$$
, r. e. $T = \frac{1}{\sqrt[4]{Q_T}} \cdot T_r$.

236. Определить температуру поверхности фотосферы Солнца, зная, что солнечная постоянная равна 1,95 кал/мин см², и принимая, что испускание Солнца близко к черному телу ($Q_T \approx 1$). Радиус Солнца $r = 6,955 \cdot 10^{10}$ см. Рас. стояние до Солнца $l = 1.495 \cdot 10^{13}$ см.

Omeen: T = 5760 K.

237. Установить соотношение между истинной и цветовой температурой тела, зная монохроматическую испускательную способность его Q₁ для двух длин воли $\lambda_1 = 4700 A$ и $\lambda_2 = 6600 A$:

$$Q_{\lambda_1} = \frac{E_{\lambda_1, T}}{e_{\lambda_1, T}}, \qquad Q_{\lambda_2} = \frac{E_{\lambda_2, T}}{e_{\lambda_2, T}}.$$

Цветовая температура $T_c(\lambda_1, \lambda_2)$ есть приближенно температура черного тела, для которого красно-синее отношение равно такому же отношению для измеряемого тела с истинной температурой Т, т. е.

$$\frac{E_{\lambda_1, T}}{E_{\lambda_2, T}} = \frac{\varepsilon_{\lambda_1, T_c}}{\varepsilon_{\lambda_2, T_c}}.$$

Пользуясь упрощенной формулой Планка (формула Вина), найдем

$$\frac{1}{T_c} - \frac{1}{T} = \frac{\ln (Q_1/Q_2)}{c_2 (1/\lambda_1 - 1/\lambda_2)}.$$

Оценить ошибку, допускаемую при применении формулы Вина для температур до 1000 К (см. упражнение 233).

238. Вывести соотношение между яркостной и истинной температурой. Указание. Пользуясь упрощенной формулой Планка (формулой Вина), найдем, что

$$Q_{\lambda} = \frac{B_{\lambda_1, T}}{B_{\lambda_1, T}^{\circ}} = \exp\left[\frac{c_2}{\lambda}\left(\frac{1}{T} - \frac{1}{S_{\lambda}}\right)\right].$$

Здесь Во — яркость черного тела, В — яркость изучаемого тела. По определению яркостной температисы. яркостной температуры $B_{\lambda,T} = B_{\lambda,S_{\lambda}}^*$.

239. Вычислить, как изменяется интенсивность излучения черного тела вбли-= 500.0 нм при изменяется интенсивность излучения черного тела вблиаи $\lambda = 500,0$ ны при изменении температуры от 1000 до 1100 К. Выразить это возрастание как прополните температуры от 1000 до 1100 К. Выразить это возрастание как пропорциональное n-й степени температуры и определить n-

906

Указание. Использовать формулу Вина $\varepsilon_{\lambda, T} = c_1 \lambda^{-5} \exp\left[-\frac{c_2}{\lambda T}\right];$ оценить расхождение с формулой Планка.

Значения постоянных: $c_1 = 3,70 \cdot 10^{-12}$ Вт см², $c_2 = 14380$ мкм. К. Omsem: $n \approx 30$.

240. Проверить расчетом, что яркость желтого излучения черного тела возрастает вдвое при изменении температуры с 1800 до 1875 К.

241. Вероятность излучения показывает, какая часть имеющихся налицо возбужденных атомов *n* испустит свет за время *dt*. Если число таких атомов обозначить через *dn*, то вероятность α , по определению, равна $\alpha = -\frac{dn}{n} \frac{1}{dt}$ или $dn = -\alpha n dt$, причем знак минус означает, что за время *dt* число возбужденных атомов уменьшается на *dn* (высвечивается).

 Исходя из данного определения вероятности высвечивания, найти закон изменения числа возбужденных атомов с течением времени.

Ответ: Из уравнения $dn = -\alpha n \, dt$ следует, что $n = n_0 e^{-\alpha t}$, где $n_0 - число возбужденных атомов в начальный момент <math>(t = 0)$.

2) Зная закон высвечивания, определить среднее время жизни возбужденного атома.

Указание. Среднее время жизни есть $\tau = \frac{1}{n_0} \int_0^\infty \alpha n_0 t e^{-\alpha t} dt.$

Omsem: $\tau = 1/\alpha$.

242. Воспользовавшись данными таблицы § 205 (см. стр. 714), построить график (205.5), отложив по оси абсцисс N, по оси ординат 1/m² в подходящем масштабе. Какой вид будет иметь график? Определить при его помощи n и R.

Ответ: График — прямая линия, n = 2, R = 109 700.

243. Вычислить энергию электрона, обращающегося около протона по круговой орбите раднуса а.

Omsem: $E = -e^2/2a$.

. ...

Объяснить смысл отрицательного значения энергии.

244. Вывести выражение для частоты обращения электрона по круговой орбите около протона

$$\omega^2 = \left(\frac{1}{T}\right)^2 = \frac{2E^3}{\pi^2 \mu e^4}.$$

Использовав для энергии состояния выражение $E_n = \frac{hRc}{n^3}$, вычислить частоту обращения электрона на 2-й и 3-й орбитах и сравнить с частотой, соответствую-

щей по теории Бора переходу с 3-й орбиты на 2-ю. 245. Рассчитать потенциал возбуждения атома натрия, испускающего волну

245. Pacedulate holen han bosoy a general along halps, help have been general the second state of the sec

246. Какова температура одноатомного газа, средняя кинетическая энергия молекул которого достаточна для того, чтобы возбудить атом ртути и заставить его испускать резонансную линию с $\lambda = 185,0$ нм?

247. Определить заселенности N_m , N_n уровней m, n атома, принимая во внимание вынужденное испускание и поглощение, обусловленные взаимодействием с монохроматическим полем, частота которого соответствует переходу $m \rightarrow n$. Вычислить также поглощенную (излученную) мощность и коэффициент поглощения (усиления).

$$\begin{array}{l} Omsem: \ \frac{N_m}{g_m} - \frac{N_n}{g_n} = \frac{N_{m0}/g_m - N_{n0}/g_n}{1 + b_{mn}u/\sigma}, \\ q = \hbar\omega b_{mn}g_{m}u\left(\frac{N_m}{g_m} - \frac{N_n}{g_n}\right) = \hbar\omega g_m b_{mn}u\frac{N_{m0}/g_m - N_{n0}/g_n}{1 + b_{mn}u/\sigma}, \\ \alpha = \frac{\lambda^2}{4}g_m a_{mn}\left(\frac{N_m}{g_m} - \frac{N_n}{g_n}\right) = \frac{\lambda^2}{4}g_m a_{mn}\frac{N_{m0}/g_m - N_{n0}/g_n}{1 + b_{mn}u/\sigma}. \end{array}$$

907

Здесь введены обозначения

$$1/\sigma = \left[\frac{1}{g_m W_m} + \frac{1}{g_n W_n} \left(1 - \frac{A_{mn}}{W_m}\right)\right] g_m,$$

ата, bma — спектральные плотности первого и второго коэффициентов Эйнштейна, $a_{mn}, b_{mn} -$ спектральные настичение веса уровней $m, n; W_m, W_n -$ скорости затухания $g_m, g_n -$ статистические веса уровней $m, n; W_m, W_n -$ скорости затухания состояний $m, n; A_{mn} -$ первый коэффициент Эйнштейна для перехода $m \to n;$ Nme, Nno - заселенности при и = 0.

Указание. Исходить из уравнений

$$W_m N_m = W_m N_{m0} + (b_{nm} N_n - b_{mn} N_m) u,$$

$$W_n N_n = W_n N_{n0} + A_{mn} (N_m - N_{m0}) + (b_{mn} N_m - b_{nm} N_m) u.$$

248. Выразнть поток Ф излучения, выходящего из лазера, через энергию. запасенную в среде и способную перейти в энергию излучения в результате вынужденных переходов.

Omsem: $\Phi = q_{\max}SL - cu_0 fS$.

Указание. Использовать соотношения (224.1), (225.6)-(225.8), а также связь между коэффициентом усиления и спектральной плотностью второго коэффициента Эйнштейна

$$\alpha(\omega) = \frac{\hbar\omega}{c} g_m b_{mn}(\omega) \left[\frac{N_m}{g_m} - \frac{N_n}{g_n} \right].$$

249. Определить собственные волновые числа эталона Фабри - Перо.

Omsem:
$$k_q = \frac{\pi}{L} q, q = 1, 2, \dots$$

У казание. Представить в комплексном виде падающую волну A exp(lk1z). колну внутри эталона $B \exp(ikz) + C \exp(-ikz)$ и волну, прошедшую через него, $D \exp(ik_1 z)$. Если обозначить через t_1 , t_2 и ρ_1 , ρ_2 амплитудные коэффициенты пропускания и отражения зеркал эталона, то система уравнений для нахождения амплитуд В, С, D имеет вид

$$B = \rho_1 C + t_1 A,$$

$$C \exp(-ikL) = \rho_2 B \exp(ikL),$$

$$D \exp(-ik_1 L) = t_2 B \exp(ikL),$$

(1)

(начало координат помещено на первом зеркале, ось Ог перпендикулярна к плоскости зеркал).

Решая эту систему уравнений, можно получить коэффициенты отражения и пропускания эталона (см. упражнение 47). Если положить А = 0, то система уравнений (1) определяет собственные решения задачи. При A = 0 система (1) однородна, и ненулевые решения возможны только в том случае, когда ее детермянант равен нулю. Эго условие дает уравнение относительно к

$$\rho_1 \rho_2 \exp(2ikL) = 1$$
.

имеющее решение лишь при комплексном k

$$k = k' + ik'' = \frac{\pi}{L}q - i\frac{1}{L}\ln(1/\rho_1\rho_2).$$

Мнимая часть к' определяет изменение амплитуд в пространстве. 250. Вычислить положение zo сечения с минимальным радиусом и величину о раднуса а. лля гаческие zo сечения с минимальным радиусом и величину этого раднуса с для гауссова пучка, два волновых фронта которого совпадают

УПРАЖНЕНИЯ

с двумя соосными веркалами, обладающими фокусными расстояниями 1, 12 и с двумя сосстояниями в точках г1, г2 общей оси. Прознализировать полученные форрасположенных соотношений между f_1 и f_2 ($f_1 = f_2; f_1 \rightarrow \infty; f_1 < 0, f_2 > 0$

$$z_0 = z_1 + \frac{L}{2} \frac{2f_2/L - 1}{(f_1 + f_2)/L - 1},$$
(1)

$$a_{0}^{2} = \frac{\hbar L}{4\pi} \sqrt{\left(\frac{2f_{1}}{L} - 1\right) \left(\frac{2f_{2}}{L} - 1\right) \left(2\frac{f_{1} + f_{2}}{L} - 1\right) / \left(\frac{f_{1} + f_{2}}{L} - 1\right)^{2}}, \qquad (2)$$

$$L = z_{2} - z_{1},$$

Указание. Из соотношения (228.1) и условий задача следуют два уравпения

> $2f_2 = z_2 - z_0 + \frac{(a_0^2k)^2}{z_2 - z_0}$ $-2f_1 = z_1 - z_0 + \frac{(a^2 k)^2}{z_1 - z_0},$

относительно искомых величин го, а. С помощью параметров

 $g_1 = 1 - L/2f_1, \quad g_2 = 1 - L/2f_2$

соотношения (1), (2) можно записать в виде

$$a_{0}^{2} = \frac{\lambda L}{2\pi} \sqrt{\frac{g_{1}g_{2}(1-g_{1}g_{2})}{[2g_{1}g_{2}-g_{1}-g_{2}]^{2}}},$$

$$z_{0} = z_{1} + L \frac{g_{2}(1-g_{1})}{g_{1}+g_{2}-2g_{1}g_{2}}.$$
(4)

Из (4) вытекает следующее условие существования решения:

 $0 < g_1 g_2 < 1$,

или, в прежних обозначениях.

$$0 < (1 - L/2f_1) (1 - L/2f_2) < 1.$$
(5)

251. Вычислить разность частот, огвечающих двум боковым волнам с индексами m, n, отличающимися на l. Сравнить с $\Delta \omega$, соответствующей изменению на 1 аксиального индекса q.

Omeem:
$$\omega_{m,n,q} \approx \omega \left[1 + \frac{1}{2} \theta_{m,n}^{3} \right], \ \theta_{m,n}^{3} \ll 1, \ \omega = \frac{\pi c}{Ln_{cp}} q,$$

 $\omega_{m+1,n+1,q} - \omega_{m,n,q} = \omega \left[(\lambda/a)^{2} (2m+1) + (\lambda/b)^{2} (2n+1) \right] =$
 $= \Delta \omega \left[\frac{\lambda L}{a^{3}} (2m+1) + \frac{\lambda L}{b^{2}} (2n+1) \right],$
 $\Delta \omega = \frac{\pi c}{Ln_{cp}}.$

252. Установить зависимость дифракционных потерь от величия $m, n, \sqrt{\lambda L}/a$, V λL/b для резонатора с плоскими зеркалами размером ab.

Указание. После распространения волны на длину L за пределы второго зеркала может проникнуть лишь та часть энергии, которая проходит через полосу вдоль периметра исходного волнового фронта с шириной порядка У λL. Принимая зависимость энергии от координат вида

$$\sin^2\left(\frac{\pi}{a}\,mx\right)\sin^2\left(\frac{\pi}{b}\,ny\right),\tag{1}$$

(3)

для полной энергии находим

$$\int_{0}^{a} \sin^{2}\left(\frac{\pi}{a} mx\right) \sin^{2}\left(\frac{\pi}{a} my\right) dx dy = \frac{1}{4}ab.$$

Энергия, сконцентрированная в указанной полосе, равна

$$2b \int_{0}^{\sqrt{\lambda L}} \sin^2\left(\frac{\pi}{a} mx\right) dx + 2a \int_{0}^{\sqrt{\lambda L}} \sin^2\left(\frac{\pi}{b} ny\right) dy \approx \frac{2\pi^2}{3} \left(\frac{m^2}{a^2} b + \frac{n^2}{b^2} a\right) (\lambda L)^{4/4},$$

причем синусы заменены аргументами. Следовательно, для относительных потерь имеем

$$f \propto m^2 \left(\sqrt{\lambda L}/a \right)^3 + n^2 \left(\sqrt{\lambda L}/b \right)^3.$$
⁽²⁾

Коэффициент пропорциональности, согласно строгим расчетам, равен 1,03. Полученное соотношение справедливо, если синусы можно заменить аргу-

ментами, т. е. если

$$\pi \frac{\sqrt{\lambda L}}{a} m \ll 1,$$
$$\pi \frac{\sqrt{\lambda L}}{b} n \ll 1.$$

Тот же результат (2) получается и при раздельном анализе дифракции Френеля для каждой плоской волны, образующей стоячую волну (1). При сложении дифракционных картин от плоских волн следует принять во внимание противоположность их фаз.

253. Определить зависимость излучения лазера от времени при возбуждении нии N типов колебаний, эквидистантно расположенных в шкале частот и обладающих одинаковыми амплитудами.

Omsem:
$$s = NA \frac{\sin (1/2 N \Delta \omega)}{\sin (1/2 \Delta \omega)} \cos (\omega_0 + 1/2 (N-1) \Delta \omega) t$$
.
Указание. В сумме

$$s = A \sum_{j=0}^{N-1} \cos(\omega_0 + j \Delta \omega) t$$

использовать комплексное представление тригонометрических функций. 254. Вывести формулу (232.3).

Указание. Воспользоваться соотношениями

$$P = 2\pi \int_{0}^{a} S(r) r dr; \qquad S(r) = \frac{cn_{0}}{8\pi} A_{0}^{2} (1 - r^{2}/a^{2}).$$

255. Определить кривизну р луча в пучке с линейной зависимостью освещенности от координаты в поперечном сечении. Вычислить угол θ отклонения и смещение пучка Δx в слое толщины *l*.

Omacm:
$$\rho = \frac{n_2 A_0^s}{2an_0}; \ \theta = \frac{n_2 A_0^s}{2n_0 a}; \ \Delta x = \frac{n_2 A_0^s}{n_0} \frac{l^2}{4a}.$$

Указание. Воспользоваться выражением для кривизны луча $\rho = \frac{d}{dx} (\ln n);$ полагать 6 < 1.

910

256. Вывести формулы (233.3). Указание. Применить формулу решетки

$$n_0 d (\sin \theta_m - \sin \theta'_0) = m\lambda; \quad d = \frac{\lambda}{2n_0 \sin \theta'_0}$$

и закон преломления

 $n \sin \theta' = \sin \theta$.

257. Вычислить дипольный момент ангармонической молекулы, видуцированный монохроматическим полем

$$E(t) = A \cos(\omega t + m)$$

и полем, состоящим из двух монохроматических волн

$$E(t) = A_1 \cos(\omega_1 t + \varphi_1) + A_2 \cos(\omega_2 t + \varphi_2)$$

$$p = \frac{e^{2/m}}{\omega_{c}^{2} - \omega^{2}} E(t) \left[1 + \frac{3}{4\gamma} \frac{(e/m)^{2}}{(\omega_{0}^{3} - \omega^{2})^{3}} A^{2} \right] + \\ + \frac{1}{2\beta} \left(\frac{e}{m} \frac{A}{\omega_{0}^{3} - \omega^{2}} \right)^{2} \left[\frac{1}{\omega_{0}^{2}} + \frac{\cos 2(\omega t + \varphi)}{\omega_{0}^{3} - (2\omega)^{2}} \right] + \frac{1}{4\gamma} \left(\frac{e}{m} \frac{A}{\omega_{0}^{3} - \omega^{2}} \right)^{3} \frac{\cos 3(\omega t + \varphi)}{\omega_{0}^{2} - (3\omega)^{2}}, \quad (1)$$

$$\rho = p_{1} + p_{2} + \frac{\beta e^{3}}{m^{2}} B_{1}B_{2} \left[\frac{\cos (\Phi_{1} - \Phi_{2})}{\omega_{0}^{2} - (\omega_{1} - \omega_{2})^{2}} + \frac{\cos (\Phi_{1} + \Phi_{2})}{\omega_{0}^{3} - (\omega_{1} + \omega_{2})^{2}} \right] + \\ + \frac{3\gamma e^{4}}{4m^{3}} \left\{ B_{1}^{2}B_{2} \left[\frac{2\cos \Phi_{2}}{\omega_{0}^{2} - \omega_{1}^{2}} + \frac{\cos (2\Phi_{1} - \Phi_{2})}{\omega_{0}^{3} - (2\omega_{1} - \omega_{2})^{2}} + \frac{\cos (2\Phi_{1} + \Phi_{2})}{\omega_{0}^{3} - (2\omega_{1} + \omega_{2})^{2}} \right] + \\ + B_{1}B_{2}^{2} \left[\frac{2\cos \Phi_{1}}{\omega_{0}^{3} - \omega_{1}^{3}} + \frac{\cos (2\Phi_{2} - \Phi_{1})}{\omega_{0}^{3} - (2\omega_{2} - \omega_{1})^{2}} + \frac{\cos (2\Phi_{2} + \Phi_{1})}{\omega_{0}^{3} - (2\omega_{2} + \omega_{1})^{3}} \right] \right\}. \quad (2)$$

Величины p₁, p₂ в (2) получаются из p (см. (1)) заменой ω, A на ω₁, A₁ и на ω₂, A₁ соответственно.

В (2) введены обозначения

$$B_{1,2} = \frac{A_{1,2}}{\omega_0^2 - \omega_{1,2}^2}; \qquad \Phi_{1,2} = \omega_{1,2}t + \varphi_{1,2}.$$

258. Найти плоские монохроматические (частота 2ω) волны, являющнеся решением уравнений Максвелла,

$$[kE] = \frac{2\omega}{c} H; \quad [kH] = -\frac{2\omega}{c} \varepsilon (2\omega) E - \frac{2\omega}{c} 4\pi P_{\text{EI}}$$

с нелинейной поляризацией

$$P_{u} = eP_0 \exp[-2i(\omega t - k_{21}r)];$$

e - eдиничный вектор вдоль P_{12} . При отыскании частного решения неоднород-ной системы k считать равным $2k_{21}$. *Ответ*: $E = A^d \exp\left[-i\left(2\omega t - k_{22}r\right)\right] + B \exp\left[-2i\left(\omega t - k_{21}r\right)\right]$,

$$h: E = A^{\alpha} \exp\left[-i\left(2\omega\right) - k_{22}^{\alpha}\right)^{\beta} + \frac{4\pi}{\varepsilon} \frac{k_{22}^{\alpha} - 4k_{21}(k_{21}e)}{k_{22}^{\alpha} - 4k_{21}^{\alpha}} P_{0};$$

$$k_{22}^{\alpha} = \left(\frac{2\omega}{c}\right)^{2} \varepsilon (2\omega); \quad B = -\frac{4\pi}{\varepsilon} \frac{k_{22}^{\alpha} - 4k_{21}(k_{21}e)}{k_{22}^{\alpha} - 4k_{21}^{\alpha}} P_{0};$$

 A^d — произвольный постоянный вектор. 259. Проверить справедливость неравенства

$$k_{3} > k_{2} + k_{1}; \quad k_{j} = \frac{\omega_{j}}{c} n_{j}; \quad n_{j} = n (\omega_{j})$$

$$\omega_{3} = \omega_{2} + \omega_{1} > \omega_{2} > \omega_{1}; \quad n_{3} > n_{2} > n_{1}.$$

при условиях

Ответ: Неравенство эквивалентно

$$(n_3 - n_2) \omega_3 > 0 > - (n_2 - n_1) \omega_1$$

260. Выразить коэффициент усиления для стоксова вынужденного комбинационного рассеяния через интегральную (по частотам и углам) мощность спонтанного комбинационного рассеяния.

Указание. Рассуждаем по аналогии со случаем индуцированного испускания при переходах атома между состояниями т и п. Согласно формулам (223.3) и (211.15) имсем соотношения

$$\alpha(\omega) = \frac{1}{4}\lambda^2 a_{mn}(\omega) \left(N_m - N_n\right); \ q_{mn}^{\text{CHOHT}}(\omega) = \hbar \omega a_{mn}(\omega) N_m,$$

с помощью которых можно выразить α (ω) через q (ω);

$$\alpha (\omega) = \frac{\lambda^2}{4\hbar\omega} \left(1 - \frac{N_n}{N_m} \right) q_{mn}^{\text{спонт}} (\omega).$$

Полученная связь между коэффициентом усиления и спектральной плотностью спонтанного испускания является общей для всех радиационных процессов (в том числе и для комбинационного рассеяния), причем под *m*, *n* следует понимать состояния, начальное и конечное для рассматриваемого процесса.

В случае стоксова комбинационного рассеяния начальным состоянием m служит невозбужденное колебательное состояние, конечным n — возбужденное. Если $h\omega_l \gg kT$, то $N_n/N_m \ll 1$ и член N_n/N_m можно опустить. Принимая во внимание поляризованность и анизотропию комбинационного рассеяния (линейнополяризованное возбуждающее излучение) и предполагая лорентцову форму коштура спектральной линии, можно прийти к соотношению

$$\alpha_s = \frac{3}{4\pi} \frac{\lambda_s^2}{\hbar\omega_s} \frac{\Phi_s}{\Gamma} = \frac{3}{4\pi} \frac{\lambda_s^2 CI}{\hbar\omega_s \Gamma}.$$

261. Определить резонансную часть вынужденных колебаний ядер молекулы при ее взаимодействии с полем, описываемым формулой (239.5).

Omaem:

$$\xi = \xi_0 \sin \left(\omega_l t + \varphi - \varphi_s \right), \qquad \xi_0 = \frac{\mu A A_s}{2m \Gamma \omega_l}. \tag{1}$$

Указание. Вынуждающая сила в уравнении движения ядер (239.4) содержит часть

$$AA_s \cos \left[(\omega - \omega_s) t + \varphi - \varphi_s \right],$$

которая изменяется с собственной частотой колебаний ядер. Колебания, вынуждаемые этой частью силы, и описываются формулой (1).

PHC. 46.

262. Найти направление, для которого происходит синфазное сложение вторичных антистоксовых воли, излучаемых слоем рассеивающего вещества

(тоящина слоя d, см. рис. 46) при большом усилении стоксова излучения (а,d > 1) и малом радиусе пучка возбуждающего света ($a^2 \ll \lambda d^2 \alpha_s$).

4 sin2 A/9 - 4

$$0/2 = 0^2 = 2(k_s + k_{as} - 2k)/k_{as}$$

где д — угол между направлениями синфазности и распространения возбуждаю-

Указание. Фаза колебаний антистоксовой составляющей раз диполь. ного момента (см. (239.7)) равна 2ф — Ф, где ф и Ф, — фазы возбуждающей и усиленной стоксовой волн в точке г₁ (x₁, y₁, z₁) распотожения одной из рассеивающих молекул. В точке наблюдения г (х, у, г) (см. рис. 45) фаза антистоксовой волны, испущенной этой молекулой, равна

$$\psi = k_{as} | \mathbf{r} - \mathbf{r}_l | + 2\varphi - \varphi_s,$$

$$k_{as} = \omega_{as} n_{as}/c.$$

Возбуждающая волна распространяется вдоль оси г, вследствие чего

 $\varphi = k z_1, \quad k = \omega n/c.$

Стоксово излучение в точке г есть сумма стоксовых волн, излучаемых всеми молекулами слоя. Обозначим положение одной из нах через r_i (x_i, y_i, z_i). Фаза стоксовой волны от ј-й молекулы в точке г равна

Таким образом,

7

$$\varphi_s = R_s |\mathbf{r}_l - \mathbf{r}_l|, \quad k_s = \omega_s n_s/c.$$

$$\varphi = 2kz_l + k_{as} |\mathbf{r} - \mathbf{r}_l| - k_s |\mathbf{r}_l - \mathbf{r}_l|$$

Рассматривая антистоксово излучение в зоне Фраунгофера, получия

$$|\mathbf{r} - \mathbf{r}_l| \approx \mathbf{r} - \mathbf{r}_l/r \approx \mathbf{r} - z_l \cos \vartheta - (\mathbf{x}\mathbf{x}_l + \mathbf{u}\mathbf{y}_l)/r.$$

Поскольку по предположению $\alpha_s d \gg 1$, наибольшую интенсявность имеют стоясовы волны, прошедшие почти всю толщину рассеивающего (я усиливающего!) объема, т. е. волны, испушенные в слое с толщиной порядка 1/a_s, который прилегает к левой границе объема, и индуцирующие диполькый момент раз в слое такой же толщины у противоположной, правой границы объема. На рис. 46 эти слои указаны пунктирными линиями. Поэгому можно считать $d - (z_l - z_j) \sim$ $\sim 1/\alpha_s \ll d$. Если, далее, диаметр излучающей области, определяемый диаметром пучка возбуждающего излучения 2a, достаточно мал, то $|r_l - r_j|$ можно разложить по степеням поперечных координат и воспользоваться условием большого усиления

$$|\mathbf{r}_{l} - \mathbf{r}_{l}| = 2_{l} - 2_{l} + [(x_{l} - x_{i})^{2} + (y_{l} - y_{i})^{2}]/d$$

Таким образом, суммируя изложенные соображения, находам

$$\psi = k_{as}r + k_{s}z_{l} - k_{s} \left[(x_{l} - x_{l})^{2} + (y_{l} - y_{l})^{2} \right]/d - k_{as} \left[xx_{l} + yy_{l} \right]/r + (2k - k_{s} - k_{as} \cos \vartheta) z_{l}.$$

Дальнейшее вычисление антистоксова рассеяния подразумевает суммирование вторичных волн с фазами ф, причем суммирование следует проводить и по ј, и по І. Однако основные качественные особенности индикатрисы антистоксова рассеяния можно выяснить, и не выполняя указанного суммирования в явном виде. Поскольку в выражении для ф присутствуют члены, зависящие только от поперечных координат x_j, y_j, x_l, y_l, и член, зависящий только от z_l, суммирования по x1, y1, x1, y1 и по z1 независимы и конечный результат будет содержать два множителя. Один из них, отвечающий суммированию по г, имеет максимальное значение, если коэффициент при г в выражения для ф обращается в нуль, т. е. $2k - k_s - k_{as} \cos \vartheta = 0$. В направлении, соответствующем этому условию,

антистоксовы волны от разных слоев приходят в точку наблюдения с равными фазами (направление пространственной синфазности). Из указанного условия находим

$$2\sin \vartheta/2 \approx \vartheta = V 2 (k_s + k_{as} - 2k)/k_{as}.$$

Суммирование по ј определит область когерентности в правом слое рис. 46 с размерами $2l_{\text{ког}} = \lambda d/2a$ (см. § 22), а суммирование по l — угловую зависимость второго множителя. Его угловая ширина равна отношению длины волны к $2l_{\text{ког}}$, т. е.

$$\lambda/2l_{kor} = 2a/d$$
, если $2l_{kor} = \lambda d/2a < 2a$.

либо отношению длины волны к 2а,

$$\lambda/2a$$
, если $2l_{kor} = \lambda d/2a > 2a$.

263. Рассмотреть голографирование объекта, состоящего из двух бесконечно удаленных точек, посылающих на голограмму волны с углами падения φ_1 , φ_2 . Вычислить распределение интенсивности в интерференционной картине на голограмме. Определить углы дифракции просвечивающей волны. Выяснить вопрос о подобии объекта и изображений (мнимого и действительного). Установить условия исчезновения действительного изображения.

Ответ: Распределение интенсивности в плоскости голограммы имеет вид

$$a_{0}^{2} + a_{1}^{2} + a_{2}^{2} + 2a_{1}a_{0}\cos\left(\frac{2\pi}{d_{1}}x + \psi_{1}\right) + 2a_{2}a_{0}\cos\left(\frac{2\pi}{d_{2}}x + \psi_{2}\right) + 2a_{1}a_{2}\cos\left(\frac{2\pi}{d_{3}}x + \psi_{3}\right),$$

где a_0 , a_1 , a_2 — амплитуды опорной и предметных волн; ψ_1 , ψ_2 , ψ_3 — постоянные фазы; периоды d_1 , d_2 , d_3 систем полос равны

$$d_1 = \lambda/(\sin \varphi_0 - \sin \varphi_1);$$

$$d_2 = \lambda/(\sin \varphi_0 - \sin \varphi_2);$$

$$d_3 = \lambda/(\sin \varphi_1 - \sin \varphi_2),$$

> $\sin \theta_{m,1} = \sin \varphi_0 + m (\sin \varphi_0 - \sin \varphi_1),$ $\sin \theta_{m,2} = \sin \varphi_0 + m (\sin \varphi_0 - \sin \varphi_2).$

Для мнимого и действительного изображений m = -1 и 1. Решетка с периодом d_3 образует волны с направлениями распространения

$$\sin \theta_{m,3} = \sin \varphi_0 + m (\sin \varphi_1 - \sin \varphi_2), \qquad m = \pm 1.$$

Мнимое изображение подобно объекту, поскольку $\theta_{-1,1} = \varphi_1$, $\theta_{-1,2} = \varphi_2$ и $\theta_{-1,1} - \theta_{-1,2} = \varphi_1 - \varphi_2$. Действительное изображение не подобно объекту, так как $\theta_{1,1} - \theta_{1,2} \neq \varphi_1 - \varphi_2$. Условия исчезновения действительного изображения

$$|2 \sin \varphi_0 - \sin \varphi_1| > 1$$
, $|2 \sin \varphi_0 - \sin \varphi_2| > 1$.

Волны, возникающие из-за дифракции на решетке с периодом d_3 , не перекрываются с волнами, формирующими изображение, если угол падения φ_0 опорной и просвечивающих волн отличается от φ_1 , φ_2 больше, чем φ_1 и φ_2 между собой.

914

УПРАЖНЕНИЯ

264. 1) Определить положение предмета, при котором поперечное и продольное увеличения действительного изображения одинаковы.

2) Вычислить поперечное увеличение дополнительного изображения в случае плоской опорной волны.

Omsem: 1)
$$\frac{1}{r_s} = \frac{1}{k'+k} \left(\frac{k'}{r_0'} + \frac{k}{r_0} \right)$$
. 2) $V'' = \frac{1}{1 - (k'/k) (r_s/r_0')}$.

Дополнительное изображение — увеличенное, если просвечивающая волна расходящаяся.

265. Доказать, что распределение освещенности в интерференционной картине, образующейся в плоскости Н (см. рис. 11.7), представляет собой преобразование Фурье распределения амплитуды поля в плоскости объекта.

Указания. Обозначим через х' расстояние OS, через х — текущую координату в плоскости H голограммы, через T (x') — относительную амплитуду поля на объекте (коэффициент его пропускания). Переменная часть освещенности в интерференционной картине, обусловленная действием элемента dx' объекта. пропорциональна амплитуде поля в точке х'

$$dI(x) \propto T(x') dx' \cos \frac{2\pi}{B} x; \quad \mathcal{B} = \lambda r_0 / x',$$

где 39 — период интерференционных полос. Интенсивность, обусловленная светом от всего объекта, будет

$$I(x) \propto \int T_{-}(x') \cos\left(\frac{2\pi}{\lambda} \frac{x}{r_0} x'\right) dx';$$

что и требовалось доказать.

265. Вывести соотношения, определяющие положения главного и дополнительного изображений, которые формируются репродукцией голограммы, сжатой в М раз в сравнении с оригиналом.

Ответ: Требуемые соотношения получаются из формул § 61 в результате samen: $k \rightarrow kM$, $r_0 \rightarrow r_0/M$, $r_s \rightarrow r_s/M$, $\rho_s \rightarrow \rho_s/M$, $\rho_0 \rightarrow \rho_0/M$. В частности,

$$V' = \frac{M}{M^2 \left(1 - r_s^3/r_0^3\right) + (k'/k) \left(r_s/r_0'\right)}.$$

Указание. Выражение для фазы ψ (р) (см. (61.3)) в рассматризаемом случае имеет вид

$$\psi(\rho) = k |r_s + \rho_s - M\rho| - k |r_0 + \rho_0 - M\rho| + k' |r'_0 + \rho'_s - \rho| = = kM |r_s/M + \rho_s/M - \rho| - kM |r_0/M + \rho_0/M - \rho| + k' |r'_0 + \rho'_s - \rho|.$$

Формулы для главного и дополнительного изображений переходят друг в друга при замене k на -k, как следует из сопоставления выражений для полей & (р) и 83 (р), введенных в § 61:

$$\mathcal{E}_{2}(\rho) = T_{0}E_{0}^{*}(\rho) E'(\rho) E(\rho);$$

$$\mathcal{E}_{3}(\rho) = T_{0}E_{0}(\rho) E'(\rho) E^{*}(\rho).$$

267. Показать, что геометрическое место точек равных значений амплитуды колебаний при интерференции двух плоских воли с волновыми векторами ko и k суть плоскости, перпендикулярные вектору k - k. Вычислить период интер-

ференционной структуры.

Ответ: Период равен

$$d = 2\pi/|k - k_0| = \lambda/(2 \sin^{-1}/2^{0})$$

где в — угол между векторами k и k_e.

268. Выяснить условие интерференционного погашения дифрагяровавшей волны порядка m = 1 в случае объемной голограммы плоской волны (см. рис. 11.10). Опорная и просвечивающая волны падают на голограмму перпендикулярно к се поверхности.

Ответ: Отношение интенсивностей воли порядков m = 1 и -1 равно

$$\left[\frac{\sin\left(2kh\sin^2\frac{1}{2}\theta\right)}{2kh\sin^2\frac{1}{2}\theta}\right]^2$$

где h — толщина голограммы, θ — угол между опорной и предметной волнами. Условие погашения солны m = 1 можно сформулировать так:

 $2kh \sin^2 \frac{1}{2} \gg \pi$, или $h \ge \lambda/[2 \sin \frac{1}{2} \theta]^2$.

У казание. Голограмму (см. рис. 11.10, б) мысленно разбить на бесконечно тонкие слои dz (ось z перпендикулярна поверхности голограммы). Каждый из них рассматривать как решетку Рэлея, т. е. принять во внимание модуляцию амплитуды просвечивающей волны по закону соз ($k - k_0$) r (см. упражнение 267). Рассмотреть интерференцию волн, идущих ог всех элементарных слоев голограммы.

ИМЕННОЙ УКАЗАТЕЛЬ

Аббе (Abbe Ernst, 1840-1905), 148, 310, 314, 317, 351, 484

Абрагам (Abraham H.) 534

- Айвс (Ives H. E.), 117, 389, 465
- Альгазен (Альхайтам) 15
- Ангстрем (Angström K., 1857—1910) 204
- Aparo (Arago Dominique Francois Jean. 1783-1853), 21, 371, 378, 388, 423, 449, 506, 538, 608
- Аристотель (384-322 до нашей эры) 15
- Аркадьев В. К. (1864—1953) 165.
- Аркадьева-Глаголева А. А. (1884—1945) 402
- Аслаксон 427
- Ахманов С. А. 850
- Бабине (Babinet Jaque, 1794 - 1872397
- Бальмер (Balmer J. J., 1825—1898) 713
- Бартолинус (Bartolinus Erasmus, 1625-1698) 19, 371
- Басов Н. Г. 784 Беккерель Ж. (Becquerel Jean) 757
- Белопольский А. А. (1854-1934) 438 Бергштранд 424, 427
- Бийе 71
- Био (Bio Jean Baptiste, 1774-1862) 387
- Больцман (Boltzman Ludwig, 1844— 1906) 694, 700
- Бор (Bohr Niels) 711, 720, 746
- Eopu (Born Max), 533, 618
- tiore 642
- Брадлей (Bradlay James, 1692-1762) 420

Бродхун 58

Bperr (Bragg William Henry, 1862-1942) 409

Брэккет (Brackett F. C.) 714

- Брюстер (Brewster David, 1781-1868) 376, 479, 482, 506, 525
- Byrep (Bougier Pierre, 1698-1758) 566 Бунзен (Bunsen Robert William, 1811-1899) 667

Бюиссон (Buisson H.) 439

- Вавилов С. И. (1891-1951) 61, 394, 565, 643, 709, 740, 756, 761, 778, 820
- Bapfypr (Warburg Emil, 1846-1931) 668
- Becep (Weber Wilhelm Eduard, 1804-1878) 21
- Верде (Verdet M. E.) 1824—1865) 619 Вин (Wien Wilhelm, 1864—1928) 573. 695, 729
- Винер (Wiener Otto, 1862-1927) 116, 377
- Волластон (Wollaston William Hyde, 1766-1828), 387, 401
- Вуд (Wood Robert, 1868-1955) 158, 726, 750
- Вульф Ю. В. (1863—1925) 409

Facop (Gabor Denis) 246

- Гавнола (Gaviola E.) 757 Галилей (Galilei Galileo, 1564—1642) 418, 441
- Гальвакс (Hallwachs W., 1859—1922) 634
- Гамильтон (Hamilton William Rowan. 1805-1865) 358
- Fayce K. (Gauss Karl Friedrich, 1777-1855) 294

Гельмгольц (Helmholtz Hermann Ludwig, 1821-1894) 285, 631

Fepanar (Herapath William Bird) 387

- Герке (Gehrke E.) 141
- Герлах (Gerlach Walter) 568
- Герц Г. (Hertz Heinrich, 1837—1894) 21, 443, 634
- Гершель (Herschel William Friedrich,
- 1738—1822), 334, 400 Голицын Б. Б. (1862—1919) 438 Гольдгаммер Д. А. 407
- Гримальди (Grimaldi Francesco Maria. 1618-1663) 18, 80
- Гросс (Gross G.) 487
- Гук (Hooke Robert, 1635—1703) 18
- Гульстранд (Gullstrand Allvar, 1862-1930) 326
- Гюйгенс (Huyghens Christian, 1629-1695) 18, 62, 150, 371, 509
- Дебай (Debye Peter) 441
- де Бройль 358
- Девиссон (Davisson C.) 361
- Декарт (Descartes Rene, 1596—1650) 16 Делиль 163
- Денисюк Ю. Н. 262
- Джермер (Germer L, H.) 361
- Джердмейн 850
- Джинс (Jeans James H.) 695
- Допплер (Doppler Christian, 1803-1853) 432-440, 463, 651
- Друде (Drude Paul, 1863—1906), 117, 492, 613
- Дьюэн (Doan R. L.) 205
- Евклид (330-270 до н. э.) 15
- Жамен (Jamin Jules Celestin, 1818-1886), 191, 544
- Зеесек (Seebeck A., 1805-1849) 387, 525
- Зееман (Zeeman Pieter, 1865-1943) 621
- Зелени (Selenyi O.) 488
- Зельмейер (Sellmeyer W.) 548
- Зоммерфельд (Sommerfeld Arnold) 171, 764

Изенсон 427 Иллингворт 451 Исффе А. Ф. 642

Капяца П. Л. 625 Kaccerpen 335 Кемпке (Quincke G., 1834-1924) 487 Кеннеди 451

- Кеплер (Kepler Johannes, 1571-1630) 660
- Kepp (Kerr John, 1824-1904) 527

Кирхгоф (Kirchhoff Gustav Robert, 1824-1887) 170, 687

- Кольрауш (Kohlrausch Friedrich. 1840-1910), 21
- Комптон (Compton Arthur) 205, 652
- Корню (Cornu A., 1841—1902) 166, 438 Коттон (Cotton Aime) 536
- Коши (Cauchy Augustin Louis, 1789--1957) 547
- Крукс (Crookes William, 1832-1919) 660
- Кунд (Kundt August, 1839—1894) 492. 541
- Лагранж (Lagrange Joseph Louis, 1736-1813) 285
- Ладенбург (Ladenburg Rudolf) 562
- Лайман (Lyman Theodore) 714
- Ламберт (Lambert Johann Heinrich, 1728-1777) 48
- Ланглей (Langley W. A., 1834—1906) 438
- Ландау Л. Д. 597
- Ландольт 328
- Ландсберг Г. С. (1890—1957) 587, 594, 601
- Ланжевен (Langevin Paul, 1872—1946) 532
- Лауэ (Laue Max) 291, 407
- Лебедев П. Н. (1866—1912) 402, 661 Левитская М. А. 402
- Лемуан (Lemoine J.) 534
- Ленард (Lenard Fhilipp) 635
- Леонтович М. А. 172, 598
- Леру (Le-Roux F. P., 1832—1907), 541
- Линник В. П. 136, 147
- Липпман (Lippman Gabriel, 1845-1921) 118
- Ллойд (Lloyd H.) 76
- Ломоносов М. В. (1711-1765) 20, 22, 334, 340, 345, 528
- Лорентц Г. (Lorentz Hendrik Antoon, 1853-1928) 22, 24, 443, 448, 558, 570, 695
- Лоренц Л. (Lorenz L.) 558
- Ло Сурдо 632
- Лукирский П. И. (1894-1954) 639 Луммер (Lummer Otto, 1860—1925)
- 58, 141 Лэшгмюр (Langmuir Irving, 1881) 708

Майкельсон (Michelson Albert Abraham, 1852—1931), 24, 124, 134, 142, 194, 196, 209, 425, 449

- Максвелл (Maxwell James Clark, 1831-1879) 21, 27, 538
- Максутов Д. Д. 335
- Малюс (Malus Etienne) 371, 378
- Мандельштам Л. И. (1879-1944) 355. 488, 569, 582, 594, 601, 762
- Маральди (Maraldi J. F., 1665-1729) 163
- Мёссбауэр (Mössbauer R. L) 659
- Милликен (Millican Robert Andrews) 639
- Мозли (Moseley Henry Gwyn Jelfreys, 1887-1915) 410
- Морлей (Morley E. W.) 451
- Мутон (Mouton H.) 536
- Нернст (Nernst, 1864-1941) 117
- Николь (Nicol William, 1768-1851)
- 384
- Ньюкомб 425
- Ньютон (Newton Isaak, 1643—1727) 16, 125, 333, 371, 540

Обреимов И. В. 579

Пастер (Pasteur Louis, 1822—1895) 616 Пашен (Paschen Friedrich) 714

- Перо (Perot A.) 137
- Перротен 424
- Планк (Plank Max) 24, 603, 698, 700, 721, 723
- Пойнтинг (Poynting Henry, 1852-1914) 37
- Поль (Pohl Robert) 78, 672
- Прево (Prevost Pierre, 1751—1839) 685
- Прохоров А. М. 784
- Пролемей (Ptolomaus Claudius, 70-147 н. эры) 15
- Пуассон (Poisson Simeon Denis, 1781-1840) 162
- Пульфрих (Pulfrich, 1858-1927) 484 Пфунд (Plund A. H.) 714

Paman (Raman Vencata Chandrasekhara), 584, 601 Резерфорд (Rutherford Ernest, 1871-

1937) 718, 720

Ремер (Romer Olaf, 1644-1710) 418

- Рентген (Röntgen Wilhelm Konrad, 1845-1923) 231, 403
- Ридберг (Rydberg Johannei Robert, 1854-1919) 713 Риттер 401
- Ритц (Ritz Walter, 1878-1909) 451, 718
- Рождественский Д. С. (1876-1940) 356, 545
- Роско (Roscoe Henry E., 1833-1915) 667
- Роулэнд (Rowland Henry August, 1848-1901) 204
- Рошон (Rochon Alexis Marie, 1774-1817) 387
- Рытов С. М. 598
- Рэлей (Rayleigh Robert John, 1842-1919) 65, 178, 193, 213, 224, 347, 428, 579, 581, 695

Савостьянова М. В. 672

- Сенабье (Senebier J.) 667
- Сенармон (Senarmont Herri, 1808— 1862) 387
- Смолуховский (Smoluchowski Maryan, 1872-1917) 582
- Снеллий (Snellius Willebord, 1591-1626) 16
- Стефан (Stefan Joseph, 1835—1893) 694
- Стокс (Stokes George, 1819—1903) 407, 752
- Столетов А. Г. (1839-1896) 634

Тальбот 57

- Тамм И. Е. 761
- Taync (Townes Charles) 784
- Тиндаль (Tyndall John, 1820—1893) 228, 579
- Томсон Г. П. (Thomson George P.) 361 Томсон Дж. Дж. (Thomson Joseph John, 1856—1940) 635, 718

Умов Н. А. (1846-1915) 37

Фабри (Fabry Charles, 1945) 137, 439 Фабрикант В. А. 775, 784

- Фарадей (Faraday Michael, 1791—1867) 21, 539, 618
- Ферма (Fermat Pierre, 1601-1675) 274
- Физо (Fizeau Hippolyte Louis, 1819-1896) 148, 194, 423, 444
- Фицджеральд (Fitzgerald George, 1851—1901) 453
- Фогель (Vogel, 1841—1907) 438
- Фогт (Voigt Woldemar, 1850—1919) 630 Фок В. А. 172
- Франк И. М. 761
- Фраунгофер (Fraunhofer Josef 1787-1826) 172, 187, 208
- Френель (Fresnel Augustin Jean, 1788— 1827) 20, 70, 76, 150, 163, 388, 445, 470, 502, 546, 614
- Фрум 427
- Фуко (Foucault Leon Jean Bernard, 1819—1868) 424
- Фурье (Fourier Jean Baptiste, 1768— 1830) 29, 32

Хелл (Hull A. W.) 411 Хольвек (Hollweck F.) 415 Хохлов Р. В. 850 Цернике 366

Черенков П. А. 761

- Шерер (Scherrer P.) 411 Шеффер (Schaefer Clemens) 487 Штарк (Stark Johannes) 630
- Эддингтон (Eddington Arthur, 1882-1943) 664
- Эйлер (Euler Leonard, 1707—1783) 17
- Эйнштейн (Einstein Albert, 1879— 1955) 453, 584, 638, 667, 730, 774, 783
- Эйхенвальд А. А. (1863—1944), 446, 486
- Эренфест (Ehreifest Paul) 431

Эри (1801—1892) 446

Эссен 427

Юнг (Joung Thomas, 1773—1829) 20, 79, 105, 125, 171, 371, 389, 528

Lut.

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

Волна плоская 36

-, скорость 26

стоячая 113

-, поперечность 370

- --, пучность 114

Аберрация света 420, 446 Амплитуда 29 Анализатор 396 Ангармонизм 836 Анизотропия искусственная 525 — молекул 495, 532, 589 — оптическая 496, 521—525 — при деформации 525 —, релаксация 597 —, —, время 536 —, флуктуации 591, 597 Апертура 72, 353 — интерференции 73 перекрывающихся пучков 72 — пучка 286 — числовая 350, 354 Апланатизм 311 Аподизация 187 Апохроматы 317 Астигматизм 306-310

Бизеркало Френеля 71, 76 Билинза Бийе 71, 72 Бипризма Френеля 77, 78

Умова — Пойнтинга 37, 38. Вектор 476 Верде постоянная 619 Видимость 63, 83-86, 91, 96, 99, 100, 103, 105, 120, 140 Видность 51, 52 Биньетирование 322 Еолна 25 и д. —, амплитуда 29 — Сегущая 37 — восстановленная 238 —, длина 30 — когерентная 66 — монохроматическая 29 — опорная 237 — период 29

..

^{— —,} узел 114 сферическая 36 Вращение плоскости поляризации 374, 607-614 - — — левое 614 — — магнитнсе 607 — — —, постоянная 612 — — правсе 614 — — —, теория 614 удельное 614 Генерация 781 -, мощность 781, 795 — стационарная 781 -, условия 781 Глаз 283, 325, 674 -, адаптация 679 -, аккомодация 325 -, восприятие света 674 нормальный 283 приведенный 283, 326 - -, характеристики 326 - спектральная чувствительность 677 Голограмма 239 — объемная 262 — Френеля 244 — Фурье 262 Голография 235 Давление света 660-665 Двойное лучепреломление 372, 380, 485, 500, 614 Деполяризация 589 -, коэффициент 590, 597

⁻ рассеянного света 591

Диафрагма 318 <u>—</u> апертурная 143, 319, 320, 322 - поля зрения 322 Дисперсия 22, 313, 539 — аномальная 430, 541 — —, связь с поглощением 541 — в металлах 562 — вращательная 609 -, коэффициент 314 — нелинейная 832 — —, теоряя 832—837 — нормальная 430 относительная 314 отрицательная 562 пространственная 521, 608 - спектрального аппарата 211, 212, 339 — — линейная 212, 339 — — — угловая 212, 339 — средняя 314 -, теория 547-560 Дисторсия 308, 309 Дифракция 151 и д. на двумерных структурах 225 — — краю экрана 163 — круглом отверстии 161 трехмерных структурах 227 — — ультраакустических волнах 232 — — упругой волне 593 — рентгеновских лучей 231, 408 —, углы 204, 238 Фраунгофера 178—231 — от отверстия 182 — — щели 172—179 — Френеля 172, 188 Диэлектрическая проницаемость 498 — —, главные значения 499 — -, эллипсонд 499 Добротность 781 — модулированная 790 Закон Бера 567 — Био 612 — Брюстера 376, 477 — Eyrepa 566 √ Вульфа — Брэгга 262, 409 — Кирхгофа 687 — Ламберта 47 — Малюса 378 - независимости световых пучков 13 - отражения 13, 275, 471, 483, 849 преломления 13, 275, 471, 486, 509, прямолинейного распространения

13, 151, 275, 821 - Рэлея 581

Закон смещения Вина 695 — Стефана — Больцмана 694 — Стокса 684 — эквивалентности Эйнштейна 667 Заселенность 731, 742, 774 — инверсная 775, 779, 786 Затухание 571 — вследствие излучения 569 – естественная 572 Зеркало Ллойда 78 Зонная пластинка 155-158, 240 - - амплитудная 158 — — фазовая 158 Зоны Френеля 153 и д. Зрачок входной 320, 322 выходной 320, 322

Излучение Вавилова — Черенкова 761 — резонансное_727_ - тепловое 682 Изображение вторичное 351 голографическое 239, 241—271 — — главное 250 — — действительное 248 — — дополнительное 250, 252, 261 — — мнимое 241, 245 — —, увеличение 248 — — цветное 265 — действительное 282 — мнимое 282 — первичное 351 — скрытое 671 — стигматическое 277 Инвариант Аббе 281 — — нулевой 281 Интерференция 15 и д. —, апертура 73 - волн вторичных 152, 155 — монохроматических 15 и д. — — немонохроматических 76, 90, 100 — — поляризованных 87, 388 -, максимумы 67, 74 —, минимумы 67, 77 -, полосы равного наклона 129, 136, 141 -, - равной толщины 124, 135 —, порядок 75, 92 при большой разности хода 143 Интерферометр Жамена 131-134 — Майкельсона 134—136, 211, 219 — Рэлея 193—198 — Фабри — Перо 139, 797 Испускание вынужденное 734, 855 - -, контур линин 738 - -, коэффициент Эйнштейна 735

— спонтанное 732

предметный указатель

Испускание спонтанное, контур линии 738 - -, коэффициент Эйнштейна 732 Кандела 53, 55 Катодолюминесценция 683 Квант 638 и д. — рентгеновский 640 Керра постоянная 529, 590 - явление - см. Явление Керра ячейка 536 Когерентность 62, 64, 236 - временная 104 —, время 93 —, длина 92, 107, 841 --, область 107, 260 — пространственная 85, 105 — — частичная 105, 180, 195 -, степень 96—112, 198, 356 — частичная 69, 94 Кольца Ньютона 125—127, 239 Кома 306, 310, 312 Компенсатор Бабине 397 Коэффициент дополяризации 590, 597 нелинейности 832 — отражения 137, 490, 661, 780 — — амплитудный 474, 479 — поглощения 137, 491, 556, 739, 775 — — рентгеновских лучей 404 поляризуемости 578, 604 пропускания 137, 222, 240, 480 - .- амплитудный 474 — увлечения 444, 462 — усиления 775, 780, 855 — Эйнштейна второй 734 — — первый 732 —, спектральная плотность 738, 774 Кривая изохроматическая 519 Критерий Рэлея 213-216, 347 Лазер 69, 143, 769 и д. -, принцип действия 779 Линза 288 — ахроматическая 316 -, оптическая сила 293 —, оптический центр 289 — рассеивающая 291 собирательная 291 — тонкая 288 —, фокус 290 -, фокусное расстояние 290 Линия Рэлея 594 — —, крыло 597, 598 — тонкая структура 593—596 - спектральная 103, 571

Линия спектральная, контур 103, 572, 737 — — мультиплетная 627 — — синглетная 627 — —, ширина 103, 572, 712 - -, - естественная 572 Лупа 329 -, увеличение 329 Лучи 40 и л. — в анизотропной среде 496-516 - главные 323 — меридиональные 306 — необыкновенные 381, 513 — обыкновенные 381, 513 рентгеновские 403 — , жесткость 405 — —, оптика 414 ----, поглощение 404 — — характеристические 413 Люк входной 322, 323 выходной 323 Люкс 53, 55 Люмен 53, 55 Микроскоп 329 метод темного поля 362 -, - фазового контраста 362 , разрешающая способность 330, 348-357 -, — —, дифракционная теория 350 — с иммерсией 330 --- электронный 357 Модель атома 718 — — Резерфорда 719 — — Томсона 718 Модуляция 35, 234, 592, 740 — амплитудная 98 — фазовая 98 Накачка оптическая 784 Нормаль волновая 370, 382, 501-516 - вторичная 144

Область дисперсионная 215, 217, 219 Опалесценция критическая 582 Оптика геометрическая 272 и д. — нелинейная 820 и д. — —, отражение волн 845—849 — просветленная 345 Оптическая активность 521, 607, 614 Оптический квантовый генератор — см. Лазер Опыт Майкельсона 449—453 — Физо 444, 463 — Эри 446, 448

предметнып указатель

Освещенность 45, 345 -, закон обратных квадратов 46 Осциллятор ангармонический 570 — гармонический 551, 698 —, сила 554 Ось_оптическая 289 — — кристалла 382, 504 — — системы 294 <u>— —</u> побочная 294 Относительное отверстие 324 Переходы безызлучательные 725 и д. — вынужденные 735 — излучательные 785 - спонтанные 732 — —, героятность 732 Пирометрия 701-705 Пластинка Люммера — Герке 141, 142, 211, 219 Плоскость главная 382 поляризации 374, 607 — —, вращение 607—614 — —, —, постоянная 612 — сопряженная 285 — фокальная 290, 295 Поверхность волновая 277, 497 — каустическая 302, 303 изохроматическая 520 — лучевая 503, 505 - -, главише сечения 503 — нормалей 503, 505 - -, главные сечения 503 — фокальная 283 — — задняя 283 — передняя 283 Поглощение многофотонное 571, 646 — света 137, 490, 563 и д. Показатель преломления 17, 22, 91,-278 и д. - - зависимость от интенсивности 820 - -, измерение 148 — — комплексный 491. 556 Полное внутреннее отражение 475, 432-487 Поляризация 42, 371 и д. анализ 396—309 — круговая 42, 379, 390 -, плоскость 374, 607 -, -, вращение 607-614 при отражении 374, 472, 479 — — преломления 375, 472, 479

Поляризация при рассеянии 588 --, степень 479, 588 — хроматическая 517 — эллиптическая 49, 379, 390 Поляризуемость 578, 605, 836, 856 Постулаты Бора 721 — Эйнштейна 453, 454 Поток лучистой энергин 43, 44 Правило зеркальной симметрии 753 - Стокса 752 Призмы 313 — ахроматические 315 двоякопреломляющие 386 — полного внутреннего отражения 484 — поляризационные 384 — прямого зрения 315 Принцип взаимности 277. — Гюйгенса 19, 150 и д. — Гюйгенса — Френеля 20, 150 и д. - комбинационный Ритца 717 — Мопертюи 358 — относительности 437, 442 — соответствия 724 — суперпозиции 32, 621 — Ферма 874, 358 — цикличности 795, 801 Пространственная синфазность 773 Пучок гауссов 184, 802 гомоцентрический 277, 280—282 параксиальный 280, 281 — сопряженный 277 Пятно Пуассона 163 Работа выхода 638, 639 Разложение Фурье 32, 33 Разрешающая способность 212-219, 223 — голографической системы 256 — — микроскопа 330, 348—357 — — объектива 346—348 — — хроматическая 367 Рассеяние рентгеновских лучей 652-659 — света 569, 575 и д. — в чистом веществе 584 — вследствие флуктуаций 583, 585 — — вынужденное 593, 854 — — комбинационное 853, 855 ----, интенсивность 580-607 — — комбинационное 600, 605 — — , спектр 591—600, 605 ____, __, компоненты Мандельштама — Бриллюэна 593 - — рэлеевское 581, 593, 603 Резонатор оптический активный 779 –, потери 781

предметнып указатель

Рефлектор 333 — Кассегрена 335 — Ломоносова — Гершеля 334 — Ньютона 334 Рефрактор 334 Рефракция атомная 559 — молекулярная 559 — удельная 558 Решетка дифракционная 198—227 — фазовая 206—209, 232, 825 Ридберга постоянная 713

Самодифракция 824, 826 Самоотражение 828 Самофокусировка 820, 821, 854 —, длина 822 Светимость 48, 49, 687 Сретосила 324 Серии спектральные 714 Сила вынуждающая 552 — Лорентца 623 — оптическая 293 — осциллятора 554 — света 44, 45 тормозящая 551 — удерживающая 550, 835 Синфазность 840 —, направление 842 - пространственная 840 - --, векторное условие 850 Система инерциальная 442 — оптическая 287, 294 — — идеальная 294—301 — — —, ось главная 294 — — —, — побочная 294 - - -, плоскости главные 295 — — —, — кардинальные 294 — — —, — сопряженные 292 — — —, — узловые 298 — — —, — фокальные 295 - - -, точки апланатические 312 — — —, — главные 296 — — —, — кардинальные 294 — — —, — сопряженные 292 — — —, — узловые 297 ____, увеличение 295, 299 — телескопическая 296, 332, 804 — — центрированная 287 Скорость света 417 — групповая 428, 430, 829 — — лучевая 435, 501 — пормальная 502 - -, определения астрономические 418 — —, — лабораторные 422

— — фазовая 424, 501

Состояния возбужденные 728 — —, длительность 729, 759 — вращательные 750 — колебательные 750 — местастабильные 728, 785 — стационарные 722 Спектр линейчатый 711 - полосатый 71Г Спектральная плотность излучения 734 — — интенсивности 99 — — относительная 100 Спектральные аппараты 337 — —, дисперсия 211, 339 Спираль Корню 167 Способность испускательная 686 — — абсолютно черного тела 689 - поглощательная 686, 689 Среда активная 775, 779 — нелинейная 820 Схемы интерференционные 71-80 Телескоп 333 — менисковый Максутова 335 Тело абсолютно черное 661, 689, 693 — нечерное 693 Температура истинная 705 — радиационная 702 — цеетовая 703 – яркостная 705 Теорема Лагранжа — Гельмгольца 285 - 287Теория Лорентца 448 относительности 453 — — специальная 453 — —, формулы преобразования 455 - цеетного зрения 677-681 — трехцветная Гельмгольца 681 Терм 717, 723 Труба зрительная 331 — —, увеличение 332, 333 — «ночезрительная» 345 Увеличение 286, 292, 329 -- голографической системы 250 — — поперечное 250, 251 — линейное 285, 295, 310 — поперечное 293 — продольное 299 — угловое 290 Угол апертурный 322 — Брюстера 376, 477 - критический 482 - скольжения 409

Уравнение Максвелла 27, 471

Уравнение Максвелла, решения для анизотропной среды 500 Условие стационарной генерации 781 — синусов 287, 310, 344

Фактор Кабанна 591 Флуоресценция 642, 756, 759 — рентгеновская 642 Фокус 282 — задний 283 — передний 282 Формула Бальмера 713 — излучения Планка 698—701 — линзы 288 — Лоренц — Лорентца 558 — Рэлея 430, 829 — Рэлея — Джинса 699, 736 Формулы Френеля 471-479 Фосфоресценция 684, 757, 760, 765 Фосфоры 765 Фотолюминесценция 683, 749 --, длительность 756 —, спектр 753 —, тушение 755 Фотон 643 и д. Фотоэмульсия 670 --, сенсибилизация 673 Фотоэффект 633 — внешний 648 — внутренний 648 -, граничная частота 640 —, законы 635—648 — нелинейная 647 селективный 644—648 Фронт волны 40, 152 Фурье-спектроскопия 101

Хемилюминесценция 682, 684

Частота круговая 30 Число волновое 30, 176, 713

Ширина полосы 75 — — угловая 76

Электролюминесценция 683 Эллипсоид индексов 502 — Френеля 502 Эталон длины 143 — Фабри — Перо 137, 211, 797 Эфир 18, 21, 24, 150, 443 — неподвижный, теория 448 — увлекаемый, теория 443, 444 Эффект насыщения 777 — Штарка 147, 575, 630 Эшелон Майкельсона 209—211, 219

Явление Допплера 143, 432, 463, 656 — Зеемана 621

— — аномальное 627

—· — нормальное 621

— — обратное 628

— —, теория 623

— Keppa 527, 598, 790

— —, длительность 534, 598

— Коттон — Мутона 536

— Комптона 652

— —, теория 654

— Тиндаля 579

— Фарадея 528, 619

Яркость 46, 47

— изображения 342—344

Григорий Самуилович Ландсберг

оптика

M., 1976 г., 928 стр. с илл.

Настоящее издание ккиги подготовлено при редакционном участии Ф. С. Ландсберг-Барышанской, С. Г. Раутиана и И. А. Яковлева

> Редактор Н. А. Райская Техн. редактор С. Я. Шкляр Корректор Н. Б. Румянцева

Сдано в набор 29.04. 1976 г. Подписано к печати 09.11. 1976 г. Бумага 60×90¹/16. Физ. печ. л. 58. Услови. печ. л. 58. Уч.-изд. л. 61.04. Тираж 100 000 экз. Цена книги 2 р. 24 к. Заказ № 607.

Издательство «Наука» Главная редакция физико-математической литературы 117071, Москва, В-71, Ленинский проспект, 15

Ордена Трудового Красного Знамени Ленинградское производственно-техническое объединение «Печатный Двор» имени А. М. Горького Союзполиграфпрома при Государственном комитете Совета Министров СССР по делам издательств, полиграфии и кинжной торговли. 197136, Ленинград, П-136, Гатчинская ул., 26.

ИЗДАТЕЛЬСТВО «НАУКА» ГЛАВНАЯ РЕДАКЦИЯ ФИЗИКО-МАТЕМАТИЧЕСКОЙ ЛИТЕРАТУРЫ 117071, Москва, В-71, Ленинский проспект, 15

Готовится к изданию в 1977 г. в серии «Общий курс физики» С. Г. Калашников, Электричество, изд. 4-е, перераб.

Книга написана на основе курса лекций, читавшихся автором в течение многих лет на физическом факультете МГУ. Книга хорошо известна в нашей стране и широко используется в качестве учебного пособия по общему курсу физики в университетах и физико-технических институтах. В новом издании основное содержание книги осталось без существенных изменений. Переработке подверглись главным образом главы, посвященные электронным явлениям в металлах и полупроводниках, а также явлениям в контактах; дано понятие о квантовом описании электронных процессов в твердых телах; кроме того, виесены более мелкие изменения в других частях книги.

Книга рассчитана на студентов физических и физико-математических факультетов университетов, физико-технических институтов, а также студентов втузов с расширенной программой по физике.

Вышли из печати следующие книги серии «Общий курс физики»:

1. С. П. Стрелков, Механика, изд. 3-е, перераб., 1975 г.

2. А. К. Кикоин, И. К. Кикоин. Молекулярная физика, изд. 2-е. перераб., 1976 г.

Книги, вышедшие из печати, требуйте в магазинах Книготорга и Академкниги. На печатающиеся издания принимаются предварительные заявки.